

PROJECT NO.: TCS/00512/09

DSD CONTRACT NO. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO.26) – SEPTEMBER 2012

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index Reference No. Prepared By Approved By 15 October 2012 TCS00512/09/600/R0552v2 AAA Ammediate Nicola Hon T.W. Tam Environmental Consultant Environmental Team Leader

Version	Date	Description
1	11 October 2012	First Submission
2	15 October 2012	Amended against IEC's comments on 11 October 2012

Scott Wilson CDM Joint Venture

Chief Engineer/Harbour Area Treatment Scheme Drainage Services Department 5/F Western Magistracy 2A Pok Fu Lam Road Hong Kong

Your reference:

 Our reference:
 05117/6/16/393334

 Date:
 15 October 2012

Attention: Mr Kenley C K Kwok

BY FAX & EMAIL

Dear Sirs,

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area <u>Monthly Environmental Monitoring and Audit (EM&A) Report No. 26 (September 2012)</u>

We refer to the Monthly EM&A Monitoring Report No. 26 for September 2012 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated 15 October 2012. We have no comment and have verified the captioned report.

Yours faithfully SCOTT WILSON CDM JOINT VENTURE

Rodney Ip Independent Environmental Checker

ICWR/SYSL/ycky

cc Leader Civil Engineering AUES ER/LAMMA CDM

(Attn: Mr Vincent Chan) (Attn: Mr T.W. Tam) (Attn: Mr Neil Wong) (Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the 26th monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from 26 August to 25 September 2012 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	45
All Quality	24-hour TSP	15
Construction Noise	L _{eq(30min)} Daytime	20
Water Quality	Marine Water Sampling	13
Inspection / Audit	ET Regular Environmental Site Inspection	5

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Limit Level	Event & Action		
Issues	Parameters	Level		NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – Notification of Exceedance

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.05. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.06. No reporting change was made in this Reporting Period.

SITE INSPECTION BY EXTERNAL PARTIES

ES.07. No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

FUTURE KEY ISSUES

ES.08. During dry season, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

ES.09. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

TABLE OF CONTENTS

1	INTRODUCTION Project Background Report Structure	1 1 2
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS Project Organization and Management Structure Construction Progress Summary of Environmental Submissions	3 3 3 3
3	 SUMMARY OF BASELINE MONITORING REQUIREMENTS ENVIRONMENTAL ASPECT MONITORING LOCATIONS MONITORING FREQUENCY AND PERIOD MONITORING EQUIPMENT EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION DATA MANAGEMENT AND DATA QA/QC CONTROL REPORTING DETERMINATION OF ACTION/LIMIT (A/L) LEVELS 	4 4 5 6 7 7 7 7 8
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	10
6	IMPACT MONITORING RESULTS – WATER QULAITY	11
7	ECOLOGY	13
8	WASTE MANAGEMENT	14
9	SITE INSPECTION	15
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
12	IMPACT FORECAST	23
13	CONCLUSIONS AND RECOMMENDATIONS CONCLUSIONS	24 24 24
	RECOMMENDATIONS	24

LIST OF TABLES

Status of Environmental Licenses and Permits
Summary of EM&A Requirements
Location of Air Quality Monitoring Station
Location of Construction Noise Monitoring Station
Location of Marine Water Quality Monitoring Station
Action and Limit Levels for Air Quality
Action and Limit Levels for Construction Noise
Action and Limit Levels for Marine Water Quality
Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Summarized of Construction Noise Monitoring Results at NM1
Summarized of Construction Noise Monitoring Results at NM2
Summarized of Construction Noise Monitoring Results at RNM3
Summarized of Construction Noise Monitoring Results at NM4
Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Summarized Exceedances of Marine Water Quality
Summary of Quantities of Inert C&D Materials
Summary of Quantities of C&D Wastes
Site Observations
Statistical Summary of Environmental Complaints
Statistical Summary of Environmental Summons

 Table 10-3
 Statistical Summary of Environmental Prosecution

 Table 11-1
 Environmental Mitigation Measures

LIST OF APPENDICES

- Appendix A Site Layout Plan Sok Kwu Wan Portion Area
- Appendix B Organization Structure and Contact Details of Relevant Parties
- Appendix C A Master and Three Months Rolling Construction Programme
- Appendix D Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
- Appendix E Monitoring Equipments Calibration Certificate
- Appendix F Event and Action Plan
- Appendix G Monitoring Data Sheet
- Appendix H Graphical Plots of Monitoring Results
- Appendix I Meteorological Information
- Appendix J Monthly Summary Waste Flow Table
- Appendix K Weekly Site Inspection Checklist
- Appendix L Implementation Schedule of Mitigation Measures
- Appendix M Tree Inspection Report

AUFS

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "*DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works*" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the **26th** monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from **26** August to **25** September 2012.

REPORT STRUCTURE

- 1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report Sok Kwu Wan is structured into the following sections:-
 - INTRODUCTION **SECTION 1 SECTION 2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS SECTION 3** SUMMARY OF MONITORING REQUIREMENTS **SECTION 4 AIR QUALITY MONITORING RESULTS CONSTRUCTION NOISE MONITORING RESULTS SECTION 5 SECTION 6** WATER QUALITY MONITORING RESULTS WASTE MANAGEMENT **SECTION 7** SITE INSPECTIONS **SECTION 8 SECTION 9 ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE SECTION 10 IMPLEMENTATION STATUES OF MITIGATION MEASURES SECTION 11** IMPACT FORECAST **CONCLUSIONS AND RECOMMENDATION SECTION 12**

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of PS1: metalworks installation, E&M Works installation, painting.
 - Construction of PS2: metalworks installation, E&M Works installation, painting.
 - Construction of SKWSTW: excavation, soil compaction, concreting, steel fixing, formwork erection, formwork removal, backfilling, scaffolding erection, dismantling scaffolding.
 - Backfilling of Foam Concrete, Installation of Diffuser Cap.

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 19 May 2010
	Regulation	Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction	Issued on 26 May 2010
	Waste	A/C No: 7010815
5	Construction Noise Permit	Permit no. GW-RS0284-12
		Valid from: 26 Mar 2012
		Until: 25 Sep 2012

 Table 2-1
 Status of Environmental Licenses and Permits

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Environmental Issue	Parameters
	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and
Air Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.
Noise	• Leq (30min) during normal working hours; and
INDISE	• Leq (15min) during Restricted Hours.
	In-situ Measurements
	• Dissolved Oxygen Concentration (DO) (mg/L);
	 Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Moning Water Ouglity	• pH unit;
Marine Water Quality	• Salinity (ppt);
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	• Suspended Solids (SS) (mg/L)

 Table 3-1
 Summary of EM&A Requirements

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AM1	Squatter house in Chung Mei Village
AM2	Squatter house in Chung Mei Village
AM3	Football court

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3	Location of Construction Noise Monitoring Station
-----------	---

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Station	Description	Co-ordnance	
Station	Description	Easting	Northing
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732
W2	Fish culture zone at Picnic Bay	832 670	807 985
W3	Fish culture zone at Picnic Bay	832 045	807 893
C1 (flood)	Control Station	833 703	808 172
C2	Control Station	831 467	807 747
C3 (ebb)	Control Station	832 220	808 862

Table 3-4	Location of Marine Water Quality Monitoring Station	n
-----------	---	---

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters:	1-hour TSP and 24-hour TSP.
Frequency:	Once in every six days for 24-hour TSP and three times in every six days for 1-hour TSP.
Duration:	Throughout the construction period.

Noise Monitoring

Parameters:	$L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} . $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of
	public holiday and Sunday)
Frequency:	Once per week during 0700-1900 hours on normal weekdays. Restricted hour monitoring should depend on conditions stipulated in Construction Noise Permit.
Duration:	Throughout the construction period.

Marine Water Quality Monitoring

<u>Parameters</u>: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH, turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

 Yu Wan – EM&A Monthly Report – September 2012

 Frequency:
 Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours.

 Sampling
 (i.)

 Depth
 (i.)

 If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.

 (iii.)
 If the water depth is less than 3m, 1 sample at mid-depth is taken

<u>Duration</u>: During the course of marine works

Post-Construction Monitoring – Marine Water

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.10 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (*Type 1*) and 804: 1985 (*Type 1*) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.

Water Quality Monitoring

- 3.11 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0 20mg L-1 and 0 200% saturation; and a temperature of 0 45 degree Celsius.
- 3.12 *pH Meter* The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in a range of 0 to 14.
- 3.13 *Turbidity (NTU) Measuring Equipment* The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.14 *Water Sampling Equipment* A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.15 *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- 3.16 *Salinity Measuring Equipment* A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.

- 3.17 *Sample Containers and Storage* Water samples for suspended solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.18 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.19 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

EQUIPMENT CALIBRATION

- 3.20 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.21 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.22 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.23 The Water Quality Monitoring equipments such as DO meter, pH meter, turbidity measuring instrument and salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.24 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.25 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.26 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.27 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.28 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end

day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.29 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Table 3-5Action and Limit Levels for Air Quality

Monitoring Station	Action Le	vel (µg/m ³)	Limit Level (µg/m ³)		
Womtoring Station	1-hour	24-hour	1-hour	24-hour	
AM1	343	173	500	260	
AM2	331	175	500	260	
AM3	353	191	500	260	

Table 3-6 A

Action and Limit Levels for Construction Noise

Monitoring	Action Level	Limit Level			
Location	0700-1900 hours on normal weekdays				
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods			

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	In	Impact Station		
rarameter	Criteria	W1	W2	W3	
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71	
(mg/L)	Limit Level	5.29	4.56	4.54	
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37	
(mg/L)	Limit Level	N/A	3.06	3.18	
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48	
(NTU)	Limit Level	6.06	5.99	6.71	
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79	
(mg/L)	Limit Level	12.68	11.28	12.25	

3.30 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **45** and **15** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1, 4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix G* and the graphical plots of are shown in *Appendix H*.

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour	1-hour TSP (µg/m ³)							
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured			
28-Aug-12	57	29-Aug-12	8:00	74	92	86			
3-Sep-12	22	4-Sep-12	8:00	78	83	89			
8-Sep-12	21	10-Sep-12	8:00	54	52	48			
14-Sep-12	34	14-Sep-12	9:00	42	37	34			
20-Sep-12	85	20-Sep-12	9:00	52	58	55			
Average	44	Average		62					
(Range)	(21 - 85)	(Rang	e)	(34 – 92)					

Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
-----------	--

	24-hour	1-hour TSP (µg/m ³)						
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
28-Aug-12	84	29-Aug-12	10:15	63	69	65		
3-Sep-12	29	4-Sep-12	4-Sep-12 10:15 59		53	49		
8-Sep-12	34	10-Sep-12	10:30	46	37	32		
14-Sep-12	20	14-Sep-12	11:45	38	34	35		
20-Sep-12	72	20-Sep-12	11:15	47	52	55		
Average	48	Avera	ge	49				
(Range)	(20 - 84)	(Rang	e)	(32 - 69)				

1able 4-5 Summary of 24-nour and 1-nour 15P Monitoring Kesuits – AM5	Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
--	-----------	--

	24-hour			1-hour TSP	$(\mu g/m^3)$			
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
28-Aug-12	112	29-Aug-12	12:40	145	152	157		
3-Sep-12	29	4-Sep-12	12:45	119	123	117		
8-Sep-12	30	10-Sep-12	14:30	101	96	91		
14-Sep-12	22	14-Sep-12	14:30	94	99	91		
20-Sep-12	97	20-Sep-12	13:30	112	121	127		
Average	58	Avera	ge	116				
(Range)	(22 - 112)	(Rang	e)		(91–157)			

4.03 As shown in *Tables 4-1, 4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.

4.04 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of **20** construction noise monitoring events were undertaken at designated locations. The results for $L_{eq30min}$ at NM1, NM2, RNM3 and NM3 are summarized in *Tables 5-1, 5-2, 5-3* and *5-4* and graphical plots are shown in *Appendix H*.

 Table 5-1
 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
29-Aug-12	10:10	10:40	55.7	54.4	52.2	56.4	60.2	62.3	58.2
4-Sep-12	10:05	10:35	51.8	52.6	48.3	46.4	44.7	49.4	49.7
10-Sep-12	10:35	11:05	40.9	52.3	45.9	45.9	40.5	44.5	47.0
14-Sep-12	13:00	13:30	44.2	50.4	46.5	41.6	50.1	46.1	47.5
20-Sep-12	13:40	14:10	56.5	52.3	56.9	58.6	54.4	50.2	55.7
Limit Level in dB(A)									75

Table 5-2 Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
29-Aug-12	10:45	11:15	63.2	66.2	68.5	62.8	68.9	65.9	66.5
4-Sep-12	10:40	11:10	59.3	62.2	63.4	55.2	57.0	55.7	59.9
10-Sep-12	11:10	11:40	55.0	58.4	57.9	58.8	60.4	55.7	58.1
14-Sep-12	13:35	14:05	56.2	54.4	54.8	58.9	54.9	54.8	56.0
20-Sep-12	13:00	13:30	63.2	63.6	63.8	62.8	62.6	64.6	63.5
Limit Le	Limit Level in dB(A) -						75		

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
29-Aug-12	11:20	11:50	63.7	62.5	62.5	62.8	62.8	64.7	63.2	66.2
4-Sep-12	11:15	11:45	70.0	65.7	64.6	66.8	65.7	66.3	66.9	69.9
10-Sep-12	13:05	13:35	62.5	67.3	62.3	64.9	62.0	61.7	64.0	67.0
14-Sep-12	14:15	14:45	61.9	61.8	62.6	64.6	66.6	66.9	64.6	67.6
20-Sep-12	11:35	12:05	62.7	62.8	68.1	62.5	62.9	62.8	64.2	67.2
Limit Le	vel in dE	B (A)				-				75

* A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
-----------	--

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	
29-Aug-12	13:00	13:30	58.4	55.8	58.6	56.5	52.8	53.3	56.4	
4-Sep-12	11:50	12:20	47.3	48.8	51.2	46.9	58.0	47.3	52.2	
10-Sep-12	13:45	14:15	48.6	46.3	49.2	48.9	66.6	58.4	59.7	
14-Sep-12	14:55	15:25	64.7	59.9	61.7	63.7	65.1	63.2	63.4	
20-Sep-12	11:00	11:30	60.3	63.6	60.9	56.6	55.3	56.6	59.9	
Limit Le	vel in dE	B(A)		-						

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1, 5-2, 5-3 and 5-4* which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 13 events of water quality monitoring were carried out at the designated locations.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 30.32 to 34.40 ppt, and pH value was within 6.08 to 7.83.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1, 6-2, 6-3 and 6-4*. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

 Table 6-1
 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

		-										
Sampling date		ed Oxyg and		of Depth yer (mg/I	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)							
Sumpling auto	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Aug-12	8.13	8.19	8.83	8.38	8.11	6.69	NA	5.37	5.74	6.28	5.72	5.06
29-Aug-12	7.73	7.94	7.40	7.18	7.51	6.71	NA	4.35	4.09	3.86	4.23	4.64
31-Aug-12	7.16	8.30	7.51	8.05	8.13	6.92	NA	5.98	5.30	5.44	5.54	4.96
4-Sep-12	7.17	8.19	8.27	8.62	8.81	6.94	NA	5.48	5.72	5.65	6.25	4.84
6-Sep-12	7.67	7.39	7.79	7.65	8.25	8.25	NA	5.32	4.94	4.94	5.13	5.13
8-Sep-12	6.59	7.14	6.94	7.52	6.00	6.00	NA	5.02	5.92	5.38	4.37	4.37
10-Sep-12	8.81	8.43	8.02	8.27	6.96	6.96	NA	6.19	6.26	4.65	5.99	5.99
12-Sep-12	9.86	8.80	8.75	8.97	8.34	8.34	NA	6.48	5.49	7.69	5.33	5.33
14-Sep-12	9.67	8.86	8.14	8.49	8.17	8.17	NA	5.31	5.68	5.85	5.35	5.35
18-Sep-12	7.98	8.60	8.03	8.41	8.64	8.64	NA	7.68	7.06	7.30	7.06	7.06
20-Sep-12	6.26	6.43	6.85	6.12	6.92	6.92	NA	6.21	5.60	6.00	6.14	6.14
22-Sep-12	5.68	5.71	5.56	5.60	5.52	5.52	NA	5.52	5.37	5.18	5.15	5.15
24-Sep-12	6.95	5.03	5.07	5.82	6.82	6.82	NA	4.82	4.97	5.26	5.46	5.46

Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended
	Solids)

Sompling data		T	urbidity	y Depth Av	ve. (NTU)	Suspended Solids Depth Ave. (mg/L)						
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Aug-12	0.70	1.28	0.96	1.16	1.41	1.16	4.40	6.33	5.63	4.13	7.00	5.17
29-Aug-12	1.17	1.25	1.16	1.61	1.11	1.25	3.30	3.60	4.60	4.73	3.83	3.83
31-Aug-12	0.65	0.93	1.31	0.96	1.01	1.28	3.70	3.70	5.67	4.77	4.77	4.10
4-Sep-12	0.83	1.54	1.33	1.18	1.33	1.42	3.60	2.13	3.03	1.57	5.27	5.07
6-Sep-12	1.00	1.28	1.39	1.60	1.15	1.54	3.00	2.20	4.33	3.13	2.93	2.83
8-Sep-12	1.30	1.45	1.48	1.31	1.26	1.59	5.60	5.20	4.83	2.53	5.53	4.07
10-Sep-12	1.15	1.74	1.76	1.38	1.51	1.38	3.80	3.50	3.67	3.17	2.50	1.93
12-Sep-12	0.82	0.81	0.66	1.00	1.46	1.26	1.20	2.07	2.63	2.47	2.97	2.80
14-Sep-12	0.88	0.94	0.92	1.36	1.07	1.30	3.90	3.90	4.50	3.20	7.73	4.63
18-Sep-12	1.40	1.27	1.10	1.36	1.28	1.21	5.90	3.67	3.87	5.27	3.30	6.17
20-Sep-12	1.09	1.33	0.96	1.36	1.07	1.30	4.20	3.83	8.43	4.83	3.70	4.50
22-Sep-12	0.64	1.01	0.96	1.24	0.91	1.34	4.20	5.37	4.97	5.47	3.30	9.00
24-Sep-12	0.93	1.14	1.05	1.18	1.07	1.23	4.80	4.70	6.97	6.10	6.57	8.67

Table 6-3	Sum	mary	of Wa	ter Quali	ty Result	s – Mid-f	flood T	lides (l	Dissol	ved O	xygei	n)	
Sampling date			• •	conc. of D d Layer (1	-	of Surf.	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)						
	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3	
27-Aug-12	9.34	8.25	8.19	8.53	7.11	8.46	NA	4.70	5.16	4.77	5.77	4.20	
29-Aug-12	9.48	8.89	7.90	8.56	7.07	7.50	NA	6.50	4.19	4.35	3.81	4.40	
31-Aug-12	5.80	5.34	7.24	7.69	7.33	6.42	NA	4.54	4.87	4.36	5.04	4.66	
4-Sep-12	8.88	5.30	8.20	8.34	7.79	6.72	NA	3.93	4.60	4.58	4.42	4.29	
6-Sep-12	8.25	7.38	7.66	7.60	5.31	6.35	NA	4.58	5.72	5.31	5.65	4.35	
8-Sep-12	7.86	7.21	6.43	5.27	4.54	7.49	NA	5.29	5.89	4.54	5.40	5.01	
10-Sep-12	9.59	9.50	8.88	8.31	5.33	6.94	NA	6.17	5.00	5.33	4.97	4.60	
12-Sep-12	10.07	9.46	9.43	8.83	6.00	8.45	NA	5.18	4.59	6.00	6.47	4.95	
14-Sep-12	8.74	9.01	8.39	7.36	4.19	6.99	NA	7.33	5.86	4.19	6.59	3.87	
18-Sep-12	6.58	8.10	8.11	6.59	5.83	7.06	NA	6.69	7.41	5.83	7.11	6.03	
20-Sep-12	8.60	8.79	8.61	7.19	6.49	6.75	NA	7.34	7.51	6.49	6.12	5.90	
22-Sep-12	5.76	6.09	5.70	5.94	5.36	5.75	NA	5.50	5.55	5.36	5.80	5.48	
24-Sep-12	5.74	5.72	4.99	4.87	4.85	5.34	NA	4.99	4.97	4.85	5.08	4.88	

Table 6-4	Summary of	Water	Quality	Results	_	Mid-flood	Tides	(Turbidity	&
	Suspended Soli	ids)							

Sompling data		Т	urbidity	y Depth Av	ve. (NTU)		Susp	ended S	Solids 1	Depth A	ve. (m	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Aug-12	0.82	0.71	0.86	0.98	1.30	1.05	3.80	3.93	4.57	4.70	5.83	6.60
29-Aug-12	0.98	1.05	1.30	1.38	1.44	1.41	3.50	4.50	3.37	3.80	3.37	3.10
31-Aug-12	0.88	1.06	1.25	1.15	1.33	1.26	7.30	6.53	5.70	5.17	2.60	5.60
4-Sep-12	0.66	1.17	1.23	1.25	1.26	1.85	1.00	1.67	2.10	2.37	2.07	1.97
6-Sep-12	1.10	1.23	1.38	1.48	1.18	1.22	4.00	2.70	2.80	2.73	4.10	2.13
8-Sep-12	1.17	1.62	1.45	1.27	1.27	1.70	3.00	2.20	3.67	3.27	3.17	2.67
10-Sep-12	1.17	1.33	1.21	1.32	1.32	1.23	1.10	1.67	3.37	1.13	3.97	2.57
12-Sep-12	1.05	0.79	0.49	1.04	1.44	1.23	3.10	2.47	4.20	2.37	3.27	3.33
14-Sep-12	1.12	1.08	1.12	1.45	1.17	1.41	3.20	3.53	4.33	4.27	5.50	2.27
18-Sep-12	1.23	1.32	0.99	1.20	1.16	1.18	3.30	4.53	3.93	7.00	4.57	5.97
20-Sep-12	1.21	1.45	1.53	1.66	1.13	1.17	5.20	4.83	5.80	4.73	4.70	6.13
22-Sep-12	0.84	1.36	1.01	1.25	1.32	1.01	5.40	5.00	5.20	6.83	5.57	6.87
24-Sep-12	1.16	1.30	1.41	1.26	1.23	1.15	2.80	5.80	3.13	4.13	3.40	4.90

Table 6-5 Summarized Exceedances of Marine Water Quality

Station	D (Ave of & mid-	f Surf.	DO (A Bottom	ve. of Layer)	Turb (Depth	•	S: (Depth	-	Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
				Mi	d-Ebb					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
				Mid	-Flood					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on **31** August and **15** September 2012. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring Celtis Timorensis CT7 to CT10 on 30 April 2011. In April 2012, CT_1A and CT_7A were damaged by the fell broken tree trunk due to tree decayed by white ants. Therefore, only 5 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT4A, CT_5A and CT_6A were inspected since May 2012. Furthermore, during tree inspection on 30 July, CT4A was disappeared after typhoon No.10 on 24 July and it was certified as dead. Eventually, 4 no. of additional *Celtis Timorensis*, namely CT_6A were inspected in the remaining period.
- 7.03 The tree inspection report for this Reporting Period is presented in *Appendix M*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ($(000m^3)$)	0	-
Reused in the Contract (Inert) ('000m ³)	0.744	DC/2009/13
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0	-

Table 8-2Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	3.80	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than $50m^3$ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 28 August, 4, 11, 18 and 25 September 2012.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix K*.

Table 9-1S	ite Observations	
Date	Findings / Deficiencies	Follow-Up Status
28 August 2012	 No environmental issue was observed during site inspection. Construction dust suppression measures are reminded during dusty activities under dry and windy conditions. 	No required for reminder.
4 September 2012	 No environmental issue was observed during site inspection. 	No required for reminder.
11 September 2012	 Oil drums were observed within the site. Drip trays are required or removal of the oil drums to a storage area is reminded to prevent contamination of soil and water. Removal of sediment from the sedimentation tank is observed. Maintenance of regular clearance of the accumulated sediment is reminded to avoid overflow of the sediment to the sea. 	Rectified on 18 September 2012.
18 September 2012	 No environmental issue was observed during site inspection. However, full implementation of the required mitigation measures is reminded. 	No required for reminder.
25 September 2012	 No environmental issue was observed during site inspection. However, full implementation of the required mitigation measures is reminded. 	No required for reminder.

Table 9-1Site Observations

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

Table 10-1	Statistical Summary of Environmental Complaints
------------	---

Departing Devied	Environmental Complaint Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality			
January - August 2012	0	1 (Nov 2011)	NA			
September 2012	0	1 (Nov 2011)	NA			

Table 10-2 Statistical Summary of Environmental Summons

Departing Davied	Environmental Summons Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
27 July 2010 – 31 December 2011	0	0	NA			
January - August 2012	0	0	NA			
September 2012	0	0	NA			

Table 10-3 Statistical Summary of Environmental Prosecution

Depending Devied	Environmental Prosecution Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
27 July 2010 – 31 December 2011	0	0	NA		
January - August 2012	0	0	NA		
September 2012	0	0	NA		

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- 11.11 During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force;
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

<u>Terrestrial Ecology</u>

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Water	• Drainage channels were provided to convey run-off into the treatment facilities;
Quality	and
Quality	 Drainage systems were regularly and adequately maintained.
Air Quality	• Cover all excavated or stockpile of dusty material by impervious sheeting or
	sprayed with water to maintain the entire surface wet;
	 Public roads around the site entrance/exit had been kept clean and free from dust; and
	 Tarpaulin covering of any dusty materials on a vehicle leaving the site.

 Table 11-1
 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	• Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	• To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	 Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable memory.
management	disposed of in a suitable manner;
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12.01 Key issues to be considered in the coming month include:

Water Quality

• Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and

AUES

• The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

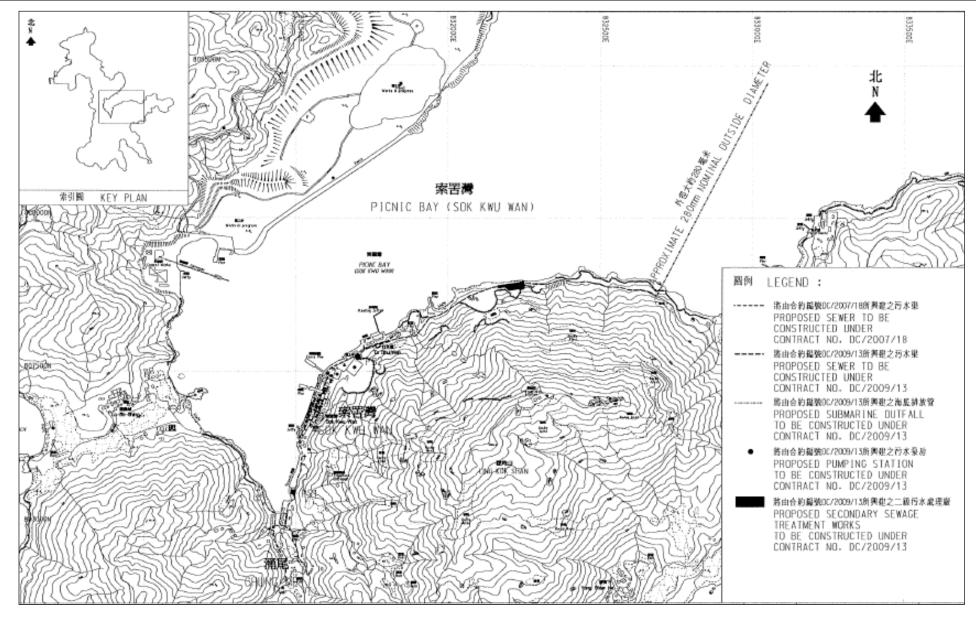
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 26th monthly EM&A Report covering the construction period from 26 August to 25 September 2012.
- 13.02 In this Reporting Period, no 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on **28 August**, **4**, **11**, **18 and 25 September 2012**. All the observation has been rectified during the next week site inspection. The environmental performance of the Project was therefore considered as satisfactory.
- 13.07 No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

RECOMMENDATIONS


- 13.08 During dry season, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.
- 13.09 Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr Kenley C K Kwok	-	-
SCJV	Engineer's Representative	Mr. Neil Wong	2982 0240	2982 4129
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129
Scott Wilson	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Construction Manager	Mr. K. Y. So	2982 1750	2982 1163
Leader	Assistant Construction Manager	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. William Wong	2982 8652	2982 8650
Leader	Sub-Agent	Mr. Burgess Yip	2982 1750	2982 1163
Leader	Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel

Legend:

DSD (Employer) – Drainage Services Department

CDM (Engineer) – Scott Wilson CDM Joint Venture

Leader (Main Contractor) – Leader Civil Engineering Corporation Limited

Scott Wilson (IEC) – Scott Wilson Limited

AUES (ET) – Action-United Environmental Services & Consulting

AUES

Appendix C

A Master and Three Months Rolling Construction Programme

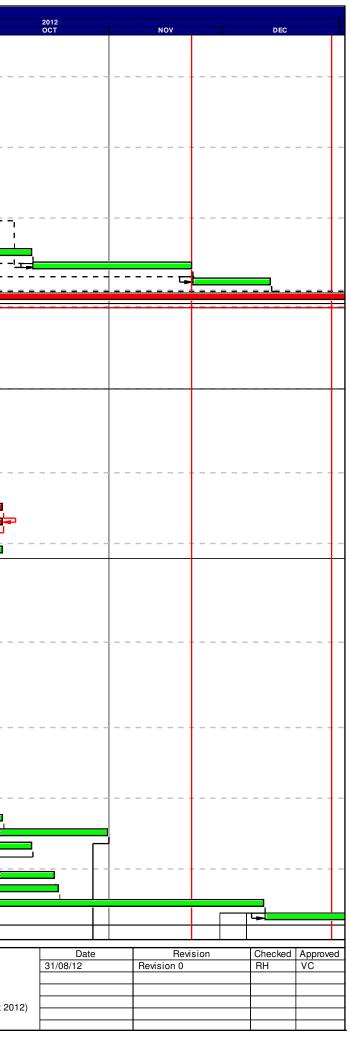
	Activity ID	Description	Original Duratior	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	AUG	SEP	
						-		-	1					
	D0010	Receive Letter of Acceptance	0	100		05/05/10 A		05/05/10 A			KD0125			
	D0020	Project Commencement Date	0	100		17/05/10 A		17/05/10 A			KD0125, PRE0020, PRE0040, PRE0050, PRE0060, PRE0090, PRE0100, PRE0130, SKW0250, SKW0588, SKW0651, SKW0681, SKW1131, SKW1481, SKW1581, SKW1611, YSW0020, YSW0250, YSW0275, YSW0180, YSW0200, YSW0250, YSW02401, YSW02401,			
	(D0030	Section W1 - Slope Works in Portion A & C	0	100		14/10/11 A		14/10/11 A		YSW0100, YSW0110, YSW0140,	KD0125,KD0130	1		
			0											
			0											
			0											
			0					ļ	0*			1		
			1	0	13/10/12	13/10/12 *	13/10/12	13/10/12 *	0					
	reliminary ((Civil)							1					
	'RE0020	Pre-condition Survey	60	100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020				
		· · · · · · · · · · · · · · · · · · ·	_					-	<u> </u>			4		
Test Magnetin Application Application <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>SKW1151</td> <td>1</td> <td></td> <td></td>			_					-			SKW1151	1		
Bits Divis de Visit De V		5 1 5												
												1		
Process Docugar of SeW12TW SYMSTW	reliminary ((E&M)			1				•					
NAME Status 9 100 100 100 200 val 200 val steam valent valent valent LANGE Valence 100 100 valence 200 valence 100 valen	echnical Subm	ission												
EMBOR Markag and Quanter Ug (P1) B 100 1000 PV 20070 A	Process Desig	n of SKWSTW & YSWSTW												
LAXA000 Resource of Heatmandow 100 DOT VA 101 VIDA 100 VIDA												4		
Extendio Operation for Surger 1 0 0 0 0 </td <td></td> <td>÷ ;</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>		÷ ;										1		
Understand Description Description Description EAMAGE Vering and Comment by ER 14 100 Description EaMAGE Basero E. MARGES							l					4		
EM/000 Editary of Convents of Cal 21 100 1997/1A 0.0997/A 1997/A 0.0997/A 0.017/A 0.			14	100	17/11/10 A	30/11/10 A	17/11/10 A	30/11/10 A		Edividu30	E&IVIU295			
EAMOND Vectory and Comment to ET 10 1900 1900 14 1900 14 1000 14000 14 1000 1400 14 1000 1	-		21	100	15/07/10 A	04/08/10 A	15/07/10 A	04/08/10 A	1	E&M0010, E&M0020	E&M0050, E&M0101, E&M0240, E&M0260,	1		
EAMOND Agronal from 16 Engineer 9 100 241110 A 01110 A 01111 A	E&M0050	Vetting and Comment by ER	14			18/08/10 A	05/08/10 A	18/08/10 A		E&M0040	E&M0060	1		
Equipments Munication & Approval. Example 3. University of Marine Made and Marine Made 4. If and Marine Made 4.	E&M0060	Revision and Resubmission	97	100	19/08/10 A	10/11/10 A	19/08/10 A	10/11/10 A		E&M0050	E&M0430	1		
EAMOND Solumisor of Humitane Models 90 100 1000100 10000000 Automation Automation EAMOND Version of Humitane Models 10 0000000 4000000 Eamon0 Eamon0 Eamon0 EAMOND Version of Humitane Models 10 0000000 2000000 2000000 Eamon0 Eamon0 Eamon0 EAMOND Version of Humitane Models 000 0000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 20000000 2000000 2000000 20000000 2000000 20000000 2000000 2000000 20000000 20000000 20000000 20000000 200000000 200000000 20000000000 2000000000000000000000000000000000000	E&M0430	Approval from the Engineer	7	100	24/11/10 A	30/11/10 A	24/11/10 A	30/11/10 A		E&M0060	E&M0295			
EAMOND Vetting and Comment by ER 14 100 000710.4	· · ·			1	1	•	1	1	1		1	4		
EMBO Perison and Equipret 14 100 20071 A <												1		
EAM0101 Schreisen de Egyment 90 100 500'97A 201'11A 60'107A 201'11A 60'107A 201'11A 50'107A 50'10'107A 50'10'10A 50'10		· · ·												
EMMODQ Verting and Comment by ER1 60 100 011/11 A			90									1		
EAMO10 Approal on Coasses Screem 39 100 2500°11 A 2500°11 A <t< td=""><td>·</td><td></td><td>60</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>	·		60									1		
E&M0120 Approval on Five Servers 30 100 120911 A 120911 A 120911 A 230911 A	E&M0103	Revision and Resubmission	60	100	01/02/11 A	30/11/11 A	01/02/11 A	30/11/11 A		E&M0102	E&M0110, E&M0120, E&M0130, E&M0140,			
E&M0130 Approval on Pumps 30 100 2308/11 A <	E&M0110	Approval on Coarse Screens	30	100	25/05/11 A	25/05/11 A	25/05/11 A	25/05/11 A		E&M0103	E&M0390			
E&M0100 Approval on Submershie Makers 33 100 2203114 2301114 23011114 23011114 23011114 <t< td=""><td>E&M0120</td><td>Approval on Fine Screens</td><td></td><td></td><td></td><td>12/09/11 A</td><td></td><td></td><td></td><td>E&M0103</td><td>E&M0400, E&M3060</td><td></td><td></td><td></td></t<>	E&M0120	Approval on Fine Screens				12/09/11 A				E&M0103	E&M0400, E&M3060			
E&M050 Approval on 0:ft Bemoval Eugement 30 100 10/01/1.4 10/01/1.4 10/01/1.4 10/01/1.4 10/01/1.4 EAM030 EAM040												1		
E&M0160 Aproval on MBR Membrane Modules (M.M.) 105 100 0308/10 A 24/02/11 A 02/02/11 A 02/							!	ļ						
E&M0170 Approval on Sludge Dewatering Equipment 30 100 01/09/11 A 10/09/11 A 10												1		
E&M0180 Approval on Valves, Pipes & Fittings 30 85 19/11/11 A 04/09/12 19/11/11 A 15/04/13 224d EAM0103 EAM0405,EAM3100 EAM0190 Approval on Persitocks 30 100 15/11/11 A 10/01/12 A 5/32 EAM040, EAM140 1 1 10/01/12 A 5/32 EAM040, EAM140 1	ļ							ļ				1		
E&M0200 Approval on Instrumentation 30 100 21/06/11 A 08/03/12 A 21/06/11 A 08/03/12 A E&M0103 E&M0403 E&M0404 E&M0403 E&M0403 E&M0404 E&M0404 E&M0404 E&M04030 E&M04030 E&M0404 E&M0404 E&M0404 E&M0404 E&M0404 E&M0404 E&M0404 E&M0404 E&M0404	E&M0180	Approval on Valves, Pipes & Fittings	30			04/09/12	19/11/11 A	15/04/13	224d	E&M0103	E&M0450, E&M3100		— .	
E&M0210 Approval on MCC & LVSB 30 95 19/11/11 A 01/09/12 19/11/11 A 10/07/12 -538 E&M0103 E&M0480, E&M3140 E&M0220 Approval on BS Equipment 30 70 30/11/11 A 14/09/12 30/11/11 A 17/01/13 13/4d E&M0280 E&M0490, E&M3150 E&M0230 Approval on BS Equipment 30 80 30/11/11 A 27/01/13 13/4d E&M0280 E&M0490, E&M3150 E&M0230 Approval on FS Equipment 30 80 30/11/11 A 27/01/13 13/4d E&M0280 E&M0280, E&M0320, E&M0500, E&M3160 Drawings Submission & Approval 24/06/10 A 24/09/12 24/06/10 A 12/03/13 17/8d E&M0240 E&M0250, E&M0280, E&M0280, E&M0290 E&M0250 Sub. Builder's Works Requirements Drawings 15 85 04/08/10 A 27/09/12 27/09/10 A 12/03/13 17/8d E&M0240 E&M0280, E&M0280, E&M0290 E&M0280 E&M0280, E&M0280, E&M0290 E&M0280, E&M0280, E&M0280, E&M0290 E&M0280, E&M0280, E&M0290	E&M0190	Approval on Penstocks	30	100	15/11/11 A	15/11/11 A	15/11/11 A	15/11/11 A		E&M0103	E&M0460, E&M3110			
E&M0220 Approval on BS Equipment 30 70 30/11/11 A 14/09/12 30/11/11 A 17/01/13 13/4 E&M0280 E&M0490,E&M0150 E&M0230 Approval on FS Equipment 30 80 30/11/11 A 12/09/12 30/11/11 A 18/02/13 14/84 E&M0280 E&M0295,E&M0320,EM0500,E&M150 Drawings Sub. P&ID Drawings 100 75 24/06/10 A 24/09/12 24/06/10 A 12/03/13 16/84 E&M0250 E&M0250,E&M0290 E <m0250,e&m0290< td=""> E&M0240 Sub. Plait GA Drawings 45 68 6/0/08/10 A 14/09/12 24/06/10 A 12/03/13 16/84 E&M0250,E&M0290 E<m0250,e&m0290< td=""> E<m0250,e< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E&M0470, E&M3130</td><td></td><td></td><td></td></m0250,e<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<></m0250,e&m0290<>											E&M0470, E&M3130			
E&M0230 Approval on FS Equipment 30 80 30/11/11 23/09/12 30/11/11 14/02/13 148d E&M0295, E&M0320, E&M050, E&M0320, E&M050, E&M03160 Drawings Submission & Approval E<												-		
Drawings Submission & Approval E&M0235 Sub. P&ID Drawings 100 75 24/06/10 24/09/12 24/06/10 12/02/13 168d E&M0250 E&M0220 <				-			<u> </u>							
E&M0235 Sub. P&ID Drawings 100 75 24/06/10 24/09/12 24/06/10 12/03/13 168d E&M0010 E&M0250 E&M0240 Sub. Paint GA Drawings 45 68 04/08/10 14/09/12 04/08/10 12/03/13 179d E&M0020 E&M0250, E&M0280, E&M0290 E&M0250 Sub. Builder's Works Requirements Drawings 15 85 04/08/10 27/09/12 04/08/10 12/03/13 176d E&M0240, E&M0280, E&M0290 E&M0260 Sub. Mechanical Installation Drawings 60 70 27/09/10 17/09/12 27/09/10 12/03/13 176d E&M0240 E&M0250, E&M0290 E&M0260 Sub. Mechanical Installation Drawings 60 75 27/09/10 12/03/13 176d E&M0240 E&M0250, E&M0290 E&M0280 Sub. SI Installation Drawings 60 75 27/09/10 14/09/12 27/09/10 12/03/13 178d E&M0240, E&M0250, E&M0290 E&M0280, E&M0220, E&M0290 E&M0280 E&M0280 E&M0280 E&M0280, E&M0220 E&M0280 E&M0280, E&M0220 E&M0280, E&M0220, E&M0220, E&M0220 E&M0280, E&M0220 E&M0280, E&M0220, E&M0220, E&M0220 E&M02	·		30	80	30/11/11 A	23/09/12	30/11/11 A	18/02/13	1480	E&M0103, E&M0290	E&M0295, E&M0320, E&M0500, E&M3160			┛ ╤┙────
E&M0240 Sub. Plant GA Drawings 45 68 04/08/10 A 14/09/12 04/08/10 A 12/03/13 179d E&M0240 E&M0250, E&M0280, E&M0280, E&M0290 E&M0250 Sub. Builder's Works Requirements Drawings 15 85 04/08/10 A 17/09/12 27/09/10 A 14/03/13 168d E&M0250, E&M0280, E&M0290 E&M0260 Sub. Mechanical Installation Drawings 60 70 27/09/10 A 17/09/12 27/09/10 A 12/03/13 175d E&M0240 E&M0250 E&M0270 Sub. Electrical Installation Drawings 60 75 27/09/10 A 14/09/12 27/09/10 A 12/03/13 178d E&M0240 E&M0250 E&M0250 E&M0280 Sub. SI Installation Drawings 120 95 27/09/10 A 15/09/12 27/09/10 A 18/01/13 13d E&M0240 E&M0250 E&M0220 E	·		100	75	24/06/10 A	24/09/12	24/06/10 A	12/03/13	168d	E&M0010	E&M0250			
E&M0250 Sub. Builder's Works Requirements Drawings 15 85 04/08/10 A 27/09/12 04/08/10 A 14/03/13 168d E&M0250, E&M0220, E&M0220 E&M0250, E&M0290 E&M0260 Sub. Mechanical Installation Drawings 60 70 27/09/10 A 17/09/12 27/09/10 A 12/03/13 175d E&M0040 E&M0250, E&M0290 E&M0270 Sub. Electrical Installation Drawings 60 75 27/09/10 A 14/09/12 27/09/10 A 12/03/13 176d E&M0040 E&M0250, E&M0290 E&M0280 Sub. BS Installation Drawings 60 75 27/09/10 A 14/09/12 27/09/10 A 12/03/13 178d E&M0040 E&M0250, E&M0280 E&M0280 Sub. BS Installation Drawings 120 95 27/09/10 A 18/01/13 13/dd E&M0240, E&M0250 E&M0220 E&M0220 E		*												\square
E&M0260 Sub. Mechanical Installation Drawings 60 70 27/09/10 A 17/09/12 27/09/10 A 12/03/13 1756 E&M0240 E&M0250			15		1		<u> </u>			E&M0235, E&M0240, E&M0260, E&M0270				⊨ ∎⊒.
E&M0270 Sub. Electrical Installation Drawings 60 75 27/09/10 A 12/09/12 27/09/10 A 12/03/13 178d E&M0240 E&M0250, E&M0280 E&M0280 Sub. BS Installation Drawings 120 95 27/09/10 A 18/01/13 13/4d E&M0240, E&M0250, E&M0280 E&M0220 E&M0290 Sub. FS Installation Drawings 120 85 13/11/10 A 17/09/12 13/11/10 A 12/02/13 148d E&M0240, E&M0250 E&M0230 E&M0230 Statutory Submission art date 05/05/10 Early bar	E&M0260	Sub. Mechanical Installation Drawings	60	70	27/09/10 A	17/09/12	27/09/10 A	12/03/13	175d	E&M0040	E&M0250	•		J
E&M0290 Sub. FS Installation Drawings 120 85 13/11/10 A 17/09/12 13/11/10 A 12/02/13 148d E&M0240, E&M0250 E&M0230 Statutory Submission Early bar art date 05/05/10 Early bar Early bar Early bar Early bar Critical bar Critical bar undate 09/09/12 Summary bar Summary bar Contract No. DC/2009/13			_											
Statutory Submission art date 05/05/10 inish date 09/11/15 Progress bar Critical bar 0/09/12 Summary bar 0/09/12 Summary bar 0/09/09/12		Ť												
art date 05/05/10 Early bar hish date 09/11/15 Critical bar ta date 31/08/12 Summary bar h date 09/09/12 December 10 Critical bar Summary bar	l	•	120	85	13/11/10 A	17/09/12	13/11/10 A	12/02/13	148d	E&M0240, E&M0250	E&M0230			
hish date 09/11/15 Progress bar ita date 31/08/12 Criticalbar Summary bar Contract No. DC/2009/13	-												·	L
ata date 31/08/12 Contract No. DC/2009/13		11/15 Progress bar						14	eader	Civil Engineering C	orp. Ltd.			
	ta date 31/	08/12 Critical bar												
age number 1A V Critical point Construction of Sew age Treatment Works at YSW & SKW		09/12 A Progress point					Con	struction						

c Primavera Systems, Inc. Summary point Start milestone point

3-month Rolling Programme (Sep 2012 - Nov 2012)

(Marked on 31 August 20

	2012					-
	2012 OCT		NOV	DEC		
				 		_
1						
i					г	-
ا ⊔	l ⊲, ∣					
	1					
	1					
11	i					
– – H –	 -			 		_
	1					
- 11	1					
	1					
	l l					
11	i					
	1					
	I I					
11						
	1					
	Ì					
	l l					
<u>П</u> -	- T			 		_
	I I					
11						
U	_ <u> </u>			 		_
	1					
11	i					
H-	-+			 		_
	1					
	i					
	i					
	I I					
	1					
іі н-	i					
	_ 			 		
11						
	Date		Revision	Checked RH	Approve	d
	31/08/12		Revision 0	 RH	VC	
st 2012)						


Activ ity ID	Description	Original Juratior	Percent Early Complete Start	Early Late Finish Start	Late Finish	Total Float	Predecessors	Successors	AUG	SEP	2012 OCT	NOV DEC
E&M0295	Preparation of Submission to HEC	39	100 01/11/11 A	30/11/11 A 01/11/11 A	30/11/11 A		E&M0080, E&M0230, E&M0430	E&M0300	AUG			
E&M0300	Application & Approval from HEC	150	90 01/11/11 A	08/10/12 01/11/11 A	15/04/13	189d	E&M0295	E&M0305			⊢ I	
E&M0305	Provision of Cables to the STWs	180	0 09/10/12	06/04/13 16/04/13	12/10/13	189d	E&M0300	E&M0680				
E&M0320	Form 314 Submission to FSD	14	, , ,	07/10/12 08/08/13	21/08/13	318d	E&M0230	E&M0325, E&M0670				
E&M0325	Submission to WSD	14		29/02/12 A 01/11/11 A			E&M0320	E&M0670, E&M0680			i	
E&M0350	Form 501 Submission to FSD (PS1 & PS2)	28	0 26/11/12	24/12/12 14/11/12	11/12/12	-13d	E&M2016	E&M11800, E&M2180		1	1	
Yung Shue V	Van											
Preliminary					Levence			-	_	1	1	
YSW0020	Approval of Environmental Team	16	100 17/05/10 A	01/06/10 A 17/05/10 A	<u> </u>		KD0020	YSW00201, YSW0030, YSW00351, YSW0040				
YSW00201 YSW0030	Change Baseline Monitoring Location (Air&Noise)	59 23		30/07/10 A 02/06/10 A 22/08/10 A 31/07/10 A			YSW0020	YSW0030	-	i i	i	
YSW0030	Baseline monitoring (Air & Noise) Baseline Monitoring Report Submission (A & N)	16		22/08/10 A 31/07/10 A 07/09/10 A 23/08/10 A			YSW0020, YSW00201 YSW0030	YSW0035 YSW0120, YSW01545, YSW0500, YSW0610,	-			
YSW00351	Submission & Approval for Monitoring Method (W)	58	100	29/07/10 A 02/06/10 A			YSW0030 YSW0020	YSW0040	-			
YSW0040	Baseline monitoring (Water)	155		31/12/10 A 30/07/10 A	<u> </u>		YSW0020, YSW00351	YSW0350			+	
YSW0050	Erect Hoarding and Fencing	60		17/07/10 A 19/05/10 A			KD0020	YSW0155	-			
	ope Works in Portion A & C										I	
YSW0075	Mobilization	30	100 17/05/10 A	15/06/10 A 17/05/10 A	15/06/10 A		KD0020	YSW0080, YSW0100		!		
YSW0080	Site Clearance	30		15/07/10 A 16/06/10 A	15/07/10 A		YSW0075	YSW0085, YSW0090, YSW0120				
YSW0085	Initial Survey	14		15/07/10 A 02/07/10 A			YSW0080	YSW0120		i i	i	
YSW0090	Verify the Rock Boulder required Stablization Wk	249	100 16/07/10 A	21/03/11 A 16/07/10 A	21/03/11 A		YSW0080	YSW0100, YSW0110				
YSW0100	Removal of Rock Boulder	257	100 20/09/10 A	03/06/11 A 20/09/10 A	03/06/11 A		YSW0075, YSW0090	KD0030		i	i	
YSW0110	Stablizing work for rock boulder	35	100 16/07/11 A	19/08/11 A 16/07/11 A	19/08/11 A		YSW0090	KD0030				
YSW0120	Cut the slope to design profile	2	100 24/09/10 A	25/09/10 A 24/09/10 A	25/09/10 A		YSW0035, YSW0080, YSW0085	YSW0131, YSW0155, YSW0170				
YSW0131	Mobilization of Plant and Material of Soil Nails	14	100 12/09/10 A	25/09/10 A 12/09/10 A	25/09/10 A		YSW0120	YSW0132		i i	i	
YSW0132	Erect Scaffold and Working Platform	2	100 26/09/10 A	27/09/10 A 26/09/10 A	27/09/10 A		YSW0131	YSW0133		!	!	
YSW0133	Setting out and Verify Locations of Soil Nails	45	100	11/11/10 A 28/09/10 A	11/11/10 A		YSW0132	YSW0134				
YSW0134	Drilling and Soil Nails Installation	43		30/11/10 A 19/10/10 A	30/11/10 A		YSW0133	YSW0135		1	I	
YSW0135	Construction of Nail Heads	12		12/12/10 A 01/12/10 A	12/12/10 A		YSW0134	YSW0136				
YSW0136	Mesh Installation on Cut Slope	3	100 13/12/10 A	15/12/10 A 13/12/10 A			YSW0135	YSW01361		i i	i	
YSW01361	Verify alignment of access & channels on slope	118		12/04/11 A 16/12/10 A	12/04/11 A		YSW0136	YSW0140	-		1	
YSW0140	Construct U-channels & Step Channel on Cut Slope	182		11/10/11 A 13/04/11 A	11/10/11 A		YSW01361	KD0030			+	
YSW0153	Removal of Ex U-Channel where clash with B. Wall	151		07/10/11 A 10/05/11 A	07/10/11 A		YSW01545	YSW01750	-	i i	i	
YSW01545 YSW0155	Temporary Diversion of Drainage	244 256		09/05/11 A 08/09/10 A 08/06/11 A 26/09/10 A	09/05/11 A 08/06/11 A		YSW0035	YSW0153 KD0030, YSW0170, YSW0175	-			
YSW0170	RC Barrier Wall Bay 1-13 (below Ground Level)	125		08/06/11 A 26/09/10 A 11/10/11 A 09/06/11 A	11/10/11 A		YSW0050, YSW0120 YSW0120, YSW0155	KD0030, YSW0170, YSW0175	-			
YSW0175	RC Barrier Wall Bay 1-13 (above Ground Level) Construct U-channels and Catchpits (Phase 1)	76		23/08/11 A 09/06/11 A			YSW0120, YSW0155	KD0030, YSW01750	-		1	
YSW01750	Construction of subsoil drain (phase 1)	120		08/02/12 A 12/10/11 A	_		YSW0153, YSW0170	YSW01755				
YSW01755	Construct subsoil drain (phase 2)	60		29/10/12 08/07/12 A	12/10/12	-17d	YSW01750	KD0130	-	<u>-</u>	<u> </u>	
YSW01800	RC Barrier Wall Bay 14 (below & above Ground)	30		29/09/12 03/09/12 A		-16d	YSW0760	YSW01805, YSW01810		-		
YSW01805	Hydroseeding	14		13/10/12 29/09/12	12/10/12	-1d	YSW01800	KD0130				
YSW01810	Construct U-channels and Catchpits (Phase 2)	30	0 30/09/12	29/10/12 14/09/12	13/10/12	-16d	YSW01800	KD0130				
Section W2 - Y	SW STW & Submarine Outfall			<u> </u>	1 1							
Civil & Structu	ral Work											
YSW0412	Mobilization	30	100 17/05/10 A	15/06/10 A 17/05/10 A	15/06/10 A		KD0020	YSW0422				
YSW0422	Site Clearance	30	100 17/05/10 A	15/06/10 A 17/05/10 A	15/06/10 A		KD0020, YSW0412	YSW0432, YSW0500, YSW0610, YSW0650				
YSW0432	Initial Survey	14	100 02/06/10 A	15/06/10 A 02/06/10 A	15/06/10 A		YSW0422	YSW0510				
YSW STW -				· ·								
YSW0500	ELS & Excavation for Inlet Pumping Station	105		21/12/10 A 08/09/10 A			YSW0035, YSW0422	YSW0510	-			
YSW0510	Sub-structure construction (Inlet Pumping Stn)	129		29/04/11 A 22/12/10 A	-		YSW0432, YSW0500	YSW0520	4			
YSW0520	Backfill & Remove ELS (Inlet Pumping Stn)	40		08/06/11 A 30/04/11 A	<u> </u>		YSW0510	YSW05701	4			
YSW0530	ELS & Excavation for Equalization Tank	159		08/06/11 A 01/01/11 A			YSW0660	YSW0540, YSW05701	-			
YSW0540 YSW0550	Sub-structure construction (Equalization Tank)	112 20		28/09/11 A 09/06/11 A 18/10/11 A 29/09/11 A	28/09/11 A 18/10/11 A		YSW0530	YSW0550, YSW05901 YSW05901				
YSW0550 YSW05701	Backfilling & Remove ELS (Equalization Tank) ELS & Excavation for Grit Chambers	20		06/07/11 A 09/06/11 A			YSW0540 YSW0520, YSW0530	YSW05901 YSW05711, YSW05731	4			
YSW05711	Construct sub-structure for Grit Chambers	106		20/10/11 A 07/07/11 A	20/10/11 A		YSW0520, YSW0530	YSW05721, YSW05911	-			
YSW05721	Backfill & Remove ELS for Grit Chambers	100	100 07/07/11 A	01/11/11 A 21/10/11 A			YSW05701	YSW05911	1			
YSW05731	ELS & Excavation for Grease Separators (GS)	34		09/08/11 A 07/07/11 A	09/08/11 A		YSW05701	YSW05741	1			
YSW05741	Construct sub-structure for Grease Separators	52		30/09/11 A 10/08/11 A			YSW05731	YSW05751				
YSW05751	Install Dia.400 Puddles in Grease Separators	27		27/10/11 A 01/10/11 A			YSW05741	YSW05752	1			
YSW05752	Construct sub-structure for GS (above puddles)	48		14/12/11 A 28/10/11 A	_		YSW05751	YSW05761	1			
YSW05761	Backfill & remove ELS for Grease Separators	10	100 15/12/11 A	24/12/11 A 15/12/11 A	24/12/11 A		YSW05752	YSW0580, YSW05921	1			
YSW0580	Excavate to Formation for Deodorizer Room	10	100 25/12/11 A	03/01/12 A 25/12/11 A	03/01/12 A		YSW05761	YSW05801, YSW05922				
YSW05801	Excavate to formation - Grid J-N/5-7	40	100 04/01/12 A	12/02/12 A 04/01/12 A	12/02/12 A		YSW0580	YSW05802, YSW05923				T
YSW05802	Excavate to formation - Grid GA-H/5-7	10	100 13/02/12 A	22/02/12 A 13/02/12 A	22/02/12 A		YSW05801	YSW05924				
Start data 05			•						•			
	/05/10 Early bar /11/15 Progress bar				4	ader	Civil Engineering (Corp. Ltd			Date 31/08/12	Revision Checked Appro Revision 0 RH VC
	/08/12 Critical bar						ontract No. DC/2009					
	/09/12 A Progress point			Con	etruction			orks at YSW & SKW				
Page number 2A										(Marked on 31 August 2012)	
c Primavera Syst	Start milestone point			3-	monun R	oning	J Programme (Sep 2	2012 - 100V 2012)				<u> </u>
	 Einich miloctopo point 											

Start date	05/05/10		Early bar
Finish date	09/11/15		Progress ba
Data date	31/08/12		Critical bar Summary ba
Run date	09/09/12		Progress po
Page number	2A	₹	Critical point
c Primavera	Systems, Inc.	2	Summary po
		1 🔽 🛛	Start miles tor

Norway Original of Algorida 0 00000 000000 00000 00000		Activ ity ID	Description	Original Duratior	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	AUG	SEP
		YSW05901	G/F to 1/F Construction Grid GA-K/1-5	90	100	29/09/11 A	27/12/11 A	29/09/11 A	27/12/11 A		YSW0540, YSW0550	YSW06001	AUG	
	111	YSW05911	G/F to 1/F Construction Grid N-S/1-5	80	100	21/10/11 A	08/01/12 A	21/10/11 A	08/01/12 A		YSW05711, YSW05721	YSW06011, YSW06035	-	
Image Image <th< td=""><td></td><td>YSW05921</td><td>G/F to 1/F Construction Grid K-N/1-5</td><td>45</td><td>100</td><td>25/12/11 A</td><td>07/02/12 A</td><td>25/12/11 A</td><td>07/02/12 A</td><td></td><td>YSW05761</td><td>YSW06021</td><td></td><td></td></th<>		YSW05921	G/F to 1/F Construction Grid K-N/1-5	45	100	25/12/11 A	07/02/12 A	25/12/11 A	07/02/12 A		YSW05761	YSW06021		
Image: 1 and a large end workshows workshows 40 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000 1000000 10000000 1000000 1000000 10000000 10000000 10000000 100000000 100000000 100000000000000000 1000000000000000000000000000000000000		YSW05922	G/F to 1/F Construction for Deodorizer Room	80	100	04/01/12 A	23/03/12 A	04/01/12 A	23/03/12 A		YSW0580	YSW06022		
		YSW05923	G/F to 1/F Construction for Grid J-N/5-7	60	100	13/02/12 A	12/04/12 A	13/02/12 A	12/04/12 A		YSW05801	YSW06023		
Work: **** ***** ***** ****** ************************************		YSW05924	G/F to 1/F Construction for Grid GA-H/5-7	60	100	28/05/12 A	16/07/12 A	28/05/12 A	16/07/12 A		YSW05802, YSW06023	YSW06034		
No. Weils of Mark Constant Guidence Turn 4 100 Name of Mark Constant Guidence Turn 100		YSW06001	1/F to Roof Constuction for Grid GA-K/1-5	87	100	28/12/11 A	23/03/12 A	28/12/11 A	23/03/12 A		YSW05901	YSW0800		
		YSW06011	1/F to Roof Constuction for Grid N-S/1-5	75	100	09/01/12 A	23/03/12 A	09/01/12 A	23/03/12 A		YSW05911	YSW0800		
Normal Simple		YSW06021	1/F to Roof Constuction for Grid K-N/1-5	44	100	08/02/12 A	22/03/12 A	08/02/12 A	22/03/12 A		YSW05921	YSW07201		
Normal Normal Normal Normal Normal Normal Normal 10000000 Normal Normal <td></td> <td>YSW06022</td> <td>1/F to Roof Constuction for Deodorizer Room</td> <td>60</td> <td>100</td> <td>24/03/12 A</td> <td>22/05/12 A</td> <td>24/03/12 A</td> <td>22/05/12 A</td> <td></td> <td>YSW05922</td> <td>YSW0800</td> <td></td> <td></td>		YSW06022	1/F to Roof Constuction for Deodorizer Room	60	100	24/03/12 A	22/05/12 A	24/03/12 A	22/05/12 A		YSW05922	YSW0800		
North Information North N		YSW06023	1/F to Roof Constuction for Grid J-N/5-7	45	100	13/04/12 A	27/05/12 A	13/04/12 A	27/05/12 A		YSW05923	YSW05924		
Image: Second		YSW06034	1/F to Roof Constuction for Grid GA-H/5-7	45	100	27/07/12 A	13/08/12 A	27/07/12 A	13/08/12 A	1	YSW05924	YSW0800		
Image: Note Specified Results of Table Results of T		YSW06035	Construct buffle walls in Grease Separators	118	100	18/04/12 A	16/07/12 A	18/04/12 A	16/07/12 A		YSW05911	YSW07204	·	
No. Nov. Starting of 0.10 match 4 0 Nov. Nov. Nov. Nov. Nov. Nov. Nov. Nov.		YSW07201	Water tightness test for Inlet Pumping Station	60	100	23/03/12 A	21/05/12 A	23/03/12 A	21/05/12 A	1	YSW06021	YSW07202, YSW0800		
Image: Section of the control operation 6 0 19/100 3000 3000000000000000000000000000000000000		YSW07202	Water tightness test for Equalization Tanks	42	100	22/05/12 A	02/07/12 A	22/05/12 A	02/07/12 A		YSW07201	YSW07203, YSW0800		
Term Part Open set of water during the open set of water Part Open set of water TORING Advert reader Statistical and set of water Statistical and set of water Statistical and set of water TORING Advert reader Statistical and set of water Statistical and set of water Statistical and set of water TORING Advert reader Statistical and set of water Statistical and set of water Toring set of water TORING Advert reader Statistical and set of water Statistical and set of water Toring set of wat		YSW07203	Water tightness test for Grit Chambers	42	0	31/08/12	11/10/12	26/10/12	06/12/12	56d	YSW07202	YSW07204, YSW0800	u	-
Tensor AUM Partial Par		YSW07204	Water tightness test for Grease Separators	42	0	12/10/12	22/11/12	07/12/12	17/01/13	56d	YSW06035, YSW07203	YSW07205, YSW0800		
Tensor AUM Partial Par		YSW07205	Water tightness test for water channels	21	0	23/11/12	13/12/12	18/01/13	07/02/13	56d	YSW07204	YSW0800		
Yessel Yessel<			<u> </u>		-	<u> </u>								
Normal Normal Normal Normal Normal Normal Normal NAME See Sec Sec Sec Sec Sec Sec Sec Sec Sec							1							
Image: market in a second or cancer in a second of market in a se			1	10	100	08/09/10 A	17/09/10 A	08/09/10 A	17/09/10 A	1	YSW0035, YSW0422	YSW0620		
Processor Off U D Construction Off Off </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>				_									-	
Image: Probability of the Mark Detaulation of the Mark Section of Table Mark Section Mark Mark Mark Mark Mark Mark Mark Mark				-									-	
Investe Market Market Market Market Market Market Market Market 19900000 16.5.4 5 5										1			-	
Yessel Yessel Yessel Yessel Yessel Yessel Yessel Solution Solution Solution Yessel Yessel Yessel Yessel Solution Solution Solution Yessel Yessel Yessel Yessel Yessel Solution Solution Solution Yessel Yess							-			1			-	
Number ELS & Example for Varian 7/ 100 80000 40000 9000000 90				00	100	20/12/11 4	10/03/12 A	20/12/11 4	10/03/12 A	I	1300040			
Image: Non-Workson Statustuck (Ph. Teshs) Pi Pi<			-	37	100	08/09/10 A	14/10/10 A	08/09/10 A	14/10/10 A	1	YSW0035 YSW0422	XSW0660	-	
Number Number Number Number Number Number Yessees Descrite A prevent B.S. (NY Law) No Descrite A prevent B.S. (NY Law) Number A State A St													-	
In Minute Same also construction (DD), SD2 & Minikaj 1/7 1/0 20/071.1 20/071.2				_									-	
New Yorking Construct Spectration SDI. USC MURPH BE 1000 2000 *1A 1000 *1A 2000 *1A 1000 *1A			,	<u> </u>		1							-	
New York Contract Superstructure d IV Tailes 20 100 100/07 / 20 0.99978 Monto YSWYDD Apple relative of AL 50 142 20 0.140072 100/07 / 20 0.999788 Easternal Monto Monto YSWYDD Apple relative of AL 50 142 20 0.140072 100/07 / 20 0.999788 Easternal Monto Monto YSWYDD Apple relative of AL 50 142 20 0.140072 200712 0.999788 Easternal Easternal Easternal Monto YSWYDD Made relation Easternal 20 0.99778 Easternal YSWESTW-Cat Easternal YSWESTW-Cat Easternal YSWESTW-Cat Easternal YSWESTW-Cat Easternal YSWESTW-Cat Easternal YSWESTW-Cat YSW													-	
Vision Single Vision						1	-							
New Trip Apply provide gard for MBH 2.80 182 00 0 04/0912 01/0912 00/19														
New Year res for DN Tarks 94 0 100112 210112.1 200112.1 000010 Year res for DN Tarks Year res			P		-		-			0			- П	
Wate Ind Iv DN Tarks 90 0 509/12 200/12 200/13 20				_	, , , , , , , , , , , , , , , , , , ,					0			- Ш	
Note Note <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>ļ</td><td></td><td>315d</td><td></td><td></td><td>1 [</td><td></td></th<>					-		-	ļ		315d			1 [
YEW STM- GL /A F WW0730 Completion of HOD 0 100 210/112A WW0731 WW0730 WW0732 YSW0730 Construct beamer of MBR 2.8.3 20 100 100/12A 500/12A 210/112A 600/21A 210/112A 100/21A 200/21A 110/012A 210/012A 210/21A 110/012A					0		ļ	ļ						
Stimulation Comparison of HDD 0 100 210/112A Comparison Yearwards Yearwards Yearwards YSM0732 Excand for MBR 2 & 3 35 100 100/112A 600/112A 100/112A 600/112A Yearwards					0	120/00/12	100/10/12		1.000,10	0100				
YSW0732 Excavate for MSR 2 & 3 20 100 21/01/1 & 09/0212 A 21/01/1 & 09/0212 A 19/00733 YSW0733 YSW0733 <th< td=""><td></td><td></td><td></td><td>0</td><td>100</td><td>21/01/12 A</td><td>1</td><td>21/01/12 A</td><td>1</td><td>1</td><td>YSW03601, YSW03605</td><td>YSW0732</td><td></td><td>1</td></th<>				0	100	21/01/12 A	1	21/01/12 A	1	1	YSW03601, YSW03605	YSW0732		1
YSW0730 Construct basement of MBR 2 & 3 20 100 1002*12 A 2002*12 A 1000*12 A 1902*12 A 1900*12				20			09/02/12 A		09/02/12 A				-	
YSW0736 Construct superstructure of MBR 2 75 100 0100/12 A 14/05/12 A 15/05/12 A 10/05/12 A 10/					100	-	-			1			-	i
YSW0736 Construct superstructure of MBR 3 100 100 150512.A 140512.A 150512.A 200121.A 150512.A 200121.A 150512.A 200121.A 150512.A 200121.A 150512.A 200121.A 150512.A 200121.A 150512.A 20012.A 150512.						<u> </u>							-	
YSW0740 ELS & excavate for Outfall Shaft 75 100 010312.A 140912.A 140212.A 140012.A 140012.A <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td>				-						1			-	
YSW0750 Construct basement of Outfal Shuft 19 100 15/05/12.A 02/06/12.A 100/06/12.A YSW0750 YSW0750 YSW07501 Connect additional fange to HDP: pipe (VO 042) 5 100 03/06/12.A 07/06/12.A 19/00/12.A YSW0750 YSW0750 YSW07502 Connect additional fange to HDP: pipe (VO 042) 5 100 03/06/12.A 07/06/12.A 19/00/12.A				_										ii
YSW07501 Connect additional flarge to HDPE pipe (VO 042) 5 100 03/06/12.A 03/06/12.A 03/06/12.A 03/06/12.A 100/06/12.A 23/06/12.A 19/07/50 YSW07502 Construct sub-structure of Outfall Shuft 16 100 08/06/12.A 23/06/12.A 19/07/12.A				-		1							1	
YSW07502 Construct sub-structure of Outfall Shaft 16 100 08/06/12 A 23/06/12 A 08/06/12 A 01/07/12 A 01/07/12 A 08/06/12 A 01/07/12 A 01/07/12 A 08/06/12 A 09/06/12 A 01/07/12 A				5									1	
YSW0760 Backfill & remove ELS (outfal shaft) 8 100 24/06/12 A 01/07/12 A 24/06/12 A 01/07/12 A 24/06/12 A 01/07/12 A YSW0760 YSW0760 YSW07601 Construct superstructure for Outfal Shaft 80 100 03/07/12 A 31/07/12 A 31/07/12 A 31/07/12 A YSW0760 YSW0760<				16			<u> </u>						-	
Number Network Number				8									1	I
YSW07603 ELS & excavate for FSH Water Supply Tark 21 100 01/06/12 A 25/06/12 A 19/07/12 A 25/06/12 A 19/07/12 A YSW07604 YSW07604 YSW07604 YSW07605 Backfill & remove ELS for FSH Water Supply Tark 23 100 26/06/12 A 19/07/12 A 20/07/12 A 31/07/12 A YSW07603 YSW07605 YSW07605 Backfill & remove ELS for FSH Water Supply Tark 21 100 20/07/12 A 31/07/12 A 20/07/12 A 31/07/12 A YSW07605 YSW07607 YSW07607 YSW07607 YSW07607 YSW07607 YSW07607 YSW07608 Construct superstructure for FSH Water Supply Tark 28 400 25/08/12 A 01/08/12 A 24/08/12 A 01/08/12 A<		10110/00			100									
YSW07603 ELS & excavate for FSH Water Supply Tark 21 100 01/06/12 A 25/06/12 A 19/07/12 A 25/06/12 A 19/07/12 A YSW07604 YSW07604 YSW07604 YSW07605 Backfill & remove ELS for FSH Water Supply Tark 23 100 26/06/12 A 19/07/12 A 20/07/12 A 31/07/12 A YSW07603 YSW07605 YSW07605 Backfill & remove ELS for FSH Water Supply Tark 21 100 20/07/12 A 31/07/12 A 20/07/12 A 31/07/12 A YSW07605 YSW07607 YSW07607 YSW07607 YSW07607 YSW07607 YSW07607 YSW07608 Construct superstructure for FSH Water Supply Tark 28 400 25/08/12 A 01/08/12 A 24/08/12 A 01/08/12 A<		YSW07601	Construct superstructure for Outfall Shaft	80	100	03/07/12 A	31/07/12 4	03/07/12 A	31/07/12 4		YSW0760	YSW08301	+	
YSW07604 Construct substructure for FSH Water Supply Tank 22 100 26/06/12 A 19/07/12 A 26/06/12 A 19/07/12 A YSW07603 YSW07605 Backfill & remove ELS for FSH Water Supply Tank 21 100 20/07/12 A 31/07/12 A 20/07/12 A 31/07/12 A YSW07603 YSW07607 Construct basement of MBR 1 & Workshop 28 100 01/08/12 A 24/08/12 A 01/08/12 A 24/08/12 A YSW07605 YSW07607 YSW07606 Construct superstructure for FSH Water Supply Tk 28 40 25/08/12 A 10/09/12 25/08/12 A 30/01/12 26/08/12 A 9/07/12 A 9/07/1				_		<u> </u>				1			┥─────┟┐	1
YSW07605 Backfill & remove ELS for FSH Water Supply Tank 21 100 20/07/12 31/07/12 20/07/12 NSW07604 YSW07607 YSW07607 Construct basement of MBR 1 & Workshop 28 100 01/08/12 24/08/12 01/08/12 24/08/12 YSW07605 YSW07607 YSW07608 Construct superstructure for FSH Water Supply Tk 28 40 25/08/12 01/09/12 25/08/12 30/10/12 44d YSW07605 YSW07609 YSW07609 Construct superstructure for MBR 1 28 40 25/08/12 01/01/12 25/08/12 25/08/12 25/08/12 25/08/12 25/08/12 25/08/12 25/08/12 25/08/12 25/08/12 25/08/12 20/01/12 56d YSW07606 YSW07610 YSW07601				-										
YSW07607 Construct basement of MBR 1 & Workshop 28 100 01/08/12 A 24/08/12 A 10/08/12 A 24/08/12 A YSW07605 YSW07605 YSW07608 YSW07608 Construct superstructure for FSH Water Supply Tk 28 40 25/08/12 A 10/09/12 25/08/12 A 30/10/12 44d YSW07607 YSW07609, YSW08304 YSW07609 Construct superstructure for MBR 1 28 40 25/08/12 A 03/10/12 25/08/12 A 27/11/12 56d YSW07609 YSW0760, YSW08303 YSW07610 Construct Workshop, FSSH Pump Rm, PW Pump Rm 28 0 03/10/12 31/10/12 26/11/12 25/12/12 56d YSW07609 YSW07601 YSW0840 YSW08301 Water tightness test for Outfall Shaft 42 0 31/08/12 11/10/12 20/09/12 31/10/12 20/09/12 YSW07609 YSW07609 YSW08305 YSW08303 Water tightness test for MBR 1 14 0 03/07/12 A 10/10/12 11/12/12 11/12/12 11/12/12 11/12/12 11/12/12 11/12/12 11/12/12 11/12/12 11/12/12 11/12/12 11/12/12 11/12/12				_						1			-	
YSW07608 Construct superstructure for FSH Water Supply Tk 28 40 25/08/12 A 16/09/12 25/08/12 A 30/10/12 44d YSW07607 YSW07609, YSW08304 YSW07609 Construct superstructure for MBR 1 28 40 25/08/12 A 03/10/12 25/08/12 A 27/11/12 56d YSW07608 YSW07610, YSW08303 YSW07610 Construct Workshop, FSSH Pump Rm, PW Pump Rm 28 0 03/10/12 31/10/12 25/12/12 56d YSW07609 YSW07610, YSW08303 YSW08301 Water tightness test for Outfall Shaft 42 0 31/08/12 11/10/12 20/9/12 31/10/12 20/0 YSW07601 YSW08305 YSW08302 Water tightness test for MBR 2 & 3 49 60 03/07/12 A 19/09/12 03/07/12 A 10/10/12 21d YSW07609 YSW08305				-						1				1
YSW07609 Construct superstructure for MBR 1 28 40 25/08/12 A 03/10/12 25/08/12 A 27/11/12 56d YSW07608 YSW07610, YSW08303 YSW07610 Construct Workshop, FSSH Pump Rm, PW Pump Rm 28 0 03/10/12 11/10/12 25/12/12 56d YSW07609 YSW0840 YSW07610 Construct Workshop, FSSH Pump Rm, PW Pump Rm 28 0 03/10/12 11/10/12 25/12/12 56d YSW07609 YSW0840 YSW08301 Water tightness test for Outfall Shaft 42 0 31/08/12 11/10/12 20/09/12 31/10/12 21/0 YSW07609 YSW08305 YSW08302 Water tightness test for MBR 1 14 0 03/01/12 11/12/12 11/12/12 56d YSW07609 YSW08305 YSW08305 YSW08304 Water tightness test for FSH Water Supply Tank 32 0 16/09/12 18/10/12 31/12/12 10/12/12 4/dd YSW08303, YSW08303, E8M0505, YSW0870 YSW08305 Apply protective paint 82 0 21/09/12 11/12/12				_		-				لم <i>ا</i> ا			<u></u>	
YSW07610 Construct Workshop, FSSH Pump Rm, PW Pump Rm 28 0 03/10/12 31/10/12 28/11/12 25/12/12 56d YSW07609 YSW0840 YSW08301 Water tightness test for Outfall Shaft 42 0 31/08/12 11/10/12 20/09/12 31/10/12 20/d YSW07610 YSW08305 YSW08302 Water tightness test for MBR 2 & 3 49 60 03/07/12 A 10/10/12 21d YSW07610 YSW08305 YSW08305 YSW08303 Water tightness test for MBR 1 0 03/07/12 A 10/10/12 21d YSW07610 YSW08305 E&M0520, E&M0650, F&M0650 YSW08307 YSW08305 YSW08305 YSW08305 E&M0630, E&M0650, F&M0650 YSW08307 YSW08305 E&M0630, E&M0650, F&M0650 YSW0850 YSW08305 YSW08305 E&M0630, E&M0650, F&M0650 YSW08505 YSW08305 YSW08305 E&M0630, E&M0650, F&M0650 YS				-	-								┤╶─────	
YSW08301 Water tightness test for Outfall Shaft 42 0 31/08/12 11/10/12 20/09/12 31/10/12 20d YSW07601 YSW08305 YSW08305 YSW08302 Water tightness test for MBR 2 & 3 49 60 03/07/12 A 19/09/12 03/07/12 A 10/10/12 21d YSW07601 YSW08305 YSW				_	-									
YSW08302 Water tightness test for MBR 2 & 3 49 60 03/07/12 A 19/09/12 03/07/12 A 10/10/12 21d ysw08305 ysw08305 ysw08305 YSW08303 Water tightness test for MBR 1 14 0 03/07/12 A 11/12/12 28/11/12 11/12/12 56d ysw0736, ysw0736 ysw08305 YSW08304 Water tightness test for FSH Water Supply Tank 32 0 16/09/12 18/10/12 31/10/12 11/12/12 44d ysw07608 ysw08305 EaM0520, EaM0590, EaM0605, ysw0870 F YSW08305 Apply protective paint 82 0 21/09/12 11/12/12 31/12/12 20d ysw08305, EaM0630, EaM0650, ysw0870 F <td></td>														
YSW08303 Water tightness test for MBR 1 14 0 03/10/12 17/10/12 28/11/12 11/12/12 56d ysw07609 ysw08305 YSW08304 Water tightness test for FSH Water Supply Tank 32 0 16/09/12 18/10/12 31/10/12 01/12/12 44d ysw07608 ysw08305 ysw08305 Ysw08305 Ysw08305 Apply protective paint 82 0 21/09/12 11/12/12 11/10/12 31/12/12 20d ysw08301, ysw08302, ysw08303, E&M0520, E&M0590, E&M0650, ysw0870 Female Additional Addition				_	0								<u>لل</u>	
YSW08304 Water tightness test for FSH Water Supply Tank 32 0 16/09/12 18/10/12 31/10/12 01/12/12 44d ysw08305 ysw08305 ysw08305 Apply protective paint 82 0 21/09/12 11/12/12 11/10/12 31/12/12 20d ysw08301, ysw08302, ysw08303, E&M0520, E&M0590, E&M0650, ysw0870 YSW0870 ABWF installation 30 0 12/12/12 10/01/13 07/05/13 05/06/13 146d ysw08305 E&M0630, E&M0640, E&M0650 Image: Contract of the second secon				49									-	
YSW08305 Apply protective paint 82 0 21/09/12 11/12/12 11/10/12 31/12/12 20d YSW08305, YSW08303, PSW08303, PSW0850, PSW0850, PSW0850, PSW08507 YSW0870 ABWF installation 30 0 12/12/12 10/01/13 07/05/13 05/06/13 146d YSW08305 E8M0520, E8M0650, PSM08507 PSM08305, PSM08507 1				14			-	ļ					-	╎╴╎┍╼╚
YSW0870 ABWF installation 30 0 12/12/12 10/01/13 07/05/13 146d YSW08305 E&M0630, E&M0640, E&M0650				_	• •		!						4	
					0		-	ļ					4	
Fire Hose Reel / Sprinkler Pump Rm				30	0	12/12/12	10/01/13	07/05/13	05/06/13	146d	YSW08305	E&M0630, E&M0640, E&M0650	┟──────┤┤	i
		Fire Hose Ree	el / Sprinkler Pump Rm											<u> </u>

Start date	05/05/10		Early bar
Finish date	09/11/15		Progress bar
Data date	31/08/12		Critical bar
Run date	09/09/12		Progress point
Page numbe	r 3A	7₹	Critical point
c Primavera	Systems, Inc.	72	Summary point
		12	Start miles tone point

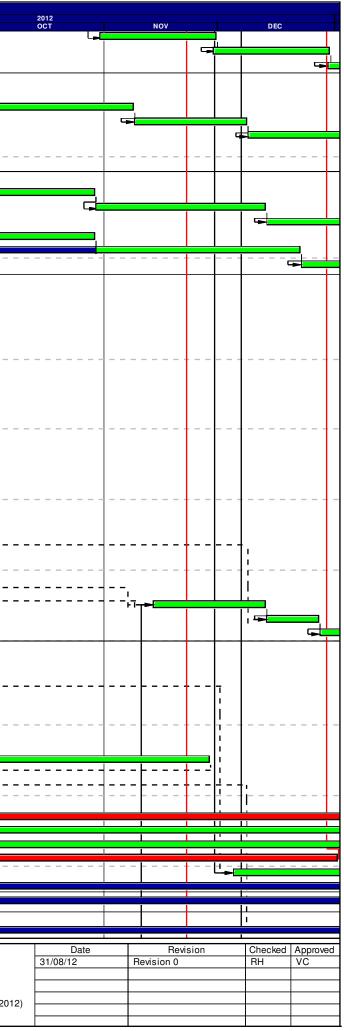
Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sep 2012 - Nov 2012)

	Activ ity ID	Description	Original Duratior	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	AUG	SEP	
	YSW0840	ELS & excavate to formation (+0 mPD approx.)	30	0	31/10/12	30/11/12	26/12/12	24/01/13	56d	YSW07610	YSW0860	AUG	SEP	
111	YSW0860	Sub-structure construction	30	0	30/11/12	30/12/12	25/01/13	23/02/13	56d	YSW0840	YSW0880			i
	YSW0880	Backfill & remove ELS	30		30/12/12	29/01/13	24/02/13	25/03/13		YSW0860	YSW0890			1
	Emergency S	Storage Tank		Ů	I	<u> </u>	<u> </u>		I		•			
	YSW1470	ELS & excavate to formation (-1.5mPD Approx.)	30	0	31/08/12	29/09/12	01/10/12	30/10/12	31d	YSW0760	YSW1480	└ └┢	-	
	YSW1480	Sub-structure construction	40	0	30/09/12	08/11/12	31/10/12	09/12/12	31d	YSW1470	YSW1490			Ġ .
	YSW1490	Backfill & extract sheetpile	30	0	09/11/12	08/12/12	10/12/12	08/01/13	31d	YSW1480	YSW1500			1
	YSW1500	Superstructure construction upto +10.5mPD	40	0	09/12/12	17/01/13	09/01/13	17/02/13	31d	YSW1490	YSW1530, YSW1536			!
111	YSW1530	Underground pipeline works	40	0	18/01/13	26/02/13	18/02/13	29/03/13	31d	YSW1500	E&M0690, YSW1680			
	YSW1536	Water tightness test	40	0	18/01/13	26/02/13	26/06/13	04/08/13	159d	YSW1500	YSW1538			Ť
	Road, Drain,	Cable Draw Pits & Ducting			1	1	<u> </u>	•	1	•	•			
	YSW16601	Construct 6m deep sewer YFMH5-YFMH6 (Grid Q-X)	60	0	31/08/12	29/10/12	16/10/12	14/12/12	46d	YSW0760	YSW16602	┝─────		
	YSW16602	Connect 6m deep sewer to existing manhole FM1	45	0	30/10/12	13/12/12	15/12/12	28/01/13	46d	YSW16601	YSW16603			1
	YSW16603	Construct UU & pipes along sea side (Grid Q-X)	60	0	14/12/12	11/02/13	29/01/13	29/03/13	46d	YSW16602	YSW16604, YSW16703			!
	YSW16606	Construct UU & pipes along hill side (Grid D-Q)	60	0	31/08/12	29/10/12	04/02/13	04/04/13	157d		YSW16607			
	YSW16607	Construct UU & pipes along hill side (Grid Q-X)	60	~	20/08/12 A	22/12/12	20/08/12 A	28/05/13	157d	YSW16606	YSW16608			
	YSW16608	Construct UU & pipes along hill side (Grid XA-D)	60	0	23/12/12	20/02/13	29/05/13	27/07/13	157d	YSW16607	YSW1690			+
	L Submarine Out	tfall			1	1	1		1					
ÌÌÌ	YSW0180	Coordination of HEC	53	100	17/05/10 A	08/07/10 A	17/05/10 A	08/07/10 A	1	KD0020	YSW0350			i –
	YSW0200	Submission and Approval of Ecologist	60	100		15/07/10 A	17/05/10 A	15/07/10 A		KD0020	YSW0210			
	YSW0210	Ecology Survey	211	100		11/02/11 A	16/07/10 A	11/02/11 A		YSW0200	YSW0350			
	YSW0210	Submission and Approval of In. Hydro Survey	103	100		27/08/10 A	17/05/10 A	27/08/10 A		KD0020				i i
	YSW0220	Hydrogrophical Survey (YSW)	103		28/08/10 A	31/01/11 A	28/08/10 A	31/01/11 A		YSW0220	YSW0230 YSW0350			-!
	YSW0230	Material Submission, Approval of HDPE pipe	319			31/03/11 A	17/05/10 A	31/03/11 A		KD0020	YSW0360			· +
	YSW0240	Clarify Coordinate of Point Y (Reply of RFI 010)	83	100	28/06/10 A	18/09/10 A	28/06/10 A	18/09/10 A		KD0020	YSW0350			i
	YSW02401	Submit and Approval of Method Statement for HDD	188		-	25/03/11 A	19/09/10 A	25/03/11 A		YSW02401				1
	YSW0250 YSW0260	Submission of HDD Method Statement to HEC	100	100	26/03/11 A	25/03/11 A 08/04/11 A	26/03/11 A	25/03/11 A 08/04/11 A		YSW02401 YSW0250	YSW0260, YSW0270, YSW0340 YSW0340			
	YSW0200	Additional G.I. Boreholes (YSW)	123	100	-	19/01/11 A	19/09/10 A	19/01/11 A		YSW0250	YSW0280, YSW0290			
	YSW0270	Submission of propose alignment	44		20/01/11 A	04/03/11 A	20/01/11 A	04/03/11 A		YSW0250 YSW0270	YSW0310, YSW0340			+
	YSW0200	Submission of Marine Notice	69		20/01/11 A	29/03/11 A	20/01/11 A	29/03/11 A		YSW0270	YSW0350			
		Construction of Entry Pit and Preparation Work	27			31/03/11 A	05/03/11 A	31/03/11 A		YSW0280				
	YSW0310 YSW0320	Prepare of HDD Drill Rig Set-up (YSW)	27	100	01/04/11 A	28/04/11 A	01/04/11 A	28/04/11 A		YSW0310	YSW0320 YSW0330, YSW0350			1
	YSW0320	Establishment of HDD plant & equipment	20	100		14/04/11 A	09/04/11 A	14/04/11 A		YSW0320	YSW0340			<u>!</u>
	YSW0340	Setting up at drillhole location	14	100	-	28/04/11 A	15/04/11 A	28/04/11 A		YSW0250, YSW0260, YSW0280,	YSW0350			· 🕂 🗕 – –
	YSW0350	Drill pilot hole and reaming hole - NS400 - 530m	229	100		13/12/11 A	29/04/11 A	13/12/11 A		YSW0040, YSW0180, YSW0210,	YSW0360			1
	YSW0360	Installation of NS400 HDPE 530m	17	100		30/12/11 A	14/12/11 A	30/12/11 A	1	YSW0240, YSW0350	SKW1181, YSW03601, YSW03620, YSW0370			- !
	YSW03601	Demobilization of HDD plant & equipment	7	100		06/01/12 A	31/12/11 A	06/01/12 A		YSW0360	YSW03605, YSW03641, YSW0730			· +
	YSW03605	Remove Entry pit of HDD	14	100		20/01/12 A	07/01/12 A	20/01/12 A		YSW03601	YSW0730			1
	YSW03620	Removal of Receiving Pit	14		31/12/11 A	13/01/12 A	31/12/11 A	13/01/12 A		YSW0360	YSW0365			· <u>+</u>
		Prepare backfilling material under VO 046A	120		07/01/12 A		07/01/12 A			YSW03601	YSW0365			· +
	YSW0365	Set up of Silt Curtain as per EP	30	100	14/11/12	13/12/12	02/07/13	31/07/13	230d		YSW0370			. +
	YSW0370	Dredging of Marine Deposit for Diffuser (YSW)	14	0		27/12/12	01/08/13	14/08/13	230d	YSW0360, YSW0365	YSW0380			<u>!</u>
	YSW0380	Diffuser Construction (YSW)	60		28/12/12	25/02/13	15/08/13	13/10/13	230d	YSW0370	E&M0690, YSW0400			
	E&M Works - Y		00	0			10/00/10	10/10/10	2000	1000070				
l i r	E&M0360	Delivery of MBR Memb. Mod. (MBR Tk 4)	137	100	24/02/11 A	21/06/11 A	24/02/11 A	21/06/11 A	1	E&M0160	E&M0510			!
	E&M0370	Delivery of MBR Membrane Modules - 2nd Shipment	150		24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A		E&M0160	E&M0520			· <mark>+</mark> -
	E&M0380	Delivery of Grit Removal Equipment	180	100		29/12/11 A	10/10/11 A	29/12/11 A	l	E&M0150	E&M0530			· + +
	E&M0390	Delivery of Coarse Screens	160		06/09/11 A	12/01/12 A	06/09/11 A	12/01/12 A		E&M0110	E&M0540			11
	E&M0400	Delivery of Fine Screens	180	100		30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M0550			
	E&M0410	Delivery of Pumps	162		23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M0560			ттт
	E&M0420	Delivery of Submersible Mixers	162		26/02/11 A	17/11/11 A	26/02/11 A	17/11/11 A	-	E&M0140	E&M0570			
-	E&M0440	Delivery of Sludge Dewatering Equipment	180		01/09/11 A	28/11/12	01/09/11 A	03/03/13	95d	E&M0170	E&M0580			<u> </u>
	E&M0450	Delivery of Valves, Pipes & Fittings	180		30/08/11 A	22/09/12	30/08/11 A	03/05/13		E&M0180	E&M0590, E&M0605		-	++
	E&M0460	Delivery of Penstocks	180		12/08/11 A	24/12/11 A	12/08/11 A	24/12/11 A	1	E&M0190	E&M0600			
	E&M0470	Delivery of Instruments	180		03/11/11 A	21/06/11 A	03/11/11 A	21/06/11 A		E&M0200	E&M0610			: 井井
	E&M0480	Delivery of MCC LVSB	177		01/09/12	25/02/13	11/07/12	03/01/13	-53d	E&M0210	E&M0620			<u> </u>
	E&M0490	Delivery of BS Equipment	180	28	-	22/01/13	11/12/11 A	05/06/13	134d		E&M0630			111
	E&M0500	Delivery FS Equipment	180	25		05/02/13	11/12/11 A	03/07/13	148d	E&M0230	E&M0330, E&M0640	I		' '
	E&M0510	Install Membrane Modules in MBR Tank no. 4	90		04/10/12	01/01/13	04/10/12	01/01/13	0	E&M0360, YSW0705, YSW0820	KD0115			
	E&M0520	Install Membrane Modules in MBR Tank No. 1 to 3	130		05/12/12	13/04/13	25/12/12	03/05/13	201	E&M0370, YSW08305	E&M0590, E&M0690			
	E&M0530	Install Grit Removal Equipment	60	-	01/06/12 A	24/02/13	01/06/12 A	03/05/13	<u> </u>	E&M0380, E&M0540, YSW0800	E&M0590, E&M0660			
	E&M0540	Install Coarse Screens	75		23/04/12 A	03/02/13	23/04/12 A	19/03/13		E&M0390, YSW0800	E&M0530, E&M0550, E&M0570, E&M0590,	i i		
				50				1			E&M0660			
	E&M0550	Install Fine Screens	60	00	01/06/12 A	15/02/13	01/06/12 A	03/05/13	784	E&M0400, E&M0540, YSW0800	E&M0590, E&M0660			
				00			1.00 IL /	10,00,10	1,00					
		/05/10 Early bar /11/15 Progress bar						1.		Civil Engineering	orn Itd			
		/08/12 Critical bar						L		Civil Engineering C				
Bun		Summary bar							C	ontract No. DC/2009	/13			

 Data date
 31/08/12

 Run date
 09/09/12

 Page number
 4A

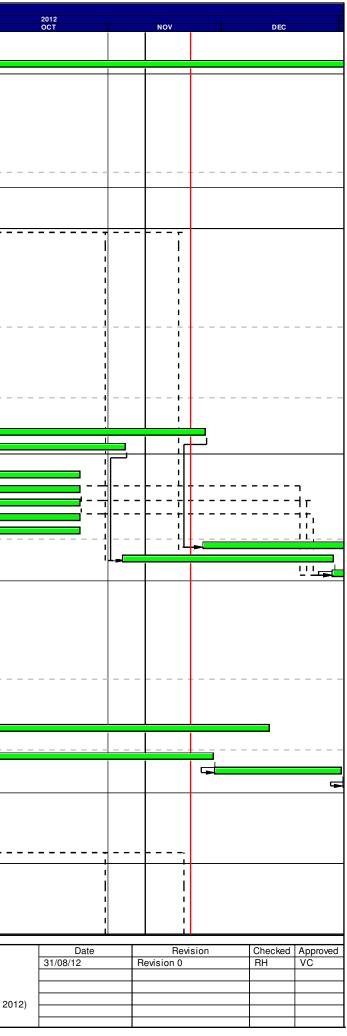

 c Primavera Systems, Inc.
 Summary bar

 Summary bar
 Progress point

 Critical point
 Summary point

 Summary bar
 Summary bar

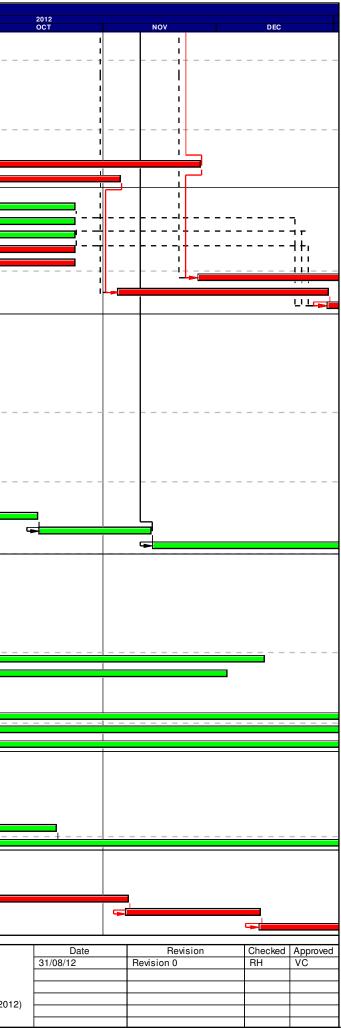
Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sep 2012 - Nov 2012)


Activ ity	Description	Original	Percent	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2012		
	Install Pumps	90	-						E&M0410, YSW0800	E&M0570. E&M0590. E&M0660	AUG	SEP	OCT	NOV	DEC
E&M0580					07/09/13	29/05/12 A	13/10/13	36d	E&M0440, YSW0800	E&M0690					
E&M0600	Install Penstocks (Batch 1, GL H - T)	180		-	26/04/13	23/04/12 A	13/10/13	170d	E&M0460, YSW0800	E&M0690					
E&M0605	Install Penstocks (Batch 2, GL A - F)	120	C) 12/12/12	10/04/13	16/06/13	13/10/13	186d	E&M0450, YSW08305	E&M0690					
	in														
	Annual of Englishment of Taxan	1 10	1	17/05/40 4		47/05/40 4		1	17.000	Louisee					
		16			-						-				
		_									-				
			1 100			10/00/10/1		1	0						
Civil & Geotec	hnical Works														
SKW0240	Site Clearance	21	100) 17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A			SKW0241					
SKW0241	Initial Survey	9	<u>.</u>	-	15/06/10 A	07/06/10 A	15/06/10 A		SKW0240	SKW0242	-				
		1//		_											
		70	!	+	-						-				
SKW0481	Footpath Diversion - Stage 1	14		-	24/03/11 A	11/03/11 A	24/03/11 A		SKW0471	KD0050, SKW04811, SKW0491					
SKW04811	Excavate for FP transition at CH0-35 &CH130-141	37			30/04/11 A	25/03/11 A	30/04/11 A		SKW0481	SKW04821					
SKW04821	Construction of Drainage outfall near bay 10	3	100) 01/05/11 A	03/05/11 A	01/05/11 A	03/05/11 A		SKW04811	SKW04831					
SKW04831	Cable diversion by HEC	26	1	-	29/05/11 A	04/05/11 A	29/05/11 A		SKW04821	SKW04841					
	÷ , ,			_											
		14	1	-	-		-				-				
		57		_							-				
SKW04881	Disposal of excavation material at A-G SKW STW			-	02/01/12 A	18/08/11 A	02/01/12 A		SKW04871	SKW04885					
SKW04885	Footpath Diversion - Stage 2	7		_	09/01/12 A	03/01/12 A	09/01/12 A		SKW04881	SKW1261					
Section W4 - S	ope Works in Portions H & I									1					
Geotechnical	Works														
SKW0588	Construct scaffolding access	30			-	-			KD0020	SKW0590	-				
	· · · · · · · · · · · · · · · · · · ·	_		-							4				
					-	-	-								
.				-			-		SKW0592	SKW05932	-				
SKW05932	Construction of Haul Road (To +42.5mPD)	68			29/12/10 A	23/10/10 A	29/12/10 A		SKW05931	SKW059322					
SKW059321	Removal of Boulders (IBG 1 - 119, SI No. 11B)	121	100) 03/11/10 A	03/03/11 A	03/11/10 A	03/03/11 A			SKW059411					
SKW059322	Add. Site Invest. Works (VO. No. 9,12 &16)	174		-	03/07/11 A	11/01/11 A	03/07/11 A		SKW05932	SKW059341					
	,	1		-	17/03/11 A	17/03/11 A	17/03/11 A			SKW059324	-				
		12			-										
		2	1						01011050005		-				
SKW059331	Removal of Boulders (IBG 140-189, SI No. 11D)	45			_				SKW05933	SKW05934					
SKW05934	West Slope Cutting (+42.5mPD to +35mPD)	32	100) 02/06/11 A	03/07/11 A	02/06/11 A	03/07/11 A		SKW059331	SKW059341	-				
SKW059341	Revised Profile at West Slope (+20 to +4.8mPD)	1	100) 04/07/11 A	04/07/11 A	04/07/11 A	04/07/11 A		SKW059322, SKW05934	SKW05935					
SKW05935	West Slope Cutting (+35mPD to +27.5mPD)	83		-	28/09/11 A	08/07/11 A			SKW059341	SKW05936	-				
			!	-											
		_	100			L	<u> </u>				-				
						-			KD0060	SKW05942	-				
SKW059411	East Slope Cutting (+50mPD to +42.5mPD)	72			14/05/11 A	04/03/11 A	14/05/11 A		SKW059321	SKW059412	+		·		
SKW059412	East Slope Cutting (+42.5mPD to +35mPD)	82	100) 15/05/11 A	04/08/11 A	15/05/11 A	04/08/11 A		SKW059411	SKW059413]				
SKW059413	East Slope Cutting (+35mPD to +27.5mPD)	_			28/09/11 A	05/08/11 A	28/09/11 A		SKW059412	SKW059414					
SKW059414	East Slope Cutting (+27.5mPD to +20mPD)	61					28/11/11 A		SKW059413	SKW059415	4				
							<u> </u>							·	
		-					-				1				
SKW05943	Buttress & surface Protection (SI No. 31)	60			31/07/12 A	03/07/12 A	31/07/12 A		SKW05942	SKW05944	4				
SKW05944	Slope Treatment (SI. No. 36)	60			31/07/12 A	03/07/12 A	31/07/12 A	l	SKW05943	SKW05945	1				
SKW05945	Rock Slope Treatment (SI. No. 68)	60	30	01/08/12 A	11/10/12	01/08/12 A	24/12/12	74d	SKW05944	SKW05946					
SKW05946	Rock Slope Treatment (SI. No. 98)	60			26/11/12	11/12/12	08/02/13			SKW05947					
SKW05947	Rock Slope Treatment (SI. No. 115)								SKW05946	KD0135					
			-					553d	SKW05948				1		
		70									1				
SKW05964	Fabrication & Shipping of RFB Material				14/10/12		14/04/15	912d		SKW05972					
					•	•				1					
	/11/15 Progress bar						Le	eader	Civil Engineering	Corp. Ltd.			Date 31/08/12	Revision 0	sion Checked Approved RH VC
¥	ems. Inc. V Summary point								-			(Marked on 31 August 2012)			
	Start milestone point					-				/					

Start date	05/05/10		Early bar
Finish date	09/11/15		Progress bar
Data date	31/08/12		Critical bar Summary bar
Run date	09/09/12		Progress poir
Page numbe	r 5A	₹	Critical point
c Primavera	Systems, Inc.] 🔽 -	Summary poir
		?	Start miles tone

Activ ity ID	Description	Original Duration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	AUG		SEP
SKW05965	Site clearance & Formation of access	62	100	09/06/12 A	31/07/12 A	09/06/12 A	31/07/12 A		SKW05963	SKW05967			
SKW05967	Plant mobilization	14	0	31/08/12	13/09/12	07/03/14	20/03/14	553d	SKW05965	SKW05968		↓-	
SKW 05968	Construction of anchors & pull out test	180	0	14/09/12	12/03/13	21/03/14	16/09/14	553d	SKW059631,SKW05967	SKW05969			· -
tion W5 - P.	S. No. 1 in Portion D		1	1					1				
vil & Geotecl	hnical Works												
KW0651	Site Clearance	7	100	17/05/10 A	23/05/10 A	17/05/10 A	23/05/10 A		KD0020	SKW0652			
SKW0652	Initial Survey	7	100	24/05/10 A	30/05/10 A	24/05/10 A	30/05/10 A		SKW0651	SKW0661,SKW0681			
SKW0661	Transplantation for uncommon vegatation	30	100	31/05/10 A	29/06/10 A	31/05/10 A	29/06/10 A		SKW0652	SKW0681			
SKW0681	Excavate to lower the working platform to +3mPD	49	100	30/06/10 A	17/08/10 A	30/06/10 A	17/08/10 A		SKW0260, SKW0265, SKW0652,	SKW0691			
SKW0691	ELS to +2.2mPD	40		18/08/10 A	26/09/10 A	18/08/10 A	26/09/10 A		SKW0681	SKW0721			
SKW0721	Excavate to formation	270	100	17/09/10 A	13/06/11 A	17/09/10 A	13/06/11 A		SKW0691	SKW0741			
Structural Worl						•				-			
SKW0741	RC Works for Structure	240		14/06/11 A	08/02/12 A	14/06/11 A	08/02/12 A		SKW0721	KD0070, SKW0841			
SKW0841	ABWF works	60	100	09/02/12 A	08/04/12 A	09/02/12 A	08/04/12 A		SKW0741	E&M1101, E&M1102, E&M1103, E&M1104,		\rightarrow	
E&MWorks (P	S1)										· · · · · ·	-	
Submission							•		-	-			
E&M1001	Submission of Pumps	198	1	17/05/10 A	24/02/11 A	17/05/10 A	24/02/11 A		KD0020	E&M1011	4		
E&M1002	Submission of Gen-Set	198			24/02/11 A	17/05/10 A	24/02/11 A			E&M1012	1		
E&M1003	Submission of DeO System	198		1	11/07/11 A	17/05/10 A	11/07/11 A			E&M1013	4		
E&M1004	Submission of LV SB & MCC	180	100		09/01/12 A	17/05/10 A	09/01/12 A			E&M1014	4		
E&M1005	Submission of Instrumentation	243	100		12/03/12 A	17/05/10 A	12/03/12 A			E&M1015			
E&M1006	Submission of FS System	243	•••		07/09/12	17/05/10 A	21/04/13	226d		E&M1016			
E&M1007	Submission of BS System	243	÷.		07/09/12	17/05/10 A	12/05/13	248d		E&M1017			
E&M1011	Delivery of Pumps	150		24/02/11 A	21/07/11 A	24/02/11 A	21/07/11 A		E&M1001	E&M1101			
E&M1012	Delivery of Gen-Set	150		24/02/11 A	23/09/11 A	24/02/11 A	23/09/11 A		E&M1002	E&M1102			
E&M1013	Delivery of DeO System	150		11/07/11 A	28/10/11 A	11/07/11 A	28/10/11 A		E&M1003	E&M1103	+ + +		
E&M1014	Delivery of LV SB & MCC	150		01/06/12 A	31/07/12 A	01/06/12 A	31/07/12 A		E&M1004	E&M1104			
E&M1015	Delivery of Instrumentation	90		01/11/11 A	03/11/11 A	01/11/11 A	03/11/11 A	000-1	E&M1005	E&M1105			
E&M1016	Delivery of FS Equipment	107		01/12/11 A	26/11/12	01/12/11 A	10/07/13	226d	E&M1006	E&M1106			
E&M1017	Delivery of BS Equipment	107	45	15/11/11 A	05/11/12	15/11/11 A	10/07/13	2480	E&M1007	E&M1107		+++++-	
E&M1101		55		04/00/40	04/40/40	40/07/40	00/00/40	01.1-1			4 111		
E&M1101	Install Pumps Install Gen Set	55	-	31/08/12 31/08/12	24/10/12	10/07/13 10/07/13	03/09/13 03/09/13		E&M1011,SKW0841	E&M1110, E&M1140			
E&M1102	Install DeO System	55	, v	31/08/12	24/10/12 24/10/12	10/07/13	03/09/13		E&M1012, SKW0841 E&M1013, SKW0841	E&M1110,E&M1140 E&M1110,E&M1140		ΠE	
E&M1104	Instal LV SB & MCC	55	-	31/08/12	24/10/12	10/07/13	03/09/13	314d		E&M1140			
E&M1104	Install Instrumentation	55		31/08/12	24/10/12	10/07/13	03/09/13		E&M1015,SKW0841	E&M1140			
E&M1106	Install FS Equipment	55	-	26/11/12	20/01/13	10/07/13	03/09/13	226d		E&M1130,E&M1140	+ ·		
E&M1107	Install BS Equipment	55		05/11/12	30/12/12	10/07/13	03/09/13	248d		E&M1110,E&M1140			
E&M1110	Install Valves, Pipes & Fittings	46	-	30/12/12	14/02/13	03/10/13	18/11/13		E&M1101, E&M1102, E&M1103, E&M1107	E&M1120			
	ewer and PS No.2 in Portions E&H		, v	007.12.12	1.002.10		10/11/10	2,00		2000 120			
Civil & Geotecl													
SKW0881	Site Clearance	7	100	17/05/10 A	23/05/10 A	17/05/10 A	23/05/10 A		KD0020	SKW0891			
SKW0891	Plant mobilization	7	100		23/05/10 A	17/05/10 A	23/05/10 A		SKW0881	SKW0892			
SKW0892	Initial Survey	30		24/05/10 A	22/06/10 A	24/05/10 A	22/06/10 A	L	SKW0891	SKW0901	1		
SKW0901	Tree Transplantation	90		23/06/10 A	20/09/10 A	23/06/10 A	20/09/10 A		SKW0892	SKW0921	1		
SKW0921	Cut Slope & U-Channel	14		21/09/10 A	04/10/10 A	21/09/10 A	04/10/10 A		SKW0260, SKW0265, SKW0901	SKW0931, SKW0951	1		
SKW0931	Hoarding & Fencing	14		05/10/10 A	18/10/10 A	05/10/10 A	18/10/10 A		SKW0921	SKW0950, SKW0951		-	
SKW0950	Removal of Rock Boulders before ELS	66		19/10/10 A	23/12/10 A	19/10/10 A	23/12/10 A		SKW0931	SKW0951	1		
SKW0951	ELS & Excavate to formation	169		24/12/10 A	10/06/11 A	24/12/10 A	10/06/11 A		SKW0921, SKW0931, SKW0950	SKW0971	1		
SKW0961	Mass Conc. Retaining Wall	90			13/12/12	12/11/12	09/02/13	58d	SKW1081	KD0155	1		r
SKW1491	LCS (ChA0+45 to 1+75) VO.7	90	100	24/03/12 A	21/06/12 A	24/03/12 A	21/06/12 A		PRE0100, SKW1021	SKW15111	1		
SKW15111	Twin DN150 DI Rising Main (ChA1+75 - ChA5+79)	180		22/06/12 A	28/11/12	22/06/12 A	17/01/13	50d	SKW1491	SKW1531		تبتت	
SKW1531	Extent village sewers S163.1 & S164.1	34		29/11/12	01/01/13	18/01/13	20/02/13	50d	SKW15111	SKW1581	1		
SKW1581	Construct Manhole no. S163 & S164	34		02/01/13	04/02/13	21/02/13	26/03/13		SKW1531	KD0135,SKW15112	1		
Structural Worl	ks		· · · · · · · · · · · · · · · · · · ·	•					•	•		-+	
SKW0971	Structural Works (Phase 1)	245	100	11/06/11 A	10/02/12 A	11/06/11 A	10/02/12 A		SKW0951	KD0080, SKW1021	1		
01/14/4004	Structural Works (Phase 2)	42	100	11/02/12 A	23/03/12 A	11/02/12 A	23/03/12 A	i	SKW0971	SKW1061,SKW1081,SKW1491	1		
SKW1021	ABWF Works	90		24/03/12 A	21/06/12 A	24/03/12 A	21/06/12 A		SKW1021	E&M2101, E&M2102, E&M2103, E&M2104,	1		
		30		22/06/12 A	14/09/12	22/06/12 A	11/11/12	58d	SKW1021,SKW1061	KD0155,SKW0961		━┾	
SKW1021 SKW1061 SKW1081	375mm U-channel/catchpits/outfall	30				•			•	•	/ ───	-+	1
SKW1061 SKW1081	·												
SKW1061 SKW1081	S2)												
SKW1061 SKW1081 E&M Works (P3	S2)	198	100	17/05/10 A	24/02/11 A	17/05/10 A	24/02/11 A		KD0020	E&M2011			
SKW1061 SKW1081 E&MWorks (P Submission	8 Delivery			-	24/02/11 A 24/02/11 A	17/05/10 A 17/05/10 A	24/02/11 A 24/02/11 A		KD0020	E&M2011 E&M2012			

Start date	05/05/10		Early bar
Finish date	09/11/15		Progress bar
Data date	31/08/12		Critical bar Summary bar
Run date	09/09/12		Progress point
Page number	6A	▼	Critical point
c Primavera S	Systems Inc.	🔽	Summary point
o i innatola e	<i>y</i> eterne, mer	◇	Start miles tone point
			man and a second s


Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sep 2012 - Nov 2012)

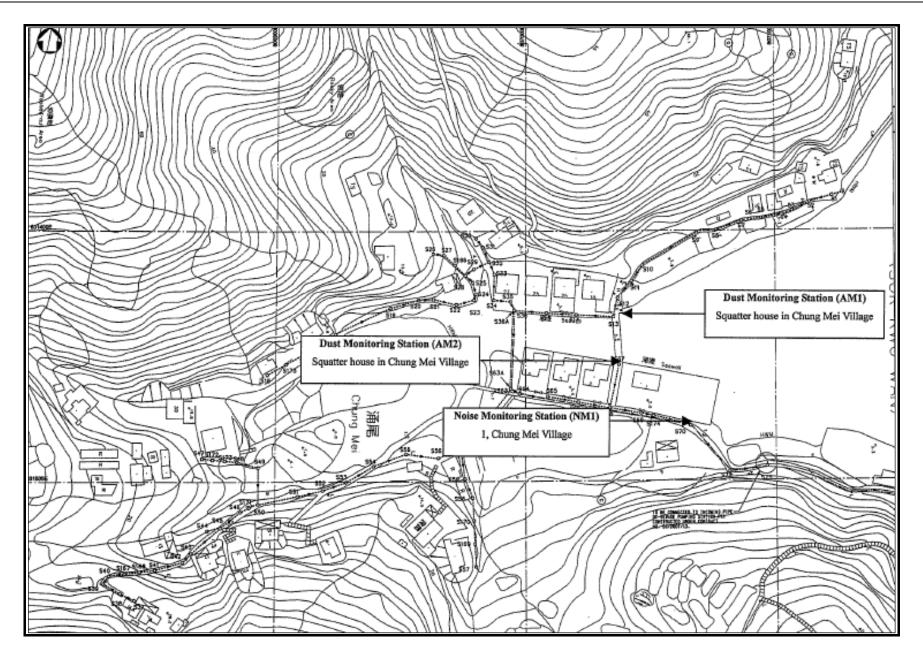
	Activ ity	Description	Original Duratior	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			
	E&M2004	Submission of LV SB & MCC	271	100		30/06/12 A	17/05/10 A	30/06/12 A			E&M2014	AUG		SEP
	E&M2005	Submission of Instrumentation	243	100	-	30/06/12 A	17/05/10 A	30/06/12 A			E&M2015			
	E&M2006	Submission of FS System	243	97		07/09/12	17/05/10 A	07/05/12	-123d		E&M2016			
	E&M2007	Submission of BS System	243	97 97		07/09/12	17/05/10 A	29/05/12	-101d		E&M2017	I		2
	E&M2011	Delivery of Pumps	150	-	24/02/11 A	21/07/11 A	24/02/11 A	21/07/11 A		E&M2001	E&M2101			
	E&M2012	Delivery of Gen-Set	150	100	1	23/09/11 A	24/02/11 A	23/09/11 A		E&M2002	E&M2102	h		
	E&M2013	Delivery of DeO System	150	100		28/10/11 A	11/07/11 A	28/10/11 A		E&M2003	E&M2103			
	E&M2014	Delivery of LV SB & MCC	150	100	1	31/07/12 A	29/02/12 A	31/07/12 A		E&M2004	E&M2104			
	E&M2015	Delivery of Instrumentation	90		21/06/11 A	03/11/11 A	21/06/11 A	03/11/11 A	l – – –	E&M2005	E&M2105			
	E&M2016	Delivery of FS Equipment	107	25		26/11/12	01/12/11 A	26/07/12	-123d		E&M0350, E&M2106			
	E&M2017	Delivery of BS Equipment	107	45		05/11/12	15/01/11 A	26/07/12	-101d	E&M2007	E&M2107			
	Installation, 1					1	L							•
	E&M2101	Install Pumps	55	0	31/08/12	24/10/12	27/09/12	20/11/12	27d	E&M2011,SKW1061	E&M2110	I – – – – – – – – – – – – – – – – – – –	╫╞══	
	E&M2102	Install Gen Set	55	-	31/08/12	24/10/12	27/09/12	20/11/12	27d	E&M2012,SKW1061	E&M2110		╫╞══	
	E&M2103	Install DeO System	55	0	31/08/12	24/10/12	27/09/12	20/11/12	27d	E&M2013,SKW1061	E&M2110		╢┝ <mark>╞</mark> ═	
	E&M2104	Install LV SB & MCC	55	0	31/08/12	24/10/12	27/07/12	19/09/12	-35d	E&M2014,SKW1061	E&M2140		╫┝══╸	
	E&M2105	Install Instrumentation	55	0	31/08/12	24/10/12	27/07/12	19/09/12	-35d	E&M2015,SKW1061	E&M2140		┺	
	E&M2106	Install FS Equipment	55	0	26/11/12	20/01/13	27/07/12	19/09/12	-123d	E&M2016,SKW1061	E&M2140			
	E&M2107	Install BS Equipment	55	0		30/12/12	27/07/12	19/09/12	-101d		E&M2110, E&M2140			
	E&M2110	Install Valves, Pipes & Fittings	46		30/12/12	14/02/13	21/11/12	05/01/13	-39d		E&M2120			
Se		W STW, Sewer and Submarine Outfall	1	, v		1	-			L	1			
	ubmarine Out	tfall												
	SKW1130	Approval of IHS Consultant	180	100	17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A			SKW1131			
	SKW1131	Hydrographical Survey (SKW)	300		01/02/11 A	28/02/11 A	01/02/11 A	28/02/11 A		KD0020, SKW1130	SKW1231			
	SKW1141	Baseline Monitoring (Water)	213	100		31/12/10 A	27/07/10 A	31/12/10 A		SKW0260, SKW0265	SKW1151			
	SKW1151	Set up Temporary Working Platform	90	100	1	30/09/11 A	15/06/11 A	30/09/11 A		PRE0090,SKW1141	SKW1171			
	SKW1171	ELS for HDD Set-up (SKW)	90	100	01/09/11 A	30/09/11 A	01/09/11 A	30/09/11 A		SKW1151	SKW1181			
	SKW1181	Mobilization of HDD plant & equipment to SKW	60		06/01/12 A	07/01/12 A	06/01/12 A	07/01/12 A		SKW1171, YSW0360	SKW1191			
	SKW1191	Setting up at drillhole location	33	100	1	14/01/12 A	09/01/12 A	14/01/12 A		SKW1181	SKW1201			
	SKW1201	Drill pilot hole and reaming hole - NS280 - 750m	45	100		16/02/12 A	16/01/12 A	16/02/12 A		SKW1191	SKW1211			
	SKW1211	Receiving Pit for HDD (SKW)	60	100	1	29/02/12 A	16/01/12 A	29/02/12 A		SKW1201	SKW1221			
	SKW1221	Installaiton of NS280 HDPE 450mm dia. pipe	30		31/03/12 A	30/04/12 A	31/03/12 A	30/04/12 A		SKW1211	KD0090, SKW1231, SKW1441			
	SKW1231	Removal of Receiving Platform	60		01/05/12 A	19/06/12 A	01/05/12 A	19/06/12 A		SKW1131,SKW1221	SKW1241			
	SKW 1241	Dredging of MD for Diffuser (PS CL 1.122(3))	60		20/06/12 A	05/07/12 A	20/06/12 A	05/07/12 A		SKW1231	E&M3359,SKW1251			
	SKW1251	Diffuser Construction	45	0	31/08/12	14/10/12	18/04/13	01/06/13	230d	SKW1241	SKW1431		╶┢╞══	
	SKW1431	Removal of silt curtain	30	0	15/10/12	13/11/12	02/06/13	01/07/13	230d	SKW1251	KD0090, SKW1440, YSW0365			
	SKW1440	Sewer of Outfall Chamber to connection pit VO37A	90	0		11/02/13	13/07/13	11/10/13	242d		SKW1441			
	KW STW	· ·			•	1			1	I	I			
l i r		& Delivery (E&M)												
		Delivery of MBR M.M 1st shipment for Temp STP	150	100	24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A	1	E&M0160	E&M3170			
	E&M3030	Delivery of Grit Removal Equipment	180	100		29/12/11 A	10/10/11 A	29/12/11 A		E&M0150	E&M3190			
	E&M3060	Delivery of Fine Screens	136	100	-	30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M3210			
	E&M3070	Delivery of Pumps	136		23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M3220			
	E&M3080	Delivery of Submersible Mixers	180		26/07/11 A	17/11/11 A	26/07/11 A	17/11/11 A		E&M0140	E&M3230			
	E&M3090	Delivery of Sludge Dewatering Equipment	210		01/09/11 A	13/12/12	01/09/11 A	14/11/13	336d	E&M0170	E&M3240			
	E&M3100	Delivery of Valves, Pipes & Fittings	180		30/08/11 A	03/12/12	30/08/11 A	22/09/13	293d		E&M3250			
	E&M3110	Delivery of Penstocks	180	100	<u> </u>	24/12/11 A	12/08/11 A	24/12/11 A		E&M0190	E&M3260			
	E&M3130	Delivery of instruments	180		21/06/11 A	03/11/11 A	21/06/11 A	03/11/11 A		E&M0200	E&M3270			
	E&M3140	Delivery of MCC LVSB	180		01/09/12	28/02/13	07/02/13	06/08/13	159d		E&M3261		L,	
	E&M3150	Delivery of BS Equipment	180		03/07/12 A	04/03/13	03/07/12 A	07/10/13	217d	E&M0220	E&M3291			
	E&M3160	Delivery of FS Equipment	180	5	ļ	13/03/13	30/06/12 A	26/10/13		E&M0230	E&M0340, E&M3300			
	Construction				·	· · · ·		· · · · ·		L				
	SKW1261	Excavate for SKW STW Structure (Grid A -G)	164	100	28/03/12 A	31/08/12 A	28/03/12 A	31/08/12 A		SKW04885, SKW05938	SKW1271,SKW1371			
	SKW1271	55 M3 Fire Sprinkle Water Tank (FL +0.9 mPD)	36	100		31/07/12 A	03/07/12 A	31/07/12 A		SKW1261	SKW1281		P	
	SKW1281	Ground Floor Slab (Grid A-G)	46		03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW1271	SKW1291			
	SKW1291	Columns & Walls to 1/F & 1/F Slab (Grid A-G)	50		03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW1281	KD0090,SKW1301			
	SKW1301	Columns & Walls to R/F & R/F Slab (Grid A-G)	50		31/08/12	19/10/12	18/01/13	08/03/13	140d	SKW1291	E&M3261, E&M3291, E&M3311, SKW1411		┺	
		ABWF Works	105	-	25/09/12	07/01/13	12/02/13	27/05/13		SKW1301	E&M3261, E&M3291, E&M3311, SKW1551			
	Construction		1							L				
	SKW1311	Excavate for SKW STW Structure (Grid G-N)	90	100	28/03/12 A	25/06/12 A	28/03/12 A	25/06/12 A		SKW05938, SKW059416	SKW1321,SKW1371			
	SKW1321	Equalization Tank no.1 & 2 with base slabs (-2.1	42		26/06/12 A	03/10/12	26/06/12 A	06/08/12	-58d	SKW1311	SKW1331			
	SKW1331	Columns & Walls from B/S to G/F Slab (Grid G-N)	35		03/10/12	07/11/12	07/08/12	10/09/12	-58d	SKW1321	SKW1341			
		Ground Floor Slab (Grid G-N)	35		07/11/12	12/12/12	11/09/12	15/10/12	-58d	SKW1331	SKW1351			
	SKW1351	Columns & Walls to 1/F & 1/F Slab (Grid G-N)	28	-	12/12/12	09/01/13	16/10/12	12/11/12		SKW1341	SKW1361			
		· · · ·	1		·	·	·	ı	<u> </u>	l	· · · · · · · · · · · · · · · · · · ·			
Stor	date 05/	(05/10 Early bar												

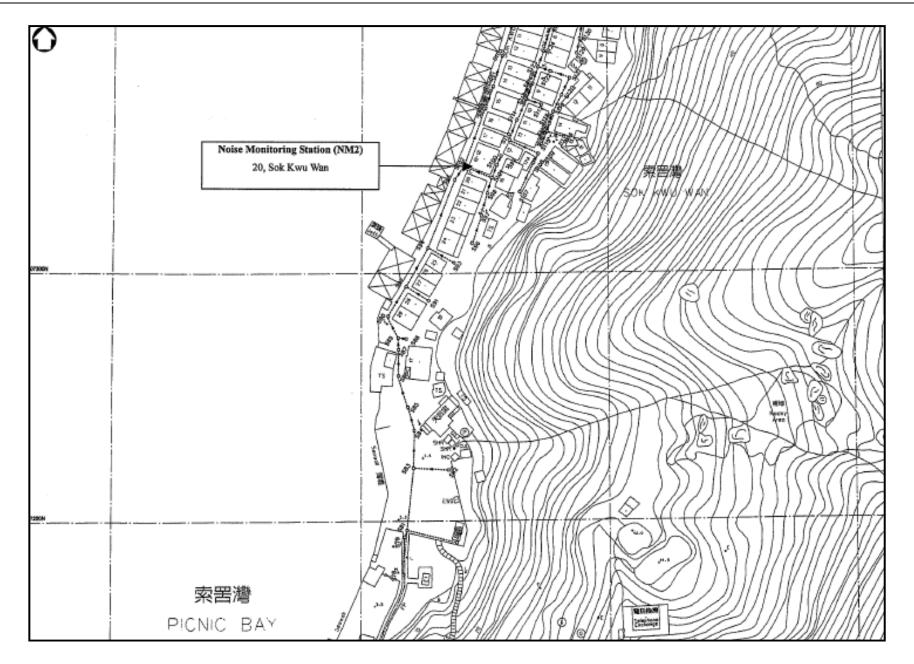
Start date	05/05/10		Early bar
Finish date	09/11/15		Progress bar
Data date	31/08/12		Critical bar Summary bar
Run date	09/09/12		Progress point
Page numbe	r 7A	▼	Critical point
c Primavera	Systems, Inc.	7 🔽	Summary point
	-)	•	Start miles tone po

Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sep 2012 - Nov 2012)

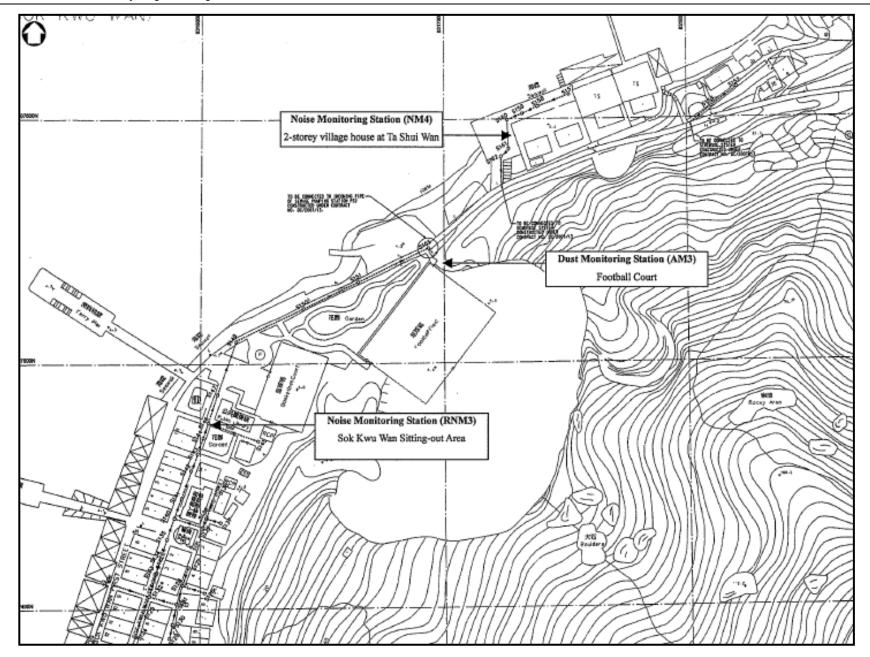
Activ ity	Description	Original Per Duratior Com	cent Early plete Start	Early Finish	Late Start	Late Finish	Total	Predecessors	Successors			0010		
ID	Beschpath	Juration Com	plete Start	Finish	Start	Finish	Float	11000033013	0000033013	AUG	SEP	2012 OCT	NOV	
SKW1361	Columns & Walls to R/F & R/F Slab (Grid G-N)	26	0 09/01/13	04/02/13	13/11/12	08/12/12	-58d	SKW1351	SKW1451					
Constructio	on of Grid N-T	<u> </u>						•						
SKW1371	Excavate for SKW STW Structure (Grid N-T)	97	50 03/07/12 A	18/10/12	03/07/12 A	13/12/12	57d	SKW05938, SKW059416, SKW1261,	SKW1381					
SKW1381	Ground Floor Slabs include MBR Tank (Grid N-T)	45	0 18/10/12	02/12/12	14/12/12	27/01/13	57d	SKW1371	SKW1391					
Rising Main		<u> </u>												
SKW1481	Subm, Approval & Delivery of DI pipes	120	100 17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1501					
SKW1501	LCS (ChB0+00 - ChB1+20)	300	100 14/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A		PRE0100,SKW1481	SKW1521					
SKW1521	Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	80 11/07/11 A	19/10/12	11/07/11 A	12/09/14	693d	SKW1501	KD0090					
Section W8 - I	Landscape Softworks in All Portions													
SKW1591	Tree Survey	21	100 17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A		KD0020	SKW1621					
SKW1611	Preservation & Protection of Trees	822	98 17/05/10 A	16/09/12	17/05/10 A	08/03/13	174d	KD0020	KD0100, SKW1631					
SKW1621	Transplantation at SKW	90	100 07/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A		SKW1591	KD0100	7	<u>ل</u> ے			
Section W9 - E	Establishment Works in All Portions	· ·	·		•	•		•	•					
SKW1631	Section W9 - Establishment Works	365	0 16/09/12	16/09/13	12/03/13	11/03/14	177d	SKW1611	KD0110	7			1	

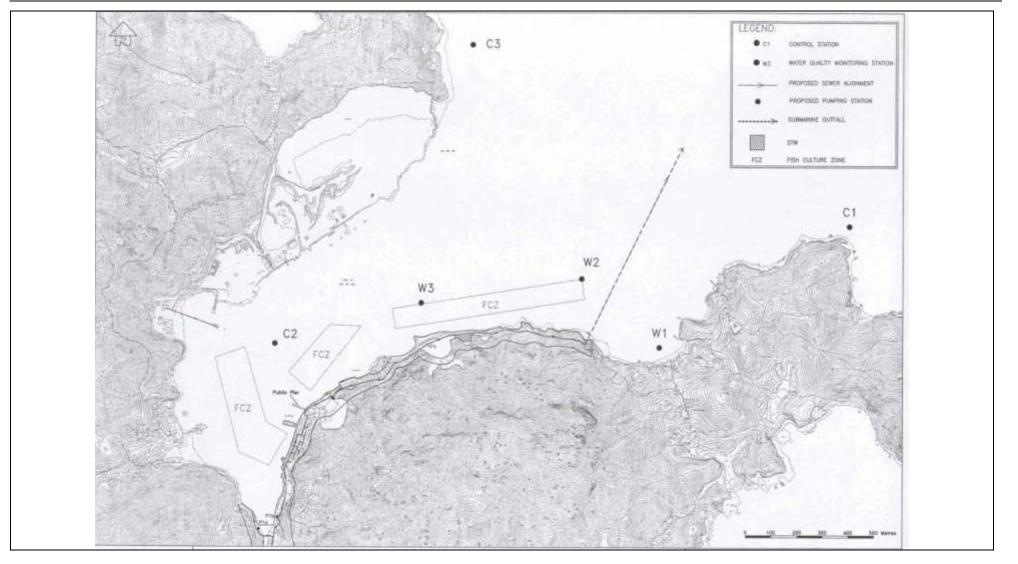
Start date	05/05/10		Early bar
Finish date	09/11/15		Progress bar
Data date	31/08/12		Critical bar Summary bar
Run date	09/09/12		Progress point
Page numbe	r 8A	▼	Critical point
c Primavera	Systems, Inc.	סר	Summary point
		1 🟆	Start miles tone point


	Date	Revision	Checked	Approved
	31/08/12	Revision 0	RH	VC
2012)				
)				


Appendix D

Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)





Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – September 2012

Appendix E

Monitoring Equipments Calibration Certificate

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

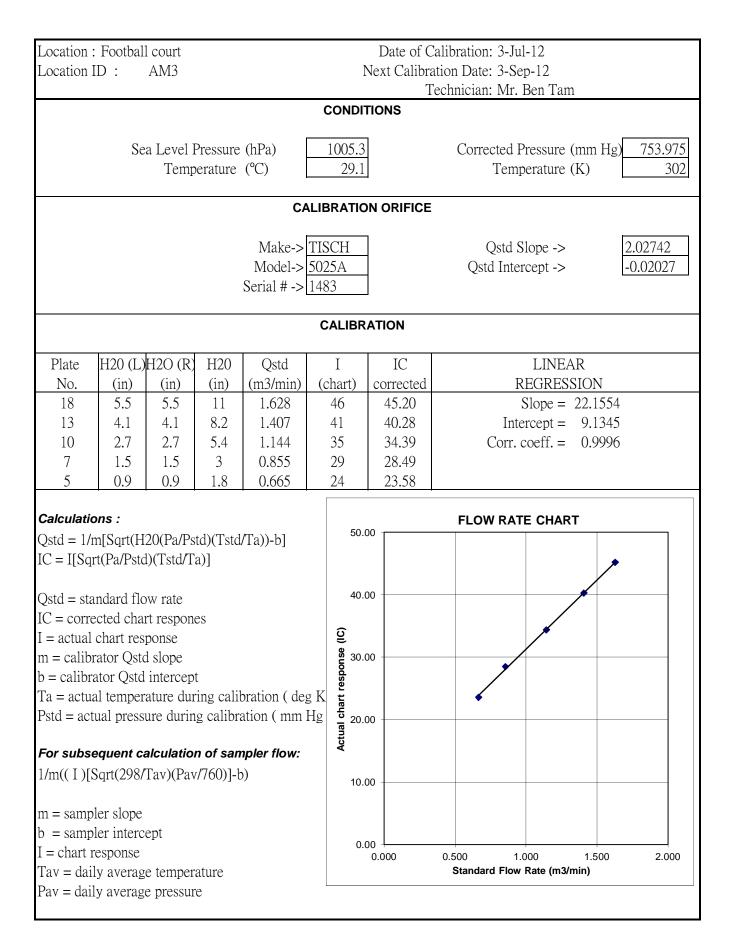
Date - Ma Operator		Rootsmeter Orifice I.I		438320 1483	Ta (K) - Pa (mm) -	294 754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	======== DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4140 0.9960 0.8910 0.8510 0.7020	3.2 6.4 7.9 8.7 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
1.0018 0.9976 0.9955 0.9945 0.9890	0.7085 1.0016 1.1173 1.1686 1.4088	1.4185 2.0061 2.2429 2.3524 2.8371	0.9957 0.9915 0.9894 0.9884 0.9830	0.7042 0.9955 1.1105 1.1615 1.4003	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slc intercep coeffici y axis =	ut (b) = ent (r) =	2.02742 -0.02027 0.99996 Pa/760)(298/Ta)]	Qa slog intercep coeffici v axis =	ot (b) =	1.26953 -0.01262 0.99996 Ta/Pa)l

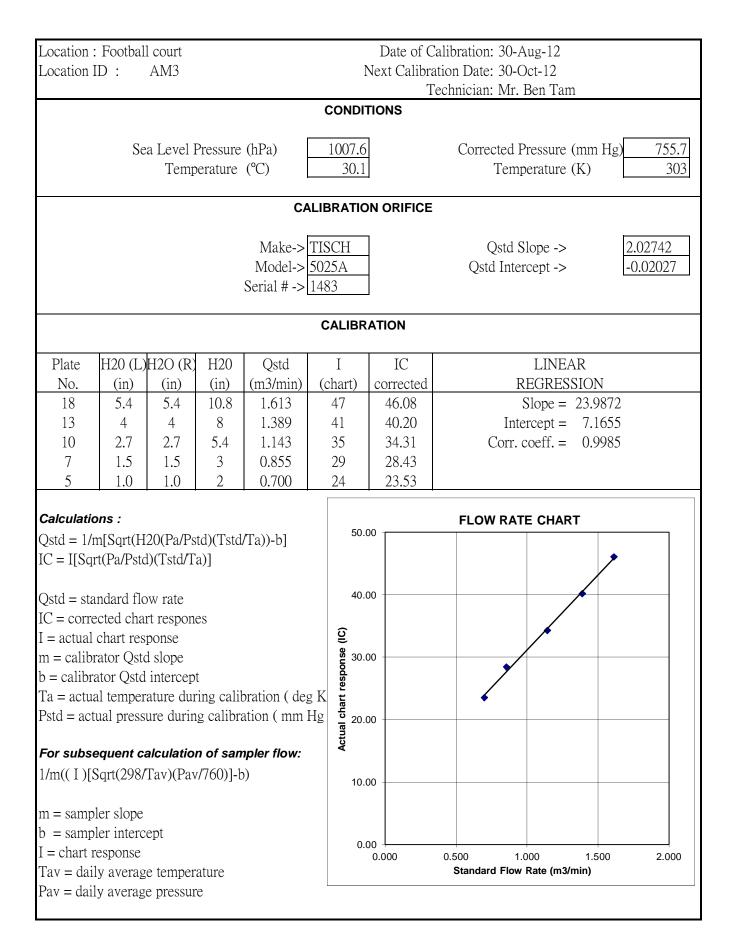
CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time


Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$


	-		n Chung	Mei Village				n: 3-Jul-12		
Location I	D :	AM1				Next Calibra		e: 3-Sep-12 n: Mr. Ben Ta	m	
					COND		connoidi			
				-		_				
	Se	a Level I		` ´	1005.3		Corr	ected Pressure		753.975 302
		Temp	erature	(°C)	29.1	29.1 Temperature (K)				
				CA	LIBRATI	ON ORIFICE				
				Make->	TISCH			Qstd Slope ->	>	2.02742
				Model->		_	Qs	td Intercept ->	>	-0.02027
				Serial # ->	1483					
					CALIB	RATION				
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC		LINE	EAR	
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected		REGRE		
18	5.2	5.2	10.4	1.584	57	56.00		_	= 28.2706	
13	4.1	4.1	8.2	1.407	52	51.09		Intercept =		
10 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				45 36	44.21 35.37		Corr. coeff. =	= 0.9981	
5	1.0	1.0	2	0.885	32	31.44				
	1			<u> </u>						
Calculatio					60.	00	FLO	W RATE CHA	RT	
Qstd = 1/r				/Ta))-b]					>	
IC = I[Sqı	u(Pa/PSu	1)(1810/1	a)]		50.	00			•	
Qstd = sta	ndard flo	w rate			50.					
IC = correction			es							
I = actual	chart res	ponse			2 40.	00				
m = calibr	-	-			onse					
b = calibra	_	_			d 30.	00	•			
	_		_	bration (deg	gK tra					
Psid = aci	ual press	ure durin	g canora	ation (mm I	.00 (C) 3.0. 3.0. 4g Hg Hg Hg Hg Hg	00				
For subse	equent ca	alculatio	n of san	npler flow:	Act Act					
1/m((I)[S	-			-						
					10.	00				
m = samp	ler slope									
b = samp		ept			0.	00				
I = chart r	-					0.000	0.500	1.000	1.500	2.000
Tav = dail							Standa	ard Flow Rate (m:	s/min)	
Pav = dail	y averag	e pressur	C							

Temperature (°C) 29.1 Temperature (K) CALIBRATION ORIFICE Make-> TISCH Qstd Slope -> 2.02 Model-> $5025A$ Qstd Intercept -> 2.02 Serial # -> 1483 CALIBRATION Plate H20 (L) H2O (R) H20 Qstd I IC LINEAR No. (in) (in) (m3/min) (chart) corrected REGRESSION	
Temperature (°C) 29.1 Temperature (K) CALIBRATION ORIFICE Make-> TISCH Qstd Slope -> 2.02 Model-> $5025A$ Qstd Intercept -> 2.02 Serial # -> 1483 Qstd Intercept -> 2.02 Plate H20 (L)H2O (R) H20 Qstd I IC LINEAR No. (in) (in) (m3/min) (chart) corrected REGRESSION	302 742
Make-> TISCH Qstd Slope -> 2.02 Model-> 5025A Qstd Intercept -> -0.07 Serial # -> 1483 -0.07 CALIBRATION Plate H20 (L)H2O (R) H20 Qstd I IC LINEAR No. (in) (in) (m3/min) (chart) corrected REGRESSION	
Model-> 5025A Qstd Intercept -> Serial # -> 1483 CALIBRATION Plate H20 (L)H2O (R) H20 Qstd I IC LINEAR No. (in) (in) (m3/min) (chart) corrected REGRESSION	
PlateH20 (L)H2O (R)H20QstdIICLINEARNo.(in)(in)(in)(m3/min)(chart)correctedREGRESSION	
No. (in) (in) (in) (m3/min) (chart) corrected REGRESSION	
18 5.9 5.8 11.7 1.679 58 56.99 Slope = 27.7062	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7 1.8 1.8 3.6 0.936 38 37.34	
5 1.0 1.0 2 0.700 30 29.48	
Calculations : FLOW RATE CHART	
Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] 70.00 70.00	
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]	
60.00	
Qstd = standard flow rate	
IC = corrected chart response 50.00	
I = actual chart response	
m = calibrator Qstd slope	_
b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K =	
m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg	
For subsequent coloulation of complex flow.	
For subsequent calculation of sampler flow:	_
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)	
m = sampler slope	
b = sampler intercept	
I = chart response 0.00 1.000 1.500	2.000
Tav = daily average temperature Standard Flow Rate (m3/min)	
Pav = daily average pressure	

	-										
	-		n Chung	Mei Village				on: 30-Aug-12			
Location 1	D :	AM1			l			te: 30-Oct-12			
					CONDI		echnicia	ın: Mr. Ben Ta	1111		
					CONDI	nono					
	Se	ea Level I	Pressure	(hPa)	1007.6	1	Corr	rected Pressure	e (mm Hg)) 755.7	
		Temp	erature	(°C)	30.1			Temperature	e (K)	303	
				CA	LIBRATIC	ON ORIFICE					
				Make->	TISCH	1		Qstd Slope ->	>	2.02742	
				Model->		-	Os	std Intercept ->		-0.02027	
				Serial # ->]	c				
					CALIBR	ATION					
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC		LINE	EAR		
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected		REGRE	SSION		
18	5.1	5.1	10.2	1.568	57	55.88		_	= 27.8573		
13	4	4	8	1.389	52	50.98		-	tercept = 11.8124		
10					46	45.10		Corr. coeff. =	= 0.9960		
7 5	1.6	1.6	3.2 1.8	0.882	36 32	35.29 31.37					
5	0.9	0.9	1.8	0.664	52	51.57					
Calculatio	ons :						FLO	W RATE CHA	RT		
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]	60.0						
IC = I[Squ	t(Pa/Pstc	l)(Tstd/T	a)]						/		
					50.0	0			1		
Qstd = sta											
IC = correction		-	es		6 40.0	0					
I = actual		-			(C) 40.0 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)						
m = calibration b = calibration calibration b = calibration	-	-	+		Suod						
	_	-		oration (deg	τK έ 30.0	0	Y	·			
	_		_	ation (mm]	char v						
	<u>F</u>		8		20.0	0					
For subse	equent ca	alculatio	n of san	npler flow:	Ac						
1/m((I)[S	Sqrt(298/	Tav)(Pav	/760)] - b))							
					10.0	0					
m = samp											
b = samp		ept			0.0						
I = chart r	-					0.000	0.500	1.000	1.500 2/min)	2.000	
Tav = dail							Standa	ard Flow Rate (m	ərmin)		
Pav = dail	y averag	e pressur	L								

	-		n Chung	Mei Village				alibration: 30-A	-			
Location 2	ID:	AM2				Ne		tion Date: 30-O				
					CON	ודוח		echnician: Mr. I	sen Tam			
					CONL							
	Se	a Level I	Pressure	(hPa)	1007	.6		Corrected P	ressure (mm	Hg) 755.7		
		Temp	erature	(°C)	30).1		Temp	erature (K)	303		
				CA	LIBRAT		ORIFICE					
				Make->	FISCH			Qstd SI	lope ->	2.02742		
				Model->				Qstd Inter	cept ->	-0.02027		
				Serial $\# \rightarrow 2$	1483							
					CALIE	BRA	TION					
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι		IC		LINEAR			
No.	(in)	(in)	(in)	(m3/min)	(chart)) (corrected	R	EGRESSIO	N		
18	5.8	5.8	11.6	1.671	60		58.82	Slope = 30.2545				
13	4.2 4.2 8.4 1.423				51		50.00		rcept = 8.0			
10					46		45.10	Corr. c	oeff. = 0.9	9969		
7 5	1.8 1.1	1.8 1.1	3.6 2.2	0.935 0.733	38 30		37.25 29.41					
5	1.1	1.1	<i>L</i> . <i>L</i>	0.755	50		29.41					
Calculatio	ons :							FLOW RATI	E CHART			
Qstd = 1/1	m[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]	7	70.00						
IC = I[Sq]	rt(Pa/Psto	d)(Tstd/T	a)]									
0.11	1 1 0	,			6	60.00				>		
Qstd = sta IC = corre			20						/			
I = actual		-	55		\sim	50.00	-					
m = calibr		-) esu				1			
b = calibr	-	-	t		Jodsa	40.00		*				
Ta = actua	al temper	ature dur	ing calil	oration (deg	KH							
Pstd = act	ual press	ure durin	g calibra	ation (mm H	B Actual chart response (IC € P	30.00	-	•				
For subs	eauent c	alculatio	n of san	npler flow:	Actu	20.00						
1/m((I)[-			-	_							
					1	10.00						
m = samp												
b = samp		ept				0.00						
I = chart I	-		- 4				.000	0.500 1.0		500 2.000		
Tav = dai								Standard Flow	kate (m3/min)			
Pav = dai	iy averag	e pressur	C									
1												

CERTIFICATE OF CALIBRATION AND TESTING TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition			Model			8520
Temperature	68.5 (20.3)	°F (°C)	-			
Relative Humidity	19	%RH	- Serial Numbe	er		23080
Barometric Pressure	29.11 (985.8)	inHg (hPa)				
🖾 As Left		X	In Tolerance			
As Found			Out of Tolerance			
	Device Response (mg/m3) 1 01 1 01	-	n Linearity Plot o			
	0.01	- o 01 0.1		o = In Tolerau $\bullet = Out of To$ 00	lerance	stem ID: DTI101-02
Zero Stability Results						
Average:	Minimum:		Maximum:		Time:	
0.000 :mg/m	3 0.00	50 :mg/m ²	0.001	:mg/m ³	2:00) :hrs.
Barometric Pressure EC Humidity EC DC Voltage EC Microbalance M	pplicable specific ests required under s measurements. (le mass of standar rstem ID Last 003733 02-2 002873 11-1 003315 01-0 001324 01-0	ations agreed upor er this contract were Calibration of this is rd ISO 12103-1, A1	n by TSI and the cus successfully conducte astrument performed l	stomer and with ed according to ro by TSI has been a t). Our calibratio	all publishea equired specifi lone using eme n ratio is grea <u>ID Last C</u> 3 11-14- 4 01-03- 9 01-26-	l specifications. All ications. There is no ery oil and has been ter than 1.2:1 al. <u>Cal. Due</u> 11 11-14-12 12 01-03-13 12 07-26-12
Ton Da Calibra	ted		nal Function Check	Ma	arch 8, 2012 Date	2
	U					

S. I.	Tel: 5-800	0-874-2811 1-6	500 Car 51-490-7	2811 Fax: 1-651-490-	.3824 http://www.ts	si.con1	
Environment Condition				Model		AM	510
Temperature Relative Humidity	68.4 (20.2) 59	°F (°C) %RH		Serial Number		1100	
Barometric Pressure	28.97 (981.0)) inHg (hPa)] ⊠In	Tolcrance			
As Found				ut of Tolerance			<u></u>
	100	Concent	ration	Linearity Plot			
	-			o			
	<i>\สึพ) อ</i>			o			
	Device Response (mg/m3) 10 · 1 01	_	a				
	evice R				o = in Tolerance		
	ลั 0.01.		····		 = Out of Toleran Tolerance : ±109 		
).01 0.1 Aerosol (10 10 tration (mg/m3)	0		
						System I	D: DT1101-
TSI incorporated does herel strict accordance with the performance and acceptance NIST standard for optical na nominally adjusted to respired	opplicable_specifi tests required univer- tes measurmants	ications agreed der this contrac Colibration of	d upon l ct were si Cibis insi	by TSI and the custo uccessfully conducted tranent performed by	omer and with all p according to require TSI has been done	published spec ed specification using emery oil	ifications 1s. There is 1 and has be
Barometric Pressure Humidity DC Voltage Microbalance	E003733 02 E002873 11 E003315 01 M001324 01	-25-12 02-2 -14-11 11-1 -03-12 01-0 -04-11 01-0	Leac 5-13 4-12 13-13 14-13 16-13	Massuen.csi Vaj Temperature DC Voltage Photometer Pressure	addic System 12 E002873 E003314 E003319 E003511	Cast Cal. 11-14-11 01-03-12 07-26-12 11-11-11	Cal, Que 11-14-12 01-03-13 01-26-13 11-11-12
$n \sum_{i=1}^{n} \langle 2 \rho_i \rangle$		[l Function	Augus	t 9, 2012	
Narleno John	K1.722		Cł			Date	

Ŷ

ΞĒ

TSI P/N 2300157

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122418 證書編號

ITEM TESTED / 送檢]	頁目	(Job No. / 序引編號:IC12-0960)	
Description / 儀器名稱 Manufacturer / 製造商	:	Sound Level Meter (EQ068) Rion	
Model No. / 型號	:	NL-31	
Serial No. / 編號	1	00410247	
Supplied By / 委託者	*	Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 : 20 April 2012

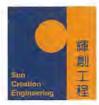
TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. (after adjustment) The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Precision Measurement Ltd., UK
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試


L K Yeung

Date of Issue 23 April 2012 Certified By : 簽發日期 核證 K C Lee

The test equipment used for calibration are traccable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準,局部復印本證書需先擁本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c'o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 枝正及檢測實驗所 c'o 香港新昇屯門與安里一號青山灣機機四樓 Tel 電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/觀址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122418 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test form 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C120016 DC110233

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Adjustment

UUT Setting				Applied	d Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)	
30 - 120	LA	A	Fast	94.00	1	* 92.9	± 0.7	

* Out of Mfr's Spec.

6.1.1.2 After Adjustment

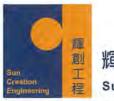
	UUT Setting			Applied	d Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	94.0	± 0.7

6.1.2 Linearity

10 March 10	UU	T Setting		Applied Value		UUT
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 120	LA	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
	_	1		114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部裡印本證書需先獲本實驗所書面批准。


Sun Creation Engineering Limited - Calibration & Testing Laboratory e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

e'o 4/F. Ising Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kon 輝創工程有限公司 - 校正及檢測實驗所

e/a 香港新屏屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/調射: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122418 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

-	UUT Setting			Applied Value		UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	94.0	Ref.
		·	Slow			94.0	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	1	UUT Setting		App	Applied Value		IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Spec. (dB)
20 -110	10 L _A A Fast	Fast	106.00	Continuous	106.0	Ref.	
	L _A max				200 ms	105.1	-1.0 ± 1.0
	LA		Slow		Continuous	106.0	Ref.
	L _A max		· · · · · · · · · · · ·		500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UL	JT Setting		App	lied Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	LA	A	Fast	94.00	31.5 Hz	54.3	-39.4 ± 1.5
	100			63 Hz	67.7	-26.2 ± 1.5	
				125 Hz	77.8	-16.1 ± 1.0	
				250 Hz	85.3	-8.6 ± 1.0	
					500 Hz	90.7	-3.2 ± 1.0
					l kHz	94.0	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	93.0	-1.1 (+1.5; -3.0)
					12.5 kHz	90.1	-4.3 (+3.0; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准,

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122418 證書編號

6.3.2 C-Weighting

Time Averaging

	UU	JT Setting		App	lied Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	Lc	С	Fast	94.00	31.5 Hz	90.7	-3.0 ± 1.5
				63 Hz	93.1	-0.8 ± 1.5	
			125 Hz	93.8	-0.2 ± 1.0		
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.4	-0.8 ± 1.0
	1,		1		8 kHz	91.1	-3.0 (+1.5; -3.0)
				-	12.5 kHz	88.2	-6.2 (+3.0 ; -6.0)

6.4

UUT Setting			1	Applied Value					IEC 60804	
Range (dB)	Mode	Frequency Weighting	Integrating Time	Freq. (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
20 - 110	LAcq	Α	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						$1/10^{2}$		90	90.0	± 0.5
	1.1.2.2		60 sec.			1/103		80	80.0	± 1.0
	1.000		5 min.			1/104		70	70.0	± 1.0

Remarks : - Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB	: 63 Hz - 125 Hz	: ± 0.35 dB	
		250 Hz - 500 Hz	: ± 0.30 dB	
		1 kHz	$\pm 0.20 \text{ dB}$	
		2 kHz - 4 kHz	: ± 0.35 dB	
		8 kHz	: ± 0.45 dB	
		12.5 kHz	: ± 0.70 dB	
	104 dB	: 1 kHz	: ± 0.10 dB (Ref. 94 dB)	
	114 dB	: 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)	
	Burst ec	quivalent level	: ± 0.2 dB (Ref. 110 dB continuous sound level)	

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部裡印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426 證書編號

ITEM TESTED / 送檢]	項目	(Job No. / 序引編號 : IC12-0960)
Description / 儀器名稱	:	Acoustical Calibrator (EQ082)
Manufacturer / 製造商		Bruel & Kjaer
Model No. / 型號	:	4231
Serial No. / 編號	:	2713428
Supplied By / 委託者	:	Action-United Environmental Services and Consulting
		Unit A, 20/F., Gold King Industrial Building,
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 : 20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

K/C Lee

Certified By 核證

Date of Issue 簽發日期 5

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門與安里一號青山灣機樓四欄 Tel:電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122426 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C113350 DC110233 C120886

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy
- 5.1.1 Before Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.1	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

5.1.2 After Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

5.2.1 Before Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

5.2.2 After Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426 證書編號

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部裡印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR RAY CHEUNG CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG. PROJECT: --

WORK ORDER:	HK1219668
LABORATORY:	HONG KONG
DATE RECEIVED:	25/07/2012
DATE OF ISSUE:	01/08/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Dissolved Oxygen, pH, Salinity, Temperature and Trubidity
Description:	YSI Sonde
Brand Name:	YSI
Model No.:	YSI 6820 / 650MDS
Serial No.:	02J0912/02K0788 AA
Equipment No.:	
Date of Calibration:	31 July, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG Phone: Fax: Email:

852-2610 1044 852-2610 2021 hongkong@alsglobal.com

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1219668
Date of Issue:	01/08/2012
Client:	ACTION UNITED ENVIRO SERVICES

YSI Sonde	
YSI	
YSI 6820 / 650MDS	
02J0912/02K0788 AA	
31 July, 2012	
	YSI YSI 6820 / 650MDS 02J0912/02K0788 AA

Date of next Calibration:

31 October, 2012

Parameters:

-	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	3.08	2.93	-0.15
	6.46	6.64	0.18
	8.33	8.17	-0.16
		Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.03	0.03
7.0	6.98	-0.02
10.0	9.93	-0.07
	Tolerance Limit (±unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	9.40	-6.0
20	20.66	3.3
30	30.99	3.3
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.15	-0.9
21.5	21.60	0.1
40.5	39.17	-1.3
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client: HK1219668 01/08/2012 ACTION UNITED ENVIRO SERVICES

Description:	YSI Sonde		
Brand Name:	YSI		
Model No.:	YSI 6820 / 650MDS		
Serial No.:	02J0912/02K0788 AA		
Equipment No.:			
Date of Calibration:	31 July, 2012	Date of next Calibration:	31 October, 2012

Parameters:

Turbidity

Method Ref: ALPHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.1	
4	4.3	7.50
40	41.6	4.00
80	82.9	3.63
400	414.6	3.65
800	836.7	4.59
	Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number : HCKLAS 066 註冊號碼:

Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

∟ 000552

Appendix F

Event/Action Plan

Air Quality

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT)N	
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	1. Check monitoring data submitted by ET and Contractor's working methods	 Confirm receipt of notification of non-compliance in writing; and Notify Contractor 	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
2. Exceedance for two or more consecutive sampling days	 Same as the above; Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level 	 Same as the above; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures. 	 Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures 	 Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures
		LIMIT LEVEL		
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	 Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible remedial actions; and Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly 	 Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods 	 Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
2. Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	 Same as the above; and Supervise the Implementation of mitigation measures 	 Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level 	 Same as the above; Take immediate action to avoid further exceedance; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; and As directed by the Engineer, to slow down or to stop all or part of the construction activities until to no exceedance of Limit Level.

Appendix G

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	LAPSED TI	ME	CHA	ART READ	DING			STANDARD		INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring F	Results - AN	/ 1												
28-Aug-12	24986	12439.7	12463.69	1439.40	32	33	32.5	31	1004.3	0.75	1074	2.7757	2.8369	0.0612	57
3-Sep-12	25026	12463.69	12487.68	1439.40	31	33	32.0	29.4	1008.4	0.71	1027	2.8138	2.8366	0.0228	22
8-Sep-12	25031	12487.68	12511.67	1439.40	31	32	31.5	28.8	1012.1	0.70	1006	2.8022	2.823	0.0208	21
14-Sep-12	25034	12511.67	12535.66	1439.40	30	31	30.5	26.9	1009.3	0.67	957	2.7946	2.8273	0.0327	34
20-Sep-12	25038	12535.66	12559.65	1439.40	31	33	32.0	27.2	1011.6	0.72	1036	2.8037	2.8919	0.0882	85
24-hour TSP	Monitoring F	Results - AN	12												
28-Aug-12	24987	10933.8	10957.79	1439.40	32	33	32.5	31	1004.3	0.77	1109	2.7986	2.8916	0.0930	84
3-Sep-12	25027	10957.79	10981.78	1439.40	31	33	32.0	29.4	1008.4	0.78	1127	2.8206	2.8532	0.0326	29
8-Sep-12	25032	10981.78	11005.77	1439.40	31	32	31.5	28.8	1012.1	0.77	1107	2.8041	2.8412	0.0371	34
14-Sep-12	25037	11005.77	11029.76	1439.40	30	31	30.5	26.9	1009.3	0.74	1063	2.7978	2.8187	0.0209	20
20-Sep-12	25043	11029.76	11053.75	1439.40	31	33	32.0	27.2	1011.6	0.79	1135	2.7731	2.8551	0.0820	72
24-hour TSP	Monitoring F	Results - AN	13												
28-Aug-12	24988	6475.71	6499.7	1439.4	32	34	33	31	1004.3	1.06	1520	2.5056	2.6752	0.1696	112
3-Sep-12	25014	6499.7	6523.69	1439.4	32	33	32.5	29.4	1008.4	1.04	1501	2.8075	2.8513	0.0438	29
8-Sep-12	25033	6523.69	6547.68	1439.4	32	33	32.5	28.8	1012.1	1.05	1507	2.8117	2.8564	0.0447	30
14-Sep-12	25040	6547.68	6571.67	1439.4	32	33	32.5	26.9	1009.3	1.05	1510	2.7896	2.823	0.0334	22
20-Sep-12	25039	6571.67	6595.66	1439.4	33	35	34	27.2	1011.6	1.11	1601	2.7966	2.9521	0.1555	97

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Date 27-Aug-12

Date / Time	Location	Tide*	Co-ord	inates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	THE	East	North	m	m	ູບ	mg/L	%	NTU	ppt	unit	mg/l
2012/8/27 17:17	W1	ME	832973	807741	2.4	1.200	27.39	8.13	123.8	0.8	33.34	7.32	4.4
2012/0/27 1111			052715	00//11	2	1.200	27.39	8.12	123.7	0.6	33.34	7.32	
						1.000	27.40	8.74	133.0	1.3	33.34	7.39	6.8
						1.000 6.150	27.36 27.30	8.68 7.70	132.2 117.1	1.4	33.35 33.39	7.36 7.34	
2012/8/27 17:07	W2	ME	832682	807970	12.3	6.150	27.30	7.70	117.1	1.2	33.39	7.34	5.9
						11.300	27.24	5.43	82.5	1.3	33.41	7.31	
						11.300	27.21	5.30	80.5	1.3	33.43	7.30	6.3
						1.000	27.50	9.35	142.8	0.8	33.49	7.40	
						1.000	27.47	9.42	143.8	0.8	33.51	7.38	6.4
2012/8/27 16.40	W3	ME	832041	807890	12.6	6.300	27.20	8.43	128.3	0.8	33.65	7.28	4.7
2012/8/27 16:49	VV 5	IVIE	652041	807890	12.0	6.300	27.20	8.13	123.6	0.8	33.66	7.26	4.7
						11.600	26.86	5.92	89.6	1.2	33.82	7.04	5.8
						11.600	26.87	5.57	84.3	1.3	33.96	7.06	5.0
						1.000	27.42	8.99	136.8	0.6	33.12	7.42	3.8
						1.000	27.46	8.97	136.5	0.7	33.11	7.42	
2012/8/27 17:34	C1	ME	833719	808190	14.2	7.100	27.45	7.83	119.4	1.2	33.45	7.41	5.1
						7.100	27.46	7.73 6.25	117.9 95.1	1.3 1.6	33.44 33.56	7.41	
						13.200	27.27	6.31	95.1	1.6	33.56	7.33	3.5
	1					1.000	27.33	9.62	146.4	1.3	33.52	7.55	
						1.000	27.30	9.02	132.0	1.3	33.57	7.42	7.0
						5.600	26.98	7.20	109.2	1.5	33.85	7.25	
2012/8/27 16:30	C2	ME	831450	807739	11.2	5.600	26.98	6.97	105.7	1.6	33.88	7.22	6.7
						10.200	26.82	6.00	90.8	1.4	34.01	7.11	
						10.200	26.80	5.43	82.2	1.2	33.99	7.06	7.3
						1.000	27.53	6.26	95.3	1.4	33.10	7.34	5 4
						1.000	27.53	7.37	112.4	1.3	33.14	7.34	5.4
2012/8/27 17.57	C3	ME	832241	808869	14.8	7.400	27.38	6.60	100.4	0.9	33.47	7.33	5.2
2012/8/27 17:57	CS	IVIL	652241	000009	14.0	7.400	27.43	6.52	99.3	1.1	33.46	7.36	5.2
						13.800	27.17	5.19	78.9	1.1	33.63	7.29	4.9
						13.800	27.25	4.92	74.9	1.2	33.56	7.31	
2012/8/27 11:19	W1	MF	832969	807737	2.8	1.400	27.37	9.46	144.0	0.8	33.34	7.44	3.8
	-					1.400	27.37	9.22	140.4	0.8	33.37	7.44	
						1.000	27.39 27.30	8.95 8.88	136.2 135.0	0.6	33.34 33.37	7.44 7.42	4.6
						6.800	27.30	7.73	117.3	0.6	33.52	7.38	
2012/8/27 11:30	W2	MF	832654	807996	13.6	6.800	27.10	7.45	117.0	0.5	33.50	7.37	2.8
						12.600	26.78	4.89	74.0	0.9	33.91	7.31	
						12.600	26.75	4.51	68.2	1.0	33.94	7.29	4.4
						1.000	27.27	9.03	137.2	0.5	33.37	7.60	1.2
						1.000	27.28	8.80	133.8	0.5	33.37	7.59	4.3
2012/8/27 10:55	W3	MF	83205	807900	13.4	6.700	27.05	7.70	116.8	0.8	33.59	7.54	5.0
2012/0/27 10.33	VV 5	1411.	05205	007900	13.4	6.700	27.00	7.25	109.7	0.9	33.63	7.51	5.0
						12.400	26.75	5.41	81.7	1.2	33.83	7.40	4.4
						12.400	26.74	4.92	74.3	1.2	33.85	7.38	
						1.000	27.32	9.94	150.7	0.5	32.80	7.15	4.6
						7.850	27.30	9.80 7.16	148.7 108.6	0.6	32.95	7.23 7.21	
2012/8/27 10:31	C1	MF	833712	808165	15.7	7.850	27.29 27.27	7.10	108.6	1.2	33.14	7.21	4.9
						14.700	27.15	4.85	73.5	1.2	33.28	7.22	
						14.700	27.15	4.85	73.5	1.2	33.28	7.22	4.6
						14.700	27.15	7.11	108.1	1.1	33.45	7.47	
						1.000	27.24	7.28	110.6	1.4	33.41	7.46	4.9
0010/0/07 10.04	<i>C</i> 2		021.051	007750	10.0	6.300	27.02	7.09	107.6	1.3	33.60	7.46	5.0
2012/8/27 12:04	C2	MF	831451	807753	12.6	6.300	27.02	6.95	105.3	1.1	33.62	7.46	5.0
						11.600	26.88	5.92	89.6	1.3	33.78	7.44	7.6
						11.600	26.84	5.62	85.0	1.4	33.81	7.42	7.0
						1.000	27.27	9.99	151.7	1.3	33.25	7.25	6.2
						1.000	27.25	9.24	140.2	1.3	33.25	7.23	0.2
2012/8/27 10:55	C3	MF	832216	808883	16.2	8.100	27.19	7.42	112.6	0.9	33.34	7.23	6.6
						8.100	27.19	7.20	109.4	1.2	33.34	7.23	
						15.200	27.04	4.23	64.2	0.8	33.58	7.21	7.0
ME Mid Flood Tido						15.200	27.10	4.17	63.3	0.8	33.57	7.23	

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 29-Aug-12

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide.	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/l
2012/8/29 8:57	W1	ME	832963	807732	2.3	1.150	27.43	7.60	116.3	1.2	33.99	7.61	3.3
	_					1.150	27.45 27.42	7.86 9.26	120.2 141.6	1.1 1.2	34.01 33.99	7.63 7.65	───
						1.000	27.42	9.20	134.6	1.2	34.00	7.65	3.5
2012/0/20 0 12	11/2		000000	007001	12.0	6.150	27.40	6.90	105.5	0.9	34.25	7.64	2.0
2012/8/29 8:43	W2	ME	832662	807991	12.3	6.150	27.39	6.78	103.8	0.9	34.26	7.64	3.0
						11.300	27.05	4.46	68.0	1.8	34.60	7.59	4.3
	_					11.300	27.04	4.24	64.7	1.8	34.61	7.58	
						1.000	27.36 27.38	8.91 8.47	136.0 129.3	0.9	33.90 33.88	7.60 7.61	5.9
						6.250	27.38	6.16	94.2	1.1	34.18	7.59	
2012/8/29 8:28	W3	ME	832052	807893	12.5	6.250	27.38	6.06	92.8	1.1	34.18	7.59	5.0
						11.500	27.16	4.33	66.1	1.3	34.40	7.54	2.9
						11.500	27.15	3.86	58.9	1.3	34.41	7.51	2.9
						1.000	27.35	8.22	125.6	1.1	34.09	7.62	4.4
						1.000	27.37	8.02	122.5	1.3	34.08	7.64	
2012/8/29 9:16	C1	ME	833689	808194	13.8	6.900 6.900	27.31 27.28	6.26 6.20	95.8 94.8	1.9 1.8	34.37 34.37	7.62 7.60	5.2
						12.800	26.83	4.00	60.7	1.8	34.68	7.54	
						12.800	26.85	3.72	56.6	1.9	34.67	7.53	4.6
						1.000	27.30	9.01	137.3	0.9	33.66	7.27	3.5
						1.000	27.31	8.60	131.0	1.0	33.69	7.34	5.5
2012/8/29 8:04	C2	ME	831456	807740	11.7	5.850	27.31	6.22	95.0	1.0	33.99	7.44	4.1
2012/0/29 0101	02	10112	001100	0077.00	1117	5.850	27.30	6.21	94.8	0.9	33.98	7.45	
						10.700 10.700	27.22 27.22	4.21 4.24	64.2 64.7	1.4 1.6	34.21 34.20	7.47 7.48	3.9
						1.000	27.22	7.33	112.1	1.0	34.06	7.58	
						1.000	27.38	7.49	112.1	1.5	34.04	7.58	5.2
2012/0/20 0 40	C 22	ME	822222	000077	14.0	7.100	27.28	6.05	92.4	1.2	34.29	7.57	27
2012/8/29 9:40	C3	ME	832236	808867	14.2	7.100	27.31	5.95	91.0	1.1	34.28	7.57	3.7
						13.200	26.69	4.83	73.4	1.2	34.86	7.51	2.6
						13.200	26.70	4.46	67.7	1.4	34.86	7.50	2.0
						1 200	27.07	0.22	142.50	0.0	22.42	7.02	
2012/8/29 14:40	W1	MF	832960	807727	2.6	1.300	27.97 28.03	9.33 9.62	143.50 148.20	0.9	33.42 33.41	7.02	3.5
						1.000	28.14	9.02	142.40	0.7	33.61	7.02	
						1.000	28.12	9.76	150.60	0.8	33.64	7.03	4.0
2012/8/29 14:29	W2	MF	832683	807979	13.4	6.700	27.47	9.81	150.30	1.2	34.22	7.05	4.8
2012/0/29 14.29	WV Z	IVII.	652065	001919	13.4	6.700	27.44	6.78	103.84	1.2	34.25	7.05	4.0
						12.400	26.74	6.62	100.56	1.2	35.03	7.00	4.7
						12.400	26.74	6.39	97.20	1.1	35.00	7.00	
						1.000	27.89 27.86	9.09 9.13	139.70 140.20	1.2	33.49 33.51	7.12 7.13	2.8
						6.550	27.61	6.81	104.56	1.2	34.21	7.13	
2012/8/29 14:47	W3	MF	832040	807890	13.1	6.550	27.63	6.58	101.04	1.3	34.21	7.15	3.4
						12.100	26.85	4.30	65.21	1.4	34.36	7.14	3.9
						12.100	26.85	4.08	61.93	1.3	34.38	7.14	5.9
						1.000	27.88	9.52	146.34	1.5	33.62	7.05	3.4
						1.000 7.800	27.94 27.71	9.21 7.63	141.66 117.12	1.4 1.4	33.61 33.84	7.05 7.06	
2012/8/29 13:51	C1	MF	833709	808157	15.6	7.800	27.73	7.87	120.80	1.4	33.84	7.06	4.0
						14.600	27.35	4.48	68.65	1.3	34.56	7.09	
						14.600	27.40	4.21	64.63	1.4	34.54	7.09	4.0
						1.000	27.93	7.90	121.80	1.1	33.98	7.12	3.3
	1					1.000	27.90	8.21	126.50	1.3	34.00	7.12	
2012/8/29 14:57	C2	MF	831476	807751	12.6	6.300	27.51	6.14	94.08	1.3	34.28	7.13	3.6
	1					6.300 11.600	27.53 26.48	6.04 4.04	92.72 61.10	1.5 1.6	34.27 34.78	7.15 7.20	<u> </u>
	1					11.600	26.48	4.04 3.58	54.21	1.6	34.78 34.81	7.20	3.2
	1					1.000	27.93	8.22	126.60	1.7	33.89	7.10	
						1.000	27.90	8.53	131.30	1.5	33.92	7.10	2.8
2012/8/20 14-11	C3	MF	832231	808869	16.2	8.100	27.78	6.66	102.56	1.3	34.15	7.25	3.9
2012/8/29 14:11	CS	IVIP	052251	000009	10.2	8.100	27.77	6.59	101.44	1.5	34.16	7.25	5.9
	1					15.200	27.64	4.45	68.49	1.4	34.55	7.20	2.6
	1					15.200	27.50	4.34	66.70	1.6	34.65	7.23	2.0

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 31-Aug-12

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de+	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/
2012/8/31 9:14	W1	ME	832959	807731	2.3	1.150	27.82	7.02	107.6	0.6	33.22	7.39	3.7
						1.150	27.81	7.30	111.8	0.7	33.21	7.39	
						1.000	28.04 28.07	8.59 8.38	132.0 128.8	0.7	33.16 33.12	7.55 7.53	3.0
						6.050	28.07	8.20	128.8	0.7	33.40	7.33	
2012/8/31 9:04	W2	ME	832663	808003	12.1	6.050	27.09	8.03	123.0	1.0	33.40	7.47	2.8
						11.100	27.32	6.16	94.1	1.0	34.13	7.37	
						11.100	27.33	5.81	88.7	1.2	34.14	7.38	5.3
						1.000	27.94	7.85	120.2	1.2	32.66	7.34	
						1.000	27.94	7.64	116.9	1.2	32.65	7.33	5.5
2012/0/21 0.40	11/2	ME	022020	207200	10.1	6.050	27.52	7.28	111.1	1.3	33.38	7.30	24
2012/8/31 8:49	W3	ME	832039	807899	12.1	6.050	27.54	7.25	110.7	1.4	33.34	7.29	3.6
						11.100	27.23	5.45	83.1	1.4	34.05	7.20	- 7.9
						11.100	27.24	5.14	78.5	1.4	34.05	7.21	7.5
						1.000	27.94	8.62	132.3	0.5	33.16	7.55	4.9
						1.000	27.92	8.40	128.9	0.5	33.18	7.51	т.,
2012/8/31 9:29	C1	ME	833721	808166	13.8	6.900	27.33	7.85	119.8	1.2	33.80	7.40	3.8
	0.					6.900	27.32	7.34	111.9	1.2	33.82	7.38	
						12.800	26.89	5.55	84.4	1.2	34.48	7.30	5.0
						12.800	26.88	5.34	81.1	1.1	34.49	7.29	
						1.000	27.86	9.04	138.0	0.9	32.37	7.11	3.
						1.000	27.86	8.59	131.2	0.9	32.38	7.13	
2012/8/31 8:34	C2	ME	831459	807732	11.3	5.650	27.75	7.68	117.3	1.1	32.76	7.10	5.9
						5.650	27.73	7.21	110.1	1.0	32.80	7.10	
						10.300	27.14 27.08	5.62 5.46	85.4 83.0	1.1	34.01 34.06	7.09	4.
							27.08		101.0	1.1	33.25	7.35	
						1.000	27.95	6.58 7.04	101.0	1.5	33.29	7.36	3.
						7.100	27.83	7.04	108.0	1.4	34.11	7.30	
2012/8/31 9:52	C3	ME	832200	808873	14.2	7.100	27.14	6.82	103.9	1.2	34.05	7.29	3.
						13.200	26.91	5.10	77.5	1.2	34.48	7.24	
						13.200	26.86	4.82	73.2	1.2	34.54	7.24	4.0
						101200							
						1.350	27.83	5.77	88.56	0.8	33.38	7.50	_
2012/8/31 14:51	W1	MF	832977	807731	2.7	1.350	27.79	5.83	89.40	0.9	33.42	7.50	7.
						1.000	27.77	6.05	92.64	0.8	33.38	7.53	-
						1.000	27.78	5.88	90.12	0.8	33.39	7.54	5.
2012/0/21 14 20	11/2		922694	000000	10.5	6.750	27.56	4.75	72.70	0.9	33.82	7.50	7
2012/8/31 14:38	W2	MF	832684	808003	13.5	6.750	27.53	4.69	71.70	1.1	33.85	7.49	7.
						12.500	27.39	4.56	69.70	1.4	33.98	7.45	7
						12.500	27.40	4.51	68.60	1.3	33.12	7.44	7.
						1.000	28.26	7.35	113.40	1.3	33.28	7.50	3.:
						1.000	28.27	7.35	113.60	1.3	33.29	7.51	э.
2012/8/31 14:24	W3	MF	832053	807899	13.4	6.700	27.95	7.25	111.50	1.1	33.64	7.48	6.9
2012/0/01 14:24	** 5	1411.	052055	007099	1.3.4	6.700	27.79	7.00	107.50	1.1	33.79	7.45	0.
						12.400	26.94	5.05	76.72	1.4	34.26	7.35	7.0
						12.400	26.96	4.69	71.20	1.3	34.22	7.34	
						1.000	28.26	7.82	120.60	1.0	33.05	7.72	4.4
						1.000	28.27	7.76	119.70	1.1	33.05	7.71	<u> </u>
2012/8/31 15:10	C1	MF	833700	808166	15.3	7.650	28.03	7.69	118.30	1.1	33.41	7.68	4.
						7.650	27.92	7.48	115.00	1.1	33.48	7.66	+
						14.300	27.43	4.44	67.97	1.3	34.15	7.55	6.
						14.300	27.37	4.27	65.30	1.3	34.23	7.54	
						1.000	27.98 27.95	7.85	120.60 119.30	1.3	33.31	7.63 7.61	2.
						6.400	27.95	7.76 6.93	106.10	1.3	33.41 34.70	7.54	+
2012/0/21 14 12	C2	MF	831471	807745	12.8	6.400	27.24 27.28	6.93	106.10	1.3	34.70 34.70	7.54	2.:
2012/8/31 14:12						11.800	26.97	5.13	78.24	1.4	35.04	7.49	t
2012/8/31 14:12						11.800	26.99	4.94	75.52	1.5	35.04	7.49	2.0
2012/8/31 14:12			-				28.30	6.66	102.80	1.5	33.02	7.62	†
2012/8/31 14:12									102.00		22.01		1.
2012/8/31 14:12						1.000			103.50	1.2	33.04	7.62	1
				000		1.000	28.31	6.71	103.50 96.60	1.2	33.04 33.56	7.62	
2012/8/31 14:12	C3	MF	832219	808853	15.7				103.50 96.60 92.50	1.2 1.2 1.4	33.04 33.56 33.55	7.62 7.57 7.57	- 8.2
	C3	MF	832219	808853	15.7	1.000 7.850	28.31 27.93	6.71 6.28	96.60	1.2	33.56	7.57	

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 4-Sep-12

Data / Time	Teastion	T:4-*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg
2012/9/4 8:55	W1	ME	832974	807726	2.4	1.200	28.36	7.35	111.8	0.7	30.33	7.63	3.6
2012/7/10.55		MIL	052771	001120	2.1	1.200	28.51	6.99	106.7	0.9	30.30	7.69	5.0
						1.000	28.58	8.67	132.3	1.0	30.28	7.79	1.5
						1.000	28.56	8.67	132.3	1.2	30.29	7.77	
2012/9/4 8:42	W2	ME	832651	807996	12.6	6.300	28.34	7.82	119.0	1.7	30.40	7.67	2.5
						6.300	28.35	7.61	115.8	1.8	30.45	7.66	
						11.600	28.16	5.55	84.5	1.9	30.90	7.59	2.4
						11.600 1.000	28.15 28.47	5.40 8.31	82.2 126.6	1.8 1.2	30.90 30.33	7.59	
						1.000	28.47	8.58	120.0	1.2	30.35	7.70	1.9
						6.200	28.43	8.15	130.7	1.2	30.33	7.68	
2012/9/4 8:24	W3	ME	832049	807887	12.4	6.200	28.41	8.03	124.2	1.5	30.48	7.68	3.5
						11.400	28.42	6.00	91.0	1.4	31.30	7.55	
						11.400	27.91	5.45	91.0 82.7	1.4	31.30	7.53	3.7
						1.000	27.92	8.95	136.8	1.5	30.24	7.86	
						1.000	28.72	8.99	130.8	1.0	30.24	7.87	1.4
						6.900	28.24	8.45	128.5	1.1	30.24	7.69	
2012/9/4 9:11	C1	ME	833712	808180	13.8	6.900	28.19	8.07	128.5	1.2	30.59	7.65	1.8
						12.800	27.93	5.88	89.3	1.2	31.29	7.59	
						12.800	27.93	5.42	82.3	1.3	31.25	7.57	1.5
						12.800	28.74	9.11	139.2	1.3	29.96	7.47	
						1.000	28.75	9.05	139.2	1.5	29.90	7.50	3.2
						5.650	28.44	9.03 8.81	136.5	1.4	30.27	7.49	
2012/9/4 8:04	C2	ME	831476	807751	11.3	5.650	28.44	8.28	126.2	1.3	30.27	7.49	2.8
						10.300	27.75	6.57	99.7	1.3	31.63	7.35	9.8
	_					10.300	27.76	5.92	89.8	1.4	31.67	7.35	
						1.000	28.37	7.09	108.0	1.2	30.39	7.69	3.0
						1.000	28.41	7.09	107.9	1.3	30.37	7.69	
2012/9/4 9:34	C3	ME	832216	808849	14.3	7.150	28.23	6.92	105.1	1.5	30.56	7.63	1.8
						7.150	28.22	6.64	101.0	1.6	30.55	7.61	
						13.300	27.97	4.95	75.3	1.5	31.33	7.56	10.
						13.300	28.00	4.72	71.8	1.5	31.31	7.56	
						1.400	28.90	8.82	135.8	0.7	30.87	7.61	
2012/9/4 13:50	W1	MF	832960	807741	2.8	1.400	28.87	8.94	137.6	0.6	30.90	7.59	1.0
						1.000	28.91	5.59	86.2	0.9	31.06	7.67	
						1.000	28.94	5.48	84.5	1.0	31.05	7.67	1.1
						6.800	27.89	5.36	81.9	1.3	32.41	7.48	
2012/9/4 13:36	W2	MF	832681	808007	13.6	6.800	27.86	4.75	72.5	1.1	32.45	7.43	1.
						12.600	27.21	4.08	62.0	1.3	33.48	7.31	
						12.600	27.22	3.77	57.4	1.4	33.62	7.29	2.2
						1.000	28.96	8.85	136.70	1.1	31.14	7.78	
							29.00		141.00	1.2	31.17	7.76	1.
						()()()		9.15	1.1.00		33.05		
						1.000 6.750		9.13 7.84	119.70	1.3	22,00	7.51	
2012/9/4 13:20	W3	MF	832051	807901	13.5	6.750	27.68	7.84		1.3 1.4		7.51	2.
2012/9/4 13:20	W3	MF	832051	807901	13.5	6.750 6.750	27.68 27.66	7.84 6.96	106.20	1.4	33.08	7.48	
2012/9/4 13:20	W3	MF	832051	807901	13.5	6.750 6.750 12.500	27.68 27.66 27.29	7.84 6.96 4.76	106.20 72.56	1.4 1.3	33.08 33.76	7.48 7.37	
2012/9/4 13:20	W3	MF	832051	807901	13.5	6.750 6.750 12.500 12.500	27.68 27.66 27.29 27.28	7.84 6.96 4.76 4.43	106.20 72.56 67.52	1.4 1.3 1.1	33.08 33.76 33.77	7.48 7.37 7.35	2.:
2012/9/4 13:20	W3	MF	832051	807901	13.5	6.750 6.750 12.500 12.500 1.000	27.68 27.66 27.29 27.28 28.80	7.84 6.96 4.76 4.43 8.79	106.20 72.56 67.52 135.10	1.4 1.3 1.1 0.9	33.08 33.76 33.77 30.81	7.48 7.37 7.35 7.65	2.:
						6.750 6.750 12.500 12.500 1.000 1.000	27.68 27.66 27.29 27.28 28.80 28.85	7.84 6.96 4.76 4.43	106.20 72.56 67.52 135.10 136.70	1.4 1.3 1.1 0.9 1.1	33.08 33.76 33.77 30.81 30.83	7.48 7.37 7.35 7.65 7.65	2.:
2012/9/4 13:20 2012/9/4 14:07	W3 C1	MF	832051 833721	807901 808175	13.5	6.750 6.750 12.500 12.500 1.000	27.68 27.66 27.29 27.28 28.80	7.84 6.96 4.76 4.43 8.79 8.89	106.20 72.56 67.52 135.10	1.4 1.3 1.1 0.9	33.08 33.76 33.77 30.81	7.48 7.37 7.35 7.65	2.:
						6.750 6.750 12.500 1.000 1.000 7.800	27.68 27.66 27.29 27.28 28.80 28.85 27.82	7.84 6.96 4.76 4.43 8.79 8.89 8.27	106.20 72.56 67.52 135.10 136.70 126.10 112.70	1.4 1.3 1.1 0.9 1.1 1.2	33.08 33.76 33.77 30.81 30.83 32.25 32.22	7.48 7.37 7.35 7.65 7.65 7.40	2.5 1.5 3.6
						6.750 6.750 12.500 1.000 1.000 7.800 7.800	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.82 27.86	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39	106.20 72.56 67.52 135.10 136.70 126.10	1.4 1.3 1.1 0.9 1.1 1.2 1.3	33.08 33.76 33.77 30.81 30.83 32.25	7.48 7.37 7.35 7.65 7.65 7.40 7.40	2.5 1.5 3.6
						6.750 6.750 12.500 1.000 1.000 7.800 7.800 14.600 14.600	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.86 26.91 26.91	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08	$ \begin{array}{r} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ \end{array} $	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 33.89	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21	2.4 1.4 3.0
						6.750 6.750 12.500 1.000 1.000 7.800 7.800 14.600	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.82 27.86 26.91	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1	1.4 1.3 1.1 0.9 1.1 1.2 1.3 1.4	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 33.89 31.27	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83	2.4 1.4 3.6
2012/9/4 14:07	C1	MF	833721	808175	15.6	6.750 6.750 12.500 1.000 1.000 7.800 7.800 14.600 14.600 1.000	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.86 26.91 26.91 29.04 29.01	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4	$ \begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ \end{array} $	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 33.89 31.27 31.40	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.81	2.5 1.5 3.6 2.0
						6.750 6.750 12.500 12.500 1.000 1.000 7.800 7.800 14.600 1.000 1.000 6.750	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.86 26.91 26.91 29.04 29.01 28.22	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56 7.46	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4 114.5	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \end{array}$	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 33.89 31.27 31.40 32.27	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.81 7.61	2.5 1.5 3.6 2.0
2012/9/4 14:07	C1	MF	833721	808175	15.6	6.750 6.750 12.500 12.500 1000 1.000 7.800 7.800 14.600 1.000 1.000 6.750	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.82 27.86 26.91 26.91 29.04 29.01 28.22 28.23	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56 7.46 6.59	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4 114.5 101.2	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.2 \\ 1.2 \end{array}$	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 33.89 33.89 31.27 31.40 32.27 32.27	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.81 7.61 7.58	2.: 1.: 3.0 2.0 1.:
2012/9/4 14:07	C1	MF	833721	808175	15.6	6.750 6.750 12.500 12.500 1000 1.000 7.800 7.800 14.600 14.600 1.000 6.100 6.100 11.200	27.68 27.29 27.28 28.80 28.85 27.82 27.82 27.86 26.91 26.91 29.04 29.01 28.22 28.23 27.37	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56 7.46 6.59 4.51	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4 114.5 101.2 68.9	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.3 \end{array}$	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 33.89 31.27 31.40 32.27 31.40 32.27 33.95	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.21 7.83 7.81 7.61 7.58 7.45	2.5 1.5 3.6 2.0 2.0
2012/9/4 14:07	C1	MF	833721	808175	15.6	6.750 6.750 12.500 12.500 12.500 1000 1.000 7.800 7.800 14.600 1.000 6.100 6.100 11.200	27.68 27.66 27.29 27.28 28.85 27.82 27.82 27.86 26.91 26.91 29.04 29.04 29.04 29.04 28.22 28.23 27.37 27.39	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56 7.46 6.59 4.51 4.33	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4 114.5 101.2 68.9 66.1	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.5 \end{array}$	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 31.27 31.40 32.27 33.95	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.81 7.61 7.58 7.45 7.44	2.5 1.5 3.6 2.0 2.0 1.5 2.7
2012/9/4 14:07	C1	MF	833721	808175	15.6	6.750 6.750 12.500 12.500 12.000 1.000 1.000 7.800 7.800 14.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.1200 1.000	27.68 27.66 27.29 27.28 28.85 27.82 27.86 26.91 26.91 29.04 29.04 29.01 28.22 28.23 27.37 27.39 28.85	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56 7.46 6.59 4.51 4.33 7.26	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4 114.5 101.2 68.9 66.1 111.8	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.5 \\ 1.5 \end{array}$	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 31.27 31.40 32.27 33.95 33.95 30.94	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.81 7.81 7.61 7.58 7.44 7.58	2.5 1.5 3.6 2.0 2.0 1.5 2.7
2012/9/4 14:07 2012/9/4 13:04	C1 C2	MF MF	833721 831451	808175 807740	15.6	6.750 6.750 12.500 12.500 12.000 1.000 7.800 7.800 14.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 11.200 1.000 1.000	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.86 26.91 29.04 29.01 28.22 28.23 27.37 27.39 28.85 28.84	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56 7.46 6.59 4.51 4.51 4.51 4.51 7.26 7.80	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4 114.5 101.2 68.9 66.1 111.8 120.0	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.8 \end{array}$	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 31.27 31.40 32.27 33.95 30.94	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.81 7.61 7.58 7.45 7.44 7.58 7.59	2.5 1.5 3.6 2.0 2.0 1.5 2.7 1.7
2012/9/4 14:07	C1	MF	833721	808175	15.6	6.750 6.750 12.500 12.500 12.000 1.000 7.800 7.800 14.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.1200 1.000 1.000 1.000 1.000 1.000	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.86 26.91 29.04 29.01 28.22 28.23 27.39 28.85 28.84 27.92	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56 7.46 6.59 4.51 7.26 7.80	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4 114.5 101.2 68.9 66.1 111.8 120.0 90.9	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.5 \\ 1.8 \\ 1.8 \\ 1.8 \end{array}$	33.08 33.76 33.77 30.81 30.83 32.25 32.25 33.89 31.27 31.40 32.27 33.95 30.94 30.94	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.81 7.61 7.58 7.45 7.44 7.58 7.59 7.37	2.5 2.5 3.6 2.0 1.5 2.0 1.5 2.7 1.7 1.6
2012/9/4 14:07 2012/9/4 13:04	C1 C2	MF MF	833721 831451	808175 807740	15.6	6.750 6.750 12.500 12.500 12.000 1.000 7.800 7.800 14.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 11.200 1.000 1.000	27.68 27.66 27.29 27.28 28.80 28.85 27.82 27.86 26.91 29.04 29.01 28.22 28.23 27.37 27.39 28.85 28.84	7.84 6.96 4.76 4.43 8.79 8.89 8.27 7.39 4.94 4.23 8.54 8.56 7.46 6.59 4.51 4.51 4.51 4.51 7.26 7.80	106.20 72.56 67.52 135.10 136.70 126.10 112.70 74.80 64.08 132.1 132.4 114.5 101.2 68.9 66.1 111.8 120.0	$\begin{array}{c} 1.4 \\ 1.3 \\ 1.1 \\ 0.9 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.8 \end{array}$	33.08 33.76 33.77 30.81 30.83 32.25 32.22 33.89 31.27 31.40 32.27 33.95 30.94	7.48 7.37 7.35 7.65 7.65 7.40 7.40 7.23 7.21 7.83 7.81 7.61 7.58 7.45 7.44 7.58 7.59	2.5 1.5 3.6 2.0 2.0 1.5 2.7 1.7

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

6-Sep-12 Date

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide.	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
2012/9/6 15:32	W1	ME	832962	807739	2.3	1.150	28.51	7.77	118.8	0.9	30.68	7.33	3.0
						1.150 1.000	28.51 28.52	7.56 7.89	115.6 120.5	1.1 1.2	30.68 30.69	7.33 7.35	
						1.000	28.52	7.83	119.7	1.2	30.69	7.35	2.2
						6.250	28.20	6.94	105.9	1.4	31.22	7.32	
2012/9/6 15:19	W2	ME	832656	807993	12.5	6.250	28.22	6.90	105.3	1.3	31.22	7.33	2.2
						11.500	27.95	5.38	82.3	1.2	32.41	7.36	0.0
						11.500	27.90	5.25	80.2	1.3	32.48	7.34	2.2
						1.000	28.81	8.08	124.1	1.2	30.82	7.31	2.3
						1.000	28.78	8.03	123.4	1.3	30.82	7.30	2.5
2012/9/6 15:04	W3	ME	832056	807902	12.4	6.200	28.15	7.85	119.7	1.4	31.48	7.18	5.5
						6.200	28.04	7.19	109.6	1.3	31.65	7.15	
						11.400	27.77	5.00	76.3	1.6	32.51	7.11	5.2
						11.400 1.000	27.77 28.50	4.87 7.65	74.2 116.9	1.7 1.7	32.52 30.68	7.12	
						1.000	28.61	7.03	122.2	1.7	30.63	7.45	3.1
						7.050	28.17	7.66	116.9	1.4	31.49	7.45	
2012/9/6 15:47	C1	ME	833696	808186	14.1	7.050	28.13	7.29	111.2	1.5	31.53	7.44	3.0
						13.100	27.80	5.06	77.4	1.6	32.58	7.42	
						13.100	27.87	4.81	73.4	1.7	32.50	7.42	3.3
						1.000	28.93	8.75	134.7	0.7	30.71	7.00	2.1
						1.000	28.90	8.69	133.7	1.1	30.75	6.94	2.1
2012/9/6 14:52	C2	ME	831458	807726	11.6	5.800	28.48	7.86	120.3	1.2	30.88	6.72	2.0
2012/7/01102	02	11111	001100	007720	1110	5.800	28.49	7.69	117.6	1.3	30.89	6.71	
						10.600	28.01	5.25	80.0	1.3	31.80	6.59	4.7
	-					10.600	27.99	5.01	76.3	1.3	31.82	6.60	
						1.000	28.61 28.61	7.15 7.16	109.5 109.6	1.1	30.66 30.66	7.41 7.41	2.5
						7.600	28.26	7.09	109.0	1.1	31.31	7.41	
2012/9/6 16:08	C3	ME	832232	808844	15.2	7.600	28.26	6.74	100.2	1.9	31.30	7.44	2.9
						14.200	27.91	5.44	83.1	1.8	32.46	7.43	
						14.200	27.86	5.38	82.1	1.8	32.51	7.42	3.1
2012/9/6 10:06	W1	MF	832954	807736	2.7	1.350	28.48	8.32	126.9	1.1	30.44	7.68	4.0
2012/7/0 10:00	** 1	IVII	052754	007750	2.1	1.350	28.47	8.18	124.7	1.1	30.43	7.65	7.0
						1.000	28.30	7.81	118.8	1.2	30.37	7.45	3.0
						1.000	28.28	7.66	116.5	1.1	30.38	7.44	
2012/9/6 9:48	W2	MF	022601						107.0			7.40	
			832681	807974	13.3	6.650	28.22	7.04		1.3	30.52	7.40	2.4
			832681	807974	13.3	6.650	28.22	7.02	106.7	1.4	30.52	7.40	
			832681	807974	13.3	6.650 12.300	28.22 28.10	7.02 4.67	106.7 71.1	1.4 1.1	30.52 31.08	7.40 7.37	2.4 2.7
			832081	807974	13.3	6.650 12.300 12.300	28.22 28.10 28.10	7.02 4.67 4.49	106.7 71.1 68.4	1.4 1.1 1.3	30.52 31.08 31.10	7.40 7.37 7.38	2.7
			832081	807974	13.3	6.650 12.300	28.22 28.10	7.02 4.67	106.7 71.1	1.4 1.1	30.52 31.08	7.40 7.37	
2012/0/6 0-21	W/2	ME				6.650 12.300 12.300 1.000 1.000 6.800	28.22 28.10 28.10 28.36 28.36 28.35	7.02 4.67 4.49 7.94 7.83 7.45	106.7 71.1 68.4 120.9 119.2 113.4	1.4 1.1 1.3 1.3	30.52 31.08 31.10 30.40 30.39 30.52	7.40 7.37 7.38 7.49 7.48 7.46	2.7 2.0
2012/9/6 9:31	W3	MF	832081	807974 807892	13.3	6.650 12.300 12.300 1.000 1.000 6.800 6.800	28.22 28.10 28.10 28.36 28.36 28.35 28.35 28.37	7.02 4.67 4.49 7.94 7.83 7.45 7.42	106.7 71.1 68.4 120.9 119.2 113.4 113.0	1.4 1.1 1.3 1.3 1.3 1.2 1.3	30.52 31.08 31.10 30.40 30.39 30.52 30.52	7.40 7.37 7.38 7.49 7.48 7.46 7.47	2.7
2012/9/6 9:31	W3	MF				6.650 12.300 12.300 1.000 6.800 6.800 12.600	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24	7.02 4.67 4.49 7.94 7.83 7.45 7.42 5.83	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9	1.4 1.1 1.3 1.3 1.3 1.2 1.3 1.5	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.82	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42	2.7 2.0 2.2
2012/9/6 9:31	W3	MF				6.650 12.300 1.000 1.000 6.800 6.800 12.600 12.600	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.24 28.19	7.02 4.67 4.49 7.94 7.83 7.45 7.42 5.83 5.62	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4	1.4 1.1 1.3 1.3 1.3 1.2 1.3 1.5 1.7	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.82 30.73	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.39	2.7 2.0
2012/9/6 9:31	W3	MF				6.650 12.300 12.300 1.000 1.000 6.800 6.800 12.600 12.600	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.24 28.19 28.27	7.02 4.67 4.49 7.94 7.83 7.45 7.42 5.83 5.62 7.95	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8	$ \begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.7 \\ 1.7 \\ 1.2 \\ 1.7 $	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.52 30.73 30.41	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.39 7.48	2.7 2.0 2.2
2012/9/6 9:31	W3	MF				6.650 12.300 12.300 1.000 1.000 6.800 6.800 12.600 12.600 1.000 1.000	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.19 28.27 28.30	7.02 4.67 4.49 7.94 7.83 7.45 7.42 5.83 5.62 7.95 7.83	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0	$ \begin{array}{r} 1.4\\ 1.1\\ 1.3\\ 1.3\\ 1.2\\ 1.3\\ 1.5\\ 1.7\\ 1.2\\ 1.3\\ 1.5\\ 1.5\\ 1.7\\ 1.2\\ 1.3\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.52 30.73 30.41	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.39 7.48 7.49	2.7 2.0 2.2 4.2 2.2
2012/9/6 9:31 2012/9/6 10:14	W3 C1	MF				6.650 12.300 1.000 1.000 6.800 6.800 12.600 12.600 12.600 1.000 7.650	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.19 28.27 28.20 28.27 28.30 28.12	7.02 4.67 4.49 7.94 7.83 7.45 7.42 5.83 5.83 5.62 7.95 7.83 7.41	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.52 30.73 30.41 30.41 31.02	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.42 7.48 7.48 7.49 7.48	2.7 2.0 2.2 4.2
			832037	807892	13.6	6.650 12.300 1.000 1.000 6.800 6.800 12.600 12.600 1.000 1.000 7.650	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.19 28.27 28.20 28.12 28.30	7.02 4.67 4.49 7.94 7.83 7.45 7.42 5.83 5.62 7.95 7.83 7.41 7.20	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.7 \end{array}$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.82 30.73 30.41 30.41 31.02 31.08	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.39 7.48 7.49 7.49 7.47	2.7 2.0 2.2 4.2 2.2 2.3
			832037	807892	13.6	6.650 12.300 1.000 1.000 6.800 6.800 12.600 12.600 12.600 1.000 7.650	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.19 28.27 28.20 28.27 28.30 28.12	7.02 4.67 4.49 7.94 7.83 7.45 7.42 5.83 5.83 5.62 7.95 7.83 7.41	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.52 30.73 30.41 30.41 31.02	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.42 7.48 7.48 7.49 7.48	2.7 2.0 2.2 4.2 2.2
			832037	807892	13.6	6.650 12.300 12.300 1.000 1.000 6.800 6.800 12.600 12.600 12.600 1.000 7.650 7.650 14.300	28.22 28.10 28.36 28.36 28.35 28.37 28.24 28.19 28.27 28.20 28.27 28.30 28.12 28.09 28.01	7.02 4.67 4.49 7.94 7.83 7.45 5.83 5.62 7.95 7.83 7.41 7.20 5.37	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.52 30.73 30.41 30.41 31.02 31.08 31.44	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.39 7.48 7.49 7.48 7.49 7.47 7.47	2.7 2.0 2.2 4.2 2.2 2.3 3.7
			832037	807892	13.6	6.650 12.300 1.2.300 1.000 1.000 6.800 12.600 12.600 1.000 7.650 7.650 14.300 1.000 1.000 1.000	28.22 28.10 28.36 28.36 28.35 28.37 28.24 28.27 28.24 28.27 28.30 28.12 28.01 27.99 28.57 28.58	7.02 4.67 4.49 7.94 7.83 7.45 7.45 5.83 5.62 7.95 7.83 7.41 7.20 5.37 5.26 8.76 8.45	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\ 1.1 \end{array}$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.82 30.73 30.41 31.02 31.08 31.44 31.45 30.18 30.20	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.39 7.42 7.39 7.48 7.49 7.47 7.47 7.47 7.46 7.46 7.36 7.36	2.7 2.0 2.2 4.2 2.2 2.3
2012/9/6 10:14	C1	MF	832037 833722	807892	13.6	6.650 12.300 1.2.300 1.000 1.000 6.800 12.600 12.600 1.000 7.650 7.650 14.300 14.300 1.000 6.500	28.22 28.10 28.36 28.36 28.35 28.37 28.24 28.27 28.24 28.27 28.20 28.27 28.30 28.12 28.09 28.01 27.99 28.57 28.58 28.36	7.02 4.67 4.49 7.94 7.83 7.45 5.83 5.62 7.95 7.83 7.41 7.20 5.37 5.26 8.76 8.45 7.75	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9 118.0	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\ 1.1 \\ 1.1 \end{array}$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.82 30.73 30.41 31.02 31.08 31.44 31.45 30.18 30.20 30.34	7.40 7.37 7.38 7.49 7.48 7.40 7.42 7.39 7.42 7.39 7.42 7.39 7.42 7.47 7.47 7.47 7.47 7.46 7.36 7.36 7.33	2.7 2.0 2.2 4.2 2.2 2.3 3.7 2.2
			832037	807892	13.6	6.650 12.300 1.000 1.000 6.800 6.800 12.600 12.600 1.000 7.650 7.650 14.300 14.300 1.000 6.200	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.19 28.27 28.20 28.12 28.09 28.01 27.99 28.01 27.99 28.57 28.58 28.36 28.39	$\begin{array}{c} 7.02 \\ 4.67 \\ 4.49 \\ 7.94 \\ 7.83 \\ 7.45 \\ 7.42 \\ 5.83 \\ 5.62 \\ 7.95 \\ 7.83 \\ 7.41 \\ 7.20 \\ 5.37 \\ 5.26 \\ 8.76 \\ 8.45 \\ 7.75 \\ 7.64 \end{array}$	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9 118.0 116.2	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \end{array}$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.73 30.41 30.41 31.02 31.08 31.44 31.45 30.18 30.20 30.34 30.32	7.40 7.37 7.38 7.49 7.48 7.46 7.47 7.42 7.39 7.48 7.49 7.47 7.47 7.47 7.47 7.47 7.44 7.44	2.7 2.0 2.2 4.2 2.2 2.3 3.7
2012/9/6 10:14	C1	MF	832037 833722	807892	13.6	6.650 12.300 12.300 1.000 1.000 1.000 6.800 6.800 12.600 12.600 12.600 12.600 12.600 12.600 12.600 12.600 10.000 7.650 7.650 14.300 1.000 6.200 6.200 11.400	28.22 28.10 28.36 28.36 28.35 28.37 28.24 28.37 28.24 28.19 28.27 28.09 28.12 28.09 28.01 27.99 28.57 28.57 28.56 28.36 28.39 28.23	$\begin{array}{c} 7.02 \\ 4.67 \\ 4.49 \\ 7.94 \\ 7.83 \\ 7.45 \\ 7.42 \\ 5.83 \\ 5.62 \\ 7.95 \\ 7.83 \\ 7.41 \\ 7.20 \\ 5.37 \\ 5.26 \\ 8.76 \\ 8.45 \\ 7.75 \\ 7.64 \\ 5.94 \end{array}$	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9 118.0 116.2 90.3	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.3 \end{array}$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.82 30.73 30.41 30.41 31.02 31.08 31.44 31.45 30.18 30.20 30.34 30.32 30.81	$\begin{array}{c} 7.40\\ \hline 7.37\\ \hline 7.38\\ \hline 7.49\\ \hline 7.48\\ \hline 7.46\\ \hline 7.47\\ \hline 7.42\\ \hline 7.39\\ \hline 7.48\\ \hline 7.49\\ \hline 7.47\\ \hline 7.48\\ \hline 7.49\\ \hline 7.47\\ \hline 7.47\\ \hline 7.46\\ \hline 7.36\\ \hline 7.36\\ \hline 7.33\\ \hline 7.33\\ \hline 7.27\end{array}$	2.7 2.0 2.2 4.2 2.3 3.7 2.2
2012/9/6 10:14	C1	MF	832037 833722	807892	13.6	6.650 12.300 12.300 1.000 1.000 6.800 6.800 12.600 12.600 12.600 12.600 1.000 7.650 7.650 14.300 1.000 6.200 11.400 11.400	28.22 28.10 28.36 28.36 28.35 28.37 28.24 28.19 28.27 28.27 28.24 28.19 28.27 28.30 28.12 28.09 28.01 27.99 28.57 28.58 28.36 28.36 28.39 28.23	$\begin{array}{c} 7.02 \\ 4.67 \\ 4.49 \\ 7.94 \\ 7.83 \\ 7.45 \\ 7.42 \\ 5.83 \\ 5.62 \\ 7.95 \\ 7.83 \\ 7.41 \\ 7.20 \\ 5.37 \\ 5.26 \\ 8.76 \\ 8.45 \\ 7.75 \\ 7.64 \\ 5.94 \\ 5.36 \end{array}$	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9 118.0 116.2 90.3 81.6	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.3 \\ 1.4 \end{array}$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.52 30.41 30.41 31.02 31.08 31.44 31.45 30.18 30.20 30.34 30.32 30.81 30.72	$\begin{array}{c} 7.40\\ \hline 7.37\\ \hline 7.38\\ \hline 7.49\\ \hline 7.48\\ \hline 7.46\\ \hline 7.47\\ \hline 7.42\\ \hline 7.39\\ \hline 7.48\\ \hline 7.49\\ \hline 7.48\\ \hline 7.49\\ \hline 7.48\\ \hline 7.49\\ \hline 7.47\\ \hline 7.46\\ \hline 7.46\\ \hline 7.36\\ \hline 7.33\\ \hline 7.33\\ \hline 7.27\\ \hline 7.20\\ \end{array}$	2.7 2.0 2.2 4.2 2.3 3.7 2.2 2.3 2.3
2012/9/6 10:14	C1	MF	832037 833722	807892	13.6	6.650 12.300 12.300 1.000 1.000 6.800 6.800 12.600 12.600 12.600 12.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.4300 1.000 1.000	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.19 28.27 28.20 28.19 28.27 28.30 28.19 28.20 28.01 27.99 28.57 28.58 28.36 28.36 28.36 28.32 28.23 28.23 28.23	$\begin{array}{c} 7.02 \\ 4.67 \\ 4.49 \\ 7.94 \\ 7.83 \\ 7.45 \\ 7.42 \\ 5.83 \\ 5.62 \\ 7.95 \\ 7.83 \\ 7.41 \\ 7.41 \\ 7.20 \\ 5.37 \\ 5.26 \\ 8.76 \\ 8.45 \\ 7.75 \\ 7.64 \\ 5.94 \\ 5.36 \\ 6.68 \end{array}$	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9 118.0 116.2 90.3 81.6 101.6	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.3 \\ 1.4 \\ 0.9 \end{array}$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.41 30.41 31.02 31.04 31.44 31.45 30.18 30.20 30.34 30.32 30.32 30.72 30.44	$\begin{array}{c} 7.40\\ \hline 7.37\\ \hline 7.38\\ \hline 7.49\\ \hline 7.48\\ \hline 7.47\\ \hline 7.42\\ \hline 7.39\\ \hline 7.48\\ \hline 7.47\\ \hline 7.42\\ \hline 7.39\\ \hline 7.48\\ \hline 7.49\\ \hline 7.47\\ \hline 7.46\\ \hline 7.44\\ \hline 7.36\\ \hline 7.36\\ \hline 7.33\\ \hline 7.33\\ \hline 7.27\\ \hline 7.20\\ \hline 7.40\\ \end{array}$	2.7 2.0 2.2 4.2 2.3 3.7 2.2 2.3 2.3
2012/9/6 10:14	C1	MF	832037 833722	807892	13.6	6.650 12.300 1.000 1.000 1.000 6.800 12.600 12.600 12.600 12.600 12.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.400 1.000 1.000	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.37 28.24 28.27 28.30 28.27 28.30 28.12 28.01 27.99 28.57 28.58 28.36 28.36 28.39 28.23 28.29 28.28	$\begin{array}{c} 7.02 \\ 4.67 \\ 4.49 \\ 7.94 \\ 7.83 \\ 7.45 \\ 7.42 \\ 5.83 \\ 5.62 \\ 7.95 \\ 7.83 \\ 7.41 \\ 7.20 \\ 5.37 \\ 5.26 \\ 8.76 \\ 8.45 \\ 7.75 \\ 7.64 \\ 5.36 \\ 6.68 \\ 6.83 \\ \end{array}$	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9 118.0 116.2 90.3 81.6 101.6 103.8	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.41 30.41 31.02 31.44 31.45 30.18 30.20 30.34 30.32 30.32 30.81 30.72 30.44 30.45	$\begin{array}{c} 7.40\\ \hline 7.37\\ \hline 7.38\\ \hline 7.49\\ \hline 7.48\\ \hline 7.49\\ \hline 7.48\\ \hline 7.47\\ \hline 7.42\\ \hline 7.39\\ \hline 7.48\\ \hline 7.49\\ \hline 7.47\\ \hline 7.47\\ \hline 7.47\\ \hline 7.47\\ \hline 7.46\\ \hline 7.36\\ \hline 7.33\\ \hline 7.36\\ \hline 7.33\\ \hline 7.33\\ \hline 7.27\\ \hline 7.20\\ \hline 7.40\\ \hline 7.42\\ \end{array}$	2.7 2.0 2.2 4.2 2.3 3.7 2.2 2.3 7.8
2012/9/6 10:14	C1	MF	832037 833722	807892	13.6	6.650 12.300 1.000 1.000 6.800 12.600 12.600 12.600 12.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 11.400 1.000 1.000 1.000 1.000	28.22 28.10 28.10 28.36 28.36 28.37 28.24 28.37 28.24 28.27 28.30 28.27 28.30 28.12 28.01 27.99 28.57 28.58 28.36 28.39 28.23 28.23 28.23 28.29 28.28	$\begin{array}{c} 7.02 \\ 4.67 \\ 4.49 \\ 7.94 \\ 7.83 \\ 7.45 \\ 7.45 \\ 5.83 \\ 5.62 \\ 7.95 \\ 7.83 \\ 7.41 \\ 7.20 \\ 5.37 \\ 5.26 \\ 8.76 \\ 8.45 \\ 7.75 \\ 7.64 \\ 5.94 \\ 5.94 \\ 5.36 \\ 6.68 \\ 6.83 \\ 6.01 \end{array}$	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9 118.0 116.2 90.3 81.6 101.6 103.8 91.5	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.3 \\ 1.4 \\ 0.9 \\ 1.0 \\ 1.3 \end{array}$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.82 30.73 30.41 31.02 31.08 31.44 31.45 30.18 30.20 30.34 30.32 30.81 30.72 30.44 30.45 31.38	$\begin{array}{c} 7.40\\ \hline 7.37\\ \hline 7.38\\ \hline 7.49\\ \hline 7.48\\ \hline 7.46\\ \hline 7.47\\ \hline 7.42\\ \hline 7.39\\ \hline 7.42\\ \hline 7.39\\ \hline 7.48\\ \hline 7.49\\ \hline 7.47\\ \hline 7.46\\ \hline 7.47\\ \hline 7.46\\ \hline 7.36\\ \hline 7.36\\ \hline 7.33\\ \hline 7.33\\ \hline 7.27\\ \hline 7.20\\ \hline 7.40\\ \hline 7.42\\ \hline 7.44\\ \hline 7.44\\ \end{array}$	2.7 2.0 2.2 4.2 2.3 3.7 2.2 2.3 7.8
2012/9/6 10:14 2012/9/6 9:19	C1 C2	MF	832037 833722 831475	807892 808165 807766	13.6	6.650 12.300 1.000 1.000 1.000 6.800 12.600 12.600 12.600 12.600 12.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.400 1.000 1.000	28.22 28.10 28.10 28.36 28.36 28.35 28.37 28.24 28.37 28.24 28.27 28.30 28.27 28.30 28.12 28.01 27.99 28.57 28.58 28.36 28.36 28.39 28.23 28.29 28.28	$\begin{array}{c} 7.02 \\ 4.67 \\ 4.49 \\ 7.94 \\ 7.83 \\ 7.45 \\ 7.42 \\ 5.83 \\ 5.62 \\ 7.95 \\ 7.83 \\ 7.41 \\ 7.20 \\ 5.37 \\ 5.26 \\ 8.76 \\ 8.45 \\ 7.75 \\ 7.64 \\ 5.36 \\ 6.68 \\ 6.83 \\ \end{array}$	106.7 71.1 68.4 120.9 119.2 113.4 113.0 88.9 85.4 120.8 119.0 112.8 109.5 81.8 80.0 133.7 128.9 118.0 116.2 90.3 81.6 101.6 103.8	$\begin{array}{c} 1.4 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.2 \\ 1.3 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.1 \\$	30.52 31.08 31.10 30.40 30.39 30.52 30.52 30.52 30.41 30.41 31.02 31.44 31.45 30.18 30.20 30.34 30.32 30.32 30.81 30.72 30.44 30.45	$\begin{array}{c} 7.40\\ \hline 7.37\\ \hline 7.38\\ \hline 7.49\\ \hline 7.48\\ \hline 7.49\\ \hline 7.48\\ \hline 7.47\\ \hline 7.42\\ \hline 7.39\\ \hline 7.48\\ \hline 7.49\\ \hline 7.47\\ \hline 7.47\\ \hline 7.47\\ \hline 7.47\\ \hline 7.46\\ \hline 7.36\\ \hline 7.33\\ \hline 7.36\\ \hline 7.33\\ \hline 7.33\\ \hline 7.27\\ \hline 7.20\\ \hline 7.40\\ \hline 7.42\\ \end{array}$	2.7 2.0 2.2 4.2 2.3 3.7 2.2 2.3 7.8 1.9

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

8-Sep-12 Date

Date / Time	Loosting	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	r	mg/L	%	NTU	ppt	unit	mg/
2012/9/8 16:23	W1	ME	832958	807741	2.3	1.150	28.95	6.54	100.9	1.4	31.04	7.00	5.6
2012/00 10:25		IVIE	052750	007711	2.5	1.150	28.94	6.63	102.2	1.2	31.06	7.00	5.0
						1.000	28.95	7.79	120.1	1.3	31.05	7.04	5.9
						1.000	28.81	7.48	115.1	1.3	31.06	7.03	
2012/9/8 16:10	W2	ME	832683	808001	12.2	6.100	28.41	6.75	103.6	1.5	31.70 31.72	6.99	5.4
						6.100 11.200	28.40 28.17	6.55 5.05	100.4 77.4	1.5 1.6	31.72	6.99 6.97	
						11.200	28.17	5.00	76.6	1.0	32.05	6.97	4.3
						1.000	28.62	7.61	116.8	1.3	31.20	7.15	
						1.000	28.61	7.07	108.5	1.3	31.20	7.14	3.6
						6.050	28.26	6.59	100.0	1.5	31.94	7.14	
2012/9/8 15:51	W3	ME	832041	807890	12.1	6.050	28.26	6.49	99.5	1.5	31.94	7.14	4.3
						11.100	28.03	6.05	92.6	1.5	32.33	7.10	
						11.100	28.02	5.78	88.4	1.5	32.33	7.09	6.6
						1.000	28.96	7.86	121.4	1.5	31.29	6.84	
						1.000	28.98	7.61	117.5	1.5	31.28	6.70	3.7
2012/0/0 16 11	C1	N (F	000711	000106	12.0	6.900	28.78	7.31	112.7	1.1	31.51	6.49	0.1
2012/9/8 16:41	C1	ME	833711	808186	13.8	6.900	28.76	7.29	112.4	1.2	31.51	6.45	2.1
						12.800	28.59	5.51	84.8	1.3	31.60	6.33	1.0
						12.800	28.60	5.25	80.8	1.2	31.60	6.30	1.8
						1.000	28.74	6.33	97.4	1.2	31.21	7.11	2.4
						1.000	28.76	6.11	94.1	1.2	31.19	7.13	3.4
2012/0/0 15 24	CD	ME	021647	007720	11.6	5.800	28.27	5.82	89.2	1.3	31.89	7.15	50
2012/9/8 15:34	C2	ME	831647	807739	11.6	5.800	28.30	5.74	87.9	1.2	31.88	7.14	5.8
						10.600	28.08	4.47	68.5	1.3	32.25	7.14	7.4
						10.600	28.11	4.26	65.3	1.4	32.19	7.12	7.4
						1.000	29.00	7.65	118.2	1.3	31.20	6.72	0.0
						1.000	29.01	7.28	112.5	1.5	31.19	6.69	3.9
						7.150	28.51	6.70	102.9	1.6	31.53	6.63	
2012/9/8 17:09	C3	ME	832194	808846	14.3	7.150	28.49	6.49	99.6	1.5	31.54	6.61	4.9
						13.300	28.19	5.69	87.1	1.7	32.01	6.56	
						13.300	28.19	5.53	84.7	1.8	31.98	6.55	3.4
2012/0/0 12 22	3371	ME	822060	007705	2.6	1.300	28.54	8.02	122.7	1.1	30.74	7.39	2.0
2012/9/8 12:32	W1	MF	832960	807725	2.6	1.300	28.82	7.70	118.3	1.2	30.67	7.37	3.0
						1.000	28.62	7.73	118.4	1.3	30.71	7.38	1.0
						1.000	28.64	7.42	113.6	1.3	30.71	7.36	1.9
2012/0/0 12 20		N (FF	0000677	000000	10.1	6.550	28.38	6.86	105.0	1.8	31.27	7.34	2.0
2012/9/8 12:38	W2	MF	832677	808903	13.1	6.550	28.38	6.83	104.5	1.9	31.28	7.33	3.0
						12.100	28.23	5.32	81.4	1.7	31.80	7.32	1.7
						12.100	28.22	5.26	80.4	1.8	31.82	7.32	1.7
						1.000	28.65	6.66	102.2	1.4	30.85	7.17	4.5
						1.000	28.68	6.65	102.0	1.3	30.86	7.18	4.8
2012/0/0 12 55	11/2		022040	907992	12.2	6.650	28.36	6.22	95.3	1.4	31.50	7.21	20
2012/9/8 12:55	W3	MF	832049	807882	13.3	6.650	28.37	6.17	94.5	1.4	31.51	7.22	3.0
						12.300	28.27	5.91	90.5	1.6	31.71	7.21	20
						12.300	28.24	5.87	89.8	1.7	31.73	7.21	3.2
						1.000	28.77	5.53	85.0	1.1	30.96	7.41	A 4
						1.000	28.77	5.17	79.5	1.2	30.95	7.35	4.6
2012/0/8 11:55	C1	MF	833714	808184	15.6	7.800	28.54	5.19	79.5	1.3	31.23	7.25	- 3.0
2012/9/8 11:55	CI	IVIP	055714	000184	13.0	7.800	28.52	5.19	79.6	1.5	31.24	7.25	5.0
						14.600	28.20	4.68	71.3	1.3	31.11	7.09	2.2
						14.600	28.22	4.40	67.0	1.2	30.81	7.10	<i>L.</i> 2
						1.000	28.71	8.11	124.2	1.1	30.67	7.11	3.7
						1.000	28.73	8.06	123.6	1.2	30.66	7.13	5.1
		ME	821474	807759	10.4	6.200	28.33	7.24	110.8	1.2	31.39	7.18	4.0
2012/0/0 12.12	C2	MF	831474	807758	12.4	6.200	28.36	7.15	109.5	1.2	31.39	7.19	4.2
2012/9/8 13:13	C2					11.400	28.26	5.41	82.8	1.4	31.59	7.19	1.
2012/9/8 13:13	C2					11.400		5.00	82.5	1.5	31.60	7.18	1.6
2012/9/8 13:13	C2					11.400	28.26	5.39	02.3	1.5	51.00	/.10	
2012/9/8 13:13	C2						28.26 28.89	5.39 7.98	123.0	1.5	31.00	7.32	
2012/9/8 13:13	C2					11.400							3.1
		100	020226	000075	15.0	11.400 1.000	28.89	7.98	123.0	1.1	31.12	7.32	3.1
2012/9/8 13:13 2012/9/8 12:20	C2 C3	MF	832236	808879	15.9	11.400 1.000 1.000	28.89 28.89	7.98 7.61	123.0 117.3	1.1 1.3	31.12 31.11	7.32 7.29	3.1 2.2
		MF	832236	808879	15.9	11.400 1.000 1.000 7.950	28.89 28.89 28.71	7.98 7.61 7.23	123.0 117.3 111.1	1.1 1.3 1.8	31.12 31.11 31.22	7.32 7.29 7.22	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

10-Sep-12 Date

Data (Tima	Taastian	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide.	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/l
2012/9/10 8:43	W1	ME	832973	807730	2.4	1.200	29.20	8.78	136.2	1.1	31.47	7.59	3.8
						1.200	29.18	8.84	137.3	1.2	31.47	7.58	0.0
						1.000	28.90 28.92	8.57 8.56	132.2 132.0	1.6 1.6	31.25 31.18	7.59 7.56	3.2
						6.350	28.92	8.30	132.0	1.6	31.44	7.54	
2012/9/10 8:29	W2	ME	832681	807967	12.7	6.350	28.86	8.21	126.7	1.9	31.46	7.52	2.7
						11.700	28.40	6.34	97.5	1.9	32.06	7.40	4.6
						11.700	28.38	6.04	92.9	1.8	32.09	7.40	4.0
						1.000	28.91	8.56	132.1	1.5	31.30	7.62	4.4
						1.000 6.200	28.95 28.60	8.63 7.57	133.3 116.4	1.8 1.8	31.28 31.52	7.62 7.51	
2012/9/10 8:16	W3	ME	832037	807899	12.4	6.200	28.60	7.31	110.4	1.8	31.50	7.50	4.1
						11.400	28.25	6.60	101.0	1.6	31.65	7.41	2.5
						11.400	28.26	5.92	90.6	1.9	31.61	7.37	2.5
						1.000	29.04	8.47	130.9	1.2	31.19	7.57	3.5
						1.000	29.02	8.50	131.4	1.2	31.22	7.57	5.5
2012/9/10 8:58	C1	ME	833714	808161	14.6	7.300	28.78 28.72	8.24	127.1 121.1	1.5	31.54 31.59	7.52 7.50	2.0
						13.600	28.72	7.86 4.80	73.4	1.4 1.5	32.90	7.30	
						13.600	28.11	4.50	69.1	1.5	32.46	7.35	4.0
						1.000	28.89	7.65	118.0	1.3	31.09	7.24	2.0
						1.000	28.86	7.48	115.2	1.3	31.12	7.29	2.8
2012/9/10 8:01	C2	ME	831451	807762	11.3	5.650	28.57	6.39	98.2	1.6	31.44	7.40	2.1
2012/ //10 0.01	02	MIL	001101	007702	11.5	5.650	28.59	6.31	96.9	1.6	31.43	7.41	2.1
						10.300	28.24 28.25	6.10 5.87	93.4 89.9	1.7 1.6	31.91 31.90	7.41	2.6
						1.000	28.25	7.95	122.7	1.0	31.90	7.41	
						1.000	29.00	7.64	118.2	1.3	31.25	7.52	1.0
2012/0/10 0 22	(72)	ME	820246	000000	15.4	7.700	28.85	7.05	108.9	1.4	31.51	7.52	4.2
2012/9/10 9:23	C3	ME	832246	808889	15.4	7.700	28.84	6.99	107.0	1.2	31.51	7.51	4.2
						14.400	28.51	6.94	106.8	1.5	31.95	7.43	0.6
						14.400	28.53	6.27	96.5	1.6	31.95	7.43	0.0
						1.400	29.60	9.44	147.20	1.1	31.22	7.78	
2012/9/10 17:43	W1	MF	832966	807741	2.8	1.400	29.58	9.73	151.80	1.2	31.22	7.78	1.1
						1.000	29.53	10.48	163.40	1.2	31.27	7.83	0.7
						1.000	29.51	10.62	165.60	1.2	31.28	7.82	0.7
2012/9/10 17:30	W2	MF	832700	807973	13.3	6.650	28.84	8.59	132.80	1.3	31.88	7.64	1.2
						6.650	28.84	8.29	128.20	1.3	31.88	7.62	
						12.300 12.300	28.36 28.36	6.45 5.88	99.40 90.60	1.5 1.5	32.79 32.79	7.53 7.53	3.1
						12.300	28.30	10.59	166.50	1.2	31.66	7.76	
						1.000	30.17	10.33	163.00	1.2	31.66	7.78	4.9
2012/9/10 17:17	W3	MF	832057	807893		6.750	28.78	7.68	118.90	1.1	32.29	7.49	2.4
2012/9/10 17.17	vv 5	1011				000	20110				20.24	7.50	2.4
			052057	007095	13.5	6.750	28.74	6.91	107.00	1.2	32.34	7.50	
			052057	607695	13.5	6.750 12.500	28.74 28.30	6.91 5.19	80.00	1.3	32.91	7.40	2.8
			032037	007095	13.5	6.750 12.500 12.500	28.74 28.30 28.31	6.91 5.19 4.81	80.00 74.20	1.3 1.2	32.91 32.92	7.40 7.38	2.8
			652057	007095	13.5	6.750 12.500 12.500 1.000	28.74 28.30 28.31 29.25	6.91 5.19 4.81 9.58	80.00 74.20 149.00	1.3 1.2 1.2	32.91 32.92 31.57	7.40 7.38 7.81	2.8 0.6
						6.750 12.500 12.500	28.74 28.30 28.31	6.91 5.19 4.81	80.00 74.20	1.3 1.2	32.91 32.92	7.40 7.38 7.81 7.78	0.6
2012/9/10 17:59	C1	MF	832057	807893	13.5	6.750 12.500 12.500 1.000 1.000	28.74 28.30 28.31 29.25 29.21	6.91 5.19 4.81 9.58 9.44	80.00 74.20 149.00 146.60	1.3 1.2 1.2 1.3	32.91 32.92 31.57 31.61	7.40 7.38 7.81	
2012/9/10 17:59	C1	MF				6.750 12.500 12.500 1.000 1.000 7.900 7.900 14.800	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74	80.00 74.20 149.00 146.60 115.90 103.50 87.80	1.3 1.2 1.2 1.3 1.2 1.3 1.2 1.3 1.4	32.91 32.92 31.57 31.61 32.33 32.34 33.41	7.40 7.38 7.81 7.78 7.64 7.62 7.49	0.6 1.7
2012/9/10 17:59	C1	MF				6.750 12.500 1.000 1.000 7.900 7.900 14.800 14.800	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.64	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92	80.00 74.20 149.00 146.60 115.90 103.50 87.80 75.30	$ \begin{array}{r} 1.3\\ 1.2\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ \end{array} $	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43	7.40 7.38 7.81 7.78 7.64 7.62 7.49 7.46	0.6
2012/9/10 17:59	C1	MF				6.750 12.500 1.000 1.000 7.900 7.900 14.800 14.800 1.000	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.64 30.07	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92 9.73	80.00 74.20 149.00 146.60 115.90 103.50 87.80 75.30 153.20	$ \begin{array}{r} 1.3\\ 1.2\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.4\\ \end{array} $	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43 31.61	7.40 7.38 7.81 7.78 7.64 7.62 7.49 7.46 7.62	0.6 1.7
2012/9/10 17:59			833721	808153	15.8	6.750 12.500 1.000 1.000 7.900 7.900 14.800 14.800 1.000	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.64 30.07 30.07	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92 9.73 9.62	80.00 74.20 149.00 146.60 115.90 103.50 87.80 75.30 153.20 151.50	1.3 1.2 1.3 1.2 1.3 1.4 1.5 1.4 1.5	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43 31.61 31.61	7.40 7.38 7.81 7.78 7.64 7.62 7.49 7.46 7.62 7.60	0.6 1.7 1.1 3.5
2012/9/10 17:59 2012/9/10 17:01	C1 C2	MF				6.750 12.500 12.500 1.000 1.000 7.900 7.900 14.800 1.000 1.000 6.750	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.65 27.64 30.07 30.07 29.38	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92 9.73 9.62 7.96	80.00 74.20 149.00 146.60 115.90 103.50 87.80 75.30 153.20 151.50 124.20	$ \begin{array}{r} 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.4\\ 1.5\\ 1.2\\ \end{array} $	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43 31.61 31.61 31.97	7.40 7.38 7.81 7.78 7.64 7.62 7.49 7.46 7.62 7.60 7.40	0.6 1.7 1.1
			833721	808153	15.8	6.750 12.500 1.000 1.000 7.900 7.900 14.800 14.800 1.000	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.64 30.07 30.07	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92 9.73 9.62	80.00 74.20 149.00 146.60 115.90 103.50 87.80 75.30 153.20 151.50	1.3 1.2 1.3 1.2 1.3 1.4 1.5 1.4 1.5	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43 31.61 31.61	7.40 7.38 7.81 7.78 7.64 7.62 7.49 7.46 7.62 7.60	0.6 1.7 1.1 3.5 3.4
			833721	808153	15.8	6.750 12.500 12.500 1.000 1.000 7.900 7.900 14.800 1.000 1.000 6.250	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.65 27.64 30.07 30.07 29.38 29.33	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92 9.73 9.62 7.96 7.48 5.20 4.73	80.00 74.20 149.00 146.60 103.50 87.80 75.30 153.20 151.50 124.20 116.70 80.20 72.80	$\begin{array}{c} 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.3 \end{array}$	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43 31.61 31.61 31.97 31.97	7.40 7.38 7.81 7.78 7.64 7.62 7.49 7.46 7.62 7.60 7.60 7.40 7.39	0.6 1.7 1.1 3.5
			833721	808153	15.8	6.750 12.500 12.500 1.000 1.000 7.900 14.800 1.000 1.000 6.250 6.250 11.500 11.500	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.64 30.07 30.07 29.38 29.33 28.29 28.27 28.99	6.91 5.19 4.81 9.58 9.44 6.71 5.74 4.92 9.73 9.62 7.96 7.48 5.20 4.73 7.71	80.00 74.20 149.00 146.60 115.90 103.50 87.80 75.30 153.20 151.50 124.20 116.70 80.20 72.80 119.40	$\begin{array}{c} 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.1 \end{array}$	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43 31.61 31.61 31.97 31.97 32.85 32.88 31.77	7.40 7.38 7.81 7.78 7.64 7.62 7.49 7.46 7.62 7.60 7.40 7.39 7.20 7.19 7.67	0.6 1.7 1.1 3.5 3.4 5.0
			833721	808153	15.8	6.750 12.500 12.500 1.000 1.000 7.900 14.800 1.000 1.000 6.250 6.250 11.500 11.500 1.000 1.000	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.64 30.07 30.07 29.38 29.33 28.29 28.27 28.99 28.97	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92 9.73 9.62 7.96 7.48 5.20 4.73 7.71 7.73	80.00 74.20 149.00 146.60 103.50 87.80 75.30 153.20 151.50 124.20 116.70 80.20 72.80 119.40	$\begin{array}{c} 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.1 \\ 1.2 \end{array}$	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43 31.61 31.61 31.97 31.97 32.85 32.88 31.77 31.77	$\begin{array}{c} 7.40 \\ 7.38 \\ 7.81 \\ 7.78 \\ 7.64 \\ 7.62 \\ 7.49 \\ 7.46 \\ 7.62 \\ 7.40 \\ 7.39 \\ 7.20 \\ 7.20 \\ 7.19 \\ 7.67 \\ 7.67 \end{array}$	0.6 1.7 1.1 3.5 3.4
			833721	808153	15.8	6.750 12.500 12.500 1.000 1.000 7.900 7.900 14.800 14.800 1.000 6.250 6.250 11.500 11.500 11.500 1.000 8.150	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.64 30.07 30.07 30.07 29.38 29.33 28.29 28.27 28.99 28.97 28.54	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92 9.73 9.62 7.96 7.48 5.20 4.73 7.71 7.73 6.30	80.00 74.20 149.00 146.60 115.90 103.50 87.80 75.30 153.20 151.50 124.20 116.70 80.20 72.80 119.40 119.80 97.20	$\begin{array}{c} 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.1 \\ 1.2 \\ 1.3 \end{array}$	32.91 32.92 31.57 31.61 32.33 32.34 33.43 31.61 31.61 31.97 31.97 32.85 32.85 32.88 31.77 31.77 32.45	$\begin{array}{c} 7.40 \\ 7.38 \\ 7.81 \\ 7.78 \\ 7.64 \\ 7.62 \\ 7.49 \\ 7.46 \\ 7.62 \\ 7.60 \\ 7.40 \\ 7.39 \\ 7.20 \\ 7.19 \\ 7.20 \\ 7.19 \\ 7.67 \\ 7.67 \\ 7.59 \end{array}$	0.6 1.7 1.1 3.5 3.4 5.0
2012/9/10 17:01	C2	MF	833721 831454	808153	15.8	6.750 12.500 12.500 1.000 1.000 7.900 14.800 1.000 1.000 6.250 6.250 11.500 11.500 1.000 1.000	28.74 28.30 28.31 29.25 29.21 28.57 28.54 27.65 27.64 30.07 30.07 29.38 29.33 28.29 28.27 28.99 28.97	6.91 5.19 4.81 9.58 9.44 7.51 6.71 5.74 4.92 9.73 9.62 7.96 7.48 5.20 4.73 7.71 7.73	80.00 74.20 149.00 146.60 103.50 87.80 75.30 153.20 151.50 124.20 116.70 80.20 72.80 119.40	$\begin{array}{c} 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.1 \\ 1.2 \end{array}$	32.91 32.92 31.57 31.61 32.33 32.34 33.41 33.43 31.61 31.61 31.97 31.97 32.85 32.88 31.77 31.77	$\begin{array}{c} 7.40 \\ 7.38 \\ 7.81 \\ 7.78 \\ 7.64 \\ 7.62 \\ 7.49 \\ 7.46 \\ 7.62 \\ 7.40 \\ 7.39 \\ 7.20 \\ 7.20 \\ 7.19 \\ 7.67 \\ 7.67 \end{array}$	0.6 1.7 1.1 3.5 3.4 5.0 2.0

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 12-Sep-12

Data (minu	Teetien	T: 1.*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2012/9/12 9:44	W1	ME	832960	807735	2.3	1.150	29.60	9.81	153.0	0.8	31.11	7.65	1.2
	_					1.150 1.000	29.69 29.58	9.90 9.81	154.5 152.4	0.8 0.6	30.91 30.54	7.61 7.60	
						1.000	29.58	9.81	152.4	0.6	30.54	7.58	2.6
2012/01/2025			000.654	000004		6.050	29.31	7.69	119.2	0.8	30.94	7.47	
2012/9/12 9:35	W2	ME	832651	808904	12.1	6.050	29.33	7.67	119.0	0.9	30.96	7.47	1.2
						11.100	29.25	6.49	100.6	0.9	31.15	7.43	2.4
	_					11.100	29.23	6.47	100.3	1.0	31.18	7.44	2.1
						1.000	29.38	8.82	136.9	0.5	30.96	7.74	2.9
						1.000 6.150	29.38 29.29	9.14 8.64	141.8	0.8	30.96 31.17	7.72	
2012/9/12 9:15	W3	ME	832031	807884	12.3	6.150	29.29	8.40	134.1	0.5	31.17	7.55	1.6
						11.300	28.39	5.94	91.4	0.6	32.41	7.30	2.4
						11.300	28.47	5.03	77.4	0.9	32.30	7.30	3.4
						1.000	29.94	9.65	150.8	0.5	30.43	7.78	2.2
						1.000	30.00	9.98	156.1	0.7	30.40	7.76	2.2
2012/9/12 9:54	C1	ME	833691	808157	13.3	6.650	29.84	8.17	127.4	1.2	30.55	7.71	2.3
						6.650 12.300	29.84 29.92	8.06 7.78	125.8 121.5	1.2	30.58 30.52	7.69 7.66	
						12.300	29.92	7.60	118.7	1.1	30.52	7.66	2.9
						1.000	29.34	9.42	146.2	1.3	30.90	7.43	4.7
						1.000	29.37	9.72	150.8	1.4	30.89	7.49	4.7
2012/9/12 9:02	C2	ME	831477	807726	11.3	5.650	29.20	7.14	110.6	1.5	31.03	7.50	1.9
2012/7/12 7.02	02	IVIL	051477	007720	11.5	5.650	29.20	7.07	109.5	1.5	31.03	7.50	1.9
						10.300	29.06	5.36	82.9	1.5	31.37	7.43	2.3
	_					10.300 1.000	28.83 29.45	5.31 10.76	81.9 167.0	1.6	31.71 30.85	7.36 7.84	
						1.000	29.45	10.76	167.0	1.3	30.85	7.84	2.9
						7.100	29.30	7.88	122.2	1.3	31.00	7.72	2.0
2012/9/12 10:21	C3	ME	832231	808867	14.2	7.100	29.30	7.79	120.8	1.3	31.02	7.73	2.9
						13.200	28.73	6.07	93.9	1.1	32.16	7.51	2.6
						13.200	28.71	5.74	88.8	1.3	32.27	7.50	2.0
						1.0.50	20.55	0.06	1510	1.0	0.0.00	5.04	
2012/9/12 16:53	W1	MF	832974	807741	2.7	1.350	29.55 29.58	9.96 10.18	154.8 158.3	1.0	30.80 30.78	7.81	3.1
						1.350 1.000	29.58	10.18	158.5	0.6	30.78	7.81	
						1.000	29.60	10.30	167.9	0.7	30.79	7.88	2.6
2012/0/12 17 29	11/2	ME	000000	007077	12.0	6.600	29.31	8.43	130.8	0.6	31.08	7.77	1.0
2012/9/12 16:38	W2	MF	832662	807977	13.2	6.600	29.32	8.32	129.2	0.5	31.08	7.76	1.9
						12.200	28.35	5.46	84.2	1.1	32.89	7.54	2.9
	_					12.200	28.30	4.91	75.7	1.2	32.96	7.51	2>
						1.000	30.02 29.96	10.04	157.3 160.8	0.5	30.82 30.86	7.81 7.80	4.2
						6.700	29.96	8.76	136.8	0.5	31.26	7.80	
2012/9/12 16:25	W3	MF	832036	807903	13.4	6.700	29.63	8.66	135.2	0.5	31.26	7.71	2.5
						12.400	28.15	4.85	74.7	0.5	33.10	7.25	5.0
						12.400	28.16	4.33	66.6	0.5	33.12	7.25	5.9
						1.000	29.91	9.29	145.2	0.6	30.50	7.95	2.1
						1.000	29.96	9.95	155.6	0.9	30.51	7.98	
2012/9/12 17:08	C1	MF	833722	808164	14.8	7.400 7.400	28.64 28.62	7.96 8.14	122.0 125.7	1.1	32.28 32.27	7.66 7.64	2.2
						13.800	28.02	6.07	93.7	1.2	32.71	7.58	
						13.800	28.44	5.94	91.6	1.2	32.70	7.57	2.8
						1.000	30.41	10.39	163.9	1.3	30.91	7.64	3.4
						1.000	30.30	10.40	163.9	1.4	30.89	7.62	3.4
2012/9/12 16:12	C2	MF	831455	807763	12.3	6.150	30.07	9.07	142.5	1.5	31.04	7.56	3.2
						6.150	30.09	8.97	141.0	1.6	31.03	7.57	
						11.300 11.300	30.07 30.05	6.73 6.21	105.9 97.7	1.4	31.45 31.49	7.36 7.35	3.2
						11.300	30.05 29.92	6.21 9.47	97.7	1.5	31.49	7.92	
						1.000	29.92	9.95	155.4	1.4	30.48	7.92	4.8
2012/0/12 17:22	C2	ME	822216	202242	157	7.850	28.69	7.82	120.8	1.2	32.14	7.63	2.0
2012/9/12 17:33	C3	MF	832216	808843	15.7	7.850	28.72	6.58	101.8	1.2	32.15	7.63	3.2
						14.700	28.43	5.02	77.5	1.2	32.70	7.54	2.0
						14.700	28.45	4.88	75.4	1.1	32.69	7.54	2.0

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

14-Sep-12 Date

Data (Mina	Territori	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2012/9/14 11:03	W1	ME	832966	807741	2.3	1.150	29.35	9.70	150.8	0.9	31.30	7.82	3.9
						1.150	29.38	9.64	149.9	0.9	31.29	7.83	
						1.000	29.38 29.46	9.37 9.46	145.8 147.3	0.6	31.29 31.24	7.83 7.79	3.4
						6.150	29.40	8.58	132.6	1.0	32.30	7.61	
2012/9/14 10:49	W2	ME	832682	807967	12.3	6.150	28.61	8.03	124.0	1.2	32.38	7.58	3.7
						11.300	27.38	5.98	91.5	1.0	34.34	7.29	4.6
						11.300	27.35	4.63	70.8	1.1	34.36	7.26	4.0
						1.000	29.51	9.44	147.1	0.7	31.19	7.76	4.0
						1.000 6.250	29.53 28.48	9.46 7.00	147.4 108.2	0.9	31.20 32.70	7.74 7.49	
2012/9/14 10:33	W3	ME	832059	807890	12.5	6.250	28.46	6.64	108.2	0.9	32.70	7.49	5.1
						11.500	26.98	6.23	95.0	1.2	34.67	7.25	
						11.500	26.91	5.13	78.0	1.0	34.70	7.22	4.4
						1.000	28.84	8.95	138.3	1.2	31.76	7.77	3.0
						1.000	28.84	8.74	135.0	1.3	31.77	7.76	5.0
2012/9/14 11:11	C1	ME	833684	808156	13.9	6.950	28.81	8.12	125.5	1.3	31.92 31.94	7.70	3.4
						6.950 12.900	28.81 28.28	8.16 5.87	126.2 90.5	1.4	31.94	7.70 7.49	
						12.900	27.25	5.82	89.0	1.4	34.44	7.36	3.2
						1.000	29.41	9.30	144.5	0.8	31.12	7.48	6.0
						1.000	29.39	9.30	144.6	0.9	31.16	7.47	6.0
2012/9/14 10:11	C2	ME	831458	807736	11.4	5.700	27.98	7.55	116.0	1.0	33.36	7.27	5.0
2012/ /14 10.11	02	IVIL	051450	007750	11.4	5.700	27.98	6.53	100.4	1.1	33.36	7.26	5.0
						10.400	27.32 27.32	5.70	87.2 76.4	1.3	34.25	7.13	12.2
						10.400 1.000	27.32	5.00 9.76	151.7	1.2	34.28 31.46	7.12 7.90	
						1.000	29.23	9.70	152.4	1.0	31.40	7.90	3.4
2012/0// 111.0/	G 2			000015		7.250	28.84	8.90	137.9	1.1	32.10	7.75	5.0
2012/9/14 11:36	C3	ME	832214	808847	14.5	7.250	28.75	8.41	130.1	1.4	32.20	7.72	5.3
						13.500	28.19	7.27	112.1	1.6	33.26	7.57	5.2
						13.500	28.23	6.44	99.3	1.6	33.25	7.58	5.2
						1.400	29.18	8.67	134.8	1.1	31.77	7.01	
2012/9/14 17:05	W1	MF	832971	807744	2.8	1.400	29.18	8.81	134.8	1.1	31.77	7.01	3.2
						1.000	29.16	9.27	144.1	1.0	31.80	7.02	
						1.000	29.16	9.73	151.3	1.1	31.77	7.04	3.0
2012/9/14 16:51	W2	MF	832688	807983	13.3	6.650	28.63	8.81	136.1	1.2	32.32	6.89	4.1
2012/9/14 10.01	** 2	1011	852000	007905	15.5	6.650	28.60	8.23	127.1	1.2	32.33	6.86	4.1
						12.300	28.43	7.53	116.3	0.9	32.81	6.78	3.5
	-					12.300 1.000	28.53 29.52	7.12 9.16	110.0 143.1	1.1	32.54 31.63	6.80 6.52	
						1.000	29.32	9.10	145.1	1.0	31.69	6.52	4.1
2012/0// 116 22			0000040	005000	10.6	6.800	28.71	7.62	118.0	1.0	32.58	6.33	1.6
2012/9/14 16:33	W3	MF	832042	807890	13.6	6.800	28.70	7.25	112.3	1.2	32.59	6.32	4.6
						12.600	27.53	6.47	99.3	1.2	34.33	6.01	4.3
						12.600	27.57	5.24	80.4	1.1	34.34	5.95	110
						1.000	28.95 28.92	8.14 8.17	126.1 126.5	1.3 1.4	31.87 31.91	7.05 7.07	3.3
						7.800	28.47	6.72	103.7	1.4	32.65	6.94	
2012/9/14 17:19	C1	MF	833719	808177	15.6	7.800	28.47	6.39	98.7	1.5	32.67	6.94	3.2
						14.600	27.18	4.87	74.3	1.5	34.42	6.65	6.3
						14.600	27.11	3.50	53.4	1.6	34.56	6.61	0.5
						1.000	29.45	9.98	155.6	1.0	31.50	6.89	2.4
						1.000	29.33	10.13	157.7	1.0	31.62	6.78	
2012/9/14 16:16	C2	MF	831476	807771	12.7	6.350 6.350	28.72 28.70	8.83 8.15	136.8 126.3	1.2	32.55 32.55	6.45 6.42	5.5
						11.700	28.70	7.13	120.3	1.5	34.08	6.19	
						11.700	27.79	6.04	92.9	1.3	34.06	6.04	8.6
	T					1.000	29.03	8.17	126.6	1.3	31.75	7.18	1.9
						1.000	28.96	8.22	127.4	1.2	31.82	7.18	1.9
2012/9/14 17:42	C3	MF	832229	808843	15.9	7.950	28.26	6.09	93.9	1.6	33.09	6.96	2.7
						7.950	28.25	5.46	84.3	1.4	33.10	6.95	
						14.900 14.900	26.99 27.11	4.33 3.40	65.9 51.9	1.4	34.62 34.57	6.69 6.69	2.2
/E_Mid Eload Tida	1					14.900	27.11	5.40	21.9	1.0	34.37	0.09	L

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

18-Sep-12 Date

Date / Time	Teertien	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide.	East	North	m	m	c	mg/L	%	NTU	ppt	unit	mg/l
2012/9/18 13:47	W1	ME	832979	807737	2.3	1.150	28.08	8.01	123.8	1.5	34.04	6.76	5.9
						1.150	28.07	7.94 9.22	122.7 142.8	1.3	34.04 34.10	6.77	*
						1.000	28.14 28.14	9.22	142.8	1.2 1.4	34.10	6.81 6.79	4.3
2012/0//2 12 25			000/51		12.2	6.150	27.91	8.15	125.8	1.4	34.22	6.74	1.2
2012/9/18 13:35	W2	ME	832674	808003	12.3	6.150	27.92	8.04	124.1	1.1	34.21	6.72	4.2
						11.300	27.85	7.76	119.6	1.4	34.30	6.70	2.5
	_					11.300	27.81	7.60	117.1	1.6	34.35	6.71	2.5
						1.000	28.28 28.25	8.80 8.52	136.5 132.0	1.1	34.01 34.01	6.23 6.17	4.7
						6.250	27.90	7.55	132.0	1.2	34.22	6.09	
2012/9/18 13:23	W3	ME	832040	807885	12.5	6.250	27.91	7.25	111.8	0.9	34.20	6.02	3.5
						11.500	27.81	7.05	108.7	1.2	34.39	6.01	3.4
						11.500	27.82	7.06	108.9	1.2	34.38	5.97	5.4
						1.000	28.14 28.13	9.15 8.89	141.5 137.5	1.3 1.4	33.96 33.98	7.22 7.20	6.7
						6.900	28.13	7.88	137.3	1.4	33.98	7.09	
2012/9/18 14:02	C1	ME	833716	808157	13.8	6.900	27.94	7.73	119.3	1.8	34.14	7.09	4.6
						12.800	27.84	7.36	113.5	1.0	34.23	7.06	4.5
						12.800	27.81	7.24	111.5	1.2	34.21	7.03	4.5
						1.000	28.23	9.65	149.6	1.3	34.03	7.25	2.7
						1.000 5.800	28.21 28.04	9.48 7.87	146.9 121.7	1.4 1.2	34.03 34.16	7.08 7.72	
2012/9/18 13:09	C2	ME	831459	807753	11.6	5.800	28.04	7.56	116.8	1.2	34.17	7.69	4.0
						10.600	27.74	7.14	110.0	1.2	34.37	7.58	2.2
						10.600	27.74	6.97	107.3	1.4	34.38	7.53	3.2
						1.000	28.07	7.60	117.4	1.3	34.00	7.06	4.0
						1.000	28.08	7.54	116.5	1.5	34.00	7.07	
2012/9/18 14:25	C3	ME	832229	808846	14.5	7.250	27.97 27.97	7.19 7.03	111.0 108.6	1.1 1.3	34.08 34.16	7.05 7.07	11.3
						13.500	27.76	6.84	105.3	1.1	34.22	7.03	
						13.500	27.75	6.64	102.3	1.0	34.31	7.04	3.2
2012/9/18 8:25	W1	MF	832957	807730	2.7	1.350	27.85	6.62	101.9	1.2	33.79	7.55	3.3
						1.350	27.84	6.54	100.6	1.3	33.80	7.55	
						1.000	27.83 27.85	9.44 8.43	145.0 129.5	1.4 1.5	33.69 33.70	7.49 7.52	4.0
2012/04/2 2 02			000404	005065	12.6	6.800	27.85	7.37	113.4	1.1	33.85	7.54	
2012/9/18 8:09	W2	MF	832681	807965	13.6	6.800	27.85	7.16	110.2	1.2	33.85	7.55	6.1
						12.600	27.83	6.75	104.0	1.3	34.12	7.55	3.5
					-	12.600	27.85	6.62	102.0	1.4	34.11	7.55	515
						1.000	27.90 27.90	8.69 8.35	133.9 128.6	0.9	33.85 33.87	7.72	3.6
						6.650	27.90	7.75	119.5	0.8	33.98	7.68	
2012/9/18 9:19	W3	MF	832047	807902	13.3	6.650	27.92	7.64	117.8	0.9	33.98	7.67	3.9
						12.300	27.91	7.38	113.9	1.1	34.19	7.68	4.3
						12.300	27.90	7.43	114.7	1.1	34.18	7.67	ч.5
						1.000	27.87 27.88	7.23 6.76	111.4 104.1	1.1 1.2	33.89 33.89	7.69 7.68	8.1
						7.700	27.88	6.19	95.3	1.2	34.02	7.64	
2012/9/18 8:40	C1	MF	833714	808165	15.4	7.700	27.86	6.18	95.2	1.3	34.02	7.64	5.9
						14.400	27.21	6.06	92.7	1.3	34.69	7.56	7.0
	1					14.400	27.18	5.60	85.6	1.1	34.71	7.54	7.0
						1.000	27.93 27.94	8.94	137.8	0.9	33.90	7.71	2.7
							27.94	8.66	133.5	0.8	33.91	7.69	l
						1.000		7 4 1	114.4	1.2	34.06	7 70	
2012/9/18 9:30	C2	MF	831454	807759	12.4	6.200 6.200	27.98 27.94	7.41 7.45	114.4 114.9	1.2 1.3	34.06 34.12	7.70 7.68	4.1
2012/9/18 9:30	C2	MF	831454	807759	12.4	6.200	27.98			1.2 1.3 1.3		7.70 7.68 7.68	
2012/9/18 9:30	C2	MF	831454	807759	12.4	6.200 6.200 11.400 11.400	27.98 27.94 27.92 27.89	7.45 7.13 7.08	114.9 110.0 109.2	1.3 1.3 1.4	34.12 34.18 34.20	7.68 7.68 7.67	4.1 6.9
2012/9/18 9:30	C2	MF	831454	807759	12.4	6.200 6.200 11.400 11.400 1.000	27.98 27.94 27.92 27.89 27.85	7.45 7.13 7.08 7.69	114.9 110.0 109.2 118.3	1.3 1.3 1.4 0.8	34.12 34.18 34.20 33.91	7.68 7.68 7.67 7.57	
2012/9/18 9:30	C2	MF	831454	807759	12.4	6.200 6.200 11.400 11.400 1.000 1.000	27.98 27.94 27.92 27.89 27.85 27.86	7.45 7.13 7.08 7.69 7.19	114.9 110.0 109.2 118.3 110.7	1.3 1.3 1.4 0.8 1.0	34.12 34.18 34.20 33.91 33.89	7.68 7.68 7.67 7.57 7.56	6.9
2012/9/18 9:30 2012/9/18 9:02	C2 C3	MF	831454	807759	12.4	6.200 6.200 11.400 11.400 1.000 8.100	27.98 27.94 27.92 27.89 27.85 27.86 27.86	7.45 7.13 7.08 7.69 7.19 6.68	114.9 110.0 109.2 118.3 110.7 102.9	1.3 1.3 1.4 0.8 1.0 1.2	34.12 34.18 34.20 33.91 33.89 34.03	7.68 7.68 7.67 7.57 7.56 7.58	6.9
						6.200 6.200 11.400 11.400 1.000 1.000	27.98 27.94 27.92 27.89 27.85 27.86	7.45 7.13 7.08 7.69 7.19	114.9 110.0 109.2 118.3 110.7	1.3 1.3 1.4 0.8 1.0	34.12 34.18 34.20 33.91 33.89	7.68 7.68 7.67 7.57 7.56	6.9 4.8

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

20-Sep-12 Date

Data (Tima	Terretter	m: 1- *	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2012/9/20 15:36	W1	ME	832969	807741	2.5	1.250	27.85	6.34	97.6	1.1	33.82	7.40	4.2
						1.250	27.84	6.17	94.8	1.1	33.82	7.40	
						1.000	27.83 27.83	6.98 6.59	107.3 101.4	1.6 1.4	33.82 33.82	7.41 7.40	3.1
						6.150	27.83	6.13	94.2	0.7	34.02	7.40	
2012/9/20 15:21	W2	ME	832658	807985	12.3	6.150	27.73	6.03	92.7	0.8	34.05	7.41	4.0
						11.300	27.72	6.17	94.5	1.7	33.47	7.45	
						11.300	27.72	6.24	95.7	1.8	33.52	7.45	4.4
						1.000	27.80	7.23	111.2	0.9	33.86	7.33	4.4
						1.000	27.80	6.97	107.1	1.1	33.87	7.32	
2012/9/20 15:07	W3	ME	832051	807887	12.5	6.250	27.68	6.68	102.4	0.9	33.51	7.27	4.5
						6.250 11.500	27.69 27.52	6.53 6.16	100.3 94.4	1.1 0.9	33.99 34.18	7.27	
						11.500	27.52	5.04	94.4 77.3	0.9	34.18	7.20	16.4
						1.000	27.84	6.41	98.6	1.5	33.89	7.51	
						1.000	27.82	6.16	94.7	1.7	33.92	7.50	4.4
2012/0/20 15 51	C1	ME	000710	000165	14.2	7.150	27.85	5.94	91.5	1.3	34.05	7.53	5.0
2012/9/20 15:51	C1	ME	833719	808165	14.3	7.150	27.82	5.96	91.7	1.4	34.04	7.51	5.0
						13.300	27.82	5.97	92.1	1.1	34.33	7.54	5.1
						13.300	27.78	6.02	92.4	1.2	33.53	7.52	5.1
						1.000	27.91	7.69	118.3	0.8	33.58	7.29	4.3
						1.000	27.91	7.18	110.5	0.9	33.65	7.24	
2012/9/20 14:54	C2	ME	831471	807752	11.6	5.800	27.85	6.39	98.4	1.0	33.91 33.92	7.12	3.3
						5.800 10.600	27.88 27.75	6.40 6.34	98.6 97.4	1.2	33.92	7.14	
						10.600	27.72	5.93	97.4	1.2	33.62	7.03	3.5
						1.000	27.83	6.16	90.9 94.8	1.4	33.89	7.03	
						1.000	27.83	6.04	92.9	1.5	33.89	7.49	4.6
						7.550	27.83	5.87	90.4	1.1	34.10	7.49	
2012/9/20 16:14	C3	ME	832216	808847	15.1	7.550	27.83	5.87	90.4	1.2	34.10	7.49	4.5
						14.100	27.75	5.86	90.3	1.3	34.39	7.50	4.4
						14.100	27.75	5.78	89.1	1.5	34.38	7.48	4.4
						1.400	27.62	8.42	128.90	1.38	33.66	7.45	
2012/9/20 9:17	W1	MF	832959	807738	2.8	1.400	27.60	8.77	134.20	1.04	33.68	7.43	5.2
						1.000	27.61	8.98	137.50	1.16	33.66	7.54	
						1.000	27.61	8.88	136.00	1.15	33.66	7.52	5.0
2012/0/20 0.02	W2	MF	832677	807070	13.5	6.750	27.58	8.97	137.30	1.77	33.76	7.50	4.8
2012/9/20 9:03	W Z	IVIF	832077	807979	15.5	6.750	27.59	8.32	127.30	1.91	33.74	7.49	4.8
						12.500	27.64	7.56	116.10	1.29	34.22	7.48	4.7
						12.500	27.63	7.12	109.40	1.44	34.21	7.48	4.7
						1.000	27.60	9.49	145.30	1.59	33.72	7.44	5.8
						1.000	27.61	9.16	140.20	1.60	33.72	7.45	
2012/9/20 8:44	W3	MF	832044	807890	13.5	6.750 6.750	27.57 27.57	8.14 7.63	124.70 117.00	1.20 1.49	33.94 33.98	7.44 7.43	7.0
						12.500	27.68	7.05	119.20	1.49	34.24	7.45	
						12.500	27.68	7.26	119.20	1.72	34.18	7.43	4.6
	1					1.000	27.59	7.65	117.00	1.66	33.59	7.52	
	1					1.000	27.59	7.56	115.60	1.71	33.60	7.52	4.6
2012/9/20 9:34	C1	MF	833712	808177	15.7	7.850	27.61	6.76	103.60	1.77	33.83	7.51	4.2
2012/9/20 9.54	CI	IVII.	655712	000177	15.7	7.850	27.61	6.80	104.20	1.67	33.84	7.50	4.2
						14.700	27.66	6.51	99.90	1.69	34.02	7.52	5.4
						14.700	27.67	6.47	99.40	1.48	34.01	7.51	2.1
						1.000	27.50	8.39	128.30	1.00	33.88	7.34	3.8
						1.000 6.200	27.49 27.48	7.85 6.86	120.10 105.00	0.99	33.93 33.93	7.31 7.29	
2012/9/20 8:31	C2	MF	831451	807740	12.4	6.200	27.48	6.48	99.20	0.75	33.93	7.29	3.0
						11.400	27.48	6.28	99.20	1.46	33.92	7.36	
						11.400	27.67	5.95	91.50	1.40	34.32	7.34	7.3
	1					1.000	27.59	7.35	112.50	1.06	33.59	7.43	
						1.000	27.59	7.09	108.50	1.02	33.59	7.43	5.0
2012/0/20 0.57	C3	MF	832232	808855	16.3	8.150	28.10	6.37	97.70	1.03	33.43	7.10	£ 1
2012/9/20 9:57	CS	IVIP	652252	000000	10.5	8.150	28.14	6.20	95.10	1.13	33.79	7.07	6.1
	1					15.300	27.66	6.01	92.60	1.42	34.00	7.46	
						15.300	27.65	5.78	89.30	1.36	33.93	7.47	7.3

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

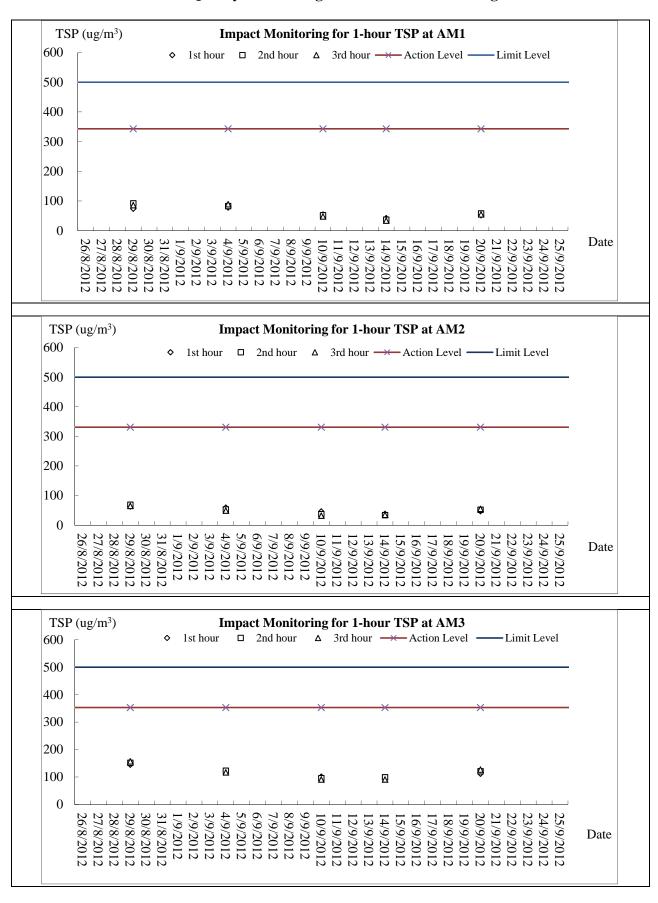
22-Sep-12 Date

Date / Time Local Tope Solution Local Solution Constant Solution Solutin So	Data (Tima	Territor	m: 1. *	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
000000000000000000000000000000000000	Date / Time	Location	1100*	East	North	m	m	င့	mg/L	%	NTU	ppt	unit	mg/l
20129922 16:37 W2 ME 82098 80798 12.4 6.20 7.30	2012/9/22 16:50	W1	ME	832961	807720	2.4								4.2
20129021637 W1 ME 8788 8798 8798 100 2720 582 99.6 0.0 33.66 7.22 4.9 20129021637 P MB 8798 8798 8798 83.16 530 83.1 1.1 34.21 7.24 5.6 20129021649 W3 MB 87280 8798 8798 6.01 7.76 5.46 84.1 1.3 34.23 7.24 5.6 20129021649 W3 MB 87280 8798 87998 6.02 2.97 5.64 84.0 0.8 34.06 7.64 4.6 20129021767 PM MB 8798 88798 8.08 6.03 80.1 1.3 34.2 7.20 5.70 5.71 1.3 34.2 7.31 5.5 20129021737 PM ME 87978 88798 88798 88798 5.71 7.85 5.12 5.91 1.3 3.41 7.31 7.31 <td< td=""><td>2012//22 10:00</td><td></td><td>10115</td><td>002/01</td><td>007720</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2012//22 10:00		10115	002/01	007720	2								
20129022 16:37 Yes Me Signed H Signe H S														5.6
10104021637 142 34E 8,088 8008 1.1 -6.00 28.16 5.50 85.2 1.1 34.27 7.27 4.5 20129021619 W3 ME 82.005 80786 5.00 7.76 5.46 84.1 1.3 34.27 7.24 4.5 20129021619 W3 ME 82.005 80786 5.00 7.97 5.46 84.1 1.0 34.27 7.24 4.5 20129021707 W4 ME 82.005 80786 6.00 1.0 7.64 4.60 5.5 3.5 82.4 0.9 3.44 7.66 5.5 20129021707 P.1 ME 82.715 88154 80714 1.00 2.86 6.01 3.10 1.13 3.42 7.22 1.5 20129021707 P.1 ME 82.711 88174 80714 1.10 3.12 7.21 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3														
11400 11400 1278 558 850 11 3427 724 56 20129921619 W3 MB 80989 80789 100 2739 501 011 0.7 533 32.4 0.9 4.40 7.08 501 20129921639 W3 MB 80989 80789 2079 533 32.4 0.9 4.40 7.08 501 0.11 0.7 501 0.3 0.31 7.01 501 0.21 0.33 7.01 501 0.31 7.01 501 0.31 0.31 7.01 501 0.31 0.31 7.01 7.31 7.33 7.33 7.33 7.31	2012/9/22 16:37	W2	ME	832684	807988	12.4				0.10				4.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														5.6
201299216:9 W3 ME 82200 80784 1.21 1.000 2705 5.34 82.4 0.9 3.36 7.00 7.05 201299217:97 C1 ME 83715 808164 1.1700 7.75 5.33 82.4 0.9 3.44 7.06 5.0 201299217:97 C1 ME 83715 808164 1.12 3.13 3.442 7.00 7.33 82.4 0.9 3.34 7.33 5.5 201299217:97 C1 ME 83715 808164 1.14 4.100 8.16 5.62 86.7 1.2 3.33 5.5 20129921606 C2 ME 81471 8074 1.14 4.100 8.14 8.13 1.3 3.402 7.31 7.3 201290217:32 C3 ME 81471 8074 1.14 4.13 3.33 5.9 3.1 3.43 1.3 3.40 7.38 7.2 1.1 3.43 1.3 3.46														5.0
20120022 16.19 W3 ME 82280 807896 12 100 21/05 533 42.4 0.9 53.5 42.4 0.9 53.6 54.0 73.7														4.6
301992216:9 W3 M4 5.200 80196 1.1 6.530 27.77 5.35 5.28 6.88 3.441 706 5.30 201290217:07 C1 M4 F 813715 818164 1.100 72.64 5.28 81.3 1.13 34.42 702 5.33 201290217:07 C1 M4 83715 818164 1.44 72.00 733 5.41 83.3 1.2 33.30 7.32 5.55 201290216:06 C2 M4 81471 80774 1.100 72.00 5.34 82.3 1.12 33.03 6.73 7.33 7.3 201290216:06 C2 M4 81471 80774 1.14 1.300 7.03 5.15 7.04 1.1 34.30 7.31 7.3 201290217:32 C3 M4 8239 80877 1.000 28.11 5.51 7.04 1.1 34.30 6.33 4.12 7.20 9.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
11.700 17.700 7.765 5.866 8.49 1.3 3.4.40 7.00 5.33 2012,9/22 17.67 F. ME 8.337.5 808164 1.00 28.08 6.03 9.30 1.2 33.53 7.32 3.6 2012,9/22 17.67 F. ME 8.337.5 7.30 5.31 7.33 3.51 7.33 7.31 <t< td=""><td>2012/9/22 16:19</td><td>W3</td><td>ME</td><td>832050</td><td>807896</td><td>12.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.0</td></t<>	2012/9/22 16:19	W3	ME	832050	807896	12.7								5.0
201290217:07 C1 MF 833715 808164 1.1.100 27.64 5.28 81.3 1.1.3 44.42 70.2 5.3 201290217:07 C1 MF 833715 808164 1.4 1.4 1.33 1.4 1.33 1.7.2 3.33 1.7.2 3.33 1.7.2 3.33 1.7.2 3.33 1.7.2 3.33 1.7.2 3.33 1.7.2 3.33 1.7.2 3.33 1.7.3 7.3 201290216:06 C2 MF 81471 877.44 1.14 1.00 28.21 5.7.1 8.22 0.8 3.363 6.6.3 3.0 201290216:06 C2 MF 81471 877.44 1.14 1.4 4.4 1.1 3.43 6.62 4.6 201290217:52 C3 MF 817.71 877.44 1.18 3.43 6.7.1 4.5 201290217:53 W1 MF 83297 807.41 2.8 1.400 2.21 8.55 8.59<														
20129021767 CI ME 8377 808164 100 28.08 60.33 9.30 1.2 33.33 7.32 7.5 20129021767 CI ME 8377 1.3 33.01 7.32 7.30														5.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							1.000	28.08		93.0	1.2	33.52	7.30	3.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														5.0
13.400 27.69 5.17 79.5 1.3 34.18 7.31 7.3 20129021606 C2 ME 83.1471 80774 1.14 5.88 900 0.8 316.6 6.93 3.0 20129021606 C2 ME 83.1471 80774 1.14 5.70 7.28 5.87 7.81 5.18 9.04 6.83 2.4 2012902217.32 C3 ME 83.2211 8.71 81.2 9.8 5.16 7.94 1.1 33.55 6.81 4.5 2012902217.32 C3 ME 83.2211 80877 1.6 1.000 28.14 5.90 7.14 1.1 35.6 6.81 4.5 2012902217.32 C3 MM MF 83297 807741 2.8 1.400 28.28 5.85 9.04 1.3 34.12 7.32 1.92 2012902211:53 W1 MF 83287 80774 2.8 1.400 28.28 5.85 <	2012/9/22 17:07	C1	ME	833715	808164	14.4								5.5
20129/22 16:06 C2 ME 83.471 807744 11.44 30.00 27.88 5.18 7.90 6.13 34.20 7.31 7.3 20129/22 16:06 C2 ME 83.471 807744 11.44 32.24 5.518 79.9 6.38 36.56 6.99 3.0 20129/22 17:32 C3 ME 83.471 807744 11.44 32.22 80.5 0.9 34.04 6.83 2.4 20129/22 17:32 C3 ME 83.2231 808877 115.6 77.44 1.1 34.35 6.81 7.31 5.9 20129/22 17:32 C3 ME 83.297 807741 2.8 1.600 28.14 5.92 91.44 1.11 33.66 7.33 5.9 20129/22 11:53 W1 MF 83.297 807741 2.8 1.600 27.68 5.45 88.54 1.6 34.22 7.31 11.9 20129/22 11:53 W1 MF 83.297 80														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														7.3
20129/22 16:06 C2 ME 831471 807744 1.14 4.00 22.14 5.71 88.2 0.08 33.05 6.89 2.4 20129/22 16:06 C2 ME 831471 807744 1.14 4.31 6.82 2.4 20129/22 17:32 C3 ME 83241 5.15 79.4 1.1 34.35 6.81 45 20129/22 17:32 C3 ME 832231 808877 1.00 28.14 5.92 9.14 1.1 34.35 6.81 45 20129/22 17:32 C3 ME 83297 807741 2.8 1.00 28.24 5.48 84.2 1.5 34.23 7.31 5.9 20129/22 11:53 W1 MF 832957 807741 2.8 1.400 28.28 5.85 9.042 1.0 33.34 7.41 5.4 20129/22 11:53 W1 MF 832682 807961 2.77 5.58 89.90 1.3 33.366														2.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.000							3.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/9/22 16:06	C2	ME	831471	807744	11.4								24
10100 10100 27.86 515 79.4 1.1 34.35 6.81 4.5 20129/22 17.32 C3 ME 832231 808877 15.6 1000 28.14 5.92 91.4 1.1 33.63 7.31 5.9 20129/22 17.32 C3 ME 832231 808877 15.6 7.800 27.67 5.64 86.6 1.3 34.12 7.31 7.31 1.9 20129/22 11:53 W1 MF 832957 80741 2.8 1.400 22.82 5.85 80.42 1.0 33.34 7.41 .54 20129/22 11:53 W1 MF 832957 80741 2.8 1.400 22.82 5.85 80.42 1.0 33.34 7.41 .54 20129/22 11:58 W2 MF 832957 80741 2.8 1.400 28.21 5.68 87.67 0.7 33.44 7.41 .54 20129/22 11:58 W2 MF 832047 8	2012/7/22 10:00	02	IVIL	051471	007744	11.7								2.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														4.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
20129/22 17:32 C3 ME 832231 808877 15.6 7.800 27.67 5.54 86.6 1.3 34.12 7.29 9.2 20129/22 11:53 W1 MF 832957 80741 2.8 14.400 27.68 5.45 83.8 1.6 34.23 7.31 11.9 20129/22 11:53 W1 MF 832957 80741 2.8 1400 28.28 5.85 90.42 1.0 33.34 7.41 5.4 20129/22 11:58 W2 MF 832957 80791 2.8 1.400 28.21 5.68 87.67 0.7 33.44 7.41 5.4 20129/22 11:58 W2 MF 832682 807996 1.30 27.75 5.85 89.90 1.3 33.96 7.17 4.1 20129/22 11:58 W3 MF 832047 807899 1.37 1.000 28.48 5.75 89.30 1.0 34.04 7.15 6.0 20129/22 12:13														5.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/0/22 15 22	C 2		000001	000077	15.6								0.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2012/9/22 17:32	C3	ME	832231	808877	15.6	7.800	27.68	5.59	85.9	1.4	34.11	7.28	9.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														11.9
20129/22 11:53 W1 MF 832957 807/41 2.8 1.400 28.21 5.68 87.67 0.7 33.44 7.37 5.4 20129/22 11:58 W2 MF 832682 807996 13.9 1.000 28.50 6.57 102.00 1.1 33.64 7.37 4.9 20129/22 11:58 W2 MF 832682 807996 13.9 1.000 28.55 6.24 96.80 1.2 33.74 7.22 4.9 20129/22 11:58 W2 MF 832682 807996 13.7 10.00 28.35 6.24 96.80 1.2 33.96 7.17 4.1 20129/22 12:13 W3 MF 832047 807899 13.7 10.00 28.48 5.75 89.30 1.0 34.60 6.77 6.60 6.80 27.70 5.66 85.70 1.1 33.64 7.41 4.6 20129/22 11:13 C1 MF 833712 808174 1.57 7.850 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14.600</td> <td>27.68</td> <td>5.45</td> <td>83.8</td> <td>1.6</td> <td>34.23</td> <td>7.32</td> <td>1115</td>							14.600	27.68	5.45	83.8	1.6	34.23	7.32	1115
20129/22 11:53 W1 MF 832957 807/41 2.8 1.400 28.21 5.68 87.67 0.7 33.44 7.37 5.4 20129/22 11:58 W2 MF 832682 807996 13.9 1.000 28.50 6.57 102.00 1.1 33.64 7.37 4.9 20129/22 11:58 W2 MF 832682 807996 13.9 1.000 28.55 6.24 96.80 1.2 33.74 7.22 4.9 20129/22 11:58 W2 MF 832682 807996 13.7 10.00 28.35 6.24 96.80 1.2 33.96 7.17 4.1 20129/22 12:13 W3 MF 832047 807899 13.7 10.00 28.48 5.75 89.30 1.0 34.60 6.77 6.60 6.80 27.70 5.66 85.70 1.1 33.64 7.41 4.6 20129/22 11:13 C1 MF 833712 808174 1.57 7.850 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.400</td> <td>26.26</td> <td>5.95</td> <td>00.42</td> <td>1.0</td> <td>22.24</td> <td>7.41</td> <td></td>							1.400	26.26	5.95	00.42	1.0	22.24	7.41	
$ 2012/9/22 11:58 W2 MF = 832682 \\ 2012/9/22 11:58 W2 MF = 832682 \\ 2012/9/22 11:58 W3 MF = 832047 \\ 2012/9/22 12:13 W3 MF = 832047 \\ 2012/9/22 12:13 W3 MF = 832047 \\ 2012/9/22 12:13 W3 MF = 832047 \\ 2012/9/22 11:13 C1 MF = 833712 \\ 2012/9/22 11:13 \\ 2012/9/22 11:13 \\ 2012/9/22 11:13 \\ 2012/9/22 11:13 \\ C1 MF = 833712 \\ 2012/9/22 11:13 \\ C1 MF = 833712 \\ 2012/9/22 11:13 \\ 2012/9/22 11:13 \\ 2012/9/22 11:13 \\ C1 MF = 833712 \\ 2012/9/22 11:13 \\ C1 MF = 831458 \\ 807732 \\ 11.5 \\ 2012/9/22 11:13 \\ 2012/9/22 11:13 \\ C1 MF = 831458 \\ 807732 \\ 11.5 \\ 2012/9/22 \\ 2012/9/22 11:13 \\ C1 MF = 831458 \\ 807732 \\ 11.6 \\ 201/9 \\ 201$	2012/9/22 11:53	W1	MF	832957	807741	2.8								5.4
2012/9/22 11:58 W2 MF 832682 807996 13.9 1.000 28.35 6.24 96.80 1.2 33.74 7.22 4.9 2012/9/22 11:58 W2 MF 832682 807996 13.9 6.950 27.75 5.569 87.60 1.4 33.06 7.17 4.1 2012/9/22 12:13 W3 MF 832047 807899 13.7 12.900 27.69 5.75 89.30 1.0 33.96 6.77 6.0 2012/9/22 12:13 W3 MF 832047 807899 13.7 6.850 27.70 5.56 85.70 1.1 34.60 6.77 5.7 12.700 27.70 5.56 85.70 1.1 34.60 6.80 7.71 5.56 85.70 1.1 34.60 6.80 7.71 12.700 27.70 5.56 85.70 1.1 34.60 6.80 7.33 6.1 2012/9/22 11:13 C1 MF 833712 808174 15.7 <td></td> <td>1.0</td>														1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.000	28.35	6.24	96.80	1.2	33.74	7.22	4.9
$ 20129/22 12:13 \\ 20129/22 12:13 \\ 20129/22 12:13 \\ 20129/22 12:13 \\ 20129/22 12:13 \\ 20129/22 12:13 \\ 20129/22 11:13 \\ 20129/22 11:13 \\ 20129/22 11:36 \\ C3 \\ MF \\ 832047 \\ 832047 \\ 832047 \\ 832047 \\ 832047 \\ 807899 \\ 807899 \\ 807899 \\ 407899 \\ 407899 \\ 407899 \\ 407899 \\ 407899 \\ 407899 \\ 407899 \\ 407899 \\ 41.37 \\ \frac{6.990}{27.69} \\ \frac{27.69}{5.53} \\ \frac{5.75}{89.30} \\ 1.0 \\ 34.20 \\ 1.0 \\ 34.03 \\ 6.79 \\ 34.50 \\ 6.77 \\ 5.7 \\ 6.850 \\ 27.70 \\ 5.56 \\ 85.70 \\ 1.1 \\ 34.60 \\ 6.80 \\ 1.2 \\ 34.60 \\ 6.80 \\ 6.77 \\ 6.80 \\ 1.2 \\ 34.60 \\ 6.80 \\ 6.24 \\ 97.20 \\ 1.5 \\ 33.64 \\ 7.42 \\ 4.6 \\ 7.850 \\ 7.850 \\ 27.91 \\ 5.63 \\ 85.40 \\ 1.2 \\ 34.60 \\ 6.30 \\ 7.88 \\ 7.33 \\ 6.6 \\ 1.1 \\ 33.86 \\ 7.33 \\ 6.6 \\ 7.3 \\ 7.85 \\ 7.850 \\ 27.91 \\ 5.63 \\ 86.70 \\ 1.1 \\ 33.86 \\ 7.33 \\ 6.6 \\ 7.3 \\ 7.850 \\ 7.850 \\ 27.91 \\ 5.63 \\ 86.70 \\ 1.1 \\ 33.86 \\ 7.33 \\ 6.6 \\ 7.3 \\ 7.850 \\ 7.850 \\ 27.91 \\ 5.63 \\ 86.70 \\ 1.1 \\ 33.86 \\ 7.33 \\ 6.6 \\ 7.3 \\ 7.85 \\ 7$	2012/9/22 11:58	W2	ME	832682	807996	13.0								4.1
2012/9/22 12:13 W3 MF 832047 807899 13.7 1000 28.39 5.75 89.30 1.0 34.44 7.15 6.0 2012/9/22 12:13 W3 MF 832047 807899 1.1000 28.48 5.73 89.30 1.0 34.03 6.79 3.8 2012/9/22 12:13 W3 MF 832047 807899 1.17 6.650 27.70 5.69 87.70 0.9 34.50 6.77 5.7 6.850 27.70 5.54 85.70 1.1 34.60 6.77 5.7 12.700 27.70 5.54 85.70 1.1 34.60 6.77 6.1 1000 28.60 6.24 97.20 1.5 33.64 7.41 4.6 1000 28.60 6.32 93.80 1.5 33.64 7.41 4.6 2012/9/22 11:13 C1 MF 831458 807732 15.7 7.850 27.92 5.84 90.00 1.0<	2012/722 11:50	112	1011	052002	001770	15.7								1.1
$ 20129/22 12:13 \\ \mathbb{W}3 \\ \mathbb{W}3 \\ \mathbb{W}7 \\ $														6.0
2012/9/22 12:13 W3 MF 832047 807899 13.7 1.000 28.48 5.73 89.10 1.0 33.99 6.80 5.73 2012/9/22 12:13 W3 MF 832047 807899 13.7 1.000 28.48 5.73 89.10 1.0 33.99 6.80 5.73 2012/9/22 12:13 W3 MF 832047 807899 13.7 1.000 28.60 6.24 97.20 1.5 33.69 7.42 4.60 2012/9/22 11:13 C1 MF 833712 808174 15.7 7.850 27.92 5.84 90.00 1.0 33.86 7.33 6.6 2012/9/22 11:13 C1 MF 833712 808174 15.7 7.850 27.91 5.63 86.70 1.1 33.86 7.33 6.6 2012/9/22 11:36 C2 MF 831458 807732 12.6 10.00 28.45 7.14 11.090 1.3 34.26 7.31 9.3														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														3.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/0/22 12 12	11/2		8220.47	007000	107								57
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/9/22 12:15	VV 5	NIF	852047	807899	15.7								5.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														6.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2012/0/22 11 15			0000046	000151	16.5								
2012/9/22 12:27 C2 MF 831458 807732 12.6 14.700 27.67 5.25 80.80 1.3 34.26 7.31 9.3 2012/9/22 12:27 C2 MF 831458 807732 12.6 1.000 28.45 7.14 110.90 1.3 33.80 6.90 2.7 2012/9/22 12:27 C2 MF 831458 807732 12.6 12.6 6.300 27.78 6.16 94.90 1.2 33.87 6.89 2.7 6.300 27.79 6.08 93.70 1.3 34.30 6.80 6.60 11.600 27.70 5.82 89.70 1.5 34.65 6.78 7.4 11.600 27.70 5.77 89.00 1.5 34.72 6.77 7.4 10.00 28.65 5.91 91.80 1.0 33.16 7.43 2012/9/22 11:36 C3 MF 832216 808871 16.4 8.200 28.14 5.63 86.80	2012/9/22 11:13	Cl	MF	833712	808174	15.7								6.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														7.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														2.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/9/22 12:27	C2	MF	831458	807732	12.6								6.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														7 /
2012/9/22 11:36 C3 MF 832216 808871 16.4 1.000 28.63 5.84 90.60 1.0 33.16 7.43 4.8 2012/9/22 11:36 C3 MF 832216 808871 16.4 1.000 28.63 5.84 90.60 1.0 33.16 7.43 4.9 10.00 28.14 5.63 86.80 0.9 33.48 7.37 4.9 15.400 27.78 5.64 86.70 1.1 34.13 7.29 10.9								27.70	5.77		1.5	34.72	6.77	1.4
$2012/9/22 11:36 C3 MF \begin{array}{c ccccccccccccccccccccccccccccccccccc$														4.8
2012/9/22 11:36 C3 MF 832216 8088/1 16.4 8.200 28.15 5.60 86.50 0.8 33.82 7.37 4.9 15.400 27.78 5.64 86.70 1.1 34.13 7.29 10.9														
<u>15.400</u> 27.78 5.64 86.70 1.1 34.13 7.29 10.9	2012/9/22 11:36	C3	MF	832216	808871	16.4								4.9
							15.400	27.71	5.32	81.70	1.2	34.16		10.9

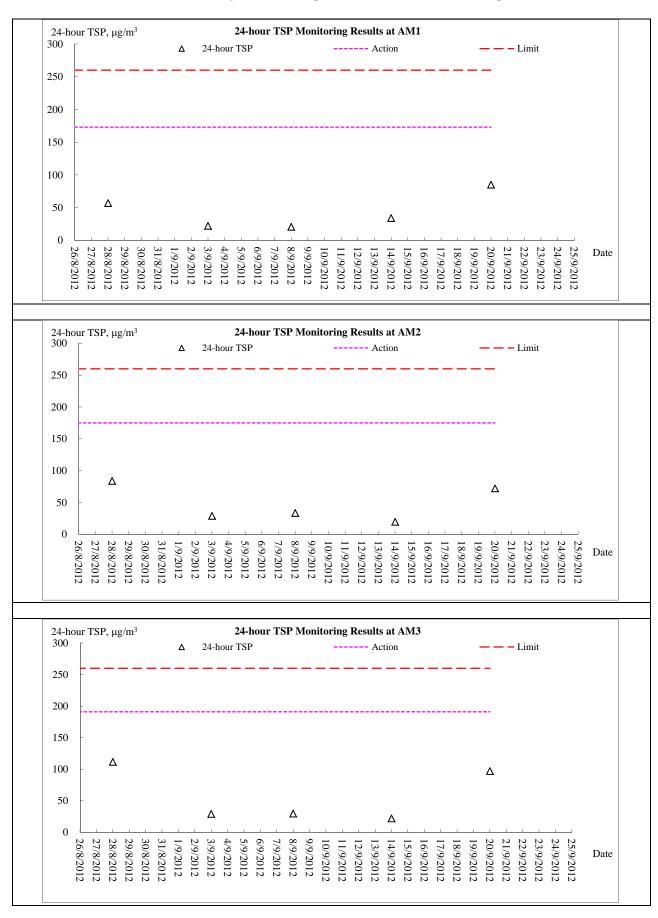
Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 24-Sep-12

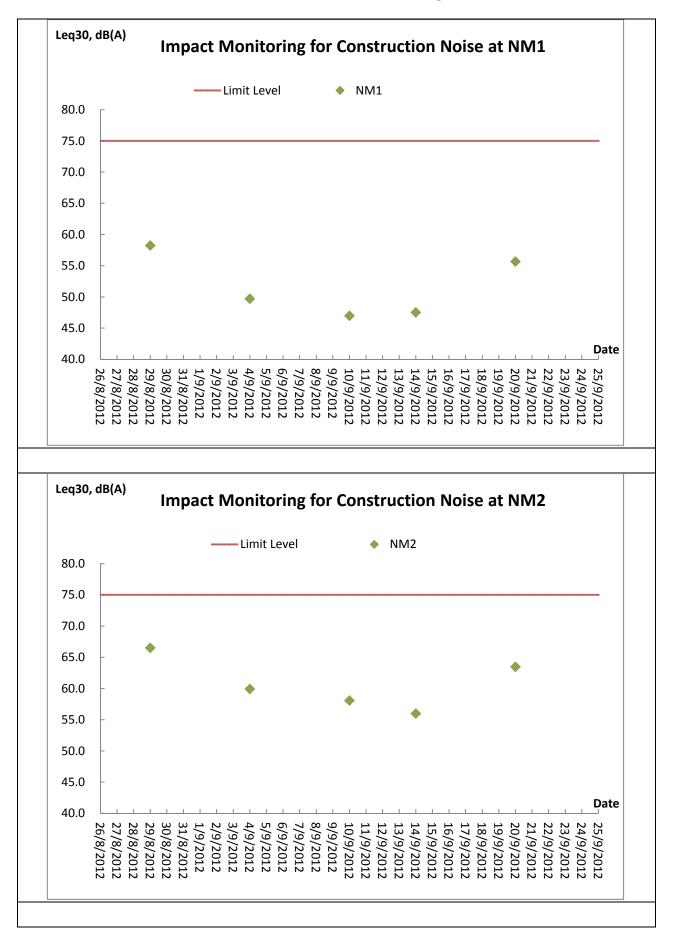

Date / Time	Logation	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de≁	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2012/9/24 8:59	W1	ME	832958	807732	2.5	1.250	28.50	7.19	111.7	0.9	33.61	6.84	4.8
	_					1.250	28.56	6.70	104.2	1.0	33.58	6.82	
						1.000	28.38 28.41	5.02 5.11	77.9 79.3	1.3 1.1	33.97 33.89	6.30 6.26	4.4
						6.300	28.32	5.05	79.5	1.1	34.00	6.27	
2012/9/24 8:45	W2	ME	832654	807966	12.6	6.300	28.32	4.95	76.9	1.5	34.02	6.29	3.5
						11.600	28.23	4.85	75.3	1.1	34.16	6.31	
						11.600	28.21	4.78	74.2	0.9	34.19	6.32	6.2
						1.000	28.39	5.11	79.4	1.1	33.98	6.92	6.4
						1.000	28.39	5.09	79.0	0.9	34.04	6.97	0.4
2012/9/24 8:26	W3	ME	832047	807884	12.7	6.350	28.35	5.05	78.5	0.8	34.05	6.95	6.9
						6.350	28.34	5.04	78.3	0.8	34.07	6.97	,
						11.700	28.31	4.99	77.5	1.4	34.14	7.00	7.6
	-					11.700 1.000	28.31	4.95 6.29	76.8 97.6	1.4 1.2	34.13 33.62	7.01	
						1.000	28.44 28.30	5.90	97.6	1.2	33.69	6.69 6.68	5.1
						7.200	28.30	5.60	86.7	1.2	33.92	6.66	
2012/9/24 9:14	C1	ME	833716	808183	14.4	7.200	28.16	5.50	85.1	1.2	33.92	6.67	7.1
						13.400	28.16	5.28	81.8	1.2	34.08	6.67	()
						13.400	28.16	5.23	81.0	1.2	34.10	6.67	6.1
						1.000	28.47	7.93	123.1	0.9	33.60	7.00	3.1
						1.000	28.42	7.30	113.3	1.0	33.76	7.00	5.1
2012/9/24 8:12	C2	ME	831476	807752	11.4	5.700	28.27	6.08	94.2	1.1	33.85	6.90	5.5
2012/724 0.12	02	IVIL	051470	007152	11.7	5.700	28.27	5.96	92.3	1.2	33.88	6.90	5.5
						10.400	28.24	5.50	85.3	1.2	34.11	6.85	11.1
	_					10.400	28.30	5.41	84.0	1.2	34.10	6.84	
						1.000	28.56	5.71	88.8	1.3	33.60	6.73	6.5
						1.000	28.55	5.90	91.6	1.3	33.59	6.74	
2012/9/24 9:37	C3	ME	832216	808867	15.3	7.650	28.14 28.13	5.34 5.35	82.6 82.7	1.2	33.97 33.99	6.75 6.76	6.4
						14.300	28.07	5.15	79.7	1.5	34.10	6.78	
						14.300	28.08	5.15	79.6	1.3	34.10	6.79	13.1
						1 11000	20.00	5115	1910	110	5 1110	0177	
2012/0/24 14 50	3371		000071	007706	0.7	1.350	28.26	5.74	88.7	1.1	33.42	7.42	0.0
2012/9/24 14:58	W1	MF	832971	807736	2.7	1.350	28.21	5.73	88.4	1.2	33.46	7.40	2.8
						1.000	28.26	6.32	97.7	1.1	33.42	7.45	5.0
						1.000	28.20	6.12	94.3	1.3	33.05	7.40	5.0
2012/9/24 14:44	W2	MF	832676	807974	13.4	6.700	27.98	5.17	79.7	1.5	33.86	7.40	4.0
2012/7/2111111			002010	00///	1511	6.700	27.97	5.27	81.2	1.5	33.77	7.40	
						12.400	27.92	4.95	76.3	1.2	34.07	7.41	8.4
	_					12.400	27.92	5.02	77.4 77.5	1.4	34.07	7.41	
						1.000	28.26	5.01		1.3	33.51	7.39	1.4
	1					1.000 6.700	28.20 27.98	5.01 4.98	77.4 76.9	1.3 1.5	33.37 33.91	7.37 7.40	
2012/9/24 14:27	W3	MF	832053	807901	13.4	6.700	27.98	4.98	76.4	1.5	33.90	7.40	1.3
	1					12.400	27.90	4.96	76.5	1.5	33.99	7.40	
						12.400	27.93	4.97	76.7	1.5	34.12	7.42	6.7
	1					1.000	28.25	4.97	76.8	1.2	33.37	7.36	1.8
	1					1.000	28.32	4.89	75.6	1.2	33.32	7.35	1.0
2012/9/24 15:16	C1	MF	833708	808180	15.1	7.550	28.00	4.82	74.3	1.3	33.85	7.41	4.9
2012/7/27 13.10	CI	1411.	055708	000100	1.J.1	7.550	28.00	4.81	74.2	1.3	33.85	7.41	т.)
	1					14.100	27.91	4.83	74.3	1.3	33.60	7.38	5.7
	-					14.100	27.91	4.86	74.7	1.4	33.62	7.38	
	1					1.000	28.22	5.85	90.4 88.4	1.3	33.47 33.49	7.44 7.43	2.2
						1.000 6.150	28.21 28.01	5.72 5.24	88.4 80.9	1.2 1.2	33.49	7.43	ł
2012/9/24 14:10	C2	MF	831464	807737	12.3	6.150	28.01	5.15	80.9 79.4	1.2	33.75	7.42	3.7
	1					11.300	27.99	5.08	79.4	1.2	34.05	7.42	1
	1					11.300	27.91	5.08	78.3	1.2	34.08	7.42	4.3
	1					1.000	28.18	5.82	89.8	1.0	33.48	7.37	
	1					1.000	28.18	5.58	86.1	1.2	33.47	7.36	2.7
2012/0/24 15:40	C3	MIT	822225	808952	15.0	7.950	27.96	5.04	77.7	0.9	33.87	7.37	4.8
2012/9/24 15:40	CS	MF	832225	808853	15.9	7.950	27.95	4.93	76.0	1.0	33.89	7.37	4.0
	1					14.900	27.92	4.89	75.4	1.4	34.06	7.38	7.2
	1					14.900	27.93	4.86	75.0	1.4	34.11	7.40	1.2

MF- Mid Flood Tide

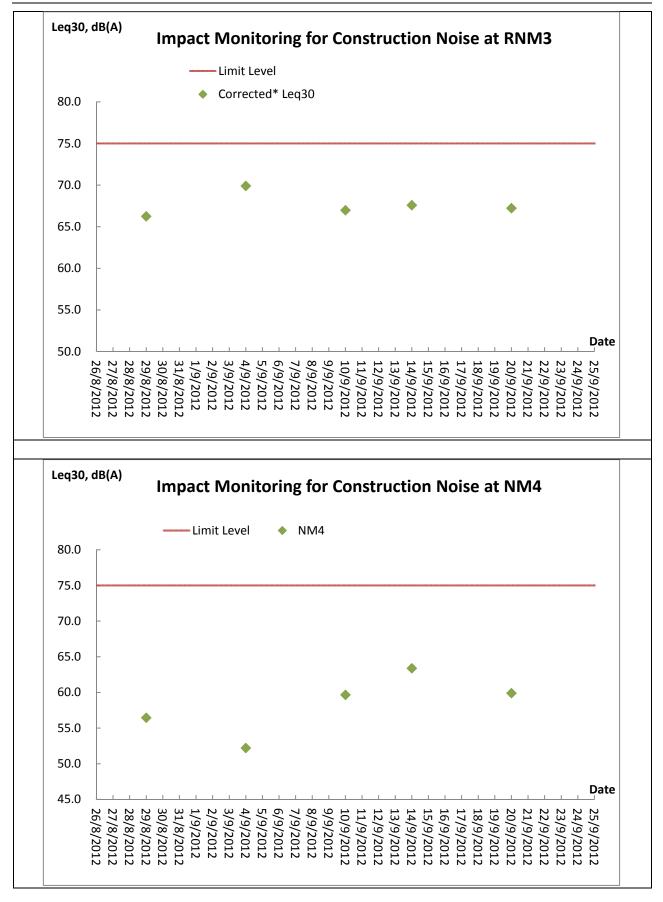

Appendix H

Graphical Plots of Monitoring Results

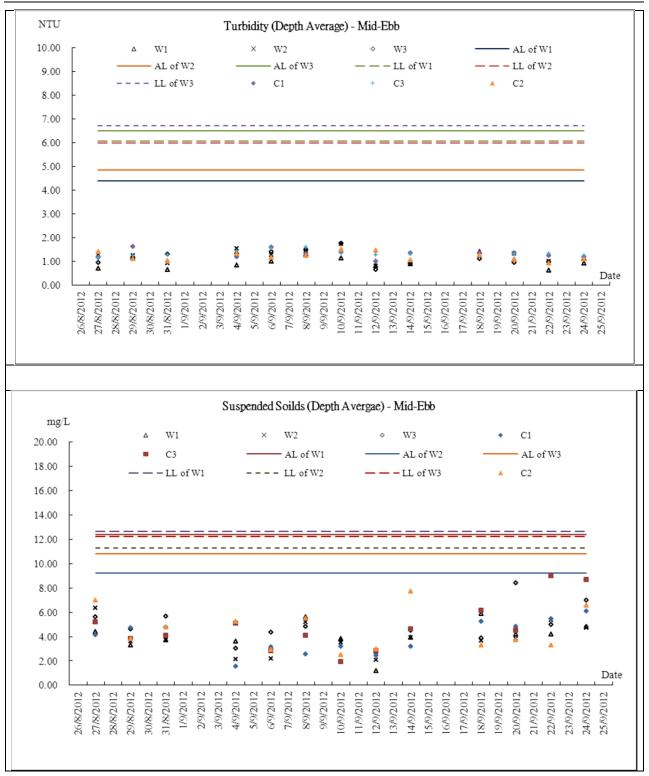
Air Quality Monitoring – 1 hour TSP Monitoring

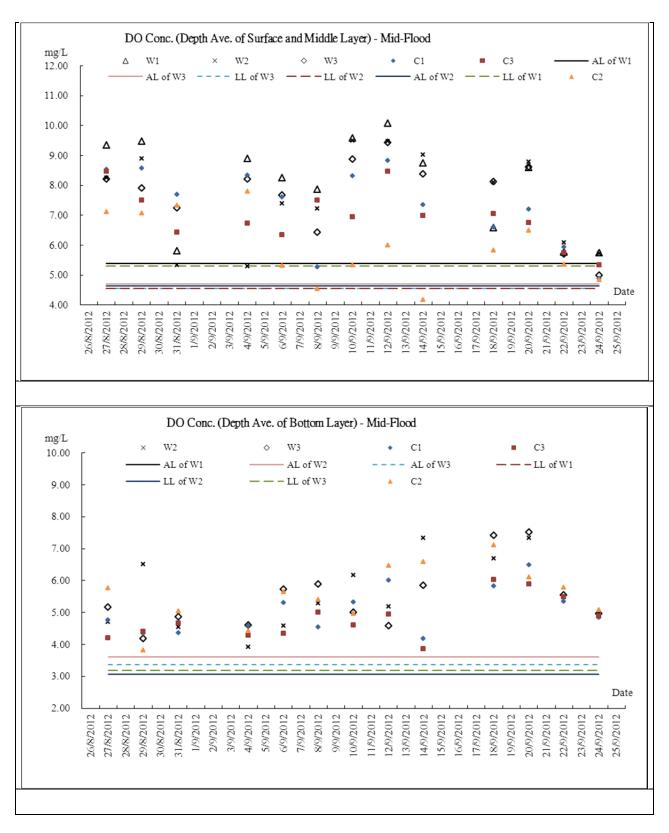


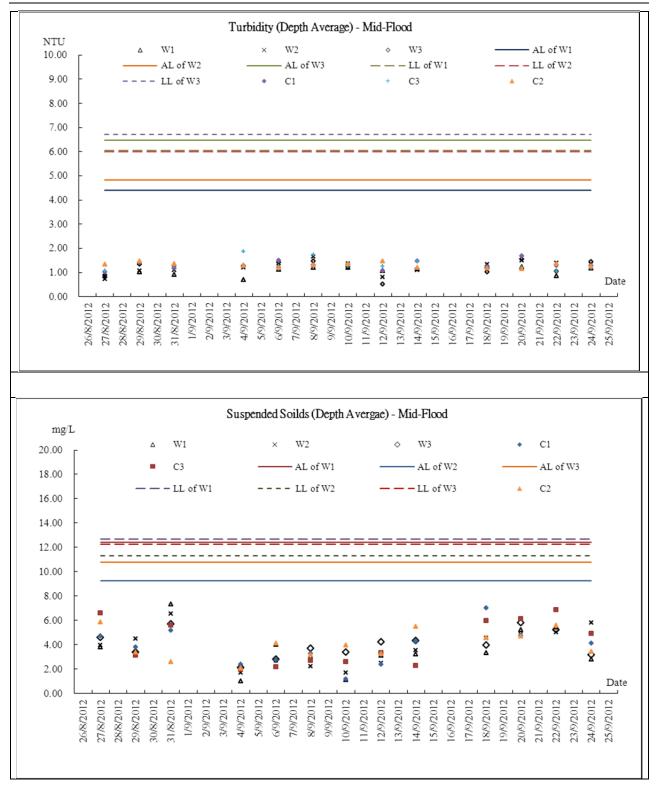
Air Quality Monitoring – 24 hour TSP Monitoring



Construction Noise Monitoring




Marine Water Quality Monitoring - Mid-Ebb Tide


Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – September 2012

AUES

Marine Water Quality Monitoring - Mid-Flood Tide

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – September 2012

AUES

Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Aug-12	Sun	fine , very hot , hazy
27-Aug-12	Mon	very hot, fine , haze.
28-Aug-12	Tue	cloudy, isolated showers, thunderstorms
29-Aug-12	Wed	Sunny periods, hot
30-Aug-12	Thu	cloudy, a few showers,
31-Aug-12	Fri	hot, sunny intervals
1-Sep-12	Sat	Sunny intervals, moderate easterly winds
2-Sep-12	Sun	Sunny intervals, Moderate easterly winds
3-Sep-12	Mon	Hot, sunny periods ,cloudy, Sunny intervals
4-Sep-12	Tue	Sunny intervals, a few showers, moderate easterly winds
5-Sep-12	Wed	Sunny intervals, a few showers, Fresh easterly winds
6-Sep-12	Thu	Sunny intervals
7-Sep-12	Fri	a few showers, squally thunderstorms,
8-Sep-12	Sat	Fine, very hot, light to moderate east to southeasterly winds.
9-Sep-12	Sun	Hot, fine, light to moderate east to southeasterly winds.
10-Sep-12	Mon	Fine, very hot, light to moderate east to southeasterly winds.
11-Sep-12	Tue	Mainly fine, very hot, Moderate east to southeasterly winds.
12-Sep-12	Wed	Fine, very hot, isolated showers, moderate east to southeasterly winds.
13-Sep-12	Thu	Very hot, isolated showers, light winds.
14-Sep-12	Fri	Dry, sunny periods, light to moderate north to northeasterly winds.
15-Sep-12	Sat	Mainly fine, very hot, moderate east to southeasterly winds.
16-Sep-12	Sun	Fine, dry, Light to moderate north to northeasterly winds.
17-Sep-12	Mon	Fine, dry, Light to moderate north to northeasterly winds.
18-Sep-12	Tue	Dry, cloudy, sunny intervals, moderate east to northeasterly winds.
19-Sep-12	Wed	Cloudy, moderate to fresh easterly winds.
20-Sep-12	Thu	cloudy, a few showers, moderate to fresh easterly winds
21-Sep-12	Fri	Dry, Cloudy, moderate to fresh northerly winds.
22-Sep-12	Sat	Sunny periods, light to moderate easterly winds.
23-Sep-12	Sun	Fine, dry, light to moderate north to northeasterly winds.
24-Sep-12	Mon	Rain, light to moderate easterly winds.
25-Sep-12	Tue	cloudy, a few showers, moderate to fresh easterly winds

Appendix J

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for September 2012

			Actu	al Quanti	ities of In	ert C&D	Material	s Genera	ted Mont	hly				A	ctual Qu	uantities	of C&D	Wastes	Generat	ed Montl	hly	
Month	Total Q Gene (a) = (c)	•	Hard Ro Large I Cono (t	Broken crete	Reused Cont (c	tract	Reused Proj (c	ects	Dispo Publi (6		Import (1		Ме	tals	Pap cardt packa		Plas	stics		mical aste	Oth e.g. ru	iers, 1bbish
	(in '00	$00m^{3})$	(in '00	$00m^{3})$	(in '00	$00m^{3})$	(in '00	$00m^{3})$	(in '00	00m ³)	(in '00	$00m^3$)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2012	10.430	33.543	0.160	0.407	0.740	1.059	0.000	0.000	9.690	32.484	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	206.870	46.690
Jan	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	22.530	5.090
Feb	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.860	5.660
Mar	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.940	9.500
Apr	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.520	1.700
May	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.750	5.090
Jun	0.091	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.710	6.400
<mark>Sub-total</mark>	11.820	48.585	0.160	0.410	0.740	1.059	0.000	0.000	11.080	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	<mark>294.180</mark>	80.130
Jul	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15.610	2.960
Aug	0.144	0.999	0.000	0.000	0.000	0.999	0.000	0.000	0.144	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	19.730	3.750
Sep	0.686	0.744	0.000	0.000	0.000	0.744	0.000	0.000	0.686	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.820	3.800
Oct																						
Nov																						
Dec																						
Total	12.898	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.158	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	<mark>356.340</mark>	90.640
Total	63.2	225	0.5	69	3.5	42	0.0	00	59.0	584	0.0	00	0.0	00	0.0	00	0.0	000	0.0	000	446.	.980

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan SKW: Sok Kwu Wan

Appendix K

Weekly Site Inspection Checklist

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

AUES

Project: Date:	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan	Inspected by Checklist No. TCS512E ETL/ET's Representative: Wong Fu Nam RE's Representative: Joseph Contractor's Representative: Edwin Loung IEC's Representative: Jiec's Representative: Time: 11:00								
PART Weath		ainy				onmental P 1/2007A	ermit No.			
Humid										
Wind:		alm								
Area li 1	nspected Sok Kwu Wan									
PART	B: SITE AUDIT									
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks			
Sectio	n 1: Water Quality	E			П	Π -				
1.01	Is an effluent discharge license obtained for the Project?		Ņ			— П				
1.02	Is the effluent discharged in accordance with the discharge licence?									
1.03	Is the discharge of turbid water avoided?		A		Ц	Ц.				
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?									
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?									
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?									
1.07	Is drainage system well maintained?	Ц								
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?									
1.09	Are temporary exposed slopes properly covered?									
1.10	Are earthworks final surfaces well compacted or protected?									
1.11	Are manholes adequately covered or temporarily sealed?	Ц								
1.12	Are there any procedures and equipment for rainstorm protection?									
1.13	Are wheel washing facilities well maintained?									
1.14	Is runoff from wheel washing facilities avoided?									
1.15	Are there toilets provided on site?									
1.16	Are toilets properly maintained?		Ų							
1.17	Are the vehicle and plant servicing areas paved and located within roofed areas?									
1.18			ЦД							
1.19	dialiade system:									
1.20	Washing during obridiet and									
1.21	Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?									
1.22	Are the oil interceptors/grease traps maintained properly?									

-nvironmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

COMPANY AND AND	and the second second
	and the second second
AT 10, 10, 10	10123
AT 10 10 10	1 M
And and a lot of the	100 m 10 100
ALC: NO. YOUR	ALC: NOT
_	

1.23 Is used bentonite recycled where appropriate? Image: Construction is undertaken in the settlement area. 1.24 and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation. Image: Construction is undertaken in the settlement area. 1.25 No excavation is undertaken in the settlement area. Image: Concreting wastes water should be neutralized below the pH Action Levels before discharge. Image: Concreting wastes should provide on site and located away the stream	lotor	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Decknade settlement area for underWorker weak wasto is provide and located at the atsemble with 1-2m deck. Tak long and und 50m² capacities for sedimentation. Image: Comparison of the settlement area. Image: Comparison of the settlement area. 125 No exclusion is undertaken in the settlement area. Image: Comparison of the settlement area. Image: Comparison of the settlement area. Image: Comparison of the settlement area. 126 Concerning wistle wide a number and located away the stream Image: Comparison of the settlement area. Image: Comparison of the settlement area. 126 Image: Comparison of the settlement area. Image: Comparison of the settlement area. Image: Comparison of the settlement area. 126 Image: Comparison of the settlement area. 127 Image: Comparison of the settlement area. 128 Are there whele washing facilities with high pressure jets provided at every weaking facilities with water overy area. Image: Comparison of the settlement area. Image: Comparison of the settlement area. 129 Are there whele washing facilities with water overy area. Image: Comparison of the settlement area. Image: Comparison of the settl	Note:	Follow Up: Observations requiring follow-up actions internet oppression						
124 and located, at the streambol with "Lank begin that here and a streambols for examples for example	1.23						-	
125 No accavation is undertaken in the settioned area.	1.24	and located at the streambed with 1-2m deep, 12m long and					<u>لا</u> –	
126 Concerting wastas water should be neutralized below the pH Action	1.25						Ц_	
12.12 Mobile typicals should provide on site and located away the stream	1.26	Concreting wastes water should be neutralized below the pH Action					2	
Licence collector should be employed for handling the servage of Image: Collector should be employed for handling the servage of 128 Licence collector should be employed for handling the servage of Image: Collector should be employed for handling the servage of 129 Laponding /stand water avoided? Image: Collector should be employed for handling? Image: Collector should be employed for handling? 201 Are there whoel washing facilities with high pressure jets provided at very vehicle ext point of states? Image: Collector should be employed for handling? 202 Are there awoled consequences of the external data with water during handling? Image: Collector should be employed for handling? Image: Collector should be employed for handling? 203 Are the excended materials sprayed with water, covered or provide and theoler aword or provide and theoler aword or provide and the entire road in the heoler aword or provide and theoler aword or provide a state aword provide a state aword aword or provide a state aword aw	1.27	Mobile toilets should provide on site and located away the stream		D				
129 Is ponding /stand water avoided? Image: stackpiles well covered by impermeable sheet? 130 Is open stackpiles well covered by impermeable sheet? Image: stackpiles wells covered by impermeable sheet? 201 Are there wheel washing facilities with high pressure jets provided in every vehicle scit point? Image: stackpiles wells covered by due y materials from their 202 Are there scatched washing facilities with water during handling? Image: stackpiles of dusty materials sprayed with water, covered or Image: stackpiles of dusty materials sprayed with water, covered or 203 Are the excess roads sprayed with water to maintain the entire road instant water or paradion continuously sprayed with water? Image: stackpiles covered on their sprayed with water? 204 Is the suffice water any diffing, cutting, polishing or breaking instance where any diffing, cutting, polishing or breaking instance water any diffing, cutting, polishing or breaking instance water any diffing, cutting, polishing or breaking instance water any diffing, cutting, balance and tail Image: stackpiles covered entry open instance and stating instance and stating instance water any diffing waterials? 205 Is the loading of materials to a level higher than the side and tail Image: stackpiles covered entry open instance and stating instance and instance anone than instance and instance and instance and		License collector should be employed for handling the sewage of						
1.30 Is open stockplies well covered by impermeable sheet?		and the the dynamics						
Section 2: Air Quality 201 Are three wheel weaking facilities with high pressure jets provided at every vehicles waked to remove any dusty materials from their baddes and wheels before leaving construction stes? 202 Are weaking construction stes? 203 Are the excavated materials sprayed with water, covered or placed in shetered areas? 204 placed in shetered areas? 205 Is the excavated materials sprayed with water, covered or placed in shetered areas? 206 state excess codes sprayed with water to maintain the entire road particles water any duiling, cutting, polishing or breaking poperation continuously sprayed with water? 206 Is the load on vehicles covered entirely by clean impervious hereing? 207 Is the load on vehicles covered entirely by clean impervious hereing? 208 Is the load on vehicles covered entirely by clean impervious hereing? 209 Is the load on vehicles ecovered entirely by clean impervious entrance kept clear of dusty materials? 2101 Is daw armoperation by vehicles avoided? 2112 Is daw induction advisition and on the vehicle entrance kept clear of dusty materials? 2121 Are the dagging, batching and mixing provided along the ste boundary, which adjoin steres accessible to the public? 2132 Are the adding on the stream must remove form site on the sing avoiding? 21				Ń				
201 Are there wheel weaking facilities with high pressure jets provided								
201 at every vehicle exit point? 202 Are used in point of the exit point? 203 Are stockpiles of dusty materials sprayed with water during handing? 204 Are stockpiles of dusty materials sprayed with water, covered or pleace in shelterod areas? 205 Is the excovated materials sprayed with water, covered or construction activities? 206 Is the excovated materials sprayed with water of maints in the entire road and suffice weat or parent? 207 Is the excess roads sprayed with water? 208 Is the suffice wather? 209 Is the load on vehicles covered entirely by clean impervious sheeting? 209 Is the load on vehicles covered entirely by clean impervious sheeting? 209 Is the load on vehicles acoled? 201 Is the suffice or dusty materials? 203 Is the load on vehicles acoled? 204 Is the suffice interview with water? 205 Is the load on vehicles acoled? 206 entrance kept clear of dusty materials? 207 Is the construction at the within 30m of the vehicle entrance kept clear of dusty materials? 211 Is deve hadrig and mixing processes carried out in sheltered areas during the use of bagged cement? 212 Are debagging, batching	Sectio							
2020 bodies and wheels before leaving construction auks? 2.03 Are the excavated materials sprayed with water during handling? 2.04 Are stockplies of duty materials sprayed with water, covered or placed in sheltered areas? 2.05 Is the exposed earth properly treated within six months after the last construction activities? 2.06 Is the exposed earth properly treated within six months after the last construction activities? 2.06 Is the excass roads sprayed with water? 2.07 Is the surface where any diffing, cutting, polishing or breaking operation continuously prayed with water? 2.08 Is the load on vehicles covered entirely by clean impervious sheeting? 2.09 Is the coading of materials to a level higher than the side and tail place that the construction set within 30m of the vehicle entrance kept clear of dusty materials? 2.10 Is dark smoke emission from plantlequipment avoided? 2.11 Is dark smoke emission from plantlequipment avoided? 2.12 Are debagging, batching and mixing processes carried out in sheared areas during the use of bagged cament? 2.11 Is dark smoke emission from plantlequipment avoided? 2.12 Are chardings of not less than 2.4m high provided along the site boundary, which adjoines areas accessible to the public? 2.13 Is open huming avoided? 2.14	2.01	at every vehicle exit point?			Π		1	
2.04 Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas? 2.05 Is the spoced earth properly treated within six months after the last construction activities? 2.06 access roads sprayed with water to maintain the entire road surface where any drilling, cutting, polishing or breaking potentiation continuously sprayed with water? 2.07 is the surface where any drilling, cutting, polishing or breaking potentiation or whicles covered entirely by clean impervious sheeling? 2.08 is the load on vehicles covered entirely by clean impervious characteristic of materials to a level higher than the side and tail construction stite within 30m of the vehicle continuously materials are avoided? 2.10 Is the loading to the construction site within 30m of the vehicle contracteristic and the construction site within 30m of the vehicle contracteristic and the construction site within 30m of the vehicle contracteristic and the vehicle contracteristic and the vehicle contracteristic and the vehicle contracteristic and the stoce and the vehicle contracteristic and the vehicle contracteristic and the vehicle contracteristic conteristiconte contracteristiconte contracteristic contr	2.02	bodies and wheels before leaving construction sites?					П	
2.109 placed in shettered areas? 2.05 construction activities? 2.06 Are the access roads sprayed with water to maintain the entire road surface wet or paved? 2.07 Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water? 2.08 Is the load on vehicles covered entirely by clean impervious sheeting? 2.09 Is the load on vehicles covered entirely by clean impervious sheeting? 2.09 Is the load on vehicles covered entirely by clean impervious sheeting? 2.09 Is the load on vehicles covered entirely by clean impervious sheeting? 2.09 Is the construction site within 30m of the vehicle entrance kept clear of dusty materials? 2.11 Is dark smoke emission from plant/equipment avoided? 2.12 Is dark smoke emission from plant/equipment avoided? 2.13 tiske the construction site within 30m of the vehicle entrance kept clear of dusty materials? 2.14 Is dark smoke emission from plant/equipment avoided? 2.15 Is dark smoke emission from plant/equipment avoided? 2.16 Is dark smoke any stream must remove form site on the same day. The materials shall be stored in covered impermeable site same day. The materials shall be stored in covered impermeable 3.01 Are noisy equipment and activities positioned as far as practicable	2.03							
200 construction activities? 201 is the surface where parved? 202 is the access roads sprayed with water? 203 is the load on vehicles covered entirely by clean impervious 204 is the load on vehicles covered entirely by clean impervious 205 is the load on vehicles covered entirely by clean impervious 206 is the load on vehicles covered entirely by clean impervious 207 is the load on vehicles covered entirely by clean impervious 208 is the load on vehicles covered entirely by clean impervious 209 is the load on vehicles covered entirely by clean impervious 209 is the load on vehicles covered entirely by clean impervious 209 is the load on vehicles covered entirely by clean impervious 201 is the construction site within 30m of the vehicle 201 is the road leading to the construction site within 30m of the vehicle 2011 is dark smoke emission from plant/equipment avoided? 202 Are de-bagging, batching and mixing processes carried out in shittered areas during the use of bagged cement? 2014 Are stere vehicles travelling within the speed limit not more than 1 2015 is open burning avoided? 2026 is admotive diag	2.04	placed in sheltered areas?						
2.06 Are the access roads sprayed with water to maintain the entire road Jurface wet or paved? Is the surface where any drilling, cutting, polishing or breaking generation continuously sprayed with water? 2.07 is the load on vehicles covered entirely by clean impervious Is the loading or materials to a level higher than the side and tail bards during transportation by vehicles avoided? Is the road leading to the construction site within 30m of the vehicle Is the road leading to the construction site within 30m of the vehicle Is dark smoke emission from plant/equipment avoided? Are de-bagging, batching and mixing processes carried out in sheattered areas during the use of bagged cement? Are de-bagging, batching and mixing processes carried out in the sheat during so of the symbolic stream must remove form site on the public? Is open burning avoided? Is open burning avoided? Is open burning avoided? Is open burning avoided? Is sentitive receivers? Section 3: Noise Section 3: Noise Section 3: Noise Section 3: Noise Is selenced equipment adopted? Is is leaquipment adopted? Is is leaquipment adopted? Is selenced equipment well maintained and in good condition?	2.05	construction activities?						
207 Is the surface where any drilling, cutting, polishing or breaking	2.06	Are the access roads sprayed with water to maintain the entire road		\square				
2.08 is the load on vehicles covered entirely by clean impervious	2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		Ď				
2.09 Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided? Image: Construction site within 30m of the vehicle entrance kept clear of dusty materials? 2.10 Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials? Image: Construction site within 30m of the vehicle entrance kept clear of dusty materials? 2.11 Is dark smoke emission from plant/equipment avoided? Image: Construction site within 30m of the vehicle entrance kept clear of dusty materials? Image: Construction site within 30m of the vehicle entrance kept clear of dusty materials? 2.11 Is dark smoke emission from plant/equipment avoided? Image: Construction site within 30m of the vehicle entrance kept clear of dusty materials? Image: Construction site within 30m of the vehicle entrance kept clear of dusty materials? 2.12 Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement? Image: Construction site whice the same dust in the speed limit not more than 15km/hour? 2.13 Are bise which adjoins areas accessible to the public? Image: Construction site which adjoins areas accessible to the public? Image: Construction site with adjoins areas accessible to the public? 2.15 Is open burning avoided? Image: Construction site with materials shall be stored in covered impermeable skips awaiting removal from site. Image: Construction site which adjoins areas accessible to the public? <	2.08	Is the load on vehicles covered entirely by clean impervious					4	
2.10 Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials? Is dark smoke emission from plant/equipment avoided? Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement? Are site vehicles travelling within the speed limit not more than 15km/hour? Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public? Is open burning avoided? Excavated materials from the stream must remove form site on the skips awaiting removal from site. Section 3: Noise Are all plant and equipment adopted? Is silenced equipment turned off or throttled down? Is idle equipment turned off or throttled down? Is idle equipment turned off or throttled noise emission labels during Are and cheld breakers fitted with valid noise emission labels during Are ari compressors fitted with valid noise emission labels during 	2.09	to the loading of materials to a level higher than the side and tail					I	
2.11 Is dark smoke emission from plant/equipment avoided?		Is the road leading to the construction site within 30m of the vehicle					Ø	
2.12 Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement? Image: Content of the shelt of the shell of the sh								
2.12 sheltered areas during the use of bagged center. Are site vehicles travelling within the speed limit not more than		Are de bagging batching and mixing processes carried out in					\square	
2.10 15km/hour? 2.14 Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public? Image: Construction adjoins areas accessible to the public? 2.14 Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public? Image: Construction adjoins areas accessible to the public? 2.15 Is open burning avoided? Image: Construction adjoins areas accessible to the public? Image: Construction adjoins areas accessible to the public? 2.16 Is open burning avoided? Image: Construction adjoins areas accessible to the public? Image: Construction adjoins areas accessible to the public? 2.16 Is open burning avoided? Image: Construction adjoins areas accessible to the public? Image: Construction adjoins areas accessible to the public? 3.01 Are noise pariers or enclosures provided at areas where construction adjoins areas accessible and and noise emission labels during operation? Image: Construction adjoins areas accessible adjoins areas and adjoins areas and adjoins areas and adjoins areas access filted with valid noise emission labels during and adjoins areas access and adjoins areas and adjoins areas access and adjoins areas access and adjoins areas and adjoint adjoins areas and adjoint ad		sheltered areas during the use of bagged cement?					\square	
2.14 boundary, which adjoins areas accessible to the policit. 2.15 Is open burning avoided? Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site. Section 3: Noise 3.01 Are noisy equipment and activities positioned as far as practicable from the sensitive receivers? 3.02 Is silenced equipment adopted? 3.03 Is idle equipment turned off or throttled down? 3.04 Are all plant and equipment well maintained and in good condition? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels 3.06 Are air compressors fitted with valid noise emission labels during	2.13	15km/hour?					1	
Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site. Image: Construction of the stream must remove form site on the skips awaiting removal from site. Section 3: Noise Image: Construction of the sensitive receivers? Image: Construction of the sensitive receivers? 3.01 Are noisy equipment adopted? Image: Construction of the sensitive receivers? Image: Construction of the sensitive receivers? 3.03 Is idle equipment turned off or throttled down? Image: Construction of the sensitive receivers? Image: Construction of the sensitive receivers? 3.04 Are all plant and equipment well maintained and in good condition? Image: Construction of the sensitive receivers? Image: Construction of the sensitive receivers? 3.06 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction of the sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Image: Construction c	2.14	boundary, which adjoins areas accessible to the public?						
2.16 same day. The materials shall be stored in covered impermeable skips awaiting removal from site. Section 3: Noise 3.01 Are noisy equipment and activities positioned as far as practicable from the sensitive receivers? 3.02 Is silenced equipment adopted? 3.03 Is idle equipment turned off or throttled down? 3.04 Are all plant and equipment well maintained and in good condition? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Are air compressors fitted with valid noise emission labels during Image: Compressors fitted with valid noise emission labels during	2.15			۲Ľ				
Section 3: Noise 3.01 Are noisy equipment and activities positioned as far as practicable from the sensitive receivers? 3.02 Is silenced equipment adopted? 3.03 Is idle equipment turned off or throttled down? 3.04 Are all plant and equipment well maintained and in good condition? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? 3.06 Are air compressors fitted with valid noise emission labels during	2.16	same day. The materials shall be stored in covered impermeasing						
3.01 from the sensitive receivers? 3.02 Is silenced equipment adopted? 3.03 Is idle equipment turned off or throttled down? 3.04 Are all plant and equipment well maintained and in good condition? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during are air compressors fitted with valid noise emission labels during	Sec	tion 3: Noise				_		
3.03 Is idle equipment turned off or throttled down? Image: Construction and equipment well maintained and in good condition? Image: Construction activities cause noise impact on sensitive receivers? 3.04 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Image: Construction activities cause noise emission labels during	3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.04 Are all plant and equipment well maintained and in good condition? Image: Construction activities cause noise impact on sensitive receivers? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Image: Construction activities cause noise emission labels during	3.02	Is silenced equipment adopted?						
3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Image: Construction activities cause noise emission labels during a.e. Are air compressors fitted with valid noise emission labels during Image: Construction activities cause noise impact on sensitive receivers?	3.03	Is idle equipment turned off or throttled down?		Ø				
3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Image: Construction activities cause noise impact on sensitive receivers? are air compressors fitted with valid noise emission labels during Image: Construction activities cause noise impact on sensitive receivers?	3.04	Are all plant and equipment well maintained and in good condition		\square				
3.06 Are hand held breakers fitted with valid noise emission labels	3.05	the price barriers or enclosures provided at areas where					Z	
Are air compressors fitted with valid noise emission labels during	3.00	Are hand held breakers fitted with valid noise emission label	s	Ø				
	3.0	Are air compressors fitted with valid noise emission labels durin	9	\square				

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

|--|

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during		Ø			+.	
	operation? Are Construction Noise Permit(s) applied for percussive piling						
3.09	works? Are Construction Noise Permit(s) applied for general construction	Π					
3.10	works during restricted hours?		П	Π			
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures). Temporary/Moveable noise barrier or site hoarding are provide or					Ш -	
3.13	erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)		Ø				
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					Ø	
Secti	on 4: Waste/Chemical Management	_					
4.01	Waste Management Plan had been submit to Engineer for approval.						<u>}</u>
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?					Ц.	
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?					Ø	
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11				Ц			
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13							,
4.14	construction wastes:						
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?						
4.17							
4.18	Instead of timber:						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		Ø				
4.20	Are appropriate procedures followed if contaminated materia						
4.2	is relevant license/ permit for disposal of construction waste o	r 🗌				Ø	
4.2	Site cleanliness and appropriate waste management training had						
4.2	Contaminated sediments will managed according to WBT(

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
n 5: Landscape & Visual						Refer to Monthly
Are retained and transplanted trees in health condition?						EM&A report - Appendix M
Are retained and transplanted trees properly protected?						
Is damage to trees outside site boundary due to construction						
Is the night-time lighting controlled to minimize glare to sensitive receivers?						
				12.	_	
Are relevant Environmental Permits posted at all vehicle site entrances/exits?						
	Follow Up: Observations requiring follow-Up actions MAX Not Applicable on 5: Landscape & Visual Are retained and transplanted trees in health condition? Are retained and transplanted trees properly protected? Are surgery works carried out for the damaged trees? Is damage to trees outside site boundary due to construction activities avoided? Is the night-time lighting controlled to minimize glare to sensitive receivers? on 6: Others Are relevant Environmental Permits posted at all vehicle site	Not Obs:: Not Observed; Yes: Compliance, No. Not Not Applicable Obs. Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Obs. on 5: Landscape & Visual Image: Compliance of the second seco	Not Obs:: Not Observed; Yes: Compliance, Not Roll-Compliance, Not Applicable Obs. Yes Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Obs. Yes on 5: Landscape & Visual	Not Obs:: Not Observed; Yes: Compliance, Not Not Sompliance, Not Observations requiring follow-Up actions N/A: Not Applicable Obs. Tes Not Observations requiring follow-Up actions N/A: Not Applicable Image: Som 5: Landscape & Visual Are retained and transplanted trees in health condition? Image: Som	Not Obs:: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Not Yes No Up Obs. Obs. Ves No Up Im 5: Landscape & Visual Image: Compliance in the alth condition? Image: Compliance in the alth condition?	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Not Yes No Up N/A Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Obs. Yes No Up N/A on 5: Landscape & Visual

AUES

(Sok Kwu Wan)

Remarks:	·
Findings of Site Inspection: ($28Ang 20/2$):	Follow up: Not required.
O Observation =	
XJ.	
2 Reminder: Construction dust	r suppression measures are reminded whiles under day and windy conditions
, during durity ach	whiles under dry and windy conductions

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
()	Josephnic	(Fring)	Jenjito An (M-S-leng)	()

4

AUES

Project:	TCS/00512/09	Inspected by ETL/ ET's Representative RE's Representative Contractor's Representative IEC's Representative Time:			Checklist No. TCS512B-4-Sep-2012				
	Construction of Sewage Treatment Works at				Wong Fu nam Joseph Ng Edwin Leung				
	Tung entre the test								
Date:					14:00				
PART					Enviro	nmental	Permit No.		
Weath		Rainy			✓ EP- 281	/2007A			
Tempe									
Humid	ity: High Moderate Low								
Wind:	Strong Breeze Light	Calm							
	spected								
1	Sok Kwu Wan								
PART	3: SITE AUDIT				an a		00_00_01_01_00_00_00_00_00_00000000000		
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes N	No	Follow Up	N/A	Photo/ Remarks		
sbi	n 1: Water Quality					-			
1.01	Is an effluent discharge license obtained for the Project?		\Box						
1.02	Is the effluent discharged in accordance with the discharge licence?								
1.03	Is the discharge of turbid water avoided?								
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?								
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?								
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?								
1.07	Is drainage system well maintained?								
1.08 ···	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?								
1.09	Are temporary exposed slopes properly covered?								
11)	Are earthworks final surfaces well compacted or protected?		\square						
1.11	Are manholes adequately covered or temporarily sealed?								
1.12	Are there any procedures and equipment for rainstorm protection?								
1.13	Are wheel washing facilities well maintained?								
1. 1 4	Is runoff from wheel washing facilities avoided?								
1.15	Are there toilets provided on site?								
1.16	Are toilets properly maintained?								
<u></u> 1.17	Are the vehicle and plant servicing areas paved and located withi roofed areas?	n 🔲							
1.18	Is the oil leakage or spillage avoided?					Ĺ,			
. 1.19	Are there any measures to prevent leaked oil from entering th drainage system?						· .		
1.20	Are there any measures to collect spilt cement and concret washings during concreting works?								
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	is							
1.22	Are the oil interceptors/grease traps maintained properly?				\Box .				

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow ` Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					Ø	99444499999999999999999999999999999999
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					Ź	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.		\square				
1.27	Mobile toilets should provide on site and located away the stream course.					Í,	
1.28	License collector should be employed for handling the sewage of mobile toilet.					ZÍ.	•
1.29	Is ponding /stand water avoided?		Ø				
1.30	Is open stockpiles well covered by impermeable sheet?						
Sectio	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						(
2.03	Are the excavated materials sprayed with water during handling?		\square				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		Ď				
2.05	Is the exposed earth properly treated within six months after the last construction activities?		Ĺ				
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?			<u> </u>			
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		Ø				
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		Ĺ				tere processo and a state of the second state of the second state of the second state of the second state of the
2.11	Is dark smoke emission from plant/equipment avoided?		\square				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		\square				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		\square				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		đ				
2.15	Is open burning avoided?		\square				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		Ø				
Sect	tion 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?		\square				
3.03	Is idle equipment turned off or throttled down?		\square				
3.04			\square				
3.05	construction activities cause holse impact on schatter receiverer		Ł				
3.06	Are hand held breakers fitted with valid noise emission labels	· 🗌	\square				

Ø

Are hand held breakers fitted with valid nois 3.06 during operation?

Are air compressors fitted with valid noise emission labels during 3.07 operation?

,t

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?		Z				
3.09	Are Construction Noise Permit(s) applied for percussive piling works?		\square				
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?		Ø				
3.11	Are valid Construction Noise Permit(s) posted at site entrances?		Ø				
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).		P				
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)		Ó				
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					2	·
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\square				
4.92 ()	Are receptacles available for general refuse collection?		Z.				
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?		Ø				
4.07	Are the chemical wastes stored in proper storage areas?		Ø				
4.08	Is the chemical container or equipment provided with drip tray?		Ø				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		\square				
4.10	Are incompatible chemical wastes stored in different areas?		\square				
4.11	Arè the chemical wastes disposed of by licensed collectors?		\square				
4.12	Are trip tickets for chemical wastes disposal available for inspection?		Ø				
)	Are chemical/fuel storage areas bounded?		ď				
4.14	Are designated areas identified for storage and sorting of construction wastes?		Ń				·
4.15	Are construction wastes sorted (inert and non-inert) on site?		\square				
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?		Ø				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		Ń				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?	۰ ا	Z				
4.20	Are appropriate procedures followed if contaminated materia exists?		Ń				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		Ź				
4.22	provided for the site workers.		\square				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\square	

۰,

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - _Appendix M
5.02	Are retained and transplanted trees properly protected?						
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						******
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	on 6: Others			•			~
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

(

(Sok	Kwu	Wan)
------	-----	------

Remarks:			
Findings of Site Inspection: ($4 \text{ Sqt} \text{-}012$):	Follow up:	(4 Sept 2012)	
No adverse impacts were observed.		No follow-up actions required	are

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative	
	to a		٨		
	Green.	ANT P			
	Ŷ	W	ley lo the		
(.)	(Joseph Ng)	(Afong/Fu Nam)	(Édwin Leung)	()
		•	i		

HUED

Project:	TCS/00512/09 li	nspected by		(Checklist No. <u>TCS512B-</u> <u>TCS512B-</u>				
-	Construction of Sewage Treatment Works at	ETL/ ET's Representative			Wong Fu nam				
	Yung Shue Wan and Sok Kwu Wan	RE's Repres			Joseph Ng Edwin Leung				
			Representati	ve _	Edwin Leun	g			
		IEC's Representative Time:			9=30				
Date:	11-Sep-2012	Time.	an a		Environmental Permit No.				
PART				г 	✓ EP- 28 ⁴				
Weathe		Rainy		L		1/20077			
Temper									
Humidi		∕ Calm							
Wind:		Cum							
	spected Sok Kwu Wan								
					a an	an and the second second second	caretor formation Download Street and a Download Street and a street and a street and a street and a street and		
PART E	SITE AUDIT								
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks		
jor	1: Water Quality	— 1		1					
1.01	Is an effluent discharge license obtained for the Project?								
1.02	Is the effluent discharged in accordance with the discharge licence?		1 1 1						
1.03	Is the discharge of turbid water avoided?		\checkmark				Note 2		
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?	ـــا	đ						
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?								
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?								
1.07	Is drainage system well maintained?					·	Note 2		
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?	У 🗍							
1.09	Are temporary exposed slopes properly covered?								
<u>1.10</u>	Are earthworks final surfaces well compacted or protected?					L. M			
1.11	Are manholes adequately covered or temporarily sealed?								
1.12	Are there any procedures and equipment for rainstorm protection?	?	Ø						
1.13	Are wheel washing facilities well maintained?								
1.14	Is runoff from wheel washing facilities avoided?								
1.15	Are there toilets provided on site?								
1.16	Are toilets properly maintained?		$\overline{\mathbf{V}}$						
1.17	Are the vehicle and plant servicing areas paved and located with roofed areas?	nin				đ			
1.18	Is the oil leakage or spillage avoided?						Note I		
1.19	Are there any measures to prevent leaked oil from entering t drainage system?	he	\square		-		Note 1		
1.20	Are there any measures to collect spilt cement and concre washings during concreting works?								
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	ms							
1.22	Are the oil interceptors/grease traps maintained properly?					Ø			

Auts

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					M	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streamhed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					Ø.	-
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					I	
1.27	Mobile toilets should provide on site and located away the stream course.		Ì			·	
1.28	License collector should be employed for handling the sewage of mobile toilet.		\Box			_	
1.29	Is ponding /stand water avoided?		\Box				
1.30	Is open stockpiles well covered by impermeable sheet?					\square	
Secti	on 2: Air Quality					-	
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					d.	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?					Ø	(
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					Y	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					Y	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\checkmark				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		$\overline{\mathbf{A}}$				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					g	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					V	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					V	
2.11	Is dark smoke emission from plant/equipment avoided?		I				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					ſ	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					V	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		V				
2.15	Is open burning avoided?		$\overline{\mathbf{A}}$				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					Y	
Sect	ion 3: Noise		;				
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		Ø				
3.02	Is silenced equipment adopted?		Ø				
3.03	Is idle equipment turned off or throttled down?		Y				
3.04	Are all plant and equipment well maintained and in good condition?		Ŀ				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?	' D				V	
3.06	during operation?		,				
3.07	Are air compressors fitted with valid noise emission labels during operation?	V					

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during		\square				
3.09	operation? Are Construction Noise Permit(s) applied for percussive piling works?					\square	
3.10	works? Are Construction Noise Permit(s) applied for general construction works during restricted hours?					9	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Secti	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\square				
4.02	Are receptacles available for general refuse collection?		$\overline{\mathcal{A}}$				
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?					Ø	
4.06	Are the chemical waste containers and storage area properly labelled?		Ī				Note 1
4.07	Are the chemical wastes stored in proper storage areas?		Ø				Note 1
4.08	Is the chemical container or equipment provided with drip tray?		\checkmark				Note 1
4.09	Is the chemical waste storage area used for storage of chemical waste only?					Ø	
4.10	Are incompatible chemical wastes stored in different areas?					Z,	۰
4.11	Are the chemical wastes disposed of by licensed collectors?					\square	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					Ø	
(Are chemical/fuel storage areas bounded?					Z	
4.14	Are designated areas identified for storage and sorting of construction wastes?					1	
4.15	Are construction wastes sorted (inert and non-inert) on site?		Z				
4.1€	Are construction wastes reused?		\square				
4.17	Are construction wastes disposed of properly?		\square				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		Ø				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\square				-
4.20	Are appropriate procedures followed if contaminated material exists?					\square	
4.2	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\square	
4.2	2 Site cleanliness and appropriate waste management training had provided for the site workers.	Í					
4.2	Contaminated sediments will managed according to WBTC					\square	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section 5: Landscape & Visual							
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?		\square				
5.03	Are surgery works carried out for the damaged trees?	\square					
5.04	Is damage to trees outside site boundary due to construction activities avoided?					\square	
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\square	
Sectio	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (11 Sept202): Entrowup: 1) Out drams were observed within the site. Drip trays are required or removal of the Follow Up: 1) Oil drums were removed 2) Excessive sediment was Oil drums to a storage area is reminded to prevent Contamination of soil and water

2) Removal of sediment from the Sedimentation tank is observed Maintenance of regular cleavance of the accumulated sediment is reminded to avoid overflow of

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative	*
	Joseph	W.M.			
()	(Joseph Ng)	(Avong Fu Nam) 11 Sept 2012	(Edwin Leung) H.S.L.	()	-

.

Multo

.....

Project:		Inspected by			Checklist No. <u>TCS512B-</u> FNWW					
	Construction of Sewage Treatment Works at	ETL/ ET's Representative:				20 1	Na			
	Yung Shue Wan and Sok Kwu Wan	RE's Representative: Contractor's Representative:			1-1	seph un Li	Ng			
			resentative		Jull		<u></u>			
Date:		Time: 14:0								
PART	A: GENERAL INFORMATION				Enviro	onmental F	Permit No.			
Weath		iny			✓ EP- 28 ²	1/2007A				
Temper	ature: °C									
Humid										
Wind:	Strong Breeze Z Light Ca	ılm								
	spected Sok Kwu Wan									
						and the second				
PART E	SITE AUDIT									
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks			
1.1	1: Water Quality			اب						
1.01	Is an effluent discharge license obtained for the Project?									
1.02	Is the effluent discharged in accordance with the discharge licence?									
1.03	Is the discharge of turbid water avoided?									
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?									
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?									
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?									
1.07	Is drainage system well maintained?		\square							
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?									
1.0 9	Are temporary exposed slopes properly covered?		\square							
1.10	Are earthworks final surfaces well compacted or protected?									
() 1:11	Are manholes adequately covered or temporarily sealed?		\square							
1.12	Are there any procedures and equipment for rainstorm protection?						Material and a second state of the			
. 1.13	Are wheel washing facilities well maintained?			·			····			
1.14	Is runoff from wheel washing facilities avoided?									
1.15	Are there toilets provided on site?									
1.16	Are toilets properly maintained?		\Box				and the second statement of the se			
1.17	Are the vehicle and plant servicing areas paved and located within roofed areas?		Ø							
1.18	Is the oil leakage or spillage avoided?									
1.19	Are there any measures to prevent leaked oil from entering the drainage system?		\square							
1.20	Are there any measures to collect spilt cement and concrete washings during concreting works?		\square							
1.21	Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?									
1.22	Are the oil interceptors/grease traps maintained properly?									

L

HUED

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?		\square				
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.		\square				
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.		\square				
1.27	Mobile toilets should provide on site and located away the stream course.		\square				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\square				
1.29	Is ponding /stand water avoided?		\square				
1.30	Is open stockpiles well covered by impermeable sheet?		\square				
Secti	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					ß	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?					2	×
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		Ø				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		Į				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\square	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\square	
2.11	Is dark smoke emission from plant/equipment avoided?		Z				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than					\square	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?	, []	Z				
2.15	Is open burning avoided?		\square				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					ŕ	
Sec	tion 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		Į				
3.02	2 Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04							
3.0	construction activities cause noise impact on scholare receivers :					April 1	
3.00	during operation:						
ä.0	Are air compressors fitted with valid noise emission labels durin operation?	g					

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						,
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure) Temporary/Moveable noise barrier equal to or more than 3m height						
3.14	with 10kg/m ² are provide for noise mitigation measures (Level 2 mitigation measures).			-		Z.	
Sectio	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?		Z				ч
() 4.03	Is general refuse sorting or recycling implemented?		\square				
4.04	Is general refuse disposed of properly and regularly?		Z				
4.05	Is the Contractor registered as a chemical waste producer?					\square	
4.06	Are the chemical waste containers and storage area properly labelled?					Ø	
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?		\square			· 🗌 ·	
4.09	Is the chemical waste storage area used for storage of chemical waste only?	Ĺ					
4.10	Are incompatible chemical wastes stored in different areas?	\square					
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?		\square				
3	Are chemical/fuel storage areas bounded?		\square				
4.14	Are designated areas identified for storage and sorting of construction wastes?		\square				
4.15	Are construction wastes sorted (inert and non-inert) on site?		\square				
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\square			,	
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\square				
4.20	Are appropriate procedures followed if contaminated material exists?				· 🗌		
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		\square				
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						Lage 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?	Ń					
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?		ď.				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?	Ź					

(Sok Kwu Wan)

Remarks: 18 Sept 2012 Not required for Findings of Site Inspection: (/8 Sept 2012): Follow up: No adverse environmental impacts were observed during the site general reminders, Inspection, Hewever, full implementation of the required environmental mutigations is reminded.

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	Faceph.	anno	Ly us at	
()	Josephil	Exalon)	(A.S. bern)	()

AUES

	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 25 2012 A: GENERAL INFORMATION er: Sunny Fine Cloudy R rature: 28 "C "Low ity: High Moderate Low	RE's Rep Contract	s Represer presentativ or's Repre presentativ	e: sentative		- N W Joseph Edarin 4 200	h Ng
PARTÉ	3: SITE AUDIT					a the second	
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
L	n 1: Water Quality						
1.01	Is an effluent discharge license obtained for the Project?						
1.02	Is the effluent discharged in accordance with the discharge licence?						
1.03	Is the discharge of turbid water avoided?						
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?	,	Þ				
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?						
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?		\square				
1.07	Is drainage system well maintained?		\square				
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?						
1.09	Are temporary exposed slopes properly covered?						
1.10	Are earthworks final surfaces well compacted or protected?			•			
() 1	Are manholes adequately covered or temporarily sealed?		\square				
1.12	Are there any procedures and equipment for rainstorm protection?		Ø				
1.13	Are wheel washing facilities well maintained?		\square				
1.14	Is runoff from wheel washing facilities avoided?		\square				
1.15	Are there toilets provided on site?						
1.16	Are toilets properly maintained?						
1.17	Are the vehicle and plant servicing areas paved and located within roofed areas?						
1.18	Is the oil leakage or spillage avoided?		Ń				
1.19	Are there any measures to prevent leaked oil from entering the drainage system?		\square				
1.20	Are there any measures to collect spilt cement and concrete washings during concreting works?						
1.21	Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?						
1.22	Are the oil interceptors/grease traps maintained properly?		Ź				·

L

AUE	5
-----	---

Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Is used bentonite recycled where appropriate?						
Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
No excavation is undertaken in the settlement area.						
Concreting wastes water should be neutralized below the pH Action Levels before discharge.		\square				
Mobile toilets should provide on site and located away the stream course.		\square				
License collector should be employed for handling the sewage of mobile toilet.		\square	-			
Is ponding /stand water avoided?		\square				
Is open stockpiles well covered by impermeable sheet?						
on 2: Air Quality					-	
Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\square	
Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
Are the excavated materials sprayed with water during handling?						
Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						· ·
Is the exposed earth properly treated within six months after the last construction activities?		\square				
Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\mathbf{k}				
Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
Is the load on vehicles covered entirely by clean impervious sheeting?						
Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
Is dark smoke emission from plant/equipment avoided?						
Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
Are site vehicles travelling within the speed limit not more than 15km/hour?					\square	(
Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?					\square	
Is open burning avoided?		\square				
Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
ion 3: Noise						
Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
Is silenced equipment adopted?		Ø	-			
Is idle equipment turned off or throttled down?						
Are all plant and equipment well maintained and in good condition?						
Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\square	
Are hand held breakers fitted with valid noise emission labels during operation?					Z	
Are air compressors fitted with valid noise emission labels during operation?						
	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Is used bentonite recycled where appropriate? Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ² capacities for sedimentation. No excavation is undertaken in the settlement area. Concreting wastes water should be neutralized below the pH Action Levels before discharge. Mobile toilets should provide on site and located away the stream course. License collector should be employed for handling the sewage of mobile toilet. Is ponding /stand water avoided? Is open stockpiles well covered by impermeable sheet? <i>on 2: Air Quality</i> Are there wheel washing facilities with high pressure jets provided at every vehicle exit point? Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites? Are the excavated materials sprayed with water, covered or placed in sheltered areas? Is the excess coads sprayed with water during handling? Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas? Is the surface where any dilling, cutting, polishing or breaking operation continuously sprayed with water? Is the load on vehicles covered entirely by clean impervious sheeting? Is the load on vehicles covered entirely by clean impervious sheeting? Is the load on placed and mixing processes carried out in sheltered areas during the use of bagged cement? Are sheicles travelling within the speed limit not more than 15km/hour? Are barging, batching and mixing processes carried out in sheltered areas during the use of bagged cement? Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public? Is open burning avoided? Is open burning avoided? Is derive any endies specified and mixing processes carried out in sheltered areas during the use of bagged cement? Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins	Follow Up: Observations requiring follow-Up actions NA: Not Applicable Obs. Is used bentonite recycled where appropriate?	Follow Up: Observations requiring follow-Up actions NA: Not Applicable Obs. Tes Is used bentonite recycled where appropriate?	Follow Up: Obsenations requiring follow-Up actors: NAK Nat Applicable Obs. Yes No Is used bontonike recycled where appropriate?	Follow Up: Observation: requiring follow-Up actions: NAF Not Applicable Obs. Yes No Up Is used bentonite recycled where appropriate?	Fielder Up Observations requiring failuw-Up attractions IN/A Not Applicable One. Yes No Up NVA is used borthomic recycled where appropriate?

Enviro

onmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan	AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					ď	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						-
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					Ø	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					۲.	
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?		\square				
, J3	Is general refuse sorting or recycling implemented?						
4.04	ls general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?					\square	ar ar an
4.06	Are the chemical waste containers and storage area properly labelled?					\square	
4.07	Are the chemical wastes stored in proper storage areas?					\square	
4.08	Is the chemical container or equipment provided with drip tray?		\square				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		\square				
4.10	Are incompatible chemical wastes stored in different areas?		\square				
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
(}	Are chemical/fuel storage areas bounded?					\square	
4.14	Are designated areas identified for storage and sorting of construction wastes?		\square			Ź	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\square				
4.16	Are construction wastes reused?		\square				
4.17	Are construction wastes disposed of properly?		\square				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\square				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\square				
4.20	Are appropriate procedures followed if contaminated material exists?		\square				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.		$\Box_{.}$				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?		Z				Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?						
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?					\square	
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\square	
Sectio	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					Ø	

AUES

Ç

(Sok Kwu Wan)

Remarks:		
Findings of Site Inspection: (25 Sept- $20/2$):	Follow up: 25 Sept 20 (2	
No adverse environmental	Not required for	
No adverse environmental Impacts were observed.	general reminders_	
However, full implementation	-	
of the required environmental		
mitigation measures is remind	led.	

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
		app	- Jeunguest	
()	().	(Envilling)	(H:SV.low)	()

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A		Location /	Implementation		lementa Stages**		Relevant Legislation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	& Guidelines
Constr	uction Phase							
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor		\checkmark		
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		\checkmark		EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

AUES

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	-	olementa Stages *		Relevant Legislation &
Ref	Ref		g	Agent	D	С	0	Guidelines
Construct	tion Phase							
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		V		EIAO-TM, NCO
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor				

AUES

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation		lementa Stages **		Relevant Legislation &
Ref	Ref		Location, Thinng	ring Contractor	D	С	0	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		V		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*		Relevant Legislation
Ref	Ref		measures)	Agent	D	С	0	and Guidelines
5.77	ruction Phas	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		V		
5.73 - 5.78	4.36	 Dredging Works Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be cleaned from the decks and exposed fittings of barges before the vessel is moved; adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action; all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and 	Marine works site and at the identified water sensitive receivers/ During construction	Contractor		V		

AUES

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*		Relevant Legislation
Ref	Ref	Environmental i lotection wieasures	measures)	Agent	D	С	0	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor		\checkmark		ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		• Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor				
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

AUES

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		Stages** Legislati	Relevant Legislation	
Ref	Ref	Environmental riotection weasures	measures)	Agent	D	С	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	<u>Wastewater Arising from Workforce</u> Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A Ref Envi	Environmental Protection Measures*	Location / Timing	Implementation	Im	plementa Stages**		Relevant Legislation &
Ref	Ref		Location / Thining	Agent	D	С	0	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		V		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		\checkmark		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages *		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
Construct	tion Phase							-
7.14	6.4	 <u>Good site practices</u> Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor				Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		V		WBTC No. 21/2002
7.16	6.6	 Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated 	Work sites/During construction	Contractor		N		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	/ Implementation Agent // Implementation Agent // Implementation Agent // Implementation Agent /// Implementation Agent // Implementation Agent // Implementation Agent // Implem	D	С	0	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and plan and stock construction materials carefully to minimise amount of waste generated and avoid 						
7.18	6.7	 unnecessary generation of waste. <u>General Site Wastes</u> A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material 	Work sites/During construction	Contractor		√		Public Health and Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 - 6.9	 <u>Chemical Wastes</u> After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance. 	Work sites/During construction	Contractor		~		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

AUES

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	1 g b l During all	Agent	D	С	0	Guidelines
		• Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided.						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: > public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; > C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); > C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) • Where possible, inert material should be re-used on-site • Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material 	construction	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	Implementation Stages			Relevant Legislation & Guidelines	
			Timing	Agent	D	C	0	Guidelines	
	ction Phase				1	1	1	1	
8.157	7.2	 <u>Terrestrial Ecology</u> Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		N			
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging • Use of closed-grab dredger • Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		V			
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V			

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*	Location /	Implementation	Implementation Stages**			Relevant Legislation & Guidelines
Ref Ref			Timing	Agent	D	С	0	
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		\checkmark		TM on EIA Process
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		\checkmark	V	EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA EM&A Ref Ref		Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &
Kel	Kei		Timing	Agent	D	С	0	Guidelines
Constr	uction Pha	ise						-
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		V		WBTC No. 14/2002
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		\checkmark		WBTC No. 14/2002
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		V		
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		V		WBTC No. 19/2001
		Conservation of topsoil for reuse.	All sites	Contractor		\checkmark		
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Appendix M

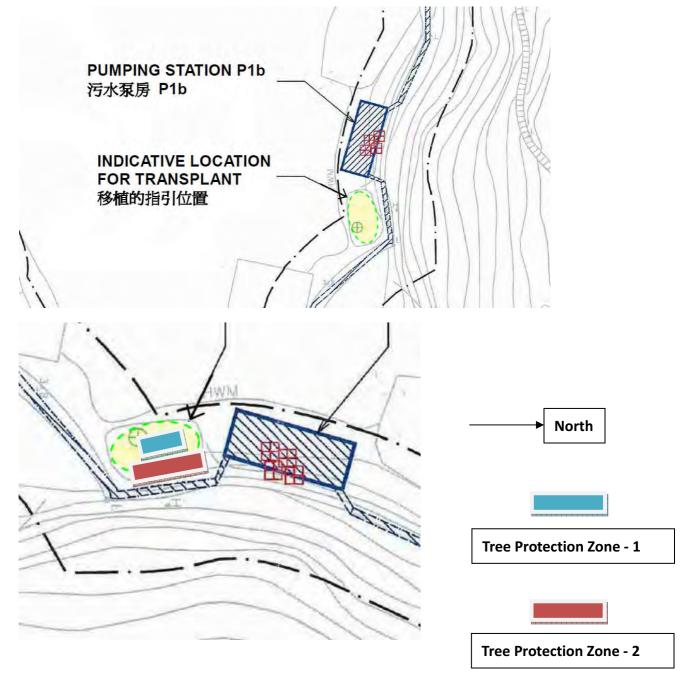
Tree Inspection Report

經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下依田村 125號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 31-08-2012

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	31 August 2012, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
September, 2011	5 and 23 September 2011
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Poor
CT_3A	Celtis timorensis	Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

Good	Leaves and stem grown very lush, additional or larger in size of
	leaves can be observed in each inspection

- Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

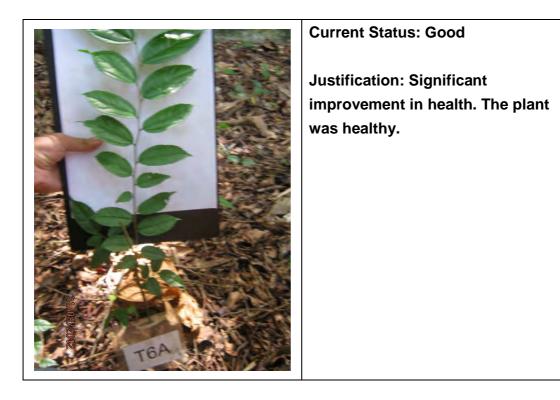
Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak. Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 31 August 2012

Tree ID: CT_3A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.


Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Overall Condition

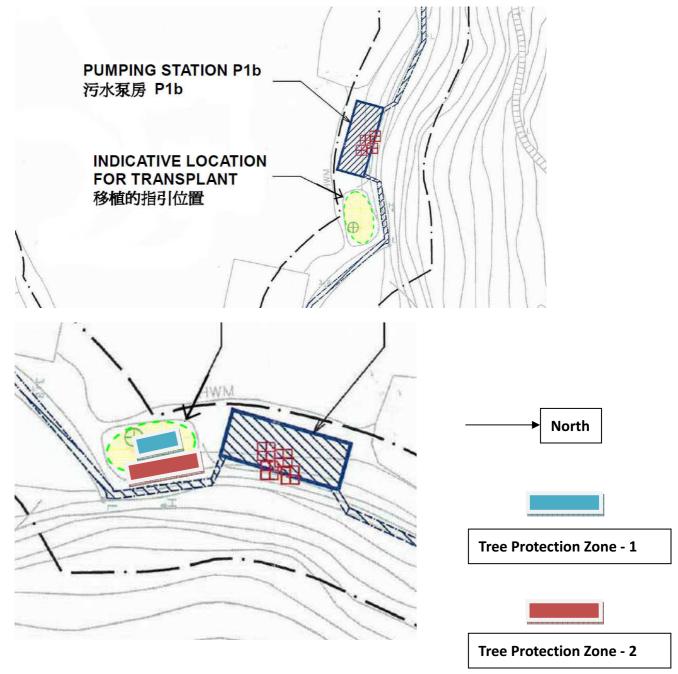
In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A, CT3A were in poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing. 經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下攸田村 125號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 15-09-2012

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	15 September 2012, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 September 2012

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Poor
CT_3A	Celtis timorensis	Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

Good	Leaves and stem grown very lush, additional or larger in size of
	leaves can be observed in each inspection
Fair	Green leaves can be found. No major unhealthy condition of the
	plant is observed. The condition is stable.

- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak. Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 15 September 2012

Tree ID: CT_3A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy.

Overall Condition

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A, CT3A were in poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.