

PROJECT NO.: TCS/00512/09

DSD CONTRACT NO. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO.27) – OCTOBER 2012

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index Reference No. Prepared By Approved By 13 November 2012 TCS00512/09/600/R0564v2 A A

Nicola HonT.W. TamEnvironmental ConsultantEnvironmental Team Leader

Version	Date	Description
1	9 November 2012	First Submission
2	13 November 2012	Amended against IEC's comments on 13 November 2012

Scott Wilson CDM Joint Venture

Chief Engineer/Harbour Area Treatment Scheme Drainage Services Department 5/F Western Magistracy 2A Pok Fu Lam Road Hong Kong Your reference:

Our reference: 05117/6/16/394057

Date: 14 November 2012

Attention: Mr Kenley C K Kwok

BY FAX & EMAIL

Dear Sirs,

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area <u>Monthly Environmental Monitoring and Audit (EM&A) Report No. 27 (October 2012)</u>

We refer to the Monthly EM&A Monitoring Report No. 27 for October 2012 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated 13 November 2012. We have no comment and have verified the captioned report.

Yours faithfully SCOTT WILSON CDM JOINT VENTURE

Rodney Ip // Independent Environmental Checker

ICWR/SYSL/ycky

cc Leader Civil Engineering AUES ER/LAMMA CDM (Attn: Mr Vincent Chan) (Attn: Mr T.W. Tam) (Attn: Mr Alfred Cheng) (Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the 27th monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from 26 September to 25 October 2012 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions	
Air Quality	1-hour TSP	45	
All Quality	24-hour TSP	15	
Construction Noise	L _{eq(30min)} Daytime	20	
Water Quality	Marine Water Sampling	12	
Inspection / Audit	ET Regular Environmental Site Inspection	3	

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Limit Level	Event & Action		
Issues	Parameters			NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – Notification of Exceedance

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.05. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.06. No reporting change was made in this Reporting Period.

SITE INSPECTION BY EXTERNAL PARTIES

ES.07. No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

FUTURE KEY ISSUES

ES.08. During dry season, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

ES.09. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

TABLE OF CONTENTS

1	INTRODUCTION Project Background Report Structure	1 1 1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS Project Organization and Management Structure Construction Progress Summary of Environmental Submissions	3 3 3 3
3	 SUMMARY OF BASELINE MONITORING REQUIREMENTS ENVIRONMENTAL ASPECT MONITORING LOCATIONS MONITORING FREQUENCY AND PERIOD MONITORING EQUIPMENT EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION DATA MANAGEMENT AND DATA QA/QC CONTROL REPORTING DETERMINATION OF ACTION/LIMIT (A/L) LEVELS 	4 4 5 6 7 7 7 7 8
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	10
6	IMPACT MONITORING RESULTS – WATER QULAITY	11
7	ECOLOGY	13
8	WASTE MANAGEMENT	14
9	SITE INSPECTION	15
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
12	IMPACT FORECAST	23
13	CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations	24 24 24

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Table 5-1	Summarized of Construction Noise Monitoring Results at NM1
Table 5-2	Summarized of Construction Noise Monitoring Results at NM2
Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
Table 6-1	Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Table 6-4	Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 8-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons

 Table 10-3
 Statistical Summary of Environmental Prosecution

 Table 11-1
 Environmental Mitigation Measures

LIST OF APPENDICES

- Appendix A Site Layout Plan Sok Kwu Wan Portion Area
- Appendix B Organization Structure and Contact Details of Relevant Parties
- Appendix C A Master and Three Months Rolling Construction Programme
- Appendix D Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
- Appendix E Monitoring Equipments Calibration Certificate
- Appendix F Event and Action Plan
- Appendix G Monitoring Data Sheet
- Appendix H Graphical Plots of Monitoring Results
- Appendix I Meteorological Information
- Appendix J Monthly Summary Waste Flow Table
- Appendix K Weekly Site Inspection Checklist
- Appendix L Implementation Schedule of Mitigation Measures
- Appendix M Tree Inspection Report

AUFS

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "*DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works*" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the 27th monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from 26 September to 25 October 2012.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS
SECTION 7	WASTE MANAGEMENT
SECTION 8	SITE INSPECTIONS
SECTION 9	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 10	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 11	IMPACT FORECAST
SECTION 12	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of PS1: metalworks installation, E&M Works installation and stone cladding installation
 - Construction of PS2: metalworks installation, E&M Works installation and stone cladding installation
 - Construction of SKWSTW: soil compaction, concreting, steel fixing, formwork erection, formwork removal, backfilling, scaffolding erection, dismantling scaffolding.
 - Outfall: Installation of Diffuser Cap and backfilling of foam concrete.

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

 Table 2-1
 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 19 May 2010
	Regulation	Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction	Issued on 26 May 2010
	Waste	A/C No: 7010815
5	Construction Noise Permit#	Permit no. GW-RS1112-12
		Valid from: 30 Oct 2012
		Until: 29 Mar 2013

No CNP is covered in this Reporting Period.

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Environmental Issue	Parameters		
	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and		
Air Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.		
Naina	• Leq (30min) during normal working hours; and		
Noise	• Leq (15min) during Restricted Hours.		
	In-situ Measurements		
	• Dissolved Oxygen Concentration (DO) (mg/L);		
	• Dissolved Oxygen Saturation (%);		
	• Turbidity (NTU);		
Moning Water Ouglity	• pH unit;		
Marine Water Quality	• Salinity (ppt);		
	• Water depth (m); and		
	• Temperature (°C).		
	Laboratory Analysis		
	• Suspended Solids (SS) (mg/L)		

 Table 3-1
 Summary of EM&A Requirements

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AM1	Squatter house in Chung Mei Village
AM2	Squatter house in Chung Mei Village
AM3	Football court

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3	Location of Construction Noise Monitoring Station
-----------	---

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Station	Description	Co-ordnance	
Station	Description	Easting	Northing
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732
W2	Fish culture zone at Picnic Bay	832 670	807 985
W3	Fish culture zone at Picnic Bay	832 045	807 893
C1 (flood)	Control Station	833 703	808 172
C2	Control Station	831 467	807 747
C3 (ebb)	Control Station	832 220	808 862

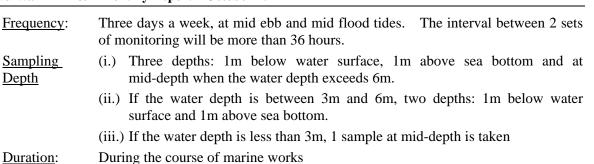
Table 3-4	Location of Marine Water Quality Monitoring Station	n
-----------	---	---

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters:	1-hour TSP and 24-hour TSP.
Frequency:	Once in every six days for 24-hour TSP and three times in every six days for 1-hour TSP.
Duration:	Throughout the construction period.


Noise Monitoring

Parameters:	$L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} .
	$L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of multiple baliades and Sun day)
	public holiday and Sunday)
Frequency:	Once per week during 0700-1900 hours on normal weekdays. Restricted hour monitoring should depend on conditions stipulated in Construction Noise Permit.
Duration:	Throughout the construction period.

Marine Water Quality Monitoring

<u>Parameters</u>: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH, turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

Post-Construction Monitoring – Marine Water

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.10 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (*Type 1*) and 804: 1985 (*Type 1*) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.

Water Quality Monitoring

- 3.11 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0 20mg L-1 and 0 200% saturation; and a temperature of 0 45 degree Celsius.
- 3.12 *pH Meter* The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in a range of 0 to 14.
- 3.13 *Turbidity (NTU) Measuring Equipment* The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.14 *Water Sampling Equipment* A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.15 *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- 3.16 *Salinity Measuring Equipment* A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.

- 3.17 *Sample Containers and Storage* Water samples for suspended solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.18 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.19 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

EQUIPMENT CALIBRATION

- 3.20 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.21 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.22 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.23 The Water Quality Monitoring equipments such as DO meter, pH meter, turbidity measuring instrument and salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.24 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.25 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.26 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.27 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.28 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end

day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.29 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Table 3-5Action and Limit Levels for Air Quality

Monitoring Station	Action Le	vel (µg/m ³)	Limit Level (µg/m ³)		
Womtoring Station	1-hour	24-hour	1-hour	24-hour	
AM1	343	173	500	260	
AM2	331	175	500	260	
AM3	353	191	500	260	

Table 3-6

Action and Limit Levels for Construction Noise

Monitoring	Action Level	Limit Level		
Location	0700-1900 hours on normal weekdays			
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods		

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	Impact Station		
rarameter	Criteria	W1	W2	W3
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71
(mg/L)	Limit Level	5.29	4.56	4.54
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37
(mg/L)	Limit Level	N/A	3.06	3.18
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48
(NTU)	Limit Level	6.06	5.99	6.71
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79
(mg/L)	Limit Level	12.68	11.28	12.25

3.30 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **45** and **15** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1, 4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix G* and the graphical plots of are shown in *Appendix H*.

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
26-Sep-12	70	26-Sep-12	8:00	46	53	59	
4-Oct-12	54	4-Oct-12	12:40	103	108	105	
10-Oct-12	91	10-Oct-12	12:40	121	127	116	
16-Oct-12	46	16-Oct-12	9:15	107	121	116	
22-Oct-12	33	22-Oct-12	14:30	107	110	119	
Average	59	Avera	lige 101				
(Range)	(33 – 91)	(Rang	e)	(46 – 127)			

Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
-----------	--

	24-hour	1-hour TSP (µg/m³)						
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
26-Sep-12	40	26-Sep-12	11:00	38	43	45		
4-Oct-12	54	4-Oct-12	10:30	98	103	107		
10-Oct-12	107	10-Oct-12	10:30	112	107	116		
16-Oct-12	73	16-Oct-12	11:30	113	125	118		
22-Oct-12	37	22-Oct-12	11:30	113	119	125		
Average	62	Avera	ge	99				
(Range)	(37 – 107)	(Rang	e)	(38 – 125)				

Table 4-3Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
26-Sep-12	93	26-Sep-12	13:30	101	104	109	
4-Oct-12	31	4-Oct-12	8:00	136	139	144	
10-Oct-12	95	10-Oct-12	8:00	142	145	148	
16-Oct-12	43	16-Oct-12	14:00	141	133	128	
22-Oct-12	46	22-Oct-12	9:00	143	147	153	
Average	62	Avera	ge	134			
(Range)	(31 – 93)	(Rang	e)	(101–153)			

- 4.03 As shown in *Tables 4-1, 4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of **20** construction noise monitoring events were undertaken at designated locations. The results for $L_{eq30min}$ at NM1, NM2, RNM3 and NM3 are summarized in *Tables 5-1, 5-2, 5-3* and *5-4* and graphical plots are shown in *Appendix H*.

 Table 5-1
 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
26-Sep-12	8:05	8:35	47.8	50.7	53.6	54.1	52.3	53.9	52.5
4-Oct-12	13:00	13:30	55.2	55.3	54.5	57.4	57.0	49.1	55.4
10-Oct-12	13:00	13:30	48.3	48.2	46.0	55.0	47.0	51.0	50.5
16-Oct-12	14:30	15:00	50.0	51.4	50.5	47.0	43.7	51.7	49.8
22-Oct-12	16:30	17:00	53.6	49.2	49.9	47.6	43.5	49.7	49.9
Limit Le	evel in dI	B(A)	-				75		

Table 5-2 Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
26-Sep-12	11:30	12:00	63.9	63.6	64.2	63.4	63.3	67.6	64.6
4-Oct-12	11:20	11:50	63.1	62.9	63.2	68.5	63.1	63.2	64.6
10-Oct-12	11:25	11:55	62.8	62.7	63.0	62.8	64.6	62.8	63.2
16-Oct-12	10:50	11:20	64.8	64.5	64.3	64.3	64.3	64.5	64.5
22-Oct-12	15:50	16:20	64.5	64.4	61.5	64.2	65.1	64.2	64.1
Limit Le	vel in dE	B (A)		-					

Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
-----------	---

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
26-Sep-12	13:00	13:30	66.8	64.4	65.2	64.1	63.8	66.8	65.4	68.4
4-Oct-12	10:45	11:15	67.3	63.0	64.3	62.9	61.8	62.5	64.1	67.1
10-Oct-12	10:50	11:20	63.9	63.1	63.5	64.8	64.6	63.4	63.9	66.9
16-Oct-12	10:15	10:45	65.0	63.8	64.9	62.8	65.2	62.6	64.2	67.2
22-Oct-12	15:15	15:45	62.4	61.7	63.6	61.4	61.5	61.6	62.1	65.1
Limit Le	vel in dE	B(A)		-						

* A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
-----------	--

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
26-Sep-12	14:05	14:35	60.3	53.5	63.3	64.0	63.3	69.6	64.6
4-Oct-12	10:00	10:30	59.0	56.1	57.1	56.1	57.2	57.2	57.2
10-Oct-12	10:15	10:45	51.9	55.0	59.5	55.0	61.1	73.3	66.1
16-Oct-12	9:30	10:00	50.6	63.3	45.0	63.5	50.9	64.2	60.8
22-Oct-12	14:30	15:00	59.1	59.9	59.4	57.3	59.4	58.1	59.0
Limit Le	vel in dE	B(A)				•			75

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1, 5-2, 5-3 and 5-4* which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 12 events of water quality monitoring were carried out at the designated locations.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 33.36 to 34.98 ppt, and pH value was within 6.47 to 7.67.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1*, *6-2*, *6-3 and 6-4*. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

 Table 6-1
 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date		ed Oxyg and		of Depth yer (mg/I		Surf.	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)						
• •	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3	
26-Sep-12	6.22	5.66	5.48	6.04	6.32	6.61	NA	5.46	5.45	5.66	5.58	5.92	
28-Sep-12	5.62	5.13	5.23	5.04	4.98	5.69	NA	4.73	4.95	4.94	4.63	5.19	
4-Oct-12	5.63	5.37	5.62	5.79	7.26	5.89	NA	4.51	4.52	4.67	5.17	4.59	
6-Oct-12	7.26	7.06	6.61	6.45	7.32	6.21	NA	5.51	5.48	4.73	5.18	4.62	
8-Oct-12	6.24	7.07	6.47	6.59	6.42	6.42	NA	6.33	4.72	6.22	6.36	6.36	
10-Oct-12	6.68	7.38	7.11	6.93	7.79	7.79	NA	6.28	6.30	4.86	6.55	6.55	
12-Oct-12	7.74	7.28	5.95	7.32	6.85	6.85	NA	4.93	4.57	5.00	5.36	5.36	
16-Oct-12	6.22	5.71	5.73	6.43	5.32	5.32	NA	4.54	4.05	5.45	4.61	4.61	
18-Oct-12	6.17	5.55	5.78	5.54	7.03	7.03	NA	4.42	4.13	4.62	4.74	4.74	
20-Dec-12	5.46	4.73	4.72	4.37	4.20	4.20	NA	3.78	3.67	3.49	3.46	3.46	
22-Oct-12	5.55	5.33	5.43	5.04	4.43	4.43	NA	3.62	3.66	3.22	3.05	3.05	
24-Oct-12	5.41	4.79	4.72	4.29	5.25	5.25	NA	3.84	3.49	3.56	3.68	3.68	

 Table 6-2
 Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)

		Т	urbidity	y Depth Av	ve. (NTU)		Suspe	ended S	olids D	epth A	ve. (m	ng/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Sep-12	1.45	1.52	1.37	1.54	1.40	1.58	5.40	8.07	5.33	5.40	3.40	4.00
28-Sep-12	1.00	1.18	1.20	1.28	1.33	1.24	5.20	6.50	4.67	6.90	4.47	6.50
4-Oct-12	1.18	1.44	1.27	1.46	1.49	1.57	4.30	4.37	4.67	5.47	3.97	4.67
6-Oct-12	0.71	0.89	1.13	1.14	1.27	1.19	7.20	6.17	5.60	6.20	5.33	4.57
8-Oct-12	1.07	1.19	1.21	1.37	1.21	1.39	4.80	6.27	3.70	4.73	4.37	3.37
10-Oct-12	1.35	1.41	1.32	1.52	1.29	1.58	3.60	5.93	5.97	5.57	7.67	5.73
12-Oct-12	0.96	1.13	1.15	1.19	1.05	1.28	2.70	1.97	2.80	5.33	5.07	6.47
16-Oct-12	1.30	1.39	1.41	1.64	1.38	1.64	5.80	4.17	3.70	4.57	5.40	4.47
18-Oct-12	1.49	1.71	1.76	1.69	1.58	1.68	3.60	4.20	3.60	5.70	2.57	6.97
20-Dec-12	1.15	1.28	1.29	1.41	1.46	1.52	8.40	5.63	5.93	10.27	4.93	4.07
22-Oct-12	1.11	1.25	1.26	1.40	1.32	1.36	5.40	5.73	7.70	6.30	7.27	4.87
24-Oct-12	1.05	1.18	1.26	1.45	1.23	1.33	5.70	2.30	3.70	4.93	3.23	3.50

AU	ES
----	----

Sampling date		olved (• •	conc. of I fid Layer	-	of Surf.	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)						
• 0	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3	
26-Sep-12	5.47	5.54	5.65	5.96	5.91	5.56	NA	5.32	5.33	5.43	5.08	5.34	
28-Sep-12	5.94	5.73	5.75	5.67	5.88	4.45	NA	4.78	4.49	4.54	4.34	4.36	
4-Oct-12	5.43	5.78	5.58	5.06	5.82	4.74	NA	5.61	5.26	4.76	5.28	4.65	
6-Oct-12	6.94	5.73	5.81	6.86	6.35	6.25	NA	4.99	4.78	5.15	5.21	5.10	
8-Oct-12	7.15	6.88	6.92	7.19	5.96	6.80	NA	5.82	5.57	5.96	5.18	5.44	
10-Oct-12	6.47	5.74	6.34	6.97	5.72	6.43	NA	5.82	5.05	5.72	5.03	5.53	
12-Oct-12	7.60	7.46	6.90	5.83	3.45	6.13	NA	5.88	4.90	3.45	5.68	3.56	
16-Oct-12	6.06	5.38	4.90	5.60	4.34	5.79	NA	3.83	3.91	4.34	3.97	4.43	
18-Oct-12	7.44	5.85	6.24	6.08	4.54	5.30	NA	4.89	4.78	4.54	4.60	4.64	
20-Dec-12	5.55	5.06	5.15	5.25	4.19	5.93	NA	3.82	4.13	4.19	4.07	5.64	
22-Oct-12	5.48	4.76	5.05	4.46	3.72	4.63	NA	3.66	3.65	3.72	3.37	4.13	
24-Oct-12	6.00	4.75	4.79	4.55	3.29	4.14	NA	3.74	3.60	3.29	3.23	3.22	

Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Table 6-4Summary of Water Quality Results – Mid-flood Tides (Turbidity &
Suspended Solids)

Sompling data		T	urbidity	y Depth Av	ve. (NTU)		Susp	ended S	Solids 1	Depth A	ve. (m	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Sep-12	1.33	1.34	1.38	1.32	1.35	1.34	7.70	8.93	7.07	3.10	3.93	5.40
28-Sep-12	1.09	1.29	1.42	1.55	1.23	1.66	6.10	5.40	7.57	8.87	6.20	6.93
4-Oct-12	1.25	1.42	1.24	1.58	1.34	1.61	6.30	7.03	4.27	4.43	3.40	3.73
6-Oct-12	0.85	1.09	1.23	1.26	1.29	1.35	7.80	5.20	3.23	4.50	5.80	6.60
8-Oct-12	1.12	1.31	1.37	1.42	1.22	1.51	4.00	3.93	4.60	3.07	2.13	4.87
10-Oct-12	1.41	1.34	1.49	1.54	1.43	1.47	11.00	6.97	8.00	5.07	7.17	15.70
12-Oct-12	0.72	1.15	0.96	1.30	0.93	1.39	3.50	2.40	5.70	4.60	3.57	6.43
16-Oct-12	1.46	1.55	1.39	1.52	1.43	1.64	7.70	4.13	3.70	5.20	4.80	3.63
18-Oct-12	1.65	1.61	1.51	1.83	1.59	1.69	5.40	3.43	5.87	4.47	4.90	5.53
20-Dec-12	1.52	1.51	1.44	1.61	1.56	1.58	2.40	1.53	2.13	6.33	9.87	9.47
22-Oct-12	1.05	1.16	1.27	1.36	1.25	1.40	6.20	7.93	4.93	6.20	6.13	5.80
24-Oct-12	1.04	1.20	1.24	1.34	1.23	1.36	4.60	2.63	3.00	4.17	2.23	3.43

Table 6-5

Table 6-3

Summarized Exceedances of Marine Water Quality

Station	D (Ave of & mid-	f Surf.	DO (A Bottom		Turb (Depth	v	St (Depth		Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
				Mi	d-Ebb					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
				Mid	-Flood					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on 29 September and 15 October 2012. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring Celtis Timorensis CT7 to CT10 on 30 April 2011. In April 2012, CT_1A and CT_7A were damaged by the fell broken tree trunk due to tree decayed by white ants. Therefore, only 5 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT4A, CT_5A and CT_6A were inspected since May 2012. Furthermore, during tree inspection on 30 July, CT4A was disappeared after typhoon No.10 on 24 July and it was certified as dead. Eventually, 4 no. of additional *Celtis Timorensis*, namely CT_6A were inspected in the remaining period.
- 7.03 The tree inspection report for this Reporting Period is presented in *Appendix M*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0	-
Reused in the Contract (Inert) ($(000m^3)$)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0	-

Table 8-2Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	3.47	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than $50m^3$ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on **5**, **9** and **16** October 2012.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix K*.

Date		Findings / Deficiencies	Follow-Up Status
5 2012	October	 No adverse environmental impacts were observed during site inspection. However, full implementation of the required environmental mitigation measures is reminded. 	N.A.
9 2012	October	• No adverse environmental impacts were observed during site inspection. However, full implementation of the required environmental mitigation measures, particularly construction dust suppression measures during dusty activities under dry and wind conditions, is reminded.	Not required for general reminders.
16 2012	October	• No adverse environmental impacts were observed during site inspection. However, full implementation of the required environmental mitigation measures, particularly construction dust suppression measures during dusty activities under dry and wind conditions, is reminded.	Not required for general reminders.

Table 9-1Site Observations

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

Table 10-1	Statistical Summary of Environmental Complaints
------------	---

Departing Devied	Environmental Complaint Statistics							
Reporting Period	Frequency Cumulative Com		Complaint Nature					
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality					
January - September 2012	0	1 (Nov 2011)	NA					
October 2012	0	1 (Nov 2011)	NA					

Table 10-2 Statistical Summary of Environmental Summons

Departing Davied	Environmental Summons Statistics							
Reporting Period	Frequency	Cumulative	Complaint Nature					
27 July 2010 – 31 December 2011	0	0	NA					
January - September 2012	0	0	NA					
October 2012	0	0	NA					

Table 10-3 Statistical Summary of Environmental Prosecution

Depending Devied	Environmental Prosecution Statistics							
Reporting Period	Frequency	Cumulative	Complaint Nature					
27 July 2010 – 31 December 2011	0	0	NA					
January - September 2012	0	0	NA					
October 2012	0	0	NA					

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- 11.11 During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force;
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

<u>Terrestrial Ecology</u>

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures										
Water	• Drainage channels were provided to convey run-off into the treatment facilities;										
Quality	and										
Quintity	 Drainage systems were regularly and adequately maintained. 										
Air Quality	• Cover all excavated or stockpile of dusty material by impervious sheeting or										
	sprayed with water to maintain the entire surface wet;										
	 Public roads around the site entrance/exit had been kept clean and free from dust; and 										
	Tarpaulin covering of any dusty materials on a vehicle leaving the site.										

 Table 11-1
 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	• Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	• To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	 Waste arising should be kept to a minimum and be handled, transported and dimensional of in a suitable manager.
management	disposed of in a suitable manner,
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12.01 Key issues to be considered in the coming month include:

Water Quality

• Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and

AUES

• The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

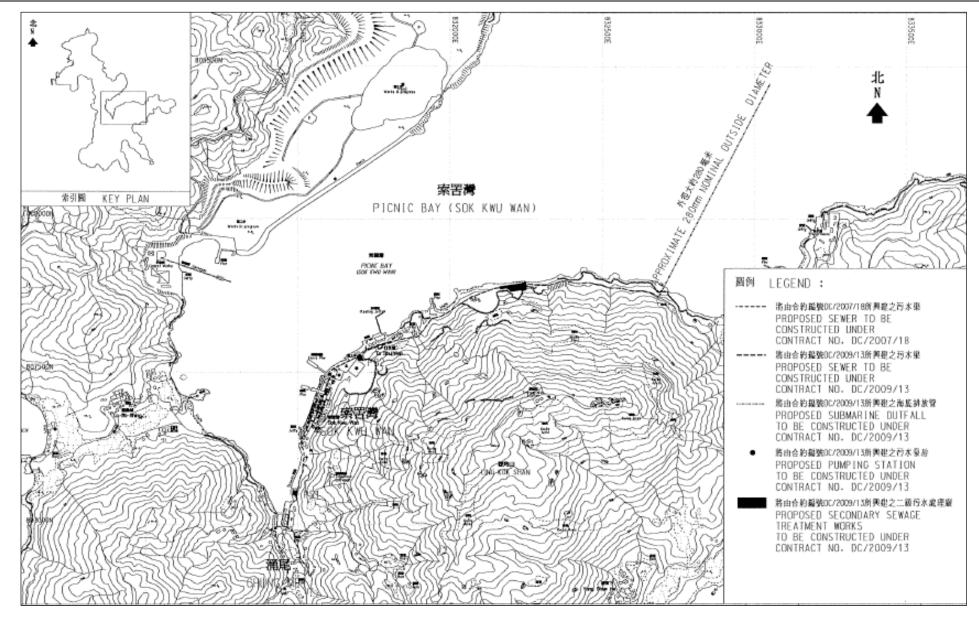
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 27th monthly EM&A Report covering the construction period from 26 September to 25 October 2012.
- 13.02 In this Reporting Period, no 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on **5**, **9** and **16** October 2012. All the observation has been rectified during the next week site inspection. The environmental performance of the Project was therefore considered as satisfactory.
- 13.07 No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

RECOMMENDATIONS


- 13.08 During dry season, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.
- 13.09 Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr Kenley C K Kwok	-	-
SCJV	Engineer's Representative	Mr. Neil Wong	2982 0240	2982 4129
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129
Scott Wilson	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Construction Manager	Mr. K. Y. So	2982 1750	2982 1163
Leader	Assistant Construction Manager	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. William Wong	2982 8652	2982 8650
Leader	Sub-Agent	Mr. Burgess Yip	2982 1750	2982 1163
Leader	Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel

Legend:

DSD (Employer) – Drainage Services Department

CDM (Engineer) – Scott Wilson CDM Joint Venture

Leader (Main Contractor) – Leader Civil Engineering Corporation Limited

Scott Wilson (IEC) – Scott Wilson Limited

AUES (ET) – Action-United Environmental Services & Consulting

AUES

Appendix C

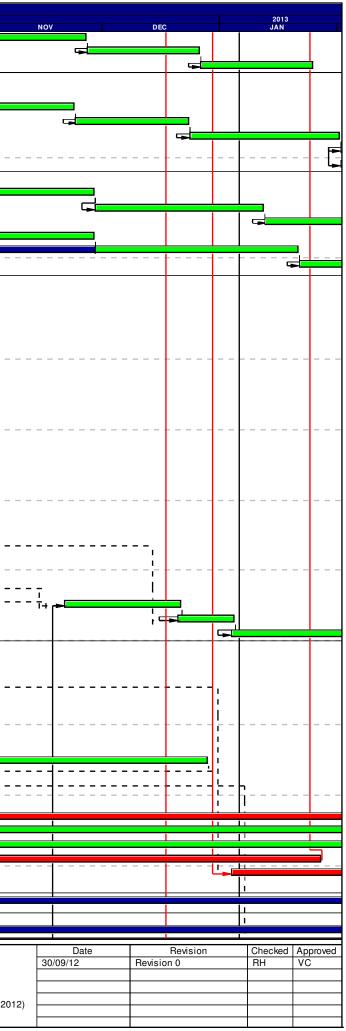
A Master and Three Months Rolling Construction Programme

Activ ity	Description	Origina	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2012			2013	
		Juratio	r Complete	Start	Finish	Start	FINISN	Float			SEP	ОСТ	2012	NOV	DEC	JAN	i i
Project Key				1		1	05/05/40.4	1									
KD0010	Receive Letter of Acceptance		0 100		05/05/10 A		05/05/10 A			KD0125							
KD0020	Project Commencement Date	0	0 100		17/05/10 A		17/05/10 A			E&M0010, E&M0070, E&M1001, E&M2001, KD0125, PRE0020, PRE0040, PRE0050,							
										PRE0060, PRE0090, PRE0100, PRE0130, SKW0250, SKW0588, SKW0651, SKW0881,	,						
										SKW1131, SKW1481, SKW1591, SKW1611, YSW0020, YSW0050, YSW0075, YSW0180,							
										YSW0200, YSW0220, YSW0240, YSW02401, YSW0412, YSW0422	1,						
KD0000	Castian W.1. Clans Works in Dartism A.9. C		0 100		14/10/11 4		14/10/11 4				_						
KD0030 KD0050	Section W1 - Slope Works in Portion A & C Section W3 - Footpath Diversion in Ptn G		0 100 0 100		14/10/11 A 24/03/11 A		14/10/11 A 24/03/11 A		YSW0100, YSW0110, YSW0140, SKW0481	KD0125, KD0130 KD0125		1					
KD0050	Section W4 - Slope Works in Portios H & I		D 100		27/03/12 A		27/03/11 A		SKW05938, SKW059416	KD0125,KD0135,SKW05941							
KD0070	Section W5 - P.S. No. 1 in Portion D		D 100		10/02/12 A		10/02/12 A		SKW0741	KD0125							
KD0080	Section W6 - Sewer & PS No2 in Ptn. E & F	0	0 100		10/02/12 A		10/02/12 A		SKW0971	KD0125	-						
KD0115	Start Operate Temp Sewage Treatment in Port. A&H	(0 0		27/01/13		27/01/13	0 *	E&M0510	KD0125		l					
KD0130	Completion of Maintenance Period of W1	1	1 0	13/10/12	13/10/12 *	13/10/12	13/10/12 *	0	KD0030, YSW01755, YSW01805, YSW01810			॑ ┭ ╾ ┛ ╼╌					
Preliminary	(Civil)			<u> </u>		L		l				++ +					
PRE0020	Pre-condition Survey	60	0 100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A	1	KD0020								
PRE0040	Erection of Engineer's Site Accommodation at YSW	60	_		15/07/10 A	17/05/10 A	15/07/10 A		KD0020		-	11 1					
PRE0050	Taking over the Secondary Engineer's Site Accomm	75		1	30/07/10 A		30/07/10 A		KD0020								
PRE0060	Application of Consent from Marine Department	60	0 100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020			ii i					
PRE0090	Working Group Meeting for Outfall Construction	120	0 100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1151							
PRE0100	Application & Consent of XP from HyD (Mo Tat Rd)	120	0 100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1491, SKW1501		$\overline{1}$					
PRE0130	Setup Web-site for EM&A Reporting	90	0 100	17/05/10 A	14/08/10 A	17/05/10 A	14/08/10 A		KD0020								
Preliminary	(E&M)											ii i					
Technical Subn																	
	gn of SKWSTW & YSWSTW			1	1	I		1	1	-							
E&M0010 E&M0020	Submission Vetting and Comment by ER	38		17/05/10 A 24/06/10 A	23/06/10 A 14/07/10 A	17/05/10 A 24/06/10 A	23/06/10 A 14/07/10 A		KD0020 E&M0010	E&M0020, E&M0040, E&M0235 E&M0030, E&M0040	_	!! !					
E&M0020	Revision and Resubmission	125	_		16/11/10 A	15/07/10 A	14/07/10 A		E&M0020	E&M0030, E&M0040	_						
E&M0030	Approval from the Engineer	125		15/07/10 A 17/11/10 A	30/11/10 A	15/0//10 A 17/11/10 A			E&M0020	E&M0295		ii i					
Hydraulic Des			100	1	1												
E&M0040	Submission	21	1 100	15/07/10 A	04/08/10 A	15/07/10 A	04/08/10 A		E&M0010, E&M0020	E&M0050, E&M0101, E&M0240, E&M0260,	_	ii i					
E&M0050	Vetting and Comment by ER	14	4 100	05/08/10 A	18/08/10 A	05/08/10 A	18/08/10 A		E&M0040	E&M0060	-						
E&M0060	Revision and Resubmission	97	7 100	19/08/10 A	10/11/10 A	19/08/10 A	10/11/10 A		E&M0050	E&M0430		ii i					
E&M0430	Approval from the Engineer	7	7 100	24/11/10 A	30/11/10 A	24/11/10 A	30/11/10 A		E&M0060	E&M0295		11 1					
	bmission & Approval				•			1	- 								
E&M0070	Submission of Membrane Module	50	_	17/05/10 A	05/07/10 A	17/05/10 A			KD0020	E&M0090	_	!! !					
E&M0090	Vetting and Comment by ER	14	100		19/07/10 A	06/07/10 A 20/07/10 A	19/07/10 A		E&M0070	E&M0100							
E&M0100 E&M0101	Revision and Resubmission Submission of Equipment	90		20/07/10 A 05/08/10 A	24/02/11 A 30/11/11 A		24/02/11 A 30/11/11 A		E&M0090 E&M0040	E&M0160 E&M0102	_	11 I					
E&M0101	Vetting and Comment by ER	90	100		30/11/11 A		30/11/11 A		E&M0101	E&M0102							
E&M0103	Revision and Resubmission	60	100		30/11/11 A		30/11/11 A		E&M0102	E&M0110, E&M0120, E&M0130, E&M0140,		пт					
E&M0110	Approval on Coarse Screens	30		25/05/11 A	25/05/11 A	25/05/11 A	25/05/11 A		E&M0103	E&M0390	-						
E&M0120	Approval on Fine Screens	30		12/09/11 A	12/09/11 A	12/09/11 A	12/09/11 A		E&M0103	E&M0400, E&M3060		ii i					
E&M0130	Approval on Pumps	30	^D 100	23/06/11 A	23/06/11 A	23/06/11 A	23/06/11 A		E&M0103	E&M0410, E&M3070							
E&M0140	Approval on Submersible Mixers	30	^D 100	23/03/11 A	23/03/11 A	23/03/11 A	23/03/11 A		E&M0103	E&M0420, E&M3080	<u></u>	<u> </u>					
E&M0150	Approval on Grit Removal Equipment	30	100	10/10/11 A	10/10/11 A	10/10/11 A	10/10/11 A		E&M0103	E&M0380, E&M3030		<u> </u>					
E&M0160	Approval on MBR Membrane Modules (M.M.)	105		03/08/10 A	24/02/11 A	03/08/10 A	24/02/11 A		E&M0100	E&M0360, E&M0370, E&M3010							
E&M0170	Approval on Sludge Dewatering Equipment	30	100	01/09/11 A	01/09/11 A	01/09/11 A	01/09/11 A		E&M0103	E&M0440, E&M3090		ii i					
E&M0180 E&M0190	Approval on Valves, Pipes & Fittings	30		19/11/11 A	04/10/12 15/11/11 A	19/11/11 A 15/11/11 A	15/04/13 15/11/11 A	1940	E&M0103	E&M0450, E&M3100 E&M0460, E&M3110							
E&M0200	Approval on Penstocks Approval on Instrumentation	30		15/11/11 A 21/06/11 A	08/03/12 A	21/06/11 A	08/03/12 A		E&M0103 E&M0103	E&M0470, E&M3130		н– – + ·					
E&M0200	Approval on MCC & LVSB	30		1	01/10/12	19/11/11 A	10/07/12 A	-83d	E&M0103	E&M0480, E&M3140							
E&M0220	Approval on BS Equipment	30	00	30/11/11 A	14/10/12	30/11/11 A	30/01/13		E&M0103, E&M0280	E&M0490, E&M3150							
E&M0230	Approval on FS Equipment	30		30/11/11 A	23/10/12	30/11/11 A	18/02/13		E&M0103, E&M0290	E&M0295, E&M0320, E&M0500, E&M3160							
Drawings Sub	mission & Approval		1	I						•							
E&M0235	Sub. P&ID Drawings	100	0 75	24/06/10 A	24/10/12	24/06/10 A	15/03/13	142d	E&M0010	E&M0250							
E&M0240	Sub. Plant GA Drawings	45		04/08/10 A	14/10/12	04/08/10 A	15/03/13		E&M0040	E&M0250, E&M0280, E&M0290							
E&M0250	Sub. Builder's Works Requirements Drawings	15	00		27/10/12	04/08/10 A	18/03/13		E&M0235, E&M0240, E&M0260, E&M02		++						
E&M0260	Sub. Mechanical Installation Drawings	60	10		17/10/12	27/09/10 A	15/03/13		E&M0040	E&M0250							
E&M0270	Sub. Electrical Installation Drawings	60		27/09/10 A	14/10/12	27/09/10 A	15/03/13		E&M0040	E&M0250, E&M0280							
E&M0280 E&M0290	Sub. BS Installation Drawings Sub. FS Installation Drawings	120			05/10/12	27/09/10 A 13/11/10 A	22/01/13 13/02/13		E&M0240, E&M0250, E&M0270 E&M0240, E&M0250	E&M0220							
Statutory Subr	*	120	<u>1 85</u>	13/11/10 A	L 17/10/12	10/11/10 A	13/02/13		LOIVIU240, EOIVIU230	E&M0230							
	/05/10 Early bar													Date	Revision	Checked	Approved
	/09/15 Progress bar						Le	eader	Civil Engineering	Corp. Ltd.				30/09/12	Revision 0	RH	VC
	/09/12 Critical bar Summary bar								ontract No. DC/200								
Run date 13 Page number 1A	/10/12 Progress point Critical point					Cons	truction			Vorks at YSW & SKW							
c Primavera Syst	ems, Inc. V Summary point								g Programme (Oct 2		(Marked on 3	0 September 201	2)			
	Start miles tone point					•											

Activ ity ID	Description	Original	Percent Early Complete Start	Early Late Finish Start	Late Finish	Total Float	Predecessors	Successors				201					2013	
E&M0295	Preparation of Submission to HEC	39	100 01/11/11 A	30/11/11 A 01/11/11 A	30/11/11 A		E&M0080, E&M0230, E&M0430	E&M0300	SEP		00 [.]			NOV	DEC		JAN	
E&M0300	Application & Approval from HEC	150	90 01/11/11 A	07/11/12 01/11/11 A	15/04/13	159d	E&M0295	E&M0305	_									
E&M0305	Provision of Cables to the STWs	180	0 07/11/12	06/05/13 16/04/13	12/10/13	159d	E&M0300	E&M0680										
E&M0320	Form 314 Submission to FSD	14	0 23/10/12	06/11/12 08/08/13	21/08/13	288d	E&M0230	E&M0325, E&M0670										
E&M0325	Submission to WSD	14	100 01/11/11 A	29/02/12 A 01/11/11 A	29/02/12 A		E&M0320	E&M0670, E&M0680										
E&M0350	Form 501 Submission to FSD (PS1 & PS2)	28	0 21/12/12	18/01/13 14/11/12	11/12/12	-37d	E&M2016	E&M11800, E&M2180			11 I 11 I				f			
Yung Shue V	Van										 							
Preliminary								1	_									
YSW0020	Approval of Environmental Team	16 59	100 17/05/10 A	01/06/10 A 17/05/10 A	01/06/10 A		KD0020	YSW00201, YSW0030, YSW00351, YSW0040			11 I 11 I							
YSW00201 YSW0030	Change Baseline Monitoring Location (Air&Noise) Baseline monitoring (Air & Noise)	23	100 02/06/10 A 100 31/07/10 A	30/07/10 A 02/06/10 A 22/08/10 A 31/07/10 A	30/07/10 A 22/08/10 A		YSW0020 YSW0020, YSW00201	YSW0030 YSW0035	-		11 I							
YSW0035	Baseline Monitoring Report Submission (A & N)	16	100 23/08/10 A	07/09/10 A 23/08/10 A	<u> </u>		YSW0030	YSW0120, YSW01545, YSW0500, YSW0610,	-		11 I 11 I							
YSW00351	Submission & Approval for Monitoring Method (W)	58	100 02/06/10 A	29/07/10 A 02/06/10 A	29/07/10 A		YSW0020	YSW0040	-		ii i							
YSW0040	Baseline monitoring (Water)	155	100 30/07/10 A	31/12/10 A 30/07/10 A	31/12/10 A		YSW0020, YSW00351	YSW0350				·						
YSW0050	Erect Hoarding and Fencing	60	100 19/05/10 A	17/07/10 A 19/05/10 A	17/07/10 A		KD0020	YSW0155			ii i							
Section W1 - SI	ope Works in Portion A & C		•	• •														
YSW0075	Mobilization	30	100 17/05/10 A	15/06/10 A 17/05/10 A	15/06/10 A		KD0020	YSW0080, YSW0100										
YSW0080	Site Clearance	30	100 16/06/10 A	15/07/10 A 16/06/10 A	15/07/10 A		YSW0075	YSW0085, YSW0090, YSW0120										
YSW0085	Initial Survey	14	100 02/07/10 A	15/07/10 A 02/07/10 A	15/07/10 A		YSW0080	YSW0120	_		· · · · ·							
YSW0090	Verify the Rock Boulder required Stablization Wk	249	100 16/07/10 A	21/03/11 A 16/07/10 A	21/03/11 A		YSW0080	YSW0100, YSW0110	_		11 1							
YSW0100	Removal of Rock Boulder	257	100 20/09/10 A	03/06/11 A 20/09/10 A	03/06/11 A		YSW0075, YSW0090	KD0030			H+							
YSW0110 YSW0120	Stablizing work for rock boulder Cut the slope to design profile	35	100 16/07/11 A 100 24/09/10 A	19/08/11 A 16/07/11 A 25/09/10 A 24/09/10 A	19/08/11 A 25/09/10 A		YSW0090 YSW0035, YSW0080, YSW0085	KD0030 YSW0131,YSW0155,YSW0170	4		I II I							
YSW0120	Mobilization of Plant and Material of Soil Nails		100 24/09/10 A 100 12/09/10 A	25/09/10 A 24/09/10 A 25/09/10 A 12/09/10 A	25/09/10 A		YSW0120	YSW0132	-									
YSW0132	Erect Scaffold and Working Platform	2	100 26/09/10 A	27/09/10 A 26/09/10 A	27/09/10 A		YSW0131	YSW0133	-		· · · · ·							
YSW0133	Setting out and Verify Locations of Soil Nails	45	100 28/09/10 A	11/11/10 A 28/09/10 A	11/11/10 A		YSW0132	YSW0134	-		ii i							
YSW0134	Drilling and Soil Nails Installation	43	100 19/10/10 A	30/11/10 A 19/10/10 A	30/11/10 A		YSW0133	YSW0135				·						·
YSW0135	Construction of Nail Heads	12	100 01/12/10 A	12/12/10 A 01/12/10 A	12/12/10 A		YSW0134	YSW0136	-		 							
YSW0136	Mesh Installation on Cut Slope	3	100 13/12/10 A	15/12/10 A 13/12/10 A	15/12/10 A		YSW0135	YSW01361	-		II I							
YSW01361	Verify alignment of access & channels on slope	118	100 16/12/10 A	12/04/11 A 16/12/10 A	12/04/11 A		YSW0136	YSW0140	-		11 I 11 I							
YSW0140	Construct U-channels & Step Channel on Cut Slope	182	100 13/04/11 A	11/10/11 A 13/04/11 A	11/10/11 A		YSW01361	KD0030			ii i							
YSW0153	Removal of Ex U-Channel where clash with B. Wall	151	100 10/05/11 A	07/10/11 A 10/05/11 A	07/10/11 A		YSW01545	YSW01750			<u>п – т</u>							
YSW01545	Temporary Diversion of Drainage	244	100 08/09/10 A	09/05/11 A 08/09/10 A	09/05/11 A		YSW0035	YSW0153			 							
YSW0155	RC Barrier Wall Bay 1-13 (below Ground Level)	256	100 26/09/10 A	08/06/11 A 26/09/10 A	08/06/11 A		YSW0050, YSW0120	KD0030, YSW0170, YSW0175			II I							
YSW0170	RC Barrier Wall Bay 1-13 (above Ground Level)	125	100 09/06/11 A	11/10/11 A 09/06/11 A	11/10/11 A		YSW0120, YSW0155	KD0030, YSW01750			11 I 11 I							
YSW0175	Construct U-channels and Catchpits (Phase 1)	76	100 09/06/11 A	23/08/11 A 09/06/11 A	23/08/11 A		YSW0155	KD0030			Üi							
YSW01750	Construction of subsoil drain (phase 1)	120	100 12/10/11 A	08/02/12 A 12/10/11 A	08/02/12 A		YSW0153, YSW0170	YSW01755			<u>' - - - - - - -</u>			<u></u>				
YSW01755	Construct subsoil drain (phase 2)	60	0 08/07/12 A	28/11/12 08/07/12 A	12/10/12		YSW01750	KD0130	_									
YSW01800	RC Barrier Wall Bay 14 (below & above Ground)	30	60 03/09/12 A	11/10/12 03/09/12 A	13/09/12		YSW0760	YSW01805, YSW01810				<u> </u>						
YSW01805 YSW01810	Hydroseeding	30	0 12/10/12	25/10/12 29/09/12 10/11/12 14/09/12			YSW01800	KD0130	_				<u></u> r					
	Construct U-channels and Catchpits (Phase 2)	30	0 12/10/12	10/11/12 14/09/12	13/10/12	-280	YSW01800	KD0130					1					
Civil & Structu																		
YSW0412	Mobilization	30	100 17/05/10 A	15/06/10 A 17/05/10 A	15/06/10 A		KD0020	YSW0422	_									
YSW0422	Site Clearance	30	100 17/05/10 A	15/06/10 A 17/05/10 A	15/06/10 A		KD0020, YSW0412	YSW0432, YSW0500, YSW0610, YSW0650	-									
YSW0432	Initial Survey	14	100 02/06/10 A	15/06/10 A 02/06/10 A	15/06/10 A		YSW0422	YSW0510	-									
YSW STW -	GL H - T	I	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·													
YSW0500	ELS & Excavation for Inlet Pumping Station	105	100 08/09/10 A	21/12/10 A 08/09/10 A	21/12/10 A		YSW0035, YSW0422	YSW0510										
YSW0510	Sub-structure construction (Inlet Pumping Stn)	129	100 22/12/10 A	29/04/11 A 22/12/10 A	29/04/11 A		YSW0432, YSW0500	YSW0520]									
YSW0520	Backfill & Remove ELS (Inlet Pumping Stn)	40	100 30/04/11 A	08/06/11 A 30/04/11 A	08/06/11 A		YSW0510	YSW05701	_									
YSW0530	ELS & Excavation for Equalization Tank	159	100 01/01/11 A	08/06/11 A 01/01/11 A	08/06/11 A		YSW0660	YSW0540, YSW05701	4									
YSW0540	Sub-structure construction (Equalization Tank)	112	100 09/06/11 A	28/09/11 A 09/06/11 A	28/09/11 A		YSW0530	YSW0550, YSW05901										
YSW0550	Backfilling & Remove ELS (Equalization Tank)	20	100 29/09/11 A	18/10/11 A 29/09/11 A	18/10/11 A		YSW0540	YSW05901	4									
YSW05701	ELS & Excavation for Grit Chambers	28	100 09/06/11 A	06/07/11 A 09/06/11 A	06/07/11 A		YSW0520, YSW0530	YSW05711, YSW05731	4									
YSW05711 YSW05721	Construct sub-structure for Grit Chambers Backfill & Remove ELS for Grit Chambers	106	100 07/07/11 A	20/10/11 A 07/07/11 A 01/11/11 A 21/10/11 A	20/10/11 A		YSW05701	YSW05721, YSW05911	4									
	ELS & Excavation for Grease Separators (GS)	34	100 21/10/11 A 100 07/07/11 A	01/11/11 A 21/10/11 A 09/08/11 A 07/07/11 A	01/11/11 A 09/08/11 A		YSW05711	YSW05911 YSW05741	4									
YSW05731 YSW05741	Construct sub-structure for Grease Separators	34 52		30/09/11 A 10/08/11 A	<u> </u>		YSW05701 YSW05731	YSW05741 YSW05751										
YSW05751	Install Dia.400 Puddles in Grease Separators	27	100 10/08/11 A 100 01/10/11 A	27/10/11 A 01/10/11 A	27/10/11 A		YSW05731 YSW05741	YSW05751 YSW05752	4									
YSW05752	Construct sub-structure for GS (above puddles)	48	100 28/10/11 A	14/12/11 A 28/10/11 A	14/12/11 A		YSW05751	YSW05761	4									
YSW05761	Backfill & remove ELS for Grease Separators	10	100 15/12/11 A	24/12/11 A 15/12/11 A	24/12/11 A		YSW05752	YSW0580, YSW05921	1									
YSW0580	Excavate to Formation for Deodorizer Room	10	100 25/12/11 A	03/01/12 A 25/12/11 A	03/01/12 A		YSW05761	YSW05801, YSW05922	1									
YSW05801	Excavate to formation - Grid J-N/5-7	40	100 04/01/12 A	12/02/12 A 04/01/12 A	12/02/12 A		YSW0580	YSW05802, YSW05923										·
YSW05802	Excavate to formation - Grid GA-H/5-7	10	100 13/02/12 A	22/02/12 A 13/02/12 A	<u> </u>		YSW05801	YSW05924	1									
		•	ł					•	•					D :		Devision		
	05/10 Early bar 09/15 Progress bar				م ا	ader	Civil Engineering	Corn I td						Date 30/09/12	Revision	Revision	Checked RH	Approved VC
	09/12 Critical bar				LC		ontract No. DC/200											
Run date 13	10/12 Progress point			Cont	struction			Vorks at YSW & SKW					ĺ					
Page number 2A c Primavera Syst										(N	/arked or	30 September	er 2012)				_	
	Starting point			3-		omné	g Programme (Oct	2012 - Dec 2012)										
												-					I	

Start date	05/05/10		Early bar
Finish date	21/09/15		Progress bar
Data date	30/09/12		Critical bar Summary bar
Run date	13/10/12		Progress poir
Page number	r 2A] ₹	Critical point
c Primavera	Systems, Inc.	ן די ן	Summary poir
		1 🔽 -	Start miles to ne

	Activ ity	Description	Original	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors				010				2012	
			Juratior					Float			SEP	_	ост	012	NOV	DEC		2013 JAN	
			90								-								
			45								-								
		G/F to 1/F Construction for Deodorizer Room	80				<u> </u>							1					
	YSW05923	G/F to 1/F Construction for Grid J-N/5-7	60			13/02/12 A			YSW05801	YSW06023									
			60								_								
			87								-								
			44																
			60								1								
	YSW06023	1/F to Roof Constuction for Grid J-N/5-7	45	100 13/04/12 A	27/05/12 A	13/04/12 A	27/05/12 A		YSW05923	YSW05924									
			45																
			118																
			42								-								
			42								┤────└╼ा								
	YSW07204	Water tightness test for Grease Separators	42	0 03/10/12 A	10/11/12	03/10/12 A	17/01/13	68d	YSW06035, YSW07203	YSW07205, YSW0800		-							
	YSW07205	Water tightness test for water channels					07/02/13			YSW0800		221							
			271	45 03/07/12 A	25/02/13	03/07/12 A	24/01/13	-32d	YSW06001, YSW06011, YSW06022,	E&M0530, E&M0540, E&M0550, E&M0560,		4							
			10	100 08/09/10 A	17/09/10 A	08/09/10 A	17/09/10 A	1	VSW0035 VSW0422	XSW0620	4								
			248								-								
Image: Processing of the procesing of the processing of the processing of the processing of the p			-								1								
Wy We AL: Ho DI S and Wy More AL: Ho DU S and House AL: A server and Wy More AL: House 2 brain Wy M	YSW0640	1/F to Roof Construction	64	100 15/12/11 A	16/02/12 A	15/12/11 A	16/02/12 A		YSW0630	YSW0810	1								
Non- transmission Non-transmission Non-transmission Non-transmission Non-transmission Non-tr			80	100 28/12/11 A	16/03/12 A	28/12/11 A	16/03/12 A		YSW0640	E&M0610, E&M0620, E&M0630, E&M0640									
No. B. L. Color Longener (5) Table) P 00 100 VDA 100 VDA 100 VDA 100 VDA 100 VDA 100 VDA 000 VDA <			07		44/40/40 4			1											
Virtual Number All			37								-								
		, ,	70								-								
Visite Availabase Availabase Visite Availabase Visite Availabase Visite			17			!	-			YSW0690	1								
Virtual	YSW0690	Construct Superstructure SD1, SD2 & MBR4	82	100 29/03/11 A	18/06/11 A	29/03/11 A	18/06/11 A		YSW0680	YSW0705, YSW0820									
			28											1					
Visite Novi Pristancia 0 0002 Print 0 00002 Novi Pristancia 0 00002 Novi Print 0 00002 Novi Print 0 00002 0 00002 0 00002 0 <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td>20d</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			14					20d			-								
								0			-	ч ч							
Yes Yes <td></td> <td></td> <td>28</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>կ</td> <td></td> <td>₽</td> <td></td> <td></td> <td></td> <td></td> <td></td>			28	-							-	կ		₽					
Verto Originary 4 K2 0 000 200 10 k	YSW0850	Apply protecitve paint for DN Tanks	6	0 28/10/12	02/11/12	09/08/13	14/08/13	285d	YSW0830	E&M0610									
Windows Financial for WHP 3 A 3 N 100 Product A WHP A WH				1 1			•	•	1	1									
V 900/20 Outsout a searching of MBT 2: 3 0 0 000742. 900740. 900740. 900700. V 900720 Outsout a searching of MBT 2: 3 0 0 000740. 900710. 900070. 900710.			0		00/00/40 1		00/00/40 4				_		i						
Vertice Desine degendatione of MBR 2 77 1000 Montre Value			20								-								
V90000 Construct source of AMB 3 100 100 00 00 00 4 400 00 4 100 00 00 00 00 4 100 00 00 00 00 00 00 00 00 00 00 00 00			75				<u>.</u>				-		!						
V90000 Contact Lawer of U2/18 Set 101 19 100 156/12 A 400/12 A 100/12 A		Construct superstructure of MBR 3	100						YSW0735	YSW08302	-								
Vertex Struct additional larges for KHP: gav (V) 59(1) 3 100 00012.4<	YSW0740	ELS & excavate for Outfall Shaft	75		14/05/12 A	01/03/12 A	14/05/12 A		YSW0733	YSW0750			1	1					
VSW0732 Outsitut audiologue d'Outrit allerit 16 100 999/12 A 999/12			19				<u>.</u>				_								
VSW0780 Baskif & remove ELS (undial shart) 8 100 24/09 12 A 01/07/12 A 1/07/12 A			5								_		!						
Image: Non-stand: Bayerin: Low for Outling Shuft Image: Non-stand: Shuft Image: Non-stand: Bayerin: Low for Outling Shuft Image: Non-stand: Non-stand: Shuft Image: Non-			8				<u>.</u>				-		i						
VSW07030 ELS & exceeded for FSH Water Supply Tark 21 100 100/12/A 55/0012/A 1900/12/A 1900/12/A <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٦ </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												٦							
VSW07002 Construct substructure for FSH Water Supply Tark 21 100 200/112 A 190/112 A	YSW07601	Construct superstructure for Outfall Shaft	80	100 03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		YSW0760	YSW08301		1	i	1					
With the remove ELS for PSH Water Supply Tark 21 100 200712.A 310712.A 900712.A <			21						YSW0760	YSW07604		\uparrow							
With With With With With With With With			23								4		!						
VSW07808 Construct superstructure for FSH Water Supply Tk 28 100 2508/12.A 3009/12.A 2009/12.A 3009/12.A 3000/12.A 300/12.A 300/12.A 300/12.A 300/12.A 3000/12.A 300/12.A 300/12			21																
VSW07800 Construct superstructure for MBR 1 28 100 25/08/12.A 30/09/12.A 25/09/12.A 30/09/12.A 25/10/12.A 25/10/12.A 10/10/12.A 25/10/			20										<u></u>						
VSW08301 Water tightness test for Outfall Shaft 42 0 30/09/12 10/11/12 20/09/12 31/10/12 -1/04 vSW07501 vSW08305 VSW08302 Water tightness test for MBR 2 & 3 43 100 03/09/12 05/10/12 A <			28																
VSW08302 Water tightness test for MBR 2 & 3 49 100 03/07/12 A 05/10/12 A 05/10/	YSW07610	Construct Workshop, FSSH Pump Rm, PW Pump Rm	28	0 03/10/12 A	27/10/12	03/10/12 A	25/12/12	59d	YSW07609	YSW0840	1 1								
VSW08303 Water tightness test for MBR 1 14 0 30/09/12 13/10/12 29/11/12 11/12/12 560 vSW08305 vSW08305 VSW08304 Water tightness test for KSH Water Supply Tank 32 0 30/09/12 31/10/12 30/09/13 05/06/13 16/0 YSW0830 EAM0630, E			42					-10d				14#							
VSW08304 Water tightness test for FSH Water Supply Tark 32 0 30/09/12 31/10/12 01/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 31/10/12 10/12/12 <t< td=""><td></td><td>-</td><td>49</td><td></td><td></td><td></td><td></td><td>50.1</td><td></td><td></td><td></td><td>1 1 1</td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-	49					50.1				1 1 1	<u></u>						
VSW08305 Apply protective paint 82 0 21/10/12 10/10/13 11/10/12 31/12/12 -10d VSW08303, EM0690, SW0870 VSW0870 ABWF installation 30 0 11/10/13 09/02/13 05/06/13 11ed vsw08302, VSW08303, EM0690, SW0870 Fire Hose Reel / Sprinkler Pump Rm Early bar Date Revision Checked Approved Start date 05/05/10 Early bar Contract No. DC/2009/13 Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW Marked on 30 September 2012) Marked on 30 September 2012) Warked on 30 September 2012) Marked on 30 September 2012)			14																
YSW0870 ABWF installation 30 0 11/01/13 09/02/13 07/05/13 05/06/13 11/01 09/02/13 07/05/13 05/06/13 11/01 09/02/13 07/05/13 05/06/13 11/01 09/02/13 07/05/13 05/06/13 11/01 09/02/13 05/06/13 11/01 09/02/13 05/06/13 11/01 09/02/13 05/06/13 11/01 09/02/13 05/06/13 11/01 09/02/13 05/06/13 05/05/10 0			82								-								
Date Revision Checked Approved Finish date 21/09/15 Progress bar Criticalbar Summary bar Contract No. DC/2009/13 Revision 0 RH VC Summary bar Progress point Construction of Sew age Treatment Works at YSW & SKW Image number 3A Construction of Sew age Treatment Works at YSW & SKW Image number 2012			30				L				1							L e	
Finish date 21/09/15 Progress bar 30/09/12 Revision 0 RH VC Data date 30/09/12 Summary bar Contract No. DC/2009/13 Image: Contrac		el / Sprinkler Pump Rm	<u> </u>			•	•												
Finish date 21/09/15 Progress bar 30/09/12 Revision 0 RH VC Data date 30/09/12 Summary bar Contract No. DC/2009/13 Image: Contrac	Start date 05	/05/10 Early bar													Date		Revision	Checked An	nroved
Data date 30/09/12 Contract No. DC/2009/13 Run date 13/10/12 Progress point Page number 3A Construction of Sew age Treatment Works at YSW & SKW c Primavera Systems, Inc. Summary point	Finish date 21,	/09/15 Progress bar					Le	eader	Civil Engineering C	orp. Ltd.						Revisio			
Run date 13/10/12 Progress point Page number 3A Construction of Sew age Treatment Works at YSW & SKW C Primavera Systems, Inc. Summary point		(10/12 Summary bar																	
3-month Bolling Programme (Oct 2012 - Dec 2012)	Page number 3A					Cons	struction							h					
		ems. Inc. 🔽 Summary point											(Ivvarked on 30 Septem	uer 2012)					
		Einiah milaataa naist																	


Start date	05/05/10		Early bar
Finish date	21/09/15		Progress ba
Data date	30/09/12		Critical bar Summary ba
Run date	13/10/12		Progress pr
Page number	ЗA	▼	Critical poin
c Primavera S	Systems, Inc.	7	Summary po
			Start miles to

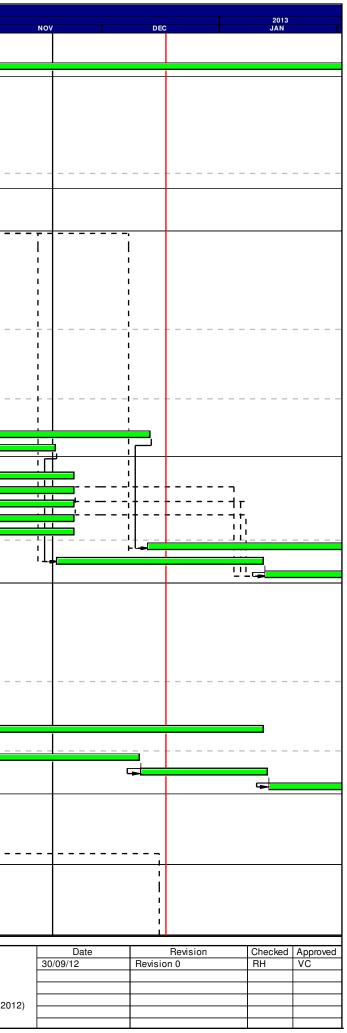
	Activ ity ID	Description	Original Duratior	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	SEP		ост	20	012
	YSW0840	ELS & excavate to formation (+0 mPD approx.)	30	0	28/10/12	26/11/12	26/12/12	24/01/13	59d	YSW07610	YSW0860	<u>JEP</u>		001		
	YSW0860	Sub-structure construction	30	0	27/11/12	26/12/12	25/01/13	23/02/13	59d	YSW0840	YSW0880				- il-	
	YSW0880	Backfill & remove ELS	30	0	27/12/12	25/01/13	24/02/13	25/03/13	59d	YSW0860	YSW0890					
	Emergency S	torage Tank			1				1							+
	YSW1470	ELS & excavate to formation (+3.5mPD Approx.)	30	50	17/09/12 A	14/10/12	17/09/12 A	30/10/12	16d	YSW0760	YSW1480					
	YSW1480	Sub-structure construction	40		15/10/12	23/11/12	31/10/12	09/12/12	16d		YSW1490					
	YSW1490	Backfill & extract sheetpile	30	0	24/11/12	23/12/12	10/12/12	08/01/13	16d	YSW1480	YSW1500				i i	
	YSW1500	Superstructure construction upto +10.5mPD	40	-	24/12/12	01/02/13	09/01/13	17/02/13	16d	YSW1490	YSW1530, YSW1536					
	YSW1530	Underground pipeline works	40		02/02/13	13/03/13	18/02/13	29/03/13	16d		E&M0690, YSW1680				- !	
	YSW1536	Water tightness test	40	-	02/02/13	13/03/13	26/06/13	04/08/13	144d		YSW1538					
		Cable Draw Pits & Ducting	+0	0	02/02/13	10/00/10	20/00/13	04/00/13	1 140	13W1300	13W1330				—- i †-	
	YSW16601	Construct 6m deep sewer YFMH5-YFMH6 (Grid Q-X)	60	0	30/09/12	28/11/12	16/10/12	14/12/12	16d	YSW0760	YSW16602				<u> </u>	
			1												<u> </u>	
	YSW16602	Connect 6m deep sewer to existing manhole FM1	45	0	29/11/12	12/01/13	15/12/12	28/01/13	16d		YSW16603				i	
	YSW16603	Construct UU & pipes along sea side (Grid Q-X)	60	0	13/01/13	13/03/13	29/01/13	29/03/13	16d		YSW16604, YSW16703				<u> </u>	
	YSW16606	Construct UU & pipes along hill side (Grid D-Q)	60		30/09/12	28/11/12	04/02/13	04/04/13	127d	YSW0760	YSW16607		L		1	
	YSW16607	Construct UU & pipes along hill side (Grid Q-X)	60	-	20/08/12 A	21/01/13	20/08/12 A	28/05/13	127d	YSW16606	YSW16608				H -	1
	YSW16608	Construct UU & pipes along hill side (Grid XA-D)	60	0	22/01/13	22/03/13	29/05/13	27/07/13	127d	YSW16607	YSW1690				<u> </u>	
S	ubmarine Out	tfall														
Y	'SW0180	Coordination of HEC	53	100	17/05/10 A	08/07/10 A	17/05/10 A	08/07/10 A		KD0020	YSW0350				- 11	
Y	'SW0200	Submission and Approval of Ecologist	60	100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020	YSW0210				i	
Y	'SW0210	Ecology Survey	211	100	16/07/10 A	11/02/11 A	16/07/10 A	11/02/11 A		YSW0200	YSW0350			11	- I	
Y	'SW0220	Submission and Approval of In. Hydro Survey	103	100	17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A		KD0020	YSW0230				- !	
Y	'SW0230	Hydrogrophical Survey (YSW)	157	100	28/08/10 A	31/01/11 A	28/08/10 A	31/01/11 A		YSW0220	YSW0350				- 11	
Y	'SW0240	Material Submission, Approval of HDPE pipe	319	100	17/05/10 A	31/03/11 A	17/05/10 A	31/03/11 A		KD0020	YSW0360				i -	1
Y	'SW02401	Clarify Coordinate of Point Y (Reply of RFI 010)	83	100	28/06/10 A	18/09/10 A	28/06/10 A	18/09/10 A		KD0020	YSW0250					
Y	'SW0250	Submit and Approval of Method Statement for HDD	188	100	19/09/10 A	25/03/11 A	19/09/10 A	25/03/11 A		YSW02401	YSW0260, YSW0270, YSW0340				- !	
	'SW0260	Submission of HDD Method Statement to HEC	14		26/03/11 A	08/04/11 A	26/03/11 A	08/04/11 A		YSW0250	YSW0340				- 11	
	'SW0270	Additional G.I. Boreholes (YSW)	123	100	1	19/01/11 A	19/09/10 A	19/01/11 A		YSW0250	YSW0280, YSW0290				i i	
	'SW0280	Submission of propose alignment	44		20/01/11 A	04/03/11 A	20/01/11 A	04/03/11 A		YSW0270	YSW0310, YSW0340					
	'SW0290	Submission of Marine Notice	69		20/01/11 A	29/03/11 A	20/01/11 A	29/03/11 A		YSW0270	YSW0350				- 11	
	SW0310	Construction of Entry Pit and Preparation Work	27		05/03/11 A	31/03/11 A	05/03/11 A	31/03/11 A		YSW0280	YSW0320					
	SW0320	Prepare of HDD Drill Rig Set-up (YSW)	28		01/04/11 A	28/04/11 A	01/04/11 A	28/04/11 A		YSW0310	YSW0330, YSW0350					
	SW0330	Establishment of HDD plant & equipment	6		09/04/11 A	14/04/11 A	09/04/11 A	14/04/11 A		YSW0320	YSW0340					
			14													
	'SW0340 'SW0350	Setting up at drillhole location Drill pilot hole and reaming hole - NS400 - 530m	229	100	15/04/11 A 29/04/11 A	28/04/11 A 13/12/11 A	15/04/11 A 29/04/11 A	28/04/11 A 13/12/11 A		YSW0250, YSW0260, YSW0280, YSW0040, YSW0180, YSW0210,	YSW0350				i	
					!						YSW0360				<u> </u>	
	SW0360	Installation of NS400 HDPE 530m	17	100		30/12/11 A	14/12/11 A	30/12/11 A		YSW0240, YSW0350	SKW1181, YSW03601, YSW03620, YSW0370					
	'SW03601	Demobilization of HDD plant & equipment	/		31/12/11 A	06/01/12 A	31/12/11 A	06/01/12 A		YSW0360	YSW03605, YSW03641, YSW0730					
	SW03605	Remove Entry pit of HDD	14		07/01/12 A	20/01/12 A	07/01/12 A	20/01/12 A		YSW03601	YSW0730					
	'SW03620	Removal of Receiving Pit	14		31/12/11 A	13/01/12 A		13/01/12 A		YSW0360	YSW0365			11		
		Prepare backfilling material under VO 046A	120		07/01/12 A	-		05/05/12 A		YSW03601	YSW0365][]
	'SW0365	Set up of Silt Curtain as per EP	30		21/11/12	21/12/12	02/07/13	31/07/13	223d	SKW1431, YSW03620, YSW03641	YSW0370]
Y	'SW0370	Dredging of Marine Deposit for Diffuser (YSW)	14	0	21/12/12	04/01/13	01/08/13	14/08/13	223d	YSW0360, YSW0365	YSW0380					
	'SW0380	Diffuser Construction (YSW)	60	0	04/01/13	05/03/13	15/08/13	13/10/13	223d	YSW0370	E&M0690, YSW0400				!	<u> </u>
	&MWorks - Y	-		-	-	-	-	-	-							
E	&M0360	Delivery of MBR Memb. Mod. (MBR Tk 4)	137		24/02/11 A	21/06/11 A	24/02/11 A	21/06/11 A		E&M0160	E&M0510				- i	
E	&M0370	Delivery of MBR Membrane Modules - 2nd Shipment	150	100	24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A		E&M0160	E&M0520			[[!	
	&M0380	Delivery of Grit Removal Equipment	180		10/10/11 A	29/12/11 A	10/10/11 A	29/12/11 A		E&M0150	E&M0530			1	· I- I- I I	1
E	&M0390	Delivery of Coarse Screens	162	100	06/09/11 A	12/01/12 A	06/09/11 A	12/01/12 A		E&M0110	E&M0540			11	i li	
E	&M0400	Delivery of Fine Screens	180	100	12/09/11 A	30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M0550			11	I I	
E	&M0410	Delivery of Pumps	162	100	23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M0560			11		
E	&M0420	Delivery of Submersible Mixers	162	100	26/02/11 A	17/11/11 A	26/02/11 A	17/11/11 A		E&M0140	E&M0570					
E	&M0440	Delivery of Sludge Dewatering Equipment	180	50	01/09/11 A	28/12/12	01/09/11 A	03/03/13	65d	E&M0170	E&M0580					<u> </u>
E	&M0450	Delivery of Valves, Pipes & Fittings	180	90	30/08/11 A	22/10/12	30/08/11 A	03/05/13	194d	E&M0180	E&M0590, E&M0605				<u></u>	
E	&M0460	Delivery of Penstocks	180	100	12/08/11 A	24/12/11 A	12/08/11 A	24/12/11 A		E&M0190	E&M0600				□ ⊢	
E	&M0470	Delivery of Instruments	180		03/11/11 A	21/06/11 A	03/11/11 A	21/06/11 A		E&M0200	E&M0610					1
E	&M0480	Delivery of MCC LVSB	177		01/10/12	27/03/13	11/07/12	03/01/13	-83d	E&M0210	E&M0620					
	&M0490	Delivery of BS Equipment	180		11/12/11 A	17/02/13	11/12/11 A	05/06/13		E&M0220	E&M0630					
	&M0500	Delivery FS Equipment	180		11/12/11 A	07/03/13	11/12/11 A	03/07/13	118d		E&M0330, E&M0640			•	111	1
	&M0510	Install Membrane Modules in MBR Tank no. 4	90		03/11/12 A	27/01/13	03/11/12 A	27/01/13		E&M0360, YSW0705, YSW0820	KD0115				Т Ці	
	&M0520	Install Membrane Modules in MBR Tank No. 4	130		03/11/12 A 04/01/13	13/05/13	25/12/12	03/05/13	-10d		E&M0590, E&M0690					1
	&M0530			-				30/09/12 A	1 -100					Ц		
		Install Grit Removal Equipment	60 75		01/06/12 A	30/09/12 A	01/06/12 A		45.4	E&M0380, E&M0540, YSW0800	E&M0590, E&M0660			. <u></u>		<u>+</u>
	&M0540	Install Coarse Screens	/5	90	23/04/12 A	05/03/13	23/04/12 A	19/03/13	150	E&M0390, YSW0800	E&M0530, E&M0550, E&M0570, E&M0590, E&M0660					
	0 10550				04/02/15	47/00//-	04/00/15	00/05/15								
E	&M0550	Install Fine Screens	60	80	01/06/12 A	17/03/13	01/06/12 A	03/05/13	48d	E&M0400, E&M0540, YSW0800	E&M0590, E&M0660					1
Start		05/10 Early bar														
-		09/15 Progress bar Critical bar						L	eader	Civil Engineering C	orp. Ltd.					

Start date	05/05/10		Early bar
Finish date	21/09/15		Progress bar
Data date	30/09/12		Critical bar Summary bar
Run date	13/10/12		Progress point
Page number	4A	▼	Critical point
c Primavera S	Systems, Inc.	7	Summary point
		2	Start milestone point
		_	

Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Oct 2012 - Dec 2012)

(Marked on 30 September 2012)

Activ ity ID	Description	Original	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		2012			2013
E&M0560	Install Pumps	201 2010	40 23/04/12 A	20/04/13	23/04/12 A	19/03/13		E&M0410, YSW0800	E&M0570, E&M0590, E&M0660	SEP	OCT	NOV	DEC	JAN
E&M0580	Install Sludge Dewatering Equipment	280	<u>.</u>	07/10/13	29/05/12 A	13/10/13		E&M0440, YSW0800	E&M0690		+			
E&M0600	Install Penstocks (Batch 1, GL H - T)	180		08/05/13	23/04/12 A	13/10/13		E&M0460, YSW0800	E&M0690	-				
E&M0605	Install Penstocks (Batch 2, GL A - F)	120		10/05/13	16/06/13	13/10/13		E&M0450, YSW08305	E&M0690					
Sok Kwu Wa	an	1				1								
Preliminary														
SKW0250	Approval of Environmental Team	16	100 17/05/10 A	01/06/10 A	17/05/10 A	01/06/10 A		KD0020	SKW0260	-				
SKW0260	Baseline monitoring (Air & Noise)	14		15/06/10 A	02/06/10 A	15/06/10 A		SKW0250	SKW0242, SKW0265, SKW0592, SKW0681,					
SKW0265	Baseline Monitoring Submission (A & N)	14	100 16/06/10 A	08/07/10 A	16/06/10 A	08/07/10 A		SKW0260	SKW0242, SKW0592, SKW0681, SKW0921,					
Section W3 - F	ootpath Diversion in Portion G		•											
Civil & Geoteo	hnical Works													
SKW0240	Site Clearance	21	100 17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A			SKW0241					
SKW0241	Initial Survey	9	100 07/06/10 A	15/06/10 A	07/06/10 A	15/06/10 A		SKW0240	SKW0242					
SKW0242	Retaining Wall Bay 0-10 (Incl. VO. 001A)	177	100	23/12/10 A	30/06/10 A	23/12/10 A		SKW0241, SKW0260, SKW0265	SKW0461					
SKW0461	Utilities Laying and Diversion	70	100 24/12/10 A	03/03/11 A	24/12/10 A	03/03/11 A		SKW0242	SKW0471					
SKW0471	Concreting for Pavement	7	100 04/03/11 A	10/03/11 A	04/03/11 A	10/03/11 A		SKW0461	SKW0481					
SKW0481	Footpath Diversion - Stage 1	14	100	24/03/11 A	11/03/11 A	24/03/11 A		SKW0471	KD0050, SKW04811, SKW0491					
SKW04811	Excavate for FP transition at CH0-35 &CH130-141	37	100 25/03/11 A	30/04/11 A	25/03/11 A	30/04/11 A		SKW0481	SKW04821	-				
SKW04821	Construction of Drainage outfall near bay 10	3	100 01/05/11 A	03/05/11 A	01/05/11 A	03/05/11 A		SKW04811	SKW04831	-				
SKW04831	Cable diversion by HEC	26		29/05/11 A	04/05/11 A	29/05/11 A		SKW04821	SKW04841	-				
SKW04841 SKW04851	Diversion of Ducting and Drawpit by PCCW Soil backfilling behind FP retaining wall	12	100 20/05/11 A 100 01/06/11 A	31/05/11 A 14/06/11 A	20/05/11 A 01/06/11 A	31/05/11 A 14/06/11 A		SKW04831 SKW04841	SKW04851 SKW04861					
SKW04851 SKW04861	Concreting for footpath pavement	14	100 01/06/11 A 100 15/06/11 A	21/06/11 A	15/06/11 A	14/06/11 A 21/06/11 A		SKW04851	SKW04861 SKW04871	-				
SKW04861 SKW04871	Relocation of Temp Safety Fence at SKW STW A-G	57		17/08/11 A	15/06/11 A 22/06/11 A	21/06/11 A 17/08/11 A		SKW04851 SKW04861	SKW04871 SKW04881	-				
SKW04881	Disposal of excavation material at A-G SKW STW	138		02/01/12 A	18/08/11 A	02/01/12 A		SKW04871	SKW04885	-				
SKW04885	Footpath Diversion - Stage 2	7	100 03/01/12 A	09/01/12 A	03/01/12 A	09/01/12 A		SKW04881	SKW1261	-				
	lope Works in Portions H & I		100											
Geotechnical	-													
SKW0588	Construct scaffolding access	30	100 15/06/10 A	14/07/10 A	15/06/10 A	14/07/10 A		KD0020	SKW0590					
SKW0590	Site Clearance for Slope	100	100 15/07/10 A	22/10/10 A	15/07/10 A	22/10/10 A		SKW0588	SKW0591					
SKW0591	Initial Survey for Slope	28	100 21/09/10 A	18/10/10 A	21/09/10 A	18/10/10 A		SKW0590	SKW0592					
SKW0592	Temporary Rockfall fence at ex. Footpath	43	100 31/08/10 A	12/10/10 A	31/08/10 A	12/10/10 A		SKW0260, SKW0265, SKW0591	SKW05931					
SKW05931	Construction of Haul Road (To +30mPD)	50	100 03/09/10 A	22/10/10 A	03/09/10 A	22/10/10 A		SKW0592	SKW05932					
SKW05932	Construction of Haul Road (To +42.5mPD)	68	100 23/10/10 A	29/12/10 A	23/10/10 A	29/12/10 A		SKW05931	SKW059322		[]			
SKW059321	Removal of Boulders (IBG 1 - 119, SI No. 11B)	121		03/03/11 A	03/11/10 A	03/03/11 A			SKW059411					
SKW059322	Add. Site Invest. Works (VO. No. 9,12 &16)	174	100 11/01/11 A	03/07/11 A	11/01/11 A	03/07/11 A		SKW05932	SKW059341					
SKW059323	Revised Profile at West Slope (+56 to +42.5mPD)	1	100 17/03/11 A	17/03/11 A	17/03/11 A	17/03/11 A			SKW059324					
SKW059324	Construction of Haul Road (+42.5 to +56mPD)	12	100 18/03/11 A	29/03/11 A	18/03/11 A	29/03/11 A		SKW059323	SKW059325					
SKW059325	Removal of Boulders (IBG 120-139, SI No. 11C)	17	100 30/03/11 A	15/04/11 A		15/04/11 A 17/04/11 A		SKW059324	SKW05933	-				
SKW05933	West Slope Cutting (+56mPD to +42.5mPD)	2	100					SKW059325	SKW059331	-				
SKW059331 SKW05934	Removal of Boulders (IBG 140-189, SI No. 11D) West Slope Cutting (+42.5mPD to +35mPD)	45	100 100	01/06/11 A 03/07/11 A	18/04/11 A 02/06/11 A	01/06/11 A 03/07/11 A		SKW05933 SKW059331	SKW05934 SKW059341	-				
SKW059341	Revised Profile at West Slope (+20 to +4.8mPD)	1	100 04/07/11 A	04/07/11 A	04/07/11 A	04/07/11 A		SKW059322, SKW05934	SKW05935	-				
SKW05935	West Slope Cutting (+35mPD to +27.5mPD)	83	<u> </u>	28/09/11 A	08/07/11 A	28/09/11 A		SKW059341	SKW05936					
SKW05936	West Slope Cutting (+27.5mPD to +20mPD)	61		28/11/11 A	29/09/11 A	28/11/11 A		SKW05935	SKW05937	-				
SKW05937	West Slope Cutting (+20mPD to +12.5mPD)	39		06/01/12 A	29/11/11 A	06/01/12 A		SKW05936	SKW05938	-				
SKW05938	West Slope Cutting (+12.5mPD to +4.8mPD)	90	100 07/01/12 A	27/03/12 A	07/01/12 A	27/03/12 A		SKW05937	KD0060, SKW1261, SKW1311, SKW1371	1				
SKW05941	Slope Stormwater Drainage	300		25/05/12 A	28/03/12 A	25/05/12 A		KD0060	SKW05942					
SKW059411	East Slope Cutting (+50mPD to +42.5mPD)	72	100 04/03/11 A	14/05/11 A	04/03/11 A	14/05/11 A		SKW059321	SKW059412					
SKW059412	East Slope Cutting (+42.5mPD to +35mPD)	82	100 15/05/11 A	04/08/11 A	15/05/11 A	04/08/11 A		SKW059411	SKW059413					
SKW059413	East Slope Cutting (+35mPD to +27.5mPD)	55	100	28/09/11 A	05/08/11 A	28/09/11 A		SKW059412	SKW059414					
SKW059414	East Slope Cutting (+27.5mPD to +20mPD)	61	100 20,00, 1171	28/11/11 A	29/09/11 A	28/11/11 A		SKW059413	SKW059415	4				
SKW059415	East Slope Cutting (+20mPD to +12.5mPD)	39	100 -0	06/01/12 A	29/11/11 A	06/01/12 A		SKW059414	SKW059416					
SKW059416	East Slope Cutting (+12.5mPD to +4.8mPD)	81	100 0//01/12/1	27/03/12 A	07/01/12 A	27/03/12 A		SKW059415	KD0060, SKW1311, SKW1371	4				
SKW05942	Slope Miscellaneous Works	61	100 == 00	31/07/12 A	26/05/12 A	31/07/12 A		SKW05941	SKW05943, SKW0595	-				
SKW05943	Buttress & surface Protection (SI No. 31)	60	100 00 00 12 11	31/07/12 A	03/07/12 A	31/07/12 A		SKW05942	SKW05944	-				
SKW05944 SKW05945	Slope Treatment (SI. No. 36) Rock Slope Treatment (SI. No. 68)	60	100 00.000	31/07/12 A 30/09/12 A	03/07/12 A 01/08/12 A	31/07/12 A 30/09/12 A		SKW05943 SKW05944	SKW05945 SKW05946					
SKW05946	Rock Slope Treatment (SI. No. 98)	60		04/11/12	10/09/12 A	08/02/13	664	SKW05944	SKW05946					
SKW05947	Rock Slope Treatment (SI. No. 96)	60		20/12/12	26/01/13	26/03/13		SKW05945 SKW05946	KD0135					
SKW05948	Soil Nailing Works (VO. No. 52)	300	0	28/12/12	10/02/12 A	04/06/14	523d		SKW05963					
SKW05963	Determine Alignment & Foundation Design of RFB	120		08/06/12 A	10/02/12 A	08/06/12 A	0_00	SKW05948	SKW059631, SKW05964, SKW05965					
SKW059631	GEO Approval of Foundation Design	70		31/07/12 A	09/06/12 A	31/07/12 A		SKW05963	SKW05968	1				
SKW05964	Fabrication & Shipping of RFB Material	180		13/11/12	09/06/12 A	14/04/15	882d	SKW05963	SKW05972					
					· · · · ·				1			I	I	
	/05/10 Early bar /09/15 Progress bar											Date	Revision	Checked Approved
	/00/12 Critical bar					LE		Civil Engineering				30/09/12	Revision 0	RH VC
	/10/12 Summary bar /10/12 Progress point				~			ontract No. DC/200						
Page number 5A	Critical point								Vorks at YSW & SKW		(Marked on 30 September 20	012)		
c Primavera Sys	summary point Start milestone point				3-	month R	olling	g Programme (Oct 2	2012 - Dec 2012)			- 7		
<u> </u>	 Einich millestere seint 											I	1	l

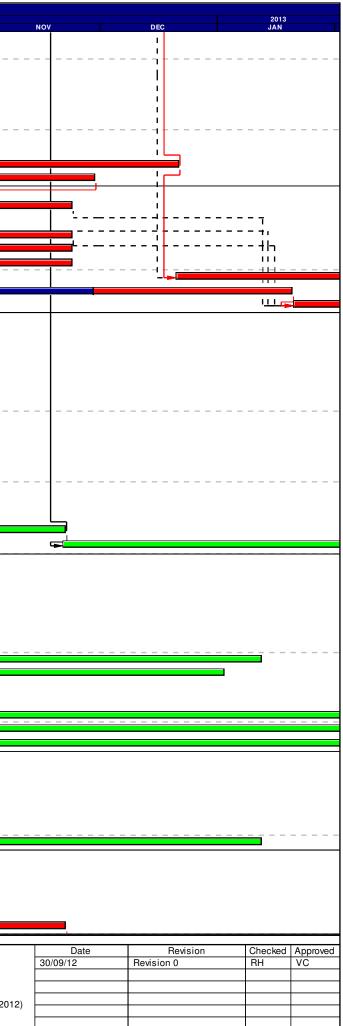

Start date	05/05/10		Early bar
Finish date	21/09/15		Progress bar
Data date	30/09/12		Critical bar Summary bar
Run date	13/10/12		Progress poir
Page number	r 5A	₹	Critical point
c Primavera	Systems, Inc.	17	Summary poir
		1 🙎	Start miles tone

Activ ity ID	Description	Original Duratior	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	SEP		ост	2013
SKW05965	Site clearance & Formation of access	62	100	09/06/12 A	31/07/12 A	09/06/12 A	31/07/12 A		SKW05963	SKW05967			1	
KW05967	Plant mobilization	14	0	30/09/12	13/10/12	07/03/14	20/03/14	523d	SKW05965	SKW05968		╶┶╍		
KW05968	Construction of anchors & pull out test	180	0	14/10/12	11/04/13	21/03/14	16/09/14	523d	SKW059631, SKW05967	SKW05969				
tion W5 - P.S	S. No. 1 in Portion D													
vil & Geotech	hnical Works													
KW0651	Site Clearance	7	100	17/05/10 A	23/05/10 A	17/05/10 A	23/05/10 A		KD0020	SKW0652				
KW0652	Initial Survey	7	100	24/05/10 A	30/05/10 A	24/05/10 A	30/05/10 A		SKW0651	SKW0661,SKW0681				
KW0661	Transplantation for uncommon vegatation	30	100	31/05/10 A	29/06/10 A	31/05/10 A	29/06/10 A	1	SKW0652	SKW0681				
SKW0681	Excavate to lower the working platform to +3mPD	49	100	30/06/10 A	17/08/10 A	30/06/10 A	17/08/10 A		SKW0260, SKW0265, SKW0652,	SKW0691				
SKW0691	ELS to +2.2mPD	40	100	18/08/10 A	26/09/10 A	18/08/10 A	26/09/10 A		SKW0681	SKW0721				
SKW0721	Excavate to formation	270	100	!	13/06/11 A	17/09/10 A	13/06/11 A		SKW0691	SKW0741				
tructural Work	l ks							1	1	1				
SKW0741	RC Works for Structure	240	100	14/06/11 A	08/02/12 A	14/06/11 A	08/02/12 A	1	SKW0721	KD0070,SKW0841				
KW0841	ABWF works	60		09/02/12 A	08/04/12 A	09/02/12 A	08/04/12 A	1	SKW0741	E&M1101, E&M1102, E&M1103, E&M1104,				
&MWorks (PS			100					I				┈┽┾╺╴╸		
Submission &	·													
E&M1001	Submission of Pumps	198	100	17/05/10 A	24/02/11 A	17/05/10 A	24/02/11 A	1	KD0020	E&M1011				
E&M1001	Submission of Gen-Set	198	100	1	24/02/11 A	17/05/10 A	24/02/11 A		100020	E&M1012				
E&M1002	Submission of DeO System	198			11/07/11 A	17/05/10 A	11/07/11 A			E&M1013				
	,		100			!								
E&M1004	Submission of LV SB & MCC	180		17/05/10 A	09/01/12 A	17/05/10 A	09/01/12 A			E&M1014				
E&M1005	Submission of Instrumentation	243		17/05/10 A	12/03/12 A	17/05/10 A	12/03/12 A			E&M1015	<u> </u>	<u> </u>		
E&M1006	Submission of FS System	243		17/05/10 A	30/09/12 A	17/05/10 A	30/09/12 A	105.	1	E&M1016	·I		-	
E&M1007	Submission of BS System	243	97	17/05/10 A	07/10/12	17/05/10 A	09/04/13	185d		E&M1017			•	
E&M1011	Delivery of Pumps	150		24/02/11 A	21/07/11 A	24/02/11 A	21/07/11 A		E&M1001	E&M1101				
E&M1012	Delivery of Gen-Set	150	100		23/09/11 A	24/02/11 A	23/09/11 A		E&M1002	E&M1102				
E&M1013	Delivery of DeO System	150		11/07/11 A	28/10/11 A	11/07/11 A	28/10/11 A		E&M1003	E&M1103				
E&M1014	Delivery of LV SB & MCC	150		01/06/12 A	31/07/12 A	01/06/12 A	31/07/12 A		E&M1004	E&M1104				
E&M1015	Delivery of Instrumentation	90		01/11/11 A	03/11/11 A	01/11/11 A	03/11/11 A		E&M1005	E&M1105		1		
E&M1016	Delivery of FS Equipment	107		01/12/11 A	13/12/12	01/12/11 A	22/05/13	160d	E&M1006	E&M1106				
E&M1017	Delivery of BS Equipment	107	60	15/11/11 A	18/11/12	15/11/11 A	22/05/13	185d	E&M1007	E&M1107			(
nstallation, T	T&C											1		
E&M1101	Install Pumps	55	0	30/09/12	23/11/12	22/05/13	16/07/13	235d	E&M1011,SKW0841	E&M1110, E&M1140	╽ ┣┸╂╄┦			
E&M1102	Install Gen Set	55	0	30/09/12	23/11/12	22/05/13	16/07/13	235d	E&M1012, SKW0841	E&M1110, E&M1140	╽╶──┣┸╫┦	┍┼┠╸ <mark>═══</mark>		
E&M1103	Install DeO System	55	0	30/09/12	23/11/12	22/05/13	16/07/13	235d	E&M1013, SKW0841	E&M1110, E&M1140	╷ ┣━Ҷ	┍╫╍		
E&M1104	Install LV SB & MCC	55	0	30/09/12	23/11/12	22/05/13	16/07/13	235d	E&M1014,SKW0841	E&M1140	/ ┣━┛	┼┼╍		
E&M1105	Install Instrumentation	55	0	30/09/12	23/11/12	22/05/13	16/07/13	235d	E&M1015, SKW0841	E&M1140		╌╎╍		
E&M1106	Install FS Equipment	55	0	13/12/12	06/02/13	22/05/13	16/07/13	160d	E&M1016, SKW0841	E&M1130, E&M1140	[
E&M1107	Install BS Equipment	55	0	19/11/12	12/01/13	22/05/13	16/07/13	185d	E&M1017, SKW0841	E&M1110, E&M1140				
E&M1110	Install Valves, Pipes & Fittings	46	0	13/01/13	27/02/13	15/08/13	30/09/13	215d	E&M1101, E&M1102, E&M1103, E&M1107	E&M1120				
tion W6 - Se	wer and PS No.2 in Portions E&H			•					I	•				
vil & Geotech	hnical Works													
SKW0881	Site Clearance	7	100	17/05/10 A	23/05/10 A	17/05/10 A	23/05/10 A		KD0020	SKW0891				
SKW0891	Plant mobilization	7		17/05/10 A	23/05/10 A	17/05/10 A	23/05/10 A		SKW0881	SKW0892				
KW0892	Initial Survey	30		24/05/10 A	22/06/10 A	24/05/10 A	22/06/10 A		SKW0891	SKW0901	1			
KW0901	Tree Transplantation	90		23/06/10 A	20/09/10 A	23/06/10 A	20/09/10 A		SKW0892	SKW0921				
SKW0921	Cut Slope & U-Channel	14		21/09/10 A	04/10/10 A	21/09/10 A	04/10/10 A		SKW0260, SKW0265, SKW0901	SKW0921 SKW0931, SKW0951				
SKW0931	Hoarding & Fencing	14		05/10/10 A	18/10/10 A	05/10/10 A	18/10/10 A		SKW0921	SKW0950, SKW0951				·
KW0950	Removal of Rock Boulders before ELS	66		19/10/10 A	23/12/10 A	19/10/10 A	23/12/10 A		SKW0931	SKW0951				
KW0951	ELS & Excavate to formation	169		24/12/10 A	10/06/11 A	24/12/10 A	10/06/11 A		SKW0931 SKW0921,SKW0931,SKW0950	SKW0971				
SKW0951	Mass Conc. Retaining Wall	90	100	15/10/12	12/01/13	12/11/12	09/02/13	284	SKW1081	KD0155	1			
KW1491	LCS (ChA0+45 to 1+75) VO.7	90	100	24/03/12 A	21/06/12 A	24/03/12 A	21/06/12 A		PRE0100,SKW1021	SKW15111				
SKW 1491 SKW 15111	Twin DN150 DI Rising Main (ChA1+75 - ChA5+79)	180	100 60	<u> </u>	10/12/12	24/03/12 A 22/06/12 A	21/06/12 A 17/01/13	284	PRE0100, SKW1021 SKW1491	SKW15111 SKW1531				
			00											
SKW1531	Extent village sewers S163.1 & S164.1	34	0	11/12/12	13/01/13	18/01/13	20/02/13	38d		SKW1581				
SKW 1581	Construct Manhole no. S163 & S164	34	0	14/01/13	16/02/13	21/02/13	26/03/13	38d	SKW1531	KD0135,SKW15112	 		_ _	
ructural Work						Laurence	10/05/15	1	L		1			
SKW0971	Structural Works (Phase 1)	245		11/06/11 A	10/02/12 A	11/06/11 A	10/02/12 A		SKW0951	KD0080, SKW1021	1			
SKW1021	Structural Works (Phase 2)	42		11/02/12 A	23/03/12 A	11/02/12 A	23/03/12 A		SKW0971	SKW1061, SKW1081, SKW1491	1			
KW1061	ABWF Works	90		24/03/12 A	21/06/12 A	24/03/12 A	21/06/12 A		SKW1021	E&M2101, E&M2102, E&M2103, E&M2104,			<u> </u>	
KW1081	375mm U-channel/catchpits/outfall	30	50	22/06/12 A	14/10/12	22/06/12 A	11/11/12	28d	SKW1021,SKW1061	KD0155, SKW0961			<u> </u>	
&MWorks (PS	·													
Submission &										-				
	Submission of Pumps	198	100	17/05/10 A	24/02/11 A	17/05/10 A	24/02/11 A		KD0020	E&M2011				
E&M2001											, I			
E&M2001 E&M2002 E&M2003	Submission of Gen-Set Submission of DeO System	198 198		17/05/10 A 17/05/10 A	24/02/11 A 11/07/11 A	17/05/10 A 17/05/10 A	24/02/11 A 11/07/11 A			E&M2012	۱			

Start date	05/05/10		Early bar
Finish date	21/09/15		Progress bar
Data date	30/09/12		Critical bar Summary bar
Run date	13/10/12		Progress point
Page number	6A	▼	Critical point
c Primavera S	vstems, Inc.	∇	Summary point
	<i>jete</i> e,e	>	Start miles tone point
		^	Einight miles to a state

Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Oct 2012 - Dec 2012)

(Marked on 30 September 2012)



Activ ity ID	Description	Original	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2012
E&M2004	Submission of LV SB & MCC	271	100		30/06/12 A	17/05/10 A	30/06/12 A			E&M2014	SEP		OCT
E&M2004	Submission of Instrumentation	243	100		30/06/12 A	17/05/10 A	30/06/12 A			E&M2015			
E&M2006	Submission of FS System	243	97		07/10/12	17/05/10 A	13/05/12	-147d		E&M2016			<u></u>
E&M2007	Submission of BS System	243	97	17/05/10 A	07/10/12	17/05/10 A	06/06/12	-123d		E&M2017	I		
E&M2011	Delivery of Pumps	150		24/02/11 A	21/07/11 A	24/02/11 A	21/07/11 A		E&M2001	E&M2101			
E&M2012	Delivery of Gen-Set	150	100		23/09/11 A	24/02/11 A	23/09/11 A		E&M2002	E&M2102	· · · · · ·		
E&M2013	Delivery of DeO System	150	100		28/10/11 A	11/07/11 A	28/10/11 A		E&M2003	E&M2103			
E&M2014	Delivery of LV SB & MCC	150	100		31/07/12 A	29/02/12 A	31/07/12 A		E&M2004	E&M2104			+
E&M2015	Delivery of Instrumentation	90		21/06/11 A	03/11/11 A	21/06/11 A	03/11/11 A		E&M2005	E&M2105		H₁	
E&M2016	Delivery of FS Equipment	107		01/12/11 A	21/12/12	01/12/11 A	26/07/12	-147d		E&M0350, E&M2106			
E&M2017	Delivery of BS Equipment	107	50		29/11/12	15/01/11 A	29/07/12	-123d	E&M2007	E&M2107			
Installation		107	50	10/01/11/1	20/11/12		20/01/12	1200	Law2007	Edive 107			+
E&M2101	Install Pumps	55	0	30/09/12	23/11/12	27/09/12	20/11/12	-34	E&M2011,SKW1061	E&M2110			
E&M2102	Install Gen Set	55	-	01/09/12 A	27/10/12	01/09/12 A	20/11/12		E&M2012,SKW1061	E&M2110			
E&M2102	Install DeO System	55	<u> </u>		23/11/12	27/09/12	20/11/12			E&M2110		1111	
E&M2103	Instal LV SB & MCC	55	0		23/11/12	27/09/12	19/09/12	-3d -65d		E&M2140			
E&M2105	Install Instrumentation	55	•	30/09/12	23/11/12	27/07/12	19/09/12	<u> </u>	E&M2015, SKW1061				
E&M2105	Install FS Equipment	55	0		14/02/13	27/07/12	19/09/12	-65d -147d		E&M2140 E&M2140			
E&M2100		55											
E&M2107 E&M2110	Install BS Equipment Install Valves, Pipes & Fittings	55		01/09/12 A 21/01/13	20/01/13 07/03/13	01/09/12 A 21/11/12	19/09/12 05/01/13	-123d	E&M2017, SKW1061 E&M2101, E&M2102, E&M2103, E&M2107	E&M2110, E&M2140 E&M2120			
		40	I 0	21/01/13	01/03/13	L ~ // 1 // 12	03/01/13	-010	LOUVIZ 101, EOUVIZ 102, EOUVIZ 103, EOUVIZ 107				++
	SKW STW,Sewer and Submarine Outfall												
Submarine	-	1 100						1	1	1			
SKW1130	Approval of IHS Consultant	180		17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A			SKW1131			
SKW1131	Hydrographical Survey (SKW)	300		01/02/11 A	28/02/11 A	01/02/11 A	28/02/11 A		KD0020,SKW1130	SKW1231			
SKW1141	Baseline Monitoring (Water)	213	100	27/07/10 A	31/12/10 A	27/07/10 A	31/12/10 A		SKW0260, SKW0265	SKW1151			
SKW1151	Set up Temporary Working Platform	90	100	15/06/11 A	30/09/11 A	15/06/11 A	30/09/11 A		PRE0090, SKW1141	SKW1171			
SKW1171	ELS for HDD Set-up (SKW)	90	100	01/09/11 A	30/09/11 A	01/09/11 A	30/09/11 A		SKW1151	SKW1181			
SKW1181	Mobilization of HDD plant & equipment to SKW	60	100	06/01/12 A	07/01/12 A	06/01/12 A	07/01/12 A		SKW1171, YSW0360	SKW1191			
SKW1191	Setting up at drillhole location	33	100	09/01/12 A	14/01/12 A	09/01/12 A	14/01/12 A		SKW1181	SKW1201			
SKW 1201	Drill pilot hole and reaming hole - NS280 - 750m	45	100	16/01/12 A	16/02/12 A	16/01/12 A	16/02/12 A		SKW1191	SKW1211			
SKW1211	Receiving Pit for HDD (SKW)	60	100	16/01/12 A	29/02/12 A	16/01/12 A	29/02/12 A		SKW1201	SKW1221			
SKW1221	Installaiton of NS280 HDPE 450mm dia. pipe	30	100	31/03/12 A	30/04/12 A	31/03/12 A	30/04/12 A		SKW1211	KD0090, SKW1231, SKW1441			
SKW1231	Removal of Receiving Platform	60	100	01/05/12 A	19/06/12 A	01/05/12 A	19/06/12 A		SKW1131,SKW1221	SKW1241			[]
SKW1241	Dredging of MD for Diffuser (PS CL 1.122(3))	60	100	20/06/12 A	05/07/12 A	20/06/12 A	05/07/12 A		SKW1231	E&M3359, SKW1251	1		
SKW 1251	Diffuser Construction	45	50	01/09/12 A	22/10/12	01/09/12 A	25/04/13	185d	SKW1241	SKW1431			
SKW1431	Removal of silt curtain	30	0	22/10/12	21/11/12	25/04/13	25/05/13	185d	SKW1251	KD0090, SKW1440, YSW0365			
SKW1440	Sewer of Outfall Chamber to connection pit VO37A	90	0	21/11/12 *	19/02/13	25/05/13	23/08/13	185d	SKW1431	SKW1441			
SKW STW			I	I	L	I		I	•	I			++
Submissio	n & Delivery (E&M)												
E&M3010	Delivery of MBR M.M 1st shipment for Temp STP	150	100	24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A	1	E&M0160	E&M3170			
E&M3030	Delivery of Grit Removal Equipment	180		10/10/11 A	29/12/11 A	10/10/11 A	29/12/11 A		E&M0150	E&M3190			
E&M3060	Delivery of Fine Screens	136	100		30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M3210			
E&M3070	Delivery of Pumps	136		23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M3220			
E&M3080	Delivery of Submersible Mixers	180	100		17/11/11 A	26/07/11 A	17/11/11 A		E&M0140	E&M3230			
E&M3090	Delivery of Sludge Dewatering Equipment	210		01/09/11 A	12/01/13	01/09/11 A	26/09/13	257d	E&M0170	E&M3240			
E&M3090	Delivery of Valves, Pipes & Fittings	180	50		02/01/13	30/08/11 A	04/08/13		E&M0180	E&M3250			
E&M3110	Delivery of Penstocks	180	100		24/12/11 A	12/08/11 A	24/12/11 A	1	E&M0190	E&M3260			
E&M3110	Delivery of instruments	180	100		03/11/11 A	21/06/11 A	03/11/11 A		E&M0200	E&M3250	1		
E&M3140	Delivery of MCC LVSB	180		01/10/12	30/03/13	20/12/12	18/06/13	80d	E&M0210	E&M3261			
E&M3140 E&M3150	Delivery of BS Equipment	180	0	01/10/12 03/07/12 A	29/03/13	20/12/12 03/07/12 A	19/08/13		E&M0210 E&M0220	E&M3261 E&M3291			*
E&M3160	Delivery of FS Equipment	180	5	30/06/12 A	12/04/13	30/06/12 A	07/09/13	1480	E&M0230	E&M0340,E&M3300			+ +
	on of Grid A-G	1 101						1					
SKW1261	Excavate for SKW STW Structure (Grid A -G)	164		28/03/12 A	31/08/12 A	28/03/12 A	31/08/12 A	ļ	SKW04885, SKW05938	SKW1271,SKW1371			
SKW1271	55 M3 Fire Sprinkle Water Tank (FL +0.9 mPD)	36		03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW1261	SKW1281			
SKW1281	Ground Floor Slab (Grid A-G)	46		03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW1271	SKW1291			
SKW1291	Columns & Walls to 1/F & 1/F Slab (Grid A-G)	50		03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW1281	KD0090, SKW1301			
SKW1301	Columns & Walls to R/F & R/F Slab (Grid A-G)	50		01/09/12 A	09/10/12	01/09/12 A	08/03/13	150d	SKW1291	E&M3261, E&M3291, E&M3311, SKW1411		_	
SKW1411	ABWF Works	105	0	30/09/12	12/01/13	12/02/13	27/05/13	135d	SKW1301	E&M3261, E&M3291, E&M3311, SKW1551		1	
	on of Grid G-N									-			
SKW1311	Excavate for SKW STW Structure (Grid G-N)	90		28/03/12 A	25/06/12 A	28/03/12 A	25/06/12 A		SKW05938, SKW059416	SKW1321,SKW1371			
SKW1321	Equalization Tank no.1 & 2 with base slabs (-2.1	42		26/06/12 A	30/09/12 A	26/06/12 A	30/09/12 A		SKW1311	SKW1331			
SKW1331	Columns & Walls from B/S to G/F Slab (Grid G-N)	35	100	01/09/12 A	30/09/12 A	01/09/12 A	30/09/12 A		SKW1321	SKW1341			a
SKW1341	Ground Floor Slab (Grid G-N)	35	30	01/09/12 A	24/10/12	01/09/12 A	15/10/12	-9d	SKW1331	SKW1351			
SKW1351	Columns & Walls to 1/F & 1/F Slab (Grid G-N)	28	0	24/10/12	21/11/12	16/10/12	12/11/12	-9d	SKW1341	SKW1361			

Start date	05/05/10	1	Early bar
Finish date	21/09/15		Progress bar
Data date	30/09/12		Critical bar Summary bar
Run date	13/10/12		Progress point
Page number	· 7A	▼	Critical point
c Primavera	Systems, Inc.	ר 🗖 ר	Summary point
	-,	- 🔶 -	Start miles tone point
		A .	The second

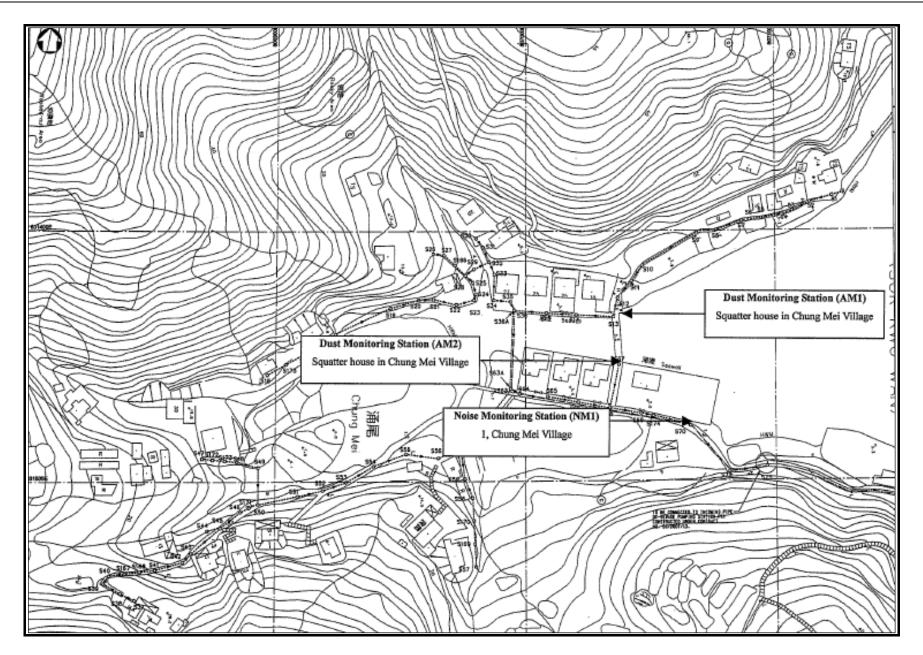
Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Oct 2012 - Dec 2012)

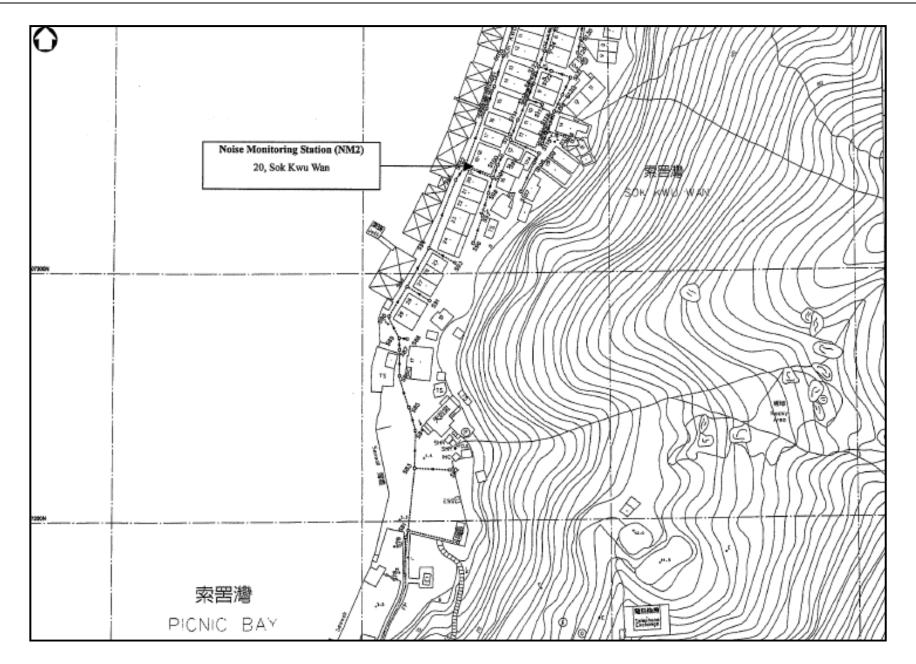
(Marked on 30 September 2012)

А	Activ ity ID	Description	Original	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2012
	U	p	Juration	Complete	Start	Finish	Start	Finish	Float			SEP	ост	012
SK	W 1361	Columns & Walls to R/F & R/F Slab (Grid G-N)	26	0	21/11/12	17/12/12	13/11/12	08/12/12	-9d	SKW1351	SKW1451			
Con	nstruction	of Grid N-T												
SK	W 1371	Excavate for SKW STW Structure (Grid N-T)	97	90	03/07/12 A	09/10/12	03/07/12 A	13/12/12	65d	SKW05938, SKW059416, SKW1261,	SKW1381			
SK	W 1381	Ground Floor Slabs include MBR Tank (Grid N-T)	45	0	09/10/12	23/11/12	14/12/12	27/01/13	65d	SKW1371	SKW1391			÷
Risin	ng Main													
SKW	/1481	Subm, Approval & Delivery of DI pipes	120	100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1501			
SKW	/1501	LCS (ChB0+00 - ChB1+20)	300	100	14/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A		PRE0100, SKW1481	SKW1521			
SKW	/1521	Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	80	11/07/11 A	18/11/12	11/07/11 A	12/09/14	663d	SKW1501	KD0090			<u> </u>
Section	n W8 - La	ndscape Softworks in All Portions								•	•			
SKW15	591	Tree Survey	21	100	17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A		KD0020	SKW1621			
SKW16	611	Preservation & Protection of Trees	822	98	17/05/10 A	16/10/12	17/05/10 A	08/03/13	144d	KD0020	KD0100, SKW1631			
SKW16	621	Transplantation at SKW	90	100	07/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A		SKW1591	KD0100			
Section	on W9 - Es	tablishment Works in All Portions								•	•			
SKW16	631	Section W9 - Establishment Works	365	0	16/10/12	16/10/13	12/03/13	11/03/14	147d	SKW1611	KD0110			<u> </u>

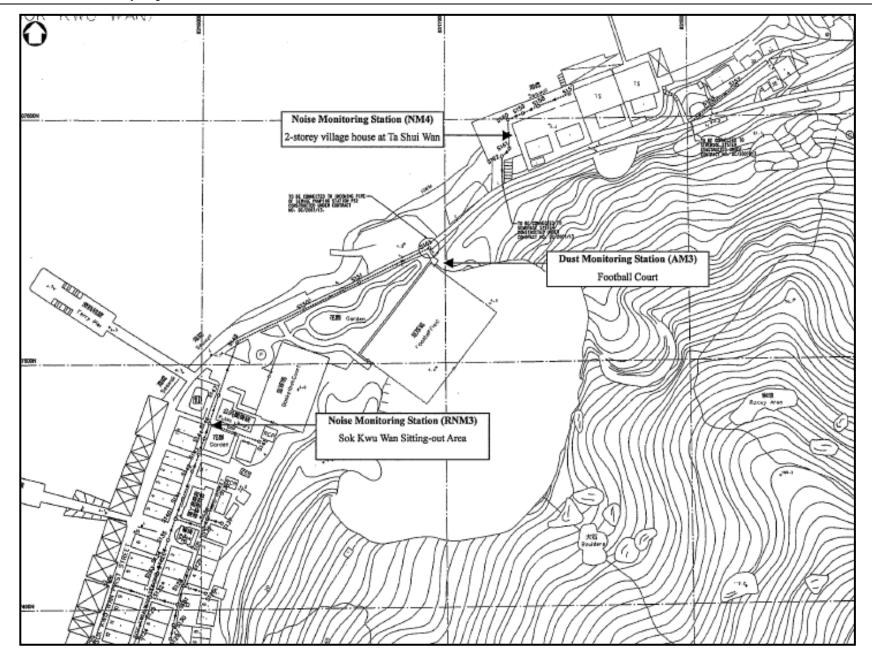
Start date	05/05/10		Early bar
Finish date	21/09/15		Progress bar
Data date	30/09/12		Critical bar
Run date	13/10/12		Progress point
Page numbe	r 8A]₹	Critical point
c Primavera	Systems, Inc.	٦₽.	
	- ,	- 오	
Page numbe			

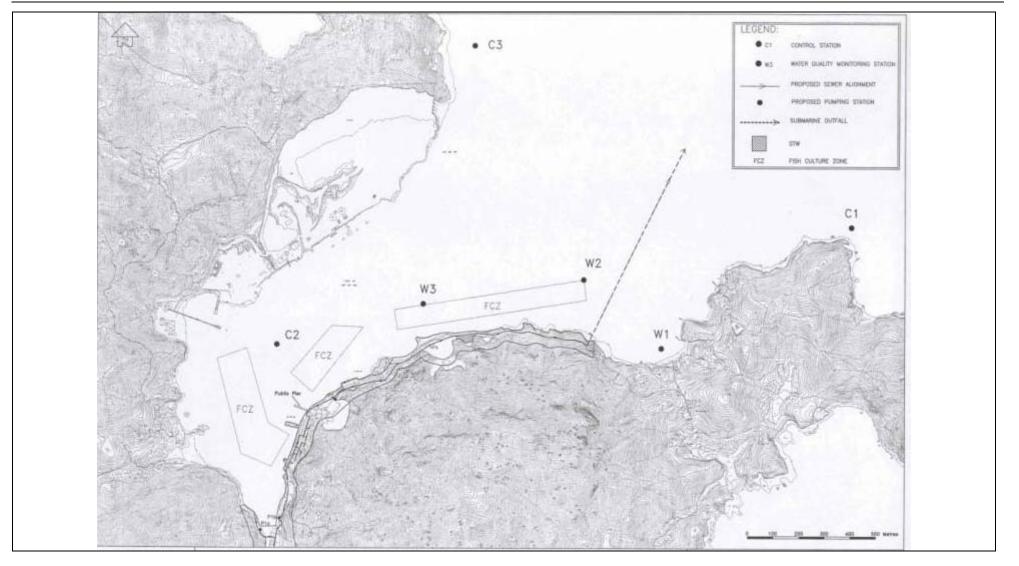
(Marked on 30 September 2


2	NOV	DEC	2013 JAN	
	Date 30/09/12	Revision Revision 0	Checked RH	Approved VC
r 2012)				


Appendix D

Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)





Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – October 2012

Appendix E

Monitoring Equipments Calibration Certificate

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

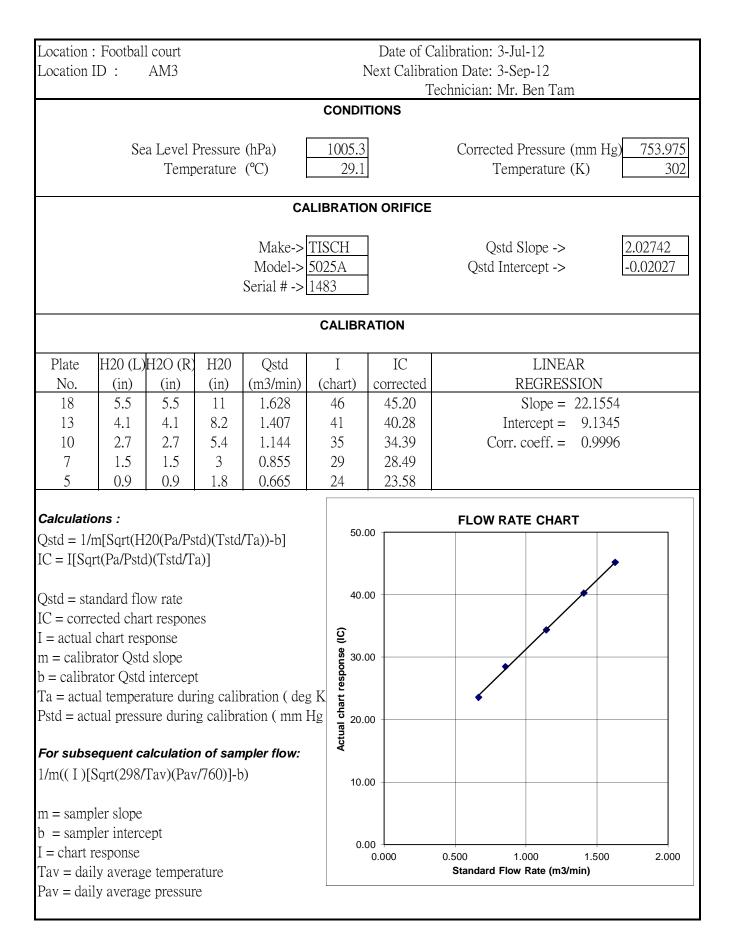
AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I		438320 1483	Ta (K) - Pa (mm) -	294 754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	======== DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00 1.00	1.4140 0.9960 0.8910 0.8510 0.7020	3.2 6.4 7.9 8.7 12.8	2.00 4.00 5.00 5.50 8.00

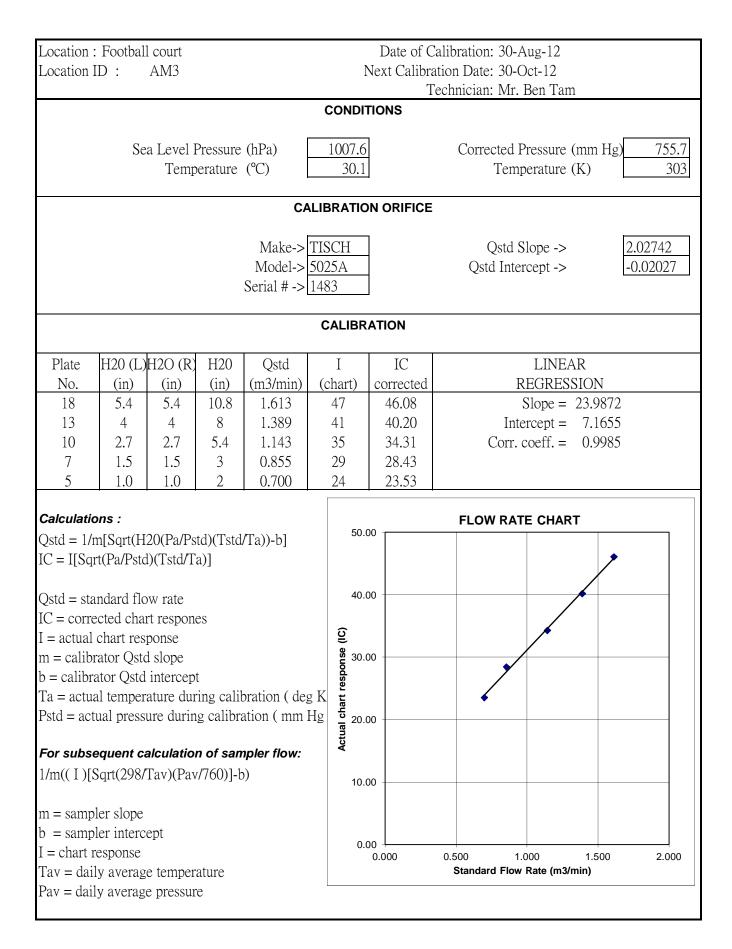
DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
1.0018 0.9976 0.9955 0.9945 0.9890	0.7085 1.0016 1.1173 1.1686 1.4088	1.4185 2.0061 2.2429 2.3524 2.8371	0.9957 0.9915 0.9894 0.9884 0.9830	0.7042 0.9955 1.1105 1.1615 1.4003	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slc intercep coeffici y axis =	ut (b) = ent (r) =	2.02742 -0.02027 0.99996 Pa/760)(298/Ta)]	Qa slop intercep coeffici v axis =	ot (b) =	1.26953 -0.01262 0.99996 Ta/Pa)l


CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time


For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

	-									
	-		n Chung	Mei Village				on: 30-Aug-12		
Location 1	D :	AM1			l			te: 30-Oct-12		
					CONDI		echnicia	ın: Mr. Ben Ta	1111	
					CONDI	nono				
	Se	ea Level I	Pressure	(hPa)	1007.6	1	Corr	rected Pressure	e (mm Hg)) 755.7
		Temp	erature	(°C)	30.1			Temperature	e (K)	303
				CA	LIBRATIC	ON ORIFICE				
				Make->	TISCH	1		Qstd Slope ->	>	2.02742
				Model->		-	Os	std Intercept ->		-0.02027
				Serial # ->]	c			
					CALIBR	ATION				
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC		LINE	EAR	
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected		REGRE	SSION	
18	5.1	5.1	10.2	1.568	57	55.88		_	= 27.8573	
13	4	4	8	1.389	52	50.98		Intercept =		
10	3.1	3.1	6.2	1.224	46	45.10		Corr. coeff. =	= 0.9960	
7 5	1.6	1.6	3.2 1.8	0.882	36 32	35.29 31.37				
5	0.9	0.9	1.8	0.664	52	51.57				
Calculatio	ons :						FLO	W RATE CHA	RT	
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]	60.0					
IC = I[Squ	t(Pa/Pstc	l)(Tstd/T	a)]						/	
					50.0	0			1	
Qstd = sta										
IC = correction		-	es		6 40.0	0				
I = actual		-			(C) 40.0 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)					
m = calibration b = calibration calibration b = calibration	-	-	+		Suod					
	_	-		oration (deg	τK έ 30.0	0		·		
	_		_	ation (mm]	char Char Char					
	<u>F</u>		8		20.0	0				
For subse	equent ca	alculatio	n of san	npler flow:	Ac					
1/m((I)[S	Sqrt(298/	Tav)(Pav	/760)] - b))						
					10.0	0				
m = samp										
b = samp		ept			0.0					
I = chart r	-					0.000	0.500	1.000	1.500 2/min)	2.000
Tav = dail							Standa	ard Flow Rate (m	ərmin)	
Pav = dail	y averag	e pressur	L							

	-		n Chung	Mei Village				alibration: 30-A	-	
Location 2	ID:	AM2				Ne		tion Date: 30-O		
					CON	ודוח		echnician: Mr. I	sen Tam	
					CONL					
	Se	a Level I	Pressure	(hPa)	1007	.6		Corrected P	ressure (mm	Hg) 755.7
		Temp	erature	(°C)	30).1		Temp	erature (K)	303
				CA	LIBRAT		ORIFICE			
				Make->	FISCH			Qstd SI	lope ->	2.02742
				Model->				Qstd Inter	cept ->	-0.02027
				Serial $\# \rightarrow 2$	1483					
					CALIE	BRA	TION			
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι		IC		LINEAR	
No.	(in)	(in)	(in)	(m3/min)	(chart)) (corrected	R	EGRESSIO	N
18	5.8	5.8	11.6	1.671	60		58.82		Slope = 30.2	
13	4.2	4.2	8.4	1.423	51		50.00		rcept = 8.0	
10	3	3	6	1.205	46		45.10	Corr. c	oeff. = 0.9	9969
7 5	1.8 1.1	1.8 1.1	3.6 2.2	0.935 0.733	38 30		37.25 29.41			
5	1.1	1.1	<i>L</i> . <i>L</i>	0.755	50		29.41			
Calculatio	ons :							FLOW RATI	E CHART	
Qstd = 1/1	m[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]	7	70.00				
IC = I[Sq]	rt(Pa/Psto	d)(Tstd/T	a)]							
0.11	1 1 0	,			6	60.00				>
Qstd = sta IC = corre			20						/	
I = actual		-	55		\sim	50.00	-			
m = calibr		-) esu				1	
b = calibr	-	-	t		Jodsa	40.00		*		
Ta = actua	al temper	ature dur	ing calil	oration (deg	KH					
Pstd = act	ual press	ure durin	g calibra	ation (mm H	B Actual chart response (IC € P	30.00	-	•		
For subs	eauent c	alculatio	n of san	npler flow:	Actu	20.00				
1/m((I)[-			-	_					
					1	10.00				
m = samp										
b = samp		ept				0.00				
I = chart I	-		- 4				.000	0.500 1.0		500 2.000
Tav = dai								Standard Flow	kate (m3/min)	
Pav = dai	iy averag	e pressur	C							
1										

CERTIFICATE OF CALIBRATION AND TESTING TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition			Model			8520
Temperature	68.5 (20.3)	°F (°C)	-			
Relative Humidity	19	%RH	- Serial Numbe	er		23080
Barometric Pressure	29.11 (985.8)	inHg (hPa)				
🖾 As Left		X	In Tolerance			
As Found			Out of Tolerance			
	Device Response (mg/m3) 1 01 1 01	-	n Linearity Plot o			
	0.01	- o 01 0.1		o = In Tolerau $\bullet = Out of To$ 00	lerance	stem ID: DTI101-02
Zero Stability Results						
Average:	Minimum:		Maximum:		Time:	
0.000 :mg/m	3 0.00	50 :mg/m ²	0.001	:mg/m ³	2:00) :hrs.
Barometric Pressure EC Humidity EC DC Voltage EC Microbalance M	pplicable specific ests required under s measurements. (le mass of standar rstem ID Last 003733 02-2 002873 11-1 003315 01-0 001324 01-0	ations agreed upor er this contract were Calibration of this is rd ISO 12103-1, A1	n by TSI and the cus successfully conducte astrument performed l	stomer and with ed according to ro by TSI has been a t). Our calibratio	all publishea equired specifi lone using eme n ratio is grea <u>ID Last C</u> 3 11-14- 4 01-03- 9 01-26-	l specifications. All ications. There is no ery oil and has been ter than 1.2:1 al. <u>Cal. Due</u> 11 11-14-12 12 01-03-13 12 07-26-12
Ton Da Calibra	ted		nal Function Check	Ma	arch 8, 2012 Date	2
	U					

Ser .	Tel: 5-800	0-874-2811 1-6	500 Car 51-490-7	2811 Fax: 1-651-490-	.3824 http://www.ts	si.con1	
Environment Condition				Model		AM	510
Temperature Relative Humidity	68.4 (20.2) 59	°F (°C) %RH		Serial Number		1100	
Barometric Pressure	28.97 (981.0)) inHg (hPa)] ⊠In	Tolcrance			
As Found				ut of Tolerance			<u></u>
	100	Concent	ration	Linearity Plot			
	-			o			
	<i>\สึพ) อ</i>			o			
	Device Response (mg/m3) 10 · 1 01	_	a				
	evice R				o = in Tolerance		
	ลั 0.01.		····		 = Out of Toleran Tolerance : ±109 		
).01 0.1 Aerosol (10 10 tration (mg/m3)	0		
						System I	D: DT1101-
TSI incorporated does herel strict accordance with the performance and acceptance NIST standard for optical na nominally adjusted to respired	opplicable_specifi tests required univer- tes measurmants	ications agreed der this contrac Colibration of	d upon l ct were si Cibis insi	by TSI and the custo uccessfully conducted tranent performed by	omer and with all p according to require TSI has been done	published spec ed specification using emery oil	ifications 1s. There is 1 and has be
Barometric Pressure Humidity DC Voltage Microbalance	E003733 02 E002873 11 E003315 01 M001324 01	-25-12 02-2 -14-11 11-1 -03-12 01-0 -04-11 01-0	Leac 5-13 4-12 13-13 14-13 16-13	Massuen.csi Vaj Temperature DC Voltage Photometer Pressure	addic System 12 E002873 E003314 E003319 E003511	Cast Cal. 11-14-11 01-03-12 07-26-12 11-11-11	Cal, Que 11-14-12 01-03-13 01-26-13 11-11-12
$n \sum_{i=1}^{n} \langle 2 \rho_i \rangle$		[l Function	Augus	t 9, 2012	
Narleno John	K1.722		Cł			Date	

Ŷ

ΞĒ

TSI P/N 2300157

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122418 證書編號

ITEM TESTED / 送檢]	頁目	(Job No. / 序引編號:IC12-0960)	
Description / 儀器名稱 Manufacturer / 製造商	:	Sound Level Meter (EQ068) Rion	
Model No. / 型號	:	NL-31	
Serial No. / 編號	1	00410247	
Supplied By / 委託者	*	Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 : 20 April 2012

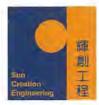
TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. (after adjustment) The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Precision Measurement Ltd., UK
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試


L K Yeung

Date of Issue 23 April 2012 Certified By : 簽發日期 核證 K C Lee

The test equipment used for calibration are traccable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準,局部復印本證書需先擁本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c'o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 枝正及檢測實驗所 c'o 香港新昇屯門與安里一號青山灣機機四樓 Tel 電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/觀址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122418 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test form 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C120016 DC110233

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Adjustment

	UUT	Γ Setting	A	Applied	d Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	* 92.9	± 0.7

* Out of Mfr's Spec.

6.1.1.2 After Adjustment

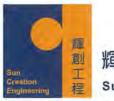
	UUT	Γ Setting		Applied	d Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)	
30 - 120	LA	A	Fast	94.00	1	94.0	± 0.7	

6.1.2 Linearity

10 March 10	UUT Setting				d Value	UUT
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 120	LA	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
	_	1		114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部裡印本證書需先獲本實驗所書面批准。


Sun Creation Engineering Limited - Calibration & Testing Laboratory e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

e'o 4/F. Ising Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kon 輝創工程有限公司 - 校正及檢測實驗所

e/a 香港新屏屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/調射: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122418 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting			Applied	Applied Value		IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	A CONTRACT OF		Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	94.0	Ref.
		·	Slow			94.0	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting			App	Applied Value		IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Spec. (dB)
20 -110	L _A	A	Fast	106.00	Continuous	106.0	Ref.
	L _A max				200 ms	105.1	-1.0 ± 1.0
	LA		Slow		Continuous	106.0	Ref.
	L _A max		· · · · · · · · · · · ·		500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting			App	lied Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	LA	A	Fast	94.00	31.5 Hz	54.3	-39.4 ± 1.5
		100			63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					l kHz	94.0	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	93.0	-1.1 (+1.5; -3.0)
					12.5 kHz	90.1	-4.3 (+3.0; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准,

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122418 證書編號

6.3.2 C-Weighting

Time Averaging

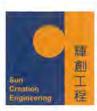
UUT Setting				App	Applied Value		IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	Lc	С	Fast	94.00	31.5 Hz	90.7	-3.0 ± 1.5
	1.1				63 Hz	93.1	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.4	-0.8 ± 1.0
	1,		1		8 kHz	91.1	-3.0 (+1.5; -3.0)
				-	12.5 kHz	88.2	-6.2 (+3.0 ; -6.0)

6.4

	UL	T Setting		1	Applied Value			UUT	IEC 60804	
Range (dB)	Mode	Frequency Weighting	Integrating Time	Freq. (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
20 - 110	LAcq	Α	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						$1/10^{2}$	pression a	90	90.0	± 0.5
	1.1.2.2		60 sec.			1/103		80	80.0	± 1.0
	1.000		5 min.			1/104		70	70.0	± 1.0

Remarks : - Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB	: 63 Hz - 125 Hz	: ± 0.35 dB	
		250 Hz - 500 Hz	: ± 0.30 dB	
		1 kHz	$\pm 0.20 \text{ dB}$	
		2 kHz - 4 kHz	: ± 0.35 dB	
		8 kHz	: ± 0.45 dB	
		12.5 kHz	: ± 0.70 dB	
	104 dB	: 1 kHz	: ± 0.10 dB (Ref. 94 dB)	
	114 dB	: 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)	
	Burst ec	quivalent level	: ± 0.2 dB (Ref. 110 dB continuous sound level)	


- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部裡印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426 證書編號

ITEM TESTED / 送檢]	項目	(Job No. / 序引編號 : IC12-0960)
Description / 儀器名稱	:	Acoustical Calibrator (EQ082)
Manufacturer / 製造商		Bruel & Kjaer
Model No. / 型號	:	4231
Serial No. / 編號	:	2713428
Supplied By / 委託者	:	Action-United Environmental Services and Consulting
		Unit A, 20/F., Gold King Industrial Building,
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 : 20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

K/C Lee

Certified By 核證

Date of Issue 簽發日期 5

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門與安里一號青山灣機樓四欄 Tel:電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C122426 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C113350 DC110233 C120886

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy
- 5.1.1 Before Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.1	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

5.1.2 After Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

5.2.1 Before Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

5.2.2 After Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426 證書編號

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部裡印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR RAY CHEUNG CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG. PROJECT: --

WORK ORDER:	HK1219668
LABORATORY:	HONG KONG
DATE RECEIVED:	25/07/2012
DATE OF ISSUE:	01/08/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Dissolved Oxygen, pH, Salinity, Temperature and Trubidity
Description:	YSI Sonde
Brand Name:	YSI
Model No.:	YSI 6820 / 650MDS
Serial No.:	02J0912/02K0788 AA
Equipment No.:	
Date of Calibration:	31 July, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1–3 Wing Yip Street Kwai Chung HONG KONG Phone: Fax: Email:

852-2610 1044 852-2610 2021 hongkong@alsglobal.com

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1219668
Date of Issue:	01/08/2012
Client:	ACTION UNITED ENVIRO SERVICES

YSI Sonde	
YSI	
YSI 6820 / 650MDS	
02J0912/02K0788 AA	
31 July, 2012	
	YSI YSI 6820 / 650MDS 02J0912/02K0788 AA

Date of next Calibration:

31 October, 2012

Parameters:

_	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	3.08	2.93	-0.15
	6.46	6.64	0.18
	8.33	8.17	-0.16
		Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.03	0.03
7.0	6.98	-0.02
10.0	9.93	-0.07
	Tolerance Limit (±unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	9.40	-6.0
20	20.66	3.3
30	30.99	3.3
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.15	-0.9
21.5	21.60	0.1
40.5	39.17	-1.3
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client: HK1219668 01/08/2012 ACTION UNITED ENVIRO SERVICES

Description:	YSI Sonde		
Brand Name:	YSI		
Model No.:	YSI 6820 / 650MDS		
Serial No.:	02J0912/02K0788 AA		
Equipment No.:			
Date of Calibration:	31 July, 2012	Date of next Calibration:	31 October, 2012

Parameters:

Turbidity

Method Ref: ALPHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.1	
4	4.3	7.50
40	41.6	4.00
80	82.9	3.63
400	414.6	3.65
800	836.7	4.59
	Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number : HCKLAS 066 註冊號碼:

Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

∟ 000552

Appendix F

Event/Action Plan

Air Quality

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				-
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT ACTION				
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	1. Check monitoring data submitted by ET and Contractor's working methods	 Confirm receipt of notification of non-compliance in writing; and Notify Contractor 	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
2. Exceedance for two or more consecutive sampling days	 Same as the above; Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level 	 Same as the above; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures. 	 Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures 	 Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures
		LIMIT LEVEL		
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	 Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible remedial actions; and Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly 	 Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods 	 Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
2. Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	 Same as the above; and Supervise the Implementation of mitigation measures 	 Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level 	 Same as the above; Take immediate action to avoid further exceedance; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; and As directed by the Engineer, to slow down or to stop all or part of the construction activities until to no exceedance of Limit Level.

Appendix G

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	LAPSED TI	ME	CHA	ART READ	DING			STANDARD		INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring H	Results - AN	/ 1												
26-Sep-12	25073	12559.65	12583.64	1439.40	32	33	32.5	27	1010.7	0.74	1061	2.8264	2.9002	0.0738	70
4-Oct-12	25078	12583.64	12607.63	1439.40	33	34	33.5	26	1010.4	0.77	1115	2.8241	2.8841	0.0600	54
10-Oct-12	25083	12607.63	12631.62	1439.40	33	34	33.5	26.3	1012.8	0.78	1116	2.8438	2.9449	0.1011	91
16-Oct-12	25086	12631.62	12655.61	1439.40	33	35	34.0	26.2	1014.7	0.79	1144	2.8129	2.8659	0.0530	46
22-Oct-12	25089	12655.61	12679.6	1439.40	33	35	34.0	25.7	1015.9	0.80	1147	2.8202	2.8586	0.0384	33
24-hour TSP	Monitoring H	Results - AN	12												
26-Sep-12	25074	11053.75	11077.74	1439.40	32	33	32.5	27	1010.7	0.80	1158	2.8161	2.8629	0.0468	40
4-Oct-12	25079	11077.74	11101.73	1439.40	33	34	33.5	26	1010.4	0.84	1208	2.8037	2.8695	0.0658	54
10-Oct-12	25084	11101.73	11125.72	1439.40	33	34	33.5	26.3	1012.8	0.84	1209	2.8179	2.9474	0.1295	107
16-Oct-12	25087	11125.72	11149.71	1439.40	33	35	34.0	26.2	1014.7	0.86	1234	2.8132	2.9029	0.0897	73
22-Oct-12	25090	11149.71	11173.7	1439.40	33	35	34.0	25.7	1015.9	0.86	1237	2.8083	2.8538	0.0455	37
24-hour TSP	Monitoring H	Results - AN	13												
26-Sep-12	25075	6595.66	6619.65	1439.4	33	34	33.5	27	1010.7	1.09	1571	2.8282	2.975	0.1468	93
4-Oct-12	25080	6619.65	6643.64	1439.4	33	34	33.5	26	1010.4	1.09	1574	2.8244	2.8726	0.0482	31
10-Oct-12	25085	6643.64	6667.63	1439.4	33	34	33.5	26.3	1012.8	1.09	1575	2.831	2.9814	0.1504	95
16-Oct-12	25088	6667.63	6691.62	1439.4	33	35	34	26.2	1014.7	1.12	1608	2.8241	2.8928	0.0687	43
22-Oct-12	25136	6691.62	6715.61	1439.4	33	35	34	25.7	1015.9	1.12	1610	2.7725	2.8465	0.0740	46

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 26-Sep-12

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	TILC.	East	North	m	m	ະ	mg/L	%	NTU	ppt	unit	mg/l
2012/9/26 9:16	W1	ME	832970	807737	2.3	1.150	28.01	6.32	97.6	1.4	33.96	7.52	5.4
2012/720 7.10		MIL	032710	001151	2.5	1.150	28.02	6.12	94.4	1.5	33.96	7.51	5.1
						1.000	28.03	5.75	88.8	1.3	33.96	7.48	10.7
						1.000 6.200	28.03 27.97	5.71 5.60	88.2 86.5	1.3 1.5	33.96 34.01	7.48 7.48	
2012/9/26 9:27	W2	ME	832679	807992	12.4	6.200	27.97	5.58	86.0	1.5	34.01	7.48	9.9
						11.400	27.95	5.50	84.9	1.8	34.20	7.40	
						11.400	27.98	5.42	83.7	1.6	34.24	7.47	3.6
						1.000	28.13	5.57	86.1	1.2	33.83	7.50	6.7
						1.000	28.13	5.40	83.5	1.3	33.89	7.50	6.7
2012/9/26 9:40	W3	ME	832048	807880	12.2	6.100	28.00	5.40	83.5	1.2	34.23	7.52	2.4
2012/9/20 9.40	W 5	IVIL	052040	807880	12.2	6.100	28.00	5.56	85.9	1.3	34.24	7.52	2.4
						11.200	27.94	5.51	85.2	1.5	34.43	7.49	6.9
						11.200	27.94	5.38	83.2	1.7	34.42	7.49	
						1.000	27.97	6.02	92.8	1.3	33.77	7.42	2.2
						1.000 7.150	27.97 28.01	6.16 6.06	94.8 93.6	1.5 1.4	33.71 34.13	7.41 7.41	
2012/9/26 9:00	C1	ME	833712	808179	14.3	7.150	28.01	5.92	93.0	1.4	34.13	7.41	8.2
						13.300	28.01	5.67	87.7	1.0	34.19	7.40	
						13.300	28.01	5.64	87.1	1.8	34.19	7.40	5.8
						1.000	27.89	6.69	102.3	1.3	32.72	7.61	6.7
						1.000	27.87	6.44	98.5	1.1	32.68	7.58	5.7
2012/9/26 9:57	C2	ME	831477	807735	10.6	5.300	28.05	5.95	92.0	1.4	34.02	7.58	2.4
2012/9/20 9.57	C2	IVIL	031477	807755	10.0	5.300	28.00	6.19	95.5	1.5	34.02	7.58	2.4
						9.600	28.00	5.70	87.7	1.5	33.47	7.50	2.1
						9.600	27.97	5.46	83.8	1.6	33.23	7.44	2.11
						1.000	27.98	7.28	112.2	1.5	33.81	7.40	3.1
						1.000	27.95	6.83	105.2	1.6	33.78	7.40	
2012/9/26 8:39	C3	ME	832241	808847	14.7	7.350 7.350	27.97 28.00	6.22	96.0 94.6	1.5 1.6	34.15 34.16	7.41 7.42	4.0
						13.700	28.00	6.12 5.94	94.6 91.9	1.6	34.10	7.42	
						13.700	27.99	5.89	91.9	1.6	34.11	7.42	4.9
						151700	2107	5107	7110	110	5 11 1	,	
2012/0/26 16 15	****		0000071	007700	2.5	1.350	28.07	5.52	85.8	1.3	33.56	7.47	
2012/9/26 16:15	W1	MF	832971	807732	2.7	1.350	28.06	5.41	83.4	1.4	33.54	7.44	7.7
						1.000	28.04	5.92	91.2	1.1	33.48	7.47	10.0
						1.000	28.03	5.70	87.7	1.2	33.33	7.46	10.0
2012/9/26 16:02	W2	MF	832663	807980	13.3	6.650	28.01	5.29	81.6	1.2	33.79	7.47	9.6
						6.650	28.01	5.24	80.8	1.4	33.81	7.47	
						12.300	28.02	5.30	82.2	1.5	34.54	7.53	7.2
						12.300 1.000	28.02 28.17	5.33 5.99	82.6 92.5	1.5	34.55 33.75	7.53	
						1.000	28.17	5.77	92.3 89.1	1.2	33.76	7.48	8.1
						6.550	28.12	5.43	84.1	1.4	34.02	7.48	
2012/9/26 15:45	W3	MF	832046	807903	13.1	6.550	28.12	5.39	83.4	1.4	34.03	7.47	4.7
						12.100	27.97	5.40	83.5	1.4	34.51	7.49	0.4
						12.100	27.97	5.26	81.4	1.5	34.59	7.48	8.4
						1.000	28.09	6.44	99.3	1.2	33.61	7.61	2.8
						1.000	28.10	6.12	94.4	1.1	33.62	7.60	2.0
2012/9/26 16:35	C1	MF	833715	808169	15.4	7.700	28.10	5.65	87.2	1.3	33.75	7.57	4.0
						7.700	28.08	5.62	86.6	1.5	33.61	7.56	
						14.400	28.06 28.04	5.45 5.41	84.3 83.5	1.4	33.96 33.81	7.57	2.5
	+					14.400	28.04	5.41 6.74	83.5	1.5	33.48	7.28	
						1.000	28.15	6.37	98.2	1.2	33.39	7.24	3.5
2012/0/25 15 25	~	100	00115	007510		5.800	28.00	5.25	81.2	1.2	34.36	7.17	
2012/9/26 15:32	C2	MF	831454	807742	11.6	5.800	28.01	5.27	81.6	1.3	34.60	7.17	3.1
						10.600	27.96	5.15	79.8	1.5	34.80	7.17	5.0
						10.600	27.96	5.01	77.6	1.6	34.80	7.17	5.2
						1.000	28.07	5.71	88.1	1.2	33.63	7.53	2.7
						1.000	28.07	5.63	86.8	1.3	33.63	7.53	2.1
2012/9/26 16:54	C3	MF	832215	808856	16.1	8.050	28.06	5.45	84.1	1.3	33.62	7.52	6.1
						8.050	28.07	5.43	83.8	1.3	33.80	7.53	
						15.100	28.05	5.34	82.4	1.5	33.92	7.54	7.4
	1					15.100	28.05	5.33	82.3	1.5	33.96	7.54	

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

28-Sep-12 Date

Date / Time	Teastian	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Hue.	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
2012/9/28 11:04	W1	ME	832963	807730	2.2	1.100	28.18	5.63	87.5	1.0	34.58	7.14	5.2
						1.100	28.21 28.18	5.60 5.61	87.0 87.1	1.0	34.58 34.41	7.14	
						1.000	28.20	5.32	82.7	1.0	34.41	7.34	6.2
						6.250	28.03	4.85	75.1	1.0	34.57	7.26	
2012/9/28 11:19	W2	ME	832681	807988	12.5	6.250	28.03	4.74	73.4	1.3	34.54	7.25	6.6
						11.500	28.04	4.72	73.1	1.3	34.64	7.24	6.7
						11.500	28.03	4.73	73.3	1.4	34.65	7.23	0.7
						1.000	28.17	5.44	84.4	1.1	34.51	7.07	4.4
						1.000	28.16	5.37	83.3	1.2	34.55	7.08	4.4
2012/9/28 11:31	W3	ME	832047	807893	12.3	6.150	28.06	5.06	78.5	1.2	34.63	7.08	5.1
						6.150	28.07	5.04	78.2	1.2	34.65	7.10	
						11.300	27.99	4.95	76.7	1.3	34.70	7.06	4.5
						11.300 1.000	28.01 28.17	4.94 5.08	76.6 78.9	1.2	34.69 34.64	7.07 6.81	
						1.000	28.17	5.08	78.9	1.2	34.64	6.80	7.4
						6.800	28.05	5.00	77.5	1.2	34.69	6.80	
2012/9/28 10:43	C1	ME	833707	808179	13.6	6.800	28.05	4.99	77.4	1.3	34.69	6.81	6.1
						12.600	27.98	4.99	77.3	1.3	34.75	6.80	7.0
						12.600	28.00	4.89	75.7	1.5	34.74	6.83	7.2
						1.000	28.27	5.42	84.2	1.2	34.41	7.32	2.9
						1.000	28.27	5.18	80.5	1.2	34.40	7.32	2.9
2012/9/28 11:43	C2	ME	831472	807740	10.2	5.100	27.88	4.68	72.2	1.3	34.43	7.29	4.2
2012/7/20 11:15	02	MIL	051172	007710	10.2	5.100	27.87	4.65	71.8	1.4	34.41	7.28	
						9.200	27.89	4.65	71.9	1.4	34.51	7.27	6.3
						9.200	27.89	4.60	71.0	1.5	34.51	7.25	
						1.000	28.20 28.17	6.08 5.78	94.4 89.9	1.1	34.63 34.64	6.92 6.87	6.1
						7.150	28.17	5.48	89.9	1.2	34.64	6.84	
2012/9/28 10:19	C3	ME	832216	808867	14.3	7.150	28.09	5.41	83.9	1.2	34.69	6.83	6.4
						13.300	28.07	5.21	80.9	1.3	34.72	6.81	
						13.300	28.07	5.16	80.0	1.3	34.72	6.81	7.0
2012/9/28 17:13	W1	MF	832973	807733	2.6	1.300	28.18	5.85	90.80	1.1	34.54	7.35	6.1
2012/9/20 17.15	W 1	IVII.	032913	007755	2.0	1.300	28.19	6.03	93.60	1.0	34.48	7.35	0.1
						1.000	28.22	6.30	97.90	1.3	34.44	7.44	5.5
							28.21						
2012/9/28 17:00						1.000		6.19	96.10	1.3	34.45	7.43	
	W2	MF	832665	807991	13.7	6.850	28.22	5.23	81.20	1.3	34.51	7.41	5.3
	W2	MF	832665	807991	13.7	6.850 6.850	28.22 28.21	5.23 5.20	81.20 80.90	1.3 1.3	34.51 34.52	7.41 7.40	5.3
	W2	MF	832665	807991	13.7	6.850 6.850 12.700	28.22 28.21 28.19	5.23 5.20 4.76	81.20 80.90 73.90	1.3 1.3 1.3	34.51 34.52 34.60	7.41 7.40 7.37	5.3 5.4
	W2	MF	832665	807991	13.7	6.850 6.850 12.700 12.700	28.22 28.21 28.19 28.19	5.23 5.20 4.76 4.79	81.20 80.90 73.90 74.40	1.3 1.3 1.3 1.3	34.51 34.52 34.60 34.60	7.41 7.40 7.37 7.37	5.4
	W2	MF	832665	807991	13.7	6.850 6.850 12.700	28.22 28.21 28.19	5.23 5.20 4.76	81.20 80.90 73.90	1.3 1.3 1.3	34.51 34.52 34.60	7.41 7.40 7.37	
J01J/0/J0 14.40						6.850 6.850 12.700 12.700 1.000	28.22 28.21 28.19 28.19 28.38	5.23 5.20 4.76 4.79 6.88	81.20 80.90 73.90 74.40 107.20	1.3 1.3 1.3 1.3 1.3 1.3	34.51 34.52 34.60 34.60 34.58	7.41 7.40 7.37 7.37 7.27	5.4 6.9
2012/9/28 16:48	W2 W3	MF MF	832665	807991 807889	13.7	6.850 6.850 12.700 12.700 1.000 1.000	28.22 28.21 28.19 28.19 28.38 28.26	5.23 5.20 4.76 4.79 6.88 6.84	81.20 80.90 73.90 74.40 107.20 106.40	1.3 1.3 1.3 1.3 1.3 1.3 1.4	34.51 34.52 34.60 34.60 34.58 34.50	7.41 7.40 7.37 7.37 7.27 7.22	5.4
2012/9/28 16:48						6.850 6.850 12.700 1.000 1.000 6.750 6.750 12.500	28.22 28.21 28.19 28.19 28.38 28.26 28.24 28.22 27.97	5.23 5.20 4.76 4.79 6.88 6.84 4.59 4.67 4.57	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70	$ \begin{array}{r} 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.4\\ 1.3\\ 1.4\\ 1.5\\ \end{array} $	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.67	7.41 7.40 7.37 7.37 7.27 7.22 7.25 7.23 7.21	5.4 6.9 7.8
2012/9/28 16:48						6.850 6.850 12.700 12.700 1.000 6.750 6.750 12.500	28.22 28.21 28.19 28.19 28.38 28.26 28.24 28.22 27.97 27.97	5.23 5.20 4.76 4.79 6.88 6.84 4.59 4.67 4.57 4.40	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10	$ \begin{array}{r} 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.4\\ 1.3\\ 1.4\\ 1.5\\ 1.7\\ \end{array} $	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.60 34.67	7.41 7.40 7.37 7.37 7.27 7.22 7.25 7.23 7.21 7.21	5.4 6.9
2012/9/28 16:48						6.850 6.850 12.700 12.700 1.000 6.750 6.750 12.500 1.000	28.22 28.21 28.19 28.38 28.26 28.24 28.22 27.97 27.97 28.18	5.23 5.20 4.76 4.79 6.88 6.84 4.59 4.67 4.57 4.40 6.19	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10	$ \begin{array}{r} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ \end{array} $	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.60 34.67 34.67 34.38	7.41 7.40 7.37 7.37 7.27 7.22 7.25 7.23 7.21 7.21 7.21 7.55	5.4 6.9 7.8
2012/9/28 16:48						6.850 6.850 12.700 1.000 1.000 6.750 6.750 12.500 1.2.500 1.000 1.000	28.22 28.21 28.19 28.38 28.26 28.24 28.22 27.97 27.97 28.18 28.21	5.23 5.20 4.76 4.79 6.88 6.84 4.59 4.67 4.57 4.40 6.19 6.07	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30	$ \begin{array}{r} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ \end{array} $	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.67 34.67 34.67 34.38 34.39	7.41 7.40 7.37 7.27 7.22 7.25 7.23 7.21 7.21 7.21 7.55 7.52	5.4 6.9 7.8 8.0
2012/9/28 16:48 2012/9/28 17:25						6.850 6.850 12.700 1.000 1.000 6.750 6.750 12.500 12.500 1.000 1.000 7.600	28.22 28.21 28.19 28.19 28.38 28.26 28.24 28.22 27.97 27.97 28.18 28.21 28.21 28.21 28.19	5.23 5.20 4.76 4.79 6.88 6.84 4.59 4.67 4.57 4.40 6.19 6.07 5.22	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90	$ \begin{array}{r} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ \end{array} $	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.60 34.67 34.67 34.38 34.39 34.02	7.41 7.40 7.37 7.27 7.22 7.25 7.23 7.21 7.21 7.21 7.55 7.52 7.48	5.4 6.9 7.8 8.0
	W3	MF	832051	807889	13.5	6.850 6.850 12.700 12.700 1.000 6.750 6.750 12.500 12.500 12.500 1.000 1.000 7.600	28.22 28.21 28.19 28.19 28.38 28.26 28.24 28.22 27.97 27.97 27.97 28.18 28.21 28.19 28.18	5.23 5.20 4.76 4.79 6.88 6.84 4.59 4.67 4.57 4.40 6.19 6.07 5.22 5.20	81.20 80.90 73.90 74.40 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.4 \\ 1.4 \\ \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.60 34.67 34.67 34.38 34.39 34.02 34.04	7.41 7.40 7.37 7.37 7.22 7.22 7.25 7.23 7.21 7.21 7.21 7.55 7.52 7.48 7.48	5.4 6.9 7.8 8.0 7.2 8.0
	W3	MF	832051	807889	13.5	6.850 6.850 12.700 12.700 12.700 1.000 6.750 6.750 12.500 12.500 12.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.600 14.200	28.22 28.21 28.19 28.39 28.26 28.24 28.22 27.97 27.97 28.18 28.21 28.19 28.19 28.18 28.14	5.23 5.20 4.76 4.79 6.88 6.84 4.59 4.67 4.57 4.40 6.19 6.07 5.22 5.20 4.55	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.60 70.70	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.7 \\ \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.60 34.67 34.67 34.38 34.39 34.02 34.04 34.54	7.41 7.40 7.37 7.37 7.27 7.22 7.25 7.23 7.21 7.21 7.21 7.55 7.52 7.48 7.48 7.48	5.4 6.9 7.8 8.0 7.2
	W3	MF	832051	807889	13.5	6.850 6.850 12.700 12.700 1.000 6.750 6.750 12.500 12.500 12.500 1.000 1.000 7.600	28.22 28.21 28.19 28.19 28.38 28.26 28.24 28.22 27.97 27.97 27.97 28.18 28.21 28.19 28.18	5.23 5.20 4.76 4.79 6.88 6.84 4.59 4.67 4.57 4.40 6.19 6.07 5.22 5.20	81.20 80.90 73.90 74.40 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.4 \\ 1.4 \\ \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.60 34.67 34.67 34.38 34.39 34.02 34.04	7.41 7.40 7.37 7.37 7.22 7.22 7.25 7.23 7.21 7.21 7.21 7.55 7.52 7.48 7.48	5.4 6.9 7.8 8.0 7.2 8.0 11.4
	W3	MF	832051	807889	13.5	6.850 6.850 12.700 12.700 12.700 12.700 12.700 12.700 1.000 6.750 6.750 12.500 12.500 12.500 12.600 1.000 7.600 7.600 14.200	28.22 28.21 28.19 28.38 28.26 28.24 28.22 27.97 28.18 28.21 28.12 28.19 28.11 28.14 28.14	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60 70.70 70.20	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.7 \\ 1.8 \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.67 34.67 34.67 34.38 34.39 34.02 34.04 34.54	7.41 7.40 7.37 7.37 7.27 7.22 7.25 7.23 7.21 7.21 7.21 7.21 7.55 7.52 7.52 7.48 7.48 7.46 7.46	5.4 6.9 7.8 8.0 7.2 8.0
2012/9/28 17:25	W3 C1	MF	832051 833714	807889	13.5	6.850 6.850 12.700 12.700 1.000 1.000 6.750 6.750 12.500 12.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 14.200 1.000	28.22 28.21 28.19 28.38 28.26 28.24 28.22 27.97 28.18 28.21 28.19 28.19 28.19 28.14 28.14 28.14 28.36	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\\ 6.76\end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60 70.70 70.20 105.20	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.67 34.67 34.67 34.38 34.39 34.02 34.04 34.54 34.54 34.54	7.41 7.40 7.37 7.37 7.27 7.22 7.25 7.23 7.21 7.21 7.21 7.55 7.52 7.48 7.48 7.46 7.46 7.16	5.4 6.9 7.8 8.0 7.2 8.0 11.4 5.1
	W3	MF	832051	807889	13.5	6.850 6.850 12.700 12.700 12.700 12.700 12.700 12.700 1.000 6.750 12.500 12.500 12.500 1.000 7.600 7.600 14.200 14.200 1.000 5.700 5.700	28.22 28.21 28.19 28.39 28.26 28.24 28.22 27.97 27.97 28.18 28.21 28.19 28.19 28.14 28.14 28.14 28.33 28.18 28.33	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\\ 6.76\\ 6.36\\ 5.41\\ 4.99\end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 96.10 94.30 80.90 80.60 70.70 70.20 105.20 98.90 83.90 77.40	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.60 34.60 34.67 34.67 34.38 34.39 34.02 34.04 34.54 34.54 34.54 34.54 34.27 34.33 34.43	$\begin{array}{c} 7.41 \\ \hline 7.40 \\ \hline 7.37 \\ \hline 7.37 \\ \hline 7.27 \\ \hline 7.22 \\ \hline 7.25 \\ \hline 7.23 \\ \hline 7.21 \\ \hline 7.21 \\ \hline 7.21 \\ \hline 7.21 \\ \hline 7.55 \\ \hline 7.52 \\ \hline 7.48 \\ \hline 7.46 \\ \hline 7.16 \\ \hline 7.01 \\ \hline 6.99 \end{array}$	5.4 6.9 7.8 8.0 7.2 8.0 11.4
2012/9/28 17:25	W3 C1	MF	832051 833714	807889	13.5	6.850 6.850 12.700 12.700 12.700 12.700 12.700 12.700 1.000 6.750 12.500 12.500 12.500 12.500 1.000 7.600 7.600 14.200 14.200 1.000 5.700 5.700 10.400	28.22 28.21 28.19 28.39 28.24 28.24 28.24 28.24 28.24 28.24 28.24 28.29 27.97 28.18 28.19 28.18 28.14 28.14 28.36 28.33 28.18 28.15 27.96	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\\ 6.76\\ 6.36\\ 5.41\\ 4.99\\ 4.30\\ \end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60 70.70 70.20 105.20 98.90 83.90 77.40 66.50	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \end{array}$	34.51 34.52 34.60 34.60 34.60 34.60 34.60 34.67 34.67 34.67 34.38 34.39 34.02 34.04 34.54 34.54 34.54 34.54 34.54 34.54 34.43 34.43	$\begin{array}{c} 7.41 \\ \hline 7.40 \\ \hline 7.37 \\ \hline 7.37 \\ \hline 7.27 \\ \hline 7.22 \\ \hline 7.25 \\ \hline 7.23 \\ \hline 7.21 \\ \hline 7.21 \\ \hline 7.21 \\ \hline 7.55 \\ \hline 7.52 \\ \hline 7.48 \\ \hline 7.48 \\ \hline 7.46 \\ \hline 7.46 \\ \hline 7.46 \\ \hline 7.01 \\ \hline 6.99 \\ \hline 6.99 \\ \hline 6.99 \\ \hline \end{array}$	5.4 6.9 7.8 8.0 7.2 8.0 11.4 5.1 5.5
2012/9/28 17:25	W3 C1	MF	832051 833714	807889	13.5	6.850 6.850 12.700 12.700 12.700 12.700 12.700 12.700 1.000 6.750 6.750 12.500 12.500 12.500 12.500 12.600 7.600 7.600 14.200 1.000 5.700 5.700 10.400 10.400	28.22 28.21 28.19 28.39 28.24 28.24 28.22 27.97 27.97 28.18 28.21 28.19 28.18 28.14 28.14 28.14 28.14 28.36 28.33 28.18 28.15 27.96	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\\ 6.76\\ 6.36\\ 5.41\\ 4.30\\ 4.38\\ \end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60 70.70 70.20 105.20 98.90 83.90 73.740 66.50 67.80	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \end{array}$	34.51 34.52 34.60 34.60 34.60 34.60 34.60 34.67 34.67 34.67 34.38 34.39 34.02 34.04 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.55 34.61	$\begin{array}{c} 7.41 \\ \hline 7.40 \\ \hline 7.37 \\ \hline 7.37 \\ \hline 7.27 \\ \hline 7.22 \\ \hline 7.25 \\ \hline 7.23 \\ \hline 7.21 \\ \hline 7.21 \\ \hline 7.21 \\ \hline 7.55 \\ \hline 7.52 \\ \hline 7.48 \\ \hline 7.48 \\ \hline 7.46 \\ \hline 7.46 \\ \hline 7.46 \\ \hline 7.46 \\ \hline 7.07 \\ \hline 7.01 \\ \hline 6.99 \\ \hline 6.99 \\ \hline 6.98 \end{array}$	5.4 6.9 7.8 8.0 7.2 8.0 11.4 5.1
2012/9/28 17:25	W3 C1	MF	832051 833714	807889	13.5	6.850 6.850 12.700 12.700 12.700 12.700 12.700 12.700 1.000 6.750 6.750 12.500 12.500 12.500 12.500 1.000 1.000 7.600 7.600 14.200 1.000 5.700 10.400 10.400 1.000	28.22 28.21 28.19 28.39 28.26 28.24 28.22 27.97 28.18 28.21 28.19 28.19 28.19 28.19 28.18 28.14 28.14 28.14 28.14 28.36 28.33 28.18 28.18 28.18 28.18 28.19	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\\ 6.76\\ 6.36\\ 5.41\\ 4.99\\ 4.30\\ 4.38\\ 4.54\end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60 70.70 70.20 105.20 98.90 83.90 77.40 66.50 67.80 70.50	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.4 \\$	34.51 34.52 34.60 34.60 34.60 34.60 34.60 34.67 34.67 34.67 34.67 34.38 34.39 34.02 34.04 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.55 34.61 34.34	$\begin{array}{c} 7.41 \\ 7.40 \\ 7.37 \\ 7.37 \\ 7.27 \\ 7.22 \\ 7.25 \\ 7.23 \\ 7.21 \\ 7.21 \\ 7.25 \\ 7.52 \\ 7.52 \\ 7.52 \\ 7.48 \\ 7.46 \\ 7.46 \\ 7.46 \\ 7.46 \\ 7.07 \\ 7.01 \\ 6.99 \\ 6.98 \\ 7.41 \end{array}$	5.4 6.9 7.8 8.0 7.2 8.0 11.4 5.1 5.5
2012/9/28 17:25	W3 C1	MF	832051 833714	807889	13.5	6.850 6.850 12.700 12.700 12.700 12.700 12.700 12.700 1.000 6.750 6.750 12.500 12.500 12.500 12.500 1.000 1.000 7.600 14.200 1.000 5.700 5.700 10.400 1.000 1.000 1.000	28.22 28.21 28.19 28.39 28.26 28.24 28.22 27.97 28.18 28.21 28.19 28.19 28.19 28.19 28.19 28.19 28.14 28.14 28.14 28.36 28.33 28.18 28.14 28.15 27.95 27.95 28.22 28.22	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\\ 6.76\\ 6.36\\ 5.41\\ 4.99\\ 4.30\\ 4.38\\ 4.54\\ 4.46\end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60 70.70 70.20 105.20 98.90 83.90 77.40 66.50 67.80 70.50 69.20	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.67 34.67 34.67 34.67 34.67 34.38 34.39 34.02 34.04 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.33 34.43 34.43 34.37	$\begin{array}{c} 7.41 \\ 7.40 \\ 7.37 \\ 7.37 \\ 7.27 \\ 7.22 \\ 7.25 \\ 7.23 \\ 7.21 \\ 7.25 \\ 7.23 \\ 7.21 \\ 7.55 \\ 7.52 \\ 7.52 \\ 7.48 \\ 7.46 \\ 7.46 \\ 7.46 \\ 7.46 \\ 7.46 \\ 7.16 \\ 7.07 \\ 7.01 \\ 6.99 \\ 6.98 \\ 7.41 \\ 7.42 \end{array}$	5.4 6.9 7.8 8.0 7.2 8.0 11.4 5.1 5.5 8.0
2012/9/28 17:25	W3 C1	MF	832051 833714	807889	13.5	6.850 6.850 12.700 12.700 12.700 1.000 6.750 12.500 12.500 12.500 12.500 12.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.700 5.700 5.700 10.400 1.000 1.000 1.000 1.000	28.22 28.21 28.19 28.38 28.26 28.24 28.22 27.97 28.18 28.21 28.19 28.18 28.14 28.14 28.14 28.14 28.36 28.33 28.18 28.15 27.96 27.95 28.22 28.22 28.22 28.20	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\\ 6.76\\ 6.36\\ 5.41\\ 4.99\\ 4.30\\ 4.38\\ 4.54\\ 4.46\\ 4.41\\ \end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.90 80.60 70.70 70.20 105.20 98.90 83.90 77.40 66.50 67.80 70.50 69.20 68.50	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6 \\ \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.67 34.67 34.67 34.67 34.38 34.39 34.02 34.02 34.04 34.54 34.54 34.54 34.54 34.54 34.43 34.43	$\begin{array}{c} 7.41 \\ \hline 7.40 \\ \hline 7.37 \\ \hline 7.37 \\ \hline 7.27 \\ \hline 7.22 \\ \hline 7.25 \\ \hline 7.23 \\ \hline 7.21 \\ \hline 7.22 \\ \hline 7.48 \\ \hline 7.48 \\ \hline 7.48 \\ \hline 7.46 \\ \hline 7.01 \\ \hline 6.99 \\ \hline 7.41 \\ \hline 7.42 \\ \hline 7.42 \\ \hline 7.42 \end{array}$	5.4 6.9 7.8 8.0 7.2 8.0 11.4 5.1 5.5 8.0
2012/9/28 17:25 2012/9/28 16:36	W3 C1 C2	MF MF	832051 833714 831459	807889 808186 807736	13.5 15.2 11.4	6.850 6.850 12.700 12.700 12.700 12.700 12.700 12.700 1.000 6.750 6.750 12.500 12.500 12.500 12.500 1.000 1.000 7.600 14.200 1.000 5.700 5.700 10.400 1.000 1.000 1.000	28.22 28.21 28.19 28.39 28.26 28.24 28.22 27.97 28.18 28.21 28.19 28.19 28.19 28.19 28.19 28.19 28.14 28.14 28.14 28.36 28.33 28.18 28.14 28.15 27.95 27.95 28.22 28.22	$\begin{array}{c} 5.23\\ 5.20\\ 4.76\\ 4.79\\ 6.88\\ 6.84\\ 4.59\\ 4.67\\ 4.57\\ 4.40\\ 6.19\\ 6.07\\ 5.22\\ 5.20\\ 4.55\\ 4.53\\ 6.76\\ 6.36\\ 5.41\\ 4.99\\ 4.30\\ 4.38\\ 4.54\\ 4.46\end{array}$	81.20 80.90 73.90 74.40 107.20 106.40 71.40 72.60 70.70 68.10 96.10 94.30 80.90 80.60 70.70 70.20 105.20 98.90 83.90 77.40 66.50 67.80 70.50 69.20	$\begin{array}{c} 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.5 \\ 1.7 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.6 \\ 1.4 \\ 1.7 \\ 1.8 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \end{array}$	34.51 34.52 34.60 34.60 34.58 34.50 34.60 34.67 34.67 34.67 34.67 34.67 34.38 34.39 34.02 34.04 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.54 34.33 34.43 34.43 34.37	$\begin{array}{c} 7.41 \\ 7.40 \\ 7.37 \\ 7.37 \\ 7.27 \\ 7.22 \\ 7.25 \\ 7.23 \\ 7.21 \\ 7.25 \\ 7.23 \\ 7.21 \\ 7.55 \\ 7.52 \\ 7.52 \\ 7.48 \\ 7.46 \\ 7.46 \\ 7.46 \\ 7.46 \\ 7.46 \\ 7.16 \\ 7.07 \\ 7.01 \\ 6.99 \\ 6.98 \\ 7.41 \\ 7.42 \end{array}$	5.4 6.9 7.8 8.0 7.2 8.0 11.4 5.5 8.0 5.5 8.0 5.6

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

4-Oct-12 Date

Late Late Name Rate Name Int Name Solution <	D . (T)	.	TT ' 1 H	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
100004143 91 Mie Xobes Number 1300 738 557 94.4 1.1 55.08 75.5 45.3 2012/1041435 W2 Mie SYM6 SYM6 120 738 553 95.0 1.2 55.0 97.1 1.5 55.0 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.2 77.1 1.5 55.1 77.1 55.7 77.1 1.5 55.1	Date / Time	Location	Tide*	East	North		m	ç	mg/L	%	NTU	ppt	unit	mg/l
2012/04/14:16 W2 ME 8.2081 80798 12.1 14.00 21.20 3.83 90.4 1.1 14.08 7.14 3.9 2012/04/14:16 W2 ME 80.998 12.7 5.83 90.4 1.2 14.08 7.14 4.30 7.04 4.2 2012/04/14:16 W3 ME 80.998 7.74 4.48 7.91 1.7 4.34 7.07 5.0 2012/04/14:16 W3 ME 80.789 80.789 4.42 67.3 1.7 4.34 6.81 4.51 6.00 7.25 1.0 4.16 6.88 4.5 2012/04/14:16 ME 80.899 80.786 1.00 7.72 5.00 7.81 1.1 4.33 6.81 4.7 2012/04/15:11 C1 ME 80.899 80.899 1.44 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	2012/10/4 14:51	W1	ME	832963	807730	2.4								4.3
b01210414.65 W2 ME 52261 M078 1782 538 87.6 1.3 31.00 7.14 330 201210414.55 W2 ME 80786 177.4 4.88 75.1 1.5 34.00 7.10 4.2 201210414.51 W3 ME 82985 80786 6.10 90.0 1.2 34.15 6.81 4.5 201210414.51 W3 ME 82985 80786 1.21 1.00 7.24 4.30 1.0 1.2 34.16 6.81 4.5 201210415.11 W3 ME 80786 1.00 7.74 6.75 1.00 1.2 34.16 6.81 4.5 201210415.11 ME 83984 80785 1.00 7.23 6.760 6.77 1.4 34.11 7.20 5.70 201210415.11 ME 83.49 80735 1.5 3.40 6.40 3.8 7.20 5.70 5.5 3.41 7.20 5.71														
2012/104 14:55 W2 M2 M4 8730 173 4.88 753 15 34,10 7,10 4.20 2012/104 14:18 W3 M4 M73 1.5 34,30 7,70 5.0 2012/104 14:18 W3 M4 M73 1.5 34,30 7,70 5.0 2012/104 14:18 W3 M4 80786 100 27.84 6.10 9.30 1.1 34.23 6.84 4.51 2012/104 14:18 W3 M4 80786 100 27.25 6.00 9.25 1.0 34.16 6.60 4.5 4.51 4.33 6.52 4.51 4.51 6.56 4.51 4.51 5.55 6.55 7.51 5.55 7.51 5.55 7.51 5.55 7.51 5.55 7.51 5.55 7.51 5.55 7.51 5.55 7.51 5.55 7.51 5.55 7.51 5.55 7.51 5.55 5.55 7.50 5.55 5.55														3.9
0.01/04/14/14/35 W1 ME	2012/01/14/25			000.654	005000	10.5								1.0
100 100 753 4.42 6.79 1.7 3.31 7.00 7.30 2012/104 14:18 w3 ME 83381 8078 1.100 7281 6.00 925 1.0 3.16 6.88 4.51 2012/104 14:18 w3 ME 83384 8078 7.70 5.00 915.5 1.2 3.428 6.30 7.70 1.51 3.428 6.50 4.50 7.70 1.51 3.428 6.70 1.50 3.51 1.2 3.428 6.70 1.50 3.51 1.2 3.428 6.70 1.50 3.51 1.2 3.428 6.70 1.50 3.51 1.2 3.428 6.70 1.50 3.51 1.2 3.428 6.70 1.50 7.70 5.00 1.50 7.70 1.50 3.51 1.5 3.438 6.50 1.50 7.70 5.01 3.438 6.50 1.5 3.438 6.50 1.5 3.438 6.50 1.5 3.51	2012/10/4 14:35	W2	ME	832651	807988	12.7								4.2
2012/104 14:18 W3 ME 833051 80786 12.1 11.00 27.37 4.43 6.07 91.2 31.15 6.08 4.5 2012/104 14:18 W3 ME 833051 80786 12.1 1.00 27.83 6.00 92.5 10.3 31.15 6.04 4.7 2012/104 14:18 W3 ME 833051 80786 11.00 27.0 5.06 77.8 1.1 31.21 6.04 4.7 2012/104 15:11 C1 ME 833064 808159 14.4 1000 77.14 4.53 70.7 14.3 31.01 7.26 5.7 2012/104 14:02 C2 ME 831652 80773 14.3 34.01 7.20 7.20 5.20 5.05 7.76 1.5 34.18 7.30 5.7 2012/104 14:02 C2 ME 831452 80773 1.0 34.34 6.63 3.8 3.44 6.63 3.5 5.50 7.70 5									4.59					5.0
2012/104 14:18 W3 ME 823051 80788 12.1 1000 2733 6.00 9.25 11.2 35.3 6.52 6.53 4.75 2012/104 14:18 W3 ME 823051 80789 77.0 5.06 77.8 1.1 34.23 6.63 4.70 2012/104 15:11 C1 ME 833694 80819 P14 1.000 77.4 6.06 93.7 1.4 34.1 7.24 5.7 2012/104 15:11 C1 ME 833694 80819 P14 1.000 77.24 6.67 7.16 1.6 34.43 7.201 5.00 2012/104 14:02 C2 ME 831452 80733 P17 6.31 07.3 1.5 34.43 6.60 38 35.9 7.77 6.31 07.3 1.6 34.43 6.60 38 2012/104 14:02 C2 ME 82192 80733 8.57 9.77 6.31 07.3 1.4 34.34														5.0
2012/104 14:18 W3 ME 832051 807884 12.1 6609 77.0 5.30 81.5 12.1 84.23 6.81 4.71 2012/104 15:11 C1 ME 833994 808199 77.6 5.06 77.8 1.1 34.48 6.79 4.83 2012/104 15:11 C1 ME 833994 808199 77.6 5.06 77.6 1.6 34.11 72.04 5.60 77.76 1.5 34.18 72.01 5.60 77.76 1.5 34.18 72.01 5.60 77.76 1.6 34.21 7.70 5.70 7.70 5.70 7.70 5.70 7.70 5.70 7.70 5.70 7.70 5.70 7.70 5.70 7.70 5.50 7.70 6.50 7.70 5.50 7.70 5.50 7.70 5.50 7.70 5.50 7.70 5.50 7.70 5.50 7.70 5.50 7.70 5.50 7.70 5.50 7.70 5.50														4.5
2012/104 14:18 W3 ME 80/081 80/080 12.1 60.00 77.8 1.1 34.23 6.81 4.8 2012/104 15:11														
11.100 17.290 4.58 70.3 1.5 54.48 6.79 4.85 2012/104 15:11 P1 ME 833691 98159 100 27.74 6.76 104.0 1.2 34.10 7.26 5.7 2012/104 15:11 P1 ME 833691 98159 1.40 7.200 27.80 5.50 7.76 1.5 34.41 7.20 5.7 2012/104 14:02 P2 ME 831452 80773 1.60 7.230 7.260 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56<	2012/10/4 14:18	W3	ME	832051	807886	12.1								4.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														10
2012/104 15:11 C1 MB 833694 808159 14.4 1.100 27.22 6.00 93.7 1.4 3.11 7.24 5.0 2012/104 15:11 C1 MB 833694 808159 1.14 7.300 27.60 5.33 88.2 1.4 3.401 7.20 5.05 3.418 7.20 5.01 2012/104 14.02 C2 MB 831452 807735 1.07 7.55 7.77 6.50 90.03 1.6 3.44.3 6.66 3.8 2012/104 15.35 C3 ME 832202 88888 1.51 1.000 27.76 5.53 1.5 3.434 6.653 3.5 2012/104 9.26 W1 MF 832963 80782 2.8 1.000 27.66 5.31 1.15 3.413 6.51 4.51 2012/104 9.26 W1 MF 832963 80782 2.8 1.000 27.61 5.31 8.438 6.52 4.53 4.51														4.0
2012/104 15:11 C1 ME 83690 80819 14.4 7200 72700 533 802 1.4 300 7230 5.0 313:00 7753 4.67 71.6 1.6 34.43 7.20 5.7 2012/104 14:02 C2 ME 8344 27.53 4.67 71.6 1.6 34.43 7.20 5.7 2012/104 14:02 C2 ME 8344 27.75 3.67 71.6 1.6 34.43 6.66 3.8 2012/104 14:02 C2 ME 83743 20773 5.55 77.76 5.50 1.5 34.45 6.53 3.5 2012/104 15:35 C3 ME 832202 88858 1.5 1.6 3.66 9.1 3.41.3 7.18 5.5 2012/104 9:5 C3 MF 832963 80774 2.8 1.400 27.62 5.44 83.00 1.3 3.41.0 7.18 5.5 2012/104 9:13 W1														5.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
11.00 13.00 17.53 4.67 71.6 1.6 34.34 72.00 5.7 2012/104 14:02 C2 ME 83.142 87.33 1.00 72.85 8.34 12.99 1.5 34.33 6.66 3.8 2012/104 14:02 C2 ME 83.142 87.37 6.50 100.3 1.5 34.47 6.53 3.5 2012/104 15:35 C3 ME 82202 808.88 1.10 1.00 27.78 6.59 10.3 1.4 34.08 6.51 4.55 2012/104 15:35 C3 ME 82202 808.88 1.15 1.16 34.13 1.18 4.51 2012/104 15:35 C3 MH 82202 808.88 80774 2.8 1.400 27.52 4.54 83.00 1.13 34.13 7.18 4.55 2012/104 9:13 MF 832963 80774 2.8 1.400 27.62 5.44 83.00 1.13 34.13 7.16	2012/10/4 15:11	C1	ME	833694	808159	14.4								5.0
2012/104 14:02 C2 ME 83.162 807733 1.00 27.88 8.34 1.28 1.5 3.4.3 6.66 3.8 2012/104 14:02 C2 ME 83.142 807733 1.00 27.88 8.34 128 1.15 3.4.3 6.66 3.8 2012/104 14:02 C2 ME 83.1452 807733 1.00 27.77 6.53 97.3 1.6 3.4.3 6.66 3.8 2012/104 15:35 C3 ME 832002 808578 1.00 27.17 6.53 1.15 3.4.17 6.53 1.15 3.4.17 1.16 3.4.6 6.21 4.5 2012/104 15:35 C3 ME 832002 808578 115 1.16 33.26 7.18 4.5 1.16 33.46 7.18 4.0 2012/104 9:26 W1 MF 832963 807742 2.8 1.400 27.62 5.44 83.50 1.2 3.40 7.47 6.53														
2012/10/4 14:02 C2 ME 831452 807733 10.00 27.86 7.89 12.19 1.3 34.43 6.66 .7.8 2012/10/4 14:02 C2 ME 831452 807733 10 7 6.51 97.3 1.16 34.43 6.651 4.5 2012/10/4 15:35 C3 ME 83202 808858 15.1 1.100 72.17 5.45 84.2 1.15 34.34 6.651 4.6 2012/10/4 15:35 C3 ME 832020 808858 15.1 1.100 72.17 6.53 10.3 1.4 34.08 7.17 4.5 2012/10/4 9:13 ME 83202 808858 11.00 72.52 4.58 69.9 1.16 33.69 7.18 4.0 2012/10/4 9:13 W2 MF 832661 807742 2.8 1.100 27.52 5.08 8.101 1.2 34.09 7.47 6.3 2012/10/4 9:13 W2 MF 832664<														5.7
2012/10/4 14:02 C2 ME 831452 807733 1.00 7.280 7.280 10.13 1.5 3.4.3 6.060 5.5 2012/10/4 14:02 C3 ME 831452 807733 1.6 5.5 1.5 3.4.3 6.060 7.5 1.5 3.4.43 6.653 5.5 2012/10/4 15:35 C3 ME 832202 808858 1.51 1.5 3.4.43 6.653 7.5 1.5 3.4.58 6.51 4.6 2012/10/4 15:35 C3 ME 83202 808858 1.100 27.78 4.60 70.3 1.4 34.08 7.18 4.5 2012/10/4 9:26 W1 MF 832963 807742 2.8 1.400 27.62 5.44 83.60 1.2 34.09 7.46 6.3 2012/10/4 9:26 W1 MF 832963 807742 2.8 1.400 27.61 5.41 81.50 1.2 34.09 7.46 6.3 6.3 6.3							1.000	27.88	8.34	128.9	1.5	34.43	6.69	20
2012/104 14:32 C2 ME 831452 80773 10.7 5350 27.79 6.31 97.3 1.6 34.45 6.53 5.5 2012/104 15:35 C3 ME 83202 80858 15.1 1.5 34.45 6.61 1.5 34.58 6.61 4.45 6.52 4.6 2012/104 15:35 C3 ME 83202 80858 15.1 1.000 27.74 6.59 1.15 34.35 6.52 4.6 2012/104 9:26 W1 MF 83202 80858 15.1 1.400 27.52 4.53 6.99 1.6 33.65 7.18 4.0 2012/104 9:26 W1 MF 83266 80771 2.8 1.400 27.62 5.44 83.60 1.2 34.09 7.47 6.3 2012/104 9:26 W1 MF 832664 807971 13.8 6.500 27.54 5.50 84.30 1.4 34.20 7.48 9.1 1.2 34.40<											1.3			3.8
2012/104 9:13 W1 MF 83260 807742 2.8 1.400 27.73 5.45 84.2 1.5 34.45 6.52 4.6 2012/104 15:35 C3 ME 82202 80888 1.51 1.5 4.778 4.89 7755 1.5 34.58 6.52 4.6 2012/104 15:35 C3 ME 82202 80888 1.51 1.600 27.74 6.55 31.1 1.5 34.13 7.18 4.5 2012/104 9:26 W1 MF 83266 807742 2.8 1.400 27.62 5.44 83.50 1.2 34.09 7.46 6.3 2012/104 9:26 W1 MF 83266 807742 2.8 1.400 27.62 5.44 83.50 1.2 34.09 7.46 6.3 2012/104 9:13 W2 MF 83266 807977 1.8 1.30 2.40 1.3 34.10 7.49 4.2 2012/104 9:13 W2 MF <td>2012/10/4 14:02</td> <td>C2</td> <td>ME</td> <td>831452</td> <td>807733</td> <td>10.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.5</td>	2012/10/4 14:02	C2	ME	831452	807733	10.7								3.5
2012/10/4 9:26 W1 MF 832963 80742 2.8 1.400 27.58 4.80 75.5 1.5 34.58 6.52 4.50 2012/10/4 9:26 W1 MF 832963 807842 15.1 1.400 27.68 5.53 84.7 1.6 34.31 7.18 4.5 2012/10/4 9:26 W1 MF 832963 807742 2.8 1.400 27.52 4.56 0.70.3 1.8 33.60 7.18 4.0 2012/10/4 9:26 W1 MF 832963 807742 2.8 1.400 27.52 4.56 0.70.3 1.8 33.60 7.18 4.0 2012/10/4 9:13 W2 MF 832963 807742 2.8 1.400 27.54 5.41 81.50 1.2 34.09 7.46 6.3 2012/10/4 9:13 W2 MF 832664 807977 12.86 6.71 5.37 82.40 1.3 34.09 7.48 7.6 35	2012/10/11/102	02	1112	001102	007755	1017								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														4.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														4.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/01/145.25	-			000050									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2012/10/4 15:35	C3	ME	832202	808858	15.1				84.7		33.80		5.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							14.100	27.52	4.58	69.9	1.6	33.65		4.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							14.100	27.52	4.60	70.3	1.8	33.69	7.18	1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/10/1 0.26	3374		000000	007740	2.0	1.400	27.62	5.44	83.60	1.2	34.09	7.47	()
2012/104 9:13 W2 MF 83264 80797 13.8 1.000 27.57 5.37 82.40 1.3 34.10 7.49 4.2 2012/104 9:13 W2 MF 832664 80797 13.8 13.8 1000 27.54 5.50 84.30 1.4 34.20 7.48 9.1 2012/104 8:56 W3 MF 832040 80789 14.8 12.800 27.52 5.91 90.60 1.1 34.13 7.46 3.8 2012/104 8:56 W3 MF 832040 807899 13.4 14.00 27.52 5.24 80.30 1.3 34.34 7.46 3.5 2012/10/4 8:56 W3 MF 832040 807899 13.4 14.40 27.55 5.38 82.60 1.2 34.43 7.46 3.5 2012/10/4 9:42 C1 MF 833716 808185 15.6 7.100 27.55 5.28 81.00 1.4 34.43 7.48 4.8 </td <td>2012/10/4 9:26</td> <td>WI</td> <td>MF</td> <td>832963</td> <td>807742</td> <td>2.8</td> <td>1.400</td> <td>27.61</td> <td>5.41</td> <td>81.50</td> <td>1.3</td> <td>34.09</td> <td>7.46</td> <td>6.3</td>	2012/10/4 9:26	WI	MF	832963	807742	2.8	1.400	27.61	5.41	81.50	1.3	34.09	7.46	6.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.000	27.58	6.78	104.10	1.2	34.10		4.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														7.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/10/4 9:13	W2	MF	832664	807977	13.8								9.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												-		
$ 2012/10/4 8:56 \\ W3 \\ W3 \\ W7 \\ W7 \\ W7 \\ W7 \\ W7 \\ W7$														7.8
$ 2012/10/4 8:56 \\ W3 \\ W3 \\ W5 \\ W3 \\ W6 \\ W6$														2.0
2012/10/4 8:56 W3 MF 852040 80/899 13.4 6.700 27.52 5.24 80.30 1.3 34.34 7.45 5.5 2012/10/4 8:56 W3 MF 832040 80/899 13.4 6.700 27.52 5.24 80.30 1.3 34.34 7.45 5.5 2012/10/4 9:42 C1 MF 833716 808185 15.6 10.000 27.65 5.28 81.00 1.4 34.48 7.48 5.5 2012/10/4 9:42 C1 MF 833716 808185 15.6 15.6 72.00 1.6 34.07 7.56 4.4 1.000 27.58 4.92 75.50 1.8 34.14 7.48 4.8 2012/10/4 9:42 MF 831455 80760 11.6 14.600 27.57 4.86 74.50 1.5 34.14 7.48 4.1 2012/10/4 8:37 C2 MF 831455 80760 11.6 5.800 27.58 5.29							1.000	27.60	5.87	90.00	1.2	34.14	7.50	3.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/10/4 8:56	W3	ME	832040	807899	13.4	6.700							35
2012/10/4 9:42 C1 MF 833716 808185 15.6 12.400 27.57 5.13 78.90 1.4 34.48 7.48 5.5 2012/10/4 9:42 C1 MF 833716 808185 15.6 1.000 27.65 5.28 81.00 1.4 34.07 7.56 4.4 2012/10/4 9:42 C1 MF 833716 808185 15.6 7.800 27.57 4.86 74.50 1.5 34.14 7.48 4.8 2012/10/4 9:42 C1 MF 833716 808185 15.6 7.800 27.57 4.86 74.50 1.5 34.14 7.48 4.8 2012/10/4 9:42 C1 MF 831455 80760 116.6 27.57 4.76 73.10 1.7 34.26 7.31 2.8 2012/10/4 8:37 C2 MF 831455 807760 11.6 5.800 27.58 5.29 81.30 1.2 34.36 7.33 3.4 2012/10/4 8	2012/10/4 0.50	** 5	1011	052040	007077	15.4								5.5
$ 2012/10/4 9:42 \ C1 \ MF \ 833716 \ 808185 \ Here \ 808185 \ Prime \ 808185 \ Prim \ 808185 \ Prime \ 808185 \ Prime \ 808185 \ Prime \ 8$														5.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														4.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2012/10/4 0 42	C1		022716	909105	15.6								10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2012/10/4 9:42	CI	MF	833716	808185	15.6		27.58		75.50	1.8	34.15	7.48	4.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														2.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2012/10/4 8:37	C2	MF	831455	807760	11.6								3.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														4.0
2012/10/4 10:06 C3 MF 832233 808849 16.2 1.000 27.61 4.86 74.60 1.4 34.06 7.40 4.2 2012/10/4 10:06 C3 MF 832233 808849 16.2 1.000 27.61 4.67 71.60 1.6 34.11 7.40 3.3 15.200 27.58 4.65 71.30 1.8 34.23 7.40 3.7														4.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														4.2
2012/10/4 10:06 C.5 MF 852233 808849 16.2 8.100 27.61 4.65 71.30 1.6 34.11 7.39 3.3 15.200 27.58 4.65 71.30 1.8 34.23 7.40 3.7														T.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2012/10/4 10:06	C3	MF	832233	808849	16.2								3.3
							15.200	27.58	4.65	71.30	1.8	34.23	7.40	3.7

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 6-Oct-12

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	THUC .	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/l
2012/10/6 15:03	W1	ME	832960	807744	2.5	1.250	27.74	7.25	111.5	0.7	34.21	6.60	7.2
2012/10/0 10:00		10112	0.52700		210	1.250	27.75	7.26	111.8	0.7	34.22	6.63	,12
						1.000	27.73 27.73	8.14 8.38	125.2 128.9	0.6	34.23 34.23	6.71 6.70	7.3
						6.350	27.46	6.06	92.8	0.8	34.34	6.59	
2012/10/6 14:49	W2	ME	832658	808000	12.7	6.350	27.44	5.67	86.9	0.9	34.35	6.58	3.8
						11.700	27.43	5.79	88.8	1.1	34.41	6.55	7.4
	_					11.700	27.42	5.23	80.1	1.1	34.42	6.56	7.4
						1.000	27.74	7.16	110.3	1.1	34.34	6.50	6.0
						1.000 6.300	27.78 27.54	7.07 6.10	108.9 93.7	1.0	34.34 34.40	6.50 6.54	
2012/10/6 14:32	W3	ME	832055	807890	12.6	6.300	27.52	6.10	93.7	1.2	34.39	6.65	5.6
						11.600	27.44	5.51	84.5	1.3	34.47	6.66	5.2
						11.600	27.41	5.45	83.5	1.1	34.48	6.66	J.Z
						1.000	27.67	6.82	104.9	1.0	34.20	6.99	8.5
						1.000 7.250	27.67 27.55	7.32 5.81	112.4 89.2	1.1	34.21 34.40	6.94 6.87	
2012/10/6 15:19	C1	ME	833712	808184	14.5	7.250	27.53	5.85	89.2	1.2	34.39	6.83	6.4
						13.500	27.55	4.82	74.1	1.2	34.45	6.83	
						13.500	27.55	4.63	71.2	1.2	34.46	6.84	3.7
						1.000	27.74	8.87	136.8	1.2	34.60	6.40	5.0
						1.000	27.76	8.72	134.5	1.2	34.59	6.50	5.0
2012/10/6 14:19	C2	ME	831453	807744	10.7	5.350	27.66	5.91	91.1	1.3	34.64	6.40	6.4
						5.350	27.67	5.78	89.1	1.3	34.63	6.50	
						9.700 9.700	27.39 27.37	5.34 5.01	81.9 76.9	1.4 1.3	34.65 34.65	6.58 6.70	4.6
						1.000	27.67	6.26	96.3	1.5	34.03	6.82	
						1.000	27.71	6.89	106.0	1.0	34.19	6.84	3.3
2012/10/5 15 45	C1 2		000000	000000	14.0	7.400	27.56	5.47	84.1	1.2	34.38	6.87	7 1
2012/10/6 15:46	C3	ME	832236	808880	14.8	7.400	27.53	6.21	95.3	1.3	34.39	6.84	7.1
						13.800	27.54	4.57	70.2	1.3	34.45	6.87	3.3
						13.800	27.53	4.67	71.7	1.2	34.46	6.85	5.5
						1.400	27.59	6.57	100.9	0.8	34.26	7.37	
2012/10/6 11:08	W1	MF	832957	807741	2.8	1.400	27.57	7.30	112.0	0.9	34.25	7.36	7.8
						1.000	27.56	5.89	90.4	0.9	34.27	7.48	3.9
						1.000	27.57	6.90	106.0	0.9	34.28	7.46	3.9
2012/10/6 10:53	W2	MF	832649	807971	13.4	6.700	27.43	5.07	77.6	1.0	34.35	7.39	7.3
2012/10/0 10:00			052017	00///1	1511	6.700	27.42	5.06	77.6	1.1	34.34	7.38	7.5
						12.400 12.400	27.32 27.32	5.07 4.90	77.6 75.0	1.3 1.3	34.53 34.53	7.36 7.36	4.4
						12.400	27.32	7.36	112.80	1.5	34.35	7.25	
						1.000	27.51	6.41	98.30	1.0	34.33	7.25	2.8
2012/10// 10:20	11/2		822055	807903	10.1	6.550	27.40	4.75	72.70	1.2	34.48	7.20	2.0
2012/10/6 10:38	W3	MF	832055	807903	13.1	6.550	27.39	4.73	72.40	1.2	34.44	7.19	2.9
						12.100	27.40	4.75	72.80	1.4	34.57	7.21	4.0
	-					12.100	27.40	4.80	72.10	1.5	30.96	6.94	
						1.000	27.52 27.52	8.19 8.32	125.50 127.60	0.8	34.20 34.22	7.42 7.43	7.7
						7.550	27.50	5.60	85.80	1.1	34.31	7.40	
2012/10/6 11:23	C1	MF	833700	808198	15.1	7.550	27.50	5.32	81.50	1.4	34.31	7.40	1.8
						14.100	27.48	5.02	77.00	1.5	34.33	7.40	4.0
						14.100	27.48	5.28	81.00	1.4	34.33	7.39	4.0
	1					1.000	27.43	7.73	118.4	1.5	34.34	7.19	7.3
						1.000 5.650	27.46	6.74	103.3 84.2	1.0	34.34	7.21	
2012/10/6 10:24	C2	MF	831462	807738	11.3	5.650	27.34 27.33	5.50 5.42	84.2 83.0	1.2 1.2	34.43 34.47	7.22 7.20	3.5
						10.300	27.35	5.24	80.1	1.2	34.47	7.20	
						10.300	27.35	5.17	79.1	1.4	34.22	7.16	6.6
	1					1.000	27.55	6.75	103.5	1.1	34.21	7.36	6.1
						1.000	27.56	6.67	102.3	1.3	34.20	7.36	0.1
2012/10/6 11:47	C3	MF	832204	808875	15.9	7.950	27.50	5.90	90.5	1.4	34.29	7.35	6.0
						7.950	27.49	5.69	87.2	1.5	34.23	7.34	5.0
						14.900	27.52 27.52	5.12 5.07	78.6 77.8	1.4	34.32 34.34	7.35 7.35	7.7
	4	l				14.900	21.32	3.07	//.ð	1.0	34.34	1.33	

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

8-Oct-12 Date

Date / Time Location Tide* Bast North m m C mgL % NU pp<	unit 7.40 7.40 7.51 7.47 7.46 7.45 7.46 7.38 7.36 7.38 7.36 7.38 7.36 7.38 7.39 7.39 7.41	mg/l 4.8 4.4 3.3 11.1 1.9 3.8 5.4
2012/10/8 8:53 W1 ME 832088 80/745 2.3 1.150 27.29 6.23 95.3 1.1 34.58 2012/10/8 8:40 W2 ME 832682 807988 12.6 1000 27.30 7.92 121.3 1.1 34.58 2012/10/8 8:40 W2 ME 832682 807988 12.6 10.00 27.30 7.92 121.3 1.1 34.59 2012/10/8 8:40 W3 ME 832046 807899 12.4 10.00 27.34 7.76 118.8 1.2 34.40 2012/10/8 8:24 W3 ME 832046 807899 12.4 10.00 27.34 7.76 118.8 1.2 34.45 2012/10/8 8:24 W3 ME 833711 808187 14.2 10.00 27.34 7.76 118.8 1.2 34.45 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.30 4.88 7.36 1.71	7.40 7.51 7.47 7.46 7.46 7.45 7.46 7.38 7.38 7.38 7.36 7.35 7.36 7.35 7.36 7.39 7.39 7.39 7.41	- 4.4 - 3.3 - 11.1 - 1.9 - 3.8
2012/10/8 8:40 W2 ME 832682 807988 12.6 1.000 27.32 7.66 117.4 1.1 34.58 2012/10/8 8:40 W2 ME 832682 807988 12.6 6.300 27.28 6.29 96.2 1.2 34.62 2012/10/8 8:24 W3 ME 832046 807899 12.4 1.600 27.39 6.39 97.9 1.2 34.62 2012/10/8 8:24 W3 ME 832046 807899 12.4 1.000 27.34 7.35 112.5 34.61 2012/10/8 8:24 W3 ME 832046 807899 12.4 1.000 27.34 7.35 11.3 34.30 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.400 27.30 4.48 74.7 1.2 34.24 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.100 27.30 4.81 73.6 1.3 34.62	7.51 7.47 7.46 7.46 7.45 7.45 7.38 7.38 7.38 7.36 7.35 7.38 7.36 7.35 7.36 7.39 7.39 7.39 7.41	3.3 - 11.1 - 1.9 - 3.8
2012/10/8 8:40 W2 ME 832682 807988 12.6 1.000 27.30 7.92 12.1 1.1 34.59 2012/10/8 8:40 W2 ME 832682 807988 12.6 6.300 27.28 6.29 96.3 1.2 34.60 2012/10/8 8:24 W3 ME 832046 807899 12.4 1.000 27.34 7.76 118.8 1.2 34.41 1.000 27.34 7.35 112.5 1.2 34.41 6.200 27.34 7.35 112.5 1.2 34.42 1.000 27.34 7.35 112.5 1.2 34.43 6.200 27.34 7.35 112.5 1.2 34.43 1.400 27.34 7.35 112.5 1.2 34.63 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.40 6.76 103.5 1.2 34.63 2013/10/22 17:00 C2 ME	7.47 7.46 7.45 7.46 7.38 7.38 7.38 7.36 7.35 7.38 7.36 7.38 7.36 7.39 7.39 7.39 7.41	3.3 - 11.1 - 1.9 - 3.8
2012/108 8:40 W2 ME 832682 807988 12.6 6.300 27.28 6.29 96.2 1.2 34.62 6.300 27.29 6.39 97.9 1.2 34.62 2012/10/8 8:24 W3 ME 832046 807899 12.4 10.00 27.34 7.75 11.2.5 1.2 34.42 2012/10/8 8:24 W3 ME 832046 807899 12.4 10.00 27.34 7.75 11.2.5 1.2 34.41 2012/10/8 8:24 W3 ME 832046 807899 12.4 12.4 10.00 27.34 7.75 11.2.5 1.2 34.42 2012/10/8 8:24 W3 ME 833711 808187 14.2 12.4 10.00 27.40 6.70 10.55 1.2 34.32 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.200 27.40 6.70 10.55 1.2 34.32 2012/10/8 8:07 C2	7.46 7.45 7.45 7.38 7.38 7.38 7.36 7.35 7.38 7.36 7.39 7.39 7.39 7.41	- 11.1 - 1.9 - 3.8
2012/10/8 8:40 W2 ME 832682 80/988 12.6 6.300 27.29 6.39 97.9 1.2 34.62 2012/10/8 8:40 W3 ME 832046 807899 12.4 6.300 27.29 6.29 96.3 1.2 34.62 2012/10/8 8:24 W3 ME 832046 807899 12.4 1000 27.34 7.35 11.2.5 1.2.4 34.42 1.000 27.34 7.35 11.2.5 1.2.2 34.44 6.200 27.30 4.48 74.7 1.2 34.62 6.200 27.30 4.48 74.7 1.2 34.62 6.200 27.31 4.63 70.9 1.2 34.62 11.400 27.31 4.43 7.6 1.3 34.50 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.40 7.54 115.5 1.2 34.42 2012/10/8 8:07 C2 ME	7.46 7.45 7.46 7.38 7.38 7.38 7.36 7.35 7.38 7.36 7.39 7.39 7.39 7.41	- 11.1 - 1.9 - 3.8
2012/10/8 8:24 W3 ME 832046 807899 12.4 11.600 27.34 6.77 01.8 1.2 34.65 2012/10/8 8:24 W3 ME 832046 807899 12.4 10.000 27.34 7.75 118.8 1.2 34.42 2012/10/8 8:24 W3 ME 832046 807899 12.4 10.000 27.34 7.35 112.5 1.2 34.41 1.000 27.34 7.35 112.5 1.2 34.52 11.400 27.30 4.88 74.7 1.2 34.52 2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 5.57.4 87.9 1.4 34.52 2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 5.57.4 87.9 1.4 34.52 2012/10/8 8:07 C2 ME 831453 807761 10.8 1.1 34.32 1.50 27.14 5.30	7.45 7.46 7.38 7.38 7.36 7.35 7.38 7.36 7.39 7.39 7.39 7.41	- 1.9 - 3.8
2012/10/8 8:24 W3 ME 832046 807899 12.4 1.000 27.34 7.76 118.8 1.2 34.42 2012/10/8 8:24 W3 ME 832046 807899 12.4 12.4 1000 27.34 7.35 112.5 1.2 34.42 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.400 27.30 4.81 7.36 1.3 34.30 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.40 6.76 103.5 1.2 34.22 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.40 7.54 115.5 1.2 34.22 2012/10/8 8:07 C2 ME 831453 807761 10.3 13.200 27.29 6.70 102.5 1.5 34.63 2012/10/8 9:34 C3 ME 832235 80855 10.3 14.30 34.29 2012/10/8 9:34	7.38 7.36 7.35 7.35 7.38 7.36 7.39 7.39 7.39 7.41	- 1.9 - 3.8
2012/108 8:24 W3 ME 832046 807899 12.4 1000 27.34 7.35 112.5 1.2 34.41 2012/108 8:24 W3 ME 832046 807899 12.4 1000 27.34 7.35 112.5 1.2 34.55 2013/10/22 17:00 C1 ME 833711 808187 14.2 1000 27.40 6.676 103.5 1.2 34.32 2013/10/22 17:00 C1 ME 833711 808187 14.2 14.2 1000 27.40 6.76 103.5 1.2 34.32 2013/10/22 17:00 C1 ME 833711 808187 14.2 14.2 1000 27.40 6.74 115.5 1.2 34.32 2012/10/8 8:07 C2 ME 831453 807761 10.3 13.200 27.29 5.73 87.8 1.6 34.67 2012/10/8 9:34 C3 ME 831453 807761 10.3 1.300 27.39 6.76	7.38 7.36 7.35 7.38 7.36 7.39 7.39 7.39 7.41	- 3.8
2012/108 8:24 W3 ME 832046 807899 12.4 6.200 27.30 4.88 74.7 1.2 34.55 2012/108 8:24 W3 ME 832046 807899 12.4 6.200 27.30 4.88 74.7 1.2 34.55 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.400 27.31 4.61 73.6 1.3 34.30 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.40 6.76 103.5 1.2 34.32 2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 6.570 102.5 1.5 34.63 2012/10/8 8:07 C2 ME 831453 807761 10.3 51.50 27.41 4.90 75.1 1.2 34.43 2012/10/8 9:34 C3 ME 83225 80855 14.7 5.50 27.41 4.90 75.1 1.2	7.36 7.35 7.38 7.36 7.39 7.39 7.39 7.41	- 3.8
2012/10/8 8:24 W3 ME 832046 80/899 12.4 6.200 27.28 5.88 90.0 1.3 34.57 2013/10/22 17:00 C1 ME 833711 808187 14.20 27.30 4.81 73.6 1.3 34.30 2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 5.74 115.5 1.2 34.32 2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 6.76 103.5 1.2 34.32 2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 5.74 87.8 1.6 34.67 2012/10/8 8:07 C2 ME 831453 807761 10.3 10.00 27.35 7.71 118.8 1.1 34.43 2012/10/8 9:34 C3 ME 832235 808855 14.7 7.350 27.41 5.32 81.5 1.2 34.33	7.35 7.38 7.36 7.39 7.39 7.39 7.41	
2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.38 5.88 90.00 1.3 34.37 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.48 115.5 1.2 34.20 2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.40 6.676 103.5 1.2 34.27 10.00 27.19 6.33 96.9 1.4 34.52 34.52 7.100 27.29 5.74 87.9 1.4 34.52 13.200 27.29 5.73 87.8 1.6 34.67 13.200 27.29 5.73 87.8 1.6 34.67 13.200 27.29 5.73 87.8 1.6 34.67 10.000 27.35 7.76 118.8 1.1 34.35 10.000 27.35 7.76 118.8 1.1 34.43 10.000 27.39 6.	7.38 7.36 7.39 7.39 7.41	
2013/10/22 17:00 C1 ME 833711 808187 14.2 11.400 27.30 4.81 73.6 1.3 34.30 2013/10/22 17:00 C1 ME 833711 808187 14.2 1000 27.40 6.76 103.5 1.2 34.32 2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 6.33 96.9 1.4 34.52 2012/10/8 8:07 C2 ME 831453 807761 10.00 27.35 7.76 118.8 1.1 34.43 2012/10/8 9:34 C2 ME 831453 807761 10.3 5150 27.41 5.32 81.5 1.2 34.52 2012/10/8 9:34 C3 ME 832235 80855 14.7 14.90 75.1 1.2 34.29 2012/10/8 9:34 C3 ME 832245 808855 14.7 1.400 27.38 5.95 91.3 1.4 34.29 2012/10/8 9:34	7.36 7.39 7.39 7.41	5.4
2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.40 6.76 103.5 1.2 34.27 2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 6.33 96.9 1.4 34.32 2013/10/22 17:00 C2 ME 833711 808187 14.2 7.100 27.29 6.73 96.9 1.4 34.52 2012/10/8 8:07 C2 ME 831453 807761 14.2 34.51 32.20 27.29 5.74 87.9 1.4 34.43 2012/10/8 8:07 C2 ME 831453 807761 10.3 10.00 27.35 7.76 118.8 1.1 34.43 2012/10/8 9:34 C3 ME 831453 807761 10.3 10.00 27.34 5.95 91.3 1.4 34.67 9.300 27.39 6.76 103.6 1.2 34.57 2012/10/8 9:34 C3 ME	7.39 7.39 7.41	
2013/10/22 17:00 C1 ME 833711 808187 14.2 1.000 27.40 7.54 115.5 1.2 34.33 34.32 34.33 34.32 34.32 34.33 34.32 34.34 34.32 34.34	7.39 7.41	
2013/10/22 17:00 C1 ME 833711 808187 14.2 7.100 27.29 6.33 96.9 1.4 34.52 7.100 27.29 6.70 102.5 1.5 34.63 13.200 27.29 6.70 102.5 1.5 34.63 13.200 27.29 6.70 102.5 1.5 34.63 13.200 27.29 6.70 102.5 1.5 34.63 13.200 27.29 5.73 87.8 1.66 34.63 10.00 27.35 7.76 118.8 1.1 34.43 1.000 27.35 7.71 118.0 1.2 34.60 1.000 27.39 6.76 103.6 1.2 34.67 9.300 27.38 5.95 91.3 1.4 34.67 9.300 27.39 6.76 103.6 1.2 34.67 9.300 27.39 7.50 114.9 1.2 34.33 11.000 27.43	7.41	3.2
2013/10/22 17:00 C1 ME 833/11 80818/ a 14.2 7.100 27.29 5.74 87.9 1.4 34.52 13.200 27.29 5.73 87.8 1.6 34.63 13.200 27.29 5.73 87.8 1.6 34.63 2012/10/8 8:07 C2 ME 831453 807761 10.3 7.100 27.29 5.74 87.9 1.4 34.43 2012/10/8 8:07 C2 ME 831453 807761 10.3 7.11 118.0 1.2 34.40 2012/10/8 9:34 C3 ME 831453 807761 10.3 7.150 27.41 4.90 75.1 1.2 34.45 2012/10/8 9:34 C3 ME 832235 808855 14.7 1.000 27.39 7.76 118.8 1.1 34.429 2012/10/8 9:34 C3 ME 832235 808855 14.7 1.000 27.39 7.50 114.4 34.52 2012		
2012/10/8 9:34 C2 ME 831453 807761 10.3 11.200 27.29 6.70 102.5 1.5 34.63 2012/10/8 8:07 C2 ME 831453 807761 10.3 1.000 27.35 7.76 118.8 1.1 34.43 2012/10/8 8:07 C2 ME 831453 807761 10.3 1.000 27.35 7.76 118.8 1.1 34.43 2012/10/8 9:34 C3 ME 831453 807761 10.3 1.000 27.35 7.76 118.8 1.1 34.43 2012/10/8 9:34 C3 ME 832235 808855 14.7 4.90 7.51 1.2 34.55 2012/10/8 9:34 C3 ME 832235 808855 14.7 1.000 27.39 7.50 114.9 1.2 34.33 2012/10/8 17:46 W1 MF 832963 807741 2.8 1.400 27.48 7.63 117.1 1.0 34.45 <	7.40	3.2
2012/10/8 8:07 C2 ME 831453 807761 10.3 13.200 27.29 5.73 87.8 1.6 34.67 2012/10/8 8:07 C2 ME 831453 807761 10.3 1000 27.35 7.76 118.8 1.1 34.43 2012/10/8 8:07 C2 ME 831453 807761 10.3 5.150 27.41 4.90 75.1 1.2 34.43 2012/10/8 9:34 C3 ME 832235 80855 14.7 1000 27.39 6.76 103.6 1.2 34.52 2012/10/8 9:34 C3 ME 832235 80855 14.7 1000 27.39 7.50 114.9 1.2 34.33 2012/10/8 9:34 C3 ME 832235 80855 14.7 1000 27.39 7.50 114.9 1.2 34.33 2012/10/8 17:46 W1 MF 832963 807741 2.8 14.00 27.48 7.63 117.1 1.0 3	7.40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.40	7.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.23	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.23	3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.24	3.3
2012/10/8 9:34 C3 ME 832235 808855 14.7 9.300 27.38 5.95 91.3 1.4 34.67 2012/10/8 9:34 C3 ME 832235 808855 14.7 1.000 27.43 7.95 121.8 1.3 34.29 2012/10/8 9:34 C3 ME 832235 808855 14.7 14.7 1.000 27.39 7.50 114.9 1.2 34.33 2012/10/8 17:46 W1 MF 832963 807741 2.8 1.400 27.48 7.63 117.1 1.0 34.45 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.400 27.48 7.63 117.1 1.0 34.45 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.400 27.48 7.63 117.1 1.0 34.45 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.550 27.48 7.63 117.1	7.23	5.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.27	6.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.27	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.37	1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.36	1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.35	3.2
2012/10/8 17:46 W1 MF 832963 807741 2.8 1.400 27.28 5.95 91.2 1.5 34.71 2012/10/8 17:34 W1 MF 832963 807741 2.8 1.400 27.48 7.63 117.1 1.0 34.46 2012/10/8 17:34 W2 MF 832666 807974 1.3.5 1.000 27.48 7.63 117.1 1.0 34.46 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.000 27.48 6.19 95.0 1.2 34.43 2012/10/8 17:34 W2 MF 832666 807974 13.5 6.750 27.48 6.19 95.0 1.2 34.53 6.750 27.48 6.19 95.0 1.2 34.50 12.500 27.34 5.59 85.7 1.4 34.63	7.36	
2012/10/8 17:46 W1 MF 832963 807741 2.8 1.400 27.48 7.63 117.1 1.0 34.46 2012/10/8 17:34 W1 MF 832963 807741 2.8 1.400 27.48 7.63 117.1 1.0 34.46 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.000 27.48 7.63 117.1 1.0 34.45 2012/10/8 17:34 W2 MF 832666 807974 13.5 6.750 27.48 6.19 95.0 1.2 34.45 6.750 27.48 6.19 95.0 1.2 34.57 6.750 27.48 6.19 95.0 1.2 34.57 6.750 27.44 5.58 90.1 1.4 34.63 12.500 27.34 5.59 85.7 1.4 34.63	7.36	5.4
2012/10/8 17:34 W1 MF 832963 807/41 2.8 1.400 27.49 6.66 102.2 1.2 34.45 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.000 27.46 7.91 121.4 1.1 34.42 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.000 27.48 7.54 115.7 1.2 34.43 6.750 27.48 6.19 95.0 1.2 34.57 6.750 27.41 5.88 90.1 1.4 34.60 12.500 27.34 5.59 85.7 1.4 34.63	7.30	
2012/10/8 17:34 W1 MF 832963 807/41 2.8 1.400 27.49 6.66 102.2 1.2 34.45 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.000 27.46 7.91 121.4 1.1 34.42 2012/10/8 17:34 W2 MF 832666 807974 13.5 1.000 27.48 7.54 115.7 1.2 34.43 6.750 27.48 6.19 95.0 1.2 34.57 6.750 27.41 5.88 90.1 1.4 34.60 12.500 27.34 5.59 85.7 1.4 34.63	7.48	
2012/10/8 17:34 W2 MF 832666 807974 13.5 1.000 27.46 7.91 121.4 1.1 34.42 1.000 27.48 7.54 115.7 1.2 34.43 6.750 27.48 6.19 95.0 1.2 34.57 6.750 27.41 5.88 90.1 1.4 34.60 12.500 27.34 5.59 85.7 1.4 34.63	7.48	4.0
2012/10/8 17:34 W2 MF 832666 807974 13.5 6.750 27.48 6.19 95.0 1.2 34.57 6.750 27.41 5.88 90.1 1.4 34.60 12.500 27.34 5.59 85.7 1.4 34.63	7.67	2.6
2012/10/8 17:54 W2 MF 832666 80/9/4 13.5 6.750 27.41 5.88 90.1 1.4 34.60 12.500 27.34 5.59 85.7 1.4 34.63	7.65	3.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.60	4.7
	7.58	4.7
12.500 27.32 6.05 92.7 1.6 34.64	7.56	3.5
	7.53	5.5
<u>1.000</u> <u>27.54</u> <u>7.61</u> <u>116.7</u> <u>1.2</u> <u>34.29</u>	7.54	3.6
1.000 27.54 7.36 113.0 1.3 34.40	7.56	-
2012/10/8 17:18 W3 MF 832057 807900 13.2 6.600 27.45 6.58 101.0 1.3 34.60 6.600 27.44 6.12 93.8 1.5 34.60	7.51	5.6
2012/10/0 1/10 1/10 1/10 1/10 1/10 1/10	7.49	
12.200 27.32 5.72 87.5 1.4 55.70 12.200 27.33 5.42 83.1 1.6 34.76	7.47	4.6
1.000 27.38 7.98 122.1 1.2 34.41	7.62	
1.000 27.37 7.81 119.7 1.4 34.44	7.60	4.3
7 700 27 38 7 06 108 2 1 4 34 54	7.57	2.2
2012/10/8 18:05 C1 MF 833715 808178 15.4 7.700 27.40 5.92 90.8 1.4 34.55	7.58	3.3
14.400 27.34 6.25 95.8 1.5 34.61	7.56	1.6
14.400 27.32 5.67 86.1 1.7 33.09	7.53	1.0
1.000 27.59 6.59 101.3 1.2 34.31	7.76	1.3
<u>1.000</u> 27.56 7.70 118.3 1.1 34.45	7.66	
2012/10/8 17:00 C2 MF 831490 807760 11.4 5.700 27.59 6.14 94.4 1.2 34.48	7.43	3.3
201210/017100 C2 NI 01400 00700 11.4 5.700 27.60 6.37 98.0 1.0 34.48 10.400 27.56 5.30 81.4 1.4 34.55	7.42	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.37	1.8
1.000 27.36 7.49 114.7 1.4 34.46	7.53	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.54	3.3
8 150 27 35 6 14 94 1 15 34 56	1.21	
2012/10/8 18:28 C3 MF 832231 808856 16.3 8.150 27.37 6.15 94.3 1.4 34.55	7.53	4.9
15.300 27.34 5.21 79.9 1.6 34.65	7.53 7.54	
15.300 27.33 5.66 86.8 1.7 34.65		6.4

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 10-Oct-12

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	1100*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2012/10/10 8:55	W1	ME	832954	807730	2.4	1.200	27.24	7.32	111.9	1.2	34.48	7.33	3.6
						1.200	27.24	6.03	92.2	1.5	34.55	7.32	
						1.000	27.23	7.96 7.82	121.7 119.5	1.3 1.4	34.48 34.49	7.44 7.43	4.2
						6.350	27.30	6.90	105.6	1.4	34.58	7.39	
2012/10/10 8:40	W2	ME	832656	807967	12.7	6.350	27.29	6.84	105.0	1.5	34.58	7.39	3.6
						11.700	27.28	6.17	94.5	1.4	34.71	7.36	
						11.700	27.30	6.38	97.7	1.6	34.72	7.39	10.0
						1.000	27.35	7.67	117.4	1.2	34.48	7.46	67
						1.000	27.33	7.43	113.8	1.4	34.51	7.43	5.7
2012/10/10 8:19	W3	ME	832041	807889	12.6	6.300	27.34	6.13	93.8	1.3	34.59	7.46	8.6
2012/10/10 8.19	VV 5	IVIL	0,52041	007009	12.0	6.300	27.33	7.22	110.6	1.4	34.60	7.46	0.0
						11.600	27.28	6.12	93.7	1.3	34.71	7.44	3.6
						11.600	27.28	6.47	99.2	1.4	34.72	7.44	5.0
						1.000	27.26	7.99	122.2	1.4	34.49	7.54	6.1
						1.000	27.27	7.74	118.4	1.6	34.49	7.53	0.1
2012/10/10 10:10	C1	ME	833716	808149	14.1	7.050	27.26	6.19	94.6	1.5	34.53	7.50	6.7
						7.050	27.26	5.79	88.6	1.7	34.55	7.49	
						13.100	27.23	4.75	72.7	1.4	34.64	7.47	3.9
	_					13.100	27.22	4.97	76.0	1.6	34.65	7.45	
						1.000	27.30 27.31	8.09 7.83	123.7 119.8	1.2	34.46 34.47	7.37	6.9
						5.200	27.31	7.85	119.8	1.2	34.47	7.34	
2012/10/10 8:06	C2	ME	831454	807753	10.4	5.200	27.30	7.35	120.5	1.5	34.54	7.29	9.5
						9.400	27.34	6.33	97.1	1.4	34.57	7.33	
						9.400	27.34	6.76	103.6	1.4	34.67	7.32	6.6
						1.000	27.25	6.83	105.0	1.4	34.53	7.42	
						1.000	27.23	7.71	117.8	1.4	34.55	7.42	6.3
						7.350	27.25	5.59	85.6	1.5	34.57	7.43	
2012/10/10 10:35	C3	ME	832241	808884	14.7	7.350	27.26	5.67	86.8	1.7	34.57	7.43	5.2
						13.700	27.23	5.44	83.2	1.6	34.63	7.41	
						13.700	27.23	5.40	82.6	1.7	34.65	7.41	5.7
2012/10/10 15 20	11/1		022054	007744	0.7	1.350	27.75	6.55	100.8	1.3	34.40	7.36	11.0
2012/10/10 15:20	W1	MF	832954	807744	2.7	1.350	27.73	6.39	98.4	1.5	34.41	7.30	11.0
						1.000	27.79	6.27	96.6	1.2	34.47	7.22	5.1
						1.000	27.79	6.48	99.9	1.4	34.46	7.19	5.1
2012/10/10 15:08	W2	MF	832657	807991	13.5	6.750	27.35	5.19	79.5	1.2	34.54	7.08	9.6
2012/10/10 15.08	VV Z	IVII.	652057	007991	15.5	6.750	27.33	5.03	76.8	1.5	33.79	7.07	9.0
						12.500	27.28	5.83	89.3	1.4	34.70	7.05	6.2
						12.500	27.28	5.80	88.8	1.4	34.69	7.04	0.2
						1.000	27.82	7.41	114.4	1.3	34.49	6.97	8.1
						1.000	27.81	7.64	117.9	1.4	34.50	6.95	0.1
2012/10/10 14:52	W3	MF	832038	807912	13.2	6.600	27.43	5.15	79.0	1.5	34.57	6.76	8.5
2012/10/10 1102			052050	007712	10.2	6.600	27.42	5.17	79.3	1.4	34.58	6.74	
	1					12.200	27.29	5.35	82.0	1.6	34.69	6.66	7.4
						12.200	27.28	4.75	72.8	1.7	34.73	6.69	
	1					1.000	27.52	7.81	119.9	1.3	34.35	7.32	5.8
						1.000 7.650	27.56	7.66 6.35	117.6 97.3	1.6	34.33 34.49	7.33	
2012/10/10 15:33	C1	MF	833687	808155	15.3	7.650	27.33 27.33	6.04	97.3	1.5 1.6	34.49	7.26 7.26	3.9
						14.300	27.30	5.59	92.4 85.7	1.0	34.50	7.25	
	1					14.300	27.30	5.84	89.5	1.5	34.67	7.23	5.5
	1					14.300	27.50	7.84	120.7	1.1	34.64	6.81	1
						1.000	27.67	7.65	117.8	1.1	34.63	6.74	4.3
	1					5.650	27.37	5.38	82.5	1.4	34.03	6.39	1
2012/10/10 14:37	C2	MF	831458	807732	11.3	5.650	27.38	5.37	82.3	1.4	34.69	6.33	7.4
2012/10/10 14.57	1					10.300	27.35	5.08	77.8	1.5	34.75	6.28	
2012/10/10 14.37						10.300	27.33	4.97	76.2	1.7	34.75	6.25	9.8
2012/10/10 14.37										1.4	34.33	7.25	
2012/10/10 14.37						1.000	27.58	7.59	116.6	1.4	54.55	1.25	
2012/10/10 14.37							27.58 27.56	7.59	110.0	1.4	34.33	7.25	6.7
		ME	\$22201	000060	15.0	1.000							
2012/10/10 14:57	C3	MF	832201	808869	15.8	1.000 1.000	27.56	7.48	114.8	1.5	34.33	7.25	6.7 23.7
	C3	MF	832201	808869	15.8	1.000 1.000 7.900	27.56 27.30	7.48 5.24	114.8 80.3	1.5 1.3	34.33 34.53	7.25 7.22	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 12-Oct-12

Data (Time	Terreter	m: 1. +	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2012/10/12 9:56	W1	ME	832968	807745	2.3	1.150	27.32	7.82	119.8	0.9	34.68	7.60	2.7
						1.150	27.34	7.66	117.4	1.0	34.67	7.58	
						1.000	27.33 27.34	7.94 7.48	121.6 114.6	1.2	34.66 34.66	7.51 7.50	1.1
						6.150	27.34	7.48	114.6	1.0	34.00	7.50	
2012/10/12 9:36	W2	ME	832683	807980	12.3	6.150	27.20	6.65	108.2	1.1	34.74	7.52	3.0
						11.300	27.20	4.33	65.9	1.2	33.90	7.46	4.0
						11.300	27.22	5.52	84.6	1.2	34.82	7.49	1.8
						1.000	27.31	6.08	93.1	1.1	34.67	7.38	3.2
						1.000	27.31	7.46	114.3	1.2	34.66	7.37	5.2
2012/10/12 9:24	W3	ME	832040	807899	12.1	6.050	27.25	5.10	78.1	0.9	34.76	7.37	1.8
2012,10,12,912			052010	001077	1211	6.050	27.25	5.14	78.7	1.1	34.77	7.34	1.0
						11.100	27.25	4.17	63.9	1.2	34.81	7.32	3.4
	-					11.100	27.24	4.96	75.9	1.4	34.83	7.31	
						1.000	27.26 27.27	7.42	113.6 114.1	1.0	34.65 34.66	7.53 7.54	6.4
						7.100	27.23	7.45	114.1	1.0	34.00	7.51	
2012/10/12 10:12	C1	ME	833722	808161	14.2	7.100	27.23	7.02	107.5	1.2	34.74	7.52	4.0
						13.200	27.25	4.65	71.3	1.2	34.80	7.54	
						13.200	27.23	5.35	81.9	1.3	34.81	7.51	5.6
						1.000	27.36	7.97	122.2	1.0	34.70	7.40	5.9
						1.000	27.35	7.74	118.7	0.8	34.69	7.40	5.9
2012/10/12 9:10	C2	ME	831458	807756	10.3	5.150	27.29	6.25	95.7	1.0	34.67	7.37	4.8
2012/10/12 9.10	C2	IVIL	051450	007750	10.5	5.150	27.29	5.45	83.4	1.2	34.64	7.37	4.0
						9.300	27.30	5.43	83.3	1.1	34.84	7.41	4.5
						9.300	27.33	5.29	81.2	1.2	34.83	7.43	
						1.000	27.23	7.60	116.3	1.0	34.70	7.49	4.0
						1.000	27.25	7.50	114.7	1.2	34.68	7.49	
2012/10/12 10:37	C3	ME	832225	808874	14.8	7.400	27.27 27.24	6.43 5.99	98.5 91.7	1.3 1.3	34.74 34.75	7.50 7.46	8.2
						13.800	27.24	4.13	63.2	1.5	34.75	7.40	
						13.800	27.24	4.13	64.6	1.4	34.82	7.48	7.2
						15.000	27.24	7,22	0.+0	1.5	J4.02	7.40	
2012/0//2///			000000	005510	2.0	1.400	27.56	7.55	116.30	0.8	34.74	7.43	0.5
2012/10/12 16:11	W1	MF	832960	807743	2.8	1.400	27.57	7.64	117.60	0.6	34.69	7.43	3.5
						1.000	27.55	7.97	122.60	1.0	34.64	7.50	0.1
						1.000	27.55	7.90	121.50	1.3	34.65	7.49	2.1
2012/10/12 15:56	W2	MF	832691	807973	13.7	6.850	27.29	7.11	108.90	1.1	34.70	7.44	1.2
2012/10/12 15.50	VV 2	IVII	052091	001915	15.7	6.850	27.28	6.86	105.10	1.2	34.71	7.43	1.2
						12.700	27.23	5.47	83.80	1.2	34.83	7.39	3.9
						12.700	27.24	6.28	96.10	1.1	34.83	7.42	
						1.000	27.57	7.51	115.40	0.9	34.62	7.37	6.3
						1.000 6.650	27.60 27.33	7.13 6.55	109.70 100.40	0.8	34.64 34.79	7.36 7.24	
2012/10/12 15:44	W3	MF	832050	807916	13.3	6.650	27.33	6.42	98.40	0.8	34.79	7.24	4.9
						12.300	27.22	4.86	74.40	1.1	34.93	7.20	
						12.300	27.23	4.94	75.80	1.3	34.92	7.21	5.9
						1.000	27.53	6.62	101.70	1.2	34.58	7.46	2.2
	1					1.000	27.56	6.57	101.10	1.4	34.56	7.49	3.2
2012/10/12 16:26	C1	MF	833700	808201	15.4	7.700	27.25	5.10	78.10	1.2	34.65	7.48	5.8
2012/10/12 10.20	CI	IVIF	833700	606201	15.4	7.700	27.25	5.01	76.70	1.3	34.68	7.48	5.0
						14.400	27.24	3.63	55.50	1.3	34.78	7.48	4.8
						14.400	27.23	3.26	49.90	1.4	34.79	7.47	1.0
						1.000	27.56	8.08	124.40	0.9	34.71	7.46	4.1
						1.000	27.58	7.67	118.10	0.7	34.73	7.38	
2012/10/12 15:32	C2	MF	831477	807744	11.6	5.800	27.46	6.96	106.90	1.1	34.71	7.18	1.7
						5.800 10.600	27.41 27.34	7.20 5.72	110.40 87.70	0.9	34.72 34.72	7.15 6.99	
						10.600	27.34	5.64	87.70	0.9	34.72	6.99	4.9
						1.000	27.51	7.23	111.00	1.3	34.60	7.46	
						1.000	27.57	7.17	110.20	1.5	34.58	7.50	4.8
2012/10/22 15 55	~		000000	0000555	16.	8.050	27.26	4.64	71.00	1.5	34.74	7.48	= -
2012/10/12 16:51	C3	MF	832229	808855	16.1	8.050	27.26	5.49	84.00	1.3	34.74	7.48	7.3
						15.100	27.24	3.73	57.10	1.4	34.79	7.46	7.2

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

16-Oct-12 Date

Data (Time	Terretien	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2012/10/16 12:58	W1	ME	832971	807736	2.4	1.200	27.22	6.06	92.8	1.2	34.92	7.34	5.8
						1.200	27.23 27.33	6.37 6.78	97.7 103.9	1.4	34.94 34.86	7.31 7.34	
						1.000	27.34	6.65	103.9	1.5	34.86	7.34	3.6
						6.300	27.23	4.90	75.0	1.4	34.98	7.28	
2012/10/16 13:04	W2	ME	832677	807973	12.6	6.300	27.26	4.52	69.4	1.5	34.96	7.30	3.5
						11.600	27.17	4.61	70.6	1.4	35.12	7.28	5.4
						11.600	27.16	4.48	68.5	1.5	35.12	7.27	5.1
						1.000	27.42	6.80	104.3	1.3	34.58	7.40	2.8
						1.000 6.150	27.38 27.28	6.36 4.82	97.6 73.5	1.4 1.4	34.60 34.80	7.36 7.36	
2012/10/16 13:21	W3	ME	832049	807899	12.3	6.150	27.28	4.92	75.3	1.4	34.81	7.35	4.1
						11.300	27.17	4.02	61.6	1.4	35.05	7.37	4.0
						11.300	27.19	4.08	62.5	1.5	35.04	7.39	4.2
						1.000	27.30	6.65	101.9	1.4	34.88	7.19	4.6
						1.000	27.30	6.78	104.0	1.5	34.88	7.19	1.0
2012/10/16 12:33	C1	ME	833719	808164	13.9	6.950 6.950	27.30 27.29	6.60 5.69	101.2 87.3	1.6 1.8	34.90 34.89	7.19 7.17	5.0
						12.900	27.29	5.46	83.6	1.8	35.00	7.17	
						12.900	27.22	5.44	83.3	1.7	35.00	7.18	4.1
						1.000	27.38	5.68	87.0	1.3	34.47	7.52	0.0
						1.000	27.40	6.03	92.4	1.3	34.47	7.49	2.8
2012/10/16 13:34	C2	ME	831454	807761	10.7	5.350	27.19	4.87	74.6	1.4	34.60	7.40	2.3
2012/10/10 10:01	02		001101	007701	1017	5.350	27.18	4.70	71.3	1.5	33.38	7.37	
						9.700 9.700	27.19 27.18	4.60 4.62	70.4 70.7	1.4 1.5	34.87 34.89	7.42	11.1
						9.700	27.18	6.13	94.0	1.5	34.89	7.42	
						1.000	27.34	5.89	90.4	1.5	34.87	7.27	3.6
2012/10/17 12 10	C 22	ME	822221	000076	147	7.350	27.31	5.57	85.5	1.7	34.91	7.21	5.0
2012/10/16 12:10	C3	ME	832231	808876	14.7	7.350	27.29	5.74	88.1	1.7	34.93	7.20	5.0
						13.700	27.25	6.38	97.9	1.7	35.02	7.21	4.8
						13.700	27.27	5.39	82.7	1.7	34.99	7.18	
						1.350	27.37	5.94	91.1	1.4	34.66	7.47	
2012/10/16 17:42	W1	MF	832974	807726	2.7	1.350	27.35	6.18	94.8	1.5	34.67	7.45	7.7
						1.000	27.36	6.13	94.0	1.5	34.63	7.49	3.2
						1.000	27.35	6.00	91.9	1.4	34.65	7.49	3.2
2012/10/16 17:29	W2	MF	832681	807998	13.6	6.800	27.25	4.74	72.6	1.5	34.75	7.47	5.2
						6.800 12.600	27.24 27.16	4.65	71.2 56.9	1.5	34.77 34.63	7.48 7.47	
						12.600	27.10	3.94	59.8	1.6 1.8	33.47	7.30	4.0
						1.000	27.37	6.13	93.9	1.3	34.49	7.52	
						1.000	27.36	4.91	75.2	1.3	34.50	7.50	2.8
2012/10/16 17:12	W3	MF	832040	807901	13.4	6.700	27.24	3.97	60.2	1.4	33.23	7.46	4.1
2012/10/10 17:12		.,,,,	052010	007901	15.1	6.700	27.24	4.60	70.4	1.5	34.78	7.48	
						12.400 12.400	27.17 27.17	3.91 3.91	59.7 59.6	1.4	34.40 34.41	7.45 7.45	4.2
						12.400	27.39	6.36	97.4	1.5 1.5	34.41	7.50	
						1.000	27.39	6.80	104.1	1.6	34.26	7.49	3.2
2012/10/16 18:00	C1	MF	833716	808165	15.2	7.600	27.30	4.67	71.0	1.6	33.28	7.46	3.2
2012/10/10 18:00	CI	IVII	855710	000105	13.2	7.600	27.32	4.57	70.0	1.6	34.62	7.48	5.2
						14.200	27.25	4.39	67.2	1.5	34.80	7.47	9.2
						14.200 1.000	27.24 27.37	4.29 6.21	65.6 95.1	1.4	34.82 34.51	7.49 7.39	
	1					1.000	27.37	6.21	95.1 94.8	1.3	34.51 34.49	7.39	3.6
2012/10/14 17:00	C 2	100	001.170	007750	11.6	5.800	27.20	4.91	75.1	1.5	34.62	7.34	
2012/10/16 17:00	C2	MF	831472	807753	11.6	5.800	27.19	4.35	66.4	1.5	34.62	7.33	3.0
2012/10/10 17:00	1					10.600	27.21	4.03	61.7	1.4	34.87	7.35	7.8
2012/10/10 17:00						10.600	27.20	3.91	59.5	1.5	33.66	7.35	7.0
2012/10/10 17:00						4.077			1045	1.6	34.28	7.45	
2012/10/10 17:00						1.000	27.41	6.82	104.5				4.0
2012/10/10 17:00						1.000	27.42	6.16	94.3	1.6	34.28	7.46	
2012/10/16 18:23	C3	MF	832200	808876	15.9	1.000 7.950	27.42 27.32	6.16 5.49	94.3 84.1	1.6 1.6	34.28 34.69	7.46 7.45	4.0 3.6
	C3	MF	832200	808876	15.9	1.000	27.42	6.16	94.3	1.6	34.28	7.46	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 18-Oct-12

D · (177		m:1 +	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2012/10/18 14:29	W1	ME	832971	807741	2.4	1.200	27.00	5.55	84.7	1.5	34.93	7.57	3.6
						1.200	26.87	6.79	102.6	1.5	33.61	7.55	
						1.000	26.99	6.77	103.3	1.7	34.92	7.57 7.57	3.1
						1.000 6.150	27.01 27.00	6.69 4.33	102.2 66.1	1.5 1.9	34.93 34.98	7.57	
2012/10/18 14:14	W2	ME	832642	807976	12.3	6.150	26.99	4.40	67.2	1.9	34.98	7.56	5.4
						11.300	27.03	4.43	67.7	1.0	35.19	7.58	
						11.300	27.01	4.40	66.9	1.6	34.17	7.54	4.1
						1.000	26.88	6.90	105.1	1.7	34.86	7.50	4.9
						1.000	26.89	6.67	101.7	1.5	34.87	7.49	4.9
2012/10/18 13:57	W3	ME	832040	807878	12.1	6.050	26.97	5.07	77.4	1.7	35.00	7.50	3.1
						6.050	26.96	4.48	68.3	1.8	34.97	7.49	
						11.100	27.02 27.02	4.23 4.03	64.7 61.4	1.9 1.9	35.12	7.44	2.8
		-				1.000	26.97	4.03 6.48	98.8	1.9	34.86 34.84	7.60	
						1.000	20.97	6.63	101.1	1.7	34.86	7.60	4.2
2012/00/00/01/06			000.005	000450		7.250	27.00	4.63	70.7	1.8	34.94	7.58	<i></i>
2012/10/18 14:46	C1	ME	833695	808153	14.5	7.250	27.02	4.43	67.7	1.6	34.96	7.60	6.4
						13.500	27.01	4.76	72.7	1.7	35.12	7.58	6.5
						13.500	27.00	4.47	68.3	1.5	35.14	7.58	0.5
						1.000	26.86	8.39	127.5	1.6	34.52	7.69	2.8
						1.000	26.86	7.78	118.3	1.4	34.64	7.62	2.0
2012/10/18 13:42	C2	ME	831451	807732	10.3	5.150	26.89	6.27	95.5	1.7	34.83	7.53	2.8
						5.150	26.92	5.67	86.4	1.4	34.86	7.55	
						9.300 9.300	26.90 26.94	4.63 4.84	69.9 73.4	1.7 1.8	33.11 33.84	7.47	2.1
		-				9.300	20.94	6.19	94.4	1.5	34.85	7.57	
						1.000	27.00	6.29	94.4 95.9	1.5	34.85	7.57	7.3
						7.550	27.01	4.80	73.3	1.7	34.94	7.56	
2012/10/18 15:09	C3	ME	832213	808869	15.1	7.550	27.00	4.58	69.9	1.7	34.94	7.55	5.7
						14.100	26.98	4.98	75.5	1.9	33.97	7.54	7.9
						14.100	26.99	4.70	71.8	1.7	35.18	7.56	7.9
2012/10/18 8:52	W1	MF	832974	807730	2.7	1.350	26.98	7.55	115.0	1.6	34.61	7.67	5.4
2012/10/10 0.02			002771	007750	2.7	1.350	26.99	7.33	111.6	1.7	34.61	7.66	5
						1.000	26.91	6.85	104.2	1.4	34.60	7.68	3.3
						1.000 6.750	26.93 26.91	6.78 5.03	103.1 76.5	1.5 1.7	34.60 34.69	7.67 7.62	<u> </u>
2012/10/18 8:39	W2	MF	832657	808003	13.5	6.750	26.91	4.73	70.5	1.7	34.09	7.61	3.7
						12.500	26.99	5.01	76.4	1.6	34.89	7.61	
						12.500	27.01	4.76	72.7	1.0	34.89	7.64	3.3
						1.000	26.88	7.36	111.9	1.4	34.62	7.64	()
						1.000	26.86	7.29	110.3	1.5	33.74	7.61	6.9
2012/10/18 8:24	W3	MF	832054	807881	13.3	6.650	26.90	5.14	78.3	1.5	34.76	7.63	6.0
2012/10/10 0.24	~ 5	IVII	052054	007001	15.5	6.650	26.87	5.17	78.7	1.5	34.75	7.59	0.0
						12.300	27.05	4.86	74.3	1.6	35.00	7.63	4.7
						12.300	27.05	4.69	71.7	1.6	35.00	7.63	───
						1.000	26.92 26.91	7.73	117.5 109.7	1.7	34.54 34.54	7.59 7.57	4.1
						7.700	20.91	4.72	72.1	1.8	34.34	7.61	1
2012/10/18 9:08	C1	MF	833719	808194	15.4	7.700	27.04	4.64	70.4	2.0	33.78	7.56	5.4
						14.400	27.04	4.54	69.4	1.8	34.95	7.59	2.0
						14.400	27.06	4.53	69.2	1.9	34.95	7.60	3.9
						1.000	26.89	5.49	83.6	1.5	34.78	7.56	4.6
						1.000	26.88	5.01	76.3	1.6	34.81	7.54	4.0
2012/10/18 8:06	C2	MF	832446	807721	11.7	5.850	27.03	5.32	81.2	1.5	34.94	7.54	5.3
						5.850	27.02	5.14	78.5	1.6	34.92	7.54	
	1					10.700	27.10	5.02	76.8	1.6	35.06	7.55	4.8
						10.700	27.10 26.92	4.17 7.10	63.4 108.0	1.8 1.5	33.91 34.54	7.54 7.46	┼───
						1 ()()()				1.2	24.24		1 1 7
						1.000							4.7
						1.000	26.91	5.11	77.2	1.6	33.42	7.46	
2012/10/18 9:31	C3	MF	832247	808841	16								4.7 5.3
2012/10/18 9:31	C3	MF	832247	808841	16	1.000 8.000	26.91 27.02	5.11 4.45	77.2 67.9	1.6 1.8	33.42 34.81	7.46 7.50	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

20-Dec-12 Date

		77:1 ±	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2012/12/20 16:02	W1	ME	832977	832977	12.4	6.200	26.72	5.49	83.3	1.1	34.81	7.50	8.4
						6.200 1.000	26.72	5.43 4.82	82.5	1.2	34.82 34.73	7.50	
						1.000	26.71 26.71	4.82	73.2 72.3	1.4	34.73	7.52 7.52	5.4
						6.150	26.75	4.66	83.8	1.3	34.94	7.53	
2012/12/20 15:49	W2	ME	832684	832684	12.3	6.150	26.75	4.67	84.1		34.96	7.52	4.3
						11.300	26.62	3.74	56.8	1.2	35.18	7.53	7.2
	_					11.300	26.64	3.82	58.1		35.16	7.52	7.2
						1.000	26.79	4.81	73.1	1.2	34.59	7.52	4.7
						1.000 6.150	26.78 26.57	4.88 4.65	74.2 82.2	1.3	34.59 34.92	7.48 7.46	
2012/12/20 15:32	W3	ME	832047	832047	12.3	6.150	26.53	4.55	81.1	1.2	34.93	7.44	5.9
						11.300	26.64	3.65	55.4	1.4	35.13	7.49	7.0
						11.300	26.61	3.69	56.0		35.16	7.48	7.2
						1.000	26.73	4.88	74.0	1.2	34.72	7.62	8.9
						1.000	26.72	4.73	71.8	1.3	34.69	7.60	0.5
2012/12/20 16:18	C1	ME	833721	833721	13.9	6.950 6.950	26.78 26.77	3.96 3.93	71.1 70.5	1.5 1.4	34.95 34.95	7.59 7.59	8.6
						12.900	26.66	3.51	53.4	1.4	35.14	7.58	
						12.900	26.66	3.46	52.6	1.6	35.13	7.58	13.3
						1.000	26.89	4.68	70.9	1.3	33.80	7.57	2.8
						1.000	26.92	4.58	69.6	1.5	34.42	7.55	2.0
2012/12/20 15:16	C2	ME	831449	831449	11.6	5.800	26.82	3.76	67.5	1.4	34.14	7.50	4.2
						5.800 10.600	26.83 26.86	3.78 3.53	68.0 53.7	1.4 1.6	34.53 34.65	7.49 7.48	
						10.600	26.80	3.39	51.5	1.6	34.65	7.48	7.8
						1.000	26.70	4.42	67.1	1.3	34.68	7.54	2.5
						1.000	26.71	4.52	68.5	1.3	34.65	7.54	3.7
2012/12/20 16:43	C3	ME	832216	832216	15.6	7.800	26.81	3.82	68.6	1.7	34.89	7.55	4.2
2012/12/20 10:45	C	IVIL	052210	052210	15.0	7.800	26.82	3.81	68.5	1.5	34.91	7.55	7.2
						14.600	26.65	3.48	52.9	1.6	35.12	7.55	4.3
						14.600	26.64	3.49	53.0	1.7	35.14	7.56	
2012/12/20 10:17	W1	ME	832953	007744	20	1.400	26.69	5.62	85.1	1.5	34.39	7.34	24
2012/12/20 10:17	VV I	MF	832933	807744	2.8	1.400	26.67	5.48	82.9	1.5	34.41	7.31	2.4
						1.000	26.70	5.45	82.4	1.5	34.23	7.30	0.8
						1.000	26.72	5.35	80.9	1.3	34.29	7.32	
2012/12/20 10:17	W2	MF	832681	807964	13.6	6.800 6.800	26.67 26.67	4.76 4.71	72.0 71.3	1.5 1.6	34.35 34.35	7.30	1.8
						12.600	26.54	3.82	57.7	1.5	34.49	7.29	
						12.600	26.54	3.81	57.6	1.7	34.52	7.29	2.0
						1.000	26.73	5.69	86.0	1.4	34.19	7.54	1.9
						1.000	26.73	5.48	82.9	1.4	34.20	7.52	1.7
2012/12/20 10:17	W3	MF	832058	807897	13.2	6.600	26.68	4.75	71.8	1.3 1.4	34.25	7.45 7.44	2.1
						6.600 12.200	26.65 26.56	4.69 4.11	70.8 62.1	1.4	34.28 34.11	7.44	
						12.200	26.54	4.11	62.5	1.5	34.11	7.40	2.4
	1					1.000	26.69	5.15	78.1	1.6	34.54	7.17	1.5
						1.000	26.70	5.38	81.5	1.4	34.53	7.17	1.3
2012/12/20 10:17	C1	MF	833721	808186	15.4	7.700	26.64	5.20	78.7	1.7	34.54	7.21	7.4
						7.700	26.63 26.63	5.25 4.20	79.6 75.5	1.5 1.7	34.91 34.87	7.21 7.20	
						14.400	26.63	4.20	72.9	1.7	34.87	7.20	10.1
	1					1.000	26.74	4.98	75.4	1.5	34.18	7.62	2.2
						1.000	26.75	4.50	68.1	1.6	34.19	7.58	3.3
2012/12/20 10:17	C2	MF	831459	807731	11.7	5.850	26.64	4.26	64.5	1.6	34.35	7.51	13.4
2012/12/20 10/17	02		000100	007751		5.850	26.62	4.21	63.7	1.5	34.38	7.50	10.1
						10.700 10.700	26.43	4.08	61.5 61.2	1.7	34.51	7.43	12.9
	1	1				10.700	26.41 26.68	4.06 6.08	91.9	1.5 1.5	34.51 34.25	7.42	
						1.000	26.71	5.99	90.6	1.5	34.28	7.22	9.4
2012/12/20 10:17	C3	MF	832219	808890	16.3	8.150	26.61	5.91	88.4	1.6	32.54	7.22	9.2
2012/12/20 10:17	CS	IVIF	652219	000890	10.5	8.150	26.62	5.75	87.1	1.6	34.76	7.20	9.2
						15.300	26.61	5.69	85.2	1.6	32.70	7.20	9.8
	1					15.300	26.63	5.58	84.6	1.7	34.88	7.21	2.0

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

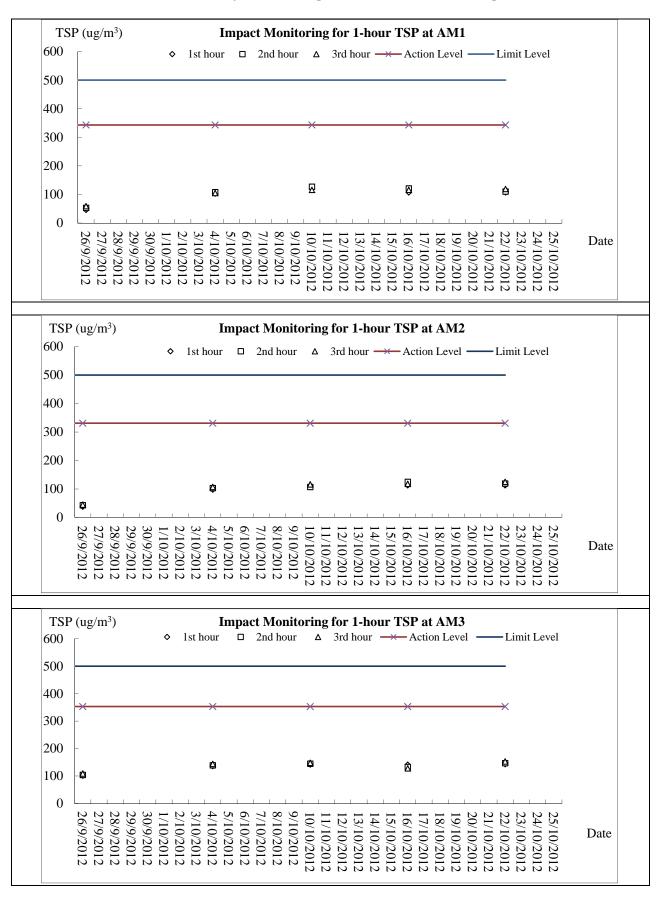
Sok Kwu Wan

22-Oct-12 Date

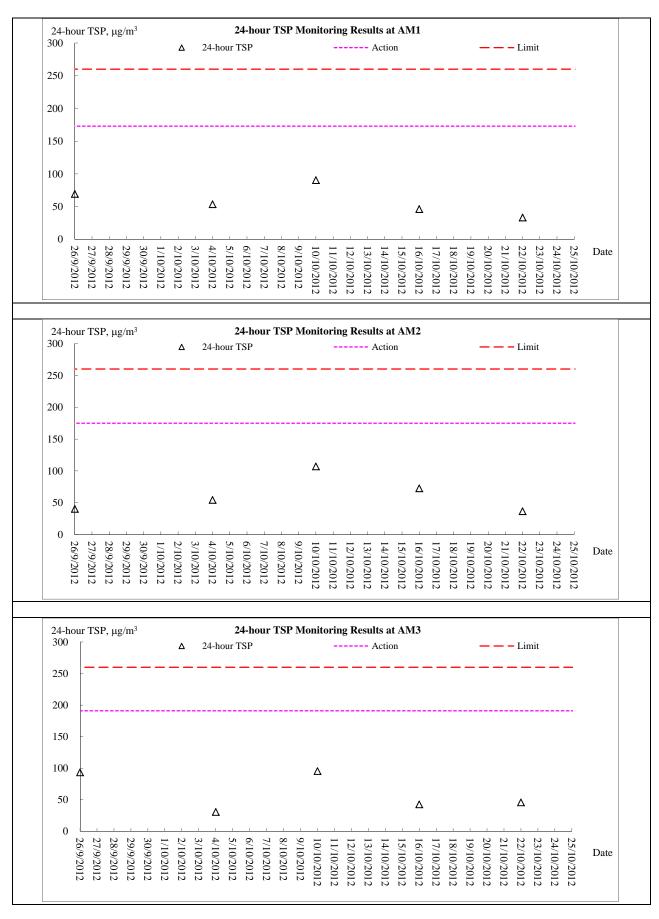
Date / Time Lx 2012/10/22 17:47 2012/10/22 17:33 2012/10/22 17:16 2012/10/22 18:04 2012/10/22 17:03	W1 W2 W3 C1	Tide* ME ME ME ME	East 832974 832675 832038	North 807746 807964 807982	m 12.3 2.3 13.8	m 6.150 1.000 1.000 1.150 1.150 1.300 1.300 1.300 1.000 0.000 6.900	°C 26.88 26.90 26.90 26.59 26.59 26.59 26.59 26.59 26.59 26.99 26.99 26.99 26.99 26.99 26.99 26.90	mg/L 5.51 5.59 5.79 5.66 4.97 4.92 3.64 3.61 5.99 5.75 5.06	% 83.5 85.0 87.8 85.7 75.0 74.4 55.0 54.6 90.9 87.3	NTU 1.1 1.2 1.3 1.3 1.3 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.3 1.3 1.2 1.3 1.1 1.3 1.3 1.1 1.3 1.3 1.1 1.3 1.3 1.3 1.3 1.1 1.3 1.3 1.1 1.3 1.3 1.3 1.3 1.1 1.3 1.3 1.3 1.3 1.3 1.1 1.3 1.3 1.3 1.3 1.3 1.1 1.3 1.5	ppt 34.14 34.16 34.13 34.12 34.44 34.45 34.60 34.59 34.20 34.23	unit 7.40 7.44 7.43 7.38 7.38 7.38 7.37 7.36 7.38 7.37 7.32	mg/l 5.4 7.0 5.7 4.5 8.0
2012/10/22 17:33 2012/10/22 17:16 2012/10/22 18:04	W2 W3	ME ME	832675	807964	2.3	6.150 1.000 1.150 1.150 1.300 1.300 1.000 6.900	26.86 26.90 26.90 26.59 26.59 26.59 26.59 26.59 26.89 26.91 26.72	5.59 5.79 5.66 4.97 4.92 3.64 3.61 5.99 5.75	85.0 87.8 85.7 75.0 74.4 55.0 54.6 90.9 87.3	1.2 1.2 1.3 1.3 1.3 1.2 1.3 1.1 1.3	34.16 34.13 34.12 34.44 34.45 34.60 34.59 34.20 34.23	7.40 7.44 7.43 7.38 7.38 7.37 7.36 7.38 7.37	7.0 5.7 4.5
2012/10/22 17:16 2012/10/22 18:04	W3	ME				1.000 1.000 1.150 1.150 1.300 1.300 1.000 1.000 6.900 6.900	26.90 26.59 26.59 26.59 26.59 26.59 26.59 26.89 26.91 26.72	5.79 5.66 4.97 4.92 3.64 3.61 5.99 5.75	87.8 85.7 75.0 74.4 55.0 54.6 90.9 87.3	1.2 1.3 1.3 1.3 1.2 1.3 1.1 1.3	34.13 34.12 34.44 34.45 34.60 34.59 34.20 34.20 34.23	7.44 7.43 7.38 7.38 7.37 7.36 7.38 7.38 7.37	5.7 4.5
2012/10/22 17:16 2012/10/22 18:04	W3	ME				1.000 1.150 1.150 1.300 1.300 1.000 1.000 6.900 6.900	26.90 26.59 26.59 26.59 26.59 26.59 26.89 26.91 26.72	5.66 4.97 4.92 3.64 3.61 5.99 5.75	85.7 75.0 74.4 55.0 54.6 90.9 87.3	1.3 1.3 1.3 1.2 1.3 1.1 1.3	34.12 34.44 34.45 34.60 34.59 34.20 34.20 34.23	7.43 7.38 7.38 7.37 7.36 7.38 7.38 7.37	5.7 4.5
2012/10/22 17:16 2012/10/22 18:04	W3	ME				1.150 1.150 1.300 1.300 1.000 1.000 6.900 6.900	26.59 26.59 26.59 26.59 26.89 26.91 26.72	4.97 4.92 3.64 3.61 5.99 5.75	75.0 74.4 55.0 54.6 90.9 87.3	1.3 1.3 1.2 1.3 1.1 1.3	34.44 34.45 34.60 34.59 34.20 34.23	7.38 7.38 7.37 7.36 7.38 7.37	4.5
2012/10/22 17:16 2012/10/22 18:04	W3	ME				1.150 1.300 1.300 1.000 1.000 6.900 6.900	26.59 26.59 26.89 26.91 26.72	3.64 3.61 5.99 5.75	74.4 55.0 54.6 90.9 87.3	1.2 1.3 1.1 1.3	34.60 34.59 34.20 34.23	7.38 7.37 7.36 7.38 7.37	4.5
2012/10/22 18:04			832038	807782	13.8	1.300 1.000 1.000 6.900 6.900	26.59 26.89 26.91 26.72	3.61 5.99 5.75	54.6 90.9 87.3	1.3 1.1 1.3	34.59 34.20 34.23	7.36 7.38 7.37	
2012/10/22 18:04			832038	807782	13.8	1.000 1.000 6.900 6.900	26.89 26.91 26.72	5.99 5.75	90.9 87.3	1.1 1.3	34.20 34.23	7.38 7.37	
2012/10/22 18:04			832038	807782	13.8	1.000 6.900 6.900	26.91 26.72	5.75	87.3	1.3	34.23	7.37	8.0
2012/10/22 18:04			832038	807782	13.8	6.900 6.900	26.72						
2012/10/22 18:04			832038	807782	13.8	6.900			76.7	1.2	34.32		1
	C1	ME					26.70	4.94	74.7	1.2	34.33	7.32	9.8
	C1	ME				12.800	26.59	3.71	56.2	1.4	34.68	7.31	5.2
	C1	ME				12.800	26.57	3.62	54.8	1.4	34.71	7.31	5.3
	C1	ME				1.000	26.78	5.30	80.3	1.3	34.19	7.42	4.3
	C1	ME				1.000	26.80	5.24	79.2	1.3	34.19	7.44	1.5
2012/10/22 17:03			833695	808190	13.8	6.900 6.900	26.68 26.68	4.83 4.82	73.1 72.8	1.4	34.49 34.52	7.46 7.46	6.1
2012/10/22 17:03						12.800	26.68	4.82	48.7	1.2	34.52	7.46	
2012/10/22 17:03						12.800	26.54	3.21	48.5	1.7	34.60	7.44	8.5
2012/10/22 17:03						1.000	27.19	5.64	86.1	1.3	34.20	7.51	2.0
2012/10/22 17:03						1.000	27.20	5.48	83.6	1.2	34.28	7.43	3.8
	C2	ME	831478	807729	14.2	7.100	27.09	3.37	51.3	1.4	34.41	7.31	9.8
	02	WIL	051470	00112)	17.2	7.100	27.06	3.24	49.3	1.5	34.42	7.28	7.0
						13.200	26.74	3.12	47.3	1.4	34.59	7.23	8.2
						13.200	26.71 26.79	2.97 4.80	45.1 72.6	1.2 1.2	34.63 34.21	7.23 7.43	l
						1.000	26.79	4.80	72.0	1.2	34.21	7.43	3.5
2012/10/22 10 20	~					7.150	26.69	3.19	48.3	1.2	34.49	7.44	10
2012/10/22 18:29	C3	ME	832204	808844	14.3	7.150	26.69	3.19	48.4	1.4	34.49	7.44	4.9
						13.300	26.54	3.18	48.0	1.5	34.67	7.43	6.2
						13.300	26.53	3.15	47.6	1.6	34.68	7.43	0.2
						1.400	26.82	5.66	85.56	0.98	33.78	7.35	
2012/10/22 13:04	W1	MF	832964	807741	2.8	1.400	26.79	5.29	79.92	1.12	33.81	7.35	6.2
						1.000	27.04	5.40	81.97	1.07	33.79	7.43	
						1.000	26.97	5.24	79.46	1.13	33.76	7.39	7.2
2012/10/22 13:13	W2	MF	832680	807959	13.7	6.850	26.62	4.22	63.72	1.12	34.17	7.37	8.0
2012/10/22 15:15	VI 2	IVII	052000	001757	15.7	6.850	26.62	4.16	62.88	1.15	34.16	7.37	0.0
						12.700	26.50	3.67	55.44	1.19	34.46	7.35	8.6
						12.700 1.000	26.49 26.93	3.64 5.87	55.00 89.21	1.27 1.14	34.47 34.02	7.35	<u> </u>
						1.000	26.93	5.17	78.43	1.14	34.02	7.43	5.2
2012/02/22 12 22		1.05	000050	005005	10.5	6.750	26.66	4.69	70.92	1.23	34.11	7.35	<i>с</i> 1
2012/10/22 13:29	W3	MF	832058	807897	13.5	6.750	26.68	4.45	67.20	1.38	34.13	7.34	5.1
						12.500	26.54	3.69	55.66	1.27	34.50	7.29	4.5
						12.500	26.55	3.62	54.67	1.31	34.49	7.29	1.5
						1.000	26.81	4.93	74.64	1.21	33.74	7.13	3.4
						1.000 7.650	26.89 26.58	4.92 4.01	74.52 60.50	1.27 1.30	33.72 33.96	7.13	<u> </u>
2012/10/22 12:48	C1	MF	833712	808186	15.3	7.650	26.58	3.97	59.80	1.30	33.98	7.10	7.7
						14.300	26.51	3.72	56.10	1.46	34.18	7.12	75
						14.300	26.52	3.72	56.10	1.48	34.18	7.11	7.5
T	Γ					1.000	27.06	4.98	75.60	1.19	34.02	7.17	6.1
						1.000	27.03	4.69	71.28	1.22	34.04	7.14	
2012/10/22 13:46	C2	MF	831452	807736	11.8	5.900 5.900	26.80 26.80	3.60 3.57	54.60 54.00	1.26 1.24	34.12 34.11	7.08	4.8
						10.800	26.80	3.43	51.90	1.24	34.11	7.06	<u> </u>
						10.800	26.58	3.31	50.10	1.25	34.56	7.02	7.5
						1.000	26.84	4.92	74.30	1.36	33.59	7.22	4.9
						1.000	26.78	4.72	71.30	1.28	33.65	7.18	4.9
2012/10/22 12:24	C3	MF	832236	808841	15.8	7.900	26.57	4.46	67.30	1.47	33.91	7.11	6.0
	~~		0002200	000011	10.0	7.900	26.59	4.40	66.30	1.33	33.89	7.13	
						14.800 14.800	26.51 26.52	4.15 4.11	62.60 61.90	1.44 1.52	34.13 34.13	7.12	6.5

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

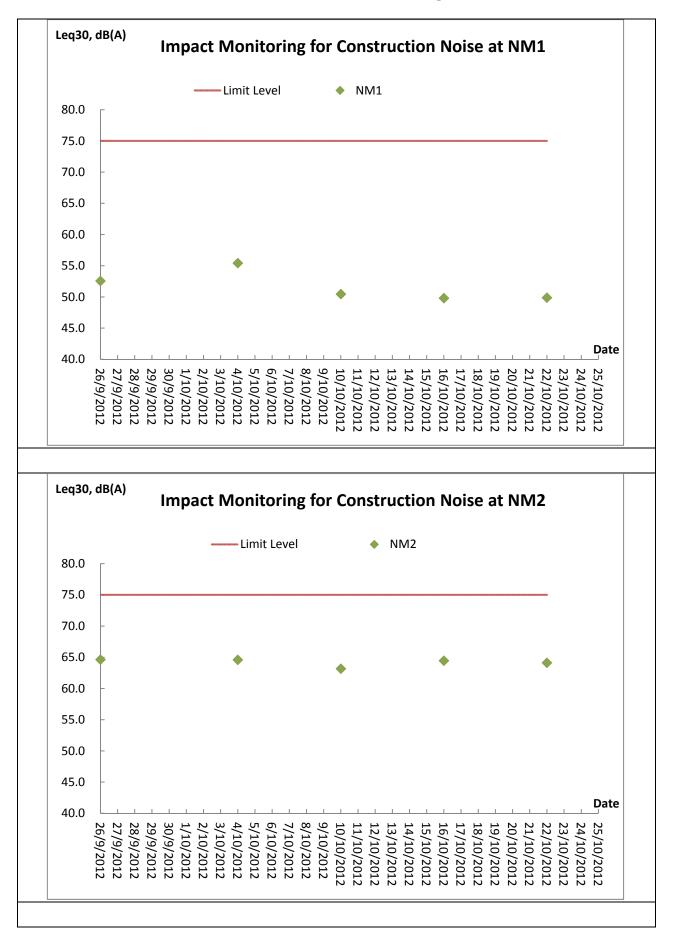

24-Oct-12 Date

	Teastion	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de+	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2012/10/24 8:46	W1	ME	832952	807741	2.4	1.200	26.63	5.60	84.8	1.1	34.75	7.65	5.7
	++					1.200	26.63 26.56	5.22 5.37	79.1 81.2	1.0 1.1	34.74 34.65	7.62 7.60	
						1.000	26.56	5.03	76.1	1.1	34.64	7.58	2.7
						6.300	26.46	4.39	66.4	1.1	34.72	7.53	
2012/10/24 8:31	W2	ME	832676	808906	12.6	6.300	26.47	4.36	66.1	1.2	34.71	7.52	1.8
						11.600	26.45	3.84	58.1	1.3	34.92	7.51	2.4
						11.600	26.46	3.84	58.2	1.2	34.93	7.51	2.4
						1.000	26.67	5.10	77.3	1.2	34.30	7.46	1.6
						1.000	26.67	5.15	78.1	1.3	34.33	7.45	1.0
2012/10/24 8:19	W3	ME	832051	807907	12.4	6.200	26.58	4.42	64.1	1.2	34.73	7.46	6.7
						6.200	26.57	4.22	63.9	1.3	34.73	7.44	
						11.400	26.47	3.48	52.7	1.3	34.88	7.46	2.8
	+					11.400	26.47	3.49	52.8	1.3	34.88	7.45	
						1.000	26.47 26.48	5.03 4.85	75.9 73.4	1.3 1.4	34.73 34.75	7.58 7.58	4.9
						6.950	26.48	3.66	55.4	1.4	34.73	7.56	
2012/10/24 9:06	C1	ME	833723	808181	13.9	6.950	26.49	3.62	54.8	1.5	34.82	7.55	4.5
						12.900	26.47	3.58	54.0	1.5	34.94	7.55	
						12.900	26.46	3.54	53.5	1.5	34.96	7.55	5.4
						1.000	26.67	6.54	98.9	1.2	34.23	7.29	2.0
						1.000	26.67	5.96	90.2	1.2	34.23	7.28	2.8
2012/10/24 8:07	C2	ME	831479	807738	10.6	5.300	26.67	4.31	65.2	1.2	34.37	7.32	3.0
2012/10/24 8.07	C2	NIE	051479	607756	10.0	5.300	26.65	4.21	63.7	1.3	34.39	7.32	5.0
						9.600	26.66	3.73	56.5	1.2	34.64	7.34	3.9
						9.600	26.66	3.62	55.0	1.3	34.65	7.35	5.7
						1.000	26.49	4.35	65.9	1.3	34.79	7.53	2.8
						1.000	26.49	4.31	65.3	1.3	34.79	7.53	2.0
2012/10/24 9:29	C3	ME	832208	808849	14.5	7.250	26.49	3.42	51.7	1.4	34.82	7.52	3.5
						7.250	26.51	3.42	51.7	1.3	34.79	7.51	
						13.500	26.47	3.37	51.0	1.4	34.94	7.51	4.2
						13.500	26.46	3.35	50.6	1.4	34.96	7.51	
						1.350	26.69	5.98	90.72	1.0	34.95	7.38	
2012/10/24 15:04	W1	MF	832952	807738	2.7	1.350	26.75	6.03	91.58	1.1	34.86	7.38	4.6
	1					1.000	26.72	6.05	91.80	1.2			
							20.72	0.05		1.2	34.77	7.48	2.3
						1.000	26.68	5.80	87.84	1.2	34.77 34.80	7.48	
2012/10/24 14:40	WO	ME	927657	807002	12.2								2.1
2012/10/24 14:49	W2	MF	832657	807993	13.3	1.000	26.68	5.80	87.84	1.1	34.80	7.45	3.1
2012/10/24 14:49	W2	MF	832657	807993	13.3	1.000 6.650 6.650 12.300	26.68 26.50 26.49 26.49	5.80 3.60 3.55 3.78	87.84 54.48 53.64 57.16	1.1 1.2 1.3 1.2	34.80 34.95 34.89 34.96	7.45 7.41 7.39 7.37	
2012/10/24 14:49	W2	MF	832657	807993	13.3	1.000 6.650 6.650 12.300 12.300	26.68 26.50 26.49 26.49 26.47	5.80 3.60 3.55 3.78 3.71	87.84 54.48 53.64 57.16 56.10	1.1 1.2 1.3	34.80 34.95 34.89 34.96 34.98	7.45 7.41 7.39 7.37 7.37	3.1 2.5
2012/10/24 14:49	W2	MF	832657	807993	13.3	1.000 6.650 6.650 12.300 12.300 1.000	26.68 26.50 26.49 26.49 26.47 26.95	5.80 3.60 3.55 3.78 3.71 5.74	87.84 54.48 53.64 57.16 56.10 87.30	1.1 1.2 1.3 1.2 1.3 1.1	34.80 34.95 34.99 34.96 34.98 34.44	7.45 7.41 7.39 7.37 7.37 7.28	2.5
2012/10/24 14:49	W2	MF	832657	807993	13.3	1.000 6.650 6.650 12.300 12.300 1.000 1.000	26.68 26.50 26.49 26.49 26.47 26.95 26.95	5.80 3.60 3.55 3.78 3.71 5.74 5.45	87.84 54.48 53.64 57.16 56.10 87.30 82.98	1.1 1.2 1.3 1.2 1.3 1.1 1.3	34.80 34.95 34.89 34.96 34.98 34.44 34.46	7.45 7.41 7.39 7.37 7.37 7.28 7.26	
2012/10/24 14:49 2012/10/24 14:39	W2 W3	MF	832657	807993 807886	13.3	1.000 6.650 6.650 12.300 12.300 1.000 1.000 6.550	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62	1.1 1.2 1.3 1.2 1.3 1.1 1.3 1.2	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80	7.45 7.41 7.39 7.37 7.37 7.28 7.26 7.21	2.5
						1.000 6.650 12.300 1.000 1.000 6.550 6.550	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64 26.64	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19	1.1 1.2 1.3 1.2 1.3 1.1 1.3 1.2 1.2 1.2	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81	7.45 7.41 7.39 7.37 7.37 7.28 7.26 7.21 7.20	2.5 2.4
						1.000 6.650 12.300 1.000 1.000 6.550 6.550 12.100	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.64	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25	$ \begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ \end{array} $	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65	7.45 7.41 7.39 7.37 7.37 7.28 7.26 7.21 7.20 7.18	2.5 2.4
						1.000 6.650 12.300 12.300 1.000 6.550 6.550 1.000 1.000 6.550 12.100 12.100	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.48 26.48	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65	$ \begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ \end{array} $	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88	7.45 7.41 7.39 7.37 7.37 7.28 7.26 7.21 7.20 7.18 7.14	2.5 2.4 3.0
						1.000 6.650 12.300 1.000 1.000 6.550 6.550 12.100 12.100 1.000	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.64 26.48 26.48 26.58	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62 5.71	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40	1.1 1.2 1.3 1.2 1.3 1.1 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.3	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79	7.45 7.41 7.39 7.37 7.28 7.26 7.21 7.20 7.18 7.14 7.46	2.5 2.4 3.0
2012/10/24 14:39	W3	MF	832036	807886	13.1	1.000 6.650 12.300 1.000 1.000 6.550 6.550 12.100 12.100 12.100 1.000 1.000	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.64 26.48 26.48 26.48 26.58	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.59 3.59 3.62 5.71 5.53	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88	$ \begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.3 $	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80	7.45 7.41 7.39 7.37 7.28 7.26 7.21 7.20 7.18 7.14 7.46 7.46	2.5 2.4 3.0 3.6 4.1
						1.000 6.650 12.300 1.000 1.000 6.550 6.550 12.100 12.100 1.000	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.64 26.48 26.48 26.58	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62 5.71	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40	1.1 1.2 1.3 1.2 1.3 1.1 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.3	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79	7.45 7.41 7.39 7.37 7.28 7.26 7.21 7.20 7.18 7.14 7.46	2.5 2.4 3.0 3.6
2012/10/24 14:39	W3	MF	832036	807886	13.1	1.000 6.650 6.650 12.300 12.300 1.000 6.550 6.550 12.100 12.100 12.100 1.000 7.350	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.64 26.64 26.64 26.48 26.48 26.48 26.58 26.58 26.53	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62 5.53 3.48	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80	1.1 1.2 1.3 1.2 1.3 1.1 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.4	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.80 34.88	7.45 7.41 7.39 7.37 7.28 7.26 7.21 7.20 7.18 7.14 7.14 7.46 7.46 7.44	2.5 2.4 3.0 3.6 4.1 3.9
2012/10/24 14:39	W3	MF	832036	807886	13.1	1.000 6.650 6.650 12.300 1.000 1.000 6.550 6.550 12.100 12.100 1.000 7.350	26.68 26.50 26.49 26.47 26.95 26.95 26.64 26.64 26.64 26.48 26.48 26.48 26.58 26.58 26.53 26.55	5.80 3.60 3.55 3.78 3.71 5.45 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.48	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \end{array}$	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.88 34.88 34.88	7.45 7.41 7.39 7.37 7.37 7.28 7.26 7.21 7.20 7.18 7.14 7.46 7.46 7.44 7.44	2.5 2.4 3.0 3.6 4.1
2012/10/24 14:39	W3	MF	832036	807886	13.1	1.000 6.650 12.300 12.300 1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 1.000 7.350 7.350 13.700	26.68 26.50 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.48 26.48 26.58 26.58 26.58 26.53 26.55 26.52	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.48 3.26	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \end{array}$	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.80 34.80 34.80 34.80 34.80 34.80 34.80 34.80 34.80 34.80 34.80 34.95	7.45 7.41 7.39 7.37 7.37 7.28 7.26 7.21 7.20 7.18 7.14 7.46 7.46 7.44 7.44 7.44	2.5 2.4 3.0 3.6 4.1 3.9 4.5
2012/10/24 14:39	W3	MF	832036	807886	13.1	1.000 6.650 12.300 12.300 1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.350 1.350 1.3700 1.3	26.68 26.50 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.48 26.48 26.48 26.58 26.58 26.53 26.55 26.52	5.80 3.60 3.55 3.78 3.71 5.74 5.74 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.26 3.31	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \end{array}$	34.80 34.95 34.89 34.98 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.80 34.80 34.80 34.88 35.05 35.00	$\begin{array}{c} 7.45 \\ \hline 7.41 \\ \hline 7.39 \\ \hline 7.37 \\ \hline 7.37 \\ \hline 7.28 \\ \hline 7.26 \\ \hline 7.21 \\ \hline 7.20 \\ \hline 7.18 \\ \hline 7.14 \\ \hline 7.46 \\ \hline 7.46 \\ \hline 7.46 \\ \hline 7.44 \\ \hline 7.44 \\ \hline 7.43 \\ \hline 7.43 \\ \hline 7.43 \end{array}$	2.5 2.4 3.0 3.6 4.1 3.9
2012/10/24 14:39 2012/10/24 15:20	W3 C1	MF	832036 833694	807886	13.1	1.000 6.650 6.650 12.300 12.300 1.000 6.550 6.550 12.100 12.100 12.100 12.100 12.100 13.700 13.700 1.000 5.900	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.64 26.64 26.64 26.48 26.48 26.48 26.58 26.58 26.55 26.55 26.55 26.55 26.52 26.52 26.88 26.88 26.88 26.72	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62 5.53 3.48 3.48 3.26 3.31 5.45 5.10 3.49	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 53.04	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.2 \\$	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.88 34.86 35.05 35.00 34.21 34.27 34.58	$\begin{array}{c} 7.45\\ 7.41\\ 7.39\\ 7.37\\ 7.37\\ 7.28\\ 7.26\\ 7.21\\ 7.20\\ 7.18\\ 7.14\\ 7.46\\ 7.46\\ 7.44\\ 7.46\\ 7.44\\ 7.43\\ 7.43\\ 7.43\\ 7.18\\ 7.08\\ 6.89\\ \end{array}$	2.5 2.4 3.0 3.6 4.1 3.9 4.5 2.0
2012/10/24 14:39	W3	MF	832036	807886	13.1	1.000 6.650 6.650 12.300 12.300 1.000 6.550 6.550 6.550 12.100 12.100 12.100 12.000 1.000 7.350 7.350 13.700 1.000 5.900	26.68 26.50 26.49 26.49 26.95 26.95 26.64 26.64 26.64 26.48 26.48 26.48 26.58 26.53 26.55 26.55 26.55 26.52 26.52 26.88 26.88 26.88 26.88 26.72 26.71	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.26 3.31 5.45 5.10 3.49 3.36	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 53.04 50.88	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \end{array}$	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.88 34.86 35.05 35.00 34.21 34.21 34.27 34.58 34.67	$\begin{array}{c} 7.45\\ \hline 7.41\\ \hline 7.39\\ \hline 7.37\\ \hline 7.37\\ \hline 7.28\\ \hline 7.26\\ \hline 7.21\\ \hline 7.20\\ \hline 7.18\\ \hline 7.14\\ \hline 7.46\\ \hline 7.46\\ \hline 7.44\\ \hline 7.46\\ \hline 7.44\\ \hline 7.43\\ \hline 7.43\\ \hline 7.18\\ \hline 7.08\\ \hline 6.89\\ \hline 6.88\\ \end{array}$	2.5 2.4 3.0 3.6 4.1 3.9 4.5
2012/10/24 14:39 2012/10/24 15:20	W3 C1	MF	832036 833694	807886	13.1	1.000 6.650 6.650 12.300 1.000 1.000 6.550 6.550 12.100 12.100 12.100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.3700 13.700 1.000 5.900 5.900 10.800 <td>26.68 26.50 26.49 26.47 26.95 26.95 26.64 26.64 26.64 26.48 26.58 26.58 26.55 26.55 26.55 26.55 26.55 26.52 26.88 26.88 26.88 26.88 26.88 26.72 26.71 26.50</td> <td>5.80 3.60 3.55 3.78 3.71 5.45 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.26 3.31 5.45 5.10 3.36 3.23</td> <td>87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 50.88 48.72</td> <td>$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \end{array}$</td> <td>34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.88 34.79 34.80 34.88 34.86 35.05 35.00 34.21 34.27 34.58 34.67 34.90</td> <td>$\begin{array}{c} 7.45\\ \hline 7.41\\ \hline 7.39\\ \hline 7.37\\ \hline 7.37\\ \hline 7.28\\ \hline 7.26\\ \hline 7.21\\ \hline 7.20\\ \hline 7.21\\ \hline 7.20\\ \hline 7.18\\ \hline 7.14\\ \hline 7.46\\ \hline 7.44\\ \hline 7.46\\ \hline 7.44\\ \hline 7.44\\ \hline 7.43\\ \hline 7.43\\ \hline 7.18\\ \hline 7.08\\ \hline 6.89\\ \hline 6.88\\ \hline 6.82\\ \end{array}$</td> <td>2.5 2.4 3.0 3.6 4.1 3.9 4.5 2.0 2.0</td>	26.68 26.50 26.49 26.47 26.95 26.95 26.64 26.64 26.64 26.48 26.58 26.58 26.55 26.55 26.55 26.55 26.55 26.52 26.88 26.88 26.88 26.88 26.88 26.72 26.71 26.50	5.80 3.60 3.55 3.78 3.71 5.45 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.26 3.31 5.45 5.10 3.36 3.23	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 50.88 48.72	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \end{array}$	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.88 34.79 34.80 34.88 34.86 35.05 35.00 34.21 34.27 34.58 34.67 34.90	$\begin{array}{c} 7.45\\ \hline 7.41\\ \hline 7.39\\ \hline 7.37\\ \hline 7.37\\ \hline 7.28\\ \hline 7.26\\ \hline 7.21\\ \hline 7.20\\ \hline 7.21\\ \hline 7.20\\ \hline 7.18\\ \hline 7.14\\ \hline 7.46\\ \hline 7.44\\ \hline 7.46\\ \hline 7.44\\ \hline 7.44\\ \hline 7.43\\ \hline 7.43\\ \hline 7.18\\ \hline 7.08\\ \hline 6.89\\ \hline 6.88\\ \hline 6.82\\ \end{array}$	2.5 2.4 3.0 3.6 4.1 3.9 4.5 2.0 2.0
2012/10/24 14:39 2012/10/24 15:20	W3 C1	MF	832036 833694	807886	13.1	1.000 6.650 6.650 12.300 1.000 1.000 6.550 6.550 12.100 12.100 12.100 12.100 12.100 13.700 13.700 1.000 5.900 10.800 10.800	26.68 26.50 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.48 26.48 26.58 26.58 26.58 26.55 26.52 26.52 26.52 26.52 26.52 26.52 26.88 26.88 26.88 26.88 26.72 26.71 26.50 26.50	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.26 3.31 5.45 5.10 3.49 3.23 3.24	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 53.04 50.88 48.72 49.08	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \end{array}$	34.80 34.95 34.89 34.96 34.98 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.88 34.79 34.80 34.88 34.86 35.05 35.00 34.21 34.27 34.58 34.67 34.90 34.84	$\begin{array}{c} 7.45\\ 7.41\\ 7.39\\ 7.37\\ 7.37\\ 7.37\\ 7.28\\ 7.26\\ 7.21\\ 7.20\\ 7.18\\ 7.14\\ 7.46\\ 7.44\\ 7.46\\ 7.44\\ 7.43\\ 7.43\\ 7.43\\ 7.43\\ 7.43\\ 7.48\\ 7.08\\ 6.89\\ 6.89\\ 6.82\\ 6.79\\ \end{array}$	2.5 2.4 3.0 3.6 4.1 3.9 4.5 2.0
2012/10/24 14:39 2012/10/24 15:20	W3 C1	MF	832036 833694	807886	13.1	1.000 6.650 6.650 12.300 12.300 1.000 1.000 6.550 6.550 12.100 12.100 12.100 12.100 12.100 12.100 13.700 13.700 1.000 5.900 10.800 10.800 1.000	26.68 26.50 26.49 26.47 26.95 26.95 26.95 26.64 26.48 26.48 26.48 26.58 26.58 26.53 26.55 26.52 26.52 26.52 26.52 26.88 26.72 26.88 26.72 26.71 26.70 26.50 26.50 26.50	5.80 3.60 3.55 3.78 3.71 5.74 5.74 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.26 3.31 5.45 5.10 3.49 3.23 3.24 5.00	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 53.04 50.88 48.72 49.08 75.96	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \end{array}$	34.80 34.95 34.89 34.98 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.80 34.88 34.80 35.05 35.00 34.21 34.27 34.58 34.67 34.90 34.84 34.87	$\begin{array}{c} 7.45\\ \hline 7.41\\ \hline 7.39\\ \hline 7.37\\ \hline 7.37\\ \hline 7.28\\ \hline 7.26\\ \hline 7.21\\ \hline 7.20\\ \hline 7.21\\ \hline 7.20\\ \hline 7.18\\ \hline 7.46\\ \hline 7.46\\ \hline 7.46\\ \hline 7.46\\ \hline 7.44\\ \hline 7.43\\ \hline 7.43\\ \hline 7.18\\ \hline 7.08\\ \hline 6.89\\ \hline 6.88\\ \hline 6.82\\ \hline 6.79\\ \hline 7.43\\ \end{array}$	2.5 2.4 3.0 3.6 4.1 3.9 4.5 2.0 2.0
2012/10/24 14:39 2012/10/24 15:20	W3 C1	MF	832036 833694	807886	13.1	1.000 6.650 6.650 12.300 12.300 1.000 1.000 6.550 6.550 12.100 12.100 12.100 12.100 12.000 12.000 13.700 13.700 1.000 5.900 5.900 10.800 10.000 1.000	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.48 26.48 26.58 26.58 26.53 26.55 26.52 26.52 26.52 26.52 26.88 26.55 26.52 26.52 26.52 26.52 26.52 26.50 26.50 26.50 26.59 26.59	5.80 3.60 3.55 3.78 3.71 5.74 5.74 5.45 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.26 3.31 5.45 5.10 3.49 3.36 3.23 3.24 5.00 4.97	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 53.04 50.88 48.72 49.08 75.96 75.42	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.4 \end{array}$	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.88 34.79 34.80 34.88 34.79 34.80 34.81 34.85 35.05 35.00 34.21 34.27 34.58 34.67 34.90 34.84 34.87 34.93	$\begin{array}{c} 7.45\\ \hline 7.41\\ \hline 7.39\\ \hline 7.37\\ \hline 7.37\\ \hline 7.28\\ \hline 7.26\\ \hline 7.21\\ \hline 7.20\\ \hline 7.21\\ \hline 7.20\\ \hline 7.18\\ \hline 7.46\\ \hline 7.46\\ \hline 7.46\\ \hline 7.46\\ \hline 7.44\\ \hline 7.43\\ \hline 7.43\\ \hline 7.43\\ \hline 7.18\\ \hline 7.08\\ \hline 6.89\\ \hline 6.88\\ \hline 6.82\\ \hline 6.82\\ \hline 6.79\\ \hline 7.43\\ \hline$	2.5 2.4 3.0 3.6 4.1 3.9 4.5 2.0 2.0 2.7
2012/10/24 14:39 2012/10/24 15:20	W3 C1	MF	832036 833694	807886	13.1	1.000 6.650 6.650 12.300 12.300 1.000 6.550 6.550 12.100 12.100 12.100 12.100 12.100 12.100 13.700 13.700 1.000 5.900 5.900 10.800 10.000 7.350	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.64 26.64 26.48 26.48 26.48 26.58 26.58 26.55 26.55 26.55 26.52 26.52 26.52 26.52 26.52 26.52 26.52 26.52 26.52 26.52 26.52 26.52 26.52 26.55 26	5.80 3.60 3.55 3.78 3.71 5.74 5.45 4.00 3.97 3.59 3.62 5.53 3.48 3.48 3.26 3.31 5.45 5.10 3.49 3.32 3.24 5.00 4.97 3.31	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 53.04 50.88 48.72 49.08 75.96 75.42 50.16	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.4 \\$	34.80 34.95 34.99 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.65 34.88 34.86 35.05 35.00 34.88 34.86 35.05 35.00 34.21 34.27 34.58 34.67 34.90 34.84 34.93 34.97	$\begin{array}{c} 7.45\\ \hline 7.41\\ \hline 7.39\\ \hline 7.37\\ \hline 7.37\\ \hline 7.28\\ \hline 7.26\\ \hline 7.21\\ \hline 7.20\\ \hline 7.18\\ \hline 7.14\\ \hline 7.46\\ \hline 7.46\\ \hline 7.46\\ \hline 7.46\\ \hline 7.44\\ \hline 7.46\\ \hline 7.44\\ \hline 7.46\\ \hline 7.43\\ \hline 7.18\\ \hline 7.08\\ \hline 6.89\\ \hline 6.88\\ \hline 6.82\\ \hline 6.79\\ \hline 7.43\\ \hline 7.43\\ \hline 7.42\\ \hline \end{array}$	2.5 2.4 3.0 3.6 4.1 3.9 4.5 2.0 2.0 2.7
2012/10/24 14:39 2012/10/24 15:20 2012/10/24 14:23	W3 C1 C2	MF MF	832036 833694 831459	807886 808853 807756	13.1 14.7 11.8	1.000 6.650 6.650 12.300 12.300 1.000 1.000 6.550 6.550 12.100 12.100 12.100 12.100 12.000 12.000 13.700 13.700 1.000 5.900 5.900 10.800 10.000 1.000	26.68 26.50 26.49 26.49 26.47 26.95 26.95 26.95 26.64 26.64 26.48 26.48 26.58 26.58 26.53 26.55 26.52 26.52 26.52 26.52 26.88 26.55 26.52 26.52 26.52 26.52 26.52 26.50 26.50 26.50 26.59 26.59	5.80 3.60 3.55 3.78 3.71 5.74 5.74 5.45 4.00 3.97 3.59 3.62 5.71 5.53 3.48 3.26 3.31 5.45 5.10 3.49 3.36 3.23 3.24 5.00 4.97	87.84 54.48 53.64 57.16 56.10 87.30 82.98 60.62 60.19 54.25 54.65 86.40 83.88 52.80 52.68 49.44 50.16 82.50 77.40 53.04 50.88 48.72 49.08 75.96 75.42	$\begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.4 \end{array}$	34.80 34.95 34.89 34.96 34.98 34.44 34.46 34.80 34.81 34.65 34.88 34.79 34.80 34.88 34.79 34.80 34.88 34.79 34.80 34.81 34.85 35.05 35.00 34.21 34.27 34.58 34.67 34.90 34.84 34.87 34.93	$\begin{array}{c} 7.45\\ \hline 7.41\\ \hline 7.39\\ \hline 7.37\\ \hline 7.37\\ \hline 7.28\\ \hline 7.26\\ \hline 7.21\\ \hline 7.20\\ \hline 7.21\\ \hline 7.20\\ \hline 7.18\\ \hline 7.46\\ \hline 7.46\\ \hline 7.46\\ \hline 7.46\\ \hline 7.44\\ \hline 7.43\\ \hline 7.43\\ \hline 7.43\\ \hline 7.18\\ \hline 7.08\\ \hline 6.89\\ \hline 6.88\\ \hline 6.82\\ \hline 6.82\\ \hline 6.79\\ \hline 7.43\\ \hline$	2.5 2.4 3.0 3.6 4.1 3.9 4.5 2.0 2.0 2.7 3.6

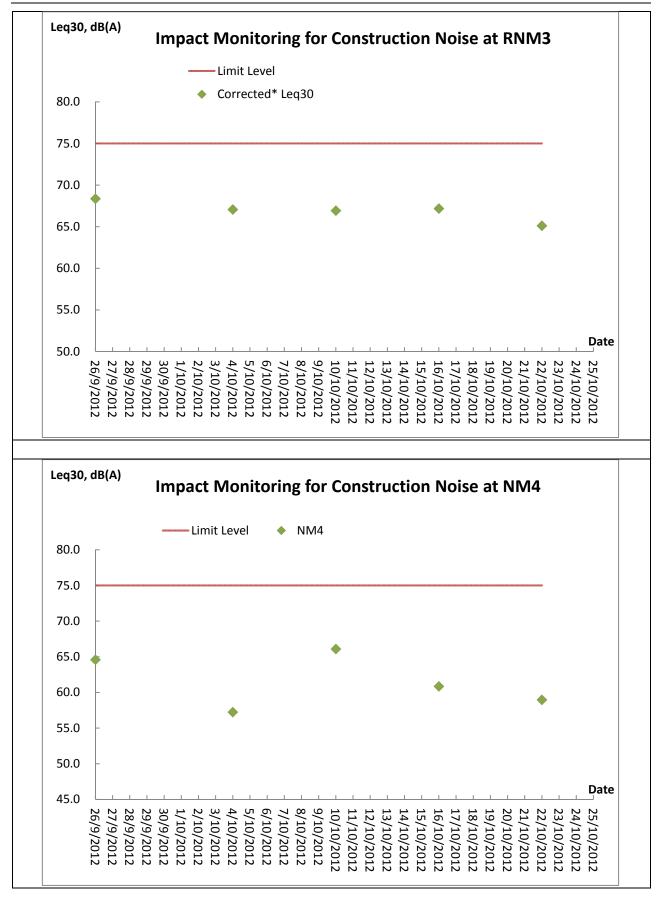

Appendix H

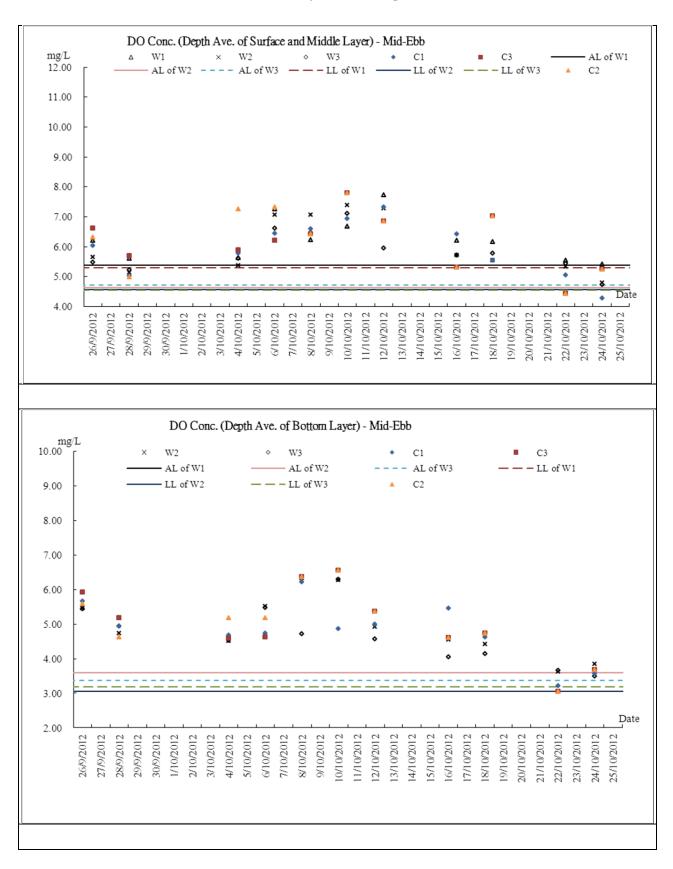
Graphical Plots of Monitoring Results

Air Quality Monitoring – 1 hour TSP Monitoring

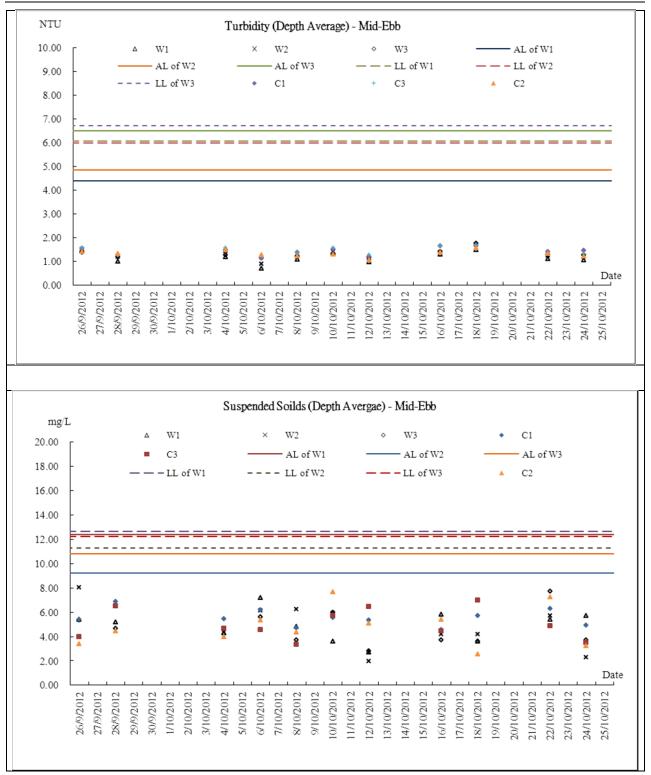


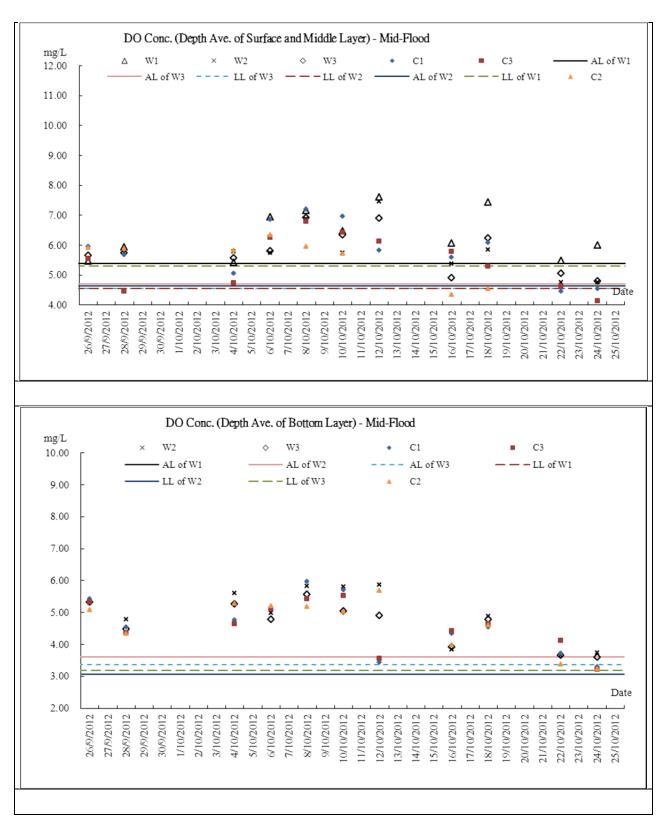
Air Quality Monitoring – 24 hour TSP Monitoring

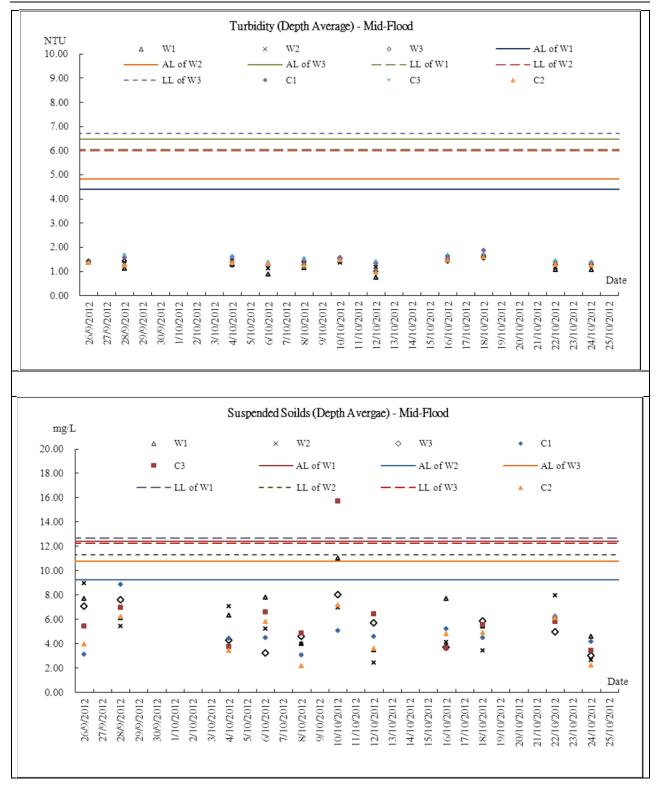




Construction Noise Monitoring




Marine Water Quality Monitoring - Mid-Ebb Tide


Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – October 2012

AUES

Marine Water Quality Monitoring - Mid-Flood Tide

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – October 2012

AUES

Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Sep-12	Wed	Dry, Cloudy, Moderate to fresh northerly winds.
27-Sep-12	Thu	cloudy, a few showers, moderate to fresh easterly winds
28-Sep-12	Fri	Dry, Cloudy, Moderate to fresh northerly winds.
29-Sep-12	Sat	Sunny periods. Light to moderate easterly winds.
30-Sep-12	Sun	HOLIDAY
1-Oct-12	Mon	holiday
2-Oct-12	Tue	holiday
3-Oct-12	Wed	Mainly cloudy, sunny periods, moderate to fresh easterly winds
4-Oct-12	Thu	Mainly cloudy, sunny periods, fresh easterly winds
5-Oct-12	Fri	Sunny periods, cloudy, moderate easterly winds
6-Oct-12	Sat	Sunny periods, cloudy, moderate easterly winds
7-Oct-12	Sun	Cloudy, fine, dry, light winds
8-Oct-12	Mon	Cloudy, fine, haze, moderate easterly winds
9-Oct-12	Tue	Fine, haze, light to moderate easterly winds
10-Oct-12	Wed	Fine, haze, very dry, moderate east to northeasterly winds
11-Oct-12	Thu	Fine, haze, dry, light to moderate easterly winds.
12-Oct-12	Fri	Fine, haze, dry, light to moderate easterly winds.
13-Oct-12	Sat	Cloudy, dry, sunny periods, moderate to fresh north to northeasterly winds.
14-Oct-12	Sun	Fine, haze, dry, light to moderate easterly winds.
15-Oct-12	Mon	Cloudy, fine, haze, moderate easterly winds
16-Oct-12	Tue	Cloudy, sunny periods, dry, moderate to fresh easterly winds.
17-Oct-12	Wed	Cloudy, fine, dry, moderate to fresh easterly winds.
18-Oct-12	Thu	Mainly fine, light to moderate easterly winds.
19-Oct-12	Fri	Sunny periods, dry, light winds, moderate to fresh easterlies
20-Oct-12	Sat	Cloudy, fine, dry, light winds
21-Oct-12	Sun	Cloudy, fine, haze, moderate easterly winds
22-Oct-12	Mon	Fine, haze, dry, light to moderate easterly winds.
23-Oct-12	Tue	Mainly cloudy, sunny periods, moderate to fresh easterly winds
24-Oct-12	Wed	Fine, haze, dry, light to moderate easterly winds.
25-Oct-12	Thu	Cloudy, fine, dry, light winds

Appendix J

Monthly Summary Waste Flow Table

					N	lonth	ly Su	mma	ry Wa	aste F	low	Fable	e for	Octo	ber 2	012						
			Actu	ial Quant	ities of Ir	nert C&D	Material	s Genera	ted Mont	hly				А	ctual Qu	antities	of C&D	Wastes	Generate	ed Month	ıly	
Month	Total Q Gene (a) = (c)		Hard R Large I Cond	Broken crete	Reused Con	tract	Reused Proj (c	ects	Dispo Publi (6		Import (i		Me	tals	Par cardt packa	oard	Plas	tics	Chen Wa		Oth e.g. ru	,
	(in '00	$00m^{3})$	(in '00	$00m^{3}$)	(in '00	$00m^{3}$)	(in '00	$100m^{3}$)	(in '00	$00m^{3}$)	(in '00	$100m^{3}$)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '00	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2012	10.430	33.543	0.160	0.407	0.740	1.059	0.000	0.000	9.690	32.484	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	206.870	46.690
Jan	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	22.530	5.090
Feb	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.860	5.660
Mar	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.940	9.500
Apr	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.520	1.700
May	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.750	5.090
Jun	0.091	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.710	6.400
<mark>Sub-total</mark>	11.820	48.585	0.160	0.410	0.740	1.059	0.000	0.000	11.080	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	294.180	80.130
Jul	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15.610	2.960
Aug	0.144	0.999	0.000	0.000	0.000	0.999	0.000	0.000	0.144	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	19.730	3.750
Sep	0.686	0.744	0.000	0.000	0.000	0.744	0.000	0.000	0.686	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.820	3.800
Oct	0.160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.970	3.470
Nov																						
Dec																						
Total	13.058	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.318	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	365.310	94.110
	c^{2}	205	0.5	<u>(</u> 0	25	40	0.0	00	50.0	244	0.0	00	0.0	00	0.0	00	0.0	00	0.0	00	450	420

Monthly Summary Waste Flow Table for October 2012

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

3.542

0.000

59.844

0.000

0.000

0.000

0.000

0.569

63.385

YSW: Yung Shue Wan SKW: Sok Kwu Wan

459.420

0.000

Appendix K

Weekly Site Inspection Checklist

RUES

Project: Date: PART / Weather Temper: Humidi Wind: Area in: 1	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan C5 C5 C5 C5 C5 C5 C6 C6 C6 C6 C6 C6 C6 C7 C8 GENERAL INFORMATION ature: 22 °C ty: High Moderate Low Strong Breeze Light C	Inspected ETL/ ET's RE's Repr Contracto IEC's Rep Time: 14:0 ainy	Represen resentative r's Repres resentativ	e: sentative:	FA Je FA	Mary Stiph Lin Li	<u>TCS512B-OF702er2</u>
PART B	: SITE AUDIT			arean Council and an and the decised			<u></u> .
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
L	1: Water Quality						
1.01	Is an effluent discharge license obtained for the Project?		\square				_
1.02	Is the effluent discharged in accordance with the discharge licence?		\square				
1.03	Is the discharge of turbid water avoided?						,
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?						
	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?		Ó				
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?	. 🗆	\square				
1.07	Is drainage system well maintained?		\square				
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?						
1.09	Are temporary exposed slopes properly covered?		\square				
1.10	Are earthworks final surfaces well compacted or protected?						
1.11	Are manholes adequately covered or temporarily sealed?		\square				
1.12	Are there any procedures and equipment for rainstorm protection?		\square				
1.13	Are wheel washing facilities well maintained?		Z				
1.14	Is runoff from wheel washing facilities avoided?						
1.15	Are there toilets provided on site?						
1.16	Are toilets properly maintained?						
1.17	Are the vehicle and plant servicing areas paved and located withir roofed areas?	י 🗌	Ą				
1.18	Is the oil leakage or spillage avoided?		\square				
1.19	Are there any measures to prevent leaked oil from entering the drainage system?	•	Ż				
1.20	Are there any measures to collect spilt cement and concrete washings during concreting works?	e	\square				
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	s					
1.22	Are the oil interceptors/grease traps maintained properly?		Ĺ				

Van		S	

123 Is used bertantie recycled where scoreprints?	Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
124 and located at the streambed with 12-bit deep. 12m long and since 32m long specific for content that is the stream trace. Image: Stream long stre	1.23	Is used bentonite recycled where appropriate?		Q				
12. Concreting weaks water should be neutralized below the pH Action 12. Concreting weaks water should be neutralized below the pH Action 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Modile tables andult provide un site and located away the stream 12. Are the accounted matching stream and the stream and the stream and the stream 12. Are the accounted matching stream and the stream and the stream 12. The account and the stream and the stream and the stream 12. The account and the stream and the stream and the stream 12. The account and the stream and the stream and the stream 12. The account and the stream and tables and the stream 12. The account and the stream and the stream and the stream 12. The account and the stream and the stream and the stream 12. The account and the stream and the stream and the stream 12. The account and the stream and the stream and the stream 12. The active and tables account and the stream and th	1.24	and located at the streambed with 1-2m deep, 12m long and						
1.20 Levels before discharge.	1.25	No excavation is undertaken in the settlement area.						
1.26 course.	1.26			\square				
1.26 is ponding /stand water evolded?	1.27			\square				
1.30 Is open stockpiles well covered by impermeable sheat?	1.28	License collector should be employed for handling the sewage of		Z				
Section 2: Air Quality 2.01 Are there whele washing facilities with high pressure jets provided 2.01 Are whele washing facilities with high pressure jets provided 2.02 Are whele washing facilities with high pressure jets provided 2.03 Are the accorded materials sprayed with water outing handling? 2.03 Are the accorded materials sprayed with water covered or placed in whelened areas? Image: pressure jets pressive in the water. covered or placed in whelened areas? Image: pressive in the water. covered or 2.05 let be accorde ant properly treaded within six months after the list construction activities? 2.06 here baccorde ant properly treaded within a the months after the list construction activities? 2.06 here baccorde ant properly treaded within a the months after the list construction activities? 2.07 here hadring of materials to a liven inflam the entire road auriface with or any drilling, cuting, polishing or breaking operation continuously aprayed with water? 2.08 here during withink and minither entire with a the list and tail 2.09 here during withing and minither entire water and tail 2.09 here during withing and miniting procease can lead out in a here during which adjate and along the which and month provided? 2.11 here areas water and activititis positi	1.29	Is ponding /stand water avoided?						
2.01 Are there wheel washing facilities with high pressure jets provided is every vehicle and price and provides its provided is provided in wheeles before leaving construction sites? 2.02 Are wheeles before leaving construction sites? 2.03 Are the excervated materials proved with water during handling? 2.04 Are stockpiles of dury materials proved with water, covered or placed in wheelered areas? 2.05 Are the excepted each property treated within six months after the last construction autivities? 2.06 Are the loading of materials proved with water, covered or placed in wheelered areas? 2.06 Are the loading of materials covered entirely. by clean impervious is the loading of materials to a level higher than the side end tail is phalement and write available? 2.06 bas the loading of materials to a level higher than the side end tail is phalement available availed? 2.07 bas the loading of materials to a level higher than the side end tail is phalement available with adjoint areas accessible to the public? 2.11 bas during transprinting while the general? cover and and the adjoint of the side and tail is phalement availage with adjoint areas accessible to the public? 2.12 Are de-bagging, batching and mixing processes carried out in the shalement availage within a side model and the side end tail is phalement area barried from the stream must remove form atter on the side and tail is phalement and activities positioned as far as practicable is a placed in the sentive receleaver? 2.14	1.30	Is open stockpiles well covered by impermeable sheet?						
2.00 at every vehicle washed to remove any dusty materials from their 2.01 Are the excavated materials prayed with water during handling? 2.02 Are the excavated materials prayed with water, covered or 2.03 Are the excavated materials prayed with water, covered or 2.04 Are stocplies of dusty materials prayed with water, covered or 2.05 Is the surface stock sprayed with water or maintain the entire road 2.06 Are the access roads sprayed with water? 2.07 perstain continuously sprayed with water? 2.08 Is the surface where any diffing, cutting, polising or breaking 2.09 perstain continuously sprayed with water? 2.00 Is the loading of materials to a level higher than the side and tail 2.09 bords during the survices 2.11 Is dark smoke emission from plant/equipment avoided? 2.11 Is dark smoke emission from plant/equipment avoided? 2.11 Is dark smoke emission from site of the public? 2.12 Are debagging, batching and mixing processes carried out in sheattered areas during the use of bagged charg the site 2.14 Are backing with the second the public? 2.15 is open burning avoided? 2.16 sare backing from the stream	Sect	ion 2: Air Quality					-	
2.22 bodies and wheels before leaving construction sites?	2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					2	
2.04 Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?	2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?					Ø	
2.06 placed in sheltared areas?	2.03	Are the excavated materials sprayed with water during handling?					Ø	
2.00 Are the access road sprayed with water to maintain the entire road aurface wet or paved? 2.00 Are the access road sprayed with water to maintain the entire road aurface wet or paved? 2.01 Is the surface where any drilling, cutting, polishing or breaking 2.02 Is the load on vehicles covered entirely by clean impervious 2.03 Is the load on vehicles covered entirely by clean impervious 2.04 Is the load on vehicles covered entirely by clean impervious 2.05 Is the load on vehicles covered entirely by clean impervious 2.09 Is the load on vehicles covered entirely by clean impervious 2.00 Is the load on vehicles covered entirely by clean impervious 2.01 Is the road leading to the construction site within 30m of the vehicle 2.10 Is the road leading to the construction site within 30m of the vehicle 2.11 Is dark smoke emission from plant/equipment avoided? 2.11 Is dark smoke emission from plant/equipment avoided? 2.12 Are de-bagging, batching and mixing proceesees carried out in 2.14 Are hoardings of not less than 2.4m high provided along the site 2.14 Are hoardings of not less than 2.4m high provided along the site 2.15 Is open burning avoide? 2.16 sam	2.04							
2.00 surface wel or paved? 2.07 operation continuously sprayed with water? 2.08 the load on vehicles covered entirely by clean impervious 2.09 is the loading of materials to a level higher than the side and tail 2.09 is the loading of materials to a level higher than the side and tail 2.09 is the loading of materials to a level higher than the side and tail 2.00 the road leading to the construction site within 30m of the vehicle 2.10 is the road leading to the construction site within 30m of the vehicle 2.11 is dark smoke emission from plant/equipment avoided? 2.12 Are de-bagging, batching and mixing processes carried out in shettered areas during the use of bagged cernent? 2.13 Are site vehicles travelling within the speed limit not more than 15km/hour? 2.14 Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public? 2.15 is open burning avoided? 2.16 are noisy equipment and activities positioned as far as practicable skips awaiting removal from site. 3.01 Are noisy equipment and activities down? 3.02 Is silenced equipment well maintained and in good condition? 3.03 Is idle equipment urned off or throttled down?	2.05			\square				
2.07 operation continuously syrayed with water?	2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		Z				
2.00 sheeting?	2.07			Þ				
2.19 boards during transportation by vehicles avoided?	2.08							
2.10 entrance kept clear of dusty materials?	2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\square	
2.12 Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement? Are site vehicles travelling within the speed limit not more than 15km/hour? 2.13 Are site vehicles travelling within the speed limit not more than 15km/hour? Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public? Is open burning avoided? Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site. Section 3: Noise 3.01 Are noisy equipment and activities positioned as far as practicable from the sensitive receivers? 3.02 Is silenced equipment adopted? Is idle equipment turned off or throttled down? Is idle equipment turned off or throttled down? Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? 3.05 Are hard hield breakers fitted with valid noise emission labels during operation? Image: unit on the sensitive? Are hard hield breakers fitted with valid noise emission labels during operation? Are air compressors fitted with valid noise emission labels during operation?	2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.12 sheltered areas during the use of bagged cement?	2.1	Is dark smoke emission from plant/equipment avoided?		Z				
2.13 15km/hour?	2.1	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.14 boundary, which adjoins areas accessible to the public? Image: Constraint of the stream and the public? 2.15 Is open burning avoided? Image: Constraint of the stream and the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site. Image: Constraint of the stream and the stream and the stored in covered impermeable skips awaiting removal from site. Section 3: Noise Image: Constraint of the sensitive receivers? 3.01 Are noisy equipment and activities positioned as far as practicable from the sensitive receivers? 3.02 Is silenced equipment adopted? 3.03 Is idle equipment turned off or throttled down? 3.04 Are all plant and equipment well maintained and in good condition? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during in the stream	2.1						Z	
Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site. Image: Construction of the sensitive receivers? 3.01 Are noisy equipment and activities positioned as far as practicable from the sensitive receivers? Image: Construction of the sensitive receivers? 3.02 Is silenced equipment adopted? Image: Construction of the sensitive receivers? 3.03 Is idle equipment turned off or throttled down? Image: Construction activities cause noise impact on sensitive receivers? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction offer the sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Image: Construction con	2.1	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.16 same day. The materials shall be stored in covered impermeable skips awaiting removal from site.	2.1	5 Is open burning avoided?		Z				
3.01 Are noisy equipment and activities positioned as far as practicable from the sensitive receivers? Image: Construction activities positioned as far as practicable in the sensitive receivers? 3.02 Is silenced equipment adopted? Image: Construction activities positioned as far as practicable in the sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.04 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Image: Construction activities cause fitted with valid noise emission labels during	2.1	6 same day. The materials shall be stored in covered impermeable					Ć	
3.01 from the sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.02 Is silenced equipment adopted? Image: Construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during Image: Construction activities cause noise emission labels during	Se	ction 3: Noise						
3.03 Is idle equipment turned off or throttled down? Image: Construction and equipment well maintained and in good condition? Image: Construction and equipment well maintained and in good condition? 3.04 Are all plant and equipment well maintained and in good condition? Image: Construction activities cause noise impact on sensitive receivers? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during Image: Construction activities cause noise impact on sensitive receivers? 3.07 Are air compressors fitted with valid noise emission labels during Image: Construction activities cause noise impact on sensition labels during	3.0		" □	\square				
3.04 Are all plant and equipment well maintained and in good condition? Image: Construction activities cause noise impact on sensitive receivers? 3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? Image: Construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? Image: Construction activities cause noise emission labels during 3.07 Are air compressors fitted with valid noise emission labels during Image: Construction construction cause cause noise emission labels during	3.0	2 Is silenced equipment adopted?						
3.05 Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers? 3.06 Are hand held breakers fitted with valid noise emission labels during operation? 3.07 Are air compressors fitted with valid noise emission labels during	3.0	3 Is idle equipment turned off or throttled down?		Ø				
3.05 construction activities cause noise impact on sensitive receivers?	3.0							<u></u>
during operation?	3.0	construction activities cause noise impact on sensitive receivers?					ear	
	3.0	during operation?	L]					-
	3.		9					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?		\square				
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure) Temporary/Moveable noise barrier equal to or more than 3m height						
· 3.14	with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					4	
Sect	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\square				
4.02	Are receptacles available for general refuse collection?		A				
4.03	Is general refuse sorting or recycling implemented?		\square				
4.04	Is general refuse disposed of properly and regularly?	-	Ø				
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?					Z	
4.07	Are the chemical wastes stored in proper storage areas?	\square					
4.08	Is the chemical container or equipment provided with drip tray?		\square				
4.09	Is the chemical waste storage area used for storage of chemical waste only?	Ĺ					
4.10	Are incompatible chemical wastes stored in different areas?	\square					
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?		Ę				-
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.1	Are construction wastes sorted (inert and non-inert) on site?		\square	·			
4.1	Are construction wastes reused?						
4.1	7 Are construction wastes disposed of properly?						-
4.1	Are site hoardings and signboards made of durable materials instead of timber?		\square				
· 4.1	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.2	O Are appropriate procedures followed if contaminated material exists?		\square				
4.2	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		\square				
4.2	2 Site cleanliness and appropriate waste management training had provided for the site workers.						
4.2	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.		\square				

		•					1
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?	Ń					
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?	Ź					
			k.				

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (05 Oct 2012):

No adverse environmental Impacts were abserved during Site inspection. However, full implementations of the required environmental nitigation measures is reminded

Follow up: (OS Oct 20/2)

Not required for general requireders.

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC S representative	RE S representative	<u>ETSTEPTESEITAUVE</u>	EU s representative	Contractor s representative	
	Aseph.	AM	they us du		
()	(Joseph NG)	(The Ear Wong)	(frang 40 Sher)	()	

AUES

Project: Date: PART A: Weather Temperat Humidity Wind: Area Insp 1 Se	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 9-Oct-2012	Inspected by ETL/ ET's R RE's Repres Contractor's IEC's Repre Time: Rainy Calm	epresentati sentative s Represen	-	Envir	am /	9512B-9-Oct-2012
PART B:	SITE AUDIT						
Note: Note: Note: Fo	ot Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; ollow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section 1	1: Water Quality						
1.01 ls	an effluent discharge license obtained for the Project?						
1.02 ls	the effluent discharged in accordance with the discharge licence?	· 🗌					
1.03 ls	the discharge of turbid water avoided?						
1.04 At	re there proper desilting facilities in the drainage systems to educe SS levels in effluent?	р 🗌					
	re there channels, sandbags or bunds to direct surface run-off to edimentation tanks?	р []					
1.06 A	are there any perimeter channels provided at site boundaries to attract the storm runoff from crossing the site?	° 🗌					
1.07 ls	s drainage system well maintained?						
	s excavation proceeds, are temporary access roads protected by rushed stone or gravel?	у 🗌					
1.09 A	are temporary exposed slopes properly covered?						
1.10 A	Are earthworks final surfaces well compacted or protected?						
1.11 A	Are manholes adequately covered or temporarily sealed?						
1.12 A	Are there any procedures and equipment for rainstorm protection?						
1.13 A	Are wheel washing facilities well maintained?						
1.14 l	s runoff from wheel washing facilities avoided?						
1.15 A	Are there toilets provided on site?						
1.16 <i>A</i>	Are toilets properly maintained?						
	Are the vehicle and plant servicing areas paved and located with roofed areas?	in 🗌					
1.18 l	Is the oil leakage or spillage avoided?						······
1.19 (Are there any measures to prevent leaked oil from entering th drainage system?	L					
	Are there any measures to collect spilt cement and concre washings during concreting works?	te					
1.21	Are there any oil interceptors/grease traps in the drainage systen for vehicle and plant servicing areas, canteen kitchen, etc?	ns					
1.22	Are the oil interceptors/grease traps maintained properly?						

ental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan										
 bs.: Not Observed; Yes: Compliance; No: Non-Compliance; Up: Observations requiring follow-Up actions N/A: Not Applicable 	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks				
	r1	r1								

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?						
Section 2: Air Quality							
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Sect	ion 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						

AUES

I

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?						
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?						
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

AUES

(Sok Kwu Wan)

Remarks:

Remarks:	
Findings of Site Inspection: (09 Oct 2012): Follow up:	(09 Oct 2012)
No adverse environmental impacts	Not required
were observed during site inspection	for general reminders
However, full Implementation	\bigcirc 0
One required mutility	
particulater (o should	$\tilde{\Gamma}$
austy activities under dry and	
dusty activities under dry and windy conditions, is reminded.	

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative	2
	Joseph	Man c			
()	(Joseph Ng)	(Wong Fu Nam)	(Edwin Leung)	()
	offic oction	090ct 2012			

Z:\Jobs\2010\TCS00512(DC-2009-13)\600\site inspection\Oct 2012\TCS512B- Sok Kwu Wan_9-Oct-2012.docPage 4 of 4

-

1	F	U	E	S

Project	TCS/00512/09 Inspected by				Checklist No. TCS512B-16-Oct-2012				
	Construction of Sewage Treatment Works at	ETL/ ET's Representative			Wong Fu nam				
	Yung Shue Wan and Sok Kwu Wan	RE's Representative Contractor's Representative		Joseph Ng Edwin Leung					
		IEC's Repre	•	live _	Edwin Leur	ig			
Date:	16-Oct-2012	Time:		Ī	4:30)			
PART					Envir	onmental F	Permit No.		
Weath		Rainy				1/2007A			
Tempe		-							
Humic	lity: High V Moderate Low								
Wind:	Strong 🗸 Breeze Light] Calm							
Area Ir 1	ispected Sok Kwu Wan								
PART	3: SITE AUDIT								
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes I	No	Follow Up	N/A	Photo/ Remarks		
Sectio	n 1: Water Quality			·······	F 1				
1.01	Is an effluent discharge license obtained for the Project?								
1.02	Is the effluent discharged in accordance with the discharge licence	e?				<u> </u>			
1.03	Is the discharge of turbid water avoided?								
1.04	Are there proper desilting facilities in the drainage systems reduce SS levels in effluent?	L	\square						
1.05	Are there channels, sandbags or bunds to direct surface run-off sedimentation tanks?	L							
1.06	Are there any perimeter channels provided at site boundaries intercept storm runoff from crossing the site?	to							
1.07	Is drainage system well maintained?								
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	by	Ø						
1.09	Are temporary exposed slopes properly covered?								
1.10	Are earthworks final surfaces well compacted or protected?								
1.11	Are manholes adequately covered or temporarily sealed?								
1.12	Are there any procedures and equipment for rainstorm protection	n?	Z						
1.13	Are wheel washing facilities well maintained?								
1.14	Is runoff from wheel washing facilities avoided?					L L			
1.15	Are there toilets provided on site?								
1.16	Are toilets properly maintained?		\square						
1.17	Are the vehicle and plant servicing areas paved and located wit roofed areas?	hin				\square			
1.18	Is the oil leakage or spillage avoided?								
1.19	Are there any measures to prevent leaked oil from entering drainage system?	L							
1.20	Are there any measures to collect spilt cement and concr washings during concreting works?	L	\square						
1.21	Are there any oil interceptors/grease traps in the drainage syste for vehicle and plant servicing areas, canteen kitchen, etc?	ems				\square_{j}			
1.22	Are the oil interceptors/grease traps maintained properly?			\Box		\square			

HULO	A	U	L.	S
------	---	---	----	---

	Net Oke I Net Okeenrodi Veri Compliance Net Net Compliance	Not			Follow		Photo/
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Up	N/A	Remarks
1.23	Is used bentonite recycled where appropriate?					\square	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					Ø	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.		\square				
1.28	License collector should be employed for handling the sewage of mobile toilet.		Ø				
1.29	Is ponding /stand water avoided?		Ŕ				
1.30	Is open stockpiles well covered by impermeable sheet?		\square				
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					Ø,	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?					\square	
2.03	Are the excavated materials sprayed with water during handling?					\mathbb{Z}	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		Z				
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\square	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		Ø				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					Ø	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\square	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\square	
2.11	Is dark smoke emission from plant/equipment avoided?		\square				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					Ø	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\square				
2.15	Is open burning avoided?		\square				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					ď	
Secti	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					Ø	
3.02	Is silenced equipment adopted?					\square	
3.03	Is idle equipment turned off or throttled down?		Ø				
3.04	Are all plant and equipment well maintained and in good condition?		Ø			\Box_{j}	
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					Ą	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					Ø	
3.07	Are air compressors fitted with valid noise emission labels during operation?					Ø	

1		E	S
102 103	10040	22010	C

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						E
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					Z.	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					ď	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\square	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).		Ø				
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					Z	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		Ø				
4.02	Are receptacles available for general refuse collection?		ď				
4.03	Is general refuse sorting or recycling implemented?		\square				
4.04	Is general refuse disposed of properly and regularly?		\square				
4.05	Is the Contractor registered as a chemical waste producer?					ď	
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?					\square	
4.08	Is the chemical container or equipment provided with drip tray?		\square				
4.09	Is the chemical waste storage area used for storage of chemical waste only?					Ø,	
4.10	Are incompatible chemical wastes stored in different areas?					\square	
4.11	Are the chemical wastes disposed of by licensed collectors?		\square				
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?					\square	
4.14	Are designated areas identified for storage and sorting of construction wastes?		\square				
4.15	Are construction wastes sorted (inert and non-inert) on site?		\square				
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?		\square				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		Ø				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\square				
4.20	Are appropriate procedures followed if contaminated material exists?					Z	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?	\square					
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.	\square					
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\square	

√te:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?		Ø				Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?		\square				
5.03	Are surgery works carried out for the damaged trees?					Ø	
5.04	Is damage to trees outside site boundary due to construction activities avoided?					Ø	
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\square	
Secti	on 6: Others					,	
5.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

AUES

(Sok Kwu Wan)

Remarks:
Findings of Site Inspection: (1600+2012): Follow up: (1600+20(2))
No adverse environmental impacts Not required for where observed during site general reminders
implementation of the required
mental melightion
measures, in particular
construction dust suppression
measures during dusty activities
under dry and which conditions,
Is reminded.

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	Jesephs	Why a	bey us from	
()	(Joseph Ng) 160ct2ov2	(Wong Fu Nam) 160ct 2012	(Édwin Leung)	()

Z:\Jobs\2010\TCS00512(DC-2009-13)\600\site inspection\Oct 2012\TCS512B- Sok Kwu Wan_9-Oct-2012.docPage 4 of 4

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A		Location /	Implementation		olementa Stages**		Relevant Legislation & Guidelines & Guidelines EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	& Guidelines
Constr	uction Phase					-	-	
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor		\checkmark		
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		\checkmark		Air Pollution Control (Construction Dust)
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

AUES

Implementation Schedule of Noise Measures

EIA	EM&A	EM&A Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &	
Ref	Ref			Agent	D	С	0	Guidelines	
Construct	tion Phase								
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		V		EIAO-TM, NCO	
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor					

AUES

EIA Pof	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref		Location, Thinng	Agent	D	С	0	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		V		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration	Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref		/completion of measures)	Agent	D	С	0	and Guidelines
5.77	ruction Phas	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		V		
5.73 - 5.78	4.36	 Dredging Works Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be cleaned from the decks and exposed fittings of barges before the vessel is moved; adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action; all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and 	Marine works site and at the identified water sensitive receivers/ During construction	Contractor				

AUES

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		nplementation Stages**		Relevant Legislation	
Ref	Ref	Environmental i lotection wieasures	measures)	Agent	D	С	0	and Guidelines	
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.							
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor		\checkmark		ProPECC	
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94	
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.							
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.							
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.							
		• Careful programming of the works to minimise soil excavation works during rainy seasons.							
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.							
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.							
		• Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric							
5.80	4.38	General Construction Activities	Construction works	Contractor			1		
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites						

AUES

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation	-	lement Stages*		Relevant Legislation
Ref	Ref	Environmental riotection weasures	measures)	Agent	D	С	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	<u>Wastewater Arising from Workforce</u> Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

N/A Not applicable

Z:\Jobs\2010\TCS00512(DC-2009-13)\600\EM&A Monthly Report\Sok Kwu Wan\26th - Oct 12\R0564v2.docx

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing	Implementation Stages**			Relevant Legislation &	
Ref	Ref		Location / Thining	Agent	D	С	0	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		V		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		\checkmark		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages *		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
Construct	tion Phase							
7.14	6.4	 <u>Good site practices</u> Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor				Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		N		WBTC No. 21/2002
7.16	6.6	 Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated 	Work sites/During construction	Contractor		N		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and plan and stock construction materials carefully to minimise amount of waste generated and avoid 						
7.18	6.7	 unnecessary generation of waste. <u>General Site Wastes</u> A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material 	Work sites/During construction	Contractor		V		Public Health and Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 - 6.9	 <u>Chemical Wastes</u> After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance. 	Work sites/During construction	Contractor		V		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

AUES

EIA	EM&A		Location /	ing Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
		• Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided.						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: > public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; > C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); > C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) • Where possible, inert material should be re-used on-site • Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material 	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	Stages			Relevant Legislation & Guidelines
			Timing	Agent	D	C	0	Guidelines
	ction Phase	1	1					
8.157	7.2	 <u>Terrestrial Ecology</u> Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		N		
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging • Use of closed-grab dredger • Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		V		
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*	Location /	Implementation	Implementation Stages**		mplementation Stages**		Relevant Legislation
Ref	Ref		Timing	Agent	D	С	0	& Guidelines	
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		\checkmark		TM on EIA Process	
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		\checkmark	V	EM&A Manual	

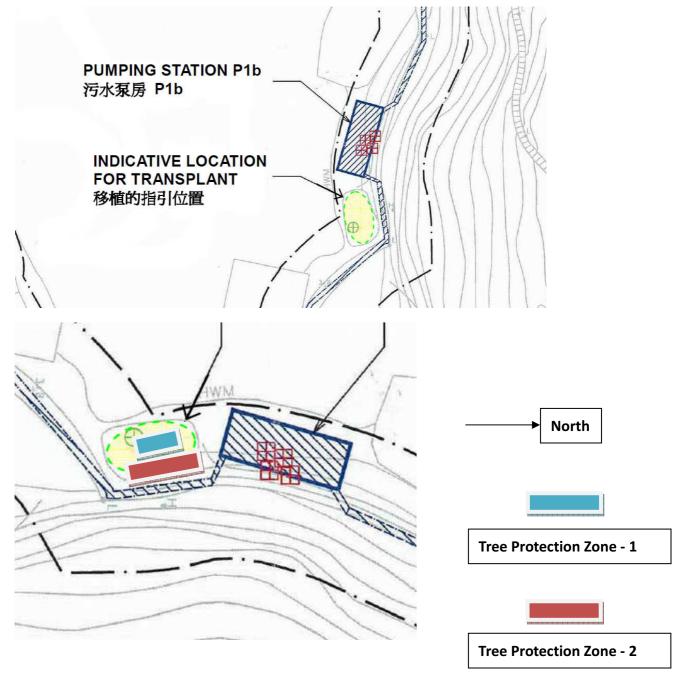
* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	Implementation Stages **			Relevant Legislation &
Kel	Kei				D	С	0	Guidelines
Constr	uction Pha	ise						-
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		V		WBTC No. 14/2002
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		\checkmark		WBTC No. 14/2002
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		V		
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		V		WBTC No. 19/2001
		Conservation of topsoil for reuse.	All sites	Contractor		\checkmark		
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.


** D=Design, C=Construction, O=Operation

Appendix M

Tree Inspection Report

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	29 September 2012, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Poor
CT_3A	Celtis timorensis	Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

Good	Leaves and stem grown very lush, additional or larger in size of
	leaves can be observed in each inspection

- Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak. Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 29 September 2012

Tree ID: CT_3A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy.

Overall Condition

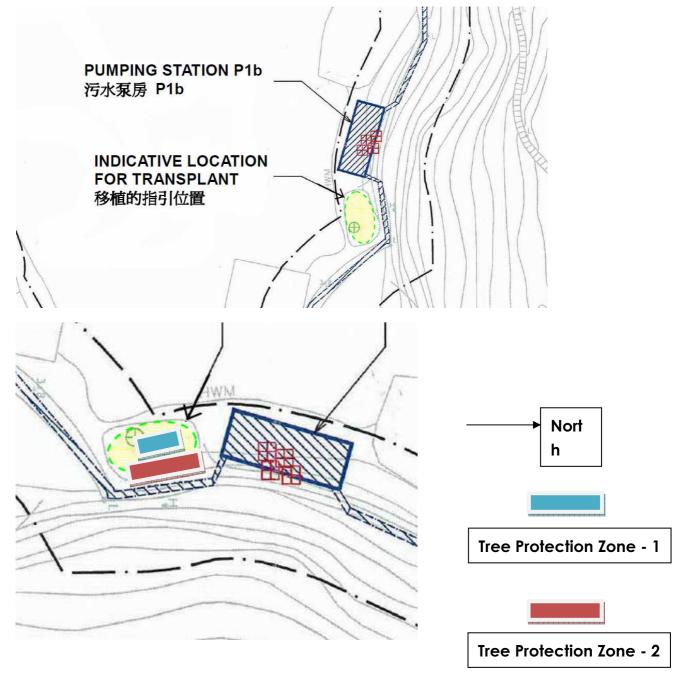
In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A, CT3A were in poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing. 經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下依田村 125 號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 15-10-2012

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

Bi Weekly Tree Inspection Report for Celtis timorensis at Sok Kwu Wan Inspection Date: 15 October 2012

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	15 October 2012, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 October 2012

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Poor
CT_3A	Celtis timorensis	Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Bi Weekly Tree Inspection Report for Celtis timorensis at Sok Kwu Wan Inspection Date: 15 October 2012

Inspection parameters or criteria

Good	Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection
Fair	Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
Poor	Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

Current Status: Poor

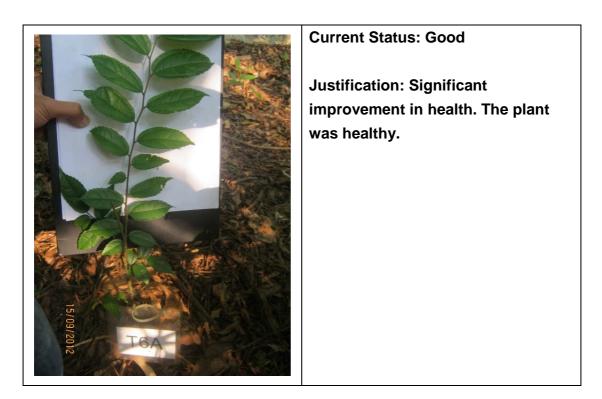
Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_3A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A


Bi Weekly Tree Inspection Report for Celtis timorensis at Sok Kwu Wan Inspection Date: 15 October 2012

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Overall Condition

Bi Weekly Tree Inspection Report for Celtis timorensis at Sok Kwu Wan Inspection Date: 15 October 2012

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A, CT3A were in poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.