

PROJECT No.: TCS/00512/09

DSD CONTRACT No. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA
MONTHLY ENVIRONMENTAL MONITORING AND AUDIT
(EM&A) REPORT (No.30) – JANUARY 2013

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index Date	Reference No.	Prepared By	Approved By	
19 February 2013	TCS00512/09/600/R0607v1	Aula	Burn	
		Nicola Hon	T.W. Tam	
		Environmental Consultant	Environmental Team Leader	

Version	Date	Description
1	19 February 2013	First Submission

Scott Wilson CDM Joint Venture

Chief Engineer/Harbour Area Treatment Scheme

Drainage Services Department

5/F Western Magistracy

2A Pok Fu Lam Road

Hong Kong

Your reference:

Our reference:

05117/6/16/410583

Date:

22 February 2013

BY FAX & EMAIL

Attention: Ms. Jacky C M Wong

Dear Sirs,

Construction of Soveage Treatment Works at

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area

Monthly Environmental Monitoring and Audit (EM&A) Report No. 30 (January 2013)

We refer to the Monthly EM&A Monitoring Report No. 30 for January 2013 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated 21 February 2013. We have no comment and have verified the captioned report.

Yours faithfully

SCOTT WILSON CRM JOINT VENTURE

Rodney Ip

Independent Environmental Checker

ICWR/SYSL/ycky

cc Leader Civil Engineering

AUES ER/LAMMA

CDM

(Attn: Mr Vincent Chan)

(Attn: Mr T.W. Tam)

(Attn: Mr lan Jones) (Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the 30th monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from 26 December 2012 to 25 January 2013 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Onelity	1-hour TSP	54
Air Quality	24-hour TSP	15
Construction Noise	L _{eq(30min)} Daytime	20
Water Quality	Marine Water Sampling	13
Inspection / Audit	ET Regular Environmental Site Inspection	5

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action Limit		Event & Action		
Issues	Parameters	Level	Level	NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – Notification of Exceedance

SITE INSPECTION BY EXTERNAL PARTIES

ES.05. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 27 December 2012 and 2, 8, 15 and 22 January 2013. All the observation has been rectified during the next week site inspection.

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.06. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.07. No reporting change was made in this Reporting Period.

FUTURE KEY ISSUES

ES.08. During dry season, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – January 2013

implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

ES.09. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

TABLE OF CONTENTS

1	INTRODUCTION PROJECT BACKGROUND REPORT STRUCTURE	1 1 1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE CONSTRUCTION PROGRESS SUMMARY OF ENVIRONMENTAL SUBMISSIONS	3 3 3 3
3	SUMMARY OF BASELINE MONITORING REQUIREMENTS ENVIRONMENTAL ASPECT MONITORING LOCATIONS MONITORING FREQUENCY AND PERIOD MONITORING EQUIPMENT EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION DATA MANAGEMENT AND DATA QA/QC CONTROL REPORTING DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	4 4 4 5 6 7 7 7 7 8
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	10
6	IMPACT MONITORING RESULTS – WATER QULAITY	11
7	ECOLOGY	13
8	WASTE MANAGEMENT	14
9	SITE INSPECTION	15
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
12	IMPACT FORECAST	23
13	CONCLUSIONS AND RECOMMENDATIONS CONCLUSIONS RECOMMENDATIONS	24 24 24

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Table 5-1	Summarized of Construction Noise Monitoring Results at NM1
Table 5-2	Summarized of Construction Noise Monitoring Results at NM2
Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
Table 6-1	Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Table 6-4	Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 8-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons
Table 10-3	Statistical Summary of Environmental Prosecution
Table 11-1	Environmental Mitigation Measures

LIST OF APPENDICES

Appendix A	Site Layout Plan – Sok Kwu Wan Portion Area
Appendix B	Organization Structure and Contact Details of Relevant Parties
Appendix C	A Master and Three Months Rolling Construction Programme
Appendix D	Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
Appendix E	Monitoring Equipments Calibration Certificate
Appendix F	Event and Action Plan
Appendix G	Monitoring Data Sheet
Appendix H	Graphical Plots of Monitoring Results
Appendix I	Meteorological Information
Appendix J	Monthly Summary Waste Flow Table
Appendix K	Weekly Site Inspection Checklist
Appendix L	Implementation Schedule of Mitigation Measures
Appendix M	Tree Inspection Report

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the *Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan* (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the 30th monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from 26 December to 25 January 2013.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

SECTION 1	Introduction
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS
SECTION 7	WASTE MANAGEMENT
SECTION 8	SITE INSPECTIONS
SECTION 9	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 10	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 11	IMPACT FORECAST
SECTION 12	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of PS1: metalworks installation, E&M Works installation and stone cladding installation
 - Construction of PS2: metalworks installation, E&M Works installation and stone cladding installation
 - Construction of SKWSTW: soil compaction, concreting, steel fixing, formwork erection, formwork removal, backfilling, scaffolding erection, dismantling scaffolding.
 - Outfall: backfilling of foam concrete.

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 19 May 2010
	Regulation	Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction	Issued on 26 May 2010
	Waste	A/C No: 7010815
5	Construction Noise Permit	Permit no. GW-RS1112-12
		Valid from: 30 Oct 2012
		Until: 29 Mar 2013

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - · Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and
All Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.
Noise	• Leq (30min) during normal working hours; and
Noise	• Leq (15min) during Restricted Hours.
	In-situ Measurements
	• Dissolved Oxygen Concentration (DO) (mg/L);
	• Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Marine Water Quality	• pH unit;
Warme Water Quanty	• Salinity (ppt);
	Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (SS) (mg/L)

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2 Location of Air Quality Monitoring Station

Sensitive Receiver	Location	
AM1	Squatter house in Chung Mei Village	
AM2	Squatter house in Chung Mei Village	
AM3	Football court	

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3 Location of Construction Noise Monitoring Station

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Table 3-4 Location of Marine Water Quality Monitoring Station

Station	Description	Co-ordnance			
Station	Description	Easting	Northing		
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732		
W2	Fish culture zone at Picnic Bay	832 670	807 985		
W3	Fish culture zone at Picnic Bay	832 045	807 893		
C1 (flood)	Control Station	833 703	808 172		
C2	Control Station	831 467	807 747		
C3 (ebb)	Control Station	832 220	808 862		

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters: 1-hour TSP and 24-hour TSP.

Frequency: Once in every six days for 24-hour TSP and three times in every six days for

1-hour TSP.

<u>Duration</u>: Throughout the construction period.

Noise Monitoring

<u>Parameters</u>: $L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} .

 $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of

public holiday and Sunday)

Frequency: Once per week during 0700-1900 hours on normal weekdays. Restricted hour

monitoring should depend on conditions stipulated in Construction Noise Permit.

Duration: Throughout the construction period.

Marine Water Quality Monitoring

Parameters: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH,

turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

<u>Frequency</u>: Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours.

Sampling Depth

- (i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.
- (ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.
- (iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken

Duration: During the course of marine works

<u>Post-Construction Monitoring – Marine Water</u>

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.10 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.

Water Quality Monitoring

- 3.11 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0-20mg L-1 and 0-200% saturation; and a temperature of 0-45 degree Celsius.
- 3.12 *pH Meter* The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in a range of 0 to 14.
- 3.13 *Turbidity (NTU) Measuring Equipment* The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.14 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.15 *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- 3.16 *Salinity Measuring Equipment* A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.

- 3.17 **Sample Containers and Storage** Water samples for suspended solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.18 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.19 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

EQUIPMENT CALIBRATION

- 3.20 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.21 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.22 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.23 The Water Quality Monitoring equipments such as DO meter, pH meter, turbidity measuring instrument and salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.24 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.25 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.26 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.27 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.28 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end

day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.29 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Table 3-5 Action and Limit Levels for Air Quality

Monitoring Station	Action Le	vel (μg/m³)	Limit Level (µg/m³)			
Womtoring Station	1-hour	24-hour	1-hour	24-hour		
AM1	343	173	500	260		
AM2	331	175	500	260		
AM3	353	191	500	260		

Table 3-6 Action and Limit Levels for Construction Noise

Monitoring	Action Level	Limit Level					
Location	0700-1900 hours on normal weekdays						
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods					

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	In	npact Stati	on
rarameter	Criteria	W1	W2	W3
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71
(mg/L)	Limit Level	5.29	4.56	4.54
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37
(mg/L)	Limit Level	N/A	3.06	3.18
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48
(NTU)	Limit Level	6.06	5.99	6.71
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79
(mg/L)	Limit Level	12.68	11.28	12.25

3.30 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **54** and **15** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1, 4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix G* and the graphical plots of are shown in *Appendix H*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour			1-hour TSP	$(\mu g/m^3)$			
Date	TSP (µg/m³)	Date Start Time		1 st hour measured	2 nd hour measured	3 rd hour measured		
29-Dec-12	60	27-Dec-12	9:10	72	76	74		
4-Jan-13	79	2-Jan-13	11:00	107	115	109		
10-Jan-13	114	8-Jan-13	8:00	76	84	73		
16-Jan-13	28	14-Jan-13	10:20	68	71	75		
22-Jan-13	16	18-Jan-13	9:00	66	74	67		
		24-Jan-13	8:30	68	72	75		
Average	59	Avera	ge					
(Range)	(16 - 114)	(Rang	e)	(66 - 115)				

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour		1-hour TSP (μg/m³)								
Date	TSP (μg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured					
29-Dec-12	41	27-Dec-12	12:30	79	82	81					
4-Jan-13	114	2-Jan-13	13:05	103	112	106					
10-Jan-13	53	8-Jan-13	10:45	83	92	86					
16-Jan-13	64	14-Jan-13	12:30	62 65		69					
22-Jan-13	38	18-Jan-13	13:00	70	76	78					
		24-Jan-13	12:15	77	82	74					
Average	62	Avera	ge	82							
(Range)	(41 - 114)	(Rang	e)	(62 - 112)							

Table 4-3 Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour			1-hour TSP			
Date	TSP (µg/m³)	Date Start Time		1 st hour measured	2 nd hour measured	3 rd hour measured	
29-Dec-12	85	27-Dec-12	14:45	121	129	126	
4-Jan-13	83	2-Jan-13	8:00	127	134	133	
10-Jan-13	121	8-Jan-13	13:15	144	159	152	
16-Jan-13	68	14-Jan-13	8:00	98	107	101	
22-Jan-13	48	18-Jan-13	15:20	139	154	133	
		24-Jan-13	14:25	153	150	148	
Average	81	Avera	ge		134		
(Range)	(48 - 121)	(Rang	e)	(98 – 159)			

- 4.03 As shown in *Tables 4-1*, *4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of **20** construction noise monitoring events were undertaken at designated locations. The results for $L_{eq30min}$ at NM1, NM2, RNM3 and NM3 are summarized in *Tables 5-1, 5-2, 5-3* and *5-4* and graphical plots are shown in *Appendix H*.

Table 5-1 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
27-Dec-12	10:15	10:45	50.1	49.1	50.4	51.6	52.8	49.5	50.8
2-Jan-12	10:30	11:00	45.6	48.8	46.7	47.2	45.2	46.5	46.8
8-Jan-12	9:30	10:00	46.9	48.5	49.1	48.1	50.7	51.2	49.3
14-Jan-12	10:10	10:40	47.5	46.5	50.1	49.1	48.2	48.7	48.5
24-Jan-12	10:28	10:58	51.2	52.2	49.5	51.0	51.2	48.7	50.8
Limit Le	vel in dI	B(A)	-						75

Table 5-2 Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	
27-Dec-12	10:55	11:25	61.5	62.9	60.1	63.5	59.4	60.5	61.6	
2-Jan-12	11:06	11:36	62.8	64.1	63.5	60.1	59.7	59.1	62.0	
8-Jan-12	10:04	10:34	64.9	65.2	65.7	64.1	65.5	66.8	65.4	
14-Jan-12	10:51	11:21	63.8	64.7	63.5	65.8	66.1	65.4	65.0	
24-Jan-12	11:10	11:40	60.4	61.5	59.7	62.8	63.6	64.0	62.3	
Limit Le	vel in dI	B(A)		-						

Table 5-3 Summarized of Construction Noise Monitoring Results at RNM3

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
27-Dec-12	10:25	10:55	64.5	64.0	63.8	65.1	64.9	64.4	64.5	67.5
2-Jan-12	10:34	11:04	66.4	64.1	65.5	63.3	66.8	65.5	65.4	68.4
8-Jan-12	10:08	10:38	62.4	63.6	61.8	62.5	63.9	64.1	63.1	66.1
14-Jan-12	10:45	11:15	65.0	64.1	63.8	65.9	66.5	66.1	65.3	68.3
24-Jan-12	11:07	11:37	65.7	64.1	64.5	63.3	66.9	66.5	65.4	68.4
Limit Le	vel in dE	B(A)	-					75		

^{*} A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4 Summarized of Construction Noise Monitoring Results at NM4

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
27-Dec-12	11:05	11:35	51.5	53.9	54.1	53.5	52.8	55.0	53.6
2-Jan-12	11:10	11:40	55.9	55.1	52.5	53.3	53.9	54.5	54.3
8-Jan-12	11:40	12:10	56.8	55.0	57.5	58.9	58.1	57.4	57.4
14-Jan-12	11:25	11:55	54.1	54.9	55.5	56.1	57.8	54.6	55.7
24-Jan-12	11:37	12:07	53.2	55.8	54.1	56.8	55.6	57.1	55.6
Limit Le	vel in dI	B(A)	-						75

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1*, *5-2*, *5-3* and *5-4* which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 13 events of water quality monitoring were carried out at the designated locations.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 29.09 to 37.28 ppt, and pH value was within 6.67 to 8.72.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1*, 6-2, 6-3 and 6-4. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

Table 6-1 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

		=										
G 11 1		ed Oxyg		_		Surf.	Dissol	ved Oxy				h Ave.
Sampling date		and	Mid Lay		of Bott	om La	ıyer (n	ng/L)				
	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Dec-12	8.50	8.34	8.55	9.26	8.32	9.01	NA	7.62	8.25	7.66	7.54	8.15
29-Dec-12	7.95	7.32	7.20	7.03	7.67	6.09	NA	7.78	6.63	6.06	7.92	6.25
31-Dec-12	7.22	8.55	8.41	8.60	7.58	9.22	NA	7.61	8.53	7.44	6.09	7.62
2-Jan-13	8.32	8.56	8.33	8.56	8.74	8.26	NA	8.47	8.33	8.39	8.55	8.34
4-Jan-13	8.53	8.57	8.46	8.37	8.70	8.90	NA	7.74	7.55	7.48	7.69	8.51
8-Jan-13	7.33	7.89	7.86	6.68	6.90	6.65	NA	6.93	8.19	6.75	6.23	7.02
10-Jan-13	7.74	8.73	8.37	8.07	8.62	8.10	NA	8.26	8.09	8.00	8.04	8.15
12-Jan-13	7.68	7.87	8.05	7.74	8.35	7.49	NA	7.83	7.97	7.67	8.26	7.40
14-Jan-13	8.93	8.71	8.95	8.34	8.35	8.33	NA	7.69	7.56	7.36	7.20	7.29
16-Jan-13	9.15	8.83	8.48	8.23	8.38	8.37	NA	8.82	7.45	8.06	8.45	8.14
18-Jan-13	8.57	8.42	7.79	8.79	7.22	8.96	NA	7.44	7.27	7.98	7.00	8.04
22-Jan-13	8.23	7.91	8.03	7.37	8.96	7.94	NA	8.02	8.09	7.45	8.49	7.43
24-Jan-13	7.85	8.13	7.21	8.36	7.08	8.36	NA	8.05	7.38	8.25	6.60	8.38

Table 6-2 Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)

Campling data		Turbidity Depth Ave. (NTU)					Suspe	ended S	olids D	epth A	ve. (m	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Dec-12	3.05	4.15	1.98	2.97	2.15	2.97	2.70	1.77	4.60	4.67	4.23	3.07
29-Dec-12	1.25	1.50	1.48	1.00	2.02	0.95	3.40	3.33	2.97	2.60	3.70	2.47
31-Dec-12	2.95	3.23	3.08	3.12	2.43	3.38	6.70	4.57	5.90	4.13	6.07	5.60
2-Jan-13	0.80	0.75	1.27	1.45	1.12	2.17	2.50	2.30	3.10	2.30	2.13	2.27
4-Jan-13	0.65	0.73	1.13	0.77	1.57	0.75	1.90	1.83	3.63	2.07	1.40	2.43
8-Jan-13	0.55	0.47	1.13	0.85	1.27	1.28	1.30	0.60	0.80	0.50	0.73	0.57
10-Jan-13	1.55	1.05	1.50	1.63	2.02	1.62	1.20	1.27	1.07	0.55	0.70	0.93
12-Jan-13	1.80	1.70	1.30	1.58	1.43	1.80	1.50	1.27	1.17	1.60	1.63	1.13
14-Jan-13	2.15	1.60	0.87	2.18	0.63	2.30	5.70	4.10	3.30	1.63	2.77	4.17
16-Jan-13	2.75	2.28	1.40	2.40	1.40	2.78	7.10	3.43	5.40	4.73	4.43	5.40
18-Jan-13	1.60	1.33	1.33	1.50	0.82	1.55	1.00	1.50	1.50	0.53	1.53	1.20
22-Jan-13	2.30	2.22	1.65	2.55	2.52	2.43	2.40	1.60	1.63	1.10	1.05	2.00
24-Jan-13	2.25	2.15	1.85	1.23	2.88	1.27	2.30	2.40	3.53	2.27	3.43	3.23

Table 6-3 Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling date		olved (olved (ve. of B	• -			_				
Sumpring dute	W1	W2	W3	Aid Layer C1	C2	С3	W1	W2	W3	C1	C2	C3
27-Dec-12	8.34	8.40	9.33	8.04	9.01	7.99	NA	7.39	7.69	7.54	7.97	7.48
29-Dec-12	7.96	8.01	6.52	7.50	7.95	7.67	NA	7.29	7.45	8.02	7.90	7.91
31-Dec-12	7.47	8.24	8.38	7.05	6.71	6.98	NA	6.64	8.50	6.75	7.89	5.76
2-Jan-13	8.28	8.45	8.45	8.17	8.60	7.99	NA	8.32	8.21	8.06	8.28	8.39
4-Jan-13	8.31	8.18	8.04	8.46	7.46	8.68	NA	7.24	7.38	7.46	7.06	7.56
8-Jan-13	7.61	8.03	7.43	7.05	7.17	7.75	NA	7.76	6.82	7.17	7.02	7.59
10-Jan-13	8.73	8.89	8.60	8.58	7.64	7.45	NA	7.85	7.48	7.64	8.18	7.62
12-Jan-13	7.96	8.56	9.09	7.55	7.50	6.61	NA	8.27	8.80	7.50	8.29	6.49
14-Jan-13	9.36	8.78	8.62	9.16	8.05	9.00	NA	7.66	7.43	8.05	7.12	7.93
16-Jan-13	9.39	8.96	9.02	8.88	7.42	8.93	NA	7.46	7.55	7.42	7.87	7.44
18-Jan-13	8.71	8.85	8.77	8.73	8.46	8.55	NA	8.58	7.56	8.46	7.83	7.60
22-Jan-13	8.92	8.70	8.16	9.05	8.59	8.69	NA	8.18	7.33	8.59	7.86	8.43
24-Jan-13	8.00	8.15	8.17	7.22	7.24	7.27	NA	8.18	8.17	7.24	8.02	7.14

Table 6-4 Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)

Compling data		T	urbidity	y Depth Av	re. (NTU)		Susp	ended S	Solids 1	Depth A	ve. (m	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Dec-12	1.65	1.40	1.50	0.97	1.78	1.38	2.70	2.90	2.40	2.37	3.57	3.83
29-Dec-12	1.95	2.45	1.78	2.22	2.38	2.58	3.00	3.80	2.80	3.60	3.37	2.67
31-Dec-12	2.45	3.02	3.80	2.38	4.92	3.25	4.90	6.03	5.60	4.37	4.50	8.53
2-Jan-13	1.30	1.57	2.37	1.03	2.75	0.70	2.00	2.33	2.77	3.17	1.67	1.50
4-Jan-13	1.50	1.35	0.93	1.85	1.23	3.73	2.00	1.57	1.60	1.43	2.47	1.57
8-Jan-13	0.30	0.55	1.20	1.17	1.30	1.05	0.50	0.53	0.73	0.77	0.77	0.60
10-Jan-13	1.00	1.15	0.88	0.98	1.13	0.75	1.50	2.23	0.67	0.70	1.27	0.90
12-Jan-13	0.90	0.90	1.28	0.95	1.60	1.37	0.50	0.87	1.07	1.67	2.43	1.60
14-Jan-13	1.20	1.42	1.62	1.23	1.73	1.43	6.40	4.00	6.03	5.27	4.63	3.83
16-Jan-13	1.35	1.50	1.80	2.10	2.10	1.53	2.40	3.20	3.80	2.40	0.67	1.87
18-Jan-13	0.85	0.90	1.02	1.45	1.37	1.25	0.90	0.50	1.53	0.77	0.50	0.50
22-Jan-13	2.70	1.93	2.47	1.42	2.08	1.45	0.80	1.00	2.37	1.57	1.25	1.33
24-Jan-13	2.45	2.25	2.35	3.00	1.65	2.98	2.30	2.63	2.07	2.93	3.07	2.80

Table 6-5 Summarized Exceedances of Marine Water Quality

Station	(Ave of	DO (Ave of Surf. & mid-depth)		DO (Ave. of Bottom Layer)		Turbidity (Depth Ave.)		SS (Depth Ave)		Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit	
				Mic	d-Ebb						
W1	0	0	0	0	0	0	0	0	0	0	
W2	0	0	0	0	0	0	0	0	0	0	
W3	0	0	0	0	0	0	0	0	0	0	
				Mid	-Flood						
W1	0	0	0	0	0	0	0	0	0	0	
W2	0	0	0	0	0	0	0	0	0	0	
W3	0	0	0	0	0	0	0	0	0	0	
No of Exceedance	0	0	0	0	0	0	0	0	0	0	

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on 30 December 2012 and 15 January 2013. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring Celtis Timorensis CT7 to CT10 on 30 April 2011.
- 7.03 In April 2012, CT_1A and CT_7A were damaged by the fell broken tree trunk due to tree decayed by white ants. Therefore, only 5 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT4A, CT_5A and CT_6A were inspected since May 2012. Furthermore, during tree inspection on 30 July, CT4A was disappeared after typhoon No.10 on 24 July and it was certified as dead. Eventually, 4 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT_5A and CT_6A were inspected in the remaining period.
- 7.04 The tree inspection report for this Reporting Period is presented in *Appendix M*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0	-
Reused in the Contract (Inert) ('000m ³)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0	-

Table 8-2 Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	9.84	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than 50m³ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 27 December 2012 and 2, 8, 15 and 22 January 2013.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix K*.

Table 9-1 Site Observations

Date	Findings / Deficiencies	Follow-Up Status
27 December 2012	Dry haul roads and access roads were observed, the Contractor should apply water spraying on the dusty road more frequently to minimize fugitive dust.	Rectified on 2 January 2013
2 January 2013	No adverse environmental impacts were observed during site inspection. However, full implementation of the required environmental mitigation measures, particularly construction dust suppression measures during dusty activities under dry and wind conditions, is reminded.	Not required for general reminders.
8 January 2013	No adverse environmental impacts were observed during site inspection. However, full implementation of the required environmental mitigation measures, particularly construction dust suppression measures during dusty activities under dry and wind conditions, is reminded.	Not required for general reminders.
15 January 2013	No adverse environmental impacts were observed during site inspection. However, full implementation of the required environmental mitigation measures, particularly construction dust suppression measures during dusty activities under dry and wind conditions, is reminded.	Not required for general reminders.
22 January 2013	No adverse environmental impacts were observed during site inspection	Not required for general reminders.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Donouting Dowied	Envir	Environmental Complaint Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality				
January - December 2012	0	1 (Nov 2011)	NA				
January 2013	0	1 (Nov 2011)	NA				

Table 10-2 Statistical Summary of Environmental Summons

Depositing Deviced	Envi	Environmental Summons Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	0	0	NA				
January - December 2012	0	0	NA				
January 2013	0	0	NA				

Table 10-3 Statistical Summary of Environmental Prosecution

Donauting Davied	Enviro	Environmental Prosecution Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	0	0	NA				
January - December 2012	0	0	NA				
January 2013	0	0	NA				

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- 11.11 During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force:
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill:
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

Terrestrial Ecology

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close
 co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree
 protective measures should be implemented to ensure trees identified as to be retained are
 satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Water Quality	 Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained.
Air Quality	 Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and Tarpaulin covering of any dusty materials on a vehicle leaving the site.

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	 Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising should be kept to a minimum and be handled, transported and
wianagement	disposed of in a suitable manner;
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

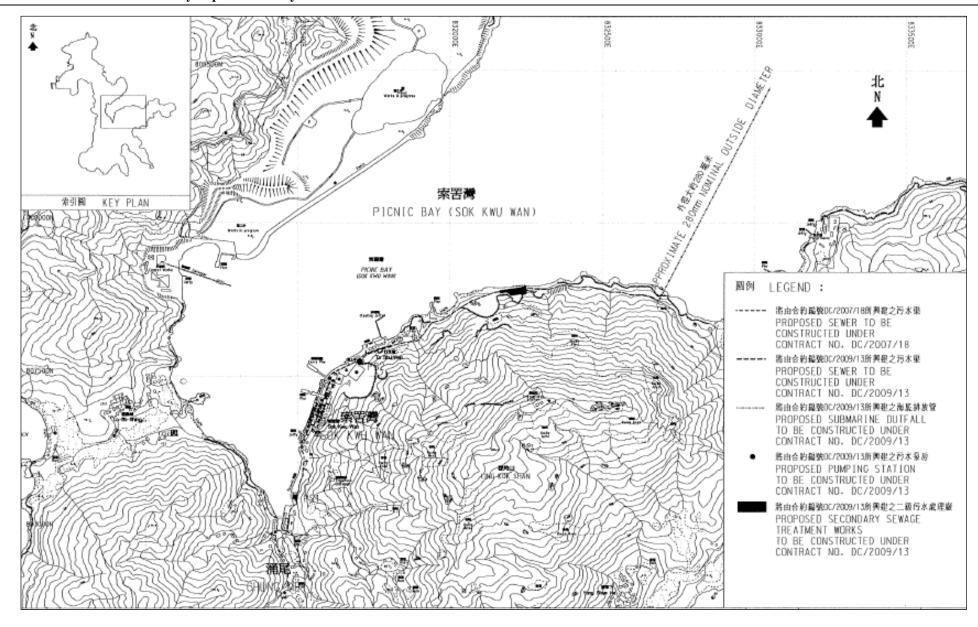
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 30th monthly EM&A Report covering the construction period from 26 December 2012 to 25 January 2013.
- 13.02 In this Reporting Period, no 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 27 December 2012 and 2, 8, 15 and 22 January 2013. All the observation has been rectified during the next week site inspection. The environmental performance of the Project was therefore considered as satisfactory.

RECOMMENDATIONS


- 13.07 During dry season, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.
- 13.08 Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Contact Details of Key Personnel

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.				
DSD	Employer	Ms. Jacky C.M. Wong	2159-3413	2833-9162				
SCJV	Engineer's Representative	Mr. Ian Jones	2982 0240	2982 4129				
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129				
Scott Wilson	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922				
Leader	Director	Mr. Wilfred So	2982 1750	2982 1163				
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163				
Leader	Construction Manager	Mr. K. Y. So	2982 1750	2982 1163				
Leader	Assistant Construction Manager	Mr. Ron Hung	2982 1750	2982 1163				
Leader	Environmental Officer	Mr. K. Y. So	2982 8652	2982 8650				
Leader	Environmental Supervisor	Mr. Chan Chi Kau	2982 8652	2982 8650				
Leader	Sub-Agent	Mr. Burgess Yip	2982 1750	2982 1163				
Leader	Senior Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163				
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079				
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079				
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079				

Legend:

DSD (Employer) – Drainage Services Department

CDM (Engineer) – Scott Wilson CDM Joint Venture

Leader (Main Contractor) – Leader Civil Engineering Corporation Limited

Scott Wilson (IEC) – Scott Wilson Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

A Master and Three Months Rolling Construction Programme

Activity ID	Description	_	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	JAN		FEB	2013 MAR		APR		MAY
Project Key I	Date										JAN		LED	WAN		AFN		WAT
KD0010	Receive Letter of Acceptance	0	100		05/05/10 A	1	05/05/10 A	Τ		KD0125								
KD0020	Project Commencement Date	0	100		17/05/10 A		17/05/10 A			E&M0010, E&M0070, E&M1001, E&M2001, KD0125, PRE0020, PRE0040, PRE0050, PRE0060, PRE0060, PRE0100, PRE0130, SKW0250, SKW0588, SKW0651, SKW0881, SKW1131, SKW1481, SKW1591, SKW1611, YSW0020, YSW0050, YSW0075, YSW0180, YSW0200, YSW0220, YSW0240, YSW02401, YSW02401, YSW0412, YSW0422								·
KD0030	Section W1 - Slope Works in Portion A & C		100		14/10/11 A		14/10/11 A		YSW0100, YSW0110, YSW0140.	KD0125, KD0130, YSW01755								
KD0040	Section W2 - YSW STW & Submarine Outfall (1370d)	0	0		16/06/14 *		16/06/14 *	0 *	E&M0700, YSW0400, YSW0800, YSW0870, YSW0925, YSW16704, YSW1700	KD0125, KD0132			. – – – – . I	=	=====	====	-====	:====
KD0050	Section W3 - Footpath Diversion in Ptn G	0	0		30/01/13 *		24/03/11 *	-678d *		KD0125	. ! _	Section	ı on W3 - Footpat	h Diversio	n in Ptn G	!		
KD0060	Section W4 - Slope Works in Portios H & I	0	0		30/01/13 *		27/03/12 *	-309d *	SKW05938, SKW059416	KD0125, KD0135, SKW05941		+	on W4 - Slope V				=====	
KD0070	Section W5 - P.S. No. 1 in Portion D	0	0		30/01/13 *		10/02/12 *	<u> </u>	SKW0741	KD0125			on W5 - P.S. No	1		:		
KD0080	Section W6 - Sewer & PS No2 in Ptn. E & F	0	0		30/01/13 *		10/02/12 *	-355d *		KD0125	· – – – – + }	Section	on W6 - Sewer 8	& PS No2 i	n Ptn. E & F ¯ ¯			
KD0090	Section W7 - SKW STW, RM & Sm. Outfall	0	0		07/10/14 *		07/10/14 *	0 *	E&M3360, SKW1221, SKW1291, SKW1431, SKW1441, SKW1521,	KD0125, KD0165, SKW0491	·			= == =	:=====	====	=====	.====
KD0100	Section W8 - Landscape Softworks	0	0		05/04/13 *		05/04/13 *	0 *	SKW1611, SKW1621	<u> </u>			ا ۱ – – – – – ا	 -+1		ection W8	- Landscap	e Softworks
KD0110	Section W9 - Establishment Works	0			03/04/14 *		03/04/14 *	0 *	SKW1631	KD0125	ііі			- i	<u>-</u> <u>I</u>			
KD0125	Project Completion	0	0		12/09/15 *		12/09/15 *	0 *	KD0010, KD0020, KD0030, KD0040, KD0050, KD0060, KD0070, KD0080, KD0090, KD0110, SKW0541		 		 			 		
KD0130	Completion of Maintenance Period of W1	1	0	31/01/13	31/01/13 *	13/10/12	13/10/12 *	-110d	KD0030, YSW01755, YSW01805, YSW01810			-I- Comp I	letion of Mainte	nance Peri	od of W1	!		
KD0132	Completion of Maintenance Period of W2	1	0	15/06/15	15/06/15 *	15/06/15	15/06/15 *	0	E&M0730, KD0040		ii;		i	1 1	i	i		
KD0135	Completion of Maintenance Period of W4	1	0	27/03/13	27/03/13 *	27/03/13	27/03/13 *	0	KD0060, SKW05947, SKW1581				 		Completi	on of Mair I	ntenance Pe	riod of W4
KD0145	Completion of Maintenance Period of W5	1	0	10/02/13	10/02/13 *	10/02/13	10/02/13 *	0			H		Completion of	Maintenan	ce Period of W			
KD0155	Completion of Maintenance Period of W6	1	0	10/02/13	10/02/13 *	10/02/13	10/02/13 *	0	E&M2130, E&M2180, SKW0961,		11.1		Completion of	Maintenan	ce Period of W	3 į		
KD0165	Completion of Maintenance period of W7	1	0	06/10/15	06/10/15 *	06/10/15	06/10/15 *	0 *	KD0090, SKW0595, SKW05972, SKW0861			ijij	 	-				
Preliminary ((Civil)								GKW 9501		<u> </u>	11111	<u> </u> 	1	<u> </u>	<u> </u>		
PRE0020	Pre-condition Survey	60	100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A	1	KD0020			 	!	-		!		
PRE0040	Erection of Engineer's Site Accommodation at YSW	60		47/05/40 4		!	15/07/10 A	1	KD0020		111	1 111 1	į	į	11 1	į		
PRE0050	Taking over the Secondary Engineer's Site Accomm	75		17/05/10 4	30/07/10 A	17/05/10 A	30/07/10 A		KD0020			 	 	 		!		
PRE0060	Application of Consent from Marine Department	60	100				15/07/10 A		KD0020			! #! !	!	!	11 1	!		
PRE0090	Working Group Meeting for Outfall Construction	120	100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1151	11.1	 	-		ii i	i		
PRE0100	Application & Consent of XP from HyD (Mo Tat Rd)	120	100		13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1491, SKW1501				_ T	ПТ — — — Г П			
PRE0130	Setup Web-site for EM&A Reporting	90	100	17/05/10 A	14/08/10 A	17/05/10 A	14/08/10 A		KD0020		11.1	1 11 1	ı	1	<u>ii i</u>	<u> </u>		
Preliminary (11.1	1 111 1	I		ii i	i		
Technical Subn												 	 	l I				
	n of SKWSTW & YSWSTW	1	.1	1,7,05,40,4	Lagragua	1,7,05,40.4	T 00/00/40 A	 	Lypage	E&M0020, E&M0040, E&M0235	111	1.00.1	İ	į	<u>ii</u> į	į		
E&M0010	Submission	38		17/05/10 A 24/06/10 A		!	23/06/10 A	-	KD0020 E&M0010	E&M0030, E&M0040 E&M0030, E&M0040		 	i	-		i		
E&M0020 E&M0030	Vetting and Comment by ER Revision and Resubmission	21 125		15/07/10 A		!	14/07/10 A 16/11/10 A	-	E&M0020	E&M0080			!	-		!		
E&M0080	Approval from the Engineer	14		17/11/10 A	30/11/10 A			1	E&M0030	E&M0295	11.1	1 111 1	i	1	ii i	į		
Hydraulic Desi			100	1.771710 A	100/11/10 A	1	100/11/10 A			1		1	•	<u> </u>	<u> </u>	<u> </u>		
E&M0040	Submission	21	100	15/07/10 A	04/08/10 A	15/07/10 A	04/08/10 A	1	E&M0010, E&M0020	E&M0050, E&M0101, E&M0240, E&M0260,	11.1	1 111 1	I	İ		!		
E&M0050	Vetting and Comment by ER	14		05/08/10 A		!	18/08/10 A	1	E&M0040	E&M0060	11.1	1 111 1	; ;	i	ii i	i		
E&M0060	Revision and Resubmission	97		19/08/10 A		!	10/10/10 A	1	E&M0050	E&M0430		 		1		1		
E&M0430	Approval from the Engineer	7		24/11/10 A	30/11/10 A	24/11/10 A	30/11/10 A	L	E&M0060	E&M0295	111	1.01.1		į	ii i	i		
<u> </u>	omission & Approval													i	 			
E&M0070	Submission of Membrane Module	50		17/05/10 A		!	05/07/10 A		KD0020	E&M0090	11.1	 	 	!	11 1	1		
E&M0090	Vetting and Comment by ER	14		06/07/10 A		!	19/07/10 A	1	E&M0070	E&M0100	111	1 10 1	i	į	<u>ii</u> į	i		
E&M0100	Revision and Resubmission	14		20/07/10 A		!	!	1	E&M0090	E&M0160		 	 	l I		 		
E&M0101 E&M0102	Submission of Equipment Vetting and Comment by ER	90		05/08/10 A 03/11/10 A	30/11/11 A 30/11/11 A	!	30/11/11 A	-	E&M0040 E&M0101	E&M0102 E&M0103	11.1	1 111 1		i	ii i	İ		
		1 60	100	U3/11/10 A	30/11/11 A	03/11/10 A	J30/11/11 A	<u> </u>	Lawiotot	Edivio 100	111	1::::!			<u> </u>			
Start date 05/05/10 Finish date 28/10/16 Data date 31/01/13 Run date 05/02/13 Page number 1A Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW Summary point Summar							3	Date :1/01/13	Re	Revision vision 0		Checked RH	Approved VC					
c Primavera Syst	Chart milestone neigh				3-11101	iai noiili	ig i logic	411111111111111111111111111111111111111	(1 GD 2013 - API 2013)									

Activity ID	Description	_	Percent Ea		Late Start		Total Float	Predecessors	Successors			2013			
E&M0103	Revision and Resubmission	60	100 01/02/			30/11/11 A	i lout	E&M0102	E&M0110, E&M0120, E&M0130, E&M0140,	JAN	FEB	MAR		APR	MAY
E&M0110	Approval on Coarse Screens	30	100 25/05/		_	25/05/11 A		E&M0103	E&M0390	- iii iii		i i	i i	i	
E&M0120	Approval on Fine Screens	30	100 12/09/			12/09/11 A		E&M0103	E&M0400, E&M3060	- !!! ! !!			! !		
E&M0130	Approval on Pumps	30	100 23/06/			23/06/11 A		E&M0103	E&M0410, E&M3070	-		!!!	! !	!	
E&M0140	Approval on Submersible Mixers	30	100 23/03/			23/03/11 A	/	E&M0103	E&M0420, E&M3080	- iii i ii		; ;	; ;	i	
E&M0150	Approval on Grit Removal Equipment	30	100			10/10/11 A		E&M0103	E&M0380, E&M3030	+ <u>- - - - - - - - </u>		+!	<u> </u>	!	<u> </u>
E&M0160	Approval on MBR Membrane Modules (M.M.)	105	100		_	24/02/11 A		E&M0100	E&M0360, E&M0370, E&M3010				; ;	; ;	
E&M0170	1 ''	30	100			<u> </u>		E&M0103	E&M0440, E&M3090	- 111 111		-	1	1	
	Approval on Sludge Dewatering Equipment	_!!	100 01/09/			01/09/11 A	174		E&M0450, E&M3100	111 111		-	I I	!	
E&M0180	Approval on Valves, Pipes & Fittings	30	85 19/11/		19/11/11 A	20/02/13	170	E&M0103		111 11	Approval on Valves	ı' ı	1 1	i	
E&M0190	Approval on Penstocks	30	100 15/11/			15/11/11 A		E&M0103	E&M0460, E&M3110	 			-	¦	ļ
E&M0200	Approval on Instrumentation	30	100 21/06/			08/03/12 A	!	E&M0103	E&M0470, E&M3130	11.1 1.11	1.1	1 1	i i	i	
E&M0210	Approval on MCC & LVSB	30	95 19/11/		19/11/11 A	03/06/11		E&M0103	E&M0480, E&M3140	A	pproval on MCC & L		1	. !	
E&M0220	Approval on BS Equipment	30	85 30/11/		30/11/11 A	02/11/11		E&M0103, E&M0280	E&M0490, E&M3150	1111 1111	<u> </u>	Approval	on BS Equipme	ent ¦	
E&M0230	Approval on FS Equipment	30	85 30/11/	11 A 19/03/13	30/11/11 A	15/08/11	-582d	E&M0103, E&M0290	E&M0295, E&M0320, E&M0500, E&M3160				pproval on FS E	Equipment	
Drawings Sub	bmission & Approval									1111 1111	1	;	;	;	
E&M0235	Sub. P&ID Drawings	100	, 0		24/06/10 A	24/07/11	-582d	E&M0010	E&M0250		Sub. I	P&ID Draw	ngs ı	1	
E&M0240	Sub. Plant GA Drawings	45	68 04/08/	10 A 14/02/13	04/08/10 A	24/07/11	-571d	E&M0040	E&M0250, E&M0280, E&M0290	1111 1111	Sub. Plant G			!	
E&M0250	Sub. Builder's Works Requirements Drawings	15	100 04/08/	10 A 31/01/13	4 04/08/10 A	31/01/13 A		E&M0235, E&M0240, E&M0260,	E&M0280, E&M0290	Su	ub. Builder's Works	Requireme	nts Drawings	i	
E&M0260	Sub. Mechanical Installation Drawings	60	70 27/09/	10 A 17/02/13	27/09/10 A	24/07/11	-575d	E&M0040	E&M0250		Sub. Mech	anical Insta	allation Drawing	ıs ¦	
E&M0270	Sub. Electrical Installation Drawings	60	75 27/09/		27/09/10 A	24/07/11	-572d	E&M0040	E&M0250, E&M0280		Sub. Electric	al Installati	on Drawings	-	
E&M0280	Sub. BS Installation Drawings	120	95 27/09/		27/09/10 A	28/10/11	-491d	E&M0240, E&M0250, E&M0270	E&M0220		s	ub. BS Insta	allation Drawing	ıs	t
E&M0290	Sub. FS Installation Drawings	120			13/11/11 A	11/08/11	-582d	E&M0240, E&M0250	E&M0230		· ·		FS Installation		
Statutory Subm	<u> </u>		00 31		1	1				11.1	1		I I	1	
E&M0295	Preparation of Submission to HEC	39	100 01/11/	11 A 30/11/11	A 01/11/11 A	30/11/11 A		E&M0080, E&M0230, E&M0430	E&M0300	11 1 1 1 1 1 1 1 1			I I I	!	
E&M0300	Application & Approval from HEC	150	90 01/11/		01/11/11 A	28/10/12	-157d	E&M0295	E&M0305	- ""		<u> </u>		ı eation & ∆n	oroval from HEC
				<u> </u>		+			E&M0680	- '''		! '		Ιαιίοπα Αρ	proval from HEC
E&M0305	Provision of Cables to the STWs	180	0 03/04/		29/10/12	26/04/13		E&M0300				¦ <u> </u>			l sian ta EOD
E&M0320	Form 314 Submission to FSD	14	0 19/03/		13/04/13	26/04/13	250	E&M0230	E&M0325, E&M0670	- " "		; <u>></u>	1 1	1	sion to FSD
E&M0325	Submission to WSD	14	100 01/11/			29/02/12 A		E&M0320	E&M0670, E&M0680			<u> </u>		·, : = =, = =	[
E&M0330	Form 501 Submission to FSD (YSW)	28	0 12/12/		14/11/13	11/12/13		E&M0500	E&M0700			· +,	+		T
E&M0340	Form 501 Submission to FSD (SKW)	28	0 06/09/	13 04/10/13	11/06/14	08/07/14	278d	E&M3160	E&M3360			1 1	I I	1	
E&M0350	Form 501 Submission to FSD (PS1 & PS2)	28	0 28/02/	13 28/03/13	14/11/12	11/12/12	-107d	E&M2016	E&M11800, E&M2180	111 111			Form 501	Submissio	n to FSD (PS1 & PS
Yung Shue V	Wan									iii iii	ii i	i i	, - -		
Preliminary										11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			! !	!	
YSW0020	Approval of Environmental Team	16	100 17/05/	10 A 01/06/10	A 17/05/10 A	01/06/10 A		KD0020	YSW00201, YSW0030, YSW00351,	† iii iii		; ;	i i	i	
YSW00201	Change Baseline Monitoring Location (Air&Noise)	59		10 A 30/07/10				YSW0020	YSW0030	1 !!!!!!!!		!!!	! !	!	
YSW0030	Baseline monitoring (Air & Noise)	23		10 A 22/08/10				YSW0020, YSW00201	YSW0035			1 1		!	
YSW0035	Baseline Monitoring Report Submission (A & N)	16	!!		A 23/08/10 A			YSW0030	YSW0120, YSW01545, YSW0500,	-	11 1	i i	i i	i	
		58						YSW0020	YSW0040	-		!!!	! !	!	
YSW00351	Submission & Approval for Monitoring Method (W)		100		02/06/10 A					+ iii - iii		· +i	÷	i	ļ
YSW0040	Baseline monitoring (Water)	155		10 A 31/12/10	30/07/10 A			YSW0020, YSW00351	YSW0350	- 111 110			1 1	1	
YSW0050	Erect Hoarding and Fencing	60	100 19/05/	10 A 17/07/10	4 19/05/10 A	17/07/10 A		KD0020	YSW0155	11 1 1 11			1 1	<u> </u>	
1	Slope W orks in Portion A & C									iii iii		i i	i i	i	
YSW0075	Mobilization	30	100 17/05/		A 17/05/10 A	15/06/10 A		KD0020	YSW0080, YSW0100			!!!	! !	!	
YSW0080	Site Clearance	30	100 16/06/		4 16/06/10 A	15/07/10 A		YSW0075	YSW0085, YSW0090, YSW0120] '		; ;	; ;	-	
1 1/01:					A 02/07/10 A	15/07/10 A		YSW0080	YSW0120	111 111	11 1	1 1	1 1	1	
YSW0085	Initial Survey	14	100 02/07/	10 A 15/07/10	1 02/01/10 /	10/0//10 /					I I I	1 1	1 1		
YSW0085 YSW0090	Initial Survey Verify the Rock Boulder required Stablization Wk	14 249	100 02/07/ 100 16/07/		A 16/07/10 A	21/03/11 A		YSW0080	YSW0100, YSW0110	1 !!! !!!		-	i i	i	
l I—————	-		100 16/07/	10 A 21/03/11	A 16/07/10 A	<u> </u>		YSW0080 YSW0075, YSW0090	YSW0100, YSW0110 KD0030	1	II I	i i	I I I	i I	
YSW0090	Verify the Rock Boulder required Stablization Wk	249		10 A 21/03/11 . 10 A 03/06/11 .	A 16/07/10 A A 20/09/10 A	21/03/11 A					U I U I T r	i i	i i I	 	
YSW0090 YSW0100	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder	249 257	100 16/07/ 100 20/09/ 100 16/07/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11	A 16/07/10 A A 20/09/10 A A 16/07/11 A	21/03/11 A 03/06/11 A		YSW0075, YSW0090	KD0030			. T	і і І — — — Г — І І І	 	
YSW0090 YSW0100 YSW0110 YSW0120	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile	249 257	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11 10 A 25/09/10	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A		YSW0075, YSW0090 YSW0090	KD0030 KD0030			1 1 1 1			
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails	249 257 35 2	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11 10 A 25/09/10 10 A 25/09/10	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132					 	
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform	249 257 35 2 14 2	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11 10 A 25/09/10 10 A 25/09/10 10 A 27/09/10	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 26/09/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133						
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails	249 257 35 2 14 2 45	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/	10 A 21/03/11 . 10 A 03/06/11 . 11 A 19/08/11 . 10 A 25/09/10 . 10 A 27/09/10 . 10 A 11/11/10 .	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 26/09/10 A A 28/09/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134						
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation	249 257 35 2 14 2 45 43	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11 10 A 25/09/10 10 A 27/09/10 10 A 11/11/10 10 A 30/11/10	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135						
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads	249 257 35 2 14 2 45	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11 10 A 25/09/10 10 A 27/09/10 10 A 11/11/10 10 A 30/11/10 10 A 12/12/10	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 26/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A A 01/12/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136						
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads Mesh Installation on Cut Slope	249 257 35 2 14 2 45 43 12	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/ 100 01/12/ 100 13/12/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11 10 A 25/09/10 10 A 25/09/10 10 A 27/09/10 10 A 11/11/10 10 A 30/11/10 10 A 12/12/10 10 A 15/12/10	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 12/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A A 19/10/10 A A 13/12/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A 12/12/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361						
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads Mesh Installation on Cut Slope Verify alignment of access & channels on slope	249 257 35 2 14 2 45 43 12 3	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/ 100 01/12/ 100 13/12/ 100 16/12/	10 A 21/03/11 . 10 A 03/06/11 . 11 A 19/08/11 . 10 A 25/09/10 . 10 A 27/09/10 . 10 A 11/11/10 . 10 A 30/11/10 . 10 A 12/12/10 . 10 A 15/12/10 . 10 A 12/04/11 .	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 12/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A A 13/12/10 A A 16/12/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A 12/12/10 A 15/12/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW01361 YSW0140						
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads Mesh Installation on Cut Slope	249 257 35 2 14 2 45 43 12	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/ 100 01/12/ 100 13/12/ 100 16/12/	10 A 21/03/11 . 10 A 03/06/11 . 11 A 19/08/11 . 10 A 25/09/10 . 10 A 27/09/10 . 10 A 11/11/10 . 10 A 30/11/10 . 10 A 12/12/10 . 10 A 15/12/10 . 10 A 12/04/11 .	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 12/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A A 19/10/10 A A 13/12/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A 12/12/10 A 15/12/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361				1		
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361 YSW0140 Start date 05	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads Mesh Installation on Cut Slope Verify alignment of access & channels on slope Construct U-channels & Step Channel on Cut Slope	249 257 35 2 14 2 45 43 12 3	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/ 100 01/12/ 100 13/12/ 100 16/12/	10 A 21/03/11 . 10 A 03/06/11 . 11 A 19/08/11 . 10 A 25/09/10 . 10 A 27/09/10 . 10 A 11/11/10 . 10 A 30/11/10 . 10 A 12/12/10 . 10 A 15/12/10 . 10 A 12/04/11 .	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 12/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A A 13/12/10 A A 16/12/10 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A 12/12/10 A 15/12/10 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW01361 YSW0140		Date		I		Checked Approved
YSW0090 YSW0100 YSW0110 YSW0120 YSW0131 YSW0132 YSW0134 YSW0135 YSW0136 YSW01361 YSW0140 Start date 05 Finish date 26	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads Mesh Installation on Cut Slope Verify alignment of access & channels on slope Construct U-channels & Step Channel on Cut Slope 05/05/10 Early bar Progress bar Cottal base	249 257 35 2 14 2 45 43 12 3	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/ 100 01/12/ 100 13/12/ 100 16/12/	10 A 21/03/11 . 10 A 03/06/11 . 11 A 19/08/11 . 10 A 25/09/10 . 10 A 27/09/10 . 10 A 11/11/10 . 10 A 30/11/10 . 10 A 12/12/10 . 10 A 15/12/10 . 10 A 12/04/11 .	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A A 13/12/10 A A 13/12/10 A A 13/04/11 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A 12/12/10 A 15/12/10 A 11/10/11 A	ginee	YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW01361 YSW0140						Checked Approved
YSW0090 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361 YSW0140 Start date Data date 31	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads Mesh Installation on Cut Slope Verify alignment of access & channels on slope Construct U-channels & Step Channel on Cut Slope 28/10/16 B1/01/13 Summary ber	249 257 35 2 14 2 45 43 12 3	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/ 100 01/12/ 100 13/12/ 100 16/12/	10 A 21/03/11 . 10 A 03/06/11 . 11 A 19/08/11 . 10 A 25/09/10 . 10 A 27/09/10 . 10 A 11/11/10 . 10 A 30/11/10 . 10 A 12/12/10 . 10 A 15/12/10 . 10 A 12/04/11 .	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A A 13/12/10 A A 13/12/10 A A 13/12/10 A A 13/04/11 A	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A 12/12/10 A 15/12/10 A 11/10/11 A		YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361 Pring Corp. Ltd.	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW01361 YSW0140		Date		I		
YSW0090 YSW0110 YSW0110 YSW0120 YSW0131 YSW0132 YSW0134 YSW0135 YSW0136 YSW01361 YSW0140 Start date 05 Finish date 28 Data date 31 Run date 05	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads Mesh Installation on Cut Slope Verify alignment of access & channels on slope Construct U-channels & Step Channel on Cut Slope 28/10/16 B1/01/13 D5/02/13 A Progress boint	249 257 35 2 14 2 45 43 12 3	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/ 100 01/12/ 100 13/12/ 100 16/12/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11 10 A 25/09/10 10 A 27/09/10 10 A 11/11/10 10 A 30/11/10 10 A 12/12/10 10 A 15/12/10 10 A 12/04/11 11 A 11/10/11	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 26/09/10 A A 26/09/10 A A 28/09/10 A A 19/10/10 A A 13/12/10 A A 13/12/10 A A 13/04/11 A Leade	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A 12/12/10 A 15/12/10 A 11/10/11 A 2r Civil Encontract N	lo. DC	YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361 Pring Corp. Ltd.	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361 YSW0140 KD0030		Date		I		
YSW0090 YSW0110 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361 YSW0140 Start date Data date 31	Verify the Rock Boulder required Stablization Wk Removal of Rock Boulder Stablizing work for rock boulder Cut the slope to design profile Mobilization of Plant and Material of Soil Nails Erect Scaffold and Working Platform Setting out and Verify Locations of Soil Nails Drilling and Soil Nails Installation Construction of Nail Heads Mesh Installation on Cut Slope Verify alignment of access & channels on slope Construct U-channels & Step Channel on Cut Slope 28/10/16 B1/01/13 D5/02/13 A Progress boint	249 257 35 2 14 2 45 43 12 3	100 16/07/ 100 20/09/ 100 16/07/ 100 24/09/ 100 12/09/ 100 26/09/ 100 28/09/ 100 19/10/ 100 01/12/ 100 13/12/ 100 16/12/	10 A 21/03/11 10 A 03/06/11 11 A 19/08/11 10 A 25/09/10 10 A 27/09/10 10 A 30/11/10 10 A 30/11/10 10 A 12/12/10 10 A 15/12/10 10 A 12/04/11 11 A 11/10/11	A 16/07/10 A A 20/09/10 A A 16/07/11 A A 24/09/10 A A 12/09/10 A A 26/09/10 A A 26/09/10 A A 19/10/10 A A 13/12/10 A A 13/12/10 A A 13/04/11 A Leade Leade	21/03/11 A 03/06/11 A 19/08/11 A 25/09/10 A 25/09/10 A 27/09/10 A 11/11/10 A 30/11/10 A 12/12/10 A 12/04/11 A 11/10/11 A Per Civil Encontract N Sewage Tr	lo. DC reatm	YSW0075, YSW0090 YSW0090 YSW0035, YSW0080, YSW0085 YSW0120 YSW0131 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361 Pring Corp. Ltd.	KD0030 KD0030 YSW0131, YSW0155, YSW0170 YSW0132 YSW0133 YSW0134 YSW0135 YSW0136 YSW01361 YSW0140 KD0030		Date		I		

	Activity ID	Description	_	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	IAN		FER		2013 MAR		ADD	MAY
Security Security		Removal of Ex U-Channel where clash with B. Wall								YSW01545	YSW01750	JAN		FEB				APR	MAY
The color of the								<u> </u>	1	YSW0035	YSW0153	 			i	1 11	1	i	
The State of Marketing 19 19 19 19 19 19 19 1								<u> </u>		YSW0050, YSW0120	KD0030, YSW0170, YSW0175, YSW01750	┨ :		1	!	1 11	I I	I I	
March Control of Control Control Private 75 10 00 00 00 00 00 00 0											KD0030	┪ !		1				l l	
March 1976 Description of section of all controls 1												-{ - i			;	i ii	i	i	
March Control ascord ascor	.		7									+	1 1			+!+			
March Part March			14						1	·		4			;			i	
March Marc	.	* ′								<u> </u>		4	10 110	Ϋ, ,	!	! !!	1	!	
Section No. Processed Contracts of Processed and Processed 10 1970 19									1044						l I	 	I	<u> </u>	
Company Comp				U	1			<u> </u>	-1240					1	1 1		1	1	
Company Comp	<u> </u>	•	30	100	29/11/12 A	22/12/12 A	29/11/12 A	22/12/12 A		13W01600	KD0130, 13W01803	ruct O-charmers	_1_1_	_ <u> </u>	Se 2)	<u> </u>			+
Part Part													п п	1	i			i	
Visible Column	<u> </u>		1 001		L47/05/40 A	L45/00/40 A	17/05/10 1	145/00/40 4	ı	LYDOOO	Lyewayaa						I	I I	
												4	11		i		i	i	
Company Comp								<u>!</u>	<u> </u>	·		_			!	1 11		1	
Year-State 10	YSW0432	Initial Survey	14	100	02/06/10 A	15/06/10 A	02/06/10 A	15/06/10 A		YSW0422	YSW0510				<u> </u>	<u>i ii</u>	<u> </u>	i_	
Control Cont		GL H - T													!			!	
Variety Substitution synthetics of fee Pump of col 181 190 2017 174 2017 174 175 1	YSW0500	ELS & Excavation for Inlet Pumping Station	105				08/09/10 A	21/12/10 A		YSW0035, YSW0422	YSW0510		1 1					1	
Value Common Co	YSW0510	Sub-structure construction (Inlet Pumping Stn)	129			29/04/11 A	22/12/10 A	29/04/11 A		YSW0432, YSW0500	YSW0520		п п	1	1	1 11	i	1	
V900003 51.5 A Pro-Amendation For Page (January Computer) 11 11 10 30 50 50 11 4 50 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 11 4 50 50 50 50 50 50 50	YSW0520	Backfill & Remove ELS (Inlet Pumping Stn)	40	100	30/04/11 A	08/06/11 A	30/04/11 A	08/06/11 A		YSW0510	YSW05701]	11			I II	I	ı I	
Vertical Control Con	YSW0530	ELS & Excavation for Equalization Tank	159	100	01/01/11 A	08/06/11 A	01/01/11 A	08/06/11 A		YSW0660	YSW0540, YSW05701	1	11 111	1	i	i ii	i	i	
V900/500 Sachising Remore ELS Equations for Tomates 20 (p) Septil A (1971) R. (1971	YSW0540	Sub-structure construction (Equalization Tank)	112	100	09/06/11 A	28/09/11 A	09/06/11 A	28/09/11 A		YSW0530	YSW0550, YSW05901	1	1 1		!		I	I	
VSW/0571 ELS & Excession for Get Chambers 29 100 5005*11 A 5005*11	YSW0550	Backfilling & Remove ELS (Equalization Tank)	20	100	29/09/11 A	18/10/11 A	29/09/11 A	18/10/11 A		YSW0540	YSW05901				i- :	i	i	i	†
YSW0571 Construct advantages for Cell Chardrees 10	YSW05701	ELS & Excavation for Grit Chambers	28			06/07/11 A	09/06/11 A	06/07/11 A		YSW0520, YSW0530	YSW05711, YSW05731	1	11		!		1	!	
Y8W00721 Sexified A Femore ELS for Oal Characters 12 100 201011 A 001011 A 011011 A 000011 A 011011 A 011011 A 000011 A 011011 A 011011 A 000011 A 011011 A	YSW05711	Construct sub-structure for Grit Chambers	106			20/10/11 A	07/07/11 A	20/10/11 A	İ	YSW05701	YSW05721, YSW05911	1	1 1		;	. ;; i ;;		i	
VSW/05/13 LS & Elementarion (Greenes Reparators (GS)	YSW05721		12				21/10/11 A	01/11/11 A		YSW05711	YSW05911	1	1 1		1	1 11	1	1	
Very Work Very			34							YSW05701	YSW05741	1				! !! ! !!	I	!	
Vanishing Fig. Section 1 Value Control Publisher in Chairs des Seguentium 27 10 511/011 / A 271/011 / A 171/011		' ' '	_!!					<u> </u>		YSW05731	YSW05751	+	1 1			тіт	r		
VSW05262 Construction for CS clabbre guidalies 45 10 10 10 10 10 10 10 1		'						<u> </u>				1	1 1			I II	I	!	
VSW00561 Sachtill a remove ELS for Chanes Separations 10 100 15/211 A 26/1211 A 26		<u>'</u>							<u> </u>			1			i	i ii	i	i	
Y89/08696 Exercise to Formation for Dependance Flooring 10 10 251/211 A 0.001112 A Y89/08696 Y89/0		1 ' '							<u> </u>			-	1 1		!	I II	I I	1	
VSW05001 Execute to formation - Get QA-M57 40 100 040112 A 1200212 A 100112 A 1200212 A 100112 A 1200212 A 100112 A 1200212 A 100112 A 10		·						<u> </u>				4			;	i ii	i	i	
Sym00001 General to formation - Grid GA-467 10 100 1300/12 A 2000/12								!	<u> </u>		<u> </u>	+				i – – –ii		· <u>!</u>	
Y-9000500 GF-10 IF Construction Grid GA-H3-15 90 100 2000911 A 271/211 A Y-900060 Y-9000500 Y-90		<u></u>	<u> </u>					<u> </u>	<u> </u>		<u> </u>	4			;	: ;;		i	
VSW05911 GF1 to IF Construction Grid R-SH-1-5 46 100 25/10/11 A 08/11/2 A 25/11/2 H 07/02/12 A 75/09/05/8 H					00/00/44 4							_			!	1 11	1	1	
TSW0991 To From Construction for KN-1-5 69 100 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A 251/11 A 07/021/2 A								!		· · · · · · · · · · · · · · · · · · ·		4		-	;	! !! ! !!		<u> </u>	
YSW05922 GF to IF Construction for Deodorazer Room			+					<u> </u>		•	<u> </u>	4	ш	1	1	1 11	1	1	
TSW00522 GP In FORTSTRUCTION OF HEAD STRUCTION OF HEAD STR								!								1 11 T 11			ļ
YSW05924 Circ Di I/F Construction for Grid GA-H5-7 50 100 2805/12 A 1607/12 A 2805/12 A 1607/12 A 2303/12 A YSW05921 YSW05001 YSW0								<u> </u>	ļ			_			i	i ii	i	i	
YSW0601 1/F to Roof Construction for Grid A-K/1-5 87 100 28/03/12 A 23/03/12 A 23/03/12 A YSW0601 YSW0801 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0802 YSW0800 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0801 YSW0802								<u> </u>					1 1					1	
YSW06021 I/F to Roof Construction for Gid N-S/1-5 75 100 09/01/12 A 23/03/12 A 29/03/12 A 29/								!	ļ	•		_	1 1		i	i ii	i	i	
YSW00021 1/F to Roof Construction for Grid K-N1-5		<u></u>						!	<u> </u>			1	1 1		! !	!!	1	!	
YSW06022 1/F to Roof Constuction for Deododizer Room 60 100 24/03/12 A 22/05/12 A 24/03/12 A 22/05/12 A YSW06023 YSW06023 1/F to Roof Constuction for Grid J-N/5-7 45 100 13/04/12 A 27/05/12 A 13/04/12 A 27/05/12 A YSW06023 E8M0690, YSW05924 11 11 1 1 1 1 1 1 1			75					!					1 1		L.			!	ļ
YSW06022 I/F to Roof Construction for Grid J-N/S-7		1/F to Roof Constuction for Grid K-N/1-5	44					!		YSW05921	YSW07201				!			1	
YSW06023 1/F to Roof Construction for Grid J-N5-7	YSW06022	1/F to Roof Constuction for Deodorizer Room	60			22/05/12 A	24/03/12 A	22/05/12 A		YSW05922	YSW0800		1 1					! !	
YSW06034 If it is not construction for Gad SA-H3-7 28 100 27/07/12 A 13/08/12 A 13	YSW06023	1/F to Roof Constuction for Grid J-N/5-7	45			27/05/12 A	13/04/12 A	27/05/12 A		YSW05923	E&M0580, YSW05924		11 111	1	i	1 11	1	i	
YSW06035 Construct buffle walls in Grease Separators 90 100 18/04/12 A 16/07/12 A 18/04/12 A 16/07/12 A 18/04/12 A 16/07/12 A 18/04/12 A 16/07/12 A 18/04/12 A 16/07/12 A 18/04/12 A 16/07/12 A 18/04/12 A 16/07/12 A 18/04/12 A	YSW06034	1/F to Roof Constuction for Grid GA-H/5-7	28	100	27/07/12 A	13/08/12 A	27/07/12 A	13/08/12 A		YSW05924	YSW0800		1 1			1 11 1 11		1	
YSW07202 Water tightness test for Equalization Tanks 42 100 22/05/12 A 22/05/12 A 22/05/12 A 22/05/12 A 22/05/12 A 22/05/12 A 22/05/12 A YSW07202 Water tightness test for Equalization Tanks 42 100 17/09/12 A 22/05/12 A 22/05/12 A 7/09/12 A YSW07203 Water tightness test for Grit Chambers 42 100 17/09/12 A 17	YSW06035	Construct buffle walls in Grease Separators	90	100	18/04/12 A	16/07/12 A	18/04/12 A	16/07/12 A		YSW05911	YSW07204		11 111	1	i	i ii	i	i	
YSW07202 Water tightness test for Equalization Tanks 42 100 22/05/12 A 02/07/12 A 29/09/12 A 17/09/12 A	YSW07201	Water tightness test for Inlet Pumping Station	60	100	23/03/12 A	21/05/12 A	23/03/12 A	21/05/12 A		YSW06021	YSW07202, YSW0800	T	1 1			T T		1	
YSW07203 Water tightness test for Grit Chambers 42 100 17/09/12 A 29/09/12 A 17/09/12 A 29/09/12 A YSW07202 YSW07204 YSW07204 Water tightness test for Grease Separators 32 100 03/10/12 A 31/10/12 A 03/10/12 A 31/10/12 A YSW06035, YSW07203 E8M0570, YSW07205, YSW0800 5 11	YSW07202	Water tightness test for Equalization Tanks	42			02/07/12 A	22/05/12 A	02/07/12 A	İ	YSW07201	E&M0600, YSW07203, YSW0800	1	1 1		;			i	
YSW07204 Water tightness test for Grease Separators 32 100 03/10/12 A 31/10/12 A 03/10/12 A 31/10/12 A 03/10/12 A 31/10/12 A 03/10/12 YSW07203		42					!		YSW07202	YSW07204, YSW0800	1	1 1		!	1 11	1	1		
YSW07205 Water tightness test for water channels 21 0 31/01/13 20/02/13 10/06/14 495d YSW07204 YSW0800			32					!		YSW06035, YSW07203	E&M0570, YSW07205, YSW0800	rs	1 1			. 11 I II		1	
YSW0800 ABWF installation 271 88 03/07/12 A 04/03/13 03/07/12 A 16/06/14 470d YSW06001, YSW06011, YSW06022, KD0040			<u> </u>					!	495d	YSW07204	YSW0800	╁───┐	11	<u> </u>	Vater tiah	tness test	for water cha	annels !	
YSW STW - GL T - X III IIII IIIII IIIIII IIIII IIIIII IIIII IIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIIII IIIIII IIIIIIIII IIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				•	1			<u> </u>	<u> </u>					<u> </u>		1 11		·	<u> </u>
YSW0610 Excavate to formation 10 100 08/09/10 A 17/09/10 A 08/09/10 A 17/09/10 A YSW0620 YSW0620 III IIII IIIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIIII IIIII IIIII IIIIII IIIII	<u> </u>			88	1 33,37,127	1 3 ., 30, 10	35,57,127	1 . 5, 55, 17	1 ., 00	, , , , , , , , , , , , , , , , , , , ,						1 11	1	'	+
YSW0620 Base slab construction 248 100 18/09/10 A 23/05/11 A 23/05/11 A 23/05/11 A 23/05/11 A 23/05/10 A 23/05/11 A 23/05/11 A 23/05/11 A 23/05/11 A 23/05/11 A 23/05/11 A 23/05/11 A 23/05/11 A 23/05			101	100	1 08/09/10 A	17/09/10 4	08/09/10 4	17/09/10 4	I	YSW0035 YSW0422	L YSW0620	۹۱	1 1				1	 	
										·			н н	L			i	i	
Start date 05/05/10 Faity bar	13000020	Daso stab constituetton	240	100	10/03/10 A	20/03/11 A	10/03/10 A	20/03/11 A			.5.7000	Ш	11 111	<u> </u>	<u> </u>	<u> </u>			
	Start date 05	/05/10 Farky bar													ato		Ravision	T .	Chacked Approved

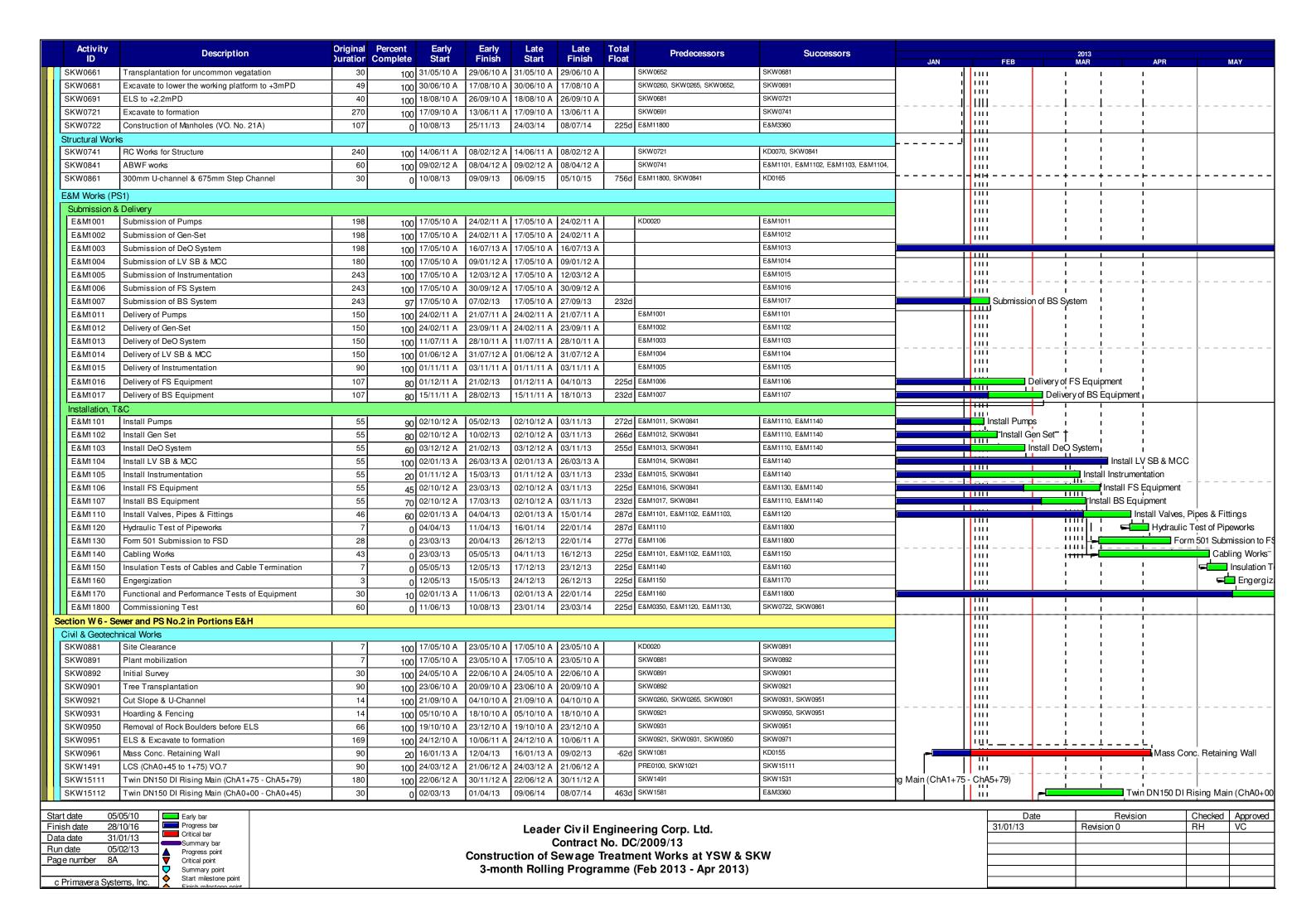
Start date 05/05/10
Finish date 28/10/16
Data date 31/01/13
Run date 05/02/13
Page number 3A

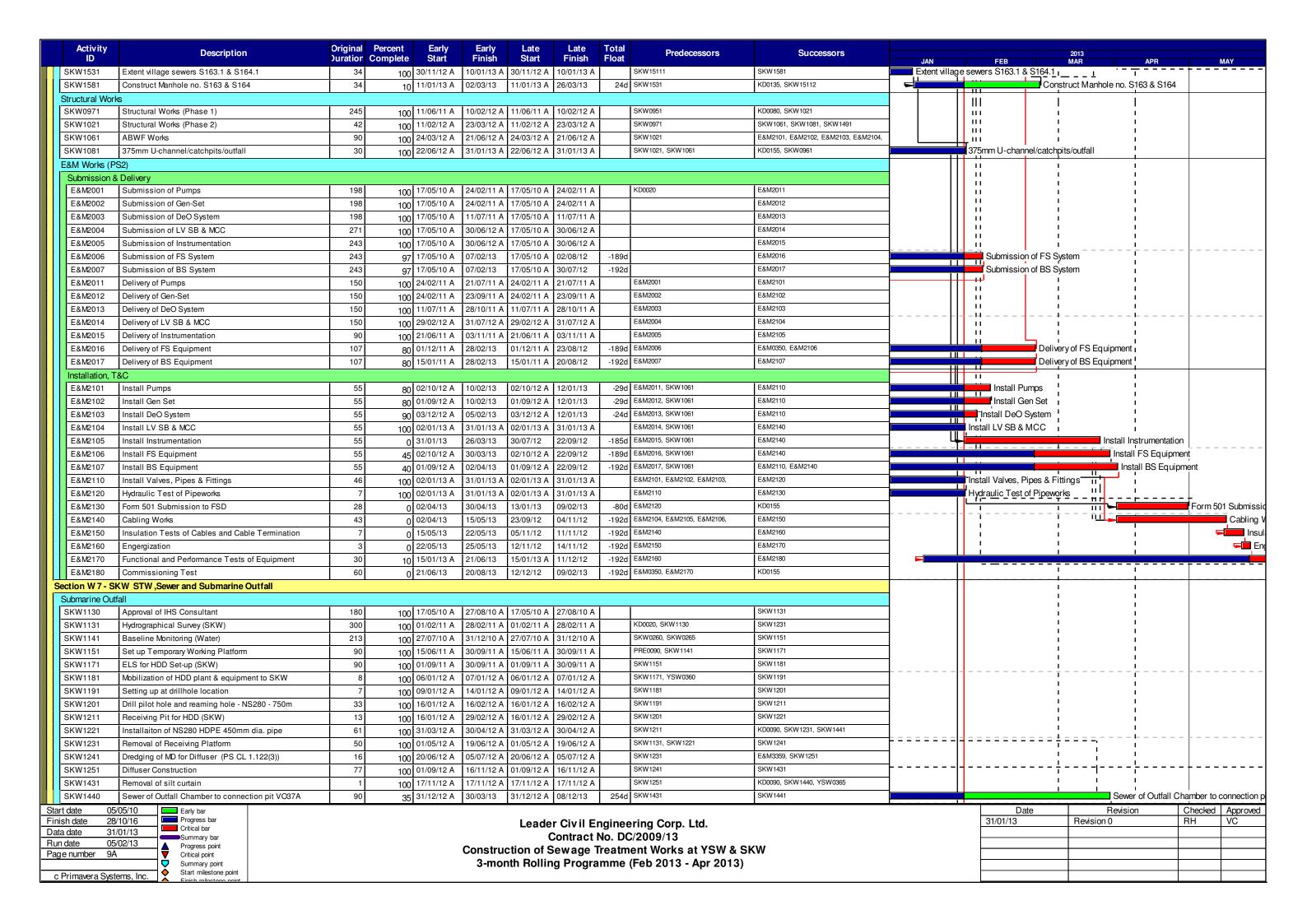
Critical bar
Summary bar
Progress point
Critical point
Summary point
Summary point
Summary point
Summary point
Summary point
Start milestone point

Date	Revision	Checked	Approved
1/01/13	Revision 0	RH	VC

Activity ID	Description	Original	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		FED		013 AR	400	WAY
YSW0630	G/F to 1/F construction	205		24/05/11 A	14/12/11 A	24/05/11 A	14/12/11 A		YSW0620	YSW0640	JAN	FEB	IVI	AR II	APR	MAY
YSW0640	1/F to Roof Construction	64		15/12/11 A	16/02/12 A	15/12/11 A	16/02/12 A		YSW0630	YSW0810	11 11	ii i	i	ii	i i	
YSW0810	ABWF installation	80	100	28/12/11 A		28/12/11 A	16/03/12 A		YSW0640	E&M0610, E&M0620, E&M0630, E&M0640	-{ !: :	111	1	11	!!!	
	GLF - H & DN Tanks		100 -	20/12/11/1	10,00,127	20, 12, 11, 71	1 . 0, 00, 12 / 1				 	 				
YSW0650	ELS & Excavation for DN Tanks	37	100 (08/09/10 A	14/10/10 A	08/09/10 A	14/10/10 A	l	YSW0035, YSW0422	YSW0660		 	i	ii	i i	
YSW0660	Sub-struction construction (DN Tanks)	78		15/10/10 A	31/12/10 A	15/10/10 A	31/12/10 A		YSW0650	YSW0530, YSW0670		!!!	!	!!	!!!	
YSW0670	Backfill & Remove ELS (DN Tanks)	70	100	01/01/11 A	11/03/11 A	01/01/11 A	11/03/11 A		YSW0660	YSW0680				H	; ;	
YSW0680	Base slab construction (SD1, SD2 & MBR4)	17		12/03/11 A	28/03/11 A	12/03/11 A	28/03/11 A		YSW0670	YSW0690		11.1	1	!!	!!!	
YSW0690	Construct Superstructure SD1, SD2 & MBR4	82	100	29/03/11 A	18/06/11 A	29/03/11 A	18/06/11 A		YSW0680	YSW0710, YSW0820			1	11		
YSW06901	Construct Superstructure of DN Tanks	28	100	15/05/12 A	11/06/12 A	15/05/12 A	11/06/12 A		YSW0735	YSW0830	H—— '11'	114	+-	!+		
YSW0705	Water test for MBR 4	47	100	01/10/12 A	16/11/12 A	01/10/12 A	16/11/12 A		YSW0710	E&M0510, E&M0640, YSW07055, YSW0820			1	11	1 1	
.			- 100						YSW0705, YSW07105	E&M0610	<u> </u>	hu	_ , i	11	i i	
YSW07055	Water test for SD1 & SD2	54	100	17/11/12 A	10/01/13 A	17/11/12 A	10/01/13 A		·	<u> </u>	Water test for S	الاه الاه النا	- i ¦	11	1 1	
YSW0710	Apply protective paint for MBR 4	7		24/09/12 A	30/09/12 A	24/09/12 A	30/09/12 A		YSW0690	YSW0705, YSW07105	4 ii i	ii	-	ii	i i	
YSW07105	Apply protective paint for SD1 & SD2	7	.00	01/10/12 A	07/10/12 A	01/10/12 A	07/10/12 A		YSW0710	YSW07055	- <u></u> ! -!	11	_		_	
YSW0820	ABWF installation	34		15/01/13 A	27/02/13	15/01/13 A	08/01/13	<u> </u>	YSW0690, YSW0705	E&M0630, E&M0640	<u> </u>		ABWF ins	1.1	-	
YSW0830	Water test for DN Tanks	28	0 (07/02/13	06/03/13	10/02/13	10/03/13		YSW06901	YSW0850				r test for DN T		
YSW0850	Apply protecitve paint for DN Tanks	6	0	07/03/13	12/03/13	10/03/13	16/03/13	4d	YSW0830	E&M0610			□ A	pply protecitve	paint for DN	Tanks
YSW STW - 0	GLA-F											iii		11	1 1	
YSW0730	Completion of HDD	0		21/01/12 A		21/01/12 A			YSW03601, YSW03605	YSW0732			 	11		
YSW0732	Excavate for MBR 2 & 3	20	100 2	21/01/12 A	09/02/12 A	21/01/12 A	09/02/12 A		YSW0730	YSW0733		 	i	ii	i i	
YSW0733	Construct basement of MBR 2 & 3	20	100	10/02/12 A	29/02/12 A	10/02/12 A	29/02/12 A		YSW0732	YSW0735, YSW0740		II I II I	!	11	1 !	
YSW0735	Construct superstructure of MBR 2	75	100	01/03/12 A	14/05/12 A	01/03/12 A	14/05/12 A	İ	YSW0733	YSW06901, YSW0736, YSW08302,		111	1	11	; ;	
YSW0736	Construct superstructure of MBR 3	100	100	15/05/12 A	14/05/12 A	15/05/12 A	14/05/12 A		YSW0735	YSW08302, YSW08305		111	1		!!!	
YSW0740	ELS & excavate for Outfall Shaft	75	100	01/03/12 A	14/05/12 A	01/03/12 A	14/05/12 A		YSW0733	YSW0750			+-	!+	-	
YSW0750	Construct basement of Outfall Shaft	19		15/05/12 A	02/06/12 A	15/05/12 A	02/06/12 A		YSW0740	YSW07501		ш	1	11	1 1	
YSW07501	Connect additional flange to HDPE pipe (VO 042)	5	100	03/06/12 A	07/06/12 A	03/06/12 A	07/06/12 A		YSW0750	YSW07502			I I	11	1 1	
YSW07502	Construct sub-structure of Outfall Shaft	16		08/06/12 A	23/06/12 A	08/06/12 A	23/06/12 A		YSW07501	YSW0760		iii	i	ii	i i	
YSW0760	Backfill & remove ELS (outfall shaft)	8	100	24/06/12 A	01/07/12 A	24/06/12 A	01/07/12 A		YSW07502	YSW01800, YSW07601, YSW07603,			1	11	!!!	
YSW07601	Construct superstructure for Outfall Shaft	30		03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		YSW0760	YSW08301, YSW08305		iii	i -	i i	-	
YSW07603	ELS & excavate for FSH Water Supply Tank	25		01/06/12 A	25/06/12 A	01/06/12 A	25/06/12 A		YSW0760	YSW07604	┧┦╸╸╸╸╸╴╎╣ <mark>┤</mark> ╬		1	!!	!!!	
YSW07604	Construct substructure for FSH Water Supply Tank	24		26/06/12 A	19/07/12 A	26/06/12 A	19/07/12 A		YSW07603	YSW07605	-{ ;; <u> </u> ;		' '	11		
	<u> </u>								YSW07604	YSW07607		111 1	1	11	1 1	
YSW07605	Backfill & remove ELS for FSH Water Supply Tank	12	100	20/07/12 A	31/07/12 A	20/07/12 A	31/07/12 A			<u> </u>		 	1	11	1 1	
YSW07607	Construct basement of MBR 1 & Workshop	24		01/08/12 A	24/08/12 A	01/08/12 A	24/08/12 A		YSW07605	YSW07608, YSW07609	11 ''11''	ii4i-	i-	14	_ i i -	
YSW07608	Construct superstructure for FSH Water Supply Tk	37		25/08/12 A	30/09/12 A	25/08/12 A	30/09/12 A		YSW07607	YSW08304, YSW08305			I	11		
YSW07609	•	37			30/09/12 A		30/09/12 A		YSW07607	YSW07610, YSW08303, YSW1470	_	iii i	i	ii	i i	
	<u> </u>	31			31/10/12 A		31/10/12 A		YSW07609	YSW0840, YSW16606, YSW16607,	W Pump Rm			11	_! '	
YSW08301	Water tightness test for Outfall Shaft	42	٠		09/04/13	12/04/13	23/05/13	44d	YSW0380, YSW07601	E&M0690	<u> </u>	սի դի		11	Water tig	htness test for Outf
YSW08302		95	100	03/07/12 A	05/10/12 A	03/07/12 A	05/10/12 A		YSW0735, YSW0736	E&M0520, E&M0590, E&M0605, E&M0650		rdi		'L	_	
YSW08303	Water tightness test for MBR 1	19	100	30/11/12 A	18/12/12 A	30/11/12 A	18/12/12 A		YSW07609	E&M0520	htness test for MBR 1		I I			
YSW08304	Water tightness test for FSH Water Supply Tank	32	0	31/01/13	03/03/13	12/02/13	16/03/13	13d	YSW07608	E&M0610] ;		Water t	ightness test fo	or FSH Wate	r Supply Tank
YSW08305	Apply protective paint	120	58	02/10/12 A	22/03/13	02/10/12 A	16/03/13	-6d	YSW0735, YSW0736, YSW07601,	E&M0610, YSW0870		"		Apply pro	tective paint	
YSW0870	ABWF installation	30	0 2	22/03/13	21/04/13	18/05/14	16/06/14	422d	YSW08305	KD0040	<u> </u>	1111	<u> </u>		<u> </u>	ABWF installation
Fire Hose Re	eel / Sprinkler Pump Rm	<u> </u>					<u>'</u>	<u> </u>			!! !!		!	11	1	
YSW0840	ELS & excavate to formation (+0 mPD approx.)	40	0 0	09/02/13	20/03/13	17/01/13	25/02/13	-23d	YSW07610, YSW16606	YSW0860		1111	<u> </u>	ELS & exc	avate to form	ation (+0 mPD app
YSW0860	Sub-structure construction	40		21/03/13	29/04/13	26/02/13	06/04/13		YSW0840	YSW0880		iii	I.			Sub-structure
YSW0880	Backfill & remove ELS	35	<u> </u>	30/04/13	03/06/13	07/04/13	11/05/13		YSW0860	YSW0890			I I	11	I I	
YSW0890	Construction Ground Slab at +5.2mPD	40		04/06/13	13/07/13	12/05/13	20/06/13	<u> </u>	YSW0880	YSW0900	†	III	i	П	I	
YSW0900	Superstructure construction upto +8.2mPD	35	<u>*</u>	14/07/13	17/08/13	21/06/13	25/07/13		YSW0890	YSW0910, YSW0925	7 1 1 1 1	11 I 11 I	1	H D	l	
YSW0900 YSW0910	Water test	28		18/08/13	14/09/13	26/07/13	22/08/13	-23d		YSW0915		iii	i -	i i	- i-	
YSW0915	Apply protective paint	14		15/09/13	28/09/13	23/08/13	05/09/13		YSW0910	E&M0640, YSW0925		111	!	11	1	
	1		<u>`</u> !						YSW0900, YSW0915	KD0040			+ _	 -	' -	↓
YSW0925	ABWF installation	30	0]3	30/08/13	28/09/13	18/05/14	16/06/14	_ ∠61d	10440000, 10440910	1.00070	 		<u> </u>		1	
Emergency S		1'	,	47/00/:-	Loguerie	47/00/11	Loguere	ı	Lycwozcoc	Lycwitago			I I	11	l İ	
YSW1470	ELS & excavate to formation (-1.5mPD Approx.)	16			02/10/12 A				YSW07609	YSW1480	<u> </u>	III	i	П	ı	
YSW1480	Sub-structure construction	14			16/10/12 A		16/10/12 A	ļ	YSW1470	YSW1490	- : : : : : : : : : : : : :	111	1	11	I I	
YSW1490	Backfill & extract sheetpile	3			19/10/12 A		19/10/12 A	<u> </u>	YSW1480	YSW1500	_	111	i	ii	i	
YSW1500	Superstructure construction upto +10.5mPD	41	100 2	20/10/12 A	29/11/12 A	20/10/12 A	29/11/12 A		YSW1490	YSW1530, YSW1536	uction upto +10.5mPD		I	П	ı	
	5/05/10 Early bar											Da		Revis	ion	Checked App
	3/10/16 Progress bar Critical bar								ering Corp. Ltd.			31/01/13		Revision 0		RH VC
	5/00/10 Summary bar					(Contract I	No. DO	C/2009/13							
Run date 05 Page number 4A	I Togress point				Construc	ction of S	ewage 1	reatm	ent Works at YSW & S	KW						
. ago nambor 4/	Summary point								(Feb 2013 - Apr 2013)							
c Primavera Syst	tems, Inc. Start milestone point															
	Linich milactono noint															

Activity ID	Description	Original Ouration	Percent Early Complete Start			Late Finish	Total Float	Predecessors	Successors	JAN		FEB	2013 MAR	APR		MAY
YSW1530	Underground pipeline works	40	0 31/01/13			/05/13	73d	YSW1500	E&M0690, YSW1680	1.				und pipeline wor	ks	WAT
YSW1536	Water tightness test	40	0 31/01/13	! !		/03/13	3d	YSW1500	YSW1538	╼╫╫ ╒			· I-	ntness test = =	=== = = =	'
YSW1538	Apply protective paint	30	0 12/03/13			/04/13	3d	YSW1536	YSW1540	∃l! !!	11 11	-			protective pa	aint
YSW1540	ABWF installation	40	0 11/04/13			/05/13		YSW1538	E&M0690	 !			- 11		protoco po	ABWF
	Cable Draw Pits & Ducting	10	0 11/01/10	20/00/10	0 1/ 10 20/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1	 	11 11	· II	11	1		
YSW16601	ELS & excavate 6m deep sewer (FM1 - YFMH13)	60	09/02/13	09/04/13 12/0	01/13 12/	/03/13	-284	YSW0760, YSW16606, YSW16607,	YSW16602	- 1!: 1!!	11 11			FIS &	excavate 6m	ndeepsewer(FN
	, , , ,		ŭ l							416 133	7783		11		LADAVAIC OIT	deep sewer (11
YSW16602	Lay pipe & backfill 6m deep sewer (FM1 - YFMH13)	45	0 10/04/13	!		/04/13		YSW16601	E&M0680, YSW1700	41! 1!!	1999	<u> </u>	11			Lay
YSW16603	Construct UU & pipes along sea side (Grid Q-X)	60	0 07/02/13	!		/05/13		YSW16607, YSW16608	YSW16604, YSW16703	- ¦		! 	11	Constr	uct UU & pip	oes along sea si
YSW16604	Construct UU & pipes along sea side (Grid XA-D)	60	0 08/04/13	!		/07/13		YSW16603	YSW16605, YSW16701	_ i ii	III	i	11	<u> </u>		
YSW16605	Construct UU & pipes along sea side (Grid D-Q)	60	0 07/06/13	 		/09/13		YSW16604	YSW16702, YSW1700	<u> </u>		<u>,</u>	11	!		
YSW16606	Construct UU & pipes along hill side (Grid D-Q)	90	90 10/10/12 A	!		/01/13		YSW07610	YSW0840, YSW16601			Construct UU & pir	τ.	` '	·	
YSW16607	Construct UU & pipes along hill side (Grid Q-X)	72	90 20/08/12 A	07/02/13 20/0	08/12 A 11/	/01/13		YSW07610	YSW16601, YSW16603			Construct UU & pip				
YSW16608	Construct UU & pipes along hill side (Grid XA-D)	72	90 30/11/12 A	07/02/13 30/	11/12 A 11	/01/13	-26d	YSW07610	YSW16601, YSW16603, YSW1690			Construct UU & pip	es along hill	side (Grid XA-I))	
YSW16701	Construct Boundary Wall (Grid XA-D)	80	90 10/01/13 A	15/06/13 10/0	01/13 A 19/	/09/13		YSW16604	YSW16702							
YSW16702	Construct Boundary Wall (Grid D-Q)	80	0 06/08/13	25/10/13 20/0	09/13 08/	/12/13	45d	YSW16605, YSW16701	YSW16703	∃ : :: 	1111		11	i		
YSW16703	Construct Boundary Wall (Grid Q-X)	80	0 25/10/13	13/01/14 09/	12/13 26/	/02/14	45d	YSW16603, YSW16702	YSW16704, YSW1700	 	iiii		11			
YSW16704	ABWF installation for Boundary Wall	240	0 06/08/13	03/04/14 20/	10/13 16	/06/14	75d	YSW16703	KD0040	71! I !!I	1111	ll l	11	- !		
YSW1680	Fire Hydrant & pipeline installation	120	10 26/01/13 A	27/06/13 26/0	01/13 A 08	/09/13	73d	YSW1530	YSW1690, YSW1700	╡ ; 				<u> </u>		
YSW1690	Construction of Road Kerbs, Downpipes, U-channel	180	5 02/01/13 A	15/12/13 02/0	01/13 A 26	/02/14	73d	YSW16608, YSW1680	YSW1700		Тп	II	11	<u> </u>		
YSW1700	Road Paving	110	0 13/01/14	 		/06/14		YSW16602, YSW16605, YSW16703,	KD0040	∃∏ ; ;;i	1111		11	i		
1011700	Trodd T dving	110	0 10/01/11	00/00/11	52,11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		YSW1680, YSW1690		i i	1111		11	1		
Submarine Out	fall								•	<u> </u>	111					
YSW0180	Coordination of HEC	53	100 17/05/10 A	08/07/10 A 17/0	05/10 A 08/	/07/10 A		KD0020	YSW0350	7 ; ;;	iiii		ii	i		
YSW0200	Submission and Approval of Ecologist	60	100 17/05/10 A	15/07/10 A 17/0	05/10 A 15/	/07/10 A	i	KD0020	YSW0210	11! !!	1111		11	!		
YSW0210	Ecology Survey	211	100 16/07/10 A	!		/02/11 A	1	YSW0200	YSW0350	∃ ¦ ;;	1111		11	i I		
YSW0220	Submission and Approval of In. Hydro Survey	103	100 17/05/10 A	!		7/08/10 A	1	KD0020	YSW0230	-	1111	ı	11	1		
YSW0230	Hydrogrophical Survey (YSW)	157	100 17/00/10 A	! 		/01/11 A		YSW0220	YSW0350	 : ::	1111		11	!		
YSW0240	Material Submission, Approval of HDPE pipe	319	100 25/05/10 A	!		/03/11 A		KD0020	YSW0360	- iii	nn		i i -	· 		'
		83	100 17/03/10 A	! 		/03/11 A		KD0020	YSW0250	- ! !!	1111		11	!		
YSW02401	Clarify Coordinate of Point Y (Reply of RFI 010)			!						- ; ;;	1111		11	i		
YSW0250	Submit and Approval of Method Statement for HDD	188	100 19/09/10 A	!		/03/11 A		YSW02401	YSW0260, YSW0270, YSW0340	-	1111		11	I		
YSW0260	Submission of HDD Method Statement to HEC	14	100 26/03/11 A	!		/04/11 A		YSW0250	YSW0340	- ¦ :'	1111	ll l	11			
YSW0270	Additional G.I. Boreholes (YSW)	123	100 19/09/10 A	!		/01/11 A		YSW0250	YSW0280, YSW0290	Дii	_ uu		ii _	i		
YSW0280	Submission of propose alignment	44	100 20/01/11 A	!	01/11 A 04/	/03/11 A		YSW0270	YSW0310, YSW0340	네! !!	1111		11	Į.		
YSW0290	Submission of Marine Notice	69	100 20/01/11 A			/03/11 A		YSW0270	YSW0350	」 ;	1111		- ;;	i		
YSW0310	Construction of Entry Pit and Preparation Work	27		31/03/11 A 05/0	03/11 A 31	/03/11 A		YSW0280	YSW0320	네! !!	1111	ll l	11	!		
YSW0320	Prepare of HDD Drill Rig Set-up (YSW)	28		28/04/11 A 01/0	04/11 A 28	/04/11 A		YSW0310	YSW0330, YSW0350	71¦ ::1	1111		11	l I		
YSW0330	Establishment of HDD plant & equipment	6	100 09/04/11 A	14/04/11 A 09/0	04/11 A 14	/04/11 A		YSW0320	YSW0340	7 i ii	1111	·	11	Ī		
YSW0340	Setting up at drillhole location	14	100 15/04/11 A	28/04/11 A 15/0	04/11 A 28/	/04/11 A	İ	YSW0250, YSW0260, YSW0280,	YSW0350	TI: : : : : : : : : : : : : : : :			IT -			
YSW0350	Drill pilot hole and reaming hole - NS400 - 530m	229	100 29/04/11 A	13/12/11 A 29/0	04/11 A 13/	/12/11 A	i	YSW0040, YSW0180, YSW0210,	YSW0360	716 61	iiii		ii	i		
YSW0360	Installation of NS400 HDPE 530m	17		30/12/11 A 14/	12/11 A 30	/12/11 A	i	YSW0240, YSW0350	SKW1181, YSW03601, YSW03620,	TI! !!	1111		11	!		
YSW03601	Demobilization of HDD plant & equipment	7	100 31/12/11 A	06/01/12 A 31/	12/11 A 06	/01/12 A		YSW0360	YSW03605, YSW03641, YSW0730	∃ ; ;;	1111		11	i		
YSW03605	Remove Entry pit of HDD	14	100 07/01/12 A	20/01/12 A 07/0		/01/12 A		YSW03601	YSW0730	- ! !:	1111		11	I .		
YSW03620	Removal of Receiving Pit	14		13/01/12 A 31/		/01/12 A	1	YSW0360	YSW0365				!	. – – - <u>-</u> – –		
YSW03641	Prepare backfilling material under VO 046A	120	100 07/01/12 A	05/05/12 A 07/0		/05/12 A		YSW03601	YSW0365	- i ii	1111	ll l	ii	i		
YSW0365	Set up of Silt Curtain as per EP	120	100 07/01/12 A 100 23/11/12 A	24/11/12 A 23/		/11/12 A		SKW1431, YSW03620, YSW03641	YSW0370	I	1111		11	!		
	Dredging of Marine Deposit for Diffuser (YSW)	2		!		/11/12 A		YSW0360, YSW0365	YSW0380	_ ``			11	i		
YSW0370		5	100	!				<u> </u>		eposit for Diffuser	(191		r Constructi			
YSW0380	Diffuser Construction (YSW)	60	55 30/11/12 A	!		/04/13		YSW0370	E&M0690, YSW0400, YSW08301	T n	пп		r Constructi	·		======
YSW0400	Removal of silt curtain	30	0 27/02/13	28/03/13 18/0	05/14 16/	/06/14	445d	YSW0380	KD0040	<u> </u>	ш	4		Removal of sil	curtain	
E&M Works - Y	-			1					I manage	- : ::	1111		11	 		
E&M0360	Delivery of MBR Memb. Mod. (MBR Tk 4)	118		21/06/11 A 24/0				E&M0160	E&M0510	41i iil	1111		ii	i		
E&M0370	Delivery of MBR Membrane Modules - 2nd Shipment	236	100					E&M0160	E&M0520	긔!: !!	1111		11	!		
E&M0380	Delivery of Grit Removal Equipment	81	100	29/12/11 A 10/				E&M0150	E&M0530	_ ;	1111		11	;		
E&M0390	Delivery of Coarse Screens	129	.00	12/01/12 A 06/0	09/11 A 12	/01/12 A		E&M0110	E&M0540	_ ! ii	1111	ı	11	į.		
E&M0400	Delivery of Fine Screens	80	100 12/09/11 A	30/11/11 A 12/0	09/11 A 30	/11/11 A		E&M0120	E&M0550							
E&M0410	Delivery of Pumps	75	100 23/06/11 A	05/09/11 A 23/0	06/11 A 05	/09/11 A	i	E&M0130	E&M0560	7]î i	1111		11	i		
E&M0420	Delivery of Submersible Mixers	230	100 26/02/11 A	26/02/11 A 26/0	02/11 A 26	/02/11 A	İ	E&M0140	E&M0570	71: ::1	1111		11	1		
Start data 05	/05/10			<u> </u>	-		-		<u>'</u>				1	Povision	Chook	rad Approvad
	/05/10				0046= 0	Niv: 11 F	aine e	ring Corn I td				Date 31/01/13	Revision	Revision n 0	RH	red Approved VC
	/01/13 Critical bar			L				ring Corp. Ltd.				2.,0.,10	. 10410101	· •		1,0
Run date 05	/02/13 Summary bar Progress point			Construct				/2009/13	ZW							
Page number 5A	Critical point							ent Works at YSW & SI	∖v v							
B	Summary point Start milestone point			ა-month	Rolling I	Progra	mme (Feb 2013 - Apr 2013)								
c Primavera Syst	ems, Inc.															


Activity ID	Description	Original Per Juration Com	rcent nplete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	JAN		FEB	2013 MAR	APR	MAY
E&M0440	Delivery of Sludge Dewatering Equipment	558	55	31/08/11 A	09/10/13	31/08/11 A	10/06/13	-121d	E&M0170	E&M0580			TEB	MALL	ALIT	IVIA
E&M0450	Delivery of Valves, Pipes & Fittings	560	90	30/08/11 A	29/08/13	30/08/11 A	14/09/13	17d	E&M0180	E&M0590	- 1 . 1					
E&M0460	Delivery of Penstocks	135	100	12/08/11 A	24/12/11 A	12/08/11 A	24/12/11 A		E&M0190	E&M0600, E&M0605	1	-	· <mark>-</mark> 🕆 ·	¦;	· 	
E&M0470	Delivery of Instruments	232	100	03/11/11 A	21/06/11 A	03/11/11 A	21/06/11 A		E&M0200	E&M0610	111511	1111		+		
E&M0480	Delivery of MCC LVSB	90	30	03/12/12 A	05/12/14	03/12/12 A	05/04/13	-609d	E&M0210	E&M0620		1111		11		
E&M0490	Delivery of BS Equipment	446	38	10/12/11 A	18/08/14	10/12/11 A	14/04/13	-491d	E&M0220	E&M0630					-	
E&M0500	Delivery FS Equipment	507	25	11/12/11 A	12/12/14	11/12/11 A	09/05/13	-582d	E&M0230	E&M0330, E&M0640	- 111 1 111			11		
E&M0510	Install Membrane Modules in MBR Tank no. 4	89	70	03/11/12 A	26/02/13	03/11/12 A	23/05/13	86d	E&M0360, YSW0705	E&M0690			Install M	embrane Modules	in MBR Tank no. 4	
E&M0520	Install Membrane Modules in MBR Tank No. 1 to 3	57	50	03/12/12 A	28/02/13	03/12/12 A	23/05/13	85d	E&M0370, YSW08302, YSW08303	E&M0690		1111	Install I	Membrane Module	es in MBR Tank No. 1	to 3 ⁻
E&M0530	Install Grit Removal Equipment	122	100	01/06/12 A	30/09/12 A	01/06/12 A	30/09/12 A		E&M0380, YSW05923	E&M0590, E&M0660		1111	+ i-	i i		
E&M0540	Install Coarse Screens	240	90	23/04/12 A	23/02/13	23/04/12 A	12/04/13	48d	E&M0390, YSW05923	E&M0660		1111	Install Coa	rse Screens		
E&M0550	Install Fine Screens	122	80	01/06/12 A	24/02/13	01/06/12 A	17/01/13	-37d	E&M0400, YSW05923	E&M0590, E&M0660	- 1.1		Install Fin	e Screens		
E&M0560	Install Pumps	355	60	23/04/12 A	21/06/13	23/04/12 A	12/04/13	-70d		E&M0660	- -	нн –		14	L 1	
E&M0570	Install Submersible Mixers	163	50	15/01/13 A	22/04/13	15/01/13 A	12/04/13	-10d		E&M0660, E&M0690					Install Sub	mersible Mixer
E&M0580	Install Sludge Dewatering Equipment	361	25	29/05/12 A	28/10/13	29/05/12 A	24/05/13	-157d		E&M0690	- 1 11	1111		11	I	
E&M0590	Install Valves, Pipes & Fittings	232	45	15/01/13 A	02/07/13	15/01/13 A	25/05/13	-37d		E&M0650, E&M0690	1-11-					
E&M0600	Install Penstocks (Batch 1, GL H - T)	213	90	23/04/12 A	21/02/13	23/04/12 A	23/05/13	92d		E&M0690	- 11	111	Install Pensi	ocks (Batch 1, GL		
E&M0605	Install Penstocks (Batch 2, GL A - F)	131	60	02/01/13 A	24/03/13	02/01/13 A	23/05/13	61d		E&M0690				Install Pe	enstocks (Batch 2, GL	A - F) ⁻
E&M0610	Install Instruments	74	5	02/01/13 A	31/05/13	02/01/13 A	25/05/13	-6d		E&M0690		1111	l	ı	I I	
E&M0620	Install SAT, MCC & LVSB	8	10	02/01/13 A	12/12/14	02/01/13 A	12/04/13	-609d		E&M0660, E&M0680						
E&M0630	Install BS Equipment	180	25	02/01/13 A	01/11/14	02/01/13 A	28/06/13	-491d		E&M0690		1111		11	1	
E&M0640	Install FS Equipment	180	<u>~</u>	02/01/13 A	31/01/15	02/01/13 A	28/06/13	-582d		E&M0690		L.,	<u> </u>		<u>. </u>	
E&M0650	Hydraulic Tests of Pipeworks	153	20	02/01/13 A	06/06/13	02/01/13 A	30/05/13	-7d		E&M0690	H-	нн –		14	F	
E&M0660	Cabling Works	15	0	12/12/14	27/12/14	13/04/13	27/04/13	-609d	E&M0530, E&M0540, E&M0550, E&M0560, E&M0570, E&M0620	E&M0670	1 :::	1111	!	11	!	
E&M0670	Insulation Tests of Cables and Cable Termination	26		27/12/14	22/01/15	28/04/13	23/05/13	-609d	E&M0320, E&M0325, E&M0660,	E&M0690	- ii	1111	i	ii	i	
E&M0680	Energization	1 1	0	12/12/14 *	13/12/14	27/04/13	27/04/13	-595d		E&M0670		1111	!	11	!	
E&M0690	Functional and Performance Tests of Equipment	35	ار را	22/01/15	26/02/15	24/05/13	27/04/13 *	-609d		E&M0700	- ii	1111	i	ii	i	
	Total Control of Contr		Ü		20,02,10	2 1,00,10	27,007.10	0000	E&M0580, E&M0590, E&M0600, E&M0605, E&M0610, E&M0630, E&M0640, E&M0650, E&M0670, YSW0380, YSW08301, YSW1530, YSW1540		11	 	1	11 11 11 11		
E&M0700	T&C Period	137	0	26/02/15	13/07/15	12/12/13	27/04/14	-442d	E&M0330, E&M0690	E&M0730, KD0040	1	1111	<u> </u> <u>i</u>	ii	i	
E&M0730	Trial Operation Period	413	0	13/07/15	28/10/16	28/04/14	14/06/15	-442d	E&M0700	KD0132		пп -		11	<u> </u>	
Sok Kwu Wa	ın											1111	I.	11	!	
Preliminary] ::	1111	i	ii	;	
SKW0250	Approval of Environmental Team	16	100	17/05/10 A	01/06/10 A	17/05/10 A	01/06/10 A		KD0020	SKW0260] :::	1111	!	11	!	
SKW0260	Baseline monitoring (Air & Noise)	14	100	02/06/10 A	15/06/10 A	02/06/10 A	15/06/10 A		SKW0250	SKW0242, SKW0265, SKW0592, SKW0681		1111	i	ii	i	
SKW0265	Baseline Monitoring Submission (A & N)	14	100	16/06/10 A	08/07/10 A	16/06/10 A	08/07/10 A		SKW0260	SKW0242, SKW0592, SKW0681, SKW0921	- 11	1111	ļ ļ	11	1	
	ootpath Diversion in Portion G										<u> </u>	Ш	i	ii	i	
Civil & Geotec	hnical Works					_					!!	1111	l I	11	-	
SKW0240	Site Clearance	21	100			17/05/10 A				SKW0241	ii	1111	i	ii	i	
SKW0241	Initial Survey	9	100						SKW0240	SKW0242	!!	1111		11		
SKW0242	Retaining Wall Bay 0-10 (Incl. VO. 001A)	177	100						SKW0241, SKW0260, SKW0265	SKW0461	ii	1111	i	ii	i	
SKW0461	Utilities Laying and Diversion	70	100						SKW0242	SKW0471	1 !!!	1111		11		
SKW0471	Concreting for Pavement	7	100			04/03/11 A	10/03/11 A		SKW0461	SKW0481	↓il-	ШΠ _	. <u>.</u> .	!!	· <u>!</u>	
SKW0481	Footpath Diversion - Stage 1	14	100				24/03/11 A		SKW0471	KD0050, SKW04811, SKW0491	╀:╣-		‡		.;	
SKW04811	Excavate for FP transition at CH0-35 &CH130-141	37	100				30/04/11 A		SKW0481	SKW04821		1111	i	11	i	
SKW04821	Construction of Drainage outfall near bay 10	3	100			!			SKW04811	SKW04831	- !!	1111	I I	11		
SKW04831	Cable diversion by HEC	26	100			!	29/05/11 A		SKW04821	SKW04841	_ ii	1111	i	ii	i	
SKW04841	Diversion of Ducting and Drawpit by PCCW	12	100			20/05/11 A	31/05/11 A		SKW04831	SKW04851	↓¦ -	1111 HH -		+	<u> </u>	
SKW04851	Soil backfilling behind FP retaining wall	14	100	01/06/11 A		01/06/11 A	14/06/11 A		SKW04841	SKW04861	4 iil	Ш	i	11	!	
SKW04861	Concreting for footpath pavement	7	100			15/06/11 A	21/06/11 A		SKW04851	SKW04871	↓ ;;	1111		11 11		
SKW04871	Relocation of Temp Safety Fence at SKW STW A-G	57	100	22/06/11 A		22/06/11 A	17/08/11 A		SKW04861	SKW04881		1111	ļ.	11	ļ .	
SKW04881	Disposal of excavation material at A-G SKW STW	138	100	18/08/11 A		18/08/11 A	02/01/12 A		SKW04871	SKW04885	↓ ;;	1111		11 11		
SKW04885	Footpath Diversion - Stage 2	7	100			!			SKW04881	SKW1261	ļil	ШΠ _	<mark> i</mark> .	!!	· <u>! </u>	
SKW0491	Removal of Haul Road after SKW STW	7	0	08/10/14	14/10/14	29/05/15	04/06/15	233d	KD0090, SKW0481, SKW1401	SKW0501		1111	!	11		
Start date 05	5/05/10 Early bar												Date	Revisi	on Checke	d Approved
Finish date 28	B/10/16 Progress bar					Leade	r Civil Er	ngine	ering Corp. Ltd.			3	31/01/13	Revision 0	RH	VC
	1/01/13 Critical bar Summary bar								C/2009/13							
Run date 05 Page number 6A	5/02/13 Progress point				Constru				ent Works at YSW & Sh	< W		<u> </u>		 		
raye number 6/	Critical point Summary point								(Feb 2013 - Apr 2013)			\vdash				
c Primavera Sys	A Start milestone point						5 5	-						<u> </u>		


Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors					2013 MAR		400	WAY.
SKW0501	Concreting for no-fine concrete	14	•	08/10/14	21/10/14	29/05/15	11/06/15		SKW0491	SKW0511	JAN	1 1111	FEB		WAR II		APR	MAY
SKW0511	Wall Tie & Stone Facing	14	0	22/10/14	04/11/14	12/06/15	25/06/15		SKW0501		- ii	liiii		i	ii	i		ı
SKW0521	Gabion Wall & Geotextile	30	0	05/11/14	04/12/14	26/06/15	25/07/15		SKW0511		┤ !!			!	11	1		ı
SKW0531	Installation of Flower Pot	7		05/12/14	11/12/14	26/07/15	01/08/15		SKW0521	SKW0541	┨ !!			!	11			ı
SKW0541	Completion of Outstanding Works	42	0	12/12/14	22/01/15	02/08/15	12/09/15		SKW0531	KD0125	 :	100		i -	ii -	i -		
	lope W orks in Portions H & I		0	1 . = , . = ,	1==/01/10	102/00/10	1.2/00/10					1111				<u>+</u>		
Geotechnical V	•										- ::			i	ii	i		ı
SKW0588	Construct scaffolding access	30	100	15/06/10 A	14/07/10 A	15/06/10 A	I 14/07/10 A	1 1	KD0020	SKW0590	- !!			!	11	1		ı
SKW0590	Site Clearance for Slope	100		15/07/10 A	22/10/10 A	15/07/10 A	<u> </u>		SKW0588	SKW0591	- ;;			;	ii	i		ı
SKW0591	Initial Survey for Slope	28		21/09/10 A	18/10/10 A	21/09/10 A	<u>!</u>		SKW0590	SKW0592	-	11111		!	11	. !		ı
SKW0592	Temporary Rockfall fence at ex. Footpath	43		31/08/10 A	12/10/10 A	31/08/10 A	!		SKW0260, SKW0265, SKW0591	SKW05931	- ;;				11			ı
SKW05921	Construction of Haul Road (To +30mPD)	50		03/09/10 A	22/10/10 A		<u>!</u>		SKW0592	SKW05932	-	1111		!	11	1		ı
I I I					ļ		ļ		SKW05931	SKW059322	+	- 1111			-			r
SKW05932	Construction of Haul Road (To +42.5mPD)	68		23/10/10 A	29/12/10 A	23/10/10 A	<u> </u>		3KW03931	SKW059411	- ii	11111		i	11	i		ı
SKW059321	Removal of Boulders (IBG 1 - 119, SI No. 11B)	121			03/03/11 A		<u> </u>		CIAMOEOOO	<u> </u>					11			ı
SKW059322	Add. Site Invest. Works (VO. No. 9,12 &16)	174		11/01/11 A	03/07/11 A		<u> </u>		SKW05932	SKW059341	- ii	1111		i	ii	i		ı
SKW059323	Revised Profile at West Slope (+56 to +42.5mPD)	1 1		17/03/11 A	17/03/11 A		<u> </u>		CIVIMOEOOOO	SKW059324	- ::	11111		l I	11	1		ı
SKW059324	Construction of Haul Road (+42.5 to +56mPD)	12		18/03/11 A	29/03/11 A		<u> </u>		SKW059323	SKW059325	+ü	- нн		i-	ii _	i		
SKW059325	Removal of Boulders (IBG 120-139, SI No. 11C)	17		30/03/11 A	15/04/11 A		<u> </u>		SKW059324	SKW05933	- !!	1111		l i	11	1		ı
SKW05933	West Slope Cutting (+56mPD to +42.5mPD)	2		16/04/11 A	17/04/11 A		<u> </u>		SKW059325	SKW059331	⊣ ¦;			ļ	- ;;	1		ı
SKW059331	Removal of Boulders (IBG 140-189, SI No. 11D)	45			01/06/11 A		01/06/11 A		SKW05933	SKW05934	-	11111		!	11	1		ı
SKW05934	West Slope Cutting (+42.5mPD to +35mPD)	32		02/06/11 A	03/07/11 A		03/07/11 A		SKW059331	SKW059341	」 ∷	1111		l	- 11	1		ı
SKW059341	Revised Profile at West Slope (+20 to +4.8mPD)	1		04/07/11 A	04/07/11 A	04/07/11 A	04/07/11 A		SKW059322, SKW05934	SKW05935	<u> </u>	1111		! _	!! _	<u>_</u> _		+
SKW05935	West Slope Cutting (+35mPD to +27.5mPD)	83		08/07/11 A	28/09/11 A	08/07/11 A	28/09/11 A		SKW059341	SKW05936					11	-		ı
SKW05936	West Slope Cutting (+27.5mPD to +20mPD)	61	100	29/09/11 A	28/11/11 A	29/09/11 A	28/11/11 A		SKW05935	SKW05937		11111		i	11	i		ı
SKW05937	West Slope Cutting (+20mPD to +12.5mPD)	39	100	29/11/11 A	06/01/12 A	29/11/11 A	06/01/12 A		SKW05936	SKW05938	_				11	1		ı
SKW05938	West Slope Cutting (+12.5mPD to +4.8mPD)	90	100	07/01/12 A	27/03/12 A	07/01/12 A	27/03/12 A		SKW05937	KD0060, SKW1261, SKW1311, SKW1371] ii	11111		i	ii	i		ı
SKW05941	Slope Stormwater Drainage	300	100	28/03/12 A	25/05/12 A	28/03/12 A	25/05/12 A		KD0060	SKW05942	1 ::				11			L
SKW059411	East Slope Cutting (+50mPD to +42.5mPD)	72	100	04/03/11 A	14/05/11 A	04/03/11 A	14/05/11 A		SKW059321	SKW059412	T ::			i	11	i		
SKW059412	East Slope Cutting (+42.5mPD to +35mPD)	82	100	15/05/11 A	04/08/11 A	15/05/11 A	04/08/11 A		SKW059411	SKW059413] !!	11111		!	11	1		ı
SKW059413	East Slope Cutting (+35mPD to +27.5mPD)	55	100	05/08/11 A	28/09/11 A	05/08/11 A	28/09/11 A		SKW059412	SKW059414] ;;			i	ii	i		ı
SKW059414	East Slope Cutting (+27.5mPD to +20mPD)	61	100	29/09/11 A	28/11/11 A	29/09/11 A	28/11/11 A		SKW059413	SKW059415	┨ ∷			!	11	1		ı
SKW059415	East Slope Cutting (+20mPD to +12.5mPD)	39	100	29/11/11 A	06/01/12 A	29/11/11 A	06/01/12 A		SKW059414	SKW059416	Ⴂ;;	1111		i	ii	i		ı
SKW059416	East Slope Cutting (+12.5mPD to +4.8mPD)	81	100	07/01/12 A	27/03/12 A	07/01/12 A	27/03/12 A		SKW059415	KD0060, SKW1311, SKW1371		100		<u>-</u>	IT _	<u>-</u> -		
SKW05942	Slope Miscellaneous Works	61	100	26/05/12 A	31/07/12 A	26/05/12 A	31/07/12 A		SKW05941	SKW05943, SKW0595	1 :	11111		;	11			ı
SKW05943	Buttress & surface Protection (SI No. 31)	60	100	03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW05942	SKW05944	ॏ	HH		+-	1+ -	- -		r
SKW05944	Slope Treatment (Sl. No. 36)	60		03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW05943	SKW05945		11111			11	-		ı
SKW05945	Rock Slope Treatment (SI. No. 68)	60			30/09/12 A	01/08/12 A			SKW05944	SKW05946	- I	11111		- 1	11	1		ı
SKW05946	Rock Slope Treatment (SI. No. 98)	60			08/02/13	10/09/12 A		42d	SKW05945	SKW05947		- 44	Rock Slop	e Treatment	(SI. No. 9	98) 1		
SKW05947	Rock Slope Treatment (SI. No. 115)	60			17/02/13	01/11/12 A			SKW05946	KD0135				k Slope Trea)	ı
SKW05948	Soil Nailing Works (VO. No. 52)	300			16/03/13			456d		SKW05963			•	<u> </u>			ks (VO. No. 5	2)
SKW0595	Rock Meshing	60		08/05/14	06/07/14	07/08/15	05/10/15		SKW05942, SKW05972	KD0165		1111		i	1	ı	, ,	
SKW05963	Determine Alignment & Foundation Design of RFB	120	-		08/06/12 A		08/06/12 A		SKW05948	SKW059631, SKW05964, SKW05965	╡ :			l I	1	1		ı
SKW059631	GEO Approval of Foundation Design	70			31/07/12 A	09/06/12 A			SKW05963	SKW05968	+	00		i -	i -	 -		
SKW05964	Fabrication & Shipping of RFB Material	180				09/06/12 A			SKW05963	SKW05972	lg of RFB Materia			l ı	1	1		ı
SKW05965	Site clearance & Formation of access	62			31/07/12 A		1		SKW05963	SKW05967	+	HH-		+-	÷-			
SKW05967	Plant mobilization	14			15/01/13 A	02/01/13 A			SKW05965	SKW05968	Plant m	I I m. obilizati	on	l	!	1		ı
SKW05968	Construction of anchors & pull out test	180			11/07/13		1	4564	SKW059631, SKW05967	SKW05969		L		!	!	!		
SKW05969	Construction of anchors & pull out test Construction of Foundation	120		12/07/13	08/11/13	11/10/14	07/02/15		SKW05968	SKW05970		- 1111		+-	+-	<u>-</u> -		
SKW05969 SKW05970	Proof Load Test	60		09/11/13	07/01/14	08/02/15	08/04/15		SKW05969	SKW05971	- :	1111		l		1		ı
SKW05970 SKW05971	Transportation of Material (To the slope crest)	30		08/01/14	06/02/14	09/04/15	08/04/15		SKW05970	SKW05971	-	11111		ı	1	i		ı
<u> </u>	Installation of Flexible barrier				<u> </u>			I	SKW05964, SKW05971	KD0165, SKW0595	- '			l I		 		ı
SKW05972		90	0	07/02/14	07/05/14	09/05/15	06/08/15	4560	O. C. V. V. O. O. C. V. V. O. O. T. I.	1.50100, 01.00000	<u> </u>	1111		i	i	i		
	S. No. 1 in Portion D											1111		l I	1	1		ı
Civil & Geotech					_		•				į	11111		i	i	i		ı
SKW0651	Site Clearance	7		17/05/10 A					KD0020	SKW0652		11111		l I	1	1		ı
SKW0652	Initial Survey	7	100	24/05/10 A	30/05/10 A	24/05/10 A	30/05/10 A		SKW0651	SKW0661, SKW0681		iiii		i	<u> i </u>	<u> i </u>		
	/05/10 Early bar /10/16 Progress bar											-	21/01/12	ite	Design	Revision		hecked Appro
	/10/16 Progress bar Critical bar					Leade	r Civil E	nginee	ering Corp. Ltd.			-	31/01/13		Revision	II U	R	H VC

Start date 05/05/10
Finish date 28/10/16
Data date 31/01/13
Run date 05/02/13
Page number 7A

Critical bar
Summary bar
Progress point
Critical point
Summary point
Summary point
Summary point
Summary point
Summary point
Start milestone point

Dale	Revision	Criecked	Approved
1/01/13	Revision 0	RH	S

	Activity	Description	Origina	l Percent	Early	Early	Late	Late	Total	Predecessors	Successors			2013			
	ID		Duratio	n Complete		Finish	Start	Finish	Float			JAN	FEB		APR	MAY	
Ш	SKW1441	Sewer of Connection Pit to Outfall VO45	17	⁷ C	30/03/13	23/09/13	09/12/13	03/06/14	254d	SKW1221, SKW1440	E&M3359, KD0090			ı -			=
Ш	SKWSTW													;			
Ш	Submission 8	Delivery (E&M)	<u> </u>	_										I I			
Ш	E&M3010	Delivery of MBR M.M 1st shipment for Temp	<u> </u>		24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A		E&M0160	E&M3170			1 1			
Ш	E&M3030	Delivery of Grit Removal Equipment	18	100	10/10/11 A	29/12/11 A	10/10/11 A	<u> </u>		E&M0150	E&M3190			+			
Ш	E&M3060	Delivery of Fine Screens	13	6 100	12/09/11 A	30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M3210			Ţ <u>-</u>		. – – – – –	-
Ш	E&M3070	Delivery of Pumps	13	6 100	23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M3220			+	ī		
Ш	E&M3080	Delivery of Submersible Mixers	18	100	26/07/11 A	17/11/11 A	26/07/11 A	17/11/11 A		E&M0140	E&M3230			i i i	:	. 	-
Ш	E&M3090	Delivery of Sludge Dewatering Equipment	21	50	01/09/11 A	15/05/13	01/09/11 A	11/01/14	241d	E&M0170	E&M3240			1 1 1		Deliver	ːy d
Ш	E&M3100	Delivery of Valves, Pipes & Fittings	18	50	30/08/11 A	05/05/13	30/08/11 A	19/11/13	199d	E&M0180	E&M3250					Delivery of Va	lve
Ш	E&M3110	Delivery of Penstocks	18	100	12/08/11 A	24/12/11 A	12/08/11 A	24/12/11 A		E&M0190	E&M3260			I I I			-
Ш	E&M3130	Delivery of instruments	18	100	21/06/11 A	03/11/11 A	21/06/11 A	03/11/11 A		E&M0200	E&M3270	-		i i i	† <u> </u>	. – – – – –	-
Ш	E&M3140	Delivery of MCC LVSB	18	0	01/02/13	31/07/13	07/04/13	03/10/13	65d	E&M0210	E&M3261	 		+ I	1 1		=
П	E&M3150	Delivery of BS Equipment	18	0 8	03/07/12 A	20/08/13	03/07/12 A	04/12/13	107d	E&M0220	E&M3291						4
П	E&M3160	Delivery of FS Equipment	18	5	30/06/12 A	06/09/13	30/06/12 A	23/12/13	109d	E&M0230	E&M0340, E&M3300						
П	Construction	of Grid A-G					•				•			i i i			\exists
П	SKW1261	Excavate for SKW STW Structure (Grid A -G)	16	4 100	28/03/12 A	31/08/12 A	28/03/12 A	31/08/12 A		SKW04885, SKW05938	SKW1271, SKW1371			1 11			
П	SKW1271	55 M3 Fire Sprinkle Water Tank (FL +0.9 mPD)) 3	6 100	03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A	İ	SKW1261	SKW1281						
	SKW1281	Ground Floor Slab (Grid A-G)	4			31/07/12 A	03/07/12 A	31/07/12 A	İ	SKW1271	SKW1291	l 			<u>' </u>	. =	
	SKW1291	Columns & Walls to 1/F & 1/F Slab (Grid A-G)	5			31/07/12 A	03/07/12 A	31/07/12 A	İ	SKW1281	KD0090, SKW1301	 		1	;		
Ш	SKW1301	Columns & Walls to R/F & R/F Slab (Grid A-G)) 5	100	01/09/12 A	31/01/13 A	01/09/12 A	31/01/13 A		SKW1291	E&M3261, E&M3291, E&M3311, SKW1411		Columns & Walls to R/F	& R/F Slab (Grid A-G)	!		
П	SKW1411	ABWF Works	10:		31/01/13	15/05/13	07/03/13	19/06/13	35d	SKW1301	E&M3261, E&M3291, E&M3311, SKW1551	<u> </u>		+		ABWF	W
Ш	Construction	of Grid G-N			<u>^1</u>		<u> </u>	<u> </u>						1 11			ᄏ
Н	SKW1311	Excavate for SKW STW Structure (Grid G-N)	9	100	28/03/12 A	25/06/12 A	28/03/12 A	25/06/12 A	Ι	SKW05938, SKW059416	SKW1321, SKW1371			1 11			
H	SKW1321	Equalization Tank no.1 & 2 with base slabs (-2			26/06/12 A		<u> </u>	<u> </u>		SKW1311	SKW1331	_		i i i	i		
Н	SKW1331	Columns & Walls from B/S to G/F Slab (Grid G		-			<u> </u>	<u> </u>	1	SKW1321	SKW1341	1		1 1 1	!		
Н	SKW1341	Ground Floor Slab (Grid G-N)	3			17/12/12 A	<u> </u>	17/12/12 A	1	SKW1331	SKW1351	loor Slab (Grid G-N)	i ii	i		
Н	SKW1351	Columns & Walls to 1/F & 1/F Slab (Grid G-N)		.00	<u> </u>	15/01/13 A	1	15/01/13 A	1	SKW1341	SKW1361	- ` '	/ & Walls to 1/F & 1/F Slab	(Grid G-N)			
Н	SKW1361	Columns & Walls to R/F & R/F Slab (Grid G-N)		100	<u> </u>	26/02/13	01/11/12 A	17/12/12	-70d	SKW1351	SKW1451			ns & Walls to R/F & R/F		3-N)	-
Н	SKW1451	ABWF Works	5-		26/02/13	21/04/13	18/12/12	09/02/13		SKW1361	E&M3170, E&M3190, E&M3210, E&M3291,		00.0	I I I		Works	
ш	G			΄ Ι	1 20/02/10	12.70.710	1.07.127.12	00,02,10			E&M3300, SKW1391, SKW1551			1 11		. – – – – – –	
Н	Construction	of Grid N-T							<u> </u>					 	!		\exists
Н	SKW1371	Excavate for SKW STW Structure (Grid N-T)	9	7 100	03/07/12 A	25/01/13 A	03/07/12 A	25/01/13 A	T	SKW05938, SKW059416, SKW1261,	SKW1381	Exc	cavate for SKW STW Stru				
н	SKW1381	Ground Floor Slabs include MBR Tank (Grid N				-	02/10/12 A			SKW1371	SKW1391			ude MBR Tank (Grid N-	T)		
н	SKW1391	Columns & Walls to 1/F & 1/F Slab (Grid N-T)	3	100	21/04/13	26/05/13	10/02/13	16/03/13	-70d	SKW1381, SKW1451	SKW1401		· —	т г			ıcd
Н		Columns & Walls to R/F & R/F Slab (Grid N-T)			26/05/13	30/06/13	17/03/13	20/04/13	1	SKW1391	E&M3240, SKW0491, SKW1421			1 11		u	
н	SKW1421	ABWF Works	, 6		30/06/13	29/08/13	21/04/13	19/06/13	1	SKW1401	E&M3240, SKW1551	_		, , , , , , , , , , , , , , , , , , ,		_	٦
Н		Drainage (SSMH1-SSMH7)	3		29/08/13	03/10/13	20/06/13	24/07/13		SKW1411, SKW1421, SKW1451	SKW1561			+ - - !			-
ш	G	Jamage (Jenitri Jenitri)		1	1 20,00,10	00/10/10		2 1/07/10						! !! ! !!	·		
Ш									ļ	Lorantest	Lorenteza			1 1 1			
	SKW1561	Sewer (SMFH1-SMFH2, SMFH3-SMFH7)	22		03/10/13	11/05/14	25/07/13	01/03/14	1	SKW1551	SKW1571	4					
		Roadwork & Drainage Channel (SKW)	22	υ 	11/05/14	17/12/14	02/03/14	07/10/14	-70d	SKW1561	KD0090			1 1 1	1		_
	SKW STW - E8	-		. 1	Lavaren	Lagrania	1	I	1	Leaven olavis:	Leaven			1 1 1			
	E&M3170	Install Membrane Modules in MBR Tank No. 1			21/04/13	30/07/13	07/01/14	16/04/14	1	E&M3010, SKW1451	E&M3311	_		i i	ı † =		-
	E&M3190	Install Grit Removal Equipment	6	<u> </u>	20/06/13	19/08/13	21/09/13	19/11/13	<u> </u>	E&M3030, E&M3210, SKW1451	E&M3250, E&M3320	4		1 I	; <u> </u>		
	E&M3210	Install Fine Screens	6	ol c	21/04/13	20/06/13	24/05/13	22/07/13	33d	E&M3060, SKW1451	E&M3190, E&M3220, E&M3250, E&M3260, E&M3320			ı i	1		4
н	E&M3220	Install Dumms	7:		1 20/00/12	100/00/10	23/07/13	05/10/13	1 224	E&M3070, E&M3210	E&M3230, E&M3250, E&M3260, E&M3320			I I			
н		Install Pumps Install Submersible Mixers	4		20/06/13	03/09/13	06/10/13	19/11/13		E&M3080, E&M3220	E&M3250, E&M3260, E&M3311, E&M3320	_		i i			
Н	E&M3230				03/09/13	18/10/13	<u> </u>	!		E&M3090, SKW1401, SKW1421				<u> </u>			-
н	E&M3240	Install Sludge Dewatering Equipment	7.		29/08/13	11/11/13	12/01/14	26/03/14			E&M3320			i i			
	E&M3250	Install Valves, Pipes & Fittings	7		18/10/13	01/01/14	20/11/13	02/02/14] 33d	E&M3100, E&M3190, E&M3210, E&M3220, E&M3230	E&M3270, E&M3291, E&M3300, E&M3310			I I			
	E&M3260	Install Penstocks	13:	5 -	18/10/13	02/03/14	03/12/13	16/04/14	464	E&M3110, E&M3210, E&M3220,	E&M3311	1		; ;			
	E&M3261	Install SAT of MCC & LVSB	17-	<u> </u>	31/07/13	21/01/14	03/12/13	26/03/14		E&M3140, SKW1301, SKW1411	E&M3311, E&M3320	-		I I			
	E&M3270	Install instruments	6		01/01/14	02/03/14	16/02/14	16/04/14	<u> </u>	E&M3130, E&M3250	E&M3311	-		; ;			
	E&M3291	Install BS Equipment	18		<u> </u>	_	05/12/13	<u> </u>	1	E&M3150, E&M3250, SKW1301,	E&M3331, E&M3359	+		<u>.</u> L .			-
	EαIVB∠91	mstan bo Equipment	18	'l C	02/11/13	01/05/14	05/12/13	02/06/14	330	SKW1411, SKW1451				; ;			
		1			<u> </u>	1	<u> </u>	<u> </u>		<u> </u>				<u> </u>			\exists
		/05/10 Early bar					_	_					Date	Revision		hecked Approve	<u>.</u> d
		/10/16 Progress bar Critical bar								ering Corp. Ltd.			31/01/13	Revision 0	RI	H VC	\dashv
υd	a uai c 31.	/UI/IJ						7	Na D	2/2000/4/2			1	ı	1	1	

Finish date 28/10/16

Data date 31/01/13

Run date 05/02/13

Page number 10A

Critical bar

Summary bar

Progress point

Critical point

Summary point

Summary point

Summary point

Summary point

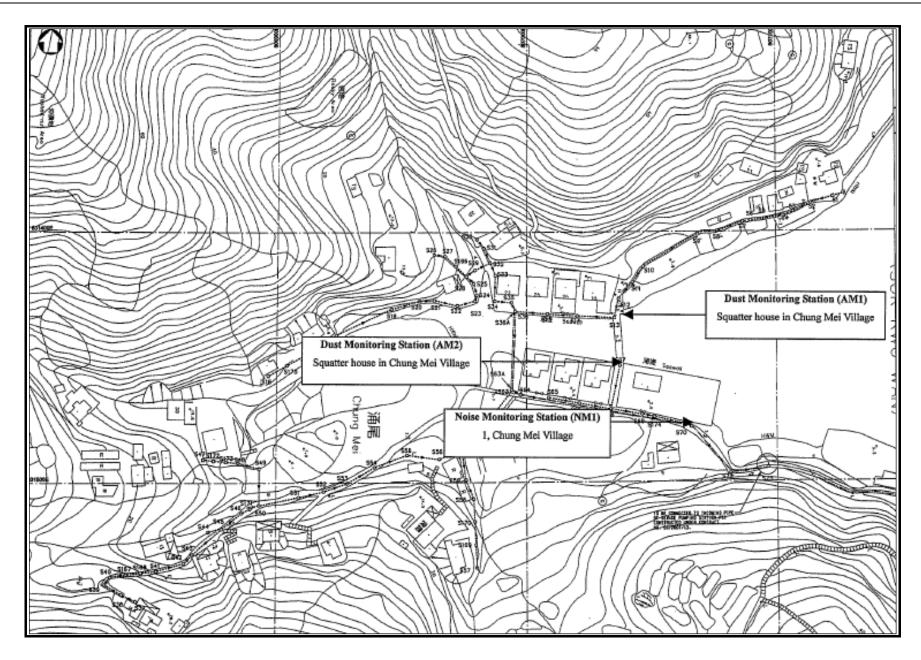
Summary point

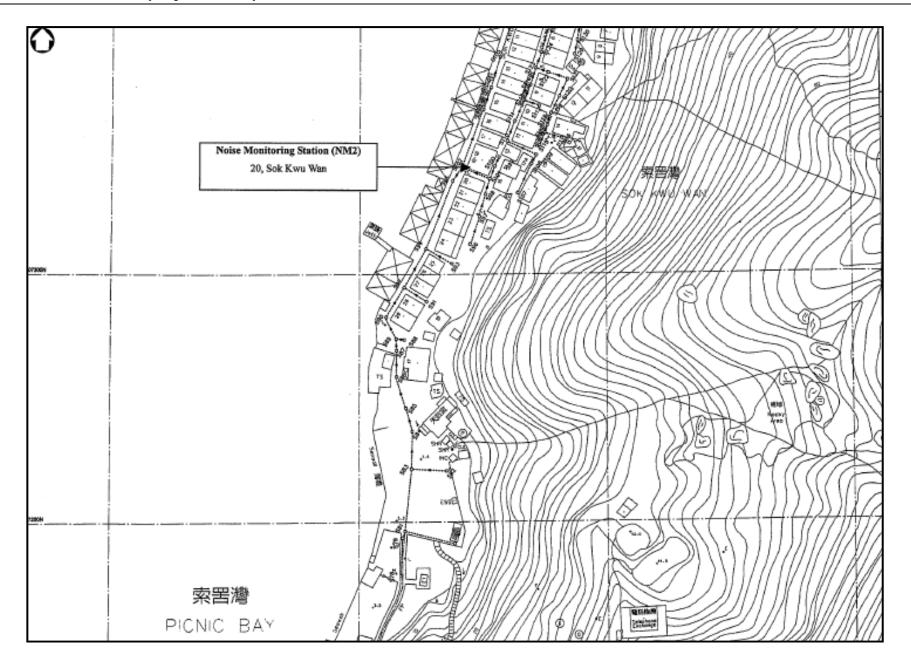
Finish milestone point

Date	Revision	Checked	Approved
1/01/13	Revision 0	RH	VC

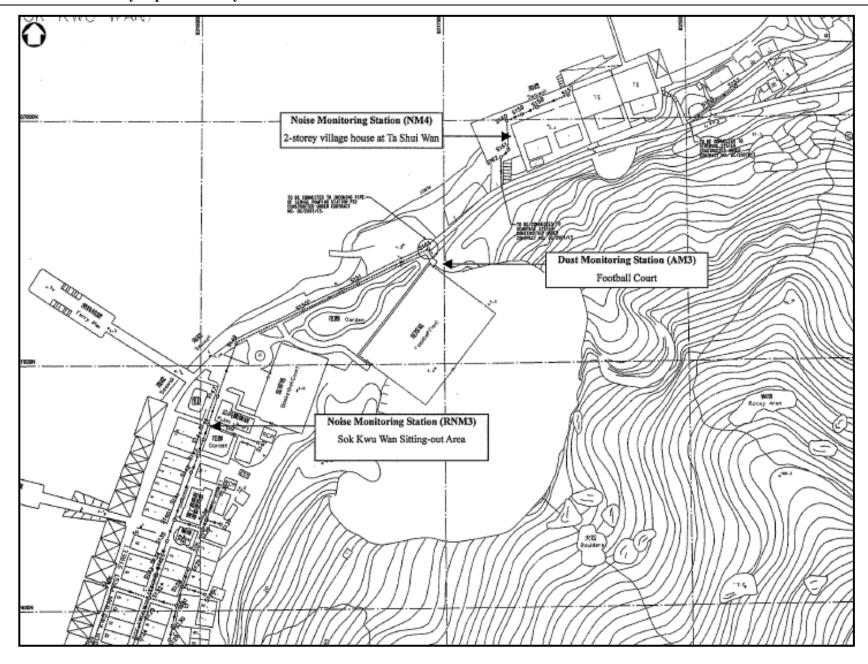
Activity	Description	Original	Percent	Early	Early	Late	Late	Total	Predecessors	Successors			2013		
ID	Description	Ouration	Complete	Start	Finish	Start	Finish	Float	110000033013	0000033013	JAN	FEB	MAR	APR	MAY
E&M3300	Install FS Equipment	161	0 02	2/11/13	12/04/14	24/12/13	02/06/14	52d	E&M3160, E&M3250, SKW1451	E&M3331, E&M3359			I	I	
E&M3310	Hydraulic Tests of Pipeworks	90	0 01	1/01/14	01/04/14	06/03/14	03/06/14	64d	E&M3250	E&M3359]		!	1	
E&M3311	Cabling Works	47	0 02	2/03/14	18/04/14	17/04/14	02/06/14	46d	E&M3170, E&M3230, E&M3260, E&M3261, E&M3270, SKW1301,	E&M3331, E&M3359			į	į	
E&M3320	Cabling Works for Dewatering Equipment	47	0 21	1/01/14	09/03/14	27/03/14	12/05/14	65d	E&M3190, E&M3210, E&M3220, E&M3230, E&M3240, E&M3261	E&M3321			į		
E&M3321	Insulation Tests of Cables and Cable Termination	21	0 09	9/03/14	30/03/14	13/05/14	02/06/14	65d	E&M3320	E&M3331				<u>-</u>	
E&M3331	Energization	1	0 01	1/05/14	02/05/14	03/06/14	03/06/14	33d	E&M3291, E&M3300, E&M3311,	E&M3359	1		!	I	
E&M3359	Functional and Performance Tests of Equipment	35	0 02	2/05/14	06/06/14	04/06/14	08/07/14	33d	E&M3291, E&M3300, E&M3310, E&M3311, E&M3331, SKW1241,	E&M3360			;	 	
E&M3360	T&C Period	91	0 06	6/06/14	05/09/14	09/07/14	07/10/14	33d	E&M0340, E&M3359, SKW0722, SKW15112	E&M3370, KD0090			!	 	
E&M3370	Trial Operation Period	456	0 05	5/09/14	05/12/15	31/05/15	28/10/16	269d	E&M3360		1		;	i	
Rising Main										·			Ţ.	!	
SKW1481	Subm, Approval & Delivery of DI pipes	120	100 17	7/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1501			;	i	
SKW1501	LCS (ChB0+00 - ChB1+20)	300	100 14	4/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A		PRE0100, SKW1481	SKW1521]		!	I .	
SKW1521	Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	85 11	1/07/11 A	09/03/13	11/07/11 A	07/10/14	578d	SKW1501	KD0090			Twin DN150	DI Rising Main (ChB	0+00 - ChA4+55)
Section W8-L	andscape Softworks in All Portions													!	
SKW1591	Tree Survey	21	100 17	7/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A		KD0020	SKW1621]			;	
SKW1611	Preservation & Protection of Trees	1053	99 17	7/05/10 A	10/02/13	17/05/10 A	03/04/13	53d	KD0020	KD0100, SKW1631		Preservation	n & Protection of Tr	ees	
SKW1621	Transplantation at SKW	90	100 07	7/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A		SKW1591	KD0100					
Section W9 - E	stablishment W orks in All Portions														
SKW1631	Section W9 - Establishment Works	365	0 10	0/02/13	10/02/14	04/04/13	03/04/14	53d	SKW1611	KD0110]	_			

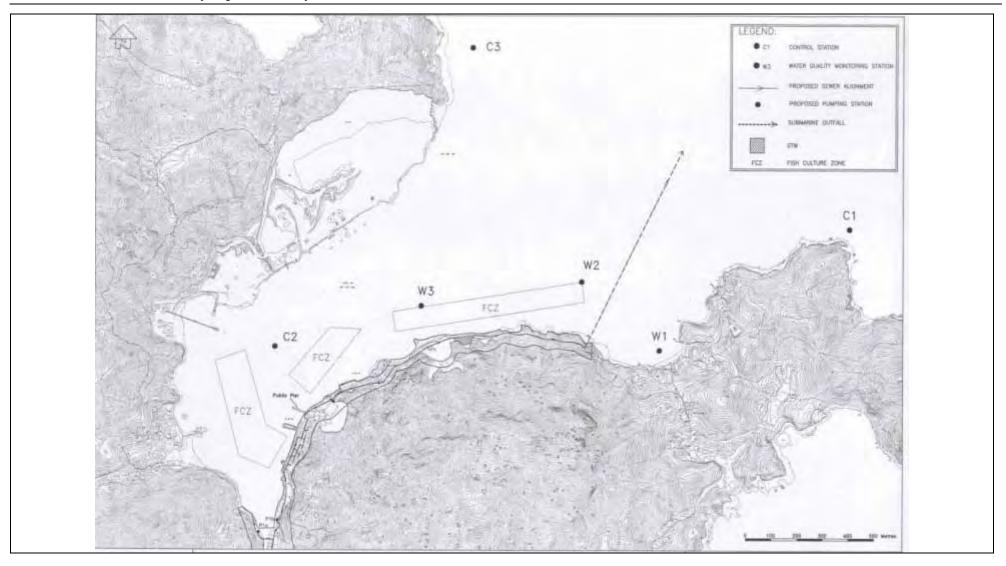
Start date	05/05/10	<u> </u>	Early bar
Finish date	28/10/16		Progress bar
Data date	31/01/13		Critical bar
Run date	05/02/13		Summary bar Progress point
Page number	11A	٦₹	Critical point
		╗╺	Summary point
c Primavera	Systems, Inc.	קׁר	Start milestone point


Date	Revision	Checked	Approved
31/01/13	Revision 0	RH	VC


Appendix D

Location of Monitoring Stations
(Air Quality / Construction Noise / Water Quality)





Appendix E

Monitoring Equipments Calibration Certificate

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, ÖH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 1483	Ta (K) - Pa (mm) -	294 754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4140 0.9960 0.8910 0.8510 0.7020	3.2 6.4 7.9 8.7 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
1.0018 0.9976 0.9955 0.9945 0.9890	0.7085 1.0016 1.1173 1.1686 1.4088	1.4185 2.0061 2.2429 2.3524 2.8371	0.9957 0.9915 0.9894 0.9884 0.9830	0.7042 0.9955 1.1105 1.1615 1.4003	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slo intercep coeffici y axis =	ot (b) = lent (r) =	2.02742 -0.02027 0.99996 	Qa slor intercer coeffici y axis =	ot (b) =	1.26953 -0.01262 0.99996

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Location: Squatter house in Chung Mei Village

Date of Calibration: 1-Nov-12 Location ID: AM1 Next Calibration Date: 31-Dec-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1016.9
21.1

Corrected Pressure (mm Hg) Temperature (K)

762.675

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

.02742 0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.1	5.1	10.2	1.598	57	57.86	Slope = 30.4917
13	4	4	8	1.417	52	52.78	Intercept = 8.9820
10	3	3	6	1.228	45	45.68	Corr. coeff. = 0.9979
7	1.7	1.7	3.4	0.927	36	36.54	
5	1.0	1.0	2	0.713	31	31.47	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

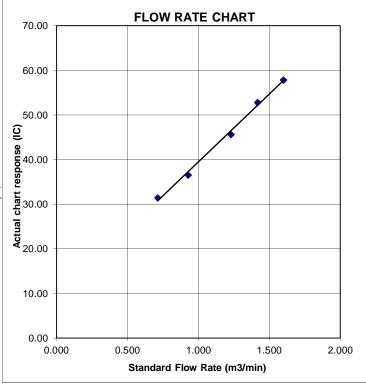
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Squatter house in Chung Mei Village

Location ID: AM2 Next Calibration Date: 31-Dec-12

Technician: Mr. Ben Tam

Date of Calibration: 1-Nov-12

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1016.9
21.1

Corrected Pressure (mm Hg)
Temperature (K)

762.675 294

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

2.02742 -0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.9	5.9	11.8	1.719	59	59.89	Slope = 28.6941
13	4	4	8	1.417	50	50.75	Intercept = 10.4649
10	3	3	6	1.228	45	45.68	Corr. coeff. = 0.9991
7	1.8	1.8	3.6	0.954	38	38.57	
5	1.1	1.1	2.2	0.748	31	31.47	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

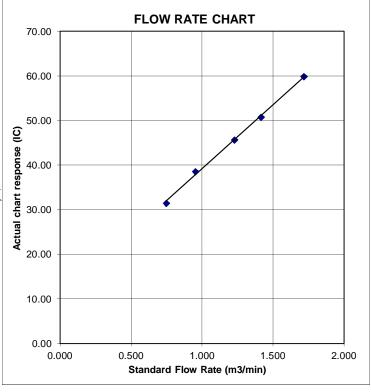
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Football court

Location ID: AM3

Date of Calibration: 1-Nov-12

Next Calibration Date: 31-Dec-12

Technician: Mr. Ben Tam

CONDITIONS

0011511

Sea Level Pressure (hPa)
Temperature (°C)

ure (hPa) 1016.9 ure (°C) 21.1 Corrected Pressure (mm Hg)
Temperature (K)

762.675 294

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1483

Qstd Slope -> Qstd Intercept ->

2.02742 -0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.3	5.3	10.6	1.629	48	48.72	Slope = 25.4813
13	4	4	8	1.417	41	41.62	Intercept = 6.7040
10	2.6	2.6	5.2	1.144	36	36.54	Corr. coeff. = 0.9964
7	1.5	1.5	3	0.871	29	29.44	
5	1.0	1.0	2	0.713	24	24.36	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

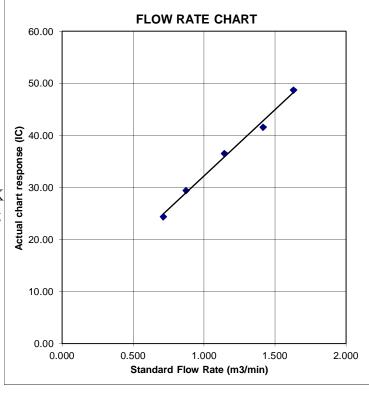
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Squatter house in Chung Mei Village

Location ID: AM1

Date of Calibration: 2-Jan-13 Next Calibration Date: 2-Mar-13 Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1019.4
16.8

Corrected Pressure (mm Hg) Temperature (K)

764.55

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

.02742 0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.1	5.1	10.2	1.612	56	57.76	Slope = 28.6480
13	4.1	4.1	8.2	1.447	50	51.57	Intercept = 11.0234
10	3	3	6	1.239	45	46.41	Corr. coeff. = 0.9968
7	1.6	1.6	3.2	0.907	37	38.16	
5	1.0	1.0	2	0.719	30	30.94	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

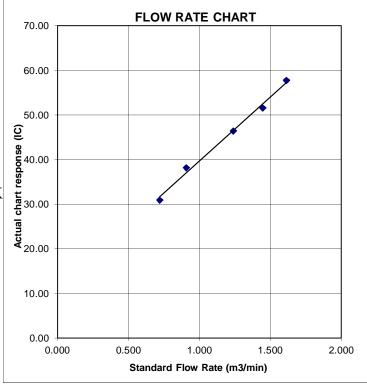
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K

Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Squatter house in Chung Mei Village

Location ID: AM2

Date of Calibration: 2-Jan-13 Next Calibration Date: 2-Mar-13 Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1019.4
16.8

Corrected Pressure (mm Hg)
Temperature (K)

764.55 290

CALIBRATION ORIFICE

	_
Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

2.02742 -0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.8	5.8	11.6	1.719	59	60.85	Slope = 28.4201
13	4	4	8	1.429	50	51.57	Intercept = 11.3952
10	3.1	3.1	6.2	1.259	45	46.41	Corr. coeff. = 0.9986
7	1.8	1.8	3.6	0.962	38	39.19	
5	1.0	1.0	2	0.719	31	31.97	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

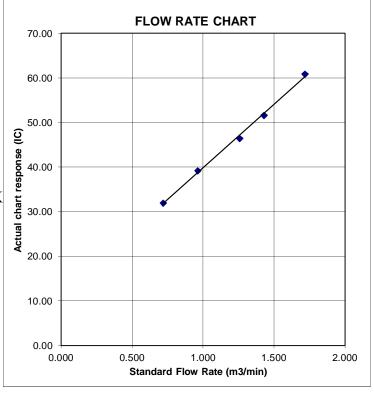
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Football court Date of Calibration: 2-Jan-13
Location ID: AM3 Next Calibration Date: 2-Mar-13

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1019.4
16.8

Corrected Pressure (mm Hg)
Temperature (K)

764.55 290

CALIBRATION ORIFICE

	_
Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

2.02742 -0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.3	5.3	10.6	1.643	48	49.51	Slope = 26.6137
13	4.1	4.1	8.2	1.447	42	43.32	Intercept = 5.6750
10	2.6	2.6	5.2	1.154	36	37.13	Corr. coeff. = 0.9954
7	1.6	1.6	3.2	0.907	30	30.94	
5	1.0	1.0	2	0.719	23	23.72	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

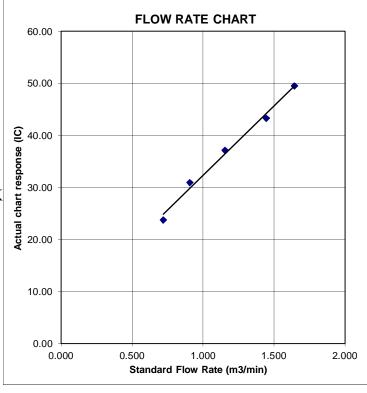
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

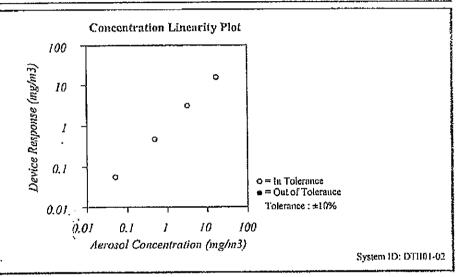
CERTIFICATE OF CALIBRATION AND TESTING

Environment Condition			Model			3 52 0
l'emperature	68.5 (20.3)	°F (°C)	TYTOUC!			
Relative Humidity	19	%RH	 		1 2	23080
Barometric Pressure	29.11 (985.8)	inHg (hPa)				
🖾 As Left		×	In Tolerance			
☐ As Found			Out of Tolerance			
100, 27 hans the desired professional and the second of th	**************************************	Concentratio	n Linearity Plot			
	100	Concentratio	ii Linearity 1 lot			
	Device Response (mg/m3) 1°0 1		0			
	(mg		0			
	011.56		:			
	lesp		0			
	ice I	- 0	4			
	Devi			o = In Tolerance		
	0.01			● = Out of Tolerance)	
		01 0.1	1 10 100	0		
	0.		entration (mg/m3)			
					System	ID: DTH01-02
Zero Stability Results						
Average:	Minimum:		Maximum:	Time:	: 50	
0.000 :mg	/m3 0.00	:mg/m ²	n	$:mg/m^3$:hrs

Final Function Check

March 8, 2012

Date


CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition	*		Model	AM510
Тетрегацие	68.4 (20.2)	°F (°C)	Model	AMOTO
Relative Humidity	59	%RH	Serial Number	11008017
Barometric Pressure	28.97 (981.0)	inHg (hPa)	Serial Humber	11000011

☐ As Left ⊠In Tolcrance

☑ As Found ☐ Out of Tolerance

TSI incorporated does hereby certify that all materials, components, and workmonship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, AI test dust (Arizona dust). One calibration ratio is greater than 1.2:1

Measurement Variable Barometric Pressure Humidity DC Voltage Microbalance Flowmeter	System IV E003733 E002873 E003315 M001324 E002006	1-051.Cai. 02-25-12 11-14-11 01-03-12 01-04-11 03-06-12	02-25-13 11-14-12 01-03-13 01-04-13 03-06-13	Mensurence Variable Temperature DC Voltage Photometer Pressure	System ID E002873 E003314 E003319 E003511	14-14-11 01-03-12 07-26-12 11-11-11	Cal, Que H-14-12 01-03-13 01-26-13 11-11-12
---	--	--	--	--	---	--	---

Marlens Johnson

Final Function Check

August 9, 2012

Date

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122427

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-0960)

Description / 儀器名稱

Integrating Sound Level Meter (EQ010)

Manufacturer / 製造商 Model No. / 型號

Bruel & Kjaer

Serial No. / 編號

2238

2285721

Action-United Environmental Services and Consulting Supplied By / 委託者

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Precision Measurement Ltd., UK
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

L K Yeung

Certified By

核證

K/C Lee

Date of Issue 簽發日期

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122427

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using the B & K Acoustic Calibrator 4231, S/N: 2713428 was performed before the test.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

C120016

Multifunction Acoustic Calibrator

DC110233

5. Test procedure: MA101N.

6. Results:

Sound Pressure Level 6.1

Reference Sound Pressure Level 6.1.1

	UUT	Setting		Applie	d Value	UUT	IEC 60651 Type 1 Spec. (dB)
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
50 - 130	L _{AFP}	A	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UU	Γ Setting		Applie	d Value	UUT
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0 (Ref.)
				104.00) []	104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting		Applied Value		UUT	IEC 60651		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0	Ref.
	L _{ASP}	3	S			94.0	± 0.1
	L _{AIP}		I			94.1	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測源至國際標準。 局部複印本證書需先獲本實驗所書面批准+

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C122427

證書編號

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting		Applied Value		UUT	IEC 60651		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAFP	A	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}		Application of the same		500 ms	101.9	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting		Appli	Applied Value		IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{AFP} A F	94.00	31.5 Hz	54.6	-39.4 ± 1.5		
	27.24				63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5; -3.0)
		11			12.5 kHz	89.7	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

	UUT Setting		Appli	ed Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{CFP}	C	F	94.00	31.5 Hz	91.1	-3.0 ± 1.5
			100		63 Hz	93.3	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	90.9	-3.0 (+1.5; -3.0)
					12.5 kHz	87.8	-6.2 (+3.0; -6.0)

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 精動工程有限公司。数定及除到原始的

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/厄郵: callab@suncreation.com

Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C122427

證書編號

6.4 Time Averaging

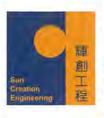
	UUT Setting			Applied Value					UUT	IEC 60804
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAcq	A	10 sec.	4	1	1/10	110.0	100	99.9	± 0.5
	1.326	TY II				1/102		90	89.6	± 0.5
			60 sec.			1/103		80	79.8	± 1.0
			5 min.		11	1/104		70	69.8	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : \pm 0.40 dB

 $\begin{array}{lll} 104 \ dB : 1 \ kHz & : \pm 0.10 \ dB \ (Ref. 94 \ dB) \\ 114 \ dB : 1 \ kHz & : \pm 0.10 \ dB \ (Ref. 94 \ dB) \\ Burst equivalent level & : \pm 0.2 \ dB \ (Ref. 110 \ dB) \end{array}$

continuous sound level)


Note

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部被印本證書書先獲本實驗所書面批准。

⁻ The uncertainties are for a confidence probability of not less than 95 %.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-0960)

Description / 儀器名稱

Acoustical Calibrator (EQ082)

Manufacturer / 製造商

Bruel & Kjaer

Model No. / 型號

4231

Serial No. / 編號

2713428

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}C$

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓:

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

Certified By 核證

K/C Lee

Date of Issue 簽發日期

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement
of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A DescriptionCertificate No.Universal CounterC113350Multifunction Acoustic CalibratorDC110233Measuring AmplifierC120886

Test procedure : MA100N.

5. Results:

5.1 Sound Level Accuracy

5.1.1 Before Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.1	± 0.2	± 0.2
114 dB, 1 kHz	114.1	1 11 27 7 . 7	

5.1.2 After Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

5.2.1 Before Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value (Hz)
(kHz)	(kHz)	Spec.	
1	1.000 0	1 kHz ± 0.1 %	± 0.1

5.2.2 After Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書書先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM

CLIENT: ACTION UNITED ENVIRO SERVICES
ADDRESS: RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG.

PROIECT: -

WORK ORDER: HK1229602 LABORATORY: HONG KONG DATE RECEIVED: 07/11/2012

DATE OF ISSUE: 14/11/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity, Temperature and Turbidity

Description:

YSI Sonde

Brand Name:

YSI

Model No.: Serial No.: YSI 6820 / 650MDS 02J0912 / 02K0788 AA

Equipment No.:

No ·

Date of Calibration: 13 November, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021

ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1229602 Date of Issue: 14/11/2012

Client: ACTION UNITED ENVIRO SERVICES

Description: YSI Sonde

Brand Name: YSI

Model No.: YSI 6820 / 650MDS Serial No.: 02J0912 / 02K0788 AA

Equipment No.:

Date of Calibration: 13 November, 2012 Date of next Calibration: 13 February, 2013

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.02	3.04	0.02
6.26	6.20	-0.06
7.78	7.90	0.12
	Tolerance Limit (±mg/L)	0.20

pH Value Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)	
4.0	4.10	0.10	
7.0	7.09	0.09	
10.0	10.07	0.07	
	Tolerance Limit (±unit)	0.2	

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.06		
10	10.49	4.9	
20	20.22	1.1	
30	30.68	2.3	
	Tolerance Limit (±%)	10.0	

Mr Chan Kwol/ Fai, Godfrey Laboratory Manager - Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1229602 14/11/2012

Date of Issue: Client:

ACTION UNITED ENVIRO SERVICES

Description:

YSI Sonde

Brand Name:

YSI

Model No .:

YSI 6820 / 650MDS 02J0912 / 02K0788 AA

Serial No .: Equipment No.:

Date of Calibration:

13 November, 2012

Date of next Calibration:

13 February, 2013

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.50	11.48	0.0
21.35	21.34	0.0
36.50	36.32	-0.2
	Tolerance Limit (°C)	2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.1	
4	4.1	2.5
40	40.3	0.7
80	80.1	0.1
400	380.2	-5.0
800	760.4	-5.0
	Tolerance Limit (±%)	10.0

Mr Chan Kwok/Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd **ALS Environmental**

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025: 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 -《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025: 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇‧國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

Registration Number : HOKLAS 066

註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix F

Event/Action Plan

Air Quality

		All Quality		T.
EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	Check monitoring data submitted by ET; Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results.	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	1. Notify IC(E), ER, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

		water Quality		
EVENT		ACTIO		
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	Check monitoring data submitted by ET and Contractor's working methods	 Confirm receipt of notification of non-compliance in writing; and Notify Contractor 	Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
Exceedance for two or more consecutive sampling days	1. Same as the above;	Same as the above; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures.	 Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures 	Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures
		LIMIT LEVEL		
Exceedance for one sampling day	AFCD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; and 5. Discuss mitigation measures with IC(E), RE and Contractor	Contractor on possible remedial actions; and 3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly	failure in writing; and 2. Discuss with IC(E), ET and 3. Contractor on the proposed mitigation measures; and 4. Request Contractor to review the working methods	Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
Exceedance for two or more consecutive sampling days	Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days	 Same as the above; and Supervise the Implementation of mitigation measures 	 Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level 	 Same as the above; Take immediate action to avoid further exceedance; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; and As directed by the Engineer, to slow down or to stop all or part of the construction activities until to no exceedance of Limit Level.

Appendix G

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	APSED TI	ME	CHA	ART READ	ING			STANDARD)	INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring F	Results - AN	11												
29-Dec-12	25262	12934.49	12958.48	1439.40	33	35	34.0	18	1016.3	0.84	1203	2.808	2.8798	0.0718	60
4-Jan-13	25265	12958.48	12982.47	1439.40	33	36	34.5	13.9	1020.6	0.85	1219	2.7991	2.8958	0.0967	79
10-Jan-13	25271	12982.47	13006.46	1439.40	34	36	35.0	14.7	1021	0.86	1243	2.8183	2.9601	0.1418	114
16-Jan-13	25298	13006.46	13030.45	1439.40	34	36	35.0	17.4	1021.2	0.86	1234	2.8096	2.8444	0.0348	28
22-Jan-13	25303	13030.45	13054.44	1439.40	32	34	33.0	21.4	1019.1	0.78	1119	2.8203	2.8383	0.0180	16
24-hour TSP	Monitoring F	Results - AN	12												
29-Dec-12	25263	11437.59	11461.58	1439.40	33	34	33.5	18	1016.3	0.82	1178	2.8198	2.8679	0.0481	41
4-Jan-13	25268	11461.58	11485.57	1439.40	33	35	34.0	13.9	1020.6	0.82	1184	2.7907	2.9254	0.1347	114
10-Jan-13	25272	11485.57	11509.56	1439.40	34	36	35.0	14.7	1021	0.86	1234	2.8325	2.8977	0.0652	53
16-Jan-13	25299	11509.56	11533.55	1439.40	34	36	35.0	17.4	1021.2	0.85	1226	2.8134	2.8922	0.0788	64
22-Jan-13	25304	11533.55	11557.54	1439.40	34	36	35.0	21.4	1019.1	0.84	1211	2.7704	2.8168	0.0464	38
24-hour TSP	Monitoring F	Results - AN	13												
29-Dec-12	25264	6979.5	7003.49	1439.4	32	34	33	18	1016.3	1.05	1510	2.8127	2.9405	0.1278	85
4-Jan-13	25269	7003.49	7027.48	1439.4	33	34	33.5	13.9	1020.6	1.07	1546	2.8131	2.9415	0.1284	83
10-Jan-13	25273	7027.48	7051.47	1439.4	34	36	35	14.7	1021	1.13	1627	2.8167	3.0132	0.1965	121
16-Jan-13	25300	7051.47	7075.46	1439.4	34	36	35	17.4	1021.2	1.12	1618	2.8119	2.9214	0.1095	68
22-Jan-13	25305	7075.46	7099.45	1439.4	34	36	35	21.4	1019.1	1.11	1603	2.7667	2.8432	0.0765	48

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

AUES

Sok Kwu Wan

Date 27-Dec-12

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/12/27 11:23	W1	ME	832975	807726	2.3	1.150	20.07	8.54	115.4	3.2	34.71	7.77	2.7
2012/12/27 11:23			002710	001120	2.0	1.150	20.10	8.47	115.3	2.9	35.91	7.80	2.,
						1.000	20.24	8.36	114.2	3.8	36.08	7.78	1.9
						1.000	20.21	8.37	114.3	4.0	36.09	7.79	
2012/12/27 11:39	W2	ME	832683	807974	12.4	6.200	20.27	8.30	113.5	4.9	36.13	7.80	1.4
						6.200	20.27	8.31	113.7	4.9	36.10	7.80	
						11.400	20.26	7.50	102.3	3.7	35.95	7.79	2.0
	1					11.400	20.24	7.74 9.12	105.8	3.6	35.97	7.80 7.79	
						1.000	20.34	9.12	125.1 126.5	2.2	36.35 36.27	7.79	4.
						6.150	20.40	7.67	105.3	1.9	36.24	7.84	
2012/12/27 11:58	W3	ME	832040	807900	12.3	6.150	20.46	8.16	112.1	1.9	36.26	7.84	4.
						11.300	20.40	8.15	111.8	1.8	36.23	7.82	
						11.300	20.41	8.34	114.5	1.8	36.21	7.82	4.
						1.000	20.41	9.41	125.2	2.6	31.99	7.75	
						1.000	20.18	9.57	125.7	2.6	29.59	7.75	3.0
						6.950	20.14	9.19	125.1	3.1	35.75	7.77	
2012/12/27 11:07	C1	ME	833716	808193	13.9	6.950	20.15	8.86	120.7	3.1	35.71	7.77	3.
						12.900	19.56	7.58	102.5	3.3	36.49	7.76	_
						12.900	20.28	7.74	105.6	3.1	35.76	7.79	8.
						1.000	20.04	8.24	112.4	2.2	36.27	7.80	2
						1.000	20.00	8.16	111.2	2.0	36.34	7.80	3.
2012/12/27 12:16	CO.	ME	831452	007756	10.0	5.400	20.15	8.39	114.6	1.9	36.22	7.81	4.
2012/12/27 12:16	C2	ME	831452	807756	10.8	5.400	20.15	8.47	115.6	1.8	36.19	7.81	4.
						9.800	20.11	7.63	104.0	2.5	36.18	7.78	4.
						9.800	20.00	7.45	101.6	2.5	36.28	7.79	4.
						1.000	20.36	8.83	119.9	2.5	34.70	7.76	3.
						1.000	20.35	9.02	122.5	2.7	34.69	7.78	٥.
2012/12/27 10:46	C3	ME	832229	808878	14.4	7.200	20.06	9.25	125.7	3.1	35.64	7.77	3.
2012/12/27 10:10	0.5	IVIL	03222)	000070	1 1	7.200	20.13	8.93	121.3	2.8	35.55	7.78	٥.
						13.400	19.91	8.14	111.3	3.5	35.92	7.75	3.
						13.400	20.20	8.16	112.1	3.2	35.65	7.76	
						1.350	20.11	8.39	113.0	1.7	34.14	7.86	
2012/12/27 16:39	W1	MF	832977	807719	2.7	1.350	20.13	8.28	113.3	1.6	36.52	7.88	2.
						1.000	20.25	8.35	114.4	1.3	36.39	7.93	,
						1.000	20.28	8.46	114.4	1.4	34.26	7.89	1.
2012/12/27 16:25	W2	MF	832674	807997	13.3	6.650	20.15	8.36	114.3	1.3	36.55	7.88	3.
2012/12/27 10.23	VV Z	IVII	832074	001991	13.3	6.650	20.17	8.43	113.8	1.5	34.18	7.86	٥.
						12.300	20.24	7.41	101.4	1.3	36.45	7.88	3.
						12.300	20.28	7.37	100.9	1.6	36.39	7.88	٥.
						1.000	20.39	9.67	118.5	1.5	17.04	7.93	1.
						1.000	20.46	10.09	124.2	1.4	17.56	7.94	
2012/12/27 16:12	W3	MF	832038	807889	13.2	6.600	20.36	8.93	122.6	1.7	36.44	7.93	2.
						6.600	20.31	8.63	118.3	1.7	36.43	7.92	
						12.200 12.200	20.28	7.62 7.75	104.5 104.9	1.4	36.63 34.23	7.93 7.90	2.
						1.000	20.32	8.57	117.4	0.9	36.63	7.97	
						1.000	20.10	8.00	109.7	0.9	36.57	7.92	1.
						7.650	20.25	7.91	109.7	0.9	36.55	7.89	
2012/12/27 16:55	C1	MF	833711	808159	15.3	7.650	20.11	7.68	103.4	0.8	34.00	7.85	3.
						14.300	19.96	7.49	102.1	1.2	36.63	7.86	_
		<u></u>				14.300	20.16	7.60	102.4	1.1	33.88	7.84	2.
						1.000	20.35	9.10	125.1	1.6	36.68	7.99	^
						1.000	20.31	9.02	123.8	1.7	36.69	7.95	2.
2012/12/27 15:50	C2	MF	831479	807738	11.8	5.900	20.24	8.96	122.8	1.4	36.56	7.94	1.
2012/12/27 15:58	C2	IVIP	651479	007738	11.8	5.900	20.23	8.94	122.5	1.6	36.57	7.95	1.
						10.800	20.14	8.01	109.5	2.2	36.62	7.89	6.
						10.800	20.18	7.94	108.6	2.2	36.56	7.93	0.
	1					1.000	20.00	8.40	114.6	1.5	36.56	7.83	2.
							20.15	7.45	100.4	1.5	34.04	7.85	
						1.000							
2012/12/27 17:16	C3	MF	832208	808846	15.6	7.800	19.84	8.11	110.3	1.0	36.54	7.83	4.0
2012/12/27 17:16	C3	MF	832208	808846	15.6								4.0

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

29-Dec-12 Date

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	ဗ	mg/L	%	NTU	ppt	unit	mg
2012/12/29 12:58	W1	ME	832959	807737	2.4	1.200	19.59	8.05	109.0	1.3	36.44	8.00	3.4
2012/12/27 12:30	***1	IVIL	032737	007757	2.7	1.200	19.63	7.84	106.1	1.2	36.37	8.00	٥
						1.000	19.73	8.11	109.9	2.0	36.26	8.02	3.6
						1.000	19.73	7.96	106.1	1.6	33.45	7.99	5.0
2012/12/29 12:42	W2	ME	832676	808000	12.3	6.150	19.74	6.64	90.0	1.4	36.25	8.01	3.1
2012/12/2) 12.42	*** 2	IVIL	032070	000000	12.5	6.150	19.71	6.56	88.8	1.4	36.26	8.01	٥.
						11.300	19.70	7.73	104.8	1.3	36.33	8.03	2.
						11.300	19.63	7.83	104.2	1.3	33.51	7.97	۷.
						1.000	19.74	7.55	100.9	1.5	33.85	8.02	3.
						1.000	19.72	7.39	100.2	1.5	36.30	8.06	٥.
2012/12/29 12:21	W3	ME	832055	807900	12	6.000	19.87	6.94	94.3	1.6	36.27	8.04	2.
2012/12/29 12.21	W 3	IVIE	652055	807900	12	6.000	19.84	6.92	93.9	1.4	36.28	8.04	Ζ.
						11.000	19.85	6.70	90.0	1.4	34.35	7.99	2
						11.000	19.89	6.57	89.3	1.5	36.30	8.04	3.
						1.000	19.24	6.80	91.3	1.2	36.33	7.99	0
						1.000	19.25	6.65	89.4	1.3	36.34	7.98	2.
2012/12/20 12 16	G1) (E	000.604	000177	1.4.0	7.150	19.30	8.13	109.3	0.8	36.40	7.97	0
2012/12/29 13:16	C1	ME	833684	808177	14.3	7.150	19.35	6.53	88.0	0.9	36.35	7.95	2.
						13.300	19.41	6.11	81.7	1.0	34.86	7.90	_
						13.300	19.46	6.01	81.1	0.8	36.33	7.96	2.
						1.000	19.79	8.09	109.7	2.5	36.34	8.13	
						1.000	19.80	6.66	90.5	2.6	36.34	8.10	3.
						5.250	19.97	7.92	107.9	1.5	36.36	8.11	
2012/12/29 12:05	C2	ME	831473	807756	10.5	5.250	19.96	8.03	107.7	1.8	33.66	8.05	4.
						9.500	19.89	7.90	105.6	1.8	33.56	8.03	
						9.500	19.93	7.94	106.3	1.9	33.50	8.03	3.
						1.000	19.51	6.12	81.8	0.8	34.72	7.90	
						1.000	19.31	6.11	81.7	0.8	34.77	7.90	2.
						7.300	18.80	5.99	80.4	1.0	36.44	7.95	
2012/12/29 13:43	C3	ME	832194	808880	14.6				81.8	1.0	36.44	7.95	2.
						7.300	18.81	6.13					
						13.600	18.73	6.24	83.1	0.8	36.40	7.92	2.
						13.600	18.74	6.25	83.3	1.0	36.39	7.93	
						1.400	20.09	7.96	108.4	1.9	35.94	7.95	
2012/12/29 8:58	W1	MF	832960	807744	2.8	1.400	20.08	7.95	108.2	2.0	35.97	7.94	3.
						1.000	19.98	8.23	111.9	2.7	35.94	8.03	
						1.000	19.97	8.20	111.4	2.8	35.86	8.02	4.
						6.550	20.09	8.25	112.3	2.3	35.87	7.97	
2012/12/29 8:47	W2	MF	832659	807972	13.1	6.550	20.06	7.37	100.2	2.3	35.85	7.97	3.
						12.100	20.17	7.29	99.4	2.3	35.98	7.97	
						12.100	20.17	7.30	99.7	2.3	35.93	7.98	4.
						1.000	19.72	6.40	86.6	1.8	36.04	8.02	
													2
						1.000	19.71 19.77	6.55	88.7 89.2	1.8	36.04 34.46	8.01	
2012/12/29 8:29	W3	MF	832036	807899	13.2	6.600		6.64		1.9		7.97	3
						6.600	19.84	6.50	88.2	1.7	36.15	8.02	-
						12.200	19.97	7.46	101.5	1.7	36.13	8.02	2
						12.200	19.98	7.44	101.2	1.8	36.11	8.03	-
						1.000	19.66	7.94	107.4	2.7	36.16	8.20	3
						1.000	19.65	8.05	107.1	2.6	33.40	8.13	
2012/12/29 9:16	C1	MF	833691	808184	15.4	7.700	19.82	7.04	95.3	2.1	35.99	8.08	4
	<u> </u>		223071			7.700	19.81	6.99	94.6	2.2	35.99	8.08	
	1					14.400	19.62	8.15	110.1	1.8	36.16	8.04	3
						14.400	19.74	7.88	106.8	1.9	36.08	8.05	
						1.000	20.06	8.18	110.1	2.4	33.91	7.54	4.
						1.000	20.11	8.10	109.2	2.4	34.25	7.63	-
							19.97	7.80	105.6	2.6	35.48	7.75	3.
2012/12/20 8:12	C	ME	831.472	807740	11 8	5.900			104.6	2.3	35.51	7.75	٥.
2012/12/29 8:12	C2	MF	831472	807740	11.8	5.900 5.900	19.96	7.71	104.0	2.0	33.31		
2012/12/29 8:12	C2	MF	831472	807740	11.8		19.96 19.97	7.71	104.0	2.4	35.63	7.79	^
2012/12/29 8:12	C2	MF	831472	807740	11.8	5.900		_					2.
2012/12/29 8:12	C2	MF	831472	807740	11.8	5.900 10.800	19.97	7.95	107.7	2.4	35.63	7.79	
2012/12/29 8:12	C2	MF	831472	807740	11.8	5.900 10.800 10.800	19.97 19.93	7.95 7.86	107.7 106.5	2.4 2.2	35.63 35.65	7.79 7.79	
						5.900 10.800 10.800 1.000	19.97 19.93 20.02	7.95 7.86 7.83	107.7 106.5 106.2	2.4 2.2 2.8	35.63 35.65 35.60	7.79 7.79 7.78	2.
2012/12/29 8:12	C2	MF	831472 832229	807740	11.8	5.900 10.800 10.800 1.000	19.97 19.93 20.02 19.99	7.95 7.86 7.83 7.81	107.7 106.5 106.2 105.9	2.4 2.2 2.8 2.8	35.63 35.65 35.60 35.58	7.79 7.79 7.78 7.79	2. 2.
						5.900 10.800 10.800 1.000 1.000 7.950	19.97 19.93 20.02 19.99 19.97	7.95 7.86 7.83 7.81 7.55	107.7 106.5 106.2 105.9 102.5	2.4 2.2 2.8 2.8 2.6	35.63 35.65 35.60 35.58 35.72	7.79 7.79 7.78 7.79 7.80	2.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 31-Dec-12

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	ш	Ç	mg/L	%	NTU	ppt	unit	mg/l
2012/12/31 13:59	W1	ME	832957	807740	2.4	1.200	18.31	7.20	95.0	2.9	36.08	8.78	6.7
2012/12/31 13.37	***	14112	032/31	007710	2.1	1.200	17.99	7.25	95.2	3.0	36.49	8.66	0.7
						1.000	17.84	8.53	111.4	2.9	35.97	8.22	4.0
						1.000 6.250	17.43 18.27	8.76	112.0 111.8	2.9	33.77 36.39	8.19	
2012/12/31 13:46	W2	ME	832674	807993	12.5	6.250	18.27	8.47 8.44	111.8	3.4	36.38	8.18 8.23	4.8
						11.500	18.41	7.66	101.4	3.5	36.34	8.16	
						11.500	18.23	7.55	99.6	3.4	36.45	8.17	4.9
						1.000	18.24	8.16	107.6	2.9	36.21	9.22	4.7
						1.000	18.16	8.11	106.8	3.0	36.40	9.05	4.7
2012/12/31 13:28	W3	ME	832037	807882	12.4	6.200	18.14	8.72	114.8	3.2	36.34	8.57	4.8
2012/12/31 13:20	5	1112	032037	007002	1211	6.200	18.47	8.63	114.1	3.1	35.94	8.54	
						11.400	18.56	8.60	114.0	3.1	36.11	8.36	8.2
						11.400 1.000	18.59 18.73	8.45 9.57	112.0 113.9	3.2 2.5	36.17 35.90	8.39 8.24	
						1.000	18.73	9.37 8.46	113.9	3.4	35.94	8.18	3.4
						7.200	18.71	8.17	97.4	2.4	36.50	8.23	†
2012/12/31 14:18	C1	ME	833696	808159	14.4	7.200	19.22	8.19	97.2	3.5	36.52	8.19	4.5
						13.400	19.41	7.35	97.9	3.0	34.22	8.13	1.5
						13.400	19.16	7.54	101.2	3.9	36.34	8.20	4.5
						1.000	18.51	8.30	109.1	2.8	36.23	8.17	4.1
						1.000	18.51	8.25	108.2	2.7	36.26	8.14	7.1
2012/12/31 13:08	C2	ME	831472	807760	11.7	5.850	18.06	6.95	90.4	2.8	34.55	7.95	6.2
						5.850	17.82	6.83	89.5	2.2	36.51	8.02	
						10.700 10.700	18.10 17.95	6.08	80.6 80.8	2.1	36.32 36.48	7.99 8.00	7.9
						1.000	17.80	9.63	126.5	3.1	36.51	8.51	
						1.000	17.78	9.26	121.8	2.9	36.52	8.50	5.3
2012/12/01 11/20	70		000044	000004		7.300	18.26	8.70	114.6	3.2	36.10	8.11	
2012/12/31 14:39	C3	ME	832241	808884	14.6	7.300	18.34	9.30	120.9	3.3	33.59	8.05	5.4
						13.600	17.97	7.62	99.8	4.0	36.43	8.05	6.1
						13.600	18.09	7.62	99.8	3.8	36.38	8.06	0.1
						1.250	10.00	7.42	97.3	2.5	25.76	7.07	
2012/12/31 9:58	W1	MF	832954	807753	2.7	1.350 1.350	18.08 17.86	7.43 7.50	97.3	2.5 2.4	35.76 35.58	7.87 7.88	4.9
						1.000	19.37	8.29	112.4	2.4	37.48	8.37	
						1.000	19.44	8.24	111.9	2.7	37.42	8.31	5.3
2012/12/01 0 16	****		000.664	005055	40.4	6.550	18.79	8.23	109.8	3.1	36.48	8.09	
2012/12/31 9:46	W2	MF	832661	807975	13.1	6.550	18.70	8.18	109.1	3.1	36.56	8.09	6.3
						12.100	18.65	6.65	88.3	3.1	36.17	7.90	6.5
						12.100	18.56	6.63	87.9	3.3	36.27	7.92	0.5
						1.000	18.15	8.20	108.4	3.8	36.95	9.19	4.4
						1.000	17.92	8.32	109.6	3.7	37.17	8.96	
2012/12/31 9:25	W3	MF	832051	807905	13.1	6.550 6.550	18.30 18.12	8.53	112.7 111.5	3.8	36.45 36.63	8.40 8.37	4.7
						12.100	18.62	8.46 8.61	111.3	3.8	33.15	8.15	
						12.100	18.37	8.39	111.1	3.8	36.72	8.17	7.7
						1.000	19.31	7.13	95.7	2.3	36.76	8.04	
						1.000	19.30	7.15	95.9	2.5	36.78	7.97	4.2
2013/1/1 14:20	C1	MF	833716	808176	15.1	7.550	19.16	6.91	92.0	2.3	36.54	7.77	4.4
2013/1/1 14.20	CI	IVII	655710	000170	13.1	7.550	19.00	7.01	92.5	2.4	36.76	7.78	4.4
						14.100	18.69	6.79	91.6	2.5	36.63	7.68	4.5
	1					14.100	18.62	6.71	90.4	2.3	34.99	7.65	<u> </u>
						1.000	17.44 17.54	7.26 7.23	94.5 94.3	4.8 4.8	36.61 36.60	7.85 7.87	4.1
						6.150	17.54	6.29	94.3 82.9	5.7	36.64	7.87	\vdash
2012/12/31 9:11	C2	MF	831460	807752	12.3	6.150	18.10	6.08	80.2	5.3	36.59	7.93	4.3
						11.300	17.89	7.95	102.3	4.3	33.36	7.89	<u> </u>
						11.300	17.59	7.83	102.3	4.6	36.93	7.94	5.1
						1.000	18.54	7.32	97.4	2.5	36.97	7.70	4.9
						1.000	18.77	7.27	97.2	2.4	36.83	7.71	4.9
2012/12/31 10:38	C3	MF	832192	808879	15.5	7.750	17.83	6.66	87.1	2.7	36.26	7.58	9.9
2012/12/31 10.30		1411	032192	000019	1.J.J	7.750	17.65	6.67	87.1	2.5	36.51	7.60	7.7
						14.500	18.87	5.75	76.4	4.8	35.67	7.53	10.8
	1	l				14.500	18.65	5.77	76.5	4.6	36.02	7.56	1

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

AUES

Sok Kwu Wan

Date 2-Jan-13

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/2 15:21	W1	ME	832966	807738	2.3	1.150	19.98	8.34	113.8	0.9	36.68	7.46	2.5
2013/1/2 13.21	VV 1	IVIL	032900	007730	2.3	1.150	19.92	8.29	113.1	0.7	36.73	7.46	۷.,
						1.000	20.04	8.59	116.9	0.8	36.00	7.55	2.7
						1.000	20.11	8.50	116.6	0.6	37.17	7.60	2.,
2013/1/2 15:07	W2	ME	832673	808003	12.4	6.200	20.01	8.64	117.3	0.7	35.69	7.50	2.1
2013/1/2 13:07	*** 2	IVIL	032013	000003	12.7	6.200	19.99	8.50	116.2	0.8	36.95	7.56	2.1
						11.400	19.87	8.49	115.8	0.9	36.91	7.50	2.1
						11.400	19.86	8.44	115.1	0.7	36.97	7.52	۷.1
						1.000	20.15	8.29	113.7	0.8	37.00	7.64	3.0
						1.000	20.16	8.25	113.2	1.5	37.00	7.64	5.0
2013/1/2 14:51	W3	ME	832041	807905	12.1	6.050	19.71	8.41	114.3	1.2	36.80	7.53	3.
2013/1/2 14.31	W 3	ME	652041	807903	12.1	6.050	19.67	8.38	113.8	1.3	36.86	7.54	5.
						11.100	19.62	8.33	113.0	1.3	36.74	7.53	2 /
						11.100	19.55	8.33	112.8	1.5	36.63	7.54	3.2
						1.000	19.97	8.71	119.1	1.2	37.05	7.86	0
						1.000	20.17	8.56	117.5	1.6	37.05	7.73	2.
2012/1/2 15 15	G1) (F	000711	000165	144	7.200	19.70	8.54	115.4	1.8	35.79	7.58	
2013/1/2 15:45	C1	ME	833711	808165	14.4	7.200	19.75	8.42	114.6	1.9	36.92	7.63	2.
						13.400	19.70	8.43	113.8	1.2	35.53	7.51	_
						13.400	19.70	8.34	113.3	1.0	36.76	7.58	2.
						1.000	20,67	9.02	125.0	1.1	37.05	8.00	
						1.000	20.69	8.86	122.7	1.2	37.11	7.95	2.
						5.800	19.90	8.55	116.8	1.1	37.03	7.75	
2013/1/2 14:39	C2	ME	831480	807755	11.6	5.800	19.94	8.53	116.6	0.8	36.96	7.74	2.
						10.600	19.71	8.64	117.3	1.5	36.72	7.62	
						10.600	19.61	8.46	114.8	1.0	36.77	7.63	2.
						1.000	19.71	8.24	112.0	1.9	36.80	7.55	
						1.000	19.71	8.18	111.1	2.0	36.79	7.55	2.
						7.450	19.59	8.43	111.1	2.0	35.63	7.48	
2013/1/2 16:07	C3	ME	832233	808870	14.9	7.450	19.59	8.20	111.2	2.2	36.70	7.46	2.
						13.900	19.42	8.39	113.5	2.3	36.78	7.49	2.
						13.900	19.40	8.28	111.8	2.4	36.75	7.51	
						1.400	19.41	8.31	111.8	1.3	35.96	7.79	
2013/1/2 9:42	W1	MF	832957	807744	2.8	1.400	19.42	8.25	111.9	1.3	37.40	7.84	2.
	-					1.000	19.42		111.9		37.38		
								8.21		1.5		7.88	2.
						1.000	19.97	8.16	111.8	1.5	37.33	7.88	
2013/1/2 9:30	W2	MF	832681	807976	13.5	6.750	19.86	8.67	105.8	1.5	17.92 17.77	7.87	2.
						(750	10.05			1.6			
						6.750	19.85	8.75	106.5			7.88	
						12.500	19.74	8.38	114.2	1.8	37.09	7.85	2.
						12.500 12.500	19.74 19.74	8.38 8.25	114.2 112.4	1.8 1.5	37.09 37.03	7.85 7.83	2.
						12.500 12.500 1.000	19.74 19.74 19.53	8.38 8.25 8.60	114.2 112.4 116.8	1.8 1.5 2.3	37.09 37.03 37.23	7.85 7.83 7.89	
						12.500 12.500 1.000 1.000	19.74 19.74 19.53 19.52	8.38 8.25 8.60 8.52	114.2 112.4 116.8 115.7	1.8 1.5 2.3 2.2	37.09 37.03 37.23 37.21	7.85 7.83 7.89 7.91	
2013/1/2 9·14	W3	MF	832052	807895	13 3	12.500 12.500 1.000 1.000 6.650	19.74 19.74 19.53 19.52 19.27	8.38 8.25 8.60 8.52 8.30	114.2 112.4 116.8 115.7 112.1	1.8 1.5 2.3 2.2 2.5	37.09 37.03 37.23 37.21 37.08	7.85 7.83 7.89 7.91 7.89	2.
2013/1/2 9:14	W3	MF	832052	807895	13.3	12.500 12.500 1.000 1.000 6.650 6.650	19.74 19.74 19.53 19.52 19.27 19.11	8.38 8.25 8.60 8.52 8.30 8.38	114.2 112.4 116.8 115.7 112.1 112.9	1.8 1.5 2.3 2.2 2.5 2.4	37.09 37.03 37.23 37.21 37.08 37.15	7.85 7.83 7.89 7.91 7.89 7.89	2.
2013/1/2 9:14	W3	MF	832052	807895	13.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300	19.74 19.74 19.53 19.52 19.27 19.11 19.42	8.38 8.25 8.60 8.52 8.30 8.38 8.22	114.2 112.4 116.8 115.7 112.1 112.9 110.9	1.8 1.5 2.3 2.2 2.5 2.4 2.2	37.09 37.03 37.23 37.21 37.08 37.15 36.53	7.85 7.83 7.89 7.91 7.89 7.89 7.90	2.
2013/1/2 9:14	W3	MF	832052	807895	13.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 12.300	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73	7.85 7.83 7.89 7.91 7.89 7.89 7.90 7.91	2.
2013/1/2 9:14	W3	MF	832052	807895	13.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 12.300	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37	7.85 7.83 7.89 7.91 7.89 7.89 7.90 7.91 7.83	2. 3. 2.
2013/1/2 9:14	W3	MF	832052	807895	13.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36	7.85 7.83 7.89 7.91 7.89 7.89 7.90 7.91 7.83 7.81	2. 3. 2.
						12.500 12.500 1.000 1.000 6.650 6.650 12.300 12.300	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22	7.85 7.83 7.89 7.91 7.89 7.89 7.90 7.91 7.83 7.81	2. 3. 2. 3.
2013/1/2 9:14	W3	MF	832052 833720	807895	13.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36	7.85 7.83 7.89 7.91 7.89 7.89 7.90 7.91 7.83 7.81	2. 3. 2. 3.
						12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 115.1	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22	7.85 7.83 7.89 7.91 7.89 7.89 7.90 7.91 7.83 7.81	2. 3. 2. 3.
						12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650 7.650	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.29 8.04 8.04 8.40	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 115.1 112.3	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22	7.85 7.83 7.89 7.91 7.89 7.90 7.90 7.91 7.83 7.81 7.78	2. 3. 2. 3.
						12.500 12.500 1.000 1.000 6.650 6.650 12.300 12.300 1.000 7.650 7.650 14.300	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.06	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 115.1 112.3 110.4	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22	7.85 7.83 7.89 7.91 7.89 7.90 7.90 7.91 7.83 7.81 7.78 7.77	2. 3. 2. 3. 3.
						12.500 12.500 1.000 1.000 6.650 6.650 12.300 12.300 1.000 1.000 7.650 14.300 14.300	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.06 8.05	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 110.5 110.1 110.1 110.1 110.1	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 1.1	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22 37.25	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.77 7.74	2. 3. 2. 3. 3.
2013/1/2 10:02	C1	MF	833720	808181	15.3	12.500 12.500 1.000 1.000 6.650 12.300 12.300 1.000 1.000 7.650 7.650 14.300 1.000	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98 19.18	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.04 8.00 8.05 8.97	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 115.1 112.3 110.4 110.3	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 1.1 0.9 3.0	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.27 37.25 35.79	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.77 7.74 7.74 7.90	2. 3. 2. 3. 2. 3.
						12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650 7.650 14.300 1.000 1.000	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98 19.18	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.05 8.97 8.91	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 115.1 112.3 110.4 110.3 120.1	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 1.1 0.9 3.0 2.9	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22 37.27 37.25 35.79 37.11	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.77 7.74 7.74 7.90 7.91	2. 3. 2. 3. 1.
2013/1/2 10:02	C1	MF	833720	808181	15.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650 7.650 14.300 1.000 1.000 6.350 6.350	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98 19.18 19.18	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.06 8.05 8.97 8.91 8.26 8.26	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 110.5 110.4 110.3 120.1 120.1 111.3 111.5	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 1.1 0.9 3.0 2.9 2.5 2.8	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22 37.25 35.79 37.11 36.84 37.14	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.77 7.74 7.74 7.790 7.91 7.92	2. 3. 2. 3. 2. 3. 1.
2013/1/2 10:02	C1	MF	833720	808181	15.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650 7.650 14.300 14.300 1.000 6.350 6.350 6.350 11.700	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98 19.18 19.18 19.20 19.21	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.04 8.20 8.06 8.05 8.97 8.91 8.26 8.26 8.24	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 110.5 110.4 110.3 120.1 120.1 111.3 111.5 111.0	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 1.1 0.9 3.0 2.9 2.5 2.8 2.7	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22 37.25 35.79 37.11 36.84 37.14	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.77 7.74 7.74 7.79 7.90 7.91 7.92 7.92	2. 3. 2. 3. 2. 3. 1.
2013/1/2 10:02	C1	MF	833720	808181	15.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650 7.650 14.300 14.300 1.000 6.350 6.350 11.700	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98 19.18 19.18 19.20 19.21 19.21	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.06 8.05 8.97 8.91 8.26 8.26 8.24 8.31	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 110.5 110.1 110.3 120.1 120.1 111.3 111.3 111.5 111.0	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 1.1 0.9 3.0 2.9 2.5 2.8 2.7 2.6	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22 37.27 37.25 35.79 37.11 36.84 37.14	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.74 7.74 7.90 7.91 7.92 7.91 7.91	2. 3. 2. 3. 1. 1. 1.
2013/1/2 10:02	C1	MF	833720	808181	15.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 1.000 7.650 14.300 1.000 1.000 1.000 1.000 1.1000	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98 19.18 19.20 19.20 19.21 19.20 19.21 19.21 19.20 19.21 19.21 19.20	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.06 8.05 8.97 8.91 8.26 8.26 8.24 8.31 7.88	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 110.5 110.1 110.3 120.1 120.1 111.3 111.5 111.5 111.5 111.5	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 1.1 0.9 3.0 2.9 2.5 2.8 2.7 2.6 0.8	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.27 37.25 35.79 37.11 36.84 37.14 36.97 37.13	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.74 7.74 7.74 7.90 7.91 7.92 7.92 7.92 7.91 7.70	2. 3. 2. 3. 1. 1. 1.
2013/1/2 10:02 2013/1/2 9:02	C1 C2	MF	833720 831462	808181	15.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650 7.650 14.300 1.000 1.000 6.350 6.350 11.700 11.700 1.000 1.000	19.74 19.74 19.73 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98 19.18 19.20 19.21 19.21 19.91	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.05 8.97 8.91 8.26 8.26 8.24 8.31 7.88 7.98	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 110.5 115.1 112.3 110.4 110.3 120.1 120.1 111.3 111.5 111.5 111.0 111.7	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 0.9 3.0 2.9 2.5 2.8 2.7 2.6 0.8 0.6	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22 37.25 35.79 37.11 36.84 37.14 36.97 37.13	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.74 7.74 7.74 7.90 7.91 7.92 7.92 7.92 7.91 7.70 7.70	2. 3. 2. 3. 1. 1. 1.
2013/1/2 10:02	C1	MF	833720	808181	15.3	12.500 12.500 1.000 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650 7.650 14.300 1.000 1.000 6.350 6.350 11.700 11.700 11.700 1.000 8.050	19.74 19.74 19.53 19.52 19.27 19.11 19.42 19.33 20.10 20.01 20.02 19.97 19.98 19.18 19.20 19.21 19.17 19.99 19.99 19.91	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.05 8.97 8.91 8.26 8.26 8.24 8.31 7.88 7.98 8.05	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 110.5 110.5 110.1 112.3 110.4 110.3 120.1 120.1 111.3 111.5 111.0 111.0 111.0 111.0 111.0 111.0 111.0 110.0 11	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 2.9 2.5 2.8 2.7 2.6 0.8 0.6 0.6	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22 37.25 35.79 37.11 36.84 37.14 36.97 37.13 37.22 37.25 37.10	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.77 7.74 7.74 7.90 7.91 7.92 7.92 7.91 7.70 7.70	2.4 2.2 3.3 3.2 2.4 3.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
2013/1/2 10:02 2013/1/2 9:02	C1 C2	MF	833720 831462	808181	15.3	12.500 12.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000 7.650 7.650 14.300 1.000 1.000 6.350 6.350 11.700 11.700 1.000 1.000	19.74 19.74 19.73 19.52 19.27 19.11 19.42 19.33 20.10 20.13 20.01 20.02 19.97 19.98 19.18 19.20 19.21 19.21 19.91	8.38 8.25 8.60 8.52 8.30 8.38 8.22 8.19 8.04 8.04 8.40 8.20 8.05 8.97 8.91 8.26 8.26 8.24 8.31 7.88 7.98	114.2 112.4 116.8 115.7 112.1 112.9 110.9 110.5 110.5 110.5 110.5 115.1 112.3 110.4 110.3 120.1 120.1 111.3 111.5 111.5 111.0 111.7	1.8 1.5 2.3 2.2 2.5 2.4 2.2 2.6 1.2 0.8 1.2 1.0 0.9 3.0 2.9 2.5 2.8 2.7 2.6 0.8 0.6	37.09 37.03 37.23 37.21 37.08 37.15 36.53 36.73 37.37 37.36 37.22 37.22 37.22 37.25 35.79 37.11 36.84 37.14 36.97 37.13	7.85 7.83 7.89 7.91 7.89 7.90 7.91 7.83 7.81 7.78 7.74 7.74 7.74 7.90 7.91 7.92 7.92 7.92 7.91 7.70 7.70	2.2 3.3 2.2 3.3.3 2.1 1.3 1.4 1.4

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

4-Jan-13 Date

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/4 17:20	W1	ME	832959	807730	2.3	1.150	17.82	8.51	111.3	0.7	36.31	7.89	1.9
2013/1/4 17.20	*** 1	IVIL	032737	007750	2.3	1.150	17.70	8.54	111.6	0.6	36.42	7.89	1.,
						1.000	18.09	8.79	115.7	0.7	36.32	7.92	1.8
						1.000	18.05	8.59	112.9	0.7	36.34	7.92	1.0
2013/1/4 17:08	W2	ME	832676	807992	12	6.000	18.11	8.47	111.5	0.7	36.36	7.89	1.6
2013/1/4 17.00	*** 2	IVIL	032070	001772	12	6.000	18.10	8.44	111.1	0.5	36.36	7.90	1.0
						11.000	18.05	7.78	113.0	0.9	35.18	7.83	2.
						11.000	17.86	7.70	112.3	0.9	36.68	7.91	۷.
						1.000	18.47	8.25	109.4	1.1	36.46	8.01	2
						1.000	18.41	8.42	111.4	1.0	36.46	8.00	Δ.
2013/1/4 16:51	W3	ME	832047	807887	11.9	5.950	18.66	8.59	113.4	1.3	35.16	7.94	3.
2013/1/4 10.31	W 3	ME	832047	00/00/	11.9	5.950	18.58	8.59	113.1	1.2	35.19	7.94	٥.
						10.900	18.63	7.54	100.4	1.1	36.59	7.96	_
						10.900	18.62	7.56	99.9	1.1	35.41	7.92	5.
						1.000	17.89	8.26	108.2	0.6	36.08	7.85	
						1.000	17.75	8.31	108.5	0.7	36.22	7.86	1.
2012/1/4 17 22	<i>C</i> 1	ME	022711	000166	10.7	6.850	17.92	8.44	110.5	0.8	36.14	7.87	_
2013/1/4 17:38	C1	ME	833711	808166	13.7	6.850	17.73	8.46	110.4	0.9	36.25	7.88	2.
						12.700	17.78	7.41	96.9	0.7	36.29	7.88	_
						12.700	17.65	7.54	98.4	0.9	36.34	7.87	2.
						1.000	18.16	8.76	115.5	2.1	36.58	8.06	
						1.000	18.16	8.76	115.5	2.1	36.59	8.06	1.
						5.450	18.77	8.65	115.5	1.5	36.67	8.05	
2013/1/4 16:37	C2	ME	831460	807752	10.9	5.450	18.71	8.65	115.4	1.3	36.72	8.05	1.
						9.900	18.74	7.73	103.0	1.2	36.60	8.06	
						9.900	18.64	7.65	101.9	1.2	36.71	8.04	1.
						1.000	17.80	9.10	119.1	0.8	36.33	7.84	
						1.000	17.71	9.10	119.1	0.8	36.39	7.88	1.
						7.100	18.02	8.72	114.6	0.9	36.31	7.89	
2013/1/4 17:53	C3	ME	832204	808869	14.2		17.91	8.74	114.0			7.89	1.
						7.100				0.7	36.45		
						13.200	17.91	8.51	111.5	0.6	36.40	7.90	4.
						13.200	17.83	8.52	111.7	0.7	36.51	7.91	
						1.350	18.47	8.34	110.2	1.5	35.72	7.90	
2013/1/4 11:40	W1	MF	832956	807738	2.7	1.350	18.47	8.27	110.2	1.5	36.91	7.94	2.
						1.000	18.26	8.20	10.0	1.5	36.25	7.92	
						1.000	18.14	8.40	108.5	1.6	33.32	7.93	1.
						6.550	18.67	8.03	106.9	1.0	36.53	7.93	
2013/1/4 11:51	W2	MF	832662	807988	13.1		18.60				36.52	7.91	1.
						6.550	18.00	8.08	107.5	1.4		197	
						10 100		7.00					
						12.100	18.86	7.20	106.8	1.1	36.45	7.87	1.
						12.100	18.86 18.86	7.28	107.9	1.1	36.45 36.33	7.87 7.88	1.
						12.100 1.000	18.86 18.86 19.04	7.28 8.12	107.9 108.9	1.1 0.5	36.45 36.33 36.65	7.87 7.88 7.89	
						12.100 1.000 1.000	18.86 18.86 19.04 19.01	7.28 8.12 8.13	107.9 108.9 108.9	1.1 0.5 0.6	36.45 36.33 36.65 36.64	7.87 7.88 7.89 7.90	
2013/1/4 12:03	W3	MF	832053	807894	13.1	12.100 1.000 1.000 6.550	18.86 18.86 19.04 19.01 18.94	7.28 8.12 8.13 7.88	107.9 108.9 108.9 105.5	1.1 0.5 0.6 1.1	36.45 36.33 36.65 36.64 36.58	7.87 7.88 7.89 7.90 7.88	1.
2013/1/4 12:03	W3	MF	832053	807894	13.1	12.100 1.000 1.000 6.550 6.550	18.86 18.86 19.04 19.01 18.94 18.89	7.28 8.12 8.13 7.88 8.02	107.9 108.9 108.9 105.5 106.6	1.1 0.5 0.6 1.1 0.7	36.45 36.33 36.65 36.64 36.58 35.50	7.87 7.88 7.89 7.90 7.88 7.82	1.
2013/1/4 12:03	W3	MF	832053	807894	13.1	12.100 1.000 1.000 6.550 6.550 12.100	18.86 18.86 19.04 19.01 18.94 18.89 18.69	7.28 8.12 8.13 7.88 8.02 7.44	107.9 108.9 108.9 105.5 106.6 99.2	1.1 0.5 0.6 1.1 0.7 1.8	36.45 36.33 36.65 36.64 36.58 35.50 36.91	7.87 7.88 7.89 7.90 7.88 7.82 7.82	1.
2013/1/4 12:03	W3	MF	832053	807894	13.1	12.100 1.000 1.000 6.550 6.550 12.100	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73	7.28 8.12 8.13 7.88 8.02 7.44 7.32	107.9 108.9 108.9 105.5 106.6 99.2 97.8	1.1 0.5 0.6 1.1 0.7 1.8 0.9	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89	1.
2013/1/4 12:03	W3	MF	832053	807894	13.1	12.100 1.000 1.000 6.550 6.550 12.100 12.100 1.000	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93	1.
2013/1/4 12:03	W3	MF	832053	807894	13.1	12.100 1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93	1.
						12.100 1.000 1.000 6.550 6.550 12.100 1.000 1.000 1.000 7.550	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94	1.
2013/1/4 12:03	W3	MF	832053 833687	807894	13.1	12.100 1.000 1.000 6.550 6.550 12.100 1.000 1.000 1.000 7.550 7.550	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70	7.87 7.88 7.89 7.90 7.88 7.82 7.82 7.89 7.93 7.95 7.94 7.97	1.
						12.100 1.000 1.000 6.550 6.550 12.100 1.000 1.000 1.000 7.550	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46 18.17	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94	1. 1. 1.
						12.100 1.000 1.000 6.550 6.550 12.100 1.000 1.000 1.000 7.550 7.550	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70	7.87 7.88 7.89 7.90 7.88 7.82 7.82 7.89 7.93 7.95 7.94 7.97	1. 1. 1.
						12.100 1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.550 7.550 14.100	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46 18.17	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2 109.2	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.8	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98	1. 1. 1. 1.
						12.100 1.000 1.000 6.550 6.550 12.100 12.100 1.000 7.550 7.550 14.100 14.100	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46 18.17 18.60 18.33	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2 109.2 99.1	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.8 1.7	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.80	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99	1. 1. 1. 1.
2013/1/4 11:24	C1	MF	833687	808186	15.1	12.100 1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.550 7.550 14.100 1.000	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.48	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2 109.2 99.1 99.1	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.8 1.8 1.7 1.9	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.80 36.47	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98	1. 1. 1. 1. 1. 1. 1. 1.
						12.100 1.000 1.000 6.550 6.550 12.100 12.100 1.000 7.550 7.550 7.550 14.100 1.000 1.000	18.86 18.86 19.04 19.01 18.94 18.89 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95 18.89	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.45 7.73	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2 109.2 99.1 99.1	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.8 1.7 1.9 1.0	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.80 36.47 36.45	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98 7.99	1. 1. 1. 1. 1. 1. 1. 1.
2013/1/4 11:24	C1	MF	833687	808186	15.1	12.100 1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000 1.000 1.000 1.000	18.86 19.04 19.01 18.94 18.89 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95 18.89	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.45 7.75	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2 109.2 99.1 100.4 103.2 104.0	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.7 1.9 1.0 1.1	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.80 36.47 36.45 36.38	7.87 7.88 7.89 7.90 7.88 7.89 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98 7.93 7.88	1. 1. 1. 1. 1. 1. 2.
2013/1/4 11:24	C1	MF	833687	808186	15.1	12.100 1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000 1.000 6.000 6.000	18.86 18.86 19.04 19.01 18.94 18.69 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95 19.11 19.06	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.48 7.50 7.73 7.75	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2 109.2 99.1 100.4 103.2 104.0 104.5	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.7 1.9 1.0 1.1 0.9	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.80 36.47 36.45 36.38	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.99 7.98 7.99	1. 1. 1. 1. 1. 1. 2.
2013/1/4 11:24	C1	MF	833687	808186	15.1	12.100 1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.550 7.550 14.100 1.000	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95 18.89 19.11 19.06 19.14 19.05	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.48 7.50 7.73 7.75 7.79 7.06	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2 109.2 99.1 100.4 103.2 104.0 104.5 95.0 94.7	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.7 1.9 1.0 1.1 0.9 0.9 1.9	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.80 36.47 36.45 36.38 36.39 36.57 36.64	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98 7.88 7.89 7.87	1 1 1 1 1 2 3
2013/1/4 11:24	C1	MF	833687	808186	15.1	12.100 1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000 6.000 6.000 6.000 11.000 1.000	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95 18.89 19.11 19.06 19.14 19.05 18.11	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.48 7.50 7.73 7.75 7.79 7.06 8.11	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 109.2 99.1 100.4 103.2 104.0 104.5 95.0 94.7 106.9	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.8 1.7 1.9 1.0 1.1 0.9 0.9 1.0 1.1 0.9	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.50 36.54 36.80 36.47 36.45 36.38 36.39 36.57 36.64 36.60	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98 7.88 7.89 7.88 7.89	1 1 1 1 1 2 3
2013/1/4 11:24 2013/1/4 12:15	C1 C2	MF	833687 831452	808186	15.1	12.100 1.000 1.000 1.000 6.550 6.550 12.100 12.100 1.000 7.550 7.550 14.100 1.000 1.000 6.000 6.000 6.000 11.000 1.000 1.000 1.000 1.000 1.000	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95 18.89 19.11 19.06 19.14 19.05 18.11 18.23	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.45 7.79 7.70 7.00 8.11 8.21	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.2 109.2 99.1 100.4 103.2 104.0 104.5 95.0 94.7 106.9 108.9	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.8 1.7 1.9 1.0 1.1 0.9 0.9 1.0 1.1 0.9 1.0 1.1 0.9 1.0 1.1 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.45 36.38 36.39 36.57 36.57 36.64 36.60 36.40	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98 7.88 7.89 7.88 7.89	1. 1. 1. 1. 1. 1. 2. 3. 1.
2013/1/4 11:24	C1	MF	833687	808186	15.1	12.100 1.000 1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000 6.000 6.000 6.000 11.000 1.000 1.000 1.000 1.000 7.900	18.86 18.86 19.04 19.01 18.94 18.89 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95 18.89 19.11 19.06 19.14 19.05 18.11 18.23 17.80	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.45 7.75 7.79 7.07 7.06 8.11 8.21 9.21	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.8 108.2 109.2 100.4 103.2 104.0 104.5 95.0 94.7 106.9 108.3 107.7	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.7 1.0 1.1 0.9 0.9 1.1 0.9 1.0 1.1 0.9 1.3 1.4 1.5 1.7 1.7 1.8 1.8 1.7 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.47 36.45 36.38 36.39 36.57 36.57 36.60	7.87 7.88 7.89 7.90 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98 7.99 7.88 7.89 7.89 7.93 7.95 7.91	1. 1. 1. 1. 1. 1. 2. 3. 1.
2013/1/4 11:24 2013/1/4 12:15	C1 C2	MF	833687 831452	808186	15.1	12.100 1.000 1.000 1.000 6.550 6.550 12.100 12.100 1.000 7.550 7.550 14.100 1.000 1.000 6.000 6.000 6.000 11.000 1.000 1.000 1.000 1.000 1.000	18.86 18.86 19.04 19.01 18.94 18.89 18.69 18.73 18.15 18.09 18.46 18.17 18.60 18.33 18.95 18.89 19.11 19.06 19.14 19.05 18.11 18.23	7.28 8.12 8.13 7.88 8.02 7.44 7.32 8.75 8.68 8.16 8.27 7.45 7.45 7.79 7.70 7.00 8.11 8.21	107.9 108.9 108.9 105.5 106.6 99.2 97.8 107.8 108.2 109.2 99.1 100.4 103.2 104.0 104.5 95.0 94.7 106.9 108.9	1.1 0.5 0.6 1.1 0.7 1.8 0.9 2.0 1.9 1.8 1.8 1.7 1.9 1.0 1.1 0.9 0.9 1.0 1.1 0.9 1.0 1.1 0.9 1.0 1.1 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	36.45 36.33 36.65 36.64 36.58 35.50 36.91 36.92 25.32 28.35 36.50 36.70 36.54 36.45 36.38 36.39 36.57 36.57 36.64 36.60 36.40	7.87 7.88 7.89 7.90 7.88 7.82 7.88 7.89 7.93 7.95 7.94 7.97 7.98 7.99 7.98 7.88 7.89 7.88 7.89	1 1 1 1 1 1 2 3 1 1

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

8-Jan-13 Date

Date / Time	Location	Tide*	Co-on	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/8 9:14	W1	ME	832977	807744	2.4	1.200	18.83	7.32	97.2	0.6	35.56	7.05	1.3
2013/1/0 7.14	** 1	IVIL	032711	007744	2.7	1.200	18.84	7.34	97.6	0.5	35.56	7.05	1.5
						1.000	19.64	8.42	113.6	0.4	35.94	7.74	0.5
						1.000	19.72	9.36	126.6	0.2	35.80	7.40	0
2013/1/8 8:59	W2	ME	832653	807976	12.8	6.400	18.96	6.84	91.2	0.4	35.64	7.40	0.5
2013/1/0 0.37	*** 2	IVIL	032033	001710	12.0	6.400	18.98	6.94	92.4	0.7	35.64	7.42	0
						11.800	18.75	6.94	92.0	0.6	35.58	7.58	0.8
						11.800	18.75	6.92	91.8	0.5	35.59	7.58	0.
						1.000	18.71	8.74	115.4	1.1	35.09	7.54	0.
						1.000	18.72	8.82	116.6	1.1	35.08	7.53	0.
2013/1/8 8:37	W3	ME	832049	807899	12.6	6.300	18.30	6.94	91.0	1.2	35.07	7.48	0.
2013/1/0 0.37	۷۷ ک	IVIL	032049	007099	12.0	6.300	18.32	6.94	91.0	1.1	35.06	7.49	0.
						11.600	18.19	8.24	107.8	1.2	34.98	7.44	0
						11.600	18.18	8.14	106.4	1.1	35.02	7.44	0.
						1.000	18.91	6.82	90.6	0.7	35.41	7.95	0
						1.000	18.91	6.78	90.0	0.7	35.40	7.96	0.
2012/1/0 0 22	- 01) ATT	022712	000165	14.4	7.200	19.13	6.52	87.0	0.8	35.36	7.97	
2013/1/8 9:32	C1	ME	833712	808165	14.4	7.200	19.14	6.60	88.0	0.7	35.33	7.93	0.
						13.400	19.10	6.72	89.6	1.2	35.50	7.99	-
						13.400	19.10	6.78	90.4	1.0	35.50	8.01	0.
						1.000	18.55	7.80	101.9	1.8	33.69	7.39	
						1.000	18.59	7.59	99.3	1.3	33.88	7.46	0.
						5.850	18.28	6.11	80.0	1.1	34.93	7.60	
2013/1/8 8:19	C2	ME	831472	807753	11.7	5.850	18.27	6.11	80.0	1.0	34.95	7.59	0.
						10,700	17.97	6.27	81.5	1.2	34.87	7.54	
						10.700	17.94	6.19	80.4	1.2	34.91	7.54	0.
						1.000	18.79	6.44	85.2	1.2	35.40	8.06	
						1.000	18.78	6.70	88.6	1.2	35.39	8.07	0.
						7.450	18.37	6.64	87.2	1.3	35.44	8.06	
2013/1/8 9:56	C3	ME	832242	808876	14.9		18.37			1.3	35.44		0.
			E 832242	808876	14.9	7.450		6.80	89.4 90.8			8.06	
						13.900	18.34	6.90		1.3	35.54	8.07	0.
						13.900	18.33	7.14	93.4	1.4	34.72	8.12	
						1.350	18.62	7.55	99.9	0.4	35.74	7.35	
2013/1/8 14:34	W1	MF	832966	807746	2.7	1.350	18.60	7.67	101.5	0.2	35.74	7.33	0.
						1.000	18.67	8.16	108.2	0.7	35.94	7.68	
						1.000	18.68	8.16	108.3	0.6	35.96	7.60	0.
						6.750	18.28	7.90	104.0	0.4	35.74	7.45	
2013/1/8 14:22	W2	MF	832680	807993	13.5	6.750	18.29	7.90	103.9	0.4	35.74	7.44	0.
						12.500	18.06	7.74	101.4	0.5	35.84	7.35	
						12.500	18.11	7.78	102.1	0.5	35.82	7.39	0.
						1.000	18.93	8.26	110.1	1.2	35.84	7.54	
							18.93				35.89	7.50	0.
						1.000		8.24	109.8	1.3			
2013/1/8 14:05	W3	MF	832056	807897	13.4	6.700	18.47	6.37	84.1	1.2	35.81	7.31	0.
						6.700	18.45	6.83	90.1	1.1	35.83	7.27	
						12.400	18.32	6.87	89.6	1.4	34.22	7.22	0.
						12.400	18.33	6.77	89.1	1.0	35.78	7.23	
						1.000	18.87	6.95	92.5	1.1	35.80	7.38	0.
						1.000	18.87	6.97	92.7	1.2	35.80	7.37	
2013/1/8 14:55	C1	MF	833707	808186	15.1	7.550	18.07	7.14	93.6	1.1	35.80	7.28	0.
						7.550	18.08	7.12	93.3	1.3	35.79	7.28	
						14.100	18.11	7.12	93.4	1.1	35.79	7.24	1.
						14.100	18.13	7.21	94.6	1.2	35.80	7.24	
						1.000	19.71	7.23	97.9	1.5	36.25	7.66	0.
						1.000	19.80	7.18	97.5	1.3	36.25	7.59	<u> </u>
		MF	831459	807755	12.3	6.150	18.84	7.14	94.8	1.3	35.55	7.14	0.
2013/1/8 13:50	C2		031 (3)	00,733	12.0	6.150	18.84	6.99	92.9	1.4	35.54	7.12	٥.
2013/1/8 13:50	C2					11.300	18.84	7.04	93.6	1.2	35.66	7.00	1.
2013/1/8 13:50	C2						18.88	7.00	93.0	1.1	35.63	7.00	1.
2013/1/8 13:50	C2					11.300							
2013/1/8 13:50	C2					11.300 1.000	18.35	8.19	96.4	0.9	16.89	7.23	Λ.
2013/1/8 13:50	C2								96.4 96.2	0.9 1.1	16.89 17.26	7.23 7.23	0.:
		ME	832220	808080	15.6	1.000	18.35	8.19					
2013/1/8 13:50 2013/1/8 15:18	C2 C3	MF	832239	808868	15.6	1.000	18.35 18.36	8.19 8.16	96.2	1.1	17.26	7.23	0.6
		MF	832239	808868	15.6	1.000 1.000 7.800	18.35 18.36 18.43	8.19 8.16 7.26	96.2 95.0	1.1 1.1	17.26 34.34	7.23 7.22	

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 10-Jan-13

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/10 11:38	W1	ME	832960	807751	2.3	1.150	17.54	7.37	95.9	1.5	36.21	7.79	1.2
2013/1/10 11.30	** 1	IVIL	032700	007751	2.5	1.150	17.55	8.10	105.4	1.6	36.19	7.79	1.2
						1.000	17.61	9.05	105.8	1.7	36.19	7.97	1.1
						1.000	17.62	9.05	105.6	1.4	36.21	7.97	1.1
2013/1/10 11:29	W2	ME	832681	807985	12.3	6.150	17.42	8.51	105.5	0.8	36.40	7.88	1.2
2013/1/10 11.27	*** 2	IVIL	032001	007703	12.5	6.150	17.44	8.32	104.0	0.8	36.55	7.88	1.2
						11.300	17.35	8.27	107.7	0.9	35.50	7.86	1.5
						11.300	17.46	8.24	107.4	0.7	35.50	7.86	1
						1.000	17.65	7.92	103.1	1.9	36.10	7.95	1.0
						1.000	17.64	7.84	102.2	1.9	36.13	7.97	1.0
2013/1/10 11:13	W3	ME	832048	807890	12.3	6.150	17.61	8.84	103.3	1.8	34.50	7.91	1.
2013/1/10 11:13	W 3	ME	832048	807890	12.3	6.150	17.64	8.87	103.7	1.4	34.60	7.90	1.
						11.300	17.54	8.15	101.8	1.1	32.60	7.87	1
						11.300	17.57	8.02	102.1	0.9	32.39	7.87	1.
						1.000	17.41	8.12	105.3	1.6	36.13	7.70	0
						1.000	17.45	8.11	105.2	1.9	36.07	7.69	0.
2012/1/10 11 50		1.00	000700	007177	1.5	7.500	17.56	8.02	104.4	1.5	36.14	7.71	_
2013/1/10 11:58	C1	ME	833722	807175	15	7.500	17.57	8.03	104.4	1.5	36.10	7.70	<0
						14.000	17.54	8.00	103.9	1.6	35.79	7.66	
						14.000	17.53	8.00	103.8	1.7	35.77	7.69	0.
						1.000	17.74	8.74	103.9	2.6	35.56	7.91	
						1.000	17.75	8.63	102.9	2.5	35.46	7.90	0.
						5.700	17.72	8.47	98.6	1.9	34.16	7.87	
2013/1/10 10:57	C2	ME	831472	807744	11.4	5.700	17.71	8.64	100.6	1.8	34.56	7.87	<0
						10.400	17.72	8.04	96.6	1.6	33.60	7.82	
						10.400	17.72	8.05	97.0	1.7	33.60	7.85	0.
						1.000	17.56	7.80	101.4	1.7	36.08	7.67	
							17.56	8.00	101.4	1.7	36.05	7.68	1.
						1.000	17.39						
2013/1/10 12:22	C3	ME	832205	808851	15.4	7.700		8.31	106.7	1.5	36.11	7.69	0.
						7.700	17.37	8.31	107.6	1.6	36.12	7.68	
						14.400	17.46	8.15	105.8	1.6	36.09	7.67	0.
						14.400	17.45	8.14	105.6	1.6	36.10	7.69	
						1.000	45.04	0.50	100.0	4.0	2 4 50	E 60	
2013/1/10 16:37	W1	MF	832975	807746	2.6	1.300	17.34	8.72	100.8	1.0	34.50	7.69	1.
			0000			1.300	17.34	8.75	101.1	1.0	34.60	7.70	
						1.000	17.65	8.79	102.5	1.6	35.60	7.63	2.
						1.000	17.65	8.85	102.5	1.1	35.60	7.63	2.
2013/1/10 16:26	W2	MF	832654	807993	13.2	6.600	17.74	9.05	103.8	1.0	36.60	7.65	2.
2013/1/10 10.20	*** 2	1711	032034	001773	13.2	6.600	17.73	8.87	103.0	0.9	36.10	7.69	۷.
						12.200	17.57	7.94	83.4	1.1	36.50	7.69	2.
						12.200	17.56	7.76	81.4	1.2	36.45	7.68	Ζ.
						1.000	17.42	9.04	104.6	0.9	34.42	7.76	0.
						1.000	17.42	9.05	104.6	0.8	34.83	7.74	0.
2012/1/10 17 00	11/2) (III	022050	007000	10.1	6.550	17.36	8.15	104.7	0.9	35.62	7.70	0
2013/1/10 16:09	W3	MF	832058	807880	13.1	6.550	17.36	8.16	105.0	0.8	35.30	7.72	0.
						12.100	17.40	7.45	96.3	1.0	35.60	7.69	0
						12.100	17.37	7.50	97.2	0.9	35.60	7.69	0.
						1.000	17.24	8.50	98.1	0.9	35.60	7.69	
						1.000	17.22	8.57	98.8	0.9	35.46	7.68	0.
						7.850	17.27	8.61	100.0	1.1	35.60	7.68	
2013/1/10 16:54	C1	MF	833716	808159	15.7	7.850	17.27	8.63	99.6	0.9	35.60	7.69	0.
						14.700	17.33	7.66	99.2	1.1	36.04	7.72	
						14.700	17.34	7.62	98.6	1.0	36.01	7.72	0.
						1.000	18.06	8.41	110.2	0.8	35.89	7.72	
						1.000	18.08	8.32	109.0	0.7	35.83	7.93	1.
						6.100	17.87	8.24	107.8	1.3	36.21	7.83	
2013/1/10 15:55	C2	MF	831458	807740	12.2	6.100	17.90	8.16	107.8	1.3	36.18	7.79	1.
						11.200	17.90				36.25	7.79	1
								8.19	107.2	1.4			1.
	-					11.200	17.85	8.16	106.8	1.3	36.24	7.76	1
						1.000	17.30	7.33	91.4	0.9	30.09	7.71	1.
						1.000	17.31	7.07	90.9	0.8	35.05	7.70	
2013/1/10 17:20	C3	MF	832239	808855	16.1	8.050	17.12	7.72	89.1	0.7	36.15	7.66	0.
						8.050	17.12	7.68	89.0	0.7	36.15	7.66	ļ.,
						15.100	17.14	7.61	87.7	0.6	36.25	7.68	0.
					ı	15.100	17.13	7.63	87.8	0.8	36.26	7.69	

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 12-Jan-13

Date / Time	Location	Tide*	Co-on	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/12 13:24	W1	ME	832960	807741	2.4	1.200	17.60	7.72	100.5	1.7	36.21	7.65	1.5
2013/1/12 13:24	** 1	IVIL	032700	007741	Z.T	1.200	17.62	7.64	99.5	1.9	36.20	7.65	1.5
						1.000	17.40	7.93	102.8	1.5	36.15	7.66	1.4
						1.000	17.40	7.87	102.0	1.0	36.14	7.66	1
2013/1/12 13:14	W2	ME	832675	808000	12.6	6.300	17.42	7.82	101.5	1.4	36.20	7.66	1.2
2013/1/12 13.14	*** 2	IVIL	032073	000000	12.0	6.300	17.46	7.86	102.1	3.3	36.22	7.67	1.2
						11.600	17.50	7.83	101.8	1.5	36.26	7.66	1.2
						11.600	17.49	7.83	101.7	1.5	36.28	7.67	1.2
						1.000	17.38	7.93	102.7	1.4	36.10	7.72	0.8
						1.000	17.37	8.13	105.3	0.9	36.12	7.72	0.0
2013/1/12 12:56	W3	ME	832055	807886	12.8	6.400	17.30	8.02	103.9	1.3	36.20	7.71	1.0
2013/1/12 12.30	***3	IVIL	032033	007000	12.0	6.400	17.32	8.12	105.2	1.5	36.21	7.71	1.0
						11.800	17.27	7.97	103.1	1.3	36.18	7.69	1.3
						11.800	17.26	7.96	103.0	1.4	36.20	7.68	1
						1.000	17.55	7.83	101.9	1.6	36.17	7.65	1.
						1.000	17.55	7.71	100.3	1.4	36.19	7.65	1
2013/1/12 13:43	C1	ME	833724	808180	14.7	7.350	17.53	7.66	99.7	1.3	36.19	7.65	1.7
2013/1/12 13.43	CI	IVIL	033724	000100	14.7	7.350	17.45	7.76	100.7	1.7	36.05	7.64	1.
						13.700	17.47	7.67	99.6	1.7	36.23	7.65	2.0
						13.700	17.49	7.67	99.6	1.8	36.24	7.66	۷.۰
						1.000	17.31	8.53	110.4	0.5	36.14	7.89	0.
						1.000	17.29	8.32	107.6	5.0	36.16	7.89	0.
2012/1/12 12 20	G22	ME	021460	007760	11.7	5.850	17.27	8.14	105.4	0.7	36.20	7.85	0
2013/1/12 12:38	C2	ME	831462	807768	11.7	5.850	17.26	8.41	108.8	0.9	36.20	7.83	0.
						10.700	17.28	8.24	106.6	0.8	36.23	7.81	2
						10.700	17.26	8.27	107.1	0.7	36.24	7.79	3.
						1.000	17.50	7.46	96.9	1.9	36.13	7.62	-
						1.000	17.51	7.42	96.5	1.9	36.13	7.63	1.
						7.600	17.50	7.54	98.0	1.8	36.21	7.64	
2013/1/12 14:04	C3	ME	832227	808856	15.2	7.600	17.49	7.53	97.8	1.8	36.21	7.63	1.
						14.200	17.34	7.39	95.7	1.7	36.17	7.63	
						14.200	17.33	7.41	96.0	1.7	36.17	7.65	0.9
						2		,,,,	,			,,,,,	
						1.350	17.70	7.91	103.3	0.8	36.33	7.71	
2013/1/12 9:04	W1	MF	832974	807725	2.7	1.350	17.69	8.01	104.5	1.0	36.33	7.71	0.
	+					1.000	17.44	8.66	112.5	0.5	36.38	7.71	
						1.000	17.41	8.67	112.7	0.5	36.39	7.73	1.
						6.650	17.41	8.38	108.9	1.0	36.42	7.70	1
2013/1/12 8:51	W2	MF	832657	807972	13.3	6.650	17.41	8.54	110.9	1.0	36.45	7.72	0.
						12.300	17.40	8.26	107.3	1.0		7.72	
						12.300		8.28	107.3		36.46	7.72	0.
	+						17.38			1.2	36.41		
						1.000	17.62	9.24	120.6	1.8	36.55	7.92	1.
						1.000	17.63	9.18	119.8	1.3	36.52	7.90	
2013/1/12 8:34	W3	MF	832061	807899	13.4	6.700	17.60	9.01	117.6	1.0	36.59	7.85	1.
						6.700	17.60	8.94	116.7	1.6	36.60	7.84	-
						12.400	17.58	8.81	115.0	0.9	36.65	7.79	0.
						12.400	17.58	8.78	114.6	1.1	36.65	7.78	<u> </u>
						1.000	17.35	7.44	96.5	1.2	36.20	7.64	1.
						1.000	17.37	7.55	97.9	1.2	36.20	7.63	
2013/1/12 9:12	C1	MF	833716	808159	15.4	7.700	17.31	7.62	98.8	0.8	36.28	7.65	1.
	01	1.11	033710	000137	12.1	7.700	17.31	7.60	98.5	0.9	36.29	7.65	<u> </u>
						14.400	17.37	7.50	97.3	0.8	36.35	7.65	2.
						14.400	17.37	7.49	97.2	0.8	36.37	7.66	۷.
						1.000	17.83	8.45	110.8	1.5	36.61	7.85	2.
						1.000	17.84	8.50	111.5	1.4	36.64	7.83	۷.
					12.3	6.150	17.76	8.56	112.2	1.4	36.78	7.78	2.
2013/1/12 9:19	C	ME	831472	807726			17.76	8.50	111.4	1.3	36.79	7.78	Ζ.
2013/1/12 8:18	C2	MF	831473	807736	12.5	6.150			107.0	1.7	26.00	7.79	1
2013/1/12 8:18	C2	MF	831473	807736	12.0	6.150 11.300	17.77	8.23	107.9	1.7	36.80	1.19	^
2013/1/12 8:18	C2	MF	831473	807736				8.23 8.34	107.9	2.3	35.60	7.77	2.
2013/1/12 8:18	C2	MF	831473	807736	12.0	11.300	17.77						
2013/1/12 8:18	C2	MF	831473	807736	1215	11.300 11.300	17.77 17.72	8.34	108.4	2.3	35.60	7.77	
						11.300 11.300 1.000	17.77 17.72 17.34	8.34 6.56	108.4 84.9	2.3 1.7	35.60 36.08	7.77 7.55	1.
2013/1/12 8:18	C2	MF	831473 832247	807736	15.9	11.300 11.300 1.000 1.000	17.77 17.72 17.34 17.35	8.34 6.56 6.55	108.4 84.9 84.8	2.3 1.7 1.7	35.60 36.08 36.10	7.77 7.55 7.56	2.:
						11.300 11.300 1.000 1.000 7.950	17.77 17.72 17.34 17.35 17.35	8.34 6.56 6.55 6.66	108.4 84.9 84.8 86.2	2.3 1.7 1.7 1.5	35.60 36.08 36.10 36.20	7.77 7.55 7.56 7.58	1.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

14-Jan-13 Date

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/14 15:15	W1	ME	832975	807728	2.3	1.150	17.38	8.93	115.6	2.1	35.90	7.63	5.7
2013/1/14 13.13	** 1	IVIL	032913	007720	2.3	1.150	17.38	8.93	115.6	2.2	35.90	7.64	5.1
						1.000	17.39	8.60	111.3	2.0	35.84	7.60	4.9
						1.000	17.36	8.79	113.7	1.9	35.84	7.60	1.2
2013/1/14 15:03	W2	ME	832676	808002	12.5	6.250	17.20	8.77	112.1	1.3	34.33	7.60	3.3
2013/1/14 13:03	*** 2	IVIL	032070	000002	12.5	6.250	17.24	8.66	111.8	1.2	35.90	7.62	٥
						11.500	17.25	7.69	99.3	1.8	35.98	7.63	4.1
						11.500	17.25	7.70	99.4	1.4	35.99	7.62	7.3
						1.000	17.42	9.30	119.2	0.8	34.21	7.86	1.3
						1.000	17.44	9.10	118.0	0.8	35.86	7.85	1.,
2013/1/14 14:46	W3	ME	832052	807900	12.3	6.150	17.42	8.72	113.0	0.6	36.01	7.79	4.
2013/1/14 14.40	W 3	NIE	652052	807900	12.5	6.150	17.39	8.68	112.5	0.6	36.05	7.75	4
						11.300	17.51	7.57	98.5	1.2	36.28	7.71	4.
						11.300	17.51	7.56	98.4	1.2	36.32	7.72	4.
						1.000	17.36	8.32	106.7	2.1	34.54	7.64	1.0
						1.000	17.39	8.33	107.7	2.1	35.69	7.62	1.9
2012/1/1/15/21	G1) (F	000601	000150	146	7.300	17.21	8.41	107.5	2.1	34.32	7.60	
2013/1/14 15:31	C1	ME	833691	808153	14.6	7.300	17.29	8.30	107.2	2.3	35.81	7.62	1.
						13.600	17.21	7.40	94.5	2.2	34.36	7.60	
						13.600	17.23	7.32	94.4	2.3	35.91	7.61	1.
	1					1.000	18.00	8.60	112.3	0.5	35.29	7.93	
						1.000	17.95	8.45	110.3	0.5	35.39	7.88	2.
						5.850	17.60	8.20	106.4	0.4	35.61	7.77	
2013/1/14 14:33 C	C2	ME	831462	807749	11.7	5.850	17.60	8.15	105.8	0.4	35.63	7.76	2.
						10.700	17.61	7.19	93.4	1.0	35.90	7.74	
						10.700	17.61	7.19	93.4	1.0	35.90	7.73	3.
	+ +												
						1.000	17.36	8.48	109.8	2.3	35.88	7.61	3.
						1.000	17.36	8.43	109.1	2.5	35.85	7.61	
2013/1/14 15:52	C3	ME	832237	808877	14.9	7.450	17.24	8.21	106.0	2.2	35.94	7.61	4.5
						7.450	17.24	8.21	106.0	2.3	35.93	7.61	
						13.900	17.24	7.29	94.1	2.2	36.02	7.60	4.
						13.900	17.24	7.28	94.1	2.3	36.02	7.59	
						1.250	17.41	9.43	122.6	1.3	36.60	7.92	
2013/1/14 9:20	W1	MF	832964	807740	2.5	1.250	17.40	9.29	120.8	1.1	36.61	7.90	6.
	+ +					1.000	17.29	8.88	115.3	1.2	36.61	7.72	
						1.000	17.28	8.91	115.0	1.2	35.80	7.72	4.
						1.000	17.20		115.0				
2013/1/14 9:05		MF				6.500	17.20		112.4				
	W2	IVIT	832662	807996	13	6.500	17.39	8.64	112.4	1.5	36.69	7.74	3.
	W2	IVIT	832662	807996	13	6.500	17.35	8.64 8.70	112.3	1.5 1.5	36.69 35.50	7.74 7.72	3.
	W2	IVIF	832662	807996	13	6.500 12.000	17.35 17.41	8.64 8.70 7.65	112.3 99.5	1.5 1.5 1.5	36.69 35.50 36.74	7.74 7.72 7.75	
	W2	WIF	832662	807996	13	6.500 12.000 12.000	17.35 17.41 17.39	8.64 8.70 7.65 7.67	112.3 99.5 99.7	1.5 1.5 1.5 1.6	36.69 35.50 36.74 36.77	7.74 7.72 7.75 7.74	
	W2	WIF	832662	807996	13	6.500 12.000 12.000 1.000	17.35 17.41 17.39 17.28	8.64 8.70 7.65 7.67 8.90	99.5 99.7 115.5	1.5 1.5 1.5 1.6 1.7	36.69 35.50 36.74 36.77 36.76	7.74 7.72 7.75 7.74 7.92	3.
	W2	MF	832662	807996	13	6.500 12.000 12.000 1.000 1.000	17.35 17.41 17.39 17.28 17.27	8.64 8.70 7.65 7.67 8.90 8.81	112.3 99.5 99.7 115.5 114.4	1.5 1.5 1.5 1.6 1.7 1.8	36.69 35.50 36.74 36.77 36.76 36.78	7.74 7.72 7.75 7.74 7.92 7.90	3.
2013/1/14 8:50	W2 W3	MF	832662 832058	807996 807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400	17.35 17.41 17.39 17.28 17.27 17.24	8.64 8.70 7.65 7.67 8.90 8.81 8.39	112.3 99.5 99.7 115.5 114.4 108.9	1.5 1.5 1.6 1.7 1.8 1.6	36.69 35.50 36.74 36.77 36.76 36.78 36.85	7.74 7.72 7.75 7.74 7.92 7.90 7.85	3.
						6.500 12.000 12.000 1.000 1.000 6.400 6.400	17.35 17.41 17.39 17.28 17.27 17.24 17.21	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36	112.3 99.5 99.7 115.5 114.4 108.9 108.5	1.5 1.5 1.5 1.6 1.7 1.8 1.6 1.4	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85	3.
						6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9	1.5 1.5 1.6 1.7 1.8 1.6 1.4	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82	3. 5.
						6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 11.800	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42	99.5 99.7 115.5 114.4 108.9 108.5 96.9	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83	3. 5.
						6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 1.000	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06	99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.93	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91	3. 5. 4.
						6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 1.000 1.000	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30	99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4	1.5 1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.4 1.4	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.35 36.39	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91	3. 5. 4.
2013/1/14 8:50	W3	MF	832058	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 1.000 1.000 7.550	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.21	8.64 8.70 7.65 7.67 8.90 8.81 8.39 7.44 7.42 9.06 9.30 9.16	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7	1.5 1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.4 1.4 1.4	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.85 36.93 36.93 36.35 36.39 36.45	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89	3. 5. 4. 8.
						6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 11.800 1.000 7.550 7.550	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.1	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.93 36.35 36.39 36.45	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86	3. 5. 4. 8.
2013/1/14 8:50	W3	MF	832058	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 11.800 1.000 7.550 7.550	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.24	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.4 1.1 1.1	36.69 35.50 36.74 36.77 36.78 36.85 36.85 36.93 36.93 36.93 36.35 36.39 36.45 36.46	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.83	3. 5. 4. 8. 4. 5.
2013/1/14 8:50	W3	MF	832058	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 1.000 1.000 7.550 7.550 14.100 14.100	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.24 17.35	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.4 1.1 1.1 1.1	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.35 36.39 36.45 36.46 36.56	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.81	3. 5. 4. 8. 4. 5.
2013/1/14 8:50	W3	MF	832058	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 11.800 11.800 1.000 7.550 7.550 14.100 1.000	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.35 17.34	8.64 8.70 7.65 7.67 8.90 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.4 1.1 1.1 1.1 1.1	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.35 36.39 36.45 36.45 36.56 36.58	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.83 7.81	3. 5. 4. 8. 4. 5.
2013/1/14 8:50	W3	MF	832058	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 1.000 1.000 7.550 7.550 14.100 14.100	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.24 17.35	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.4 1.1 1.1 1.1	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.35 36.39 36.45 36.46 36.56	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.81	3. 5. 4. 8. 4. 5.
2013/1/14 8:50 2013/1/14 9:27	W3	MF	832058 833700	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 11.800 11.800 1.000 7.550 7.550 14.100 1.000	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.35 17.34	8.64 8.70 7.65 7.67 8.90 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.4 1.1 1.1 1.1 1.1	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.35 36.39 36.45 36.45 36.56 36.58	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.83 7.81	3. 5. 4. 8. 4. 5. 5.
2013/1/14 8:50	W3	MF	832058	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 11.800 1.000 7.550 7.550 14.100 1.000 1.000	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.35 17.34 17.34 17.34	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04 8.04 8.08	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7 104.4 104.6	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.1 1.1 1.1 1.2 1.2 1.6 2.0	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.35 36.35 36.45 36.46 36.56 36.58 36.88	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.85 7.81 7.85	3. 5. 4. 8. 4. 5. 5.
2013/1/14 8:50 2013/1/14 9:27	W3	MF	832058 833700	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 11.800 11.800 1.000 7.550 7.550 14.100 1.000 1.000 1.000 1.000 1.000 1.000	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.35 17.34 17.34 17.36 17.36	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04 8.04 8.08 7.95	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7 104.4 104.6 105.2	1.5 1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.4 1.4 1.1 1.1 1.1 1.2 1.6 2.0 1.6	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.35 36.39 36.45 36.46 36.56 36.58 36.88 36.98	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.81 7.78	3.5.5.4.8.8.4.5.5.5.5.4.4.
2013/1/14 8:50 2013/1/14 9:27	W3	MF	832058 833700	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 1.000 1.000 7.550 7.550 14.100 1.000 1.000 6.050 6.050	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.35 17.34 17.34 17.34 17.35 17.35	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04 8.04 8.08 7.95 7.90	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7 104.4 104.6 105.2 103.8	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.1 1.1 1.1 1.2 1.2 1.6 2.0 1.6	36.69 35.50 36.74 36.77 36.78 36.85 36.85 36.93 36.93 36.93 36.35 36.45 36.46 36.56 36.58 36.88 36.95 37.07	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.81 7.78 7.78	3. 5. 4. 8. 4. 5. 5. 5. 4.
2013/1/14 8:50 2013/1/14 9:27	W3	MF	832058 833700	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 1.000 1.000 7.550 7.550 14.100 1.000 1.000 6.050 6.050 11.100 11.100	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.35 17.34 17.34 17.36 17.36 17.45 17.45 17.45	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04 8.04 8.08 7.95 7.90 7.14	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 104.7 104.4 104.6 105.2 103.8 103.1 93.3 92.8	1.5 1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.1 1.1 1.1 1.2 1.2 1.6 2.0 1.6 1.8 1.8	36.69 35.50 36.74 36.77 36.76 36.85 36.85 36.85 36.93 36.93 36.35 36.39 36.45 36.46 36.56 36.58 36.88 36.95 37.07 37.19	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.83 7.81 7.78 7.79 7.79	3. 5. 4. 8. 4. 5. 5. 5. 4. 4. 4.
2013/1/14 8:50 2013/1/14 9:27	W3	MF	832058 833700	807890	12.8	6.500 12.000 1.000 1.000 1.000 6.400 6.400 11.800 11.800 1.000 1.000 7.550 14.100 14.100 1.000 6.050 6.050 6.050 11.100 1.100	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.20 17.21 17.24 17.35 17.34 17.36 17.36 17.45 17.45 17.45 17.45 17.48 17.49 17.20	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04 8.04 8.08 7.95 7.90 7.14 7.10 9.12	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7 104.4 105.2 103.8 103.1 93.3 92.8 118.0	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.1 1.1 1.1 1.2 1.2 1.6 2.0 1.6 1.6 1.8 1.8	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.93 36.35 36.39 36.45 36.46 36.56 36.58 36.98 37.07 37.07 37.16 36.32	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.81 7.78 7.78 7.79 7.79 7.79	3. 5. 4. 8. 4. 5. 5. 5. 4. 4. 4.
2013/1/14 8:50 2013/1/14 9:27 2013/1/14 8:38	W3 C1 C2	MF MF	832058 833700 831450	807890 808198 807750	12.8	6.500 12.000 12.000 1.000 1.000 1.000 6.400 6.400 11.800 11.800 1.000 7.550 7.550 14.100 1.000 1.000 6.050 6.050 6.11.100 1.1100 1.1000 1.1000 1.1000	17.35 17.41 17.39 17.28 17.27 17.24 17.20 17.20 17.21 17.24 17.35 17.34 17.36 17.36 17.45 17.45 17.45 17.49 17.20 17.20	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04 8.08 7.95 7.90 7.11 7.10 9.12 9.06	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7 104.4 105.2 103.8 103.1 93.3 92.8 118.0 117.1	1.5 1.5 1.6 1.7 1.8 1.4 1.4 1.4 1.1 1.1 1.2 1.2 1.6 2.0 1.6 1.6 1.8 1.8 1.8 1.4 1.1 1.1 1.1 1.1 1.2 1.2 1.6 2.0 1.6 1.6 1.6 1.6 1.6 1.8 1.8 1.8 1.4 1.4 1.6	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.35 36.39 36.45 36.45 36.56 36.58 36.95 37.07 37.09 37.15 37.16 36.32 36.18	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.83 7.81 7.78 7.79 7.79 7.79 7.79 7.79 7.80	3. 5. 4. 8. 8. 5. 5. 5. 5. 4. 4. 3.
2013/1/14 8:50 2013/1/14 9:27	W3	MF	832058 833700	807890	12.8	6.500 12.000 12.000 1.000 1.000 6.400 6.400 11.800 11.800 1.000 7.550 7.550 14.100 1.000 6.050 6.050 6.1100 1.1000 1.000 1.000 1.000 1.000 7.700	17.35 17.41 17.39 17.28 17.27 17.24 17.21 17.36 17.36 17.20 17.21 17.24 17.24 17.35 17.34 17.34 17.36 17.45 17.45 17.45 17.48 17.49 17.20 17.20 17.21	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 8.04 8.04 8.08 7.95 7.90 7.14 7.10 9.12 9.06 8.93	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 104.7 104.4 104.6 105.2 103.8 103.1 93.3 92.8 118.0 117.1 115.5	1.5 1.5 1.6 1.7 1.8 1.6 1.4 1.8 1.4 1.4 1.1 1.1 1.2 1.2 1.6 2.0 1.6 1.6 1.8 1.8 1.4 1.1 1.1 1.2 1.2 1.6 2.0 1.6 1.6 1.6 1.8 1.8 1.4 1.1 1.1 1.2 1.2 1.6 1.6 1.6 1.8 1.8 1.4 1.1 1.1 1.2 1.2 1.6 1.6 1.6 1.8 1.8 1.4 1.6 1.2	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.35 36.39 36.45 36.45 36.56 36.58 36.95 37.07 37.09 37.15 37.16 36.32 36.42	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.81 7.78 7.79 7.79 7.79 7.79 7.79 7.80 7.80 7.80	3.3.3.3.5.4.8.8.4.5.5.5.5.4.4.3.3.3.3.3.3.3.3.3.3.3.3.3
2013/1/14 8:50 2013/1/14 9:27 2013/1/14 8:38	W3 C1 C2	MF MF	832058 833700 831450	807890 808198 807750	12.8	6.500 12.000 12.000 1.000 1.000 1.000 6.400 6.400 11.800 11.800 1.000 7.550 7.550 14.100 1.000 1.000 6.050 6.050 6.11.100 1.1100 1.1000 1.1000 1.1000	17.35 17.41 17.39 17.28 17.27 17.24 17.20 17.20 17.21 17.24 17.35 17.34 17.36 17.36 17.45 17.45 17.45 17.49 17.20 17.20	8.64 8.70 7.65 7.67 8.90 8.81 8.39 8.36 7.44 7.42 9.06 9.30 9.16 9.12 8.06 8.04 8.08 7.95 7.90 7.11 7.10 9.12 9.06	112.3 99.5 99.7 115.5 114.4 108.9 108.5 96.9 96.6 117.2 120.4 118.7 118.1 104.7 104.4 105.2 103.8 103.1 93.3 92.8 118.0 117.1	1.5 1.5 1.6 1.7 1.8 1.4 1.4 1.4 1.1 1.1 1.2 1.2 1.6 2.0 1.6 1.6 1.8 1.8 1.8 1.4 1.1 1.1 1.1 1.1 1.2 1.2 1.6 2.0 1.6 1.6 1.6 1.6 1.6 1.8 1.8 1.8 1.4 1.4 1.6	36.69 35.50 36.74 36.77 36.76 36.78 36.85 36.85 36.93 36.35 36.39 36.45 36.45 36.56 36.58 36.95 37.07 37.09 37.15 37.16 36.32 36.18	7.74 7.72 7.75 7.74 7.92 7.90 7.85 7.82 7.83 7.91 7.89 7.86 7.85 7.83 7.81 7.78 7.79 7.79 7.79 7.79 7.79 7.80	3. 5. 4. 8. 8. 5. 5. 5. 5. 4. 4. 3.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

16-Jan-13 Date

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/16 15:57	W1	ME	832974	807742	2.4	1.200	17.51	9.27	120.2	2.7	35.79	7.66	7.1
2013/1/10 13.37	***1	IVIL	032714	007742	2,7	1.200	17.52	9.03	117.1	2.8	35.79	7.66	/
						1.000	17.48	8.55	110.7	2.2	35.63	7.67	3.0
						1.000	17.51	8.67	112.4	2.3	35.64	7.66	5.0
2013/1/16 15:47	W2	ME	832687	807973	12.6	6.300	17.21	9.05	116.6	2.0	35.68	7.63	3.8
2013/1/10 13.4/	*** 2	IVIL	032007	001713	12.0	6.300	17.19	9.06	116.7	2.4	35.68	7.63	5.0
						11.600	17.32	8.81	113.9	2.4	35.90	7.62	3.5
						11.600	17.32	8.83	114.1	2.4	35.91	7.63	٥.,
						1.000	17.53	8.35	108.4	1.0	35.79	7.68	4.4
						1.000	17.51	8.90	113.8	1.7	33.46	7.68	4.
2013/1/16 15:33	W3	ME	832059	807892	12.6	6.300	17.50	8.33	108.0	1.6	35.89	7.66	4.:
2013/1/10 13.33	W 3	ME	632039	007092	12.0	6.300	17.45	8.35	108.3	1.6	35.90	7.66	4
						11.600	17.24	7.49	96.7	1.5	35.98	7.59	7
						11.600	17.28	7.40	95.7	1.0	35.98	7.64	7.
						1.000	17.48	8.00	103.6	2.2	35.61	7.64	-
						1.000	17.51	8.16	105.6	2.4	35.56	7.65	5.
2012/1/16/16/12	G1) (F	001.477	007750	1.1.1	7.050	17.30	8.36	107.9	2.7	35.66	7.63	,
2013/1/16 16:12	C1	ME	831477	807758	14.1	7.050	17.25	8.38	108.0	2.6	35.64	7.62	4.
						13.100	17.22	8.06	104.0	2.8	35.81	7.61	
						13.100	17.23	8.06	103.9	1.7	35.83	7.61	4.
						1.000	17.77	8.34	108.3	1.5	35.19	7.90	
						1.000	17.77	8.40	109.2	1.5	35.34	7.85	2.
						5.800	17.32	8.50	109.9	1.2	35.83	7.67	
2013/1/16 15:19	C2	ME	831475	807740	11.6	5.800	17.35	8.29	107.3	1.2	35.91	7.67	5.
						10,600	17.25	8.43	108.9	1.5	36.00	7.64	
						10.600	17.25	8.46	109.4	1.5	36.01	7.63	4.
	+					1.000	17.39	8.34	107.9	2.8	35.72	7.63	
						1.000	17.52	8.37	107.9	2.8	35.72	7.64	4.
						7.350	17.19	8.35	107.6	2.6	35.75	7.59	
2013/1/16 16:33	C3	ME	832205	808866	14.7		17.19		107.6	2.8	34.09	7.60	6.
						7.350		8.43					
						13.700	17.24	8.21	104.8	2.9	34.00	7.60	6.
						13.700	17.25	8.06	104.1	2.8	35.97	7.58	
	4					1.350	17.21	9.28	119.4	1.4	35.37	7.05	
2013/1/16 10:18	W1	MF	832977	807736	2.7							7.95	2.
	++					1.350	17.22	9.50	122.2	1.3	35.35	7.87	
						1.000	17.20	9.33	120.0	1.2	35.38	7.74	2.
						1.000	17.20	9.49	122.0	1.4	35.36	7.73	
2013/1/16 10:30									109.5				
	W2	MF	832674	808007	13.3	6.650	17.36	8.49	400.0	1.5	35.49	7.68	3.
	W2	MF	832674	808007	13.3	6.650	17.31	8.51	109.0	1.6	34.29	7.68	3.
	W2	MF	832674	808007	13.3	6.650 12.300	17.31 17.34	8.51 7.48	96.6	1.6 1.9	34.29 35.63	7.68 7.66	
	W2	MF	832674	808007	13.3	6.650 12.300 12.300	17.31 17.34 17.34	8.51 7.48 7.44	96.6 96.1	1.6 1.9 1.4	34.29 35.63 35.64	7.68 7.66 7.66	
	W2	MF	832674	808007	13.3	6.650 12.300 12.300 1.000	17.31 17.34 17.34 17.26	8.51 7.48 7.44 9.75	96.6 96.1 125.6	1.6 1.9 1.4 1.6	34.29 35.63 35.64 35.49	7.68 7.66 7.66 7.56	3.
	W2	MF	832674	808007	13.3	6.650 12.300 12.300 1.000 1.000	17.31 17.34 17.34 17.26 17.23	8.51 7.48 7.44 9.75 9.48	96.6 96.1 125.6 122.0	1.6 1.9 1.4 1.6 2.1	34.29 35.63 35.64 35.49 35.48	7.68 7.66 7.66 7.56 7.53	3.
						6.650 12.300 12.300 1.000 1.000 6.750	17.31 17.34 17.34 17.26 17.23 17.18	8.51 7.48 7.44 9.75 9.48 8.38	96.6 96.1 125.6 122.0 107.7	1.6 1.9 1.4 1.6 2.1 2.0	34.29 35.63 35.64 35.49 35.48 35.49	7.68 7.66 7.66 7.56 7.53 7.49	3.
2013/1/16 10:47	W2 W3	MF MF	832674 832053	808007	13.3	6.650 12.300 12.300 1.000 1.000 6.750 6.750	17.31 17.34 17.34 17.26 17.23 17.18 17.17	8.51 7.48 7.44 9.75 9.48 8.38 8.49	96.6 96.1 125.6 122.0 107.7 109.2	1.6 1.9 1.4 1.6 2.1 2.0 1.9	34.29 35.63 35.64 35.49 35.48 35.49 35.51	7.68 7.66 7.66 7.56 7.53 7.49 7.48	3.
						6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500	17.31 17.34 17.34 17.26 17.23 17.18 17.17	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57	96.6 96.1 125.6 122.0 107.7 109.2 97.4	1.6 1.9 1.4 1.6 2.1 2.0 1.9	34.29 35.63 35.64 35.49 35.48 35.49 35.51 35.49	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46	3.
						6.650 12.300 12.300 1.000 1.000 6.750 6.750	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5	34.29 35.63 35.64 35.49 35.48 35.49 35.51 35.49 35.52	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44	3.
						6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0	34.29 35.63 35.64 35.49 35.48 35.49 35.51 35.49 35.52 35.52	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44	3. 3. 4.
						6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5	34.29 35.63 35.64 35.49 35.48 35.49 35.51 35.49 35.52	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44	3. 3. 4.
2013/1/16 10:47	W3	MF	832053	807902	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0	34.29 35.63 35.64 35.49 35.48 35.49 35.51 35.49 35.52 35.52	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44	3. 3. 3. 4.
						6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000 1.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0	34.29 35.63 35.64 35.49 35.48 35.49 35.51 35.49 35.52 35.52 35.58	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75	3. 3. 3. 4.
2013/1/16 10:47	W3	MF	832053	807902	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000 1.000 7.500	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2	34.29 35.63 35.64 35.49 35.48 35.49 35.51 35.52 35.52 35.58 35.57 35.59	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75	3. 3. 3. 4. 1. 2.
2013/1/16 10:47	W3	MF	832053	807902	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000 1.000 7.500 7.500	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.57 7.54 9.42 9.43 8.35 8.33	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2	34.29 35.63 35.64 35.49 35.48 35.49 35.51 35.52 35.52 35.58 35.57 35.59	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.75 7.75 7.75	3. 3. 3. 4. 1. 2.
2013/1/16 10:47	W3	MF	832053	807902	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000 1.000 7.500 7.500 14.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.33 7.43	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.2	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.52 35.58 35.57 35.59 35.59	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.75 7.75 7.75 7.75 7.75	3. 3. 3. 4. 1. 2.
2013/1/16 10:47	W3	MF	832053	807902	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000 1.000 7.500 7.500 14.000 14.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36 17.38	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.33 7.43	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.0 2.1 2.1 2.1 2.1	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.59 35.71	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75 7.75 7.75 7.75 7.74	3. 3. 3. 4. 1. 2.
2013/1/16 10:47 2013/1/16 10:00	W3	MF	832053 833686	807902 808179	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 12.500 1.000 1.000 7.500 7.500 14.000 14.000 1.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36 17.38 17.39	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.35 7.41 8.98	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.1 2.1 2.5	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.59 35.71 35.73 35.47	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.75 7.75 7.75 7.75 7.75 7.74 7.74	3. 3. 3. 4. 1. 2. 0.
2013/1/16 10:47	W3	MF	832053	807902	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000 1.000 1.000 7.500 7.500 14.000 1.000 1.000 1.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36 17.38 17.39 17.36 17.38 17.39	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.33 7.41 8.98 9.02	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4 103.8	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.1 2.1 2.1 2.5 2.5 2.4	34.29 35.63 35.64 35.49 35.48 35.51 35.52 35.52 35.58 35.57 35.59 35.71 35.73 35.73	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.55 7.75 7.75 7.75 7.75 7.74 7.46 7.44	3. 3. 3. 4. 1. 2. 0.
2013/1/16 10:47 2013/1/16 10:00	W3	MF	832053 833686	807902 808179	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 12.500 1.000 7.500 7.500 14.000 14.000 1.000 1.000 6.250 6.250	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.33 17.52 17.38 17.39 17.36 17.38 17.34 17.35 17.34 17.35	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.33 7.43 7.41 8.98 9.02 8.06 8.08	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4 103.8 104.0	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.2 2.2 2.1 2.1 2.1 2.5 2.5 2.4 2.6	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.71 35.71 35.73 35.73 35.47 35.45	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.75 7.75 7.75 7.75 7.74 7.74 7.74 7.46 7.44 7.41 7.40	3.3.3.4.1.2.2.0.0.0.0.0.
2013/1/16 10:47 2013/1/16 10:00	W3	MF	832053 833686	807902 808179	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 12.500 1.000 7.500 7.500 14.000 14.000 1.000 1.000 1.000 6.250 6.250 11.500	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36 17.38 17.34 17.34 17.35 17.24 17.21	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.33 7.43 7.41 8.98 9.02 8.06 8.08 7.83	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4 103.8 104.0 100.8	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.2 2.1 2.1 2.5 2.5 2.4 2.6 1.2	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.71 35.73 35.47 35.45 35.47 35.45 35.45	7.68 7.66 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75 7.75 7.75 7.74 7.46 7.44 7.40 7.39	3.3.3.4.1.2.2.0.0.0.0.0.
2013/1/16 10:47 2013/1/16 10:00	W3	MF	832053 833686	807902 808179	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 1.000 1.000 7.500 7.500 14.000 14.000 1.000 6.250 6.250 11.500 11.500	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.39 17.36 17.38 17.34 17.35 17.24 17.21	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.35 8.33 7.43 7.41 8.98 9.02 8.06 8.08 7.83 7.90	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4 103.8 104.0 100.8	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.1 2.1 2.5 2.5 2.4 2.6 1.2 1.4	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.71 35.73 35.47 35.47 35.47 35.45 35.47 35.45	7.68 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75 7.75 7.75 7.74 7.46 7.44 7.41 7.40 7.39 7.38	3. 3. 3. 4. 1. 2. 0. 0.
2013/1/16 10:47 2013/1/16 10:00	W3	MF	832053 833686	807902 808179	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 12.500 1.000 1.000 7.500 14.000 14.000 1.000 1.000 6.250 6.250 6.250 11.500 11.500 11.500	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36 17.38 17.34 17.35 17.23 17.23 17.21 17.21 17.21	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.35 8.33 7.43 7.41 8.98 9.02 8.06 8.08 7.90 9.47	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4 103.8 104.0 100.8 101.7	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.1 2.1 2.1 2.5 2.5 2.4 2.6 1.2 1.4 1.1	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.71 35.73 35.47 35.45 35.47 35.45 35.47 35.45 35.47	7.68 7.66 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75 7.75 7.75 7.74 7.46 7.44 7.41 7.40 7.39 7.38 7.78	3. 3. 3. 4. 1. 2. 0. 0.
2013/1/16 10:47 2013/1/16 10:00	W3 C1 C2	MF	832053 833686	807902 808179	13.5	6.650 12.300 12.300 1.000 1.000 1.000 6.750 6.750 12.500 12.500 1.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36 17.38 17.39 17.35 17.32 17.35 17.35 17.35 17.35 17.35 17.35 17.35	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.35 8.33 7.41 8.98 9.02 8.06 8.08 7.83 7.90 9.47	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4 103.8 104.0 100.8 101.7 122.7	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.1 2.1 2.1 2.5 2.5 2.4 2.6 1.2 1.4 1.1	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.71 35.73 35.47 35.45 35.47 35.45 35.47 35.45 35.48	7.68 7.66 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75 7.75 7.75 7.75 7.74 7.46 7.44 7.41 7.40 7.39 7.38 7.78	3. 3. 4. 1. 2. 0. 0.
2013/1/16 10:47 2013/1/16 10:00	W3	MF	832053 833686	807902 808179	13.5	6.650 12.300 12.300 1.000 1.000 6.750 6.750 12.500 12.500 1.000 1.000 7.500 7.500 14.000 1.000 1.000 6.250 6.250 11.500 11.500 11.500 11.500 1.000 7.800	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36 17.38 17.34 17.35 17.23 17.23 17.24 17.21 17.21 17.21 17.23 17.23	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.33 7.41 8.98 9.02 8.06 8.08 7.83 7.83 7.90 9.47 9.46 8.42	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4 103.8 104.0 100.8 101.7 122.7	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.1 2.1 2.5 2.5 2.4 2.6 1.2 1.4 1.1 1.1	34.29 35.63 35.64 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.59 35.71 35.73 35.47 35.45 35.47 35.45 35.47 35.45 35.48 35.47	7.68 7.66 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75 7.75 7.75 7.74 7.46 7.44 7.41 7.40 7.39 7.38 7.78 7.78 7.78	3. 3. 3. 3. 4. 1.: 2. 2. 0.: 0. 0. 1.1. 1.: 1.: 1.: 1.: 1.: 1.: 1.: 1.: 1
2013/1/16 10:47 2013/1/16 10:00 2013/1/16 11:00	W3 C1 C2	MF MF	832053 833686 831452	807902 808179 807755	13.5	6.650 12.300 12.300 1.000 1.000 1.000 6.750 6.750 12.500 12.500 1.000	17.31 17.34 17.34 17.26 17.23 17.18 17.17 17.21 17.20 17.53 17.52 17.38 17.39 17.36 17.38 17.39 17.35 17.32 17.35 17.35 17.35 17.35 17.35 17.35 17.35	8.51 7.48 7.44 9.75 9.48 8.38 8.49 7.57 7.54 9.42 9.43 8.35 8.35 8.33 7.41 8.98 9.02 8.06 8.08 7.83 7.90 9.47	96.6 96.1 125.6 122.0 107.7 109.2 97.4 97.1 122.0 122.2 107.9 107.7 96.0 95.8 115.8 116.4 103.8 104.0 100.8 101.7 122.7	1.6 1.9 1.4 1.6 2.1 2.0 1.9 1.5 1.7 2.0 2.0 2.2 2.1 2.1 2.1 2.5 2.5 2.4 2.6 1.2 1.4 1.1	34.29 35.63 35.64 35.49 35.49 35.51 35.49 35.52 35.58 35.57 35.59 35.71 35.73 35.47 35.45 35.47 35.45 35.47 35.45 35.48 35.47	7.68 7.66 7.66 7.66 7.56 7.53 7.49 7.48 7.46 7.44 7.75 7.75 7.75 7.75 7.75 7.74 7.46 7.44 7.41 7.40 7.39 7.38 7.78	3. 3. 3. 4. 1.: 2. 0. 0. 0.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 18-Jan-13

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/18 17:46	W1	ME	832976	807753	2.3	1.150	17.23	8.54	109.9	1.7	35.34	7.80	1.0
2013/1/10 17.40	***1	IVIL	032710	007755	2.3	1.150	17.19	8.60	109.4	1.5	33.56	7.76	1.0
						1.000	17.18	8.49	107.8	1.2	33.46	7.79	1.1
						1.000	17.21	8.43	108.4	1.2	35.29	7.78	1
2013/1/18 17:35	W2	ME	832692	807988	12.5	6.250	17.23	8.37	107.6	1.5	35.42	7.79	1.1
2013/1/10 17.33	*** 2	IVIL	032072	007700	12.5	6.250	17.23	8.37	107.7	1.9	35.43	7.79	1.1
						11.500	17.28	7.46	96.1	1.2	35.49	7.82	2.3
						11.500	17.28	7.42	95.7	1.0	35.49	7.81	۷
						1.000	17.26	7.52	96.7	1.2	35.26	7.78	1.3
						1.000	17.29	7.64	98.3	1.2	35.29	7.78	1
2013/1/18 17:22	W3	ME	832055	807907	12.3	6.150	17.31	8.00	103.1	1.5	35.41	7.78	1.0
2013/1/16 17.22	W3	IVIE	652055	807907	12.5	6.150	17.31	8.00	103.1	1.5	35.42	7.76	1.0
						11.300	17.32	7.27	93.7	1.3	35.53	7.78	2.
						11.300	17.34	7.27	94.0	1.3	35.57	7.78	2.
						1.000	17.01	8.51	108.9	1.1	35.08	7.79	0
						1.000	17.01	8.69	111.2	1.2	35.08	7.79	0.
2012/1/10 10 01	G1) (E	000000	000100	140	7.100	17.06	8.93	114.4	1.9	35.25	7.79	0
2013/1/18 18:01	C1	ME	833727	808193	14.2	7.100	17.09	9.02	115.6	1.9	35.26	7.79	0.
						13.200	17.18	7.97	102.5	1.1	35.37	7.80	_
						13.200	17.18	7.99	102.6	1.8	35.36	7.80	0.
						1.000	17.50	6.59	85.1	1.7	35.00	8.00	
						1.000	17.50	7.07	91.2	1.0	35.12	7.97	0.
						5.550	17.51	7.61	98.6	0.8	35.32	7.93	
2013/1/18 17:08	C2	ME	831449	807736	11.1	5.550	17.51	7.63	98.6	0.6	35.37	7.92	2.
						10.100	17.52	7.00	90.6	0.3	35.47	7.88	
						10.100	17.51	7.00	90.6	0.5	35.49	7.89	1.
						1.000	17.01	9.05	115.8	1.8	35.16	7.77	
						1.000	17.01	9.05	115.8	1.7	35.16	7.77	1.
						7.700	17.01	8.87	113.6	1.7	35.10	7.76	
2013/1/18 18:22	C3	ME	832232	808879	15.4		17.04	8.87	113.5	1.9	35.24	7.79	1.
						7.700							
						14.400	17.17	7.95	102.2	1.1	35.35	7.78	1.
						14.400	17.17	8.12	104.3	1.6	35.36	7.75	
						1.400	17.20	8.65	111.2	0.8	35.28	7.79	
2013/1/18 11:22	W1	MF	832969	807745	2.8	1.400	17.17	8.77	111.2	0.9	33.22	7.76	0.
						1.000	17.21	8.96	114.9	0.8	35.09	7.88	
						1.000	17.20	8.96	115.0	0.5	35.13	7.87	0.
						6.800	17.16	8.78	112.7	0.5	35.22	7.83	
2013/1/18 11:11	W2	MF	832663	807975	13.6	6.800	17.19	8.72	112.7	1.2	35.20	7.84	0.
						12.600	17.15	8.59	110.3	1.2	35.26	7.80	
						12.600	17.13	8.58	110.3	1.2	35.27	7.78	0.
						1.000	17.14	9.05	116.2	1.5	35.14	7.78	
													1.
						1.000	17.24 17.27	8.91 8.61	114.6 110.8	0.5	35.17 35.25	7.89 7.84	1
2013/1/18 10:53	W3	MF	832037	807879	13.6	6.800							2.
						6.800	17.24	8.50	109.3	0.5	35.30	7.78	-
						12.600	17.26	7.57	97.4	1.2	35.33	7.79	1.
	1					12.600	17.26	7.56	97.3	1.2	35.34	7.79	-
						1.000	17.13	8.91	114.2	1.5	35.02	7.89	0.
						1.000	17.13	8.78	112.5	1.1	35.08	7.87	<u> </u>
						7.700	17.16	8.64	110.9	1.4	35.23	7.83	0.
2013/1/18 11:37	C1	MF	833721	808156	15.4	0.000		8.60	110.5	1.5	35.23	7.83	<u> </u>
2013/1/18 11:37	C1	MF	833721	808156	15.4	7.700	17.16						1
2013/1/18 11:37	C1	MF	833721	808156	15.4	14.400	17.16	8.47	108.7	1.8	35.31	7.77	1
2013/1/18 11:37	C1	MF	833721	808156	15.4	14.400 14.400	17.16 17.15	8.47 8.45	108.5	1.4	35.32	7.76	
2013/1/18 11:37	C1	MF	833721	808156	15.4	14.400 14.400 1.000	17.16 17.15 17.42	8.47 8.45 8.36	108.5 107.8	1.4 1.1	35.32 35.17	7.76 7.79	
2013/1/18 11:37	C1	MF	833721	808156	15.4	14.400 14.400 1.000 1.000	17.16 17.15 17.42 17.42	8.47 8.45 8.36 8.42	108.5 107.8 108.5	1.4 1.1 1.1	35.32 35.17 35.24	7.76 7.79 7.79	
						14.400 14.400 1.000 1.000 6.400	17.16 17.15 17.42 17.42 17.40	8.47 8.45 8.36 8.42 8.53	108.5 107.8 108.5 110.1	1.4 1.1 1.1 1.3	35.32 35.17 35.24 35.31	7.76 7.79 7.79 7.78	0.
2013/1/18 11:37	C1 C2	MF	833721 831462	808156	12.8	14.400 14.400 1.000 1.000	17.16 17.15 17.42 17.42 17.40 17.40	8.47 8.45 8.36 8.42	108.5 107.8 108.5	1.4 1.1 1.1	35.32 35.17 35.24 35.31 35.35	7.76 7.79 7.79 7.78 7.79	0.
						14.400 14.400 1.000 1.000 6.400	17.16 17.15 17.42 17.42 17.40	8.47 8.45 8.36 8.42 8.53	108.5 107.8 108.5 110.1	1.4 1.1 1.1 1.3	35.32 35.17 35.24 35.31	7.76 7.79 7.79 7.78	0.
						14.400 14.400 1.000 1.000 6.400 6.400	17.16 17.15 17.42 17.42 17.40 17.40	8.47 8.45 8.36 8.42 8.53 8.57	108.5 107.8 108.5 110.1 110.5	1.4 1.1 1.1 1.3 1.2	35.32 35.17 35.24 35.31 35.35	7.76 7.79 7.79 7.78 7.79	0.
						14.400 14.400 1.000 1.000 6.400 6.400 11.800	17.16 17.15 17.42 17.42 17.40 17.40 17.34	8.47 8.45 8.36 8.42 8.53 8.57 7.88	108.5 107.8 108.5 110.1 110.5 100.3	1.4 1.1 1.1 1.3 1.2 1.7	35.32 35.17 35.24 35.31 35.35 33.22	7.76 7.79 7.79 7.78 7.79 7.75	0.
						14.400 14.400 1.000 1.000 6.400 6.400 11.800	17.16 17.15 17.42 17.42 17.40 17.40 17.34 17.37	8.47 8.45 8.36 8.42 8.53 8.57 7.88 7.78	108.5 107.8 108.5 110.1 110.5 100.3 100.3	1.4 1.1 1.1 1.3 1.2 1.7 1.8	35.32 35.17 35.24 35.31 35.35 33.22 35.38	7.76 7.79 7.79 7.78 7.79 7.75 7.77	0.
2013/1/18 10:39	C2	MF	831462	807758	12.8	14.400 14.400 1.000 1.000 6.400 6.400 11.800 11.800	17.16 17.15 17.42 17.42 17.40 17.40 17.34 17.37 17.16	8.47 8.45 8.36 8.42 8.53 8.57 7.88 7.78 8.65	108.5 107.8 108.5 110.1 110.5 100.3 100.3	1.4 1.1 1.1 1.3 1.2 1.7 1.8 1.1	35.32 35.17 35.24 35.31 35.35 33.22 35.38 35.20	7.76 7.79 7.79 7.78 7.78 7.79 7.75 7.77 7.79	0. 0. 0.
						14.400 14.400 1.000 1.000 6.400 6.400 11.800 11.800 1.000	17.16 17.15 17.42 17.42 17.40 17.40 17.34 17.37 17.16	8.47 8.45 8.36 8.42 8.53 8.57 7.88 7.78 8.65 8.59	108.5 107.8 108.5 110.1 110.5 100.3 100.3 111.1 110.2	1.4 1.1 1.3 1.2 1.7 1.8 1.1	35.32 35.17 35.24 35.31 35.35 33.22 35.38 35.20 35.21	7.76 7.79 7.79 7.78 7.79 7.75 7.77 7.79 7.77	0. 0. 0. 0. 0. 0.
2013/1/18 10:39	C2	MF	831462	807758	12.8	14.400 14.400 1.000 1.000 6.400 6.400 11.800 11.800 1.000 8.100	17.16 17.15 17.42 17.42 17.40 17.40 17.34 17.37 17.16 17.13	8.47 8.45 8.36 8.42 8.53 8.57 7.88 7.78 8.65 8.59 8.46	108.5 107.8 108.5 110.1 110.5 100.3 100.3 111.1 110.2 108.6	1.4 1.1 1.1 1.3 1.2 1.7 1.8 1.1 1.3	35.32 35.17 35.24 35.31 35.35 33.22 35.38 35.20 35.21 35.29	7.76 7.79 7.79 7.78 7.78 7.75 7.75 7.77 7.79 7.77 7.76	0. 0. 0.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 22-Jan-13

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/22 17:45	W1	ME	832955	807743	2.5	1.250	17.80	8.38	109.0	2.3	35.29	7.28	2.4
2013/1/22 17.43	** 1	IVIL	032733	007743	2.0	1.250	17.82	8.07	104.9	2.3	35.30	7.29	۷.
						1.000	18.12	7.29	95.3	2.5	35.24	7.39	1.0
						1.000	17.87	7.62	99.2	2.7	35.32	7.39	1.0
2013/1/22 17:35	W2	ME	832683	807972	13.1	6.550	17.26	8.48	108.6	1.6	34.56	7.30	2.0
2013/1/22 17.33	*** 2	IVIL	032003	001712	13.1	6.550	17.29	8.23	106.0	2.4	35.35	7.28	2.0
						12.100	17.24	7.97	102.6	1.9	35.45	7.25	1.8
						12.100	17.23	8.07	103.9	2.2	35.47	7.23	1.0
						1.000	18.37	7.40	97.2	1.7	35.22	7.15	1.3
						1.000	18.35	7.48	98.2	1.9	35.21	7.10	1.
2013/1/22 17:20	W3	ME	832044	807887	13	6.500	17.47	8.72	112.7	2.0	35.31	6.97	1.
2013/1/22 17.20	*** 5	IVIL	032044	007007	13	6.500	17.46	8.51	110.0	1.8	35.39	6.99	1.
						12.000	17.47	8.08	104.5	1.3	35.44	6.88	1.
						12.000	17.47	8.10	104.8	1.2	35.45	6.86	1.
						1.000	17.67	6.91	89.6	2.8	35.22	7.61	0.
						1.000	17.56	7.22	93.4	2.9	35.19	7.58	0.
2013/1/22 18:01	C1	ME	833712	808158	14.5	7.250	17.30	7.67	98.7	2.3	35.32	7.52	1.
2013/1/22 16.01	CI	IVIE	655712	000130	14.3	7.250	17.27	7.68	98.9	2.7	35.36	7.52	1.
						13.500	17.31	7.51	96.8	2.3	35.50	7.49	0
						13.500	17.31	7.39	95.3	2.3	35.50	7.49	0.
						1.000	18.40	9.27	121.5	3.4	34.69	7.79	
						1.000	18.37	8.86	116.0	3.1	34.82	7.51	1.
2012/1/02 15 05	72		004.455	005550	44.0	5.900	17.52	8.91	115.1	2.8	35.01	6.54	0
2013/1/22 17:07	C2	ME	831477	807758	11.8	5.900	17.54	8.79	113.5	2.6	35.02	6.36	0.
						10.800	17.53	8,50	109.9	1.4	35.20	6.17	
						10.800	17.59	8.48	109.6	1.8	35.16	6.03	<0
						1.000	17.80	8.09	105.1	2.7	35.21	7.53	
						1.000	17.79	7.89	102.6	2.8	35.26	7.55	2.
						7.750	17.27	7.89	101.5	2.7	35.35	7.53	
2013/1/22 18:21	C3	ME	832241	808850	15.5	7.750	17.26	7.88	101.5	2.6	35.36	7.52	1.
						14.500	17.34	7.35	94.8	2.3	35.50	7.51	
						14.500	17.29	7.51	96.9	1.5	35.55	7.49	2.
						14.500	17.2)	7.51	70.7	1.5	55.55	1.77	
						1.350	17.42	8.87	114.6	2.8	35.55	7.41	_
2013/1/22 10:33	W1	MF	832954	807733	2.7	1.350	17.40	8.96	115.7	2.6	35.55	7.35	0.
						1.000	17.37	8.94	115.4	2.5	35.51	7.24	
						1.000	17.38	9.18	118.6	2.4	35.48	7.21	1.
						6.700	17.22	8.34	107.5	2.3	35.57	7.19	
2013/1/22 10:43	W2	MF	832677	807873	13.4	6.700	17.22	8.33	107.3	2.4	35.57	7.19	0
						12,400	17.22	8.17	107.5	0.9	35.79	7.15	
						12.400	17.31	8.19	105.8	1.1	35.80	7.15	0
						1.000	17.80	8.86	115.5	3.2	35.69	7.13	
													2
						1.000	17.63 17.57	8.12 7.90	105.5 102.6	3.0	35.70 35.74	7.41 7.30	-
2013/1/22 11:02	W3	MF	832049	807893	13.3	6.650	17.57	7.90			35.74	7.30	1
						6.650			100.4	3.2			-
						12.300	17.29	7.34	94.8	1.3	35.72	7.17	3
						12.300	17.27	7.31	94.3	1.0	35.74	7.16	
						1.000	17.43	9.36	121.1	1.1	35.60	6.64	0
						1.000	17.40	9.50	122.1	1.0	34.65	6.68	-
2013/1/22 10:12	C1	MF	833692	808163	14.7	7.350	17.24	8.62	111.2	1.7	35.73	6.65	2
						7.350	17.25	8.72	112.5	1.9	35.73	6.65	-
						13.700	17.24	8.59	110.8	1.4	35.85	6.68	1
	-					13.700	17.24	8.60	110.9	1.4	35.85	6.69	<u> </u>
						1.000	17.60	9.94	128.9	2.6	35.55	7.14	1
						1.000	17.57	8.88	115.1	2.5	35.55	7.14	<u> </u>
2013/1/22 11:15	C2	MF	831479	807760	12.2	6.100	17.54	7.88	102.2	2.5	35.64	7.11	0
	0.2		551179	00.700		6.100	17.55	8.18	106.0	1.5	35.64	7.11	<u>`</u>
						11.200	17.43	7.76	100.4	1.7	35.70	7.09	<(
						11.200	17.30	7.97	103.0	1.7	35.79	7.08	
						1.000	17.44	8.74	112.8	1.6	35.34	7.13	1.
						1.000	17.41	9.09	117.4	1.6	35.42	7.04	1.
	GO.	ME	832239	808875	15.5	7.750	17.26	8.46	109.1	1.6	35.66	6.74	2.
2013/1/22 0-51		3 MF			15.5		45.04	0.45	108.9	1.7	35.69	6.74	۷.
2013/1/22 9:51	C3					7.750	17.24	8.45					
2013/1/22 9:51	C3			000010		7.750 14.500	17.24	8.44	109.0	1.1	35.86	6.63	0.

MF- Mid Flood Tide

Contract No. DC/2009/13 **Construction of Sewage Treatment Works** at Yung Shue Wan and Sok Kwu Wan

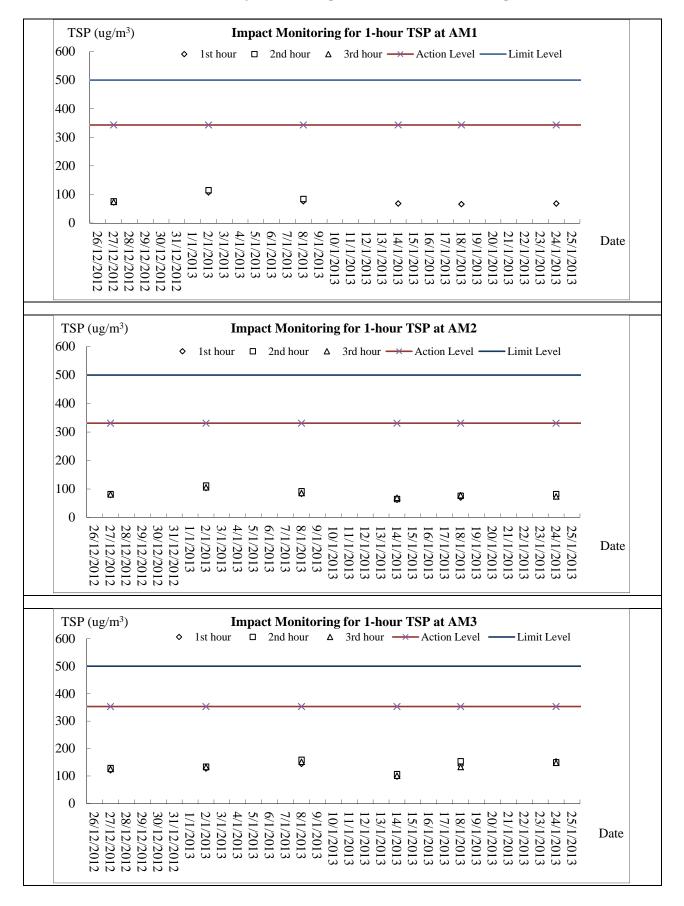
AUES

Sok Kwu Wan

24-Jan-13 Date

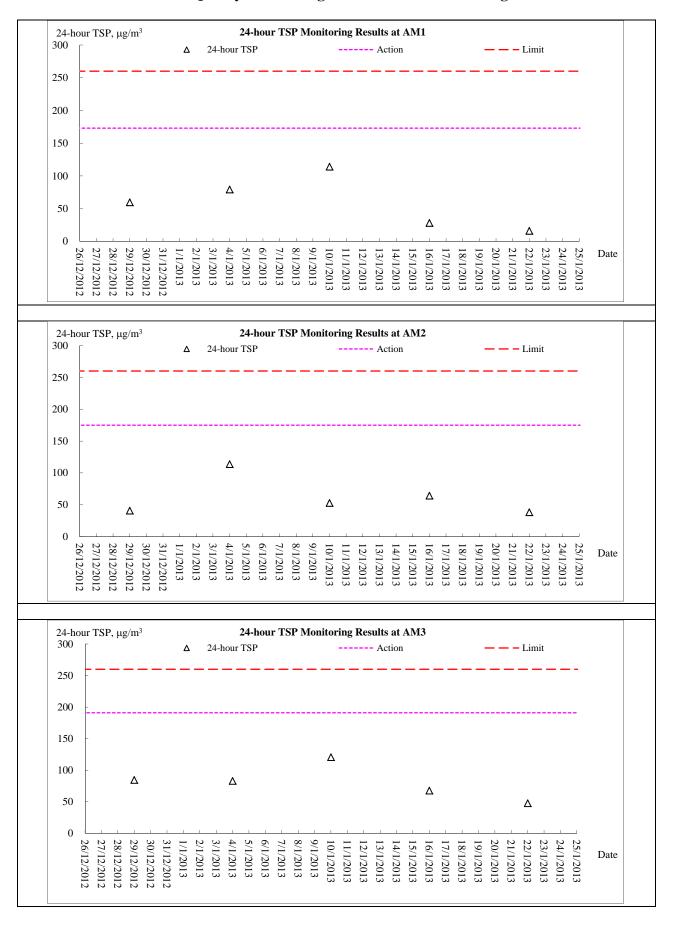
Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11uc.	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2013/1/24 11:02	W1	ME	832974	807758	2.4	1.200	17.46	7.79	100.5	2.2	35.30	7.73	2.3
2013/1/211102	- ''-	1,12	032771	007750	2	1.200	17.45	7.90	102.0	2.3	35.29	7.70	2.0
						1.000	17.43 17.41	8.14 8.16	105.1 105.3	2.3	35.27 35.28	7.64 7.63	2.2
						6.400	17.41	8.09	103.3	2.4	35.26	7.59	
2013/1/24 11:12	W2	ME	832683	807966	12.8	6.400	17.34	8.11	104.5	2.3	35.37	7.60	2.8
						11.800	17.42	8.01	103.4	2.1	35.46	7.59	0.0
						11.800	17.39	8.09	104.5	1.7	35.49	7.58	2.2
						1.000	17.63	6.89	89.3	2.1	35.41	7.57	2.8
						1.000	17.62	7.13	92.4	1.8	35.36	7.53	2.0
2013/1/24 11:27	W3	ME	832032	807871	12.7	6.350	17.43	7.38	95.2	1.9	35.36	7.44	4.
						6.350	17.43	7.42	95.8	2.3	35.38	7.43	
						11.700	17.46	7.39	95.5	1.5	35.45	7.39	3.
						11.700	17.43 17.22	7.37	95.2 107.8	1.5 1.4	35.47 34.62	7.38 7.64	
						1.000	17.22	8.42 8.33	107.8	1.4	35.36	7.64	2.5
						7.150	17.21	8.35	107.1	1.4	35.40	7.61	
2013/1/24 10:45	C1	ME	833724	808159	14.3	7.150	17.19	8.34	107.4	1.2	35.43	7.63	2.
						13.300	17.19	8.25	106.2	1.1	35.47	7.62	
						13.300	17.19	8.24	106.0	1.1	35.47	7.62	2.
						1.000	17.84	7.18	93.0	2.7	35.41	7.49	3.
						1.000	17.85	7.02	91.0	2.8	35.36	7.45	٥.
2013/1/24 11:40	2013/1/24 11:40 C2	ME	831442	807770	11.6	5.800	17.64	7.02	91.0	2.7	35.36	7.39	4.
2013/1/24 11.40	C2	14112	031112	007770	11.0	5.800	17.64	7.11	92.1	2.9	35.33	7.38	т.
						10.600	17.59	6.53	85.0	3.1	35.40	7.32	2.
						10.600	17.59	6.66	86.6	3.1	35.46	7.28	
						1.000	17.23	8.26	106.1	1.2	35.23	7.82	3.
						7.550	17.23 17.18	8.34	107.2 108.3	2.2	35.22 35.30	7.76 7.71	
2013/1/24 10:24	C3	ME	832202	808851	15.1	7.550	17.18	8.43 8.41	108.3	1.2	35.34	7.71	2.
						14.100	17.18	8.36	107.6	1.0	35.48	7.67	
						14.100	17.16	8.40	106.9	1.0	33.79	7.65	3.
2013/1/24 15:50	W1	MF	832934	807866	2.7	1.350	17.68	8.07	104.5	2.4	35.06	7.27	2.:
2013/1/2 : 13:30		1111	032931	007000	2.7	1.350	17.69	7.92	102.6	2.5	35.05	7.26	2.
						1.000	17.62	7.90	102.2	1.9	35.05	7.32	2.
						1.000	17.67	8.10	104.9	2.7	35.05	7.31	
2013/1/24 15:37	W2	MF	832694	807961	13.3	6.650 6.650	17.37 17.37	8.32 8.27	107.2 106.5	2.8 2.5	35.13 35.13	7.26 7.25	2.
						12.300	17.37	8.25	105.3	1.8	33.29	7.23	3.6
						12.300	17.48	8.11	103.3	1.8	35.25	7.23	
						1.000	18.17	7.91	103.3	2.4	34.98	7.26	
						1.000	18.12	8.10	105.9	2.4	35.27	7.22	2.
2013/1/24 15:24	77.10) or	022050	007070	10.5	6.750	17.55	8.27	107.0	2.2	35.33	7.15	1.
2013/1/24 15:24	W3	MF	832059	807873	13.5	6.750	17.55	8.39	108.5	2.0	35.33	7.13	1.
						12.500	17.46	8.17	105.6	2.4	35.37	7.08	2.
						12.500	17.46	8.17	105.5	2.7	35.39	7.06	2.
						1.000	17.53	7.03	90.7	3.2	34.92	7.43	2.
						1.000	17.66 17.34	7.12	92.0 94.7	3.3 2.7	34.88 35.03	7.42 7.41	
2013/1/24 16:13	C1	MF	833678	808154	15	7.500 7.500	17.34	7.36 7.35	94.7	2.7	35.03	7.41	2.
						14.000	17.34	7.25	93.3	3.0	35.10	7.42	
						14.000	17.31	7.22	92.9	2.9	35.14	7.40	3.
						1.000	18.01	8.23	107.2	1.1	35.02	7.14	, .
						1.000	18.02	8.25	107.6	1.2	35.09	7.09	4.
2013/1/24 15:13	C2	MF	831481	807719	12.3	6.150	17.75	8.30	107.8	1.3	35.31	6.91	2.
2013/11/24 13.13	CZ	1411.	051401	007719	12.3	6.150	17.74	8.09	105.1	1.2	35.35	6.89	Ζ.
						11.300	17.69	7.96	103.4	2.5	35.52	6.79	2.
						11.300	17.67	8.07	103.4	2.6	33.37	6.81	ے۔
	1					1.000	17.43	7.31	94.2	3.0	34.98	7.42	2.
								7.21	92.9	3.2	34.98	7.42	
			832103	808887	15.0	1.000	17.41						t
2013/1/24 16:33	C3	MF	832193	808887	15.9	7.950	17.32	7.20	92.6	2.9	35.09	7.40	2.4
2013/1/24 16:33	C3	MF	832193	808887	15.9								2.4

MF- Mid Flood Tide ME- Mid Ebb tide

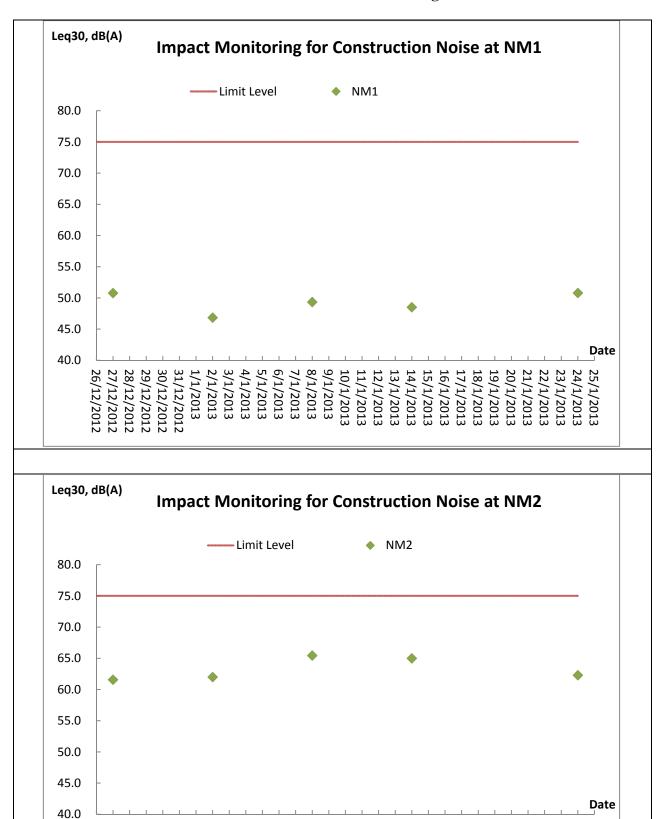


Appendix H

Graphical Plots of Monitoring Results



Air Quality Monitoring – 1 hour TSP Monitoring



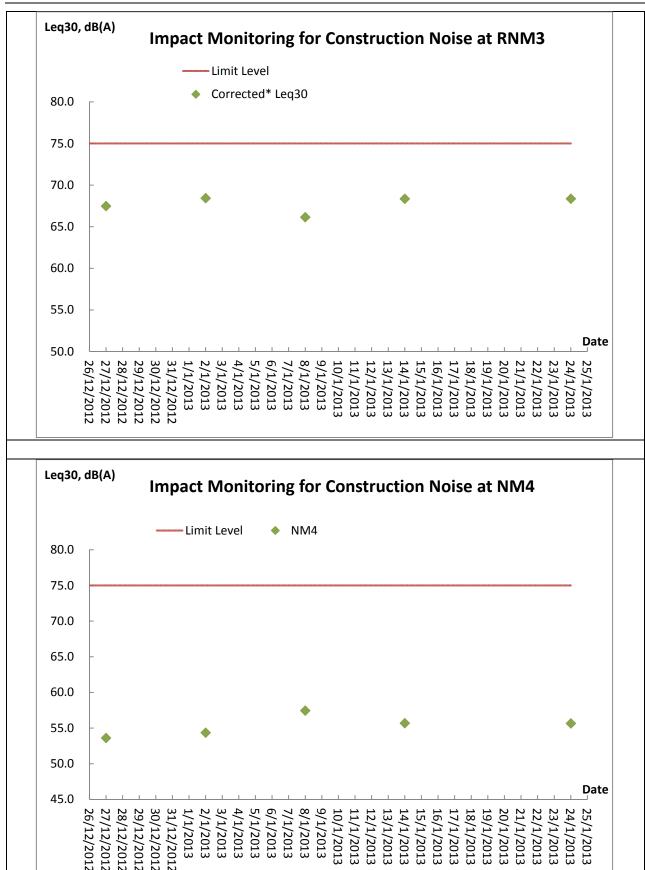
Air Quality Monitoring – 24 hour TSP Monitoring

Construction Noise Monitoring

10/1/2013 9/1/2013 8/1/2013 7/1/2013 6/1/2013 5/1/2013 4/1/2013 3/1/2013 2/1/2013

1/1/2013

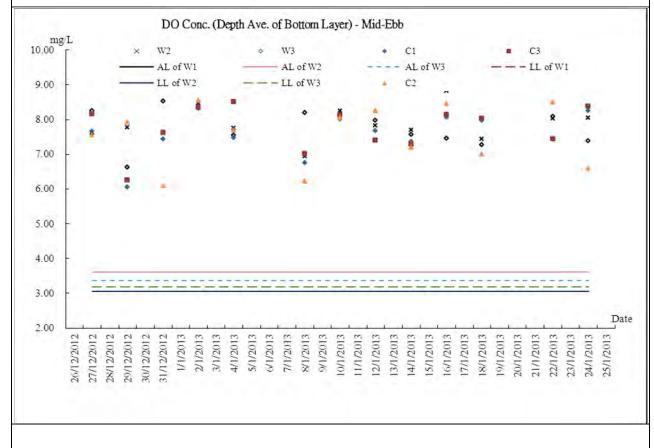
31/12/2012 30/12/2012

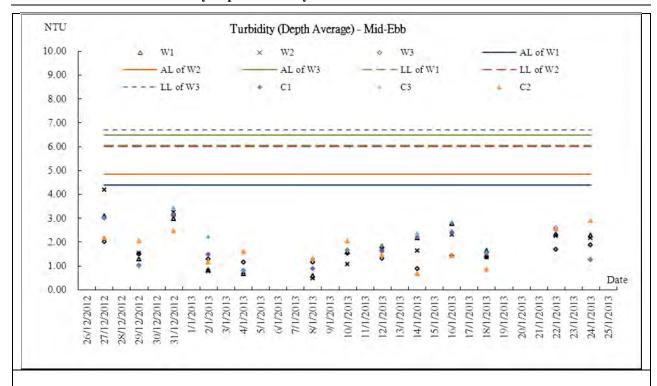

29/12/2012

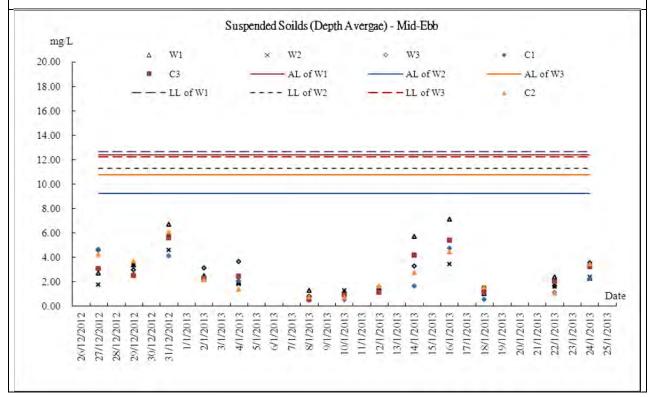
15/1/2013 14/1/2013

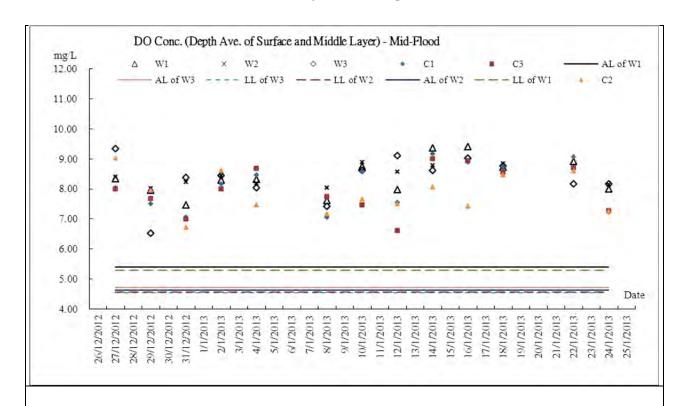
17/1/2013 16/1/2013 20/1/2013

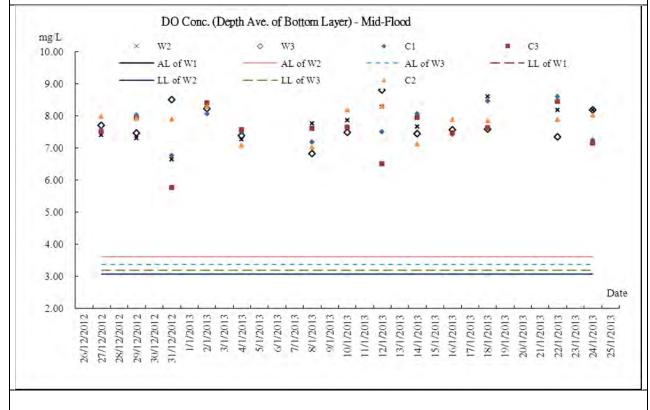
13/1/2013 12/1/2013 11/1/2013

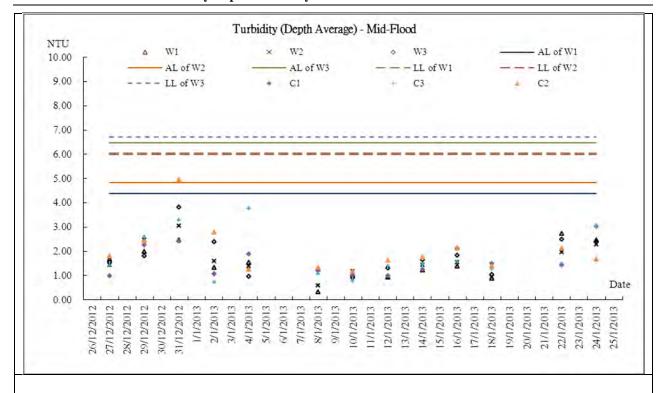


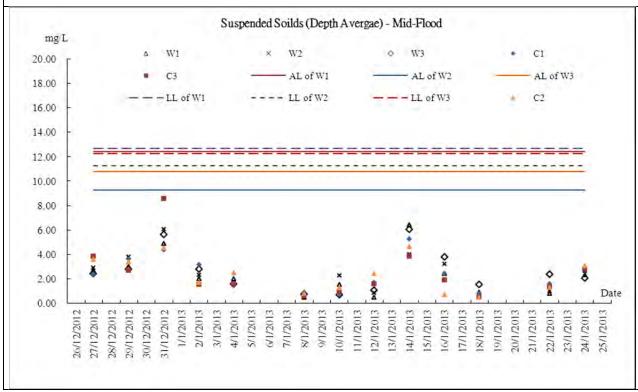



Marine Water Quality Monitoring - Mid-Ebb Tide








Marine Water Quality Monitoring - Mid-Flood Tide

Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Dec-12	Wed	Fine, dry, cloudy, moderate northeasterly winds, fresh offshore.
27-Dec-12	Thu	Fine, dry, cloudy, moderate northeasterly winds, fresh offshore.
28-Dec-12	Fri	Sunny periods, cloudy, fresh easterly winds
29-Dec-12	Sat	Sunny periods, cloudy, fresh easterly winds
30-Dec-12	Sun	Fine, dry, cloudy, moderate northeasterly winds, fresh offshore.
31-Dec-12	Mon	Fine, dry, cloudy, moderate northeasterly winds, fresh offshore.
1-Jan-13	Tue	Sunny periods, cloudy, moderate to fresh north to northeasterly winds
2-Jan-13	Wed	Sunny periods, cloudy, moderate east to northeasterly winds.
3-Jan-13	Thu	Sunny periods, cloudy, moderate to fresh north to northeasterly winds
4-Jan-13	Fri	Sunny periods, cloudy, moderate east to northeasterly winds.
5-Jan-13	Sat	Sunny intervals, dry, haze, moderate north to northeasterly winds
6-Jan-13	Sun	Sunny periods, cloudy, moderate to fresh north to northeasterly winds
7-Jan-13	Mon	Sunny intervals, dry, haze, moderate north to northeasterly winds
8-Jan-13	Tue	Sunny intervals, dry, haze, moderate north to northeasterly winds
9-Jan-13	Wed	Sunny periods, cloudy, moderate east to northeasterly winds.
10-Jan-13	Thu	Sunny periods, cloudy, moderate east to northeasterly winds.
11-Jan-13	Fri	Dry, sunny periods, cloudy, moderate to fresh easterly winds.
12-Jan-13	Sat	Sunny periods, cloudy, moderate east to northeasterly winds.
13-Jan-13	Sun	Sunny intervals, dry, haze, moderate north to northeasterly winds
14-Jan-13	Mon	Sunny periods, cloudy, moderate east to northeasterly winds.
15-Jan-13	Tue	Dry, sunny periods, cloudy, moderate to fresh easterly winds.
16-Jan-13	Wed	Sunny periods, cloudy, moderate east to northeasterly winds.
17-Jan-13	Thu	Cloudy, haze, moderate to fresh easterly winds.
18-Jan-13	Fri	Cloudy, haze, moderate to fresh easterly winds.
19-Jan-13	Sat	Sunny periods, cloudy, moderate east to northeasterly winds.
20-Jan-13	Sun	Dry, sunny periods, cloudy, moderate to fresh easterly winds.
21-Jan-13	Mon	Dry, sunny periods, cloudy, moderate to fresh easterly winds.
22-Jan-13	Tue	Cloudy, haze, moderate to fresh easterly winds.
23-Jan-13	Wed	Sunny periods, cloudy, moderate east to northeasterly winds.
24-Jan-13	Thu	Mainly fine, dry, moderate east to northeasterly winds.
25-Jan-13	Fri	Dry, sunny periods, cloudy, moderate to fresh easterly winds.

Appendix J

Monthly Summary Waste Flow Table

Contract No.:

DC/2009/13

Monthly Summary Waste Flow Table for January 2013

		Actual Quantities of Inert C&D Materials Generated Monthly												Α	ctual Q	ıantities	of C&D	Wastes	Generat	ed Mont	hly	
Month	Total Quantity Generated (a) = (c)+(d)+(e) Hard Rock an Large Broker Concrete (b)		Broken crete	Reused in the Contract (c)		Reused in other Projects (d)		Disposed as Public Fill (e)		Imported Fill (f)		Metals		Paper/ cardboard packaging		Plastics		Chemical Waste		Oth e.g. ru	iers, ibbish	
	(in '00)0m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '0	00m ³)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2013	13.341	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.601	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	400.410	103.440
Jan	0.332	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.332	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.040	9.840
Feb																						
Mar																						
Apr																						
May																						
Jun																						
Sub-total	13.674	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.934	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	409.450	113.280
Jul																						
Aug																						
Sep																						
Oct																						
Nov																						
Dec																						
Total	13.674	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.934	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	409.450	113.280
Total	64.0	001	0.5	69	3.5	42	0.0	00	60.4	160	0.0	000	0.0	000	0.0	000	0.0	000	0.0	000	522.	730

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan

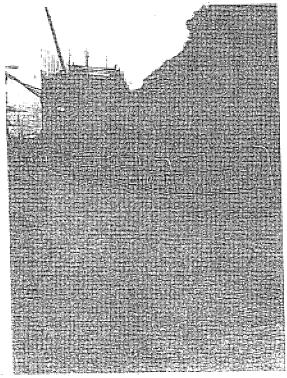
SKW: Sok Kwu Wan

Appendix K

Weekly Site Inspection Checklist

=UAILOIII	mental Team – Weekly Site Inspection and Au					7000	420 27 Dec. 2011
roject:	(C5/00512/05	spected by			hecklist No		12B-27 Dec-2011
	Construction of Sewage Treatment Works at		presentative		ils. Nicola H ilr. Joseph I		
	rang sinde vidi. dire dan	E's Represe	entative Representat		лг. зозертт Лг. М.К. Leu		
		C's Repres		.1,0	VII. 11111	<u> </u>	
Date:		me:			14:00		
PART A:	GENERAL INFORMATION				Enviro	nmental Pa	ermit No.
Weather:		ainy			P- 281	/2007A	
Temperati							
Humidity							
Wind:		alm,					
Area Insp		-					•
1 Sc	ok Kwu Wan						
PART B:	SITE AUDIT				Follow		Photo/
Note: No	ot Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; otlow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	Мо	Up	N/A	Remarks
	1: Water Quality						
1.01 ls	an effluent discharge license obtained for the Project?		\checkmark				
1.02 is	s the effluent discharged in accordance with the discharge licence?		$\overline{\checkmark}$				
1.03 ls	s the discharge of turbid water avoided?		$\overline{\mathbf{V}}$				
1.04 A	are there proper desilting facilities in the drainage systems to educe SS levels in effluent?		\checkmark				
1.UO s	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?		√				
1.06 ii	Are there any perimeter channels provided at site boundaries to ntercept storm runoff from crossing the site?		<u> </u>				-
1.07	s drainage system well maintained?		\checkmark			LJ.	
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?						
1.09	Are temporary exposed slopes properly covered?					$\overline{\checkmark}$	
1.10	Are earthworks final surfaces well compacted or protected?		$\overline{\checkmark}$				
	Are manholes adequately covered or temporarily sealed?	. 🗀	\checkmark				
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark				
1.13	Are wheel washing facilities well maintained?					$\overline{\mathbf{A}}$	
1.14	Is runoff from wheel washing facilities avoided?				. [\square	
1.15	Are there toilets provided on site?						
1.16	Are toilets properly maintained?		\checkmark	Ļ			
1.17	Are the vehicle and plant servicing areas paved and located with roofed areas?	in _				$\overline{\mathbf{A}}$	
1.18	Is the oil/grease leakage or spillage avoided?		$\overline{\checkmark}$				
1.19	Are there any measures to prevent leaked oil from entering the drainage system?		\checkmark	-			
1.20	Are there any measures to collect spilt cement and concrewashings during concreting works?		$\overline{\mathbf{V}}$				
1.21	Are there any oil interceptors/grease traps in the drainage syster for vehicle and plant servicing areas, canteen kitchen, etc?	ns				\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow-Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					$\overline{\checkmark}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide, and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					<u> </u>	
1.25	No excavation is undertaken in the settlement area.					$\overline{\checkmark}$	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark			P	
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Secti	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					$\overline{\checkmark}$	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					$\overline{\checkmark}$	-
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?			. \square	. 🗆	<u> </u>	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?				\checkmark		Photo 1
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?			· 🔲		\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					$\overline{\checkmark}$	
2.1	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.1	5 Is open burning avoided?		\checkmark				
2.1	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.	e d				\checkmark	
Se	ction 3: Noise						
3.0	Are noisy equipment and activities positioned as far as practicabl from the sensitive receivers?	е				V	
3.0	2 Is silenced equipment adopted?						
3.0	3 Is idle equipment turned off or throttled down?				. 🗆		
3.0							
3.0	Construction activities cause noise impact on activities receives.			· · □		\checkmark	
3.0	Are hand held breakers fitted with valid noise emission labe during operation?	ls				\checkmark	
3.	Are air compressors fitted with valid noise emission labels durin operation?	ng 🗌		. [\checkmark	


Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	AIM	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during					\checkmark	
3.09	operation? Are Construction Noise Permit(s) applied for percussive piling					$\overline{\checkmark}$	
3.10	works? Are Construction Noise Permit(s) applied for general construction					$\overline{\checkmark}$	
3.11	works during restricted hours? Are valid Construction Noise Permit(s) posted at site entrances?					$\overline{\checkmark}$	
J.11	Use of quiet plant had been used on site to minimise the	. —				- 1	
3.12	construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures). Temporary/Moveable noise barrier or site hoarding are provide or					<u>-</u>	
3.13	erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					V	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					$\overline{\checkmark}$	
Secti	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		$\overline{\checkmark}$				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		. 🔨				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?	′ 🗆					
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					$\sqrt{}$	
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?					. 🔽	
4.1	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.1	Are trip tickets for chemical wastes disposal available for inspection?	or 🗀					
4.1	Are chemical/fuel storage areas bounded?					$\overline{\checkmark}$	
4.1	Are designated areas identified for storage and sorting of construction wastes?	of					
4.1	5 Are construction wastes sorted (inert and non-inert) on site?						
4.1	6 Are construction wastes reused?		\checkmark				
4.1	7 Are construction wastes disposed of properly?		\checkmark				
4.1	8 Are site hoardings and signboards made of durable material instead of timber?	als [\checkmark				
4.	Is trip ticket system implemented for the disposal of construction	on	$\sqrt{}$				
4.3	Are appropriate procedures followed if contaminated mater	ial				\checkmark	
4.:	Is relevant license/ permit for disposal of construction waste	or _				V	
4.	Site cleanliness and appropriate waste management training h provided for the site workers.	nad	\checkmark				
4.	Contaminated sediments will be managed according to WB No. 12/2000 and EWTB TC(W) No. 34/2002.	тс 🗌] - 🗌		

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?				\checkmark		Refer to EM&A report Dec 2012
5.02	Are retained and transplanted trees properly protected?						Refer to EM&A report –Dec 2012
5.03	Are surgery works carried out for the damaged trees?	$\sqrt{}$				☐ ·	
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Secti	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	
	CILLI BITCOS/GATO:						

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (27 December 2012)

Follow up (02 Jan 2013)

The hand road was clear and not dusty. Meintenance of watering during dry and windy conditions is think and

 Dry haul roads and access roads were observed, the Contractor should apply water spraying on the dusty road more frequently to minimize fugitive dust.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	Joseph.			
()	(Joseph Ng)	(Nicola Hon)	(K-X-80) (

Project	, TG3/00312/03		-,		Checklict No. TCS512B-2 Jan 2013					
	Construction of Sewage Treatment Works at	ETL/ ET's F	Representati	ve	Ms. Nicola					
	Yung Shue Wan and Sok Kwu Wan	RE's Repre			Mr. Joseph					
			's Represent	tative	Mr. M.K. L	eung				
ID -4	2 Ion 2042	IEC's Repro	esentative		14:00					
Date:	2 Jan 2013 GENERAL INFORMATION				Environmental Permit No.					
PART		Rainy				1/2007A				
Weatl	erature: 18.6 °C] 1(4,,,,,			<u></u>					
Humi										
Wind		Calm								
Area l	nspected									
1	Sok Kwu Wan									
PART	B: SITE AUDIT					<u> </u>				
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks			
Section	on 1: Water Quality									
1.01	Is an effluent discharge license obtained for the Project?		\checkmark							
1.02	Is the effluent discharged in accordance with the discharge licence	∍? □	\checkmark							
1.03	Is the discharge of turbid water avoided?		\checkmark							
1.04	Are there proper desilting facilities in the drainage systems reduce SS levels in effluent?		\checkmark							
1.05	Are there channels, sandbags or bunds to direct surface run-off sedimentation tanks?		\checkmark							
1.06	Are there any perimeter channels provided at site boundaries intercept storm runoff from crossing the site?	to	$\overline{\mathbf{Q}}$							
1.07	Is drainage system well maintained?		\checkmark							
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	by				V				
1.09	Are temporary exposed slopes properly covered?					ightharpoons				
1.10	Are earthworks final surfaces well compacted or protected?									
1.11	Are manholes adequately covered or temporarily sealed?		$\overline{\mathbf{Q}}$							
1.12	Are there any procedures and equipment for rainstorm protection	1?	$\overline{\checkmark}$							
1.13	Are wheel washing facilities well maintained?					<u> </u>				
1.14	Is runoff from wheel washing facilities avoided?					$\overline{\mathbf{V}}$				
1.15	Are there toilets provided on site?	_	$\overline{\square}$							
1.16	Are toilets properly maintained?		$\overline{\mathbf{A}}$							
1.17	Are the vehicle and plant servicing areas paved and located wit roofed areas?	hin								
1.18	Is the oil/grease leakage or spillage avoided?		$\overline{\mathbf{Q}}$							
1.19	Are there any measures to prevent leaked oil from entering drainage system?	ш	<u> </u>							
1.20	Are there any measures to collect spilt cement and concr washings during concreting works?	rete	\square							
1.21	Are there any oil interceptors/grease traps in the drainage syste for vehicle and plant servicing areas, canteen kitchen, etc?	ems 🔲				\checkmark				

	·	Not			Follow		Photo/
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Tea	140	Up		Remarks
1.22	Are the oil interceptors/grease traps maintained property?			L			
1.23	Is used bentonite recycled where appropriate?		Ш	Ш	Ш	\square	
1,24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					\square	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\square	
1.27	Mobile toilets should provide on site and located away the stream course.		V				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					$\overline{\mathbf{A}}$	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?					$\overline{\mathbf{Q}}$	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?				\square		Photo 1
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\square	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					$\overline{\checkmark}$	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark			Ш	
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					$\overline{\mathbf{V}}$	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					$\overline{\checkmark}$	
Sect	ion 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					$\overline{\checkmark}$	W
3.02	Is silenced equipment adopted?				L	✓	
3.03	Is idle equipment turned off or throttled down?						V
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					$\overline{\square}$, at 1
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						

	No. 12 Alice	Not			Follow		Photo/
	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	res	NO	Up		Remarks
3.00	Are flaps and panels of mechanical equipment closed during operation?					\square	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					$\overline{\checkmark}$	ARM BALLOW MAN AND AND AND AND AND AND AND AND AND A
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure) Temporary/Moveable noise barrier equal to or more than 3m height						Advisory and the second
3.14	with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	is general refuse sorting or recycling implemented?		$\overline{\checkmark}$				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\square	
4.07	Are the chemical wastes stored in proper storage areas?					<u></u>	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					$\overline{\mathbf{V}}$	
4.10	Are incompatible chemical wastes stored in different areas?					$\overline{\mathbf{A}}$	
4.11	Are the chemical wastes disposed of by licensed collectors?					V	
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		$\overline{\mathbf{V}}$				
4.16	Are construction wastes reused?		$\overline{\checkmark}$				
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?						
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					<u> </u>	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\square				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					$ \checkmark $	

					Follow		Photo/				
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	res	140	Up	14,71	Remarks				
Section	n 5: Landscape & Visual										
5.01	Are retained and transplanted trees in health condition?				\checkmark		Refer to EM&A report –Dec 2012				
5.02	Are retained and transplanted trees properly protected?				\checkmark		Refer to EM&A report –Dec 2012				
5.03	Are surgery works carried out for the damaged trees?	\checkmark									
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark								
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark					
Section	on 6: Others										
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?										
•	(Sok Kwu Wan)										
Rei	marks:										
<u>Fin</u>	dings of Site Inspection: (2 Jan 2013)	_	Follov	v up							
1.	Follow up 1. No adverse environmental impaces were observed. However, full implementation of the required mitigation measures is thinded.										

IEC's representative		RE's representative	ET's representative	EO's representative	Contractor's representative
		Joseph.	and a		Org
()	(Joseph Ng)	(Nicota Hon)	(M.K. Leung) K. Y. So	(Vincent chave)
		02Jan2013	01 Tan 2013		

Project	: TCS/00512/09	Inspected b	у		CHECKHSE IVO: TCSSTZD-0-34H-2013				
,	Construction of Sewage Treatment Works at	ETL/ ET's R	Representat	ive	Ms. Nicola Hon Way F. N.				
	Yung Shue Wan and Sok Kwu Wan	RE's Repre			Mr. Joseph		1		
		Contractor'	•	itative	Mr. M.K. Leung				
	0.1 . 0040	IEC's Repre	esentative		1480 O(500				
Date:	8 Jan 2013	imie.							
PART		Rainy		1	Environmental Permit No. EP- 281/2007A				
Weat		reality		I					
Humi									
Wind		Calm							
Area I	nspected								
1	Sok Kwu Wan								
	R· SITE AUDIT								
PART		1			Follow		Photo/		
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Up	N/A	Remarks		
Section	n 1: Water Quality				-				
1.01	Is an effluent discharge license obtained for the Project?		\checkmark						
1.02	Is the effluent discharged in accordance with the discharge licence?	?	\checkmark						
1.03	Is the discharge of turbid water avoided?		$\overline{\mathbf{V}}$						
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?	L	$\overline{\checkmark}$				***************************************		
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?		\square						
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?	° 🗍	$\overline{\mathbf{V}}$				<u> </u>		
1.07	Is drainage system well maintained?		\checkmark			LJ .			
1.08	As excavation proceeds, are temporary access roads protected b crushed stone or gravel?	у 🔲							
1.09	Are temporary exposed slopes properly covered?					$\overline{\mathbf{V}}$			
1.10	Are earthworks final surfaces well compacted or protected?		$\overline{\checkmark}$						
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark						
1.12	Are there any procedures and equipment for rainstorm protection?								
1.13	Are wheel washing facilities well maintained?					$\overline{\checkmark}$			
1.14	Is runoff from wheel washing facilities avoided?					$\overline{\mathbf{A}}$			
1.15	Are there toilets provided on site?		$\overline{\mathbf{Q}}$						
1.16	Are toilets properly maintained?								
1.17	Are the vehicle and plant servicing areas paved and located with roofed areas?	in 🔲				$\overline{\checkmark}$			
1.18	Is the oil/grease leakage or spillage avoided?								
1.19	Are there any measures to prevent leaked oil from entering the drainage system?								
1.20	Are there any measures to collect split cement and concre washings during concreting works?	L	\square						
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	ns 🗌				<u> </u>			
1.22	Are the oil interceptors/grease traps maintained properly?								

							DI1-/	
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance, Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Up	N/A	Remarks	
1.23	Is used bentonite recycled where appropriate?					$\overline{\checkmark}$		
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					I		
1.25	No excavation is undertaken in the settlement area.							
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					I		
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark					
1.28	License collector should be employed for handling the sewage of mobile toilet.							
1.29	Is ponding /stand water avoided?		\checkmark					
Section	n 2: Air Quality							
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?							
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark					
2.03	Are the excavated materials sprayed with water during handling?							
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\square		
2.05	Is the exposed earth properly treated within six months after the last construction activities?					$\overline{\mathbf{V}}$		
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?				\square		Photo 1	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?							
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\square		
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					$\overline{\mathbf{V}}$		
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\square		
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark					
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					$\overline{\mathbf{V}}$		_
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					$\overline{\mathbf{A}}$		-
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?							_
2.15	Is open burning avoided?		$ \mathbf{\nabla}$					_
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					V		_
Sect	ion 3: Noise							
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					V		_
3.02	Is silenced equipment adopted?					\square		
3.03	Is idle equipment turned off or throttled down?	\checkmark						***
3.04	Are all plant and equipment well maintained and in good condition?							_
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?	LJ					***************************************	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?							_
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark		
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark		

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	T Onow Up	N/A	Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					$\overline{\checkmark}$	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					$\overline{\mathbf{V}}$	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					$\overline{\mathbf{V}}$	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					$\overline{\checkmark}$	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\square	
Sectio	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					$\overline{\mathbf{V}}$	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?		LJ			ightleftarrow	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\square				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	
Secti	ion 5: Landscape & Visual		gustelandes	,	Ev		Refer to EM&A
5.01	Are retained and transplanted trees in health condition?	L			\checkmark	L	report –Dec 2012

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	ronow Up	N/A	Remarks
5.02	Are retained and transplanted trees properly protected?				V		Refer to EM&A report –Dec 2012
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				***************************************
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Section	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						Accessed the principal and the first of the
(So	k Kwu Wan)						
Rer	narks:						
<u>Fin</u>	dings of Site Inspection: (8 Jan 2013)		Follow	v up	*	A	6/
			N	04	requi	v eq	QW
1.	No adverse environmental		Ge	neral	ver	whal	fiv xs,
	impacts were observed.						
	However, full implementation						
	of the required mitigation mease	NPS					
	particularly construction dust						
	particularly construction during	dry					
	and windy conditions, is)					
	reminded.						

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
(Joseph Ng)	Wong FN) 8 Jan 2013	(-M.K. Leung) KY SV	(Vincent chan)

Pro	ject:	TCS/00512/09	Inspected	l by		Checklis	t No.	TCS512B-15 Jan 2013
		oblish delibit of dewage freatment works at	ETL/ ET's	Represen	tative	Mr. F. N.	Wong	10/
				resentativ		Mr. Jose		Rohbed Chewn
				or's Repres presentativ		Mr. Edwi	r-Leung	K.Y.SO /
Date	e:	102.42 J. (28.46)	Time:			14:00		
PA	RT A:	GENERAL INFORMATION				Env	ironment	al Permit No.
We	eather:	Sunny Fine Cloudy	Rainy			✓ EP-2	81/2007A	
	mperature							
Hu	midity:	High Moderate Low	0.1					
	a Inspec		Calm					
1	Sok h	Kwu Wan						
DAD	T.D.							
PAR		SITE AUDIT	l w.			- 0		-
Note	· Follow	bs.: Not Observed; Yes: Compliance; No: Non-Compliance; v Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
		/ater Quality						
1.01		effluent discharge license obtained for the Project?		\checkmark				
1.02	Is the	effluent discharged in accordance with the discharge licence?		\checkmark				
1.03	Is the	discharge of turbid water avoided?		\checkmark				
1.04	Are the	nere proper desilting facilities in the drainage systems to eSS levels in effluent?		\checkmark				
1.05		ere channels, sandbags or bunds to direct surface run-off to entation tanks?		\checkmark				
1.06		nere any perimeter channels provided at site boundaries to ept storm runoff from crossing the site?		\checkmark				
1.07	Is drai	nage system well maintained?		\checkmark				
1.08		cavation proceeds, are temporary access roads protected by ed stone or gravel?					$\overline{\mathbf{V}}$	
1.09	Are ter	mporary exposed slopes properly covered?					\checkmark	
1.10	Are ea	orthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are ma	anholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are the	ere any procedures and equipment for rainstorm protection?		\checkmark				
1.13	Are wh	neel washing facilities well maintained?					\checkmark	
1.14	ls runo	off from wheel washing facilities avoided?						
1.15	Are the	ere toilets provided on site?		\checkmark				
1.16	Are toil	lets properly maintained?		\checkmark				
1.17		e vehicle and plant servicing areas paved and located within areas?					\checkmark	
1.18	Is the c	oil/grease leakage or spillage avoided?		\checkmark				
1.19		ere any measures to prevent leaked oil from entering the ge system?		\checkmark				
1.20		ere any measures to collect spilt cement and concrete gs during concreting works?		\checkmark				
1.21		ere any oil interceptors/grease traps in the drainage systems icle and plant servicing areas, canteen kitchen, etc?						
1.22	Are the	oil interceptors/grease traps maintained properly?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					$\overline{\mathbf{V}}$	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					$\overline{\mathbf{A}}$	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		1 -1			\overline{V}	
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark			Ш	
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					$\overline{\mathbf{V}}$	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?		1 11		Ш	\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	

-							
Note	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	(Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Secti	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?					$\overline{\checkmark}$	
4.08	Is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?					$\overline{\mathbf{V}}$	
4.10	Are incompatible chemical wastes stored in different areas?					$\overline{\checkmark}$	
4.11	Are the chemical wastes disposed of by licensed collectors?					$\overline{\checkmark}$	
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				 (0
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					$\overline{\mathbf{V}}$	
1.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					$\overline{\vee}$	
1 22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
1.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					<u> </u>	
	5: Landscape & Visual					_	
.01	Are retained and transplanted trees in health condition?					V	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?				\checkmark		Refer to EM&A report –Dec 2012
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						-
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	
	larks: lings of Site Inspection: (15 Jan 2013)		Follow	<u>up</u>			
Rem	narks:						
Find	lings of Site Inspection: (15 Jan 2013)		Follow				
Find	lings of Site Inspection: (15 Jan 2013)		Follow		- reg	nes	ed for
Find		ν,	Follow		- reg	mes _re	ed for emiders
1.	lings of Site Inspection: (15 Jan 2013) No adverse environmental impacts were observed. However full implementation of the requi	ired			- reg	mer _re	ed for emiders
1. <i>f</i>	lings of Site Inspection: (15 Jan 2013) No adverse environmental impacts were observed. Howeve	into	te)		- reg	mer _re	ed for

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
()	(Joseph Ng) Alphord Cheury	(Wong FN) 15 Jan 2013	(Edwin-Leung) K.Y.SO	()

Humid Wind:	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 22 Jan 2013 A: GENERAL INFORMATION ner: Sunny Fine Cloudy erature: 22	RE's Repre	Representat esentative 's Represen			Vong n Ng K.Y	Permit No.
PART	B: SITE AUDIT						
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 1: Water Quality						
1.01	Is an effluent discharge license obtained for the Project?						
1.02	Is the effluent discharged in accordance with the discharge licence?		\checkmark				
1.03	Is the discharge of turbid water avoided?		\checkmark				
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?	· 🗆	\checkmark				
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?	· 🗆	\checkmark				,
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?	· 🗆	\checkmark				
1.07	Is drainage system well maintained?		\checkmark				
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?	′ 🗆					
1.09	Are temporary exposed slopes properly covered?						
1.10	Are earthworks final surfaces well compacted or protected?						
1.11	Are manholes adequately covered or temporarily sealed?	. 🗆	$\overline{\checkmark}$				
1.12	Are there any procedures and equipment for rainstorm protection?						
1.13	Are wheel washing facilities well maintained?					\square	
1.14	Is runoff from wheel washing facilities avoided?						·
1.15	Are there toilets provided on site?						
1.16	Are toilets properly maintained?						
1.17	Are the vehicle and plant servicing areas paved and located within roofed areas?	n 🗌				<u> </u>	
1.18	Is the oil/grease leakage or spillage avoided?		$\overline{\checkmark}$				
1.19	Are there any measures to prevent leaked oil from entering the drainage system?		$\overline{\checkmark}$				
1.20	Are there any measures to collect spilt cement and concrete washings during concreting works?						
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	s 🗌					
1.22	Are the oil interceptors/grease traps maintained properly?					\square	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N /A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\square	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		<u> </u>				
1.29	Is ponding /stand water avoided?						
Section	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?			Ш	Ш	✓	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?			Ш		$\overline{\mathbf{V}}$	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\square	<u> </u>
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					$\overline{\mathbf{A}}$	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\square	- in the second
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?				Ш		
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Sect	ion 3: Noise			_			
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?					\square	
3.03	Is idle equipment turned off or throttled down?	\square					
3.04	•		\checkmark				
3.05	Construction activities cause noise impact on sensitive receivers.					\square	
3.06	during operations					\square	
3.07	operation?					\square	
3.08	Are flaps and panels of mechanical equipment closed during operation?						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					✓	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					I	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					7	
Section	on 4: Waste/Chemical Management					 -	
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?					$\overline{\mathbf{A}}$	
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				•••
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						
Sec	tion 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						

Environmental Team –	Weekly Site	Inspection and	Audit Checklist -	Sok Kwu Wan

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?				\checkmark		Refer to EM&A reportDec 2012
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		$\overline{\checkmark}$				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	
(So	k Kwu Wan)						
Ren	narks:						
Fine	dings of Site Inspection: (22 Jan 2013)		Follow			•	
1 1111					regri	•	

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	Borph	Mm)	CW):	
()	(Joseph Ng)	(Wong F N)	(So KY.)	()
	22Jan)013	22 Jan 2013	- /	·

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A		Location /	Implementation	_	olementa Stages*		Relevant Legislation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	& Guidelines
Constr	uction Phase							
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor				
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		٨		EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation		olementa Stages *:		Relevant Legislation &
Ref	Ref			Agent	D	C	О	Guidelines
Construct	tion Phase							
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		√		EIAO-TM, NCO
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor		V		

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref		Agent Agent	Agent	D	C	0	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		V		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration	Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref		/completion of measures)	Agent	D	С	O	and Guidelines
	ruction Phas		r				ı	
5.77	4.35	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		V		
5.73 - 5.78	4.36	 Dredging Works Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be repaired promptly and plant should not be operated with leaking pipes; excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved; adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action; all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; 	Marine works site and at the identified water sensitive receivers/ During construction	Contractor		V		
		• loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and						

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		plementation Stages**		Relevant Legislation
Ref	Ref	Environmental Protection Weasures	measures)	Agent	D	C	O	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor				ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor		√		
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		Implementa Stages**		Relevant Legislation
Ref	Ref	Environmental Protection Weasures	measures)	Agent	D	C	O	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	Wastewater Arising from Workforce Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

N/A Not applicable

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing	Implementation	Im	plementa Stages**		Relevant Legislation &
Ref	Ref	Zin vin olimentan 1 Totection (vicustres	Location / Timing	Agent	D	C	O	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		V		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		√		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		V		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
Construc	tion Phase					ı	I	
7.14	6.4	 Good site practices Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor		٨		Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		V		WBTC No. 21/2002
7.16	6.6	Recommendations to achieve waste reduction include: • segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; • to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated	Work sites/During construction	Contractor		V		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and plan and stock construction materials carefully to 						
		minimise amount of waste generated and avoid unnecessary generation of waste.						
7.18	6.7	 General Site Wastes A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material 	Work sites/During construction	Contractor		V		Public Health and Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 – 6.9	 Chemical Wastes After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance. 	Work sites/During construction	Contractor		V		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

EIA	EM&A		Location /	Implementation		lementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	O	Guidelines
		 Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided. 						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) Where possible, inert material should be re-used on-site Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	Implementation Stages			Relevant Legislation & Guidelines	
~			Timing	Agent	D	C	0	Guidennes	
8.157	7.2	 Terrestrial Ecology Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		√ 			
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging Use of closed-grab dredger Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		V			
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V			

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*	* Location /	Implementation Agent	Implementation Stages**			Relevant Legislation
Ref	Ref		Timing		D	C	O	& Guidelines
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		V		TM on EIA Process
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		V	√	EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA EM&A Ref Ref		Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &
Kei	Ref Ref Environmental Frocetion Measures		Timing	Agent	D	C	O	Guidelines
Constr	uction Pha	ase						
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		√ 		WBTC No. 14/2002
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		V		WBTC No. 14/2002
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		V		
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		√		WBTC No. 19/2001
		Conservation of topsoil for reuse.	All sites	Contractor		V		
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		√		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Appendix M

Tree Inspection Report

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

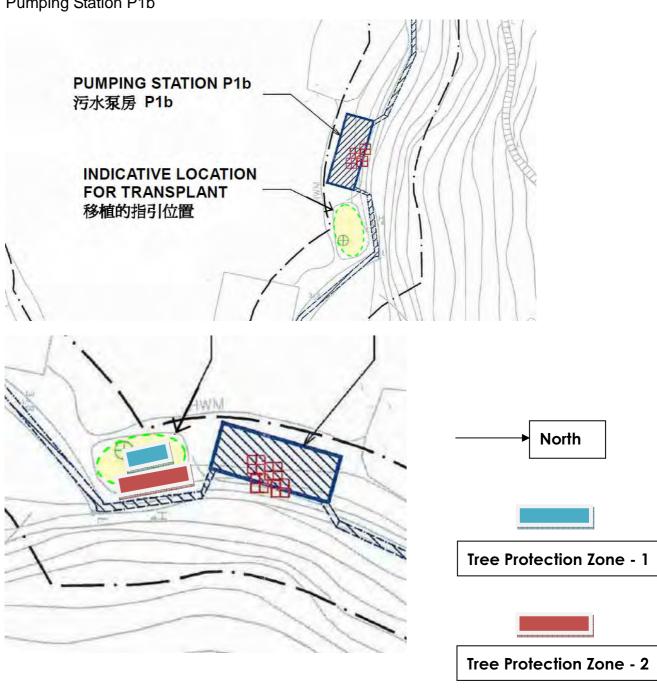
元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date: 30-12-2012

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	30 December 2012, around 15:30		
Location	A soil ground adjacent to the Pumping		
	Station P1b Chung Mei, at Sok Kwu Wan,		
	Lamma Island.		
Weather	Cloudy, the vegetations are located under		
	the shade of existing tall trees.		
The labeled Celtis timorensis	CT_2A, CT_3A, CT_5A & CT_6A		
under Tree Protection Zone 2			

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 and 31 October 2012
November 2012	15 and 30 November 2012
December 2012	15 and 30 December 2012

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Poor
CT_3A	Celtis timorensis	Poor

CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_3A

Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy.

Overall Condition

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A, CT3A were in poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

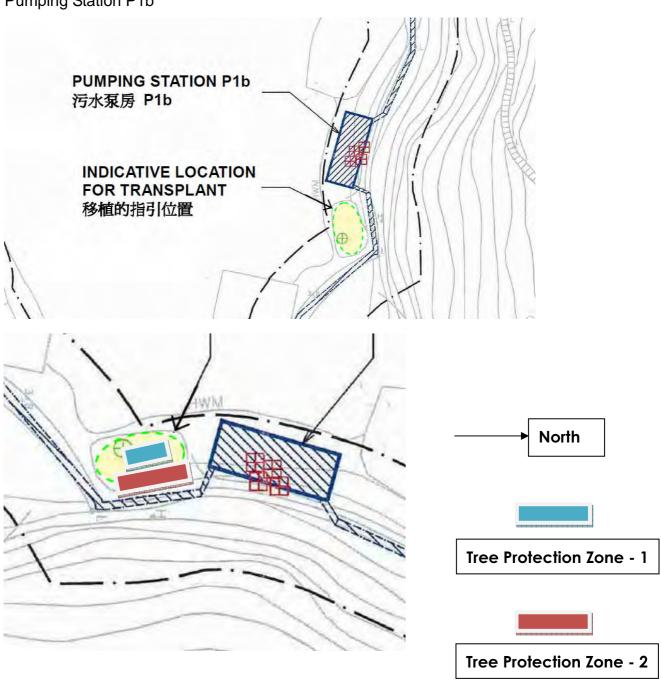
元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date: 15-01-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	15 January 2013, around 15:30		
Location	A soil ground adjacent to the Pumping		
	Station P1b Chung Mei, at Sok Kwu Wan,		
	Lamma Island.		
Weather	Cloudy, the vegetations are located under		
	the shade of existing tall trees.		
The labeled Celtis timorensis	CT_2A, CT_3A, CT_5A & CT_6A		
under Tree Protection Zone 2			

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 and 31 October 2012
November 2012	15 and 30 November 2012
December 2012	15 and 30 December 2012
January 2013	15 January 2013

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Poor

CT_3A	Celtis timorensis	Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_3A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 15 January 2013

Tree ID: CT_6A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy.

Overall Condition

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A, CT3A were in poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.