

PROJECT NO.: TCS/00512/09

DSD CONTRACT NO. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO.36) – JULY 2013

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index			
Date	Reference No.	Prepared By	Approved By
13 August 2013	TCS00512/09/600/R0673v2	Anh	Burn
		Nicola Hon	T.W. Tam
		Environmental Consultant	Environmental Team Leader

Version	Date	Description
1	9 August 2013	First Submission
2	13 August 2013	Amended against IEC's comments on 12 August 2013

URS CDM Joint Venture

Chief Engineer/Harbour Area Treatment Scheme Drainage Services Department 5/F, Western Magistracy 2A, Pok Fu Lam Road Hong Kong Your reference:

05117/6/16/415601

15 Aug 2013

Date:

Our reference:

BY FAX

Attention: Ms Jacky C M Wong

Dear Madam

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area <u>Monthly Environmental Monitoring and Audit (EM&A) Report</u> No. 36 (July 2013)

We refer to the Monthly EM&A Monitoring Report No. 36 for July 2013 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated on 15 Aug 2013. We have no comment and have verified the captioned report.

Yours faithfully URS CDM JOINT VENTURE

Rodney Ip // / Independent Environmental Checker

ICWR/DCYO/lykl

Encl

cc Leader Civil Engineering AUES ER/LAMMA CDM (Attn: Mr Vincent Chan) (Attn: Mr T.W. Tam) (Attn: Mr Ian Jones) (Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the **36th** monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from **26 June to 25 July 2013** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	54
All Quality	24-hour TSP	15
Construction Noise	L _{eq(30min)} Daytime	24
Water Quality	Marine Water Sampling	13
Inspection / Audit	ET Regular Environmental Site Inspection	4

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Limit	Event & Action		ion
Issues	0		Linnt Level	NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – *Notification of Exceedance*

SITE INSPECTION BY EXTERNAL PARTIES

ES.05. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 2, 9, 15 and 23 July 2013. All the observation has been rectified in the set time frame.

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.06. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.07. No reporting change was made in this Reporting Period.

FUTURE KEY ISSUES

ES.08. During wet season, muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be

properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

ES.09. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

TABLE OF CONTENTS

1	INTRODUCTION Project Background Report Structure	1 1 1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS Project Organization and Management Structure Construction Progress Summary of Environmental Submissions	3 3 3 3
3	 SUMMARY OF BASELINE MONITORING REQUIREMENTS ENVIRONMENTAL ASPECT MONITORING LOCATIONS MONITORING FREQUENCY AND PERIOD MONITORING EQUIPMENT EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION DATA MANAGEMENT AND DATA QA/QC CONTROL REPORTING DETERMINATION OF ACTION/LIMIT (A/L) LEVELS 	4 4 5 6 7 7 7 7 8
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	10
6	IMPACT MONITORING RESULTS – WATER QULAITY	11
7	ECOLOGY	13
8	WASTE MANAGEMENT	14
9	SITE INSPECTION	15
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
12	IMPACT FORECAST	23
13	CONCLUSIONS AND RECOMMENDATIONS	24
	Conclusions Recommendations	24 24

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Table 5-1	Summarized of Construction Noise Monitoring Results at NM1
Table 5-2	Summarized of Construction Noise Monitoring Results at NM2
Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
Table 6-1	Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Table 6-4	Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 8-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons

- Table 10-3
 Statistical Summary of Environmental Prosecution
- Table 11-1
 Environmental Mitigation Measures

LIST OF APPENDICES

- Appendix A Site Layout Plan Sok Kwu Wan Portion Area
- Appendix B Organization Structure and Contact Details of Relevant Parties
- Appendix C A Master and Three Months Rolling Construction Programme
- Appendix D Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
- Appendix E Monitoring Equipments Calibration Certificate
- Appendix F Event and Action Plan
- Appendix G Monitoring Data Sheet
- Appendix H Graphical Plots of Monitoring Results
- Appendix I Meteorological Information
- Appendix J Monthly Summary Waste Flow Table
- Appendix K Weekly Site Inspection Checklist
- Appendix L Implementation Schedule of Mitigation Measures
- Appendix M Tree Inspection Report

 $\label{eq:linear} Z:\Description (C-2009-13)-Lama(600) EM&A Monthly Report(Sok Kwu Wan(36th - Jul 13)(R0673v2.docx Content) Content (Content) (C-2009-13)-Lama(600) EM&A Monthly Report(Sok Kwu Wan(36th - Jul 13)(R0673v2.docx Content) (C-2009-13)-Lama(600) EM&A Monthly Report(Sok Kwu Wan(36th - Jul 13)(R0673v2.docx Content) (C-2009-13)-Lama(600) EM&A Monthly Report(Sok Kwu Wan(36th - Jul 13)(R0673v2.docx Content) (C-2009-13)-Lama(600) EM&A Monthly Report(Sok Kwu Wan(36th - Jul 13)(R0673v2.docx Content) (C-2009-13)-Lama(600) (C-2009-13)-Lama(600$

Action-United Environmental Services and Consulting

AUFS

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "*DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works*" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the **36th** monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from **26 June to 25 July 2013**.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS
SECTION 7	WASTE MANAGEMENT
SECTION 8	SITE INSPECTIONS
SECTION 9	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 10	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 11	IMPACT FORECAST
SECTION 12	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of SKWSTW: Concreting, Steel Fixing, Formwork Erection, Formwork Removal, Backfilling,
 - Construction of SKW PS1 & PS2: E&M works installation

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 19 May 2010
	Regulation	Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction	Issued on 26 May 2010
	Waste	A/C No: 7010815
5	Construction Noise Permit	Permit no. GW-RS0419-13
		Valid from: 22 April 2013
		Until: 30 September 2013

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Environmental Issue	Parameters
Environmental Issue	
Air Quality	• 1-hour TSP Monitoring by Real-Time Portable Dust Meter; and
2000000	• 24-hour TSP Monitoring by High Volume Air Sampler.
Noise	• Leq (30min) during normal working hours; and
Noise	• Leq (15min) during Restricted Hours.
	In-situ Measurements
	• Dissolved Oxygen Concentration (DO) (mg/L);
	• Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Marine Water Quality	• pH unit;
Wallie Water Quality	• Salinity (ppt);
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	• Suspended Solids (SS) (mg/L)

 Table 3-1
 Summary of EM&A Requirements

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AM1	Squatter house in Chung Mei Village
AM2	Squatter house in Chung Mei Village
AM3	Football court

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3	Location of Construction Noise Monitoring Station
-----------	---

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Station	Description	Co-ordnance		
	Description	Easting	Northing	
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732	
W2	Fish culture zone at Picnic Bay	832 670	807 985	
W3	Fish culture zone at Picnic Bay	832 045	807 893	
C1 (flood)	Control Station	833 703	808 172	
C2	Control Station	831 467	807 747	
C3 (ebb)	Control Station	832 220	808 862	

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters:	1-hour TSP and 24-hour TSP.
Frequency:	Once in every six days for 24-hour TSP and three times in every six days for 1-hour TSP.
Duration:	Throughout the construction period.

Noise Monitoring

Parameters:	$L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} . $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during
	Restricted hours (19:00 to 07:00 hours next of normal working day and full day of public holiday and Sunday)
Frequency:	Once per week during 0700-1900 hours on normal weekdays. Restricted hour monitoring should depend on conditions stipulated in Construction Noise Permit.
Duration:	Throughout the construction period.

Marine Water Quality Monitoring

<u>Parameters</u>: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH, turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

Frequency:	Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours.					
<u>Sampling</u> Depth	(i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.					
	(ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.					
	(iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken					
Duration:	During the course of marine works					

Post-Construction Monitoring – Marine Water

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.10 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (*Type 1*) and 804: 1985 (*Type 1*) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.

Water Quality Monitoring

- 3.11 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0 20mg L-1 and 0 200% saturation; and a temperature of 0 45 degree Celsius.
- 3.12 *pH Meter* The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in a range of 0 to 14.
- 3.13 **Turbidity (NTU)** Measuring Equipment The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.14 *Water Sampling Equipment* A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.15 *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- 3.16 *Salinity Measuring Equipment* A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.

- 3.17 *Sample Containers and Storage* Water samples for suspended solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.18 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.19 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

EQUIPMENT CALIBRATION

- 3.20 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.21 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.22 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.23 The Water Quality Monitoring equipments such as DO meter, pH meter, turbidity measuring instrument and salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.24 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.25 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.26 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.27 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.28 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end

day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.29 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Table 3-5Action and Limit Levels for Air Quality

Monitoring Station	Action Le	vel (µg/m ³)	Limit Level (µg/m ³)	
Womtoring Station	1-hour	24-hour	1-hour	24-hour
AM1	343	173	500	260
AM2	331	175	500	260
AM3	353	191	500	260

Table 3-6

Action and Limit Levels for Construction Noise

Monitoring	Action Level	Limit Level		
Location	0700-1900 hours on normal weekdays			
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods		

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	Impact Station		
rarameter	Criteria	W1	W2	W3
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71
(mg/L)	Limit Level	5.29	4.56	4.54
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37
(mg/L)	Limit Level	N/A	3.06	3.18
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48
(NTU)	Limit Level	6.06	5.99	6.71
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79
(mg/L)	Limit Level	12.68	11.28	12.25

3.30 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **54** and **15** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1, 4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix G* and the graphical plots of are shown in *Appendix H*.

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour		1-hour TSP (µg/m ³)			
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured
28-Jun-13	7	26-Jun-13	10:13	97	96	81
4-Jul-13	21	2-Jul-13	13:18	253	262	247
10-Jul-13	12	8-Jul-13	9:10	62	78	64
16-Jul-13	9	13-Jul-13	11:47	59	53	64
22-Jul-13	11	19-Jul-13	13:26	42	45	44
		25-Jul-13	11:55	33	30	36
Average	12	Avera	ge	91		
(Range)	(7 – 21)	(Rang	e)	(42 – 262)		

1able 4-2 Summary of 24-nour and 1-nour 1SP Monitoring Results – AM2	Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
--	-----------	--

	24-hour			1-hour TSP (µg/m ³)		
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured
28-Jun-13	12	26-Jun-13	13:06	91	102	84
4-Jul-13	5	2-Jul-13	15:22	174	188	179
10-Jul-13	8	8-Jul-13	11:15	53	46	59
16-Jul-13	11	13-Jul-13	13:50	56	61	66
22-Jul-13	27	19-Jul-13	15:30	37	40	33
		25-Jul-13	14:00	38	41	44
Average	13	Avera	ge	77		
(Range)	(5 – 27)	(Rang	e)	(33 – 188)		

Table 4-3Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour			1-hour TSP (µg/m ³)			
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
28-Jun-13	42	26-Jun-13	9:17	82	96	78	
4-Jul-13	26	2-Jul-13	11:06	87	74	92	
10-Jul-13	6	8-Jul-13	14:40	87	93	85	
16-Jul-13	15	13-Jul-13	9:30	77	82	75	
22-Jul-13	16	19-Jul-13	11:13	62	58	63	
		25-Jul-13	9:40	66	69	60	
Average	21	Avera	ge	77			
(Range)	(6 - 42)	(Rang	e)	(58–93)			

4.03 As shown in *Tables 4-1, 4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.

4.04 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of 24 construction noise monitoring events were undertaken at designated locations. The results for $L_{eq30min}$ at NM1, NM2, RNM3 and NM4 are summarized in *Tables 5-1, 5-2, 5-3* and 5-4 and graphical plots are shown in *Appendix H*.

 Table 5-1
 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	
26-Jun-13	11:24	11:54	49.5	50.5	48.7	53.1	50.3	52.6	51.1	
2-Jul-13	13:22	13:52	68.4	62.9	65.7	68.9	68.7	71.3	68.4	
8-Jul-13	9:16	9:46	52.5	47.8	55.6	52.7	50.9	50.9	52.4	
13-Jul-13	13:09	13:39	51.4	50.9	53.6	48.7	50.9	47.8	51.0	
19-Jul-13	13:30	14:00	55.0	52.1	55.9	57.7	55.8	49.5	55.1	
25-Jul-13	15:39	16:09	52.3	51.4	61.0	50.6	51.1	59.1	56.4	
Limit Le	vel in dF	B(A)		- · · · · · · · · · · · · · · · · · · ·						

Table 5-2Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30		
26-Jun-13	10:48	11:18	60.5	60.7	60.3	60.9	61.4	61.5	60.9		
2-Jul-13	14:04	14:34	58.1	56.6	53.3	52.4	53.3	54.2	55.2		
8-Jul-13	10:03	10:33	59.0	58.8	65.3	54.1	62.0	52.7	60.7		
13-Jul-13	11:03	11:33	59.1	56.4	58.6	59.0	60.9	65.9	61.2		
19-Jul-13	14:10	14:40	58.3	57.2	66.8	59.2	65.9	57.7	62.7		
25-Jul-13	11:03	11:33	62.1	61.9	63.0	63.8	62.1	60.3	62.3		
Limit Le	evel in dH	B(A)							75		

Table 5-3Summarized of Construction Noise Monitoring Results at RNM3

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
26-Jun-13	13:59	14:29	63.5	63.4	64.8	62.7	60.5	60.9	62.9	65.9
2-Jul-13	14:40	15:10	56.2	54.7	57.5	57.3	56.9	59.2	57.2	60.2
8-Jul-13	10:45	11:15	56.8	59.9	66.8	65.0	63.1	58.1	63.0	66.0
13-Jul-13	10:27	10:57	59.6	59.3	58.3	60.3	58.9	58.5	59.2	62.2
19-Jul-13	14:51	15:21	60.6	67.4	59.3	58.8	58.0	60.7	62.2	65.2
25-Jul-13	10:22	10:52	65.6	69.9	58.6	65.9	60.0	61.7	65.3	68.3
Limit Le	vel in dE	B (A)	-						75	

* A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
-----------	--

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	
26-Jun-13	13:17	13:47	45.8	47.4	45.3	52.1	45.0	47.4	48.0	
2-Jul-13	11:12	11:42	49.6	48.3	50.6	52.2	58.1	53.9	53.5	
8-Jul-13	11:20	11:50	51.7	58.6	53.5	52.9	57.4	53.3	55.3	
13-Jul-13	9:50	10:20	51.7	51.5	50.9	48.8	47.4	48.2	50.1	
19-Jul-13	11:26	11:56	55.4	55.0	54.4	55.4	55.3	54.1	55.0	
25-Jul-13	9:45	10:15	64.9	60.0	62.8	59.3	56.5	55.9	61.1	
Limit Le	vel in dI	B(A)		-						

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1, 5-2, 5-3 and 5-4* which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 13 events of water quality monitoring were carried out at the designated locations.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 24.51 to 34.57 ppt, and pH value was within 7.37 to 8.49.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1, 6-2, 6-3 and 6-4*. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

 Table 6-1
 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date	Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)							lved Ox Bot	kygen co ttom La		-	ve. of
uate	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Jun-13	6.64	6.82	7.08	6.82	7.39	6.11	NA	6.12	6.31	6.12	6.55	5.61
28-Jun-13	8.60	8.37	8.75	6.01	9.97	7.53	NA	7.84	8.01	7.07	8.64	6.25
2-Jul-13	9.51	9.61	9.15	8.96	8.46	9.30	NA	7.95	7.42	8.41	7.12	7.45
4-Jul-13	7.94	7.98	8.33	6.96	7.80	7.14	NA	5.86	6.90	5.47	7.28	5.51
6-Jul-13	6.14	6.61	7.94	9.14	7.34	6.52	NA	5.42	5.71	7.72	5.85	4.81
9-Jul-13	7.91	10.09	9.97	9.64	10.15	8.37	NA	6.87	5.86	6.43	6.76	5.93
11-Jul-13	8.33	8.37	8.38	8.44	8.79	8.23	NA	8.28	8.24	8.26	8.54	8.45
13-Jul-13	7.71	7.22	7.38	7.77	7.62	7.30	NA	5.14	6.09	5.98	6.42	5.63
16-Jul-13	7.97	8.06	8.13	7.93	8.66	6.95	NA	5.98	6.83	5.39	7.29	4.96
18-Jul-13	7.26	7.32	7.33	7.03	6.51	7.24	NA	4.05	6.56	5.45	6.80	5.21
20-Jul-13	5.70	5.87	5.50	6.74	5.09	6.84	NA	5.48	5.09	6.41	4.76	6.17
23-Jul-13	7.44	6.64	7.54	7.18	7.69	7.59	NA	6.50	6.32	6.89	6.45	6.73
25-Jul-13	8.68	8.19	7.81	8.99	7.57	8.68	NA	8.04	7.55	8.64	6.87	8.36

Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended
	Solids)

Sampling		Turbi	dity Dep	th Ave. ((NTU)		Sus	pended	Solids	Depth A	ve. (mg	g/L)
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Jun-13	1.05	1.52	0.95	1.52	0.58	0.82	1.40	1.27	0.87	0.80	1.30	1.80
28-Jun-13	0.35	0.57	0.80	0.48	1.02	0.90	1.50	1.23	1.17	0.80	1.90	1.57
2-Jul-13	0.85	1.45	1.53	1.42	0.57	1.53	0.80	1.43	1.77	1.83	2.00	2.07
4-Jul-13	1.30	0.73	0.97	0.90	1.05	0.85	3.20	2.67	2.80	2.67	3.20	3.37
6-Jul-13	0.85	0.73	1.28	1.07	0.72	1.17	1.60	2.80	3.37	2.37	3.80	3.53
9-Jul-13	0.85	1.80	1.65	1.05	1.87	1.07	1.40	1.50	1.67	1.47	2.00	2.03
11-Jul-13	1.45	0.73	1.20	0.80	1.32	0.58	2.90	2.93	1.37	1.70	1.63	1.70
13-Jul-13	0.50	0.88	0.38	0.60	0.35	1.02	2.20	2.80	3.23	2.47	4.27	3.43
16-Jul-13	0.45	0.52	0.60	0.20	0.67	1.10	2.40	3.10	2.57	2.23	2.93	2.87
18-Jul-13	0.65	1.23	0.82	0.70	1.05	0.70	2.40	1.90	2.30	1.80	2.87	1.97
20-Jul-13	0.45	0.47	1.30	0.93	1.03	0.45	1.30	1.60	1.30	1.30	1.87	1.13
23-Jul-13	1.80	0.93	1.98	0.80	2.48	0.73	3.90	3.33	3.67	4.10	3.73	5.63
25-Jul-13	0.10	0.67	2.15	0.17	1.95	0.33	2.20	2.77	3.37	3.30	3.47	3.30

Table	6-3
Lanc	00

Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling	Disso	Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)							Wed Oxygen conc. of Depth Ave. of Bottom Layer (mg/L) W2 W3 C1 C2 C3 7.28 7.44 7.13 8.30 6.77 8.33 7.14 8.19 7.34 6.76 6.81 7.38 6.90 7.50 7.27 5.01 6.82 5.29 6.05 5.49 5.06 5.67 5.93 6.31 6.42 5.39 7.07 6.17 6.05 5.53 8.20 8.16 8.25 8.24 8.26			
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Jun-13	7.59	7.63	8.08	7.84	9.28	7.63	NA	7.28	7.44	7.13	8.30	6.77
28-Jun-13	9.27	9.84	8.28	9.49	8.51	8.99	NA	8.33	7.14	8.19	7.34	6.76
2-Jul-13	9.17	8.68	8.59	8.88	8.60	8.70	NA	6.81	7.38	6.90	7.50	7.27
4-Jul-13	8.95	7.92	9.26	8.19	9.02	8.58	NA	5.01	6.82	5.29	6.05	5.49
6-Jul-13	8.89	6.66	7.12	9.27	5.93	7.73	NA	5.06	5.67	5.93	6.31	6.42
9-Jul-13	6.73	7.04	8.97	7.32	6.17	8.87	NA	5.39	7.07	6.17	6.05	5.53
11-Jul-13	8.22	8.21	8.26	8.37	8.25	8.34	NA	8.20	8.16	8.25	8.24	8.26
13-Jul-13	7.88	7.35	7.91	7.47	6.27	7.46	NA	5.50	5.67	6.27	6.88	5.10
16-Jul-13	6.58	7.45	7.68	6.32	5.24	6.27	NA	5.09	4.42	5.24	4.53	4.16
18-Jul-13	6.47	7.15	6.80	7.14	5.07	7.24	NA	5.54	4.61	5.07	5.21	5.31
20-Jul-13	6.59	6.66	6.90	6.28	5.73	5.95	NA	5.84	6.27	5.73	5.84	5.54
23-Jul-13	6.93	7.30	7.39	6.67	5.93	5.83	NA	6.81	6.48	5.93	6.56	5.50
25-Jul-13	7.43	7.32	7.92	7.96	7.12	6.95	NA	7.17	7.82	7.12	8.92	6.65

Table 6-4	Summary of Wat	er Quality	Results –	Mid-flood	Tides	(Turbidity	&
	Suspended Solids)						

Sampling		Turbi	dity Dep	th Ave.	(NTU)		Su	spende	d Solids	Depth A	ve. (mg/	'L)
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Jun-13	1.25	1.38	0.95	1.03	0.90	1.50	1.50	0.87	1.93	0.87	1.30	2.00
28-Jun-13	0.65	0.58	0.90	0.73	1.20	1.30	1.30	1.07	1.63	1.67	1.37	1.67
2-Jul-13	1.00	0.57	1.17	1.55	1.50	1.17	2.00	2.90	1.13	2.53	2.60	1.60
4-Jul-13	0.70	1.02	0.88	1.23	1.82	0.85	1.70	3.33	2.40	3.33	3.03	3.33
6-Jul-13	0.60	1.23	1.15	0.62	0.65	1.02	2.20	4.37	1.97	2.13	4.33	2.97
9-Jul-13	0.30	0.87	0.78	1.08	0.83	1.28	2.00	1.20	2.63	1.47	1.23	1.77
11-Jul-13	0.30	1.57	0.93	1.03	0.75	1.07	1.40	1.23	2.30	1.47	1.50	1.47
13-Jul-13	1.60	1.00	1.03	4.37	1.12	0.77	2.20	3.23	3.53	2.63	3.57	4.47
16-Jul-13	0.80	0.68	0.53	0.88	0.38	1.05	1.60	2.07	2.70	1.77	2.07	3.07
18-Jul-13	0.65	1.23	1.02	0.65	1.33	0.70	1.90	1.67	2.37	1.90	1.77	2.07
20-Jul-13	1.65	1.13	0.55	0.60	0.87	1.17	1.70	1.47	1.60	1.43	1.80	2.03
23-Jul-13	0.80	1.73	2.62	1.40	3.98	1.42	3.80	4.37	5.67	2.67	3.47	3.00
25-Jul-13	2.15	2.38	2.65	1.57	2.47	1.62	5.80	2.90	2.47	3.13	3.30	3.30

 Table 6-5
 Summarized Exceedances of Marine Water Quality

Station DO (Ave of Surf. & mid-depth)		DO (A Bottom	ve. of Layer)	Turbidity (Depth Ave.)		S: (Depth	-	Total Exceedance		
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
				Mi	d-Ebb					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0 0		0	0	0	0	0
W3	0	0	0 0		0	0	0	0	0	0
				Mid	-Flood					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on **29 June and 15 July 2013**. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring Celtis Timorensis CT7 to CT10 on 30 April 2011.
- 7.03 In April 2012, CT_1A and CT_7A were damaged by the fell broken tree trunk due to tree decayed by white ants. Therefore, only 5 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT4A, CT_5A and CT_6A were inspected since May 2012. Furthermore, during tree inspection on 30 July, CT4A was disappeared after typhoon No.10 on 24 July and it was certified as dead. Eventually, 4 no. of additional *Celtis Timorensis*, namely CT_2A, CT_5A and CT_6A were inspected in the remaining period.
- 7.04 The tree inspection report for this Reporting Period is presented in *Appendix M*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0.012	-
Reused in the Contract (Inert) ($(000m^3)$)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0	-

Table 8-2Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	33.52	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than $50m^3$ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 2, 9, 15 and 23 July 2013.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix K*.

Table 9-1	Site Observations	
Date	Findings / Deficiencies	Follow-Up Status
2 July 2013	• No adverse environmental impacts were observed. The silt curtain was broken again during typhoon. Repair is required.	Broken slit curtain was repaired on 15 July 2013.
9 July 2013	No adverse environmental impacts were observed.	N.A.
15 July 2013	• No adverse environmental impacts were observed.	N.A.
23 July 2013	• No adverse environmental impacts were observed. However, the sedimentation tank at both ends of Portion G was required to regularly clear the excessively accumulated sediment.	The sedimentation tank at both ends of Portion G were cleared on 30 July 2013.

Table 9-1Site Observations

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1	Statistical Summary of Environmental	Complaints

Departing Devied	Environmental Complaint Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality				
January - December 2012	0	1 (Nov 2011)	NA				
January - June 2013	0	1 (Nov 2011)	NA				
July 2013	0	1 (Nov 2011)	NA				

Table 10-2 Statistical Summary of Environmental Summons

Depending Devied	Environmental Summons Statistics							
Reporting Period	Frequency	Cumulative	Complaint Nature					
27 July 2010 – 31 December 2011	0	0	NA					
January - December 2012	0	0	NA					
January - June 2013	0	0	NA					
July 2013	0	0	NA					

Table 10-3 Statistical Summary of Environmental Prosecution

Departing Davied	Environmental Prosecution Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	0	0	NA				
January - December 2012	0	0	NA				
January - June 2013	0	0	NA				
July 2013	0	0	NA				

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- 11.11 During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force;
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

<u>Terrestrial Ecology</u>

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Water	• Drainage channels were provided to convey run-off into the treatment facilities;
Quality	and
Quality	 Drainage systems were regularly and adequately maintained.
Air Quality	 Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet;
	 Public roads around the site entrance/exit had been kept clean and free from dust; and
	Tarpaulin covering of any dusty materials on a vehicle leaving the site.

 Table 11-1
 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	 Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	• To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising should be kept to a minimum and be handled, transported and
management	disposed of in a suitable manner,
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

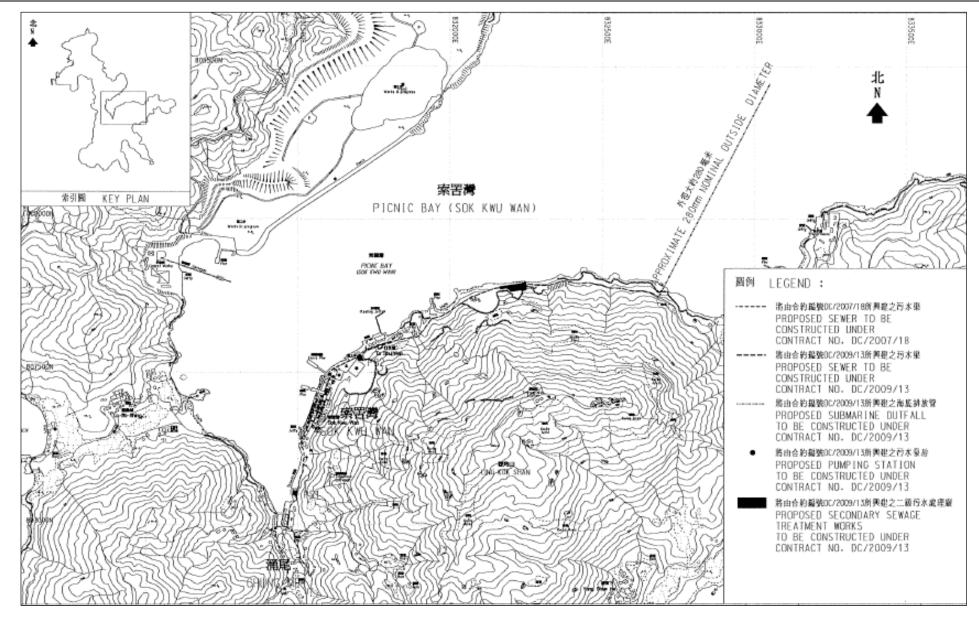
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 36th monthly EM&A Report covering the construction period from 26 June to 25 July 2013.
- 13.02 In this Reporting Period, no 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 2, 9, 15 and 23 July 2013. All the observation has been rectified in the set time frame. The environmental performance of the Project was therefore considered as satisfactory.

RECOMMENDATIONS


- 13.07 During wet season, muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.
- 13.08 Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Ms. Jacky C.M. Wong	2159-3413	2833-9162
SCJV	Engineer's Representative	Mr. Ian Jones	2982 0240	2982 4129
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129
URS	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Director	Mr. Wilfred So	2982 1750	2982 1163
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Construction Manager	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. Leung Man Kin	2982 8652	2982 8650
Leader	Environmental Supervisor	Mr. Chan Chi Kau	2982 8652	2982 8650
Leader	Sub-Agent	Mr. Leung Man Kin	2982 1750	2982 1163
Leader	Senior Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel

AUES

Legend:

DSD (Employer) – Drainage Services Department

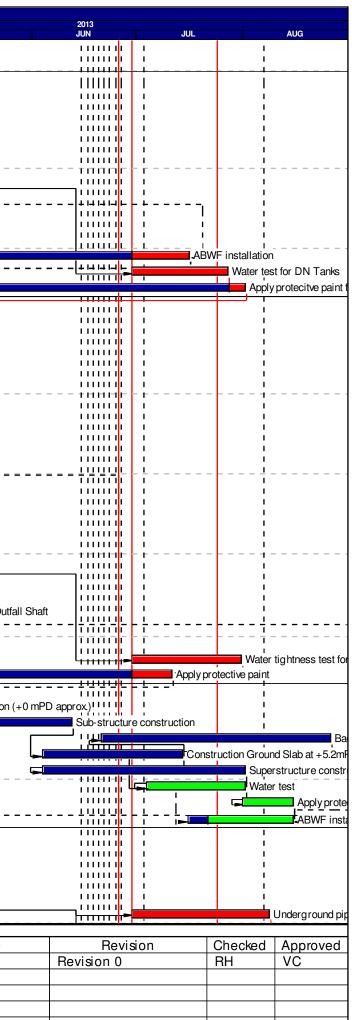
CDM (Engineer) – URS Hong Kong Limited CDM Joint Venture

Leader (Main Contractor) – Leader Civil Engineering Corporation Limited

URS (IEC) – URS Hong Kong Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

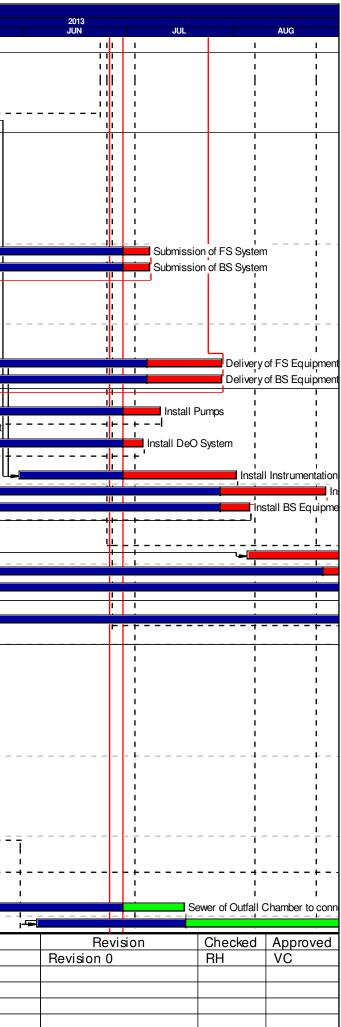

A Master and Three Months Rolling Construction Programme

Description	Original Perce		rly Early art Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	APR	МАУ	2013 JUN	JUL	AUG
Project Key Date									AFD	WAT	JUN	302	AUG
Receive Letter of Acceptance	0	100	05/05/10	A	05/05/10 A	1		KD0125	1				
Project Commencement Date	0	100	17/05/10 .	Α	17/05/10 A			E&M0010, E&M0070, E&M1001, E&M2001, KD0125, PRE0020, PRE0040, PRE0050, PRE0060, PRE0090, PRE0100, PRE0130, SKW0250, SKW0588, SKW0651, SKW0851, SKW1131, SKW1481, SKW1591, SKW1611, YSW0200, YSW0500, YSW075, YSW0180, YSW0200, YSW0220, YSW0240, YSW02401, YSW0412, YSW0422					
Section W1 - Slope Works in Portion A & C	0	100	14/10/11	4	14/10/11 A		YSW0100, YSW0110, YSW0140,	KD0125, KD0130, YSW01755	-				
Section W2 - YSW STW & Submarine Outfall (1370d)	0	0	16/06/14	k	16/06/14 *	0 *	E&M0700, YSW0400, YSW0800, YSW0925, YSW16704, YSW1700	KD0125, KD0132	+			<u></u> !	=======================================
Section W3 - Footpath Diversion in Ptn G	0	0	29/06/13	r	24/03/11 *	-828d *	SKW0481	KD0125				Section W3 - Foo	otpath Diversion in Ptn G
Section W4 - Slope Works in Portios H & I	0	0	29/06/13	r -	27/03/12 *	-459d *	SKW05938, SKW059416	KD0125, KD0135, SKW05941				Section W4 - Slo	pe Works in Portios H & I ⁻
Section W5 - P.S. No. 1 in Portion D	0	0	29/06/13	*	10/02/12 *	-505d *	SKW0741	KD0125]	!!	Section W5 - P.S	S. No. 1 in Portion D
Section W6 - Sewer & PS No2 in Ptn. E & F	0	0	29/06/13	r I	10/02/12 *	-505d *	SKW0971	KD0125					wer & PS No2 in Ptn. E & F
Section W7 - SKW STW, RM& Sm. Outfall	0	0	07/10/14	ł	07/10/14 *	0 *	E&M3360, SKW1221, SKW1291, SKW1431, SKW1441, SKW1521,	KD0125, KD0165, SKW0491					
Section W8 - Landscape Softworks	0	0	29/06/13	÷	05/04/13 *		SKW1611, SKW1621				++	Section W8 - Lar	ndscape Softworks
Section W9 - Establishment Works	0	0	03/04/14		03/04/14 *		SKW1631	KD0125			ii-ii	- <u>-</u>	
Project Completion	0	0	12/09/15	*	12/09/15 *	0 *	KD0010, KD0020, KD0030, KD0040, KD0050, KD0060, KD0070, KD0080, KD0090, KD0110, SKW0541						
Completion of Maintenance Period of W1	1	0 30/06/	13 30/06/13	13/10/12	13/10/12 *	-260d	KD0030, YSW01755, YSW01805, YSW01810					Completion of Ma	aintenance Period of W1
Completion of Maintenance Period of W2	1	0 15/06/	15 15/06/15	15/06/15	15/06/15 *	0	E&M0730, KD0040		1				1
Completion of Maintenance Period of W4	1	0 30/06/		-	27/03/13 *	-95d	KD0060, SKW05947, SKW1581		-		╵╷╵╷ ╵┎┖╴┍╸╶┸═╸ ╵╷╹╶	Completion of Ma	aintenance Period of W4
Completion of Maintenance Period of W5	1	0 30/06/	13 30/06/13	10/02/13	10/02/13 *	-140d							aintenance $Period of W5^{}$
Completion of Maintenance Period of W6	1	0 30/06/	13 30/06/13	10/02/13	10/02/13 *	-140d	E&M2130, E&M2180, SKW0961,		1		┊╹╵╹┖┱┲┲	Completion of Ma	aintenance Period of W6
Completion of Maintenance period of W7	1	0 06/10/	15 06/10/15	06/10/15	06/10/15 *	0 *	KD0090, SKW0595, SKW05972, SKW0861						
Preliminary (Civil)											1111111	<u> </u>	1
Pre-condition Survey	60	100 17/05/	10 A 15/07/10	A 17/05/10 A	15/07/10 A	1	KD0020		1				1
Erection of Engineer's Site Accommodation at YSW		100 17/05/		A 17/05/10 A	15/07/10 A		KD0020				1111111		
Taking over the Secondary Engineer's Site Accomm		100 17/05/		A 17/05/10 A	30/07/10 A		KD0020						I I
Application of Consent from Marine Department	60	100 17/05/		A 17/05/10 A			KD0020						1
Working Group Meeting for Outfall Construction	120		10 A 13/09/10				KD0020	SKW1151]		1111111		i
Application & Consent of XP from HyD (Mo Tat Rd)			10 A 13/09/10				KD0020	SKW1491, SKW1501			таааг 10000		
Setup Web-site for EM&A Reporting	90	100 17/05/	10 A 14/08/10	A 17/05/10 A	14/08/10 A		KD0020				1111111		i
Preliminary (E&M)													I
Technical Submission													
Process Design of SKWSTW & YSWSTW				1	1	-	1	-			1111111	ii i	i
Submission	38	100 17/05/		A 17/05/10 A			KD0020	E&M0020, E&M0040, E&M0235	1				1
Vetting and Comment by ER		100 24/06/		A 24/06/10 A			E&M0010	E&M0030, E&M0040	4		1111111	ii i	i i
Revision and Resubmission		100 15/07/		A 15/07/10 A			E&M0020	E&M0080	4				l l
Approval from the Engineer	14	100 17/11/	IU A 30/11/10	A 17/11/10 A	30/11/10 A		E&M0030	E&M0295					<u> </u>
Hydraulic Design Submission	21	100 15/07/	10 A 04/08/10	15/07/10 4	04/08/10 4		E&M0010, E&M0020	E&M0050, E&M0101, E&M0240, E&M0260,	-		1111111	II I	
Vetting and Comment by ER		100 15/07/		A 05/08/10 A			E&M0040	E&M0060	1				1
Revision and Resubmission	97		10 A 10/10/10				E&M0050	E&M0430	1		1111111	ii i	I
Approval from the Engineer	7		10 A 30/11/10				E&M0060	E&M0295	1				
Equipment Submission & Approval							I						
Submission of Membrane Module	50	100 17/05/	10 A 05/07/10	A 17/05/10 A	05/07/10 A		KD0020	E&M0090	1			ii i	
Vetting and Comment by ER	14	100 06/07/	10 A 19/07/10	A 06/07/10 A	19/07/10 A		E&M0070	E&M0100	1				1
Revision and Resubmission		100 20/07/		A 20/07/10 A			E&M0090	E&M0160]		1111111	II I	
Submission of Equipment		100 05/08/		A 05/08/10 A			E&M0040	E&M0102	1				l l
Vetting and Comment by ER	60	100 03/11/	10 A 30/11/11	A 03/11/10 A	30/11/11 A		E&M0101	E&M0103			1111111	11 1	1
Start date 05/05/10 Early bar Finish date 06/04/17 Progress bar Data date 30/06/13 Summary bar Run date 18/07/13 Progress point Page number 1A Winmary point					C tion of S	Contra Sewag	Engineering Corp. Ltd ct No. DC/2009/13 e Treatment Works at gramme (July 2013 - S	YSW & SKW		Date 30/05/13	Revision 0		Checked Approved RH VC
c Primav era Systems, Inc.						3-10	J = (=,,	•					

Description		Percent	Early	Early	Late	Late	Total	Predecessors	Successors			2013		
·		Complete	Start	Finish	Start	Finish	Float			APR	МАҮ	JUN	JUL	AUG
Revision and Resubmission	60	100			01/02/11 A	30/11/11 A	ļ	E&M0102	E&M0110, E&M0120, E&M0130, E&M0140,	4			1 1	
Approval on Coarse Screens	30		25/05/11 A			25/05/11 A	ļ	E&M0103	E&M0390	-			i i	
Approval on Fine Screens	30		12/09/11 A		12/09/11 A	12/09/11 A	<u> </u>	E&M0103	E&M0400, E&M3060	-				
Approval on Pumps	30		23/06/11 A		23/06/11 A	23/06/11 A	ļ	E&M0103	E&M0410, E&M3070	4			1 1	
Approval on Submersible Mixers	30		23/03/11 A			23/03/11 A	ļ	E&M0103	E&M0420, E&M3080			+		
Approval on Grit Removal Equipment	30		10/10/11 A		10/10/11 A	10/10/11 A		E&M0103	E&M0380, E&M3030	-			1 1	
Approval on MBR Membrane Modules (M.M.)	105		03/08/10 A		03/08/10 A	24/02/11 A		E&M0100	E&M0360, E&M0370, E&M3010	-			· · ·	
Approval on Sludge Dewatering Equipment	30		01/09/11 A			01/09/11 A		E&M0103	E&M0440, E&M3090				I I	
Approval on Valves, Pipes & Fittings	30		19/11/11 A		19/11/11 A	10/05/13	-55d	E&M0103	E&M0450, E&M3100	-			proval on Valves, Pipes	& Fittings
Approval on Penstocks	30		15/11/11 A		15/11/11 A	15/11/11 A		E&M0103	E&M0460, E&M3110					
Approval on Instrumentation	30		21/06/11 A			08/03/12 A		E&M0103	E&M0470, E&M3130				1 I	
Approval on MCC & LVSB	30		19/11/11 A	01/07/13	19/11/11 A	26/08/11		E&M0103	E&M0480, E&M3140			Appro	oval on MCC & LVSB	
Approval on BS Equipment	30	85	30/11/11 A	04/08/13	30/11/11 A	03/05/12	-458d	E&M0103, E&M0280	E&M0490, E&M3150					pproval on BS Equ
Approval on FS Equipment	30	85	30/11/11 A	16/08/13	30/11/11 A	24/08/11	-723d	E&M0103, E&M0290	E&M0295, E&M0320, E&M0500, E&M3160				• • • • • • • •	Approval o
Drawings Submission & Approval														
Sub. P&ID Drawings	100	75	24/06/10 A	24/07/13	24/06/10 A	01/08/11	-723d	E&M0010	E&M0250				Sub. P&ID	Drawings
Sub. Plant GA Drawings	45	68	04/08/10 A	14/07/13	04/08/10 A	01/08/11	-712d	E&M0040	E&M0250, E&M0280, E&M0290		J		Sub. Plant GA Dra	awings
Sub. Builder's Works Requirements Drawings	15	100	04/08/10 A	31/01/13 A	04/08/10 A	31/01/13 A	1	E&M0235, E&M0240, E&M0260,	E&M0280, E&M0290					
Sub. Mechanical Installation Drawings	60	70	27/09/10 A	17/07/13	27/09/10 A	01/08/11	-716d	E&M0040	E&M0250			· · · · · · · · · · · · · · · · · · ·	Sub, Mechanica	al Installation Drav
Sub. Electrical Installation Drawings	60	75	27/09/10 A	14/07/13	27/09/10 A	01/08/11	-713d	E&M0040	E&M0250, E&M0280				Sub. Electrical Ins	stallation Drawing:
Sub. BS Installation Drawings	120	95	27/09/10 A	30/07/13	27/09/10 A	29/04/12	-458d	E&M0240, E&M0250, E&M0270	E&M0220				Sub. I	BS Installation Dra
Sub. FS Installation Drawings	120		13/11/11 A	11/08/13	13/11/11 A	19/08/11	-723d	E&M0240, E&M0250	E&M0230					Sub. FS Instal
Statutory Submission	<u> </u>		I	1								<u> </u>	I I	
Preparation of Submission to HEC	39	100	01/11/11 A	30/11/11 A	01/11/11 A	30/11/11 A	1	E&M0080, E&M0230, E&M0430	E&M0300					
Application & Approval from HEC	150		01/11/11 A	31/08/13		06/11/12	-298d	E&M0295	E&M0305			<u></u>	<u> </u>	
Provision of Cables to the STWs	180	90	31/08/13	27/02/14	06/11/12	05/05/13		E&M0300	E&M0680	-				
Form 314 Submission to FSD	14	0	16/08/13	30/08/13	21/04/13	05/05/13		E&M0230	E&M0325, E&M0670	-		111111	· · ·	
Submission to WSD	14	100	01/11/11 A	29/02/12 A	01/11/11 A	29/02/12 A	1170	E&M0320	E&M0670, E&M0680			1111111111	<u> </u>	
Form 501 Submission to FSD (YSW)	28	100	11/05/15	08/06/15	14/11/13	11/12/13	544d	E&M0500	E&M0700	+ = = = = = = = = = = = = =			= 4 = = = = = = = 4	
Form 501 Submission to FSD (SKW)	28	0						E&M3160	E&M3360	-		1111111	I I	
Form 501 Submission to FSD (SKW)	28	0	03/02/14	03/03/14	11/06/14	08/07/14		E&M2016	E&M11800, E&M2180	-				
	20	0	28/07/13	25/08/13	14/11/12	11/12/12	-2570					<u>_</u>		
Yung Shue Wan														
Preliminary				. <u> </u>								1111111	i i	
Approval of Environmental Team	16			01/06/10 A				KD0020	YSW00201, YSW0030, YSW00351,					
Change Baseline Monitoring Location (Air&Noise)	59			30/07/10 A				YSW0020	YSW0030			<mark>.</mark>	i i	
Baseline monitoring (Air & Noise)	23			22/08/10 A			<u>.</u>	YSW0020, YSW00201	YSW0035					
Baseline Monitoring Report Submission (A & N)	16		23/08/10 A			07/09/10 A		YSW0030	YSW0120, YSW01545, YSW0500,	-		· · · · · · · · · · · · · · · · · · ·	i i	
Submission & Approval for Monitoring Method (W)	58	100	02/06/10 A	_		29/07/10 A		YSW0020	YSW0040					
Baseline monitoring (Water)	155	100				31/12/10 A		YSW0020, YSW00351	YSW0350					
Erect Hoarding and Fencing	60	100	19/05/10 A	17/07/10 A	19/05/10 A	17/07/10 A		KD0020	YSW0155			1	1 1	
Section W1 - Slope Works in Portion A&C														
Mobilization	30	100	17/05/10 A	15/06/10 A	17/05/10 A	15/06/10 A		KD0020	YSW0080, YSW0100			<mark>.</mark>	- I I	
Site Clearance	30	100	16/06/10 A	15/07/10 A	16/06/10 A	15/07/10 A	1	YSW0075	YSW0085, YSW0090, YSW0120	1				
Initial Survey	14	100	02/07/10 A	15/07/10 A	02/07/10 A	15/07/10 A		YSW0080	YSW0120]		<mark>.</mark>	i i	
Verify the Rock Boulder required Stablization Wk	249	100	16/07/10 A	21/03/11 A	16/07/10 A	21/03/11 A	1	YSW0080	YSW0100, YSW0110	1		1		
Removal of Rock Boulder	257	100	20/09/10 A	03/06/11 A	20/09/10 A	03/06/11 A	1	YSW0075, YSW0090	KD0030	1		<mark>.</mark>	i i	
Stablizing work for rock boulder	35	100	16/07/11 A	19/08/11 A	16/07/11 A	19/08/11 A	1	YSW0090	KD0030			тааа <mark>с - п</mark> 111111		
Cut the slope to design profile	2	100	24/09/10 A	25/09/10 A	24/09/10 A	25/09/10 A	1	YSW0035, YSW0080, YSW0085	YSW0131, YSW0155, YSW0170	1				
Mobilization of Plant and Material of Soil Nails	14	100		25/09/10 A	12/09/10 A	25/09/10 A	1	YSW0120	YSW0132	1		1111111		
Erect Scaffold and Working Platform	2	100	26/09/10 A	27/09/10 A	26/09/10 A	27/09/10 A	1	YSW0131	YSW0133	1				
Setting out and Verify Locations of Soil Nails	45		28/09/10 A		28/09/10 A	11/11/10 A	1	YSW0132	YSW0134	1		<mark>.</mark> .	i i	
Drilling and Soil Nails Installation	43	100		30/11/10 A	19/10/10 A	30/11/10 A	1	YSW0133	YSW0135				L	
Construction of Nail Heads	12	100		12/12/10 A	01/12/10 A	12/12/10 A		YSW0134	YSW0136	1		<mark>.</mark>	i i	
Mesh Installation on Cut Slope	2	100		15/12/10 A	13/12/10 A	15/12/10 A		YSW0135	YSW01361	1				
Verify alignment of access & channels on slope	118			12/04/11 A	16/12/10 A	12/04/11 A	+	YSW0136	YSW0140	1		<mark>.</mark>	i i	
Construct U-channels & Step Channel on Cut Slope	182	100	13/04/11 A		13/04/11 A		-	YSW01361	KD0030	1		1		
	102	100	13/04/11 A		13/04/11 A						Data			1 Ann
Finich data 06/04/17 Progress bar						Loodo	r Civil	Engineering Corp. Ltd	4		Date	Revision	Checked	
Deta deta 20/04/17 Critical bar								t No. DC/2009/13	4.		30/05/13	Revision 0	RH	VC
Run date 18/07/13 Summary bar					Constant									
Page number 24								e Treatment Works at						
c Primav era Sy stems, Inc.					3-mor	iin Kollin	y Prot	gramme (July 2013 - S	ep 2013					

Description	-	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2013			
Removal of Ex U-Channel where clash with B. Wall	151	100 10/05/11 A	07/10/11 A		07/10/11 A	1-1041	YSW01545	YSW01750	APR	MAY	JUN	JUL		AUG
Temporary Diversion of Drainage	244	100 08/09/10 A	09/05/11 A		09/05/11 A		YSW0035	YSW0153	-		<mark>.</mark>	и і И і		
RC Barrier Wall Bay 1-13 (below Ground Level)	256	100 26/09/10 A	08/06/11 A		08/06/11 A	1	YSW0050, YSW0120	KD0030, YSW0170, YSW0175, YSW01750	-				1	
RC Barrier Wall Bay 1-13 (above Ground Level)	125		11/10/11 A		11/10/11 A	1	YSW0120, YSW0155	KD0030	-					
Construct U-channels and Catchpits (Phase 1)	76		23/08/11 A		23/08/11 A		YSW0155	KD0030	-			и і И і	i	
Construction of subsoil drain (phase 1)	7	100 12/10/11 A	08/02/12 A	-	08/02/12 A	1	YSW0153, YSW0155	KD0030			+ 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+	#		
Construct subsoil drain (phase 2)	14		31/12/12 A		31/12/12 A		KD0030, YSW01800	KD0130	-			и і И і		
RC Barrier Wall Bay 14 (below & above Ground)	87		28/11/12 A	-	28/11/12 A		YSW0760	YSW01755, YSW01810	-			II I	!	
Hydroseeding	14		02/03/13 A		02/03/13 A	-	YSW01810	KD0130	-					
Construct U-channels and Catchpits (Phase 2)	30	100 29/11/12 A				-	YSW01800	KD0130, YSW01805	+	-	+ + + + - -	π ι	!	
Section W 2 - YSW STW & Submarine Outfall	00	100 23/11/12/1		23/11/12/1		1					· · · · · · · · · · · · · · · · · · ·	+		
Civil & Structural Work												1 1	!	
Mobilization	30	100 17/05/10 A	15/06/10 A	17/05/10 4	15/06/10 4	1	KD0020	YSW0422	-			· ·		
Site Clearance	30		15/06/10 A		15/06/10 A	<u> </u>	KD0020, YSW0412	YSW0432, YSW0500, YSW0610, YSW0650	-			1 1		
							,		-					
Initial Survey	14	100 02/06/10 A	15/06/10 A	02/06/10 A	15/06/10 A		YSW0422	YSW0510					i	
YSW STW - GLH - T			Laurana			1								
ELS & Excavation for Inlet Pumping Station	105	100 08/09/10 A				<u> </u>	YSW0035, YSW0422	YSW0510	4			i i	i	
Sub-structure construction (Inlet Pumping Stn)	129	100 22/12/10 A				<u> </u>	YSW0432, YSW0500	YSW0520	4					
Backfill & Remove ELS (Inlet Pumping Stn)	40	100 30/04/11 A				ļ	YSW0510	YSW05701	4			i i	i	
ELS & Excavation for Equalization Tank	159	100 01/01/11 A				ļ	YSW0660	YSW0540, YSW05701	4			1 I 1 I		
Sub-structure construction (Equalization Tank)	112	100 09/06/11 A	•				YSW0530	YSW0550, YSW05901			IUUU <mark>L </mark> _	i	i	
Backfilling & Remove ELS (Equalization Tank)	20	100	18/10/11 A			<u> </u>	YSW0540	YSW05901	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	!	
ELS & Excavation for Grit Chambers	28	100 09/06/11 A	06/07/11 A	09/06/11 A	06/07/11 A		YSW0520, YSW0530	YSW05711, YSW05731						
Construct sub-structure for Grit Chambers	106	100 07/07/11 A	20/10/11 A	07/07/11 A	20/10/11 A		YSW05701	YSW05721, YSW05911	-			1 1		
Backfill & Remove ELS for Grit Chambers	12	100	01/11/11 A	21/10/11 A	01/11/11 A		YSW05711	YSW05911						
ELS & Excavation for Grease Separators (GS)	34	100	09/08/11 A	07/07/11 A	09/08/11 A		YSW05701	YSW05741			L	<u> </u>		
Construct sub-structure for Grease Separators	52	100	30/09/11 A	10/08/11 A	30/09/11 A		YSW05731	YSW05751						
Install Dia.400 Puddles in Grease Separators	27	100	27/10/11 A	01/10/11 A	27/10/11 A		YSW05741	YSW05752				i i	i	
Construct sub-structure for GS (above puddles)	48	100 28/10/11 A	14/12/11 A	28/10/11 A	14/12/11 A		YSW05751	YSW05761						
Backfill & remove ELS for Grease Separators	10	100 15/12/11 A	24/12/11 A	15/12/11 A	24/12/11 A		YSW05752	YSW0580, YSW05921				i i	i	
Excavate to Formation for Deodorizer Room	10	100 25/12/11 A	03/01/12 A	25/12/11 A	03/01/12 A		YSW05761	YSW05801, YSW05922						
Excavate to formation - Grid J-N/5-7	40	100 04/01/12 A	12/02/12 A	04/01/12 A	12/02/12 A		YSW0580	YSW05802, YSW05923		1		1 1	i	
Excavate to formation - Grid GA-H/5-7	10	100 13/02/12 A	22/02/12 A	13/02/12 A	22/02/12 A	1	YSW05801	YSW05924	1			1 1		
G/F to 1/F Construction Grid GA-K/1-5	90	100 29/09/11 A					YSW0540, YSW0550	YSW06001	1			i i	i	
G/F to 1/F Construction Grid N-S/1-5	80	100 21/10/11 A	08/01/12 A	21/10/11 A	08/01/12 A	1	YSW05711, YSW05721	YSW06011, YSW06035				1 1	!	
G/F to 1/F Construction Grid K-N/1-5	45	100 25/12/11 A					YSW05761	YSW06021	1			· ·		
G/F to 1/F Construction for Deodorizer Room	80	100 04/01/12 A					YSW0580	YSW06022				<u></u>	·	
G/F to 1/F Construction for Grid J-N/5-7	60	100 13/02/12 A				İ	YSW05801	E&M0530, E&M0540, E&M0550, E&M0560,				1 I 1 I		
G/F to 1/F Construction for Grid GA-H/5-7	50	100 28/05/12 A				1	YSW05802, YSW06023	YSW06034	1			т т	1	
1/F to Roof Constuction for Grid GA-K/1-5	87	100 28/12/11 A			23/03/12 A		YSW05901	YSW0800						
1/F to Roof Constuction for Grid N-S/1-5	75	100 09/01/12 A			23/03/12 A	1	YSW05911	YSW0800	1			i i	i	
1/F to Roof Constuction for Grid K-N/1-5	44		22/03/12 A		22/03/12 A	1	YSW05921	YSW07201			+ 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+	+	·	
1/F to Roof Constuction for Deodorizer Room	60		22/05/12 A		22/05/12 A		YSW05922	YSW0800	-		i i i i i i i i i i i i i i i i i i i	i i	i	
1/F to Roof Constuction for Grid J-N/5-7	45	100 24/03/12 A	1				YSW05923	E&M0580, YSW05924	1					
1/F to Roof Constuction for Grid GA-H/5-7	28	100 13/04/12 A			13/08/12 A	+	YSW05924	YSW0800	1			· ·		
Construct buffle walls in Grease Separators	20 90	100 27/07/12 A 100 18/04/12 A					YSW05911	YSW07204	1			1 1	1	
	90 60	100 13/04/12 A 100 23/03/12 A				<u> </u>	YSW06021	YSW07202, YSW0800			+++++++++++++++++++++++++++++++++++		·	
Water tightness test for Inlet Pumping Station Water tightness test for Equalization Tanks	60 42						YSW07201	E&M0600, YSW07203, YSW0800	4		111111	1 1	i	
			02/07/12 A			<u> </u>	YSW07201	YSW07204, YSW0800	4			1 I 1 I		
Water tightness test for Grit Chambers	42		29/09/12 A		29/09/12 A	<u> </u>	YSW07202 YSW06035, YSW07203	E&M0570, YSW07205, YSW0800	4		111111	1 1	i	
Water tightness test for Grease Separators	32	100 03/10/12 A			31/10/12 A	0.10		YSW0800			· · · · · · · · · · · · · · · · · ·	I I	Notor Harlet	noon toot for which
Water tightness test for water channels	21	0 30/06/13	1	07/06/14	30/06/14	342d							1	ness test for wa
ABWF installation	271	95 03/07/12 A	13/07/13	03/07/12 A	16/06/14	339d	YSW06001, YSW06011, YSW06022,	KD0040				hAB\	VF installation	
YSW STW - GLT - X			47/00/15		47/00/15		VOW000E VOW0400		4		111111	i		
Excavate to formation	10	100 08/09/10 A				ļ	YSW0035, YSW0422	YSW0620	4			1		
Base slab construction	248	100 18/09/10 A					YSW0610	YSW0630	4		1111111	I		
G/F to 1/F construction	205	100 24/05/11 A	14/12/11 A	24/05/11 A	14/12/11 A		YSW0620	YSW0640				I	<u> </u>	
Start date 05/05/10 Early bar Finish date 06/04/17 Critical bar					Leade	r Civil	Engineering Corp. Ltd			Date 30/05/13	Revision 0	on	Checked RH	Approved VC
Data date 30/06/13Summary bar					C	Contra	ct No. DC/2009/13							
Run date 18/07/13 Progress point				Construc	tion of S	ewag	e Treatment Works at N	(SW & SKW						
Page number 3A Summary point						-	ramme (July 2013 - Se							
c Primavera Systems, Inc.											1			1

		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	APR	МАУ
1/F to Roof Construction	64	100	15/12/11 A	16/02/12 A	15/12/11 A	16/02/12 A		YSW0630	YSW0810	AFR	MAT
ABWF installation	80		28/12/11 A	16/03/12 A	28/12/11 A	16/03/12 A		YSW0640	E&M0610, E&M0620, E&M0630, E&M0640		
YSW STW - GL F - H & DN Tanks				1				I	1		
ELS & Excavation for DN Tanks	37	100	08/09/10 A	14/10/10 A	08/09/10 A	14/10/10 A		YSW0035, YSW0422	YSW0660		
Sub-struction construction (DN Tanks)	78	100	15/10/10 A	31/12/10 A	15/10/10 A	31/12/10 A		YSW0650	YSW0530, YSW0670		
ackfill & Remove ELS (DN Tanks)	70	100	01/01/11 A	11/03/11 A	01/01/11 A	11/03/11 A		YSW0660	YSW0680		
se slab construction (SD1, SD2 & MBR4)	17	100	12/03/11 A	28/03/11 A	12/03/11 A	28/03/11 A		YSW0670	YSW0690		
onstruct Superstructure SD1, SD2 & MBR4	82	100	29/03/11 A	18/06/11 A	29/03/11 A	18/06/11 A		YSW0680	YSW0710, YSW0820		
onstruct Superstructure of DN Tanks	28	100	15/05/12 A	11/06/12 A	15/05/12 A	11/06/12 A	İ	YSW0735	YSW0830		
ater test for MBR 4	47	100	01/10/12 A	16/11/12 A	01/10/12 A	16/11/12 A	İ	YSW0710	E&M0510, E&M0640, YSW07055, YSW0820		
/ater test for SD1 & SD2	54	100	17/11/12 A	10/01/13 A	17/11/12 A	10/01/13 A	İ	YSW0705, YSW07105	E&M0610		
Apply protective paint for MBR 4	7	100	24/09/12 A	30/09/12 A	24/09/12 A	30/09/12 A		YSW0690	YSW0705, YSW07105		
Apply protective paint for SD1 & SD2	7	100	01/10/12 A	07/10/12 A	01/10/12 A	07/10/12 A		YSW0710	YSW07055		
ABWF installation	34	50	15/01/13 A	16/07/13	15/01/13 A	17/01/13	-180d	YSW0690, YSW0705	E&M0630, E&M0640		
Nater test for DN Tanks	28	0	30/06/13	27/07/13	21/02/13	20/03/13	-129d	YSW06901	YSW0850		
pply protecitve paint for DN Tanks	6	25	27/04/13 A	01/08/13	27/04/13 A	25/03/13	-129d	YSW0830	E&M0610		
SW STW - GLA - F											
Completion of HDD	0		21/01/12 A		21/01/12 A			YSW03601, YSW03605	YSW0732		
xcavate for MBR 2 & 3	20	100	21/01/12 A	09/02/12 A	21/01/12 A	09/02/12 A		YSW0730	YSW0733		
onstruct basement of MBR 2 & 3	20	100	10/02/12 A		10/02/12 A			YSW0732	YSW0735, YSW0740		
onstruct superstructure of MBR 2	75	100	01/03/12 A	14/05/12 A	01/03/12 A	14/05/12 A		YSW0733	YSW06901, YSW0736, YSW08302,		
onstruct superstructure of MBR 3	100	100	15/05/12 A	14/05/12 A	15/05/12 A	14/05/12 A		YSW0735	YSW08302, YSW08305		
LS & excavate for Outfall Shaft	75	100	01/03/12 A	14/05/12 A	01/03/12 A	14/05/12 A		YSW0733	YSW0750		
Construct basement of Outfall Shaft	19	100	15/05/12 A	02/06/12 A	15/05/12 A	02/06/12 A		YSW0740	YSW07501		
Connect additional flange to HDPE pipe (VO 042)	5	100	03/06/12 A	07/06/12 A	03/06/12 A	07/06/12 A		YSW0750	YSW07502		
onstruct sub-structure of Outfall Shaft	16		08/06/12 A	23/06/12 A	08/06/12 A	23/06/12 A		YSW07501	YSW0760		
ackfill & remove ELS (outfall shaft)	8		24/06/12 A	01/07/12 A	24/06/12 A	01/07/12 A		YSW07502	YSW01800, YSW07601, YSW07603,		
construct superstructure for Outfall Shaft	30			31/07/12 A	03/07/12 A	31/07/12 A		YSW0760	YSW08301, YSW08305		
ELS & excavate for FSH Water Supply Tank	25		01/06/12 A	25/06/12 A	01/06/12 A	25/06/12 A		YSW0760	YSW07604		
onstruct substructure for FSH Water Supply Tank	24		26/06/12 A		26/06/12 A			YSW07603	YSW07605		
ackfill & remove ELS for FSH Water Supply Tank	12			31/07/12 A	20/07/12 A			YSW07604	YSW07607		
construct basement of MBR 1 & Workshop	24				01/08/12 A			YSW07605	YSW07608, YSW07609		
Construct superstructure for FSH Water Supply Tk	37				25/08/12 A			YSW07607	YSW08304, YSW08305		
Construct superstructure for MBR 1	37		25/08/12 A					YSW07607	YSW07610, YSW08303, YSW1470		
Construct Workshop, FSSH Pump Rm, PW Pump Rm	31		03/10/12 A		03/10/12 A	31/10/12 A		YSW07609	YSW0840, YSW16606, YSW16607,		
Nater tightness test for Outfall Shaft	42	100	03/04/13 A	18/04/13 A	03/04/13 A	18/04/13 A		YSW0380, YSW07601	E&M0690	Water tig	htness test for Out
Water tightness test for MBR 2 & 3	95	100			03/07/12 A			YSW0735, YSW0736	E&M0520, E&M0590, E&M0605, E&M0650		
Water tightness test for MBR 1	19	100	30/11/12 A	18/12/12 A	30/11/12 A	18/12/12 A		YSW07609	E&M0520		
Water tightness test for FSH Water Supply Tank	32	0	30/06/13	31/07/13	21/02/13	25/03/13	-129d		E&M0610		
Apply protective paint	120	90	02/10/12 A	11/07/13	02/10/12 A	25/03/13	-109d	YSW0735, YSW0736, YSW07601,	E&M0610		
ire Hose Reel / Sprinkler Pump Rm									•		
ELS & excavate to formation (+0 mPD approx.)	40		25/02/13 A		25/02/13 A			YSW07610, YSW16606	YSW0860	ELS & ex	cavate to formation
Sub-structure construction	40	100	19/04/13 A	12/06/13 A	19/04/13 A	12/06/13 A		YSW0840	YSW0890		
Backfill & remove ELS	35		21/06/13 A		21/06/13 A	26/08/13 A		YSW0890	YSW0910		
Construction Ground Slab at +5.2mPD	40		04/06/13 A		04/06/13 A	14/07/13 A		YSW0860	YSW0880, YSW0900		
Superstructure construction upto +9.2mPD	35		04/06/13 A		04/06/13 A	01/08/13 A		YSW0890	YSW0910, YSW0925		
Water test	28	v	04/07/13	01/08/13	03/08/13	31/08/13	30d		YSW0915		
Apply protective paint	14	v	01/08/13	15/08/13	31/08/13	14/09/13	30d		E&M0640, YSW0925		
ABWF installation	30	20	16/07/13 A	15/08/13	16/07/13 A	16/06/14	306d	YSW0900, YSW0915	KD0040		
				Leevenee			1				
		100						YSW07609	YSW1480		
ELS & excavate to formation (-1.5mPD Approx.)	16			16/10/12 A	03/10/12 A	16/10/12 A		YSW1470	YSW1490		
ELS & excavate to formation (-1.5mPD Approx.) Sub-structure construction	14	100	03/10/12 A	10/10/10 *	17/10/10 1			YSW1480	YSW1500		
ELS & excavate to formation (-1.5mPD Approx.) Sub-structure construction Backfill & extract sheetpile	14 3	100 100	17/10/12 A		17/10/12 A	19/10/12 A		1/01/14 400			
ELS & excavate to formation (-1.5mPD Approx.) Sub-structure construction Backfill & extract sheetpile Superstructure construction upto +10.5mPD	14 3 41	100 100 100	17/10/12 A 20/10/12 A	29/11/12 A	20/10/12 A	29/11/12 A		YSW1490	YSW1530, YSW1536		
ELS & excavate to formation (-1.5mPD Approx.) Sub-structure construction Backfill & extract sheetpile Superstructure construction upto +10.5mPD	14 3	100 100 100	17/10/12 A				-68d	YSW1490 YSW1500			
ELS & excavate to formation (-1.5mPD Approx.) Sub-structure construction Backfill & extract sheetpile Superstructure construction upto +10.5mPD Underground pipeline works	14 3 41	100 100 100	17/10/12 A 20/10/12 A	29/11/12 A	20/10/12 A	29/11/12 A	-68d		YSW1530, YSW1536		Data
ELS & excavate to formation (-1.5mPD Approx.) Sub-structure construction Backfill & extract sheetpile Superstructure construction upto +10.5mPD Underground pipeline works date 05/05/10 b date 06/04/17	14 3 41	100 100 100	17/10/12 A 20/10/12 A	29/11/12 A	20/10/12 A	29/11/12 A 01/06/13		YSW1500	YSW1530, YSW1536 E&M0690, YSW1680		Date
Sub-structure construction Backfill & extract sheetpile Superstructure construction upto +10.5mPD Underground pipeline works t date 05/05/10 t date 06/04/17 t date 06/04/17 t date 20/06/12 t date 20/06/12	14 3 41	100 100 100	17/10/12 A 20/10/12 A	29/11/12 A	20/10/12 A	29/11/12 A 01/06/13 Leade	r Civil	YSW1500 Engineering Corp. Ltd.	YSW1530, YSW1536 E&M0690, YSW1680		Date 30/05/13
ELS & excavate to formation (-1.5mPD Approx.) Sub-structure construction Backfill & extract sheetpile Superstructure construction upto +10.5mPD Underground pipeline works t date 05/05/10 th date 06/04/17 t date 30/06/13 date 18/07/13	14 3 41	100 100 100	17/10/12 A 20/10/12 A	29/11/12 A 08/08/13	20/10/12 A 22/04/13	29/11/12 A 01/06/13 Leader	r Civil	YSW1500 Engineering Corp. Ltd. ct No. DC/2009/13	YSW1530, YSW1536 E&M0690, YSW1680		
ELS & excavate to formation (-1.5mPD Approx.) Sub-structure construction Backfill & extract sheetpile Superstructure construction upto +10.5mPD Underground pipeline works t date 05/05/10 th date 06/04/17 t date 30/06/13	14 3 41	100 100 100	17/10/12 A 20/10/12 A	29/11/12 A 08/08/13	20/10/12 A 22/04/13 Construc	29/11/12 A 01/06/13 Leader C tion of S	r Civil contrac ewage	YSW1500 Engineering Corp. Ltd.	YSW1530, YSW1536 E&M0690, YSW1680 SW & SKW		


Under production Control Owner in water Owner in wat	Description		Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	APR	МАУ	2013 JUN	UL	AUG
Mathematics Markel Resides Mathematics Markel Resides <th< td=""><td>Water tightness test</td><td>40</td><td>0 30/06/13</td><td>08/08/13</td><td>27/03/13</td><td>06/05/13</td><td>-94d</td><td>YSW1500</td><td>YSW1538</td><td></td><td></td><td></td><td></td><td>Water tightness</td></th<>	Water tightness test	40	0 30/06/13	08/08/13	27/03/13	06/05/13	-94d	YSW1500	YSW1538					Water tightness
Mathematics Markel Resides Mathematics Markel Resides <th< td=""><td>Apply protective paint</td><td>30</td><td>100 04/03/13 A</td><td>05/03/13 A</td><td>04/03/13 A</td><td>05/03/13 A</td><td></td><td>YSW1536</td><td>YSW1540</td><td></td><td></td><td>·····</td><td></td><td>1</td></th<>	Apply protective paint	30	100 04/03/13 A	05/03/13 A	04/03/13 A	05/03/13 A		YSW1536	YSW1540			·····		1
International Control (1) (11) Control (1) Contro (1) Control (1) Cont	ABWF installation	40		03/09/13	03/04/13 A	01/06/13	-94d	YSW1538	E&M0690					
List Source (no. 90. MPAP) 0 0 0.001 0.001 0.001 0.001 0.0000<	Road, Drain, Cable Draw Pits & Ducting								I					
graphs abortile scores (see year year year is a set of the set of		60	0 04/07/13	02/09/13	20/01/13	21/03/13	-165d	YSW0760, YSW16606, YSW16607,	YSW16602					
Image: Description Image:			°				-165d	YSW16601	E&M0680, YSW1700	-				
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		-	0						,	-				
Image: market in the process mark the process market in the process market in the proce			<u> </u>						,	-				
Destruction Destruction			<u> </u>						,					
Description Description Provide			<u> </u>						,					na hill side (Orig
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		<u> </u>							,	-			1.1.1	0
Upwertunk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk Upwerk <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>-</td> <td></td> <td></td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td></td>									,	-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
booksey with [He12] 0		-	00						, ,	-		Constru	ct UU & pipes alon	ig hill side (Grid
Description Bit Control Sector Bit Control Sector	Construct Boundary Wall (Grid XA-D)	80	90 10/01/13 A	08/11/13	10/01/13 A	19/09/13			YSW16702	_				
Image: second product of the product of th	Construct Boundary Wall (Grid D-Q)	80	0 30/12/13	20/03/14	20/09/13	08/12/13	-102d	YSW16605, YSW16701	YSW16703					
LPM Control	Construct Boundary Wall (Grid Q-X)	80	0 20/03/14	08/06/14	09/12/13	26/02/14	-102d	YSW16603, YSW16702	YSW16704, YSW1700					
Line start of Hose Denerges, under vert Start Fall Start	ABWF installation for Boundary Wall	240	0 30/12/13	27/08/14	20/10/13	16/06/14	-72d	YSW16703	KD0040				1	
Common Viragi Gele, Lowang, G. Leyront UN Age 2001 Wiragi Active Wiragi Active <th< td=""><td>Fire Hydrant & pipeline installation</td><td>120</td><td>40 26/01/13 A</td><td>19/10/13</td><td>26/01/13 A</td><td>14/10/13</td><td>-5d</td><td>YSW1530</td><td>YSW1690, YSW1700</td><td></td><td></td><td></td><td></td><td></td></th<>	Fire Hydrant & pipeline installation	120	40 26/01/13 A	19/10/13	26/01/13 A	14/10/13	-5d	YSW1530	YSW1690, YSW1700					
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Construction of Road Kerbs, Downpipes, U-channel	180	25 02/01/13 A	03/03/14	02/01/13 A	26/02/14	-5d	YSW16608, YSW1680	YSW1700				· · · · · · · · · · · · · · · · · · ·	
Image: Section 2 Control 0 Contro 0 Control 0 Control 0	Road Paving	110		26/09/14	27/02/14	16/06/14	-102d	YSW16602, YSW16605, YSW16703,	KD0040	1			!	
Contraction of PPC 15 100 70070-6 MARTINE A MARRINA WARRING Examplication of PPCC 100 100070-6 MARTINE A WARRING WARRING Examplication of PPCC 100 100070-6 MARTINE A WARRING WARRING WARRING Martine State at Append at Explicit Singer 100 GARTINA A WARRING WARRING WARRING Martine State at Append at Explicit Singer 100 GARTINA A WARRING WARRING WARRING Martine State at Append at Explicit Singer 100 GARTINA A WARRING WARRING WARRING WARRING Martine State at Append at Martine Stimulant D MECO 100 GARTINA A WARRING	, i i i i i i i i i i i i i i i i i i i		Ŭ					YSW1680, YSW1690					L	
Landmarked PriL 0 100 1000 000000000000000000000000000000000000	Submarine Outfall		· · ·						•			1 I I I I I I I I I I I I I I I I I I I	1	
Submitter und Appendel Coxygal 60 100 108/00/00 1000100 10000000 1000000 100000	Coordination of HEC	53	100 17/05/10 A	08/07/10 A	17/05/10 A	08/07/10 A		KD0020	YSW0350					
Economic Model 211 000 1007/10.4 11007/10.4 11007/10.4 11007/10.4 10006/20 10006/20 Main state of degree of it hype states 101 000 10006/20 1000/20 1000/20 1000/20 1000/20 1000/20 1000/20 1000/20 1000/20 1000/20 1000/20	Submission and Approval of Ecologist	60		15/07/10 A	17/05/10 A	15/07/10 A		KD0020	YSW0210				i	
Submission and Agenose af in Lings Survey 100 100 17000100 27000100 17000000 17000000 17000000 17000000 <t< td=""><td>Ecology Survey</td><td>211</td><td></td><td>11/02/11 A</td><td>16/07/10 A</td><td>11/02/11 A</td><td></td><td>YSW0200</td><td>YSW0350</td><td>-</td><td></td><td></td><td></td><td></td></t<>	Ecology Survey	211		11/02/11 A	16/07/10 A	11/02/11 A		YSW0200	YSW0350	-				
spinopolicy (1999) (167) (16) (167) (16) (167) (16) (160)		-						KD0020	YSW0230	-				
Meterial dischwarden, Ageneii af Labbie: Tipe 110 100 1000000000000000000000000000000000000										-			i	
Deels Conduise of Pair V Fland V Fland V Fland V Fland V Fland V Fland V V V V V V V V V V V V V V V V V V V		-												
Submit and Approved of Method Selection III (10) 1000 1001 10000 1001 1000 1001 1000 1001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>										-				
Substance (Fib) Note:										_			1	
Submission of mouse alignment in rec. 11 0 00 20011 0 20011 0 0000 1 A 20011 A 20000 A 20000 A										_				
Submission of propose alignment 44 100 200111 A 040011 A 20011 A 20012 A 20012 A 20012 A 20012 A 20012 A 20012 A 20012 A 20012 A 20012 A 20012 A 20012 A 20012 A </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>i</td> <td></td>										_			i	
Submission of pages adjunction 44 100 door111 200111	Additional G.I. Boreholes (YSW)													
Construction of Emp Pri and Pergrandian Work 27 100 0.500.11 A 0.000.11 A	Submission of propose alignment	44							YSW0310, YSW0340					
Landauchard and any rin am regaration roles. 2 in 100 leader 1 a line of 1 a l	Submission of Marine Notice	69		29/03/11 A	20/01/11 A	29/03/11 A		YSW0270	YSW0350				1	
Prepare of HOD Delling Guttaver, YSW) 28 100 014411 A 2804111 A 1104411 A 280411 A 1104411 A	Construction of Entry Pit and Preparation Work	27	100 05/03/11 A	31/03/11 A	05/03/11 A	31/03/11 A		YSW0280	YSW0320					
Lastitutioned in hulz (partial a Regulationed) 0 100 100,111 140,111	Prepare of HDD Drill Rig Set-up (YSW)	28	100 01/04/11 A	28/04/11 A	01/04/11 A	28/04/11 A		YSW0310	YSW0330, YSW0350				i	
Setting up at allihole location 14 100 1504/11.4 2804/11.4 1504/11.4 2804/11.4 1504/11.4 2804/11.4 1504/11.4 2804/11.4 1504/11.4 2804/11.4 1504/11.4 2804/11.4 1504/11.4 2804/11.4 1504/11.4 2804/11.4 1504/11.4	Establishment of HDD plant & equipment	6		14/04/11 A	09/04/11 A	14/04/11 A		YSW0320	YSW0340				!	
Diff. Join Ande and reaming Johnel - NSA00 - S30m 229 100 2004/11 A 13/12/11 A 2004/11 A 13/12/11 A 2004/11 A 13/12/11 A 2004/11 A 13/12/11 A 2004/11 A 30/12/11 A 13/12/11 A 2004/11 A 30/12/11 A 13/12/11 A 2004/12 A 13/12/11 A 2004/11 A 13/12/11 A 2004/12 A 13/12/11 A 2004/12 A 13/12/11 A 2004/12 A 13/12/11 A 2004/12 A 13/12/11 A 2004/12 A 13/12/11 A 2004/12 A 13/12/11 A 2004/12 A 13/12/11 A 2004/12 A 13/12/11 A <t< td=""><td>Setting up at drillhole location</td><td>14</td><td></td><td>28/04/11 A</td><td>15/04/11 A</td><td>28/04/11 A</td><td></td><td>YSW0250, YSW0260, YSW0280,</td><td>YSW0350</td><td></td><td></td><td></td><td></td><td></td></t<>	Setting up at drillhole location	14		28/04/11 A	15/04/11 A	28/04/11 A		YSW0250, YSW0260, YSW0280,	YSW0350					
Installation of N3400 HDP E80m 17 100 141/211 A 301/211 A 141/21 A 301/211 A 141/21 A 301/211 A 141/21 A 301/211 A 141/21 A 301/211 A 141/21 A 301/211 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/21 A 201/12 A 141/2 A 201/12 A 141/2 A 201/12 A 201/12 A 201/12 A 201/12 A 201/12 A 201/12 A 201/12 A 201/12 A 201/12 A 201/12 A 200/12		229			29/04/11 A	13/12/11 A		YSW0040, YSW0180, YSW0210,	YSW0360	-			1	
Demodiation of HOD pant & equipment 7 100 31/12/11 A 060/12/A 91/12/11 A 100/12/A 91/12/A 100/12/A	Installation of NS400 HDPE 530m							YSW0240, YSW0350	SKW1181, YSW03601, YSW03620,	-				
Bernovel Drivpi Lof HDD 14 100 0701/12.A 0201/12.A 0701/12.A 0201/12.A 0701/12.A 0201/12.A 0701/12.A 0201/12.A 0701/12.A 0201/12.A 0701/12.A <		7							YSW03605, YSW03641, YSW0730	-			i	
Bernoval of Receiving Pit 14 100 31/12/1 A 310/12 A		1/							, ,	-				
Prepare back/filling material under VO 046A 120 100 07/01/12 65/05/12 07/01/12 05/02/11 05/02/11 05/02/11 05/02/11 05/02/11 <													i	
Set up of Silt Curtain as per EP 2 100 23/11/12.A 24/11/12.A 24/10/11.A 21/10.A 24/1	<u> </u>									_			1	
Set op 5 int Cutalin as par EP 2 100 (2411/12A 2411/12A 241		120								4				
Diffuser Construction (YSW) 60 100 30/11/12 A 20/06/13 A 20/06/13 A 20/07/13 A 20/06/13 A 20/07/13 A 20/06/13 A 20/07/13 A 20/06/13 A 20/07/13		2								4			i i	
E&M Works - YSW STW Delivery of MBR Memb. Mod. (MBR Tk 4) 118 100 24/02/11 A 21/06/11 A 21/06/11 A 21/06/11 A 21/06/11 A 21/06/11 A 21/06/11 A 22/02/11 A 21/06/11 A 22/02/11 A 21/06/11 A 22/02/11 A 21/06/11 A 22/02/11 A		5									<u> </u>			
E&M Works - YSW STW Delivery of MBR Memb. Mod. (MBR Tk 4) 118 100 24/02/11 A 21/06/11 A 21/06/11 A 21/06/11 A 21/06/11 A 21/06/11 A 21/06/11 A 22/02/11 A 21/06/11 A 22/02/11 A 21/06/11 A 22/02/11 A 21/06/11 A 22/02/11 A												Diffuser Construc	tion (YSW)	
Law Works - Y.SV SiW Delivery of MBR Memb. Mod. (MBR Tk 4) 118 100 24/02/11 A 21/06/11 A 24/02/11 A 21/07/12 A E&M050 E&M050 Delivery of MBR Membrane Modules - 2nd Shipment 81 100 10/10/11 A 29/12/11 A 12/01/12 A E&M050 E&M050 11111 H 1111 H 11111 H		30	0 30/06/13	29/07/13	18/05/14	16/06/14	322d	YSW0380	KD0040				Remov	al of silt curtain
Delivery of MBR Membane Modules 2nd Shipment 118 100 24/02/11 A 21/06/11 A 24/02/11 A 21/06/11 A 24/02/11 A 21/06/11 A 24/02/11 A														
Delivery of Mich Nemorane Modules - 2nd Shipment 235 100 24/02/11 A 17/10/11 A 29/12/11 A 10/10/11 A 20/00/11 A 20/00/11 A 20/00/11 A<	Delivery of MBR Memb. Mod. (MBR Tk 4)	118						E&M0160	E&M0510				i i	
Delivery of Grit Removal Equipment 81 100 10/10/11 A 29/12/11 A 10/11 A 29/12/11 A 10/11 A 29/12/11 A 10/10/11 A 29/12/11 A 12/01/12 A E&M050 Delivery of Coarse Screens 80 100 12/09/11 A 30/11/11 A 12/09/11 A	Delivery of MBR Membrane Modules - 2nd Shipment	236	100 24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A		E&M0160	E&M0520]				
Delivery of Coarse Screens 129 100 6//09/11 A 12/01/12 A 6//09/11 A 12/01/12 A E&M010 E&M0540 Delivery of Fine Screens 80 100 12/09/11 A 30/11/11 A 12/09/11 A 30/11/11 A 12/09/11 A 30/11/11 A E&M0540 Delivery of Fine Screens 80 100 12/09/11 A 30/11/11 A 12/09/11 A 30/11/11 A E&M0130 E&M0560 Delivery of Submersible Mxers 230 100 26/02/11 A 26/02/11 A 26/02/11 A E&M0140 E&M0140 E&M0560 Delivery of Sludge Dewatering Equipment 558 70 31/08/11 A 14/12/13 31/08/11 A 12/08/13 -12/08/13 -12/08 -11/11 U -1 -1 tart date 05//05/10 Early bar Forgess bar Summary bar Progress bar Construction of Sew age Treatment Works at YSW & SKW 30//05/13 Revision 0 Checked Appro und date 18//07/13 Progress point Critical point Construction of Sew age Treatment Works at YSW & SKW Summary bar -1 -1 -1 Summary point Summary point Summary point Summar	Delivery of Grit Removal Equipment	81	100 10/10/11 A	29/12/11 A	10/10/11 A	29/12/11 A		E&M0150	E&M0530]			- I i	
Delivery of Fine Screens 80 100 12/09/11 A 30/11/11 A 12/09/11 A 23/06/11 A 05/09/11 A 26/02/11 A <td>Delivery of Coarse Screens</td> <td>129</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E&M0110</td> <td>E&M0540</td> <td>1</td> <td></td> <td></td> <td>!</td> <td></td>	Delivery of Coarse Screens	129						E&M0110	E&M0540	1			!	
Delivery of Pumps 75 100 23/06/11 A 05/09/11 A 26/02/11 A	Delivery of Fine Screens			30/11/11 A	12/09/11 A	30/11/11 A	Ì	E&M0120	E&M0550	1				
Delivery of Submersible Mixers 230 100 26/02/11 A 26/02/1								E&M0130	E&M0560	+		TUUUU	<u>-</u> <u>-</u>	
Delivery of Sludge Dewatering Equipment 558 70 31/08/11 A 14/12/13 31/08/11 A 12/08/13 -124d E&M0580 Image Dewatering Corp. Ltd. Image Dewatering								E&M0140	E&M0570	1				
cart date 05/05/10 Early bar nish date 06/04/17 Progress bar Critical bar Critical bar ata date 30/06/13 un date 18/07/13 age number 5A							-124d	E&M0170		_				
nish date 06/04/17 Progress bar Critical bar Numary bar ata date 30/06/13 Summary bar Contract No. DC/2009/13 30/05/13 Revision 0 RH VC un date 18/07/13 age number Progress point Critical point Construction of Sewage Treatment Works at YSW & SKW Image number Image number Image number Summary point Image number Image		1 330	70 01/00/11 A		JI, UU/ I I A	12,00/10	<u>۲240</u>		L					
ata date 30/06/13 Summary bar Contract No. DC/2009/13 un date 18/07/13 Progress point Critical point Summary point Construction of Sew age Treatment Works at YSW & SKW Image number Image number Image number State Image number Image n	inish date 06/04/17					Leade	r Civil	Engineering Corp. Ltd.						
age number 5A Critical point Summary point 3-month Rolling Programme (July 2013 - Sep 2013	ata date 30/06/13 Summary bar					C	ontrac	t No. DC/2009/13						
age number 5A 3-month Rolling Programme (July 2013 - Sep 2013	Critical point			(Construc	tion of S	ewage	e Treatment Works at Y	SW & SKW					1
c Primavera Systems, Inc. 🔶 Start milestone point	age number 5A Summary point													1
							5 8							+

Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2013		
Delivery of Valves, Pipes & Fittings	560		30/08/11 A	26/01/14	30/08/11 A	02/12/13		E&M0180	E&M0590	APR	МАҮ	JUN	JUL	AUG
Delivery of Penstocks	135	00	12/08/11 A	24/12/11 A	_	24/12/11 A	-550	E&M0190	E&M0600. E&M0605			+++++++++++++++		
Delivery of Instruments	232		03/11/11 A	21/06/11 A		21/06/11 A		E&M0200	E&M0610			+		
Delivery of MCC LVSB	90		03/12/12 A	04/03/13 A	03/12/12 A	04/03/13 A		E&M0210	E&M0620	_ SB				
Delivery of BS Equipment	446	100 65		17/09/14	10/12/11 A	16/06/13		E&M0220	E&M0630					
Delivery FS Equipment	507		11/12/11 A	11/05/15	11/12/11 A	18/05/13		E&M0230	E&M0330. E&M0640	_				
Install Membrane Modules in MBR Tank no. 4	89		03/11/12 A	28/02/13 A	03/11/12 A	28/02/13 A		E&M0360, YSW0705	E&M0690	les in MBR Tank no. 4				
Install Membrane Modules in MBR Tank No. 1 to 3	57		03/11/12 A	28/02/13 A	03/12/12 A	28/02/13 A		E&M0370, YSW08302, YSW08303	E&M0690	les in MBR Tank No. 1		= = = = <u>+ </u>		
Install Grit Removal Equipment	122		01/06/12 A	30/09/12 A	01/06/12 A	30/09/12 A		E&M0380, YSW05923	E&M0590, E&M0660			+ + + + + + +		
Install Coarse Screens	240		23/04/12 A	23/07/13	23/04/12 A	26/04/13		E&M0390, YSW05923	E&M0660			111111		se Screens
Install Fine Screens	122	00	01/06/12 A	12/07/13		06/04/13		E&M0400, YSW05923	E&M0590, E&M0660		<u> </u>	l.	Install Fine Screens	
Install Pumps	355	50	·		23/04/12 A	26/04/13		E&M0410, YSW05923	E&M0660	_				Inotal
			23/04/12 A	22/08/13				E&M0420, YSW07204	E&M0660, E&M0690					Install
Install Submersible Mixers	163	00	15/01/13 A	19/09/13		26/04/13			E&M0690					
Install Sludge Dewatering Equipment	361	10	29/05/12 A	01/02/14		02/06/13		E&M0440, YSW06023						
Install Valves, Pipes & Fittings	232		15/01/13 A	08/09/13	15/01/13 A	03/06/13		E&M0450, E&M0530, E&M0550,	E&M0650, E&M0690		L) Superstanding (Details of OLLINE T)		
Install Penstocks (Batch 1, GL H - T)	213		23/04/12 A	21/05/13 A		21/05/13 A		E&M0460, YSW07202	E&M0690		Install F	Penstocks (Batch 1, GL H - T)	I I	
Install Penstocks (Batch 2, GL A - F)	131	00	02/01/13 A	19/07/13	02/01/13 A			E&M0460, YSW08302	E&M0690			+ + + + + + + + + + + + + + + +		s (Batch 2, GL A
Install Instruments	74	0	02/01/13 A	10/10/13	02/01/13 A	03/06/13		E&M0470, YSW07055, YSW0810,	E&M0690					
Install SAT, MCC & LVSB	8		02/01/13 A	02/01/15 A		02/01/15 A		E&M0480, YSW0810	E&M0660, E&M0680	_				
Install BS Equipment	180	55	02/01/13 A	08/10/14	02/01/13 A	07/07/13		E&M0490, YSW0810, YSW0820	E&M0690	_				
Install FS Equipment	180	5	02/01/13 A	30/06/15	02/01/13 A	07/07/13		E&M0500, YSW0705, YSW0810,	E&M0690					
Hydraulic Tests of Pipeworks	153	40	02/01/13 A	29/09/13	02/01/13 A	08/06/13		E&M0590, YSW08302	E&M0690					
Cabling Works	15	30	04/02/15 A	12/03/15	04/02/15 A	06/05/13		E&M0530, E&M0540, E&M0550, E&M0560, E&M0570, E&M0620	E&M0670					
Insulation Tests of Cables and Cable Termination	26	0	13/03/15	07/04/15	06/05/13	01/06/13		E&M0320, E&M0325, E&M0660,	E&M0690			111111 <mark>1</mark> 1 1	1	
Energization	1	0	02/03/15 *	03/03/15	05/05/13	06/05/13		E&M0305, E&M0325, E&M0620,	E&M0670					
Functional and Performance Tests of Equipment	35	25	5 25/03/15 A	20/06/15	25/03/15 A	27/06/13 *	-723d	E&M0510, E&M0520, E&M0570, E&M0580, E&M0590, E&M0600, E&M0605, E&M0610, E&M0630, E&M0640, E&M0650, E&M0670, YSW0380, YSW08301, YSW1530, YSW1540	E&M0700					
T&C Period	137	0	21/06/15	04/11/15	12/12/13	27/04/14	-556d	E&M0330, E&M0690	E&M0730, KD0040	-		<mark>.</mark>	i	
Trial Operation Period	413	0	05/11/15	06/04/17	28/04/14	14/06/15	-556d	E&M0700	KD0132			+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+		
Sok Kwu Wan			<u>′1</u>						1			· · · · · · · ·	1	
Preliminary														
Approval of Environmental Team	16	100	17/05/10 A	01/06/10 4	17/05/10 4	01/06/10 A	1	KD0020	SKW0260	-		111111	1	
Baseline monitoring (Air & Noise)	14		02/06/10 A					SKW0250	SKW0242, SKW0265, SKW0592, SKW0681,	-				
Baseline Monitoring Submission (A & N)	14		16/06/10 A					SKW0260	SKW0242, SKW0592, SKW0681, SKW0921,	-		<mark>.</mark>	i	
Section W 3 - Footpath Diversion in Portion G		100		00/01/10/1	10/00/10 //	00/01/10/1			,,,,					
Civil & Geotechnical Works										-		<mark>.</mark>	i	
Site Clearance	21	100	17/05/10 A	06/06/10 4	17/05/10 4	06/06/10 4	1		SKW0241	-				
Initial Survey	21		07/06/10 A			15/06/10 A		SKW0240	SKW0242	-		1 I I I I I I I I I I I I I I I I I I I	i	
Retaining Wall Bay 0-10 (Incl. VO. 001A)	177		30/06/10 A		30/06/10 A			SKW0241, SKW0260, SKW0265	SKW0461	-				
Utilities Laying and Diversion	70		24/12/10 A		24/12/10 A			SKW0242	SKW0471	-		111111	i	
Concreting for Pavement	70		04/03/11 A					SKW0461	SKW0481	-				
	/		11/03/11 A	10/03/11 A 24/03/11 A		10/03/11 A 24/03/11 A		SKW0471	KD0050, SKW04811, SKW0491	+		++++++++++++++++++++++++++++++++++		
Footpath Diversion - Stage 1 Excavate for FP transition at CH0-35 &CH130-141	14 37		25/03/11 A		11/03/11 A 25/03/11 A			SKW0471 SKW0481	SKW04811	+				
Excavate for FP transition at CH0-35 & CH130-141 Construction of Drainage outfall near bay 10	3/		01/05/11 A	30/04/11 A 03/05/11 A		03/05/11 A		SKW0481	SKW04821 SKW04831	4		<mark>.</mark>		
	26		04/05/11 A					SKW04811	SKW04841	-				
Cable diversion by HEC	20			29/05/11 A		29/05/11 A		SKW04831	SKW04851	-			i i	
Diversion of Ducting and Drawpit by PCCW	12		20/05/11 A	31/05/11 A	20/05/11 A									
Soil backfilling behind FP retaining wall	14		01/06/11 A	14/06/11 A		14/06/11 A		SKW04841	SKW04861	_				
Concreting for footpath pavement	/		15/06/11 A	21/06/11 A		21/06/11 A		SKW04851	SKW04871	_		111111		
Relocation of Temp Safety Fence at SKW STW A-G	57		22/06/11 A	17/08/11 A		17/08/11 A		SKW04861	SKW04881	4				
Disposal of excavation material at A-G SKW STW	138		18/08/11 A	02/01/12 A		02/01/12 A		SKW04871	SKW04885	4		<mark>.</mark>	i i	
Footpath Diversion - Stage 2	7		03/01/12 A	09/01/12 A		09/01/12 A		SKW04881	SKW1261	+				
Removal of Haul Road after SKW STW	7	-	08/10/14	14/10/14	29/05/15	04/06/15	233d	KD0090, SKW0481, SKW1401	SKW0501	4		<mark>.</mark>	i	{
Concreting for no-fine concrete	14	0	08/10/14	21/10/14	29/05/15	11/06/15	233d	SKW0491	SKW0511		·			<u> </u>
Start date 05/05/10 Early bar Finish date 06/04/17 Progress bar Data date 30/06/13 Summary bar Run date 18/07/13 Progress point Page number 6A Critical point c Primav era Sy stems, Inc. Summary point						C tion of S	ontrac ewage	Engineering Corp. Ltd. et No. DC/2009/13 e Treatment Works at Y ramme (July 2013 - Se	SW & SKW		Date 30/05/13	Revision Revision 0	Checked RH	Approved VC

	Original	Percent Early	Early	Late	Late	Total								
Description		Complete Start	Finish	Start	Finish	Float	Predecessors	Successors	APR	MAY	2013 JUN	JUL		AUG
Wall Tie & Stone Facing	14	0 22/10/14	04/11/14	12/06/15	25/06/15	233d	SKW0501	SKW0521			111111		1	1
Gabion Wall & Geotextile	30	0 05/11/14	04/12/14	26/06/15	25/07/15	233d	SKW0511	SKW0531	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		!	: I
Installation of Flower Pot	7	0 05/12/14	11/12/14	26/07/15	01/08/15	233d	SKW0521	SKW0541	1		 		i	;
Completion of Outstanding Works	42	0 12/12/14	22/01/15	02/08/15	12/09/15	233d	SKW0531	KD0125						
Section W 4 - Slope W orks in Portions H & I			•	•										
Geotechnical Works											111111 <mark>1 </mark> 1 1		i	i
Construct scaffolding access	30	100 ^{15/06/10} A	14/07/10 A	15/06/10 A	14/07/10 A		KD0020	SKW0590]					
Site Clearance for Slope	100	100 ^{15/07/10} A	22/10/10 A	15/07/10 A	22/10/10 A		SKW0588	SKW0591			111111 <mark>1 </mark> 1 1		i	i
Initial Survey for Slope	28	100 21/09/10 A	18/10/10 A	21/09/10 A	18/10/10 A		SKW0590	SKW0592					1	
Temporary Rockfall fence at ex. Footpath	43	100 ^{31/08/10} A	<u> </u>	31/08/10 A	12/10/10 A		SKW0260, SKW0265, SKW0591	SKW05931			111111 <mark>1 </mark>		I	!
Construction of Haul Road (To +30mPD)	50	100 ^{03/09/10} A	<u> </u>	03/09/10 A	22/10/10 A		SKW0592	SKW05932						
Construction of Haul Road (To +42.5mPD)	68	100 ^{23/10/10} A	-				SKW05931	SKW059322			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		!	
Removal of Boulders (IBG 1 - 119, SI No. 11B)	121	100 03/11/10 A		03/11/10 A	03/03/11 A			SKW059411	_				1	
Add. Site Invest. Works (VO. No. 9,12 &16)	174	100 11/01/11 A		11/01/11 A	03/07/11 A		SKW05932	SKW059341	_		1 1 1 1 1 1 1		!	:
Revised Profile at West Slope (+56 to +42.5mPD)	1	100 17/03/11 A	1	17/03/11 A	17/03/11 A			SKW059324	_				i	
Construction of Haul Road (+42.5 to +56mPD)	12	100 18/03/11 A		18/03/11 A	29/03/11 A	ļ	SKW059323	SKW 059325			+			<u>+</u>
Removal of Boulders (IBG 120-139, SI No. 11C)	17	100 30/03/11 A		30/03/11 A	15/04/11 A	<u> </u>	SKW059324	SKW05933	-		i i i i i		i	i
West Slope Cutting (+56mPD to +42.5mPD)	2	100 16/04/11 A		16/04/11 A	17/04/11 A	<u> </u>	SKW059325	SKW059331	-					:
Removal of Boulders (IBG 140-189, SI No. 11D)	45	100 18/04/11 A	01/06/11 A		01/06/11 A		SKW05933	SKW05934	-		i i i i i		i	i
West Slope Cutting (+42.5mPD to +35mPD)	32	100 02/06/11 A		02/06/11 A	03/07/11 A		SKW059331	SKW059341	-				1	: I
Revised Profile at West Slope (+20 to +4.8mPD)	1	100 04/07/11 A		04/07/11 A	04/07/11 A		SKW059322, SKW05934	SKW05935			+ 14 14 14 <mark>E - E -</mark>		i	
West Slope Cutting (+35mPD to +27.5mPD)	83	100 08/07/11 A		08/07/11 A	28/09/11 A		SKW059341 SKW05935	SKW05936	-				1	
West Slope Cutting (+27.5mPD to +20mPD)	61	100		29/09/11 A		-	SKW05936	SKW05937 SKW05938	-		111111 <mark>1 </mark> 1 1		i	i
West Slope Cutting (+20mPD to +12.5mPD)	39 90	100 29/11/11 A		29/11/11 A	06/01/12 A	<u> </u>	SKW05937	KD0060, SKW1261, SKW1311, SKW1371	-				1	
West Slope Cutting (+12.5mPD to +4.8mPD)	300	100 07/01/12 A		07/01/12 A	27/03/12 A	<u> </u>	KD0060	SKW05942	-		111111 <mark>1 </mark> 1 1		i	i i
Slope Stormwater Drainage East Slope Cutting (+50mPD to +42.5mPD)	300 72	100 28/03/12 A 100 04/03/11 A		28/03/12 A 04/03/11 A	25/05/12 A 14/05/11 A	1	SKW059321	SKW059412			+++++++++++++++++++++++++++++++++++	· <mark>-</mark>		
East Slope Cutting (+35mPD to +35mPD) East Slope Cutting (+42.5mPD to +35mPD)	82	100 04/03/11 A		15/05/11 A	04/08/11 A		SKW059411	SKW059413	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		!	:
East Slope Cutting (+42.5mPD to +25.5mPD)	55	100 15/08/11 A		05/08/11 A		1	SKW059412	SKW059414	-				1	
East Slope Cutting (+27.5mPD to +20mPD)	61			29/09/11 A			SKW059413	SKW059415	-				!	:
East Slope Cutting (+20mPD to +12.5mPD)	39	100 29/11/11 A	06/01/12 A		06/01/12 A		SKW059414	SKW059416	-				i	i
East Slope Cutting (+12.5mPD to +4.8mPD)	81	100 07/01/12 A		07/01/12 A		1	SKW059415	KD0060, SKW1311, SKW1371	+		- + - <mark>- - - - - - - - - </mark>	·		+
Slope Miscellaneous Works	61			26/05/12 A		1	SKW05941	SKW05943, SKW0595	-		11111 <mark>1 </mark> 1 1		i	i
Buttress & surface Protection (SI No. 31)	60	100 03/07/12 A				1	SKW05942	SKW05944	+			· <mark>-</mark>		
Slope Treatment (SI. No. 36)	60	100 03/07/12 A					SKW05943	SKW05945	-		11111 <mark>1</mark> 1 1		i	i
Rock Slope Treatment (SI. No. 68)	60	100 01/08/12 A					SKW05944	SKW05946	-				1	
Rock Slope Treatment (SI. No. 98)	60	100 10/09/12 A				1	SKW05945	SKW05947	SI. No. 98)			·		
Rock Slope Treatment (SI. No. 115)	60	100 01/11/12 A				1	SKW05946	KD0135	SI. No. 115)				1	
Soil Nailing Works (VO. No. 52)	300	100 10/02/12 A		10/02/12 A	28/02/13 A			SKW05963	. No. 52)				!	
Rock Meshing	60	0 07/02/14	07/04/14	07/08/15	05/10/15	546d	SKW05942, SKW05972	KD0165	1				1	
Determine Alignment & Foundation Design of RFB	120	100 10/02/12 A	08/06/12 A	10/02/12 A	08/06/12 A		SKW05948	SKW059631, SKW05964, SKW05965	1					
GEO Approval of Foundation Design	70		31/07/12 A	09/06/12 A	31/07/12 A		SKW05963	SKW05968			- + + 1+1+1			
Fabrication & Shipping of RFB Material	180	100 09/06/12 A	30/11/12 A	09/06/12 A	30/11/12 A		SKW05963	SKW05972						
Site clearance & Formation of access	62		31/07/12 A	09/06/12 A	31/07/12 A	1	SKW05963	SKW05967	╊╺╺╸╸╸╸╸			·		÷-
Plant mobilization	14		15/01/13 A	02/01/13 A	15/01/13 A		SKW05965	SKW05968]				1	
Construction of anchors & pull out test	180	90 16/01/13 A	17/07/13	16/01/13 A	14/01/15		SKW059631, SKW05967	SKW 05969				Construc		nors & pull out
Construction of Foundation	120	00	10/08/13	11/07/13 A	07/02/15	546d	SKW 05968	SKW05970						onstruction of
Proof Load Test	60	v	09/10/13	08/02/15	08/04/15		SKW 05969	SKW05971	1		1111 <mark>1 </mark> 1			
Transportation of Material (To the slope crest)	30	0 10/10/13	08/11/13	09/04/15	08/05/15	546d		SKW05972					1	
Installation of Flexible barrier	90	0 09/11/13	06/02/14	09/05/15	06/08/15	546d	SKW05964, SKW05971	KD0165, SKW0595					i	i
Section W 5 - P.S. No. 1 in Portion D	<u> </u>		1	1										
Civil & Geotechnical Works											1111 <mark>1 </mark>		i	i
Site Clearance	7	100 17/05/10 A	23/05/10 A	17/05/10 A	23/05/10 A		KD0020	SKW0652	1				1	· · ·
Initial Survey	7	100 24/05/10 A					SKW0651	SKW0661, SKW0681	1		1111 <mark>1 </mark> 1		I	i
Transplantation for uncommon vegatation	30						SKW0652	SKW0681	1				1	
· · · ·	· · · · ·			•	-	•			•			<u>'</u>		
Start date 05/05/10 Early bar										Date	Revision			pproved
Dete dete 00/04/17 Critical bar							Engineering Corp. Ltd			30/05/13	Revision 0	RH	V	/C
Data date 30/06/13 Run date 18/07/13				-			t No. DC/2009/13							
							Treatment Works at							
c Primav era Systems, Inc.				3-mor	ith Rollin	g Prog	ramme (July 2013 - Se	ep 2013						
Einich milestone point														

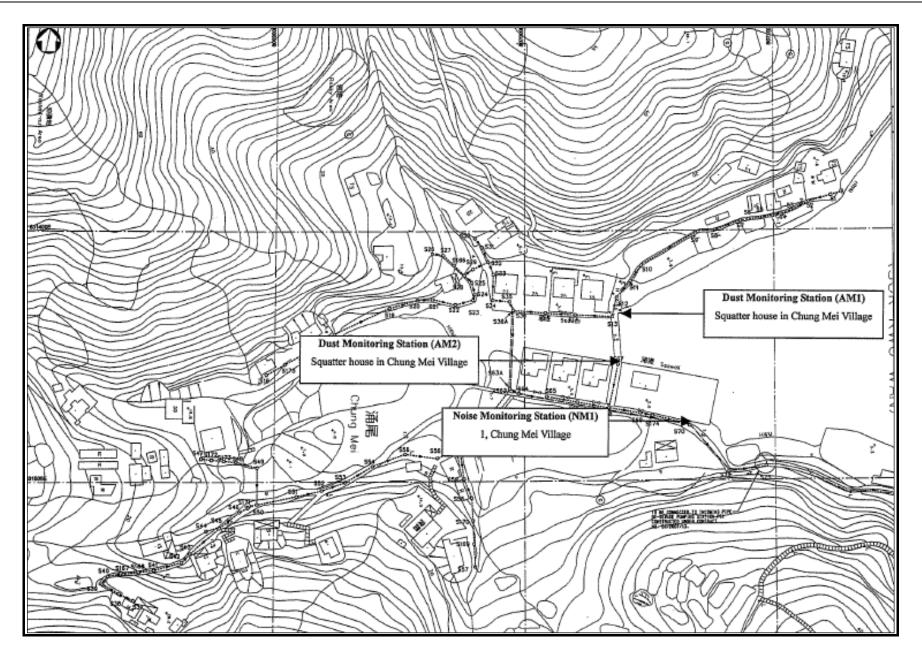
	Original	Percent Early	Early	Late Late	Total							
		Complete Start	Finish	Start Finish	Float	Predecessors	Successors	APR	МАҮ	2013 JUN J	UL	AUG
Excavate to lower the working platform to +3mPD	49	100 30/06/10 A	17/08/10 A	30/06/10 A 17/08/10 A		SKW0260, SKW0265, SKW0652,	SKW0691			11111	1	I
ELS to +2.2mPD	40	100 18/08/10 A	26/09/10 A	18/08/10 A 26/09/10 A		SKW0681	SKW0721					I
Excavate to formation	270	100 17/09/10 A	13/06/11 A	17/09/10 A 13/06/11 A		SKW0691	SKW0741				i	
Construction of Manholes (VO. No. 21A)	107	80 28/10/13 A	16/12/13	28/10/13 A 08/07/14	204d	E&M11800	E&M3360			1111 <mark>1</mark> 1_1	i	i
Structural Works												
RC Works for Structure	240		08/02/12 A	14/06/11 A 08/02/12 A		SKW0721	KD0070, SKW0841				i	I
ABWF works	60	100 09/02/12 A	08/04/12 A	09/02/12 A 08/04/12 A		SKW0741	E&M1101, E&M1102, E&M1103, E&M1104,					
300mm U-channel & 675mm Step Channel	30	0 25/11/13	25/12/13	06/09/15 05/10/15	649d	E&M11800, SKW0841	KD0165					
E&M Works (PS1)												
Submission & Delivery										1111 <mark>1</mark> 1 1		!
Submission of Pumps	198		24/02/11 A	17/05/10 A 24/02/11 A		KD0020	E&M1011					
Submission of Gen-Set	198	100 17/05/10 A	24/02/11 A	17/05/10 A 24/02/11 A			E&M1012			1111		!
Submission of DeO System	198	100 17/05/10 A	16/07/13 A	17/05/10 A 16/07/13 A			E&M1013				Submission of De	eO System
Submission of LV SB & MCC	180	100 17/05/10 A	09/01/12 A	17/05/10 A 09/01/12 A			E&M1014					1
Submission of Instrumentation	243	100 17/05/10 A	12/03/12 A	17/05/10 A 12/03/12 A			E&M1015				_ i	L
Submission of FS System	243	100 17/05/10 A		17/05/10 A 30/09/12 A			E&M1016					1
Submission of BS System	243	97 17/05/10 A	07/07/13	17/05/10 A 10/02/14	219d		E&M1017				nission of BS Syster	m
Delivery of Pumps	150	100 24/02/11 A		24/02/11 A 21/07/11 A		E&M1001	E&M1101	1				I I
Delivery of Gen-Set	150	100 24/02/11 A		24/02/11 A 23/09/11 A		E&M1002	E&M1102	4		1111 <mark>0 </mark> 1		
Delivery of DeO System	150	100 11/07/11 A		11/07/11 A 28/10/11 A		E&M1003	E&M1103	+				
Delivery of LV SB & MCC	150	100 01/06/12 A		01/06/12 A 31/07/12 A		E&M1004	E&M1104			iiii i	i	i
Delivery of Instrumentation	90	100 01/11/11 A	03/11/11 A	01/11/11 A 03/11/11 A		E&M1005	E&M1105					1
Delivery of FS Equipment	107	80 01/12/11 A	21/07/13	01/12/11 A 10/02/14	204d	E&M1006	E&M1106				Delivery of FS	
Delivery of BS Equipment	107	80 15/11/11 A	28/07/13	15/11/11 A 04/03/14	219d	E&M1007	E&M1107				Delivery	y of BS Equipmer
Installation, T&C				•								I
Install Pumps	55	90 02/10/12 A	05/07/13	02/10/12 A 12/03/14	250d	E&M1011, SKW0841	E&M1110, E&M1140			Install	Pumps	1
Install Gen Set	55	100 02/10/12 A	05/05/13 A	02/10/12 A 05/05/13 A		E&M1012, SKW0841	E&M1110, E&M1140		Install Gen Set		i	i
Install DeO System	55	90 03/12/12 A	05/07/13	03/12/12 A 12/03/14	250d	E&M1013, SKW0841	E&M1110, E&M1140		- , - , - ,	Install	DeO System	1
Install LV SB & MCC	55	100 02/01/13 A	26/03/13 A	02/01/13 A 26/03/13 A		E&M1014, SKW0841	E&M1140	all LV SB & MCC ⁻	¦4 ,	aa <mark>c</mark> -r'	i	I
Install Instrumentation	55	48 01/11/12 A	28/07/13	01/11/12 A 12/03/14	227d	E&M1015, SKW0841	E&M1140				Install Ir	nstrumentation
Install FS Equipment	55	45 02/10/12 A	20/08/13	02/10/12 A 12/03/14	204d	E&M1016, SKW0841	E&M1130, E&M1140					Install
Install BS Equipment	55	85 02/10/12 A	05/08/13	02/10/12 A 12/03/14	219d	E&M1017, SKW0841	E&M1110, E&M1140				-In	nstall BS Equipm
Install Valves, Pipes & Fittings	46	100 02/01/13 A	27/03/13 A	02/01/13 A 27/03/13 A		E&M1101, E&M1102, E&M1103,	E&M1120	tall Valves, Pipes & Fittir	ngs 11111 		⁻ ¹ !	1
Hydraulic Test of Pipeworks	7	50 09/05/13 A	09/08/13	09/05/13 A 18/04/14	252d	E&M1110	E&M11800					Hydraulic Test
Form 501 Submission to FSD	28	0 20/08/13	17/09/13	21/03/14 18/04/14	213d	E&M1106	E&M11800	1	I I I I I I I I I I I I I I I I I I			
Cabling Works	43	80 21/05/13 A	29/08/13	21/05/13 A 21/03/14	204d	E&M1101, E&M1102, E&M1103,	E&M1150	T				
Insulation Tests of Cables and Cable Termination	7	80 25/06/13 A	30/08/13	25/06/13 A 22/03/14	204d	E&M1140	E&M1160	1				
Engergization	3	100 01/07/13 A	02/08/13 A	01/07/13 A 02/08/13 A		E&M1150	E&M1170	1			Eng	ergization
Functional and Performance Tests of Equipment	30	10 02/01/13 A	26/09/13	02/01/13 A 18/04/14		E&M1160	E&M11800					1
Commissioning Test	60	0 26/09/13	25/11/13	18/04/14 17/06/14	204d	E&M0350, E&M1120, E&M1130,	SKW0722, SKW0861			IIII	i	i
Section W 6 - Sewer and PS No.2 in Portions E&H												I
Civil & Geotechnical Works										<mark>.</mark> .	i	I
Site Clearance	7			17/05/10 A 23/05/10 A		KD0020	SKW0891	4				1
Plant mobilization	7	100	23/05/10 A			SKW0881	SKW0892	4		1111 <mark>0 </mark> 1		!
Initial Survey	30	100	22/06/10 A			SKW0891	SKW0901	4				1
Tree Transplantation	90	100	20/09/10 A			SKW0892	SKW0921	4		1111	!	!
Cut Slope & U-Channel	14			21/09/10 A 04/10/10 A		SKW0260, SKW0265, SKW0901	SKW0931, SKW0951	+				
Hoarding & Fencing	14	100 05/10/10 A		05/10/10 A 18/10/10 A		SKW0921	SKW0950, SKW0951	4		1111 <mark>1</mark> 1	!	!
Removal of Rock Boulders before ELS	66	100		19/10/10 A 23/12/10 A		SKW0931	SKW0951	4		1111		
ELS & Excavate to formation	169	100 24/12/10 A		24/12/10 A 10/06/11 A		SKW0921, SKW0931, SKW0950	SKW0971					1
Mass Conc. Retaining Wall	90	00	08/07/13	16/01/13 A 09/02/13	-149d	SKW1081	KD0155	-		11111 1	s Conc. Retaining	vvali
LCS (ChA0+45 to 1+75) VO.7	90	100 24/03/12 A		24/03/12 A 21/06/12 A		PRE0100, SKW1021 SKW1491	SKW15111	+ -				
Twin DN150 DI Rising Main (ChA1+75 - ChA5+79)	180	100 22/06/12 A		22/06/12 A 30/11/12 A	070.1		SKW1531					
Twin DN150 DI Rising Main (ChA0+00 - ChA0+45)	30	00	04/07/13	01/02/13 A 08/07/14	370d	SKW1581	E&M3360				N150 DI Rising Ma – – – – – – – – –	ann (Chau+00 - (+ -
Extent village sewers S163.1 & S164.1	34	100 30/11/12 A	10/01/13 A	30/11/12 A 10/01/13 A		SKW15111	SKW1581	<u> </u>		<u> </u>		
									Date	Revision	Checked	Approved
	1			iahea l	[.] Civil	Engineering Corp. Ltd			30/05/13	Revision 0	RH	VC
Finish date 06/04/17									00/00/10		1111	
Finish date 06/04/17 Progress bar Critical bar Data date 30/06/13 Critical bar				C	ontrad	ct No. DC/2009/13						
Finish date 06/04/17 Data date 30/06/13 Run date 18/07/13				C Construction of S	ontrac ewag	ct No. DC/2009/13 e Treatment Works at \	YSW & SKW					
Finish date 06/04/17 Data date 30/06/13 Run date 18/07/13 ▲ Progress point				C Construction of S	ontrac ewag	ct No. DC/2009/13	YSW & SKW	-				

	Description		Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		
	Construct Manhole no. S163 & S164	34	100 11/01/13			28/02/13 A	Tiour	SKW1531	KD0135, SKW15112	APR S163 & S164	MAY
	Structural Works	54	100 11/01/13	20/02/13 A	11/01/13 A	20/02/13 A				5100 & 0104	
	Structural Works (Phase 1)	245	100 11/06/11	A 10/02/12 A	11/06/11 A	10/02/12 A	1	SKW0951	KD0080, SKW1021	-	
	Structural Works (Phase 2)	42	100 11/02/12			23/03/12 A		SKW0971	SKW1061, SKW1081, SKW1491	-	
	ABWF Works	90	100 24/03/12		24/03/12 A	21/06/12 A		SKW1021	E&M2101, E&M2102, E&M2103, E&M2104,	-	
	375mm U-channel/catchpits/outfall	30	100		22/06/12 A	31/01/13 A		SKW1021, SKW1061	KD0155, SKW0961		
	E&M Works (PS2)	00	100 22/06/12		22/00/12/1	01/01/10//					
	Submission & Delivery										
	Submission of Pumps	198	100 17/05/10	A 24/02/11 A	17/05/10 A	24/02/11 A	1	KD0020	E&M2011		
	Submission of Gen-Set	198	100 17/05/10			24/02/11 A			E&M2012	-	
	Submission of DeO System	198	100			11/07/11 A			E&M2013	-	
	Submission of LV SB & MCC	271	100			30/06/12 A			E&M2014	-	
	Submission of Instrumentation	243	100			30/06/12 A			E&M2015	-	
	Submission of FS System	243	100 17/05/10 97 17/05/10		17/05/10 A	12/09/12	-297d		E&M2016		
	Submission of BS System	243	97 17/05/10		17/05/10 A	04/10/12	-237d		E&M2017	-	
	Delivery of Pumps	150			1	21/07/11 A	-2750	E&M2001	E&M2101		
	Delivery of Gen-Set	150	100			23/09/11 A		E&M2002	E&M2102	-	
	Delivery of DeO System	150	100			28/10/11 A		E&M2003	E&M2103	-	
	Delivery of LV SB & MCC	150	100			31/07/12 A		E&M2004	E&M2104		
		90	100 29/02/12 100 21/06/11					E&M2005	E&M2105	-	
	Delivery of Instrumentation Delivery of FS Equipment	90 107			21/06/11 A	03/11/11 A	-297d	E&M2006	E&M0350, E&M2106		
	Delivery of BS Equipment		80 01/12/11		01/12/11 A	04/10/12		E&M2007	E&M2107		lI
		107	80 15/01/11	A 28/07/13	15/01/11 A	26/10/12	-2750	EQIVIZUOT	EaWI2107		
	Installation, T&C					40/04/40	470.1				
	Install Pumps	55	80 02/10/12		02/10/12 A	12/01/13	-1790	E&M2011, SKW1061	E&M2110		
	Install Gen Set	55	100 01/09/12			05/05/13 A		E&M2012, SKW1061	E&M2110	-	Install Gen Set
	Install DeO System	55	90 03/12/12		03/12/12 A	12/01/13	-1740	E&M2013, SKW1061	E&M2110		
	Install LV SB & MCC	55	100 02/01/13		1	31/01/13 A	074.1	E&M2014, SKW1061	E&M2140	-	
	Install Instrumentation	55	40 31/05/13		31/05/13 A	03/11/12		E&M2015, SKW1061	E&M2140		
	Install FS Equipment	55	45 02/10/12		02/10/12 A	03/11/12	-297d	E&M2016, SKW1061	E&M2140	-	<u> </u>
	Install BS Equipment	55	85 01/09/12		01/09/12 A	03/11/12	-275d	E&M2017, SKW1061	E&M2110, E&M2140		
	Install Valves, Pipes & Fittings	46	100 02/01/13			31/01/13 A		E&M2101, E&M2102, E&M2103,	E&M2120	-	
	Hydraulic Test of Pipeworks	7	100 02/01/13			31/01/13 A		E&M2110	E&M2130		
	Form 501 Submission to FSD	28	0 05/08/13	02/09/13	13/01/13	09/02/13		E&M2120	KD0155		
	Cabling Works	43	80 01/02/13		01/02/13 A	12/11/12	-297d	E&M2104, E&M2105, E&M2106,	E&M2150	-	<u> </u>
	Insulation Tests of Cables and Cable Termination	7	60 01/02/13		01/02/13 A		-297d	E&M2140	E&M2160	·	
	Engergization	3	100 01/02/13		01/02/13 A	25/03/13 A		E&M2150	E&M2170	ergization	
	Functional and Performance Tests of Equipment	30	10 15/01/13		15/01/13 A	11/12/12	-297d	E&M2160	E&M2180	-	
	Commissioning Test	60	0 05/10/13	04/12/13	12/12/12	09/02/13	-297d	E&M0350, E&M2170	KD0155		
	Section W7 - SKW STW, Sewer and Submarine Outfal	I								-	
	Submarine Outfall	1			I	I		1		-	
	Approval of IHS Consultant	180	100 17/05/10		17/05/10 A				SKW1131		
	Hydrographical Survey (SKW)	300	100 01/02/11		01/02/11 A	28/02/11 A		KD0020, SKW1130	SKW1231		
	Baseline Monitoring (Water)	213	100 27/07/10		27/07/10 A	31/12/10 A		SKW0260, SKW0265	SKW1151	-	
	Set up Temporary Working Platform	90	100 15/06/11		1	30/09/11 A		PRE0090, SKW1141	SKW1171		
	ELS for HDD Set-up (SKW)	90	100 01/09/11		01/09/11 A	30/09/11 A		SKW1151	SKW1181		
	Mobilization of HDD plant & equipment to SKW	8	100 06/01/12		06/01/12 A	07/01/12 A		SKW1171, YSW0360	SKW1191	4	
	Setting up at drillhole location	7	100 09/01/12		09/01/12 A	14/01/12 A		SKW1181	SKW1201	4	
	Drill pilot hole and reaming hole - NS280 - 750m	33	100 16/01/12		1	16/02/12 A		SKW1191	SKW1211	-	
	Receiving Pit for HDD (SKW)	13	100 16/01/12		1	29/02/12 A		SKW1201	SKW1221		
	Installaiton of NS280 HDPE 450mm dia. pipe	61	100 31/03/12		31/03/12 A	30/04/12 A		SKW1211	KD0090, SKW1231, SKW1441		
	Removal of Receiving Platform	50	100 01/05/12	_	01/05/12 A	19/06/12 A		SKW1131, SKW1221	SKW1241		
	Dredging of MD for Diffuser (PS CL 1.122(3))	16	100 20/06/12		20/06/12 A	05/07/12 A		SKW1231	E&M3359, SKW1251	_	
	Diffuser Construction	77	100 01/09/12		01/09/12 A	16/11/12 A		SKW1241	SKW1431		
	Removal of silt curtain	1	100 17/11/12		17/11/12 A	17/11/12 A		SKW1251	KD0090, SKW1440, YSW0365		
	Sewer of Outfall Chamber to connection pit VO37A	90	80 31/12/12		31/12/12 A	11/04/14		SKW1431	SKW1441		
	Sewer of Connection Pit to Outfall VO45	177	70 05/06/13	A 09/09/13	05/06/13 A	03/06/14	268d	SKW1221, SKW1440	E&M3359, KD0090		
Sta	art date 05/05/10 Early bar										Date
	nish date 06/04/17 Progress bar					Leader	r Civil	Engineering Corp. Ltd.			30/05/13
	ta date 30/06/13Summary bar							ct No. DC/2009/13			
	n date 18/07/13 → Progress point Critical point				Construe			e Treatment Works at Y	SW & SKW		
	ge number 9A							gramme (July 2013 - Se			
С	Primav era Systems, Inc. Start milestone point					·	- •	- · •	-		
					-						

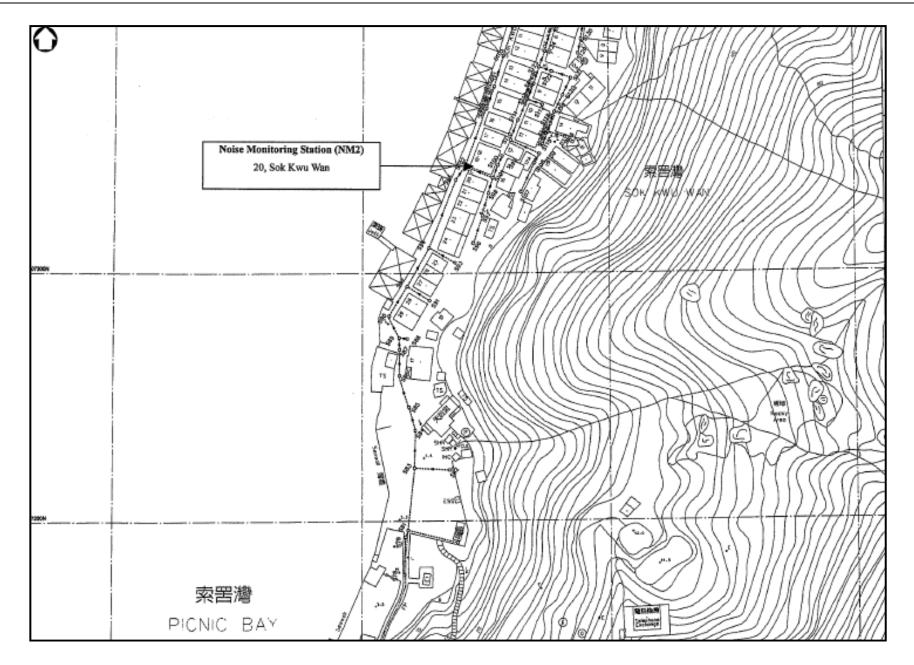
Description		Percent Early	Early	Late Late	Total	Predecessors	Successors			2013		
	Duration	Complete Start	Finish	Start Finish	Float			APR	MAY	2013 JUN	JUL	AUG
SKW STW											1	!
Submission & Delivery (E&M)		Lavrance	I		-	L=	1				i i	i
Delivery of MBR M.M 1st shipment for Temp STP	150	100 24/02/11 A		24/02/11 A 17/10/11 A		E&M0160	E&M3170	4			<u> </u>	l I
Delivery of Grit Removal Equipment	180	100 10/10/11 A	29/12/11 A	10/10/11 A 29/12/11 A		E&M0150	E&M3190					
Delivery of Fine Screens	136	100 12/09/11 A		12/09/11 A 30/11/11 A		E&M0120	E&M3210					
Delivery of Pumps	136	100 23/06/11 A				E&M0130	E&M3220					Т I
Delivery of Submersible Mixers	180	100 26/07/11 A		26/07/11 A 17/11/11 A		E&M0140	E&M3230					4 F -
Delivery of Sludge Dewatering Equipment	210	70 01/09/11 A	31/08/13	01/09/11 A 11/01/14	133d	E&M0170	E&M3240	_				
Delivery of Valves, Pipes & Fittings	180	70 30/08/11 A	27/08/13	30/08/11 A 19/11/13	85d	E&M0180	E&M3250	_				
Delivery of Penstocks	180	100 12/08/11 A	24/12/11 A	12/08/11 A 24/12/11 A		E&M0190	E&M3260				11	·· · · · ·
Delivery of instruments	180	100 21/06/11 A	03/11/11 A	21/06/11 A 03/11/11 A		E&M0200	E&M3270		-			+ + -
Delivery of MCC LVSB	180	0 01/07/13	28/12/13	07/04/13 03/10/13	-86d	E&M0210	E&M3261					
Delivery of BS Equipment	180	8 03/07/12 A	17/01/14	03/07/12 A 04/12/13	-43d		E&M3291					
Delivery of FS Equipment	180	5 30/06/12 A	03/02/14	30/06/12 A 23/12/13	-42d	E&M0230	E&M0340, E&M3300					
Construction of Grid A-G				· · ·							11	
Excavate for SKW STW Structure (Grid A -G)	164	100 28/03/12 A	31/08/12 A	28/03/12 A 31/08/12 A		SKW04885, SKW05938	SKW1271, SKW1371	1			ii ii	
55 M3 Fire Sprinkle Water Tank (FL +0.9 mPD)	36	100 03/07/12 A		03/07/12 A 31/07/12 A		SKW1261	SKW1281	1		!		
Ground Floor Slab (Grid A-G)	46	100 03/07/12 A		03/07/12 A 31/07/12 A		SKW1271	SKW1291	1			۱۱ ۱۱ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	
Columns & Walls to 1/F & 1/F Slab (Grid A-G)	50	100 03/07/12 A				SKW1281	KD0090, SKW1301	T				
Columns & Walls to R/F & R/F Slab (Grid A-G)	50	100 01/09/12 A		01/09/12 A 31/01/13 A		SKW1291	E&M3261, E&M3291, E&M3311, SKW1411				11	
ABWF Works	105	30 01/02/13 A	11/09/13	01/02/13 A 19/06/13	-84d	SKW1301	E&M3261, E&M3291, E&M3311, SKW1551					
Construction of Grid G-N		00 1111				I						
Excavate for SKW STW Structure (Grid G-N)	90	100 28/03/12 A	25/06/12 A	28/03/12 A 25/06/12 A	1	SKW05938, SKW059416	SKW1321, SKW1371					
Equalization Tank no.1 & 2 with base slabs (-2.1	42	100 26/06/12 A		26/06/12 A 30/09/12 A		SKW1311	SKW1331	-			11	
Columns & Walls from B/S to G/F Slab (Grid G-N)	35	100 20/00/12 A		01/09/12 A 30/09/12 A		SKW1321	SKW1341	-				
Ground Floor Slab (Grid G-N)	35	100 01/09/12 A		01/09/12 A 17/12/12 A		SKW1331	SKW1351	-		!		
Columns & Walls to 1/F & 1/F Slab (Grid G-N)	28		15/01/13 A	01/11/12 A 15/01/13 A		SKW1341	SKW1361	-			11	
	35	100 01/11/12 A			1174	SKW1351	SKW1451				Iumns & Walls to R/F & F	IIIII P/E Slob (Grid (
Columns & Walls to R/F & R/F Slab (Grid G-N)		90 01/11/12 A	03/07/13	01/11/12 A 08/03/13	-117d	SKW1361		-			UITINS & WAIIS LO H/F & F	
ABWF Works	54	20 05/06/13 A	15/08/13	05/06/13 A 21/04/13	-1170	31.001	E&M3170, E&M3190, E&M3210, E&M3291, E&M3300, SKW1391, SKW1551		│ _		11	
Construction of Grid N-T					1						<u> </u>	
Excavate for SKW STW Structure (Grid N-T)	97	100 03/07/12 A	25/01/13 A	03/07/12 A 25/01/13 A	1	SKW05938, SKW059416, SKW1261,	SKW1381	-		li	11	1 I
Ground Floor Slabs include MBR Tank (Grid N-T)	58	100 02/10/12 A		02/10/12 A 31/01/13 A		SKW1371	SKW 1391	 N-T)			11	
Columns & Walls to 1/F & 1/F Slab (Grid N-T)	35	100 31/05/13 A		31/05/13 A 05/07/13 A		SKW1381, SKW1451	SKW1401	+			olumns & Walls to 1/F &	
Columns & Walls to R/F & R/F Slab (Grid N-T)	35			03/07/13 A 29/04/13	117d	SKW1391	E&M3240, SKW0491, SKW1421	-	4			
ABWF Works		15 06/08/13 A	14/10/13	06/08/13 A 19/06/13		SKW1401	E&M3240, SKW1551	-				
	60 35					SKW1401 SKW1411, SKW1421, SKW1451	SKW1561			·		
Drainage (SSMH1-SSMH7)	35	0 14/10/13	18/11/13	20/06/13 24/07/13	-11/0	SKW 1411, SKW 1421, SKW 1451	55.00 1001				11	
											11	
Sewer (SMFH1-SMFH2, SMFH3-SMFH7)	220	0 18/11/13	26/06/14	25/07/13 01/03/14		SKW1551	SKW1571				11	
Roadwork & Drainage Channel (SKW)	220	0 26/06/14	01/02/15	02/03/14 07/10/14	-117d	SKW1561	KD0090			1	П	
SKW STW - E&M Works		•	•									
Install Membrane Modules in MBR Tank No. 1 to 2	100	0 15/08/13	23/11/13	07/01/14 16/04/14	144d	E&M3010, SKW1451	E&M3311			li		
Install Grit Removal Equipment	60	0 14/10/13	13/12/13	21/09/13 19/11/13	-24d	E&M3030, E&M3210, SKW1451	E&M3250, E&M3320	1			1	1
Install Fine Screens	60	0 15/08/13	14/10/13	24/05/13 22/07/13	-84d	E&M3060, SKW1451	E&M3190, E&M3220, E&M3250, E&M3260,	1			i	
		° (E&M3320				1	
Install Pumps	75	0 14/10/13	28/12/13	23/07/13 05/10/13	-84d	E&M3070, E&M3210	E&M3230, E&M3250, E&M3260, E&M3320	1			I	
Install Submersible Mixers	45	0 28/12/13	11/02/14	06/10/13 19/11/13	-84d	E&M3080, E&M3220	E&M3250, E&M3260, E&M3311, E&M3320				1	
Install Sludge Dewatering Equipment	74	0 14/10/13	27/12/13	12/01/14 26/03/14	90d	E&M3090, SKW1401, SKW1421	E&M3320					
Install Valves, Pipes & Fittings	75	0 11/02/14	27/04/14	20/11/13 02/02/14	-84d	E&M3100, E&M3190, E&M3210, E&M3220, E&M3230	E&M3270, E&M3291, E&M3300, E&M3310	1		1	I	
						E&M3220, E&M3230					1	
Install Penstocks	135	0 11/02/14	26/06/14	03/12/13 16/04/14	-71d	E&M3110, E&M3210, E&M3220,	E&M3311			l i	i	
Install SAT of MCC & LVSB	174	0 28/12/13	20/06/14	04/10/13 26/03/14	-86d	E&M3140, SKW1301, SKW1411	E&M3311, E&M3320				1	
Install instruments	60	0 27/04/14	26/06/14	16/02/14 16/04/14	-71d	E&M3130, E&M3250	E&M3311	1			I	
Install BS Equipment	180	0 26/02/14	25/08/14	05/12/13 02/06/14	-84d	E&M3150, E&M3250, SKW1301, SKW1411, SKW1451	E&M3331, E&M3359			·		
						SKW1411, SKW1451					I	
Install FS Equipment	161	0 26/02/14	06/08/14	24/12/13 02/06/14	-65d	E&M3160, E&M3250, SKW1451	E&M3331, E&M3359	1		1	I.	
		- I			<u> </u>		•					•
Start date 05/05/10 Early bar				- ا - م - ا					Date	Revision		Approved
Critical bar						Engineering Corp. Ltd	I.		30/05/13	Revision 0	RH	VC
Data date 30/06/13 Summary bar Run date 18/07/13 Progress point						ct No. DC/2009/13						
Page number 104						e Treatment Works at '						
C Primav era Sy stems, Inc. ♦ Summary point Start milestone point				3-month Rollir	ig Pro	gramme (July 2013 - So	ep 2013					
	.t											

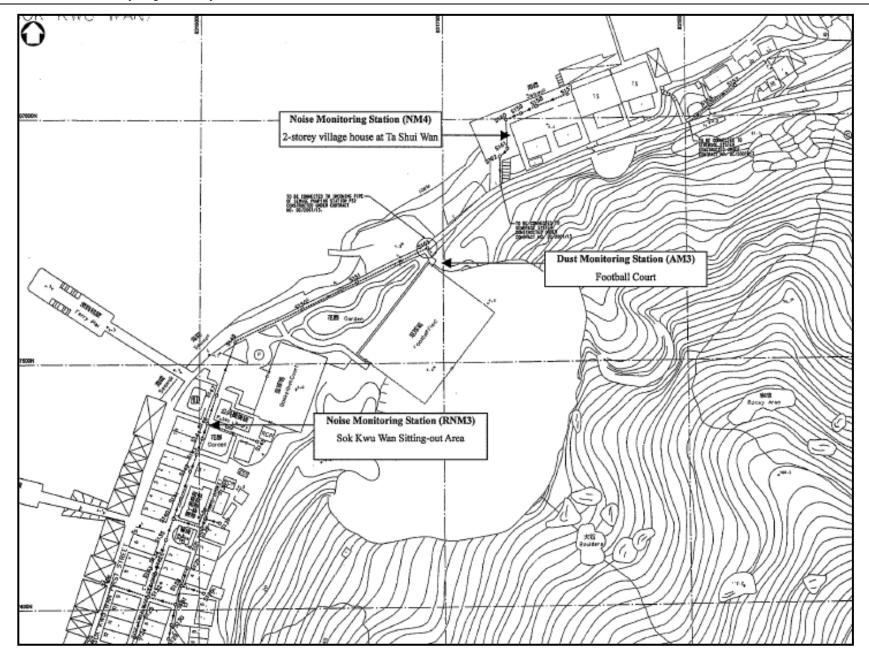
Description	Original	Percent	Early	Early	Late	Late	Total	Predecessors	Successor			0010			
Description	Duration	Complete	Start	Finish	Start	Finish	Float	Predecessors	Successors	APR	MAY	2013 JUN		UL	AUG
Hydraulic Tests of Pipeworks	90	C	27/04/14	26/07/14	06/03/14	03/06/14	-53d	E&M3250	E&M3359				1		1
Cabling Works	47	0	26/06/14	12/08/14	17/04/14	02/06/14	-71d	E&M3170, E&M3230, E&M3260, E&M3261, E&M3270, SKW1301,	E&M3331, E&M3359						1
Cabling Works for Dewatering Equipment	47	0	20/06/14	06/08/14	27/03/14	12/05/14	-86d	E&M3190, E&M3210, E&M3220, E&M3230, E&M3240, E&M3261	E&M3321	_					
Insulation Tests of Cables and Cable Termination	21	0	06/08/14	27/08/14	13/05/14	02/06/14	-86d	E&M3320	E&M3331						<u></u>
Energization	1	C	27/08/14	28/08/14	03/06/14	03/06/14	-86d	E&M3291, E&M3300, E&M3311,	E&M3359						1
Functional and Performance Tests of Equipment	35	0	28/08/14	02/10/14	04/06/14	08/07/14	-86d	E&M3291, E&M3300, E&M3310, E&M3311, E&M3331, SKW1241,	E&M3360						1
T&C Period	91	0	02/10/14	01/01/15	09/07/14	07/10/14	-86d	E&M0340, E&M3359, SKW0722, SKW15112	E&M3370, KD0090						1
Trial Operation Period	456	0	01/01/15	01/04/16	23/09/15	06/04/17	265d	E&M3360		-			i		i
Rising Main				<u> </u>		.									+
Subm, Approval & Delivery of DI pipes	120	100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1501				i		I
LCS (ChB0+00 - ChB1+20)	300	100	14/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A		PRE0100, SKW1481	SKW1521	-					1
Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	85	11/07/11 A	06/08/13	11/07/11 A	07/10/14	428d	SKW1501	KD0090						Twin DN150 DI
Section W 8 - Landscape Softworks in All Portions						<u> </u>	<u> </u>		•						
Tree Survey	21	100	17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A		KD0020	SKW1621				'		
Preservation & Protection of Trees	1053	99	17/05/10 A	10/07/13	17/05/10 A	03/04/13	-98d	KD0020	KD0100, SKW1631				Pr	eservation & Pro	tection of Trees
Transplantation at SKW	90	100	07/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A		SKW1591	KD0100	1					
Section W 9 - Establishment W orks in All Portions				•					-						
Section W9 - Establishment Works	365	0	10/07/13	10/07/14	04/04/13	03/04/14	-98d	SKW1611	KD0110	1					

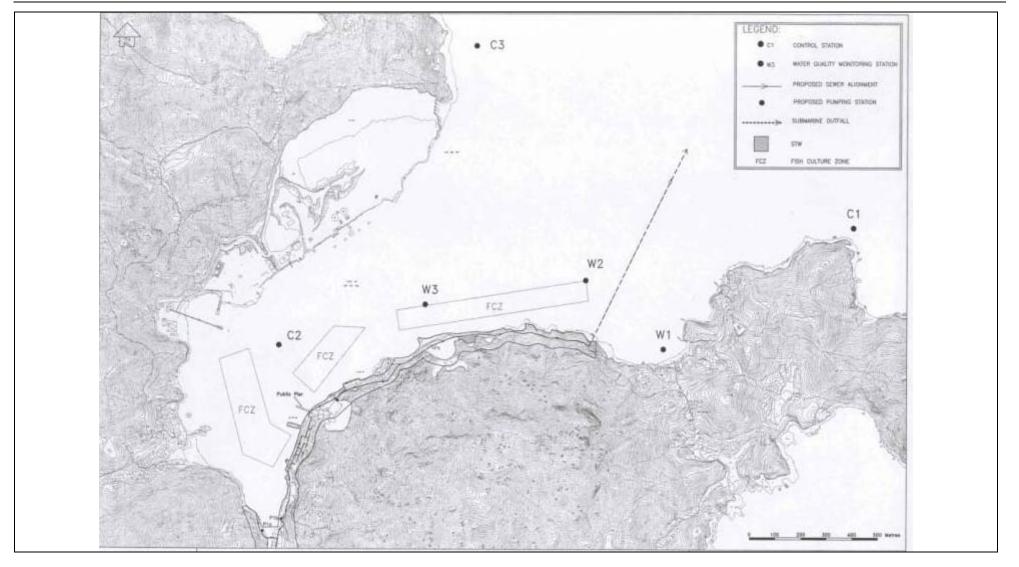
Start date 05/05/10 Early bar Finish date 06/04/17 Progress bar Data date Data date 30/06/13 Summary bar Contract No. DC/2009/13 Run date 18/07/13 Progress point Critical point Page number 11A Summary point Construction of Sew age Treatment Works at YSW & SKW C Primav era Sy stems, Inc. Summary point 3-month Rolling Programme (July 2013 - Sep 2013)	Date 5/13
--	--------------


Revision	Checked	Approved
Revision 0	RH	VC

Appendix D


Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)

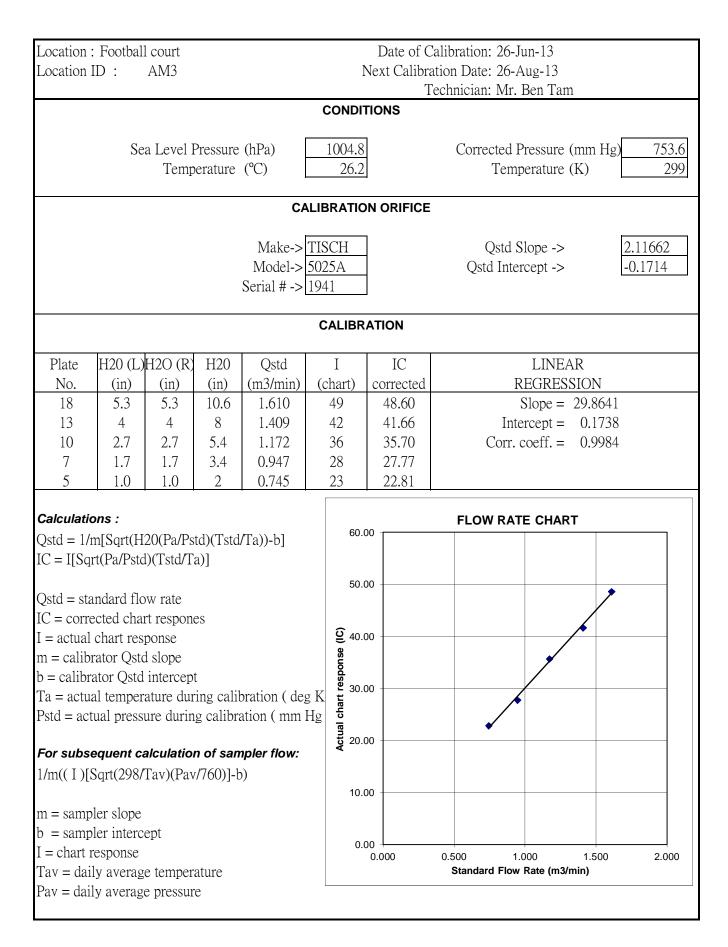

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – July 2013



Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – July 2013

Appendix E

Monitoring Equipments Calibration Certificate


TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

	-		n Chung	Mei Village	2				ration: 26				
Location 1	D :	AM1				N	Vext Calibra						
					00			echi	nician: Mr.	Ben Ta	[[]		
	Se	a Level I	Pressure	(hPa)	10	004.8			Corrected	Pressure	(mm	Hg)	753.6
		Temp	erature	(°C)		26.2			Tem	perature	(K)		299
				CA	LIBR		N ORIFICE						
				Make->	TISC	'H			Ostd	Slope ->		2 1	1662
				Model->					Qstd Inte	-			1714
				Serial # ->					Zota mit	Jeopt ,		01	1711
					CA	LIBRA	ATION						
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	[IC			LINE	AR		
No.	(in)	(in)	(in)	(m3/min)	(cha	art)	corrected]	REGRES	SSION	1	
18	5.2	5.2	10.4	1.595	5.		52.56			Slope =			
13	4	4	8	1.409	4		47.61			ercept =			
10	2.9	2.9	5.8	1.212	42		41.66		Corr.	coeff. =	0.9	975	
7 5	1.7 0.9	1.7 0.9	3.4 1.8	0.947 0.711	30 3		35.70 30.75						
5	0.9	0.9	1.0	0.711	5	1	30.75						
Calculatio	ons :					60.00	,		FLOW RA	TE CHAI	RT		
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]		60.00	,						
IC = I[Sqn	t(Pa/Pstc	l)(Tstd/T	a)]									•	
	~					50.00)					/	
Qstd = sta													
IC = correction I		-	es		á	ග 40.00)						
I = actual m = calibr						l) es							
b = calibra	-	-	t			uods							
	_	-		oration (deg	g K	현30.00 번)						
	_		_	ation (mm I	Ig	l cha							
						Actual chart response (IC) 00.05 00.05 00.05)						
	-			npler flow:		4							
1/m((I)[S	Sqrt(298/	Tav)(Pav	r/760)]-b))		10.00							
	11					10.00	,						
m = samp		ont											
b = sample I = chart r		epi				0.00) 0.000	0.50	10 1	.000	1.50	0	2.000
T = chart T Tav = dail	-	e temner	ature			(tandard Flov			v	2.000
Pav = dail										,	,		
Gui			-										

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Squatter house in Chung Mei Village Location ID : $AM2$ Date of Calibration: 26-Jun-13 Next Calibration Date: 26-Aug-13 Technician: Mr. Ben Tam CONDITIONS Sea Level Pressure (hPa) Temperature (°C) CALIBRATION ORIFICE CALIBRATION ORIFICE CALIBRATION ORIFICE CALIBRATION ORIFICE CALIBRATION VILLE CALIBRA	-												
Technician: Mr. Ben Tam CONDITIONS Sea Level Pressure (hPa) 1004.8 Corrected Pressure (mm Hg) 753. Temperature (K) 29 CALIBRATION ORIFICE Make-> TISCH Model> 5025A Serial # -> 1941 Qstd Slope -> 2.11662 0.1714 CALIBRATION ORIFICE CALIBRATION Plate H20 (L)#120 (R) H20 (M Make-> TISCH Model> 5025A Serial # -> 1941 C LINEAR Model> 5025A Serial # -> 1941 CALIBRATION Plate H20 (L)#120 (R) H20 (M CALIBRATION CALIBRATION CALIBRATION TISCH Model> 5020 A 5 Qstd Intercept -> 2.11662 OC CALIBRATION IC LINEAR REGREISSION ISope = 28.2119 ISope = 28.2119 ISope = 28.2119 ISope = 28.2119 ISope = 28.2119 <th cols<="" th=""><th></th><th>-</th><th></th><th>n Chung</th><th>Mei Village</th><th>2</th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th>-</th> <th></th> <th>n Chung</th> <th>Mei Village</th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		-		n Chung	Mei Village	2						
CONDITIONS Sea Level Pressure (hPa) Temperature (°C) Corrected Pressure (mm Hg) 753. Temperature (K) 29 CALIBRATION ORIFICE Make>- TISCH Model>- Qstd Slope -> Qstd Slope -> Qstd Intercept -> 2.11662 -0.1714 CALIBRATION ORIFICE Make>- TISCH Model>- Qstd Slope -> Qstd Intercept -> 2.11662 -0.1714 CALIBRATION Plate No. (in) (in) (in) (m3/min) (chart) corrected REGRESSION TISCH Model>- Qstd Slope -> Qstd Intercept -> -0.1714 18 5.9 5.9 11.8 1.694 59 58.52 Slope = 28.2119 13 4.2 4.2 8.4 1.442 52 51.57 Intercept = 10.4796 10 3.1 3.1 6.2 0.911 31 30.75 Calculations : 0.99 0.9 0.9 Qstd = standard flow rate IC = corrected chart response I = actual chart response I = actual char	Location 1	ID:	AM2				Ν						
Sea Level Pressure (hPa) Temperature (°C) Corrected Pressure (mm Hg 753. Temperature (K) CALIBRATION ORIFICE CALIBRATION ORIFICE Make-> TISCH Model> 5025Λ Serial # -> 1941 Qstd Slope -> 2.11662 0.1714 CALIBRATION Plate H20 (L)H2O (R) H20 Qstd 1 IC LINEAR Qstd Intercept -> 0.1714 Plate H20 (L)H2O (R) H20 Qstd 1 IC CALIBRATION Plate H20 (L)H2O (R) H20 Qstd 1 IC LINEAR REGRESSION No. (in) (in) (in) (m3/min) (chart) corrected REGRESSION No. (in) L18 1.694 59 58.52 Slope = 28.2119 Intercept = 10.4796 10 3.1 3.1 6.2 1.250 45 44.63 Corr. coeff. = 0.9984 7 1.6 1.6 3.2 0.921 37 36.70 Supper 20.050 Galutations :									echnician: Mr.	Ben Tam			
Temperature (°C) 26.2 Temperature (K) 29 CALIBRATION ORIFICE Make-> TISCH Model>> 5025A Serial # -> 1941 Qstd Slope -> Qstd Intercept -> 0.1714 2.11662 0.01714 Plate H20 (L)H2O (R H20 (in) Qstd I IC LINEAR REGRESSION 18 5.9 5.9 11.8 1.694 59 58.52 Slope = 28.2119 13 4.2 4.2 8.4 1.442 52 51.57 Intercept = 10.4796 10 3.1 3.1 6.2 1.2021 37 36.70 Calculations : Qstd = standard flow rate IC = orrected chart respones I = actual chart respones I = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hig Standard Flow Rate (mJ/min) 70.00 FLOW RATE CHART 70.00 10.00 15.00 20.00 10.00 15.00 20.00 14 actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hig B = sampler slope b = sampler slope b = sampler slope Ta = chart respones Tav = daily average temperature 0.500 1.000 1.500 2.000						CC	ONDIT	IONS					
Temperature (°C) 26.2 Temperature (K) 29 CALIBRATION ORIFICE Make-> TISCH Model>> 5025A Serial # >> 1941 Qstd Slope -> Qstd Intercept -> 0.1714 2.11662 0.01714 Plate H20 (L)H2O (R) H2O (in) (in) (in) (in) (chart) (chart) corrected (in) (in) (in) (in) (chart) corrected RECRESSION 18 5.9 5.9 11.8 1.694 59 58.52 Slope = 28.2119 13 4.2 4.2 8.4 1.442 52 51.57 Intercept = 10.4796 10 3.1 3.1 6.2 0.291 37 36.70 Calculations : Qstd = l/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta))-b] IC = actual chart response I = actual chart response I = actual temperature during calibration (mm Hz For subsequent calculation of sampler flow: l/m((1)[Sqrt(298/Tav)(Pav/760)]-b) 70.00 FLOW RATE CHART 9 0.00 10.00 b = sampler slope b = sampler intercept I = chart response Tav = daily average temperature 1.000 0.000 0.500 0.000 1.000 0.000 1.500 2.000		Ç.,	o I ovol I)	(hDa)	10	04.0		Compoted	Juaganna (man		7526	
CALIBRATION ORIFICE Make-> TISCH Model> $5025A$ Serial # > 1941 Qstd Slope -> Qstd Intercept -> 2.11662 0.1714 CALIBRATION Visit of the series of the seri		56											
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Temp	erature	(\mathbf{C})		20.2		Tem	perature (K)	<u> </u>	299	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					CA	LIBR	ATIO						
Serial # -> 1941CALIBRATIONCALIBRATIONPlateH20 (L)H2O (R)H20QstdIICLINEARNo.(in)(in)(in)(m3/min)(chart)correctedREGRESSION185.95.911.81.6945958.52Slope = 28.2119134.24.28.41.4425251.57Intercept = 10.4796103.13.16.21.2504544.63Corr. coeff. = 0.998471.61.63.20.9213736.70SocordS 0.90.91.80.7113130.75Calculations :Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]60.00Qstd = standard flow rateIC = corrected chart responsen = actual temperature during calibration (deg KPstd = actual pressure during calibration (mm HgFor subsequent calculation of sampler flow:I/m((1)[Sqrt(298/Tav)(Pav/760)]-b)m = sampler interceptI = chart responseTa v = daily average temperatureTav = daily average temperature					Make->	TISC	Ή		Qstd S	Slope ->	2.11	662	
CALIBRATIONCALIBRATIONPlateH20 (L)H2O (R)H20 QstdIIICLINEAR REGRESSIONNo.(in)(in)(in)(m3/min)(chart)correctedREGRESSION185.95.911.81.6945958.52Slope = 28.2119134.24.28.41.4425251.57Intercept = 10.4796103.13.16.21.2504544.63Corr. coeff. = 0.998471.61.63.20.9213736.70Calculations :Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]IC = corrected chart responesI = actual chart responesI = actual chart responesI = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm HgFor subsequent calculation of sampler flow: $l/m((I)[Sqrt(298/Tav)(Pav/760)]-b)m = sampler interceptI = chart responseTa + adily average temperatureTa + adily average temperatureV0000000000000000000000000000000$					Model->	5025	А		Qstd Inte	rcept ->	-0.1	714	
Plate H20 (L)H2O (R) H20 (m) Qstd I IC LINEAR No. (in) (in) (in) (m)					Serial # ->	1941							
No. (in) (in) (m3/min) (chart) corrected REGRESSION 18 5.9 5.9 11.8 1.694 59 58.52 Slope = 28.2119 13 4.2 4.2 8.4 1.442 52 51.57 Intercept = 10.4796 10 3.1 3.1 6.2 1.250 45 44.63 Corr. coeff. = 0.9984 7 1.6 1.6 3.2 0.921 37 36.70 5 0.9 0.9 1.8 0.711 31 30.75 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta)]) FLOW RATE CHART Qstd = standard flow rate C = corrected chart response 60.00 60						CA	LIBR	ATION					
No. (in) (in) (m3/min) (chart) corrected REGRESSION 18 5.9 5.9 11.8 1.694 59 58.52 Slope = 28.2119 13 4.2 4.2 8.4 1.442 52 51.57 Intercept = 10.4796 10 3.1 3.1 6.2 1.250 45 44.63 Corr. coeff. = 0.9984 7 1.6 1.6 3.2 0.921 37 36.70 5 0.9 0.9 1.8 0.711 31 30.75 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta)]) FLOW RATE CHART Qstd = standard flow rate IC = corrected chart respones 60.00 6	Plate	H20 (L)	H2O (R)	H20	Ostd	I	[IC		LINEAR			
18 5.9 5.9 11.8 1.694 59 58.52 Slope = 28.2119 13 4.2 4.2 8.4 1.442 52 51.57 Intercept = 10.4796 10 3.1 3.1 6.2 1.250 45 44.63 Corr. coeff. = 0.9984 7 1.6 1.6 3.2 0.921 37 36.70 Corr. coeff. = 0.9984 7 1.6 1.6 3.2 0.921 37 36.70 Corr. coeff. = 0.9984 7 1.6 1.6 3.2 0.921 37 36.70 So.70 State State State State State State State Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta)] Go.00 So.00 So.00 So.00 So.00 9 calibrator Qstd slope So.00 So.00 So.00 So.00 So.00 9 so.00 So.00 So.00 So.00 So.00 So.00 9 so.00 So.00 So.00 So.00 So.00 So.00 9 So.00 So.00					-				F		N		
10 3.1 3.1 6.2 1.250 45 44.63 Corr. coeff. = 0.9984 7 1.6 1.6 3.2 0.921 37 36.70 5 0.9 0.9 1.8 0.711 31 30.75 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate 60.00 60.00 IC = corrected chart response 50.00 50.00 m = calibrator Qstd slope 50.00 50.00 b = calibrator Qstd slope 50.00 50.00 b = calibrator Qstd slope 50.00 50.00 b = calibrator Qstd slope 50.00 50.00 b = calibrator Qstd slope 50.00 50.00 For subsequent calculation of sampler flow: 1/m((1)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope 50.00 10.00 0.00 0.00 0.500 1.000 1.500 2.000 0.00 0.00 0.500 1.000 1.500 2.000		1			1.694			58.52		Slope = 28 .	.2119		
71.61.63.20.9213736.7050.90.91.80.7113130.75 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta)]-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]Qstd = standard flow rate IC = corrected chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg $For subsequent calculation of sampler flow:1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)70.00FLOW RATE CHART9090.901.80.7113130.75919293.0093.0093.0093.009293.0093.0093.0093.009393.0093.0093.0093.009494.0094.0094.009593.0093.009693.0093.009793.009893.009993.009093.009193.009293.009494.009494.009594.009694.009794.009894.009994.009094.009194.009294.009494.009494.009494.009494.009494.009494.009494.009494.009594.0094$	13	4.2	4.2	8.4	1.442	52	2	51.57	Inte	ercept = 10.	.4796		
50.90.91.80.7113130.75Calculations : $Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta)])-b]$ $IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]$ $Qstd = standard flow rate$ $IC = corrected chart respones$ $I = actual chart response$ $m = calibrator Qstd slope$ $b = calibrator Qstd intercept$ $Ta = actual temperature during calibration (deg KPstd = actual pressure during calibration (mm Hg)For subsequent calculation of sampler flow:1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)m = sampler slopeb = sampler interceptI = chart responseTav = daily average temperature$	10	3.1	3.1	6.2	1.250	4	5	44.63	Corr.	coeff. = 0.	.9984		
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] 60.00 Qstd = standard flow rate 60.00 IC = corrected chart respones 50.00 I = actual chart response 50.00 m = calibrator Qstd slope 50.00 b = calibrator Qstd intercept 50.00 Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	7	1.6	1.6	3.2	0.921	3'	7	36.70					
Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler intercept I = chart response Tav = daily average temperature	5	0.9	0.9	1.8	0.711	3	1	30.75					
Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler intercept I = chart response Tav = daily average temperature	Calculatio	ons :							FLOW RAT	E CHART			
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	Ostd = 1/r	n[Sart(H	20(Pa/Ps	td)(Tstd	/Ta))-b]		70.0	0	_				
Qstd = standard flow rate IC = corrected chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	-												
IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature							60.0	0			*		
I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	Qstd = sta	undard flo	ow rate										
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature 20.00 10.00 0.00 0.500 1.000	IC = corrections	ected cha	rt respon	es			50.0	0		· · · · · ·	1		
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature 20.00 10.00 0.00 0.500 1.000	I = actual	chart res	ponse			Q							
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature 20.00 10.00 0.00 0.500 1.000		-	-				୫୦ .0	0					
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature 20.00 10.00 0.00 0.500 1.000		-	_				lesp		*				
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature 20.00 10.00 0.00 0.500 1.000		-		_		g K	art -						
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature 20.00 10.00 0.00 0.500 1.000	Pstd = act	ual press	ure durin	g calibra	ation (mm I	Ig		0					
m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature10.0010.001.0001.5002.000 0.00 0.000 0.500 0.000 1.000 0.500 1.000 1.000 1.500 2.000	For subse	equent c	alculatio	n of san	pler flow:		5 20.0	0					
m = sampler slope $b = sampler intercept$ $I = chart response$ $Tav = daily average temperature$ 0.00 0.000 <	1/m((I)[S	Sqrt(298/	Tav)(Pav	r/760)]-t))								
b = sampler intercept I = chart response Tav = daily average temperature 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)							10.0	o					
I = chart response0.00Tav = daily average temperature0.000.0000.5001.0001.5002.000Standard Flow Rate (m3/min)													
Tav = daily average temperatureStandard Flow Rate (m3/min)			ept				0.0	0			_		
		-		- 4								2.000	
Pav = dany average pressure		-	-						Standard Flow	kate (m3/min)			
	Pav = da1	iy averag	e pressur	e									

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

ŝ.

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ap Operator		Rootsmeter Orifice I.I		438320 1941	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4710 1.0370 0.9270 0.8840 0.7300	3.3 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

			Va	Qa	-
0.6741 0.9521 1.0630 1.1134 1.3410	1.4113 1.9959 2.2315 2.3405 2.8227		0.9956 0.9914 0.9894 0.9883 0.9829	0.6768 0.9560 1.0673 1.1180 1.3465	0.8874 1.2549 1.4030 1.4715 1.7747
(m) = (b) = (c)	2.11662 -0.01714 0.99999		intercept coefficie	: (b) = ent (r) =	1.32539 -0.01078 0.99999
•	0.9521 1.0630 1.1134 1.3410 (m) = (b) = t (r) =	$\begin{array}{c ccccc} 0.9521 & 1.9959 \\ 1.0630 & 2.2315 \\ 1.1134 & 2.3405 \\ 1.3410 & 2.8227 \\ \hline \\ (m) &= & 2.11662 \\ (b) &= & -0.01714 \\ t & (r) &= & 0.99999 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

AUES

Equipment Calibration Record

Equipmer Type:					
Manufactu Serial No. Equipmen			Dust Trak M TSI 21060 EQ021	odel 8520	
Standard E Location & Equipmen Last Calib	ration Date: nt Calibration F	Results:	Higher Volu Block A of C AM8 20-Jul-12 6-Aug-12	me Sampler Government Dockyard Office	25
Hour	Time	Temp ℃	RH %	Dust Concentra (Standard Equipment)	ation in mg/m ³ (Calibrated Equipment)
1	9:00 ~ 10:00	29.8	84	0.052	0.056
1	10:05 ~ 11:05	30.2	84	0.057	0.066
1	11:10 ~ 12:10	30.9	84	0.044	0.046
Slope:	e gression of Y o	r X	<u>1.1155</u> 0.9931	0.070 0.060 0.060 0.050 0.040 0.040 0.040 0.040 0.000 0.010 0.000 0.010 0.020 0.010 0.020 0.000 0.010 0.020 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.000	• 0.030 0.040 0.050 0.060 Count/hour y = 1.1155x - 0.0007 R ² = 0.9931

AUES

Equipment Calibration Record

Equipmen Type: Manufactu Serial No. Equipment			Dust Trak Me TSI 23079 EQ064	odel 8520	
Standard E Location & Equipment Last Calibi	& Location ID: t Ref: ration Date: ht Calibration F	Results:	Higher Volur Block A of C AM8 20-Jul-12 6-Aug-12	ne Sampler Jovernment Dockyard Office	<u>es</u>
Hour	Time	Temp ℃	RH %	Dust Concentra (Standard Equipment)	ation in mg/m ³ (Calibrated Equipment)
1	9:00 ~ 10:00	29.8	84	0.052	0.055
1	10:05 ~ 11:05	30.2	84	0.057	0.061
1	11:10 ~ 12:10	30.9	84	0.044	0.046
-	Adjustment Zer Adjustment Zer				-
Sensitivity Linear Re Slope:	-	o Calibrat		libration) $0 (mg/m^3)$	

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132568 證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0878)

:	Integrating Sound Level Meter (EQ006)
2	Brüel & Kjær
:	2238
2	2285762
4	Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building,

35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 27 April 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies, USA
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany

Chan Hun H C Chan

Certified By 核證

Tested By

測試

Date of Issue 簽發日期 ÷

30 April 2013

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證得所載校正用之測試器材均或溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory co 4/F, Tang Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 時间,仁程有限公司 - 校正及檢測實驗所 co 香港新界电凹與安集一號青山高機機四種 fv1/電話: 2927 2606 Fax/傳貨: 2744 8986 E-mail/電影 calibbo/suncreation.com Website 鴉虎: www.suncreation.com

K C Lee

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C132568 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment IDDescriptionCertificate No.CL28040 MHz Arbitrary Waveform GeneratorC130019CL281Multifunction Acoustic CalibratorDC110233

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

1.1	UUTS	Setting	Applied	UUT		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	L _{AFP}	A	F	94.00	1	93.6

6.1.1.2 After Self-calibration

	UUT	Setting		Applie	d Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)	
50 - 130	LAFP	A	F	94.00	1	94.0	± 0.7	

6.1.2 Linearity

	UU	Γ Setting	Applie	d Value	UUT	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	1	94.0 (Ref.)
		1.000	1.0.0	104.00		104.0
		1.1.1.1.1.1.1.1		114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本意書所載校正用之測試器材均可溯源至國際標準,局部復印本證書需先獲本實驗所書面批准)

Sun Creation Engineering Limited - Calibration & Testing Laboratory

10/0-4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun: New Territories, Hong Kong

师创工程有限公司- 按正及援制實驗所 2.a 香港新算电門與安里一號青山灣機樓四樓

Tel (1.3): 2927/2606 Fax/得真: 2744/8986 E-mail (范勤: callab/asinerention.com Website (時): www.sunerention.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C132568 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT	Setting		Applie	d Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)	
50 - 130	LAFP	Α	F	94.00	1	94.0	Ref.	
	L _{ASP}	1.1	S			94.0	± 0.1	
	LAIP		I			94.1	± 0.1	

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		App	lied Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)	
30 - 110	LAFP	А	F	106.0	Continuous	106.0	Ref.	
	LAFMax		1.1.1		200 ms	104.9	-1.0 ± 1.0	
	LASP		S		Continuous	106.0	Ref.	
	L _{ASMax}				500 ms	101.9	-4.1 ± 1.0	

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting				Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130 LAFP	A F	F	94.00	31.5 Hz	55.1	-39.4 ± 1.5	
					63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5 ; -3.0)
			A		12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

本證書所被校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory era 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 解(但工程有限公司 - 校正及檢測實驗所

Tel: (E.F: 2927 2606) Fax/傳代: 2744 8986 E-mail/ 近歸: callab/a/suncreation.com Website/親矩:: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司 Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132568 證書編號

6.3.2 C-Weighting

	UUT	Setting	(Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130 L _{CFP} C	C	F	94.00	31.5 Hz	91.4	-3.0 ± 1.5	
				63 Hz	93.3	-0.8 ± 1.5	
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
				1 kHz	94.0	Ref.	
				2 kHz	93.8	-0.2 ± 1.0	
			4 kHz	93.2	-0.8 ± 1.0		
					8 kHz	90.9	-3.0 (+1.5 ; -3.0)
					12.5 kHz	87.8	-6.2 (+3.0 ; -6.0)

6.4

Time Averaging

UUT Setting			Applied Value					UUT	1EC 60804					
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)				
30 - 110 L _{Acq}	LAcq	L _{Acq} A	10 sec. 4	4 1	1/10	110.0	100	100.0	± 0.5					
												1/102	1/10 ²	90
			60 sec.]		1/103		80	79.4	± 1.0				
			5 min.	1	1	1/104	1	70	69.2	± 1.0				

Remarks : - Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

0.1 ID 01 - IZ 10- IZ	
250 Hz - 500 Hz	$: \pm 0.30 \text{ dB}$
1 kHz	$:\pm 0.20 \text{ dB}$
2 kHz - 4 kHz	: ± 0.35 dB
8 kHz	: ± 0.45 dB
12.5 kHz	: ± 0.70 dB
104 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
Burst equivalent level	: ± 0.2 dB (Ref. 110 dB continuous sound level)
	2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full; without the prior written approval of this laboratory.

本語告所載校正用之訓試器材均可溯源至國際標準。局部後印本語書需先獲本實驗所書面批准。

Certificate of Calibration 校正證書

Certificate No. : C132228 證書編號

ITEM TESTED / 送檢	頁目	(Job No. / 序引編號:IC13-0878)
Description / 儀器名稱	1	Acoustical Calibrator (EQ081)
	:	Brüel & Kjær
Model No. / 型號	1	4231
Serial No. / 編號	+	2326408
Supplied By / 委託者	1	Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 15 April 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試	K Q Lee				
Certified By 核證	: K M Wu	Date of Issue 簽發日期	1	16 April 2013	

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準,局部復印本證書書先獲本實驗所書面批准…

Sun Creation Engineering Limited - Calibration & Testing Laboratory vo 4/F, Tsing Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 em 香港新界屯門興安里一號省山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail:電郵: eallab@suncreation.com Website/網址: www.suncreation.com

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132228 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC123541CL281Multifunction Acoustic CalibratorDC110233TST150AMeasuring AmplifierC120886

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本設書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准,

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG PROJECT: --
 WORK ORDER:
 HK1309651

 LABORATORY:
 HONG KONG

 DATE RECEIVED:
 11/04/2013

 DATE OF ISSUE:
 17/04/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Dissolved Oxygen, Turbidity, pH, Salinity and Temperature
Equipment Type:	SONDE
Brand Name:	YSI
Model No.:	YSI 6820 / 650MDS
Serial No.:	02J0912/02K0788 AA
Equipment No.:	
Date of Calibration:	16 April, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG Phone: Fax: Email:

852-2610 1044 852-2610 2021 hongkong@alsglobal.com

Mr. Fung Lim Chee Richard General Manager Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong | PHONE +852 2610 1044 | FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD An ALS Limited Company

Life Sciences

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1309651
Date of Issue:	17/04/2013
Client:	ACTION UNITED ENVIRO SERVICES

Equipment Type:			
Brand Name: Model No.: Serial No.: Equipment No.:	SONDE YSI YSI 6820 / 650MDS 02J0912/02K0788 AA 		
Date of Calibration:	16 April, 2013	Date of next Calibration:	16 July, 2013
Parameters:			
Dissolved Oxygen	Method Ref: APHA (21st edition		
	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	5.51 8.65	7.86 8.66	2.35 0.01
		Tolerance Limit (±mg/L)	0.20
oH Value	Method Ref: APHA 21st Ed. 45		Tolorence (stimute)
	Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
	4.0	3.98	-0.02
	7.0	6.92	-0.08
	10.0	9.97	-0.03
		Tolerance Limit (±pH unit)	0.20
a Dar far	Marked D.C. ADUA (21-4-414)		
alinity	Method Ref: APHA (21st edition Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
	0	0.08	
	10	10.83	8.3
	20	21.15	5.7
	30	32.28	7.6
		Tolerance Limit (±%)	10.0
		rnational Accreditation New Zeala	
Temperature	Guide No. 3 Second edition M	arch 2008: Working Thermometer	
emperature	Guide No. 3 Second edition M Expected Reading (°C)	arch 2008: Working Thermometer Displayed Reading (°C)	
⁻ emperature	Expected Reading (°C)	Displayed Reading (°C)	Calibration Procedure. Tolerance (°C)
emperature	Expected Reading (°C) 12.0	Displayed Reading (°C) 11.40	Calibration Procedure. Tolerance (°C) -0.6
emperature	Expected Reading (°C) 12.0 23.0	Displayed Reading (°C) 11.40 22.54	Calibration Procedure. Tolerance (°C) -0.6 -0.5
⁻ emperature	Expected Reading (°C) 12.0	Displayed Reading (°C) 11.40	Calibration Procedure. Tolerance (°C) -0.6
⁻ emperature	Expected Reading (°C) 12.0 23.0	Displayed Reading (°C) 11.40 22.54	Calibration Procedure. Tolerance (°C) -0.6 -0.5
	Expected Reading (°C) 12.0 23.0 42.5	Displayed Reading (°C) 11.40 22.54 42.68 Tolerance Limit (±°C)	Calibration Procedure. Tolerance (°C) -0.6 -0.5 0.2
	Expected Reading (°C) 12.0 23.0	Displayed Reading (°C) 11.40 22.54 42.68 Tolerance Limit (±°C)	Calibration Procedure. Tolerance (°C) -0.6 -0.5 0.2
	Expected Reading (°C) 12.0 23.0 42.5 Method Ref: APHA (21st editi Expected Reading (NTU)	Displayed Reading (°C) 11.40 22.54 42.68 Tolerance Limit (±°C) on), 2130B Displayed Reading (NTU)	Calibration Procedure. Tolerance (°C) -0.6 -0.5 0.2 2.0 Tolerance (%)
	Expected Reading (°C) 12.0 23.0 42.5 Method Ref: APHA (21st editi Expected Reading (NTU) 0	Displayed Reading (°C) 11.40 22.54 42.68 Tolerance Limit (±°C) on), 2130B Displayed Reading (NTU) -0.2	Calibration Procedure. Tolerance (°C) -0.6 -0.5 0.2 2.0 Tolerance (%)
	Expected Reading (°C) 12.0 23.0 42.5 Method Ref: APHA (21st editi Expected Reading (NTU) 0 40	Displayed Reading (°C) 11.40 22.54 42.68 Tolerance Limit (±°C) on), 2130B Displayed Reading (NTU) -0.2 42.6	Calibration Procedure. Tolerance (°C) -0.6 -0.5 0.2 2.0 Tolerance (%) 6.5
	Expected Reading (°C) 12.0 23.0 42.5 Method Ref: APHA (21st editi Expected Reading (NTU) 0 40 80	Displayed Reading (°C) 11.40 22.54 42.68 Tolerance Limit (±°C) on), 2130B Displayed Reading (NTU) -0.2 42.6 78.0	Calibration Procedure. Tolerance (°C) -0.6 -0.5 0.2 2.0 Tolerance (%) 6.5 -2.5
Femperature Furbidity	Expected Reading (°C) 12.0 23.0 42.5 Method Ref: APHA (21st editi Expected Reading (NTU) 0 40	Displayed Reading (°C) 11.40 22.54 42.68 Tolerance Limit (±°C) on), 2130B Displayed Reading (NTU) -0.2 42.6	Calibration Procedure. Tolerance (°C) -0.6 -0.5 0.2 2.0 Tolerance (%) 6.5

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

U Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong Page 2 of 2

ALS Technichem (HK) Pty Ltd ALS Environmental

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG PROJECT: --
 WORK ORDER:
 HK1318874

 LABORATORY:
 HONG KONG

 DATE RECEIVED:
 12/07/2013

 DATE OF ISSUE:
 17/07/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Dissolved Oxygen, pH, Turbidity, Salinity and Temperature
Equipment Type:	Sonde Environmental Monitoring System
Brand Name:	YSI
Model No.:	6820 / 650MDS
Serial No.:	02J0912/02K0788 AA
Equipment No.:	
Date of Calibration:	12 July, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG Phone: 8 Fax: 8 Email: <u>1</u>

852-2610 1044 852-2610 2021 <u>hongkong@alsglobal.com</u>

Mr. Fung Lim Chee, Richard General Manager Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong | PHONE +852 2610 1044 | FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD An ALS Limited Company

Life Sciences

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1318874
Date of Issue:	17/07/2013
Client:	ACTION UNITED ENVIRO SERVICES

Equipment Type:	Sonde Environmental Monitoring System		
Brand Name:	YSI		
Model No.:	6820 / 650MDS		
Serial No.:	02J0912/02K0788 AA		
Equipment No.:			
Date of Calibration:	12 July, 2013	Date of next Calibration:	12 October, 2013

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G Expected Reading (mg/L) Displayed

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.24	3.34	0.10
5.11	5.18	0.10
7.72	7.70	-0.02
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.95	-0.05
7.0	6.98	-0.02
10.0	9.93	-0.07
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0	
10	9.66	-3.4
20	19.66	-1.7
30	29.27	-2.4
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.				
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)		
9.5	9.38	-0.1		
25.5	24.32	-1.2		
40.0	39.13	-0.9		

Tolerance Limit (±°C)

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Riehard General Manager -Greater China & Hong Kong

2.0

ALS Technichem (HK) Pty Ltd ALS Environmental

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client: HK1318874 17/07/2013 ACTION UNITED ENVIRO SERVICES

Equipment Type:Sonde Environmental Monitoring SystemBrand Name:YSIModel No.:6820 / 650MDSSerial No.:02J0912/02K0788 AAEquipment No.:--Date of Calibration:12 July, 2013Date of next

Date of next Calibration:

12 October, 2013

Parameters:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.2	
4	4.2	5.0
40	40.6	1.5
80	81.5	1.9
400	410.9	2.7
800	792.8	-0.9
	-Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager -Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Appendix F

Event/Action Plan

Air Quality

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT)N	
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	1. Check monitoring data submitted by ET and Contractor's working methods	 Confirm receipt of notification of non-compliance in writing; and Notify Contractor 	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
2. Exceedance for two or more consecutive sampling days	 Same as the above; Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level 	 Same as the above; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures. 	 Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures 	 Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures
		LIMIT LEVEL		
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	 Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible remedial actions; and Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly 	 Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods 	 Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
2. Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	 Same as the above; and Supervise the Implementation of mitigation measures 	 Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level 	 Same as the above; Take immediate action to avoid further exceedance; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; and As directed by the Engineer, to slow down or to stop all or part of the construction activities until to no exceedance of Limit Level.

Appendix G

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	LAPSED TI	ME	CHA	ART READ	DING			STANDARD)	INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring F	Results - AN	/ 1												
28-Jun-13	204730	13654.2	13678.19	1439.40	28	32	30.0	28.5	1006	0.69	998	3.6698	3.6767	0.0069	7
4-Jul-13	25641	13678.19	13702.18	1439.40	28	32	30.0	28.7	1006.4	0.69	997	3.5484	3.569	0.0206	21
10-Jul-13	25645	13702.18	13726.17	1439.40	28	32	30.0	29	1005.7	0.69	996	3.5521	3.5645	0.0124	12
16-Jul-13	25649	13726.17	13750.16	1439.40	28	32	30.0	28.9	1005.9	0.69	996	3.5702	3.5793	0.0091	9
22-Jul-13	25795	13750.16	13774.15	1439.40	28	32	30.0	28.8	1006.3	0.69	997	3.6199	3.6313	0.0114	11
24-hour TSP	Monitoring H	Results - AN	12												
28-Jun-13	204732	12157.29	12181.28	1439.40	28	32	30.0	28.5	1006	0.68	982	3.6656	3.6777	0.0121	12
4-Jul-13	25640	12181.28	12205.27	1439.40	24	26	25.0	28.7	1006.9	0.51	729	3.5544	3.5584	0.0040	5
10-Jul-13	25646	12205.27	12229.26	1439.40	24	26	25.0	29	1005.7	0.51	728	3.5523	3.558	0.0057	8
16-Jul-13	25650	12229.26	12253.25	1439.40	28	32	30.0	28.9	1005.9	0.68	980	3.5767	3.5878	0.0111	11
22-Jul-13	25796	12253.25	12277.24	1439.40	28	32	30.0	28.8	1006.3	0.68	981	3.6216	3.6477	0.0261	27
24-hour TSP	Monitoring H	Results - AN	13												
28-Jun-13	204731	7627.23	7651.22	1439.4	29	33	31	28.5	1006	1.02	1472	3.6608	3.7233	0.0625	42
4-Jul-13	25639	7651.22	7675.21	1439.4	28	30	29	28.7	1006.4	0.96	1376	3.5477	3.584	0.0363	26
10-Jul-13	25644	7675.21	7699.2	1439.4	28	30	29	29	1005.7	0.96	1375	3.5536	3.562	0.0084	6
16-Jul-13	25651	7699.2	7723.19	1439.4	29	31	30	28.9	1005.9	0.99	1423	3.5729	3.5949	0.0220	15
22-Jul-13	25797	7723.19	7747.18	1439.4	29	31	30	28.8	1006.3	0.99	1423	3.6237	3.6462	0.0225	16

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 26-Jun-13

Date / Time	Location	Tide*	Co-ord	inates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	THE	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/6/26 14:39	W1	ME	832953	807746	2.7	1.350	27.54	6.63	98.4	1.1	28.24	8.05	1.4
2010/0/20 11109			002/00	00//10	2.17	1.350	27.45	6.64	98.5	1.0	28.53	8.06	
						1.000	27.68 27.66	7.04	104.4 104.4	2.4	27.83 27.84	8.02 8.03	1.3
						1.000 6.400	27.39	6.59	98.1	1.1	27.84	8.03	
2013/6/26 14:10	W2	ME	832654	807971	12.8	6.400	27.37	6.60	98.1	1.7	29.20	8.06	1.2
						11.800	26.69	6.08	90.8	2.2	31.82	8.07	1.0
						11.800	26.71	6.15	91.8	0.6	31.80	8.06	1.3
						1.000	27.62	7.52	111.4	2.1	27.59	8.02	0.7
						1.000	27.61	7.35	108.8	1.5	27.60	8.01	0.7
2013/6/26 13:52	W3	ME	832031	807870	12.9	6.450	27.28	6.72	100.2	0.6	30.04	8.07	0.9
						6.450	27.27	6.72	100.2	0.7	29.98	8.07	
						11.900 11.900	27.02 26.94	6.30 6.32	94.4 94.5	0.2	31.46 31.51	8.07 8.07	1.0
						1.000	27.68	7.04	104.4	2.4	27.83	8.02	
						1.000	27.66	7.04	104.4	1.1	27.84	8.03	0.7
2012/6/26 14-26	C1	ME	022714	000106	15.0	7.800	27.39	6.59	98.1	1.7	29.20	8.07	0.8
2013/6/26 14:26	CI	ME	833714	808186	15.6	7.800	27.37	6.60	98.1	1.1	29.24	8.06	0.8
						14.600	26.69	6.08	90.8	2.2	31.82	8.07	0.9
						14.600	26.71	6.15	91.8	0.6	31.80	8.06	0.9
						1.000	27.62	7.92	117.2	1.1	27.62	8.02	1.2
						1.000	27.62	7.92	117.2 103.9	1.0	27.57 30.28	8.02	
2013/6/26 13:37	C2	ME	831443	807729	10.8	6.500 6.500	27.26	6.96 6.74	103.9	0.4	30.28	8.08 8.07	1.4
						12.000	27.17	6.58	98.5	0.4	31.14	8.09	
						12.000	27.11	6.52	97.6	0.3	31.18	8.09	1.3
						1.000	27.69	6.37	94.3	2.4	27.36	8.02	1.0
						1.000	27.58	6.42	95.0	1.2	27.66	8.03	1.3
2013/6/26 15:00	C3	ME	832208	808881	13	5.400	27.30	5.94	88.7	0.5	30.16	8.09	1.2
2015/0/20 15:00	CJ	IVIL	032200	000001	15	5.400	27.21	5.69	85.1	0.3	30.55	8.10	1.2
						9.800	26.74	5.45	81.6	0.4	32.22	8.11	2.9
						9.800	26.68	5.76	86.1	0.1	32.31	8.09	
						1.050	27.55	7.49	111.1	1.6	28.11	8.01	
2013/6/26 8:50	W1	MF	832973	807756	2.1	1.050	27.58	7.68	111.1	0.9	28.00	8.01	1.5
						1.000	27.50	7.85	116.3	1.3	28.31	8.02	
						1.000	27.46	7.85	116.4	1.2	28.32	8.03	0.6
2012/6/26 9.25	W2	MF	832651	807991	11.7	5.850	27.35	7.43	110.9	2.0	29.88	8.06	0.9
2013/6/26 8:35	VV Z	IVIF	852051	807991	11./	5.850	27.38	7.38	110.2	0.6	29.84	8.05	0.9
						10.700	27.12	7.27	109.0	1.1	31.35	8.06	1.1
	_					10.700	27.05	7.28	109.1	2.1	31.40	8.06	
						1.000	27.52	8.28	122.9	1.2	28.36	8.02	1.6
						1.000 6.050	27.54 27.32	8.45 7.80	125.3 116.4	1.5 0.8	28.28 30.02	8.01 8.06	
2013/6/26 8:21	W3	MF	832027	807904	12.1	6.050	27.30	7.80	116.5	0.6	30.02	8.07	2.1
						11.100	27.05	7.42	111.2	0.0	31.49	8.06	
						11.100	27.07	7.45	111.6	0.7	31.47	8.07	2.1
						1.000	27.58	8.05	119.2	1.1	27.78	8.02	0.5
						1.000	27.62	8.04	119.1	1.2	27.72	8.01	0.5
2013/6/26 9:06	C1	MF	833681	808191	13.8	6.900	27.30	7.77	116.2	0.4	30.27	8.06	1.1
						6.900	27.25	7.50	112.1	0.4	30.48	8.07	
						12.800 12.800	26.94 26.93	7.21 7.05	108.1 105.6	3.0 0.1	31.84	8.07 8.07	1.0
						12.800	20.93	9.84	105.6	1.2	31.86 28.93	8.07	
						1.000	27.41	9.84	146.2	1.2	28.95	8.03	1.1
0010/6/05 0 00	~		001100	007700	10.1	5.050	27.38	8.82	131.8	1.1	30.03	8.06	1.0
2013/6/26 8:09	C2	MF	831469	807762	10.1	5.050	27.33	8.61	128.6	0.6	30.07	8.06	1.0
						9.100	27.11	8.40	125.8	0.7	31.26	8.08	1.8
						9.100	27.24	8.20	122.8	0.4	30.73	8.07	1.0
						1.000	27.56	8.44	125.0	1.5	27.91	8.04	1.8
	1					1.000	27.54	8.14	120.5	4.4	27.96	8.05	
						7,500							
2013/6/26 9:23	C3	MF	832204	808864	15	7.500	27.20	6.97	104.2	0.6	30.48	8.10	2.2
2013/6/26 9:23	C3	MF	832204	808864	15	7.500 7.500 14.000	27.20 27.22 26.97	6.97 6.96 6.77	104.2 103.9 101.4	0.6 1.3 0.6	30.48 30.42 31.62	8.10 8.08 8.08	2.2 2.0

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 28-Jun-13

Data (Time	Territor	T : 1. #	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/6/28 16:51	W1	ME	832955	807716	2.2	1.100	27.79	8.60	126.4	0.3	25.83	8.02	1.5
						1.100	27.84	8.59	126.4	0.4	25.87	8.03	
						1.000	27.80 27.78	8.66 8.67	127.3 127.4	1.0 0.4	25.81 25.87	8.02 8.03	1.1
						6.050	27.26	8.08	119.3	0.4	28.29	8.06	
2013/6/28 16:31	W2	ME	832692	807994	12.1	6.050	27.35	8.06	119.2	0.5	28.26	8.05	1.3
						11.100	26.66	7.83	116.3	1.0	31.06	8.06	1.0
						11.100	26.62	7.84	116.4	0.3	31.18	8.08	1.3
						1.000	27.67	6.85	100.6	0.5	25.90	8.03	1.1
						1.000	27.69	10.62	155.9	0.4	25.88	8.03	1.1
2013/6/28 16:16	W3	ME	832036	807864	11.6	5.800	27.41	9.17	135.7	0.8	28.18	8.06	1.1
						5.800 10.600	27.35 26.59	8.36 8.42	123.7 124.9	0.2	28.26 30.89	8.06 8.05	
						10.600	26.67	7.60	1124.9	1.5	30.89	8.03	1.3
						1.000	27.75	4.62	67.9	0.3	25.88	8.04	
						1.000	27.79	4.62	67.9	0.2	25.88	8.03	0.8
2012/6/20 17.15	C1	ME	022702	202100	14.5	7.250	27.24	7.48	110.6	0.4	28.56	8.05	0.9
2013/6/28 17:15	C1	ME	833702	808199	14.5	7.250	27.24	7.30	108.0	0.6	28.62	8.06	0.8
						13.500	26.47	7.27	108.0	0.7	31.66	8.05	0.8
						13.500	26.31	6.86	101.7	0.7	31.68	8.06	0.0
						1.000	27.71	10.64	156.1	0.6	25.77	8.06	1.8
						1.000	27.73	10.46	153.5	0.4	25.73	8.06	
2013/6/28 16:00	C2	ME	831490	807759	9.1	4.550 4.550	27.35 27.33	9.39 9.40	138.7 138.7	1.2 1.6	28.10 27.99	8.08 8.07	1.7
						8.100	27.33	8.92	132.0	0.9	29.21	8.07	
						8.100	27.10	8.35	123.7	1.4	29.22	8.07	2.2
						1.000	27.84	7.87	115.7	0.7	25.76	8.03	4.0
						1.000	27.85	7.87	115.7	0.3	25.74	8.04	1.8
2013/6/28 17:41	C3	ME	832209	808876	15.1	7.550	27.26	7.09	104.9	1.5	28.67	8.06	1.1
2013/0/28 17.41	0	IVIL	032209	000070	15.1	7.550	27.23	7.28	107.7	1.6	28.74	8.05	1.1
						14.100	26.20	6.38	94.4	0.9	31.80	8.05	1.8
						14.100	26.24	6.11	90.5	0.4	31.83	8.05	
2013/6/28 9:25	W1	MF	832961	807770	2.5	1.250	27.75	9.26	135.1	0.8	24.77	7.96	1.3
2015/0/28 9.25	VV 1	IVII	032901	807770	2.5	1.250	27.61	9.28	135.4	0.5	24.95	7.96	1.5
						1.000	27.73	11.08	161.8	0.4	24.86	7.98	1.0
						1.000	27.68	11.09	161.9	0.4	24.90	7.99	
2013/6/28 9:34	W2	MF	832694	807947	10.9	5.450 5.450	27.62 27.66	8.33 8.86	122.0 129.8	0.7	25.80 25.72	7.96 7.96	1.2
						9.900	27.59	8.87	129.0	0.4	25.84	7.96	
						9,900	27.14	7.79	115.4	0.7	29.28	7.95	1.0
						1.000	27.76	5.72	83.6	0.2	24.84	8.00	1.0
						1.000	27.76	10.02	146.4	0.6	24.83	8.00	1.2
2013/6/28 9:53	W3	MF	832064	807906	11.4	5.700	27.63	8.74	128.1	0.9	25.89	8.00	1.6
2015/0/20 9.55	W J	IVII	052004	007900	11.4	5.700	27.67	8.64	126.8	0.8	25.86	8.00	1.0
						10.400	25.87	7.13	105.0	1.6	31.84	7.99	2.1
	-					10.400	25.84	7.14	105.0	1.3	31.86	7.98	
						1.000	27.70 27.77	10.32 10.30	150.1 149.9	0.8	24.16 24.14	7.95 7.95	1.8
						6.550	27.45	8.66	149.9	0.7	24.14	7.94	
2013/6/28 9:15	C1	MF	833709	808166	13.1	6.550	27.37	8.67	126.8	0.2	26.17	7.95	1.7
	1					12.100	26.94	8.44	124.6	1.0	29.07	7.94	1.5
							26.74	7.94	117.5	1.2	30.17	7.93	1.5
						12.100	20.74	7.24	117.5				
						1.000	27.77	8.92	130.6	0.2	25.25	7.98	14
						1.000 1.000	27.77 27.83	8.92 8.58	130.6 125.7	0.9	25.10	7.98	1.4
2013/6/28 10:03	C2	MF	831436	807738	9.3	1.000 1.000 4.650	27.77 27.83 27.70	8.92 8.58 8.27	130.6 125.7 121.4	0.9 1.4	25.10 25.76	7.98 7.97	1.4 1.4
2013/6/28 10:03	C2	MF	831436	807738	9.3	1.000 1.000 4.650 4.650	27.77 27.83 27.70 27.71	8.92 8.58 8.27 8.27	130.6 125.7 121.4 121.4	0.9 1.4 1.6	25.10 25.76 25.75	7.98 7.97 7.97	
2013/6/28 10:03	C2	MF	831436	807738	9.3	1.000 1.000 4.650 4.650 8.300	27.77 27.83 27.70 27.71 27.62	8.92 8.58 8.27 8.27 7.34	130.6 125.7 121.4 121.4 108.3	0.9 1.4 1.6 1.8	25.10 25.76 25.75 27.05	7.98 7.97 7.97 7.91	
2013/6/28 10:03	C2	MF	831436	807738	9.3	1.000 1.000 4.650 4.650 8.300 8.300	27.77 27.83 27.70 27.71 27.62 27.50	8.92 8.58 8.27 8.27 7.34 7.33	130.6 125.7 121.4 121.4 108.3 107.9	0.9 1.4 1.6 1.8 1.3	25.10 25.76 25.75 27.05 27.04	7.98 7.97 7.97 7.91 7.93	1.4 1.3
2013/6/28 10:03	C2	MF	831436	807738	9.3	1.000 1.000 4.650 4.650 8.300 8.300 1.000	27.77 27.83 27.70 27.71 27.62 27.50 27.59	8.92 8.58 8.27 7.34 7.33 10.21	130.6 125.7 121.4 121.4 108.3 107.9 148.2	0.9 1.4 1.6 1.8 1.3 1.4	25.10 25.76 25.75 27.05 27.04 24.15	7.98 7.97 7.97 7.91 7.93 7.80	1.4
						1.000 1.000 4.650 4.650 8.300 8.300	27.77 27.83 27.70 27.71 27.62 27.50	8.92 8.58 8.27 8.27 7.34 7.33	130.6 125.7 121.4 121.4 108.3 107.9	0.9 1.4 1.6 1.8 1.3	25.10 25.76 25.75 27.05 27.04	7.98 7.97 7.97 7.91 7.93	1.4 1.3 1.7
2013/6/28 10:03 2013/6/28 8:48	C2 C3	MF	831436	807738	9.3	1.000 1.000 4.650 4.650 8.300 8.300 1.000 1.000	27.77 27.83 27.70 27.71 27.62 27.50 27.59 27.60	8.92 8.58 8.27 7.34 7.33 10.21 10.12	130.6 125.7 121.4 121.4 108.3 107.9 148.2 147.1	0.9 1.4 1.6 1.8 1.3 1.4 1.4	25.10 25.76 25.75 27.05 27.04 24.15 24.35	7.98 7.97 7.97 7.91 7.93 7.80 7.80 7.80	1.4 1.3
						1.000 1.000 4.650 4.650 8.300 8.300 1.000 1.000 7.700	27.77 27.83 27.70 27.71 27.62 27.50 27.59 27.60 26.77	8.92 8.58 8.27 7.34 7.33 10.21 8.11	130.6 125.7 121.4 121.4 108.3 107.9 148.2 147.1 119.5	0.9 1.4 1.6 1.8 1.3 1.4 1.4 0.9	25.10 25.76 25.75 27.05 27.04 24.15 24.35 29.34	7.98 7.97 7.97 7.91 7.93 7.80 7.80 7.91	1.4 1.3 1.7

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

2-Jul-13 Date

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	TIGE.	East	North	Ħ	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/7/2 8:51	W1	ME	832957	807738	2.6	1.300	28.15	9.70	144.5	0.8	26.17	8.21	0.8
						1.300	28.16	9.32	142.1	0.9	26.16	8.21	
						1.000	28.04 28.10	10.07 9.80	149.0 145.1	1.1	26.35 26.33	8.18 8.16	1.3
						6.100	28.10	9.80	139.4	0.6	26.91	8.08	
2013/7/2 9:00	W2	ME	832685	807979	12.2	6.100	27.56	9.45	139.4	0.6	27.09	8.08	1.2
						11.200	26.50	7.90	115.8	2.4	29.32	7.84	
						11.200	26.51	7.99	117.1	2.5	29.32	7.83	1.8
						1.000	28.41	9.29	137.7	0.2	25.51	8.37	0.9
						1.000	28.49	9.83	145.9	0.0	25.50	8.36	0.9
2013/7/2 9:15	W3	ME	832054	807899	12.1	6.050	27.91	8.93	132.1	0.4	26.63	8.20	1.9
2013/112 9.13	115	IVIL	052054	007077	12.1	6.050	27.88	8.54	126.4	0.6	26.63	8.20	1.7
						11.100	27.07	7.48	110.2	3.9	28.32	8.03	2.5
						11.100	27.10	7.35	108.6	4.1	28.85	7.96	
						1.000	28.21	9.31	137.9	0.8	25.90	8.26	1.3
						1.000 7.150	28.14 27.90	9.45 8.59	139.8 126.6	0.7	25.95 26.14	8.28 8.25	
2013/7/2 8:35	C1	ME	833716	808199	14.3	7.150	27.90	8.50	120.0	0.5	26.14	8.25	1.1
						13.300	26.19	8.20	119.9	3.2	29.80	7.93	
						13.300	26.40	8.62	126.2	2.5	29.24	7.96	3.1
						1.000	28.64	8.66	128.9	0.3	25.61	8.31	
						1.000	28.62	9.24	137.5	0.1	25.60	8.31	0.7
2012/7/2 0.25	C12		001440	007704	10.0	5.150	28.07	8.10	119.9	1.0	26.37	8.25	1.0
2013/7/2 9:25	C2	ME	831443	807736	10.3	5.150	28.06	7.83	115.9	1.3	26.39	8.25	1.2
						9.300	27.70	7.20	106.6	0.4	27.39	8.14	4.1
						9.300	27.70	7.03	104.0	0.3	27.39	8.14	4.1
						1.000	28.11	9.90	146.2	0.9	25.73	8.20	1.1
						1.000	28.13	9.65	142.6	0.6	25.75	8.19	1.1
2013/7/2 8:19	C3	ME	832229	808874	14.6	7.300	27.69	9.06	133.4	1.4	26.30	8.11	2.0
2013/112 0.17	0.5	10112	052227	000071	11.0	7.300	27.76	8.58	126.4	1.1	26.25	8.11	210
						13.600	25.87	7.94	115.8	2.9	30.32	7.85	3.1
						13.600	25.79	6.96	101.4	2.3	30.35	7.85	
						1 200	20.74	9.07	125.6	0.0	26.02	0.16	
2013/7/2 14:34	W1	MF	832953	807740	2.4	1.200	28.74 28.66	9.07	135.6 138.5	0.9	26.03 26.08	8.16 8.18	2.0
						1.200	28.68	9.27	130.1	1.1 0.7	26.08	8.16	
						1.000	28.66	9.01	134.6	0.7	26.04	8.16	1.8
						6.250	27.51	8.82	130.1	0.1	27.14	7.99	
2013/7/2 14:18	W2	MF	832677	807972	12.5	6.250	27.47	8.19	120.6	0.3	27.06	7.99	3.3
						11.500	25.87	7.14	104.3	1.0	30.51	7.75	
						11.500	25.88	6.47	94.6	0.8	30.51	7.74	3.6
						1.000	29.11	9.24	138.8	0.7	25.73	8.12	0.0
						1.000	29.03	9.28	139.2	0.9	25.76	8.14	0.8
2013/7/2 14:05	W3	MF	832049	807900	12	6.000	28.07	8.06	119.7	0.2	26.69	7.92	1.4
2013/112 14:03	115	1411	052047	007700	12	6.000	27.99	7.78	115.2	0.4	26.75	7.89	1.1
						11.000	26.40	7.36	107.5	2.5	29.76	7.60	1.2
	_					11.000	26.32	7.40	108.6	2.3	30.08	7.60	
						1.000	28.52 28.54	10.50 10.39	156.2 154.7	0.6	25.86 25.87	8.25 8.25	2.0
						1.000 7.300	28.34	7.25	106.0	0.9	23.87	8.23 7.98	
2013/7/2 14:50	C1	MF	833694	808187	14.6	7.300	27.21	7.37	100.0	0.5	27.78	8.01	2.2
						13.600	25.84	6.82	107.0	2.9	30.45	7.83	
						13.600	25.85	6.97	100.4	3.4	30.50	7.84	3.4
						1.000	29.59	9.41	142.3	0.5	25.56	7.68	
						1.000	29.57	9.15	138.3	0.4	25.58	7.66	2.3
2012/7/2 12.51	C2	MF	831458	807755	10	5.000	28.14	8.17	121.3	0.5	26.62	7.45	2.5
2013/7/2 13:51	C2	IVIP	651458	807755	10	5.000	28.15	7.69	114.2	0.3	26.60	7.44	2.3
						9.000	26.54	7.74	113.7	3.6	29.50	7.01	3.0
						9.000	26.54	7.25	106.5	3.7	29.56	7.00	5.0
						1.000	28.49	8.62	128.3	1.0	25.94	8.24	1.2
						1.000	28.49	8.97	133.5	0.7	25.93	8.25	
2013/7/2 15:11	C3	MF	832231	808849	15	7.500	27.20	8.84	130.1	1.0	27.72	8.05	1.8
						7.500	27.20	8.35	122.8	1.5	27.72	8.05	-
						14.000	25.95	7.38	107.7	1.4	30.24	7.86	1.8
	1					14.000	25.89	7.16	104.5	1.4	30.26	7.86	1

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 4-Jul-13

D (/ 17)	.	m :1 +	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/7/4 10:21	W1	ME	832957	807728	2.4	1.200	28.59	7.92	118.1	1.5	25.93	8.14	3.2
2013/11/10/21			002/01	007720	2	1.200	28.64	7.95	118.8	1.1	26.13	8.12	512
						1.000	28.61	8.23	123.0	0.9	26.35	8.11	2.8
						1.000 6.250	28.60 28.13	7.93 8.19	118.4 122.3	1.0 0.8	26.33 27.61	8.12 8.08	
2013/7/4 10:33	W2	ME	832674	808002	12.5	6.250	28.13	7.57	122.5	1.0	27.61	8.08	2.4
						11.500	26.46	6.04	90.1	0.2	32.27	7.92	
						11.500	26.28	5.68	84.3	0.5	31.99	7.91	2.8
						1.000	28.74	8.73	130.5	1.3	26.00	8.10	
						1.000	28.82	8.60	128.8	1.2	26.16	8.10	2.2
2013/7/4 10:45	W3	ME	832051	807879	12.1	6.050	28.28	8.08	120.6	0.6	27.04	8.05	2.7
2013/7/4 10.43	VV 5	IVIL	652051	007079	12.1	6.050	28.19	7.90	117.7	0.8	27.18	8.05	2.1
						11.100	26.28	7.53	111.8	1.0	32.16	7.89	3.5
						11.100	26.23	6.27	93.0	0.9	32.20	7.88	5.5
						1.000	28.52	7.07	88.4	1.2	26.44	8.08	1.3
						1.000	28.46	7.33	105.3	1.3	26.04	8.08	
2013/7/4 10:07	C1	ME	833719	808191	14.5	7.250	28.35 28.33	7.15	109.3 106.7	0.9	26.76 26.87	8.08 8.10	2.8
						7.250 13.500	28.33	6.29 5.92	92.8	0.4	34.29	7.83	
						13.500	25.30	5.01	74.0	0.4	34.29	7.83	3.9
						1.000	28.75	8.02	120.2	1.0	26.36	8.10	
						1.000	28.61	8.24	123.3	1.0	26.50	8.10	3.2
						5.300	28.28	7.41	110.6	0.6	27.09	8.06	
2013/7/4 11:00	C2	ME	831452	807751	10.6	5.300	28.27	7.51	112.0	0.8	26.98	8.07	3.0
						9.600	27.51	7.58	113.4	1.4	29.76	7.94	2.4
						9.600	27.21	6.97	104.1	1.3	30.36	7.94	3.4
						1.000	28.52	7.33	109.3	1.1	26.29	8.10	1.6
						1.000	28.44	6.98	104.1	1.2	26.39	8.12	1.0
2013/7/4 9:48	C3	ME	832241	808873	14.6	7.300	28.32	7.23	107.6	1.2	26.58	8.11	1.4
2013/114 9.40	0.5	IVIL	052241	000075	14.0	7.300	28.32	7.03	104.7	0.8	26.58	8.09	1.4
						13.600	25.42	6.37	93.8	0.3	33.43	7.83	7.1
						13.600	25.63	4.65	68.6	0.5	32.90	7.84	
						1.250	29.70	9.24	126.0	0.6	24.44	0.11	
2013/7/4 16:55	W1	MF	832961	807758	2.7	1.350 1.350	28.70 28.64	9.24 8.66	136.8 128.3	0.6	24.44 24.57	8.11 8.09	1.7
						1.330	28.92	7.86	128.3	1.0	24.37	7.94	
						1.000							2.6
								- A D D			25 89	7.93	
2013/7/4 16:43							28.93 27.96	8.56 8.12	128.2	1.2	25.89 28.15	7.93 7.86	
	W2	MF	832675	807963	13.5	6.750	27.96	8.12	128.2 121.3 106.9	0.8	28.15	7.86	3.6
	W2	MF	832675	807963	13.5				121.3	0.8			
	W2	MF	832675	807963	13.5	6.750 6.750	27.96 28.17	8.12 7.14	121.3 106.9	0.8 0.9	28.15 28.03	7.86 7.87	3.6 3.8
	W2	MF	832675	807963	13.5	6.750 6.750 12.500	27.96 28.17 25.13	8.12 7.14 5.21	121.3 106.9 76.6	0.8 0.9 1.0	28.15 28.03 33.93	7.86 7.87 7.61	3.8
	W2	MF	832675	807963	13.5	6.750 6.750 12.500 12.500	27.96 28.17 25.13 25.26	8.12 7.14 5.21 4.80	121.3 106.9 76.6 70.7	0.8 0.9 1.0 1.2	28.15 28.03 33.93 33.77	7.86 7.87 7.61 7.62	
2013/7/4 16:29						6.750 6.750 12.500 1.000 1.000 6.600	27.96 28.17 25.13 25.26 29.00 28.91 28.17	8.12 7.14 5.21 4.80 9.54 9.54 9.63	121.3 106.9 76.6 70.7 142.9 142.7 144.0	0.8 0.9 1.0 1.2 1.2 1.3 0.1	28.15 28.03 33.93 33.77 25.61 25.67 27.84	7.86 7.87 7.61 7.62 7.96 7.95 7.86	3.8
2013/7/4 16:29	W2 W3	MF MF	832675 832055	807963 807906	13.5	6.750 6.750 12.500 12.500 1.000 6.600 6.600	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36	8.12 7.14 5.21 4.80 9.54 9.54 9.63 8.33	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7	0.8 0.9 1.0 1.2 1.2 1.3 0.1 0.0	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87	3.8
2013/7/4 16:29						6.750 6.750 12.500 1.000 1.000 6.600 6.600 12.200	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31	8.12 7.14 5.21 4.80 9.54 9.54 9.63 8.33 7.43	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4	0.8 0.9 1.0 1.2 1.2 1.3 0.1 0.0 1.2	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60	3.8 1.2 2.8
2013/7/4 16:29						6.750 6.750 12.500 12.500 1.000 1.000 6.600 6.600 12.200	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33	8.12 7.14 5.21 4.80 9.54 9.54 9.63 8.33 7.43 6.21	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4	0.8 0.9 1.0 1.2 1.2 1.3 0.1 0.0 1.2 1.5	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60 7.58	3.8
2013/7/4 16:29						6.750 6.750 12.500 12.500 1.000 1.000 6.600 6.600 12.200 1.000	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95	8.12 7.14 5.21 4.80 9.54 9.54 9.63 8.33 7.43 6.21 9.32	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3	0.8 0.9 1.0 1.2 1.2 1.3 0.1 0.0 1.2 1.5 0.4	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60 7.58 8.13	3.8 1.2 2.8
2013/7/4 16:29						6.750 6.750 12.500 1.000 1.000 6.600 6.600 12.200 1.2200 1.000 1.000	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 28.95	8.12 7.14 5.21 4.80 9.54 9.54 9.63 8.33 7.43 6.21 9.32 9.44	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3	0.8 0.9 1.0 1.2 1.3 0.1 0.0 1.2 1.5 0.4 0.5	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97	7.86 7.87 7.61 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15	3.8 1.2 2.8 3.2 2.1
2013/7/4 16:29 2013/7/4 17:12						6.750 6.750 12.500 12.500 1.000 1.000 6.600 6.600 12.200 12.200 1.000 1.000 7.650	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 28.95 28.95 27.25	8.12 7.14 5.21 4.80 9.54 9.54 9.63 8.33 7.43 6.21 9.32 9.34 7.06	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8	0.8 0.9 1.0 1.2 1.2 1.3 0.1 0.0 1.2 1.5 0.4 0.5 1.4	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97	3.8 1.2 2.8 3.2
	W3	MF	832055	807906	13.2	6.750 6.750 12.500 12.500 1000 1.000 6.600 12.200 12.200 12.200 12.600 7.650	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 28.95 28.95 27.25 27.29	8.12 7.14 5.21 4.80 9.54 9.54 9.63 8.33 7.43 6.21 9.32 9.32 9.34 7.06 6.95	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3	$\begin{array}{c} 0.8 \\ 0.9 \\ 1.0 \\ 1.2 \\ 1.2 \\ 1.3 \\ 0.1 \\ 0.0 \\ 1.2 \\ 1.5 \\ 0.4 \\ 0.5 \\ 1.4 \\ 1.1 \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.13 8.15 7.97 7.96	3.8 1.2 2.8 3.2 2.1 4.1
	W3	MF	832055	807906	13.2	6.750 6.750 12.500 12.500 1.000 1.000 6.600 6.600 12.200 12.200 1.000 1.000 7.650	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 28.95 28.95 27.25	8.12 7.14 5.21 4.80 9.54 9.54 9.63 8.33 7.43 6.21 9.32 9.34 7.06	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8	0.8 0.9 1.0 1.2 1.2 1.3 0.1 0.0 1.2 1.5 0.4 0.5 1.4	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97	3.8 1.2 2.8 3.2 2.1
	W3	MF	832055	807906	13.2	6.750 6.750 12.500 12.500 12.500 1.000 6.600 6.600 12.200 12.200 12.200 12.600 7.650 7.650 14.300	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 28.95 27.25 27.29 24.53	8.12 7.14 5.21 4.80 9.54 9.63 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3 78.6	$\begin{array}{c} 0.8 \\ 0.9 \\ 1.0 \\ 1.2 \\ 1.2 \\ 1.3 \\ 0.1 \\ 0.0 \\ 1.2 \\ 1.5 \\ 0.4 \\ 0.5 \\ 1.4 \\ 1.1 \\ 2.1 \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20 34.19	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.13 8.15 7.97 7.96 7.78	3.8 1.2 2.8 3.2 2.1 4.1 3.8
	W3	MF	832055	807906	13.2	6.750 6.750 12.500 12.500 12.500 1000 1.000 1.000 6.600 12.200 12.200 1.000 7.650 7.650 14.300	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 27.25 27.25 27.29 24.53 24.31	8.12 7.14 5.21 4.80 9.54 9.63 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3 78.6 75.3	$\begin{array}{c} 0.8 \\ 0.9 \\ 1.0 \\ 1.2 \\ 1.2 \\ 1.3 \\ 0.1 \\ 0.0 \\ 1.2 \\ 1.5 \\ 0.4 \\ 0.5 \\ 1.4 \\ 1.1 \\ 2.1 \\ 1.9 \\ \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20 34.19 34.48	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.96 7.78 7.96 7.78 7.97	3.8 1.2 2.8 3.2 2.1 4.1
2013/7/4 17:12	W3 C1	MF	832055 833731	807906	13.2	6.750 6.750 12.500 12.500 1.000 1.000 6.600 12.200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 14.300 1.000 1.000 5.600	27.96 28.17 25.13 25.26 29.00 28.91 28.36 25.31 25.33 28.95 27.25 27.29 24.53 24.53 24.53 24.53 24.53 28.95 27.25 27.29 24.53 24.53 24.53 28.95 24.53 24.53 24.53 24.53 24.53 24.53 24.53 24.55 25.56 27.55 28.57 28.57 28.57 28.55	8.12 7.14 5.21 4.80 9.54 9.54 9.54 9.63 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18 9.19	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3 78.6 75.3 136.8 137.2 134.6	$\begin{array}{c} 0.8 \\ 0.9 \\ 1.0 \\ 1.2 \\ 1.3 \\ 0.1 \\ 0.0 \\ 1.2 \\ 1.5 \\ 0.4 \\ 0.5 \\ 1.4 \\ 1.1 \\ 2.1 \\ 1.9 \\ 1.2 \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20 34.19 34.48 25.30	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.96 7.78 7.78 7.78 7.81	3.8 1.2 2.8 3.2 2.1 4.1 3.8 2.4
	W3	MF	832055	807906	13.2	6.750 6.750 12.500 12.500 12.000 1.000 6.600 12.200 12.200 12.200 12.200 12.200 1.000 7.650 14.300 1.000 5.600	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 27.25 27.29 24.53 24.53 24.31 28.70 24.53 24.31 28.70 28.80 28.36 28.34	8.12 7.14 5.21 4.80 9.54 9.63 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18 9.19 9.02 8.64	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3 78.6 75.3 136.8 137.2 134.6 128.8	$\begin{array}{c} 0.8 \\ 0.9 \\ 1.0 \\ 1.2 \\ 1.3 \\ 0.1 \\ 0.0 \\ 1.2 \\ 1.5 \\ 0.4 \\ 0.5 \\ 1.4 \\ 1.1 \\ 2.1 \\ 1.9 \\ 1.2 \\ 0.9 \\ 1.0 \\ 0.8 \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20 34.19 34.48 25.30 25.33 26.88 26.72	7.86 7.87 7.61 7.95 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.96 7.78 7.81 7.81 7.85 7.79 7.72 7.73	3.8 1.2 2.8 3.2 2.1 4.1 3.8
2013/7/4 17:12	W3 C1	MF	832055 833731	807906	13.2	6.750 6.750 12.500 12.500 12.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.600 5.600 10.200	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 27.25 27.29 24.53 24.31 28.77 28.36 28.77 28.36 28.34 28.34 27.13	8.12 7.14 5.21 4.80 9.54 9.63 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18 9.19 9.21 9.02 8.64 6.24	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3 78.6 75.3 136.8 137.2 134.6 128.8 93.5	$\begin{array}{c} 0.8 \\ 0.9 \\ 1.0 \\ 1.2 \\ 1.3 \\ 0.1 \\ 0.0 \\ 1.2 \\ 1.5 \\ 0.4 \\ 0.5 \\ 1.4 \\ 1.1 \\ 2.1 \\ 1.9 \\ 1.2 \\ 0.9 \\ 1.0 \\ 0.8 \\ 3.8 \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20 34.19 34.48 25.30 25.33 26.88 26.72 31.19	7.86 7.87 7.61 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.96 7.78 7.81 7.85 7.79 7.72 7.73 7.52	3.8 1.2 2.8 3.2 2.1 4.1 3.8 2.4 3.2
2013/7/4 17:12	W3 C1	MF	832055 833731	807906	13.2	6.750 6.750 12.500 12.500 12.500 1000 1.000 6.600 12.200 12.200 12.200 12.200 12.200 12.200 12.200 12.200 12.200 12.200 12.200 12.200 12.200 12.200 10.000 1.000 1.000 1.000 5.600 10.200 10.200	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 27.25 27.29 24.53 24.31 28.77 28.80 28.34 28.34 28.34 27.13 27.09	8.12 7.14 5.21 4.80 9.54 9.63 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18 9.19 9.21 9.02 8.64 6.24 5.86	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 109.4 91.4 137.3 109.4 91.4 137.3 109.4 91.4 103.3 78.6 75.3 136.8 137.2 134.6 128.8 93.5 87.7	$\begin{array}{c} 0.8 \\ 0.9 \\ 1.0 \\ 1.2 \\ 1.2 \\ 1.3 \\ 0.1 \\ 0.0 \\ 1.2 \\ 1.5 \\ 0.4 \\ 0.5 \\ 1.4 \\ 1.1 \\ 2.1 \\ 1.9 \\ 1.2 \\ 0.9 \\ 1.0 \\ 0.8 \\ 3.8 \\ 3.2 \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.921 29.20 34.19 34.48 25.30 25.33 26.88 26.72 31.19 31.26	7.86 7.87 7.61 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.96 7.78 7.96 7.78 7.81 7.85 7.79 7.72 7.73 7.52 7.51	3.8 1.2 2.8 3.2 2.1 4.1 3.8 2.4
2013/7/4 17:12	W3 C1	MF	832055 833731	807906	13.2	6.750 6.750 12.500 12.500 12.500 12.000 1.000 6.600 6.200 12.200 12.200 12.200 12.200 12.200 12.200 1.000 7.650 7.650 14.300 1.000 5.600 10.200 10.200 1.000	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 27.25 27.25 27.29 24.53 24.31 28.77 28.80 28.36 28.36 28.36 28.36 28.36 28.36	8.12 7.14 5.21 4.80 9.54 9.53 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18 9.19 9.21 9.02 8.64 6.24 5.86	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 109.4 91.4 137.3 139.3 104.8 103.3 78.6 75.3 136.8 137.2 134.6 128.8 93.5 87.7 127.8	$\begin{array}{c} 0.8 \\ 0.9 \\ 1.0 \\ 1.2 \\ 1.2 \\ 1.3 \\ 0.1 \\ 0.0 \\ 1.2 \\ 1.5 \\ 0.4 \\ 0.5 \\ 1.4 \\ 1.1 \\ 2.1 \\ 1.9 \\ 1.2 \\ 0.9 \\ 1.0 \\ 0.8 \\ 3.8 \\ 3.2 \\ 0.6 \\ \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.20 34.19 34.48 25.30 25.33 26.88 26.88 26.72 31.19 31.26 23.26	7.86 7.87 7.61 7.62 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.96 7.78 7.96 7.78 7.97 7.79 7.79 7.72 7.73 7.52 7.51 8.13	3.8 1.2 2.8 3.2 2.1 4.1 3.8 2.4 3.2
2013/7/4 17:12	W3 C1	MF	832055 833731	807906	13.2	6.750 6.750 12.500 12.500 12.500 12.500 12.000 1.000 6.600 6.600 12.200 1.000 1.000 1.000 1.000 1.000 7.650 14.300 1.000 5.600 10.200 10.200 1.000 1.000	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 27.25 27.29 24.53 24.31 28.77 28.80 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.37 27.09 28.95 27.09 28.95 28.99	8.12 7.14 5.21 4.80 9.54 9.63 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18 9.19 9.21 9.02 8.64 6.24 5.86 8.73	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3 78.6 75.3 136.8 137.2 134.6 128.8 93.5 87.7 127.8 129.1	$\begin{array}{c} 0.8\\ 0.9\\ 1.0\\ 1.2\\ 1.2\\ 1.3\\ 0.1\\ 0.0\\ 1.2\\ 1.5\\ 0.4\\ 0.5\\ 1.4\\ 1.1\\ 2.1\\ 1.9\\ 1.2\\ 0.9\\ 1.0\\ 0.8\\ 3.8\\ 3.2\\ 0.6\\ 0.5\\ \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20 34.19 34.48 25.30 25.33 26.88 26.72 31.19 31.26 23.26 23.29	7.86 7.87 7.61 7.95 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.96 7.78 7.97 7.96 7.78 7.81 7.85 7.79 7.72 7.73 7.52 7.51 8.13 8.14	3.8 1.2 2.8 3.2 2.1 4.1 3.8 2.4 3.2 3.5
2013/7/4 17:12	W3 C1	MF	832055 833731	807906	13.2	6.750 6.750 12.500 12.500 12.500 1.000 6.600 12.200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.600 5.600 10.200 10.200 1.000 1.000 1.000 1.000	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 27.25 27.25 27.25 27.25 24.53 24.53 24.31 28.77 28.80 28.36 28.34 27.13 27.13 27.13 27.13 28.95 28.99 27.12	8.12 7.14 5.21 4.80 9.54 9.54 9.54 9.54 9.53 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18 9.19 9.21 9.02 8.64 6.24 5.86 8.73 8.82	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3 78.6 75.3 136.8 137.2 134.6 128.8 93.5 87.7 127.8 129.1 131.6	$\begin{array}{c} 0.8\\ 0.9\\ 1.0\\ 1.2\\ 1.2\\ 1.3\\ 0.1\\ 0.0\\ 1.2\\ 1.5\\ 0.4\\ 0.5\\ 1.4\\ 1.1\\ 2.1\\ 1.9\\ 1.2\\ 0.9\\ 1.2\\ 0.9\\ 1.0\\ 0.8\\ 3.8\\ 3.2\\ 0.6\\ 0.5\\ 0.8\\ \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20 34.19 34.48 25.30 25.33 26.88 26.72 31.19 31.26 23.26 23.29 30.50	7.86 7.87 7.61 7.95 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.78 7.79 7.78 7.78 7.79 7.78 7.78	3.8 1.2 2.8 3.2 2.1 4.1 3.8 2.4 3.2 3.5
2013/7/4 17:12 2013/7/4 16:17	W3 C1 C2	MF MF MF	832055 833731 831486	807906 808185 807724	13.2	6.750 6.750 12.500 12.500 12.500 12.500 12.000 1.000 6.600 6.600 12.200 1.000 1.000 1.000 1.000 1.000 7.650 14.300 1.000 5.600 10.200 10.200 1.000 1.000	27.96 28.17 25.13 25.26 29.00 28.91 28.17 28.36 25.31 25.33 28.95 27.25 27.29 24.53 24.31 28.77 28.80 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.36 28.37 27.09 28.95 27.09 28.95 28.99	8.12 7.14 5.21 4.80 9.54 9.63 8.33 7.43 6.21 9.32 9.44 7.06 6.95 5.39 5.18 9.19 9.21 9.02 8.64 6.24 5.86 8.73	121.3 106.9 76.6 70.7 142.9 142.7 144.0 124.7 109.4 91.4 137.3 139.3 104.8 103.3 78.6 75.3 136.8 137.2 134.6 128.8 93.5 87.7 127.8 129.1	$\begin{array}{c} 0.8\\ 0.9\\ 1.0\\ 1.2\\ 1.2\\ 1.3\\ 0.1\\ 0.0\\ 1.2\\ 1.5\\ 0.4\\ 0.5\\ 1.4\\ 1.1\\ 2.1\\ 1.9\\ 1.2\\ 0.9\\ 1.0\\ 0.8\\ 3.8\\ 3.2\\ 0.6\\ 0.5\\ \end{array}$	28.15 28.03 33.93 33.77 25.61 25.67 27.84 27.41 33.62 33.58 22.73 22.97 29.21 29.20 34.19 34.48 25.30 25.33 26.88 26.72 31.19 31.26 23.26 23.29	7.86 7.87 7.61 7.95 7.96 7.95 7.86 7.87 7.60 7.58 8.13 8.15 7.97 7.96 7.78 7.97 7.96 7.78 7.81 7.85 7.79 7.72 7.73 7.52 7.51 8.13 8.14	3.8 1.2 2.8 3.2 2.1 4.1 3.8 2.4 3.5 2.4

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 6-Jul-13

Date / There	Land	T:1.+	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ື່	mg/L	%	NTU	ppt	unit	mg/
2013/7/6 11:29	W1	ME	832956	807718	2.3	1.150	28.51	6.25	94.0	0.8	27.79	8.09	1.6
2010/110 1112/			002/00	00//10	215	1.150	28.52	6.03	90.8	0.9	27.94	8.08	1.0
						1.000	28.52	7.15	107.5	1.0	27.81	8.10	1.3
						1.000	28.50	6.81	102.5	0.9	27.83	8.10	
2013/7/6 11:14	W2	ME	832654	807977	12.5	6.250	28.12	6.14	92.7	0.8	29.55	8.08	3.8
						6.250	28.10	6.32	95.3	1.1	29.54	8.07	
						11.500 11.500	27.00 27.33	5.55 5.29	83.1 79.7	0.2	31.37 31.49	8.00 8.02	3.3
						1.000	29.01	8.19	122.9	0.4	25.98	8.16	
						1.000	29.01	8.20	122.9	0.9	26.10	8.15	3.2
						6.050	28.60	8.04	123.1	0.8	28.29	8.10	
2013/7/6 10:56	W3	ME	832058	807884	12.1	6.050	28.66	7.34	1111.0	0.9	28.45	8.12	3.6
						11.100	26.46	6.03	90.4	2.3	33.26	7.93	
						11.100	26.14	5.38	80.2	2.1	33.33	7.91	3.3
						1.000	28.85	10.14	115.7	0.9	26.60	8.10	
						1.000	28.75	10.17	115.8	0.8	26.07	8.11	1.7
2012/7/6 11 47	01		022711	808105	14.4	7.200	28.45	8.49	153.8	1.0	29.56	8.10	0.5
2013/7/6 11:47	C1	ME	833711	808195	14.4	7.200	28.53	7.74	154.4	1.0	29.40	8.10	2.5
						13.400	25.57	7.70	125.8	1.1	33.99	7.86	2.9
						13.400	25.56	7.74	114.7	1.6	33.98	7.85	2.9
						1.000	29.04	7.28	109.6	0.8	26.32	8.10	2.6
						1.000	28.99	7.15	107.5	0.8	26.40	8.10	2.0
2013/7/6 10:41	C2	ME	831459	807762	9.8	4.900	28.67	7.67	115.3	0.9	27.36	8.12	3.9
2015/7/0 10.41	C2	IVIL	051459	607702	9.0	4.900	28.67	7.26	109.1	0.7	27.21	8.08	5.7
						8.800	28.30	5.85	88.0	0.5	28.53	8.00	4.9
						8.800	28.22	5.85	88.0	0.6	28.79	8.01	
						1.000	28.80	6.60	99.1	0.8	26.63	8.08	2.5
						1.000	28.81	6.22	93.4	0.4	26.62	8.09	2
2013/7/6 12:06	C3	ME	832237	808848	14.6	7.300	28.52	6.85	103.6	1.0	28.61	8.08	1.9
						7.300	28.64	6.40	96.9	1.1	28.65	8.10	
						13.600	25.74	5.06	75.1	1.8	33.75	7.87	6.2
						13.600	25.69	4.56	67.5	1.9	33.38	7.88	
						1.400	29.03	9.06	136.6	0.7	26.73	8.10	
2013/7/6 17:23	W1	MF	832972	807741	2.8	1.400	29.03	9.00 8.71	130.0	0.7	20.75	8.09	2.2
						1.400	28.92	6.98	105.3	1.2	26.90	8.09	
						1.000	28.99	6.79	103.5	0.9	26.92	8.07	4.0
						6.850	28.41	6.60	102.3	0.5	29.78	8.05	
2013/7/6 17:07	W2	MF	832659	807996	13.7	6.850	28.35	6.28	95.1	0.4	29.69	8.06	3.8
						12.700	26.64	5.18	77.8	2.2	33.17	7.91	
						12.700	26.68	4.93	74.1	2.1	33.11	7.89	5.3
						1.000	29.04	7.18	108.4	0.7	26.93	8.08	
						1.000	28.96	7.32	110.4	1.0	26.96	8.06	1.8
0010/07/2 12 21	11/0	100	0000.46	007075	10.4	6.700	28.38	7.15	108.6	0.8	30.01	8.03	1.4
2013/7/6 16:51	W3	MF	832040	807875	13.4	6.700	28.37	6.81	103.5	0.6	29.96	8.03	1.8
						12.400	26.59	5.99	90.0	1.7	33.29	7.90	2.3
						12.400	26.63	5.34	80.2	2.1	33.25	7.88	2.3
						1.000	29.06	9.32	140.4	0.5	26.56	8.12	2.2
						1.000	29.05	9.11	137.4	0.8	26.58	8.12	2.2
2013/7/6 17:41	C1	MF	833724	808183	15.5	7.750	28.68	9.95	150.7	0.4	28.70	8.09	2.4
2013/1/0 17.11	CI	1011	055721	000105	10.0	7.750	28.66	8.68	132.0	0.1	29.37	8.09	2.
						14.500	26.03	5.89	87.7	1.1	33.40	7.90	1.8
		1				14.500	26.11	5.96	88.8	0.8	33.34	7.90	
						1.000	28.99	8.13	122.5	0.6	26.81	8.09	3.3
						1.000	29.01	7.48	112.8	0.5	26.81	8.08	
		MF	831489	807741	11.2	5.600	28.29	7.77	117.5	0.5	29.35	8.04	3.9
2013/7/6 16:35	C2					5.600	28.35	7.40	111.9	0.4	29.26	8.02	
2013/7/6 16:35	C2	.,,,,					27.74	6.38	96.8	0.7	31.80	7.99	5.8
2013/7/6 16:35	C2					10.200		6.00	01.1	1.0	20.61	7.05	2.0
2013/7/6 16:35	C2					10.200	27.36	6.23	94.4	1.2	32.61	7.95	5.0
2013/7/6 16:35	C2					10.200 1.000	27.36 29.06	8.90	125.3	0.9	26.66	8.12	
2013/7/6 16:35	C2					10.200 1.000 1.000	27.36 29.06 29.04	8.90 8.49	125.3 123.1	0.9	26.66 26.71	8.12 8.11	
2013/7/6 16:35 2013/7/6 18:00	C2 C3	MF	832229	808876	16	10.200 1.000 1.000 8.000	27.36 29.06 29.04 28.42	8.90 8.49 6.64	125.3 123.1 102.2	0.9 1.1 1.7	26.66 26.71 30.52	8.12 8.11 8.05	1.5
			832229	808876	16	10.200 1.000 1.000	27.36 29.06 29.04	8.90 8.49	125.3 123.1	0.9	26.66 26.71	8.12 8.11	1.5

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

9-Jul-13 Date

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de+	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/
2013/7/9 13:56	W1	ME	832974	807728	2.6	1.300	28.43	7.60	112.2	0.9	24.69	8.21	1.4
2013/11/ 15.50		INIE	052711	001120	2.0	1.300	28.44	8.21	121.1	0.8	24.68	8.21	1.1
						1.000	28.46	10.54	155.6	0.8	24.63	8.22	1.3
						1.000	28.37	10.62	156.6	1.0	24.69	8.22	
2013/7/9 13:42	W2	ME	832657	807977	12.8	6.400 6.400	27.49 27.58	9.84 9.35	144.7 137.7	1.0	26.84 26.81	8.12 8.13	1.3
						11.800	27.38	7.33	107.3	3.4	33.38	7.89	
						11.800	24.99	6.41	93.8	3.5	33.48	7.89	1.9
						1.000	28.73	10.59	156.8	0.8	24.43	8.22	
						1.000	28.72	10.47	155.1	0.9	24.44	8.21	1.5
2012/7/0 12 20	11/2		000040	007000	10.6	6.300	27.86	9.74	144.1	0.7	26.68	8.08	1.0
2013/7/9 13:29	W3	ME	832048	807900	12.6	6.300	27.80	9.07	134.0	0.6	26.77	8.07	1.6
						11.600	24.31	5.92	85.9	3.2	33.84	7.82	1.0
						11.600	24.34	5.79	83.9	3.7	33.82	7.79	1.9
						1.000	28.43	10.50	154.9	0.6	24.66	8.24	1.2
						1.000	28.52	10.70	158.1	0.5	24.60	8.25	1.2
2013/7/9 14:11	C1	ME	833711	808158	13.8	6.900	27.25	8.92	131.5	1.0	27.95	8.07	1.6
2010//// 1 1111	01		000711	000150	1010	6.900	27.27	8.44	124.5	1.1	27.91	8.09	
						12.800	24.91	6.78	99.0	1.8	33.29	7.88	1.6
						12.800	25.08	6.08	89.0	1.3	33.16	7.89	
						1.000	28.99	9.73	144.6	1.0	24.18	8.00	1.4
						1.000	29.00	10.55	156.8	1.1	24.24	8.02	
2013/7/9 13:16	C2	ME	831454	807749	10.1	5.050	28.62	10.35	153.3	0.6	24.83	7.99	1.4
						5.050	28.64	9.95	147.5	0.9	24.89	8.00	
						9.100 9.100	25.87 26.06	6.93 6.59	101.9 97.0	4.1 3.5	31.52 31.34	7.76 7.78	3.2
						1.000	28.42 28.43	9.05 8.85	133.7 130.7	0.7	24.74 24.73	8.27 8.26	1.2
						7.150	28.43	8.20	121.2	1.0	24.75	8.07	
2013/7/9 14:28	C3	ME	832207	808889	14.3	7.150	27.13	7.37	108.9	1.0	28.73	8.07	2.2
						13.300	24.52	6.17	89.8	1.4	33.81	7.90	
						13.300	24.46	5.68	82.6	1.6	33.87	7.90	2.7
2012/2/2/2/2/2/17			000055	005540	2.0	1.400	27.60	6.72	98.5	0.4	25.98	8.15	
2013/7/9 17:11	W1	MF	832977	807718	2.8	1.400	27.65	6.74	98.9	0.2	25.96	8.15	2.0
						1.000	27.74	7.21	105.9	0.7	25.80	8.17	1.0
						1.000	27.70	7.47	109.7	0.5	25.85	8.15	1.2
2013/7/9 16:58	W2	ME	832649	808001	13	6.500	27.10	6.96	101.7	0.3	26.74	8.08	1.4
2015//19 10:58	W Z	MF	832049	808001	15	6.500	27.20	6.50	95.0	0.2	26.64	8.08	1.2
						12.000	26.07	5.57	81.8	2.0	30.76	7.94	1.2
						12.000	26.06	5.20	76.3	1.5	30.78	7.95	1
						1.000	27.78	9.46	138.9	0.7	25.69	8.18	2.
						1.000	27.73	9.30	136.5	0.9	25.78	8.18	<i>L</i> .,
2013/7/9 16:42	W3	MF	832033	807869	12.8	6.400	27.18	8.91	130.2	0.3	26.66	8.07	2.
2013/119 10.12			052055	007002	12.0	6.400	27.18	8.20	119.8	0.6	26.69	8.06	2.
						11.800	27.25	7.87	115.1	0.9	26.54	8.07	2.9
						11.800	26.20	6.27	92.2	1.3	30.73	7.94	
						1.000	27.71	7.99	117.1	0.8	25.62	8.18	1.
						1.000	27.69	7.90	115.8	0.9	25.65	8.16	
2013/7/9 17:29	C1	MF	833722	808164	14.7	7.350 7.350	27.52 27.49	6.69 6.69	98.2 97.9	1.0	26.07 26.07	8.14 8.14	1.0
						13.700	27.49	6.53	97.9	0.5	26.07	8.13	
						13.700	25.95	5.81	85.7	2.2	31.84	7.97	1.3
						13.700	23.93	9.27	135.1	0.3	25.36	8.19	
						1.000	26.98	9.33	136.4	0.5	27.37	8.04	1.2
						5.200	27.07	8.52	124.6	0.0	27.09	8.05	1
2013/7/9 16:28	C2	MF	831439	807765	10.4	5.200	27.07	8.52	124.6	0.3	27.09	0.00	1.3
						9.400	26.16	6.08	89.2	1.7	30.43	7.95	
						9.400	26.15	6.01	88.4	2.1	30.80	7.95	1.2
						1.000	27.70	8.75	128.2	0.2	25.64	8.16	1 -
									142.9	0.3	25.64	8.17	1.1
						1.000	27.71	9.77	142.9	0.5	25.04	0.17	
2012/7/0 17.40	<i>C</i> 2	ME	0222220	20222	15 1	1.000 7.550	27.18	8.16	119.1	0.7	26.39	8.17	
2013/7/9 17:49	C3	MF	832239	80888	15.1			1	119.1 128.6				2.0
2013/7/9 17:49	C3	MF	832239	80888	15.1	7.550	27.18	8.16	119.1	0.7	26.39	8.11	2.0

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 11-Jul-13

Data (Time	Territor	m: 1. *	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/7/11 14:27	W1	ME	832949	807759	2.5	1.250	28.50	8.31	113.0	1.6	32.68	8.05	2.9
						1.250	28.60	8.34	115.8	1.3	30.86	8.05	
						1.000	28.90 28.90	8.38 8.38	116.3 116.1	1.6 1.3	34.46 34.31	8.05 8.04	2.8
						6.350	28.90	8.39	107.5	0.1	29.99	7.95	
2013/7/11 14:13	W2	ME	832665	807990	12.7	6.350	27.70	8.34	107.5	0.0	29.99	7.94	2.0
						11.700	27.20	8.28	87.3	0.8	31.02	7.71	4.0
						11.700	27.10	8.28	83.0	0.6	31.09	7.71	4.0
						1.000	28.90	8.41	121.0	2.2	32.82	8.06	1.3
						1.000	28.90	8.41	119.9	2.8	32.83	8.06	1.5
2013/7/11 14:02	W3	ME	832049	807875	12.5	6.250	27.60	8.36	101.9	1.1	30.34	7.96	1.0
						6.250 11.500	27.50 25.70	8.33 8.24	97.3 72.4	0.6	30.39 30.80	7.97 7.72	
						11.500	25.20	8.24	65.3	0.1	30.80	7.76	1.8
						1.000	28.10	8.58	112.8	1.5	31.32	8.03	
						1.000	28.10	8.53	112.0	1.3	29.43	8.03	1.6
2012/7/11 14:42	C1	ME	022706	202105	14.1	7.050	26.20	8.32	76.3	0.2	29.14	8.02	1.0
2013/7/11 14:42	CI	ME	833726	808195	14.1	7.050	26.10	8.31	69.6	0.3	28.96	8.01	1.8
						13.100	25.40	8.21	59.9	0.9	28.97	7.70	1.7
						13.100	5.70	8.30	178.5	0.6	30.97	7.69	1.7
						1.000	29.20	8.95	120.8	2.7	35.39	8.05	1.9
						1.000 5.100	29.10 28.10	8.84 8.72	123.2 127.6	2.6 0.7	35.39 30.34	8.05 8.01	
2013/7/11 13:50	C2	ME	831483	807729	10.2	5.100	28.00	8.65	127.0	1.0	30.34	8.01	1.4
						9.200	27.90	8.60	112.1	0.5	30.94	7.90	
						9.200	27.50	8.47	100.3	0.4	30.84	7.90	1.6
						1.000	27.70	8.09	103.3	0.9	30.93	8.01	2.1
						1.000	27.70	8.07	103.2	0.8	34.86	7.99	Z.1
2013/7/11 15:01	C3	ME	832244	808875	14.6	7.300	28.10	8.40	118.4	0.7	31.59	8.00	1.2
2013/1/11 13:01	0.5	IVIL	052244	000075	14.0	7.300	28.30	8.34	112.2	0.7	28.87	8.00	1.2
						13.600	27.80	8.38	106.6	0.3	28.85	7.67	1.8
						13.600	27.70	8.52	105.2	0.1	30.15	7.68	
2012/2/11 0.02			000055	0000054	2.5	1.350	28.80	8.22	92.0	0.6	36.02	8.17	
2013/7/11 9:02	W1	MF	832955	807751	2.7	1.350	28.80	8.22	91.5	0.0	31.70	8.17	1.4
						1.000	28.60	8.26	85.0	3.9	31.72	8.20	1.2
						1.000	28.60	8.24	86.3	3.8	31.72	8.19	1.2
2013/7/11 8:53	W2	MF	832685	807964	13.2	6.600	26.80	8.18	74.3	0.0	32.27	8.12	1.2
						6.600	26.40	8.17	62.8	0.0	32.14	8.11	
						12.200 12.200	25.40 25.30	8.23 8.17	53.9 53.2	1.1 0.6	36.11 36.02	7.94 7.94	1.3
	-					12.200	23.50	8.30	87.4	0.0	32.07	8.17	
						1.000	28.50	8.27	88.4	0.4	32.07	8.20	1.3
2012/2014 2 10			000000	005050		6.550	27.50	8.25	83.4	0.7	35.06	8.14	2.4
2013/7/11 8:40	W3	MF	832036	807870	13.1	6.550	27.40	8.23	81.6	0.9	35.23	8.13	2.4
	1					12.100	26.60	8.15	68.3	1.3	36.59	7.97	3.2
						12.100	26.30	8.16	64.2	1.8	36.46	7.97	5.2
	1					1.000	28.90	8.46	118.9	0.5	31.72	8.21	1.8
	1					1.000 7.400	28.90 26.30	8.46 8.28	120.0 66.9	0.7	31.74 31.73	8.21 8.16	
11/7/2013 .9:16	C1	MF	833717	808188	14.8	7.400	26.30	8.28	64.8	1.0	34.91	8.16	1.4
						13.800	25.70	8.28	58.8	1.2	34.91	7.94	<u> </u>
	1					13.800	25.50	8.21	58.0	1.5	35.68	7.93	1.2
						1.000	28.80	8.41	97.9	0.0	32.52	8.27	1.7
	1					1.000	28.80	8.38	95.7	0.4	32.62	8.26	1./
	C2	MF	831439	807751	10.8	5.400	26.20	8.26	65.5	0.7	34.65	8.19	1.6
2013/7/11 8.26	<u></u>		001100	007751	10.0	5.400	26.00	8.23	62.2	0.9	34.66	8.19	1.0
2013/7/11 8:26						0.000	25.40	8.26	55.3	1.1	36.14	8.07	1.2
2013/7/11 8:26						9.800		0.01	£1.0		26.10	0.07	
2013/7/11 8:26						9.800	25.20	8.21	51.0	1.4	36.12	8.06	
2013/7/11 8:26						9.800 1.000	25.20 28.90	8.38	111.5	1.4	35.68	8.15	1.4
						9.800 1.000 1.000	25.20 28.90 28.80	8.38 8.40	111.5 115.5	1.4 1.0	35.68 31.54	8.15 8.14	
2013/7/11 8:26 2013/7/11 9:34	C3	MF	832212	808890	15.2	9.800 1.000	25.20 28.90	8.38	111.5	1.4	35.68	8.15	1.4 1.7
	C3	MF	832212	808890	15.2	9.800 1.000 1.000 7.600	25.20 28.90 28.80 26.60	8.38 8.40 8.30	111.5 115.5 80.8	1.4 1.0 0.4	35.68 31.54 31.55	8.15 8.14 8.10	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 13-Jul-13

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	The.	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/
2013/7/13 15:11	W1	ME	832981	807743	2.6	1.300	27.00	7.70	96.7	0.6	27.17	8.24	2.2
	_					1.300	27.00	7.72	96.9	0.4	27.25	8.24	
						1.000	26.90	8.02	100.5	0.7	28.05	8.34	3.1
						1.000 6.250	27.00 26.20	7.93 6.91	99.4 85.4	0.9	28.03 28.40	8.25 8.20	
2013/7/13 14:59	W2	ME	832659	807992	12.5	6.250	26.20	6.03	83.4 74.4	0.4	28.40	8.20	2.7
						11.500	25.10	5.14	62.4	1.7	32.49	8.23	
						11.500	25.10	5.14	62.3	1.4	32.49	8.20	2.6
						1.000	27.00	7.65	96.0	0.1	28.50	8.22	
						1.000	27.00	7.60	95.4	0.1	28.48	8.22	2.4
2012/7/12 14 44	11/2	ME	822056	007005	10.1	6.050	26.60	7.23	90.1	0.6	28.16	8.26	2.0
2013/7/13 14:44	W3	ME	832056	807885	12.1	6.050	26.50	7.02	87.3	0.7	28.20	8.24	2.9
						11.100	25.70	6.32	77.4	0.3	28.29	8.20	4.4
						11.100	25.20	5.85	71.0	0.5	28.28	8.17	4.4
						1.000	27.00	7.95	99.7	0.4	30.14	8.29	2.0
						1.000	27.00	7.94	99.7	0.4	30.20	8.28	2.0
2013/7/13 15:27	C1	ME	833730	808156	14.6	7.300	26.90	7.68	96.1	0.6	32.54	8.22	3.0
2015/1/15 15.27	CI	IVIL	055150	000150	14.0	7.300	26.80	7.52	94.0	0.5	32.47	8.24	5.0
						13.600	25.70	6.38	78.3	0.9	28.05	8.18	2.4
						13.600	25.20	5.58	67.8	0.8	28.04	8.16	2.
						1.000	27.00	7.75	97.2	0.3	28.53	8.34	2.2
						1.000	27.00	7.69	96.5	0.1	28.54	8.30	
2013/7/13 14:31	C2	ME	831459	807725	10.2	5.100	27.00	7.62	95.5	0.7	28.68	8.30	4.4
						5.100	27.00	7.42	93.1	0.6	28.65	8.30	
						9.200	25.70	6.74	82.6	0.2	28.36	8.14	6.2
						9.200	25.00	6.10	73.9	0.2	28.37	8.12	
						1.000	27.00	7.70	96.7 95.7	1.2	31.28 31.27	8.24	3.4
						1.000 7.450	27.00 26.60	7.62	95.7 88.0	1.4 0.6	28.24	8.25 8.21	
2013/7/13 15:46	C3	ME	832234	808849	14.9	7.450	26.50	6.81	84.7	0.0	28.24	8.21	3.4
						13.900	25.50	6.05	74.0	1.1	30.17	8.18	
						13.900	25.00	5.21	63.0	1.3	30.19	8.14	3.4
						151900	20100	5121	0510	110	50117	0111	
						1.200	26.50	7.80	97.0	1.7	29.88	8.57	
2013/7/13 8:50	W1	MF	832954	807735	2.4	1.200	26.70	7.95	99.2	1.5	29.93	8.40	2.2
						1.000	26.90	7.98	99.9	0.9	28.24	8.33	
						1.000	26.90	7.99	100.0	0.9	28.22	8.31	3.8
2012/7/12 0.25	11/2		0000000	007070	10.0	6.100	26.20	6.89	85.2	1.5	30.17	8.19	
2013/7/13 8:35	W2	MF	832666	807962	12.2	6.100	26.20	6.52	80.6	1.6	30.19	8.13	2.0
						11.200	25.70	5.78	70.9	0.3	28.07	8.12	3.3
						11.200	25.20	5.22	63.4	0.8	28.07	8.10	5.3
						1.000	26.90	8.10	101.4	0.1	28.05	8.37	2.
						1.000	26.90	8.11	101.6	0.1	28.04	8.35	Ζ.
2013/7/13 8:22	W3	MF	832022	807895	11.8	5.900	26.50	8.02	99.7	1.6	28.70	8.24	3.1
2013/1113 0.22	** 5	1411.	052022	007095	11.0	5.900	26.40	7.42	92.1	1.7	28.84	8.22	
						10.800	25.40	5.95	72.4	1.3	31.28	8.19	5.4
	+					10.800	25.20	5.39	65.4	1.4	31.27	8.14	<u> </u>
						1.000	26.70	8.04	100.3	0.8	29.49	8.31	2.3
						1.000	26.80	8.07	101.0	0.6	29.51	8.31	
2013/7/13 9:06	C1	MF	833718	808177	14.1	7.050	26.50	6.94	86.2	1.6	30.91	8.21	2.8
	_				_	7.050	26.40	6.81	84.6	2.1	30.50	8.21	<u> </u>
						13.100	26.00	6.41	79.1 75.4	19.0 2.1	33.86	8.24 8.21	2.8
						13.100 1.000	26.00	6.12	75.4		34.12		<u> </u>
						1.000	26.90 26.90	6.31 6.30	79.1	0.6	27.17 27.25	7.75 7.86	4.(
						4.800	26.60	7.08	88.1	1.3	30.14	8.26	<u> </u>
2013/7/13 8:10	C2	MF	831482	807749	9.6	4.800	26.40	7.08	86.9	1.0	30.14	8.06	3.4
						4.800	26.40	6.83	84.3	1.0	32.54	8.22	<u> </u>
						8.600	25.60	6.92	84.7	1.4	32.34	8.23	3.3
						1.000	26.90	7.85	98.3	0.5	29.34	8.31	<u> </u>
									98.1	0.8	29.39	8.26	3.8
						1.000	26.90	7.84	90.1		27,19	ð.//D	
0010/7//2000	~~~	15	0000000	000051	1 / 2	1.000 7.150	26.90 26.40	7.84	88.9	0.8	30.51	8.20	
2013/7/13 9:23	C3	MF	832230	808871	14.3			1					4.5
2013/7/13 9:23	C3	MF	832230	808871	14.3	7.150	26.40	7.16	88.9	0.5	30.51	8.18	4.5

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

16-Jul-13 Date

Data (There	Transform	m: 1. *	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/l
2013/7/16 17:14	W1	ME	832954	807738	2.5	1.250	27.10	7.87	99.0	0.3	31.40	8.28	2.4
						1.250 1.000	27.10 27.20	8.07 8.60	101.5 108.3	0.6	31.63 31.25	8.29	
						1.000	27.20	8.60	108.5	0.6	31.23	8.34 8.34	2.2
						6.050	26.60	7.57	94.4	0.9	31.74	8.28	
2013/7/16 17:04	W2	ME	832683	807966	13.1	6.050	26.60	7.40	92.2	0.7	30.43	8.27	3.6
						12.100	25.10	6.06	73.5	0.3	30.63	8.16	3.5
						12.100	25.00	5.90	71.4	0.1	31.39	8.16	5.5
						1.000	27.10	7.87	99.0	0.3	31.40	8.28	2.6
						1.000 6.450	27.20 26.90	8.13 8.52	102.4 106.7	0.7	32.06 31.99	8.33 8.31	
2013/7/16 16:49	W3	ME	832047	807890	12.9	6.450	26.80	8.00	100.7	0.9	30.96	8.28	2.5
						11.900	26.00	7.12	87.7	0.7	30.96	8.21	26
						11.900	25.50	6.54	79.9	0.6	31.25	8.18	2.6
						1.000	27.00	8.23	103.3	0.4	31.62	8.39	2.3
						1.000	27.00	8.25	103.6	0.2	30.53	8.38	210
2013/7/16 17:31	C1	ME	833713	808149	14.3	7.150 7.150	26.70 26.70	7.67 7.57	95.8 94.6	0.3	30.56 30.31	8.29 8.29	2.3
						13.300	25.20	5.49	66.7	0.0	30.31	8.17	
						13.300	25.20	5.29	64.3	0.1	31.27	8.16	2.1
						1.000	27.20	8.60	108.3	0.9	31.27	8.48	2.6
						1.000	27.20	8.65	108.9	0.7	31.27	8.47	2.0
2013/7/16 16:34	C2	ME	831438	807729	10.2	5.100	27.10	8.74	109.8	0.8	31.29	8.36	2.6
						5.100	27.00	8.66	108.7	0.5	31.67	8.36	
						9.200 9.200	26.20 26.10	7.66 6.91	94.8 85.2	0.7	31.79 32.05	8.24 8.21	3.6
						1.000	26.90	7.96	99.8	1.5	31.29	8.29	
						1.000	26.90	7.95	99.5	1.7	31.45	8.29	3.0
2013/7/16 17:49	C3	ME	832209	808847	15.1	7.550	26.00	5.98	73.7	0.9	31.37	8.19	2.6
2015///10 17.49	CS	NIE	652209	000047	13.1	7.550	26.00	5.90	72.8	0.5	30.31	8.18	2.0
						14.100	24.90	5.02	60.6	1.2	30.32	8.13	3.0
						14.100	24.90	4.90	59.2	0.8	31.31	8.13	
2013/7/16 11:55	W1	MF	832957	807751	2.2	1.100	27.10	6.60	83.0	0.7	30.16	8.10	1.6
2015///10 11:55	VV 1	IVII	852951	007751	2.2	1.100	27.10	6.56	82.5	0.9	30.18	8.12	1.0
						1.000	27.20	8.51	107.2	0.6	30.23	8.40	1.9
						1.000 6.000	27.20 26.70	8.53 6.52	107.5 81.4	0.4	30.25 30.85	8.40 8.25	
2013/7/16 12:07	W2	MF	832664	808006	12	6.000	26.70	6.24	77.8	1.0	30.83	8.23	2.4
						11.000	25.50	5.40	65.9	0.4	30.91	8.17	1.0
						11.000	25.30	4.78	58.1	0.8	30.87	8.15	1.9
						1.000	27.20	7.41	93.2	0.9	30.43	8.28	2.8
						1.000	27.20	8.68	109.3	0.7	30.36	8.32	2.0
2013/7/16 12:21	W3	MF	832060	807899	11.8	5.900 5.900	26.60 26.60	7.50 7.14	93.6 89.0	0.3 0.2	30.96 30.81	8.25 8.24	2.4
						10.800	25.50	4.54	55.4	0.2	31.06	8.13	
						10.800	25.50	4.29	52.4	0.6	31.06	8.13	2.9
						1.000	27.20	6.61	83.2	0.5	30.62	8.22	1.7
						1.000	27.20	6.66	83.8	0.6	30.05	8.22	1.7
2013/7/16 11:39	C1	MF	833727	808199	13.9	6.950	26.30	6.24	77.3	0.8	30.04	8.16	1.6
						6.950 12.900	26.20 26.20	5.75 5.52	71.1 68.3	0.7	30.52 30.52	8.14 8.13	
						12.900	25.60	4.96	60.7	1.2	30.32	8.09	2.0
						1.000	27.10	8.46	106.3	0.7	30.42	8.32	1.0
						1.000	27.10	8.38	105.3	0.7	30.36	8.32	1.9
2013/7/16 12:39	C2	MF	831451	807729	9.6	4.800	26.80	6.80	85.1	0.2	30.80	8.25	2.1
2010/11/10 12:07	02		001701	00112)	2.0	4.800	26.80	6.64	83.1	0.0	30.80	8.24	2.1
						8.600	25.30	4.65	56.6	0.3	31.13	8.12	2.2
						8.600 1.000	25.30 27.10	4.41 6.91	53.7 86.8	0.4	31.13 29.82	8.11 8.24	
						1.000	27.10	6.74	84.8	1.2	29.82	8.24	2.1
2012/7/14 11 22	<i>C</i> 2		022200	202200	1.4.1	7.050	26.20	6.23	77.1	0.6	30.33	8.24	2.1
2013/7/16 11:22	C3	MF	832206	808890	14.1	7.050	25.80	5.18	63.5	0.8	30.36	8.16	3.1
						13.100	25.00	4.29	51.9	1.2	30.69	8.21	4.0
	1				1	13.100	24.90	4.02	48.5	1.5	30.61	8.14	1.0

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

18-Jul-13 Date

		T .1 t	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/7/18 8:50	W1	ME	832954	807748	2.1	1.050	26.77	7.19	105.5	0.6	28.65	8.05	2.4
						1.050	26.78 26.81	7.32 7.44	107.5 109.1	0.7	28.63	8.05 8.05	
						1.000	26.81	7.44	109.1	1.0	28.44 28.48	8.03 8.04	1.7
						5.800	26.21	7.25	105.9	0.4	29.34	7.95	
2013/7/18 9:02	W2	ME	832660	807978	11.6	5.800	26.15	7.09	103.4	0.7	29.49	7.94	2.1
						10.600	24.05	4.17	60.0	2.1	33.18	7.71	1.9
						10.600	24.20	3.92	56.5	2.3	33.10	7.71	1.9
						1.000	26.91	7.58	111.4	0.5	28.51	8.06	2.4
						1.000	26.94 26.57	7.62	112.0	0.5	28.49 27.29	8.06 7.96	
2016/7/18 9:17	W3	ME	832056	807872	11.4	5.700	26.60	6.96	104.1	0.8	28.90	7.90	2.2
						10.400	24.98	6.77	97.5	1.2	30.55	7.72	
						10.400	25.03	6.35	92.2	1.3	31.80	7.76	2.3
						1.000	26.92	6.50	95.4	0.7	28.06	8.03	1.6
						1.000	26.91	6.92	101.6	0.5	28.11	8.03	1.0
2013/7/18 8:34	C1	ME	833716	808163	13.3	6.650	26.89	7.33	107.6	0.4	28.23	8.02	1.6
						6.650 12.300	26.83 23.85	7.36 6.02	107.9 86.4	0.8	28.30 33.62	8.01 7.70	
						12.300	23.85	4.88	70.1	1.1	33.57	7.69	2.2
						1.000	26.92	5.23	77.0	1.0	28.53	8.05	
						1.000	26.94	6.25	92.0	0.8	28.56	8.05	2.3
2016/7/18 9:32	C2	ME	831454	807752	9.2	4.600	26.67	7.30	107.1	0.5	28.94	8.01	3.3
2010/1/18 9.52	C2	IVIL	001404	007752	9.2	4.600	26.71	7.26	106.6	0.6	28.88	8.01	5.5
						8.200	26.29	7.03	102.9	1.6	29.64	7.90	3.0
						8.200	26.27	6.56	96.0	1.8	29.63	7.90	
						1.000	27.01 26.94	6.71 7.21	98.4 105.7	0.5	27.81 27.92	8.01 7.99	1.8
						6.900	26.94	7.52	110.4	0.7	28.10	8.00	
2013/7/18 8:15	C3	ME	832242	808875	13.8	6.900	26.92	7.50	110.0	1.0	28.09	8.00	1.8
						12.800	23.83	5.73	82.1	0.5	33.26	7.67	2.3
						12.800	23.86	4.68	67.1	0.7	33.27	7.68	2.5
						1 200	07.00	6.04	80.4	0.6	20.60	0.16	
2013/7/18 15:18	W1	MF	832976	807716	2.4	1.200	27.28 27.27	6.04 6.90	89.4 102.2	0.6	28.69 28.70	8.16 8.16	1.9
						1.200	27.21	6.30	93.2	1.4	28.66	8.15	
						1.000	27.25	7.08	104.8	1.4	28.64	8.17	1.7
2012/2/10 15 02	11/0		000657	007001	10.0	6.150	25.81	8.09	118.5	1.1	31.30	7.90	1.0
2013/7/18 15:03	W2	MF	832657	807981	12.3	6.150	25.78	7.13	104.5	1.3	31.32	7.90	1.9
						11.300	25.77	6.26	91.7	1.2	31.32	7.90	1.4
						113.000	24.75	4.81	70.1	0.8	33.26	7.76	1.1
						1.000	27.21 27.20	6.18 7.04	91.4 104.2	1.0	28.76 28.79	8.11	2.4
						1.000 5.900	27.20	7.60	104.2	0.7	28.79	8.11 7.91	
2013/7/18 14:48	W3	MF	832051	807899	11.8	5.900	26.50	6.39	93.9	0.3	29.74	7.93	2.2
						10.800	24.72	4.95	72.1	2.0	33.38	7.73	25
						10.800	24.66	4.26	62.0	2.1	33.47	7.72	2.5
						1.000	27.17	6.83	100.9	0.7	28.66	8.17	1.8
						1.000	27.18	7.44	109.9	0.9	28.66	8.17	
2013/7/18 15:34	C1	MF	833723	808197	13.9	6.950 6.950	25.52 25.64	7.88 6.39	115.1 93.5	0.6	31.70 31.41	7.85 7.86	2.0
						12.900	25.73	5.88	95.5 86.1	0.3	31.20	7.80	
						12.900	24.38	4.25	61.1	0.5	32.01	7.73	1.9
						1.000	27.21	6.46	95.5	0.7	28.65	8.05	1.6
	1					1.000	27.21	6.55	96.9	0.9	28.65	8.02	1.0
2013/7/18 14:35	C2	MF	831479	807738	10.1	5.050	27.02	6.60	97.5	0.5	29.04	7.97	1.8
						5.050	26.85	6.45	94.5	0.7	28.17	7.95	
	1					9.100 9.100	24.99 25.01	5.71 4.71	83.2 68.6	2.4 2.8	32.70 32.65	7.69 7.71	1.9
						9.100	25.01	4./1 7.10	105.0	2.8	32.65 28.64	8.16	
						1.000	27.15	6.64	98.1	0.9	28.71	8.14	1.8
2012/6/10 15-52	<u></u>	ME	822222	000072	145	7.250	27.14	7.35	108.6	0.5	28.72	8.14	1.0
2013/6/18 15:53	C3	MF	832238	808873	14.5	7.250	25.15	7.87	114.9	0.6	32.46	7.79	1.8
						13.500	25.10	6.40	93.4	0.6	32.51	7.78	2.6
	1					13.500	24.25	4.21	61.0	0.9	33.88	7.73	2.0

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

20-Jul-13 Date

Data (minu	Laster	TT: 1- 4	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ື່	mg/L	%	NTU	ppt	unit	mg/
2013/7/20 10:34	W1	ME	832961	807720	2.4	1.200	26.76	5.70	84.3	0.5	30.04	7.90	1.3
						1.200	26.78	5.70	84.3	0.4	30.02	7.91	
						1.000	26.75 26.73	5.81 6.08	85.9 89.9	0.5	30.05 30.05	7.91 7.89	1.0
						6.150	26.73	5.82	89.9 85.8	0.8	30.05	7.89	
2013/7/20 10:41	W2	ME	832644	807974	12.3	6.150	26.36	5.78	84.3	0.4	28.85	7.85	2.0
						11.300	26.44	5.52	81.5	0.0	30.67	7.85	
						11.600	26.29	5.43	80.0	0.3	30.88	7.84	1.8
						1.000	27.28	5.40	80.3	0.6	29.44	7.88	1.0
						1.000	27.25	5.67	84.3	0.6	29.47	7.87	1.0
20/7/213 10:55	W3	ME	832055	807903	11.9	5.950	26.54	5.51	81.5	0.0	30.57	7.83	0.8
20/1/215 10.55	VV J	IVIL	052055	007905	11.9	5.950	26.54	5.40	79.8	0.4	30.57	7.83	0.0
						10.900	25.94	5.09	74.8	3.8	31.25	7.75	2.1
						10.900	26.05	5.08	74.7	2.4	31.16	7.75	2.1
						1.000	27.04	6.82	101.1	1.7	29.65	7.89	1.1
						1.000	27.04	6.82	101.1	1.7	29.64	7.88	
2013/7/20 10:17	C1	ME	833725	808194	13.9	6.950	26.81	6.65	98.4	0.4	30.04	7.89	1.1
						6.950 12.900	26.77 26.47	6.65 6.47	98.4 95.5	0.3	30.03 30.50	7.88 7.84	
						12.900	26.45	6.35	93.6	0.0	30.24	7.84	1.7
						12.900	27.23	5.19	76.9	0.9	29.06	7.83	
						1.000	27.23	5.19	76.9	0.2	29.06	7.83	1.1
						5.050	26.69	5.07	75.0	0.8	30.13	7.84	
2013/7/20 11:06	C2	ME	831478	807758	10.1	5.050	26.59	4.92	72.7	0.7	30.37	7.86	2.3
						9.100	26.14	4.76	70.1	2.1	30.99	7.78	
						9.100	26.14	4.76	69.5	2.1	30.98	7.77	2.2
						1.000	27.13	7.11	105.4	0.3	29.30	7.87	0.0
						1.000	27.00	7.12	105.4	0.5	29.36	7.84	0.8
2012/7/20 0.50	C3	ME	022221	000002	14.2	7.150	26.73	6.64	97.8	0.7	29.52	7.83	1.3
2013/7/20 9:59	CS	ME	832231	808883	14.3	7.150	26.72	6.49	95.9	0.8	29.92	7.83	1.3
						13.300	26.53	6.21	91.6	0.1	30.25	7.81	1.3
						13.300	26.49	6.12	90.2	0.3	30.28	7.80	1.5
						1 200	27.07	6.40	06.6	1.6	20.15	7.05	
2013/7/20 16:49	W1	MF	832978	807728	2.6	1.300 1.300	26.96	6.49 6.69	96.6 98.4	1.6 1.7	30.15 28.56	7.95 7.93	1.7
						1.300	20.90	7.08	105.2	1.7	28.30	7.93	
						1.000	26.99	6.90	105.2	1.2	29.82	7.92	0.8
						6.350	26.71	6.41	95.0	0.8	30.46	7.95	
2013/7/20 16:35	W2	MF	832647	807977	12.7	6.350	26.68	6.26	92.7	0.0	30.44	7.92	0.0
						11.700	26.42	5.84	86.3	1.6	30.67	7.88	
						11.700	26.39	5.84	86.3	1.0	30.89	7.87	3.0
						1.000	27.27	7.08	105.1	0.2	29.13	7.87	
						1.000	27.29	7.08	105.1	0.3	29.13	7.88	1.
2013/7/20 16:19	W3	MF	832050	807876	12.3	6.150	26.68	6.95	102.9	0.3	30.45	7.89	1.1
2013/1/20 10.19	VV S	IVIF	852050	007870	12.3	6.150	26.57	6.50	96.0	0.4	30.25	7.88	1.
	1					11.300	26.26	6.30	93.0	1.2	31.02	7.86	1.0
	4					11.300	26.19	6.24	91.1	0.9	29.38	7.86	
	1					1.000	27.00	6.68	99.3	0.5	30.23	7.94	1.4
	1					1.000	27.05	6.49	96.5	0.6	30.18	7.97	
2013/7/20 17:04	C1	MF	833727	808180	14.4	7.200	26.67	6.13	90.7	0.3	30.55	7.92	1.
						7.200	26.65	5.82	86.2	0.5	30.49	7.91	
	1					13.400 13.400	26.32 26.30	5.76 5.70	85.0 84.1	1.0 0.7	30.97 31.00	7.86 7.87	1.0
						13.400	26.30	8.08	84.1 119.9	0.7	29.27	7.87	
	1					1.000	27.22	7.85	119.9	0.0	29.27	7.89	1.4
						5.200	26.61	7.34	108.5	0.5	30.40	7.88	
2013/7/20 16:09	C2	MF	831484	807726	10.4	5.200	26.70	6.57	97.2	0.4	30.29	7.88	1.8
						9.400	26.17	5.90	86.1	1.6	29.38	7.85	. I
	1					9.400	26.08	5.78	84.2	2.3	29.46	7.82	2.2
						1.000	27.07	6.19	92.1	0.8	30.17	7.95	
	1					1.000	27.02	6.28	93.4	0.9	30.24	7.94	2.2
2012/7/20 17.24	C3	MF	832248	808946	14.9	7.950	26.63	5.69	84.2	1.2	30.59	7.91	1.9
2013/7/20 17:24	CS	IVIP	052248	808846	14.9	7.950	26.63	5.64	83.5	1.6	30.58	7.91	1.5
	1					13.900	26.32	5.56	82.0	1.4	31.03	7.88	2.0
						13.900	26.23	5.51	81.2	1.1	31.11	7.87	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

23-Jul-13 Date

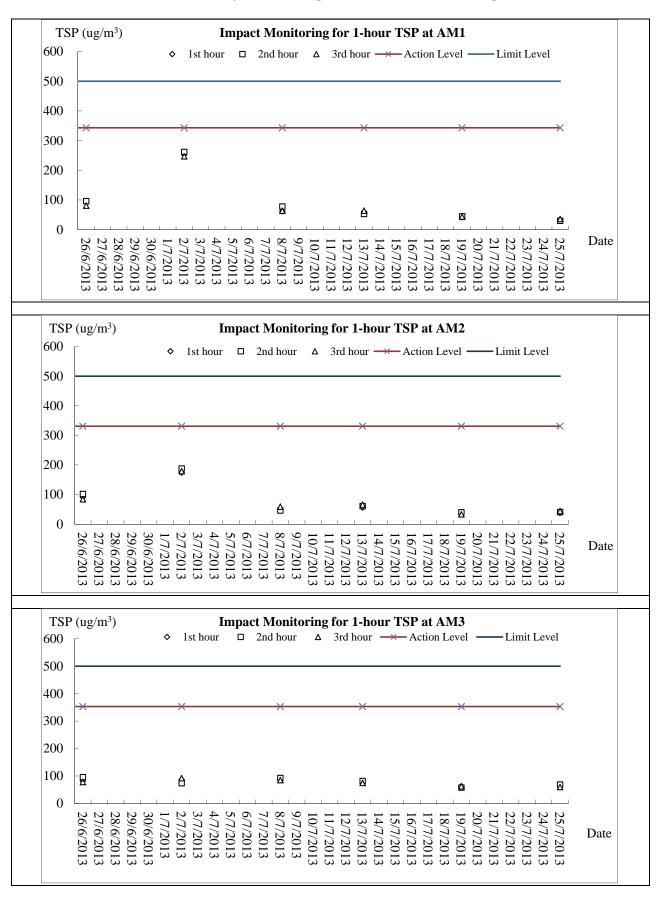
	Teerster	Tide*	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de+	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/7/23 11:47	W1	ME	832978	807741	2.2	1.100	26.58	7.57	113.0	1.6	32.31	7.90	3.9
						1.100	26.63 26.56	7.31 6.71	109.4 100.4	2.0	32.55 32.58	7.89 7.87	
						1.000	26.58	6.67	99.7	0.9	32.58	7.87	3.1
						6.050	26.47	6.62	99.0	1.0	32.74	7.87	
2013/7/23 11:58	W2	ME	832652	807969	12.1	6.050	26.53	6.54	97.8	0.5	32.77	7.88	3.7
						11.100	26.22	6.54	97.5	0.7	32.93	7.84	2.0
						11.100	26.18	6.46	96.1	1.5	32.96	7.84	3.2
						1.000	27.15	7.63	115.0	0.9	32.18	7.91	3.5
						1.000	27.15	7.58	114.2	0.5	32.18	7.91	5.5
2013/7/23 12:11	W3	ME	832049	807886	12	6.000	26.99	7.52	113.2	1.3	32.59	7.89	4.1
						6.000	26.99	7.43	111.9	0.6	32.62	7.90	
						11.000	25.61	6.53	96.6	4.2	33.55	7.79	3.4
						11.000	25.55	6.10	90.1 104.2	4.4	33.59	7.79	
						1.000	27.40 27.39	6.90 7.22	104.2	0.3	31.84 31.84	7.90 7.90	2.9
						6.950	27.04	7.36	1109.1	0.0	32.35	7.90	
2013/7/23 11:30	C1	ME	833694	808195	13.9	6.950	26.94	7.24	108.6	0.0	32.05	7.92	2.1
						12.900	26.28	7.10	105.6	1.5	32.66	7.83	
						12.900	26.27	6.67	99.3	2.2	32.69	7.83	7.3
						1.000	27.74	7.88	119.7	0.3	31.73	7.94	0.4
						1.000	27.73	7.99	121.2	0.1	31.74	7.92	2.4
2013/7/23 12:21	C2	ME	831454	807739	10.2	5.100	26.79	7.78	116.9	1.3	32.62	7.90	4.8
2013/7/23 12:21	C2	ME	851454	807759	10.2	5.000	26.76	7.12	106.9	1.4	32.61	7.87	4.0
						9.200	26.13	6.64	98.9	6.2	33.25	7.82	4.0
						9.200	26.05	6.25	92.9	5.6	32.93	7.83	7.0
						1.000	27.38	7.74	116.8	0.1	31.68	7.88	5.1
						1.000	27.45	7.76	117.1	0.1	31.67	7.91	511
2013/7/23 11:13	C3	ME	832238	808870	14.7	7.350	26.88	7.44	111.7	0.7	32.33	7.89	5.4
						7.350	26.89	7.40	111.1	1.4	32.33	7.89	
						13.700 13.700	26.30 26.24	7.18 6.28	106.9 93.4	0.9	32.55 32.59	7.83 7.82	6.4
						15.700	20.24	0.28	95.4	1.2	32.39	1.82	
						1.300	26.97	6.86	102.8	0.6	31.77	7.86	
2013/7/23 17:47	W1	MF	832954	807738	2.6	1.300	26.99	7.00	102.0	1.0	31.76	7.85	3.8
						1.000	27.00	7.55	113.3	1.6			
											31.80	/ 8/	4.5
											31.80 31.46	7.87 7.88	4.5
2010/5/22 15 22			000650	007000	10.1	1.000 1.000 6.550	26.95 26.93	7.42	111.0 108.0	1.0 1.1 1.4	31.46	7.87 7.88 7.86	
2013/7/23 17:32	W2	MF	832659	807992	13.1	1.000	26.95	7.42	111.0	1.1		7.88	4.5
2013/7/23 17:32	W2	MF	832659	807992	13.1	1.000 6.550	26.95 26.93	7.42 7.21	111.0 108.0	1.1 1.4	31.46 31.88	7.88 7.86	4.2
2013/7/23 17:32	W2	MF	832659	807992	13.1	1.000 6.550 6.550	26.95 26.93 26.93	7.42 7.21 7.02	111.0 108.0 105.2	1.1 1.4 0.8	31.46 31.88 31.88	7.88 7.86 7.86	
2013/7/23 17:32	W2	MF	832659	807992	13.1	1.000 6.550 6.550 12.100	26.95 26.93 26.93 26.48 26.43 27.05	7.42 7.21 7.02 6.89 6.72 7.51	111.0 108.0 105.2 103.1 100.4 112.6	1.1 1.4 0.8 2.4 3.1 0.7	31.46 31.88 31.88 32.86 32.96 31.66	7.88 7.86 7.86 7.84 7.84 7.84 7.83	4.2 4.4
2013/7/23 17:32	W2	MF	832659	807992	13.1	1.000 6.550 6.550 12.100 12.100 1.000 1.000	26.95 26.93 26.93 26.48 26.43 27.05 27.03	7.42 7.21 7.02 6.89 6.72 7.51 7.40	111.0 108.0 105.2 103.1 100.4 112.6 110.9	1.1 1.4 0.8 2.4 3.1 0.7 1.3	31.46 31.88 31.88 32.86 32.96 31.66 31.68	7.88 7.86 7.86 7.84 7.84 7.84 7.83 7.83	4.2
						1.000 6.550 6.550 12.100 12.100 1.000 1.000 6.200	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22	7.42 7.21 7.02 6.89 6.72 7.51 7.40 7.22	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9	1.1 1.4 0.8 2.4 3.1 0.7 1.3 0.6	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18	7.88 7.86 7.86 7.84 7.84 7.83 7.83 7.83 7.83	4.2 4.4 3.6
2013/7/23 17:32 2013/7/23 17:19	W2 W3	MF	832659 832033	807992 807876	13.1	1.000 6.550 6.550 12.100 12.100 1.000 6.200 6.200	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22	7.42 7.21 7.02 6.89 6.72 7.51 7.40 7.22 7.44	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2	1.1 1.4 0.8 2.4 3.1 0.7 1.3 0.6 0.7	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17	7.88 7.86 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.87 7.86	4.2 4.4
						1.000 6.550 6.550 12.100 12.000 1.000 6.200 6.200 11.400	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 27.22 26.67	7.42 7.21 7.02 6.89 6.72 7.51 7.40 7.22 7.44 6.54	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0	1.1 1.4 0.8 2.4 3.1 0.7 1.3 0.6 0.7 5.8	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49	7.88 7.86 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.87 7.86 7.83	4.2 4.4 3.6
						1.000 6.550 12.100 12.000 1.000 6.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.1400 11.400	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66	7.42 7.21 7.02 6.89 6.72 7.51 7.40 7.22 7.44 6.54 6.41	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2	$ \begin{array}{r} 1.1\\ 1.4\\ 0.8\\ 2.4\\ 3.1\\ 0.7\\ 1.3\\ 0.6\\ 0.7\\ 5.8\\ 6.6\\ \end{array} $	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49 32.92	7.88 7.86 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.87 7.86 7.83 7.82	4.2 4.4 3.6 3.8
						1.000 6.550 6.550 12.100 1.000 1.000 6.200 6.200 11.400 11.400 1.000	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66 26.62	7.42 7.21 7.02 6.89 6.72 7.51 7.40 7.22 7.44 6.54 6.54 6.41 7.01	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7	$ \begin{array}{c} 1.1\\ 1.4\\ 0.8\\ 2.4\\ 3.1\\ 0.7\\ 1.3\\ 0.6\\ 0.7\\ 5.8\\ 6.6\\ 0.8\\ \end{array} $	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.19 32.92 30.60	7.88 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.87 7.86 7.83 7.82 7.83	4.2 4.4 3.6 3.8
						1.000 6.550 6.550 12.100 1.000 1.000 6.200 6.200 11.400 11.400 1.000 1.000	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66 26.62 26.67	7.42 7.21 7.02 6.89 6.72 7.51 7.40 7.22 7.44 6.54 6.41 7.01 6.76	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 0.8 \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.18 32.17 32.49 32.92 30.60 30.90	7.88 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.87 7.86 7.83 7.82 7.83 7.82	4.2 4.4 3.6 3.8 9.6 2.2
						1.000 6.550 6.550 12.100 12.000 1.000 6.200 6.200 11.400 11.400 11.000 1.000 7.200	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66 26.62 26.67 26.81	7.42 7.21 7.02 6.89 6.72 7.51 7.40 7.22 7.44 6.54 6.41 7.01 6.76 6.45	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 0.8 \\ 2.3 \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49 32.92 30.60 30.90 31.54	7.88 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.86 7.83 7.82 7.83 7.82 7.82 7.82	4.2 4.4 3.6 3.8 9.6
2013/7/23 17:19	W3	MF	832033	807876	12.4	1.000 6.550 6.550 12.100 12.000 1.000 6.200 6.200 11.400 11.400 11.400 1.000 7.200 7.200	26.95 26.93 26.93 26.48 26.48 27.05 27.03 27.02 27.22 26.67 26.66 26.66 26.67 26.81 26.87	$\begin{array}{c} 7.42 \\ 7.21 \\ 7.02 \\ 6.89 \\ 6.72 \\ 7.51 \\ 7.40 \\ 7.22 \\ 7.44 \\ 6.54 \\ 6.41 \\ 7.01 \\ 6.76 \\ 6.45 \\ 6.46 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.8	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 0.8 \\ 2.3 \\ 1.6 \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89	7.88 7.86 7.86 7.84 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83	4.2 4.4 3.6 3.8 9.6 2.2 2.8
2013/7/23 17:19	W3	MF	832033	807876	12.4	1.000 6.550 6.550 12.100 12.000 1.000 6.200 6.200 11.400 11.400 11.000 1.000 7.200	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66 26.62 26.67 26.81	7.42 7.21 7.02 6.89 6.72 7.51 7.40 7.22 7.44 6.54 6.41 7.01 6.76 6.45	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 0.8 \\ 2.3 \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49 32.92 30.60 30.90 31.54	7.88 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.86 7.83 7.82 7.83 7.82 7.82 7.82	4.2 4.4 3.6 3.8 9.6 2.2
2013/7/23 17:19	W3	MF	832033	807876	12.4	1.000 6.550 6.550 12.100 12.000 1.000 6.200 6.200 11.400 11.400 1.000 1.000 7.200 7.200 13.400	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66 26.66 26.67 26.81 26.87 26.81	$\begin{array}{c} 7.42 \\ 7.21 \\ 7.02 \\ 6.89 \\ 6.72 \\ 7.51 \\ 7.40 \\ 7.22 \\ 7.44 \\ 6.54 \\ 6.41 \\ 7.01 \\ 6.76 \\ 6.45 \\ 6.46 \\ 5.95 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.8 89.0	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 0.8 \\ 2.3 \\ 1.6 \\ 1.1 \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89 32.16	7.88 7.86 7.86 7.84 7.83 7.83 7.83 7.83 7.83 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.87	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0
2013/7/23 17:19	W3	MF	832033	807876	12.4	1.000 6.550 6.550 12.100 12.100 1.000 6.200 6.200 6.200 11.400 10.000 7.200 7.200 13.400	26.95 26.93 26.93 26.48 27.05 27.03 27.22 27.22 26.67 26.66 26.67 26.66 26.62 26.81 26.81 26.87 26.71 26.74	$\begin{array}{c} 7.42 \\ 7.21 \\ 7.02 \\ 6.89 \\ 6.72 \\ 7.51 \\ 7.40 \\ 7.22 \\ 7.44 \\ 6.54 \\ 6.41 \\ 7.01 \\ 6.76 \\ 6.45 \\ 6.46 \\ 5.95 \\ 5.90 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.8 89.0 88.3	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 0.8 \\ 2.3 \\ 1.6 \\ 1.1 \\ 1.8 \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89 32.16 32.13	7.88 7.86 7.84 7.84 7.83 7.83 7.83 7.87 7.86 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.87 7.87	4.2 4.4 3.6 3.8 9.6 2.2 2.8
2013/7/23 17:19 2013/7/23 18:04	W3 C1	MF	832033 833723	807876	12.4	1.000 6.550 6.550 12.100 12.000 1.000 6.200 6.200 6.200 1.400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.200 7.200 13.400 1.000 1.000 5.400	26.95 26.93 26.93 26.48 27.05 27.03 27.22 27.22 26.67 26.66 26.62 26.67 26.81 26.87 26.81 26.87 26.71 26.71 26.71 27.98 27.93	$\begin{array}{c} 7.42 \\ 7.21 \\ 7.02 \\ 6.89 \\ 6.72 \\ 7.51 \\ 7.40 \\ 7.22 \\ 7.44 \\ 6.54 \\ 6.41 \\ 7.01 \\ 6.76 \\ 6.45 \\ 6.45 \\ 6.45 \\ 5.95 \\ 5.90 \\ 8.89 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.8 89.0 88.3 135.5 143.5 150.0	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 0.8 \\ 2.3 \\ 1.6 \\ 1.1 \\ 1.8 \\ 0.4 \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89 32.16 32.13 31.80 31.83 32.34	7.88 7.86 7.86 7.84 7.83 7.83 7.83 7.83 7.83 7.82 7.83 7.82 7.83 7.82 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.87 7.86 7.87 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0 3.4
2013/7/23 17:19	W3	MF	832033	807876	12.4	1.000 6.550 6.550 12.100 12.100 1.000 1.000 6.200 6.200 6.200 11.400 11.400 1.000 7.200 7.200 7.200 13.400 1.000 5.400	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66 26.67 26.67 26.67 26.81 26.87 26.71 26.74 27.98 27.93 27.31 26.93	$\begin{array}{c} 7.42 \\ 7.21 \\ 7.02 \\ 6.89 \\ 6.72 \\ 7.51 \\ 7.40 \\ 7.22 \\ 7.44 \\ 6.54 \\ 6.41 \\ 7.01 \\ 6.76 \\ 6.45 \\ 6.46 \\ 5.95 \\ 5.90 \\ 8.89 \\ 9.42 \\ 9.92 \\ 9.10 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.8 89.0 88.3 135.5 143.5 150.0 136.9	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 2.3 \\ 1.6 \\ 1.1 \\ 1.8 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89 32.16 32.13 31.80 31.80 32.34 32.34 32.60	7.88 7.86 7.86 7.84 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.87 7.86 7.87 7.92 7.77 7.76	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0
2013/7/23 17:19 2013/7/23 18:04	W3 C1	MF	832033 833723	807876	12.4	1.000 6.550 6.550 12.100 12.000 1.000 6.200 6.200 6.200 1.400 1.000 1.000 1.000 1.000 1.000 1.000 7.200 7.200 13.400 1.000 5.400 5.400 9.800	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66 26.67 26.67 26.81 26.87 26.81 26.87 26.71 26.74 27.98 27.98 27.31 26.93 26.32	$\begin{array}{c} 7.42 \\ \hline 7.21 \\ \hline 7.02 \\ \hline 6.89 \\ \hline 6.72 \\ \hline 7.51 \\ \hline 7.40 \\ \hline 7.22 \\ \hline 7.44 \\ \hline 6.54 \\ \hline 6.41 \\ \hline 7.01 \\ \hline 6.76 \\ \hline 6.45 \\ \hline 6.46 \\ \hline 5.95 \\ \hline 5.90 \\ \hline 8.89 \\ \hline 9.42 \\ \hline 9.92 \\ \hline 9.92 \\ \hline 9.10 \\ \hline 6.80 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.8 89.0 88.3 135.5 143.5 143.5 150.0 136.9 101.7	$\begin{array}{c} 1.1 \\ 1.4 \\ 0.8 \\ 2.4 \\ 3.1 \\ 0.7 \\ 1.3 \\ 0.6 \\ 0.7 \\ 5.8 \\ 6.6 \\ 0.8 \\ 0.8 \\ 2.3 \\ 1.6 \\ 1.1 \\ 1.8 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.6 \\ 10.6 \\ \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89 32.16 32.13 31.80 31.80 31.83 32.34 32.60 33.27	$\begin{array}{c} 7.88\\ \hline 7.86\\ \hline 7.86\\ \hline 7.84\\ \hline 7.83\\ \hline 7.83\\ \hline 7.83\\ \hline 7.83\\ \hline 7.83\\ \hline 7.83\\ \hline 7.82\\ \hline 7.83\\ \hline 7.82\\ \hline 7.83\\ \hline 7.82\\ \hline 7.83\\ \hline 7.82\\ \hline 7.87\\ \hline 7.87\\ \hline 7.86\\ \hline 7.87\\ \hline 7.92\\ \hline 7.92\\ \hline 7.92\\ \hline 7.77\\ \hline 7.76\\ \hline 7.69\end{array}$	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0 3.4 3.8
2013/7/23 17:19 2013/7/23 18:04	W3 C1	MF	832033 833723	807876	12.4	1.000 6.550 6.550 12.100 12.100 12.000 1.000 6.200 6.200 6.200 1.400 11.400 1.000 7.200 7.200 7.200 13.400 1.000 5.400 9.800	26.95 26.93 26.93 26.48 26.43 27.05 27.03 27.22 27.22 26.67 26.66 26.67 26.61 26.81 26.81 26.81 26.81 26.71 26.74 27.98 27.93 27.31 26.93 26.32 26.39	$\begin{array}{c} 7.42 \\ 7.21 \\ 7.02 \\ 6.89 \\ 6.72 \\ 7.51 \\ 7.40 \\ 7.22 \\ 7.44 \\ 6.54 \\ 6.41 \\ 7.01 \\ 6.76 \\ 6.45 \\ 6.46 \\ 5.95 \\ 5.90 \\ 8.89 \\ 9.42 \\ 9.92 \\ 9.92 \\ 9.10 \\ 6.80 \\ 6.32 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.8 89.0 88.3 135.5 143.5 150.0 136.9 101.7 94.6	$\begin{array}{c} 1.1\\ 1.4\\ 0.8\\ 2.4\\ 3.1\\ 0.7\\ 1.3\\ 0.6\\ 0.7\\ 5.8\\ 6.6\\ 0.8\\ 0.8\\ 2.3\\ 1.6\\ 1.1\\ 1.8\\ 0.4\\ 0.6\\ 0.6\\ 0.6\\ 10.6\\ 11.1\\ \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89 32.16 32.13 31.80 31.83 32.34 32.34 32.24 33.27 33.21	7.88 7.86 7.86 7.84 7.83 7.83 7.83 7.83 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.87 7.87 7.87 7.87 7.87 7.92 7.92 7.92 7.77 7.76 7.69 7.72	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0 3.4
2013/7/23 17:19 2013/7/23 18:04	W3 C1	MF	832033 833723	807876	12.4	1.000 6.550 6.550 12.100 12.100 1.000 6.200 6.200 6.200 1.400 1.000 7.200 7.200 13.400 1.000 5.400 9.800 9.800	26.95 26.93 26.93 26.48 26.43 27.05 27.02 27.22 27.22 26.67 26.66 26.67 26.81 26.81 26.87 26.71 26.74 27.98 27.93 27.93 27.93 27.93 26.93 26.32 26.39	$\begin{array}{c} 7.42 \\ 7.21 \\ 7.02 \\ 6.89 \\ 6.72 \\ 7.51 \\ 7.40 \\ 7.22 \\ 7.44 \\ 6.54 \\ 6.41 \\ 7.01 \\ 6.76 \\ 6.45 \\ 6.46 \\ 5.95 \\ 5.90 \\ 8.89 \\ 9.42 \\ 9.92 \\ 9.92 \\ 9.910 \\ 6.80 \\ 6.32 \\ 5.87 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 103.7 100.3 96.2 96.8 89.0 88.3 135.5 143.5 150.0 136.9 101.7 94.6 86.9	$\begin{array}{c} 1.1\\ 1.4\\ 0.8\\ 2.4\\ 3.1\\ 0.7\\ 1.3\\ 0.6\\ 0.7\\ 5.8\\ 6.6\\ 0.8\\ 0.8\\ 2.3\\ 1.6\\ 1.1\\ 1.8\\ 0.4\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 10.6\\ 11.1\\ 0.8\\ \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89 32.16 32.13 31.80 31.83 32.34 32.34 32.34 32.60 33.27 33.21 30.72	7.88 7.86 7.84 7.84 7.83 7.83 7.87 7.83 7.87 7.86 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.87 7.87 7.87 7.86 7.87 7.92 7.92 7.72 7.72 7.81	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0 3.4 3.8
2013/7/23 17:19 2013/7/23 18:04	W3 C1	MF	832033 833723	807876	12.4	1.000 6.550 6.550 12.100 12.100 1.000 1.000 6.200 6.200 6.200 1.400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.400 9.800 9.800 1.000 1.000	26.95 26.93 26.93 26.48 27.05 27.03 27.22 27.22 27.22 26.67 26.66 26.67 26.61 26.87 26.71 26.74 27.98 27.93 27.31 26.73 26.32 26.39 26.63	$\begin{array}{c} 7.42 \\ \hline 7.21 \\ \hline 7.02 \\ \hline 6.89 \\ \hline 6.72 \\ \hline 7.51 \\ \hline 7.40 \\ \hline 7.22 \\ \hline 7.44 \\ \hline 6.54 \\ \hline 6.41 \\ \hline 7.01 \\ \hline 6.76 \\ \hline 6.45 \\ \hline 6.45 \\ \hline 6.45 \\ \hline 5.95 \\ \hline 5.90 \\ \hline 8.89 \\ \hline 9.42 \\ \hline 9.92 \\ \hline 9.10 \\ \hline 6.80 \\ \hline 6.32 \\ \hline 5.87 \\ \hline 6.01 \\ \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.2 103.7 100.3 96.2 96.8 89.0 88.3 135.5 143.5 150.0 136.9 101.7 94.6 86.9 89.1	$\begin{array}{c} 1.1\\ 1.4\\ 0.8\\ 2.4\\ 3.1\\ 0.7\\ 1.3\\ 0.6\\ 0.7\\ 5.8\\ 6.6\\ 0.8\\ 2.3\\ 1.6\\ 1.1\\ 1.8\\ 0.4\\ 0.6\\ 0.6\\ 10.6\\ 10.6\\ 11.1\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	31.46 31.88 31.88 32.86 32.96 31.66 32.17 32.49 32.17 32.49 32.92 30.60 30.90 31.54 32.16 32.13 31.89 32.16 32.13 31.80 31.83 32.34 32.60 33.27 30.72 30.68	7.88 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.83 7.82 7.83 7.82 7.87 7.87 7.87 7.87 7.87 7.86 7.87 7.86 7.87 7.92 7.77 7.69 7.72 7.81 7.81	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0 3.4 3.8 3.2
2013/7/23 17:19 2013/7/23 18:04	W3 C1	MF	832033 833723	807876	12.4	1.000 6.550 6.550 12.100 12.000 1.000 6.200 6.200 6.200 1.400 1.000 1.000 1.000 1.000 1.000 7.200 7.200 7.200 13.400 1.000 5.400 5.400 9.800 1.000 1.000 5.400 5.400 5.400 9.800 1.000 7.550	26.95 26.93 26.93 26.48 27.05 27.03 27.22 27.22 26.67 26.66 26.62 26.67 26.81 26.87 26.71 26.81 26.87 26.71 26.71 26.73 27.93 27.93 27.93 27.31 26.93 26.32 26.69	$\begin{array}{c} 7.42 \\ 7.21 \\ 7.02 \\ 6.89 \\ 6.72 \\ 7.51 \\ 7.40 \\ 7.22 \\ 7.44 \\ 6.54 \\ 6.41 \\ 7.01 \\ 6.76 \\ 6.45 \\ 6.46 \\ 5.95 \\ 5.90 \\ 8.89 \\ 9.42 \\ 9.92 \\ 9.10 \\ 6.80 \\ 6.32 \\ 5.87 \\ 6.01 \\ 5.77 \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.8 89.0 88.3 135.5 143.5 150.0 136.9 101.7 94.6 86.9 89.1 86.1	$\begin{array}{c} 1.1\\ 1.4\\ 0.8\\ 2.4\\ 3.1\\ 0.7\\ 1.3\\ 0.6\\ 0.7\\ 5.8\\ 6.6\\ 0.8\\ 2.3\\ 1.6\\ 1.1\\ 1.8\\ 0.8\\ 2.3\\ 1.6\\ 1.1\\ 1.8\\ 0.6\\ 0.6\\ 10.6\\ 10.6\\ 11.1\\ 0.8\\ 0.8\\ 1.4\\ \end{array}$	31.46 31.88 31.88 32.86 32.96 31.66 31.68 32.18 32.17 32.49 32.92 30.60 30.90 31.54 31.89 32.16 32.13 31.80 31.83 32.34 32.60 33.27 33.21 30.68 31.94	7.88 7.86 7.86 7.84 7.83 7.83 7.83 7.83 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.82 7.83 7.87 7.86 7.87 7.92 7.92 7.77 7.76 7.69 7.72 7.781 7.81 7.84	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0 3.4 3.8 3.2
2013/7/23 17:19 2013/7/23 18:04 2013/7/23 17:07	W3 C1 C2	MF MF MF	832033 833723 831450	807876 808156 807738	12.4	1.000 6.550 6.550 12.100 12.100 1.000 1.000 6.200 6.200 6.200 1.400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.400 9.800 9.800 1.000 1.000	26.95 26.93 26.93 26.48 27.05 27.03 27.22 27.22 27.22 26.67 26.66 26.67 26.61 26.87 26.71 26.74 27.98 27.93 27.31 26.73 26.32 26.39 26.63	$\begin{array}{c} 7.42 \\ \hline 7.21 \\ \hline 7.02 \\ \hline 6.89 \\ \hline 6.72 \\ \hline 7.51 \\ \hline 7.40 \\ \hline 7.22 \\ \hline 7.44 \\ \hline 6.54 \\ \hline 6.41 \\ \hline 7.01 \\ \hline 6.76 \\ \hline 6.45 \\ \hline 6.45 \\ \hline 6.45 \\ \hline 5.95 \\ \hline 5.90 \\ \hline 8.89 \\ \hline 9.42 \\ \hline 9.92 \\ \hline 9.10 \\ \hline 6.80 \\ \hline 6.32 \\ \hline 5.87 \\ \hline 6.01 \\ \end{array}$	111.0 108.0 105.2 103.1 100.4 112.6 110.9 108.9 112.2 98.0 96.2 103.7 100.3 96.2 96.2 103.7 100.3 96.2 96.8 89.0 88.3 135.5 143.5 150.0 136.9 101.7 94.6 86.9 89.1	$\begin{array}{c} 1.1\\ 1.4\\ 0.8\\ 2.4\\ 3.1\\ 0.7\\ 1.3\\ 0.6\\ 0.7\\ 5.8\\ 6.6\\ 0.8\\ 2.3\\ 1.6\\ 1.1\\ 1.8\\ 0.4\\ 0.6\\ 0.6\\ 10.6\\ 10.6\\ 11.1\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	31.46 31.88 31.88 32.86 32.96 31.66 32.17 32.49 32.17 32.49 32.92 30.60 30.90 31.54 32.16 32.13 31.89 32.16 32.13 31.80 31.83 32.34 32.60 33.27 30.72 30.68	7.88 7.86 7.84 7.84 7.83 7.83 7.83 7.83 7.83 7.82 7.83 7.82 7.87 7.87 7.87 7.87 7.87 7.86 7.87 7.86 7.87 7.92 7.77 7.69 7.72 7.81 7.81	4.2 4.4 3.6 3.8 9.6 2.2 2.8 3.0 3.4 3.8 3.2 3.1

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

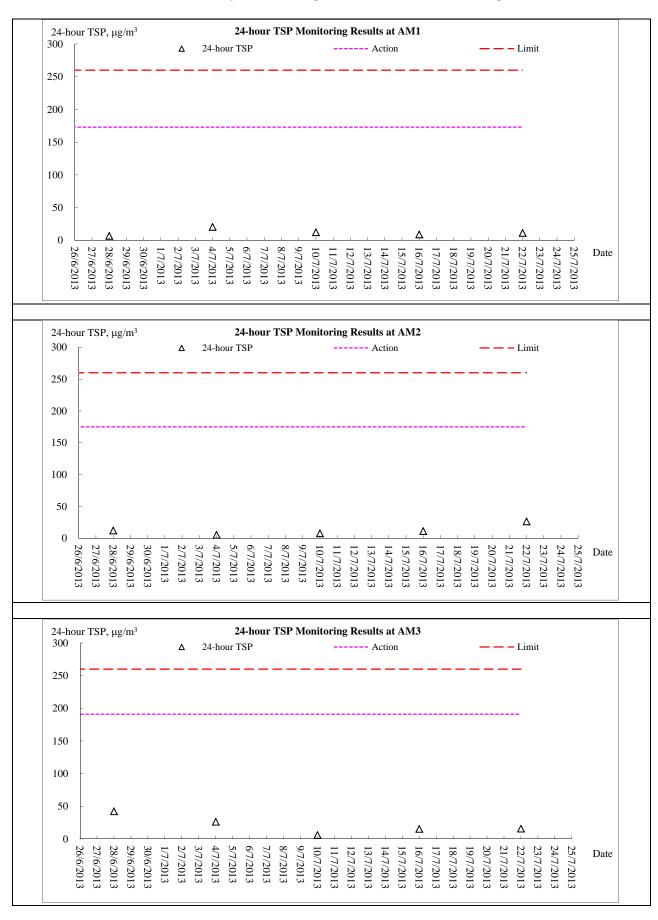
Sok Kwu Wan

Date 25-Jul-13

Data (Tima	Terretien	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	1100+	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/7/25 14:24	W1	ME	832959	807731	2.5	1.250	26.84	8.75	130.8	0.1	31.66	7.92	2.2
2013/1123 11.21		ML	032737	007751	2.5	1.250	26.88	8.61	128.7	0.1	31.63	7.92	2.2
						1.000	26.88	8.31	124.3	0.6	31.64	7.91	2.9
						1.000	26.88	8.21	122.8 122.1	0.4	31.63 32.11	7.92 7.95	
2013/7/25 14:08	W2	ME	832658	807964	12.7	6.350 6.350	27.01 26.99	8.12 8.10	122.1	0.3	32.09	7.95	2.6
						11.700	26.99	8.09	121.7	1.4	32.09	7.95	
						11.700	26.92	7.98	119.9	0.8	32.31	7.95	2.8
						1.000	26.73	8.17	121.4	0.4	31.06	7.85	
						1.000	26.75	7.92	117.9	0.6	31.06	7.86	2.4
2012/7/05 12:52	W3	ME	922061	007070	12.3	6.150	26.85	7.58	113.5	1.9	31.93	7.94	2.6
2013/7/25 13:52	W 3	ME	832061	807878	12.5	6.150	26.89	7.58	113.6	1.8	31.91	7.93	3.6
						11.300	26.86	7.55	113.1	4.4	32.02	7.94	4.1
						11.300	26.86	7.54	113.0	3.8	32.02	7.94	4.1
						1.000	26.95	8.97	134.2	0.0	31.52	7.92	3.1
						1.000	26.85	8.98	134.2	0.1	31.59	7.90	5.1
2013/7/25 14:40	C1	ME	833694	808166	13.9	6.950	27.01	9.05	135.7	0.3	31.74	7.93	3.6
						6.950	26.96	8.96	134.2	0.0	31.73	7.92	
						12.900	26.85	8.65	129.5	0.5	31.96	7.93	3.2
						12.900 1.000	26.84 26.68	8.63 8.17	129.2 121.0	0.1	31.97 30.57	7.93 7.85	
						1.000	26.67	7.75	121.0	0.3	30.63	7.85	3.4
						5.350	26.78	7.26	108.2	0.2	31.41	7.87	
2013/7/25 13:38	C2	ME	831458	807744	10.7	5.350	26.78	7.10	105.8	0.7	31.40	7.87	3.0
						9.700	26.88	6.86	103.0	5.1	32.58	7.93	
						9.700	26.85	6.87	103.3	4.8	32.62	7.93	4.0
						1.000	26.96	8.94	133.6	0.1	31.43	7.88	2.0
						1.000	26.90	8.81	131.6	0.2	31.48	7.87	2.9
2012/7/25 15:00	C2	ME	822222	000166	14.2	7.150	26.94	8.47	126.9	0.1	31.66	7.91	2.8
2013/7/25 15:00	C3	ME	832222	808166	14.3	7.150	26.96	8.52	127.6	0.1	31.68	7.90	2.0
						13.300	26.82	8.82	131.8	0.8	31.80	7.90	4.2
						13.300	26.82	7.90	118.1	0.7	31.80	7.90	4.2
			_										
2013/7/25 8:48	W1	MF	832971	807744	2.8	1.400	26.93	7.72	115.2	1.5	31.15	7.93	5.8
2010/11/20 01:10			002/11	007771	2.0	1.400	26.92	7.14	106.5	2.8	31.07	7.92	5.0
						1.000	26.84	7.23	107.5	2.1	30.88	7.88	3.2
						1.000	26.84	7.47	111.1	2.0	30.88	7.90	
2013/7/25 9:00	W2	MF	832665	808005	13.4	6.700 6.700	27.04 26.99	7.29	109.5 109.3	1.9 2.4	31.90 31.90	7.94 7.94	3.0
						12.400	20.99	7.28	109.5	3.2	32.17	7.94	
						12.400	27.19	7.17	108.1	2.7	32.10	7.90	2.5
						12.400	26.80	7.78	115.7	2.5	30.83	7.88	
						1.000	26.80	8.09	120.2	2.6	30.83	7.88	3.0
						6.550	26.96	7.91	118.5	2.0	31.65	7.92	2.4
2013/7/25 9:13	W3	MF	832037	807899	13.1	6.550	26.97	7.91	118.4	2.9	31.65	7.92	2.4
						12.100	27.04	7.85	118.1	3.0	32.25	7.94	2.0
						12.100	27.02	7.79	117.1	2.9	32.23	7.94	2.0
						1.000	26.81	8.37	124.1	1.3	30.47	7.90	3.7
						1.000	26.80	8.20	121.7	0.8	30.53	7.90	5.7
2013/7/25 8:31	C1	MF	833719	808179	14.3	7.150	26.84	7.75	115.7	1.4	31.62	7.92	2.5
						7.150	26.79	7.51	112.1	1.6	31.65	7.92	
						13.300	26.73	7.17	107.4	2.6	32.46	7.93	3.2
						13.300	26.71	7.07	105.9	1.7	32.48	7.93	
						1.000	26.84 26.80	9.52 9.84	142.3 146.0	3.1 3.3	30.41 30.53	7.84 7.83	2.0
						5.600	26.80	9.84	146.0	5.5 1.9	30.55	7.83	<u> </u>
2013/7/25 9:26	C2	MF	831483	807734	11.2	5.600	26.92	9.20	137.5	1.9	31.33	7.89	3.6
						10.200	26.85	9.03	135.4	2.5	32.18	7.91	1
						10.200	26.91	8.81	132.0	2.7	31.94	7.90	4.3
	1					1.000	26.79	6.91	102.6	0.8	30.47	7.90	2.6
						1.000	26.80	7.01	104.0	0.9	30.46	7.90	2.6
2012/7/25 0.14	02	ME	022201	000076	14.0	7.400	26.88	7.02	105.0	1.2	31.69	7.92	25
2013/7/25 8:14	C3	MF	832201	808876	14.8	7.400	26.85	6.86	102.6	1.6	31.69	7.92	3.5
						13.800	26.82	6.71	100.7	2.5	32.44	7.92	3.8
	1	1				13.800	26.83	6.59	99.0	2.7	32.43	7.93	5.0

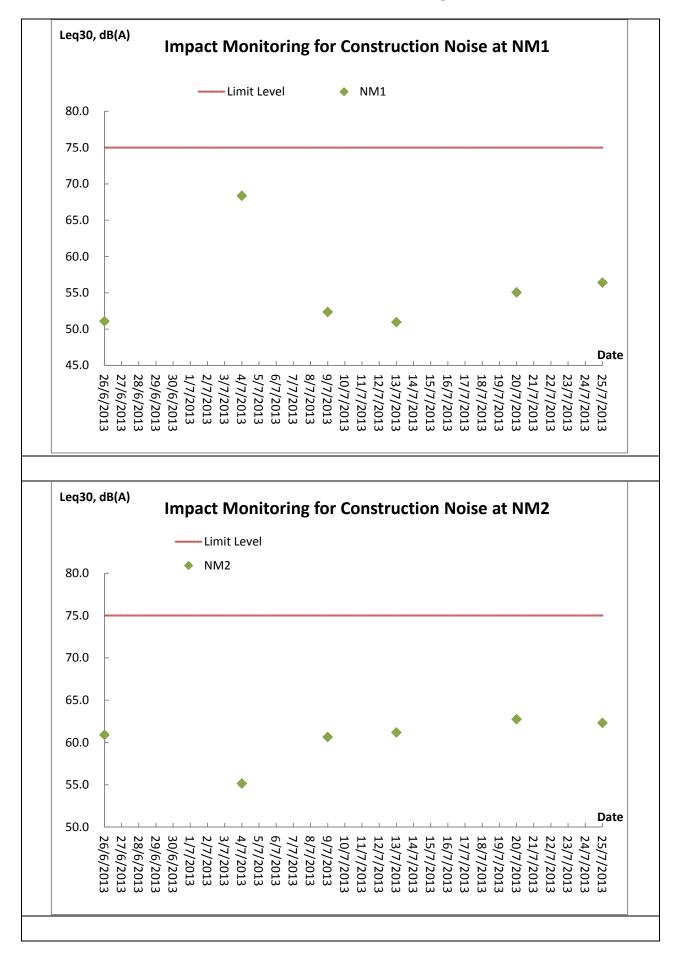

MF- Mid Flood Tide

ME- Mid Ebb tide

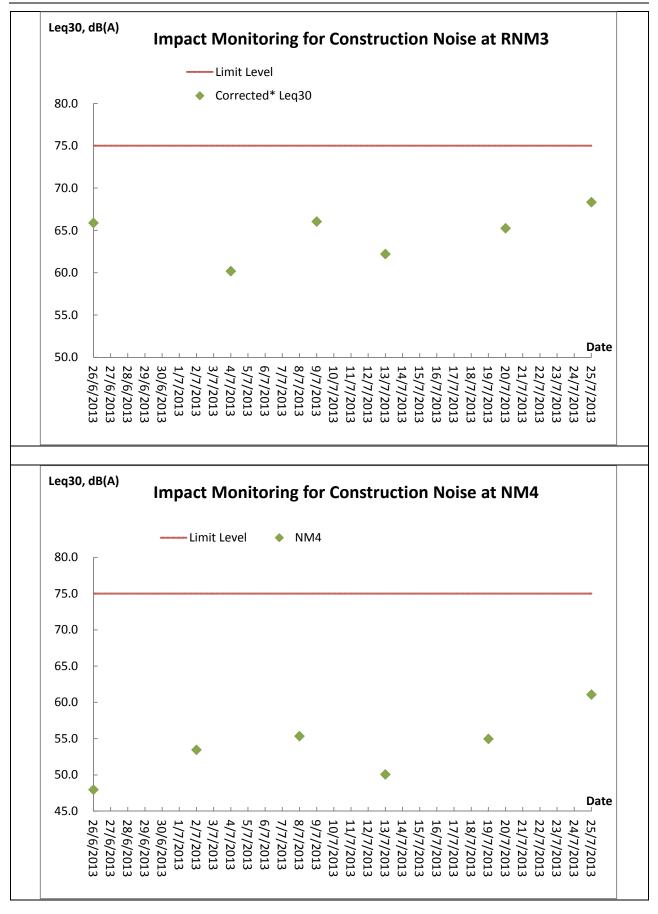

Appendix H

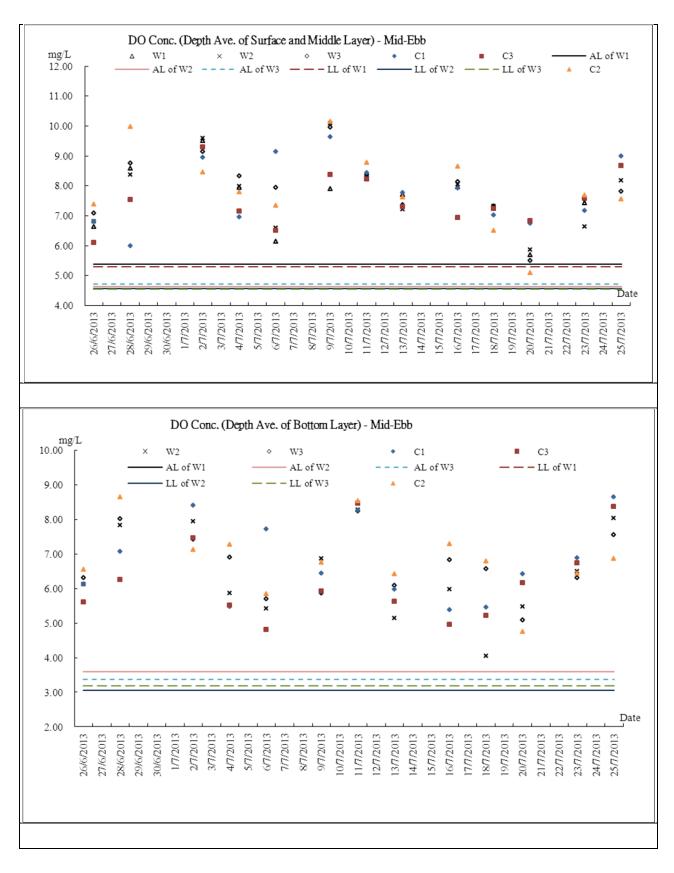
Graphical Plots of Monitoring Results

Air Quality Monitoring – 1 hour TSP Monitoring

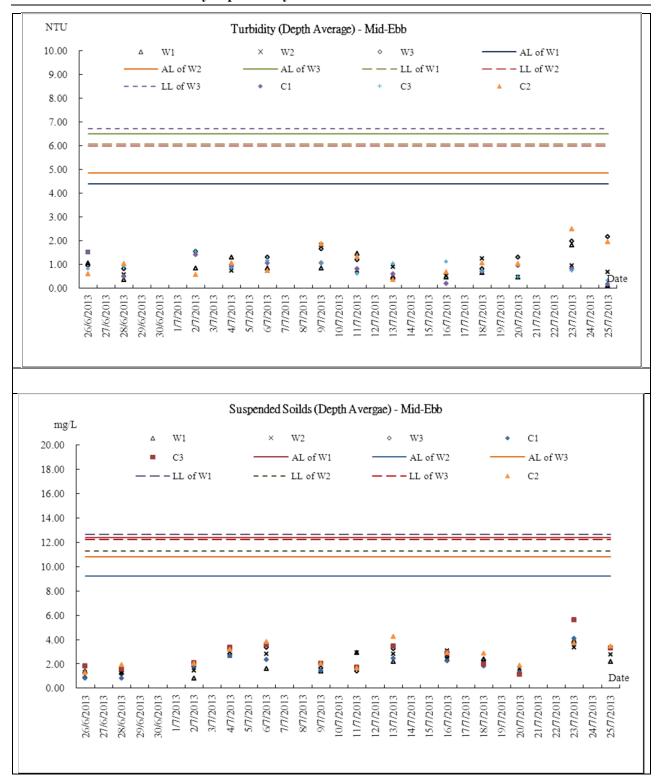


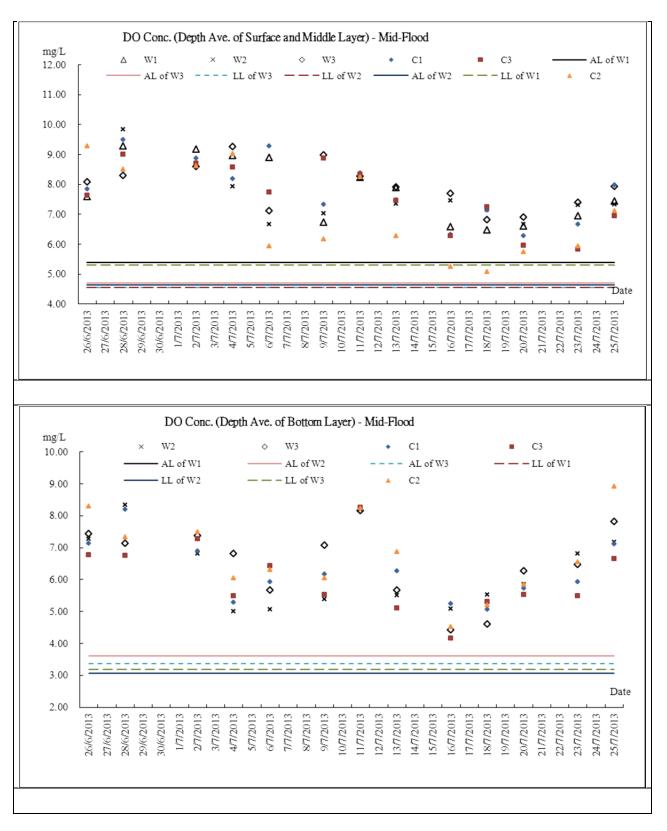
Air Quality Monitoring – 24 hour TSP Monitoring

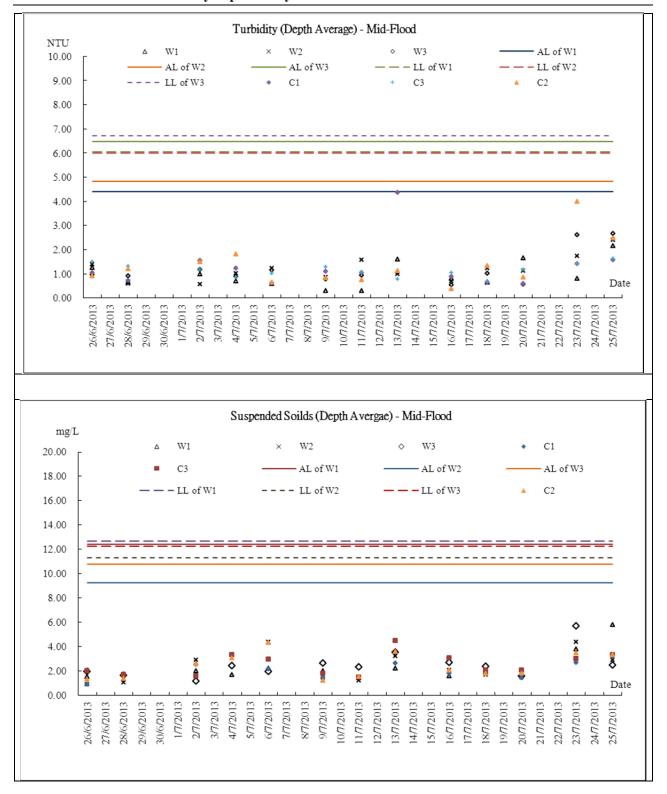




Construction Noise Monitoring




Marine Water Quality Monitoring - Mid-Ebb Tide


Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – July 2013

AUES

Marine Water Quality Monitoring - Mid-Flood Tide

Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Jun-13	Wed	Hot, isolated showers, moderate to fresh southwesterly winds
27-Jun-13	Thu	Hot, isolated showers, moderate to fresh southwesterly winds
28-Jun-13	Fri	Hot, isolated showers, moderate to fresh southwesterly winds
29-Jun-13	Sat	Fine, hot, moderate to fresh southeasterly winds
30-Jun-13	Sun	Fine, hot, moderate to fresh southeasterly winds
1-Jul-13	Mon	Cloudy, a few showers, moderate to fresh northeasterly winds.
2-Jul-13	Tue	Cloudy, rain, moderate to fresh easterly winds, strong offshore and on high ground.
3-Jul-13	Wed	Cloudy, rain, moderate to fresh easterly winds, strong offshore and on high ground.
4-Jul-13	Thu	Hot, sunny periods , a few showers, moderate east to southeasterly winds
5-Jul-13	Fri	Hot, sunny periods , a few showers, moderate east to southeasterly winds
6-Jul-13	Sat	Hot, sunny periods, isolated showers, Moderate southeasterly winds.
7-Jul-13	Sun	Hot, sunny periods, isolated showers, Moderate southeasterly winds.
8-Jul-13	Mon	Hot, sunny periods , a few showers, moderate east to southeasterly winds
9-Jul-13	Tue	Hot, sunny periods , a few showers, moderate east to southeasterly winds
10-Jul-13	Wed	Hot, sunny periods, isolated showers, Moderate southeasterly winds.
11-Jul-13	Thu	Cloudy, rain, Moderate to fresh southerly winds.
12-Jul-13	Fri	Cloudy, rain, Moderate to fresh southerly winds.
13-Jul-13	Sat	Fine, very hot. Light to moderate southerly winds.
14-Jul-13	Sun	Hot, sunny periods, Moderate south winds.
15-Jul-13	Mon	Cloudy, scattered showers, thunderstorms, Moderate southeasterly winds.
16-Jul-13	Tue	Cloudy, scattered showers, thunderstorms, Moderate east to southeasterly winds.
17-Jul-13	Wed	Rain, cloudy, a few showers, thunderstorms, Moderate northeasterly winds.
18-Jul-13	Thu	Cloudy, a few showers, thunderstorms, Moderate northeasterly winds.
19-Jul-13	Fri	Cloudy, squally showers, thunderstorms, Moderate easterly winds.
20-Jul-13	Sat	Cloudy, a few showers, Moderate east to southeasterly winds.
21-Jul-13	Sun	Cloudy, a few showers, Moderate east to southeasterly winds.
22-Jul-13	Mon	Hot, sunny periods, Moderate east to southeasterly winds.
23-Jul-13	Tue	Cloudy, a few showers, thunderstorms, Moderate east to southeasterly winds.
24-Jul-13	Wed	Cloudy, showers, squally thunderstorms, Moderate to fresh southeasterly winds.
25-Jul-13	Thu	Cloudy, rain, squally thunderstorms. Moderate south to southeasterly winds.

Appendix J

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for July 2013

			Actu	al Quant	ities of In	ert C&D	Material	s Genera	ted Mont	hly				A	Actual Qu	uantities	of C&D	Wastes	Generate	ed Montl	nly	
Month	Total Quantity Generated (a) = (c)+(d)+(e)		Hard Rock and Large Broken Concrete (b)		Reused in the Contract (c)		Reused in other Projects (d)		Disposed as Public Fill (e)		Import (1		Ме	tals	Paj cardi packa		Plas	stics	Cher Wa	nical aste		ners, ubbish
	(in '00	00m ³)	(in '00	$00m^{3})$	(in '00	00m ³)	(in '00)0m ³)	(in '00	00m ³)	(in '00	$00m^3$)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2013	13.341	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.601	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	<mark>400.410</mark>	<mark>103.440</mark>
Jan	0.332	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.332	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.040	9.840
Feb	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.530	6.530
Mar	0.056	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.430	4.920
Apr	0.425	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.425	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.800	32.200
May	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.790	4.650
Jun	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.430	48.240
<mark>Sub-total</mark>	14.236	50.328	0.160	0.417	0.740	2.802	0.000	0.000	13.497	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	443.430	209.820
Jul	0.871	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.871	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.550	33.520
Aug																						
Sep																						
Oct																						
Nov																						
Dec																						
Total	15.108	50.328	0.160	0.429	0.740	2.802	0.000	0.000	14.368	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	451.980	243.340
Total	65.4	136	0.5	89	3.5	42	0.0	00	61.8	394	0.0	00	0.0	00	0.0	00	0.0	000	0.0	00	695.	.320

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan SKW: Sok Kwu Wan

Appendix K

Weekly Site Inspection Checklist

Projec	t:TCS/00512/09	Inspected I	by		Checklist No. TCS512B-2 July 2013						
	Construction of Sewage Treatment Works at		Representat	ive	<u>Mr. F. N. V</u>						
		RE's Repre	esentative 's Represer	itativo	Mr. Alfred Mr. M. K		oseph Ng	_			
		IEC's Repr		itative	<u></u>	. Leang					
Date:		Time:				- 10					
PAR	TA: GENERAL INFORMATION				Envi	ronmental	Permit No.				
Weat	her: Sunny Fine Cloudy	Rainy			✓ EP- 28	31/2007A					
Temp	erature: 29 °C										
Humi		- I									
Wind	: Strong Breeze Light	Calm									
1	Sok Kwu Wan										
PART	B: SITE AUDIT										
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks				
Sectio	n 1: Water Quality		-7								
1.01	Is an effluent discharge license obtained for the Project?		\checkmark								
1.02	Is the effluent discharged in accordance with the discharge licence?		\checkmark								
1.03	Is the discharge of turbid water avoided?		\checkmark								
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?		\checkmark								
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?		\checkmark								
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?		\checkmark								
1.07	Is drainage system well maintained?		\checkmark								
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?					\checkmark					
1.09	Are temporary exposed slopes properly covered?					\checkmark					
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark								
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark								
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark								
1.13	Are wheel washing facilities well maintained?					\checkmark					
1.14	Is runoff from wheel washing facilities avoided?					\checkmark					
1.15	Are there toilets provided on site?		\checkmark								
1.16	Are toilets properly maintained?		\checkmark								
1.17	Are the vehicle and plant servicing areas paved and located within roofed areas?					\checkmark					
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark								
1.19	Are there any measures to prevent leaked oil from entering the drainage system?		\checkmark								
1.20	Are there any measures to collect spilt cement and concrete washings during concreting works?		\checkmark								
1.21	Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?					\checkmark					
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark					

AUES

HULD	Д			S
------	---	--	--	---

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	с
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Secti	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	

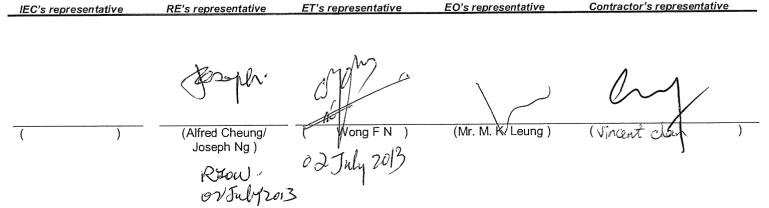
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	
Sectio	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?				\checkmark		
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (2 July 2013)


1. No adderse environmental impacts were observed.

Follow up (02 July 20/3) 1. Not required -

2. The silt curtain was broken again during typhoon. Repair is required.

2. To be followed up ono 9JulzoB

AHFS

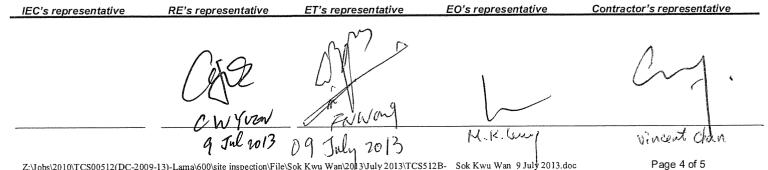
Projec Date: PAR	DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 9 July 2013	Inspected I ETL/ ET's F RE's Repre Contractor IEC's Repre Time:	Representa esentative 's Represe	entative	Checklist No. TCS512B-9 July 2013 Mr. F. N. Wong			
Humi Wind	erature: 29 °C dity: High V Moderate Low] Rainy] Calm			✓ EP- 28	31/2007A		
PART	B: SITE AUDIT							
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks	
Sectio	n 1: Water Quality							
1.01	Is an effluent discharge license obtained for the Project?		\checkmark					
1.02	Is the effluent discharged in accordance with the discharge licence	?	\checkmark					
1.03	Is the discharge of turbid water avoided?		\checkmark					
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?	•	\checkmark					
1.05	Are there channels, sandbags or bunds to direct surface run-off t sedimentation tanks?	•	\checkmark					
1.06	Are there any perimeter channels provided at site boundaries t intercept storm runoff from crossing the site?	•	\checkmark					
1.07	Is drainage system well maintained?		\checkmark					
1.08	As excavation proceeds, are temporary access roads protected b crushed stone or gravel?	У				\checkmark		
1.09	Are temporary exposed slopes properly covered?					\checkmark		
1.10	Are earthworks final surfaces well compacted or protected?							
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark				· · · · · · · · · · · · · · · · · · ·	
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark					
1.13	Are wheel washing facilities well maintained?					\checkmark		
1.14	Is runoff from wheel washing facilities avoided?					\checkmark		
1.15	Are there toilets provided on site?		\checkmark					
1.16	Are toilets properly maintained?		\checkmark					
1.17	Are the vehicle and plant servicing areas paved and located with roofed areas?	in 🗌				\checkmark		
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark					
1.19	Are there any measures to prevent leaked oil from entering th drainage system?	ne	\checkmark					
1.20	Are there any measures to collect spilt cement and concre- washings during concreting works?	te	\checkmark					
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	is				\checkmark		

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Secti	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					<u></u>
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings					\checkmark	
3.13	(Level 1 mitigation measures). Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?				\checkmark		
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)


Remarks:

Findings of Site Inspection: (9 July 2013)

No adverse environmental impacks were observed.

Follow up (2 July 2013 Fixing of filt curtain gaps is on going along the sea beside Puttion, It.

AIIS

Z: Jobs/2010/TCS00512(DC-2009-13)-Lama/600/site inspection/File/Sok Kwu Wan/2013/TCS512B- Sok Kwu Wan_9 July 2013.doc

53

1		S	
	SPRIN.	12222 1020	

é

Date: PART Weat	DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 5 July 2013 A: GENERAL INFORMATION	Inspected b ETL/ ET's R RE's Repres Contractor' IEC's Repre Time:	epresenta sentative s Represe		Checklist No. TCS512B-15 July 2013 Mr. F. N. Wong				
Humi Wind		Calm							
	Inspected	-							
1	Sok Kwu Wan								
PART	B: SITE AUDIT								
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks		
Sectio	n 1: Water Quality		\square						
1.01	Is an effluent discharge license obtained for the Project?		$\overline{\mathbf{V}}$						
1.02	Is the effluent discharged in accordance with the discharge licence								
1.03	Is the discharge of turbid water avoided?								
1.04	Are there proper desilting facilities in the drainage systems t reduce SS levels in effluent?								
1.05	Are there channels, sandbags or bunds to direct surface run-off t sedimentation tanks?								
1.06	Are there any perimeter channels provided at site boundaries t intercept storm runoff from crossing the site?	io	\checkmark						
1.07	Is drainage system well maintained?		\checkmark						
1.08	As excavation proceeds, are temporary access roads protected to crushed stone or gravel?	ру				\square			
1.09	Are temporary exposed slopes properly covered?					\checkmark			
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark						
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark						
1.12	Are there any procedures and equipment for rainstorm protection	?	\checkmark						
1.13	Are wheel washing facilities well maintained?					\checkmark			
1.14	Is runoff from wheel washing facilities avoided?					\checkmark			
1.15	Are there toilets provided on site?		\checkmark						
1.16	Are toilets properly maintained?		\checkmark						
1.17	Are the vehicle and plant servicing areas paved and located with roofed areas?	nin				\checkmark			
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark						
1.19	Are there any measures to prevent leaked oil from entering t drainage system?		\checkmark						
1.20	Are there any measures to collect spilt cement and concrewashings during concreting works?	ete	\checkmark						
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	ms				\checkmark			

A	(ARREAL		S
NO2 1762	100	10.26	1000

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?		e			\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					$\overline{\checkmark}$	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					$\overline{\checkmark}$	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Note	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?				*	\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					$\overline{\checkmark}$	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Secti	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	E
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

۲

Ē

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	on 5: Landscape & Visual					ė	
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?				\checkmark		
5.03	Are surgery works carried out for the damaged trees?	\square					

5.03	Are surgery works carried out for the damaged trees?	\checkmark				
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark			
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?				\checkmark	
Sectio	on 6: Others					
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?				$\overline{\checkmark}$	

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (15 July 2013)

No adverse environmental impacts were observed.

Follow up (15. Jul 20B) · Not required

AIES

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	Jeseph	MAN A		
()	(Alfred Cheung/ Joseph Ng) Joseph NG Rabw.	(WongFN) 15 Jn/20/3	(Mr. M. K. Leung)	()

AUES

Wea Temp Hum Wind	DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 23 July 2013 RT A: GENERAL INFORMATION ather: Sunny iperature: 0°C indity: Ý	RE's Repr Contracto	Representa	Mr. Alfred Cheung/ Jos	oseph Ňg	
PART	TB: SITE AUDIT				 	
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	N/A	Photo/ Remarks
Sectio	on 1: Water Quality				 	
1.01	Is an effluent discharge license obtained for the Project?		\checkmark			
1.02	Is the effluent discharged in accordance with the discharge licence	?	\checkmark			* ***
1.03	Is the discharge of turbid water avoided?		\checkmark			
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?		\checkmark			
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?	° 🗌	\checkmark			
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?		\checkmark			
1.07	Is drainage system well maintained?		\checkmark			
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?	у 📋			\checkmark	
1.09	Are temporary exposed slopes properly covered?				\checkmark	
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark			
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark			
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark			
1.13	Are wheel washing facilities well maintained?				\checkmark	
1.14	Is runoff from wheel washing facilities avoided?				\checkmark	
1.15	Are there toilets provided on site?		\checkmark			
1.16	Are toilets properly maintained?		\checkmark			
1.17	Are the vehicle and plant servicing areas paved and located withir roofed areas?	n 🔲			\checkmark	
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark			
1.19	Are there any measures to prevent leaked oil from entering the drainage system?		\checkmark			
1.20	Are there any measures to collect spilt cement and concrete washings during concreting works?		\checkmark			
1.21	Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?					

i

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?	é				\checkmark	Ë
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

AUES

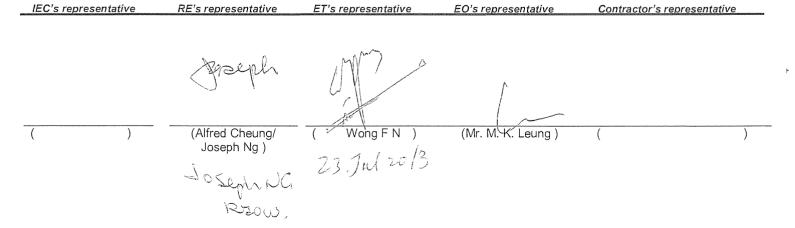
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

н

Ω.

AUES

	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not			Follow		Photo/
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks
Sectio	n 5: Landscape & Visual			¢			
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?				\checkmark		
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	


(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (23 July 2013)

No adverse environmental Impacts here observed However, the sedimentation tank at both ends of Portion & was excessively accumulated sediment,

Follow up (23 Jul 2013)

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A		Location /	Implementation		lementa Stages**		Relevant Legislation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	& Guidelines
Constr	uction Phase							
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor		\checkmark		
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		\checkmark		EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation		olementa Stages *		Relevant Legislation &
Ref	Ref			Agent	D	С	0	Guidelines
Construct	tion Phase							
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		V		EIAO-TM, NCO
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor				

AUES

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref		Location, Thing	Agent	D	С	0	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		V		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		\checkmark		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration	Implementation		Implement Stages*		Relevant Legislation
Ref	Ref		/completion of measures)	Agent	D	С	0	and Guidelines
5.77	ruction Phas	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		V		
5.73	4.36	 Dredging Works Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be cleaned from the decks and exposed fittings of barges before the vessel is moved; adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action; all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and 	Marine works site and at the identified water sensitive receivers/ During construction	Contractor				

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*		Relevant Legislation
Ref	Ref	Environmental Protection Weasures*	measures)	Agent	D	C	0	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor		\checkmark		ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		• Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor				
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

AUES

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation	-	lement Stages*		Relevant Legislation
Ref	Ref	Environmental riotection weasures	measures)	Agent	D	С	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	<u>Wastewater Arising from Workforce</u> Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

N/A Not applicable

Z:\Jobs\2010\TCS00512(DC-2009-13)-Lama\600\EM&A Monthly Report\Sok Kwu Wan\36th - Jul 13\R0673v2.docx

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing	Implementation	Im	plementa Stages**		Relevant Legislation &
Ref	Ref		Location / Thining	Agent	D	С	0	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		V		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		\checkmark		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages *		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
Construc	tion Phase							
7.14	6.4	 <u>Good site practices</u> Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor				Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		V		WBTC No. 21/2002
7.16	6.6	 Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated 	Work sites/During construction	Contractor		N		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing Agent		D	C	0	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; 						
		 use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste 						
		 to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and 						
		• plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.						
7.18	6.7	 <u>General Site Wastes</u> A collection area for construction site waste should be provided where waste can be stored prior to removal from site 	Work sites/During construction	Contractor		\checkmark		Public Health and Municipal Services Ordinance (Cap. 132)
		• An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material						
7.19-7.20	6.8 - 6.9	 <u>Chemical Wastes</u> After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled 	Work sites/During construction	Contractor		V		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical
		• Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance.						Wastes

AUES

EIA	EM&A		Location / Timing Implementation Agent		Implementation			Relevant Legislation &
Ref	Ref	Environmental Protection Measures*			D C O		0	Guidelines
		• Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided.						
	• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges							
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: > public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; > C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); > C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) • Where possible, inert material should be re-used on-site • Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material 	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures* Location / Implementation Timing Agent		Implementation	Imp	lement: Stages		Relevant Legislation & Guidelines
			Thing	Agent	D	С	0	Guiueimes
0 0	tion Phase				1	, ,	r	
8.157	7.2	 <u>Terrestrial Ecology</u> Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		N		
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging • Use of closed-grab dredger • Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		V		
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*	Location /	Implementation		ementa stages**		Relevant Legislation
Ref	Ref		Timing	Agent	D	С	0	& Guidelines
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		\checkmark		TM on EIA Process
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		\checkmark	V	EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA Def	EM&A Ref	Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Kei		Timing Agent		D	С	0	Guidelines
Constr	uction Pha	ase		-				
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		\checkmark		WBTC No. 14/2002
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		\checkmark		WBTC No. 14/2002
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		V		
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		V		WBTC No. 19/2001
		Conservation of topsoil for reuse.	All sites	Contractor		\checkmark		
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		\checkmark		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Appendix M

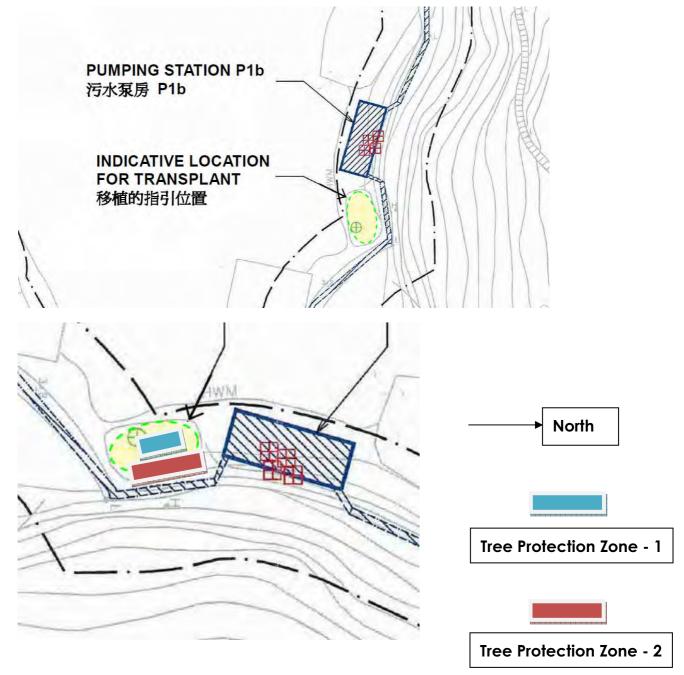
Tree Inspection Report

經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下攸田村 125號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 29-06-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	29 June 2013, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_5A & CT_6A
under Tree Protection Zone 2	

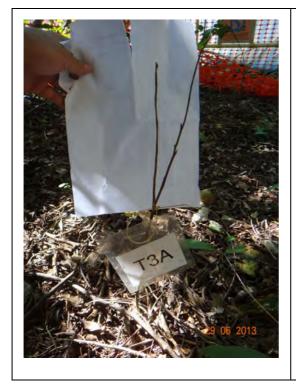
3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 and 31 October 2012
November 2012	15 and 30 November 2012
December 2012	15 and 30 December 2012
January 2013	15 and 30 January 2013
February 2013	15 and 28 February 2013
March 2013	15 and 30 March 2013
April 2013	15 and 30 April 2013
May 2013	15 and 31 May 2013
June 2013	15 and 29 June 2013

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Poor
CT_3A	Celtis timorensis	Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

4. Summary of Inspection Result

Inspection parameters or criteria


- Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection
- Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A


Tree ID: CT_3A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Overall Condition

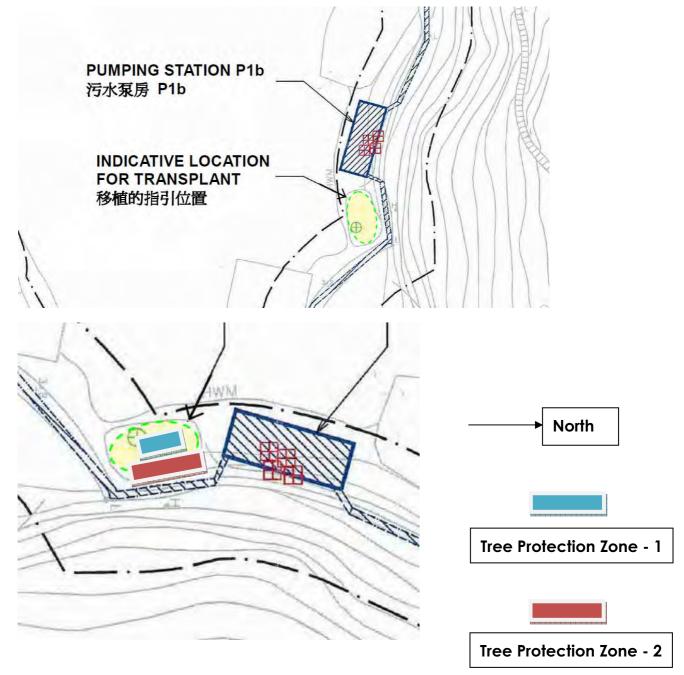
In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A, CT3A were in poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing. 經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下攸田村 125號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 15-07-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	15 July 2013, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

<u></u>	
Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 and 31 October 2012
November 2012	15 and 30 November 2012
December 2012	15 and 30 December 2012
January 2013	15 and 30 January 2013
February 2013	15 and 28 February 2013
March 2013	15 and 30 March 2013
April 2013	15 and 30 April 2013
May 2013	15 and 30 May 2013
June 2013	15 and 29 June 2013

July 2013	15 July 2013
	5

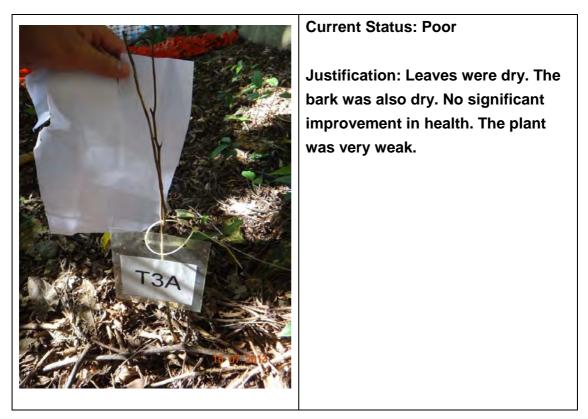
Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Poor
CT_3A	Celtis timorensis	Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

4. Summary of Inspection Result

Inspection parameters or criteria

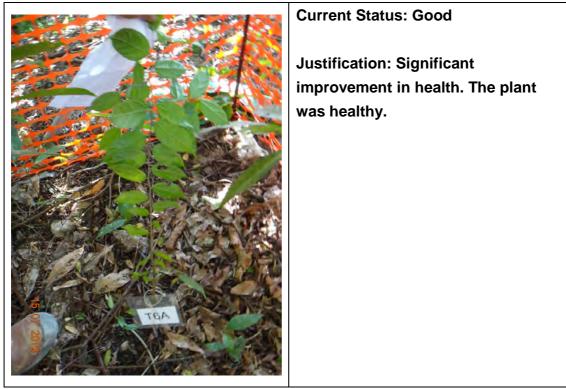
- Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection
- Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:


Tree ID:CT_2A

Current Status: Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.


Tree ID: CT_3A

Tree ID: CT_5A

Tree ID: CT_6A

Overall Condition

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A, CT3A were in poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.