

PROJECT NO.: TCS/00512/09

DSD CONTRACT NO. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO.38) – SEPTEMBER 2013

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index Reference No. Prepared By Approved By 17 October 2013 TCS00512/09/600/R0696v2 Image: Constant of the second second

Version	Date	Description
1	10 October 2013	First Submission
2	17 October 2013	Amended against IEC's comments on 16 October 2013

URS CDM Joint Venture

Chief Engineer/Harbour Area Treatment Scheme	Your reference:	
Drainage Services Department 5/F, Western Magistracy	Our reference:	05117/6/16/418390
2A, Pok Fu Lam Road Hong Kong	Date:	21 Oct 2013
Attention: Ms. Jacky C M Wong		BY FAX

Dear Madam

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area <u>Monthly Environmental Monitoring and Audit (EM&A) Report No. 38 (September 2013)</u>

We refer to the Monthly EM&A Monitoring Report No. 38 for September 2013 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated on 21 October 2013. We have no comment and have verified the captioned report.

Yours faithfully URS CDM JOINT VENTURE

Rodney Ip / / / Independent Environmental Checker

ICWR/KKK/lykl

Encl

cc Leader Civil Engineering AUES ER/LAMMA CDM (Attn: Mr Vincent Chan) (Attn: Mr T.W. Tam) (Attn: Mr Ian Jones) (Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the **38th** monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from **26 August to 25 September 2013** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	54
All Quality	24-hour TSP	18
Construction Noise	L _{eq(30min)} Daytime	24
Water Quality	Marine Water Sampling	13
Inspection / Audit ET Regular Environmental Site Inspection		5

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action Level	Limit Level	Event & Action		
Issues	Parameters			NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP		0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – *Notification of Exceedance*

SITE INSPECTION BY EXTERNAL PARTIES

ES.05. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 27 August and 2, 10, 17 and 25 September 2013. All the observation has been rectified in the set time frame.

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.06. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.07. No reporting change was made in this Reporting Period.

FUTURE KEY ISSUES

ES.08. During dry and windy season, the Contractor shall pay attention on the construction dust that may cause environmental issues in the upcoming months. Mitigation measures on construction dust

identified at the EM&A manual such as watering at haul road and covering of dusty material should be fully implemented.

ES.09. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

TABLE OF CONTENTS

1	INTRODUCTION Project Background Report Structure	1 1 1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS Project Organization and Management Structure Construction Progress Summary of Environmental Submissions	3 3 3 3
3	 SUMMARY OF BASELINE MONITORING REQUIREMENTS ENVIRONMENTAL ASPECT MONITORING LOCATIONS MONITORING FREQUENCY AND PERIOD MONITORING EQUIPMENT EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION DATA MANAGEMENT AND DATA QA/QC CONTROL REPORTING DETERMINATION OF ACTION/LIMIT (A/L) LEVELS 	4 4 5 6 9 9 9 9 9
4	IMPACT MONITORING RESULTS - AIR QUALITY	11
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	12
6	IMPACT MONITORING RESULTS – WATER QULAITY	13
7	ECOLOGY	15
8	WASTE MANAGEMENT	16
9	SITE INSPECTION	17
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	18
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	19
12	IMPACT FORECAST	25
13	CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations	26 26 26

LIST OF TABLES

Status of Environmental Licenses and Permits
Summary of EM&A Requirements
Location of Air Quality Monitoring Station
Location of Construction Noise Monitoring Station
Location of Marine Water Quality Monitoring Station
Action and Limit Levels for Air Quality
Action and Limit Levels for Construction Noise
Action and Limit Levels for Marine Water Quality
Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Summarized of Construction Noise Monitoring Results at NM1
Summarized of Construction Noise Monitoring Results at NM2
Summarized of Construction Noise Monitoring Results at RNM3
Summarized of Construction Noise Monitoring Results at NM4
Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Summarized Exceedances of Marine Water Quality
Summary of Quantities of Inert C&D Materials
Summary of Quantities of C&D Wastes
Site Observations
Statistical Summary of Environmental Complaints
Statistical Summary of Environmental Summons

- Table 10-3
 Statistical Summary of Environmental Prosecution
- Table 11-1
 Environmental Mitigation Measures

LIST OF APPENDICES

- Appendix A Site Layout Plan Sok Kwu Wan Portion Area
- Appendix B Organization Structure and Contact Details of Relevant Parties
- Appendix C Three Months Rolling Construction Programme
- Appendix D Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
- Appendix E Monitoring Equipments Calibration Certificate
- Appendix F Event and Action Plan
- Appendix G Impact Monitoring Schedule
- Appendix H Monitoring Data Sheet
- Appendix I Graphical Plots of Monitoring Results
- Appendix J Meteorological Information
- Appendix K Monthly Summary Waste Flow Table
- Appendix L Weekly Site Inspection Checklist
- Appendix M Implementation Schedule of Mitigation Measures
- Appendix N Tree Inspection Report

 $\label{eq:linear} Z:\label{linear} Z:\label{linear} Content \label{linear} Sok Kwu Wan\label{linear} Sok Kwu Wan\label{l$

AUFS

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "*DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works*" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the **38th** monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from **26** August to **25** September **2013**.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS
SECTION 7	WASTE MANAGEMENT
SECTION 8	SITE INSPECTIONS
SECTION 9	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 10	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 11	IMPACT FORECAST
SECTION 12	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of SKWSTW: Concreting, Steel Fixing, Formwork Erection, Formwork Removal, Backfilling,
 - Construction of SKW PS1 & PS2: E&M works installation

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

 Table 2-1
 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 19 May 2010
	Regulation	Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction	Issued on 26 May 2010
	Waste	A/C No: 7010815
5	Construction Noise Permit	Permit no. GW-RS0419-13
		Valid from: 22 April 2013
		Until: 30 September 2013

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Environmental Issue	Parameters
	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and
Air Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.
Naina	• Leq (30min) during normal working hours; and
Noise	• Leq (15min) during Restricted Hours.
	In-situ Measurements
	• Dissolved Oxygen Concentration (DO) (mg/L);
	• Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Moning Water Ouglity	• pH unit;
Marine Water Quality	• Salinity (ppt);
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	• Suspended Solids (SS) (mg/L)

Table 3-1Summary of EM&A Requirements

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AM1	Squatter house in Chung Mei Village
AM2	Squatter house in Chung Mei Village
AM3	Football court

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3	Location of Construction Noise Monitoring Station
-----------	---

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Station	Description	Co-ordnance		
Station	Description	Easting	Northing	
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732	
W2	Fish culture zone at Picnic Bay	832 670	807 985	
W3	Fish culture zone at Picnic Bay	832 045	807 893	
C1 (flood)	Control Station	833 703	808 172	
C2	Control Station	831 467	807 747	
C3 (ebb)	Control Station	832 220	808 862	

Table 3-4	Location of Marine Water Quality Monitoring Station	n
-----------	---	---

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters:	1-hour TSP and 24-hour TSP.
Frequency:	Once in every six days for 24-hour TSP and three times in every six days for 1-hour TSP.
Duration:	Throughout the construction period.

Noise Monitoring

Parameters:	$L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} . $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of
	public holiday and Sunday)
Frequency:	Once per week during 0700-1900 hours on normal weekdays. Restricted hour monitoring should depend on conditions stipulated in Construction Noise Permit.
Duration:	Throughout the construction period.

Marine Water Quality Monitoring

<u>Parameters</u>: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH, turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

Frequency: Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours. (i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. (ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.

- (iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken
- Duration: During the course of marine works

Post-Construction Monitoring – Marine Water

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the Section 4.8 of EM&A Manual. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations*, Chapter 1 (Part 50), Appendix B. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

1-hour TSP

Sampling

Depth

- 3.10 The 1-hour TSP monitor, a TSI Dust Track Aerosol Monitor Model 8520 or Sibata LD-3 Laser Dust Meter is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consisted of the following:
 - A pump to draw sample aerosol through the optic chamber where TSP is measured; a.
 - A sheath air system to isolate the aerosol in the chamber to keep the optics clean for b. maximum reliability: and
 - A built-in data logger compatible with Windows based program to facilitate data collection, c. analysis and reporting.

24-hour TSP

- The equipment used for 24-hour TSP measurement will be a TISCH High Volume Air Sampler, 3.11 HVS Model TE-5170, which complied with EPA Code of Federal Regulation, Appendix B to Part 50. The HVS consists of the following:
 - An anodized aluminum shelter: a.
 - b. A 8"x10" stainless steel filter holder;
 - A blower motor assembly; c.
 - d. A continuous flow/pressure recorder;
 - A motor speed-voltage control/elapsed time indicator; e.
 - f. A 7-day mechanical timer, and
 - A power supply of 220v/50 hz g.
- 3.12 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground. The flow rate of the HVS between 0.63m3/min and 1.7m3/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-
 - A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;

- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected to transfer from the filter holder of the HVS to a sealed in the envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.13 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.14 The HVS used for 24-hour TSP monitoring will be calibrated before the commencement for sampling, and after in two months interval for 1 point checking of maintenance and six months interval for five points calibrate in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5028A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min.

Noise Monitoring

- 3.15 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (*Type 1*) and 804: 1985 (*Type 1*) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.
- 3.16 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq(30 min) in six consecutive Leq(5 min) measurements will be used as the monitoring parameter for the time period between 0700-1900 hours on weekdays throughout the construction period. Leq(15 min) in three consecutive Leq(5 min) measurements for other time periods (e.g. during restricted hours) will only be conducted for monitoring the construction noise during restricted hours as necessary.
- 3.17 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.
- 3.18 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0dB.
- 3.19 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or

wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s. An acoustic calibrator and sound level meter will be calibrated yearly. A valid of Calibration certificates will be shown in the Environmental Monitoring Report accordingly.

Water Quality Monitoring

- 3.20 Marine water quality monitoring will be conducted at the designated locations in accordance with EM&A Manual. The operating and analytical of sampling procedures are described as below:
 - A Global Positioning System (GPS) will be used to ensure that the correct location was selected prior to sample collection. A portable, battery-operated echo sounder will be used for the determination of water depth at each designated monitoring station.
 - The marine water sampler will be lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected.
 - During the sampling, the sampling container will be rinsed to use a portion of the marine water sample before the water sample is transferred to the container. Upon sampling completion, the container is sealed with a screw cap.
 - Before the sampling process, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring will be recorded on the monitoring field data sheet.
 - In-situ measurement including water temperature, turbidity, dissolved oxygen, salinity, pH and water depth undertake at the identified monitoring point. At each station, marine water samples are collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom are collected when the water depth is between 3m and 6m. Only 1 sample at mid-depth is taken when the water depth is below 3m.
 - For the in-situ measurement, two consecutive measurements of sampling depth, temperature, dissolved oxygen, salinity, turbidity and pH concentration will be measured at the sea. The YSI Model 6820 Multi-parameter Water Quality Sonde is retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
 - Water sample collection would be used the water sampler. During the water sample collected from the sea, it is fill in high-density polythene bottles. Before the water sample storage, the sampling bottles will be pre-rinsed with the same water sample. The sample bottles then is packed in cool-boxes (cooled at 4°C without being frozen), and delivered to HOKLAS accredited laboratory for the chemical analysis as followed APHA *Standard Methods for the Examination of Water and Wastewater* 19ed 2540D, unless otherwise specified.
 - The laboratory has be comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples is analyzed as followed the HOKLAS accredited requirement.
- 3.21 For the marine water sampling period, the Multi-parameter Water Quality Monitoring System will be calibrated by three month interval accordingly. The available calibration certificate will be issued to ensure the performance of Multi-parameter Water Quality Monitoring System to use for in-situ measurement.
- 3.22 All water samples will be analyzed with various chemical tests as specified in the EM&A Manual by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). Duplicate samples from each independent sampling event are required for all parameters and the samples will be mixed and analyzed in one set of laboratory analysis. The mixed process would be carried by the laboratory. The determination works should start within 24 hours after collection of the water samples or within the holding time as advised by the laboratory. The laboratory analysis result will be input in our computer database upon received from the laboratory.

EQUIPMENT CALIBRATION

- 3.23 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.24 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.25 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.26 The Multi-parameter Water Quality Monitoring System will be calibrated by HOKLAS accredited laboratory of three month intervals. The available calibration certificate will be issued to ensure the performance of Multi-parameter Water Quality Monitoring System to use for in-situ measurement.
- 3.27 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.28 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.29 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.30 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.31 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.32 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Monitoring Station	Action Le	vel (µg/m ³)	Limit Level (µg/m ³)	
Monitol ing Station	1-hour	24-hour	1-hour	24-hour
AM1	343	173	500	260
AM2	331	175	500	260
AM3	353	191	500	260

 Table 3-5
 Action and Limit Levels for Air Quality

Table 3-6	Action and Limit Levels for Construction Noise
-----------	--

Monitoring	Action Level	Limit Level
Location	0700-190	00 hours on normal weekdays
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods

Table 3-7 Action and Limit Levels for Marine Water Quality

Devenuetor	Performance		Impact Station		
Parameter	Criteria	W1	W2	W3	
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71	
(mg/L)	Limit Level	5.29	4.56	4.54	
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37	
(mg/L)	Limit Level	N/A	3.06	3.18	
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48	
(NTU)	Limit Level	6.06	5.99	6.71	
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79	
(mg/L)	Limit Level	12.68	11.28	12.25	

3.33 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP. The impact monitoring schedule for the Reporting Period and next Reporting Period is presented in *Appendix G*.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **54** and **18** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1, 4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix H* and the graphical plots of are shown in *Appendix I*.

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
26-Aug-13	11	28-Aug-13	9:13	57	60	43	
31-Aug-13	23	3-Sep-13	8:10	48	44	39	
6-Sep-13	6	9-Sep-13	8:10	52	61	60	
12-Sep-13	9	13-Sep-13	14:39	61	52	44	
18-Sep-13	98	19-Sep-13	9:07	32	51	47	
24-Sep-13	43	25-Sep-13	9:12	80	90	99	
Average	32	Average		57			
(Range)	(6 - 98)	(Range)		(32 – 99)			

Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
	Summary of all nour und i nour ror monitoring results minital

24-hour			1-hour TSP (μg/m ³)			
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured
26-Aug-13	9	28-Aug-13	12:16	59	50	58
31-Aug-13	47	3-Sep-13	11:16	32	30	37
6-Sep-13	12	9-Sep-13	11:22	46	44	50
12-Sep-13	36	13-Sep-13	11:31	53	56	49
18-Sep-13	107	19-Sep-13	12:18	46	33	49
24-Sep-13	100	25-Sep-13	9:14	87	96	91
Average	52	Average 54		54		
(Range)	(9 - 107)	(Range) (30 – 96)				

Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour			1-hour TSP	$(\mu g/m^3)$	
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured
26-Aug-13	25	28-Aug-13	15:22	89	82	75
31-Aug-13	144	3-Sep-13	14:29	66	70	62
6-Sep-13	3	9-Sep-13	14:41	77	79	87
12-Sep-13	30	13-Sep-13	8:12	79	101	87
18-Sep-13	7	19-Sep-13	15:39	88	76	73
24-Sep-13	118	25-Sep-13	12:27	119	94	139
Average	55	Avera	ge		86	
(Range)	(3 - 144)	(Rang	e)		(62–139)	

- 4.03 As shown in *Tables 4-1, 4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix J*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of 24 construction noise monitoring events were undertaken at designated locations. The results for L_{eq30min} at NM1, NM2, RNM3 and NM4 are summarized in *Tables 5-1, 5-2, 5-3* and *5-4* and graphical plots are shown in *Appendix I*.

 Table 5-1
 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
28-Aug-13	10:31	11:01	41.6	42.3	45.2	43.5	42.3	44.9	43.5
3-Sep-13	13:11	13:41	47.6	50.9	44.4	43.0	42.5	43.8	46.5
9-Sep-13	13:06	13:36	48.5	41.9	43.0	44.8	42.8	42.5	44.6
13-Sep-13	13:08	13:38	46.0	47.8	47.3	46.5	47.1	46.8	47.0
19-Sep-13	13:27	13:57	50.0	49.3	50.0	51.6	52.2	50.0	50.6
25-Sep-13	13:45	14:15	52.3	54.0	62.8	48.9	48.2	50.9	56.4
Limit Le	vel in dI	B(A)							75

Table 5-2Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	
28-Aug-13	11:13	11:43	60.9	56.8	61.4	60.8	61.8	62.1	60.9	
3-Sep-13	13:53	14:23	62.3	61.9	60.9	60.4	62.1	61.3	61.5	
9-Sep-13	11:29	11:59	66.8	63.4	63.3	63.5	65.8	63.6	64.6	
13-Sep-13	10:57	11:27	58.4	58.3	60.0	57.5	58.5	57.9	58.5	
19-Sep-13	10:54	11:24	57.8	55.2	56.0	57.1	55.3	54.3	56.1	
25-Sep-13	11:21	11:51	57.3	58.4	57.8	57.7	57.4	55.4	57.4	
Limit Le	evel in dH	B(A)							75	

Table 5-3Summarized of Construction Noise Monitoring Results at RNM3

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
28-Aug-13	13:04	13:34	62.1	61.6	62.0	62.1	61.9	62.2	62.0	65.0
3-Sep-13	15:27	15:57	53.4	51.3	50.2	52.1	52.0	53.2	52.2	55.2
9-Sep-13	10:46	11:16	64.1	63.4	61.9	61.6	61.9	62.3	62.6	65.6
13-Sep-13	10:10	10:40	61.8	62.3	62.0	63.0	61.7	64.2	62.6	65.6
19-Sep-13	10:19	10:49	62.9	63.9	64.0	63.4	63.5	64.1	63.7	66.7
25-Sep-13	13:03	13:33	63.3	62.5	65.2	63.6	63.1	65.3	64.0	67.0
Limit Le	vel in dI	B (A)	-					75		

* A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
-----------	--

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
28-Aug-13	13:37	14:07	62.8	64.0	58.0	54.8	57.1	57.8	60.3
3-Sep-13	14:29	14:59	63.6	54.1	62.5	66.5	62.8	61.9	63.1
9-Sep-13	10:07	10:37	64.7	61.2	59.7	68.8	64.2	59.9	64.4
13-Sep-13	9:35	10:05	58.4	59.2	59.9	57.0	55.9	56.1	58.0
19-Sep-13	9:38	10:08	59.1	55.4	57.8	56.8	56.8	55.9	57.1
25-Sep-13	13:01	13:31	52.4	53.7	54.3	55.6	54.7	54.3	54.3
Limit Le	Limit Level in dB(A)								75

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1, 5-2, 5-3 and 5-4* which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 13 events of water quality monitoring were carried out at the designated locations.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 24.55 to 32.96 ppt, and pH value was within 6.49 to 8.30.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1*, *6-2*, *6-3 and 6-4*. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

 Table 6-1
 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date	Disso	lved Ox Surf. a		onc. of I Layer		ve. of	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)						
uate	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3	
26-Aug-13	7.50	8.54	7.51	7.88	8.34	6.40	NA	5.25	5.32	5.09	5.33	4.83	
28-Aug-13	5.86	6.02	7.72	5.03	5.89	4.56	NA	4.04	4.14	3.70	4.51	3.06	
30-Aug-13	6.55	6.64	6.77	5.36	7.34	7.31	NA	3.92	5.76	3.71	6.29	4.41	
3-Sep-13	6.84	5.67	7.81	6.74	7.38	6.25	NA	4.35	5.76	5.17	6.18	6.07	
5-Sep-13	6.26	5.99	7.12	5.99	7.63	5.83	NA	3.74	5.34	4.84	6.57	4.61	
7-Sep-13	5.74	5.71	6.19	7.07	8.97	6.47	NA	5.30	5.78	6.48	7.53	5.91	
9-Sep-13	5.86	5.98	6.24	5.03	6.51	5.48	NA	5.47	5.71	4.40	5.69	5.07	
11-Sep-13	7.22	7.96	7.40	6.50	7.53	6.46	NA	5.73	6.56	6.06	6.93	5.73	
13-Sep-13	8.76	7.66	8.19	8.00	7.38	7.18	NA	7.20	7.41	7.36	5.74	6.07	
17-Sep-13	7.75	7.26	8.53	7.77	7.10	6.76	NA	6.11	6.92	6.71	5.64	5.05	
19-Sep-13	7.81	7.15	5.69	7.16	5.62	7.06	NA	6.76	5.28	5.71	5.64	5.54	
21-Sep-13	5.63	5.17	5.79	5.50	7.31	5.12	NA	5.06	5.55	5.49	6.51	5.13	
25-Sep-13	7.76	5.88	7.45	8.12	7.50	8.49	NA	4.37	6.38	6.59	6.96	7.48	

Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended
	Solids)

Sampling		Turbi	dity Dep	th Ave. ((NTU)		Sus	spended	Solids	Depth A	ve. (mg	g/L)
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Aug-13	1.00	1.47	1.47	2.20	2.65	1.73	4.10	3.87	3.67	3.93	3.97	3.87
28-Aug-13	0.30	1.95	0.77	1.27	0.73	0.58	1.20	0.93	0.97	1.40	2.20	2.47
30-Aug-13	0.10	1.60	1.15	1.60	3.25	1.22	0.60	1.73	1.23	1.77	1.57	1.33
3-Sep-13	0.15	1.07	0.97	0.88	1.03	0.42	2.60	2.47	2.23	2.17	2.17	2.43
5-Sep-13	1.45	4.05	5.10	1.72	2.40	1.10	1.70	1.23	2.70	2.27	1.77	1.83
7-Sep-13	0.85	1.22	0.80	1.33	1.65	1.33	4.60	4.10	3.80	2.07	1.60	1.20
9-Sep-13	0.40	0.72	1.68	1.47	1.48	1.90	3.50	2.17	4.40	4.17	3.67	2.93
11-Sep-13	0.35	0.50	1.60	1.12	2.38	1.02	3.00	2.00	2.83	3.13	2.30	1.50
13-Sep-13	0.30	1.25	1.80	1.02	0.43	1.60	1.00	2.23	2.67	1.63	1.37	2.27
17-Sep-13	0.80	1.68	1.55	1.00	1.45	1.20	1.00	1.90	1.80	1.70	1.70	2.93
19-Sep-13	1.15	1.27	2.45	3.18	1.58	2.98	2.80	3.23	2.80	3.53	4.07	3.07
21-Sep-13	3.40	3.15	2.65	2.85	2.53	2.87	2.50	6.80	5.20	4.87	6.37	3.73
25-Sep-13	2.10	3.00	2.67	2.67	3.02	1.67	5.00	3.77	3.20	2.37	4.53	2.07

Table	6-3
Lanc	0-5

Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling	Disso	olved Ox Surf. a	• •	onc. of I Layer	-	ve. of	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)					
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Aug-13	5.65	6.17	8.18	6.45	8.86	7.47	NA	4.23	5.87	5.17	6.17	4.99
28-Aug-13	6.59	5.26	8.63	6.27	6.98	6.45	NA	3.84	5.87	3.32	4.79	3.48
30-Aug-13	5.92	5.29	6.19	6.16	6.52	6.40	NA	3.93	4.06	3.69	4.64	3.39
3-Sep-13	5.65	6.06	5.67	6.92	6.37	6.07	NA	3.72	4.44	3.34	6.05	4.96
5-Sep-13	5.63	5.41	6.02	5.14	6.26	5.51	NA	4.15	4.86	3.66	5.03	3.99
7-Sep-13	6.44	6.23	7.03	5.92	6.96	6.63	NA	5.71	5.98	5.32	6.38	5.46
9-Sep-13	7.88	7.01	6.74	7.71	6.05	7.74	NA	5.72	5.97	6.56	5.46	7.14
11-Sep-13	6.96	6.49	7.08	6.10	7.19	5.98	NA	5.81	6.43	5.09	6.06	5.02
13-Sep-13	5.49	5.29	6.20	5.61	7.83	5.41	NA	4.89	5.28	4.86	5.50	4.85
17-Sep-13	5.78	6.28	7.45	6.20	6.80	5.91	NA	4.95	5.40	5.05	5.22	5.63
19-Sep-13	6.58	7.34	6.87	6.24	7.29	5.55	NA	6.49	7.53	5.86	5.41	5.19
21-Sep-13	7.53	6.70	6.67	6.30	6.29	7.16	NA	6.39	6.33	6.10	5.56	7.01
25-Sep-13	7.37	6.87	6.66	7.14	6.84	7.24	NA	5.20	4.50	5.55	7.29	5.50

Table 6-4	Summary of Wate	r Quality	Results –	Mid-flood	Tides	(Turbidity	&
	Suspended Solids)						

Sampling	Turbidity Depth Ave. (NTU)			Su	spende	d Solids	Depth A	Ave. (mg	′L)			
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Aug-13	0.55	1.37	2.10	1.78	2.68	1.87	3.30	3.90	3.90	4.00	3.30	3.03
28-Aug-13	0.70	0.98	1.00	0.52	0.80	0.92	2.20	2.47	1.53	1.50	1.13	1.73
30-Aug-13	0.20	1.52	1.58	0.80	2.17	2.23	1.60	2.47	1.07	1.70	1.20	1.10
3-Sep-13	0.65	0.97	0.83	1.87	1.93	1.87	3.60	2.63	2.53	2.10	2.47	1.77
5-Sep-13	0.95	1.38	1.30	1.32	1.40	1.23	1.60	1.43	1.73	2.33	1.87	2.27
7-Sep-13	1.10	1.15	1.15	1.53	1.00	0.95	0.80	2.90	1.33	0.97	1.33	1.40
9-Sep-13	2.70	0.90	0.70	1.00	0.67	0.68	4.20	4.43	4.27	3.93	3.13	3.43
11-Sep-13	0.70	1.20	1.25	1.23	0.48	1.50	1.00	2.90	2.87	2.00	2.67	3.37
13-Sep-13	0.75	1.45	2.47	1.10	1.07	0.80	1.40	2.53	2.97	2.83	2.43	1.67
17-Sep-13	0.90	0.85	1.52	0.91	1.57	2.63	2.70	4.33	4.17	4.57	3.00	3.00
19-Sep-13	0.40	1.83	1.43	1.63	1.35	1.78	1.40	3.20	1.70	2.13	1.87	2.40
21-Sep-13	1.50	2.87	2.95	3.60	4.67	4.07	5.30	3.17	3.97	3.90	2.67	3.80
25-Sep-13	2.10	2.87	2.82	1.95	1.25	2.57	1.90	3.37	2.17	2.67	2.47	3.10

 Table 6-5
 Summarized Exceedances of Marine Water Quality

Station	DO (Ave of Surf. & mid-depth)		DO (Ave. of Bottom Layer)		Turbidity (Depth Ave.)		SS (Depth Ave)		Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
				Mi	d-Ebb					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
				Mid	-Flood					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on 30 August and 14 September 2013. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring Celtis Timorensis CT7 to CT10 on 30 April 2011.
- 7.03 In April 2012, CT_1A and CT_7A were damaged by the fell broken tree trunk due to tree decayed by white ants. Therefore, only 5 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT4A, CT_5A and CT_6A were inspected since May 2012. Furthermore, during tree inspection on 30 July, CT4A was disappeared after typhoon No.10 on 24 July 2012 and it was certified as dead. Eventually, 4 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT_6A were inspected in the remaining period.
- 7.04 During the tree inspection on 15 August 2013, CT2A and CT3A were lost due to typhoon on 14 August 2013. Compensatory of additional *Celtis Timorensis* is recommended to carry out by the Landscape Contractor.
- 7.05 The tree inspection report for this Reporting Period is presented in *Appendix N*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0	-
Reused in the Contract (Inert) ($(000m^3)$)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0	-

Table 8-2Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	5.090	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than $50m^3$ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 27 August and 2, 10, 17 and 25 September 2013.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix L*.

Date	Findings / Deficiencies	Follow-Up Status
27 August 2013	• Electricity cable hang on the tree trunk was observed at Sok Kwu Wan.	The electricity cable on the tree trunk was removed on 2 September 2013.
2 September 2013	 Electricity cable hang on the tree trunk was observed at Sok Kwu Wan. Sedimentation tank at Sok Kwu Wan was 	The electricity cable on the tree trunk was removed , and sediment inside the sedimentation tank was
	 Sedimentation tank at Sok Kwu Wan was observed full of sediment, the contractor was reminded to clean. 	cleared on 10 September 2013
10 September 2013	• No adverse environmental impacts were observed.	N.A.
17 September 2013	• No adverse environmental impacts were observed.	N.A.
25 September 2013	• No adverse environmental impacts were observed.	N.A.

Table 9-1Site Observations

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1	Statistical Summary of Environmental	Complaints

Departing Devied	Environmental Complaint Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality			
January - December 2012	0	1 (Nov 2011)	NA			
January - August 2013	0	1 (Nov 2011)	NA			
September 2013	0	1 (Nov 2011)	NA			

Table 10-2 Statistical Summary of Environmental Summons

Departing Devied	Environmental Summons Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
27 July 2010 – 31 December 2011	0	0	NA			
January - December 2012	0	0	NA			
January - August 2013	0	0	NA			
September 2013	0	0	NA			

Table 10-3 Statistical Summary of Environmental Prosecution

Departing Davied	Environmental Prosecution Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
27 July 2010 – 31 December 2011	0	0	NA			
January - December 2012	0	0	NA			
January - August 2013	0	0	NA			
September 2013	0	0	NA			

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- 11.11 During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force;
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

<u>Terrestrial Ecology</u>

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix M*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Water	• Drainage channels were provided to convey run-off into the treatment facilities;
Quality	and
Quality	 Drainage systems were regularly and adequately maintained.
Air Quality	• Cover all excavated or stockpile of dusty material by impervious sheeting or
	sprayed with water to maintain the entire surface wet;
	 Public roads around the site entrance/exit had been kept clean and free from dust; and
	 Tarpaulin covering of any dusty materials on a vehicle leaving the site.

 Table 11-1
 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	• Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	• To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising should be kept to a minimum and be handled, transported and
Wianagement	disposed of in a suitable manner;
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12.01 Key issues to be considered in the coming month include:

Water Quality

• Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and

AUES

• The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

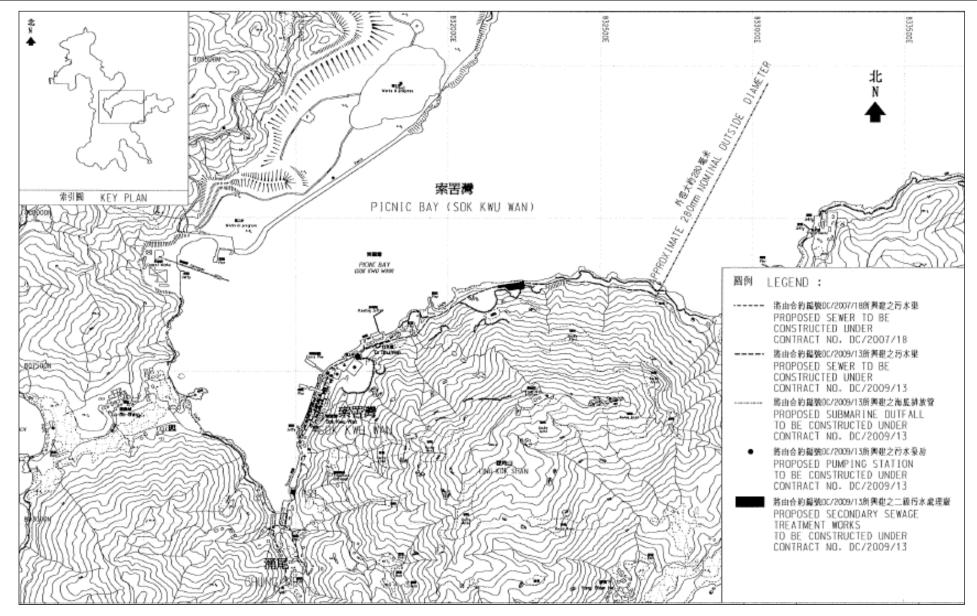
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the **38th** monthly EM&A Report covering the construction period from **26** August to **25** September 2013.
- 13.02 In this Reporting Period, no 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 27 August and 2, 10, 17 and 25 September 2013. All the observation has been rectified in the set time frame. The environmental performance of the Project was therefore considered as satisfactory.

RECOMMENDATIONS


- 13.07 During dry and windy season, the Contractor shall pay attention on the construction dust that may cause environmental issues in the upcoming months. Mitigation measures on construction dust identified at the EM&A manual such as watering at haul road and covering of dusty material should be fully implemented.
- 13.08 Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Ms. Jacky C.M. Wong	2159-3413	2833-9162
SCJV	Engineer's Representative	Mr. Ian Jones	2982 0240	2982 4129
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129
URS	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Director	Mr. Wilfred So	2982 1750	2982 1163
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Construction Manager	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. Leung Man Kin	2982 8652	2982 8650
Leader	Environmental Supervisor	Mr. Chan Chi Kau	2982 8652	2982 8650
Leader	Sub-Agent	Mr. Leung Man Kin	2982 1750	2982 1163
Leader	Senior Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel

AUES

Legend:

DSD (Employer) – Drainage Services Department

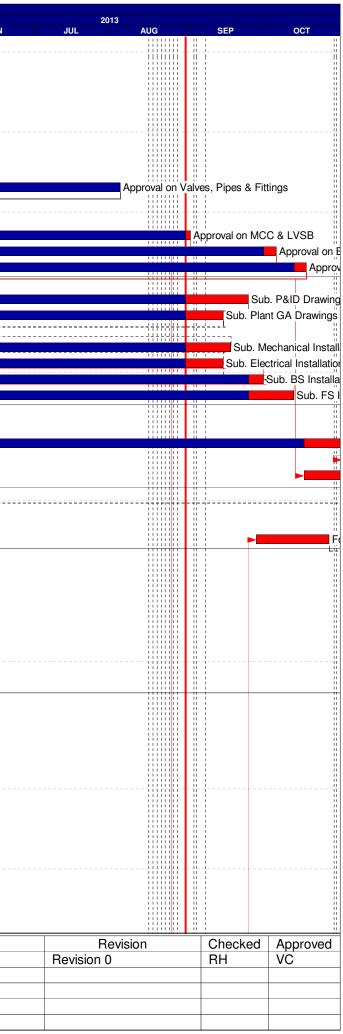
CDM (Engineer) – URS Hong Kong Limited CDM Joint Venture

Leader (Main Contractor) – Leader Civil Engineering Corporation Limited

URS (IEC) – URS Hong Kong Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

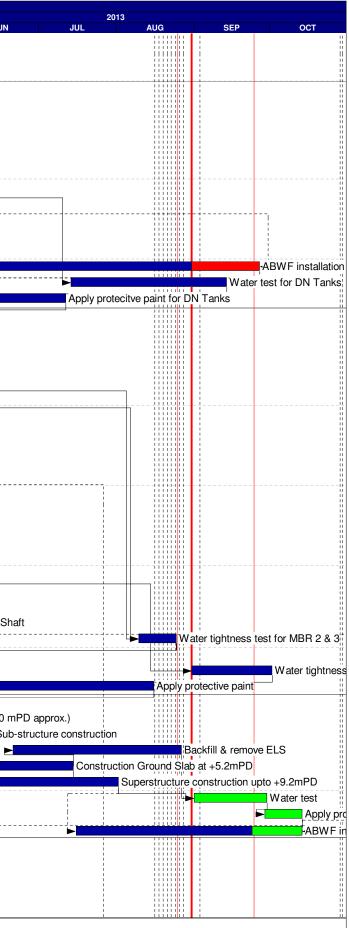

Three Months Rolling Construction Programme

Activity ID	Description		Percent Ea Complete St		arly nish	Late Start	Late Finish	Total Float	Predecessors	Successors	МАҮ	JUN	2013 JUL	AUG	SEP	ост
Project Key	Date											JOIN	002	Acc		
KD0010	Receive Letter of Acceptance	0	100	05/0	5/10 A		05/05/10 A			KD0125						
KD0020	Project Commencement Date	0	100	17/0	5/10 A		17/05/10 A			E&M0010, E&M0070, E&M1001, E&M2001, KD0125, PRE0020, PRE0040, PRE0050, PRE0060, PRE0090, PRE0100, PRE0130, SKW0250, SKW0588, SKW0651, SKW0881, SKW1131, SKW1481, SKW1591, SKW1611, YSW0020, YSW0050, YSW0075, YSW0180, YSW0200, YSW0275, YSW0180, YSW02401, YSW0412, YSW0422						
KD0030	Section W1 - Slope Works in Portion A & C	0	100	14/1	D/11 A		14/10/11 A		YSW0100, YSW0110, YSW0140,	KD0125, KD0130, YSW01755						
KD0040	Section W2 - YSW STW & Submarine Outfall (1370d)	0	0	16/0	6/14 *		16/06/14 *	0 *	E&M0700, YSW0400, YSW0800, YSW0925, YSW16704, YSW1700	KD0125, KD0132						
KD0050	Section W3 - Footpath Diversion in Ptn G	0	0	30/0	3/13 *		24/03/11 *	-890d *	SKW0481	KD0125				·	Section W3 - Fo	otpath Diversion
KD0060	Section W4 - Slope Works in Portios H & I	0	0		3/13 *		27/03/12 *		SKW05938, SKW059416	KD0125, KD0135, SKW05941					Section W4 - Slo	
							10/00/10 *	507.14						1 1		
KD0070 KD0080	Section W5 - P.S. No. 1 in Portion D Section W6 - Sewer & PS No2 in Ptn. E & F	0	0		3/13 * 3/13 *		10/02/12 * 10/02/12 *		SKW0741 SKW0971	KD0125					Section W5 - P.Section W5 - P.Section W6 - Section W6	
KD0080	Section W7 - SEWER & PS NO2 IN PILL E & P	0	0		D/14 *		07/10/14 *		E&M3360, SKW1221, SKW1291,	KD0125 KD0165, SKW0491						
ND0030			0	0//1	5/14		07/10/14		SKW1431, SKW1441, SKW1521,							
KD0100	Section W8 - Landscape Softworks	0	0	30/0	3/13 *		05/04/13 *	-147d *	SKW1611, SKW1621					·	Section W8 - La	ndscape Softwo
KD0110	Section W9 - Establishment Works	0	0	03/0	4/14 *		03/04/14 *	0 *	SKW1631	KD0125						
KD0125	Project Completion	0	0	12/0	9/15 *		12/09/15 *	0 *	KD0010, KD0020, KD0030, KD0040, KD0050, KD0060, KD0070, KD0080, KD0090, KD0110, SKW0541							
KD0130	Completion of Maintenance Period of W1	1	0 31/08/	13 31/0	3/13 * 13	3/10/12	13/10/12 *	-322d	KD0030, YSW01755, YSW01805, YSW01810						Completion of Ma	aintenance Peric
KD0132	Completion of Maintenance Period of W2	1	0 15/06/	15 15/0	6/15 * 15	5/06/15	15/06/15 *	0	E&M0730, KD0040							
KD0135	Completion of Maintenance Period of W4	1	0 31/08/			7/03/13	27/03/13 *	-157d	KD0060, SKW05947, SKW1581						Completion of Ma	aintenance Peric
KD0145	Completion of Maintenance Period of W5	1	0 31/08/	13 31/0	3/13 * 10)/02/13	10/02/13 *	-202d						·	Completion of Ma	aintenance Peric
KD0155	Completion of Maintenance Period of W6	1	0 31/08/			0/02/13	10/02/13 *		E&M2130, E&M2180, SKW0961,					 	Completion of Ma	
KD0165	Completion of Maintenance period of W7	1	0 06/10/			6/10/15	06/10/15 *		KD0090, SKW0595, SKW05972,							
	· ·		-						SKW0861							11 11 11
Preliminary (
PRE0020	Pre-condition Survey	60					15/07/10 A		KD0020							
PRE0040	Erection of Engineer's Site Accommodation at YSW	60					15/07/10 A		KD0020							
PRE0050	Taking over the Secondary Engineer's Site Accomm	75					30/07/10 A		KD0020							
PRE0060 PRE0090	Application of Consent from Marine Department Working Group Meeting for Outfall Construction	60 120					15/07/10 A 13/09/10 A		KD0020 KD0020	SKW1151						
PRE0100	Application & Consent of XP from HyD (Mo Tat Rd)	120					13/09/10 A		KD0020	SKW 1491, SKW 1501						
PRE0130	Setup Web-site for EM&A Reporting	90					13/03/10 A 14/08/10 A		KD0020							ii ii
Preliminary (50	100 11/00/			100/10/1	14/00/10/1		1.50020							U U U
Technical Sub	· · ·															
E&M1120	Hydraulic Test of Pipeworks	7	70 09/05/	13 A 08/1	0/13 09	9/05/13 A	29/04/14	202d	E&M1110	E&M11800	•					Hydraulic T
Process Desid	n of SKWSTW & YSWSTW			I			I									
E&M0010	Submission	38	100 17/05/	10 A 23/0	6/10 A 17	7/05/10 A	23/06/10 A		KD0020	E&M0020, E&M0040, E&M0235						
E&M0020	Vetting and Comment by ER	21	100 24/06/	10 A 14/0	7/10 A 24	4/06/10 A	14/07/10 A		E&M0010	E&M0030, E&M0040						
E&M0030	Revision and Resubmission	125	100 15/07/	10 A 16/1	1/10 A 15	5/07/10 A	16/11/10 A		E&M0020	E&M0080						
E&M0080	Approval from the Engineer	14	100 17/11/	10 A 30/1	1/10 A 17	7/11/10 A	30/11/10 A		E&M0030	E&M0295						
Hydraulic Des	-						1									
E&M0040	Submission	21					04/08/10 A		E&M0010, E&M0020	E&M0050, E&M0101, E&M0240, E&M0260,						ii ii
E&M0050	Vetting and Comment by ER	14					18/08/10 A		E&M0040	E&M0060						
E&M0060 E&M0430	Revision and Resubmission Approval from the Engineer	97					10/10/10 A 30/11/10 A		E&M0050 E&M0060	E&M0430 E&M0295						
	bmission & Approval	/	100 24/11/	10 A 30/1	1/10 A 22	#/11/10 A	30/11/10 A		Eamooo	EaMO293						
E&M0070	Submission of Membrane Module	50	100 17/05/	10 A 05/0	7/10 A 17	7/05/10 A	05/07/10 A		KD0020	E&M0090						
E&M0090	Vetting and Comment by ER	14	100 06/07/				19/07/10 A		E&M0070	E&M0100						
E&M0100	Revision and Resubmission	14	100 20/07/				24/02/11 A		E&M0090	E&M0160						
E&M0101	Submission of Equipment	90					30/11/11 A		E&M0040	E&M0102						11 11 11
Start date	05/05/10 Early bar											Date	Rev	sion	Chackad	Approved
Finish date	15/06/17 Progress bar				17	ader C	ivil Engi	noorin	g Corp. Ltd.		31/08/1		Revision 0	5011	Checked RH	Approved VC
Data date	31/08/13 Critical bar Summary bar						ntract No				51/00/1	0				vo
Run date	23/09/13 Progress point			Const	ruction				t Works at YSW & SKW	1						
	IA Critical point Summary point								ept 2013 - Nov 2013							
c Primavera	Systems, Inc. Start milestone point Finish milestone point				-	3		1-1	•							
											1		•		1	

Revision	Checked	Approved
Revision 0	RH	VC

	Activity ID	Description		Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	
	E&M0102	Vetting and Comment by ER	60		30/11/11 A		30/11/11 A	Tioat	E&M0101	E&M0103	MAY JUN
	E&M0103	Revision and Resubmission	60		30/11/11 A		30/11/11 A		E&M0102	E&M0110, E&M0120, E&M0130, E&M0140,	
	E&M0110	Approval on Coarse Screens	30		25/05/11 A		25/05/11 A		E&M0103	E&M0390	
	E&M0120	Approval on Fine Screens	30		12/09/11 A				E&M0103	E&M0400, E&M3060	-
	E&M0130	Approval on Pumps	30		23/06/11 A				E&M0103	E&M0410, E&M3070	-
									E&M0103	E&M0420, E&M3080	-
	E&M0140	Approval on Submersible Mixers	30		23/03/11 A		23/03/11 A				
	E&M0150	Approval on Grit Removal Equipment	30		10/10/11 A				E&M0103	E&M0380, E&M3030	
	E&M0160	Approval on MBR Membrane Modules (M.M.)	105		24/02/11 A		24/02/11 A		E&M0100	E&M0360, E&M0370, E&M3010	
	E&M0170	Approval on Sludge Dewatering Equipment	30		01/09/11 A		01/09/11 A		E&M0103	E&M0440, E&M3090	-
	E&M0180	Approval on Valves, Pipes & Fittings	30		04/08/13 A		04/08/13 A		E&M0103	E&M0450, E&M3100	
	E&M0190	Approval on Penstocks	30		15/11/11 A		-		E&M0103	E&M0460, E&M3110	
	E&M0200	Approval on Instrumentation	30		08/03/12 A		08/03/12 A		E&M0103	E&M0470, E&M3130	
	E&M0210	Approval on MCC & LVSB	30		01/09/13	19/11/11 A			E&M0103	E&M0480, E&M3140	
	E&M0220	Approval on BS Equipment	30		05/10/13	30/11/11 A	10/05/12		E&M0103, E&M0280	E&M0490, E&M3150	-
	E&M0230	Approval on FS Equipment	30	85 30/11/11 A	17/10/13	30/11/11 A	20/11/11	-697d	E&M0103, E&M0290	E&M0295, E&M0320, E&M0500, E&M3160	
	Drawings Subm	nission & Approval	1		1	1	1	T		1	
	E&M0235	Sub. P&ID Drawings	100	75 24/06/10 A	24/09/13	24/06/10 A	28/10/11		E&M0010	E&M0250	
	E&M0240	Sub. Plant GA Drawings	45	68 04/08/10 A	14/09/13	04/08/10 A	28/10/11	-686d	E&M0040	E&M0250, E&M0280, E&M0290	
	E&M0250	Sub. Builder's Works Requirements Drawings	15	100 04/08/10 A	31/01/13 A	04/08/10 A	31/01/13 A		E&M0235, E&M0240, E&M0260,	E&M0280, E&M0290	
	E&M0260	Sub. Mechanical Installation Drawings	60	70 27/09/10 A	17/09/13	27/09/10 A	28/10/11		E&M0040	E&M0250	
	E&M0270	Sub. Electrical Installation Drawings	60	75 27/09/10 A	14/09/13	27/09/10 A	28/10/11	-687d	E&M0040	E&M0250, E&M0280	
	E&M0280	Sub. BS Installation Drawings	120	95 27/09/10 A	30/09/13	27/09/10 A	06/05/12	-513d	E&M0240, E&M0250, E&M0270	E&M0220	
	E&M0290	Sub. FS Installation Drawings	120	85 13/11/11 A	12/10/13	13/11/11 A	15/11/11	-697d	E&M0240, E&M0250	E&M0230	
	Statutory Submi	ission	<u>.</u>	· ·							
	E&M0295	Preparation of Submission to HEC	39	100 01/11/11 A	30/11/11 A	01/11/11 A	30/11/11 A		E&M0080, E&M0230, E&M0430	E&M0300	
	E&M0300	Application & Approval from HEC	150	90 01/11/11 A	01/11/13	01/11/11 A	22/11/12	-344d	E&M0295	E&M0305	
	E&M0305	Provision of Cables to the STWs	180	0 01/11/13	30/04/14	22/11/12	21/05/13	-344d	E&M0300	E&M0680	
	E&M0320	Form 314 Submission to FSD	14	0 17/10/13	31/10/13	07/05/13	21/05/13	-163d	E&M0230	E&M0325, E&M0670	
	E&M0325	Submission to WSD	14	100 01/11/11 A	29/02/12 A	01/11/11 A	29/02/12 A		E&M0320	E&M0670, E&M0680	-
	E&M0330	Form 501 Submission to FSD (YSW)	28	0 12/07/15	09/08/15	14/11/13	11/12/13	-606d	E&M0500	E&M0700	
	E&M0340	Form 501 Submission to FSD (SKW)	28		04/05/14	11/06/14	08/07/14	66d	E&M3160	E&M3360	
	E&M0350	Form 501 Submission to FSD (PS1 & PS2)	28	-	26/10/13	14/11/12	11/12/12		E&M2016	E&M11800, E&M2180	
γ	ung Shue W	lan									
	Preliminary										
	YSW0020	Approval of Environmental Team	16	100 17/05/10 A	01/06/10 4	17/05/10 4	01/06/10 4		KD0020	YSW00201, YSW0030, YSW00351,	
	YSW00201	Change Baseline Monitoring Location (Air&Noise)	59		30/07/10 A		30/07/10 A		YSW0020	YSW0030	
	YSW0030	Baseline monitoring (Air & Noise)	23		22/08/10 A		22/08/10 A		YSW0020, YSW00201	YSW0035	
	YSW0035	Baseline Monitoring Report Submission (A & N)	16		07/09/10 A		07/09/10 A		YSW0030	YSW0120, YSW01545, YSW0500,	
	YSW00351	Submission & Approval for Monitoring Method (W)	58		29/07/10 A		29/07/10 A		YSW 0020	YSW0040	
	YSW0040	Baseline monitoring (Water)	155		31/12/10 A		31/12/10 A		YSW0020, YSW00351	YSW 0350	
	YSW0050	Erect Hoarding and Fencing	60		17/07/10 A		_		KD0020	YSW0155	
		ope Works in Portion A & C		100 13/00/10/1							
	YSW0075	Mobilization	30	100 17/05/10 A	15/06/10 A	17/05/10 A	15/06/10 A		KD0020	YSW0080, YSW0100	
	YSW0080	Site Clearance	30		15/07/10 A		15/07/10 A		YSW0075	YSW0085, YSW0090, YSW0120	4
	YSW0085	Initial Survey	14		15/07/10 A		15/07/10 A		YSW0080	YSW0120	
	YSW0090	Verify the Rock Boulder required Stablization Wk	249		21/03/11 A				YSW0080	YSW0100, YSW0110	
	YSW0100	Removal of Rock Boulder	249	100 10/07/10 A	03/06/11 A	-	03/06/11 A		YSW0075, YSW0090	KD0030	
	YSW0100	Stablizing work for rock boulder	35		19/08/11 A	-	19/08/11 A		YSW0090	KD0030	
	YSW0120	Cut the slope to design profile	2		25/09/10 A	-	25/09/10 A		YSW0035, YSW0080, YSW0085	YSW0131, YSW0155, YSW0170	
	YSW0120 YSW0131	Mobilization of Plant and Material of Soil Nails	14		25/09/10 A 25/09/10 A		25/09/10 A 25/09/10 A		YSW0120	YSW0132	
										YSW0133	
	YSW0132	Erect Scaffold and Working Platform	2		27/09/10 A	-			YSW0131 YSW0132		
	YSW0133	Setting out and Verify Locations of Soil Nails	45		11/11/10 A		11/11/10 A			YSW0134	
	YSW0134	Drilling and Soil Nails Installation	43		30/11/10 A				YSW0133	YSW0135	
	YSW0135	Construction of Nail Heads	12		12/12/10 A	-	12/12/10 A		YSW0134	YSW0136	
	YSW0136	Mesh Installation on Cut Slope	3		15/12/10 A		15/12/10 A		YSW0135	YSW01361	
	YSW01361	Verify alignment of access & channels on slope	118	100 16/12/10 A	12/04/11 A	16/12/10 A	12/04/11 A		YSW0136	YSW0140	
		05/05/10 Early bar 15/06/17 Progress bar									Date
		Critical bar							g Corp. Ltd.		31/08/13
		31/08/13 Summary bar 23/09/13 ▲ Progress point					ntract No				
		Critical point		C					t Works at YSW & SKW		
F	c Primavera S				3-month	n Rolling	Program	me (Se	ept 2013 - Nov 2013		

c Primavera Systems, Inc.



Activity ID	Description		l Percent Early	Early	Late	Late	Total	Predecessors	Successors		2013			
	Construct II shonnels & Ston Channel on Cut Slans		1 Complete Start	Finish	Start	Finish	Float	/SW01361	KD0030	MAY JUN	JUL	AUG	SEP	OCT
YSW0140	Construct U-channels & Step Channel on Cut Slope	182		11/10/11 A		11/10/11 A		/SW01545	YSW01750				H	
YSW0153 YSW01545	Removal of Ex U-Channel where clash with B. Wall Temporary Diversion of Drainage	151 244				07/10/11 A		/SW0035	YSW01750 YSW0153					
YSW0155	RC Barrier Wall Bay 1-13 (below Ground Level)	244				09/05/11 A		/SW0050, YSW0120	KD0030, YSW0170, YSW0175, YSW01750					
YSW0170		125				08/06/11 A 11/10/11 A		/SW0120, YSW0155	KD0030					
YSW0175	RC Barrier Wall Bay 1-13 (above Ground Level)	76				23/08/11 A		/SW0155	KD0030					
	Construct U-channels and Catchpits (Phase 1)	70						/SW0153, YSW0155	KD0030				<u></u>	
YSW01750	Construction of subsoil drain (phase 1)	14	7 100 12/10/11 A 100 06/12/12 A			08/02/12 A 31/12/12 A		(D0030, YSW01800	KD0130					
YSW01755 YSW01800	Construct subsoil drain (phase 2) RC Barrier Wall Bay 14 (below & above Ground)	87				28/11/12 A		/SW0760	YSW01755. YSW01810					
	· · · · · · · · · · · · · · · · · · ·	14			-			/SW01810	KD0130					
YSW01805 YSW01810	Hydroseeding	30			-			/SW01800	KD0130, YSW01805					
	Construct U-channels and Catchpits (Phase 2) SW STW & Submarine Outfall	30	0 100 29/11/12 A	22/12/12 A	29/11/12 A	22/12/12 A								
Civil & Structur														
YSW0412	Mobilization	30	0 100 17/05/10 A	15/06/10 A	17/05/10 4	15/06/10 A		KD0020	YSW0422					
YSW0412 YSW0422	Site Clearance	30						(D0020, YSW0412	YSW0432, YSW0500, YSW0610,					
						15/06/10 A		,	, , ,					
YSW0432	Initial Survey	14	100 02/06/10 A	15/06/10 A	02/06/10 A	15/06/10 A	<u> </u>	/SW0422	YSW0510					
YSW STW -								(0)110005 1(0)110100	VOWAETA					
YSW0500	ELS & Excavation for Inlet Pumping Station	105				21/12/10 A		/SW0035, YSW0422	YSW0510					
YSW0510	Sub-structure construction (Inlet Pumping Stn)	129						/SW0432, YSW0500	YSW0520					
YSW0520	Backfill & Remove ELS (Inlet Pumping Stn)	40				08/06/11 A		/SW0510	YSW05701					
YSW0530	ELS & Excavation for Equalization Tank	159			01/01/11 A	08/06/11 A		/SW0660	YSW0540, YSW05701					11 11 11
YSW0540	Sub-structure construction (Equalization Tank)	112			09/06/11 A	28/09/11 A		/SW0530	YSW0550, YSW05901					
YSW0550	Backfilling & Remove ELS (Equalization Tank)	20		18/10/11 A	29/09/11 A	18/10/11 A		/SW0540	YSW05901					
YSW05701	ELS & Excavation for Grit Chambers	28			-	06/07/11 A		/SW0520, YSW0530	YSW05711, YSW05731					
YSW05711	Construct sub-structure for Grit Chambers	106				20/10/11 A		/SW05701	YSW05721, YSW05911					
YSW05721	Backfill & Remove ELS for Grit Chambers	12						/SW05711	YSW05911					
YSW05731	ELS & Excavation for Grease Separators (GS)	34		09/08/11 A		09/08/11 A		/SW05701	YSW05741					u
YSW05741	Construct sub-structure for Grease Separators	52				30/09/11 A		/SW05731	YSW05751					
YSW05751	Install Dia.400 Puddles in Grease Separators	27						/SW05741	YSW05752					
YSW05752	Construct sub-structure for GS (above puddles)	48	100	14/12/11 A				/SW05751	YSW05761					
YSW05761	Backfill & remove ELS for Grease Separators	10						/SW05752	YSW0580, YSW05921					
YSW0580	Excavate to Formation for Deodorizer Room	10		03/01/12 A				/SW05761	YSW05801, YSW05922			111111111 11111111 	+	
YSW05801	Excavate to formation - Grid J-N/5-7	40	100 1 1 1	12/02/12 A		12/02/12 A	_	/SW0580	YSW05802, YSW05923					
YSW05802	Excavate to formation - Grid GA-H/5-7	10			13/02/12 A		_	/SW05801	YSW05924					
YSW05901	G/F to 1/F Construction Grid GA-K/1-5	90	100					/SW0540, YSW0550	YSW06001					
YSW05911	G/F to 1/F Construction Grid N-S/1-5	80			21/10/11 A			/SW05711, YSW05721	YSW06011, YSW06035					
YSW05921	G/F to 1/F Construction Grid K-N/1-5	45						/SW05761	YSW06021					
YSW05922	G/F to 1/F Construction for Deodorizer Room	80		23/03/12 A	04/01/12 A	23/03/12 A		/SW0580	YSW06022					
YSW05923	G/F to 1/F Construction for Grid J-N/5-7	60		12/04/12 A	13/02/12 A	12/04/12 A		/SW05801	E&M0530, E&M0540, E&M0550, E&M0560,					
YSW05924	G/F to 1/F Construction for Grid GA-H/5-7	50		16/07/12 A	28/05/12 A	16/07/12 A		/SW05802, YSW06023	YSW06034					11 11 11
YSW06001	1/F to Roof Constuction for Grid GA-K/1-5	87		23/03/12 A	28/12/11 A	23/03/12 A		/SW05901	YSW0800					
YSW06011	1/F to Roof Constuction for Grid N-S/1-5	75		23/03/12 A	09/01/12 A	23/03/12 A		/SW05911	YSW0800					
YSW06021	1/F to Roof Constuction for Grid K-N/1-5	44	100	22/03/12 A	08/02/12 A	22/03/12 A		/SW05921	YSW07201					
YSW06022	1/F to Roof Constuction for Deodorizer Room	60		22/05/12 A	24/03/12 A	22/05/12 A		/SW05922	YSW0800					
YSW06023	1/F to Roof Constuction for Grid J-N/5-7	45		27/05/12 A	13/04/12 A	27/05/12 A		/SW05923	E&M0580, YSW05924					
YSW06034	1/F to Roof Constuction for Grid GA-H/5-7	28		13/08/12 A	27/07/12 A	13/08/12 A		/SW05924	YSW0800					
YSW 06035	Construct buffle walls in Grease Separators	90		16/07/12 A	18/04/12 A	16/07/12 A	۱	/SW05911	YSW07204					
YSW07201	Water tightness test for Inlet Pumping Station	60		21/05/12 A	23/03/12 A	21/05/12 A		/SW06021	YSW07202, YSW0800					
YSW07202	Water tightness test for Equalization Tanks	42		02/07/12 A	22/05/12 A	02/07/12 A		/SW07201	E&M0600, YSW07203, YSW0800					
YSW07203	Water tightness test for Grit Chambers	42		29/09/12 A	17/09/12 A	29/09/12 A		/SW07202	YSW07204, YSW0800					
YSW07204	Water tightness test for Grease Separators	32	2 100 03/10/12 A	31/10/12 A	03/10/12 A	31/10/12 A	١	/SW06035, YSW07203	E&M0570, YSW07205, YSW0800					
YSW07205	Water tightness test for water channels	21	100 31/08/13 A	23/09/13 A	31/08/13 A	23/09/13 A	١	/SW07204	YSW0800					ater tightness tes
YSW0800	ABWF installation	271	97 03/07/12 A	07/09/13	03/07/12 A	16/06/14	282d \	/SW06001, YSW06011, YSW06022,	KD0040				ABWF insta	llation
YSW STW -	GL T - X													
YSW0610	Excavate to formation	10			08/09/10 A		١	/SW0035, YSW0422	YSW0620					
YSW0620	Base slab construction	248	B 100 18/09/10 A	23/05/11 A	18/09/10 A	23/05/11 A	١	/SW0610	YSW0630					
Start date	05/05/10 Early bar									Date	Revis	ion	Checked	Approved
Finish date	15/06/17 Progress bar Critical bar							J Corp. Ltd.		31/08/13	Revision 0		RH	VC
Data date	31/08/13 —— Summary bar					ntract No								
Run date	23/09/13 ▲ Progress point ▼ Critical point		C					Works at YSW & SKW						
Page number c Primavera	3A Summary point			3-mont	h Rolling	Program	me (Se	pt 2013 - Nov 2013						
	Start milestone point													

Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	MAY JUN
YSW0630	G/F to 1/F construction	205	100	24/05/11 A	14/12/11 A	24/05/11 A	14/12/11 A		YSW0620	YSW0640	
YSW0640	1/F to Roof Construction	64	100	15/12/11 A	16/02/12 A	15/12/11 A	16/02/12 A		YSW0630	YSW0810	
YSW0810	ABWF installation	80	100	28/12/11 A	16/03/12 A	28/12/11 A	16/03/12 A		YSW0640	E&M0610, E&M0620, E&M0630, E&M0640	
YSW STW - 0	GLF-H&DNTanks										
YSW0650	ELS & Excavation for DN Tanks	37	100	08/09/10 A	14/10/10 A	08/09/10 A	14/10/10 A		YSW0035, YSW0422	YSW0660	
YSW0660	Sub-struction construction (DN Tanks)	78	100	15/10/10 A	31/12/10 A	15/10/10 A	31/12/10 A		YSW0650	YSW0530, YSW0670	
YSW0670	Backfill & Remove ELS (DN Tanks)	70	100	01/01/11 A	11/03/11 A	01/01/11 A	11/03/11 A		YSW0660	YSW0680	
YSW0680	Base slab construction (SD1, SD2 & MBR4)	17	100	12/03/11 A	28/03/11 A	12/03/11 A	28/03/11 A		YSW0670	YSW0690	
YSW0690	Construct Superstructure SD1, SD2 & MBR4	82	100	29/03/11 A	18/06/11 A	29/03/11 A	18/06/11 A		YSW0680	YSW0710, YSW0820	
YSW06901	Construct Superstructure of DN Tanks	28	100	15/05/12 A	11/06/12 A	15/05/12 A	11/06/12 A		YSW0735	YSW0830	
YSW0705	Water test for MBR 4	47	100	01/10/12 A	16/11/12 A	01/10/12 A	16/11/12 A		YSW0710	E&M0510, E&M0640, YSW07055,	
YSW07055	Water test for SD1 & SD2	54	100	17/11/12 A	10/01/13 A	17/11/12 A	10/01/13 A		YSW0705, YSW07105	E&M0610	
YSW0710	Apply protective paint for MBR 4	7	100	24/09/12 A	30/09/12 A	24/09/12 A	30/09/12 A		YSW0690	YSW0705, YSW07105	
YSW07105	Apply protective paint for SD1 & SD2	7	100	01/10/12 A	07/10/12 A	01/10/12 A	07/10/12 A		YSW0710	YSW07055	
YSW0820	ABWF installation	90	70	15/01/13 A	26/09/13	15/01/13 A	15/04/13	-164d	YSW0690, YSW0705	E&M0630, E&M0640	
YSW0830	Water test for DN Tanks	28	100	14/07/13 A	13/09/13 A	14/07/13 A	13/09/13 A		YSW06901	YSW0850	+
YSW0850	Apply protecitve paint for DN Tanks	6	100	27/04/13 A	11/07/13 A	27/04/13 A	11/07/13 A		YSW0830	E&M0610	-
YSW STW - 0	GLA-F										
YSW0730	Completion of HDD	0	100	21/01/12 A		21/01/12 A			YSW03601, YSW03605	YSW0732	
YSW0732	Excavate for MBR 2 & 3	20	100	21/01/12 A	09/02/12 A	21/01/12 A	09/02/12 A		YSW0730	YSW0733	
YSW0733	Construct basement of MBR 2 & 3	20		10/02/12 A	29/02/12 A	10/02/12 A	29/02/12 A		YSW0732	YSW0735, YSW0740	
YSW0735	Construct superstructure of MBR 2	75		01/03/12 A		01/03/12 A	14/05/12 A		YSW0733	YSW06901, YSW0736, YSW08302,	
YSW0736	Construct superstructure of MBR 3	100		15/05/12 A	14/05/12 A	15/05/12 A	14/05/12 A		YSW0735	YSW08302, YSW08305	
YSW0740	ELS & excavate for Outfall Shaft	75		01/03/12 A	14/05/12 A	01/03/12 A	14/05/12 A		YSW0733	YSW0750	
YSW0750	Construct basement of Outfall Shaft	19		15/05/12 A	02/06/12 A	15/05/12 A	02/06/12 A		YSW0740	YSW07501	-
YSW07501	Connect additional flange to HDPE pipe (VO 042)	5		03/06/12 A	07/06/12 A		07/06/12 A		YSW0750	YSW07502	
YSW07502	Construct sub-structure of Outfall Shaft	16		08/06/12 A		08/06/12 A			YSW07501	YSW0760	
YSW0760	Backfill & remove ELS (outfall shaft)	8		24/06/12 A		24/06/12 A			YSW07502	YSW01800, YSW07601, YSW07603,	
YSW07601	Construct superstructure for Outfall Shaft	30		03/07/12 A		03/07/12 A			YSW0760	YSW08301, YSW08305	
YSW07603	ELS & excavate for FSH Water Supply Tank	25		01/06/12 A		01/06/12 A			YSW0760	YSW07604	
YSW07604	Construct substructure for FSH Water Supply Tank	23		26/06/12 A		26/06/12 A	19/07/12 A		YSW07603	YSW07605	
YSW07605	Backfill & remove ELS for FSH Water Supply Tank	12		20/07/12 A		20/00/12 A			YSW07604	YSW07607	
YSW07607	Construct basement of MBR 1 & Workshop	24		01/08/12 A		01/08/12 A			YSW07605	YSW07608, YSW07609	
YSW07608	Construct superstructure for FSH Water Supply Tk	37		25/08/12 A		25/08/12 A			YSW07607	YSW08304, YSW08305	
YSW07609		37		25/08/12 A	30/09/12 A				YSW07607	YSW07610, YSW08303, YSW1470	
YSW07610	Construct superstructure for MBR 1 Construct Workshop, FSSH Pump Rm, PW Pump Rm	31			31/10/12 A				YSW07609	YSW0840, YSW16606, YSW16607,	-
				03/10/12 A							
YSW08301	Water tightness test for Outfall Shaft	42		03/04/13 A		03/04/13 A			YSW0380, YSW07601	E&M0690	tightness test for Outfall Sha
YSW08302	Water tightness test for MBR 2 & 3	95		10/08/13 A		10/08/13 A			YSW0735, YSW0736	E&M0520, E&M0590, E&M0605, E&M0650	
YSW08303	Water tightness test for MBR 1	19		30/11/12 A		30/11/12 A			YSW07609	E&M0520	
YSW08304	Water tightness test for FSH Water Supply Tank	32		31/08/13 A		31/08/13 A			YSW07608	E&M0610	
YSW08305	Apply protective paint	120	100	02/10/12 A	15/08/13 A	02/10/12 A	15/08/13 A		YSW0735, YSW0736, YSW07601,	E&M0610	
	l / Sprinkler Pump Rm						Linux				
YSW0840	ELS & excavate to formation (+0 mPD approx.)	40		25/02/13 A		25/02/13 A			YSW07610, YSW16606	YSW0860	excavate to formation (+0 m
YSW0860	Sub-structure construction	40		19/04/13 A		19/04/13 A			YSW0840	YSW0890	Sub-
YSW0880	Backfill & remove ELS	35		21/06/13 A		21/06/13 A			YSW0890	YSW0910	
YSW0890	Construction Ground Slab at +5.2mPD	40		04/06/13 A		04/06/13 A	14/07/13 A		YSW0860	YSW0880, YSW0900	
YSW0900	Superstructure construction upto +9.2mPD	35		04/06/13 A			01/08/13 A	ļ	YSW0890	YSW0910, YSW0925	
YSW0910	Water test	28	0	01/09/13	29/09/13	30/10/13	27/11/13		YSW0880, YSW0900	YSW0915	4
YSW0915	Apply protective paint	14	0	29/09/13	13/10/13	27/11/13	11/12/13	59d	YSW0910	E&M0640, YSW0925	
YSW0925	ABWF installation	30	35	16/07/13 A	13/10/13	16/07/13 A	16/06/14	246d	YSW0900, YSW0915	KD0040	
Emergency St											-
YSW1470	ELS & excavate to formation (-1.5mPD Approx.)	16		17/09/12 A		17/09/12 A			YSW07609	YSW1480	
YSW1480	Sub-structure construction	14	100	03/10/12 A	16/10/12 A	03/10/12 A	16/10/12 A		YSW1470	YSW1490	
	Backfill & extract sheetpile	3	100	17/10/12 A	19/10/12 A	17/10/12 A	19/10/12 A		YSW1480	YSW1500	
YSW1490											

Start date	05/05/10		Early bar
Finish date	15/06/17		Progress back of Critical bar
Data date	31/08/13		- Summary b
Run date	23/09/13		Progress p
Page number	4A		Critical poir Summary p
c Primavera	Systems, Inc.	♦	Start milest
			Einich milor

Progress bar Critical bar - Summary bar Progress point Critical point Summary point Start milestone point Finish milestone point Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sept 2013 - Nov 2013 Date 31/08/13

Revision Revision 0	Checked RH	Approved VC

Activity ID	Description	Original Percent Duration Complete	Early Start	Early Finish	Late Start		Total Float	Predecessors	Successors	2013 MAY JUN JUL AUG	SEP	ост
YSW1530	Underground pipeline works	40 70	20/07/13 A	11/09/13	20/07/13 A	08/06/13	-95d	YSW1500	E&M0690, YSW1680		Undergroun	nd pipeline work
YSW1536	Water tightness test		12/08/13 A	26/08/13 A	12/08/13 A	26/08/13 A		YSW1500	YSW1538		Water tightness test	
YSW1538	Apply protective paint	30 100	04/03/13 A	05/03/13 A	04/03/13 A	05/03/13 A		YSW1536	YSW1540			
YSW1540	ABWF installation	40 35	03/04/13 A	25/09/13	03/04/13 A	08/06/13	-109d	YSW1538	E&M0690			WF installation
Road, Drain,	Cable Draw Pits & Ducting			1	1	II			1			
YSW16601	ELS & excavate 6m deep sewer (FM1 - YFMH13)	60 45	04/08/13 A	04/10/13	04/08/13 A	06/04/13	-181d	YSW0760, YSW16606, YSW16607,	YSW16602			ELS & excava
YSW16602	Lay pipe & backfill 6m deep sewer (FM1 - YFMH13)	45 0	04/10/13	18/11/13	06/04/13	21/05/13	-181d	YSW16601	E&M0680, YSW1700			
YSW16603	Construct UU & pipes along sea side (Grid Q-X)	60 0	01/09/13	31/10/13	11/05/13	09/07/13	-114d	YSW16607, YSW16608	YSW16604, YSW16703			
YSW16604	Construct UU & pipes along sea side (Grid XA-D)		22/07/13 A	18/11/13		27/07/13	-114d	YSW16603	YSW16605, YSW16701			
YSW16605	Construct UU & pipes along sea side (Grid D-Q)		20/11/13 A	11/01/14	20/11/13 A	19/09/13	-114d	YSW16604	YSW16702, YSW1700			
YSW16606	Construct UU & pipes along hill side (Grid D-Q)		10/10/12 A	01/09/13	10/10/12 A		-181d	YSW07610	YSW0840, YSW16601		Construct UU & p	oipes along hill
YSW16607	Construct UU & pipes along hill side (Grid Q-X)		20/08/12 A	01/09/13	20/08/12 A	04/03/13	-181d	YSW07610	YSW16601, YSW16603		Construct UU & p	
YSW16608	Construct UU & pipes along hill side (Grid XA-D)		30/11/12 A	01/09/13	30/11/12 A	04/03/13	-181d	YSW07610	YSW16601, YSW16603, YSW1690		Construct UU & p	
YSW16701	Construct Boundary Wall (Grid XA-D)		10/01/13 A	26/11/13	10/01/13 A	19/09/13	-68d	YSW16604	YSW16702			J
YSW16702	Construct Boundary Wall (Grid D-Q)		11/01/14	01/04/14	20/09/13	08/12/13		YSW16605, YSW16701	YSW16703			
YSW16703	Construct Boundary Wall (Grid Q-X)		01/04/14	20/06/14	09/12/13	26/02/14	-114d	YSW16603, YSW16702	YSW16704, YSW1700			
YSW16704	ABWF installation for Boundary Wall		11/01/14	08/09/14	20/10/13	16/06/14		YSW16703	KD0040			
YSW1680	Fire Hydrant & pipeline installation		26/01/13 A	10/11/13	26/01/13 A	14/10/13		YSW1530	YSW1690, YSW1700			i
YSW1690	Construction of Road Kerbs, Downpipes, U-channel		02/01/13 A	25/03/14	02/01/13 A	26/02/14		YSW16608, YSW1680	YSW1700		1:	
YSW1700	Road Paving		20/06/14	08/10/14	27/02/14	16/06/14		YSW16602, YSW16605, YSW16703,	KD0040			
10001/00			20/00/14	00/10/14	27/02/14	10/00/14	1140	YSW1680, YSW1690				
Submarine Out	fall		•									
YSW0180	Coordination of HEC	53 100	17/05/10 A	08/07/10 A	17/05/10 A	08/07/10 A		KD0020	YSW0350			
YSW0200	Submission and Approval of Ecologist	60 100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020	YSW0210			
YSW0210	Ecology Survey	211 100	16/07/10 A	11/02/11 A	16/07/10 A	11/02/11 A		YSW0200	YSW0350			
YSW0220	Submission and Approval of In. Hydro Survey	103 100	17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A		KD0020	YSW0230			
YSW0230	Hydrogrophical Survey (YSW)	157 100	28/08/10 A	31/01/11 A	28/08/10 A	31/01/11 A		YSW0220	YSW0350			
YSW0240	Material Submission, Approval of HDPE pipe	319 100	17/05/10 A	31/03/11 A	17/05/10 A	31/03/11 A		KD0020	YSW0360			
YSW02401	Clarify Coordinate of Point Y (Reply of RFI 010)	83 100	28/06/10 A	18/09/10 A	28/06/10 A	18/09/10 A		KD0020	YSW0250			
YSW0250	Submit and Approval of Method Statement for HDD	188 100	19/09/10 A	25/03/11 A	19/09/10 A	25/03/11 A		YSW02401	YSW0260, YSW0270, YSW0340			
YSW0260	Submission of HDD Method Statement to HEC	14 100	26/03/11 A	08/04/11 A	26/03/11 A	08/04/11 A		YSW0250	YSW0340			ii
YSW0270	Additional G.I. Boreholes (YSW)	123 100	19/09/10 A	19/01/11 A	19/09/10 A	19/01/11 A		YSW0250	YSW0280, YSW0290			
YSW0280	Submission of propose alignment	44 100	20/01/11 A	04/03/11 A	20/01/11 A	04/03/11 A		YSW0270	YSW0310, YSW0340			
YSW0290	Submission of Marine Notice	69 100	20/01/11 A	29/03/11 A	20/01/11 A	29/03/11 A		YSW0270	YSW0350			
YSW0310	Construction of Entry Pit and Preparation Work	27 100	05/03/11 A	31/03/11 A	05/03/11 A	31/03/11 A		YSW0280	YSW0320			
YSW0320	Prepare of HDD Drill Rig Set-up (YSW)	28 100	01/04/11 A	28/04/11 A	01/04/11 A	28/04/11 A		YSW0310	YSW0330, YSW0350			
YSW0330	Establishment of HDD plant & equipment	6 100	09/04/11 A	14/04/11 A	09/04/11 A	14/04/11 A		YSW0320	YSW0340			
YSW0340	Setting up at drillhole location	14 100	15/04/11 A	28/04/11 A	15/04/11 A	28/04/11 A		YSW0250, YSW0260, YSW0280,	YSW0350			
YSW0350	Drill pilot hole and reaming hole - NS400 - 530m		29/04/11 A	13/12/11 A	29/04/11 A	13/12/11 A		YSW0040, YSW0180, YSW0210,	YSW0360	-		
YSW0360	Installation of NS400 HDPE 530m	17 100	14/12/11 A	30/12/11 A	14/12/11 A	30/12/11 A		YSW0240, YSW0350	SKW1181, YSW03601, YSW03620,			
YSW03601	Demobilization of HDD plant & equipment		31/12/11 A	06/01/12 A	31/12/11 A	06/01/12 A		YSW0360	YSW03605, YSW03641, YSW0730			
YSW03605	Remove Entry pit of HDD		07/01/12 A	20/01/12 A	07/01/12 A			YSW03601	YSW0730			
YSW03620	Removal of Receiving Pit		31/12/11 A	13/01/12 A		13/01/12 A		YSW0360	YSW0365			
YSW03641	Prepare backfilling material under VO 046A		07/01/12 A	05/05/12 A		05/05/12 A		YSW03601	YSW0365			
YSW0365	Set up of Silt Curtain as per EP		23/11/12 A	24/11/12 A	23/11/12 A			SKW1431, YSW03620, YSW03641	YSW0370	-		11
YSW0370	Dredging of Marine Deposit for Diffuser (YSW)		24/11/12 A	29/11/12 A	24/11/12 A			YSW0360, YSW0365	YSW0380	-		
YSW0380	Diffuser Construction (YSW)		30/11/12 A		30/11/12 A			YSW0370	E&M0690, YSW0400, YSW08301	Diffuser Construction (YSW)		11
YSW0400	Removal of silt curtain				30/04/13 A			YSW0380	KD0040	Bemoval of cilt curtain		
E&M Works - Y		100										
E&M0360	Delivery of MBR Memb. Mod. (MBR Tk 4)	118 100	24/02/11 A	21/06/11 A	24/02/11 A	21/06/11 A		E&M0160	E&M0510	_		
E&M0370	Delivery of MBR Membrane Modules - 2nd Shipment		24/02/11 A		24/02/11 A			E&M0160	E&M0520			
E&M0380	Delivery of Grit Removal Equipment		10/10/11 A					E&M0150	E&M0530			
E&M0390	Delivery of Coarse Screens		06/09/11 A	12/01/12 A	06/09/11 A			E&M0110	E&M0540			
E&M0400	Delivery of Fine Screens		12/09/11 A	30/11/11 A				E&M0120	E&M0550			1
E&M0410	Delivery of Pumps		23/06/11 A	05/09/11 A	23/06/11 A			E&M0130	E&M0560			
E&M0420	Delivery of Submersible Mixers		26/02/11 A		26/02/11 A			E&M0140	E&M0570			1
		100										
Start date Finish date Data date	05/05/10 Early bar 15/06/17 Progress bar 31/08/13 Summary bar					ivil Engine		g Corp. Ltd. 009/13		DateRevision31/08/13Revision 0		Approved VC
Run date	23/09/13 Progress point Critical point							t Works at YSW & SKW	,			
Page number	5A Summary point							pt 2013 - Nov 2013				

 Page number
 5A
 Summary point

 c
 Primavera Systems, Inc.
 Start milestone point

 Finish milestone point
 Finish milestone point

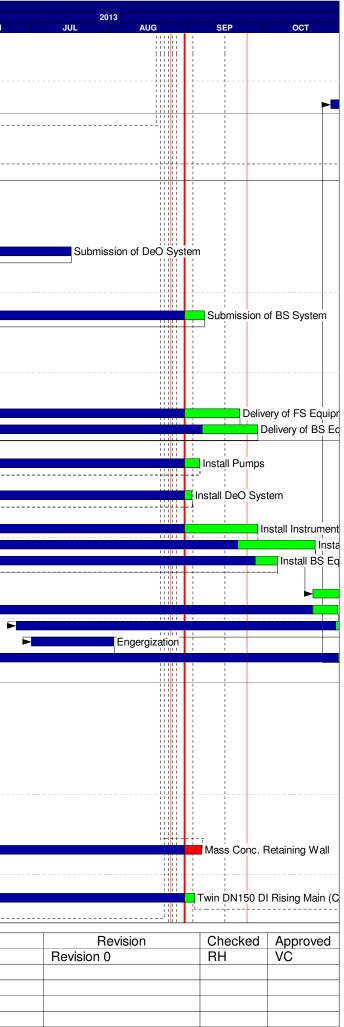
3-month Rolling Programme (Sept 2013 - Nov 2013

Activity ID	Description	Original Percent Duration Complete	Early Start	Early Finish	Late Start	Late Finish	Total Predecessors	Successors	MAY JUN	2013 JUL	AUG	SEP	OCT
E&M0440	Delivery of Sludge Dewatering Equipment	558 70	31/08/11 A	14/02/14	31/08/11 A	30/10/13	-107d E&M0170	E&M0580		, , , , , , , , , , , , , , , , , , ,	· •	JEI	001
E&M0450	Delivery of Valves, Pipes & Fittings		30/08/11 A	26/02/14	30/08/11 A	01/01/14	-56d E&M0180	E&M0590					!!
E&M0460	Delivery of Penstocks	135 100	12/08/11 A	24/12/11 A	12/08/11 A	24/12/11 A	E&M0190	E&M0600, E&M0605					·
E&M0470	Delivery of Instruments	232 100	03/11/11 A	21/06/11 A	03/11/11 A	21/06/11 A	E&M0200	E&M0610			1 4 4 1-1 4 4 1		
E&M0480	Delivery of MCC LVSB		03/12/12 A	04/03/13 A	03/12/12 A	04/03/13 A	E&M0210	E&M0620					
E&M0490	Delivery of BS Equipment		10/12/11 A	18/11/14	10/12/11 A	23/06/13	-513d E&M0220	E&M0630					!!
E&M0500	Delivery FS Equipment		11/12/11 A	12/07/15	11/12/11 A	14/08/13	-697d E&M0230	E&M0330, E&M0640					
E&M0510	Install Membrane Modules in MBR Tank no. 4		03/11/12 A	28/02/13 A	03/11/12 A	28/02/13 A	E&M0360, YSW0705	E&M0690	R Tank no. 4				
E&M0520	Install Membrane Modules in MBR Tank No. 1 to 3		03/12/12 A	28/02/13 A	03/12/12 A	28/02/13 A	E&M0370, YSW08302, YSW08303	E&M0690					
E&M0530	Install Grit Removal Equipment		01/06/12 A	30/09/12 A	01/06/12 A	30/09/12 A	E&M0380, YSW05923	E&M0590, E&M0660			╴┥╡╪╞╎┥╃╞╶╸┥╴	·	
E&M0540	Install Coarse Screens		23/04/12 A	23/08/13 A	23/04/12 A	23/08/13 A	E&M0390, YSW05923	E&M0660			Install	Coarse Scree	ns
E&M0550	Install Fine Screens		01/06/12 A	12/08/13 A	01/06/12 A	12/08/13 A	E&M0400, YSW05923	E&M0590, E&M0660			Install Fine S		
E&M0560	Install Pumps		23/04/12 A	05/10/13	23/04/12 A	12/05/13	-146d E&M0410, YSW05923	E&M0660				bereens	Install Pumps
E&M0570	Install Submersible Mixers		15/01/13 A	16/09/13	15/01/13 A	12/05/13	-127d E&M0420, YSW07204	E&M0660, E&M0690				Inetall	Submersible Mixe
	Install Sudae Dewatering Equipment						-227d E&M0440, YSW06023	E&M0690				Instan	
E&M0580			29/05/12 A	22/01/14	29/05/12 A	09/06/13	-116d E&M0450, E&M0530, E&M0550,	E&M0650, E&M0690					
E&M0590	Install Valves, Pipes & Fittings		15/01/13 A	04/10/13	15/01/13 A	10/06/13	E&M0460, YSW07202	E&M0690	Install Penstocks (E				Install Valves,
E&M0600	Install Penstocks (Batch 1, GL H - T)		23/04/12 A	21/05/13 A	23/04/12 A	21/05/13 A	-103d E&M0460, YSW08302			Salch I, GL H - I)			
E&M0605	Install Penstocks (Batch 2, GL A - F)		02/01/13 A	19/09/13	02/01/13 A	08/06/13		E&M0690			- i i i i i i i i i i i i i i i i i i i	Insta	Il Penstocks (Bate
E&M0610	Install Instruments		02/01/13 A	09/11/13	02/01/13 A	10/06/13	-152d E&M0470, YSW07055, YSW0810,	E&M0690					
E&M0620	Install SAT, MCC & LVSB		02/01/13 A	02/01/15 A	02/01/13 A	02/01/15 A	E&M0480, YSW0810	E&M0660, E&M0680			iiiiii ii ii		ii
E&M0630	Install BS Equipment		02/01/13 A	09/12/14	02/01/13 A	14/07/13	-513d E&M0490, YSW0810, YSW0820	E&M0690					
E&M0640	Install FS Equipment		02/01/13 A	11/06/15	02/01/13 A	14/07/13	-697d E&M0500, YSW0705, YSW0810,	E&M0690					!!
E&M0650	Hydraulic Tests of Pipeworks	153 60	02/01/13 A	31/10/13	02/01/13 A	15/06/13	-138d E&M0590, YSW08302	E&M0690					
E&M0660	Cabling Works	15 42	04/02/15 A	12/05/15	04/02/15 A	21/05/13	-721d E&M0530, E&M0540, E&M0550, E&M0560, E&M0570, E&M0620	E&M0670					
E 1 M0070	leavelation Toota of Ocklas and Ockla Tomainstica	00 00		00/05/45	11/04/15 4	00/00/10	, ,	E 8 M0000					
E&M0670	Insulation Tests of Cables and Cable Termination		11/04/15 A	30/05/15	11/04/15 A	08/06/13	-721d E&M0320, E&M0325, E&M0660,	E&M0690					
E&M0680	Energization		02/04/15 A	03/04/15 A	02/04/15 A	03/04/15 A	E&M0305, E&M0325, E&M0620,	E&M0670					
E&M0690	Functional and Performance Tests of Equipment	35 45	25/03/15 A	18/06/15	25/03/15 A	27/06/13 *	-721d E&M0510, E&M0520, E&M0570, E&M0580, E&M0590, E&M0600, E&M06605, E&M0610, E&M0630, E&M06640, E&M0650, E&M0670, YSW0380, YSW08301, YSW1530, YSW1540	E&M0700					
E&M0700	T&C Period	137 0	09/08/15	24/12/15	12/12/13	27/04/14	-606d E&M0330, E&M0690	E&M0730, KD0040					
E&M0730	Trial Operation Period	413 0	24/12/15	15/06/17	28/04/14	14/06/15	-606d E&M0700	KD0132			+ + - - + - + - 		
Sok Kwu Wa	n												
Preliminary	•												
SKW0250	Approval of Environmental Team	16 100	17/05/10 A	01/06/10 A	17/05/10 A	01/06/10 A	KD0020	SKW0260					11
SKW0260	Baseline monitoring (Air & Noise)				02/06/10 A	-	SKW0250	SKW0242, SKW0265, SKW0592,					11
SKW0265	Baseline Monitoring Submission (A & N)			08/07/10 A			SKW0260	SKW0242, SKW0592, SKW0681,					
	baseline Monitoring Submission (A & W)	14 100	10/00/10 A	00/07/10 A	10/00/10 A	00/07/10 A							
Civil & Geotec	•												
		01 100	17/05/10 4	00/00/10 4	17/05/10 4	00/00/10 1		SKW0241					
SKW0240	Site Clearance		17/05/10 A	06/06/10 A	17/05/10 A		SKW0240	SKW0241 SKW0242	_				
SKW0241	Initial Survey		07/06/10 A	15/06/10 A	07/06/10 A	15/06/10 A	SKW0240 SKW0241, SKW0260, SKW0265		_				
SKW0242	Retaining Wall Bay 0-10 (Incl. VO. 001A)			-	30/06/10 A	23/12/10 A	, ,	SKW0461	_				
SKW0461	Utilities Laying and Diversion		24/12/10 A		24/12/10 A	03/03/11 A	SKW0242	SKW0471	_				
SKW0471	Concreting for Pavement		04/03/11 A		04/03/11 A	10/03/11 A	SKW0461	SKW0481			1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		·
SKW0481	Footpath Diversion - Stage 1		11/03/11 A		11/03/11 A	24/03/11 A	SKW0471	KD0050, SKW04811, SKW0491					
SKW04811	Excavate for FP transition at CH0-35 &CH130-141				25/03/11 A	30/04/11 A	SKW0481	SKW04821					
SKW04821	Construction of Drainage outfall near bay 10				01/05/11 A	03/05/11 A	SKW04811	SKW04831					i i i
SKW04831	Cable diversion by HEC				04/05/11 A	29/05/11 A	SKW04821	SKW04841					
SKW04841	Diversion of Ducting and Drawpit by PCCW			31/05/11 A	20/05/11 A	31/05/11 A	SKW04831	SKW04851					11 11 11
SKW04851	Soil backfilling behind FP retaining wall	14 100	01/06/11 A	14/06/11 A	01/06/11 A	14/06/11 A	SKW04841	SKW04861					
SKW04861	Concreting for footpath pavement	7 100	15/06/11 A	21/06/11 A	15/06/11 A	21/06/11 A	SKW04851	SKW04871					
SKW04871	Relocation of Temp Safety Fence at SKW STW A-G	57 100	22/06/11 A	17/08/11 A	22/06/11 A	17/08/11 A	SKW04861	SKW04881					
SKW04881	Disposal of excavation material at A-G SKW STW	138 100	18/08/11 A	02/01/12 A	18/08/11 A	02/01/12 A	SKW04871	SKW04885					
SKW 04885	Footpath Diversion - Stage 2	7 100	03/01/12 A	09/01/12 A	03/01/12 A	09/01/12 A	SKW04881	SKW1261					
SKW0491	Removal of Haul Road after SKW STW	7 0	08/10/14		29/05/15	04/06/15	233d KD0090, SKW0481, SKW1401	SKW0501					·
			1	1	1								'
Start date	05/05/10 Early bar 15/06/17 Progress bar								Date	Revision	n		Approved
Finish date	TJ/UU/T7						neering Corp. Ltd.		31/08/13	Revision 0		RH	VC
Data date Run date	31/08/13Summary bar 23/09/13 ▲ Progress point			_			. DC/2009/13						
Page number	Critical point		C				atment Works at YSW & SK	V					
	Systems, Inc.			3-month	Rolling	Program	me (Sept 2013 - Nov 2013						
	Finish milestone point												

Start date	05/05/10		Early bar
Finish date	15/06/17		Progress ba Critical bar
Data date	31/08/13		- Summary ba
Run date	23/09/13		Progress po
Page number	6A		Critical point Summary po
c Primavera	Systems, Inc.	•	Start milesto
			Finish miles

Activity	Description	Original Perce		Early	Late	Late	Total	Predecessors	Successors		2013			
		Duration Comple		Finish	Start	Finish	Float		SKW0511	MAY JUN	JUL	AUG	SEP	OCT
SKW 0501	Concreting for no-fine concrete	14	0 08/10/14	21/10/14 04/11/14	29/05/15 12/06/15	11/06/15 25/06/15		SKW0491 SKW0501	SKW0511 SKW0521	_				
SKW0511 SKW0521	Wall Tie & Stone Facing Gabion Wall & Geotextile	30	0 05/11/14	04/11/14	26/06/15	25/06/15		SKW0501	SKW0521	_				
SKW0521 SKW0531	Installation of Flower Pot	7	0 05/12/14	11/12/14	26/07/15	01/08/15		SKW0511	SKW0531	_				11 11 11
SKW0531	Completion of Outstanding Works	42	0 12/12/14	22/01/15	02/08/15	12/09/15		SKW0521	KD0125					·
	Slope Works in Portions H & I		0 12/12/14	22/01/10	02/00/10	12/03/13	2000							
Geotechnical	•													
SKW0588	Construct scaffolding access	30	100 15/06/10 A	14/07/10 A	15/06/10 A	14/07/10 A		KD0020	SKW0590					
SKW 0590	Site Clearance for Slope		100 15/07/10 A	22/10/10 A				SKW0588	SKW0591	_				
SKW0591	Initial Survey for Slope	28	100 21/09/10 A	18/10/10 A	21/09/10 A	18/10/10 A		SKW0590	SKW0592	—				ij
SKW0592	Temporary Rockfall fence at ex. Footpath	43	100 31/08/10 A	12/10/10 A	31/08/10 A	12/10/10 A		SKW0260, SKW0265, SKW0591	SKW05931	_				
SKW05931	Construction of Haul Road (To +30mPD)	50	100 03/09/10 A	22/10/10 A	03/09/10 A	22/10/10 A		SKW0592	SKW05932					
SKW05932	Construction of Haul Road (To +42.5mPD)	68	100 23/10/10 A	29/12/10 A	23/10/10 A	29/12/10 A		SKW05931	SKW059322					
SKW059321	Removal of Boulders (IBG 1 - 119, SI No. 11B)	121	100 03/11/10 A	03/03/11 A	03/11/10 A	03/03/11 A			SKW059411					
SKW 059322	Add. Site Invest. Works (VO. No. 9,12 &16)	174	100 11/01/11 A	03/07/11 A	11/01/11 A	03/07/11 A		SKW05932	SKW059341					
SKW 059323	Revised Profile at West Slope (+56 to +42.5mPD)	1	100 17/03/11 A	17/03/11 A	17/03/11 A	17/03/11 A			SKW059324					
SKW 059324	Construction of Haul Road (+42.5 to +56mPD)	12	100 18/03/11 A	29/03/11 A	18/03/11 A	29/03/11 A		SKW059323	SKW059325					
SKW059325	Removal of Boulders (IBG 120-139, SI No. 11C)	17	100 30/03/11 A	15/04/11 A	30/03/11 A	15/04/11 A		SKW059324	SKW05933					ii ii
SKW 05933	West Slope Cutting (+56mPD to +42.5mPD)	2	100 16/04/11 A	17/04/11 A	16/04/11 A	17/04/11 A		SKW059325	SKW059331	_				11 11 11
SKW059331	Removal of Boulders (IBG 140-189, SI No. 11D)		100 18/04/11 A		18/04/11 A			SKW05933	SKW05934	_				
SKW05934	West Slope Cutting (+42.5mPD to +35mPD)		100 02/06/11 A		02/06/11 A			SKW059331	SKW059341	_				
SKW059341	Revised Profile at West Slope (+20 to +4.8mPD)		100 04/07/11 A		04/07/11 A			SKW059322, SKW05934	SKW05935					ü
SKW 05935	West Slope Cutting (+35mPD to +27.5mPD)		100 08/07/11 A		08/07/11 A			SKW059341	SKW05936	_				
SKW 05936	West Slope Cutting (+27.5mPD to +20mPD)		100 29/09/11 A		29/09/11 A			SKW05935	SKW05937	_				
SKW 05937	West Slope Cutting (+20mPD to +12.5mPD)		100 29/11/11 A		29/11/11 A			SKW05936	SKW05938	_				
SKW05938	West Slope Cutting (+12.5mPD to +4.8mPD)		100 07/01/12 A		07/01/12 A			SKW05937 KD0060	KD0060, SKW1261, SKW1311, SKW1371 SKW05942	_				ii ii
SKW05941 SKW059411	Slope Stormwater Drainage East Slope Cutting (+50mPD to +42.5mPD)		100 28/03/12 A 100 04/03/11 A		28/03/12 A 04/03/11 A			SKW059321	SKW059412			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<mark>_</mark>	· 14 11
SKW 059411	East Slope Cutting (+35mPD to +35mPD)		100 04/03/11 A 100 15/05/11 A		15/05/11 A			SKW059411	SKW059413	_				
SKW059412	East Slope Cutting (+42.5mPD to +27.5mPD)		100 05/08/11 A		05/08/11 A			SKW059412	SKW059414	_				
SKW059414	East Slope Cutting (+27.5mPD to +20mPD)		100 29/09/11 A		29/09/11 A			SKW059413	SKW059415	_				ij
SKW059415	East Slope Cutting (+20mPD to +12.5mPD)		100 29/11/11 A		29/11/11 A			SKW059414	SKW059416	_				
SKW059416	East Slope Cutting (+12.5mPD to +4.8mPD)		100 07/01/12 A		07/01/12 A			SKW059415	KD0060, SKW1311, SKW1371					·
SKW05942	Slope Miscellaneous Works		100 26/05/12 A		26/05/12 A			SKW05941	SKW05943, SKW0595	_				
SKW05943	Buttress & surface Protection (SI No. 31)	60	100 03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW05942	SKW05944	-				
SKW05944	Slope Treatment (Sl. No. 36)	60	100 03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW05943	SKW05945	_				
SKW05945	Rock Slope Treatment (SI. No. 68)	60	100 01/08/12 A	30/09/12 A	01/08/12 A	30/09/12 A		SKW05944	SKW05946	_				
SKW05946	Rock Slope Treatment (SI. No. 98)	60	100 10/09/12 A	28/02/13 A	10/09/12 A	28/02/13 A		SKW05945	SKW05947	β)				
SKW05947	Rock Slope Treatment (SI. No. 115)	60	100 01/11/12 A	28/02/13 A	01/11/12 A	28/02/13 A		SKW05946	KD0135	5)				11 11 11
SKW 05948	Soil Nailing Works (VO. No. 52)	300	100 10/02/12 A	28/02/13 A	10/02/12 A	28/02/13 A			SKW05963					
SKW 0595	Rock Meshing	60	0 31/08/13	29/10/13	07/08/15	05/10/15	706d	SKW05942, SKW05972	KD0165					, and the second se
SKW 05963	Determine Alignment & Foundation Design of RFB		100 10/02/12 A	08/06/12 A	10/02/12 A	08/06/12 A		SKW05948	SKW059631, SKW05964, SKW05965				i I J	
SKW 059631	GEO Approval of Foundation Design		100 09/06/12 A	31/07/12 A				SKW05963	SKW05968	_				
SKW 05964	Fabrication & Shipping of RFB Material		100 09/06/12 A	30/11/12 A				SKW05963	SKW05972					
SKW 05965	Site clearance & Formation of access		100 09/06/12 A	31/07/12 A				SKW05963	SKW05967	_				
SKW 05967	Plant mobilization		100 02/01/13 A	15/01/13 A				SKW05965	SKW05968				tion of cookers 0 "	ll out tost
SKW 05968	Construction of anchors & pull out test		100 16/01/13 A	17/08/13 A				SKW059631, SKW05967 SKW05968	SKW05969 SKW05970			The second se	truction of anchors & pull	
SKW 05969	Construction of Foundation		100 11/07/13 A	23/08/13 A	11/07/13 A 31/07/13 A			SKW 05968 SKW 05969	SKW05970 SKW05971	_		Const		Load Test
SKW 05970 SKW 05971	Proof Load Test Transportation of Material (To the slope crest)		100 31/07/13 A 100 31/07/13 A		31/07/13 A			SKW05970	SKW05972	_			ransportation of Materi	
SKW05972	Installation of Flexible barrier				31/07/13 A			SKW05964, SKW05971	KD0165, SKW0595	_				
		30		20/10/10/1	01/07/107	20/10/10/1								
Civil & Geotec	S. No. 1 in Portion D									_				
SKW 0651	Site Clearance	7	100 17/05/10 A	23/05/10 4	17/05/10 A	23/05/10 4		KD0020	SKW0652	-				
SKW0651	Initial Survey		100 17/05/10 A 100 24/05/10 A		24/05/10 A			SKW0651	SKW0661, SKW0681	-				
01/11/0002	Initial Ourvoy	1	100 27/00/10 A	00/00/10 A	27/00/10 A	30/03/10 A		- ·····					I	
Start date	05/05/10 Early bar									Date	Revisio	n	Checked Ap	proved
Finish date	15/06/17 Progress bar				Leader C	ivil Engir	neerin	g Corp. Ltd.		31/08/13	Revision 0		RH VC	
Data date	31/08/13 Summary bar				Со	ntract No	. DC/2	009/13						
Run date	23/09/13 ▼ Critical point		C					t Works at YSW & SKV	V					
Page number	7A Summary point			3-month	n Rolling	Program	me (S	ept 2013 - Nov 2013						

 c Primavera Systems, Inc.
 Summary point


 Start milestone point

 Finish milestone point

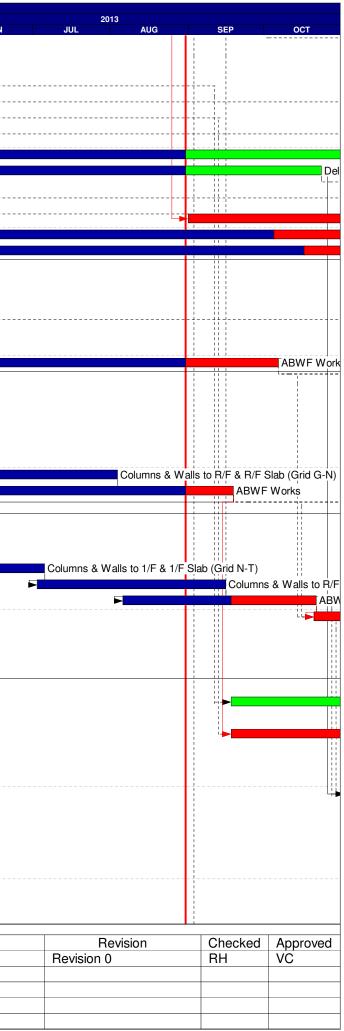
Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	МАУ
SKW 0661	Transplantation for uncommon vegatation	30		31/05/10 A	29/06/10 A	31/05/10 A	29/06/10 A		SKW0652	SKW0681	MAY
KW0681	Excavate to lower the working platform to +3mPD	49	100	30/06/10 A	17/08/10 A	30/06/10 A	17/08/10 A		SKW0260, SKW0265, SKW0652,	SKW0691	_
KW0691	ELS to +2.2mPD	40	100	18/08/10 A	26/09/10 A	18/08/10 A	26/09/10 A		SKW0681	SKW0721	-
SKW0721	Excavate to formation	270	100	17/09/10 A	13/06/11 A	17/09/10 A	13/06/11 A		SKW0691	SKW0741	
SKW0722	Construction of Manholes (VO. No. 21A)	107	90	28/10/13 A	06/02/14	28/10/13 A	08/07/14	153d	E&M11800	E&M3360	-
Structural Work	ks	<u>I</u>		1	1	1	1	1			
SKW0741	RC Works for Structure	240	100	14/06/11 A	08/02/12 A	14/06/11 A	08/02/12 A		SKW0721	KD0070, SKW0841	
SKW0841	ABWF works	60	100	09/02/12 A	08/04/12 A	09/02/12 A	08/04/12 A		SKW0741	E&M1101, E&M1102, E&M1103, E&M1104,	
SKW0861	300mm U-channel & 675mm Step Channel	30	20	26/01/14 A	19/02/14	26/01/14 A	05/10/15	593d	E&M11800, SKW0841	KD0165	
E&M Works (P	S1)			1							
Submission &	·										
E&M1001	Submission of Pumps	198	100	17/05/10 A	24/02/11 A	17/05/10 A	24/02/11 A		KD0020	E&M1011	
E&M1002	Submission of Gen-Set	198		17/05/10 A	24/02/11 A	17/05/10 A				E&M1012	-
E&M1003	Submission of DeO System	198		17/05/10 A	16/07/13 A	17/05/10 A				E&M1013	
E&M1004	Submission of LV SB & MCC	180		17/05/10 A	09/01/12 A	17/05/10 A				E&M1014	
E&M1005	Submission of Instrumentation	243		17/05/10 A	12/03/12 A	17/05/10 A				E&M1015	
E&M1006	Submission of FS System	243		17/05/10 A	30/09/12 A	17/05/10 A				E&M1016	
E&M1007	Submission of BS System	243		17/05/10 A	07/09/13	17/05/10 A		167d		E&M1017	
E&M1011	Delivery of Pumps	150	•.	24/02/11 A	21/07/11 A		21/02/14 21/07/11 A	10/0	E&M1001	E&M1101	
E&M1011	Delivery of Gen-Set	150		24/02/11 A	23/09/11 A		23/09/11 A		E&M1002	E&M1102	-
E&M1013	Delivery of DeO System	150		11/07/11 A	28/10/11 A		28/10/11 A		E&M1003	E&M1103	
E&M1013	Delivery of LV SB & MCC	150		01/06/12 A	31/07/12 A		31/07/12 A		E&M1004	E&M1104	
E&M1014	Delivery of LV SB & MCC	90		01/06/12 A 01/11/11 A	03/11/11 A		03/11/11 A		E&M1005	E&M1105	_
E&M1016	Delivery of FS Equipment	107		01/12/11 A	21/09/13	01/12/11 A			E&M1006	E&M1106	-
E&M1017	Delivery of BS Equipment	107	80	15/11/11 A	28/09/13	15/11/11 A	14/03/14	167d	E&M1007	E&M1107	
Installation, Ta	&C			T	T	1	1	1			
E&M1101	Install Pumps	55	90	02/10/12 A	05/09/13	02/10/12 A	23/03/14	199d	E&M1011, SKW0841	E&M1110, E&M1140	
E&M1102	Install Gen Set	55		02/10/12 A	05/05/13 A	02/10/12 A	05/05/13 A		E&M1012, SKW0841	E&M1110, E&M1140	Install Gen Set
E&M1103	Install DeO System	55	95	03/12/12 A	02/09/13	03/12/12 A	23/03/14	202d	E&M1013, SKW0841	E&M1110, E&M1140	
E&M1104	Install LV SB & MCC	55	100	02/01/13 A	26/03/13 A	02/01/13 A	26/03/13 A		E&M1014, SKW0841	E&M1140	C
E&M1105	Install Instrumentation	55	48	01/11/12 A	28/09/13	01/11/12 A	23/03/14	176d	E&M1015, SKW0841	E&M1140	
E&M1106	Install FS Equipment	55	45	02/10/12 A	21/10/13	02/10/12 A	23/03/14	153d	E&M1016, SKW0841	E&M1130, E&M1140	
E&M1107	Install BS Equipment	55	85	02/10/12 A	06/10/13	02/10/12 A	23/03/14	167d	E&M1017, SKW0841	E&M1110, E&M1140	
E&M1110	Install Valves, Pipes & Fittings	46	100	02/01/13 A	27/03/13 A	02/01/13 A	27/03/13 A		E&M1101, E&M1102, E&M1103,	E&M1120	es & Fittings
E&M1130	Form 501 Submission to FSD	28	C	21/10/13	18/11/13	01/04/14	29/04/14	162d	E&M1106	E&M11800	
E&M1140	Cabling Works	43	80	21/05/13 A	30/10/13	21/05/13 A	31/03/14	153d	E&M1101, E&M1102, E&M1103,	E&M1150	
E&M1150	Insulation Tests of Cables and Cable Termination	7	80	25/06/13 A	31/10/13	25/06/13 A	02/04/14	153d	E&M1140	E&M1160	
E&M1160	Engergization	3	100	01/07/13 A	02/08/13 A	01/07/13 A	02/08/13 A		E&M1150	E&M1170	1
E&M1170	Functional and Performance Tests of Equipment	30	10	02/01/13 A	27/11/13	02/01/13 A	29/04/14	153d	E&M1160	E&M11800	
E&M11800	Commissioning Test	60	0	27/11/13	26/01/14	29/04/14	28/06/14	153d	E&M0350, E&M1120, E&M1130,	SKW0722, SKW0861	-
ction W6 - Se	ewer and PS No.2 in Portions E&H	I		1							
Civil & Geotech	inical Works										
SKW0881	Site Clearance	7	100	17/05/10 A	23/05/10 A	17/05/10 A	23/05/10 A		KD0020	SKW0891	_
SKW0891	Plant mobilization	7	100	17/05/10 A	23/05/10 A	17/05/10 A	23/05/10 A		SKW0881	SKW0892	_
SKW0892	Initial Survey	30		24/05/10 A	22/06/10 A	24/05/10 A	22/06/10 A		SKW0891	SKW0901	_
SKW 0901	Tree Transplantation	90		23/06/10 A	20/09/10 A	23/06/10 A	20/09/10 A		SKW0892	SKW0921	
SKW 0921	Cut Slope & U-Channel	14		21/09/10 A	04/10/10 A	21/09/10 A	04/10/10 A		SKW0260, SKW0265, SKW0901	SKW0931, SKW0951	_
SKW0931	Hoarding & Fencing	14		05/10/10 A	18/10/10 A				SKW0921	SKW0950, SKW0951	
SKW 0950	Removal of Rock Boulders before ELS	66		19/10/10 A	23/12/10 A		23/12/10 A		SKW0931	SKW0951	-
SKW 0951	ELS & Excavate to formation	169		24/12/10 A	10/06/11 A	24/12/10 A		1	SKW0921, SKW0931, SKW0950	SKW0971	-
SKW0961	Mass Conc. Retaining Wall	90		16/01/13 A	06/09/13	16/01/13 A		-2084	SKW1081	KD0155	
SKW 1491	LCS (ChA0+45 to 1+75) VO.7	90		24/03/12 A	21/06/12 A		21/06/12 A	-2000	PRE0100, SKW1021	SKW15111	
SKW 1491 SKW 15111	Twin DN150 DI Rising Main (ChA1+75 - ChA5+79)			22/03/12 A	30/11/12 A	22/03/12 A			SKW1491	SKW1531	
		180		01/02/13 A	03/09/13	01/02/13 A		2004	SKW1491	E&M3360	
SKW15112	Twin DN150 DI Rising Main (ChA0+00 - ChA0+45)	30						3080	SKW1581	SKW1581	
SKW1531	Extent village sewers S163.1 & S164.1	34	100	30/11/12 A	10/01/13 A	30/11/12 A	10/01/13 A			GRAVIDOT	
rt date	05/05/10 Early bar										Dat
ish date	15/06/17 Progress bar Critical bar					Leader (Civil Enai	neerin	g Corp. Ltd.		31/08/13
	Ullical Dal								• I ···		

Start date	05/05/10	Early bar
Finish date	15/06/17	Progress bar
Data date	31/08/13	- Summary bar
Run date	23/09/13	Progress point
Page number	8A	Critical point
c Primavera	Systems, Inc.	 Start milestone point
	•	Finish milestone point

Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sept 2013 - Nov 2013 31/08/13

Activity ID	Description		Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total P Float	redecessors	Successors	МАҮ	JUN
SKW 1581	Construct Manhole no. S163 & S164	34	100 11/01/13 A	28/02/13 A	11/01/13 A	28/02/13 A	SKW1531		KD0135, SKW15112	164	0011
ructural Work	۲S		i				· ·				
SKW 0971	Structural Works (Phase 1)	245	100 11/06/11 A	10/02/12 A	11/06/11 A	10/02/12 A	SKW0951		KD0080, SKW1021		
(W1021	Structural Works (Phase 2)	42		23/03/12 A	11/02/12 A	23/03/12 A	SKW0971		SKW1061, SKW1081, SKW1491		
W 1061	ABWF Works	90		21/06/12 A	24/03/12 A		SKW1021		E&M2101, E&M2102, E&M2103, E&M2104	,	
(W1081	375mm U-channel/catchpits/outfall	30	100 22/06/12 A	31/01/13 A	22/06/12 A	31/01/13 A	SKW1021, S	SKW1061	KD0155, SKW0961		
M Works (P	,										
ubmission &	•						4/2000		Fallenti		
E&M2001	Submission of Pumps	198		24/02/11 A		24/02/11 A	KD0020		E&M2011		
E&M2002	Submission of Gen-Set	198	100 17/05/10 A	24/02/11 A		24/02/11 A			E&M2012	_	
E&M2003	Submission of DeO System	198	100 17/05/10 A	11/07/11 A	17/05/10 A				E&M2013	_	
E&M2004	Submission of LV SB & MCC	271	100 17/05/10 A	30/06/12 A	17/05/10 A				E&M2014 E&M2015	_	
E&M2005 E&M2006	Submission of Instrumentation	243	100 17/05/10 A	30/06/12 A	17/05/10 A		-359d		E&M2016		
E&M2006	Submission of FS System Submission of BS System	243 243	97 17/05/10 A 97 17/05/10 A	07/09/13	17/05/10 A 17/05/10 A	12/09/12 04/10/12	-3390 -337d		E&M2017	_	
E&M2007	Delivery of Pumps	150	100 24/02/11 A	21/07/11 A	24/02/11 A		E&M2001		E&M2101	_	
E&M2012	Delivery of Gen-Set	150	100 24/02/11 A	23/09/11 A	24/02/11 A		E&M2002		E&M2102	_	
E&M2013	Delivery of DeO System	150	100 11/07/11 A	28/10/11 A		28/10/11 A	E&M2003		E&M2103	-	
E&M2014	Delivery of LV SB & MCC	150	100 11/07/11 A	31/07/12 A	29/02/12 A		E&M2004		E&M2104		
E&M2015	Delivery of Instrumentation	90		03/11/11 A	21/06/11 A	03/11/11 A	E&M2005		E&M2105	-	
E&M2016	Delivery of FS Equipment	107	80 01/12/11 A	28/09/13	01/12/11 A	04/10/12	-359d E&M2006		E&M0350, E&M2106	_	
E&M2017	Delivery of BS Equipment	107	80 15/01/11 A	28/09/13	15/01/11 A		-337d E&M2007		E&M2107		
nstallation, T&					1						
E&M2101	Install Pumps	55	80 02/10/12 A	10/09/13	02/10/12 A	12/01/13	-241d E&M2011, S	KW1061	E&M2110		
E&M2102	Install Gen Set	55		05/05/13 A	01/09/12 A	05/05/13 A	E&M2012, S	KW1061	E&M2110	Install Ger	n Set
E&M2103	Install DeO System	55	90 03/12/12 A	05/09/13	03/12/12 A	12/01/13	-236d E&M2013, S	SKW 1061	E&M2110		
E&M2104	Install LV SB & MCC	55	100 02/01/13 A	31/01/13 A	02/01/13 A	31/01/13 A	E&M2014, S	KW1061	E&M2140		• • • • • • • • • • • • • • • • • • • •
E&M2105	Install Instrumentation	55	40 31/05/13 A	02/10/13	31/05/13 A	03/11/12	-333d E&M2015, S	SKW 1061	E&M2140		
&M2106	Install FS Equipment	55	45 02/10/12 A	28/10/13	02/10/12 A	03/11/12	-359d E&M2016, S	KW1061	E&M2140		
&M2107	Install BS Equipment	55	85 01/09/12 A	06/10/13	01/09/12 A	03/11/12	-337d E&M2017, S	KW1061	E&M2110, E&M2140		
&M2110	Install Valves, Pipes & Fittings	46	100 02/01/13 A	31/01/13 A	02/01/13 A	31/01/13 A	E&M2101, E	&M2102, E&M2103,	E&M2120		
E&M2120	Hydraulic Test of Pipeworks	7	100 02/01/13 A	31/01/13 A	02/01/13 A	31/01/13 A	E&M2110		E&M2130		
E&M2130	Form 501 Submission to FSD	28	0 06/10/13	03/11/13	13/01/13	09/02/13	-267d E&M2120		KD0155		
&M2140	Cabling Works	43	80 01/02/13 A	06/11/13	01/02/13 A	12/11/12	-359d E&M2104, E	&M2105, E&M2106,	E&M2150		
E&M2150	Insulation Tests of Cables and Cable Termination	7	60 01/02/13 A	09/11/13	01/02/13 A		-359d E&M2140		E&M2160		
&M2160	Engergization	3		25/03/13 A	01/02/13 A	25/03/13 A	E&M2150		E&M2170	_	
&M2170	Functional and Performance Tests of Equipment	30	-	06/12/13	15/01/13 A	11/12/12	-359d E&M2160		E&M2180		
E&M2180	Commissioning Test	60	0 06/12/13	04/02/14	12/12/12	09/02/13	-359d E&M0350, E	&M2170	KD0155		
	W STW,Sewer and Submarine Outfall										
Ibmarine Out				07/00/10	17/05/10.4	07/00/10 1			OKWAADA	_	
(W1130	Approval of IHS Consultant	180		27/08/10 A	17/05/10 A			W(1120	SKW1131	_	
W1131	Hydrographical Survey (SKW)	300	100 01/02/11 A	28/02/11 A	01/02/11 A		KD0020, SK SKW0260, S		SKW1231	_	
<w1141< td=""><td>Baseline Monitoring (Water) Set up Temporary Working Platform</td><td>213</td><td></td><td>31/12/10 A 30/09/11 A</td><td>27/07/10 A</td><td>31/12/10 A 30/09/11 A</td><td>PRE0090, S</td><td></td><td>SKW1151 SKW1171</td><td>-</td><td></td></w1141<>	Baseline Monitoring (Water) Set up Temporary Working Platform	213		31/12/10 A 30/09/11 A	27/07/10 A	31/12/10 A 30/09/11 A	PRE0090, S		SKW1151 SKW1171	-	
W1151	1 1 7 8	90					SKW1151		SKW1171 SKW1181	-	
(W1171 (W1181	ELS for HDD Set-up (SKW) Mobilization of HDD plant & equipment to SKW	90	100 01/09/11 A 100 06/01/12 A	30/09/11 A 07/01/12 A	01/09/11 A 06/01/12 A	30/09/11 A 07/01/12 A	SKW1151	(SW0360	SKW1181 SKW1191		
(W1181 (W1191	Setting up at drillhole location	7	100 06/01/12 A 100 09/01/12 A	14/01/12 A	06/01/12 A	14/01/12 A	SKW1171, 1		SKW1201	-	
W 1201	Drill pilot hole and reaming hole - NS280 - 750m	33		14/01/12 A 16/02/12 A	16/01/12 A	16/02/12 A	SKW1191		SKW1201	-	
W 1211	Receiving Pit for HDD (SKW)	13		29/02/12 A	16/01/12 A	29/02/12 A	SKW1201		SKW1221	-	
W1211	Installaiton of NS280 HDPE 450mm dia. pipe	61	100 31/03/12 A	30/04/12 A	31/03/12 A	30/04/12 A	SKW1211		KD0090, SKW1231, SKW1441	-	
W1231	Removal of Receiving Platform	50		19/06/12 A	01/05/12 A	19/06/12 A	SKW1131, 5	SKW1221	SKW1241		
(W1241	Dredging of MD for Diffuser (PS CL 1.122(3))	16		05/07/12 A	20/06/12 A	05/07/12 A	SKW1231	-	E&M3359, SKW1251	-	
(W1251	Diffuser Construction	77		16/11/12 A	01/09/12 A	16/11/12 A	SKW1241		SKW1431	+	
W1231	Removal of silt curtain	1	100 01/03/12 / 100 17/11/12 A	17/11/12 A	17/11/12 A	17/11/12 A	SKW1251		KD0090, SKW1440, YSW0365	-	
(W 1440	Sewer of Outfall Chamber to connection pit VO37A	90		04/09/13	31/12/12 A	08/05/14	246d SKW1431		SKW1441		
W1441	Sewer of Connection Pit to Outfall VO45	177		30/09/13	05/06/13 A		246d SKW1221, S	SKW1440	E&M3359, KD0090		+ ►
	05/05/10 Early bar			1	1.				·		
	15/06/17 Progress bar				Loodor (Nivil Engli	neering Corp.	1+4		21	Date //08/13
	31/08/13 Critical bar Summary bar						. DC/2009/13			31	1,00/10
	23/09/13 A Progress point		ſ	onstructi				at YSW & SK	N		
duito	Critical point			งการแ นษย		nuge 116					
e number	9A V Summary point Systems, Inc. ✓ Critical point Summary point Start milestone point		-				me (Sept 2013				

2013						
JUL	AUG	11	1	SEP		OCT
	1 					
	1			i i		
	1	H				
	1	H		1		
 				-		
		11		1		
		LT		1		
				-		
		ij.		i		
		H	÷	1		
		<u>11 -</u>		Submiss	ion o	f FS System
		!!				f BS System
				J ;		-
				i i		
			ł			
		+ + - 11 11 11 11				
					L,	
				I		elivery of FS Ec
		1.1		I	D	elivery of BS Ec
 				-		
				Install	Pump)S
		11- 11 11				
 		ii.		Install De	O Sy	stem
		 	1	1		
 		11	- 4 - 1			Install Instrume
		11	-	!		Install BS Ec
 		<u>.</u>				
		- 	- +			►
			-			
			1			
			-			
				1		
				-		
				i i		
			- 1			
 			- +			
 				Sewer of (Il Chamber to c
					S	Sewer of Conne
Revis	sion			Check	ed	Approved
 Revision 0				RH		VC


Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	MAY JUN
SKW STW											
Submission & E	Delivery (E&M)										
E&M3010	Delivery of MBR M.M 1st shipment for Temp STP	150	100	24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A		E&M0160	E&M3170	
E&M3030	Delivery of Grit Removal Equipment	180	100	10/10/11 A	29/12/11 A	10/10/11 A	29/12/11 A		E&M0150	E&M3190	
E&M3060	Delivery of Fine Screens	136	100	12/09/11 A	30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M3210	
E&M3070	Delivery of Pumps	136	100	23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M3220	
E&M3080	Delivery of Submersible Mixers	180	100	26/07/11 A	17/11/11 A	26/07/11 A	17/11/11 A		E&M0140	E&M3230	
E&M3090	Delivery of Sludge Dewatering Equipment	210	70	01/09/11 A	01/11/13	01/09/11 A	11/01/14	71d	E&M0170	E&M3240	
E&M3100	Delivery of Valves, Pipes & Fittings	180	70	30/08/11 A	23/10/13	30/08/11 A	19/11/13	27d	E&M0180	E&M3250	
E&M3110	Delivery of Penstocks	180	100	12/08/11 A	24/12/11 A	12/08/11 A	24/12/11 A		E&M0190	E&M3260	
E&M3130	Delivery of instruments	180	100	21/06/11 A	03/11/11 A	21/06/11 A	03/11/11 A		E&M0200	E&M3270	
E&M3140	Delivery of MCC LVSB	180	0	01/09/13	28/02/14	07/04/13	03/10/13	-148d	E&M0210	E&M3261	
E&M3150	Delivery of BS Equipment	180	8	03/07/12 A	20/03/14	03/07/12 A	04/12/13	-105d	E&M0220	E&M3291	
E&M3160	Delivery of FS Equipment	180	5	30/06/12 A	06/04/14	30/06/12 A	23/12/13	-104d	E&M0230	E&M0340, E&M3300	
Construction of	f Grid A-G										
SKW1261	Excavate for SKW STW Structure (Grid A -G)	164	100	28/03/12 A	31/08/12 A	28/03/12 A	31/08/12 A		SKW04885, SKW05938	SKW1271, SKW1371	
SKW1271	55 M3 Fire Sprinkle Water Tank (FL +0.9 mPD)	36	100	03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW1261	SKW1281	
SKW1281	Ground Floor Slab (Grid A-G)	46	100	03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW1271	SKW1291	
SKW1291	Columns & Walls to 1/F & 1/F Slab (Grid A-G)	50	100	03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW1281	KD0090, SKW1301	
SKW1301	Columns & Walls to R/F & R/F Slab (Grid A-G)	50	100	01/09/12 A	31/01/13 A	01/09/12 A	31/01/13 A		SKW1291	E&M3261, E&M3291, E&M3311, SKW1411	
SKW1411	ABWF Works	105	65	01/02/13 A	06/10/13	01/02/13 A	19/06/13	-109d	SKW1301	E&M3261, E&M3291, E&M3311, SKW1551	
Construction of	f Grid G-N	I I									
	Excavate for SKW STW Structure (Grid G-N)	90	100	28/03/12 A	25/06/12 A	28/03/12 A	25/06/12 A		SKW05938, SKW059416	SKW1321, SKW1371	
SKW1321	Equalization Tank no.1 & 2 with base slabs (-2.1	42		26/06/12 A	30/09/12 A	26/06/12 A	30/09/12 A		SKW1311	SKW1331	
SKW1331	Columns & Walls from B/S to G/F Slab (Grid G-N)	35	100	01/09/12 A	30/09/12 A	01/09/12 A	30/09/12 A		SKW1321	SKW1341	
SKW1341	Ground Floor Slab (Grid G-N)	35	100	01/09/12 A	17/12/12 A	01/09/12 A	17/12/12 A		SKW1331	SKW1351	
SKW1351	Columns & Walls to 1/F & 1/F Slab (Grid G-N)	28	100	01/11/12 A	15/01/13 A	01/11/12 A	15/01/13 A		SKW1341	SKW1361	
	Columns & Walls to R/F & R/F Slab (Grid G-N)	35		01/11/12 A		01/11/12 A	03/08/13 A		SKW1351	SKW1451	
	ABWF Works	54		05/06/13 A	18/09/13	05/06/13 A	17/05/13	-124d	SKW1361	E&M3170, E&M3190, E&M3210, E&M3291, E&M3300, SKW1391, SKW1551	
Construction of											
	Excavate for SKW STW Structure (Grid N-T)	97	100	03/07/12 A	25/01/12 A	03/07/12 A	25/01/13 A		SKW05938, SKW059416, SKW1261,	SKW1381	
	Ground Floor Slabs include MBR Tank (Grid N-T)	58		02/10/12 A		02/10/12 A	31/01/13 A		SKW1371	SKW1391	
									SKW1381, SKW1451	SKW1401	/
	Columns & Walls to 1/F & 1/F Slab (Grid N-T)	35		31/05/13 A		31/05/13 A	05/07/13 A		SKW1391	E&M3240, SKW0491, SKW1421	
	Columns & Walls to R/F & R/F Slab (Grid N-T)			03/07/13 A		03/07/13 A	15/09/13 A		SKW1401	E&M3240, SKW1551	
	ABWF Works	60	-	06/08/13 A	21/10/13	06/08/13 A	19/06/13		SKW1401 SKW1411, SKW1421, SKW1451	SKW1561	
SKW 1551	Drainage (SSMH1-SSMH7)	35	0	21/10/13	25/11/13	20/06/13	24/07/13	-1240	SKW 1411, SKW 1421, SKW 1451	SKW 1001	
SKW1561	Sewer (SMFH1-SMFH2, SMFH3-SMFH7)	220	0	25/11/13	03/07/14	25/07/13	01/03/14	12/d	SKW1551	SKW1571	
			-						SKW1551	KD0090	
	Roadwork & Drainage Channel (SKW)	220	0	03/07/14	08/02/15	02/03/14	07/10/14	-1240	SKW 1961	KD0090	
SKW STW - E&I		100	-	10/00/10	07/10/10	07/04/44	10/04/14	4401		Falloott	
	Install Membrane Modules in MBR Tank No. 1 to 2	100	-	18/09/13	27/12/13	07/01/14	16/04/14		E&M3010, SKW1451	E&M3311	
	Install Grit Removal Equipment	60	-	17/11/13	16/01/14	21/09/13	19/11/13		E&M3030, E&M3210, SKW1451	E&M3250, E&M3320	
E&M3210	Install Fine Screens	60	0	18/09/13	17/11/13	24/05/13	22/07/13	-118d	E&M3060, SKW1451	E&M3190, E&M3220, E&M3250, E&M3260, E&M3320	
E&M3220	Install Pumps	75	0	17/11/13	31/01/14	23/07/13	05/10/13	-118d	E&M3070, E&M3210	E&M3230, E&M3250, E&M3260, E&M3320	
E&M3230	Install Submersible Mixers	45	0	31/01/14	17/03/14	06/10/13	19/11/13	-118d	E&M3080, E&M3220	E&M3250, E&M3260, E&M3311, E&M3320	
E&M3240	Install Sludge Dewatering Equipment	74	0	02/11/13	14/01/14	12/01/14	26/03/14	71d	E&M3090, SKW1401, SKW1421	E&M3320	
E&M3250	Install Valves, Pipes & Fittings	75	0	17/03/14	31/05/14	20/11/13	02/02/14	-118d	E&M3100, E&M3190, E&M3210, E&M3220, E&M3230	E&M3270, E&M3291, E&M3300, E&M3310	
E&M3260	Install Penstocks	135	10	05/03/14 A	17/07/14	05/03/14 A	16/04/14	-91d	E&M3110, E&M3210, E&M3220,	E&M3311	
	Install SAT of MCC & LVSB	174	-	28/02/14	21/08/14	04/10/13	26/03/14	-148d	E&M3140, SKW1301, SKW1411	E&M3311, E&M3320	
E&M3261	1		-	31/05/14	30/07/14	16/02/14	16/04/14	-105d	E&M3130, E&M3250	E&M3311	
	Install instruments	60	0	01/03/14							
E&M3270	Install instruments Install BS Equipment	60 180	-	01/04/14	28/09/14	05/12/13	02/06/14	-118d	E&M3150, E&M3250, SKW1301, SKW1411, SKW1451	E&M3331, E&M3359	

Start date 05/05/10 Early bar Progress bar Critical bar Finish date 15/06/17 Data date 31/08/13 Run date 23/09/13 -Page number 10A c Primavera Systems, Inc. Ò

- Summary bar Progress point Critical point Summary point Start milestone point Finish milestone point

Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sept 2013 - Nov 2013

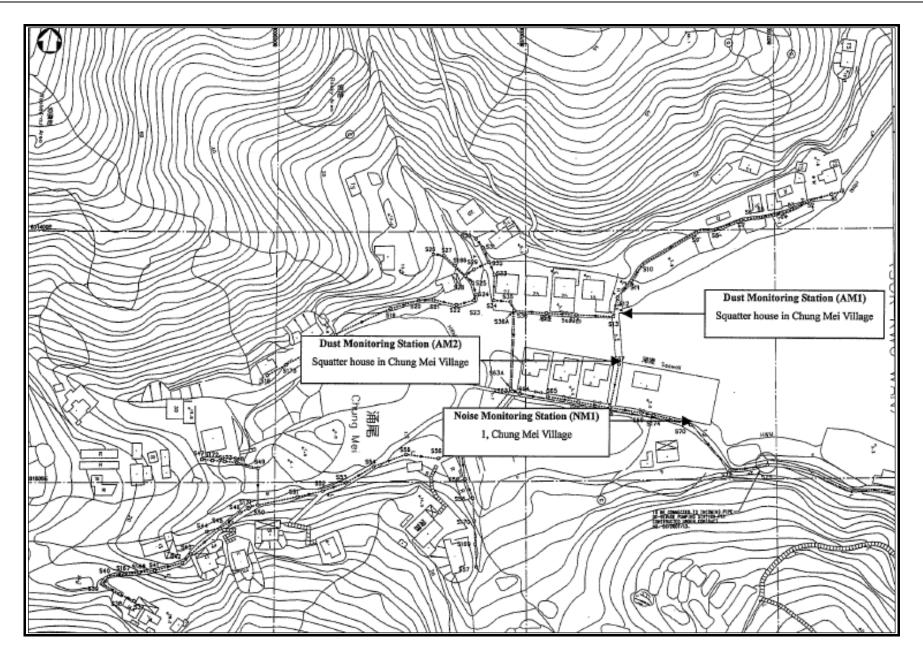
Date 31/08/13

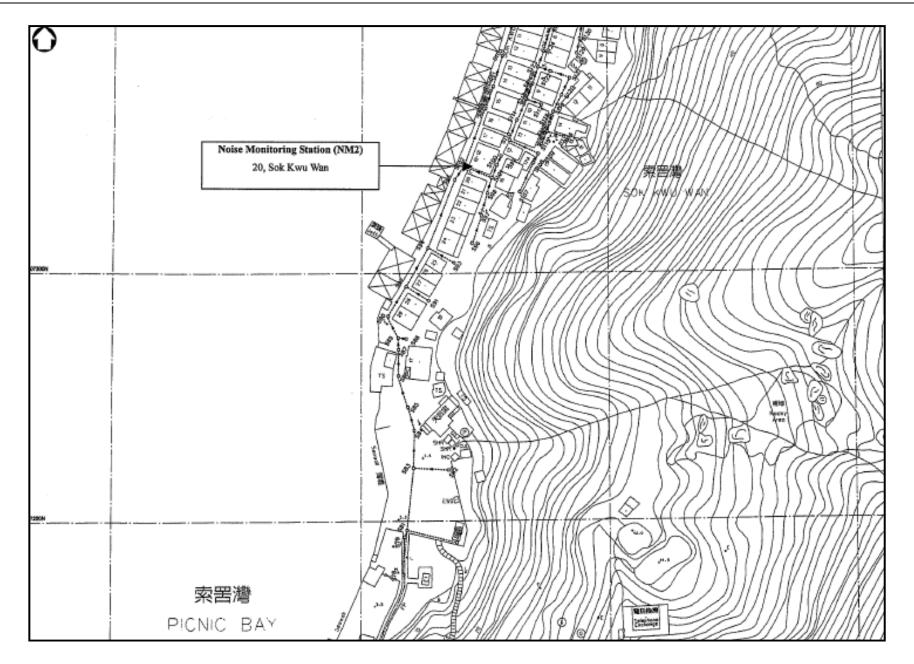
Activity	Description		Percent	Early	Early	Late	Late	Total	Predecessors	Successors			2013			
ID			Complete	Start	Finish	Start	Finish	Float			MAY	JUN	JUL	AUG	SEP	ОСТ
E&M3310	Hydraulic Tests of Pipeworks	90	0	31/05/14	29/08/14	06/03/14	03/06/14	-87d	E&M3250	E&M3359						
E&M3311	Cabling Works	47	0	21/08/14	07/10/14	17/04/14	02/06/14	-127d	E&M3170, E&M3230, E&M3260, E&M3261, E&M3270, SKW1301,	E&M3331, E&M3359						
E&M3320	Cabling Works for Dewatering Equipment	47	0	21/08/14	07/10/14	27/03/14	12/05/14	-148d	E&M3190, E&M3210, E&M3220, E&M3230, E&M3240, E&M3261	E&M3321						
E&M3321	Insulation Tests of Cables and Cable Termination	21	0	07/10/14	28/10/14	13/05/14	02/06/14	-148d	E&M3320	E&M3331						
E&M3331	Energization	1	0	28/10/14	29/10/14	03/06/14	03/06/14	-148d	E&M3291, E&M3300, E&M3311,	E&M3359						
E&M3359	Functional and Performance Tests of Equipment	35	0	29/10/14	03/12/14	04/06/14	08/07/14	-148d	E&M3291, E&M3300, E&M3310, E&M3311, E&M3331, SKW1241,	E&M3360						
E&M3360	T&C Period	91	0	03/12/14	04/03/15	09/07/14	07/10/14	-148d	E&M0340, E&M3359, SKW0722, SKW15112	E&M3370, KD0090						
E&M3370	Trial Operation Period	456	0	04/03/15	28/06/16	11/11/15	15/06/17	252d	E&M3360							
Rising Main																
SKW1481	Subm, Approval & Delivery of DI pipes	120	100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1501						
SKW1501	LCS (ChB0+00 - ChB1+20)	300	100	14/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A		PRE0100, SKW1481	SKW1521						
SKW 1521	Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	90	11/07/11 A	24/09/13	11/07/11 A	07/10/14	378d	SKW1501	KD0090						Twin DN150 DI R
Section W8 - La	andscape Softworks in All Portions															
SKW1591	Tree Survey	21	100	17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A		KD0020	SKW1621						
SKW1611	Preservation & Protection of Trees	1053	99	17/05/10 A	10/09/13	17/05/10 A	03/04/13	-160d	KD0020	KD0100, SKW1631					Preserv	vation & Protection
SKW1621	Transplantation at SKW	90	100	07/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A		SKW1591	KD0100						
Section W9 - Es	stablishment Works in All Portions															
SKW1631	Section W9 - Establishment Works	365	0	10/09/13	10/09/14	04/04/13	03/04/14	-160d	SKW1611	KD0110						

Start date	05/05/10	Early bar
Finish date	15/06/17	Progress bar Critical bar
Data date	31/08/13	
Run date	23/09/13	Progress point
Page number	11A	 Critical point Summary point
c Primavera	Systems, Inc.	Start milestone point
	•	Finish milestone point

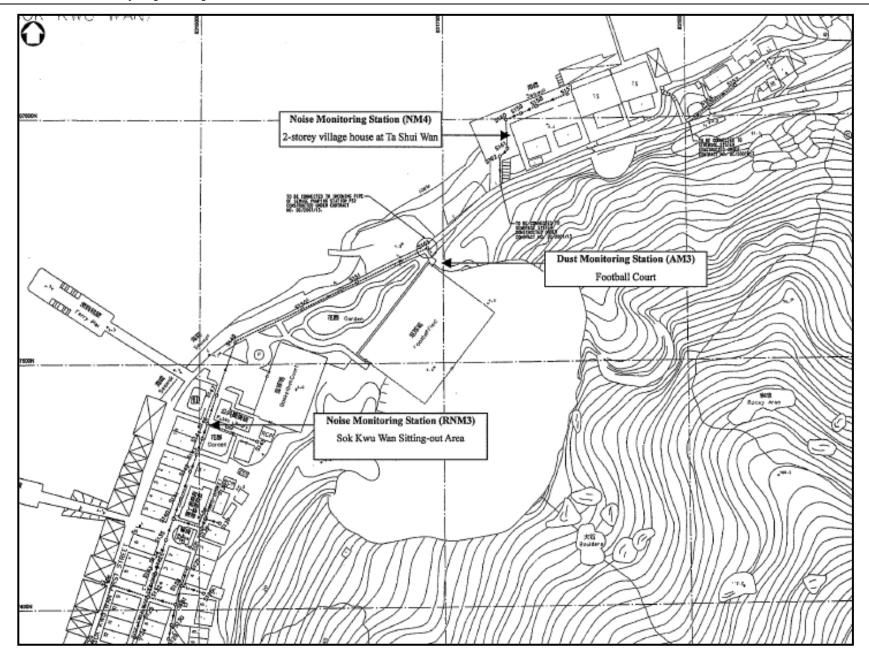
Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sept 2013 - Nov 2013

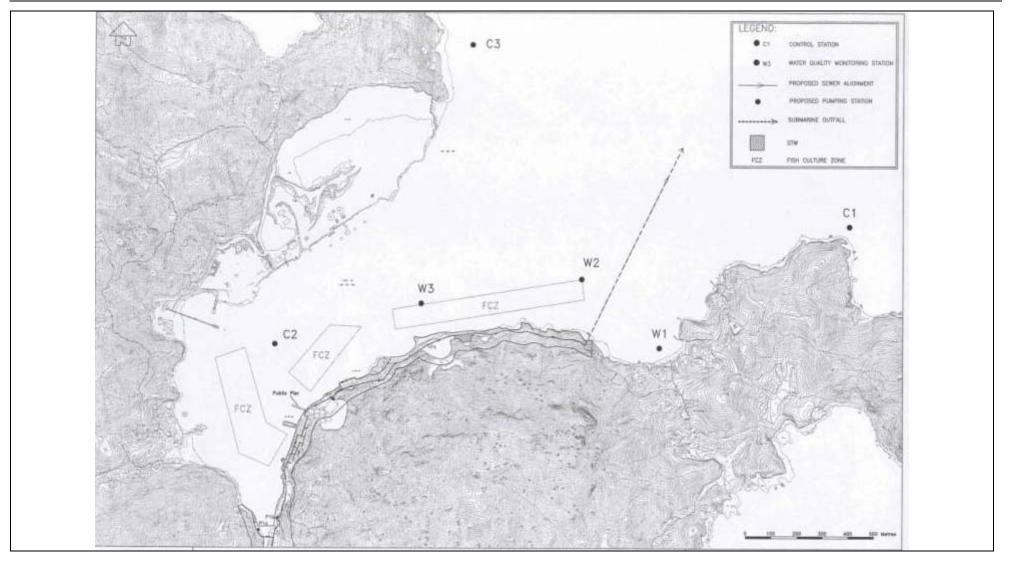
Date
31/08/13


Revision	Checked	Approved
Revision 0	RH	VC


Appendix D

Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)

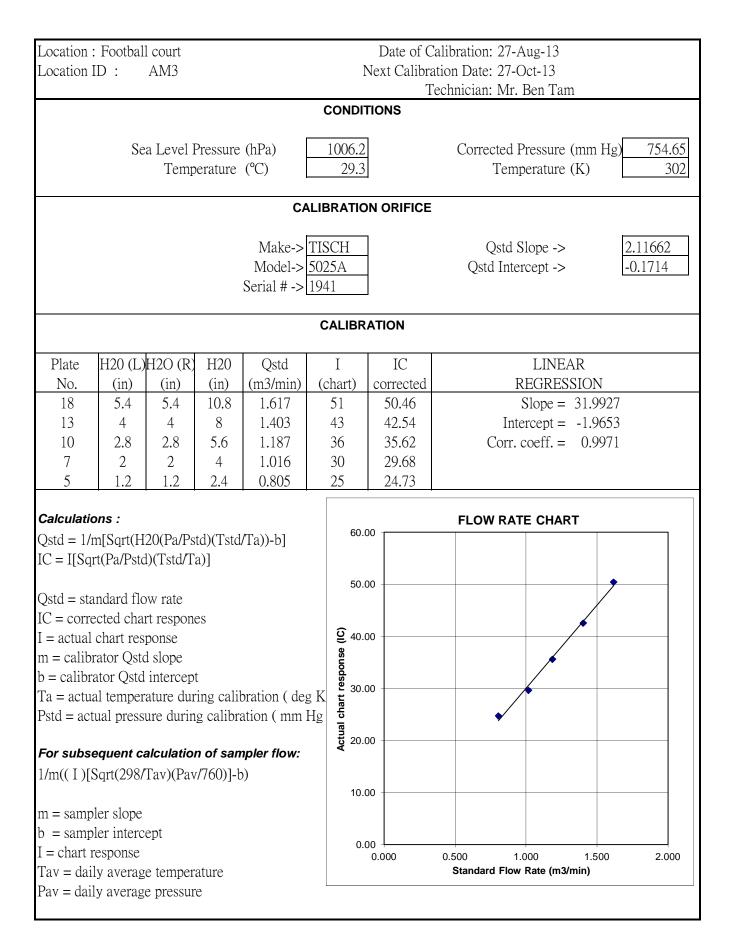




Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report –September 2013

Appendix E

Monitoring Equipments Calibration Certificate


TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

	1										
	-		n Chung	Mei Village					ion: 27-Aug-13		
Location 1	D :	AM1				Ne			ate: 27-Oct-13		
					COND			echnic	ian: Mr. Ben T	am	
					COND						
	Se	a Level I	Pressure	(hPa)	1006.	2		Со	orrected Pressu	re (mm H	Hg) 754.65
		Temp	erature	(°C)	29.	3			Temperatur	re (K)	302
				CA	LIBRATI	ON	ORIFICE				
				Make->	FISCH				Qstd Slope -	>	2.11662
				Model->	5025A			(Qstd Intercept -	>	-0.1714
				Serial # ->	1941						
					CALIB	RAT	ION				
Plate	H20 (L)	H2O (R)	H20	Qstd	I		IC		LIN	EAR	
No.	(in)	(in)	(in)	(m3/min)	(chart)	С	orrected			ESSION	
18	5.4	5.4	10.8	1.617	56		55.01		Slope	= 28.60	08
13	4.2	4.2	8.4	1.436	51		50.10		Intercept	= 8.62	.99
10	3	3	6	1.226	44		43.22		Corr. coeff.	= 0.99	85
7	1.9	1.9	3.8	0.992	37		36.35				
5	1.0	1.0	2	0.742	31		30.45				
Calculatio	ons :							FL	OW RATE CH	ART	
Qstd = 1/n	n[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]	60	.00 -					
IC = I[Squ	rt(Pa/Pstc	l)(Tstd/T	a)]								*
	~				50	.00 -					
Qstd = sta											
IC = corrected I = actual		-	es		រ	.00 -				·	
m = calibr		-			l) es						
b = calibra	-	-	t		spor						
	-	-		oration (deg	K <u>5</u> 30	.00 -			•		
Pstd = act	ual press	ure durin	g calibra	ation (mm H	Ig g						
					⁰⁴⁰ 300 هوران 40 ארנו (10) 12 12 12 12 12 12 12 12 12 12 12 12 12	.00 -					
	-			npler flow:							
1/m((I)[S	Sqrt(298/	Tav)(Pav	7/60)]-0))	10	.00 -					
m = samp	ler slone										
b = samp		ept									
I = chart r		-			0	- 00. 0.0	000	0.500	1.000	1.500	2.000
Tav = dai	ly averag	e temper	ature					Stan	ndard Flow Rate (n	n3/min)	
Pav = dail	y averag	e pressur	e		L						

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

	-		n Chung	Mei Village				alibration: 27-	_		
Location I	D :	AM2				N		ation Date: 27-			
								echnician: Mr.	Ben Tam		
					CO	NDIT	IONS				
	Se	a Level I	Drecoure	(hPa)	10	06.2		Corrected	Pressure (mi	$m H_{\rm fl}$ 754	4.65
	50		erature	· · · ·		29.3			perature (K)		302
		Temp	crature			27.5		1011		/ <u> </u>	502
				CA	LIBR	ATIO	N ORIFICE				
				Make->	FISCI	H		Ostd	Slope ->	2.11662	2
				Model->				Qstd Inte	-	-0.1714	
				Serial # ->	1941						
					CAL	IBR	ATION				
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι		IC		LINEAR		
No.	(in)	(in)	(in)	(m3/min)	(cha	urt)	corrected]	REGRESSIC	ON	
18	6	6	12	1.700	58	3	57.38		Slope = 28		
13	4.3	4.3	8.6	1.452	53		52.44		ercept = 10		
10	3.1	3.1	6.2	1.245	46		45.51	Corr.	coeff. = 0	.9973	
7	1.8	1.8	3.6	0.968	38		37.60				
5	1.1	1.1	2.2	0.774	32	2	31.66				
Calculatio	ons :							FLOW RA	TE CHART		
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]		70.0	0				1
IC = I[Sqn	t(Pa/Pstc	l)(Tstd/T	a)]								
						60.0	0				-
Qstd = sta											
IC = correction		-	es			50.0	0			y	-
I = actual		-							*		
m = calibration b = calibration calibration b = calibration	-	-	÷			40.0	0				-
	_	-		oration (deg	K Ig Kaller						
	_			ation (mm H		30.0	0	•			-
	<u>F</u>		8								
For subse	equent ca	alculatio	n of san	pler flow:	Ā	t 20.0	0				-
1/m((I)[S	Sqrt(298/	Tav)(Pav	r/760)] - t)							
						10.0	o				-
m = samp											
b = samp		ept				0.0	0]
I = chart r	-	o tome	oturo				0.000				000
Tav = dail Pav = dail		-						Standard FIOV	v Rate (m3/min))	
i av – uall	y averag	c piessui	L								

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

ŝ.

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

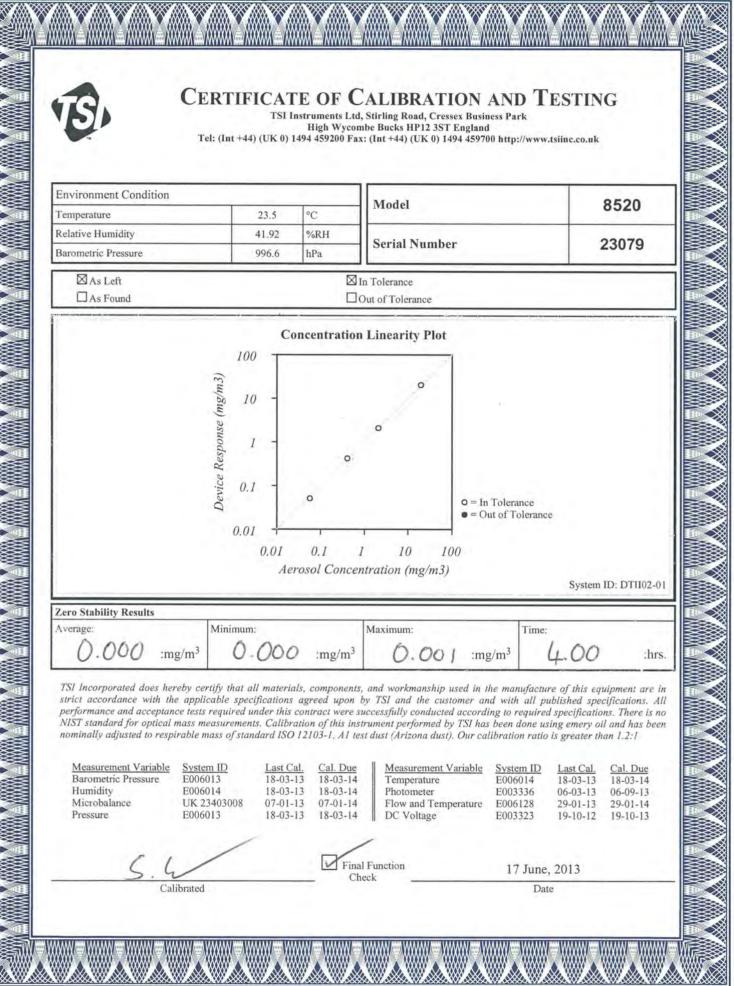
ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ap Operator		Rootsmeter Orifice I.I		438320 1941	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4710 1.0370 0.9270 0.8840 0.7300	3.3 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

			Va	Qa	-
0.6741 0.9521 1.0630 1.1134 1.3410	1.4113 1.9959 2.2315 2.3405 2.8227		0.9956 0.9914 0.9894 0.9883 0.9829	0.6768 0.9560 1.0673 1.1180 1.3465	0.8874 1.2549 1.4030 1.4715 1.7747
(m) = (b) = (c)	2.11662 -0.01714 0.99999		intercept coefficie	: (b) = ent (r) =	1.32539 -0.01078 0.99999
•	0.9521 1.0630 1.1134 1.3410 (m) = (b) = t (r) =	$\begin{array}{c ccccc} 0.9521 & 1.9959 \\ 1.0630 & 2.2315 \\ 1.1134 & 2.3405 \\ 1.3410 & 2.8227 \\ \hline \\ (m) &= & 2.11662 \\ (b) &= & -0.01714 \\ t & (r) &= & 0.99999 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CALCULATIONS


Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$ Certificate of Calibration and Testing

P/N 230015

file://C:\Documents and Settings\wc0801\Local Settings\Temp\tmpXml.html

17/06/2013

SIBATA SCIENTIFIC TECHNOLOGY LTD.

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: June 20, 2013

Equipment Name	:	Laser Dust Monitor, Model LD-3B
Code No.	:	080000-42
Quantity	:	1 unit
Serial No.	:	366418
Sensitivity	:	0.001 mg/m3
Sensitivity Adjustment	:	664 CPM
Scale Setting	:	June 17, 2013

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

<

Kentaro Togo Overseas Sales Division

SIBATA SCIENTIFIC TECHNOLOGY LTD.

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: June 20, 2013

Equipment Name	:	Laser Dust Monitor, Model LD-3B
Code No.	:	080000-42
Quantity	:	1 unit
Serial No.	:	366407
Sensitivity	:	0.001 mg/m3
Sensitivity Adjustment	:	563 CPM
Scale Setting	:	June 17, 2013

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

Kentaro Togo Overseas Sales Division

Certificate Number: 50105786 Issue Date:09/03/2013 DDZMMZYYYY

CALIBRATION CERTIFICATE

Customer Name: Science International Corporation Description: Sound Level Meter Model Name: NL-31 Serial Number: 0 0 4 1 0 2 2 1 Calibration Date: 08/03/2013(DD/MM/YYYY) Ambient condition: Temperature 18°C Relative Humidity 44%

We hereby certify that the above product was tested and calibrated according to the prescribed RION procedures, and that it fulfills all specification requirements, as listed on the appended sheet.

The measuring equipment and reference devices used for testing and calibrating this unit are managed under the RION traceability system and are traceable according to official Japanese standards and official standards of countries belonging to the International Committee of Weights and Measures.

RSC.RION PRIMARY STANDARDS

Model	Model	Serial	Cal Due Date
Description	Number	Number	MM/YYYY
(Acoustic)			
Condenser microphone	MR103	7582	6/2013
(Electric)			
DC Reference standards	732B	6265015	9/2014
Standard resistor	742A-1	6480018	11/2013
Standard resistor	742A-10k	6390001	6/2014
Digital multimeter	3458A	2823A13632	3/2013
Universal counter	53132A	3404A01375	3/2013

RSC WORK STANDARDS

Model Description	Model Number	Serial Number	Cal Due Date MM/YYYY
(Acoustic)			
Condenser microphone	UC-33P	1363	10/2013
(Electric)			
Sound level meter Unit	UN-04	10491087	10/2013
Sound level meter Unit	UN-04	10491053	10/2013
Digital multimeter	34401A	MY47047316	10/2013
Attenuator	984C	11072569	10/2013
Burst signal generator	KTG-11	10350007	1/2014
Frequency synthesizer	FS-1301	01CX861W	10/2013

RION SERVICE CENTER CO., LTD.

Manager, Service Dept. O Soyana

Certificate of Calibration 校正證書

Certificate No. : C132228 證書編號

ITEM TESTED / 送檢	項目	(Job No. / 序引編號:IC13-0878)
Description / 儀器名稱	1	Acoustical Calibrator (EQ081)
Manufacturer / 製造商	:	Brüel & Kjær
Model No. / 型號	1	4231
Serial No. / 編號	+	2326408
Supplied By / 委託者	1	Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 15 April 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試	K Q Lee				
Certified By 核證	:	Date of Issue 簽發日期	1	16 April 2013	

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準,局部復印本證書書先獲本實驗所書面批准…

Sun Creation Engineering Limited - Calibration & Testing Laboratory vo 4/F, Tsing Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 em 香港新界屯門興安里一號省山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail:電郵: eallab@suncreation.com Website/網址: www.suncreation.com

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132228 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC123541CL281Multifunction Acoustic CalibratorDC110233TST150AMeasuring AmplifierC120886

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本設書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准,

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG PROJECT: --
 WORK ORDER:
 HK1318874

 LABORATORY:
 HONG KONG

 DATE RECEIVED:
 12/07/2013

 DATE OF ISSUE:
 17/07/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Dissolved Oxygen, pH, Turbidity, Salinity and Temperature
Equipment Type:	Sonde Environmental Monitoring System
Brand Name:	YSI
Model No.:	6820 / 650MDS
Serial No.:	02J0912/02K0788 AA
Equipment No.:	
Date of Calibration:	12 July, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG Phone: Fax: Email:

852-2610 1044 852-2610 2021 <u>hongkong@alsglobal.com</u>

Mr. Fung Lim Chee, Richard General Manager Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong | PHONE +852 2610 1044 | FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD An ALS Limited Company

Life Sciences

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1318874
Date of Issue:	17/07/2013
Client:	ACTION UNITED ENVIRO SERVICES

Equipment Type:	Sonde Environmental M	onitoring System	
Brand Name:	YSI		
Model No.:	6820 / 650MDS		
Serial No.:	02J0912/02K0788 AA		
Equipment No.:			
Date of Calibration:	12 July, 2013	Date of next Calibration:	12 October, 2013

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.24	3.34	0.10
5.11	5.18	0.07
7.72	7.70	-0.02
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)	
4.0	3.95	-0.05	
7.0	6.98	-0.02	
10.0	9.93	-0.07	
	Tolerance Limit (±pH unit)	0.20	

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0	
10	9.66	-3.4
20	19.66	-1.7
30	29.27	-2.4
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Suide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.			
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)	
9.5	9.38	-0.1	
25.5	24.32	-1.2	
40.0	39.13	-0.9	

Tolerance Limit (±°C)

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Riehard General Manager -Greater China & Hong Kong

2.0

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client: HK1318874 17/07/2013 ACTION UNITED ENVIRO SERVICES

Equipment Type:Sonde Environmental Monitoring SystemBrand Name:YSIModel No.:6820 / 650MDSSerial No.:02J0912/02K0788 AAEquipment No.:--Date of Calibration:12 July, 2013Date of next

Date of next Calibration:

12 October, 2013

Parameters:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.2	
4	4.2	5.0
40	40.6	1.5
80	81.5	1.9
400	410.9	2.7
800	792.8	-0.9
	-Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager -Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Appendix F

Event/Action Plan

Air Quality

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
l l		LIMIT LEVEL		
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	1. Check monitoring data submitted by ET and Contractor's working methods	 Confirm receipt of notification of non-compliance in writing; and Notify Contractor 	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
2. Exceedance for two or more consecutive sampling days	 Same as the above; Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level 	 Same as the above; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures. 	 Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures 	 Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures
		LIMIT LEVEL		
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	 Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible remedial actions; and Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly 	 Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods 	 Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
2. Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	 Same as the above; and Supervise the Implementation of mitigation measures 	 Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level 	 Same as the above; Take immediate action to avoid further exceedance; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; and As directed by the Engineer, to slow down or to stop all or part of the construction activities until to no exceedance of Limit Level.

Appendix G

Impact Monitoring Schedule

	Date	Air G	Quality	Noise	Water Quality
		1-hour TSP	24-hour TSP	Leq (30min)	
Mon	26-August-13		✓		✓
Tue	27-August-13				
Wed	28-August-13	✓		✓	✓
Thu	29-August-13				
Fri	30-August-13				✓
Sat	31-August-13		1		
Sun	1-September-13				
Mon	2-September-13				
Tue	3-September-13	✓		\checkmark	\checkmark
Wed	4-September-13				
Thu	5-September-13				\checkmark
Fri	6-September-13		✓		
Sat	7-September-13				\checkmark
Sun	8-September-13				
Mon	9-September-13	✓		\checkmark	\checkmark
Tue	10-September-13				
Wed	11-September-13				\checkmark
Thu	12-September-13		✓		
Fri	13-September-13	✓		\checkmark	\checkmark
Sat	14-September-13				
Sun	15-September-13				
Mon	16-September-13				
Tue	17-September-13				\checkmark
Wed	18-September-13		✓		
Thu	19-September-13	✓		✓	\checkmark
Fri	20-September-13				
Sat	21-September-13				✓
Sun	22-September-13				
Mon	23-September-13				✓ (cancelled due to typhoon)
Tue	24-September-13		✓		•• /
Wed	25-September-13	✓		\checkmark	\checkmark

Impact Monitoring Schedule for the Reporting Period

✓	Monitorin	ig Da	у
	Sunday Holiday	or	Public

	Date	Air G	Quality	Noise	Water Quality
		1-hour TSP	24-hour TSP	Leq (30min)	
Thu	26-September-13				
Fri	27-September-13				✓
Sat	28-September-13				
Sun	29-September-13				
Mon	30-September-13		~		✓
Tue	1-October-13				
Wed	2-October-13	~		✓	✓
Thu	3-October-13				
Fri	4-October-13				✓
Sat	5-October-13		1		
Sun	6-October-13				
Mon	7-October-13				
Tue	8-October-13	~		✓	✓
Wed	9-October-13				
Thu	10-October-13				✓
Fri	11-October-13		✓		
Sat	12-October-13				✓
Sun	13-October-13				
Mon	14-October-13				
Tue	15-October-13	✓		✓	✓
Wed	16-October-13				
Thu	17-October-13		✓		✓
Fri	18-October-13				
Sat	19-October-13	~		✓	✓
Sun	20-October-13				
Mon	21-October-13				
Tue	22-October-13				✓
Wed	23-October-13		✓		
Thu	24-October-13	√		✓	✓
Fri	25-October-13				

Impact Monitoring Schedule for next Reporting Period

✓	Monitorin	ig Da	y
	Sunday Holiday	or	Public

Appendix H

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	LAPSED TI	ME	CHA	ART READ	DING			STANDARD		INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring F	Results - AN	1 1											-	<u></u>
26-Aug-13	50373	13894.1	13918.09	1439.40	29	31	30.0	28.8	1006.8	0.69	998	3.6073	3.6185	0.0112	11
31-Aug-13	33702	13918.09	13942.08	1439.40	28	32	30.0	26.4	1008.4	0.74	1068	3.7214	3.7461	0.0247	23
6-Sep-13	33719	13942.08	13966.07	1439.40	29	32	30.5	26.3	1013.2	0.76	1097	3.7189	3.7253	0.0064	6
12-Sep-13	33729	13966.07	13990.06	1439.40	28	33	30.5	28.5	1011.5	0.76	1090	3.5777	3.5871	0.0094	9
18-Sep-13	26064	13990.06	14014.05	1439.40	29	34	31.5	27.7	1008.3	0.79	1140	2.7377	2.8495	0.1118	98
24-Sep-13	26066	14014.05	14038.04	1439.40	29	35	32.0	28.1	1006.7	0.81	1163	2.7447	2.7947	0.0500	43
24-hour TSP	Monitoring F	Results - AN	12												
26-Aug-13	33700	12397.19	12421.18	1439.40	29	32	30.5	28.8	1006.8	0.70	1007	3.7206	3.7293	0.0087	9
31-Aug-13	50371	12421.18	12445.17	1439.40	33	38	35.5	26.4	1008.4	0.89	1280	3.6071	3.6675	0.0604	47
6-Sep-13	33730	12445.17	12469.16	1439.40	30	38	34.0	26.3	1013.2	0.84	1209	3.5798	3.5942	0.0144	12
12-Sep-13	33722	12469.16	12493.15	1439.40	28	36	32.0	28.5	1011.5	0.76	1100	3.724	3.7631	0.0391	36
18-Sep-13	26063	12493.15	12517.14	1439.40	30	36	33.0	27.7	1008.3	0.80	1150	2.7535	2.8763	0.1228	107
24-Sep-13	26067	12517.14	12541.13	1439.40	29	36	32.5	28.1	1006.7	0.78	1123	2.7563	2.8684	0.1121	100
24-hour TSP	Monitoring F	Results - AN													
26-Aug-13	50360	7867.13	7891.12	1439.4	29	32	30.5	28.8	1006.8	1.01	1448	3.6022	3.6382	0.0360	25
31-Aug-13	33721	7891.12	7915.11	1439.4	28	32	30	26.4	1008.4	0.99	1432	3.7229	3.9286	0.2057	144
6-Sep-13	33720	7915.11	7939.1	1439.4	28	30	29	26.3	1013.2	0.97	1390	3.7197	3.7236	0.0039	3
12-Sep-13	33731	7939.1	7963.09	1439.4	30	34	32	28.5	1011.5	1.05	1518	3.581	3.6262	0.0452	30
18-Sep-13	25895	7963.09	7987.08	1439.4	28	35	31.5	30.5	1008.3	1.03	1489	3.6155	3.6253	0.0098	7
24-Sep-13	26068	7987.08	8011.07	1439.4	29	33	31	28.1	1006.7	1.02	1471	2.7438	2.9174	0.1736	118

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

26-Aug-13 Date

Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide.	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/8/26 15:21	W1	ME	832991	807771	2.6	1.300	28.29	7.29	107.9	0.9	25.46	8.02	4.1
						1.300 1.000	28.19	7.7	113.7 123.7	1.1 0.4	25.49	8.03	
						1.000	28.7 28.49	8.33 8.64	123.7	0.4	24.82 25.01	8.07 8.04	3.8
2012/0/26 15:07	W2	ME	832687	807007	12.7	6.350	26.12	9.17	135.1	0.5	31.31	7.69	4.1
2013/8/26 15:07	W Z	ME	832087	807997	12.7	6.350	26.04	8.01	118	0.6	31.6	7.67	4.1
						11.700	25.05	5.44	80.1	3.7	34.05	7.6	3.7
						11.700 1.000	25.06 27.87	5.06 7.59	74.4	3	34.03 26.03	7.61 7.79	
						1.000	27.87	7.59	111.9	0.0	25.78	7.79	3.2
0010/0/07 14 54	11/2		02200(1	007004	10.6	6.300	25.88	7.88	116.2	0.7	32.27	7.47	4.0
2013/8/26 14:54	W3	ME	832061	807904	12.6	6.300	25.84	6.89	101.7	1	32.25	7.45	4.0
						11.600	25.26	5.44	80.1	2.8	33.64	7.41	3.8
						11.600 1.000	25.32 28.61	5.19 8.35	76.4	2.8	33.56 24.88	7.41 8.17	
						1.000	28.61	8.95	123.7	0.2	24.88	8.17	4.2
2012/0/26 15 20	C1		022/01	000102	14.0	7.100	25.83	7.65	112.5	1.9	31.74	7.74	1.0
2013/8/26 15:39	C1	ME	833691	808183	14.2	7.100	25.84	6.56	96.5	2.1	32	7.73	4.2
						13.200	24.53	5.26	77.1	4	35.02	7.67	3.4
						13.200	24.54	4.92	72.1	4.7	35.03	7.66	5.1
						1.000	28.49 28.48	8.34 8.8	123.1 130	1.8 1.6	24.55 24.54	7.72	4.2
						5.300	25.89	8.89	130.6	1.0	31.53	7.24	
2013/8/26 14:38	C2	ME	831460	807719	10.6	5.300	25.85	7.33	107.7	1.5	31.56	7.23	3.8
						9.600	25.54	5.51	81.1	4.8	32.67	7.12	3.9
						9.600	25.49	5.15	75.6	4.4	32.72	7.14	3.9
						1.000	28.13	6.04	89.2	0.8	25.49	8.08	4.0
						1.000 7.200	28.07 26.07	6.73 6.62	99.2 97.3	1.1	25.51 31.09	8.09 7.75	
2013/8/26 15:59	C3	ME	832224	808882	14.4	7.200	25.82	6.2	91.3	1.5	31.89	7.73	4.3
						13.400	24.59	4.99	73.2	2.7	35.06	7.68	2.2
						13.400	24.5	4.66	68.3	3.4	35.13	7.7	3.3
						1 1 0 0	AB ((50.0		2 (52		
2013/8/26 9:44	W1	MF	832983	807756	2.2	1.100	27.66 27.56	5.41 5.88	78.9 85.6	0.8	24.72 24.78	7.82 7.84	3.3
						1.100	27.50	7.13	103.9	0.3	24.78	7.84	
						1.000	27.71	7.11	103.8	0.1	24.66	7.85	4.3
2013/8/26 9:54	W2	MF	832687	807988	12.8	6.400	25.96	5.35	78.6	0.7	31.48	7.6	3.6
2015/8/20 9.54	vv Z	IVII	832087	007900	12.0	6.400	25.92	5.08	74.6	1.5	31.53	7.61	5.0
						11.800	25.08	4.24	62.2	2.8	33.87	7.55	3.8
						11.800 1.000	25.07 27.81	4.22 8.88	61.9 129.9	2.8	33.88 25.05	7.55 7.88	
						1.000	27.81	9.15	129.9	0.0	25.05	7.87	3.7
2013/8/26 10:10	W3	MF	832036	807891	12.4	6.200	25.76	7.77	114.4	1.7	32.09	7.61	4.2
2015/8/20 10.10	W 5	IVIF	852050	007091	12.4	6.200	25.73	6.91	101.6	0.9	32.1	7.59	4.2
						11.400	25.19	5.92	86.9	4.1	33.36	7.54	3.8
						11.400 1.000	25.19 27.86	5.81 6.06	85.2 88.6	5.1 0.5	33.37 24.65	7.54	
						1.000	27.80	6.86	100.3	0.3	24.65	7.77	4.2
2012/0/25 0.25	C1		022710	000156	14.5	7.250	25.95	6.64	97.7	1.3	31.54	7.53	
2013/8/26 9:26	C1	MF	833719	808156	14.5	7.250	25.91	6.25	92	1.4	31.73	7.52	4.4
						13.500	25.03	5.29	77.6	3.5	33.94	7.47	3.4
						13.500	25.01	5.04	74	3.6	33.95	7.47	
	1					1.000	27.83 27.83	8.75 9.26	128.1 135.6	0.9	24.98 25.06	7.98 7.96	2.2
		. –		0.0		5.250	27.83	9.20	133.0	3.3	31.77	7.90	
2013/8/26 10:23	C2	MF	831491	807756	10.5	5.250	25.7	8.01	117.6	4.1	31.93	7.62	4.3
	1					9.500	25.11	6.38	93.5	3	33.41	7.58	3.4
	ļ					9.500	25.15	5.95	87.2	3.9		7.6	5.4
						1.000	27.93	8.69	127.2	1.7	24.57	7.64	2.5
	1					1.000 7.400	27.91 25.95	8.76 6.31	128 92.8	1.4	24.58 31.58	7.65 7.41	
2013/8/26 9:06	C3	MF	832244	808890	14.8	7.400	25.95	6.12	88.3	1	31.54	7.41	3.6
						13.800	24.94	5.07	74.3	3	33.98	7.34	3.0
ME Mid Elsed Tide						13.800	24.95	4.91	72	3.2	33.99	7.36	5.0

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 28-Aug-13

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	1100*	East	North	m	m	ູ	mg/L	%	NTU	ppt	unit	mg/l
2013/8/28 16:27	W1	ME	832964	807838	2	1.000	28.59	5.86	87.0	0.3	25.14	8.3	1.2
						1.000	28.69 28.48	5.85 6.52	86.9 96.6	0.3	25.09 25.25	8.29 8.29	
						1.000	28.48	6.51	96.6	1.1	25.23	8.29	1.1
2012/0/20 16:12	W2	ME	832671	20700 5	11.3	5.650	26.31	5.51	80.8	1.4	30	7.88	0.8
2013/8/28 16:12	VV Z	ME	832071	807995	11.5	5.650	26.21	5.52	80.9	1	30.09	7.87	0.8
						10.300	25.61	4.04	59.5 59.5	3.4	32.54	7.82 7.82	0.9
						10.300	25.63 29.1	4.04 8.42	125.8	3./ 0.4	32.52 24.79	7.82	
						1.000	29.12	8.31	123.0	0.6	24.8	8.29	0.8
2013/8/28 15:58	W3	ME	832039	807915	10.9	5.450	26.55	7.06	103.8	0.2	29.59	7.9	0.8
2015/0/20 15.50	** 5	IVIL	052059	007915	10.9	5.450	26.47	7.07	103.8	1.7	29.76	7.92	0.8
						9.900 9.900	25.63 25.63	4.14 4.14	61.0 61.0	1.2	32.65 32.66	7.81 7.82	1.3
						9.900	23.03	4.14	74.0	0.5	25.19	8.28	
						1.000	28.63	4.98	74.0	0.2	25.2	8.28	1.3
2013/8/28 16:41	C1	ME	833718	808164	16	8.000	25.48	5.29	78.0	0.6	33.06	7.81	1.6
2010/0/20 10:11	01	IVIL	055710	000101	10	8.000	25.46	4.87	71.7	0.4	33.08	7.81	1.0
						15.000 15.000	24.62 24.72	3.71 3.69	54.4 54.0	3.3	34.58 34.54	7.76 7.78	1.3
						1.000	29.44	5.80	87.2	1.1	25.05	8.24	
						1.000	29.36	5.92	88.9	0.4	25.1	8.25	2.2
2013/8/28 15:43	C2	ME	831468	807767	10.2	5.100	26.89	6.17	91.4	0.1	29.94	7.96	2.5
2015/0/20 15.45	02	IVIL	051400	007707	10.2	5.100	26.8	5.66	83.7	0.2	29.62	7.96	2.5
						9.200 9.200	26.16 26	4.58	67.7 65.4	1.2	31.76 31.87	7.78 7.76	1.9
						9.200	20	5.14	76.6	0.2	25.24	8.29	
						1.000	28.85	5.43	81.0	0.1	25.19	8.29	2.0
2013/8/28 17:02	C3	ME	832249	808881	19.2	9.600	25.44	3.86	56.8	0.4	33.06	7.83	2.2
2015/0/20 17:02	0.5	IVIL	052249	000001	17.2	9.600	25.48	3.80	56.0	0.5	33.08	7.82	2.2
						18.200 18.200	24.53 24.46	3.06 3.06	44.7 44.7	1.3	34.8 34.84	7.76 7.78	3.2
						10.200	24.40	5.00	44.7	1	54.04	1.10	
2012/0/20 11.40	W1	ME	922094	007755	2.2	1.100	28.9	6.23	92.8	0.6	24.85	8.2	2.2
2013/8/28 11:49	W I	MF	832984	807755	2.2	1.100	28.62	6.95	103.3	0.8	25.24	8.2	2.2
						1.000	29	5.26	78.5	0.8	24.77	8.15	2.2
						1.000 5.500	28.66 26.25	5.74 5.19	85.2 76.1	0.8	25.02 30.07	8.16 7.73	
2013/8/28 11:37	W2	MF	832683	807996	11	5.500	26.23	4.84	70.1	0.6	30.26	7.74	2.2
						10.000	25.02	3.86	56.6	1.4	33.73	7.63	3.0
						10.000	25.02	3.81	55.9	1.3	33.71	7.63	5.0
						1.000	29.05	8.82	131.6	0.4	24.61	8.15	1.1
						1.000 6.300	29.08 26.59	9.08 8.30	135.5 121.2	0.6	24.59 28.34	8.16 7.79	
2013/8/28 11:21	W3	MF	832036	807891	12.6	6.300	26.59	8.30	121.2	1.3	28.34	7.78	1.7
						11.600	25.7	6.19	91.0	1	31.94	7.65	1.8
						11.600	25.62	5.54	81.3			7.65	1.0
						1.000	28.95 28.96	6.69 7.03	99.7 104.8	0.1	24.82 24.82	8.22 8.22	1.4
						6.700	26.90	5.67	83.5	0.3	30.8	7.78	
2013/8/28 12:06	C1	MF	833717	807186	13.4	6.700	26.18	5.67	83.5	1	30.92	7.77	1.7
						12.400	25.1	3.32	48.7	0.9	33.57	7.7	1.4
						12.400	25.11	3.32	48.7	0.6	33.57	7.69	1.7
	1					1.000	28.79 28.79	7.15 7.15	104.9 104.9	0.1	24.71 24.73	8.09 8.09	1.1
2012/0/02 11 25			00110	0077770	0.1	4.550	28.79	6.82	104.9	0.4	24.73	8.04	1.0
2013/8/28 11:05	C2	MF	831494	807772	9.1	4.550	27.59	6.82	101.3	0.9	26.1	8.01	1.0
						8.100	25.39	4.76	69.8	1.1	32.59	7.59	1.3
						8.100	25.44	4.81	70.6	1.5	32.42	7.58	
						1.000	28.64 28.72	6.99 6.98	103.8 103.7	0.4	25.11 25.06	8.22 8.23	1.4
2012/0/22 12 22	~~~	100	022222	000070	17.0	8.600	26.35	5.92	87.1	0.2	30	7.83	1.0
2013/8/28 12:23	C3	MF	832222	808879	17.2	8.600	26.39	5.92	87.3	0.7	30.02	7.83	1.9
	1					16.200	24.26	3.30	48.5	1.6	34.63	7.68	1.9
	1					16.200	24.19	3.65	52.6	1.7	34.69	7.69	

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 30-Aug-13

Date / Time	Teestien	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	1100*	East	North	m	m	ດໍ	mg/L	%	NTU	ppt	unit	mg/l
2013/8/30 9:29	W1	ME	832980	807728	2.5	1.250	28.12	6.41	94.1	0.1	24.54	8.27	0.6
						1.250 1.000	28.08 28.07	6.68 7.65	98.0 112.2	0.1	24.56 24.62	8.27 8.24	
						1.000	28.07	7.67	112.2	0.7	24.62	8.24	0.9
2013/8/30 9:41	W2	ME	832681	808012	10.5	5.250	26.73	5.73	84.2	1.3	29.03	7.91	1.6
2015/6/50 9.41	VV Z	IVIE	832081	000012	10.5	5.250	26.71	5.50	80.9	1.1	29.3	7.92	1.0
						9.500	25.66	3.98	58.6	3.4	32.45	7.82	2.7
						9.500 1.000	25.7 28.02	3.85 7.18	56.8 105.4	2.6	32.89 24.9	7.79 8.2	
						1.000	28.06	7.18	105.3	0.6	24.82	8.19	1.5
2013/8/30 9:59	W3	ME	832039	807914	9.4	4.700	26.77	6.36	93.8	0.9	29.44	7.96	1.0
2015/0/50 9.59	** 5	IVIL	052059	007914	9.4	4.700	26.78	6.36	93.8	1	29.64	7.95	1.0
						8.400 8.400	25.55 25.55	5.90 5.62	86.5 82.3	1.7	32.02 31.97	7.83 7.83	1.2
						1.000	23.33	6.59	96.8	0.3	24.53	8.2	
						1.000	28.17	6.59	96.8	0.4	24.52	8.21	0.8
30/8/2013 14.2	C1	ME	833729	808190	14.2	7.100	26.01	4.13	61.0	1.2	31.93	7.82	1.4
50/0/2015 11.2	01	IVIL	033127	000170	1 1.2	7.100	25.98	4.14	61.0	0.3	31.97	7.81	1.1
						13.200 13.200	24.38 24.37	3.71 3.71	53.9 53.9	3.2	34.21 34.23	7.71	3.1
						13.200	24.37	7.58	111.8	2.6	25.08	8.18	
						1.000	28.27	7.58	111.8	3	25.06	8.17	1.6
2013/8/30 10:10	C2	ME	831490	807719	8.4	4.200	27.05	7.09	104.4	3.5	28.42	7.95	1.2
2015/0/50 10.10	02	IVIL	051470	007719	0.4	4.200	27	7.09	104.5	3.3	28.57	7.95	1.2
						7.400	25.84 25.74	6.42 6.15	94.2 90.2	<u>3.5</u> 3.6	31.41 31.67	7.84 7.85	1.9
						1.000	23.74	7.67	113.4	1	24.24	8.15	
						1.000	28.21	7.69	113.5	0.9	24.21	8.13	1.0
2013/8/30 8:59	C3	ME	832249	808881	16	8.000	26.44	6.94	101.8	0.2	30.94	7.84	1.2
2015/0/50 0.57	0.5	IVIL	052249	000001	10	8.000	26.38	6.94	101.8	0.7	30.97	7.83	1.2
						15.000 15.000	23.86 23.99	4.34 4.48	62.6 64.8	2.5	34.58 34.48	7.71	1.8
						15.000	23.99	4.40	04.0	2	54.40	7.00	
2012/0/20 16:20	W1	ME	822067	907716	2.2	1.150	28.03	5.92	86.6	0.2	24.65	8.26	1.6
2013/8/30 16:38	W I	MF	832967	807716	2.3	1.150	28.05	5.92	86.6	0.2	24.65	8.27	1.6
						1.000	28.03	5.47	80.1	0.4	24.42	8.26	2.5
						1.000 6.300	28.07 26.64	5.46 5.11	80.0 75.3	0.7	24.37 29.83	8.26 7.94	
2013/8/30 16:29	W2	MF	832681	807972	12.6	6.300	26.61	5.11	75.3	0.2	29.85	7.94	2.0
						11.600	25.3	4.02	59.1	3.3	33.59	7.79	2.9
						11.600	24.97	3.83	56.2	3.9	33.89	7.79	2.9
						1.000	28.22	6.77	99.5	0.2	24.63	8.25	0.9
						1.000 5.850	28.2 26.38	6.78 5.59	99.6 82.5	0.2	24.69 30.75	8.25 7.91	
2013/8/30 16:16	W3	MF	832069	807899	11.7	5.850	26.33	5.61	82.6	1.6	30.71	7.92	1.0
						10.700	25.68	3.99	58.7	3.2	32.25	7.84	1.3
						10.700	25.62	4.12	58.8	3.2		7.83	1.5
						1.000	27.99 27.99	7.11 7.11	104.5 104.5	0.4	25.14 25.25	8.26 8.26	1.9
						7.400	27.99	5.21	76.9	0.3	31.53	7.95	
2013/8/30 16:57	C1	MF	833728	808198	14.8	7.400	26.15	5.20	76.8	0.3	31.61	7.94	1.5
						13.800	24.37	3.81	55.6	1.7	34.7	7.8	1.7
						13.800	24.39	3.57	52.1	1.8	34.65	7.8	1.1
	1					1.000	28.28 28.29	7.42 7.63	109.8 112.8	0.6	25.49 25.43	8.22 8.23	1.0
2012/0/02 17 25			001100	0077550	0.1	4.800	26.29	5.59	82.7	1.8	31.39	7.9	1.2
2013/8/30 16:07	C2	MF	831490	807759	9.6	4.800	26.32	5.42	80.2	1.7	31.53	7.88	1.2
						8.600	25.79	4.64	68.5	4.3	32.55	7.86	1.4
						8.600	25.82	4.64	68.5	3.9	32.53	7.85	
						1.000	28.16 28.17	6.56 7.51	96.6 110.6	0.1	25 25.01	8.3 8.29	0.9
2012/0/20 17 16	~~~		022210	000070	16.2	8.150	25.14	5.76	84.5	2.9	33.61	7.85	1.0
2013/8/30 17:18	C3	MF	832248	808879	16.3	8.150	25.13	5.76	84.5	2.6	33.57	7.84	1.0
						15.300	23.9	3.39	49.2	3.3	35.02	7.78	1.4
	1	1				15.300	23.93	3.39	49.2	3.6	34.99	7.77	

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

3-Sep-13 Date

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de+	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/9/3 11:44	W1	ME	832980	807716	2.4	1.200	26.74	6.84	100.6	0.1	29.04	7.99	2.6
						1.200	26.75 26.89	6.84 5.68	100.6 83.4	0.2	29.03 28.44	7.98 7.98	
						1.000	20.89	5.74	84.4	0.1	28.44	7.98	2.8
2012/0/2 11 22			000 (01	005004		5.750	26.72	5.63	82.7	0.7	29.05	7.94	
2013/9/3 11:32	W2	ME	832681	807994	11.5	5.750	26.7	5.62	82.7	1.3	29.31	7.95	2.2
						10.500	23.92	4.35	62.9	1.9	34.6	7.68	2.4
					-	10.500	23.92	4.35	62.9	1.8	34.62	7.7	2.4
						1.000	26.9 26.89	8.05 8.06	118.5 118.5	0.1	28.65 28.66	8.01 8.03	2.2
						5.700	26.89	7.56	118.5	0.1	28.00	8.03 7.94	
2013/9/3 11:16	W3	ME	832036	807908	11.4	5.700	26.73	7.56	111.3	0.2	29.45	7.94	2.3
						10.400	25.29	5.76	84.6	2.3	33.16	7.75	2.2
						10.400	25.25	5.77	84.6	2.9	33.2	7.78	2.2
						1.000	26.74	6.89	101.4	0.1	29.01	7.99	2.1
						1.000	26.76	6.89	101.3	0.1	29	7.98	2.1
2013/9/3 11:57	C1	ME	833690	808181	13.3	6.650 6.650	26.56 26.49	6.84 6.33	100.9 93.3	0.3	30.25 30.33	7.92 7.91	1.6
						12.300	20.49	5.65	95.5 81.3	2	34.82	7.69	
						12.300	23.46	4.69	67.4	2.2	34.94	7.66	2.8
						1.000	26.89	7.29	107.0	0.4	28.52	7.87	2.4
						1.000	26.85	7.38	108.3	0.3	28.52	7.88	2.4
2013/9/3 11:00	C2	ME	831473	807761	9.6	4.800	26.78	7.46	110.0	1	29.45	7.88	2.1
2013/3/3 11:00	02	IVIL	051175	007701	2.0	4.800	26.8	7.40	109.2	1.1	29.47	7.89	2.11
						8.600 8.600	25.52 25.5	6.42 5.94	94.3 87.3	1.7 1.7	32.55 32.56	7.73	2.0
						1.000	25.5	6.28	92.3	0	29.08	7.98	
						1.000	26.72	6.34	92.3	2	29.08	7.98	2.2
2012/0/2 12 00	C 2		000000	000070	14.0	7.450	26.33	6.19	91.2	0.1	30.65	7.9	2.1
2013/9/3 12:09	C3	ME	832228	808878	14.9	7.450	26.36	6.18	91.2	0.2	30.64	7.9	3.1
						13.900	23.25	6.12	86.5	0.1	35.12	7.67	2.0
						13.900	23.17	6.01	86.1	0.1	35.17	7.66	
						0.900	27.03	5.59	82.7	0.2	29.21	8.13	
2013/9/3 17:47	W1	MF	832947	807761	1.8	0.900	27.03	5.71	84.4	1.1	29.21	8.13	3.6
						1.000	26.97	6.9	102	0.5	29.39	8.13	2.2
						1.000						0.15	
2013/9/3 17:33						1.000	26.97	6.96	103	0.6	29.4	8.12	2.2
2010/0/0 11:00	W2	MF	832680	807965	11.1	5.550	25.91	5.19	76.7	0.9	32.48	8.12 7.91	
	W2	MF	832680	807965	11.1	5.550 5.550	25.91 25.86	5.19 5.19	76.7 76.7	0.9 0.3	32.48 32.52	8.12 7.91 7.92	2.0
	W2	MF	832680	807965	11.1	5.550 5.550 10.100	25.91 25.86 24.12	5.19 5.19 3.99	76.7 76.7 58.2	0.9 0.3 2.2	32.48 32.52 35.54	8.12 7.91 7.92 7.77	
	W2	MF	832680	807965	11.1	5.550 5.550 10.100 10.100	25.91 25.86 24.12 24.09	5.19 5.19 3.99 3.45	76.7 76.7 58.2 50.3	0.9 0.3 2.2 1.3	32.48 32.52 35.54 35.55	8.12 7.91 7.92 7.77 7.76	2.0
	W2	MF	832680	807965	11.1	5.550 5.550 10.100	25.91 25.86 24.12 24.09 27.06	5.19 5.19 3.99 3.45 6.01	76.7 76.7 58.2	0.9 0.3 2.2 1.3 0.1	32.48 32.52 35.54	8.12 7.91 7.92 7.77	2.0
2012/07/17/10						5.550 5.550 10.100 10.100 1.000	25.91 25.86 24.12 24.09	5.19 5.19 3.99 3.45	76.7 76.7 58.2 50.3 89	0.9 0.3 2.2 1.3	32.48 32.52 35.54 35.55 29.43	8.12 7.91 7.92 7.77 7.76 8.15	2.0 3.7 1.8
2013/9/3 17:19	W2 W3	MF MF	832680 832036	807965 807881	11.1	5.550 5.550 10.100 10.100 1.000 1.000	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13	5.19 5.19 3.99 3.45 6.01 6.39	76.7 76.7 58.2 50.3 89 94.7	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7	32.48 32.52 35.54 35.55 29.43 29.46	8.12 7.91 7.92 7.77 7.76 8.15 8.14	2.0 3.7
2013/9/3 17:19						5.550 5.550 10.100 10.100 1.000 1.000 5.400 5.400 9.800	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7 2	32.48 32.52 35.54 35.55 29.43 29.46 32.22 32.24 35.86	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.73	2.0 3.7 1.8 2.8
2013/9/3 17:19						5.550 5.550 10.100 10.000 1.000 5.400 5.400 9.800 9.800	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7 2 1.6	32.48 32.52 35.54 35.55 29.43 29.46 32.22 32.24 35.86 35.89	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.73 7.74	2.0 3.7 1.8
2013/9/3 17:19						5.550 5.550 10.100 10.000 1.000 5.400 5.400 9.800 9.800 1.000	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78 27.06	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 6.59	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7 2 1.6 0.9	32.48 32.52 35.54 35.55 29.43 29.46 32.22 32.24 35.86 35.89 28.28	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.92 7.73 7.74 8.23	2.0 3.7 1.8 2.8
	W3	MF	832036	807881	10.8	5.550 5.550 10.100 1.000 1.000 5.400 5.400 9.800 9.800 9.800 1.000	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78 27.06 27.09	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 4.44 6.59 6.95	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7 2 1.6 0.9 0.4	32.48 32.52 35.54 35.55 29.43 29.46 32.22 32.24 35.86 35.89 28.28 28.23	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.73 7.74 8.23 8.24	2.0 3.7 1.8 2.8 3.0 1.5
2013/9/3 17:19 2013/9/3 18:03						5.550 5.550 10.100 10.000 1.000 5.400 5.400 9.800 9.800 1.000	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78 27.06	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 6.59	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7 2 1.6 0.9	32.48 32.52 35.54 35.55 29.43 29.46 32.22 32.24 35.86 35.89 28.28	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.92 7.73 7.74 8.23	2.0 3.7 1.8 2.8 3.0
	W3	MF	832036	807881	10.8	5.550 5.550 10.100 10.000 1.000 5.400 5.400 5.400 9.800 9.800 1.000 1.000 6.700	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 6.59 6.95 7.52	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7 2 1.6 0.9 0.4 2.3	32.48 32.52 35.54 35.55 29.43 29.46 32.22 32.24 35.86 35.89 28.28 28.28 28.33 32.45	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.73 7.74 8.23 8.24 7.91	2.0 3.7 1.8 2.8 3.0 1.5 2.5
	W3	MF	832036	807881	10.8	5.550 5.550 10.100 10.000 1.000 5.400 5.400 5.400 9.800 9.800 1.000 6.700 6.700 12.400	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78 23.78 27.06 27.09 25.84 25.57 24.86 24.89	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.3 0.3 0.7 2 1.6 0.9 0.4 2.3 2.9 2.3 2.4	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.23 32.45 32.45 32.86 34.83 34.8	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 7.82	2.0 3.7 1.8 2.8 3.0 1.5
	W3	MF	832036	807881	10.8	5.550 5.550 10.100 10.000 1.000 5.400 5.400 9.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.2400 1.000	25.91 25.86 24.12 24.09 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 27	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26 5.97	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4	$\begin{array}{c} 0.9 \\ 0.3 \\ 2.2 \\ 1.3 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.7 \\ 2 \\ 1.6 \\ 0.9 \\ 0.4 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.4 \\ 0.4 \\ 0.4 \end{array}$	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.33 32.45 32.86 34.83 34.83 34.8	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 7.82 8.21	2.0 3.7 1.8 2.8 3.0 1.5 2.5
	W3	MF	832036	807881	10.8	5.550 5.550 10.100 10.000 1.000 5.400 5.400 9.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.2400 1.000 1.000	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 27 27.08	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26 5.97 5.96	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4 88.4	$\begin{array}{c} 0.9 \\ 0.3 \\ 2.2 \\ 1.3 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.7 \\ 2 \\ 1.6 \\ 0.9 \\ 0.4 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \end{array}$	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.33 32.45 32.85 32.85 32.85 32.45 32.86 34.83 34.83 34.83	8.12 7.91 7.72 7.76 8.15 8.14 7.92 7.72 7.76 8.25 7.92 7.73 7.74 8.23 8.24 7.91 7.82 7.82 7.82 7.82 8.21 8.19	2.0 3.7 1.8 2.8 3.0 1.5 2.5 2.3
	W3	MF	832036	807881	10.8	5.550 5.550 10.100 10.000 1.000 5.400 5.400 9.800 9.800 1.000 1.000 1.000 1.000 1.000 1.2400 1.000 1.000 1.000 4.450	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 27 27.08 27.08	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26 5.97 5.96 7.03	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4 88.4 88.4	$\begin{array}{c} 0.9 \\ 0.3 \\ 2.2 \\ 1.3 \\ 0.1 \\ 0.3 \\ 0.7 \\ 2 \\ 1.6 \\ 0.9 \\ 0.4 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 1.4 \\ \end{array}$	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.28 28.33 32.45 32.86 34.83 34.83 34.83 34.83 34.83	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 7.82 7.82 8.21 8.19 7.97	2.0 3.7 1.8 2.8 3.0 1.5 2.5 2.3
2013/9/3 18:03	W3 C1	MF	832036 833681	807881 808203	10.8	5.550 5.550 10.100 10.000 1.000 5.400 5.400 5.400 9.800 9.800 9.800 1.000 1.000 6.700 6.700 12.400 12.400 1.000 4.450	25.91 25.86 24.12 27.06 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 277.08 24.86 24.89 277.08 26.43 26.65	5.19 5.19 3.99 3.45 6.01 5.21 5.07 4.44 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26 5.97 5.96 7.03 6.5	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4 88.4 88.4 88.4 104.1 96.6	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7 2 1.6 0.9 0.4 2.3 2.9 2.3 2.4 0.4 0.4 0.4 0.4 0.4 1.4 1.4	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.28 32.82 32.45 32.86 34.83 32.45 32.86 34.83 34.83 34.8 29.44 31.28 31.16	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 7.82 8.21 8.19 7.97 8.19 7.97 8.19 7.97 8.19 7.97 8.19 7.97 8.19 7.97 8.19 7.97 8.19 7.97 8.19 7.97 7.97 8.19 7.97 7.97 7.98 7.92 7.88 7.82 7.97 8.29 8.29 8.19 7.97 7.97 8.19 7.97 7.97 8.19 7.97 7.97 8.19 7.97	2.0 3.7 1.8 2.8 3.0 1.5 2.5 2.3 3.0 2.1
2013/9/3 18:03	W3 C1	MF	832036 833681	807881 808203	10.8	5.550 5.550 10.100 10.000 1.000 5.400 5.400 9.800 9.800 1.000 1.000 1.000 1.000 1.000 1.2400 1.000 1.000 1.000 4.450	25.91 25.86 24.12 24.09 27.06 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 27 27.08 27.08	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26 5.97 5.96 7.03	76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4 88.4 88.4	$\begin{array}{c} 0.9 \\ 0.3 \\ 2.2 \\ 1.3 \\ 0.1 \\ 0.3 \\ 0.7 \\ 2 \\ 1.6 \\ 0.9 \\ 0.4 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 1.4 \\ \end{array}$	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.28 28.33 32.45 32.86 34.83 34.83 34.83 34.83 34.83	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 7.82 7.82 8.21 8.19 7.97	2.0 3.7 1.8 2.8 3.0 1.5 2.5 2.3 3.0
2013/9/3 18:03	W3 C1	MF	832036 833681	807881 808203	10.8	5.550 5.550 10.100 10.000 1.000 5.400 5.400 5.400 9.800 9.800 1.000 1.000 1.000 1.000 6.700 6.700 12.400 12.400 1.000 4.450 4.450 7.900	25.91 25.86 24.12 27.06 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 277 27.08 26.43 26.43 26.65 24.81	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26 5.97 5.96 7.03 6.5 7.03 6.5 6.26	76.7 76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4 88.4 104.1 96.6 92.2 85.5 98.7	0.9 0.3 2.2 1.3 0.1 0.3 0.3 0.7 2 1.6 0.9 0.4 2.3 2.9 2.3 2.4 0.4 0.4 0.4 0.4 1.4 1.2 3.7	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.28 32.83 32.45 32.86 34.83 34.83 34.83 34.83 34.83 34.83 34.83 34.83 31.284 31.286 31.16 35.04	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 8.21 8.19 7.97 8 7.88 7.76 8.2	2.0 3.7 1.8 2.8 3.0 1.5 2.5 2.3 3.0 2.1 2.3
2013/9/3 18:03	W3 C1	MF	832036 833681	807881 808203	10.8	5.550 5.550 10.100 10.000 1.000 1.000 5.400 5.400 9.800 9.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 4.450 7.900 1.000 1.000	25.91 25.86 24.12 24.09 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 27.08 26.43 26.65 24.81 24.81 24.37 26.99 26.98	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26 7.97 5.96 7.03 6.55 6.26 5.84 6.71 6.71	76.7 76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4 104.1 96.6 92.2 85.5 98.7 98.7	$\begin{array}{c} 0.9 \\ 0.3 \\ 2.2 \\ 1.3 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.7 \\ 2 \\ 1.6 \\ 0.9 \\ 0.4 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.4 \\ 0.4 \\ 0.4 \\ 1.2 \\ 0.4 \\ 1.4 \\ 1.2 \\ 3.7 \\ 4.5 \\ 0.2 \\ 0.4 \\ 0.4 \end{array}$	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.33 32.45 32.86 34.83 32.45 32.86 34.83 34.83 34.8 34.83 34.8 31.16 35.04 35.04 35.38 28.45 28.46	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 7.97 8 7.97 8 7.88 7.97 8 7.76 8.21 8.19 7.97 8 7.88 7.86 7.76 8.2 8.2 8.2 8.2 8.2	2.0 3.7 1.8 2.8 3.0 1.5 2.5 2.3 3.0 2.1
2013/9/3 18:03	W3 C1	MF	832036 833681	807881 808203	10.8	5.550 5.550 10.100 10.000 1.000 1.000 5.400 5.400 9.800 9.800 1.000 1.000 1.000 1.000 1.000 1.2400 1.000 4.450 4.450 7.900 1.000 1.000 1.000	25.91 25.86 24.12 24.09 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 27 27.08 26.43 26.65 24.81 24.37 26.69 24.81 24.37 26.99 26.98 25.48	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.41 3.26 7.03 6.59 7.03 6.56 6.26 5.84 6.71 6.71 5.23	76.7 76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4 88.4 104.1 96.6 92.2 85.5 98.7 98.7 77.3	$\begin{array}{c} 0.9 \\ 0.3 \\ 2.2 \\ 1.3 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.7 \\ 2 \\ 1.6 \\ 0.9 \\ 0.4 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.4 \\ 0.4 \\ 0.4 \\ 1.2 \\ 3.7 \\ 4.5 \\ 0.2 \\ 0.2 \\ 0.4 \\ 1.8 \\ \end{array}$	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.33 32.45 32.86 34.83 34.83 34.83 34.83 34.83 34.83 34.83 31.16 35.04 35.38 29.44 29.44 31.28 31.16 35.04 35.38	8.12 7.91 7.72 7.77 7.76 8.15 8.14 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 7.82 7.82 7.97 8 7.86 7.76 8.2 7.82 7.82 7.82 7.82 7.82 7.82 8.21 8.19 7.97 8 7.86 7.82 8.2 7.86	2.0 3.7 1.8 2.8 3.0 1.5 2.5 2.3 3.0 2.1 2.3
2013/9/3 18:03 2013/9/3 17:03	W3 C1 C2	MF MF	832036 833681 831459	807881 808203 807733	10.8 13.4 8.9	5.550 5.550 10.100 10.000 1.000 1.000 5.400 5.400 9.800 9.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 4.450 7.900 1.000 1.000	25.91 25.86 24.12 24.09 27.04 26.15 26.13 23.82 23.78 27.06 27.09 25.84 25.57 24.86 24.89 27.08 26.43 26.65 24.81 24.81 24.37 26.99 26.98	5.19 5.19 3.99 3.45 6.01 6.39 5.21 5.07 4.44 4.44 6.59 6.95 7.52 6.61 3.41 3.26 7.97 5.96 7.03 6.55 6.26 5.84 6.71 6.71	76.7 76.7 76.7 58.2 50.3 89 94.7 77.2 75.1 64.5 64.6 97 102.4 111 97.4 50.2 48 88.4 104.1 96.6 92.2 85.5 98.7 98.7	$\begin{array}{c} 0.9 \\ 0.3 \\ 2.2 \\ 1.3 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.7 \\ 2 \\ 1.6 \\ 0.9 \\ 0.4 \\ 2.3 \\ 2.9 \\ 2.3 \\ 2.4 \\ 0.4 \\ 0.4 \\ 1.2 \\ 0.4 \\ 1.4 \\ 1.2 \\ 3.7 \\ 4.5 \\ 0.2 \\ 0.4 \\ 0.4 \end{array}$	32.48 32.52 35.54 35.55 29.43 32.22 32.24 35.86 35.89 28.28 28.33 32.45 32.86 34.83 32.45 32.86 34.83 34.83 34.8 34.83 34.8 31.16 35.04 35.04 35.38 28.45 28.46	8.12 7.91 7.92 7.77 7.76 8.15 8.14 7.92 7.73 7.74 8.23 8.24 7.91 7.88 7.82 7.82 7.97 8 7.97 8 7.88 7.97 8 7.76 8.21 8.19 7.97 8 7.88 7.86 7.76 8.2 8.2 8.2 8.2 8.2	2.0 3.7 1.8 2.8 3.0 1.5 2.5 2.3 3.0 2.1 2.3 1.5

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

5-Sep-13 Date

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	1100+	East	North	Ħ	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/9/5 12:12	W1	ME	832979	807744	2.4	1.200	25.45	6.26	89.7	1.4	28.4	7.93	1.7
						1.100	25.49	6.25	89.6	1.5	28.27	7.93	
						1.000	25.49 25.49	6.88 6.47	98.6 92.7	2.6	28.28 28.27	7.93 7.93	1.2
						6.400	25.49	5.3	92.7	0.5	28.27	7.95	
2013/9/5 11:53	W2	ME	832674	807971	12.8	6.400	25.26	5.3	76.1	0.5	29.52	7.91	1.2
						11.800	23.65	3.82	54.8	9.3	33.8	7.81	4.0
						11.800	23.6	3.65	52.2	9.3	33.84	7.8	1.3
						1.000	25.71	7.93	113.4	1.1	27.25	7.97	1.5
						1.000	25.72	7.52	107.6	0.9	27.21	7.97	1.5
2013/9/5 11:39	W3	ME	832055	807877	12.4	6.200	25.56	6.67	95.6	1.3	28.23	7.94	2.0
						6.200	25.55	6.34	90.9	1.4	28.28	7.93	
						11.400 11.400	25.09 24.9	5.39 5.29	78 76.5	12.6	31.33 31.47	7.82 7.8	4.6
						1.000	24.9	5.29 6.79	97.4	0.9	28.63	7.93	
						1.000	25.45	6.38	91.4	1.3	28.61	7.93	1.7
2012/015 12 20			000510	000405		7.200	25.16	5.48	78.9	2.1	29.91	7.88	
2013/9/5 12:29	C1	ME	833718	808195	14.4	7.200	25.14	5.3	76.3	1.7	29.93	7.89	2.2
						13.400	24.94	4.8	69.3	2.2	31.21	7.93	2.9
						13.400	24.92	4.88	70.4	2.1	31.33	7.91	2.9
						1.000	25.84	8.24	117.8	1.6	26.74	7.94	2.2
						1.000	25.83	7.84	112	1.4	26.81	7.94	2.2
2013/9/5 11:25	C2	ME	831489	807736	10.3	5.150	25.64	7.19	103.2	2.1	28.11	7.94	1.6
						5.150 9.300	25.64 25.57	7.24	103.8 92.6	1.7	28.06 28.68	7.94 7.91	
						9.300	25.57	6.7	92.0	3.5	28.08	7.91	1.5
						1.000	25.45	6.78	96.7	0.5	27.35	7.94	
						1.000	25.47	6.14	87.7	0.9	27.67	7.94	1.8
2012/0/5 12 12	C12		000010	000051	14.0	7.400	25.14	5.29	75.8	1.3	29.37	7.89	2.0
2013/9/5 12:48	C3	ME	832243	808851	14.8	7.400	25.14	5.09	72.7	0.9	28.62	7.9	2.0
						13.800	25.07	4.65	67.2	1.4	30.87	7.92	1.7
						13.800	24.94	4.56	65.6	1.6	30.64	7.91	1.7
						1.250	25.50	5.60	00.0	0.0	27.00	0.00	
2013/9/5 17:47	W1	MF	832943	807726	2.7	1.350 1.350	25.59	5.63	80.2	0.9	27.08 27	8.02 8.02	1.6
						1.550	25.69 25.69	5.62 5.86	80.3 83.6	1.1	27.03	8.02	
						1.000	25.68	5.66	80.9	1.1	27.03	8.02	1.4
						6.750	25.1	5.21	74.8	0.5	29.81	7.94	
2013/9/5 17:32	W2	MF	832679	808006	13.5	6.750	25.09	4.9	70.3	0.8	29.77	7.94	1.4
						12.500	24.49	4.34	62.3	2.4	31.51	7.88	1.5
						12.500	24.48	3.96	56.8	2.1	31.48	7.88	1.5
						1.000	25.68	6.32	90.3	1.3	27.04	8.02	1.4
						1.000	25.67	6.17	88.1	0.9	27.09	8.02	1.7
2013/9/5 17:16	W3	MF	832039	807901	13.2	6.600	25.01	5.97	85.5	1	29.76	7.9	2.2
						6.600	24.98	5.61	80.4	0.8	29.84	7.89	
						12.200 12.200	24.5 24.48	5.11 4.6	73.4		31.57 31.58	7.86 7.87	1.6
						12.200	24.40	5.56	79.3	0.9	27.03	8.01	
						1.000	25.69	5.52	78.8	1	26.94	8.02	2.2
2012/0/5 10 02	C1) (F	000701	000102	15.5	7.750	24.93	5.05	72.4	1.8	30.17	7.91	2.6
2013/9/5 18:02	C1	MF	833721	808193	15.5	7.750	24.94	4.44	63.7	1.1	30.06	7.91	2.6
						14.500	24.54	3.73	53.6	1.7	31.45	7.86	2.2
						14.500	24.54	3.58	51.3	1.4	31.41	7.85	2.2
						1.000	25.7	6.9	98.7	1.3	27.18	8	1.8
						1.000	25.69	6.66	95.2	1.2	27.14	8	
2013/9/5 17:02	C2	MF	831450	807766	11.6	5.800 5.800	25.04 25.08	5.95 5.54	85.1 79.3	0.8	29.36 29.22	7.91 7.92	1.6
						5.800	25.08	5.19	79.3	0.7	29.22	7.92	
						10.600	24.72	4.87	74.7	2.6	31.25	7.89	2.2
						1.000	24.03	5.93	84.6	1.1	27.23	8.01	
						1.000	25.64	5.97	85.4	1.1	27.23	8	1.8
										1.3		7.07	
2012/0/5 19 24	<i>C</i> 2	ME	922221	000074	15.0	7.900	24.8	5.36	77	1.3	30.72	7.87	0.0
2013/9/5 18:24	C3	MF	832231	808874	15.8	7.900 7.900	24.8 24.75	5.36	68.7	1.5	30.72	7.87	2.6
2013/9/5 18:24	C3	MF	832231	808874	15.8						30.68 31.15		2.6

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

7-Sep-13 Date

Data (minut	Terretor	m: 1. *	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/9/7 9:02	W1	ME	832984	807738	2.8	1.400	25.74	5.844	85.32	0.9	30.61	7.83	4.6
						1.400	25.76 25.81	5.628 6.024	82.2 87.96	0.8	30.59 30.5	7.83 7.78	
						1.000	25.81	5.892	85.92	1.1	30.54	7.78	4.9
2012/0/7 9.47	W2	ME	832659	907077	13.4	6.700	25.73	5.484	80.04	1.3	30.63	7.84	3.4
2013/9/7 8:47	VV Z	ME	832039	807977	13.4	6.700	25.73	5.448	79.32	1	30.6	7.84	3.4
						12.400	25.58	5.352	78.12	1.1	31.36	7.87	4.0
						12.400 1.000	25.61 25.8	5.244 6.492	76.56 94.56	1.3 0.6	31.27 30.35	7.84 7.76	
						1.000	25.78	6.372	92.88	0.7	30.4	7.77	4.0
2013/9/7 8:32	W3	ME	832.58	807882	13.2	6.600	25.74	5.892	85.8	0.9	30.35	7.8	4.2
2015/7/1 0.52	** 5	IVIL	052.50	007002	13.2	6.600	25.75	6.012	87.72	0.8	30.45	7.8	7.2
						12.200	25.58 25.59	5.748 5.82	83.88 84.96	0.9	31.27 31.25	7.84 7.82	3.2
						12.200	25.68	7.596	110.64	1.5	30.74	7.9	
						1.000	25.66	7.248	105.6	1.3	30.77	7.91	2.0
2013/9/7 9:19	C1	ME	833716	808165	15.6	7.800	25.6	6.732	98.28	1.2	31.34	7.92	2.0
2010/0// 0/10	01	10112	000710	000102	1010	7.800	25.59	6.684	97.68	1.8	31.38	7.92	210
						14.600 14.600	25.49 25.49	6.528 6.432	94.44 93.96	0.9	30.09 31.5	7.93 7.93	2.2
						14.000	25.81	9.852	143.4	1.2	30.06	7.64	
						1.000	25.79	8.868	129.12	1.1	30.11	7.67	1.8
2013/9/7 8:16	C2	ME	831482	807763	11.5	5.750	25.72	8.58	124.92	0.9	30.37	7.76	1.8
2013/7/ 0.10	02	IVIL	001102	007705	11.5	5.750	25.72	8.592	125.16	1	30.35	7.76	110
						10.500 10.500	25.6 25.59	7.608	111 108.72	2.8 2.9	31.06 31.06	7.78	1.2
						1.000	25.6	7.432	103.72	1.2	30.74	7.81	
						1.000	25.62	6.54	95.28	1.1	30.74	7.87	1.1
2013/9/7 9:40	C3	ME	832227	808885	16.2	8.100	25.55	6.108	89.16	1.8	31.44	7.93	0.9
2013/7/1 7.40	0.5	IVIL	052221	000005	10.2	8.100	25.54	6.18	90.24	1.7	31.48	7.94	0.7
						15.200 15.200	25.52 25.52	5.928 5.892	86.52 86.16	0.8	31.52 31.52	7.91 7.92	1.6
						15.200	23.32	5.092	80.10	1.4	51.52	1.92	
2012/0/7 12:20	W1	ME	822072	907750	2.0	1.450	25.88	6.59	95.8	0.9	29.59	7.72	0.9
2013/9/7 13:29	VV I	MF	832973	807750	2.9	1.450	25.92	6.29	91.4	1.3	29.55	7.7	0.8
						1.000	26.01	6.70	97.6	0.8	29.51	7.66	2.9
						1.000 6.750	25.94 25.74	6.50 5.84	94.6 85.2	0.7	29.52 30.64	7.66 7.72	
2013/9/7 13:11	W2	MF	832665	807991	13.5	6.750	25.74	5.88	85.7	1.3	30.68	7.72	2.7
						12.500	25.63	5.70	83.2	1.2	31.06	7.72	3.1
						12.500	25.6	5.71	83.3	1.1	31.06	7.75	5.1
						1.000	26.11	8.63	125.8	0.6	29.47	7.63	1.7
						1.000 6.600	26.21 25.75	7.08 6.28	103.4 91.4	0.7	29.39 30.55	7.63 7.69	
2013/9/7 12:55	W3	MF	832049	807889	13.2	6.600	25.72	6.13	89.4	1.6	30.57	7.69	1.1
						12.200	25.59	5.99	87.4	1.4	31.12	7.7	1.2
						12.200	25.59		87.0	1.2	31.1	7.7	1.2
						1.000	26.01 26.18	6.41 6.16	93.5 89.9	0.8	29.58 29.45	7.73	0.7
						7.900	25.73	5.62	89.9	2.6	30.54	7.76	
2013/9/7 13:47	C1	MF	833720	808193	15.8	7.900	25.71	5.51	80.0	2.1	30.24	7.77	1.1
						14.800	25.55	5.36	78.2	1.4	31.11	7.79	1.1
						14.800	25.6	5.28	76.9	1.1	31.01	7.77	
						1.000	26 25.96	7.54	109.6 103.7	1 0.7	29.16 29.26	7.69 7.7	1.0
2012/07 12 22	<i></i>		001111	0077550	14.2	5.600	25.79	6.67	97.0	0.7	29.20	7.68	1.0
2013/9/7 12:38	C2	MF	831446	807753	11.2	5.600	25.81	6.49	94.3	0.7	29.8	7.67	1.9
						10.200	25.68	6.46	93.5	1.2	29.48	7.73	1.1
						10.200	25.66	6.31	92.2	1.7	30.85	7.71	
						1.000	25.81 26.06	8.03 6.86	116.8 100.2	1.2	29.74 29.63	7.74	0.7
0010/075 /			00000	00000		8.250	26.06	5.87	85.6	1.6	29.63	7.75	
2013/9/7 14:07	C3	MF	832240	808854	16.5	8.250	25.71	5.75	83.8	0.9	30.68	7.8	1.1
						15.500	25.58	5.48	80.0	0.6	31.05	7.79	2.4
	1					15.500	25.55	5.44	79.2	0.7	31.07	7.81	2.7

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

9-Sep-13 Date

Det. / T	Lootie	T:1-*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/9/9 14:45	W1	ME	832968	807718	2.2	1.100	26.57	5.86	86.8	0.2	30.9	7.9	3.5
						1.100	26.51	5.86	86.8	0.6	30.94	7.89	
						1.000	26.54 26.64	6.51 6.01	95.4 88.7	0.3	28.91 30.2	7.94 7.91	2.1
			000.000	005054	12.2	6.100	26.32	5.69	83.9	0.1	30.73	7.95	
2013/9/9 14:28	W2	ME	832659	807976	12.2	6.100	26.31	5.69	83.9	0.3	30.78	7.95	2.1
						11.200	26.13	5.61	82.7	1.3	31.29	7.96	2.3
	_					11.200	26.08	5.33	78.7	2.1	31.55	7.95	2.5
						1.000	26.93	6.51	96.5	0.7	29.86	7.86	4.1
						1.000 5.750	26.93 26.29	6.72 5.92	99.6 87.4	0.7	29.88 31.11	7.85 7.89	
2013/9/9 14:09	W3	ME	832068	807885	11.5	5.750	26.29	5.8	85.6	1.9	31.09	7.88	4.3
						10.500	26.22	5.73	84.8	2.6	31.71	7.93	1.0
						10.500	26.23	5.69	84.3	3.2	31.7	7.94	4.8
						1.000	26.75	5.58	82.8	1.3	30.45	7.85	3.2
						1.000	26.76	5.52	81.84	1.3	30.48	7.87	5.2
2013/9/9 15:00	C1	ME	833692	808190	14.7	7.350	26.33	4.48	66.3	1.2	31.37	7.91 7.9	4.1
						7.350 13.700	26.31 26.08	4.53	67 65.1	1.6	31.35 31.95	7.9 7.89	
						13.700	26.05	4.4	65.1	1.4	31.99	7.91	5.2
						1.000	26.84	6.96	102.7	0.9	29.4	7.89	
						1.000	26.89	6.7	98.9	1	29.34	7.88	2.2
2013/9/9 13:54	C2	ME	831469	807765	9.8	4.900	26.18	6.2	90.4	1	29.39	7.87	4.3
2015/9/9 15.54	02	IVIL	001409	007705	9.0	4.900	26.15	6.16	89.9	1.2	29.6	7.88	4.5
						8.800	26.02	5.73	84.3	2.6	31.32	7.91	4.5
						8.800	25.98 26.33	5.65 5.79	83.2 85.4	2.2	31.41 30.84	7.92	
						1.000	26.33	5.62	83.4	0.8	30.84	7.87 7.87	2.1
						8.300	26.28	5.25	77.7	1.6	31.53	7.93	
2013/9/9 15:28	C3	ME	832228	808849	16.6	8.300	26.3	5.27	77.9	1.3	31.5	7.93	3.3
						15.600	25.88	5.2	76.6	2.6	32.01	7.9	3.4
						15.600	25.91	4.94	72.9	3.8	31.99	7.89	5.4
2012/0/0 0 50	11/1) (F	822064	007746	2.4	1.200	26.22	7.8	113.5	2.7	28.87	7.84	4.0
2013/9/9 8:58	W1	MF	832964	807746	2.4	1.200	26.18	7.96	115.9	2.7	28.91	7.85	4.2
						1.000	26.26	8.95	130.3	1.1	28.79	7.82	2.3
						1.000	26.19	7.02	102.3	0.6	28.93	7.84	210
2013/9/9 9:10	W2	MF	832691	807964	11.2	5.600 5.600	26.01 26.08	6.03 6.02	87.9 87.8	0.6	29.62 29.57	7.87 7.84	5.6
						10.200	20.08	5.72	83.5	1.2	30.15	7.89	
						10.200	26.03	5.71	83.4	1	30.1	7.87	5.4
						1.000	26.09	7.38	107.2	0.8	28.84	7.84	1.6
						1.000	26.08	7.25	105.3	0.9	28.86	7.84	1.0
2013/9/9 9:26	W3	MF	832033	807916	10.4	5.200	26.13	6.16	89.8	0.6	29.57	7.87	5.4
						5.200 9.400	26.09	6.16 5.95	89.9 87	0.5	29.58	7.87 7.88	
						9.400	26.12 26.08	5.95	87.4	0.7	29.86 29.9	7.88	5.8
						1.000	26.16	8.32	121	0.3	28.82	7.83	2.5
						1.000	26.19	8.31	120.9	0.3	28.8	7.82	3.5
2013/9/9 8:41	C1	MF	833714	808193	14.7	7.350	26	7.13	104	0.6	29.87	7.87	4.2
2013/7/7 0.41	01	1411	055714	000175	14.7	7.350	26.06	7.06	103.1	0.9	29.84	7.84	1.2
						13.700	26	6.46	94.4	2	30.09	7.86	4.1
	+					13.700 1.000	26.02 26.22	6.66	97.2 90.5	1.9 0.4	30.07 29.17	7.85 7.84	
						1.000	26.22	6.21	90.5	0.4	29.17	7.84	2.2
2012/0/2 2 22		100	021.015	007750	0.0	4.450	26.21	5.89	86.1	0.3	29.54	7.83	0.0
2013/9/9 9:39	C2	MF	831447	807758	8.9	4.450	26.27	5.88	86.1	0.6	29.57	7.83	3.2
						7.900	26.21	5.43	79.4	1.1	29.72	7.86	4.0
						7.900	26.21	5.48	80.1	1	29.73	7.87	ч.0
							06.00	8.51	123.8	0.3	29.22	7.73	3.5
						1.000	26.09			0.0			5.5
						1.000	26.09	7.74	112.7	0.2	29.19	7.75	5.5
2013/9/9 8:18	C3	MF	832229	808879	15.4	1.000 7.700	26.09 26.01	7.74 7.67	112.7 111.7	0.4	29.19 29.55	7.75 7.8	3.6
2013/9/9 8:18	C3	MF	832229	808879	15.4	1.000	26.09	7.74	112.7		29.19	7.75	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

11-Sep-13 Date

Data (minu	Terreter	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide.	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
2013/9/11 16:14	W1	ME	832987	807709	2	1.000	27.16	7.22	107.1	0.3	29.37	7.9	3.0
					_	1.000	27.21	7.21	107.0	0.4	29.34 29.5	7.9	
						1.000	27.11 27.09	8.34 8.35	123.8 123.8	0.6	29.5 29.52	7.93 7.95	1.2
						6.400	27.05	7.58	113.4	0.0	31.37	7.99	
2013/9/11 15:59	W2	ME	832692	807999	12.8	6.400	27.04	7.58	113.4	0.7	31.37	7.99	1.8
						11.800	26.95	5.73	85.9	0.4	31.92	8	3.0
						11.800	26.96	5.73	85.9	0.5	31.92	8	5.0
						1.000	27.19 27.18	7.70	114.2 114.3	0.9	29.49 29.49	7.92 7.92	2.4
						6.550	27.18	7.11	114.3	0.9	29.49	7.92	
2013/9/11 15:41	W3	ME	832022	807880	13.1	6.550	26.83	7.10	106.0	0.5	31.37	7.94	3.1
						12.100	26.77	6.56	98.2	3.1	32.07	7.97	3.0
						12.100	26.82	6.55	98.2	3.7	32.02	7.95	5.0
						1.000	27.08	6.83	101.3	0.8	29.44	7.92	2.3
						1.000 7.100	27.1 26.97	6.78 6.21	100.4 93.0	0.7	29.46 31.75	7.9 8.01	
2103/9/11 16:36	C1	ME	833724	808156	14.2	7.100	20.97	6.20	93.0	0.0	31.73	8	2.6
						13.200	26.96	6.15	92.2	2	31.84	7.99	15
						13.200	26.93	5.97	89.5	2.4	31.87	7.99	4.5
						1.000	27.12	6.84	101.3	0.4	29.24	7.93	2.7
						1.000	27.12	8.26	122.5	0.9	29.29	7.92	2.1
2013/9/11 15:26	C2	ME	831454	807761	9.1	4.550	26.97	7.66	113.8	2.9	30.2	7.87	2.0
						4.550 8.100	26.97 26.77	7.35 6.89	109.3 103.1	2.9 3.9	30.24 32.13	7.88 7.96	
						8.100	26.81	6.98	105.1	3.9	32.13	7.90	2.2
						1.000	27.19	6.94	103.0	0.7	29.24	7.92	
						1.000	27.2	6.91	102.6	0.4	29.33	7.91	1.4
2013/9/11 17:04	C3	ME	832238	808847	16.1	8.050	26.94	6.07	90.9	0.2	31.75	7.99	1.5
2013/9/11 17.04	C	IVIL	032230	000047	10.1	8.050	27	5.91	88.6	0.2	31.63	8	1.5
						15.100	26.86	5.76	86.2	2.1	32.03	7.99	1.6
						15.100	26.84	5.70	85.4	2.5	32.04	7.98	
						1.300	26.8	6.99	102.5	0.7	28.55	7.82	
2013/9/11 11:00	W1	MF	832942	807716	2.6	1.300	26.8	6.94	102.5	0.7	28.56	7.82	1.0
						1.000	26.78	6.55	96.1	0.6	28.52	7.83	2.0
						1.000	26.81	6.80	99.9	0.5	28.49	7.82	2.3
2013/9/11 10:42	W2	MF	832684	807960	12.4	6.200	26.71	6.31	93.2	0.7	29.73	7.87	3.1
2013/3/11 10.12	112	1011	052001	007700	12.1	6.200	26.74	6.31	93.2	0.4	29.73	7.87	5.1
						11.400	26.76	6.16	91.7	2.4	31.31	7.95 7.95	3.3
						11.400 1.000	26.78 26.85	5.46 7.40	81.3 108.9	2.6	31.32 28.81	7.95	
						1.000	20.85	7.40	108.4	0.7	28.83	7.81	2.5
2012/0/11 10 26			0000 (7	005040	12.2	6.100	26.74	6.69	98.6	0.7	29.52	7.86	2.0
2013/9/11 10:26	W3	MF	832067	807918	12.2	6.100	26.76	6.84	100.9	0.5	29.52	7.85	2.8
						11.200	26.76	6.48	96.5	2.3	31.32	7.93	3.3
						11.200	26.72		95.0			7.94	5.5
						1.000	26.87 26.9	6.29 6.44	92.7 95.0	0.4	29.04 29.03	7.87 7.86	1.8
						7.600	26.9	5.85	95.0 86.6	0.7	29.03	7.86	
2013/9/11 11:15	C1	MF	833692	808189	15.2	7.600	26.75	5.80	85.9	0.4	30.28	7.9	1.4
						14.200	26.78	5.24	78.1	3.2	31.42	7.95	20
						14.200	26.78	4.95	73.7	2.2	31.39	7.95	2.8
						1.000	26.86	7.35	108.3	0.3	28.92	7.75	2.6
						1.000	26.84	7.57	111.8	0.3	28.99	7.81	
2013/9/11 10:08	C2	MF	831472	807761	9.3	4.650 4.650	26.9 26.94	6.99 6.85	103.3 101.2	0.7	29.3 29.32	7.82 7.81	2.6
						4.630 8.300	26.94	6.06	89.7	0.5	29.52	7.81	
						8.300	26.88	6.06	89.2	0.6	29.7	7.83	2.8
	1					1.000	26.87	6.33	93.3	0.6	29.07	7.84	2.5
						1.000	26.89	6.25	92.1	0.6	29.04	7.84	2.3
2013/9/11 11:36	C3	MF	832214	808890	17.6	8.800	26.76	5.68	84.2	0.7	30.34	7.89	3.8
						8.800	26.77	5.68	84.2	0.5	30.34	7.9	2.0
						16.600	26.76	5.46	81.3	3.6		7.95 7.94	3.8
ME Mid Eload Tida	1	1				16.600	26.76	4.58	68.3	5.6	31.53	1.94	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

13-Sep-13 Date

Data (Time	Taratian	m:1.+	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/9/13 8:42	W1	ME	832969	807713	2.4	1.200	27.18	8.76	129.6	0.4	28.89	7.9	1.0
2013/7/13 0.42	W 1	ML	052707	007715	2.7	1.200	27.19	8.75	129.6	0.2	28.88	7.9	1.0
						1.000	27.25	7.93	117.5	0.2	28.91	7.87	2.3
						1.000 6.150	27.2 27.17	7.9 7.41	116.9 110	0.4	28.94 29.43	7.88 7.88	
2013/9/13 8:50	W2	ME	832689	808004	12.3	6.150	27.17	7.41	110	0.2	29.49	7.89	2.2
						11.300	27.03	7.11	106.1	3.4	30.83	7.93	2.2
						11.300	27.07	7.29	108.9	3.1	30.8	7.92	2.2
						1.000	27.2	8.41	124.4	1.2	28.69	7.89	2.9
						1.000	27.2	8.35	123.5	0.5	28.69	7.88	
2013/9/13 9:06	W3	ME	832039	807897	12.2	6.100 6.100	27.16 27.15	8.04 7.96	119.3 118	1.1 0.3	29.37 29.39	7.9 7.89	2.0
						11.200	27.13	7.90	113	3.8	30.63	7.9	
						11.200	27.09	7.25	108.2	3.9	30.59	7.89	3.1
						1.000	27.19	8.38	124.1	0.2	28.87	7.84	1.0
						1.000	27.22	7.97	118	0.1	28.87	7.83	1.0
2013/9/13 8:26	C1	ME	833692	808190	14.4	7.200	27.16	7.85	116.4	0.1	29.23	7.85	1.9
						7.200	27.16	7.8	115.6	0.2	29.24	7.85	
						13.400 13.400	26.97 26.94	7.35	109.6 109.7	2.9 2.6	30.89 30.92	7.87 7.88	2.0
						13.400	26.94	7.30	109.7	2.0	28.89	7.88	
						1.000	27.25	7.74	113.0	0.5	28.83	7.9	1.2
2012/0/12 0 17	~~~		001451	00774	0.4	4.700	27.17	7.04	104.5	0.5	29.43	7.91	1.1
2013/9/13 9:17	C2	ME	831451	807764	9.4	4.700	27.17	6.97	103.4	0.4	29.43	7.9	1.1
						8.400	27.18	5.87	87.4	0.1	30.08	7.9	1.8
						8.400	27.15	5.61	83.4	0.3	30.08	7.91	1.0
						1.000	27.18	7.40	109.7	0.2	29.17	7.81	1.0
						1.000 8.100	27.16 27.12	7.45	110.3 103.0	0.4	29.18 29.37	7.83 7.85	
2013/9/13 8:08	C3	ME	832217	808871	16.2	8.100	27.12	6.94	103.0	1.1	29.37	7.82	2.8
						15.200	26.95	6.23	93.0	3	31.1	7.86	
						15.200	26.94	5.92	88.3	3.8	31.14	7.87	3.0
2013/9/13 13:55	W1	MF	832944	807750	2.2	1.100	27.47	5.54	82.6	0.8	29.18	7.98	1.4
2010//10 10:00			002711	007750	2.2	1.100	27.5	5.44	81	0.7	29.19	8	
						1.000	27.47 27.51	5.47 5.47	81.4 81.6	0.8	29.17 29.16	8.01 8.03	1.7
						5.800	27.31	5.28	79.1	0.4	31.15	8.03	
2013/9/13 13:40	W2	MF	832692	807968	11.6	5.800	27.21	4.94	79.1	0.2	31.16	8.02	2.6
						10.600	27.04	4.93	73.9	3.6	31.64	7.99	2.2
						10.600	27.07	4.84	72.5	3.1	31.57	7.98	3.3
						1.000	27.47	6.47	96.4	0.4	29.27	8.03	2.6
						1.000	27.45	6.44	95.9	0.7	29.3	8.03	210
2013/9/13 13:25	W3	MF	832026	807869	11.5	5.750 5.750	27.34 27.3	5.94 5.94	88.7 88.8	3.7 3.9	30.22 30.27	7.99 7.99	2.7
						10.500	27.02	5.29	79.5	3.8	31.94	8.04	
						10.500	27.02			2.3		8.03	3.6
						1.000	27.5	5.91	88	0.1	29.19	8.04	3.1
						1.000	27.48	5.91	88.1	0.1	29.2	8.02	5.1
2013/9/13 14:11	C1	MF	833731	808185	14.6	7.300	27.23	5.31	79.7	1.2	31.31	8.06	2.5
						7.300	27.2	5.31	79.8	1.1	31.31	8.04	
						13.600 13.600	27.02 27.08	4.86	72.9 72.9	2.1	31.87 31.85	8.04 8.05	2.9
	1					13.000	27.08	4.83	122.6	0.9	28.93	8.05	
						1.000	27.49	8.16		0.3	28.99	8.05	2.8
2013/9/13 13:13	C2	MF	831460	807765	8.7	4.350	27.46	7.49		0.3	29.38	8.03	2.3
2013/113 13.13	C2	IVIF	651400	807705	0.7	4.350	27.47	7.41	110.5	0.5	29.41	8.03	2.3
						7.700	27.12	5.52	82.6	2.3	31.13	8	2.2
						7.700	27.13	5.48	82.1	2.1	31.15	7.99	
						1.000	27.46	5.74	85.5 85.5	0.4	29.22 29.2	8.01 8.01	1.2
						8.350	27.49	5.06		0.3	31.41	8.01	
2013/9/13 14:34	C3	MF	832246	808854	16.7	8.350	27.17	5.08	76.2	0.1	31.41	8.04	1.9
	1					15.700	27.11	4.85	72.9	2.1	32.01	8.05	
						15.700	27.11	05	72.9	1.7	52.01	8.06	1.9

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

17-Sep-13 Date

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Dat / Time	Location	Thuc	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
2013/9/17 10:12	W1	ME	832959	807710	2.3	1.150	27.64	7.75	116.2	0.7	29.73	7.85	1.0
						1.150	27.64	7.75	116.2	0.9	29.77	7.86	
						1.000	27.58 27.69	7.62	114.0 112.9	0.7	29.74 29.72	7.82 7.84	2.4
						6.150	27.69	6.94	112.9	0.8	29.72	7.84	
2013/9/17 10:20	W2	ME	832692	807964	12.3	6.150	27.61	6.94	104.0	1.2	29.73	7.84	1.7
						11.300	27.5	6.11	91.6	3	30.15	7.82	1.6
						11.300	27.49	6.11	91.6	3.5	30.16	7.82	1.0
						1.000	27.73	8.64 9.17	129.6	1.4	29.6	7.92 7.9	1.7
						1.000 5.900	27.74 27.62	9.17	137.6 122.3	1.7	29.66 29.78	7.9 7.84	
2013/9/17 10:39	W3	ME	832027	8079909	11.8	5.900	27.58	8.16	122.3	1.5	29.78	7.86	1.7
						10.800	27.45	7.25	108.9	1.7	30.81	7.82	2.0
						10.800	27.41	6.59	99.0	1.6	30.87	7.79	2.0
						1.000	27.36	6.98	104.1	0.4	29.67	7.61	1.7
						1.000	27.6	8.56	128.1	0.6	29.68	7.68	1.7
2013/9/17 9:58	C1	ME	833709	808191	14.9	7.450 7.450	27.55 27.51	7.82 7.73	117.0 115.5	1.2	29.74 29.7	7.67 7.7	1.7
						13.900	27.31	6.73	115.5	1.1	29.7	7.69	
						13.900	27.52	6.70	100.5	1.4	30.3	7.65	1.7
						1.000	27.65	7.38	110.6	0.9	29.58	7.83	1.0
						1.000	27.63	7.41	110.9	0.8	29.62	7.85	1.3
2013/9/17 10:56	C2	ME	831454	807764	9.2	4.600	27.57	6.80	101.7	1.1	29.6	7.84	1.4
2015/7/17 10.50	02	IVIL	051454	007704	7.2	4.600	27.56	6.79	101.4	1.1	29.61	7.85	1.1
						8.200	27.48	5.83	87.4	2.7	30.06	7.77	2.4
						8.200 1.000	27.47	5.44 7.16	81.4 107.0	2.1	30.22 29.26	7.76 7.79	
						1.000	27.63	7.10	107.0	1.3	29.20	7.79	2.5
						8.150	27.55	6.56	98.3	0.7	29.66	7.77	
2013/9/17 9:39	C3	ME	832206	808884	16.3	8.150	27.61	6.18	92.9	0.9	29.62	7.73	3.8
						15.300	27.44	5.16	77.5	1.6	30.99	7.7	2.5
						15.300	27.39	4.94	73.9	1.4	31.03	7.7	2.5
						1.000	25.52	6 50	07.0	0.6	00.04	5.00	
2013/9/17 17:47	W1	MF	832955	907739	2.4	1.200	27.72	5.78 5.78	87.0 87.0	0.6	30.36 30.37	7.89 7.9	2.7
						1.200	27.73	6.43	87.0 96.8	0.6	30.37	7.9	
						1.000	27.73	6.59	90.8	0.0	30.38	7.91	3.4
2012/0/15 15 22			0000001	007074	10.5	6.250	27.67	6.09	91.8	0.5	30.64	7.9	5.0
2013/9/17 17:33	W2	MF	832691	807964	12.5	6.250	27.68	6.01	90.6	2.2	30.56	7.91	5.0
						11.500	27.59	4.98	74.9	0.7	30.66	7.85	4.6
	_					11.500	27.58	4.93	74.2	0.8	30.79	7.86	1.0
						1.000	27.75	7.62	114.8	1.4	30.28	7.92	4.2
						1.000 5.900	27.72 27.7	7.76	116.9 108.8	1.1	30.32 30.63	7.92 7.91	
2013/9/17 17:12	W3	MF	832028	807890	11.8	5.900	27.7	7.19	108.4	2	30.63	7.92	4.1
						10.800	27.54	5.40	81.4	1.7	30.9	7.84	4.0
						10.800	27.54	5.40	81.4	1.7	30.9	7.84	4.2
						1.000	27.69	6.58	99.0	1.2	30.29	7.89	3.7
						1.000	27.71	6.61	99.2	0.8	29.83	7.88	
2013/9/17 17:56	C1	MF	833684	808160	15.1	7.550 7.550	27.66 27.72	5.81 5.80	87.2 87.2	0.5	30.29 30.28	7.93 7.92	5.4
						14.100	27.12	5.80	87.2	0.7	30.28 30.85	7.92	
						14.100	27.44	4.91	73.8	0.24	30.78	7.79	4.6
						1.000	27.72	7.34	109.9	0.4	29.53	7.95	20
						1.000	27.71	7.45	111.4	1.1	29.02	7.96	3.8
2013/9/17 17:02	C2	MF	831479	807768	9.4	4.700	27.66	6.21	93.3	1.3	30.2	7.93	2.6
2010/01/11/02				00,700	2.1	4.700	27.68	6.22	93.6	1.8	30.18	7.92	2.0
						8.400	27.65	5.27	78.6	2.7	28.87	7.91	2.6
						8.400 1.000	27.6 27.62	5.16 5.88	77.5 88.4	2.1	30.3 30.33	7.9 7.86	
						1.000	27.62	5.96	89.6	1.6	30.33	7.86	3.6
2012/0/17 10 12	C 2		022055	007700	16.5	8.250	27.66	5.78	87.1	2.4	30.58	7.89	0.0
2013/9/17 18:12	C3	MF	832955	807739	16.5	8.250	27.66	6.03	90.9	1.6	30.59	7.89	2.8
	1					15.500	27.49	5.85	87.9	4.4	30.56	7.81	2.6
	1					15.500	27.46	5.40	80.9	4.2	30.23	7.8	2.0

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

19-Sep-13 Date

D : (77		m :1 +	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/9/19 12:04	W1	ME	832970	807737	2.4	2.200	27.58	7.81	118	1.2	31.26	7.59	2.8
						2.200	27.57	7.81	118 109.3	1.1	31.26	7.59 7.58	
						1.000	27.55 27.55	7.24	109.3	0.8	31.28 31.29	7.58	2.6
2012/0//0 12 12			0000000	005055	10.5	6.350	27.47	7.1	107.1	1.3	31.45	7.58	
2013/9/19 12:13	W2	ME	832686	807975	12.7	6.350	27.44	7.02	105.8	1	31.45	7.61	4.1
						11.700	27.47	6.77	102.4	1.6	31.9	7.61	3.0
					-	11.700	27.47	6.74	102	1.4	31.9	7.6	5.0
						1.000	27.49	6.01	90.4	1.1	30.96	7.69 7.66	2.3
						1.000 6.100	27.53 27.43	5.88 5.47	88.5 82.6	1.1	30.94 31.74	7.66	
2013/9/19 12:30	W3	ME	832032	807881	12.2	6.100	27.45	5.41	81.7	2.7	31.74	7.66	2.8
						11.200	27.47	5.24	79.4	3.6	32.22	7.69	2.2
						11.200	27.45	5.32	80.6	3.9	32.23	7.69	3.3
						1.000	27.56	7.51	113.4	3.4	31.41	7.29	3.2
						1.000	27.57	7.62	115.2	3.8	31.42	7.31	5.2
2013/9/19 11:46	C1	ME	83376	808159	13.6	6.800	27.55	6.76 6.75	102.2	3.5 2.8	31.5 31.5	7.36 7.36	4.3
						6.800 12.600	27.53 27.47	5.85	102.1 88.5	2.8	31.5	7.36	
						12.600	27.47	5.57	84.2	2.0	31.93	7.56	3.1
						1.000	27.53	4.62	69.5	0.6	30.74	7.75	
						1.000	27.54	5.68	85.5	0.7	30.74	7.75	4.1
2013/9/19 12:45	C2	ME	831459	807718	9.4	4.700	27.4	6.15	90.6	1	31.07	7.7	4.5
2013/9/19 12.45	C2	IVIL	051459	007710	9.4	4.700	27.36	6.01	90.3	1.1	31.09	7.7	7.5
						8.400	27.44	5.64	85.2	3.1	31.8	7.71	3.6
						8.400	27.41	5.64	85.3	3	31.83 31.25	7.73	
						1.000	27.6 27.61	7.52	113.6 113.6	2.6 2.6	31.25	7.27	3.2
						7.350	27.51	6.59	99.5	2.0	31.49	7.18	
2013/9/19 11:24	C3	ME	832229	808887	14.7	7.350	27.53	6.59	99.5	3.2	31.47	7.17	3.4
						13.700	27.48	5.55	83.9	3.5	31.89	7.21	2.6
						13.700	27.45	5.52	83.5	3.6	31.92	7.23	2.0
						1.950	25.64	6.50	00.6	0.4	04.54	5.04	
2013/9/19 17:51	W1	MF	832964	807720	2.5	1.250	27.61	6.58	99.6	0.4	31.54	7.91 7.89	1.4
						1.250 1.000	27.65 27.66	6.58 7.42	99.5 112.3	0.4	31.5 31.44	7.89	
						1.000	27.00	7.42	112.5	1.5	31.44	7.87	3.0
2012/0/10 17 20			000.000	005054		5.950	27.65	7.21	109.3	1.5	31.74	7.86	2.0
2013/9/19 17:39	W2	MF	832692	807976	11.9	5.950	27.64	7.22	109.4	1.4	31.76	7.88	2.9
						10.900	27.51	6.56	99.4	2.8	32.07	7.87	3.7
						10.900	27.52	6.42	97.3	3	32.06	7.86	5.7
						1.000	27.69	7.28	110.1	1.6	31.07	7.6	1.9
						1.000 5.800	27.71 27.43	7.28 6.46	110.1 97.4	1.8 1.1	31.06 31.55	7.6 7.58	
2013/9/19 17:18	W3	MF	832029	807913	11.6	5.800	27.43	6.46	97.4	0.8	31.55	7.58	1.3
						10.600	27.5	7.53	114.1	1.6	32.15	7.88	1.0
						10.600	27.48	7.53	114.1	1.7	32.2	7.89	1.9
						1.000	27.65	6.39	96.7	1.3	31.52	7.87	1.6
						1.000	27.64	6.24	94.4	1.3	31.56	7.87	1.0
2013/9/19 18:07	C1	MF	833717	808189	14	7.000	27.58	6.19	93.7	1.4	31.71	7.85	2.7
						7.000 13.000	27.59 27.54	6.12 5.9	90.8 89.5	1.2	31.67 32.07	7.85 7.85	
						13.000	27.54	5.81	88	2.1	32.07	7.85	2.1
						1.000	27.72	7.55	113.8	0.7	30.61	7.71	1.0
						1.000	27.71	7.69	116.0	0.9	30.67	7.69	1.9
2013/9/19 17:02	C2	MF	831486	807772	9.8	4.900	27.42	7.05	106.2	1.2	31.33	7.57	1.8
2013/717 11.02	C2	1411	051400	007772	2.0	4.900	27.4	6.87	103.6	1.2	31.43	7.57	1.0
						8.800	27.44	5.42	82.2	1.8	32.46	7.56	1.9
						8.800	27.5	5.41	82.1	2.3	32.42	7.54	
						1.000	27.66 27.67	5.69	86.3 86.1	2.5	31.49 31.51	7.87 7.88	1.7
						7.450	27.07	5.41	82	1.9		7.87	
2013/9/19 18:22	C3	MF	832224	808882	14.9	7.450	27.63	5.41	81.9	1.5		7.86	3.2
						13.900	27.61	5.18	78.5	1.4	31.95	7.86	
						15.700	27101	0.00					2.3

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 21-Sep-13

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	1100	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
2013/9/21 13:30	W1	ME	832977	807748	2.4	1.200	27.86			3.2	32.74	7.15	2.5
2010///21 10:00		10112	052711	007710	2	1.200	27.8	5.69	86.1	3.6	32.79	7.22	210
						1.000	27.81 27.82	5.22 5.38	79.8 82.2	3.6	32.81 32.8	6.86 6.89	4.8
						6.300	27.82	4.99	76.2	2	33.02	6.96	
2013/9/21 13:15	W2	ME	832659	807974	12.6	6.300	27.73	5.07	77.5	2.2	33	6.95	4.0
						11.600	27.67	5.04	76.9	4.1	33.05	7	11.6
						11.600	27.68	5.08	77.6	3.6	33.06	7.01	11.0
						1.000	27.79 27.77	6.05 5.9	92.5 90.2	4.3	32.87	6.53 6.55	3.6
						1.000 6.150	27.72	5.47	90.2	2.5	32.89 33.06	6.59	
2013/9/21 13:00	W3	ME	832063	807895	12.3	6.150	27.72	5.72	86.7	2.1	31.73	6.6	4.8
						11.300	27.7	5.49	84	2	33.18	6.66	7.2
						11.300	27.71	5.6		1.5	33.17	6.66	1.2
						1.000	27.88	5.7	87.1	3.2	32.42	7.28	4.8
						1.000 7.400	27.85	5.59 5.32	85.4 81.3	3.9 2.4	32.67 32.92	7.31	
2013/9/21 13:48	C1	ME	833717	808195	14.8	7.400	27.73	5.32	81.5	2.4	32.92	7.35	4.8
						13.800	27.71	5.47	83.5	2.4	32.96	7.36	5.0
						13.800	27.71	5.5	84	3.4	32.97	7.37	5.0
						1.000	28.01	7.88	120.5	3.9	32.3	6.61	3.6
						1.000	27.93	8.06	123.2	4	32.51	6.53	5.0
2013/9/21 12:45	C2	ME	831449	807727	10.4	5.200	27.72	6.73	102.8	1.4	32.93	6.46	6.3
						5.200 9.400	27.72 27.7	6.55 6.54	100 99.9	2.3	32.96 33.15	6.45 6.42	
						9.400	27.69	6.48	99.9	1.6	33.16	6.42 6.44	9.2
						1.000	27.83	5.18		2.4	32.7	7.46	
						1.000	27.91	5.2	79.5	3.7	32.54	7.48	3.9
2012/0/21 14:09	C3	ME	832238	000070	15.0	7.600	27.74	4.98	76.1	2.4	32.85	7.48	3.8
2013/9/21 14:08	CS	IVIE	032230	808879	15.2	7.600	27.7	5.13	78.3	1.9	32.88	7.53	5.8
						14.200	27.71	5.13	78.1	3.4	32.63	7.53	3.5
						14.200	27.76	5.12	78.3	3.4	32.88	7.52	
						1.400	27.78	7.33	111.3	1.7	31.87	7.65	
2013/9/21 8:57	W1	MF	832981	807739	2.8	1.400	27.74	7.73	111.5	1.7	32.02	7.61	5.3
						1.000	27.8	6.91	105.1	1.8	31.98	7.62	2.6
						1.000	27.78	6.81	103.6	1.7	31.99	7.61	2.6
2013/9/21 9:10	W2	MF	832690	807996	13.5	6.750	27.7	6.59	100.2	1.3	32.18	7.61	2.8
2013/7/21 7.10	112	1411	052070	007770	15.5	6.750	27.7	6.5	98.9	1.7	32.17	7.59	2.0
						12.500	27.63	6.4	97.3	5.8 4.9	32.43	7.61 7.6	4.1
						12.500 1.000	27.65 27.87	6.37 6.95	96.8 105.7	4.9	32.41 31.69	7.6	
						1.000	27.87		105.7	2.8	31.67	7.74	2.6
2012/0/21 0.26	11/2		0000.41	007000	10.0	6.600	27.66	6.47	98.4	3.1	32.34	7.74	4.0
2013/9/21 9:26	W3	MF	832041	807888	13.2	6.600	27.68	6.49	98.7	2.9	32.32	7.74	4.2
						12.200	27.65	6.35	96.6	3.3	32.39	7.73	5.1
						12.200	27.65					7.72	
						1.000	27.71 27.72	6.35 6.35	96.3 96.4	2.2	31.74 31.72	7.76 7.76	0.7
	1					7.950	27.72			4	32.01	7.76	
2013/9/21 8:36	C1	MF	833722	808154	15.9	7.950	27.69		95.8	1.8	32.02	7.77	2.8
	1					14.900	27.66		93.1	5.4	32.39	7.79	8.2
						14.900	27.64	6.07	92.3	6.4	32.37	7.77	0.2
	1					1.000	27.97	6.89		1.4	31.54	7.8	1.8
	1					1.000	27.94	6.59	100.2	1.2	31.56	7.79	
2013/9/21 9:40	C2	MF	831473	807762	11.3	5.650 5.650	27.73 27.74	5.9 5.79		2.7	31.8 31.8	7.74 7.74	1.8
	1					10.300	27.74			9.9		7.74	4.1
						10.300	27.65	5.56		11.2	32.29	7.75	4.4
						1.000	27.69	7.56		2		7.73	3.0
						1.000	27.71	7.83	118.7	2.1	31.68	7.73	5.0
2013/9/21 8:15	C3	MF	832239	808875	16.4	8.200	27.65	6.59		2.8	31.98	7.7	4.0
						8.200 15.400	27.64			2.2 7.6	31.93 32.23	7.69 7.7	
	1					15.400	27.64		105.1		32.23	7.7	4.4
ATE MEDITED	-	1				10.400	27.03	/.11	108	1./	32.29	1./	

MF- Mid Flood Tide

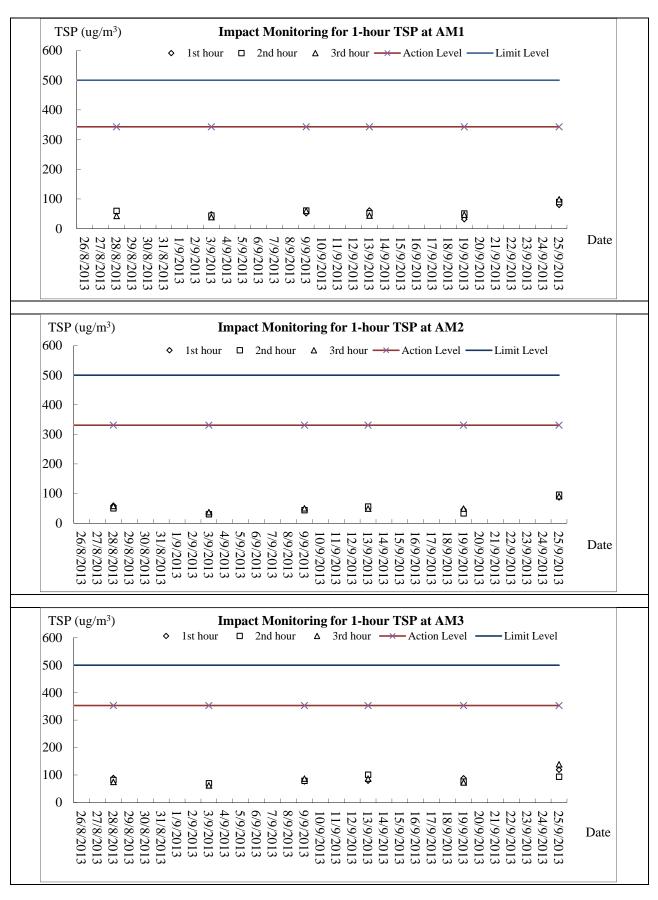
ME- Mid Ebb tide

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

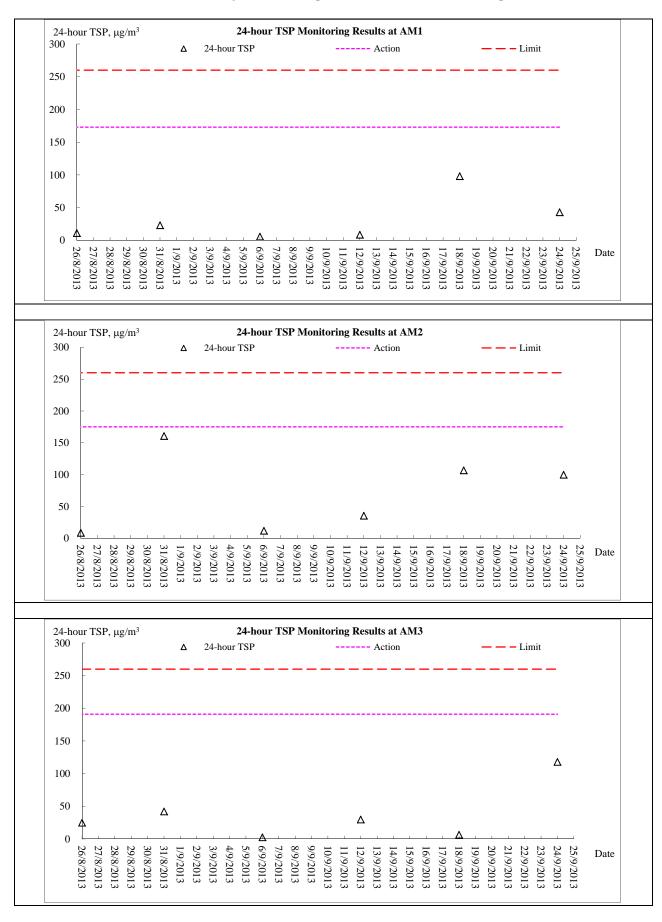
Sok Kwu Wan

Date 25-Sep-13

Date / Time	Teestien	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide+	East	North	m	n	ပီ	mg/L	%	NTU	ppt	unit	mg/l
2013/9/25 15:30	W1	ME	832990	807758	2.3	1.150	27.85	7.83	119.1	2.2	31.67	7.87	5.0
2013/7/23 13:30		MIL	032770	007750	2.5	1.150	27.86	7.70	117.0	2	31.65	7.87	5.0
						1.000	28.04 28.04	7.00	106.4	2.8	31.35 31.34	7.85 7.85	3.5
						6.450	28.04	4.81	73.3	1.6	32.05	7.91	
2013/9/25 15:21	W2	ME	832692	807964	12.9	6.450	27.85	4.71	71.7	2.7	32.13	7.91	4.6
						11.900	27.8	4.55	69.4	3.9	32.26	7.9	3.2
						11.900	27.79	4.19	63.8	3.9	32.27	7.91	5.2
						1.000	28.19	7.46	113.6	0.9	30.94	7.78	3.1
						1.000 6.100	28.2 27.78	7.47	113.8 115.8	1.4	30.93 31.95	7.78	
2013/9/25 15:10	W3	ME	832028	807899	12.6	6.100	27.78	7.25	110.2	2.5	31.97	7.79	3.7
						11.600	27.83	6.39	97.4	4.2	32.23	7.8	2.8
						11.600	27.85	6.38	97.2	4.3	32.23	7.79	2.0
						1.000	27.87	8.30	126.4	2	31.99	7.93	2.3
						1.000 7.700	27.89 27.76	7.84	119.4 127.7	2.1 2.6	32.02	7.93 7.94	
2013/9/25 15:57	C1	ME	833688	808197	15.4	7.700	27.76	7.95	127.7	2.0	32.44	7.94	2.0
						14.400	27.7	6.71	102.4	3.3	32.75	7.94	2.0
						14.400	27.71	6.47	98.7	3.2	32.73	7.96	2.8
						1.000	28.23	7.62	115.8	1	30.55	7.65	4.3
						1.000	28.24	7.65	116.3	1.1	30.61	7.66	
2013/9/25 14:53	C2	ME	831447	807780	10	5.000 5.000	27.82 27.74	7.38 7.33	111.9 111.1	3.5	31.4 31.5	7.64 7.69	4.7
						9.000	27.76	6.96	105.8	3.7	31.81	7.69	
						9.000	27.76	6.96	105.8	4.6	31.8	7.69	4.6
						1.000	28.19	8.52	130.0	1.4	30.99	7.91	2.0
						1.000	28.22	8.40	128.2	1.4	31	7.9	2.0
2013/9/25 15:40	C3	ME	832247	808879	15.9	7.950 7.950	27.9 27.91	8.51	129.8 129.8	1.7	32.12 32.11	7.93 7.92	2.1
						14.900	27.91	8.52 7.99	129.8	2.2	32.11	7.92	
						14.900	27.76	6.98	106.3	1.5	32.42	7.92	2.1
2013/9/25 10:39	W1	MF	832939	807789	2.8	1.400	27.81	7.46	112.9	2	30.89	7.92	1.9
2013/7/23 10:37			002/0/	00//07	2.0	1.400	27.81	7.27	110.0	2.2	30.91	7.94	1.9
						1.000	27.88 27.87	7.53 8.29	114.0 125.4	2.8 2.8	30.83 30.83	7.96 7.95	3.3
						6.800	27.87	5.99	90.7	2.0	31.03	7.93	
2013/9/25 10:29	W2	MF	832654	807956	13.6	6.800	27.79	5.68	86.0	2.9	31.04	7.92	2.7
						12.600	27.66	5.58	85.0	3.1	32.86	7.97	4.1
						12.600	27.64	4.82	73.5	3.4	32.9	7.97	4.1
						1.000	27.78	7.37	111.4	1.1	30.91	7.98	1.5
						1.000	27.79 27.74	6.79	102.7 97.4	1.2	30.91 31.11	7.98 7.93	
2013/9/25 10:18	W3	MF	832065	807917	13.3	6.650 6.650	27.74	6.44 6.04	97.4	2.7	31.11	7.95	1.9
						12.300	27.76	4.33	65.6	4.2	31.32	7.91	0.1
						12.300	27.71	4.67	70.7	4.2	31.37	7.94	3.1
						1.000	27.95	7.06	106.9	0.4	30.82	7.95	1.8
						1.000	27.91	7.82	118.5	1.1	30.88	7.95	
2013/9/25 10:49	C1	MF	833683	808217	15.7	7.850 7.850	27.81 27.79	7.10 6.58	107.8 99.8	1.8	31.55 31.59	7.93	2.1
						14.700	27.66	5.16	78.4	3.6	32.43	7.94	
						14.700	27.72	5.94	90.3	3	32.32	7.92	4.1
						1.000	27.71	6.29	94.7	0.6	30.43	7.77	1.4
						1.000	27.69	7.77	117.0	0.5	30.45	7.82	1.7
2013/9/25 9:57	C2	MF	831437	807742	11	5.500 5.500	27.73	6.92 6.39	104.6 96.6	1.9	31.03	7.86 7.87	3.0
						10.000	27.72	0.39 7.91	120.0	2	31.02	7.87	
						10.000	27.65	6.66	101.0	1.5	31.92	7.86	3.0
						1.000	27.94	8.26	125.3	1.3	30.92	7.91	1.8
						1.000	27.92	8.27	125.3	1.7	30.94	7.92	1.8
	C3	MF	832939	807789	16.3	8.150	27.76	6.30	95.3	2.6	31.2	7.9	2.3
2013/9/25 11:13								6.14	92.9	2.8	31.23	7.02	
2013/9/25 11:13	0.5					8.150 15.300	27.74 27.69	5.66	92.9	3.8	32.18	7.92 7.93	

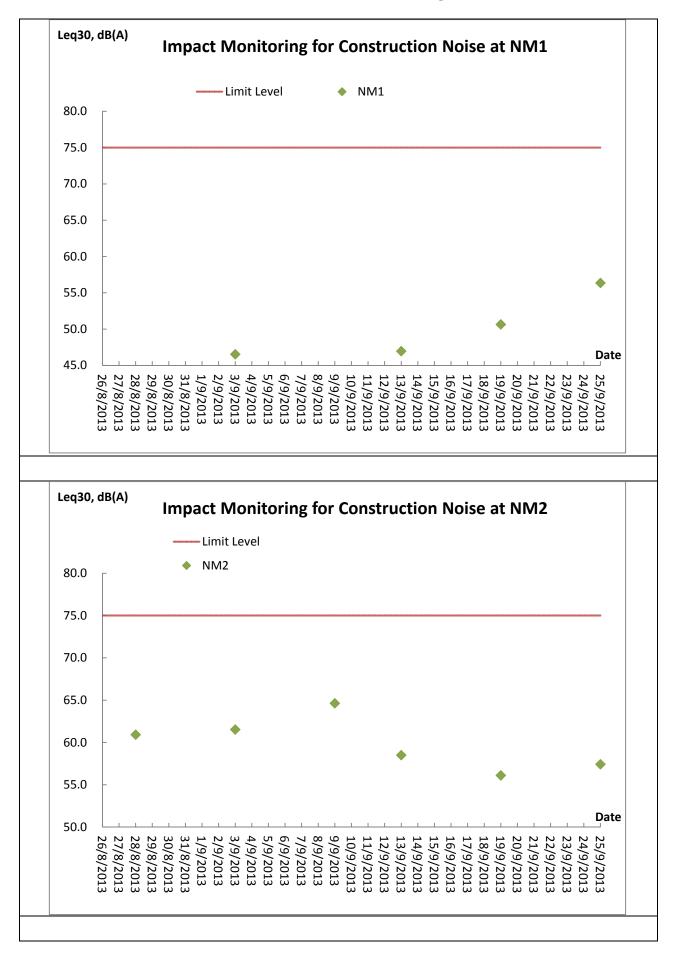

MF- Mid Flood Tide

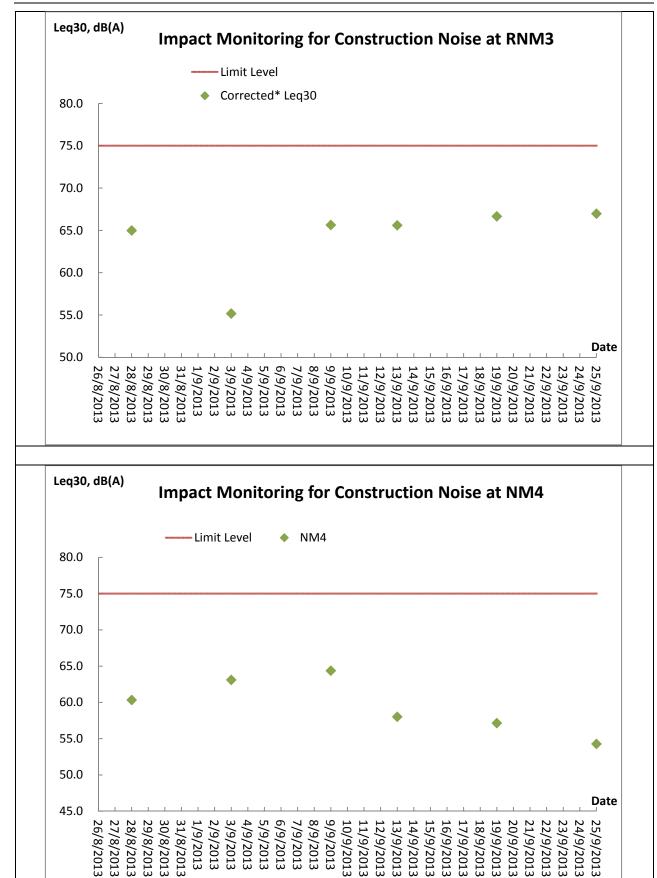
ME- Mid Ebb tide

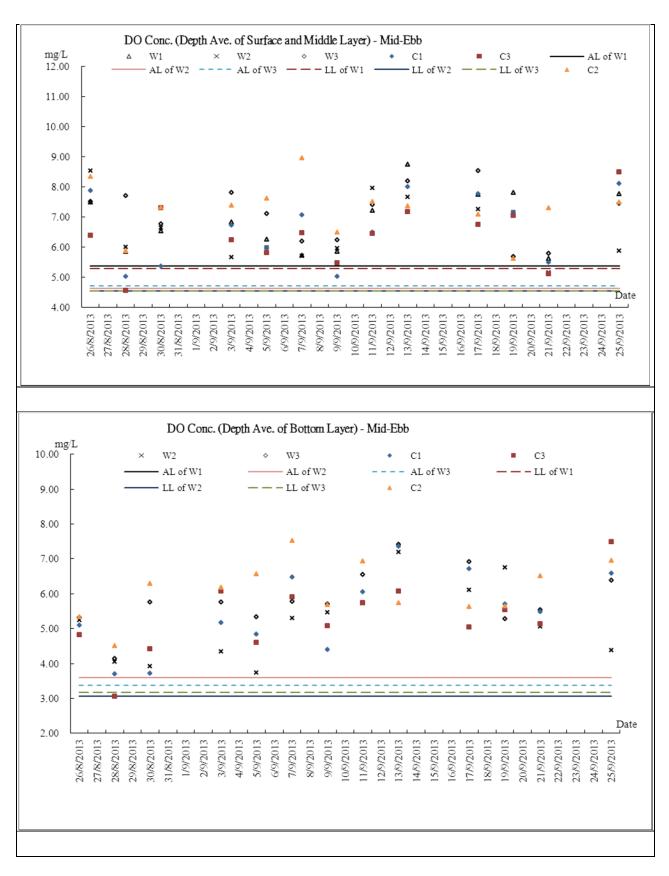

Appendix I

Graphical Plots of Monitoring Results

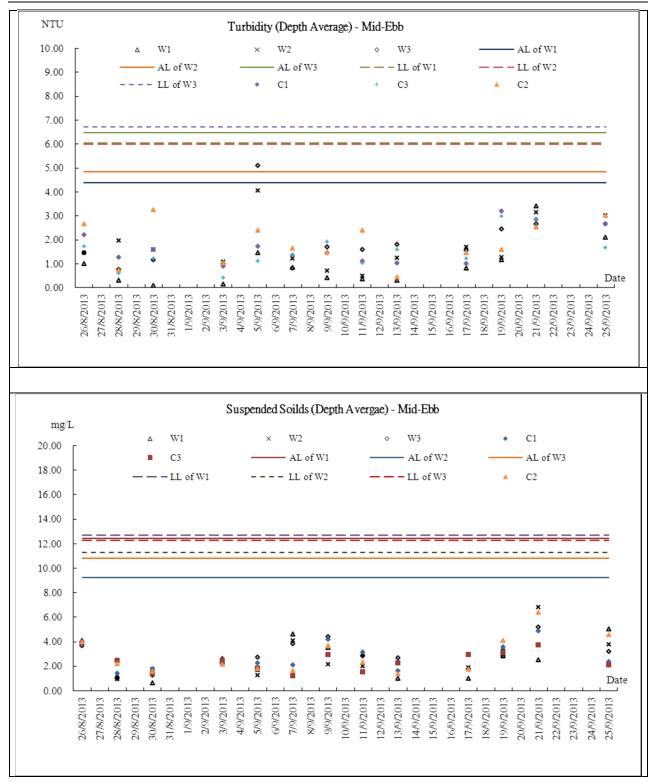
Air Quality Monitoring – 1 hour TSP Monitoring

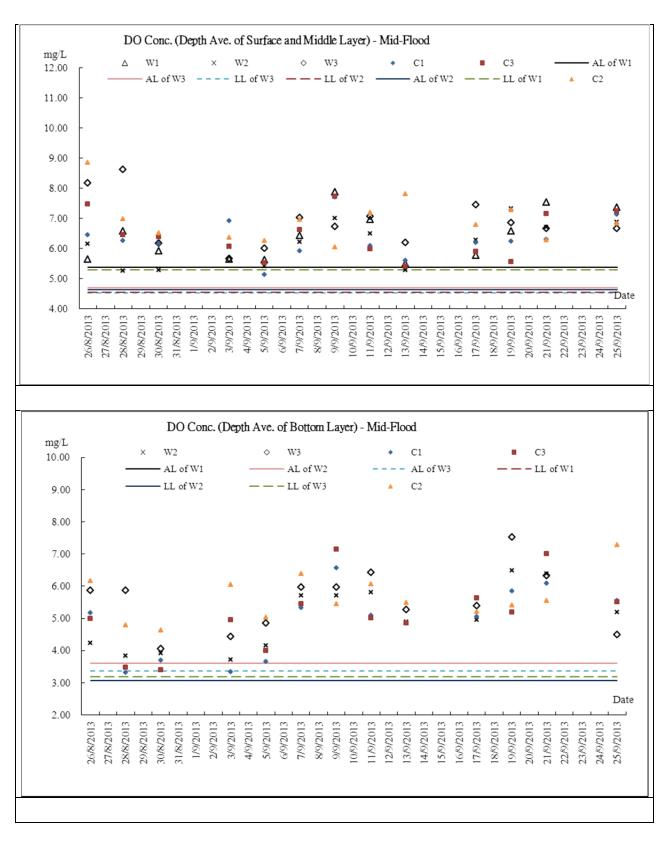


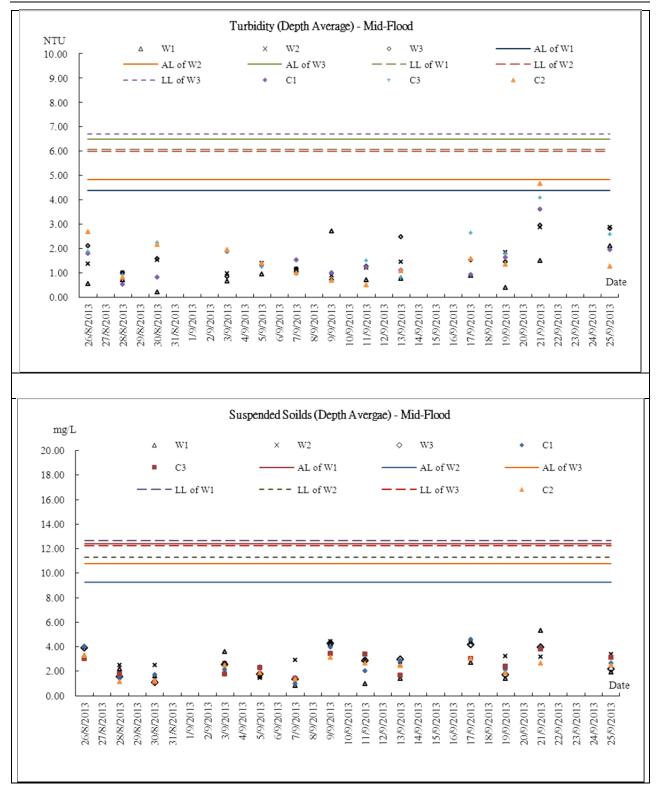

Air Quality Monitoring – 24 hour TSP Monitoring



Construction Noise Monitoring






Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report –September 2013

AUES

Marine Water Quality Monitoring - Mid-Flood Tide

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report –September 2013

AUES

Appendix J

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Aug-13	Mon	Very hot, isolated showers, Light to moderate east to southeasterly winds.
27-Aug-13	Tue	Fine, very hot, isolated showers. Light to moderate southerly winds.
28-Aug-13	Wed	Fine, very hot, isolated showers. Light to moderate southerly winds.
29-Aug-13	Thu	Fine, very hot, isolated showers. Light to moderate southerly winds.
30-Aug-13	Fri	Cloudy, showers, thunderstorms. Moderate west to southwesterly winds.
31-Aug-13	Sat	Cloudy, showers, thunderstorms. Moderate west to southwesterly winds.
1-Sep-13	Sun	Cloudy, showers, a few thunderstorms. Light to moderate southerly winds.
2-Sep-13	Mon	Rain, fine, showers. Light to moderate southerly winds.
3-Sep-13	Tue	Cloudy, rami, few squally thunderstorms. Moderate to fresh easterly winds.
4-Sep-13	Wed	Rain, fine, showers. Light to moderate southerly winds.
5-Sep-13	Thu	Cloudy, rain, few squally thunderstorms. Moderate to fresh easterly winds.
6-Sep-13	Fri	Fine, Hot, Moderate easterly winds.
7-Sep-13	Sat	Fine, Hot, Moderate easterly winds.
8-Sep-13	Sun	Fine, Hot, Moderate easterly winds.
9-Sep-13	Mon	Sunny periods, showers. Moderate easterly winds.
10-Sep-13	Tue	Sunny periods, cloudy. Moderate easterly winds.
11-Sep-13	Wed	Sunny intervals, a few showers, isolated thunderstorms. Moderate east to northeasterly winds.
12-Sep-13	Thu	Sunny intervals, a few showers, isolated thunderstorms. Moderate east to northeasterly winds.
13-Sep-13	Fri	Fine, Hot, Moderate easterly winds.
14-Sep-13	Sat	Sunny periods, cloudy. Moderate easterly winds.
15-Sep-13	Sun	Sunny periods, cloudy. Moderate to fresh easterly winds.
16-Sep-13	Mon	Cloud, fine, dry.Fresh easterly winds.
17-Sep-13	Tue	Sunny intervals, a few showers, isolated thunderstorms. Moderate east to northeasterly winds.
18-Sep-13	Wed	Fine, Hot, Moderate easterly winds.
19-Sep-13	Thu	Sunny periods, cloudy. Moderate to fresh easterly winds.
20-Sep-13	Fri	Fine, cloudy. Moderate to fresh northeasterly winds.
21-Sep-13	Sat	Fine, cloudy. Moderate to fresh northeasterly winds.
22-Sep-13	Sun	Fine, Hot, Moderate easterly winds.
23-Sep-13	Mon	Cloud, fine, dry. Fresh easterly winds.
24-Sep-13	Tue	Sunny periods, cloudy. Moderate to fresh easterly winds.
25-Sep-13	Wed	Sunny periods, cloudy. Moderate to fresh easterly winds.

Appendix K

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for September 2013

			Actu	ıal Quant	ities of Ir	nert C&D	Material	s Genera	ted Mont	hly				A	Actual Qu	uantities	of C&D	Wastes	Generate	ed Montl	hly	
Month	Total Q Gene (a) = (c)	•	Hard Re Large D Cone	Broken crete	Reused Con	tract	Reused Proj (c	ects	Dispo Publi (6	c Fill	Import (1		Me	tals	Pap cardt packa		Plas	stics	Cher Wa	nical 1ste		iers, 1bbish
	(in '00	$00m^3$)	(in '00	$00m^3$)	(in '00	$00m^{3})$	(in '00	$00m^{3})$	(in '00	$00m^3$)	(in '00	$00m^{3}$)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2013	13.341	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.601	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	400.410	103.440
Jan	0.332	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.332	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.040	9.840
Feb	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.530	6.530
Mar	0.056	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.430	4.920
Apr	0.425	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.425	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.800	32.200
May	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.790	4.650
Jun	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.430	48.240
<mark>Sub-total</mark>	14.236	50.328	0.160	0.417	0.740	2.802	0.000	0.000	13.497	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	443.430	209.820
Jul	0.871	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.871	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.550	33.520
Aug	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.930	23.050
Sep	0.531	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.531	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.330	5.090
Oct																						
Nov																						
Dec																						
Total	15.639	50.328	0.160	0.432	0.740	2.802	0.000	0.000	14.900	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	468.240	271.480
	65.9	967	0.5	91	3.5	42	0.0	00	62.4	425	0.0	00	0.0	00	0.0	00	0.0	00	0.0	00	739.	.720

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan SKW: Sok Kwu Wan

Appendix L

Weekly Site Inspection Checklist

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

|--|

Projec Date: PAR Weat Temp Hum Winc	T A: ther: erature: idity:	Kwu Wan 27 August 2013 Sunny	Construction of as at Yung Shue I GENER Fine C V Moderate Breeze		RE's Rep Contract	d by s Represen presentativ or's Repre presentati	e sentative	Mr. C Y K Mr. Alfred Mr. M. K 14:00 Envi	eung Cheung/ Leung	S512B-27Aug 2013
	 Inspec									
1	Sok ł	Kwu Wan								
PART	В:			SITE AUDIT			-1400-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0			
Note:			s: Compliance; No: Nor uiring follow-Up actions		Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	on 1: W	/ater Quality			_		_	-		
1.01	ls an	effluent discharge lic	cense obtained for th	ne Project?						
1.02	ls the	effluent discharged	in accordance with t	he discharge licence?						
1.03		discharge of turbid				\checkmark				
1.04		here proper desiltir e SS levels in efflue	drainage systems to		\checkmark					
1.05		nere channels, sand nentation tanks?	lbags or bunds to di	rect surface run-off to		\checkmark				
1.06		here any perimeter ept storm runoff fror		at site boundaries to		\checkmark				
1.07	ls dra	iinage system well m	naintained?			\checkmark				
1.08		cavation proceeds, ed stone or gravel?	are temporary acces	ss roads protected by					\checkmark	
1.09	Are te	emporary exposed s	lopes properly cover	ed?					\checkmark	
\bigcirc	Are e	arthworks final surfa	aces well compacted	or protected?		\checkmark				
1.11	Are m	nanholes adequately	covered or tempora	arily sealed?		\checkmark				
1.12	Are th	nere any procedures	and equipment for r	ainstorm protection?		\checkmark				
1.13	Are w	heel washing faciliti	es well maintained?						\checkmark	
1.14	ls run	off from wheel wash	ning facilities avoided	1?					\checkmark	
1.15	Areth	nere toilets provided	on site?			\checkmark				******
1.16	Are to	oilets properly maint	ained?			\checkmark				
1.17		he vehicle and plant d areas?	servicing areas pav	ed and located within					\checkmark	
1.18			or spillage avoided?			\checkmark				
1.19		here any measures age system?	s to prevent leaked	oil from entering the		\checkmark				
1.20	Are t			ement and concrete		\checkmark				
1.21	Are tl	here any oil intercep	-	the drainage systems kitchen, etc?					\checkmark	

Environ Note: Not Foll 411-4 Cale K \A/. -1 T 14/ 11 01

nmental Team – Weekly Site Inspection and A	Audit Ch	necklist	cklist – Sok Kwu Wan	AU		
	Not			Follow		Photo/
t Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Now Un: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs	Yes	No	Un	N/A	Remarks

	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.		 Up		Remarks
1.22	Are the oil interceptors/grease traps maintained properly?				\checkmark	
1.23	Is used bentonite recycled where appropriate?				\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.				\checkmark	
1.25	No excavation is undertaken in the settlement area.				\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.				\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark			
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark			
1.29	Is ponding /stand water avoided?		\checkmark			
Sectio	on 2: Air Quality					
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?				\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark			C
2.03	Are the excavated materials sprayed with water during handling?				\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?				\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?				\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?				\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?				\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?				\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?				\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?				\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark			
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?				\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?				\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark			
2.15	Is open burning avoided?		\checkmark			
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.				\checkmark	
Section	on 3: Noise					
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?				\checkmark	
3.02	Is silenced equipment adopted?				\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark				
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark			
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?				\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?				\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?				\checkmark	

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

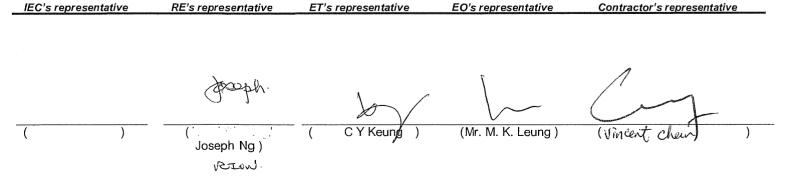
AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks	
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark		
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark		
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark		
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark		
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark		
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark		
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark		
Section 4: Waste/Chemical Management								
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark					
\bigcirc	Are receptacles available for general refuse collection?		\checkmark					
4.03	Is general refuse sorting or recycling implemented?		\checkmark					
4.04	Is general refuse disposed of properly and regularly?		\checkmark					
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark		
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark		
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark		
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark		
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark		
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark		
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark		
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark		
4.13	Are chemical/fuel storage areas bounded?					\checkmark		
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark		
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark					
4.16	Are construction wastes reused?		\checkmark					
4.17	Are construction wastes disposed of properly?		\checkmark					
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark					
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark					
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark		
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark		
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark					
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark		

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						÷
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?				\checkmark		Remarks 1
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

Remarks:


Findings of Site Inspection: (27 Aug 2013)

Follow up (27 Aug 2013)

The electricity cable on the tree trunk was removed.

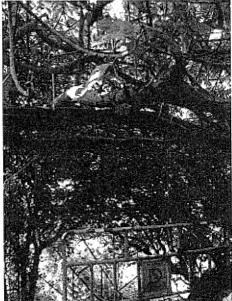
Electricity cable hang on the tree trunk was observed at Sok Kwu Wan, the contractor was reminded no construction material can be hang on the tree.

Date: PART Weat Tempo Humi Wind	PART A: GENERAL INFORMATIO Weather: Sunny Fine Cloudy Temperature: 27.5 °C Humidity: High Moderate Low Wind: Strong Breeze Light Area Inspected		by Representative is Representative esentative		Checklist No. TCS512B-2 Sep 2013 Mr. C Y Keung				
PART		N <i>1</i>		1031 - 1707 - T	E e ¹¹		Photo/		
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks		
Sectio 1.01	n 1: Water Quality Is an effluent discharge license obtained for the Project?		\checkmark						
1.01	Is the effluent discharged in accordance with the discharge licence?		$\overline{\mathbf{A}}$						
	-		$\overline{\mathbf{A}}$						
1.03 1.04	Is the discharge of turbid water avoided? Are there proper desilting facilities in the drainage systems to				\Box		Remarks 2		
1.04	reduce SS levels in effluent? Are there channels, sandbags or bunds to direct surface run-off to		\Box						
	sedimentation tanks? Are there any perimeter channels provided at site boundaries to	L]	$\overline{\mathbf{A}}$						
1.06 1.07	intercept storm runoff from crossing the site? Is drainage system well maintained?								
	As excavation proceeds, are temporary access roads protected by					$\overline{\mathbf{A}}$			
1.08	crushed stone or gravel?					$\overline{\mathbf{V}}$			
1.09	Are temporary exposed slopes properly covered?		\Box						
1.10	Are earthworks final surfaces well compacted or protected?		$\overline{\mathbf{V}}$						
1.11	Are manholes adequately covered or temporarily sealed?								
1.12	Are there any procedures and equipment for rainstorm protection?								
1.13	Are wheel washing facilities well maintained?								
1.14	Is runoff from wheel washing facilities avoided?								
1.15	Are there toilets provided on site?								
1.16	Are toilets properly maintained?		\checkmark						
1.17	Are the vehicle and plant servicing areas paved and located within roofed areas?					\checkmark			
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark						
1.19	Are there any measures to prevent leaked oil from entering the drainage system?	· 🗌	\checkmark				<u> </u>		
1.20	Are there any measures to collect spilt cement and concrete washings during concreting works?		\checkmark						
1.21	Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?	5				\checkmark			

RULU

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					$\overline{\mathbf{A}}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action					\checkmark	
1.27	Levels before discharge. Mobile toilets should provide on site and located away the stream		\checkmark				
1.28	course. License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Secti	ing 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

1	A		S


Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?				\checkmark		Remarks 1
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (2 Sep 2013)

Electricity cable hang on the tree trunk was observed at Sok Kwu Wan, the contractor was reminded no construction material can be hang on the tree.

Follow up (2 Sep 2013

The electricity cable on the tree trunk was removed.

Sediment inside the sedimentation tank at Sok Kwu Wan was cleared.

Sedimentation tank at Sok Kwu Wan was observed full of sediment, the contractor was reminded to clean.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	Jeseph.	^		PAA
	1	k		
()	Joseph Ng)	(ĆYK¢ung)	(Mr. M. K. Leung)	(Vincent chigh)

.....

Project:		DO 0000 42. Construction of Courses	Inspected b ETL/ ET's R	-	tivo	Checklist No. <u>TCS512B-10 Sep 2013</u> Mr. Ben Tam					
		Treatment Works at Yung Shue Wan and Sok	RE's Repre	•	live	Mr. Alfred Cheung/ Joseph Ng					
-			Contractor'		ntative	Mr. M. K. Leung					
			IEC's Repre	•							
Date:	_	10 September 2013	Time:		9:30						
PAR	Г А:	GENERAL INFORMATION				Envir	onmental	Permit No.			
Weat	her:	Sunny Fine Cloudy	Rainy			✓ EP-28	1/2007A				
Temp	erature:	28.6 [°] C									
Humi	dity:	High Moderate Low									
Wind		Strong Breeze 🖌 Light	Calm								
	nspec										
1	SOK P	Kwu Wan									
PART	B:	SITE AUDIT									
Note:	Not O Follov	bs.: Not Observed; Yes : Compliance; No : Non-Compliance; v Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks			
Sectio		/ater Quality]			_ _					
1.01	ls an	effluent discharge license obtained for the Project?		\checkmark							
1.02	Is the	effluent discharged in accordance with the discharge licence?									
1.03	Is the	discharge of turbid water avoided?		\checkmark							
1.04	reduc	here proper desilting facilities in the drainage systems to e SS levels in effluent?		\checkmark							
1.05	sedin	nere channels, sandbags or bunds to direct surface run-off to nentation tanks?		\checkmark							
1.06		here any perimeter channels provided at site boundaries to ept storm runoff from crossing the site?) П	\checkmark							
1.07	ls dra	inage system well maintained?		\checkmark							
1.08	As ex crush	cavation proceeds, are temporary access roads protected by ned stone or gravel?					\checkmark				
1.09	Aret	emporary exposed slopes properly covered?					\checkmark				
1.10	Are e	earthworks final surfaces well compacted or protected?		\checkmark							
1.11	Are r	nanholes adequately covered or temporarily sealed?		\checkmark							
1.12	Aret	here any procedures and equipment for rainstorm protection?		\checkmark							
1.13	Are v	vheel washing facilities well maintained?									
1.14	ls rui	noff from wheel washing facilities avoided?					\checkmark				
1.15	Are t	here toilets provided on site?		\checkmark							
1.16	Are t	oilets properly maintained?		\checkmark							
1.17		he vehicle and plant servicing areas paved and located within ad areas?	n				\checkmark				
1.18	Is the	e oil/grease leakage or spillage avoided?		\checkmark							
1.19		there any measures to prevent leaked oil from entering th lage system?	e	\checkmark							
1.20		there any measures to collect spilt cement and concret nings during concreting works?	e 🗌	\checkmark							
1.21	Are f	here any oil interceptors/grease traps in the drainage system ehicle and plant servicing areas, canteen kitchen, etc?	s				\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

1	A	U	S

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during					\checkmark	
3.09	operation? Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

IEC's representative

Remarks:

Findings of Site Inspection: (10 Sep 2013)

No environmental issue was observed during the site inspection.

RE's representative

Follow up (10 Sep 2013) Nil

EO's representative

() (Joseph Ng) (Mr. M. K. Leung) (Jinkernt Char)

ET's representative

Contractor's representative

1	DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 17 September 2013 A: GENERAL INFORMATION her: Sunny Y Fine Cloudy Image: Cloudy her: 27.8 % Y High Moderate Low Strong Breeze Light Asspected Sok Kwu Wan	Inspected b ETL/ ET's R RE's Repre Contractor' IEC's Repre Time: Rainy Calm	tepresentat sentative s Represer		Mr. Ben Ta Mr. Alfred Mr. M. K. 14:45 Envir	am/ Martin Cheung/ J Leung	512B-17 Sep 2013 Li oseph Ng Permit No.
PART	Not Obs.: Not Observed: Yes: Compliance; No: Non-Compliance;	Not	Yes	No	Follow		Photo/
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable 1: Water Quality	Obs.			Up		Remarks
1.01	Is an effluent discharge license obtained for the Project?		\square				
1.02	Is the effluent discharged in accordance with the discharge licence?		\checkmark				
1.03	Is the discharge of turbid water avoided?		\checkmark				
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?	, D	\checkmark				
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?	р П	\checkmark				
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?	° □	\square				*****
1.07	Is drainage system well maintained?		\checkmark				
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?					\checkmark	
1.09	Are temporary exposed slopes properly covered?					\checkmark	
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark				
1.13	Are wheel washing facilities well maintained?					\checkmark	
1.14	Is runoff from wheel washing facilities avoided?					\checkmark	
1.15	Are there toilets provided on site?		\checkmark				
1.16	Are toilets properly maintained?		\checkmark				
1.17	Are the vehicle and plant servicing areas paved and located withi roofed areas?	n 🔲				\checkmark	
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark				
1.19	Are there any measures to prevent leaked oil from entering th drainage system?	e 🗌	\checkmark				
1.20	Are there any measures to collect spilt cement and concret washings during concreting works?	e 🗌	\checkmark				
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	s				\checkmark	

į.

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					$\overline{\mathbf{A}}$	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Secti	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					$\overline{\mathbf{A}}$	
3.02	Is silenced equipment adopted?					\square	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\square	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	···
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	****
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	·····
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (17 Sep 2013)

No environmental issue was observed during the site inspection.

Follow up (17 Sep 2013) Nil

1 41

IEC's representative

RE's representative

ET's representative

EO's representative Contractor's representative

(Vincent Chan Martin Li (Mr. M. K. Leung)) Joseph Ng) RIOW ,

HULJ	A		1	\$
------	---	--	---	----

Project Date: PART Weath Tempe Humic Wind: Area In 1	Image: Construction of Sewage DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 25 September 2013 A: GENERAL INFORMATION her: Sunny Fine Cloudy erature: 28.2 gity: High Woderate Low	RE's Repres	epresentativ entative Representa			i Cheang/Jo Leang	ชา2B-25 Sep 2013
PART	B: SITE AUDIT						
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 1: Water Quality	·······	F -7	r—1	 1	· · ·	
1.01	is an effluent discharge license obtained for the Project?						
1.02	Is the effluent discharged in accordance with the discharge licence?		\square				
1.03	Is the discharge of turbid water avoided?		\checkmark				
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?		\square				
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?) 🗌	\checkmark				
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?	°П	\checkmark				
1.07	Is drainage system well maintained?		\checkmark				
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?					\square	
1.09	Are temporary exposed slopes properly covered?						****
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are manholes adequately covered or temporarily sealed?		$\overline{\mathbf{A}}$				
1,12	Are there any procedures and equipment for rainstorm protection?						
1.13	Are wheel washing facilities well maintained?						
1.14	Is runoff from wheel washing facilities avoided?						
1.15	Are there toilets provided on site?						······································
1.16	Are toilets properly maintained?		\checkmark				
1.17	Are the vehicle and plant servicing areas paved and located withi roofed areas?	in 🗌				\square	
1.18	Is the oil/grease leakage or spillage avoided?		$\overline{\mathbf{A}}$				
1.19	Are there any measures to prevent leaked oil from entering th drainage system?		\checkmark				
1.20	Are there any measures to collect spilt cement and concret washings during concreting works?	te	\mathbf{V}				
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	ns				\checkmark	

;

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	******
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					$\overline{\mathbf{V}}$	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					$\overline{\mathbf{A}}$	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?			\square			
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\mathbf{N}				
2.03	Are the excavated materials sprayed with water during handling?					$\overline{\mathbf{A}}$	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	ls the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\square	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					$\mathbf{\overline{\mathbf{A}}}$	1-9
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		$\overline{\mathbf{A}}$				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sect	tion 3: Noise					 X	
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04							
3.05	construction activities cause noise impact on sensitive recent of	ن					
3.06	during operation:	Land					
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

hulo

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during					$\overline{\mathbf{V}}$	
3.09	Are Construction Noise Permit(s) applied for percussive piling					$\overline{\mathbf{V}}$	
3.10	works? Are Construction Noise Permit(s) applied for general construction	Π				$\overline{\mathbf{A}}$	
	works during restricted hours? Are valid Construction Noise Permit(s) posted at site entrances?			П	П	$\overline{\mathbf{A}}$	
3.11	Use of quiet plant had been used on site to minimise the						
3.12	construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).		LI		Ļ	<u>(⊻</u>) -	******
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\square				·······
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				****
4.05	Is the Contractor registered as a chemical waste producer?					$\mathbf{\nabla}$	
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?				L		
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?					\checkmark	v
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste of excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC					\checkmark	

Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
n 5: Landscape & Visual						
Are retained and transplanted trees in health condition?					\checkmark	
Are retained and transplanted trees properly protected?		\checkmark				
Are surgery works carried out for the damaged trees?	\checkmark					
Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
n 6: Others						
Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	
	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable a 5: Landscape & Visual Are retained and transplanted trees in health condition? Are retained and transplanted trees properly protected? Are surgery works carried out for the damaged trees? Is damage to trees outside site boundary due to construction activities avoided? Is the night-time lighting controlled to minimize glare to sensitive receivers? a 6: Others Are relevant Environmental Permits posted at all vehicle site	Not Obst. Not Obstruct, res. complained the storm planet, the complained the storm planet, the complained the storm of the storm o	Not Observations requiring follow-Up actions N/A: Not Applicable Obs. Yes 5: Landscape & Visual Image: Are retained and transplanted trees in health condition? Image: Are retained and transplanted trees properly protected? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works carried out for the damaged trees? Image: Are surgery works care surgery works care surgery works carried out for the damaged tr	Not Observations requiring follow-Up actions N/A: Not Applicable Obs. Yes Not a 5: Landscape & Visual	Not Obs. Yes Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Obs. Yes No Up Are retained and transplanted trees in health condition? Are retained and transplanted trees properly protected? Are surgery works carried out for the damaged trees? Is damage to trees outside site boundary due to construction activities avoided? Is the night-time lighting controlled to minimize glare to sensitive receivers? Are relevant Environmental Permits posted at all vehicle site	Not Obs.: Not Observations requiring follow-Up actions Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Obs. Yes No Up N/A Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Obs. Yes No Up N/A Total standscape & Visual Are retained and transplanted trees in health condition? Are retained and transplanted trees properly protected? Are surgery works carried out for the damaged trees? Is damage to trees outside site boundary due to construction activities avoided? Is the night-time lighting controlled to minimize glare to sensitive receivers? Are relevant Environmental Permits posted at all vehicle site

(Sok Kwu Wan)

IEC's representative

Remarks:

Findings of Site Inspection: (25 Sep 2013)

No environmental issue was observed during the site inspection.

RE's representative

Follow up (25 Sep 2013)

EO's representative

Nil

ET's representative

(Mr. M. K. Leung) (Vinlent Martin Li) () ſ (Joseph Ng)

Contractor's representative

Appendix M

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A		Location /	Implementation		lementa Stages**		Relevant Legislation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	& Guidelines
Constr	uction Phase							
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor		\checkmark		
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		\checkmark		EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

AUES

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &	
Ref	Ref		g	Agent	D	С	0	Guidelines	
Construct	tion Phase								
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		V		EIAO-TM, NCO	
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor					

AUES

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref		Location, Thinng	Agent	D	С	0	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		V		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*		Legislation
Ref	Ref		measures)	Agent	D	С	0	and Guidelines
	ruction Phas		1	I				
5.77	4.35	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		N		
5.73	4.36	Dredging Works	Marine works site	Contractor				
5.78		 Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; 	and at the identified water sensitive receivers/ During construction					
		 all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be repaired promptly and plant should not 						
		 be operated with leaking pipes; excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved; 						
		• adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action;						
		• all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material;						
		• loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and						

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*		Relevant Legislation
Ref	Ref	Environmental i lotection wieasures	measures)	Agent	D	С	0	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor		\checkmark		ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		• Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor				
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

AUES

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation	-	lement Stages*		Relevant Legislation
Ref	Ref	Environmental riotection weasures	measures)	Agent	D	С	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	<u>Wastewater Arising from Workforce</u> Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing	Implementation	Implementation Stages**			Relevant Legislation &
Ref	Ref		Location / Thining	Agent	D	С	0	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		V		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		\checkmark		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages *		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
Construc	tion Phase							
7.14	6.4	 <u>Good site practices</u> Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor				Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		N		WBTC No. 21/2002
7.16	6.6	 Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated 	Work sites/During construction	Contractor		N		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and plan and stock construction materials carefully to minimise amount of waste generated and avoid 						
7.18	6.7	 unnecessary generation of waste. <u>General Site Wastes</u> A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material 	Work sites/During construction	Contractor		√		Public Health and Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 - 6.9	 <u>Chemical Wastes</u> After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance. 	Work sites/During construction	Contractor		~		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

AUES

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
		• Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided.						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: > public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; > C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); > C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) • Where possible, inert material should be re-used on-site • Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material 	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Timing Agent			Relevant Legislation & Guidelines		
~			Tining	Agent	D	С	0	Guidennes
	tion Phase				r	1	r	1
8.157	7.2	 <u>Terrestrial Ecology</u> Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		N		
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging • Use of closed-grab dredger • Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		V		
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*	Location /	Implementation	Implementation Stages**		nplementation Stages** Re		Relevant Legislation
Ref	Ref		Timing	Agent	D	С	0	& Guidelines	
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		\checkmark		TM on EIA Process	
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		\checkmark	V	EM&A Manual	

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &	
Kel	Kei		Timing	Agent	D	С	0	Guidelines	
Constr	uction Pha	ase							
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		\checkmark		WBTC No. 14/2002	
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		V		WBTC No. 14/2002	
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor					
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		\checkmark		WBTC No. 19/2001	
		Conservation of topsoil for reuse.	All sites	Contractor		\checkmark			
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		V			

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Appendix N

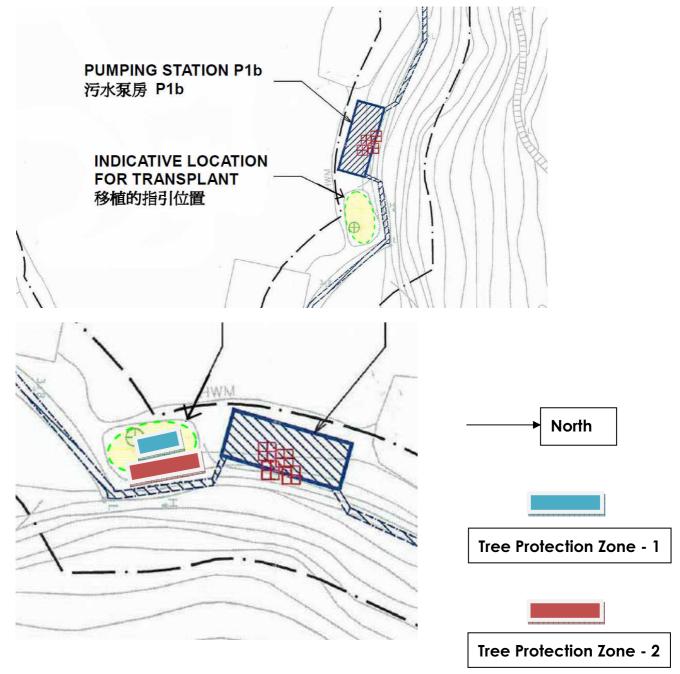
Tree Inspection Report

經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下攸田村 125 號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 31-08-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

Bi Weekly Tree Inspection Report for Celtis timorensis at Sok Kwu Wan Inspection Date: 31 August 2013

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2.	Summary	of Inspection
	C annar y	or mopoulon

Date of Inspection	31 August 2013, around 15:30	
Location	A soil ground adjacent to the Pumping	
	Station P1b Chung Mei, at Sok Kwu Wan,	
	Lamma Island.	
Weather	Cloudy, the vegetations are located under	
	the shade of existing tall trees.	
The labeled Celtis timorensis	CT_5A & CT_6A	
under Tree Protection Zone 2		

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date			
October, 2011	10 and 24 October 2011			
November, 2011	8 November 2011			
December, 2011	14 and 30 December 2011			
January 2012	31 January 2012			
February 2012	15 and 29 February 2012			
March 2012	15 and 31 March 2012			
April 2012	16 and 30 April 2012			
May 2012	15 and 31 May 2012			
June 2012	15 and 30 June 2012			
July 2012	16 and 30 July 2012			
August 2012	15 and 31 August 2012			
September 2012	15 and 29 September 2012			
October 2012	15 and 31 October 2012			
November 2012	15 and 30 November 2012			
December 2012	15 and 30 December 2012			
January 2013	15 and 30 January 2013			
February 2013	15 and 28 February 2013			
March 2013	15 and 30 March 2013			
April 2013	15 and 30 April 2013			
May 2013	15 and 30 May 2013			
June 2013	15 and 29 June 2013			

Bi Weekly Tree Inspection Report for Celtis timorensis at Sok Kwu Wan Inspection Date: 31 August 2013

July 2013	15 and 31 July 2013
August 2013	15 and 31 August 2013

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

- Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection
- Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:


Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect. Bi Weekly Tree Inspection Report for Celtis timorensis at Sok Kwu Wan Inspection Date: 31 August 2013

Tree ID: CT_6A

Overall Condition

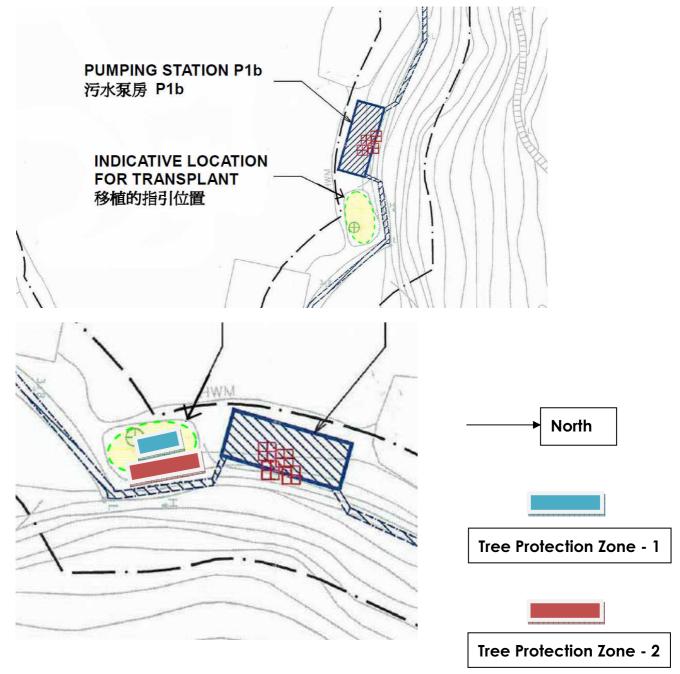
In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering CT2A, CT3A were lost due to typhoon, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing. 經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下攸田村 125號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 14-09-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 14 September 2013

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection	on
--------------------------	----

Date of Inspection	14 September 2013, around 15:30	
Location	A soil ground adjacent to the Pumping	
	Station P1b Chung Mei, at Sok Kwu Wan,	
	Lamma Island.	
Weather	Cloudy, the vegetations are located under	
	the shade of existing tall trees.	
The labeled Celtis timorensis	CT_5A & CT_6A	
under Tree Protection Zone 2		

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date			
October, 2011	10 and 24 October 2011			
November, 2011	8 November 2011			
December, 2011	14 and 30 December 2011			
January 2012	31 January 2012			
February 2012	15 and 29 February 2012			
March 2012	15 and 31 March 2012			
April 2012	16 and 30 April 2012			
May 2012	15 and 31 May 2012			
June 2012	15 and 30 June 2012			
July 2012	16 and 30 July 2012			
August 2012	15 and 31 August 2012			
September 2012	15 and 29 September 2012			
October 2012	15 and 31 October 2012			
November 2012	15 and 30 November 2012			
December 2012	15 and 30 December 2012			
January 2013	15 and 30 January 2013			
February 2013	15 and 28 February 2013			
March 2013	15 and 30 March 2013			
April 2013	15 and 30 April 2013			
May 2013	15 and 30 May 2013			
June 2013	15 and 29 June 2013			

Bi Weekly Tree Inspection Report for Celtis timorensis at Sok Kwu Wan Inspection Date: 14 September 2013

July 2013	15 and 31 July 2013	
August 2013	15 and 31 August 2013	
September 2013	14 September 2013	

4. Summary of Inspection Result

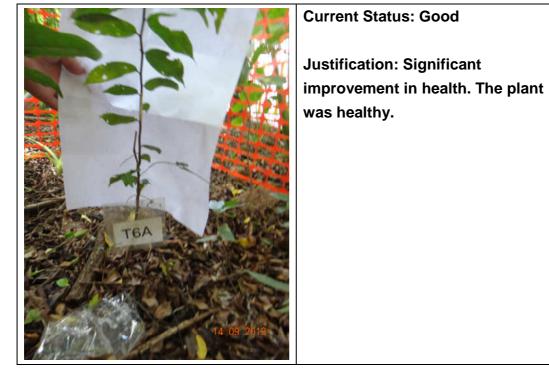
Tree No	Speciation	Health Status
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

- Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection
- Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 14 September 2013

5. Description of Inspection Results:


Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Overall Condition

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering CT2A, CT3A were lost due to typhoon, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.