

PROJECT No.: TCS/00512/09

DSD CONTRACT No. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA
MONTHLY ENVIRONMENTAL MONITORING AND AUDIT
(EM&A) REPORT (No.39) – OCTOBER 2013

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index

21 November 2013 TCS00512/09/600/R0711v2 Nicola Hon T.W. Tam
Environmental Consultant Environmental Team Leader

Version	Date	Description
1	12 November 2013	First Submission
2	21 November 2013	Amended against IEC's comments on 15 November 2013

URS CDM Joint Venture

Chief Engineer/Harbour Area Treatment Scheme

Your reference:

Drainage Services Department

Our reference:

05117/6/16/421392

5/F. Western Magistracy 2A, Pok Fu Lam Road

Date:

26 Nov 2013

Hong Kong

BY FAX

Attention: Ms. Jacky C M Wong

Dear Madam

Contract No. DC/2009/13

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan Portion Area

Monthly Environmental Monitoring and Audit (EM&A) Report No. 39 (October 2013)

We refer to the Monthly EM&A Monitoring Report No. 39 for October 2013 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated on 25 November 2013. We have no comment and have verified the captioned report.

Yours faithfully

URS CDM JOINT-VENTURE

Rodney Ip

Independent Environmental Checker

ICWR/KKK/lykl

Encl

CC

Leader Civil Engineering

AUES ER/LAMMA

CDM

(Attn: Mr Vincent Chan)

(Attn: Mr T.W. Tam) (Attn: Mr lan Jones)

(Attn: Mr Sylvester Hsu)

EXECUTIVE SUMMARY

ES.01. This is the 39th monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from 26 September to 25 October 2013 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	45
Air Quality	24-hour TSP	15
Construction Noise	L _{eq(30min)} Daytime	20
Water Quality	Marine Water Sampling	12
Inspection / Audit	ET Regular Environmental Site Inspection	4

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action Level	Limit Level	Event & Action		
Issues	Parameters Parameters			NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – Notification of Exceedance

SITE INSPECTION BY EXTERNAL PARTIES

ES.05. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 2, 8, 16 and 22 October 2013. All the observation has been rectified in the set time frame.

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.06. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.07. No reporting change was made in this Reporting Period.

FUTURE KEY ISSUES

ES.08. During dry and windy season, the Contractor shall pay attention on the construction dust that may cause environmental issues in the upcoming months. Mitigation measures on construction dust

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – October 2013

identified at the EM&A manual such as watering at haul road and covering of dusty material should be fully implemented.

ES.09. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

TABLE OF CONTENTS

1	INTRODUCTION	1
	PROJECT BACKGROUND REPORT STRUCTURE	1 1
_		
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	3 3
	CONSTRUCTION PROGRESS	3
	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	3
3	SUMMARY OF BASELINE MONITORING REQUIREMENTS	4
	ENVIRONMENTAL ASPECT	4
	MONITORING LOCATIONS	4
	Monitoring Frequency and Period	5
	MONITORING EQUIPMENT	6
	EQUIPMENT CALIBRATION	9
	METEOROLOGICAL INFORMATION	9 9
	DATA MANAGEMENT AND DATA QA/QC CONTROL REPORTING	9
	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	9
4	IMPACT MONITORING RESULTS - AIR QUALITY	11
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	12
6	IMPACT MONITORING RESULTS – WATER QULAITY	13
7	ECOLOGY	15
8	WASTE MANAGEMENT	16
9	SITE INSPECTION	17
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	18
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	19
12	IMPACT FORECAST	25
13	CONCLUSIONS AND RECOMMENDATIONS	26
	Conclusions	26
	RECOMMENDATIONS	2ϵ

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Table 5-1	Summarized of Construction Noise Monitoring Results at NM1
Table 5-2	Summarized of Construction Noise Monitoring Results at NM2
Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
Table 6-1	Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results - Mid-flood Tides (Dissolved Oxygen)
Table 6-4	Summary of Water Quality Results - Mid-flood Tides (Turbidity & Suspended Solids)
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 8-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons
Table 10-3	Statistical Summary of Environmental Prosecution
Table 11-1	Environmental Mitigation Measures

LIST OF APPENDICES

Appendix A Site Layout Plan – Sok Kwu Wan Portion Area	
Appendix B Organization Structure and Contact Details of Relevant Parties	
Appendix C Three Months Rolling Construction Programme	
Appendix D Location of Monitoring Stations (Air Quality / Construction Noise / Water Quali	y)
Appendix E Monitoring Equipments Calibration Certificate	
Appendix F Event and Action Plan	
Appendix G Impact Monitoring Schedule	
Appendix H Monitoring Data Sheet	
Appendix I Graphical Plots of Monitoring Results	
Appendix J Meteorological Information	
Appendix K Monthly Summary Waste Flow Table	
Appendix L Weekly Site Inspection Checklist	
Appendix M Implementation Schedule of Mitigation Measures	

Tree Inspection Report

Appendix N

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the *Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan* (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the 39th monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from 26 September to 25 October 2013.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

SECTION 1	Introduction
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS
SECTION 7	WASTE MANAGEMENT
SECTION 8	SITE INSPECTIONS
SECTION 9	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 10	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 11	IMPACT FORECAST
SECTION 12	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of drainage and manholes next to PS1 & PS2
 - Excavation for utilities construction under EVA in SKWSTW
 - Forming cut slope in SKWSTW
 - Construction of stepped channels on the slope
 - Construction of rising main near SKWSTW
 - Finishing works in SKWSTW
 - E&M installation in SKWSTW

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 19 May 2010
	Regulation	Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
	-	WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction	Issued on 26 May 2010
	Waste	A/C No: 7010815

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - · Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters		
Air Quality	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and		
All Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.		
Noise	• Leq (30min) during normal working hours; and		
Noise	Leq (15min) during Restricted Hours.		
	In-situ Measurements		
	 Dissolved Oxygen Concentration (DO) (mg/L); 		
	• Dissolved Oxygen Saturation (%);		
	• Turbidity (NTU);		
Marina Watan Ovality	• pH unit;		
Marine Water Quality	• Salinity (ppt);		
	• Water depth (m); and		
	• Temperature (°C).		
	Laboratory Analysis		
	• Suspended Solids (SS) (mg/L)		

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2 Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AM1 Squatter house in Chung Mei Village	
AM2 Squatter house in Chung Mei Village	
AM3	Football court

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3 Location of Construction Noise Monitoring Station

Sensitive Receiver	Location	
NM1	1, Chung Mei Village	
NM2	20, Sok Kwu Wan	
RNM3	Sok Kwu Wan Sitting-out Area	
NM4	2-storey village house at Ta Shui Wan	

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Table 3-4 Location of Marine Water Quality Monitoring Station

Station	Degarintian	Co-ordnance	
Station	Description	Easting	Northing
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732
W2	Fish culture zone at Picnic Bay	832 670	807 985
W3	Fish culture zone at Picnic Bay	832 045	807 893
C1 (flood)	Control Station	833 703	808 172
C2	Control Station	831 467	807 747
C3 (ebb)	Control Station	832 220	808 862

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters: 1-hour TSP and 24-hour TSP.

Frequency: Once in every six days for 24-hour TSP and three times in every six days for

1-hour TSP.

<u>Duration</u>: Throughout the construction period.

Noise Monitoring

<u>Parameters</u>: $L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} .

 $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of

public holiday and Sunday)

Frequency: Once per week during 0700-1900 hours on normal weekdays. Restricted hour

monitoring should depend on conditions stipulated in Construction Noise Permit.

Duration: Throughout the construction period.

Marine Water Quality Monitoring

Parameters: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH,

turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

Frequency:	Three days a week, at mid ebb and mid flood tides.	The interval between 2 sets
	of monitoring will be more than 36 hours.	

Sampling Depth

- (i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.
- (ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.
- (iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken

Duration: During the course of marine works

<u>Post-Construction Monitoring – Marine Water</u>

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

1-hour TSP

- 3.10 The 1-hour TSP monitor, a TSI Dust Track Aerosol Monitor Model 8520 or Sibata LD-3 Laser Dust Meter is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consisted of the following:
 - a. A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - b. A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - c. A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

24-hour TSP

- 3.11 The equipment used for 24-hour TSP measurement will be a TISCH High Volume Air Sampler, HVS Model TE-5170, which complied with EPA Code of Federal Regulation, Appendix B to Part 50. The HVS consists of the following:
 - a. An anodized aluminum shelter:
 - b. A 8"x10" stainless steel filter holder;
 - c. A blower motor assembly;
 - d. A continuous flow/pressure recorder;
 - e. A motor speed-voltage control/elapsed time indicator;
 - f. A 7-day mechanical timer, and
 - g. A power supply of 220v/50 hz
- 3.12 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground. The flow rate of the HVS between 0.63m3/min and 1.7m3/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-
 - A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;

- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected to transfer from the filter holder of the HVS to a sealed in the envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.13 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.14 The HVS used for 24-hour TSP monitoring will be calibrated before the commencement for sampling, and after in two months interval for 1 point checking of maintenance and six months interval for five points calibrate in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5028A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min.

Noise Monitoring

- 3.15 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.
- 3.16 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq(30 min) in six consecutive Leq(5 min) measurements will be used as the monitoring parameter for the time period between 0700-1900 hours on weekdays throughout the construction period. Leq(15 min) in three consecutive Leq(5 min) measurements for other time periods (e.g. during restricted hours) will only be conducted for monitoring the construction noise during restricted hours as necessary.
- 3.17 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.
- 3.18 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0dB.
- 3.19 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or

wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s. An acoustic calibrator and sound level meter will be calibrated yearly. A valid of Calibration certificates will be shown in the Environmental Monitoring Report accordingly.

Water Quality Monitoring

- 3.20 Marine water quality monitoring will be conducted at the designated locations in accordance with EM&A Manual. The operating and analytical of sampling procedures are described as below:
 - A Global Positioning System (GPS) will be used to ensure that the correct location was selected prior to sample collection. A portable, battery-operated echo sounder will be used for the determination of water depth at each designated monitoring station.
 - The marine water sampler will be lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected.
 - During the sampling, the sampling container will be rinsed to use a portion of the marine water sample before the water sample is transferred to the container. Upon sampling completion, the container is sealed with a screw cap.
 - Before the sampling process, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring will be recorded on the monitoring field data sheet.
 - In-situ measurement including water temperature, turbidity, dissolved oxygen, salinity, pH and water depth undertake at the identified monitoring point. At each station, marine water samples are collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom are collected when the water depth is between 3m and 6m. Only 1 sample at mid-depth is taken when the water depth is below 3m.
 - For the in-situ measurement, two consecutive measurements of sampling depth, temperature, dissolved oxygen, salinity, turbidity and pH concentration will be measured at the sea. The YSI Model 6820 Multi-parameter Water Quality Sonde is retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
 - Water sample collection would be used the water sampler. During the water sample collected from the sea, it is fill in high-density polythene bottles. Before the water sample storage, the sampling bottles will be pre-rinsed with the same water sample. The sample bottles then is packed in cool-boxes (cooled at 4°C without being frozen), and delivered to HOKLAS accredited laboratory for the chemical analysis as followed APHA *Standard Methods for the Examination of Water and Wastewater* 19ed 2540D, unless otherwise specified.
 - The laboratory has be comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples is analyzed as followed the HOKLAS accredited requirement.
- 3.21 For the marine water sampling period, the Multi-parameter Water Quality Monitoring System will be calibrated by three month interval accordingly. The available calibration certificate will be issued to ensure the performance of Multi-parameter Water Quality Monitoring System to use for in-situ measurement.
- 3.22 All water samples will be analyzed with various chemical tests as specified in the EM&A Manual by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). Duplicate samples from each independent sampling event are required for all parameters and the samples will be mixed and analyzed in one set of laboratory analysis. The mixed process would be carried by the laboratory. The determination works should start within 24 hours after collection of the water samples or within the holding time as advised by the laboratory. The laboratory analysis result will be input in our computer database upon received from the laboratory.

EQUIPMENT CALIBRATION

- 3.23 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.24 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.25 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.26 The Multi-parameter Water Quality Monitoring System will be calibrated by HOKLAS accredited laboratory of three month intervals. The available calibration certificate will be issued to ensure the performance of Multi-parameter Water Quality Monitoring System to use for in-situ measurement.
- 3.27 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.28 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.29 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.30 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.31 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.32 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Table 3-5 Action and Limit Levels for Air Quality

Monitoring Station	Action Le	vel (µg/m³)	Limit Level (µg/m³)			
Momtoring Station	1-hour	24-hour	1-hour	24-hour		
AM1	343	173	500	260		
AM2	331	175	500	260		
AM3	353	191	500	260		

Table 3-6 Action and Limit Levels for Construction Noise

Monitoring	Action Level	Limit Level					
Location	0700-1900 hours on normal weekdays						
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods					

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	In	npact Stati	on
rarameter	Criteria	W1	W2	W3
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71
(mg/L)	Limit Level	5.29	4.56	4.54
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37
(mg/L)	Limit Level	N/A	3.06	3.18
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48
(NTU)	Limit Level	6.06	5.99	6.71
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79
(mg/L)	Limit Level	12.68	11.28	12.25

3.33 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP. The impact monitoring schedule for the Reporting Period and next Reporting Period is presented in *Appendix G*.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **45** and **15** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1*, *4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix H* and the graphical plots of are shown in *Appendix I*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour		1-hour TSP (μg/m³)								
Date	TSP (μg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured					
30-Sep-13	92	2-Oct-13	8:47	77	91	87					
5-Oct-13	95	8-Oct-13	10:03	98	104	115					
11-Oct-13	87	15-Oct-13	10:18	167	179	161					
17-Oct-13	23	19-Oct-13	10:18	142	146	122					
23-Oct-13	35	24-Oct-13	14:28	153	157	150					
Average	66	Avera	ge	130							
(Range)	(23 - 95)	(Rang	e)	(77 – 179)							

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour			1-hour TSP				
Date	Date TSP (μg/m³)		Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
30-Sep-13	98	2-Oct-13	11:55	72	67	80		
5-Oct-13	97	8-Oct-13	9:58	109	117	113		
11-Oct-13	48	15-Oct-13	10:15	142	149	146		
17-Oct-13	93	19-Oct-13	10:14	160	168	151		
23-Oct-13	129	24-Oct-13 14:24		154	154 167			
Average	93	Avera	ge	130				
(Range)	(48 - 129)	(Rang	e)	(67 - 168)				

Table 4-3 Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour			1-hour TSP	(μg/m ³)			
Date	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
30-Sep-13	66	2-Oct-13	15:09	113	116	99		
5-Oct-13	82	8-Oct-13	9:43	132	155	153		
11-Oct-13	71	15-Oct-13	13:28	188	196	174		
17-Oct-13	72	19-Oct-13	13:39	146	139	125		
23-Oct-13	112	24-Oct-13 11:13		167	162	177		
Average	81	Avera	ge	150				
(Range)	(66 - 112)	(Rang	e)	(99–196)				

- 4.03 As shown in *Tables 4-1*, *4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix J*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of **20** construction noise monitoring events were undertaken at designated locations. The results for L_{eq30min} at NM1, NM2, RNM3 and NM4 are summarized in *Tables 5-1, 5-2, 5-3* and *5-4* and graphical plots are shown in *Appendix I*.

Table 5-1 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
2-Oct-13	11:26	11:56	54.9	52.1	43.1	54.5	52.1	40.4	52.0
8-Oct-13	10:57	11:27	59.2	58.7	50.4	49.6	50.1	48.1	55.1
15-Oct-13	10:21	10:51	53.7	53.1	52.9	54.7	55.7	54.5	54.2
19-Oct-13	10:25	10:55	48.6	47.0	51.7	54.6	49.2	50.1	50.9
24-Oct-13	13:58	14:28	56.6	53.2	53.4	56.3	55.3	54.7	55.1
Limit Le	vel in dI	B(A)							75

Table 5-2 Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	
2-Oct-13	10:49	11:19	61.8	64.3	64.2	64.9	64.6	64.1	64.1	
8-Oct-13	13:58	14:28	59.6	58.5	61.5	59.9	60.2	60.7	60.2	
15-Oct-13	11:16	11:46	65.3	64.9	64.2	65.6	66.4	66.2	65.5	
19-Oct-13	11:12	11:42	69.1	69.6	69.0	69.0	67.3	66.9	68.6	
24-Oct-13	13:14	13:44	63.5	64.5	65.3	63.8	61.1	64.3	63.9	
Limit Level in dB(A)				-						

Table 5-3 Summarized of Construction Noise Monitoring Results at RNM3

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
2-Oct-13	13:38	14:08	62.9	61.4	61.6	61.1	61.0	61.5	61.6	64.6
8-Oct-13	13:20	13:50	58.7	59.1	59.5	59.5	59.8	59.5	59.4	62.4
15-Oct-13	13:36	14:06	60.7	60.1	59.7	59.5	60.3	60.0	60.1	63.1
19-Oct-13	13:09	13:39	60.2	60.9	59.5	62.9	62.7	60.4	61.3	64.3
24-Oct-13	11:25	11:55	60.6	59.1	58.8	58.9	58.8	60.6	59.5	62.5
Limit Le	vel in dI	B(A)						75		

^{*} A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4 Summarized of Construction Noise Monitoring Results at NM4

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	
2-Oct-13	9:27	9:57	59.5	47.0	49.1	47.7	47.3	53.3	53.5	
8-Oct-13	10:16	10:46	61.5	61.2	57.8	61.4	58.4	57.0	59.9	
15-Oct-13	14:19	14:49	48.5	46.5	50.6	47.9	47.2	49.1	48.5	
19-Oct-13	13:51	14:21	46.4	45.3	45.5	46.3	44.6	45.8	45.7	
24-Oct-13	10:52	11:22	49.3	51.5	51.4	49.0	49.4	46.9	49.9	
Limit Le	vel in dE	B(A)		-						

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1*, *5-2*, *5-3* and *5-4* which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 12 events of water quality monitoring were carried out at the designated locations.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 30.97 to 33.64 ppt, and pH value was within 7.43 to 8.13.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1*, 6-2, 6-3 and 6-4. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

Table 6-1 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date	Disso	olved Ox Surf. a	• •	onc. of I Layer	-	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)						
uate	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Sep-13	7.32	6.93	6.82	6.41	6.81	6.53	N.A	6.68	6.42	6.33	6.17	6.31
30-Sep-13	7.41	7.50	7.26	7.50	7.30	7.73	N.A	7.49	7.48	7.38	7.50	7.31
2-Oct-13	8.72	8.21	8.19	7.86	8.08	7.60	N.A	8.19	7.91	7.86	7.68	7.22
4-Oct-13	8.22	8.15	7.39	7.50	7.64	8.17	N.A	7.91	6.91	7.10	6.96	7.17
8-Oct-13	7.10	7.54	8.28	7.87	8.64	7.51	N.A	7.89	8.54	8.35	9.13	7.67
10-Oct-13	7.58	8.16	8.44	8.32	9.37	8.02	N.A	8.47	8.36	8.08	9.28	8.60
12-Oct-13	8.58	7.90	7.90	7.28	7.98	8.11	N.A	7.79	7.32	7.40	7.90	6.36
15-Oct-13	7.20	7.84	7.95	8.13	7.95	7.97	N.A	7.90	7.23	7.86	8.30	7.80
17-Oct-13	7.31	7.62	8.21	7.91	8.91	7.97	N.A	7.93	8.28	7.83	8.90	8.27
19-Oct-13	6.32	6.72	7.27	6.28	7.58	5.67	N.A	6.53	6.95	5.97	5.51	5.60
22-Oct-13	7.14	7.82	5.95	7.53	7.14	7.61	N.A	6.83	6.07	6.73	6.74	7.23
24-Oct-13	6.92	7.84	7.42	6.83	7.52	6.76	N.A	7.52	6.96	6.45	7.38	6.41

Table 6-2 Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)

Sampling		Turbi	dity Dep	th Ave. ((NTU)		Sus	pended	Solids	Depth A	ve. (mg	y /L)
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Sep-13	2.10	2.28	4.93	0.85	3.37	1.12	2.60	2.57	3.47	4.47	3.27	5.03
30-Sep-13	3.40	3.13	3.35	3.10	3.37	3.25	4.20	5.00	4.50	5.23	5.67	4.17
2-Oct-13	2.90	4.30	3.82	4.45	4.07	3.78	2.50	2.70	2.93	2.73	3.57	2.47
4-Oct-13	3.50	3.77	4.10	6.67	3.05	5.38	3.90	1.93	1.13	1.87	2.40	4.40
8-Oct-13	2.15	2.63	2.40	2.57	2.87	3.55	3.00	3.43	3.10	3.23	3.00	3.53
10-Oct-13	4.15	3.63	3.50	3.05	2.98	3.18	10.50	4.20	4.07	3.53	3.17	3.93
12-Oct-13	2.40	3.37	3.57	4.83	5.00	4.17	4.60	6.57	7.97	9.83	5.80	5.10
15-Oct-13	3.40	3.68	4.42	3.90	3.67	5.12	9.00	7.67	8.00	7.67	6.67	11.00
17-Oct-13	2.70	3.87	3.55	3.35	3.73	3.80	4.60	7.37	6.10	4.77	5.00	5.63
19-Oct-13	2.40	1.65	1.92	2.32	1.67	1.88	1.80	1.73	1.27	2.27	2.77	4.40
22-Oct-13	0.90	2.57	2.03	1.62	0.77	1.30	3.40	3.70	2.30	3.53	3.33	2.90
24-Oct-13	0.95	2.82	1.57	2.03	1.08	1.60	2.30	3.93	5.73	3.37	3.10	2.27

Table 6-3 Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling	Disso	Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)					Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)					
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Sep-13	7.35	6.52	6.93	7.32	6.99	6.89	N.A	6.26	6.36	6.91	6.63	6.67
30-Sep-13	7.25	7.32	6.94	7.04	7.08	7.70	N.A	6.87	6.58	7.21	6.19	7.35
2-Oct-13	5.73	6.25	4.95	5.58	5.93	4.94	N.A	5.96	4.78	5.15	5.03	5.15
4-Oct-13	5.41	5.63	7.13	5.21	7.06	7.09	N.A	5.73	6.82	5.09	6.99	6.27
8-Oct-13	7.35	7.41	7.59	7.13	8.69	7.26	N.A	7.86	7.22	6.80	8.34	6.92
10-Oct-13	8.79	8.14	8.17	7.63	7.56	7.81	N.A	8.64	9.02	7.94	7.83	7.82
12-Oct-13	8.63	8.32	8.72	7.71	7.15	7.92	N.A	7.99	8.86	7.11	6.71	7.54
15-Oct-13	6.38	6.76	7.13	7.20	6.87	7.15	N.A	7.20	6.85	7.52	7.55	7.34
17-Oct-13	9.03	9.11	8.92	8.98	9.20	8.99	N.A	8.99	8.87	8.75	9.23	9.13
19-Oct-13	7.53	6.77	6.58	8.12	7.08	6.79	N.A	6.44	5.93	7.62	5.65	5.72
22-Oct-13	7.59	7.20	7.07	8.24	7.95	6.68	N.A	7.37	6.70	7.92	7.49	6.25
24-Oct-13	7.43	6.75	6.80	7.09	7.05	7.28	N.A	6.66	6.61	6.69	6.57	6.84

Table 6-4 Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)

Sampling		Turbi	dity Dep	th Ave.	(NTU)		Su	spende	d Solids	Depth A	ve. (mg/	/L)
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Sep-13	3.05	0.80	0.95	2.70	0.92	2.97	1.50	2.77	2.13	2.53	3.20	3.07
30-Sep-13	1.85	2.98	1.15	3.95	1.08	2.92	1.60	3.93	1.83	2.13	1.30	3.80
2-Oct-13	3.20	3.08	3.63	3.25	3.25	3.63	3.20	3.37	3.13	3.30	2.93	4.93
4-Oct-13	3.95	4.33	4.30	4.58	4.22	3.02	3.30	5.30	4.97	4.27	4.67	6.10
8-Oct-13	2.50	2.90	2.55	2.13	2.43	2.70	3.00	3.97	3.43	2.43	2.13	2.90
10-Oct-13	2.60	3.57	3.90	3.80	2.02	3.20	3.00	4.20	4.70	5.07	2.17	3.47
12-Oct-13	1.60	3.02	3.45	5.48	5.40	5.57	1.70	5.53	5.27	8.93	8.43	8.30
15-Oct-13	3.40	4.43	4.63	5.80	5.80	5.08	8.00	9.00	8.33	11.00	10.67	12.33
17-Oct-13	3.10	3.02	3.10	4.07	3.75	3.48	4.50	4.70	5.60	5.30	6.40	4.33
19-Oct-13	1.80	1.43	1.73	2.13	1.27	2.07	4.60	5.17	4.67	3.27	4.23	3.47
22-Oct-13	2.65	2.25	2.52	1.80	1.93	1.60	1.70	3.00	2.17	2.73	1.80	2.07
24-Oct-13	1.05	1.87	2.03	0.62	2.15	0.97	1.00	3.70	6.17	6.63	2.40	2.17

Table 6-5 Summarized Exceedances of Marine Water Quality

Station	Do (Ave of & mid-	f Surf.	DO (A Bottom	ve. of Layer)	Turb (Depth	·	S: (Depth	_	Tot Excee	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
				Mic	d-Ebb					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
				Mid	-Flood					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on 30 September and 15 October 2013. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring Celtis Timorensis CT7 to CT10 on 30 April 2011.
- 7.03 In April 2012, CT_1A and CT_7A were damaged by the fell broken tree trunk due to tree decayed by white ants. Therefore, only 5 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT4A, CT_5A and CT_6A were inspected since May 2012. Furthermore, during tree inspection on 30 July, CT4A was disappeared after typhoon No.10 on 24 July 2012 and it was certified as dead. Eventually, 4 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT_5A and CT_6A were inspected in the remaining period.
- 7.04 During the tree inspection on 15 August 2013, CT2A and CT3A were lost due to typhoon on 14 August 2013. Compensatory of additional Celtis Timorensis is recommended to carry out by the Landscape Contractor in the coming warm weather season for better growing.
- 7.05 The tree inspection report for this Reporting Period is presented in *Appendix N*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m³)	0	-
Reused in the Contract (Inert) ('000m ³)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0.434	WENT Landfill

Table 8-2 Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	6.740	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than 50m³ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 2, 8, 16 and 22 October 2013.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix L*.

Table 9-1 Site Observations

Date		Findings / Deficiencies	Follow-Up Status
2 2013	October	• No adverse environmental impacts were observed.	N.A.
8 2013	October	 Stockpile of dusty material was observed at pumping station 1, the Contractor was reminded to make it wet to reduce the dust disperse into the air. Bare loose slope was observed near sewage treatment plant, the Contractor was reminded to spary water to reduce the dust disperse in air. Stagnant water was oberserved at the water tank placed on the rooftop of sewage treatment plant, the Contractor was reminded to clear the water to prevent mosquito breeding. 	Water was sprayed to the stockpile of dusty material and bare loose slope on 16 October 2013. Stagnant water was also cleared on 16 October 2013.
16 2013	October	 Sediment was observed in sedimentation tank near the sewage treatment plant, the Contractor was reminded to clear the sediment to increase the capacity of tank and avoid overflow. 	The sediment was cleared on 22 October 2013.
22 2013	October	No adverse environmental impacts were observed.	N.A.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Donorting Davied	Envir	Environmental Complaint Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality				
January - December 2012	0	1 (Nov 2011)	NA				
January - September 2013	0	1 (Nov 2011)	NA				
October 2013	0	1 (Nov 2011)	NA				

Table 10-2 Statistical Summary of Environmental Summons

Donauting Davied	Envir	Environmental Summons Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	0	0	NA				
January - December 2012	0	0	NA				
January - September 2013	0	0	NA				
October 2013	0	0	NA				

Table 10-3 Statistical Summary of Environmental Prosecution

Donauting Davied	Environmental Prosecution Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
27 July 2010 – 31 December 2011	0	0	NA			
January - December 2012	0	0	NA			
January - September 2013	0	0	NA			
October 2013	0	0	NA			

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force:
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

Terrestrial Ecology

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix M*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Ouality	 Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained.
	 Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and Tarpaulin covering of any dusty materials on a vehicle leaving the site.

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	 Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising should be kept to a minimum and be handled, transported and
Wianagement	disposed of in a suitable manner;
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

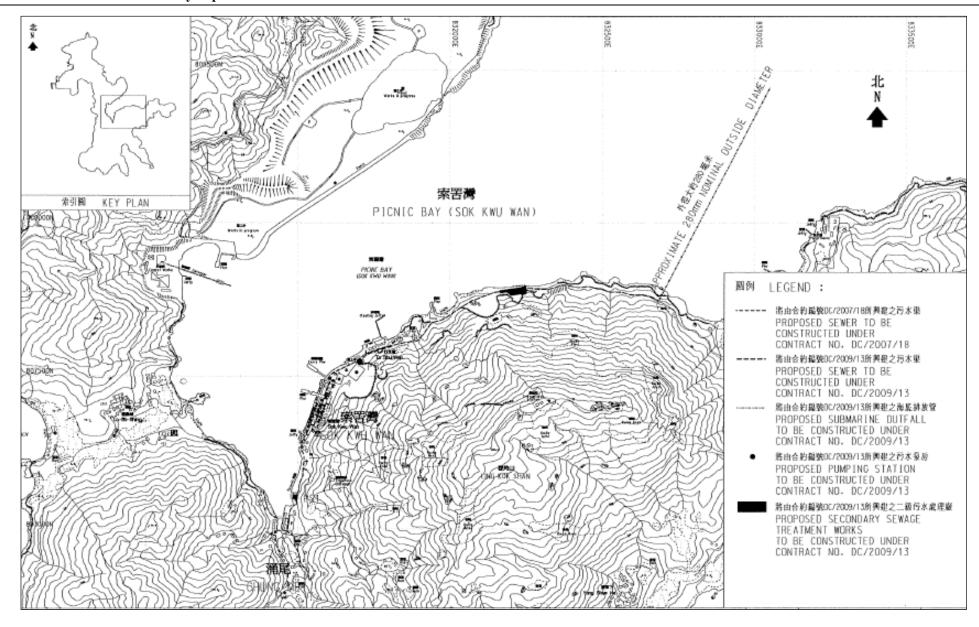
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 39th monthly EM&A Report covering the construction period from 26 September to 25 October 2013.
- 13.02 In this Reporting Period, no 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 2, 8, 16 and 22 October 2013. All the observation has been rectified in the set time frame. The environmental performance of the Project was therefore considered as satisfactory.

RECOMMENDATIONS


- 13.07 During dry and windy season, the Contractor shall pay attention on the construction dust that may cause environmental issues in the upcoming months. Mitigation measures on construction dust identified at the EM&A manual such as watering at haul road and covering of dusty material should be fully implemented.
- 13.08 Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

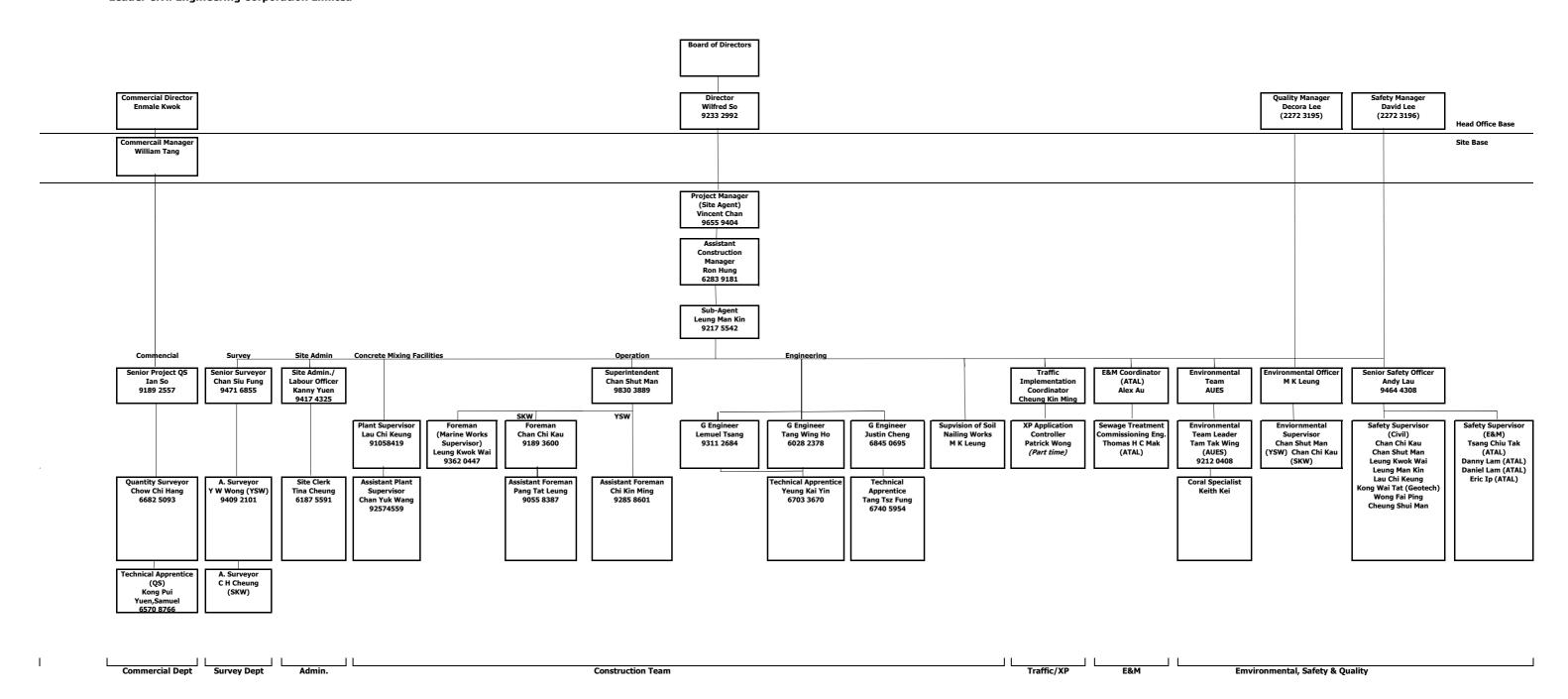
Organization Structure and Contact Details of Relevant Parties

Contact Details of Key Personnel

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Ms. Jacky C.M. Wong	2159-3413	2833-9162
URS CDM JV	Engineer's Representative	Mr. Ian Jones	2982 0240	2982 4129
URS CDM JV	Assistant Resident Engineer	Mr. Alex Pong	2982 0240	2982 4129
URS	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Director	Mr. Wilfred So	2982 1750	2982 1163
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Construction Manager	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. Leung Man Kin	2982 8652	2982 8650
Leader	Environmental Supervisor	Mr. Chan Chi Kau	2982 8652	2982 8650
Leader	Sub-Agent	Mr. Leung Man Kin	2982 1750	2982 1163
Leader	Senior Safety Officer	Mr. Andy Lau	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

Legend:

DSD (Employer) – Drainage Services Department

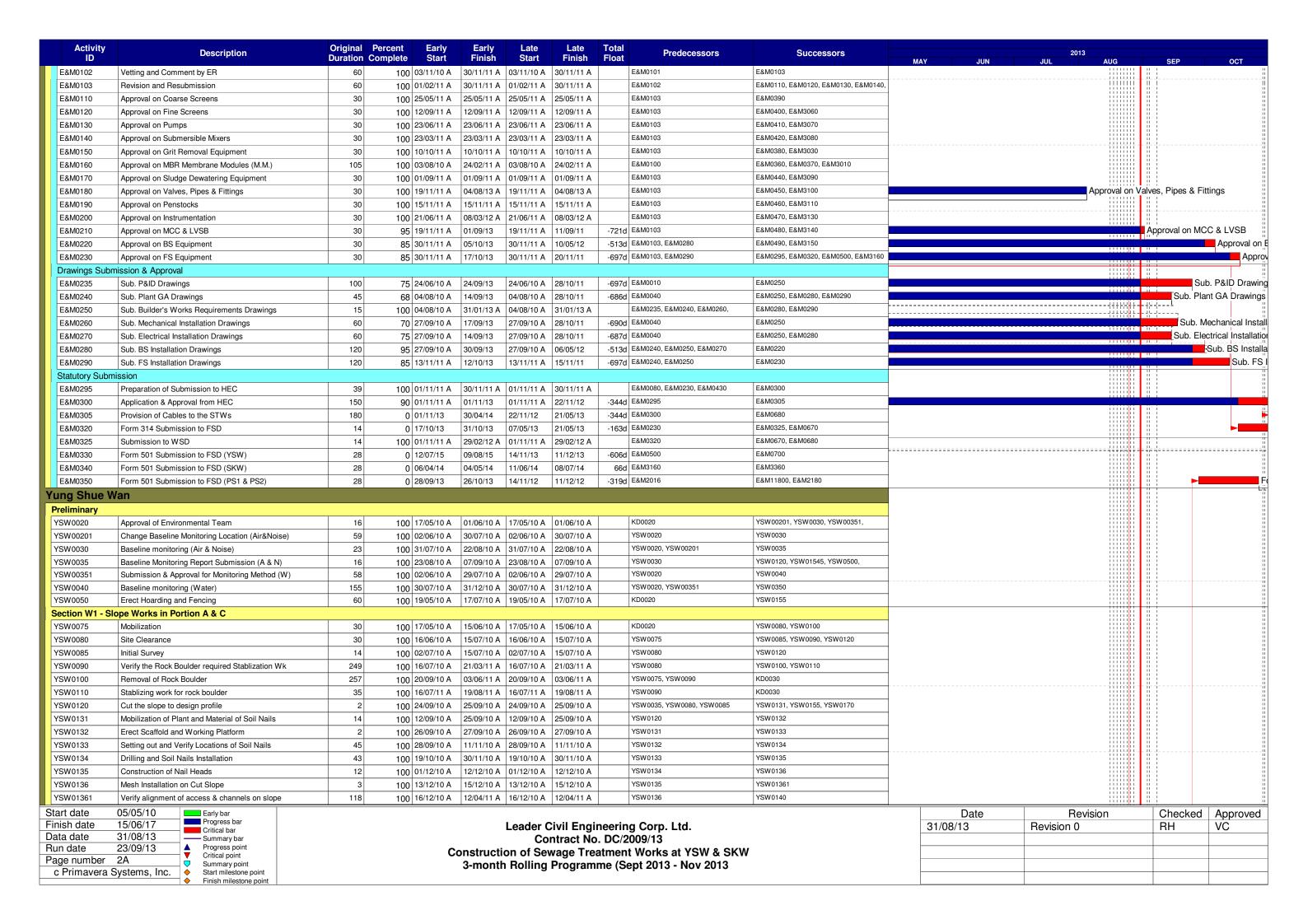

URS CDM JV (Engineer) – URS- CDM Joint Venture

Leader (Main Contractor) – Leader Civil Engineering Corporation Limited

URS (IEC) – URS Hong Kong Limited

AUES (ET) – Action-United Environmental Services & Consulting

Effective on 1-Nov-13

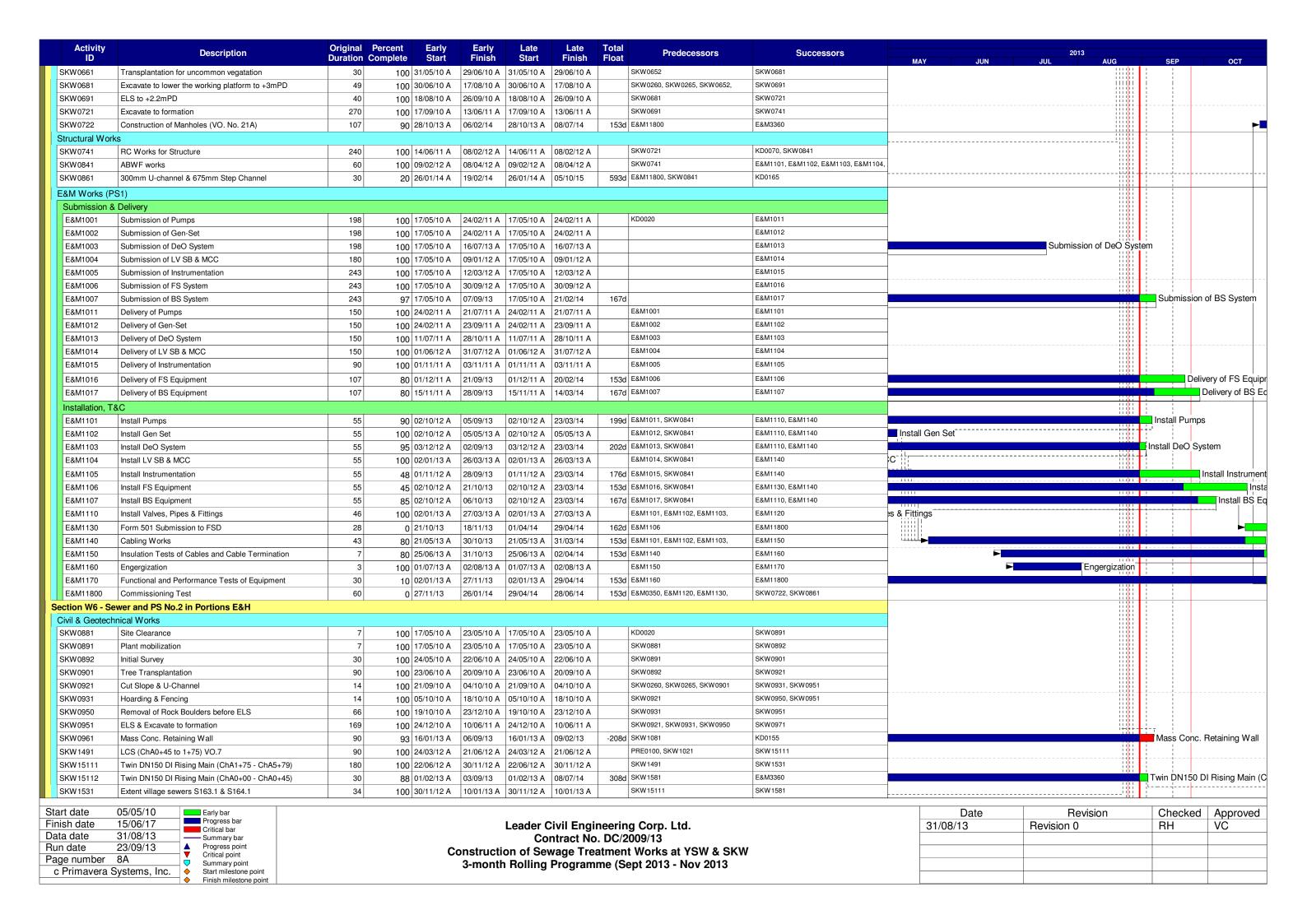


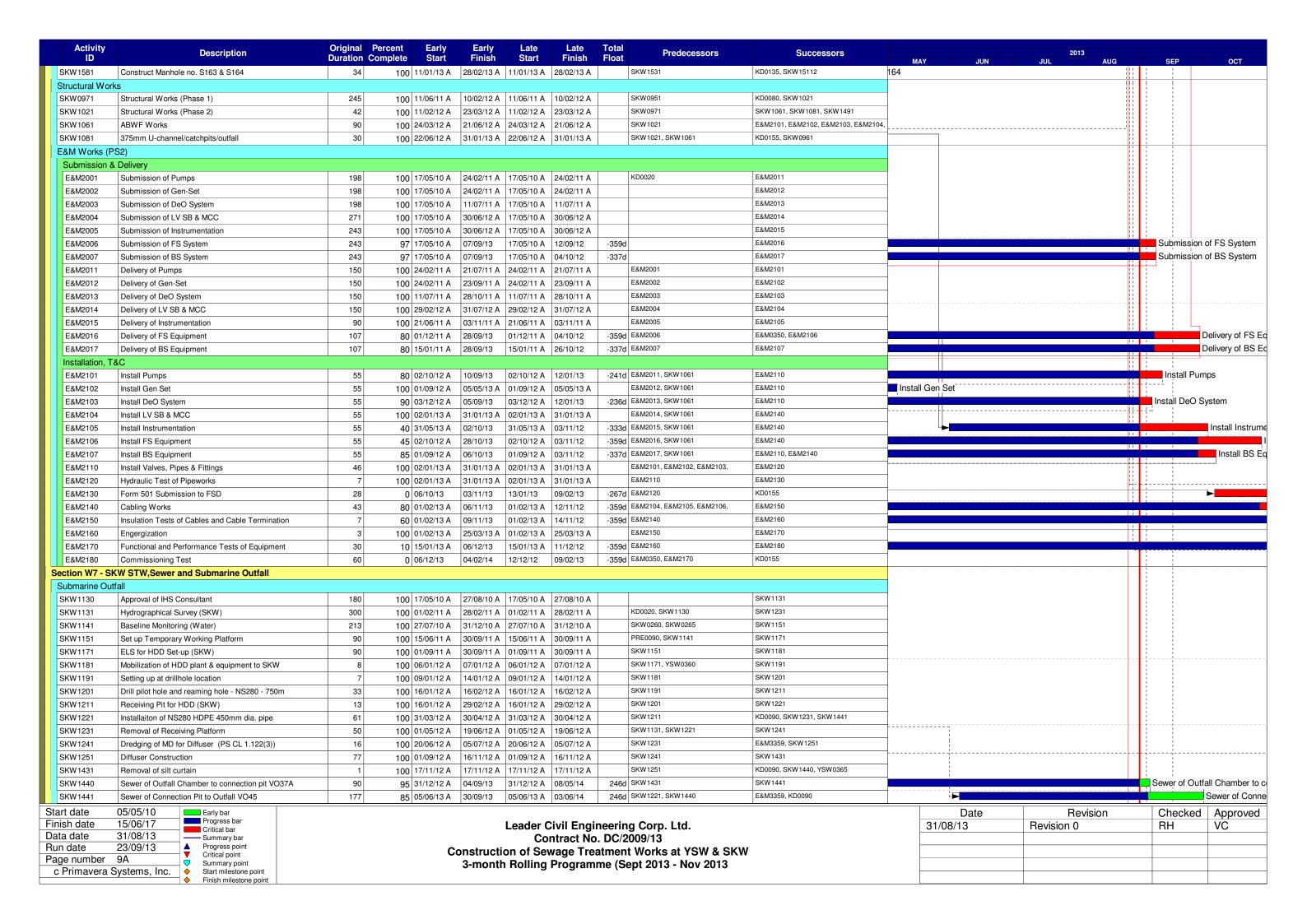
Appendix C

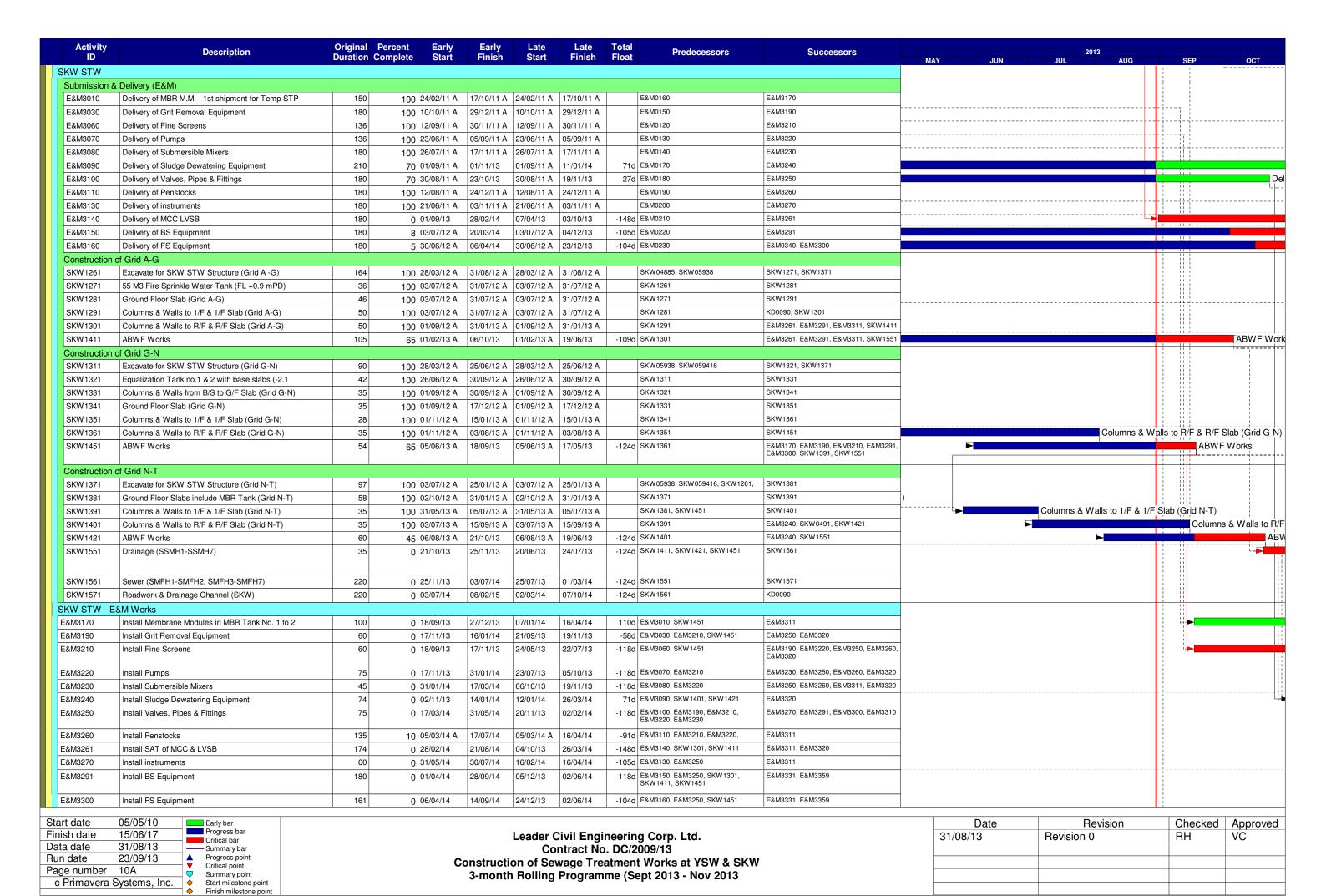
Three Months Rolling Construction Programme

Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	MAY	JUN	2013 JUL	AUG	SEP	ост
Project Key D	Pate										WAT	JON	001	AUG	JLI	001
KD0010	Receive Letter of Acceptance	0	100		05/05/10 A		05/05/10 A			KD0125						
KD0020	Project Commencement Date	0	100		17/05/10 A		17/05/10 A			E&M0010, E&M0070, E&M1001, E&M2001, KD0125, PRE0020, PRE0040, PRE0050, PRE0060, PRE0090, PRE0100, PRE0130, SKW0250, SKW0588, SKW0651, SKW0881, SKW1131, SKW1481, SKW1591, SKW1611, YSW0020, YSW0050, YSW0075, YSW0180, YSW0200, YSW0220, YSW0240, YSW02401, YSW0412, YSW0422						
KD0030	Section W1 - Slope Works in Portion A & C	0	100		14/10/11 A		14/10/11 A		YSW0100, YSW0110, YSW0140,	KD0125, KD0130, YSW01755						
KD0040	Section W2 - YSW STW & Submarine Outfall (1370d)	0	0		16/06/14 *		16/06/14 *	0 *	E&M0700, YSW0400, YSW0800, YSW0925, YSW16704, YSW1700	KD0125, KD0132					 	
KD0050	Section W3 - Footpath Diversion in Ptn G	0	0		30/08/13 *		24/03/11 *	-890d *	SKW0481	KD0125					Section W3 - F	ootpath Diversion
KD0060	Section W4 - Slope Works in Portios H & I	0	0		30/08/13 *		27/03/12 *	-521d *	SKW05938, SKW059416	KD0125, KD0135, SKW05941					Section W4 - S	lope Works in Po
KD0070	Section W5 - P.S. No. 1 in Portion D	0	0		30/08/13 *		10/02/12 *	-567d *	SKW0741	KD0125					Section W5 - F	S. No. 1 in Porti
KD0080	Section W6 - Sewer & PS No2 in Ptn. E & F	0	0		30/08/13 *		10/02/12 *	-567d *	SKW0971	KD0125					Section W6 - S	
KD0090	Section W7 - SKW STW, RM & Sm. Outfall	0	0		07/10/14 *		07/10/14 *	0 *	E&M3360, SKW1221, SKW1291, SKW1431, SKW1441, SKW1521,	KD0125, KD0165, SKW0491						
KD0100	Section W8 - Landscape Softworks	0	0		30/08/13 *		05/04/13 *	-147d *	SKW1611, SKW1621						Section W8 - L	andscape Softwo
KD0110	Section W9 - Establishment Works	0	0		03/04/14 *		03/04/14 *	0 *	SKW1631	KD0125						
KD0125	Project Completion	0	0		12/09/15 *		12/09/15 *	0 *	KD0010, KD0020, KD0030, KD0040, KD0050, KD0060, KD0070, KD0080, KD0090, KD0110, SKW0541							
KD0130	Completion of Maintenance Period of W1	1	0	31/08/13	31/08/13 *	13/10/12	13/10/12 *	-322d	KD0030, YSW01755, YSW01805, YSW01810						Completion of N	laintenance Peri
KD0132	Completion of Maintenance Period of W2	1	0	15/06/15	15/06/15 *	15/06/15	15/06/15 *	0	E&M0730, KD0040							
KD0135	Completion of Maintenance Period of W4	1	0	31/08/13	31/08/13 *	27/03/13	27/03/13 *	-157d	KD0060, SKW05947, SKW1581					>	Completion of N	Maintenance Peri
KD0145	Completion of Maintenance Period of W5	1	0	31/08/13	31/08/13 *	10/02/13	10/02/13 *	-202d							Completion of N	laintenance Peri
KD0155	Completion of Maintenance Period of W6	1	0	31/08/13	31/08/13 *	10/02/13	10/02/13 *	-202d	E&M2130, E&M2180, SKW0961,					: ::: ▶	Completion of N	laintenance Peri
KD0165	Completion of Maintenance period of W7	1	0	06/10/15	06/10/15 *	06/10/15	06/10/15 *	0 *	KD0090, SKW0595, SKW05972, SKW0861							rı !!
Preliminary (0	Civil)															ii !!
PRE0020	Pre-condition Survey	60	100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020					11111111		!!
PRE0040	Erection of Engineer's Site Accommodation at YSW	60	100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020					11111111		
PRE0050	Taking over the Secondary Engineer's Site Accomm	75	100	17/05/10 A	30/07/10 A	17/05/10 A	30/07/10 A		KD0020					11111111		ii
PRE0060	Application of Consent from Marine Department	60			15/07/10 A				KD0020					11111111	#	
PRE0090	Working Group Meeting for Outfall Construction	120			13/09/10 A				KD0020	SKW1151						
PRE0100	Application & Consent of XP from HyD (Mo Tat Rd)	120			13/09/10 A				KD0020	SKW1491, SKW1501						
PRE0130	Setup Web-site for EM&A Reporting	90	100	17/05/10 A	14/08/10 A	17/05/10 A	14/08/10 A		KD0020					11111111		
Preliminary (E														11111111		ii !!
Technical Subm E&M1120	Hydraulic Test of Pipeworks	7	70	00/05/12 4	08/10/13	09/05/13 A	20/04/14	2024	E&M1110	E&M11800	_			11111111	11 1	
	n of SKWSTW & YSWSTW		70	09/03/13 A	06/10/13	09/03/13 A	23/04/14	2020	Lawrito	Lawrioo				11111111	11 1	
E&M0010	Submission	38	100	17/05/10 Δ	23/06/10 A	17/05/10 Δ	23/06/10 A		KD0020	E&M0020, E&M0040, E&M0235				11111111		
E&M0020	Vetting and Comment by ER	21			14/07/10 A				E&M0010	E&M0030, E&M0040						
E&M0030	Revision and Resubmission	125			16/11/10 A				E&M0020	E&M0080				1111111		i
E&M0080	Approval from the Engineer	14	100	17/11/10 A	30/11/10 A	17/11/10 A	30/11/10 A		E&M0030	E&M0295						
Hydraulic Desig	jn				'	'	•	'						11111111		
E&M0040	Submission	21	100	15/07/10 A	04/08/10 A	15/07/10 A	04/08/10 A		E&M0010, E&M0020	E&M0050, E&M0101, E&M0240, E&M0260,						;; ;;
E&M0050	Vetting and Comment by ER	14	100	05/08/10 A	18/08/10 A	05/08/10 A	18/08/10 A		E&M0040	E&M0060				11111111	#	
E&M0060	Revision and Resubmission	97			10/10/10 A				E&M0050	E&M0430				11111111		
E&M0430	Approval from the Engineer	7	100	24/11/10 A	30/11/10 A	24/11/10 A	30/11/10 A		E&M0060	E&M0295				11111111	ii i	ii
	mission & Approval								I	1					ii i II i II i	
E&M0070	Submission of Membrane Module	50			05/07/10 A				KD0020	E&M0090				11111111		
E&M0090	Vetting and Comment by ER	14			19/07/10 A			-	E&M0070	E&M0100						
E&M0100 E&M0101	Revision and Resubmission Submission of Equipment	90			24/02/11 A 30/11/11 A				E&M0090 E&M0040	E&M0160 E&M0102				11111111		
Start date	05/05/10 Early bar											Date	Rev	rision	Checked	Approved
Data date	15/06/17 31/08/13 23/09/13 A Progress bar Critical bar Summary bar Progress point Critical point Critical point			С	onstructi	Co on of Se	ntract No wage Tre	o. DC/2 atmen	t Works at YSW & SKV	V	31/08/1		Revision 0		RH	VC
c Primavera S					3-month	Holling	Program	me (S	ept 2013 - Nov 2013							

Activity ID	Description	Original	Percent Ear Complete Sta		Late Start	Late Total Finish Float		Successors		2013		
YSW0140	Construct U-channels & Step Channel on Cut Slope	Duration 182	100 13/04/1			11/10/11 A	YSW01361	KD0030	MAY JUN	JUL AUG	SEP	OCT
YSW0153	Removal of Ex U-Channel where clash with B. Wall	151	100 13/04/1		10/05/11 A		YSW01545	YSW01750		11111	HH + 11: 1:	
YSW01545	Temporary Diversion of Drainage	244	100 08/09/1				YSW0035	YSW0153				
YSW0155	RC Barrier Wall Bay 1-13 (below Ground Level)	256	100 26/09/1		26/09/10 A		YSW0050, YSW0120	KD0030, YSW0170, YSW0175, YSW01750			(1) (1) (1)	
YSW0170	RC Barrier Wall Bay 1-13 (above Ground Level)	125	100 09/06/1	1 A 11/10/11 A	09/06/11 A	11/10/11 A	YSW0120, YSW0155	KD0030			11 11 11 1	
YSW0175	Construct U-channels and Catchpits (Phase 1)	76	100 09/06/1	1 A 23/08/11 A	09/06/11 A	23/08/11 A	YSW0155	KD0030			11 11 1	
YSW01750	Construction of subsoil drain (phase 1)	7	100 12/10/1	1 A 08/02/12 A	12/10/11 A	08/02/12 A	YSW0153, YSW0155	KD0030			H H H	
YSW01755	Construct subsoil drain (phase 2)	14	100 06/12/1	2 A 31/12/12 A	06/12/12 A	31/12/12 A	KD0030, YSW01800	KD0130			i i i i i i	
YSW01800	RC Barrier Wall Bay 14 (below & above Ground)	87	100 03/09/1	2 A 28/11/12 A	03/09/12 A	28/11/12 A	YSW0760	YSW01755, YSW01810		11111		
YSW01805	Hydroseeding	14	100 02/03/1	3 A 02/03/13 A	02/03/13 A	02/03/13 A	YSW01810	KD0130			1111 11 1	
YSW01810	Construct U-channels and Catchpits (Phase 2)	30	100 29/11/1	2 A 22/12/12 A	29/11/12 A	22/12/12 A	YSW01800	KD0130, YSW01805				
Section W2 - YS	W STW & Submarine Outfall											
Civil & Structura	al Work									11111		
YSW0412	Mobilization	30	100 17/05/1	0 A 15/06/10 A	17/05/10 A	15/06/10 A	KD0020	YSW0422				
YSW 0422	Site Clearance	30	100 17/05/1	0 A 15/06/10 A	17/05/10 A	15/06/10 A	KD0020, YSW0412	YSW0432, YSW0500, YSW0610,				
YSW0432	Initial Survey	14	100 02/06/1	0 A 15/06/10 A	02/06/10 A	15/06/10 A	YSW0422	YSW0510				
YSW STW - 0	GLH-T											
YSW 0500	ELS & Excavation for Inlet Pumping Station	105	100 08/09/1	21/12/10 A	08/09/10 A	21/12/10 A	YSW0035, YSW0422	YSW0510		11111		
YSW0510	Sub-structure construction (Inlet Pumping Stn)	129	100 22/12/1	29/04/11 A	22/12/10 A	29/04/11 A	YSW0432, YSW0500	YSW0520				
YSW0520	Backfill & Remove ELS (Inlet Pumping Stn)	40	100 30/04/1			08/06/11 A	YSW0510	YSW05701				
YSW 0530	ELS & Excavation for Equalization Tank	159	100 01/01/1	1 A 08/06/11 A	01/01/11 A	08/06/11 A	YSW0660	YSW0540, YSW05701				
YSW0540	Sub-structure construction (Equalization Tank)	112	100 09/06/1	1 A 28/09/11 A	09/06/11 A	28/09/11 A	YSW0530	YSW0550, YSW05901				
YSW 0550	Backfilling & Remove ELS (Equalization Tank)	20	100 29/09/1	1 A 18/10/11 A	29/09/11 A	18/10/11 A	YSW0540	YSW05901		11111		
YSW05701	ELS & Excavation for Grit Chambers	28	100 09/06/1			06/07/11 A	YSW0520, YSW0530	YSW05711, YSW05731				
YSW05711	Construct sub-structure for Grit Chambers	106	100 07/07/1			20/10/11 A	YSW05701	YSW05721, YSW05911				
YSW05721	Backfill & Remove ELS for Grit Chambers	12	100 21/10/1			01/11/11 A	YSW05711	YSW05911				
YSW05731	ELS & Excavation for Grease Separators (GS)	34	100 07/07/1			09/08/11 A	YSW05701	YSW05741				
YSW05741	Construct sub-structure for Grease Separators	52	100 10/08/1			30/09/11 A	YSW05731	YSW05751		11111		
YSW05751	Install Dia.400 Puddles in Grease Separators	27	100 01/10/1			27/10/11 A	YSW05741	YSW05752				
YSW05752	Construct sub-structure for GS (above puddles)	48	100 28/10/1			14/12/11 A	YSW05751	YSW05761				
YSW05761	Backfill & remove ELS for Grease Separators	10	100 15/12/1			24/12/11 A	YSW05752	YSW0580, YSW05921				
YSW0580	Excavate to Formation for Deodorizer Room Excavate to formation - Grid J-N/5-7	10	100 25/12/1 100 04/01/1			03/01/12 A 12/02/12 A	YSW05761 YSW0580	YSW05801, YSW05922 YSW05802, YSW05923		iiiii		
YSW05801 YSW05802	Excavate to formation - Grid GA-H/5-7	10	.00			22/02/12 A	YSW05801	YSW05924		11111		
YSW05901	G/F to 1/F Construction Grid GA-K/1-5	90	100 13/02/1	1 A 27/12/11 A			YSW0540, YSW0550	YSW06001			iilii lii i	
YSW05911	G/F to 1/F Construction Grid N-S/1-5	80		1 A 08/01/12 A			YSW05711, YSW05721	YSW06011, YSW06035				
YSW05921	G/F to 1/F Construction Grid K-N/1-5	45	100 25/12/1		_	07/02/12 A	YSW05761	YSW06021				
YSW05922	G/F to 1/F Construction for Deodorizer Room	80	100 23/12/1			23/03/12 A	YSW0580	YSW06022		iiiii	뭐## + +	
YSW05923	G/F to 1/F Construction for Grid J-N/5-7	60	100 13/02/1			12/04/12 A	YSW05801	E&M0530, E&M0540, E&M0550, E&M0560,		11111		
YSW05924	G/F to 1/F Construction for Grid GA-H/5-7	50	100 28/05/12		28/05/12 A		YSW05802, YSW06023	YSW06034		11111		
YSW06001	1/F to Roof Constuction for Grid GA-K/1-5	87	100 28/12/1			23/03/12 A	YSW05901	YSW0800				
YSW06011	1/F to Roof Constuction for Grid N-S/1-5	75	100 09/01/1:			23/03/12 A	YSW05911	YSW0800				
YSW06021	1/F to Roof Constuction for Grid K-N/1-5	44	100 08/02/1			22/03/12 A	YSW05921	YSW07201		ii.	i i i i ii	
YSW06022	1/F to Roof Constuction for Deodorizer Room	60	100 24/03/1			22/05/12 A	YSW05922	YSW0800		11111		
YSW06023	1/F to Roof Constuction for Grid J-N/5-7	45	100 13/04/1			27/05/12 A	YSW05923	E&M0580, YSW05924			11 11 1 1	
YSW06034	1/F to Roof Constuction for Grid GA-H/5-7	28	100 27/07/1			13/08/12 A	YSW05924	YSW0800				
YSW06035	Construct buffle walls in Grease Separators	90	100 18/04/1			16/07/12 A	YSW05911	YSW07204			11 11 1 1	
YSW07201	Water tightness test for Inlet Pumping Station	60	100 23/03/1	2 A 21/05/12 A	23/03/12 A	21/05/12 A	YSW06021	YSW07202, YSW0800			- - -	
YSW07202	Water tightness test for Equalization Tanks	42	100 22/05/12		22/05/12 A	02/07/12 A	YSW07201	E&M0600, YSW07203, YSW0800		11111	11 11 1 1 1	
YSW07203	Water tightness test for Grit Chambers	42	100 17/09/1	2 A 29/09/12 A	17/09/12 A	29/09/12 A	YSW07202	YSW07204, YSW0800				
YSW07204	Water tightness test for Grease Separators	32	100 03/10/1	2 A 31/10/12 A	03/10/12 A	31/10/12 A	YSW06035, YSW07203	E&M0570, YSW07205, YSW0800			[] [] [] [] [] [] [] [] [] []	
YSW07205	Water tightness test for water channels	21	100 31/08/1	3 A 23/09/13 A	31/08/13 A	23/09/13 A	YSW07204	YSW0800			+ + - - - - - - - - - - - - - 	ater tightness te
YSW0800	ABWF installation	271	97 03/07/1	2 A 07/09/13	03/07/12 A	16/06/14 2820	YSW06001, YSW06011, YSW06022,	KD0040		1111	-ABWF inst	tallation
YSW STW - 0	GL T - X				•						H H I	
YSW0610	Excavate to formation	10	100 08/09/1	17/09/10 A	08/09/10 A	17/09/10 A	YSW0035, YSW0422	YSW0620				
YSW0620	Base slab construction	248	100 18/09/1	23/05/11 A	18/09/10 A	23/05/11 A	YSW0610	YSW0630				
	05/05/10 Early bar						-		Date	Revision	Checker	d Approved
	15/06/17 Progress bar Critical bar				Leader (Civil Engineerir	ng Corp. Ltd.		31/08/13	Revision 0	RH	VC
	31/08/13 —— Summary bar				Co	ontract No. DC/2	2009/13					
	23/09/13 ≜ Progress point			Constructi	on of Se	wane Treatmen	nt Works at YSW & SKW	1				
	Critical point			0011011401		wage incamine	it works at 15W & 5KW					
	3A						ept 2013 - Nov 2013					


Activity ID	Description	Original Pero		Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		2013			
YSW0630	G/F to 1/F construction	205	100 24/05/11 A	14/12/11 A	24/05/11 A	14/12/11 A	Tout	YSW0620	YSW0640	MAY JUN	JUL /	AUG	SEP	OCT
YSW0640	1/F to Roof Construction	64	100 15/12/11 A					YSW0630	YSW0810					
YSW0810	ABWF installation	80	100 28/12/11 A		28/12/11 A			YSW0640	E&M0610, E&M0620, E&M0630, E&M0640					
	GL F - H & DN Tanks		100											
YSW 0650	ELS & Excavation for DN Tanks	37	100 08/09/10 A	14/10/10 A	08/09/10 A	14/10/10 A		YSW0035, YSW0422	YSW0660					
YSW 0660	Sub-struction construction (DN Tanks)	78	100 15/10/10 A	31/12/10 A	15/10/10 A	31/12/10 A		YSW0650	YSW0530, YSW0670					
YSW0670	Backfill & Remove ELS (DN Tanks)	70	100 01/01/11 A	+	01/01/11 A			YSW0660	YSW0680					
YSW0680	Base slab construction (SD1, SD2 & MBR4)	17	100 01/01/11 A	28/03/11 A				YSW0670	YSW0690					
YSW 0690	Construct Superstructure SD1, SD2 & MBR4	82		18/06/11 A				YSW0680	YSW0710, YSW0820					
YSW 06901	Construct Superstructure of DN Tanks	28	100 15/05/12 A					YSW0735	YSW0830					
YSW 0705	Water test for MBR 4	47	100 01/10/12 A	16/11/12 A				YSW0710	E&M0510, E&M0640, YSW07055,					
YSW 07055	Water test for SD1 & SD2	54	100 17/11/12 A		17/11/12 A	10/01/13 A		YSW0705, YSW07105	E&M0610					I
YSW0710	Apply protective paint for MBR 4	7	100 24/09/12 A		24/09/12 A	30/09/12 A		YSW0690	YSW0705, YSW07105					
YSW07105	Apply protective paint for SD1 & SD2	7	100 01/10/12 A		01/10/12 A	07/10/12 A		YSW0710	YSW07055					
YSW0820	ABWF installation	90	70 15/01/13 A	26/09/13	15/01/13 A	15/04/13	-164d	YSW0690, YSW0705	E&M0630. E&M0640				 	BWF installa
YSW0830	Water test for DN Tanks	28	100 14/07/13 A		14/07/13 A	13/09/13 A	1040	YSW06901	YSW0850					st for DN Ta
YSW0850	Apply protecitve paint for DN Tanks	6	100 27/04/13 A					YSW0830	E&M0610		Apply protecitve p	aint for DN		51 101 DIV 14
YSW STW -	11171		100 2770471071	11/0//10/1	21/04/1070	11/0//10/1		1.0110000			7 (ppi) protective p	diff for BIV	Tarito	
YSW 0730	Completion of HDD		100 21/01/12 4		21/01/12 A			YSW03601, YSW03605	YSW0732					
	Excavate for MBR 2 & 3	20	100 21/01/12 A	09/02/12 A		00/02/12 4		YSW0730	YSW0732					
YSW0732	Construct basement of MBR 2 & 3	20	.00	29/02/12 A				YSW0730	YSW0735, YSW0740					
YSW0733		75	100 10/02/12 A					YSW0732 YSW0733	YSW0735, YSW0740 YSW06901, YSW0736, YSW08302,	-				
YSW 0735	Construct superstructure of MBR 2			14/05/12 A				YSW0735	YSW06901, YSW0736, YSW08302, YSW08302, YSW08305					
YSW0736	Construct superstructure of MBR 3	100		14/05/12 A					,					
YSW0740	ELS & excavate for Outfall Shaft	75	100 01/03/12 A					YSW0733	YSW0750					
YSW0750	Construct basement of Outfall Shaft	19	100 15/05/12 A					YSW0740	YSW07501					
YSW07501	Connect additional flange to HDPE pipe (VO 042)	5	100 03/06/12 A					YSW0750	YSW07502					
YSW07502	Construct sub-structure of Outfall Shaft	16	100 08/06/12 A					YSW07501	YSW0760					
YSW0760	Backfill & remove ELS (outfall shaft)	8	100 24/06/12 A					YSW07502	YSW01800, YSW07601, YSW07603,		· 			
YSW07601	Construct superstructure for Outfall Shaft	30	100 03/07/12 A					YSW0760	YSW08301, YSW08305	-				
YSW07603	ELS & excavate for FSH Water Supply Tank	25	100 01/06/12 A	-				YSW0760	YSW07604	-				
YSW07604	Construct substructure for FSH Water Supply Tank	24	100 26/06/12 A					YSW07603	YSW07605	-				
YSW07605	Backfill & remove ELS for FSH Water Supply Tank	12	100 20/07/12 A					YSW07604	YSW07607					
YSW07607	Construct basement of MBR 1 & Workshop	24	100 01/08/12 A					YSW07605	YSW07608, YSW07609					
YSW07608	Construct superstructure for FSH Water Supply Tk	37	100 25/08/12 A					YSW07607	YSW08304, YSW08305			,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
YSW07609	Construct superstructure for MBR 1	37	100 25/08/12 A			+		YSW07607	YSW07610, YSW08303, YSW1470					
YSW07610	Construct Workshop, FSSH Pump Rm, PW Pump Rm	31	100 03/10/12 A	31/10/12 A				YSW07609	YSW0840, YSW16606, YSW16607,					
YSW08301	Water tightness test for Outfall Shaft	42	100 03/04/13 A		03/04/13 A			YSW0380, YSW07601	E&M0690	tightness test for Outfall Shaft				
YSW08302	Water tightness test for MBR 2 & 3	95	100 10/08/13 A	24/08/13 A				YSW0735, YSW0736	E&M0520, E&M0590, E&M0605, E&M0650		-	Wate	r tightness tes	t for MBR 2
YSW08303	Water tightness test for MBR 1	19	100 30/11/12 A		30/11/12 A			YSW07609	E&M0520					
YSW08304	Water tightness test for FSH Water Supply Tank	32	100 31/08/13 A	01/10/13 A				YSW07608	E&M0610		 	<u> </u>		Water tight
YSW 08305	Apply protective paint	120	100 02/10/12 A	15/08/13 A	02/10/12 A	15/08/13 A		YSW0735, YSW0736, YSW07601,	E&M0610		<u> </u>	Apply prot	ective paint	
Fire Hose Re	el / Sprinkler Pump Rm				<u> </u>	<u> </u>	1							
YSW0840	ELS & excavate to formation (+0 mPD approx.)	40		18/04/13 A				YSW07610, YSW16606	YSW0860	excavate to formation (+0 mPD a				
YSW0860	Sub-structure construction	40	100 19/04/13 A		19/04/13 A			YSW0840	YSW0890		ture construction			
YSW0880	Backfill & remove ELS	35	100 21/06/13 A	26/08/13 A				YSW0890	YSW0910			Bac	kfill & remove E	ELS
YSW0890	Construction Ground Slab at +5.2mPD	40	100 04/06/13 A	14/07/13 A	04/06/13 A	14/07/13 A		YSW0860	YSW0880, YSW0900	-	Construction Gr	and the state of t	I	
YSW0900	Superstructure construction upto +9.2mPD	35	100 04/06/13 A		04/06/13 A	01/08/13 A		YSW0890	YSW0910, YSW0925	>	Super	structure co	nstruction upto	
YSW0910	Water test	28	0 01/09/13	29/09/13	30/10/13	27/11/13		YSW0880, YSW0900	YSW0915					Water test
YSW0915	Apply protective paint	14	0 29/09/13	13/10/13	27/11/13	11/12/13	59d	YSW0910	E&M0640, YSW0925				►Ī	Арр
YSW 0925	ABWF installation	30	35 16/07/13 A	13/10/13	16/07/13 A	16/06/14	246d	YSW0900, YSW0915	KD0040		-			-ABV
Emergency S	Storage Tank										; !			
YSW1470	ELS & excavate to formation (-1.5mPD Approx.)	16	100 17/09/12 A	02/10/12 A	17/09/12 A	02/10/12 A		YSW07609	YSW1480		; !			
YSW1480	Sub-structure construction	14	100 03/10/12 A	16/10/12 A	03/10/12 A	16/10/12 A		YSW1470	YSW1490		 			
YSW1490	Backfill & extract sheetpile	3	100 17/10/12 A	19/10/12 A	17/10/12 A	19/10/12 A		YSW1480	YSW1500		 			
YSW1500	Superstructure construction upto +10.5mPD	41	100 20/10/12 A	29/11/12 A	20/10/12 A	29/11/12 A		YSW1490	YSW1530, YSW1536		 			
art date nish date ata date un date	05/05/10				Co	ntract No	DC/2			Date 31/08/13	Revision 0	า	Checked RH	Approv VC
age number	4A Systems, Inc. Verifical point Summary point Start milestone point Finish milestone point		C					t Works at YSW & SKV ept 2013 - Nov 2013	N .					


Date	Revision	Checked	Approved
31/08/13	Revision 0	RH	VC


Activity ID	Description		Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		2013	050	207
YSW1530	Underground pipeline works	40	70 20/07/13 A	11/09/13	20/07/13 A	08/06/13		/SW1500	E&M0690, YSW1680	MAY JUN	JUL AUG	SEP	oct ind pipeline wor
YSW1536	Water tightness test	40	100 12/08/13 A	26/08/13 A	12/08/13 A	26/08/13 A		/SW1500	YSW1538		<u> </u>	ater tightness tes	
YSW1538	Apply protective paint	30	100 04/03/13 A	05/03/13 A	04/03/13 A	05/03/13 A	,	/SW1536	YSW1540				
YSW1540	ABWF installation	40	35 03/04/13 A	25/09/13	03/04/13 A	08/06/13	-109d	/SW1538	E&M0690		1 111111	AB	BWF installation
Road, Drain,	Cable Draw Pits & Ducting												
YSW16601	ELS & excavate 6m deep sewer (FM1 - YFMH13)	60	45 04/08/13 A	04/10/13	04/08/13 A	06/04/13	-181d \	/SW0760, YSW16606, YSW16607,	YSW16602			!	ELS & excav
YSW16602	Lay pipe & backfill 6m deep sewer (FM1 - YFMH13)	45	0 04/10/13	18/11/13	06/04/13	21/05/13	-181d \	/SW16601	E&M0680, YSW1700				>
YSW16603	Construct UU & pipes along sea side (Grid Q-X)	60	0 01/09/13	31/10/13	11/05/13	09/07/13	-114d \	/SW16607, YSW16608	YSW16604, YSW16703			;	
YSW16604	Construct UU & pipes along sea side (Grid XA-D)	60	70 22/07/13 A	18/11/13	22/07/13 A	27/07/13	-114d \	/SW16603	YSW16605, YSW16701			i	
YSW16605	Construct UU & pipes along sea side (Grid D-Q)	60	10 20/11/13 A	11/01/14	20/11/13 A	19/09/13	-114d \	/SW16604	YSW16702, YSW1700			1	
YSW16606	Construct UU & pipes along hill side (Grid D-Q)	90	98 10/10/12 A	01/09/13	10/10/12 A	04/03/13	-181d \	/SW07610	YSW0840, YSW16601			Construct UU &	pipes along hil
YSW16607	Construct UU & pipes along hill side (Grid Q-X)	72	98 20/08/12 A	01/09/13	20/08/12 A	04/03/13	-181d \	/SW07610	YSW16601, YSW16603			Construct UU &	pipes along hil
YSW16608	Construct UU & pipes along hill side (Grid XA-D)	72	98 30/11/12 A	01/09/13	30/11/12 A	04/03/13	-181d \	/SW07610	YSW16601, YSW16603, YSW1690		, , , , , , , , , , , , , , , , , , , ,	Construct UU &	pipes along hi
YSW16701	Construct Boundary Wall (Grid XA-D)	80	90 10/01/13 A	26/11/13	10/01/13 A	19/09/13	-68d \	/SW16604	YSW16702				
YSW16702	Construct Boundary Wall (Grid D-Q)	80	0 11/01/14	01/04/14	20/09/13	08/12/13	-114d \	/SW16605, YSW16701	YSW16703		i i i i i i i i i i i i i i i i i i i	1	
YSW16703	Construct Boundary Wall (Grid Q-X)	80	0 01/04/14	20/06/14	09/12/13	26/02/14	-114d \	/SW16603, YSW16702	YSW16704, YSW1700		·	1	
YSW16704	ABWF installation for Boundary Wall	240	0 11/01/14	08/09/14	20/10/13	16/06/14	-84d \	/SW16703	KD0040			1	
YSW1680	Fire Hydrant & pipeline installation	120	50 26/01/13 A	10/11/13	26/01/13 A	14/10/13	-27d \	/SW1530	YSW1690, YSW1700				
YSW1690	Construction of Road Kerbs, Downpipes, U-channel	180	25 02/01/13 A	25/03/14	02/01/13 A	26/02/14	-27d \	/SW16608, YSW1680	YSW1700		111111	!	
YSW1700	Road Paving	110	0 20/06/14	08/10/14	27/02/14	16/06/14		/SW16602, YSW16605, YSW16703,	KD0040				
								/SW1680, YSW1690					
Submarine Ou						1							
YSW0180	Coordination of HEC	53			17/05/10 A			KD0020	YSW0350		11111111		
YSW0200	Submission and Approval of Ecologist	60	100 17/05/10 A		17/05/10 A	15/07/10 A		KD0020	YSW0210		111111111111111111111111111111111111111		
YSW0210	Ecology Survey	211	100 16/07/10 A	11/02/11 A	16/07/10 A	11/02/11 A)	/SW0200	YSW0350				
YSW0220	Submission and Approval of In. Hydro Survey	103	100 17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A	ŀ	(D0020	YSW0230		111111		
YSW0230	Hydrogrophical Survey (YSW)	157	100 28/08/10 A	31/01/11 A	28/08/10 A	31/01/11 A	,	/SW0220	YSW0350			1	
YSW0240	Material Submission, Approval of HDPE pipe	319	100 17/05/10 A	31/03/11 A	17/05/10 A	31/03/11 A	ŀ	(D0020	YSW0360				
YSW02401	Clarify Coordinate of Point Y (Reply of RFI 010)	83	100 28/06/10 A	18/09/10 A	28/06/10 A	18/09/10 A	ŀ	(D0020	YSW0250				
YSW0250	Submit and Approval of Method Statement for HDD	188	100 19/09/10 A	25/03/11 A	19/09/10 A	25/03/11 A	,	/SW02401	YSW0260, YSW0270, YSW0340				
YSW0260	Submission of HDD Method Statement to HEC	14	100 26/03/11 A	08/04/11 A	26/03/11 A	08/04/11 A	,	/SW0250	YSW0340				
YSW0270	Additional G.I. Boreholes (YSW)	123	100 19/09/10 A	19/01/11 A	19/09/10 A	19/01/11 A	,	/SW0250	YSW0280, YSW0290			İ	
YSW0280	Submission of propose alignment	44	100 20/01/11 A	04/03/11 A	20/01/11 A	04/03/11 A	,	/SW0270	YSW0310, YSW0340				
YSW0290	Submission of Marine Notice	69	100 20/01/11 A	29/03/11 A	20/01/11 A	29/03/11 A)	/SW0270	YSW0350			1	
YSW0310	Construction of Entry Pit and Preparation Work	27	100 05/03/11 A		05/03/11 A	31/03/11 A)	/SW0280	YSW0320				
YSW0320	Prepare of HDD Drill Rig Set-up (YSW)	28	100 01/04/11 A	28/04/11 A	01/04/11 A	28/04/11 A)	/SW0310	YSW0330, YSW0350				
YSW0330	Establishment of HDD plant & equipment	6	100 09/04/11 A	14/04/11 A	09/04/11 A	14/04/11 A)	/SW0320	YSW0340			<u> </u>	
YSW0340	Setting up at drillhole location	14	100 15/04/11 A	28/04/11 A	15/04/11 A	28/04/11 A)	YSW0250, YSW0260, YSW0280,	YSW0350				
YSW0350	Drill pilot hole and reaming hole - NS400 - 530m	229	100 29/04/11 A	13/12/11 A	29/04/11 A	13/12/11 A	,	/SW0040, YSW0180, YSW0210,	YSW0360				
YSW0360	Installation of NS400 HDPE 530m	17	100 14/12/11 A	30/12/11 A	14/12/11 A	30/12/11 A	,	/SW0240, YSW0350	SKW1181, YSW03601, YSW03620,		i i i i i i i i i i i i i i i i i i i		
YSW03601	Demobilization of HDD plant & equipment	7	100 31/12/11 A	06/01/12 A	31/12/11 A	06/01/12 A)	/SW0360	YSW03605, YSW03641, YSW0730		111111		
YSW 03605	Remove Entry pit of HDD	14		20/01/12 A				/SW03601	YSW0730			1	
YSW03620	Removal of Receiving Pit	14	100 31/12/11 A	_		13/01/12 A		/SW0360	YSW0365				
YSW03641	Prepare backfilling material under VO 046A	120		_		05/05/12 A		/SW03601	YSW0365				
YSW0365	Set up of Silt Curtain as per EP	2			23/11/12 A			SKW1431, YSW03620, YSW03641	YSW0370				
YSW0370	Dredging of Marine Deposit for Diffuser (YSW)	5			24/11/12 A			YSW0360, YSW0365	YSW0380				
YSW0380	Diffuser Construction (YSW)	60		_	30/11/12 A			/SW0370	E&M0690, YSW0400, YSW08301		er Construction (YSW)	<u> </u>	:::::::::::::::::::::::::::::::::::::::
YSW0400	Removal of silt curtain	30	100 30/04/13 A	31/05/13 A	30/04/13 A	31/05/13 A		/SW0380	KD0040	Removal of silt c			
E&M Works - `						1							
E&M0360	Delivery of MBR Memb. Mod. (MBR Tk 4)	118		_	_			E&M0160	E&M0510		11111111		
E&M0370	Delivery of MBR Membrane Modules - 2nd Shipment	236		_	24/02/11 A			E&M0160	E&M0520				
E&M0380	Delivery of Grit Removal Equipment	81			10/10/11 A			E&M0150	E&M0530		111111		
E&M0390	Delivery of Coarse Screens	129			06/09/11 A			E&M0110	E&M0540				
E&M0400	Delivery of Fine Screens	80						E&M0120	E&M0550			į	
E&M0410	Delivery of Pumps	75			23/06/11 A			E&M0130	E&M0560		1111111		
E&M0420	Delivery of Submersible Mixers	230	100 26/02/11 A	26/02/11 A	26/02/11 A	26/02/11 A	E	E&M0140	E&M0570			!	
Start date Finish date Data date Run date Page number			С		Colion of Sev	ntract No vage Tre	o. DC/20 atment	Corp. Ltd. 09/13 Works at YSW & SKW pt 2013 - Nov 2013		Date 31/08/13	Revision Revision 0	Checked RH	Approved VC
c Primavera	Systems, Inc. Start milestone point Finish milestone point					9	(

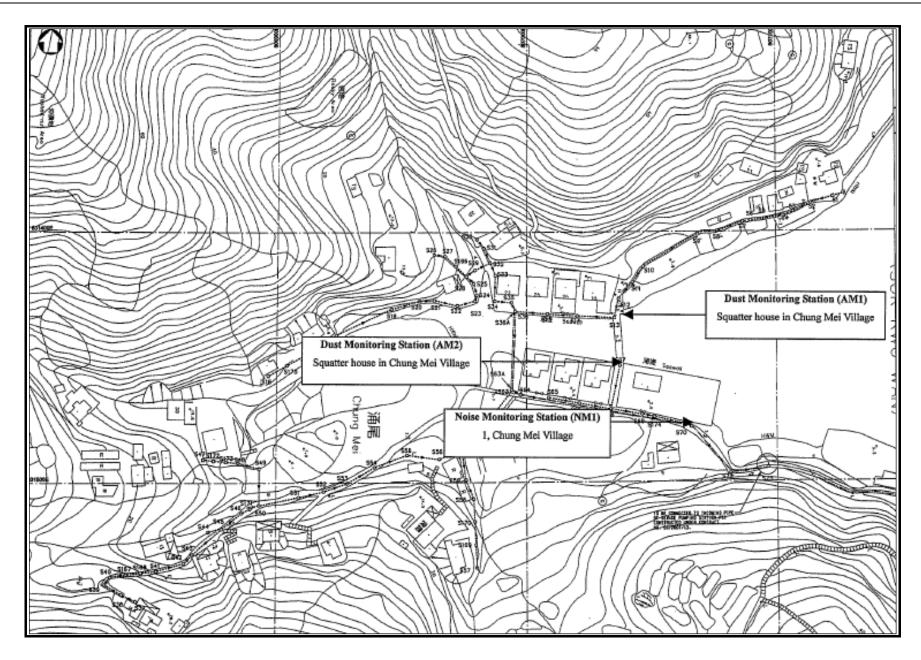
Activity ID	Description	Original Pe		Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		2013	OFB.	227
E&M0440	Delivery of Sludge Dewatering Equipment	558	70 31/08/11 A			30/10/13	-107d E&M	10170	E&M0580	MAY JUN	JUL AUG	SEP	OCT
E&M0450	Delivery of Valves, Pipes & Fittings	560				01/01/14	-56d E&M		E&M0590		!!!!! <mark>!</mark> !!	!	ii
E&M0460	Delivery of Penstocks	135				24/12/11 A	E&M	10190	E&M0600, E&M0605	-			
E&M0470	Delivery of Instruments	232	100 03/11/11 A	21/06/11 A	03/11/11 A	21/06/11 A	E&M	10200	E&M0610			1	
E&M0480	Delivery of MCC LVSB	90	100 03/12/12 A	04/03/13 A	03/12/12 A	04/03/13 A	E&M	10210	E&M0620		111111		
E&M0490	Delivery of BS Equipment	446	65 10/12/11 A	18/11/14	10/12/11 A	23/06/13	-513d E&M	10220	E&M0630		111111	!	"
E&M0500	Delivery FS Equipment	507	25 11/12/11 A	12/07/15	11/12/11 A	14/08/13	-697d E&M	10230	E&M0330, E&M0640				
E&M0510	Install Membrane Modules in MBR Tank no. 4	89	100 03/11/12 A	28/02/13 A	03/11/12 A	28/02/13 A	E&M	10360, YSW0705	E&M0690	R Tank no. 4	111111		
E&M0520	Install Membrane Modules in MBR Tank No. 1 to 3	57	100 03/12/12 A	28/02/13 A	03/12/12 A	28/02/13 A	E&M	10370, YSW08302, YSW08303	E&M0690	R Tank No. 1 to 3			II.
E&M0530	Install Grit Removal Equipment	122	100 01/06/12 A	30/09/12 A	01/06/12 A	30/09/12 A	E&M	10380, YSW05923	E&M0590, E&M0660	1		†	
E&M0540	Install Coarse Screens	240	100 23/04/12 A	23/08/13 A	23/04/12 A	23/08/13 A	E&M	10390, YSW 05923	E&M0660		Ir	stall Coarse Scree	ns ::
E&M0550	Install Fine Screens	122	100 01/06/12 A	12/08/13 A	01/06/12 A	12/08/13 A	E&M	10400, YSW05923	E&M0590, E&M0660		Install F	ine Screens	i i
E&M0560	Install Pumps	355	90 23/04/12 A	05/10/13	23/04/12 A	12/05/13	-146d E&M	10410, YSW05923	E&M0660				Install Pumps
E&M0570	Install Submersible Mixers	163	90 15/01/13 A	16/09/13	15/01/13 A	12/05/13	-127d E&M	10420, YSW07204	E&M0660, E&M0690		111111	Install S	Submersible Mixe
E&M0580	Install Sludge Dewatering Equipment	361	60 29/05/12 A	22/01/14	29/05/12 A	09/06/13	-227d E&M	10440, YSW06023	E&M0690				
E&M0590	Install Valves, Pipes & Fittings	232	85 15/01/13 A	04/10/13	15/01/13 A	10/06/13	-116d E&M	10450, E&M0530, E&M0550,	E&M0650, E&M0690				Install Valves,
E&M0600	Install Penstocks (Batch 1, GL H - T)	213	100 23/04/12 A	21/05/13 A	23/04/12 A	21/05/13 A	E&M	10460, YSW07202	E&M0690	Install Penstocks (Bat	ch 1, GL H - T)	1	
E&M0605	Install Penstocks (Batch 2, GL A - F)	131	85 02/01/13 A	19/09/13	02/01/13 A	08/06/13	-103d E&M	10460, YSW08302	E&M0690				Penstocks (Bate
E&M0610	Install Instruments	74	5 02/01/13 A		02/01/13 A	10/06/13		10470, YSW07055, YSW0810,	E&M0690		111111		
E&M0620	Install SAT, MCC & LVSB	8	100 02/01/13 A		02/01/13 A	02/01/15 A		10480, YSW0810	E&M0660, E&M0680		111111		
E&M0630	Install BS Equipment	180	55 02/01/13 A	09/12/14	02/01/13 A	14/07/13	-513d E&M	10490, YSW0810, YSW0820	E&M0690				Ш
E&M0640	Install FS Equipment	180	50 02/01/13 A	11/06/15	02/01/13 A	14/07/13	-697d E&M	10500, YSW0705, YSW0810,	E&M0690		111111	1	Ш
E&M0650	Hydraulic Tests of Pipeworks	153	60 02/01/13 A	31/10/13	02/01/13 A	15/06/13	-138d E&M	10590, YSW08302	E&M0690				
E&M0660	Cabling Works	15	42 04/02/15 A	12/05/15	04/02/15 A	21/05/13	-721d E&M E&M	10530, E&M0540, E&M0550, 10560, E&M0570, E&M0620	E&M0670		111111		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
E&M0670	Insulation Tests of Cables and Cable Termination	26	30 11/04/15 A	30/05/15	11/04/15 A	08/06/13	-721d E&M	10320, E&M0325, E&M0660,	E&M0690				11
E&M0680	Energization	1	100 02/04/15 A	03/04/15 A	02/04/15 A	03/04/15 A	E&M	10305, E&M0325, E&M0620,	E&M0670				
E&M0690	Functional and Performance Tests of Equipment	35	45 25/03/15 A	18/06/15	25/03/15 A	27/06/13 *	E&M E&M E&M YSW	10510, E&M0520, E&M0570, 10580, E&M0590, E&M0600, 10605, E&M0610, E&M0630, 10640, E&M0650, E&M0670, 70380, YSW08301, YSW1530, 71540	E&M0700				
E&M0700	T&C Period	137	0 09/08/15	24/12/15	12/12/13	27/04/14	-606d E&M	10330, E&M0690	E&M0730, KD0040				#
E&M0730	Trial Operation Period	413	0 24/12/15	15/06/17	28/04/14	14/06/15	-606d E&M	10700	KD0132				11
Sok Kwu Wa	n												ii !!
Preliminary													
SKW0250	Approval of Environmental Team	16	100 17/05/10 A	01/06/10 A	17/05/10 A	01/06/10 A	KD0	020	SKW0260		111111		ij
SKW0260	Baseline monitoring (Air & Noise)	14	100 02/06/10 A	15/06/10 A	02/06/10 A	15/06/10 A	SKW	/0250	SKW0242, SKW0265, SKW0592,				ii
SKW0265	Baseline Monitoring Submission (A & N)	14	100 16/06/10 A	08/07/10 A	16/06/10 A	08/07/10 A	SKW	/0260	SKW0242, SKW0592, SKW0681,				ii !!
Section W3 - Fo	ootpath Diversion in Portion G										111111		#
Civil & Geotecl	nnical Works												
SKW0240	Site Clearance	21	100 17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A			SKW0241				#
SKW0241	Initial Survey	9		15/06/10 A				/0240	SKW0242		111111		!!
SKW0242	Retaining Wall Bay 0-10 (Incl. VO. 001A)	177		23/12/10 A				V0241, SKW0260, SKW0265	SKW0461				ii
SKW0461	Utilities Laying and Diversion	70		03/03/11 A		03/03/11 A		/0242	SKW0471				ii !!
SKW0471	Concreting for Pavement	7		10/03/11 A		10/03/11 A		/0461	SKW0481			4	11 11
SKW0481	Footpath Diversion - Stage 1	14		24/03/11 A				/0471	KD0050, SKW04811, SKW0491			4	
SKW04811	Excavate for FP transition at CH0-35 &CH130-141	37		30/04/11 A				/0481	SKW04821				!! !!
SKW04821	Construction of Drainage outfall near bay 10	3		03/05/11 A				/04811	SKW04831		111111		ii.
SKW04831	Cable diversion by HEC	26		29/05/11 A				/04821	SKW04841				ii
SKW04841	Diversion of Ducting and Drawpit by PCCW	12		31/05/11 A				/04831	SKW04851			+	ii
SKW04851	Soil backfilling behind FP retaining wall	14		14/06/11 A				/04841	SKW04861				ii !!
SKW04861	Concreting for footpath pavement	7		21/06/11 A				/04851	SKW04871		iiiiii 1111111 1111111		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
SKW04871	Relocation of Temp Safety Fence at SKW STW A-G	57		17/08/11 A				/04861	SKW04881		11111111111111111111111111111111111111		!!
SKW04881	Disposal of excavation material at A-G SKW STW	138		02/01/12 A		02/01/12 A		/04871	SKW04885				#
SKW04885 SKW0491	Footpath Diversion - Stage 2 Removal of Haul Road after SKW STW	7	100 03/01/12 A 0 08/10/14			09/01/12 A 04/06/15		/04881 090, SKW0481, SKW1401	SKW1261 SKW0501				
Start date Finish date Data date Run date Page number c Primavera	05/05/10			nstructio	Cor n of Sev	ntract No vage Tre				Date 31/08/13	Revision Revision 0	Checked RH	Approved VC
	Finish milestone point												

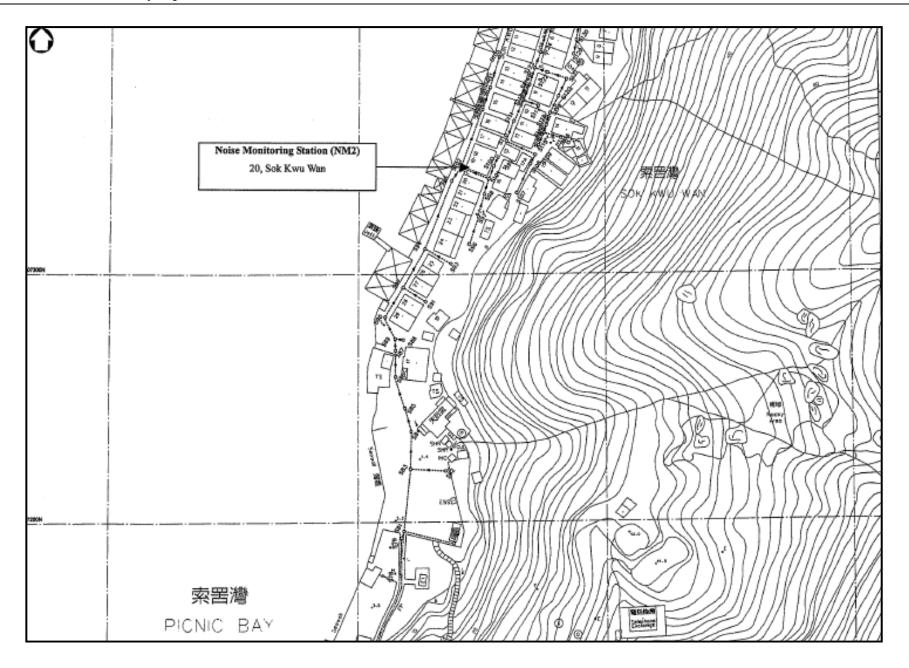
Activity ID	Description	Original Pe Duration Cor		Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2013			
SKW0501	Concreting for no-fine concrete	14	0 08/10/14	21/10/14	29/05/15	11/06/15		SKW0491	SKW0511	MAY	JUN	JUL	AUG	SEP	ОСТ
SKW0511	Wall Tie & Stone Facing	14	0 22/10/14	04/11/14	12/06/15	25/06/15	233d S	SKW0501	SKW0521				1111111111		
SKW0521	Gabion Wall & Geotextile	30	0 05/11/14	04/12/14	26/06/15	25/07/15	233d S	SKW0511	SKW0531						i !
SKW0531	Installation of Flower Pot	7	0 05/12/14	11/12/14	26/07/15	01/08/15	233d S	SKW0521	SKW0541						
SKW0541	Completion of Outstanding Works	42	0 12/12/14	22/01/15	02/08/15	12/09/15	233d S	SKW0531	KD0125						
Section W4 - SI	lope Works in Portions H & I														
Geotechnical V	Vorks														
SKW 0588	Construct scaffolding access	30	100 15/06/10 A	14/07/10 A	15/06/10 A	14/07/10 A		(D0020	SKW0590						
SKW 0590	Site Clearance for Slope	100	100 15/07/10 A	22/10/10 A	15/07/10 A	22/10/10 A		SKW0588	SKW0591				111111111111111111111111111111111111111		
SKW 0591	Initial Survey for Slope	28	100 21/09/10 A	18/10/10 A	21/09/10 A	18/10/10 A		SKW0590	SKW0592						
SKW 0592	Temporary Rockfall fence at ex. Footpath	43	100 31/08/10 A	12/10/10 A	31/08/10 A	12/10/10 A		SKW0260, SKW0265, SKW0591 SKW0592	SKW05931 SKW05932						
SKW05931	Construction of Haul Road (To +30mPD)	50 68	100 03/09/10 A	22/10/10 A	03/09/10 A	22/10/10 A		SKW0592	SKW05932 SKW059322						
SKW 05932 SKW 059321	Construction of Haul Road (To +42.5mPD) Removal of Boulders (IBG 1 - 119, SI No. 11B)	121	100 23/10/10 A 100 03/11/10 A	29/12/10 A 03/03/11 A	23/10/10 A 03/11/10 A	29/12/10 A 03/03/11 A		2KW03931	SKW059322 SKW059411						
SKW 059321 SKW 059322	Add. Site Invest. Works (VO. No. 9,12 &16)	174	100 03/11/10 A	03/03/11 A 03/07/11 A	11/01/11 A	03/03/11 A 03/07/11 A	5	SKW05932	SKW059341						
SKW 059322	Revised Profile at West Slope (+56 to +42.5mPD)	1/4	100 17/03/11 A	17/03/11 A	17/03/11 A	17/03/11 A			SKW059324						
SKW 059324	Construction of Haul Road (+42.5 to +56mPD)	12	100 18/03/11 A	29/03/11 A	18/03/11 A	29/03/11 A	8	SKW 059323	SKW059325						
SKW 059325	Removal of Boulders (IBG 120-139, SI No. 11C)	17	100 30/03/11 A	15/04/11 A	30/03/11 A	15/04/11 A	8	SKW059324	SKW05933						
SKW05933	West Slope Cutting (+56mPD to +42.5mPD)	2	100 16/04/11 A	17/04/11 A	16/04/11 A	17/04/11 A		SKW059325	SKW059331					į	
SKW059331	Removal of Boulders (IBG 140-189, SI No. 11D)	45	100 18/04/11 A	01/06/11 A	18/04/11 A	01/06/11 A	S	SKW05933	SKW05934						
SKW 05934	West Slope Cutting (+42.5mPD to +35mPD)	32	100 02/06/11 A	03/07/11 A	02/06/11 A	03/07/11 A	S	6KW059331	SKW059341						
SKW 059341	Revised Profile at West Slope (+20 to +4.8mPD)	1	100 04/07/11 A	04/07/11 A	04/07/11 A	04/07/11 A	S	SKW059322, SKW05934	SKW05935						
SKW 05935	West Slope Cutting (+35mPD to +27.5mPD)	83	100 08/07/11 A	28/09/11 A	08/07/11 A	28/09/11 A	8	SKW 059341	SKW05936					i	
SKW 05936	West Slope Cutting (+27.5mPD to +20mPD)	61	100 29/09/11 A	28/11/11 A	29/09/11 A	28/11/11 A	8	SKW05935	SKW05937						
SKW 05937	West Slope Cutting (+20mPD to +12.5mPD)	39	100 29/11/11 A	06/01/12 A	29/11/11 A	06/01/12 A	S	SKW 05936	SKW05938						
SKW 05938	West Slope Cutting (+12.5mPD to +4.8mPD)	90	100 07/01/12 A	27/03/12 A	07/01/12 A	27/03/12 A		SKW05937	KD0060, SKW1261, SKW1311, SKW1371						
SKW05941	Slope Stormwater Drainage	300	100 28/03/12 A	25/05/12 A	28/03/12 A	25/05/12 A		(D0060	SKW05942						
SKW059411	East Slope Cutting (+50mPD to +42.5mPD)	72	100 04/03/11 A	14/05/11 A	04/03/11 A	14/05/11 A		SKW059321	SKW059412						
SKW059412	East Slope Cutting (+42.5mPD to +35mPD)	82	100 15/05/11 A	04/08/11 A	15/05/11 A	04/08/11 A		SKW059411	SKW059413						
SKW059413	East Slope Cutting (+35mPD to +27.5mPD)	55	100 05/08/11 A	28/09/11 A	05/08/11 A	28/09/11 A		SKW059412	SKW059414						
SKW059414	East Slope Cutting (+27.5mPD to +20mPD)	61	100 29/09/11 A	28/11/11 A	29/09/11 A			SKW059413	SKW059415						
SKW059415	East Slope Cutting (+20mPD to +12.5mPD) East Slope Cutting (+12.5mPD to +4.8mPD)	39	100 29/11/11 A	06/01/12 A	29/11/11 A			SKW059414 SKW059415	SKW059416 KD0060, SKW1311, SKW1371						
SKW 059416 SKW 05942	Slope Miscellaneous Works	81 61	100 07/01/12 A 100 26/05/12 A	27/03/12 A 31/07/12 A	07/01/12 A 26/05/12 A			SKW05941	SKW05943, SKW0595						
SKW 05942 SKW 05943	Buttress & surface Protection (SI No. 31)	60	100 28/03/12 A		03/07/12 A			SKW05942	SKW05944						
SKW 05944	Slope Treatment (Sl. No. 36)	60	100 03/07/12 A			31/07/12 A		SKW05943	SKW05945						
SKW 05945	Rock Slope Treatment (Sl. No. 68)	60	100 01/08/12 A	30/09/12 A	01/08/12 A			SKW 05944	SKW05946						
SKW 05946	Rock Slope Treatment (Sl. No. 98)	60	100 10/09/12 A	28/02/13 A	10/09/12 A		8	SKW05945	SKW05947)					
SKW 05947	Rock Slope Treatment (Sl. No. 115)	60	100 01/11/12 A	28/02/13 A	01/11/12 A		S	SKW05946	KD0135	5)					
SKW05948	Soil Nailing Works (VO. No. 52)	300	100 10/02/12 A	28/02/13 A	10/02/12 A	28/02/13 A			SKW05963						
SKW 0595	Rock Meshing	60	0 31/08/13	29/10/13	07/08/15	05/10/15	706d S	SKW05942, SKW05972	KD0165				T::::		
SKW 05963	Determine Alignment & Foundation Design of RFB	120	100 10/02/12 A	08/06/12 A	10/02/12 A	08/06/12 A	S	SKW05948	SKW059631, SKW05964, SKW05965						
SKW059631	GEO Approval of Foundation Design	70	100 09/06/12 A	31/07/12 A	09/06/12 A	31/07/12 A	8	SKW 05963	SKW05968						
SKW 05964	Fabrication & Shipping of RFB Material	180	100 09/06/12 A	30/11/12 A	09/06/12 A	30/11/12 A	8	SKW05963	SKW05972						
SKW 05965	Site clearance & Formation of access	62	100 09/06/12 A	31/07/12 A	09/06/12 A	31/07/12 A		SKW05963	SKW05967						
SKW 05967	Plant mobilization	14	100 02/01/13 A	15/01/13 A	02/01/13 A	15/01/13 A		SKW05965	SKW05968						
SKW 05968	Construction of anchors & pull out test	180	100 16/01/13 A	17/08/13 A	16/01/13 A			SKW059631, SKW05967	SKW05969					ction of anchors	.
SKW 05969	Construction of Foundation	120	100 11/07/13 A	23/08/13 A	11/07/13 A	23/08/13 A		SKW05968	SKW05970			•	Cons	truction of Four	
SKW05970	Proof Load Test	60	100 31/07/13 A		31/07/13 A			SKW05969	SKW05971				i i i i j		Proof Load Test
SKW05971	Transportation of Material (To the slope crest)	30	100 31/07/13 A	29/08/13 A	31/07/13 A	29/08/13 A		SKW05970	SKW05972				Tr	ansportation of	iviaterial (To the
SKW05972	Installation of Flexible barrier	90	100 31/07/13 A	28/10/13 A	31/07/13 A	28/10/13 A		SKW05964, SKW05971	KD0165, SKW0595			-	1111111		
	S. No. 1 in Portion D														
Civil & Geotech															
SKW0651	Site Clearance	7	100 17/05/10 A			23/05/10 A		(D0020	SKW0652						
SKW 0652	Initial Survey	7	100 24/05/10 A	30/05/10 A	24/05/10 A	30/05/10 A		SKW 0651	SKW0661, SKW0681				111111111111111111111111111111111111111	İ	
Data date Run date	05/05/10		С	onstructi	Co on of Se	ntract No wage Tre	o. DC/20 eatment	Works at YSW & SK\	N	Dat 31/08/13	e	Revision 0	ion	Checked RH	Approved VC
c Primavera S				3-month	n Rolling	Program	ıme (Se _l	pt 2013 - Nov 2013							

E&M3311 Cablin E&M3320 Cablin E&M3321 Insulat	Description draulic Tests of Pipeworks bling Works bling Works for Dewatering Equipment ulation Tests of Cables and Cable Termination ergization	90 47 47 21	0 21	21/08/14	07/10/14	Start 06/03/14 17/04/14 27/03/14	03/06/14	Predecessors -87d	Successors E&M3359 E&M3331, E&M3359	MAY	JUN	JUL	AUG	A	SEP	ост
E&M3311 Cablin E&M3320 Cablin E&M3321 Insulat	oling Works oling Works for Dewatering Equipment ulation Tests of Cables and Cable Termination	47	0 21	21/08/14	07/10/14	17/04/14	02/06/14	-127d E&M3170, E&M3230, E&M3260,							ı	
E&M3320 Cablin	Dling Works for Dewatering Equipment Ulation Tests of Cables and Cable Termination	47	0 21						E&M3331, E&M3359							
E&M3321 Insulat	ulation Tests of Cables and Cable Termination	.,		1/08/14	07/10/14	27/03/14	10/05/14	·	ĺ						I	
		21	0.0		1	'	12/05/14	-148d E&M3190, E&M3210, E&M3220, E&M3230, E&M3240, E&M3261	E&M3321						• 1	
E&M3331 Energ	rgization	.——	0 0	07/10/14	28/10/14	13/05/14	02/06/14	-148d E&M3320	E&M3331							
		1	0 2	28/10/14	29/10/14	03/06/14	03/06/14	-148d E&M3291, E&M3300, E&M3311,	E&M3359							
E&M3359 Functi	nctional and Performance Tests of Equipment	35	0 2.	29/10/14	03/12/14	04/06/14	08/07/14	-148d E&M3291, E&M3300, E&M3310, E&M3311, E&M3331, SKW1241,	E&M3360						1	
E&M3360 T&C F	C Period	91	0 0	03/12/14	04/03/15	09/07/14	07/10/14	-148d E&M0340, E&M3359, SKW0722, SKW15112	E&M3370, KD0090						1	
E&M3370 Trial C	al Operation Period	456	0 04	04/03/15	28/06/16	11/11/15	15/06/17	252d E&M3360	i						1	
Rising Main																
	om, Approval & Delivery of DI pipes	120	100 17	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A	KD0020	SKW1501						ı	
SKW1501 LCS (0	S (ChB0+00 - ChB1+20)	300	100 14	14/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A	PRE0100, SKW1481	SKW1521							
SKW1521 Twin D	in DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	90 1	11/07/11 A	24/09/13	11/07/11 A	07/10/14	378d SKW1501	KD0090						'	n DN150 DI Ri
Section W8 - Landsca	cape Softworks in All Portions															
SKW1591 Tree S	e Survey	21	100 17	17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A	KD0020	SKW1621					į	; 	
SKW1611 Preser	servation & Protection of Trees	1053	99 17	17/05/10 A	10/09/13	17/05/10 A	03/04/13	-160d KD0020	KD0100, SKW1631						Preservation	n & Protection of
SKW1621 Transp	nsplantation at SKW	90	100 07	07/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A	SKW1591	KD0100							
Section W9 - Establish	ishment Works in All Portions													-+		
	ction W9 - Establishment Works	365	0 10	10/09/13	10/09/14	04/04/13	03/04/14	-160d SKW1611	KD0110							

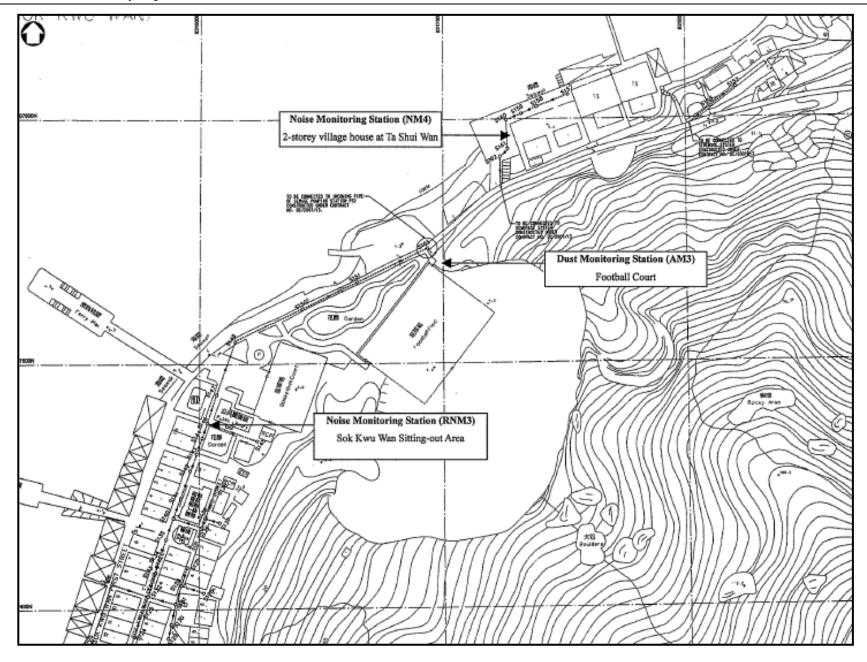
Start date	05/05/10		Early bar
Finish date	15/06/17		Progress bar Critical bar
Data date	31/08/13	_	Summary bar
Run date	23/09/13	_ ≜	Progress point
Page number	11A		Critical point Summary point
c Primavera	Systems, Inc.	♦	Start milestone point
		_ ^	Finish address a class

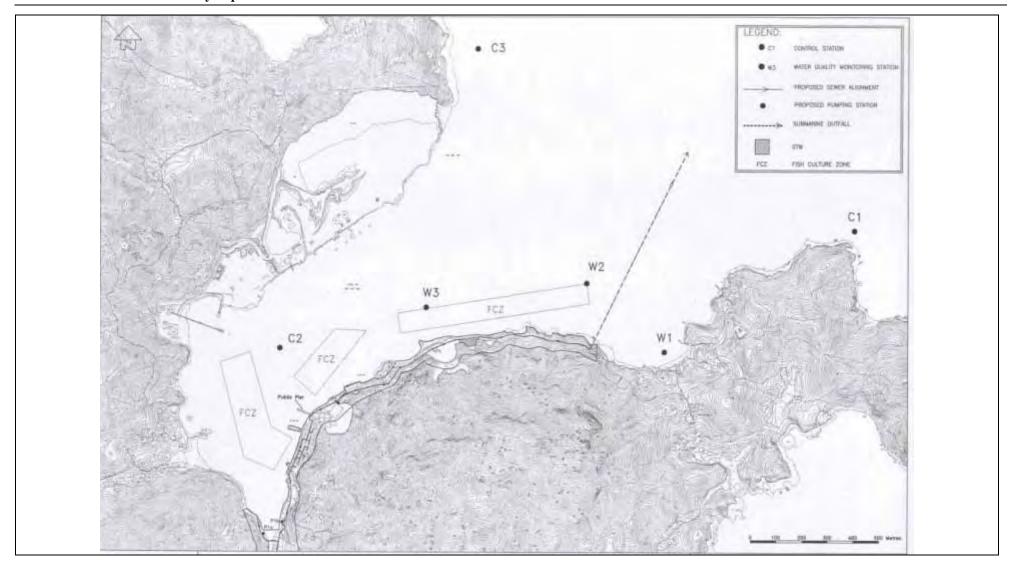
Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Sept 2013 - Nov 2013


Date	Revision	Checked	Approved
31/08/13	Revision 0	RH	VC


Appendix D

Location of Monitoring Stations
(Air Quality / Construction Noise / Water Quality)





Appendix E

Monitoring Equipments Calibration Certificate

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Squatter house in Chung Mei Village

Date of Calibration: 27-Aug-13 Location ID: AM1 Next Calibration Date: 27-Oct-13

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1006	$\overline{}$
1006.	.2
29	.3

Corrected Pressure (mm Hg) Temperature (K)

754.65 302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

11662 0.1714

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.4	5.4	10.8	1.617	56	55.01	Slope = 28.6008
13	4.2	4.2	8.4	1.436	51	50.10	Intercept = 8.6299
10	3	3	6	1.226	44	43.22	Corr. coeff. = 0.9985
7	1.9	1.9	3.8	0.992	37	36.35	
5	1.0	1.0	2	0.742	31	30.45	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

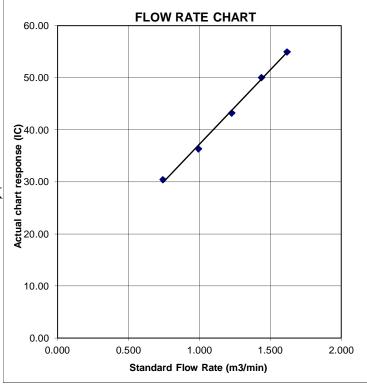
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Squatter house in Chung Mei Village

Date of Calibration: 27-Aug-13 Location ID: AM2 Next Calibration Date: 27-Oct-13

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1006	$\overline{}$
1006.	.2
29	.3

Corrected Pressure (mm Hg) Temperature (K)

754.65 302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

11662 0.1714

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12	1.700	58	57.38	Slope = 28.3417
13	4.3	4.3	8.6	1.452	53	52.44	Intercept = 10.1196
10	3.1	3.1	6.2	1.245	46	45.51	Corr. coeff. = 0.9973
7	1.8	1.8	3.6	0.968	38	37.60	
5	1.1	1.1	2.2	0.774	32	31.66	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

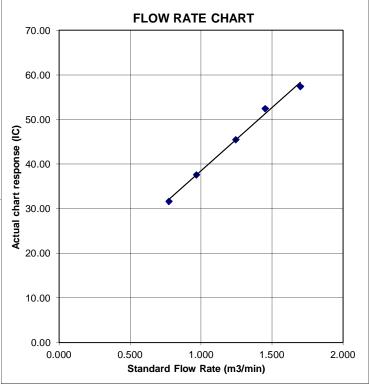
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Football court

Location ID: AM3

Date of Calibration: 27-Aug-13

Next Calibration Date: 27-Oct-13

Tackgridge Mr. Rep. Ter.

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1006.2
29.3

Corrected Pressure (mm Hg)
Temperature (K)

754.65 302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11662 -0.1714

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.4	5.4	10.8	1.617	51	50.46	Slope = 31.9927
13	4	4	8	1.403	43	42.54	Intercept = -1.9653
10	2.8	2.8	5.6	1.187	36	35.62	Corr. coeff. = 0.9971
7	2	2	4	1.016	30	29.68	
5	1.2	1.2	2.4	0.805	25	24.73	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

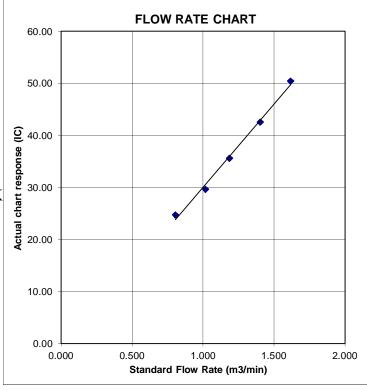
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		Orifice I.I	•	1941	Ta (K) - Pa (mm) -	751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4710 1.0370 0.9270 0.8840 0.7300	3.3 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9916 0.9874 0.9854 0.9843 0.9790	0.6741 0.9521 1.0630 1.1134 1.3410	1.4113 1.9959 2.2315 2.3405 2.8227		0.9956 0.9914 0.9894 0.9883 0.9829	0.6768 0.9560 1.0673 1.1180 1.3465	0.8874 1.2549 1.4030 1.4715 1.7747
Qstd slop intercept coefficie	(b) =	2.11662 -0.01714 0.99999		Qa slope intercept coefficie	t (b) =	1.32539 -0.01078 0.99999
y axis =	SQRT [H20 (F	Pa/760)(298/7	' Га)]	y axis =	SQRT [H20 (7	[a/Pa)]

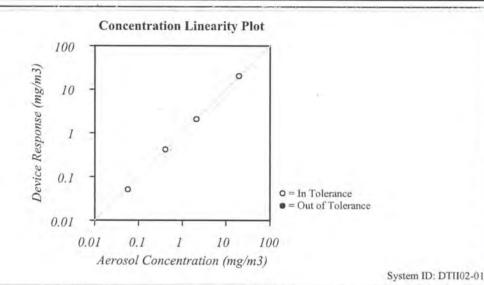
CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$



CERTIFICATE OF CALIBRATION AND TESTING

TSI Instruments Ltd, Stirling Road, Cressex Business Park
High Wycombe Bucks HP12 3ST England
Tel: (Int +44) (UK 0) 1494 459200 Fax: (Int +44) (UK 0) 1494 459700 http://www.tsiinc.co.uk

Environment Condition		
Temperature	23.5	°C
Relative Humidity	41.92	%RH
Barometric Pressure	996.6	hPa

Model	8520
Serial Number	23079

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1. Al test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

Measurement Variable System ID Last Cal. Cal. Due Measurement Variable System ID Cal. Due Last Cal. Barometric Pressure E006013 18-03-13 18-03-14 Temperature E006014 18-03-13 18-03-14 Humidity E006014 18-03-13 18-03-14 E003336 06-09-13 Photometer 06-03-13 Microbalance UK 23403008 07-01-13 07-01-14 Flow and Temperature E006128 29-01-13 29-01-14 Pressure E006013 18-03-13 18-03-14 DC Voltage E003323 19-10-12 19-10-13

S. Calibrated

Final Function Check

Check

Date

SIBATA SCIENTIFIC TECHNOLOGY LTD.

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan

TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: June 20, 2013

Equipment Name : Laser Dust Monitor, Model LD-3B

Code No. : 080000-42

Quantity : 1 unit
Serial No. : 366418

Sensitivity : 0.001 mg/m3

Sensitivity Adjustment : 664 CPM

Scale Setting : June 17, 2013

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

Kentaro Togo

Overseas Sales Division

SIBATA SCIENTIFIC TECHNOLOGY LTD.

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan

TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: June 20, 2013

Equipment Name : Laser Dust Monitor, Model LD-3B

Code No. : 080000-42

Quantity : 1 unit
Serial No. : 366407

Sensitivity : 0.001 mg/m3

Sensitivity Adjustment : 563 CPM

Scale Setting : June 17, 2013

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

Kentaro Togo

Overseas Sales Division

Certificate Number:50105786 Issue Date:09/03/2013

CALIBRATION CERTIFICATE

Customer Name: Science International Corporation

Description: Sound Level Meter

Model Name: N L - 3 1 Serial Number: 0 0 4 1 0 2 2 1

Calibration Date: 08/03/2013(DD/MM/YYYY)

Ambient condition: Temperature 18°C Relative Humidity 44%

We hereby certify that the above product was tested and calibrated according to the prescribed RION procedures, and that it fulfills all specification requirements, as listed on the appended sheet.

The measuring equipment and reference devices used for testing and calibrating this unit are managed under the RION traceability system and are traceable according to official Japanese standards and official standards of countries belonging to the International Committee of Weights and Measures.

RSC · RION PRIMARY STANDARDS

Model Description	Model Number	Serial Number	Cal Due Date MM/YYYY
Description	Number	Number	WIWI/ IIII
(Acoustic)			
Condenser microphone	MR103	7582	6/2013
(Electric)	***************************************	************	
DC Reference standards	732B	6265015	9/2014
Standard resistor	742A-1	6480018	11/2013
Standard resistor	742A-10k	6390001	6/2014
Digital multimeter	3458A	2823A13632	3/2013
Universal counter	53132A	3404A01375	3/2013

RSC WORK STANDARDS

Model Description	Model Number	Serial Number	Cal Due Date MM/YYYY
(Acoustic)			
Condenser microphone	UC-33P	1363	10/2013
(Electric)			**************
Sound level meter Unit	UN-04	10491087	10/2013
Sound level meter Unit	UN-04	10491053	10/2013
Digital multimeter	34401A	MY47047316	10/2013
Attenuator	984C	11072569	10/2013
Burst signal generator	KTG-11	10350007	1/2014
Frequency synthesizer	FS-1301	01CX861W	10/2013

RION SERVICE CENTER CO., LTD.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C132228

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0878)

Description / 儀器名稱 : Acoustical Calibrator (EQ081)

Manufacturer/製造商 : Brüel & Kjær

Model No. / 型號 : 4231 Serial No. / 編號 : 2326408

Supplied By / 委託者 : Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Relative Humidity / 相對濕度 : (55 ± 20)%

Line Voltage / 電壓 : ---

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 15 April 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

- Agilent Technologies, USA

Tested By 測試

Certified By 核證 K C Lee

K M Wu

Date of Issue 簽發日期 16 April 2013

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部復印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C132228

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A DescriptionCertificate No.Universal CounterC123541Multifunction Acoustic CalibratorDC110233Measuring AmplifierC120886

4. Test procedure : MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value (Hz)
(kHz)	(kHz)	Spec.	
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本設古所載校正用之測試器材均可溯源至國際標準。局部複印本證書畫先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM

CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG

PROJECT: -

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity, Temperature and Turbidity

Equipment Type: Brand Name:

YSI

Model No.: Serial No.: YSI 6820 / 650MDS 02J0912/02K0788 AA

Equipment No.:

--

Date of Calibration: 15 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone: 85

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr. Fung Lim Chee, Richard

WORK ORDER: HK1327382

HONG KONG

07/10/2013

15/10/2013

LABORATORY:

DATE RECEIVED:

DATE OF ISSUE:

General Manager

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong | PHONE +852 2610 1044 | FAX +852 2610 2021

ALS TECHNICHEM (HK) PTY LTD. An ALS Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: HK1327382 15/10/2013

Client:

ACTION UNITED ENVIRO SERVICES

Equipment Type:

Sonde

Brand Name: Model No.: YSI

Serial No.:

YSI 6820 / 650MDS 02J0912/02K0788 AA

Serial No.: Equipment No.:

Date of Calibration:

15 October, 2013

Date of next Calibration:

15 January, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
7.95	7.82	-0.13
5.22	5.29	0.07
1.85	2.00	0.15
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.97	-0.03
7.0	6.94	-0.06
10.0	9.80	-0.20
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

0.0 9.8 19.8
9.8
19.0
20.0
29.8

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.5	12.11	0.6
25.0	23.75	-1.3
39.0	37.90	-1.1
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee Richard General Manager Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1327382 Date of Issue: 15/10/2013

Client: ACTION UNITED ENVIRO SERVICES

Equipment Type: Sonde Brand Name: YSI

Model No.: YSI 6820 / 650MDS Serial No.: 02J0912/02K0788 AA

Equipment No.:

Date of Calibration: 15 October, 2013 Date of next Calibration: 15 January, 2014

Parameters:

Turbidity Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
0	0.0	
4	3.9	-2.5
40	43.8	9.5
80	82.1	2.6
400	394.2	-1.5
800	756.0	-5.5
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

Appendix F

Event/Action Plan

Air Quality

	An Quanty					
EVENT	ACTION					
	ET	IC(E)	ER	CONTRACTOR		
ACTION LEVEL		<u>, </u>				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	Check monitoring data submitted by ET; Check Contractor's working method.	Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 		
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		
		LIMIT LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.		
Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.		

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

water Quanty					
EVENT		ACTIO			
	ET	IC(E)	ER	CONTRACTOR	
ACTION LEVEL		T			
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	Check monitoring data submitted by ET and Contractor's working methods	Confirm receipt of notification of non-compliance in writing; and Notify Contractor	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate 	
2. Exceedance for two or more consecutive sampling days	Same as the above; Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level	Same as the above; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures.	Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures	Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures	
		LIMIT LEVEL		1110400100	
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible remedial actions; and Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly	 Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods 	 Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER 	
Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	Same as the above; and Supervise the Implementation of mitigation measures	Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level	measures; 4. Resubmit proposals of mitigation measures if problem still not under control; and	

Appendix G

Impact Monitoring Schedule

Impact Monitoring Schedule for the Reporting Period

	Date	Air G	Quality	Noise	Water Quality
		1-hour TSP	24-hour TSP	Leq (30min)	
Thu	26-September-13				
Fri	27-September-13				✓
Sat	28-September-13				
Sun	29-September-13				
Mon	30-September-13		✓		✓
Tue	1-October-13				
Wed	2-October-13	✓		✓	✓
Thu	3-October-13				
Fri	4-October-13				✓
Sat	5-October-13		✓		
Sun	6-October-13				
Mon	7-October-13				
Tue	8-October-13	✓		✓	✓
Wed	9-October-13				
Thu	10-October-13				✓
Fri	11-October-13		✓		
Sat	12-October-13				✓
Sun	13-October-13				
Mon	14-October-13				
Tue	15-October-13	✓		✓	✓
Wed	16-October-13				
Thu	17-October-13		✓		✓
Fri	18-October-13				
Sat	19-October-13	✓		✓	✓
Sun	20-October-13				
Mon	21-October-13				
Tue	22-October-13				✓
Wed	23-October-13		✓		
Thu	24-October-13	✓		✓	✓
Fri	25-October-13				

✓	Monitorin	ıg Da	У
	Sunday	or	Public
	Holiday		

Impact Monitoring Schedule for next Reporting Period

	Date	Air G	Quality	Noise	Water Quality
		1-hour TSP	24-hour TSP	Leq (30min)	
Sat	26-October-13	✓		✓	✓
Sun	27-October-13				
Mon	28-October-13				✓
Tue	29-October-13		✓		
Wed	30-October-13				✓
Thu	31-October-13				
Fri	1-November -13	✓		✓	✓
Sat	2- November -13				
Sun	3- November -13				
Mon	4- November -13		✓		
Tue	5- November -13				✓
Wed	6- November -13				
Thu	7- November -13	✓		✓	✓
Fri	8- November -13				
Sat	9- November -13		✓		✓
Sun	10- November -13				
Mon	11- November -13				✓
Tue	12- November -13				
Wed	13- November -13	✓		√	✓
Thu	14- November -13				
Fri	15- November -13		✓		
Sat	16 November -13				✓
Sun	17- November -13				
Mon	18- November -13				
Tue	19- November -13	✓		✓	✓
Wed	20- November -13				
Thu	21- November -13		✓		✓
Fri	22- November -13				
Sat	23- November -13				✓
Sun	24- November -13				
Mon	25- November -13	✓		✓	✓

✓	Monitorin	ıg Da	у
	Sunday	or	Public
	Holiday		

Appendix H

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	LAPSED TI	ME	CHA	ART READ	ING			STANDARD)	INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring F	Results - AN	1 1												
30-Sep-13	26071	14038.04	14062.03	1439.40	30	35	32.5	25.3	1010.1	0.83	1198	2.7277	2.8376	0.1099	92
5-Oct-13	26091	14062.03	14086.02	1439.40	30	33	31.5	26.3	1010.5	0.80	1145	2.7558	2.8649	0.1091	95
11-Oct-13	26096	14086.02	14110.01	1439.40	31	36	33.5	27.8	1011.8	0.86	1243	2.7423	2.8502	0.1079	87
17-Oct-13	205577	14110.01	14134	1439.40	32	35	33.5	25.6	1018.9	0.87	1255	2.8838	2.9127	0.0289	23
23-Oct-13	205572	14134	14157.99	1439.40	32	35	33.5	24.6	1014.5	0.87	1254	2.9287	2.9732	0.0445	35
24-hour TSP	Monitoring F	Results - AN	12												
30-Sep-13	26072	12541.13	12565.12	1439.40	28	33	30.5	25.3	1010.1	0.72	1032	2.7318	2.8329	0.1011	98
5-Oct-13	26088	12565.12	12589.11	1439.40	29	34	31.5	26.3	1010.5	0.75	1080	2.7489	2.8537	0.1048	97
11-Oct-13	26094	12589.11	12613.1	1439.40	30	36	33.0	27.8	1011.8	0.80	1153	2.7585	2.8138	0.0553	48
17-Oct-13	205575	12613.1	12637.09	1439.40	29	35	32.0	25.6	1018.9	0.77	1114	2.8807	2.9842	0.1035	93
23-Oct-13	205573	12637.09	12661.08	1439.40	31	34	32.5	24.6	1014.5	0.79	1139	2.8742	3.0216	0.1474	129
24-hour TSP	Monitoring F	Results - AN	13												
30-Sep-13	26065	8011.07	8035.06	1439.4	30	34	32	25.3	1010.1	1.06	1525	2.7557	2.8565	0.1008	66
5-Oct-13	26090	8035.06	8059.05	1439.4	29	33	31	26.3	1010.5	1.03	1478	2.753	2.8742	0.1212	82
11-Oct-13	26095	8059.05	8083.04	1439.4	30	34	32	27.8	1011.8	1.06	1520	2.748	2.8567	0.1087	71
17-Oct-13	205576	8083.04	8107.03	1439.4	31	35	33	25.6	1018.9	1.09	1576	2.916	3.029	0.1130	72
23-Oct-13	205579	8107.03	8131.02	1439.4	30	35	32.5	24.6	1014.5	1.08	1552	2.8958	3.0696	0.1738	112

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

AUES

Sok Kwu Wan

Date 27-Sep-13

Date / Time	Location	Tide*	Co-ord	inates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	J	mg/L	%	NTU	ppt	unit	mg/
2013/9/27 9:08	W1	ME	832974	807725	2.4	1.200	27.83	7.3	110.4	1.8	30.93	7.7	2.6
2013/7/21 7.00	***1	IVIL	032714	001123	2.7	1.200	27.85	7.34	111.1	2.4	31	7.7	2.0
						1.000	27.85	6.99	105.9	1.2	31.13	7.67	2.6
						1.000	27.82	6.96	105.4	1.4	31.13	7.66	
2013/9/27 9:19	W2	ME	832654	807963	12.4	6.200	27.79	6.91	104.9	1.4	31.55	7.66	2.5
						6.200	27.79	6.84	103.8	1.3	31.56	7.67	
						11.400	27.87	6.71	102.2	5	32.08	7.67	2.0
						11.400	27.85	6.65	101.4	3.4	32.07	7.67	
						1.000	27.79	7.11	107.7	4.1	31.3	7.88	3.
						1.000	27.79	6.92	104.8	4.7	31.3	7.88	
2013/9/27 9:31	W3	ME	832047	807890	12.1	6.050	27.76	6.65	100.8	4.1	31.39	7.87	3.
						6.050	27.74	6.61	100.1	4.6	31.44	7.88	
						11.100	27.89	6.43	98.3	6.8	32.38	7.9	3.
						11.100	27.83	6.4	97.7	5.3	32.47	7.91	
						1.000	27.51	6.35	95.6	0.9	30.81	7.74	4.
						1.000	27.49	6.47	97.3	0.2	30.83	7.75	
2013/9/27 8:50	C1	ME	833715	808166	14.5	7.250	27.64	6.41	96.9	0.8	31.3	7.79	4.0
						7.250	27.63	6.4	96.8	0.7	31.25	7.8	
						13.500	27.75	6.33	96	0.9	31.53	7.79	4.
	_					13.500	27.73	6.32	95.8	1.6	31.55	7.79	
						1.000	27.59	7.35	110.8	1.7	31.1	7.93	3.
						1.000	27.57	6.99	105.3	1.7	31.09	7.91	
2013/9/27 9:46	C2	ME	831491	807753	10.6	5.300	27.5	6.53	98.5	2.1	31.31	7.92	3.
						5.300	27.52	6.35	95.8	2	31.22	7.91	
						9.600	27.83	6.15	93.8	6.7	32.3	7.97	3.
						9.600	27.87	6.18	94.2	6	32.19	7.96	
						1.000	27.52	6.7	100.7	0.7	30.64	7.65	4.
						1.000	27.47	6.58	98.8	0.9	30.7	7.69	
2013/9/27 8:20	C3	ME	832237	808884	15.5	7.750	27.73	6.42	97.2	1.1	31.22	7.71	4.
						7.750	27.73	6.42	97.1	1.2	31.22	7.71	
						14.500	27.75	6.32	95.8	1.6	31.37	7.72	5.
						14.500	27.73	6.3	95.4	1.2	31.39	7.72	
						1 400	20.1	7.00	110.6	2.0	22.05	7.07	
2013/9/27 17:52	W1	MF	832959	807716	2.8	1.400	28.1	7.36 7.34	112.6	3.2	32.05 32.04	7.97 7.97	1.
	_					1.400	28.1		112.3	2.9			
						1.000	28.09	6.54	100	0.5	31.96	8 8	2.
						1.000	28.09	6.67	101.9	0.4	31.94	v	
2013/9/27 17:35	W2	MF	832681	807974	13.7	6.650	27.92	6.49	99.3	1.1	32.46	8	2.
						6.850	27.89	6.39	97.6	0.9	32.48	7.98	
						12.700	27.81 27.8	6.25	95.6 95.7	0.9	32.93 32.93	8.01 8.02	3.
	+					12.700		6.26					
						1.000	28.14 28.12	7.17 7.14	109.5 109	0.4	31.67	8.01	2.
						1.000 6.650	27.98	6.77	103.6	1.2	31.7 32.36	7.99	
2013/9/27 17:20	W3	MF	832050	807900	13.3	6.650	27.88	6.63	101.2	1.2	32.30	7.99	2.
						12.300	27.78	6.36	97.2	0.8	32.44	8	
						12.300	27.78	6.36	97.2	1.4	32.80	8.01	2.
						1.000	28.09	7.57	115.8	2.1	31.96	8	
						1.000	28.09	7.51	113.8	2.1	31.96	8.03	2.
							20.09		110.7	3	32.59	0.03	
							27.88			J	34.37	O	2.
2013/9/27 18:09	C1	MF	833723	808179	15.8	7.900	27.88	7.24		3.1	32.58	7 00	
2013/9/27 18:09	C1	MF	833723	808179	15.8	7.900 7.900	27.89	6.97	106.6	3.1	32.58 33.2	7.99 8.04	
2013/9/27 18:09	C1	MF	833723	808179	15.8	7.900 7.900 14.800	27.89 27.93	6.97 6.89	106.6 105.8	2.5	33.2	8.04	2.
2013/9/27 18:09	C1	MF	833723	808179	15.8	7.900 7.900 14.800 14.800	27.89 27.93 27.88	6.97 6.89 6.92	106.6 105.8 106.2	2.5 3.5	33.2 33.24	8.04 8.05	
2013/9/27 18:09	C1	MF	833723	808179	15.8	7.900 7.900 14.800 14.800 1.000	27.89 27.93 27.88 28.02	6.97 6.89 6.92 7.14	106.6 105.8 106.2 108.7	2.5 3.5 0.7	33.2 33.24 31.37	8.04 8.05 7.99	
						7.900 7.900 14.800 14.800 1.000	27.89 27.93 27.88 28.02 27.89	6.97 6.89 6.92 7.14 7.15	106.6 105.8 106.2 108.7 108.6	2.5 3.5 0.7 0.6	33.24 33.24 31.37 31.49	8.04 8.05 7.99 8	1.
2013/9/27 18:09 2013/9/27 17:07	C1 C2	MF MF	833723 831466	808179	15.8	7.900 7.900 14.800 14.800 1.000 1.000 5.850	27.89 27.93 27.88 28.02 27.89 27.86	6.97 6.89 6.92 7.14 7.15 6.89	106.6 105.8 106.2 108.7 108.6 104.9	2.5 3.5 0.7 0.6 0.9	33.2 33.24 31.37 31.49 32.06	8.04 8.05 7.99 8 7.98	1.
						7.900 7.900 14.800 14.800 1.000 1.000 5.850 5.850	27.89 27.93 27.88 28.02 27.89 27.86 27.88	6.97 6.89 6.92 7.14 7.15 6.89 6.77	106.6 105.8 106.2 108.7 108.6 104.9 103.2	2.5 3.5 0.7 0.6 0.9 0.6	33.24 33.24 31.37 31.49 32.06 32.06	8.04 8.05 7.99 8 7.98 7.98	1.
						7.900 7.900 14.800 14.800 1.000 1.000 5.850 5.850 10.700	27.89 27.93 27.88 28.02 27.89 27.86 27.88	6.97 6.89 6.92 7.14 7.15 6.89 6.77 6.65	106.6 105.8 106.2 108.7 108.6 104.9 103.2 101.4	2.5 3.5 0.7 0.6 0.9 0.6	33.24 33.24 31.37 31.49 32.06 32.06 32.4	8.04 8.05 7.99 8 7.98	1.
						7.900 7.900 14.800 14.800 1.000 1.000 5.850 5.850 10.700	27.89 27.88 27.88 28.02 27.89 27.86 27.88 27.8 27.78	6.97 6.89 6.92 7.14 7.15 6.89 6.77 6.65	106.6 105.8 106.2 108.7 108.6 104.9 103.2 101.4 100.6	2.5 3.5 0.7 0.6 0.9 0.6 1.4 1.3	33.2 33.24 31.37 31.49 32.06 32.06 32.4 32.46	8.04 8.05 7.99 8 7.98 7.98 7.97	1. ¹ 2. 5.
						7.900 7.900 14.800 14.800 1.000 1.000 5.850 5.850 10.700 10.700	27.89 27.93 27.88 28.02 27.89 27.86 27.88 27.8 27.78 28.06	6.97 6.89 6.92 7.14 7.15 6.89 6.77 6.65 6.6	106.6 105.8 106.2 108.7 108.6 104.9 103.2 101.4 100.6	2.5 3.5 0.7 0.6 0.9 0.6 1.4 1.3 2.1	33.2 33.24 31.37 31.49 32.06 32.06 32.4 32.40 32.11	8.04 8.05 7.99 8 7.98 7.97 8 8.02	1. ¹ 2. 5.
				807722		7.900 7.900 14.800 14.800 1.000 1.000 5.850 5.850 10.700 10.700 1.000	27.89 27.93 27.88 28.02 27.89 27.86 27.88 27.8 27.78 28.06 28.1	6.97 6.89 6.92 7.14 7.15 6.89 6.77 6.65 6.6	106.6 105.8 106.2 108.7 108.6 104.9 103.2 101.4 100.6 107.2 108.5	2.5 3.5 0.7 0.6 0.9 0.6 1.4 1.3 2.1	33.2 33.24 31.37 31.49 32.06 32.06 32.4 32.41 32.11	8.04 8.05 7.99 8 7.98 7.98 7.97 8 8.02	1.9 2.0 5.
						7.900 7.900 14.800 14.800 1.000 5.850 5.850 10.700 10.700 1.000 8.200	27.89 27.93 27.88 28.02 27.89 27.86 27.88 27.8 27.85 28.10 27.85	6.97 6.89 6.92 7.14 7.15 6.89 6.77 6.65 6.6 7.01 7.1	106.6 105.8 106.2 108.7 108.6 104.9 103.2 101.4 100.6 107.2 108.5 103.8	2.5 3.5 0.7 0.6 0.9 0.6 1.4 1.3 2.1 2.4 3.4	33.2 33.24 31.37 31.49 32.06 32.06 32.4 32.41 32.02 32.71	8.04 8.05 7.99 8 7.98 7.98 7.97 8 8.02 8	2.4 1.9 2.0 5. 2.0
2013/9/27 17:07	C2	MF	831466	807722	11.7	7.900 7.900 14.800 14.800 1.000 1.000 5.850 5.850 10.700 10.700 1.000	27.89 27.93 27.88 28.02 27.89 27.86 27.88 27.8 27.78 28.06 28.1	6.97 6.89 6.92 7.14 7.15 6.89 6.77 6.65 6.6	106.6 105.8 106.2 108.7 108.6 104.9 103.2 101.4 100.6 107.2 108.5	2.5 3.5 0.7 0.6 0.9 0.6 1.4 1.3 2.1	33.2 33.24 31.37 31.49 32.06 32.06 32.4 32.41 32.11	8.04 8.05 7.99 8 7.98 7.98 7.97 8 8.02	1.9 2.0 5.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 30-Sep-13

Date / Time	Location	Tide*	Co-ord	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2013/9/30 16:32	W1	ME	832982	807759	2.5	1.250	28.59	7.41	113.1	3.5	33.19	8.08	4.2
2013/7/30 10:32	***1	IVIL	032702	001137	2.3	1.250	28.69	7.41	113	3.3	33.17	8.08	7.2
		ı				1.000	27.55	7.51	114.6	2.9	33.15	8.09	5.0
		ii				1.000	27.63	7.46	114	2.5	33.13	8.1	
2013/9/30 16:19	W2	ME	832697	808013	12.1	6.050	27.58	7.52	114.9	3.4	33.47	8.1	5.0
		ii				6.050	27.63	7.51 7.51	114.8	3.4 3.4	33.43	8.11	
		ii				11.100	27.59 27.69	7.31	114.9 114.5	3.4	33.67 33.54	8.12 8.1	5.0
	+					1.000	27.56	7.47	110.1	3.7	33.2	8.09	
		i				1.000	27.52	7.22	109.8	3.7	33.27	8.09	5.4
		i				5.950	27.58	7.28	111.2	3.5	33.48	8.09	
2013/9/30 16:05	W3	ME	832068	807918	11.9	5.950	27.58	7.34	112.3	2.9	33.48	8.08	4.4
		ii				10.900	27.63	7.47	114.4	3	33.6	8.09	
		i				10.900	27.59	7.48	114.5	3.3	33.69	8.1	3.7
	1					1.000	27.57	7.53	114.8	3.3	33.15	8.08	
		i				1.000	27.56	7.53	114.8	2.2	33.15	8.08	4.9
2042/0/07 : : : :=			000711	000175	4.5 =	6.850	27.55	7.46	113.9	3.4	33.35	8.08	
2013/9/30 16:47	C1	ME	833717	808180	13.7	6.850	27.59	7.46	113.9	3.3	33.33	8.09	5.0
		1				12.700	27.6	7.40	113.2	3.6	33.42	8.09	
		1				12.700	27.59	7.35	112.3	3.1	33.44	8.08	5.
	1 1					1.000	27.57	7.36	112.4	3.1	33.18	8.1	
		i				1.000	27.58	7.25	110.7	4.5	33.2	8.1	6.
		i				4.950	27.57	7.21	110.7	3.3	33.55	8.09	
2013/9/30 15:50	C2	ME	831489	807759	9.9	4.950	27.59	7.38	112.8	3.3	33.53	8.1	5.9
		i				8.900	27.62	7.49	114.7	2.9	33.61	8.1	
		i				8.900	27.58	7.5	114.7	3.4	33.7	8.12	4.
	1					1.000	27.56	7.95	121.3	2	33.18	8.09	
		i				1.000	27.55	8.02	122.4	2.8	33.18	8.08	4.
		i				7.250	27.63	7.49	114.5	3.8	33.28	8.09	
2013/9/30 17:03	C3	ME	832218	808877	14.5	7.250	27.58	7.46	113.9	3.9	33.32	8.08	4.
		i				13.500	27.61	7.31	111.8	3.5	33.39	8.09	
		i				13.500	27.6	7.31	111.8	3.5	33.4	8.09	3.5
						13.300	21.0	7.31	111.0	J.J	33.4	0.09	
	4					1.200	27.43	6.9	104.6	2.3	32.43	8.01	
2013/9/30 9:44	W1	MF	832980	807719	2.4	1.200	27.48	7.59	115.2	1.4	32.43	8.01	1.0
	+ +					1.000	27.49	7.48	113.4	2	32.34	8.03	
		i				1.000	27.49	7.49	113.4	2.1	32.34	8.03	2.0
		i				6.200	27.43	7.49	108.8	2.5	32.5	8.04	
2013/9/30 9:33	W2	MF	832692	807963	12.4				108.8	3.6	32.5		4.0
										.7.0		0 01	
						6.200	27.41	7.15				8.04	
						11.400	27.71	7.07	107.9	3.8	32.74	8.05	
						11.400 11.400	27.71 27.71	7.07 6.67	107.9 101.7	3.8 3.9	32.74 32.76	8.05 8.04	
						11.400 11.400 1.000	27.71 27.71 27.27	7.07 6.67 7.23	107.9 101.7 109	3.8 3.9 0.7	32.74 32.76 31.96	8.05 8.04 7.89	5.
						11.400 11.400 1.000 1.000	27.71 27.71 27.27 27.21	7.07 6.67 7.23 7.01	107.9 101.7 109 105.6	3.8 3.9	32.74 32.76 31.96 32	8.05 8.04 7.89 7.9	5.
2013/9/30 9:19	W3	MF	832036	807911	12.1	11.400 11.400 1.000 1.000 6.050	27.71 27.71 27.27 27.21 27.4	7.07 6.67 7.23 7.01 6.75	107.9 101.7 109 105.6 102.1	3.8 3.9 0.7 0.7	32.74 32.76 31.96 32 32.24	8.05 8.04 7.89 7.9	5.
2013/9/30 9:19	W3	MF	832036	807911	12.1	11.400 11.400 1.000 1.000 6.050 6.050	27.71 27.71 27.27 27.21 27.4 27.41	7.07 6.67 7.23 7.01 6.75 6.75	107.9 101.7 109 105.6 102.1 102.1	3.8 3.9 0.7 0.7 1 1.5	32.74 32.76 31.96 32 32.24 32.21	8.05 8.04 7.89 7.9 7.96 7.95	5.
2013/9/30 9:19	W3	MF	832036	807911	12.1	11.400 11.400 1.000 1.000 6.050 6.050 11.100	27.71 27.71 27.27 27.21 27.4 27.41 27.71	7.07 6.67 7.23 7.01 6.75 6.75 6.66	107.9 101.7 109 105.6 102.1 102.1 101.5	3.8 3.9 0.7 0.7 1 1.5	32.74 32.76 31.96 32 32.24 32.21 32.62	8.05 8.04 7.89 7.9 7.96 7.95 7.97	5. 1. 2.
2013/9/30 9:19	W3	MF	832036	807911	12.1	11.400 11.400 1.000 1.000 6.050 6.050 11.100 11.100	27.71 27.71 27.27 27.21 27.4 27.41 27.71 27.73	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49	107.9 101.7 109 105.6 102.1 102.1 101.5 98.9	3.8 3.9 0.7 0.7 1 1.5 1.4	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61	8.05 8.04 7.89 7.9 7.96 7.95 7.97	5. 1. 2.
2013/9/30 9:19	W3	MF	832036	807911	12.1	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000	27.71 27.71 27.27 27.21 27.4 27.41 27.71 27.73	7.07 6.67 7.23 7.01 6.75 6.75 6.66	107.9 101.7 109 105.6 102.1 102.1 101.5 98.9	3.8 3.9 0.7 0.7 1 1.5 1.4 1.6 3.3	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61 33.1	8.05 8.04 7.89 7.9 7.96 7.95 7.97 7.97 8.14	5. 1. 2.
2013/9/30 9:19	W3	MF	832036	807911	12.1	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000	27.71 27.71 27.27 27.21 27.41 27.41 27.71 27.73 27.67 27.62	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03	107.9 101.7 109 105.6 102.1 102.1 101.5 98.9 107.4	3.8 3.9 0.7 0.7 1 1.5 1.4 1.6 3.3 3.2	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61 33.1 33.21	8.05 8.04 7.89 7.9 7.96 7.95 7.97 7.97 8.14 8.13	5. 1. 2.
2013/9/30 9:19 2013/9/30 9:57	W3	MF MF	832036 833731	807911	12.1	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700	27.71 27.27 27.27 27.21 27.41 27.41 27.71 27.73 27.67 27.62 27.64	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7	107.9 101.7 109 105.6 102.1 102.1 101.5 98.9 107.4 107 108.1	3.8 3.9 0.7 0.7 1 1.5 1.4 1.6 3.3 3.2 4.1	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61 33.1 33.21 33.65	8.05 8.04 7.89 7.9 7.96 7.95 7.97 7.97 8.14 8.13 8.14	5. 1. 2. 1.
						11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.100 1.000 6.700 6.700	27.71 27.27 27.27 27.21 27.41 27.41 27.71 27.73 27.67 27.62 27.64 27.63	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7	107.9 101.7 109 105.6 102.1 102.1 101.5 98.9 107.4 107.1 108.1	3.8 3.9 0.7 0.7 1 1.5 1.4 1.6 3.3 3.2 4.1	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61 33.11 33.21 33.65 33.67	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.14 8.13	5. 1. 2. 1.
						11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.1000 1.000 6.700 6.700 12.400	27.71 27.71 27.27 27.21 27.41 27.41 27.71 27.73 27.67 27.62 27.64 27.63 27.64	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7.06 7.06	107.9 101.7 109 105.6 102.1 102.1 101.5 98.9 107.4 107.1 108.1 108.1	3.8 3.9 0.7 0.7 1 1.5 1.4 1.6 3.3 3.2 4.1 4.3	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61 33.1 33.21 33.65 33.67 33.84	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.13	5. 1. 2. 1. 2.
						11.400 11.400 1.000 1.000 6.050 6.050 11.100 11.000 1.000 6.700 6.700 12.400	27.71 27.71 27.27 27.21 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.64 27.63	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7.06 7.06 7.21	107.9 101.7 109 105.6 102.1 102.1 101.5 98.9 107.4 107.1 108.1 108.1 110.5	3.8 3.9 0.7 0.7 1 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8	32.74 32.76 31.96 32.24 32.21 32.62 32.61 33.11 33.65 33.67 33.84 33.84	8.05 8.04 7.89 7.96 7.96 7.97 7.97 7.97 8.14 8.13 8.13 8.13	5. 1. 2. 1. 2.
						11.400 11.400 1.000 1.000 6.050 6.050 11.100 11.000 1.000 6.700 6.700 12.400 1.000	27.71 27.71 27.27 27.21 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.64 27.63 27.64	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.21 7.21	107.9 101.7 109 105.6 102.1 101.5 98.9 107.4 107.1 108.1 110.5 110.6	3.8 3.9 0.7 0.7 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61 33.1 33.21 33.65 33.67 33.84 33.85 31.43	8.05 8.04 7.89 7.9 7.96 7.95 7.97 7.97 8.14 8.13 8.13 8.13 8.13	5. 1. 2. 1. 2. 1.
						11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700 6.700 12.400 1.000 1.000	27.71 27.71 27.27 27.21 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.64 27.63 27.64 27.63 27.64	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.06 7.21 7.21 7.55	107.9 101.7 109 105.6 102.1 101.5 98.9 107.4 107.1 108.1 108.1 110.5 110.6 113.2	3.8 3.9 0.7 0.7 1 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61 33.1 33.21 33.65 33.67 33.84 33.85 31.43	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.14 8.13 8.13 8.13	5. 1. 2. 1. 2.
						11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700 6.700 12.400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	27.71 27.71 27.27 27.21 27.41 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.64 27.63 27.64 27.63 27.08	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.21 7.21 7.21 7.33 6.71	107.9 101.7 109 105.6 102.1 101.5 98.9 107.4 107. 108.1 110.5 110.6 113.2	3.8 3.9 0.7 0.7 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8 4 0.5 0.5	32.74 32.76 31.96 32.23 32.21 32.62 32.61 33.1 33.21 33.65 33.67 33.85 31.43 31.43 31.43	8.05 8.04 7.89 7.99 7.96 7.95 7.97 7.97 8.14 8.13 8.14 8.13 8.13 7.84 7.85	5. 1. 2. 1. 2. 1. 3.
2013/9/30 9:57	Cl	MF	833731	807186	13.4	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700 6.700 12.400 1.000	27.71 27.71 27.27 27.21 27.4 27.41 27.41 27.71 27.62 27.64 27.63 27.64 27.63 27.64 27.63 27.05 27.08 27.08	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.06 7.21 7.21 7.55 7.33 6.71	107.9 101.7 109 105.6 102.1 101.5 98.9 107.4 108.1 110.5 110.6 113.2 109.8 101.1	3.8 3.9 0.7 0.7 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8 4 0.5 0.5	32.74 32.76 31.96 32.24 32.21 32.62 32.61 33.1 33.21 33.65 33.67 33.84 33.85 31.43 31.48 31.48	8.05 8.04 7.89 7.99 7.96 7.95 7.97 7.97 7.97 8.14 8.13 8.14 8.13 8.13 7.84 7.85 7.91	5. 1. 2. 1. 2. 1. 3.
2013/9/30 9:57	Cl	MF	833731	807186	13.4	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700 6.700 12.400 12.400 1.000 5.400 5.400 9.800	27.71 27.71 27.27 27.21 27.4 27.41 27.41 27.71 27.73 27.67 27.62 27.64 27.63 27.64 27.63 27.05 27.05 27.29 27.25	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.21 7.21 7.55 7.33 6.71 6.72	107.9 101.7 109 105.6 102.1 101.1 101.5 98.9 107.4 107.1 108.1 110.5 110.6 113.2 109.8 101.1	3.8 3.9 0.7 0.7 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8 4 0.5 0.5 0.9	32.74 32.76 31.96 32.24 32.21 32.62 32.61 33.1 33.21 33.65 33.67 33.84 33.85 31.43 31.43 31.43 31.43	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.14 8.13 8.13 7.84 7.85 7.91	5. 1. 1. 2. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
2013/9/30 9:57	Cl	MF	833731	807186	13.4	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700 6.700 12.400 1.000 1.000 5.400 5.400 9.800	27.71 27.71 27.27 27.21 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.08 27.08 27.05 27.29 27.25 27.24	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.06 7.21 7.21 7.21 7.55 7.33 6.71 6.72 5.88	107.9 101.7 109 105.6 102.1 102.1 101.5 98.9 107.4 108.1 108.1 110.5 110.6 113.2 109.8 101.1 101.1 101.1	3.8 3.9 0.7 0.7 1 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8 4 0.5 0.5 0.5 1 0.9 1.6	32.74 32.76 31.96 32.24 32.21 32.62 32.61 33.11 33.65 33.67 33.84 33.85 31.43 31.48 31.67 31.7	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.13 8.13 7.84 7.85 7.91 7.91	5 1 1 2 2 1 0 0
2013/9/30 9:57	Cl	MF	833731	807186	13.4	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700 6.700 12.400 12.400 1.000 5.400 5.400 9.800 9.800	27.71 27.71 27.27 27.21 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.68 27.08 27.05 27.25 27.25 27.25	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.21 7.21 7.25 7.33 6.71 6.72 5.88 6.5	107.9 101.7 109 105.6 102.1 101.5 98.9 107.4 107 108.1 110.5 110.6 113.2 109.8 101.1 101.1 89.5 98.7	3.8 3.9 0.7 0.7 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8 4 0.5 0.5 0.5 1 0.9 1.6	32.74 32.76 31.96 32.24 32.21 32.62 32.61 33.1 33.21 33.67 33.84 31.43 31.48 31.67 31.7 32.21 32.21	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.13 8.13 8.13 7.84 7.85 7.91 7.91 7.92 7.93	5 5 1 1 1 1 1 1
2013/9/30 9:57	Cl	MF	833731	807186	13.4	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700 6.700 12.400 12.400 1.000 5.400 5.400 9.800 9.800 1.000	27.71 27.71 27.27 27.21 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.64 27.63 27.05 27.29 27.24 27.29 27.25 27.27 27.27	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.21 7.21 7.55 7.33 6.71 6.72 8.84	107.9 101.7 109 105.6 102.1 101.5 98.9 107.4 107.1 108.1 110.5 110.6 113.2 109.8 101.1 101.1 101.1 101.1 101.1	3.8 3.9 0.7 0.7 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8 4 0.5 0.5 0.5 1.6 0.9 1.6 2.9 3.8	32.74 32.76 31.96 32.21 32.21 32.62 32.61 33.1 33.21 33.65 33.67 33.84 31.43 31.48 31.67 31.7 32.21 32.24 33.42	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.13 8.13 8.13 7.84 7.85 7.91 7.91 7.92 7.93	5 1 2 2 1 3 0 0 2
2013/9/30 9:57	Cl	MF	833731	807186	13.4	11.400 11.400 1.000 1.000 6.050 6.050 11.100 11.100 1.000 6.700 6.700 12.400 12.400 1.000 5.400 5.400 9.800 9.800 1.000 1.000 1.000 1.000	27.71 27.71 27.27 27.21 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.64 27.63 27.05 27.29 27.25 27.74 27.67 27.29	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7.06 7.06 7.21 7.55 7.33 6.71 6.72 5.88 6.55 8.04	107.9 101.7 109 105.6 102.1 101.5 98.9 107.4 108.1 108.1 110.5 110.6 113.2 109.8 101.1 101.1 20.1 102.1 103.1 104.1 105.	3.8 3.9 0.7 0.7 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8 4 0.5 0.5 0.5 1.6 2.9 3.8	32.74 32.76 31.96 32 32.24 32.21 32.62 32.61 33.1 33.21 33.65 33.84 33.85 31.43 31.48 31.67 31.7 32.21 32.24 33.31 33.72	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.14 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.14 8.13 8.14 8.15 8.16 8.15 8.16	5.5.5.1.1.1.2.2.2.2.1.3.1.3.1.3.1.3.1.3.1.3.1
2013/9/30 9:57 2013/9/30 9:06	C1 C2	MF	833731	807186	13.4	11.400 11.400 1.000 1.000 6.050 6.050 11.100 1.000 1.000 6.700 6.700 12.400 12.400 1.000 5.400 5.400 9.800 9.800 1.000	27.71 27.71 27.27 27.21 27.41 27.41 27.73 27.67 27.62 27.64 27.63 27.64 27.63 27.05 27.29 27.24 27.29 27.25 27.27 27.27	7.07 6.67 7.23 7.01 6.75 6.75 6.66 6.49 7.03 7 7.06 7.21 7.21 7.55 7.33 6.71 6.72 8.84	107.9 101.7 109 105.6 102.1 101.5 98.9 107.4 108.1 110.5 110.6 113.2 109.8 101.1 101.1 89.5 98.7 122.8	3.8 3.9 0.7 0.7 1.5 1.4 1.6 3.3 3.2 4.1 4.3 4.8 4 0.5 0.5 0.5 1.6 0.9 1.6 2.9 3.8	32.74 32.76 31.96 32.21 32.21 32.62 32.61 33.1 33.21 33.65 33.67 33.84 31.43 31.48 31.67 31.7 32.21 32.24 33.42	8.05 8.04 7.89 7.96 7.95 7.97 7.97 8.14 8.13 8.13 8.13 8.13 7.84 7.85 7.91 7.91 7.92 7.93	5.3.3.2.2.4.8.1.8.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 2-Oct-13

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11uc.	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/
2013/10/2 10:38	W1	ME	832946	807718	2.6	1.300	27.68	8.77	133.6	2.7	32.45	7.76	2.5
2013/10/2 10:30	,,,,	WILL	032710	007710	2.0	1.300	27.71	8.66		3.1	32.37	7.73	2.5
						1.000	27.66	8.33	126.8	3.5	32.49	7.73	2.7
						1.000	27.69	8.28	126.1	3.2	32.41	7.7	
2013/10/2 10:48	W2	ME	832684	807992	12.7	6.350 6.350	27.53 27.52	8.36 7.88	126.9 119.7	4.4	32.48 32.48	7.7 7.71	3.2
						11.700	27.56	8.22	119.7	5.1	32.48	7.71	
						11.700	27.52	8.15	123.7	5.1	32.49	7.72	2.2
						1.000	27.79	8.41	128.2	2.1	32.42	7.72	
						1.000	27.81	8.27	126.1	2.5	32.38	7.84	3.2
						6.200	27.48	8.01	121.7	3.7	32.63	7.85	
2013/10/2 11:08	W3	ME	832067	807909	12.4	6.200	27.52	8.08	122.8	5.7	32.57	7.83	2.8
						11.400	27.52	7.91	120.1	4.7	32.61	7.81	2.0
						11.400	27.49	7.9		4.9	32.64	7.79	2.8
						1.000	27.9	7.83	119.5	3.8	32.22	7.62	2.0
						1.000	27.49	7.89	119.6	4	32.3	7.66	3.0
2013/10/2 10:23	C1	ME	833734	808191	14.9	7.100	27.5	7.75	117.5	5.7	32.31	7.66	2.4
2013/10/2 10.23	CI	IVIL	033734	000191	14.9	7.100	27.52	7.96	120.7	5.5	32.34	7.64	Z.º
						13.200	27.48	7.9	119.7	4	32.39	7.69	2.8
						13.200	27.51	7.81	118.5	3.7	32.35	7.66	2.0
						1.000	27.88	8.13	124.1	3.9	32.45	7.8	2.9
						1.000	27.9	8.12		3.9	32.44	7.8	
2013/10/2 11:23	C2	ME	831449	807763	10.2	5.100	27.55	7.93	120.6	4.2	32.63	7.79	4.0
						5.100	27.63	8.12	123.6	4	32.58	7.8	
						9.200	27.52	7.68	116.8	3.8	32.68	7.8	3.
						9.200	27.51	7.68	116.8	4.6	32.69	7.79	
						1.000	27.8 27.89	7.9		2.6	32.11 32.05	7.58 7.56	2.
						7.650	27.53	7.24	120.4	2.4 4.3	32.03	7.57	
2013/10/2 10:06	C3	ME	832245	808886	15.3	7.650	27.52	7.24	109.8	4.4	32.17	7.57	2.
						14.300	27.52	7.23	109.3	4.4	32.22	7.57	
						14.300	27.57	7.23	109.7	4.6	32.19	7.56	3.0
						111300	27137	7123	107.17	110	32.17	7.50	
						1.350	28	5.7	87.2	3.4	32.53	7.81	
2013/10/2 17:41	W1	MF	832963	807745	2.7	1.350	28.01	5.75	88	3	32.54	7.81	3.
						1.000	28.02	6.38	97.7	3.2	32.51	7.84	
						1.000	28.05	6.38	97.7	3.2	32.5	7.84	2.
2012/10/2 17 22	7710	ME	022602	007066	12.6	6.800	27.92	6.17	94.4	3	32.62	7.83	2
2013/10/2 17:32	W2	MF	832693	807966	13.6	6.800	27.93	6.05	92.6	2.9	32.66	7.83	2.
						12.600	27.81	6.05	92.4	3.2	32.75	7.8	4.
						12.600	27.8	5.86	89.6	3	32.77	7.82	4.
						1.000	28.19	5.05	77.6	2.8	32.66	7.77	2.
						1.000	28.26	4.88	75	2.8	32.62	7.8	۷.
2013/10/2 17:17	W3	MF	832024	807914	13.2	6.600	27.78	5.02	76.7	3.2	32.84	7.79	4.
_013,10/2 17.17	,,,,	1111	U32027	00/714	1.2.2	6.600	27.75	4.84	73.9	3.7	32.87	7.8	
						12.200	27.49	4.78		4.3	33.03	7.81	2.
						12.200	27.5	4.78		5	33.04	7.82	
						1.000	27.92	5.57	85.2	2.7	32.57	7.81	4.
						1.000 7.750	27.93 27.85	5.75 5.49		2.6	32.57 32.75	7.81	
2013/10/2 17:53	C1	MF	833716	808194	15.5	7.750	27.85	5.49		3.1	32.75	7.83 7.8	2.
						14.500	27.74	5.15		4.1	32.77	7.83	
						14.500	27.74	5.15		4.1	32.89	7.82	2.
						1.000	28.17	6.64		2.9	32.47	7.85	
						1.000	28.01	6.32	96.7	2.9	32.47	7.83	2.
						5.400	27.58	5.37		3	32.82	7.82	
2013/10/2 17:02	C2	MF	831461	807783	10.8	5.400	27.56	5.39		3	32.81	7.82	3.
						9.800	27.52	5.26		3.9	32.86	7.82	
						9.800	27.51	4.79		3.9	32.85	7.76	2.
	-					1.000	27.91	4.92		3.4	32.68	7.70	
									75.3	3.5	32.59	7.81	3.
						1.000	27.98	4.92	7.3.7		1/171	7.01	
2010/17-7			0.533	05.22		1.000 8.050		4.92 5.05					
2013/10/2 18:13	C3	MF	832246	808890	16.1	8.050	27.82	5.05	77.2	3.5	32.81	7.83	5.0
2013/10/2 18:13	C3	MF	832246	808890	16.1				77.2 74.5				5.0

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 4-Oct-13

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/
2013/10/4 11:22	W1	ME	832976	807757	2.5	1.250	27.75	8.3		3.5	32.93	7.65	3.9
2013/10/111.22	""1	WILL	032710	007737	2.3	1.250	27.76	8.13	109.7	3.5	32.99	7.68	2.7
						1.000	27.66	8.21	110.7	3.7	33	7.67	1.6
						1.000	27.7	8.19	110.3	2.9	32.99	7.67	
2013/10/4 11:30	W2	ME	832696	808009	14.3	7.150	27.57	8.08	107	2.9	33.14	7.7	2.4
						7.150	27.57 27.52	8.11 7.87	108.9 105.3	4.2 4.6	33.15 33.32	7.7 7.71	
						13.300 13.300	27.53	7.94	105.5	4.0	33.31	7.71	1.8
						1.000	27.96	7.58	112.2	1.8	32.95	7.7	
						1.000	28.07	7.55	112.2	1.8	32.83	7.88	1.2
						7.050	27.6	7.32	107.4	4.8	33.11	7.87	
2013/10/4 11:45	W3	ME	832061	807905	14.1	7.050	27.59	7.11	104.3	5.9	33.12	7.87	0.5
						13.100	27.52	6.91	100.7	5.1	33.35	7.87	
						13.100	27.52	6.91	100.7	5.2	33.34	7.86	1.7
						1.000	27.57	7.76	113.4	5.9	32.93	7.43	2.6
						1.000	27.59	7.93	116.1	6.5	32.94	7.47	2.6
2013/10/4 11:06	C1	ME	833724	808178	15.3	7.650	27.59	7.19	117.2	6.3	33.12	7.43	2.0
2013/10/4 11.00	CI	IVIL	033724	000170	13.3	7.650	27.59	7.12	119.1	6.5	33.13	7.41	۷.۱
						14.300	27.6	7.03	107.8	7.4	33.21	7.43	1.0
						14.300	27.58	7.17	119.9	7.4	33.27	7.42	1.0
						1.000	28.03	7.71	117.6	2.2	32.85	7.87	2.4
						1.000	27.99	7.95	121.4	2.5	32.9	7.87	
2013/10/4 11:59	C2	ME	831477	807764	10.8	5.400	27.65	7.45	113.8	3.4	33.05	7.87	1.0
						5.400	27.71	7.45	113.8	2.6	33.01	7.87	
						9.800	27.6	6.79	104.2	3.5	33.21	7.85	3.
						9.800	27.63	7.13	109.4	4.1	33.19	7.86	
						1.000	27.67 27.66	8.87 8.51	134.7 129.2	6.4 5.1	31.95 32.07	7.47 7.47	4.
						7.900	27.54	7.76	118	5.5	32.53	7.47	
2013/10/4 10:48	C3	ME	832249	808885	15.8	7.900	27.54	7.70	114.3	4.8	32.58	7.46	5.
						14.800	27.51	7.24	110.1	5.2	32.76	7.47	
						14.800	27.5	7.09	107.9	5.3	32.89	7.5	3.
						1 11000	27.0	7.07	1071)	3.5	32.07	7.0	
						1.300	27.8	5.4	82.6	4	32.94	7.98	
2013/10/4 17:41	W1	MF	832990	807725	2.6	1.300	27.76	5.41	82.7	3.9	32,97	7.96	3.
						1.000	27.72	5.51	84.1	3.7	33	8	-
						1.000	27.76	5.5	84.1	3.8	32.94	8	6.
2012/10/110 07	1110) (E)	000700	007070	140	7.100	27.7	5.76	88.1	4.1	33.08	8.01	
2013/10/4 18:07	W2	MF	832692	807978	14.2	7.100	27.72	5.74	87.8	4.1	33.06	8	4.0
						13.200	27.69	5.73	87.6	5.2	33.17	8	5.
						13.200	27.64	5.73	87.5	5.1	33.25	8.01	٥.
						1.000	27.72	7.89	120.6	3.4	32.94	8	5.
						1.000	27.77	6.68	102.1	3.4	32.92	8.01	٦.
2013/10/4 18:22	W3	MF	832036	807895	13.6	6.800	27.71	6.99	106.8	4.6	33.18	8.03	4.
2013/10/110.22	","	1411	032030	007075	13.0	6.800	27.73	6.96	106.5	4.2	33.17	8.03	
						12.600	27.69	6.76	103.5	5.1	33.26	8.02	4.
						12.600	27.71	6.87	105.1	5.1	33.24	8.03	
						1.000	27.76	5.18	79.1	3.4	32.89	7.94	3.
						1.000	27.75	5.17	79	3.9	32.9	7.96	
2013/10/4 17:21	C1	MF	833720	808194	16.1	8.050	27.66	5.25	80.1	4.3 5.2	33.05	7.98 7.98	5.
						8.050 15.100	27.65 27.67	5.24 5.09	80.1 77.8	4.6	33.05 33.21	7.98	
						15.100	27.68	5.09	77.8	6.1	33.2	7.99	4.
						1.000	27.71	7.05	107.8	3.3	32.98	8.01	
						1.000	27.71	7.05	107.8	3.3	32.98	8.02	5.
						5.500	27.72	7.03	107.7	4.1	33.19	8.03	
2013/10/4 18:39	C2	MF	831482	807757	11	5.500	27.68	7.06	107.7	5.5	33.28	8.04	5.
						10.000	27.68	6.99	106.9	4.1	33.35	8.04	
						10.000	27.72	6.99	106.9	5	33.27	8.03	3.
						1.000	27.78	7.88	121.4	3.2	32.69	8.01	
						1.000	27.76	7.65	117.8	3.2	32.7	8.01	7.
								,.05		v			
2040/15-11-1			0000	0.000			27.74	6 47	98 9	3.4	33.061	8	
2013/10/4 17:02	C3	MF	832251	808871	16.7	8.350	27.74 27.74	6.47	98.9 97.5	3.4	33.06 33.09		4.0
2013/10/4 17:02	C3	MF	832251	808871	16.7		27.74 27.74 27.68	6.47 6.37 6.24	98.9 97.5 95.3	3.4 3.1 2.7	33.06 33.09 33.11	8.01 8.01	6.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 8-Oct-13

Date / Time	Location	Tide*	Co-on	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	೦	mg/L	%	NTU	ppt	unit	mg/
2013/10/8 8:58	W1	ME	832984	807761	2.5	1.250	27.4	7.02	105.8	2.1	31.4	7.83	3.0
2013/10/0 0.50	,,,,	IVIL	032/01	007701	2.3	1.250	27.5	7.18	108.2	2.2	31.27	7.84	5.0
						1.000	27.5	7.58	114.4	2.3	31.28	7.93	3.1
						1.000	27.5	7.62	114.9	2.3	31.27	7.93	
2013/10/8 9:07	W2	ME	832684	807979	12.8	6.400	27.5	7.38	111.3	2.5	31.52	7.94	2.6
						6.400	27.5	7.58	114.4	2.5	31.52	7.94	
						11.800	27.5	7.92	119.5	3.1	31.8	7.93	4.6
						11.800	27.5	7.86	118.7	3.1	31.84	7.93	
						1.000	27.5	8.50	128.6	1.8	31.25	7.95	2.3
						1.000	27.5	8.58	129.6	1.8	31.21	7.95	
2013/10/8 9:21	W3	ME	832036	807918	12.4	6.200	27.5	7.98	120.5	2.6	31.23	7.94	3.8
						6.200	27.5	8.06	121.9	2.6	31.28	7.96	
						11.400	27.5	8.52	128.7	2.8	31.33	7.97	3.
						11.400	27.5	8.55	129.3	2.8	31.47	7.97	
						1.000	27.5	8.13	122.5	2.2	31.63	7.96	3.3
						1.000	27.5	7.99	120.5	2.2	31.61	7.97	
2013/10/8 8:45	C1	ME	833718	808187	15.2	7.600	27.5	7.71	116.5	2.6	31.91	7.97	3.:
						7.600	27.5	7.64	115.3	2.6	31.93	7.97	
						14.200	27.5	9.05	136.4	2.9	31.21	7.98	2.
						14.200	27.5	7.65	115.5	2.9	31.33	7.98	
						1.000	27.5	8.29	125.3	3	31.74	7.99	3.
						1.000	27.5	8.30	125.4	3	31.81	7.99	
2013/10/8 9:31	C2	ME	831469	807769	10.5	5.250	27.5	8.96	135.4	2.8	31.11	7.99	2.
						5.250	27.5	9.00	136.1	2.8	31.06	7.99	
						9.500	27.5	9.19	139.0	2.8	31.68	7.99	2.
						9.500	27.5	9.07	137.1	2.8	31.75	7.99	
						1.000	27.5	7.56	114.0	3.1	31.35	7.97	3.
						1.000	27.5	7.54	113.8	3.1	31.67	7.98	٠.
2013/10/8 8:24	C3	ME	832241	808890	15.7	7.850	27.5	7.26	109.4	3.5	31.37	7.98	3.
2013/10/0 0.21	CS	WILL	032211	000070	13.7	7.850	27.5	7.66	115.7	3.5	31.62	7.98	٥.
						14.700	27.5	7.59	114.6	4	31.87	8	3.
						14.700	27.5	7.75	117.0	4.1	31.64	8	-
						1.250	27.6	7.24	111.2	2.5	21.00	0.07	
2013/10/8 14:44	W1	MF	832943	807726	2.7	1.350	27.6	7.34	111.3	2.5	31.08	8.07	3.
						1.350	27.6	7.35	111.4	2.5	31.24	8.05	
						1.000	27.7	7.52	113.8	2.8	31.03	8.04	3.
						1.000	27.7	7.56	114.5	2.8	31.02	8.07	
2013/10/8 14:29	W2	MF	832679	808006	13.5	6.750	27.6	7.20	109.0	2.8	31.81	8.07	3.
						6.750	27.6	7.37	111.5	2.7	31.77	8.06	
						12.500	27.6	7.90	119.4	3.1	31.51	8.06	4.
	_					12.500	27.6	7.82	117.8	3.2	31.48	8.08	
						1.000	27.8	7.54	114.4	2.4	31.04	8.08	3.
						1.000	27.8	7.63	115.8	2.4	31.09	8.09	٠.
2013/10/8 14:17	W3	MF	832039	807901	13.2	6.600	27.7	7.58	114.7	2.1	31.76	8.09	2.
				7.7.		6.600	27.7	7.62	115.4	2	31.84	8.06	
						12.200	27.6	7.18	108.8	3.2	31.57	8.06	4.
						12.200	27.6	7.25	109.8	3.2	31.58	8.08	
						1.000	27.6	7.04	106.6	1.8	31.03	8.08	2.
						1.000	27.6	7.02	106.4	1.8	31.94	8.08	۷.
2013/10/8 14:55	C1	MF	833708	808184	15.8	7.900	27.6	7.18	108.6	2	31.17	8.08	2.
	0.1	1.11	033700	000101	15.0	7.900	27.6	7.29	110.4	2	31.06	8.06	
						14.800	27.6	6.67	101.0	2.6	31.45	8.06	2.
						14.800	27.6	6.94	105.0	2.6	31.41	8.07	۷.
						1.000	27.8	8.10	122.9	2.1	31.18	8.07	1.
						1.000	27.8	8.05	122.1	2.1	31.14	8.09	1.
2013/10/8 14:06	C2	MF	831488	807759	10.9	5.450	27.6	9.28	140.5	2.6	31.36	8.09	2.
2013/10/0 14:00	C2	1411	051400	001139	10.7	5.450	27.6	9.33	141.2	2.6	31.22	8.09	۷.
						9.900	27.6	8.30	125.7	2.8	31.25	8.09	2.
						9.900	27.6	8.37	126.7	2.4	31.34	8.06	۷.
 _						1.000	27.6	7.25	109.7	2.6	31.23	8.06	2.
						1.000	27.6	7.26	110.0	2.6	31.38	8.09	Ζ.
2013/10/8 15:12	C3	MF	832218	808877	16.2	8.100	27.6	7.19	108.9	2.2	31.72	8.09	2.
2011 1/1U/O 1 Y 1 Z	C	IVIT	032218	000077	10.2	8.100	27.6	7.33	111.0	2.2	31.68	8.09	Z.:
2013/10/0 13:12						0.1.00							
2013/10/0 13:12						15.200	27.6	6.93	104.9	3.3	31.15	8.09	3.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 10-Oct-13

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/l
2013/10/10 10:22	W1	ME	832994	807716	2.7	1.350	27.7	7.53	114.0	4.1	31.56	7.98	10.5
2013/10/10 10:22	** 1	IVIL	032774	007710	2.1	1.350	27.7	7.63	115.6	4.2	31.52	7.98	10.5
						1.000	27.7	7.80	118.2	3.2	31.56	7.98	3.9
						1.000	27.7	7.88	119.3	3.2	31.55	7.98	
2013/10/10 10:12	W2	ME	832681	807994	12.7	6.350 6.350	27.6 27.6	8.39 8.58	126.8 129.7	3.6 3.6	31.59 31.66	7.98 7.98	3.6
						11.700	27.6	8.45	129.7	4.1	31.80	7.98 8	
						11.700	27.6	8.50	128.7	4.1	31.81	8	5.1
						1.000	27.7	8.21	124.2	3.1	31.4	7.96	
						1.000	27.7	8.37	126.7	3.1	31.45	7.97	3.6
2012/10/10 0 50	1110) (F	000000	007006	10.0	6.150	27.7	8.53	129.2	3.5	31.45	7.98	0.5
2013/10/10 9:50	W3	ME	832039	807886	12.3	6.150	27.7	8.63	130.7	3.5	31.45	7.98	3.5
						11.300	27.7	8.30	125.8	3.9	31.48	8	F 1
						11.300	27.7	8.42	127.5	3.9	31.48	8	5.1
						1.000	27.7	8.24	124.8	2.8	31.32	7.99	3.6
						1.000	27.8	8.28	125.6	2.8	31.32	7.99	5.0
2013/10/10 10:30	C1	ME	833692	808190	14.8	7.400	27.6	8.24	124.7	3.2	31.36	8.01	3.8
2013/10/10 10.30	CI	IVIL	033072	000170	14.0	7.400	27.6	8.51	128.9	3.2	31.35	8.01	5.0
						13.800	27.6	8.07	122.2	3.1	31.39	8.02	3.2
						13.800	27.6	8.08	122.3	3.2	31.37	8.02	5.2
						1.000	27.8	9.24	140.4	2.8	31.61	7.91	2.7
						1.000	27.8	9.30	141.1	2.7	31.62	7.92	
2013/10/10 9:37	C2	ME	831454	807765	10.2	5.100	27.8	9.38	142.3	3.2	31.64	7.93	3.6
						5.100	27.8	9.58 9.23	145.4 139.9	2.9	31.64	7.94 7.94	
						9.200 9.200	27.7 27.7	9.23	139.9	3.1	31.71 31.71	7.94	3.2
						1.000	27.7	7.82	118.4	2.7	31.66	7.99	
						1.000	27.7	7.02	120.3	2.7	31.66	7.99	3.4
						7.750	27.7	8.13	120.3	2.9	31.69	8	
2013/10/10 10:57	C3	ME	832224	808880	15.5	7.750	27.7	8.19	123.8	2.9	31.7	8	3.8
						14.500	27.6	8.51	128.8	3.9	31.81	8	
						14.500	27.6	8.69	131.3	3.9	31.81	8	4.6
2012/10/10 15 20	77.71) (E	000000	007750	2.0	1.450	27.7	8.73	132.3	2.6	31.77	8.04	2.0
2013/10/10 15:38	W1	MF	832990	807753	2.9	1.450	27.8	8.86	134.3	2.6	31.79	8.04	3.0
						1.000	28	7.95	121.1	3.6	31.48	8.04	4.2
						1.000	28	8.01	122.0	3.6	31.48	8.04	4.2
2013/10/10 15:26	W2	MF	832668	807994	13.1	6.550	27.7	8.20	124.3	3.5	31.55	8.05	4.0
2013/10/10 13.20	VV Z	IVII	032000	007994	13.1	6.550	27.7	8.40	127.4	3.4	31.55	8.05	4.0
						12.100	27.7	8.66	131.1	3.6	31.67	8.06	4.4
						12.100	27.7	8.63	130.7	3.7	31.68	8.06	7.7
						1.000	28	7.56	114.8	3.5	31.77	8.05	4.0
						1.000	28	7.53	114.6	3.5	31.75	8.05	
2013/10/10 15:12	W3	MF	832028	807906	12.6	6.300	27.8	8.83	133.9	3.6	31.89	8.05	4.6
						6.300	27.8	8.78	133.2	3.7	31.86	8.05	
						11.600	27.9	8.85	134.5	4.5	31.6 31.9	8.04 8.03	5.5
	+ +					11.600	27.9 27.7	9.19 7.40	139.6 112.2	4.6 2.6			
						1.000	27.7	7.40	112.2	2.5	31.45 31.41	8.05 8.05	3.4
						7.150	27.7	7.31	113.9	3.1	31.41	8.03	
2013/10/10 15:48	C1	MF	833698	808184	15.3	7.150	27.7	7.81	118.5	3.5	31.49	8.07	3.0
						14.300	27.7	7.91	120.0	5.5	31.67	8.08	
						14.300	27.7	7.97	120.9	5.6	31.66	8.08	8.8
	1 1					1.000	28.2	7.38	112.8	1.8	31.29	8.1	
						1.000	28.2	7.42	113.4	1.8	31.28	8.1	2.2
2012/10/10 15 01	C2	ME	021450	007750	11	5.500	28	7.62	115.9	2	31.33	8.08	0.1
2013/10/10 15:01	C2	MF	831459	807759	11	5.500	28	7.84	119.3	2.1	31.35	8.08	2.1
						10.000	28	7.61	115.7	2.2	31.48	8.07	2.0
						10.000	27.9	8.06	122.6	2.2	31.48	8.07	2.2
<u> </u>						1.000	27.7	7.75	117.5	2.6	31.66	8.06	3.2
						1.000	27.7	7.90	119.8	2.6	31.66	8.06	ا.2
2013/10/10 16:13	C3	MF	832228	808892	16.1	8.050	27.7	7.79	118.0	3.2	31.75	8.07	2.6
2013/10/10 10:13	CJ	1411	032220	000092	10.1	8.050	27.7	7.80	118.3	3.2	31.74	8.07	2.0
						15.100	27.7	7.76	117.6	3.8	31.9	8.07	4.6
					l	15.100	27.7	7.88	119.4	3.8	31.9	8.07	4.0

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 12-Oct-13

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	110e*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2013/10/12 13:11	W1	ME	832972	807751	2.4	1.200	28.1	8.76	133.4	2.4	31.23	8.01	4.6
2013/10/12 13:11		1,112	032712	007731	211	1.200	28.2	8.39	127.8	2.4	31.23	8.01	
						1.000	28.3	8.35	127.5	3.6	31.2	7.99	8.2
						1.000	28.3	8.42	128.7	3.6	31.2	7.99	
2013/10/12 13:15	W2	ME	832688	807988	12.7	6.350	27.9	7.31	111.0	3.1	31.36	8	5.3
						6.350	27.9	7.50	114.0	3.2	31.37	8	
						11.700	27.8	7.78	118.2	3.2	31.67	8.02	6.2
						11.700	27.8	7.80	118.4	3.5	31.67	8.02	
						1.000	28.2	8.67	132.3	3.3	31.24	8	6.8
						1.000	28.2	8.56	130.7	3.3	31.24	8.01	
2013/10/12 13:28	W3	ME	832022	807890	12.5	6.250	27.9	7.13	108.2	3.5	31.44	7.99 7.99	6.3
						6.250	27.9	7.25	110.0	3.5	31.44	7.99 7.95	
						11.500	27.8	7.30	110.9 111.2	3.9	31.42	7.95 7.95	10.8
						11.500	27.8	7.33		3.9	31.42	7.17.0	
						1.000	28.2	7.89	120.3	4.1	31.18	7.96	8.4
						1.000	28.2	7.38	112.6	4.1	31.19	7.97	
2013/10/12 12:50	C1	ME	833708	808183	15.1	7.550	27.9	6.78	103.1	4.5	31.39	7.98	10.
						7.550	27.9	7.08	107.5	4.5	31.4	7.98	
						14.100	27.8	7.30	110.9	5.9	31.5	7.99	10.
						14.100	27.8	7.50	114.0	5.9	31.5	7.99	
						1.000	28.3	8.76	133.8	3.9	31.25	8.02	5.8
						1.000	28.3	8.76	133.8	3.9	31.25	8.02	
2013/10/12 13:38	C2	ME	831459	807768	10.8	5.400	28.2	7.20	109.8	4.5	31.3	8.01	5.4
						5.400	28.2	7.20	109.8	4.5	31.3	8.01	
						9.800	28.2	7.88	120.2	6.6	31.33	8	6.
						9.800	28.2	7.92	120.8	6.6	31.34	8	
						1.000	28.3	8.79	134.1	4.4	31.17	7.93	5.0
						1.000	28.3	8.81	134.5	4.4	31.17	7.94	
2013/10/12 12:25	C3	ME	832224	808869	15.8	7.900	27.9	7.43	113.0	3.9	31.39	7.97	4.
2010/10/12 12:20	03	1,125	032221	00000)	15.0	7.900	27.9	7.42	112.8	3.9	31.39	7.97	
						14.800	27.8	6.30	95.6	4.2	31.5	7.98	6.
						14.800	27.8	6.43	97.5	4.2	31.5	7.98	
2013/10/12 17:41	W1	MF	832992	807759	2.6	1.300	28.2	8.64	131.9	1.7	31.42	8.05	1.
2013/10/12 17:11			032//2	007757	2.0	1.300	28.2	8.62	131.6	1.5	31.42	8.05	
						1.000	28.2	9.38	143.0	2.2	31.29	8.04	4.0
						1.000	28.2	8.75	133.4	2.5	31.29	8.05	
2013/10/12 17:27	W2	MF	832683	807981	13.4	7.700	28.1	7.55	114.9	2.6	31.41	8.04	4.
2013/10/12 17:2/	2		032003	007701	1311	7.700	28.1	7.62	116.1	2.6	31.4	8.04	
						12.400	27.8	8.01	121.6	4.1	31.54	8.04	7.
						12.400	27.8	7.97	121.0	4.1	31.54	8.04	,.
						1.000	28.2	8.59	131.0	3.4	31.25	8.04	5.
						1.000	28.2	8.73	133.1	3.4	31.26	8.04	٥.
2013/10/12 17:12	W3	MF	832022	807890	12.9	6.450	28.1	8.74	133.2	3.2	31.33	8.01	5.
2013/10/12 17:12	","	1111	032022	007070	14.7	6.450	28.1	8.81	134.4	3.3	31.33	8.01	٥.
						11.900	27.8	8.85	134.5	3.6	31.62	8.03	5.
						11.900	27.8	8.86	134.6	3.8	31.62	8.03	٥.
						1.000	28	8.66	131.6	4.6	31.28	8.04	6.
						1.000	28	8.71	132.5	4.6	31.28	8.04	0.
2013/10/12 17:54	C1	MF	833708	808183	16.3	8.150	28	6.64	100.9	5.8	31.35	8.04	10
T	Ü.,		055700	000103	10.0	8.150	28	6.83	103.8	5.8	31.36	8.04	
						15.300	27.9	7.02	106.7	6.1	31.41	8.04	9.
						15.300	27.9	7.19	109.2	6	31.41	8.04	٦.
						1.000	28.3	8.16	124.6	5.7	31.27	8.05	9.
						1.000	28.3	8.18	124.9	5.7	31.28	8.06).
2013/10/12 17:01	C2	MF	831459	807768	11.1	5.550	28.3	6.08	92.8	4.2	31.27	8.05	6.
2017/10/12/17:01	C2	1411	051459	007700	11.1	5.550	28.3	6.20	94.6	4.2	31.27	8.05	0.
						10.100	28.2	6.82	104.2	6.3	31.35	8.02	9.
						10.100	28.3	6.59	100.7	6.3	31.28	8.04	9.
						1.000	28	9.04	137.4	5.6	31.27	8.05	9.
						1.000	28	8.92	135.6	5.6	31.28	8.05	9.
2013/10/12 18:12	C3	MF	832224	808869	16.6	8.300	28	6.84	104.0	4.2	31.34	8.05	6.:
2013/10/12 18:12	C	IVIL	032224	000009	10.0	8.300	28	6.87	104.4	4.2	31.34	8.05	0
					ı		27.0	7.50	1140	6.9	21.42	8.05	
						15.600	27.9	7.50	114.0	0.9	31.43	8.03	9.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 15-Oct-13

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/
2013/10/15 9:11	W1	ME	832982	807716	2.6	1.300	27.5	7.16	108.2	3.3	31.71	8.02	9.0
2013/10/13 7.11	** 1	IVIL	032702	007710	2.0	1.300	27.5	7.24	109.4	3.5	31.72	8.02	7.0
						1.000	27.5	7.47	112.9	3.6	31.74	8.03	8.0
						1.000	27.5	7.45 8.21	112.6 124.0	3.7	31.74	8.03	
2013/10/15 9:18	W2	ME	832684	807986	12.6	6.300 6.300	27.4	8.21	124.0	3.5 3.2	31.75 31.76	8.03 8.03	6.0
						11.600	27.4 27.4	7.86	118.7	3.2	31.83	8.03	
						11.600	27.4	7.80	120.0	4.1	31.83	8.04	9.0
						1.000	27.3	8.70	130.9	4.1	31.52	7.95	
						1.000	27.3	8.60	129.5	4	31.52	7.95	8.0
						6.100	27.4	7.26	109.6	3.6	31.74	8.02	
2013/10/15 9:35	W3	ME	832033	807897	12.2	6.100	27.4	7.23	109.2	3.6	31.74	8.02	5.0
						11.200	27.4	7.21	108.9	5.6	31.8	8.03	
						11.200	27.4	7.25	109.5	5.6	31.8	8.03	11.
						1.000	27.5	8.03	121.4	3.9	31.69	8	0.7
						1.000	27.5	8.10	122.3	3.8	31.69	8	8.0
2013/10/15 8:58	C1	ME	833717	808181	15.2	7.600	27.4	8.14	123.0	4.1	31.74	8.01	9.0
2013/10/13 6.36	CI	IVIL	033717	000101	13.2	7.600	27.4	8.26	124.6	4	31.75	8.01	9.0
						14.200	27.4	7.89	119.2	3.8	31.81	8.03	6.0
						14.200	27.4	7.82	118.2	3.8	31.81	8.03	0.
						1.000	27.4	7.42	111.8	3.2	31.49	7.98	6.0
						1.000	27.4	7.61	114.7	3.2	31.49	7.98	
2013/10/15 9:56	C2	ME	831459	807758	10.3	5.150	27.4	8.36	126.2	4.1	31.71	8	6.0
						5.150	27.4	8.42	127.2	4.1	31.71	8	
						9.300	27.4	8.21 8.39	124.0	3.5	31.73	8.01	8.0
						9.300	27.4	7.72	126.7 116.7	3.9	31.73	8.01	
						1.000	27.5			4.5	31.71	7.92 7.94	10.
						1.000 7.850	27.5 27.4	7.99 8.09	120.8 122.1	4.6 4.4	31.71 31.73	7.94	
2013/10/15 8:43	C3	ME	832218	808882	15.7	7.850	27.4	8.09	122.1	4.4	31.73	7.99	9.0
						14.100	27.4	7.81	117.9	6.5	31.82	8.01	
						14.100	27.4	7.79	117.7	6.5	31.82	8.01	14.
						17,100	21.7	71.7	11717	0.5	J1.02	0.01	
						1.400	27.7	6.37	96.4	3.4	31.44	7.98	
2013/10/15 16:27	W1	MF	832980	807716	2.8	1,400	27.7	6.39	96.8	3.4	31.46	7.98	8.0
						1.000	27.7	6.34	96.1	3.6	31.44	7.99	
						1.000	27.7	6.50	98.5	3.2	31.44	7.99	7.0
2012/10/15 16 12	1110	ME	022604	007005	10.0	6.650	27.6	7.04	106.5	4.9	31.46	7.99	10
2013/10/15 16:13	W2	MF	832684	807995	13.3	6.650	27.6	7.17	108.4	4.8	31.46	7.99	10
						12.300	27.5	7.12	107.6	5	31.66	8.02	10
						12.300	27.5	7.29	110.2	5.1	31.66	8.02	10
						1.000	27.8	7.16	108.7	3.3	31.43	7.97	6.
						1.000	27.8	7.19	109.2	3.4	31.43	7.97	0.
2013/10/15 15:55	W3	MF	832061	807908	12.9	6.450	27.7	7.07	107.2	4.6	31.53	7.99	9.0
2013/10/13 13:33	,,,,	1111	032001	007700	14.7	6.450	27.7	7.11	107.8	4.8	31.56	7.99	<i></i>
						11.900	27.6	6.82	103.3	5.9	31.63	8.01	10
	1					11.900	27.6	6.88	104.2	5.8	31.63	8.01	
						1.000	27.7	7.12	107.8	5.5	31.37	7.99	9.
						1.000	27.7	7.12	107.7	5.5	31.37	7.99	
2013/10/15 16:38	C1	MF	833711	808193	16.1	8.050	27.6	7.26	109.8	5.8	31.6	8.02	12
						8.050	27.6 27.6	7.31 7.44	110.6 112.5	5.8 6.1	31.6	8.02 8.02	
	1					15.100 15.100	27.6	7.44	112.5	6.1	31.6 31.6	8.02	12
						15.100	27.8	7.56	114.8	5.5	31.52	8.02	
						1.000	27.8	7.30	114.8	5.5	31.52	8.02	10
	1					5.500	27.8	6.02	91.2	5.6	31.52	8.02 8.01	
2013/10/15 15:41	C2	MF	831472	807754	11	5.500	27.6	6.02	91.2	5.8	31.59	8.01	10
						10.000	27.4	7.59	114.6	6.2	31.73	8.01	
						10.000	27.4	7.50	113.4	6.2	31.73	8.01	12
						1.000	27.7	7.02	106.2	4.6	31.71	7.98	
	1					1.000	27.7	7.07	107.0	4.6	31.38	7.99	10
	1				1		27.6		109.4	4.9	31.61	8.02	
						A /UU				7.2	21.01	0.02	12.
2013/10/15 16:55	C3	MF	832224	808882	16.4	8.200 8.200							12.
2013/10/15 16:55	C3	MF	832224	808882	16.4	8.200 8.200 15.400	27.6 27.6	7.27	110.0 110.3	4.9 5.6	31.61 31.6	8.02 8.02	15.

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 17-Oct-13

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg
2013/10/17 10:55	W1	ME	832991	807738	2.6	1.300	27.1	7.33	110.0	2.6	31.8	8.02	4.6
2013/10/17 10:03	.,,	1112	032//1	007730	2.0	1.300	27.1	7.29	109.4	2.8	31.8	8.02	
						1.000	27.1	7.36	110.5	3.1	31.8	8.03	5.7
						1.000	27.1	7.40	111.1	3.2	31.8	8.03	
2013/10/17 11:04	W2	ME	832690	807994	12.8	6.400	27.1	7.87	118.2	4.6	31.8	8.04	8.5
			00-07-0			6.400	27.1	7.87	118.1	4.6	31.8	8.04	
						11.800	27.1	7.93	119.0	3.8	31.8	8.04	7.9
						11.800	27.1	7.94	119.2	3.9	31.8	8.04	
						1.000	26.9	8.41	125.8	3.2	31.83	8	5.0
						1.000	26.9	8.39	125.6	3.2	31.87	8.01	
2013/10/17 11:23	W3	ME	832021	807890	12.4	6.200	27.1	8.01	120.4	3.8	31.93	8.04	6.
2013/10/17 11:23	5		032021	007070	1211	6.200	27.1	8.05	120.9	3.8	31.92	8.04	٠.
						11.400	27.1	8.27	124.3	3.6	31.92	8.05	6.
						11.400	27.1	8.30	124.7	3.7	31.92	8.05	0.
						1.000	27.1	7.66	115.1	2.6	31.8	8.02	3.
						1.000	27.1	7.93	119.1	2.6	31.8	8.02	٥.
2013/10/17 10:40	C1	ME	833724	808193	15.4	7.800	27.1	8.03	120.6	2.9	31.8	8.02	4.
2017/10/11/10:40	CI	IVIL	033724	000193	13.4	7.800	27.1	8.02	120.5	2.9	31.8	8.02	4.
						14.400	27.1	7.75	116.4	4.6	31.8	8.02	7.
						14.400	27.1	7.90	118.6	4.5	31.8	8.02	/.
						1.000	26.9	8.96	134.2	3.6	31.69	7.98	
						1.000	26.9	8.78	131.3	3.6	31.69	7.98	5.
2012/10/17 11 27	GO.) (E	001460	0000051	10.0	5.400	26.9	8.91	133.5	3.5	31.75	8	4
2013/10/17 11:37	C2	ME	831468	807751	10.8	5.400	27	9.00	134.8	3.5	31.76	8	4.
						9.800	27	8.81	132.1	4.1	31.78	8.01	
						9.800	27	8.99	134.8	4.1	31.78	8.01	4.
						1.000	27.1	7.67	115.2	3.5	31.8	7.93	
						1.000	27.1	7.68	115.4	3.5	31.8	7.95	5.
						7.900	27.1	8.23	123.6	3.9	31.8	8	
2013/10/17 10:14	C3	ME	832214	808879	15.8	7.900	27.1	8.32	124.8	3.9	31.8	8	6.
						14.800	27.1	8.25	123.9	4	31.8	8.01	
						14.800	27.1	8.29	124.6	4	31.8	8.01	5.
						14.000	27.1	012)	12 110	7	31.0	0.01	
						1.400	27.2	9.00	135.4	3.1	31.7	8.09	
2013/10/17 17:40	W1	MF	832980	807738	2.8	1.400	27.2	9.06	136.3	3.1	31.73	8.1	4.
						1.400	27.2	9.08	136.7	2.5	31.75	8.09	
								9.08	137.3			8.09	4.
						1.000	27.2			2.6	31.75		
2013/10/17 17:28	W2	MF	832681	807965	13.4	7.700	27.2	9.04	135.9	2.9	31.77	8.09	3.
						7.700	27.2	9.18	138.2	2.9	31.77	8.09	
						12.400	27.2	8.98	135.2	3.6	31.78	8.09	5.
						12.400	27.2	9.00	135.5	3.6	31.78	8.09	
											4		
						1.000	27.2	8.87	133.4	2.8	31.71	8.09	4.
						1.000	27.2 27.2	8.89	133.7	2.8	31.74	8.09 8.09	4.
2013/10/17 17:16	W3	MF	832061	807908	13	1.000 6.500	27.2 27.2 27.2	8.89 8.83	133.7 132.9	2.8 3.3	31.74 31.76	8.09 8.09 8.1	
2013/10/17 17:16	W3	MF	832061	807908	13	1.000 6.500 6.500	27.2 27.2 27.2 27.2	8.89 8.83 9.11	133.7 132.9 137.1	2.8 3.3 3.3	31.74 31.76 31.76	8.09 8.09 8.1 8.1	
2013/10/17 17:16	W3	MF	832061	807908	13	1.000 6.500 6.500 12.000	27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82	133.7 132.9 137.1 132.7	2.8 3.3 3.3 3.2	31.74 31.76 31.76 31.76	8.09 8.09 8.1 8.1	5.
2013/10/17 17:16	W3	MF	832061	807908	13	1.000 6.500 6.500 12.000 12.000	27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91	133.7 132.9 137.1 132.7 134.2	2.8 3.3 3.3 3.2 3.2	31.74 31.76 31.76 31.76 31.76	8.09 8.09 8.1 8.1 8.1 8.1	5.
2013/10/17 17:16	W3	MF	832061	807908	13	1.000 6.500 6.500 12.000 12.000 1.000	27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88	133.7 132.9 137.1 132.7 134.2 133.6	2.8 3.3 3.3 3.2 3.2 3.2	31.74 31.76 31.76 31.76 31.76 31.76	8.09 8.09 8.1 8.1 8.1 8.1	5. 7.
2013/10/17 17:16	W3	MF	832061	807908	13	1.000 6.500 6.500 12.000 12.000 1.000	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01	133.7 132.9 137.1 132.7 134.2 133.6 135.5	2.8 3.3 3.3 3.2 3.2 3.5 3.5	31.74 31.76 31.76 31.76 31.76 31.77 31.71	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.1	5. 7.
						1.000 6.500 6.500 12.000 12.000 1.000	27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95	133.7 132.9 137.1 132.7 134.2 133.6	2.8 3.3 3.3 3.2 3.2 3.2	31.74 31.76 31.76 31.76 31.76 31.76	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1	5. 7. 5.
2013/10/17 17:16	W3	MF	832061 833701	807908	13	1.000 6.500 6.500 12.000 12.000 1.000	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01	133.7 132.9 137.1 132.7 134.2 133.6 135.5	2.8 3.3 3.3 3.2 3.2 3.5 3.5	31.74 31.76 31.76 31.76 31.76 31.77 31.71	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.1	5. 7. 5.
						1.000 6.500 6.500 12.000 12.000 1.000 1.000 7.900	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8	2.8 3.3 3.3 3.2 3.2 3.5 3.5 4.1	31.74 31.76 31.76 31.76 31.76 31.71 31.71	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1	5. 7. 5.
						1.000 6.500 6.500 12.000 12.000 1.000 1.000 7.900 7.900	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8	2.8 3.3 3.2 3.2 3.5 3.5 4.1 4.1	31.74 31.76 31.76 31.76 31.76 31.7 31.71 31.71 31.74	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.09 8.1	5. 7. 5.
						1.000 6.500 6.500 12.000 12.000 1.000 1.000 7.900 7.900 14.800	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8	2.8 3.3 3.3 3.2 3.2 3.5 3.5 4.1 4.1	31.74 31.76 31.76 31.76 31.76 31.7 31.71 31.74 31.73	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.09 8.1 8.1	5. 7. 5. 5.
						1.000 6.500 6.500 12.000 12.000 1.000 1.000 7.900 7.900 14.800	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09 8.80 8.70	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4	2.8 3.3 3.2 3.2 3.5 3.5 4.1 4.1 4.6 4.6	31.74 31.76 31.76 31.76 31.76 31.7 31.71 31.74 31.73 31.74	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	5. 7. 5. 5.
2013/10/17 17:46	Cl	MF	833701	808194	15.8	1.000 6.500 6.500 12.000 12.000 1.000 1.000 7.900 7.900 14.800 14.800	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09 8.80 8.70	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0	2.8 3.3 3.2 3.2 3.5 3.5 4.1 4.1 4.6 4.6 3.1	31.74 31.76 31.76 31.76 31.76 31.7 31.71 31.74 31.73 31.74 31.74 31.74	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.09 8.1 8.1 8.1	5. 7. 5. 5. 5.
				808194		1.000 6.500 6.500 12.000 12.000 1.000 1.000 7.900 7.900 14.800 1.000 1.000	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09 8.80 8.70 9.00	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0	2.8 3.3 3.2 3.2 3.5 3.5 3.5 4.1 4.1 4.6 4.6 3.1 3.2	31.74 31.76 31.76 31.76 31.76 31.7 31.71 31.74 31.73 31.74 31.74 31.38 31.38	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.09 8.1 8.1 8.1 8.1	5. 7. 5. 5.
2013/10/17 17:46	Cl	MF	833701	808194	15.8	1.000 6.500 6.500 12.000 12.000 1.000 7.900 7.900 14.800 14.800 1.000 1.000 5.600	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09 8.80 9.00 9.05	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0 135.2 135.8 141.7	2.8 3.3 3.2 3.2 3.5 3.5 4.1 4.1 4.6 4.6 3.1 3.2	31.74 31.76 31.76 31.76 31.76 31.77 31.71 31.74 31.73 31.74 31.73 31.74 31.38 31.38 31.58	8.09 8.09 8.1 8.1 8.1 8.1 8.09 8.1 8.1 8.1 8.1 8.1	5. 7. 5. 5. 7.
2013/10/17 17:46	Cl	MF	833701	808194	15.8	1.000 6.500 12.000 12.000 1.000 1.000 7.900 7.900 14.800 1.000 1.000 5.600 5.600	27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09 8.80 8.70 9.00 9.05 9.42	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0 135.2 135.8 141.7 140.2	2.8 3.3 3.2 3.2 3.5 3.5 4.1 4.1 4.6 4.6 3.1 3.2 3.6 3.6	31.74 31.76 31.76 31.76 31.76 31.71 31.71 31.74 31.73 31.74 31.38 31.58 31.58 31.58	8.09 8.09 8.1 8.1 8.1 8.1 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	5. 7. 5. 5. 7.
2013/10/17 17:46	Cl	MF	833701	808194	15.8	1.000 6.500 12.000 12.000 1.000 1.000 7.900 14.800 14.800 1.000 1.000 5.600 5.600 10.200	27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.95 9.09 8.80 8.70 9.00 9.05 9.42 9.32 9.23	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0 135.2 135.8 141.7 140.2 138.9	2.8 3.3 3.2 3.2 3.5 3.5 4.1 4.6 4.6 3.1 3.2 3.6 3.6 4.5	31.74 31.76 31.76 31.76 31.76 31.71 31.71 31.74 31.73 31.74 31.38 31.38 31.58 31.58 31.58	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	5.3.7.7.5.5.5.5.5.5.5.6.6.6.5
2013/10/17 17:46	Cl	MF	833701	808194	15.8	1.000 6.500 12.000 12.000 12.000 1.000 1.000 7.900 14.800 14.800 1.000 5.600 5.600 10.200	27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09 8.80 8.70 9.00 9.05 9.42 9.32 9.22 9.02	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0 135.2 135.8 141.7 140.2 138.9 138.7	2.8 3.3 3.2 3.2 3.5 3.5 4.1 4.6 4.6 3.1 3.2 3.6 4.5 4.5	31.74 31.76 31.76 31.76 31.76 31.71 31.71 31.74 31.74 31.38 31.38 31.58 31.58 31.67 31.67	8.09 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	5.3.7.7.5.5.5.5.5.5.5.6.6.6.5
2013/10/17 17:46 2013/10/17 17:04	C1 C2	MF	833701 831490	808194	15.8	1.000 6.500 12.000 12.000 12.000 1.000 1.000 7.900 7.900 14.800 1.000 1.000 5.600 5.600 10.200 1.000	27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09 8.80 8.70 9.05 9.42 9.32 9.22 9.22 9.28	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0 135.2 135.8 141.7 140.2 138.9 138.7 135.7	2.8 3.3 3.2 3.2 3.5 4.1 4.6 4.6 3.1 3.2 3.6 3.6 4.5 4.5 2.6	31.74 31.76 31.76 31.76 31.76 31.77 31.71 31.74 31.73 31.74 31.38 31.38 31.58 31.59 31.57 31.67	8.09 8.09 8.1 8.1 8.1 8.1 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	5.0. 5.0. 5.0. 5.0. 5.0. 5.0. 6.0. 3.0. 3.0.
2013/10/17 17:46	Cl	MF	833701	808194	15.8	1.000 6.500 6.500 12.000 12.000 1.000 7.900 7.900 14.800 1.000 1.000 5.600 5.600 10.200 1.000 1.000 1.000	27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.95 9.09 8.80 8.70 9.05 9.42 9.32 9.23 9.22 9.22 9.02 9.28 8.69	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0 135.2 135.8 141.7 140.2 138.9 138.7 139.6	2.8 3.3 3.2 3.2 3.5 3.5 4.1 4.1 4.6 4.6 3.1 3.2 3.6 4.5 4.5 4.5	31.74 31.76 31.76 31.76 31.76 31.77 31.71 31.74 31.73 31.74 31.38 31.38 31.58 31.58 31.67 31.67 31.71	8.09 8.09 8.1 8.1 8.1 8.1 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	4.4.5.5.0 7.3.7.5.5.5.5.0 5.3.7.3.7.3.7.3.3.3.3.3.3.3.3.3.3.3.3.3.
2013/10/17 17:46 2013/10/17 17:04	C1 C2	MF	833701 831490	808194	15.8	1.000 6.500 12.000 12.000 12.000 1.000 1.000 7.900 7.900 14.800 1.000 1.000 5.600 5.600 10.200 1.000	27.2 27.2	8.89 8.83 9.11 8.82 8.91 8.88 9.01 8.95 9.09 8.80 8.70 9.05 9.42 9.32 9.22 9.22 9.28	133.7 132.9 137.1 132.7 134.2 133.6 135.5 134.6 136.8 132.4 131.0 135.2 135.8 141.7 140.2 138.9 138.7 135.7	2.8 3.3 3.2 3.2 3.5 4.1 4.6 4.6 3.1 3.2 3.6 3.6 4.5 4.5 2.6	31.74 31.76 31.76 31.76 31.76 31.77 31.71 31.74 31.73 31.74 31.38 31.38 31.58 31.59 31.57 31.67	8.09 8.09 8.1 8.1 8.1 8.1 8.09 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	5.0. 5.0. 5.0. 5.0. 5.0. 5.0. 6.0. 3.0. 3.0.

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 19-Oct-13

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg
2013/10/19 12:50	W1	ME	832967	807718	2.6	1.300	26.77	6.22		2	33.14	7.9	1.8
2013/10/17 12.30	*** 1	IVIL	032701	007710	2.0	1.300	26.77	6.42	96.6	2.8	33.14	7.9	1.0
						1.000	26.78	6.69	100.7	1	33.13	7.88	1.6
						1.000	26.76	6.69	100.7	1.3	33.15	7.88	1.0
2013/10/19 12:37	W2	ME	832651	807986	11.8	5.900	26.72	6.74	101.4	1.5	33.19	7.91	2.0
2013/10/17 12.37	*** 2	IVIL	032031	007700	11.0	5.900	26.71	6.74	101.4	0.9	33.2	7.89	2.0
						10.800	26.6	6.65	100	2.7	33.31	7.91	1.6
						10.800	26.63	6.4	96.2	2.5	33.27	7.9	1.
						1.000	26.75	7.45	112.2	2	33.15	7.87	1.0
						1.000	26.76	7.45	112.1	1	33.14	7.88	1.
2013/10/19 12:20	W3	ME	832036	807884	11.4	5.700	26.72	7.09	106.7	1.4	33.19	7.89	1.
2013/10/19 12.20	W 3	IVIE	832030	007004	11.4	5.700	26.7	7.09	106.7	1.8	33.2	7.88	1.
						10.400	26.62	6.89	103.6	2.9	33.28	7.89	1
						10.400	26.61	7.01	105.4	2.4	33.28	7.89	1.
						1.000	26.78	6.19	93.2	3	33.14	7.91	
						1.000	26.77	6.19	93.3	2.5	33.15	7.91	1.
2012/10/10 12 02	G1) (T)	000000	000100	1.5	7.500	26.66	6.48	97.4	1.8	33.24	7.92	2
2013/10/19 13:02	C1	ME	833707	808192	15	7.500	26.7	6.25	94	1.4	33.22	7.94	2.
						14.000	26.56	6.08	91.3	2.8	33.34	7.93	_
						14.000	26.56	5.86		2.4	33.35	7.94	2.
						1.000	26.81	7.71	111.1	1.1	33.1	7.93	
						1.000	26.75	7.91	114	1.5	33.13	7.9	2.
						5.050	26.72	7.45	107.1	2.5	33.18	7.9	
2013/10/19 12:07	C2	ME	831469	807756	10.1	5.050	26.72	7.23	103.8	1.5	33.18	7.9	3.
						9.100	26.66	5,53	83	1.8	33.23	7.89	
						9.100	26.63	5.49	81.7	1.6	33.26	7.91	3.
						1.000	26.81	5.77	86.8	0.8	33.14	7.92	
						1.000	26.78	5.77	86.9	1.3	33.15	7.92	4.
						7.950	26.69	5.54	83.3	1.6	33.22	7.92	
2013/10/19 13:19	C3	ME	832226	808877	15.9	7.950		5.59	84	1.0	33.25	7.93	3.
							26.65	5.57	83.7	2.7			
						14.900	26.57				33.35	7.94 7.94	5.
						14.900	26.56	5.62	84.4	3.6	33.36	7.94	
						1 200	26.0	7.50	112.0	1.0	22.05	7.07	
2013/10/19 8:46	W1	MF	832981	907749	2.6	1.300	26.8	7.52		1.8	33.05	7.97	4.
						1.300	26.76	7.54	113.4	1.8	33.08	7.96	
						1.000	26.74	6.9		1.7	33.04	7.92	3.
						1.000	26.76	6.88	103.5	1	33.04	7.94	
2013/10/19 8:51	W2	MF	832684	808003	12.6	6.300	26.65	6.63	99.7	1.8	33.12	7.95	4.
						6.300	26.65	6.68	100.4	1.5	33.12	7.95	
						11.600	26.62	6.4	96.1	1	33.15	7.96	7.
						11.600	26.62	6.47	97.2	1.6	33.16	7.96	
						1.000	26.78	7.33	110.3	1.2	33.05	7.94	5.
						1.000	26.8	7.32	110.2	1.4	33.04	7.93	٦.
2013/10/19 9:07	W3	MF	832036	807906	12.3	6.150	26.71	5.83	87.8	2.4	33.18	7.97	4.
2013/10/17 7.0/	C 44	1411.	052050	007900	14.3	6.150	26.7	5.85	88	1.9	33.18	7.96	4.
						11.300	26.64	5.94	89.2	1.6	33.22	7.96	А
		L				11.300	26.64	5.92	89	1.9	33.22	7.96	4.
						1.000	26.77	8.28	124.5	2.7	32.91	7.94	3.
						1.000	26.77	8.32	125.1	2.7	32.91	7.93	
2012/10/10 0 20	C1) dr	922700	000100	15.1	7.550	26.64	7.88		2.1	33.01	7.95	2
2013/10/19 8:30	C1	MF	833708	808192	15.1	7.550	26.64	7.99		2.2	33.01	7.95	3.
						14.100	26.64	7.58		1.7	33.06	7.97	
						14.100	26.59	7.66		1.4	33.1	7.97	3.
						1.000	26.83	7.56		1.1	33.14	7.95	-
						1.000	26.8	7.48		0.4	33.17	7.97	3.
						5.300	26.72	6.63		1.4	33.2	7.95	
2013/10/19 9:22	C2	MF	831468	807751	10.6	5.300	26.76	6.63		2	33.19	7.98	4.
						9.600	26.67	5.65		1.8	33.23	7.98	
						9.600	26.65	5.65	85	0.9	33.23	7.95	4.
						1.000	26.63	7.61		1.1	33.23	7.95 7.92	
						1.000	26.8	7.51		1.1	32.67	7.92	3.
2013/10/19 8:13	C3	MF	832241	807880	15.5	7.750	26.63	6.03		2.5	32.88	7.94	3.
						7.750	26.66	6.02		2.6	32.86	7.95	
						14.500	26.63	5.89		2.4	32.93	7.95 7.95	3.
						14.500	26.63	5.55	83.2	2.6	32.93		

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 22-Oct-13

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	110e+	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/
2013/10/22 14:36	W1	ME	832981	807741	2.6	1.300	26.53	7.14	107	1	33.04	7.74	3.4
2013/10/22 11.30		1,112	032901	007711	2.0	1.300	26.53	7.14	107.1	0.8	33.05	7.76	J
						1.000	26.73	8.17	116.8	1.1	32.81	7.84	3.7
						1.000	26.73	8.12	112	1.1	32.82	7.83	
2013/10/22 14:25	W2	ME	832684	807980	11.7	5.850	26.55	7.51	97.5	1.8	33.02	7.76	3.5
						5.850	26.54	7.46	96.8	2.8	33.03	7.76	
						10.700	26.49	6.84	86.4	3.9	33.09	7.76	3.9
						10.700	26.48	6.82	81.6	4.7	33.09	7.76	
						1.000	26.57	6.2	92.7	1	32.68	7.72	2.1
						1.000	26.78	6.17	92.7	0.2	32.72	7.72	
2013/10/22 14:09	W3	ME	832036	807884	11.2	5.600	26.58	5.72	85.7	1	32.88	7.69	2.0
						5.600	26.55	5.72	85.7	0.8 4.9	32.9	7.71	
						10.200	26.48	5.94	88.9		33.02	7.71	2.8
						10.200	26.49	6.19	92.7	4.3	33	7.7	
						1.000	26.71	7.7	116.3	0.9	33.02	7.92	3.3
						1.000	26.73	7.63	112.2	0.9	33	7.87	
2013/10/22 14:44	C1	ME	833706	808147	14.8	7.900	26.62	7.38	90.9	0.4	33.08	7.84	4.1
						7.900	26.59	7.42	91.3	1.6	33.12	7.87	
						13.800	26.49	6.73	80.8	2.1	33.16	7.85	3.2
						13.800	26.54	6.72	80.8	3.8	33.13	7.85	
						1.000	26.94	7.24	117.2	0.3	32.05	7.63	4.0
						1.000	26.89	7.29	116.3	0.3	32.15	7.62	
2013/10/22 13:54	C2	ME	831468	807730	9.8	4.900	26.69	7.02	106.1	0.8	32.31	7.64	3.0
2013/10/22 13.3	02	1,125	031100	001750	7.0	4.900	26.68	7.02	106.1	0.8	32.32	7.67	
						8.800	26.69	6.96	103.8	0.9	32.48	7.62	3.0
						8.800	26.68	6.52	98.7	1.5	32.56	7.62	٥.
						1.000	26.72	7.7	115.8	0.5	33.03	7.82	2.4
						1.000	26.71	7.78	114.1	1.2	33.03	7.83	۷.
2013/10/22 15:00	C3	ME	832220	808896	15.5	7.750	26.69	7.47	106.8	1	33.07	7.83	2
2013/10/22 13.00	C3	IVIL	632220	000090	15.5	7.750	26.65	7.47	106.2	0.3	33.09	7.85	۷.
						14.500	26.54	7.22	99.2	3.1	33.15	7.85	4.0
						14.500	26.51	7.24	99.4	1.7	33.18	7.87	7.1
	_												
2013/10/22 9:02	W1	MF	832964	807720	2.7	1.350	26.56	7.59		2.7	32.58	7.88	1.
2013/10/22 9:02	VV 1	IVII	032904	007720	2.1	1.350	26.55	7.59	113.5	2.6	32.59	7.87	1.
						1.000	26.55	7.13	106.6	1.6	32.63	7.89	2.
						1.000	26.58	7.17	107.3	1.9	32.6	7.88	۷.
2013/10/22 9:11	W2	MF	832692	807976	13.2	6.600	26.54	7.34	109.8	1.4	32.72	7.89	2.
2013/10/22 9.11	W Z	IVII.	632092	001910	13.2	6.600	26.52	7.16	107.1	2.1	32.73	7.89	Ζ.
						12.200	26.53	7.37	110.2	3.3	32.79	7.9	3.0
						12.200	26.52	7.37	110.3	3.2	32.8	7.89	3.
						1.000	26.6	7.29	109	2.2	32.61	7.87	0
						1.000	26.61	7.28	109	2.3	32.61	7.87	2.
2012/10/22 0 22	1110	ME	022020	007010	10.0	6.400	26.56	6.84	102.4	1.6	32.75	7.89	0.4
	W3	MF	832029	807913	12.8	6.400	26.53	6.88	102.9	2.3	32.75	7.89	2.
2013/10/22 9:23								6.77	101.3	3.5	32.85	7.91	1.4
2013/10/22 9:23						11.800	26.55	0.77	101.5				1.
2013/10/22 9:23						11.800 11.800		6.62	99.1	3.2	32.87	7.9	
2013/10/22 9:23						-	26.55			3.2 0.9	32.87 32.51	7.9 7.86	^
2013/10/22 9:23						11.800	26.55 26.52	6.62	99.1				2.
		15	020245	000100	15.2	11.800 1.000	26.55 26.52 26.57	6.62 8.25	99.1 123.4 123.4	0.9	32.51	7.86	
2013/10/22 9:23	C1	MF	833717	808189	15.2	11.800 1.000 1.000	26.55 26.52 26.57 26.53	6.62 8.25 8.26	99.1 123.4 123.4 127.3	0.9 1.4	32.51 32.53	7.86 7.85	
		MF	833717	808189	15.2	11.800 1.000 1.000 7.600	26.55 26.52 26.57 26.53 26.53	6.62 8.25 8.26 8.52	99.1 123.4 123.4 127.3 118.5	0.9 1.4 1.4	32.51 32.53 32.64	7.86 7.85 7.87	2.
		MF	833717	808189	15.2	11.800 1.000 1.000 7.600 7.600	26.55 26.52 26.57 26.53 26.53 26.52	6.62 8.25 8.26 8.52 7.92	99.1 123.4 123.4 127.3 118.5	0.9 1.4 1.4 1.3 2.9	32.51 32.53 32.64 32.65	7.86 7.85 7.87 7.87	2.
		MF	833717	808189	15.2	11.800 1.000 1.000 7.600 7.600 14.200	26.55 26.52 26.57 26.53 26.53 26.52 26.52 26.5	6.62 8.25 8.26 8.52 7.92 8.15 7.68	99.1 123.4 123.4 127.3 118.5 121.9 114.8	0.9 1.4 1.4 1.3 2.9 2.9	32.51 32.53 32.64 32.65 32.73 32.72	7.86 7.85 7.87 7.87 7.89 7.89	2.0
		MF	833717	808189	15.2	11.800 1.000 1.000 7.600 7.600 14.200	26.55 26.52 26.57 26.53 26.53 26.52 26.5	6.62 8.25 8.26 8.52 7.92 8.15	99.1 123.4 127.3 118.5 121.9 114.8 123.7	0.9 1.4 1.4 1.3 2.9	32.51 32.53 32.64 32.65 32.73	7.86 7.85 7.87 7.87 7.89	2.
2013/10/22 8:49	C1					11.800 1.000 1.000 7.600 7.600 14.200 14.200 1.000 1.000	26.55 26.52 26.57 26.53 26.53 26.52 26.5 26.59 26.56 26.56	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 8.38	99.1 123.4 123.4 127.3 118.5 121.9 114.8 123.7 122.7	0.9 1.4 1.4 1.3 2.9 2.9 1.7 1.7	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82	3.
		MF	833717	808189	15.2	11.800 1.000 1.000 7.600 7.600 14.200 14.200 1.000 1.000 5.200	26.55 26.52 26.57 26.53 26.53 26.52 26.5 26.49 26.56 26.56 26.53	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 8.38 7.15	99.1 123.4 123.4 127.3 118.5 121.9 114.8 123.7 122.7	0.9 1.4 1.4 1.3 2.9 2.9 1.7 1.7	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81 32.45	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82 7.87	2.0 3.
2013/10/22 8:49	C1					11.800 1.000 1.000 7.600 7.600 14.200 14.200 1.000 1.000 5.200 5.200	26.55 26.52 26.57 26.53 26.53 26.52 26.5 26.49 26.56 26.56 26.53	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 8.38 7.15	99.1 123.4 127.3 118.5 121.9 114.8 123.7 122.7 116.6 112.8	0.9 1.4 1.4 1.3 2.9 2.9 1.7 1.7 1.3 1.8	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81 32.45 32.48	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82 7.87	2. 3. 1.
2013/10/22 8:49	C1					11.800 1.000 1.000 7.600 7.600 14.200 14.200 1.000 1.000 5.200 5.200 9.400	26.55 26.52 26.57 26.53 26.53 26.52 26.5 26.49 26.56 26.56 26.53 26.56	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 8.38 7.15 7.89	99.1 123.4 123.4 127.3 118.5 121.9 114.8 123.7 122.7 116.6 112.8 108.9	0.9 1.4 1.3 2.9 2.9 1.7 1.7 1.3 1.8 2.7	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81 32.45 32.48 32.62	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82 7.87 7.87	2.0 3. 1.0
2013/10/22 8:49	C1					11.800 1.000 1.000 7.600 7.600 14.200 14.200 1.000 1.000 5.200 5.200 9.400	26.55 26.52 26.57 26.53 26.53 26.52 26.52 26.56 26.56 26.56 26.56 26.56 26.56 26.56	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 8.38 7.15 7.89	99.1 123.4 123.4 127.3 118.5 121.9 114.8 123.7 122.7 116.6 112.8 108.9	0.9 1.4 1.4 1.3 2.9 2.9 1.7 1.7 1.3 1.8 2.7 2.4	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81 32.45 32.48 32.62 32.64	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82 7.87 7.87 7.88 7.89	2.6 3. 1.6 2.6
2013/10/22 8:49	C1					11.800 1.000 1.000 7.600 7.600 14.200 14.200 1.000 5.200 5.200 9.400 9.400 1.000	26.55 26.52 26.57 26.53 26.53 26.52 26.56 26.56 26.56 26.56 26.53 26.56 26.48 26.46	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 7.89 7.63 7.34	99.1 123.4 123.4 127.3 118.5 121.9 114.8 123.7 122.7 116.6 112.8 108.9 104.5	0.9 1.4 1.4 1.3 2.9 2.9 1.7 1.7 1.3 1.8 2.7 2.4	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81 32.45 32.48 32.62 32.64 32.72	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82 7.87 7.87 7.88 7.89 7.88	2.6 3. 1.6 2.6
2013/10/22 8:49 2013/10/22 9:31	C1 C2		831486	807772	10.4	11.800 1.000 1.000 7.600 7.600 14.200 1.000 1.000 5.200 5.200 9.400 9.400 1.000	26.55 26.52 26.57 26.53 26.53 26.52 26.56 26.56 26.56 26.56 26.53 26.56 26.48 26.46 26.55	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 8.38 7.15 7.89 7.63 7.34 6.95	99.1 123.4 123.4 127.3 118.5 121.9 114.8 123.7 122.7 116.6 112.8 108.9 104.5 109.9	0.9 1.4 1.3 2.9 2.9 1.7 1.7 1.3 1.8 2.7 2.4 0.6 0.9	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81 32.45 32.62 32.64 32.62 32.64 32.72	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82 7.87 7.87 7.88 7.89 7.88	2.6 3.3 1.8 1.6 2.0 2.3
2013/10/22 8:49	C1					11.800 1.000 1.000 7.600 7.600 14.200 1.000 1.000 5.200 5.200 5.200 9.400 9.400 1.000 1.000 7.800	26.55 26.52 26.57 26.53 26.53 26.52 26.56 26.56 26.56 26.56 26.49 26.56 26.49 26.56 26.55 26.49	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 7.15 7.89 7.63 7.34 6.95 6.85	99.1 123.4 127.3 118.5 121.9 114.8 123.7 122.7 116.6 112.8 108.9 104.5 109.9 102.6	0.9 1.4 1.3 2.9 2.9 1.7 1.7 1.3 1.8 2.7 2.4 0.6 0.9 1.4	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81 32.45 32.48 32.62 32.64 32.72 32.65 32.78	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82 7.87 7.87 7.88 7.89 7.88	2.5 2.6 3.1 1.8 1.6 2.0 2.2
2013/10/22 8:49 2013/10/22 9:31	C1 C2	MF	831486	807772	10.4	11.800 1.000 1.000 7.600 7.600 14.200 1.000 1.000 5.200 5.200 9.400 9.400 1.000	26.55 26.52 26.57 26.53 26.53 26.52 26.56 26.56 26.56 26.56 26.53 26.56 26.48 26.46 26.55	6.62 8.25 8.26 8.52 7.92 8.15 7.68 8.37 8.38 7.15 7.89 7.63 7.34 6.95	99.1 123.4 127.3 118.5 121.9 114.8 123.7 122.7 116.6 112.8 108.9 104.5 109.9 102.6 98.8 94.8	0.9 1.4 1.3 2.9 2.9 1.7 1.7 1.3 1.8 2.7 2.4 0.6 0.9	32.51 32.53 32.64 32.65 32.73 32.72 31.54 31.81 32.45 32.62 32.64 32.62 32.64 32.72	7.86 7.85 7.87 7.87 7.89 7.88 7.79 7.82 7.87 7.87 7.88 7.89 7.88	2.6 3.3 1.8 1.6 2.0 2.3

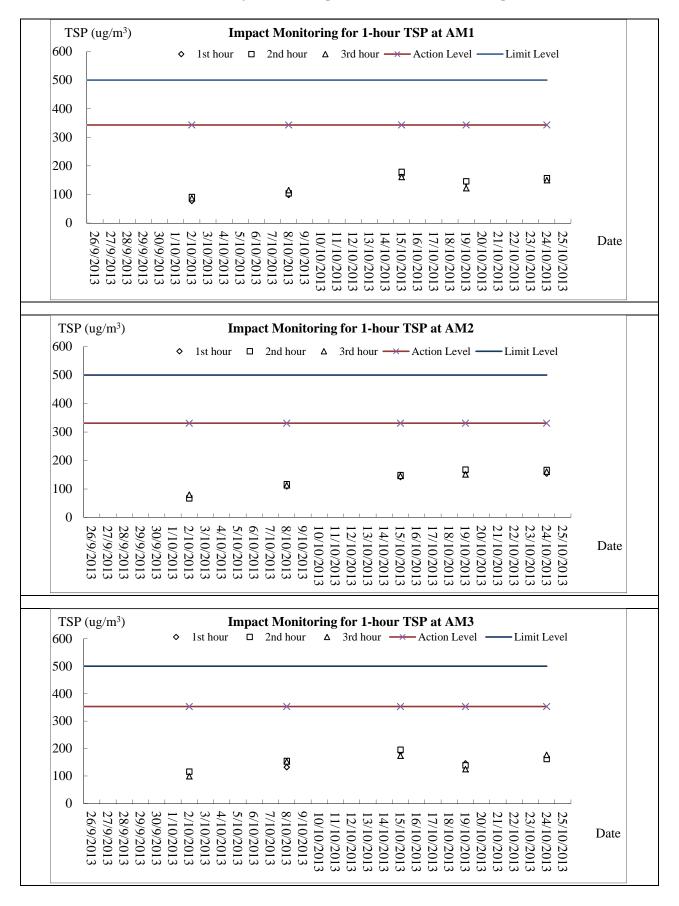
MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

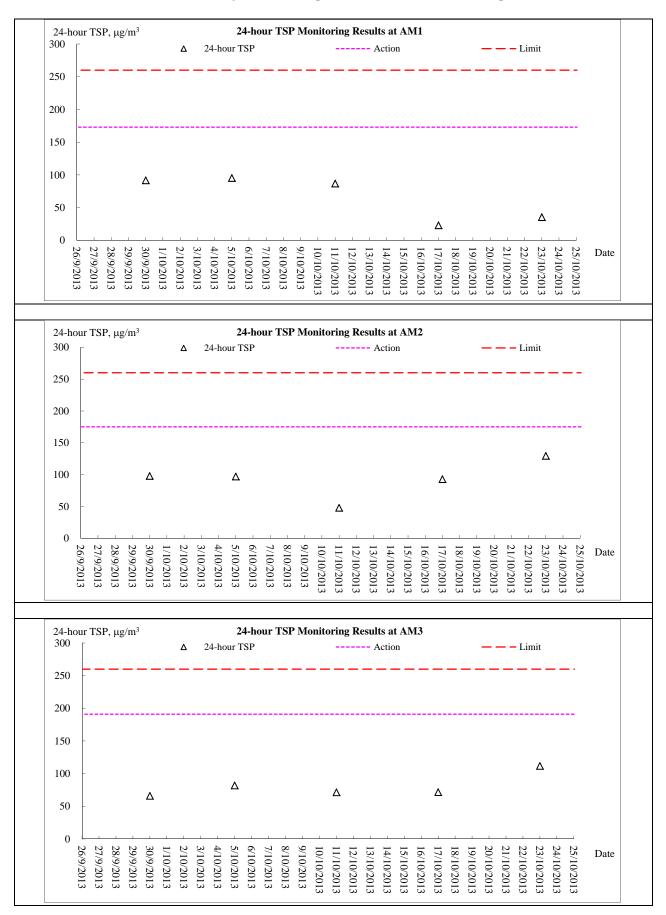
Date 24-Oct-13

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	110e*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2013/10/24 15:08	W1	ME	832977	807748	2.4	1.200	26.29	6.94	103.5	1.3	32.85	7.9	2.3
2013/10/2 : 13:00		1,112	032711	007710	2	1.200	26.27	6.9	102.9	0.6	32.93	7.92	2.0
						1.000	26.31	8.12	121.1	1.6	32.85	7.87	1.8
						1.000	26.36	7.88	117.5	1.7	32.81	7.88	
2013/10/24 14:56	W2	ME	832659	807974	12.6	6.300	26.19	7.7	114.7	2.2	32.92	7.86	5.9
						6.300	26.22	7.66	114.1	1.7	32.9	7.88	
						11.600	26.13	7.53	112	4.9	33	7.87	4.1
	-					11.600	26.15	7.51	111.8	4.8	33	7.88	
						1.000	26.49	7.59	113.4	0.5	32.63	7.84	2.6
						1.000	26.51	7.65	114.3	0.7	32.68	7.84	
2013/10/24 14:40	W3	ME	832063	807895	12.3	6.150	26.22	7.25	107.8	1.1	32.64	7.83	4.7
						6.150	26.25	7.18	106.9	1.1	32.81	7.81	
						11.300	26.21	6.96	103.6	3	32.9	7.8 7.82	9.9
	+					11.300	26.22	6.96	103.6		32.91		
						1.000	26.42	7.01 7.02	104.6 104.7	0.5	32.75	7.91 7.92	3.4
						1.000	26.35			0.8	32.8	7.92	
2013/10/24 15:17	C1	ME	833717	808195	14.8	7.400	26.19	6.66	99.3	2.2	32.96		3.0
						7.400 13.800	26.21 26.08	6.64 6.45	98.9 96	1.4	32.95 33.13	7.93 7.91	
						13.800	26.08	6.45	96	3.3	33.16	7.91	3.7
	+					1.000							
						1.000	26.73 26.69	7.55 7.47	113.3 112	0.4	32.71 32.7	7.83 7.82	3.6
						5.200	26.69	7.47	112.5	0.9	32.77	7.82	
2013/10/24 14:29	C2	ME	831449	807727	10.4	5.200	26.42	7.51	112.3	1.3	32.62	7.78	2.9
						9.400	26.3	7.45	111.1	1.1	32.76	7.69	
						9.400	26.26	7.43	108.7	1.1	32.77	7.09	2.8
	+						26.31	7.04	106.7	1.0	32.86	7.71	
						1.000	26.32	6.99	104.3	0.8	32.80	7.92	2.
						7.600	26.32	6.51	97.1	0.8	33.04	7.93	
2013/10/24 15:38	C3	ME	832238	808879	15.2	7.600	26.25	6.51	97.1	0.9	33.04	7.92	2.5
						14.200	26.13	6.43	95.7	3.2	33.13	7.91	
						14.200	26.11	6.38	95.7	2.7	33.14	7.92	2.2
						14.200	20.11	0.50	93	2.1	JJ.14	1.92	
						1.350	26.21	7.51	111.8	0.8	32.82	7.93	
2013/10/24 10:11	W1	MF	832969	807751	2.7	1.350	26.21	7.35	109.4	1.3	32.83	7.94	1.0
	+					1.000	26.24	6.93	103.4	1.5	32.83	7.93	
						1.000	26.25	6.72	100.1	2	32.81	7.93	4.6
						6.250	26.24	6.68	99.6	3	32.86	7.93	
2013/10/24 10:20	W2	MF	832677	808009	12.5	0.230	20.24	0.00					2.1
						6.250	26.22	6.67	00.4		22 97		
						6.250	26.23	6.67	99.4	2.3	32.87	7.93	
						11.500	26.21	6.66	99.1	1.5	32.9	7.93 7.94	3.
	-					11.500 11.500	26.21 26.26	6.66 6.65	99.1 99.1	1.5 0.9	32.9 32.87	7.93 7.94 7.93	3.
						11.500 11.500 1.000	26.21 26.26 26.21	6.66 6.65 7.04	99.1 99.1 104.8	1.5 0.9 1.5	32.9 32.87 32.87	7.93 7.94 7.93 7.92	
						11.500 11.500 1.000 1.000	26.21 26.26 26.21 26.22	6.66 6.65 7.04 6.84	99.1 99.1 104.8 101.9	1.5 0.9 1.5 1.7	32.9 32.87 32.87 32.88	7.93 7.94 7.93 7.92 7.94	2
2013/10/24 10:37	W3	MF	832038	807912	12.1	11.500 11.500 1.000 1.000 6.050	26.21 26.26 26.21 26.22 26.22	6.66 6.65 7.04 6.84 6.65	99.1 99.1 104.8 101.9 99.1	1.5 0.9 1.5 1.7 1.8	32.9 32.87 32.87 32.88 32.92	7.93 7.94 7.93 7.92 7.94 7.95	2
2013/10/24 10:37	W3	MF	832038	807912		11.500 11.500 1.000 1.000 6.050 6.050	26.21 26.26 26.21 26.22 26.22 26.22	6.66 6.65 7.04 6.84 6.65 6.65	99.1 99.1 104.8 101.9 99.1 99.1	1.5 0.9 1.5 1.7 1.8 1.4	32.9 32.87 32.87 32.88 32.92 32.88	7.93 7.94 7.93 7.92 7.94 7.95 7.93	2
2013/10/24 10:37	W3	MF	832038	807912		11.500 11.500 1.000 1.000 6.050 6.050 11.100	26.21 26.26 26.21 26.22 26.22 26.25 26.21	6.66 6.65 7.04 6.84 6.65 6.65	99.1 99.1 104.8 101.9 99.1 99.1 98.5	1.5 0.9 1.5 1.7 1.8 1.4 3.4	32.9 32.87 32.87 32.88 32.92 32.88 32.93	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95	2.
2013/10/24 10:37	W3	MF	832038	807912		11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100	26.21 26.26 26.21 26.22 26.22 26.25 26.21 26.28	6.66 6.65 7.04 6.84 6.65 6.65 6.61	99.1 99.1 104.8 101.9 99.1 99.1 98.5 98.4	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4	32.9 32.87 32.87 32.88 32.92 32.88 32.93 32.87	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92	2. 4.
2013/10/24 10:37	W3	MF	832038	807912		11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100	26.21 26.26 26.21 26.22 26.22 26.25 26.21 26.28 26.27	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6	99.1 99.1 104.8 101.9 99.1 99.1 98.5 98.4 109.8	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4	32.9 32.87 32.87 32.88 32.92 32.88 32.93 32.87 32.69	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87	2. 4.
					12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 1.000 1.000	26.21 26.26 26.21 26.22 26.22 26.25 26.21 26.28 26.27 26.22	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45	99.1 99.1 104.8 101.9 99.1 99.1 98.5 98.4 109.8	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5	32.9 32.87 32.88 32.92 32.88 32.92 32.88 32.93 32.87 32.69	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91	2. 4. 12
2013/10/24 10:37	W3	MF	832038 833724	807912		11.500 11.500 1.000 1.000 6.050 6.050 11.100 1.000 1.000 7.700	26.21 26.26 26.21 26.22 26.22 26.25 26.21 26.28 26.27 26.22 26.25	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45	99.1 99.1 104.8 101.9 99.1 99.1 98.5 98.4 109.8 110.8	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5	32.9 32.87 32.88 32.92 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91	2. 4. 12
					12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 1.100 1.000 7.700 7.700	26.21 26.26 26.21 26.22 26.25 26.25 26.21 26.28 26.27 26.22 26.25 26.27	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45 6.81	99.1 99.1 104.8 101.9 99.1 99.1 98.5 98.4 109.8 110.8 101.5	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8	32.9 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.69 32.77 32.82	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91 7.93 7.94	2. 4. 12 6. 7.
					12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100 1.000 1.000 7.700 7.700 14.400	26.21 26.26 26.21 26.22 26.25 26.25 26.21 26.28 26.27 26.22 26.25 26.24 26.24	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.66 7.37 7.45 6.81 6.72	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 99.6	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8	32.9 32.87 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.83	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91 7.93 7.94	2. 4. 12 6. 7.
					12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 1.000 1.000 1.000 7.700 7.700 14.400	26.21 26.26 26.21 26.22 26.22 26.25 26.21 26.28 26.27 26.22 26.25 26.24 26.24	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69	99.1 99.1 104.8 101.9 99.1 99.1 98.5 98.4 109.8 110.8 101.5 100.1 99.6	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6	32.9 32.87 32.87 32.88 32.92 32.88 32.93 32.69 32.77 32.69 32.77 32.82 32.83 32.84	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91 7.93 7.94 7.94	2.1 4.1 12 6.1 7.4
					12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100 1.000 7.700 7.700 14.400 1.000	26.21 26.26 26.21 26.22 26.25 26.25 26.21 26.28 26.27 26.22 26.25 26.24 26.24 26.24	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 6.69	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 99.6 99.6	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3	32.9 32.87 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.87 32.92	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91 7.93 7.94 7.94 7.94	2. 4. 12 6. 7. 5.
2013/10/24 9:55	Cl	MF	833724	808193	12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100 1.000 7.700 7.700 14.400 1.000 1.000	26.21 26.26 26.21 26.22 26.25 26.25 26.21 26.28 26.27 26.22 26.25 26.24 26.24 26.24 26.21	6.66 6.65 7.04 6.84 6.65 6.65 6.61 7.37 7.45 6.81 6.72 6.69 6.69	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 100.1 99.6 99.6	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3	32.9 32.87 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.87 32.92	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.91 7.93 7.94 7.94 7.94 7.97	2 4 12. 6 7 5 1
					12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100 1.000 7.700 7.700 14.400 14.400 1.000 1.000 5.200	26.21 26.26 26.21 26.22 26.25 26.25 26.21 26.28 26.27 26.22 26.25 26.24 26.24 26.24 26.21 26.21 26.29	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 7.74 7.13	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 100.1 99.6 115.2 106.2	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3 2	32.9 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.87 32.92	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91 7.93 7.94 7.94 7.94 7.97	2 4 12. 6 7 5 1
2013/10/24 9:55	Cl	MF	833724	808193	12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 1.000 1.000 7.700 7.700 14.400 1.000 1.000 5.200 5.200	26.21 26.26 26.21 26.22 26.25 26.25 26.21 26.28 26.27 26.22 26.25 26.24 26.24 26.21 26.19 26.29	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 6.69 7.74 7.13	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 100.1 99.6 99.6 115.2 106.2 99.4	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3 2 1.5	32.9 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.87 32.92 32.93	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91 7.93 7.94 7.94 7.97	2. 4. 12 6. 7. 5.
2013/10/24 9:55	Cl	MF	833724	808193	12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 1.000 1.000 7.700 7.700 14.400 1.000 1.000 5.200 5.200 9.400	26.21 26.26 26.21 26.22 26.25 26.25 26.21 26.28 26.27 26.22 26.25 26.24 26.24 26.21 26.19 26.21 26.21 26.21	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 6.69 7.74 7.13 6.66 6.65 6.65	99.1 99.1 104.8 101.9 99.1 99.1 98.5 98.4 109.8 110.8 101.5 100.1 99.6 99.6 115.2 106.2 99.4	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3 2.3 2.3 2.7	32.9 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.87 32.92 32.93 32.94	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91 7.93 7.94 7.94 7.97 7.97 7.97	2. 4. 12 6. 7. 5.
2013/10/24 9:55	Cl	MF	833724	808193	12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 1.000 1.000 7.700 14.400 14.400 1.000 5.200 5.200 9.400	26.21 26.26 26.21 26.22 26.22 26.25 26.21 26.28 26.27 26.25 26.24 26.24 26.24 26.21 26.29 26.25 26.24 26.24	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 6.69 7.74 7.13 6.66 6.65 6.65 6.58	99.1 99.1 104.8 101.9 99.1 99.1 98.5 98.4 109.8 110.5 100.1 99.6 99.6 115.2 106.2 99.4 99.2	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3 2 1.5 2.7 1.9	32.9 32.87 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.87 32.92 32.93 32.94	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.92 7.87 7.91 7.93 7.94 7.94 7.97 7.97 7.97 7.97	2.:2 4.:12 6.:5 5.: 1.:13
2013/10/24 9:55	Cl	MF	833724	808193	12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100 1.000 1.000 7.700 7.700 14.400 1.000 1.000 5.200 5.200 9.400 9.400 1.000	26.21 26.26 26.21 26.22 26.22 26.25 26.21 26.28 26.27 26.25 26.24 26.24 26.21 26.29 26.24 26.24 26.21 26.29 26.25 26.24	6.66 6.65 7.04 6.84 6.65 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 7.74 7.13 6.66 6.65 6.58 6.56 7.7	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 100.1 99.6 115.2 106.2 99.4 99.2 99.2	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3 2 1.5 2.7 1.9 2.5 1.3	32.9 32.87 32.87 32.88 32.92 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.94 32.94 32.94 32.94 32.94 32.94	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.91 7.91 7.94 7.94 7.97 7.97 7.95 7.95 7.95 7.95 7.95	2.:2 4.:12 6.:5 5.: 1.:13
2013/10/24 9:55 2013/10/24 10:51	C1 C2	MF	833724 831490	808193	12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100 1.000 7.700 7.700 14.400 1.000 1.000 5.200 5.200 5.200 9.400 9.400 1.000	26.21 26.26 26.21 26.22 26.25 26.25 26.27 26.22 26.25 26.24 26.24 26.21 26.28 26.24 26.24 26.24 26.24 26.24 26.24	6.66 6.65 7.04 6.84 6.65 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 6.69 7.74 7.13 6.66 6.65 6.58 6.56 7.7 7.57	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 100.1 199.6 99.6 115.2 106.2 99.4 99.2 98.8 114.5	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3 2 1.5 2.7 1.9 2.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	32.9 32.87 32.87 32.88 32.93 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.94 32.92 32.94 32.93 32.94 32.94 32.94 32.94	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.91 7.93 7.94 7.94 7.97 7.97 7.97 7.95 7.95 7.95 7.95 7.95	2.2.2.4
2013/10/24 9:55	Cl	MF	833724	808193	12.1	11.500 11.500 1.000 1.000 1.000 6.050 6.050 11.100 11.100 1.000 7.700 14.400 1.000 1.000 5.200 5.200 9.400 9.400 1.000 1.000 8.050	26.21 26.26 26.21 26.22 26.25 26.25 26.27 26.22 26.25 26.24 26.24 26.24 26.21 26.28 26.24 26.24 26.23 26.24 26.24 26.24 26.24 26.25 26.25 26.27	6.66 6.65 7.04 6.84 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 6.69 7.74 7.13 6.66 6.65 6.58 6.56 7.77 7.57	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 100.1 199.6 99.6 99.6 115.2 99.4 99.2 98.8 114.5 112.7	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3 2 1.5 2.7 1.9 2.5 1.3	32.9 32.87 32.87 32.88 32.93 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.92 32.94 32.93 32.94 32.93 32.94 32.93 32.94 32.93 32.94 32.93	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.91 7.94 7.97 7.97 7.94 7.95 7.95 7.95 7.95 7.95 7.97	2.2.2.4
2013/10/24 9:55 2013/10/24 10:51	C1 C2	MF	833724 831490	808193	12.1	11.500 11.500 1.000 1.000 6.050 6.050 11.100 11.100 1.000 7.700 7.700 14.400 1.000 1.000 5.200 5.200 5.200 9.400 9.400 1.000	26.21 26.26 26.21 26.22 26.25 26.25 26.27 26.22 26.25 26.24 26.24 26.21 26.28 26.24 26.24 26.24 26.24 26.24 26.24	6.66 6.65 7.04 6.84 6.65 6.65 6.65 6.61 6.6 7.37 7.45 6.81 6.72 6.69 6.69 7.74 7.13 6.66 6.65 6.58 6.56 7.7 7.57	99.1 99.1 104.8 101.9 99.1 98.5 98.4 109.8 110.8 101.5 100.1 199.6 99.6 115.2 106.2 99.4 99.2 98.8 114.5	1.5 0.9 1.5 1.7 1.8 1.4 3.4 2.4 0.7 0.5 0.4 0.8 0.6 0.7 2.3 2 1.5 2.7 1.9 2.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	32.9 32.87 32.87 32.88 32.93 32.88 32.93 32.87 32.69 32.77 32.82 32.83 32.84 32.94 32.92 32.94 32.93 32.94 32.94 32.94 32.94	7.93 7.94 7.93 7.92 7.94 7.95 7.93 7.95 7.91 7.93 7.94 7.94 7.97 7.97 7.97 7.95 7.95 7.95 7.95 7.95	3.8.2.2.4.4.1.12.2.12.2.12.2.2.2.2.2.2.2.2.

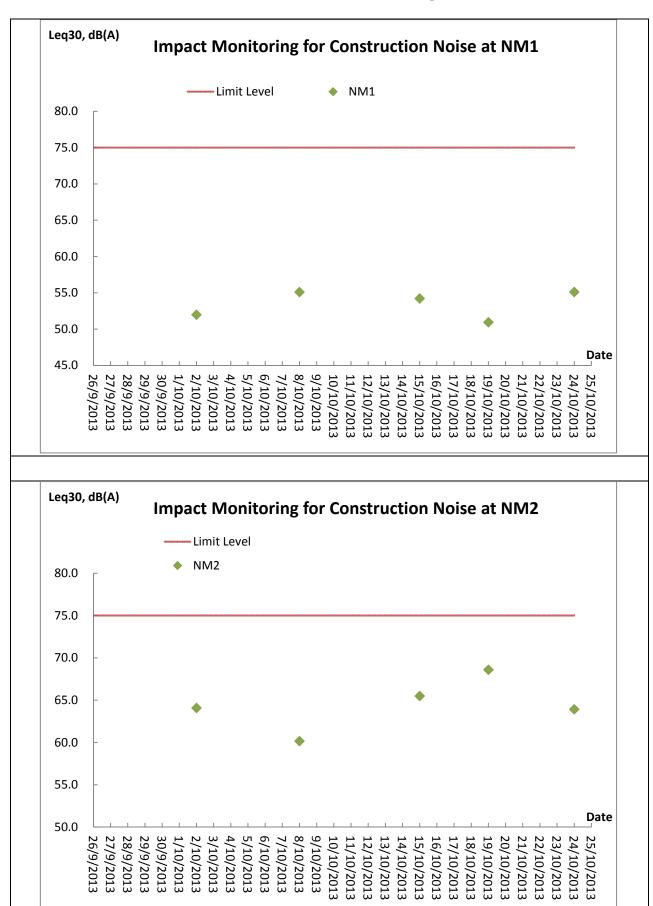


Appendix I

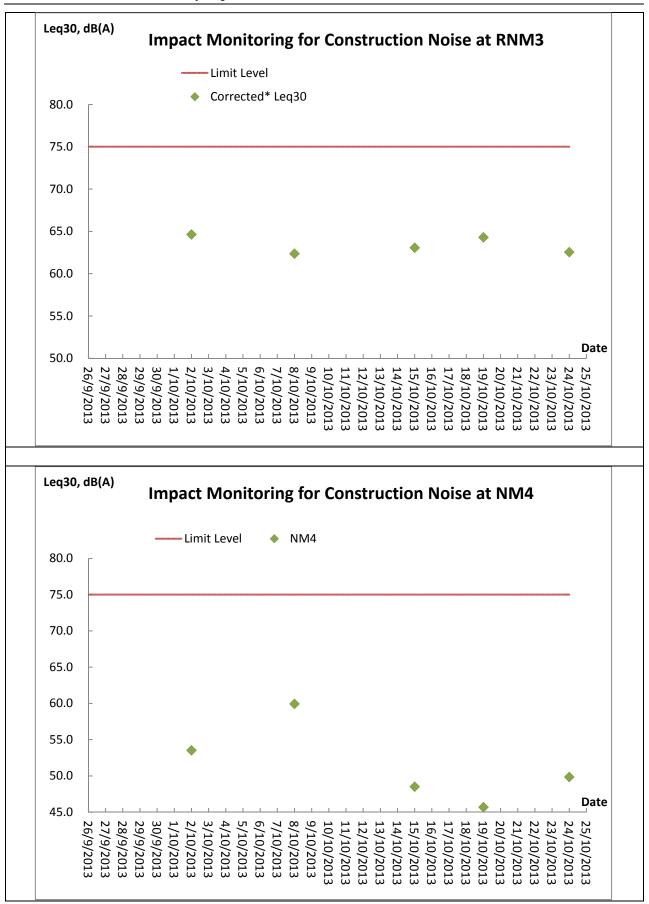
Graphical Plots of Monitoring Results



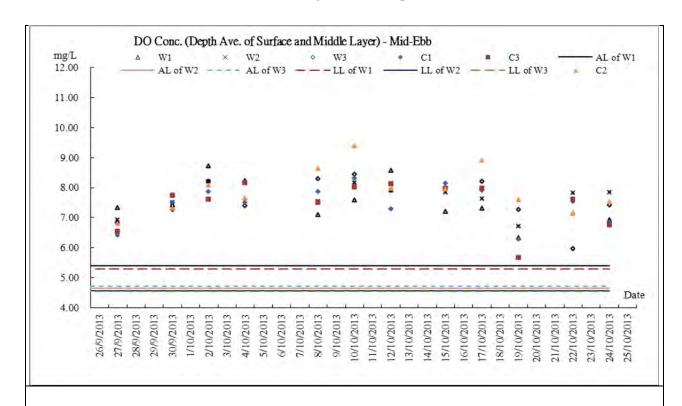
Air Quality Monitoring – 1 hour TSP Monitoring

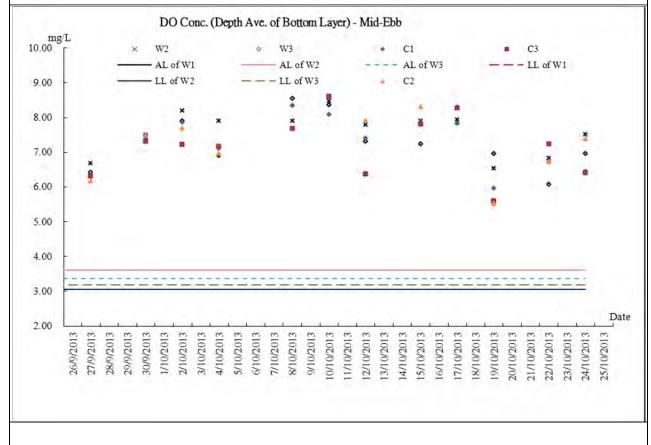


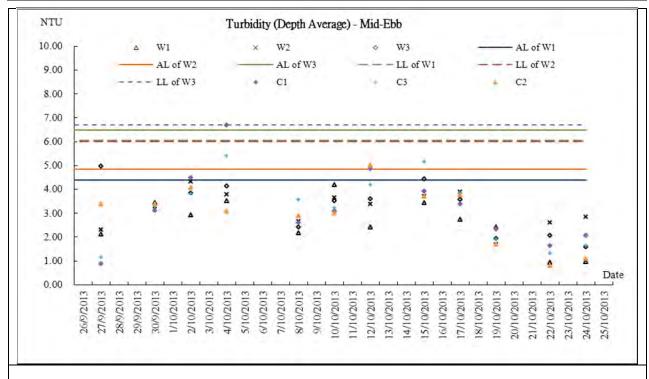
Air Quality Monitoring – 24 hour TSP Monitoring

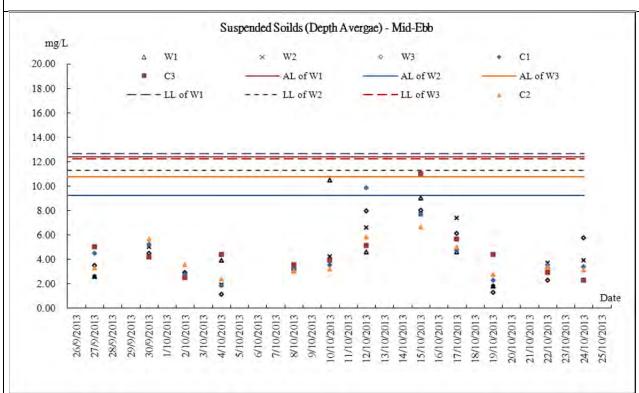


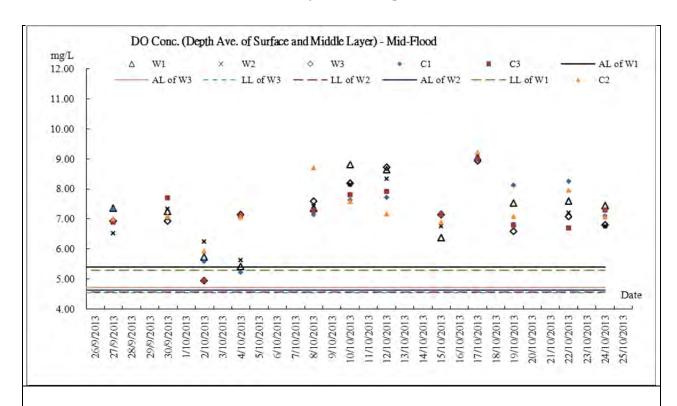
Construction Noise Monitoring

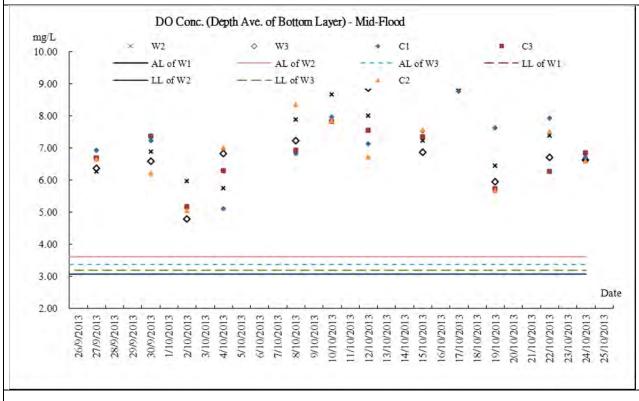


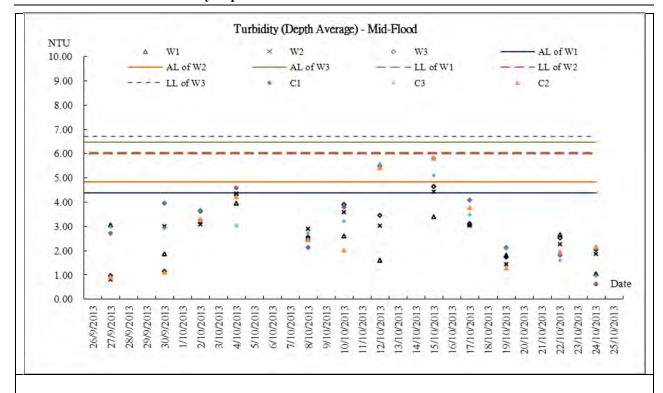


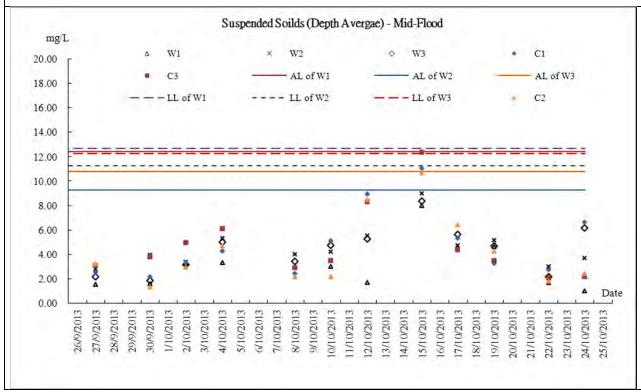



Marine Water Quality Monitoring - Mid-Ebb Tide








Marine Water Quality Monitoring - Mid-Flood Tide

Appendix J

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Sep-13	Thu	Fine, cloudy. Moderate to fresh northeasterly winds.
27-Sep-13	Fri	Fine, cloudy. Moderate to fresh northeasterly winds.
28-Sep-13	Sat	Fine, cloudy. Moderate to fresh northeasterly winds.
29-Sep-13	Sun	Fine, cloudy. Moderate to fresh northeasterly winds.
30-Sep-13	Mon	Cloudy, rain. Fresh easterly winds, strong offshore and on high ground.
1-Oct-13	Tue	Fine and dry. Moderate east to northeasterly winds.
2-Oct-13	Wed	Fine and dry. Moderate east to northeasterly winds.
3-Oct-13	Thu	Fine and dry. Moderate east to northeasterly winds.
4-Oct-13	Fri	Mainly fine, rain, dry. Moderate east to northeasterly winds.
5-Oct-13	Sat	Mainly fine, rain, dry. Moderate east to northeasterly winds.
6-Oct-13	Sun	Fine, dry, cloudy, sunny interval. Moderate to fresh north to northwesterly winds.
7-Oct-13	Mon	Fine, dry, cloudy, sunny interval. Moderate to fresh north to northwesterly winds.
8-Oct-13	Tue	Cloudy, sunny intervals, dry, haze. Moderate to fresh northerly winds.
9-Oct-13	Wed	Fine, cloudy. Moderate east to northeasterly winds.
10-Oct-13	Thu	Sunny periods, cloudy. Moderate east to northeasterly winds.
11-Oct-13	Fri	Mainly fine. Moderate east to northeasterly winds.
12-Oct-13	Sat	Fine, rain. Moderate east to northeasterly winds.
13-Oct-13	Sun	Fine, rain. Moderate east to northeasterly winds.
14-Oct-13	Mon	Fine, cloudy, fresh. Moderate east to northeasterly winds.
15-Oct-13	Tue	Fine, cloudy, rain. Moderate east to northeasterly winds.
16-Oct-13	Wed	Mainly cloudy. Fresh easterly winds, occasionally strong offshore.
17-Oct-13	Thu	Cloudy, dry, fine. Moderate east to northeasterly winds.
18-Oct-13	Fri	Cloudy, dry, fine. Moderate east to northeasterly winds.
19-Oct-13	Sat	Dry, fine, haze. Moderate northeasterly winds.
20-Oct-13	Sun	Dry, fine, haze. Moderate northeasterly winds.
21-Oct-13	Mon	Dry, fine, haze. Moderate northeasterly winds.
22-Oct-13	Tue	Fine, haze, very dry. Moderate north to northeasterly winds.
23-Oct-13	Wed	Very dry, fine, cloudy. Moderate north to northeasterly winds.
24-Oct-13	Thu	Very dry, fine, cloudy. Moderate north to northeasterly winds.
25-Oct-13	Fri	Fine and very dry. Moderate to fresh north to northeasterly winds.

Appendix K

Monthly Summary Waste Flow Table

Contract No.:

DC/2009/13

Monthly Summary Waste Flow Table for October 2013

			Actı	ıal Quant	ities of Ir	nert C&D	Material	s Genera	ted Mont	hly				A	Actual Qu	uantities	of C&D	Wastes	Generate	ed Montl	nly	
Month	Total Q Gene (a) = (c)		Large	crete	Reusec Con	tract	Reused Proj (d	ects	Dispo Publi (6	c Fill		ted Fill f)	Me	tals	Pap cardl packa		Plas	stics	Chei Wa	nical aste	Oth e.g. ru	-
	(in '00	00m³)	(in '00	00m³)	(in '00	00m ³)	(in '00	00m³)	(in '00	00m³)	(in '0	00m³)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2013	13.341	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.601	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	400.410	103.440
Jan	0.332	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.332	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.040	9.840
Feb	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.530	6.530
Mar	0.056	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.430	4.920
Apr	0.425	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.425	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.800	32.200
May	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.790	4.650
Jun	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.430	48.240
Sub-total	14.236	50.328	0.160	0.417	0.740	2.802	0.000	0.000	13.497	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	443.430	209.820
Jul	0.871	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.871	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.550	33.520
Aug	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.930	23.050
Sep	0.531	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.531	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.330	5.090
Oct	0.000	0.434	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.434	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.880	6.740
Nov																						
Dec																						
Total	15.639	50.762	0.160	0.432	0.740	2.802	0.000	0.000	14.900	47.960	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	476.120	278.220
10441	66.4	101	0.5	91	3.5	42	0.0	00	62.8	359	0.0	000	0.0	00	0.0	00	0.0	000	0.0	000	754.	340

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan SKW: Sok Kwu Wan

Appendix L

Weekly Site Inspection Checklist

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Project	DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok	Inspected t	Representa	tive	Mr. Martin Li Mr. Joseph Ng						
	Kwu Wan	RE's Repre		ntative		pn Ng . Leung					
		IEC's Repr	•								
Date:	2 October 2013	Time:			14:00						
PART		_					Permit No.				
Weath		Rainy			_ ✓] EP- 28	31/2007A					
Humio											
Wind:		Calm									
Area lı	Inspected										
1	Sok Kwu Wan										
PART	B: SITE AUDIT										
No ⁺ ··	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks				
	on 1: Water Quality				П						
1.01	Is an effluent discharge license obtained for the Project?										
1.02	Is the effluent discharged in accordance with the discharge licenc	:e?									
1.03	Is the discharge of turbid water avoided?		$\overline{\mathbf{V}}$								
1.04	Are there proper desilting facilities in the drainage systems reduce SS levels in effluent?	to	\checkmark								
1.05	Are there channels, sandbags or bunds to direct surface run-off sedimentation tanks?	f to	\checkmark								
1.06	Are there any perimeter channels provided at site boundaries intercept storm runoff from crossing the site?	to	\checkmark								
1.07	Is drainage system well maintained?		\checkmark								
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	by				\checkmark					
1.09	Are temporary exposed slopes properly covered?					\checkmark					
1()	Are earthworks final surfaces well compacted or protected?		$\overline{\mathbf{V}}$								
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark								
1.12	Are there any procedures and equipment for rainstorm protection	n? 🗌	\checkmark								
1.13	Are wheel washing facilities well maintained?					\checkmark					
1.14	Is runoff from wheel washing facilities avoided?					\checkmark					
1.15	Are there toilets provided on site?		\checkmark								
1.16	Are toilets properly maintained?		\checkmark								
1.17	Are the vehicle and plant servicing areas paved and located wire roofed areas?	thin				\checkmark					
1.18	Is the oil/grease leakage or spillage avoided?		$\overline{\checkmark}$								
1.19	Are there any measures to prevent leaked oil from entering drainage system?	the	\checkmark								
1.20	Are there any measures to collect spilt cement and conce washings during concreting works?	rete	\checkmark								
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	ems				$\overline{\mathbf{V}}$					

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					$\overline{\checkmark}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					$\overline{\checkmark}$	
1.25	No excavation is undertaken in the settlement area.					$\overline{\checkmark}$	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					$\overline{\checkmark}$	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Secti	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure) Temporary/Moveable noise barrier equal to or more than 3m height					\checkmark	
3.14	with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					$\overline{\checkmark}$	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					$\overline{\checkmark}$	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

Note:							
	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
ctic	on 5: Landscape & Visual						
)1	Are retained and transplanted trees in health condition?					\checkmark	
02	Are retained and transplanted trees properly protected?		\checkmark				
03	Are surgery works carried out for the damaged trees?	\checkmark					
04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
ectio	on 6: Others						
01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					<u> </u>	
So	k Kwu Wan)						
₹er	marks:						
<u> </u>	representative RE's representative ET's representa	ative	E0's re	presenta	tive	Contractor	r's representative

Humid Wind:	B October 2013 A: GENERAL INFORMATION Terature: 26.8 GINERAL INFORMATION OCTOBER OF COMMERCE OF C	Inspected Inspec	Representar esentative 's Represer		Mr. T.W. Tam Mr. Joseph Ng Mr. M. K. Leung 09:30 Environmental Permit No. PP- 281/2007A					
PART	B: SITE AUDIT									
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks			
Section	n 1: Water Quality					-				
1.01	Is an effluent discharge license obtained for the Project?		\overline{A}							
1.02	Is the effluent discharged in accordance with the discharge licence?	?	\checkmark							
1.03	Is the discharge of turbid water avoided?		$\overline{\checkmark}$							
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?		\checkmark							
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?		\checkmark							
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?		\checkmark							
1.07	Is drainage system well maintained?		\checkmark							
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?	y 🔲				$\overline{\checkmark}$				
1.09	Are temporary exposed slopes properly covered?					\checkmark				
1	Are earthworks final surfaces well compacted or protected?									
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark							
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark							
1.13	Are wheel washing facilities well maintained?					\checkmark				
1.14	Is runoff from wheel washing facilities avoided?					\checkmark				
1.15	Are there toilets provided on site?		\checkmark							
1.16	Are toilets properly maintained?		\checkmark							
1.17	Are the vehicle and plant servicing areas paved and located within roofed areas?	n 🔲				\checkmark				
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark							
1.19	Are there any measures to prevent leaked oil from entering th drainage system?	e 🔲	\checkmark							
1.20	Are there any measures to collect spilt cement and concret washings during concreting works?	е 🔲	\checkmark							
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	s 🗌				\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not	Yes	No	Follow	N/A	Photo/
	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.			Up	V	Remarks
1.22	Are the oil interceptors/grease traps maintained properly?						
1.23	Is used bentonite recycled where appropriate? Designated settlement area for runoff/wheel wash waste is provide		Ш			[V] -	
1.24	and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					✓	
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?				\checkmark		Remark 1
Section	on 2: Air Quality					•	
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?				\checkmark		Photo 1, 2
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		:			\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					V	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	Negotion-
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					$\overline{\checkmark}$	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Secti	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					$\overline{\mathbf{V}}$	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure).					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	WA 25 CO. CO. CO. CO. CO. CO. CO. CO. CO. CO.
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4 ()	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.15	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Section	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

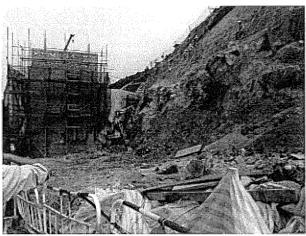
Remarks:

Findings of Site Inspection: (8 Oct 2013)

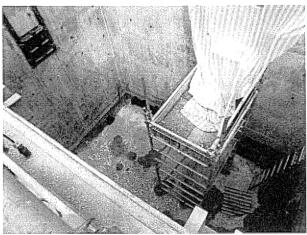
Photo 1

bckpile of dusty material was observed at pumping station 1, the Contractor was reminded to make it wet to reduce the dust disperse into the air.

Photo 2


re loose slope was observed near sewage treatment plant, the Contractor was reminded to spary water to reduce the dust disperse in air.

Remark 1


Stagnant water was oberserved at the water tank placed on the rooftop of sewage treatment plant, the Contractor was reminded to clear the water to prevent mosquito breeding.

Follow up (8 Oct 2013)

1. The stockpile of dusty material was wet.

2. Water was sprayed to the bare loose slope.

Water in the tanks at the rooftop of sewage treatment plant was cleared.

() (Joseph Ng) (T.W. Tam) (Mr. M. K. Leung) (Will the Contractor's representative (Mr. M. K. Leung)

Date: PART A: Weather: Temperature Humidity: Wind: Area Inspe		Sunny					y epresent sentative s Repres esentative	entative	Mr. Martin Li Mr. Joseph Ng Mr. M. K. Leung 13:15 Environmental Permit No. ✓ EP- 281/2007A					
PART	В:			SITE AUDIT										
Note:	Not Ob Follow	os.: Not Observed; Yes Up: Observations req	s: Compliance; No : No juiring follow-Up action	on-Compliance; ns N/A : Not Applicabl	e	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks			
Sectio	n 1: W	ater Quality									-			
1.01		effluent discharge lid		-										
1.02	Is the	effluent discharged	in accordance with	the discharge liceno	e?									
1.03		Is the discharge of turbid water avoided?					$\overline{\mathbf{A}}$							
1.04	reduc	e SS levels in efflue	ent?	drainage systems					$\overline{\checkmark}$		Photo 1			
1.05	sedim	entation tanks?		direct surface run-off			$\overline{\checkmark}$							
1.06		nere any perimeter ept storm runoff fror		d at site boundaries ?	to		$\overline{\mathbf{A}}$							
1.07	ls dra	inage system well n	naintained?				\checkmark							
1.08		cavation proceeds, ed stone or gravel?	are temporary acc	ess roads protected	l b	у 🗌				\checkmark				
1.09	Are te	emporary exposed s	slopes properly cov	ered?						\checkmark				
1.10	Are e	arthworks final surfa	aces well compacte	ed or protected?			\checkmark							
1.11	Are m	nanholes adequately	y covered or tempo	rarily sealed?			\checkmark							
1.12	Are th	nere any procedures	s and equipment fo	r rainstorm protectio	n?		\checkmark							
1.13	Are w	/heel washing facilit	ies well maintained	?						\checkmark				
1.14	ls run	noff from wheel wasl	hing facilities avoid	ed?						\checkmark				
1.15	Are th	nere toilets provided	I on site?				\checkmark							
1.16	Are to	oilets properly maint	tained?				\checkmark							
1.17			t servicing areas p	aved and located wi	thi	n [\checkmark				
1.18		d areas? e oil/grease leakage	or spillage avoided	1?			$\overline{\checkmark}$							
1.19	Are t	there any measures		d oil from entering	th	e								
1.19	Are	age system? there any measure	es to collect spilt	cement and conc	ret	e	<u>~</u>							
	Are t	iings during concreti here any oil intercep	ptors/grease traps i	in the drainage syste	em	ıs 🖂				<u></u> ✓				
1.21	for ve	ehicle and plant serv	vicing areas, cantee	en kitchen, etc?				L		لگا				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					$\overline{\checkmark}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					$\overline{\mathbf{V}}$	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				-1/2
Section	on 2: Air Quality					-	
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.00	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					$\overline{\checkmark}$	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Secti	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	V					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				**************************************
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks	
3.08	Are flaps and panels of mechanical equipment closed during					$\overline{\checkmark}$		
3.09	operation? Are Construction Noise Permit(s) applied for percussive piling					— ✓		The colonyale
3.10	works? Are Construction Noise Permit(s) applied for general construction					$\overline{\checkmark}$		
3.11	works during restricted hours? Are valid Construction Noise Permit(s) posted at site entrances?							and the same
0.11	Use of quiet plant had been used on site to minimise the	_		_		[7]		
3.12	construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures). Temporary/Moveable noise barrier or site hoarding are provide or					$\overline{\checkmark}$		
3.13	erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					$\overline{\mathbf{V}}$		
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark		
Section	n 4: Waste/Chemical Management							
4.01	Waste Management Plan had been submit to Engineer for approval.		$\overline{\checkmark}$					
4.02	Are receptacles available for general refuse collection?		\checkmark					<u> </u>
4.03	Is general refuse sorting or recycling implemented?		\checkmark					
4.04	Is general refuse disposed of properly and regularly?		\checkmark					
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark		
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	And the second s	
4.07	Are the chemical wastes stored in proper storage areas?					$\overline{\checkmark}$	water and the second	_
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark		
4.09	Is the chemical waste storage area used for storage of chemical waste only?					$\overline{\checkmark}$		
4.10	Are incompatible chemical wastes stored in different areas?					$\overline{\checkmark}$	CW-141	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark		
4.12	Are trip tickets for chemical wastes disposal available for inspection?					V		_
4.13	Are chemical/fuel storage areas bounded?					\checkmark		
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark		
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark					
4.16	Are construction wastes reused?		\checkmark					*****
4.17	Are construction wastes disposed of properly?		$\overline{\checkmark}$					
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark					
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark					
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark		
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark		
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark					-
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark		

AUES

Section 5: Landscape & Visual 5.01 Are retained and transplanted trees in health condition? 5.02 Are retained and transplanted trees properly protected? 5.03 Are surgery works carried out for the damaged trees? 5.04 Is damage to trees outside site boundary due to construction activities avoided? 5.05 Is the night-time lighting controlled to minimize glare to sensitive receivers? Section 6: Others 6.01 Are relevant Environmental Permits posted at all vehicle site minimize glare to sensitive minimize glare minimize glare to sensitive minimize glare to sensitive minimize glare to sensitive minimize glare to sensitive minimize glare mi	Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02 Are retained and transplanted trees in health condition: 5.02 Are retained and transplanted trees properly protected? 5.03 Are surgery works carried out for the damaged trees? 5.04 Is damage to trees outside site boundary due to construction activities avoided? 5.05 Is the night-time lighting controlled to minimize glare to sensitive receivers? Section 6: Others 6.01 Are relevant Environmental Permits posted at all vehicle site	Section 5: Landscape & Visual							
5.03 Are surgery works carried out for the damaged trees? 5.04 Is damage to trees outside site boundary due to construction activities avoided? 5.05 Is the night-time lighting controlled to minimize glare to sensitive receivers? Section 6: Others 6.01 Are relevant Environmental Permits posted at all vehicle site	5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.03 Are surgery works carried out for the damaged trees? 5.04 Is damage to trees outside site boundary due to construction activities avoided? 5.05 Is the night-time lighting controlled to minimize glare to sensitive receivers? Section 6: Others 6.01 Are relevant Environmental Permits posted at all vehicle site	5.02	Are retained and transplanted trees properly protected?		\checkmark				
15.04 Is damage to trees outside site boundary due to construction activities avoided? 15.05 Is the night-time lighting controlled to minimize glare to sensitive receivers? 15.05 15 15 15 15 15 15 15	5.03		\checkmark					
sctivities avoided? Is the night-time lighting controlled to minimize glare to sensitive receivers? Section 6: Others Are relevant Environmental Permits posted at all vehicle site		Is damage to trees outside site boundary due to construction		\checkmark				
Are relevant Environmental Permits posted at all vehicle site		Is the night-time lighting controlled to minimize glare to sensitive					\checkmark	
	Section	n 6: Others						
	6.01						\checkmark	
		5.14.4.1555.5.11E .						

(Sok Kwu Wan)

narks:

Findings of Site Inspection: (16 October 2013)

Photo 1
Implication the dimension of the

Follow up (16 October 2013)

Sediment was cleared at the sedimentation tank.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	/ 1	447		
	(Joseph Ng.)	(Martin Li)	(Mr. M. K. Leung)	(Varlent chow)

Humi Wind	DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 22 October 2013 T A: GENERAL INFORMATION ther: Sunny Fine Cloudy erature: 25.1 dity: High Moderate Low	ET RI CO	E's Repre	Representa	entative	Mr. Jose Mr. M. K 09:20	n Li ph Ng . Leung	Permit No.
PART	B: SITE AUDIT Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;		Not			Follow		Photo/
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applica	ble	Obs.	Yes	No	Up	N/A	Remarks
Sectio 1.01	on 1: Water Quality Is an effluent discharge license obtained for the Project?			\overline{A}				No. of the Control of
1.02	Is the effluent discharged in accordance with the discharge lice	nce?						
1.03	Is the discharge of turbid water avoided?			<u> </u>				
1.04	Are there proper desilting facilities in the drainage system	ıs to		$\overline{\checkmark}$				
1.05	reduce SS levels in effluent? Are there channels, sandbags or bunds to direct surface run-	off to		$\overline{\checkmark}$				
1.06	sedimentation tanks? Are there any perimeter channels provided at site boundarie intercept storm runoff from crossing the site?	es to						
1.07	Is drainage system well maintained?			\checkmark				
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	ed by					\checkmark	
1.09	Are temporary exposed slopes properly covered?						\checkmark	
1.10	Are earthworks final surfaces well compacted or protected?			\checkmark				
1.11	Are manholes adequately covered or temporarily sealed?			\checkmark				
1.12	Are there any procedures and equipment for rainstorm protect	ion?		\checkmark				
1.13	Are wheel washing facilities well maintained?						\checkmark	
1.14	Is runoff from wheel washing facilities avoided?						\checkmark	
1.15	Are there toilets provided on site?			\checkmark				
1.16	Are toilets properly maintained?			\checkmark				
1.17	Are the vehicle and plant servicing areas paved and located vehicle areas?	within					\checkmark	
1.18	Is the oil/grease leakage or spillage avoided?			\checkmark				
1.19	Are there any measures to prevent leaked oil from enterin drainage system?	g the		\checkmark				
1.20	Are there any measures to collect spilt cement and corwashings during concreting works?	crete		\checkmark				
1.21	Are there any oil interceptors/grease traps in the drainage systor vehicle and plant servicing areas, canteen kitchen, etc?	stems					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not ,	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					$\overline{\checkmark}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					$\overline{\checkmark}$	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	n 2: Air Quality					,	
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Section	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		$\overline{\checkmark}$				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not			Follow		Photo/			
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks			
Section	n 5: Landscape & Visual									
5.01	Are retained and transplanted trees in health condition?					\checkmark				
5.02	Are retained and transplanted trees properly protected?		\checkmark							
5.03	Are surgery works carried out for the damaged trees?	\checkmark								
5.04	Is damage to trees outside site boundary due to construction activities avoided?		$\overline{\checkmark}$							
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						VIII. 1			
Section										
Section 6: Others 6.01 Are relevant Environmental Permits posted at all vehicle site entrances/exits?										
(Sok Kwu Wan)										
	narks:									
Fin	dings of Site Inspection: (22 October 2013)	<u>Fo</u>	llow up	(22 Oc	tober 201	3)				
		Nil								
	environmental issue was observed during the site pection									
IEC's	representative RE's representative ET's representa	ıtive	EO's re	presentat	ive	Contract	tor's representative			
					and the second second					
				•						
					/					
	ps they they want in the	へ <i>し</i>	(Mr N	K Lau	na)	(, 1), a (a,	Takus			

Appendix M

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A		Location /	Implementation	Implementati Stages**			Relevant Legislation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	& Guidelines
Constr	uction Phase							
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor				
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		٨		EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	EM&A Ref Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref	22.12.02.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	200002011 2111111g	Agent	D	C	0	Guidelines
Construct	tion Phase							
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		√ 		EIAO-TM, NCO
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor		√ ·		

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation		lementa Stages **		Relevant Legislation &
Ref	Ref			Agent		Guidelines		
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		√ ·		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration	f Implementation Stages** Legislat Agent D C O and	Relevant Legislation			
Ref	Ref		/completion of measures)	Agent	D	С	О	and Guidelines
	ruction Phas		r	_			ı	
5.77	4.35	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		V		
5.73 - 5.78	4.36	 Dredging Works Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be repaired promptly and plant should not be operated with leaking pipes; excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved; adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action; all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; 	Marine works site and at the identified water sensitive receivers/ During construction	Contractor		V		
		• loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and						

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*	Relevant Legislation	
Ref	Ref	Environmental Protection Weasures	measures)	Agent	D	C	O	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor				ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor		√		
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

EIA	EM&A	Environmental Protection Measures*	Location (duration	ation (duration Implementation			ation *	Relevant Legislation
Ref	Ref	Environmental Protection (vicasures	measures)	Agent	D	C	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	Wastewater Arising from Workforce Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

N/A Not applicable

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing	Implementation	Im	plementa Stages**		Relevant Legislation &
Ref	Ref	Environmental Proceedin Predictes	Location / Timing	Agent	D	C	0	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		1		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		√		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		√ 		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
Construc	tion Phase					ı	I	
7.14	6.4	 Good site practices Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor		٨		Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		V		WBTC No. 21/2002
7.16	6.6	Recommendations to achieve waste reduction include: • segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; • to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated	Work sites/During construction	Contractor		V		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and plan and stock construction materials carefully to 						
		minimise amount of waste generated and avoid unnecessary generation of waste.						
7.18	6.7	 General Site Wastes A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material 	Work sites/During construction	Contractor		V		Public Health and Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 – 6.9	 Chemical Wastes After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance. 	Work sites/During construction	Contractor		V		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

EIA	EM&A		Location /	Implementation		lementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
		 Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided. 						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) Where possible, inert material should be re-used on-site Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location /	Implementation Agent		Timing Agent Stages			Relevant Legislation & Guidelines
G .			Tilling	Agent	D	С	O	Guidennes	
	ction Phase	m		T a	ı	1 1	ı	T	
8.157	7.2	 Terrestrial Ecology Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		٧			
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging Use of closed-grab dredger Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		٧			
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V			

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*	Location / Implementation		Implementation Stages**			Relevant Legislation
Ref	Ref		Timing	Agent	D	C	O	& Guidelines
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		V		TM on EIA Process
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		V	√	EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA EM&A Ref Ref		Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &
Kei	Kei		Timing	Agent	D	C	O	Guidelines
Constr	uction Pha	ase						
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		√ 		WBTC No. 14/2002
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		V		WBTC No. 14/2002
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		V		
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		√		WBTC No. 19/2001
		Conservation of topsoil for reuse.	All sites	Contractor		V		
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		√		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Appendix N

Tree Inspection Report

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date: 30-09-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 30 September 2013

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	30 September 2013, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 and 31 October 2012
November 2012	15 and 30 November 2012
December 2012	15 and 30 December 2012
January 2013	15 and 30 January 2013
February 2013	15 and 28 February 2013
March 2013	15 and 30 March 2013
April 2013	15 and 30 April 2013
May 2013	15 and 30 May 2013
June 2013	15 and 29 June 2013

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 30 September 2013

July 2013	15 and 31 July 2013
August 2013	15 and 31 August 2013
September 2013	14 and 30 September 2013

4. Summary of Inspection Result

Tree No	Speciation	Health Status	
CT_5A	Celtis timorensis	Good	
CT_6A	Celtis timorensis	Good	

Inspection parameters or criteria

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 30 September 2013

Tree ID: CT_6A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy.

Overall Condition

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering CT2A, CT3A were lost due to typhoon, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

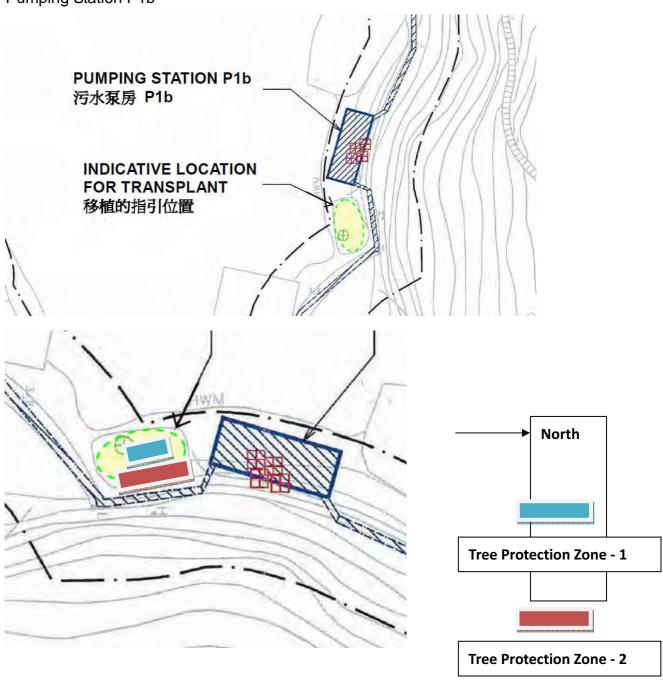
元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date: 15-10-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	15 October 2013, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

3. Troposed inspection ochedule	
Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 and 31 October 2012
November 2012	15 and 30 November 2012
December 2012	15 and 30 December 2012
January 2013	15 and 30 January 2013
February 2013	15 and 28 February 2013
March 2013	15 and 30 March 2013
April 2013	15 and 30 April 2013
May 2013	15 and 30 May 2013
June 2013	15 and 29 June 2013

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 15 October 2013

July 2013	15 and 31 July 2013
August 2013	15 and 31 August 2013
September 2013	14 and 30 September 2013
October 2013	15 October 2013

4. Summary of Inspection Result

Tree No	Speciation	Health Status	
CT_5A	Celtis timorensis	Good	
CT_6A	Celtis timorensis	Good	

Inspection parameters or criteria

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT 6A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy.

Overall Condition

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering CT2A, CT3A were lost due to typhoon, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.