Drainage Services Department
 Contract No. DC/2011/06

Reprovisioning of Boundary Patrol Road and Associated Security Facilities between Ping Yuen River and Pak Fu Shan and Drainage Works in North District

EM\&A Report for Drainage Works under EP-277/2007/A (JULY 2012)

Prepared For Sang Hing Civil Constructors Co., Ltd.

Quality Index

Date	Reference No.	Prepared By	Approval By
13 August 2012	TCS00599/12/600/R0024v2	F. N. Wong Senior Environmental Consultant	T. W. Tam Environmental Team Leader

Version	Date	cription
0	3 August 2012	First submission.
1	10 August 2012	Amended against IEC's comments
2	13 August 2012	Amended against IEC's comments

This report has been prepared by Action-United Environmental Services \& Consulting with all reasonable skill, care and diligence within the terms of the Agreement with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

[^0]Ref．：DSDBPRNDEM00＿0＿0050L． 12

Sang Hing Civil Constructors Co．，Ltd． Room 215A－B，2／F，Central Services Building， Nan Fund Industrial Cote， 18 Tin Haw Road，Then Mun
New Teritories
Attention：Mr．TW Tam

Dear Sir，

Re：Contract No．DC／2011／06

Reprovisioning of Boundary Patrol Road and Associated Security Facilities between Ping Yuen River and Pak Eu Shan and Drainage Works in North District
EM\＆A report for Drainage Works under EP－277／2007／A（July 2012）
Reference is made to the Environmental Team＇s submission of the captioned report（Version 2）dated 13 August 2012 received through E－mail on 13 August 2012 for our review and comment．

Please be informed that we have no adverse comment on the captioned submission．We write to verify the captioned submission in accordance with Condition 3.4 in the captioned Environmental Permits．

Thank you for your kind attention and please do not hesitate to contact the undersigned should you have any queries．

Yours sincerely，

Roger Lung
Independent Environmental Checker

c．c．	ESD
	SHCCCL

Mr．W．H．Poon
Mr．Raymond W．M．Yau
by fax： 28278700
by fax： 24031162

EXECUTIVE SUMMARY

Breaches of Environmental Quality Criteria (A/ L LEvels)

ES04 Monitoring results indicated no exceedances of A / L Levels for air quality and construction noise during the Reporting Period. Neither NOE nor remedial actions were required.

Complaints Log

ES05 No environmental complaint was registered in the Reporting Period. The complaint log is presented as follows:

Reporting Month	Environmental Complaint Statistics		
	Frequency	Cumulative	Complaint Nature
May to June 2012	0	0	NA
July 2012	0	0	NA

Notifications of Summons and Successful Prosecutions

ES06 No notifications of summons and successful prosecutions were registered during the Reporting Period.

REPORTING CHANGES

ES07 No reporting changes were made during the Reporting Period.

FUTURE KEy IssuEs

ES08 Construction dust, noise and water quality continue to be the key environmental issues for construction of the Works during the coming Reporting Period.

ES09 As predicted in the EIA Report (Register No. in the EP: AEIAR-108/2007), with full implementation of the recommended environmental protection measures, adverse environmental impacts generated from future construction activities under the Works can be eliminated to acceptable levels.

ES10 In wet season, full implementation of the required water quality mitigation measures is reminded to eliminate adverse water quality impacts generated from surfaces runoff of haul roads, stock pile of excavated materials, etc.

ES11 Special attention is drawn to implementation of air quality mitigation measures, in particular construction dust suppression measures during dusty construction activities under dry and windy conditions.

ES12 In addition, construction noise mitigation measures should also be implemented during noisy construction activities.

TABLE OF CONTENTS

1 ENVIRONMENTAL IMPLEMENTATION STATUS - 2 -
2 SUMMARY OF REQUIREMENTS FOR CONSTRUCTION IMPACT MONITORING - 4 -
3 ENVIRONMENTAL MONITORING RESULTS - 11 -
4 WASTE MANAGEMENT - 13 -
5 ENVIRONMENTAL SITE INSPECTION - 14 -
6 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION - 15 -
7 IMPACT FORECAST - 16 -
8 CONCLUSIONS AND RECOMMENDATIONS - 17 -

LIST OF TABLES

TAble 1-1 MAJOR CONSTRUCTION ACTIVITIES OF THE WORKS dURING THE REPORTING PERIOD
TABLE 1-2 MAJOR CONSTRUCTION ACTIVITIES OF THE WORKS FOR THE FORTHCOMING TWO MONTHS
TABLE 2-1 SUMMARY OF MONITORING PARAMETERS FOR THE WORKS
TABLE 2-2 MONITORING LOCATIONS
TABLE 2-3 AIR QUALITY MONITORING EQUIPMENT
Table 2-4 CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 2-5 WATER QUALITY MONITORING EQUIPMENT
TABLE 2-6 Action And Limit Levels For Air Quality
TAbLE 2-7 Action And Limit Levels For Construction Noise (dB(A))
TABLE 3-1 SUMMARY OF 1-HOUR TSP MONITORING RESULTS AT MUP-A1 (MUP05), $\mu \mathrm{G} / \mathrm{M} 3$
TABLE 3-2 SUMMARY OF 24-HOUR TSP MONITORING RESULTS AT MUP-A1 (MUP05), $\mu \mathrm{G} / \mathrm{M} 3$
TABLE 3-3 CONSTRUCTION NOISE MONITORING RESULTS AT CHANNELS MUP-N1 (MUP05), DB(A)
TABLE 5-1 OBSERVATIONS OF SITE INSPECTION DURING THE REPORTING PERIOD
TABLE 6-1 SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 6-2 SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 6-3 SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 7-1 KEY Environmental Issues for the Up-Coming Month
Table 7-2 Environmental Mitigation Measures for the Up-Coming Month

LIST OF ANNEXES

AnNex A Location Plan for the Works under EP-277/2007/A
ANNEX B ENVIRONMENTAL MANAGEMENT ORGANIZATION AND COMMUNICATION LINES
Annex C Implementation Schedule for Environmental Mitigation Measures
Annex D MAster Construction Program
Annex E Impact Monitoring Schedule in The month and Coming Month
AnNEX F MONITORING LOCATIONS
Annex G Monitoring Equipment Calibration Certificates
Annex H EVENT/ Action Plan
AnNEX I Graphical Plot of Environmental Monitoring Results
AnNEX J METEOROLOGICAL
Annex K Waste Flow Table
Annex L Response to Comments

1 ENVIRONMENTAL IMPLEMENTATION STATUS

1.01 This is the second monthly (July 2012) EM\&A report (herein after "this Report") for Drainage Works under EP-277/2007/A, covering a construction period from 1 to 31 July 2012 (hereinafter "the Reporting Period").
1.02 Location plan for the works under the Contract is shown in Annex A, whereas environmental management organization and communication lines, including contacts of key personnel under the Contract are shown in Annex B.
1.03 Status of environmental licenses and permit is summarized in the following Table 1-1.

Table 1-1 Status of Environmental Licenses and Permit

Permit Type	Licenses / Permit No.	Date of Issuance by EPD	Expiry Date	Concerned Location	Status
Environmental Permit	EP-277/2007	09 July 2007	N.A	Lin Ma Hang and Man Uk Pin, North District	EP- 277/2007/A to supersede EP- $277 / 2007$
	EP-277/2007/A	$\begin{aligned} & 01 \text { December } \\ & 2009 \end{aligned}$			
Notification pursuant to Section 3(1) of the Air Pollution Control Ordinance (APCO) (Construction Dust) Regulation	N.A.	Pending	N.A.	All Locations	The Notification was submitted to EPD on 28 May 2012
Construction Noise Permit Application under Noise Control Ordinance (NCO)	N.A.	N.A.	N.A.	N.A.	N.A.
Account for Disposal of Construction Waste	7015003	07 May 2012	N.A.	All Locations	Valid
Application for Wastewater Discharge License under Water Pollution Control Ordinance (WPCO)	Pending EPD's Approval			Ma Wat Wai \& Man Uk Pin	The application form was submitted to EPD on 7 May 2012
Register as a Chemical Waste Producer under Waste Disposal Ordinance	Pending EPD's Approval			All Locations	Pending EPD's Approval

1.04 Construction program of the Works with fine tuning of construction activities showing the interrelationship with environmental protection/mitigation measures is presented in Implementation Schedule for the recommended mitigation measures attached in Annex C of this Report whereas updated Master Construction Program of the Works is shown in Annex D.

MAJOR Construction Activities

the Reporting Period

1.05 Major construction activities of the Works undertaken during the Reporting Period are listed in Table 1-2 below:

Table 1-2 Major Construction Activities of the Works during the Reporting Period

Portion of the Works	Major Construction Activities
Portion E	Site boundary line setting; construction of box culvert transition at CH
(Man Uk Pin)	364.70 and construction of site hoarding \& signboard.

Forthcoming Two Months

1.06 Major construction activities of the Works for the forthcoming two months are listed in Table 1-3 below:

Table 1-3 Major Construction Activities of the Works for the Forthcoming Two Months

Portion of the Works	Major Construction Activities
Portion E	Pruning / felling of existing trees at Man Uk Pin
	Construction of box culvert transition and gabion channel at Man Uk Pin CH 364.70

EM\&AACTIVITIES

Baseline Monitoring and Environmental Quality Criteria

1.07 The baseline monitoring for air quality, construction noise and water quality has been carried out since 17 September 2008, whereas that for ecology has been performed since 16 September 2008 in close accordance with the requirements of the EM\&A Manual.
1.08 It is agreed amongst the Engineer, IEC, Contractor and ET that the established environmental quality criteria i.e. Action/Limit Levels (hereinafter "the A/L Levels") for air quality, construction noise and water quality as shown in Tables 2-7 and Tables 2-8 respectively are to be used in the EM\&A for air quality, construction noise and water quality under Drainage Works under EP-277/2007/A.

IMPACT MONITORING

1.09 The environmental monitoring schedules for the Works for the Reporting Period and the coming month have been submitted to relevant parties upon agreement with the IEC and ER prior to implementation. They are presented in Annex E.

2 SUMMARY OF REQUIREMENTS FOR CONSTRUCTION IMPACT MONITORING

2.01 The requirements for EM\&A for Drainage Works under EP-277/2007/A are detailed in Methodology for Environmental Monitoring and Audit under the Contract (hereinafter "the Methodology", which has been verified by the IEC on 27 July 2012 and submitted to EPD for approval subsequently. They are summarized as follows.

MONITORING PARAMETERS

2.02 The monitoring parameters required for the Works are summarized in Table 2-1.

Table 2-1 Summary of Monitoring Parameters

MONITORING LOCATIONS

Designated Locations in the EM\&A Manual
2.03 Monitoring locations for EM\&A under EP-277/2007/A have been identified in the EM\&A Manual. They are shown in Annex F. According to the EM\&A Manual and agreement among the Engineer, IEC, Contractor and ET, the environmental monitoring stations closest to the construction site are to be adopted for the EM\&A under the Contract. As sensitive receiver MUP05-2 is the closest location to the Works site, it will most likely be impacted by the construction under the Works. The sensitive receiver MUP05-1 is therefore adopted as environmental monitoring locations for air quality namely MUP-A1 and construction noise namely MUP-N1.
2.04 On the other hand, as there was neither riparian vegetation along the banks of channel nor existing natural stream channel within the site of the Works, no ecology monitoring is required during the construction period of the Works.
2.05 Table 2-2 summarizes all the monitoring locations under the Works.

Table 2-2 Monitoring Locations

Issue	Channel	Sensitive Receiver	Monitoring Location ID	Detailed Address
Air	MUP05	MUP05-2	MUP-A1	Village house at Man Uk Pin
Noise	MUP05	MUP05-2	MUP-N1	same as Village house at Man Uk Pin

Additional Monitoring Locations

In order to monitor the potential construction impacts more effectively, additional environmental monitoring for construction noise and water quality has been recommended by the Engineer and IEC. They are summarized in Table 2-3 and shown in Annex F.
Table 2-3 Summary of Additional Environmental Monitoring Locations

Issue	Channel	Sensitive Receiver	Monitoring Location ID	Monitoring Time
Construction Noise	MUP05	MUP05-2	MUP-Nx (Village house)	Throughout the whole construction period
Water Quality	MUP05	-	MUP-Wx1 (Up-Stream Control Station)	Throughout the whole construction period
		MUP-Wx2 (Impact Monitoring Station)	Prior to connection of stream diversion	
		-	MUP-Wx3 (Impact Monitoring Station)	After connection of stream diversion

2.07 The additional monitoring is scheduled to be performed in August 2012 upon verification of the Methodology.

MONITORING FREQUENCY

2.08 The impact monitoring should be conducted during the construction period to ensure the environmental conditions comply with the environmental quality criteria i.e. A/L Levels. The impact monitoring frequency as stipulated in the EM\&A Manual is summarized below.

AIR QUALITY

Parameters: 24-Hour TSP and 1-Hour TSP.
Frequency: Once every 6 days for $24-$ Hour TSP \& three times every 6 days for 1-Hour TSP.
Duration: During the course of construction works

Construction Noise

Parameters: Leq(30 min) in six consecutive Leq (5 min) measurements..
Frequency: Once a week during 0700-1900 on normal weekdays:
Duration: During the course of construction works

WATER QUALITY

Parameters: Duplicate in-situ measurements of water depth, temperature, DO, $\mathrm{pH} \&$ turbidity; and laboratory testing of SS. Relevant data will also be measured time of sampling, DO Saturation, weather conditions and special phenomena.
Depths: \quad All measurements will be carried out at three water depths, namely, 1 m below water surface, mid-water depth, and 1 m above river bed. If the water depth is less than 6 m , the mid-depth measurement will be omitted. If the depth is less than 3 m , only the mid-depth measurement will be taken.

Frequency: 3 times a week with an interval of at least 36 hours between two consecutive sampling days
Duration: During the construction period of the channel works

MONITORING EQUIPMENT

2.09 The monitoring equipment for air quality, construction noise, stream water quality and ecology are summarized below.

AIR QUALITY

2.10 Air quality monitoring equipment is listed in the following Table 2-4.

Table 2-4 Air Quality Monitoring Equipment

Equipment	Model
24-Hour TSP	
High Volume Air Sampler (herein after 'HVS')	Grasby Anderson GMWS 2310 HVS
Calibration Kit	TISCH Model TE-5025A
$\mathbf{1 - H o u r ~ T S P ~}$	TSI DustTrak Model 8520
Portable Dust Meter	

CONSTRUCTION NOISE

2.11 Construction noise monitoring equipment is listed in Table 2-5.

Table 2-5 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B\&K Type 2238
Calibrator	B\&K Type 4231
Portable Wind Speed Indicator	Testo Anemometer

Water Quality

2.12 Monitoring equipment for water quality is listed in Table 2-6.

Table 2-6 Water Quality Monitoring Equipment

Equipment	Model / Description
In-situ Measurement	
Water Depth Detector	Eagle Sonar or steel ruler
Water Sampler	Teflon bailer / bucket
Thermometer \& DO meter	YSI Multimeter
pH meter	Extech pH EC 500
Turbidimeter	Hach 2100p
Tample Sontainer and Storage	High density polythene bottles (provided by laboratory) and 'Willow' 33-liter plastic cool box
Laboratory Analysis	
Suspended Solids	HOKLAS accredited Laboratory

EQUIPMENT CALIBRATION

2.13 The calibrations certificate of all monitoring equipment are used during the impact monitoring program are attached in Annex G and the calibration requirement are described in below:
AIR QUALITY
2.14 The calibration of the HVS is performed at a bimonthly interval in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model No.TE-5025A). The calibration data are properly documented and the associated records are maintained by the ET for future reference.
2.15 The 1-Hour TSP meter is calibrated at a year intervals in accordance with the in-house method. Zero response of the equipment is checked before and after each monitoring event.

NoISE

2.16 The sound level meters are calibrated using an acoustic calibrator prior to and after spot checking measurements. The meters are calibrated annually by HOKLAS accredited laboratory. Prior to and following each noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements are considered valid only if the calibration levels before and after the noise measurement agree to within 1.0 dB .

Water Quality

2.17 Once every three months, the in-situ monitoring instruments are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme.

Monitoring Procedure

2.18 The monitoring methodology and procedure during the impact monitoring are presented as below:

Air Quality

1-Hour TSP

2.19 Operation of the 1-Hour TSP meter is follow manufacturer's Operation and Service Manual. The 1-Hour TSP monitor, a TSI Dust Track Aerosol Monitor Model 8520, or Sibata LD-3 Laser Dust Meter is a portable, battery-operated laser photometer. The 1-Hour TSP meter provides a real time 1-Hour TSP measurement based on 90° light scattering. The 1 -Hour TSP monitor consists of the following:
(a) A pump to draw sample aerosol through the optic chamber where TSP is measured;
(b) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
(c) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
2.20 The 1-Hour TSP meter using was within the valid period, calibrated by the manufacturer prior to purchasing. Zero response of the instrument was checked before and after each monitoring event.

24 -hour TSP

2.21 The equipment used for 24-Hour TSP measurement is the HVS brand named Thermo Andersen, Model GS2310 TSP high volume air sampling system, which complied with EPA Code of Federal Regulation, Annex B to Part 50. The HVS consists of the following:
(a) An anodized aluminum shelter;
(b) A $8 " \times 10 "$ stainless steel filter holder;
(c) A blower motor assembly;
(d) A continuous flow/pressure recorder;
(e) A motor speed-voltage control/elapsed time indicator;
(f) A 6-day mechanical timer, and
(g) A power supply of $220 \mathrm{v} / 50 \mathrm{~Hz}$
2.22 The HVS is calibrated prior the impact monitoring to following the manufacturer's instruction using the NIST-certified standard calibrator brand named Tisch Calibration Kit Model TE-5028A. Regular HVS operation and maintenance as well as filter paper installation and collection was performed by the ET's competent technicians, whereas laboratory analyses were conducted in a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (hereinafter 'ALS'). The analyzed 24-Hour TSP filters were kept in ALS for six months prior to disposal.

METEOROLOGICAL INFORMATION

2.23 All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper is recorded in detail.
2.24 Meteorological information is sourced from the Hong Kong Observatory (Ta Kwu Ling Station). The data included wind direction, wind speed, humidity, rainfall, air pressure and temperature etc that in general is required for evaluating the air quality for air quality monitoring.

Construction Noise

2.25 Sound level meters listed above comply with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications, as recommended in Technical Memorandum BE issued under the Noise Control Ordinance (NCO).

All noise measurements are performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq(30 min) measurements are used as the monitoring parameter for the time period throughout the construction phase.
2.27 The sound level meter is set higher than 1.2 m above the existing ground. The microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield is fitted for all measurements. As the measurement point at impact locations is set close to the exterior of the building, i.e. no free field noise measurement is performed, free field correction will not be made for monitoring results.
2.28 Immediately prior to and following each noise measurement the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency (94 dBA). Measurements are accepted as valid due to the calibration levels from before and after the noise measurement agree to within 1.0 dB .

Water Quality

2.29 Water quality monitoring is conducted at the middle of the water columns (Mid-Depth) due to water columns at all sampling locations are less than 3.0 meters during monitoring.

Water Depth

2.30 Water depths are determined prior to measurement and sampling. A steel ruler with a suitable weight was dropped to the bottom of the water column to measure the water depth which is actually well below 1 meter.

Dissolved Oxygen (DO)

2.31 A portable Extech Instrument, ExStikR DO600 DO Meter is used for in-situ DO measurement. The DO meter is capable of measuring DO in the range of $0-20 \mathrm{mg} / \mathrm{L}$ and $0-200 \%$ saturation and checked against water saturated ambient air on each monitoring day prior to monitoring.
2.32 Although the DO Meter automatically compensates ambient water temperature to a standard temperature of $20^{\circ} \mathrm{C}$ for ease of comparison of the data under the changing reality, the temperature readings of the DO Meter is recorded.

pH

2.33 A portable Extech Instrument, ExStikTM Models pH EC 500 or a Hanna HI98107 pH Meter is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of $0-14$ and readable to 0.1 . Standard buffer solutions of pH 7 and pH 10 are used for calibration of the instrument before and after measurement.

Turbidity

2.34 A portable Hach 2100 p turbidity Meter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of $0-1000$ NTU.

Suspended Solids (SS)

2.35 SS is determined by ALS using HOKLAS accredited analytical methods namely ALS Method EA-025. The Limit of Reporting (hereinafter "LOR") is $2 \mathrm{mg} / \mathrm{L}$.

Water Sampler

2.36 Water samples are collected by the ET using a plastic sampler to avoid metal contamination. Due to water depth for both sampling locations are lesser than 0.5 m , a cleaned plastic beaker is used for sample collection. The sampler is rinsed before collection with the sample to be taken. $1,000 \mathrm{~mL}$ water sample is collected from depth for laboratory analyses.

Sample Container

2.37 Water samples are contained in screw-cap PE (Poly-Ethylene) bottles as provided by ALS. The PE bottles are pretreated by laboratory in accordance with the corresponding analytical requirements of HOKLAS. Where appropriate, the sampling bottles are rinsed with the water to be contained. Water sample is transferred from the sampler to the sample bottles to 95% bottle capacity to allow possible volume expansion during delivery and storage.

Sample Storage and delivery

2.38 A 'Willow' 33-liter plastic cool box packed with ice is used to preserve the collected water samples prior to arrival at the laboratory. The temperature of the cool box is maintained as close to $4^{0} \mathrm{C}$ as possible without being frozen. Samples are delivered to the laboratory end of sampling day or following day within the maximum storage time requirement.

Chemical Analysis

2.39 ALS Technichem (HK) Pty Ltd (HOKLAS No. 66) is appointed by ET to provide analytical services for this project. The analysis of suspended solids is carried out to follow the APHA Standard Methods for the Examination of Water and Wastewater 19ed 2540D. The sample preparation and analysis under the QA/QC control is follow the HOKLAS QA/QC requirements and undertaken by the laboratory.

Environmental Quality Performance Limits

2.40 Baseline monitoring for air quality and construction noise was carried out during 17 September to 13 October 2008 in close accordance with the requirements stipulated in the EM\&A Manual. The A/L Levels of MUP-A1 and MUP-N1 will be adopted for EM\&A for air quality and construction noise respectively. They are summarized in Table 2-7 and Table 2-8.
Table 2-7 Action and Limit Levels for Air Quality

Monitoring Station	Action Level $\left(\boldsymbol{\mu \mathrm { g }} / \mathbf{m}^{\mathbf{3}}\right)$		Limit Level $\left(\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}\right)$	
	1-Hour TSP	24-Hour TSP	1-Hour TSP	24-Hour TSP
MUP-A1	307	156	500	260

Table 2-8 Action and Limit Levels for Construction Noise (dB(A))

Time Period	Action Level	Limit Level
0700-1900 hours on normal weekdays	When one documented complaint is received	$75^{*} \mathrm{~dB}(\mathrm{~A})$

* Reduces to $70 \mathrm{~dB}(\mathrm{~A})$ for schools and $65 \mathrm{~dB}(\mathrm{~A})$ during the school examination periods.
2.41 Environmental quality criteria for additional water quality monitoring are proposed in Table 2-9 as follows:

Table 2-9 Action and Limit Levels for Additional Water Quality Monitoring

Action Level	Limit Level
120% of the corresponding Levels of	130% of the corresponding Levels of
Up-Stream Control Station	Up-Stream Control Station

Event and Action Plans

2.42 Event Action Plan for air quality, construction noise and water quality as stipulated in Annex \boldsymbol{H} will be triggered in cases of exceedances of A / L Levels.

Environmental Mitigation Measures

2.43 Environmental mitigation measures to minimize potential environmental impacts arising from the construction of the Contract have been recommended and summarized in Annex C of the previous First Monthly EM\&A Report for Drainage Works under EP-277/2007/A. Those related to the construction activities for the up-coming construction period are summarized in Table 7-2 Environmental Mitigation Measures for the Coming Month in Section 7 of this Report.

DATA MANAGEMENT AND DATA QUALITY CONTROL

2.44 The impact monitoring data is handled by the ET's systematic data recording and management, which complies with an in-house certified (ISO 9001:2000) Quality Management System. Standard Field Data Sheets (FDS) are used in the EM\&A program.
2.45 The monitoring data recorded in the equipment e.g. 1-Hour TSP meters and noise meters are downloaded directly at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data.
2.46 For monitoring activities which require laboratory analysis, the responsible laboratory, ALS, follows the QA/QC requirements as set out under their HOKLAS scheme for all laboratory testing.

3 ENVIRONMENTAL MONITORING RESULTS

AIr Quality

3.01 As agreed among the Engineer, IEC, Contractor and ET, the construction noise monitoring is performed at MUP-A1 of Channel MUP05.

Monitoring Results

3.02 The air quality monitoring results of 24-Hour and 1-Hour TSP during the Reporting Period are summarized in Tables 3-1 and Table 3-2. Detailed 24-Hour TSP monitoring data and the graphic plots of both 24-Hour and 1-Hour TSP are shown in Annex I.
Table 3-1 Summary of 1-Hour TSP Monitoring Results at MUP-A1 (MUP05), $\mu \mathrm{g} / \mathrm{m}^{3}$

Date	Start Time	$\mathbf{1 - H o u r ~ T S P ~ M o n i t o r i n g ~ R e s u l t s ~ a t ~ M U P - A 1 ~ (M U P 0 5) ~}$			
		$\mathbf{1}^{\text {st }}$	$\mathbf{2}^{\text {nd }}$	$\mathbf{3}^{\text {rd }}$	Mean
7-Jul-12	$10: 00$	67	71	71	70
13-Jul-12	$11: 25$	121	124	122	122
19-Jul-12	$13: 30$	56	54	59	56
25-Jul-12	$11: 00$	28	26	26	27
31-Jul-12	$13: 00$	205	210	201	205
Average (Range)	$\mathbf{9 6 ~ (\mathbf { 2 6 - 2 1 0 } \mathbf { ~) }}$				
A/L Levels					

Table 3-2 Summary of 24-Hour TSP Monitoring Results at MUP-A1 (MUP05), $\mu \mathrm{g} / \mathrm{m}^{3}$

Date	24-Hour TSP Monitoring Results at MUP-A1 (MUP05)
6-Jul-12	10
12-Jul-12	20
18-Jul-12	27
24-Jul-12	39
30-Jul-12	8
Average (Range)	$21(8-39)$
A/L Levels	$\mathbf{1 5 6} / \mathbf{2 6 0}$

DISCUSSION

3.03 As shown in Table 3-1 and Table 3-2, no exceedances of A/L Levels were recorded for 1-Hour TSP and 24Hour TSP during the Reporting Period.
3.04 Neither Notice of Exceedance (hereinafter "NOE") nor the associated remedial actions were required during the Reporting Period.

RECOMMENDATION

3.05 Nevertheless, the required environmental protection measures is reminded to be fully implemented and maintained as appropriate, in particular construction dust suppression measures during dusty construction activities under dry and windy conditions.

Construction Noise

3.06 As agreed among the Engineer, IEC, Contractor and ET, the construction noise monitoring is performed at MUP-N1 of Channel MUP05.
3.07 The additional construction noise monitoring is scheduled to be commenced in August 2012 at MUP-Nx upon verification of the Methodology by the IEC on 27 July 1012.
Monitoring Results
3.08 The construction noise monitoring results are summarized in Tables 3-3 and graphic plots of the monitoring results are shown in Annex I.

Table 3-3 Construction Noise Monitoring Results at Channels MUP-N1 (MUP05), dB(A)

Date	Start Time	$\mathbf{1}^{\text {st }}$ Leq5	$\mathbf{2}^{\text {nd }}$ Leq5	$\mathbf{3}^{\text {rd }}$ Leq5	$\mathbf{4}^{\text {th }}$ Leq5	$\mathbf{5}^{\text {th }}$ Leq5	$\mathbf{6}^{\text {th }}$ Leq5	Leq30					
7-Jul-12	$10: 00$	74.6	67.0	62.8	60.3	60.2	61.9	68					
13-Jul-12	$11: 32$	60.4	53.1	57.6	54.7	55.8	58.5	57					
19-Jul-12	$10: 15$	68.6	69.3	70.2	69.8	71.6	69.3	70					
25-Jul-12	$11: 30$	64.7	54.6	64.4	55.7	54.7	52.6	61					
31-Jul-12	$13: 30$	63.2	70.4	68.1	67.9	69.3	66.4	68					
$\mathbf{6 5 (5 7 - 7 0)}$													
Average (Range)													

DISCUSSION

3.09 No environmental complaints against construction noise were registered, indicating no Action Level exceedances were documented during the Reporting Period. In addition, as shown in Table 4-3, no exceedances of construction noise Limit Level of $75 \mathrm{~dB}(\mathrm{~A})$ were recorded.
3.10 Neither NOE nor the associated remedial actions were required during the Reporting Period for construction noise.

RECOMMENDATION

3.11 However, attention is drawn to construction noise mitigation measures during noisy construction activities.

WATER QUALITY

3.12 No water quality monitoring was conducted during the Reporting Period.
3.13 Additional water quality monitoring recommended by the Engineer and IEC is scheduled to be commenced in August 2012 at MUP-Wx1 and MUP-Wx2 upon verification of the Methodology by the IEC on 27 July 2012.
3.14 Nevertheless, no adverse water quality impacts were identified during weekly site inspection and audit as a result of the implementation of the effective water quality mitigation measures including covering of the cut slope or excavated area with tarpaulin sheeting or bunding the area by sandbags, etc. Particular attention is drawn to maintenance, and improvement as appropriate, of the existing water quality mitigation measures and full implementation of the required water quality protection measures.

METEOROLOGICAL DATA

3.15 Meteorological information downloaded from the Hong Kong Observatory Ta Kwu Ling Weather Station was summarized in Annex \boldsymbol{J} and used in the EM\&A of the Works.

CONCLUSION

3.16 As agreed among the Engineer, IEC, Contractor and ET, the air quality and construction noise monitoring is performed at the sensitive receiver closest to the Works site, i.e. MUP-A1 and MUP-N1 of Channels MUP05 respectively.
3.17 Additional water quality monitoring recommended by the Engineer and IEC is scheduled to be commenced in August 2012 at MUP-Wx1 and MUP-Wx2 upon verification of the Methodology by the IEC on 27 July 2012.
3.18 Neither exceedances of A / L Levels for air quality nor those for construction noise were recorded during the Reporting Period.
3.19 Neither NOE nor the associated remedial actions were required during the Reporting Period.
3.20 Nevertheless, the required environmental protection measures are reminded to be fully implemented and maintained as appropriate, in particular construction dust suppression measures during dusty construction activities under dry and windy conditions and water quality protection measures during wet season.

4 WASTE MANAGEMENT

4.01 Waste management is routinely carried out by the on-site Environmental Officer or Environmental Supervisor.
4.02 The quantity of waste for disposal or reuse is summarized in Monthly Summary of Waste Flow Table and Disposal Records of Construction Waste in Annex K.
4.03 To ensure satisfactory performance of the waste management, the Contractor is reminded to comply with all relevant regulatory requirements, including those stipulated in the effluent discharge licenses and chemical waste producer registration, as well as the EM\&A Manual, etc.
4.04 Where possible, construction materials should be reused on-site as far as practicable to reduce the construction waste, which should then be sorted or classified on site for proper recycling and disposal as recommended in the Environmental Management Plan and the associated Waste Management Plan.

5 ENVIRONMENTAL SITE INSPECTION

5.01 According to the EM\&A Manual, the environmental site inspection should be formulated by the ET Leader and regularly conducted jointly by the representatives of the ET, Contractor and ER. During the Reporting Period, a total of four (4) occasions of the site inspection were conducted on 5, 12, 19 \& 26 July 2012.
5.02 No non-compliance with the relevant regulatory requirements was identified. Observations of the regular site inspection and environmental audit during the Reporting Period are summarized in Table 5-1.
Table 5-1 Observations of Site Inspection during the Reporting Period

Date	Findings / Deficiencies	Follow-Up Status
$\mathbf{5}$ July 2012	Excavated soil was observed stock piled within the site at MUP05. Water quality mitigation measures are reminded during heavy rain. Concreting of channel bottom was observed within the site at MUPP5. Water quality mitigation measures for pH neutralization is reminded during rain to prevent ingress of excessive alkalinity into the receiving water body.	
$\mathbf{1 2}$ July 2012	Neither construction activities nor adverse environmental impacts were observed during the site inspection. However, full implementation of the required environmental protection measures is reminded.	Notgequired for general reminders $\mathbf{1 9}$ July 2012 $\mathbf{2 6}$ July 2012Turbid water was observed ponding within the site at MUP05. Water quality mitigation measures is reminded to prevent ingress of the excessive turbidity into the receiving water body.

5.03 Site inspection checklists completed and endorsed by all related parties on the date of site inspection have been kept by the ET and are available for inspection upon request.

6 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

6.01 No environmental complaint was received during the Reporting Period. Summary of environmental complaint is presented in Table 6-1 below.

Table 6-1 Summary of Environmental Complaints

Reporting Month	Environmental Complaint Statistics		
	Frequency	Cumulative	Complaint Nature
May 2012	0	0	NA
June 2012	0	0	NA
July 2012	0	0	NA

6.02 No summons and prosecution was received during the Reporting Period. Summary of summon and prosecution is presented in Table 6-2 and Table 6-3 below.
Table 6-2 Summary of Environmental Summons

Reporting Month	Environmental Summons Statistics		
	Frequency	Cumulative	Nature
May 2012	0	0	NA
June 2012	0	0	NA
July 2012	0	0	NA

Table 6-3 Summary of Environmental Prosecution

Reporting Month	Environmental Prosecution Statistics		
	Frequency	Cumulative	Nature
May 2012	0	0	NA
June 2012	0	0	NA
July 2012	0	0	NA

$7 \quad$ IMPACT FORECAST

KEy Environmental Issues

7.01 Key environmental issues to be considered in the up-coming month are summarized in Table 7-1 below:

Table 7-1 Key Environmental Issues for the Up-Coming Month

Item	Environmental Issue	Description
(a)	Air Quality	Despite aproaching of Hong Kong wet season, construction activities under the Contract may have the potential of generating adverse construction dust impacts during dusty construction activities under dry and windy conditions.
(b)	Water Quality	As the Hong Kong wet season has approached, surface runoff during heavy storm/rain may pollute the surrounding water bodies with suspended solids or turbidity, and concrete washing may change the alkalinity or acidity or pH value of the water bodies;
(c)	Chemical Waste	There exists potential of adverse water quality and soil contamination impacts via chemicals used or chemical waste generated during construction of the grease spillage or leakage from construction equipment and the associated oil containers within site areas;
(d)	Construction Noise	Construction noise impacts may be caused from noisy construction activities;

Environmental Mitigation Measures for the Coming Month

7.02 Environmental mitigation measures for construction of the Contract have been compiled in Annex C. Attention is drawn to implementation of the environmental mitigation measures for construction activities in the up-coming month as summarized in Table 7-2 below:

Table 7-2 Environmental Mitigation Measures for the Coming Month

Item	Environmental Issue	Description
(a)	Air Quality	Dust suppression measures, in particular proper watering during dusty construction activities under dry and dusty conditions, should be fully implemented;
(b)	Water Quality	Sedimentation or silt removal facilities of adequate capacity should be used, for proper treatment of any site effluent generated from stockpiles of construction materials/waste or dusty haul roads or excavated surfaces within the site during storm rain, prior to discharge to nearby water bodies in order to remove suspended solids or turbidity;
(c)	Chemical Waste	Proper handling and storage of chemical wastes should be maintained;
(d)	Construction Noise	Implementation of the construction noise mitigation measures during noisy construction works
(e)	Other	Follow-up actions for any defects identified during regular site inspection should be promptly taken to rectify the situation.

8 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

8.01 The environmental monitoring during the Reporting Period was conducted at MUP-A1 for air quality and at MUP- N1 for construction noise.
8.02 Additional water quality monitoring recommended by the Engineer and IEC is scheduled to be commenced in August 2012 at MUP-Wx1 and MUP-Wx2 upon verification of the Methodology by the IEC on 27 July 2012.
8.03 Monitoring results indicated that no exceedances of A / L Levels for air quality and construction noise during the Reporting Period. Neither NOE nor remedial actions were required during the Reporting Period.
8.04 No environmental complaint, notification of summons or successful prosecution was registered during the Reporting Period.
8.05 No non-compliance with regulatory requirements was identified in the site inspection during the Reporting Period, including the regular joint site inspection by the ER, IEC, ET and Contractor. However, defects of minor environmental significance were sometimes observed during the site inspection. The identified defects were normally rectified on site or within the specified time prior to the next site inspection.

RECOMMENDATIONS

8.06 The Contractor is reminded to fully comply with all relevant regulatory environmental requirements, including environmental mitigation measures stipulated in the EM\&A Manual.
8.07 Despite the approach of wet season, attention is drawn to full implementation of air quality mitigation measures, in particular the construction dust suppression measures, during dusty construction activities under dry and windy conditions.
8.08 On the other hand, during rainy conditions, full implementation of the required water quality mitigation measures is reminded to eliminate adverse water quality impacts generated from surfaces of haul roads, stock pile of excavated materials, etc.
8.09 In addition, attention is drawn to implementation of the construction noise mitigation measures during noisy construction works.

Annex A

Annex B

Environmental Management Organization and Communication Lines

Environmental Management Organization

and Communication Lines

Key
------- Line of Communication

Contact Details of Key Personnel

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Project Proponent / Engineer	Mr. WH POON	25947450	28278700
Environ	Independent Environmental Checker	Mr. Roger W.K. Leung	37430754	35486988
SHCC	Project Manager	Mr. Raymond Yau	24031165	26409286
SHCC	Site Agent	Mr. Elvin Lam	26409230	26409286
SHCC	Environmental Officer	Mr. Keith Li	26409230	26409286
AUES	Environmental Team Leader	Mr. T.W. Tam	$2959-6059$	$2959-6079$
AUES	Environmental Consultant	Mr. Wong Fu Nam	$2959-6059$	$2959-6079$
AUES	Environmental Team Supervisor	Mr. Ben Tam	$2959-6059$	$2959-6079$

Legends:

DSD (Project Proponent / Engineer) - Drainage Services Department
SHCC (Main Contractor) -Sang Hing Civil Constructors Co., Ltd

Environ (IEC) - Environ Hong Kong Limited
AUES (ET) - Action-United Environmental Services \& Consulting

Annex C

Implementation Schedule
for Environmental Mitigation Measures
(Refer to Annex C of the
First Monthly EM\&A Report for Drainage Works under EP-277/2007/A)

Annex D

Master Construction Program \& 3 month rolling Program

[^1]

Annex E

Impact Monitoring Schedule
for The Reporting Period and Up-Coming Month

IMPACT MONITORING SCHEDULE FOR THE REPORTING PERIOD

Date		Air Quality		NOISE*	WATER QUALITY**
		1-Hour TSP	24-Hour TSP		
Sun	1-July-12				
Mon	2-July-12				
Tue	3-July-12				
Wed	4-July-12				
Thu	5-July-12				
Fri	6-July-12				
Sat	7-July-12				
Sun	8-July-12				
Mon	9-July-12				
Tue	10-July-12				
Wed	11-July-12				
Thu	12-July-12				
Fri	13-July-12				
Sat	14-July-12				
Sun	15-July-12				
Mon	16-July-12				
Tue	17-July-12				
Wed	18-July-12				
Thu	19-July-12				
Fri	20-July-12				
Sat	21-July-12				
Sun	22-July-12				
Mon	23-July-12				
Tue	24-July-12				
Wed	25-July-12				
Thu	26-July-12				
Fri	27-July-12				
Sat	28-July-12				
Sun	29-July-12				
Mon	30-July-12				
Tue	31-July-12				
\square Monitoring Day Sunday or Public Holiday					

*Note: Additional construction noise monitoring recommended by the Engineer and IEC will be commenced in August 2012 at MUP-Nx upon verification of the Methodology by the IEC on 27 July 2012.
**Note: Additional water quality monitoring recommended by the Engineer and IEC will be commenced in August 2012 at MUP-Wx1 and MUP-Wx2 upon verification of the Methodology by the IEC by the IEC on 27 July 2012.

IMPACT MONITORING SCHEDULE FOR THE UP-COMING MONTH*
Monitoring Schedule for August 2012

Date		Air Quality		Noise	Water Quality
		1-hour TSP	24-hour TSP		
Wed	1-Aug-12				
Thu	2-Aug-12				
Fri	3-Aug-12				
Sat	4-Aug-12				
Sun	5-Aug-12				
Mon	6-Aug-12				
Tue	7-Aug-12				
Wed	8-Aug-12				
Thu	9-Aug-12				
Fri	10-Aug-12				
Sat	11-Aug-12				
Sun	12-Aug-12				
Mon	13-Aug-12				
Tue	14-Aug-12				
Wed	15-Aug-12				
Thu	16-Aug-12				
Fri	17-Aug-12				
Sat	18-Aug-12				
Sun	19-Aug-12				
Mon	20-Aug-12				
Tue	21-Aug-12				
Wed	22-Aug-12				
Thu	23-Aug-12				
Fri	24-Aug-12				
Sat	25-Aug-12				
Sun	26-Aug-12				
Mon	27-Aug-12				
Tue	28-Aug-12				
Wed	29-Aug-12				
Thu	30-Aug-12				
Fri	31-Aug-12				

	Monitoring Day
	Sunday or Public Holiday

*Note: Including additional construction noise monitoring recommended by the Engineer and IEC.
**Note: Including additional water quality monitoring recommended by the Engineer and IEC.

Annex F

Monitoring Locations

Monitoring Equipment Calibration Certificates

Items	Aspect	Description of Equipment	Date of Calibration	Date of Next Calibration
1*	Air	TSP Sampler Calibration Spreadsheet for MUP-A1	13 May 12	13 Jul 12
2		TSP Sampler Calibration Spreadsheet for MUP-A1	13 Jul 12	13 Sep 12
3		DustTrak Model 8520 EQ064	13 Sep 2011	13 Sep 2012
4		AM510 11008017	10 Oct 2011	10 Oct 2012
5	Noise	Bruel \& Kjaer Integrating Sound Level Meter EQ010 (Serial No. 2285721)	20 Apr 12	20 Apr 13
6		Bruel \& Kjaer Integrating Sound Level Meter EQ082 (Serial No. 2713428)	20 Apr 12	20 Apr 13
7		NL-31 Rion Sound Level Meter EQ068 (Serial No. 00410247)	20 Apr 12	20 Apr 13
8		Bruel \& Kjaer 4231 Acoustical Calibrator (Serial number 2713428)	20 Apr 12	20 Apr 13

Note:

* This Appendix G presents only calibration certificates of new monitoring equipment or those expired and re-calibrated during the Reporting Period (Renewed Item No. and Calibration dates will be highlighted for ease of checking). No valid calibration certificates presented in the previous report will be dittoed under environmental consideration.

輝創工程有限公司
Sun Creation Engineering Limited
Calibration and Testing Laboratory

Certificate of Calibration校正證書

Certificate No．：C122427
證書編號

ITEM TESTED／送檢項目（Job No．／序引編號：IC12－0960）
Description／儀器名稱 ：Integrating Sound Level Meter（EQ010）
Manufacturer／製造商 ：Gruel \＆Kjaer
Model No．／型號 ： 2238
Serial No．$/$ 編號 ： 2285721
Supplied By／委託者：Action－United Environmental Services and Consulting Unit A，20／F．，Gold King Industrial Building， 35－41 Tai Lin Pai Road，Kwai Chung，N．T．

TEST CONDITIONS／測試條件

Temperature／溫度 ：$(23 \pm 2)^{\circ} \mathrm{C}$
Relative Humidity／相對濕度 ：$\quad(55 \pm 20) \%$
Line Voltage／電壓 ：－－－

TEST SPECIFICATIONS／測試規範

Calibration check

DATE OF TEST／測試日期 ： 20 April 2012

TEST RESULTS／測試結果

The results apply to the particular unit－under－test only．
All results are within manufacturer＇s specification．
The results are detailed in the subsequent pages）．
The test equipment used for calibration are traceable to National Standards via ：
－The Government of The Hong Kong Special Administrative Region Standard \＆Calibration Laboratory
－Rohde \＆Schwarz Laboratory，Germany
－Fluke Precision Measurement Ltd．，UK
－Fluke Everett Service Center，USA
－Agilent Technologies，USA

Tested By
測試

Certified By
核證

L K Yeung

[^2]Sun Creation Engineering Limited－Calibration \＆Testing Laboratory
co $4 / \mathrm{F}$ ，Ting Shan Wan Exchange Building，I Hing On Lane，Then Mun．New Territories，Hong Kong

Tel電話： 29272606 Fax／粆其： 27448986

輝創工程有限公司
Sun Creation Engineering Limited
Calibration and Testing Laboratory

Certificate of Calibration校正證書

Certificate No．：C122427
證書編號

1．The unit－under－test（UUT）was allowed to stabilize in the laboratory for over 12 hours，and switched on to warm up for over 10 minutes before the commencement of the test．

2．Self－calibration using the B \＆K Acoustic Calibrator 4231， $\mathrm{S} / \mathrm{N}: 2713428$ was performed before the test．
3．The results presented are the mean of 3 measurements at each calibration point．
4．Test equipment ：

Equipment ID		Description	Certificate No．
CL280	40 MHz Arbitrary Waveform Generator		C120016 CL281
	Multifunction Acoustic Calibrator	DC110233	

5．Test procedure ：MA101N．
6．Results ：
6．1 Sound Pressure Level
6．1．1 Reference Sound Pressure Level

UUT Setting				Applied Value		UUT Reading IEC 60651	Type 1 Spec． （dB）
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq． (kHz)		
$50-130$	L $_{\text {AFP }}$	A	F	94.00	1	94.0	± 0.7

6．1．2 Linearity

UUT Setting				Applied Value		UUT Reading （dB）
Range （dB）	Parameter	Frequency Weighting	Time Weighting	Level （dB）	Freq． （kHz）	
50－130	$\mathrm{L}_{\text {AFP }}$	A	F	94.00	1	94.0 （Ref．）
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec．：$\pm 0.4 \mathrm{~dB}$ per 10 dB step and $\pm 0.7 \mathrm{~dB}$ for overall different．
6．2 Time Weighting
6．2．1 Continuous Signal

UUT Setting				Applied Value		UUT Reading （dB）	$\begin{gathered} \text { IEC } 60651 \\ \text { Type } 1 \text { Spec. } \\ \text { (dB) } \\ \hline \end{gathered}$
Range （dB）	Parameter	Frequency Weighting	Time Weighting	Level （dB）	Freq． （kHz）		
50－130	$L_{\text {AFP }}$	A	F	94.00	1	94.0	Ref．
	$\mathrm{L}_{\text {ASP }}$		S			94.0	± 0.1
	$\mathrm{L}_{\text {AIP }}$		I			94.1	± 0.1

[^3]
Certificate of Calibration
 校正證書

Certificate No．：C122427
證書編號

6．2．2 Tone Burst Signal（2 kHz）

UUT Setting				Applied Value			IEC 60651 Type 1 Spec． （dB）
Range （dB）	Parameter	Frequency Weighting	Time Weighting	Level （dB）	Burst Duration		
30－110	$\mathrm{L}_{\text {AFP }}$	A	F	106.0	Continuous	106.0	Ref．
	$L_{\text {AFMax }}$				200 ms	105.0	-1.0 ± 1.0
	$L_{\text {ASP }}$		S		Continuous	106.0	Ref．
	$L_{\text {ASMax }}$				500 ms	101.9	-4.1 ± 1.0

6．3 Frequency Weighting

6．3．1 A－Weighting

UUT Setting				Applied Value		UUT Reading （dB）	IEC 60651 Type 1 Spec． （dB）
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level （dB）	Freq．		
50－130	$\mathrm{L}_{\text {AFP }}$	A	F	94.00	31.5 Hz	54.6	-39.4 ± 1.5
					63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref．
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	－1．1（＋1．5；－3．0）
					12.5 kHz	89.7	－4．3（＋3．0；－6．0）

6．3．2 C－Weighting

UUT Setting				Applied Value		$\begin{aligned} & \text { UUT } \\ & \text { Reading } \\ & \text { (dB) } \end{aligned}$	IEC 60651 Type 1 Spec． （dB）
Range （dB）	Parameter	Frequency Weighting	Time Weighting	Level （dB）	Freq．		
50－130	$\mathrm{L}_{\text {CFP }}$	C	F	94.00	31.5 Hz	91.1	-3.0 ± 1.5
					63 Hz	93.3	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref．
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	90.9	－3．0（＋1．5 ；－3．0）
					12.5 kHz	87.8	－6．2（＋3．0；－6．0）

[^4]
Certificate of Calibration
 校正證書

Certificate No．：C122427
䲞書編號
6.4

Time Averaging

UUT Setting				Applied Value					UUT Reading （dB）	IEC 60804 Type 1 Spec． （dB）
Range （dB）	Parameter	Frequency Weighting	Integrating Time	Frequency （kHz）	Burst Duration （ms）	Burst Duty Factor	Burst Level （dB）	Equivalent Level （dB）		
30－110	$L_{\text {Acq }}$	A	10 sec ．	4	1	1／10	110.0	100	99.9	± 0.5
						$1 / 10^{2}$		90	89.6	± 0.5
			60 sec ．			$1 / 10^{3}$		80	79.8	± 1.0
			5 min ．			$1 / 10^{4}$		70	69.8	± 1.0

Remarks ：－Mfr＇s Spec．：IEC 60651 Type 1 \＆IEC 60804 Type 1
－Uncertainties of Applied Value ： $94 \mathrm{~dB}: 31.5 \mathrm{~Hz}-125 \mathrm{~Hz} \quad: \pm 0.40 \mathrm{~dB}$
$250 \mathrm{~Hz}-500 \mathrm{~Hz} \quad: \pm 0.30 \mathrm{~dB}$
$1 \mathrm{kHz} \quad: \pm 0.20 \mathrm{~dB}$
$2 \mathrm{kHz} \quad: \pm 0.40 \mathrm{~dB}$
$4 \mathrm{kHz} \quad: \pm 0.50 \mathrm{~dB}$
$8 \mathrm{kHz} \quad: \pm 0.70 \mathrm{~dB}$
$12.5 \mathrm{kHz} \quad: \pm 1.20 \mathrm{~dB}$
$104 \mathrm{~dB}: 1 \mathrm{kHz} \quad: \pm 0.10 \mathrm{~dB}$（Ref． 94 dB ）
$114 \mathrm{~dB}: 1 \mathrm{kHz} \quad: \pm 0.10 \mathrm{~dB}$（Ref． 94 dB ）
Burst equivalent level $: \pm 0.2 \mathrm{~dB}$（Ref． 110 dB
continuous sound level）
－The uncertainties are for a confidence probability of not less than 95% ．
Note ：
The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift，variations with environment changes，vibration and shock during transportation，overloading，mis－handling，or the capability of any other laboratory to repeat the measurement．Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment．

[^5]Sun Creation Engineering Limited－Calibration \＆Testing Laboralory
cio 4／F，Tsing Shan Wan Exchange Building， 1 Hing On Lane，Tuen Mun，New Territories．Hong Kong

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM
CLIENT:	ACTION UNITED ENVIRO SERVICES
ADDRESS:	RM A 20/F., GOLDEN KING IND BLDG,
	NO. 35-41 TAI LIN PAI ROAD,
	KWAI CHUNG,
	N.T., HONG KONG.
PROJECT:	--

WORK ORDER: HK1210811
LABORATORY: HONG KONG
DATE RECEIVED: 25/04/2012
DATE OF ISSUE: 02/05/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.
Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of ALS will be followed.

Scope of Test: Dissolved Oxygen, pH, Salinity, Temperature and Turbidity
Description: YSI Sonde
Brand Name:
YSI
Model No.: YSI 6820 / 650MDS
Serial No.: $\quad 02 \mathrm{~J} 0912$ / 02K0788 AA
Equipment No.:
--
Date of Calibration: 27 April, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.
Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd
11/F Chung Shun Knitting Centre
1-3 Wing Yip Street
Kwai Chung
HONG KONG

Phone: 852-2610 1044
Fax: 852-2610 2021
Email: hongkong@alsglobal.com

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:
Date of Issue:
Client:

Description:
Brand Name:
Model No.
Serial No.:
Equipment No.:
Date of Calibration:

HK1210811
02/05/2012
ACTION UNITED ENVIRO SERVICES

YSI Sonde
YSI
YSI 6820 / 650MDS
02J0912 / 02K0788 AA
27 April, 2012

Parameters:

Dissolved Oxygen
Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
6.43	6.33	-0.10
7.80	7.76	-0.04
8.35	8.30	-0.05
	Tolerance Limit ($\pm \mathrm{mg} / \mathrm{L})$	0.20

pH Value
Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.07	0.07
7.0	7.08	0.08
10.0	9.94	-0.06
	Tolerance Limit (\pm unit)	0.2

Salinity
Method Ref: APHA (21st edition), 2520B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (\%)
0		
10	0.00	--
20	10.67	6.7
30	21.12	5.6
	31.59	5.3
	Tolerance Limit ($\pm \%)$	10.0

Certificate of Calibration
 校正證書

Certificate No．：C122426
證書編號

ITEM TESTED／送檢項目（Job No．／序引編號：IC12－0960）
Description／儀器名稱 ：Acoustical Calibrator（EQ082）
Manufacturer／製造商 ：Cruel \＆Kjaer
Model No．／型號 ： 4231
Serial No．$/$ 編號 ： 2713428
Supplied By／委託者 ：Action－United Environmental Services and Consulting Unit A，20／F．，Gold King Industrial Building， 35－41 Tai Lin Pai Road，Kwai Chung，N．T．

TEST CONDITIONS／測試條件
Temperature／溫度 ：$(23 \pm 2)^{\circ} \mathrm{C}$
Relative Humidity／相對濕度 ：（55 $\pm 20) \%$
Line Voltage／電壓 ：－－－

TEST SPECIFICATIONS／測試規範

Calibration

DATE OF TEST／測試日期 ：20 April 2012

TEST RESULTS／測試結果

The results apply to the particular unit－under－test only．
All results are within manufacturer＇s specification．
The results are detailed in the subsequent pages）．
The test equipment used for calibration are traceable to National Standards via ：
－The Government of The Hong Kong Special Administrative Region Standard \＆Calibration Laboratory
－Rohde \＆Schwarz Laboratory，Germany
－Fluke Everett Service Center，USA
－Agilent Technologies，USA

Tested By測試

LK Young

Certified By
核證

Date of Issue ：$\quad 23$ April 2012簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory．
本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。
Sun Creation Engineering Limited－Calibration \＆Testing Laboratory
c／o 4／F，Tsing Shan Wan Exchange Building， 1 Hing On Lane，Turn Mun，New Territories，Hong Kong
輝創工程有限公司－校正及檢測旗驗所
coo 香港新界屯門興安里一號青山溙機樓四樓
Tel 電䀒． 29272606 Fax俥真． 27448986

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:
Date of Issue: Client:

Description:
Brand Name:
Model No.:
Serial No.:
Equipment No.:
Date of Calibration:

HK1210811
02/05/2012
ACTION UNITED ENVIRO SERVICES

YSI Sonde
YSI
YSI 6820 / 650MDS
02J0912 / 02K0788 AA
27 April, 2012
Date of next Calibration:
27 July, 2012

Parameters:

Temperature
Method Ref: Section 6 of International Accreditation New Zealand Technical
Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading $\left({ }^{\circ} \mathrm{C}\right)$	Displayed Reading $\left({ }^{\circ} \mathrm{C}\right)$	Tolerance $\left({ }^{\circ} \mathrm{C}\right)$
16.0	15.46	-0.5
25.0	24.66	-0.3
35.0	34.40	-0.6
	Tolerance Limit $\left({ }^{\circ} \mathrm{C}\right)$	2.0

Turbidity
Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (\%)
0	0.7	
4	4.31	--
10	10.7	7.7
20	20.9	4.0
50	53.8	7.6
100	107.4	7.4
	Tolerance Limit ($\pm \%)$	10.0

Annex H

Event/ Action Plan

Table 2.4

Event/Action Plan for Air Quality

EVENT	ACTION			
	ET Leader	IEC	ER	Contractor
ACTION LEVEL				
1. Exceedance for one sample	1. Identify source 2. Inform IEC, ER and Contractor 3. Repeat measurement to confirm findings 4. Increase monitoring frequency to daily	1. Check monitoring data submitted by ET Leader 2. Check Contractor's working method	1. Notify Contractor	1. Rectify any unacceptable practice 2. Amend working methods if appropriate
2. Exceedance for two or more consecutive samples	1. Identify source 2. Inform IEC, ER and Contractor 3. Repeat measurement to confirm findings 4. Increase monitoring frequency to daily 5. Discuss with IEC, Contractor and ER on remedial actions required 6. If exceedance continue, arrange meeting with IEC, ER and Contractor 7. If exceedance stops, cease additional monitoring	1. Checking monitoring data submitted by ET Leader. 2. Check Contractor's working method 3. Discuss with ET Leader and Contractor on possible remedial measures 4. Advise the ER on the effectiveness of the proposed remedial measures 5. Supervise implementation of remedial measures	1. $\begin{array}{lll}\text { Confirm } & \text { receipt } & \text { of } \\ & \text { notification } & \text { of } \\ & \text { failure } & \text { in }\end{array}$ writing 2. Notify Contractor 3. Ensure remedial measures properly implemented	1. Submit proposals for remedial actions to IEC and ER within 3 working days of notification 2. Implement the agreed proposals 3. Amend proposal if appropriate
LIMIT LEVEL				
1. Exceedance for one sample	1. Identify source 2. Inform IEC, ER, EPD and Contractor 3. Repeat measurement to confirm findings 4. Increase monitoring frequency to daily 5. Assess effectiveness of Contractor's remedial actions and kept IEC, EPD and ER informed of the results	1. Check monitoring data submitted by ET Leader 2. Check Contractor's working method 3. Discuss with ET Leader and Contractor on possible remedial measures 4. Advise the ER on the effectiveness of the proposed remedial measures 5. Audit implementation of remedial measures	$\begin{array}{llll}\text { 1. } & \text { Confirm } & \text { receipt } & \text { of } \\ \text { notification } & \text { of failure } & \text { in }\end{array}$ writing 2. Notify Contractor 3. Ensure remedial measures properly implemented	1. Take immediate action to avoid for the exceedance 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification 3. Implement the agreed proposals 4. Amend proposal if appropriate
2. Exceedance for two or more consecutive samples	1. Notify IEC, ER, Contractor and EPD 2. Identify source 3. Repeat measurement to confirm findings 4. Increase monitoring frequency to daily 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented 6. Arrange meeting with IEC, Contractor and ER to discuss the remedial actions to be taken 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results 8. If exceedance stops, cease additional monitoring	1. Discuss amongst ER, ET leader and Contractor on the potential remedial actions 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly 3. Audit the implementation of remedial measures	$\begin{array}{llll}\text { 1. } & \text { Confirm } & \text { receipt } & \text { of } \\ & \text { notification } & \text { of failure } & \text { in }\end{array}$ writing 2. Notify Contractor 3. In consultation with IEC, agree with the Contractor on the remedial measures to be implemented 4. Ensure remedial measures properly implemented 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid for the exceedance 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification 3. Implement the agreed proposals 4. Resubmit proposals if problem still not under control 5. Stop the relevant portion of works as determined by the ER until the exceedance is abate.

Table 3.3 Event/Action Plan for Construction Noise Monitoring

EVENT Action Level	ACTION			
	ET Leader 1. Notify IEC, Contractor and ER 2. Carry out investigation and identify source 3. Report the results of investigation to the IEC, Contractor and ER 4. Discuss with the Contractor and formulate remedial measures 5. Increase monitoring frequency 6. Check compliance to Action/Limit Levels after application of mitigation measures	IEC 1. Review the analysed results submitted by the ET Leader 2. Review the proposed remedial measures by the Contractor and advise the ER \& ET accordingly 3. Review the implementation of remedial measures	ER 1. Confirm receipt of notification of complaint in writing 2. Notify Contractor 3. Check monitoring data submitted by the ET 4. Require Contractor to propose remedial measures for the analysed noise problem 5. Ensure remedial measures are properly implemented	Contractor 1. Submit noise mitigation proposals to ER and IEC within three working 2. Liaise with the ER to ensure the effectiveness of the agreed mitigation 3. Amend proposal if required 4. Implement noise mitigation proposals
Limit Level	1. Notify IEC, ER, EPD and Contractor 2. Identify Source 3. Repeat measurement to confirm findings 4. Increase monitoring frequency 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented 6. Inform IEC, ER and EPD the causes \& actions taken for the exceedances 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results 8. If exceedance stops, cease additional monitoring	1. Check monitoring data submitted by ET 2. Discuss amongst ER, ET Leader and Contractor on the potential remedial actions 3. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER \& ET accordingly 4. Audit the implementation of remedial measures	1. Confirm receipt of notification of exceedance 2. Notify Contractor 3. Check monitoring data submitted by the ET 4. Require Contractor to propose remedial measures for the analysed noise problem 5. Discuss with ET, IEC and Contractor on proposed remedial actions to be implemented 6. Ensure remedial measures are properly implemented 7. Assess the effectiveness of the remedial actions and keep the Contractor informed 8. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	1. Take immediate action to avoid further exceedance 2. Submit proposals for remedial actions to ER within 3 working days of notification 3. Liaise with the ER to ensure the effectiveness of the agreed mitigation 4. Amend proposal if required 5. Implement the agreed proposals 6. Resubmit proposals if problem still not under control 7. Stop the relevant portion of works as determined by the ER until the exceedance is abated

Table 4.6 Event and Action Plan for Water Quality

Event	ET Leader	IEC	ER	Contractor
Action Level being exceeded by one sampling day	1. Repeat in-site measurement to confirm findings. 2. Identify source(s) of impact. 3. Inform IEC an Contractor. 4. Check monitoring data, all plant, equipment and Contractor's working methods. 5. Discuss mitigation measures with IEC and Contractor. 6. Repeat measurement on next day of exceedance.	1. Discuss with ET and Contractor on the mitigation measures. 2. Review proposals on mitigation measures. submitted by Contractor and advise the ER accordingly. 3. Assess the effectiveness of the implemented mitigation measures.	1. Discuss with IEC on the proposed mitigation measures. 2. Make agreement on the mitigation measures to be implemented. 3. Assess effectiveness of the implemented mitigation measures.	1. Inform the ER and confirm notification of the noncompliance in writing. 2. Rectify unacceptable practice. 3. Check all plant and equipment. 4. Consider changes of working methods. 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER. 6. Implement the agreed mitigation measures.
Action Level being exceeded by more than one consecutive sampling days	1. Repeat in-situ measurement to confirm findings; 2. Identify source(s) of impact. 3. Inform IEC and Contractor. 4. Check monitoring data, all plant, equipment and Contractor's working methods. 5. Discuss mitigation measures with IEC and Contractor. 6. Ensure mitigation measures are implemented. 7. Prepare to increase the monitoring frequency to daily. 8. Repeat measurement on next day of exceedance.	1. Discuss with ET and Contractor on the mitigation measures. 2. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly. 3. Assess the effectiveness of the implemented mitigation measures.	1. Discuss with IEC on the proposed mitigation measures. 2. Make agreement on the mitigation measures to be implemented. 3. Assess the effectiveness of the implemented mitigation measures.	1. Inform the ER and confirm notification of the noncompliance in writing. 2. Rectify unacceptable practice. 3. Check all plant and equipment. 4. Consider changes of working methods. 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days. 6. Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	1. Repeat in-situ measurement to confirm findings. 2. Identify source(s) of impact. 3. Inform IEC, contractor and EPD. 4. Check monitoring data, all plant, equipment and Contractor's working methods. 5. Discuss mitigation measures with IEC, ER and Contractor. 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level.	1. Discuss with ET and Contractor on the mitigation measures. 2. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly. 3. Assess the effectiveness of the implemented mitigation measures.	1. Discuss with IEC, ET and Contractor on the proposed mitigation measures. 2. Request Contract to critically review the working methods. 3. Make agreement on the mitigation measures to be implemented. 4. Assess the effectiveness of the implemented mitigation measures.	1. Inform the ER and confirm notification of the noncompliance in writing. 2. Rectify unacceptable practice. 3. Check all plant and equipment. 4. Consider changes of working methods. 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days. 6. Implement the agreed mitigation measures.

Event	ET Leader	IEC	ER	Contractor
Limit Level being exceeded by more than one consecutive sampling days		1. Discuss with ET and Contractor on the mitigation measures. 2. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly. 3. Assess the effectiveness of the implemented mitigation measures.	1. Discuss with IEC, ET and Contractor on the proposed mitigation measures. 2. Request Contractor to critically review the working methods. 3. Make agreement on the mitigation measures to be implemented. 4. Assess the effectiveness of the implemented mitigation measures. 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the work until no exceedance of Limit Level.	1. Inform the ER and confirm notification of the noncompliance in writing. 2. Rectify unacceptable practice. 3. Check all plant and equipment. 4. Consider changes of working methods. 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days. 6. Implement the agreed mitigation measures. 7. As directed by the ER, to slow down or to stop all or part of the work or construction activities.

AnNex I

24-HR TSP Data

AND
Graphical Plots of Environmental Monitoring Results

24-Hr TSP Data - MUP-A1 (Action Level: 156 Limit Level: 260)

DATE	SAMPLE NUMBER	ELAPSED TIME			CHART READING			AVG TEMP $\left({ }^{\circ} \mathrm{C}\right)$	STANDARD			FILTER WEIGHT (g)		WEIGHTDUSTCOLLECTED(g)	$\begin{gathered} \text { 24-hr TSP } \\ \text { in air } \\ \left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$
		INITIAL	FINAL	(min)	MIN	MAX	AVG		AVG PRESS (hPa)	$\begin{gathered} \text { FLOW } \\ \text { RATE } \\ (\mathrm{m} 3 / \mathrm{min}) \end{gathered}$	AIR VOLUME (std m3)	INITIAL	FINAL		
6-Jul-12	24865	3797.82	3822.89	1504.20	36	39	37.5	28.5	1006.1	1.4041	2112.05	2.7384	2.7605	0.0221	10
12-Jul-12	24872	3822.89	3848.47	1534.80	38	39	38.5	30	1006.9	1.4277	2191.16	2.7052	2.7509	0.0457	20
18-Jul-12	24870	3848.47	3872.58	1446.60	35	38	36.5	29.1	1006.6	1.3778	1993.13	2.7447	2.8011	0.0564	28
24-Jul-12	24902	3872.58	3898.57	1559.40	37	39	38	26.9	996.5	1.4148	2206.28	2.7264	2.8146	0.0882	39
30-Jul-12	24939	3898.57	3923.69	1507.20	35	38	36.5	29.4	1001.2	1.3966	2104.93	2.7958	2.8132	0.0174	8

24-hour TSP Results - MUP-A1

[^6]Action-United Environmental Services and Consulting

1-hOUR TSP Monitoring Results at MUP-A1

Date	1-Hour TSP Monitoring Results at MUP-A1 (MUP05)			
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	Mean
7-Jul-12	67	71	71	70
13-Jul-12	121	124	122	122
19-Jul-12	56	54	59	56
25-Jul-12	28	26	26	27
31-Jul-12	205	210	201	205
Average (Range)	$96(26-210)$			
A/L Levels	$307 / 500$			

1-hour TSP Results - MUP-A1

Construction Noise Monitoring Results at MUP-A1

		Construction Noise - MUP-N1 dB(A) - Leq30 \qquad Limit Level										
Date	Leq30	70					-					
7-Jul-12	68	65										
13-Jul-12	57											
19-Jul-12	70	60										
25-Jul-12	61	55										
31-Jul-12	68	50										
Average (Range)	$\begin{gathered} 65 \\ (57-70) \end{gathered}$	45										Date
		21 May 2012	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N} \\ & \underset{\infty}{\infty} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ले } \\ & 0 \\ & \text { O} \\ & \text { O } \end{aligned}$	N N 0 I $=$	$\widetilde{7}$ 0 0 0 0			$\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { N } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \\ & \text { Non } \end{aligned}$		$\begin{aligned} & \text { N1 } \\ & \text { N } \\ & \text { N } \\ & \text { N-M } \end{aligned}$

AnNex J

METEOROLOGICAL DATA

Meteorological Data from HKO for the Reporting Month

Date		Weather	Total Rainfall (mm)	Ta Kwu Ling				
		Mean Air		Wind	Mean	Wind		
Sun	1-Jul-12		HOLIDAY					
Mon	2-Jul-12	HOLIDAY						
Tue	3-Jul-12	Moderate southwesterly winds.	0	28.9	7.2	77	E/NE	
Wed	4-Jul-12	Mainly fine.	0	28.7	7.5	76	E/NE	
Thu	5-Jul-12	Very hot in the afternoon.	22	27.4	6.9	65	S/SE	
Fri	6-Jul-12	Moderate south to southwesterly winds.	0.8	28.5	8.7	78.5	SE	
Sat	7-Jul-12	Very hot during the day	2.7	28.9	9.2	80	SE	
Sun	8-Jul-12	Mainly fine.	0.4	28.8	7.2	77	SE	
Mon	9-Jul-12	Mainly fine and very hot	Trace	28.7	6	77	E	
Tue	10-Jul-12	Fine and very hot apart from one or two isolated showers at first.	Trace	28.8	6.6	74.7	S/SW	
Wed	11-Jul-12	Very hot in the afternoon.	Trace	29.2	7.2	75	S/SW	
Thu	12-Jul-12	Mainly cloudy with a few showers.	1.3	29	7.5	75.5	S/SW	
Fri	13-Jul-12	Hot with sunny intervals	9	28.8	10.5	78.5	S/SW	
Sat	14-Jul-12	Moderate southwesterly winds, fresh offshore.	7	29.5	8.5	75	S/SW	
Sun	15-Jul-12	Mainly fine and very hot.	2.1	30.2	6	71.5	S/SW	
Mon	16-Jul-12	Mainly fine and very hot.	18.1	29.9	8	75.5	S/SW	
Tue	17-Jul-12	Moderate south to southwesterly winds.	1	29.4	7.2	77.5	S/SW	
Wed	18-Jul-12	Sunny periods in the afternoon.	34.3	27.6	9	83.2	E	
Thu	19-Jul-12	Mainly cloudy with a few showers.	Trace	29.9	6.5	77	S/SW	
Fri	20-Jul-12	Mainly fine and very hot.	4.2	29.9	4.6	76.5	N/NE	
Sat	21-Jul-12	The Strong Wind Signal, No. 1	2.2	30.6	7.8	80	E/NE	
Sun	22-Jul-12	The Strong Wind Signal, No. 1	1	29	19.5	77	E/NE	
Mon	23-Jul-12	The Strong Wind Signal, No. 3	112	26.5	23.7	83	NE	
Tue	24-Jul-12	The Strong Wind Signal, No. 3	99.5	26.7	36.2	88.7	E/SE	
Wed	25-Jul-12	Moderate east to southeasterly winds.	82.3	25.6	13.1	91	E	
Thu	26-Jul-12	Cloudy with scattered showers and a few squally thunderstorms.	28.1	25.3	7.5	90.5	E	
Fri	27-Jul-12	Light winds.	25.7	25.9	8.9	89.7	E/SE	
Sat	28-Jul-12	Light winds.	Trace	27.3	5.9	80	E	
Sun	29-Jul-12	Isolated showers in the afternoon	0	28.5	7.5	73.5	E/NE	
Mon	30-Jul-12	fine and very hot.	0	29	8.2	72.2	W/SW	
Tue	31-Jul-12	Amber Rainstorm Warning Signal	9.5	30.5	8.2	79	W/SW	

AnNex K

Waste Flow Table
Montbly Summary Waste Flow Table

Contract No.: $\underline{\text { DC/2011/06 }}$
 Monthly Summary Waste Flow Table for July 2012

	Actual Quantities of Inert C\&D Materials Generated Monthly						Actual Quantities of Non C\&D Wastes Generated Monthly				
Month	Total Quantity Generated	$\begin{gathered} \text { Hard Rock and } \\ \text { Large Broken } \\ \text { Concrete } \end{gathered}$	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	$\begin{gathered} \text { Plastics } \\ \text { (see Note 3) } \end{gathered}$	Chemical Waste	Others, e.g. general refuse
	(in ${ }^{1000 m^{3} \text {) }}$	(in $000 \mathrm{~m}^{3}$)	(in $000 \mathrm{~m}^{3}$)	(in $1000 \mathrm{~m}^{3}$)	(in $1000 \mathrm{~m}^{3}$)	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)	(in '000 kg)	(in ${ }^{\prime} 000 \mathrm{~kg}$)	(in '000kg)	(in' 000 kg)	(in ${ }^{1} 000 \mathrm{~m}^{3}$)
jan-12	N/A	--	---	---	---	-	-	--	--	--	---
Feb-12	N/A	--	--	--	--	---	--	--	--	--	---
Mar-12	N/A	-	--	---	--	---	---	--	-	-	---
Apr-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	12.560
Jun-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.436
Jul-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	13.996

[^7]Disposal Records of Construction Waste

Weight-out Net weight$\begin{aligned} & \text { Weight－in } \\ & \text {（tonne）}\end{aligned}$
入閘重量
（公噸）
18.56
18.50
18.77
19.34
18.41
18.71
19.38
19.58
16.30
16.49
15.71

AnNeX L

RESPONSE TO COMMENTS

Contract no. DC/2011/06
Reprovisional of Boundary Patrol Road and Associated Security Facilities between Ping Yuen River and Pak Fu Shan and Drainage Works in North District IEC Comments on the Monthly EM\&A Report (July 2012) For Drainage Works under EP-277/2007/A

Item	Section / Paragraph	IEC Further Comments	ET RtC	IEC Further Comment	ET's Response
1.	Table 1-1	Please check any updated status. Notification pursuant to APCO is not a license and permit. Please put "N/A" in the column of Licences/Permit No.	Amended.	--	
2.	Table 1-2	Please confirm that construction of site office is one of major construction activities in July 2012	Construction of site office has been deleted.	--	
3.	3.14	Please advice the compliance of the water mitigation measures implemented by Contractor.	Sec 3.14 has been expanded to incorporate your comment.	As Contractor is not yet granted the discharge license and no wastewater discharge was performed in the site, please remove "pretreatment of surface water runoff during wet season, i.e. sedimentation of the site wastewater prior to discharge to the receiving water body via desilting facilities".	Deleted.
4.	$\begin{aligned} & 3.13,3.17 \\ & \text { and } 8.02 \end{aligned}$	Verification of the methodology had been performed during the reporting month. So, please re-sentence it. The verification date is incorrect. Please amend.	Text amended. The verification date is 27 July 2012 according to the date in your verification letter.	In version 0 , the verification date was dated 27 July 1012. It is recommended to revise to "at MUP-Wx1 and MUP-Wx2 upon verification of the Methodology by the IEC on 27 July 2012."	Revised.
5.	3.20	Please revise "during wet season.." to "during wet season."	Text amended.	--	
6.	Table 5-1	To avoid any confusion, please use appropriate wording instead of "Channel" for the observation on 19 \& 26 Jul.	Text amended.	--	
7.	5.03	Site inspection checklists have NOT endorsed by all related parties. Please sign the checklist on date of each site inspection as mentioned for confirmation.	Noted. The site inspection checklists have been sent to the Contractor for followup action as appropriate. Will urge	Apart from Contractor, it shall be endorsed by DSD and IEC. It is recommended you to give it to all parties sign on-site.	Agreed. The site inspection checklists are enclosed for your signature and return.

Item	Section / Paragraph	IEC Further Comments	ET RtC	IEC Further Comment	ET's Response
			the Contractor to return the endorsed copies for your inspection upon request.		
8.	Annex D	Please show 3 months rolling programme.	Pending provision of the program from the Contractor.	Please show it in coming reporting months.	Shown.
9.	Annex E	Please add a remark to descript the noise monitoring on 6-Aug is for addition noise monitoring if appropriate.	Remarks added.	--	
10.	Annex G	As per the Note in Annex G, please also include the expired certificate.	Included.	--	
11.	Annex H, Event/Action plan for Air	Some letters are missing in the first word of each row, please update.	Amended.	--	
12.	Annex I	Please include 1hr TSP and noise data in this Annex.	Included.	--	
13.	Annex K	Disposal records of construction waste have not recorded in the Monthly summary waste flow table. Please update.	Updated	--	
14.	Table 3-2	--	--	Please advise the range of 24 hr TSP is 8-39 or 8-40.	8-39.

Date: 13 August 2012

[^0]: $\overline{\mathrm{Z}: \backslash \text { Jobs } \backslash 2012 \backslash \text { TCS00599(DC-2011-06) } 600 \backslash E M \& A ~ R e p o r t \backslash M o n t h l y ~ E M \& A ~ R e p o r t \backslash D r a i n a g e ~ W o r k s ~ u n d e r ~ 27-2007-A \backslash 2 n d-J u l-2012 \backslash R 0024 ~(V e r s i o n ~ 2) . d o c x ~}$ Action-United Environmental Services and Consulting

[^1]: Z:Uobst20121TCS00599(DC-201 1-06) 600 Monthly EM\&A Report\Ist\Drainage Works under 27-2007-AlVersion 3\R0017 (Version 3).docx
 Action-United Environmental Services and Consulting

[^2]: The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in fill．ivithout the pries written approval of this laboratory

[^3]: The lest equipment used For calibration are traceable to the Nation Standards as specified in this cernficate．This centilento shall not be reproduced except in full，without the prion written approyal of this laboratory．

[^4]: The test equipment used for calibration are traceable to the Nation Standards as specified in this centificale．This certificate shall not be reproduced except in full，without the prien written approval of this labortiory

[^5]: The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in fullisvithout the prine written approval of this laboraiory．

[^6]: Z:\obs $2012 \backslash T C S 00599(D C-2011-06) \backslash 600 \backslash E M \& A$ ReportlMonthly EM\&A Report|Drainage Works under 27-2007-Al2nd-Jul-2012\R0024 (Version 2).docx

[^7]: (2) The waste flow table shall also include C\&D materials that are specified in the Contract to be imported for use at the Sites.
 (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.
 (4) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring.

