MTR Corporation Limited

HONG KONG SECTION OF GUANGZHOU – SHENZHEN – HONG KONG EXPRESS RAIL LINK (No. EP-349/2009/A)

Supplementary Contamination Assessment Report for Mei Lai Road Works Area

Verified by:

Position:

Independent Environmental Checker

Date:

15 November 2010

MTR Corporation Limited

HONG KONG SECTION OF GUANGZHOU – SHENZHEN – HONG KONG EXPRESS RAIL LINK (No. EP-349/2009/A)

Supplementary Contamination Assessment Report for Mei Lai Road Works Area

Certified by:

Position:

Environmental Team Leader

Date:

1 2 NOV 2010

Dragages - Bouygues Joint Venture

MTRC Express Rail Link Contract 821 Shek Yum to Mei Lai Road Tunnels

Land Contamination Assessment at Mei Lai Road Works Area

Supplementary Contamination Assessment Report for Mei Lai Road Works Area (Site T)

November 2010

	Name	Signature
Prepared & Checked:	Catherine Po	Pohin
Reviewed & Approved:	David Paton	120.

Version:	0	Date:	5 November 2010
----------	---	-------	-----------------

Disclaimer

This report is prepared for Dragages – Bouygues Joint Venture and is given for its sole benefit in relation to and pursuant to MTRC Express Rail Link Contract 821 XRL Contract 821 Shek Yum to Mei Lai Road Tunnels and may not be disclosed to, quoted to or relied upon by any person other than Dragages – Bouygues Joint Venture and MTRC without our prior written consent. No person (other than Dragages – Bouygues Joint Venture and MTRC) into whose possession a copy of this report comes may rely on this report without our express written consent and Dragages – Bouygues Joint Venture and MTRC may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3105 8686 Fax: (852) 2317 7609 www.aecom.com

Table of Content

			Page
1	INTR	ODUCTION	1
	1.1 1.2	Background Objectives	
2	FIND	INGS OF PREVIOUS LAND CONTAMINATION ASSESSMENT	2
3	CON	TAMINATION ASSESSMENT REPORT	3
	3.1 3.2 3.3 3.4	Assessment Methodology	4 6
List c	of Tables	s	
Table 2.1 Table 3.1 Table 3.2 Table 3.3		Potential Contaminative Land uses within Site T Deviation of SI Works from Sample Collection and Laboratory Analyses Plan Relevant RBRGs for Soil and Groundwater – Industrial Summary of Groundwater Levels	
List c	of Figure	es	

Figure XRL821/M57/021 As-built Sampling Locations

List of Appendices

Appendix A	Sampling and Testing Schedule Proposed in the approved rCAP
Appendix B	Site Boring Log
Appendix C	Groundwater Monitoring Well Diagram
Appendix D	Laboratory Results and Standard Forms 3.2 and 3.4 - Soil Data Summary and
	Comparison to RBRGs and Csat

1 INTRODUCTION

1.1 Background

- 1.1.1 The Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL) will be a 26-km long underground rail line on a dedicated track that runs from the terminus located in West Kowloon to the boundary at Huanggang. The project is a designated project under Items A.2, A.4, A.7 and Q.1 of Part 1, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO).
- 1.1.2 In accordance with the EIAO, an Environmental Impact Assessment (EIA) for the Hong Kong Section of XRL was conducted and approved on 28 September 2009 (Register No. AEIAR-143/2009) and an Environmental Permit (EP) No. EP-349/2009 was granted by the Director of Environmental Protection (DEP) on 16 October 2009. The EP (No. EP-349/2009) was then amended under application for Variation of an Environmental Permit No. VEP-323/2010 and has been replaced by Environmental Permit No. EP-349/2009/A on 27 September 2010.
- 1.1.3 During the time of the EIA study, Site T, located at Mei Lai Road Works Area was identified as an area with potential land contamination concerns which require further assessment, however, access to the site was not granted during the course of EIA study. The location of Site T is shown in **Figure XRL821/M57/021**. Pursuant to the new EP Condition 2.21, a revised contamination assessment plan (CAP) with an updated sampling and testing schedule based on current and historical site conditions of Site T; together with supplementary contamination assessment reports (CARs) and if contamination found, a supplementary remediation action plan (RAP) should be submitted to the Environmental Protection Department (EPD) for approval prior to the commencement of construction works at Site T.
- 1.1.4 The revised CAP (rCAP), which details proposed sampling locations and the proposed testing schedule for site investigation within Site T, was approved by Environmental Protection Department (EPD) in July 2010. The approved rCAP proposed a total of 8 locations within Site T for soil and groundwater sampling and testing.
- 1.1.5 Owing to the tight programme schedule, site investigation works for Site T were carried out between 3 and 17 June 2010. The SI works, however, were carried out in accordance with the requirements stipulated in the approved CAP except for changes made to accommodate specific site situation as delineated in **Section 3.1.2**. The site investigation, comprising rotary drilling of boreholes, excavation of trial pits, logging of ground materials, installation of groundwater monitoring wells and reinstatement of excavations was conducted by Vibro (HK) Limited (Vibro). Laboratory analyses were carried out by ALS Technichem (HK) Pty Limited (ALS).
- 1.1.6 AECOM Asia Company Limited (AECOM) was commissioned by MTR's appointed contractor Dragages-Bouygues Joint Venture (DBJV) as the environmental consultant to collate investigation and laboratory derived information for the preparation of this supplementary Contamination Assessment Report (supp. CAR) in accordance with the requirement stipulated in Condition 2.21 of the EP.

1.2 Objectives

- 1.2.1 This supplementary CAR is prepared to summarize findings of SI (including fieldworks and laboratory analyses) and determine the nature and extent of contamination based on the findings of the SI works conducted at Site T (Section 3).
- 1.2.2 This supp.CAR is submitted for endorsement by DEP in accordance with Condition 2.21 of the EP.

2 FINDINGS OF PREVIOUS LAND CONTAMINATION ASSESSMENT

2.1.1 According to the approved rCAP/EIA, the potential land contaminative activities identified at Site T are summarized in **Table 2.1**.

Table 2.1 Potential Contaminative Land uses within Site T

Potential Contaminative Area	Potential Contamination Impact								
Former oil depot	Site T was a car park during both site visits undertaken in EIA stage and in April 2010. Minor staining was observed on the paved ground surfacing during site visit in April 2010. Penetration of potential contaminants from the stains on the paved surface to the soil underneath is considered unlikely.								
	However, land contamination concern due to occupancy as an oil depot 30 years ago cannot be eliminated.								

2.1.2 To assess the potential contamination concern due to historical occupancy of an oil depot, a total of 8 sampling locations were proposed in grid arrangement. The sampling schedule proposed in the approved rCAP is provided in **Appendix A**.

3 CONTAMINATION ASSESSMENT REPORT

3.1 Assessment Methodology

Soil Boring and Sampling

- 3.1.1 The SI works at Site T was carried out from 3 June to 17 June 2010. A total of 8 boreholes were established within the site.
- 3.1.2 During SI, several minor amendments were made to the generic plan detailed in the rCAP in order to accommodate specific site conditions encountered. Soil boring at T-04 and T-05 were relocated due to underground utilities encountered within the first 1m below ground level. The relocated positions denoted T-04B and T-05A are considered to be representative with reference to the original locations. The locations of the boreholes established are shown in Figure XRL821/M57/021.
- 3.1.3 According to the rCAP, soil samples were proposed to be collected at approximately 0.5m, 1.5m, 3m, 4.5m and 6m below base of concrete (BBC) for all boreholes. Where an inspection pit was excavated, disturbed samples were proposed to be collected at 0.5m and 1.5m BBC and undisturbed samples were proposed collected from all other depths. Given the site was asphalt paved, sampling was thus undertaken at below ground surface (bgs) instead of below base of concrete (BBC) at all sampling locations. The impact of the deviation on the assessment is considered minimal as the layer of asphalt encountered was approximately 0.2m only. In addition to the above, deviation from the sampling plan has also resulted from encountered rock head at shallow depth and therefore soil samples were unable to be collected at these planned depths. Deviations from the sample collection and laboratory analyses plan are summarized in **Table 3.1**.

Table 3.1 Deviation of SI Works from Sample Collection and Laboratory Analyses Plan

Borehole	Sampling Depth	Changes Made	Justification				
All Borehole	All Sampling Depth	Sampling at below ground level (bgs) rather than below base of concrete	The site is asphalt paved rather than concrete paved. Impact on assessment is minimal as the layer of asphalt encountered was only around 0.2m				
T-01	6.0m	No sample collected for testing	Rock head encountered at proposed soil sampling depth				
T-08	6.5m	Additional Sample at 6.5m bgs taken	Suspected low recovery for sample collected at 6.0m				

- 3.1.4 Before drilling/trial pit construction, the sampling equipment and any equipment in contact with the ground was decontaminated using laboratory-grade detergent and steam-cleaning/high-pressure hot water jetting prior to use at each sampling location.
- 3.1.5 Soil samples were properly labelled and stored in cool boxes at approximately 4°C until delivery to ALS for laboratory analysis. All the collected soil samples in the SI were analyzed in accordance with the analysis schedules detailed in the approved rCAP.

Strata Logging

3.1.6 Strata logging for boreholes was undertaken during the course of drilling and sampling by a qualified geologist. The logs included the general stratigraphic descriptions, depth of soil sampling, sample notation and level of groundwater. The presence of rocks/boulders/cobbles and foreign materials such as metals, wood and plastics was also recorded. Soil boring logs are provided in **Appendix B**.

Groundwater Sampling

- 3.1.7 Groundwater was encountered in all boreholes. After completion of soil sampling, groundwater monitoring wells were installed at the 8 boreholes established. Details of groundwater monitoring wells are provided in **Appendix C**. Following installation, well development was carried out to ensure the well screen interval was in hydraulic communication with the monitored zone before being used for water quality sampling or water level measurements. Wells were bailed until the well was thoroughly flushed of standing water and well construction sediments, therefore, containing natural formation water. Adequate development was achieved when bailed water was relatively sediment-free and non-turbid. No evidence of non-aqueous phase liquids (NAPLs) were found during the groundwater development, purging or sampling exercise at all sampling locations.
- 3.1.8 Prior to groundwater sampling, each monitoring well was purged until at least three well volumes of water had been removed or the well purged dry, to ensure fresh, representative groundwater samples were obtained. The water level in each well was allowed to recover to its pre-purged static water level prior to sample collection
- 3.1.9 Immediate after collection, groundwater samples were transferred to new, clean, laboratory-prepared, "amber glass" type sample containers. Groundwater samples were placed in the glass jars with zero headspace and promptly sealed with a septum-lined cap. All samples were clearly labelled. Immediately following collection, samples were subsequently stored in cool box at about 4°C and delivered to analytical laboratory on the same day. All groundwater samples were analyzed in accordance with the analysis schedules detailed in the approved rCAP (Appendix A).

3.2 Assessment Criteria

Criteria for Soil and Groundwater Contamination

- 3.2.1 The assessment methodology adopted is in accordance with the Guidance Note for Contaminated Land Assessment and Remediation (Guidance Note 1), Guidance Manual for Use of Risk-Based Remediation Goals for Contaminated Land Management (Guidance Manual) and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshops (Guidance Note 2) issued by the EPD.
- 3.2.2 Interpretation of results has made reference to those Risk-Based Remediation Goals (RBRGs) presented in Table 2.1 and Table 2.2 as stipulated in the Guidance Manual.
- 3.2.3 The RBRGs are developed based on a risk assessment approach to suit the local environmental conditions and community needs in Hong Kong. Decisions on contaminated soil and groundwater remediation are based on the nature and extent of the potential risks that are posed to human receptors as a result of exposure to chemicals in the soil and/or groundwater. RBRGs are developed for four different land use scenarios reflecting the typical physical settings in Hong Kong under which people could be exposed to contaminated soil and groundwater. A description of each land use scenario is as follows:
 - <u>Urban residential</u> Sites located in an urban area where main activities involve habitation by individuals. The typical physical setting is a high rise residential building situated in a housing estate that has amenity facilities such as landscaped yards and children's playgrounds. The receptors are residents who stay indoors most of the time except for a short period each day, during which they are outdoors and have the chance of being in direct contact with soil at landscaping or play areas within the estate.
 - <u>Rural residential</u> Sites located in a rural area where the main activities involve habitation by individuals. These sites typically have village-type houses or low rise residential blocks

- surrounded by open space. The receptors are rural residents who stay at home and spend some time each day outdoors on activities such as gardening or light sports. The degree of contact with the soil under the rural setting is more than that under the urban setting both in terms of the intensity and frequency of contact.
- <u>Industrial</u> Any site where activities involve manufacturing, chemical or petrochemical processing, storage of raw materials, transport operations, energy production or transmission, etc. Receptors include those at sites where part of the operation is carried out directly on land and the workers are more likely to be exposed to soil than those working in multi-storey factory buildings.
- <u>Public parks</u> Receptors include individuals and families who frequent parks and play areas where there is contact with soil present in lawns, walkways, gardens and play areas.
 Parks are considered to be predominantly hard covered with limited areas of predominantly landscaped soil. Furthermore, public parks are not considered to have buildings present on them.
- 3.2.4 In addition to the RBRGs, screening criteria (soil saturation limits, Csat, developed for Non-aqueous Phase Liquid [NAPL] in soil and water solubility limits for NAPL in groundwater) for the more mobile organic chemicals must be considered to determine whether a site requires further action.
- 3.2.5 As reviewed in the approved rCAP, Site T will be occupied for railway facilities. According to the Guidance Manual, the corresponding RBRG land use for railway related facilities would be "Industrial". Relevant soil and groundwater RBRGs level for this land contamination assessment including soil saturation limit and solubility limit are presented in **Table 3.2**.

Table 3.2 Relevant RBRGs for Soil and Groundwater – Industrial

	Soil (r	ng/kg)	Groundwater (µg/L)			
Chemical	RBRGs for Industrial	Soil Saturation Limits	RBRGs for Industrial	Solubility Limits		
втех						
Benzene	9.21	336	54,000	1,750,000		
Ethylbenzene	8,240	138	10,000,000	169,000		
Toluene	10,000	235	10,000,000	526,000		
Xylenes (Total)	1,230	150	1,570,000	175,000		
Metals						
Lead	2,290	NA	NA	NA		
Petroleum Carbon Rang	jes					
C6 - C8	10,000	1000	1,150,000	5,230		
C9 - C16	10,000	3000	9,980,000	2,800		
C17 - C35	10,000	5000	178,000	2,800		

Note: NA - Not Available

3.3 Analytical Results and Interpretation

Field Records

3.3.1 Except for the changes detailed in **Section 3.1**. The SI works were undertaken in accordance with the sampling plan detailed in the approved rCAP. Soil boring logs for the SI works are presented in **Appendix B**. As reported by the land contamination specialist of MTR, no soil samples recovered during the ground investigation works exhibited unnatural colouration or otherwise notable odours that may imply contaminant impact.

Laboratory Analytical Results

Results of Soil Analysis

- 3.3.2 A total of 42 soil samples (including 2 duplicates) were collected during SI for laboratory analysis. All laboratory analyses were conducted using Hong Kong Laboratory Accreditation Scheme (HOKLAS) testing methods by a HOKLAS accredited laboratory. A summary table of laboratory testing results with laboratory reports and standard forms adopted from Guidance Manual for assessing the soil samples is presented in **Appendix D**.
- 3.3.3 Among all soil samples collected, no exceedance of relevant industrial RBRG and saturation limit was found. Given no evidence of NAPL was observed during soil boring, remediation within Site T is not considered necessary.

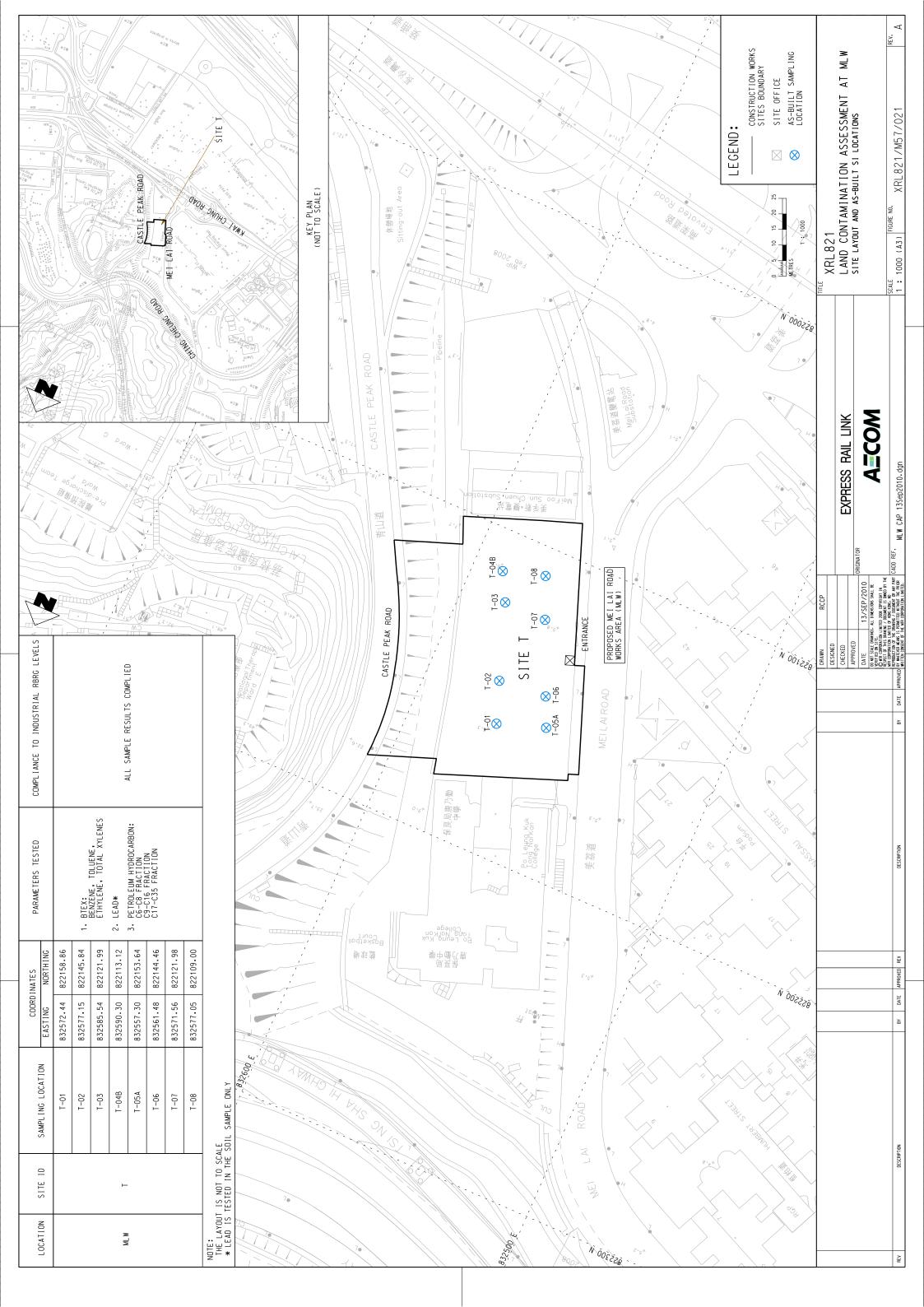
Results of Groundwater Analysis

3.3.4 A total of 9 groundwater samples (including 1 duplicate sample) were collected from the site. Depth to groundwater at each well location is presented in **Table 3.3** with groundwater monitoring well construction details provided in **Appendix C.** A summary table of the laboratory testing results with the laboratory reports and standard forms adopted from Guidance Manual for assessing groundwater samples are provided in **Appendix D**.

Table 3.3	Summary	of (Groundwater	Levels
-----------	---------	------	-------------	--------

	Groundy	Termination Depth						
Sample I.D.	Depth to Groundwater (m below ground)	mPD (m below HK Principal Datum)	of Groundwater Monitoring Well (m below ground)					
T-01	3.80	+2.70	4.85					
T-02	4.11	+2.27	6.50					
T-03	3.67	+2.64	6.50					
T-04B	4.10	4.10 +2.20						
T-05A	3.80	+2.49	6.20					
T-06	3.50	+2.74	6.50					
T-07	4.50	+1.49	6.24					
T-08	4.20	+1.87	7.20					

3.3.5 Based on the findings of site investigation and as confirmed by the land contamination specialist of MTR, no evidence of NAPL was observed at any of the sampling locations. According to Figure 3.3 of the Guidance Manual, no cleanup of groundwater is considered necessary at all sampling locations as chemical concentrations of all groundwater samples collected were below RBRG levels and solubility limit and no evidence of NAPL was observed.


Results of QA/QC Analysis

- 3.3.6 QA/QC is the practice of ensuring that sample collection and analytical techniques provide precise and accurate information. This process is undertaken to validate that levels of contamination measured in the environmental samples reflect the actual environmental levels and are not due to accidental contamination of the sample or sample container. Under this contamination assessment, a total of 2 sets of duplicate sample, field blank, equipment blank for soil and 1 set of the above-mentioned QA/QC for groundwater were sampled and analysed in accordance with the approved rCAP.
- 3.3.7 In addition to the above, a total of 10 trip blank samples were included in the sample shipment from Site T to the laboratory. The laboratory results for QA/QC samples are presented in **Appendix D**.
- 3.3.8 Based on the findings of laboratory analysis, the QA/QC procedures for sample collection and preparation are considered to be acceptable as the analytical results for equipment blanks and field blanks recorded concentration below the method detection limits.
- 3.3.9 In order to assess the sampling and laboratory reproducibility and precision, the relative percent difference (RPD) between primary and duplicate parameters was determined. The calculation, as presented in **Appendix D**, shows that RPDs were not calculated for the majority of parameters as the concentrations of either primary or duplicate samples were below the limit of reporting. All calculated RPD values are considered acceptable as they are within the range of 0-50% for soil and 0-30% for groundwater.

3.4 Conclusions and Recommendations

3.4.1 According to the results of site investigation, a total of 42 soil samples (including 2 duplicate samples) and 9 groundwater samples (including 1 duplicate) were collected within Site T. No exceedance of relevant industrial RBRGs and saturation/solubility limit was identified in any soil and groundwater samples collected. Based on the site observation, no evidence of NAPL was observed at any of the sampling locations. Remediation for soil and groundwater is therefore not considered required.

APPENDIX A

SAMPLING AND TESTING SCHEDULE PROPOSED IN THE APPROVED rCAP

3.3 No site representative was available for interview during the site visit however based on observation, Site T is currently used as a car park. In general the ground was asphalt paved and small areas of oil staining were observed during the site visit. No significant difference in the layout of Site T was found between recent observation and findings of the approved EIA. Given that there have been no official records of dangerous goods licensing; no records of chemical spillage/leakage based on the approved CAP of XRL EIA (Appendix F and G of approved CAP referred); and the oil stains observed on the paved surface were small, penetration of potential contaminants from the stains on the paved surface to the soil underneath is considered unlikely. Land contamination impact due to current site operation is therefore not expected. However, as Site T was occupied by an oil depot 30 years ago, the potential for land contamination cannot be eliminated and a site investigation is still proposed within Site T.

4. SAMPLING AND TESTING PLAN FOR SITE INVESTIGATION

- 4.1 Based on the findings of further site inspection and information acquired from the approved CAP, a total of 8 sampling locations are proposed within Site T to assess the potential land contamination concern associated with the historical operation of the site. Given no hotspots are identified during the latest site inspection, sampling locations are proposed in a grid arrangement as recommended in the approved CAP and with reference to the Guidance Note 2. The proposed sampling locations are illustrated in Figure C8016/C/XRL/ENS/M57/002. The selection of potential chemicals of concern (COCs) for laboratory analysis at each proposed sampling location has made reference to the nature of historical land use of the site, the Guidance Note 1 and 2, Guidance Manual and the approved CAP. The sampling and testing plan, together with rationales for selecting the sampling locations, are summarized in Table 4.1.
- 4.2 The exact sampling locations of the site investigation (SI) shall be determined on site and will be subject to fine adjustment due to site specific conditions (e.g. locations, presence of foundations, underground utilities, delivery pipes and services).

Table 4.1 Sampling and Testing Plan for Site T

Proposed				Paramete	rs to be T		
Sampling Location ¹	Sampling Method	Saı	mple Matrix ^{2,3,5}	Petroleum Carbon Ranges	втех	Heavy Metals	Rationale
		Soil	0.5m BBC	X	Х	Pb	To assess potential
		Soil	1.5m BBC	Х	Х	Pb	land contamination
		Soil	3.0m BBC	Х	Х	Pb	impacts which may
T01-T08	Borehole to 6m	Soil	4.5m BBC	Х	Х	Pb	have resulted from
		Soil	6.0m BBC	X	Χ	Pb	historic land use as
		GW	If present^	Х	Х	-	an oil depot 30 years ago

Remarks:

- 1. Locations are shown in Figure C8016/C/XRL/ENS/M57/002.
- 2. BBC= below base of concrete slab: GW=groundwater
- 3. Exact sampling depth shall be determined on site and subject to fine adjustment due to site specific conditions (e.g. hard rocks or groundwater encountered (if any).
- 4. X = testing proposed
- 5. The number of samples may subject to change
- ^ Samples will only be collected if groundwater is encountered during SI works.

Soil Sampling Method and Depth of Sampling

- 4.3 All soil boring / excavation and sampling should be supervised by a land contamination specialist.
- 4.4 The drilling of boreholes should be undertaken by means of dry rotary drilling method, i.e. without the use of flushing medium, to prevent cross-contamination during sampling. For safety reasons, an inspection pit should be excavated down to 2.0m below ground to inspect for underground utilities at the proposed borehole location. The site appraisal in the approved CAP identified historical operation of Site T as an oil depot which required further investigation. Soil boring is proposed undertaken down to a depth of approximately 6m below base of concrete (BBC) in order to

APPENDIX B SITE BORING LOG

VIBRO								VIBRO (H.K.) LIMITED SITE INVESTIGATION DEPARTMENT								DRILLHOLE No. T-01				
'	V			Ĭ		Ĭ	1	Ц							НΟ				CORD	SHEET 1 OF 1
	PR	OJE	СТ			Inve Lai I			n of	Gro	und Conta	ami	inatior	n for N	/lei Lai \$	Shaft V	Vorks A	Area,	CONTRACT No.	807
	MI	ETHO	DD			R	otar	y			CO-ORD	ΝI	ATES		E 832572.44				WORKS ORDER No.	N/A
ı	MACH	IINE	& No.			VE	BM5	1							N	8221	58.86		DATE	09/06/2010 to 11/06/2010
FL	USHI	JSHING MEDIUM NIL								GROUNE) L	.EVEL		4	+ 6.50 ı	mPD		ORIENTATION	Vertical	
:	Drilling Progress	Casing Depth/Size	Water Depth (m)	Water Returns %	Total core Recovery % Solid core Recovery % R.Q.D. Fracture Index F.I. Depths			F.I. Depths	Test Depths	Tests				P Reduced (mPD)		Legend	Grade	Des	cription	
2 - 09 - 11 - 11 - 11 	//06/2010	PW 4.50		α	196/	S				4.85	22 bls 13 bls 200 bls		No. Typ A B C1 2 3 4	1.50 1.95 2.00 3.00 4.53 4.83 4.87	+5.50 +5.50 +2.00	0.00		V	subangular fine to coarse grarock fragments and concrete Brownish grey, fine to coarse medium gravel sized highly decomposed rock fragments Brown, locally reddish brown SAND with some angular to sized highly decomposed an fragments. (FILL)	e SAND with some angular fine to decomposed and moderately (FILL) n, locally clayey / silty fine to coarse subangular fine to medium gravel id moderately decomposed rock wn, mottled dark brown and dark and medium grained GRANITE. (Fine angular fine to medium gravel)
- - - - - - - 10																				
•	Pistor	samp	ample ole sample			¥	In-si Perr	itu va neabi	penet ne she lity te neter	ear te st		L	OGGEI	D	T. C.	Yip	2. A g	inspe	ection pit was excavated to 1.50 dwater sampling well was insta	lled to 4.85m.
	U76 u	ndistu	rbed sa urbed s	ample			Pack Acou telev	ker Te ustic o viewei	est or opt surve			D	ATE		17/06/2	2010			nental soil samples were collec onmental water sample was co	ted at 0.50m, 1.50m, 3.00m, 4.50m. llected at 4.85m.
	Mazie SPT I	r sam	ple	•		₫	Piez Star	omet ndpipe	er tip			С	HECKI	ED	E. Leu	ıng				
▲ En	•							ating		oiezo	ometer test	Þ	DATE		18/06/2	2010				

J200942e

VIRRO										SIT	E	VIBI	R(TED PARTMENT	DRILLHOLE No. T-02					
			U				U				D	RIL	L	ΗО	LE	R	E	CORD	SHEET 1 OF 1	
PF	ROJE	CT		Site	Inve a, Me	estig ei La	jatio ii Ro	n of	Gro	Ground Contamination for Mei Lai Shaft Wo								CONTRACT No.	807	
М	ETH	DD			R	otar	y		CO-ORDINATES E 83257									WORKS ORDER No.	N/A	
MAC	HINE	& No).		VBM51									N	8221	45.84		DATE	12/06/2010 to 12/06/2010	
FLUSH	ING I	MEDI	UM		1	VIL				GROUN	DI	LEVEL		+	6.38	mPD		ORIENTATION	Vertical	
Drilling Progress	Casing Depth/Size	Water Depth (m)	Water Returns %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture	F.I. Depths	Test Depths	Tests		Sample		Reduced E. Level (mPD)	o Depth (m)	Legend	Grade	Des	cription	
12/06/2011	PW PW	4.00m at 18:00		196/					6.50	24 bis 21 bis 57 bis	<u></u>	A A III III III III III III III III III	0.50 1.00 1.50 1.95 2.00 3.45 3.50 4.50 6.00 6.45 6.50	+6.38	0.00 0.20 - 0.20 - 1.50 - 1.50 		V	some angular to subangula highly decomposed and me fragments, and occasional Brown and dark brown, loc SAND with some angular te gravel sized highly decomposed rock fragment decomposed rock fragment fragments.	ally clayey / silty fine to coarse of subangular fine to medium losed and moderately st. (FILL) attitled white and dark brown, redium grained GRANITE. (Silty ome angular fine to medium	
							: -					OGGED	T	T. C. Y	ip	REMA		ntion pit was everythed to 4.50	m	
											H	ATE		17/06/20		2. A gı 3. Env	round ironm			
											_	HECKED		E. Leu		2,000,000	6.00m enviro	n. onmental water sample was col	lected at 6.50m.	
											-		-							
									DATE				18/06/20)10						

			0					 		SIT	Ē	VIB INV	R() (H TIG/	I.K.) LI ON D	MI	TED PARTMENT	DRILLHOLE No. T-03
			U				U					RIL	<u> </u>	ΗО	LE	R	E	CORD	SHEET 1 OF 1
PF	ROJE	СТ		Site Area					f Gro	ound Con	ntan	ninatior	for I	Vlei Lai	Shaft \	Works		CONTRACT No.	807
М	ETH	DD			R	otar	у			CO-OR	RDII	NATES		Е	8325	85.54		WORKS ORDER No.	N/A
MACI	HINE	& No			VE	3 M 5	1							N	8221	21.99		DATE	14/06/2010 to 14/06/2010
FLUSH	ING I	MEDIL	JM		ı	NIL			Γ	GROU	ND	LEVEL		+	6.31	mPD		ORIENTATION	Vertical
Drilling Progress	Casing Depth/Size	Water Depth (m)	Water Returns %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture	F.I. Depths	Test Depths	Tests		Samp		Reduced Level (mPD)	o Depth (m)	Legend	Grade	Des	cription
14/06/201	0 PW									16 bls		A B C1	0.50 1.00	+6.06	- 0.25			some angular to subangular moderately decomposed ro	, locally clayey very silty fine to
	1,00									15 bls		2	1.95 2.00					coarse SAND with some ar	ngular to subangular fine to decomposed and moderately
				91						34 bis		5 6	3.45 3.50 4.50 4.95 5.00	+1.81	4.50	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IV	some angular fine to coarse decomposed rock fragment Brown, mottled dark brown	s. (ALLUVIUM) highly decomposed medium
14/06/2010	PW 6.00 4.20m at 18:00							6.50	33 bis	Ť	7 8 8	6.00 6.45 6.50	+0.31	6.50	0 000	V	grained GRANITE. (Recove some angular fine to coarse Extremely weak, brown, mo	ered as angular COBBLE with e gravel) ottled grey, completely ed GRANITE. (Fine to coarse ne to medium gravel)	
0										· · · · · · · · · · · · · · · · · · ·	Ti	OGGED		T. C. Y	in	REMA			
											-		+		-	2. A gı	round	ction pit was excavated to 1.50 water sampling well was instal ental soil samples were collec	
											F	ATE		17/06/20	UTU	and	6.00n		
										С	HECKE	D	E. Leui	ng					
											D	ATE		18/06/20	10				

1										SIT	Έ	VIB INV	R(ES	O (H STIGA	I.K.) LI N D	MI EP	I TED PARTMENT	DRILLHOLE No. T-04B
\								Ш			D	RII	LL	ΗО	LE	R	Ε(CORD	SHEET 1 OF 1
	PR	OJE	СТ			Inve Lai I			n of G	Fround Conta	ami	ination	for N	Mei Lai S	Shaft W	orks A	\rea,	CONTRACT No.	807
	M	ETHO	DD			R	otary	y		CO-ORE	DIN	ATES		Е	83259	90.30		WORKS ORDER No.	N/A
N	//ACH	IINE	& No.			VE	3M5	3						N	8221	13.12		DATE	15/06/2010 to 17/06/2010
FLU	JSHI	NG N	/IEDIL	JM		W	/ate	r		GROUNI	DL	EVEL		+	- 6.30 r	mPD		ORIENTATION	Vertical
	Progress	Casing Depth/Size	Water Depth (m)	Water Returns %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture	F.I. Depths	Tests		Samp No. Type		P Reduced Level (mPD)	o.o Depth (m)	Legend	Grade	Des	cription
_ 17/ 	06/2010 06/2010 06/2010	PW			/186/					24 bls		AB C D1	1.00 1.50 1.95 2.00	+4.80	- 0.20			subangular fine to medium g decomposed rock fragments (FILL) Brown and reddish brown, lo SAND with some angular to sized highly decomposed an	coarse SAND with some angular to ravel sized moderately and occasional asphalt fragments. Coally clayey / silty fine to coarse subangular fine to medium gravel d moderately decomposed rock
3					186/					21 bls		3 4	3.00 3.45 3.50					some angular to subangular	ntly silty fine to coarse SAND with fine to medium gravel sized highly y decomposed rock fragments.
<u> </u>		PW			186/					57 bls		5	4.50 4.95 5.00						
Ē	<u>06/2010</u>	6.00) 	93	93	13.6	6.00 6.22 6 6.85	174 bis	1	8 T2IQ	. 5.38 6.00 6.85)	6.00	**************************************		slightly decomposed mediun Joints are widely spaced, loc rough stepped, very narrow t manganese stained, dipping	ially closely and medium spaced, to extremely narrow, iron and 20° to 30° and 40° to 50°. ng, pinkish grey, dappled dark n spaced joints.
	Pistor Split s U76 u	samp poon ndistu	sample rbed sa	mple		→>	In-si Pern Pres Pack	itu vai neabi ssurer ker Te	ne shea lity test neter to	t est	H	OGGED)	T. C. \	-	2. Wa 3. A g 4. Env	inspe iter flu ground	ection pit was excavated to 1.50 ush is used only for drilling in r dwater sampling well was insta mental soil samples were collec	ock.
	Mazie	r sam		amp	le	ੈ	Piez	iewer omet omet odpipe	er tip	/	С	HECKE	D	E. Leu	ıng	5. A d	luplica	m. ate environmental soil sample v ironmental water samples were	
A	SPT li Water Enviro	rsamp	•	nple		† 1	Obs	ervati ating	on well wire pi	ezometer er test	D	ATE		19/06/2	010			•	

			0		1	I	n	 		SIT	E	VIB INVI	R(ES) (H TIG/	I.K. ATIC	.) LI ON D	MI	TED PARTMENT	DRILLHOLE No. T-05A
			U								D	RIL	<u> </u>	НО	LE	R	E	CORD	SHEET 1 OF 1
PF	ROJE	CT		Site Area	Inve a, Me	estig ei La	atio i Ro	n of ad	Gro	ound Cont	an	nination	for	Mei Lai	Shaft	Works		CONTRACT No.	807
М	ETH	DD			R	otar	/			CO-ORE	۸IC	NATES		Е	8325	57.30		WORKS ORDER No.	N/A
MACI	HINE	& No).		VE	3 M 5	1							N	8221	53.64		DATE	09/06/2010 to 10/06/2010
FLUSHI	NG I	MEDI	UM			NIL				GROUN	DΙ	EVEL		+	6.29	mPD		ORIENTATION	Vertical
Drilling Progress	Casing Depth/Size	Water Depth (m)	Water Returns %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture Index	F.I. Depths	Test Depths	Tests		Sampl No. Type		Reduced Level (mPD)	o Depth (m)	Legend	Grade		cription
09/06/2010 				100						12 bls		AB C D1	1.00 1.50 1.95 2.00	+6.04	1.50			angular to subangular fine decomposed rock fragment concrete fragments. (FILL) Soft to firm, brown, mottled clayey SILT with some ang highly decomposed rock fra	white and dark brown, sandy ular fine to medium gravel sized agments. (FILL)
				106						14 bls 21 bls		5 6	3.45 3.50 4.50 4.95 5.00					SAND with some angular to	and white, silty fine to coarse o subangular fine to coarse osed rock fragments. (FILL)
- 10/06/2016 - 10/06/2016 	PW 6.00			0					6.20	200 bls	<u></u>	T2[0]	5.70 6.00 6.16 6.21	+0.59	5,70		V	Extremely weak, dark brow	lerately decomposed rock Ingular cobble (MDG), (FILL) In, mottled brown, completely ed GRANITE. (Fine to coarse ne to medium gravel)
												OGGED ATE		T. C. Y		2. A g 3. Env	inspe round		
										9	_	HECKE	+			4. A d	uplica	n. Ite environmental soil sample v onmental water samples were c	
												ATE	-	E. Leui					

			0		0		n			SIT	E	VIB INVE	R() (H	. K .) LI ON D	MI EP	TED PARTMENT	DRILLHOLE No. T-06
V			I				U				D	RIL	. L	НΟІ	_ E	R	E	ORD	SHEET 1 OF 1
PF	ROJE	СТ			Inve a, Me					ound Cont	am	nination	for I	Mei Lai	Shaft \	Works		CONTRACT No.	807
M	ETH	DD			R	otar	у			CO-ORE	AIC	IATES		Е	8325	61.48		WORKS ORDER No.	N/A
MACH	HINE	& No).		VE	3M5	1							N	8221	44.46		DATE	08/06/2010 to 08/06/2010
FLUSHI	NG N	MEDI	UM		1	NIL				GROUN	DL	.EVEL		+	6.24	mPD		ORIENTATION	Vertical
Drilling Progress	Casing Depth/Size	Water Depth (m)	Water Returns %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture	F.I. Depths	Test Depths	Tests		Sampl No. Type		Reduced F. Level (mPD)	o Depth (m)	Legend	Grade	Des	cription
08/06/2010				/196/						30 bls 13 bls 15 bls		A A B B C 1	0.50 1.00 1.50 2.00 3.45 3.50 4.50 4.50	+5.24	0.00 - 0.25 - 1.00 - 1.50 - 1.50			some angular to subangula highly decomposed rock fra fragments. (FILL) Dark reddish brown, silty fir angular to subangular fine decomposed and moderate (FILL) Brown, mottled white, silty thangular fine gravel sized his fragments. (FILL) From 3.00m to 3.45m: Firm angular fine gravel.	n, sandy clayey SILT with some
08/06/2010	3.80m 196								6.50		L	OGGED	6.45 6.50	-0.26	6,50 	2. A g	nspec ound	manganese stained relict jo some angular fine to coarse End of Investigation Hole at the state of the state o	edium grained GRANÎTÉ with ints. (Fine to coarse SAND with a gravel) t 6.50m.
							DATE			11/06/2010 3. Env			ironm 6.00m	ental soil samples were collec	ted at 0.50m, 1.50m, 3.00m, 4.50m				
												ATE	+	15/06/2010					

			ı			T	n			SITI	E	INA	ES) (H TIGA	TIC) LI ON D	IVII EF	PARTMENT	DRILLHOLE No. T-07
			U								D	RIL	. L	НΟІ	LE	R	E	CORD	SHEET 1 OF 1
PF	ROJE	СТ					jatio i Ro		Gro	ound Cont	am	nination	for I	Vlei Lai∶	Shaft \	Works		CONTRACT No.	807
М	ETH	OD			R	otar	y			CO-ORE	NΙC	IATES		Е	8325	71.56		WORKS ORDER No.	N/A
MACI	HINE	& No			VE	3M5	1							N	8221	21.98		DATE	03/06/2010 to 05/06/2010
FLUSH	NG I	MEDIL	JM		ı	NIL				GROUNI	D L	.EVEL		+	5.99	mPD		ORIENTATION	Vertical
Drilling Progress	Casing Depth/Size	Water Depth (m)	Water Returns %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture Index	F.I. Depths	Test Depths	Tests		Sampl No. Type		Reduced E Level (mPD)	o. Depth (m)	Legend	Grade	Desc	cription
03/06/2011 03/06/2011 05/06/2011	PW 6.00	Dry at 12:00		/96/ /96/					6.20	21 bls 22 bls 40 bls	4∵	A A B C 1 2 2 3 4 4 5 6 6	3.00 1.50 1.95 2.00 3.45 3.50 4.50 6.00 6.00 6.01 6.24	+5.74	0.00 - 0.25 - 1.00 - 1.50 - 1.50			some angular to subangula highly decomposed and mo fragments. (FILL) Reddish brown, silty fine to angular to subangular fine to decomposed rock fragment (Concrete) and brick fragments of the subangular to subang	to coarse gravel sized highly its, some subangular cobbles ents. (FILL) silty fine to coarse SAND with it fine to coarse gravel sized agments. (FILL) slightly silty fine to coarse SAND negular fine to medium gravel and moderately decomposed
7. 											D.	OGGED ATE HECKEL	0	T. C. Y 11/06/20 E. Leur	110 ng	2. A g 3. Env and	inspe round ironn 6.00n		lled to 6.24m. ted at 0.50m, 1.50m, 3.00m, 4.50m

							1	>		SITI	E	VIB INVI	R(ES) (H Tiga	I.K.) LI DN D	MI EF	TED PARTMENT	DRILLHOLE T-08	No.
			0				U				D	RIL	L	НО	LΕ	R	E	CORD	SHEET 1 OF	1
PI	ROJE	:CT			Inve a, Me				Gro	und Cont	am	nination	for I	Vlei Lai	Shaft \	Works		CONTRACT No.	807	
N	ETH	OD			R	otar	y			CO-ORE	AIC	IATES		Е	8325	77.05		WORKS ORDER No.	N/A	
MAC	HINE	& No).		VE	3M5	1							N	8221	09.00		DATE	03/06/2010 to 03/06	6/2010
FLUSH	ING I	MEDII	JM		1	VIL				GROUNI	D L	EVEL		+	6.07	mPD		ORIENTATION	Vertical	
Drilling Progress	Casing Depth/Size		Water Returns %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture	F.I. Depths	Test Depths	Tests		Sampl No. Type		+ Reduced Evel (mPD)	o.o Depth (m)	Legend	Grade	Desi	cription	
	0 PW	Dry at 08:00		88						15 bls 10 bls		A B C1	1.00 1.50 1.95 2.00	+5.82	1.50			Asphalt surface. Dark brown and greyish brown SAND with some angular to gravel sized highly decomp decomposed rock fragment fragments. (FILL) Brown, silty fine to coarse Subangular fine to medium and moderately decomposed.	o subangular fine to coarse osed and moderately is and occasional asphalt SAND with some angular to gravel sized highly decomed rock fragments. (FILL)	0
5 - - - - - - - - - - - - - - - - - - -	PW 6.00									12 bis 35 bis .		7 8 9	4.50 4.95 5.00 6.00 6.45 6.50	-0.43	- 4.50 			Brown, fine to coarse SANI gravel sized highly decomp decomposed rock fragment	osed and moderately s. (FILL)	
	0	2.60m at 18:00		98					7.20		D	DGGED ATE		-1.13 T. C. Y)10	2. A gr 3. Env 6.00 4. An e	nspectorns round ironm m and enviro	subrounded fine to medium decomposed and moderate (FILL) End of Investigation Hole at the substitution pit was excavated to 1.50 water sampling well was installental soil samples were collect 6.50m. onmental water sampling well was bact ondwater sampling well was bact of substitution of the substitution	m. led to 7.20m. ted at 0.50m, 1.50m, 3.00m, lected at 7.20m.	
											-	HECKEI ATE						ental water sample.	,	

APPENDIX C GROUNDWATER MONITORING WELL DIAGRAM

Groundwater Monitoring Well Diagram Project : MTRC Express Rail Link Contract 821 Shek Yam to Mei Lai Road Boring Log No. : T-01 and Contamination Assessment at Mei Lai Road Date: 09/06/2010 to 11/06/2010 Ground Level: +6.50 mPD SI Location : Mei Lai Road Driller : VIBRO (HK) Limited Depth Below Ground Surface (m bgs) Drilling Soil Sample **Description of Material** Well Diagram Process I.D. Sample 09-06-2010 Ground Surface (Asphalt) Flush-Mounted Cover Γop of Bentonite 0.0 m bgs Γop of Sand 1.5 m bgs Soft, Dark brown, sandy clayey SILT with some angular to subangular fine to coarse gravel sized moderately 09-06-2010 0.5 decomposed rock fragments and concrete fragments. (FILL) 11-06-2010 Hand Dig 1.0 Brownish grey, fine to coarse SAND with some angular fine to medium gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) 1.5 Brown, locally reddish brown, locally clayey / silty fine to coarse SAND with some angular to subangular fine to medium gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) 2.0 2.5 3.0 Rotary Drilling 3.5 Length 3.35 m Inside Diameter (ID) 0.05 m Type of Material uPVC 4.0 3.8 m bgs Water first noticed 1.85 m bgs Extreme weak, pinkish brown, mottled dark brown and dark grey, completely decomposed medium grained GRANITE 11-06-2010 (Fine to coarse SAND with some angular fine to medium 4.85 m bgs gravel) End of soil bore = 4.87 m bgs Remarks: **Boring Details** Well Installation Details Soil bore Diameter : 0.115 m Well Diameter: 0.05 m Total Depth : 4.87 m bgs Total Depth: 4.85 m bgs Screen: 1.5 to 4.85 m bgs Sand Pack: 1.5 to 4.85 m bgs Dry Auger: 0.0 to 4.87 m bgs Wet Auger: -Water First Noticed: 1.85 m bgs Bentonite Seal: 0.0 to 1.5 m bgs Grout: -Ground Completion : Flush

Project : MTRC Express Rail Link Contract 821 Shek Yam to Mei Lai Road Boring Log No. : T-02 and Contamination Assessment at Mei Lai Road Date : 12/06/2010 to 12/06/2010 Ground Level: +6.38 mPD SI Location : Mei Lai Road Driller : VIBRO (HK) Limited Depth Below Ground Surface (m bgs) Drilling Soil Sample **Description of Material** Well Diagram Process I.D. 12-06-2010 Ground Surface (Asphalt) Flush-Mounted Cover Top of Bentonite 0.0 m bgs Brown and dark brown, locally silty fine to coarse SAND with Top of Sand 2.0 m bgs some angular to subangular fine to coarse gravel sized highly decomposed and moderately decomposed rock fragments, and occasional asphalt fragments. (FILL.) Hand Dig 1.0 Brown and dark brown, locally clayey / silty fine to coarse SAND with some angular to subangular fine to medium gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) 2.0 2.5 3.0 3.5 Rotary Drilling 4.0 Length 4.50 m Inside Diameter (ID) 0.05 m Type of Material <u>uPVC</u> 4.5 Standing Water Level 4.11 m bas Water first noticed 3.50 m bgs 5.0 6.0 Extremely weak, brown, mottled white and dark brown, completely decomposed medium grained GRANITE. (Silty fine o coarse SAND with some angular fine to medium gravel) 12/06/2010 6.50 m bgs End of soil bore = 6.50 m bgs Remarks: **Boring Details** Well Installation Details Soil bore Diameter : 0.115 m Well Diameter: 0.05 m Total Depth : 6.50 m bgs Dry Auger: 0.0 to 6.50 m bgs Total Depth: 6.50 m bgs Screen: 2.00 to 6.50 m bgs Wet Auger: -Sand Pack: 2.00 to 6.50 m bgs Water First Noticed: 3.5 m bgs Bentonite Seal: 0.00 to 2.00 m bgs Grout: <u>-</u> Ground Completion : <u>Flush</u>

Project : MTRC Express Rail Link Contract 821 Shek Yam to Mei Lai Road Boring Log No. : T-03 and Contamination Assessment at Mei Lai Road Date: 14/06/2010 to 14/06/2010 Ground Level: +6.31 mPD SI Location : Mei Lai Road Driller : VIBRO (HK) Limited Depth Below Ground Surface (m bgs) Drilling Soil Sample **Description of Material** Well Diagram Process I.D. 14-06-2010 Ground Surface (Asphalt) Flush-Mounted Cover Γop of Bentonite 0.0 m bgs Γop of Sand 2.0 m bgs Greyish brown and dark brown, fine to coarse SAND with some angular to subangular fine to medium gravel sized noderately decomposed rock fragments. (FILL) Hand Dig 1.0 1.5 Grey, locally reddish brown, locally clayey very silty fine to coarse SAND with some angular to subangular fine to medium gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) 2.0 2.5 3.0 3.5 4.50 m Length Inside Diameter (ID) <u>0.05 m</u> Type of Material <u>uPVC</u> Standing Water Level 3.67 m bgs Rotary Drillin 4.0 ater first noticed 3.5 m bgs 4.5 Brown, mottled dark brown, angular COBBLE (MDG) with some angular fine to coarse gravel sized moderately decomposed rock fragments. (ALLUVIUM) 5.0 Brown, mottled dark brown, highly decomposed medium grained GRANITE. (Recovered as angular COBBLE with some angular fine to coarse gravel) 6.0 Extremely weak, brown, mottled grey, completely decomposed medium grained GRANITE. (Fine to coarse SAND with some angular fine to medium gravel) 14/06/2010 6.50 m bgs End of soil bore = 6.50 m bgs Remarks: **Boring Details** Well Installation Details Soil bore Diameter : 0.115 m Well Diameter: 0.05 m Total Depth : 6.50 m bgs Total Depth: 6.50 m bgs Dry Auger: 0.0 to 6.50 m bgs Screen: 2.00 to 6.50 m bgs Wet Auger: -Sand Pack: 2.00 to 6.50 m bgs Water First Noticed: 3.5 m bgs Bentonite Seal: 0.00 to 2.00 m bgs Grout: <u>-</u> Ground Completion : <u>Flush</u>

Project : MTRC Express Rail Link Contract 821 Shek Yam to Mei Lai Road Boring Log No. : T-04B and Contamination Assessment at Mei Lai Road Date: 15/06/2010 to 17/06/2010 Ground Level: +6.30 mPD SI Location: Mei Lai Road Driller: VIBRO (HK) Limited Depth Below Ground Surface (m bgs) Drilling Soil Sample Well Diagram **Description of Material** Process I.D. 15-06-2010 Ground Surface (Asphalt) Flush-Mounted Cover Top of Bentonite 15-06-2010 0.0 m bgs 17-06-2010 Greyish brown, silty fine to coarse SAND with some angular to Top of Sand 2.0 m bgs subangular fine to medium gravel sized moderately decomposed rock fragments and occasional asphalt fragments. (FILL) Hand 1.0 Brown and reddish brown, locally clayey / silty fine to coarse SAND with some angular to subangular fine to medium gravel sized highly decomposed and moderately decomposed rock fragments, (FILL) 2.0 2.5 3.0 3.5 Dark brown and brown, slightly silty fine to coarse SAND with some angular to subangular fine to medium gravel sized highly decomposed and moderately decomposed rock ragments. (FILL) Screen 4.0 Length 4.50 m Rotary Drilling Inside Diameter (ID) 0.05 m Type of Material <u>uPVC</u> 4.5 Standing Water Level 4.10 m bas Water first noticed 3.5 m bgs 5.0 6.0 Strong to very strong, pinkish grey, mottled white and dark grey, slightly decomposed medium grained GRANITE. Joints are widely spaced, locally closely and medium spaced, rough stepped, very narrow to extremely narrow, iron and manganese stained, dipping 20° to 30° and 40° to 50°. From 6.00m to 6.27m: Strong, pinkish grey, dappled dark 6.5 End Cap 6.50 m bgs prown with closely to medium spaced joints 17-06-2010 End of soil bore = 6.85 m bgs Remarks: **Boring Details** Well Installation Details Soil bore Diameter : 0.115 m Well Diameter: 0.05 m Total Depth : 6.85 m bgs Total Depth: 6.50 m bgs Dry Auger: 0.0 to 6.00 m bas Screen: 2.00 to 6.50 m bgs Sand Pack: 2.00 to 6.85 m bgs Wet Auger: 6.00m to 6.85 bgs Water First Noticed: 3.5 m bgs Bentonite Seal: 0.00 to 2.00 m bgs Grout: Ground Completion : Flush

Project : MTRC Express Rail Link Contract 821 Shek Yam to Mei Lai Road Boring Log No. : T-05A and Contamination Assessment at Mei Lai Road Date: 09/06/2010 to 10/06/2010 Ground Level: +6.29 mPD SI Location : Mei Lai Road Driller : VIBRO (HK) Limited Depth Below Ground Surface (m bgs) Drilling Soil Sample Well Diagram **Description of Material** Sample Method I.D. **Process** 09-06-2010 Ground Surface (Asphalt) Flush-Mounted Cover Top of Bentonite 0.0 m bgs Top of Sand 1.7 m bgs Dark brown, slightly silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed rock 0.5 fragments, occasional asphalt and concrete fragments. (FILL) Hand 1.0 09-06-2010 10-06-2010 Soft to firm, brown, mottled white and dark brown, sandy clayey SILT with some angular fine to medium gravel sized highly decomposed rock fragments. (FILL) 2.0 2.5 3.0 Brown, mottled dark brown and white, silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed rock fragments. (FILL) 3.5 Length 4.50 m Rotary Drilling Inside Diameter (ID) 0.05 m 4.0 Type of Material uPVC Standing Water Level 3.80 m bgs 3.20m bgs 4.5 5.0 Dark brown, mottled brown, sandy angular medium to coarse GRAVEL sized moderately decomposed rock fragments and occasional angular 6.0 cobble (MDG) (FILL) Extremely weak, dark brown, mottled brown, completely decomposed medium grained GRANITE. (Fine to coarse SAND with some angular fine to medium gravel) 10-06-2010 6.20 m bgs End of soil bore = 6.21 m bgs Remarks: **Boring Details** Well Installation Details Soil bore Diameter : 0.115 m Well Diameter: 0.05 m Total Depth : 6.21 m bgs Total Depth: 6.20 m bgs Dry Auger: 0.0 to 6.21 m bgs Screen: 1.70 to 6.20 m bgs Wet Auger: -Sand Pack: 1.70 to 6.20 m bgs Bentonite Seal: 0.00 to 1.70 m bgs Water First Noticed: 3.20 m bgs Ground Completion: Flush

Project : MTRC Express Rail Link Contract 821 Shek Yam to Mei Lai Road Boring Log No. : T-06 and Contamination Assessment at Mei Lai Road Date: 08/06/2010 to 08/06/2010 SI Location : Mei Lai Road Ground Level: +6.24 mPD Driller : VIBRO (HK) Limited Depth Below Ground Surface (m bgs) Drilling Soil Sample **Description of Material** Well Diagram Process I.D. 08-06-2010 Ground Surface (Asphalt) Flush-Mounted Cover Γop of Bentonite 0.0 m bgs Γop of Sand 2.0 m bgs Dark grey and greyish brown, silty fine to coarse SAND with some angular to subangular fine to medium gravel sized highly decomposed rock fragments and occasional asphalt fragments. (FILL) Βġ 1.0 Dark reddish brown, silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed and moderately decomposed rock fragments. 1.5 Brown, mottled white, silty fine to coarse SAND with some angular fine gravel sized highly decomposed rock fragments. 2.0 From 3.00m to 3.45m: Firm, sandy clayey SILT with some angular fine gravel. 2.5 3.0 <u>4.50 m</u> 3.5 Inside Diameter (ID) 0.05 m Type of Material uPVC Rotary Drilling Standing Water Level 3.50 m bgs 4.0 Water first noticed 3.50 m bgs 4.5 5.0 6.0 Extremely weak, brown, mottled white and dark grey, completely decomposed medium grained GRANITE with manganese stained relict joints. (Fine to coarse SAND with some angular fine to coarse gravel) End Cap 6.50 m bgs 08-06-2010 End of soil bore = 6.50 m bgs Remarks: **Boring Details** Well Installation Details Soil bore Diameter : 0.115 m Well Diameter: 0.05 m Total Depth : <u>6.50 m bgs</u> Dry Auger: <u>0.0 to 6.50 m bgs</u> Total Depth: 6.50 m bgs Screen: 2.00 to 6.50 m bgs Wet Auger: -Sand Pack: 2.00 to 6.50 m bgs Water First Noticed: 3.50 m bgs Bentonite Seal: 0.00 to 2.00 m bgs Grout: <u>-</u> Ground Completion : <u>Flush</u>

Project : MTRC Express Rail Link Contract 821 Shek Yam to Mei Lai Road Boring Log No. : T-07 and Contamination Assessment at Mei Lai Road Date: 03/06/2010 to 05/06/2010 Ground Level: +5.99 mPD SI Location : Mei Lai Road Driller : VIBRO (HK) Limited Depth Below Ground Surface (m bgs) Drilling Soil Sample **Description of Material** Well Diagram Process I.D. 03-06-2010 Flush-Mounted Cover Ground Surface (Asphalt) Dark brown and greyish brown, fine to coarse SAND with Top of Bentonite some angular to subangular fine to medium gravel sized 0.5 Top of Sand 1.7 m bgs highly decomposed and moderately decomposed rock fragments. (FILL) Dig Hand 1.0 Reddish brown, silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed 03-06-2010 05-06-2010 rock fragments, some subangular cobbles (Concrete) and brick fragments. (FILL) 1.5 Brown, mottled white, very silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed rock fragments. (FILL) 20 3.0 Rotary Drilling 4.0 Screen Length Inside Diameter (ID) 0.05 m 4.5 Type of Material uPVC Brownish grey and brown, slightly silty fine to coarse SAND with some angular to subangular fine to medium gravel sized Standing Water Level 4.50 m bgs highly decomposed and moderately decomposed rock Water first noticed 3.20 m bas fragments. (FILL) 5.5 6.0 05-06-2010 End Cap 6.24 m bas End of soil bore = 6.24 m bgs Well Installation Details Remarks: **Boring Details** Soil bore Diameter : <u>0.115 m</u> Well Diameter: 0.05 m Total Depth : 6.24 m bgs Total Depth: 6.24 m bgs Dry Auger: 0.0 to 6.24 m bgs Screen: 1.7 to 6.24 m bgs Wet Auger: -Water First Noticed: 3.2m bgs Sand Pack: 1.7 to 6.24 m bgs Bentonite Seal: 0.0 to 1.7 m bgs Grout: <u>-</u> Ground Completion : <u>Flush</u>

Project : MTRC Express Rail Link Contract 821 Shek Yam to Mei Lai Road Boring Log No. : T-08 and Contamination Assessment at Mei Lai Road Date: 03/06/2010 to 03/06/2010 Ground Level: +6.07 mPD Driller : VIBRO (HK) Limited SI Location: Mei Lai Road Depth Below Ground Surface (m bgs) Drilling Soil Sample Well Diagram **Description of Material** Process I.D. 03-06-2010 Flush-Mounted Cover Ground Surface (Asphalt) Dark brown and greyish brown, slightly silty fine to coarse Top of Bentonite SAND with some angular to subangular fine to coarse gravel 0.5 Top of Sand sized highly decomposed and moderately decomposed rock fragments and occasional asphalt fragments. (FILL) Dig Hand 1.0 1.5 Brown, silty fine to coarse SAND with some angular to subangular fine to medium gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) 20 3.0 From 3.00m to 3.45m: With pockets of clayey silt. 4.0 Screen Length 4.60 m Drilling Inside Diameter (ID) <u>0.05 m</u> Type of Material uPVC 4.5 Brown, fine to coarse SAND with occasional subangular fine Standing Water Level 4.20 m bgs gravel sized highly decomposed and moderately decomposed Water first noticed 4.20 m bgs ock fragments. (FILL) 5.5 6.0 Brown, silty fine to coarse SAND with some subangular to subrounded fine to medium gravel. sized highly decomposed and moderately decomposed rock fragments. (FILL) 7.0 03-06-2010 End Cap 7.20 m bgs End of soil bore = 7.20 m bgs Remarks: **Boring Details** Well Installation Details Soil bore Diameter : 0.115 m Well Diameter: 0.05 m Total Depth : 7.20 m bgs Total Depth: 7.20 m bgs Dry Auger: 0.0 to 7.20 m bgs Screen: 2.60 to 7.20 m bgs Wet Auger: Water First Noticed: 4.20 m bgs Sand Pack: 2.60 to 7.20 m bgs Bentonite Seal: 0.0 to 2.60 m bgs Grout: -Ground Completion : Flush

APPENDIX D

LABORATORY RESULTS AND STANDARD FORMS 3.2 and 3.4 – SOIL DATA SUMMARY AND COMPARISION TO RBRGS AND C_{SAt}

Soil Testing Result Table												
-			BTEX						Metals	Petroleur	n Carbon	Ranges
						(ylene		(no	tion	ction
			Φ	Ethylbenzene		& para-Xylene	ortho-Xylene	(Total)		- C8 Fraction	- C16 Fraction	- C35 Fraction
			Benzene	ylbe	Foluene	fa- &	X-o	Xylenes	g	85 -	5	2 - C
Parameters			Ber	Ē	I _O L	meta-	orth	ž	Lead	90	ပ်	C17
Unit			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LOR			0.2	0.5	0.5	1.0	0.5	1.5	1	5	200	500
RBRGs of Ind			9.21	8240	10000*		-	1230	2290	10000*	10000*	10000*
Saturation L	1		336	138	235			150	-	1000	3000	5000
Sample Location	Sampling Depth (m bgs)	Date of Sampling								_		
T01	0.50	09-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	38	<5 -	<200	<500
T01	1.50	11-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	196	<5	<200	<500
T01	3.00	11-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	95	<5	330	4340
T01	4.50	11-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	86	<5	<200	<500
T02	0.50	12-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	126	<5	<200	<500
T02	1.50	12-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	172	<5	<200	<500
T02	3.00	12-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	138	<5 .F	<200	<500
T02	4.50	12-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	165	<5 .r	<200	<500
T02	6.00	12-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	20	<5	<200	<500
T03	0.50	14-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	69	<5	<200	<500
T03	1.50	14-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	108	<5 .F	<200	<500
T03 T03	3.00	14-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	125	<5 .F	<200	<500
T03	4.50 6.00	14-Jun-10 14-Jun-10	<0.2	<0.5	<0.5 <0.5	<1.0	<0.5	<1.5	109	<5 <5	<200 <200	<500 <500
	+		<0.2	<0.5			<0.5	<1.5				
T04B T04B	0.50	17-Jun-10 17-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5 <1.5	187 204	<5 -5	<200 <200	<500
T04B	0.50 (Duplicate) 1.50	17-Jun-10	<0.2	<0.5 <0.5	<0.5	<1.0	<0.5	<1.5	133	<5 <5	<200	<500 <500
T04B	3.00	17-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	65	<5 <5	<200	<500
T04B	4.50	17-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	53	<5 <5	<200	<500
T04B	6.00	17-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	15	<5	<200	<500
T05A	0.50	09-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	25	<5	<200	<500
T05A	0.50 (Duplicate)	09-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	33	<5	<200	<500
T05A	1.50	10-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	50	<5 <5	<200	<500
T05A	3.00	10-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	80	<5 <5	<200	<500
T05A	4.50	10-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	18	<5 <5	<200	<500
T05A	6.00	10-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	82	<5	<200	<500
T06	0.50	08-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	112	<5	<200	<500
T06	1.50	08-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	225	<5	<200	<500
T06	3.00	08-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	50	<5	<200	<500
T06	4.50	08-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	56	<5	<200	<500
T06	6.00	08-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	58	<5	<200	<500
T07	0.50	03-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	18	<5	<200	<500
T07	1.50	05-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	412	<5	<200	<500
T07	3.00	05-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	121	<5	<200	<500
T07	4.50	05-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	93	<5	<200	<500
T07	6.00	05-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	63	<5	<200	<500
T08	0.50	03-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	76	<5	<200	<500
T08	1.50	03-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	113	<5	<200	<500
T08	3.00	03-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	111	<5	<200	<500
T08	4.50	03-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	193	<5	<200	<500
T08	6.00	03-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	91	<5	<200	<500
T08	6.50	03-Jun-10	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	49	<5	<200	<500

Note

bgs= meter below ground surface

LOR= Level of Reporting

<u>Underlined</u> result indicates exceedance in saturation limit

Square hatched in black indicates exceedance in RBRG

Full analytical results should be referred to laboratory report

Groundwater Testing Result Table										
		BTEX	1	1	1		1	Petroleum	Carbon Rar	nges
Parameters		Benzene	Ethylbenzene	Toluene	meta- & para-Xylene	ortho-Xylene	Xylenes (Total)	C6 - C8 Fraction	C9 - C16 Fraction	C17 - C35 Fraction
Unit		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR		5	5	5	10	5	15	20	500	500
RBRGs of Industrial		54000	10000000*	10000000*			1570000	1150000	9980000	178000
Saturation Limit		1750000	169000	526000	-	-	175000	5230	2800	2800
Sample Location	Date of Sampling									
T01	12-Jun-10	<5	<5	<5	<10	<5	<15	<20	<500	<500
T02	14-Jun-10	<5	<5	<5	<10	<5	<15	<20	<500	<500
T03	19-Jun-10	<5	<5	<5	<10	<5	<15	<20	<500	<500
T04B	19-Jun-10	<5	<5	<5	<10	<5	<15	<20	<500	<500
T04B (duplicate)	19-Jun-10	<5	<5	<5	<10	<5	<15	<20	<500	<500
T05A	12-Jun-10	<5	<5	<5	<10	<5	<15	<20	<500	<500
T06	11-Jun-10	<5	<5	<5	<10	<5	<15	<20	<500	<500
T07	08-Jun-10	<5	<5	<5	<10	<5	<15	30	<500	<500
T08	05-Jun-10	<5	<5	<5	<10	<5	<15	<20	<500	<500

Note:

LOR= Level of Reporting

<u>Underlined</u> result indicates exceedance in saturation limit Square hatched in black indicates exceedance in RBRG

Full analytical results should be referred to laboratory report

			BTEX						Metals	Petroleu	m Carbon	Ranges
Parameters			Benzene	Ethylbenzene	Toluene	meta- & para-Xylene	ortho-Xylene	Xylenes (Total)	Lead	C6 - C8 Fraction	C9 - C16 Fraction	C17 - C35 Fraction
	Unit		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	LOR		5	5	5	10	5	15	1	20	500	500
Sample Location	Sampling Depth (m bgs)	Date of Sampling										
For Soil Samples												
Equipment Blank		08-Jun-10	<5	<5	<5	<10	<5	<15	<1	<20	<500	<500
Field Blank		08-Jun-10	<5	<5	<5	<10	<5	<15	<1	<20	<500	<500
Equipment Blank		17-Jun-10	<5	<5	<5	<10	<5	<15	<1	<20	<500	<500
Field Blank		17-Jun-10	<5	<5	<5	<10	<5	<15	<1	<20	<500	<500
For Groundwater Sample												
Equipment Blank		19-Jun-10	<5	<5	<5	<10	<5	<15		<20	<500	<500
Field Blank		19-Jun-10	<5	<5	<5	<10	<5	<15		<20	<500	<500
Every Trip to Laboratory												
Trip Blank		03-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		05-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		08-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		09-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		10-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		11-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		12-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		14-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		17-Jun-10	<5	<5	<5	<10	<5	<15		<20		
Trip Blank		19-Jun-10	<5	<5	<5	<10	<5	<15		<20		

Note:

BBC= Below Base of Existing Concrete

LOR= Level of Reporting

Full analytical results should be referred to laboratory report

Relative Percentage D	Difference
-----------------------	------------

Relative Percentage Diffe	rence											
			BTEX						Metals	Petroleum	Carbon Ra	inges
Parameters			Benzene	Ethylbenzene	Toluene	meta- & para-Xylene	ortho-Xylene	Xylenes(Total)	Lead	C6 - C8 Fraction	C9 - C16 Fraction	C17 - C35 Fraction
Sample Location	Sampling Depth (m bgs)	Date of Sampling										
For Soil Samples												
	Unit		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	LOR for Soil (mg/kg)		0.2	0.5	0.5	1.0	0.5	1.5	1	5	200	500
T04B	0.5	17-Jun-2010	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	187	<5	<200	<500
T04B	0.50 (Duplicate)	17-Jun-2010	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	204	<5	<200	<500
RPD = (Primary	-Duplicate) /Mean of Resul	ts*100%	NC	NC	NC	NC	NC	NC	8.7%	NC	NC	NC
T05A	0.5	9-Jun-2010	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	25	<5	<200	<500
T05A	0.50 (Duplicate)	9-Jun-2010	<0.2	<0.5	<0.5	<1.0	<0.5	<1.5	33	<5	<200	<500
RPD = (Primary	-Duplicate) /Mean of Resul	ts*100%	NC	NC	NC	NC	NC	NC	27.6%	NC	NC	NC
For Groundwater Samples												
	Unit		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	NA	μg/L	μg/L	μg/L
LOF	R for Groundwater (µg/L)		5	5	5	10	5	15	NA	20	500	500
T04B	NA	19-Jun-2010	<5	<5	<5	<10	<5	<15		<20	<500	<500
T04B (duplicate)	NA	19-Jun-2010	<5	<5	<5	<10	<5	<15		<20	<500	<500
RPD = (Primary	-Duplicate) /Mean of Resul	ts*100%	NC	NC	NC	NC	NC	NC		NC	NC	NC

Note:

bgs= meter below ground surface

NC= Not calculated, at least one result was ND

LOR= Level of Reporting

BOLD indicates detection

Standard Form 3.2 – Soil Data Summary and Comparison to RBRGs and Csat

Chemical	of detection	Detected Concentratio	Range of Method Reporting Limit	Analytical Method	Relevant Land Use Categories	Lowest RBRG(s) (mg/kg)	Csat (mg/kg)	Concentrati	Detected on Exceeds applicable)
	(x/y)	n (mg/kg)	3			(***9/**9/		RBRG	Csat
BTEX									
Benzene	0/42	ND	0.2			9.21	336	NA	NA
Ethylbenzene	0/42	ND	0.5	USEPA 8260B	RBRGs of	8240	138	NA	NA
Toluene	0/42	ND	0.5	U3LFA 0200B	Industrial	10000*	235	NA	NA
Xylenes (Total)	0/42	ND	1.5			1230	150	NA	NA
Metals									
Lead	42/42	15-412	1	USEPA 6020	RBRGs of Industrial	2290	NA	No	NA
Petroleum Carbon Ranges									
C6 - C8 Fraction	0/42	ND	5	USEPA	RBRGs of	10000*	1000	NA	NA
C9 - C16 Fraction	1/42	330	200	8260B/8015C	Industrial	10000*	3000	No	No
C17 - C35 Fraction	1/42	4340	500	02000/00100	iiiuustiidi	10000*	5000	No	No

NIL= Maximum concentration detected is below repective RBRG or solubility limit

 $\ensuremath{\mathsf{ND}}$ = The concentrations of the chemical are lower than the detection limit

NA= Not Applicable

Duplicate Samples are included in the summary.

Standard Form 3.3 – Groundwater Data Summary and Comparison to RBRGs and Solubility Limit

Chemical	of detection	Detected Concentratio	Range of Method Reporting Limit	Analytical Method	Relevant Land Use Categories	Lowest RBRG(s) (µg/L)	Csat (µg/L)	(check if a	on Exceeds applicable)
DTEV	(x/y)	n (µg/L)						RBRG	Csat
BTEX									
Benzene	0/9	ND	5			54000	1750000	NA	NA
Ethylbenzene	0/9	ND	5	USEPA 8260B	RBRGs of	10000000*	169000	NA	NA
Toluene	0/9	ND	5	USLFA 0200B	Industrial	10000000*	526000	NA	NA
Xylenes (Total)	0/9	ND	15			1570000	175000	NA	NA
Petroleum Carbon Ranges									
C6 - C8 Fraction	1/9	30	20	USEPA	RBRGs of	1150000	5230	No	No
C9 - C16 Fraction	0/9	ND	500	8260B/8015C	Industrial	9980000	2800	NA	NA
C17 - C35 Fraction	0/9	ND	500	0200D/8015C	muusmai	178000	2800	NA	NA

NIL= Maximum concentration detected is below repective RBRG or solubility limit

ND = The concentrations of the chemical are lower than the detection limit

NA= Not Applicable

Duplicate Samples are included in the summary.

Note: *** indicates that the Csat value exceeds the 'ceiling limit' therefore the RBRG applies

Standard Form 3.4 – Soil Sample Concentrations and Exceedances of RBRGs and Csat

	List Sam	ples		Check if RBRG	Check if Csat	Approximate Size of
Chemical	Sample Number	Sample Depth	Concentration (mg/kg)	Exceeded	Exceeded	Affected Area* (m ²)
	Sample Number	(m, bgl)		Exceeded	Exceeded	Affected Area" (m.)
BTEX						
Benzene	NA	NA	ND	NA	NA	NA
Ethylbenzene	NA	NA	ND	NA	NA	NA
Toluene	NA	NA	ND	NA	NA	NA
Xylenes(Total)	NA	NA	ND	NA	NA	NA
Metals						
	T01	0.50	38	NIL	NA	NA
	T01	1.50	196	NIL	NA	NA
	T01	3.00	95	NIL	NA	NA
	T01	4.50	86	NIL	NA	NA
	T02	0.50	126	NIL	NA	NA
	T02	1.50	172	NIL	NA	NA
	T02	3.00	138	NIL	NA	NA
	T02	4.50	165	NIL	NA	NA
	T02	6.00	20	NIL	NA	NA
	T03	0.50	69	NIL	NA	NA
	T03	1.50	108	NIL	NA	NA
	T03	3.00	125	NIL	NA	NA
	T03	4.50	109	NIL	NA	NA
	T03	6.00	31	NIL	NA	NA
	T04B	0.50	187	NIL	NA	NA
	T04B	0.50 (Duplicate)	204	NIL	NA	NA
	T04B	1.50	133	NIL	NA	NA
	T04B	3.00	65	NIL	NA	NA
	T04B	4.50	53	NIL	NA	NA
	T04B	6.00	15	NIL	NA	NA
Lead	T05A	0.50	25	NIL	NA	NA
	T05A	0.50 (Duplicate)	33	NIL	NA	NA
	T05A	1.50	50	NIL	NA	NA NA
	T05A	3.00	80	NIL	NA NA	NA NA
	T05A	4.50	18	NIL	NA NA	NA NA
	T05A	6.00	82	NIL NIL	NA NA	NA NA
	T06 T06	0.50 1.50	112 225	NIL	NA NA	NA NA
	T06	3.00	50	NIL NIL	NA NA	NA NA
	T06	4.50	56	NIL	NA NA	NA NA
	T06	6.00	58	NIL	NA NA	NA NA
	T07	0.50	18	NIL	NA NA	NA NA
	T07	1.50	412	NIL	NA NA	NA NA
	T07	3.00	121	NIL	NA NA	NA NA
	T07	4.50	93	NIL	NA NA	NA NA
	T07	6.00	63	NIL	NA NA	NA NA
	T08	0.50	76	NIL	NA	NA NA
	T08	1.50	113	NIL	NA	NA NA
	T08	3.00	111	NIL	NA	NA
	T08	4.50	193	NIL	NA	NA
	T08	6.00	91	NIL	NA	NA
	T08	6.50	49	NIL	NA	NA
Petroleum Carbon Ranges						
C6 - C8 Fraction	NA	NA	ND	NA	NA	NA
C9 - C16 Fraction	T01	3.00	330	NIL	NIL	NA NA
C17 - C35 Fraction	T01	3.00	4340	NIL	NIL	NA NA
O I TOO I Idolloll	101	0.00	טדטד	IAIF	141	13/7

Note:
NA= Not Applicable
bgs= meter below ground surface
NIL= Concentration detected is below repective RBRG or solubility limit

 ${\it Standard Form 3.5-Groundwater Sample Concentrations and Exceedances of RBRGs and Csat}$

	List Sam	ples		Check if RBRG	Check if Csat	Approximate Size of
Chemical	Sample Number	Sample Depth (m, bgl)	Concentration (µg/L)	Exceeded	Exceeded	Affected Area (m ²)
BTEX						
Benzene	NA	NA	ND	NA	NA	NA
Ethylbenzene	NA	NA	ND	NA	NA	NA
Toluene	NA	NA	ND	NA	NA	NA
Xylenes(Total)	NA	NA	ND	NA	NA	NA
Petroleum Carbon Ranges						
C6 - C8 Fraction	T07	NA	30	NIL	NIL	NA
C9 - C16 Fraction	NA	NA	ND	NA	NA	NA
C17 - C35 Fraction	NA	NA	ND	NA	NA	NA

Note:
NA= Not Applicable
bgs= meter below ground surface
NIL= Concentration detected is below repective RBRG or solubility limit

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012597

Work Order

: 1 of 7

CERTIFICATE OF ANALYSIS

: ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey Laboratory Contact Address VIBRO (HK) LTD MR H M CHAN Contact Address Client

Wing Yip Street,

: 11/F., Chung Shun Knitting Centre, 1 - 3 Kwai Chung, N.T., Hong Kong

Godfrey.Chan@alsenviro.com +852 2610 1044 Telephone E-mail

+852 2610 2021 Facsimile

: HK/582a/2010 Quote number J200942E MTR C8016 - ENVIRONMENTAL

: 09-JUN-2010

Date Samples Received

: 24-JUN-2010

Issue Date

No. of samples analysed No. of samples received

MEI LAI ROAD : H009667

C-O-C number Order number

Site

TERM CONSULTANCY FOR XRL

HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST.,

2335 2554

Telephone Facsimile

E-mail

Project

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Anh Ngoc Huynh P Fung Lim Chee, Richard Signatories

General Manager Senior Chemist

Authorised results for

Inorganics Organics

> 14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

: VIBRO (HK) LTD HK1012597 2 of 7 Page Number Work Order

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 17-JUN-2010 Key. LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012597

Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

: 3 of 7 : VIBRO (HK) LTD HK1012597 Page Number Client Work Order

Analytical Results

:	0	פֿ
•		,
5		5
(•	•
100	·	
Chimital	·	,
C. L. Martin		S Maria

Simple of the same					
Sub-Matrix: SOIL		Clier	Client sample ID	T1- 0.5M	
	Clien	t sampline	Client sampling date / time	09-JUN-2010 11:45	
Compound	CAS Number	LOR	Unit	HK1012597-001	
EA/ED: Physical and Aggregate Properties	Properties				
EA055: Moisture Content (dried @ 103°C)	ed @ 103°C)	0.1	%	7.6	
EG: Metals and Major Cations					
EG020: Lead	7439-92-1	-	mg/kg	38	
EP-080: BTEX					
Benzene	71-43-2	0.2	mg/kg	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	
ortho-Xylene	92-47-6	0.5	mg/kg	<0.5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	drocarbons (TPH)				
C6 - C8 Fraction		2	mg/kg	\\ \\	
C9 - C16 Fraction		200	mg/kg	<200	
C17 - C35 Fraction	-	200	mg/kg	<500	
EP-080S: TPH(Volatile)/BTEX Surrogate	urrogate				Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	87.5	
Toluene-D8	2037-26-5	0.1	%	94.2	
4-Bromofluorobenzene	460-00-4	0.1	%	93.8	

: VIBRO (HK) LTD

. 4 of 7

Page Number

Client

Surrogate control limits listed at end of this report. TRIP BLANK [09-JUN-2010] HK1012597-002 96.4 98.4 87.0 \$ \$ \$ \$ <20 Client sample ID Client sampling date / time hg/L hg/L hg/L hg/L Unit hg/L % % % LOR 0.1 2 2 2 2 20 1868-53-7 2037-26-5 460-00-4 71-43-2 CAS Number 100-41-4 108-38-3 106-42-3 95-47-6 EP-071HK: Total Petroleum Hydrocarbons (TPH) EP-080S: TPH(Volatile)/BTEX Surrogate HK1012597 Dibromofluoromethane 4-Bromofluorobenzene meta- & para-Xylene Sub-Matrix: WATER C6 - C8 Fraction Ethylbenzene ortho-Xylene EP-080: BTEX Toluene-D8 Benzene Compound Toluene Work Order

Laboratory Duplicate (DUP) Report

Page Number : 5 of 7
Client : VIBRO (HK) LTD
Work Order HK1012597

Laboratory Duplicate (DUP) Report

Matrix: SOIL

Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical	EA/ED: Physical and Aggregate Properties (QC Lot: 1378386)	es (QC Lot: 1378386)						
HK1012591-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	8.0	7.7	4.1
EG: Metals and N	EG: Metals and Major Cations (QC Lot: 1380938)	1380938)						
HK1012579-001	Anonymous	EG020: Lead	7439-92-1	-	mg/kg	92	65	16.4
HK1012585-004	Anonymous	EG020: Lead	7439-92-1	-	mg/kg	63	65	3.0
EP-080: BTEX (QC Lot: 1378571)	IC Lot: 1378571)							
HK1012596-001	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	92-47-6	0.5	mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	0.0
EP-071HK: Total	Petroleum Hydrocarbon	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)						
HK1012585-004	Anonymous	C9 - C16 Fraction	-	200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		200	mg/kg	<200	<200	0.0
EP-071HK: Total	Petroleum Hydrocarbon	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)						
HK1012596-001	Anonymons	C6 - C8 Fraction		2	mg/kg	<5	<5	0.0
Matrix: WATER					Labo	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-080: BTEX (QC Lot: 1378584)	IC Lot: 1378584)							
HK1012576-002	Anonymous	meta- & para-Xylene	108-38-3	10	hg/L	<10	<10	0.0
		Benzene	71-43-2	2	hg/L	<5	<5	0.0
		Toluene	108-88-3	2	µg/L	<5	<5	0.0
		Ethylbenzene	100-41-4	2	µg/L	<5	<5	0.0
		ortho-Xylene	92-47-6	2	µg/L	<5	<5	0.0
EP-071HK: Total	Petroleum Hydrocarbon	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)						
HK1012576-002	Anonymous	C6 - C8 Fraction	1	0.02	mg/L	<0.02	<0.02	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

		•	method braink (Mb) Keport) vehou	דממר	Laboratory Control Spine (LCS) and Laboratory Control Spine Duplicate (LCS) Neport	INE (LLS) allu Lan	Diatory Contino	Spine Dupile	מוב (חרם) אב	7/00
					Spike	Spike Rec	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number LOR	LOR	Unit	Result	Concentration	SOT	DCS	Гом	High	Value	Value Control Limit
EG: Metals and Major Cations (QC Lot: 1380938)	ot: 1380938)										
EG020: Lead	7439-92-1	-	mg/kg	₹	5 mg/kg	91.5		85	115	-	
EP-080: BTEX (QC Lot: 1378571)											
Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	80.6		77	118	1	
Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	84.4	-	80	115		-
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	87.7		77	114	-	
ylene	108-38-3 106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	94.2	-	74	120	-	-
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	85.3	-	72	115	-	-

∴ 6 of 7 ∴ VIBRO (HK) LTD HK1012597 Page Number Client Work Order

Matrix: SOIL			Method Blank (MB) Report) Report	Labo	ratory Control S	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	I Spike Duplic	ate (DCS) Re	oort
					Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	B	RPD (%)
Method: Compound CAS	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Low	High	Value	Control Limit
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)	rPH) (QC	Lot: 1378	563)								
C9 - C16 Fraction	-	200	mg/kg	<200	31 mg/kg	80.1	1	57	107	1	
C17 - C35 Fraction	İ	200	mg/kg	<200	75 mg/kg	73.3	1	43	106	1	1
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378574)	PH) (QC	Lot: 1378	571)								
C6 - C8 Fraction	Ī	2	mg/kg	<5	3 mg/kg	80.2		51	147	1	
Matrix: WATER			Method Blank (MB) Report) Report	Labo	atory Control S	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	I Spike Duplic	ate (DCS) Re	oort
					Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	B	RPD (%)
Method: Compound CAS	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Low	High	Value	Control Limit
EP-080: BTEX (QC Lot: 1378584)											
Benzene	71-43-2	2	hg/L	-	10 µg/L	82.9		56	111	I	
				√	1			!	-	1	-
Toluene	108-88-3	2	hg/L	\$	10 µg/L	87.9	1	64	115	1	1
Ethylbenzene	100-41-4	2	hg/L	\$	10 µg/L	85.1	-	29	101	I	1
meta- & para-Xylene 108-38-3	108-38-3 106-42-3	4	hg/L	4>	20 µg/L	86.2	1	84	108	1	1
ortho-Xylene	92-41-6	2	hg/L	~	10 µg/L	76.2		72	100	1	1
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)	TPH) (QC	Lot: 1378	584)								
C6 - C8 Fraction		0.02	mg/L	<0.02	1	1	1	1	1	1	1
				1	0.15 mg/L	86.7		89	125		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Matrix: SOIL

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Laboratory sample Client sample ID Met ID Met ID Met ID Cations (QC Lot: 1380938) HK1012576-001 Anonymous EP-080: BTEX (QC Lot: 1378571) HK1012596-002 Anonymous Tol Eth Eth ID CALLY COTAIN CO	Method: Compound								
EG: Metals and Major Cations (QC Lot: 1380 HK1012576-001 Anonymous EP-080: BTEX (QC Lot: 1378571) HK1012596-002 Anonymous		CAS	CAS Concentration umber	MS	MSD	Гом	High	Value	Control Limit
HK1012576-001 Anonymous EP-080: BTEX (QC Lot: 1378571) HK1012596-002 Anonymous	1938)								
EP-080: BTEX (QC Lot: 1378571) HK1012596-002 Anonymous	EG020: Lead	7439-92-1	5 mg/kg	86.3		75	125	1	-
HK1012596-002 Anonymous									
	Benzene	71-43-2	0.2 mg/kg	80.6	ļ	20	130	ł	1
	Toluene	108-88-3	0.2 mg/kg	82.5		20	130		
	Ethylbenzene	100-41-4	0.2 mg/kg	86.2		20	130		
	meta- & para-Xylene	108-38-3	0.4 mg/kg	93.6	-	20	130	-	-
	ortho-Xylene	95-47-6	0.2 mg/kg	88.2		90	130		
EP-0/1HK: 10tal Petroleum Hydrocarbons (1PH) (QC Lot: 13/8563)	PH) (QC Lot: 1378563)								
HK1012585-003 Anonymous	C9 - C16 Fraction		31 mg/kg	83.1		50	130	-	-
	C17 - C35 Fraction		75 mg/kg	70.2		50	130	-	-
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)	PH) (QC Lot: 1378571)								
HK1012596-002 Anonymous	C6 - C8 Fraction		3 mg/kg	81.4		20	130		

Surrogate Control Limits

: 7 of 7 : VIBRO (HK) LTD Page Number Client Work Order

ı	ľ	
1		
i	ī	ï
	2	
•		_
	\$	
	3	
	2	

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Work Order : 11/F., Chung Shun Knitting Centre, 1 - 3 Kwai Chung, N.T., Hong Kong : ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey Wing Yip Street, _aboratory Contact Address **CHAI WAN HONG KONG** 38 SHEUNG ON ST., VIBRO (H.K.) LTD **MR H M CHAN** Contact Address Client

HK1012870

: 1 of 4

Date Samples Received Issue Date Godfrey.Chan@alsenviro.com +852 2610 1044 : +852 2610 2021 : HK/582a/2010 Quote number **Telephone** Facsimile E-mail J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL HM_Chan@vibro.com.hk 2335 2554 Order number

: 11-JUN-2010

: 28-JUN-2010

33

No. of samples analysed No. of samples received

General Comments

: H009671

C-O-C number

Site

Telephone Facsimile

E-mail

Project

MLW

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 22-JUN-2010 Key. LOR = Limit of reporting. CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012870

Sample(s) were received in a chilled condition.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals. Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Position

PP Fung Lim Chee, Richard PP Anh Ngoc Huynh Signatories

Inorganics General Manager Senior Chemist

Authorised results for

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

Page Number: 2 of 4
Client: VIBRO (H.K.) LTD
Work Order HK1012870

Analytical Results

Cincol Incolute							
Sub-Matrix: SOIL		Clien	Client sample ID	T01-1.5M	T01-3.0M	T01-4.5M	
	Clien	sampling	Client sampling date / time	11-JUN-2010 11:07	11-JUN-2010 11:32	11-JUN-2010 13:40	
Compound	CAS Number	LOR	Unit	HK1012870-001	HK1012870-002	HK1012870-003	
EA/ED: Physical and Aggregate Properties	erties						
EA055: Moisture Content (dried @ 103°C)	103°C)	0.1	%	15.5	14.2	23.0	
EG: Metals and Major Cations							
EG020: Lead	7439-92-1	-	mg/kg	196	95	98	
EP-080: BTEX							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	<1.0	
ortho-Xylene	92-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	bons (TPH)						
C6 - C8 Fraction		2	mg/kg	<5	\$	\$	
C9 - C16 Fraction		200	mg/kg	<200	330	<200	
C17 - C35 Fraction	-	200	mg/kg	<200	4340	<500	
EP-080S: TPH(Volatile)/BTEX Surrogate	ite						Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	110	108	107	
Toluene-D8	2037-26-5	0.1	%	109	104	103	
4-Bromofluorobenzene	460-00-4	0.1	%	85.8	88.0	84.5	

Page Number: 3 of 4
Client: VIBRO (H.K.) LTD
Work Order HK1012870

Laboratory Duplicate (DUP) Report

EA/ED: Physical and Aggregate Properties (QC Lot: 1383986) HK1012870-001 T01- 1.5M EA055: Moisture Corrections (QC Lot: 1383986) HK1012952-002 Anonymous EA055: Moisture Corrections (QC Lot: 1386190) HK1012784-001 Anonymous EG020: Lead HK1012942-003 Anonymous EG020: Lead HK101296-001 Anonymous EG020: Lead HK1012596-001 Anonymous Toluene Toluene Ethylbenzene	te Properties (
EA/ED: Physical and Aggregate HK1012870-001 T01-1.5M HK1012952-002 Anonymous EG: Metals and Major Cations HK1012784-001 Anonymous HK1012942-003 Anonymous EP-080: BTEX (QC Lot: 137857 HK1012596-001 Anonymous	te Properties (Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
HK1012870-001 T01- 1.5M HK1012952-002 Anonymous EG: Metals and Major Cations HK1012784-001 Anonymous HK1012942-003 Anonymous EP-080: BTEX (QC Lot: 137857 HK1012596-001 Anonymous		(QC Lot: 1383986)						
HK1012952-002 Anonymous EG: Metals and Major Cations HK1012784-001 Anonymous HK1012942-003 Anonymous EP-080: BTEX (QC Lot: 137857 HK1012596-001 Anonymous		EA055: Moisture Content (dried @ 103°C)	-	0.1	%	15.5	14.6	0.9
EG: Metals and Major Cations HK1012784-001 Anonymous HK1012942-003 Anonymous EP-080: BTEX (QC Lot: 137857 HK1012596-001 Anonymous		EA055: Moisture Content (dried @ 103°C)		0.1	%	18.5	16.8	9.4
HK1012784-001 Anonymous HK1012942-003 Anonymous EP-080: BTEX (QC Lot: 137857 HK1012596-001 Anonymous	(QC Lot: 1386	(6190)						
HK1012942-003 Anonymous EP-080: BTEX (QC Lot: 137857 HK1012596-001 Anonymous	Ш	EG020: Lead	7439-92-1	-	mg/kg	20	51	2.3
EP-080: BTEX (QC Lot: 137857 HK1012596-001 Anonymous		EG020: Lead	7439-92-1	_	mg/kg	138	134	3.0
	71)							
	ш	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
	Ш	Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
	0	ortho-Xylene	92-47-6	0.5	mg/kg	<0.5	<0.5	0.0
	<u> </u>	meta- & para-Xylene	108-38-3	1.0	mg/kg	v.1.0	<1.0	0.0
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)	drocarbons (T	TPH) (QC Lot: 1378571)						
HK1012596-001 Anonymous		C6 - C8 Fraction		2	mg/kg	<5	< 2	0.0
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494)	drocarbons (T	TPH) (QC Lot: 1379494)						
HK1012784-002 Anonymous	J	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
	J	C17 - C35 Fraction		200	mg/kg	<200	<500	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Method: Compound CAS Num EG: Metals and Major Cations (QC Lot: 1386190)									-		
Method: Compound EG: Metals and Major Cations (QC L					Spike	Spike Rec	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
EG: Metals and Major Cations (QC Lo	CAS Number	LOR	Unit	Result	Concentration	SJ7	DCS	Том	High	Value	Value Control Limit
	ot: 1386190)										
EG020: Lead	7439-92-1	-	mg/kg	₹	5 mg/kg	103		85	115	1	
EP-080: BTEX (QC Lot: 1378571)											
Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	9.08		77	118		
Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	84.4		80	115		
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	87.7		77	114		
meta- & para-Xylene	108-38-3 106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	94.2		74	120		
ortho-Xylene	92-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	85.3		72	115	1	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)	bons (TPH) (QC I	ot: 1378	571)								
C6 - C8 Fraction		2	mg/kg	<5	3 mg/kg	80.2		51	147	-	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494)	bons (TPH) (QC I	ot: 13794	494)								
C9 - C16 Fraction		200	mg/kg	<200	31 mg/kg	71.9		57	107	-	
C17 - C35 Fraction	1	200	mg/kg	<200	75 mg/kg	73.8	1	43	106	1	1

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL

Spike Spike (MS) and Matrix Spike Duplicate (MSD) Report
Spike Recovery (%) Recovery Limits (%)

A Camphall Brothers I imited Compa

RPD (%)

: VIBRO (H.K.) LTD

. 4 of 4

Page Number

Client

HK1012870

Work Order

Control -RPD (%) Value | | | | ---Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Recovery Limits (%) High 130 125 130 130 130 LOW 75 50 50 50 20 20 20 20 MSD Spike Recovery (%) 1111 --Determined 80.6 86.2 93.6 88.2 81.4 78.0 # Not MS CAS Concentration 31 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.4 mg/kg 75 mg/kg 5 mg/kg 3 mg/kg 71-43-2 108-38-3 106-42-3 7439-92-1 I 108-88-3 100-41-4 95-47-6 EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571) meta- & para-Xylene C17 - C35 Fraction C9 - C16 Fraction Method: Compound C6 - C8 Fraction Ethylbenzene ortho-Xylene EG020: Lead Benzene Toluene EG: Metals and Major Cations (QC Lot: 1386190) Laboratory sample Client sample ID EP-080: BTEX (QC Lot: 1378571) Anonymous Anonymous Anonymous Anonymous HK1012596-002 HK1012774-001 HK1012596-002 HK1012784-003 Matrix: SOIL 9

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

HK1012944 1 of 4 Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey Wing Yip Street, -aboratory Contact Address E-mail **CHAI WAN HONG KONG** HM_Chan@vibro.com.hk 38 SHEUNG ON ST., VIBRO (H.K.) LTD **MR H M CHAN** Telephone Address Contact E-mail Client

Date Samples Received No. of samples received Issue Date +852 2610 1044 : +852 2610 2021 : HK/582a/2010 Quote number **Telephone** Facsimile J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL 2335 2554 Order number

Facsimile

Project

: 14-JUN-2010

: 28-JUN-2010

No. of samples analysed

MEI LAI ROAD H009673 C-O-C number Site

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown oracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 22-JUN-2010 Key. LOR = Limit of reporting. CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012944

Water sample(s) analysed and reported on an as received basis. Sample(s) were received in a chilled condition.

This report may not be reproduced except with prior written approval from the testing laboratory. Authorised results for Position

Senior Chemist

Organics

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of

Hong Kong, Chapter 553, Section 6.

9 Anh Ngoc Huynh Signatories de

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

Analytical Results Page Number Client Work Order

. 2 of 4 . VIBRO (H.K.) LTD HK1012944

Sub-Matrix: WATER		Clier	Client sample ID	T01	TRIP BLANK	
	Clien	ıt sampling	Client sampling date / time	12-JUN-2010 15:00	[12-JUN-2010]	
Compound	CAS Number LOR	LOR	Unit	HK1012944-001	HK1012944-002	
EP-080: BTEX						
Benzene	71-43-2	5	hg/L	< 5	<5	
Toluene	108-88-3	2	hg/L	<5	<5	
Ethylbenzene	100-41-4	2	hg/L	<5	<5	
meta- & para-Xylene	108-38-3 106-42-3	10	hg/L	<10	<10	
ortho-Xylene	95-47-6	2	hg/L	<5	<5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	ydrocarbons (TPH)					
C6 - C8 Fraction	1	20	hg/L	<20	<20	
C9 - C16 Fraction		200	hg/L	<500		
C17 - C35 Fraction		200	hg/L	<200		
EP-080S: TPH(Volatile)/BTEX Surrogate	Surrogate					Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	95.0	89.4	
Toluene-D8	2037-26-5	0.1	%	103	97.6	
4-Bromofluorobenzene	460-00-4	0.1	%	92.9	98.3	

Page Number : 3 of 4
Client : VIBRO (H.K.) LTD
Work Order HK1012944

Laboratory Duplicate (DUP) Report

RPD (%) 0.0 0.0 0.0 0.0 **Duplicate Result** <0.02 <10 \$ \$ \$ \$ Laboratory Duplicate (DUP) Report Original Result <0.02 <10 \$ \$ \$ <5 hg/L Hg/L Hg/L Hg/L mg/L Unit 0.02 LOR 222 10 108-38-3 106-42-3 -CAS Number 71-43-2 108-88-3 100-41-4 95-47-6 EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024) meta- & para-Xylene Method: Compound C6 - C8 Fraction Ethylbenzene ortho-Xylene Benzene Toluene **EP-080: BTEX (QC Lot: 1380024)** HK1012874-002 Anonymous Laboratory sample ID Client sample ID Anonymous Anonymous HK1012874-002 Matrix: WATER

Method Blank (MB). Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

inetition Blatta (inb.), Laboratory Control Spine (LCS) and Laboratory Control Spine Duplicate (DCS) Report	natory control s	Dive (1	-co) and r	aboratory	Control Spike	nuplicate	(DOS) KE	200			
Matrix: WATER	leasone		Method Blank (MB) Report) Report	Labo	ratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	ratory Contro	I Spike Duplic	cate (DCS) Re	bort
					Spike	Spike Rec	Spike Recovery (%)	Recovery	Recovery Limits (%)	æ	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Гом	High	Value	Control Limit
EP-080: BTEX (QC Lot: 1380024)											
Benzene	71-43-2	2	µg/L		10 µg/L	67.1		26	111	1	-
				₹		1		1	1		
Toluene	108-88-3	2	hg/L	<2	10 µg/L	77.0	1	64	115	1	1
Ethylbenzene	100-41-4	2	hg/L	\$	10 µg/L	6.69	1	29	101	Ì	1
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	4>	20 µg/L	91.2		84	108	1	1
ortho-Xylene	92-47-6	2	hg/L	<2	10 µg/L	80.5		72	100	1	1
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)	carbons (TPH) (QC	Lot: 1380	024)								
C6 - C8 Fraction		0.5	mg/L		0.15 mg/L	73.9		89	125	-	1
				<0.02	1		-	1		-	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1384527)	ocarbons (TPH) (QC	Lot: 1384	527)								
C9 - C16 Fraction		0.5	mg/L	<0.5	0.25 mg/L	91.6		17	170		
C17 - C35 Fraction	1	0.5	mg/L	<0.5	0.5 mg/L	99.2		32	143		
			STATE OF THE PROPERTY OF THE P			THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED AND ADDRESS		The second secon	And the second s	Annual Communication of	CONTRACTOR AND ADMINISTRATION OF THE PROPERTY

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER

				Spike		Spike Recovery (%)	Recovery	Recovery Limits (%)	RPI	RPD (%)
Laboratory sample Client sample ID ID	Client sample ID	Method: Compound	CAS	CAS Concentration Number	MS	MSD	Гом	High	Value	Value Control Limit
EP-080: BTEX (QC Lot: 1380024)	Cot: 1380024)									
HK1012947-002	Anonymous	Benzene	71-43-2		1		20	130	1	
		Toluene	108-88-3		I	-	20	130		-
		Ethylbenzene	100-41-4		ŀ	-	20	130		-
		meta- & para-Xylene	108-38-3	20 µg/L	ı	1	20	130	l	1
		ortho-Xylene	95-47-6	10 µg/L	1	1	20	130	-	1
EP-071HK: Total P	etroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)								

: 4 of 4 : VIBRO (H.K.) LTD HK1012944 Page Number Client

Matrix: WATER Work Order

Matrix: WATER			lamenta.		Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	Spike Dupli	icate (MSD)	Report	
				Spike		Spike Recovery (%)	Recovery Limits (%)	Limits (%)	RPD (%)	(%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS (CAS Concentration	MS	MSD	Low	High	Value	Control Limit
EP-071HK: Total Pe	stroleum Hydrocarbons (7	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024) - Continued								
HK1012947-002	Anonymous	C6 - C8 Fraction	-	0.15 mg/L	1		20	130	-	1

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	98	115

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012942

Work Order

: 1 of 4

: 14-JUN-2010

Date Samples Received

: 28-JUN-2010

Issue Date

..

No. of samples analysed No. of samples received

CERTIFICATE OF ANALYSIS

: 11/F., Chung Shun Knitting Centre, 1 - 3 ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey -aboratory Contact Address VIBRO (H.K.) LTD **MR H M CHAN** Contact Address Client

Kwai Chung, N.T., Hong Kong Wing Yip Street, 38 SHEUNG ON ST.,

Godfrey.Chan@alsenviro.com +852 2610 1044 : +852 2610 2021 **Felephone** Facsimile E-mail HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 2335 2554

: HK/582a/2010 Quote number J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL : H009673

General Comments

MEI LAI ROAD

C-O-C number Order number

Telephone Facsimile

E-mail

Project

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown oracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 22-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012942

Sample(s) were received in a chilled condition.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals. Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Authorised results for Senior Chemist Hong Kong, Chapter 553, Section 6.

Inorganics

General Manager

Pr Anh Ngoc Huynh Property Fung Lim Chee, Richard

Signatories

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tet. +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

Page Number: 2 of 4
Client: VIBRO (H.K.) LTD
Work Order HK1012942

Analytical Results

Alialylical Results								
Sub-Matrix: SOIL		Clie	Client sample ID	T02-0.5M	T02- 1.5M	T02-3.0M	T02-4.5M	T02-6.0M
	Clier	nt samplin	Client sampling date / time	12-JUN-2010 09:33	12-JUN-2010 10:45	12-JUN-2010 11:16	12-JUN-2010 13:20	12-JUN-2010 15:10
Compound	CAS Number LOR	TOR	Unit	HK1012942-001	HK1012942-002	HK1012942-003	HK1012942-004	HK1012942-005
EA/ED: Physical and Aggregate Properties	Properties							
EA055: Moisture Content (dried @ 103°C)	d @ 103°C)	0.1	%	9.9	12.1	11.8	21.2	14.4
EG: Metals and Major Cations								
EG020: Lead	7439-92-1	_	mg/kg	126	172	138	165	20
EP-080: BTEX								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
ortho-Xylene	92-41-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP-071HK: Total Petroleum Hydrocarbons (TPH)	ocarbons (TPH)							
C6 - C8 Fraction		2	mg/kg	\$	\$	\$	<5	\$
C9 - C16 Fraction		200	mg/kg	<200	<200	<200	<200	<200
C17 - C35 Fraction		200	mg/kg	<200	<500	<500	<500	<500
EP-080S: TPH(Volatile)/BTEX Surrogate	rrogate						Surrogate control limits	Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	84.2	91.6	90.4	93.0	89.2
Toluene-D8	2037-26-5	0.1	%	93.5	99.3	98.2	98.1	96.3
4-Bromofluorobenzene	460-00-4	0.1	%	104	105	100	105	98.4

Page Number : 3 of 4
Client : VIBRO (H.K.) LTD
Work Order HK1012942

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical	and Aggregate Proper	EA/ED: Physical and Aggregate Properties (QC Lot: 1383986)						
HK1012870-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	15.5	14.6	6.0
HK1012952-002	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	18.5	16.8	9.4
EG: Metals and N	EG: Metals and Major Cations (QC Lot: 1386190)	E: 1386190)						
HK1012784-001	Anonymous	EG020: Lead	7439-92-1	-	mg/kg	50	51	2.3
HK1012942-003	T02-3.0M	EG020: Lead	7439-92-1	1	mg/kg	138	134	3.0
EP-080: BTEX (QC Lot: 1378571)	NC Lot: 1378571)							
HK1012596-001	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	0.0
EP-071HK: Total I	Petroleum Hydrocarbo	EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)						
HK1012596-001	Anonymous	C6 - C8 Fraction		5	mg/kg	<5	\$	0.0
EP-071HK: Total	Petroleum Hydrocarbo	EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494)						
HK1012784-002	Anonymous	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		200	mg/kg	<500	<500	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Brain (MB) report) vebout	rano	ratory control sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Dupilcate (DCS) Report	ratory contro	in spire Dupir	cale (DCS) KI	hou
					Spike	Spike Rec	Spike Recovery (%)	Recovery	Recovery Limits (%)	8	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Tow	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1386190)	is (QC Lot: 1386190)										
EG020: Lead	7439-92-1	-	mg/kg		5 mg/kg	103		82	115	1	
EP-080: BTEX (QC Lot: 1378571)	(571)										
Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	9.08	-	77	118	1	-
Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	84.4	-	80	115	-	1
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	7.78		77	114	1	
meta- & para-Xylene	108-38-3 106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	94.2		74	120		
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	85.3		72	115	-	-
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)	Hydrocarbons (TPH) (QC I	Lot: 1378	571)								
C6 - C8 Fraction	1	5	mg/kg	<5	3 mg/kg	80.2	-	51	147	1	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494)	Hydrocarbons (TPH) (QC I	Lot: 1379	494)								
C9 - C16 Fraction		200	mg/kg	<200	31 mg/kg	71.9		22	107		
C17 - C35 Fraction		200	mg/kg	<500	75 mg/kg	73.8	-	43	106		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report
Spike Recovery (%) Recovery Limits (%) RPD (%)

: VIBRO (H.K.) LTD

. 4 of 4

Page Number

HK1012942

Work Order

Control Limit 1 1 ---RPD (%) Value ---Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Recovery Limits (%) High 130 125 130 130 130 130 Low 75 50 50 50 50 20 Spike Recovery (%) 1 1 1 1 11 -Determined 80.6 86.2 93.6 77.5 MS # Not 88.2 81.4 CAS Concentration 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.4 mg/kg 0.2 mg/kg 31 mg/kg 75 mg/kg 3 mg/kg 5 mg/kg Spike 71-43-2 7439-92-1 95-47-6 | | 100-41-4 106-42-3 08-38-3 Number EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571) meta- & para-Xylene C17 - C35 Fraction C9 - C16 Fraction Method: Compound C6 - C8 Fraction Ethylbenzene ortho-Xylene EG020: Lead Benzene Toluene EG: Metals and Major Cations (QC Lot: 1386190) Laboratory sample Client sample ID EP-080: BTEX (QC Lot: 1378571) Anonymous Anonymous Anonymous Anonymous HK1012596-002 HK1012774-001 HK1012596-002 HK1012784-003 Matrix: SOIL

Surrogate Control Limits

Sub-Matrix: SOII		Recovery	Recovery limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

HK1012953 : 14-JUN-2010 : 1 of 4 Date Samples Received Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com : ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey Wing Yip Street, +852 2610 1044 : +852 2610 2021 : HK/582a/2010 Quote number Telephone -aboratory Facsimile Contact Address E-mail J200942E MTR C8016 - ENVIRONMENTAL **TERM CONSULTANCY FOR XRL** HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., VIBRO (H.K.) LTD **MR H M CHAN** 2335 2554 Order number **Telephone** Facsimile Contact Address Project E-mail Client

General Comments

MEI LAI ROAD

H009677

C-O-C number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0.00 the information was not provided by client. The completion date of analysis is: 22-JUN-2010 Key. LOR = Limit of reporting. CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012953

: 28-JUN-2010

Issue Date

No. of samples analysed No. of samples received

Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of This document has been electronically signed by those names that appear on this report and are the authorised signatories. Authorised results for Position Hong Kong, Chapter 553, Section 6.

Anh Ngoc Huynh Signatories 2

Senior Chemist

Organics

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tet. +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

Analytical Results Work Order

2 of 4 VIBRO (H.K.) LTD HK1012953

Page Number Client

Alialytical Results						
Sub-Matrix: WATER		Clien	Client sample ID	Т02	TRIP BLANK	
	Clien	nt sampling	Client sampling date / time	14-JUN-2010 13:30	[14-JUN-2010]	
Compound	CAS Number LOR	LOR	Unit	HK1012953-001	HK1012953-002	
EP-080: BTEX						
Benzene	71-43-2	c,	hg/L	<5	<5	
Toluene	108-88-3	2	hg/L	<5	<5	
Ethylbenzene	100-41-4	2	hg/L	<5	<5	
meta- & para-Xylene	108-38-3 106-42-3	10	hg/L	<10	<10	
ortho-Xylene	95-47-6	2	hg/L	<5	<5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	ydrocarbons (TPH)					
C6 - C8 Fraction		20	hg/L	<20	<20	
C9 - C16 Fraction		200	hg/L	<500		
C17 - C35 Fraction	1	200	µg/L	<200		
EP-080S: TPH(Volatile)/BTEX Surrogate	Surrogate				1S	Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	94.5	98.0	
Toluene-D8	2037-26-5	0.1	%	0.66	98.7	
4-Bromofluorobenzene	460-00-4	0.1	%	93.6	88.3	
			W	And the second s	The second secon	

Page Number : 3 of 4
Client : VIBRO (H.K.) LTD
Work Order HK1012953

Laboratory Duplicate (DUP) Report

Matrix: WAIEK					Labo.	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Original Result Duplicate Result	RPD (%)
EP-080: BTEX (G	EP-080: BTEX (QC Lot: 1380024)							
HK1012874-002	Anonymous	meta- & para-Xylene	108-38-3	10	µg/L	<10	<10	0.0
		Benzene	71-43-2	2	hg/L	\$	<5	0.0
		Toluene	108-88-3	2	hg/L	<5	<5	0.0
		Ethylbenzene	100-41-4	2	hg/L	<5	^ 2	0.0
		ortho-Xylene	95-47-6	2	hg/L	<5	<5	0.0
EP-071HK: Total	Petroleum Hydrocarboi	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)						
HK1012874-002 Anonymous	Anonymons	C6 - C8 Fraction		0.02	mg/L	<0.02	<0.02	0.0
					The same of the sa		The second secon	Control of the Contro

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report	Report	Labo	ratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	ol Spike Duplic	cate (DCS) Re	oort
					Spike	Spike Red	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Low	High	Value	Value Control Limit
EP-080: BTEX (QC Lot: 1380024)	(†			FILE							
Benzene	71-43-2	2	hg/L		10 µg/L	67.1	-	99	111	-	1
				⊽			-		1	1	1
Toluene	108-88-3	2	hg/L	\$	10 µg/L	77.0	-	64	115	1	1
Ethylbenzene	100-41-4	7	hg/L	\$	10 µg/L	6.69	1	29	101	1	-
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	^	20 µg/L	91.2	1	84	108	1	
ortho-Xylene	95-47-6	2	hg/L	\$	10 µg/L	80.5	-	72	100	1	1
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)	rocarbons (TPH) (QC I	Lot: 1380	024)								
C6 - C8 Fraction	1	0.5	mg/L		0.15 mg/L	73.9		89	125	-	1
				<0.02				-	ļ		1
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1384527)	rocarbons (TPH) (QC I	Lot: 1384	527)								
C9 - C16 Fraction		0.5	mg/L	<0.5	0.25 mg/L	91.6	1	17	170		
C17 - C35 Fraction		0.5	mg/L	<0.5	0.5 mg/L	99.2		32	143	-	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER

				Spike	Spine rec	Spike Recovery (%)	Recovery	Recovery Limits (%)	7	ド アリ(%)
Laboratory sample Client sample ID ID	Client sample ID	Method: Compound	CAS (Concentration	MS	MSD	Гом	High	Value	Value Control
EP-080: BTEX (QC Lot: 1380024)	-ot: 1380024)									
HK1012947-002	Anonymous	Benzene	71-43-2		1	-	20	130	1	
		Toluene	108-88-3		1		20	130		I
		Ethylbenzene	100-41-4		I		20	130	-	Ì
		meta- & para-Xylene	108-38-3	20 µg/L	1	I	20	130	1	1
		ortho-Xylene	95-47-6		1	1	20	130	1	-
EP-071HK: Total Pet	roleum Hydrocarbon	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)								

1

Page Number Client

∴ 4 of 4 ∴ VIBRO (H.K.) LTD HK1012953 Work Order
Matrix: WATER

Matrix: WAIEK					Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	x Spike Dupli	icate (MSD)	Report	
				Spike		Spike Recovery (%)	Recovery Limits (%)	Limits (%)		RPD (%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS	CAS Concentration	MS	MSD	Low	High	Value	Control
EP-071HK: Total Pe	etroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024) - Continued								
HK1012947-002	Anonymous	C6 - C8 Fraction		0.15 mg/L	1		50	130	I	1

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Гом	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012952

: 1 of 5

: 14-JUN-2010

Issue Date

CERTIFICATE OF ANALYSIS

Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 : ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey -aboratory Contact Address VIBRO (H.K.) LTD **MR H M CHAN** Contact Address Client

Date Samples Received Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com Wing Yip Street, +852 2610 1044 +852 2610 2021 : HK/582a/2010 Quote number **Telephone** Facsimile E-mail J200942E MTR C8016 - ENVIRONMENTAL HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., 2335 2554

: 29-JUN-2010 .. 2 No. of samples analysed No. of samples received **MEI LAI ROAD** : H009677

TERM CONSULTANCY FOR XRL

General Comments

C-O-C number Order number

Site

Telephone Facsimile

E-mail

Project

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0.00 the information was not provided by client. The completion date of analysis is: 23-JUN-2010 Key. LOR = Limit of reporting. CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012952

Sample(s) were received in a chilled condition.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals. Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Authorised results for Position Hong Kong, Chapter 553, Section 6.

Pr Fung Lim Chee, Richard PP Anh Ngoc Huynh Signatories

General Manager Senior Chemist

Inorganics

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

. 2 of 5 . VIBRO (H.K.) LTD HK1012952 Analytical Results Page Number Client Work Order

5M T03- 3.0M T03- 4.5M 0 11:20	Allaly lical Nesulls								
Client sampling date / time 14-JUN-2010 10:10 14-JUN-2010 13:23 tumber LOR Unit HK1012952-001 HK1012952-002 HK1012952-003 0.1 % 6.9 18.5 16.8 99-2-1 1 mg/kg <0.2 <0.2 <0.2 14-3-2 0.2 mg/kg <0.5 16.8 <0.5 14-3-2 0.2 mg/kg <0.5 <0.5 <0.5 15-47-6 0.5 mg/kg <0.5 <0.5 <0.5 15-47-6 0.5 mg/kg <0.5 <0.5 <0.5 15-47-6 0.5 mg/kg <0.5 <0.5 <0.5 1	Sub-Matrix: SOIL		Clien	t sample ID	T03- 0.5M	T03- 1.5M	T03- 3.0M	T03-4.5M	T03-6.0M
lumber LOR Unit HK1012952-002 HK1012952-002 HK1012952-003 0.1 % 6.9 18.5 16.8 19-92-1 1 mg/kg <0.2 <0.2 <0.2 14-43-2 0.2 mg/kg <0.5 <0.5 <0.5 18-88-3 0.5 mg/kg <0.5 <0.5 <0.5 18-88-3 0.5 mg/kg <0.5 <0.5 <0.5 18-88-3 0.5 mg/kg <0.5 <0.5 <0.5 18-87-6 0.5 mg/kg <0.5 <0.5 <0.5 18-53-7 0.1 % 91.2 96.2 96.2 98.1 10-00-4 0.1 % 95.1 94.3 98.1 79.3		Clien	t sampling	y date / time	14-JUN-2010 10:10	14-JUN-2010 11:20	14-JUN-2010 13:23	14-JUN-2010 14:06	14-JUN-2010 16:40
0.1 % 6.9 18.5 16.8 0.1 mg/kg 6.9 10.2 1.25 1.2	Compound	CAS Number	LOR	Unit	HK1012952-001	HK1012952-002	HK1012952-003	HK1012952-004	HK1012952-005
0.1 % 6.9 18.5 16.8 0.1 mg/kg 69 108 125 1.43-2 0.2 mg/kg <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	EA/ED: Physical and Aggregate Properties	Se							
19-92-1 1 mg/kg 69 108 125 11-43-2 0.2 mg/kg <0.2	EA055: Moisture Content (dried @ 103°C		0.1	%	6.9	18.5	16.8	22.4	8.6
19-92-1 1 mg/kg 69 108 125 19-92-1 1 mg/kg <0.2	EG: Metals and Major Cations								
1-43-2 0.2 mg/kg <0.2	EG020: Lead	7439-92-1	-	mg/kg	69	108	125	109	34
1-43-2 0.2 mg/kg <0.2	EP-080: BTEX								
18-88-3 0.5 mg/kg <0.5	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
10-41-4 0.5 mg/kg <0.5	Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.0 mg/kg <1.0	Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
15-47-6 0.5 mg/kg <0.5 <0.5 5 mg/kg <5		-38-3 106-42-3	1.0	mg/kg	<1.0	0.1>	<1.0	<1.0	<1.0
5 mg/kg <5 <5 <5 <5 500 mg/kg <500 <200 <200 <200 <200 <200 <200 <200	ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
5 mg/kg <5 <5 <5 <5	EP-071HK: Total Petroleum Hydrocarbons	s (TPH)							
200 mg/kg <200 <200 <200 <200 500 mg/kg <500 <500 <500 <500 1868-53-7 0.1 % 91.2 96.2 98.2 2037-26-5 0.1 % 95.1 94.3 98.1 460-00-4 0.1 % 84.5 85.9 79.3	C6 - C8 Fraction		2	mg/kg	<5	<5	<5	<5	<5
500 mg/kg <500 <500 <500 <500 1868-53-7 0.1 % 91.2 96.2 98.2 2037-26-5 0.1 % 95.1 94.3 98.1 460-00-4 0.1 % 84.5 85.9 79.3	C9 - C16 Fraction		200	mg/kg	<200	<200	<200	<200	<200
1868-53-7 0.1 % 91.2 96.2 98.2 2037-26-5 0.1 % 95.1 94.3 98.1 460-00-4 0.1 % 84.5 85.9 79.3	C17 - C35 Fraction	ł	200	mg/kg	<500	<500	<500	<500	<500
1868-53-7 0.1 % 91.2 96.2 98.2 99.7 2037-26-5 0.1 % 95.1 94.3 98.1 89.1 460-00-4 0.1 % 84.5 85.9 79.3 78.2	EP-080S: TPH(Volatile)/BTEX Surrogate							Surrogate control limits	listed at end of this report.
2037-26-5 0.1 % 95.1 94.3 98.1 89.1 460-00-4 0.1 % 84.5 85.9 79.3 78.2	Dibromofluoromethane	1868-53-7	0.1	%	91.2	96.2	98.2	7.66	105
460-00-4 0.1 % 84.5 85.9 79.3 78.2	Toluene-D8	2037-26-5	0.1	%	95.1	94.3	98.1	89.1	95.2
	4-Bromofluorobenzene	460-00-4	0.1	%	84.5	85.9	79.3	78.2	82.1

3 of 5 VIBRO (H.K.) LTD HK1012952 Page Number Client Work Order

Laboratory Duplicate (DUP) Report

EA/ED: Physical and Aggregate Properties (QC Lot: 1383986) Method: Compound CAS Number EA/ED: Physical and Aggregate Properties (QC Lot: 1383986) HK1012870-001 Anonymous EA055: Moisture Content (dried @ 103°C)	tent (dried @ 403°C)	Number	LOR				
dried @ 103°C) dried @ 103°C) 7439-9, 7439-9, 7439-9, 71-4, 100-8, 100-4, 100-4, 100-4,	tent (dried @ 103°C)	TO CHILDRE	5	Ilnit	Aircol Joninia	Manage Control	
dried @ 103°C) 7439-9 7439-9 71-4 108-8 106-4 108-8 108-8 106-4 108-8 106-4	(3986)			OIIII	Original Result	Duplicate Result	RPD (%)
dried @ 103°C) 7439-9 7439-9 71-4 108-8 106-4 108-8 1108-8 1108-8 1108-8 1108-8 1108-8	ire Content (dried @ 103°C)						
7439-9 7439-9 7439-9 7439-9 100-4 95-4 106-4; 100-8 95-4 100-8 95-4 100-4	inc controlle (allea @ 100 o)		0.1	%	15.5	14.6	6.0
7439-9 7439-9 71-4 108-8 106-4 108-8 108-8 108-8 108-8 108-8 108-8	ire Content (dried @ 103°C)	1	0.1	%	18.5	16.8	9.4
7439-9 7439-9 7439-9 100-4 95-4 108-8 100-4 95-4 108-8 106-4:							
7439-9 71-4 100-4 95-4 106-3 100-4 95-4 108-8 108-8 108-8 108-8 108-8	74	139-92-1	-	mg/kg	20	51	2.3
71.4 108-8 100-4 95-4 106-3 100-4 95-4 108-38 106-4:	74	139-92-1	_	mg/kg	138	134	3.0
71.4 108-8 100-4 95-4 106-4 100-4 95-4 108-38 106-4							
108-8 100-4 95-4 106-3 100-4 95-4 108-38 108-38		71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
100-4 95-4 108-3 100-4 100-4 95-4 108-38		108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
95-4 108-38 106-4 100-4 95-4 108-38 108-38	7	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
108-38 106-4 71-4 108-8 108-38 108-38		95-47-6	0.5	mg/kg	<0.5	<0.5	0.0
71-4 108-8 100-4 95-4 108-36		08-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	0.0
71-4; 108-8; 100-4 95-4; 108-38							
108-8: 100-4 95-4: 108-38: 106-4:		71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
100-4 95-4' 108-38 106-4'	1	108-88-3	0.2	mg/kg	<0.2	<0.2	0.0
95-4' 108-38 106-4'	1	100-41-4	0.2	mg/kg	<0.2	<0.2	0.0
108-35		95-47-6	0.2	mg/kg	<0.2	<0.2	0.0
	-	08-38-3 106-42-3	0.4	mg/kg	<0.4	<0.4	0.0
	t: 1378571)						
	JU	1	2	mg/kg	<5	\$	0.0
Anonymous C9 - C16 Fraction	t: 1379494)						
	ion		200	mg/kg	<200	<200	0.0
	tion	1	200	mg/kg	<500	<500	0.0
al Pe	t: 1384498)						
HK1013005-001 Anonymous C6 - C8 Fraction	n	1	2	mg/kg	<5	\$5	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report **Method Blank (MB) Report** Matrix: SOIL

Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Concentration LCS DCS Low High Value Continue Cont						Spike	Spike Red	Spike Recovery (%)	Recovery	Recovery Limits (%)		(%) Qc
C Lot: 1386190) 7439-92-1 1 mg/kg <1 5 mg/kg 103 85 115 71-43-2 0.2 mg/kg <0.2 0.2 mg/kg 80.6 77 118 108-88-3 0.2 mg/kg <0.2 0.2 mg/kg 84.4 80 115 108-38-3 0.2 mg/kg <0.2 0.2 mg/kg 87.7 77 114 108-38-3 0.4 mg/kg <0.4 0.4 mg/kg 94.2 74 120 95-47-6 0.2 mg/kg <0.2 0.2 mg/kg 85.3 72 115	Method: Compound	CAS Number	LOR	Unit	Result	_	SO7	DCS	Low	High		Control Limit
7439-92-1 1 mg/kg <1	EG: Metals and Major Cations (QC	: Lot: 1386190)										
71-43-2 0.2 mg/kg <0.2 0.2 mg/kg 80.6 77 118 108-88-3 0.2 mg/kg <0.2 0.2 mg/kg 84.4 80 115 100-41-4 0.2 mg/kg <0.2 0.2 mg/kg 87.7 77 114 108-38-3 106-42-3 0.4 mg/kg <0.2 0.2 mg/kg 94.2 74 120 95-47-6 0.2 mg/kg <0.2 0.2 mg/kg 85.3 72 115	EG020: Lead	7439-92-1	-	mg/kg	₹	5 mg/kg	103		85	115		
71-43-2 0.2 mg/kg <0.2 0.2 mg/kg 80.6 77 118 108-88-3 0.2 mg/kg <0.2 0.2 mg/kg 84.4 80 115 100-41-4 0.2 mg/kg <0.2 0.2 mg/kg 87.7 77 114 108-38-3 106-42-3 0.4 mg/kg <0.2 0.2 mg/kg 94.2 74 120 95-47-6 0.2 mg/kg <0.2 0.2 mg/kg 85.3 72 115	EP-080: BTEX (QC Lot: 1378571)											
108-88-3 0.2 mg/kg <0.2	Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	80.6		77	118		
108-38-3 106-42-3 0.2 mg/kg <0.2 0.2 mg/kg 87.7 77 114 108-38-3 106-42-3 0.4 mg/kg <0.2 mg/kg <0.2 mg/kg <0.2 mg/kg <0.2 mg/kg <0.2 mg/kg <0.2 mg/kg 85.3 72 115	Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	84.4	1	80	115	-	
108-38-3 106-42-3 0.4 mg/kg <0.2	Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	87.7		77	114	1	
95-47-6 0.2 mg/kg <0.2 mg/kg 85.3 72 115	meta- & para-Xylene	108-38-3 106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	94.2	1	74	120	I	
	ortho-Xylene	92-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	85.3	1	72	115	-	

VIBRO (H.K.) LTD HK1012952

. 4 of 5

Page Number

Work Order

Client

Control Limit RPD (%) Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report Value Recovery Limits (%) High 117 111 115 110 147 107 147 **Low** 75 69 75 80 72 57 51 51 DCS Spike Recovery (%) SOT 93.1 90.4 90.1 84.8 80.2 71.9 126 Concentration 0.2 mg/kg 0.4 mg/kg 31 mg/kg 75 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 3 mg/kg 3 mg/kg Spike Result <0.2 <0.2 <0.4 <200 <0.2 **2** 2 Method Blank (MB) Report mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1384498) LOR 0.2 0.4 2 2 CAS Number 71-43-2 108-88-3 108-38-3 106-42-3 95-47-6 100-41-4 EP-080: BTEX (QC Lot: 1384498) - Continued meta- & para-Xylene C17 - C35 Fraction C9 - C16 Fraction Method: Compound C6 - C8 Fraction C6 - C8 Fraction Ethylbenzene ortho-Xylene Matrix: SOIL Benzene Toluene

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOII

Matrix: SOIL					Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	ix Spike Dupl	icate (MSD)	Report	
				Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	RPI	RPD (%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Том	High	Value	Control
EG: Metals and Majo	EG: Metals and Major Cations (QC Lot: 1386190)	86190)								
HK1012774-001	Anonymous	EG020: Lead	7439-92-1	5 mg/kg	# Not Determined	I	75	125	ı	1
EP-080: BTEX (QC Lot: 1378571)	.ot: 1378571)									
HK1012596-002 A	Anonymous	Benzene	71-43-2	0.2 mg/kg	80.6	-	20	130	1	
		Toluene	108-88-3	0.2 mg/kg	82.5	-	20	130	-	1
		Ethylbenzene	100-41-4	0.2 mg/kg	86.2	-	20	130	1	1
		meta- & para-Xylene	108-38-3 106-42-3	0.4 mg/kg	93.6	-	20	130		1
		ortho-Xylene	92-47-6	0.2 mg/kg	88.2		20	130	1	1
EP-080: BTEX (QC Lot: 1384498)	ot: 1384498)									
HK1012952-003	T03- 3.0M	Benzene	71-43-2	0.2 mg/kg	85.6		20	130		1
		Toluene	108-88-3	0.2 mg/kg	100		20	130	1	1
		Ethylbenzene	100-41-4	0.2 mg/kg	91.2	-	20	130		-
		meta- & para-Xylene	108-38-3 106-42-3	0.4 mg/kg	100	l	20	130	-	I
		ortho-Xylene	95-47-6	0.2 mg/kg	95.0		20	130		1
EP-071HK: Total Petr	oleum Hydrocarbons	EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)								
HK1012596-002	Anonymous	C6 - C8 Fraction		3 mg/kg	81.4		20	130	1	1
EP-071HK: Total Petr	oleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494)								
HK1012784-003	Anonymous	C9 - C16 Fraction	1	31 mg/kg	78.0		20	130	-	-
		C17 - C35 Fraction	1	75 mg/kg	77.5	-	20	130	-	1

Page Number : 5 of 5
Client : VIBRO (H.K.) LTD
Work Order HK1012952

Matrix: SOIL					Matrix Spike	Watrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	x Spike Dupli	cate (MSD)	Report	
				Spike		Spike Recovery (%)	Recovery Limits (%)	Limits (%)		RPD (%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS	CAS Concentration	MS	MSD	FOW	High	Value	Control
ID.			Number							Limit
EP-071HK: Total Pet	troleum Hydrocarbons (:P-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1384498)								
HK1012952-003 T03- 3.0M	T03- 3.0M	C6 - C8 Fraction		3 mg/kg	95.3		20	130		1

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)	Limits (%)
Compound	CAS Number	Том	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

				Consideration of the second district of the s	
Client Contact	: VIBRO (H.K.) LTD : MR H M CHAN	Laboratory Contact	: ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey	Page Work Order	:1 of 3 : HK1013436
Address	: 4/F., 38 SHEUNG ON ST., CHAI WAN HONG KONG	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone Facsimile	: HM_Chan@vibro.com.hk : 2335 2554 :	E-mail Telephone Facsimile	: Godfrey.Chan@alsenviro.com : +852 2610 1044 : +852 2610 2021		
Project	: J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL	Quote number	: HK/582a/2010	Date Samples Received	: 19-JUN-2010
Order number	:			Issue Date	: 05-JUL-2010
C-O-C number	: H009728			No. of samples received	. 4
Site	: MLW			No. of samples analysed	. 4

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 25-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1013436

Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

Authorised results for Position Hong Kong, Chapter 553, Section 6.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of

Anh Ngoc Huynh Signatories de

Senior Chemist

Organics

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 1041 www.alsenviro.com Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

: VIBRO (H.K.) LTD HK1013436 2 of 3 Work Order Client

Page Number

Analytical Results

Surrogate control limits listed at end of this report. TRIP BLANK [19-JUN-2010] HK1013436-004 94.2 \$ \$ \$ \$ <20 HK1013436-003 FIELD BLANK [19-JUN-2010] <500 118 88.8 88.4 <20 **EQUIPMENT BLANK** HK1013436-002 [19-JUN-2010] <20 <500 <500 <500 < 111 95.0 86.0 \$ \$ \$ \$ 19-JUN-2010 11:16 HK1013436-001 <20 <500 <500 <500 114 \$ \$ \$ \$ \$ Client sampling date / time Client sample ID hg/L hg/L hg/L Hg/L Hg/L Hg/L Hg/L % % % LOR 20 500 500 0.0 2 2 2 2 CAS Number 1868-53-7 2037-26-5 71-43-2 108-88-3 100-41-4 108-38-3 106-42-3 95-47-6 460-00-4 EP-071HK: Total Petroleum Hydrocarbons (TPH) EP-080S: TPH(Volatile)/BTEX Surrogate Dibromofluoromethane 4-Bromofluorobenzene meta- & para-Xylene C6 - C8 Fraction C9 - C16 Fraction C17 - C35 Fraction Sub-Matrix: WATER Ethylbenzene ortho-Xylene **EP-080: BTEX** Toluene-D8 Benzene Compound Toluene

Page Number: 3 of 3

Client: VIBRO (H.K.) LTD

Work Order: HK1013436

Order HK1013436

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labo	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	TOR	Unit	Original Result	Original Result Duplicate Result	RPD (%)
EP-080: BTEX (QC Lot: 1388498)	iC Lot: 1388498)							
HK1013329-001	Anonymous	meta- & para-Xylene	108-38-3	10	µg/L	<40	<10	0.0
		Benzene	71-43-2	2	hg/L	<5	<5	0.0
		Toluene	108-88-3	2	hg/L	<5	<5	0.0
		Ethylbenzene	100-41-4	5	hg/L	<5	<5	0.0
		ortho-Xylene	95-47-6	2	hg/L	<5	<5	0.0
EP-071HK: Total I	Petroleum Hydrocarbo	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1388498)						
HK1013329-001	Anonymons	C6 - C8 Fraction	1	0.02	mg/L	<0.02	<0.02	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

meaned plant (mp), tabelated by control oblive (too) and tabelated below by the plant (too) helper	oracol y control		1000	applace,		Jages	(100 C)	3			
Matrix: WATER			Method Blank (MB) Report	Report	Labo	ratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	pratory Contro	I Spike Dupli	cate (DCS) Rel	port
					Spike	Spike Red	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Low	High	Value	Control Limit
EP-080: BTEX (QC Lot: 1388498)	3)										
Benzene	71-43-2	2	Hg/L		10 µg/L	84.7		0.2	115		
				⊽		ļ				-	
Toluene	108-88-3	2	hg/L	\$	10 µg/L	82.3		29	117		
Ethylbenzene	100-41-4	7	hg/L	<2	10 µg/L	76.1	-	9/	107	-	
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	4>	20 µg/L	86.0		77	112	-	
ortho-Xylene	92-41-6	2	hg/L	\$	10 µg/L	70.0		69	109		-
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1384527)	rocarbons (TPH) (QC	Lot: 1384	527)								
C9 - C16 Fraction	-	0.5	mg/L	<0.5	0.25 mg/L	91.6	-	17	170	1	1
C17 - C35 Fraction		0.5	mg/L	<0.5	0.5 mg/L	99.2		32	143	-	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1388498)	rocarbons (TPH) (QC	Lot: 1388	498)								
C6 - C8 Fraction		0.5	mg/L		0.15 mg/L	94.0		89	125		
				<0.02		-		1			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	98	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	98	115

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey Laboratory Contact Address VIBRO (H.K.) LTD **MR H M CHAN** Contact Address Client

HK1013327

1 of 5

: 17-JUN-2010

: 05-JUL-2010

9 9

Wing Yip Street,

Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com +852 2610 1044 +852 2610 2021 **Felephone** -acsimile E-mail HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., 2335 2554

> **Felephone** Facsimile

E-mail

Project

Date Samples Received No. of samples analysed No. of samples received Issue Date HK/582a/2010 Quote number : J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL H009726 C-O-C number Order number

General Comments

Site

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0.00 the information was not provided by client. The completion date of analysis is: 25-JUN-2010 Key. LOR = Limit of reporting, CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1013327

Sample(s) were received in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval rom the testing laboratory

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Authorised results for

norganics Organics

General Manager Senior Chemist

PPFung Lim Chee, Richard P Anh Ngoc Huynh Signatories

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tet. +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

Page Number : 2 of 5
Client : VIBRO (H.K.) LTD
Work Order HK1013327

Analytical Results

Sub-Matrix: SOIL		Clier	Client sample ID	T04B (0.5M)	T04B (0.5M DUPLICATE)	T04B (1.5M)	T04B (3.0M)	T04B (4.5M)
	Clier	nt sampling	Client sampling date / time	[17-JUN-2010]	[17-JUN-2010]	[17-JUN-2010]	[17-JUN-2010]	[17-JUN-2010]
Compound	CAS Number	LOR	Unit	HK1013327-001	HK1013327-002	HK1013327-003	HK1013327-004	HK1013327-005
EA/ED: Physical and Aggregate Properties	perties							
EA055: Moisture Content (dried @ 103°C)) 103°C)	0.1	%	12.9	13.0	12.7	14.1	19.6
EG: Metals and Major Cations								
EG020: Lead	7439-92-1	-	mg/kg	187	204	133	65	53
EP-080: BTEX								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP-071HK: Total Petroleum Hydrocarbons (TPH)	arbons (TPH)							
C6 - C8 Fraction		2	mg/kg	~ 2	\$	\$	\$	<5
C9 - C16 Fraction	-	200	mg/kg	<200	<200	<200	<200	<200
C17 - C35 Fraction	-	200	mg/kg	<200	<200	<200	<500	<500
EP-080S: TPH(Volatile)/BTEX Surrogate	gate						Surrogate control limits	Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	100	103	97.0	103	101
Toluene-D8	2037-26-5	0.1	%	102	104	102	103	104
4-Bromofluorobenzene	460-00-4	0.1	%	102	102	103	104	103

: 3 of 5 : VIBRO (H.K.) LTD HK1013327

Page Number

Client Work Order

Surrogate control limits listed at end of this report. HK1013327-006 T04B (5.95M) [17-JUN-2010] <0.5 <0.5 <1.0 17.2 102 103 15 Client sample ID Client sampling date / time mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit % % % % LOR 0.5 0.5 0.5 0.5 0.5 0.5 5 200 500 0.1 0.1 CAS Number 1868-53-7 2037-26-5 460-00-4 71-43-2 -95-47-6 7439-92-1 100-41-4 108-38-3 106-42-3 EP-071HK: Total Petroleum Hydrocarbons (TPH) EA/ED: Physical and Aggregate Properties EA055: Moisture Content (dried @ 103°C) EP-080S: TPH(Volatile)/BTEX Surrogate EG: Metals and Major Cations Dibromofluoromethane 4-Bromofluorobenzene meta- & para-Xylene C9 - C16 Fraction C17 - C35 Fraction C6 - C8 Fraction Sub-Matrix: SOIL Ethylbenzene EG020: Lead ortho-Xylene EP-080: BTEX Toluene-D8 Benzene Compound Toluene

: 4 of 5 : VIBRO (H.K.) LTD HK1013327 Page Number Work Order

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Lab	Laboratory Duplicate (DUP) Report	Report		
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	-
EA/ED: Physical	EA/ED: Physical and Aggregate Properties (QC Lot: 1389073)	s (QC Lot: 1389073)							
HK1013306-001	Anonymous	EA055: Moisture Content (dried @ 103°C)	-	0.1	%	23.5	23.5	0.0	-
HK1013327-003	T04B (1.5M)	EA055: Moisture Content (dried @ 103°C)	1	0.1	%	12.7	12.4	2.0	-
EG: Metals and I	EG: Metals and Major Cations (QC Lot: 1388920)	388920)							-
HK1013327-002	T04B (0.5M DUPLICATE) EG020: Lead	EG020: Lead	7439-92-1	-	mg/kg	204	231	12.5	
EP-080: BTEX (C	EP-080: BTEX (QC Lot: 1387519)								
HK1013306-004	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	_
		Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.0	-
		Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.0	
		ortho-Xylene	92-47-6	0.2	mg/kg	<0.2	<0.2	0.0	-
		meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	<0.4	0.0	-
EP-071HK: Total	Petroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1387519)	2-24-201						
HK1013306-004	Anonymous	C6 - C8 Fraction		2	mg/kg	\$	<5	0.0	_
EP-071HK: Total	Petroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1389604)							
HK1013403-003	Anonymous	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0	-
		C17 - C35 Fraction		200	mg/kg	<200	<500	0.0	-
						processed reconstructions in a construction of the construction of		AND DESCRIPTION OF THE PROPERTY OF A STATE OF THE PARTY O	i

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB) Report	3) Report	Labo	ratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	I Spike Duplic	ate (DCS) Re	oort
					Spike	Spike Red	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound CA	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	FOW	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1388920)	8920)										
EG020: Lead	7439-92-1	-	mg/kg	₹	5 mg/kg	95.0		85	115	l	
EP-080: BTEX (QC Lot: 1387519)											
Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	98.0	1	75	117	1	1
Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	7.76		69	111	1	-
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	100		75	112		
meta- & para-Xylene 108-38-	108-38-3 106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	98.8		80	115	-	
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	98.8		72	110	-	-
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1387519)	TPH) (QC	Lot: 1387	(519)								
C6 - C8 Fraction	I	2	mg/kg	<5	3 mg/kg	111		51	147	1	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1389604)	TPH) (QC	Lot: 1389	(804)								
C9 - C16 Fraction	-	200	mg/kg	<200	31 mg/kg	81.5		22	107		
C17 - C35 Fraction	Ì	200	mg/kg	<500	75 mg/kg	70.8	-	43	106		-

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL

atrix: SOIL					Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	ix Spike Dupl	icate (MSD)	Report
				Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	RPD (
Laboratory sample	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	TOW	High	Value
ID			Number						

Control

: VIBRO (H.K.) LTD

: 5 of 5

Page Number

Client

HK1013327

Work Order

Control Limit | | --RPD (%) Value ---Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Recovery Limits (%) High 130 130 125 130 130 130 130 **Low** 75 50 50 50 50 50 50 Spike Recovery (%) 1 1 --Determined 81.2 # Not 84.9 86.2 87.9 91.6 MS CAS Concentration 75 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 5 mg/kg 0.2 mg/kg 0.4 mg/kg 31 mg/kg 3 mg/kg Spike 71-43-2 7439-92-1 108-38-3 106-42-3 95-47-6 | | 100-41-4 EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1387519) EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1389604) meta- & para-Xylene C17 - C35 Fraction Method: Compound C9 - C16 Fraction C6 - C8 Fraction Ethylbenzene ortho-Xylene EG020: Lead Benzene Toluene EG: Metals and Major Cations (QC Lot: 1388920) Laboratory sample Client sample ID EP-080: BTEX (QC Lot: 1387519) T04B (0.5M) Anonymous Anonymous Anonymous HK1013306-006 HK1013327-001 HK1013306-006 HK1013403-004 Matrix: SOIL 9

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)	
Compound	CAS Number	Том	High	
EP-080S: TPH(Volatile)/BTEX Surrogate				
Dibromofluoromethane	1868-53-7	80	120	
Toluene-D8	2037-26-5	81	117	
4-Bromofluorobenzene	460-00-4	74	121	
	entition with a transmissional wave for each of the formal wave, where any examination of each entition and the first of the formal and the first of			

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: VIBRO (H.K.) LTD : MR H M CHAN	Laboratory Contact	: ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey	Page Work Order	: 1 of 3 : HK1013437
Address	: 4/F., 38 SHEUNG ON ST., CHAI WAN HONG KONG	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone Facsimile	: HM_Chan@vibro.com.hk : 2335 2554 :	E-mail Telephone Facsimile	: Godfrey.Chan@alsenviro.com : +852 2610 1044 : +852 2610 2021		
Project	: J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL	Quote number	: HK/582a/2010	Date Samples Received	: 19-JUN-2010
Order number				Issue Date	: 05-JUL-2010

General Comments

: H009728

C-O-C number

MLW

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 25-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1013437

. .

No. of samples analysed No. of samples received

Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Authorised results for

Organics

pp Anh Ngoc Huynh Signatories

Senior Chemist

Position

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com Trading Name: ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

A Campbell Brothers Limited Company

: 2 of 3 : VIBRO (H.K.) LTD HK1013437 Work Order HK10134:

Analytical Results

Page Number Client

Alialylical Results				8		
Sub-Matrix: WATER		Clien	Client sample ID	T04B	T04B (DUPLICATE)	
	Clien	t sampling	Client sampling date / time	19-JUN-2010 11:10	19-JUN-2010 11:10	
Compound	CAS Number LOR	LOR	Unit	HK1013437-001	HK1013437-002	
EP-080: BTEX						
Benzene	71-43-2	2	hg/L	<5	<5	
Toluene	108-88-3	2	hg/L	<5	<5	
Ethylbenzene	100-41-4	2	hg/L	<5	. <>	
meta- & para-Xylene	108-38-3 106-42-3	10	hg/L	<10	<10	
ortho-Xylene	95-47-6	2	hg/L	<5	<5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	Hydrocarbons (TPH)					
C6 - C8 Fraction		20	hg/L	<20	<20	
C9 - C16 Fraction		200	hg/L	<200	<500	
C17 - C35 Fraction		200	hg/L	<200	<500	
EP-080S: TPH(Volatile)/BTEX Surrogate	(Surrogate					Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	118	114	
Toluene-D8	2037-26-5	0.1	%	93.2	98.9	
4-Bromofluorobenzene	460-00-4	0.1	%	88.2	88.3	
			- W			

Page Number : 3 of 3
Client : VIBRO (H.K.) LTD
Work Order HK1013437

Laboratory Duplicate (DUP) Report

Matrix: WATER					rap	Laboratory Duplicate (DUP) Report	Report		
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Original Result Duplicate Result	RPD (%)	
EP-080: BTEX (QC Lot: 1388498)	; Lot: 1388498)								
HK1013329-001	Anonymous	meta- & para-Xylene	108-38-3	10	hg/L	<10	<10	0.0	
		Benzene	71-43-2	2	hg/L	<5	^	0.0	
		Toluene	108-88-3	2	hg/L	<5	\$	0.0	
		Ethylbenzene	100-41-4	2	hg/L	<5	^	0.0	
		ortho-Xylene	95-47-6	5	hg/L	<5	<5	0.0	
EP-071HK: Total Po	etroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1388498)							
HK1013329-001 Anonymous	Anonymous	C6 - C8 Fraction		0.02	mg/L	<0.02	<0.02	0.0	
					AND THE RESIDENCE OF THE PROPERTY OF THE PARTY OF THE PARTY.				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		4	Method Blank (MB) Report	Report	Labi	oratory Control Sp.	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	ol Spike Dupli	cate (DCS) Re,	oort
					Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Том	High	Value	Control Limit
EP-080: BTEX (QC Lot: 1388498)	(6				1 = -	3 E1				_	
Benzene	71-43-2	2	µg/L		10 µg/L	84.7	-	70	115		
				₹		-	-	-	-	-	
Toluene	108-88-3	2	hg/L	\$	10 µg/L	82.3	-	29	117	1	1
Ethylbenzene	100-41-4	2	hg/L	~	10 µg/L	76.1	-	92	107	1	1
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	^ 4	20 µg/L	86.0		77	112	-	
ortho-Xylene	92-47-6	2	hg/L	7	10 µg/L	70.0		69	109	-	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1384527)	rocarbons (TPH) (QC I	Lot: 1384	527)								
C9 - C16 Fraction		0.5	mg/L	<0.5	0.25 mg/L	91.6	1	17	170	1	1
C17 - C35 Fraction		0.5	mg/L	<0.5	0.5 mg/L	99.2		32	143	1	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1388498)	rocarbons (TPH) (QC I	Lot: 1388	198)								
C6 - C8 Fraction	1	0.5	mg/L		0.15 mg/L	94.0		89	125	-	-
				<0.02	1	-		-		-	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	98	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	98	115

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

HK1012596 : 09-JUN-2010 24-JUN-2010 1 of 4 7 Date Samples Received No. of samples analysed No. of samples received Work Order Issue Date : 11/F., Chung Shun Knitting Centre, 1 - 3 Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com : ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey Wing Yip Street, +852 2610 1044 +852 2610 2021 : HK/582a/2010 Quote number Telephone -aboratory Facsimile Contact Address E-mail J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., VIBRO (HK) LTD MR H M CHAN **MEI LAI ROAD** 2335 2554 : H009667 : 4/F., C-O-C number Order number _elephone Facsimile Contact Address Project E-mail Client

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 17-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012596

Sample(s) were received in a chilled condition.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals. Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of This document has been electronically signed by those names that appear on this report and are the authorised signatories. Authorised results for Senior Chemist Position Hong Kong, Chapter 553, Section 6.

Inorganics

General Manager

Signatories

(V Anh Ngoc Huynh

Fung Lim Chee, Richard

ALS Laboratory Group
Trading Name: ALS Technichem (HK) Pty Ltd

A Campbell Brothers Limited Company

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

Page Number : 2 of 4
Client : VIBRO (HK) LTD
Work Order HK1012596

Analytical Results

Client sampling date / time CAS Number LOR Unit Aggregate Properties ontent (dried @ 103°C) 0.1 % r Cations 7439-92-1 1 mg/kg 71-43-2 0.2 mg/kg 108-88-3 0.5 mg/kg 100-41-4 0.5 mg/kg 95-47-6 0.5 mg/kg 95-47-6 0.5 mg/kg 5 mg/kg		
Client sampling date / time 0.1 % 0.1 % 19-92-1 1 mg/kg 1-43-2 0.2 mg/kg 10-41-4 0.5 mg/kg 16-42-3 1.0 mg/kg 15-47-6 0.5 mg/kg 5 mg/kg	T05A- 0.5M	T05A- 0.5M DUPLICATE
LOR Unit 0.1 % 0.1 % 89-92-1 1 mg/kg 1-43-2 0.2 mg/kg 8-88-3 0.5 mg/kg 10-41-4 0.5 mg/kg 16-42-3 1.0 mg/kg 15-47-6 0.5 mg/kg 5 mg/kg 500 mg/kg	09-JUN-2010 15:33	09-JUN-2010 15:33
9-92-1 1 mg/kg 1-43-2 0.2 mg/kg 1-43-2 0.5 mg/kg 1-42-3 1.0 mg/kg 1-42-3 1.0 mg/kg 1-47-6 0.5 mg/k	HK1012596-001	HK1012596-002
1-43-2 0.2 mg/kg m		
19-92-1 1 mg/kg 11-43-2 0.2 mg/kg 18-88-3 0.5 mg/kg 10-41-4 0.5 mg/kg 16-42-3 1.0 mg/kg 15-47-6 0.5 mg/kg 1 5 mg/kg 1 5 mg/kg	7.1	8.0
1-43-2 0.2 mg/kg 18-88-3 0.5 mg/kg 18-41-4 0.5 mg/kg 18-42-3 1.0 mg/kg 18-47-6 0.5 mg/kg 5 mg/kg 5 mg/kg		
1-43-2 0.2 mg/kg 8-88-3 0.5 mg/kg 00-41-4 0.5 mg/kg 6-42-3 1.0 mg/kg 15-47-6 0.5 mg/kg 5 mg/kg	25	33
1-43-2 0.2 mg/kg 8-88-3 0.5 mg/kg 10-41-4 0.5 mg/kg 16-42-3 1.0 mg/kg 15-47-6 0.5 mg/kg 5 mg/kg		
8-88-3 0.5 mg/kg 00-41-4 0.5 mg/kg 6-42-3 1.0 mg/kg 5-47-6 0.5 mg/kg 5 mg/kg 5 mg/kg	<0.2	<0.2
00-41-4 0.5 mg/kg 16-42-3 1.0 mg/kg 15-47-6 0.5 mg/kg 1 5 mg/kg 1	<0.5	<0.5
10.0 mg/kg 15-47-6 0.5 mg/kg	<0.5	<0.5
5-47-6 0.5 mg/kg 5 mg/kg 5 mg/kg 5 mg/kg	<1.0	<1.0
5 mg/kg 200 mg/kg	<0.5	<0.5
5 mg/kg 200 mg/kg		
200 mg/kg	<5	<5
EOO 200	<200	<200
CIT - C33 FIACUOII	<500	<500
EP-080S: TPH(Volatile)/BTEX Surrogate		Surrogate control limits listed at end of this report.
Dibromofluoromethane 1868-53-7 0.1 % 87.6	87.6	7.68
Toluene-D8 2037-26-5 0.1 % 99.2	99.2	95.8
4-Bromofluorobenzene 460-00-4 0.1 % 97.5	97.5	97.1

3 of 4 VIBRO (HK) LTD HK1012596 Page Number Work Order

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labe	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample It	Laboratory sample ID Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical	and Aggregate Prope	EA/ED: Physical and Aggregate Properties (QC Lot: 1378386)						
HK1012591-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	8.0	7.7	4.1
EG: Metals and I	EG: Metals and Major Cations (QC Lot: 1380938)	ıt: 1380938)						
HK1012579-001	Anonymous	EG020: Lead	7439-92-1	-	mg/kg	92	65	16.4
HK1012585-004	Anonymous	EG020: Lead	7439-92-1	-	mg/kg	63	65	3.0
EP-080: BTEX ((EP-080: BTEX (QC Lot: 1378571)							
HK1012596-001	T05A- 0.5M	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	108-38-3	1.0	mg/kg	0.12	<1.0	0.0
EP-071HK: Total	Petroleum Hydrocarb	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)						
HK1012585-004	Anonymous	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction	1	200	mg/kg	<200	<500	0.0
EP-071HK: Total	Petroleum Hydrocarb	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)						
HK1012596-001	T05A- 0.5M	C6 - C8 Fraction		2	mg/kg	<5	\$	0.0
AND AND ADDRESS OF THE PROPERTY OF THE PROPERT								

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB) Report) Report	Papo	ratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	ol Spike Dupli	icate (DCS) Re	port
					Spike	Spike Red	Spike Recovery (%)	Recovery	Recovery Limits (%)	æ	RPD (%)
Method: Compound CAS N	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	TOW	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1380938)	938)										
EG020: Lead 74	7439-92-1	-	mg/kg	₹	5 mg/kg	91.5		85	115	-	-
EP-080: BTEX (QC Lot: 1378571)											
Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	80.6		77	118	-	
Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	84.4		80	115		
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	87.7		77	114	-	
meta- & para-Xylene 108-38-3 106-42-3	106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	94.2		74	120	-	
ortho-Xylene	92-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	85.3		72	115	1	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)	ЭH) (H	Lot: 1378	563)								
C9 - C16 Fraction	1	200	mg/kg	<200	31 mg/kg	80.1		22	107	-	
C17 - C35 Fraction	I	200	mg/kg	<200	75 mg/kg	73.3	-	43	106	I	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)	эн) (Ac	Lot: 1378	571)								
C6 - C8 Fraction	I	2	mg/kg	<5	3 mg/kg	80.2	-	51	147	1	I

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	x Spike Dupli	cate (MSD)	Report	
				Spike		Spike Recovery (%)	Recovery Limits (%)	Limits (%)	RP	RPD (%)
Laboratory sample	Client sample ID	Method: Compound	CAS Concentration	ncentration	MS	MSD	Том	High	Value Contr	Contr

Control Limit

ALS)

: VIBRO (HK) LTD

. 4 of 4

Page Number

HK1012596

Client Work Order

Control Limit | | -| -- -RPD (%) Value l -----Watrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Recovery Limits (%) 125 130 130 130 130 130 130 Low 75 50 50 50 50 20 50 MSD Spike Recovery (%) - 9.08 82.5 86.2 93.6 86.3 88.2 83.1 81.4 NIS Concentration 0.2 mg/kg 0.2 mg/kg 75 mg/kg 0.2 mg/kg 0.2 mg/kg 0.4 mg/kg 3 mg/kg 31 mg/kg 5 mg/kg Spike 7439-92-1 CAS 11 71-43-2 108-88-3 100-41-4 95-47-6 -08-38-3 106-42-3 Number EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571) meta- & para-Xylene C17 - C35 Fraction C9 - C16 Fraction Method: Compound C6 - C8 Fraction Ethylbenzene ortho-Xylene EG020: Lead Benzene Toluene EG: Metals and Major Cations (QC Lot: 1380938) T05A- 0.5M DUPLICATE T05A- 0.5M DUPLICATE Laboratory sample | Client sample ID EP-080: BTEX (QC Lot: 1378571) Anonymous Anonymous HK1012585-003 HK1012596-002 HK1012576-001 HK1012596-002 Matrix: SOIL

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Гом	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	8	117
4-Bromofluorobenzene	460-00-4	74	121

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012784

Work Order

: 1 of 7

20107	1
-	
Ų	
>	
•	
	1
	ľ
7	
	_
H	ı
ĭ	
_	
5	Į
C	3
UT V OIUI	Ī
-	
1	
0	2
L	Ĺ
ロロし	
•	_

11/F., Chung Shun Knitting Centre, 1 - 3 ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey _aboratory Contact Address : VIBRO (HK) LTD **MR H M CHAN** Contact Address Client

Wing Yip Street,

Kwai Chung, N.T., Hong Kong

CHAI WAN HONG KONG 38 SHEUNG ON ST.,

2335 2554

Felephone Facsimile

E-mail

Project

Godfrey.Chan@alsenviro.com : +852 2610 1044 **Felephone** E-mail

: +852 2610 2021 Facsimile : HM_Chan@vibro.com.hk

: HK/582a/2010 Quote number

Date Samples Received No. of samples received Issue Date : J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL 699600H:

: 25-JUN-2010

. 5

No. of samples analysed

: 10-JUN-2010

This report may not be reproduced except with prior written approval from the testing laboratory.

MEI LAI ROAD

C-O-C number Order number

Site

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Authorised results for Inorganics **General Manager** Senior Chemist Position Pp Fung Lim Chee, Richard Pr Anh Ngoc Huynh Signatories

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

: VIBRO (HK) LTD HK1012784 2 of 7 Page Number Work Order Client

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 22-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012784

Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis. Soil sample(s) analysed on an as received basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

3 of 7 VIBRO (HK) LTD HK1012784 Work Order

Page Number Client

Analytical Results

Sub-Matrix: SOIL		Clie	Client sample ID	T05A- 1.5M	T05A-3.0M	T05A- 4.5M	T05A- 6.0M
	Clien	ıt samplin	Client sampling date / time	10-JUN-2010 08:55	10-JUN-2010 09:33	10-JUN-2010 10:08	10-JUN-2010 11:55
Compound	CAS Number	LOR	Unit	HK1012784-001	HK1012784-002	HK1012784-003	HK1012784-004
EA/ED: Physical and Aggregate Properties	Properties						
EA055: Moisture Content (dried @ 103°C)	ed @ 103°C)	0.1	%	16.2	16.0	23.4	10.4
EG: Metals and Major Cations							
EG020: Lead	7439-92-1	-	mg/kg	20	80	18	82
EP-080: BTEX							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5
EP-071HK: Total Petroleum Hydrocarbons (TPH)	Irocarbons (TPH)						
C6 - C8 Fraction		2	mg/kg	\$	<5	<5	\$
C9 - C16 Fraction		200	mg/kg	<200	<200	<200	<200
C17 - C35 Fraction		200	mg/kg	<500	<500	<500	<500
EP-080S: TPH(Volatile)/BTEX Surrogate	urrogate						Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	118	104	104	108
Toluene-D8	2037-26-5	0.1	%	106	112	103	108
4-Bromofluorobenzene	460-00-4	0.1	%	92.8	91.8	87.5	84.0

V

: VIBRO (HK) LTD

. 4 of 7

Page Number

Client

Surrogate control limits listed at end of this report. HK1012784-005 TRIP BLANK [10-JUN-2010] 102 101 90.9 \$ \$ \$ \$ \$ <20 Client sample ID Client sampling date / time Hg/L Hg/L Hg/L Hg/L hg/L % % % LOR 0.1 2 2 2 2 20 1868-53-7 2037-26-5 460-00-4 CAS Number 71-43-2 108-88-3 95-47-6 100-41-4 108-38-3 106-42-3 EP-071HK: Total Petroleum Hydrocarbons (TPH) EP-080S: TPH(Volatile)/BTEX Surrogate HK1012784 Dibromofluoromethane 4-Bromofluorobenzene meta- & para-Xylene Sub-Matrix: WATER C6 - C8 Fraction Ethylbenzene ortho-Xylene EP-080: BTEX Toluene-D8 Benzene Compound Toluene Work Order

Page Number : 5 of 7
Client : VIBRO (HK) LTD
Work Order HK1012784

Laboratory Duplicate (DUP) Report

	The grade of the second control of the second of the secon				E CONTRACTOR DE LA CONT	emointed publicate (por) richort		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
√ED: Physical a	EA/ED: Physical and Aggregate Properties (QC Lot: 1379698)	; (QC Lot: 1379698)						
HK1012713-011	Anonymous	EA055: Moisture Content (dried @ 103°C)	-	0.1	%	28.8	25.7	11.2
HK1012784-002	T05A- 3.0M	EA055: Moisture Content (dried @ 103°C)		0.1	%	16.0	16.0	0.0
3: Metals and M.	EG: Metals and Major Cations (QC Lot: 1386190)	86190)						
HK1012784-001	T05A- 1.5M	EG020: Lead	7439-92-1	_	mg/kg	20	51	2.3
HK1012942-003	Anonymous	EG020: Lead	7439-92-1	-	mg/kg	138	134	3.0
EP-080: BTEX (QC Lot: 1378571)	C Lot: 1378571)							
HK1012596-001	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	0.0
P-071HK: Total P	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)	(TPH) (QC Lot: 1378563)						
HK1012585-004	Anonymous	C9 - C16 Fraction	-	200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		200	mg/kg	<500	<500	0.0
P-071HK: Total P	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571)	(TPH) (QC Lot: 1378571)						
HK1012596-001	Anonymous	C6 - C8 Fraction		2	mg/kg	<5	<5	0.0
P-071HK: Total P	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494)	(TPH) (QC Lot: 1379494)						
HK1012784-002	T05A- 3.0M	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction	1	200	mg/kg	<500	<500	0.0
Matrix: WATER					Labo	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	TOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-080: BTEX (QC Lot: 1378584)	C Lot: 1378584)							
HK1012576-002	Anonymous	meta- & para-Xylene	108-38-3	10	hg/L	<10	<10	0.0
		Benzene	71-43-2	5	hg/L	<5	<5	0.0
		Toluene	108-88-3	5	hg/L	<5	<5	0.0
		Ethylbenzene	100-41-4	2	hg/L	<5	<5	0.0
2-071HK: Total P	ortho-Xylene EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)	ortho-Xylene (TPH) (QC Lot: 1378584)	92-47-6	ro.	hg/L	₽	\$	0.0
HK1012576-002	Anonymous	C6 - C8 Fraction	-	0.02	ma/L	<0.02	<0.02	C

Control Limit

Value

High

Low

DCS

SOT

Spike Concentration

Result

Unit

LOR

CAS Number

Spike Recovery (%)

115

85

-

103

5 mg/kg

V

mg/kg

7439-92-1

EG: Metals and Major Cations (QC Lot: 1386190)

Method: Compound

Matrix: SOIL

EP-080: BTEX (QC Lot: 1378571)

Benzene

EG020: Lead

118

77

9.08

0.2 mg/kg

<0.2

mg/kg

0.2

71-43-2

RPD (%)

Recovery Limits (%)

Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Method Blank (MB) Report

VIBRO (HK) LTD

6 of 7

Page Number

HK1012784

Work Order

Client

Control Limit Control Limit 1 -11 | | 1 RPD (%) RPD (%) Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report Value Value -| Recovery Limits (%) Recovery Limits (%) High High 114 115 107 107 115 101 108 100 147 11 TOW Low 77 74 72 57 51 22 64 67 84 72 DCS DCS Spike Recovery (%) | | --Spike Recovery (%) 1 1 71.9 SO7 94.2 73.3 73.8 87.9 85.1 86.2 84.4 87.7 85.3 80.1 80.2 SO7 82.9 76.2 Spike Concentration Concentration 31 mg/kg 75 mg/kg 0.2 mg/kg 0.2 mg/kg 0.4 mg/kg 0.2 mg/kg 31 mg/kg 75 mg/kg 3 mg/kg 10 µg/L 10 µg/L 20 µg/L 10 µg/L 10 µg/L Result Result <0.2 <0.4 <500 <0.2 <200 <200 <0.2 <5 0040 √ Method Blank (MB) Report Method Blank (MB) Report mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit Unit Hg/L Hg/L Hg/L hg/L EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584) LOR 200 200 200 LOR 0.2 0.2 2 2 22 CAS Number 108-88-3 95-47-6 95-47-6 108-38-3 106-42-3 71-43-2 108-88-3 100-41-4 CAS Number 100-41-4 108-38-3 106-42-3 EP-080: BTEX (QC Lot: 1378571) - Continued EP-080: BTEX (QC Lot: 1378584) meta- & para-Xylene meta- & para-Xylene C17 - C35 Fraction C17 - C35 Fraction C9 - C16 Fraction C9 - C16 Fraction Method: Compound Method: Compound C6 - C8 Fraction Ethylbenzene Matrix: WATER Ethylbenzene ortho-Xylene ortho-Xylene Matrix: SOIL Benzene Toluene Toluene

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

| |

125

68

0.15 mg/L

<0.02

mg/L

0.02

C6 - C8 Fraction

-

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL

				Spike		Spike Recovery (%)	Recovery Limits (%)	Limits (%)	RPL	RPD (%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS	CAS Concentration	MS	MSD	Гом	High	Value	Control Limit
EG: Metals and Ma	EG: Metals and Major Cations (QC Lot: 1386190)	(190)								
HK1012774-001 Anonymous	Anonymous	EG020: Lead	7439-92-1 5 mg/kg	5 mg/kg	# Not Determined		75	125		l
EP-080: BTEX (QC Lot: 1378571)	. Lot: 1378571)									
HK1012596-002	Anonymous	Benzene	71-43-2	0.2 mg/kg	9.08	-	20	130	1	1
		Toluene	108-88-3	0.2 mg/kg	82.5	1	20	130	-	1
		Ethylbenzene	100-41-4	0.2 mg/kg	86.2	-	20	130	-	-
	decision relations	meta- & para-Xylene	108-38-3	0.4 mg/kg	93.6		20	130	l	1

A Campbell Rrothers I imited Company

: VIBRO (HK) LTD

7 of 7

Page Number

HK1012784

Work Order

Client

Control Limit 1 -RPD (%) Value --| | Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Recovery Limits (%) High 130 130 130 130 Low 50 50 50 50 Spike Recovery (%) l 78.0 MS 88.2 83.1 81.4 CAS Concentration 75 mg/kg 0.2 mg/kg 31 mg/kg 75 mg/kg 31 mg/kg 3 mg/kg Spike 95-47-6 | | 11 Number EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1379494) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378571) C9 - C16 Fraction C17 - C35 Fraction C17 - C35 Fraction C9 - C16 Fraction Method: Compound C6 - C8 Fraction ortho-Xylene EP-080: BTEX (QC Lot: 1378571) - Continued Laboratory sample Client sample ID Anonymous Anonymous Anonymous T05A- 4.5M HK1012596-002 HK1012585-003 HK1012596-002 HK1012784-003 Matrix: SOIL 9

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Гом	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Том	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	98	115

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

HK1013041 : 14-JUN-2010 : 28-JUN-2010 1 of 4 Date Samples Received No. of samples received Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com : ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey Wing Yip Street, +852 2610 1044 : +852 2610 2021 : HK/582a/2010 Quote number Laboratory **Felephone** -acsimile Contact Address E-mail J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., VIBRO (H.K.) LTD MR H M CHAN 2335 2554 H009673 C-O-C number Order number **Felephone** Facsimile Contact Address Project E-mail Client

General Comments

MEI LAI ROAD

Site

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 22-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1013041

No. of samples analysed

Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Authorised results for Position Hong Kong, Chapter 553, Section 6.

Organics

Senior Chemist

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Anh Ngoc Huynh Signatories

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tet. +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

A Campbell Brothers Limited Company

Page Number : 2 of 4
Client : VIBRO (H.K.) LTD
Work Order HK1013041
Analytical Results

Page Number Client

Analytical Results					
Sub-Matrix: WATER		Clier	Client sample ID	T05A	
	Clien	t sampling	Client sampling date / time	[12-JUN-2010]	
Compound	CAS Number LOR	LOR	Unit	HK1013041-001	
EP-080: BTEX					
Benzene	71-43-2	2	hg/L	<5	
Toluene	108-88-3	2	hg/L	<5	
Ethylbenzene	100-41-4	2	hg/L	<5	
meta- & para-Xylene	108-38-3 106-42-3	10	hg/L	<10	
ortho-Xylene	95-47-6	2	hg/L	<5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	lydrocarbons (TPH)				
C6 - C8 Fraction		20	hg/L	<20	
C9 - C16 Fraction		200	hg/L	<500	
C17 - C35 Fraction	1	200	hg/L	<500	
EP-080S: TPH(Volatile)/BTEX Surrogate	Surrogate				Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	91.7	
Toluene-D8	2037-26-5	0.1	%	100	
4-Bromofluorobenzene	460-00-4	0.1	%	96.4	
			The second secon	The state of the s	

: VIBRO (H.K.) LTD HK1013041 3 of 4 Page Number Work Order

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labi	Laboratory Duplicate (DUP) Report	Renort	
Laboratory sample ID Client sample ID) Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-080: BTEX (QC Lot: 1380024)	2C Lot: 1380024)							
HK1012874-002 Anonymous	Anonymous	meta- & para-Xylene	108-38-3	10	hg/L	<10	<10	0.0
		Benzene	71-43-2	2	hg/L	\$	\$	0.0
		Toluene	108-88-3	2	hg/L	\$	^	0.0
		Ethylbenzene	100-41-4	5	hg/L		^2	0.0
		ortho-Xylene	92-47-6	2	hg/L	< 5	^	0.0
EP-071HK: Total	Petroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)						
HK1012874-002 Anonymous	Anonymous	C6 - C8 Fraction		0.02	mg/L	<0.02	<0.02	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report	Report	Labo	ratory Control S	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	ol Spike Duplic	ate (DCS) Re	port
					Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Low	High	Value	Value Control Limit
EP-080: BTEX (QC Lot: 1380024)				-		61					
Benzene	71-43-2	2	hg/L		10 µg/L	67.1		99	111	1	I
				₹	-	1		1	1	1	1
Toluene	108-88-3	2	hg/L	<2	10 µg/L	77.0	1	64	115	1	1
Ethylbenzene	100-41-4	7	hg/L	<2>	10 µg/L	6.69	1	29	101	1	
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	4	20 µg/L	91.2	1	84	108	1	-
ortho-Xylene	92-47-6	2	hg/L	<2 <2	10 µg/L	80.5	-	72	100	1	1
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)	ocarbons (TPH) (QC	Lot: 1380	024)								
C6 - C8 Fraction	-	0.5	mg/L		0.15 mg/L	73.9	-	89	125		1
				<0.02	1	1	-	-		-	-
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1384527)	ocarbons (TPH) (QC	Lot: 1384	527)								
C9 - C16 Fraction		0.5	mg/L	<0.5	0.25 mg/L	91.6	1	17	170	1	
C17 - C35 Fraction		0.5	mg/L	<0.5	0.5 mg/L	99.2	1	32	143	1	1

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER

Matrix: WATER					Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	ix Spike Dupli	cate (MSD)	Report	
				Spike	Spike Red	Spike Recovery (%)	Recovery Limits (%)	Limits (%)		RPD (%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS	CAS Concentration	MS	MSD	Том	High	Value	Value Control Limit
EP-080: BTEX (QC Lot: 1380024)	Lot: 1380024)									
HK1012947-002	Anonymous	Benzene	71-43-2	10 µg/L	1	1	20	130	1	
		Toluene	108-88-3		1		20	130	-	1
		Ethylbenzene	100-41-4		1	-	20	130	-	I
		meta- & para-Xylene	108-38-3	20 µg/L	ı	1	20	130	-	1
		ortho-Xylene	95-47-6	10 µg/L	1		20	130	1	ı
EP-071HK: Total Pe	stroleum Hydrocarbor	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)								

.: 4 of 4 .: VIBRO (H.K.) LTD HK1013041 Page Number Client

Matrix: WATER Work Order

Matrix: WATER			L		Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	x Spike Dupli	cate (MSD) H	Report	
				Spike	Spike Recovery (%)	overy (%)	Recovery Limits (%)	Limits (%)	RPD (%)	(%)
Laboratory sample Client sample ID ID	Client sample ID	Method: Compound	CAS (Concentration	MS	MSD	Том	High	Value	Control
EP-071HK: Total Petr	oleum Hydrocarbons (TF	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024) - Continued								
HK1012947-002 Anonymous	Anonymous	C6 - C8 Fraction		0.15 mg/L	1	-	20	130	-	-

Surrogate Control Limits

			And in contrast of the last of
Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	98	115

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey Wing Yip Street, Laboratory Contact Address E-mail HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., VIBRO (HK) LTD **MR H M CHAN** Contact Address E-mail Client

HK1012591

1 of 4

: 08-JUN-2010

: 23-JUN-2010

2 2

Date Samples Received No. of samples analysed No. of samples received Issue Date : +852 2610 2021 : HK/582a/2010 Quote number J200942E MTR C8016 - ENVIRONMENTAL **TERM CONSULTANCY FOR XRL MEI LAI ROAD** H009665 C-O-C number Order number Project

+852 2610 1044

Felephone Facsimile

2335 2554

Telephone Facsimile General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 17-JUN-2010 Key. LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012591

Sample(s) were received in a chilled condition.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals. Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Authorised results for Senior Chemist Hong Kong, Chapter 553, Section 6.

Inorganics

General Manager

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Signatories

Y Anh Ngoc Huynh
Fung Lim Chee, Richard

ALS Laboratory Group
Trading Name: ALS Technichem (HK) Pty Ltd
3 Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Ko

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N. T., Hong Kong Tel. +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

Page Number : 2 of 4
Client : VIBRO (HK) LTD
Work Order HK1012591

Analytical Results

Sub-Matrix: SOIL		Clien	Client sample ID	T06- 0.5M	T06-1.5M	T06-3.0M	T06-4.5M	T06-6.0M
	Clien	t sampling	Client sampling date / time	08-JUN-2010 08:35	08-JUN-2010 09:30	08-JUN-2010 09:59	08-JUN-2010 10:43	08-JUN-2010 11:49
Compound	CAS Number	LOR	Unit	HK1012591-001	HK1012591-002	HK1012591-003	HK1012591-004	HK1012591-005
EA/ED: Physical and Aggregate Properties	es							
EA055: Moisture Content (dried @ 103°C)	(c)	0.1	%	8.0	15.9	13.7	20.3	17.5
EG: Metals and Major Cations								
EG020: Lead	7439-92-1	-	mg/kg	112	225	20	26	28
EP-080: BTEX								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene 108	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	41.0
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP-071HK: Total Petroleum Hydrocarbons (TPH)	ns (TPH)							
C6 - C8 Fraction	-	5	mg/kg	\$	<5	<5	< 2	\$
C9 - C16 Fraction	1	200	mg/kg	<200	<200	<200	<200	<200
C17 - C35 Fraction	ł	200	mg/kg	<500	<500	<500	<500	<500
EP-080S: TPH(Volatile)/BTEX Surrogate							Surrogate control limits	Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	85.2	90.0	93.2	91.9	91.0
Toluene-D8	2037-26-5	0.1	%	94.9	96.1	97.5	98.1	95.2
4-Bromofluorobenzene	460-00-4	0.1	%	107	99.5	98.4	96.0	96.5

∴ 3 of 4 ∴ VIBRO (HK) LTD HK1012591 Page Number Work Order

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Tab	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical	EA/ED: Physical and Aggregate Properties (QC Lot: 1378386)	s (QC Lot: 1378386)						
HK1012591-001 T06- 0.5M	T06- 0.5M	EA055: Moisture Content (dried @ 103°C)	I	0.1	%	8.0	7.7	4.1
EG: Metals and M	EG: Metals and Major Cations (QC Lot: 1380938)	380938)						
HK1012579-001	Anonymous	EG020: Lead	7439-92-1	-	mg/kg	76	65	16.4
HK1012585-004	Anonymous	EG020: Lead	7439-92-1	_	mg/kg	63	92	3.0
EP-080: BTEX (QC Lot: 1377038)	C Lot: 1377038)							
HK1012579-003	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	92-47-6	0.5	mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	0.0
EP-071HK: Total F	etroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1377038)						
HK1012579-003	Anonymous	C6 - C8 Fraction	-	2	mg/kg	\$	\$	0.0
EP-071HK: Total F	etroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)						
HK1012585-004	Anonymous	C9 - C16 Fraction	-	200	mg/kg	<200	<200	0.0
And the same of the second of		C17 - C35 Fraction	-	200	mg/kg	<500	<500	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

			wetnod Blank (MB) Report	лероп (Pape	oratory Control S,	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	ol Spike Duplica	ate (DCS) Re	oort
					Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	2	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SOT	DCS	FOW	High	Value	Value Control Limit
EG: Metals and Major Cations (QC Lot: 1380938)	s (QC Lot: 1380938)	Y									
EG020: Lead	7439-92-1	-	mg/kg	∨	5 mg/kg	91.5	1	85	115	i	
EP-080: BTEX (QC Lot: 1377038)	138)										
Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	90.3		77	118		
Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	88.8	-	80	115	1	1
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	83.0	1	77	114	1	1
meta- & para-Xylene	108-38-3 106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	87.7	-	74	120	1	1
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	75.1		72	115	1	1
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1377038)	ydrocarbons (TPH) (QC I	Lot: 1377	.038)								
C6 - C8 Fraction	1	2	mg/kg	<5	3 mg/kg	102	-	51	147	1	1
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)	ydrocarbons (TPH) (QC I	Lot: 1378	563)								
C9 - C16 Fraction	1	200	mg/kg	<200	31 mg/kg	80.1	-	22	107	1	1
C17 - C35 Fraction	1	200	mg/kg	<500	75 mg/kg	73.3		43	106	1	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL

Matrix: SOIL					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	MS) and Matri	x Spike Dupli	cate (MSD)	Report	
				Spike	Spike Reco	Spike Recovery (%)	Recovery Limits (%)	imits (%)	RPI	RPD (%)
Laboratory sample	Client sample ID	Method: Compound	CAS	oncentration	MS	MSD	Том	High	Value Control	Control
Q			Number							Limit

VIBRO (HK) LTD

. 4 of 4

Page Number

HK1012591

Client Work Order

Contro/ Limit RPD (%) Value -1111 -| | Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Recovery Limits (%) High 125 130 130 130 130 130 130 Low 75 50 50 50 50 20 50 MSD Spike Recovery (%) --1 86.3 64.5 84.4 70.2 66.2 84.1 74.2 71.3 83.1 CAS Concentration 31 mg/kg 75 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 3 mg/kg 0.4 mg/kg 5 mg/kg Spike 7439-92-1 71-43-2 95-47-6 108-88-3 100-41-4 106-42-3 108-38-3 Number EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)
HK1012585-003 Anonymous C9 - C16 Fraction EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1377038) meta- & para-Xylene C9 - C16 Fraction C17 - C35 Fraction Method: Compound C6 - C8 Fraction Ethylbenzene ortho-Xylene EG020: Lead Benzene Toluene EG: Metals and Major Cations (QC Lot: 1380938) Laboratory sample Client sample ID ID EP-080: BTEX (QC Lot: 1377038) Anonymous Anonymous Anonymous HK1012579-004 HK1012576-001 HK1012579-004 Matrix: SOIL

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Том	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121

A Camphall Brothere I imited Company

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012874

: 1 of 4

: 11-JUN-2010

CERTIFICATE OF ANALYSIS

Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey -aboratory Contact Address VIBRO (H.K.) LTD MR H M CHAN Contact Address Client

Date Samples Received Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com Wing Yip Street, : +852 2610 1044 : +852 2610 2021 : HK/582a/2010 Quote number **Felephone** -acsimile E-mail J200942E MTR C8016 - ENVIRONMENTAL HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., 2335 2554 **Felephone**

Facsimile

E-mail

Project

: 28-JUN-2010 No. of samples analysed No. of samples received TERM CONSULTANCY FOR XRL H009671 MLW C-O-C number Order number

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 22-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012874

Water sample(s) analysed and reported on an as received basis. Sample(s) were received in a chilled condition.

This report may not be reproduced except with prior written approval from the testing laboratory.

Authorised results for Organics Senior Chemist Position Hong Kong, Chapter 553, Section 6.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of

Py Anh Ngoc Huynh Signatories

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044. Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

: 2 of 4 : VIBRO (H.K.) LTD HK1012874 Work Order HK101287

Analytical Results

Page Number Client

Sub-Matrix: WATER						
		Clien	Client sample ID	T06	TRIP BLANK	
	Clien	t sampling	Client sampling date / time	11-JUN-2010 14:00	[11-JUN-2010]	
Compound	CAS Number LOR	LOR	Unit	HK1012874-001	HK1012874-002	
EP-080: BTEX						
Benzene	71-43-2	2	hg/L	<5	<5	
Toluene	108-88-3	2	hg/L	<5	<5	
Ethylbenzene	100-41-4	2	hg/L	<5	<5	
meta- & para-Xylene	108-38-3 106-42-3	10	hg/L	<10	<10	
ortho-Xylene	92-41-6	S)	hg/L	<5	<5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	arbons (TPH)					
C6 - C8 Fraction	-	20	hg/L	<20	<20	
C9 - C16 Fraction	1	200	hg/L	<500		
C17 - C35 Fraction	-	200	hg/L	<500		
EP-080S: TPH(Volatile)/BTEX Surrogate	ogate					Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	103	101	
Toluene-D8	2037-26-5	0.1	%	104	101	
4-Bromofluorobenzene	460-00-4	0.1	%	86.1	86.5	

Page Number : 3 of 4
Client : VIBRO (H.K.) LTD
Work Order HK1012874

Laboratory Duplicate (DUP) Report

Matrix: WATER				Lab	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	e ID Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-080: BTEX (QC Lot: 1378584)	584)						
HK1012576-002 Anonymous	meta- & para-Xylene	108-38-3	10	hg/L	<10	<10	0.0
	Benzene	71-43-2	5	hg/L	\$	\$	0.0
	Toluene	108-88-3	5	hg/L	\$	\	0.0
	Ethylbenzene	100-41-4	5	hg/L	< 5	\\$	0.0
	ortho-Xylene	95-47-6	5	hg/L	\$	\$	0.0
EP-080: BTEX (QC Lot: 1380024)	024)						
HK1012874-002 TRIP BLANK	K meta- & para-Xylene	108-38-3 106-42-3	10	hg/L	<10	<10	0.0
	Benzene	71-43-2	2	hg/L	\$	\$	0.0
	Toluene	108-88-3	2	hg/L	\$	\$	0.0
	Ethylbenzene	100-41-4	5	hg/L	\$	\$	0.0
	ortho-Xylene	95-47-6	2	hg/L	< \$	\$	0.0
EP-071HK: Total Petroleum H	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376568)						
HK1012308-001 Anonymous	C9 - C16 Fraction		0.5	mg/L	<0.5	<0.5	0.0
n de la composición dela composición de la composición de la composición de la composición de la composición dela composición de la compos	C17 - C35 Fraction		0.5	mg/L	<0.5	<0.5	0.0
EP-071HK: Total Petroleum H	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)						
HK1012576-002 Anonymous	C6 - C8 Fraction		0.02	mg/L	<0.02	<0.02	0.0
EP-071HK: Total Petroleum H	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)						
HK1012874-002 TRIP BLANK	K C6 - C8 Fraction	I I I	0.02	mg/L	<0.02	<0.02	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Σ	Method Blank (MB) Report) Report	<i>Lab</i> c	oratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	ol Spike Dupli	icate (DCS) Re	port
					Spike	Spike Rec	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Low	High	Value	Control Limit
EP-080: BTEX (QC Lot: 1378584)											
Benzene	71-43-2	2	hg/L		10 µg/L	82.9	1	26	111		
				<u>\</u>	-	1		-	1		1
Toluene	108-88-3	2	hg/L	\$	10 µg/L	87.9	1	64	115	1	
Ethylbenzene	100-41-4	2	hg/L	\$	10 µg/L	85.1	-	29	101	1	1
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	4>	20 µg/L	86.2	1	84	108	1	1
ortho-Xylene	92-41-6	2	hg/L	\$	10 µg/L	76.2		72	100	1	1
EP-080: BTEX (QC Lot: 1380024)											
Benzene	71-43-2	2	hg/L		10 µg/L	67.1		26	111	1	1
				₹		-	-	-	1	-	!
Toluene	108-88-3	2	hg/L	\$	10 µg/L	77.0	1	64	115	1	1
Ethylbenzene	100-41-4	2	hg/L	\$	10 µg/L	6.69	1	29	101	1	1
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	4>	20 µg/L	91.2	1.	84	108	1	1
ortho-Xylene	92-41-6	2	hg/L	\$	10 µg/L	80.5		72	100	1	1
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376568)	ocarbons (TPH) (QC L	ot: 13765	(89)								
C9 - C16 Fraction		0.5	mg/L	<0.5	0.25 mg/L	70.8	1	17	170	1	

∴ 4 of 4 ∴ VIBRO (H.K.) LTD HK1012874 Page Number Client

Matrix: WATER		N	Method Blank (MB) Report) Report	Labo	ratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	Soratory Contro	ol Spike Duplic	ate (DCS) Re	oort
					Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number LOR	LOR	Unit	Result	Concentration	SO7	DCS	Low	High	Value	Value Control Limit
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376568) - Continued	carbons (TPH) (QC	Lot: 13765	68) - Continu	per			. =	_	1		
C17 - C35 Fraction		0.5	mg/L	<0.5	0.5 mg/L	77.6	1	32	143	1	1
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)	carbons (TPH) (QC	Lot: 13785	84)								
C6 - C8 Fraction		0.02	mg/L	<0.02	1	1	-	-	-	-	-
				-	0.15 mg/L	86.7		89	125	-	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1380024)	carbons (TPH) (QC	Lot: 13800	(24)								
C6 - C8 Fraction		0.5	mg/L		0.15 mg/L	73.9		89	125	1	
				<0.02		-	-		-		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Matrix: WATER

Spike Spik	Matrix: WATER					Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	ix Spike Dupli	icate (MSD) I	Report	
CAS Concentration MS Number 71-43-2 10 µg/L 108-88-3 10 µg/L 108-38-3 20 µg/L 106-42-3 95-47-6 10 µg/L					Spike	Spike Re	covery (%)	Recovery	Recovery Limits (%)	RPI	RPD (%)
71-43-2 10 µg/L 108-88-3 10 µg/L 100-41-4 10 µg/L 108-38-3 20 µg/L 106-42-3 95-47-6 10 µg/L	Laboratory sample ID	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Гом	High	Value	Control Limit
71-43-2 10 µg/L 108-88-3 10 µg/L 100-41-4 10 µg/L 108-38-3 20 µg/L 106-42-3 95-47-6 10 µg/L	EP-080: BTEX (QC	C Lot: 1380024)									
108-88-3 10 µg/L 100-41-4 10 µg/L 108-38-3 20 µg/L 106-42-3 95-47-6 10 µg/L	HK1012947-002	Anonymous	Benzene	71-43-2	10 µg/L	1	1	20	130	I	1
100-41-4 10 µg/L 108-38-3 20 µg/L 106-42-3 95-47-6 10 µg/L 0.45 mg/L			Toluene	108-88-3	10 µg/L	1		20	130	-	
108-38-3 106-42-3 95-47-6 10 µg/L			Ethylbenzene	100-41-4	10 µg/L	1		20	130	-	-
95-47-6 10 µg/L	de al lande escape es esta de la constante escape es esta de la constante escape es esta de la constante escap		meta- & para-Xylene	108-38-3 106-42-3		1	1	20	130	1	
20 m			ortho-Xylene	92-47-6		1	-	20	130	l	1
C6 C0 Example 1	EP-071HK: Total P	etroleum Hydrocarbons	(TPH) (QC Lot: 1380024)								
Co - Co Fraction	HK1012947-002 Anonymous	Anonymous	C6 - C8 Fraction		0.15 mg/L	1		20	130	1	1

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			-
Dibromofluoromethane	1868-53-7	98	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	98	115

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012576

Work Order

CERTIFICATE OF ANALYSIS

: 11/F., Chung Shun Knitting Centre, 1 - 3 : ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey Laboratory Contact Address 38 SHEUNG ON ST., VIBRO (HK) LTD **MR H M CHAN** Contact Address Client

CHAI WAN HONG KONG HM_Chan@vibro.com.hk

E-mail

2335 2554 **Telephone** Facsimile

Telephone Facsimile

E-mail

Quote number J200942E MTR C8016 - ENVIRONMENTAL

: HK/582a/2010

TERM CONSULTANCY FOR XRL

MEI LAI ROAD H009661

C-O-C number Order number

Project

This report may not be reproduced except with prior written approval

from the testing laboratory.

Godfrey.Chan@alsenviro.com +852 2610 1044 +852 2610 2021

Kwai Chung, N.T., Hong Kong

Wing Yip Street,

: 22-JUN-2010 No. of samples received Issue Date

: 03-JUN-2010

Date Samples Received

No. of samples analysed

Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of This document has been electronically signed by those names that appear on this report and are the authorised signatories. Hong Kong, Chapter 553, Section 6.

Authorised results for

Inorganics Organics

General Manager Senior Chemist PFung Lim Chee, Richard Anh Ngoc Huynh

Signatories

Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tet. +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

HK1012576 2 of 7 Page Number Work Order

: VIBRO (HK) LTD

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 17-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012576

Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis. Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

Page Number: 3 of 7
Client: VIBRO (HK) LTD
Work Order HK1012576

Analytical Results

Sub-Matrix: SOIL		Clier	Client sample ID	T07-0.5M	
	Clien	t sampling	Client sampling date / time	03-JUN-2010 09:21	
Compound	CAS Number	LOR	Unit	HK1012576-001	
EA/ED: Physical and Aggregate Properties	Properties				
EA055: Moisture Content (dried @ 103°C)	1@ 103°C)	0.1	%	17.2	
EG: Metals and Major Cations					
EG020: Lead	7439-92-1	-	mg/kg	18	
EP-080: BTEX					
Benzene	71-43-2	0.2	mg/kg	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	ocarbons (TPH)				
C6 - C8 Fraction		2	mg/kg	<5	
C9 - C16 Fraction		200	mg/kg	<200	
C17 - C35 Fraction		200	mg/kg	<500	
EP-080S: TPH(Volatile)/BTEX Surrogate	rogate				Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	94.0	
Toluene-D8	2037-26-5	0.1	%	7.76	
4-Bromofluorobenzene	460-00-4	0.1	%	82.9	

VIBRO (HK) LTD HK1012576

. 4 of 7

Page Number

Client Work Order

Surrogate control limits listed at end of this report. TRIP BLANK [03-JUN-2010] HK1012576-002 \$ \$ \$ \$ 104 100 87.4 <20 Client sample ID Client sampling date / time Unit Hg/L Hg/L Hg/L Hg/L hg/L % % % CAS Number LOR 0.0 2 2 2 2 20 1868-53-7 2037-26-5 460-00-4 71-43-2 100-41-4 108-38-3 106-42-3 95-47-6 EP-071HK: Total Petroleum Hydrocarbons (TPH) EP-080S: TPH(Volatile)/BTEX Surrogate Dibromofluoromethane 4-Bromofluorobenzene Ethylbenzene meta- & para-Xylene Sub-Matrix: WATER C6 - C8 Fraction ortho-Xylene **EP-080: BTEX** Toluene-D8 Benzene Compound Toluene

Page Number : 5 of 7
Client : VIBRO (HK) LTD
Work Order HK1012576

Laboratory Duplicate (DUP) Report

Matrix: SOIL					rap	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
A/ED: Physical a	EA/ED: Physical and Aggregate Properties (QC Lot: 1377460)	(QC Lot: 1377460)						
HK1012308-003	Anonymous	EA055: Moisture Content (dried @ 103°C)	-	0.1	%	30.1	30.1	0.0
HK1012404-005	Anonymous	EA055: Moisture Content (dried @ 103°C)	-	0.1	%	27.4	27.7	1.0
G: Metals and Ma	EG: Metals and Major Cations (QC Lot: 1380938)	80938)						
HK1012579-001	Anonymous	EG020: Lead	7439-92-1	-	mg/kg	92	65	16.4
HK1012585-004	Anonymous	EG020: Lead	7439-92-1	_	mg/kg	63	65	3.0
EP-080: BTEX (QC Lot: 1375625)	3 Lot: 1375625)							
HK1011354-003	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.0
		Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.0
		ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.0
		meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	<0.4	0.0
P-071HK: Total P	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1375625)	(TPH) (QC Lot: 1375625)						
HK1011354-003	Anonymous	C6 - C8 Fraction	1	2	mg/kg	<5	^ 22	0.0
P-071HK: Total P	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376573)	(TPH) (QC Lot: 1376573)						
HK1012308-003	Anonymous	C9 - C16 Fraction	-	200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction	1	200	mg/kg	<500	<500	0.0
Matrix: WATER					Lab	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-080: BTEX (QC Lot: 1378584)	Cot: 1378584)							
HK1012576-002	TRIP BLANK	meta- & para-Xylene	108-38-3	10	hg/L	<10	<10	0.0
		Benzene	71-43-2	2	µg/L	\$	^	0.0
		Toluene	108-88-3	2	µg/L	<5	\$	0.0
		Ethylbenzene	100-41-4	5	hg/L	<5	<5	0.0
		ortho-Xylene	95-47-6	2	hg/L	\$	^ 2	0.0
P-071HK: Total P	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)	(TPH) (QC Lot: 1378584)						
HK1012576-002	TRIP BLANK	C6 - C8 Fraction		0.02	mg/L	<0.02	<0.02	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Spike Solution: Cannound Compound	Matrix: SOIL			Method Blank (MB) Report	Report	Labo	aboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	ke (LCS) and Lab	oratory Contro	I Spike Duplic	cate (DCS) Re	ort
CASNumber LOR Unit Result Concentration LCS DCS Low High C Lot: 1380938) CLot: 1380938) 7439-92-1 1 mg/kg 85 115 71-43-2 0.2 mg/kg -0.2 0.2 mg/kg 95.6 77 118 108-88-3 0.2 mg/kg -0.2 0.2 mg/kg 101 80 115 108-38-3 0.4 mg/kg -0.2 0.2 mg/kg 90.0 77 114 108-38-3 0.4 mg/kg -0.4 0.4 mg/kg 95.0 77 120							Spike Rec	overy (%)	Recovery	Limits (%)	R	(%) Q
C Lot: 1380938) 7439-92-1 1 mg/kg <1 5 mg/kg 91.5 85 115 71-43-2 0.2 mg/kg <0.2 0.2 mg/kg 95.6 77 118 108-88-3 0.2 mg/kg <0.2 0.2 mg/kg 101 80 115 108-38-3 0.2 mg/kg <0.2 0.2 mg/kg 90.0 77 114 108-38-3 0.4 mg/kg <0.4 0.4 mg/kg 6.0.4 mg/kg 95.0 74 120	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SOT	DCS	Low	High	Value	Control Limit
7439-92-1 1 mg/kg <1	EG: Metals and Major Cations (G	2C Lot: 1380938)							÷ †	1		
71-43-2 0.2 mg/kg <0.2 mg/kg 0.2 mg/kg 95.6 77 118 108-88-3 0.2 mg/kg <0.2 mg/kg <0.2 mg/kg 0.2 mg/kg 0.4	EG020: Lead	7439-92-1	-	mg/kg	₹	5 mg/kg	91.5		85	115	-	
71-43-2 0.2 mg/kg <0.2 mg/kg <0.2 mg/kg 95.6 77 118 108-88-3 0.2 mg/kg <0.2 mg/kg 0.2 mg/kg 0.4 mg/kg	EP-080: BTEX (QC Lot: 1375625)											
108-88-3 0.2 mg/kg <0.2 mg/kg 101 80 115 100-41-4 0.2 mg/kg <0.2 mg/kg <0.2 mg/kg 90.0 77 114	Benzene	71-43-2		mg/kg	<0.2	0.2 mg/kg	92.6	1	77	118	1	-
100-41-4 0.2 mg/kg <0.2 mg/kg 90.0 77 114 77 sylene 108-38-3 106-42-3 0.4 mg/kg <0.4 mg/kg 95.0 74 120	Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	101	1	80	115	1	1
108-38-3 106-42-3 0.4 mg/kg <0.4 0.4 mg/kg 95.0 74 120	Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	0.06		77	114	1	-
	meta- & para-Xylene	108-38-3 106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	95.0		74	120	-	

: 6 of 7 : VIBRO (HK) LTD HK1012576 Work Order

Page Number Client

Spike Recovery (%) Recovery Limits (%) LCS DCS Low High Value	Matrix: SOIL		distribution of the state of th	Method Blank (MB) Report	Report	Labo	ratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	ol Spike Dupli	cate (DCS) Re	port
Continued						Spike	Spike Re	covery (%)	Recovery	Limits (%)	R	RPD (%)
K (QC Lot: 1375625) - Continued Sc A7-6 D.2 mg/kg <0.2	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Tow	High	Value	Control Limit
195-47-6 0.2 mg/kg 0.2 m	EP-080: BTEX (QC Lot: 137562	5) - Continued			14							
stall Petroleum Hydrocarbons (TPH) (QC Lot: 1375625) on — 5 mg/kg <5 3 mg/kg 103 — 51 147 — otal Petroleum Hydrocarbons (TPH) (QC Lot: 1376573) — 5 mg/kg <200 31 mg/kg 22.3 — 57 107 — stion — 200 mg/kg <200 75 mg/kg 72.3 — 57 107 — stion — 500 mg/kg <500 75 mg/kg 72.3 — 43 106 — stion — 500 mg/kg <500 75 mg/kg 72.3 — 43 106 — stion — Annethod Blank (MB) Report Result Concentration Spike (LCS) and Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) 104 — — 43 106 — — 41 104 — — 41 104 — — 41 11 — —	ortho-Xylene	92-41-6	0.2	mg/kg	<0.2	0.2 mg/kg	85.0	1	72	115	-	1
on ptal Petroleum Hydrocarbons (TPH) (QC Lot: 1376573) Sing/kg <5 3 mg/kg <5 147 stal Petroleum Hydrocarbons (TPH) (QC Lot: 1376573) Sing/kg <500 mg/kg <500 75 mg/kg 72.3 57 107 ston 200 mg/kg <500 75 mg/kg 72.3 43 107 43 106 43 107 43 107	EP-071HK: Total Petroleum Hyd	drocarbons (TPH) (QC	Lot: 137	5625)								
stal Petroleum Hydrocarbons (TPH) (QC Lot: 1376573) ion — 200 mg/kg <200 31 mg/kg 82.3 — 57 107 — ition — 500 mg/kg <200	C6 - C8 Fraction		2	mg/kg	<5	3 mg/kg	103	1	51	147	- 1	1
Figure F	EP-071HK: Total Petroleum Hyd	drocarbons (TPH) (QC	Lot: 1376	3573)								
tition — 500 mg/kg <500 75 mg/kg 72.3 — 43 106 — tition Method Blank (MB) Report Spike Taboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) and Laboratory Control Spike (LCS) and Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) and Laboratory Control Spike DCS (DCS) and	C9 - C16 Fraction		200	mg/kg	<200	31 mg/kg	82.3		22	107	1	1
Method Blank (MB) Report Splike Splike Recovery (%) Recovery Limits (%) Laboratory Control Splike Duplicate (DCS) Recovery Limits (%) Alumber CQC Lot: 1378584) 71-43-2 2 µg/L <2 10 µg/L 82.9 — 56 111 — Ylene 108-88-3 2 µg/L <2 10 µg/L 85.9 — 64 115 — Sylene 108-88-3 2 µg/L <2 10 µg/L 85.9 — 56 111 — Sylene 108-88-3 2 µg/L <2 10 µg/L 85.1 — 64 115 — Sylene 108-38-3106-42-3 4 µg/L <4 20 µg/L 86.2 — 64 116 — Stall Petroleum Hydrocarbons (TPH) (QC Lot: 1378584) mg/L <0.02 — — — 66 — — — Nn	C17 - C35 Fraction		200	mg/kg	<500	75 mg/kg	72.3		43	106	-	-
Unit Result Spike Spike Recovery (%) Recovery Limits (%) Low High Value µg/L —— 10 µg/L 82.9 —— 56 111 —— µg/L <2	Matrix: WATER			Method Blank (MB)	Report	Labo	ratory Control Sp	oike (LCS) and Lat	oratory Contro	ol Spike Dupli	cate (DCS) Re	oort
Unit Result Concentration LCS DCS Low High µg/L — 10 µg/L 82.9 — 56 111 µg/L <2						Spike	Spike Re	covery (%)	Recovery	Limits (%)	B	RPD (%)
Hg/L 10 µg/L 82.9 56 111 41 56 111 Hg/L <2	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Tow	High	Value	Control Limit
µg/L 10 µg/L 82.9 56 111 <1	EP-080: BTEX (QC Lot: 137858	(4)			Ä							
ug/L <2	Benzene	71-43-2	2	hg/L	-	10 µg/L	82.9		26	111		
µg/L <2 10 µg/L 87.9 64 115 µg/L <2					₹		-		-	1		-
µg/L <2 10 µg/L 85.1 67 101 µg/L <4	Toluene	108-88-3	2	hg/L	\$	10 µg/L	87.9	-	64	115	1	1
µg/L <4 20 µg/L 86.2 84 108 µg/L <2	Ethylbenzene	100-41-4	2	hg/L	\$	10 µg/L	85.1	-	29	101	1	1
µg/L <2	meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	4 >	20 µg/L	86.2		84	108	1	-
mg/L <0.02 68 125 68 125	ortho-Xylene	95-47-6	2	hg/L	<2	10 µg/L	76.2		72	100	1	
0.02 mg/L <0.02 68 125 68 125	EP-071HK: Total Petroleum Hyd	drocarbons (TPH) (QC	Lot: 1378	3584)								
0.15 mg/L 86.7 68 125	C6 - C8 Fraction		0.02	mg/L	<0.02		-	1	1	1	1	1
					-	0.15 mg/L	86.7		89	125	-	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL

Matrix: SOIL					Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	ix Spike Dupli	icate (MSD)	Report	
				Spike	Spike Re	Spike Recovery (%)	Recovery Limits (%)	Limits (%)	RP	RPD (%)
Laboratory sample Client sample ID ID	Client sample ID	Method: Compound	CAS	CAS Concentration	MS	MSD	Гом	High	Value	Control Limit
EG: Metals and Ma	EG: Metals and Major Cations (QC Lot: 1380938)	180938)								
HK1012576-001	T07- 0.5M	EG020: Lead	7439-92-1	5 mg/kg	86.3	-	75	125		1
EP-080: BTEX (QC Lot: 1375625)	; Lot: 1375625)									
HK1011354-007	Anonymous	Benzene	71-43-2	0.2 mg/kg	86.9	-	20	130	1	1
		Toluene	108-88-3	0.2 mg/kg	92.5		20	130		-
		Ethylbenzene	100-41-4	0.2 mg/kg	83.8	-	20	130		-
		meta- & para-Xylene	108-38-3	0.4 mg/kg	91.6	1	20	130		I
		ortho-Xylene	92-47-6	0.2 mg/kg	83.1		20	130		-
EP-071HK: Total Po	etroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1375625)								
HK1011354-007	Anonymous	C6 - C8 Fraction	-	3 mg/kg	87.9		20	130		
EP-071HK: Total Pe	etroleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376573)								
HK1012404-002	Anonymous	C9 - C16 Fraction		31 mg/kg	61.3		20	130	-	
		C17 - C35 Fraction		75 mg/kg	74.0		20	130	-	-

Page Number : 7 of 7
Client : VIBRO (HK) LTD
Work Order HK1012576

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Том	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	98	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012585

1 of 4

CERTIFICATE OF ANALYSIS

Work Order : 11/F., Chung Shun Knitting Centre, 1 - 3 : ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey -aboratory Contact Address VIBRO (HK) LTD **MR H M CHAN** Contact Address

Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com Wing Yip Street, +852 2610 1044 : +852 2610 2021 **Felephone** Facsimile E-mail HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., 2335 2554

> Telephone Facsimile

E-mail

: 07-JUN-2010 21-JUN-2010 4 Date Samples Received No. of samples analysed No. of samples received Issue Date : HK/582a/2010 Quote number J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL **MEI LAI ROAD** : H009721 C-O-C number Order number Project

General Comments

his report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 17-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012585

Sample(s) were received in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis. Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of This document has been electronically signed by those names that appear on this report and are the authorised signatories. Authorised results for Position Hong Kong, Chapter 553, Section 6.

Signatories
Anh Ngoc Huynh
Po Fung Lim Chee, Richard

Inorganics

Senior Chemist General Manager

ALS Laboratory Group
Tading Name: ALS Technichem (HK) Pty Ltd
3 Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kor

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tet +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

Campbell Brothers Limited Company

Page Number : 2 of 4
Client : VIBRO (HK) LTD
Work Order HK1012585

Analytical Results

Alialytical Results								
Sub-Matrix: SOIL		Clien	Client sample ID	T07- 1.5M	T07-3.0M	T07-4.5M	T07- 6.0M	
	Clien	sampling	Client sampling date / time	05-JUN-2010 09:21	05-JUN-2010 09:56	05-JUN-2010 10:43	05-JUN-2010 13:40	
Compound	CAS Number LOR	LOR	Unit	HK1012585-001	HK1012585-002	HK1012585-003	HK1012585-004	
EA/ED: Physical and Aggregate Properties	s							
EA055: Moisture Content (dried @ 103°C)		0.1	%	18.8	15.7	16.7	16.6	
EG: Metals and Major Cations								
EG020: Lead	7439-92-1	-	mg/kg	412	121	93	63	
EP-080: BTEX								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene 108-3	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	41.0	<1.0	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	s (TPH)							
C6 - C8 Fraction	1	2	mg/kg	<5	<5	< 5	<5	
C9 - C16 Fraction	1	200	mg/kg	<200	<200	<200	<200	
C17 - C35 Fraction	-	200	mg/kg	<500	<500	<500	<500	
EP-080S: TPH(Volatile)/BTEX Surrogate							Surrogate control limits listed at end of this report.	ted at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	93.9	98.3	95.0	89.2	
Toluene-D8	2037-26-5	0.1	%	97.2	94.8	102	95.3	
4-Bromofluorobenzene	460-00-4	0.1	%	90.0	87.6	93.9	107	

Page Number : 3 of 4
Client : VIBRO (HK) LTD
Work Order HK1012585

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical	EA/ED: Physical and Aggregate Properties (QC Lot: 1377461)	ies (QC Lot: 1377461)						
HK1012579-003	Anonymous	EA055: Moisture Content (dried @ 103°C)	1	0.1	%	12.3	12.5	1.1
HK1012604-004	Anonymous	EA055: Moisture Content (dried @ 103°C)	-	0.1	%	24.2	22.5	7.4
EG: Metals and N	EG: Metals and Major Cations (QC Lot: 1380938)	1380938)						
HK1012579-001	Anonymous	EG020: Lead	7439-92-1	_	mg/kg	92	65	16.4
HK1012585-004	T07- 6.0M	EG020: Lead	7439-92-1	_	mg/kg	63	65	3.0
EP-080: BTEX (QC Lot: 1377038)	C Lot: 1377038)							
HK1012579-003	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	92-47-6	0.5	mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	0.0
EP-071HK: Total !	Petroleum Hydrocarbon	EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376573)						
HK1012308-003	Anonymous	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction	1	200	mg/kg	<500	<500	0.0
EP-071HK: Total !	Petroleum Hydrocarbon	EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1377038)						
HK1012579-003	Anonymous	C6 - C8 Fraction		2	mg/kg	<5	<5	0.0
EP-071HK: Total !	Petroleum Hydrocarbon	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)						
HK1012585-004	T07- 6.0M	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		200	mg/kg	<500	<500	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Major Cations (QC Lot: 1380938) LOR Unit Result Concentration LOS DCS QC Lot: 1377038) 71-43-2 0.2 mg/kg <1 5 mg/kg 91.5 QC Lot: 1377038) 71-43-2 0.2 mg/kg <0.2 0.2 mg/kg 90.3 ne 108-88-3 0.2 mg/kg <0.2 0.2 mg/kg 88.8 ne 108-38-3 0.4 mg/kg <0.2 0.2 mg/kg 88.8 Petroleum Hydrocarbons (TPH) (QC Lot: 1376573) <0.2 0.2 mg/kg 82.3 Petroleum Hydrocarbons (TPH) (QC Lot: 1377038) <50 75 mg/kg 82.3 Petroleum Hydrocarbons (TPH) (QC Lot: 1378563) <50 75 mg/kg 102	Matrix: SOIL			Method Blank (MB) Report	Report	Labo	ratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	of Spike Duplic	cate (DCS) Re	port
Unit Result Concentration LCS mg/kg <1 5 mg/kg 91.5 mg/kg <0.2 0.2 mg/kg 90.3 mg/kg <0.2 0.2 mg/kg 88.8 mg/kg <0.2 0.2 mg/kg 83.0 mg/kg <0.4 0.4 mg/kg 87.7 mg/kg <0.2 0.2 mg/kg 75.1 mg/kg <200 31 mg/kg 75.1 mg/kg <500 75 mg/kg 72.3 mg/kg <5 3 mg/kg 102 mg/kg <5 3 mg/kg 102						Spike	Spike Red	covery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
mg/kg <1 5 mg/kg 91.5 mg/kg <0.2 0.2 mg/kg 90.3 mg/kg <0.2 0.2 mg/kg 88.8 mg/kg <0.2 0.2 mg/kg 83.0 mg/kg <0.4 0.4 mg/kg 87.7 mg/kg <0.2 0.2 mg/kg 75.1 mg/kg <200 31 mg/kg 72.3 mg/kg <5 3 mg/kg 102 mg/kg <5 3 mg/kg 102	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Том	High	Value	Control Limit
mg/kg <1	EG: Metals and Major Cation	is (QC Lot: 1380938)										
mg/kg <0.2	EG020: Lead	7439-92-1	-	mg/kg	₹	5 mg/kg	91.5		85	115	-	
mg/kg <0.2	EP-080: BTEX (QC Lot: 1377	(038)										
mg/kg <0.2 mg/kg	Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	90.3	-	77	118	1	
mg/kg <0.2 mg/kg 83.0 mg/kg <0.4 0.4 mg/kg 87.7 mg/kg <0.2 0.2 mg/kg 75.1 mg/kg <200 31 mg/kg 72.3 mg/kg <500 75 mg/kg 72.3 mg/kg <5 3 mg/kg 102 ma/kg <200 31 mg/kg 102	Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	88.8		80	115		
mg/kg <0.4	Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	83.0		77	114		
mg/kg <0.2 mg/kg	meta- & para-Xylene	108-38-3 106-42-3	0.4	mg/kg	<0.4	0.4 mg/kg	87.7		74	120	-	
mg/kg <200	ortho-Xylene	9-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	75.1	1	72	115		1
mg/kg <200	EP-071HK: Total Petroleum h	Hydrocarbons (TPH) (QC	Lot: 1376	573)								
mg/kg <500 75 mg/kg 72.3 mg/kg <5 3 mg/kg 102 ma/kg <200 31 ma/kg 80.1	C9 - C16 Fraction		200	mg/kg	<200	31 mg/kg	82.3		57	107	1	
mg/kg <5 3 mg/kg 102	C17 - C35 Fraction		200	mg/kg	<500	75 mg/kg	72.3	-	43	106	!	-
mg/kg <5 3 mg/kg 102 ma/ka <200 31 ma/ka 80.1	EP-071HK: Total Petroleum h	Hydrocarbons (TPH) (QC	Lot: 1377	038)								
ma/kg <200 31 ma/kg 80.1	C6 - C8 Fraction	1	2	mg/kg	<5	3 mg/kg	102	-	51	147	1	-
200 ma/kg <200 31 mg/kg 80.1	EP-071HK: Total Petroleum H	lydrocarbons (TPH) (QC	Lot: 1378	563)								
	C9 - C16 Fraction		200	mg/kg	<200	31 mg/kg	80.1		22	107	1	-

: 4 of 4 : VIBRO (HK) LTD HK1012585 Page Number Client Work Order

Matrix: SOIL		Method Blank (MB) R) Report	Labor	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	ke (I C.S) and I abo	oratory Contro	Spike Duplic	ate (DCS) Rei	ort
				000	عددر) حديثات والما	עם (===) מנום =מש	aren's control	obine papine	مدد (حص) منه	
				Spike	Spike Recovery (%)	overy (%)	Recovery	Recovery Limits (%)	RF	RPD (%)
Method: Compound CAS Num	CAS Number LOR	Unit	Result	Concentration	SO7	DCS	Tow	Low High	Value	Value Control Limit
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563) - Continued	QC Lot: 137	8563) - Continu	pen							
C17 - C35 Fraction	200	mg/kg	<500	75 mg/kg	73.3		43	106	1	-

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	MS) and Matri	x Spike Dupl	icate (MSD) I	Report	
				Spike	Spike Recovery (%)	overy (%)	Recovery	Recovery Limits (%)		RPD (%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Гом	High	Value	Control Limit
EG: Metals and Major	EG: Metals and Major Cations (QC Lot: 1380938)	30938)								
HK1012576-001 A	Anonymous	EG020: Lead	7439-92-1	5 mg/kg	86.3	1	75	125	-	-
EP-080: BTEX (QC Lot: 1377038)	ot: 1377038)									
HK1012579-004	Anonymous	Benzene	71-43-2	0.2 mg/kg	66.2	1	50	130		-
		Toluene	108-88-3	0.2 mg/kg	64.5		50	130	I	1
		Ethylbenzene	100-41-4	0.2 mg/kg	84.4	1	20	130	1	I
		meta- & para-Xylene	108-38-3	0.4 mg/kg	84.1	I	20	130	1	1
		ortho-Xylene	92-47-6	0.2 mg/kg	74.2		20	130	1	1
EP-071HK: Total Petr	oleum Hydrocarbons (EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376573)								
HK1012404-002	Anonymous	C9 - C16 Fraction		31 mg/kg	61.3	1	20	130	I	1
		C17 - C35 Fraction		75 mg/kg	74.0		90	130	1	-
EP-071HK: Total Petr	oleum Hydrocarbons (EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1377038)								
HK1012579-004 A	Anonymous	C6 - C8 Fraction		3 mg/kg	71.3		20	130		-
EP-071HK: Total Petr	oleum Hydrocarbons (EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378563)								
HK1012585-003	T07- 4.5M	C9 - C16 Fraction		31 mg/kg	83.1	1	20	130	1	
		C17 - C35 Fraction	-	75 mg/kg	70.2	-	20	130		-

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Гом	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121

Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012593

: 1 of 4

: 08-JUN-2010

: 23-JUN-2010

4 4

No. of samples analysed

CERTIFICATE OF ANALYSIS

Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 : ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey -aboratory Contact Address VIBRO (HK) LTD **MR H M CHAN** Contact Address Client

Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com Wing Yip Street, +852 2610 1044 +852 2610 2021 **Telephone** -acsimile E-mail HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., 2335 2554

> **Telephone** Facsimile

≣-mail

Project

Date Samples Received No. of samples received Issue Date : HK/582a/2010 Quote number J200942E MTR C8016 - ENVIRONMENTAL *TERM CONSULTANCY FOR XRL* : H009665 C-O-C number Order number

General Comments

MEI LAI ROAD

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown oracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 17-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012593

Water sample(s) analysed and reported on an as received basis. Water sample(s) were filtered prior to dissolved metal analysis. Sample(s) were received in a chilled condition.

This report may not be reproduced except with prior written approval from the testing laboratory

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Authorised results for Inorganics General Manager Senior Chemist Position Hong Kong, Chapter 553, Section 6.

PFung Lim Chee, Richard Py Anh Ngoc Huynh

Signatories

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tet: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

A Campbell Brothers Limited Company

: 2 of 4 : VIBRO (HK) LTD HK1012593 Analytical Results Work Order

Page Number Client

Analytical Results								
Sub-Matrix: WATER		Clie	Client sample ID	T07	EQUIPMENT BLANK	FIELD BLANK	TRIP BLANK	
	Clier	ıt samplin	Client sampling date / time	08-JUN-2010 14:00	08-JUN-2010 13:15	08-JUN-2010 08:50	[08-JUN-2010]	
Compound	CAS Number	LOR	Unit	HK1012593-001	HK1012593-002	HK1012593-003	HK1012593-004	
EG: Metals and Major Cations - Filtered	Filtered							
EG020: Lead	7439-92-1	-	hg/L	1	▽	₹		
EP-080: BTEX								
Benzene	71-43-2	5	hg/L	<5	<5	< 2	<5	
Toluene	108-88-3	2	hg/L	<5	<5	<5	<5	
Ethylbenzene	100-41-4	2	hg/L	<5	<5	<5	<5 2	
meta- & para-Xylene	108-38-3 106-42-3	9	hg/L	<10	<10	<10	<10	
ortho-Xylene	95-47-6	2	hg/L	<5	<5	<5	^	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	rocarbons (TPH)							
C6 - C8 Fraction		20	hg/L	30			<20	
C6 - C8 Fraction		0.02	mg/L		<0.02	<0.02		
C9 - C16 Fraction		200	hg/L	<500	<500	<500		
C17 - C35 Fraction		200	hg/L	<500	<500	<500		
EP-080S: TPH(Volatile)/BTEX Surrogate	rrogate						Surrogate control limits listed at end of this report.	ed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	96.8	89.8	91.6	89.1	
Toluene-D8	2037-26-5	0.1	%	104	98.6	95.6	96.8	
4-Bromofluorobenzene	460-00-4	0.1	%	7.76	97.8	93.3	89.0	

Page Number : 3 of 4
Client : VIBRO (HK) LTD
Work Order HK1012593

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lab	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and I	EG: Metals and Major Cations - Filtered (QC Lot: 1378289)	(QC Lot: 1378289)	-7-					
HK1012593-003 FIELD BLANK	FIELD BLANK	EG020: Lead	7439-92-1	_	hg/L	₹	⊽	0.0
EP-080: BTEX (G	EP-080: BTEX (QC Lot: 1378584)							
HK1012576-002	Anonymous	meta- & para-Xylene	108-38-3 106-42-3	10	hg/L	<10	<10	0.0
		Benzene	71-43-2	2	hg/L	^ 2	\	0.0
		Toluene	108-88-3	2	hg/L	<5	<5	0.0
		Ethylbenzene	100-41-4	2	hg/L	~	<5	0.0
		ortho-Xylene	92-47-6	2	hg/L	< 5	<5	0.0
EP-071HK: Total	Petroleum Hydrocarbor	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376568)						
HK1012308-001	Anonymous	C9 - C16 Fraction	-	0.5	mg/L	<0.5	<0.5	0.0
		C17 - C35 Fraction		0.5	mg/L	<0.5	<0.5	0.0
EP-071HK: Total	Petroleum Hydrocarbor	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)						
HK1012576-002	Anonymous	C6 - C8 Fraction		0.02	mg/L	<0.02	<0.02	0.0
								Secretary and the company of the com

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report Method Blank (MB) Report Matrix: WATER

Matrix: WATER		And the second section of the section of t	Method Blank (MB) Report	MB) Report	Labo	oratory Control	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	ooratory Contro	I Spike Duplic	cate (DCS) Re	bort
					Spike	Spike	Spike Recovery (%)	Recovery	Recovery Limits (%)	B	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 1378289)	tered (QC Lot: 1378	(585)									
EG020: Lead	7439-92-1	-	hg/L	₹	100 µg/L	103		85	115	1	
EP-080: BTEX (QC Lot: 1378584)									A control of the cont		
Benzene	71-43-2	2	hg/L	1	10 µg/L	82.9		56	111	-	
				⊽	-		-	-	1		-
Toluene	108-88-3	2	hg/L	<2	10 µg/L	87.9		64	115		
Ethylbenzene	100-41-4	2	hg/L	\$	10 µg/L	85.1		29	101		
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	4>	20 µg/L	86.2		84	108	-	
ortho-Xylene	95-47-6	2	hg/L	\$	10 µg/L	76.2		72	100		
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376568)	carbons (TPH) (QC	Lot: 1376	3568)								
C9 - C16 Fraction		0.5	mg/L	<0.5	0.25 mg/L	70.8	-	17	170		
C17 - C35 Fraction		0.5	mg/L	<0.5	0.5 mg/L	77.6		32	143	1	
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)	carbons (TPH) (QC	Lot: 1378	3584)								
C6 - C8 Fraction		0.02	mg/L	<0.02				-			
					0.15 mg/L	86.7	1	89	125	1	1

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER

			Spike	Spike Recover	(%) A	Recovery L	imits (%)	RPL	(%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS Concentration	MS	MSD	FOW	High	Value	Control
O)			Number						Limit
FG: Metals and Maic	FG: Metals and Major Cations - Filtered (OC Lot: 1378289)	OC Lot: 1378289)			:	1			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Page Number Client

: 4 of 4 : VIBRO (HK) LTD HK1012593

Work Order

Matrix: WATER					Matrix Spike	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	x Spike Dupli	cate (MSD) I	Report	
				Spike	Spike Rec	Spike Recovery (%)	Recovery Limits (%)	Limits (%)	RPL	RPD (%)
Laboratory sample Client sample ID ID	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Гом	High	Value	Control
EG: Metals and Maj	jor Cations - Filtered (G	EG: Metals and Major Cations - Filtered (QC Lot: 1378289) - Continued		27		- v		1	TE TO	
HK1012593-002	EQUIPMENT BLANK	EG020: Lead	7439-92-1	7439-92-1 100 µg/L	98.8		75	125	1	1

Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	98	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	98	115

Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012579

Work Order

: 1 of 6

: 03-JUN-2010

: 22-JUN-2010

9 9

CERTIFICATE OF ANALYSIS

11/F., Chung Shun Knitting Centre, 1 - 3 ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey -aboratory Contact Address VIBRO (HK) LTD MR H M CHAN Contact Address Client

Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com Wing Yip Street, +852 2610 1044 +852 2610 2021 -elephone Facsimile E-mail HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., 2335 2554

> **Telephone** -acsimile

E-mail

Project

Date Samples Received No. of samples analysed No. of samples received Issue Date HK/582a/2010 Quote number J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL **MEI LAI ROAD** : H009661 C-O-C number Order number

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 17-JUN-2010 Key. LOR = Limit of reporting. CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012579

Sample(s) were received in a chilled condition.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals. Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Senior Chemist Hong Kong, Chapter 553, Section 6.

Authorised results for

Inorganics Organics

General Manager

Po Fung Lim Chee, Richard Anh Ngoc Huynh

Signatories

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tet. +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com Trading Name: ALS Technichem (HK) Pty Ltd ALS Laboratory Group

A Campbell Brothers Limited Company

: 2 of 6 : VIBRO (HK) LTD HK1012579 Page Number Client Work Order

Analytical Results

Sub-Matrix: SOIL		Client sample IL	Ol elc	T08- 0.5M	T08- 1.5M	T08- 3.0M	T08- 4.5M	T08- 6.0M
	Client	Client sampling date / time	/ time	03-JUN-2010 09:33	03-JUN-2010 12:09	03-JUN-2010 13:36	03-JUN-2010 14:16	03-JUN-2010 15:20
Compound	CAS Number	LOR Ur	nit	HK1012579-001	HK1012579-002	HK1012579-003	HK1012579-004	HK1012579-005
Compound	CAS Number	LOR Ur	nit	HK1012579-001	HK1012579-002	HK1012579-003		HK1012579-004

Sub-Matrix: SOIL		Cle	Client sample ID	T08- 0.5M	T08- 1.5M	T08-3.0M	T08-4.5M	T08- 6.0M
	Clie	int samplir.	Client sampling date / time	03-JUN-2010 09:33	03-JUN-2010 12:09	03-JUN-2010 13:36	03-JUN-2010 14:16	03-JUN-2010 15:20
Compound	CAS Number	LOR	Unit	HK1012579-001	HK1012579-002	HK1012579-003	HK1012579-004	HK1012579-005
EA/ED: Physical and Aggregate Properties	e Properties							
EA055: Moisture Content (dried @ 103°C)	ied @ 103°C)	0.1	%	12.3	12.8	12.3	25.7	19.2
EG: Metals and Major Cations								
EG020: Lead	7439-92-1	-	mg/kg	92	113	111	193	91
EP-080: BTEX								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP-071HK: Total Petroleum Hydrocarbons (TPH)	drocarbons (TPH)							
C6 - C8 Fraction		2	mg/kg	\$	<5	\$	< 5	<5
C9 - C16 Fraction		200	mg/kg	<200	<200	<200	<200	<200
C17 - C35 Fraction		200	mg/kg	<500	<500	<500	<500	<500
EP-080S: TPH(Volatile)/BTEX Surrogate	Surrogate						Surrogate control limits	Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	95.5	96.0	95.5	92.8	82.2
Toluene-D8	2037-26-5	0.1	%	98.5	98.2	98.8	97.4	95.7
4-Bromofluorobenzene	460-00-4	0.1	%	86.1	88.8	89.7	89.0	104

Work Order HK1012579					
Sub-Matrix: SOIL		Client	Client sample ID	T08- 6.5M	
	Client	sampling	Client sampling date / time	03-JUN-2010 16:23	
Compound	CAS Number	LOR	Unit	HK1012579-006	
EA/ED: Physical and Aggregate Properties	perties				
EA055: Moisture Content (dried @ 103°C)	(103°C)	0.1	%	20.0	
EG: Metals and Major Cations					
EG020: Lead	7439-92-1	-	mg/kg	49	
EP-080: BTEX					
Benzene	71-43-2	0.2	mg/kg	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	arbons (TPH)				
C6 - C8 Fraction		2	mg/kg	<5	
C9 - C16 Fraction		200	mg/kg	<200	
C17 - C35 Fraction	1	200	mg/kg	<500	
EP-080S: TPH(Volatile)/BTEX Surrogate	gate				Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	80.4	
Toluene-D8	2037-26-5	0.1	%	92.7	
4-Bromofluorobenzene	460-00-4	0.1	%	103	

Page Number : 4 of 6
Client : VIBRO (HK) LTD
Work Order HK1012579

Laboratory Duplicate (DUP) Report

Matrix: SOIL					<i>Lab</i> c	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical	EA/ED: Physical and Aggregate Properties (QC Lot: 1377460)	(QC Lot: 1377460)						
HK1012308-003	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	30.1	30.1	0.0
HK1012404-005	Anonymous	EA055: Moisture Content (dried @ 103°C)	-	0.1	%	27.4	27.7	1.0
EA/ED: Physical	EA/ED: Physical and Aggregate Properties (QC Lot: 1377461)	: (QC Lot: 1377461)						
HK1012579-003	T08-3.0M	EA055: Moisture Content (dried @ 103°C)	1	0.1	%	12.3	12.5	1.
HK1012604-004	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	24.2	22.5	7.4
EG: Metals and M	EG: Metals and Major Cations (QC Lot: 1380938)	80938)						
HK1012579-001	T08- 0.5M	EG020: Lead	7439-92-1	-	mg/kg	76	65	16.4
HK1012585-004	Anonymous	EG020: Lead	7439-92-1	_	mg/kg	63	65	3.0
EP-080: BTEX (QC Lot: 1375625)	C Lot: 1375625)							
HK1011354-003	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.0
		Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.0
		ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.0
		meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	<0.4	0.0
EP-080: BTEX (QC Lot: 1377038)	C Lot: 1377038)							
HK1012579-003	T08- 3.0M	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	0.0
EP-071HK: Total F	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1375625)	(TPH) (QC Lot: 1375625)						
HK1011354-003	Anonymous	C6 - C8 Fraction		2	mg/kg	\$	<5	0.0
EP-071HK: Total F	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376573)	(TPH) (QC Lot: 1376573)						
HK1012308-003	Anonymous	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		200	mg/kg	<500	<500	0.0
EP-071HK: Total I	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1377038)	(TPH) (QC Lot: 1377038)						
HK1012579-003	T08- 3.0M	C6 - C8 Fraction	1	2	mg/kg	\$	\$	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB) Report	3) Report	rapo	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	ke (LCS) and Lat	boratory Contro	l Spike Duplic	ate (DCS) Ke	oort
					Spike	Spike Rec	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number LOR	LOR	Unit	Result	Concentration	SO7	DCS	FOW	High	Value	Value Control Limit
EG: Metals and Major Cations (QC Lot: 1380938)	Lot: 1380938)										
EG020: Lead	7439-92-1	_	mg/kg	₹	5 mg/kg	91.5	1	85	115	1	-
EP-080: BTEX (QC Lot: 1375625)											
Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	95.6		77	118	1	
Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	101		80	115		-
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	0.06	I	77	114	-	

VIBRO (HK) LTD

5 of 6

Page Number

HK1012579

Work Order Client

Control Limit | -1 1 RPD (%) Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report Value 1 1 11 l Recovery Limits (%) 118 115 120 120 115 147 107 147 Low 74 57 51 51 DCS i Spike Recovery (%) -SOT 95.0 90.3 88.8 83.0 87.7 75.1 82.3 103 102 Spike Concentration 0.4 mg/kg 0.2 mg/kg 0.2 mg/kg 31 mg/kg 75 mg/kg 0.2 mg/kg 0.2 mg/kg 0.4 mg/kg 0.2 mg/kg 3 mg/kg 3 mg/kg Result <0.2 <0.4 <0.2 <0.2 <0.2 <0.4 <0.2 <200 <5 **2** Method Blank (MB) Report mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1377038) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1375625) EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376573) LOR 200 0.4 0.2 0.4 2 CAS Number 71-43-2 108-38-3 106-42-3 108-88-3 108-38-3 106-42-3 95-47-6 1 95-47-6 100-41-4 EP-080: BTEX (QC Lot: 1375625) - Continued EP-080: BTEX (QC Lot: 1377038) meta- & para-Xylene meta- & para-Xylene C17 - C35 Fraction Method: Compound C9 - C16 Fraction C6 - C8 Fraction C6 - C8 Fraction Ethylbenzene ortho-Xylene ortho-Xylene Matrix: SOIL Benzene Toluene

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL

								1		
				Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	RPI	RPD (%)
Laboratory sample Client sample ID	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Гом	High	Value	Control Limit
G: Metals and Majo	EG: Metals and Major Cations (QC Lot: 1380938)	380938)								
HK1012576-001	Anonymous	EG020: Lead	7439-92-1	5 mg/kg	86.3		75	125	I	
EP-080: BTEX (QC Lot: 1375625)	.ot: 1375625)									
HK1011354-007	Anonymous	Benzene	71-43-2	0.2 mg/kg	86.9	1	20	130	1	-
		Toluene	108-88-3	0.2 mg/kg	92.5		20	130	1	1
		Ethylbenzene	100-41-4	0.2 mg/kg	83.8	-	20	130	-	1
		meta- & para-Xylene	108-38-3	0.4 mg/kg	91.6		20	130	-	l
		ortho-Xylene	92-47-6	0.2 mg/kg	83.1		20	130		1
EP-080: BTEX (QC Lot: 1377038)	.ot: 1377038)									
HK1012579-004	T08- 4.5M	Benzene	71-43-2	0.2 mg/kg	66.2		20	130	-	1
		Toluene	108-88-3	0.2 mg/kg	64.5		20	130	-	1
		Ethylbenzene	100-41-4	0.2 mg/kg	84.4		20	130	-	1
		meta- & para-Xylene	108-38-3	0.4 mg/kg	84.1		20	130		I.
		ortho-Xylene	92-47-6	0.2 mg/kg	74.2		20	130	-	-
P-071HK: Total Pet	roleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1375625)								
HK1011354-007	Anonymous	C6 - C8 Fraction		3 mg/kg	87.9		20	130	-	1
P-071HK: Total Peti	roleum Hydrocarbons	EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376573)								

Control Limit -RPD (%) Value 11 -Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report Recovery Limits (%) High 130 130 **Low** 20 20 MSD Spike Recovery (%) 11 61.3 74.0 71.3 SW Spike CAS Concentration Number 31 mg/kg 75 mg/kg 3 mg/kg | | 1 EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376573) - Continued EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1377038) C17 - C35 Fraction C9 - C16 Fraction Method: Compound C6 - C8 Fraction Laboratory sample Client sample ID ID Anonymous T08-4.5M HK1012579-004 HK1012404-002 Matrix: SOIL

: VIBRO (HK) LTD

∴ 6 of 6

Page Number

HK1012579

Client Work Order

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1012587

1 of 4

CERTIFICATE OF ANALYSIS

Work Order 11/F., Chung Shun Knitting Centre, 1 - 3 ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey _aboratory Contact Address 38 SHEUNG ON ST., VIBRO (HK) LTD MR H M CHAN Contact Address Client

Kwai Chung, N.T., Hong Kong Wing Yip Street,

Godfrey.Chan@alsenviro.com +852 2610 1044 **Telephone** E-mail

HM_Chan@vibro.com.hk **CHAI WAN HONG KONG**

2335 2554

Telephone Facsimile

E-mail

Project

+852 2610 2021 Facsimile

: 07-JUN-2010

Date Samples Received

: 21-JUN-2010

Issue Date

. 2

No. of samples analysed No. of samples received

HK/582a/2010 Quote number J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL **MEI LAI ROAD** : H009721 C-O-C number Order number

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 17-JUN-2010 Key. LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1012587

Water sample(s) analysed and reported on an as received basis. Sample(s) were received in a chilled condition.

This report may not be reproduced except with prior written approval from the testing laboratory

Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Authorised results for Organics Senior Chemist Anh Ngoc Huynh Signatories

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

ALS

Work Order HK1012587

Analytical Results

VIBRO (HK) LTD

2 of 4

Page Number

Surrogate control limits listed at end of this report. HK1012587-002 TRIP BLANK [05-JUN-2010] 97.8 96.9 86.2 \$ \$ \$ \$ <20 05-JUN-2010 13:30 HK1012587-001 <20 <500 <500 98.8 Client sample ID Client sampling date / time Ha/L Hg/L Hg/L Hg/L µg/L µg/L µg/L % % % LOR 20 500 500 0.0 5 2 2 2 2 2 108-38-3 106-42-3 CAS Number 71-43-2 108-88-3 100-41-4 95-47-6 1868-53-7 2037-26-5 460-00-4 EP-071HK: Total Petroleum Hydrocarbons (TPH) EP-080S: TPH(Volatile)/BTEX Surrogate Dibromofluoromethane 4-Bromofluorobenzene meta- & para-Xylene C17 - C35 Fraction Sub-Matrix: WATER C9 - C16 Fraction C6 - C8 Fraction Ethylbenzene ortho-Xylene EP-080: BTEX Toluene-D8 Compound Benzene Toluene

Page Number : 3 of 4
Client : VIBRO (HK) LTD
Work Order HK1012587

Laboratory Duplicate (DUP) Report

Matrix: WATER				Labo	Laboratory Duplicate (DUP) Report	Report	
Laboratory sample ID Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-080: BTEX (QC Lot: 1378584)							
HK1012576-002 Anonymous	meta- & para-Xylene	108-38-3	10	hg/L	<10	<10	0.0
	Benzene	71-43-2	2	µg/L	<2	<5	0.0
	Toluene	108-88-3	2	hg/L	<5	<5	0.0
	Ethylbenzene	100-41-4	2	hg/L	<5	<5	0.0
	ortho-Xylene	92-47-6	2	hg/L	<5	<5	0.0
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376568)	ons (TPH) (QC Lot: 1376568)		и С	7	и С	и С	c
Sport State	C3 - C10 Fraction		O O	mg/L	0.00	0.00	0.00
EP-074HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)	OIX (TPH) (QC Lot: 1378584)			1)g/L	0.00	0.00	9
HK1012576-002 Anonymous	C6 - C8 Fraction	1	0.02	mg/L	<0.02	<0.02	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report	3) Report	Labo	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	ke (LCS) and Lab	oratory Contro	of Spike Duplica	ate (DCS) Re	oort
					Spike	Spike Recovery (%)	overy (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	FOW	High	Value	Control Limit
EP-080: BTEX (QC Lot: 1378584)		٠									
Benzene	71-43-2	2	hg/L	-	10 µg/L	82.9		56	111		
				₹	-	-	1	-	-		-
Toluene	108-88-3	2	µg/L	\$	10 µg/L	87.9		64	115	1	
Ethylbenzene	100-41-4	2	µg/L	· 5>	10 µg/L	85.1	-	29	101	-	
meta- & para-Xylene	108-38-3 106-42-3	4	µg/L	^ 4>	20 µg/L	86.2	-	84	108	-	-
ortho-Xylene	92-47-6	2	µg/L	~	10 µg/L	76.2	-	72	100		l
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1376568)	carbons (TPH) (QC I	ot: 1376	568)								
C9 - C16 Fraction		0.5	mg/L	<0.5	0.25 mg/L	70.8	-	17	170		
C17 - C35 Fraction	-	0.5	mg/L	<0.5	0.5 mg/L	77.6	1	32	143	1	1
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1378584)	carbons (TPH) (QC I	ot: 1378	584)								
C6 - C8 Fraction		0.02	mg/L	<0.02		-			-		-
	engen en en allebreis bysk leithisupp volgen anbhyddiged for yn en abb		And the state of t		0.15 mg/L	86.7		89	125	-	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	98	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	98	115

: 4 of 4 : VIBRO (HK) LTD HK1012587 Page Number Client Work Order

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

HK1013329

Work Order

: 1 of 4

: 17-JUN-2010

: 02-JUL-2010

CERTIFICATE OF ANALYSIS

11/F., Chung Shun Knitting Centre, 1 - 3 ALS Technichem HK Pty Ltd Chan Kwok Fai, Godfrey _aboratory Contact Address VIBRO (H.K.) LTD MR H M CHAN Contact Address Client

Kwai Chung, N.T., Hong Kong Godfrey.Chan@alsenviro.com Wing Yip Street, +852 2610 1044 +852 2610 2021 elephone Facsimile E-mail HM_Chan@vibro.com.hk **CHAI WAN HONG KONG** 38 SHEUNG ON ST., 2335 2554

> Telephone Facsimile

E-mail

Date Samples Received No. of samples analysed No. of samples received Issue Date : HK/582a/2010 Quote number J200942E MTR C8016 - ENVIRONMENTAL TERM CONSULTANCY FOR XRL : H009726 MLW C-O-C number Order number Project

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client. The completion date of analysis is: 25-JUN-2010 Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1013329

Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis. Water sample(s) were filtered prior to dissolved metal analysis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Authorised results for Organics Senior Chemist Hong Kong, Chapter 553, Section 6.

Inorganics

General Manager

Signatories
Pt Anh Ngoc Huynh
Pp Fung Lim Chee, Richard

ALS Laboratory Group
Tading Name: ALS Technichem (HK) Pty Ltd
o Shin Knitting Centre 1.3 Wind Yin Street Kwai Ching N.T. Hong K

14F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

: 2 of 4 : VIBRO (H.K.) LTD HK1013329 Page Number Client Work Order

Analytical Results

Cincal Incal Incidence							
Sub-Matrix: WATER		Clien	Client sample ID	EQUIPMENT BLANK	FIELD BLANK	TRIP BLANK	
	Clien	t sampling	Client sampling date / time	[17-JUN-2010]	[17-JUN-2010]	[17-JUN-2010]	
Compound	CAS Number LOR	TOR	Unit	HK1013329-001	HK1013329-002	HK1013329-003	
EG: Metals and Major Cations - Filtered	- Filtered						
EG020: Lead	7439-92-1	-	hg/L	>	⊽		
EP-080: BTEX							
Benzene	71-43-2	2	µg/L	<5	\$	<5	
Toluene	108-88-3	5	hg/L	<5	\$	<5	
Ethylbenzene	100-41-4	2	hg/L	<5	\$	<5	
meta- & para-Xylene	108-38-3 106-42-3	10	hg/L	<10	<10	<10	
ortho-Xylene	95-47-6	2	hg/L	<5	<5	<5	
EP-071HK: Total Petroleum Hydrocarbons (TPH)	drocarbons (TPH)						
C6 - C8 Fraction		20	hg/L	<20	<20	<20	
C9 - C16 Fraction	1	200	µg/L	<500	<500		
C17 - C35 Fraction		200	µg/L	<500	<500		
EP-080S: TPH(Volatile)/BTEX Surrogate	Surrogate						Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	103	109	106	
Toluene-D8	2037-26-5	0.1	%	100	102	98.0	
4-Bromofluorobenzene	460-00-4	0.1	%	87.2	87.2	88.1	

∴ 3 of 4 ∴ VIBRO (H.K.) LTD HK1013329 Page Number Work Order Client

Laboratory Duplicate (DUP) Report

Ind Major Cations - Filtered (QC Lot: 1388987) Method: Compound CAS Number LOR Unit Ind Major Cations - Filtered (QC Lot: 1388987) Indextool 1388987) Indextool Indextool	Matrix: WATER	e e				Lab	Laboratory Duplicate (DUP) Report	Report	
7439-92-1 1 µg/L <1 <1 108-38-3 10 µg/L <10 <10 106-42-3 5 µg/L <5 <5 108-88-3 5 µg/L <5 <5 100-41-4 5 µg/L <5 <5 95-47-6 5 µg/L <5 <5 0.02 <0.02 <0.02	Laboratory sample	ID Client sample ID	Method: Compound	CAS Number	LOR		Original Result	Duplicate Result	RPD (%)
108-38-3 10 µg/L <10 <10	EG: Metals and	Major Cations - Filtered	(QC Lot: 1388987)						
108-38-3 10 µg/L <10 <10 106-42-3 10 µg/L <5 <5 71-43-2 5 µg/L <5 <5 108-88-3 5 µg/L <5 <5 100-41-4 5 µg/L <5 <5 95-47-6 5 µg/L <5 <5 0.02 ~0.02	HK1013329-002	FIELD BLANK	EG020: Lead	7439-92-1	_	hg/L	₹	₹	0.0
108-38-3 10 µg/L <10 <10 106-42-3 5 µg/L <5 <5 71-43-2 5 µg/L <5 <5 108-88-3 5 µg/L <5 <5 95-47-6 5 µg/L <5 <5 0.02 mg/L <0.02	EP-080: BTEX ('QC Lot: 1388498)							
71-43-2 5 µg/L <5 <5 108-88-3 5 µg/L <5 <5 100-41-4 5 µg/L <5 <5 95-47-6 5 µg/L <5 <5 0.02 mg/L <0.02 <0.02	HK1013329-001	EQUIPMENT BLANK	meta- & para-Xylene	108-38-3	10	hg/L	<10	<10	0.0
108-88-3 5 µg/L <5 <5 <5 100-41-4 5 µg/L <5 <5 <5 95-47-6 5 µg/L <5 <5 <-7 <-7 <-7 <-7 <-7 <-7 <-7 <-7 <-7 <-7			Benzene	71-43-2	2	hg/L	\$	\$	0.0
100-41-4 5 µg/L <5 <5 <5 95-47-6 5 µg/L <5 <5 <-7 0.02 mg/L <0.02 <0.02			Toluene	108-88-3	2	hg/L	\$	<5	0.0
95-47-6 5 µg/L <5 <5 0.02 mg/L <0.02 <0.02			Ethylbenzene	100-41-4	2	hg/L	\$	<5	0.0
0.02 mg/L <0.02 <0.02			ortho-Xylene	92-47-6	2	hg/L	\$	~ 5	0.0
EQUIPMENT BLANK C6 - C8 Fraction 0.02 mg/L <0.02 <0.02	EP-071HK: Total	I Petroleum Hydrocarbo	ins (TPH) (QC Lot: 1388498)						
	HK1013329-001				0.02	mg/L	<0.02	<0.02	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB)	Report	Labo	pratory Control Sp	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report	oratory Contro	I Spike Duplic	ate (DCS) Re	oort
					Spike	Spike Re	Spike Recovery (%)	Recovery	Recovery Limits (%)	R	RPD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	DCS	Tow	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 1388987)	Filtered (QC Lot: 1388	987)									
EG020: Lead	7439-92-1	-	hg/L	₹	100 µg/L	97.0		85	115	1	
EP-080: BTEX (QC Lot: 1388498)	(8)										
Benzene	71-43-2	2	hg/L		10 µg/L	84.7		70	115	I	
				√	-			-		-	
Toluene	108-88-3	2	hg/L	\$	10 µg/L	82.3	-	29	117	1	
Ethylbenzene	100-41-4	2	hg/L	<2	10 µg/L	76.1		9/	107	1	
meta- & para-Xylene	108-38-3 106-42-3	4	hg/L	4>	20 µg/L	86.0	-	77	112	-	-
ortho-Xylene	92-47-6	2	hg/L	\$	10 µg/L	70.0	-	69	109	-	-
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1384527)	drocarbons (TPH) (QC	Lot: 1384	527)								
C9 - C16 Fraction		0.5	mg/L	<0.5	0.25 mg/L	91.6		17	170		
C17 - C35 Fraction		0.5	mg/L	<0.5	0.5 mg/L	99.2	-	32	143		
EP-071HK: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1388498)	drocarbons (TPH) (QC	Lot: 13884	(86)								
C6 - C8 Fraction		0.5	mg/L	1	0.15 mg/L	94.0		89	125		1
				<0.02	-	-	-	-			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

				Mallix Spine	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	ix spike Dupil	care (msn) r	report	
			Spike	Spike Re	Spike Recovery (%)	Recovery Limits (%)	Limits (%)		RPD (%)
Laboratory sample Client sample ID	Method: Compound	CAS	CAS Concentration Number	MS	MSD	Гом	High	Value	Control
EG: Metals and Major Cations - Filtered (QC Lot: 1388987)	(QC Lot: 1388987)								¥ 0
HK1013329-001 EQUIPMENT BLANK	EG020: Lead	7439-92-1	100 µg/L	93.9		75	125		

Page Number: 4 of 4
Client: VIBRO (H.K.) LTD
Work Order HK1013329

Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115