Dragages -China Harbour-VSL JV

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Monthly EM&A Report

February 2013 (Version 2.0)

Certified By	May
	Dr. H.F. Chan Environmental Team Leader (Date: 14 March 2013)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

TABLE OF CONTENTS

	Pa	age
EXI	ECUTIVE SUMMARY	1
Intro	oduction	1
	ironmental Monitoring and Audit Progress	
	ches of Action and Limit Levels	
Futu	re Key Issues	3
1	INTRODUCTION	4
Purr	bose of the report	4
1	cture of the report	
2	CONTRACT INFORMATION	6
Bacl	kground	6
	tract Organisation	
Con	struction Programme	7
Sum	mary of Construction Works Undertaken During Reporting Month	8
Stati	us of Environmental Licences, Notification and Permits	9
3	AIR QUALITY MONITORING	10
Mor	nitoring Requirements	10
	itoring Location	
	nitoring Equipment	
	nitoring Parameters, Frequency and Duration	
	itoring Methodology and QA/QC Procedure	
	our and 24-hour TSP Air Quality Monitoring	
Instr	rumentation	11
	Installation	
	ers Preparation	
	rating/Analytical Procedures	
	Its and Observations	
Evei	nt and Action Plan	13
4	NOISE MONITORING	14
	itoring Requirements	
	itoring Location	
	nitoring Equipment	
	nitoring Parameters, Frequency and Duration	
	hitoring Methodology and QA/QC Procedures	
	ntenance and Calibration	
	alts and Observations	
Ever	nt and Action Plan	
5	WATER QUALITY MONITORING	17
Mor	itoring Requirements	17
Mor	nitoring Locations	17
Mor	nitoring Equipment	18
	nitoring Parameters, Frequency	
	itoring Methodology	
	rumentation	
-	rating/Analytical Procedures	
Lab	pratory Analytical Methods	21

QA/QC Requirements Maintenance and Calibration Results and Observations	
Event and Action Plan	
6 DOLPHIN MONITORING	
 Monitoring Requirements Dolphin Monitoring Monitoring Requirements Monitoring Location Monitoring Frequency Monitoring Day Monitoring Results 7 ENVIRONMENTAL SITE INSPECTION 	25 25 25 25 26 26 26
Site Audits Implementation Status of Environmental Mitigation Measures Advice on the Solid and Liquid Waste Management Status	
8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDAN	NCES)
Summary of Exceedances Summary of Environmental Complaint Summary of Notification of Summons and Successful Prosecution	
9 FUTURE KEY ISSUES	
Key Issues in the Coming Month Monitoring Schedule for the Next Month Construction Programme for the Next Month	
10 CONCLUSIONS AND RECOMMENDATIONS	
Conclusions Recommendations	

LIST OF TABLES

- Table ISummary Table for Monitoring Activities in the Reporting Period
- Table II
 Summary Table for Events Recorded in the Reporting Period
- Table 2.1Key Contacts of the Contract
- Table 2.2
 Status of Environmental Licences, Notification and Permits
- Table 3.1Location for Air Quality Monitoring Locations
- Table 3.2Air Quality Monitoring Equipment
- Table 3.3Impact Dust Monitoring Parameters, Frequency and Duration
- Table 3.4Summary Table of 1-hour TSP Monitoring Results during the Reporting Period
- Table 3.5Summary Table of 24-hour TSP Monitoring Results during the Reporting
Period
- Table 3.6Observation at Dust Monitoring Stations
- Table 4.1Noise Monitoring Equipment
- Table 4.2
 Noise Monitoring Parameters, Frequency and Duration
- Table 4.3
 Summary Table of Noise Monitoring Results during the Reporting Period
- Table 4.4Observation at Noise Monitoring Stations
- Table 5.1
 Location for Marine Water Quality Monitoring Locations
- Table 5.2Water Quality Monitoring Equipment
- Table 5.3Water Quality Monitoring Parameters and Frequency
- Table 5.4Methods for Laboratory Analysis for Water Samples
- Table 5.5Summary of Water Quality Exceedances
- Table 6.1
 Co-ordinates of transect lines in WL survey area
- Table 6.2Dolphin encounter rates (sightings per 100 km of survey effort) in February's
surveys
- Table 7.1
 Observations and Recommendations of Site Audit

LIST OF FIGURE

Figure 1	Site Layout Plan
----------	------------------

- Figure 2 Project Organisation for Environmental Works
- Figure 3 Locations of Air Quality, Noise and Wind Monitoring Stations
- Figure 4 Locations of Water Quality Monitoring Stations

LIST OF APPENDICES

- Appendix A Construction Programme
- Appendix B Action and Limit Levels
- Appendix C Copies of Calibration Certificates
- Appendix D Environmental Monitoring Schedules
- Appendix E 1-hour TSP Monitoring Results
- Appendix F 24-hour TSP Monitoring Results
- Appendix G Noise Monitoring Results
- Appendix H Water Quality Monitoring Results
- Appendix I Dolphin Monitoring Report (February 2013)
- Appendix J Wind Data
- Appendix K Event Action Plans
- Appendix L Summary of Exceedance
- Appendix M Site Audit Summary
- Appendix N Updated Environmental Mitigation Implementation Schedule
- Appendix O Waste Generation in the Reporting Period
- Appendix P Complaint Log

EXECUTIVE SUMMARY

Introduction

1. This is the 1st monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the project "Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill" (hereinafter called the "Contract"). This report documents the findings of EM&A Works conducted between 22nd and 28th February 2013 as the Contract commenced on 22 February 2013.

Environmental Monitoring and Audit Progress

2. A summary of the monitoring activities in this reporting period is listed in **Table I** below:

Table I	Summary Table for Monitoring Acti	vities in the Reporting Period
---------	-----------------------------------	--------------------------------

Parameter(s)	Date(s)
1-hr TSP Monitoring	22 nd and 28 th February 2013
24-hr TSP Monitoring	22 nd and 28 th February 2013
Noise Monitoring	23 rd February 2013
Water Quality Monitoring	22 nd , 25 th and 27 th February 2013
Dolphin Monitoring (Line-transect Vessel Surveys)	19 th and 25 th February 2013
Construction-phase underwater Noise Monitoring	*N/A
Dolphin Behaviour Monitoring	*N/A
Land-based Dolphin Behaviour and Movement Monitoring	*N/A
Environmental Site Inspection	26 th February 2013

*N/A: No monitoring was conducted in the reporting period as the bored piling activities have not been started. (The tentative commencement date of bored piling activities is 18 March 2013)

Breaches of Action and Limit Levels

3. Summary of the environmental exceedances of the reporting period is tabulated in **Table II**.

Environmental Monitoring	Parameter	No. of Exceedance		No. of Exceedance related to the Construction Activities of this Contract	
		Action Level	Limit Level	Action Level	Limit Level
Air Quality	1-hr TSP	0	0	0	0
All Quality	24-hr TSP	0	0	0	0
Noise	L _{eq(30min)}	0	0	0	0
	Dissolved Oxygen (DO) (Surface & Middle)	7	6	0	0
Water Quality	Dissolved Oxygen (DO) (Bottom)	10	0	0	0
	Turbidity	7	26	0	0
	Suspended Solids (SS)	5	30	0	0

Table II Summary Table for Events Recorded in the Reporting Period

1-hour TSP Monitoring

4. All 1-hour TSP monitoring was conducted as scheduled in the reporting period. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

5. All 24-hour TSP monitoring was conducted as scheduled in the reporting period. No Action/Limit Level exceedance was recorded.

Construction Noise

6. All construction noise monitoring was conducted as scheduled in the reporting period. No Action/Limit Level exceedance was recorded.

Water Quality

- 7. All water quality monitoring was conducted as scheduled in the reporting period. There are seventeen Action Level exceedances and six Limit Level exceedances were recorded for dissolved oxygen. Seven Action Level exceedances and twenty-six Limit Level exceedances for turbidity were recorded. Five Action exceedances and thirty Limit Level exceedances for suspended solids were recorded.
- 8. According to the investigation, no major marine construction activities were conducted during the monitoring period. Therefore, all exceedances are considered not due to the Contract.

Complaint Log

9. No environmental complaint was received in the reporting period.

Notification of Summons and Successful Prosecutions

10. No notification of summons and successful prosecution was received in the reporting period.

Reporting Changes

11. This report has been developed in compliance with the reporting requirements for the first monthly EM&A Report as required by the EM&A Manual for Hong Kong Link Road (EM&A Manual). There are no reporting changes.

Future Key Issues

- 12. Major site activities for the coming reporting month will include:
 - Continue erection of hoarding & fence and site office area set up in Portion C;
 - Carry out slewing work for CLP 11kVA and 132kVA power cable between P108, P109 & P113;
 - Construction of the concrete cable trough for CLP cable slewing;
 - Slewing of the tele-communication cable;
 - Continue pre-drilling work at western water, along slopping seawall and at Portion C;
 - Protection work to the fuel pipes along the access road at Portion C;
 - Complete the piling platform for the Kelly method at P48, P0 and P49 and commence bored piling work;
 - Erection of platform at P50 an P52 for preparation of RCD bored piling;
 - Continue the setup of casting yard;
 - Set-up facilities for marine delivery of concrete from land plants.
 - Setting up of silt-curtain. (dolphin exclusion zone and dolphin watching plan will be implemented in accordance with EP condition 3.4 and 3.5)

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Dragages -China Harbour-VSL JV (hereinafter called "the Contractor") as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill" (hereinafter called the "Contract") in accordance with EP Conditions 2.1.

Purpose of the report

1.2 This is the first EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 22nd to 28th February 2013.

Structure of the report

1.3 The structure of the report is as follows:

Section 1: Introduction - purpose and structure of the report.

Section 2: **Contract Information** - summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.

Section 3: **Air Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 4: **Noise Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 5: **Water Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 6: **Dolphin Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels and monitoring results.

Section 7: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.

Section 8: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting period.

Section 9: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 10: Conclusions and Recommendation

2 CONTRACT INFORMATION

Background

- 2.1 The proposed Hong Kong Zhuhai Macao Bridge Hong Kong Link Road (HKLR) is 12km long connecting the Hong Kong-Zhuhai-Macao Bridge (HZMB) at the HKSAR Boundary with the Hong Kong Boundary Crossing Facilities (HKBCF) situated at the north eastern waters of the Hong Kong International Airport, opening a new and direct connection route between Hong Kong, Macao and the Western Pearl River Delta.
- 2.2 The HKLR comprises a 9.4km long viaduct section from the HKSAR boundary to Scenic Hill on the Airport Island; a 1km tunnel section to the reclamation formed along the east coast of the Airport Island and a 1.6km long at-grade road section on the reclamation connecting to the HKBCF. The tunnel section of HKLR will pass under Scenic Hill, Airport Road and Airport Railway to minimize the environmental and visual impacts to Tung Chung residents.
- 2.3 An application (No ESB-110/2003) for an Environmental Impact Assessment (EIA) Study Brief under Section 5(1) of the Environmental Impact Assessment Ordinance (EIAO) was submitted by Highways Department (the Project Proponent) on 8 October 2003 with a Project Profile (No. No. PP-201/2003) for the Hong Kong Zhuhai Macao Bridge Hong Kong Section and North Lantau Highway Connection. The Hong Kong Zhuhai Macao Bridge Hong Kong Section and North Lantau Highway Connection has subsequently been renamed as HKLR. EPD issued an EIA Study Brief (No: ESB-110/2003) in November 2003 to the Project Proponent to carry out an EIA study.
- 2.4 An EIA Study (Reg. No. AEIAR-144/2009) has been undertaken to provide information on nature and extent of environmental impacts arising from the construction and operation of HKLR. The Environmental Permit was issued on 4 November 2009 (Permit No. EP-352/2009). Pursuant to Section 13 of the EIAO, the Director of Environmental Protection amends the Environmental Permit (No. EP-352/2009) based on the Application No. VEP-339/2011 and the environmental Permit (Permit No. EP-352/2009/A) was issue on 9 November 2011 for HKLR to the Highways Department as the Permit Holder.
- 2.5 **Figure 1** shows the layout of the Contract and the scope of the Contract works comprises the following major items:
 - a dual 3-lane carriageway in the form of viaduct from the HKSAR boundary (connecting with the HZMB Main Bridge) to the Scenic Hill (connecting with the tunnel under separate Contract No. HY/2011/03), of approximately 9.4km in length with a hard shoulder for each bound of carriageway and a utilities trough on the outer edge of each bound of viaducts;
 - a grade-separated turnaround facility located near San Shek Wan, composed of sliproads in the form of viaduct with single-lane carriageway bifurcated from the HKLR mainline with an elevated junction above the mainline;
 - provision of ancillary facilities including, but not limited to, meteorological enhancement measures including the provisioning of anemometers and modification of the wind profiler station at hillside of Sha Lo Wan, provisioning of a compensatory marine radar, and provisioning of security systems; and

• associated civil, structural, geotechnical, marine, environmental protection, landscaping, drainage and highways electrical and mechanical (E&M) works, street lightings, traffic aids and sign gantries, marine navigational aids, ship impact protection system, water mains and fire hydrants, lightning protection system, structural health monitoring and maintenance management system (SHM&MMS), supervisory control and data acquisition (SCADA) system, as well as operation and maintenance provisions of viaducts, provisioning of facilities for installation of traffic control and surveillance system (TCSS), provisioning of facilities for installation of telecommunication cables/equipments and reprovisioning works of affected existing facilities/utilities.

Contract Organisation

- 2.6 Different parties with different levels of involvement in the Contract organization include:
 - Supervising Officer's Representative (SOR) Ove Arup & Partners Hong Kong Limited (ARUP)
 - Contractor Dragages China Harbour-VSL JV (DCVJV)
 - Environmental Team (ET) Cinotech Consultants Ltd. (Cinotech)
- 2.7 The proposed project organization and lines of communication with respect to the onsite environmental management structure are shown in **Figure 2**. The key personnel contact names and numbers are summarized in **Table 2.1**.

Party	Position Position		Phone No.	Fax No.
SOR	CRE	Mr. Michael Chan	3767 5803	2767 5022
(ARUP)	CKE	Mr. Colin Meadows	3767 5801	3767 5922
ENPO/IEC	Environmental Project Office Leader	Mr. Y. H Hui	3743 0788	3548 6988
(Environ)	Independent Environmental Checker	Mr. Antony Wong	3743 0788	3548 6988
Contractor	Deputy Project Director	Mr. W.K Poon	3121 6638	2121 ((00
(DCVJV)	Environmental Officer	Mr. CHU Chung Sing	3121 6672	3121 6688
ET (Cinotech)	Environmental Team Leader	Dr. H.F Chan	2151 2088	3107 1388

Table 2.1Key Contacts of the Contract

2.8 ENVIRON Hong Kong Ltd. (Environ) is employed by the Highways Department as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

Construction Programme

2.9 A copy of Contractor's construction programme is provided in **Appendix A**.

Summary of Construction Works Undertaken During Reporting Month

Site Area	Description of Activities		
WA3	- Pre-drilling works		
WA4	- Setting up of bentonite slurry barges and assembly of 2 nos. of BG40 piling rigs		
	- Fabrication of piling platforms		
WA7	- Plant mobilization		
Portion C	- Trial pit excavation		
	- Utilities diversion		
	- Erection of hoarding & fence and site office area		
Pier Site(s)	 Pre-drilling works at P20, P51, P69, P71, P75, P82, P83, P101 & P103 		
	- Installation of temporary casings for the piling platform at P48 and P0		
Other(s)	- Establishment of precast concrete segment casting in Zhongshan		
	- Set up of the floating concrete batching plant		

Status of Environmental Licences, Notification and Permits

2.11 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Contract is presented in **Table 2.2**.

 Table 2.2
 Status of Environmental Licences, Notification and Permits

D 4/1. N	Valid	<u>St.</u> 1				
Permit / License No.	From	То	Status			
Environmental Permit (EP)						
EP-352/2009/A	09/11/2011	N/A	Valid			
Consruction Noise Permit (CNP						
WA6B: GW-RS0968-12	24/09/2012 (19:00)	23/03/2013 (23:00)	Valid			
WA6B: GW-RS1094-12	29/10/2012(19:00)	24/04/2013(24:00)	Valid			
WA3B: GW-RW1146-12	13/11/2012(19:00)	14/05/2013(24:00)	Valid			
WA4C: GW-RW0959-12	24/12/2012(19:00)	23/06/2013(23:00)	Valid			
WA4B: GW-RW0960-12	24/12/2012(19:00)	23/06/2013(23:00)	Valid			
WA4B:GW-RW0047-13	28/01/2013(23:00)	27/07/2013(07:00)	Valid			
<u>P48-P52:</u> GW-RS0171-13	24/02/2013(07:00)	23/08/2013(23:00)	Valid			
<u>P50-P52:</u> GW-RS0180-13	24/02/2013(23:00)	23/08/2013(07:00)	Valid			
WA7: GW-RW0125-13	28/02/2013(19:00)	27/08/2013(23:00)	Valid			
Notification pursuant to Air Pol	lution Control (Const	truction Dust) Regula	tion			
345773	04/06/2012	N/A	Receipt acknowledged by			
			EPD			
Billing Account for Construction	n Waste Disposal					
A/C# 7015341	13/06/2012	N/A	Valid			
(Construction Site)						
A/C# 7015341	20/02/2013	31/05/2013	Valid			
(Western water and Airport						
Channel)						
Registration of Chemical Waste	Producer					
WPN 5213-951-D2499-01	05/07/2012	N/A	Valid			
Effluent Discharge License under Water Pollution Control Ordinance						
<u>WA6A:</u> WT00014053-2012	17/09/2012	30/09/2017	Valid			
WA6B: WT00014447-2012	30/10/2012	31/10/2017	Valid			
<u>WA3:</u> WT00015118-2013	30/01/2013	31/01/2018	Valid			
Portion C: WT00015356-2013	22/02/2013	28/02/2018	Valid			

3 AIR QUALITY MONITORING

Monitoring Requirements

- 3.1 In accordance with the EM&A Manual, impact 1-hour TSP and 24-hour TSP monitoring were conducted to monitor the air quality for the Contract. **Appendix B** shows the established Action/Limit Levels for the air quality monitoring works.
- 3.2 Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was conducted for at least once every 6 days at 2 air quality monitoring stations.

Monitoring Location

3.3 Impact air quality monitoring was conducted at the 2 monitoring stations under the Contract, as shown in **Figure 3**. **Table 3.1** describes the locations of the air quality monitoring stations.

Table 3.1Location for Air Quality Monitoring Locations

Monitoring Stations	Location
AMS1	Sha Lo Wan
AMS4	San Tau

Monitoring Equipment

3.4 **Table 3.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix C**.

Equipment	Model and Make	Quantity
HVS Sampler	TISCH Model: TE-5170	2
Calibrator	TISCH Model: TE-5025A	1
Wind Anemometer	DAVIS Model: Vantage PRO2 6152CUK	1

Monitoring Parameters, Frequency and Duration

3.5 **Table 3.3** summarizes the monitoring parameters and frequencies of impact dust monitoring during the course of the Contract activities. The air quality monitoring schedule for the reporting period is shown in **Appendix D**.

Table 3.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

<u>1-hour and 24-hour TSP Air Quality Monitoring</u>

Instrumentation

3.6 High Volume Samplers (HVS) completed with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

HVS Installation

- 3.7 The following guidelines were adopted during the installation of HVS:
 - Sufficient support was provided to secure the sampler against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The samplers were more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
 - Permission must be obtained to set up the samples and to obtain access to the monitoring stations; and
 - A secured supply of electricity is needed to operate the samplers.

Filters Preparation

- 3.8 Filter paper of size 8" X 10" was used. A HOKLAS accredited laboratory, ETS Testconsult Limited (ETS), was responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for Cinotech's monitoring team.
- 3.9 All filters, which were prepared by ETS, were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ± 3 °C; the relative humidity (RH) was < 50% and not variable by more than $\pm 5\%$. A convenient working RH was 40%.
- 3.10 ETS has comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

3.11 Operating/analytical procedures for the air quality monitoring were highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between $1.1 \text{ m}^3/\text{min.}$ and $1.4 \text{ m}^3/\text{min.}$) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- The power supply was checked to ensure the sampler worked properly.
- On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and secured with the aluminum strip.
- The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter was removed and sent to the ETS for weighing. The elapsed time was also recorded.
- Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be < 50% and not vary by more than ± 5 %. A convenient working RH is 40%. Weighing results were returned to Cinotech for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 3.12 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - All HVS were calibrated (five point calibration) using Calibration Kit prior to the commencement of the baseline monitoring and thereafter at bi-monthly intervals.

Results and Observations

3.13 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in **Table 3.4** and **3.5** respectively. Detailed monitoring results and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively. - - -

Та	able 3.4	Summary Table Reporting Perio		^o Monitoring R	lesults during the
Monitoring Station A			Concentration (µg/m3)		Limit Level,
		Average	Range	– Level, μg/m ³	μg/m ³
	AMS1	77	29 – 129	381	500
	AMS4	128	60 - 204	352	500

Table 3.5	Summary Table	of 24-hour	TSP	Monitoring	Results	during	the
	Reporting Period						

Monitoring Station	Concentration (µg/m3)		Action Level, µg/m ³	Limit Level, µg/m ³
Station	Average	Range	Level, µg/m	µg/m
AMS1	45	20 - 70	170	260
AMS4	51	30 - 72	171	260

- 3.14 All 1-hour TSP monitoring was conducted as scheduled in the reporting period. No Action/Limit Level exceedance was recorded.
- 3.15 All 24-hour TSP monitoring was conducted as scheduled in the reporting period. No Action/Limit Level exceedance was recorded.
- 3.16 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

	-
Table 3.0	5

Observation at Dust Monitoring Stations

Monitoring Station	Major Dust Source
AMS1	Shallow sand beach nearby
AMS4	N/A

3.17 The wind speed and wind direction were recorded by the installed Wind Anemometer set at AMS4. The location is shown in **Figure 3**. The wind data for the reporting period is summarized in **Appendix J**.

Event and Action Plan

3.18 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

4 NOISE MONITORING

Monitoring Requirements

4.1 In accordance with EM&A Manual, two noise monitoring stations, namely NMS1 and NMS4 were selected for impact monitoring for the Contract. Impact noise monitoring was conducted for at least once per week during the construction phase of the Contract. Appendix B shows the established Action and Limit Levels for the noise monitoring works.

Monitoring Location

4.2 Impact noise monitoring was conducted at the 2 monitoring stations under the Contract, as shown in **Figure 3**. **Table 4.1** describes the locations of the air quality monitoring stations.

 Table 4.1
 Location for Air Quality Monitoring Locations

Monitoring Stations	Location
NMS1	Sha Lo Wan
NMS4	San Tau

Monitoring Equipment

4.3 **Table 4.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix C**.

Table 4.2Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 957	2
Calibrator	SV 30A	2

Monitoring Parameters, Frequency and Duration

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Monitoring Stations	Parameter	Period	Frequency
NMS1 NMS4	$\begin{array}{c} L_{10}(30 \text{ min.}) \text{ dB}(A) \\ L_{90}(30 \text{ min.}) \text{ dB}(A) \\ L_{eq}(30 \text{ min.}) \text{ dB}(A) \text{ (as six consecutive } L_{eq, 5min} \\ \text{ readings)} \end{array}$	0700-1900 hrs on normal weekdays	Once per week

_

Monitoring Methodology and QA/QC Procedures

- The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting : A
 - time weighting : Fast
 - time measurement : $L_{eq}(30 \text{ min.}) dB(A)$ (as six consecutive $L_{eq, 5min}$ readings) during non-restricted hours (i.e. 0700-1900 hrs on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- During the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Maintenance and Calibration

- 4.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 4.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 4.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

4.8 The noise monitoring results are summarized in **Table 4.4**. Detailed monitoring results and graphical presentations of noise monitoring are shown in **Appendices G**.

N/A

75 dB(A)

Table 4.4	Summar	ry Table of Noise Mo	nitoring Results duri	ng the Reporting
	Period	-	_	
Monitoring Station		Noise Level,		
		Average	Range	— Limit Level
NN	I S1	65	N/A	75 ID(A)

Remark: +3dB(A) Façade correction included

NMS4

N/A: Only one noise monitoring was conducted in the reporting period, no range of noise level is provided.

4.9 All noise monitoring was conducted as scheduled in the reporting period. No Action/Limit Level exceedance was recorded.

59

4.10 According to our field observations, the major noise source identified at the designated noise monitoring stations are as follows:

Table 4.5	Observation at Noise Monitoring Stations

Monitoring Station	Major Noise Source
NMS1	Air traffic & marine traffic noise
NMS4	Air traffic & marine traffic noise

Event and Action Plan

4.11 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

5 WATER QUALITY MONITORING

Monitoring Requirements

- 5.1 According to EM&A Manual, impact water quality monitoring shall be carried out three days per week during the construction period. The interval between two sets of monitoring will not be less than 36 hours.
- 5.2 Replicate in-situ measurements and samples collected from each independent sampling event shall be collected to ensure a robust statistically interpretable database.
- 5.3 Impact water quality monitoring was conducted two times per monitoring day during mid ebb (within + 1.75 hours of the predicted time) and mid flood tides (within + 1.75 hours of the predicted time) at three depths (i.e. 1m below surface, mid-depth and 1m above seabed, except where the water depth less than 6m, mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station was monitored) Dissolved oxygen, Suspended solids (SS), turbidity, pH, salinity and temperature were monitored in accordance with the requirements set out in the EM&A Manual.
- 5.4 **Appendix B** shows the established Action/Limit Levels for the water quality monitoring works.

Monitoring Locations

5.5 Impact water quality monitoring was conducted at 14 monitoring stations under the Contract which are summarized in Table 5.1. The monitoring station is also shown in Figure 4.

Table 5.1	Location for Marine Water Qu	ality Monitoring Locations				
Monitoring Stations	Coordinates					
Monitoring Stations	Easting	Northing				
IS1	803474	815060				
IS2	804851	815715				
IS3	806502	815743				
IS4	807008	816986				
CS1	801784	812711				
CS2	805849	818780				
SR1	803126	812379				
SR2	807856	816953				
SR3	810525	816456				
SR6	805837	821818				
ST1	802677	816006				
ST2	804055	818840				
ST3	800667	810126				
SRA	809872	817152				

151	803474	815060
162	804851	815715

Monitoring Equipment

Instrumentation

5.6 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.7 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.8 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.9 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.10 Salinity compensation was built-in in the DO equipment.

Turbidity

5.11 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids. The turbidity measurement was carried out on split water sample collected from the same depths of suspended solids samples.

Sampler

5.12 A water sampler, consisting of a transparent PVC or glass cylinder of a capacity of not less than two litres which can be effectively sealed with cups at both ends was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth.

Water Depth Detector

5.13 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

<u>рН</u>

5.14 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Salinity

5.15 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Monitoring Position Equipment

5.16 A hand held Differential Global Positioning System (DGPS) was used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Sample Container and Storage

5.17 Following collection, water samples for laboratory analysis were stored in high density polythene bottles (250ml/1L) with no preservatives added, packed in ice (cooled to 4°C without being frozen) and kept in dark during both on-site temporary storage and shipment to the testing laboratory. The samples were delivered to the laboratory as soon as possible and the laboratory determination works were started within 24 hours after collection of the water samples. Sufficient volume of samples was collected to achieve the detection limit.

Calibration of In Situ Instruments

- 5.18 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 5.19 For the on site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 5.20 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.
- 5.21 The equipment used for impact water quality monitoring is shown in **Table 5.2** and copies of the calibration certificates are shown in **Appendix C**. All the monitoring equipment complied with the requirements set out in the EM&A Manual.

Table 5.2Water 0	Table 5.2 Water Quality Monitoring Equipment							
Equipment	Model and Make	Qty						
Sonar Water Depth Detector	Garmin Fishfinder 140	2						
Monitoring Position Equipment	KODEN DGPS (KGP913MKIID, GA-08 & BA-03)	2						
Multi-parameter Water Quality System	YSI 6820-C-M	2						
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	2						

Monitoring Parameters, Frequency

5.22 Table 5.3 summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring. The water quality monitoring schedule for the reporting period is shown in Appendix D.

Table 5.3	Water Quality Monitoring Parameters and Frequency								
Monitoring Stations	Parameters, unit	Depth	Frequency						
IS1, IS2, IS3 IS4, CS1, CS2, SR1, SR2, SR3, SR6, ST1, ST2, ST3, SRA	 Temperature(°C) pH(pH unit) turbidity (NTU) water depth (m) salinity (ppt) dissolved oxygen (DO) (mg/L and % of saturation) suspended solids (SS) (mg/L) 	 3 water depths: 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid- depth sampling only. If water depth less than 6m, mid-depth may be omitted. 	• Impact monitoring: 3 days per week, at mid-flood and mid-ebb tides during the construction period of the Contract						

5.23 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

Monitoring Methodology

Instrumentation

5.24 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Operating/Analytical Procedures

5.25 The monitoring stations were accessed by the guide of a hand-held Differential Global Positioning System (DGPS) during water quality monitoring in accordance with the EM&A Manual. The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment were lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements were carried out accordingly.

- 5.26 At each measurement, two consecutive measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 5.27 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples at three depths (1 m below water surface, middepth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible. In addition, field information as described in Section 5.23 was also recorded.

Laboratory Analytical Methods

5.28 The testing of all parameters was conducted by CMA Testing and Certification Laboratories (HOKLAS Registration No.004) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method, reporting limit and detection limit are provided in **Table 5.4**.

Table 5.4	Methods for Laboratory	Analysis for Water Samples
1 abit 3.4	Michilous for Laboratory	Analysis for watch Samples

Determinant	Instrumentation	Analytical Method	Detection Limit
Suspended Solid (SS)	Weighing	APHA 21e 2540D	0.5 mg/L

QA/QC Requirements

Decontamination Procedures

5.29 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.30 All sampling bottles were labelled with the sample I.D (including the indication of sampling station and tidal stage e.g. IS1_me_a), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.31 The laboratory determination works were started within 24 hours after collection of the

water samples.

Quality Control Measures for Sample Testing

- 5.32 The samples testing were performed by CMA Testing and Certification Laboratories.
- 5.33 The following quality control programme was performed by the CMA Testing and Certification Laboratories for every batch of 20 samples:
 - \diamond One set of quality control (QC) samples.

Maintenance and Calibration

5.34 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme.

Results and Observations

- 5.35 The monitoring results and graphical presentation of water quality at the monitoring stations is shown in **Appendix H.**
- 5.36 The summary of exceedance record in reporting period is shown in **Appendix L** and summarized in the **Table 5.5**.

	Table 5.5				•	r Quality	Exceedan			1	
Station	Exceedance Level	DO (Surface	& Middle)	DO(Botto	m)	Turbidity		SS			Number eedances
		Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood
	Action Level	LUU	Tioou	Ebb	Flood	LUU	Flood	1200	Flood	0	0
IS1	Limit Level					22/02/2013 25/02/2013	22/02/2013 25/02/2013 27/02/2013	22/02/2013 25/02/2013	22/02/2013 27/02/2013	4	5
162	Action Level					25/02/2013			22/02/2013	1	1
IS2	Limit Level					22/02/2013	22/02/2013 27/02/2013	25/02/2013	27/02/2013	2	3
IS3	Action Level		22/02/2013 25/02/2013				27/02/2013		22/02/2013	0	4
155	Limit Level						22/02/2013	22/02/2013 25/02/2013		2	1
IS4	Action Level									0	0
154	Limit Level						22/02/2013	25/02/2013	27/02/2013	1	2
	Action Level									0	0
SR1	Limit Level		22/02/2013				22/02/2013 27/02/2013	22/02/2013 25/02/2013	22/02/2013 25/02/2013	2	5
	Action Level		25/02/2013			27/02/2013				1	1
SR2	Limit Level		22/02/2013			22/02/2013	22/02/2013	22/02/2013 25/02/2013 27/02/2013	22/02/2013 25/02/2013	4	4
	Action Level		25/02/2013				22/02/2013			0	2
SR3	Limit Level		22/02/2013			22/02/2013	25/02/2013	22/02/2013	22/02/2013 25/02/2013	2	4
SR6	Action Level				22/02/2013					0	1
SKU	Limit Level					22/02/2013	22/02/2013			1	1
	Action Level			25/02/2013	22/02/2013					1	1
ST1	Limit Level					22/02/2013	22/02/2013	22/02/2013	22/02/2013	4	4
				25/02/2012	22/02/2012	25/02/2013	27/02/2013	25/02/2013	27/02/2013	2	1
ST2	Action Level			25/02/2013	22/02/2013	27/02/2013	22/02/2012	25/02/2012	27/02/2013	2 2	1 3
512	Limit Level					22/02/2013	22/02/2013 27/02/2013	25/02/2013	27/02/2013	2	3
ST3	Action Level	22/02/201 3 25/02/201 3		22/02/2013	22/02/2013 25/02/2013	25/02/2013			22/02/2013	4	3
	Limit Level	5	22/02/2013 25/02/2013			22/02/2013		22/02/2013 25/02/2013		3	2
SRA	Action Level		25/02/2013		22/02/2013 25/02/2013		27/02/2013	22/02/2013 25/02/2013		2	4
	Limit Level		22/02/2013							0	1
Total	Action Level	2	5	3	7	4	3	2	3		
Total	Limit Level	0	6	0	0	10	16	17	13		

- 5.37 During the reporting period, there are seventeen Action Level exceedances and six Limit Level exceedances were recorded for dissolved oxygen. Seven Action Level exceedances and twenty-six Limit Level exceedances for turbidity were recorded. Five Action exceedances and thirty Limit Level exceedances for suspended solids were recorded.
- 5.38 According to the investigation, no major marine construction activities were conducted during the monitoring period. Therefore, all exceedances are considered not due to the Contract.
- 5.39 As no major marine construction activities were conducted for the Contract in the reporting period. Water quality impact sources during the water quality monitoring were the nearby construction activities by other parties and nearby operating vessels by other

parties.

Event and Action Plan

5.40 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

6 DOLPHIN MONITORING

Monitoring Requirements

- 6.1 According to Section 10 of the EM&A Manual, four kinds of ecological monitoring works are required during the construction phase, namely dolphin monitoring, construction-phase underwater noise monitoring, dolphin behavior monitoring and land-based dolphin behavior and movement monitoring.
- 6.2 The monitoring work shall be undertaken by suitably qualified specialist(s), (i.e. dolphin specialist and bio-acoustician), who shall have sufficient (at least 5-10 years) relevant post-graduate experience and publication in the respective aspects. They should be approved by Agriculture, Fisheries and Conservation Department (AFCD) and Environmental Protection Department (EPD).
- 6.3 Since there was no marine bored piling work in the reporting period, only dolphin monitoring was carried out.

Dolphin Monitoring

Monitoring Requirements

- 6.4 According to EM&A Manual Section 10.3.2, a dolphin monitoring programme should be set up to verify the predictions of impacts and to ensure that there are no unforeseen impacts on the dolphin population during construction phase.
- 6.5 Following the requirement in the EM&A Manual Section 10.4.1, the dolphin monitoring should adopt line-transect vessel survey method, and cover the following line-transect survey areas as in AFCD annual marine mammal monitoring programme.

Monitoring Location

6.6 For this contract, dolphin monitoring will be carried out in the West Lantau (WL) along the line transect as depicted in **Figure 1** of **Appendix I**. The co-ordinates of all transect lines are shown in **Table 6.1**.

Table 6.1 Co-ordinates of transect lines in wL survey area							rea
	Line No.	Easting	Northing	Line No.		Easting	Northing
1	Start Point	803750	818500	7	Start Point	799800	810450
1	End Point	803750	815500	7	End Point	801400	810450
2	Start Point	803750	815500	8	Start Point	801300	809450
2	End Point	802860	815500	8	End Point	799500	809450
3	Start Point	801880	814500	9	Start Point	799400	808450
3	End Point	803700	814500	9	End Point	801430	808450
4	Start Point	803200	813600	10	Start Point	801500	807450

Table 6.1Co-ordinates of transect lines in WL survey area

Line No.		Easting	Northing	Line No.		Easting	Northing
4	End Point	801500	813600	10	End Point	799600	807450
5	Start Point	800800	812450	11	Start Point	800300	806500
5	End Point	803300	812450	11	End Point	801750	806500
6	Start Point	802500	811500	12	Start Point	801760	805450
6	End Point	800400	811500	12	End Point	800600	805450

Monitoring Frequency

6.7 Dolphin transect survey will be carried out at least twice a month (i.e. complete all the transect lines of West Lantau survey area twice per month) throughout the construction period.

Monitoring Day

6.8 Dolphin monitoring was carried out on 19th and 25th February 2013. The dolphin monitoring schedule for the reporting period is shown in **Appendix D**.

Monitoring Results

- 6.9 From these surveys, a total of 65.80 km of survey effort was collected, with 83.3% of the total survey effort being conducted under favourable weather conditions. Out of the 65.80 km of survey effort, the total survey effort conducted on primary lines (the vertical lines perpendicular to the coastlines) was 43.45 km, while the effort on secondary lines (the lines connecting the primary lines) was 22.35 km.
- 6.10 Only one group of four Chinese White Dolphins was sighted in the offshore waters of central portion of West Lantau. The dolphins were engaged in feeding activities following closely behind a shrimp trawler.
- 6.11 Dolphin encounter rates deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) are shown in **Table 6.2**.

Table 6.2Dolphin encounter rates (sightings per 100 km of survey effort)
in February's surveys

in rebruary s surveys						
	Encounter	rate (STG)	Encounter rate (ANI)			
	(no. of on-effort dolphin		(no. of dolphins from all on-effort			
	sightings per 100 km of survey		sightings per 100 km of survey			
	effort)		effort)			
	Primary Lines Only	Both Primary and Secondary Lines	Primary Lines Only	Both Primary and Secondary Lines		
West Lantau	2.9	1.8	11.6	7.3		

6.12 No photograph was taken during the February's surveys.

- 6.13 No adverse impact on Chinese white dolphins was noticeable from general observations.
- 6.14 Evaluation of impacts on dolphins due to construction work will be conducted in the quarterly EM&A report.
- 6.15 Detailed monitoring methodology and results can be found in Appendix I.

7 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 7.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Contract site. The summaries of site audits are attached in **Appendix M**.
- 7.2 Site audits were conducted on 26th February 2013 by ET after the commencement of construction works for the Contract. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 26th February 2013. The details of observations during site audit can refer to **Table 7.1**.
- 7.3 According to EP condition 4.7 and EM&A Manual, periodic monitoring (every three months) of construction works shall be conducted to ensure the avoidance of any impacts on Sha Lo Wan (West) Archaeological Site. Access to Sha Lo Wan (West) Archaeological site for works areas and storage of construction equipment is not allowed. As no major construction works were conducted in Sha Lo Wan in the reporting period. The first inspection to the Sha Lo Wan (West) Archaeological Site will be conducted in March 2013 and further inspection will be conducted every three months.

Implementation Status of Environmental Mitigation Measures

- 7.4 According to the EIA Study Report, Environmental Permit and the EM&A Manual, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the EMIS is provided in **Appendix N**.
- 7.5 Regular marine travel route for marine vessels were implemented properly in accordance with the submitted plan and relevant records were kept properly.
- 7.6 Acoustic decoupling measures for the stationary equipment (generators, winch generators and air compressors) mounted on boards were adopted in according to the approved Acoustic Decoupling Measures Plan.
- 7.7 During site inspections in the reporting period, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 7.1**.

Table 7.1		Observations and Recommendations of Site Audit		
Parameters	Date	Observations and Recommendations	Follow-up	
Water Quality	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾	
Ecology	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾	
Air Quality	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾	
Noise	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾	
Waste / Chemical Management	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾	
Cultural Heritage (Sha Lo Wan (West) Archaeological Site)	N/A ⁽²⁾	N/A ⁽²⁾	N/A ⁽²⁾	

Remark: N/A⁽¹⁾ No major environmental deficiency was identified during the site inspection in the reporting period.

 $N/A^{(2)}$ – The first inspection to the Sha Lo Wan (West) Archeological Site will be conducted in March 2013. Inspection to archaeological site will be conducted every three months in accordance with EP condition 4.7.

Advice on the Solid and Liquid Waste Management Status

- 7.8 According to the Contractor, no inert C&D materials were generated during the reporting period.
- 7.9 The Contractor was advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in approved waste management plan shall be fully implemented.
- 7.10 The amount of wastes generated by the activities of the Contract during the reporting period is shown in **Appendix O**.

8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)

Summary of Exceedances

- 8.1 Summary of exceedance is provided in Appendix L.
- 8.2 No Action/Limit Level exceedance was recorded for air quality and construction noise.
- 8.3 There are seventeen Action Level exceedances and six Limit Level exceedances were recorded for dissolved oxygen. Seven Action Level exceedances and twenty-six Limit Level exceedances for turbidity were recorded. Five Action exceedances and thirty Limit Level exceedances for suspended solids were recorded.
- 8.4 According to the investigation, no major marine construction activities were conducted during the monitoring period. Therefore, all exceedances are considered not due to the Contract.

Summary of Environmental Complaint

8.5 No environmental related complaint was received in the reporting period. The Complaint Log is attached in **Appendix P**.

Summary of Notification of Summons and Successful Prosecution

8.6 There was no prosecution or notification of summons received since the Contract commencement.

9 FUTURE KEY ISSUES

Key Issues in the Coming Month

- 9.1 Major site activities for the coming reporting month will include:
 - Continue erection of hoarding & fence and site office area set up in Portion C;
 - Carry out slewing work for CLP 11kVA and 132kVA power cable between P108, P109 & P113;
 - Construction of the concrete cable trough for CLP cable slewing;
 - Slewing of the tele-communication cable;
 - Continue pre-drilling work at western water, along slopping seawall and at Portion C;
 - Protection work to the fuel pipes along the access road at Portion C;
 - Complete the piling platform for the Kelly method at P48, P0 and P49 and commence bored piling work;
 - Erection of platform at P50 an P52 for preparation of RCD bored piling;
 - Continue the setup of casting yard;
 - Set-up facilities for marine delivery of concrete from land plants.
 - Setting up of silt-curtain. (dolphin exclusion zone and dolphin watching plan will be implemented in accordance with EP condition 3.4 and 3.5)

Monitoring Schedule for the Next Month

9.2 The tentative environmental monitoring schedule for the next month is shown in **Appendix D**.

Construction Programme for the Next Month

9.3 A tentative construction programme is provided in **Appendix A**.

10 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 10.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 22nd February 2013 to 28th February 2013 in accordance with EM&A Manual.
- 10.2 No Action/Limit Level exceedance was recorded for air quality and construction noise.
- 10.3 For water quality monitoring, there are seventeen Action Level exceedances and six Limit Level exceedances were recorded for dissolved oxygen. Seven Action Level exceedances and twenty-six Limit Level exceedances for turbidity were recorded. Five Action exceedances and thirty Limit Level exceedances for suspended solids were recorded.
- 10.4 According to the investigation, no major marine construction activities were conducted during the monitoring period. Therefore, all exceedances are considered not due to the Contract.
- 10.5 Only one group of four Chinese White Dolphins was sighted in the offshore waters of central portion of West Lantau. No adverse impact on Chinese white dolphins was noticeable from general observations.
- 10.6 Environmental site inspection was conducted on 26th February 2013 by ET after the commencement of construction works for the Contract. No non-conformance was identified.
- 10.7 There was no environmental complaint, notification of summons and successful prosecution received.
- 10.8 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

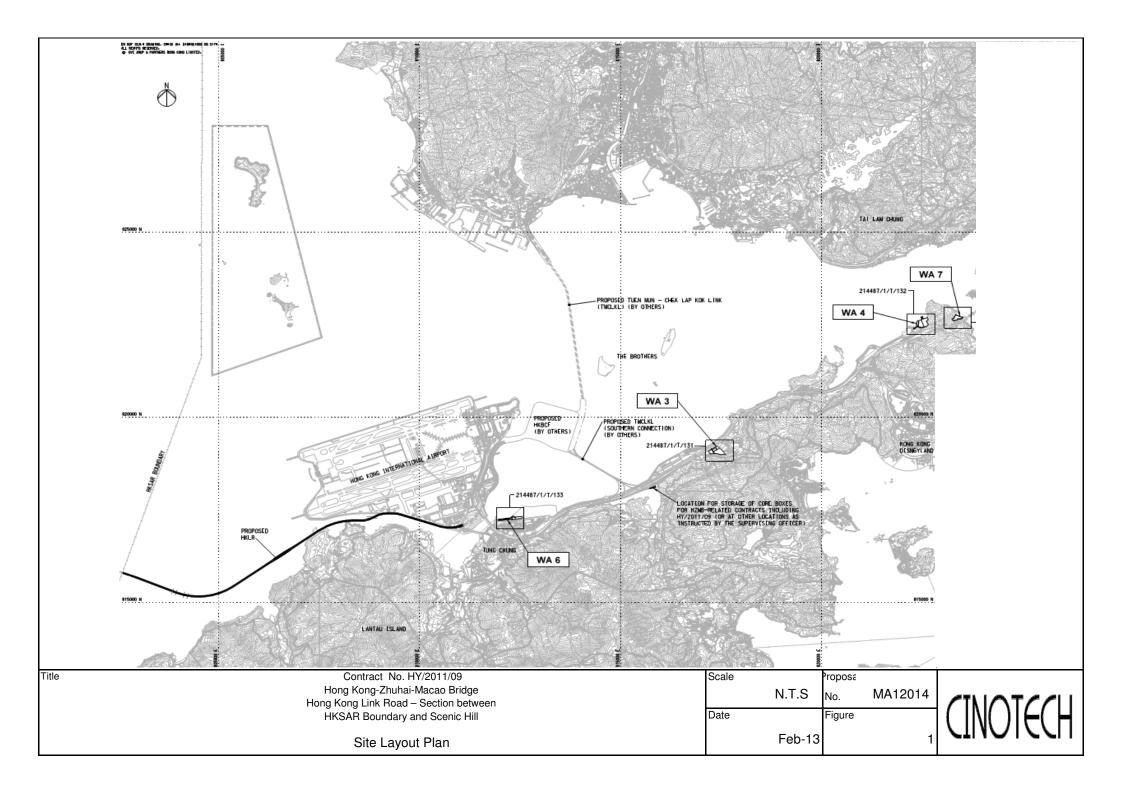
10.9 According to the environmental audit performed in the reporting period, the following recommendations were made:

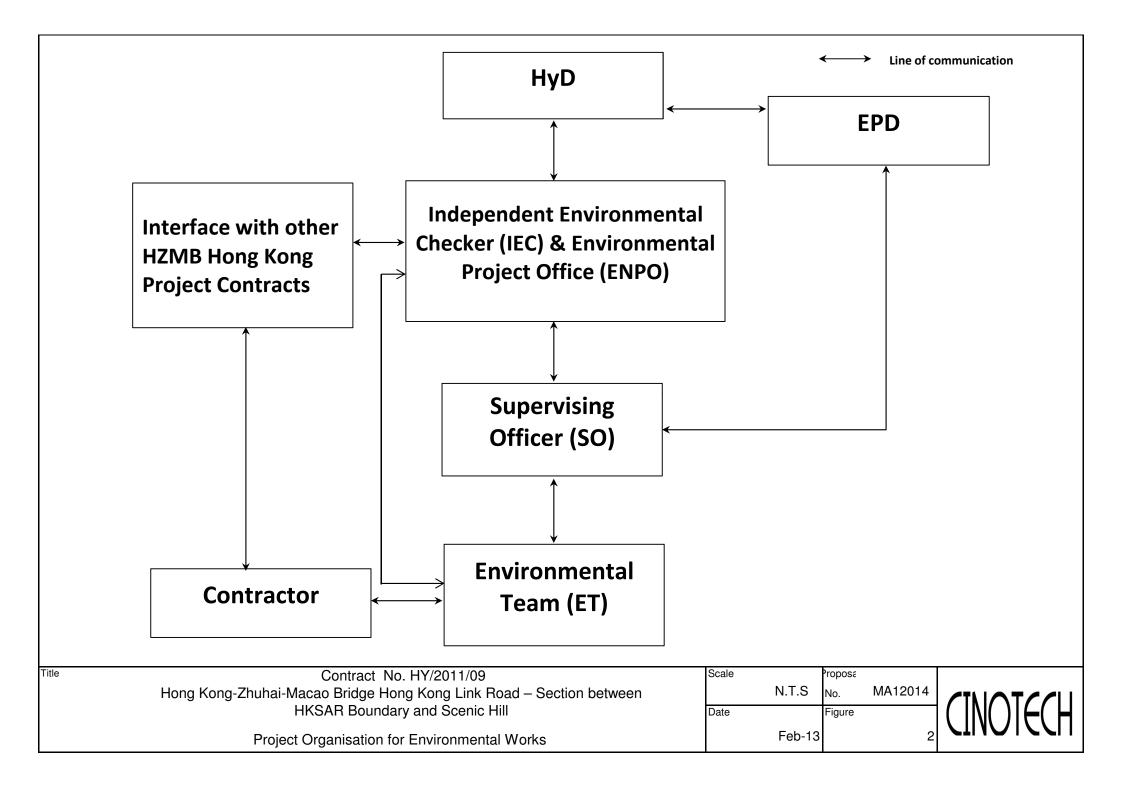
Air Quality Impact

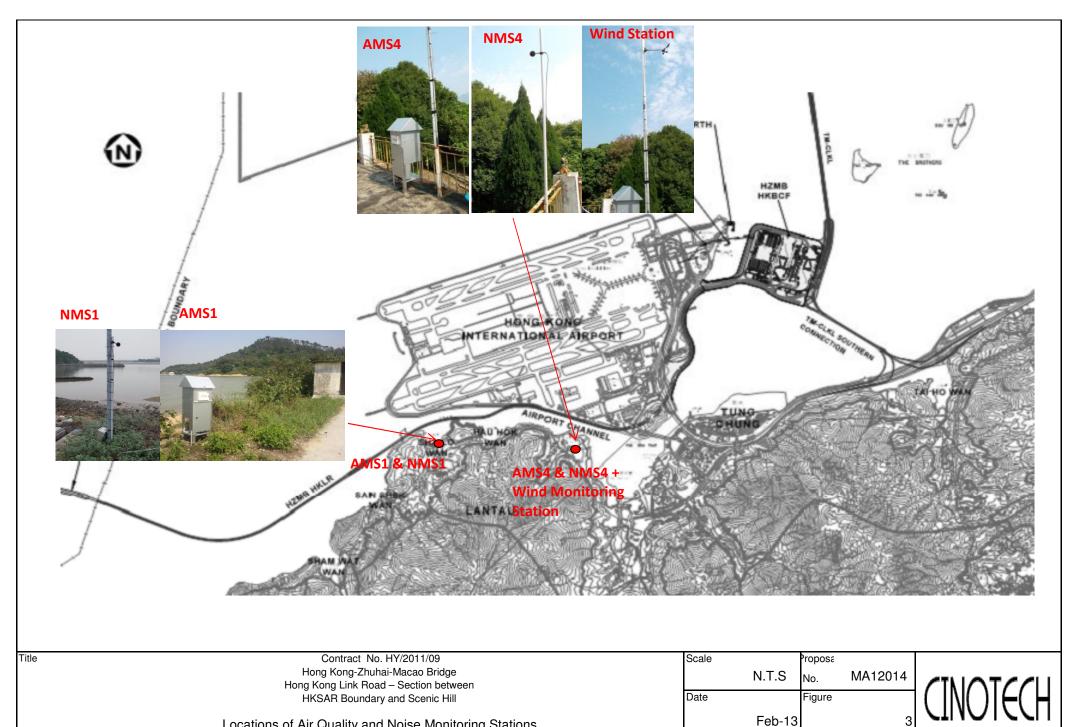
- To regularly maintain the quality of machinery and vehicles on site.
- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To provide hoarding along the entire length of that portion of the site boundary.

Noise Impact

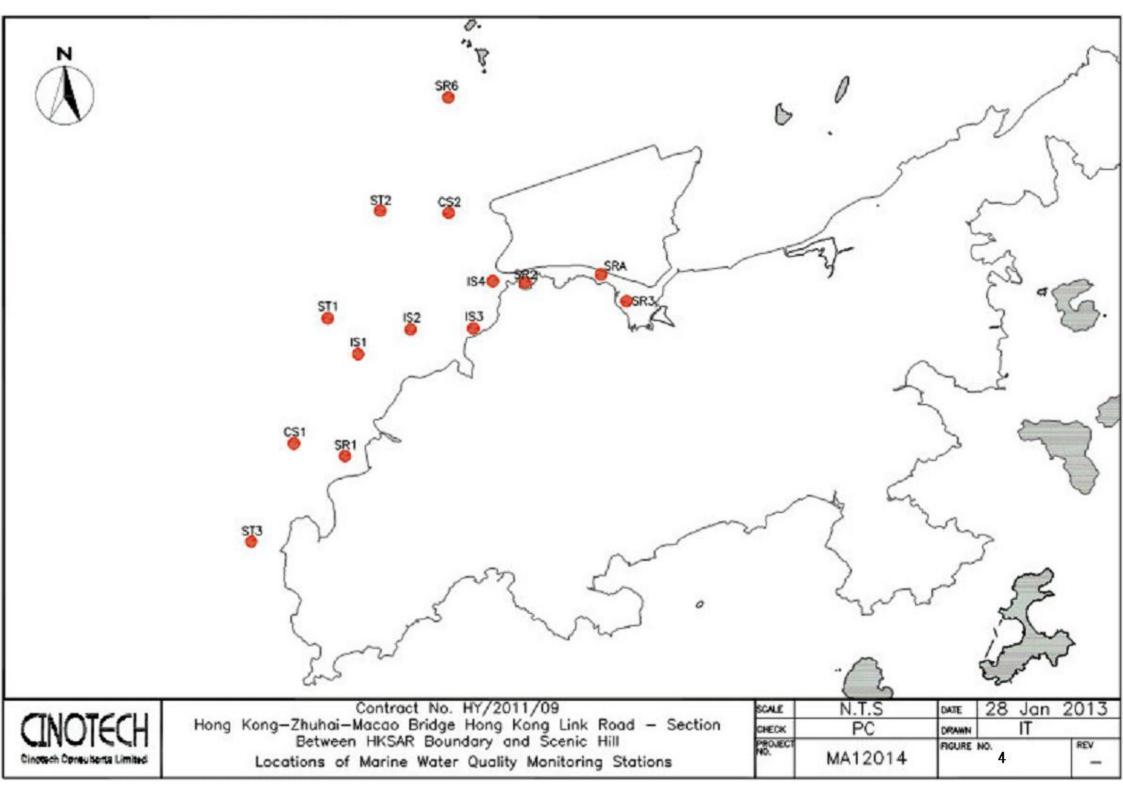
- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers, if necessary.


Water Impact


- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To avoid accumulation of stagnant and ponding water on site.


Waste/Chemical Management

- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To avoid improper handling or storage of oil drum on site.


FIGURES

Locations of Air	Quality	and	Noise	Monitorina	Stations
Locations of All	Quanty	anu	110136	wormoning	Jations

APPENDIX A CONSTRUCTION PROGRAMME

	Activity Name	Original Duration	Remaining Duration	Start	Finish	Late Start	Late Finish	Februa	arv	I N	20 Iarch	l A	April		May
								28 04 11					15 22		
IKZB Hon	ng Kong Link Road - 3 Months Rolling Programme 2802	(Based	l on DW	P00B)											
Design and	I Design Checking of the Works														
General De	sign Submission														
GDS1100	1st draft Geotechnical Submission for all permanent Geotechnical Works	0	0		28-Feb-13*		10-Nov-12			1 at draft (Codtoobolool	Submission fo			
GDS1110	Final Geotechnical Submission for all permanent Geotechnical Works	0	0		28-Feb-13*		09-Jan-13						or all permaner		1 1
GDS1130	Final Durability Assessment Report	0	0		28-Feb-13*		07-Dec-12				1 1		upermanent	reorectinii	
GDS1140	Final Landscape Plan	0	0		29-Jan-13 A		08-Jun-15			Final Dur	adiiitv Assess	sment Report			
GDS1220	Detailed Construction Risk Assessment	0	0		27-Mar-13*		27-Mar-13	Final Landsca	be Plan			Datailad Can	struction Diole	Å	
Approval in	Principle (AIP)										•	Detailed Con	struction Risk	Assessm	ent
AIP 06 Roa															
AIP06-40	Approve Design AIP - Roadworks	35	0	21-Nov-12 A	30-Jan-13 A	02-Dec-12	02-Dec-12	Approve Desi		oodworke			+		++
	M and Provisioning for TCSS	00		2111011270	oo oun rort	02 800 12	02 000 12	AUUUU	911 / 11 - 1	Uduwulks					
AIP07-40	Approve Design AIP - TCSS, E&M	35	0	20-Nov-12 A	28-Eeb-13	08-Jun-13	08-Jun-13			Approvio F		TOOD FOM		1	1
	otechnical Works (e.g. slopework near Scenic Hill)		0	201100127	201 00 13	00-0011-10	00-0011-13	1 : :	: :	Approver	Design AIP -	TCSS, EQIVI			
AIP08-40	Approve Design AIP - Geotechnical Works	35	25	01-Feb-13 A	02 Apr 12	22-Jan-14	26-Feb-14								
AIP08-40 AIP08-50	Submit to GEO for Approval - Geotechnical Works	35		04-Apr-13	03-Apr-13 08-May-13	04-Apr-14	09-May-14					Approv	e Design AIP		
		30	30	04-Apr-13	06-101ay-13	04-Apr-14	09-May-14								Submit to
AIP 09 Lan		05	-	40.0.1.40.4		00 NJ 45	00 NJ 45							į	
AIP09-40	Approve Design AIP - Landscaping	35	0	16-Oct-12 A	28-FeD-13	02-Nov-15	02-Nov-15			Approve L	Design AIP - I	Landscaping			
AIP 10 SHI					20 E 1 10		00.14								
AIP10-20	Comment Design AIP - Remaining Works (SHM&MMS)	21		29-Jan-13 A		23-May-16	23-May-16		,	Comment	Design AIP -		/prks (SHM&N		
AIP10-30	Resubmit Design AIP with DC's Certificate - Remaining Works (SHM&M	28		28-Feb-13	27-Mar-13	24-May-16	20-Jun-16				<u> </u>	Resubmit De	sign AIP with [1	1 1
AIP10-40	Approve Design AIP - Remaining Works (SHM&MMS)	35	35	28-Mar-13	01-May-13	21-Jun-16	25-Jul-16					:		Approv	e Desigr
	esign Approval (DDA)														
Foundation															
Western W															
DDA01-40		35	5	29-Jan-13 A	04-Mar-13	13-Jan-13	17-Jan-13		!!	Appro	ve Design DI	DA - ML07L/R			
DDA02-10	1 0	30		18-Dec-12 A		25-Feb-13	25-Feb-13			Prepare a	nd submit De	esign DDA - M	1 1 1		
	-	35	35	28-Feb-13	03-Apr-13	26-Feb-13	01-Apr-13					Comme	e¦nt De¦sign D¦D	A - ML06L	/R
DDA02-20	0 Resubmit Design DDA with DC Certificate - ML06L/R	21	21	04-Apr-13	24-Apr-13	02-Apr-13	22-Apr-13						Re	submit De	sign DD
DDA02-30						· ·				i i				i i	i i
		35		25-Apr-13	29-May-13	01-Aug-13	04-Sep-13								
DDA02-30 DDA02-40 DDA03-20	0 Approve Design DDA - ML06L/R 0 Prepare and submit Design DDA - ML05L/R	35 30	35 30	25-Apr-13 28-Feb-13	29-May-13 29-Mar-13	12-Apr-13	11-May-13					Prepare	and submit De	sign DDA	- ML05L
DDA02-30 DDA02-40	0 Approve Design DDA - ML06L/R 0 Prepare and submit Design DDA - ML05L/R	35	35 30	25-Apr-13	29-May-13	-						Prepare	and submit De		i i
DDA02-30 DDA02-40 DDA03-20	0 Approve Design DDA - ML06L/R 0 Prepare and submit Design DDA - ML05L/R 0 Comment Design DDA - ML05L/R	35 30	35 30 35 21	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13	29-May-13 29-Mar-13	12-Apr-13	11-May-13 15-Jun-13 06-Jul-13					Prepare	and submit De		i i
DDA02-30 DDA02-40 DDA03-20 DDA03-30	Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA with DC Certificate - ML05L/R	35 30 35	35 30 35 21	25-Apr-13 28-Feb-13 30-Mar-13	29-May-13 29-Mar-13 03-May-13	12-Apr-13 12-May-13	11-May-13 15-Jun-13					Prepare	and submit De		i i
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-40	0 Approve Design DDA - ML06L/R 0 Prepare and submit Design DDA - ML05L/R 0 Comment Design DDA - ML05L/R 0 Resubmit Design DDA with DC Certificate - ML05L/R 0 Approve Design DDA - ML05L/R	35 30 35 21	35 30 35 21 35	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13	29-May-13 29-Mar-13 03-May-13 24-May-13	12-Apr-13 12-May-13 16-Jun-13	11-May-13 15-Jun-13 06-Jul-13					Prepare	and submit De	 	mment [
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-40 DDA03-50	 Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA with DC Certificate - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R 	35 30 35 21 35	35 30 35 21 35 30	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13 25-May-13	29-May-13 29-Mar-13 03-May-13 24-May-13 28-Jun-13	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13	11-May-13 15-Jun-13 06-Jul-13 04-Dec-13					Prepare	and submit De	 	mment I
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-30 DDA03-50 DDA03-10	 Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA with DC Certificate - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R 	35 30 35 21 35 30	35 30 35 21 35 30 30 35	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13 25-May-13 30-Mar-13	29-May-13 29-Mar-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13	11-May-13 15-Jun-13 06-Jul-13 04-Dec-13 25-Jun-13					Prepare	and submit De	 	mment I
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-30 DDA03-40 DDA03-50 DDA04-10 DDA04-20	 Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA with DC Certificate - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Prepare and submit Design DDA - ML04L/R Prepare and submit Design DDA - ML04L/R 	35 30 35 21 35 30 30 35	35 30 35 21 35 30 35 30 35	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13 25-May-13 30-Mar-13 29-Apr-13	29-May-13 29-Mar-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13 02-Jun-13	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13 26-Jun-13	11-May-13 15-Jun-13 06-Jul-13 04-Dec-13 25-Jun-13 30-Jul-13			Çomment	Design DDA		ạnd sụbmit Φe	 	mment I
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-30 DDA03-50 DDA04-10 DDA04-20 DDA05-10	Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA with DC Certificate - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Comment Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Prepare and submit Design DDA - ML02L/R Comment Design DDA - ML01L/R	35 30 35 21 35 30 35 30	35 30 35 21 35 30 35 30 0 0	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13 25-May-13 30-Mar-13 29-Apr-13 29-Apr-13	29-May-13 29-Mar-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13 02-Jun-13 28-May-13	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13 26-Jun-13 11-Jul-13 24-Dec-12 25-Dec-12	11-May-13 15-Jun-13 06-Jul-13 04-Dec-13 25-Jun-13 30-Jul-13 09-Aug-13			Çomment		- ML01[/R	and submit De	Prepare	e and su
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-30 DDA03-40 DDA03-50 DDA04-10 DDA04-20 DDA05-10 DDA06-20	Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML04L/R Resubmit Design DDA - ML01L/R Resubmit Design DDA - ML01L/R	35 30 35 21 35 30 35 30 30 35	35 30 35 21 35 30 35 30 0 0 21	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13 25-May-13 30-Mar-13 29-Apr-13 29-Apr-13 28-Nov-12 A	29-May-13 29-Mar-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13 02-Jun-13 28-May-13 28-Feb-13 20-Mar-13	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13 26-Jun-13 11-Jul-13 24-Dec-12	11-May-13 15-Jun-13 06-Jul-13 04-Dec-13 25-Jun-13 30-Jul-13 09-Aug-13 24-Dec-12			Çomment		A - ML01L/R ubmit Deşign D	DDA with DC C	Prepare	e and su
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-30 DDA03-40 DDA03-50 DDA04-10 DDA04-20 DDA05-10 DDA06-20 DDA06-30	Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML01L/R Resubmit Design DDA - ML01L/R Approve Design DDA - ML01L/R Approve Design DDA - ML01L/R	35 30 35 21 35 30 35 30 35 21	35 30 35 21 35 30 35 30 0 21 35	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13 25-May-13 30-Mar-13 29-Apr-13 29-Apr-13 28-Nov-12A 28-Feb-13 21-Mar-13	29-May-13 29-Mar-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13 02-Jun-13 28-May-13 28-Feb-13 20-Mar-13	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13 26-Jun-13 11-Jul-13 24-Dec-12 25-Dec-12 15-Jan-13	11-May-13 15-Jun-13 06-Jul-13 04-Dec-13 25-Jun-13 30-Jul-13 09-Aug-13 24-Dec-12 14-Jan-13				Resu	ML01L/R		Prepare ertificate prove Des	e and su ML01L
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-40 DDA03-50 DDA04-10 DDA04-20 DDA04-20 DDA05-10 DDA06-20 DDA06-30 DDA06-40	Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML01L/R Approve Design DDA - ML01L/R Prepare and submit Design DDA - ML01L/R Prepare and submit Design DDA - ML08L/R (with Trunaround)	35 30 35 21 35 30 35 30 35 21 35	35 30 35 21 35 30 35 30 0 21 35 0	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13 25-May-13 30-Mar-13 29-Apr-13 29-Apr-13 28-Nov-12A 28-Feb-13 21-Mar-13	29-May-13 29-May-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13 02-Jun-13 28-Ray-13 28-Feb-13 20-Mar-13 08-Feb-13A	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13 26-Jun-13 11-Jul-13 24-Dec-12 25-Dec-12 15-Jan-13	11-May-13 15-Jun-13 06-Jul-13 04-Dec-13 25-Jun-13 30-Jul-13 09-Aug-13 24-Dec-12 14-Jan-13 18-Feb-13				Resu	ML01L/R hbmit Design D Design DDA -	DA with DC C ML08¢/R (with	Prepare Prepare ertificate prove Des	mment [e and su ML01L ign DDA ind)
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-30 DDA03-40 DDA03-50 DDA04-10 DDA04-20 DDA05-10 DDA06-20 DDA06-30 DDA06-40 DDA07-10	Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML01L/R Prepare and submit Design DDA - ML01L/R Approve Design DDA - ML01L/R Prepare and submit Design DDA - ML08L/R (with Trunaround) Ocomment Design DDA - ML08L/R (with Trunaround)	35 30 35 21 35 30 35 30 35 21 35 21 35 45	35 30 35 21 35 30 35 30 0 21 35 0 0 15	25-Apr-13 28-Feb-13 30-Mar-13 25-May-13 30-Mar-13 29-Apr-13 29-Apr-13 28-Nov-12 A 28-Feb-13 21-Mar-13 17-Jan-13 A	29-May-13 29-May-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13 02-Jun-13 28-Ray-13 28-Feb-13 20-Mar-13 08-Feb-13A	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13 26-Jun-13 11-Jul-13 24-Dec-12 25-Dec-12 15-Jan-13 12-Apr-13	11-May-13 15-Jun-13 06-Jul-13 04-Dec-13 25-Jun-13 30-Jul-13 09-Aug-13 24-Dec-12 14-Jan-13 18-Feb-13 12-Apr-13				Resu	ML01L/R hbmit Design D Design DDA -	DA with DC C ML08L/R (with ment Design 1	Prepare Prepare ertificate prove Des	mment I e and su ML01L ign DDA ind) 08L/R (v
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-30 DDA03-40 DDA04-10 DDA04-10 DDA04-20 DDA05-10 DDA06-20 DDA06-30 DDA06-40 DDA07-10 DDA07-20	Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML01L/R Approve Design DDA - ML01L/R Prepare and submit Design DDA - ML08L/R (with Trunaround) Comment Design DDA - ML08L/R (with Trunaround)	35 30 35 21 35 30 35 30 35 21 35 45 35	35 30 35 21 35 30 35 30 0 21 35 0 0 15	25-Apr-13 28-Feb-13 30-Mar-13 25-May-13 30-Mar-13 29-Apr-13 29-Apr-13 28-Nov-12 A 28-Feb-13 21-Mar-13 17-Jan-13 A 09-Feb-13 A	29-May-13 29-May-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13 02-Jun-13 28-Feb-13 20-Mar-13 24-Apr-13 08-Feb-13A 14-Mar-13	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13 26-Jun-13 11-Jul-13 24-Dec-12 25-Dec-12 15-Jan-13 12-Apr-13 02-May-13	11-May-13 15-Jun-13 06-Jul-13 25-Jun-13 30-Jul-13 09-Aug-13 24-Dec-12 14-Jan-13 18-Feb-13 12-Apr-13 16-May-13				Resu	ML01L/R hbmit Design D Design DDA -	DA with DC C ML08L/R (with ment Design 1	Prepare Prepare ertificate prove Dess Trunarou DDA - ML	mment I e and su ML01L ign DDA ind) 08L/R (v
DDA02-30 DDA02-40 DDA03-20 DDA03-30 DDA03-40 DDA03-50 DDA04-10 DDA04-20 DDA04-20 DDA06-20 DDA06-30 DDA06-40 DDA07-10 DDA07-30	Approve Design DDA - ML06L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Resubmit Design DDA - ML05L/R Approve Design DDA - ML05L/R Prepare and submit Design DDA - ML05L/R Comment Design DDA - ML05L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Prepare and submit Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML04L/R Comment Design DDA - ML01L/R Approve Design DDA - ML01L/R Prepare and submit Design DDA - ML08L/R (with Trunaround) Comment Design DDA - ML08L/R (with Trunaround)	35 30 35 21 35 30 35 30 35 21 35 45 35 21	35 30 35 21 35 30 35 30 0 21 35 0 0 15 21	25-Apr-13 28-Feb-13 30-Mar-13 04-May-13 25-May-13 30-Mar-13 29-Apr-13 29-Apr-13 29-Apr-13 28-Nov-12A 28-Feb-13 21-Mar-13 17-Jan-13A 09-Feb-13A 15-Mar-13	29-May-13 29-May-13 03-May-13 24-May-13 28-Jun-13 28-Apr-13 02-Jun-13 28-Reb-13 20-Mar-13 24-Apr-13 08-Feb-13A 14-Mar-13 04-Apr-13	12-Apr-13 12-May-13 16-Jun-13 31-Oct-13 27-May-13 26-Jun-13 11-Jul-13 24-Dec-12 25-Dec-12 15-Jan-13 12-Apr-13 02-May-13	11-May-13 15-Jun-13 06-Jul-13 25-Jun-13 30-Jul-13 09-Aug-13 24-Dec-12 14-Jan-13 18-Feb-13 12-Apr-13 16-May-13 06-Jun-13	Date			Resu	ML01L/R hbmit Design D Design DDA -	DA with DC C ML08L/R (with ment Design 1	Prepare Prepare Prove Des Trunarou DDA - ML Resubmit I	mment E e and su ML01L ign DDA ind) 08L/R (w

Page 1 of 11

Critical Remaining Work

'ID	Activity Name		Remaining	Start	Finish	Late Start	Late Finish	2013
		Duration	Duration					February March April May 28 04 11 18 25 01 08 15 22 29 06 13
DDA07-40	Approve Design DDA - ML08L/R (with Trunaround)	35	35	05-Apr-13	09-May-13	07-Jul-13	10-Aug-13	
DDA08-10	Prepare and submit Design DDA - ML09L/R	30	0	19-Dec-12 A	28-Feb-13	17-Jan-13	17-Jan-13	Prepare and submit Design DDA - ML09L/R
DDA08-20	Comment Design DDA - ML09L/R	35	35	28-Feb-13	03-Apr-13	18-Jan-13	21-Feb-13	Comment Design DDA - ML09L/R
DDA08-30	Resubmit Design DDA with DC Certificate - ML09L/R	21	21	04-Apr-13	24-Apr-13	22-Feb-13	14-Mar-13	Resubmit Design D
DDA08-40	Approve Design DDA - ML09L/R	35	35	25-Apr-13	29-May-13	18-Nov-13	22-Dec-13	
Navigation C	Channel							
DDA09-20	Comment Design DDA - ML03L/R (with Dolphin)	35	1	28-Nov-12 A	28-Feb-13	11-Feb-13	11-Feb-13	Comment Design DDA - ML03L/R (with Dolphin)
DDA09-30	Resubmit Design DDA with DC Certificate - ML03L/R (with Dolphin)	21	21	01-Mar-13	21-Mar-13	12-Feb-13	04-Mar-13	Resubmit Design DDA with DC Certificate + ML03
DDA09-40	Approve Design DDA - ML03L/R (with Dolphin)	35	35	22-Mar-13	25-Apr-13	05-Mar-13	08-Apr-13	Approve Design D
Airport Char	nnel							
DDA10-10	Prepare and submit Design DDA - ML10L/R	35	3	27-Jan-13 A	02-Mar-13	28-Feb-13	02-Mar-13	Prepare and submit Design DDA - ML10L/R
DDA10-20	Comment Design DDA - ML10L/R	35		03-Mar-13	06-Apr-13	03-Mar-13	06-Apr-13	Comment Design DDA- ML10L/R
DDA10-30	Resubmit Design DDA with DC Certificate - ML10L/R	21		07-Apr-13	27-Apr-13	07-Apr-13	27-Apr-13	Resubmit Design
DDA10-40	Approve Design DDA - ML10L/R	35		28-Apr-13	01-Jun-13	28-Apr-13	01-Jun-13	
DDA11-20	Comment Design DDA - ML11L/R	35		· ·		01-Apr-13	01-Apr-13	Segment Design DDA- ML11L/R
DDA11-30	Resubmit Design DDA with DC Certificate - ML11L/R	21		06-Feb-13 A		01-Apr-13	01-Apr-13	Resubmit Design DDA with DC Certificate - ML
DDA11-40	Approve Design DDA - ML11L/R	35		28-Feb-13	03-Apr-13	16-May-13	19-Jun-13	Approve Design
DDA12-10	Prepare and submit Design DDA - ML12L/R	45		04-Oct-12 A	28-Feb-13	02-Dec-12	02-Dec-12	Prepare and submit Design DDA - ML12L/R
DDA12-20	Comment Design DDA - ML12L/R	35		28-Feb-13	03-Apr-13	03-Dec-12	06-Jan-13	
DDA12-30	Resubmit Design DDA with DC Certificate - ML12L/R	21		04-Apr-13	24-Apr-13	07-Jan-13	27-Jan-13	Comment Design DDA - ML12L/R
DDA12-30	Approve Design DDA - ML12L/R	35		25-Apr-13	29-May-13	16-Apr-13	20-May-13	Resubmit Design D
DDA12-40 DDA13-10	Prepare and submit Design DDA - ML13L/R	35		18-Nov-12 A		06-Jan-13	06-Jan-13	
DDA13-10 DDA13-20	Comment Design DDA - ML13L/R	35	-	28-Feb-13	03-Apr-13	07-Jan-13	10-Feb-13	Prepare and submit Design DDA - ML13L/R
DDA13-20 DDA13-30	Resubmit Design DDA - ML13L/R	21		04-Apr-13	24-Apr-13	11-Feb-13	03-Mar-13	Comment Design DDA - ML13L/R
				· ·	· ·			Resubmit Design D
DDA13-40	Approve Design DDA - ML13L/R	35		25-Apr-13	29-May-13	25-Mar-13	28-Apr-13	
DDA14-10	Prepare and submit Design DDA - ML14L/R	35		03-Mar-13	06-Apr-13	28-May-13	01-Jul-13	Prepare and submit Design DDA -
DDA14-20	Comment Design DDA - ML14L/R	35		07-Apr-13	11-May-13	02-Jul-13	05-Aug-13	Com
DDA14-30	Resubmit Design DDA with DC Certificate - ML14L/R	21	21	12-May-13	01-Jun-13	06-Aug-13	26-Aug-13	
Airport Islan		45		00 NL 40 A	00 5 4 40	00.14	20 M	
DDA15-10	Prepare and submit Design DDA - ML19L/C/R	45		28-Nov-12 A		26-Mar-13	26-Mar-13	Prepare and submit Design DDA - ML19L/C/R
DDA15-20	Comment Design DDA - ML19L/C/R	35		01-Mar-13	04-Apr-13	27-Mar-13	30-Apr-13	Comment Design DDA - ML19L/C/R
DDA15-30	Resubmit Design DDA with DC Certificate - ML19L/C/R	21		05-Apr-13	25-Apr-13	01-May-13	21-May-13	Resubmit Design [
DDA15-40	Approve Design DDA - ML19L/C/R	35		26-Apr-13	30-May-13	25-May-13	28-Jun-13	
DDA16-20	Comment Design DDA - ML18L/R	35		28-Nov-12 A			0110010	Commen Design DDA - ML18L/R
DDA16-30	Resubmit Design DDA with DC Certificate - ML18L/R	21		16-Feb-13 A			01-Feb-13	Resubmit Design DDA with DC Certificate - ML18L/R
DDA16-40	Approve Design DDA - ML18L/R	35		23-Feb-13 A		01-Feb-13	03-Mar-13	Approve Design DDA - ML18L/R
DDA17-20	Comment Design DDA - ML17L/R	35		28-Dec-12 A		13-Oct-13	13-Oct-13	Comment Design DDA - ML17L/R
DDA17-30	Resubmit Design DDA with DC Certificate - ML17L/R	21		28-Feb-13	20-Mar-13	14-Oct-13	03-Nov-13	Resubmit Design DDA with DC Certificate - ML17
DDA17-40	Approve Design DDA - ML17L/R	35		21-Mar-13	24-Apr-13	04-Nov-13	08-Dec-13	Approve Design DE
DDA18-10	Prepare and submit Design DDA - ML16L/R	45		26-Dec-12 A		29-Dec-13	29-Dec-13	Prepare and submit Design DDA - ML16L/R
DDA18-20	Comment Design DDA - ML16L/R	35		28-Feb-13	03-Apr-13	30-Dec-13	02-Feb-14	Comment Design DDA - ML16L/R
DDA18-30	Resubmit Design DDA with DC Certificate - ML16L/R	21	21	04-Apr-13	24-Apr-13	23-Feb-14	15-Mar-14	Resubmit Design D
DDA18-40	Approve Design DDA - ML16L/R	35	35	25-Apr-13	29-May-13	16-Mar-14	19-Apr-14	
DDA19-10	Prepare and submit Design DDA - ML15L/R	45	45	28-Feb-13	13-Apr-13	18-Mar-14	01-May-14	Prepare and submit Design D
Actu	al Work	3 N	lonth	s Rollin	a Proar	amme -	28 Feb	Date Revision Checked Appro
	aining Work Primary Baseline				2013		_0.00	27-Feb-13 Feb Updated Rolling Programme Tim
					- 71 1 7 7			

)	Activity Name	Original Duration	Remaining Start Duration	Finish	Late Start	Late Finish	February	2013 March Apr	ril	May
							28 04 11 18 25 04			
DDA19-20	Comment Design DDA - ML15L/R	35	35 14-Apr-13	18-May-13	02-May-14	05-Jun-14				
DDA19-30	Resubmit Design DDA with DC Certificate - ML15L/R	21	21 19-May-13	08-Jun-13	01-Jul-14	21-Jul-14				, t
Ibstructure										
lestern Wate		1								
DDA20-20	Comment Design DDA - ML07L/R	35	0 29-Jan-13A		17-Jan-13	17-Jan-13	Com	ment Design DDA - ML07L/R		
DDA20-30	Resubmit Design DDA with DC Certificate - ML07L/R	21	21 28-Feb-13	20-Mar-13	18-Jan-13	07-Feb-13		Resubmit Design DD/		
DDA20-40	Approve Design DDA - ML07L/R	35	35 21-Mar-13	24-Apr-13	18-Feb-13	24-Mar-13			Approve D	Design D
DDA21-10	Prepare and submit Design DDA - ML06L/R	30	30 25-Apr-13	24-May-13	24-Mar-13	22-Apr-13				
DDA21-20	Comment Design DDA - ML06L/R	35	35 25-May-13	28-Jun-13	29-Apr-13	02-Jun-13				
DDA25-10	Prepare and submit Design DDA - ML01L/R	30	0 14-Dec-12 A		12-Feb-13	12-1 60-13		Prepare and submit [Ŭ.	1
DDA25-20	Comment Design DDA - ML01L/R	35	35 21-Mar-13	24-Apr-13	15-Mar-13	18-Apr-13			Comment	
DDA25-30	Resubmit Design DDA with DC Certificate - ML01L/R	21	21 25-Apr-13	15-May-13	19-Apr-13	09-May-13				F
DDA25-40	Approve Design DDA - ML01L/R	35	35 16-May-13	19-Jun-13	10-May-13	13-Jun-13			<u></u> ;-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,	
DDA26-10	Prepare and submit Design DDA - ML08L/R (with trunaround)	45	45 25-May-13	08-Jul-13	23-Apr-13	06-Jun-13				
DDA27-10	Prepare and submit Design DDA - ML09L/R	30	30 26-Mar-13	24-Apr-13	13-Feb-13	14-Mar-13			Prepare a	and subm
DDA27-20	Comment Design DDA - ML09L/R	35	35 25-Apr-13	29-May-13	15-Mar-13	18-Apr-13				÷
avigation C										
DDA28-10	Prepare and submit Design DDA - ML03L/R (with Dolphin)	45	0 11-Nov-12 A		08-Mar-13	08-Mar-13	Propero and submit Desi	ign DDA - ML03L/R (with Dolphin)		
DDA28-20	Comment Design DDA - ML03L/R (with Dolphin)	35	18 06-Feb-13 A	· ·	08-Mar-13	25-Mar-13		Comr	ment Design DDA	
DDA28-30	Resubmit Design DDA with DC Certificate - ML03L/R (with Dolphin)	21	21 09-Apr-13	29-Apr-13	26-Mar-13	15-Apr-13			Result	bmit Des
DDA28-40	Approve Design DDA - ML03L/R (with Dolphin)	35	35 30-Apr-13	03-Jun-13	16-Apr-13	20-May-13				÷
irport Chan		1								
DDA29-10	Prepare and submit Design DDA - ML10L/R	35	35 24-Mar-13	27-Apr-13	02-Apr-13	06-May-13	· · · · · · · · · · · · · · · · · · ·		Prepare	e and sub
DDA29-20	Comment Design DDA - ML10L/R	35	35 28-Apr-13	01-Jun-13	07-May-13	10-Jun-13				_
DDA30-10	Prepare and submit Design DDA - ML11L/R	35	0 09-Dec-12 A		02-Apr-13	02-Apr-13		Prepare and submi	· _ ·	
DDA30-20	Comment Design DDA - ML11L/R	35	19 07-Feb-13 A		24-Apr-13	12-May-13			Comme	ent Desig
DDA30-30	Resubmit Design DDA with DC Certificate - ML11L/R	21	21 19-Mar-13	08-Apr-13	13-May-13	02-Jun-13				
DDA30-40	Approve Design DDA - ML11L/R	35	35 09-Apr-13	13-May-13	08-Dec-13	11-Jan-14				
DDA31-10	Prepare and submit Design DDA - ML12L/R	35	0 09-Dec-12 A	· ·	27-Jan-13	27-Jan-13			Prepare a	andsubm
DDA31-20	Comment Design DDA - ML12L/R	35	35 25-Apr-13	29-May-13	28-Jan-13	03-Mar-13				
DDA32-10	Prepare and submit Design DDA - ML13L/R	35	0 13-Jan-13 A	· ·	03-Mar-13	03-Mar-13			Prepare a	andsubm
DDA32-20	Comment Design DDA - ML13L/R	35	35 25-Apr-13	29-May-13	04-Mar-13	07-Apr-13				
DDA33-10	Prepare and submit Design DDA - ML14L/R	35	35 28-Apr-13	01-Jun-13	11-Aug-13	14-Sep-13				'
irport Island				1.00.0						
DDA34-10	Prepare and submit Design DDA - ML19L/C/R	30	30 27-Mar-13	25-Apr-13	22-Apr-13	21-May-13			Prepare a	andsubn
DDA34-20	Comment Design DDA- ML19L/C/R	35	35 26-Apr-13	30-May-13	22-May-13	25-Jun-13				
DDA35-10	Prepare and submit Design DDA - ML18L/R	30	30 28-Feb-13	29-Mar-13	11-Jan-13	09-Feb-13		Prepare and s	submit Design DDA	1
DDA35-20	Comment Design DDA - ML18L/R	35	35 30-Mar-13	03-May-13	10-Feb-13	16-Mar-13				omment [
DDA35-30	Resubmit Design DDA with DC Certificate - ML18L/R	21	21 04-May-13	24-May-13	10-Apr-13	01-May-13			🗰	
DDA35-40	Approve Design DDA - ML18L/R	35	35 25-May-13	28-Jun-13	01-May-13	05-Jun-13				
DDA36-10	Prepare and submit Design DDA - ML17L/R	30	30 30-Mar-13	28-Apr-13	15-Sep-13	14-Oct-13			Prepar	re and su
DDA36-20	Comment Design DDA - ML17L/R	35	35 29-Apr-13	02-Jun-13	15-Oct-13	18-Nov-13				
DDA37-10 Iperstructu	Prepare and submit Design DDA - ML16L/R	30	30 29-Apr-13	28-May-13	04-Jan-14	02-Feb-14				
perstructu										
Actua	al Work	3 N	Ionths Rollin	g Progr	amme -	28 Feb	Date	Revision	Checked	Appr
	aining Work Primary Baseline			2013			27-Feb-13 Feb Update	ed Rolling Programme	Tim	1

	Activity Name		Remaining Start	Finish	Late Start	Late Finish			20		-		Max
		Duration	Duration				Februa 28 04 11		March 25 04 11 18 25	Api 5 01 08		29 06	May 5 13 20
Western Wate	er							+					
DDA39-10	Prepare and submit Design DDA - ML07L/R	45	45 28-Feb-13	13-Apr-13	25-Dec-12	07-Feb-13				F	Prepare and	submit E	Jesign DDA
DDA39-20	Comment Design DDA - ML07L/R	35	35 14-Apr-13	18-May-13	08-Feb-13	14-Mar-13							Co
DDA39-30	Resubmit Design DDA with DC Certificate - ML07L/R	21	21 19-May-13	08-Jun-13	15-Mar-13	04-Apr-13							
DDA46-10	Prepare and submit Design DDA - ML09L/R	45	45 15-Apr-13	29-May-13	05-Mar-13	18-Apr-13					÷	<u>i anima</u>	-
Navigation C				1				<u> </u>					
DDA48-10	Prepare and submit Design DDA - ML03L/R	45	45 16-Mar-13	29-Apr-13	30-Jul-13	12-Sep-13						Prepare	e and subm
DDA48-20	Comment Design DDA - ML03L/R	35	35 30-Apr-13	03-Jun-13	13-Sep-13	17-Oct-13		~ !!			1	le ;=	<u> </u>
Airport Chan	nei Prepare and submit Design DDA - ML12L/R	35	25 16 May 12	10 Jun 12	18-Feb-13	24-Mar-13		<u></u>	<u></u> ;;				
Airport Island		30	35 16-May-13	19-Jun-13	10-Feb-13	24-10181-13							
DDA54-10	Prepare and submit Design DDA - ML19L/C/R	45	45 25-May-13	08-Jul-13	02-Jun-13	16-Jul-13			▶ : : : : -	+		<u>↓</u>	
DDA55-10	Prepare and submit Design DDA - ML18L/R	45	45 10-Apr-13	24-May-13	21-Feb-13	06-Apr-13							
DDA55-20	Comment Design DDA - ML18L/R	35	35 25-May-13	28-Jun-13	07-Apr-13	11-May-13			┫				
Roadworks			20 1149 10	20 0011 10	01.7491.10	TT May 10							
DDA59-10	Prepare and submit Design DDA - Roadworks	35	0 28-Nov-12 A	06-Feb-13 A	02-Dec-12	02-Dec-12			omit Design DDA - Roadwo	orke			
DDA59-20	Comment Design DDA - Roadworks	35	19 07-Feb-13 A	18-Mar-13	25-Mar-13	13-Apr-13		e anu sub		ent Design DDA	- Roadworl	(s	
DDA59-30	Resubmit Design DDA with DC Certificate - Roadworks	21	21 19-Mar-13	08-Apr-13	13-Apr-13	04-May-13				, i	ubmit Desigr	i i	ith DC Certi
DDA59-40	Approve Design DDA - Roadworks	35	35 09-Apr-13	13-May-13	04-May-13	08-Jun-13							Approv
TCSS and E&			·	,	,	-							
DDA60-10	Prepare and submit Design DDA - TCSS & E&M	87	87 14-May-13	08-Aug-13	08-Jun-13	03-Sep-13	++	+					
Geotechnical				, u		·							
DDA61-10	Prepare and submit Design DDA - Geotechnical Works	72	72 04-Apr-13	14-Jun-13	26-Feb-14	09-May-14	+++++++++++++++++++++++++++++++++++++++	+ +					
Remaining W	lorks		·	1									
DDA64-10	Prepare and submit Design DDA - Remaining Works (barrier walls/ aner	60	0 27-Dec-12 A	28-Feb-13	03-Sep-13	03-Sep-13	<u></u>		Prepare and submit De	sian DDA - Rer	maining Wor	ks (barrie	er walls/ an
DDA64-20	Comment Design DDA - Remaining Works (barrier walls/ anemometers,	35	35 28-Feb-13	03-Apr-13	03-Sep-13	08-Oct-13					nt Design DD	1 1	
DDA64-30	Resubmit Design DDA with DC Certificate - Remaining Works (barrier w	21	21 04-Apr-13	24-Apr-13	08-Oct-13	29-Oct-13						1 1	Design DDA
DDA64-40	Approve Design DDA - Remaining Works (barrier walls/ anemometers, N	35	35 25-Apr-13	29-May-13	29-Oct-13	03-Dec-13							
roject Gener	ral Submission												1 1
PGS1030	Site Traffic Safety Management Plan (STSMP)	0	0	28-Feb-13*		11-Jul-12	-+		Rito Troffia Obfatu Manu	annent Dian (6			
GS1090	Joint Venture guarantee	0	0	28-Feb-13*		13-Jun-12			 Site Traffic Safety Mana Joint Venture guarantee 				
ree Felling/Tr	ansplantation Plan									,			
PGS1490	Tree Felling/Transplantation Plan Approval	60	0 06-Nov-12 A	07-Feb-13 A	28-Feb-13	28-Feb-13	Li the		ansplantation Plan Approva	al			
PGS1780	Tree Felling/Transplant	90	90 28-Feb-13	27-Jun-13	28-Feb-13	27-Jun-13					<u> </u>		
TA for CLK S	outh Rd												
PGS1520	TTA - Notification for CLK South Rd	28	28 22-Jan-13 A	27-Mar-13	09-Nov-13	06-Dec-13						<u>├</u>	TTA - Noti
Jtilities Divers	sion Schedule							1					
PGS1560	Resubmission and approval of utilities diversion schedule	21	0 15-Nov-12 A	28-Feb-13	17-Dec-12	17-Dec-12		<u> </u>	Resubmission and appr	roval of utilities	diversion sc	hedule	
PG S2255	Resubmission and approval of utilities diversion schedule	10	0 15-Nov-12 A	28-Feb-13	17-Jan-13	17-Jan-13			Resubmission and appr	roval of utilities	diversion sc	hedule	
Dumping pern	nit												
PGS1430	Tier III - Testing & Submit Formal SQR	21	0 22-Sep-12 A	28-Feb-13	18-Dec-12	18-Dec-12		<u> </u>	Tier III - Testing & Subm	nit Formal SQR			
PGS1440	Approval of Dumping permit	30	30 28-Feb-13	29-Mar-13	19-Dec-12	17-Jan-13				Approval of D)umping per	mit	
Construction I	Noise Permit												
PGS2445	Submit and approve CNP for Bored Piles (P0 to P84)	75	0 31-Oct-12 A	25-Feb-13 A	18-Jan-13	18-Jan-13			submit and approve CNP	for Bored Piles	(P0 to P84)		
Actuo	al Work	3 M	onths Rollin	a Proar	amme -	28 Feb	Date		Revision		Che	cked	Approve
							27-Feb-13	3 Feb	Updated Rolling Prog	ramme	Tim		
Rema	aining Work Primary Baseline	1		2013				+			<u> </u>		

ID	Activity Name	Original	Remaining Start	Finish	Late Start	Late Finish		2013
		Duration	Duration				Februa 28 04 11	ary March April May 18 25 04 11 18 25 01 08 15 22 29 06 13
ross-bound	dary Disposal of Marine Sediment (if necessary)							
PGS1800	Obtained Dumping Permit fm PRC	60	0 14-Aug-12 A	28-Feb-13	17-Nov-17	17-Nov-17		Obtained Dumping Permit fm PRC
PGS1810	Submit PRC Dumping Permit to EPD	7	7 28-Feb-13	06-Mar-13	17-Nov-17	24-Nov-17		Submit PRC Dumping Permit to EPD
PGS1820	Obtained Marine Dumping Permit fm EPD	60	60 07-Mar-13	05-May-13	24-Nov-17	23-Jan-18		Obtained M
PGS1830	Submit PRC Dumping Permit to SOR	7	7 28-Feb-13	06-Mar-13	16-Jan-18	23-Jan-18		Submit PRC Dumping Permit to SOR
PGS1840	Obtained perimt for delivery material to Mainland	14	14 06-May-13	19-May-13	23-Jan-18	02-Feb-18		
	iling Platform/Cofferdem			, .				
GS1650	Design approval of temporary piling platform	18	0 29-Dec-12 A	28-Feb-13	17-Dec-12	17-Dec-12		Design approval of temporary piling platform
PGS1655	Deliver maternal for temporary piling platform	28	0 20-Nov-12 A		17-Dec-12	17-Dec-12	1: : :	Deliver maternal for temporary piling platform
PGS1670	Design temporary cofferdem	80	0 29-Aug-12 A		04-Apr-13	04-Apr-13		Design temporary cofferdem
PGS1680	Design approval of temporary cofferdem	21	21 28-Feb-13	20-Mar-13	05-Apr-13	25-Apr-13		Design approval of temporary cofferdem
PGS1690	Deliver maternal for temporary cofferdem	45	45 21-Mar-13	04-May-13	26-Apr-13	09-Jun-13		Design approval of temporary collectering
PGS2205	Design temporary jetty at Pier P67 to P68 & P69 to P71	110	12 17-Nov-12 A		23-Feb-13	09-501-13 06-Mar-13		Design temporary jetty at Pier P67 to P68 & P69 to P71
PGS2205	Design approval of temporary jetty	27	27 12-Mar-13	07-Apr-13	07-Mar-13	02-Apr-13		
PGS2215	Deliver maternal for temporary jetty	60	60 08-Apr-13	06-Jun-13	07-Mar-13 03-Apr-13	02-Apr-13 01-Jun-13		Design approval of temporary jetty
	rete Batching Plant		00 00-Api-13			01-001-13		
PGS1700	modification and licensing marine batching plant	180	0 31-May-12 A	29 Eab 12	27-Dec-12	27-Dec-12		
PGS1710	3 01	21	21 28-Feb-13	20-Mar-13	28-Dec-12	17-Jan-13		modification and lidensing marine batching plant
	Submit and approval marine batching plant	21	21 20-Feb-13	20-11/181-13	20-Dec-12	17-Jan-13		Submit and approval marine batching plant
egment Ca		01	0 01 0 1 10 1	00 5 4 40	47.14.40	47.14.40		
PG S2000	Detail design casting yard	61	0 01-Oct-12 A		17-Mar-13	17-Mar-13		Detail design casting yard
PGS2010	Formwork design (Typical span)	150	5 01-Oct-12 A		10-Mar-13	14-Mar-13		Formwork design (Typical span)
PG S2020	Formwork design (Long span)	180	35 01-Oct-12 A	03-Apr-13	08-Apr-13	12-May-13		Formwork design (Long span)
	Concrete Batching Plant							
CPY1040	Install concrete batching plant	35	7 18-Jan-13 A		18-Mar-13	25-Mar-13		Install concrete batching plant
CPY1050	QSPSC inspection and certification	60	60 08-Mar-13	27-May-13	26-Mar-13	15-Jun-13		
	g Quarters, Labrotary & Warehouse		,		,			
CPY1090	Backfill for road	10	1 08-Jan-13 A	28-Feb-13	19-Mar-13	19-Mar-13		Backfill for road
	ea (Typical & Land Span)		,					
CPY1110	Backfill precast area	14	0 19-Jan-13 A	31-Jan-13 A	19-Mar-13	19-Mar-13	Backfill preca	ast area
CPY1120	Piling works (include gantry rail foundation)	14	0 19-Jan-13 A	02-Feb-13 A	20-Mar-13	20-Mar-13	Piling wor	rks (include gantry rail foundation)
CPY1130	Ground beams & cap for precast area	40	21 05-Feb-13 A	26-Mar-13	20-Mar-13	19-Apr-13		Ground beams & cap for precast area
CPY1140	Ground beams and cap for gantry rail	21	3 05-Feb-13 A	04-Mar-13	13-Apr-13	16-Apr-13		Ground beams and cap for gantry rail
CPY1150	Concrete paving	21	21 16-Mar-13	13-Apr-13	19-Apr-13	15-May-13		Concrete paving
CPY1160	Install survey tower and rebar jigs	50	50 06-Apr-13	10-Jun-13	15-May-13	23-Jul-13		
CPY1270	Backfill storage area	14	14 05-Mar-13	20-Mar-13	23-Mar-13	12-Apr-13		Backfill storage area
CPY1280	Piling works (include gantry rail foundation)	30	30 13-Mar-13	22-Apr-13	05-Apr-13	11-May-13		Piling works (include g
CPY1290	Ground beams & cap for storage area	30	30 23-Apr-13	31-May-13	13-May-13	22-Jun-13		
CPY1300	Ground beams and cap for gantry rail (storage area)	50	50 23-Apr-13	28-Jun-13	15-May-13	23-Jul-13		
Pre-cast Are	ea (Long Span)							
CPY1170	Backfill precast area	14	0 28-Jan-13 A	01-Mar-13	19-Mar-13	19-Mar-13	+ : : <	Backfill precast area
CPY1180	Piling works (include gantry rail foundation)	14	0 05-Feb-13 A	01-Mar-13	10-Apr-13	10-Apr-13		Piling works (include gantry rail foundation)
CPY1190	Ground beams & cap for precast area	35	35 26-Mar-13	13-May-13	20-Apr-13	04-Jun-13		Grø
CPY1200	Ground beams and cap for gantry rail	21	21 05-Mar-13	28-Mar-13	18-Apr-13	13-May-13		Ground beams and cap for gantry rail
CPY1210	Concrete paving	21	21 24-Apr-13	23-May-13	16-May-13	13-Jun-13		
			•				Data	
Actu	ial Work	3 M	onths Rollin	g Progr	amme -	28 Feb	Date	Revision Checked Appro
	naining Work Primary Baseline			2013			27-Feb-13	Feb Updated Rolling Programme Tim

D	Activity Name		Remaining Start	Finish	Late Start	Late Finish	2013
		Duration	Duration				February March April May 28 04 11 18 25 01 08 15 22 29 06 13 20
CPY1220	Install survey tower and rebar jigs	35	35 11-May-13	29-Jun-13	04-Jun-13	23-Jul-13	
CPY1230	Backfill storage area	14	3 16-Feb-13 A	04-Mar-13	20-Mar-13	22-Mar-13	Backfill storage area
CPY1240	Piling works (include gantry rail foundation)	30	26 26-Feb-13 A	03-Apr-13	11-Apr-13	13-May-13	Piling works (include gantry rail foundation
CPY1260	Ground beams and cap for gantry rail (storage area)	50	50 05-Apr-13	08-Jun-13	15-May-13	23-Jul-13	
onstruct G	antry Cranes						
CPY1310	Install gantry rail (typical & land span area)	110	110 05-Mar-13	31-Jul-13	07-May-13	09-Oct-13	
CPY1320	Piling works (include gantry rail foundation)	90	90 02-Apr-13	01-Aug-13	29-May-13	03-Oct-13	
CPY1330	Gantries installation	80	80 20-Apr-13	07-Aug-13	15-Jun-13	09-Oct-13	
onstruct Je	etty						
CPY1340	Safety assessment & design of jetty	107	0 29-Aug-12 A	28-Feb-13	04-Feb-13	04-Feb-13	Safety assessment & design of jetty
CPY1350	Channel dredging	24	24 28-Feb-13	27-Mar-13	05-Feb-13	07-Mar-13	Channel dredging
CPY1360	Construct the jetty	80	80 28-Mar-13	17-Jul-13	08-Mar-13	22-Jun-13	
CPY1365	Construct the material jetty	40	40 24-May-13	17-Jul-13	30-Apr-13	22-Jun-13	
egment Mo	bulds						
PGS2105	Fabrication & 1st Deliver segment mould (Typical span)	175	91 01-Dec-12 A	29-May-13	10-Mar-13	08-Jun-13	
PG S2285	Fabrication & 2nd Deliver segment mould (Typical span)	175	175 01-Mar-13	22-Aug-13	11-Mar-13	01-Sep-13	
GS2315	Fabrication & 1st Deliver segment mould (Long span)	201	175 30-Dec-12 A	21-Aug-13	08-Apr-13	29-Sep-13	
PG S2325	Fabrication & 2nd Deliver segment mould (Long span)	201	201 30-Mar-13	16-Oct-13	13-May-13	29-Nov-13	
jor Method	d Statement						
GS2120	Approve MS for Bored Pile (Kelly method)	21	1 12-Dec-12 A	28-Feb-13	17-Jan-13	17-Jan-13	Approve MS for Bored Pile (Kelly method)
SS2160	Approve MS for Bored Pile (RCD method)	60	1 09-Jan-13 A	28-Feb-13	31-Jan-13	31-Jan-13	Approve MS for Bored Pile (RCD method)
S2365	Prepare MS for Pile Cap	60	1 23-Nov-12 A	28-Feb-13	23-Jan-13	23-Jan-13	Prepare MS for Pile Cap
GS2375	Approve MS for Pile Cap	60	60 01-Mar-13	29-Apr-13	24-Jan-13	24-Mar-13	Approve MS for Pil
S2385	Prepare MS for Column & Portal	60	7 01-Jan-13 A	03-May-13	22-Mar-13	28-Mar-13	Prepare MS for
GS2395	Approve MS for Column & Portal	60	60 04-May-13	02-Jul-13	29-Mar-13	27-May-13	
GS2405	Prepare MS for SOP Installation	60	60 15-May-13	13-Jul-13	10-May-13	08-Jul-13	
curement	and Fabrication						
S1927	Deliver barge for SI works (Airport Channel)	108	0 29-Aug-12 A	28-Eeb-13	27-Jan-13	27-Jan-13	Deliver barge for SI works (Airport Channel)
S2140	2nd deliver bored pile rigs (Kelly method)	90	1 26-Nov-12 A		17-Jul-13	17-Jul-13	2nd deliver bored pile rigs (Kelly method)
SS2180	2nd deliver bored pile rigs (RCD method)	109	83 26-Jan-13 A		08-Mar-13	29-May-13	
SS2183	3rd deliver bored pile rigs (RCD method)	77	77 22-May-13	06-Aug-13	12-Nov-13	27-Jan-14	
	hment Works		11 22 May 10	oo nag to	12 1107 10	27 001114	
S1910		60	0 25 Sep 12 A	20 Eab 12	17 Jan 12	17-Jan-13	
S2465	Setup re-bar yard at WA7	60	0 25-Sep-12 A		17-Jan-13		Setup re-bar yard at WA7
S2465 S2475	Submit and approve hoarding design	120	1 06-Dec-12 A		02-Mar-13	02-11101-110	aubinit and approve noa ding design
	Erection hoarding		0 14-Sep-12 A	01-Mar-13	02-Mar-13	02-Mar-13	Erection hoarding
	veen HKSAR Boundary and Landing Point on Airport Island						
	nx8 - Stage 1 of Works						
ier P0L/R							
Temporary V							
	Install temporary working platform for bored pile P0 (Learning)	24	24 14-Feb-13 A	06-May-13	31-Jan-13	02-Mar-13	Install tempo
ite Investig							
	Site investigation for bored pile P0	8	8 07-May-13	16-May-13	04-Mar-13	12-Mar-13	\$ite
_03L/R 109	.661m+150mx3+109.661m Navigation Channel - Stage 4 of Work	S					
		1					
Actua	al Work	3 N	Ionths Rollin	g Progr	ramme -	28 Feb	Date Revision Checked Approve
	naining Work Primary Baseline			2013			27-Feb-13 Feb Updated Rolling Programme Tim
		1		2013			

D	Activity Name	Original Rer	naining Start	Finish	Late Start	Late Finish					2013				
			uration				Febru 28 04 11		25 04	Marc		April		20 1 0	May
ier P17L/R									25 04		18 25 0		<u> </u>	29 0	
Site Investig	ation														
NC1130	Site investigation for bored pile P17 (Bridge)	10	10 18-May-13	30-Mav-13	15-Aug-13	28-Aug-13									<u> </u>
ier P18L/R					3					<u></u>					
Site Investig	ation														
NC1250	Site investigation for bored pile P18 (Bridge)	10	10 22-Apr-13	03-May-13	29-Jun-13	13-Jul-13				1				L Sit	te investiga
NC1260	Site investigation for bored pile P18 (Dolphin)	10	10 04-May-13	16-May-13	15-Jul-13	27-Jul-13	-								Ś
ier P19L/R															
Temporary W	Vorks									11-					
NC1360	Install temporary working platform for bored pile P19	30	30 22-Apr-13	30-May-13	08-Jun-13	20-Jul-13									; ;
Site Investig	ation														
NC1370	Site investigation for bored pile P19 (Bridge)	10	10 23-Mar-13	08-Apr-13	11-May-13	25-May-13						Site in	vestigatio	n for bor	red pile P1
NC1380	Site investigation for bored pile P19 (Dolphin)	10	10 09-Apr-13	20-Apr-13	27-May-13	07-Jun-13				<u></u>					tion for bo
ier P20L/R															
Temporary W	Vorks									1					
NC1480	Install temporary working platform for bored pile P20 (Learning)	45	45 23-Mar-13	24-May-13	07-Feb-13	08-Apr-13									
Site Investig	ation									1					
NC1490	Site investigation for bored pile P20 (Bridge)	10	10 01-Feb-13 A	11-Mar-13	15-Jan-13	25-Jan-13	-			Site	investigation f	or bored pile	P20 (Brid	dge)	
NC1500	Site investigation for bored pile P20 (Dolphin)	10	10 12-Mar-13	22-Mar-13	26-Jan-13	06-Feb-13					Site inve	stigation for I	bored pile	• P20 (Dr	olphin)
	5mx8 - Stage 4 of Works														
ier 39L/R										1					
Site Investig															
WW6370	Site investigation for bored pile P39	8	8 28-May-13	06-Jun-13	19-Oct-13	28-Oct-13			1						
ier 40L/R															
Site Investig		1 1													
WW6450	Site investigation for bored pile P40	8	8 16-May-13	27-May-13	07-Oct-13	17-Oct-13									
ier 41L/R															
Site Investig			0 00 11 10	1						įį.					
WW6530	Site investigation for bored pile P41	8	8 06-May-13	15-May-13	24-Sep-13	05-Oct-13									s s
ier 42L/R										1					
Site Investig			0 05 4 40	04.14	44 0 40	00.0									
WW6610	Site investigation for bored pile P42	8	8 25-Apr-13	04-May-13	11-Sep-13	23-Sep-13				1				Si Si	ite investi
ier 43L/R										÷					
Site Investig		8	8 15-Apr-13	24-Apr-13	21 Aug 12	10 Sep 12				1					
WW6690 ier 44L/R	Site investigation for bored pile P43	0	6 15-Apr-13	24-Api-13	31-Aug-13	10-Sep-13								te invest	tigation fo
	ation .									1					
Site Investig WW6770	Site investigation for bored pile P44	8	8 05-Apr-13	13-Apr-13	20-Aug-13	29-Aug-13	-					0			
	396mx8 - Stage 4 of Works	0	0 03-Api-13	10-Api-10	20 Aug 13	23 Aug 13				<u> </u>			te ihvestig	jation for	r borea pi
ier P45L/R															
Site Investig															
WW6850	Site investigation for bored pile P45	8	8 22-Mar-13	03-Apr-13	06-Aug-13	15-Aug-13						Site investi	ination for	r hored r	
ier P46L/R	-	0	0 22-1Vidi - 13	01 - IQ	00 / lug 10	10 / Mg - 10						Sile IIVEST	gauonior	woreu p	ne F43
Site Investig							++++			÷				·	
				D			Date	<u></u>	<u>II :</u>	<u> </u>	evision	1 1	Cho	ecked	Annr
Actua	al Work	3 Mo	nths Rollin	g Progi	ramme -	28 Feb			ا - ام ما - ۱					UKEU	Appro
Rom	aining Work Primary Baseline			2013			27-Feb-13	s l⊢ep	Updated	a Kollir	ng Program	ime	Tim		1

r ID	Activity Name		Remaining Start	Finish	Late Start	Late Finish			_		2013	A	_	
		Duration	Duration				Febru 28 04 11		25 0		irch 18 25 01	April 08 15 22	29 0	May 6 13 20
WW6930	Site investigation for bored pile P46	8	8 13-Mar-13	21-Mar-13	25-Jul-13	05-Aug-13					+ + +	tion for bored pile		
Pier P47L/R														
Site Investig														
WW7010	Site investigation for bored pile P47	8	3 18-Jan-13 A	12-Mar-13	15-Jul-13	17-Jul-13	· · · ·			. 📥 . S	Site investigation for	bored pile P47	ļ	
Pier P48L/R														
Temporary V		40	40 00 1 40 4	00.4	40 1 40	00.4 . 40					<u> </u>			
WW7080 Site Investig	Install temporary working platform for bored pile P48	12	12 28-Jan-13 A	06-Aug-13	18-Jul-13	03-Aug-13		: :						
WW7090	Site investigation for bored pile P48	8	8 28-Feb-13	08-Mar-13	03-Jul-13	13-Jul-13				Sito	investigation for bo			
Pier P49L/R		0	0 201 00 13	00 10101 13	05-541-15	13-541-13				Sile	investigation for bo	eu pile P46		
Temporary V														
WW7160	Install temporary working platform for bored pile P49 (Learning)	24	24 23-Feb-13 A	27-Mar-13	22-Feb-13	21-Mar-13		<u> </u>			Install to	emporary working	platform	for bored pile
	- Bored Pile												platio	
WW7190	Construct bored piles P49 - 6 nos. (Learning)	29	29 02-Apr-13	09-Jul-13	22-Mar-13	30-Apr-13		 _						
Pier P50L/R								1		1				
Temporary V	Norks													
WW7240	Install temporary working platform for bored pile P50 (Learning)	24	24 23-Feb-13 A	27-Mar-13	18-Dec-12	17-Jan-13					Install to	emporary working	platform	for bored pil
Site Investig														
WW7250	Site investigation for bored pile P50 (Learning)	12	0 19-Jan-13 A	31-Jan-13 A	18-Dec-12	18-Dec-12	Site investion	lation for	pored p	oile P50	(Learning)			
	- Bored Pile				1									
WW7270	Construct bored piles P50 - 8 nos. (Learning)	29	29 02-Apr-13	09-Jul-13	18-Jan-13	23-Feb-13								
Pier P51L/R														
Temporary V WW7310	Install temporary working platform for bored pile P51 (Learning)	24	24 22-May-13	21-Jun-13	30-May-13	02-Jul-13								-
Site Investig		24	24 22-10lay-13	21-Juli-13	30-Iviay-13	02-501-15							L	
WW7320	Site investigation for bored pile P51	8	4 22-Jan-13 A	27-Jun-13	03-Jul-13	08-Jul-13		1						
Pier P52L/R							1 1	: :						
Temporary V	Norks													
WW7380	Install temporary working platform for bored pile P52 (Learning)	24	24 22-May-13	21-Jun-13	24-Jun-13	27-Jul-13								
L08L/R 70n	nx6 - Stage 4 of Works													
Pier P53L/R	(M.J.)													
Temporary \	Norks													
WW7450	Install temporary working platform for bored pile P53 (Learning)	24	24 22-May-13	21-Jun-13	22-Jul-13	22-Aug-13								
	m+180m+115m - Stage 4 of Works									<u> </u>				
Pier P69L/R														
Site Investig				1 .										
AC1130	Site investigation for pier P69	30	27 29-Jan-13 A	03-Jun-13	26-Mar-13	02-May-13								
	m+165mx2+109m - Stage 4 of Works													
Pier P71L/R													}- 	
Site Investig AC1260	Site investigation for bored pile P71	30	16 22-Jan-13 A	07 Apr 12	07 Mar 12	25-Mar-13			_					
Pier P72L/R		30	10 22-Jan-13 A	21-Api-13	07-10181-13	23-IVIAI-13							site inve	estigation for
Site Investig														
AC1350	Site investigation for bored pile P72	30	30 25-May-13	04-Jul-13	28-May-13	08-Jul-13						<u>i i i</u>	-	
							Date	· ·			Revision		ecked	Approve
	al Work Milestone	31	Ionths Rollin		ramme -	ZQ LGD	27-Feb-13		Unda		olling Programm		CONCU	
Rem	naining Work Primary Baseline			2013					opua					
Critic	cal Remaining Work													
	······································		П	age 8 of 11										

y ID	Activity Name		Remaining Start	Finish	Late Start	Late Finish	- Eoh	ruony		N	loroh	2013	Apri		_	Mov	
		Duration	Duration				28 04 1	oruary	25		larch 1 18	25 01	Apri 08 1		29 0	May 6 13	20
Pier P73L/R																	
Temporary											_						_
AC1410	Install temporary piling platform & cofferdem for pier P73	45	45 25-May-	13 25-Jul-13	18-May-13	18-Jul-13			-								-
AC1440	Site investigation for bored pile P73	30	30 15-Apr-1	3 24-May-13	09-Apr-13	16-May-13			:	<u> </u>	<u> </u>						
	9m+165mx2+109m - Stage 4 of Works		30 13-Api-1	5 24-10lay-15	09-Api-13	10-1viay-13											-
Pier P74L/R	-																
Temporary																	
AC1500	Install temporary piling platform & cofferdem for pier P74	36	36 15-Apr-1	3 31-May-13	02-May-13	18-Jun-13		1				-					i
Site Investig	gation																
AC1530	Site investigation for bored pile P74	15	15 23-Mar-	3 13-Apr-13	18-Mar-13	08-Apr-13							Si	te investi	gation for	bared p	pile P
Pier P75L/R																	
AC1590	Install temporary piling platform & cofferdem for pier P75	57	57 06-May-	13 23-Jul-13	03-Sep-13	20-Nov-13											
Site Investig		57	57 00-1vlay-	13 23-Jul-13	03-3ep-13	20-1100-13											-
AC1620	Site investigation for bored pile P75	30	20 21-Jan-1	3 A 22-Mar-13	22-Feb-13	16-Mar-13						Site investig	nation for	hored pile	P75		- i
	n - Bored Pile							i	:	1							
AC1630	Construct bored piles P75 - 12 nos.	48	48 02-May-	13* 06-Jul-13	07-Aug-13	16-Oct-13			\geq				 			<u> </u>	÷
Pier P76L/R																	-
Temporary	Works									<u> </u>							
AC1680	Install temporary piling platform & cofferdem for pier P76	57	57 06-May-	I3 23-Jul-13	10-Jun-13	28-Aug-13											<u> </u>
Site Investig						00.14											
AC1700	Site investigation for bored pile P76	30	30 28-Feb-1	3 08-Apr-13	28-Jan-13	06-Mar-13			1				Site in	vestigatio	on for bor	ed pile P	76 ¦
AC1720	Construct bored piles P76 - 12 nos.	52	52 02-May-	13* 11-Jul-13	22-May-13	31-Jul-13			<u> </u>								<u> </u>
	5m+180m+115m - Stage 4 of Works	02			22 May 10							• • • • • • • • • • • • • • • • • • • •					
Pier P80L/R	-																
Temporary																	
AC2020	Install temporary piling platform for pier P80	12	12 18-May-	I3 01-Jun-13	11-May-13	28-May-13			÷		-						÷
Site Investig																	
AC2030	Site investigation for bored pile P80	30	30 09-Apr-1	3 16-May-13	21-Mar-13	30-Apr-13											\$ite
	5m+180m+100.561m - Stage 4 of Works																
Pier P82L/R																	
Utilities Div AC2460	1200mm Drainage diversion for P82	50	50 28-Feb-	3 02-May-13	18-Jan-13	20-Mar-13											
Temporary		50	50 26-Peb-	5 02-101ay-13	16-Jan-13	20-11/181-13									120	0mm Dr	aina
AC2190	Remove existing seawall for pier P82	50	50 03-May-	I3 10-Jul-13	21-Mar-13	28-May-13					_						
Site Investig			,														1
AC2210	Site investigation for bored pile P82	30	23 21-Jan-1	3A 15-Jul-13	02-May-13	31-May-13		i									
Pier P83L/R																	
Utilities Div																	
AC2470	300 & 450mm Drainage diversion for P83	45	45 28-Feb-1	3 25-Apr-13	30-May-13	23-Jul-13			: +					<u> </u>	300 & 450)mm Dra	ainag
Site Investig	Site investigation for bored pile P83	20	22 28 Dec	I2A 17-Oct-13	26-Sep-13	29-Oct-13											+
AC2310	Site investigation for bored pile P83	30	23 28-Dec-	12 A 17-Oct-13	26-Sep-13	29-Oct-13				1							
Actu	ual Work	3 N	Ionths Rol	ling Prog	ramme -	28 Feb	Date				Revisio				ecked	Appr	rove
Ren	naining Work Primary Baseline			2013			27-Feb-	13 Fe	eb Up	dated R	olling P	rogramm	е	Tim		\square	
	-			2010													
Criti	ical Remaining Work			Page 9 of 1													

vity ID	Activity Name		Remaining Duration		Finish	Late Start	Late Finish		Febru	arv		Mar	20 ch	13	April		May
		Duration	Duration					28 0			25 0			01 0		22 29	06 13 20
Viaduct betw	een Landing Point on Airport Island and Scenic Hill																
MI16L/R 37m	+65mx5+43m - Stage 5 of Works							T									
Pier P93L/R																	
Site Investig	ation																
AI1660	Site investigation for bored pile P93 - 2 holes	11	11	15-May-13	29-May-13	30-May-13	13-Jun-13							<u> </u>			
Pier P94L/R																	
Site Investig	ation																
AI1730	Site investigation for bored pile P94 - 2 holes	11	11	22-May-13	03-Jun-13	13-Apr-13	25-Apr-13					_					
Pier P95L/R																	
Site Investig	ation																
AI1800	Site investigation for bored pile P95 - 2 holes	11	11	30-Apr-13	13-May-13	15-May-13	29-May-13										Site inv
Pier P96L/R												1					
Site Investig	ation																
AI1870	Site investigation for bored pile P96 - 2 holes	10	10	07-May-13	21-May-13	27-Mar-13	12-Apr-13					-					
Pier P98L/R																	
Site Investig	ation																
AI2010	Site investigation for bored pile P98 - 2 holes	10	10) 24-Apr-13	06-May-13	15-Mar-13	26-Mar-13			· · · · · · · · ·	1					· · · · · · · · · · · · ·	Site investiga
ML17L/R 43m	n+65mx3+47m - Stage 5 of Works																Ū
Pier P99L/R	(M.J.)																
Site Investig																	
AI2080	Site investigation for bored pile P99 - 2 holes	10	10) 18-Apr-13	29-Apr-13	30-Apr-13	13-May-13			╞─┤	+					Site i	nvestigation fo
Pier P100L/F				· ·		•	,										
Site Investig																	
AI2150	Site investigation for bored pile P100 - 2 holes	15	15	5 05-Apr-13	23-Apr-13	04-Mar-13	14-Mar-13			•						Site invest	igation for bor
Pier P101L/F				· ·	·												gaapinion
Site Investig										1							
AI2220	Site investigation for bored pile P101 - 2 holes	14	7	04-Feb-13 A	16-Apr-13	22-Apr-13	29-Apr-13			; ; ; -	1				Site	investigation	n for bored pile
Pier P103L/F						· ·											
Site Investig	ation																
AI2360	Site investigation for bored pile P103 - 2 holes	10	10	07-Feb-13A	08-Apr-13	03-Apr-13	20-Apr-13	÷∶.						;	Site investi	ation for bo	ored pile P103
ML18L/R 47m	n+55mx5+35m - Stage 5 of Works																
Pier P104L/P																	
Site Investig																	
AI2430	Site investigation for bored pile P104 - 2 holes	10	10) 20-Mar-13	03-Apr-13	20-Feb-13	02-Mar-13							Site	investigatio	n for hored	pile P104 - 2 ł
Pier P105L/F	-		1												liniçotigatio		
Site Investig																	
AI2500	Site investigation for bored pile P105 - 2 holes	10	10) 08-Mar-13	19-Mar-13	05-Feb-13	19-Feb-13			· { } -			Site in	(estigation)	for bored n	ile P105 - 2	holes
	t P108 to P114	10			ro mai ro	0010010	101.00.10					-		csugation		lie 1105 - 12	
	n+55mx5+35m - Stage 5 of Works																
Pier P108L/F																	
Utilities Dive		15			05 4 40	40 10 40	10.14. 10				.					····	
AI3540 AI3550	Temporary slew Tel cable for P108 & P109 Temporary slew 11kv cable for P108 & P109	45		5 28-Feb-13 5 26-Apr-13	25-Apr-13 20-Jun-13	16-Jan-13 13-Mar-13	12-Mar-13 09-May-13			+ +		-				Tempora	ary slew Tel ca
A15550		40	40	20-Api-13	20-Juli-13	13-IVIAI-13	09-1viay-13		1	1 1							
Actu	al Work	3 1	Month	s Rollin	g Proa	ramme -	28 Feb		Date				evision			Checked	Approve
	aining Work Primary Baseline							27-F	eb-13	Feb	Updat	ed Rol	ing Prog	ramme	Ti	m	
kem	anning work Primary baseline				2013			-		1							1

	Activity Name		Remaining Start	Finish	Late Start	Late Finish				_			2013			_	
		Duration	Duration			2		Februa 11	ary 18 2	25 04	Mar 11		25 01	April	22	29	May 06 13
Pier P109L/R	2																
Utilities Dive	ersion											1					
AI3560	Diversion 132kv cable for P108, P109 & P113	112	112 20-Feb-13 A	17-Jul-13	18-Dec-12	09-May-13				÷		; ;	-		; ;	:	;
Pier P110L/R												-					
Site Investiga																	
AI2820	Site investigation for bored pile P110 - 2 holes	10	5 14-Jan-13 A	22-Mar-13	23-Mar-13	02-Apr-13						— 8	ite invest	gation for b	ored pile	P110 -	2 holes
Foundation -	·	<u> </u>						-									
AI2830	Construct bored piles P110 - 2 nos.	35	35 29-Apr-13	14-Jun-13	02-Apr-13	18-May-13						ļ				<u>'</u>	
	0m+65mx2 Stage 5 of Works							1				1					
Pier P111L/C																	
Site Investiga																	
AI2880	Site investigation for bored pile P111 - 6 holes	30	15 08-Jan-13 A	16-Mar-13	14-Feb-13	02-Mar-13	<u> </u>					Site in	vestigatio	n for bored	pile P11	1 - 6 hol	es
Foundation -				1 .								<u></u>		<u></u>			\
AI2890	Construct bored piles P111L/R - 4 nos.	52	52 02-Apr-13	08-Jun-13	04-Mar-13	09-May-13		-									
Pier P112L/C																	
Site Investiga																	
AI2940	Site investigation for bored pile P112 - 4 holes	20	7 03-Jan-13 A	07-Mar-13	28-Jan-13	04-Feb-13		-			\$ite in	γestigat	ion for bo	red pile P11	2 - 4 ho	es	
Pier P113 L/C												¦					
Utilities Dive				1 .													
AI3580	Temporary slew 11kv cable for P113	150	150 28-Feb-13	30-Aug-13	28-Feb-13	30-Aug-13		1									
AI3590	Diversion IPA250 Gasmain for P113	150	150 28-Feb-13	30-Aug-13	28-Feb-13	30-Aug-13						<u> </u>		· ·		<u> </u>	
lestones so												1					
	esign Checking of the Works											ļļ.					
CC2-1050	Final Construction Traffic Impact Assessment Report	0	0	28-Feb-13		28-Nov-16		-		Final	Constru	uction T	raffic Imp	act Assess	ment Re	port	
C2-1070	Final Ground Investigation Report	0	0	28-Feb-13		28-Nov-16				Final	Ground	Invest	gation Re	port			
CC2-1090	Final Durability Assessment Report	0	0	28-Feb-13		28-Nov-16				Final	Durabi	ility Asse	essment F	Report			
	ct at chainage 4+260.000 to 11+800.000 approximate											1					
C33-1010	Acceptance of final report for site investigation for DASO	0	0	28-Feb-13		02-Feb-18				Acce	ptance	of final i	eport for	site investio	ation for	DASO	
C33-1020	Excavation	313	313 14-Apr-13	20-Feb-14	30-Aug-13	01-Jan-15						1					
C33-1040	Piles	866	866 02-Apr-13	15-Aug-15	18-Jan-13	21-May-15											
aduct above								-				1					
C41-1000	Establishment of essential piling plant	215	160 28-Dec-12 A	06-Aug-13	28-Dec-12	27-Jan-14											
							1.1		: .			: :		1 1			
nd Viaduct C42-1000	Piles	445	445 02-Apr-13	20-Jun-14	04-Mar-13	18-Apr-14	• +	!	· · · · · · · · · ·			įį.					

Remaining Work Primary Baseline	2013	27-Feb-13	Feb Updated Rolling Programme
Critical Remaining Work	Page 11 of 11		

APPENDIX B ACTION AND LIMIT LEVELS

Appendix B - Action and Limit Levels

Location	Action Level, μg/m ³	Limit Level, µg/m ³
AMS1	381	500
AMS4	352	500

Table B-1 Action and Limit Levels for 1-Hour TSP

Table B-2Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, µg/m ³
AMS1	170	260
AMS4	171	260

Table B-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) *

Noted: If works are to be carried during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

(*) reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Table B-4	Action and Limit Levels for Water Quality
-----------	---

Parameter (unit)	Water Depth	Action Level	Limit Level
Dissolved Oxygen (mg/L) (surface,	Surface and Middle	<u>5.0</u>	4.2 except 5 for FCZ
middle, bottom)	Bottom	<u>4.7</u>	3.6
Turbidity (NTU)	Depth average	27.5 or 120% of upstream control station's turbidity at the same tide of the same day	<u>47.0</u> or 130% of turbidity at the upstream control station at the same tide of same day
Suspended Solids (mg/L)	Depth average	<u>23.5</u> or 120% of upstream control station's SS at the same tide of the same day	<u>34.4</u> or 130% of SS at the upstream control station at the same tide of same day and 10mg/L for WSD Seawater Intakes

Note:

(1) Depth-averaged is calculated by taking the arithmetic means of reading of all three depths

(2) For DO, non-compliance of the water quality limit occurs when monitoring result is lower that the limit.(3) For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.

(4) All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

(5) The 1%-ile of baseline data for dissolved oxygen (surface and middle) and dissolved oxygen (bottom) are 4.2mg/L and 3.6mg/L respectively.

APPENDIX C COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	. MA12014/67/000
Project No.	AMS 1 - Sha Lo	o Wan		Operator	: WК	r L	
Date:	21-Feb-13			Next Due Date	:20-Api	r-13	-
Equipment No.	: <u>A-01-67</u>			Serial No	3218	}	-
			Ambient	Condition			
Temperat	ure, Ta (K)	292,3	Pressure, P			766.8	
			·•				······
1.		: Or	ifice Transfer Sta	indard Inform	ation		
Equipm	ent No.:	A-04-04	Slope, mc	0.0574	Intercep	t, bc	-0.0478
Last Calibi	ation Date:	3-Oct-12		me x Qstd + b	с = [ΔH x (Ра/766	0) x (298/Ta))] ^{1/2}
Next Calib	ration Date:	2-Oct-13		Qstd = $\{[\Delta H x]$	(Pa/760) x (298/	Ta)] ^{1/2} -bc} /	me
		•		······································		<u></u>	
			Calibration of	TSP Sampler	1		
Calibration	ΔH (orifice),	<u> </u>	fice	0.11000.0		HVS	
Point	in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil		/760) x (298/Ta)] ^{1/} Y-axis
1	9.3		3.09	54.72	5.8		2.44
2	7.8		2.83	50.18	5.0		2.27
3	5.8		2.44	43.39	3.8		1.98
4	4.1		2.05	36.61	2.8		1.70
5	2.6		1.64	29.32	1.7		1.32
Slope , mw = Correlation c		0.9	987	Intercept, bw : -	0.064	5	
				· · · · · · · · · · · · · · · · · · ·			
			Set Point Ca	alculation			
	eld Calibration C						
rom the Regres	sion Equation, the	e "Y" value acco	ording to				
		mu x 0	std + bw = $ \Delta W x$	$(D_{2}/7(0) = /20)$	1/2		
		mw x Q	siu + bw [Δ w x	(Pa//00) X (29	(8/1a)]		
Therefore, Se	t Point; W = (mw	$v \ge (x + bw)^2$	x (760 / Pa) x (7	ſa / 298) =	3.69		
				-		······································	
emarks:							
-							
			1.				
onducted by:	WK. Jang :	Signature:	Kwi	<u>~</u>	J	Date:	21/2/13
Checked by:	<u>br</u> :	Signature:	X		1	Date:	21/2/13 21 February 201
_		-				-	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	MA12014/74/0001
Project No.	AMS 4 - San Ta	au		Operator	:WК		
Date:	21-Feb-13			Next Due Date:	20-Apr	-13	
Equipment No.:	: <u>A-01-74</u>			Serial No.	2202		
			Ambient (Condition			
Temperatu	ıre, Ta (K)	292.2	Pressure, Pr	a (mmHg)		766.6	
· · · · · · · · · · · · · · · · · · ·							
		Or	fice Transfer Sta	indard Inform	ation	r	<u> </u>
Equipm	ent No.:	A-04-04	Slope, mc	0.0574	Intercept		-0.0478
Last Calibr	ation Date:	3-Oct-12			c = [∆H x (Pa/760		
Next Calibi	ration Date:	2-Oct-13		Qstd = $\{[\Delta H x]$	(Pa/760) x (298/	fa)] ^{1/2} -bc} /	me
		•					
	- · · ·	· · ·	Calibration of	TSP Sampler			
Calibration			fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	∆W (HVS), in. of oil		760) x (298/Ta)] ^{1/2} Y-axis
1	11.8		3.48	61.53	8.2		2.90
2	9.3		3.09	54.72	6.7		2.63
3	7.1		2.70	47.92	5.4		2.36
4	4.6		2.18	38.73	3.8		1.98
5	2.8		1.70	30.40	2.5		1.60
Slope , mw = Correlation c	coefficient* =	0.9	997	Intercept, bw	0.353	8	
*If Correlation (Coefficient < 0.99	90, check and rec	calibrate.				
	·····		Set Point C	alculation			
From the TSP F	ield Calibration (Curve, take Qstd	= 43 CFM				
From the Regres	ssion Equation, th	ne "Y" value acco	ording to				
		0		(D) (B(C)) (A)	1/2		
		mw x Q	std + bw = $ \Delta W $ x	(Pa/760) x (2)	98/1a)		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (⁷	Ta / 298) =	4.46		
Remarks:							
Conducted by: Checked by:		Signature: Signature:	<u> </u>	<u>ሉ</u>		Date: Date:	21/2/13 21 Tebnerg do1
		-	1				0

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

DescriptionCalibration OrificeSerial No.0993Model No.TE-5025ADate3 October 2012

ManufacturerTISCHTemperature,Ta (K)298Pressure, Pa (mmHg)759.2

Diff.Time (min) Diff.Hg (mm) Plate Diff.Vol (m³) Diff.H₂O (in.) 1 1.3820 1.00 3.2 2.00 2 1.00 0.9800 6.2 4.00 3 1.00 0.8770 7.8 5.00 4 1.00 0.8380 8.7 5.50 5 1.00 0.6930 12.7 8.00

DATA TABULATION

Vstd	(X axis) Qstd	(Y axis)			
0.9947	0.7197	1.4134			
0.9907	1.0109	1.9989			
0.9886	1.1273	2.2348			
0.9874	1.1783	2.3439			
0.9822 1.4173 2.8268					
Y axis= SQRT[H ₂ O(Pa/760)(298/Ta)]					
Qstd Slope (m) = 2.02751					

Intercept (b) = -0.04785

Coefficient (r) = 0.99999

Va	(X axis) Qa	(Y axis)
0.9958	0.7205	0.8861
0.9918	1.0121	1.2531
0.9897	1.1285	1.4010
0.9885	1.1796	1.4694
0.9833	1.4189	1.7721
Y axis = SOR	TIH_O(Ta/Pa	N1

Y axis= SQRT[H₂O(Ta/Pa)]

Qa Slope (m) = 1.26959

Intercept (b) = -0.03000

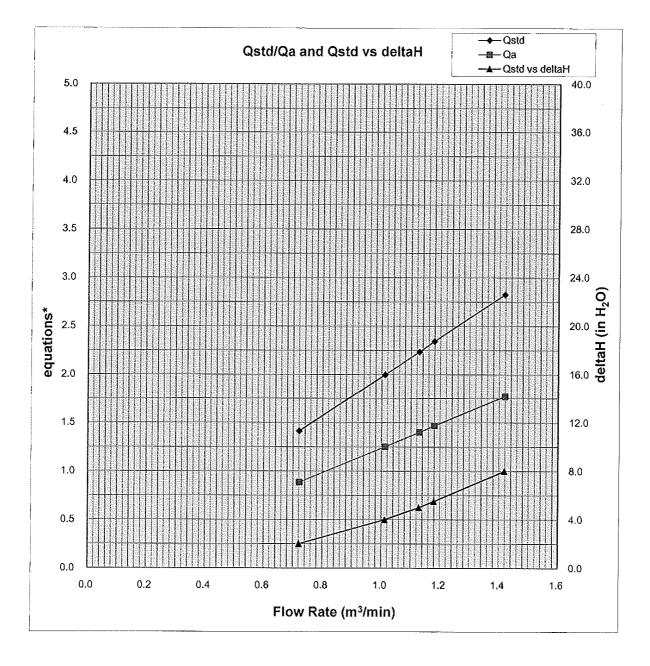
Coefficient (r) = 0.99999

CALCULATIONS

Vstd=Diff. Vol[(Pa-Diff.Hg)/760](298/Ta) Qstd=Vstd/Time Va=Diff.Vol[(Pa-Diff.Hg)/Pa] Qa=Va/Time

For subsequent flow rate calculations: $Qstd=I/m{[SQRT(H_2O(Pa/760)(298/Ta))]-b}$ $Qa=I/m{[SQRT H_2O(Ta/Pa)]-b}$

> PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.


PATRICK TSE Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrat or tested.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Y-axis equations:

Qstd series: SQRT[Δ H(Pa/Pstd)(Tstd/Ta)]

Qa series: SQRT[Δ H(Ta/Pa)]

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrat or tested.

Calibration Certificate

Certificate No	. 30130		Page 1	of 2 Pages
Customer :	Dragages - China Habour - VSI	Joint Venture		
Address :	3/F., Island Place Tower, 510 K	ing's Road, North Po	oint, H. K.	
Order No. :	Q30108		Date of receipt	: 4-Jan-13
Item Tested				
Description	: Weather Station			
Manufacturer	: DAVIS			
Model	: Vantage PRO2 6152CUK		Serial No. :	AA120924015
Test Condit	ions			
Date of Test :	15-Jan-13		Supply Voltage	:
Ambient Temp	perature : (23 ± 3)°C		Relative Humidity	: (50 ± 25) %
Test Specifi	cations			·
Calibration che	ck.			
Ref. Document	/Procedure : Z04, M14.			
•••••				
Test Result	5			
The results are	shown in the attached page(s).			
Main Test equi	oment used:			
Equipment No.		<u>Cert. No.</u>	<u>Tra</u>	ceable to
S155	Std. Anemometer	NSC201230022	NIN	1-PRC
S070	Protractor	01121	NIA	1-PRC
will not include allow overloading, mis-ha	this Calibration Certificate only relate to wance for the equipment long term drift, v andling, or the capability of any other labo age resulting from the use of the equipm	variations with environme pratory to repeat the meas	ntal changes, vibration an	d shock during transportation,
• •	used for calibration are traceable to Inte bly to the above Unit-Under-Test only	rnational System of Units	(SI).	
<u> </u>			1	- 21
Calibrated by	. ()et	Δnn	roved by :	95tone
Sauviated by	S. K. Tang	հի	Ste	ve Kwan
This Certificate is issued t	-	Date:	15-Jan-13	
Hong Kong Calibration Ltd Unit 8B, 24/F., Well Fung Tel: 2425 8801 Fax: 242	Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kw	ai Chung, NT, Hong Kong.		

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Calibration Certificate

Certificate No. 30130

Page 2 of 2 Pages

Results :

1. Wind Speed

Applied Value (m/s)	UUT Reading (m/s)
2.50	2.2
4.70	4.5
7.50	7.2
9.80	9.4
15.50	14.3
19.93	19.5

Uncertainty : $\pm (2 \% + 0.2 \text{ m/s})$

2. Wind Direction

Reference Value	UUT Indication
N (0°)	N
NE (45°)	NE
E (90°)	Е
SE (135°)	SE
S (180°)	S
SW (225°)	SW
W (270°)	W
NW (315°)	NW

Remark : 1. UUT: Unit-Under-Test

- 2. Atmospheric Pressure : 1 013 hPa
- 3. Before the calibration of the Wind Direction function, the Arrow Head was adjusted to the magnetic NORTH direction while the monitor indicated N. The customer is reminded to do the alignment again after installation.

----- END -----

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130601 證書編號

ITEM TESTED / 送檢項	目	(Job No. / 序引編號 :IC13-0227)
Description / 儀器名稱	;	Sound & Vibration Analyser
Manufacturer / 製造商	:	Svantek
Model No. / 型號	:	SVAN957
Serial No. / 編號	:	23851
Supplied By / 委託者	:	Dragages - China Harbour - VSL Joint Venture
		3/F, Island Place Tower, 510 King's Road,
		North Point, Hong Kong
TEST CONDITIONS / }	測記	《條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

Chan Km C H C Chan

Certified By 核證

Date of lssue 簽發日期 :

28 January 2013

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載按正用之潤試器材均可溯源至國際標準。局部復印本證書需先獲本實驗所書面批准。

Lee

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130601 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the Svantek acoustic calibrator SV30A, S/N : 24780 was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C130019
CL281	Multifunction Acoustic Calibrator	DC110233

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting			Applied Value		UUT	IEC 61672	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
Ũ		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	Α	Fast	114.00	1	113.8	± 1.1

6.1.2 Linearity

[UUT Setting				d Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
		Weighting	Weighting	(dB)	(kHz)	(dB)
HIGH	SPL	А	Fast	114.00	1	113.8 (Ref.)
				104.00		103.8
				94.00		93.8

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UUT Setting			UT Setting Applied Value			IEC 61672
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
_		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	Α	Fast	114.00	1	113.8	Ref.
			Slow			113.8	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所戴校正用之測試器材均可溯源至國際標準。局部複印本證書需先幾本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130601 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

A-weightin	UUT Setting				ied Value	UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class I Spec. (dB)
HIGH	SPL	A	Fast	114.00	63 Hz	87.6	-26.2 ± 1.5
					125 Hz	97.6	-16.1 ± 1.5
					250 Hz	105.1	-8.6 ± 1.4
					500 Hz	110.5	-3.2 ± 1.4
					1 kHz	113.8	Ref.
					2 kHz	115.0	$+1.2 \pm 1.6$
					4 kHz	114.8	$+1.0 \pm 1.6$
					8 kHz	112.8	-1.1 (+2.1 ; -3.1)
					12.5 kHz	109.6	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UUT Setting			Appli	ed Value	UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
HIGH	SPL	C	Fast	114.00	63 Hz	113.0	-0.8 ± 1.5
					125 Hz	113.6	-0.2 ± 1.5
					250 Hz	113.8	0.0 ± 1.4
					500 Hz	113.8	0.0 ± 1.4
					l kHz	113.8	Ref.
					2 kHz	113.7	-0.2 ± 1.6
					4 kHz	113.1	-0.8 ± 1.6
					8 kHz	110.9	-3.0 (+2.1 ; -3.1)
					12.5 kHz	107.6	-6.2 (+6.0 ; -∞)

Remarks : - UUT Microphone Model No. : AC07502E & S/N : 48532

- Mfr's Spec. : IEC 61672 Class 1

04 dB	250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz : 1 kHz	: ± 0.30 dB : ± 0.45 dB : ± 0.55 dB : ± 0.80 dB : ± 0.10 dB (Ref. 94 dB)
	: 1 KHZ : 1 kHz	$\pm 0.10 \text{ dB} (\text{Ref. 94 dB})$ $\pm 0.10 \text{ dB} (\text{Ref. 94 dB})$

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載按正用之週試器材均可滴原至國際標準。局部復印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130600 證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-022 Description / 儀器名稱 : Sound & Vibration Analyser Manufacturer / 製造商 : Svantek Model No. / 型號 : SVAN957 Serial No. / 編號 : 21460 Supplied By / 委託者 : Dragages - China Harbour - VSL 3/F, Island Place Tower, 510 King North Point, Hong Kong	Joint Venture
TEST CONDITIONS / 測試條件 Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :	Relative Humidity / 相對濕度 : (55 ± 20)%
TEST SPECIFICATIONS / 測試規範 Calibration check	
DATE OF TEST / 測試日期 : 25 January 2013	
TEST RESULTS / 測試結果 The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).	
 The test equipment used for calibration are traceable to National The Government of The Hong Kong Special Administrative R Rohde & Schwarz Laboratory, Germany Fluke Everett Service Center, USA Agilent Technologies, USA 	
Tested By : <u>Chan than Chan</u> 測試 H C Chan	
Certified By : 核證 K Lee	Date of Issue : 28 January 2013 簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載按正用之測試器材均可溯源至國際標準。局部復印本證書需先獲本實驗所書面批准

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130600 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the Svantek acoustic calibrator SV30A, S/N : 24791 was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C130019
CL281	Multifunction Acoustic Calibrator	DC110233

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting			Applie	d Value	UUT	IEC 61672	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	A	Fast	114.00	1	114.2	± 1.1

6.1.2 Linearity

	UUT Setting				d Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
		Weighting	Weighting	(dB)	(kHz)	(dB)
HIGH	SPL	A	Fast	114.00	1	114.2 (Ref.)
				104.00		104.2
				94,00		94.2

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UUT Setting			Applied Value		UUT	IEC 61672
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	A	Fast	114.00	1	114.2	Ref.
			Slow			114.2	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所载校正用之測試器材均可溯源至國際標準。局部復印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C130600 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

A-weighti	UUT Setting			Applied Value		UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
HIGH	SPL	A	Fast	114.00	63 Hz	88.0	$\frac{-26.2 \pm 1.5}{-16.1 \pm 1.5}$
					125 Hz 250 Hz	<u>98.0</u> 105.5	-10.1 ± 1.3 -8.6 ± 1.4
					500 Hz	110.9	-3.2 ± 1.4
					1 kHz	114.2	Ref.
					2 kHz	115.4	$+1.2 \pm 1.6$
					4 kHz	115.2	$+1.0 \pm 1.6$
					8 kHz	113.2	-1.1 (+2.1 ; -3.1)
					12.5 kHz	109.9	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UUT Setting			Applied Value		UUT	IEC 61672
Range	Mode	Frequency	Time	Level	Freq.	Reading (dB)	Class 1 Spec. (dB)
IUCU	CDI	Weighting	Weighting Fast	(dB) 114,00	63 Hz	113.4	-0.8 ± 1.5
HIGH	SPL	C	rast	114,00	125 Hz	113.4	-0.0 ± 1.5 -0.2 ± 1.5
					250 Hz	114.2	0.0 ± 1.4
					500 Hz	114.2	0.0 ± 1.4
					1 kHz	114.2	Ref.
					2 kHz	114.0	-0.2 ± 1.6
					4 kHz	113.5	-0.8 ± 1.6
					8 kHz	111.3	-3.0 (+2.1 ; -3.1)
					12.5 kHz	108.0	-6.2 (+6.0 ; -∞)

Remarks : - UUT Microphone Model No. : AC07052H & S/N : 43679

- Mfr's Spec. : IEC 61672 Class 1

104 dB	250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz : 1 kHz	: $\pm 0.30 \text{ dB}$: $\pm 0.45 \text{ dB}$: $\pm 0.55 \text{ dB}$: $\pm 0.80 \text{ dB}$: $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
114 dB	: 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所戴按正用之測試器材均可溯源至國際標準。局部按印本證書需先獲本實驗所書面批准

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130599 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	(Job No. / 序引編號 : IC13-0227 Acoustic Calibrator Svantek SV30A 24780 Dragages - China Harbour - VSL Jo 3/F, Island Place Tower, 510 King's North Point, Hong Kong	int Venture	
TEST CONDITIONS / 測読 Temperature / 溫度 : (23 Line Voltage / 電壓 :		Relative Humidity / 相對濕度 :	(55 ± 20)%
TEST SPECIFICATIONS / Calibration check	測試規範		

DATE OF TEST / 測試日期 : 25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

核證

Tested By 測試	; _	than then Chy H C Chan	
Certified By	:		Date of Issue

K [] Lee

28 January 2013

:

簽發日期

The test equipment used for endbration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之潤試器材均可滴原至國際標準。局部復印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130599 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C123541
CL281	Multifunction Acoustic Calibrator	DC110233
TST150A	Measuring Amplifier	C120886

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.999 99	1 kHz ± 0.02 %	± 0.01

Remark : - The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部復印本證書需先獲本實驗所書面批准

The test equipment used for galibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130598 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號 :IC13-0227)		
Description / 儀器名稱	Acoustic Calibrator		
Manufacturer / 製造商 :	Svantek		
Model No. / 型號 :	SV30A		
Serial No. / 編號 :	24791		
Supplied By / 委託者 :	Dragages - China Harbour - VSL Joint V	Venture	
	3/F, Island Place Tower, 510 King's Roa	ad,	
	North Point, Hong Kong		
TEST CONDITIONS / 測計	式條件		
Temperature / 溫度 : (2	3 ± 2)°C	Relative Humidity / 相對濕度 :	(55 ± 20)%
Line Voltage / 電壓 :			

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

than Um (H C Chan

Certified By Date of Issue 28 January 2013 : 核證 簽發日期 K C Lee

本證書所載校正用之測試器材均可溯源至國際標準。局部復印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C130598 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C123541
CL281	Multifunction Acoustic Calibrator	DC110233
TST150A	Measuring Amplifier	C120886

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93,9	± 0.3	± 0.2
114 dB, 1 kHz	113.9		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 00	1 kHz ± 0.02 %	± 0.01

Remark : - The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本讀書所載校正用之測試器材均可溯源至國際標準。局部復印本證書醫先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

佳力高試驗中心有限公司 CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accu	iracy check of YSI Son	des Environment	al Monitoring System					
Date of issue: 22-02-2013								
Page 1 of 1 pages			Castco LRN: EN	10130219-14				
Sample details as supplied by								
Customer : Dragages-China Harbour-VSL Joint Venture Customer Ref. No. :								
Address: P.O.Box No.136 Tu	ng Chung Post Office, N.T.,	H.K.						
Job Title : Hong Kong-Zhuhai-	Macao Bridge Hong Kong L	ink Road - Section be	tween HKSAR Boundary and	d Scenic Hill				
Contract No.: HY/2011/09	,							
Laboratory Test Result Instrument Name: Sonde Environmental Monitoring System Manufacturer : YSI Instrument No. : W.03.01 Model No. : 6820-C-M Date of Calibration : 20-02-2013 Serial No. : 02D0126AA Date of Next Calibration : 20-05-2013								
pH Value Check (pH Meter : Expected Reading		· · · · ·)					
(pH Unit)	Sonde Reading (pH Unit)		Tolerance Limit (pH Unit)	Method Refrence				
4.00	4.05	0.05						
7.02 10.06	7.14 10.20	0.12 0.14	± 0.2	APHA 21e, 4500-H+B				
Turbidity Check (Turbidity Se)					
Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Refrence				
4.00	4.3	7.5						
10.00	10.4	4.0						
20.00	20.7	3.5	± 10	APHA 21e, 2130B				
50.00	50.5	1.0						
100.00	97.4	-2.6						
Conductivity Performance Che		Model: 6560, L/N: 11						
Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Refrence				
1412 at 25 °C	1380 at 25 °C	-2.3	± 10	APHA 21e, 2510B				
Salinity Performance Check (Salinity Sensor : Model: 65	560, L/N: 11J100025)					
Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Refrence				
35	34.19	-2.3	± 10	HACH Procedure Manual				
Dissolved Oxygen Check (Di	ssolved Oxygen Sensor : M	odel: 6562, L/N: 07E	100029)					
DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (%)	Tolerance Limit (%)	Method Refrence				
8.62	8.48	-1.6	+ 10	APHA 21e, 4500-O				
4.48	4.85	8.3	± 10	C&G				
Water Level Meter Check								
Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Refrence				
1.00	1.03	0.03	± 0.05	YSI Sondes Procedure Manual				
Temperature Check								
Expected Reading (°C)	Sonde Reading (°C)	Tolerance (℃)	Tolerance Limit (°C)	Method Refrence				
25.0	25.0	0.0	± 2.0	Telarc Technical Guide No.3 1986				
	YTU WAH Senior Chemist	Certified by End of Report	LEE STEPHEN SHU HAI	NG				
Form No. ENV SONDE_T1 dd 22/02/2013 香港粉	嶺安居街33號 33, Or	n Kui Street, Fanling, n Chuen Street, Fanling						

E-mail: castco@netvigator.com Website: www.castco.com.hk

佳力高試驗中心有限公司 CASTCO TESTING CENTRE LTD.

TEST REPORT of W/~+ **T** A Iveie .

		al Analysis of Wa	ter					
	racy check of YSI Son	des Environment	al Monitoring System					
Date of issue: 22-02-2013			Castas I DNL EN	10100010 15				
Page 1 of 1 pages Castco LRN: EN0130219-15 Sample details as supplied by customer								
		<i></i>						
Customer : Dragages-China H			stomer Ref. No. :					
Address: P.O.Box No.136 Tu	ng Chung Post Office, N.T.,	H.K.						
Job Title : Hong Kong-Zhuhai-	Macao Bridge Hong Kong L	ink Road - Section be	tween HKSAR Boundary and	d Scenic Hill				
Contract No.: HY/2011/09								
Laboratory Test Result Instrument Name: Sonde Envi	ironmental Monitoring Syste	m						
Manufacturer : YSI	n omnentar triomtorning 57500.		nt No. : W.03.13					
Model No. : 6820-C-M			Calibration : 20-02-2013					
Serial No.: 12B100804			Next Calibration: 20-05-20	13				
pH Value Check (pH Meter :	Model: 6561, L/N:11H)					
Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Refrence				
4.00	4.07	0.07						
7.02	7.05	0.03	± 0.2	APHA 21e, 4500-H+B				
10.06	10.03	0.03		,				
Turbidity Check (Turbidity Se	nsor : Model: 6136, S/N: 1	2B100645)					
Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Refrence				
4.00	4.2	5.0						
10.00	10.3	3.0						
20.00	20.7	3.5	± 10	APHA 21e, 2130B				
50.00	50.8	1.6						
100.00	95.6	-4.4						
Conductivity Performance Che		Model: 6560, L/N: 12	2B100055)	· · · · · · · · · · · · · · · · · · ·				
Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Refrence				
1412 at 25 °C	1518 at 25 °C	7.5	± 10	APHA 21e, 2510B				
Salinity Performance Check (Salinity Sensor : Model: 65	560, L/N: 12B100055)					
Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Refrence				
35	34.32	-1.9	± 10	HACH Procedure Manual				
Dissolved Oxygen Check (Dis	solved Oxygen Sensor · M	1 odel: 6562 I/N:124	100930					
DO from Winkler Titration			100750					
(mg/L)	Sonde Reading (mg/L)	Tolerance (%)	Tolerance Limit (%)	Method Refrence				
8.62	8.73	1.3	± 10	APHA 21e, 4500-O				
4.48	4.68	4.5		C&G				
Water Level Meter Check								
Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Refrence				
1.00	1.04	0.04	± 0.05	YSI Sondes Procedure Manual				
Temperature Check		-	-	• · · · · · · · · · · · · · · · · · · ·				
Expected Reading (°C)	Sonde Reading (°C)	Tolerance (℃)	Tolerance Limit (°C)	Method Refrence				
25.0	25.0	0.0	± 2.0	Telarc Technical Guide No.3 1986				
	\mathcal{L}							
Checked by:	/	Certified by		ANG				
	YTU WAH enior Chemist	End of Report	LEE STEPHEN SHU HA	UIU				
Form No. ENV SONDE_T1 dd 22/02/2013	GUELENE November -		Technical Director					
	嶺安居街33號 33, Or	n Kui Street, Fanling,	Hong Kong. Tel: 2677 2	138				

香港粉嶺安居街33號 香港粉嶺安全街29A號

33, On Kui Street, Fanling, Hong Kong. 29A, On Chuen Street, Fanling, Hong Kong. E-mail: castco@netvigator.com Website: www.castco.com.hk

Fax: 2677 0351

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Feb	2-Feb
3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	8-Feb	9-Feb
5-Feb	4-Feb	3-Feb	0-Feb	/-Feb	8-Feb	9-Feb
10-Feb	11-Feb	12-Feb	13-Feb	14-Feb	15-Feb	16-Feb
45.0.1	10 11	10.5.1			20 5 1	22.5.1
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb	23-Feb
					24 hr TSP	
					1 hr TSP X 3	Noise
					1111151 X 5	Noise
24-Feb	25-Feb	26-Feb	27-Feb	28-Feb		
			_,		1	
				24 hr TSP		
				1 hr TSP X 3		

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Impact Air Quality and Noise Monitoring Schedule in February 2013

Air Quality Monitoring Stations

AMS1 - Sha Lo Wan AMS4 - San Tau Noise Monitoring Stations

NMS1 - Sha Lo Wan NMS4 - San Tau

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				•	1-Mar	2-Mar
					Noise	
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
5-1v1ai	4-1viai	J-Widi	0-iviai	/-ividi	0-19141	9-14141
			24 hr TSP			
			1 hr TSP X 3	Noise		
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
		24 hr TSP 1 hr TSP X 3	Noise			
		1 nr ISP X 3	Noise			
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
	24 hr TSP				24 hr TSP	
	1 hr TSP X 3	Noise			1 hr TSP X 3	Noise
24-Mar	25 Mar	26-Mar	27-Mar	28-Mar	29-Mar	30-Mar
24-1/18	25-Mar	20-Mar	27-Mar	28-Mar	29-Mar	30-Mar
			24 hr TSP			
			1 hr TSP X 3	Noise		
31-Mar						

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Impact Air Quality and Noise Monitoring Schedule in March 2013

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Stations

Noise Monitoring Stations NMS1 - Sha Lo Wan

AMS1 - Sha Lo Wan AMS4 - San Tau

NMS4 - San Tau

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Impact Water Quality Monitoring Schedule in February 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
•	*		•	Ĵ	1-Feb	2-Feb
3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	8-Feb	9-Feb
						,
10-Feb	11-Feb	12-Feb	13-Feb	14-Feb	15-Feb	16-Feb
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb	23-Feb
					<u>Water Quality Monitoring</u> Mid-Ebb 11:08 Mid-Flood 16:14	
24-Feb	25-Feb	26-Feb	27-Feb	28-Feb		
	<u>Water Quality Monitoring</u> Mid-Ebb 12:45 Mid-Flood 18:35		Water Quality Monitoring Mid-Flood 07:59 Mid-Ebb 13:54			

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Impact Water Quality Monitoring Schedule in March 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Mar	2-Mar
					Water Quality Monitoring	
					<u></u>	
					Mid-Flood 08:57	
					Mid-Ebb 15:06	
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
<u>0-10101</u>	- 19141	5 10141	0 10141	/ 1414	0 10141) Iviai
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Flood 10:41		Mid-Flood 12:55		Mid-Ebb 10:51	
	Mid-Ebb 17:30		Mid-Ebb 20:22		Mid-Flood 15:52	
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Ebb 12:50		Mid-Flood 07:49		Mid-Flood 08:40	
	Mid-Flood 18:38		Mid-Ebb 13:55		Mid-Ebb 14:59	
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
	Water Quality Monitoring		Water Quality Monitoring			Water Quality Monitoring
	water Quanty Monitoring		water Quanty Monitoring			Water Quarty Monitoring
	Mid-Flood 09:44		Mid-Flood 09:23			Mid-Ebb 10:44
	Mid-Ebb 16:50		Mid-Ebb 19:12			Mid-Flood 15:56
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar	· 30-Mar
24-11141	25-1414	20-14141	27-14141	20-141	29-191ai	50-Wai
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Ebb 11:46		Mid-Ebb 12:54		Mid-Flood 07:52	
	Mid-Flood 17:40		Mid-Flood 19:09		Mid-Ebb 14:07	
31-Mar						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Construction-Phase Dolphin Monitoring in West Lantau (Line Transect Vessel Survey) in February 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Feb	2-Feb
3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	8-Feb	9-Feb
10-Feb	11-Feb	12-Feb	13-Feb	14-Feb	15-Feb	16-Feb
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb	23-Feb
		Line Transect Vessel Survey				
		Line Transeet Vesser Survey				
24-Feb	25-Feb	26-Feb	27-Feb	28-Feb		
	Line Transect Vessel Survey					
	Line Transeet vesser Survey					

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Construction-Phase Dolphin Monitoring in West Lantau (Line Transect Vessel Survey) in March 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Mar	2-Mar
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
<u>5-Iviar</u>	4-141	J-Mar	0-141	/-1/14	8-1VId1	9-11/181
					Line Transect Vessel Survey	
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
					T' T (V 10	
					Line Transect Vessel Survey	
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar	30-Mar
31-Mar						
51-Mar						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Dolphin Behaviour & Land-based Dolphin Behaviour and Movement Monitoring in March 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Mar	
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
<u>3-Mar</u>	4-Mar	5-Mar	0-1/181	/-iviar	8-1v1ar	9-Mar
						1) Dolphin Behaviour Monitoring
						2) Land-based Dolphin Behaviour and Movement Monitoring
						and wovement wontoning
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring
2) Land-based Dolphin Behaviour	2) Land-based Dolphin Behaviour	2) Land-based Dolphin Behaviour	2) Land-based Dolphin Behaviour	2) Land-based Dolphin Behaviour	2) Land-based Dolphin Behaviour	2) Land-based Dolphin Behaviour
and Movement Monitoring	and Movement Monitoring	and Movement Monitoring	and Movement Monitoring	and Movement Monitoring	and Movement Monitoring	and Movement Monitoring
1						
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
1) Dolphin Behaviour Monitoring	18-Mar 1) Dolphin Behaviour Monitoring	19-Mar 1) Dolphin Behaviour Monitoring	20-Mar 1) Dolphin Behaviour Monitoring	21-Mar 1) Dolphin Behaviour Monitoring	22-Mar 1) Dolphin Behaviour Monitoring	23-Mar 1) Dolphin Behaviour Monitoring
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring	1) Dolphin Behaviour Monitoring
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring
Dolphin Behaviour Monitoring Diphin Behaviour and Movement Monitoring 24-Mar	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar 	1) Dolphin Behaviour Monitoring 2) Land-based Dolphin Behaviour and Movement Monitoring 27-Mar	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar 	1) Dolphin Behaviour Monitoring 2) Land-based Dolphin Behaviour and Movement Monitoring 29-Mar	1) Dolphin Behaviour Monitoring 2) Land-based Dolphin Behaviour and Movement Monitoring 30-Mar
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar 	1) Dolphin Behaviour Monitoring 2) Land-based Dolphin Behaviour and Movement Monitoring 27-Mar	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar 	1) Dolphin Behaviour Monitoring 2) Land-based Dolphin Behaviour and Movement Monitoring 29-Mar	1) Dolphin Behaviour Monitoring 2) Land-based Dolphin Behaviour and Movement Monitoring 30-Mar
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 31-Mar 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring Land-based Dolphin Behaviour and Movement Monitoring 31-Mar Dolphin Behaviour Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 31-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring Land-based Dolphin Behaviour and Movement Monitoring 31-Mar Dolphin Behaviour Monitoring 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour
 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 24-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 31-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 25-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 26-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 27-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 28-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring 29-Mar Dolphin Behaviour Monitoring Land-based Dolphin Behaviour 	 Dolphin Behaviour Monitoring Land-based Dolphin Behaviour and Movement Monitoring <u>30-Mar</u> Dolphin Behaviour Monitoring Land-based Dolphin Behaviour

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

The Dolphin Behaviour & Land-based Dolphin Behaviour and Movement Monitoring will be continued in April 2013 so that 30days results during the bored piling activities will be collected.

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Construction-Phase Underwater Noise Monitoring in March 2013

image: set in the set in	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar18-Mar19-Mar20-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4						1-Mar	2-Mar
10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar18-Mar19-Mar20-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4							
10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar18-Mar19-Mar20-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4							
10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar18-Mar19-Mar20-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4							
10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar18-Mar19-Mar20-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4							
10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar18-Mar19-Mar20-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4							
10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar11-Mar12-Mar13-Mar14-Mar15-Mar16-Mar10-Mar18-Mar19-Mar20-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4823-Mar10-derwater Noise Monitoring for Pier 4810-derwater Noise Monitoring for Pier 4	2.14	4.24	5 M	(M	7.14	0.14	0.14
Image: series of the series	<u> </u>	4-Mar	5-Mar	6-Mar	/-Mar	8-Mar	9-Mar
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series		11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
Image: A series of the serie							
Image: series of the series							
Image: constraint of the second sec							
Underwater Noise Monitoring for Pier 48Underwater Noise Monitoring for Pier 48Un				for Pier 48	for Pier 48	for Pier 48	for Pier 48
Underwater Noise Monitoring for Pier 48Underwater Noise Monitoring for Pier 48Un							
Underwater Noise Monitoring for Pier 48Underwater Noise Monitoring for Pier 48Un							
for Pier 48for Pier 48for Pier 48for Pier 48for Pier 48for Pier 4824-Mar25-Mar26-Mar27-Mar28-Mar29-Mar30-MarImage: Antiper Anti	17-Mar	18-Mar	19-Mar	20-Mar	· 21-Mar	22-Mar	23-Mar
for Pier 48for Pier 48for Pier 48for Pier 48for Pier 48for Pier 4824-Mar25-Mar26-Mar27-Mar28-Mar29-Mar30-MarImage: Antiper and the second							
for Pier 48for Pier 48for Pier 48for Pier 48for Pier 48for Pier 4824-Mar25-Mar26-Mar27-Mar28-Mar29-Mar30-MarImage: Antiper and the second	Underwater Noise Monitoring	Underwater Neise Monitoring	Underwater Noise Monitoring	Underwater Noise Monitoring	Underwater Noise Monitoring	Underwater Neise Monitoring	
24-Mar25-Mar26-Mar27-Mar28-Mar29-Mar30-MarImage: Image: Image							
		25.14	26.16	27.14	20.14	20.14	20.15
31-Mar	24-Mar	25-Mar	26-Mar	27-Mar		29-Mar	30-Mar
31-Mar Image: Sector							
31-Mar							
31-Mar Image: Marcine State Image: Marcin							
31-Mar Image: Constraint of the second s							
31-Mar Image: Marcine Structure Image: Marcine Structure							

The schedule may be changed due to unforeseen circumstances (adverse weather, etc) The scheduled underwater noise monitoring may be extended in order to collect 10 days results during the bored piling process for the pier site

APPENDIX E 1-HOUR TSP MONITORING RESULTS

Appendix E - 1-hour TSP Impact Monitoring Results

Location AMS1 - Sha Lo Wan

Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
22-Feb-13	09:00	Cloudy	291.5	769.8	2.7364	2.7425	0.0061	1238.0	1239.0	1.0	1.22	1.22	1.22	73.4	83
22-Feb-13	11:00	Cloudy	291.9	770.4	2.7333	2.7419	0.0086	1239.0	1240.0	1.0	1.22	1.22	1.22	73.4	117
22-Feb-13	13:00	Cloudy	294.2	768.4	2.7353	2.7374	0.0021	1240.0	1241.0	1.0	1.22	1.22	1.22	73.0	29
28-Feb-13	08:00	Cloudy	292.6	763.1	2.7643	2.7737	0.0094	1265.0	1266.0	1.0	1.22	1.21	1.22	72.9	129
28-Feb-13	09:10	Cloudy	292.8	762.9	2.7845	2.7876	0.0031	1266.0	1267.0	1.0	1.21	1.21	1.21	72.9	43
28-Feb-13	10:20	Cloudy	293.0	762.7	2.7870	2.7916	0.0046	1267.0	1268.0	1.0	1.21	1.21	1.21	72.8	63
														Min	29
														Max	129
														Average	77

Location AMS4 - San Tau

Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
22-Feb-13	09:00	Sunny	291.5	769.7	2.7173	2.7323	0.0150	769.0	770.0	1.0	1.23	1.23	1.23	73.7	204
22-Feb-13	13:00	Sunny	294.7	768.1	2.7048	2.7126	0.0078	770.0	771.0	1.0	1.22	1.22	1.22	73.1	107
22-Feb-13	14:05	Sunny	294.8	767.9	2.7212	2.7348	0.0136	771.0	772.0	1.0	1.22	1.22	1.22	73.1	186
28-Feb-13	08:00	Cloudy	292.4	763.5	2.6848	2.6953	0.0105	796.0	797.0	1.0	1.22	1.22	1.22	73.2	144
28-Feb-13	13:35	Cloudy	294.4	761.7	2.7148	2.7198	0.0050	797.0	798.0	1.0	1.21	1.21	1.21	72.8	69
28-Feb-13	14:37	Cloudy	294.6	761.5	2.7208	2.7252	0.0044	798.0	799.0	1.0	1.21	1.21	1.21	72.7	60
														Min	60
														Max	204

App E - 1hr TSP_v2

128

Average

APPENDIX F 24-HOUR TSP MONITORING RESULTS

Appendix F - 24-hour TSP Impact Monitoring Results

Location AMS1 - Sha Lo Wan

Sampling Date Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	(m ³ /min.)	Av. flow	Total vol.	Conc.	
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)			weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
22-Feb-13	14:05	Cloudy	294.4	768.2	2.7299	2.8517	0.1218	1241.0	1265.0	24.0	1.22	1.22	1.22	1750.3	70
28-Feb-13	11:35	Cloudy	293.7	764.1	2.7826	2.8169	0.0343	1268.0	1292.0	24.0	1.21	1.21	1.21	1747.7	20
														Min	20
														Max	70
														Average	45

Location AMS4 - San Tau

Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
22-Feb-13	15:10	Cloudy	294.6	768.0	2.7271	2.8537	0.1266	772.0	796.0	24.0	1.22	1.22	1.22	1754.4	72
28-Feb-13	15:40	Cloudy	294.8	761.3	2.7488	2.8015	0.0527	799.0	823.0	24.0	1.21	1.21	1.21	1744.5	30
														Min	30
														Max	72

Average 51

APPENDIX G NOISE MONITORING RESULTS

Appendix G - Noise Monitoring Results

Location NMS	1 - Sha Tau	Wan						
D. I		T '	Uni	it: dB (A) (5-r	nin)	Average	Baseline Level	Construction Noise Level
Date	Date Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		14:30	67.8	78.2	45.5			
		14:35	65.0	76.6	41.9			
23-Feb-13	Suppy	14:40	67.2	79.8	47.3	65	66.9	65 Measured \leq Limit Level
23-Feb-13	Sunny	14:45	48.1	55.2	42.8	60	00.9	
		14:50	44.5	48.0	43.0			
		14:55	64.2	73.9	44.8			

Location NMS	4 - San Tau							
Data		Time	Uni	t: dB (A) (5-r	nin)	Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		15:10	62.5	65.3	45.4			
		15:15	53.2	56.2	43.7			
23-Feb-13	Sunny	15:20	54.0	57.3	45.1	59	56.0	59 Measured ≦ Limit Level
23-1-60-13	Sunny	15:25	53.8	57.1	46.0	59	50.0	59 Measured \leq Limit Level
		15:30	58.4	61.1	47.8			
		15:35	61.6	65.8	46.0			

APPENDIX H WATER QUALITY MONITORING RESULTS

Contract No. HY/2011/09	
Hong Kong-Zhuhai-Macao Bridge Hong Ko	ng Link Road-Section between HKSAR Boundary and Scenic Hill
Water Quality Monitoring Results on	22 February, 2013

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depti	h (m)	Water Temp			н		nity ppt		ration (%)		ed Oxyger			urbidity(NT			ded Solids	
	Condition	Condition**	Time	1		Value 18.3	Average	Value 8.3	Average	Value 31.4	Average	Value 74.1	Average	Value 5.8	Average	DA*	Value 2.9	Average	DA*	Value 3.0	Average	DA⁺
	_			Surface	1	18.3	18.3	8.3 8.3	8.3	31.4 31.4	31.4	61.8 63.8	68.0	4.8	5.3	5.2	3.0 3.7	3.0		2.9 3.5	3.0	
CS1	Fine	Rough	11:10	Middle	6.5	18.3 18.2	18.3	8.3 8.2	8.3	31.4 32.0	31.4	62.4 61.5	63.1	4.9 4.8	5.0		3.6 5.3	3.7	4.0	3.3 4.2	3.4	3.4
				Bottom	12	18.2 19.1	18.2	8.2 8.5	8.2	31.9 29.8	32.0	61.5 88.1	61.5	4.8 6.8	4.8	4.8	5.2 2.5	5.3		3.1 1.8	3.7	
				Surface	1	19.0 18.6	19.1	8.5 8.4	8.5	30.1 30.6	30.0	84.9 84.6	86.5	6.6 6.6	6.7	6.6	2.4	2.5		2.8	2.3	
CS2	Fine	Rough	11:57	Middle	3.5	18.6	18.6	8.4	8.4	30.7 30.9	30.7	81.5 79.3	83.1	6.4 6.2	6.5		2.7	2.9	2.9	2.3	2.3	2.8
				Bottom	6	18.5	18.5	8.4	8.4	30.9 30.9	30.9	77.6	78.5	6.1 8.5	6.2	6.2	3.1	3.3		2.7	3.9	
				Surface	1	18.5	18.5	8.4	8.4	30.9	30.9	101.4	105.1	7.9	8.2	8.2	3.9	4.1		3.3	3.6	
IS1	Cloudy	Rough	10:53	Middle	5	18.4 18.4	18.4	8.3 8.3	8.3	31.1 31.1	31.1	106.3 99.3	102.8	8.3 7.8	8.1		3.9 4.4	4.2	5.7	4.3 4.2 2.7	4.3	3.8
				Bottom	9	18.3 18.3	18.3	8.3 8.3	8.3	31.4 31.4	31.4	96.2 94.4	95.3	7.5 7.4	7.5	7.5	8.6 8.7	8.7		4.1	3.4	
				Surface	1	18.5 18.5	18.5	8.4 8.4	8.4	30.9 30.9	30.9	130.3 128.4	129.4	10.2 10.0	10.1	10.1	4.2 4.0	4.1		2.4 2.7	2.6	
IS2	Cloudy	Rough	10:36	Middle	3.5	18.4 18.4	18.4	8.3 8.3	8.3	31.1 31.1	31.1	128.8 126.4	127.6	10.1 9.9	10.0		5.0 4.9	5.0	4.8	3.8 3.3	3.6	3.3
				Bottom	6	18.4 18.4	18.4	8.3 8.3	8.3	31.1 31.1	31.1	126.4 121.0	123.7	9.9 9.4	9.7	9.7	5.4 5.3	5.4		4.0 3.4	3.7	
				Surface	1	18.5 18.5	18.5	8.3 8.3	8.3	31.0 31.0	31.0	64.2 68.6	66.4	5.0 5.3	5.2	5.2	2.6 2.7	2.7		3.7 3.7	3.7	
IS3	Fine	Rough	10:33	Middle	-	-	-	-	-	-	-	-	-	-	-	3.2	-	-	3.4	-	-	4.0
				Bottom	4.5	18.5 18.5	18.5	8.3 8.3	8.3	31.3 31.2	31.3	68.7 70.1	69.4	5.4 5.5	5.5	5.5	4.2 3.9	4.1		3.7 4.8	4.3	
				Surface	1	18.6 18.6	18.6	8.4 8.4	8.4	30.6 30.6	30.6	136.7 129.7	133.2	10.7 10.1	10.4		2.6 2.4	2.5		2.9 2.4	2.7	
IS4	Cloudy	Rough	10:17	Middle	4	18.5 18.5	18.5	8.3 8.3	8.3	30.9 30.9	30.9	136.5 127.8	132.2	10.6 10.0	10.3	10.4	2.8 3.0	2.9	3.0	2.4 2.1	2.3	2.4
				Bottom	7	18.4	18.4	8.3 8.3	8.3	30.9 31.0	31.0	132.8 121.6	127.2	10.4 9.5	10.0	10.0	3.6 3.6	3.6		1.8	2.2	
				Surface	1	18.4 18.4	18.4	8.3 8.3	8.3	31.4 31.4	31.4	63.8 63.9	63.9	5.0 5.0	5.0		2.4 2.5	2.5		2.9 4.5	3.7	
SR1	Fine	Rough	10:55	Middle	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	2.9	-		4.6
				Bottom	2	18.3 18.4	18.4	8.3 8.3	8.3	31.4 31.4	31.4	63.7 64.2	64.0	5.0 5.0	5.0	5.0	3.3 3.0	3.2		4.4 6.6	5.5	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR2	Fine	Rough	10:22	Middle	1.1	18.8 18.8	18.8	8.3 8.3	8.3	30.4 30.4	30.4	69.4 72.3	70.9	5.4 5.6	5.5	5.5	6.3 6.5	6.4	6.4	3.6 5.3	4.5	4.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR3	Fine	Rough	10:00	Middle	0.7	19.0	19.0	8.0	8.1	29.6	29.7	69.0	70.1	5.4	5.5	5.5	4.2	4.2	4.2	7.2	6.3	6.3
				Bottom	-	- 19.0	-	8.1	-	29.7	-	71.2	-	5.5	-		4.2	-		- 5.3	-	
				Surface	1	19.3	19.3	8.5	8.5	29.1	29.1	110.0	104.6	8.5	8.1		2.6	2.5		1.9	2.2	
SR6	Cloudy	Rough	12:29	Middle	-	- 19.3	-	8.5	-	29.1	-	99.1	-	7.7	-	8.1	- 2.4	-	4.1	- 2.4		2.7
		_		Bottom	4.3	18.6	18.6	8.4 8.4	8.4	- 30.6 30.6	30.6	90.2 90.3	90.3	7.0 7.0	7.0	7.0	- 5.2 6.1	5.7		2.4	3.2	
				Surface	1	18.6 19.0	19.0	8.3	8.3	30.3	30.3	73.9	75.2	5.7	5.8		2.5	2.4		3.0	3.4	
SRA	Fine	Rough	10:09	Middle	5	19.0 18.9	18.9	8.3 8.3	8.3	30.3 30.5	30.5	76.5	77.0	5.9 6.0	6.0	5.9	2.2	2.2	2.6	3.7 2.9	3.3	3.5
				Bottom	9	18.9 18.9	18.9	8.3	8.3	30.4 30.5	30.5	77.1	76.7	6.0 5.9	6.0	6.0	2.2	3.2		3.6 3.2	3.8	-
				Surface	1	18.9 18.6	18.6	8.3 8.4	8.4	30.5 30.8	30.8	76.8 93.6	90.9	6.0 7.3	7.1		3.1 4.6	4.7		4.4 2.9	3.3	
ST1	Cloudy	Rough	11:12	Middle	5	18.6 18.4	18.4	8.4 8.3	8.3	30.8 31.1	31.1	88.2 89.2	88.1	6.9 7.0	6.9	7.0	4.7 5.0	5.0	5.8	3.7 5.0	5.3	4.7
	ciculay			Bottom	9	18.4 18.2	18.2	8.3 8.3	8.3	31.1 31.5	31.5	87.0 82.9	83.8	6.8 6.5	6.6	6.6	5.0 7.7	7.6	0.0	5.5 5.3	5.4	
				Surface	1	18.2 18.8	18.8	8.3 8.4	8.4	31.5 30.3	30.3	84.7 90.6	88.4	6.6 7.1	6.9	0.0	7.4 2.8	3.0		5.4 3.0	2.7	
ST2	Cloudy	Pouch	11:38		4	18.8 18.6		8.4 8.4		30.3 30.8		86.1 85.1		6.7 6.6		6.8	3.2 3.9		4.0	2.4 2.7		20
312	Cloudy	Rough	11:38	Middle		18.6 18.5	18.6	8.4 8.3	8.4	30.8 30.9	30.8	84.4 78.8	84.8	6.6 6.1	6.6	6.0	3.3 5.4	3.6	4.0	3.4 3.9	3.1	3.2
L				Bottom	7	18.5 18.4	18.5	8.3 8.3	8.3	30.9 31.2	30.9	79.6 52.1	79.2	6.2 4.1	6.2	6.2	5.5 3.2	5.5		3.5 2.7	3.7	
-	_			Surface	1	18.4	18.4	8.3 8.3	8.3	31.2 31.4	31.2	58.4 57.0	55.3	4.6 4.4	4.4	4.5	2.8	3.0		2.9	2.8	
ST3	Fine	Rough	11:25	Middle	7	18.3	18.3	8.3 8.3	8.3	31.3 31.6	31.4	59.0 57.7	58.0	4.6	4.5		2.3	2.4	3.9	4.0	4.2	3.7
				Bottom	13	18.3	18.3	8.3	8.3	31.6	31.6	58.6	58.2	4.5	4.6	4.6	6.2	6.2		3.0 4.4	4.1	

Contract No. HY/2011/09	
Hong Kong-Zhuhai-Macao Bridge Hong Ko	ng Link Road-Section between HKSAR Boundary and Scenic Hill
Water Quality Monitoring Results on	22 February, 2013

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depti	h (m)	Water Temp			н		nity ppt		ration (%)		ed Oxyger			urbidity(NT			ided Solids	
	Condition	Condition**	Time	Surface	1	Value 18.5	Average 18.5	8.3	Average 8.3	Value 31.4	Average 31.4	Value 54.2	Average 50.8	Value 4.2	Average 4.0	DA*	1.9	Average 2.0	DA*	Value 3.3	Average 3.0	DA*
CS1	Fine	Rough	15:24	Middle	7	18.5 18.4	18.4	8.3 8.3	8.3	31.3 31.4	31.4	47.4 52.0	50.2	3.7 4.1	4.0	4.0	2.0 2.2	2.0	2.1	2.6 2.8	2.4	2.9
				Bottom	13	18.4 18.4	18.4	8.3 8.2	8.2	31.4 31.5	31.5	48.3 49.3	48.5	3.8 3.8	3.8	3.8	1.8 2.2	2.2		1.9 3.2	3.3	
				Surface	1	18.4 19.2	19.2	8.2 8.5	8.5	31.5 30.2	30.2	47.7 75.3	75.9	3.7 5.8	5.9	0.0	2.1 2.3	2.3		3.3 2.7	3.0	
CS2	Cloudy	Rough	17:15	Middle	3.5	19.2 19.2	19.2	8.5 8.5	8.5	30.2 30.2	30.3	76.4 84.3	82.2	5.9 6.5	6.4	6.2	2.3 2.5	2.5	4.1	3.3 4.2	4.2	3.4
	,			Bottom	6	19.2 18.8	18.8	8.5	8.4	30.3 30.9	30.9	80.1 79.5	79.0	6.2 6.2	6.2	6.2	2.4 7.5	7.5		4.1	2.9	
				Surface	1	18.8 18.7	18.7	8.4	8.4	30.9 31.0	31.0	78.5	68.1	6.1 5.5	5.3	-	7.5	4.9		3.0 5.3	5.1	
IS1	Fine	Rough	15:30	Middle	4.5	18.7 18.7	18.8	8.4	8.4	31.0 31.0	31.0	65.7 70.6	66.3	5.1 5.5	5.2	5.3	4.9 3.9	3.9	4.8	4.9 2.9	3.2	4.1
				Bottom	8	18.8	18.3	8.4	8.3	31.0 31.4	31.5	62.0 66.0	61.1	4.8 5.2	4.8	4.8	3.9 5.3	5.6		3.5	4.0	
				Surface	1	18.3	18.9	8.3	8.4	31.5 30.9	30.9	56.1 81.9	81.6	4.4 6.3	6.3		5.8 4.5	4.6		4.3	3.6	
IS2	Fine	Rough	15:08	Middle	3.5	18.9 18.8	18.8	8.4	8.4	30.9 30.9	30.9	81.2 80.9	80.7	6.3 6.3	6.3	6.3	4.6	3.4	4.4	4.1	4.4	3.8
				Bottom	6	18.8 18.7 18.5	18.6	8.4 8.4 8.4	8.4	30.9 30.9 31.0	31.0	80.4 81.9 69.0	75.5	6.2 6.4 5.4	5.9	5.9	3.3 5.0 5.1	5.1		4.0 3.1 3.5	3.3	
				Surface	1	19.4	19.4	8.4	8.4	31.2	31.2	61.8	62.0	4.8	4.8		2.3	2.4		2.9	3.1	
IS3	Fine	Rough	16:03	Middle	-	- 19.4	-	- 8.4	-	31.2	-	62.1 -	-	4.7	-	4.8	- 2.4	-	3.9	3.2	-	3.8
				Bottom	4.3	18.5 18.6	18.6	8.3 8.3	8.3	31.4 31.4	31.4	66.5 60.7	63.6	5.2 4.7	5.0	5.0	5.4 5.2	5.3		4.9 3.8	4.4	
				Surface	1	19.2 19.1	19.2	8.4 8.5	8.5	30.6 30.7	30.7	106.1 101.4	103.8	8.2 7.8	8.0		2.8 2.8	2.8		2.5 3.5	3.0	
IS4	Fine	Rough	14:45	Middle	3.5	19.0	19.1	8.4 8.5	8.5	30.7 30.7 30.7	30.7	101.4 108.1 99.4	103.8	8.4	8.1	8.1	3.1 3.2	3.2	3.0	2.3 3.0	2.7	3.0
				Bottom	6	18.7 18.7	18.7	8.4 8.4	8.4	30.8 30.8	30.8	105.2 95.8	100.5	8.2 7.4	7.8	7.8	2.6 3.1	2.9		3.2 3.2	3.2	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR1	Fine	Rough	15:36	Middle	1.3	18.9 18.9	18.9	8.4 8.4	8.4	31.5 30.2	30.9	48.6 46.8	47.7	3.8 3.6	3.7	3.7	8.0 8.1	8.1	8.1	7.3 8.4	7.9	7.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-		-	-	
SR2	Fine	Rough	16:16	Middle	1	19.6 19.6	19.6	8.5 8.5	8.5	29.8 31.1	30.5	51.1 54.0	52.6	3.9 4.1	4.0	4.0	4.6 4.6	4.6	4.6	6.0 5.4	5.7	5.7
				Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	3.7	-	-		-	-	
SR3	Fine	Rough	16:34	Middle	0.8	20.1 20.1	20.1	8.4 8.4	8.4	29.1 30.4	29.8	48.4 47.6	48.0	3.7 3.7	3.7	0.7	2.5 2.8	2.7	2.7	6.0 4.8	5.4	5.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	19.2 19.2	19.2	8.5 8.5	8.5	29.6 29.6	29.6	74.4 74.1	74.3	5.8 5.7	5.8	5.8	3.1 3.0	3.1		2.6 2.8	2.7	
SR6	Fine	Rough	16:49	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.6	-	-	3.1
				Bottom	4.6	18.6 18.6	18.6	8.4 8.4	8.4	30.8 30.8	30.8	59.8 53.3	56.6	4.7 4.2	4.5	4.5	7.7 8.2	8.0		3.4 3.4	3.4	
				Surface	1	19.4 19.4	19.4	8.4 8.4	8.4	29.3 29.6	29.5	50.0 46.2	48.1	3.9 3.6	3.8	4.1	1.2	1.2		3.6 2.1	2.9	
SRA	Fine	Rough	16:26	Middle	4.5	19.1 19.0	19.1	8.4 8.4	8.4	30.8 29.5	30.2	54.3 55.9	55.1	4.2 4.4	4.3		1.5 1.5	1.5	1.4	1.8 2.4 3.5	2.1	2.7
				Bottom	8	18.6 18.6	18.6	8.3 8.3	8.3	31.1 31.1	31.1	54.2 57.0	55.6	4.4 4.4	4.4	4.4	1.4 1.3	1.4		2.4	3.0	
				Surface	1	18.6 18.6	18.6	8.4	8.4	31.1 31.1	31.1	70.4 61.7	66.1	5.5 4.8	5.2	5.2	5.0 5.0	5.0		4.5 5.9	5.2	
ST1	Fine	Rough	15:51	Middle	5	18.6 18.6 18.3	18.6	8.4 8.4 8.3	8.4	31.1 31.1 31.5	31.1	67.9 63.7 60.3	65.8	5.3 5.0 4.7	5.2		4.1 4.1 6.2	4.1	5.1	5.1 4.0 5.2	4.6	5.1
				Bottom	9	18.3	18.3	8.3	8.3	31.5	31.5	58.2	59.3	4.5	4.6	4.6	6.4	6.3		5.9	5.6	
				Surface	1	19.2 19.2	19.2	8.5 8.5	8.5	30.3 30.3	30.3	70.1 71.3	70.7	5.4 5.5	5.5	5.1	3.4 3.7	3.6		2.8 3.5	3.2	
ST2	Fine	Rough	16:18	Middle	4	18.9 19.0 18.9	19.0	8.5 8.5 8.4	8.5	30.7 30.6 30.7	30.7	58.8 57.5 58.0	58.2	4.6 4.5 4.5	4.6		3.2 3.5 4.0	3.4	3.7	4.5 3.9 2.7	4.2	3.4
				Bottom	7	18.8	18.9	8.4	8.4	30.7 30.8 30.6	30.8	57.3 54.0	57.7	4.5 4.4 4.2	4.5	4.5	4.3	4.2		2.8	2.8	
				Surface	1	18.7 18.6 18.5	18.7	8.1 8.2 8.2	8.2	30.6 31.1 31.1	30.9	54.0 55.8 47.5	54.9	4.3	4.3	4.1	1.3 1.4 1.9	1.4		3.3 3.2 2.6	3.3	
ST3	Fine	Rough	14:56	Middle	7	18.5 18.6 18.3	18.6	8.2 8.2 8.2	8.2	31.1 31.1 31.5	31.1	47.5 51.3 43.6	49.4	3.7 4.0 3.4	3.9		2.0 3.8	2.0	2.4	2.6 2.8 4.5	2.7	3.7
				Bottom	13	18.3	18.3	8.2 8.2	8.2	31.5	31.6	43.6 50.5	47.1	3.4	3.7	3.7	3.8 3.8	3.8		4.5 5.5	5.0	

Contract No. HY/2011/09	
Hong Kong-Zhuhai-Macao Bridge Hong Ko	ng Link Road-Section between HKSAR Boundary and Scenic Hill
Water Quality Monitoring Results on	25 February, 2013

(Mid-Ebb Tide)

Location	Weather Condition	Sea Condition**	Sampling Time	Dept	h (m)	Water Temp Value	oerature (°C) Average	p Value	H Average	Salin Value	ity ppt Average	DO Satu Value	ration (%) Average	Dissolv Value	ed Oxyger Average	n (mg/L) DA*	Tu Value	urbidity(NT Average	U) DA*		ded Solids Average	s (mg/L) DA*
	Condition	Condition	Time	Surface	1	18.3	18.3	8.4	8.4	31.5	31.5	64.9	65.1	5.1	5.1	DA	2.4	2.5	DA	3.1	3.4	DA
CS1	Cloudy	Calm	12:25	Middle	6.5	18.3 18.2 18.2	18.2	8.4 8.3 8.3	8.3	31.5 31.9 31.9	31.9	65.3 64.8 64.6	64.7	5.1 5.1 5.0	5.1	5.1	2.5 3.3 4.0	3.7	4.1	3.7 4.7 5.4	5.1	4.8
				Bottom	12	18.0 18.0	18.0	8.3 8.3	8.3	32.1 32.1	32.1	61.4 61.4	61.4	4.8 4.8	4.8	4.8	6.0 6.0	6.0		5.9 5.6	5.8	
				Surface	1	18.6 18.6	18.6	8.4 8.4	8.4	30.9 31.0	31.0	56.5 62.8	59.7	4.4 4.9	4.7	4.0	3.6 3.3	3.5		3.4 2.8	3.1	
CS2	Cloudy	Calm	13:56	Middle	4	18.4 18.4	18.4	8.4 8.4	8.4	31.4 31.3	31.4	67.4 59.2	63.3	5.3 4.6	5.0	4.9	6.3 6.6	6.5	5.8	5.2 5.6	5.4	4.4
				Bottom	7	18.3 18.3	18.3	8.3 8.3	8.3	31.5 31.5	31.5	59.3 55.3	57.3	4.6 4.3	4.5	4.5	7.3 7.3	7.3		6.2 3.0	4.6	
				Surface	1	18.3 18.6	18.5	8.4 8.4	8.4	31.3 31.1	31.2	72.4 66.6	69.5	5.7 5.2	5.5		5.1 5.7	5.4		5.2 4.4	4.8	
IS1	Cloudy	Calm	12:05	Middle	5	18.1	18.1	8.3 8.3	8.3	31.7 31.7	31.7	67.2 61.7	64.5	5.3 4.8	5.1	5.3	8.6 8.4	8.5	7.8	7.1	8.6	7.7
				Bottom	9	18.1 18.1	18.1	8.3 8.3	8.3	31.7 31.7	31.7	62.2 64.3	63.3	4.9 5.0	5.0	5.0	9.6 9.4	9.5		9.8 9.6	9.7	
				Surface	1	18.5 18.5	18.5	8.4 8.4	8.4	31.2 31.2	31.2	76.5 72.3	74.4	6.0 5.6	5.8		4.8 4.9	4.9		4.6 4.6	4.6	
IS2	Cloudy	Calm	11:47	Middle	3.5	18.1 18.1	18.1	8.3 8.3	8.3	31.7 31.7	31.7	75.3 66.9	71.1	5.9 5.2	5.6	5.7	8.0 8.4	8.2	7.5	6.9 7.5	7.2	7.0
				Bottom	6	18.1	18.1	8.3 8.3	8.3	31.7 31.8	31.8	68.3 63.1	65.7	5.3 4.9	5.1	5.1	9.5 9.1	9.3		9.3 9.2	9.3	
				Surface	1	18.5 18.5	18.5	8.3 8.3	8.3	31.8 31.8	31.8	63.6 64.6	64.1	4.9 5.0	5.0		3.0 3.2	3.1		8.0 5.8	6.9	
IS3	Cloudy	Calm	11:42	Middle	3	18.3 18.2	18.3	8.3 8.3	8.3	31.9 32.0	32.0	66.7 66.6	66.7	5.2 5.2	5.2	5.1	5.4 5.4	5.4	4.9	5.0 4.9	5.0	6.8
				Bottom	5	18.2	18.2	8.3 8.3	8.3	31.9 32.0	32.0	65.6 65.9	65.8	5.1 5.1	5.1	5.1	6.3 6.2	6.3		8.0 8.9	8.5	
				Surface	1	18.4 18.4	18.4	8.4 8.4	8.4	31.5 31.5	31.5	84.2 80.8	82.5	6.6 6.3	6.5		4.8 5.1	5.0		4.5 6.2	5.4	
IS4	Cloudy	Calm	11:27	Middle	3.5	18.3 18.3	18.3	8.4 8.4	8.4	31.6 31.6	31.6	85.3 84.1	84.7	6.6 6.6	6.6	6.6	5.4 5.6	5.5	6.0	7.0	7.3	6.2
				Bottom	6	18.2 18.2	18.2	8.4 8.4	8.4	31.7 31.7	31.7	87.2 83.6	85.4	6.8 6.5	6.7	6.7	7.4 7.6	7.5		5.3 6.7	6.0	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR1	Cloudy	Calm	12:15	Middle	1.4	18.3 18.3	18.3	8.3 8.3	8.3	32.1 32.1	32.1	69.7 69.5	69.6	5.4 5.4	5.4	5.4	6.4 6.6	6.5	6.5	9.1 8.4	8.8	8.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-		-	-	
SR2	Cloudy	Calm	11:34	Middle	1.1	18.6 18.6	18.6	8.4 8.4	8.4	31.1 31.1	31.1	66.1 69.3	67.7	5.1 5.4	5.3	5.3	2.8 2.7	2.8	2.8	5.1 6.5	5.8	5.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-		-	-	-	E 7	-	-		-	-	
SR3	Cloudy	Calm	11:20	Middle	0.8	19.1 19.1	19.1	8.3 8.3	8.3	30.6 30.6	30.6	73.6 73.9	73.8	5.7 5.7	5.7	5.7	2.5 2.6	2.6	2.6	3.9 4.1	4.0	4.0
				Bottom		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	18.9 18.9	18.9	8.4 8.4	8.4	30.5 30.6	30.6	71.1 66.2	68.7	5.5 5.1	5.3	5.0	5.3 5.4	5.4		4.9 5.1	5.0	
SR6	Cloudy	Calm	13:33	Middle	-	-	-	-	-	-	-	-	-	-	-	5.3	-	-	6.4	-	-	5.2
				Bottom	4.4	18.6 18.6	18.6	8.4 8.4	8.4	30.8 30.9	30.9	62.4 59.4	60.9	4.9 4.6	4.8	4.8	7.9 6.7	7.3		5.9 4.7	5.3	
				Surface	1	18.5 18.5	18.5	8.3 8.4	8.4	31.2 31.2	31.2	69.9 71.1	70.5	5.4 5.5	5.5	57	2.2 2.3	2.3		5.0 4.5	4.8	
SRA	Cloudy	Calm	11:26	Middle	4.5	18.4 18.4	18.4	8.3 8.3	8.3	31.3 31.3	31.3	74.1 73.9	74.0	5.8 5.8	5.8	5.7	3.8 3.9	3.9	2.8	7.2 5.6	6.4	5.4
				Bottom	8	18.4 18.4	18.4	8.3 8.3	8.3	31.3 31.3	31.3	73.7 73.7	73.7	5.7 5.7	5.7	5.7	2.1 2.0	2.1		5.1 4.7	4.9	
				Surface	1	18.4 18.4	18.4	8.4 8.4	8.4	31.1 31.3	31.2	69.6 67.7	68.7	5.4 5.3	5.4	5.0	6.3 6.2	6.3		6.8 7.8	7.3	
ST1	Cloudy	Calm	12:28	Middle	5	18.4 18.4	18.4	8.4 8.4	8.4	31.3 31.4	31.4	69.3 60.5	64.9	5.4 4.7	5.1	5.3	6.7 7.7	7.2	8.4	6.6 7.0	6.8	7.0
				Bottom	9	18.3 18.3	18.3	8.4 8.4	8.4	31.5 31.5	31.5	60.9 54.2	57.6	4.8 4.2	4.5	4.5	10.8 12.5	11.7		7.1 6.7	6.9	
				Surface	1	18.3 18.3	18.3	8.4 8.4	8.4	31.5 31.5	31.5	70.3 65.0	67.7	5.5 5.1	5.3	E 4	6.0 5.8	5.9		6.4 6.4	6.4	
ST2	Cloudy	Calm	12:58	Middle	4	18.3 18.3	18.3	8.4 8.4	8.4	31.5 31.5	31.5	63.5 58.6	61.1	5.0 4.6	4.8	5.1	6.1 6.5	6.3	6.3	6.0 6.5	6.3	6.4
				Bottom	7	18.3 18.3	18.3	8.3 8.4	8.4	31.5 31.5	31.5	59.0 56.5	57.8	4.6 4.4	4.5	4.5	6.7 6.7	6.7		7.2 5.9	6.6	
				Surface	1	18.5 18.5	18.5	8.4 8.4	8.4	31.5 31.6	31.6	56.4 58.1	57.3	4.4 4.5	4.5	4.0	3.3 3.4	3.4		4.1 5.3	4.7	
ST3	Cloudy	Calm	12:35	Middle	7	18.2 18.3	18.3	8.3 8.3	8.3	31.8 31.8	31.8	60.7 60.7	60.7	4.7	4.7	4.6	3.8 4.2	4.0	7.5	6.8 4.9	5.9	6.1
				Bottom	13	18.2 18.2	18.2	8.3 8.3	8.3	32.1 32.1	32.1	60.1 60.4	60.3	4.7	4.7	4.7	15.6 14.8	15.2		7.3	7.8	

Contract No. HY/2011/09	
Hong Kong-Zhuhai-Macao Bridge Hong Ko	ng Link Road-Section between HKSAR Boundary and Scenic Hill
Water Quality Monitoring Results on	25 February, 2013

(Mid-Flood Tide)

Location	Weather	Sea Condition**	Sampling	Dept	h (m)	Water Temp Value			H	Salir Value	nity ppt		ration (%)		ed Oxyger	n (mg/L) DA*		urbidity(N1 Average			ided Solids	
	Condition	Condition**	Time	Surface	1	18.7	Average 18.7	Value 8.4	Average 8.4	31.5	Average 31.6	Value 53.9	Average 54.9	Value 4.2	Average 4.3	DA	2.1	2.3	DA*	Value 6.1	Average 5.7	DA
CS1	Cloudy	Calm	17:35	Middle	6.5	18.6 18.3	18.3	8.4 8.3	8.3	31.6 31.8	31.8	55.9 56.3	56.4	4.3 4.4	4.4	4.4	2.4 4.8	4.8	4.8	5.3 4.3	4.2	4.9
031	Cioudy	Gain	17.55	Bottom	12	18.3 18.2	18.2	8.3 8.3	8.3	31.8 31.9	31.9	56.4 56.1	56.5	4.4 4.4		4.4	4.8 7.3	7.2	4.0	4.0 4.9	4.2	4.5
					12	18.2 19.2		8.3 8.4		31.9 29.8		56.8 120.9		4.4 9.4	4.4	4.4	7.1 3.3			4.9 3.4		<u> </u>
CS2	Olavata	Q al an	17-00	Surface	3.5	19.2 18.9	19.2	8.4 8.4	8.4	30.0 30.6	29.9	124.5 120.5	122.7	9.7 9.4	9.6	9.8	3.0 3.2	3.2		4.3 6.7	3.9	4.0
052	Cloudy	Calm	17:06	Middle		18.8 18.6	18.9	8.4 8.3	8.4	30.8 31.1	30.7	135.7 115.3	128.1	10.6 9.0	10.0		3.2 4.0	3.2	3.5	4.5 5.6	5.6	4.8
				Bottom	6	18.6 18.4	18.6	8.3 8.3	8.3	31.1 31.4	31.1	125.1 108.6	120.2	9.7 8.5	9.4	9.4	4.4 5.0	4.2		4.3 7.2	5.0	┝───
				Surface	1	18.4 18.3	18.4	8.4	8.4	31.5 31.5	31.5	107.7 111.8	108.2	8.4 8.7	8.5	8.3	5.1 5.1	5.1	-	6.9 4.4	7.1	-
IS1	Cloudy	Calm	18:25	Middle	5	18.3	18.3	8.3 8.3	8.3	31.5 31.5	31.5	94.6 99.4	103.2	7.4	8.1		4.7	4.9	6.4	4.8	4.6	5.9
				Bottom	9	18.2	18.2	8.3	8.3	31.6 31.1	31.6	91.6	95.5	7.2	7.5	7.5	9.6	9.1		6.5	6.0	<u> </u>
				Surface	1	18.6	18.6	8.4	8.4	31.3	31.2	112.8	110.7	8.8 8.4	8.6	8.3	4.2	4.0	-	3.6 3.8	3.7	
IS2	Cloudy	Calm	18:40	Middle	3.5	18.5 18.5	18.5	8.4 8.4	8.4	31.4 31.5	31.5	111.1 95.6	103.4	8.6 7.4	8.0		3.8 3.5	3.7	4.9	4.9 4.4	4.7	4.4
				Bottom	6	18.3 18.3	18.3	8.3 8.3	8.3	31.5 31.5	31.5	99.5 91.5	95.5	7.8 7.1	7.5	7.5	7.1 7.0	7.1		4.5 5.1	4.8	
				Surface	1	18.6 18.6	18.6	8.4 8.4	8.4	31.9 31.9	31.9	60.3 60.6	60.5	4.7 4.7	4.7	4.7	3.1 3.1	3.1		7.2 5.8	6.5	
IS3	Cloudy	Calm	18:00	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.4	-	-	5.7
				Bottom	4	18.4 18.5	18.5	8.3 8.3	8.3	32.0 32.0	32.0	61.0 61.1	61.1	4.7 4.7	4.7	4.7	3.6 3.8	3.7		4.9 4.6	4.8	
				Surface	1	18.5 18.5	18.5	8.4 8.4	8.4	31.4 31.6	31.5	89.2 99.0	94.1	6.9 7.7	7.3	7.0	4.2 3.9	4.1		6.3 3.7	5.0	
IS4	Cloudy	Calm	18:59	Middle	4	18.4 18.4	18.4	8.4 8.4	8.4	31.6 31.6	31.6	113.8 99.0	106.4	8.9 7.7	8.3	7.8	4.1 4.9	4.5	4.5	4.0 5.0	4.5	4.5
				Bottom	7	18.4 18.4	18.4	8.3 8.4	8.4	31.6 31.6	31.6	102.0 90.2	96.1	7.9 7.0	7.5	7.5	5.0 4.7	4.9		4.5 3.7	4.1	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR1	Cloudy	Calm	17:15	Middle	1.1	18.9 18.8	18.9	8.2 8.2	8.2	31.3 31.3	31.3	67.8 63.4	65.6	5.2 4.9	5.1	5.1	4.8 5.0	4.9	4.9	8.3 7.3	7.8	7.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR2	Cloudy	Calm	18:08	Middle	0.8	19.0	19.0	8.4	8.4	31.5	31.6	60.0 60.1	60.1	4.6	4.6	4.6	3.4	3.4	3.4	6.6	6.5	6.5
				Bottom	-	- 19.0	-	- 8.4	-	31.6	-	- 60.1	-	4.6	-	-	3.4	-	ł	6.4 -	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR3	Cloudy	Calm	18:24	Middle	1.1	18.9	18.9	8.4	8.4	31.3	31.3	54.9	55.0	4.2	4.3	4.3	11.9	12.0	12.0	44.5	47.5	47.5
	-			Bottom	-	- 18.9	-	8.4	-	31.3	-	- 55.1	-	4.3	-	-	12.0	-	-	50.5	-	
				Surface	1	19.2	19.2	8.4	8.4	- 29.7	29.8	- 118.7	118.5	- 9.2	9.2		- 5.0	4.7		- 4.5	5.2	
SR6	Cloudy	Calm	17:30	Middle	-	19.2 -	-	- 8.4	-	29.9	-	- 118.2	-	9.2	-	9.2	4.4	-	4.9	5.8 -	-	4.5
	,			Bottom	4.2	- 19.0	19.0	8.4	8.4	30.2	30.2	- 136.0	136.5	- 10.6	10.6	10.6	5.0	5.1		3.6	3.8	
				Surface	1	19.0 19.1	19.1	8.4	8.4	30.1 31.1	31.2	137.0 58.6	58.9	10.6 4.5	4.6	10.0	5.1 3.2	3.3		3.9 4.9	6.2	<u> </u>
SRA	Cloudy	Colm	18:16	Middle	3.5	19.1 18.9	18.9	8.4 8.4	8.4	31.2 31.2	31.2	59.1 58.5	58.5	4.6 4.5	4.5	4.6	3.3 2.9	2.9	2.0	7.5 5.0		5.8
ShA	Cloudy	Calm	10.10			18.9 18.9		8.4 8.4		31.2 31.2		58.5 57.7		4.5 4.5		4.5	2.9 5.1		3.8	6.1 5.1	5.6	5.0
				Bottom	6	18.9 18.6	18.9	8.4	8.4	31.2 31.0	31.2	57.7 114.8	57.7	4.5 8.9	4.5	4.5	5.3 3.6	5.2		6.3 4.7	5.7	<u> </u>
				Surface	1	18.6 18.5	18.6	8.4	8.4	31.2 31.3	31.1	112.7 114.4	113.8	8.8 8.9	8.9	8.8	3.4 4.0	3.5	-	4.4	4.6	
ST1	Cloudy	Calm	18:13	Middle	5	18.5	18.5	8.4	8.4	31.4 31.4	31.4	106.5 108.0	110.5	8.3 8.4	8.6		3.8 4.6	3.9	3.9	3.8 4.6	4.3	4.5
				Bottom	9	18.4	18.4	8.4	8.4	31.4	31.4	101.7	104.9	7.9	8.2	8.2	3.9	4.3		4.6	4.6	<u> </u>
				Surface	1	19.1 19.1	19.1	8.4 8.4	8.4	30.0 30.1	30.1	103.1	105.3	8.0 8.3	8.2	8.7	3.2 3.1	3.2	ł	4.7	5.5	ł
ST2	Cloudy	Calm	17:54	Middle	4	19.0 18.9	19.0	8.4	8.4	30.4 30.6	30.5	108.3 126.3	117.3	8.4 9.8	9.1		3.7 3.3	3.5	5.0	4.5	4.1	4.7
				Bottom	7	18.5 18.5	18.5	8.4 8.4	8.4	31.2 31.3	31.3	106.2 123.8	115.0	8.3 9.6	9.0	9.0	7.9 8.5	8.2		4.7 4.0	4.4	Ļ
				Surface	1	19.2 18.9	19.1	8.4 8.4	8.4	31.1 31.3	31.2	44.5 46.4	45.5	3.4 3.6	3.5	3.8	1.4 1.5	1.5	ļ	4.0 4.5	4.3	ļ
ST3	Cloudy	Calm	17:25	Middle	7.5	18.2 18.2	18.2	8.3 8.3	8.3	31.8 31.8	31.8	50.9 50.9	50.9	4.0 4.0	4.0		3.3 3.6	3.5	4.9	4.2 5.3	4.8	4.9
				Bottom	14	18.1 18.1	18.1	8.3 8.3	8.3	31.9 31.9	31.9	51.0 51.0	51.0	4.0 4.0	4.0	4.0	9.7 9.8	9.8		5.3 6.1	5.7	

Contract No. HY/2011/09	
Hong Kong-Zhuhai-Macao Bridge Hong Ko	ng Link Road-Section between HKSAR Boundary and Scenic Hill
Water Quality Monitoring Results on	27 February, 2013

(Mid-Ebb Tide)

Location	Weather Condition	Sea Condition**	Sampling Time	Dept	h (m)	Water Temp Value	oerature (°C) Average	p Value	H Average	Salini Value	ity ppt Average	DO Satu Value	ration (%) Average	Dissolv Value	ed Oxyger Average	n (mg/L) DA*	Tu Value	urbidity(NT Average		Suspen Value	ded Solids Average	s (mg/L) DA*
	Condition	Condition		Surface	1	18.9	18.9	8.4	8.4	30.6	30.6	78.4	78.6	6.2	6.3	5.1	3.7	3.7	<u>UN</u>	5.9	6.2	
CS1	Sunny	Calm	13:00	Middle	6.5	18.9 18.7 18.7	18.7	8.4 8.3 8.3	8.3	30.6 30.9 30.9	30.9	78.8 76.9 77.2	77.1	6.3 6.1 6.2	6.2	6.3	3.6 5.7 5.0	5.4	5.3	6.5 7.6 6.2	6.9	6.6
				Bottom	12	18.4 18.4	18.4	8.3 8.3	8.3	31.5 31.5	31.5	76.2 76.1	76.2	6.1 6.1	6.1	6.1	6.7 6.8	6.8		6.1 7.0	6.6	
			Surface	1	20.1 20.1	20.1	8.4 8.4	8.4	28.8 28.7	28.8	86.7 85.2	86.0	6.6 6.5	6.6	6 F	3.5 3.4	3.5		6.3 5.7	6.0		
CS2	Sunny	Calm	14:25	Middle	4	19.3 19.2	19.3	8.4 8.4	8.4	29.0 30.2	29.6	80.7 80.7	80.7	6.3 6.2	6.3	6.5	7.0 8.6	7.8	6.6	5.1 5.8	5.5	6.6
				Bottom	7	19.2 19.1	19.2	8.4 8.4	8.4	30.2 29.1	29.7	79.5 79.0	79.3	6.1 6.2	6.2	6.2	8.5 8.2	8.4		6.6 10.2	8.4	
				Surface	1	19.4 19.3	19.4	8.4 8.4	8.4	29.5 29.7	29.6	85.1 85.2	85.2	6.6 6.6	6.6		3.3 3.4	3.4		3.6 3.6	3.6	
IS1	Sunny	Calm	13:15	Middle	3.5	18.9 18.9	18.9	8.4 8.4	8.4	30.2 30.2	30.2	78.8 79.2	79.0	6.1 6.2	6.2	6.4	4.8	4.8	4.4	3.1 2.7	2.9	3.8
				Bottom	6	18.8 18.7	18.8	8.4 8.4	8.4	30.5 30.5	30.5	77.4 77.1	77.3	6.0 6.0	6.0	6.0	5.0 4.8	4.9		3.5 6.1	4.8	
				Surface	1	19.0 19.0	19.0	8.4 8.4	8.4	29.2 30.3	29.8	86.1 86.7	86.4	6.7 6.7	6.7		6.5 6.3	6.4		6.3 2.9	4.6	
IS2	Sunny	Calm	13:02	Middle	4	18.8 18.8	18.8	8.4 8.4 8.4	8.4	30.5 30.5	30.5	87.4 87.4	87.4	6.7 6.7 6.7	6.7	6.7	7.0	7.0	7.2	8.0 4.5	6.3	5.2
				Bottom	7	18.8	18.8	8.4 8.4	8.4	30.6 30.6	30.6	88.9 89.6	89.3	6.8 6.9	6.9	6.9	8.4 8.2	8.3		4.5 4.9	4.7	
				Surface	1	19.9 19.9	19.9	8.5 8.5	8.5	29.6 29.6	29.6	81.9 81.9	81.9	6.4 6.4	6.4		9.5 8.7	9.1		6.8 6.9	6.9	
IS3	Sunny	Calm	13:20	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	7.4	-	-	7.0
				Bottom	4	19.5 19.5	19.5	8.4 8.4	8.4	30.0 30.0	30.0	79.7 80.5	80.1	6.3 6.4	6.4	6.4	5.6 5.7	5.7		7.4 6.8	7.1	
				Surface	1	19.4 19.4	19.4	8.4 8.4	8.4	29.7 29.8	29.8	78.3 78.1	78.2	6.3 6.3	6.3		3.6 3.6	3.6		4.8 5.7	5.3	
IS4	Sunny	Calm	12:42	Middle	4	19.2 19.2	19.2	8.4 8.4	8.4	30.1 30.1	30.1	74.6 74.7	74.7	5.8 5.7	5.8	6.1	3.5 3.6	3.6	3.6	4.3 4.0	4.2	5.2
				Bottom	7	19.2 19.2	19.2	8.4 8.4	8.4	30.1 30.2	30.2	78.4 77.3	77.9	6.3 6.2	6.3	6.3	3.7 3.7	3.7		6.7 5.6	6.2	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR1	Sunny	Calm	12:31	Middle	1.3	19.4 19.4	19.4	8.3 8.3	8.3	30.7 30.6	30.7	86.5 87.4	87.0	6.8 6.9	6.9	6.9	6.7 6.8	6.8	6.8	7.2 6.5	6.9	6.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR2	Sunny	Calm	13:30	Middle	0.8	20.4 20.7	20.6	8.4 8.4	8.4	30.7 30.6	30.7	75.4 77.0	76.2	5.9 6.0	6.0	6.0	7.8 8.1	8.0	8.0	10.3 13.4	11.9	11.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-		-	-	
SR3	Sunny	Calm	13:55	Middle	1.0	20.5 20.4	20.5	8.4 8.4	8.4	30.8 30.8	30.8	75.6 75.7	75.7	5.9 5.9	5.9	5.9	3.5 2.9	3.2	3.2	6.1 7.2	6.7	6.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	20.3 20.3	20.3	8.4 8.4	8.4	30.0 30.0	30.0	81.8 81.7	81.8	6.2 6.2	6.2		4.5 4.3	4.4		3.8 6.5	5.2	
SR6	Sunny	Calm	14:50	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	6.2	-	-	5.5
				Bottom	4	19.4 19.3	19.4	8.4 8.4	8.4	30.1 30.1	30.1	79.6 79.4	79.5	6.1 6.1	6.1	6.1	8.6 7.4	8.0		5.1 6.2	5.7	
				Surface	1	19.8 19.8	19.8	8.4 8.4	8.4	30.5 30.5	30.5	77.3 77.3	77.3	6.1 6.1	6.1	6.1	3.2 3.2	3.2		5.0 5.8	5.4	
SRA	Sunny	Calm	13:40	Middle	4	19.7 19.7	19.7	8.4 8.4	8.4	30.6 30.6	30.6	76.7 77.2	77.0	6.0 6.1	6.1	6.1	4.0 3.3	3.7	3.7	6.9 7.1	7.0	6.3
				Bottom	7	19.4 19.4	19.4	8.4 8.4	8.4	30.7 30.7	30.7	76.3 76.3	76.3	6.0 6.0	6.0	6.0	4.4 4.0	4.2		6.1 6.8	6.5	
				Surface	1	20.3 20.3	20.3	8.4 8.4	8.4	29.7 29.7	29.7	80.5 80.3	80.4	6.1 6.1	6.1	6.1	2.6 2.6	2.6		6.2 5.3	5.8	
ST1	Sunny	Calm	13:33	Middle	5	19.3 19.2	19.3	8.4 8.4	8.4	28.8 30.0	29.4	78.8 79.2	79.0	6.1 6.1	6.1	6.1	2.8 3.4	3.1	3.4	6.1 5.5	5.8	6.2
				Bottom	9	18.6 18.6	18.6	8.4 8.4	8.4	31.1 31.1	31.1	76.7 75.3	76.0	6.0 5.9	6.0	6.0	4.3 4.5	4.4		6.9 7.0	7.0	
				Surface	1	19.2 19.2	19.2	8.4 8.4	8.4	30.5 30.3	30.4	85.5 84.8	85.2	6.6 6.5	6.6	6 F	6.6 6.6	6.6		4.4 6.2	5.3	
ST2	Sunny	Calm	13:49	Middle	4	18.8 18.7	18.8	8.4 8.4	8.4	30.7 30.8	30.8	81.0 79.8	80.4	6.3 6.2	6.3	6.5	7.6 7.3	7.5	8.2	3.1 4.6	3.9	4.6
				Bottom	7	18.6 18.6	18.6	8.4 8.4	8.4	31.0 30.9	31.0	77.2 76.8	77.0	6.0 6.0	6.0	6.0	10.4 10.6	10.5		4.5 4.5	4.5	
				Surface	1	18.8 19.0	18.9	8.4 8.4	8.4	30.5 30.3	30.4	80.3 80.8	80.6	6.4 6.4	6.4	6.4	4.3 3.6	4.0		4.3 4.4	4.4	
ST3	Sunny	Calm	12:42	Middle	7.5	18.8 18.7	18.8	8.3 8.3	8.3	30.8 30.8	30.8	79.6 79.1	79.4	6.3 6.3	6.3	6.4	6.4 7.4	6.9	5.8	5.8 5.5	5.7	5.3
				Bottom	14	18.5 18.5	18.5	8.3 8.3	8.3	31.5 31.5	31.5	78.6 78.5	78.6	6.3 6.3	6.3	6.3	6.3 6.4	6.4		5.6 6.2	5.9	
										27.0												

Contract No. HY/2011/09	
Hong Kong-Zhuhai-Macao Bridge Hong Ko	ng Link Road-Section between HKSAR Boundary and Scenic Hill
Water Quality Monitoring Results on	27 February, 2013

(Mid-Flood Tide)

Location	Weather Condition	Sea Condition**	Sampling Time	Dept	h (m)	Water Temp Value	oerature (°C) Average	p Value	H Average	Salir Value	nity ppt	DO Satu Value	Average	Dissolv Value	ed Oxyger Average	n (mg/L) DA*		urbidity(NT Average		Suspen Value	ded Solids Average	s (mg/L) DA*
	Condition	Condition	Time	Surface	1	19.2	19.2	8.4	8.4	29.8	Average 29.8	79.6	80.7	6.3	6.4	DA	4.4	4.7	DA	4.1	4.1	DA
CS1	Fine	Calm	08:20	Middle	6.5	19.2 18.9	19.0	8.4 8.4	8.4	29.8 30.5	30.5	81.7 83.0	83.2	6.5 6.6	6.6	6.5	4.9	4.7	5.0	4.1	4.6	4.8
				Bottom	12	19.0 18.8 18.8	18.8	8.4 8.4 8.4	8.4	30.4 30.8 30.8	30.8	83.3 83.1 83.1	83.1	6.6 6.6 6.6	6.6	6.6	4.6 5.5 5.6	5.6		4.4 5.5 5.8	5.7	1
				Surface	1	19.4	19.4	8.4	8.4	30.2	29.0	80.9	83.4	6.4	6.5		4.1 4.2	4.2		6.3	6.1	
CS2	Fine	Calm	08:42	Middle	4	19.4 19.2 19.2	19.2	8.4 8.4 8.4	8.4	27.8 30.5 30.6	30.6	85.9 79.3 79.6	79.5	6.6 6.3 6.2	6.3	6.4	4.2 10.5 11.0	10.8	10.9	5.9 6.6 6.3	6.5	7.2
				Bottom	7	19.2 19.2 19.2	19.2	8.4 8.4	8.4	30.6 30.6	30.6	80.9 79.9	80.4	6.3 6.3	6.3	6.3	18.0 17.4	17.7		7.3	9.0	
				Surface	1	19.2 19.2 19.2	19.2	8.4 8.4	8.4	30.4 30.3	30.4	85.8 87.1	86.5	6.6 6.7	6.7		4.6 4.5	4.6		6.2 5.3	5.8	
IS1	Fine	Calm	07:37	Middle	3.5	19.1 19.1	19.1	8.4 8.4	8.4	30.5 28.1	29.3	77.1	78.1	6.0 6.2	6.1	6.4	10.3 10.4	10.4	10.8	8.7 6.5	7.6	6.5
				Bottom	6	19.1 19.1	19.1	8.4 8.4	8.4	30.6 30.6	30.6	77.2	77.3	6.0 6.1	6.1	6.1	16.2 18.8	17.5		6.3 6.0	6.2	
				Surface	1	19.3 19.3	19.3	8.3 8.3	8.3	27.6 30.0	28.8	78.0 77.3	77.7	6.1 6.1	6.1		12.0 10.7	11.4		7.1 7.0	7.1	
IS2	Fine	Calm	07:27	Middle	3.5	19.2 19.2	19.2	8.3 8.3	8.3	30.4 30.4	30.4	76.2 76.3	76.3	6.0 6.0	6.0	6.1	7.5	7.7	11.6	6.7 6.4	6.6	6.7
				Bottom	6	19.2 19.2	19.2	8.3 8.3	8.3	30.5 30.5	30.5	75.2 75.0	75.1	5.9 5.9	5.9	5.9	15.7 15.8	15.8		6.0 6.6	6.3	1
				Surface	1	19.3 19.3	19.3	8.4 8.4	8.4	30.4 30.4	30.4	86.0 85.2	85.6	6.8 6.7	6.8		6.7 5.9	6.3		3.5 3.9	3.7	
IS3	Fine	Calm	08:00	Middle	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-	6.2	-	-	4.1
				Bottom	3	19.3 19.3	19.3	8.4 8.4	8.4	30.5 30.5	30.5	85.3 85.4	85.4	6.7 6.7	6.7	6.7	6.0 6.1	6.1		5.3 3.6	4.5	
				Surface	1	19.3 19.3	19.3	8.2 8.2	8.2	30.2 30.2	30.2	77.1	77.5	6.0 6.1	6.1		3.1 3.2	3.2		6.4 7.9	7.2	
IS4	Fine	Calm	07:08	Middle	4	19.3 19.3	19.3	8.2 8.2	8.2	30.2 30.2	30.2	78.9 79.7	79.3	6.2 6.2	6.2	6.2	3.2 3.1	3.2	3.2	6.6 8.3	7.5	7.1
				Bottom	7	19.3 19.3	19.3	8.2 8.2	8.2	30.2 30.2	30.2	80.0 80.3	80.2	6.3 6.3	6.3	6.3	3.3 3.3	3.3		6.0 6.9	6.5	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR1	Fine	Calm	08:36	Middle	1.3	19.0 19.0	19.0	8.3 8.3	8.3	31.4 31.4	31.4	73.6 74.2	73.9	5.8 5.9	5.9	5.9	9.4 8.2	8.8	8.8	5.3 5.3	5.3	5.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
SR2	Fine	Calm	07:27	Middle	0.6	19.6 19.6	19.6	8.2 8.2	8.2	30.8 30.8	30.8	86.1 87.4	86.8	6.8 6.9	6.9	6.9	3.2 3.3	3.3	3.3	5.0 3.5	4.3	4.3
				Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-		-	-	
SR3	Fine	Calm	07:13	Middle	0.5	19.5 19.5	19.5	8.4 8.3	8.4	30.7 30.7	30.7	80.5 80.5	80.5	6.5 6.5	6.5	0.5	5.5 6.0	5.8	5.8	5.0 5.0	5.0	5.0
				Bottom	-	-	-		-	-	-		-	-	-	-	-	-			-	
				Surface	1	19.6 19.6	19.6	8.4 8.4	8.4	28.8 28.8	28.8	83.7 84.2	84.0	6.5 6.5	6.5	6.5	3.6 3.7	3.7		5.7 3.5	4.6	
SR6	Fine	Calm	09:10	Middle	-	-	-	-	-	-	-		-	-	-	0.0	-	-	5.2	-	-	5.8
				Bottom	4	19.5 19.5	19.5	8.4 8.4	8.4	30.0 30.1	30.1	84.0 84.3	84.2	6.5 6.5	6.5	6.5	6.5 6.6	6.6		5.3 8.5	6.9	
				Surface	1	19.5 19.5	19.5	8.4 8.4	8.4	30.8 30.8	30.8	78.0 77.9	78.0	6.3 6.3	6.3	6.3	9.4 8.4	8.9		3.8 4.6	4.2	
SRA	Fine	Calm	07:20	Middle	4	19.5 19.5	19.5	8.4 8.4	8.4	30.8 30.8	30.8	77.9 77.8	77.9	6.3 6.3	6.3		5.0 5.9	5.5	6.4	4.1 5.0	4.6	4.3
				Bottom	7	19.5 19.5	19.5	8.4 8.4	8.4	30.8 30.8	30.8	77.5 77.5	77.5	6.3 6.3	6.3	6.3	4.9 4.9	4.9		4.0 4.4	4.2	
				Surface	1	19.3 19.2	19.3	8.4 8.4	8.4	30.0 30.1	30.1	90.0 91.1	90.6	7.0 7.0	7.0	7.0	5.8 5.6	5.7		12.0 11.2	11.6	
ST1	Fine	Calm	07:57	Middle	4.5	19.2 19.2	19.2	8.4 8.4	8.4	30.1 30.1	30.1	89.9 90.1	90.0	6.9 7.0	7.0		7.9 7.8	7.9	10.9	12.0 11.0	11.5	10.9
				Bottom	8	19.2 19.2	19.2	8.4 8.4	8.4	30.3 30.3	30.3	89.1 89.1	89.1	6.9 6.9	6.9	6.9	20.0 18.4	19.2		9.5 9.7	9.6	
				Surface	1	19.3 19.3	19.3	8.4 8.4	8.4	29.9 27.2	28.6	81.3 82.4	81.9	6.3 6.5	6.4	6.6	9.2 8.7	9.0		12.6 12.5	12.6	l I
ST2	Fine	Calm	08:10	Middle	3.5	19.3 19.3	19.3	8.4 8.4	8.4	30.0 30.0	30.0	86.4 86.9	86.7	6.7 6.7	6.7		12.0 12.7	12.4	14.0	12.4 13.0	12.7	12.2
				Bottom	6	19.3 19.3	19.3	8.4 8.4	8.4	30.0 30.0	30.0	87.4 87.5	87.5	6.8 6.8	6.8	6.8	20.5 20.9	20.7		11.6 11.0	11.3	
				Surface	1	19.3 19.3	19.3	8.4 8.4	8.4	28.7 28.9	28.8	81.0 81.2	81.1	6.5 6.5	6.5	6.4	4.3 4.4	4.4		4.1 5.1	4.6	l I
ST3	Fine	Calm	08:30	Middle	7	18.9 18.9	18.9	8.4 8.4	8.4	30.4 30.5	30.5	79.4 79.2	79.3	6.3 6.3	6.3		5.3 5.4	5.4	5.5	7.3 4.7	6.0	5.6
				Bottom	13	18.8 18.8	18.8	8.4 8.4	8.4	30.6 30.6	30.6	78.1 78.3	78.2	6.2 6.2	6.2	6.2	6.6 6.6	6.6		5.7 6.4	6.1	1

APPENDIX I DOLPHIN MONITORING REPORT (FEBRUARY 2013)

Contract No. HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill Dolphin Monthly Monitoring

First Monthly Progress Report (February 2013)

Submitted by Samuel K.Y. Hung, Ph.D., Hong Kong Cetacean Research Project

13 March 2013

1. Introduction

- 1.1. The Hong Kong Link Road (HKLR) serves to connect the Hong Kong-Zhuhai-Macao Bridge (HZMB) Main Bridge at the Hong Kong Special Administrative Region (HKSAR) Boundary and the HZMB Hong Kong Boundary Crossing Facilities (HKBCF) located at the northeastern waters of the Hong Kong International Airport.
- 1.2. According to the updated Environmental Monitoring and Audit (EM&A) Manual (for HKLR), monthly line-transect vessel surveys for Chinese White Dolphin should be conducted to cover the West Lantau survey area as in AFCD annual marine mammal monitoring programme.
- 1.3. In November 2012, Hong Kong Cetacean Research Project (HKCRP) has been commissioned by Dragages China Harbour VSL JV to conduct this 34-month dolphin monitoring study in order to collect data on Chinese White Dolphins during the construction phase (i.e. impact period) of the HKLR09 project in West Lantau (WL) survey area, and to analyze the collected survey data to monitor distribution, encounter rate, abundance, activities and occurrence of dolphin calves. Photo-identification will also be collected from individual Chinese White Dolphins to examine their individual range patterns and core area use.
- 1.4. From the monitoring results, any changes in dolphin occurrence within the study area will be examined for possible causes, and appropriate actions and additional mitigation measures will be recommended as necessary.

1.5. This report is the first monthly progress report under the HKLR09 construction phase dolphin monitoring programme, summarizing the results of the surveys findings during the month of February 2013.

2. Monitoring Methodology

2.1. Vessel-based Line-transect Survey

2.1.1. According to the requirement of the updated EM&A manual, dolphin monitoring programme should cover all transect lines in WL survey area (see Figure 1) twice per month throughout the entire construction period. The co-ordinates of all transect lines are shown in Table 1.

				1	-	r	
	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	803750	818500	7	Start Point	799800	810450
1	End Point	803750	815500	7	End Point	801400	810450
2	Start Point	803750	815500	8	Start Point	801300	809450
2	End Point	802860	815500	8	End Point	799500	809450
3	Start Point	801880	814500	9	Start Point	799400	808450
3	End Point	803700	814500	9	End Point	801430	808450
4	Start Point	803200	813600	10	Start Point	801500	807450
4	End Point	801500	813600	10	End Point	799600	807450
5	Start Point	800800	812450	11	Start Point	800300	806500
5	End Point	803300	812450	11	End Point	801750	806500
6	Start Point	802500	811500	12	Start Point	801760	805450
6	End Point	800400	811500	12	End Point	800600	805450

Table 1. Co-ordinates of transect lines in WL survey area

2.1.2. The survey team used standard line-transect methods (Buckland et al. 2001) to conduct the systematic vessel surveys, and followed the same technique of data collection that has been adopted over the last 16 years of marine

mammal monitoring surveys in Hong Kong developed by HKCRP (see Hung 2012). For each monitoring vessel survey, a 15-m inboard vessel (*Standard* 31516) with an open upper deck (about 4.5 m above water surface) was used to make observations from the flying bridge area.

- 2.1.3. Two experienced observers (a data recorder and a primary observer) made up the on-effort survey team, and the survey vessel transited different transect lines at a constant speed of 13-15 km per hour. The data recorder searched with unaided eyes and filled out the datasheets, while the primary observer searched for dolphins and porpoises continuously through 7 x 50 *Steiner* marine binoculars. Both observers searched the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0°). One to two additional experienced observers were available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers were experienced in small cetacean survey techniques and identifying local cetacean species.
- 2.1.4. During on-effort survey periods, the survey team recorded effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance traveled in each series (a continuous period of search effort) with the assistance of a handheld GPS (*Garmin eTrex Legend*).
- 2.1.5. Data including time, position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.
- 2.1.6. When dolphins were sighted, the survey team would end the survey effort, and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel was diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, and behavioural observations. The perpendicular distance (PSD) of the dolphin group to the transect line was later calculated from the initial sighting distance and angle.
- 2.1.7. Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines (as indicated in Figure 1) was labeled as

"primary" survey effort, while the survey effort being conducted along the connecting lines between parallel lines was labeled as "secondary" survey effort. According to HKCRP long-term dolphin monitoring data, encounter rates of Chinese white dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in survey areas around Lantau Island. Therefore, primary and secondary survey effort were both presented as on-effort survey effort in this report.

2.1.8. Encounter rates of Chinese white dolphins (number of on-effort sightings per 100 km of survey effort) were calculated in WL survey area in relation to the amount of survey effort conducted during each month of monitoring survey. Only data collected under Beaufort 3 or below condition would be used for encounter rate analysis. Dolphin encounter rates were calculated using primary survey effort alone, as well as the combined survey effort from both primary and secondary lines.

2.2. Photo-identification Work

- 2.2.1. When a group of Chinese White Dolphins were sighted during the line-transect survey, the survey team would end effort and approach the group slowly from the side and behind to take photographs of them. Every attempt was made to photograph every dolphin in the group, and even photograph both sides of the dolphins, since the colouration and markings on both sides may not be symmetrical.
- 2.2.2. Two professional digital cameras (*Canon* EOS 7D and 60D models), each equipped with long telephoto lenses (100-400 mm zoom), were available on board for researchers to take sharp, close-up photographs of dolphins as they surfaced. The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer.
- 2.2.3. All digital images taken in the field were first examined, and those containing potentially identifiable individuals were sorted out. These photographs would then be examined in greater detail, and were carefully compared to the existing Chinese White Dolphin photo-identification catalogue maintained by HKCRP since 1995.
- 2.2.4. Chinese White Dolphins can be identified by their natural markings, such as nicks, cuts, scars and deformities on their dorsal fin and body, and their

unique spotting patterns were also used as secondary identifying features (Jefferson 2000).

2.2.5. All photographs of each individual were then compiled and arranged in chronological order, with data including the date and location first identified (initial sighting), re-sightings, associated dolphins, distinctive features, and age classes entered into a computer database.

3. Monitoring Results

- 3.1. Vessel-based Line-transect Survey
- 3.1.1. During the month of February 2013, two complete sets of systematic line-transect vessel surveys were conducted on the 19th and 25th, to cover all transect lines in WL survey area twice. The survey routes of each survey day were presented in Figures 2-3.
- 3.1.2. From these surveys, a total of 65.80 km of survey effort was collected, with 83.3% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) (Appendix I). Out of the 65.80 km of survey effort, the total survey effort conducted on primary lines (the vertical lines perpendicular to the coastlines) was 43.45 km, while the effort on secondary lines (the lines connecting the primary lines) was 22.35 km. Survey effort conducted on primary and secondary lines were both considered as on-effort survey data.
- 3.1.3. During the monitoring surveys in February 2013, only one group of four Chinese White Dolphins was sighted (Appendix II). The lone dolphin group was associated with an operating shrimp trawler adjacent to the western border of Hong Kong. The dolphins were engaged in feeding activities following closely behind the shrimp trawler.
- 3.1.4. Distribution of dolphin sighting made during February's surveys was shown in Figure 4. The lone dolphin group was sighted in the offshore waters of central portion of West Lantau (Figure 4).
- 3.1.5. No dolphin sighting was made along or near the alignment of HKLR09 during this month's monitoring surveys.
- 3.1.6. During February's surveys, encounter rates of Chinese white dolphins

deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) are shown in Table 2.

	Encount	ter rate (STG)	Encounter rate (ANI)							
	(no. of on-effo	ort dolphin sightings	(no. of dolphins from all on-effort							
	per 100 km	of survey effort)	sightings per 100 km of survey effort							
	Primary	Both Primary	Primary	Both Primary						
	Lines Only	and Secondary	Lines Only	and Secondary						
		Lines		Lines						
West Lantau	2.9	1.8	11.6	7.3						

Table 0	Dolphin encounter rates (sightings per 100 km of survey effort) in February's surveys
Table Z	DOIDHIN ENCOUNTER TALES (SIGNUNGS DEF TOU KIN OF SUIVEV ENOL) IN FEDRUARY S SUIVEVS

3.2. Photo-identification Work

3.2.1. As the single dolphin group was sighted across the Hong Kong-Guangdong Province, no photograph was taken from the dolphins feeding behind the shrimp trawler which was moving away from Hong Kong waters. As a result, no photograph was taken during February's surveys and no photoidentification data can be presented for this month.

3.3. Conclusion

- 3.3.1. During this month of dolphin monitoring, no major marine construction activity was being carried out under this contract. No adverse impact on Chinese white dolphins was noticeable from general observations.
- 3.3.2. Due to the monthly variation in dolphin occurrence within the study area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of this project in the quarterly EM&A report, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

4. References

- Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and

Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, London.

- Hung, S. K. 2012. Monitoring of marine mammals in Hong Kong waters data collection: final report (2011-12). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government, 120 pp.
- Jefferson, T. A. 2000. Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildlife Monographs 144:1-65.

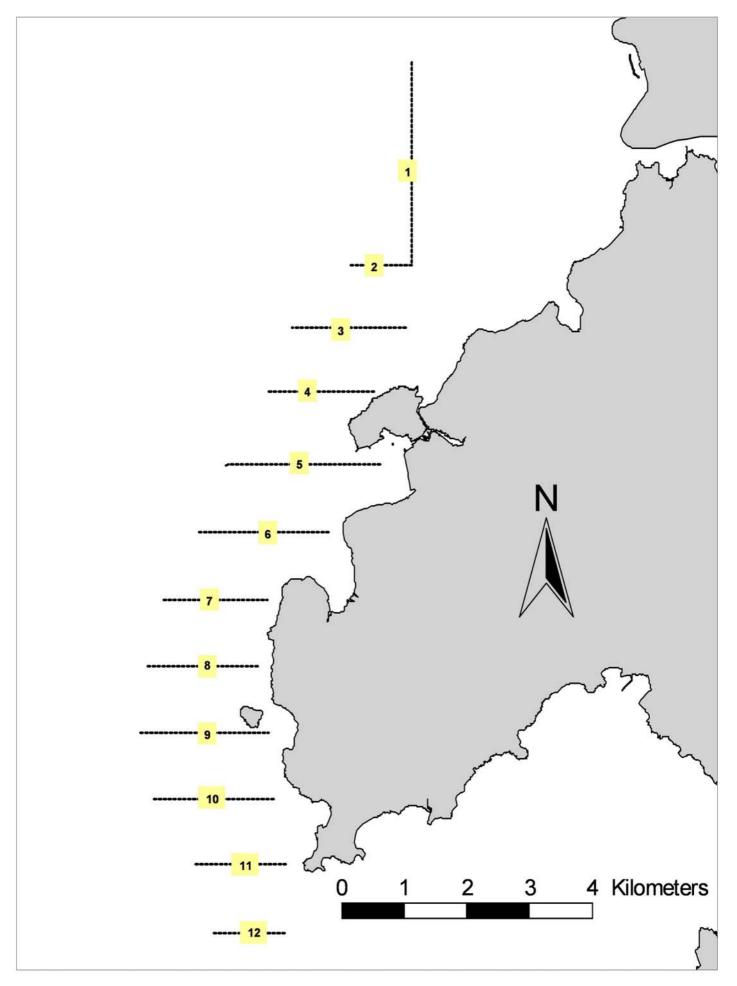


Figure 1. Transect Line Layout in West Lantau Survey Area

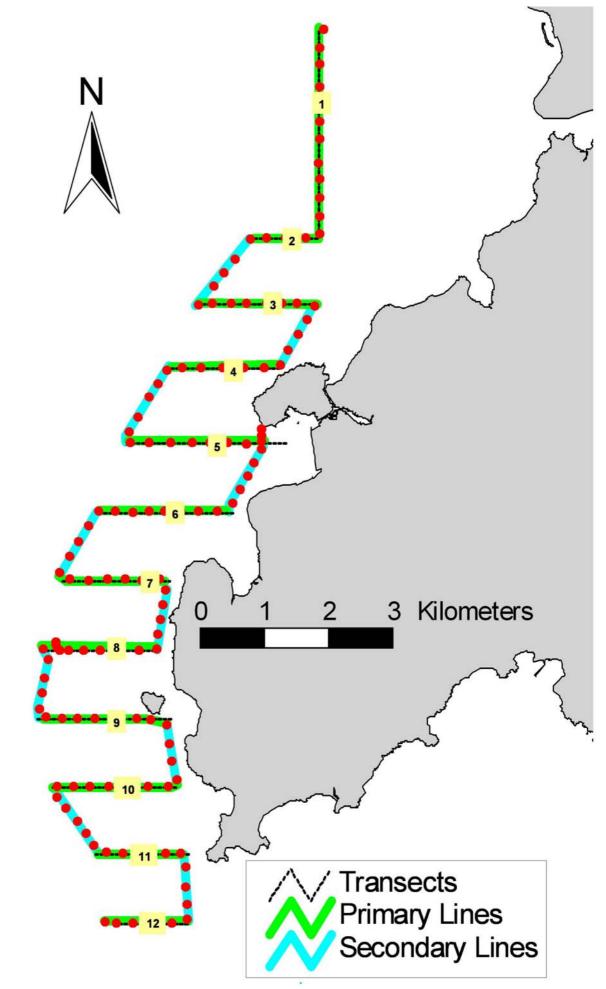


Figure 2. Survey Route on February 19th, 2013 (note: red dots represent the tracked positions of survey boat logged continuously by GPS throughout the course of the survey)

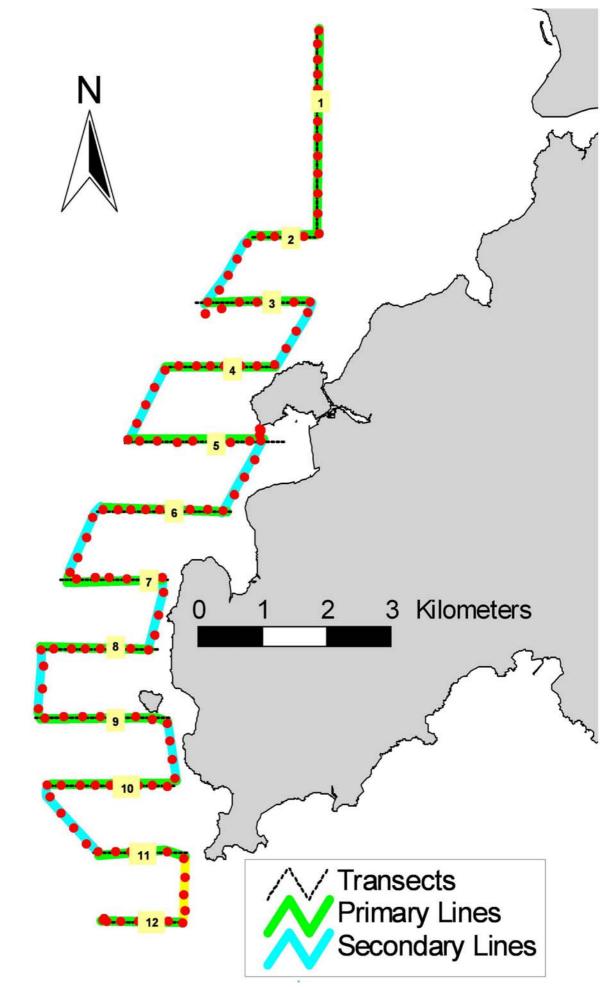


Figure 3. Survey Route on February 25th, 2013 (note: red dots represent the tracked positions of survey boat logged continuously by GPS throughout the course of the survey)

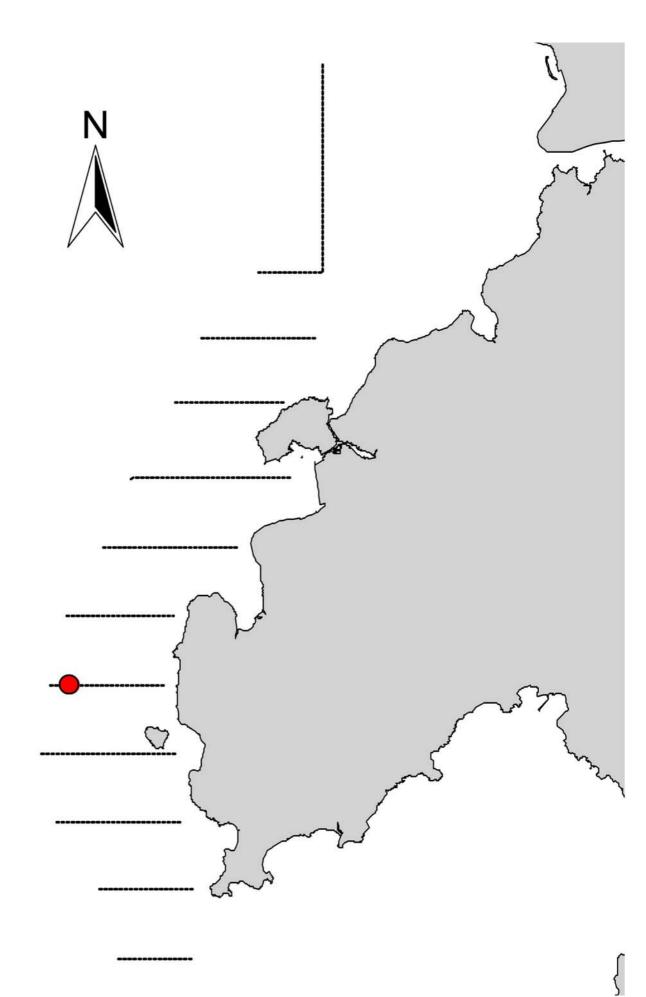


Figure 4. Distribution of Chinese White Dolphin Sighting During February 2013 HKLR09 Monitoring Surveys

Appendix I. HKLR09 Survey Effort Database (February 2013)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
19-Feb-13	W LANTAU	0	6.0	WINTER	STANDARD31516	HKLR	Р
19-Feb-13	W LANTAU	1	7.5	WINTER	STANDARD31516	HKLR	Р
19-Feb-13	W LANTAU	2	3.1	WINTER	STANDARD31516	HKLR	Р
19-Feb-13	W LANTAU	3	5.1	WINTER	STANDARD31516	HKLR	Р
19-Feb-13	W LANTAU	0	2.4	WINTER	STANDARD31516	HKLR	S
19-Feb-13	W LANTAU	1	3.4	WINTER	STANDARD31516	HKLR	S
19-Feb-13	W LANTAU	2	3.1	WINTER	STANDARD31516	HKLR	S
19-Feb-13	W LANTAU	3	2.2	WINTER	STANDARD31516	HKLR	S
25-Feb-13	W LANTAU	2	6.2	WINTER	STANDARD31516	HKLR	Р
25-Feb-13	W LANTAU	3	6.8	WINTER	STANDARD31516	HKLR	Р
25-Feb-13	W LANTAU	4	8.8	WINTER	STANDARD31516	HKLR	Р
25-Feb-13	W LANTAU	2	6.3	WINTER	STANDARD31516	HKLR	S
25-Feb-13	W LANTAU	3	2.7	WINTER	STANDARD31516	HKLR	S
25-Feb-13	W LANTAU	4	2.2	WINTER	STANDARD31516	HKLR	S

Appendix II. HKLR09 Chinese White Dolphin Sighting Database (February 2013) (Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance, D = Not Determined; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

	DATE	STG #	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
ſ	19-Feb-13	1	1159	4	W LANTAU	3	533	ON	HKLR	809434	799834	WINTER	SHRIMP	Р

APPENDIX J WIND DATA

Date	Time	Wind Speed m/s	Direction
22-Feb-2013	00:00	1.1	WNW
22-Feb-2013	01:00	0.6	NW
22-Feb-2013	02:00	0.5	NW
22-Feb-2013	03:00	0.7	W
22-Feb-2013	04:00	0.5	SSW
22-Feb-2013	05:00	0.6	SW
22-Feb-2013	06:00	0.7	SW
22-Feb-2013	07:00	0.4	SW
22-Feb-2013	08:00	1.6	NNE
22-Feb-2013	09:00	2	WSW
22-Feb-2013	10:00	2	SW
22-Feb-2013	11:00	2.4	WNW
22-Feb-2013	12:00	3.4	ENE
22-Feb-2013	13:00	3.4	SW
22-Feb-2013	14:00	3	SW
22-Feb-2013	15:00	2.3	WSW
22-Feb-2013	16:00	2.3	E
22-Feb-2013	17:00	2	SW
22-Feb-2013	18:00	1.8	WSW
22-Feb-2013	19:00	1.3	SW
22-Feb-2013	20:00	1.1	<u> </u>
22-Feb-2013	21:00	1	WSW
22-Feb-2013	22:00	0.8	SW
22-Feb-2013	23:00	0.7	W
23-Feb-2013	00:00	0.9	W
23-Feb-2013	01:00	0.9	WNW
23-Feb-2013	02:00	1.1	WNW
23-Feb-2013	03:00	0.8	WNW
23-Feb-2013	04:00	0.7	W
23-Feb-2013	05:00	0.9	Ŵ
23-Feb-2013	06:00	0.9	WNW
23-Feb-2013	07:00	0.9	WSW
23-Feb-2013	08:00	1.2	N
23-Feb-2013	09:00	3.3	WNW
23-Feb-2013	10:00	3.5	SSW
23-Feb-2013	11:00	3.3	SW
23-Feb-2013	12:00	2.9	SSW
23-Feb-2013	13:00	3.1	SW
23-Feb-2013	14:00	2.7	W
23-Feb-2013	15:00	2	WSW
23-Feb-2013	16:00	2.4	N
23-Feb-2013	17:00	1.9	NE
23-Feb-2013	18:00	1.4	NNE
23-Feb-2013	19:00	1.1	ENE
23-Feb-2013	20:00	1.1	NE
23-Feb-2013	21:00	0.8	SW
23-Feb-2013	22:00	0.4	NNE
23-Feb-2013	23:00	0.4	NE
24-Feb-2013	00:00	0.4	NNE
24-Feb-2013	01:00	0.4	SSE
24-Feb-2013	02:00	0.0	ENE
24-Feb-2013	03:00	0.3	ENE
24-Feb-2013	03:00	0.3	ESE
24-Feb-2013	04.00	0.3	ENE
24-1 60-2013	00.00	0.5	

Date	Time	Wind Speed m/s	Direction
24-Feb-2013	06:00	0.3	W
24-Feb-2013	07:00	0.2	NE
24-Feb-2013	08:00	0.5	WSW
24-Feb-2013	09:00	1.5	SSW
24-Feb-2013	10:00	1.8	WNW
24-Feb-2013	11:00	2.3	NNE
24-Feb-2013	12:00	1.8	ESE
24-Feb-2013	13:00	1.9	E
24-Feb-2013	14:00	2.1	SE
24-Feb-2013	15:00	2.8	<u>N</u>
24-Feb-2013	16:00	2.8	N
24-Feb-2013	17:00	1.7	SW
24-Feb-2013	18:00	1.4	
24-Feb-2013	19:00	0.9	WNW
24-Feb-2013	20:00	0.4	SW
24-Feb-2013	21:00	0.5	NW
24-Feb-2013	22:00	0.7	WNW
24-Feb-2013	23:00	0.9	W
25-Feb-2013	00:00	0.7	WNW
25-Feb-2013	01:00	0.5	WNW
25-Feb-2013	02:00	0.7	WNW
25-Feb-2013	03:00	0.5	WSW
25-Feb-2013	04:00	0.5	WNW
25-Feb-2013	05:00	0.7	WNW
25-Feb-2013	06:00	0.4	WNW
25-Feb-2013	07:00	0.3	WNW
25-Feb-2013	08:00	0.8	WNW
25-Feb-2013	09:00	1.7	SW
25-Feb-2013	10:00	2.5	WSW
25-Feb-2013	11:00	2.6	WSW
25-Feb-2013	12:00	2.5	WNW
25-Feb-2013	13:00	2.3	WNW
25-Feb-2013	14:00	2.3	W
25-Feb-2013	15:00	2.1	W
25-Feb-2013	16:00	2.3	WNW
25-Feb-2013	17:00	2.6	SW
25-Feb-2013	18:00	2.2	WNW
25-Feb-2013	19:00	2.2	W
25-Feb-2013	20:00	1.9	SSW
25-Feb-2013	21:00	1.6	WNW
25-Feb-2013	22:00	2.1	WNW
25-Feb-2013	23:00	1.3	WSW
26-Feb-2013	00:00	2.4	WNW
26-Feb-2013	01:00	2.1	WNW
26-Feb-2013	02:00	1	SW
26-Feb-2013	03:00	1.1	WSW
26-Feb-2013	03:00	1.1	SW
26-Feb-2013	04:00	1.9	WSW
26-Feb-2013	05:00	1.6	WSW
26-Feb-2013 26-Feb-2013	07:00	2	WNW
26-Feb-2013	08:00	2.9	WNW
26-Feb-2013	09:00	3.4	WNW
26-Feb-2013	10:00	2.8	WNW
26-Feb-2013	11:00	3.9	W

Date	Time	Wind Speed m/s	Direction
26-Feb-2013	12:00	3.3	W
26-Feb-2013	13:00	3.6	W
26-Feb-2013	14:00	3.4	Ŵ
26-Feb-2013	15:00	3.7	W
26-Feb-2013	16:00	3.5	WSW
26-Feb-2013	17:00	3.2	WNW
26-Feb-2013	18:00	3.3	WSW
26-Feb-2013	19:00	2.9	SW
26-Feb-2013	20:00	2.4	WSW
26-Feb-2013	21:00	2.3	WNW
26-Feb-2013	22:00	2.4	WSW
26-Feb-2013	23:00	2.9	W
27-Feb-2013	00:00	1.4	WSW
27-Feb-2013	01:00	1.7	W
27-Feb-2013	02:00	1.6	WSW
27-Feb-2013	03:00	1.6	WNW
27-Feb-2013	04:00	1.3	SSW
27-Feb-2013	05:00	1	WNW
27-Feb-2013	06:00	1.3	WNW
27-Feb-2013	07:00	1.1	SW
27-Feb-2013	08:00	0.8	W
27-Feb-2013	09:00	1.1	WSW
27-Feb-2013	10:00	1.2	WSW
27-Feb-2013	11:00	1.6	WSW
27-Feb-2013	12:00	1.6	WSW
27-Feb-2013	13:00	1.3	WSW
27-Feb-2013	14:00	1.7	WNW
27-Feb-2013	15:00	2.1	WSW
27-Feb-2013	16:00	1.9	WSW
27-Feb-2013	17:00	1.4	W
27-Feb-2013	18:00	0.9	WNW
27-Feb-2013	19:00	1.2	WNW
27-Feb-2013	20:00	1.2	WSW
27-Feb-2013	21:00	0.7	ESE
27-Feb-2013	22:00	1.7	WSW
27-Feb-2013	23:00	1.4	W
28-Feb-2013	00:00	2.1	W
28-Feb-2013	01:00	1.4	WNW
28-Feb-2013	02:00	1.4	W
28-Feb-2013	03:00	2.1	WNW
28-Feb-2013	03:00	2.1	W
28-Feb-2013	04.00	1.8	SSE
28-Feb-2013	06:00	1.3	SSW
28-Feb-2013	07:00	1.3	WNW
28-Feb-2013	07:00	1.3	W
28-Feb-2013	08:00	1.9	
28-Feb-2013	10:00	1.8	W
28-Feb-2013	11:00	1.8	WNW
28-Feb-2013 28-Feb-2013	12:00	2.5	W
			W
28-Feb-2013	13:00	2.6	
28-Feb-2013	14:00	1.8	WNW
28-Feb-2013	15:00	2.1	NW
28-Feb-2013	16:00	1.8	W
28-Feb-2013	17:00	1.5	SW

Date	Time	Wind Speed m/s	Direction
28-Feb-2013	18:00	1.4	W
28-Feb-2013	19:00	1.3	NNW
28-Feb-2013	20:00	1.9	W
28-Feb-2013	21:00	1.8	SW
28-Feb-2013	22:00	2	W
28-Feb-2013	23:00	1.8	WNW

APPENDIX K EVENT ACTION PLANS

Event / Action Plan for Air Quality

		ACTION				
EVENT	ET	IEC	SO	CONTRACTOR		
ACTION LEVE	L					
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and SO; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 		
2.Exceedance for two or more consecutive samples	 Identify source; Inform IEC and SO; Advise the SO on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and SO; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; 	 Submit proposals for remedial to SO within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		

LIMIT LEVEL				
1.Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform SO, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the SO on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2.Exceedance for two or more consecutive samples	 Notify IEC, SO, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and SO to discuss the remedial actions to 	 Discuss amongst SO, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of remedial 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the SO until the exceedance is

7. Assess effectiveness of Contractor's remedial actions and keep IEC, continues, consider what portion of the	be taken;	measures.	5. If exceedance	abated.
EPD and SO informed work 1s of the results; responsible and 8. If exceedance stops, instruct the cease additional Contractor to stop monitoring. that portion of work until the exceedance is abated. is	 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional 	measures.	continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is	abated.

EVENT		ACTION					
	ET	IEC	SO	CONTRACTOR			
Action Level	 Identify source, investigate the causes of exceedance and propose remedial measures; Notify IEC and Contractor; Report the results of investigation to the IEC, SO and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the SO accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals. 			
Limit Level	 Identify source; Inform IEC, SO, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, SO and EPD 	 Discuss amongst SO, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; 			

Event / Action Plan for Construction Noise

EVENT		ACTION		
	ET	IEC	SO	CONTRACTOR
	 the causes and actions taken for the exceedances; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional monitoring. 	remedial measures.	 problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	5. Stop the relevant portion of works as determined by the SO until the exceedance is abated.

Event	ET Leader	IEC	SO	Contractor
Action level being exceeded by one sampling day	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and SO; Check monitoring data, all plant, equipment and Contractor's working methods.	Check monitoring data submitted by ET and Contractor's working methods.	Confirm receipt of notification of non-compliance in writing; Notify Contractor.	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	Inform the Supervising Officer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SO and Contractor;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly.	Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to review the working methods.	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO.

Event and Action Plan for Water Quality

Event	ET Leader	IEC	SO	Contractor
Limit level being exceeded by two or more consecutive sampling days	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SO and Contractor; Ensure mitigation measures are implemented;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level.	Take immediate action to avoid further exceedance; Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

APPENDIX L SUMMARY OF EXCEEDANCE

Contract No. HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill

Exceedance Report

- (A) Exceedance Report for Air Quality (1 hour TSP) (NIL in the reporting period)
- (B) Exceedance Report for Air Quality (24 hours TSP) (NIL in the reporting period)
- (C) Exceedance Report for Construction Noise (NIL in the reporting period)

(D) Exceedance Report for Water Quality

Environmental Monitoring	Parameter	No. of Ex Action	ceedance Limit	No. of Exceedance related to the Construction Activities of this Contract Action Limit	
		Level	Level	Level	Level
	Dissolved Oxygen (DO) (Surface & Middle)	7	6	0	0
Water Quality	Dissolved Oxygen (DO) (Bottom)	10	0	0	0
water Quality	Turbidity	7	26	0	0
	Suspended Solids (SS)	5	30	0	0

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 22 February 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Baseline Action Level	Baseline Limit Level	BaselineBaselineAction LevelLimit Level		Dissolved Oxy	gen (mg/L)	Justification*	Validity (Yes/No)
(-)		Surface a	nd Middle	Bott	om	Surface and Middle	Bottom		
ST3	Mid-ebb					4.5	4.6	(1), & (5)	No
IS3						4.8	-	(1), (3), & (5)	No
SR1						<u>3.7</u>	-	(1), (3), (4) & (5)	No
SR2						<u>4.0</u> -	-	(1), (3), & (5)	No
SR3		5.0	4.2	4.7	3.6	3.7	-	(1), (3), & (5)	No
SR6	Mid-flood	5.0	4.2	4.7	5.0	-	4.5	(1), (3), & (5)	No
SRA						<u>4.1</u>	4.4	(1), (3), & (5)	No
ST1						-	4.6	(1), (3), & (5)	No
ST2						-	4.5	(1), (3), & (5)	No
ST3						<u>4.1</u>	3.7	(1), (3), (4) & (5)	No
Note:	Bold It	alic means Act	ion Level excee	dance					

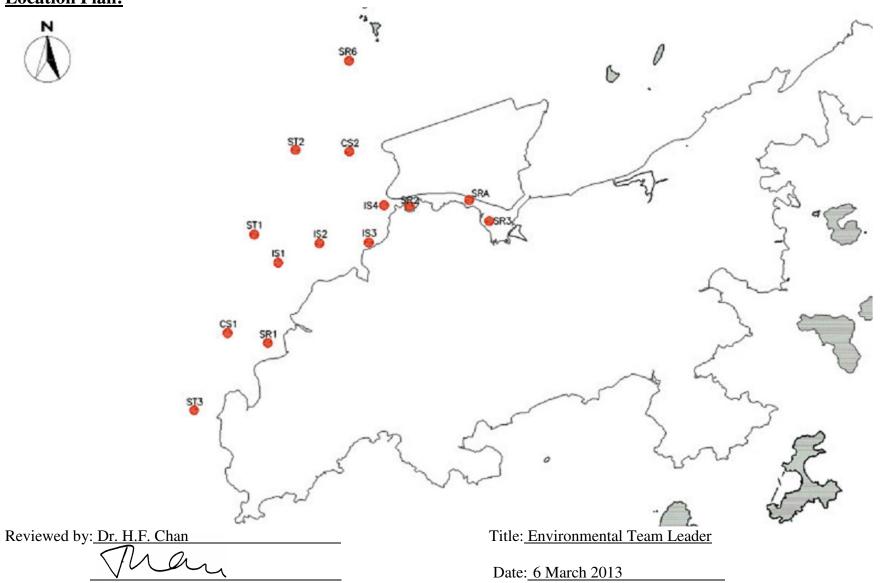
Bold Italic means Action Level exceedance **Bold Italic with underline** means Limit Level exceedance

*Remarks (1) – No major marine construction activity was conducted.

(2) – No pollution discharge from construction activity was observed.

(3) – Control Station value already exceeded either the Baseline Action or Limit Levels.

(4) – Monitoring station is situated at the upstream of the construction sites.


(5) – Other(s): Please specify - Only GI works were being carried out during the sampling period.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the exceedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 22 February 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

		Baseline	Baseline		Depth-average	120% of Control	130% of Control	Depth-		Validity
Station(a)	Tide	Action	Limit	Control	Value at Control	Station	Station	average	Justification*	(Yes/No)
Station(s)	The	Level	Level	Station(s)	Stations	Action Level	Limit Level	Measured		
		(NTU)	(NTU)		(NTU)	(NTU)	(NTU)	Value (NTU)		
IS1			· ·					5.7	(1), (4) & (6)	No
IS2								4.8	(1), (4) & (6)	No
SR2								<u>6.4</u>	(1), (4) & (6)	No
SR3	Mid-ebb			CS2	2.9	3.5	3.8	<u>4.2</u>	(1), (4) & (6)	No
SR6	Miu-coo			0.52	2.9	5.5	5.8	<u>4.1</u>	(1), (4), (5) & (6)	No
ST1								<u>5.8</u>	(1), (4) & (6)	No
ST2								<u>4.0</u>	(1), (4), (5) & (6)	No
ST3								<u>3.9</u>	(1), (4) & (6)	No
IS1		27.5	47.0					<u>4.8</u>	(1), (4) & (6)	No
IS2		21.5	47.0					<u>4.4</u>	(1), (4) & (6)	No
IS3								<u>3.9</u>	(1), (4) & (6)	No
IS4								<u>3.0</u>	(1), (4) & (6)	No
SR1	Mid-flood			CS1	2.1	2.5	2.7	<u>8.1</u>	(1), (4), (5) & (6)	No
SR2	Milu-1100u			Col	2.1	2.5	2.1	<u>4.6</u>	(1), (4) & (6)	No
SR3								2.7	(1), (4) & (6)	No
SR6							<u>5.6</u>	(1), (4) & (6)	No	
ST1								<u>5.1</u>	(1), (4) & (6)	No
ST2								<u>3.7</u>	(1), (4) & (6)	No
Note:	Bold It	alic mean	s Action Le	evel exceed	ance					

Bold Italic means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

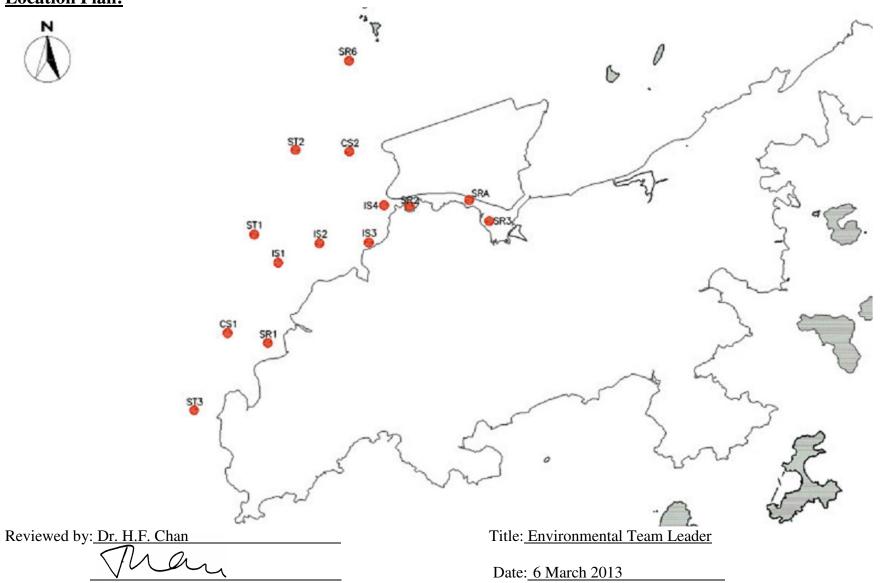
*Remarks (1) – No major marine construction activity was conducted.

- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table II & Table III)
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify <u>Only GI works were being carried out during the sampling period.</u>

Table II – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Turbidity	(NTU)
	Min	Max
IS1	5.1	41.7
IS2	6.7	24.0
SR2	3.9	23.5
SR3	4.6	65.7
SR6	6.1	37.0
ST1	6.2	27.8
ST2	8.7	33.8
ST3	5.1	157.6

Table III - Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide


Station(s)	Turbidit	y (NTU)
	Min	Max
IS1	5.8	99.3
IS2	7.0	39.4
IS3	7.8	29.4
IS4	9.1	29.2
SR1	5.7	37.2
SR2	8.0	22.9
SR3	7.7	19.7
SR6	7.3	45.7
ST1	6.4	34.7
ST2	7.7	33.6

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the exceedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 22 February 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

		Baseline	Baseline		Depth-average	120% of Control	130% of Control	Depth-		Validity
Station(s)	Tide	Action	Limit	Control	Value at Control	Station	Station	average	Justification*	(Yes/No)
Station(S)	Tide	Level	Level	Station(s)	Stations	Action Level	Limit Level	Measured		
		(mg/L)	(mg/L)		(mg/L)	(mg/L)	(mg/L)	Value (mg/L)		
IS1								<u>3.8</u>	(1), (4) & (6)	No
IS3								<u>4.0</u>	(1), (4) & (6)	No
SR1								<u>4.6</u>	(1), (4) & (6)	No
SR2	Mid-ebb			CS2	2.8	3.4	3.6	<u>4.5</u>	(1), (4) & (6)	No
SR3	Mild-COU			0.52	2.0	5.4	5.0	<u>6.3</u>	(1), (4) & (6)	No
SRA			34.4					3.5	(1), (4) & (6)	No
ST1								<u>4.7</u>	(1), (4) & (6)	No
ST3		23.5						<u>3.7</u>	(1), (4) & (6)	No
IS1		23.3	54.4					<u>4.1</u>	(1), (4) & (6)	No
IS2								3.8	(1), (4) & (6)	No
IS3								3.8	(1), (4) & (6)	No
SR1	Mid-flood			CS1	2.9	3.5	3.8	<u>7.9</u>	(1), (4), (5) & (6)	No
SR2	wiiu-iioou			Col	2.9	5.5	5.0	5.7	(1), (4) & (6)	No
SR3								<u>5.4</u>	(1), (4) & (6)	No
ST1								<u>5.1</u>	(1), (4) & (6)	No
ST3								3.7	(1), (4), (5) & (6)	No
Note:	Bold It	talic mean	s Action Le	evel exceed	ance					

Bold Italic with underline means Limit Level exceedance

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

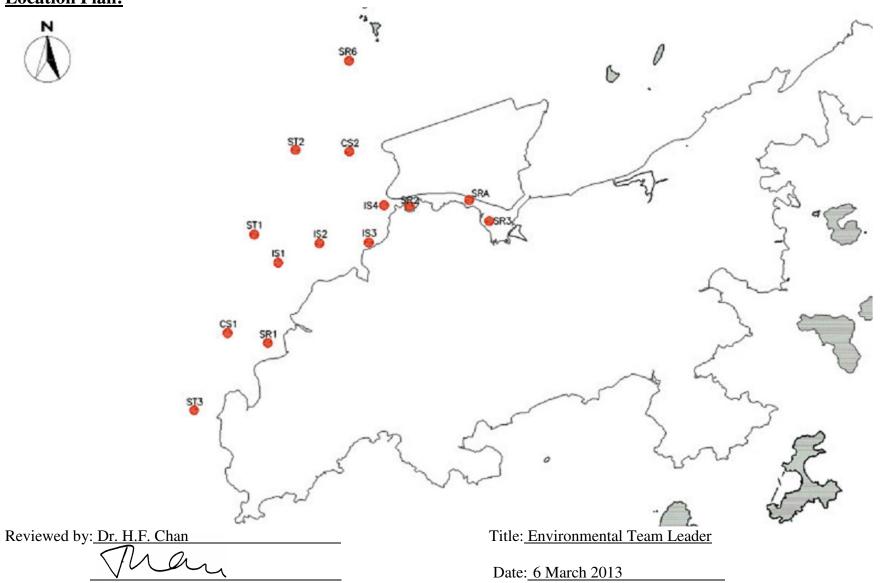
*Remarks (1) – No major marine construction activity was conducted.

- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table II & Table III)
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify <u>Only GI works were being carried out during the sampling period.</u>

Table II – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Suspended S	olids (mg/L)
	Min	Max
IS1	6.3	19.5
IS3	10.0	28.3
SR1	6.5	39.5
SR2	7.0	53.0
SR3	6.7	31.0
SRA	3.5	17.3
ST1	7.0	25.5
ST3	6.0	31.0

Table III – Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide


Station(s)	Suspended	l Solids (mg/L)
	Min	Max
IS1	8.9	25.7
IS2	9.3	21.3
IS3	7.8	28.5
SR1	8.4	31.5
SR2	8.5	32.5
SR3	7.6	28.0
ST1	7.6	20.0
ST3	8.2	43.3

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the exceedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 25 February 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Baseline Action Level	Baseline Limit Level	BaselineBaselineAction LevelLimit LevelBottomS		Dissolved Oxyg	en (mg/L)	Justification*	Validity (Yes/No)
		Surface a	nd Middle			Surface and Middle	Bottom		
ST1						-	4.5	(1), (3), (5)	No
ST2	Mid-ebb					-	4.5	(1), (3), (4) & (5)	No
ST3						4.6	-	(1), (3), (5)	No
IS3		5.0	4.2	4.7	3.6	4.7	-	(1), (3), (5)	No
SR2		5.0	4.2	4.7	5.0	4.6	-	(1), (3), (5)	No
SR3	Mid-flood					4.3	-	(1), (3), (5)	No
SRA						4.6	4.5	(1), (3), (5)	No
ST3						<u>3.8</u>	4.0	(1), (3), (4) & (5)	No

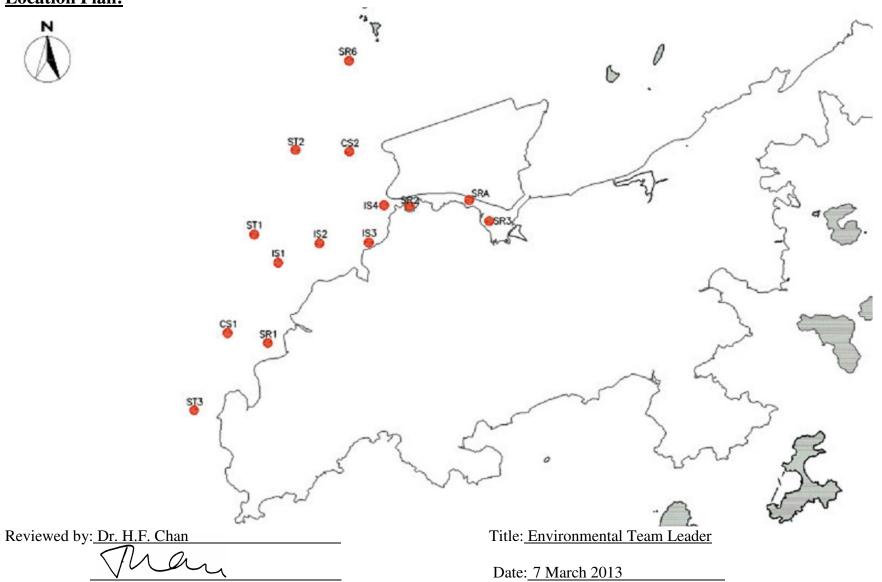
Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

*Remarks

(1) – No major marine construction activity was conducted.

- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) Monitoring station is situated at the upstream of the construction sites.


(5) – Other(s): Please specify - Only GI works were being carried out during the sampling period.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the exceedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 25 February 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

		Baseline	Baseline		Depth-average	120% of Control	130% of Control	Depth-		Validity
Station(s)	Tide	Action	Limit	Control	Value at Control	Station	Station	average	Justification*	(Yes/No)
Station(s)	The	Level	Level	Station(s)	Stations	Action Level	Limit Level	Measured		
		(NTU)	(NTU)		(NTU)	(NTU)	(NTU)	Value (NTU)		
IS1								<u>7.8</u>	(1), (4) & (6)	No
IS2	Mid-ebb			CS2	5.8	7.0	7.5	7.5	(1), (4) & (6)	No
ST1	Mid-ebb	27.5	47.0	C32	3.8	7.0	1.5	<u>8.4</u>	(1), (4) & (6)	No
ST3		21.3	47.0					7.5	(1), (4) & (6)	No
IS1	Mid flood			CC1	1.9	50	6.2	<u>6.4</u>	(1), (4) & (6)	No
SR3	Mid-flood			CS1	4.8	5.8	0.2	<u>12.0</u>	(1), (4) & (6)	No

Note: **Bold Italic** means Action Level exceedance **Bold Italic** with underline means Limit Level

Bold Italic with underline means Limit Level exceedance

*Remarks (1) – No major marine construction activity was conducted.

(2) – No pollution discharge from construction activity was observed.

(3) – Control Station value already exceeded either the Baseline Action or Limit Levels.

(4) – The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table II & Table III)

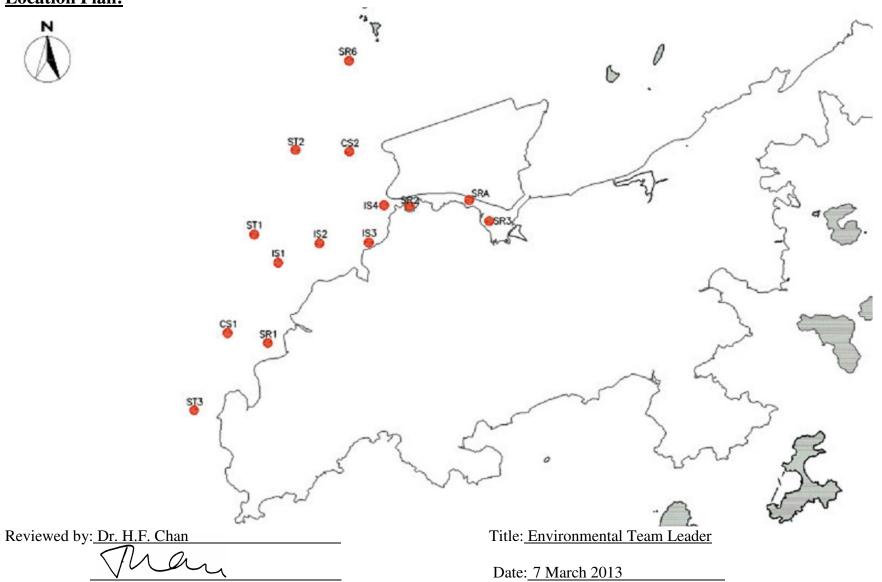
(5) – Monitoring station is situated at the upstream of the construction sites.

(6) – Other(s): Please specify - <u>Only GI works were being carried out during the sampling period.</u>

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Table II – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Turbidity (NTU)							
	Min	Max						
IS1	5.1	41.7						
IS2	6.7	24.0						
ST1	6.2	27.8						
ST3	5.1	157.6						


Table III – Summary of Baseline Water	r Quality Monitoring	Results during Mid-Flood Tide

Station(s)	Turbidity (NTU)	
	Min	Max
IS1	5.8	99.3
SR3	7.7	19.7

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the exceedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 25 February 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

		Baseline	Baseline		Depth-average	120% of Control	130% of Control	Depth-		Validity
Station(a)	Tide	Action	Limit	Control	Value at Control	Station	Station	average	Justification*	(Yes/No)
Station(s)	Tide	Level	Level	Station(s)	Stations	Action Level	Limit Level	Measured		
		(mg/L)	(mg/L)		(mg/L)	(mg/L)	(mg/L)	Value (mg/L)		
IS1								<u>7.7</u>	(1), (4) & (6)	No
IS2								<u>7.0</u>	(1), (4) & (6)	No
IS3								<u>6.8</u>	(1), (4) & (6)	No
IS4								6.2	(1), (4) & (6)	No
SR1	Mid-ebb			CS2	4.4	5.3	5.7	8.8	(1), (4) & (6)	No
SR2	Mid-ebb			C.52	4.4	5.5	5.7	5.8	(1), (4) & (6)	No
SRA		23.5	34.4					5.4	(1), (4) & (6)	No
ST1								<u>7.0</u>	(1), (4) & (6)	No
ST2								<u>6.4</u>	(1), (4), (5) & (6)	No
ST3	1							<u>6.1</u>	(1), (4) & (6)	No
SR1								7.8	(1), (4), (5) & (6)	No
SR2	Mid-flood			CS1	4.9	5.9	6.4	6.5	(1), (4) & (6)	No
SR3								<u>47.5</u>	(1), (4) & (6)	No

Note:Bold Italic means Action Level exceedanceBold Italic with underline means Limit Level exceedance

MA12014\Exceedance\130225_SS (with IR)

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

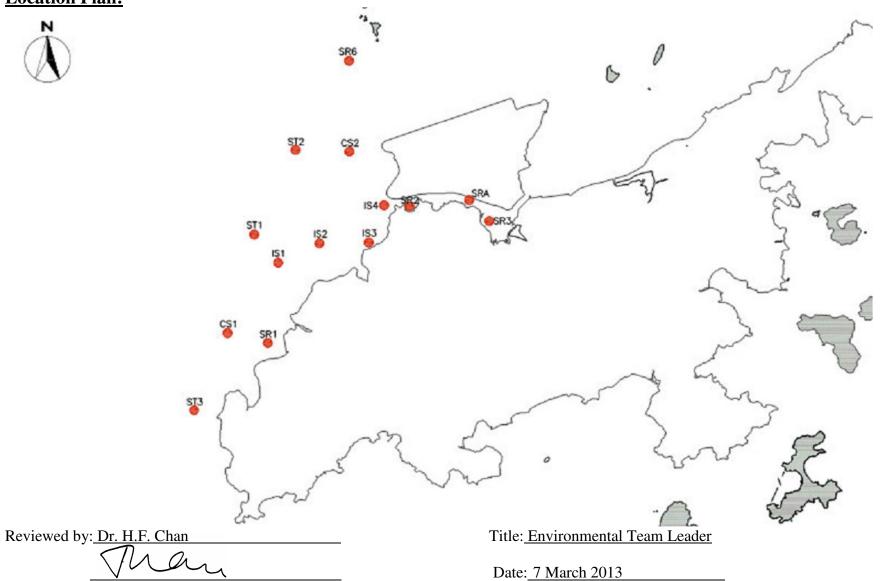
*Remarks (1) – No major marine construction activity was conducted.

- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table II & Table III)
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify <u>Only GI works were being carried out during the sampling period.</u>

Table II – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Suspended S	olids (mg/L)
	Min	Max
IS1	6.3	19.5
IS2	5.3	20.1
IS3	10.0	28.3
IS4	9.3	24.3
SR1	6.5	39.5
SR2	7.0	53.0
SRA	3.5	17.3
ST1	7.0	25.5
ST2	4.3	16.8
ST3	6.0	31.0

Table III - Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide


Station(s)	n(s) Suspended Solids (mg/L)		
	Min	Max	
IS1	8.9	25.7	
SR1	8.4	31.5	
SR2	8.5	32.5	
SR3	7.6	28.0	

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the exceedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 27 February 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

		Baseline	Baseline		Depth-average	120% of Control	130% of Control	Depth-		Validity
Station(s)	Tide	Action	Limit	Control	Value at Control	Station	Station	average	Justification*	(Yes/No)
Station(s)	The	Level	Level	Station(s)	Stations	Action Level	Limit Level	Measured		
		(NTU)	(NTU)		(NTU)	(NTU)	(NTU)	Value (NTU)		
SR2	Mid-ebb			CS2	6.6	7.9	8.6	8.0	(1), (4) & (6)	No
ST2	Mid-ebb			C32	6.6	7.9	8.0	8.2	(1), (4), (5) & (6)	No
IS1								<u>10.8</u>	(1), (4) & (6)	No
IS2								<u>11.6</u>	(1), (4) & (6)	No
IS3		27.5	47.0					6.2	(1), (4) & (6)	No
SR1	Mid-flood			CS1	5.0	6.0	6.5	<u>8.8</u>	(1), (4), (5) & (6)	No
SRA								6.4	(1), (4) & (6)	No
ST1								<u>10.9</u>	(1), (4) & (6)	No
ST2								<u>14.0</u>	(1), (4) & (6)	No
Note:	Bold It	alic mean	s Action Le	evel exceeda	ance					

Bold Italic with underline means Limit Level exceedance

*Remarks (1) – No major marine construction activity was conducted.

(2) – No pollution discharge from construction activity was observed.

(3) – Control Station value already exceeded either the Baseline Action or Limit Levels.

(4) – The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table II & Table III)

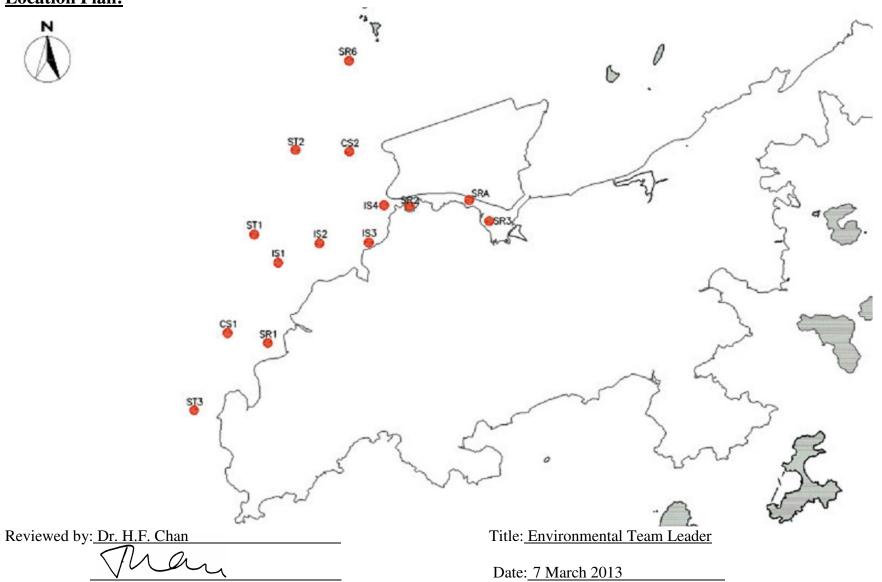
(5) – Monitoring station is situated at the upstream of the construction sites.

(6) – Other(s): Please specify - Only GI works were being carried out during the sampling period.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Table II – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Turbidity (NTU)
	Min	Max
SR2	3.9	23.5
ST2	8.7	33.8


Table III – Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide

Station(s)	Turbidity ((NTU)
	Min	Max
IS1	5.8	99.3
IS2	7.0	39.4
IS3	7.8	29.4
SR1	5.7	37.2
SRA	7.9	14.4
ST1	6.4	34.7
ST2	7.7	33.6

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the exceedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 27 February 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

		Baseline	Baseline		Depth-average	120% of Control	130% of Control	Depth-		Validity
Station(s)	Tide	Action	Limit	Control	Value at Control	Station	Station	average	Justification*	(Yes/No)
Station(8)	The	Level	Level	Station(s)	Stations	Action Level	Limit Level	Measured		
		(mg/L)	(mg/L)		(mg/L)	(mg/L)	(mg/L)	Value (mg/L)		
SR2	Mid-ebb			CS2	6.6	7.9	8.6	<u>11.9</u>	(1), (4) & (6)	No
IS1								<u>6.5</u>	(1), (4) & (6)	No
IS2		23.5	34.4					<u>6.7</u>	(1), (4) & (6)	No
IS4	Mid-flood	25.5	54.4	CS1	4.8	5.8	6.2	<u>7.1</u>	(1), (4) & (6)	No
ST1								<u>10.9</u>	(1), (4) & (6)	No
ST2								<u>12.2</u>	(1), (4) & (6)	No

Note:Bold Italic means Action Level exceedanceBold Italic with underline means Limit Level exceedance

*Remarks

(1) – No major marine construction activity was conducted.
(2) – No pollution discharge from construction activity was observed.

(3) – Control Station value already exceeded either the Baseline Action or Limit Levels.

(4) – The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table II & Table III)

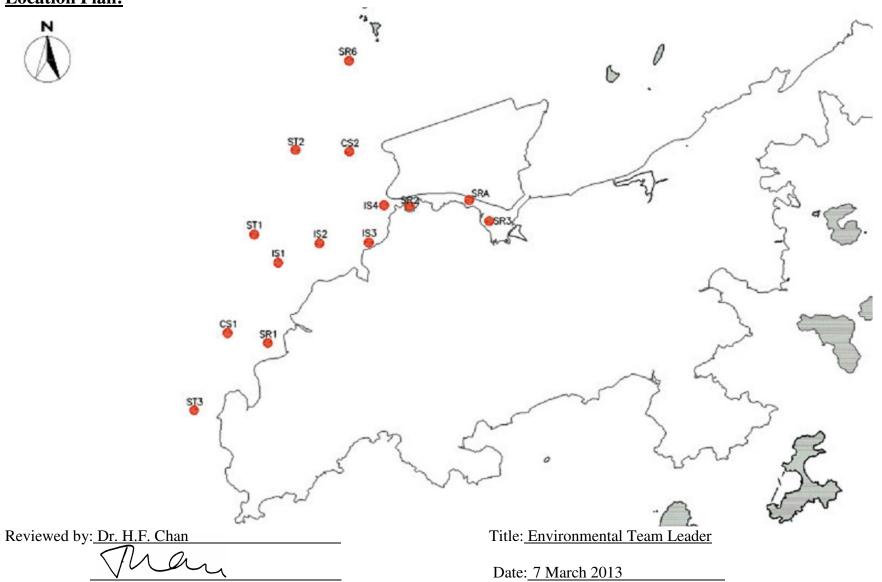
(5) – Monitoring station is situated at the upstream of the construction sites.

(6) – Other(s): Please specify - <u>Only GI works were being carried out during the sampling period.</u>

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Table II – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Suspended So	olids (mg/L)
	Min	Max
SR2	7.0	53.0


Table III – Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide

Station(s)	Suspended Second	olids (mg/L)
	Min	Max
IS1	8.9	25.7
IS2	9.3	21.3
IS4	8.6	20.3
ST1	7.6	20.0
ST2	7.7	23.0

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the exceedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances Location Plan:

APPENDIX M SITE AUDIT SUMMARY

Contract HY/2011/09

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary

Inspection Information	
Checklist Reference Number	130226
Date	26 February 2013 (Tuesday)
Time	13:30 - 14:45

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
	No environmental deficiency was identified during site inspection.	
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 130219), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	fur	26 February 2013
Checked by	Dr. Priscilla Choy	NE	26 February 2013

.

(

ł

APPENDIX N UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
Air Quali	ty						
S5.5.6.1	A1	1) The contractor shall follow the procedures and requirements given in	Good construction site	Contractor	All construction	Construction	٨
		the Air Pollution Control (Construction Dust) Regulation	practices to control the dust		sites	stage	
			impact at the nearby				
			sensitive receivers to within				
			the relevant criteria.				
S5.5.6.2	A2	2) Proper watering of exposed spoil should be undertaken throughout the	Good construction site	Contractor	All construction	Construction	
		construction phase:	practices to control the dust		sites	stage	
		Any excavated or stockpile of dusty material should be covered	impact at the nearby				
		entirely by impervious sheeting or sprayed with water to maintain	sensitive receivers to within				۸
		the entire surface wet and then removed or backfilled or reinstated	the relevant criteria.				
		where practicable within 24 hours of the excavation or unloading;					
		Any dusty materials remaining after a stockpile is removed should					٨
		be wetted with water and cleared from the surface of roads;					
		A stockpile of dusty material should not be extend beyond the					٨
		pedestrian barriers, fencing or traffic cones.					
		The load of dusty materials on a vehicle leaving a construction site					٨
		should be covered entirely by impervious sheeting to ensure that the					
		dusty materials do not leak from the vehicle;					
		Where practicable, vehicle washing facilities with high pressure					
		water jet should be provided at every discernible or designated					٨
		vehicle exit point. The area where vehicle washing takes place and					
		the road section between the washing facilities and the exit point					
		should be paved with concrete, bituminous materials or hardcores;					
S5.5.6.2	A2	When there are open excavation and reinstatement works, hoarding	Good construction site	Contractor	All construction	Construction	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		of not less than 2.4m high should be provided as far as practicable	practices to control the dust		sites	stage	
		along the site boundary with provision for public crossing. Good site	impact at the nearby				
		practice shall also be adopted by the Contractor to ensure the	sensitive receivers to within				
		conditions of the hoardings are properly maintained throughout the	the relevant criteria.				
		construction period;					
		The portion of any road leading only to construction site that is within					۸
		30m of a vehicle entrance or exit should be kept clear of dusty					
		materials;					
		Surfaces where any pneumatic or power-driven drilling, cutting,					۸
		polishing or other mechanical breaking operation takes place should					
		be sprayed with water or a dust suppression chemical continuously;					
		Any area that involves demolition activities should be sprayed with					
		water or a dust suppression chemical immediately prior to, during					۸
		and immediately after the activities so as to maintain the entire					
		surface wet;					
		Where a scaffolding is erected around the perimeter of a building					
		under construction, effective dust screens, sheeting or netting					N/A
		should be provided to enclose the scaffolding from the ground floor					
		level of the building, or a canopy should be provided from the first					
		floor level up to the highest level of the scaffolding;					
		Any skip hoist for material transport should be totally enclosed by					۸
		impervious sheeting;					
		Every stock of more than 20 bags of cement or dry pulverised fuel					۸
		ash (PFA) should be covered entirely by impervious sheeting or					
		placed in an area sheltered on the top and the 3 sides;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
S5.5.6.2	A2	Cement or dry PFA delivered in bulk should be stored in a closed	Good construction site	Contractor	All construction	Construction	N/A
		silo fitted with an audible high level alarm which is interlocked with	practices to control the dust		sites	stage	
		the material filling line and no overfilling is allowed;	impact at the nearby				
		Loading, unloading, transfer, handling or storage of bulk cement or	sensitive receivers to within				٨
		dry PFA should be carried out in a totally enclosed system or facility,	the relevant criteria.				
		and any vent or exhaust should be fitted with an effective fabric filter					
		or equivalent air pollution control system; and					
		Exposed earth should be properly treated by compaction, turfing,					
		hydroseeding, vegetation planting or sealing with latex, vinyl,					۸
		bitumen, shotcrete or other suitable surface stabiliser within six					
		months after the last construction activity on the construction site or					
		part of the construction site where the exposed earth lies.					
S5.5.6.3	A3	3) The Contractor should undertake proper watering on all exposed spoil	Control construction dust	Contractor	All construction	Construction stage	٨
		(with at least 8 times per day) throughout the construction phase.			sites		
S5.5.6.4	A5	5) Implement regular dust monitoring under EM&A programme during the	Monitor the 24 hr and 1hr	Contractor	Selected	Construction	٨
		construction stage.	TSP levels at the		representative	stage	
			representative dust		dust		
			monitoring stations to ensure		monitoring station		
			compliance with relevant				
			criteria throughout the				
			construction period.				
S5.5.7.1	A6	The following mitigation measures should be adopted to prevent fugitive	Monitor the 24 hr and 1hr	Contractor	Selected	Construction	
		dust emissions for concrete batching plant:	TSP levels at the		representative	stage	
		Loading, unloading, handling, transfer or storage of any dusty	representative dust		dust		N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		materials should be carried out in totally enclosed system;	monitoring stations to ensure		monitoring station		
		All dust-laden air or waste gas generated by the process operations	compliance with relevant				N/A
		should be properly extracted and vented to fabric filtering system to	criteria throughout the				
		meet the emission limits for TSP;	construction period.				
		Vents for all silos and cement/pulverised fuel ash (PFA) weighing					N/A
		scale should be fitted with fabric filtering system;					
		The materials which may generate airborne dusty emissions should					
		be wetted by water spray system;					N/A
		All receiving hoppers should be enclosed on three sides up to 3m					
		above unloading point;					N/A
		All conveyor transfer points should be totally enclosed;					N/A
		All access and route roads within the premises should be paved and					N/A
		wetted; and					
		Vehicle cleaning facilities should be provided and used by all					N/A
		concrete trucks before leaving the premises to wash off any dust on					
		the wheels and/or body.					
S5.5.2.7	A7	The following mitigation measures should be adopted to prevent	Control construction dust	Contractor	All construction	Construction	
		fugitive dust emissions at barging point:			sites	stage	
		All road surface within the barging facilities will be paved;					N/A
		Dust enclosures will be provided for the loading ramp;					N/A
		Vehicles will be required to pass through designated wheels wash					N/A
		facilities; and					
		Continuous water spray at the loading points.					N/A
Construc	tion Nois	e (Air borne)					
S6.4.10	N1	1) Use of good site practices to limit noise emissions by considering the	Control construction airborne	Contractor	All construction	Construction	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		following:	noise by means of good site		sites	stage	
		only well-maintained plant should be operated on-site and plant	practices				۸
		should be serviced regularly during the construction programme;					
		machines and plant (such as trucks, cranes) that may be in					۸
		intermittent use should be shut down between work periods or					
		should be throttled down to a minimum;					
		• plant known to emit noise strongly in one direction, where possible,					۸
		be orientated so that the noise is directed away from nearby NSRs;					
		silencers or mufflers on construction equipment should be properly					۸
		fitted and maintained during the construction works;					
		mobile plant should be sited as far away from NSRs as possible and					
		practicable;					۸
		material stockpiles, mobile container site officer and other structures					
		should be effectively utilised, where practicable, to screen noise					۸
		from on-site construction activities.					
S6.4.11	N2	2) Install temporary hoarding located on the site boundaries between	Reduce the construction	Contractor	All construction	Construction	۸
		noisy construction activities and NSRs. The conditions of the hoardings	noise levels at low-level		sites	stage	
		shall be properly maintained throughout the construction period.	zone of NSRs through partial				
			screening.				
S6.4.12	N3	3) Install movable noise barriers (typically density @14kg/m ²), acoustic	Screen the noisy plant items	Contractor	For plant items	Construction	۸
		mat or full enclosure close to noisy plants including air compressor,	to be used at all construction		listed in Appendix	stage	
		generators, saw.	sites		6D of the EIA		
					report at all		
					construction sites		
S6.4.13	N4	4) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM	Reduce the noise levels of	Contractor	For plant items	Construction	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		standards.	plant items		listed in Appendix	stage	
					6D of the EIA		
					report at all		
					construction sites		
S6.4.14	N5	5) Sequencing operation of construction plants where practicable.	Operate sequentially within	Contractor	All construction	Construction	۸
			the same work site to reduce		sites where	stage	
			the construction airborne		practicable		
			noise				
	N6	6) Implement a noise monitoring under EM&A programme.	Monitor the construction	Contractor	Selected	Construction	۸
			noise levels at the selected		representative	stage	
			representative locations		noise monitoring		
					station		
Waste Ma	anagemei	nt (Construction Waste)					
S8.3.8	WM1	Construction and Demolition Material	Good site practice to	Contractor	All construction	Construction	
		The following mitigation measures should be implemented in	minimize the waste		sites	stage	
		handling the waste:	generation and recycle the				
		Maintain temporary stockpiles and reuse excavated fill material for	C&D materials as far as				۸
		backfilling and reinstatement;	practicable so as to reduce				
		Carry out on-site sorting;	the amount for final disposal				۸
		Make provisions in the Contract documents to allow and promote					۸
		the use of recycled aggregates where appropriate;					
		Adopt 'Selective Demolition' technique to demolish the existing					
		structures and facilities with a view to recovering broken concrete					۸
		effectively for recycling purpose, where possible;					
		Implement a trip-ticket system for each works contract to ensure that					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		the disposal of C&D materials are properly documented and verified;					
		and					
		Implement an enhanced Waste Management Plan similar to					۸
		ETWBTC (Works) No. 19/2005 - "Environmental Management on					
		Construction Sites" to encourage on-site sorting of C&D materials					
		and to minimize their generation during the course of construction.					
		In addition, disposal of the C&D materials onto any sensitive					
		locations such as agricultural lands, etc. should be avoided. The					۸
		Contractor shall propose the final disposal sites to the Project					
		Proponent and get its approval before implementation					
S8.3.9 -	WM2	<u>C&D Waste</u>	Good site practice to	Contractor	All construction	Construction	
S8.3.11		Standard formwork or pre-fabrication should be used as far as	minimize the waste		sites	stage	۸
		practicable in order to minimise the arising of C&D materials. The	generation and recycle the				
		use of more durable formwork or plastic facing for the construction	C&D materials as far as				
		works should be considered. Use of wooden hoardings should not	practicable so as to reduce				
		be used, as in other projects. Metal hoarding should be used to	the amount for final disposal				
		enhance the possibility of recycling. The purchasing of construction					
		materials will be carefully planned in order to avoid over ordering					
		and wastage.					
		The Contractor should recycle as much of the C&D materials as					
		possible on-site. Public fill and C&D waste should be segregated					٨
		and stored in different containers or skips to enhance reuse or					
		recycling of materials and their proper disposal. Where					
		practicable, concrete and masonry can be crushed and used as fill.					
		Steel reinforcement bar can be used by scrap steel mills. Different					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		areas of the sites should be considered for such segregation and					
		storage.					
S8.2.12-	WM3	Chemical Waste	Control the chemical waste	Contractor	All construction	Construction	
S8.3.15		Chemical waste that is produced, as defined by Schedule 1 of the	and ensure proper storage,		sites	stage	۸
		Waste Disposal (Chemical Waste) (General) Regulation, should be	handling and disposal.				
		handled in accordance with the Code of Practice on the Packaging,					
		Labelling and Storage of Chemical Wastes.					
		Containers used for the storage of chemical wastes should be					٨
		suitable for the substance they are holding, resistant to corrosion,					
		maintained in a good condition, and securely closed; have a					
		capacity of less than 450 liters unless the specification has been					
		approved by the EPD; and display a label in English and Chinese in					
		accordance with instructions prescribed in Schedule 2 of the					
		regulation.					
		The storage area for chemical wastes should be clearly labelled and					٨
		used solely for the storage of chemical waste; enclosed on at least 3					
		sides; have an impermeable floor and bunding of sufficient capacity					
		to accommodate 110% of the volume of the largest container or 20					
		% of the total volume of waste stored in that area, whichever is the					
		greatest; have adequate ventilation; covered to prevent rainfall					
		entering; and arranged so that incompatible materials are					
		adequately separated.					
		Disposal of chemical waste should be via a licensed waste collector;					
		be to a facility licensed to receive chemical waste, such as the					٨
		Chemical Waste Treatment Centre which also offers a chemical					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		waste collection service and can supply the necessary storage					
		containers; or be to a reuser of the waste, under approval from the					
		EPD.					
S8.3.16	WM4	Sewage	Proper handling of sewage	Contractor	All construction	Construction	
		Adequate numbers of portable toilets should be provided for the	from worker to avoid odour,		sites	stage	
		workers. The portable toilets should be maintained in a state,	pest and litter impacts				۸
		which will not deter the workers from utilizing these portable toilets.					
		Night soil should be collected by licensed collectors regularly.					
S8.3.17	WM5	General Refuse	Minimize production of the	Contractor	All construction	Construction stage	
		General refuse generated on-site should be stored in enclosed	general refuse and avoid		sites		۸
		bins or compaction units separately from construction and chemical	odour, pest and litter impacts				
		wastes.					
		A reputable waste collector should be employed by the Contractor to					
		remove general refuse from the site, separately from construction					۸
		and chemical wastes, on a daily basis to minimize odour, pest and					
		litter impacts. Burning of refuse on construction sites is prohibited					
		by law.					
		Aluminium cans are often recovered from the waste stream by					
		individual collectors if they are segregated and made easily					۸
		accessible. Separate labelled bins for their deposit should be					
		provided if feasible.					
		Office wastes can be reduced through the recycling of paper if					
		volumes are large enough to warrant collection. Participation in a					
		local collection scheme should be considered by the Contractor. In					۸
·		addition, waste separation facilities for paper, aluminum cans,					

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
			plastic bottles etc., should be provided.					
		•	Training should be provided to workers about the concepts of site					۸
			cleanliness and appropriate waste management procedure,					
			including reduction, reuse and recycling of wastes.					
Water Qu	ality (Col	nsti	ruction Phase)					
S9.11.1 –	W1	•	Mitigation during the marine works to reduce impacts to within	To control construction water	Contractor	During seawall	Construction	N/A
S9.11.1.2			acceptable levels have been recommended and will comprise a	quality		dredging and	stage	
			series of measures that restrict the method and sequencing of			filling		
			dredging/backfilling, as well as protection measures. Details of the					
			measures are provided below and summarised in the Environmental					
			Mitigation Implementation Schedule in EM&A Manual.					
		•	Export for dredged spoils from NWWCZ avoiding exerting high					N/A
			demand on the disposal facilities in the NWWCZ and, hence,					
			minimise potential cumulative impacts;					
		•	For the marine viaducts of HKLR, the bored piling will be undertaken					
			within a metal casing;					N/A
		•	where public fill is proposed for filling below -2.5mPD, the fine					
			content in the public fill will be controlled to 25%;					N/A
		•	single layer silt curtains will be applied around all works;					N/A
		•	during the first two months of dredging work for HKLR, the					
			silt-removal efficiency of the silt-curtains shall be verified by					N/A
			examining the results of water quality monitoring points. The water					
			quality monitoring points to be selected for the above shall be those					
			close to the locations of the initial period of dredging work. Details in					
			this regard shall be determined by the ENPO to be established,					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		taking account of the Contractor's proposed actual locations of his					
		initial period of dredging work.					
		silt curtain shall be fully maintained throughout the works.					N/A
		In addition, dredging operations should be undertaken in such a manner					
		as to minimise resuspension of sediments. Standard good dredging					
		practice measures should, therefore, be implemented including the					
		following requirements which should be written into the dredging contract.					
		trailer suction hopper dredgers shall not allow mud to overflow;					N/A
		use of Lean Material Overboard (LMOB) systems shall be					
		prohibited;					N/A
		mechanical grabs shall be designed and maintained to avoid					
		spillage and should seal tightly while being lifted;					N/A
		barges and hopper dredgers shall have tight fitting seals to their					
		bottom openings to prevent leakage of material;					N/A
		any pipe leakages shall be repaired quickly. Plant should not be					
		operated with leaking pipes;					N/A
		 loading of barges and hoppers shall be controlled to prevent 					
		splashing of dredged material to the surrounding water. Barges or					N/A
		hoppers shall not be filled to a level which will cause overflow of					
		materials or pollution of water during loading or transportation;					
		excess material shall be cleaned from the decks and exposed					N/A
		fittings of barges and hopper dredgers before the vessel is moved;					
		adequate freeboard shall be maintained on barges to reduce the					N/A
		likelihood of decks being washed by wave action;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		all vessels shall be sized such that adequate clearance is					N/A
		maintained between vessels and the sea bed at all states of the tide					
		to ensure that undue turbidity is not generated by turbulence from					
		vessel movement or propeller wash; and					
		• the works shall not cause foam, oil, grease, litter or other					
		objectionable matter to be present in the water within and adjacent					N/A
		to the works site.					
S9.11.1.3	W2	Land Works	To control construction water	Contractor	During seawall	Construction stage	
		General construction activities on land should also be governed by	quality		dredging and		
		standard good working practice. Specific measures to be written into			filling		
		the works contracts should include:					
		wastewater from temporary site facilities should be controlled to					۸
		prevent direct discharge to surface or marine waters;					
		sewage effluent and discharges from on-site kitchen facilities shall					N/A
		be directed to Government sewer in accordance with the					
		requirements of the WPCO or collected for disposal offsite. The					
		use of soakaways shall be avoided;					
		storm drainage shall be directed to storm drains via adequately					
		designed sand/silt removal facilities such as sand traps, silt traps					
		and sediment basins. Channels, earth bunds or sand bag barriers					۸
		should be provided on site to properly direct stormwater to such silt					
		removal facilities. Catchpits and perimeter channels should be					
		constructed in advance of site formation works and earthworks;					
		silt removal facilities, channels and manholes shall be maintained					۸
		and any deposited silt and grit shall be removed regularly, including					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		specifically at the onset of and after each rainstorm;					
		temporary access roads should be surfaced with crushed stone or					۸
		gravel;					
		rainwater pumped out from trenches or foundation excavations					۸
		should be discharged into storm drains via silt removal facilities;					
		measures should be taken to prevent the washout of construction					۸
		materials, soil, silt or debris into any drainage system;					
		open stockpiles of construction materials (e.g. aggregates and					۸
		sand) on site should be covered with tarpaulin or similar fabric					
		during rainstorms;					
		manholes (including any newly constructed ones) should always be					۸
		adequately covered and temporarily sealed so as to prevent silt,					
		construction materials or debris from getting into the drainage					
		system, and to prevent storm run-off from getting into foul sewers;					
		discharges of surface run-off into foul sewers must always be					۸
		prevented in order not to unduly overload the foul sewerage system;					
		all vehicles and plant should be cleaned before they leave the					۸
		construction site to ensure that no earth, mud or debris is deposited					
		by them on roads. A wheel washing bay should be provided at every					
		site exit;					
		wheel wash overflow shall be directed to silt removal facilities before					
		being discharged to the storm drain;					۸
		the section of construction road between the wheel washing bay and					
		the public road should be surfaced with crushed stone or coarse					۸
		gravel;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		wastewater generated from concreting, plastering, internal					٨
		decoration, cleaning work and other similar activities, shall be					
		screened to remove large objects;					
		vehicle and plant servicing areas, vehicle wash bays and lubrication					٨
		facilities shall be located under roofed areas. The drainage in					
		these covered areas shall be connected to foul sewers via a petrol					
		interceptor in accordance with the requirements of the WPCO or					
		collected for off site disposal;					
		the contractors shall prepare an oil / chemical cleanup plan and					
		ensure that leakages or spillages are contained and cleaned up					٨
		immediately;					
		waste oil should be collected and stored for recycling or disposal, in					٨
		accordance with the Waste Disposal Ordinance;					
		all fuel tanks and chemical storage areas should be provided with					
		locks and be sited on sealed areas. The storage areas should be					٨
		surrounded by bunds with a capacity equal to 110% of the storage					
		capacity of the largest tank; and					
		surface run-off from bunded areas should pass through oil/grease					
		traps prior to discharge to the stormwater system.					٨
S9.14	W3	Implement a water quality monitoring programme	Control water quality	Contractor	At identified	During	٨
					monitoring	construction period	
					location		
Ecology	(Construc	ction Phase)				· · · · · · · · · · · · · · · · · · ·	
S10.7	E1	Good site practices to avoid runoff entering woodland habitats in	Avoid potential disturbance	Designer;	Scenic Hill	During	۸
		Scenic Hill	on habitat of Romer's Tree	Contractor		construction	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Reinstate works areas in Scenic Hill	Frog in Scenic Hill				N/A
		Avoid stream modification in Scenic Hill					۸
S10.7	E2	Use closed grab in dredging works.	Minimise marine water	Contractor	Seawall,	During	N/A
		Install silt curtain during the construction.	quality impacts			construction	N/A
		Limit dredging and works fronts.					N/A
		Good site practices					٨
		Strict enforcement of no marine dumping.					٨
		Site runoff control					٨
		Spill response plan					٨
S10.7	E3	Reprovision of replacement Artificial Reefs (of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or operation	
						phase	
S10.7	E4	Watering to reduce dust generation; prevention of siltation of	Prevent Sedimentation from	Contractor	Land-based works	During	٨
		freshwater habitats; Site runoff should be desilted, to reduce the	Land-based works areas		areas	construction	
		potential for suspended sediments, organics and other					
		contaminants to enter streams and standing freshwater					
S10.7	E5	Good site practices, including strictly following the permitted	Prevent disturbance to	Contractor	Land-based works	During	٨
		works hours, using quieter machines where practicable, and	terrestrial fauna and habitats		areas	construction	
		avoiding excessive lightings during night time					
S10.7	E6	Dolphin Exclusion Zone;	Minimize temporary marine	Contractor	Marine works	During marine	N/A
		Dolphin watching plan	habitat loss impact to			works	
			dolphins				
S10.7	E7	Decouple compressors and other equipment on working vessels	Minimise marine noise	Contractor	Marine works	During marine	٨
		Avoidance of percussive piling	impacts on dolphins			works	٨
		Marine underwater noise monitoring					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Temporal suspension of drilling bored pile casing in rock during peak					N/A
		dolphin calving season in May and June					
S10.7	E8	Control vessel speed	Minimise marine traffic	Contractor	Marine traffic	During marine	٨
		Skipper training.	disturbance on dolphins			works	۸
		Predefined and regular routes for working vessels; avoid Brothers					٨
		Islands.					
S10.10	E9	Dolphin vessel monitoring	Minimise marine traffic	Contractor	North Lantau and	Prior to	٨
			disturbance on dolphins		West Lantau	construction,	
						during	
						construction, and 1	
						year after	
						operation	
Fisheries	S						
S11.7	F1	Reprovision of replacement Artificial Reefs(of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or	
						operation	
						phase	
S11.7	F2	Reduce re-suspension of sediments	Minimise marine water	Contractor	Seawall,	During	N/A
		Limit dredging and works fronts.	quality impacts			construction	N/A
		Good site practices					۸
		Strict enforcement of no marine dumping					۸
		Spill response plan					۸
Landsca	pe & Visu	al (Construction Phase)					
S14.3.3.3	LV2	Mitigate both Landscape and Visual Impacts	Minimise visual &	Contractor	HKLR	Construction	
		G1. Grass-hydroseed bare soil surface and stock pile areas.	landscape impact			stage	N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		G2. Add planting strip and automatic irrigation system if appropriate					N/A
		at some portions of bridge or footbridge to screen bridge and traffic.					
		G3. For HKLR, providing aesthetic design on the viaduct, tunnel					N/A
		portals, at-grade roads (e.g. subtle colour tone and slim form for					
		viaduct, featured form of tunnel portals, roadside planting along					
		at-grade roads and landscape berm on) to beautify the HKLR					
		alignment.					
		G5. Vegetation reinstatement and upgrading to disturbed areas.					N/A
		G6. Maximize new tree, shrub and other vegetation planting to					N/A
		compensate tree felled and vegetation removed.					
		G7. Provide planting area around peripheral of and within HKLR for					N/A
		tree screening buffer effect.					
		G8. Plant salt tolerant native tree and shrubs etc along the planter					N/A
		strip at affected seawall.					
		• G9. Reserve of loose natural granite rocks for re-use. Provide new					
		coastline to adopt "natural-look" by means of using armour rocks in					N/A
		the form of natural rock materials and planting strip area					
		accommodating screen buffer to enhance "natural-look" of the new					
		coastline (see Figure 14.4.2 for example).					
S14.3.3.3	LV3	Mitigate Visual Impacts					
		V1.Minimize time for construction activities during construction					۸
		period.					
		V2.Provide screen hoarding at the portion of the project site / works					۸
		areas / storage areas near VSRs who have close low-level views to					
		the Project during HKLR construction.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
EM&A							
S15.2.2	EM1	An Independent Environmental Checker needs to be employed as	Control EM&A Performance	Project	All construction	Construction	٨
		per the EM&A Manual.		Proponent	sites	stage	
S15.5 -	EM2	1) An Environmental Team needs to be employed as per the EM&A	Perform environmental	Contractor	All construction	Construction	٨
S15.6		Manual.	monitoring & auditing		sites	stage	
		2) Prepare a systematic Environmental Management Plan to ensure					۸
		effective implementation of the mitigation measures.					
		3) An environmental impact monitoring needs to be implementing by the					٨
		Environmental Team to ensure all the requirements given in the EM&A					
		Manual are fully complied with.					
	Remarks:	Compliance of mitigation measure				•	

* Recommendation was made during site audit but improved/rectified by the contractor

N/A Not Applicable at this stage as no such site activities were conducted in the reporting period (e.g. concrete batching plan, barging point, seawall dredging and filling, bored piling, landscaping works etc)

APPENDIX O WASTE GENERATION IN THE REPORTING PERIOD

Monthly Summary Waste Flow Table

Name of Department: HyD

Contract No.: HY/2011/09

Monthly Summary Waste Flow Table for 2013 (Year)

	A	Actual Quantiti	es of Inert C&I	O Materials Ger	nerated Monthl	y	Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects ⁵	Disposed as Public Fill ⁶	Imported Fill ⁷	Metals	Paper/ cardboard packaging	Plastics ³	Chemical Waste	Others, e.g. general refuse ⁸
	(in 000 m ³)	(in 000 m ³)	(in 000 m ³)	(in 000 m ³)	(in 000 m ³)	(in 000 m ³)	(in 000 Kg)	(in 000 Kg)	(in 000 Kg)	(in 000 Kg)	(in 000 m ³)
Jan ⁽¹¹⁾	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.020
Mar											
Apr											
May											
Jun											
Sub-Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.020
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.020

Notes:

Contract No. HY/2011/09 Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road -Section between HKSAR Boundary and Scenic Hill

Forecast of Total Quantities of C&D Materials to be Generated from the Contract ¹⁰										
Total Quantity Generated	Hard Rock and Large Broken	Reused in the Contract	Reused in other Projects ⁵	Disposed as Public Fill ⁶	Imported Fill ⁷	Metals	Paper/ cardboard packaging	Plastics (see note ³)	Chemical Waste	Others, e.g. (General refuse) ⁸
(in 000 m ³)	$(in 000 m^3)$	$(in 000 m^3)$	$(in 000 m^3)$	$(in 000 m^3)$	$(in 000 m^3)$	(in 000 Kg)	(in 000 Kg)	(in 000 Kg)	(in 000 Kg)	(in 000 m ³)
0.0	124.366		124.366				9.681			2.940

(1) The performance targets are given in ER Appendix 8J Clause 14 and the EM&A Manual.

(2) The waste flow table shall also include C&D materials to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (ER Part 8 Clause 8.8.5 (d) (ii) refers).

(5) The materials reused in other Project shall not be treated as waste under the Waste Disposal Ordinance (CAP354).

(6) According to the EIA Appendix 8B, the density of rock (bulked) is 2.0 tonnes/m³,

(7) According to the EIA Appendix 8B, the density of soil (bulked) is 1.8 tonnes/m³.

(8) Assuming the loading quantities of a 30 tonne truck is $8.0m^3$

(9) Assuming the loading quantities of a 24 tonne truck is $6.5m^3$

(10) The forcast of C&D materials to be generated from the Contract is sourced from the works program in January 2013.

(11) The construction works commencement date for this Contract is 22 February 2013.

APPENDIX P COMPLAINT LOG

Appendix P - Complaint Log

Log Ref.	Date/Location	Received Date	Details of Complaint	Investigation/ Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint was received in the reporting period.