Appendix E

Calibration Details

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C136320

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號:IC13-2604)

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

2250

Serial No./編號

2704791

Supplied By / 委託者

EDMS Consulting Ltd.

Unit 1C, 24/F., World Wide House, 19 Des Voeux Road Central,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

7 October 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

Certified By 核證

K M Wu

Date of Issue 簽發日期

8 October 2013

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Certificate of Calibration

Certificate No.: C136320

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.

Self-calibration using laboratory acoustic calibrator was performed before the test 6.1.1.2 to 6.3.2. 2.

The results presented are the mean of 3 measurements at each calibration point. 3.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

C130019

Multifunction Acoustic Calibrator

DC130171

5. Test procedure: MA101N.

6. Results:

Sound Pressure Level 6.1

Reference Sound Pressure Level 6.1.1

6.1.1.1 Before Self-calibration

UUT Setting		Applie	UUT Reading	
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)
20 - 140	LAF (SPL)	94.00	1	94.2

6.1.1.2 After Self-calibration

UUT Setting		Applied Value		UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	± 1.1

6.1.2 Linearity

UUT Setting Applie		d Value	UUT Reading	
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)
20 - 140	LAF (SPL)	94.00	1	94.0 (Ref.)
	l ' ' [104.00		104.0
		114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C136320

證書編號

6.2 Time Weighting

UUT Setting		Applied Value		UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	Ref.
	LAS (SPL)			94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

A-weighting UUT S	UUT Setting		Applied Value		IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LAF (SPL)	94.00	63 Hz	67.8	-26.2 ± 1.5
	, ,		125 Hz	77.8	-16.1 ± 1.5
			250 Hz	85.3	-8.6 ± 1.4
			500 Hz	90.7	-3.2 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	95.2	$+1.2 \pm 1.6$
		,	4 kHz	95.0	$+1.0 \pm 1.6$
			8 kHz	92.9	-1.1(+2.1; -3.1)
			12.5 kHz	89.3	-4.3(+3.0; -6.0)

6.3.2 C-Weighting

UUT S	UUT Setting		Applied Value		IEC 61672 Class 1 Spec.
Range (dB)			Freq.	(dB)	(dB)
20 - 140	LCF (SPL)	94.00	63 Hz	93.2	-0.8 ± 1.5
		100000000000000000000000000000000000000	125 Hz	93.8	-0.2 ± 1.5
		l i	250 Hz	94.0	0.0 ± 1.4
			500 Hz	94.0	0.0 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	93.8	-0.2 ± 1.6
			4 kHz	93.2	-0.8 ± 1.6
			8 kHz	91.0	-3.0 (+2.1; -3.1)
			12.5 kHz	87.4	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C136320

證書編號

Remarks: - UUT Microphone Model No.: 4189 & S/N: 2680937

- Mfr's Spec. : IEC 61672 Class 1

Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz:

 $\pm 0.30 dB$ 250 Hz - 500 Hz: 1 kHz $\pm 0.20 \text{ dB}$ 2 kHz - 4 kHz $\pm 0.35 \text{ dB}$ $\pm 0.45 \text{ dB}$ 8 kHz $\pm 0.70 \text{ dB}$ 12.5 kHz

 $\pm 0.10 \text{ dB (Ref. 94 dB)}$ 104 dB : 1 kHz \pm 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

G/F, 9/F, 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA1016 01-01

Page

of

2

Item tested

Description:
Manufacturer:
Type/Model No.:

Sound Level Meter (Type 1)

B & K 2250 , B & K , 4189

Serial/Equipment No.: Adaptors used:

2551244

2550229

Microphone

Item submitted by

Customer Name: Address of Customer:

7.

MTR Coporation Limited

Request No.: Date of receipt:

16-Oct-2014

Date of test:

17-Oct-2014

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model:

B&K 4226 DS 360 DS 360 Serial No. 2288444

33873 61227 Expiry Date:

20-Jun-2015 09-Apr-2015 09-Apr-2015 Traceable to:

CEPREI CEPREI

Ambient conditions

Temperature: Relative humidity: 22 ± 1 °C 60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

Date:

18-Oct-2014

Company Chop:

Company Chop

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號刊達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

14CA1016 01-01

Page

(

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	N/A	N/A	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
Control of the Contro	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

-

Checked by:

Date:

Fung Chi Yip (17-Oct-2014

Date:

Lam Tze Wai 18-Oct-2014

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

Tel: (852) 2873 6860 Fax: (852) 2555 7533 A CIG

G/F, 9/F, 12/F, 13/F & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利,達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 1 of 5

Sound level meter type:

2250

Serial No.

2551244

Date

17-Oct-2014

Microphone

type:

4189

Serial No.

2550229

Report: 14CA1016 01-01

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting

12.2

dB

Noise level in C weighting

13.7

dB

Noise level in Lin

19.5

dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actual level		Tolerance	Devia	Deviation	
Neierence/Expected lever	non-integrated	integrated		non-integrated	integrated	
dB	dB	dB	+/- dB	dB	dB	
94.0	94.0	94.0	0.7	0.0	0.0	
99.0	99.0	99.0	0.7	0.0	0.0	
104.0	104.0	104.0	0.7	0.0	0.0	
109.0	109.0	109.0	0.7	0.0	0.0	
114.0	114.0	114.0	0.7	0.0	0.0	
119.0	119.0	119.0	0.7	0.0	0.0	
124.0	124.0	124.0	0.7	0.0	0.0	
129.0	129.0	129.0	0.7	0.0	0.0	
134.0	134.0	134.0	0.7	0.0	0.0	
135.0	135.0	135.0	0.7	0.0	0.0	
136.0	136.0	136.0	0.7	0.0	0.0	
137.0	137.0	137.0	0.7	0.0	0.0	
138.0	138.0	138.0	0.7	0.0	0.0	
139.0	139.0	139.0	0.7	0.0	0.0	
140.0	140.0	140.0	0.7	0.0	0.0	
89.0	89.0	89.0	0.7	0.0	0.0	
84.0	84.0	84.0	0.7	0.0	0.0	
79.0	79.0	79.0	0.7	0.0	0.0	
74.0	74.0	74.0	0.7	0.0	0.0	
69.0	69.0	69.0	0.7	0.0	0.0	
64.0	64.0	64.0	0.7	0.0	0.0	
59.0	59.0	59.0	0.7	0.0	0.0	
54.0	53.9	53.9	0.7	-0.1	-0.1	
49.0	49.0	49.0	0.7	0.0	0.0	

Tel: (852) 2873 6860 Fax: (852) 2555 7533

A CIGIS GROUP COMPANY

G/F, 9/F, 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利,達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 2 of 5

Sound level meter	21	250		Serial No.	2551244	Date	17-Oct-2014
Microphone ty	ype: 4	189		Serial No.	2550229	Repor	t: 14CA1016 01-01
44.0		43.9	43.9	0.7		-0.1	-0.1
39.0		39.0	39.0	0.7		0.0	0.0
34.0		33.9	33.9	0.7		-0.1	-0.1
33.0		33.0	33.0	0.7		0.0	0.0
32.0		32.0	32.0	0.7		0.0	0.0
31.0		31.0	31.0	0.7		0.0	0.0
30.0		30.0	30.0	0.7		0.0	0.0

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	30.0	30.0	0.7	0.0
20-140	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

_		an announced Book	1	Λ.
Frec	luency	WAIG	htina	Α.

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.5	1.5	1.5	-0.1
63.1	94.0	67.8	67.7	1.5	1.5	-0.1
125.9	94.0	77.9	77.9	1.0	1.0	0.0
251.2	94.0	85.4	85.3	1.0	1.0	-0.1
501.2	94.0	90.8	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.0	1.0	1.0	0.0
7943.0	94.0	92.9	92.9	1.5	3.0	0.0
12590.0	94.0	89.7	89.2	3.0	6.0	-0.5

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+		dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	91.0	1.5	1.5	0.0

Tel: (852) 2873 6860

A CIGIS GROUP COMPANY Fax: (852) 2555 7533

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利,達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com

Website: www.cigismec.com

Test Data for Sound Level Meter

Page 3 of 5

Sound level me	eter type:	2250		Serial No.	255	1244	Date	17-Oct-2014
Microphone	type:	4189		Serial No.	255	0229	Danast	. 1404101001.01
							Report	: 14CA1016 01-01
63.1	94.0		93.2	93.2	1.5	1.5	0.0	
125.9	94.0		93.8	93.8	1.0	1.0	0.0	
251.2	94.0		94.0	94.0	1.0	1.0	0.0	
501.2	94.0		94.0	94.0	1.0	1.0	0.0	
1995.0	94.0		93.8	93.8	1.0	1.0	0.0	
3981.0	94.0		93.2	93.2	1.0	1.0	0.0	
7943.0	94.0		91.0	91.0	1.5	3.0	0.0	
12590.0	94.0		87.8	87.3	3.0	6.0	-0.5	

Frequency weighting Lin-

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	94.0	1.5	1.5	0.0
63.1	94.0	94.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	94.0	1.0	1.0	0.0
7943.0	94.0	94.0	94.0	1.5	3.0	0.0
12590.0	94.0	94.0	93.5	3.0	6.0	-0.5

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

(Set to INT)

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

G/F, 9/F., 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利,達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com CIGISME

A CIGIS GROUP COMPANY

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

2250

Serial No.

2551244

Tel: (852) 2873 6860

Fax: (852) 2555 7533

Date 17-Oct-2014

Microphone

type:

4189

Serial No.

2550229

Report: 14CA1016 01-01

	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	118.0+6.6	118.0	118.0	0.5	0.0

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated bu	Repeated burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

Repetition Time	Level of tone burst	Expected Leq	Actual Leq	Tolerance	Deviation	Remarks
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference rar

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Leq:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	120.0	90.0	89.9	1.7	-0.1

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	120.0	100.0	99.9	1.7	-0.1

CIGISMEC

G/F, 9/F, 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利,達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

A CIGIS GROUP COMPANY

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

2250

Serial No.

2551244

Tel: (852) 2873 6860

Fax: (852) 2555 7533

Date

17-Oct-2014

Microphone

type:

4189

Serial No.

2550229

Report: 14CA1016 01-01

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
134.6	133.6	130.6	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as follow The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference rar

Test frequency:

4000 Hz

Integration time:

10 sec 1 msec

Single burst duration:

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
141.6	140.6	100.6	100.5	2.2	-0.1

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency Expected level		Actual level	Tolerar	Tolerance (dB)		
Hz	dB	Measured (dB)	+	-	dB	
1000	94.0	94.0	0.0	0.0	0.0	
125	77.9	77.7	1.0	1.0	-0.2	
8000	92.9	94.2	1.5	3.0	1.3	

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA1016 01-03

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B & K 4231

Type/Model No.: Serial/Equipment No.: 4231 2725557

Adaptors used:

=

Item submitted by

Curstomer:

MTR Corporation Limited

Address of Customer:

_

Request No.:

Date of receipt:

16-Oct-2014

Date of test:

17-Oct-2014

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	13-May-2015	SCL
Preamplifier	B&K 2673	2743150	10-Apr-2015	CEPREI
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI
Signal generator	DS 360	61227	09-Apr-2015	CEPREI
Digital multi-meter	34401A	US36087050	17-Dec-2014	CEPREI
Audio analyzer	8903B	GB41300350	07-Apr-2015	CEPREI
Universal counter	53132A	MY40003662	11-Apr-2015	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure: 60 ± 10 % 1000 ± 10 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

18-Oct-2014

Company Chop:

SENGINECARIO COMPANY STORY STORY COLUMN OF THE STORY COLUMN OF TH

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com

Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

14CA1016 01-03

Page:

2

2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	94.10	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.001 dB

Estimated expanded uncertainty

0.005 dB

Actual Output Frequency 3,

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Checked by:

Fung Chi Yip Date:

Date:

Lam Tze Wai 18-Oct-2014

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	234 - 238 Chath	am Road North; S	CL - DMS - 11	Operator:	Shum Ka	am Yuen	
Cal. Date:	30-Oct-14			Next Due Date:	30-De	ec-14	-
Equipment No.:		_		Serial No.	82	59	_
		,	Ambient	Condition			
Tamaanahi	To ///)	300		Pa (mmHg)		760.6	
Temperatu	re, ra (K)	300	Flessuic, i	a (mmig)		700.0	
		(Orifice Transfer S	tandard Informatio	on		
Serial No: 988 Slope, mc 1.97518 Intercept, bc					-0.01001		
Last Calibra	ation Date:	28-May-14		may Ostd + bo =	= [H x (Pa/760) x	(208/Ta)1 ^{1/2}	
Next Calibra	ation Date:	28-May-15		me x Qstu + be -	- [II X (I &/ 700) X	(270/14)]	
		•		of TSP Sampler	ши	S Flow Recorder	
Resistance		1	rfice				
Plate No.	I DH (orifice)		Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (CF		
18	8.0		2.82		44.0	43.87	
13	6.5		2.54		38.0	37.89	
10	5.3		2.30		32.0	31.9	1
7	4.0		1.99		26.0	25.9	2
5	2.8		1.67	0.85	20.0	19.9	4
By Linear Regre Slope , mw =	ession of Y on X 41.3340	<u> </u>		Intercept, bw =	-15.	6817	_
Correlation Coe	efficient* =	0.9	9974	_			
*If Correlation Co	pefficient < 0.990	, check and recali	brate.				
				t Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd =	1.30m ³ /min				
From the Regres	ssion Equation, th	ne "Y" value accor	ding to				
			50.5 W W W ASSESSMEN				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)]""		
Therefore, Set P	oint; IC = (mw x	Qstd + bw) x [(7	60 / Pa) x (Ta / 2	98)] ^{1/2} =		38.16	_
Remarks:							
remains.							
	VI. Fr		-1			7	6 .
	VIL M	/	J.			30-0	1-14

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3790 0.9720 0.8690 0.8260 0.6830	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd (x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9917 0.7191 0.9875 1.0159 0.9854 1.1339 0.9843 1.1916 0.9790 1.4333	1.4113 1.9959 2.2315 2.3405 2.8227	0.9957 0.9915 0.9894 0.9883 0.9829	0.7221 1.0201 1.1385 1.1965 1.4392	0.8874 1.2549 1.4030 1.4715 1.7747
Qstd slope (m) = intercept (b) = coefficient (r) =	1.97518 -0.01001 0.99998	Qa slope intercept coefficie	t (b) =	1.23683 -0.00630 0.99998
y axis = SQRT[H2O(H	Pa/760)(298/Ta)]	y axis =	SQRT[H20(Га/Ра)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3790 0.9720 0.8690 0.8260 0.6830	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd (x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9917 0.7191 0.9875 1.0159 0.9854 1.1339 0.9843 1.1916 0.9790 1.4333	1.4113 1.9959 2.2315 2.3405 2.8227	0.9957 0.9915 0.9894 0.9883 0.9829	0.7221 1.0201 1.1385 1.1965 1.4392	0.8874 1.2549 1.4030 1.4715 1.7747
Qstd slope (m) = intercept (b) = coefficient (r) =	1.97518 -0.01001 0.99998	Qa slope intercept coefficie	t (b) =	1.23683 -0.00630 0.99998
y axis = SQRT[H2O(H	Pa/760)(298/Ta)]	y axis =	SQRT[H20(Га/Ра)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

GS2310 Series Sampler Calibration

(Dickson Recorder)

Customer ->	> MTRC	(15101)	SITE	Certificate ->	20141211				
Location ->	Location -> Fung Kei MPS Date -> 29-Nov-14								
Sampler -> 1294-1110 Tech -> Chan Kin Fung					Chan Kin Fung				
		CC	NDITIO	NS	· · · · · · · · · · · · · · · · · · ·	•••••			
Sea Level Pressure	(hpa)	1013.4		Sampler Eleva	tion (feet)	100			
Sea Level Pressure	(in Hg)	29.93		Corrected Pres	ssure (mm Hg)	757.52			
Temperature	(deg C)	23.5		Temperature	(deg K)	296.50			
Seasonal SL Pressure	(in Hg)	29.93		Corrected Sea	sonal (mm Hg)	757.52			
Seasonal Temperature	(deg C)	23.50		Seasonal Tem	perature(deg K)	296.50			
	CALIBRATION ORIFICE								
Make ->	TISCH				Qstd Slope ->	2.02363			
Model ->	TE-5025A	A			Qstd Intercept ->	0.03075			
Serial# ->	2821				Date Certified ->	19-Sep-14			
		CA	LIBRAT	ION					
Plate or	H_2O	Qstd	I	IC	LINEAR				
Test #	(in)	(M ³ /min)	(chart)	(corrected)	REGRESSION				
1 18	12.3	1.719	61	61.054	Slope =	31.2546			
2 13	9.9	1.541	54	54.048	Intercept =	6.3744			
3 10	7.8	1.366	48	48.043	Corr. Coeff. =	0.9975			
4 7	5.1	1.102	41	41.037					
5 5	3	0.841	33	33.029					

Calculations

Qstd = 1/m [Sqrt (H₂O (Pa/Pstd) (Tstd/Ta)) - b]

IC = I [Sqrt (Pa/Pstd) (Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K

This is to certify that the above equipment has been calibrated in accordance with

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m ((I) [Sqrt (298/Tav) (Pav/760)] - b)

m = sampler slope

b = sampler intercept

I = chart response

manufacturer's procedure.

Tav = daily average temperature Pav = daily average pressure

GS2310 Series Sampler Calibration

(Dickson Recorder)

(Dickson Recorder)						
Customer ->	> MTRC		SITE	Certificate -> 20141210		
Location ->	Ka Fu Bu	ilding		Date ->	29-Nov-14	
Sampler ->	> 994-0874			Tech ->	Chan Kin Fung	
		CC	ONDITIO	NS		
Sea Level Pressure	(hpa)	1013.4		Sampler Eleva	tion (feet)	100
Sea Level Pressure	(in Hg)	29.93		Corrected Pres	ssure (mm Hg)	757.52
Temperature	(deg C)	23.5		Temperature	(deg K)	296.50
Seasonal SL Pressure	(in Hg)	29.93		Corrected Seas	sonal (mm Hg)	757.52
Seasonal Temperature	(deg C)	23.50		Seasonal Tem	perature(deg K)	296.50
***************************************		CALIBR	ATION (ORIFICE		
Make ->	TISCH				Qstd Slope ->	2.02363
Model ->	TE-5025	A			Qstd Intercept ->	0.03075
Serial# ->	2821				Date Certified ->	19-Sep-14
••••••		CA	LIBRAT	ION		
Plate or	H_2O	Qstd	I	IC	LINEAR	
Test #	(in)	(M ³ /min)	(chart)	(corrected)	REGRESSION	
1 18	12	1.698	58	58.052	Slope =	30.2654
2 13	9.5	1.509	53	53.047	Intercept =	6.7817
3 10	7.7	1.357	47	47.042	Corr. Coeff. =	0.9983
4 7	4.9	1.080	40	40.036		
5 5	3	0.841	32	32.029		

Calculations

 $Qstd = 1/m [Sqrt (H_2O (Pa/Pstd) (Tstd/Ta)) - b]$

IC = I [Sqrt (Pa/Pstd) (Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m ((I) [Sqrt (298/Tav) (Pav/760)] - b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

This is to certify that the above equipment has been calibrated in accordance with manufacturer's procedure.

GS2310 Series Sampler Calibration

(Dickson Recorder)

(Dickson Recorder)						
Customer ->	> MTRC		SITE	Certificate -> 20141213		
Location ->	Methodis	t School		Date ->	29-Nov-14	
Sampler ->	> 1294-111	2		Tech ->	Chan Kin Fung	
		CC	ONDITIO	NS		
Sea Level Pressure	(hpa)	1013.4		Sampler Eleva	ntion (feet)	60
Sea Level Pressure	(in Hg)	29.93		Corrected Pres	ssure (mm Hg)	758.53
Temperature	(deg C)	23.5		Temperature	(deg K)	296.50
Seasonal SL Pressure	(in Hg)	29.93		Corrected Sea	sonal (mm Hg)	758.53
Seasonal Temperature	(deg C)	23.50		Seasonal Tem	perature(deg K)	296.50
		CALIBR	RATION (ORIFICE		
Make ->	TISCH				Qstd Slope ->	2.02363
Model ->	TE-5025	4			Qstd Intercept ->	0.03075
Serial# ->	2821				Date Certified ->	19-Sep-14
		CA	LIBRAT	ION		
Plate or	H_2O	Qstd	I	IC	LINEAR	
Test #	(in)	(M ³ /min)	(chart)	(corrected)	REGRESSION	
1 18	12.3	1.721	61	61.095	Slope =	33.1941
2 13	10.2	1.565	55	55.086	Intercept =	3.7351
3 10	8	1.385	50	50.078	Corr. Coeff. =	0.9994
4 7	5	1.092	40	40.062		
5 5	3.1	0.856	32	32.050		

Calculations

Qstd = 1/m [Sqrt (H₂O (Pa/Pstd) (Tstd/Ta)) - b]

IC = I [Sqrt (Pa/Pstd) (Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m ((I) [Sqrt (298/Tav) (Pav/760)] - b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

This is to certify that the above equipment has been calibrated in accordance with manufacturer's procedure.

GS2310 Series Sampler Calibration

(Dickson Recorder)

	(Dickson Recorder)					
Customer -	> MTRC		SITE	Certificate ->	20141212	
Location ->	> Poly U Ha	ıll		Date ->	29-Nov-14	
Sampler ->	> 1294-1109)		Tech ->	Chan Kin Fung	
		CC	ONDITIO	NS		
Sea Level Pressure	(hpa)	1013.4		Sampler Eleva	tion (feet)	260
Sea Level Pressure	(in Hg)	29.93		Corrected Pres	ssure (mm Hg)	753.48
Temperature	(deg C)	23.5		Temperature	(deg K)	296.50
Seasonal SL Pressure	(in Hg)	29.93		Corrected Sea	sonal (mm Hg)	753.48
Seasonal Temperature	(deg C)	23.50		Seasonal Tem	perature(deg K)	296.50
		CALIBR	RATION (ORIFICE		
Make ->	TISCH				Qstd Slope ->	2.02363
Model ->	TE-5025A	1			Qstd Intercept ->	0.03075
Serial# ->	2821				Date Certified ->	19-Sep-14
		CA	LIBRAT	ION		
Plate or	H_2O	Qstd	I	IC	LINEAR	
Test #	(in)	(M ³ /min)	(chart)	(corrected)	REGRESSION	
1 18	11.8	1.679	62	61.890	Slope =	39.2216
2 13	9.8	1.529	56	55.900	Intercept =	-3.1568
3 10	7.6	1.345	52	51.907	Corr. Coeff. =	0.9926
4 7	4.9	1.077	40	39.929		
5 5	3.3	0.881	30	29.947		

Calculations

 $Qstd = 1/m [Sqrt (H_2O (Pa/Pstd) (Tstd/Ta)) - b]$

IC = I [Sqrt (Pa/Pstd) (Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m ((I) [Sqrt (298/Tav) (Pav/760)] - b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

This is to certify that the above equipment has been calibrated in accordance with manufacturer's procedure.

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Se Operator		Rootsmeter Orifice I.I		438320 2821	Ta (K) - Pa (mm) -	298 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4480 1.0130 0.9050 0.8590 0.7070	3.2 6.4 7.9 8.8 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9850 0.9809 0.9788 0.9777 0.9725	0.6803 0.9683 1.0815 1.1381 1.3756	1.4066 1.9892 2.2240 2.3326 2.8132		0.9957 0.9915 0.9894 0.9883 0.9831	0.6876 0.9788 1.0933 1.1505 1.3905	0.8903 1.2591 1.4078 1.4765 1.7807
Qstd slop intercept coefficie	t (b) = ent (r) =	2.02363 0.03075 0.99997	e n	Qa slope intercept coefficie	(b) = ent (r) =	1.26716 0.01946 0.99997
y axis =	SQRT[H2O(E	Pa/760) (298/Ta	y axis =	SQRT[H2O(T	'a/Pa)]	

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Balance Calibration Report Tested to MTRC Method WI/707M/01

Laboratory Equipment Identification Number			BA0011		
Manufacturer	Sartorius	Model	A200S-**DIB	Serial No.	1065989
Capacity	120g	Discrimination	0.1mg	Туре	Top Loading
Location	Concrete Testing Area		Temperature	2 4°C	

Reference Mass Set U	Jsed (Equip. ID. No.)	RM001		
Manufacturer	Troemner	OIML Classification	F1	
Last Calibration Date	29-04-2002	1	South China National Centre of Metrology	

(1) Repeatability of Reading

Reference Mass (g)	Standard Deviation of Balance Reading (g)	Maximum Difference Between Successive Readings (g)
10	0.000094	0.0002
60	0.000079	0.0002
120	0.000042	0.0001

Standard Deviation of the Balance = 0.000422 g

(2) Departure from Nominal Value

Reading (g)	Correction (g)	Uncertainty (g)
09.9998	0.00020	
19.9980	0.00025	
29.9999	0.00015	
39.9997	0.00043	
49.9998	0.00017	±0.000301
59.9996	0.00032	,
69.9996	0.00037	
79.9996	0.00042	
89.9996	0.00045	
99.9993	0.00050	

Maximum Correction = 0.00050 g

(3) Off-Centre Loading

A mass of approximately 10000g was moved to various position on the balance pan. The balance readings obtained at different position are given in the table.

Centre	Front	Back	Left	Right
59.9986	59.9984	59.9981	59.9987	59.9988

Maximum Difference = 0.0007 g

(4) Hysteresis

Load	Hysteresis
(g)	(g)
. 50	0.000367

(5) Limit of Performance of the Balance = \pm 0.000783 g

Checked by :	Dick Lee	Certified by :	Colyre Colyre
Date :	14-02-2011	Date :	14/2/2011

Notes:

- 1. The balance has been tested according to the specifications laid down in Chapter 6 of the CSIRO Publication "The Calibration of Balances by David B. Prowse".
- 2.Uncertainties quoted in this report have been estimated on the basis of there being not more than one chance in one hundred that any value differs from the true value by more than the stated uncertainty.
- 3. The Limit of Performance is the tolerance band within which all readings of the balance will fall.