Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel (852)-24508238 Fax

(852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Quarterly EM&A Report

May - July 2014

Client: China International Water & Electric Corporation

Project: Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel - CV/2013/04

Report No.: 0394/13/ED/0174C

Project Proponent:

Prepared by: Vincent Chan

Civil Engineering & Development Department 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong.

Reviewed by: Arthur Cheng

Certified by:

Colin Yung Environmental Team Leader for MateriaLab Consultants Limited

Ref.: CEDDWKTBEM00_0_0146L.14

30 December 2014

Mott MacDonald Hong Kong Ltd. 20/F, AIA Kowloon Tower, Landmark East, 100 How Ming Street, Kwun Tong, Kowloon By Post and Fax (2419 6218)

Attention: Ir Chau T C, Felix, Engineer's Representative

Dear Ir Chau,

Re: Agreement No. CE 63/2008 (CE) Dredging Works in Kwai Tsing Container Basin and its Approach Channel – Investigation, Design and Construction

Contract No. CV/2013/04 Dredging Works in Kwai Tsing Container Basin and its Approach Channel Verification of Quarterly EM&A Report for May to July 2014

Reference is made to the Environmental Team's submission of the Quarterly Environmental Monitoring & Audit Report for May to July 2014 (ET's Report. No. 0394/13/ED/0174C) received by e-mail on 24 December 2014.

We write to verify the captioned report in accordance with Section 12.4 iii of EM&A Manual (AEIAR-156/2010).

Thank you very much for your kind attention and please do not hesitate to contact our Ms Laraine Chau or the undersigned should you have any queries.

Yours sincerely, For and on behalf of ENVIRON Hong Kong Limited

Y. H. Hui Independent Environmental Checker

c.c. MMHK MateriaLab CIW&E Mr. C M Howley Mr. Colin Yung Mr. Lam Wai-hung 2827 1823 (by fax) 2450 6138 (by fax) 2419 6028 (by fax)

Q:\Projects\CEDDWKTBEM00\02 Project Management\02 Corr\CEDDWKTBEM00_0_0146L.14.doc

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	5
2.	BASIC PROJECT INFORMATION	7
3.	EM&A REQUIREMENTS – ROUTINE IMPACT MONITORING	8
4.	EM&A REQUIREMENTS – 24-HR WATER QUALITY MONITORING	14
5.	ENVIRONMENTAL SITE INSPECTION AND AUDIT	15
6.	COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	24
7.	CONCLUSIONS	25

Tel

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

: (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

TABLES:

Table I	Summary of Water Quality Exceedances – Routine Impact Monitoring (In-situ)	1
Table II	Summary of Water Quality Exceedances – Routine Impact Monitoring (Laboratory Analysis)	2
Table III	Summary of the Exceedances Recorded in Reporting Month – 24-hr Monitoring	3
Table 2-1	Key Personnel Contact of the Contract	7
Table 2-2	Detail Dredging Quantity	8
Table 3-1	Monitoring Parameters and Frequency	9
Table 3-2	Water Quality Monitoring Parameters	10
Table 3-3	Summary of Water Quality Exceedance (In-situ Measurement)	11
Table 3-4	Summary of Water Quality Exceedance (Laboratory Analysis)	12
Table 4-1	24-hr Water Quality Monitoring Parameters	14
Table 4-2	Summary of Water Quality Exceedance (24-hr Monitoring)	14
Table 5-1	Waste Quantities of Dredging Works	16
Table 5-2	Comparison of Quarterly Mean to Baseline Mean	19
Table 5-3	Summary of Statistical Analysis	23
Table 6-1	Environmental Complaints Log	24
Table 6-2	Cumulative Statistics on Complaints	24
Table 6-3	Cumulative Statistics on Successful Prosecutions	24

FIGURES:

Figure 1	Project General Layout
Figure 2	Dredging Work Location during the Reporting Period
Figure 3	Locations of Water Quality Monitoring Stations

APPENDICES:

- Appendix A **Project Organization Chart**
- **Construction Programme** Appendix B
- Appendix C Action and Limit Levels
- Appendix D Graphical Presentation - Routine Impact Monitoring Results
- Graphical Presentation 24-hr Monitoring Results Appendix E
- Appendix F **Environmental Mitigation Implementation Schedule**
- Waste Generation in Reporting Period Appendix G
- Appendix H Quarterly Assessment of Construction Impacts

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk MateriaLab

Report No.: 0394/13/ED/0174C

EXECUTIVE SUMMARY

Page 1 of 26

- i. This is the First Quarterly Environmental Monitoring Audit (EM&A) Report May July 2014 for Contract No. CV/2013/04 – Dredging Works in Kwai Tsing and its Approach Channel (CE63/2008 – Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel). The dredging works commenced on 23 April 2014. This report presents the environmental monitoring and audit works conducted from 23 April 2014 to 22 July 2014.
- ii. Construction Activities for the Reporting Period During this reporting period, the principal work activities included:

May 2014	June 2014	July 2014
Dredging at Portion D / Zone	Dredging at Portion D / Zone	Dredging at Portion D / Zone
13A in EP (Figure 1).	13A in EP (Figure 1).	13A in EP (Figure 1).

iii. Water Quality Monitoring

Routine impact water quality monitoring at 22 designated monitoring stations namely C1, C2, C3, G1, G2, G3, G4, G5, G6, SR1, SR2, SR3, SR4, SR5, SR6, SR7, SR8, SR9, SR10, SR11, SR12 and SR13 were conducted during the reporting period. Exceedances of DO, Turbidity, Suspended Solids, NH₃-N (lab) and TIN (in-situ & lab) were recorded at various monitoring stations, detail of exceedance are summarized in **Table I and II**. However, investigation indicated these exceedances were not related to the Project works.

Station	Exceedance Level	DO (S&M)	DO	DO (B) 1		oidity	NH	3-N	U	IA	Т	IN	То	Total	
		Е	F	E	F	E	F	Е	F	E	F	E	F	E	F	
SR1	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
SKI	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
SR2	Action	1	2	1	1	0	0	0	0	0	0	-	-	2	3	
SRZ	Limit	16	16	21	24	1	0	0	0	0	0	-	-	38	40	
SR3	Action	1	1	1	2	0	0	0	0	0	0	-	-	2	3	
383	Limit	15	16	19	24	0	0	0	0	0	0	-	-	34	40	
SR4	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
384	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
SR5	Action	1	0	0	0	0	0	-	-	-	-	0	1	1	1	
363	Limit	6	8	17	18	0	0	-	-	-	-	29	31	52	57	
SR6	Action	2	1	0	0	3	4	0	0	0	0	-	-	5	5	
SRU	Limit	26	27	29	30	2	2	0	0	0	0	-	-	57	59	
SR7	Action	0	1	0	0	1	5	0	0	0	0	-	-	1	6	
367	Limit	22	29	29	31	0	0	0	0	0	0	-	-	51	60	
SR8	Action	1	0	0	0	0	2	0	0	0	0	-	-	1	2	
SRO	Limit	19	21	26	29	1	2	0	0	0	0	-	-	46	52	
SR9	Action	1	2	0	0	1	3	-	-	-	-	12	12	14	17	
SK9	Limit	10	9	26	26	0	0	-	-	-	I	9	12	45	47	
SR10	Action	2	3	0	1	2	3	-	-	-	-	10	8	14	15	
SKIU	Limit	8	10	21	22	0	0	-	-	-	-	13	18	42	50	
SR11	Action	1	1	0	0	1	2	-	-	-	-	12	11	14	14	
SKII	Limit	11	11	19	20	0	0	-	-	-	-	7	9	37	40	
0010	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
SR12	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0	

 Table I
 Summary of Water Quality Exceedances – Routine Impact Monitoring (In-situ)

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk **MateriaLab**

Report No.: 0394/13/ED/0174C

Page 2 of 26

Station	Exceedance Level	DO (S&M)		DO (B)		Turbidity		NH3-N		UIA		TIN		Total	
SR13	Action	3	0	1	2	0	0	-	-	-	-	-	-	4	2
3613	Limit	18	24	26	28	0	0	-	-	-	-	-	-	44	52
Total	Action	13	11	3	6	8	19	0	0	0	0	34	32	12	26
TOLAI	Limit	151	171	233	252	4	4	0	0	0	0	58	70	94	13

Table II Summary of Water Quality Exceedances – Routine Impact Monitoring (Laboratory Analysis)

Station	Exceedance Level		ended lids	В	DD₅	E. (coli	NH	3 -N	U	IA		hetic rgent	Т	N	То	otal
		Е	F	Е	F	Е	F	E	F	E	F	E	F	Е	F	E	F
SR1	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SKI	Limit	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SR2	Action	0	0	-	I	I	-	0	0	0	0	-	-	-	-	0	0
3RZ	Limit	0	0	-	I	I	-	2	2	0	0	-	-	-	-	2	2
SR3	Action	0	0	-	I	I	-	0	2	0	0	-	-	-	-	0	2
3K3	Limit	0	0	-	I	I	-	2	3	0	0	-	-	-	-	2	3
SR4	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
384	Limit	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SR5	Action	0	0	-	-	-	-	0	0	0	0	-	-	0	2	0	2
363	Limit	0	0	-	-	-	-	0	0	0	0	-	-	29	32	29	32
SR6	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
SKU	Limit	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
SR7	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
367	Limit	0	0	-	-	1	-	0	0	0	0	-	-	-	-	0	0
SR8	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
SKO	Limit	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
SR9	Action	0	0	-	I	I	-	0	0	0	0	-	-	9	10	9	10
369	Limit	0	0	-	-	-	-	0	0	0	0	-	-	7	7	7	7
SR10	Action	0	0	-	-	-	-	0	0	0	0	-	-	5	9	5	9
SKIU	Limit	0	0	-	-	-	-	0	0	0	0	-	-	9	8	9	8
SR11	Action	0	0	-	-	-	-	0	0	0	0	-	-	6	6	6	6
SKII	Limit	0	0	-	I	I	-	0	0	0	0	-	-	2	2	2	2
SR12	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SK12	Limit	1	0	0	0	0	0	0	0	0	0	0	0	-	-	1	0
SR13	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
3513	Limit	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
Total	Action	0	0	0	0	0	0	0	2	0	0	0	0	20	27	4	9
rotai	Limit	1	0	0	0	0	0	4	5	0	0	0	0	47	49	10	06

Among the 22 monitoring stations, supplementary 24-hr water quality monitoring was also conducted at 7 of the stations, which are SR4, SR5, SR9, SR10, SR11, SR12 and SR13. Exceedances of DO and Turbidity were recorded at various monitoring stations, detail of exceedance are summarized in **Table III**. However, investigation indicated these exceedances were not related to the Project works.

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Page 3 of 26

Report No.: 0394/13/ED/0174C

Station	Exceedance Level	Turbidity	DO	NH₃-N	Total	
SR4	Action	0	0	0	0	
514	Limit	21	45	0	66	
SR5	Action	161	59	-	220	
353	Limit	651	1374	-	2025	
SR9	Action	634	124	-	758	
31.9	Limit	175	251	-	426	
SR10	Action	646	61	-	707	
SKIU	Limit	355	708	-	1063	
SR11	Action	361	232	-	593	
51(11	Limit	506	844	-	1350	
SR12	Action	1	0	0	1	
51112	Limit	141	14	0	155	
SR13	Action	4	105	-	109	
3113	Limit	197	2194	-	2391	
Total	Action	1807	581	0	2388	
iotai	Limit	2046	5430	0	7476	

Table III Summary of the Exceedances Recorded in Reporting Quarter – 24-hr Monitoring

iii. Waste Management

There was marine sediment (Type 1 – Open Sea Disposal) disposed to East Sha Chau Pit IVc or Va and South of Brothers CMP1 or CMP2. No inert or non-inert C&D material related to dredging works and a small amount of general refuse were disposed off site in the reporting quarter.

- iv. Complaints, Notifications of Summons and Successful Prosecutions No complaint, notification of prosecutions or summons was received in the reporting period.
- v. Site Inspections and Audit

The Environmental Team conducted 13 site inspections in the reporting period. No particular observation related to the dredging work was found in the reporting quarter.

During joint party visit on 29th May 2014, it is agreed that rectification measures will be implemented by the Contractor to prevent leakage of dredged mud during transfer from silt curtain cage to the hopper barge. The measures proposed by Contractor include enforcement of daily check of grab dredger, employment of better dredging operation practice like steady transfer of grab bucket, extension of retention time above silt curtain cage, lowering of grab bucket into the hopper barge and close the grab bucket while back transferring to the silt curtain cage.

A suspected leakage of silt curtain was reported on 2nd July, while during site inspection on 3rd July, no leakage was observed during operation. The Contractor reported that investigation revealed the suspected case is due to overflow of surface water from the silt curtain cage. Water quality monitoring showed no project-related exceedance during the period. The Contractor was reminded to monitor the condition of the silt curtain closely, and rectify if any leakage was found.

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

MateriaLab

Report No.: 0394/13/ED/0174C

Page 4 of 26

Pursuant to Condition 3.4 of the EP, the Contractor has arranged a monitoring brief, on 2nd July, for the dredging works staff about the possibility of locating archaeological objects according to the requirement set out in Section 8.1 of the EM&A Manual. According to the Contractor, plan for monitoring dredged spoil, notification procedure and the relevant records will be provided for agreement prior to the commencement of dredging at the location with identified archaeological potential.

vi. Compliance with Specific EP conditions

Implementation of contractor's mitigation for dredging work and the associated dredging records were checked. It was concluded that the dredging is conducted orderly in compliance with the EP requirements on site mitigation measures.

vii. Construction Activities for the Coming Reporting Period

During the coming reporting period, the principal work activities include:

- Dredging at Portion D
- Dredging at Portion A

Future Key Issues include:

- Regular inspection on silt curtain deployment
- Regular inspection on silt screen deployment
- Implementation of EM&A Programme
- Maintain dredging below allowable dredging rate in EP.
- Cleaning of excess material from the decks and exposed fittings of barges and dredgers before the vessel is moved.
- Barge loading shall be monitored to ensure material is not lost during transportation.
- Conditions in dumping permit shall be followed strictly.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 5 of 26

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project objective is to dredge approximately 4.0 million cubic metres of sediment from the seabed of Kwai Tsing Container Basin, as well as portions of Northern Fairway and Western Fairway, to provide sufficient depth of container basin and approach channel to Kwai Tsing Container Terminal (KTCT) for the safe navigation of Ultra Large Container Ships (ULCS).
- 1.1.2 The environmental monitoring and audit works of this Project is governed by Environmental Permit (EP) No. EP-426/2011/A, EM&A Manual (AEIAR-156/2010) and EM&A TIN (EPD Letter Ref: (34) in Ax(1) to EP2/N3/C/57Pt.7)).
- 1.1.3 The project proponent was the Civil Engineering & Development Department, HKSAR (CEDD). The Project General Layout is shown in **Figure 1**.
- 1.1.4 Mott MacDonald Hong Kong Ltd. (MMHK) was commissioned by CEDD as the Engineer for the Project. ENVIRON Hong Kong Ltd. was employed as the Independent Environmental Checker (IEC) in the Project.
- 1.1.5 China International Water & Electric Corporation Limited (CIW&E) was appointed as the main contractor for the dredging works.
- 1.1.6 MateriaLab Consultants Limited (MCL) was appointed as the Environmental Team (ET) to implement the Environmental Monitoring and Audit (EM&A) programme for the Project.
- 1.1.7 The construction phase of the Project under the EP was commenced on 23 April 2014. The impact EM&A programme of the Project commenced on 23 April 2014.

1.2 Purpose of the Report

1.2.1 This First Quarterly EM&A Report is prepared by MCL. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in 23 April to 22 July 2014.

1.3 Structure of the Report

- 1.3.1 The structure of this report is as follows:
 - Section 1: Introduction, including background, purpose and structure of the report
 - Section 2: Basic Project Information summaries background and scope of the Contract, site description, project organization and contract details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: Routine Impact Water Quality Monitoring summaries the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency,

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 6 of 26

monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

- Section 4: 24-hr Water Quality Monitoring summaries the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
- Section 5: Environmental Site Inspection summaries the audit findings of the weekly site inspections undertaken within the reporting period.
- Section 7: Complaints, notifications of summons and Prosecution summaries any environmental complaints, environmental summons and successful prosecutions within the reporting period.

Section 8: Conclusions and Recommendation

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Page 7 of 26

Report No.: 0394/13/ED/0174C

2. BASIC PROJECT INFORMATION

- **2.1** Project Organizations
- 2.1.1 The Project Organization structure is shown in **Appendix A**. The key personnel contact names and numbers are summarized in **Table 2.1**.

Party	Position	Name	Telephone	Fax		
Engineer's Representative (MMHK)	Senior Resident Engineer	Ir. Felix Chau	2419 6008	2419 6218		
Independent Environmental Checker (ENVIRON)	nvironmental Environmental Checker		3465 2888	3465 2899		
Contractor	Site Agent	Mr. KO Leung	2419 6008	2419 6218		
(CIW&E)	Environmental Officer	Mr. WH Lam	2419 6008	2419 6218		
Environmental Team (MCL)	Environmental Team Leader	Mr. Colin Yung	3565 4114	3565 4160		

 Table 2-1
 Key Personnel Contact of the Contract

- **2.2** Construction Programme and Synopsis of Work
- 2.2.1 The construction phase of the Project under the EP commenced on 23 April 2014.
- 2.2.2 The construction programme of the Project is shown in Appendix B.
- 2.2.3 The environmental mitigation measures implementation schedule is presented in Appendix F.
- 2.3 Works undertaken during the quarter

During the reporting period, according to the Contractor, the principal work activities include:
Dredging at Portion D / Zone 13A in EP

Dredging at Portion A / Zone 4A in EP

Daily dredging quantity in the reporting month is provided in **Table 2.2**.

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Page 8 of 26

Report No.: 0394/13/ED/0174C

Table 2-2	Detail Dredg	ing Quantity			
Date	Dredged Quantity (bulk, m ³) Portion D	Date	Dredged Quantity (bulk, m ³) Portion D	Date	Dredged Quantity (bulk, m ³) Portion D
23/4/2014	1500	23/5/2014	0	23/6/2014	3250
24/4/2014	200	24/5/2014	0	24/6/2014	2600
25/4/2014	0	25/5/2014	3250	25/6/2014	2600
26/4/2014	0	26/5/2014	650	26/6/2014	2600
27/4/2014	0	27/5/2014	1300	27/6/2014	3250
28/4/2014	0	28/5/2014	2600	28/6/2014	3250
29/4/2014	0	29/5/2014	2600	29/6/2014	2600
30/4/2014	0	30/5/2014	2600	30/6/2014	3250
1/5/2014	0	31/5/2014	3250	1/7/2014	3250
2/5/2014	0	1/6/2014	2600	2/7/2014	3250
3/5/2014	0	2/6/2014	3250	3/7/2014	3250
4/5/2014	0	3/6/2014	3250	4/7/2014	1300
5/5/2014	0	4/6/2014	3250	5/7/2014	1950
6/5/2014	0	5/6/2014	3250	6/7/2014	3250
7/5/2014	500	6/6/2014	2600	7/7/2014	3250
8/5/2014	1000	7/6/2014	3250	8/7/2014	3250
9/5/2014	0	8/6/2014	3250	9/7/2014	2600
10/5/2014	0	9/6/2014	1950	10/7/2014	3250
11/5/2014	0	10/6/2014	3250	11/7/2014	2600
12/5/2014	0	11/6/2014	2600	12/7/2014	2600
13/5/2014	0	12/6/2014	3250	13/7/2014	2600
14/5/2014	0	13/6/2014	1950	14/7/2014	3250
15/5/2014	0	14/6/2014	650	15/7/2014	2600
16/5/2014	0	15/6/2014	0	16/7/2014	3250
17/5/2014	0	16/6/2014	0	17/7/2014	1300
18/5/2014	0	17/6/2014	0	18/7/2014	0
19/5/2014	0	18/6/2014	3250	19/7/2014	2600
20/5/2014	0	19/6/2014	3250	20/7/2014	1300
21/5/2014	0	20/6/2014	2600	21/7/2014	3250
22/5/2014	0	21/6/2014	2600	22/7/2014	1950
		22/6/2014	650		

Maximum allowable daily dredging rate for Portion D / Zone 13A: 4,000 m³

3. EM&A REQUIREMENTS – ROUTINE IMPACT MONITORING

3.1 Monitoring Parameters

3.1.1 The monitoring parameters and frequency for both in-situ measurement and laboratory analysis are summarised in **Table 3.1**. Parameters for each monitoring station are specified in **Table 3.2**.

Tel

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

: (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 9 of 26

Monitoring Parameters and Frequency Table 3-1

Parameters	Monitoring Frequency
In-situ Measurement Turbidity (in NTU), pH, Dissolved Oxygen (in mg/L and %), Temperature (in °C), Salinity (in ppt), ¹ Ammonia-N (in mg/L-N and UIA); ² TIN: Ammonia-N (in mg/L), Nitrite (in mg/L), Nitrate (in mg/L) <u>Laboratory Analysis</u> ¹ Ammonia-N (in mg/L-N and UIA), Suspended Solids (SS), ² BOD ₅ , ² <i>E.coli</i> , ² Synthetic Detergent; ² TIN: Ammonia-N (in mg/L), Nitrite (in mg/L), Nitrate (in mg/L)	 3 days per week, at mid-flood and mid- ebb tides (except detergent which shall be taken one day per month, at mid-flood and mid-ebb) 36 hours interval was allowed between subsequent sets of measurement.

Notes:

Ammonia measurements and samples were taken at SR1, SR2, SR3, SR4, SR12, C1, C2, C3 only; 1. UIA: In-situ unionized ammonia was calculated from in-situ measurement of NH₃-N, temperature, pH and salinity; Laboratory determined unionized ammonia was calculated from analysed NH₃-N from water samples and in-situ measurement of temperature, pH and salinity;

2. Total Inorganic Nitrogen (TIN) measurements and samples were taken at SR5, SR9, SR10, SR11, G1, G2, G3, G4, G5, G6 only;

3. BOD₅, E.coli and Synthetic Detergent samples were taken at SR1, SR4, SR12, C1, C2, C3 only.

Tel

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

: (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Page 10 of 26

Report No.: 0394/13/ED/0174C

Laboratory Analysis **In-situ Measurement** FIN (NH₃-N, NO₂ & NO₃) TIN (NH₃-N, NO₂ & NO₃) Synthetic Detergent **Suspended Solids** Dissolved Oxygen / Dissolved Oxygen% NH₃-N / UIA Temperature NH₃-N / UIA E. coli Turbidity BOD5 ID Salinity F SR1 SR2 SR3 SR4 Ο SR5 SR6 SR7 SR8 SR9 **SR10 SR11 SR12 SR13** G1 G2 G3 G4 G5 G6 C1 C2 C3

Table 3-2 Water Quality Monitoring Parameters

Note:

UIA: In-situ unionized ammonia was calculated from in-situ measurement of NH₃-N, temperature, pH and 1. salinity; laboratory determined unionized ammonia was calculated from analysed NH₃-N from water samples taken and in-situ measurement of temperature, pH and salinity.

3.2 Monitoring Locations

- 3.2.1 Impact water quality monitoring was conducted at 22 locations, including 13 sensitive receivers (SR1-13), 6 gradient stations (G1-6) and 3 control stations (C1-3). The locations of the stations are also shown in Figure 2.
- 3.2.2 Revisions on monitoring locations were proposed in previous submission (MateriaLab Report No. Ref: 0394/13/ED/0103 - WATER QUALITY MONITORING LOCATION) and were agreed among AFCD, EMSD, WSD and EPD.
- 3.3 **Results and Observations**

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 11 of 26

- 3.3.1 Impact water quality monitoring was conducted at all designated monitoring stations in the reporting quarter. Impact water quality monitoring results graphical presentations are provided in **Appendix D**.
- 3.3.2 During the reporting period, red tide occurrences were reported in Hong Kong waters. In addition, some adverse weather conditions, including Typhoon Signal, Rainstorm Warning and Thunderstorm Warning, were reported. Heavy marine traffic (not associated with the Project) was also commonly observed nearby the Project site and its vicinity, that the propeller wash from vessels could lead to potential disturbance of seabed sediment and affect the water quality.
- 3.3.3 Exceedances were recorded for Turbidity, DO (S&M), DO (B), Suspended solids, Ammonia (lab) and TIN (in-situ & lab). Number of exceedances recorded in the reporting quarter at each impact station is summarized in **Table 3.6 and 3.7**.

Station	Exceedance Level	DO (\$	S&M)	DO (B) T		Turb	Turbidity		NH3-N		UIA		IN	То	Total	
		Е	F	E	F	Е	F	ш	ш	Е	F	Е	F	E	F	
SR1	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
0111	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
SR2	Action	1	2	1	1	0	0	0	0	0	0	-	-	2	3	
0172	Limit	16	16	21	24	1	0	0	0	0	0	-	-	38	40	
SR3	Action	1	1	1	2	0	0	0	0	0	0	-	-	2	3	
0110	Limit	15	16	19	24	0	0	0	0	0	0	-	-	34	40	
SR4	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
0114	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
SR5	Action	1	0	0	0	0	0	-	-	-	-	0	1	1	1	
383	Limit	6	8	17	18	0	0	-	-	-	-	29	31	52	57	
SR6	Action	2	1	0	0	3	4	0	0	0	0	-	-	5	5	
310	Limit	26	27	29	30	2	2	0	0	0	0	-	-	57	59	
SR7	Action	0	1	0	0	1	5	0	0	0	0	-	-	1	6	
367	Limit	22	29	29	31	0	0	0	0	0	0	-	-	51	60	
SR8	Action	1	0	0	0	0	2	0	0	0	0	-	-	1	2	
300	Limit	19	21	26	29	1	2	0	0	0	0	-	-	46	52	
SR9	Action	1	2	0	0	1	3	-	-	-	-	12	12	14	17	
01/9	Limit	10	9	26	26	0	0	-	-	-	-	9	12	45	47	
SR10	Action	2	3	0	1	2	3	-	-	-	-	10	8	14	15	
SKIU	Limit	8	10	21	22	0	0	1	I	-	-	13	18	42	50	
SR11	Action	1	1	0	0	1	2	1	I	-	-	12	11	14	14	
JATT	Limit	11	11	19	20	0	0	-	1	-	-	7	9	37	40	
SR12	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
SKIZ	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0	
SR13	Action	3	0	1	2	0	0	1	I	-	-	-	-	4	2	
3113	Limit	18	24	26	28	0	0	-	-	-	-	-	-	44	52	
Total	Action	13	11	3	6	8	19	0	0	0	0	34	32	12	26	
Total	Limit	151	171	233	252	4	4	0	0	0	0	58	70	94	43	

 Table 3-3
 Summary of Water Quality Exceedance (In-situ Measurement)

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Table 3-4 Summary of Water Quality Exceedance (Laboratory Analysis)

Page 12 of 26

Station	Exceedance Level	Suspe Sol		BC	D₅	E. (coli	NH	3 -N	U	IA		hetic rgent	TI	N	То	otal
		Е	F	Е	F	Е	F	E	F	Е	F	Е	F	Е	F	Е	F
SR1	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
311	Limit	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SR2	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
312	Limit	0	0	-	-	-	-	2	2	0	0	-	-	-	-	2	2
SR3	Action	0	0	-	-	I	-	0	2	0	0	-	-	-	-	0	2
383	Limit	0	0	-	-	I	-	2	3	0	0	-	-	-	-	2	3
SR4	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
384	Limit	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SR5	Action	0	0	-	-	-	-	0	0	0	0	-	-	0	2	0	2
363	Limit	0	0	-	-	-	-	0	0	0	0	-	-	29	32	29	32
SR6	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
SKO	Limit	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
SR7	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
387	Limit	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
SR8	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
360	Limit	0	0	-	-	I	-	0	0	0	0	-	-	-	-	0	0
SR9	Action	0	0	-	-	-	-	0	0	0	0	-	-	9	10	9	10
369	Limit	0	0	-	-	-	-	0	0	0	0	-	-	7	7	7	7
SR10	Action	0	0	-	-	-	-	0	0	0	0	-	-	5	9	5	9
SKIU	Limit	0	0	-	-	I	-	0	0	0	0	-	-	9	8	9	8
SR11	Action	0	0	-	-	I	-	0	0	0	0	-	-	6	6	6	6
SKII	Limit	0	0	-	-	-	-	0	0	0	0	-	-	2	2	2	2
SR12	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
3112	Limit	1	0	0	0	0	0	0	0	0	0	0	0	-	-	1	0
SR13	Action	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
3113	Limit	0	0	-	-	-	-	0	0	0	0	-	-	-	-	0	0
Total	Action	0	0	0	0	0	0	0	2	0	0	0	0	20	27	4	.9
Total	Limit	1	0	0	0	0	0	4	5	0	0	0	0	47	49	1(06

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 13 of 26

- 3.3.4 During the reporting period, 24 AL and 322 LL exceedances were recorded for dissolved oxygen (S&M), 9 AL and 485 LL were recorded for dissolved oxygen (B). 27 AL and 8 LL exceedances for turbidity, 66 AL and 128 LL exceedances for TIN (in-situ), 0 AL and 1 LL exceedances for Total Suspended Solids (lab), 2 AL and 9 LL exceedances for NH3-N (lab) and 47 AL and 96 LL exceedances for TIN (lab) were recorded.
- 3.3.5 According to the investigations, the exceedances were considered caused by influences in the vicinity of the station or changes in ambient conditions and not related to the Project.

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 14 of 26

4. EM&A REQUIREMENTS – 24-HR WATER QUALITY MONITORING

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk MateriaLab

Report No.: 0394/13/ED/0174C

Page 15 of 26

5. ENVIRONMENTAL SITE INSPECTION AND AUDIT

- **5.1** Site Inspections
- 5.1.1 The Environmental Team conducted 13 site inspections in the reporting period. No particular observation related to the dredging work was found in the reporting quarter.
- 5.1.2 During joint party visit on 29th May 2014, it is agreed that rectification measures will be implemented by the Contractor to prevent leakage of dredged mud during transfer from silt curtain cage to the hopper barge. The measures proposed by Contractor include enforcement of daily check of grab dredger, employment of better dredging operation practice like steady transfer of grab bucket, extension of retention time above silt curtain cage, lowering of grab bucket into the hopper barge and close the grab bucket while back transferring to the silt curtain cage.
- 5.1.3 A suspected leakage of silt curtain was reported on 2nd July, while during site inspection on 3rd July, no leakage was observed during operation. The Contractor reported that investigation revealed the suspected case is due to overflow of surface water from the silt curtain cage. Water quality monitoring showed no project-related exceedance during the period. The Contractor was reminded to monitor the condition of the silt curtain closely, and rectify if any leakage was found.
- 5.1.4 Pursuant to Condition 3.4 of the EP, the Contractor has arranged a monitoring brief, on 2nd July, for the dredging works staff about the possibility of locating archaeological objects according to the requirement set out in Section 8.1 of the EM&A Manual. According to the Contractor, plan for monitoring dredged spoil, notification procedure and the relevant records will be provided for agreement prior to the commencement of dredging at the location with identified archaeological potential.
- **5.2** Implementation Status of Environmental Mitigation Measures
- 5.2.1 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in **Appendix F**. Most of the necessary mitigation measures were implemented properly.
- 5.2.2 The mitigation measures recommended in the EIA report and required by the EP are considered effective in minimizing environmental impacts. The Contractor has implemented the recommended mitigation measures except those mitigation measures not applicable at this stage. The Contractor should be reminded to keep the mitigation measures implemented effectively, especially the installation and maintenance of silt screen and silt curtain, and to maintain good condition of hopper barge and grab dredger to ensure their intended effects are fully achieved.
- **5.3** Summary of Action taken
- 5.3.1 The exceedances recorded were considered not related to the Project, follow-up actions are not required.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 16 of 26

MateriaLab

- **5.4** Advice on the Solid and Liquid Waste Management Status
- 5.4.1 According to the Contractor, 30m³ general refuse were generated and disposed of in the reporting period. Summary of waste flow table is detailed in **Appendix G**.
- 5.4.2 There was marine sediment (Type 1, Open Sea Disposal) disposed to East Sha Chau Contaminated Mud Disposal Site CMP1 or CMP2. The details can be referred to the **Table 5.2.**

Month	Marine Sediment Type	Quantity Generated in this month (m ³)	Cumulative- to-date (m ³)	Disposal / Dumping Ground
	Type 1 – Open Sea Disposal	3700	3700	East Sha Chau Pit IVc or Va and South of Brothers CMP1 or CMP2
May 2014	Type 2 – Confined Marine Disposal	0	0	NA
	Type 3 – Special Treatment / Disposal	0	0	NA
	Type 1 – Open Sea Disposal	66950	70650	East Sha Chau Pit IVc or Va and South of Brothers CMP1 or CMP2
Jun 2014	Type 2 – Confined Marine Disposal	0	0	NA
	Type 3 – Special Treatment / Disposal	0	0	NA
	Type 1 – Open Sea Disposal	80,600	151,250	East Sha Chau Pit IVc or Va and South of Brothers CMP1 or CMP2
July 2014	Type 2 – Confined Marine Disposal	0	0	NA
	Type 3 – Special Treatment / Disposal	0	0	NA

Table 5-1 Waste Quantities of Dredging Works

5.5 Review of Action and Limit Level

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 17 of 26

- 5.5.1 Existing Action and Limit Levels for both routine impact monitoring and 24-hr monitoring were derived based on the 4-weeks baseline water quality monitoring data obtained during the dry season in January 2014 prior to the commencement of construction.
- 5.5.2 Owing to the frequent not project-related exceedances in water quality caused by change of ambient condition or natural fluctuation of water quality in the monitoring site, it is recommended to review the existing Action and Limit Levels.
- **5.6** Quarterly Review of Constructional Impacts on Water Quality
- 5.6.1 The construction impact on water quality was assessed by comparing the quarterly mean values with the relevant ambient or baseline mean values. Results showed that the quarterly mean values of DO (S&M), Turbidity (depth averaged), SS (depth averaged), Ammonia (in-situ & lab) and UIA (in-situ & lab) at all clusters of monitoring stations are well below the 1.3 x baseline (0.7 x baseline for DO) value. Cluster stations with higher quarterly impact data are statistically analysed to 1.3 x baseline levels (or 0.7 x baseline levels for DO) or other relevant levels to assess the constructional impacts.
- 5.6.2 Quarterly mean of cluster 2 stations data of DO (B) is compared to 0.7 x baseline data. Results show the quarterly mean is not significantly different (p≥0.05) from the mean of baseline data x 0.7. Both flood tide and ebb tide data are used in the comparison.
- 5.6.3 Quarterly mean of cluster 1 (SR1, SR2, SR3, SR4, SR5 & SR12) and cluster 2 (SR6, SR7, SR8, SR9, SR10 & SR11) stations data of TIN is compared to 1.3 x baseline data. Results show the 1.3 x baseline level is significantly smaller than the quarterly mean. As TIN is not detected at Control stations, guarterly mean of impact station is further compared to the quarterly mean of gradient stations (G2, G3 and G4 are gradient stations in vicinity of cluster 1 stations; G5 and G6 are gradient stations in vicinity of cluster 2 stations). Data from ebb tide are compared for cluster 2 while data from flood tide are compared for cluster 1 as according to their relative position to the Project (data analysed for relative tide where clustered monitoring stations situate at downstream position and may be subject to project impact, reference made to Figure 3.). For cluster 1, results show TIN level at gradient is smaller than at the impact stations (p<0.05), indicating the trend is not increasing towards the project area. For cluster 2, at ebb tide, TIN level of gradient (G5 & G6) is not significantly different from that of impact stations (SR9, SR10 & SR11) (p≥0.05), thus gradient stations G1 at the most upstream location is further compared to those cluster 2 impact stations and results indicated TIN level at that cluster 2 impact stations is significantly smaller than that of G1 (p<0.05), it indicates the background TIN level is high and the contribution from the project is not significant.
- 5.6.4 Comparison between quarterly mean and 1.3 x baseline mean (0.7 x baseline mean for DO) is given in Table 5.2, while the summary of key statistical analysis is provided in Table 5.3. Details of key statistical analysis results are provided in **Appendix H**.
- 5.6.5 As 24-hr monitoring is to supplement the routine WQM activities (EM&A Manual Section 2.1.10) and there is no baseline value and/or control / gradient value for a meaningful statistical analysis. Thus no statistical analysis was done for 24-hr monitoring. Also, statistical

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 18 of 26 analysis was not performed for some parameters without exceendances (BOD₅, E.coli and Synthetic Detergent) in the reporting quarter.

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

: (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Page 19 of 26

Report No.: 0394/13/ED/0174C

Table 5-2	Comparison of Quarterly Me						ledi		226III		eall								
				DO (S&M)	1			1	DO	(B)					Turb	oidity	1	
		Baseline	Baseline x 0.7	Average	May - Jul 2014	Average	Smaller than Baseline x 0.7	Baseline	Baseline x 0.7	Average	May - Jul 2014	Average	Smaller than Baseline Level	Baseline	Baseline x 1.3	Average	May - Jul 2014	Average	Larger than Baseline x 1.3
Control (Flood)	C1 C2 C3	6.39 7.51 6.98	4.47 5.26 4.89	NA	5.25 5.77 5.84	NA	no no no	6.32 7.31 6.89	4.42 5.12 4.82	NA	4.36 4.29 4.55	NA	yes yes yes	2.53 0.99 0.50	3.30 1.30 0.70	NA	2.23 2.16 0.93	NA	no yes yes
Control (Ebb)	C1 C2 C3	6.41 7.27 7.00	4.49 5.09 4.90	NA	5.24 5.94 5.87	NA	no no no	6.32 7.23 6.94	4.42 5.06 4.86	NA	4.35 4.16 4.65	NA	yes yes yes	1.16 1.21 1.05	1.50 1.60 1.40	NA	2.25 0.81 0.85	NA	yes no no
Gradient (Flood)	G1 G2 G3 G4 G5 G6	7.00 6.48 6.37 6.30 5.84 7.73 7.15	4.54 4.46 4.41 4.09 5.41 5.01	NA	5.46 5.46 5.46 5.16 5.45 6.24 5.57	NA	no no no no no no	6.37 6.34 6.34 5.83 7.61 7.00	4.46 4.44 4.44 4.08 5.33 4.90	NA	4.52 4.76 4.38 4.35 4.48 4.39	NA	no no yes no yes yes	1.03 1.94 1.73 1.78 2.29 3.56 0.69	1.40 2.50 2.20 2.30 3.00 4.60 0.90	NA	2.10 1.18 0.96 1.25 1.30 1.12	NA	no no no no no yes
Gradient (Ebb)	G1 G2 G3 G4 G5 G6	6.44 6.32 6.48 5.93 7.74 7.14	4.51 4.42 4.54 4.15 5.42 5.00	NA	5.43 5.59 5.02 5.18 6.15 5.68	NA	no no no no no	6.33 6.35 6.50 6.00 7.71 7.09	4.43 4.45 4.55 4.20 5.40 4.96	NA	4.46 4.98 4.29 4.23 4.49 4.52	NA	no no yes no yes yes	1.33 1.00 1.19 2.03 0.86 0.63	1.70 1.30 1.50 2.60 1.10 0.80	NA	1.99 0.89 0.95 1.29 0.88 1.02	NA	yes no no no yes
Cluster 1 (Flood)	SR1 SR2 SR3 SR4 SR5 SR12	6.79 6.39 6.28 6.07 6.40 5.92	4.75 4.47 4.40 4.25 4.48 4.14	4.42	5.68 5.52 5.53 5.39 5.84 5.01	5.50	no	6.72 6.37 6.21 6.06 6.31 5.90	4.70 4.46 4.35 4.24 4.42 4.13	4.38	5.33 4.82 4.83 5.09 5.15 4.37	4.93	no	3.06 1.13 1.11 2.24 1.94 2.40	4.00 1.50 1.40 2.90 2.50 3.10	2.6	1.59 1.16 1.02 1.35 1.20 1.42	1.29	no
Cluster 1 (Ebb)	SR1 SR2 SR3 SR4 SR5 SR12	6.64 6.37 6.32 5.97 6.38 5.96	4.65 4.46 4.42 4.18 4.47 4.17	4.39	5.77 5.56 5.52 5.39 5.90 5.00	5.52	no	6.64 6.35 6.26 5.91 6.37 5.92	4.65 4.45 4.38 4.14 4.46 4.14	4.37	5.42 5.03 5.01 4.81 5.12 4.24	4.94	no	2.24 1.18 1.06 1.79 1.14 1.94	2.90 1.50 1.40 2.30 1.50 2.50	2.0	1.52 1.31 0.87 1.34 1.11 1.74	1.32	no
Cluster 2 (Flood)	SR6 SR7 SR8 SR9 SR10 SR11	6.85 6.81 7.35 7.79 7.17 7.36	4.80 4.77 5.15 5.45 5.02 5.15	5.06	5.51 5.32 6.05 7.06 6.42 6.66	6.17	no	6.85 6.78 7.26 7.84 7.15 7.25	4.80 4.75 5.08 5.49 5.01 5.08	5.04	4.82 4.42 4.93 4.94 5.33 5.46	4.98	yes	1.36 1.09 0.67 1.26 0.75 0.28	1.80 1.40 0.90 1.60 1.00 0.40	1.2	1.35 0.99 1.12 0.90 0.82 0.71	0.98	no
Cluster 2 (Ebb)	SR6 SR7 SR8 SR9 SR10 SR11	6.80	4.76 4.72 5.09 5.47 5.11 5.14	5.05	5.50 6.14 6.09 6.98 6.45 6.36	6.25	no	6.78 6.80 7.20 7.75	4.75 4.76 5.04	5.01	4.70 4.50 4.95 5.01 5.37 5.33	4.98	yes	0.97 0.73 0.53 1.02 0.30 0.38	1.30	0.9	1.10 0.73 0.69 0.74 0.75 0.68	0.78	no
Cluster 3 (Flood) Cluster 3	SR13	5.78	4.05	4.05	4.91		no	5.75	4.03	4.03	4.21		no	7.28	9.50	9.5	1.75	1.75	no
(Ebb)	SR13	5.76	4.03	4.03	5.00	5.00	no	5.73	4.01	4.01	4.25	4.25	no	4.23	5.50	5.5	1.49	1.49	no

Table 5-2 Comparison of Quarterly Mean to Baseline Mean

Tel

NA: Not Applicable (Control and Gradient stations are compared on individual stations for reference, no clustering was performed previously. Impact stations are compared in clusters of stations.)

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Page 20 of 26

Report No.: 0394/13/ED/0174C

			Ar	nmonia	a – Ins	itu				UIA –	Insitu					TIN –	Insitu		
							ო		e				с		e				ő
		Baseline	Baseline x 1.3	Average	May - Jul 2014	Average	Larger than Baseline x 1.3	Baseline	Baseline x 1.3	Average	May - Jul 2014	Average	Larger than Baseline x 1.3	Dry Season Baseline	Baseline x 1.3	Average	May - Jul 2014	Average	Larger than Baseline x 1.3
Control (Flood)	C1 C2 C3	0.23 0.07 0.06	0.30 0.09 0.08	NA	0.07 0.06 0.05	NA	no no no	0.013 0.005 0.004	0.017 0.007 0.005	NA	0.003 0.003 0.003	NA	no no no	NA NA NA	NA NA NA	NA	NA NA NA	NA	NA NA NA
Control (Ebb)	C1 C2 C3	0.22 0.06 0.07	0.29 0.08 0.09	NA	0.07 0.05 0.04	NA	no no no	0.005 0.001 0.001		NA	0.004 0.003 0.002	NA	no yes yes	NA NA NA	NA NA NA	NA	NA NA NA	NA	NA NA NA
Gradient (Flood)	G1 G2 G3 G4 G5	NA NA NA NA	NA NA NA NA	NA	NA NA NA NA	NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA	NA NA NA NA NA	NA	NA NA NA NA NA	0.42 0.44 0.42 0.56 0.26	0.55 0.57 0.55 0.73 0.34	NA	1.02 0.89 0.57 0.53 0.53	NA	yes yes yes no yes
Gradient	G6 G1 G2 G3	NA NA NA	NA NA NA	NA	NA NA NA	NA	NA NA NA NA	NA NA NA	NA NA NA	NA	NA NA NA	NA	NA NA NA NA	0.20 0.40 0.38 0.36	0.26 0.52 0.49 0.46	NA	0.43 1.01 0.86 0.57	NA	yes yes yes yes
(Ebb)	G4 G5 G6 SR1	NA NA NA 0.24	NA NA NA 0.31	NA	NA NA NA 0.07		NA NA NA	NA NA NA 0.015	NA NA NA 0.020		NA NA NA 0.003	NA	NA NA NA	0.53 0.21 0.21 NA	0.69 0.27 0.27 NA		0.51 0.48 0.44 NA		no yes yes
Cluster 1 (Flood)	SR2 SR3 SR4 SR5 SR12	0.22 0.24 0.26 NA 0.28	0.29 0.31 0.34 NA 0.36	0.32	0.07 0.06 0.07 NA 0.07	0.07	no	0.012 0.014 0.013 NA	0.016 0.018	0.018	0.002 0.002 0.003 NA 0.002	0.002	no	NA NA NA 0.39 NA	NA NA NA 0.51 NA	0.51	NA NA NA 1.03 NA	1.03	yes
Cluster 1 (Ebb)	SR1 SR2 SR3 SR4 SR5 SR12	0.22 0.22 0.22 0.25 NA 0.27	0.29 0.29 0.33 NA 0.35	0.31	0.07 0.06 0.07 0.07 NA 0.07	0.07	no	0.006 0.006 0.007 NA 0.007	0.008 0.008 0.008 0.009 NA 0.009	0.008	0.003 0.002 0.003 0.003 NA 0.003	0.003	no	NA NA NA 0.41 NA	NA NA NA 0.53 NA	0.53	NA NA NA 1.07 NA	1.07	yes
Cluster 2 (Flood)	SR6 SR7 SR8 SR9 SR10 SR11	NA NA NA NA NA	NA NA NA NA NA	NA	NA NA NA NA NA	NA	NA	NA NA NA NA NA	NA NA NA NA NA	NA	NA NA NA NA NA	NA	NA	NA NA 0.20 0.22 0.20	NA NA 0.26 0.29 0.26	0.27	NA NA 0.45 0.39	0.43	yes
Cluster 2 (Ebb)	SR6 SR7 SR8 SR9 SR10 SR11	NA NA NA NA NA	NA NA NA NA NA	NA	NA NA NA NA NA	NA	NA	NA NA NA NA NA	NA NA NA NA NA	NA	NA NA NA NA NA	NA	NA	NA NA 0.20 0.22 0.20	NA NA 0.26 0.29 0.26	0.27	NA NA 0.44 0.45 0.39	0.43	yes
Cluster 3 (Flood) Cluster 3 (Ebb)	SR13 SR13	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA

NA: Not Applicable (Control and Gradient stations are compared on individual stations for reference, no clustering was performed previously. Impact stations are compared in clusters of stations.)

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

		TSS							A	mmon	ia – la	b		UIA – lab					
			-				~					-	~		-				~
		Baseline	1.3 x Baseline	Average	May - Jul 2014	Average	Larger than Baseline x 1.3	Baseline	1.3 x Baseline	Average	May - Jul 2014	Average	Larger than Baseline x 1.3	Baseline	1.3 x Baseline	Average	May - Jul 2014	Average	Larger than Baseline x 1.3
Control	C1 C2	7 4	9 6	NA	4 4	NA	no no	0.11 0.02	0.14	NA	0.11	NA	no yes	0.006 0.001	0.008 0.001	NA	0.004	NA	no yes
(Flood)	C3	4	5		4		no	0.02	0.03		0.04		ves	0.001	0.001		0.002		yes
Control	C1	6	7		4		no	0.10	0.13		0.11		yes	0.005	0.007		0.004		no
Control (Ebb)	C2	5	7	NA	3	NA	no	0.02	0.03	NA	0.06	NA	yes	0.001	0.001	NA	0.003	NA	yes
(EDD)	C3	4	5		3		no	0.02	0.03		0.04		yes	0.001	0.001		0.002		yes
	G1	7	10		4		no	NA	NA		NA		NA	NA	NA		NA		NA
	G2	5	7		4		no	NA	NA		NA		NA	NA	NA		NA		NA
Gradient	G3	6	8	NA	4	NA	no	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(Flood)	G4	8	10		4		no	NA	NA		NA		NA	NA	NA		NA		NA
	G5	6	8	-	4		no	NA	NA		NA		NA	NA	NA		NA		NA
	G6	4	5		4		no	NA	NA		NA		NA	NA	NA		NA		NA
	G1 G2	5 5	7 7	-	4		no	NA NA	NA NA		NA NA		NA NA	NA NA	NA		NA NA		NA NA
Gradient	G2 G3	5 5	7		4		no	NA	NA		NA		NA	NA	NA		NA		NA
(Ebb)	G3 G4	7	9	NA	4	NA	no no	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
(L00)	G4 G5	5	9 7		4		no	NA	NA		NA		NA	NA	NA		NA		NA
	G6	4	5	-	3		no	NA	NA		NA		NA	NA	NA		NA		NA
	SR1	7	9		4		110	0.09	0.12		0.11				0.007		0.004		1.07.1
	SR2	5	7		4			0.12	0.16		0.11				0.008		0.004		
Cluster 1	SR3	5	7		4			0.12	0.16		0.12				0.008		0 004		
(Flood)	SR4	7	9	8.67	4	4.00	no	0.13	0.17	0.16	0.11	0.11	no	0.006	0.008	0.008	0.004	0.004	no
(******)	SR5	6	8		4			NA	NA		NA			NA	NA		0.00.		
	SR12	9	12		4			0.15	0.20		0.12			0.007	0.009		0.004		
	SR1	7	9		4			0.11	0.14		0.12			0.006	0.008		0.004		
	SR2	5	7		4			0.12	0.16		0.10			0.006	0.008		0.004		
Cluster 1	SR3	5	6	7 00	4	4 00		0.12	0.16	0 47	0.10	0.11		0.006	0.008	800.0	0.004	0 004	
(Ebb)	SR4	5	7	7.33	4	4.00	no	0.14	0.18	0.17	0.11	0.11	no	0.007	0.009	0.008	0.004	0.004	no
	SR5	5	6		4			NA	NA		NA			NA	NA		NA		
	SR12	7	9		4			0.15	0.20		0.10			0.007	0.009		0.004		
	SR6	5	6		4			NA	NA		NA			NA	NA		NA		
	SR7	6	8		4			NA	NA		NA			NA	NA		NA		
Cluster 2	SR8	4	5	6.17	4	3.83	no	NA	NA		NA			NA	NA		NA		
(Flood)	SR9	5	7		4			NA	NA		NA			NA	NA		NA		
	SR10	5	7		4			NA	NA		NA			NA	NA		NA		
	SR11	3	4		3			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SR6	4	6		4			NA	NA		NA			NA	NA		NA		
Chueter 0	SR7	6	8		4			NA	NA		NA			NA	NA		NA		
Cluster 2	SR8	4	5 6	5.83	3	3.50	no	NA	NA		NA			NA	NA		NA		
(Ebb)	SR9	4	-	-	3			NA	NA		NA			NA	NA		NA		
	SR10 SR11	4	5 5		3			NA NA	NA NA		NA			NA NA	NA NA		NA NA		
Cluster 3 (Flood)	SR13	4 16		21.00	5	5.00	no	NA	NA		NA			NA	NA		NA		
Cluster 3 (Ebb)	SR13	10	14	14.00	4	4.00	no	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NA: Not Applicable (Control and Gradient stations are compared on individual stations for reference, no clustering was performed previously. Impact stations are compared in clusters of stations.)

Page 21 of 26

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Page 22 of 26

Report No.: 0394/13/ED/0174C

		TIN – lab								
		Dry Season Baseline	1.3 x Baseline	Average	May - Jul 2014	Average	Larger than Baseline x 1.3			
Control (Flood)	C1 C2	NA NA	NA NA	NA	NA NA	NA	NA NA			
Control (Ebb)	C3 C1 C2	NA NA NA	NA NA NA	NA	NA NA NA	NA	NA NA NA			
(EDD)	C3 G1	NA 0.30	NA 0.39		NA 1.00		NA yes			
Gradient (Flood)	G2 G3 G4 G5	0.31 0.30 0.35 0.15	0.40 0.39 0.46 0.20	NA	0.86 0.61 0.54 0.45	NA	yes yes yes yes			
	G6 G1 G2	0.12 0.28 0.28	0.16 0.36 0.36		0.39 1.00 0.79		yes yes yes			
Gradient (Ebb)	G3 G4 G5	0.24 0.34 0.13	0.31 0.44 0.17	NA	0.58 0.53 0.47	NA	yes yes yes			
Cluster 1	G6 SR1 SR2 SR3	0.13 NA NA NA	0.17 NA NA NA		0.35 NA NA NA		yes			
(Flood)	SR4 SR5 SR12	NA 0.29 NA	NA 0.38 NA	0.38	NA 0.92 NA	0.92	yes			
Cluster 1	SR1 SR2 SR3 SR4	NA NA NA NA	NA NA NA	0.36	NA NA NA NA	0.93	yes			
(Ebb)	SR5 SR12	0.28 NA	0.36 NA		0.93 NA					
Cluster 2 (Flood)	SR6 SR7 SR8 SR9	NA NA NA 0.11	NA NA 0.14	0.16	NA NA NA 0.39	0.36	yes			
	SR10 SR11 SR6	0.13 0.12 NA	0.17 0.16 NA		0.37 0.31 NA					
Cluster 2 (Ebb)	SR7 SR8 SR9 SR10 SR11	NA NA 0.11 0.11 0.11	NA NA 0.14 0.14 0.14	0.14	NA NA 0.38 0.34 0.29	0.34	yes			
Cluster 3 (Flood) Cluster 3	SR13	NA	NA	NA	NA	NA	NA			
(Ebb)	SR13	NA	NA		NA					

NA: Not Applicable (Control and Gradient stations are compared on individual stations for reference, no clustering was performed previously. Impact stations are compared in clusters of stations.)

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Page 23 of 26

Parameter	Cluster	Compared against	Results and Conclusions			
DO	Cluster 2	Quarterly Mean at Impact Stations against 0.7 x Baseline Level	Quarterly mean is not significantly different from 0.7 x Baseline mean (p≥0.05), and Project impact is not significant			
		Quarterly Mean at Impact Stations against 1.3 x Baseline Level	Quarterly mean is significantly higher than 1.3 x Baseline mean (p<0.05).			
TIN	Cluster 1	Quarterly Mean at Impact Stations against Quarterly Mean at Gradient Stations	Gradient Mean is significantly smaller than Impact Mean, meaning Project impact is not significant			
		Quarterly Mean at Impact Stations against 1.3 x Baseline Level	Quarterly mean is significantly higher than 1.3 x Baseline mean (p<0.05).			
TIN	Cluster 2	Quarterly Mean at Impact Stations against Upstream Gradient Station	Impact Mean is significantly smaller than the Upstream Gradient Mean, indicating background TIN level is high, and Project impact is not significant			

Table 5-3Summary of Statistical Analysis

5.6.6 Exceedance are considered to be due to change in ambient conditions or influences in the vicinity of the stations. Mitigation measures for dredging works were implemented in accordance with EP and EIA requirements.

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk **MateriaLab**

Report No.: 0394/13/ED/0174C

Page 24 of 26

6. COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

6.1.1 In this reporting period, no complaint, inspection notice, notification of summons or prosecution was received. Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Tables 7.1, 7.2 and 7.3**.

Table 6-1	Environmental Complaints Log
-----------	------------------------------

Complaint Log No.	Date of Receipt	Received From and Received By	Nature of Complaint	Date Investigated	Outcome	Date of Reply
Nil	-	-	-	-	-	-

 Table 6-2
 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

 Table 6-3
 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

5 Lok Yi Street, 17 M.S. Castle Peak Road, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

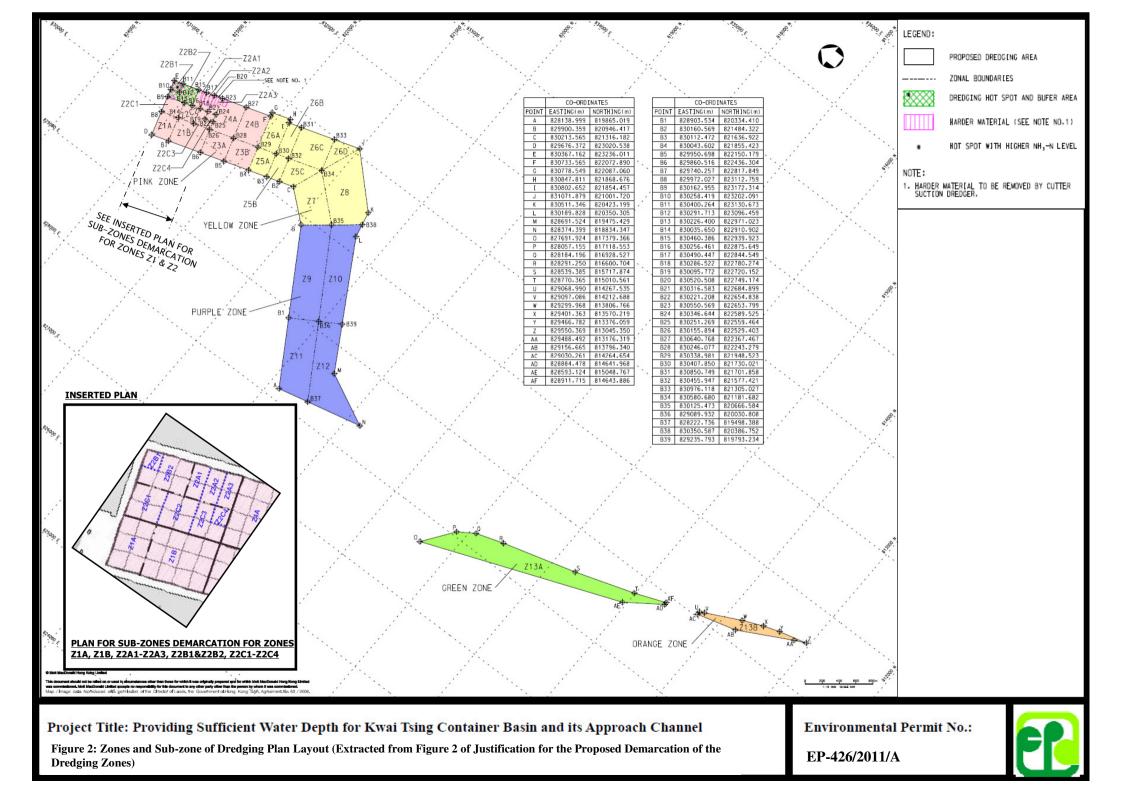
Report No.: 0394/13/ED/0174C

Page 25 of 26

7. CONCLUSIONS

- 7.1.1 The dredging works was commenced on 23 April 2014. The EM&A programme was carried out in accordance with the EM&A Manual requirements. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging works.
- 7.1.2 Numerous action and limit level exceedances of turbidity, dissolved oxygen, TIN, ammonia and suspended solids were recorded in the routine impact monitoring in the reporting quarter. Numerous exceedances were also recorded in 24-hr monitoring. Investigation found that the exceedances were not project related. The action and limit level should be reviewed to reduce the false alarm generated.
- 7.1.3 Environmental site inspections were carried out weekly in the reporting period, no noncompliance from the site audits was observed.
- 7.1.4 No environmental complaint was received and followed up by Environmental Team in the reporting period.
- 7.1.5 No notification of summons and prosecution was received in the reporting month.

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**

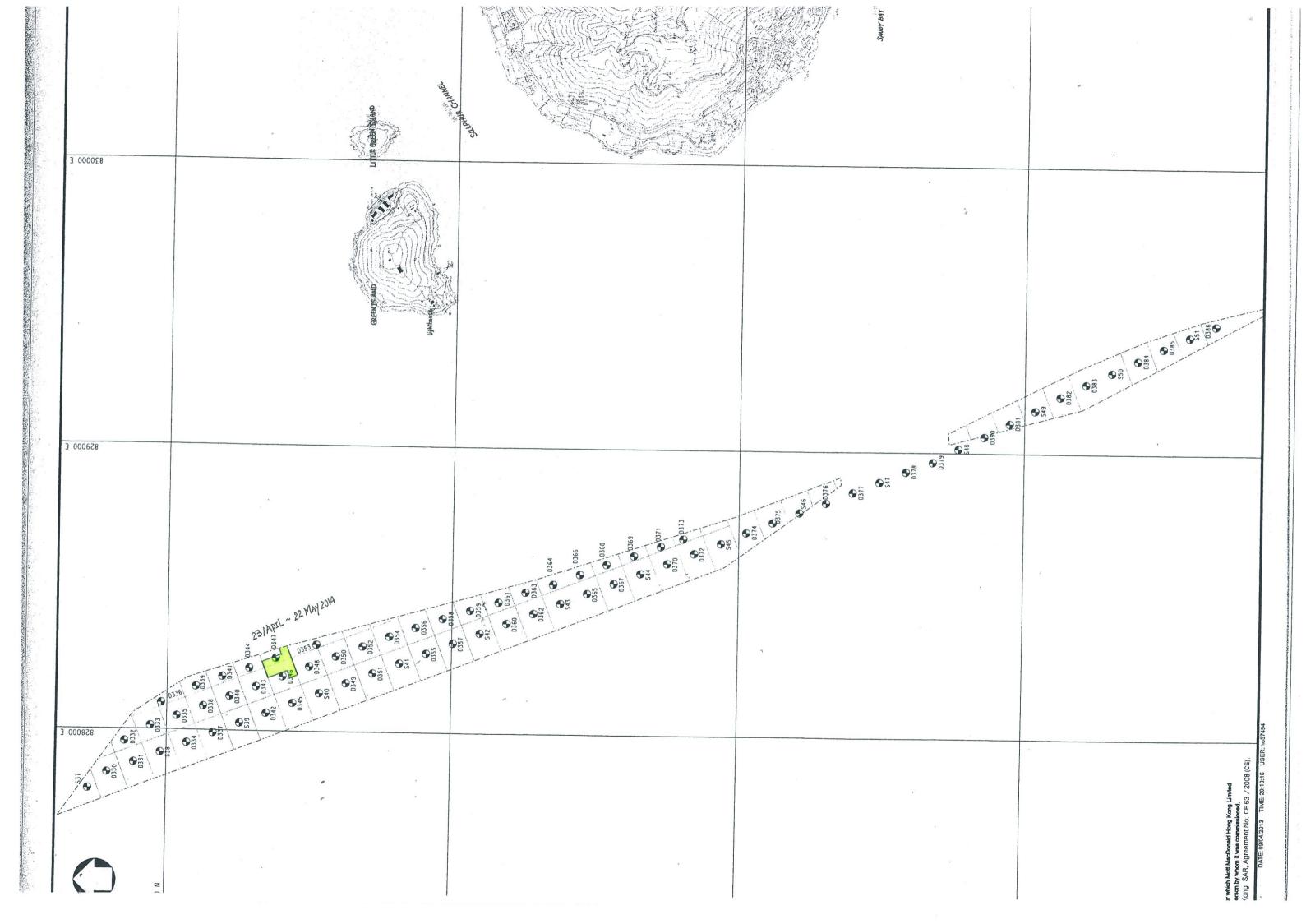

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

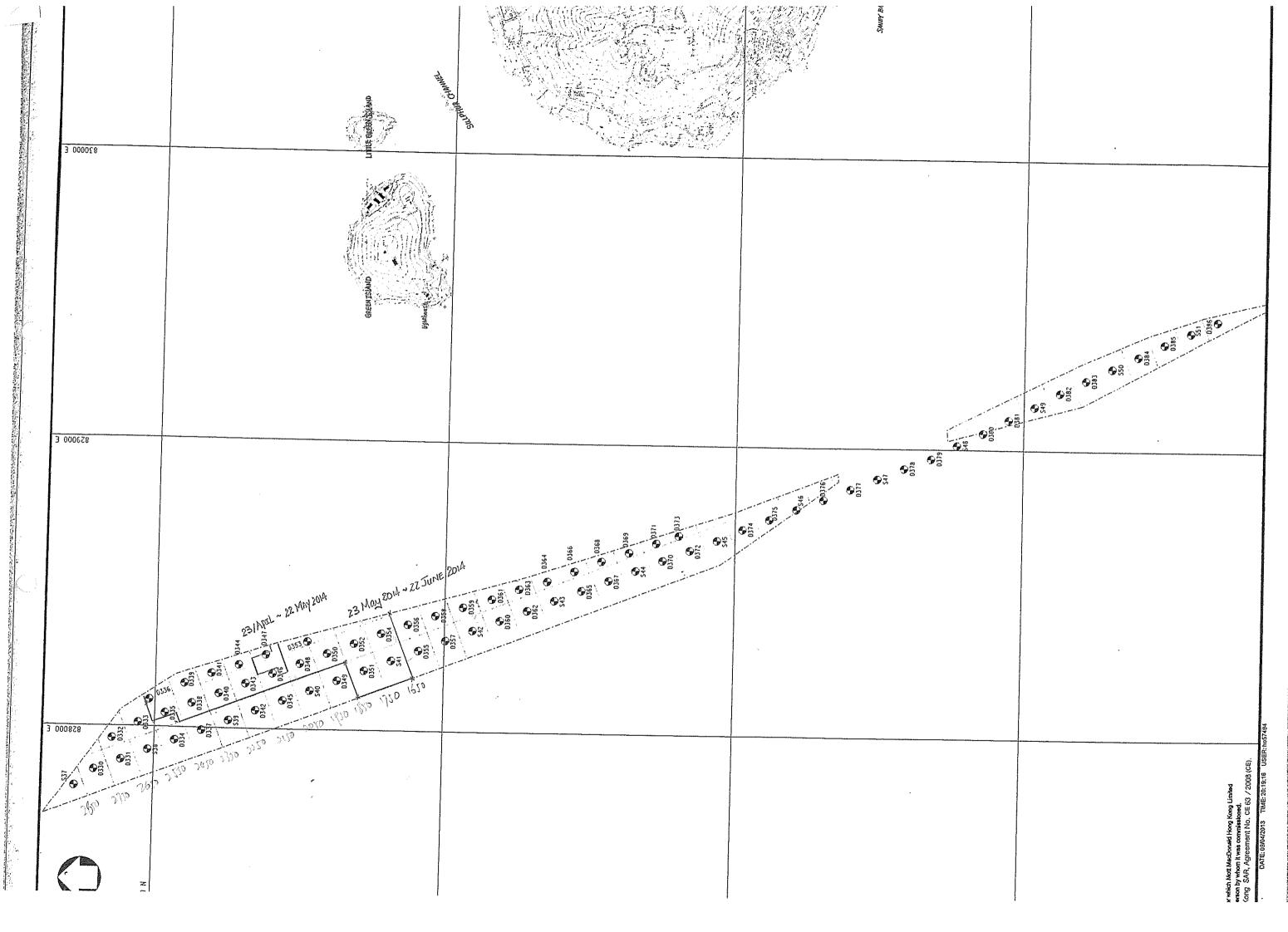
Report No.: 0394/13/ED/0174C

Figure 1

Project General Layout

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**


Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk



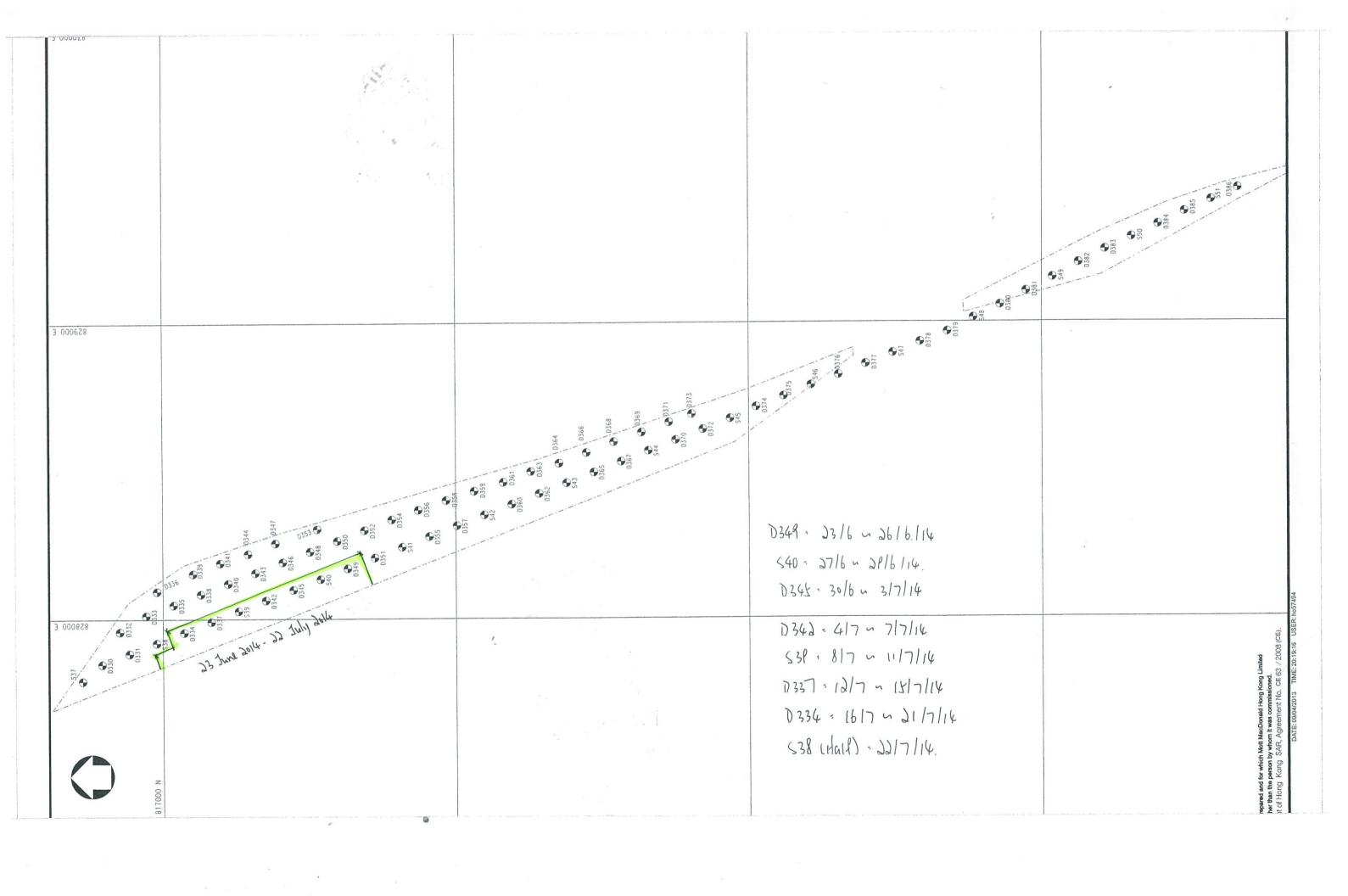

Report No.: 0394/13/ED/0174C

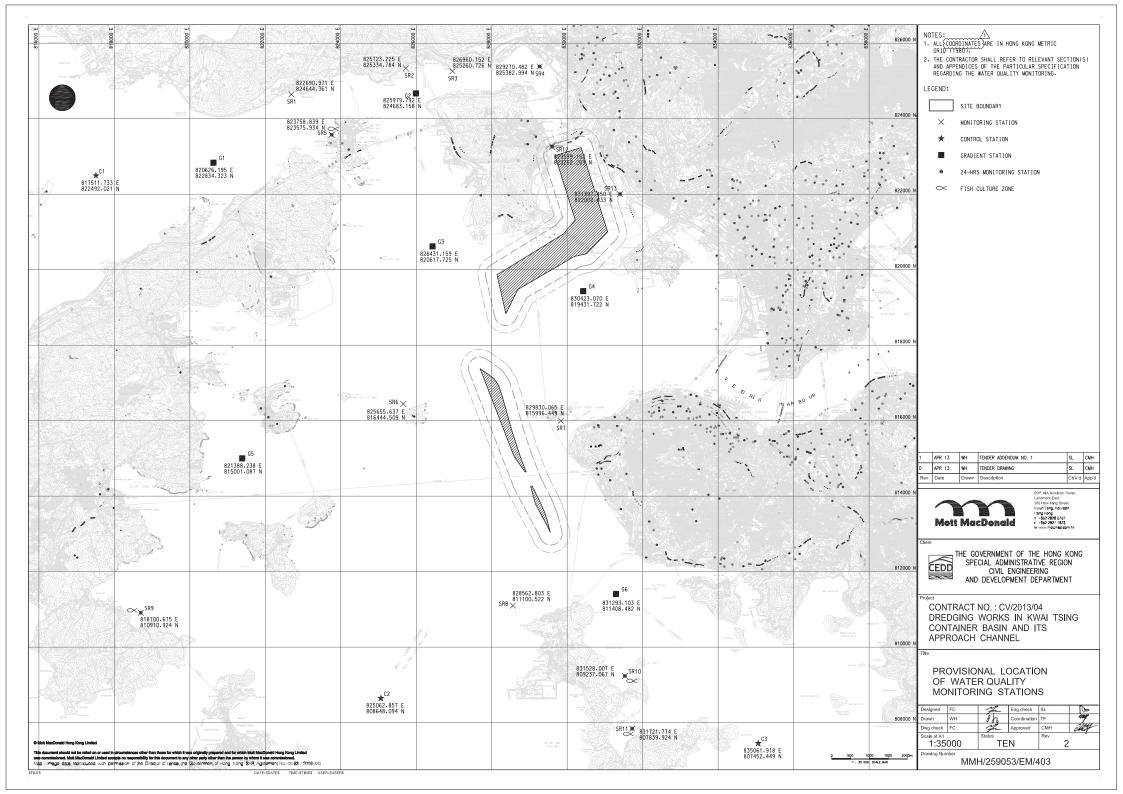
Figure 2

Dredging Work Location during the Reporting Period

1

e.

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**


Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

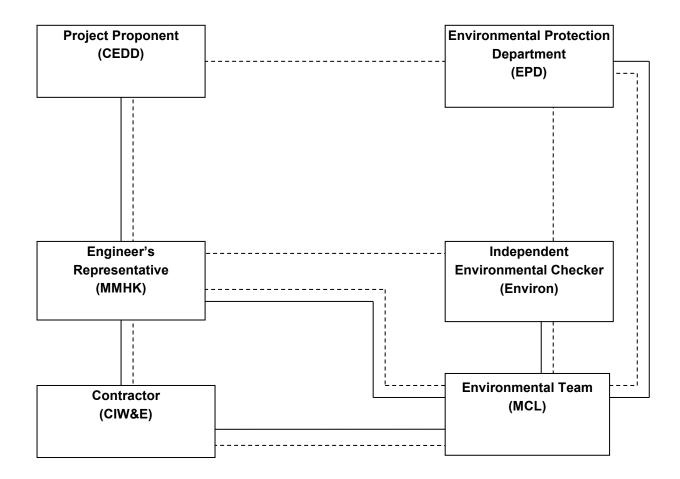
Report No.: 0394/13/ED/0174C

Figure 3

Locations of Water Quality Monitoring Stations

MATERIALAB CONSULTANTS LIMITED

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**


Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Appendix A Project Organization Chart

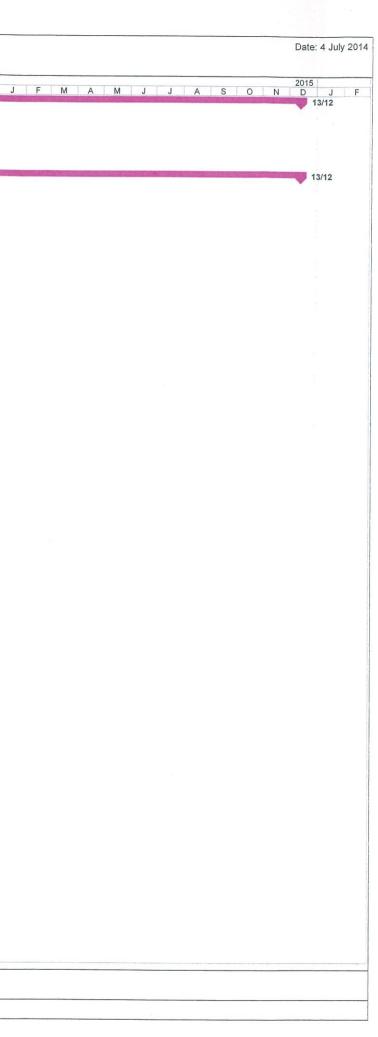
The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

L	Legend:											
		Line of Reporting										
		Line of Communication										

MATERIALAB CONSULTANTS LIMITED

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**

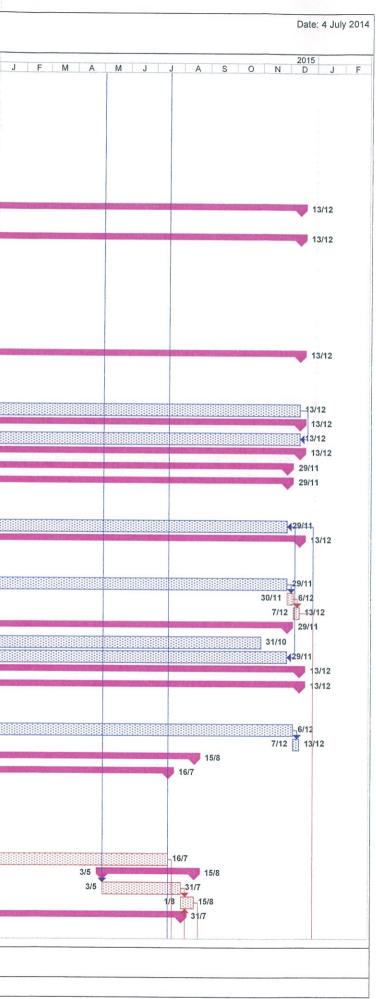
Tel : (852)-24508238 Fax : (852)-24508032 **Email : mcl@fugro.com.hk**


Report No.: 0394/13/ED/0174C

Appendix B Construction Programme

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

T	ask Name	Duration	Start	Finish	Clause 16 Programme (Version 6) 2013
C	contract Period	836 days	Fri 30/8/13	Sun 13/12/15	JJASONDJFMAMJJASON 30/8
	Contract Commencement Date	0 days	Fri 30/8/13	Fri 30/8/13	30/8
	Section 1	836 days	Fri 30/8/13	Sun 13/12/15	
	Submission	422 days	Fri 30/8/13	Sat 25/10/14	25/
	Environmental Management	321 days	Fri 30/8/13	Wed 16/7/14	30/8 16/7
	Baseline monitoring	231 days	Fri 30/8/13	Thu 17/4/14	30/8 17/4
	ETL and relevant site personal	30 days	Fri 30/8/13	Sat 28/9/13	30/8 28/9
	Preparation and submission	15 days	Fri 30/8/13	Fri 13/9/13	30/8 13/9
	Comment and approval	15 days	Sat 14/9/13	Sat 28/9/13	
	Test Lab Preparation and submission	30 days	Fri 30/8/13	Sat 28/9/13	30/0
	Comment and approval	15 days	Fri 30/8/13	Fri 13/9/13	30/8 13/9
-	Monitoring (Location see Drg No. EM/401)	15 days 201 days	Sat 14/9/13 Sun 29/9/13	Sat 28/9/13	14/3
	Plan	93 days	Sun 29/9/13 Sun 29/9/13	Thu 17/4/14 Mon 30/12/13	29/9 17/4
1	Preparation and submission to Mott and IEC	21 days	Sun 29/9/13	Sat 19/10/13	
1	Comment and resubmission	30 days	Sun 20/10/13	Mon 18/11/13	29/9 119/10 20/10 118/11
	Approval by Mott and ICE	35 days	Tue 19/11/13	Mon 23/12/13	19/11
	Approval by EPD	7 days	Tue 24/12/13	Mon 30/12/13	24/12 30/12
	Report	50 days	Thu 27/2/14	Thu 17/4/14	27/2 27/2 17/4
1	Preparation of report	5 days	Thu 27/2/14	Mon 3/3/14	
	Approval by Mott and IEC	35 days	Tue 4/3/14	Mon 7/4/14	27/2 3/3 4/3
	Approval by EPD	10 days	Tue 8/4/14	Thu 17/4/14	8/4 17/4
	Grab sample (Portions A, B & C)	321 days	Fri 30/8/13	Wed 16/7/14	30/8 16/7
	Grab sample specialist	30 days	Fri 30/8/13	Sat 28/9/13	30/8 28/9
	Preparation and submission	15 days	Fri 30/8/13	Fri 13/9/13	30/813/9
	Comment and approval by Mott	15 days	Sat 14/9/13	Sat 28/9/13	14/9 28/9
-	Sediment testing and sampling plan	162 days	Sun 29/9/13	Sun 9/3/14	29/9 9/3
	Prepararion and submission Approval by Mott	7 days	Sun 29/9/13	Sat 5/10/13	29/9 _5/10
	Approval by Molt	15 days	Sun 6/10/13 Mon 21/10/13	Sun 20/10/13	6/10 20/10
	Sediment report	140 days 37 days	Tue 10/6/14	Sun 9/3/14	21/10
	Preparation of report	7 days	Tue 10/6/14	Wed 16/7/14 Mon 16/6/14	10/6 16/7
-	Approval by Mott	15 days	Tue 17/6/14	Tue 1/7/14	10/6 1 16/6 17/6 1 17/6
	Approval by EPD	15 days	Wed 2/7/14	Wed 16/7/14	
)	24 Hours monitoring station and TIN Measuring Device (Location see	79 days	Mon 25/11/13	Tue 11/2/14	25/11
	Drg No. EM/401)				
	Instrumentation	79 days	Mon 25/11/13	Tue 11/2/14	25/11
-	Preparation and submission Approval by Mott and IEC	60 days	Mon 25/11/13	Thu 23/1/14	25/11
	Approval by Molt and IEC	5 days 14 days	Fri 24/1/14 Wed 29/1/14	Tue 28/1/14	24/1 [-28/1 29/1 [-11/2
	Survey	14 days 171 days	Sat 7/9/13	Tue 11/2/14 Mon 24/2/14	29/1 11/2
	Surveyor	35 days	Sat 7/9/13	Fri 11/10/13	7/9 24/2
	Preparation and submission	15 days	Sat 7/9/13	Sat 21/9/13	7/9 11/10 7/9 - 21/9
	Approval by Mott	20 days	Sun 22/9/13	Fri 11/10/13	22/9
	Geophysicist	35 days	Sun 3/11/13	Sat 7/12/13	3/11 3/12
1	Prepararion and submission	7 days	Sun 3/11/13	Sat 9/11/13	3/11 E 9/11
	Approval by Mott	7 days	Sun 10/11/13	Sat 16/11/13	10/11 16/11 17/11 17/12
]	Approval by Marine Department	21 days	Sun 17/11/13	Sat 7/12/13	17/11 7/12
	Land Survey (Container Basin & DSD Tsing Yi Plant)	67 days	Tue 26/11/13	Fri 31/1/14	26/11
	Settlement markers	67 days	Tue 26/11/13	Fri 31/1/14	26/11 31/1
	Method Statement for Installation and Monitoring	24 days	Tue 26/11/13	Thu 19/12/13	26/11 19/12
	Preparation and submission	10 days	Tue 26/11/13	Thu 5/12/13	26/11 5/12
	Approval by Mott	14 days	Fri 6/12/13	Thu 19/12/13	6/12 19/12
	Initial report	12 days	Mon 20/1/14	Fri 31/1/14	20/1 11/1
	Preparation and submission	5 days	Mon 20/1/14	Fri 24/1/14	20/1 24/1


Page 1 /4

				Dredging Wo	Contract No. CV/2013/04 s in Kwai Tsing Container Basin and its Approach Channel Clause 16 Programme (Version 6)	Date: 4 Ju
Task Name		Duration	Start	Finish	2013 2014	2045
	Approval by Mott	7 days	Sat 25/1/14	Fri 31/1/14	JJASONDJFMAMJJASONDJFM 25/1 31/1	2015 A M J J A S O N D J
	Hydrographic Survey (Portions A to E)	124 days	Thu 24/10/13	Mon 24/2/14	24/10 24/2	
1	Method Statement	36 days	Thu 24/10/13	Thu 28/11/13	24/10 28/11	
	Preparation and submission	15 days	Thu 24/10/13	Thu 7/11/13	24/10 7/11	
	Approval by Mott	21 days	Fri 8/11/13	Thu 28/11/13	8/11	
	Initial survey	29 days	Mon 27/1/14	Mon 24/2/14	27/1 22/2	
	Report	29 days	Mon 27/1/14	Mon 24/2/14	27/1 24/2	
	Preparation and submission	7 days	Mon 27/1/14	Sun 2/2/14	27/1 2/2	
	Approval by Mott	7 days	Mon 3/2/14	Sun 9/2/14		
	Approval by Marine Department	15 days	Mon 10/2/14	Mon 24/2/14	3/2 10/2 10/2	
	Temporary Marine Traffic Management (Portions A to E)	78 days	Fri 30/8/13	Fri 15/11/13	30/8 15/11 15/11	
	Consultant, Risk Manager and Marine Traffic Engineer	28 days	Fri 30/8/13	Thu 26/9/13	30/8 26/9	
	Preparation and submission	14 days	Fri 30/8/13	Thu 12/9/13	30/8_12/9	
	Approval by Mott	14 days	Fri 13/9/13	Thu 26/9/13	13/9	
	Webbase software and Trial Run	50 days	Fri 27/9/13	Fri 15/11/13	27/9	
	Preparation and submission of methodology	7 days	Fri 27/9/13	Thu 3/10/13	27/9	
	Comment recevied by Mott	0 days	Thu 3/10/13	Thu 3/10/13	3/10	
	Rectification	5 days	Fri 4/10/13	Tue 8/10/13	4/10 8/10	
	Final submission	0 days	Sat 9/11/13	Sat 9/11/13	9/11	
	Approval by Mott	7 days	Sat 9/11/13	Fri 15/11/13	9/11 15/11	
	Dredging Works (Portions A to E)	332 days	Thu 28/11/13	Sat 25/10/14		
	Silt screen (Location see Drg No. EM/401)	108 days	Fri 6/12/13	Sun 23/3/14	20/10	
	Method statement	108 days	Fri 6/12/13	Sun 23/3/14	6/12 23/3 6/12 23/3	
	Preparation and submission	80 days	Fri 6/12/13	Sun 23/2/14		
	Approval by Mott	14 days	Mon 24/2/14	Sun 9/3/14	6/12	
	Approval by IEC	14 days	Mon 24/2/14	Sun 9/3/14		
	Approval by WSD	14 days	Mon 10/3/14	Sun 23/3/14	24/2 9/3 10/3	
	Approval by EMSD	14 days	Mon 10/3/14	Sun 23/3/14		
	Approval by EPD	14 days	Mon 10/3/14	Sun 23/3/14		
	Dredging method statement and silt curtain deployment plan	118 days	Thu 28/11/13	Tue 25/3/14		
	Preparation and submission	50 days	Thu 28/11/13	Thu 16/1/14		
	Approval by Mott	40 days	Fri 17/1/14	Tue 25/2/14		
	Approval by IEC	14 days	Wed 26/2/14	Tue 11/3/14		
	Approval by EPD	14 days	Wed 12/3/14	Tue 25/3/14	26/2 11/3	
	Dredging Works at Portions A and B	307 days	Mon 23/12/13	Sat 25/10/14	12/3 25/3	
	General seabed (Hot Spot and hard materials)	210 days	Mon 23/12/13	Sun 20/7/14	23/12 25/10	
	Marine Notice approval by Marine Departemnt	170 days	Sat 1/2/14	Sun 20/7/14		
	Preparation and submission	90 days	Sat 1/2/14	Thu 1/5/14	1/2 20/7	
	Approval by MD	80 days	Fri 2/5/14	Sun 20/7/14	1/2	
	Noise Permit	95 days	Mon 23/12/13	Thu 27/3/14	2/620/7	
	Preparation and submission	75 days	Mon 23/12/13	Fri 7/3/14	23/12 27/3	
	Approval by EPD	20 days	Sat 8/3/14	Thu 27/3/14	23/12	
	Dumping Permit	100 days	Mon 17/2/14	Tue 27/5/14	8/3	
	Preparation and submission	70 days	Mon 17/2/14	Sun 27/4/14	17/2 27/5	
	Approval by EPD	30 days			17/2	
	Type 3 Cat Hf Sediment (Portion A)		Mon 28/4/14 Fri 31/1/14	Tue 27/5/14 Sat 14/6/14	28/4	
	Method statement for disposal	135 days 135 days	Fri 31/1/14 Fri 31/1/14		31/1	
	Preparation and submission	60 days	Fri 31/1/14	Sat 14/6/14 Mon 31/3/14	31/1	
	Approval by Mott and IEC	30 days	Fri 31/1/14 Tue 1/4/14	Mon 31/3/14 Wed 30/4/14	31/1	
	Approval by Mott and IEC	45 days	Tue 1/4/14 Thu 1/5/14	Sat 14/6/14	1/4	
	Hot Spot (Portion A)	299 days	Tue 31/12/13	Sat 14/6/14 Sat 25/10/14	1/5	
	Proposal for field trial at Zone Z2C	299 days 180 days			31/12 25/10	
	Preparation and submission		Tue 31/12/13	Sat 28/6/14	31/12 28/6	
	Approval by Mott	150 days	Tue 31/12/13	Thu 29/5/14	31/12	
	Method statement for dredging works at Zone Z2B	30 days	Fri 30/5/14	Sat 28/6/14	30/5	
	Preparation and submission	51 days	Fri 5/9/14	Sat 25/10/14	5/9 25/10	
		14 days	Fri 5/9/14	Thu 18/9/14	5/9 18/9 19/9 25/9	
	Approval by Mott Approval by EPD	7 days	Fri 19/9/14	Thu 25/9/14		
	Dredging Works at Portions C, D and E	30 days	Fri 26/9/14	Sat 25/10/14	26/9	
	breaging works at Fortions 6, D dilu E	116 days	Mon 2/12/13	Thu 27/3/14	2/12 27/3	
	Water & Task Critical Task	1ilestone 🔶		nary		

				Dredging We	orks in Kwai Tsi	ng Contain	OV/2013/04 Ner Basin and Nme (Version		hannel			
Tas	sk Name	Duration	Start	Finish				2013				
1	Marine Notice approval by Marine Departemnt	95 days	Mon 2/12/13	Thu 6/3/14	JJA	S	0 N 2/12	D J F	6/B	MJ	JA	S O
	Preparation and submission	45 days	Mon 2/12/13	Wed 15/1/14			2/12	15/1	0,5			
1	Approval by MD	50 days	Thu 16/1/14	Thu 6/3/14			E	16/1	6/3			
	Noise Permit	95 days	Wed 18/12/13	Sat 22/3/14			18/12	100000	22/			
	Preparation and submission	45 days	Wed 18/12/13	Fri 31/1/14			18/12	Y				
	Approval by EPD	50 days	Sat 1/2/14	Sat 22/3/14			10/11	1/2	22/3			
	Dumping Permit	85 days	Thu 2/1/14	Thu 27/3/14				2/1	27			
	Preparation and submission	45 days	Thu 2/1/14	Sat 15/2/14				2/4 00000000000				
	Approval by EPD	40 days	Sun 16/2/14	Thu 27/3/14				16/2	15/2			
	Works	805 days	Mon 30/9/13	Sun 13/12/15				16/2	27/:			
	Environmental Management	713 days	Tue 31/12/13	Sun 13/12/15			24/					
	Baseline monitoring						31/1					
	Monitoring (Location see Drg No. EM/401)	58 days	Tue 31/12/13	Wed 26/2/14			31/1		26/2			
	Mobilization	58 days	Tue 31/12/13	Wed 26/2/14			31/1		26/2			
		3 days	Tue 31/12/13	Thu 2/1/14			31	/12 2/1				
	Field works and Lab Test	55 days	Fri 3/1/14	Wed 26/2/14				3/1	26/2			
	Grab sample (Portions A, B & C)	92 days	Mon 10/3/14	Mon 9/6/14					/3	9/6		
	Grab sample specialist mobilization	7 days	Mon 10/3/14	Sun 16/3/14					0/3 16/3			
1	Grab sample (field works) and Lab Test	85 days	Mon 17/3/14	Mon 9/6/14					17/3	9/6		
	24 Hours monitoring station and TIN Measuring Device (Location see Drg No. EM/401)	670 days	Wed 12/2/14	Sun 13/12/15				12/2 💗				
	Procurement and delivery	45 days	Wed 12/2/14	Fri 28/3/14				12/2				
	Installation	14 days	Sat 29/3/14	Fri 11/4/14				-	29/3	1/4		
	Monitoring	598 days	Fri 25/4/14	Sun 13/12/15					25/4			
	Impact monitoring (Location see Drg No. EM/401)	598 days	Fri 25/4/14	Sun 13/12/15					25/4		000000000	
	Impact monitoring and report submission	598 days	Fri 25/4/14	Sun 13/12/15					25/4			
	Survey	724 days	Fri 20/12/13	Sun 13/12/15			20/12				85599923	0.0000000000
	Land Survey (Container Basin & DSD Tsing Yi Plant)	710 days	Fri 20/12/13	Sun 29/11/15			20/12			The Property of the Local States		
	Settlement markers	710 days	Fri 20/12/13	Sun 29/11/15				 A state of the state 				
	Installation	14 days	Fri 20/12/13	Thu 2/1/14			20/12	2/1				
	Initial survey	7 days	Mon 13/1/14	Sun 19/1/14				13/1 19/1				
	Interim monitoring	584 days	Fri 25/4/14	Sun 29/11/15					25/4			
	Hydrographic Survey (Portions A to E)	700 days	Mon 13/1/14	Sun 13/12/15				13/1	23/4			
	Initial survey	14 days	Mon 13/1/14	Sun 26/1/14				13/1 26	/1			
	Field works	14 days	Mon 13/1/14	Sun 26/1/14				13/1 26/1				
	Interim survey	517 days	Tue 1/7/14	Sun 29/11/15				13/1 20/1				
	Final survey	7 days	Mon 30/11/15	Sun 6/12/15						1/7		
	Final survey report	7 days	Mon 7/12/15	Sun 13/12/15								
	Temporary Marine Traffic Management (Portions A to E)	791 days	Mon 30/9/13	Sun 29/11/15		20/0	in the second second second			1		
)	Organizing meeting for information collection	and a second				30/9						
	Temporary marine traffic management and TMTM meeting	762 days	Mon 30/9/13	Sat 31/10/15		30/9						
		740 days	Wed 20/11/13	Sun 29/11/15			20/11					
	Dredging Works (Portions A to E)	738 days	Fri 6/12/13	Sun 13/12/15			6/12					
	Silt screen (Location see Drg No. EM/401)	738 days	Fri 6/12/13	Sun 13/12/15			6/12 💗					A REAL PROPERTY AND INCOME.
	Receiving of as-built record of water intake from WSD/EMSD	0 days	Fri 6/12/13	Fri 6/12/13			•	6/12				
	Installation of silt screen	7 days	Mon 24/3/14	Sun 30/3/14					24/3 30/3			
	Maintenance of silt screen	592 days	Thu 24/4/14	Sun 6/12/15					24/4			
	Removal of silt screen	7 days	Mon 7/12/15	Sun 13/12/15								
	Dredging Works at Portions A and B	433 days	Mon 9/6/14	Sat 15/8/15						9/6		and the second second second
	General seabed (Hot Spot and hard materials)	403 days	Mon 9/6/14	Thu 16/7/15						9/6		No. of Concession, Name
	Mobililzation	24 days	Fri 27/6/14	Sun 20/7/14						27/6	20/7	
	Fabrication of silt curtain	7 days	Mon 9/6/14	Sun 15/6/14						9/6 15/6		
	Pilot test for silt curtain	2 days	Mon 21/7/14	Tue 22/7/14						21/7	22/7	
	Monitoring brief for unidentified sonar contacts & masked areas	3 days	Wed 2/7/14	Fri 4/7/14						2/7	81	
	Dredging works 1 (subject to availability of working windows)	30 days	Wed 23/7/14	Thu 21/8/14						23/7	1	1/B
	Dredging works 2 (subject to availability of working windows)	315 days	Fri 5/9/14	Thu 16/7/15						23/1	<u></u>	Parata and a second
	Type 3 Cat Hf Sediment (Portion A)	105 days	Sun 3/5/15	Sat 15/8/15							5/9	
	Procurement and delivery of Geo-container	90 days	Sun 3/5/15	Fri 31/7/15								
	Dredging works	15 days	Sull 3/5/15 Sat 1/8/15									
	Hot Spot (Portion A)			Sat 15/8/15						1		
	Proposal for field trial at Zone Z2C	344 days 14 days	Fri 22/8/14 Fri 22/8/14	Fri 31/7/15							22/8	
		14 navs	ET 22/8/14	Thu 4/9/14						1	22/8	4/0

Page 3 /4

				Dredging W	Contract No. CV/2013/04 /orks in Kwai Tsing Container Basin and its Approach Channel Clause 16 Programme (Version 6)
Т	ask Name	Duration	Start	Finish	2013 J J A S O N D J F M A M J J A S O N
	Field trial at Zone Z2C	14 days	Fri 22/8/14	Thu 4/9/14	J J A S O N D J F M A M J J A S O N 22/8 4/9
	Dredging works	15 days	Fri 17/7/15	Fri 31/7/15	
	Dredging Works for Portions C, D and E	309 days	Fri 18/4/14	Fri 20/2/15	18/4
	Dredging Works for Portion D	109 days	Fri 18/4/14	Mon 4/8/14	18/4
	MobiliIzation	7 days	Fri 18/4/14	Thu 24/4/14	18/4 24/4
	Pilot test of silt curtain	2 days	Fri 25/4/14	Sat 26/4/14	25/4 26/4
	Trial dredging	2 days	Fri 25/4/14	Sat 26/4/14	25/4 26/4
	Dredging works	100 days	Sun 27/4/14	Mon 4/8/14	27/4
	Dredging Works for Portion E	10 days	Tue 5/8/14	Thu 14/8/14	5/8 14/8
	Dredging Works for Portion C	190 days	Fri 15/8/14	Fri 20/2/15	
	Section 2	836 days	Fri 30/8/13	Sun 13/12/15	
	Submission	491 days	Wed 11/9/13	Wed 14/1/15	
	Preliminaries (Portion F)	491 days	Wed 11/9/13	Wed 14/1/15	1/9
	Engineer Principal Accommodation	83 days	Wed 11/9/13	Mon 2/12/13	1/9 2/12
6	Preparation and submisssion of location and layout	0 days	Wed 11/9/13	Wed 11/9/13	↓ 11/9
1	Approval of location and layout	30 days	Thu 12/9/13	Fri 11/10/13	12/9
	Preparation of calculation	10 days	Sat 12/10/13	Mon 21/10/13	12/10 21/10
	Comment and resubmission of calculation	35 days	Tue 22/10/13	Mon 25/11/13	22/1025/11
	Approval of calculation	7 days	Tue 26/11/13	Mon 2/12/13	26/11 2/12
	Outfall Modification Works (Location see Drg No. S202)	75 days	Sat 1/11/14	Wed 14/1/15	1/11
	Method statement	75 days	Sat 1/11/14	Wed 14/1/15	1/11
	Preparation and submission	45 days	Sat 1/11/14	Mon 15/12/14	1/11
	Approval by Mott	30 days	Tue 16/12/14	Wed 14/1/15	16/1
	Approval by DSD	30 days	Tue 16/12/14	Wed 14/1/15	16/1
	Works	836 days	Fri 30/8/13	Sun 13/12/15	
	Preliminaries (Portion F)	836 days	Fri 30/8/13	Sun 13/12/15	30/8
	Contractor's mobilization	36 days	Fri 30/8/13	Fri 4/10/13	30/8 4/10
	Security Guard	0 days	Fri 30/8/13	Fri 30/8/13	
	Temporary electricity power supply	30 days	Fri 30/8/13	Sat 28/9/13	30/8 28/9
	Engineer's Initial Temporary Accommodation	14 days	Fri 30/8/13	Thu 12/9/13	30/8 12/9
	Engineer Principal Accommodation	177 days	Tue 3/12/13	Wed 28/5/14	3/12 28/5
	Material ordering and delivery	10 days	Tue 3/12/13	Thu 12/12/13	3/12
	Construction	30 days	Fri 13/12/13	Sat 11/1/14	13/12
	Computer installation	9 days	Fri 3/1/14	Sat 11/1/14	3/1 3/1
)	Furniture and office equipment	9 days	Fri 3/1/14	Sat 11/1/14	3/1 3/1
	Car Park	14 days	Thu 15/5/14	Wed 28/5/14	15/5 🔢 28/5
	Outfall Modification Works (Location see Drg No. S202)	120 days	Sun 16/8/15	Sun 13/12/15	
	Dye test	7 days	Sun 16/8/15	Sat 22/8/15	
	Video filming	7 days	Sun 23/8/15	Sat 29/8/15	
	Dredging works	7 days	Sun 30/8/15	Sat 5/9/15	
	Modification works	92 days	Sun 6/9/15	Sun 6/12/15	
	As-built video submission	7 days	Mon 7/12/15	Sun 13/12/15	
	Contract Completion Date	0 days	Sun 13/12/15	Sun 13/12/15	

Task

. 1

Critical Task Milestone

Summary 🛛 🤎

Page 4 /4

MATERIALAB CONSULTANTS LIMITED

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Appendix C Action and Limit Levels

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

Action and Limit Levels for Routine Water Quality Montioring

Monitoring Station	DO (mg/L) Surface & Middle		DO (mg/L) Bottom		Turbidity (NTU) Depth Averaged		Suspended Solids (mg/L) Depth- averaged		BOD₅(mg/L) Depth- averaged		<i>E.coli</i> (CFU /100mL) Depth- averaged		NH₃-N (mg/L) Depth-averaged		UIA (mg/L) Depth- averaged		Synthetic Detergent as MBAS (mg/L) Depth- averaged		Wet Season TIN (mg/L) Depth Averaged		Dry Season TIN (mg/L) Depth Averaged	
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
	Seawater Intake																					
SR1 SR4 SR12	2	2	2	2	<10	<10	<10	<10	<10	<10	<20,000	<20,000	<1	<1	0.021	0.021	<5	<5	NA	NA	NA	NA
0	Fish Culture Zone																					
SR5	5.45	5.39#	5.43	5.27+	6.7 or 120%C*	10.1 or 130%C^	12 or 120%C*	19 or 130%C^											0.45	0.50	0.36	0.39
SR9 SR10 SR11	6.11	6.02#	6.11	6.04*	2.9 or 120%C*	4.8 or 130%C^	9 or 120%C*	18 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.37	0.49	0.22	0.29
											Gazetted I	Beach										
SR2 SR3	5.45	5.39#	5.43	5.27*	6.7 or 120%C*	10.1 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	0.21 or 120%C*	0.24 or 130%C^	0.021	0.021	NA	NA	NA	NA	NA	NA
											Coral	s										
SR6 SR7 SR8	6.11	6.02#	6.11	6.04+	2.9 or 120%C*	4.8 or 130%C^	9 or 120%C*	18 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
										EMSD	Cooling V	Vater Intal	ke						•			
SR13	5.31	5.22#	5.29	5.12⁺	13.1 or 120%C*	15.7 or 130%C^	23 or 120%C*	38 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

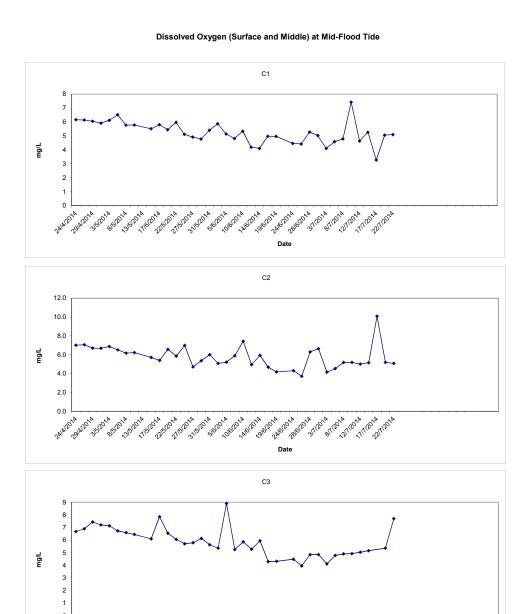
Action and Limit Levels for 24-hr Water Quality Monitoring

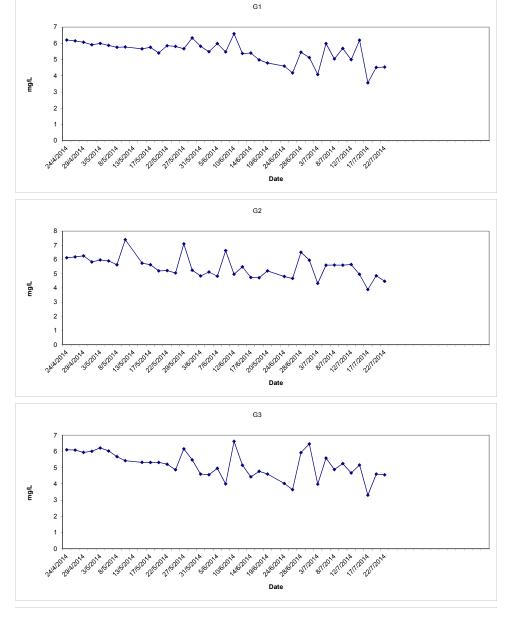
Monitoring Station		ng/L) face	Turbidit Suri	ty (NTU) face	Ammonia-N (mg/L) Surface							
	AL	LL	AL	LL	AL	LL						
WSD Seawater Intake												
SR4	2	2	<10	<10	<1	<1						
SR12	2	2	10	~10		~1						
		Fish (Culture Zone									
SR5	5.46	5.39	6.0	7.9								
SR9					NA	NA						
SR10	6.12	5.97	2.8	4.7	INA	NA						
SR11												
		EMSD Coo	oling Water Intal	ke								
SR13	5.28	5.22	11.9	13.3	NA	NA						

MATERIALAB CONSULTANTS LIMITED

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

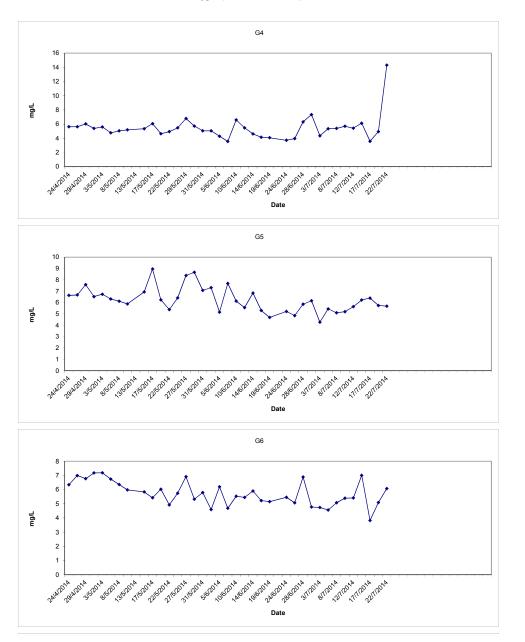


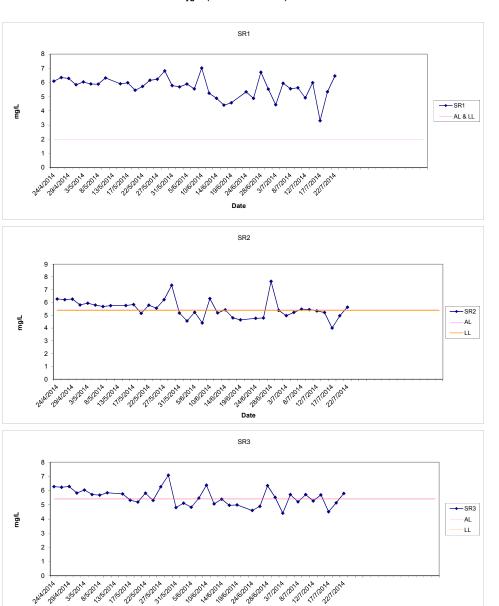

Report No.: 0394/13/ED/0174C

Appendix D

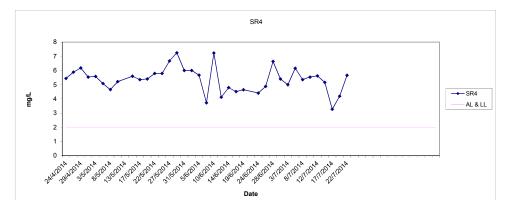
Graphical Presentation – Routine Impact Monitoring Results

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

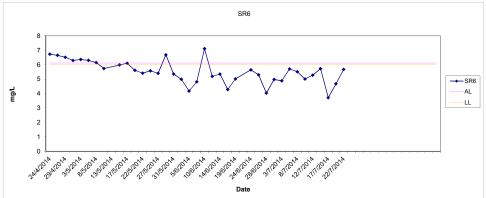


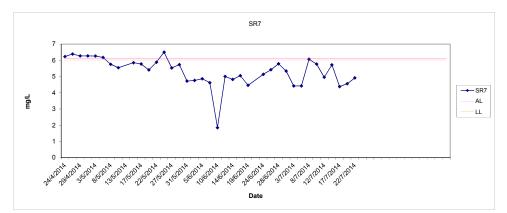

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

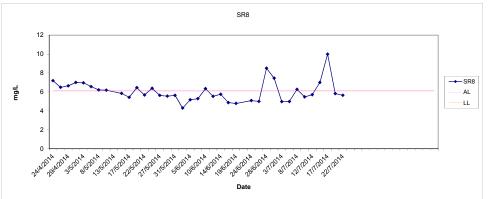
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

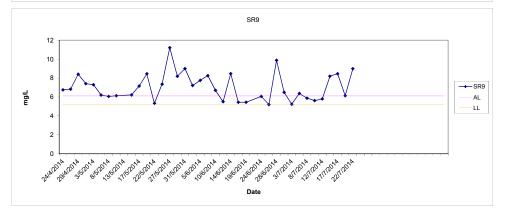

2440²⁴ 2940²⁴ 260²⁴ 260²⁴ 260²⁴ 160²⁴ 160


Dissolved Oxygen (Surface and Middle) at Mid-Flood Tide

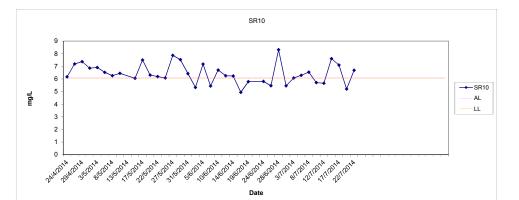


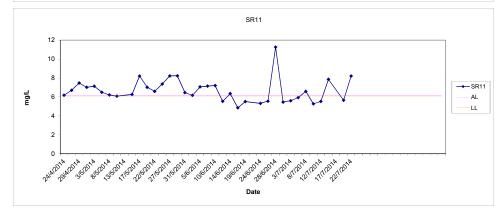

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

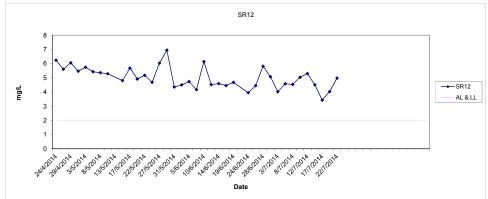


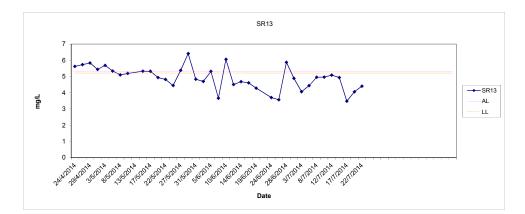


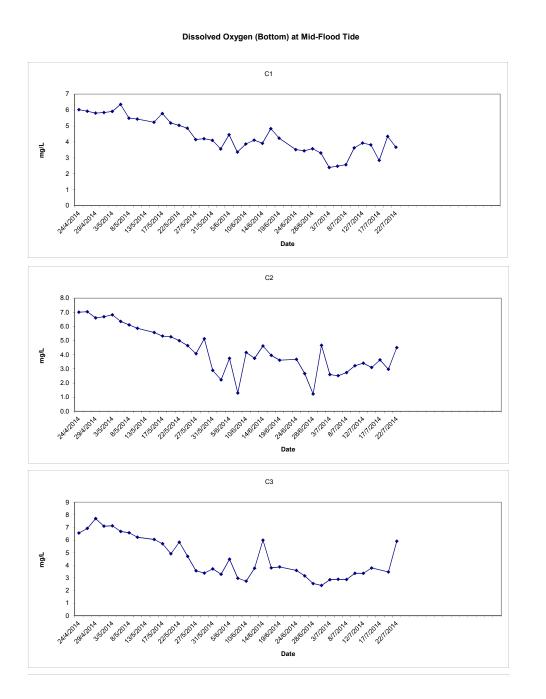
Dissolved Oxygen (Surface and Middle) at Mid-Flood Tide

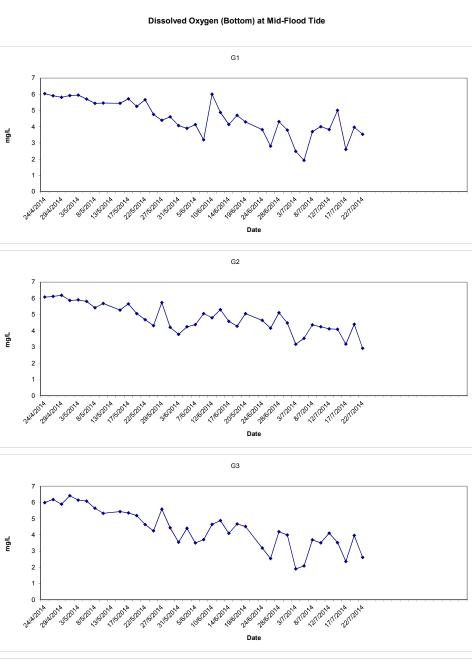


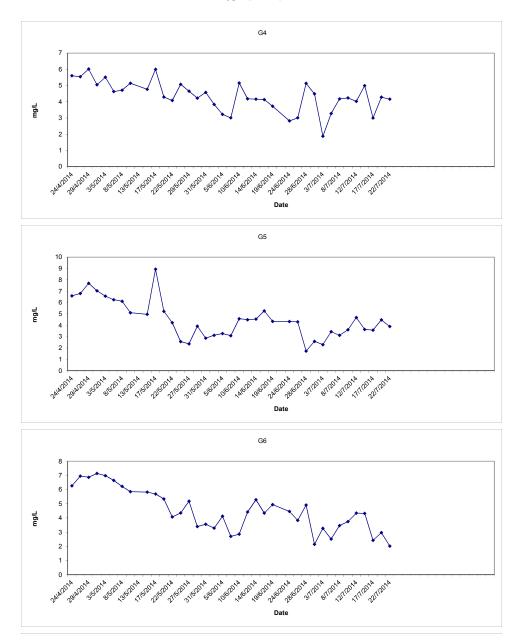


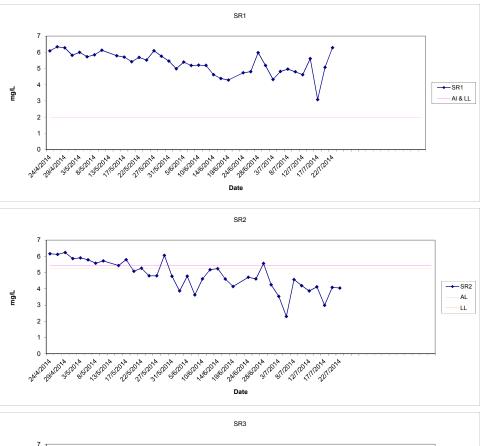


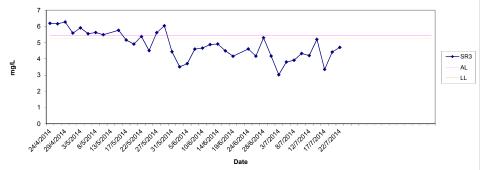

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel


Dissolved Oxygen (Surface and Middle) at Mid-Flood Tide



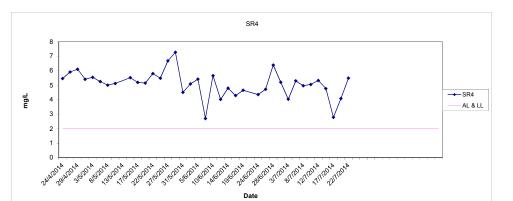


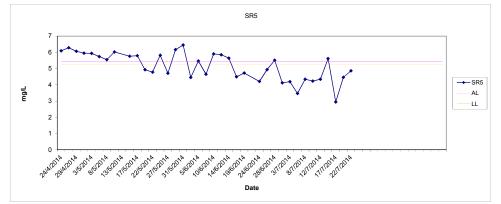


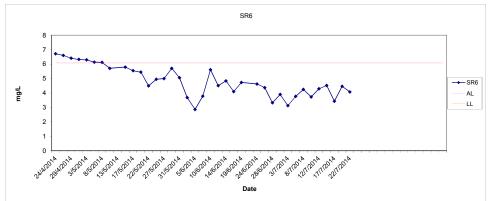


Dissolved Oxygen (Bottom) at Mid-Flood Tide

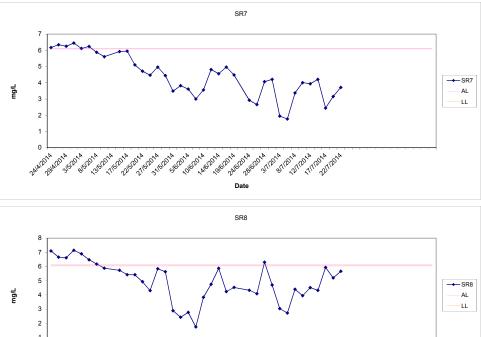
Dissolved Oxygen (Bottom) at Mid-Flood Tide

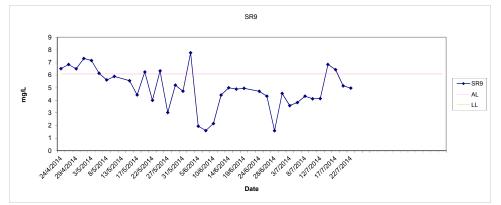


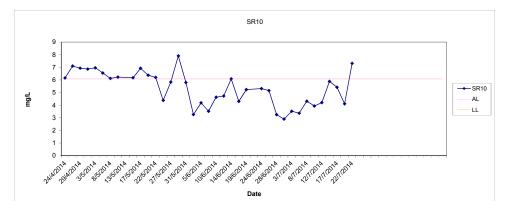


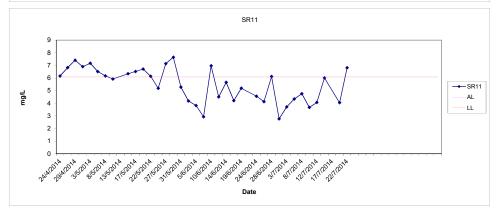


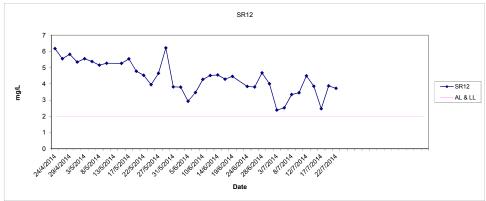
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

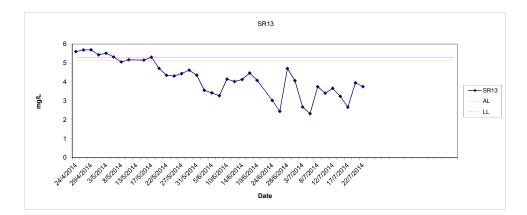

Dissolved Oxygen (Bottom) at Mid-Flood Tide

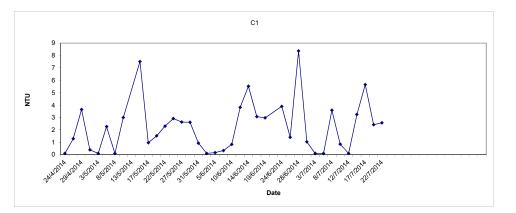



Dissolved Oxygen (Bottom) at Mid-Flood Tide

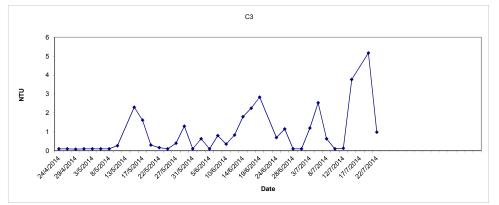


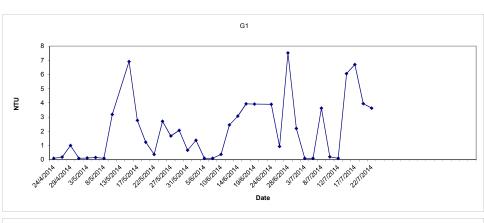


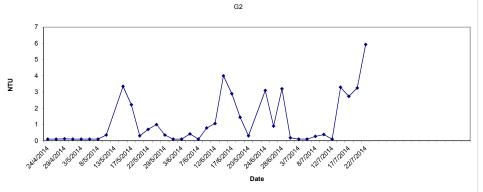

Dissolved Oxygen (Bottom) at Mid-Flood Tide

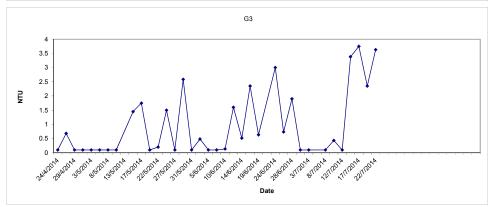


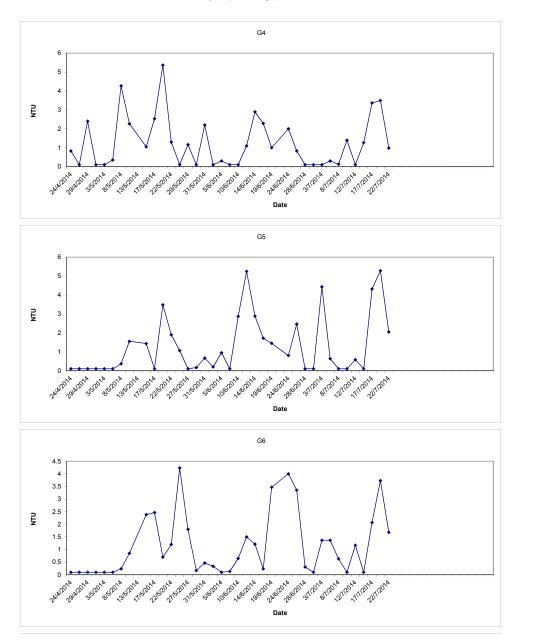


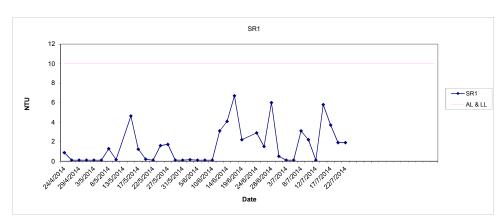

Dissolved Oxygen (Bottom) at Mid-Flood Tide

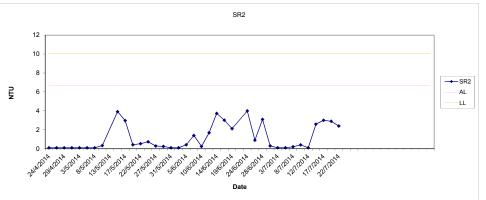


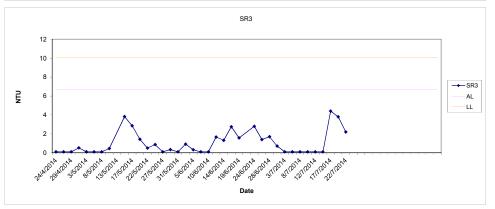

Turbidity (Depth average) at Mid-Flood Tide

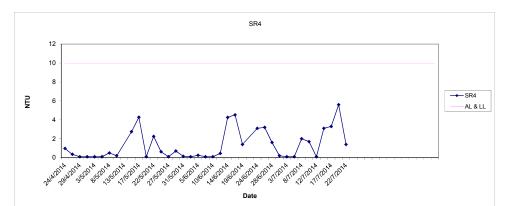


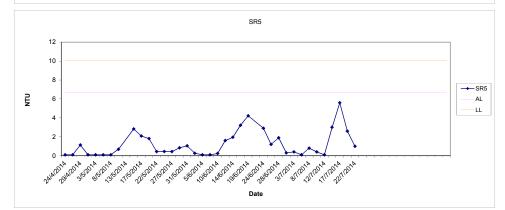


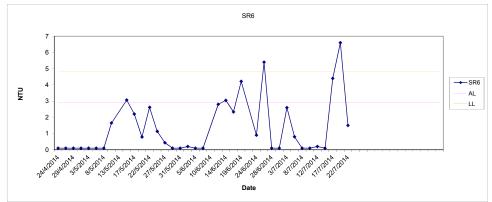


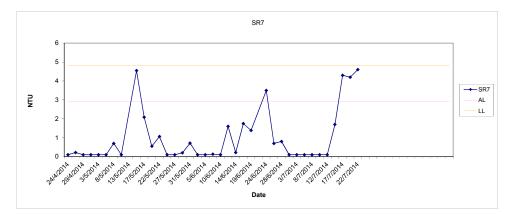


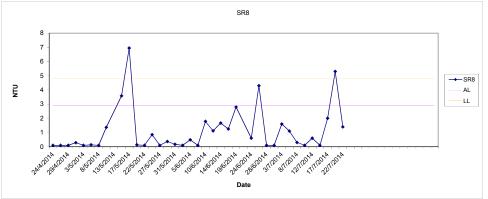


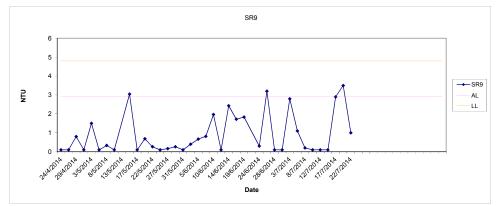

Turbidity (Depth average) at Mid-Flood Tide

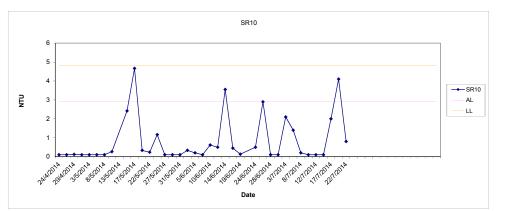


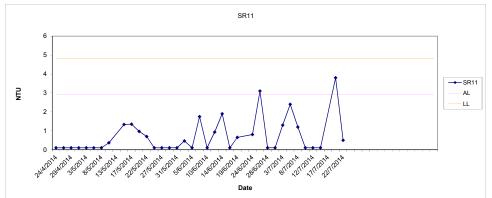


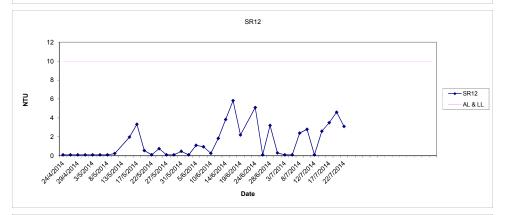


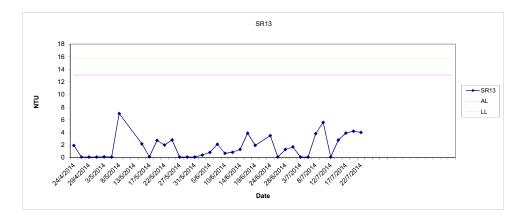


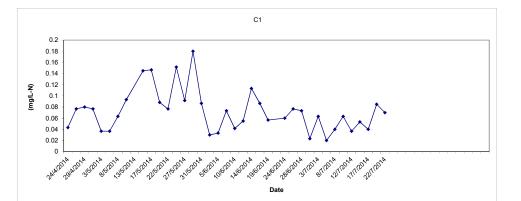


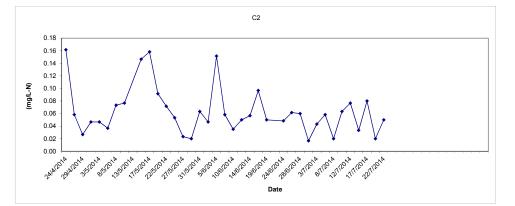

Turbidity (Depth average) at Mid-Flood Tide

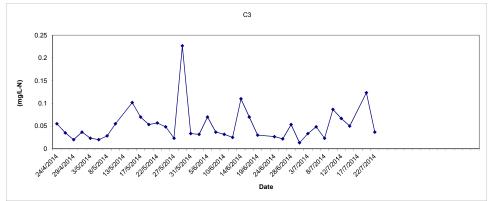


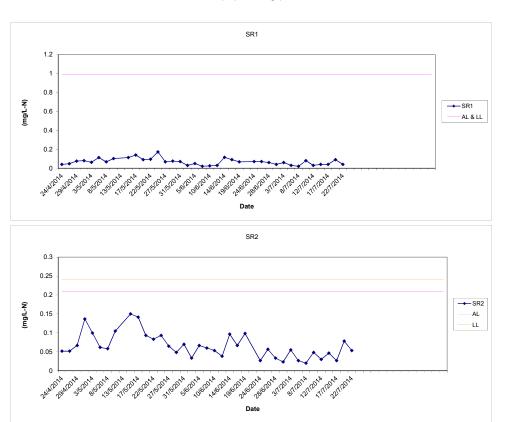


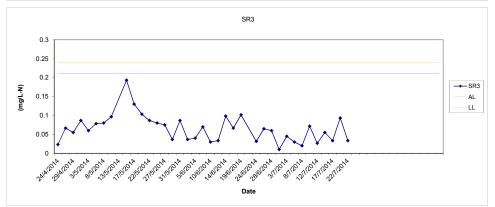

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

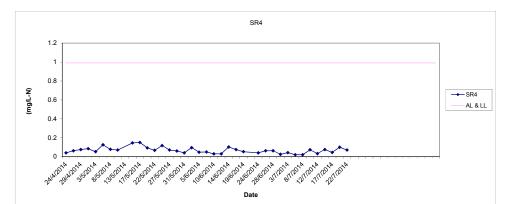


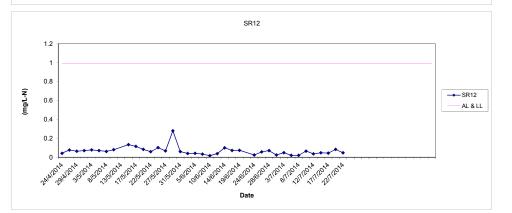



Turbidity (Depth average) at Mid-Flood Tide

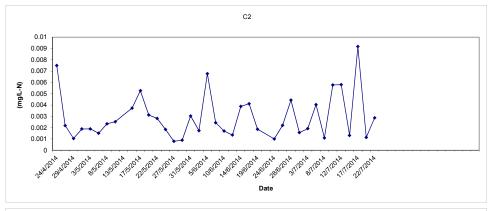

In-situ Ammonia (Depth average) at Mid-Flood Tide

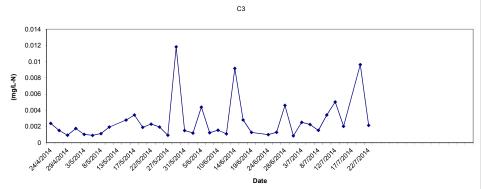


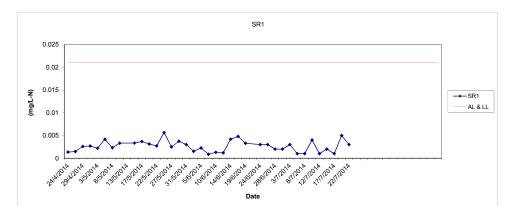

In-situ Ammonia (Depth average) at Mid-Flood Tide

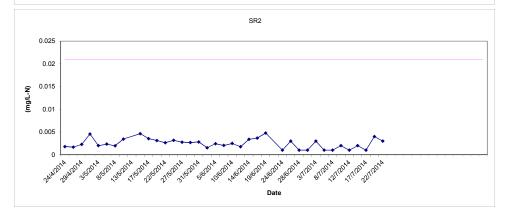


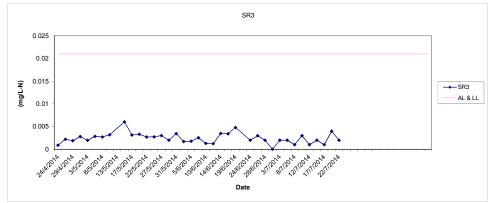
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

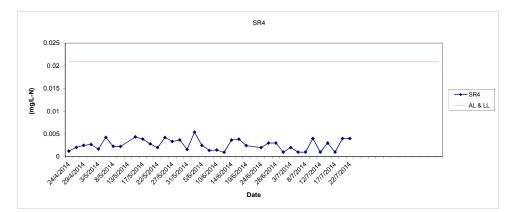

In-situ Ammonia (Depth average) at Mid-Flood Tide

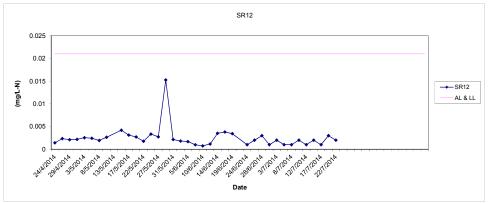


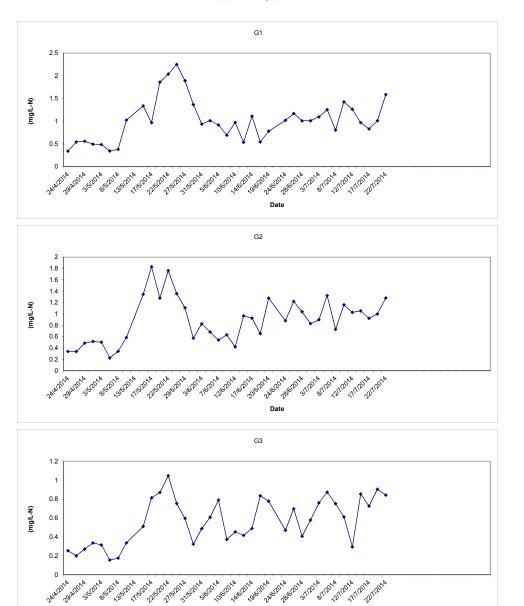

C1


In-situ UIA (Depth average) at Mid-Flood Tide

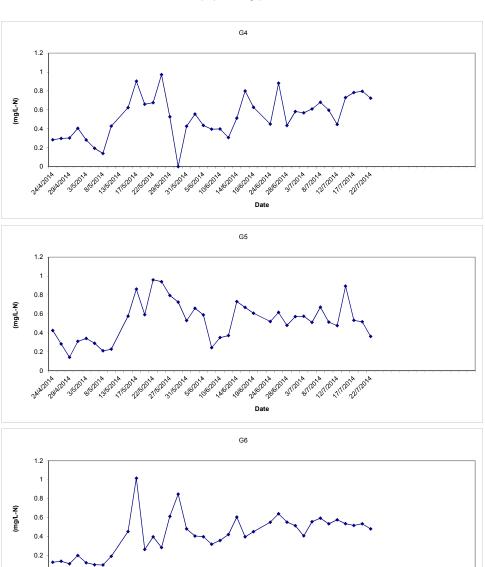



In-situ UIA (Depth average) at Mid-Flood Tide



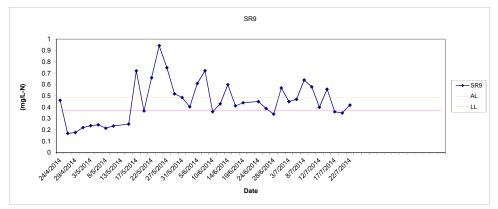


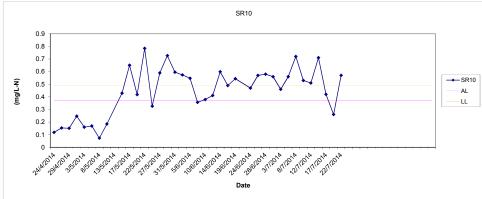
In-situ UIA (Depth average) at Mid-Flood Tide



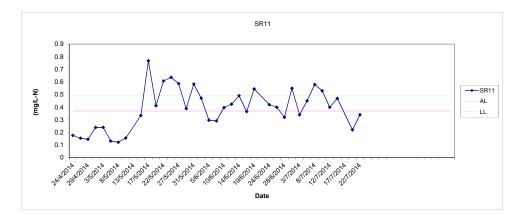
In-situ TIN (Depth average) at Mid-Flood Tide

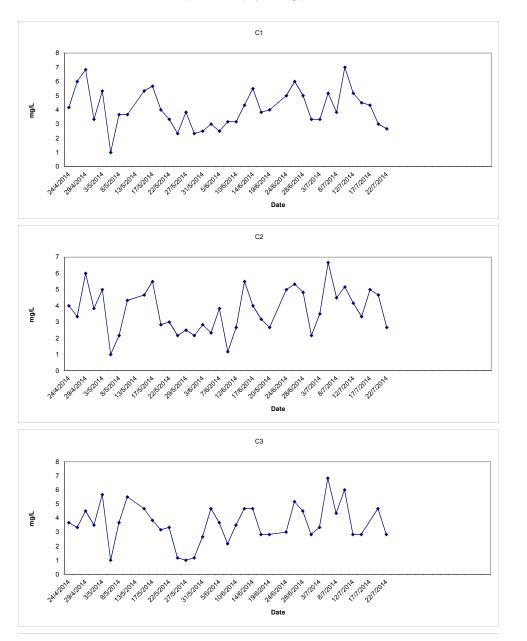
In-situ TIN (Depth average) at Mid-Flood Tide

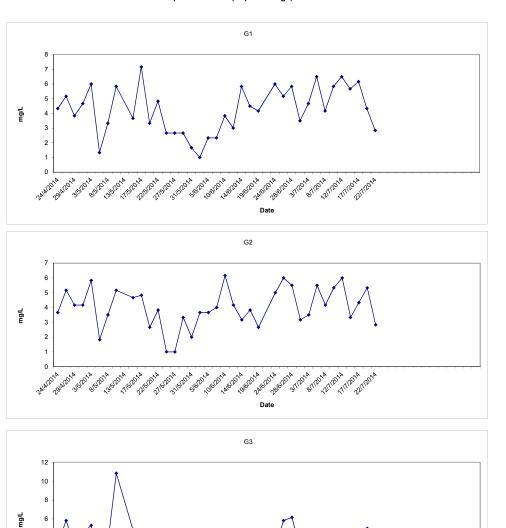

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel


and and a south as a start and a

Date


In-situ TIN (Depth average) at Mid-Flood Tide

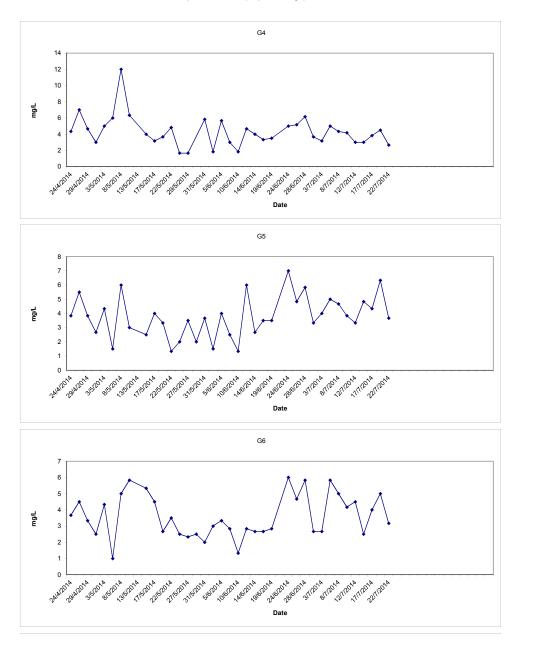


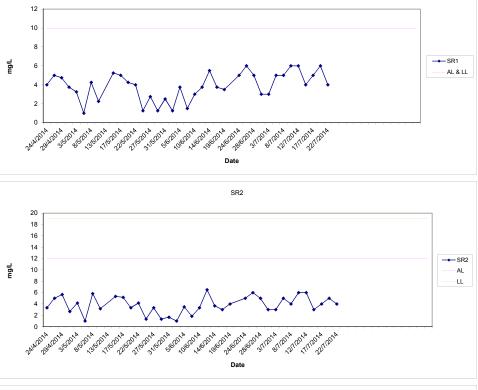


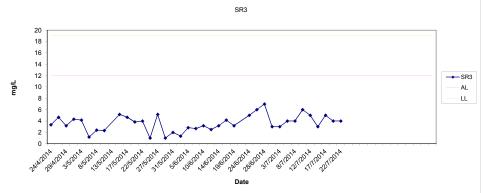
In-situ TIN (Depth average) at Mid-Flood Tide

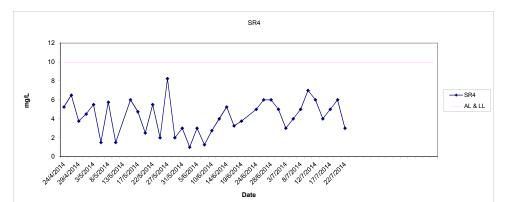
Total Suspended Solids (Depth average) at Mid-Flood Tide

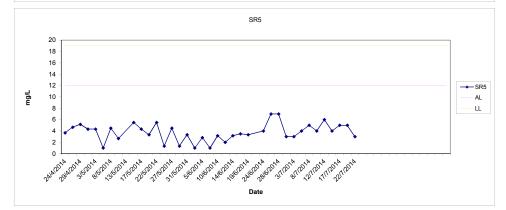
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

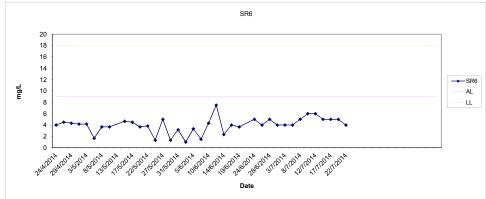

ALMOD BARD 3 500 A 560 A 560 A 500 A

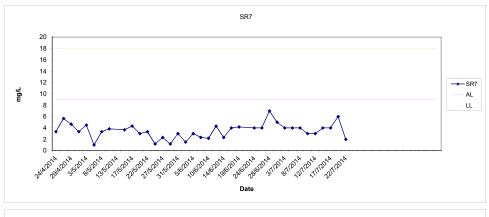

Date

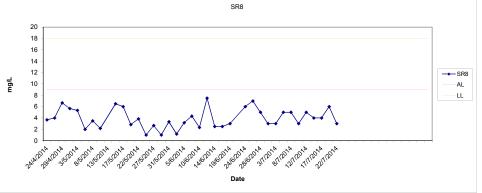

0

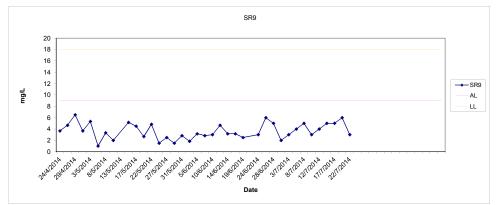

Total Suspended Solids (Depth average) at Mid-Flood Tide

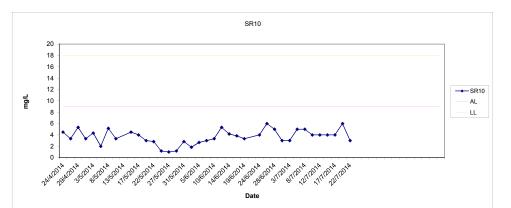

SR1

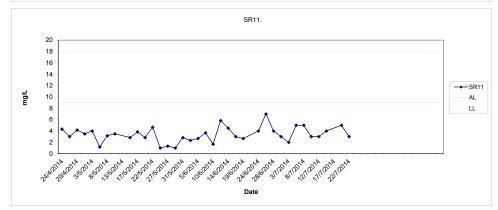


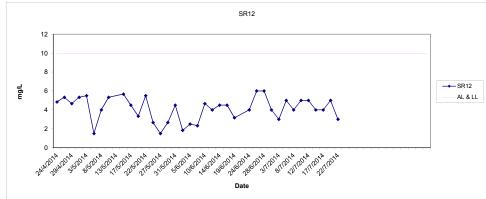


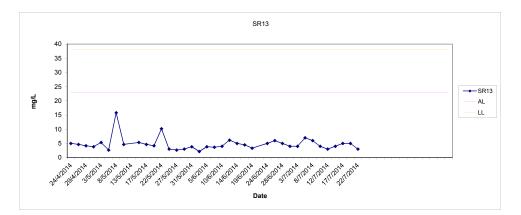


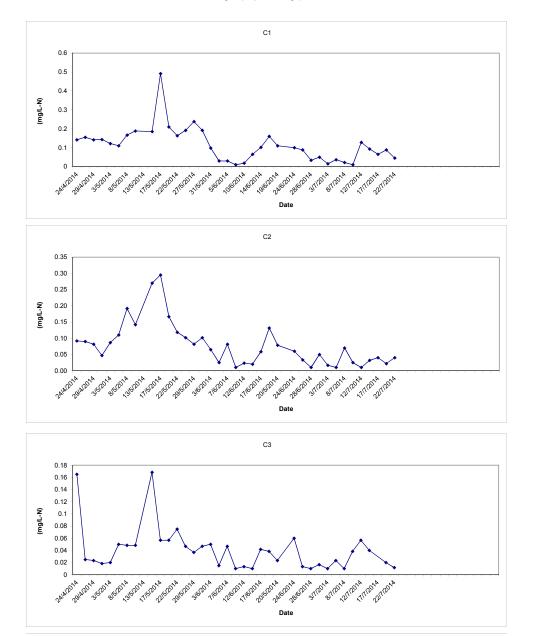


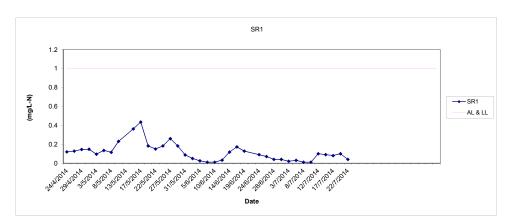

Total Suspended Solids (Depth average) at Mid-Flood Tide

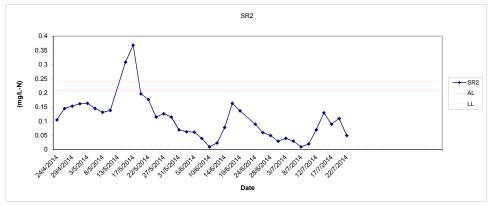


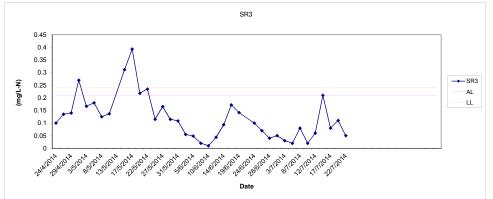



Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

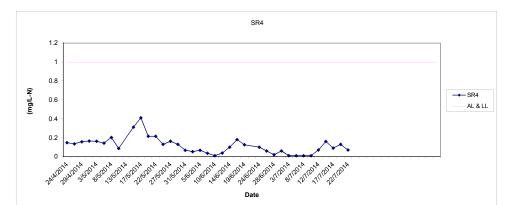


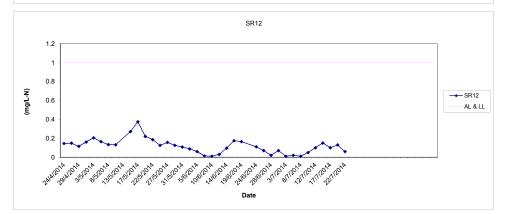

Total Suspended Solids (Depth average) at Mid-Flood Tide

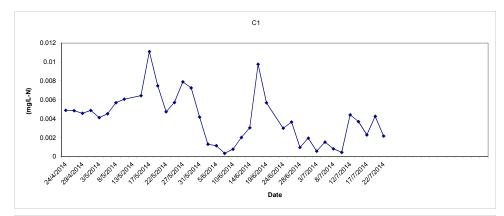


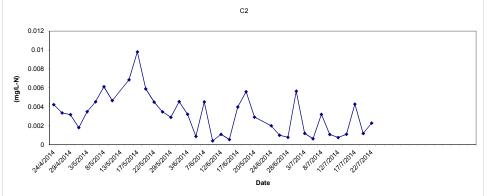

Ammonia Nitrogen (Depth average) at Mid-Flood Tide

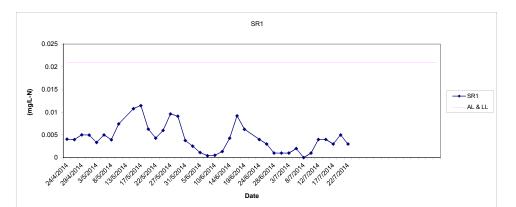
Ammonia Nitrogen (Depth average) at Mid-Flood Tide

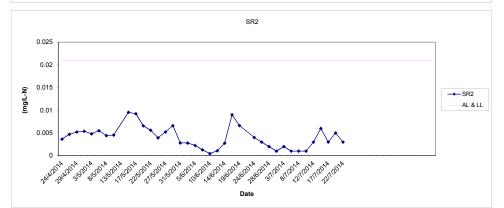


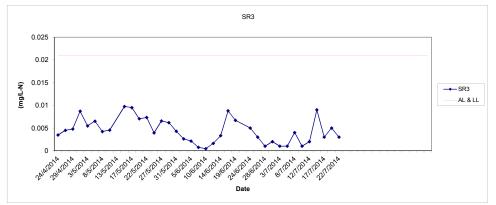


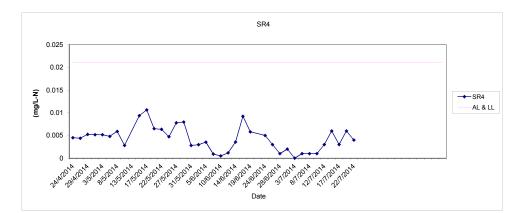


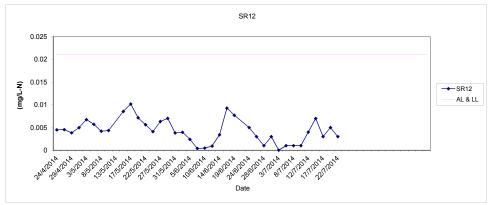

Ammonia Nitrogen (Depth average) at Mid-Flood Tide

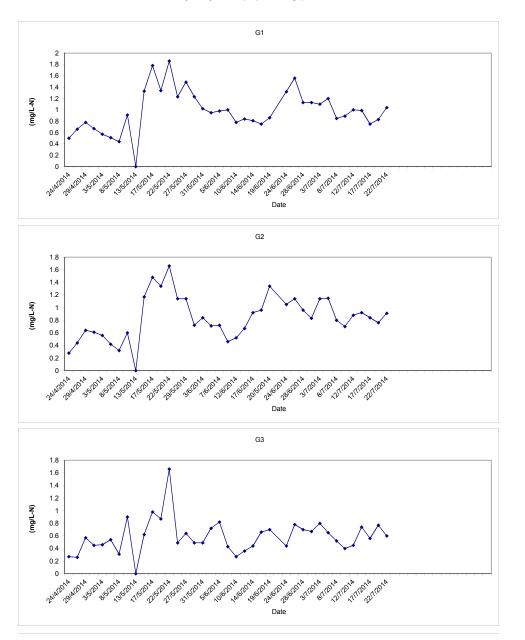

Laboratory Analysis UIA (Depth average) at Mid-Flood Tide

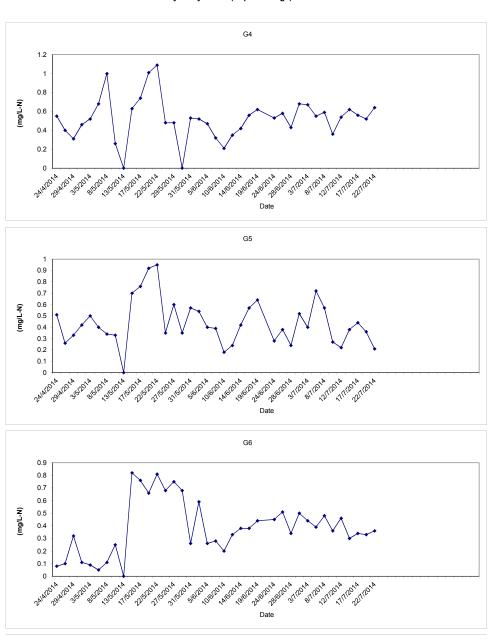




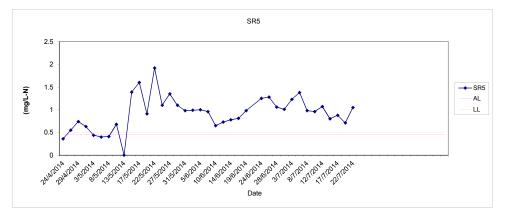

Laboratory Analysis UIA (Depth average) at Mid-Flood Tide

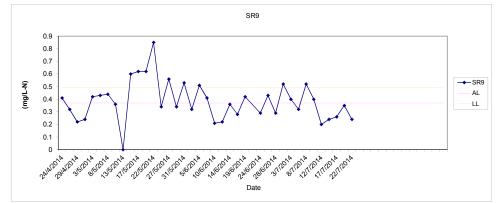


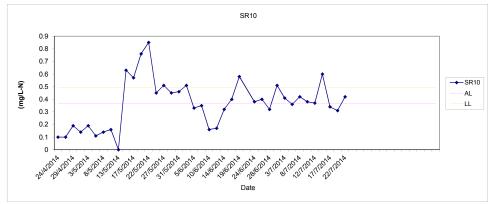

Laboratory Analysis UIA (Depth average) at Mid-Flood Tide



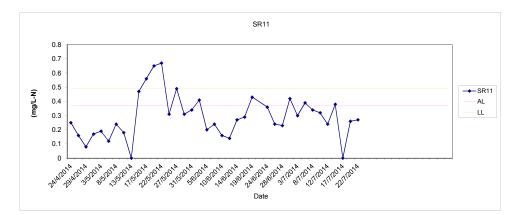
Laboratory Analysis TIN (Depth average) at Mid-Flood Tide

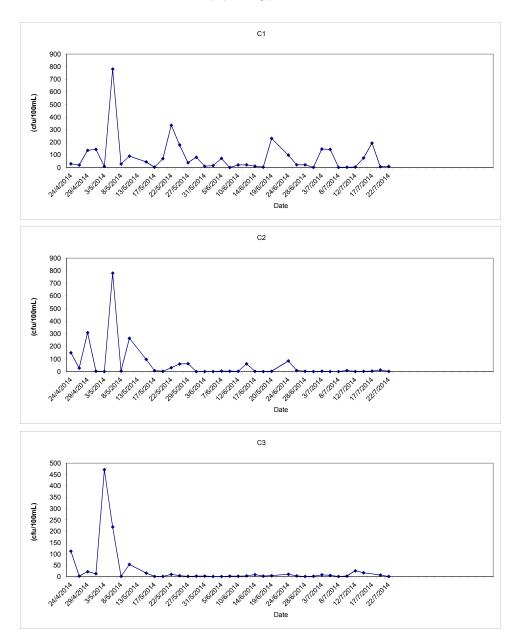

Laboratory Analysis TIN (Depth average) at Mid-Flood Tide



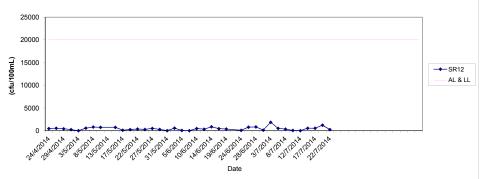


Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel


Laboratory Analysis TIN (Depth average) at Mid-Flood Tide

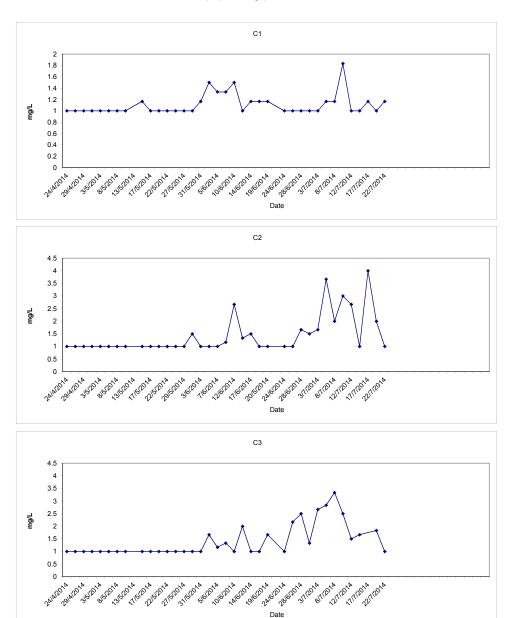


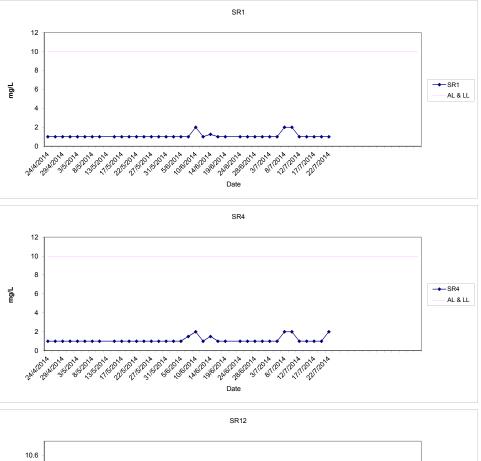
Laboratory Analysis TIN (Depth average) at Mid-Flood Tide

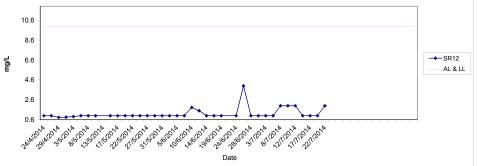


E.coli (Depth average) at Mid-Flood Tide

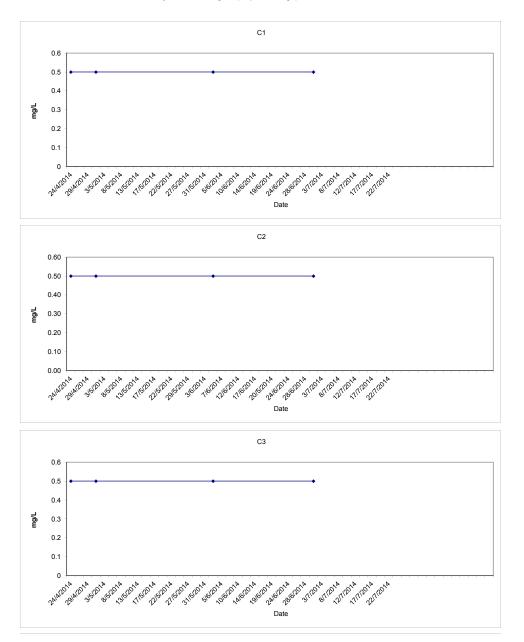
E.coli (Depth average) at Mid-Flood Tide

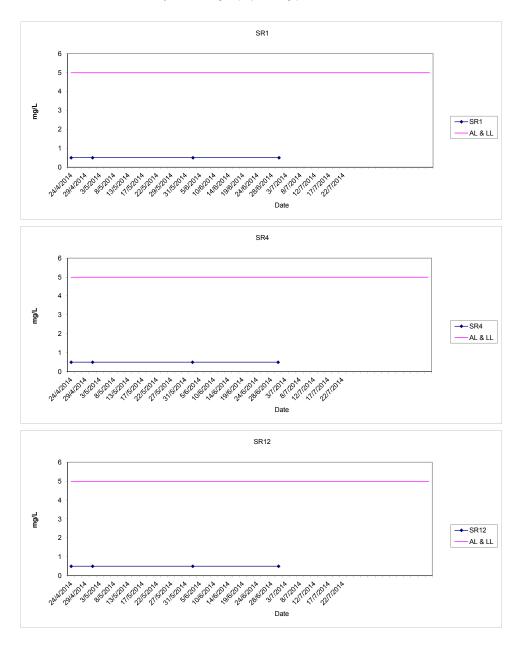

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel Graphical Presentation of Baseline Water Quality Monitoring Results


Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel Graphical Presentation of Baseline Water Quality Monitoring Results


Appendix E

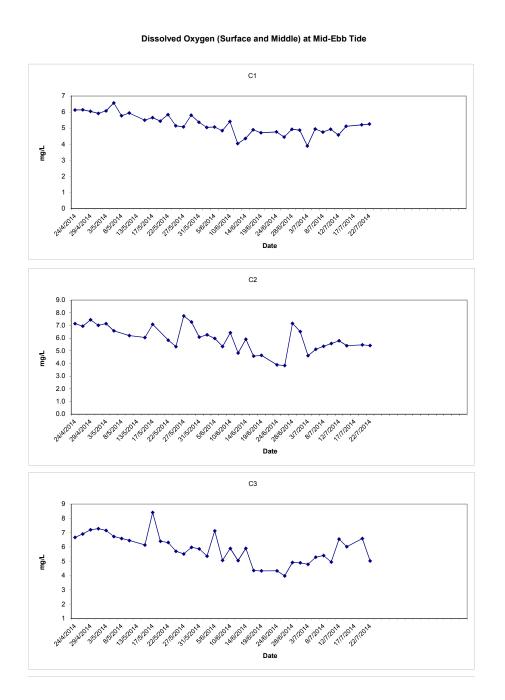
BOD₅ (Depth average) at Mid-Flood Tide

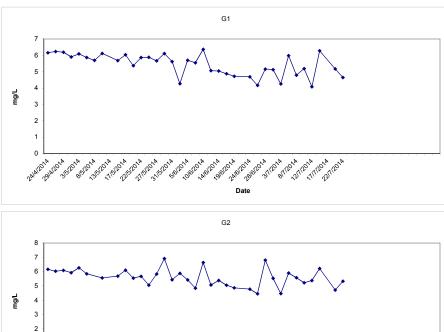


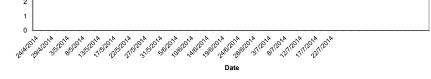


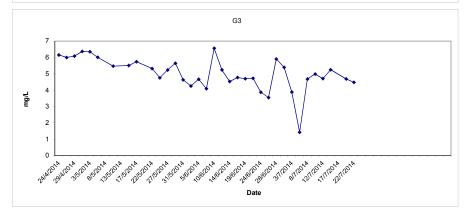
Synthetic Detergent (Depth average) at Mid-Flood Tide

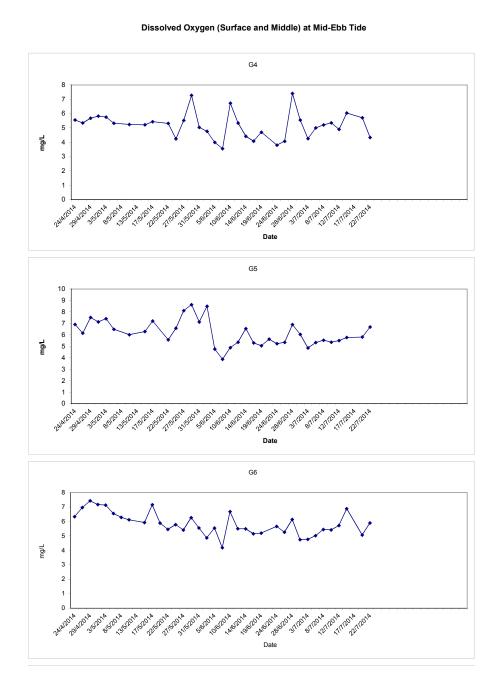
Synthetic Detergent (Depth average) at Mid-Flood Tide

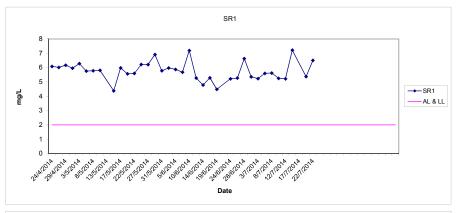


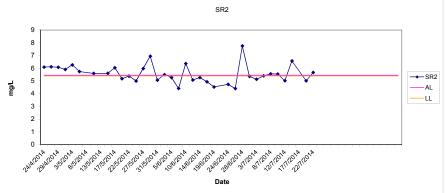

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel Graphical Presentation of Baseline Water Quality Monitoring Results


Appendix E


Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel Graphical Presentation of Baseline Water Quality Monitoring Results

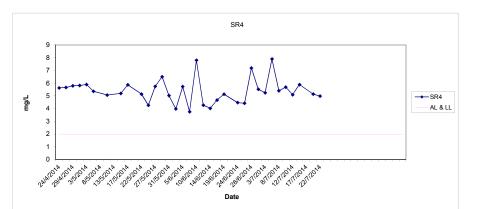

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

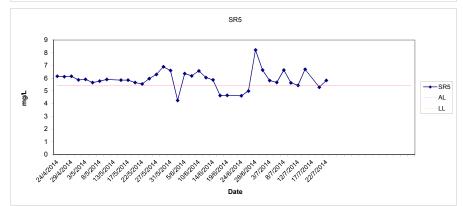


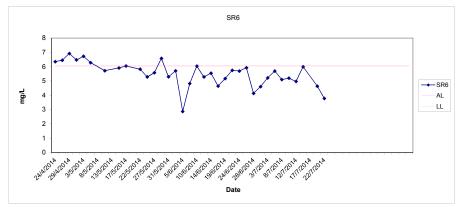


Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

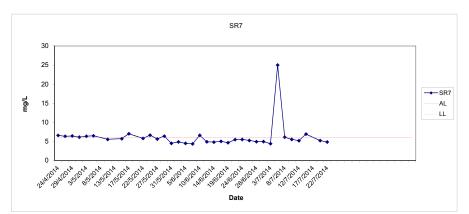


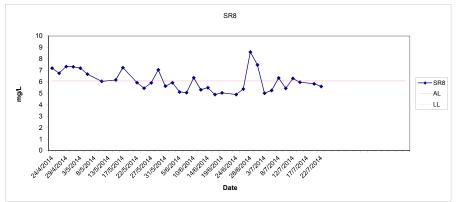


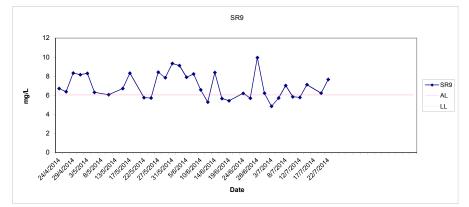


Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

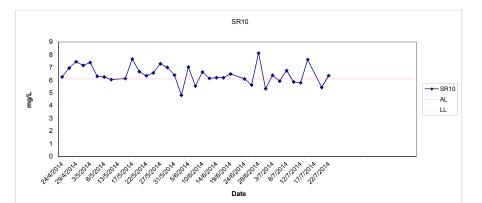
Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

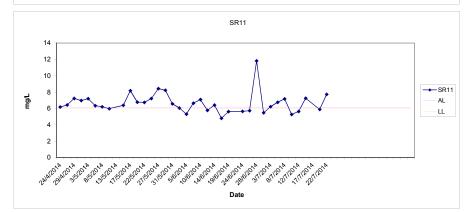


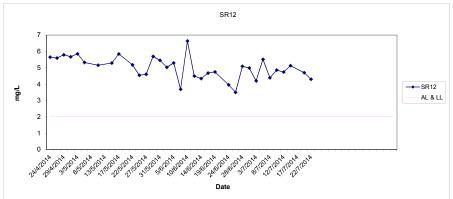


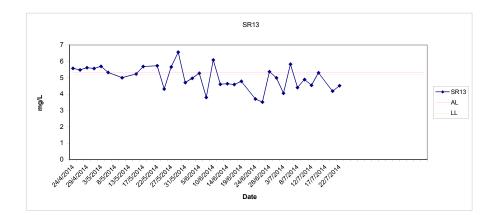


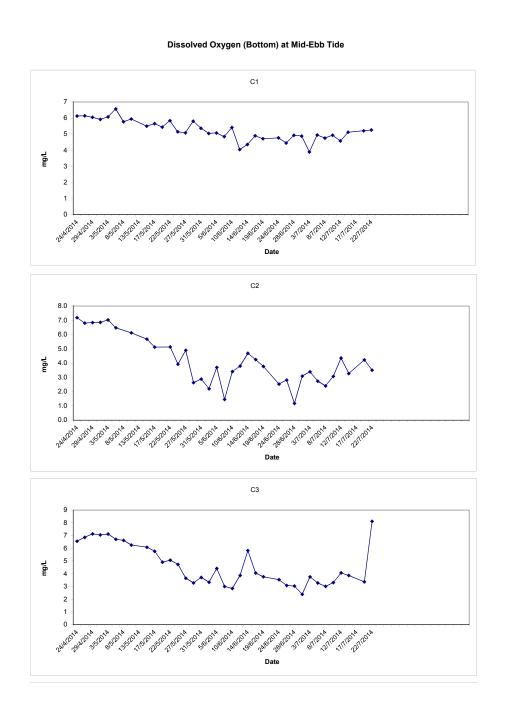
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

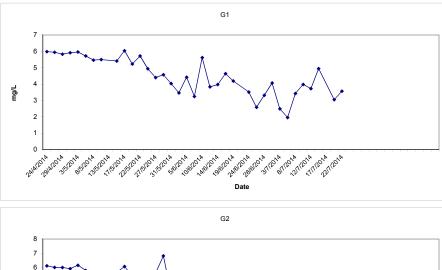

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

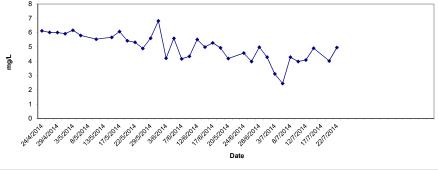


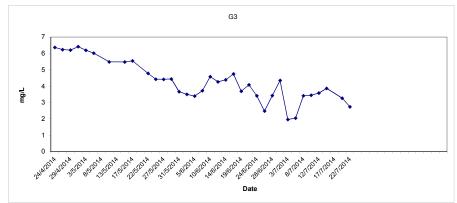


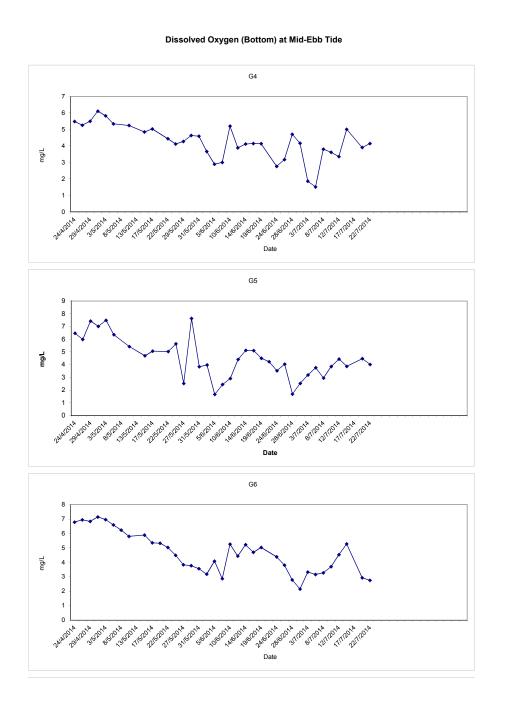

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

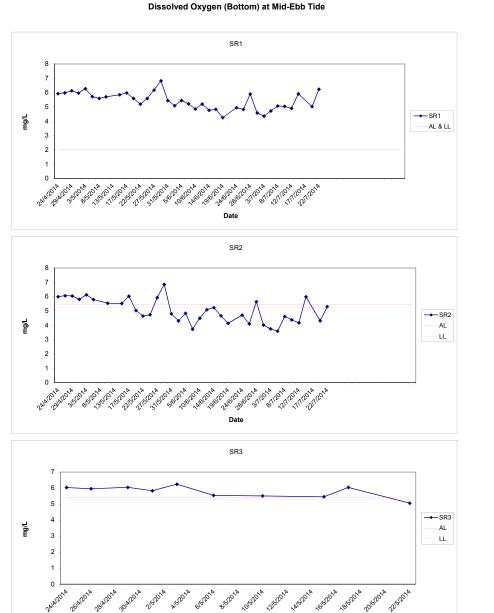




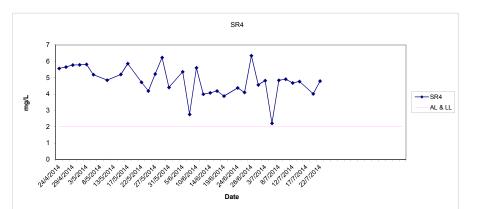

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

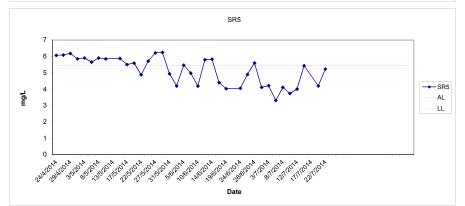


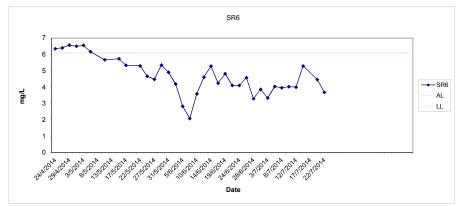

Dissolved Oxygen (Bottom) at Mid-Ebb Tide



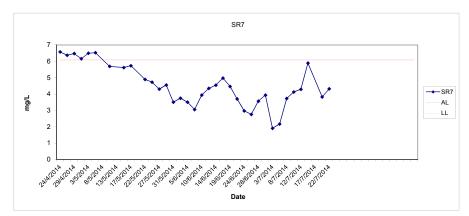
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

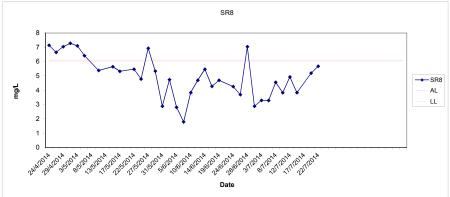


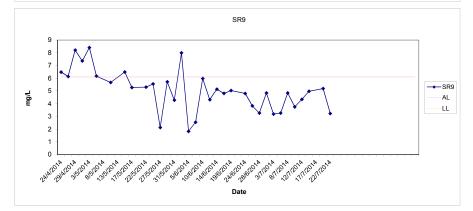



Date

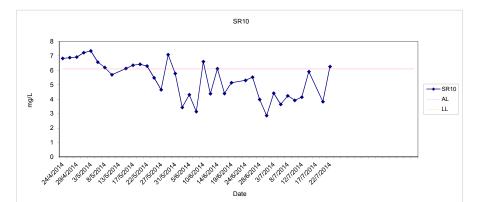
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

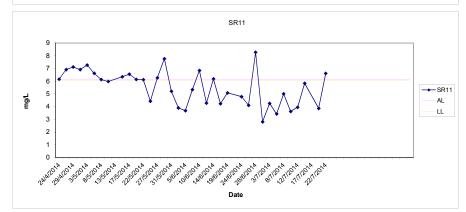

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

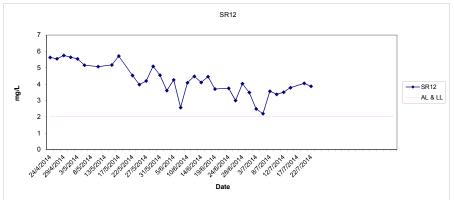




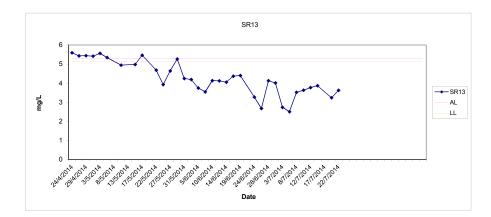
Dissolved Oxygen (Bottom) at Mid-Ebb Tide

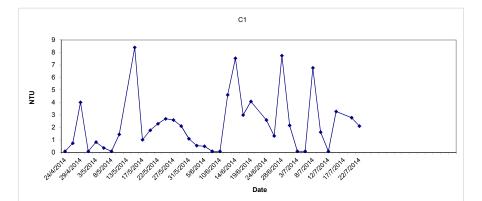


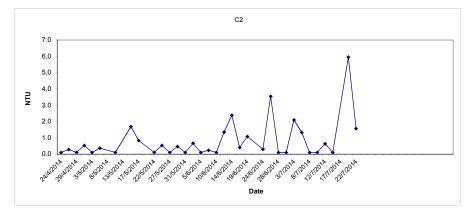


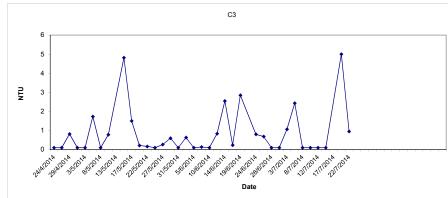


Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

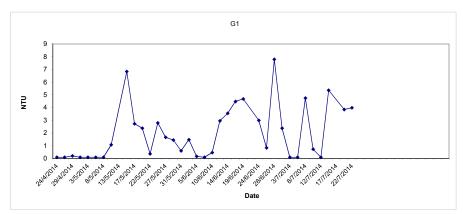

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

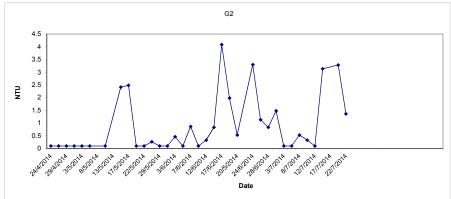


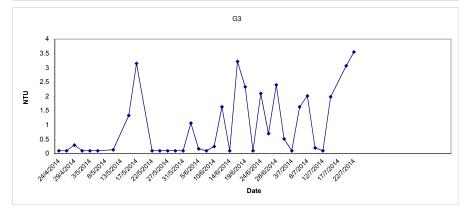




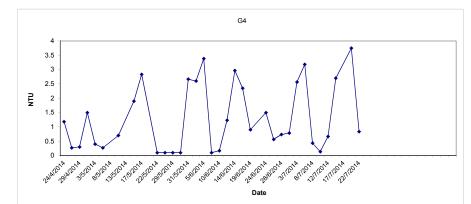
Dissolved Oxygen (Bottom) at Mid-Ebb Tide

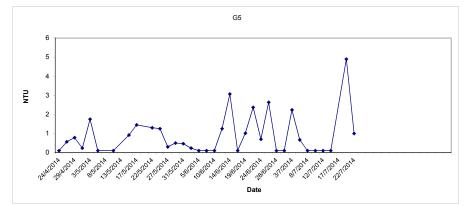


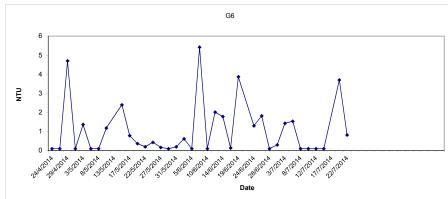


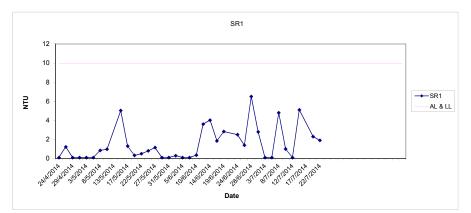


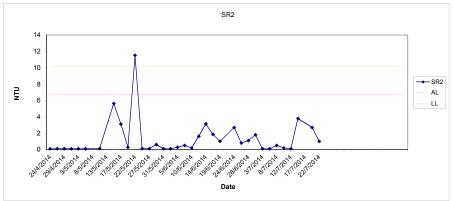
Turbidity (Depth average) at Mid-Ebb Tide

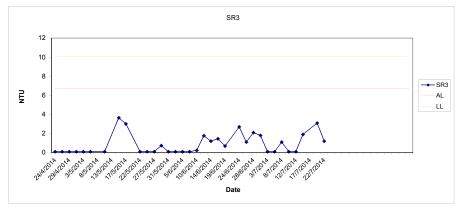


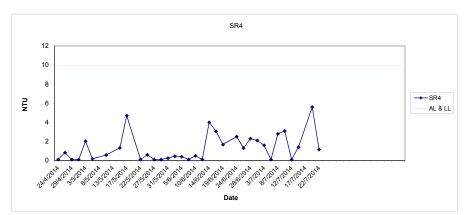


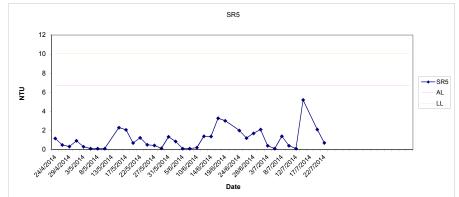


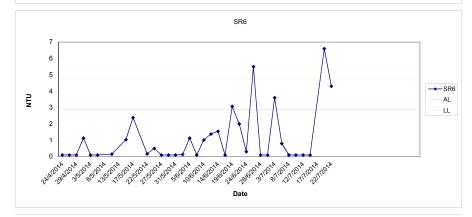

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

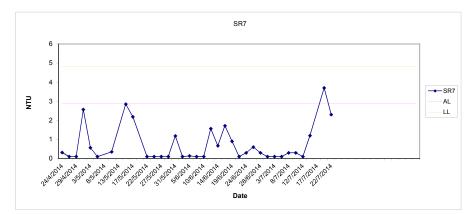


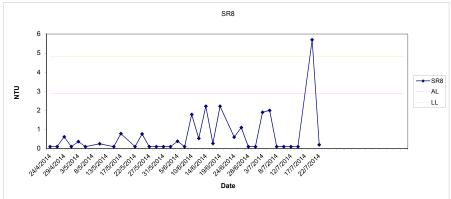


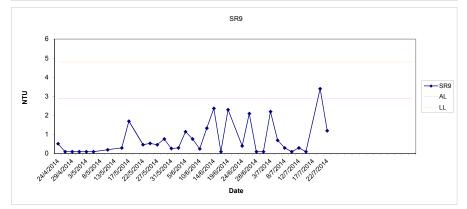


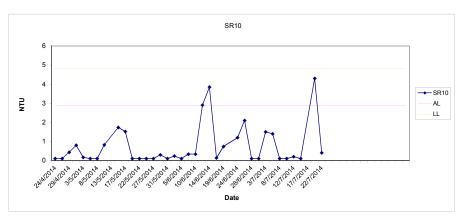


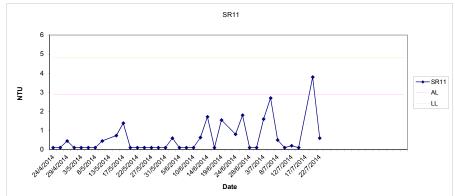


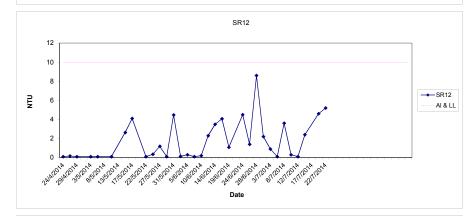

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

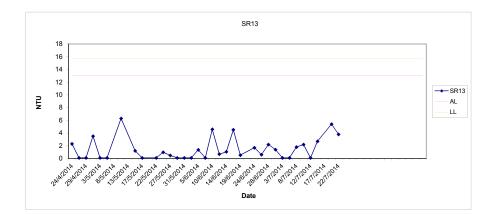


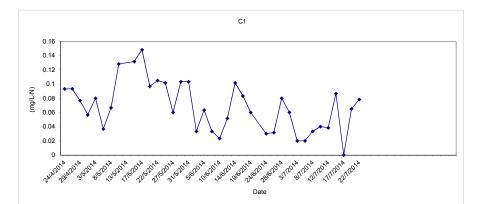


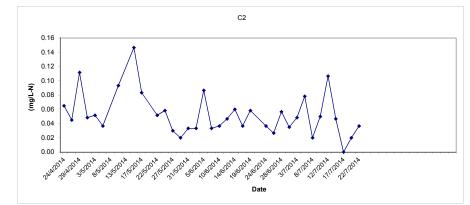

Turbidity (Depth average) at Mid-Ebb Tide

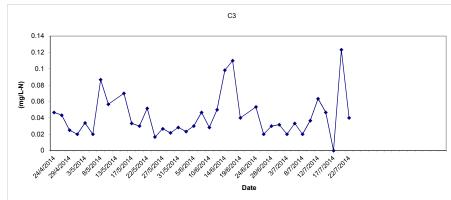


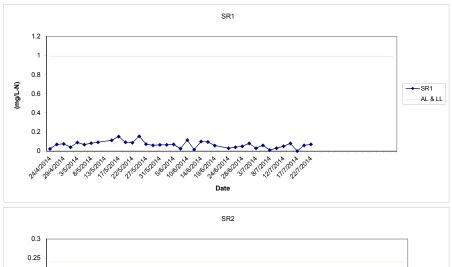


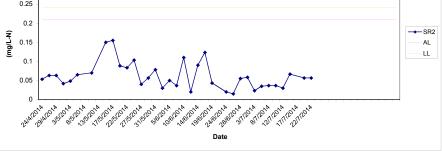

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

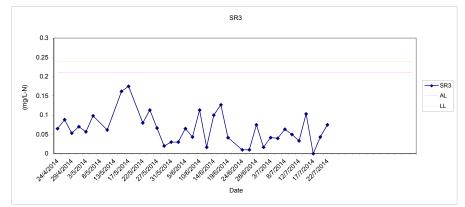




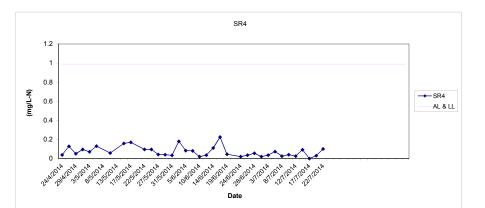

Turbidity (Depth average) at Mid-Ebb Tide

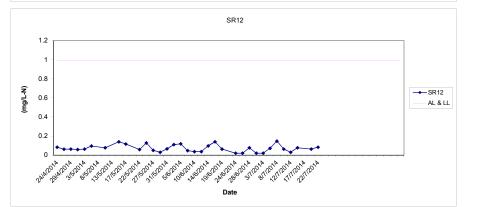

In-situ Ammonia (Depth average) at Mid-Ebb Tide

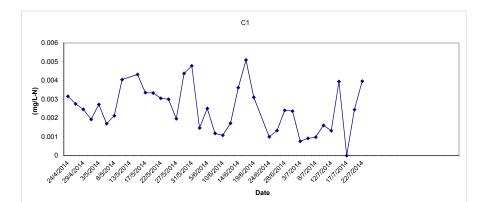


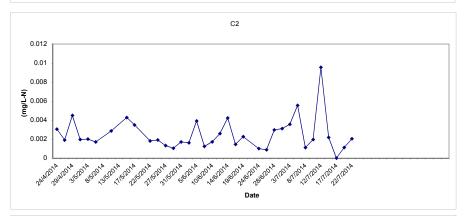


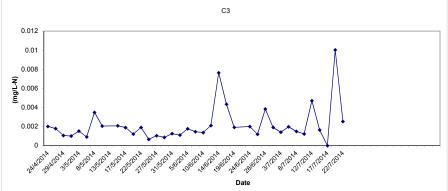
In-situ Ammonia (Depth average) at Mid-Ebb Tide

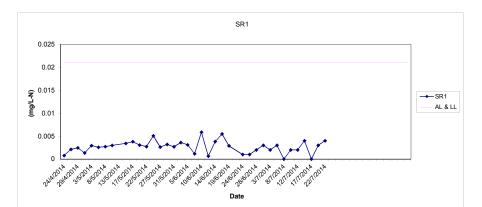


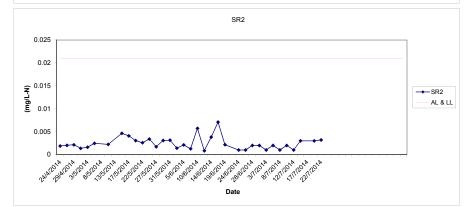


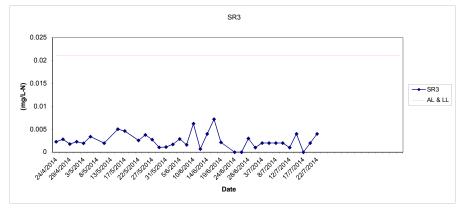



Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

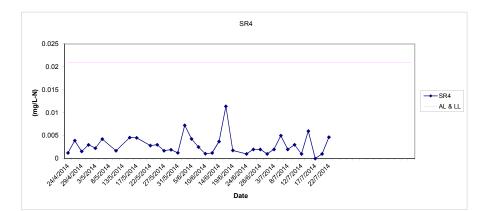

In-situ Ammonia (Depth average) at Mid-Ebb Tide

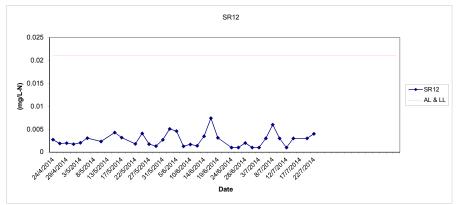


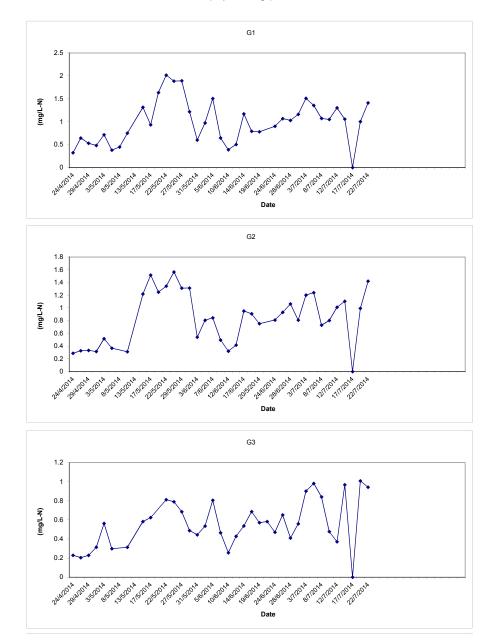


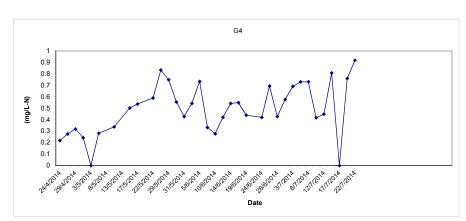

In-situ UIA (Depth average) at Mid-Ebb Tide

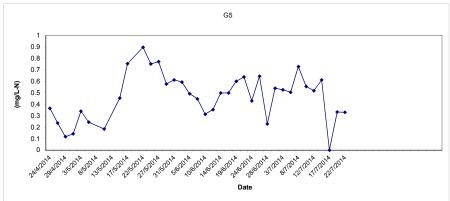
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

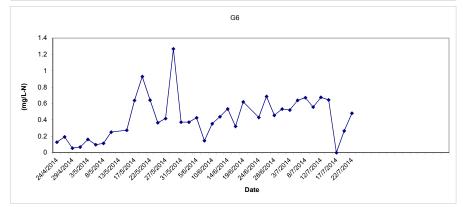

In-situ UIA (Depth average) at Mid-Ebb Tide



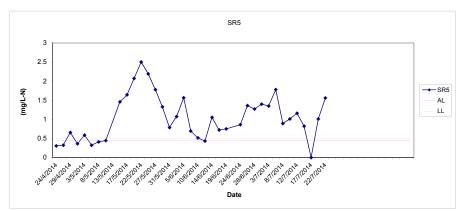


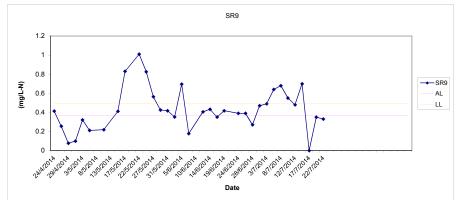


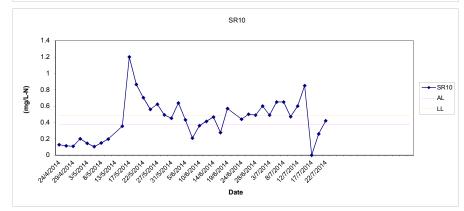


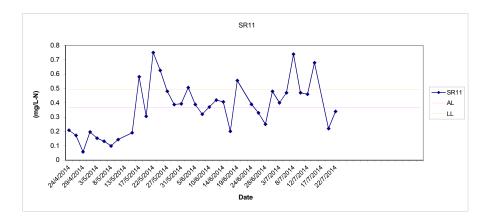

In-situ TIN (Depth average) at Mid-Ebb Tide

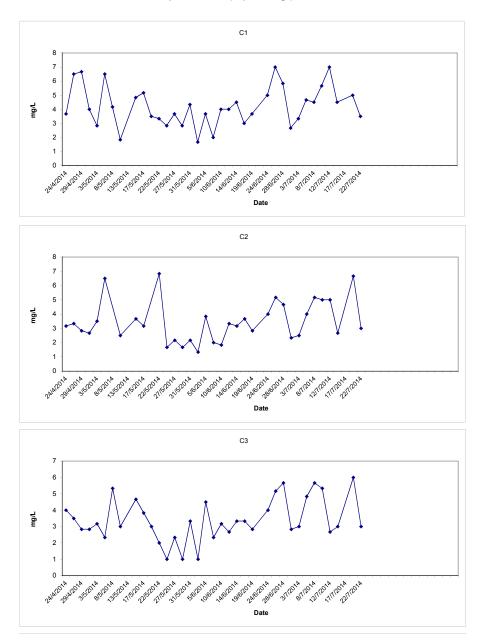
In-situ TIN (Depth average) at Mid-Ebb Tide

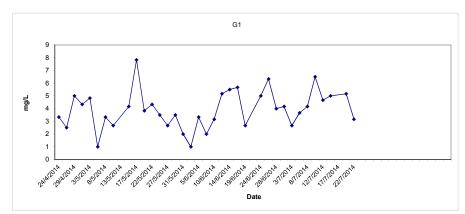


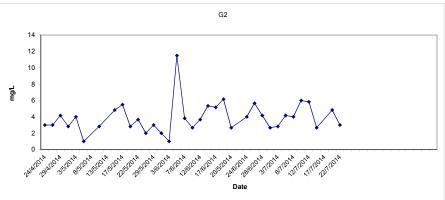


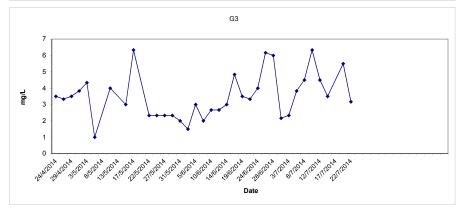


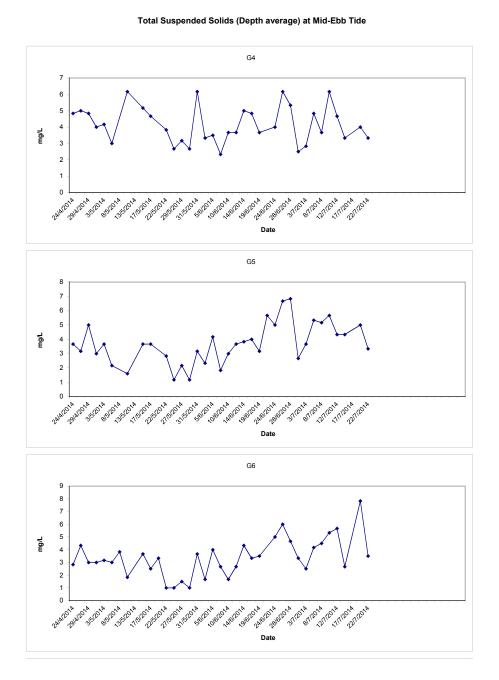

In-situ TIN (Depth average) at Mid-Ebb Tide

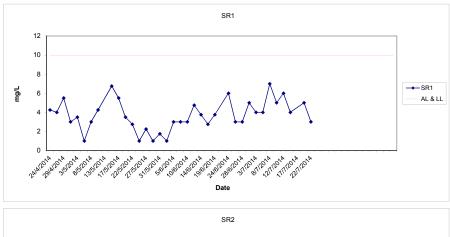


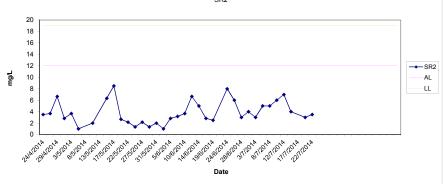

In-situ TIN (Depth average) at Mid-Ebb Tide

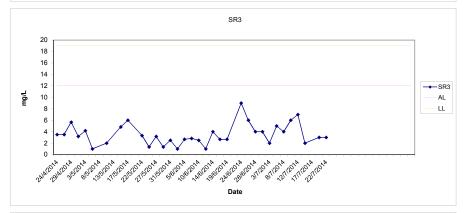


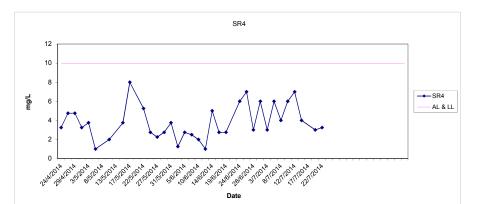

Total Suspended Solids (Depth average) at Mid-Ebb Tide

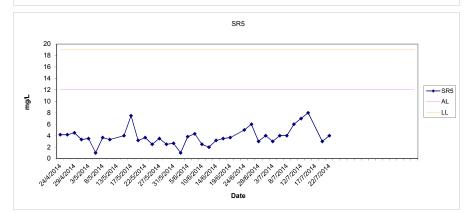


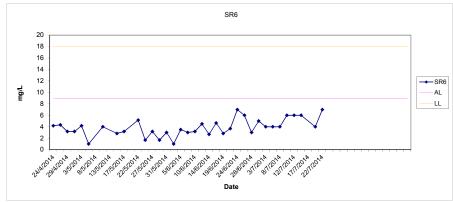

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

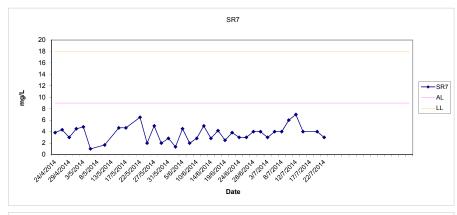


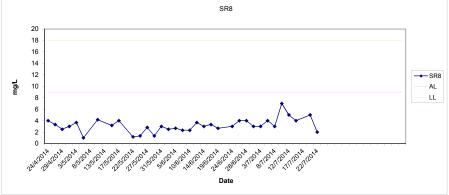


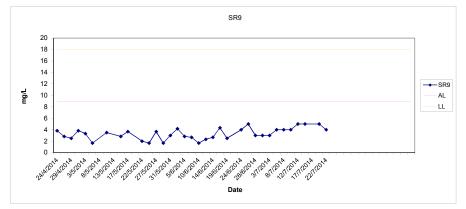


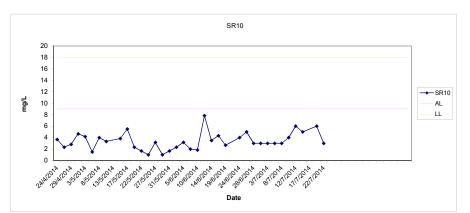


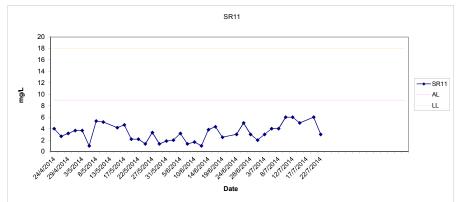


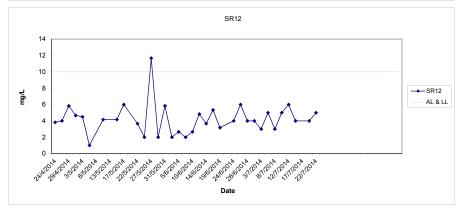


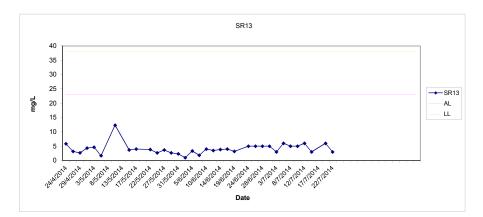


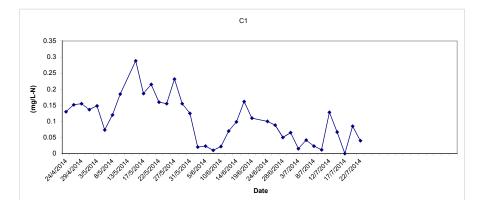


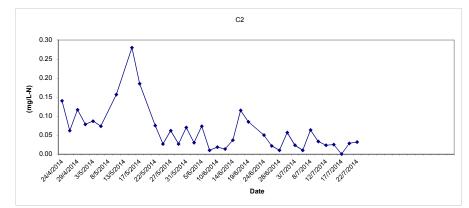

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

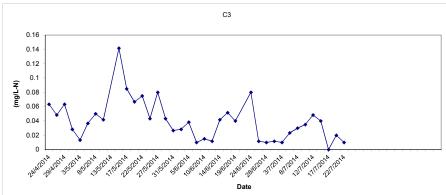

Total Suspended Solids (Depth average) at Mid-Ebb Tide

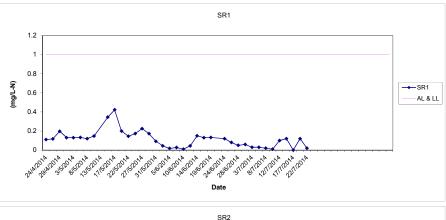


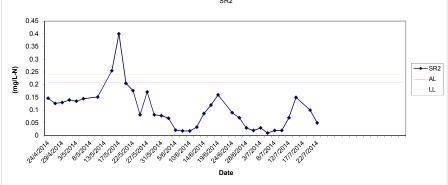


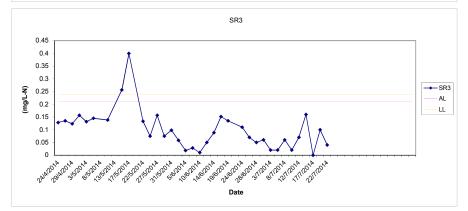




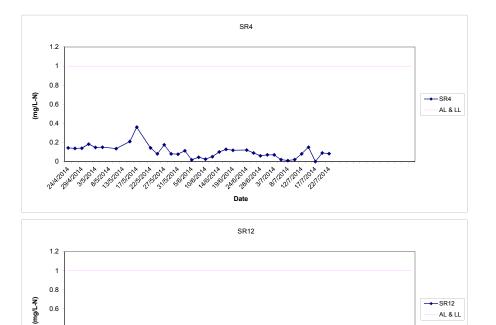

Total Suspended Solids (Depth average) at Mid-Ebb Tide


Ammonia Nitrogen (Depth average) at Mid-Ebb Tide

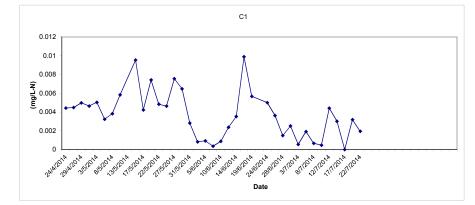


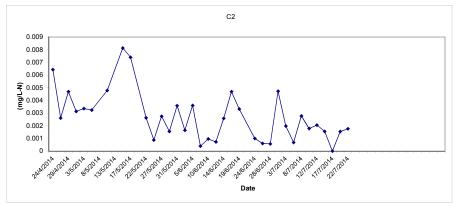


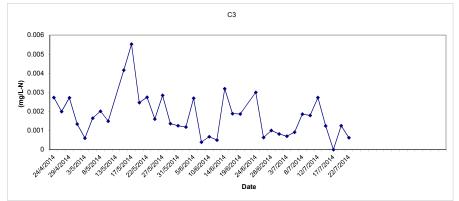
Ammonia Nitrogen (Depth average) at Mid-Ebb Tide



Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel


Ammonia Nitrogen (Depth average) at Mid-Ebb Tide


Laboratory Analysis UIA (Depth average) at Mid-Ebb Tide



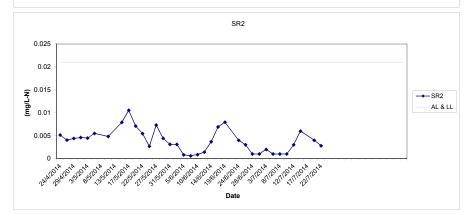
Date

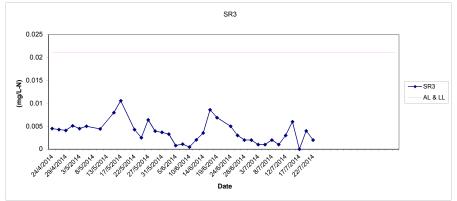
AL & LL

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

0.6

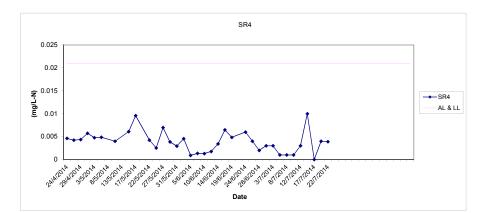
0.4

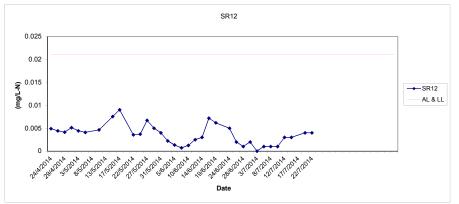

0.2


0

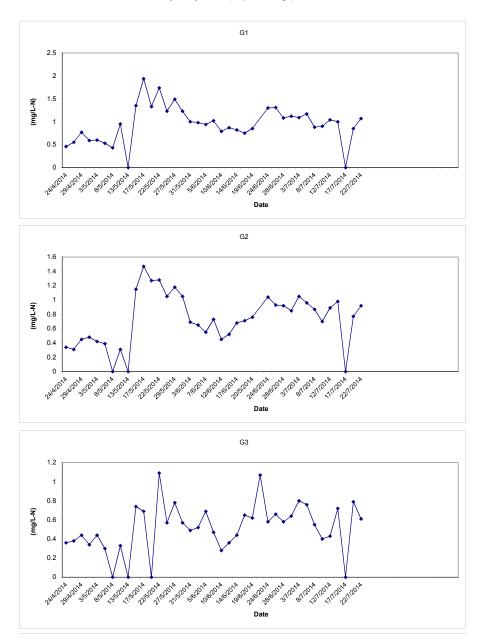
241412014

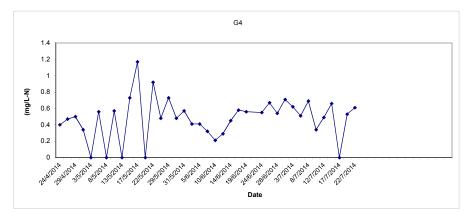
Laboratory Analysis UIA (Depth average) at Mid-Ebb Tide

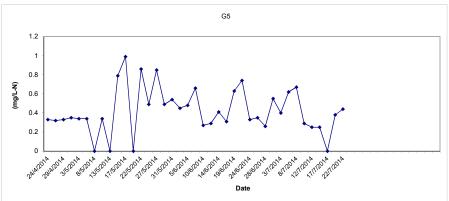

SR1

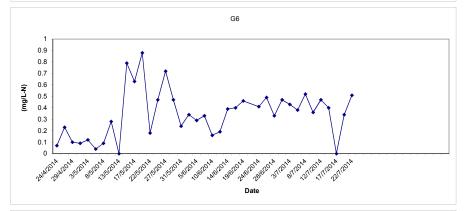


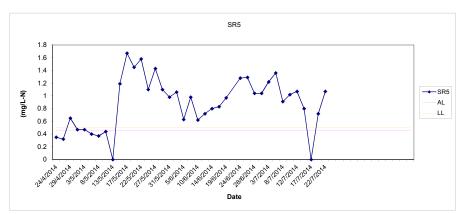
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

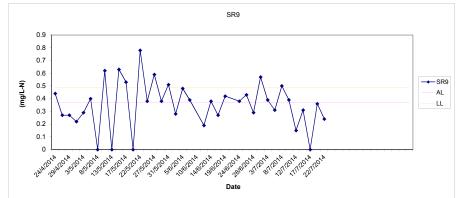

Laboratory Analysis UIA (Depth average) at Mid-Ebb Tide

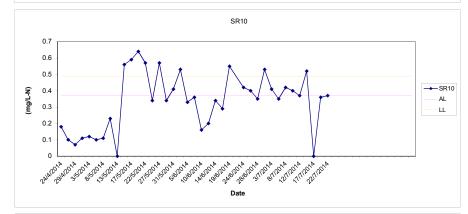



Laboratory Analysis TIN (Depth average) at Mid-Ebb Tide

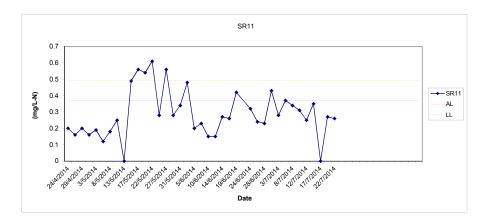

Laboratory Analysis TIN (Depth average) at Mid-Ebb Tide

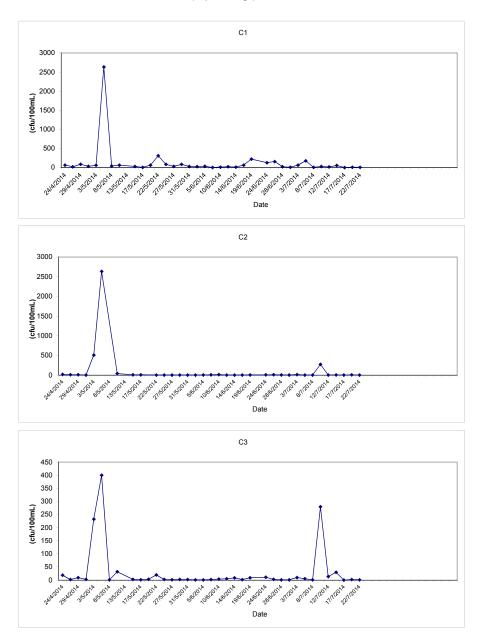

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

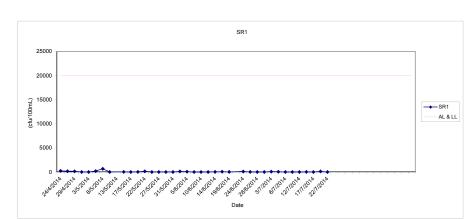


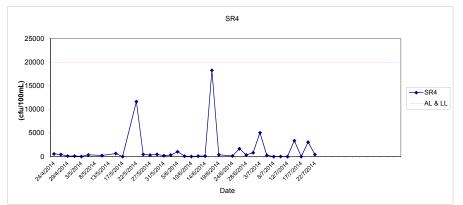


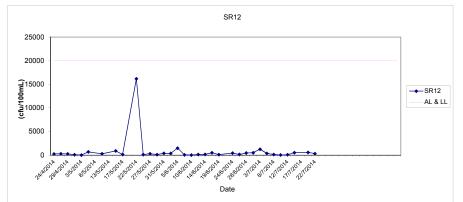
Laboratory Analysis TIN (Depth average) at Mid-Ebb Tide

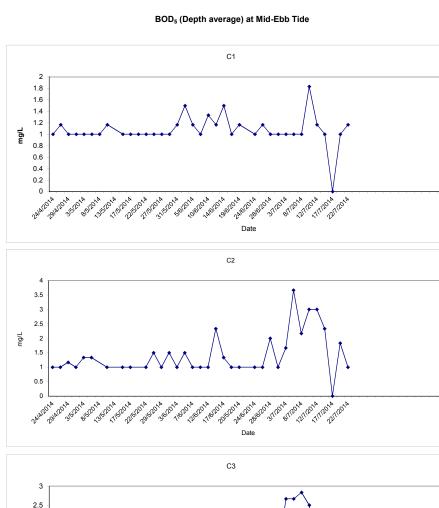


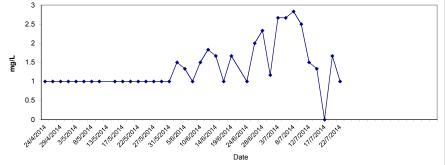

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

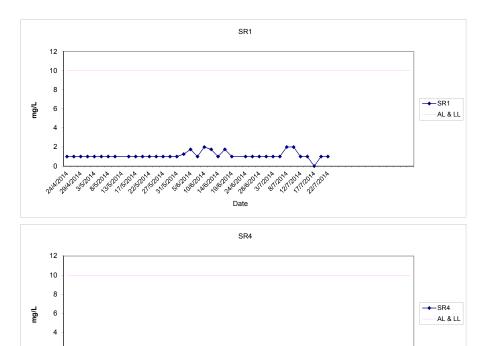

Laboratory Analysis TIN (Depth average) at Mid-Ebb Tide

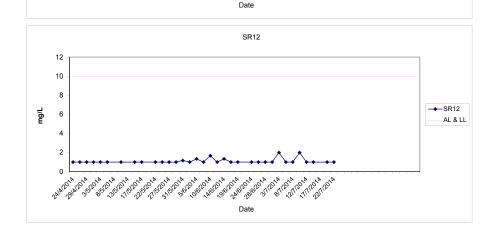


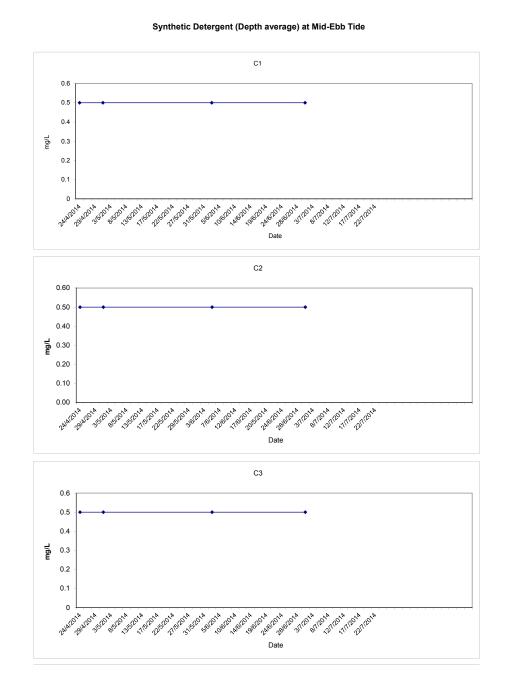



E.coli (Depth average) at Mid-Ebb Tide








BOD₅ (Depth average) at Mid-Ebb Tide

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

2

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel Graphical Presentation of Baseline Water Quality Monitoring Results

Appendix E

Synthetic Detergent (Depth average) at Mid-Ebb Tide

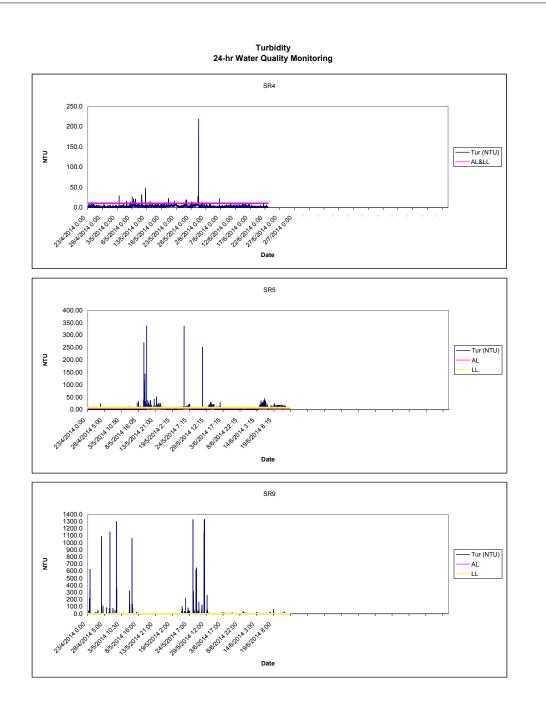
Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel Graphical Presentation of Baseline Water Quality Monitoring Results

Appendix E

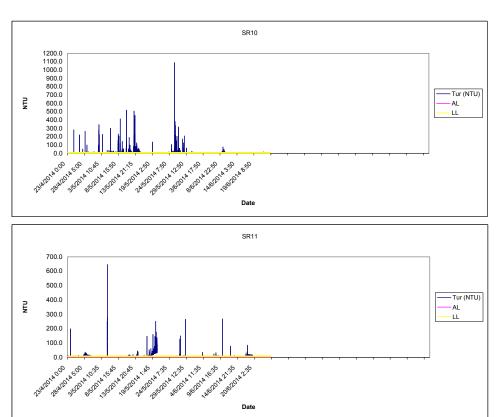
MATERIALAB CONSULTANTS LIMITED

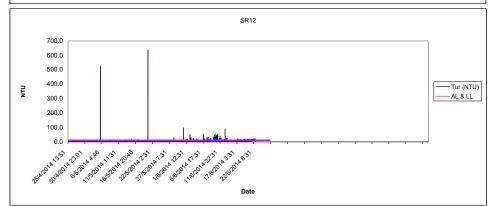
Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**

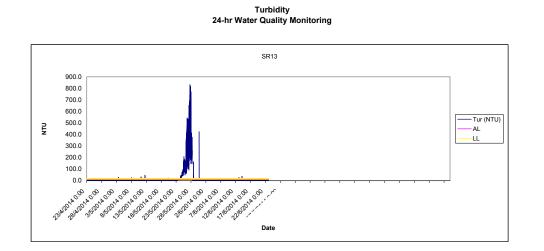
Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

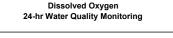


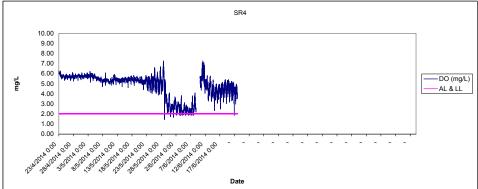
Report No.: 0394/13/ED/0174C

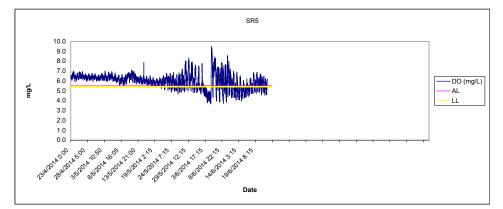

Appendix E

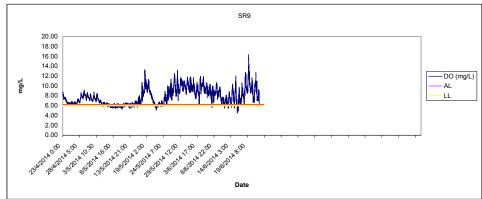

Graphical Presentation – 24-hr Monitoring Results

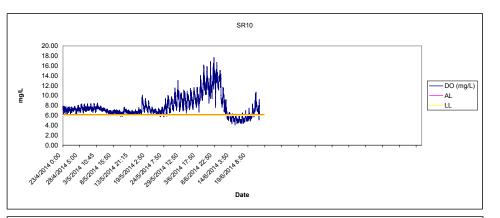

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

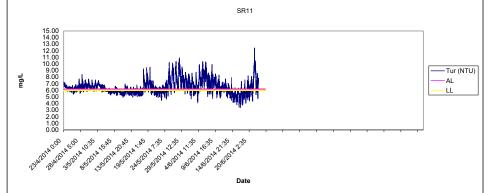


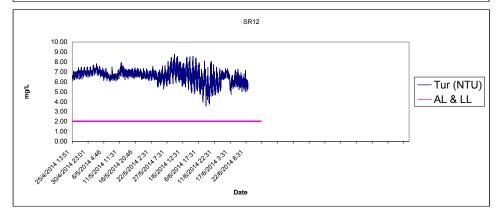

Turbidity 24-hr Water Quality Monitoring

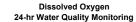


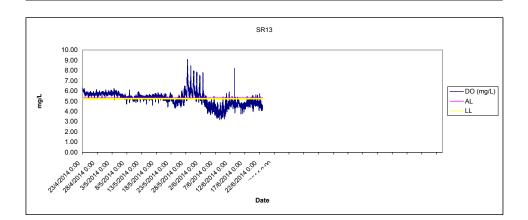


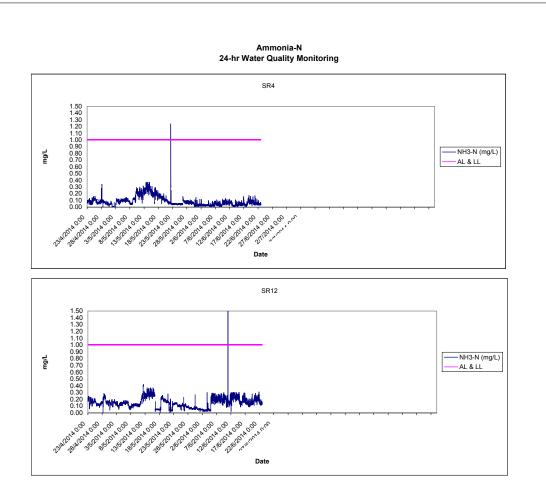







Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel


Dissolved Oxygen 24-hr Water Quality Monitoring



Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

MATERIALAB CONSULTANTS LIMITED

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Appendix F

Environmental Mitigation Implementation Schedule

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
		А	Water Quality					
3.8	2.9		Use of Silt Screens	Minimize the effect of	Contractor	WSD8,	Construction	
		A1	Silt Screens shall be installed at the flushing water intakes WSRs	potential increase in		WSD9	Phase	Implemented
			WSD1, WSD8 , WSD9 and EMSD1 to minimise the effect of	SS levels at the		and EMSD1		
			potential increase in SS levels at the seawater intakes.	seawater intakes				
3.8	2.9		Use of Silt Curtains	Minimize the release	Contractor	Construction	Construction	
		A2	To minimize the potential SS impact from dredging, deployment of silt curtains around the grab dredgers is recommended; and	of suspended soil from the dredging area		Work Sites	Phase	Implemented
			Before commencement of dredging works, the holder of the Environmental Permit shall submit detailed proposal of the design and arrangement of the frame type silt curtain to EPD for approval.					
3.10	2.9	A3	Water Quality Monitoring Program	Perform water quality	ET	Monitoring	Construction	
5.10	2.3	73	Water quality monitoring shall be carried out in accordance with Section 2 of	monitoring at		Locations as	Phase	Implemented
			the Environmental Monitoring and Audit (EM&A) Manual.	sensitive receivers during construction		stated in Table 2.1 of	1 11030	Implemented
			Event and Action Plan (EAP) for water quality shall be followed in case of	phase		the EM&A		
			any exceedance in action and limit level.			Manual		
3.8	-		Dredging Operation	Minimize potential	Contractor	Construction	Construction	
(EP		A4	Only two types of dredgers are allowed for this Project: (a) grab dredger with	adverse effect as a		Work Sites	Phase	Implemented
Ref 3)			closed grab, and (b) cutter suction dredger spud pole grab dredger.	result of dredging				
		A5	The speed of any construction vessels shall not exceed 10 knots when passing through the area of the Project.	activities				Implemented
		A6	No more than three two grab dredgers with closed grab (or one cutter					Implemented
			suction dredger with two closed grab dredgers) shall be operated within the					
			Project Area at any one time for the Project.	-				
		A7	Only one closed grab dredger or one cutter suction dredger shall be					NA-no work in
			operated in Zone 2B and during which no other closed grab dredger shall be					such location
			allowed in other zones within the Project Area.	-				
		A8	No more than one grab dredger with closed grab (or one cutter suction					Implemented
			dredger) shall be operated within each of the five main zones at any one					
			time for the Project in which the cutter suction dredger shall only be					
			operated in Zones 2 and 4 with maximum dredging rate of 700 m ³ in 30 minutes in any given hour (max. 8,400 m ³ /day, based on a 12-hour					
			operation per day).					
		4.0	The maximum dredging rate for closed grab dredger at Rambler Channel –	-				NA-no work in
		A9	Zones 1 to 2 (subzones Z1A, Z1B, Z2A, Z2B and Z2C) shall follow the					such location
			Dredging Plan for the Hotspot, as shown in EP-426/2011/A.					Suchiocation
		Δ10	The maximum dredging rate for closed grab dredger at Rambler Channel –	-				NA-no work in
			Zones 3 to 4 (subzones Z3A to Z4B) shall not exceed 1,600 m ³ per day					such location
			during dry season or 3,440 m ³ per day during wet season as shown in EP- 426/2011/A.					
		A11	The maximum dredging rate for closed grab dredger at Rambler Channel –					NA-no work in
			Zones 5 to 6 (subzones Z5A, Z5B and Z6A) shall not exceed 4,000 m ³ per					such location
			day during both dry and wet seasons as shown in EP-426/2011/A.					
		A12	The maximum dredging rate for closed grab dredger at Rambler Channel –					NA-no work in

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
			Zones 5 to 8 (subzones Z5C, Z6B, Z6C, Z6D, Z7 and Z8) shall not exceed 4,000 m ³ per day during both dry and wet seasons as shown in EP-426/2011/A.					such location
		A13	The maximum dredging rate for closed grab dredger at Northern Fairway – Zones 9 to 12 shall not exceed 4,000 m ³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA-no work in such location
		A14	The maximum dredging rate for closed grab dredger at Western Fairway – Zone 13A shall not exceed 4,000 m ³ per day during both dry and wet seasons as shown in EP-426/2011/A.					Implemented
		A15	The maximum dredging rate for closed grab dredger at Western Fairway – Zone 13B shall not exceed 4,000 m ³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA-no work in such location
		A16	The dredging pump of cutter suction dredger shall be operated during cutting to reduce the sediment loss to water body.					NA-no CSD employed
		A17	Project dredging works within Zone 1 to 6 (including sub-zones) of the Container Basin shall not be carried out at the same time with Terminal Operator's maintenance dredging activities.					NA-no work in relevant location
		A18	Cutter suction dredger is only to be deployed for the removal of harder material during daytime only (07:00 to 19:00) in Zone 2 (including subzones) of the Container Basin.					NA-no CSD employed
		A19	In case of rainstorm warning in effect during dredging works, the dredged material on barge shall be covered properly before transportation to disposal site.					Implemented
		A20	In case of exceedance of SS and NH3-N at the Tsing Yi WSD flushing intake due to dredging operation is evidenced, the Contractor shall propose mitigation measures not limited to reducing dredging rate. If exceedance persists, the Contractor shall propose not to undertake dredging operation in close proximity to the Tsing Yi flushing water intake during flood tide. The Contractor shall liaise with the ETL, IEC, ER, EPD and WSD for the proposed mitigation measures.					NA-no exceedance due to dredging operation
		A21	If further mitigation measures are required due to continuous exceedance of SS and NH ₃ -N, consideration shall then be given to dredge only on the state of the tide which would avoid migration of SS towards the WSD and EMSD intakes.					NA-no exceedance due to dredging operation
		A22	Dredging sub-zone Z2B where high NH ₃ -N in sediment is found shall be isolated with dredging works to be carried out towards the end of construction programme.					NA-no work in such location
		A23	Administrative control in terms of dredging rate adjustment in controlling the release of contaminants shall be employed as mitigation measures.					Implemented
		A24						NA-no work in such location

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
		A25	Detailed dredging plan shall be prepared providing details of individual dredging subzones and dredging rate taking into account of the field trial results.					Implemented
3.8	-	A26	Other Good Site Practices for Dredging All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	Minimize potential adverse effect as a result of dredging activities	Contractor	Construction Work Sites	Construction Phase	Implemented
		A27	The speed of all Contractor's vessels should be controlled within the works area to prevent propeller wash from stirring up the seabed sediments.					Implemented
		A28	All barges / dredgers used should be fitted with tight fitting seals to their bottom openings to prevent leakage of material.					Implemented
		A29	Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds.					Implemented
		A30	No overflow of dredged mud should be allowed. Barges or hopper should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation.					Implemented
		В	Waste Management					
		-	Good Site Practices	Minimize potential	Contractor	Construction	Construction	
4.5	3.3	B1	Obtain the profile of different sediment categories and careful planning of sediment removal.	adverse effect arising from the handling of		Work Sites (General)	Phase	Implemented
		B2	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	dredged material				Implemented
		B3	Training of site personnel in proper waste management and chemical handling procedures.					Implemented
		B4	Provision of sufficient waste disposal points and regular collection of waste.					Implemented
		B5	Well planned delivery programme for offsite disposal such that adverse environmental impact from transporting sediment material is not anticipated.					Implemented
		B6	Use well maintained PME on site.					Implemented
			General Refuse	Minimize the adverse	Contractor	Construction	Construction	
4.5	3.3	B7	General refuse should be stored in enclosed bins. A reputable waste collector should be employed by the contractor to remove general refuse from the site.	effect arising from the handling of site general refuse		Work Sites (General)	Phase	Implemented
			Chemical Waste	Minimize the adverse	Contractor	Construction	Construction	
4.5	3.3	B8	If chemical wastes are produced at the construction site, the Contractor shall be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes shall be used, and incompatible chemicals should be stored separately. Appropriate labels shall be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical	effect arising from the handling of site chemical waste		Work Site	Phase	NA-no chemical waste produced

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
			wastes, to either the approved Chemical Waste Treatment Centre, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.					
4.5	3.3	B9	<u>Marine Dredged Sediment</u> Control of transportation and disposal of dredged material in a manner to minimize potential impacts on water quality.	Control of transportation and disposal of dredged	Contractor	Construction Work Site	Construction Phase	Implemented
		B10	Bottom opening of barges will be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and dredgers before the vessel is moved.	material in a manner to minimize potential impacts on water				Implemented
		B11	Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the EPD.	quality				Implemented
		B12	Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation.					Implemented
		B13 B14	Sediment Quality Report shall be prepared and submit to EPD under DASO. If disposal of Type 3 sediment is identified, agreement with EPD shall be reached regarding the treatment of sediment before disposal.					Implemented NA – no type 3 material disposed
		B15	Project works shall not be carried out before obtaining confirmation from MFC on disposal option.					Implemented
		B16	Follow strictly all conditions stipulated in the dumping permit.					Implemented
		С	Marine Ecology	Review and assess	Contractor	Construction	Construction	
5.7	4.1	C1	Water quality monitoring results shall be reviewed from time to time to assess if there were any impact to marine ecology due to dredging operation.	the potential adverse effect on marine ecology		Work Sites	Phase	Implemented
		D	Fisheries	Review and assess	Contractor	Construction	Construction	
6.7	5.1	D1	Water quality monitoring results shall be reviewed from time to time to assess if there were any impact to fisheries due to dredging operation.	the potential adverse effect on fisheries		Work Sites	Phase	Implemented
		E	Hazard to Life		Contractor	Construction	Construction	
7.8.2	6.2	E1	Sound communication channel shall be established with the oil companies, Marine Department, and Fire Services Department for effective notification and emergency evacuation in case of accidents.			Work Sites (General)	Phase	Implemented
		E2	Proper safety and emergency training shall be given to the relevant operation staff at the dredging site. Emergency plans and procedures should be prepared and drills should be performed periodically.					Implemented
		F	Landscape Visual and Glare	Minimize landscape	Contractor	Construction	Throughout	
8.9	7.2	F1	Visa shields to the lights of dredgers shall be provided.	and visual impacts		activities'	design,	Implemented
Table		F2	The light source shall not point directly to any VSRs.	during construction		area	construction	Implemented
8-3 & 8-6		F3	Lights shall be switched off if they are not in use.	phase			phase	Implemented
		G	Cultural Heritage	Minimize potential	Contractor	Locations of	During	
9.5	8		Monitoring Brief	marine archaeological		the 20	Construction	
		G1	A monitoring brief shall be conducted during the dredging. It shall only be required during dredging at the locations of the 20 unidentified sonar	impact during dredging activities		unidentified sonar	works	Implemented

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
			contacts and masked areas and does not need to cover all of the dredging activities. Dredging staff should be briefed about the possibility of locating archaeological objects and a marine archaeologist shall be available to monitor the dredged spoil and provide advice. If material indicative of archaeological remains is retrieved, the AMO should be contacted as soon as possible.			contacts and masked areas		
		Н	Noise					
10.8	9	H1	<u>Good Site Practices</u> Only well-maintained plant shall be operated on-site and plant should be serviced regularly during the construction program.	Control and minimize the generation of undue noise	Contractor	Construction Work Sites (Along the	Construction Phase	Implemented
		H2	Machines and plant that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum.	nuisance		alignment of dredging		Implemented
		H3	Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from nearby NSRs.					Implemented
		H4	If dredging is to be carried out during restricted hours, work locations close to NSRs shall be avoided.					Implemented
		Ι	Construction Dust					
11.7	10		Dust Control	Good site practice to	Contractor	Construction	Construction	
		11	Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant, shall be adhered to during the construction period.	control dust and odour impact to the nearby sensitive receivers		Work Sites (General)	Phase	Implemented
			Odour		Contractor	Construction	Construction	
		12	To minimize potential odour emissions, if dredged sediment is anticipated to be placed on barge for more than a day the load shall be properly covered as far as practicable to minimise the exposed area and potential odour.			Work Sites (General)	Phase	NA-no work in such condition
		13	If dredged sediment is found to be malodorous it shall be removed from site as soon as possible within one hour after the barge being filled up.					NA-no work in such condition

MATERIALAB CONSULTANTS LIMITED

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Appendix G

Waste Generation in Reporting Period

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

Name of Department : Civil Engineering and Development Department Contract No. : CV/2013/04

Year	Actu	al Quantities of Ir	nert C&D Material	s Generated Mon	thly		Actual Quantities o	f C&D Wastes Ge	enerated Monthly	
	Total Quantity Generated	Broken Concrete (see Note 4)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000 m₃)	(in '000 m₃)	(in '000 m₃)	(in '000 m₃)	(in '000 m₃)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m₃)
Jan	nil	nil	nil	nil	nil	nil	nil	nil	nil	0.01
Feb	nil	nil	nil	nil	nil	nil	nil	nil	nil	0.01
Mar	nil	nil	nil	nil	nil	nil	nil	nil	nil	0.05
Apr	nil	nil	nil	nil	nil	nil	nil	nil	nil	0.01
May	nil	nil	nil	nil	nil	nil	nil	nil	nil	0.01
Jun	nil	nil	nil	nil	nil	nil	nil	nil	nil	0.01
Jul	nil	nil	nil	nil	nil	nil	nil	nil	nil	0.01
Aug	-	-	-	-	-	-	-	-	-	-
Sep	-	-	-	-	-	-	-	-	-	-
Oct	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-	-	-	-	-	-
Dec	-	-	-	-	-	-	-	-	-	-
Total	nil	nil	nil	nil	nil	nil	nil	nil	nil	0.11

Monthly Summary Waste Flow Table for <u>2014</u> (year)

Notes:

(1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(3) Broken concrete for recycling into aggregates

Yearly Summary Waste Flow Table

Year		Estimated Annual Quantities of Inert C&D Materials (in '000m3												Estimate	d Annua	l of C&D	Wastes			
	Total Q Gene	•	Brol Conc (see N	crete		d in the tract		sed in Projects		sed as ic Fill	Me	tals	•	ardboard aging		stics Note 2)		mical iste	Others general	
	(a	a)	(b)	(0	c)	(0	d)	(a-b	-c-d)	(in '00)0 kg)	(in '00	00 kg)	(in '00	00 kg)	(in '00	00 kg)	(in '00	0 m₃)
	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.
2013	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.003	0.01
2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2	-
2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2018	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2020																				
2021																				
Grand Total																			0.2	

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material

(3) Broken concrete for recycling into aggregates

Monthly Summary of Sediment Disposal (2014)

Marine Sediment Type	Type 1 – Open Sea Disposal	Type 2 – Confined Marine Disposal	Type 3 – Special Treatment / Disposal
Month	Monthly Quantity (m ³)	Monthly Quantity (m ³)	Monthly Quantity (m ³)
Jan	nil	nil	nil
Feb	nil	nil	nil
Mar	nil	nil	nil
Apr	nil	nil	nil
May	3,700	nil	nil
Jun	66,950	nil	nil
Jul	80,600	nil	nil
Aug	-	-	-
Sep	-	-	-
Oct	-	-	-
Nov	-	-	-
Dec	-	-	-
Total	151,250	nil	nil

MATERIALAB CONSULTANTS LIMITED

Fugro Development Centre, 5 Lok Yi Street, 17 M.S. Castle Peak Road, **Tai Lam, Tuen Mun, N.T., Hong Kong.**

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Report No.: 0394/13/ED/0174C

Appendix H

Quarterly Assessment of Construction Impact

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

Cluster 2 DO (B) 0.7 x Baseline vs Impact

SR6	04/01/2014 Mid-Floo	eline DO (B) (Mid-Flood	5.95	SR6	24/04/2014	Mid-Flood		mpact DO (E 24/04/2014	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		24/04/2014	Mid-Flood	1 6
SR6	07/01/2014 Mid-Floo											26/04/2014		
SR6	09/01/2014 Mid-Floo											29/04/2014		
	11/01/2014 Mid-Floo											01/05/2014		
R6	14/01/2014 Mid-Floo											03/05/2014		
R6	16/01/2014 Mid-Floo											06/05/2014		
R6	18/01/2014 Mid-Floo		 									08/05/2014		
R6	21/01/2014 Mid-Floo											10/05/2014		
R6	23/01/2014 Mid-Floo					13/05/2014			13/05/2014			13/05/2014		
R6	25/01/2014 Mid-Floo											15/05/2014		
R6	27/01/2014 Mid-Floo	1 7.67			SR6	17/05/2014	Mid-Flood	5.55 SR8	17/05/2014	Mid-Flood	5.43 SR10	17/05/2014	Mid-Flood	1 6
SR6	29/01/2014 Mid-Floo	1 7.57			SR6	20/05/2014	Mid-Flood	5.45 SR8	20/05/2014	Mid-Flood	5.43 SR10	20/05/2014	Mid-Flood	1 6
R7	04/01/2014 Mid-Floo	6.75			SR6	22/05/2014	Mid-Flood	4.50 SR8	22/05/2014	Mid-Flood	4.94 SR10	22/05/2014	Mid-Flood	16
R7	07/01/2014 Mid-Floo	5.85			SR6	24/05/2014	Mid-Flood	4.95 SR8	24/05/2014	Mid-Flood	4.31 SR10	24/05/2014	Mid-Flood	14
SR7	09/01/2014 Mid-Floo	6.20			SR6	27/05/2014	Mid-Flood	5.00 SR8	27/05/2014	Mid-Flood	5.85 SR10	27/05/2014	Mid-Flood	15
R7	11/01/2014 Mid-Floo	6.20			SR6	29/05/2014	Mid-Flood	5.71 SR8	29/05/2014	Mid-Flood	5.64 SR10	29/05/2014	Mid-Flood	17
R7	14/01/2014 Mid-Floo	1 7.11			SR6	31/05/2014	Mid-Flood	5.06 SR8	31/05/2014	Mid-Flood	2.89 SR10	31/05/2014	Mid-Flood	1 !
R7	16/01/2014 Mid-Floo	7.00			SR6	03/06/2014	Mid-Flood	3.68 SR8	03/06/2014	Mid-Flood	2.43 SR10	03/06/2014	Mid-Flood	: t
R7	18/01/2014 Mid-Floo	6.40			SR6	05/06/2014	Mid-Flood	2.86 SR8	05/06/2014	Mid-Flood	2.77 SR10	05/06/2014	Mid-Flood	4
R7	21/01/2014 Mid-Floo	6.64			SR6	07/06/2014	Mid-Flood	3.78 SR8	07/06/2014	Mid-Flood	1.75 SR10	07/06/2014	Mid-Flood	3
R7	23/01/2014 Mid-Floo	6.59										10/06/2014		
R7	25/01/2014 Mid-Floo	1 7.31			SR6	12/06/2014	Mid-Flood	4.51 SR8	12/06/2014	Mid-Flood	4.75 SR10	12/06/2014	Mid-Flood	14
R7	27/01/2014 Mid-Floo											14/06/2014		
R7	29/01/2014 Mid-Floo											17/6/2014		
R8	04/01/2014 Mid-Floo											19/06/2014		
	07/01/2014 Mid-Floo					21/06/2014			21/06/2014			21/06/2014		
R8	09/01/2014 Mid-Floo											24/06/2014		
R8	11/01/2014 Mid-Floo											26/06/2014		
R8	14/01/2014 Mid-Floo											28/06/2014		
R8	16/01/2014 Mid-Floo											01/07/2014		
R8	18/01/2014 Mid-Floo											03/07/2014		
R8	21/01/2014 Mid-Floo											05/07/2014		
R8	23/01/2014 Mid-Floo											08/07/2014		
R8 R8	25/01/2014 Mid-Floo											10/07/2014		
	27/01/2014 Mid-Floo											12/07/2014 15/07/2014		
R8 R9	29/01/2014 Mid-Floo 04/01/2014 Mid-Floo											17/07/2014		
SR9	07/01/2014 Mid-Floo											19/07/2014		
R9	09/01/2014 Mid-Floo											22/07/2014		
	11/01/2014 Mid-Floo											24/04/2014		
SR9	14/01/2014 Mid-Floo											26/04/2014		
R9	16/01/2014 Mid-Floo											29/04/2014		
SR9	18/01/2014 Mid-Floo											01/05/2014		
R9	21/01/2014 Mid-Floo											03/05/2014		
R9	23/01/2014 Mid-Floo											06/05/2014		
R9	25/01/2014 Mid-Floo											08/05/2014		
R9	27/01/2014 Mid-Floo											10/05/2014		
R9						13/05/2014			13/05/2014			13/05/2014		
	04/01/2014 Mid-Floo											15/05/2014		
	07/01/2014 Mid-Floo											17/05/2014		
	09/01/2014 Mid-Floo											20/05/2014		
	11/01/2014 Mid-Floo											22/05/2014		
R10	14/01/2014 Mid-Floo	1 7.75			SR7	24/05/2014	Mid-Flood	4.47 SR9	24/05/2014	Mid-Flood	6.33 SR11	24/05/2014	Mid-Flood	ť
	16/01/2014 Mid-Floo											27/05/2014		
	18/01/2014 Mid-Floo											29/05/2014		
R10	21/01/2014 Mid-Floo	6.97			SR7	31/05/2014	Mid-Flood	3.49 SR9	31/05/2014	Mid-Flood	4.72 SR11	31/05/2014	Mid-Flood	Ł
	23/01/2014 Mid-Floo											03/06/2014		
R10	25/01/2014 Mid-Floo	7.60			SR7	05/06/2014	Mid-Flood	3.61 SR9	05/06/2014	Mid-Flood	1.95 SR11	05/06/2014	Mid-Flood	t
R10	27/01/2014 Mid-Floo	7.59			SR7	07/06/2014	Mid-Flood	3.00 SR9	07/06/2014	Mid-Flood	1.60 SR11	07/06/2014	Mid-Flood	Ł
R10	29/01/2014 Mid-Floo	8.04			SR7	10/06/2014	Mid-Flood	3.56 SR9	10/06/2014	Mid-Flood	2.16 SR11	10/06/2014	Mid-Flood	Ł
R11	04/01/2014 Mid-Floo	7.00			SR7	12/06/2014	Mid-Flood	4.82 SR9	12/06/2014	Mid-Flood	4.42 SR11	12/06/2014	Mid-Flood	Ł
R11	07/01/2014 Mid-Floo	6.50			SR7							14/06/2014		
	09/01/2014 Mid-Floo				SR7							17/6/2014		
	11/01/2014 Mid-Floo											19/06/2014		
	14/01/2014 Mid-Floo					21/06/2014			21/06/2014			21/06/2014		
	16/01/2014 Mid-Floo											24/06/2014		
	18/01/2014 Mid-Floo											26/06/2014		
	21/01/2014 Mid-Floo											28/06/2014		
	23/01/2014 Mid-Floo											01/07/2014		
	25/01/2014 Mid-Floo											03/07/2014		
	27/01/2014 Mid-Floo											05/07/2014		
	29/01/2014 Mid-Floo											08/07/2014		
	04/01/2014 Mid-Floo											10/07/2014		
	07/01/2014 Mid-Floo											12/07/2014		
	09/01/2014 Mid-Floo											15/07/2014		
	11/01/2014 Mid-Floo											17/07/2014		
R12	14/01/2014 Mid-Floo											19/07/2014		
	16/01/2014 Mid-Floo	1 5 90			SR7	22/07/2014	Mid-Flood	3.72 SR9	22/07/2014	Mid-Flood	4 97 SR11	22/07/2014	Mid-Elood	4

SR6 OP017014 Mid-Ebb 6.10 SR6						mg/L) data					
SRB BOTU/2014 Mid-Ebb 6.10 SRP 200/2014 Mid-Ebb 6.57 SRB 10/10/2014 Mid-Ebb 6.21 SRP 10/10/2014 Mid-Ebb 6.50 SRB 10/10/2014 Mid-Ebb 6.37 SRP 200/2014 Mid-Ebb 6.50 SRB 10/10/2014 Mid-Ebb 6.37 SRP 200/2014 Mid-Ebb 6.30 SRB 201/2014 Mid-Ebb 6.33 SRP 10/50/2014 Mid-Ebb 5.31 SRP 200/12014 Mid-Ebb 6.36 SRP 10/50/2014 Mid-Ebb 5.31 SRP 200/12014 Mid-Ebb 6.30 SRP 200/50/14 Mid-Ebb 5.31 SRP 200/12014 Mid-Ebb 6.30 SRP <	SR6						6.04				6.35 S
SRB 1101/2014 Mule bb 6.00 SRE 1001/2014 Mule bb 6.60 SRB 1601/2014 Mule bb 6.71 SRE SRE 0601/2014 Mule bb 6.71 SRB 1601/2014 Mule bb 6.71 SRE SRE 0602/2014 Mule bb 6.71 SRB 2001/2014 Mule bb 6.83 SRE SRE 1001/2014 Mule bb 5.71 SRB 2001/2014 Mule bb 6.93 SRE 1001/2014 Mule bb 5.74 SRP 2001/2014 Mule bb 6.90 SRE 2005/2014 Mule bb 5.74 SRP 2001/2014 Mule bb 6.90 SRE SRE 2005/2014 Mule bb 5.71 SRP 2001/2014 Mule bb 6.90 SRE SRE 2005/2014 Mule bb 5.71 SRP 2001/2014 Mule bb 6.71 SRE 2001/2014 Mule bb 6.71 SRP 2001/2014											
SRB Hadmitzen 7.24 SR12 Z2701/2014 Mich.ebb 6.53 SRB 1600/2014 Mich.ebb 6.77 SRB SRB 0600/2014 Mich.ebb 6.61 SRB 2010/2014 Mich.ebb 6.85 SRB 2007/2014 Mich.ebb 6.61 SRB 2007/2014 Mich.ebb 6.85 SRB SRB 2007/2014 Mich.ebb 5.77 SRB 2007/2014 Mich.ebb 6.96 SRB SRB 7.07 SRB 2007/2014 Mich.ebb 6.91 SRB SRB 2005/2014 Mich.ebb 5.77 SR7 2007/2014 Mich.ebb 7.10 SRB SRB 2005/2014 Mich.ebb 5.57 SR7 1007/2014 Mich.ebb 6.71 SRB 2005/2014 Mich.ebb 5.57 SR7 1007/2014 Mich.ebb 6.71 SRB SRB 2005/2014 Mich.ebb 5.57 SR7 10007/2014 Mich.ebb											
SRB Ib01/2014 Mid-Ebb 6.71 SRB 280/2014 Mid-Ebb 6.71 SRB 2010/2014 Mid-Ebb 6.85 SRB SRB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
SR8 Biol (2014 Mid-Ebb 6.77 SR6 Description SR8 2101/2014 Mid-Ebb 6.85 SR6 SR6 1005/2014 Mid-Ebb 5.47 SR8 2301/2014 Mid-Ebb 6.86 SR6 SR6 1005/2014 Mid-Ebb 5.47 SR8 2301/2014 Mid-Ebb 7.40 SR6 SR6 2001/2014 Mid-Ebb 5.40 SR7 7010/214 Mid-Ebb 6.00 SR6 22005/2014 Mid-Ebb 4.47 SR7 7010/214 Mid-Ebb 6.10 SR6 2005/2014 Mid-Ebb 4.48 SR7 1011/2014 Mid-Ebb 6.10 SR6 2005/2014 Mid-Ebb 4.84 SR7 1011/2014 Mid-Ebb 6.45 SR6 SR6 2005/2014 Mid-Ebb 3.00 SR7 2101/2014 Mid-Ebb 7.41 SR6 1005/2014 Mid-Ebb 3.00 SR7 2201/2014 Mid-Ebb 7.40 SR6 1005/2014 Mid-Ebb 3.00 SR8 4001/2014 Mid-Ebb 7.40 SR6 1005/2014 Mid-Ebb 3.00 SR8 1001/2014 Mid-Ebb <td></td>											
SRB 2101/2014 Michebb 6.85 SRB 2300/2014 Michebb 6.93 SRB 2500/2014 Michebb 5.43 SRB 2500/2014 Michebb 5.43 SRB 2500/2014 Michebb 5.43 SRB 2500/2014 Michebb 6.53 SRB 2500/2014 Michebb 6.53 SRP 200/2014 Michebb 6.51 SRP 200/2014 Michebb 6.51 SRP 200/2014 Michebb 6.51 SRP 100/2014 Michebb 6.62 SRP 100/2014 Michebb 6.57 SRP 200/2014 Michebb 6.65 SRP 200/2014 Michebb 6.61 SRP 200/2014 Michebb 6.61 SRP 200/2014 Michebb 6.60 SRP 200/2014 Michebb 6.60 SRP 200/2014 Michebb 6.60					02	20/01/2011	 0.10				S
SRB 2301/2014 Mic-Ebb 5.33 SRB 2501/2014 Mic-Ebb 5.74 SRB 2501/2014 Mic-Ebb 5.74 SRB 2501/2014 Mic-Ebb 5.74 SRB 2501/2014 Mic-Ebb 5.76 SRP 2001/2014 Mic-Ebb 6.65 SR7 7001/2014 Mic-Ebb 6.16 SR7 7001/2014 Mic-Ebb 6.16 SR7 1001/2014 Mic-Ebb 6.16 SR7 1001/2014 Mic-Ebb 6.16 SR7 1001/2014 Mic-Ebb 6.57 SR7 2101/2014 Mic-Ebb 7.80 SR7 2201/2014 Mic-Ebb 7.80 SR7 2701/2014 Mic-Ebb 7.90 SR8 6.00 SR6 176/2014 Mic-Ebb 7.90 SR8 6.00 SR6 176/2014 Mic-Ebb 7.90 SR8 7.90 SR8 176/2014 Mic-Ebb											5.67 S
SR6 2701/2014 Mid-Ebb 6.95 SR7 2401/2014 Mid-Ebb 6.00 SR6 2205/2014 Mid-Ebb 4.86 SR7 701/2014 Mid-Ebb 6.10 SR6 2205/2014 Mid-Ebb 4.86 SR7 101/2014 Mid-Ebb 6.10 SR6 2005/2014 Mid-Ebb 4.81 SR7 1101/2014 Mid-Ebb 6.10 SR6 2005/2014 Mid-Ebb 4.81 SR7 1601/2014 Mid-Ebb 6.57 SR6 SR6 0/06/2014 Mid-Ebb 2.80 SR7 2301/2014 Mid-Ebb 6.45 SR6 SR6 1/06/2014 Mid-Ebb 5.90 SR7 2301/2014 Mid-Ebb 7.90 SR6 1/06/2014 Mid-Ebb 5.81 SR8 1/06/2014 Mid-Ebb 7.90 SR6 1/06/2014 Mid-Ebb 5.90 SR8 1/01/2014 Mid-Ebb 7.90 SR6 1/06/2014 Mid-Ebb 5.90											S
SR6 2901/2014 Mid-Ebb 6.95 SR6 2005/2014 Mid-Ebb 5.11 SR7 4001/2014 Mid-Ebb 6.00 SR6 24/05/2014 Mid-Ebb 5.11 SR7 9001/2014 Mid-Ebb 6.10 SR6 24/05/2014 Mid-Ebb 4.91 SR7 1401/2014 Mid-Ebb 7.12 SR6 S006/2014 Mid-Ebb 4.91 SR7 1601/2014 Mid-Ebb 7.10 SR6 SR6 S006/2014 Mid-Ebb 4.91 SR7 2301/2014 Mid-Ebb 6.65 SR6 SR6 10/06/2014 Mid-Ebb 4.91 SR7 2301/2014 Mid-Ebb 7.20 SR6 10/06/2014 Mid-Ebb 4.91 SR7 2301/2014 Mid-Ebb 7.50 SR6 10/06/2014 Mid-Ebb 4.91 SR8 9/01/2014 Mid-Ebb 7.50 SR6 10/07/2014 Mid-Ebb 4.91 SR8 9/01/2014 Mid-Ebb 7.51 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.74 S</td></td<>											5.74 S
SR7 Q401/2014 Mid-Ebb 6.00 SR8 22/05/2014 Mid-Ebb 5.87 SR7 7001/2014 Mid-Ebb 6.18 SR6 27/05/2014 Mid-Ebb 4.87 SR7 14/01/2014 Mid-Ebb 6.18 SR6 27/05/2014 Mid-Ebb 4.81 SR7 16/01/2014 Mid-Ebb 6.57 SR6 SR6 20/06/2014 Mid-Ebb 4.81 SR7 21/01/2014 Mid-Ebb 6.45 SR6 SR6 07/06/2014 Mid-Ebb 4.80 SR7 2501/2014 Mid-Ebb 7.41 SR6 SR6 10/06/2014 Mid-Ebb 4.80 SR7 2501/2014 Mid-Ebb 7.50 SR6 10/06/2014 Mid-Ebb 4.82 SR6 707/01/2014 Mid-Ebb 6.50 SR6 21/06/2014 Mid-Ebb 4.81 SR6 10/07/2014 Mid-Ebb 7.51 SR6 26/06/2014 Mid-Ebb 4.91 SR8 14/01/2014 Mid-Ebb 7.42 SR6 26/06/2014 Mid-Ebb 4.91 SR8 18/01/2014 Mid-Ebb 7.41 SR6 26/07/2014 Mid-Ebb 3.41 SR8	SR6	27/01/2014	Mid-Ebb	7.48				SR6	17/05/2014	Mid-Ebb	5.34 S
SR7 07/01/2014 Mid-Ebb 6.00 SR8 24/05/2014 Mid-Ebb 4.80 SR7 11/01/2014 Mid-Ebb 6.10 SR8 25/05/2014 Mid-Ebb 4.91 SR7 16/01/2014 Mid-Ebb 7.12 SR8 SR8 0.006/2014 Mid-Ebb 4.91 SR7 16/01/2014 Mid-Ebb 6.57 SR8 SR8 0.006/2014 Mid-Ebb 4.91 SR7 25/01/2014 Mid-Ebb 6.65 SR8 SR8 10/06/2014 Mid-Ebb 4.91 SR7 25/01/2014 Mid-Ebb 7.84 SR8 10/06/2014 Mid-Ebb 4.91 SR7 20/01/2014 Mid-Ebb 7.50 SR8 19/06/2014 Mid-Ebb 4.91 SR8 14/01/2014 Mid-Ebb 6.51 SR8 20/06/2014 Mid-Ebb 4.93 SR8 14/01/2014 Mid-Ebb 7.52 SR8 20/06/2014 Mid-Ebb 3.01 SR8 14/01/2014 Mid-Ebb 7.22 SR8 20/07/2014 Mid-Ebb 3.01 SR8 14/01/2014 Mid-Ebb 7.22 SR8 20/07/2014 Mid-Ebb 3.01 SR8	SR6	29/01/2014	Mid-Ebb	6.95				SR6	20/05/2014	Mid-Ebb	S
SR7 9001/2014 Mid-Ebb 6.18 SR8 27/05/2014 Mid-Ebb 6.20 SR7 11001/2014 Mid-Ebb 7.12 SR8 31/05/2014 Mid-Ebb 5.51 SR7 1601/2014 Mid-Ebb 6.57 SR8 03/06/2014 Mid-Ebb 2.80 SR7 2501/2014 Mid-Ebb 6.55 SR8 05/06/2014 Mid-Ebb 2.80 SR7 2501/2014 Mid-Ebb 6.45 SR8 07/06/2014 Mid-Ebb 2.80 SR7 2501/2014 Mid-Ebb 7.61 SR8 10/06/2014 Mid-Ebb 4.80 SR8 2401/2014 Mid-Ebb 7.50 SR8 10/06/2014 Mid-Ebb 4.82 SR8 707/01/2014 Mid-Ebb 6.50 SR8 2.006/2014 Mid-Ebb 4.81 SR8 11001/2014 Mid-Ebb 7.42 SR8 0.007/2014 Mid-Ebb 4.90 SR8 11001/2014 Mid-Ebb 7.41 SR8 0.8007/2014 Mid-Ebb 4.90 SR8 2.101/2014 Mid-Ebb 7.41 SR8 0.8007/2014 Mid-Ebb 4.90 SR8 2.101/2014 Mid-Ebb 7.41	SR7	04/01/2014	Mid-Ebb	7.00				SR6	22/05/2014	Mid-Ebb	5.31 S
SR7 1101/2014 Mid-Ebb 6.20 SR8 29/05/2014 Mid-Ebb 5.71 SR7 1601/2014 Mid-Ebb 7.12 SR8 05/05/2014 Mid-Ebb 4.91 SR7 1601/2014 Mid-Ebb 6.55 SR8 05/06/2014 Mid-Ebb 2.93 SR7 2001/2014 Mid-Ebb 6.45 SR8 05/06/2014 Mid-Ebb 4.91 SR7 2301/2014 Mid-Ebb 7.84 SR8 10/06/2014 Mid-Ebb 4.95 SR7 2301/2014 Mid-Ebb 7.20 SR8 14/06/2014 Mid-Ebb 4.95 SR8 2001/2014 Mid-Ebb 6.50 SR8 280/06/2014 Mid-Ebb 4.91 SR8 1601/2014 Mid-Ebb 6.51 SR8 280/06/2014 Mid-Ebb 3.87 SR8 1601/2014 Mid-Ebb 7.92 SR8 280/07/2014 Mid-Ebb 3.87 SR8 1601/2014 Mid-Ebb 7.42 SR8 280/07/2014 Mid-Ebb 3.87 SR8 1601/2014 Mid-Ebb 7.31 SR8 1007/2014 Mid-Ebb 3.87 SR8 2001/2014 Mid-Ebb 7.31 SR8 <td>SR7</td> <td>07/01/2014</td> <td>Mid-Ebb</td> <td>6.00</td> <td></td> <td></td> <td></td> <td>SR6</td> <td>24/05/2014</td> <td>Mid-Ebb</td> <td></td>	SR7	07/01/2014	Mid-Ebb	6.00				SR6	24/05/2014	Mid-Ebb	
SR7 14001/2014 Mid-Ebb 7.12 SR8 31/05/2014 Mid-Ebb 4.80 SR7 18001/2014 Mid-Ebb 6.57 SR8 05/06/2014 Mid-Ebb 2.09 SR7 21001/2014 Mid-Ebb 6.45 SR8 05/06/2014 Mid-Ebb 2.09 SR7 25001/2014 Mid-Ebb 7.41 SR8 12/06/2014 Mid-Ebb 4.80 SR7 25001/2014 Mid-Ebb 7.50 SR8 17/06/2014 Mid-Ebb 4.80 SR8 70701/2014 Mid-Ebb 7.50 SR8 17/06/2014 Mid-Ebb 4.82 SR8 70701/2014 Mid-Ebb 7.50 SR8 20/06/2014 Mid-Ebb 4.81 SR8 11/01/2014 Mid-Ebb 7.50 SR8 2.00/2014 Mid-Ebb 3.01 SR8 11/01/2014 Mid-Ebb 7.59 SR8 SR8 0.10/7/2014 Mid-Ebb 3.01 SR8 18/01/2014 Mid-Ebb 7.42 SR8 0.00/7/2014 Mid-Ebb 3.01 SR8 12/07/2014 Mid-Ebb 7.41 SR8 0.00/7/2014 Mid-Ebb 3.01 SR8 2.00/7/2014 Mid-Ebb				6.18							4.48 S
SR7 1801/2014 Mid-Ebb 7.10 SR6 0.000(2014 Mid-Ebb 4.20 SR7 1201/2014 Mid-Ebb 6.57 SR6 0.000(2014 Mid-Ebb 3.60 SR7 2301/2014 Mid-Ebb 6.45 SR6 12006/2014 Mid-Ebb 3.60 SR7 2301/2014 Mid-Ebb 7.44 SR6 12006/2014 Mid-Ebb 5.29 SR7 2001/2014 Mid-Ebb 7.22 SR6 17/06/2014 Mid-Ebb 4.82 SR8 07/01/2014 Mid-Ebb 7.22 SR6 12006/2014 Mid-Ebb 4.82 SR8 07/01/2014 Mid-Ebb 6.50 SR6 2006/2014 Mid-Ebb 4.82 SR8 1001/2014 Mid-Ebb 7.42 SR6 2006/2014 Mid-Ebb 3.87 SR8 1001/2014 Mid-Ebb 7.42 SR6 0007/2014 Mid-Ebb 3.87 SR8 1201/2014 Mid-Ebb 7.41 SR6 0007/2014 Mid-Ebb 4.04 SR8 2001/2014 Mid-Ebb 7.31 SR6 1007/2014 Mid-Ebb 4.00 SR8 2001/2014 Mid-Ebb 7.31 SR6											5.35 S
SR7 12/01/2014 Mid-Ebb 6.57 SR7 23/01/2014 Mid-Ebb 6.45 SR7 23/01/2014 Mid-Ebb 6.45 SR7 23/01/2014 Mid-Ebb 7.64 SR7 23/01/2014 Mid-Ebb 7.64 SR7 23/01/2014 Mid-Ebb 7.64 SR7 20/01/2014 Mid-Ebb 7.60 SR7 20/01/2014 Mid-Ebb 7.60 SR8 60/01/2014 Mid-Ebb 7.50 SR8 00/01/2014 Mid-Ebb 6.50 SR8 10/01/2014 Mid-Ebb 6.50 SR8 16/01/2014 Mid-Ebb 7.32 SR6 10/07/2014 Mid-Ebb 4.58 SR8 16/01/2014 Mid-Ebb 7.42 SR8 10/07/2014 Mid-Ebb 7.42 SR8 10/07/2014 Mid-Ebb 7.43 SR8 10/07/2014 Mid-Ebb 7.43 SR8 20/07/2014 Mid-Ebb 7.43 SR8 20/07/2014 Mid-Ebb 7.40 SR8 20/07/2014 Mid-Ebb 7.40 SR8 20/07/2014 Mid-Ebb 6.60 </td <td></td> <td>4.91 S</td>											4.91 S
SR7 21/01/2014 Mid-Ebb 6.85 SR6 07/06/2014 Mid-Ebb 2.09 SR7 250/12/014 Mid-Ebb 7.84 SR6 12/06/2014 Mid-Ebb 5.29 SR7 250/12/014 Mid-Ebb 7.20 SR6 12/06/2014 Mid-Ebb 5.29 SR7 200/12/014 Mid-Ebb 7.20 SR6 17/06/2014 Mid-Ebb 4.82 SR8 04/01/2014 Mid-Ebb 6.50 SR6 20/06/2014 Mid-Ebb 4.82 SR8 10/01/2014 Mid-Ebb 6.51 SR6 20/06/2014 Mid-Ebb 3.30 SR8 10/01/2014 Mid-Ebb 7.42 SR6 20/07/2014 Mid-Ebb 3.87 SR8 10/01/2014 Mid-Ebb 7.42 SR6 05/07/2014 Mid-Ebb 3.87 SR8 21/01/2014 Mid-Ebb 7.42 SR6 05/07/2014 Mid-Ebb 3.87 SR8 20/01/2014 Mid-Ebb 7.41 SR6 10/07/2014 Mid-Ebb 4.03 SR8 20/01/2014 Mid-Ebb 7.31 SR6 10/07/2014 Mid-Ebb 5.30 SR9 20/01/2014 Mid-Ebb 7.31 <											
SR7 23/01/2014 Mid-Ebb 6.45 SR6 10/06/2014 Mid-Ebb 3.60 SR7 25/01/2014 Mid-Ebb 7.07 SR6 12/06/2014 Mid-Ebb 5.29 SR7 29/01/2014 Mid-Ebb 7.07 SR6 14/06/2014 Mid-Ebb 4.25 SR6 0/01/2014 Mid-Ebb 5.00 SR6 11/06/2014 Mid-Ebb 4.25 SR6 0/01/2014 Mid-Ebb 6.50 SR6 21/06/2014 Mid-Ebb 4.30 SR8 11/01/2014 Mid-Ebb 7.32 SR6 20/06/2014 Mid-Ebb 4.30 SR8 11/01/2014 Mid-Ebb 7.42 SR6 01/07/2014 Mid-Ebb 3.30 SR8 12/01/2014 Mid-Ebb 7.42 SR6 01/07/2014 Mid-Ebb 3.31 SR8 23/01/2014 Mid-Ebb 7.41 SR6 10/07/2014 Mid-Ebb 3.97 SR8 23/01/2014 Mid-Ebb 7.41 SR6 10/07/2014 Mid-Ebb 3.01 SR8 23/01/2014 Mid-Ebb 7.41 SR6 10/07/2014 Mid-Ebb 3.01 SR8 23/01/2014 Mid-Ebb 7.41 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
SR7 25/01/2014 Mid-Ebb 7.64 SR6 12/06/2014 Mid-Ebb 7.67 SR7 29/01/2014 Mid-Ebb 7.07 SR6 11/06/2014 Mid-Ebb 4.61 SR8 04/01/2014 Mid-Ebb 7.22 SR6 11/06/2014 Mid-Ebb 4.82 SR8 09/01/2014 Mid-Ebb 6.50 SR6 21/06/2014 Mid-Ebb 4.82 SR8 14/01/2014 Mid-Ebb 6.51 SR6 20/06/2014 Mid-Ebb 3.87 SR8 14/01/2014 Mid-Ebb 7.32 SR6 20/07/2014 Mid-Ebb 3.87 SR8 10/01/2014 Mid-Ebb 7.42 SR6 05/07/2014 Mid-Ebb 3.87 SR8 21/01/2014 Mid-Ebb 7.41 SR6 05/07/2014 Mid-Ebb 4.04 SR8 20/01/2014 Mid-Ebb 7.43 SR6 12/07/2014 Mid-Ebb 4.00 SR8 20/01/2014 Mid-Ebb 7.81 SR6 12/07/2014 Mid-Ebb 4.00 SR8 20/01/2014 Mid-Ebb 7.80 SR6 12/07/2014 Mid-Ebb 5.80 SR9 07/01/214 Mid-Ebb 7.80 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
SR7 29/01/2014 Mid-Ebb 7.07 SR6 17/02/2014 Mid-Ebb 5.29 SR7 29/01/2014 Mid-Ebb 7.50 SR6 17/02/2014 Mid-Ebb 4.25 SR8 07/01/2014 Mid-Ebb 5.50 SR6 21/06/2014 Mid-Ebb 4.11 SR8 07/01/2014 Mid-Ebb 6.50 SR6 20/06/2014 Mid-Ebb 4.58 SR8 10/01/2014 Mid-Ebb 7.32 SR6 20/06/2014 Mid-Ebb 4.58 SR8 10/01/2014 Mid-Ebb 7.42 SR6 00/07/2014 Mid-Ebb 3.44 SR8 10/01/2014 Mid-Ebb 7.42 SR6 00/07/2014 Mid-Ebb 3.97 SR8 20/01/2014 Mid-Ebb 7.43 SR6 10/07/2014 Mid-Ebb 3.97 SR8 20/01/2014 Mid-Ebb 7.43 SR6 10/07/2014 Mid-Ebb 3.07 SR8 10/07/2014 Mid-Ebb 7.08 SR6 10/07/2014 Mid-Ebb 3.07 SR9 0/0/12/014 Mid-Ebb 7.08 SR7 20/0/2014 Mid-Ebb 3.07 SR9 10/0/12/014 Mid-Ebb 7.00 <											
SR7 29/01/2014 Mid-Ebb 7.20 SR6 17/6/2014 Mid-Ebb 4.82 SR8 09/01/2014 Mid-Ebb 6.50 SR6 21/06/2014 Mid-Ebb 4.82 SR8 09/01/2014 Mid-Ebb 6.50 SR6 21/06/2014 Mid-Ebb 4.82 SR8 11/01/2014 Mid-Ebb 6.50 SR6 20/06/2014 Mid-Ebb 4.83 SR8 11/01/2014 Mid-Ebb 7.42 SR6 00/07/2014 Mid-Ebb 3.34 SR8 21/01/2014 Mid-Ebb 7.42 SR6 00/07/2014 Mid-Ebb 3.34 SR8 25/01/2014 Mid-Ebb 7.43 SR6 00/07/2014 Mid-Ebb 4.03 SR8 29/01/2014 Mid-Ebb 7.98 SR6 10/07/2014 Mid-Ebb 4.03 SR9 07/01/2014 Mid-Ebb 7.91 SR6 10/07/2014 Mid-Ebb 4.03 SR9 09/01/2014 Mid-Ebb 7.91 SR7 20/01/20	-										
SR6 04/01/2014 Mid-Ebb 7.50 SR6 10/06/2014 Mid-Ebb 4.20 SR8 07/01/2014 Mid-Ebb 6.50 SR6 21/06/2014 Mid-Ebb 4.11 SR8 11/01/2014 Mid-Ebb 6.50 SR6 21/06/2014 Mid-Ebb 4.11 SR8 11/01/2014 Mid-Ebb 7.32 SR6 21/06/2014 Mid-Ebb 3.31 SR8 18/01/2014 Mid-Ebb 7.42 SR6 05/07/2014 Mid-Ebb 3.97 SR8 23/01/2014 Mid-Ebb 7.42 SR6 05/07/2014 Mid-Ebb 4.00 SR8 23/01/2014 Mid-Ebb 7.31 SR6 15/07/2014 Mid-Ebb 4.00 SR9 29/01/2014 Mid-Ebb 7.98 SR6 15/07/2014 Mid-Ebb 5.00 SR9 9/01/2014 Mid-Ebb 7.90 SR6 19/07/2014 Mid-Ebb 5.00 SR9 9/01/2014 Mid-Ebb 7.00 SR7 2/0/0/201											
SR8 07/01/2014 Mid-Ebb 6.50 SR6 21/06/2014 Mid-Ebb 4.11 SR8 09/01/2014 Mid-Ebb 6.50 SR6 24/06/2014 Mid-Ebb 4.11 SR8 11/01/2014 Mid-Ebb 7.32 SR6 26/06/2014 Mid-Ebb 3.30 SR8 18/01/2014 Mid-Ebb 7.42 SR6 01/07/2014 Mid-Ebb 3.41 SR8 23/01/2014 Mid-Ebb 7.42 SR6 03/07/2014 Mid-Ebb 3.44 SR8 23/01/2014 Mid-Ebb 7.42 SR6 06/07/2014 Mid-Ebb 4.04 SR8 23/01/2014 Mid-Ebb 7.41 SR6 10/07/2014 Mid-Ebb 4.04 SR8 29/01/2014 Mid-Ebb 7.31 SR6 10/07/2014 Mid-Ebb 4.04 SR9 09/01/2014 Mid-Ebb 7.31 SR6 11/07/2014 Mid-Ebb 5.30 SR9 09/01/2014 Mid-Ebb 7.31 SR7 20/07/2											
SR8 09/01/2014 Mid-Ebb 6.50 SR6 24/06/2014 Mid-Ebb 4.11 SR8 11/01/2014 Mid-Ebb 7.32 SR6 26/06/2014 Mid-Ebb 3.87 SR8 16/01/2014 Mid-Ebb 7.32 SR6 01/07/2014 Mid-Ebb 3.87 SR8 16/01/2014 Mid-Ebb 7.42 SR6 03/07/2014 Mid-Ebb 3.87 SR8 23/01/2014 Mid-Ebb 7.42 SR6 06/07/2014 Mid-Ebb 3.97 SR8 23/01/2014 Mid-Ebb 7.43 SR6 10/07/2014 Mid-Ebb 4.00 SR8 23/01/2014 Mid-Ebb 7.43 SR6 10/07/2014 Mid-Ebb 4.00 SR9 04/01/2014 Mid-Ebb 7.43 SR6 12/07/2014 Mid-Ebb 4.00 SR9 04/01/2014 Mid-Ebb 7.00 SR7 2/0/07/2014 Mid-Ebb 4.07 SR9 11/01/2014 Mid-Ebb 6.00 SR7 2/0/0/											
SR8 11/01/2014 Mid-Ebb 6.51 SR6 28/06/2014 Mid-Ebb 3.83 SR8 14/01/2014 Mid-Ebb 7.32 SR6 03/07/2014 Mid-Ebb 3.87 SR8 18/01/2014 Mid-Ebb 7.42 SR6 03/07/2014 Mid-Ebb 3.87 SR8 21/01/2014 Mid-Ebb 7.42 SR6 03/07/2014 Mid-Ebb 4.04 SR8 23/01/2014 Mid-Ebb 7.42 SR6 08/07/2014 Mid-Ebb 4.04 SR8 23/01/2014 Mid-Ebb 7.43 SR6 10/07/2014 Mid-Ebb 4.00 SR9 29/01/2014 Mid-Ebb 7.98 SR6 19/07/2014 Mid-Ebb 4.00 SR9 09/01/2014 Mid-Ebb 6.10 SR6 21/07/2014 Mid-Ebb 4.47 SR9 10/01/2014 Mid-Ebb 6.83 SR7 20/04/2014 Mid-Ebb 6.38 SR9 10/01/2014 Mid-Ebb 7.80 SR7 20/01/2014 Mid-Ebb 6.38 SR9 10/01/2014 Mid-Ebb 7.81 SR7 03/05/2014 Mid-Ebb 6.38 SR9 21/01/2014 Mid-Ebb 7.81 <											
SR8 14/01/2014 Mid-Ebb 7.32 SR6 28/06/2014 Mid-Ebb 3.87 SR8 16/01/2014 Mid-Ebb 7.59 SR6 01/07/2014 Mid-Ebb 3.87 SR8 21/01/2014 Mid-Ebb 7.42 SR6 05/07/2014 Mid-Ebb 3.87 SR8 23/01/2014 Mid-Ebb 7.42 SR6 05/07/2014 Mid-Ebb 3.97 SR8 25/01/2014 Mid-Ebb 7.43 SR6 10/07/2014 Mid-Ebb 3.97 SR8 25/01/2014 Mid-Ebb 7.31 SR6 10/07/2014 Mid-Ebb 5.30 SR9 04/01/2014 Mid-Ebb 7.31 SR6 10/07/2014 Mid-Ebb 5.30 SR9 04/01/2014 Mid-Ebb 6.60 SR6 10/07/2014 Mid-Ebb 4.47 SR9 16/01/2014 Mid-Ebb 6.10 SR6 22/07/2014 Mid-Ebb 4.68 SR9 16/01/2014 Mid-Ebb 7.87 SR7 24/04/2014 Mid-Ebb 6.38 SR9 16/01/2014 Mid-Ebb 7.83 SR7 20/01/2014 Mid-Ebb 6.36 SR9 23/01/2014 Mid-Ebb 7.30 <											
SR8 16(01/2014 Mid-Ebb 7.59 SR6 01/07/2014 Mid-Ebb 3.34 SR8 18/01/2014 Mid-Ebb 7.42 SR6 03/07/2014 Mid-Ebb 3.34 SR8 21/01/2014 Mid-Ebb 7.42 SR6 08/07/2014 Mid-Ebb 4.04 SR8 21/01/2014 Mid-Ebb 7.42 SR6 08/07/2014 Mid-Ebb 4.04 SR8 29/01/2014 Mid-Ebb 7.43 SR6 15/07/2014 Mid-Ebb 4.00 SR9 04/01/2014 Mid-Ebb 7.43 SR6 15/07/2014 Mid-Ebb 4.00 SR9 09/01/2014 Mid-Ebb 6.60 SR6 19/07/2014 Mid-Ebb 4.87 SR9 09/01/2014 Mid-Ebb 6.42 SR7 24/04/2014 Mid-Ebb 4.87 SR9 16/01/2014 Mid-Ebb 7.87 SR7 20/04/2014 Mid-Ebb 6.88 SR9 16/01/2014 Mid-Ebb 7.87 SR7 20/04/2014 Mid-Ebb 6.88 SR9 16/01/2014 Mid-Ebb 7.87 SR7 20/05/2014 Mid-Ebb 6.69 SR7 10/05/2014 Mid-Ebb 7.83 <											3.30 S
SR8 21/01/2014 Mid-Ebb 6.91 SR6 05/07/2014 Mid-Ebb 4.04 SR8 23/01/2014 Mid-Ebb 7.42 SR6 08/07/2014 Mid-Ebb 4.04 SR8 25/01/2014 Mid-Ebb 7.31 SR6 08/07/2014 Mid-Ebb 4.00 SR8 29/01/2014 Mid-Ebb 7.80 SR6 15/07/2014 Mid-Ebb 4.00 SR9 04/01/2014 Mid-Ebb 6.60 SR6 15/07/2014 Mid-Ebb 4.87 SR9 09/01/2014 Mid-Ebb 6.80 SR7 20/04/2014 Mid-Ebb 4.87 SR9 14/01/2014 Mid-Ebb 6.42 SR7 20/04/2014 Mid-Ebb 6.88 SR9 14/01/2014 Mid-Ebb 7.87 SR7 20/04/2014 Mid-Ebb 6.88 SR9 12/01/2014 Mid-Ebb 7.89 SR7 10/05/2014 Mid-Ebb 6.83 SR9 21/01/2014 Mid-Ebb 7.80 SR7 10/05/2	SR8	16/01/2014	Mid-Ebb	7.59							3.87 S
SR8 2301/2014 Mid-Ebb 7.42 SR6 08/07/2014 Mid-Ebb 3.97 SR8 25/01/2014 Mid-Ebb 7.43 SR6 10/07/2014 Mid-Ebb 4.03 SR8 27/01/2014 Mid-Ebb 7.31 SR6 15/07/2014 Mid-Ebb 5.00 SR9 04/01/2014 Mid-Ebb 6.60 SR6 15/07/2014 Mid-Ebb 3.86 SR9 07/01/2014 Mid-Ebb 6.42 SR7 24/04/2014 Mid-Ebb 6.68 SR9 16/01/2014 Mid-Ebb 7.87 SR7 26/04/2014 Mid-Ebb 6.68 SR9 16/01/2014 Mid-Ebb 7.87 SR7 03/05/2014 Mid-Ebb 6.50 SR9 23/01/2014 Mid-Ebb 7.83 SR7 06/05/2014 Mid-Ebb 6.50 SR9 25/01/2014 Mid-Ebb 7.83 SR7 10/05/2014 Mid-Ebb 6.50 SR9 26/01/2014 Mid-Ebb 7.83 SR7 10/05/20	SR8	18/01/2014	Mid-Ebb	7.42				SR6	03/07/2014	Mid-Ebb	3.34 S
SR8 25/01/2014 Mid-Ebb 7.43 SR6 10/07/2014 Mid-Ebb 4.03 SR8 27/01/2014 Mid-Ebb 7.98 SR6 15/07/2014 Mid-Ebb 5.30 SR9 04/01/2014 Mid-Ebb 7.98 SR6 15/07/2014 Mid-Ebb 5.30 SR9 04/01/2014 Mid-Ebb 6.60 SR6 17/07/2014 Mid-Ebb 5.40 SR9 07/01/2014 Mid-Ebb 6.42 SR7 24/04/2014 Mid-Ebb 6.48 SR9 16/01/2014 Mid-Ebb 7.47 SR7 01/05/2014 Mid-Ebb 6.48 SR9 16/01/2014 Mid-Ebb 7.87 SR7 03/05/2014 Mid-Ebb 6.50 SR9 25/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 7.53 SR7 10/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 7.10 SR7 10/05	SR8	21/01/2014	Mid-Ebb	6.91				SR6	05/07/2014	Mid-Ebb	4.04 S
SR8 27/01/2014 Mid-Ebb 7.31 SR6 12/07/2014 Mid-Ebb 4.00 SR8 29/01/2014 Mid-Ebb 7.31 SR6 15/07/2014 Mid-Ebb 5.30 SR9 04/01/2014 Mid-Ebb 9.00 SR6 15/07/2014 Mid-Ebb 5.30 SR9 07/01/2014 Mid-Ebb 6.60 SR6 17/07/2014 Mid-Ebb 3.68 SR9 11/01/2014 Mid-Ebb 6.42 SR7 24/04/2014 Mid-Ebb 6.58 SR9 16/01/2014 Mid-Ebb 7.87 SR7 26/04/2014 Mid-Ebb 6.50 SR9 23/01/2014 Mid-Ebb 7.87 SR7 03/05/2014 Mid-Ebb 6.50 SR9 25/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR9 26/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR9 26/01/2014 Mid-Ebb 7.00 SR7 27/05/2	SR8	23/01/2014	Mid-Ebb	7.42				SR6	08/07/2014	Mid-Ebb	3.97 S
SR8 29/01/2014 Mid-Ebb 7.98 SR6 15/07/2014 Mid-Ebb 5.30 SR9 07/01/2014 Mid-Ebb 6.60 SR6 17/07/2014 Mid-Ebb 3.68 SR9 09/01/2014 Mid-Ebb 6.60 SR6 19/07/2014 Mid-Ebb 3.68 SR9 11/01/2014 Mid-Ebb 6.42 SR7 24/04/2014 Mid-Ebb 6.58 SR9 14/01/2014 Mid-Ebb 7.02 SR7 26/04/2014 Mid-Ebb 6.48 SR9 18/01/2014 Mid-Ebb 7.87 SR7 01/05/2014 Mid-Ebb 6.53 SR9 25/01/2014 Mid-Ebb 9.53 SR7 06/05/2014 Mid-Ebb 5.62 SR9 25/01/2014 Mid-Ebb 5.51 SR7 10/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 7.55 SR7 20/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 7.51 SR7 20/05	SR8	25/01/2014	Mid-Ebb	7.43				SR6	10/07/2014	Mid-Ebb	4.03 S
SR9 04/01/2014 Mid-Ebb 9.00 SR6 17/07/2014 Mid-Ebb 4.47 SR9 09/01/2014 Mid-Ebb 6.60 SR6 19/07/2014 Mid-Ebb 4.47 SR9 09/01/2014 Mid-Ebb 6.10 SR6 19/07/2014 Mid-Ebb 6.58 SR9 11/01/2014 Mid-Ebb 7.02 SR7 26/04/2014 Mid-Ebb 6.38 SR9 18/01/2014 Mid-Ebb 7.87 SR7 01/05/2014 Mid-Ebb 6.50 SR9 25/01/2014 Mid-Ebb 8.69 SR7 03/05/2014 Mid-Ebb 5.69 SR9 25/01/2014 Mid-Ebb 8.09 SR7 10/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 6.35 SR7 10/05/2014 Mid-Ebb 5.69 SR10 07/01/2014 Mid-Ebb 6.51 SR7 21/05/2014 Mid-Ebb 5.69 SR10 07/01/2014 Mid-Ebb 6.51 SR7 21/0	SR8	27/01/2014	Mid-Ebb	7.31				SR6	12/07/2014	Mid-Ebb	4.00 S
SR9 07/01/2014 Mid-Ebb 6.60 SR6 19/07/2014 Mid-Ebb 4.47 SR9 99/01/2014 Mid-Ebb 6.10 SR6 22/07/2014 Mid-Ebb 6.63 SR9 14/01/2014 Mid-Ebb 6.42 SR7 26/04/2014 Mid-Ebb 6.33 SR9 16/01/2014 Mid-Ebb 7.02 SR7 29/04/2014 Mid-Ebb 6.46 SR9 16/01/2014 Mid-Ebb 7.87 SR7 01/05/2014 Mid-Ebb 6.46 SR9 23/01/2014 Mid-Ebb 9.53 SR7 06/05/2014 Mid-Ebb 5.63 SR9 25/01/2014 Mid-Ebb 7.10 SR7 10/05/2014 Mid-Ebb 5.62 SR10 04/01/2014 Mid-Ebb 7.10 SR7 20/05/2014 Mid-Ebb 5.62 SR10 11/01/2014 Mid-Ebb 7.10 SR7 20/05/2014 Mid-Ebb 7.4 SR10 10/01/2014 Mid-Ebb 7.10 SR7 20/05											5.30 S
SR9 09/01/2014 Mid-Ebb 6.10 SR6 22/07/2014 Mid-Ebb 3.68 SR9 11/01/2014 Mid-Ebb 6.42 SR7 24/04/2014 Mid-Ebb 6.58 SR9 16/01/2014 Mid-Ebb 6.83 SR7 24/04/2014 Mid-Ebb 6.48 SR9 16/01/2014 Mid-Ebb 7.87 SR7 20/05/2014 Mid-Ebb 6.60 SR9 25/01/2014 Mid-Ebb 8.69 SR7 00/5/2014 Mid-Ebb 6.50 SR9 25/01/2014 Mid-Ebb 7.93 SR7 10/5/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 7.10 SR7 13/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 6.35 SR7 12/05/2014 Mid-Ebb 5.62 SR10 11/01/2014 Mid-Ebb 7.41 SR7 20/05/2014 Mid-Ebb 5.74 SR10 10/01/2014 Mid-Ebb 7.75 SR7 21/05											S
SR9 11/01/2014 Mid-Ebb 6.42 SR7 24/04/2014 Mid-Ebb 6.58 SR9 14/01/2014 Mid-Ebb 6.83 SR7 26/04/2014 Mid-Ebb 6.38 SR9 18/01/2014 Mid-Ebb 7.02 SR7 29/04/2014 Mid-Ebb 6.48 SR9 21/01/2014 Mid-Ebb 7.02 SR7 07/05/2014 Mid-Ebb 6.50 SR9 23/01/2014 Mid-Ebb 8.69 SR7 07/05/2014 Mid-Ebb 5.69 SR9 25/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 6.35 SR7 17/05/2014 Mid-Ebb 5.69 SR10 09/01/2014 Mid-Ebb 6.40 SR7 20/05/2014 Mid-Ebb 5.69 SR10 14/01/2014 Mid-Ebb 7.5 SR7 21/05/2014 Mid-Ebb 5.69 SR10 16/01/2014 Mid-Ebb 7.75 SR7 21/0											4.47 S
SR9 14/01/2014 Mid-Ebb 6.83 SR7 26/04/2014 Mid-Ebb 6.83 SR9 18/01/2014 Mid-Ebb 7.02 SR7 29/04/2014 Mid-Ebb 6.48 SR9 18/01/2014 Mid-Ebb 7.87 SR7 01/05/2014 Mid-Ebb 6.46 SR9 23/01/2014 Mid-Ebb 8.69 SR7 03/05/2014 Mid-Ebb 6.50 SR9 25/01/2014 Mid-Ebb 8.69 SR7 10/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.62 SR10 04/01/2014 Mid-Ebb 6.35 SR7 17/05/2014 Mid-Ebb 5.62 SR10 11/01/2014 Mid-Ebb 6.40 SR7 20/05/2014 Mid-Ebb 5.62 SR10 11/01/2014 Mid-Ebb 7.75 SR7 20/05/2014 Mid-Ebb 7.80 SR10 11/01/2014 Mid-Ebb 7.81 SR7 20											
SR9 16/01/2014 Mid-Ebb 7.02 SR7 29/04/2014 Mid-Ebb 6.48 SR9 12/01/2014 Mid-Ebb 8.96 SR7 03/05/2014 Mid-Ebb 6.50 SR9 23/01/2014 Mid-Ebb 8.96 SR7 03/05/2014 Mid-Ebb 6.50 SR9 23/01/2014 Mid-Ebb 8.96 SR7 03/05/2014 Mid-Ebb 5.69 SR9 25/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 6.35 SR7 10/05/2014 Mid-Ebb 5.62 SR10 07/01/2014 Mid-Ebb 6.40 SR7 27/05/2014 Mid-Ebb 7.62 SR10 16/01/2014 Mid-Ebb 7.75 SR7 27/05/2014 Mid-Ebb 7.80 SR10 16/01/2014 Mid-Ebb 7.75 SR7 27/05/2014 Mid-Ebb 7.90 SR10 16/01/2014 Mid-Ebb 7.70 SR7 27											
SR9 18/01/2014 Mid-Ebb 7.87 SR7 01/05/2014 Mid-Ebb 6.16 SR9 21/01/2014 Mid-Ebb 8.96 SR7 06/05/2014 Mid-Ebb 6.50 SR9 23/01/2014 Mid-Ebb 9.53 SR7 08/05/2014 Mid-Ebb 5.69 SR9 22/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 6.35 SR7 10/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 6.40 SR7 20/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 6.51 SR7 20/05/2014 Mid-Ebb 5.62 SR10 11/01/2014 Mid-Ebb 7.55 SR7 20/05/2014 Mid-Ebb 5.62 SR10 11/01/2014 Mid-Ebb 7.51 SR7 20/05/2014 Mid-Ebb 4.90 SR10 11/01/2014 Mid-Ebb 7.31 SR7 20/05/2014 Mid-Ebb 3.51 SR10 20/01/2014 Mid-Ebb											
SR9 21/01/2014 Mid-Ebb 8.96 SR7 03/05/2014 Mid-Ebb 6.50 SR9 23/01/2014 Mid-Ebb 8.69 SR7 08/05/2014 Mid-Ebb 6.50 SR9 25/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR9 29/01/2014 Mid-Ebb 7.93 SR7 13/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 7.01 SR7 13/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 6.40 SR7 20/05/2014 Mid-Ebb 5.62 SR10 14/01/2014 Mid-Ebb 7.51 SR7 22/05/2014 Mid-Ebb 4.73 SR10 14/01/2014 Mid-Ebb 7.31 SR7 23/05/2014 Mid-Ebb 3.50 SR10 23/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.43 SR7 0											
SR9 23/01/2014 Mid-Ebb 8.69 SR7 06/05/2014 Mid-Ebb 6.53 SR9 25/01/2014 Mid-Ebb 9.53 SR7 08/05/2014 Mid-Ebb 5.69 SR9 27/01/2014 Mid-Ebb 8.09 SR7 13/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 6.35 SR7 13/05/2014 Mid-Ebb 5.62 SR10 07/01/2014 Mid-Ebb 6.35 SR7 12/05/2014 Mid-Ebb 4.90 SR10 09/01/2014 Mid-Ebb 6.51 SR7 20/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.31 SR7 24/05/2014 Mid-Ebb 4.30 SR10 18/01/2014 Mid-Ebb 7.13 SR7 03/06/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.41 SR7 05/06/2014 Mid-Ebb 3.51 SR10 29/01/2014 Mid-Ebb 7.64 SR7											
SR9 25/01/2014 Mid-Ebb 9.53 SR9 27/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR9 29/01/2014 Mid-Ebb 8.09 SR7 13/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 7.10 SR7 15/05/2014 Mid-Ebb 5.74 SR10 09/01/2014 Mid-Ebb 6.51 SR7 20/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.10 SR7 29/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.13 SR7 29/05/2014 Mid-Ebb 4.90 SR10 23/01/2014 Mid-Ebb 7.41 SR7 30/06/2014 Mid-Ebb											
SR9 27/01/2014 Mid-Ebb 7.93 SR7 10/05/2014 Mid-Ebb 5.69 SR9 29/01/2014 Mid-Ebb 8.09 SR7 13/05/2014 Mid-Ebb 5.69 SR10 04/01/2014 Mid-Ebb 7.10 SR7 13/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 6.40 SR7 20/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.90 SR10 16/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.90 SR10 16/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.90 SR10 21/01/2014 Mid-Ebb 7.75 SR7 20/05/2014 Mid-Ebb 4.90 SR10 21/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 5.81 SR10 21/01/2014 Mid-Ebb 7.43 SR7 03/06/2014 Mid-Ebb 3.94 SR1 SR10 25/01/2014											0.00 C
SR9 29/01/2014 Mid-Ebb 8.09 SR7 13/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 6.35 SR7 17/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 6.35 SR7 71/05/2014 Mid-Ebb 5.62 SR10 09/01/2014 Mid-Ebb 6.40 SR7 20/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.75 SR7 22/05/2014 Mid-Ebb 4.90 SR10 16/01/2014 Mid-Ebb 7.75 SR7 29/05/2014 Mid-Ebb 4.30 SR10 18/01/2014 Mid-Ebb 7.13 SR7 31/05/2014 Mid-Ebb 4.50 SR10 21/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 3.04 SR10 22/01/2014 Mid-Ebb 7.43 SR7 03/06/2014 Mid-Ebb 3.04 SR10 29/01/2014 Mid-Ebb 7.40 SR7 12/06/2014 Mid-Ebb 3.05 SR11 09/01/2014 Mid-Ebb <td></td>											
SR10 04/01/2014 Mid-Ebb 7.10 SR7 15/05/2014 Mid-Ebb 5.62 SR10 07/01/2014 Mid-Ebb 6.35 SR7 17/05/2014 Mid-Ebb 5.74 SR10 09/01/2014 Mid-Ebb 6.40 SR7 20/05/2014 Mid-Ebb 5.74 SR10 11/01/2014 Mid-Ebb 6.51 SR7 22/05/2014 Mid-Ebb 4.90 SR10 16/01/2014 Mid-Ebb 7.75 SR7 22/05/2014 Mid-Ebb 4.30 SR10 16/01/2014 Mid-Ebb 7.00 SR7 37/05/2014 Mid-Ebb 4.56 SR10 21/01/2014 Mid-Ebb 7.00 SR7 37/05/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.41 SR7 30/06/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.43 SR7 03/06/2014 Mid-Ebb 3.51 SR10 29/01/2014 Mid-Ebb 7.64 SR7 10/06/2014 Mid-Ebb 3.51 SR11 04/01/2014 Mid-Ebb </td <td></td> <td>S</td>											S
SR10 07/01/2014 Mid-Ebb 6.35 SR7 17/05/2014 Mid-Ebb 5.74 SR10 09/01/2014 Mid-Ebb 6.40 SR7 20/05/2014 Mid-Ebb 4.93 SR10 14/01/2014 Mid-Ebb 6.51 SR7 22/05/2014 Mid-Ebb 4.73 SR10 16/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.30 SR10 16/01/2014 Mid-Ebb 7.00 SR7 29/05/2014 Mid-Ebb 3.51 SR10 21/01/2014 Mid-Ebb 7.13 SR7 31/05/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 3.56 SR10 27/01/2014 Mid-Ebb 7.64 SR7 10/06/2014 Mid-Ebb 4.30 SR11 09/01/2014 Mid-Ebb 7.64 SR7 10/06/2014 Mid-Ebb 4.55 SR11 09/01/2014 Mid-Ebb 7.65 SR7 12/06/2014 Mid-Ebb 4.56 SR11 14/01/2014 Mid-Ebb </td <td></td> <td>5.62 S</td>											5.62 S
SR10 11/01/2014 Mid-Ebb 6.51 SR7 22/05/2014 Mid-Ebb 4.90 SR10 14/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.73 SR10 18/01/2014 Mid-Ebb 7.31 SR7 27/05/2014 Mid-Ebb 4.36 SR10 18/01/2014 Mid-Ebb 7.13 SR7 29/05/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.41 SR7 31/05/2014 Mid-Ebb 3.51 SR10 25/01/2014 Mid-Ebb 7.43 SR7 07/06/2014 Mid-Ebb 3.51 SR10 29/01/2014 Mid-Ebb 7.43 SR7 10/06/2014 Mid-Ebb 3.64 SR11 04/01/2014 Mid-Ebb 7.40 SR7 12/06/2014 Mid-Ebb 4.36 SR11 04/01/2014 Mid-Ebb 6.65 SR7 14/06/2014 Mid-Ebb 4.55 SR11 04/01/2014 Mid-Ebb 7.65 SR7 14/06/2014 Mid-Ebb 4.56 SR11 14/01/2014 Mid-Ebb </td <td></td> <td></td> <td></td> <td>6.35</td> <td></td> <td></td> <td></td> <td>SR7</td> <td>17/05/2014</td> <td>Mid-Ebb</td> <td>5.74 S</td>				6.35				SR7	17/05/2014	Mid-Ebb	5.74 S
SR10 14/01/2014 Mid-Ebb 7.75 SR7 24/05/2014 Mid-Ebb 4.73 SR10 16/01/2014 Mid-Ebb 7.31 SR7 27/05/2014 Mid-Ebb 4.30 SR10 18/01/2014 Mid-Ebb 7.00 SR7 29/05/2014 Mid-Ebb 4.30 SR10 21/01/2014 Mid-Ebb 7.13 SR7 29/05/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.41 SR7 30/06/2014 Mid-Ebb 3.51 SR10 25/01/2014 Mid-Ebb 7.43 SR7 05/06/2014 Mid-Ebb 3.06 SR10 29/01/2014 Mid-Ebb 7.64 SR7 10/06/2014 Mid-Ebb 3.06 SR11 04/01/2014 Mid-Ebb 6.55 SR7 14/06/2014 Mid-Ebb 4.35 SR11 04/01/2014 Mid-Ebb 6.66 SR7 14/06/2014 Mid-Ebb 4.35 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 4.36 SR11 16/01/2014 Mid-Ebb </td <td>SR10</td> <td>09/01/2014</td> <td>Mid-Ebb</td> <td>6.40</td> <td></td> <td></td> <td></td> <td>SR7</td> <td>20/05/2014</td> <td>Mid-Ebb</td> <td>S</td>	SR10	09/01/2014	Mid-Ebb	6.40				SR7	20/05/2014	Mid-Ebb	S
SR10 16/01/2014 Mid-Ebb 7.31 SR7 27/05/2014 Mid-Ebb 4.30 SR10 18/01/2014 Mid-Ebb 7.00 SR7 29/05/2014 Mid-Ebb 4.56 SR10 23/01/2014 Mid-Ebb 7.13 SR7 31/05/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 3.51 SR10 25/01/2014 Mid-Ebb 7.43 SR7 05/06/2014 Mid-Ebb 3.64 SR10 29/01/2014 Mid-Ebb 7.43 SR7 07/06/2014 Mid-Ebb 3.94 SR11 04/01/2014 Mid-Ebb 7.40 SR7 12/06/2014 Mid-Ebb 4.35 SR11 09/01/2014 Mid-Ebb 7.40 SR7 17/06/2014 Mid-Ebb 4.36 SR11 10/01/2014 Mid-Ebb 6.66 SR7 14/06/2014 Mid-Ebb 4.36 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 3.94 SR11 16/01/2014 Mid-Ebb </td <td>SR10</td> <td>11/01/2014</td> <td>Mid-Ebb</td> <td>6.51</td> <td></td> <td></td> <td></td> <td>SR7</td> <td>22/05/2014</td> <td>Mid-Ebb</td> <td>4.90 S</td>	SR10	11/01/2014	Mid-Ebb	6.51				SR7	22/05/2014	Mid-Ebb	4.90 S
SR10 18/01/2014 Mid-Ebb 7.00 SR7 29/05/2014 Mid-Ebb 4.56 SR10 21/01/2014 Mid-Ebb 7.13 SR7 31/05/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 3.51 SR10 25/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 3.51 SR10 25/01/2014 Mid-Ebb 7.43 SR7 05/06/2014 Mid-Ebb 3.64 SR10 29/01/2014 Mid-Ebb 7.64 SR7 10/06/2014 Mid-Ebb 4.35 SR11 04/01/2014 Mid-Ebb 6.55 SR7 12/06/2014 Mid-Ebb 4.55 SR11 09/01/2014 Mid-Ebb 6.66 SR7 17/6/2014 Mid-Ebb 4.55 SR11 14/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.98 SR11 14/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.96 SR11 16/01/2014 Mid-Ebb <td>SR10</td> <td>14/01/2014</td> <td>Mid-Ebb</td> <td>7.75</td> <td></td> <td></td> <td></td> <td>SR7</td> <td>24/05/2014</td> <td>Mid-Ebb</td> <td>4.73 S</td>	SR10	14/01/2014	Mid-Ebb	7.75				SR7	24/05/2014	Mid-Ebb	4.73 S
SR10 21/01/2014 Mid-Ebb 7.13 SR7 31/05/2014 Mid-Ebb 3.51 SR10 23/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 3.51 SR10 25/01/2014 Mid-Ebb 7.96 SR7 05/06/2014 Mid-Ebb 3.51 SR10 27/01/2014 Mid-Ebb 7.43 SR7 05/06/2014 Mid-Ebb 3.94 SR10 02/01/2014 Mid-Ebb 7.40 SR7 12/06/2014 Mid-Ebb 4.35 SR11 04/01/2014 Mid-Ebb 6.55 SR7 14/06/2014 Mid-Ebb 4.35 SR11 09/01/2014 Mid-Ebb 6.66 SR7 17/06/2014 Mid-Ebb 4.37 SR11 10/01/2014 Mid-Ebb 7.58 SR7 21/06/2014 Mid-Ebb 2.76 SR11 16/01/2014 Mid-Ebb 7.65 SR7 21/06/2014 Mid-Ebb 3.76 SR11 16/01/2014 Mid-Ebb 7.65 SR7 21/06/2014 Mid-Ebb 3.76 SR11 16/01/2014 Mid-Ebb </td <td>SR10</td> <td>16/01/2014</td> <td>Mid-Ebb</td> <td>7.31</td> <td></td> <td></td> <td></td> <td>SR7</td> <td>27/05/2014</td> <td>Mid-Ebb</td> <td>4.30 S</td>	SR10	16/01/2014	Mid-Ebb	7.31				SR7	27/05/2014	Mid-Ebb	4.30 S
SR10 23/01/2014 Mid-Ebb 7.41 SR7 03/06/2014 Mid-Ebb 3.75 SR10 25/01/2014 Mid-Ebb 7.96 SR7 05/06/2014 Mid-Ebb 3.51 SR10 27/01/2014 Mid-Ebb 7.43 SR7 07/06/2014 Mid-Ebb 3.04 SR10 29/01/2014 Mid-Ebb 7.44 SR7 10/06/2014 Mid-Ebb 3.04 SR11 04/01/2014 Mid-Ebb 7.64 SR7 10/06/2014 Mid-Ebb 4.35 SR11 04/01/2014 Mid-Ebb 6.55 SR7 14/06/2014 Mid-Ebb 4.35 SR11 04/01/2014 Mid-Ebb 6.66 SR7 19/06/2014 Mid-Ebb 4.98 SR11 14/01/2014 Mid-Ebb 7.65 SR7 21/06/2014 Mid-Ebb 2.98 SR11 14/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.76 SR11 14/01/2014 Mid-Ebb 7.33 SR7 03/07/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb </td <td></td> <td>4.56 S</td>											4.56 S
SR10 25/01/2014 Mid-Ebb 7.96 SR7 05/06/2014 Mid-Ebb 3.51 SR10 27/01/2014 Mid-Ebb 7.43 SR7 07/06/2014 Mid-Ebb 3.06 SR10 29/01/2014 Mid-Ebb 7.64 SR7 07/06/2014 Mid-Ebb 3.06 SR11 04/01/2014 Mid-Ebb 7.40 SR7 12/06/2014 Mid-Ebb 4.35 SR11 04/01/2014 Mid-Ebb 6.55 SR7 12/06/2014 Mid-Ebb 4.35 SR11 09/01/2014 Mid-Ebb 6.66 SR7 17/06/2014 Mid-Ebb 4.35 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 3.94 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 3.94 SR11 12/01/2014 Mid-Ebb 7.24 SR7 26/06/2014 Mid-Ebb 3.94 SR11 23/01/2014 Mid-Ebb 7.33 SR7 <				7.13							3.51 S
SR10 27/01/2014 Mid-Ebb 7.43 SR7 07/06/2014 Mid-Ebb 3.06 SR10 29/01/2014 Mid-Ebb 7.64 SR7 10/06/2014 Mid-Ebb 3.94 SR11 04/01/2014 Mid-Ebb 7.40 SR7 12/06/2014 Mid-Ebb 4.35 SR11 07/01/2014 Mid-Ebb 6.55 SR7 12/06/2014 Mid-Ebb 4.55 SR11 09/01/2014 Mid-Ebb 6.50 SR7 17/06/2014 Mid-Ebb 4.58 SR11 09/01/2014 Mid-Ebb 6.66 SR7 19/06/2014 Mid-Ebb 4.58 SR11 14/01/2014 Mid-Ebb 7.58 SR7 21/06/2014 Mid-Ebb 2.98 SR11 16/01/2014 Mid-Ebb 7.65 SR7 21/06/2014 Mid-Ebb 2.76 SR11 18/01/2014 Mid-Ebb 7.65 SR7 26/06/2014 Mid-Ebb 2.76 SR11 23/01/2014 Mid-Ebb 7.53 SR7 20/06/2014 Mid-Ebb 2.76 SR11 23/01/2014 Mid-Ebb </td <td></td> <td>3.75 S</td>											3.75 S
SR10 29/01/2014 Mid-Ebb 7.64 SR7 10/06/2014 Mid-Ebb 3.94 SR11 04/01/2014 Mid-Ebb 7.40 SR7 12/06/2014 Mid-Ebb 4.35 SR11 07/01/2014 Mid-Ebb 6.55 SR7 12/06/2014 Mid-Ebb 4.35 SR11 09/01/2014 Mid-Ebb 6.55 SR7 17/06/2014 Mid-Ebb 4.55 SR11 10/01/2014 Mid-Ebb 6.66 SR7 19/06/2014 Mid-Ebb 4.98 SR11 14/01/2014 Mid-Ebb 7.58 SR7 21/06/2014 Mid-Ebb 2.98 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.98 SR11 18/01/2014 Mid-Ebb 7.65 SR7 26/06/2014 Mid-Ebb 2.98 SR11 18/01/2014 Mid-Ebb 7.24 SR7 28/06/2014 Mid-Ebb 3.94 SR11 23/01/2014 Mid-Ebb 7.53 SR7 03/07/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb </td <td></td> <td>3.51 S</td>											3.51 S
SR11 04/01/2014 Mid-Ebb 7.40 SR7 12/06/2014 Mid-Ebb 4.35 SR11 07/01/2014 Mid-Ebb 6.55 SR7 14/06/2014 Mid-Ebb 4.55 SR11 09/01/2014 Mid-Ebb 6.30 SR7 17/6/2014 Mid-Ebb 4.55 SR11 11/01/2014 Mid-Ebb 6.66 SR7 17/6/2014 Mid-Ebb 4.97 SR11 14/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.76 SR11 18/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.76 SR11 12/01/2014 Mid-Ebb 7.24 SR7 28/06/2014 Mid-Ebb 3.74 SR11 21/01/2014 Mid-Ebb 7.55 SR7 03/07/2014 Mid-Ebb 3.74 SR11 25/01/2014 Mid-Ebb 7.53 SR7 03/07/2014 Mid-Ebb 3.73 SR12 04/01/2014 Mid-Ebb 5.75 SR7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
SR11 07/01/2014 Mid-Ebb 6.55 SR7 14/06/2014 Mid-Ebb 4.55 SR11 09/01/2014 Mid-Ebb 6.30 SR7 17/6/2014 Mid-Ebb 4.98 SR11 11/01/2014 Mid-Ebb 6.66 SR7 17/6/2014 Mid-Ebb 4.98 SR11 14/01/2014 Mid-Ebb 7.65 SR7 21/06/2014 Mid-Ebb 3.70 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.98 SR11 18/01/2014 Mid-Ebb 7.00 SR7 26/06/2014 Mid-Ebb 2.98 SR11 25/01/2014 Mid-Ebb 7.33 SR7 01/07/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb 7.53 SR7 05/07/2014 Mid-Ebb 3.73 SR12 20/01/2014 Mid-Ebb 5.75 SR7 05/07/2014 Mid-Ebb 3.73 SR12 09/01/2014 Mid-Ebb 5.57 SR7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.94 S</td></td<>											3.94 S
SR11 09/01/2014 Mid-Ebb 6.30 SR7 17/6/2014 Mid-Ebb 4.98 SR11 11/01/2014 Mid-Ebb 6.66 SR7 19/06/2014 Mid-Ebb 4.47 SR11 14/01/2014 Mid-Ebb 7.58 SR7 21/06/2014 Mid-Ebb 3.70 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.76 SR11 18/01/2014 Mid-Ebb 7.00 SR7 26/06/2014 Mid-Ebb 3.73 SR11 23/01/2014 Mid-Ebb 7.33 SR7 05/07/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb 7.53 SR7 05/07/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb 7.53 SR7 05/07/2014 Mid-Ebb 3.94 SR11 29/01/2014 Mid-Ebb 8.27 SR7 05/07/2014 Mid-Ebb 3.73 SR12 04/01/2014 Mid-Ebb 5.57 SR7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
SR11 11/01/2014 Mid-Ebb 6.66 SR7 19/06/2014 Mid-Ebb 4.47 SR11 14/01/2014 Mid-Ebb 7.58 SR7 21/06/2014 Mid-Ebb 3.70 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.98 SR11 18/01/2014 Mid-Ebb 7.00 SR7 26/06/2014 Mid-Ebb 2.98 SR11 12/01/2014 Mid-Ebb 7.00 SR7 26/06/2014 Mid-Ebb 2.98 SR11 12/01/2014 Mid-Ebb 7.24 SR7 28/06/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb 7.55 SR7 03/07/2014 Mid-Ebb 2.94 SR11 29/01/2014 Mid-Ebb 7.53 SR7 05/07/2014 Mid-Ebb 2.17 SR12 07/01/2014 Mid-Ebb 8.27 SR7 08/07/2014 Mid-Ebb 2.17 SR12 07/01/2014 Mid-Ebb 5.57 SR7 <											
SR11 14/01/2014 Mid-Ebb 7.58 SR7 21/06/2014 Mid-Ebb 3.70 SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.98 SR1 18/01/2014 Mid-Ebb 7.65 SR7 26/06/2014 Mid-Ebb 2.76 SR1 28/06/2014 Mid-Ebb 2.76 SR1 SR1 25/01/2014 Mid-Ebb 2.76 SR1 28/07/2014 Mid-Ebb 2.76 SR1 SR1 25/01/2014 Mid-Ebb 2.76 SR1 28/07/2014 Mid-Ebb 2.76 SR1 28/07/2014 Mid-Ebb 2.77 SR11 25/01/2014 Mid-Ebb 2.77 SR12 29/01/2014											
SR11 16/01/2014 Mid-Ebb 7.65 SR7 24/06/2014 Mid-Ebb 2.98 SR1 18/01/2014 Mid-Ebb 7.65 SR7 26/06/2014 Mid-Ebb 2.76 SR1 21/01/2014 Mid-Ebb 7.76 SR1 23/06/2014 Mid-Ebb 3.76 SR1 23/06/2014 Mid-Ebb 3.76 SR1 23/06/2014 Mid-Ebb 3.76 SR1 23/06/2014 Mid-Ebb 3.76 SR1 23/07/2014 Mid-Ebb 3.76 SR1 25/01/2014 Mid-Ebb 3.76 SR1 25/01/2014 Mid-Ebb 3.76 SR1 25/01/2014 Mid-Ebb 3.73 SR1 25/01/2014 Mid-Ebb 2.17 SR11 29/01/2014 Mid-Ebb 3.73 SR12 SR1 03/07/2014 Mid-Ebb 3.73 SR12 20/01/2014 Mid-Ebb 3.73 SR12 20/01/2014 Mid-Ebb 3.73 SR12 20/01/2014 Mid-Ebb 4.13 SR12 20/01/2014 Mid-Ebb 5.75 SR7 10/07/2014 Mid-Ebb 4											
SR11 18/01/2014 Mid-Ebb 7.00 SR7 26/06/2014 Mid-Ebb 2.76 SR11 21/01/2014 Mid-Ebb 7.24 SR7 28/06/2014 Mid-Ebb 3.57 SR11 23/01/2014 Mid-Ebb 7.33 SR7 01/07/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb 7.53 SR7 03/07/2014 Mid-Ebb 1.91 SR11 29/01/2014 Mid-Ebb 7.53 SR7 05/07/2014 Mid-Ebb 3.73 SR12 04/01/2014 Mid-Ebb 8.27 SR7 05/07/2014 Mid-Ebb 3.73 SR12 04/01/2014 Mid-Ebb 5.57 SR7 08/07/2014 Mid-Ebb 4.13 SR12 09/01/2014 Mid-Ebb 5.25 SR7 10/07/2014 Mid-Ebb 4.29 SR12 09/01/2014 Mid-Ebb 5.43 SR7 15/07/2014 Mid-Ebb 5.9 SR12 14/01/2014 Mid-Ebb 5.44 SR7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
SR11 21/01/2014 Mid-Ebb 7.24 SR7 28/06/2014 Mid-Ebb 3.57 SR11 23/01/2014 Mid-Ebb 7.33 SR7 01/07/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb 7.55 SR7 03/07/2014 Mid-Ebb 1.94 SR11 25/01/2014 Mid-Ebb 7.55 SR7 05/07/2014 Mid-Ebb 1.91 SR11 29/01/2014 Mid-Ebb 7.53 SR7 05/07/2014 Mid-Ebb 2.17 SR12 04/01/2014 Mid-Ebb 6.48 SR7 10/07/2014 Mid-Ebb 4.13 SR12 07/01/2014 Mid-Ebb 5.57 SR7 10/07/2014 Mid-Ebb 4.29 SR12 09/01/2014 Mid-Ebb 5.25 SR7 10/07/2014 Mid-Ebb 5.99 SR12 19/01/2014 Mid-Ebb 5.43 SR7 19/07/2014 Mid-Ebb 5.83 SR12 14/01/2014 Mid-Ebb 5.44 SR7 <											
SR11 23/01/2014 Mid-Ebb 7.33 SR7 01/07/2014 Mid-Ebb 3.94 SR11 25/01/2014 Mid-Ebb 7.55 SR7 03/07/2014 Mid-Ebb 1.91 SR11 27/01/2014 Mid-Ebb 7.55 SR7 05/07/2014 Mid-Ebb 2.17 SR11 29/01/2014 Mid-Ebb 8.27 SR7 08/07/2014 Mid-Ebb 3.73 SR12 04/01/2014 Mid-Ebb 6.48 SR7 10/07/2014 Mid-Ebb 4.13 SR12 07/01/2014 Mid-Ebb 5.57 SR7 12/07/2014 Mid-Ebb 4.29 SR12 09/01/2014 Mid-Ebb 5.25 SR7 15/07/2014 Mid-Ebb 5.90 SR12 11/01/2014 Mid-Ebb 5.43 SR7 15/07/2014 Mid-Ebb 5.81 SR12 14/01/2014 Mid-Ebb 5.44 SR7 19/07/2014 Mid-Ebb 3.83											
SR11 25/01/2014 Mid-Ebb 7.55 SR7 03/07/2014 Mid-Ebb 1.91 SR11 27/01/2014 Mid-Ebb 7.53 SR7 05/07/2014 Mid-Ebb 2.17 SR11 29/01/2014 Mid-Ebb 8.27 SR7 05/07/2014 Mid-Ebb 3.73 SR12 04/01/2014 Mid-Ebb 6.48 SR7 10/07/2014 Mid-Ebb 4.13 SR12 07/01/2014 Mid-Ebb 5.57 SR7 12/07/2014 Mid-Ebb 4.29 SR12 09/01/2014 Mid-Ebb 5.25 SR7 15/07/2014 Mid-Ebb 4.29 SR12 11/01/2014 Mid-Ebb 5.43 SR7 17/07/2014 Mid-Ebb 5.44											
SR11 27/01/2014 Mid-Ebb 7.53 SR7 05/07/2014 Mid-Ebb 2.17 SR11 29/01/2014 Mid-Ebb 8.27 SR7 08/07/2014 Mid-Ebb 3.73 SR12 04/01/2014 Mid-Ebb 6.48 SR7 10/07/2014 Mid-Ebb 4.13 SR12 07/01/2014 Mid-Ebb 5.57 SR7 12/07/2014 Mid-Ebb 4.29 SR12 09/01/2014 Mid-Ebb 5.25 SR7 15/07/2014 Mid-Ebb 5.99 SR12 11/01/2014 Mid-Ebb 5.43 SR7 19/07/2014 Mid-Ebb 5.83 SR12 14/01/2014 Mid-Ebb 5.44 SR7 19/07/2014 Mid-Ebb 3.83											1.91 S
SR11 29/01/2014 Mid-Ebb 8.27 SR7 08/07/2014 Mid-Ebb 3.73 SR12 04/01/2014 Mid-Ebb 6.48 SR7 10/07/2014 Mid-Ebb 4.13 SR12 07/01/2014 Mid-Ebb 5.57 SR7 12/07/2014 Mid-Ebb 4.29 SR12 09/01/2014 Mid-Ebb 5.25 SR7 15/07/2014 Mid-Ebb 5.99 SR12 01/01/2014 Mid-Ebb 5.43 SR7 17/07/2014 Mid-Ebb 5.83 SR12 14/01/2014 Mid-Ebb 5.44 SR7 19/07/2014 Mid-Ebb 3.83											2.17 S
SR12 04/01/2014 Mid-Ebb 6.48 SR7 10/07/2014 Mid-Ebb 4.13 SR12 07/01/2014 Mid-Ebb 5.57 SR7 12/07/2014 Mid-Ebb 4.29 SR12 09/01/2014 Mid-Ebb 5.25 SR7 15/07/2014 Mid-Ebb 5.90 SR12 11/01/2014 Mid-Ebb 5.43 SR7 17/07/2014 Mid-Ebb 5.83 SR12 14/01/2014 Mid-Ebb 5.44 SR7 19/07/2014 Mid-Ebb 3.83											3.73 S
SR12 07/01/2014 Mid-Ebb 5.57 SR7 12/07/2014 Mid-Ebb 4.29 SR12 09/01/2014 Mid-Ebb 5.25 SR7 15/07/2014 Mid-Ebb 5.90 SR12 11/01/2014 Mid-Ebb 5.43 SR7 17/07/2014 Mid-Ebb 5.83 SR12 14/01/2014 Mid-Ebb 5.44 SR7 19/07/2014 Mid-Ebb 3.83											4.13 S
SR12 09/01/2014 Mid-Ebb 5.25 SR7 15/07/2014 Mid-Ebb 5.90 SR12 11/01/2014 Mid-Ebb 5.43 SR7 17/07/2014 Mid-Ebb 5.83 SR12 14/01/2014 Mid-Ebb 5.44 SR7 19/07/2014 Mid-Ebb 3.83 SR3											4.29 S
SR12 11/01/2014 Mid-Ebb 5.43 SR7 17/07/2014 Mid-Ebb 5.83 SR12 14/01/2014 Mid-Ebb 5.44 SR7 19/07/2014 Mid-Ebb 3.83											5.90 S
											S
SR12 16/01/2014 Mid-Ebb 5.90 SR7 22/07/2014 Mid-Ebb 4.32	SR12	14/01/2014	Mid-Ebb	5.44				SR7	19/07/2014	Mid-Ebb	3.83 S
	SR12	16/01/2014	Mid-Ebb	5.90				SR7	22/07/2014	Mid-Ebb	4.32 S

		_						mpact DO /B) (ma/l) da	ta				
bb	6.04	9	R6	24/04/2014	Mid-Ebb	6 35		mpact DO (E 24/04/2014			SR10	24/04/2014	Mid-Ebb	6.83
bb	5.98			26/04/2014				26/04/2014				26/04/2014		6.88
	6.06			29/04/2014				29/04/2014				29/04/2014		6.92
bb														
bb	6.31			01/05/2014				01/05/2014				01/05/2014		7.23
bb	6.25			03/05/2014				03/05/2014				03/05/2014		7.35
bb	6.40			06/05/2014		6.17		06/05/2014		6.43		06/05/2014		6.57
				08/05/2014				08/05/2014				08/05/2014		6.20
				10/05/2014		5.67		10/05/2014		5.39		10/05/2014		5.70
				13/05/2014				13/05/2014				13/05/2014		
				15/05/2014		5.74	SR8	15/05/2014	Mid-Ebb	5.65	SR10	15/05/2014	Mid-Ebb	6.13
		S	R6	17/05/2014	Mid-Ebb	5.34	SR8	17/05/2014	Mid-Ebb	5.33	SR10	17/05/2014	Mid-Ebb	6.36
		S	R6	20/05/2014	Mid-Ebb		SR8	20/05/2014	Mid-Ebb		SR10	20/05/2014	Mid-Ebb	6.42
		S	R6	22/05/2014	Mid-Ebb	5.31	SR8	22/05/2014	Mid-Ebb	5.48	SR10	22/05/2014	Mid-Ebb	6.30
		S	R6	24/05/2014	Mid-Ebb	4.67	SR8	24/05/2014	Mid-Ebb	4.79	SR10	24/05/2014	Mid-Ebb	5.49
		S	R6	27/05/2014	Mid-Ebb	4.48	SR8	27/05/2014	Mid-Ebb	6.94	SR10	27/05/2014	Mid-Ebb	4.66
		S	R6	29/05/2014	Mid-Ebb	5.35	SR8	29/05/2014	Mid-Ebb	5.34	SR10	29/05/2014	Mid-Ebb	7.09
		s	R6	31/05/2014	Mid-Ebb	4.91	SR8	31/05/2014	Mid-Ebb	2.89	SR10	31/05/2014	Mid-Ebb	5.78
				03/06/2014				03/06/2014				03/06/2014		3.44
				05/06/2014				05/06/2014				05/06/2014		4.31
				07/06/2014				07/06/2014				07/06/2014		3.14
				10/06/2014				10/06/2014						6.61
				12/06/2014				12/06/2014				12/06/2014		4.38
												14/06/2014		
				14/06/2014				14/06/2014						6.12
			R6	17/6/2014				17/6/2014				17/6/2014		4.40
				19/06/2014				19/06/2014		4.70		19/06/2014		5.15
				21/06/2014				21/06/2014				21/06/2014		
				24/06/2014				24/06/2014				24/06/2014		5.31
				26/06/2014				26/06/2014				26/06/2014		5.53
		S	R6	28/06/2014	Mid-Ebb			28/06/2014		7.05	SR10	28/06/2014	Mid-Ebb	3.99
		S	R6	01/07/2014	Mid-Ebb	3.87	SR8	01/07/2014	Mid-Ebb	2.89	SR10	01/07/2014	Mid-Ebb	2.87
		S	R6	03/07/2014	Mid-Ebb	3.34	SR8	03/07/2014	Mid-Ebb	3.30	SR10	03/07/2014	Mid-Ebb	4.42
		S	R6	05/07/2014	Mid-Ebb	4.04	SR8	05/07/2014	Mid-Ebb	3.29	SR10	05/07/2014	Mid-Ebb	3.65
		S	R6	08/07/2014	Mid-Ebb	3.97	SR8	08/07/2014	Mid-Ebb	4.56	SR10	08/07/2014	Mid-Ebb	4.24
		s	R6	10/07/2014	Mid-Ebb	4.03	SR8	10/07/2014	Mid-Ebb	3.83	SR10	10/07/2014	Mid-Ebb	3.93
				12/07/2014				12/07/2014				12/07/2014		4.15
				15/07/2014				15/07/2014				15/07/2014		5.92
				17/07/2014		0.00		17/07/2014		0.04		17/07/2014		0.02
				19/07/2014		1 17		19/07/2014		5 20		19/07/2014		3.83
				22/07/2014				22/07/2014				22/07/2014		6.27
				24/04/2014				24/04/2014				24/04/2014		6.16
				26/04/2014				26/04/2014				26/04/2014		6.92
				29/04/2014				29/04/2014				29/04/2014		7.12
				01/05/2014				01/05/2014				01/05/2014		6.91
				03/05/2014				03/05/2014				03/05/2014		7.27
				06/05/2014		6.53		06/05/2014		6.17		06/05/2014		6.63
				08/05/2014				08/05/2014				08/05/2014		6.13
		S	R7	10/05/2014	Mid-Ebb	5.69	SR9	10/05/2014	Mid-Ebb	5.67	SR11	10/05/2014	Mid-Ebb	5.98
		S	R7	13/05/2014	Mid-Ebb		SR9	13/05/2014	Mid-Ebb		SR11	13/05/2014	Mid-Ebb	
		S	R7	15/05/2014	Mid-Ebb	5.62	SR9	15/05/2014	Mid-Ebb	6.50	SR11	15/05/2014	Mid-Ebb	6.35
		S	R7	17/05/2014	Mid-Ebb	5.74	SR9	17/05/2014	Mid-Ebb	5.28	SR11	17/05/2014	Mid-Ebb	6.56
		S	R7	20/05/2014	Mid-Ebb		SR9	20/05/2014	Mid-Ebb		SR11	20/05/2014	Mid-Ebb	6.14
		S	R7	22/05/2014	Mid-Ebb	4.90	SR9	22/05/2014	Mid-Ebb	5.31	SR11	22/05/2014	Mid-Ebb	6.12
		s	R7	24/05/2014	Mid-Ebb	4.73	SR9	24/05/2014	Mid-Ebb	5.56	SR11	24/05/2014	Mid-Ebb	3.90
				27/05/2014				27/05/2014				27/05/2014		3.69
				29/05/2014				29/05/2014				29/05/2014		5.35
				31/05/2014				31/05/2014				31/05/2014		6.85
				03/06/2014				03/06/2014				03/06/2014		4.28
				05/06/2014				05/06/2014				05/06/2014		6.18
				07/06/2014								07/06/2014		
				10/06/2014				07/06/2014 10/06/2014				10/06/2014		4.23 6.85
				12/06/2014				12/06/2014				12/06/2014		4.28
				14/06/2014				14/06/2014				14/06/2014		6.18
				17/6/2014				17/6/2014				17/6/2014		4.23
				19/06/2014				19/06/2014		5.04		19/06/2014		5.09
				21/06/2014				21/06/2014				21/06/2014		
				24/06/2014				24/06/2014				24/06/2014		4.26
				26/06/2014		2.76	SR9	26/06/2014	Mid-Ebb	3.84	SR11	26/06/2014	Mid-Ebb	3.43
		S	R7	28/06/2014	Mid-Ebb	3.57	SR9	28/06/2014	Mid-Ebb	3.27	SR11	28/06/2014	Mid-Ebb	5.01
		S	R7	01/07/2014	Mid-Ebb	3.94	SR9	01/07/2014	Mid-Ebb	4.85	SR11	01/07/2014	Mid-Ebb	3.63
		s	R7	03/07/2014	Mid-Ebb	1.91	SR9	03/07/2014	Mid-Ebb			03/07/2014		3.96
				05/07/2014				05/07/2014				05/07/2014		5.84
				08/07/2014				08/07/2014				08/07/2014		
				10/07/2014				10/07/2014				10/07/2014		3.63
				12/07/2014				12/07/2014				12/07/2014		3.96
				15/07/2014				15/07/2014				15/07/2014		5.84
				17/07/2014		0.00		17/07/2014		4.00		17/07/2014		0.04
						3 00				5 10				3 07
		10	111	19/07/2014				19/07/2014 22/07/2014				19/07/2014 22/07/2014		3.87 6.62
			דחי	22/07/2014							SH11	22/07/2014		

Cluster 2 DO (B) 0.7 x Baseline vs Impact

Baseline x 0.7		Impact	
Raw Statistics		Raw Statistics	
Number of Valid Observations	144	Number of Valid Observations	430
Number of Distinct Observations	95	Number of Missing Values	38
Minimum	4.1	Number of Distinct Observations	334
Maximum	6.98	Minimum	1.59
Mean of Raw Data	5.021	Maximum	8.415
Standard Deviation of Raw Data	0.519	Mean of Raw Data	4.986
Kstar	96.46	Standard Deviation of Raw Data	1.37
Mean of Log Transformed Data	1.609	Kstar	11.73
Standard Deviation of Log Transformed Data	0.1	Mean of Log Transformed Data	1.564
-		Standard Deviation of Log Transformed Data	0.306
Normal Distribution Test Results			
		Normal Distribution Test Results	
Correlation Coefficient R	0.974		
Approximate Shapiro Wilk Test Statistic	0.944	Correlation Coefficient R	0.994
Approximate Shapiro Wilk P Value	1.05E-05	Approximate Shapiro Wilk Test Statistic	0.968
Lilliefors Test Statistic	7.03E-02	Approximate Shapiro Wilk P Value	8.50E-06
Lilliefors Critical (0.95) Value	0.0738	Lilliefors Test Statistic	0.0764
Data appear Normal at (0.05) Significance Level		Lilliefors Critical (0.95) Value	0.0427
		Data not Normal at (0.05) Significance Level	

Wilcoxon-Mann-Whitney Site v	s Background Comparis	on Test for F	ull Data Sets without NDs
User Selected Options			
Full Precision	OFF		
Confidence Coefficient	95%		
Substantial Difference	0		
Selected Null Hypothesis			Than or Equal to Background Mean/Median (Form 2)
Alternative Hypothesis	Site or AOC Mean/Me	dian Less Tha	an Background Mean/Median
Area of Concern Data: Impact			
Background Data: Baseline x 0).7		
Raw Statistics			
	Site	Background	
Number of Valid Observations	430	144	
Number of Missing Values	38	0	
Number of Distinct Observation			
Minimum	1.59		
Maximum	8.415		
Mean	4.986		
Median	4.903		
SD	1.37		
SE of Mean	0.0661	0.0433	
Wilcoxon-Mann-Whitney (WMV	N) Test		
H0: Mean/Median of Site or AC	DC >= Mean/Median of	Background	
Site Rank Sum W-Stat	122499		
WMW Test U-Stat	-0.653		
WMW Critical Value (0.050)	-1.645		
P-Value	2.57E-01		
Conclusion with Alpha = 0.05			
Do Not Reject H0, Conclude	Site >= Background		
P-Value >= alpha (0.05)			

ProUCL Version 4.0 (Version 4.00.04)

Cluster 1 TIN(Insitu) 1.3 x Baseline vs Impact

1.3	x Baseline T	IN (Insitu) (r	ng/L) data
SR5	04/01/2014	Mid-Flood	0.38
SR5	07/01/2014	Mid-Flood	0.48
SR5	09/01/2014	Mid-Flood	0.51
SR5	11/01/2014	Mid-Flood	0.66
SR5	14/01/2014	Mid-Flood	0.54
SR5	16/01/2014	Mid-Flood	0.43
SR5	18/01/2014	Mid-Flood	0.44
SR5	21/01/2014	Mid-Flood	0.40
SR5	23/01/2014	Mid-Flood	0.49
SR5	25/01/2014	Mid-Flood	0.70
SR5	27/01/2014	Mid-Flood	0.61
SR5	29/01/2014	Mid-Flood	0.49

Im	npact TIN (In:	situ) (mg/L) da	ata
SR5	24/04/2014		0.36
SR5	26/04/2014	Mid-Flood	0.55
SR5	29/04/2014	Mid-Flood	0.74
SR5		Mid-Flood	0.63
SR5	03/05/2014	Mid-Flood	0.44
SR5	06/05/2014	Mid-Flood	0.40
SR5	08/05/2014	Mid-Flood	0.41
SR5	10/05/2014	Mid-Flood	0.68
SR5	13/05/2014	Mid-Flood	
SR5	15/05/2014	Mid-Flood	1.39
SR5	17/05/2014	Mid-Flood	1.60
SR5	20/05/2014	Mid-Flood	0.91
SR5	22/05/2014	Mid-Flood	1.92
SR5	24/05/2014	Mid-Flood	1.10
SR5	27/05/2014	Mid-Flood	1.35
SR5	29/05/2014	Mid-Flood	1.10
SR5		Mid-Flood	0.98
SR5	03/06/2014	Mid-Flood	0.99
SR5	05/06/2014	Mid-Flood	1.00
SR5	07/06/2014	Mid-Flood	0.96
SR5	10/06/2014	Mid-Flood	0.65
SR5	12/06/2014	Mid-Flood	0.73
SR5			0.78
SR5	17/6/2014	Mid-Flood	0.81
SR5	19/06/2014	Mid-Flood	0.98
SR5	21/06/2014	Mid-Flood	
SR5	24/06/2014	Mid-Flood	1.25
SR5	26/06/2014	Mid-Flood	1.28
SR5	28/06/2014	Mid-Flood	1.06
SR5	01/07/2014	Mid-Flood	1.01
SR5	03/07/2014	Mid-Flood	1.23
SR5	05/07/2014	Mid-Flood	1.38
SR5	08/07/2014		0.98
SR5	10/07/2014	Mid-Flood	0.96
SR5	12/07/2014	Mid-Flood	1.07
SR5	15/07/2014	Mid-Flood	0.80
SR5	17/07/2014	Mid-Flood	0.88
SR5			0.71
SR5	22/07/2014	Mid-Flood	1.05

Cluster 1 TIN(Insitu) 1.3 x Baseline vs Impact

SR5		Baseline x 1.3	
Raw Statistics		Raw Statistics	
Number of Valid Observations	37	Number of Valid Observations	12
Number of Missing Values	2	Number of Distinct Observations	11
Number of Distinct Observations	33	Minimum	0.38
Minimum	0.31	Maximum	0.7
Maximum	2.01	Mean of Raw Data	0.511
Mean of Raw Data	1.025	Standard Deviation of Raw Data	0.101
Standard Deviation of Raw Data	0.455	Kstar	22.13
Kstar	4.281	Mean of Log Transformed Data	-0.689
Mean of Log Transformed Data	-0.0871	Standard Deviation of Log Transformed Data	0.191
Standard Deviation of Log Transformed Data	0.504		
		Normal Distribution Test Results	
Normal Distribution Test Results			
		Correlation Coefficient R	0.971
Correlation Coefficient R	0.987	Shapiro Wilk Test Statistic	0.933
Shapiro Wilk Test Statistic	0.959	Shapiro Wilk Critical (0.95) Value	0.859
Shapiro Wilk Critical (0.95) Value	0.936	Approximate Shapiro Wilk P Value	0.453
Approximate Shapiro Wilk P Value	0.251	Lilliefors Test Statistic	0.17
Lilliefors Test Statistic	0.101	Lilliefors Critical (0.95) Value	0.256
Lilliefors Critical (0.95) Value	0.146	Data appear Normal at (0.05) Significance Level	
Data appear Normal at (0.05) Significance Level			

	t-Test Site vs Background Comparison for Full Data Sets without NDs
User Selected Options	
Full Precision	OFF
Confidence Coefficient	95%
Substantial Difference (S)	0
Selected Null Hypothesis	Site or AOC Mean Less Than or Equal to Background Mean (Form 1)
Alternative Hypothesis	Site of AOC Mean Creater Than the Background Mean
Alternative Hypothesis	
Area of Concern Data: SR5	
Background Data: Baseline x 1.3	
Raw Statistics	
	Site Background
Number of Valid Observations	37 12
Number of Missing Values	2 0
Number of Distinct Observations	
Minimum	0.31 0.38
Maximum	2.01 0.7
Mean	1.025 0.511
Median	0.98 0.49
SD	0.455 0.101
SE of Mean	0.0748 0.0291
Site vs Background Two-Sample	t-Test
H0: Mu of Site - Mu of Backgrour	
Ho. Mu of Sile - Mu of Backgroui	t-Test Critical
Method	DF Value t (0.050) P-Value
Pooled (Equal Variance)	47 3.857 1.678 0
Satterthwaite (Unequal Variance)	
Pooled SD 0.401	
Conclusion with Alpha = 0.050	
	t H0, Conclude Site > Background
* Satterthwaite Test: Reject H0,	· · · · · · · · · · · · · · · · · · ·
Test of Equality of Variances	
Numerator DF Denomina	ator DF F-Test Value P-Value
36 1	
Conclusion with Alpha = 0.05	·
* Two variances are not equal	
The variances are not equal	

Cluster 1 TIN (Insitu) Impact vs Gradient

60			IN (Insitu) (0.00		npact TIN (Insitu) (mg/L)	
	24/04/2014 Mid-Fl		G4	24/04/2014 Mid-Flood	0.28	SR5	24/04/2014 Mid-Flood	0.32
	26/04/2014 Mid-Fl		G4	26/04/2014 Mid-Flood	0.30	SR5	26/04/2014 Mid-Flood	0.54
	29/04/2014 Mid-Fl		G4	29/04/2014 Mid-Flood	0.30	SR5	29/04/2014 Mid-Flood	0.65
	01/05/2014 Mid-Fl		G4	01/05/2014 Mid-Flood	0.41	SR5	01/05/2014 Mid-Flood	0.47
	03/05/2014 Mid-Fl		G4	03/05/2014 Mid-Flood	0.28	SR5	03/05/2014 Mid-Flood	0.56
G2	06/05/2014 Mid-Fl	od 0.22	G4	06/05/2014 Mid-Flood	0.19	SR5	06/05/2014 Mid-Flood	0.38
G2	08/05/2014 Mid-Fl	od 0.34	G4	08/05/2014 Mid-Flood	0.14	SR5	08/05/2014 Mid-Flood	0.44
G2	10/05/2014 Mid-Fl	od 0.58	G4	10/05/2014 Mid-Flood	0.43	SR5	10/05/2014 Mid-Flood	0.75
G2	13/05/2014 Mid-Fl	bod	G4	13/05/2014 Mid-Flood		SR5	13/05/2014 Mid-Flood	
G2	15/05/2014 Mid-Fl	od 1.35	G4	15/05/2014 Mid-Flood	0.62	SR5	15/05/2014 Mid-Flood	1.59
	17/05/2014 Mid-Fl		G4	17/05/2014 Mid-Flood	0.90	SR5	17/05/2014 Mid-Flood	2.01
	20/05/2014 Mid-Fl		G4	20/05/2014 Mid-Flood	0.66	SR5	20/05/2014 Mid-Flood	1.50
	22/05/2014 Mid-Fl		G4 G4	22/05/2014 Mid-Flood	0.68	SR5	22/05/2014 Mid-Flood	1.75
	24/05/2014 Mid-Fl		G4	24/05/2014 Mid-Flood	0.97	SR5	24/05/2014 Mid-Flood	1.72
	27/05/2014 Mid-Fl		G4	27/05/2014 Mid-Flood	0.53	SR5	27/05/2014 Mid-Flood	1.7
	29/05/2014 Mid-Fl		G4	29/05/2014 Mid-Flood		SR5	29/05/2014 Mid-Flood	1.34
G2	31/05/2014 Mid-Fl	od 0.83	G4	31/05/2014 Mid-Flood	0.43	SR5	31/05/2014 Mid-Flood	0.82
G2	03/06/2014 Mid-Fl	od 0.68	G4	03/06/2014 Mid-Flood	0.56	SR5	03/06/2014 Mid-Flood	1.12
G2	05/06/2014 Mid-Fl	od 0.54	G4	05/06/2014 Mid-Flood	0.44	SR5	05/06/2014 Mid-Flood	0.92
G2	07/06/2014 Mid-Fl	od 0.63	G4	07/06/2014 Mid-Flood	0.40	SR5	07/06/2014 Mid-Flood	0.3
G2	10/06/2014 Mid-Fl	od 0.42	G4	10/06/2014 Mid-Flood	0.40	SR5	10/06/2014 Mid-Flood	0.9
	12/06/2014 Mid-Fl		G4	12/06/2014 Mid-Flood	0.31	SR5	12/06/2014 Mid-Flood	0.44
			G4			SR5		1.10
	14/06/2014 Mid-Fl			14/06/2014 Mid-Flood	0.51		14/06/2014 Mid-Flood	
	17/6/2014 Mid-Fl		G4	17/6/2014 Mid-Flood	0.80	SR5	17/6/2014 Mid-Flood	0.6
	19/06/2014 Mid-Fl		G4	19/06/2014 Mid-Flood	0.63	SR5	19/06/2014 Mid-Flood	0.8
G2	21/06/2014 Mid-Fl	bod	G4	21/06/2014 Mid-Flood		SR5	21/06/2014 Mid-Flood	
G2	24/06/2014 Mid-Fl	od 0.88	G4	24/06/2014 Mid-Flood	0.45	SR5	24/06/2014 Mid-Flood	1.0
G2	26/06/2014 Mid-Fl	od 1.22	G4	26/06/2014 Mid-Flood	0.88	SR5	26/06/2014 Mid-Flood	1.4
G2	28/06/2014 Mid-Fl	od 1.04	G4	28/06/2014 Mid-Flood	0.44	SR5	28/06/2014 Mid-Flood	1.2
	01/07/2014 Mid-Fl		G4	01/07/2014 Mid-Flood	0.58	SR5	01/07/2014 Mid-Flood	1.0
	03/07/2014 Mid-Fl		G4	03/07/2014 Mid-Flood	0.57	SR5	03/07/2014 Mid-Flood	1.0
	05/07/2014 Mid-Fl		G4	05/07/2014 Mid-Flood	0.61	SR5	05/07/2014 Mid-Flood	1.5
	08/07/2014 Mid-Fl		G4	08/07/2014 Mid-Flood	0.68	SR5	08/07/2014 Mid-Flood	0.9
G2	10/07/2014 Mid-Fl	od 1.16	G4	10/07/2014 Mid-Flood	0.60	SR5	10/07/2014 Mid-Flood	1.40
G2	12/07/2014 Mid-Fl	od 1.03	G4	12/07/2014 Mid-Flood	0.45	SR5	12/07/2014 Mid-Flood	1.1
G2	15/07/2014 Mid-Fl	od 1.05	G4	15/07/2014 Mid-Flood	0.73	SR5	15/07/2014 Mid-Flood	0.79
G2	17/07/2014 Mid-Fl	od 0.92	G4	17/07/2014 Mid-Flood	0.78	SR5	17/07/2014 Mid-Flood	0.89
	19/07/2014 Mid-Fl		G4	19/07/2014 Mid-Flood	0.80	SR5	19/07/2014 Mid-Flood	0.98
	22/07/2014 Mid-Fl		G4	22/07/2014 Mid-Flood	0.72	SR5	22/07/2014 Mid-Flood	1.5
	24/04/2014 Mid-Fl		01	22/01/2014 1000	0.12	0110		1.0
	26/04/2014 Mid-Fl							
	29/04/2014 Mid-Fl							
	01/05/2014 Mid-Fl							
G3	03/05/2014 Mid-Fl	od 0.31						
G3	06/05/2014 Mid-Fl	od 0.16						
G3	08/05/2014 Mid-Fl	od 0.18						
G3	10/05/2014 Mid-Fl	od 0.34						
	13/05/2014 Mid-Fl							
	15/05/2014 Mid-Fl							
	17/05/2014 Mid-Fl							
	20/05/2014 Mid-Fl							
	22/05/2014 Mid-Fl							
	24/05/2014 Mid-Fl							
G3	27/05/2014 Mid-Fl	od 0.60						
G3	29/05/2014 Mid-Fl	od 0.32						
G3	31/05/2014 Mid-Fl	od 0.49						
	03/06/2014 Mid-Fl							
	05/06/2014 Mid-Fl							
	07/06/2014 Mid-Fl							
	10/06/2014 Mid-Fl							
	12/06/2014 Mid-Fl							
G3	14/06/2014 Mid-Fl	od 0.49						
G3	17/6/2014 Mid-Fl	od 0.84						
G3	19/06/2014 Mid-Fl	od 0.78						
	21/06/2014 Mid-Fl							
	24/06/2014 Mid-Fl							
	26/06/2014 Mid-Fl							
	28/06/2014 Mid-Fl							
	01/07/2014 Mid-Fl							
G3	03/07/2014 Mid-Fl	od 0.76						
G3	05/07/2014 Mid-Fl	od 0.87						
G3	08/07/2014 Mid-Fl	od 0.75						
	10/07/2014 Mid-Fl							
	12/07/2014 Mid-Fl							
	15/07/2014 Mid-Fl	od 0.85						
G3								
G3	17/07/2014 Mid-Fl	od 0.73						
G3 G3								

Cluster 1 TIN (Insitu) Impact vs Gradient

SR5		Gradient	
Raw Statistics		Raw Statistics	
Number of Valid Observations	37	Number of Valid Observations	110
Number of Missing Values	2	Number of Missing Values	7
Number of Distinct Observations	33	Number of Distinct Observations	109
Minimum	0.31	Minimum	0.14
Maximum	2.01	Maximum	1.832
Mean of Raw Data	1.025	Mean of Raw Data	0.666
Standard Deviation of Raw Data	0.455	Standard Deviation of Raw Data	0.331
Kstar	4.281	Kstar	3.988
Mean of Log Transformed Data	-0.0871	Mean of Log Transformed Data	-0.533
Standard Deviation of Log Transformed Data	0.504	Standard Deviation of Log Transformed Data	0.525
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.987	Correlation Coefficient R	0.972
Shapiro Wilk Test Statistic	0.959	Approximate Shapiro Wilk Test Statistic	0.937
Shapiro Wilk Critical (0.95) Value	0.936	Approximate Shapiro Wilk P Value	4.12E-05
Approximate Shapiro Wilk P Value	0.251	Lilliefors Test Statistic	0.0778
Lilliefors Test Statistic	0.101	Lilliefors Critical (0.95) Value	0.0845
Lilliefors Critical (0.95) Value	0.146	Data appear Normal at (0.05) Significance Level	
Data appear Normal at (0.05) Significance Level			

	t-Test Site vs Background Comparison for Full Data Sets without NDs
User Selected Options	
Full Precision	OFF
Confidence Coefficient	95%
Substantial Difference (S)	0
Selected Null Hypothesis	Site or AOC Mean Less Than or Equal to Background Mean (Form 1)
Alternative Hypothesis	Site or AOC Mean Greater Than the Background Mean
Area of Concern Data: SR5	
Background Data: Gradient	
Raw Statistics	
L	Site Background
Number of Valid Observations	37 110
Number of Missing Values	2 7
Number of Distinct Observations	33 109
Minimum	0.31 0.14
Maximum	2.01 1.832
Mean	1.025 0.666
Median	0.98 0.611
SD	0.455 0.331
SE of Mean	0.0748 0.0316
Site vs Background Two-Sample	t-Test
H0: Mu of Site - Mu of Backgroun	d <= 0
	t-Test Critical
Method	DF Value t (0.050) P-Value
Pooled (Equal Variance)	145 5.157 1.655 0
Satterthwaite (Unequal Variance) Pooled SD 0.366	49.5 4.417 1.677 0
Conclusion with Alpha = 0.050	
* Student t (Pooled) Test: Reject * Satterthwaite Test: Reject H0,	t H0, Conclude Site > Background Conclude Site > Background
Test of Equality of Variances	
Numerator DF Denomina	
36 109 Conclusion with Alpha = 0.05	9 1.885 0.013
Conclusion with Alpha = 0.05	
* Two variances are not equal	

Cluster 1 TIN(lab) 1.3 x Baseline vs Impact

1.3	3 x Baseline	TIN (lab) (m	g/L) data
SR5	04/01/2014	Mid-Flood	0.29
SR5	07/01/2014	Mid-Flood	0.32
SR5	09/01/2014	Mid-Flood	0.29
SR5	11/01/2014	Mid-Flood	0.32
SR5	14/01/2014	Mid-Flood	0.21
SR5	16/01/2014	Mid-Flood	0.26
SR5	18/01/2014	Mid-Flood	0.36
SR5	21/01/2014	Mid-Flood	0.20
SR5	23/01/2014	Mid-Flood	0.34
SR5	25/01/2014	Mid-Flood	0.29
SR5	27/01/2014	Mid-Flood	0.25
SR5	29/01/2014	Mid-Flood	0.40

	Impact TIN (la	ab) (mg/L) c	lata
SR5	24/04/2014	Mid-Flood	0.36
SR5	26/04/2014	Mid-Flood	0.55
SR5	29/04/2014	Mid-Flood	0.74
SR5	01/05/2014	Mid-Flood	0.63
SR5	03/05/2014	Mid-Flood	0.44
SR5	06/05/2014	Mid-Flood	0.40
SR5	08/05/2014	Mid-Flood	0.41
SR5	10/05/2014	Mid-Flood	0.68
SR5	13/05/2014	Mid-Flood	
SR5	15/05/2014	Mid-Flood	1.39
SR5	17/05/2014	Mid-Flood	1.60
SR5	20/05/2014	Mid-Flood	0.91
SR5	22/05/2014	Mid-Flood	1.92
SR5	24/05/2014	Mid-Flood	1.10
SR5	27/05/2014	Mid-Flood	1.35
SR5	29/05/2014	Mid-Flood	1.10
SR5	31/05/2014	Mid-Flood	0.98
SR5	03/06/2014	Mid-Flood	0.99
SR5	05/06/2014	Mid-Flood	1.00
SR5	07/06/2014	Mid-Flood	0.96
SR5	10/06/2014	Mid-Flood	0.65
SR5	12/06/2014	Mid-Flood	0.73
SR5	14/06/2014	Mid-Flood	0.78
SR5	17/6/2014	Mid-Flood	0.81
SR5	19/06/2014	Mid-Flood	0.98
SR5		Mid-Flood	
SR5	24/06/2014	Mid-Flood	1.25
SR5		Mid-Flood	1.28
SR5		Mid-Flood	1.06
SR5	01/07/2014	Mid-Flood	1.01
SR5	03/07/2014	Mid-Flood	1.23
SR5		Mid-Flood	1.38
SR5	08/07/2014	Mid-Flood	0.98
SR5		Mid-Flood	0.96
SR5			1.07
SR5	15/07/2014	Mid-Flood	0.80
SR5			0.88
SR5		Mid-Flood	0.71
SR5	22/07/2014	Mid-Flood	1.05

Cluster 1 TIN(lab) 1.3 x Baseline vs Impact

SR5		Baseline x 1.3	
Raw Statistics		Raw Statistics	
Number of Valid Observations	38	Number of Valid Observations	12
Number of Missing Values	1	Number of Distinct Observations	11
Number of Distinct Observations	34	Minimum	0.26
Minimum	0	Maximum	0.52
Maximum	1.92	Mean of Raw Data	0.383
Mean of Raw Data	0.924	Standard Deviation of Raw Data	0.0759
Standard Deviation of Raw Data	0.368	Kstar	20.23
		Mean of Log Transformed Data	-0.98
Normal Distribution Test Results		Standard Deviation of Log Transformed Data	0.204
Correlation Coefficient R	0.987	Normal Distribution Test Results	
Shapiro Wilk Test Statistic	0.986		
Shapiro Wilk Critical (0.95) Value	0.938	Correlation Coefficient R	0.995
Approximate Shapiro Wilk P Value	0.938	Shapiro Wilk Test Statistic	0.986
Lilliefors Test Statistic	0.106	Shapiro Wilk Critical (0.95) Value	0.859
Lilliefors Critical (0.95) Value	0.144	Approximate Shapiro Wilk P Value	0.995
Data appear Normal at (0.05) Significance Level		Lilliefors Test Statistic	0.101
		Lilliefors Critical (0.95) Value	0.256
		Data appear Normal at (0.05) Significance Level	

	t-Test Site vs Background Comparison for Full Data Sets without NDs
User Selected Options	
Full Precision	OFF
Confidence Coefficient	95%
Substantial Difference (S)	0
Selected Null Hypothesis	Site or AOC Mean Less Than or Equal to Background Mean (Form 1)
Alternative Hypothesis	Site or AOC Mean Greater Than the Background Mean
Alternative Hypothesis	
Area of Concern Data: SR5	
Background Data: Baseline x	.3
Raw Statistics	
	Site Background
Number of Valid Observations	38 12
Number of Missing Values	1 0
Number of Distinct Observatio	ns 34 11
Minimum	0 0.26
Maximum	1.92 0.52
Mean	0.924 0.383
Median	0.97 0.38
SD	0.368 0.0759
SE of Mean	0.0597 0.0219
Site vs Background Two-Sam	le t-Test
H0: Mu of Site - Mu of Backgro	und <= 0
	t-Test Critical
Method	DF Value t (0.050) P-Value
Pooled (Equal Variance)	48 5.035 1.677 0
Satterthwaite (Unequal Varian Pooled SD 0.325	ce) 44.9 8.52E+00 1.679 0
Conclusion with Alpha = 0.050	ect H0, Conclude Site > Background
· · · ·	0, Conclude Site > Background
Test of Equality of Variances	
	inator DF F-Test Value P-Value
37	11 23.454 0
Conclusion with Alpha = 0.05	
* Two variances are not equa	

Cluster 1 TIN (Lab) Impact vs Gradient

		Gradient TI	V (lab) (mr	n/l) data			Impact TIN (lab) (mg/L) d	ata
G2	24/04/2014 Mid-Flood	0.28	G4	24/04/2014 Mid-Flood	0.55	SR5	24/04/2014 Mid-Flood	0.36
	26/04/2014 Mid-Flood	0.20	G4	26/04/2014 Mid-Flood	0.40	SR5	26/04/2014 Mid-Flood	0.55
	29/04/2014 Mid-Flood	0.64	G4	29/04/2014 Mid-Flood	0.31	SR5	29/04/2014 Mid-Flood	0.74
	01/05/2014 Mid-Flood		G4 G4	01/05/2014 Mid-Flood	0.46	SR5	01/05/2014 Mid-Flood	0.63
	03/05/2014 Mid-Flood	0.61				SR5	03/05/2014 Mid-Flood	
		0.56	G4	03/05/2014 Mid-Flood	0.52			0.44
	06/05/2014 Mid-Flood	0.42	G4	06/05/2014 Mid-Flood	0.68	SR5	06/05/2014 Mid-Flood	0.40
	08/05/2014 Mid-Flood	0.32	G4	08/05/2014 Mid-Flood	1.00	SR5	08/05/2014 Mid-Flood	0.41
	10/05/2014 Mid-Flood	0.60	G4	10/05/2014 Mid-Flood	0.26	SR5	10/05/2014 Mid-Flood	0.68
G2	13/05/2014 Mid-Flood		G4	13/05/2014 Mid-Flood		SR5	13/05/2014 Mid-Flood	0.00
G2	15/05/2014 Mid-Flood	1.17	G4	15/05/2014 Mid-Flood	0.63	SR5	15/05/2014 Mid-Flood	1.39
G2	17/05/2014 Mid-Flood	1.48	G4	17/05/2014 Mid-Flood	0.74	SR5	17/05/2014 Mid-Flood	1.60
G2	20/05/2014 Mid-Flood	1.34	G4	20/05/2014 Mid-Flood	1.01	SR5	20/05/2014 Mid-Flood	0.91
G2	22/05/2014 Mid-Flood	1.66	G4	22/05/2014 Mid-Flood	1.09	SR5	22/05/2014 Mid-Flood	1.92
G2	24/05/2014 Mid-Flood	1.14	G4	24/05/2014 Mid-Flood	0.48	SR5	24/05/2014 Mid-Flood	1.10
G2	27/05/2014 Mid-Flood	1.14	G4	27/05/2014 Mid-Flood	0.48	SR5	27/05/2014 Mid-Flood	1.35
G2	29/05/2014 Mid-Flood	0.72	G4	29/05/2014 Mid-Flood		SR5	29/05/2014 Mid-Flood	1.10
G2	31/05/2014 Mid-Flood	0.84	G4	31/05/2014 Mid-Flood	0.53	SR5	31/05/2014 Mid-Flood	0.98
	03/06/2014 Mid-Flood	0.71	G4	03/06/2014 Mid-Flood	0.52	SR5	03/06/2014 Mid-Flood	0.99
	05/06/2014 Mid-Flood	0.72	G4	05/06/2014 Mid-Flood	0.47	SR5	05/06/2014 Mid-Flood	1.00
	07/06/2014 Mid-Flood	0.46	G4	07/06/2014 Mid-Flood	0.32	SR5	07/06/2014 Mid-Flood	0.96
	10/06/2014 Mid-Flood	0.52	G4	10/06/2014 Mid-Flood	0.21	SR5	10/06/2014 Mid-Flood	0.65
	12/06/2014 Mid-Flood	0.67	G4	12/06/2014 Mid-Flood	0.35	SR5	12/06/2014 Mid-Flood	0.73
						SR5		
	14/06/2014 Mid-Flood	0.92	G4	14/06/2014 Mid-Flood	0.42		14/06/2014 Mid-Flood	0.78
	17/6/2014 Mid-Flood	0.96	G4	17/6/2014 Mid-Flood	0.56	SR5	17/6/2014 Mid-Flood	0.81
	19/06/2014 Mid-Flood	1.34	G4	19/06/2014 Mid-Flood	0.62	SR5	19/06/2014 Mid-Flood	0.98
	21/06/2014 Mid-Flood		G4	21/06/2014 Mid-Flood	0.55	SR5	21/06/2014 Mid-Flood	
	24/06/2014 Mid-Flood	1.05	G4	24/06/2014 Mid-Flood	0.53	SR5	24/06/2014 Mid-Flood	1.25
G2	26/06/2014 Mid-Flood	1.14	G4	26/06/2014 Mid-Flood	0.58	SR5	26/06/2014 Mid-Flood	1.28
G2	28/06/2014 Mid-Flood	0.96	G4	28/06/2014 Mid-Flood	0.43	SR5	28/06/2014 Mid-Flood	1.06
G2	01/07/2014 Mid-Flood	0.83	G4	01/07/2014 Mid-Flood	0.68	SR5	01/07/2014 Mid-Flood	1.01
G2	03/07/2014 Mid-Flood	1.14	G4	03/07/2014 Mid-Flood	0.67	SR5	03/07/2014 Mid-Flood	1.23
G2	05/07/2014 Mid-Flood	1.15	G4	05/07/2014 Mid-Flood	0.55	SR5	05/07/2014 Mid-Flood	1.38
G2	08/07/2014 Mid-Flood	0.80	G4	08/07/2014 Mid-Flood	0.59	SR5	08/07/2014 Mid-Flood	0.98
G2	10/07/2014 Mid-Flood	0.70	G4	10/07/2014 Mid-Flood	0.36	SR5	10/07/2014 Mid-Flood	0.96
G2	12/07/2014 Mid-Flood	0.88	G4	12/07/2014 Mid-Flood	0.54	SR5	12/07/2014 Mid-Flood	1.07
G2	15/07/2014 Mid-Flood	0.92	G4	15/07/2014 Mid-Flood	0.62	SR5	15/07/2014 Mid-Flood	0.80
	17/07/2014 Mid-Flood	0.84	G4	17/07/2014 Mid-Flood	0.56	SR5	17/07/2014 Mid-Flood	0.88
	19/07/2014 Mid-Flood	0.76	G4	19/07/2014 Mid-Flood	0.52	SR5	19/07/2014 Mid-Flood	0.71
	22/07/2014 Mid-Flood	0.91	G4	22/07/2014 Mid-Flood	0.64	SR5	22/07/2014 Mid-Flood	1.05
	24/04/2014 Mid-Flood	0.27	01		0.01	0110		1.00
	26/04/2014 Mid-Flood	0.26						
	29/04/2014 Mid-Flood	0.20						
	01/05/2014 Mid-Flood	0.45						
	03/05/2014 Mid-Flood	0.46						
	06/05/2014 Mid-Flood	0.54						
	08/05/2014 Mid-Flood	0.31						
	10/05/2014 Mid-Flood	0.90						
G3	13/05/2014 Mid-Flood							
G3	15/05/2014 Mid-Flood	0.62						
G3	17/05/2014 Mid-Flood	0.98						
G3	20/05/2014 Mid-Flood	0.87						
G3	22/05/2014 Mid-Flood	1.66						
G3	24/05/2014 Mid-Flood	0.49						
G3	27/05/2014 Mid-Flood	0.64						
	29/05/2014 Mid-Flood	0.49						
	31/05/2014 Mid-Flood	0.49						
	03/06/2014 Mid-Flood	0.72						
	05/06/2014 Mid-Flood	0.72						
	07/06/2014 Mid-Flood	0.02						
	10/06/2014 Mid-Flood	0.27						
	12/06/2014 Mid-Flood	0.36						
	14/06/2014 Mid-Flood	0.44						
G3	17/6/2014 Mid-Flood	0.66						
	19/06/2014 Mid-Flood	0.70						
	21/06/2014 Mid-Flood							
	24/06/2014 Mid-Flood	0.44						
G3	26/06/2014 Mid-Flood	0.78						
G3	28/06/2014 Mid-Flood	0.70						
G3	01/07/2014 Mid-Flood	0.67						
G3	03/07/2014 Mid-Flood	0.80						
G3	05/07/2014 Mid-Flood	0.65						
	08/07/2014 Mid-Flood	0.52						
	10/07/2014 Mid-Flood	0.40						
	12/07/2014 Mid-Flood	0.45						
		0.74						
	15/07/2014 Mid-Flood							
G3	15/07/2014 Mid-Flood 17/07/2014 Mid-Flood							
	17/07/2014 Mid-Flood	0.56						
G3 G3 G3	17/07/2014 Mid-Flood 19/07/2014 Mid-Flood							

Cluster 1 TIN (Lab) Impact vs Gradient

SR5		Gradient	
Raw Statistics		Raw Statistics	
Number of Valid Observations	37	Number of Valid Observations	110
Number of Missing Values	2	Number of Missing Values	7
Number of Distinct Observations	33	Number of Distinct Observations	62
Minimum	0.36	Minimum	0.21
Maximum	1.92	Maximum	1.66
Mean of Raw Data	0.949	Mean of Raw Data	0.674
Standard Deviation of Raw Data	0.339	Standard Deviation of Raw Data	0.292
Kstar	7.005	Kstar	5.71
Mean of Log Transformed Data	-0.119	Mean of Log Transformed Data	-0.483
Standard Deviation of Log Transformed Data	0.386	Standard Deviation of Log Transformed Data	0.422
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.983	Correlation Coefficient R	0.961
Shapiro Wilk Test Statistic	0.969	Approximate Shapiro Wilk Test Statistic	0.915
Shapiro Wilk Critical (0.95) Value	0.936	Approximate Shapiro Wilk P Value	6.16E-08
Approximate Shapiro Wilk P Value	0.465	Lilliefors Test Statistic	0.119
Lilliefors Test Statistic	0.112	Lilliefors Critical (0.95) Value	0.0845
Lilliefors Critical (0.95) Value	0.146	Data not Normal at (0.05) Significance Level	
Data appear Normal at (0.05) Significance Level			

Wilcoxon-Mann-Whitney Site vs Ba	ackaround Comparison Test	for Full Data	Rets without NDs
User Selected Options	ackyrounu companson rest		
Full Precision	OFF		
Confidence Coefficient	95%		
Substantial Difference	0		
Selected Null Hypothesis		ess Than or F	qual to Background Mean/Median (Form 1)
Alternative Hypothesis	Site of AOC Mean/Median C		
Alternative Hypothesis			
Area of Concern Data: SR5			
Background Data: Gradient			
Raw Statistics			
		Background	
Number of Valid Observations	37	110	
Number of Missing Values	2	7	
Number of Distinct Observations	33	62	
Minimum	0.36	0.21	
Maximum	1.92	1.66	
Mean	0.949	0.674	
Median	0.98	0.62	
SD	0.339	0.292	
SE of Mean	0.0557	0.0279	
Wilcoxon-Mann-Whitney (WMW) 1	est		
H0: Mean/Median of Site or AOC	<= Mean/Median of Backgrou	ind	
Site Rank Sum W-Stat	3738		
WMW Test U-Stat	4.459		
WMW Critical Value (0.050)	1.645		
P-Value	4.12E-06		
Conclusion with Alpha = 0.05			
Reject H0, Conclude Site > Bac	kground		
P-Value < alpha (0.05)			

Cluster 2 TIN(Insitu) 1.3 x Baseline vs Impact

	line x 1.3 TIN (Insitu) (m	g/L) data		Impact	TIN (Ins	itu) (mg/	L) data	
SR9	04/01/2014 Mid-Ebb	0.09	SR9	24/04/2014 Mid-Ebb	0.44	SR11	24/04/2014 Mid-Ebb	0.20
SR9	07/01/2014 Mid-Ebb	0.46	SR9	26/04/2014 Mid-Ebb	0.27	SR11	26/04/2014 Mid-Ebb	0.16
R9	09/01/2014 Mid-Ebb	0.35	SR9	29/04/2014 Mid-Ebb	0.27	SR11	29/04/2014 Mid-Ebb	0.20
R9	11/01/2014 Mid-Ebb	0.40	SR9	01/05/2014 Mid-Ebb	0.22	SR11	01/05/2014 Mid-Ebb	0.16
R9	14/01/2014 Mid-Ebb	0.34	SR9	03/05/2014 Mid-Ebb	0.29	SR11	03/05/2014 Mid-Ebb	0.19
R9	16/01/2014 Mid-Ebb	0.40	SR9	06/05/2014 Mid-Ebb	0.40	SR11	06/05/2014 Mid-Ebb	0.12
R 9	18/01/2014 Mid-Ebb	0.24	SR9	08/05/2014 Mid-Ebb	0.10	SR11	08/05/2014 Mid-Ebb	0.12
			SR9		0.62			0.25
R9	21/01/2014 Mid-Ebb	0.28		10/05/2014 Mid-Ebb	0.62	SR11	10/05/2014 Mid-Ebb	0.25
R9	23/01/2014 Mid-Ebb	0.17	SR9	13/05/2014 Mid-Ebb	0.00	SR11	13/05/2014 Mid-Ebb	0.40
R9	25/01/2014 Mid-Ebb	0.20	SR9	15/05/2014 Mid-Ebb	0.63	SR11	15/05/2014 Mid-Ebb	0.49
R 9	27/01/2014 Mid-Ebb	0.11	SR9	17/05/2014 Mid-Ebb	0.53	SR11	17/05/2014 Mid-Ebb	0.56
R 9	29/01/2014 Mid-Ebb	0.14	SR9	20/05/2014 Mid-Ebb		SR11	20/05/2014 Mid-Ebb	0.54
R10	04/01/2014 Mid-Ebb	0.26	SR9	22/05/2014 Mid-Ebb	0.78	SR11	22/05/2014 Mid-Ebb	0.61
R10	07/01/2014 Mid-Ebb	0.49	SR9	24/05/2014 Mid-Ebb	0.38	SR11	24/05/2014 Mid-Ebb	0.63
R10	09/01/2014 Mid-Ebb	0.30	SR9	27/05/2014 Mid-Ebb	0.59	SR11	27/05/2014 Mid-Ebb	0.48
R10	11/01/2014 Mid-Ebb	0.32	SR9	29/05/2014 Mid-Ebb	0.38	SR11	29/05/2014 Mid-Ebb	0.39
R10	14/01/2014 Mid-Ebb	0.29	SR9	31/05/2014 Mid-Ebb	0.51	SR11	31/05/2014 Mid-Ebb	0.39
R10	16/01/2014 Mid-Ebb	0.30	SR9	03/06/2014 Mid-Ebb	0.28	SR11	03/06/2014 Mid-Ebb	0.51
R10	18/01/2014 Mid-Ebb	0.29	SR9	05/06/2014 Mid-Ebb	0.48	SR11	05/06/2014 Mid-Ebb	0.39
R10	21/01/2014 Mid-Ebb	0.29	SR9	07/06/2014 Mid-Ebb	0.39	SR11	07/06/2014 Mid-Ebb	0.32
R10	23/01/2014 Mid-Ebb	0.20	SR9	10/06/2014 Mid-Ebb		SR11	10/06/2014 Mid-Ebb	0.37
R10	25/01/2014 Mid-Ebb	0.20	SR9		0.19		12/06/2014 Mid-Ebb	0.37
			SR9 SR9	12/06/2014 Mid-Ebb		SR11		
210	27/01/2014 Mid-Ebb	0.15		14/06/2014 Mid-Ebb	0.38	SR11	14/06/2014 Mid-Ebb	0.41
210	29/01/2014 Mid-Ebb	0.20	SR9	17/6/2014 Mid-Ebb	0.27	SR11	17/6/2014 Mid-Ebb	0.20
211	04/01/2014 Mid-Ebb	0.23	SR9	19/06/2014 Mid-Ebb	0.42	SR11	19/06/2014 Mid-Ebb	0.56
211	07/01/2014 Mid-Ebb	0.51	SR9	21/06/2014 Mid-Ebb		SR11	21/06/2014 Mid-Ebb	
211	09/01/2014 Mid-Ebb	0.26	SR9	24/06/2014 Mid-Ebb	0.38	SR11	24/06/2014 Mid-Ebb	0.39
211	11/01/2014 Mid-Ebb	0.33	SR9	26/06/2014 Mid-Ebb	0.43	SR11	26/06/2014 Mid-Ebb	0.33
211	14/01/2014 Mid-Ebb	0.26	SR9	28/06/2014 Mid-Ebb	0.29	SR11	28/06/2014 Mid-Ebb	0.25
211	16/01/2014 Mid-Ebb	0.26	SR9	01/07/2014 Mid-Ebb	0.57	SR11	01/07/2014 Mid-Ebb	0.48
R11	18/01/2014 Mid-Ebb	0.26	SR9	03/07/2014 Mid-Ebb	0.39	SR11	03/07/2014 Mid-Ebb	0.40
211	21/01/2014 Mid-Ebb	0.23	SR9	05/07/2014 Mid-Ebb	0.31	SR11	05/07/2014 Mid-Ebb	0.47
211	23/01/2014 Mid-Ebb	0.17	SR9	08/07/2014 Mid-Ebb	0.50	SR11	08/07/2014 Mid-Ebb	0.74
11	25/01/2014 Mid-Ebb	0.23	SR9	10/07/2014 Mid-Ebb	0.39	SR11	10/07/2014 Mid-Ebb	0.47
211	27/01/2014 Mid-Ebb	0.14	SR9	12/07/2014 Mid-Ebb	0.15	SR11	12/07/2014 Mid-Ebb	0.46
11	29/01/2014 Mid-Ebb	0.20	SR9	15/07/2014 Mid-Ebb	0.31	SR11	15/07/2014 Mid-Ebb	0.68
	29/01/2014 Mild-LDD	0.20	SR9		0.01			0.00
				17/07/2014 Mid-Ebb	0.26	SR11	17/07/2014 Mid-Ebb	0.00
			SR9	19/07/2014 Mid-Ebb	0.36	SR11	19/07/2014 Mid-Ebb	0.22
			SR9	22/07/2014 Mid-Ebb	0.24	SR11	22/07/2014 Mid-Ebb	0.34
			SR10	24/04/2014 Mid-Ebb	0.18			
			SR10	26/04/2014 Mid-Ebb	0.10			
			SR10	29/04/2014 Mid-Ebb	0.07			
			SR10	01/05/2014 Mid-Ebb	0.11			
			SR10	03/05/2014 Mid-Ebb	0.12			
			SR10	06/05/2014 Mid-Ebb	0.10			
			SR10	08/05/2014 Mid-Ebb	0.11			
			SR10	10/05/2014 Mid-Ebb	0.23			
			SR10	13/05/2014 Mid-Ebb				
			SR10	15/05/2014 Mid-Ebb	0.56			
			SR10	17/05/2014 Mid-Ebb	0.59			
			SR10	20/05/2014 Mid-Ebb	0.53			
					0.64			
			SR10	22/05/2014 Mid-Ebb				
			SR10	24/05/2014 Mid-Ebb	0.34			
			SR10	27/05/2014 Mid-Ebb	0.57			
			SR10	29/05/2014 Mid-Ebb	0.34			
			SR10	31/05/2014 Mid-Ebb	0.41			
			SR10	03/06/2014 Mid-Ebb	0.53			
			SR10	05/06/2014 Mid-Ebb	0.33			
			SR10	07/06/2014 Mid-Ebb	0.36			
			SR10	10/06/2014 Mid-Ebb	0.16			
			SR10	12/06/2014 Mid-Ebb	0.20			
			SR10	14/06/2014 Mid-Ebb	0.34			
			SR10	17/6/2014 Mid-Ebb	0.29			
			SR10	19/06/2014 Mid-Ebb	0.55			
			SR10	21/06/2014 Mid-Ebb				
			SR10	24/06/2014 Mid-Ebb	0.42			
			SR10	26/06/2014 Mid-Ebb	0.40			
			SR10	28/06/2014 Mid-Ebb	0.35			
			SR10	01/07/2014 Mid-Ebb	0.53			
			SR10	03/07/2014 Mid-Ebb	0.41			
					0.25			
			SR10	05/07/2014 Mid-Ebb	0.35			
			SR10	05/07/2014 Mid-Ebb 08/07/2014 Mid-Ebb	0.42			
			SR10	08/07/2014 Mid-Ebb	0.42			
			SR10 SR10	08/07/2014 Mid-Ebb 10/07/2014 Mid-Ebb	0.42 0.40			
			SR10 SR10 SR10 SR10	08/07/2014 Mid-Ebb 10/07/2014 Mid-Ebb 12/07/2014 Mid-Ebb 15/07/2014 Mid-Ebb	0.42 0.40 0.37			
			SR10 SR10 SR10	08/07/2014 Mid-Ebb 10/07/2014 Mid-Ebb 12/07/2014 Mid-Ebb	0.42 0.40 0.37			

Cluster 2 TIN(Insitu) 1.3 x Baseline vs Impact

Baseline x 1.3		Impact	
Raw Statistics		Raw Statistics	
Number of Valid Observations	36	Number of Valid Observations	103
Number of Distinct Observations	20	Number of Missing Values	14
Minimum	0.09	Number of Distinct Observations	84
Maximum	0.51	Minimum	0.0772
Mean of Raw Data	0.268	Maximum	1.2
Standard Deviation of Raw Data	0.0998	Mean of Raw Data	0.428
Kstar	6.59	Standard Deviation of Raw Data	0.214
Mean of Log Transformed Data	-1.389	Kstar	3.485
Standard Deviation of Log Transformed Data	0.395	Mean of Log Transformed Data	-0.995
		Standard Deviation of Log Transformed Data	0.582
Normal Distribution Test Results			
		Normal Distribution Test Results	
Correlation Coefficient R	0.981		
Shapiro Wilk Test Statistic	0.958	Correlation Coefficient R	0.98
Shapiro Wilk Critical (0.95) Value	0.935	Approximate Shapiro Wilk Test Statistic	0.955
Approximate Shapiro Wilk P Value	0.242	Approximate Shapiro Wilk P Value	0.00652
Lilliefors Test Statistic	0.123	Lilliefors Test Statistic	0.0915
Lilliefors Critical (0.95) Value	0.148	Lilliefors Critical (0.95) Value	0.0873
Data appear Normal at (0.05) Significance Level		Data not Normal at (0.05) Significance Level	

	Wilcoxon-Mann-Whitney Site	s Backoro	nd Comparison Test for Full Data Sets without NDs
User Selected Options			· · · · · · · · · · · · · · · · · · ·
	OFF		
Confidence Coefficient	95%		
Substantial Difference	0		
Selected Null Hypothesis	Site or AOC Mean/Median Les	s Than or I	qual to Background Mean/Median (Form 1)
Alternative Hypothesis	Site or AOC Mean/Median Gre	ater Than	Background Mean/Mediar
Area of Concern Data: Impact			
Background Data: Baseline x 1.3			
Raw Statistics			
	Site B	ackground	
Number of Valid Observations	103	36	
Number of Missing Values	14	0	
Number of Distinct Observations	84	20	
Minimum	0.0772	0.09	
Maximum	1.2	0.51	
Mean	0.428	0.268	
Median	0.418	0.26	
SD	0.214	0.0998	
SE of Mean	0.0211	0.0166	
Wilcoxon-Mann-Whitney (WMW) Te	st		
H0: Mean/Median of Site or AOC <	= Mean/Median of Background		
Site Rank Sum W-Stat	8097		
WMW Test U-Stat	4.26		
WMW Critical Value (0.050)	1.645		
P-Value	1.02E-05		
Conclusion with Alpha = 0.05			
Reject H0, Conclude Site > Backg	ground		
P-Value < alpha (0.05)			

Cluster 2 TIN(Insitu) G5 G6 vs Impact

Gr	adient TIN (Insi	tu) (ma/L) da	ita		Impac	t TIN (Ins	situ) (m	ng/L) data	
G5	24/04/2014	Mid-Ebb	0.37	SR9	24/04/2014 Mid-Eb		SR11		0.20
G5	26/04/2014	Mid-Ebb	0.24	SR9	26/04/2014 Mid-Eb		SR11		0.16
G5	29/04/2014	Mid-Ebb	0.12	SR9	29/04/2014 Mid-Eb		SR11		0.20
G5	01/05/2014	Mid-Ebb	0.14	SR9	01/05/2014 Mid-Eb		SR11		0.16
G5	03/05/2014	Mid-Ebb	0.34	SR9	03/05/2014 Mid-Eb		SR11		0.19
G5	06/05/2014	Mid-Ebb	0.24	SR9	06/05/2014 Mid-Eb		SR11		0.12
G5 G5			NA	SR9					0.12
	08/05/2014	Mid-Ebb			08/05/2014 Mid-Eb		SR11		
G5	10/05/2014	Mid-Ebb	0.18	SR9	10/05/2014 Mid-Eb		SR11		0.25
G5	13/05/2014	Mid-Ebb	0.45	SR9	13/05/2014 Mid-Eb		SR11		0.40
G5	15/05/2014	Mid-Ebb	0.45	SR9	15/05/2014 Mid-Eb		SR11		0.49
G5	17/05/2014	Mid-Ebb	0.75	SR9	17/05/2014 Mid-Eb		SR11		0.56
G5	20/05/2014	Mid-Ebb		SR9	20/05/2014 Mid-Eb		SR11		0.54
G5	22/05/2014	Mid-Ebb	0.90	SR9	22/05/2014 Mid-Eb	0.78	SR11	22/05/2014 Mid-Ebb	0.61
G5	24/05/2014	Mid-Ebb	0.75	SR9	24/05/2014 Mid-Eb	0.38	SR11	24/05/2014 Mid-Ebb	0.63
G5	27/05/2014	Mid-Ebb	0.77	SR9	27/05/2014 Mid-Eb	o 0.59	SR11	27/05/2014 Mid-Ebb	0.48
G5	29/05/2014	Mid-Ebb	0.58	SR9	29/05/2014 Mid-Eb	0.38	SR11	29/05/2014 Mid-Ebb	0.39
G5	31/05/2014	Mid-Ebb	0.61	SR9	31/05/2014 Mid-Eb	0.51	SR11	31/05/2014 Mid-Ebb	0.39
G5	03/06/2014	Mid-Ebb	0.59	SR9	03/06/2014 Mid-Eb	0.28	SR11	03/06/2014 Mid-Ebb	0.51
G5	05/06/2014	Mid-Ebb	0.49	SR9	05/06/2014 Mid-Eb		SR11		0.39
G5	07/06/2014	Mid-Ebb	0.45	SR9	07/06/2014 Mid-Eb		SR11		0.32
G5	10/06/2014	Mid-Ebb	0.31	SR9	10/06/2014 Mid-Eb		SR11		0.37
G5	12/06/2014	Mid-Ebb	0.35	SR9	12/06/2014 Mid-Eb		SR11		0.42
G5	14/06/2014	Mid-Ebb	0.50	SR9	14/06/2014 Mid-Eb		SR11		0.41
G5	17/6/2014	Mid-Ebb	0.50	SR9	17/6/2014 Mid-Eb		SR11		0.20
G5	19/06/2014	Mid-Ebb	0.60	SR9	19/06/2014 Mid-Eb		SR11		0.56
G5	21/06/2014	Mid-Ebb	0.64	SR9	21/06/2014 Mid-Eb		SR11		
G5	24/06/2014	Mid-Ebb	0.43	SR9	24/06/2014 Mid-Eb	0.38	SR11	24/06/2014 Mid-Ebb	0.39
G5	26/06/2014	Mid-Ebb	0.65	SR9	26/06/2014 Mid-Eb	0.43	SR11	26/06/2014 Mid-Ebb	0.33
G5	28/06/2014	Mid-Ebb	0.23	SR9	28/06/2014 Mid-Eb	0.29	SR11	28/06/2014 Mid-Ebb	0.25
G5	01/07/2014	Mid-Ebb	0.54	SR9	01/07/2014 Mid-Eb	0.57	SR11	01/07/2014 Mid-Ebb	0.48
G5	03/07/2014	Mid-Ebb	0.53	SR9	03/07/2014 Mid-Eb		SR11		0.40
G5	05/07/2014	Mid-Ebb	0.50	SR9	05/07/2014 Mid-Eb		SR11		0.47
G5	08/07/2014	Mid-Ebb	0.73	SR9	08/07/2014 Mid-Eb		SR11		0.74
			0.56	SR9					0.47
G5	10/07/2014	Mid-Ebb			10/07/2014 Mid-Eb		SR11		
G5	12/07/2014	Mid-Ebb	0.52	SR9	12/07/2014 Mid-Eb		SR11		0.46
G5	15/07/2014	Mid-Ebb	0.61	SR9	15/07/2014 Mid-Eb		SR11		0.68
G5	17/07/2014	Mid-Ebb		SR9	17/07/2014 Mid-Eb		SR11		
G5	19/07/2014	Mid-Ebb	0.33	SR9	19/07/2014 Mid-Eb	o 0.36	SR11	19/07/2014 Mid-Ebb	0.22
G5	22/07/2014	Mid-Ebb	0.33	SR9	22/07/2014 Mid-Eb	0.24	SR11	22/07/2014 Mid-Ebb	0.34
G6	24/04/2014	Mid-Ebb	0.13	SR10	24/04/2014 Mid-Eb	0.18			
G6	26/04/2014	Mid-Ebb	0.19	SR10	26/04/2014 Mid-Eb	0.10			
G6	29/04/2014	Mid-Ebb	0.05	SR10	29/04/2014 Mid-Eb	0.07			
G6	01/05/2014	Mid-Ebb	0.07	SR10	01/05/2014 Mid-Eb	0.11			
G6	03/05/2014	Mid-Ebb	0.16	SR10	03/05/2014 Mid-Eb	0.12			
G6	06/05/2014	Mid-Ebb	0.10	SR10	06/05/2014 Mid-Eb	0.10			
G6	08/05/2014	Mid-Ebb	0.11	SR10	08/05/2014 Mid-Eb				
G6	10/05/2014	Mid-Ebb	0.25	SR10	10/05/2014 Mid-Eb				
			0.20						
G6	13/05/2014	Mid-Ebb	0.07	SR10	13/05/2014 Mid-Eb				
G6	15/05/2014	Mid-Ebb	0.27	SR10	15/05/2014 Mid-Eb				
G6	17/05/2014	Mid-Ebb	0.64	SR10	17/05/2014 Mid-Eb				
G6	20/05/2014	Mid-Ebb	0.93	SR10	20/05/2014 Mid-Eb				
G6	22/05/2014	Mid-Ebb	0.64	SR10	22/05/2014 Mid-Eb				
G6	24/05/2014	Mid-Ebb	0.36	SR10	24/05/2014 Mid-Eb	0.34			
G6	27/05/2014	Mid-Ebb	0.42	SR10	27/05/2014 Mid-Eb	0.57			
G6	29/05/2014	Mid-Ebb	1.27	SR10	29/05/2014 Mid-Eb	0.34			
G6	31/05/2014	Mid-Ebb	0.37	SR10	31/05/2014 Mid-Eb	0.41			
G6	03/06/2014	Mid-Ebb	0.37	SR10	03/06/2014 Mid-Eb				
G6	05/06/2014	Mid-Ebb	0.43	SR10	05/06/2014 Mid-Eb				
G6	07/06/2014	Mid-Ebb	0.14	SR10	07/06/2014 Mid-Eb				
G6	10/06/2014	Mid-Ebb	0.35	SR10	10/06/2014 Mid-Eb				
G6 G6	12/06/2014	Mid-Ebb	0.33	SR10	12/06/2014 Mid-Eb				
G6	14/06/2014	Mid-Ebb	0.53	SR10	14/06/2014 Mid-Eb				
G6	17/6/2014	Mid-Ebb	0.32	SR10	17/6/2014 Mid-Eb				
G6	19/06/2014	Mid-Ebb	0.62	SR10	19/06/2014 Mid-Eb				
G6	21/06/2014	Mid-Ebb		SR10	21/06/2014 Mid-Eb				
G6	24/06/2014	Mid-Ebb	0.43	SR10	24/06/2014 Mid-Eb				
G6	26/06/2014	Mid-Ebb	0.69	SR10	26/06/2014 Mid-Eb	0.40			
G6	28/06/2014	Mid-Ebb	0.46	SR10	28/06/2014 Mid-Eb	0.35			
G6	01/07/2014	Mid-Ebb	0.53	SR10	01/07/2014 Mid-Eb				
G6	03/07/2014	Mid-Ebb	0.52	SR10	03/07/2014 Mid-Eb				
G6	05/07/2014	Mid-Ebb	0.64	SR10	05/07/2014 Mid-Eb				
G6	08/07/2014	Mid-Ebb	0.67	SR10	08/07/2014 Mid-Eb				
G6	10/07/2014	Mid-Ebb	0.56	SR10	10/07/2014 Mid-Eb				
G6	12/07/2014	Mid-Ebb	0.68	SR10	12/07/2014 Mid-Eb				
G6	15/07/2014	Mid-Ebb	0.64	SR10	15/07/2014 Mid-Eb				
00	17/07/2014	Mid-Ebb		SR10	17/07/2014 Mid-Eb				
G6						0.00			
G6 G6	19/07/2014	Mid-Ebb	0.27	SR10	19/07/2014 Mid-Eb	0.36			

Cluster 2 TIN(Insitu) G5 G6 vs Impact

Gradient		Impact	
Raw Statistics		Raw Statistics	
Number of Valid Observations	71	Number of Valid Observations	105
Number of Missing Values	7	Number of Missing Values	12
Number of Distinct Observations	70	Number of Distinct Observations	93
Minimum	0.0549	Minimum	0.0571
Maximum	1.269	Maximum	1.2
Mean of Raw Data	0.459	Mean of Raw Data	0.42
Standard Deviation of Raw Data	0.226	Standard Deviation of Raw Data	0.215
Kstar	3.213	Kstar	3.33
Mean of Log Transformed Data	-0.936	Mean of Log Transformed Data	-1.02
Standard Deviation of Log Transformed Data	0.629	Standard Deviation of Log Transformed Data	0.6
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.982	Correlation Coefficient R	0.98
Approximate Shapiro Wilk Test Statistic	0.967	Approximate Shapiro Wilk Test Statistic	0.957
Approximate Shapiro Wilk P Value	0.175	Approximate Shapiro Wilk P Value	0.00908
Lilliefors Test Statistic	0.0636	Lilliefors Test Statistic	0.0932
Lilliefors Critical (0.95) Value	0.105	Lilliefors Critical (0.95) Value	0.0865
Data appear Normal at (0.05) Significance Level		Data not Normal at (0.05) Significance Level	

	Wilcoxon-Mann-Whitney Site	vs Backgrou	ind Comparison Test for Full Data Sets without NDs
User Selected Options	···· , ··· ,		· · · F. · · · · · · · · · · · · · · · ·
Full Precision	OFF		
Confidence Coefficient	95%		
Substantial Difference	0		
Selected Null Hypothesis	Site or AOC Mean/Median Le	ess Than or I	Equal to Background Mean/Median (Form 1)
Alternative Hypothesis	Site or AOC Mean/Median G	reater Than	Background Mean/Mediar
Area of Concern Data: Impact			
Background Data: Gradient			
Raw Statistics			
	Site	Background	
Number of Valid Observations	105	71	
Number of Missing Values	12	7	
Number of Distinct Observations	93	70	
Minimum	0.0571	0.0549	
Maximum	1.2	1.269	
Mean	0.42	0.459	
Median	0.413	0.456	
SD	0.215	0.226	
SE of Mean	0.021	0.0268	
Wilcoxon-Mann-Whitney (WMW) Te	est		
H0: Mean/Median of Site or AOC <	= Mean/Median of Backgroun	ıd	
Site Rank Sum W-Stat	8849		
WMW Test U-Stat	-1.339		
WMW Critical Value (0.050)	1.645		
P-Value	9.03E-02		
Conclusion with Alpha = 0.05			
Do Not Reject H0, Conclude Site	<= Background		
P-Value >= alpha (0.05)	-		

Cluster 2 TIN(Insitu) G1 vs Impact

G1 G1 G1 G1 G1 G1 G1

G1

G1

G1

G1

G1 G1 G1 G1 G1 G1 G1 G1 G1

G1

G1 G1

G1

G1 G1 G1 G1 G1 G1 G1

G1

G1 G1

G1

G1 G1

	G1 TIN (insitu) (mg/L) da	ita		Impac	t TIN (ins	itu) (ma/	l) data	
_	24/04/2014 Mid-Ebb	0.32	SR9	24/04/2014 Mid-Ebb	0.41	SR11	24/04/2014 Mid-Ebb	0.21
	26/04/2014 Mid-Ebb	0.64	SR9	26/04/2014 Mid-Ebb	0.25	SR11	26/04/2014 Mid-Ebb	0.17
	29/04/2014 Mid-Ebb	0.53	SR9	29/04/2014 Mid-Ebb	0.08	SR11	29/04/2014 Mid-Ebb	0.06
1	01/05/2014 Mid-Ebb	0.48	SR9	01/05/2014 Mid-Ebb	0.10	SR11	01/05/2014 Mid-Ebb	0.20
1	03/05/2014 Mid-Ebb	0.72	SR9	03/05/2014 Mid-Ebb	0.32	SR11	03/05/2014 Mid-Ebb	0.15
1	06/05/2014 Mid-Ebb	0.38	SR9	06/05/2014 Mid-Ebb	0.21	SR11		0.13
		0.30	SR9	08/05/2014 Mid-Ebb	0.21	SR11	06/05/2014 Mid-Ebb	0.10
1	08/05/2014 Mid-Ebb	0.45	SR9		0.22		08/05/2014 Mid-Ebb	0.10
	10/05/2014 Mid-Ebb	0.75		10/05/2014 Mid-Ebb	0.22	SR11	10/05/2014 Mid-Ebb	0.14
	13/05/2014 Mid-Ebb	1 21	SR9	13/05/2014 Mid-Ebb	0.44	SR11	13/05/2014 Mid-Ebb	0.40
	15/05/2014 Mid-Ebb	1.31	SR9	15/05/2014 Mid-Ebb	0.41	SR11	15/05/2014 Mid-Ebb	0.19
	17/05/2014 Mid-Ebb	0.93	SR9	17/05/2014 Mid-Ebb	0.83	SR11	17/05/2014 Mid-Ebb	0.58
I	20/05/2014 Mid-Ebb	1.64	SR9	20/05/2014 Mid-Ebb		SR11	20/05/2014 Mid-Ebb	0.31
J	22/05/2014 Mid-Ebb	2.02	SR9	22/05/2014 Mid-Ebb	1.01	SR11	22/05/2014 Mid-Ebb	0.75
]	24/05/2014 Mid-Ebb	1.89	SR9	24/05/2014 Mid-Ebb	0.83	SR11	24/05/2014 Mid-Ebb	0.63
J	27/05/2014 Mid-Ebb	1.89	SR9	27/05/2014 Mid-Ebb	0.56	SR11	27/05/2014 Mid-Ebb	0.48
J	29/05/2014 Mid-Ebb	1.22	SR9	29/05/2014 Mid-Ebb	0.43	SR11	29/05/2014 Mid-Ebb	0.39
1	31/05/2014 Mid-Ebb	0.60	SR9	31/05/2014 Mid-Ebb	0.42	SR11	31/05/2014 Mid-Ebb	0.39
	03/06/2014 Mid-Ebb	0.97	SR9	03/06/2014 Mid-Ebb	0.35	SR11	03/06/2014 Mid-Ebb	0.51
	05/06/2014 Mid-Ebb	1.51	SR9	05/06/2014 Mid-Ebb	0.70	SR11	05/06/2014 Mid-Ebb	0.39
	07/06/2014 Mid-Ebb	0.65	SR9	07/06/2014 Mid-Ebb	0.18	SR11	07/06/2014 Mid-Ebb	0.32
1	10/06/2014 Mid-Ebb	0.39	SR9	10/06/2014 Mid-Ebb		SR11	10/06/2014 Mid-Ebb	0.37
	12/06/2014 Mid-Ebb	0.50	SR9	12/06/2014 Mid-Ebb	0.41	SR11	12/06/2014 Mid-Ebb	0.42
1	14/06/2014 Mid-Ebb	1.17	SR9	14/06/2014 Mid-Ebb	0.43	SR11	14/06/2014 Mid-Ebb	0.41
1	17/6/2014 Mid-Ebb	0.79	SR9	17/6/2014 Mid-Ebb	0.35	SR11	17/6/2014 Mid-Ebb	0.20
1	19/06/2014 Mid-Ebb	0.78	SR9	19/06/2014 Mid-Ebb	0.42	SR11	19/06/2014 Mid-Ebb	0.56
1	21/06/2014 Mid-Ebb		SR9	21/06/2014 Mid-Ebb		SR11	21/06/2014 Mid-Ebb	
I	24/06/2014 Mid-Ebb	0.90	SR9	24/06/2014 Mid-Ebb	0.39	SR11	24/06/2014 Mid-Ebb	0.39
' 1	26/06/2014 Mid-Ebb	1.07	SR9	26/06/2014 Mid-Ebb	0.39	SR11 SR11	26/06/2014 Mid-Ebb	0.33
1				28/06/2014 Mid-Ebb	0.39			
	28/06/2014 Mid-Ebb	1.03	SR9			SR11	28/06/2014 Mid-Ebb	0.25
1	01/07/2014 Mid-Ebb	1.16	SR9	01/07/2014 Mid-Ebb	0.47	SR11	01/07/2014 Mid-Ebb	0.48
	03/07/2014 Mid-Ebb	1.51	SR9	03/07/2014 Mid-Ebb	0.49	SR11	03/07/2014 Mid-Ebb	0.40
	05/07/2014 Mid-Ebb	1.36	SR9	05/07/2014 Mid-Ebb	0.64	SR11	05/07/2014 Mid-Ebb	0.47
I	08/07/2014 Mid-Ebb	1.07	SR9	08/07/2014 Mid-Ebb	0.68	SR11	08/07/2014 Mid-Ebb	0.74
J	10/07/2014 Mid-Ebb	1.05	SR9	10/07/2014 Mid-Ebb	0.55	SR11	10/07/2014 Mid-Ebb	0.47
	12/07/2014 Mid-Ebb	1.30	SR9	12/07/2014 Mid-Ebb	0.48	SR11	12/07/2014 Mid-Ebb	0.46
	15/07/2014 Mid-Ebb	1.06	SR9	15/07/2014 Mid-Ebb	0.70	SR11	15/07/2014 Mid-Ebb	0.68
	17/07/2014 Mid-Ebb		SR9	17/07/2014 Mid-Ebb		SR11	17/07/2014 Mid-Ebb	
	19/07/2014 Mid-Ebb	1.00	SR9	19/07/2014 Mid-Ebb	0.35	SR11	19/07/2014 Mid-Ebb	0.22
	22/07/2014 Mid-Ebb	1.41	SR9	22/07/2014 Mid-Ebb	0.33	SR11	22/07/2014 Mid-Ebb	0.34
			SR10	24/04/2014 Mid-Ebb	0.13			
			SR10	26/04/2014 Mid-Ebb	0.11			
			SR10	29/04/2014 Mid-Ebb	0.11			
			SR10	01/05/2014 Mid-Ebb	0.20			
			SR10	03/05/2014 Mid-Ebb	0.14			
			SR10	06/05/2014 Mid-Ebb	0.10			
			SR10	08/05/2014 Mid-Ebb	0.15			
			SR10	10/05/2014 Mid-Ebb	0.20			
			SR10	13/05/2014 Mid-Ebb	0.20			
			SR10	15/05/2014 Mid-Ebb	0.35			
			SR10	17/05/2014 Mid-Ebb	1.20			
			SR10	20/05/2014 Mid-Ebb	0.86			
			SR10	22/05/2014 Mid-Ebb	0.70			
			SR10	24/05/2014 Mid-Ebb	0.56			
			SR10	27/05/2014 Mid-Ebb	0.62			
			SR10	29/05/2014 Mid-Ebb	0.49			
			SR10	31/05/2014 Mid-Ebb	0.45			
			SR10	03/06/2014 Mid-Ebb	0.64			
			SR10	05/06/2014 Mid-Ebb	0.43			
			SR10	07/06/2014 Mid-Ebb	0.21			
			SR10	10/06/2014 Mid-Ebb	0.36			
			SR10	12/06/2014 Mid-Ebb	0.41			
			SR10	14/06/2014 Mid-Ebb	0.47			
			SR10	17/6/2014 Mid-Ebb	0.28			
			SR10	19/06/2014 Mid-Ebb	0.57			
			SR10	21/06/2014 Mid-Ebb				
			SR10	24/06/2014 Mid-Ebb	0.44			
			SR10	26/06/2014 Mid-Ebb	0.44			
			SR10	28/06/2014 Mid-Ebb	0.49			
			SR10	01/07/2014 Mid-Ebb	0.60			
			SR10	03/07/2014 Mid-Ebb	0.49			
			SR10	05/07/2014 Mid-Ebb	0.65			
			SR10	08/07/2014 Mid-Ebb	0.65			
				10/07/2014 Mid-Ebb	0.47			
			SR10	10/07/2014 Wild-Lbb				
			SR10 SR10	12/07/2014 Mid-Ebb	0.60			
			SR10	12/07/2014 Mid-Ebb	0.60			
			SR10 SR10	12/07/2014 Mid-Ebb 15/07/2014 Mid-Ebb	0.60			

Cluster 2 TIN(Insitu) G1 vs Impact

G1		Impact	
Raw Statistics		Raw Statistics	
Number of Valid Observations	36	Number of Valid Observations	105
Number of Missing Values	3	Number of Missing Values	12
Number of Distinct Observations	36	Number of Distinct Observations	93
Minimum	0.323	Minimum	0.0571
Maximum	2.017	Maximum	1.2
Mean of Raw Data	1.012	Mean of Raw Data	0.42
Standard Deviation of Raw Data	0.449	Standard Deviation of Raw Data	0.215
Kstar	4.515	Kstar	3.33
Mean of Log Transformed Data	-0.0935	Mean of Log Transformed Data	-1.02
Standard Deviation of Log Transformed Data	0.483	Standard Deviation of Log Transformed Data	0.6
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.985	Correlation Coefficient R	0.98
Shapiro Wilk Test Statistic	0.957	Approximate Shapiro Wilk Test Statistic	0.957
Shapiro Wilk Critical (0.95) Value	0.935	Approximate Shapiro Wilk P Value	0.00908
Approximate Shapiro Wilk P Value	0.224	Lilliefors Test Statistic	0.0932
Lilliefors Test Statistic	0.0869	Lilliefors Critical (0.95) Value	0.0865
Lilliefors Critical (0.95) Value	0.148	Data not Normal at (0.05) Significance Level	
Data appear Normal at (0.05) Significance Level			

	Wilcoxon-Mann-Whitney Sit	e vs Backor	ound Comparison Test for Full Data Sets without NDs
User Selected Options	in the second seco	- io Eachgi	
	OFF		
Confidence Coefficient	95%		
Substantial Difference	0		
Selected Null Hypothesis	Site or AOC Mean/Median (Greater Tha	or Equal to Background Mean/Median (Form 2)
	Site or AOC Mean/Median L		
Area of Concern Data: Impact			
Background Data: G1			
Raw Statistics			
	Site E	Background	
Number of Valid Observations	105	36	
Number of Missing Values	12	3	
Number of Distinct Observations	93	36	
Minimum	0.0571	0.323	
Maximum	1.2	2.017	
Mean	0.42	1.012	
Median	0.413	1.015	
SD	0.215	0.449	
SE of Mean	0.021	0.0749	
Wilcoxon-Mann-Whitney (WMW) T	est		
H0: Mean/Median of Site or AOC >	>= Mean/Median of Backgro	und	
Site Rank Sum W-Stat	5987		
WMW Test U-Stat	-6.939		
WMW Critical Value (0.050)	-1.645		
P-Value	1.98E-12		
Conclusion with Alpha = 0.05			
Reject H0, Conclude Site < Back	ground		
P-Value < alpha (0.05)			

Cluster 2 TIN(lab) 1.3 x Baseline vs Impact

Base	eline x 1.3 TIN (lab) (mg/L) d	ata
SR9	04/01/2014 Mid-Ebb	0.10
SR9	07/01/2014 Mid-Ebb	0.16
SR9	09/01/2014 Mid-Ebb	0.38
SR9	11/01/2014 Mid-Ebb	0.40
	14/01/2014 Mid-Ebb	0.23
SR9	16/01/2014 Mid-Ebb	0.22
SR9	18/01/2014 Mid-Ebb	0.13
SR9	21/01/2014 Mid-Ebb	0.04
SR9	23/01/2014 Mid-Ebb	0.03
SR9		0.03
	27/01/2014 Mid-Ebb	0.03
SR9	29/01/2014 Mid-Ebb	0.03
SR10	04/01/2014 Mid-Ebb	0.19
SR10	07/01/2014 Mid-Ebb	0.20
SR10	09/01/2014 Mid-Ebb	0.20
SR10	11/01/2014 Mid-Ebb	0.21
SR10	14/01/2014 Mid-Ebb	0.14
SR10	16/01/2014 Mid-Ebb	0.13
SR10	18/01/2014 Mid-Ebb	0.13
SR10	21/01/2014 Mid-Ebb	0.12
SR10	23/01/2014 Mid-Ebb	0.15
SR10	25/01/2014 Mid-Ebb	0.08
	27/01/2014 Mid-Ebb	0.09
SR10	29/01/2014 Mid-Ebb	0.12
SR11	04/01/2014 Mid-Ebb	0.18
SR11		0.17
SR11	09/01/2014 Mid-Ebb	0.19
SR11	11/01/2014 Mid-Ebb	0.21
SR11	14/01/2014 Mid-Ebb	0.14
SR11	16/01/2014 Mid-Ebb	0.12
SR11	18/01/2014 Mid-Ebb	0.10
SR11	21/01/2014 Mid-Ebb	0.12
SR11	23/01/2014 Mid-Ebb	0.18
SR11	25/01/2014 Mid-Ebb	0.12
SR11	27/01/2014 Mid-Ebb	0.07
SR11	29/01/2014 Mid-Ebb	0.09

SR9 24/04/2014 Mid-Ebb 0.44 SR11 24/04/2014 Mid-Ebb 0.27 SR9 26/04/2014 Mid-Ebb 0.27 SR11 26/04/2014 Mid-Ebb 0.10 SR9 29/04/2014 Mid-Ebb 0.27 SR11 29/04/2014 Mid-Ebb 0.21 SR9 01/05/2014 Mid-Ebb 0.22 SR11 03/05/2014 Mid-Ebb 0.11 SR9 06/05/2014 Mid-Ebb 0.40 SR11 06/05/2014 Mid-Ebb 0.11 SR9 08/05/2014 Mid-Ebb 0.62 SR11 10/05/2014 Mid-Ebb 0.21 SR9 13/05/2014 Mid-Ebb 0.63 SR11 13/05/2014 Mid-Ebb 0.43 SR9 15/05/2014 Mid-Ebb 0.53 SR11 12/05/2014 Mid-Ebb 0.53 SR9 20/05/2014 Mid-Ebb 0.58 SR11 22/05/2014 Mid-Ebb 0.59 SR9 22/05/2014 Mid-Ebb 0.58 SR11 22/05/2014 Mid-Ebb 0.63 SR9 22/05/2014 Mid-Ebb 0.38 SR11 22/05/2014 Mid-Ebb 0.63 SR9 22/05/2014 Mid-Ebb 0.59 <th></th> <th>Impact</th> <th>TIN (lab) (mg</th> <th>/I) data</th> <th></th>		Impact	TIN (lab) (mg	/I) data	
SR9 29/04/2014 Mid-Ebb 0.27 SR11 29/04/2014 Mid-Ebb 0.2 SR9 01/05/2014 Mid-Ebb 0.22 SR11 03/05/2014 Mid-Ebb 0.1 SR9 06/05/2014 Mid-Ebb 0.28 SR11 03/05/2014 Mid-Ebb 0.21 SR9 10/05/2014 Mid-Ebb 0.62 SR11 10/05/2014 Mid-Ebb 0.21 SR9 13/05/2014 Mid-Ebb 0.63 SR11 13/05/2014 Mid-Ebb 0.53 SR9 12/05/2014 Mid-Ebb 0.78 SR11 20/05/2014 Mid-Ebb 0.78 SR9 20/05/2014 Mid-Ebb 0.38 SR11 20/05/2014 Mid-Ebb 0.48 SR9 20/05/2014 Mid-Ebb 0.38 SR11 10/06/2014 Mid-Ebb 0.39 SR9 03/06/2014 Mid-Ebb 0.48 SR11 10/06/2014 Mid-Ebb 0.3 SR9 10/06/2014 Mid-Ebb 0.38 SR11	SR9				0.20
SR9 01/05/2014 Mid-Ebb 0.22 SR11 01/05/2014 Mid-Ebb 0.13 SR9 06/05/2014 Mid-Ebb 0.40 SR11 03/05/2014 Mid-Ebb 0.11 SR9 08/05/2014 Mid-Ebb 0.40 SR11 03/05/2014 Mid-Ebb 0.11 SR9 13/05/2014 Mid-Ebb SR11 13/05/2014 Mid-Ebb 0.81 0.11 SR9 15/05/2014 Mid-Ebb SR11 13/05/2014 Mid-Ebb 0.83 SR11 22/05/2014 Mid-Ebb 0.83 SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.83 SR9 22/05/2014 Mid-Ebb 0.38 SR11 21/05/2014 Mid-Ebb 0.43 SR9 23/05/2014 Mid-Ebb 0.38 SR11 21/05/2014 Mid-Ebb 0.33 SR9 05/06/2014 Mid-Ebb 0.38 SR11 21/05/2014 Mid-Ebb 0.33 SR9 05/06/2014 Mid-Ebb 0.48 SR11 01/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.48 SR11 12/06/2014 Mid-Ebb 0.43 SR9 <td>SR9</td> <td>26/04/2014 Mid-Ebb</td> <td>0.27 SR11</td> <td>26/04/2014 Mid-Ebb</td> <td>0.16</td>	SR9	26/04/2014 Mid-Ebb	0.27 SR11	26/04/2014 Mid-Ebb	0.16
SR9 03/05/2014 Mid-Ebb 0.29 SR11 03/05/2014 Mid-Ebb 0.11 SR9 08/05/2014 Mid-Ebb SR11 03/05/2014 Mid-Ebb SR11 SR9 10/05/2014 Mid-Ebb SR11 13/05/2014 Mid-Ebb 0.21 SR9 13/05/2014 Mid-Ebb 0.63 SR11 13/05/2014 Mid-Ebb 0.41 SR9 13/05/2014 Mid-Ebb 0.53 SR11 12/05/2014 Mid-Ebb 0.53 SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.66 SR9 23/05/2014 Mid-Ebb 0.38 SR11 24/05/2014 Mid-Ebb 0.38 SR9 23/05/2014 Mid-Ebb 0.38 SR11 23/05/2014 Mid-Ebb 0.39 SR9 03/06/2014 Mid-Ebb 0.28 SR11 03/06/2014 Mid-Ebb 0.39 SR9 10/06/2014 Mid-Ebb 0.39 SR11 10/06/2014 Mid-Ebb 0.30 SR9 10/06/2014 Mid-Ebb 0.38 SR11 10/06/2014 Mid-Ebb 0.30 SR9 10/06/2014 Mid-Ebb 0.38 SR11 10/06/20	SR9	29/04/2014 Mid-Ebb	0.27 SR11	29/04/2014 Mid-Ebb	0.20
SR9 06/05/2014 Mid-Ebb SR11 06/05/2014 Mid-Ebb 0.13 SR9 103/05/2014 Mid-Ebb 0.62 SR11 103/05/2014 Mid-Ebb 0.23 SR9 13/05/2014 Mid-Ebb 0.63 SR11 13/05/2014 Mid-Ebb 0.53 SR9 13/05/2014 Mid-Ebb 0.53 SR11 12/05/2014 Mid-Ebb 0.55 SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.63 SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.48 SR9 23/05/2014 Mid-Ebb 0.58 SR11 27/05/2014 Mid-Ebb 0.43 SR9 33/06/2014 Mid-Ebb 0.28 SR11 03/06/2014 Mid-Ebb 0.33 SR9 05/06/2014 Mid-Ebb 0.28 SR11 12/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.48 SR11 12/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.43 SR11 12/06/2014 Mid-Ebb 0.43 SR9 12/06/2014 Mid-Ebb 0.43 SR11 </td <td></td> <td></td> <td></td> <td></td> <td>0.16</td>					0.16
SR9 08/05/2014 Mid-Ebb SR11 08/05/2014 Mid-Ebb 0.11 SR9 13/05/2014 Mid-Ebb SR11 13/05/2014 Mid-Ebb SR11 13/05/2014 Mid-Ebb 0.42 SR9 13/05/2014 Mid-Ebb SR11 13/05/2014 Mid-Ebb 0.43 SR1 SR9 12/05/2014 Mid-Ebb SR11 22/05/2014 Mid-Ebb 0.55 SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.43 SR9 23/05/2014 Mid-Ebb 0.38 SR11 22/05/2014 Mid-Ebb 0.30 SR9 33/05/2014 Mid-Ebb 0.38 SR11 23/05/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.48 SR11 03/06/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.48 SR11 10/06/2014 Mid-Ebb 0.33 SR9 10/06/2014 Mid-Ebb 0.48 SR11 10/06/2014 Mid-Ebb 0.43 SR9 10/06/2014 Mid-Ebb 0.42 SR11 10/06/2014 Mid-Ebb 0.43 SR9 10/06/2014 Mid-Ebb 0.43					0.19
SR9 10/05/2014 Mid-Ebb SR11 10/05/2014 Mid-Ebb 0.62 SR9 13/05/2014 Mid-Ebb 0.63 SR11 13/05/2014 Mid-Ebb 0.43 SR9 13/05/2014 Mid-Ebb 0.53 SR11 13/05/2014 Mid-Ebb 0.53 SR9 22/05/2014 Mid-Ebb 0.76 SR11 22/05/2014 Mid-Ebb 0.66 SR9 22/05/2014 Mid-Ebb 0.78 SR11 24/05/2014 Mid-Ebb 0.63 SR9 23/05/2014 Mid-Ebb 0.58 SR11 24/05/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.51 SR11 03/06/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.48 SR11 03/06/2014 Mid-Ebb 0.33 SR9 10/06/2014 Mid-Ebb 0.48 SR11 10/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.38 SR11 12/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.38 SR11 12/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.38 SR11 <td></td> <td></td> <td></td> <td></td> <td></td>					
SR9 13/05/2014 Mid-Ebb SR11 13/05/2014 Mid-Ebb 0.53 SR9 15/05/2014 Mid-Ebb 0.53 SR11 15/05/2014 Mid-Ebb 0.53 SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.65 SR9 22/05/2014 Mid-Ebb 0.59 SR11 22/05/2014 Mid-Ebb 0.40 SR9 22/05/2014 Mid-Ebb 0.59 SR11 22/05/2014 Mid-Ebb 0.43 SR9 23/05/2014 Mid-Ebb 0.58 SR11 23/05/2014 Mid-Ebb 0.43 SR9 05/06/2014 Mid-Ebb 0.28 SR11 03/06/2014 Mid-Ebb 0.33 SR9 05/06/2014 Mid-Ebb 0.39 SR11 12/06/2014 Mid-Ebb 0.33 SR9 10/06/2014 Mid-Ebb 0.38 SR11 12/06/2014 Mid-Ebb 0.30 SR9 12/06/2014 Mid-Ebb 0.38 SR11 12/06/2014 Mid-Ebb 0.43 SR9 12/06/2014 Mid-Ebb 0.38 SR11 21/06/2014 Mid-Ebb 0.43 SR9 24/06/2014 Mid-Ebb 0.43 SR11 <td></td> <td></td> <td></td> <td></td> <td></td>					
SR9 15/05/2014 Mid-Ebb 0.63 SR11 15/05/2014 Mid-Ebb 0.43 SR9 20/05/2014 Mid-Ebb SR11 20/05/2014 Mid-Ebb 0.55 SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.65 SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.36 SR9 23/05/2014 Mid-Ebb 0.38 SR11 22/05/2014 Mid-Ebb 0.31 SR9 31/05/2014 Mid-Ebb 0.38 SR11 22/05/2014 Mid-Ebb 0.31 SR9 03/06/2014 Mid-Ebb 0.28 SR11 05/06/2014 Mid-Ebb 0.33 SR9 07/06/2014 Mid-Ebb 0.39 SR11 10/06/2014 Mid-Ebb 0.33 SR9 10/06/2014 Mid-Ebb 0.38 SR11 12/06/2014 Mid-Ebb 0.43 SR9 10/06/2014 Mid-Ebb 0.38 SR11 12/06/2014 Mid-Ebb 0.43 SR9 10/06/2014 Mid-Ebb 0.38 SR11 12/06/2014 Mid-Ebb 0.43 SR9 10/06/2014 Mid-Ebb 0.38 SR11 <td></td> <td></td> <td></td> <td></td> <td>0.20</td>					0.20
SR9 20/05/2014 Mid-Ebb SR11 20/05/2014 Mid-Ebb 0.78 SR9 24/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.68 SR9 27/05/2014 Mid-Ebb 0.59 SR11 22/05/2014 Mid-Ebb 0.48 SR9 23/05/2014 Mid-Ebb 0.51 SR11 23/05/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.48 SR11 05/06/2014 Mid-Ebb 0.33 SR9 07/06/2014 Mid-Ebb 0.48 SR11 07/06/2014 Mid-Ebb 0.33 SR9 10/06/2014 Mid-Ebb 0.38 SR11 10/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.42 SR11 12/06/2014 Mid-Ebb 0.43 SR9 12/06/2014 Mid-Ebb 0.42 SR11 21/06/2014 Mid-Ebb 0.33 SR9 24/06/2014 Mid-Ebb 0.34 SR11 24/06/2014 Mid-Ebb 0.33 SR9 24/06/2014 Mid-Ebb 0.38 SR11 24/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.39 SR11 <td></td> <td></td> <td></td> <td></td> <td>0.49</td>					0.49
SR9 22/05/2014 Mid-Ebb 0.78 SR11 22/05/2014 Mid-Ebb 0.68 SR9 24/05/2014 Mid-Ebb 0.38 SR11 24/05/2014 Mid-Ebb 0.43 SR9 31/05/2014 Mid-Ebb 0.38 SR11 27/05/2014 Mid-Ebb 0.33 SR9 31/05/2014 Mid-Ebb 0.48 SR11 31/05/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.48 SR11 03/06/2014 Mid-Ebb 0.33 SR9 07/06/2014 Mid-Ebb 0.48 SR11 10/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.48 SR11 10/06/2014 Mid-Ebb 0.43 SR9 12/06/2014 Mid-Ebb 0.27 SR11 12/06/2014 Mid-Ebb 0.25 SR9 12/06/2014 Mid-Ebb 0.23 SR11 24/06/2014 Mid-Ebb 0.23 SR9 26/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.23 SR9 28/06/2014 Mid-Ebb 0.33 SR11 26/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 <td>SR9</td> <td>17/05/2014 Mid-Ebb</td> <td>0.53 SR11</td> <td>17/05/2014 Mid-Ebb</td> <td>0.56</td>	SR9	17/05/2014 Mid-Ebb	0.53 SR11	17/05/2014 Mid-Ebb	0.56
SR9 24/05/2014 Mid-Ebb 0.38 SR11 24/05/2014 Mid-Ebb 0.69 SR9 27/05/2014 Mid-Ebb 0.38 SR111 27/05/2014 Mid-Ebb 0.31 SR9 31/05/2014 Mid-Ebb 0.38 SR111 31/05/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.48 SR11 05/06/2014 Mid-Ebb 0.33 SR9 07/06/2014 Mid-Ebb 0.48 SR11 05/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.78 SR11 12/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.78 SR11 12/06/2014 Mid-Ebb 0.42 SR9 12/06/2014 Mid-Ebb 0.42 SR11 21/06/2014 Mid-Ebb 0.33 SR9 24/06/2014 Mid-Ebb 0.34 SR11 24/06/2014 Mid-Ebb 0.33 SR9 24/06/2014 Mid-Ebb 0.43 SR11 24/06/2014 Mid-Ebb 0.33 SR9 24/06/2014 Mid-Ebb 0.57 SR11 10/07/2014 Mid-Ebb 0.33 SR9 03/07/2014 Mid-Ebb 0.57 </td <td>SR9</td> <td>20/05/2014 Mid-Ebb</td> <td>SR11</td> <td>20/05/2014 Mid-Ebb</td> <td>0.54</td>	SR9	20/05/2014 Mid-Ebb	SR11	20/05/2014 Mid-Ebb	0.54
SR9 27/05/2014 Mid-Ebb 0.39 SR11 27/05/2014 Mid-Ebb 0.38 SR9 31/05/2014 Mid-Ebb 0.38 SR11 29/05/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.28 SR11 03/06/2014 Mid-Ebb 0.33 SR9 07/06/2014 Mid-Ebb 0.38 SR11 07/06/2014 Mid-Ebb 0.33 SR9 10/06/2014 Mid-Ebb 0.39 SR11 10/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.38 SR11 14/06/2014 Mid-Ebb 0.44 SR9 12/06/2014 Mid-Ebb 0.42 SR11 12/06/2014 Mid-Ebb 0.43 SR9 12/06/2014 Mid-Ebb 0.42 SR11 12/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.43 SR9 26/06/2014 Mid-Ebb 0.39 SR11 26/06/2014 Mid-Ebb 0.43 SR9 26/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.43 SR9 26/06/2014 Mid-Ebb 0.43 <td>SR9</td> <td>22/05/2014 Mid-Ebb</td> <td>0.78 SR11</td> <td>22/05/2014 Mid-Ebb</td> <td>0.61</td>	SR9	22/05/2014 Mid-Ebb	0.78 SR11	22/05/2014 Mid-Ebb	0.61
SR9 29/05/2014 Mid-Ebb 0.38 SR11 29/05/2014 Mid-Ebb 0.33 SR9 31/05/2014 Mid-Ebb 0.51 SR11 31/05/2014 Mid-Ebb 0.33 SR9 03/06/2014 Mid-Ebb 0.48 SR11 03/06/2014 Mid-Ebb 0.33 SR9 07/06/2014 Mid-Ebb 0.48 SR11 10/06/2014 Mid-Ebb 0.33 SR9 12/06/2014 Mid-Ebb 0.19 SR11 10/06/2014 Mid-Ebb 0.43 SR9 12/06/2014 Mid-Ebb 0.27 SR11 19/06/2014 Mid-Ebb 0.42 SR9 19/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.34 SR11 26/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.35 SR11 26/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.35 SR11 26/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.33 SR11 26/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.33 <td></td> <td></td> <td></td> <td></td> <td>0.63</td>					0.63
SR9 31/05/2014 Mid-Ebb 0.28 SR11 31/05/2014 Mid-Ebb 0.3 SR9 03/06/2014 Mid-Ebb 0.28 SR11 03/06/2014 Mid-Ebb 0.3 SR9 07/06/2014 Mid-Ebb 0.39 SR11 07/06/2014 Mid-Ebb 0.3 SR9 10/06/2014 Mid-Ebb 0.19 SR11 12/06/2014 Mid-Ebb 0.3 SR9 12/06/2014 Mid-Ebb 0.75 SR11 12/06/2014 Mid-Ebb 0.21 SR9 12/06/2014 Mid-Ebb 0.42 SR11 12/06/2014 Mid-Ebb 0.42 SR9 21/06/2014 Mid-Ebb 0.43 SR11 24/06/2014 Mid-Ebb 0.33 SR9 24/06/2014 Mid-Ebb 0.43 SR11 24/06/2014 Mid-Ebb 0.33 SR9 24/06/2014 Mid-Ebb 0.33 SR11 26/06/2014 Mid-Ebb 0.33 SR9 03/07/2014 Mid-Ebb 0.33 SR11 10/07/2014 Mid-Ebb 0.30 SR9 03/07/2014 Mid-Ebb 0.31 SR11 10/07/2014 Mid-Ebb 0.4 SR9 03/07/2014 Mid-Ebb 0.30					
SR9 03/06/2014 Mid-Ebb 0.28 SR11 03/06/2014 Mid-Ebb 0.39 SR9 07/06/2014 Mid-Ebb 0.39 SR11 07/06/2014 Mid-Ebb 0.31 SR9 10/06/2014 Mid-Ebb 0.39 SR11 10/06/2014 Mid-Ebb 0.31 SR9 12/06/2014 Mid-Ebb 0.38 SR11 10/06/2014 Mid-Ebb 0.42 SR9 17/06/2014 Mid-Ebb 0.27 SR11 17/06/2014 Mid-Ebb 0.22 SR9 21/06/2014 Mid-Ebb 0.42 SR11 10/06/2014 Mid-Ebb 0.23 SR9 26/06/2014 Mid-Ebb 0.42 SR11 26/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.29 SR11 26/06/2014 Mid-Ebb 0.33 SR9 03/07/2014 Mid-Ebb 0.33 SR11 05/07/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.50 SR11 05/07/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.50 SR11 05/07/2014 Mid-Ebb 0.43 SR9 15/07/2014 Mid-Ebb 0.50 <td></td> <td></td> <td></td> <td></td> <td></td>					
SR9 05/06/2014 Mid-Ebb 0.48 SR11 05/06/2014 Mid-Ebb 0.39 SR9 10/06/2014 Mid-Ebb 0.39 SR11 10/06/2014 Mid-Ebb 0.31 SR9 12/06/2014 Mid-Ebb 0.39 SR11 12/06/2014 Mid-Ebb 0.31 SR9 12/06/2014 Mid-Ebb 0.42 SR11 12/06/2014 Mid-Ebb 0.42 SR9 19/06/2014 Mid-Ebb 0.42 SR11 12/06/2014 Mid-Ebb 0.51 SR9 19/06/2014 Mid-Ebb 0.42 SR11 12/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 SR11 24/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.57 SR11 01/07/2014 Mid-Ebb 0.33 SR9 01/07/2014 Mid-Ebb 0.50 SR11 01/07/2014 Mid-Ebb 0.43 SR9 05/07/2014 Mid-Ebb 0.33 SR11 10/07/2014 Mid-Ebb 0.43 SR9 10/07/2014 Mid-Ebb 0.55 SR11 10/07/2014 Mid-Ebb 0.43 SR9 12/07/2014 Mid-Ebb 0.36 <td></td> <td></td> <td></td> <td></td> <td>0.51</td>					0.51
SR9 10/06/2014 Mid-Ebb SR11 10/06/2014 Mid-Ebb 0.19 SR9 12/06/2014 Mid-Ebb 0.19 SR11 12/06/2014 Mid-Ebb 0.43 SR9 17/6/2014 Mid-Ebb 0.27 SR11 17/6/2014 Mid-Ebb 0.21 SR9 17/6/2014 Mid-Ebb 0.24 SR11 17/6/2014 Mid-Ebb 0.21 SR9 24/06/2014 Mid-Ebb 0.43 SR11 24/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.29 SR11 26/06/2014 Mid-Ebb 0.33 SR9 03/07/2014 Mid-Ebb 0.29 SR11 03/07/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.30 SR11 03/07/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.50 SR11 03/07/2014 Mid-Ebb 0.44 SR9 03/07/2014 Mid-Ebb 0.50 SR11 10/07/2014 Mid-Ebb 0.44 SR9 03/07/2014 Mid-Ebb 0.50 SR11 10/07/2014 Mid-Ebb 0.44 SR9 12/07/2014 Mid-Ebb 0.50 SR11					0.39
SR9 12/06/2014 Mid-Ebb 0.19 SR11 12/06/2014 Mid-Ebb 0.43 SR9 14/06/2014 Mid-Ebb 0.38 SR11 14/06/2014 Mid-Ebb 0.4 SR9 17/6/2014 Mid-Ebb 0.42 SR11 17/6/2014 Mid-Ebb 0.50 SR9 21/06/2014 Mid-Ebb 0.42 SR11 21/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 SR11 21/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 SR11 21/06/2014 Mid-Ebb 0.33 SR9 01/07/2014 Mid-Ebb 0.57 SR11 01/07/2014 Mid-Ebb 0.43 SR9 05/07/2014 Mid-Ebb 0.50 SR11 03/07/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.55 SR11 10/07/2014 Mid-Ebb 0.43 SR9 10/07/2014 Mid-Ebb 0.56 SR11 12/07/2014 Mid-Ebb 0.43 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.43 SR9 12/07/2014 Mid-Ebb 0.30			0.39 SR11	07/06/2014 Mid-Ebb	0.32
SR9 14/06/2014 Mid-Ebb 0.38 SR11 14/06/2014 Mid-Ebb 0.42 SR9 17/6/2014 Mid-Ebb 0.42 SR11 17/6/2014 Mid-Ebb 0.42 SR9 21/06/2014 Mid-Ebb SR11 21/06/2014 Mid-Ebb 0.33 SR11 21/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 SR11 24/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 SR11 28/06/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.43 SR11 03/07/2014 Mid-Ebb 0.44 SR9 03/07/2014 Mid-Ebb 0.31 SR11 03/07/2014 Mid-Ebb 0.44 SR9 06/07/2014 Mid-Ebb 0.31 SR11 10/07/2014 Mid-Ebb 0.44 SR9 12/07/2014 Mid-Ebb 0.31 SR11 10/07/2014 Mid-Ebb 0.44 SR9 12/07/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.44 SR9 12/07/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.42 SR10 26/04/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.21	SR9	10/06/2014 Mid-Ebb	SR11	10/06/2014 Mid-Ebb	0.37
SR9 17/6/2014 Mid-Ebb 0.27 SR11 17/6/2014 Mid-Ebb 0.20 SR9 19/06/2014 Mid-Ebb 0.42 SR11 19/06/2014 Mid-Ebb 0.50 SR9 24/06/2014 Mid-Ebb 0.38 SR11 24/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.32 SR9 26/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.43 SR11 03/07/2014 Mid-Ebb 0.44 SR9 05/07/2014 Mid-Ebb 0.50 SR11 03/07/2014 Mid-Ebb 0.47 SR9 10/07/2014 Mid-Ebb 0.50 SR11 10/07/2014 Mid-Ebb 0.47 SR9 12/07/2014 Mid-Ebb 0.51 SR11 12/07/2014 Mid-Ebb 0.47 SR9 12/07/2014 Mid-Ebb 0.51 SR11 12/07/2014 Mid-Ebb 0.47 SR9 12/07/2014 Mid-Ebb 0.36 SR11 17/07/2014 Mid-Ebb 0.47 SR9 12/07/2014 Mid-Ebb 0.36 SR11 17/07/2014 Mid-Ebb 0.47 SR10 22/07		12/06/2014 Mid-Ebb			0.42
SR9 19/06/2014 Mid-Ebb 0.42 SR11 19/06/2014 Mid-Ebb 0.5 SR9 21/06/2014 Mid-Ebb 0.83 SR11 24/06/2014 Mid-Ebb 0.3 SR9 26/06/2014 Mid-Ebb 0.43 SR11 24/06/2014 Mid-Ebb 0.3 SR9 28/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.3 SR9 28/06/2014 Mid-Ebb 0.57 SR11 01/07/2014 Mid-Ebb 0.4 SR9 03/07/2014 Mid-Ebb 0.50 SR11 05/07/2014 Mid-Ebb 0.4 SR9 05/07/2014 Mid-Ebb 0.50 SR11 08/07/2014 Mid-Ebb 0.4 SR9 10/07/2014 Mid-Ebb 0.31 SR11 10/07/2014 Mid-Ebb 0.4 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.4 SR9 12/07/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.2 SR9 12/07/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.2 SR10 24/04/2014 Mid-Ebb 0.16					0.41
SR9 21/06/2014 Mid-Ebb SR11 21/06/2014 Mid-Ebb 0.38 SR9 24/06/2014 Mid-Ebb 0.33 SR11 24/06/2014 Mid-Ebb 0.33 SR9 28/06/2014 Mid-Ebb 0.29 SR11 28/06/2014 Mid-Ebb 0.43 SR9 28/06/2014 Mid-Ebb 0.29 SR11 01/07/2014 Mid-Ebb 0.43 SR9 01/07/2014 Mid-Ebb 0.31 SR11 03/07/2014 Mid-Ebb 0.44 SR9 05/07/2014 Mid-Ebb 0.39 SR11 03/07/2014 Mid-Ebb 0.44 SR9 08/07/2014 Mid-Ebb 0.30 SR11 10/07/2014 Mid-Ebb 0.47 SR9 12/07/2014 Mid-Ebb 0.31 SR11 10/07/2014 Mid-Ebb 0.46 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.46 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.47 SR10 24/04/2014 Mid-Ebb 0.26 SR11 12/07/2014 Mid-Ebb 0.27 SR10 24/04/2014 Mid-Ebb 0.10 SR11 22/07/2014 Mid-Ebb 0.27 SR10 24/04/2014 Mid-Ebb <td></td> <td></td> <td></td> <td></td> <td>0.20</td>					0.20
SR9 24/06/2014 Mid-Ebb 0.38 SR11 24/06/2014 Mid-Ebb 0.33 SR9 26/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.33 SR9 28/06/2014 Mid-Ebb 0.59 SR11 28/06/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.31 SR11 03/07/2014 Mid-Ebb 0.44 SR9 03/07/2014 Mid-Ebb 0.31 SR11 03/07/2014 Mid-Ebb 0.44 SR9 05/07/2014 Mid-Ebb 0.30 SR11 05/07/2014 Mid-Ebb 0.47 SR9 10/07/2014 Mid-Ebb 0.31 SR11 10/07/2014 Mid-Ebb 0.47 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.47 SR9 12/07/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.23 SR10 24/04/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.37 SR10 26/04/2014 Mid-Ebb 0.10 SR10 22/07/2014 Mid-Ebb 0.37 SR10 26/04/2014 Mid-Ebb 0.10 SR10 13/05/2014 Mid-Ebb 0.23 SR10					0.56
SR9 26/06/2014 Mid-Ebb 0.43 SR11 26/06/2014 Mid-Ebb 0.29 SR9 28/06/2014 Mid-Ebb 0.29 SR11 28/06/2014 Mid-Ebb 0.21 SR9 03/07/2014 Mid-Ebb 0.30 SR11 03/07/2014 Mid-Ebb 0.43 SR9 03/07/2014 Mid-Ebb 0.31 SR11 05/07/2014 Mid-Ebb 0.43 SR9 08/07/2014 Mid-Ebb 0.30 SR11 08/07/2014 Mid-Ebb 0.43 SR9 10/07/2014 Mid-Ebb 0.30 SR11 10/07/2014 Mid-Ebb 0.44 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.44 SR9 12/07/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.66 SR9 12/07/2014 Mid-Ebb 0.36 SR11 19/07/2014 Mid-Ebb 0.61 SR10 24/04/2014 Mid-Ebb 0.10 SR11 22/07/2014 Mid-Ebb 0.31 SR10 03/05/2014 Mid-Ebb 0.11 SR10 22/07/2014 Mid-Ebb 0.31 SR10 03/05/2014 Mid-Ebb 0.11 SR10 22/05/2014 Mid-Ebb 0.11 SR10					0.39
SR9 28/06/2014 Mid-Ebb 0.29 SR11 28/06/2014 Mid-Ebb 0.21 SR9 01/07/2014 Mid-Ebb 0.39 SR11 03/07/2014 Mid-Ebb 0.4 SR9 05/07/2014 Mid-Ebb 0.31 SR11 03/07/2014 Mid-Ebb 0.4 SR9 08/07/2014 Mid-Ebb 0.39 SR11 08/07/2014 Mid-Ebb 0.4 SR9 10/07/2014 Mid-Ebb 0.39 SR11 10/07/2014 Mid-Ebb 0.4 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.4 SR9 15/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.4 SR9 19/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.22 SR10 24/04/2014 Mid-Ebb 0.24 SR11 12/07/2014 Mid-Ebb 0.2 SR10 24/04/2014 Mid-Ebb 0.10 SR10 22/07/2014 Mid-Ebb 0.3 SR10 03/05/2014 Mid-Ebb 0.10 SR10 23/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.11					
SR9 01/07/2014 Mid-Ebb 0.57 SR11 01/07/2014 Mid-Ebb 0.4 SR9 03/07/2014 Mid-Ebb 0.39 SR11 03/07/2014 Mid-Ebb 0.4 SR9 05/07/2014 Mid-Ebb 0.31 SR11 05/07/2014 Mid-Ebb 0.4 SR9 10/07/2014 Mid-Ebb 0.39 SR11 10/07/2014 Mid-Ebb 0.4 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.4 SR9 15/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.4 SR9 15/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.4 SR9 12/07/2014 Mid-Ebb 0.36 SR11 12/07/2014 Mid-Ebb 0.21 SR10 24/04/2014 Mid-Ebb 0.10 SR10 22/07/2014 Mid-Ebb 0.21 SR10 03/05/2014 Mid-Ebb 0.11 SR10 SR10 03/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.11 SR10 22/05/2014 Mid-Ebb 0.56 SR10 10/05/2014 Mid-Ebb					0.25
SR9 05/07/2014 Mid-Ebb 0.31 SR11 05/07/2014 Mid-Ebb 0.4 SR9 08/07/2014 Mid-Ebb 0.30 SR11 10/07/2014 Mid-Ebb 0.7 SR9 12/07/2014 Mid-Ebb 0.31 SR11 10/07/2014 Mid-Ebb 0.4 SR9 15/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.4 SR9 15/07/2014 Mid-Ebb 0.36 SR11 17/07/2014 Mid-Ebb 0.6 SR9 19/07/2014 Mid-Ebb 0.36 SR11 19/07/2014 Mid-Ebb 0.22 SR9 22/07/2014 Mid-Ebb 0.24 SR11 22/07/2014 Mid-Ebb 0.23 SR10 26/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.56 SR10 13/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.54 SR10 22/05/2014 Mid-Ebb 0.53 SR10 22/	SR9		0.57 SR11	01/07/2014 Mid-Ebb	0.48
SR9 08/07/2014 Mid-Ebb 0.50 SR11 08/07/2014 Mid-Ebb 0.7/ SR9 10/07/2014 Mid-Ebb 0.39 SR11 10/07/2014 Mid-Ebb 0.4 SR9 15/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.44 SR9 15/07/2014 Mid-Ebb SR11 15/07/2014 Mid-Ebb 0.66 SR9 19/07/2014 Mid-Ebb SR11 17/07/2014 Mid-Ebb 0.22 SR9 22/07/2014 Mid-Ebb 0.24 SR11 22/07/2014 Mid-Ebb 0.23 SR10 26/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.56 SR10 10/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 24/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.54 SR10 27/05/2014 Mid-Ebb 0.53 SR10 27/05/2014 Mid-Ebb 0.57	SR9	03/07/2014 Mid-Ebb	0.39 SR11	03/07/2014 Mid-Ebb	0.40
SR9 10/07/2014 Mid-Ebb 0.39 SR11 10/07/2014 Mid-Ebb 0.4 SR9 12/07/2014 Mid-Ebb 0.31 SR11 12/07/2014 Mid-Ebb 0.44 SR9 15/07/2014 Mid-Ebb 0.31 SR11 15/07/2014 Mid-Ebb 0.66 SR9 19/07/2014 Mid-Ebb 0.36 SR11 19/07/2014 Mid-Ebb 0.22 SR9 22/07/2014 Mid-Ebb 0.24 SR11 22/07/2014 Mid-Ebb 0.23 SR10 24/04/2014 Mid-Ebb 0.18 SR10 26/04/2014 Mid-Ebb 0.17 SR10 03/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.11 SR10 06/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.54 SR10 27/05/2014 Mid-Ebb 0.57 SR10 <	SR9	05/07/2014 Mid-Ebb		05/07/2014 Mid-Ebb	0.47
SR9 12/07/2014 Mid-Ebb 0.15 SR11 12/07/2014 Mid-Ebb 0.44 SR9 15/07/2014 Mid-Ebb 0.31 SR11 15/07/2014 Mid-Ebb 0.66 SR9 19/07/2014 Mid-Ebb SR11 17/07/2014 Mid-Ebb 0.22 SR9 22/07/2014 Mid-Ebb 0.24 SR11 19/07/2014 Mid-Ebb 0.23 SR10 24/04/2014 Mid-Ebb 0.18 SR10 22/07/2014 Mid-Ebb 0.33 SR10 26/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.11 SR10 06/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.56 SR10 17/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 29/05/2014 Mid-Ebb 0.54 SR10 29/05/2014 Mid-Ebb 0.53 SR10 29/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-					0.74
SR9 15/07/2014 Mid-Ebb 0.31 SR11 15/07/2014 Mid-Ebb 0.6i SR9 17/07/2014 Mid-Ebb SR11 17/07/2014 Mid-Ebb 0.7i SR9 19/07/2014 Mid-Ebb 0.36 SR11 19/07/2014 Mid-Ebb 0.2i SR9 22/07/2014 Mid-Ebb 0.24 SR11 22/07/2014 Mid-Ebb 0.3i SR10 24/04/2014 Mid-Ebb 0.18 SR10 26/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.10 SR10 03/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.11 SR10 06/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.59 SR10 15/05/2014 Mid-Ebb 0.59 SR10 20/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.54 SR10 21/05/2014 Mid-Ebb 0.54 SR10 20/05/2014 Mid-Ebb 0.54 SR10 21/05/2014 Mid-Ebb 0.54 SR10 20/05/2014 Mid-Ebb 0.54 SR10 21/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-					0.47
SR9 17/07/2014 Mid-Ebb SR11 17/07/2014 Mid-Ebb 0.36 SR9 19/07/2014 Mid-Ebb 0.36 SR11 19/07/2014 Mid-Ebb 0.22 SR9 22/07/2014 Mid-Ebb 0.24 SR11 22/07/2014 Mid-Ebb 0.33 SR10 24/04/2014 Mid-Ebb 0.10 SR10 26/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.07 SR10 01/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.11 SR10 08/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.23 SR10 15/05/2014 Mid-Ebb 0.56 SR10 15/05/2014 Mid-Ebb 0.59 SR10 20/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.54 SR10 21/05/2014 Mid-Ebb 0.34 SR10 21/05/2014 Mid-Ebb 0.53 SR10 31/05/2014 Mid-Ebb 0.34 SR10 03/06/2014 Mid-Ebb 0.36 SR10 31/05/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid					
SR9 19/07/2014 Mid-Ebb 0.36 SR11 19/07/2014 Mid-Ebb 0.22 SR9 22/07/2014 Mid-Ebb 0.24 SR11 22/07/2014 Mid-Ebb 0.33 SR10 24/04/2014 Mid-Ebb 0.10 SR10 26/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 03/05/2014 Mid-Ebb 0.12 SR10 08/05/2014 Mid-Ebb 0.23 SR10 10/05/2014 Mid-Ebb 0.56 SR10 15/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.54 SR10 27/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.34 SR10 31/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 12/06/2014 Mid-Ebb 0.36 SR10					0.00
SR10 24/04/2014 Mid-Ebb 0.18 SR10 26/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.07 SR10 01/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 08/05/2014 Mid-Ebb 0.11 SR10 08/05/2014 Mid-Ebb 0.11 SR10 08/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.56 SR10 15/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 24/05/2014 Mid-Ebb 0.57 SR10 24/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.34 SR10 07/06/2014 Mid-Ebb 0.20 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 <td></td> <td></td> <td></td> <td></td> <td>0.22</td>					0.22
SR10 26/04/2014 Mid-Ebb 0.10 SR10 29/04/2014 Mid-Ebb 0.07 SR10 01/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 06/05/2014 Mid-Ebb 0.10 SR10 08/05/2014 Mid-Ebb 0.11 SR10 08/05/2014 Mid-Ebb 0.23 SR10 10/05/2014 Mid-Ebb 0.56 SR10 15/05/2014 Mid-Ebb 0.56 SR10 17/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 29/05/2014 Mid-Ebb 0.57 SR10 29/05/2014 Mid-Ebb 0.53 SR10 29/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.34 SR10 03/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 SR10 17/06/2014 Mid-Ebb 0.55 <td></td> <td></td> <td>0.24 SR11</td> <td>22/07/2014 Mid-Ebb</td> <td>0.34</td>			0.24 SR11	22/07/2014 Mid-Ebb	0.34
SR10 29/04/2014 Mid-Ebb 0.07 SR10 01/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 06/05/2014 Mid-Ebb 0.10 SR10 08/05/2014 Mid-Ebb 0.11 SR10 10/05/2014 Mid-Ebb 0.11 SR10 10/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.56 SR10 17/05/2014 Mid-Ebb 0.59 SR10 20/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 24/05/2014 Mid-Ebb 0.53 SR10 27/05/2014 Mid-Ebb 0.53 SR10 29/05/2014 Mid-Ebb 0.53 SR10 29/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.34 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 SR10 17/06/2014 Mid-Ebb 0.55 <td>SR10</td> <td>24/04/2014 Mid-Ebb</td> <td>0.18</td> <td></td> <td></td>	SR10	24/04/2014 Mid-Ebb	0.18		
SR10 01/05/2014 Mid-Ebb 0.11 SR10 03/05/2014 Mid-Ebb 0.12 SR10 06/05/2014 Mid-Ebb 0.10 SR10 08/05/2014 Mid-Ebb 0.11 SR10 10/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.56 SR10 13/05/2014 Mid-Ebb 0.59 SR10 17/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 24/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 29/05/2014 Mid-Ebb 0.54 SR10 29/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.34 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 10/06/2014 Mid-Ebb 0.20 SR10 17/06/2014 Mid-Ebb 0.55 SR10 17/06/2014 Mid-Ebb 0.55 <td>SR10</td> <td>26/04/2014 Mid-Ebb</td> <td>0.10</td> <td></td> <td></td>	SR10	26/04/2014 Mid-Ebb	0.10		
SR10 03/05/2014 Mid-Ebb 0.12 SR10 06/05/2014 Mid-Ebb 0.10 SR10 08/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.56 SR10 15/05/2014 Mid-Ebb 0.59 SR10 15/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.54 SR10 27/05/2014 Mid-Ebb 0.54 SR10 29/05/2014 Mid-Ebb 0.54 SR10 31/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.34 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 SR10 17/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 <td></td> <td></td> <td></td> <td></td> <td></td>					
SR10 06/05/2014 Mid-Ebb 0.10 SR10 08/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.56 SR10 15/05/2014 Mid-Ebb 0.59 SR10 20/05/2014 Mid-Ebb 0.57 SR10 20/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.57 SR10 27/05/2014 Mid-Ebb 0.54 SR10 29/05/2014 Mid-Ebb 0.53 SR10 29/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.34 SR10 03/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.34 SR10 12/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 SR10 17/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 <td></td> <td></td> <td></td> <td></td> <td></td>					
SR10 08/05/2014 Mid-Ebb 0.11 SR10 10/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.56 SR10 15/05/2014 Mid-Ebb 0.59 SR10 20/05/2014 Mid-Ebb 0.64 SR10 20/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.34 SR10 29/05/2014 Mid-Ebb 0.41 SR10 29/05/2014 Mid-Ebb 0.41 SR10 29/05/2014 Mid-Ebb 0.41 SR10 03/06/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.36 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 10/06/2014 Mid-Ebb 0.20 SR10 17/6/2014 Mid-Ebb 0.55 SR10 17/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.55 SR10 24/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.40					
SR10 10/05/2014 Mid-Ebb 0.23 SR10 13/05/2014 Mid-Ebb 0.56 SR10 15/05/2014 Mid-Ebb 0.59 SR10 20/05/2014 Mid-Ebb 0.64 SR10 22/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.34 SR10 22/05/2014 Mid-Ebb 0.34 SR10 22/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.41 SR10 21/05/2014 Mid-Ebb 0.41 SR10 31/05/2014 Mid-Ebb 0.33 SR10 03/06/2014 Mid-Ebb 0.36 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.20 SR10 17/6/2014 Mid-Ebb 0.34 SR10 17/06/2014 Mid-Ebb 0.29 SR10 21/06/2014 Mid-Ebb 0.55 SR10 24/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.42					
SR10 13/05/2014 Mid-Ebb SR10 15/05/2014 Mid-Ebb 0.56 SR10 17/05/2014 Mid-Ebb 0.59 SR10 20/05/2014 Mid-Ebb 0.64 SR10 22/05/2014 Mid-Ebb 0.57 SR10 22/05/2014 Mid-Ebb 0.34 SR10 22/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.41 SR10 31/05/2014 Mid-Ebb 0.53 SR10 03/06/2014 Mid-Ebb 0.36 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 SR10 17/6/2014 Mid-Ebb 0.55 SR10 24/06/2014 Mid-Ebb 0.55 SR10 24/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.40 SR10 26/06/2014 Mid-Ebb 0.40 S					
SR10 17/05/2014 Mid-Ebb 0.59 SR10 20/05/2014 Mid-Ebb 0.64 SR10 22/05/2014 Mid-Ebb 0.57 SR10 24/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.34 SR10 29/05/2014 Mid-Ebb 0.34 SR10 29/05/2014 Mid-Ebb 0.34 SR10 30/06/2014 Mid-Ebb 0.41 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.33 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 SR10 17/6/2014 Mid-Ebb 0.55 SR10 12/06/2014 Mid-Ebb 0.55 SR10 24/06/2014 Mid-Ebb 0.55 SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 28/06/2014 Mid-Ebb 0.35 SR10 28/06/2014 Mid-Ebb 0.53					
SR10 20/05/2014 Mid-Ebb 0.64 SR10 22/05/2014 Mid-Ebb 0.57 SR10 24/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.57 SR10 29/05/2014 Mid-Ebb 0.34 SR10 29/05/2014 Mid-Ebb 0.34 SR10 31/05/2014 Mid-Ebb 0.41 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.33 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.24 SR10 17/6/2014 Mid-Ebb 0.29 SR10 17/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.55 SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.35	SR10	15/05/2014 Mid-Ebb	0.56		
SR10 22/05/2014 Mid-Ebb 0.57 SR10 24/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.57 SR10 29/05/2014 Mid-Ebb 0.34 SR10 31/05/2014 Mid-Ebb 0.34 SR10 31/05/2014 Mid-Ebb 0.41 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.33 SR10 07/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.16 SR10 12/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 SR10 17/06/2014 Mid-Ebb 0.55 SR10 17/06/2014 Mid-Ebb 0.55 SR10 17/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53	SR10	17/05/2014 Mid-Ebb	0.59		
SR10 24/05/2014 Mid-Ebb 0.34 SR10 27/05/2014 Mid-Ebb 0.57 SR10 29/05/2014 Mid-Ebb 0.34 SR10 31/05/2014 Mid-Ebb 0.41 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.33 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.16 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.20 SR10 17/06/2014 Mid-Ebb 0.29 SR10 19/06/2014 Mid-Ebb 0.55 SR10 19/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.55 SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53	SR10	20/05/2014 Mid-Ebb			
SR10 27/05/2014 Mid-Ebb 0.57 SR10 29/05/2014 Mid-Ebb 0.34 SR10 31/05/2014 Mid-Ebb 0.41 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.33 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.29 SR10 14/06/2014 Mid-Ebb 0.29 SR10 19/06/2014 Mid-Ebb 0.55 SR10 19/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.40 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.35					
SR10 29/05/2014 Mid-Ebb 0.34 SR10 31/05/2014 Mid-Ebb 0.41 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.33 SR10 05/06/2014 Mid-Ebb 0.36 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.16 SR10 12/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.24 SR10 17/6/2014 Mid-Ebb 0.55 SR10 17/06/2014 Mid-Ebb 0.55 SR10 12/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.40 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53					
SR10 31/05/2014 Mid-Ebb 0.41 SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.33 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.16 SR10 10/06/2014 Mid-Ebb 0.20 SR10 12/06/2014 Mid-Ebb 0.34 SR10 14/06/2014 Mid-Ebb 0.29 SR10 17/6/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.35					
SR10 03/06/2014 Mid-Ebb 0.53 SR10 05/06/2014 Mid-Ebb 0.33 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.16 SR10 12/06/2014 Mid-Ebb 0.20 SR10 14/06/2014 Mid-Ebb 0.34 SR10 17/6/2014 Mid-Ebb 0.29 SR10 17/6/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53					
SR10 05/06/2014 Mid-Ebb 0.33 SR10 07/06/2014 Mid-Ebb 0.36 SR10 10/06/2014 Mid-Ebb 0.16 SR10 12/06/2014 Mid-Ebb 0.20 SR10 14/06/2014 Mid-Ebb 0.34 SR10 17/6/2014 Mid-Ebb 0.29 SR10 17/6/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 26/06/2014 Mid-Ebb 0.53					
SR10 10/06/2014 Mid-Ebb 0.16 SR10 12/06/2014 Mid-Ebb 0.20 SR10 14/06/2014 Mid-Ebb 0.34 SR10 17/6/2014 Mid-Ebb 0.29 SR10 19/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53					
SR10 12/06/2014 Mid-Ebb 0.20 SR10 14/06/2014 Mid-Ebb 0.34 SR10 17/6/2014 Mid-Ebb 0.29 SR10 19/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53	SR10	07/06/2014 Mid-Ebb	0.36		
SR10 14/06/2014 Mid-Ebb 0.34 SR10 17/6/2014 Mid-Ebb 0.29 SR10 19/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53					
SR10 17/6/2014 Mid-Ebb 0.29 SR10 19/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb 0.42 SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53					
SR10 19/06/2014 Mid-Ebb 0.55 SR10 21/06/2014 Mid-Ebb SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53					
SR10 21/06/2014 Mid-Ebb SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53					
SR10 24/06/2014 Mid-Ebb 0.42 SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53			0.00		
SR10 26/06/2014 Mid-Ebb 0.40 SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53			0.42		
SR10 28/06/2014 Mid-Ebb 0.35 SR10 01/07/2014 Mid-Ebb 0.53					
	SR10	28/06/2014 Mid-Ebb	0.35		
SR10 03/07/2014 Mid-Ebb 0.41					
SR10 05/07/2014 Mid-Ebb 0.35					
SR10 08/07/2014 Mid-Ebb 0.42 SR10 10/07/2014 Mid-Ebb 0.40					
SR10 10/07/2014 Mid-Ebb 0.40 SR10 12/07/2014 Mid-Ebb 0.37					
SR10 12/07/2014 Mid-Ebb 0.57 SR10 15/07/2014 Mid-Ebb 0.52					
SR10 17/07/2014 Mid-Ebb					
SR10 19/07/2014 Mid-Ebb 0.36			0.36		
	SR10	22/07/2014 Mid-Ebb	0.37		

Cluster 2 TIN(lab) 1.3 x Baseline vs Impact

36 20 03 0.4 45 33 993 11	Raw Statistics Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean of Raw Data Standard Deviation of Raw Data Normal Distribution Test Results	104 47 0 0.78 0.349 0.152
20 03 0.4 45 333 993 11	Number of Distinct Observations Minimum Maximum Mean of Raw Data Standard Deviation of Raw Data	47 0 0.78 0.349
03 0.4 45 333 593 .11	Minimum Maximum Mean of Raw Data Standard Deviation of Raw Data	0 0.78 0.349
0.4 45 333 593 .11	Maximum Mean of Raw Data Standard Deviation of Raw Data	0.349
45 333 93 11	Mean of Raw Data Standard Deviation of Raw Data	0.349
333 933 .11	Standard Deviation of Raw Data	
93 .11		0.152
.11	Normal Distribution Test Results	
	Normal Distribution Test Results	
63		
	Correlation Coefficient R	0.993
	Approximate Shapiro Wilk Test Statistic	0.979
	Approximate Shapiro Wilk P Value	0.458
44	Lilliefors Test Statistic	0.0612
94	Lilliefors Critical (0.95) Value	0.0869
35	Data appear Normal at (0.05) Significance Level	
13		
09		
48		
2	944 394 935 213 109 148	Approximate Shapiro Wilk Test Statistic Approximate Shapiro Wilk P Value Lilliefors Test Statistic Lilliefors Critical (0.95) Value Data appear Normal at (0.05) Significance Level Data appear Normal at (0.05) Significance Level

	Wilcoxon-Mann-Whitney Site	/s Backgrou	nd Comparison Test for Full Data Sets without NDs
User Selected Options		-	
Full Precision	OFF		
Confidence Coefficient	95%		
Substantial Difference	0		
Selected Null Hypothesis	Site or AOC Mean/Median Les	s Than or E	qual to Background Mean/Median (Form 1)
Alternative Hypothesis	Site or AOC Mean/Median Gre	eater Than I	Background Mean/Median
Area of Concern Data: Impact			
Background Data: Baseline x 1.3			
Raw Statistics			
	Site E	Background	
Number of Valid Observations	104	36	
Number of Distinct Observations	47	20	
Minimum	0	0.03	
Maximum	0.78	0.4	
Mean	0.349	0.145	
Median	0.35	0.13	
SD	0.152	0.0833	
SE of Mean	0.0149	0.0139	
Wilcoxon-Mann-Whitney (WMW)	Test		
H0: Mean/Median of Site or AOC	<= Mean/Median of Background	ł	
Site Rank Sum W-Stat	8756		
WMW Test U-Stat	6.785		
WMW Critical Value (0.050)	1.645		
P-Value	5.824E-12		
Conclusion with Alpha = 0.05			
Reject H0, Conclude Site > Bad	ckground		
P-Value < alpha (0.05)			

Cluster 2 TIN(lab) G5 G6 vs Impact

_	Gradient TIN (lab	, , ,				pact TIN (la		,		
G5	24/04/2014	Mid-Ebb	0.33	SR9	24/04/2014 Mid-E		SR11	24/04/2014		0.20
G5	26/04/2014	Mid-Ebb	0.32	SR9	26/04/2014 Mid-E		SR11	26/04/2014		0.16
G5	29/04/2014	Mid-Ebb	0.33	SR9	29/04/2014 Mid-E		SR11	29/04/2014		0.20
G5	01/05/2014	Mid-Ebb	0.35	SR9	01/05/2014 Mid-E		SR11	01/05/2014		0.16
G5	03/05/2014	Mid-Ebb	0.34	SR9	03/05/2014 Mid-E		SR11	03/05/2014		0.19
G5	06/05/2014	Mid-Ebb	0.34	SR9	06/05/2014 Mid-E	Ebb 0.40	SR11	06/05/2014	Mid-Ebb	0.12
G5	08/05/2014	Mid-Ebb		SR9	08/05/2014 Mid-E	Ebb	SR11	08/05/2014	Mid-Ebb	0.18
G5	10/05/2014	Mid-Ebb	0.34	SR9	10/05/2014 Mid-E	Ebb 0.62	SR11	10/05/2014	Mid-Ebb	0.25
G5	13/05/2014	Mid-Ebb		SR9	13/05/2014 Mid-E	Ebb	SR11	13/05/2014	Mid-Ebb	
G5	15/05/2014	Mid-Ebb	0.79	SR9	15/05/2014 Mid-E	Ebb 0.63	SR11	15/05/2014	Mid-Ebb	0.49
G5	17/05/2014	Mid-Ebb	0.99	SR9	17/05/2014 Mid-E	Ebb 0.53	SR11	17/05/2014	Mid-Ebb	0.56
G5	20/05/2014	Mid-Ebb		SR9	20/05/2014 Mid-E		SR11	20/05/2014	Mid-Ebb	0.54
G5	22/05/2014	Mid-Ebb	0.86	SR9	22/05/2014 Mid-E		SR11	22/05/2014		0.61
G5	24/05/2014	Mid-Ebb	0.49	SR9	24/05/2014 Mid-E		SR11	24/05/2014		0.63
			0.45	SR9			SR11	27/05/2014		0.00
G5	27/05/2014	Mid-Ebb			27/05/2014 Mid-E					
G5	29/05/2014	Mid-Ebb	0.49	SR9	29/05/2014 Mid-E		SR11	29/05/2014		0.39
G5	31/05/2014	Mid-Ebb	0.54	SR9	31/05/2014 Mid-E		SR11	31/05/2014		0.39
G5	03/06/2014	Mid-Ebb	0.45	SR9	03/06/2014 Mid-E	Ebb 0.28	SR11	03/06/2014	Mid-Ebb	0.51
G5	05/06/2014	Mid-Ebb	0.48	SR9	05/06/2014 Mid-E	Ebb 0.48	SR11	05/06/2014	Mid-Ebb	0.39
G5	07/06/2014	Mid-Ebb	0.66	SR9	07/06/2014 Mid-E	Ebb 0.39	SR11	07/06/2014	Mid-Ebb	0.32
G5	10/06/2014	Mid-Ebb	0.27	SR9	10/06/2014 Mid-E	Ebb	SR11	10/06/2014	Mid-Ebb	0.37
G5	12/06/2014	Mid-Ebb	0.29	SR9	12/06/2014 Mid-E		SR11	12/06/2014		0.42
G5	14/06/2014	Mid-Ebb	0.41	SR9	14/06/2014 Mid-E		SR11	14/06/2014		0.41
G5	17/6/2014	Mid-Ebb	0.31	SR9	17/6/2014 Mid-E		SR11		Mid-Ebb	0.20
	19/06/2014		0.63	SR9	19/06/2014 Mid-E		SR11	19/06/2014		
G5		Mid-Ebb								0.56
G5	21/06/2014	Mid-Ebb	0.74	SR9	21/06/2014 Mid-E		SR11	21/06/2014		
G5	24/06/2014	Mid-Ebb	0.33	SR9	24/06/2014 Mid-E		SR11	24/06/2014		0.39
G5	26/06/2014	Mid-Ebb	0.35	SR9	26/06/2014 Mid-E		SR11	26/06/2014		0.33
G5	28/06/2014	Mid-Ebb	0.26	SR9	28/06/2014 Mid-E	Ebb 0.29	SR11	28/06/2014	Mid-Ebb	0.25
G5	01/07/2014	Mid-Ebb	0.55	SR9	01/07/2014 Mid-E	Ebb 0.57	SR11	01/07/2014	Mid-Ebb	0.48
G5	03/07/2014	Mid-Ebb	0.40	SR9	03/07/2014 Mid-E	Ebb 0.39	SR11	03/07/2014	Mid-Ebb	0.40
G5	05/07/2014	Mid-Ebb	0.62	SR9	05/07/2014 Mid-E		SR11	05/07/2014	Mid-Ebb	0.47
G5	08/07/2014	Mid-Ebb	0.67	SR9	08/07/2014 Mid-E		SR11	08/07/2014		0.74
G5	10/07/2014	Mid-Ebb	0.29	SR9	10/07/2014 Mid-E		SR11	10/07/2014		0.47
			0.25	SR9			SR11	12/07/2014		0.46
G5	12/07/2014	Mid-Ebb			12/07/2014 Mid-E					
G5	15/07/2014	Mid-Ebb	0.25	SR9	15/07/2014 Mid-E		SR11	15/07/2014		0.68
G5	17/07/2014	Mid-Ebb		SR9	17/07/2014 Mid-E		SR11	17/07/2014		
G5	19/07/2014	Mid-Ebb	0.38	SR9	19/07/2014 Mid-E		SR11	19/07/2014	Mid-Ebb	0.22
G5	22/07/2014	Mid-Ebb	0.44	SR9	22/07/2014 Mid-E	Ebb 0.24	SR11	22/07/2014	Mid-Ebb	0.34
G6	24/04/2014	Mid-Ebb	0.07	SR10	24/04/2014 Mid-E	Ebb 0.18				
G6	26/04/2014	Mid-Ebb	0.23	SR10	26/04/2014 Mid-E	Ebb 0.10				
G6	29/04/2014	Mid-Ebb	0.10	SR10	29/04/2014 Mid-E	Ebb 0.07				
G6	01/05/2014	Mid-Ebb	0.09	SR10	01/05/2014 Mid-E					
G6	03/05/2014	Mid-Ebb	0.12	SR10	03/05/2014 Mid-E					
		Mid-Ebb	0.04							
G6	06/05/2014			SR10	06/05/2014 Mid-E					
G6	08/05/2014	Mid-Ebb	0.09	SR10	08/05/2014 Mid-E					
G6	10/05/2014	Mid-Ebb	0.28	SR10	10/05/2014 Mid-E					
G6	13/05/2014	Mid-Ebb		SR10	13/05/2014 Mid-E					
G6	15/05/2014	Mid-Ebb	0.79	SR10	15/05/2014 Mid-E	Ebb 0.56				
G6	17/05/2014	Mid-Ebb	0.63	SR10	17/05/2014 Mid-E	Ebb 0.59				
G6	20/05/2014	Mid-Ebb	0.88	SR10	20/05/2014 Mid-E	Ebb 0.64				
G6	22/05/2014	Mid-Ebb	0.18	SR10	22/05/2014 Mid-E	bb 0.57				
G6	24/05/2014	Mid-Ebb	0.47	SR10	24/05/2014 Mid-E					
G6	27/05/2014	Mid-Ebb	0.72	SR10	27/05/2014 Mid-E					
G6	29/05/2014	Mid-Ebb	0.47	SR10	29/05/2014 Mid-E					
			0.47							
G6	31/05/2014	Mid-Ebb		SR10	31/05/2014 Mid-E					
G6	03/06/2014	Mid-Ebb	0.34	SR10	03/06/2014 Mid-E					
G6	05/06/2014	Mid-Ebb	0.29	SR10	05/06/2014 Mid-E					
G6	07/06/2014	Mid-Ebb	0.33	SR10	07/06/2014 Mid-E					
G6	10/06/2014	Mid-Ebb	0.16	SR10	10/06/2014 Mid-E					
G6	12/06/2014	Mid-Ebb	0.19	SR10	12/06/2014 Mid-E	Ebb 0.20				
G6	14/06/2014	Mid-Ebb	0.39	SR10	14/06/2014 Mid-E	Ebb 0.34				
G6	17/6/2014	Mid-Ebb	0.40	SR10	17/6/2014 Mid-E	Ebb 0.29				
G6	19/06/2014	Mid-Ebb	0.46	SR10	19/06/2014 Mid-E					
G6	21/06/2014	Mid-Ebb		SR10	21/06/2014 Mid-E					
G6	24/06/2014	Mid-Ebb	0.41	SR10	24/06/2014 Mid-E					
G6	26/06/2014	Mid-Ebb	0.49	SR10	26/06/2014 Mid-E					
G6	28/06/2014	Mid-Ebb	0.33	SR10	28/06/2014 Mid-E					
G6	01/07/2014	Mid-Ebb	0.47	SR10	01/07/2014 Mid-E					
G6	03/07/2014	Mid-Ebb	0.43	SR10	03/07/2014 Mid-E					
G6	05/07/2014	Mid-Ebb	0.38	SR10	05/07/2014 Mid-E					
G6	08/07/2014	Mid-Ebb	0.52	SR10	08/07/2014 Mid-E	Ebb 0.42				
G6	10/07/2014	Mid-Ebb	0.36	SR10	10/07/2014 Mid-E	Ebb 0.40				
G6	12/07/2014	Mid-Ebb	0.47	SR10	12/07/2014 Mid-E	Ebb 0.37				
G6	15/07/2014	Mid-Ebb	0.40	SR10	15/07/2014 Mid-E					
	17/07/2014	Mid-Ebb		SR10	17/07/2014 Mid-E					
G6										
G6 G6	19/07/2014	Mid-Ebb	0.34	SR10	19/07/2014 Mid-E	Ebb 0.36				

Cluster 2 TIN(lab) G5 G6 vs Impact

Raw Statistics
5 Number of Valid Observations 71
2 Number of Missing Values 7
Number of Distinct Observations 47
/ Minimum 0.04
3 Maximum 0.99
Mean of Raw Data 0.415
5 Standard Deviation of Raw Data 0.204
2 Kstar 3.428
Mean of Log Transformed Data -1.026
Standard Deviation of Log Transformed Data 0.605
Normal Distribution Test Results
3
5
5

W	ilcoxon-Mann-Whitney Sit	e vs Backgro	und Comparison Test for Full Data Sets without NDs
User Selected Options		Ū	
Full Precision O	FF		
Confidence Coefficient	95%		
Substantial Difference	0		
Selected Null Hypothesis Si	te or AOC Mean/Median L	ess Than or	Equal to Background Mean/Median (Form 1)
Alternative Hypothesis Si	te or AOC Mean/Median (Greater Than	Background Mean/Median
Area of Concern Data: Impact			
Background Data: Gradient			
Raw Statistics			
Number of Valid Observations	Site	Background	
Number of Missing Values	105	71	
Number of Distinct Observations	12	7	
Minimum	61	47	
Maximum	0.07	0.04	
Mean	0.78	0.99	
Median	0.378		
SD	0.38	0.38	
SE of Mean	0.155	0.204	
	0.0151	0.0242	
Wilcoxon-Mann-Whitney (WMW) Test			
H0: Mean/Median of Site or AOC <=	Mean/Median of Backgrou	nd	
Site Rank Sum W-Stat			
WMW Test U-Stat	9075	1	
WMW Critical Value (0.050)	-0.657		
P-Value	1.65E+00)	
	0.255		
Conclusion with Alpha = 0.05			
Do Not Reject H0, Conclude Site <	= Background		
P-Value >= alpha (0.05)			

Cluster 2 TIN(Lab) G1 vs Impact

G1

G1

G1 G1 G1

G1

G1

G1

G1

G1

G1

G1 G1

G1

G1 G1

G1

G1 G1

G1

G1

G1

G1

G1

G1

G1

G1

G1

G1 G1

G1

G1 G1

G1

G1 G1

G1 G1

G1

G1 TIN (lab) (mg/L) dat		0.00			b) (mg/L)		0.00
24/04/2014 Mid-Ebb	0.46	SR9	24/04/2014 Mid-Ebb	0.44	SR11	24/04/2014 Mid-Ebb	0.20
26/04/2014 Mid-Ebb	0.55	SR9	26/04/2014 Mid-Ebb	0.27	SR11	26/04/2014 Mid-Ebb	0.16
29/04/2014 Mid-Ebb	0.77	SR9	29/04/2014 Mid-Ebb	0.27	SR11	29/04/2014 Mid-Ebb	0.20
01/05/2014 Mid-Ebb	0.59	SR9	01/05/2014 Mid-Ebb	0.22	SR11	01/05/2014 Mid-Ebb	0.16
03/05/2014 Mid-Ebb	0.60	SR9	03/05/2014 Mid-Ebb	0.29	SR11	03/05/2014 Mid-Ebb	0.19
06/05/2014 Mid-Ebb	0.53	SR9	06/05/2014 Mid-Ebb	0.40	SR11	06/05/2014 Mid-Ebb	0.12
08/05/2014 Mid-Ebb	0.43	SR9	08/05/2014 Mid-Ebb		SR11	08/05/2014 Mid-Ebb	0.18
10/05/2014 Mid-Ebb	0.95	SR9	10/05/2014 Mid-Ebb	0.62	SR11	10/05/2014 Mid-Ebb	0.25
13/05/2014 Mid-Ebb		SR9	13/05/2014 Mid-Ebb		SR11	13/05/2014 Mid-Ebb	
15/05/2014 Mid-Ebb	1.35	SR9	15/05/2014 Mid-Ebb	0.63	SR11	15/05/2014 Mid-Ebb	0.49
17/05/2014 Mid-Ebb	1.94	SR9	17/05/2014 Mid-Ebb	0.53	SR11	17/05/2014 Mid-Ebb	0.56
20/05/2014 Mid-Ebb	1.33	SR9	20/05/2014 Mid-Ebb		SR11	20/05/2014 Mid-Ebb	0.54
22/05/2014 Mid-Ebb	1.74	SR9	22/05/2014 Mid-Ebb	0.78	SR11	22/05/2014 Mid-Ebb	0.61
24/05/2014 Mid-Ebb	1.23	SR9	24/05/2014 Mid-Ebb	0.38	SR11	24/05/2014 Mid-Ebb	0.63
27/05/2014 Mid-Ebb	1.49	SR9	27/05/2014 Mid-Ebb	0.59	SR11	27/05/2014 Mid-Ebb	0.48
29/05/2014 Mid-Ebb	1.23	SR9	29/05/2014 Mid-Ebb	0.38	SR11	29/05/2014 Mid-Ebb	0.39
31/05/2014 Mid-Ebb	1.00	SR9	31/05/2014 Mid-Ebb	0.51	SR11	31/05/2014 Mid-Ebb	0.39
03/06/2014 Mid-Ebb	0.98	SR9	03/06/2014 Mid-Ebb	0.28	SR11	03/06/2014 Mid-Ebb	0.51
05/06/2014 Mid-Ebb	0.94	SR9	05/06/2014 Mid-Ebb	0.48	SR11	05/06/2014 Mid-Ebb	0.39
07/06/2014 Mid-Ebb	1.02	SR9	07/06/2014 Mid-Ebb	0.39	SR11	07/06/2014 Mid-Ebb	0.32
10/06/2014 Mid-Ebb	0.79	SR9	10/06/2014 Mid-Ebb		SR11	10/06/2014 Mid-Ebb	0.37
12/06/2014 Mid-Ebb	0.87	SR9	12/06/2014 Mid-Ebb	0.19	SR11	12/06/2014 Mid-Ebb	0.42
12/06/2014 Mid-Ebb	0.87	SR9	14/06/2014 Mid-Ebb	0.19			0.42
		SR9 SR9			SR11	14/06/2014 Mid-Ebb	
17/6/2014 Mid-Ebb	0.75		17/6/2014 Mid-Ebb	0.27	SR11	17/6/2014 Mid-Ebb	0.20
19/06/2014 Mid-Ebb	0.85	SR9	19/06/2014 Mid-Ebb	0.42	SR11	19/06/2014 Mid-Ebb	0.56
21/06/2014 Mid-Ebb		SR9	21/06/2014 Mid-Ebb	0.00	SR11	21/06/2014 Mid-Ebb	0.00
24/06/2014 Mid-Ebb	1.30	SR9	24/06/2014 Mid-Ebb	0.38	SR11	24/06/2014 Mid-Ebb	0.39
26/06/2014 Mid-Ebb	1.31	SR9	26/06/2014 Mid-Ebb	0.43	SR11	26/06/2014 Mid-Ebb	0.33
28/06/2014 Mid-Ebb	1.08	SR9	28/06/2014 Mid-Ebb	0.29	SR11	28/06/2014 Mid-Ebb	0.25
01/07/2014 Mid-Ebb	1.12	SR9	01/07/2014 Mid-Ebb	0.57	SR11	01/07/2014 Mid-Ebb	0.48
03/07/2014 Mid-Ebb	1.09	SR9	03/07/2014 Mid-Ebb	0.39	SR11	03/07/2014 Mid-Ebb	0.40
05/07/2014 Mid-Ebb	1.17	SR9	05/07/2014 Mid-Ebb	0.31	SR11	05/07/2014 Mid-Ebb	0.47
08/07/2014 Mid-Ebb	0.88	SR9	08/07/2014 Mid-Ebb	0.50	SR11	08/07/2014 Mid-Ebb	0.74
10/07/2014 Mid-Ebb	0.90	SR9	10/07/2014 Mid-Ebb	0.39	SR11	10/07/2014 Mid-Ebb	0.47
12/07/2014 Mid-Ebb	1.04	SR9	12/07/2014 Mid-Ebb	0.15	SR11	12/07/2014 Mid-Ebb	0.46
15/07/2014 Mid-Ebb	1.00	SR9	15/07/2014 Mid-Ebb	0.31	SR11	15/07/2014 Mid-Ebb	0.68
17/07/2014 Mid-Ebb		SR9	17/07/2014 Mid-Ebb		SR11	17/07/2014 Mid-Ebb	
19/07/2014 Mid-Ebb	0.85	SR9	19/07/2014 Mid-Ebb	0.36	SR11	19/07/2014 Mid-Ebb	0.22
22/07/2014 Mid-Ebb	1.07	SR9	22/07/2014 Mid-Ebb	0.24	SR11	22/07/2014 Mid-Ebb	0.34
22/01/2011 11110 200		SR10	24/04/2014 Mid-Ebb	0.18	0	22/01/2011 11110 200	
		SR10	26/04/2014 Mid-Ebb	0.10			
		SR10	29/04/2014 Mid-Ebb	0.07			
		SR10	01/05/2014 Mid-Ebb	0.11			
		SR10	03/05/2014 Mid-Ebb	0.12			
		SR10	06/05/2014 Mid-Ebb	0.10			
				0.10			
		SR10	08/05/2014 Mid-Ebb	0.11			
		SR10	10/05/2014 Mid-Ebb	0.23			
		SR10	13/05/2014 Mid-Ebb	0.50			
		SR10	15/05/2014 Mid-Ebb	0.56			
		SR10	17/05/2014 Mid-Ebb	0.59			
		SR10	20/05/2014 Mid-Ebb	0.64			
		SR10	22/05/2014 Mid-Ebb	0.57			
		SR10	24/05/2014 Mid-Ebb	0.34			
		SR10	27/05/2014 Mid-Ebb	0.57			
		SR10	29/05/2014 Mid-Ebb	0.34			
		SR10	31/05/2014 Mid-Ebb	0.41			
		SR10	03/06/2014 Mid-Ebb	0.53			
		SR10	05/06/2014 Mid-Ebb	0.33			
		SR10	07/06/2014 Mid-Ebb	0.36			
		SR10	10/06/2014 Mid-Ebb	0.16			
		SR10	12/06/2014 Mid-Ebb	0.20			
		SR10	14/06/2014 Mid-Ebb	0.34			
		SR10	17/6/2014 Mid-Ebb	0.29			
		SR10	19/06/2014 Mid-Ebb	0.55			
		SR10	21/06/2014 Mid-Ebb	0.00			
		SR10 SR10	24/06/2014 Mid-Ebb	0.42			
		SR10	26/06/2014 Mid-Ebb	0.40			
		SR10	28/06/2014 Mid-Ebb	0.35			
		SR10	01/07/2014 Mid-Ebb	0.53			
		SR10	03/07/2014 Mid-Ebb	0.41			
		SR10	05/07/2014 Mid-Ebb	0.35			
		SR10	08/07/2014 Mid-Ebb	0.42			
		SR10	10/07/2014 Mid-Ebb	0.40			
		SR10	12/07/2014 Mid-Ebb	0.37			
			12/07/2014 Mid-Ebb 15/07/2014 Mid-Ebb	0.37 0.52			
		SR10					
		SR10 SR10	15/07/2014 Mid-Ebb				

Cluster 2 TIN(Lab) G1 vs Impact

G1		Impact	
Raw Statistics		Raw Statistics	
Number of Valid Observations	36	Number of Valid Observations	105
Number of Missing Values	3	Number of Missing Values	12
Number of Distinct Observations	33	Number of Distinct Observations	61
Minimum	0.43	Minimum	0.07
Maximum	1.94	Maximum	0.78
Mean of Raw Data	1.001	Mean of Raw Data	0.378
Standard Deviation of Raw Data	0.334	Standard Deviation of Raw Data	0.155
Kstar	8.343	Kstar	4.862
Mean of Log Transformed Data	-0.0555	Mean of Log Transformed Data	-1.076
Standard Deviation of Log Transformed Data	0.347	Standard Deviation of Log Transformed Data	0.493
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.981	Correlation Coefficient R	0.994
Shapiro Wilk Test Statistic	0.963	Approximate Shapiro Wilk Test Statistic	0.973
Shapiro Wilk Critical (0.95) Value	0.935	Approximate Shapiro Wilk P Value	0.195
Approximate Shapiro Wilk P Value	0.341	Lilliefors Test Statistic	0.069
Lilliefors Test Statistic	0.089	Lilliefors Critical (0.95) Value	0.0865
Lilliefors Critical (0.95) Value	0.148	Data appear Normal at (0.05) Significance Level	
Data appear Normal at (0.05) Significance Level			

	4 Test Site up Realignound Comparison for Full Date Cate without NDs
Lipper Colocited Options	t-Test Site vs Background Comparison for Full Data Sets without NDs
User Selected Options	OFF
Full Precision	
Confidence Coefficient	95%
Substantial Difference (S)	0
Selected Null Hypothesis	Site or AOC Mean Greater Than or Equal to Background Mean (Form 2)
Alternative Hypothesis	Site or AOC Mean Less Than the Background Mean
Area of Concern Data: Impact	
Background Data: Gradient	
Raw Statistics	
	Site Background
Number of Valid Observations	105 36
Number of Missing Values	12 3
Number of Distinct Observations	61 33
Minimum	0.07 0.43
Maximum	0.78 1.94
Mean	0.378 1.001
Median	0.38 0.99
SD	0.155 0.334
SE of Mean	0.0151 0.0557
	0.0101 0.0001
Site vs Background Two-Sample t	t-Test
H0: Mu of Site - Mu of Background	d >= 0
	t-Test Critical
Method	DF Value t (0.050) P-Value
Pooled (Equal Variance)	139 -15.028 -1.656 0
Satterthwaite (Unequal Variance)	40.2 -1.08E+01 -1.684 0
Pooled SD: 0.214	
Conclusion with Alpha = 0.050	
* Student t (Pooled) Test: Reject	t H0, Conclude Site < Background
* Satterthwaite Test: Reject H0, 0	· · · · · · · · · · · · · · · · · · ·
Test of Equality of Variances	
Numerator DF Denomina	ator DF F-Test Value P-Value
35 104	
Conclusion with Alpha = 0.05	· · · · · · · · · · · · · · · · · · ·
* Two variances are not equal	
Two variances are not equal	