Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Quarterly EM&A Report

December 2018 - February 2019

Client: China International Water & Electric Corporation

Project: Providing Sufficient Water Depth for Kwai Tsing Container Basin

and its Approach Channel - CV/2013/04

Report No.: 0394/13/ED/0375A

Project Proponent: Prepared by: Janet Yu

Civil Engineering & Development Department 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong.

Reviewed by: Cyrus Lai

Certified by:

Colin Yung

Environmental Team Leader for MateriaLab Consultants Limited

Ref.: CEDDWKTBEM00_0_0376L.19.docx

6 June 2019 By Post

Mott MacDonald Hong Kong Ltd. 3/F Mapletree Bay Point, 348 Kwun Tong Road Kwun Tong, Kowloon

Attention: Mr. C M Howley

Dear Mr. Howley,

Re: Agreement No. CE 63/2008 (CE)

Dredging Works in Kwai Tsing Container Basin and its Approach Channel

- Investigation, Design and Construction)

Contract No. CV/2013/04

Dredging Works in Kwai Tsing Container Basin and its Approach Channel Verification of Quarterly EM&A Report for December 2018 to February 2019

Reference is made to the Environmental Team's submission of the Quarterly Environmental Monitoring & Audit Report for December 2018 to February 2019 (ET's Report No. 0394/13/ED/0375A) received by e-mail on 10 May 2019.

We write to verify the captioned report in accordance with Section 12.4 iii of EM&A Manual (AEIAR-156/2010).

Thank you very much for your kind attention and please do not hesitate to contact our Mr. Harris Wong or the undersigned should you have any gueries.

Yours faithfully, For and on behalf of Ramboll Hong Kong Limited

Y H Hui

Independent Environmental Checker

Cc:

MMHK

Ms. Sunny Zhao

MateriaLab Mr. Colin Yung

CIWE

Mr. K.O. Leung

(by post and email)

(by email)

(by email)

Q:\Projects\CEDDWKTBEM00\02 Project Management\02 Corr\CEDDWKTBEM00 0 0376L.19.docx

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0375A

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	1
1.	INTRODUCTION	5
2.	BASIC PROJECT INFORMATION	7
3.	EM&A REQUIREMENTS – ROUTINE IMPACT MONITORING	8
4.	EM&A REQUIREMENTS – 24-HR WATER QUALITY MONITORING	12
5.	ENVIRONMENTAL SITE INSPECTION AND AUDIT	14
6.	NON-COMPLIANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	22
7.	CONCLUSIONS	23

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A

TABLES:

Table I	Summary of Water Quality Exceedances – Routine Impact Monitoring (In-situ)	1
Table II	Summary of Water Quality Exceedances – Routine Impact Monitoring (Laboratory Analysis)	2
Table III	Summary of the Exceedances Recorded in Reporting Period – 24-hr Monitoring	3
Table 2-1	Key Personnel Contact of the Contract	7
Table 2-2	Detail Dredging Quantity	7
Table 3-1	Monitoring Parameters and Frequency	8
Table 3-2	Water Quality Monitoring Parameters	9
Table 3-3	Summary of Water Quality Exceedance (In-situ Measurement)	10
Table 3-4	Summary of Water Quality Exceedance (Laboratory Analysis)	11
Table 4-1	24-hr Water Quality Monitoring Parameters	12
Table 4-2	Summary of Water Quality Exceedance (24-hr Monitoring)	13
Table 5-1	Waste Quantities of Dredging Works	15
Table 5-2	Comparison of Quarterly Mean to Baseline Mean	17
Table 5-3	Summary of Statistical Analysis	21
Table 6-1	Environmental Complaints Log	22
Table 6-2	Cumulative Statistics on Complaints	22
Table 6-3	Cumulative Statistics on Successful Prosecutions	22

FIGURES:

Figure 1 Project General Layout

Figure 2 Locations of Water Quality Monitoring Stations

APPENDICES:

Appendix A	Project Organization Chart
Appendix B	Construction Programme
Appendix C	Action and Limit Levels
Appendix D	Graphical Presentation – Routine Impact Monitoring Results
Appendix E	Graphical Presentation – 24-hr Monitoring Results
Appendix F	Environmental Mitigation Implementation Schedule
Appendix G	Waste Generation in Reporting Period
Appendix H	Quarterly Assessment of Construction Impacts

 Fugro Development Centre,
 Tel : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail : matlab@fugro.com

 Hong Kong.
 Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 1

EXECUTIVE SUMMARY

i. This is the Fifteenth Quarterly Environmental Monitoring Audit (EM&A) Report – December 2018 – February 2019 for Contract No. CV/2013/04 – Dredging Works in Kwai Tsing and its Approach Channel (CE63/2008 – Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel). The dredging works commenced on 23 April 2014. This report presents the environmental monitoring and audit works conducted from 23 November 2018 to 22 February 2019.

ii. Construction Activities for the Reporting Period During this reporting period, the principal work activities included:

December 2018	January 2019	February 2019					
 Preparation Works of 	 Preparation Works of 	 Preparation Works of 					
Dredging at Portion A / Zone 2B2 and 2C1 in EP.	Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in	Dredging at Portion A /					
	EP.	2C1 in EP.					

iii. Water Quality Monitoring

Routine impact water quality monitoring at 9 designated monitoring stations namely C1A, C2A, G2, SR2, SR3, SR4, SR5, SR12, SR13 were conducted during the reporting period. Exceedances of DO (B), Turbidity, NH3-N (in-situ & lab), TIN (in-situ & lab) and Suspended Solid were recorded at various monitoring stations, detail of exceedance are summarized in **Table I and II**. However, investigation indicated these exceedances were not related to the Project works.

Table I Summary of Water Quality Exceedances – Routine Impact Monitoring (In-situ)

ubici	Gaiiiii	ry of Water Quanty Exocedances Routine impact monitoring (in Situ)													
Station	Exceedance Level	DO (8	S&M)	DO	(B)	Turb	Turbidity		NH ₃ -N		UIA		IN	Total	
		Е	F	Е	F	Е	F	Е	F	Е	F	Е	F	Е	F
SR2	Action	0	0	0	0	1	0	0	1	0	0	-	-	1	1
SKZ	Limit	0	0	0	1	0	0	0	1	0	0	-	-	0	2
SR3	Action	0	0	0	0	1	0	1	0	0	0	-	-	2	0
SKS	Limit	0	0	0	0	0	0	0	1	0	0	-	-	0	1
SR4	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0
3K4	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SR5	Action	0	0	0	0	1	0	-	-	-	-	2	1	3	1
SKS	Limit	0	0	0	0	0	0	-	-	-	-	17	18	17	18
SR12	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SKIZ	Limit	0	0	0	0	0	0	0	0	0	0	-		0	0
CD12	Action	0	0	0	0	0	0	-	-	-	-	-	-	0	0
SR13	Limit	0	0	0	0	0	0	-	-	-	-	-	-	0	0
Total	Action	0	0	0	0	3	0	1	1	0	0	2	1	8	3
Total	Limit	0	0	0	1	0	0	0	2	0	0	17	18	3	8

 Fugro Development Centre,
 Tel : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail : matlab@fugro.com

 Hong Kong.
 Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 2

Table II Summary of Water Quality Exceedances – Routine Impact Monitoring (Laboratory Analysis)

Station	Exceedance Suspended Level Solids		BOD ₅		E. coli		NH ₃ -N		UIA		Synthetic Detergent		TIN		Total		
		Е	F	Е	F	Е	F	Е	F	Е	F	Е	F	Е	F	Е	F
SR2	Action	0	0	-	-	-	-	0	1	0	0	-	-	-	-	0	1
SKZ	Limit	0	0	-	-	-	-	0	1	0	0	-	-	-	-	0	1
SR3	Action	1	1	-	-	-	-	1	0	0	0	-	-	-	-	2	1
SKS	Limit	0	0	-	-	-	-	0	1	0	0	-	-	-	-	0	1
SR4	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SK4	Limit	3	2	0	0	0	0	0	0	0	0	0	0	-	-	3	2
SR5	Action	0	1	-	-	-	-	-	-	-	-	-	-	2	2	2	3
SKS	Limit	0	0	-	-	-	-	-	-	-	-	-	-	17	17	17	17
SR12	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SKIZ	Limit	3	1	0	0	0	0	0	0	0	0	0	0	-	-	3	1
CD42	Action	0	0	-	-	-	-	-	-	0	0	-	-	-	-	0	0
SR13	Limit	0	0	-	-	-	-	-	-	0	0	-	-	-	-	0	0
Total	Action	1	2	0	0	0	0	1	1	0	0	0	0	2	2	Ç)
Total	Limit	6	3	0	0	0	0	0	2	0	0	0	0	17	17	4	5

Among the 9 monitoring stations, supplementary 24-hr water quality monitoring was also conducted at 4 of the stations, which are SR4, SR5, SR12 and SR13. No exceedance was recorded in the reporting period. Number of exceedances recorded in the reporting period at each impact station is summarized in **Table III**.

Table III Summary of the Exceedances Recorded in Reporting Quarter – 24-hr Monitoring

I able III	Cummary or the	ic Execualities ite	corded in Neporting	Quarter 24 III MOII	itoring
Station	Exceedance Level	Turbidity	DO	NH ₃ -N	Total
CD4	Action	0	0	0	0
SR4	Limit	0	0	0	0
SR5	Action	0	0	-	0
SKS	Limit	0	0	-	0
SR12	Action	0	0	0	0
SK1Z	Limit	0	0	0	0
SR13	Action	0	0	-	0
SICIS	Limit	0	0	-	0
Total	Action	0	0	0	0
i olai	Limit	0	0	0	0

iv. Waste Management

No inert or non-inert C&D material related to dredging works was disposed. No general refuse were disposed off site in the reporting month.

- v. Non-Compliance, Complaints, Notifications of Summons and Successful Prosecutions No complaint, notification of prosecutions or summons was received in the reporting period.
- vi. Site Inspections and Audit

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 3

The Environmental Team conducted 12 site inspections in the reporting period. No particular observation was recorded in the reporting month, except the Contractor was reminded that chemical containers shall be labelled properly.

According to Contractor, no archaeological deposit was found during reporting period.

vii. Compliance with Specific EP conditions

Implementation of contractor's mitigation for dredging work and the associated dredging records were checked. It was concluded that the dredging is conducted orderly in compliance with the EP requirements on site mitigation measures in general.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 4

viii. Construction Activities for the Coming Reporting Period

During the coming reporting period, the principal work activities included:

- Preparation Works of Dredging at Portion A / Zone 1A, 2B1, 2B2 and 2C1 in EP
- Dredging at Portion A / Zone 1A, 2B1, 2B2 and 2C1 in EP

Future Key Issues include:

- Implementation of EM&A Programme
- According to the Contractor, all dredging works under this Contract of the construction phase, included removal of hard materials in sub-zones Z1A, Z2B1, Z2B2 and Z2C1 and the dredging works in Hotspot area in sub-zones Z1A, Z1B, Z2A, Z2B and Z2C was substantially completed on 21 November 2017. The environmental monitoring and audit (EM&A) works of this Project was carried out in accordance with the EM&A Manual requirements in the Environmental Permit (EP) No. EP-426/2011/A, EM&A Manual (AEIAR-156/2010) and EM&A TIN (EPD Letter Ref: (34) in Ax(1) to EP2/N3/C/57Pt.7)). A final EM&A report was prepared in December 2017 and the EM&A programme for the Construction Phase was substantially completed in December 2017. However, according to a hydrographic survey was conducted by the Marine Department during late 2017 and early 2018. The survey result showed that approximately 5200 m3 (in-situ volume) of high spots was discovered at Z2B1, Z2B2 and Z2C1. There may also be some other high spots discovered in "Portion B" (i.e. sub-zones Z5A, Z5B, Z5C, Z6A, Z6B, Z6C, Z6D, Z7 and Z8 stated in the EP-426/2011/A), which the location area and the volumes are still under review.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 5

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project objective is to dredge approximately 4.0 million cubic metres of sediment from the seabed of Kwai Tsing Container Basin, as well as portions of Northern Fairway and Western Fairway, to provide sufficient depth of container basin and approach channel to Kwai Tsing Container Terminal (KTCT) for the safe navigation of Ultra Large Container Ships (ULCS).
- 1.1.2 The environmental monitoring and audit works of this Project is governed by Environmental Permit (EP) No. EP-426/2011/A, EM&A Manual (AEIAR-156/2010) and EM&A TIN (EPD Letter Ref: (34) in Ax(1) to EP2/N3/C/57Pt.7)).
- 1.1.3 The project proponent was the Civil Engineering & Development Department, HKSAR (CEDD). The Project General Layout is shown in **Figure 1**.
- 1.1.4 Mott MacDonald Hong Kong Ltd. (MMHK) was commissioned by CEDD as the Engineer for the Project. Ramboll Hong Kong Limited (RHK) was employed as the Independent Environmental Checker (IEC) in the Project.
- 1.1.5 China International Water & Electric Corporation Limited (CIWE) was appointed as the main contractor for the dredging works.
- 1.1.6 Fugro Technical Services Limited (FTS) was appointed as the Environmental Team (ET) to implement the Environmental Monitoring and Audit (EM&A) programme for the Project.
- 1.1.7 The construction phase of the Project under the EP was commenced on 23 April 2014. The impact EM&A programme of the Project commenced on 23 April 2014.

1.2 Purpose of the Report

1.2.1 This fifteenth Quarterly EM&A Report is prepared by FTS. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in 23 November 2018 to 22 February 2019.

1.3 Structure of the Report

- 1.3.1 The structure of this report is as follows:
 - Section 1: Introduction, including background, purpose and structure of the report
 - Section 2: Basic Project Information summaries background and scope of the Contract, site description, project organization and contract details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: Routine Impact Water Quality Monitoring summaries the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 6

Section 4: 24-hr Water Quality Monitoring – summaries the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event /

Action Plans.

Section 5: Environmental Site Inspection – summaries the audit findings of the weekly site

inspections undertaken within the reporting period.

Section 6: Non-Compliance, Complaints, notifications of summons and Prosecution -

summaries any environmental complaints, environmental summons and

successful prosecutions within the reporting period.

Section 7: Conclusions and Recommendation

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 7

2. BASIC PROJECT INFORMATION

2.1 Project Organizations

2.1.1 The Project Organization structure is shown in **Appendix A**. The key personnel contact names and numbers are summarized in **Table 2.1**.

Table 2-1 Key Personnel Contact of the Contract

	1 Grooming Contact of			
Party	Position	Name	Telephone	Fax
Engineer's	Resident Engineer	Mr. Jason Chan	2585 8595	2827 1823
Representative (MMHK)	Project Engineer	Ms. Sunny Zhao	2828 5908	2827 1823
Independent Environmental Checker (RHK)	Independent Environmental Checker	Mr. YH Hui	3465 2888	3465 2899
Contractor (CIWE)	Site Agent	Mr. KO Leung	2419 6008	2419 6218
Environmental Team (FTS)	Environmental Team Leader	Mr. Colin Yung	3565 4114	3565 4160

- 2.2 Construction Programme and Synopsis of Work
- 2.2.1 The construction phase of the Project under the EP commenced on 23 April 2014.
- 2.2.2 The construction programme of the Project is shown in **Appendix B**.
- 2.2.3 The environmental mitigation measures implementation schedule is presented in **Appendix F**.
- **2.3** Works undertaken during the quarter

During the reporting period, according to the Contractor, the principal work activities include:

December 2018	January 2019	February 2019				
•	•	Preparation Works of Predging at Portion A /				
Dredging at Portion A / Zone 2B2 and 2C1 in EP.	Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP.	Dredging at Portion A / Zone 2B1, Zone 2B2 and 2C1 in EP.				

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail :matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 8

3. EM&A REQUIREMENTS – ROUTINE IMPACT MONITORING

3.1 Monitoring Parameters

3.1.1 The monitoring parameters and frequency for both in-situ measurement and laboratory analysis are summarised in **Table 3.1**. Parameters for each monitoring station are specified in **Table 3.2**.

Table 3-1 Monitoring Parameters and Frequency

Parameters	Monitoring Frequency
In-situ Measurement Turbidity (in NTU), pH, Dissolved Oxygen (in mg/L and %), Temperature (in °C), Salinity (in ppt), ¹Ammonia-N (in mg/L-N and UIA); ²TIN: Ammonia-N (in mg/L), Nitrite (in mg/L), Nitrate (in mg/L) Laboratory Analysis ¹Ammonia-N (in mg/L-N and UIA), Suspended Solids (SS), ³BOD ₅ , ³E.coli, ³Synthetic Detergent; ²TIN: Ammonia-N (in mg/L), Nitrite (in mg/L), Nitrate (in mg/L)	3 days per week, at mid-flood and mid- ebb tides (except ³ detergent which shall be taken one day per month, at mid-flood and mid-ebb) 36 hours interval was allowed between subsequent sets of measurement.

Notes:

- Ammonia measurements and samples were taken at SR2, SR3, SR4, SR12, C1A, C2A only;
 UIA: In-situ unionized ammonia was calculated from in-situ measurement of NH₃-N, temperature, pH and salinity; Laboratory determined unionized ammonia was calculated from analysed NH₃-N from water samples and in-situ measurement of temperature, pH and salinity;
- 2. Total Inorganic Nitrogen (TIN) measurements and samples were taken at SR5, G2, C1A and C2A only;
- 3. BOD₅, *E.coli* and Synthetic Detergent samples were taken at SR4, SR12, C1A, C2A only.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Page 9

Report No.: 0394/13/ED/0375A

Table 3-2 Water Quality Monitoring Parameters

	In-situ Measurement									oratory	y Analy	sis	
ID	Нd	Temperature	Salinity	Turbidity	Dissolved Oxygen / Dissolved Oxygen%	NH3-N / UIA	TIN (NH ₃ -N, NO ₂ & NO ₃)	Suspended Solids	BOD ₅	E. coli	NH ₃ -N / UIA	Synthetic Detergent	TIN (NH ₃ -N, NO ₂ & NO ₃)
SR2	0	0	0	0	0	0		0			0		
SR3	0	0	0	0	0	0		0			0		
SR4	0	0	0	0	0	0		0	0	0	0	0	
SR5	0	0	0	0	0		0	0					0
SR12	0	0	0	0	0	0		0	0	0	0	0	
SR13	0	0	0	0	0			0					
G2	0	0	0	0	0		0	0					0
C1A	0	0	0	0	0	0	0	0	0	0	0	0	0
C2A	0	0	0	0	0	0	0	0	0	0	0	0	0

Note:

3.2 Monitoring Locations

- 3.2.1 Referring to the Proposal for Temporary Suspension of Impact Water Quality Monitoring (0394_13_ED_0326F) which was submitted to EPD in August 2016 with no objection was received from EPD; removal of routine water quality monitoring stations at SR1 was effective on 24 December 2016.
- 3.2.2 Referring to the *Proposal on Removal of Some Water Quality Monitoring Stations After Resumption of Marine Construction Works (Dredging Works and Marine Works of the Northern Part of Kwai Tsing Container Basin Only)* (0394_13_ED_0332I) which has been submitted to EPD and relevant parties in December 2016 with no objection, removal of routine water quality monitoring stations at SR6, SR7, SR8, SR9, SR10 and SR11 was effective from 23 January 2017. Due to removal of some sensitive receivers in routine water quality monitoring, gradient stations G3, G5 and G6 were also be removed and gradient stations G1 and G4 replaced the previous control stations C1, C2 and C3 as C1A and C2A with reference to the approved proposal (0394_13_ED_0332I) which was effective from 23 January 2017.
- 3.2.3 Impact water quality monitoring was conducted at 9 locations, including 6 sensitive receivers (SR2, SR3, SR4, SR5, SR12, SR13), 1 gradient station (G2) and 2 control stations (C1A, C2A). The locations of the stations are shown in **Figure 2**.

^{1.} UIA: In-situ unionized ammonia was calculated from in-situ measurement of NH₃-N, temperature, pH and salinity; laboratory determined unionized ammonia was calculated from analysed NH₃-N from water samples taken and in-situ measurement of temperature, pH and salinity.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 10

3.3 Results and Observations

- 3.3.1 Impact water quality monitoring was conducted at all designated monitoring stations in the reporting quarter. Impact water quality monitoring results graphical presentations are provided in **Appendix D**.
- 3.3.2 During the monitoring period, red tide occurrences were reported in Hong Kong waters. In addition, some adverse weather conditions, including Strong Monsoon Signal, Rainstorm Warning Signal and Thunderstorm Warning was reported. Heavy marine traffic (not associated with the Project) was commonly observed nearby the Project site and its vicinity, that the propeller wash from vessels could lead to potential disturbance of seabed sediment and affect the water quality. The above conditions may affect monitoring results.
- 3.3.3 Exceedances were recorded for DO (B), Turbidity, NH3-N (in-situ & lab), TIN (in-situ & lab) and Suspended Solid. Number of exceedances recorded in the reporting quarter at each impact station is summarized in **Table 3-3 and 3-4**.

Table 3-3 Summary of Water Quality Exceedance (In-situ Measurement)

Station	Exceedance Level	DO (S	S&M)	DO	DO (B)		Turbidity		NH ₃ -N		UIA		IN	Total	
		П	F	Ш	F	Е	F	Е	F	Е	F	Е	F	Ш	F
SR2	Action	0	0	0	0	1	0	0	1	0	0	-	-	1	1
SKZ	Limit	0	0	0	1	0	0	0	1	0	0	-	-	0	2
SR3	Action	0	0	0	0	1	0	1	0	0	0	-	-	2	0
SKS	Limit	0	0	0	0	0	0	0	1	0	0	-	-	0	1
SR4	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0
3K4	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SR5	Action	0	0	0	0	1	0	-	-	-	-	2	1	3	1
SKO	Limit	0	0	0	0	0	0	-	-	-	-	17	18	17	18
SR12	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SKIZ	Limit	0	0	0	0	0	0	0	0	0	0	-	-	0	0
CD40	Action	0	0	0	0	0	0	-	-	-	-	-	-	0	0
SR13	Limit	0	0	0	0	0	0	-	-	-	-	-	-	0	0
Total	Action	0	0	0	0	3	0	1	1	0	0	2	1	3	3
Total	Limit	0	0	0	1	0	0	0	2	0	0	17	18	3	8

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

 Fugro Development Centre,
 Tel : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail : matlab@fugro.com

 Hong Kong.
 Website : www.fugro.com

Page 11

Report No.: 0394/13/ED/0375A

Table 3-4 Summary of Water Quality Exceedance (Laboratory Analysis)

Station	Exceedance Level			ВС	D ₅	E. (coli	NH	3-N	U	IA		hetic rgent	TI	N	То	tal
		Ε	F	Е	F	Е	F	Е	F	Ε	F	Ε	F	Е	F	Е	F
SR2	Action	0	0	-	-	-	-	0	1	0	0	-	-	-	-	0	1
SK2	Limit	0	0	-	-	-	-	0	1	0	0	-	-	-	-	0	1
SR3	Action	1	1	-	-	-	-	1	0	0	0	-	-	-	-	2	1
SKS	Limit	0	0	-	-	-	-	0	1	0	0	-	-	-	-	0	1
SR4	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SK4	Limit	3	2	0	0	0	0	0	0	0	0	0	0	-	-	3	2
SR5	Action	0	1	-	-	-	-	-	-	-	-	-	-	2	2	2	3
SKO	Limit	0	0	-	-	-	-	-	-	-	-	-	-	17	17	17	17
SR12	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SKIZ	Limit	3	1	0	0	0	0	0	0	0	0	0	0	-	-	3	1
SR13	Action	0	0	-	-	-	-	-	-	0	0	-	-	-	-	0	0
SK13	Limit	0	0	-	-	-	-	-	-	0	0	-	-	-	-	0	0
Total	Action	1	2	0	0	0	0	1	1	0	0	0	0	2	2	ć)
rotai	Limit	6	3	0	0	0	0	0	2	0	0	0	0	17	17	4	5

- 3.3.4 During the reporting period, 1 LL exceedances for DO (B); 3 AL exceedances for Turbidity; 2 AL and 2 LL exceedances for NH₃-N (in-situ); 3 AL and 35 LL exceedances for TIN (in-situ); 3 AL and 9 LL exceedances for Suspended Solid; 2 AL and 2 LL exceedance for NH₃-N (lab); and 4 AL and 34 LL exceedances for TIN (lab).
- 3.3.5 According to the investigations, the exceedances were considered caused by influences in the vicinity of the station or changes in ambient conditions and not related to the Project.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 12

4. EM&A REQUIREMENTS – 24-HR WATER QUALITY MONITORING

4.1 Monitoring Parameters

- 4.1.1 Dissolved oxygen, temperature and turbidity are recorded every 5 minutes, 24 hours a day 7 days a week during dredging works.
- 4.1.2 In-situ NH₃-N at WSD Flushing Water Intake is measured every 20 minutes, 24 hours a day 7 days a week during works.
- 4.1.3 The water quality parameters measured at particular locations are shown in **Table 4.1**.

Table 4-1 24-hr Water Quality Monitoring Parameters

			P	aramete	rs	
ID	Description	Temperature	Turbidity	DO (mg/L)	%OQ	NH ₃ -N
SR4	Tsuen Wan, WSD Flushing Water Intake	0	0	0	0	0
SR5	Ma Wan, Fish Culture Zone	0	0	0	0	
SR12	Tsing Yi, WSD Flushing Water Intake	0	0	0	0	0
SR13	EMSD Cooling Water Intake for Kwai Chung Hospital	0	0	0	0	

4.2 Monitoring Locations

- 4.2.1 Referring to the *Proposal on Removal of Some Water Quality Monitoring Stations After Resumption of Marine Construction Works (Dredging Works and Marine Works of the Northern Part of Kwai Tsing Container Basin Only)* (0394_13_ED_0332I) which has been submitted to EPD and relevant parties in December 2016 with no objection, removal of 24 hour monitoring stations at SR9, SR10 and SR11 was effective from 23 January 2017. The setups of 24 hour monitoring stations at SR9, SR10 and SR11 were removed on 7 February 2017.
- 4.2.2 As shown in Table 4.1, the 24 hours water quality monitoring works are performed at SR4, SR5, SR12 and SR13.
- 4.2.3 Revisions on monitoring locations were proposed in previous submission (MateriaLab Report No. Ref: 0394/13/ED/0103 – WATER QUALITY MONITORING LOCATION) and were agreed among AFCD, EMSD, WSD and EPD.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 13

4.3 Results and Observations

- 4.3.1 24-hr water quality monitoring was conducted at all designated monitoring stations in the reporting quarter. Monitoring result graphical presentations are provided in **Appendix E**.
- 4.3.2 During the reporting period, red tide occurrences were reported in Hong Kong waters. In addition, some adverse weather conditions, including Rainstorm Warning signal, Thunderstorm Warning signals and Tropical Cyclone Warning Signals were reported. Heavy marine traffic (not associated with the Project) was commonly observed nearby the Project site and its vicinity, that the propeller wash from vessels could lead to potential disturbance of seabed sediment and affect the water quality. The above conditions may affect monitoring results. Furthermore, the fish culturing or other activities occurring on the fish rack may cause adverse impact on the receiving water.
- 4.3.3 Number of exceedances recorded in the reporting period at each impact station is summarized in Table 4.2.

Table 4-2 Summary of Water Quality Exceedance (24-hr Monitoring)

1 40.0	able 4-2 Outlinary of Water Quality Exceedance (24-iii Monitoring)										
Station	Exceedance Level	Turbidity	DO	NH ₃ -N	Total						
SR4	Action	0	0	0	0						
3N4	Limit	0	0	0	0						
SR5	Action	0	0	-	0						
SKS	Limit	0	0	-	0						
SR12	Action	0	0	0	0						
SK1Z	Limit	0	0	0	0						
SR13	Action	0	0	-	0						
SICIS	Limit	0	0	-	0						
Total	Action	0	0	0	0						
i Olai	Limit	0	0	0	0						

4.3.4 No exceedance was recorded in the reporting quarter.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 14

5. ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 5.1 Site Inspections
- 5.1.1 The Environmental Team conducted 12 site inspections in the reporting period. No particular observation was recorded in the reporting month, except the Contractor was reminded that chemical containers shall be labelled properly.
- 5.1.2 According to Contractor, no archaeological deposit was found during reporting period.
- **5.2** Implementation Status of Environmental Mitigation Measures
- 5.2.1 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in **Appendix F**. Most of the necessary mitigation measures were implemented properly.
- 5.2.2 The mitigation measures recommended in the EIA report and required by the EP are considered effective in minimizing environmental impacts. The Contractor has implemented the recommended mitigation measures except those mitigation measures not applicable at this stage.
- **5.3** Summary of Action taken
- 5.3.1 The exceedances recorded were considered not related to the Project, follow-up actions are not required.
- **5.4** Advice on the Solid and Liquid Waste Management Status
- 5.4.1 According to the Contractor, no general refuse were disposed off site in the reporting month. Summary of waste flow table is detailed in **Appendix G**.
- 5.4.2 No dredging work was carried out and no marine sediment was disposed in the reporting month. The details can be referred to the **Table 5-1**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 15

Table 5-1 Waste Quantities of Dredging Works

Month	Marine Sediment Type	Quantity Generated in Reporting Period (m³)	Cumulative-to Reporting Period (m ³)	Disposal / Dumping Ground
	Type 1 – Open Sea Disposal	0	1685700	NA
December 2018 - February 2019	Type 2 – Confined Marine Disposal	0	653530	NA
	Type 3 – Special Treatment / Disposal	0	1260	NA

Note:

- 1. All the Type 3 (Cat. Hf) sediment dredging and disposal was completed on 18 May 2016.
- 2. No dredging work was carried out and no marine sediment was disposed in the reporting month
- **5.5** Review of Action and Limit Level
- 5.5.1 Referring to the ER Letter ref. (CV/2013/04)/M45/400/1247 dated 19 March 2015, a Revised Baseline Water Quality Monitoring Test Methodology Review of Action and Limit Levels has been submitted to EPD by ER in March 2015. The Action and Limit Level for the wet season (April October) was effected and applied to the water quality monitoring data from 1 April 2015. The Action and Limit Level is given in **Appendix C**.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 16

- **5.6** Quarterly Review of Constructional Impacts on Water Quality
- 5.6.1 The construction impact on water quality was assessed by comparing the quarterly mean values with the relevant ambient or baseline mean values. Results showed that the mean values of DO (B) at all clusters of monitoring stations were higher than 0.7 x baseline; Ammonia (in-situ & lab), TIN (in-situ) and TSS at all clusters of monitoring stations were below the 1.3 x baseline value. Cluster stations with higher impact data are statistically compared to 1.3 x baseline levels or other relevant levels to assess the constructional impacts.
- 5.6.2 Quarterly mean of Turbidity in cluster 1 stations (i.e. SR2, 3, 4, 5, 12) at flood tide are compared to their 1.3 x baseline data respectively. Result shows the 1.3 x baseline level are significantly smaller than the quarterly mean (p<0.05). Quarterly mean of impact station at flood tide is further compared to the quarterly mean of upstream Control station (C2A) and the impact level in cluster 1 (i.e. SR2, 3, 4, 5, 12) is not significantly different to that of control station, C2A (p>0.05), indicating the contribution from the project is not significant.
- 5.6.3 Data from ebb tide of cluster 1 stations of Turbidity and TIN (lab) were not further compared to their 1.3 x baseline data as cluster 1 stations were situated at upstream position at ebb tide and not subject to project impact. Comparison between quarterly mean and 1.3 x baseline mean is given in Table 5.2, while the summary of key statistical analysis is provided in Table 5.3. Details of key statistical analysis results are provided in **Appendix H**.
- 5.6.4 As 24-hr monitoring is to supplement the routine WQM activities (EM&A Manual Section 2.1.10) and there is no baseline value and/or control / gradient value for a meaningful statistical analysis. Thus no statistical analysis was done for 24-hr monitoring. Also, statistical analysis was not performed for some parameters without exceedances (DO (S&M), UIA (insitu & lab), BOD₅, *E.coli* and Synthetic Detergent) in the reporting quarter.

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 17

Table 5-2 Comparison of Quarterly Mean to Baseline Mean

				DO (E	3)					Turbidi	ity		
		Baseline	Baseline x 0.7	Average	Dec 2018 - Feb 2019	Average	Smaller than Baseline Level	Baseline	Baseline x 1.3	Average	Dec 2018 - Feb 2019	Average	Larger than Baseline x 1.3
Control (Flood)	C1A C2A	6.37 5.83	4.46 4.08	NA	6.74 6.40	NA	NA	1.94 2.29	2.50 3.00	NA	3.95 3.59	NA	NA
Control (Ebb)	C1A C2A	6.33	4.43 4.20	NA	6.69 6.41	NA	NA	1.33	1.70	NA	3.98 3.58	NA	NA
Gradient (Flood)	G2	6.34	4.44	NA	6.78	NA	no	1.73	2.20	NA	3.39	NA	yes
Gradient (Ebb)	G2	6.35	4.45	NA	6.68	NA	no	1.00	1.30	NA	3.31	NA	yes
	SR2	6.37	4.46		6.71			1.13	1.50		3.24		
01	SR3	6.21	4.35		6.60			1.11	1.40		3.50		
Cluster 1 (Flood)	SR4	6.06	4.24	4.32	6.48	6.58	no	2.24	2.90	2.28	3.63	3.61	yes
(1 1000)	SR5	6.31	4.42		6.78			1.94	2.50		3.54		
	SR12	5.90	4.13		6.32			2.40	3.10		4.14		
	SR2	6.35	4.45		6.68			1.18	1.50		3.43		
	SR3	6.26	4.38		6.58			1.06	1.40		3.45		
Cluster 1 (Ebb)	SR4	5.91	4.14	4.31	6.49	6.55	no	1.79	2.30	1.84	3.63	3.62	yes
(EDD)	SR5	6.37	4.46		6.74			1.14	1.50		3.59		
	SR12	5.92	4.14		6.27			1.94	2.50		3.98		
Cluster 3 (Flood)	SR13	5.75	4.03	4.03	6.29	6.29	no	7.28	9.50	9.50	4.12	4.12	no
Cluster 3 (Ebb)	SR13	5.73	4.01	4.01	6.26	6.26	no	4.23	5.50	5.50	4.06	4.06	no

- Control and Gradient stations are compared on individual stations for reference, no clustering analysis was performed. Impact stations are compared in clusters of stations, or
- Parameter is not monitored at the station.

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0375A Page 18

			An	nmonia –	In-situ					TIN -	- In-situ		
		Baseline	Baseline x 1.3	Average	Dec 2018 - Feb 2019	Average	Larger than Baseline x 1.3	Baseline	1.3 x Baseline	Average	Dec 2018 - Feb 2019	Average	Larger than Baseline x 1.3
Control	C1A	NA	NA	NA	0.12	NA	NA	0.42	0.55	NA	0.42	NA	NA
(Flood)	C2A				0.35			0.56	0.73		0.57		
Control	C1A	NA	NA	NA	0.13	NA	NA	0.40	0.52	NA	0.42	NA	NA
(Ebb)	C2A				0.30			0.53	0.69		0.53		10.
Gradient (Flood)	G2	NA	NA	NA	NA	NA	NA	0.44	0.57	NA	0.40	NA	yes
Gradient (Ebb)	G2	NA	NA	NA	NA	NA	NA	0.38	0.49	NA	0.40	NA	yes
	SR2	0.22	0.29		0.15			NA	NA		NA		
	SR3	0.24	0.31		0.13			NA	NA		NA		
Cluster 1 (Flood)	SR4	0.26	0.34	0.33	0.15	0.15	no	NA	NA	0.64	NA	0.40	no
(11000)	SR5	NA	NA		NA			0.49	0.64		0.40		
	SR12	0.28	0.36		0.17			NA	NA		NA		
	SR2	0.22	0.29		0.14			NA	NA		NA		
01	SR3	0.22	0.29		0.13			NA	NA		NA		
Cluster 1 (Ebb)	SR4	0.25	0.33	0.32	0.15	0.14	no	NA	NA	0.67	NA	0.41	no
(255)	SR5	NA	NA		NA			0.52	0.67		0.41		
	SR12	0.27	0.35		0.16			NA	NA		NA		
Cluster 3 (Flood)	SR13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cluster 3 (Ebb)	SR13	NA	NA	NA	NA	INA	INA	NA	NA	INA	NA	INA	INA

- Control and Gradient stations are compared on individual stations for reference, no clustering analysis was performed. Impact stations are compared in clusters of stations, or
- Parameter is not monitored at the station.

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 19

1110 00	0 1/ 10/		<i>71 01</i> t					,					1 4
				TS						Amm	onia - lab)	
		Baseline	1.3 x Baseline	Average	Dec 2018 - Feb 2019	Average	Larger than Baseline x 1.3	Baseline	1.3 x Baseline	Average	Dec 2018 - Feb 2019	Average	Larger than Baseline x 1.3
Control	C1A	7	10	NA	5	NA	NA	NA	NA	NA	0.11	NA	NA
(Flood)	C2A	8	10	INA	6	INA	INA	NA	NA	INA	0.34	INA	INA
Control	C1A	5	7	NA	6	NA	NA	NA	NA	NA	0.11	NA	NA
(Ebb)	C2A	7	9	INA	6	INA	INA	NA	NA	INA	0.30	INA	INA
Gradient (Flood)	G2	5	7	NA	5	NA	no	NA	NA	NA	NA	NA	NA
Gradient (Ebb)	G2	5	7	NA	5	NA	no	NA	NA	NA	NA	NA	NA
	SR2	5	7		5			0.12	0.16		0.12		
01	SR3	5	7		5			0.12	0.16		0.13		
Cluster 1 (Flood)	SR4	7	9	8.60	6	5.40	no	0.13	0.17	0.17	0.15	0.14	no
(i loou)	SR5	6	8		5			NA	NA		NA		
	SR12	9	12		6			0.15	0.20		0.17		
	SR2	5	7		5			0.12	0.16		0.10		
Cluster 1	SR3	5	6		5			0.12	0.16		0.12		
(Ebb)	SR4	5	7	7.00	6	5.40	no	0.14	0.18	0.18	0.14	0.13	no
(===,	SR5	5	6		5			NA	NA		NA		
	SR12	7	9		6			0.15	0.20		0.16		
Cluster 3 (Flood)	SR13	16	21	21.00	6	6.00	no	NA	NA	NA	NA	NA	NA
Cluster 3 (Ebb)	SR13	10	14	14.00	6	0.00	110	NA	NA	IVA	NA	14/-1	IWA

- Control and Gradient stations are compared on individual stations for reference, no clustering analysis was performed. Impact stations are compared in clusters of stations, or
- Parameter is not monitored at the station.

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0375A

Page 20

1110 00		TIN - lab								
		Baseline	1.3 x Baseline	Average	Dec 2018 - Feb 2019	Average	Larger than Baseline x 1.3			
Control	C1A	0.30	0.39	NA	0.38	NA	yes			
(Flood)	C2A	0.35	0.46	INA	0.53	INA	yes			
Control	C1A	0.28	0.36	NA	0.39	NA	yes			
(Ebb)	C2A	0.34	0.44	INA	0.50	INA	yes			
Gradient (Flood)	G2	0.31	0.40	NA	0.37	NA	no			
Gradient (Ebb)	G2	0.28	0.36	NA	0.36	NA	no			
	SR2	NA	NA		NA					
Cluster 1	SR3	NA	NA		NA					
Cluster 1 (Flood)	SR4	NA	NA	0.38	NA	0.38	no			
()	SR5	0.29	0.38		0.38					
	SR12	NA	NA		NA					
	SR2	NA	NA		NA					
Cluster 1	SR3	NA	NA		NA					
(Ebb)	SR4	NA	NA	0.36	NA	0.38	yes			
(255)	SR5	0.28	0.36		0.38					
	SR12	NA	NA		NA					
Cluster 3 (Flood)	SR13	NA	NA	NA	NA	NA	NA			
Cluster 3 (Ebb)	SR13	NA	NA	14/1	NA	14/1	1471			

- Control and Gradient stations are compared on individual stations for reference, no clustering analysis was performed. Impact stations are compared in clusters of stations, or
- Parameter is not monitored at the station.

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Page 21

Report No.: 0394/13/ED/0375A

Table 5-3 Summary of Statistical Analysis

Parameter	Cluster	Compared against	Results and Conclusions			
		Quarterly Mean at Impact Stations (flood tide) against 1.3 x Baseline Level (flood tide)	Quarterly mean at Impact Station (flood tide) is significantly higher than 1.3 x Baseline mean (flood tide) (p<0.05).			
Turbidity	Cluster 1	Quarterly Mean at Impact Station (flood tide) against Upstream Control (C2A)	Impact Mean (flood tide) is not significantly different than Upstream Control (C2A) Mean (flood tide) (p>0.05), indicating the project impact is			

not significant.

5.6.5 Exceedance are considered to be due to change in ambient conditions or influences in the vicinity of the stations. Mitigation measures for dredging works were implemented in accordance with EP and EIA requirements.

Mean (flood tide)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 22

6. NON-COMPLIANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

6.1.1 In this reporting period, no complaint, inspection notice, notification of summons or prosecution was received. Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Tables 6.1**, **6.2 and 6.3**.

Table 6-1 Environmental Complaints Log

Complaint Log No.	Date of Receipt	Received From and Received By	Nature of Complaint	Date Investigated	Outcome	Date of Reply
Nil	-	-	-	-	-	-

Table 6-2 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Period	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Table 6-3 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Prosecutions This Period	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A Page 23

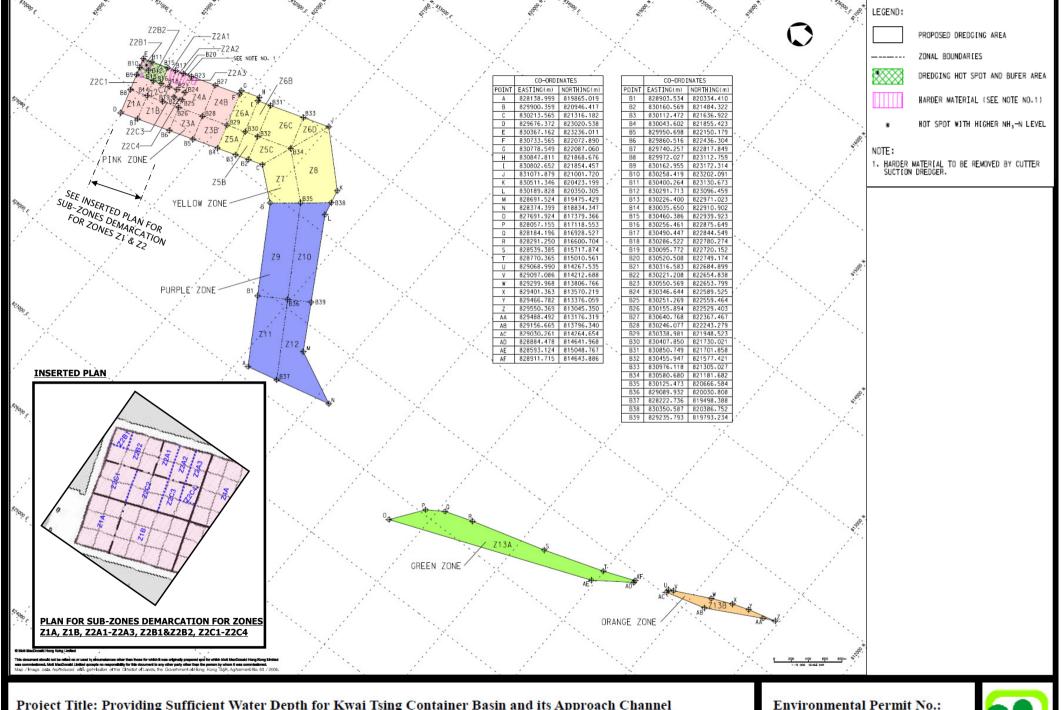
7. CONCLUSIONS

- 7.1.1 The dredging works was commenced on 23 April 2014. The EM&A programme was carried out in accordance with the EM&A Manual requirements. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging works.
- 7.1.2 During the reporting period, exceedances were recorded for DO (B), Turbidity, NH3-N (in-situ & lab), TIN (in-situ & lab) and Suspended Solids in the routine impact monitoring. No exceedance was recorded in 24-hr monitoring. Investigation found that the exceedances were not project related and were considered caused by influences in the vicinity of the stations or change in ambient conditions.
- 7.1.3 12 environmental site inspections were carried out weekly in the reporting period.
- 7.1.4 No environmental complaint was received and followed up by Environmental Team in the reporting period.
- 7.1.5 No notification of summons and prosecution was received in the reporting period.
- 7.1.6 According to the Contractor, all dredging works under this Contract of the construction phase, included removal of hard materials in sub-zones Z1A, Z2B1, Z2B2 and Z2C1 and the dredging works in Hotspot area in sub-zones Z1A, Z1B, Z2A, Z2B and Z2C was substantially completed on 21 November 2017. The environmental monitoring and audit (EM&A) works of this Project was carried out in accordance with the EM&A Manual requirements in the Environmental Permit (EP) No. EP-426/2011/A, EM&A Manual (AEIAR-156/2010) and EM&A TIN (EPD Letter Ref: (34) in Ax(1) to EP2/N3/C/57Pt.7)). A final EM&A report was prepared in December 2017 and the EM&A programme for the Construction Phase was substantially completed in December 2017. However, according to a hydrographic survey was conducted by the Marine Department during late 2017 and early 2018. The survey result showed that approximately 5200 m3 (in-situ volume) of high spots was discovered at Z2B1, Z2B2 and Z2C1. There may also be some other high spots discovered in "Portion B" (i.e. sub-zones Z5A, Z5B, Z5C, Z6A, Z6B, Z6C, Z6D, Z7 and Z8 stated in the EP-426/2011/A), which the location area and the volumes are still under review.

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com


 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0375A

Figure 1

Project General Layout

Project Title: Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

Figure 2: Zones and Sub-zone of Dredging Plan Layout (Extracted from Figure 2 of Justification for the Proposed Demarcation of the **Dredging Zones**)

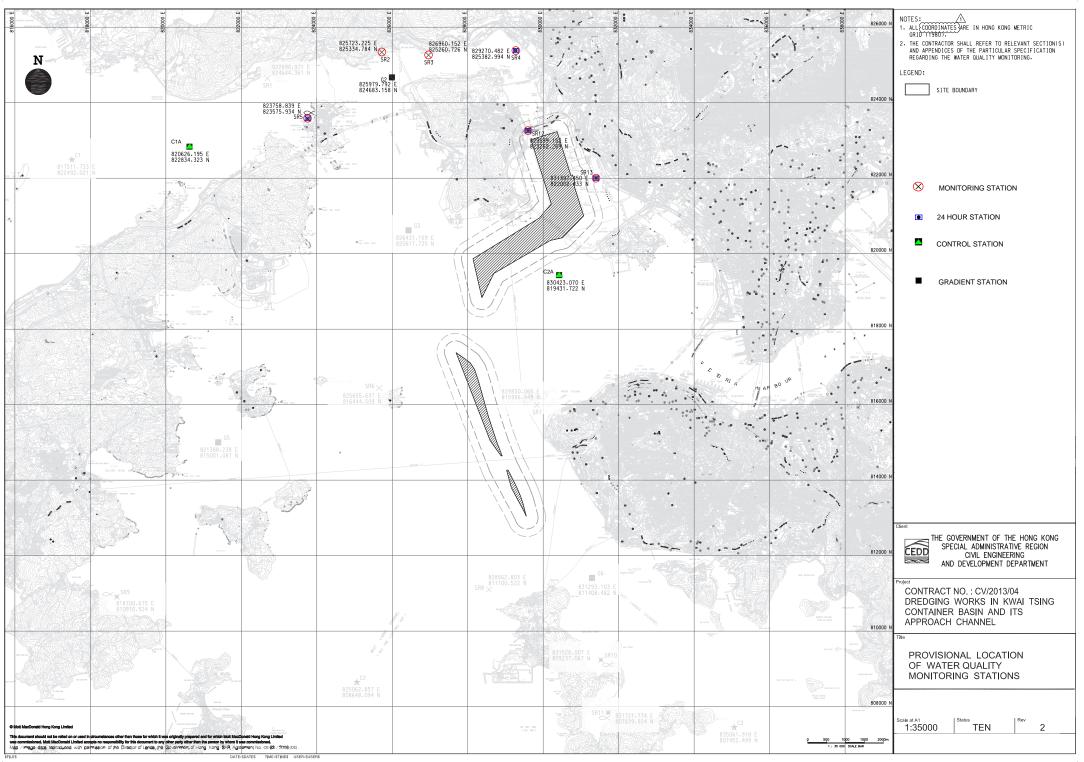
Environmental Permit No.:

EP-426/2011/A

 Fugro Development Centre,
 Tel : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail : matlab@fugro.com


 Hong Kong.
 Website : www.fugro.com

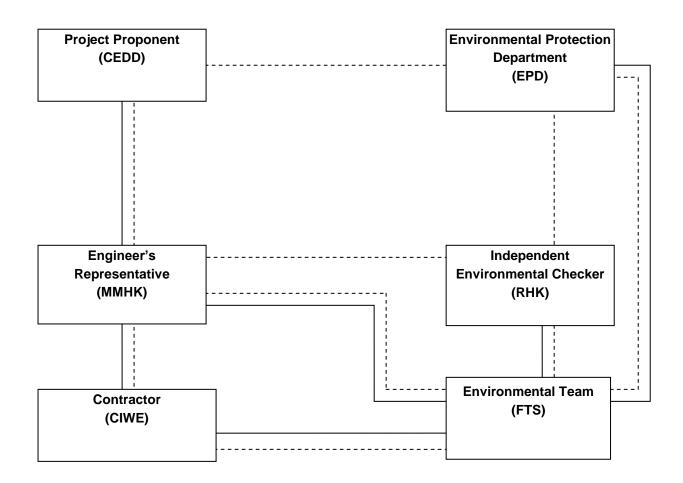
Report No.: 0394/13/ED/0375A

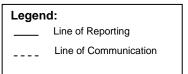
Figure 2

Locations of Water Quality Monitoring Stations

 Fugro Development Centre,
 Tel : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax : +852 2450 6138


 Tuen Mun, N.T.,
 E-mail : matlab@fugro.com


 Hong Kong.
 Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Appendix A
Project Organization Chart

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0375A

Appendix B

Construction Programme

Contract No. CV/2013/04
Dredging Works in Kwai Tsing Container Basin and its Approach Channel
Tentative Programme for Rock Excavation Works outside Berth KC5 (Grids No. A27, B27, C27, A26, B26 & C26) Based on Rock Area Less Than 2000 Square Meters

Date: 20 August 2018

Task Name Duration Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Commencement Date 0 days Mon 21/5/18 Works reviewed and agreed between CEDD and CIWE 0 days Mon 21/5/18 Mon 21/5/18 _____ 21/5 Notification of works to EPD, MD and relevant stakeholders by CEDD 14 days Mon 25/6/18 Sun 8/7/18 -8/7 Comments/no objection to works from EPD, MD and relevant stakeholders 4 14 days Mon 9/7/18 Sun 22/7/18 22/7 5 Method Statement 105 days Mon 11/6/18 Sun 23/9/18 6 Preparation Sun 8/7/18 28 days Mon 11/6/18 First submission 14 days Mon 9/7/18 Sun 22/7/18 8 Comments from MMHK 35 days Mon 23/7/18 Sun 26/8/18 9 Second submission 14 days Mon 27/8/18 Sun 9/9/18 10 14 days Mon 10/9/18 Sun 23/9/18 11 59 days Sun 23/9/18 Wed 21/11/18 12 Notification of MTMLG Meeting 0 days Sun 23/9/18 Sun 23/9/18 23/9 13 MTMLG Meeting 0 days Sun 14/10/18 Sun 14/10/18 14 Preparation and submission of MDN application 21 days Mon 15/10/18 Sun 4/11/18 15 Approval 7 days Thu 15/11/18 Wed 21/11/18 16 Marine Dumping Permit 49 days Fri 21/9/18 Thu 8/11/18 Disposal ground allocated by CEDD 14 days Fri 21/9/18 Thu 4/10/18 21/9 4/10 Preparation and submission 14 days Fri 5/10/18 Thu 18/10/18 5/10 18/10 Approval 21 days Fri 19/10/18 Thu 8/11/18 19/10 Construction Noise Permit 159 days Fri 1/6/18 Tue 6/11/18 21 Noise Assessmet 14 days Fri 1/6/18 Thu 14/6/18 1/6 14/6 22 Preparation and submission 7 days Wed 10/10/18 Tue 16/10/18 10/10 16/10 23 Approval 21 days Wed 17/10/18 Tue 6/11/18 17/10 24 Drilling Barge 178 days Mon 21/5/18 Wed 14/11/18 25 Design of modification works 28 days Mon 21/5/18 Sun 17/6/18 21/5 26 Application for MD's approval of modification works 50 days Mon 18/6/18 Mon 6/8/18 27 First submission 5 days Mon 18/6/18 Fri 22/6/18 18/6 22/6 28 Comments from MD 23/6 5/7 13 days Sat 23/6/18 Thu 5/7/18 29 6/7 18/7 Second submission 13 days Fri 6/7/18 Wed 18/7/18 30 19 days Thu 19/7/18 Mon 6/8/18 19/7 6/8 31 Reschedule of modification works due to requiements imposed by MD 20 days Tue 7/8/18 Sun 26/8/18 32 Preliminary revised design for modification works 6 days Tue 7/8/18 Sun 12/8/18 7/8 _12/8 33 Rearrangement of dockyard for modification works 14 days Mon 13/8/18 Sun 26/8/18 13/8 19/8 34 Liaison with dockyard in Mainland China for modification works 7 days Mon 13/8/18 Sun 19/8/18 35 Reservation of dockyard for modification works 20/8 26/8 7 days Mon 20/8/18 Sun 26/8/18 36 Mobillization of barge to dockyard in Mainland China 5 days Mon 27/8/18 Fri 31/8/18 37 Modification of flat top barge with 2 nos. drilling rigs added 61 days Sat 1/9/18 Wed 31/10/18 31/10 38 Plan Approval of modification works 14 days Thu 11/10/18 Wed 24/10/18 24/10 11/10 Testing of lifting appliances and gears 3 days Mon 29/10/18 Wed 31/10/18 29/10 31/10 40 Installation of air compressors and gensets 3 days Mon 29/10/18 Wed 31/10/18 29/10 31/10 41 Survey/Inspection of modification works 7 days Thu 25/10/18 Wed 31/10/18 25/10 31/10 42 Brage returnung to Hong Kong 7 days Thu 1/11/18 Wed 7/11/18 1/11 7/11 43 Operating Licence issued by MD 7 days Thu 8/11/18 8/11 14/11 Wed 14/11/18 44 Work Permit approved by Mainland China 90 days Tue 7/8/18 Sun 4/11/18 7/8 4/11 45 Water Quality Monitoring Works 429 days Fri 14/9/18 Sat 16/11/19 46 Reinstallation of equipment 60 days Fri 14/9/18 Mon 12/11/18 12/11 47 Monitoring works 360 days Thu 22/11/18 Sat 16/11/19 22/11 48 Temporary Silt Screens at Tsuen Wan, Tsing Yi and Kwai Chung* 435 days Sat 8/9/18 Sat 16/11/19 Fabrication of silt screens 45 days Sat 8/9/18 Mon 22/10/18 _22/10 50 Installation of silt screens 21 days Tue 23/10/18 23/10 12/11 51 Cleaning and maintenance of silt screens 360 days Thu 22/11/18 Sat 16/11/19 22/11 52 Site Works (Subject to working period provided by MTL) 384 days Mon 5/11/18 Sat 23/11/19 53 Survey grid plan for drilling works 10 days Mon 5/11/18 Wed 14/11/18 14/11 54 Drilling works 360 days Thu 22/11/18 Sat 16/11/19 22/11 55 Removal of broken rock material 330 days Sat 22/12/18 Sat 16/11/19 22/12 416/11 56 Interim hydrographic survey 270 days Mon 21/1/19 Thu 17/10/19 17/10 57 Final hydrographic survey and handove 7 days Sun 17/11/19 Sat 23/11/19 17/11 23/11 58 Completion Date 0 days Sat 23/11/19 Sat 23/11/19 **◆**423/11 China International Water & Critical Task Milestone -

 Fugro Development Centre,
 Tel : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail : matlab@fugro.com

 Hong Kong.
 Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Appendix C
Action and Limit Levels

Action and Limit Levels for Routine Water Quality Monitoring (Dry Season)

Monitoring DO (mg/L) Surface & Middle			mg/L)	Turbidit Depth-A	y (NTU) veraged	Suspended Solids (mg/L) Depth- averaged		BOD5(mg/L) Depth- averaged		E.coli (CFU /100mL) Depth- averaged		NH3-N (mg/L) Depth-averaged		UIA (mg/L) Depth- averaged		MBAS (mg/L)		TIN (mg/L) Depth Averaged		
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
	Seawater Intake																			
SR4 SR12	2	2	2	2	<10	<10	<10	<10	<10	<10	<20,000	<20,000	<1	<1	0.021	0.021	<5	<5	NA	NA
	Fish Culture Zone																			
SR5	5.45	5.39#	5.43	5.27 ⁺	6.7 or 120%C*	10.1 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.36	0.39
	Gazetted Beach																			
SR2 SR3	5.45	5.39#	5.43	5.27+	6.7 or 120%C*	10.1 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	0.21 or 120%C*	0.24 or 130%C^	0.021	0.021	NA	NA	NA	NA
	EMSD Cooling Water Intake																			
SR13	5.31	5.22#	5.29	5.12 ⁺	13.1 or 120%C*	15.7 or 130%C^	23 or 120%C*	38 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note:

Dry Season: November to March

^{*} Or 120% of upstream control station at the same tide of the day

[^] Or 130% of upstream control station at the same tide of the day

[#] According to EM&A Manual, LL of DO (surface & middle) is 5 mg/L or 1 percentile of baseline data in FCZ; 4 mg/L or 1 percentile of baseline data in other impact monitoring stations.

⁺ According to EM&A Manual, LL of DO (bottom) is 2 mg/L or 1 percentile of baseline data

For DO measurement, non-compliance occurs when monitoring result is lower than the limits;

For TIN, UIA, NH₃-N, SS, BOD₅, E.coli, synthetic detergent and turbidity, non-compliance of water quality results when monitoring results is higher than the limits;

AL/LL of TIN and NH₃-N are determined from laboratory results for better accuracy and reliability. These AL/LL will be applied to both laboratory and in-situ measurements at impact stage.

Action and Limit Levels for Routine Water Quality Monitoring (Wet Season)

Monitoring Station		mg/L) & Middle		mg/L) ttom	Turbidit Depth-A		Suspend (mg/L) avera	Denth-		(mg/L) averaged	E.coli /100mL) avera) Depth-		(mg/L) iveraged	UIA (I Dep avera	oth-	Deterg MBAS Dep	(mg/L)	Dè	mg/L) pth aged
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	ᅵ	AL	LL	AL	LL
	Seawater Intake																			
SR4 SR12	2	2	2	2	<10	<10	<10	<10	<10	<10	<20,000	<20,000	<1	<1	0.021	0.021	< 5	<5	NA	NA
	Fish Culture Zone																			
SR5	5.00#	5.00#	4.11	4.04+	10.8 or 120%C*	15.0 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.45	0.50
	Gazetted Beach																			
SR2 SR3	4.68	4.62#	4.11	4.04+	10.8 or 120%C*	15.0 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	0.21 or 120%C*	0.24 or 130%C^	0.021	0.021	NA	NA	NA	NA
	EMSD Cooling Water Intake																			
SR13	4.24	4.17#	3.70	3.58+	13.1 or 120%C*	15.7 or 130%C^	23 or 120%C*	38 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note:

According to EM&A Manual, LL of DO (surface & middle) is 5 mg/L or 1 percentile of baseline data in FCZ; 4 mg/L or 1 percentile of baseline data in other impact monitoring stations. (5%ile & 1 %ile determined from wet season baseline data for cluster 1 (4.68mg/L & 4.62mg/L) and cluster 2 (5.00mg/L & 4.82mg/L) are 5mg/L or below, thus 5mg/L was adopted as the AL & LL for the SR in FCZ)

+ According to EM&A Manual, LL of DO (bottom) is 2 mg/L or 1 percentile of baseline data

Referring to the ER Letter ref. (CV/2013/04)/M45/400/1247 dated 19 March 2015, a Revised Baseline Water Quality Monitoring Test Methodology – Review of Action and Limit Levels has been submitted to EPD by ER in March 2015. The Action and Limit Level for the wet season (April – October) was effected and applied to the water quality monitoring data from 1 April 2015.

For DO measurement, non-compliance occurs when monitoring result is lower than the limits;

For TIN, UIA, NH₃-N, SS, BOD₅, E.coli, synthetic detergent and turbidity, non-compliance of water quality results when monitoring results is higher than the limits;

AL/LL of TIN and NH₃-N are determined from laboratory results for better accuracy and reliability. These AL/LL will be applied to both laboratory and in-situ measurements at impact stage.

Wet season: April to October

^{*} Or 120% of upstream control station at the same tide of the day

[^] Or 130% of upstream control station at the same tide of the day

Action and Limit Levels for 24-hr Water Quality Monitoring (Dry Season)

Monitoring Station	DO (r Sur	ng/L) face	Turbidit Sur		Ammonia-N (mg/L) Surface							
	AL	LL	AL	LL	AL	LL						
WSD Seawater Intake												
SR4	2	2	<10	<10	<1	<1						
SR12	2	2	V 10	V 10	7	/ I						
Fish Culture Zone												
SR5	5.46 5.39		6.0 7.9		NA	NA						
EMSD Cooling Water Intake												
SR13	5.28	5.22	11.9	13.3	NA	NA						

Note: According to EM&A Manual, LL of DO (surface & middle) is 5 mg/L or 1 percentile of baseline data in FCZ; 4 mg/L or 1 percentile of baseline data in other impact monitoring stations.

Dry Season: November to March.

Action and Limit Levels for 24-hr Water Quality Monitoring (Wet Season)

Monitoring Station	_	ng/L) face		y (NTU) face	Ammonia-N (mg/L) Surface							
	AL	LL	AL LL		AL	LL						
WSD Seawater Intake												
SR4	2	2	<10	<10	<1	<1						
SR12	2	2	<10	710	7	7						
Fish Culture Zone												
SR5	5.24 5.13		9.7 14.4		NA	NA						
	EMSD Cooling Water Intake											
SR13	4.23	4.17	11.9	13.3	NA	NA						

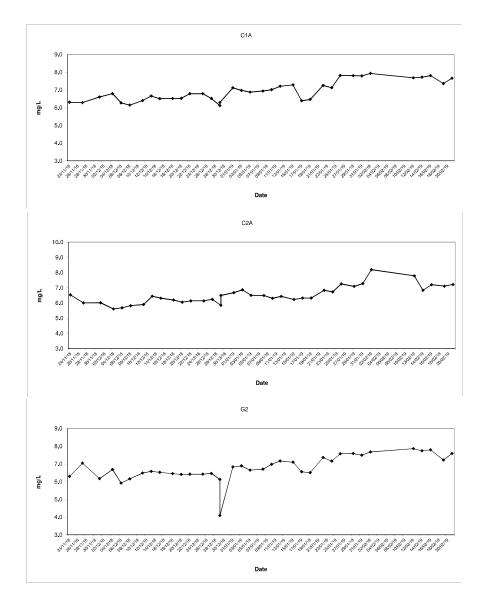
Note: # According to EM&A Manual, LL of DO (surface & middle) is 5 mg/L or 1 percentile of baseline data in FCZ; 4 mg/L or 1 percentile of baseline data in other impact monitoring stations. (1 %ile determined from wet season baseline data for cluster 2 (4.78mg/L) is below 5mg/L, thus 5mg/L was adopted as the DO (surface) LL for the SR in FCZ in cluster 2 stations)

Referring to the ER Letter ref. (CV/2013/04)/M45/400/1247 dated 19 March 2015, a Revised Baseline Water Quality Monitoring Test Methodology – Review of Action and Limit Levels has been submitted to EPD by ER in March 2015. The Action and Limit Level for the wet season (April – October) was effected and applied to the water quality monitoring data from 1 April 2015.

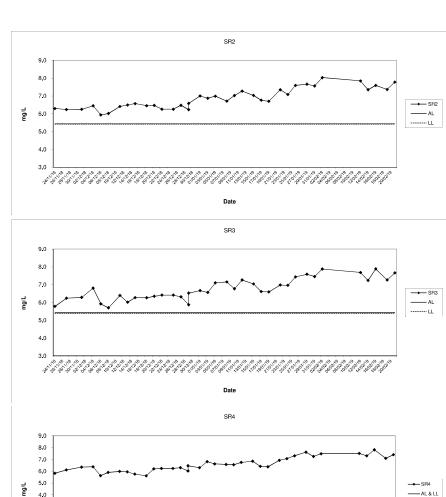
Wet Season: April to October

FUGRO TECHNICAL SERVICES LIMITED

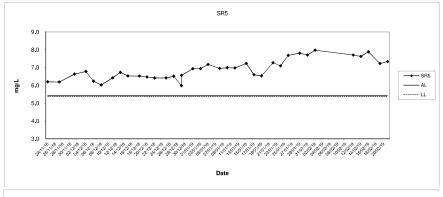
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

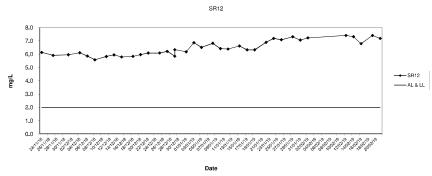


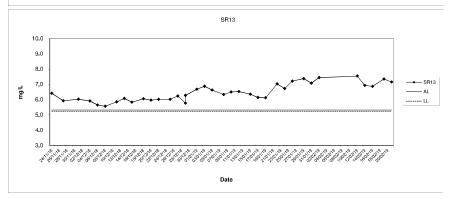
Report No.: 0394/13/ED/0375A

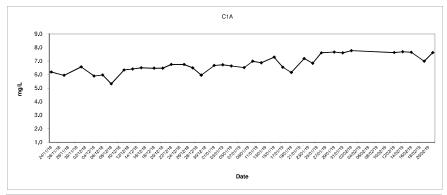

Appendix D

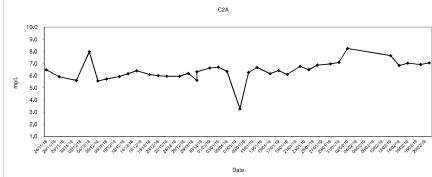
Graphical Presentation - Routine Impact Monitoring Results

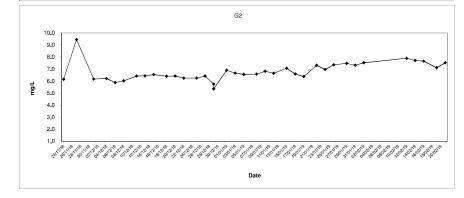

Dissolved Oxygen (Surface and Middle) at Mid-Flood Tide

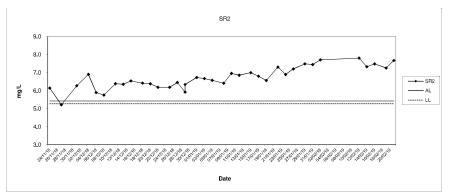


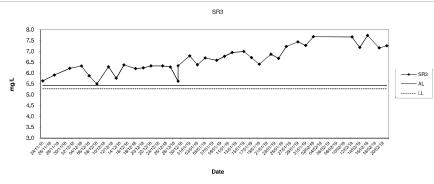

Dissolved Oxygen (Surface and Middle) at Mid-Flood Tide

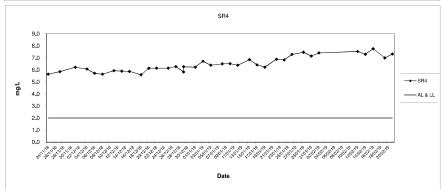

Dissolved Oxygen (Surface and Middle) at Mid-Flood Tide

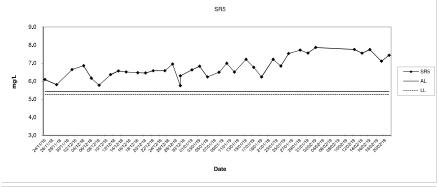


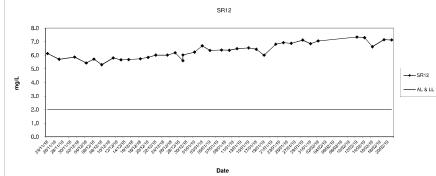


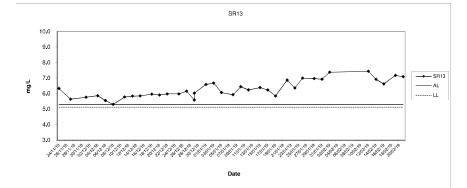

Dissolved Oxygen (Bottom) at Mid-Flood Tide

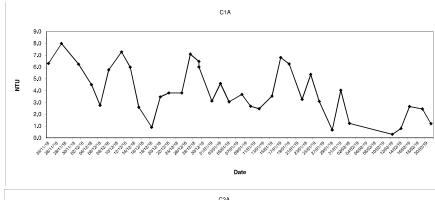


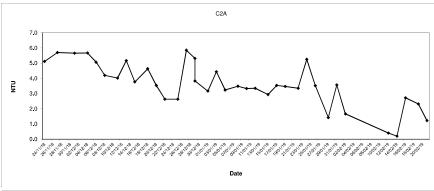


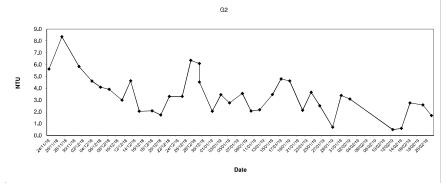

Dissolved Oxygen (Bottom) at Mid-Flood Tide

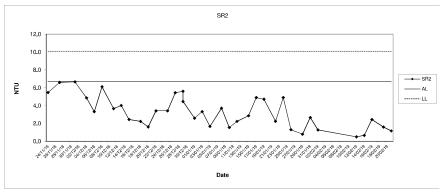


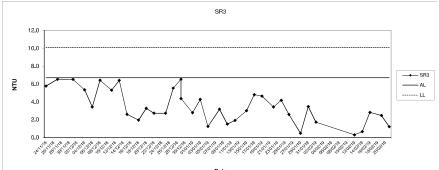


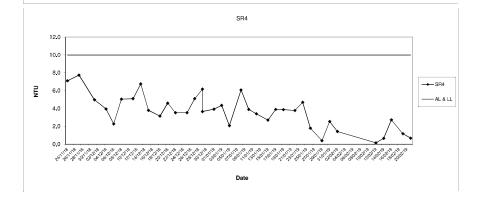

Dissolved Oxygen (Bottom) at Mid-Flood Tide

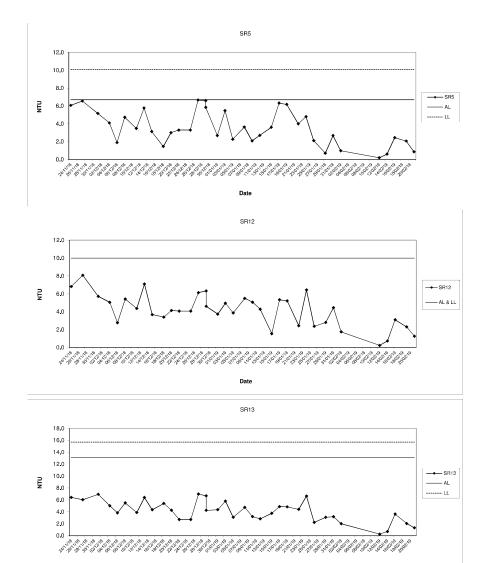


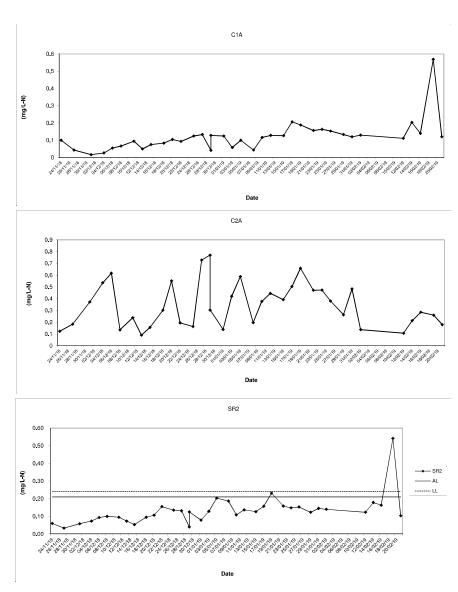



Turbidity (Depth average) at Mid-Flood Tide

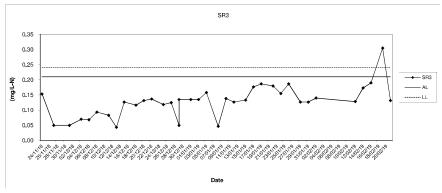


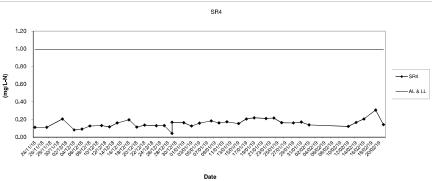


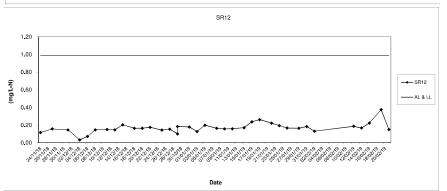

Turbidity (Depth average) at Mid-Flood Tide

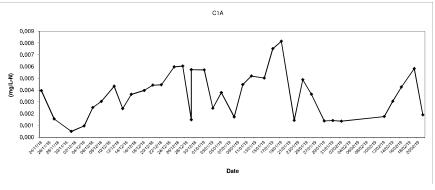


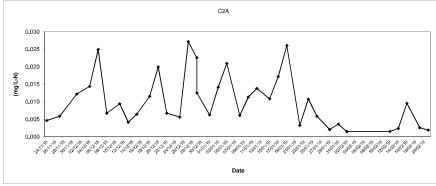
Turbidity (Depth average) at Mid-Flood Tide

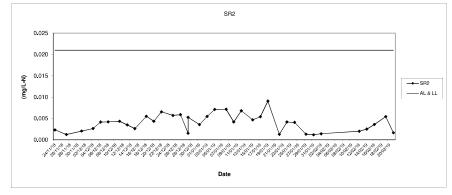


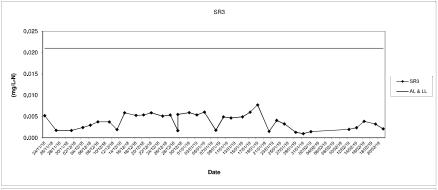

Date

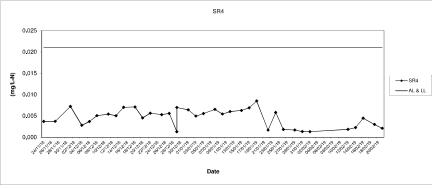

In-situ Ammonia (Depth average) at Mid-Flood Tide

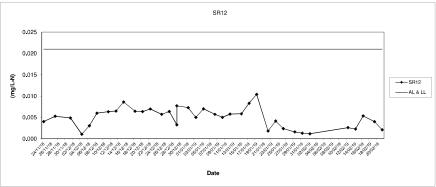

In-situ Ammonia (Depth average) at Mid-Flood Tide

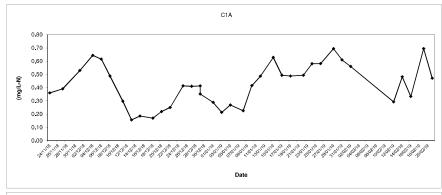


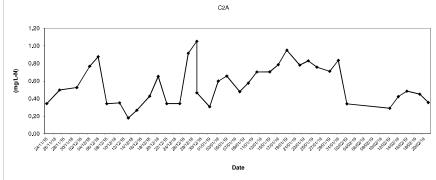


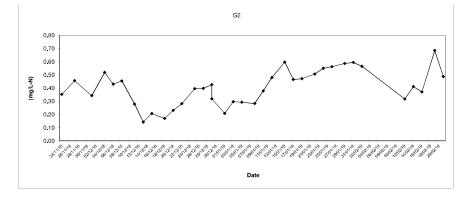

In-situ UIA (Depth average) at Mid-Flood Tide

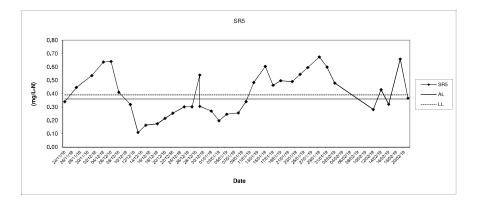


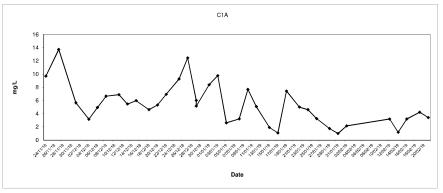


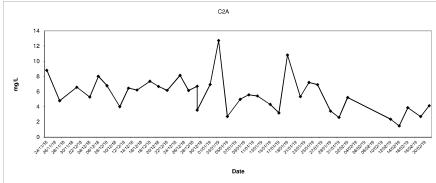

In-situ UIA (Depth average) at Mid-Flood Tide

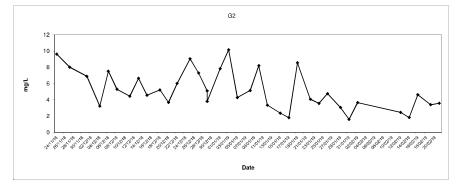


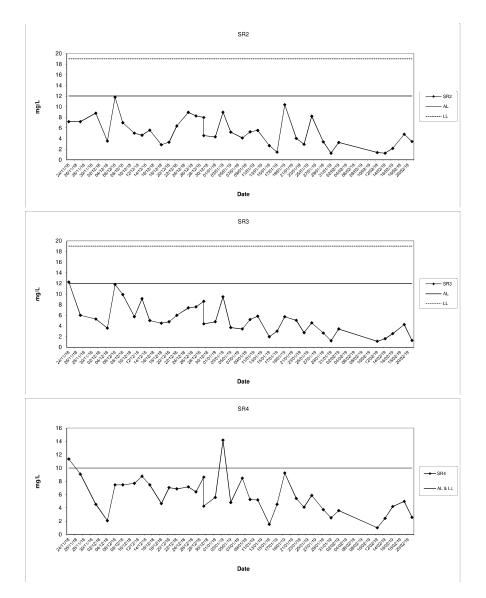


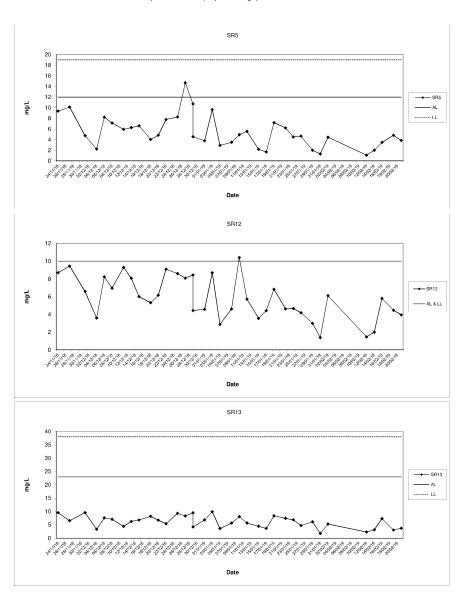

In-situ TIN (Depth average) at Mid-Flood Tide

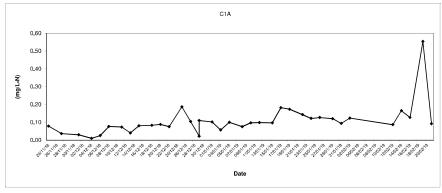


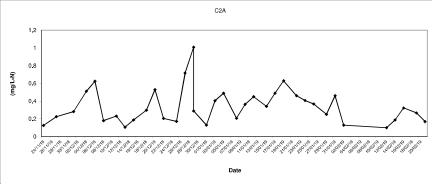


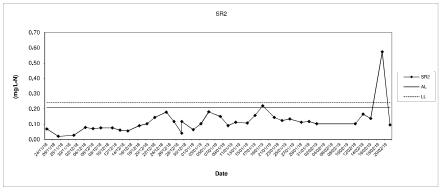

In-situ TIN (Depth average) at Mid-Flood Tide

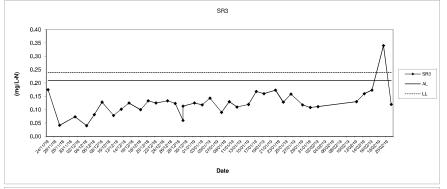


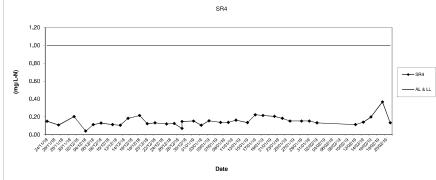

Total Suspended Solids (Depth average) at Mid-Flood Tide

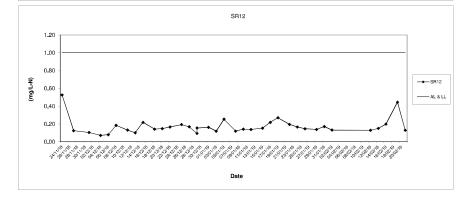


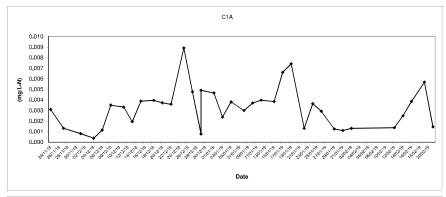


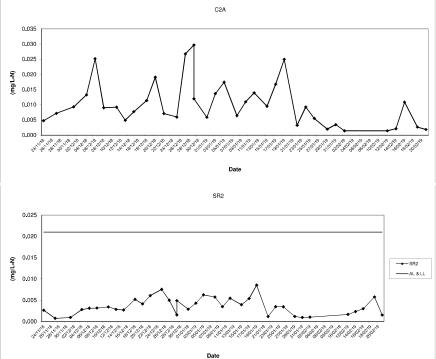


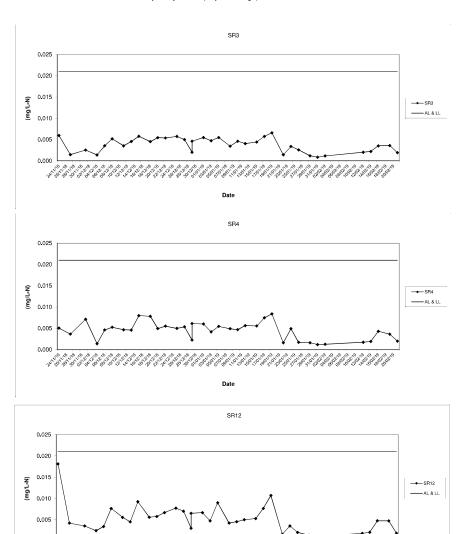

Ammonia Nitrogen (Depth average) at Mid-Flood Tide



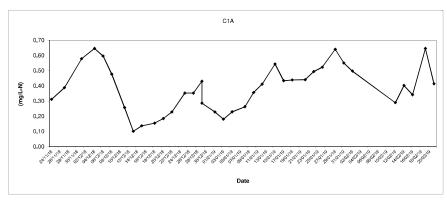


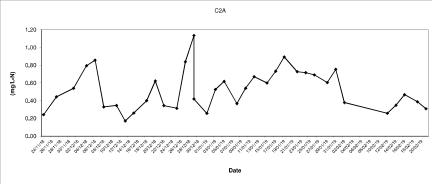

Ammonia Nitrogen (Depth average) at Mid-Flood Tide

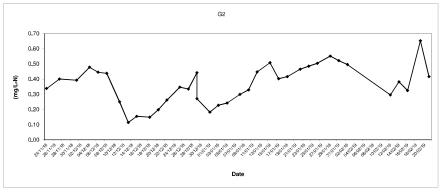




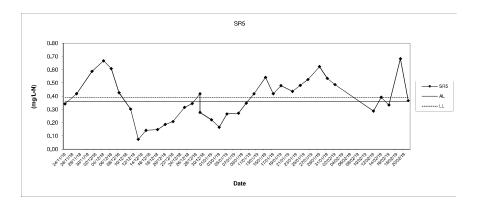
Laboratory Analysis UIA (Depth average) at Mid-Flood Tide

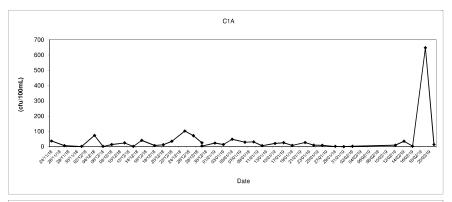


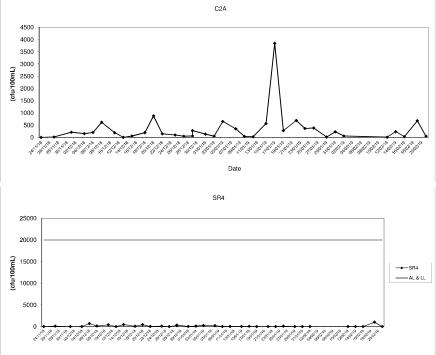

Laboratory Analysis UIA (Depth average) at Mid-Flood Tide



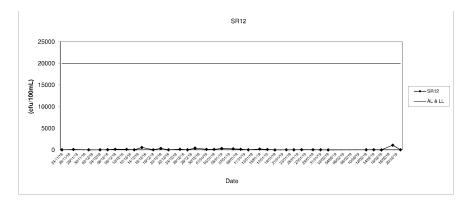
Date

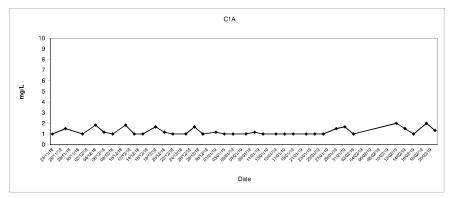

Laboratory Analysis TIN (Depth average) at Mid-Flood Tide

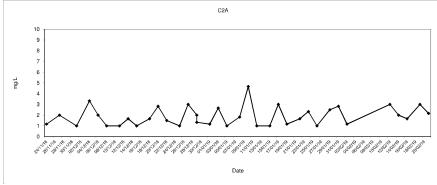


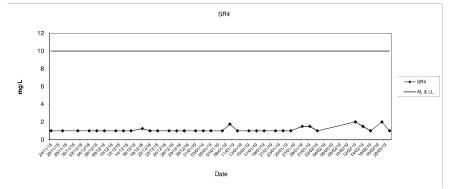


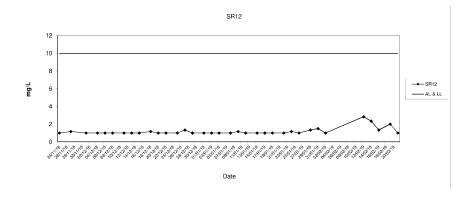
Laboratory Analysis TIN (Depth average) at Mid-Flood Tide

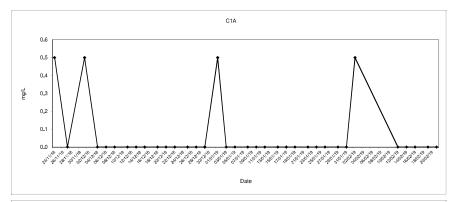

E.coli (Depth average) at Mid-Flood Tide

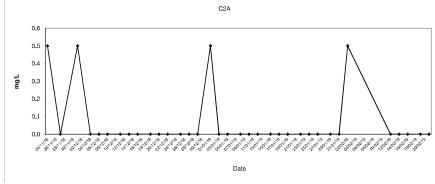


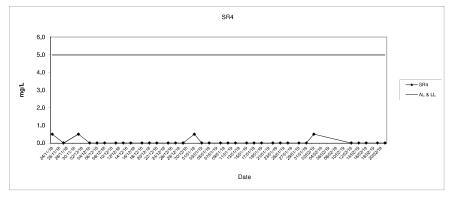

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

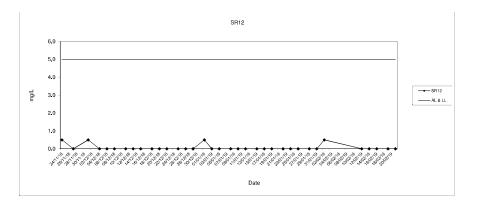

E.coli (Depth average) at Mid-Flood Tide

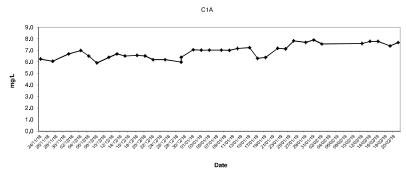

BOD₅ (Depth average) at Mid-Flood Tide

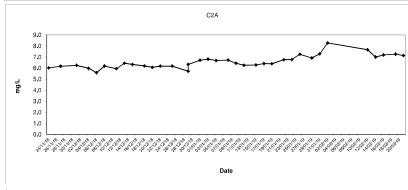


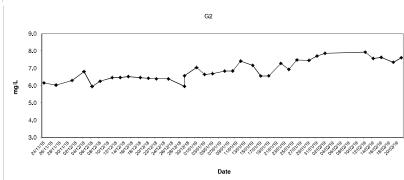


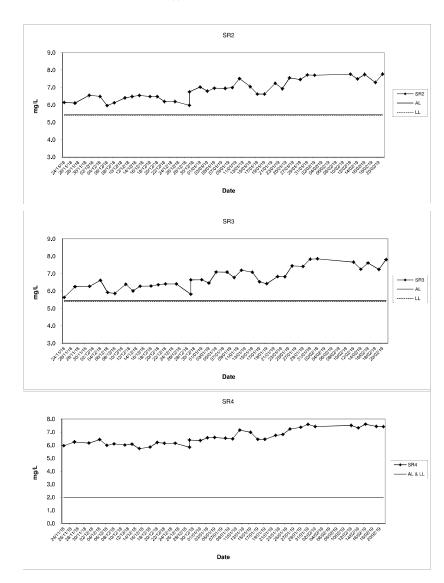

BOD₅ (Depth average) at Mid-Flood Tide

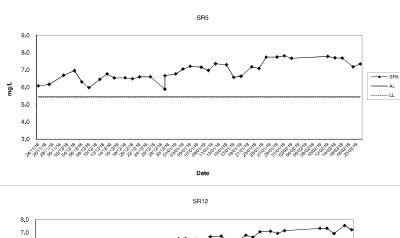

Synthetic Detergent (Depth average) at Mid-Flood Tide

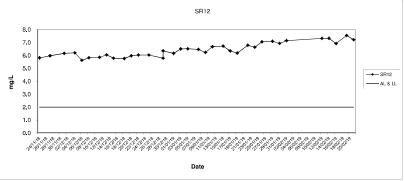


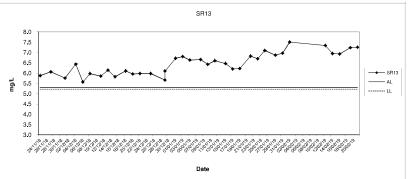


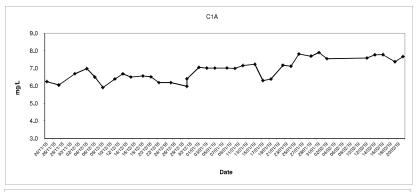

Synthetic Detergent (Depth average) at Mid-Flood Tide

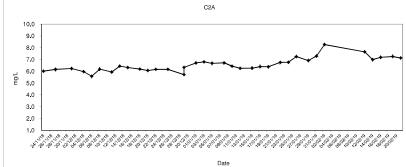

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

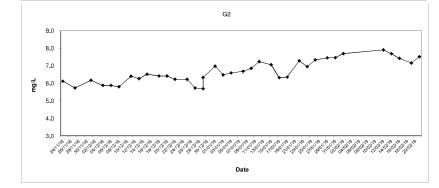


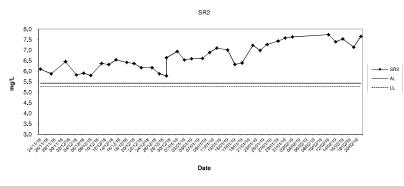


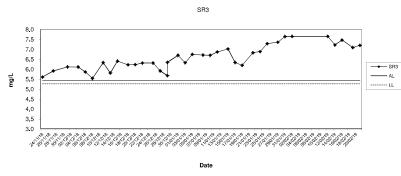

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

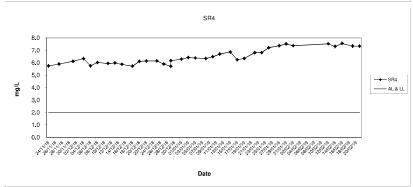

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

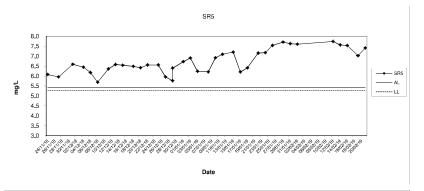


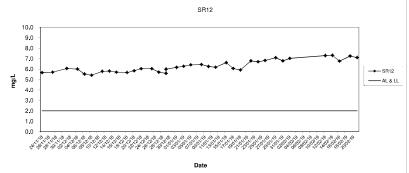


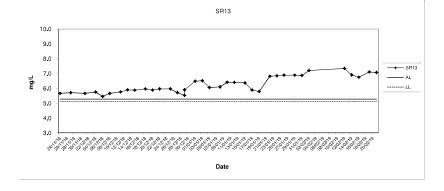

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

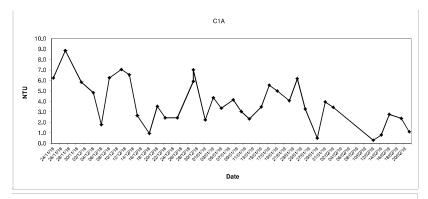


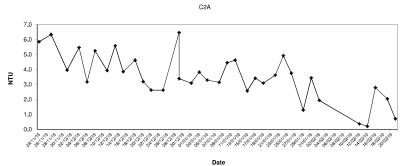


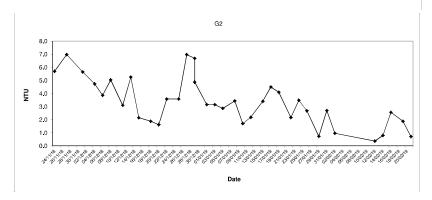

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

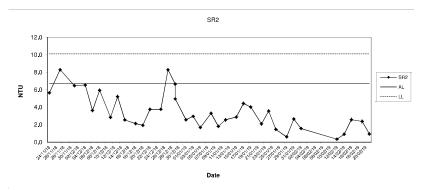


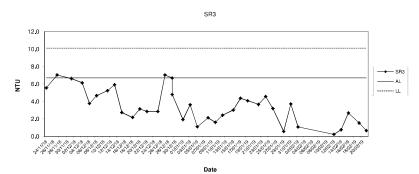


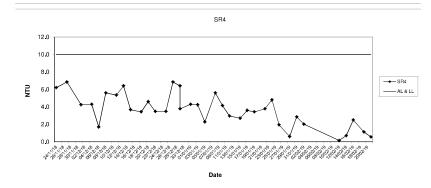

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

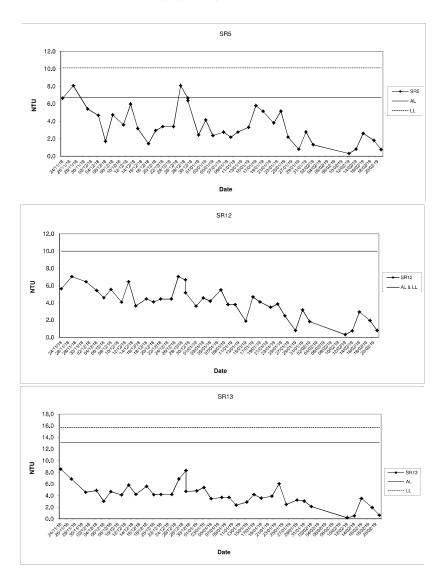


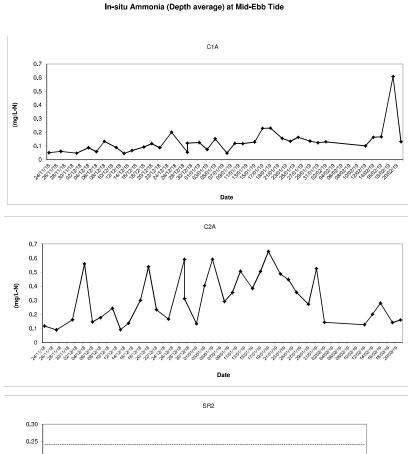


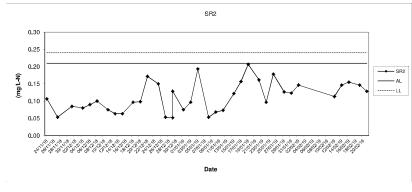

Turbidity (Depth average) at Mid-Ebb Tide

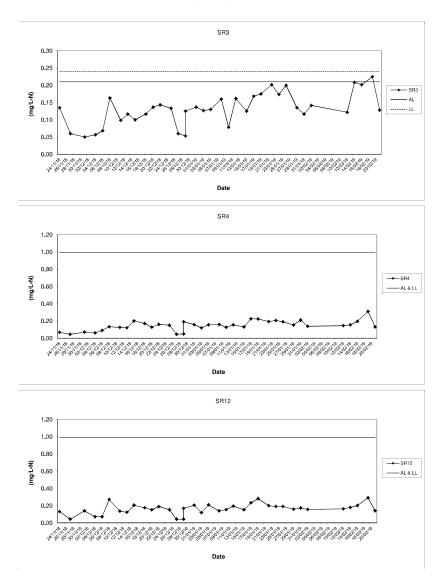


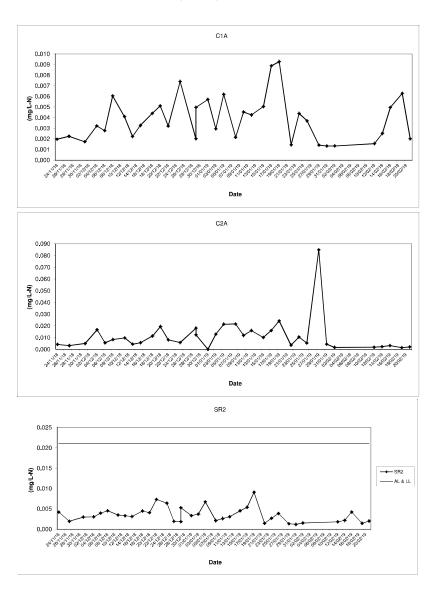


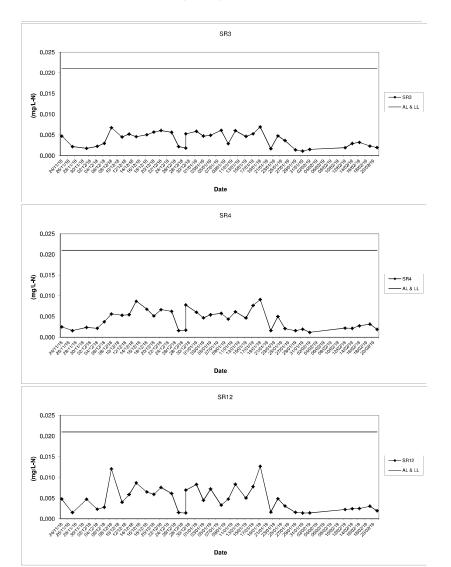

Turbidity (Depth average) at Mid-Ebb Tide

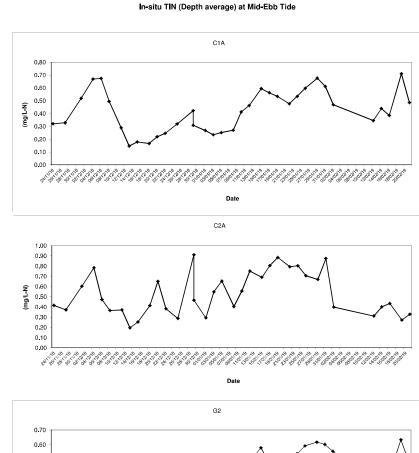


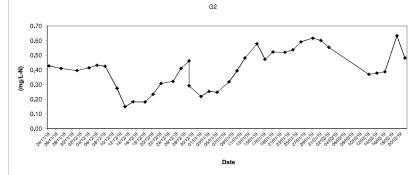


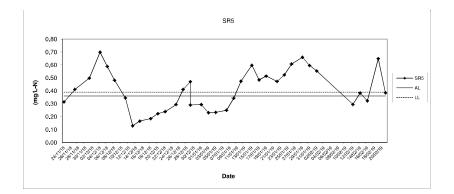

Turbidity (Depth average) at Mid-Ebb Tide

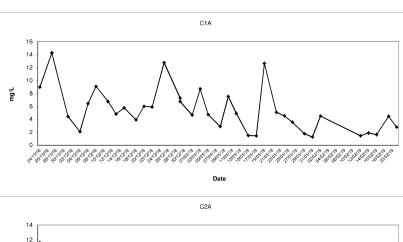


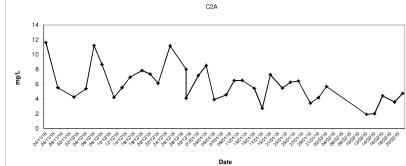

In-situ Ammonia (Depth average) at Mid-Ebb Tide

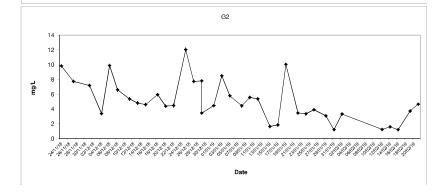


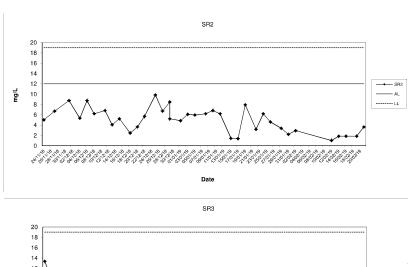

In-situ UIA (Depth average) at Mid-Ebb Tide

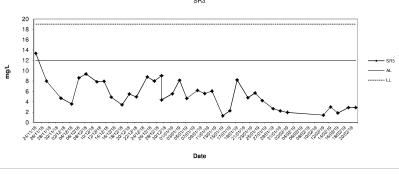

In-situ UIA (Depth average) at Mid-Ebb Tide

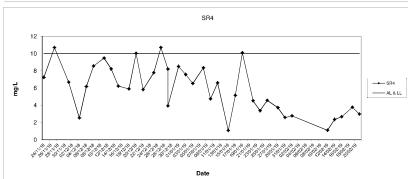


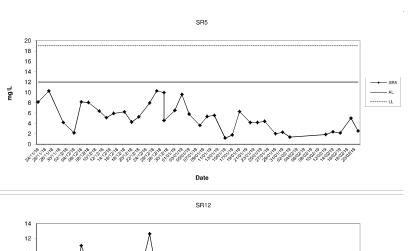


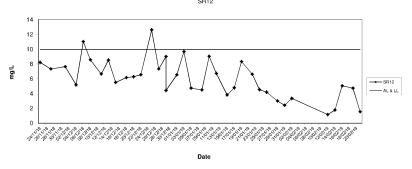

In-situ TIN (Depth average) at Mid-Ebb Tide

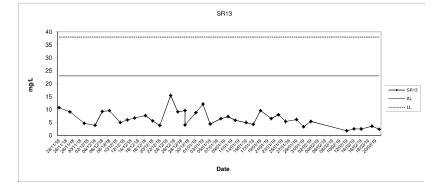

Total Suspended Solids (Depth average) at Mid-Ebb Tide

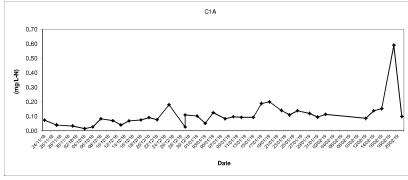


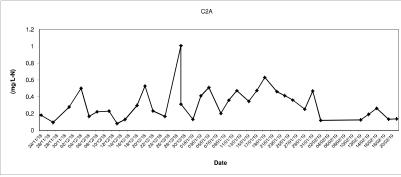


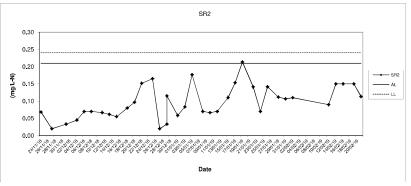

Total Suspended Solids (Depth average) at Mid-Ebb Tide

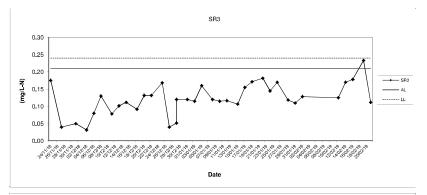


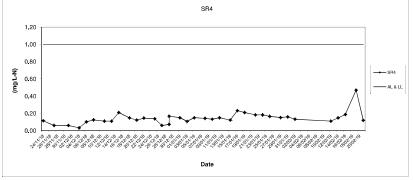


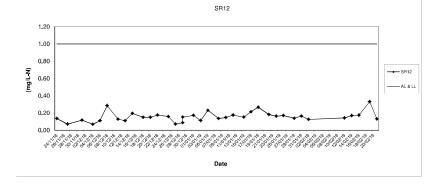

Total Suspended Solids (Depth average) at Mid-Ebb Tide

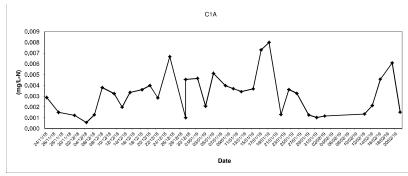


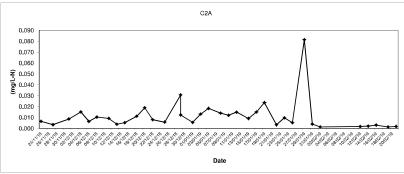


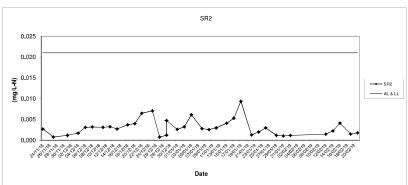

Ammonia Nitrogen (Depth average) at Mid-Ebb Tide

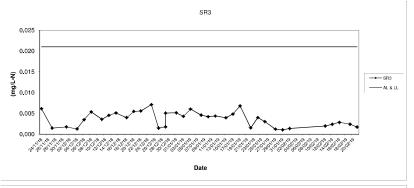


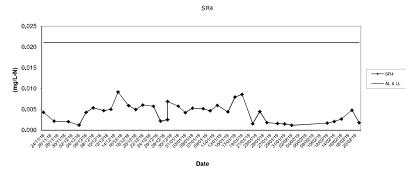


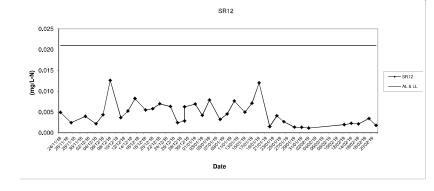

Ammonia Nitrogen (Depth average) at Mid-Ebb Tide

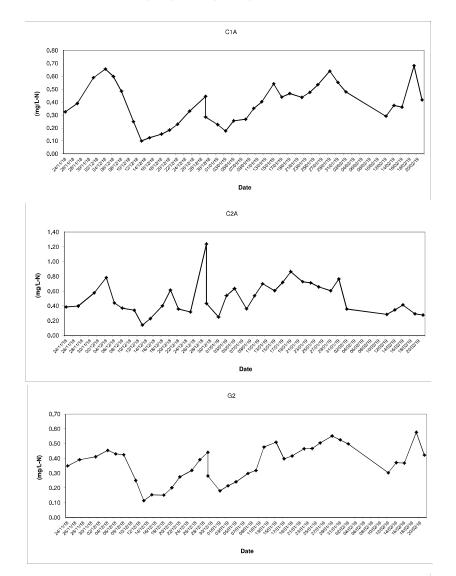


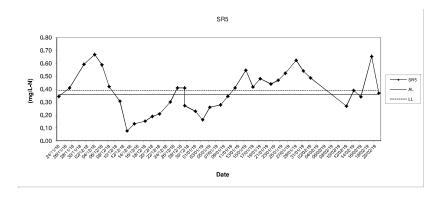



Laboratory Analysis UIA (Depth average) at Mid-Ebb Tide

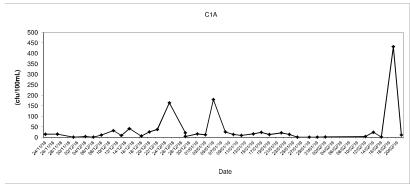


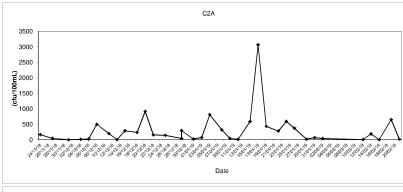


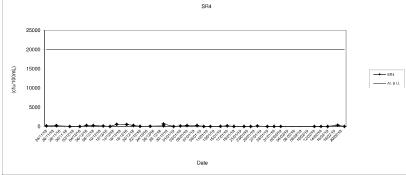

Laboratory Analysis UIA (Depth average) at Mid-Ebb Tide

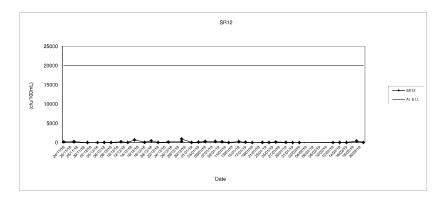


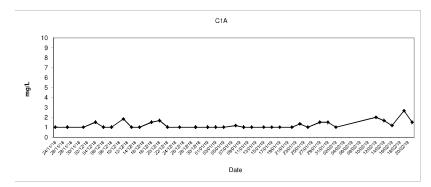
Laboratory Analysis TIN (Depth average) at Mid-Ebb Tide

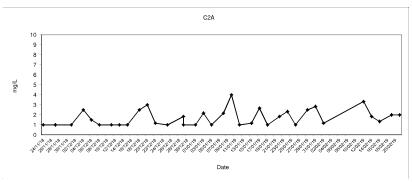


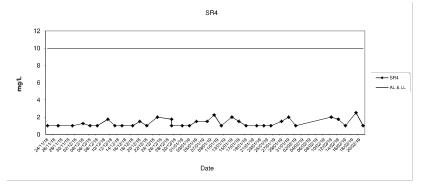

Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

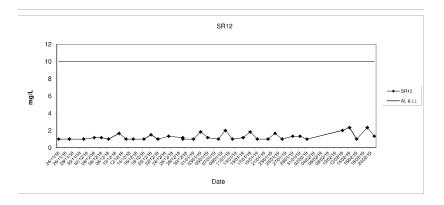

Laboratory Analysis TIN (Depth average) at Mid-Ebb Tide

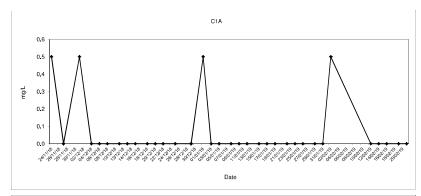

E.coli (Depth average) at Mid-Ebb Tide

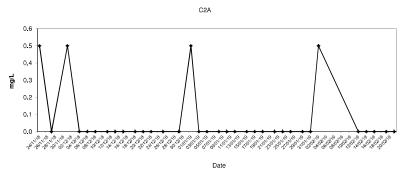


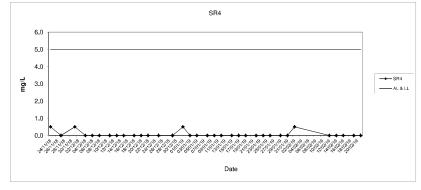


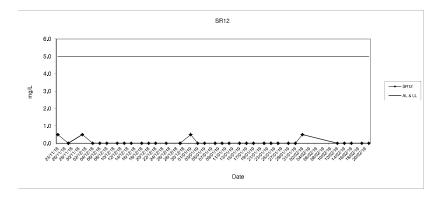

E.coli (Depth average) at Mid-Ebb Tide


BOD₅ (Depth average) at Mid-Ebb Tide





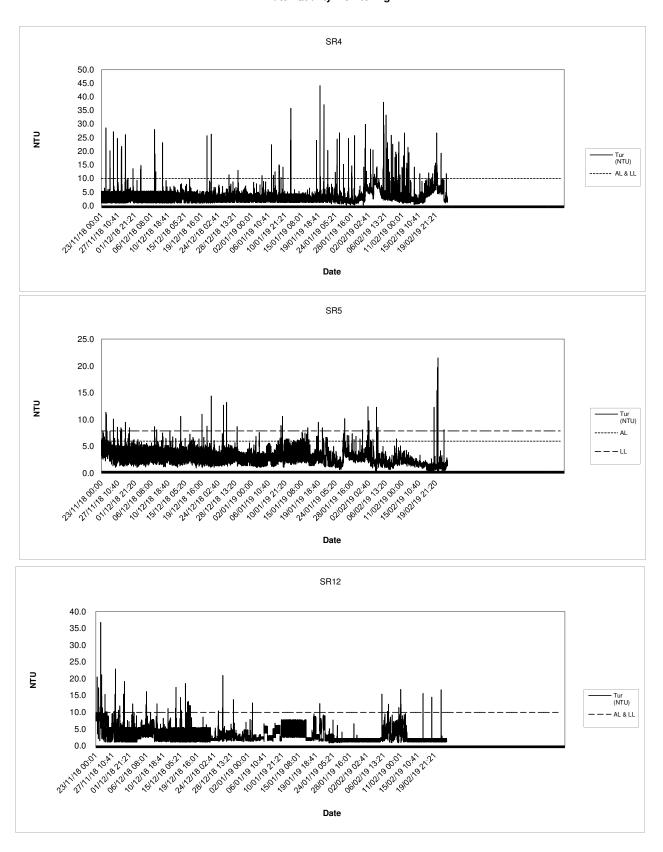

BOD₅ (Depth average) at Mid-Ebb Tide


Synthetic Detergent (Depth average) at Mid-Ebb Tide

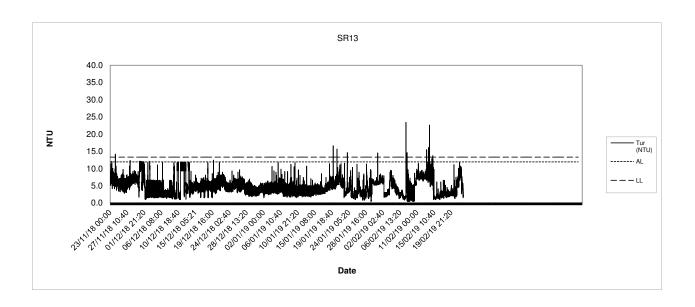
Synthetic Detergent (Depth average) at Mid-Ebb Tide

FUGRO TECHNICAL SERVICES LIMITED

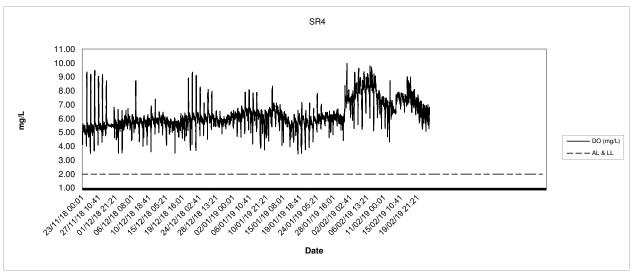
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail :matlab@fugro.com
Website :www.fugro.com

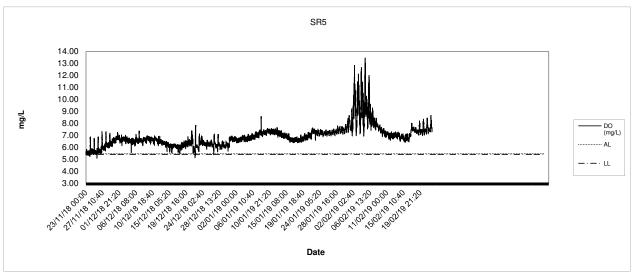


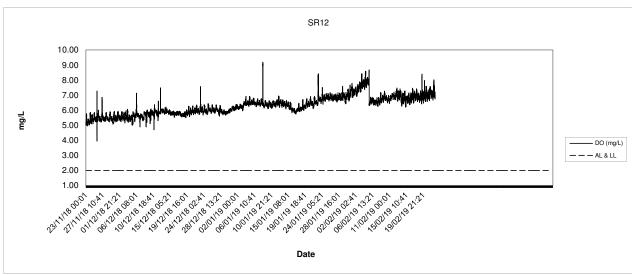
Report No.: 0394/13/ED/0375A

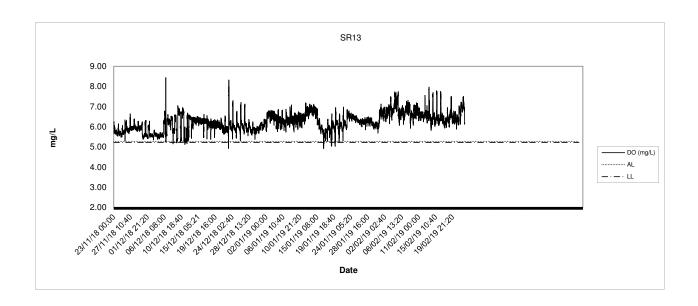

Appendix E

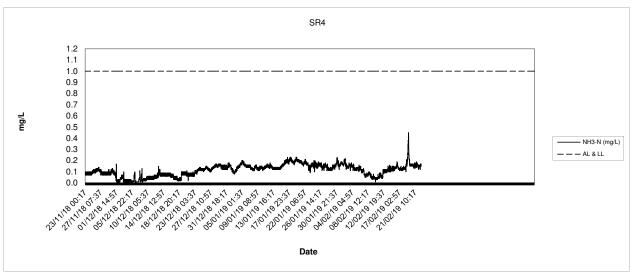
Graphical Presentation – 24-hr Monitoring Results

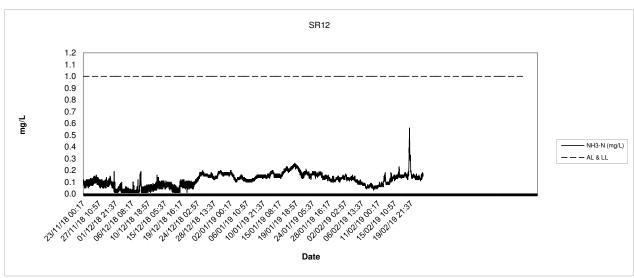

Turbidity 24-hr Water Quality Monitoring




Turbidity 24-hr Water Quality Monitoring


Dissolved Oxygen 24-hr Water Quality Monitoring





Dissolved Oxygen 24-hr Water Quality Monitoring

Ammonia-N 24-hr Water Quality Monitoring

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Appendix F

Environmental Mitigation Implementation Schedule

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
		Α	Water Quality					
3.8	2.9	A1	Use of Silt Screens Silt Screens shall be installed at the flushing water intakes WSRs WSD1, WSD8, WSD9 and EMSD1 to minimise the effect of potential increase in SS levels at the seawater intakes.	Minimize the effect of potential increase in SS levels at the seawater intakes	Contractor	WSD8, WSD9 and EMSD1	Construction Phase	Implemented
3.8	2.9		Use of Silt Curtains	Minimize the release	Contractor	Construction	Construction	
		A2	To minimize the potential SS impact from dredging, deployment of silt curtains around the grab dredgers is recommended; and	of suspended soil from the dredging area		Work Sites	Phase	NA – No dredging was carried out
			Before commencement of dredging works, the holder of the Environmental Permit shall submit detailed proposal of the design and arrangement of the frame type silt curtain to EPD for approval.					
3.10	2.9	А3	Water Quality Monitoring Program	Perform water quality	ET	Monitoring	Construction	
			Water quality monitoring shall be carried out in accordance with Section 2 of the Environmental Monitoring and Audit (EM&A) Manual. Event and Action Plan (EAP) for water quality shall be followed in case of	monitoring at sensitive receivers during construction phase		Locations as stated in Table 2.1 of the EM&A	Phase	Implemented
			any exceedance in action and limit level.			Manual		
3.8 (EP Ref 3)	-	A4	Dredging Operation Only two types of dredgers are allowed for this Project: (a) grab dredger with closed grab, and (b) cutter suction dredger spud pole grab dredger.	Minimize potential adverse effect as a result of dredging activities	Contractor	Construction Work Sites	Construction Phase	NA – No dredging was carried out
		A5	The speed of any construction vessels shall not exceed 10 knots when passing through the area of the Project.	activities				NA – No dredging was carried out
		A6	No more than-three two grab dredgers with closed grab (or one cutter suction dredger with two closed grab dredgers) shall be operated within the Project Area at any one time for the Project.					NA – No dredging was carried out
		A7	Only one closed grab dredger or one cutter suction dredger shall be operated in Zone 2B and during which no other closed grab dredger shall be allowed in other zones within the Project Area.					NA – No dredging was carried out
		A8	No more than one grab dredger with closed grab (or one cutter suction dredger) shall be operated within each of the five main zones at any one time for the Project in which the cutter suction dredger shall only be operated in Zones 2 and 4 with maximum dredging rate of 700 m³ in 30 minutes in any given hour (max. 8,400 m³/day, based on a 12-hour operation per day).					NA – No dredging was carried out
		A9	The maximum dredging rate for closed grab dredger at Rambler Channel – Zones 1 to 2 (subzones Z1A, Z1B, Z2A, Z2B and Z2C) shall follow the Dredging Plan for the Hotspot, as shown in EP-426/2011/A.					NA – No dredging was carried out
		A10	The maximum dredging rate for closed grab dredger at Rambler Channel – Zones 3 to 4 (subzones Z3A to Z4B) shall not exceed 1,600 m³ per day during dry season or 3,440 m³ per day during wet season as shown in EP-426/2011/A.					NA – No dredging was carried out
		A11	The maximum dredging rate for closed grab dredger at Rambler Channel –	1				NA – No

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
			Zones 5 to 6 (subzones Z5A, Z5B and Z6A) shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					dredging was carried out
		A12	The maximum dredging rate for closed grab dredger at Rambler Channel – Zones 5 to 8 (subzones Z5C, Z6B, Z6C, Z6D, Z7 and Z8) shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA – No dredging was carried out
		A13	The maximum dredging rate for closed grab dredger at Northern Fairway – Zones 9 to 12 shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA – No dredging was carried out
		A14	The maximum dredging rate for closed grab dredger at Western Fairway – Zone 13A shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA – No dredging was carried out
		A15	The maximum dredging rate for closed grab dredger at Western Fairway – Zone 13B shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA – No dredging was carried out
		A16	The dredging pump of cutter suction dredger shall be operated during cutting to reduce the sediment loss to water body.					NA-no CSD employed
		A17	Project dredging works within Zone 1 to 6 (including sub-zones) of the Container Basin shall not be carried out at the same time with Terminal Operator's maintenance dredging activities.					NA-No Terminal Operator's maintenance dredging carried out
		A18	Cutter suction dredger is only to be deployed for the removal of harder material during daytime only (07:00 to 19:00) in Zone 2 (including subzones) of the Container Basin.					NA-no CSD employed
		A19	In case of rainstorm warning in effect during dredging works, the dredged material on barge shall be covered properly before transportation to disposal site.					NA – No dredging was carried out
		A20	In case of exceedance of SS and NH3-N at the Tsing Yi WSD flushing intake due to dredging operation is evidenced, the Contractor shall propose mitigation measures not limited to reducing dredging rate. If exceedance persists, the Contractor shall propose not to undertake dredging operation in close proximity to the Tsing Yi flushing water intake during flood tide. The Contractor shall liaise with the ETL, IEC, ER, EPD and WSD for the proposed mitigation measures.					NA-no exceedance due to dredging operation
		A21	If further mitigation measures are required due to continuous exceedance of SS and NH ₃ -N, consideration shall then be given to dredge only on the state of the tide which would avoid migration of SS towards the WSD and EMSD intakes.					NA-no exceedance due to dredging operation
		A22						Implemented
		A23	Administrative control in terms of dredging rate adjustment in controlling the release of contaminants shall be employed as mitigation measures.					NA – No dredging was carried out
		A24	Field trials shall be carried out to propose the most effective dredging					Implemented

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
			process and rate to control the release of ammoniacal nitrogen and UIA into the water column and achieve compliance at the WSD1 seawater intake (NH ₃ -N) and at the beaches for UIA. Capital dredging works in dredging sub-zone Z2B (Figure 1.2h refers) should not therefore be carried out until the proposed method and rate are confirmed.					
		A25	Detailed dredging plan shall be prepared providing details of individual dredging subzones and dredging rate taking into account of the field trial results.					Implemented
3.8	-	A26	Other Good Site Practices for Dredging All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	Minimize potential adverse effect as a result of dredging activities	Contractor	Construction Work Sites	Construction Phase	Implemented
		A27	The speed of all Contractor's vessels should be controlled within the works area to prevent propeller wash from stirring up the seabed sediments.					Implemented
		A28	All barges / dredgers used should be fitted with tight fitting seals to their bottom openings to prevent leakage of material.					Implemented
		A29	Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds.					Implemented
		A30	No overflow of dredged mud should be allowed. Barges or hopper should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation.					Implemented
		В	Waste Management					
			Good Site Practices	Minimize potential	Contractor	Construction	Construction	
4.5	3.3	B1	Obtain the profile of different sediment categories and careful planning of sediment removal.	adverse effect arising from the handling of		Work Sites (General)	Phase	Implemented
		B2	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	dredged material				Implemented
		В3	Training of site personnel in proper waste management and chemical handling procedures.					Implemented
		B4	Provision of sufficient waste disposal points and regular collection of waste.					Implemented
		B5	Well planned delivery programme for offsite disposal such that adverse environmental impact from transporting sediment material is not anticipated.					Implemented
		B6	Use well maintained PME on site.					Implemented
4.5	0.6	D-	General Refuse	Minimize the adverse	Contractor	Construction	Construction	
4.5	3.3	B7	General refuse should be stored in enclosed bins. A reputable waste collector should be employed by the contractor to remove general refuse from the site.	effect arising from the handling of site general refuse		Work Sites (General)	Phase	Implemented
			Chemical Waste	Minimize the adverse	Contractor	Construction	Construction	
4.5	3.3	B8	If chemical wastes are produced at the construction site, the Contractor shall be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers	effect arising from the handling of site chemical waste		Work Site	Phase	Implemented

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
			compatible with the chemical wastes shall be used, and incompatible chemicals should be stored separately. Appropriate labels shall be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes, to either the approved Chemical Waste Treatment Centre, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.					
4.5	3.3	B9	Marine Dredged Sediment Control of transportation and disposal of dredged material in a manner to minimize potential impacts on water quality.	Control of transportation and disposal of dredged	Contractor	Construction Work Site	Construction Phase	Implemented
		B10	Bottom opening of barges will be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and dredgers before the vessel is moved.	material in a manner to minimize potential impacts on water				Implemented
		B11	Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic selfmonitoring devices as specified by the EPD.	quality				Implemented
		B12	Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation.	-				Implemented
		B13	Sediment Quality Report shall be prepared and submit to EPD under DASO.					Implemented
		B14	If disposal of Type 3 sediment is identified, agreement with EPD shall be reached regarding the treatment of sediment before disposal.					NA – no type 3 material disposed
		B15	Project works shall not be carried out before obtaining confirmation from MFC on disposal option.					Implemented
		B16	Follow strictly all conditions stipulated in the dumping permit.					Implemented
		С	Marine Ecology	Review and assess	Contractor	Construction	Construction	
5.7	4.1	C1	Water quality monitoring results shall be reviewed from time to time to assess if there were any impact to marine ecology due to dredging operation.	the potential adverse effect on marine ecology		Work Sites	Phase	Implemented
		D	Fisheries	Review and assess	Contractor	Construction	Construction	
6.7	5.1	D1	Water quality monitoring results shall be reviewed from time to time to assess if there were any impact to fisheries due to dredging operation.	the potential adverse effect on fisheries		Work Sites	Phase	Implemented
		E	Hazard to Life	_	Contractor	Construction	Construction	
7.8.2	6.2	E1	Sound communication channel shall be established with the oil companies, Marine Department, and Fire Services Department for effective notification and emergency evacuation in case of accidents.			Work Sites (General)	Phase	Implemented
		E2	Proper safety and emergency training shall be given to the relevant operation staff at the dredging site. Emergency plans and procedures should be prepared and drills should be performed periodically.					Implemented
		F	Landscape Visual and Glare	Minimize landscape	Contractor	Construction	Throughout	
8.9	7.2	F1	Visa shields to the lights of dredgers shall be provided.	and visual impacts		activities'	design,	Implemented
Table		F2	The light source shall not point directly to any VSRs.	during construction		area	construction	Implemented

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
8-3 & 8-6		F3	Lights shall be switched off if they are not in use.	phase			phase	Implemented
		G	Cultural Heritage	Minimize potential	Contractor	Locations of	During	
9.5	8		Monitoring Brief	marine archaeological		the 20	Construction	
		G1	A monitoring brief shall be conducted during the dredging. It shall only be required during dredging at the locations of the 20 unidentified sonar contacts and masked areas and does not need to cover all of the dredging activities. Dredging staff should be briefed about the possibility of locating archaeological objects and a marine archaeologist shall be available to monitor the dredged spoil and provide advice. If material indicative of archaeological remains is retrieved, the AMO should be contacted as soon as possible.	impact during dredging activities		unidentified sonar contacts and masked areas	works	NA- no archaeological deposit was found during reporting period.
		Н	Noise					
10.8	9		Good Site Practices	Control and minimize	Contractor	Construction	Construction	
		H1	Only well-maintained plant shall be operated on-site and plant should be serviced regularly during the construction program.	the generation of undue noise nuisance		Work Sites (Along the alignment of dredging	Phase	Implemented
		H2	Machines and plant that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum.					Implemented
		H3	Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from nearby NSRs.					Implemented
		H4	If dredging is to be carried out during restricted hours, work locations close to NSRs shall be avoided.					Implemented
		I	Construction Dust					
11.7	10		<u>Dust Control</u>	Good site practice to	Contractor	Construction	Construction	
		11	Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant, shall be adhered to during the construction period.	control dust and odour impact to the nearby sensitive receivers		Work Sites (General)	Phase	Implemented
			Odour		Contractor	Construction	Construction	
		12	To minimize potential odour emissions, if dredged sediment is anticipated to be placed on barge for more than a day the load shall be properly covered as far as practicable to minimise the exposed area and potential odour.			Work Sites (General)	Phase	NA-no work in such condition
		13	If dredged sediment is found to be malodorous it shall be removed from site as soon as possible within one hour after the barge being filled up.					NA-no work in such condition

FUGRO TECHNICAL SERVICES LIMITED

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0375A

Appendix G
Waste Generation in Reporting Period

Name of Department : Civil Engineering and Development Department

Contract No.: CV/2013/04

Monthly Summary Waste Flow Table for <u>2018 - 2019</u> (year)

Year										у
2018	Total Quantity Generated	Broken Concrete (see Note 4)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/cardbo ard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ₃)
Dec	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
2019	Total Quantity Generated	Broken Concrete (see Note 4)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/cardbo ard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ₃)
Jan	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Feb	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Mar										
Apr										
May										
Jun										
Jul										
Aug										
Sep										
Oct										
Nov										
Dec										
Total	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (3) Broken concrete for recycling into aggregates

Yearly Summary Waste Flow Table

Year	Estimate	ed Annua	al Quantiti	es of Ine	ert C&D N	Materials	(in '000	m3)			Estima	ted Annı	ual of C&E	Wastes							
	Total Quantity Generated		Brol Cond (see N	rete		d in the tract		sed in Projects		sed as ic Fill	Me	tals	-	ardboard aging		stics lote 2)		mical aste		Others, e.g. neral refuse	
	(a	n)	(b)		(0	c)	(0	d)	(a-b	-c-d)	(in '000 kg)		(in '00	00 kg)	(in '00	00 kg)	(in '00	00 kg)	(in '00	00 mз)	
	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	
2013	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.003	0.01	
2014	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.2	0.16	
2015	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	13	14.4	0.2	0.12	
2016	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	17	Nil	0.2	0.12	
2017	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	10	Nil	0.15	0.12	
2018	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	
2019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
2020																					
2021																					
Grand Total	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	40	14.4	0.753	0.53	

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (3) Broken concrete for recycling into aggregates.

Monthly Summary of Sediment Disposal (2018-2019)

Marine Sediment Type	Type 1 – Open Sea Disposal	Type 2 – Confined Marine Disposal	Type 3 – Special Treatment / Disposal
Month	Quantity (m ³)	Quantity (m ³)	Quantity (m ³)
		2014	
Jan-Dec	549,430	99,660	nil
		2015	
Jan-Dec	938,560	372,370	nil
		2016	
Jan-Dec	195,860	153,250	1,260
		2017	
Jan-Dec	1,850	28,550	nil
		2018	
Jan-Nov	nil	nil	nil
December	nil	nil	nil
		2019	
January	nil	nil	nil
February	nil	nil	nil
Total	1,685,700	653,530	1,260

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0375A

Appendix H

Quarterly Assessment of Construction Impact

Cluster 1 Turbidity 1.3 x Baseline vs Impact

6.8

8.1

6.3

5.7

5.1

2.8

5.4

4.4

7.1

3.7

3.4

4.2

4.1

4.1

6.1

4.6

5.0

3.9

5.5

5.1

4.3

1.6

5.3

5.2

2.4

6.4

2.4

28

4.5

1.8

0.2

0.7

3.1

2.3

Mid-Flood 1.3

				1											
		Turbidity (NT	_								oidity (NTU)				
SR2	1/4/2014	Mid-Flood	9.1		SR2	11/24/2018	Mid-Flood	5.5	SR4	11/24/2018	Mid-Flood	7.1	SR12	11/24/2018	Mid-Flood
SR2	1/7/2014	Mid-Flood	2.0		SR2	11/27/2018	Mid-Flood	6.6	SR4	11/27/2018	Mid-Flood	7.8		11/27/2018	Mid-Flood
SR2	1/9/2014	Mid-Flood	1.4		SR2	12/29/2018	Mid-Flood	5.6	SR4	12/29/2018	Mid-Flood	6.2	SR12	12/29/2018	Mid-Flood
SR2 SR2	1/11/2014 1/14/2014	Mid-Flood	0.6		SR2 SR2	12/1/2018 12/4/2018	Mid-Flood	6.7 4.9	SR4 SR4	12/1/2018 12/4/2018	Mid-Flood	5.0 4.0	SR12 SR12	12/1/2018	Mid-Flood
SR2	1/16/2014	Mid-Flood Mid-Flood	0.1		SR2	12/4/2018	Mid-Flood Mid-Flood	3.3	SR4	12/4/2018	Mid-Flood Mid-Flood	2.3	SR12	12/4/2018 12/6/2018	Mid-Flood Mid-Flood
SR2	1/18/2014	Mid-Flood	1.7		SR2	12/8/2018	Mid-Flood	6.1	SR4	12/8/2018	Mid-Flood	5.1	SR12	12/8/2018	Mid-Flood
SR2	1/21/2014	Mid-Flood	0.7		SR2	12/11/2018	Mid-Flood	3.7	SR4	12/11/2018	Mid-Flood	5.1		12/11/2018	Mid-Flood
SR2	1/23/2014	Mid-Flood	0.8		SR2	12/11/2018	Mid-Flood	4.0	SR4	12/11/2018	Mid-Flood	6.8		12/11/2018	Mid-Flood
SR2	1/25/2014	Mid-Flood	0.2		SR2	12/15/2018	Mid-Flood	2.5	SR4	12/15/2018	Mid-Flood	3.8		12/15/2018	Mid-Flood
SR2	1/27/2014	Mid-Flood	0.6		SR2	12/18/2018	Mid-Flood	2.2	SR4	12/18/2018	Mid-Flood	3.2		12/18/2018	Mid-Flood
SR2	1/29/2014	Mid-Flood	0.3		SR2	12/20/2018	Mid-Flood	1.6	SR4	12/20/2018	Mid-Flood	4.6		12/20/2018	Mid-Flood
SR3	1/4/2014	Mid-Flood	4.9		SR2	12/22/2018	Mid-Flood	3.4	SR4	12/22/2018	Mid-Flood	3.5		12/22/2018	Mid-Flood
SR3	1/7/2014	Mid-Flood	3.7		SR2	12/25/2018	Mid-Flood	3.4	SR4	12/25/2018	Mid-Flood	3.5	SR12	12/25/2018	Mid-Flood
SR3	1/9/2014	Mid-Flood	2.3		SR2	11/27/2018	Mid-Flood	5.5	SR4	11/27/2018	Mid-Flood	5.1	SR12	11/27/2018	Mid-Flood
SR3	1/11/2014	Mid-Flood	0.1		SR2	12/29/2018	Mid-Flood	4.5	SR4	12/29/2018	Mid-Flood	3.7	SR12	12/29/2018	Mid-Flood
SR3	1/14/2014	Mid-Flood	0.1		SR2	1/1/2019	Mid-Flood	2.6	SR4	1/1/2019	Mid-Flood	3.9	SR12	1/1/2019	Mid-Flood
SR3	1/16/2014	Mid-Flood	0.1		SR2	1/3/2019	Mid-Flood	3.3	SR4	1/3/2019	Mid-Flood	4.4	SR12	1/3/2019	Mid-Flood
SR3	1/18/2014	Mid-Flood	0.5		SR2	1/5/2019	Mid-Flood	1.7	SR4	1/5/2019	Mid-Flood	2.1	SR12	1/5/2019	Mid-Flood
SR3	1/21/2014	Mid-Flood	1.8		SR2	1/8/2019	Mid-Flood	3.7	SR4	1/8/2019	Mid-Flood	6.1	SR12	1/8/2019	Mid-Flood
SR3	1/23/2014	Mid-Flood	1.2		SR2	1/10/2019	Mid-Flood	1.6	SR4	1/10/2019	Mid-Flood	3.9	SR12	1/10/2019	Mid-Flood
SR3	1/25/2014	Mid-Flood	1.0		SR2	1/12/2019	Mid-Flood	2.2	SR4	1/12/2019	Mid-Flood	3.4	SR12	1/12/2019	Mid-Flood
SR3	1/27/2014	Mid-Flood	8.0		SR2	1/15/2019	Mid-Flood	2.9	SR4	1/15/2019	Mid-Flood	2.7	SR12	1/15/2019	Mid-Flood
SR3	1/29/2014	Mid-Flood	0.7		SR2	1/17/2019	Mid-Flood	4.9	SR4	1/17/2019	Mid-Flood	3.9	SR12	1/17/2019	Mid-Flood
SR4	1/4/2014	Mid-Flood	8.3		SR2	1/19/2019	Mid-Flood	4.7	SR4	1/19/2019	Mid-Flood	3.9	SR12	1/19/2019	Mid-Flood
SR4	1/7/2014	Mid-Flood	7.4		SR2	1/22/2019	Mid-Flood	2.3	SR4	1/22/2019	Mid-Flood	3.8	SR12	1/22/2019	Mid-Flood
SR4	1/9/2014	Mid-Flood	4.0		SR2	1/24/2019	Mid-Flood	4.9	SR4	1/24/2019	Mid-Flood	4.7	SR12	1/24/2019	Mid-Flood
SR4	1/11/2014	Mid-Flood	1.0		SR2	1/26/2019	Mid-Flood	1.3	SR4	1/26/2019	Mid-Flood	1.8	SR12	1/26/2019	Mid-Flood
SR4	1/14/2014	Mid-Flood	0.1		SR2	1/29/2019	Mid-Flood	0.8	SR4	1/29/2019	Mid-Flood	0.4	SR12	1/29/2019	Mid-Flood
SR4	1/16/2014	Mid-Flood	0.1		SR2	1/31/2019	Mid-Flood	2.7	SR4	1/31/2019	Mid-Flood	2.6	SR12	1/31/2019	Mid-Flood
SR4 SR4	1/18/2014 1/21/2014	Mid-Flood	0.4		SR2 SR2	2/2/2019	Mid-Flood	1.3 0.5	SR4 SR4	2/2/2019 2/12/2019	Mid-Flood	1.4	SR12 SR12	2/2/2019 2/12/2019	Mid-Flood
SR4	1/23/2014	Mid-Flood Mid-Flood	4.7 4.7		SR2	2/12/2019 2/14/2019	Mid-Flood Mid-Flood	0.5	SR4	2/12/2019	Mid-Flood Mid-Flood	0.2	SR12	2/12/2019	Mid-Flood Mid-Flood
SR4	1/25/2014	Mid-Flood	1.7		SR2	2/14/2019	Mid-Flood	2.5	SR4	2/14/2019	Mid-Flood	2.7	SR12	2/14/2019	Mid-Flood
SR4	1/27/2014	Mid-Flood	1.6		SR2	2/19/2019	Mid-Flood	1.6	SR4	2/10/2019	Mid-Flood	1.2	SR12	2/19/2019	Mid-Flood
SR4	1/29/2014	Mid-Flood	0.9		SR2	2/21/2019	Mid-Flood	1.2	SR4	2/21/2019	Mid-Flood	0.7	SR12	2/21/2019	Mid-Flood
SR5	1/4/2014	Mid-Flood	13.2		SR3	11/24/2018	Mid-Flood	5.8	SR5	11/24/2018	Mid-Flood	6.1	OTTIZ	2/2 1/2010	IVIIG 1 100G
SR5	1/7/2014	Mid-Flood	5.9		SR3	11/27/2018	Mid-Flood	6.5	SR5	11/27/2018	Mid-Flood	6.6			
SR5	1/9/2014	Mid-Flood	1.0		SR3	12/29/2018	Mid-Flood	6.5	SR5	12/29/2018	Mid-Flood	6.6			
SR5	1/11/2014	Mid-Flood	0.4		SR3	12/1/2018	Mid-Flood	6.5	SR5	12/1/2018	Mid-Flood	5.2			
SR5	1/14/2014	Mid-Flood	0.1		SR3	12/4/2018	Mid-Flood	5.3	SR5	12/4/2018	Mid-Flood	4.1			
SR5	1/16/2014	Mid-Flood	0.1		SR3	12/6/2018	Mid-Flood	3.4	SR5	12/6/2018	Mid-Flood	1.9			
SR5	1/18/2014	Mid-Flood	2.5		SR3	12/8/2018	Mid-Flood	6.4	SR5	12/8/2018	Mid-Flood	4.7			
SR5	1/21/2014	Mid-Flood	2.9		SR3	12/11/2018	Mid-Flood	5.3	SR5	12/11/2018	Mid-Flood	3.5			
SR5	1/23/2014	Mid-Flood	2.1		SR3	12/13/2018	Mid-Flood	6.4	SR5	12/13/2018	Mid-Flood	5.8			
SR5	1/25/2014	Mid-Flood	0.6		SR3	12/15/2018	Mid-Flood	2.6	SR5	12/15/2018	Mid-Flood	3.1			
SR5	1/27/2014	Mid-Flood	0.2			12/18/2018	Mid-Flood	2.0	SR5	12/18/2018	Mid-Flood	1.5			
SR5	1/29/2014	Mid-Flood	1.3			12/20/2018	Mid-Flood	3.3	SR5	12/20/2018					
SR12	1/4/2014	Mid-Flood	8.6		SR3	12/22/2018	Mid-Flood	2.7	SR5	12/22/2018	Mid-Flood	3.3			
SR12	1/7/2014	Mid-Flood	8.8			12/25/2018	Mid-Flood	2.7	SR5	12/25/2018		3.3			
SR12	1/9/2014	Mid-Flood	3.3			11/27/2018	Mid-Flood	5.5	SR5	11/27/2018					
	1/11/2014	Mid-Flood	0.5			12/29/2018	Mid-Flood	4.4	SR5			5.8			
	1/14/2014	Mid-Flood	1.4		SR3	1/1/2019	Mid-Flood	2.8	SR5	1/1/2019		2.7			
	1/16/2014	Mid-Flood	0.1		SR3	1/3/2019	Mid-Flood	4.3		1/3/2019		5.5			
	1/18/2014	Mid-Flood	1.3		SR3	1/5/2019	Mid-Flood		SR5	1/5/2019	Mid-Flood				
	1/21/2014	Mid-Flood	3.0		SR3	1/8/2019	Mid-Flood		SR5	1/8/2019	Mid-Flood				
	1/23/2014 1/25/2014	Mid-Flood	3.2		SR3	1/10/2019	Mid-Flood	1.5	SR5	1/10/2019	Mid-Flood Mid-Flood				
	1/25/2014	Mid-Flood Mid-Flood	2.8 3.1		SR3 SR3	1/12/2019 1/15/2019	Mid-Flood Mid-Flood	1.9 3.0	SR5 SR5	1/12/2019 1/15/2019		3.6			
	1/29/2014	Mid-Flood	1.3		SR3	1/17/2019	Mid-Flood	4.8		1/17/2019	Mid-Flood				
01112	1/20/2014	IVIIU-I IUUU	1.0	J	SR3	1/19/2019	Mid-Flood	4.6		1/19/2019	Mid-Flood	6.2			
					SR3	1/22/2019	Mid-Flood	3.4	SR5	1/22/2019	Mid-Flood				
					SR3	1/24/2019	Mid-Flood	4.2	SR5	1/24/2019	Mid-Flood				
					SD2	1/26/2010	Mid Flood	2.6	CDE	1/26/2010	Mid Flood	2.1			

SR3

SR3 SR3

SR3

SR3

1/26/2019

1/29/2019

1/31/2019

2/2/2019

SR3 2/12/2019

SR3 2/14/2019

SR3 2/16/2019

SR3 2/19/2019

2/21/2019

Mid-Flood 2.6 SR5

Mid-Flood 0.5 SR5

Mid-Flood 3.5 SR5

Mid-Flood 0.3 SR5

Mid-Flood 2.8 SR5

Mid-Flood 2.5 SR5

SR5

SR5

Mid-Flood 1.7

Mid-Flood 0.7

1/26/2019 Mid-Flood 2.1

1/29/2019 Mid-Flood 0.7

2/12/2019 Mid-Flood 0.2

2/14/2019 Mid-Flood 0.6

2/16/2019 Mid-Flood 2.5

2/19/2019 Mid-Flood 2.1

Mid-Flood 2.7

Mid-Flood 1.0

1/31/2019

2/2/2019

Mid-Flood 1.2 SR5 2/21/2019 Mid-Flood 0.9

Cluster 1 Turbidity 1.3 x Baseline vs Impact

Baseline x 1.3		Impact (In-situ)	
Raw Statistics		Raw Statistics	
Number of Valid Observations	60	Number of Valid Observations	180
Number of Distinct Observations	50	Number of Distinct Observations	164
Minimum	0.13	Minimum	0.15
Maximum	13.17	Maximum	8.083
Mean of Raw Data	2.294	Mean of Raw Data	3.61
Standard Deviation of Raw Data	2.779	Standard Deviation of Raw Data	1.856
Kstar	0.766	Kstar	2.609
Mean of Log Transformed Data	0.0826	Mean of Log Transformed Data	1.083
Standard Deviation of Log Transformed Data	1.348	Standard Deviation of Log Transformed Data	0.745
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.866	Correlation Coefficient R	0.991
Approximate Shapiro Wilk Test Statistic	0.754	Approximate Shapiro Wilk Test Statistic	0.957
Approximate Shapiro Wilk P Value	4.49E-13	Approximate Shapiro Wilk P Value	1.94E-04
Lilliefors Test Statistic	0.218	Lilliefors Test Statistic	0.0565
Lilliefors Critical (0.95) Value	0.114	Lilliefors Critical (0.95) Value	0.066
Data not Normal at (0.05) Significance Level		Data appear Normal at (0.05) Significance Level	

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

User Selected Options

Full Precision OFF
Confidence Coefficient 95%
Substantial Difference 0

Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Impact Turbidity (NTU) Background Data: 1.3 x Baseline Turbidity (NTU)

Raw Statistics

	Site	Background
Number of Valid Observations	180	60
Number of Distinct Observations	164	50
Minimum	0.15	0.13
Maximum	8.083	13.17
Mean	3.61	2.294
Median	3.504	1.3
SD	1.856	2.779
SE of Mean	0.138	0.359

Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Site or AOC <= Mean/Median of Background

 Site Rank Sum W-Stat
 24218

 WMW Test U-Stat
 5.426

 WMW Critical Value (0.050)
 1.645

 P-Value
 2.88E-08

Conclusion with Alpha = 0.05

Reject H0, Conclude Site > Background

P-Value < alpha (0.05)

Cluster 1 Turbidity Control vs Impact

	Control Turb	idity (NTU)	
C2A	11/24/2018	Mid-Flood	5.9
C2A	11/27/2018	Mid-Flood	6.3
C2A	12/29/2018	Mid-Flood	6.5
C2A	12/1/2018	Mid-Flood	4.0
C2A	12/4/2018	Mid-Flood	5.5
C2A	12/6/2018	Mid-Flood	3.2
C2A	12/8/2018	Mid-Flood	5.2
C2A	12/11/2018	Mid-Flood	3.9
C2A	12/13/2018	Mid-Flood	5.6
C2A	12/15/2018	Mid-Flood	3.9
C2A	12/18/2018	Mid-Flood	4.6
C2A	12/20/2018	Mid-Flood	3.2
C2A	12/22/2018	Mid-Flood	2.6
C2A	12/25/2018	Mid-Flood	2.6
C2A	11/27/2018	Mid-Flood	6.3
C2A	12/29/2018	Mid-Flood	3.4
C2A	1/1/2019	Mid-Flood	3.1
C2A	1/3/2019	Mid-Flood	3.8
C2A	1/5/2019	Mid-Flood	3.3
C2A	1/8/2019	Mid-Flood	3.1
C2A	1/10/2019	Mid-Flood	4.5
C2A	1/12/2019	Mid-Flood	4.6
C2A	1/15/2019	Mid-Flood	2.6
C2A	1/17/2019	Mid-Flood	3.4
C2A	1/19/2019	Mid-Flood	3.1
C2A	1/22/2019	Mid-Flood	3.6
C2A	1/24/2019	Mid-Flood	4.9
C2A	1/26/2019	Mid-Flood	3.8
C2A	1/29/2019	Mid-Flood	1.3
C2A	1/31/2019	Mid-Flood	3.4
C2A	2/2/2019	Mid-Flood	1.9
C2A	2/12/2019	Mid-Flood	0.4
C2A	2/14/2019	Mid-Flood	0.2
C2A	2/16/2019	Mid-Flood	2.8
C2A	2/19/2019	Mid-Flood	2.0
C2A	2/21/2019	Mid-Flood	0.7

					Impact Tu	rhidity (NITLI)					
SR2	11/24/2018	Mid-Flood	5.5	SR4	11/24/2018	rbidity (NTU) Mid-Flood	7.1	SR12	11/24/2018	Mid-Flood	6.8
SR2	11/27/2018	Mid-Flood	6.6	SR4	11/27/2018	Mid-Flood	7.8	SR12	11/27/2018	Mid-Flood	8.1
SR2	12/29/2018	Mid-Flood	5.6	SR4	12/29/2018	Mid-Flood	6.2	SR12	12/29/2018	Mid-Flood	6.3
SR2	12/1/2018	Mid-Flood	6.7	SR4	12/1/2018	Mid-Flood	5.0	SR12	12/1/2018	Mid-Flood	5.7
SR2	12/4/2018	Mid-Flood	4.9	SR4	12/4/2018	Mid-Flood	4.0	SR12	12/4/2018	Mid-Flood	5.1
SR2	12/6/2018	Mid-Flood	3.3	SR4	12/6/2018	Mid-Flood	2.3	SR12	12/6/2018	Mid-Flood	2.8
SR2	12/8/2018	Mid-Flood	6.1	SR4	12/8/2018	Mid-Flood	5.1	SR12	12/8/2018	Mid-Flood	5.4
SR2	12/11/2018	Mid-Flood	3.7	SR4	12/11/2018	Mid-Flood	5.1	SR12	12/11/2018	Mid-Flood	4.4
SR2 SR2	12/13/2018 12/15/2018	Mid-Flood Mid-Flood	4.0 2.5	SR4 SR4	12/13/2018 12/15/2018	Mid-Flood Mid-Flood	6.8 3.8	SR12 SR12	12/13/2018 12/15/2018	Mid-Flood Mid-Flood	7.1 3.7
SR2	12/13/2018	Mid-Flood	2.2	SR4	12/13/2018	Mid-Flood	3.2	SR12	12/13/2018	Mid-Flood	3.4
SR2	12/20/2018	Mid-Flood	1.6	SR4	12/20/2018	Mid-Flood	4.6	SR12	12/20/2018	Mid-Flood	4.2
SR2	12/22/2018	Mid-Flood	3.4	SR4	12/22/2018	Mid-Flood	3.5	SR12	12/22/2018	Mid-Flood	4.1
SR2	12/25/2018	Mid-Flood	3.4	SR4	12/25/2018	Mid-Flood	3.5	SR12	12/25/2018	Mid-Flood	4.1
SR2	11/27/2018	Mid-Flood	5.5	SR4	11/27/2018	Mid-Flood	5.1	SR12	11/27/2018	Mid-Flood	6.1
SR2	12/29/2018	Mid-Flood	4.5	SR4	12/29/2018	Mid-Flood	3.7	SR12	12/29/2018	Mid-Flood	4.6
SR2	1/1/2019	Mid-Flood	2.6	SR4	1/1/2019	Mid-Flood	3.9	SR12	1/1/2019	Mid-Flood	3.7
SR2	1/3/2019	Mid-Flood	3.3	SR4	1/3/2019	Mid-Flood	4.4	SR12	1/3/2019	Mid-Flood	5.0
SR2 SR2	1/5/2019 1/8/2019	Mid-Flood Mid-Flood	1.7 3.7	SR4 SR4	1/5/2019 1/8/2019	Mid-Flood Mid-Flood	2.1 6.1	SR12 SR12	1/5/2019 1/8/2019	Mid-Flood Mid-Flood	3.9 5.5
SR2	1/10/2019	Mid-Flood	1.6	SR4	1/10/2019	Mid-Flood	3.9	SR12	1/10/2019	Mid-Flood	5.1
SR2	1/12/2019	Mid-Flood	2.2	SR4	1/12/2019	Mid-Flood	3.4	SR12	1/12/2019	Mid-Flood	4.3
SR2	1/15/2019	Mid-Flood	2.9	SR4	1/15/2019	Mid-Flood	2.7	SR12	1/15/2019	Mid-Flood	1.6
SR2	1/17/2019	Mid-Flood	4.9	SR4	1/17/2019	Mid-Flood	3.9	SR12	1/17/2019	Mid-Flood	5.3
SR2	1/19/2019	Mid-Flood	4.7	SR4	1/19/2019	Mid-Flood	3.9	SR12	1/19/2019	Mid-Flood	5.2
SR2	1/22/2019	Mid-Flood	2.3	SR4	1/22/2019	Mid-Flood	3.8	SR12	1/22/2019	Mid-Flood	2.4
SR2	1/24/2019	Mid-Flood	4.9	SR4	1/24/2019	Mid-Flood	4.7	SR12	1/24/2019	Mid-Flood	6.4
SR2	1/26/2019	Mid-Flood	1.3	SR4 SR4	1/26/2019	Mid-Flood	1.8 0.4	SR12	1/26/2019	Mid-Flood	2.4
SR2 SR2	1/29/2019 1/31/2019	Mid-Flood Mid-Flood	0.8 2.7	SR4	1/29/2019 1/31/2019	Mid-Flood Mid-Flood	2.6	SR12 SR12	1/29/2019 1/31/2019	Mid-Flood Mid-Flood	2.8 4.5
SR2	2/2/2019	Mid-Flood	1.3	SR4	2/2/2019	Mid-Flood	1.4	SR12	2/2/2019	Mid-Flood	1.8
SR2	2/12/2019	Mid-Flood	0.5	SR4	2/12/2019	Mid-Flood	0.2	SR12	2/12/2019	Mid-Flood	0.2
SR2	2/14/2019	Mid-Flood	0.7	SR4	2/14/2019	Mid-Flood	0.7	SR12	2/14/2019	Mid-Flood	0.7
SR2	2/16/2019	Mid-Flood	2.5	SR4	2/16/2019	Mid-Flood	2.7	SR12	2/16/2019	Mid-Flood	3.1
SR2	2/19/2019	Mid-Flood	1.6	SR4	2/19/2019	Mid-Flood	1.2	SR12	2/19/2019	Mid-Flood	2.3
SR2	2/21/2019	Mid-Flood	1.2	SR4	2/21/2019	Mid-Flood	0.7	SR12	2/21/2019	Mid-Flood	1.3
SR3	11/24/2018	Mid-Flood	5.8	SR5	11/24/2018	Mid-Flood	6.1				
SR3 SR3	11/27/2018 12/29/2018	Mid-Flood Mid-Flood	6.5 6.5	SR5 SR5	11/27/2018 12/29/2018	Mid-Flood Mid-Flood	6.6 6.6				
SR3	12/1/2018	Mid-Flood	6.5	SR5	12/1/2018	Mid-Flood	5.2				
SR3	12/4/2018	Mid-Flood	5.3	SR5	12/4/2018	Mid-Flood	4.1				
SR3	12/6/2018	Mid-Flood	3.4	SR5	12/6/2018	Mid-Flood	1.9				
SR3	12/8/2018	Mid-Flood	6.4	SR5	12/8/2018	Mid-Flood	4.7				
SR3	12/11/2018	Mid-Flood	5.3	SR5	12/11/2018	Mid-Flood	3.5				
SR3	12/13/2018	Mid-Flood	6.4	SR5	12/13/2018	Mid-Flood	5.8				
SR3	12/15/2018	Mid-Flood	2.6	SR5	12/15/2018	Mid-Flood	3.1				
SR3 SR3	12/18/2018	Mid-Flood Mid-Flood	2.0 3.3	SR5 SR5	12/18/2018 12/20/2018	Mid-Flood	1.5				
SR3	12/20/2018 12/22/2018	Mid-Flood	2.7	SR5	12/20/2018	Mid-Flood Mid-Flood	3.0				
SR3	12/25/2018	Mid-Flood	2.7	SR5	12/25/2018	Mid-Flood	3.3				
SR3	11/27/2018	Mid-Flood	5.5	SR5	11/27/2018	Mid-Flood	6.7				
SR3	12/29/2018	Mid-Flood	4.4	SR5	12/29/2018	Mid-Flood	5.8				
SR3	1/1/2019	Mid-Flood	2.8	SR5	1/1/2019	Mid-Flood	2.7				
SR3	1/3/2019	Mid-Flood	4.3	SR5	1/3/2019	Mid-Flood	5.5				
SR3	1/5/2019	Mid-Flood	1.2	SR5	1/5/2019	Mid-Flood	2.3				
SR3 SR3	1/8/2019 1/10/2019	Mid-Flood	3.2 1.5	SR5 SR5	1/8/2019 1/10/2019	Mid-Flood Mid-Flood	3.6 2.1				
SR3	1/10/2019	Mid-Flood Mid-Flood	1.9	SR5	1/12/2019	Mid-Flood	2.7				
SR3	1/15/2019	Mid-Flood	3.0	SR5	1/15/2019	Mid-Flood	3.6				
SR3	1/17/2019	Mid-Flood	4.8	SR5	1/17/2019	Mid-Flood	6.3				
SR3	1/19/2019	Mid-Flood	4.6	SR5	1/19/2019	Mid-Flood	6.2				
SR3	1/22/2019	Mid-Flood	3.4	SR5	1/22/2019	Mid-Flood	4.0				
SR3	1/24/2019	Mid-Flood	4.2	SR5	1/24/2019	Mid-Flood	4.8				
SR3	1/26/2019	Mid-Flood	2.6	SR5	1/26/2019	Mid-Flood	2.1				
SR3	1/29/2019	Mid-Flood	0.5	SR5	1/29/2019	Mid-Flood	0.7				
SR3 SR3	1/31/2019 2/2/2019	Mid-Flood Mid-Flood	3.5 1.7	SR5 SR5	1/31/2019 2/2/2019	Mid-Flood Mid-Flood	2.7 1.0				
SR3	2/12/2019	Mid-Flood	0.3	SR5	2/12/2019	Mid-Flood	0.2				
SR3	2/14/2019	Mid-Flood	0.7	SR5	2/14/2019	Mid-Flood	0.6				
SR3	2/16/2019	Mid-Flood	2.8	SR5	2/16/2019	Mid-Flood	2.5				
SR3	2/19/2019	Mid-Flood	2.5	SR5	2/19/2019	Mid-Flood	2.1				
SR3	2/21/2019	Mid-Flood	1.2	SR5	2/21/2019	Mid-Flood	0.9				

Impact Turbidity Insitu		Control C2A			
Raw Statistics		Raw Statistics			
Number of Valid Observations	180	Number of Valid Observations	36		
Number of Distinct Observations	164	Number of Distinct Observations	33		
Minimum	0.15	Minimum	0.2		
Maximum	8.083	Maximum	6.467		
Mean of Raw Data	3.61	Mean of Raw Data	3.584		
Standard Deviation of Raw Data	1.856	Standard Deviation of Raw Data	1.596		
Kstar	2.609	Kstar	2.795		
Mean of Log Transformed Data	1.083	Mean of Log Transformed Data	1.103		
Standard Deviation of Log Transformed Data	0.745	Standard Deviation of Log Transformed Data	0.745		
Normal Distribution Test Results		Normal Distribution Test Results			
Correlation Coefficient R	0.992	Correlation Coefficient R	0.987		
Approximate Shapiro Wilk Test Statistic	0.96	Shapiro Wilk Test Statistic	0.963		
Approximate Shapiro Wilk P Value	8.36E-04	Shapiro Wilk Critical (0.95) Value	0.935		
Lilliefors Test Statistic	0.0543	Approximate Shapiro Wilk P Value	3.45E-01		
Lilliefors Critical (0.95) Value	0.066	Lilliefors Test Statistic	0.104		
		Lilliefors Critical (0.95) Value	0.148		
Data appear Normal at (0.05) Significance Level		Data appear Normal at (0.05) Significance Level			

t-Test Site vs Background Comparison for Full Data Sets without NDs

User Selected Options

Full Precision OFF
Confidence Coefficient 95%
Substantial Difference 0%

Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Turbidity Insitu Background Data: Control C2A

Raw Statistics

Naw Statistics		
	Site	Background
Number of Valid Observations	18	36
Number of Distinct Observations	16	33
Minimum	0.1	15 0.2
Maximum	8.08	6.467
Mean	3.6	3.584
Median	3.50	3.425
SD	1.85	66 1.596
SE of Mean	0.13	88 0.266

Site vs Background Two-Sample t-Test

H0: Mu of Site - Mu of Background <= 0

			t-Test	Critical	
Method	DF		Value	t (0.050)	P-Value
Pooled (Equal Variance)		214	0.077	1.652	0.46
Satterthwaite (Unequal Variance)		55.7	0.085	1.673	0.466

Pooled SD 1.817

Conclusion with Alpha = 0.050

^{*} Student t (Pooled) Test: Do Not Reject H0, Conclude Site <= Background

^{*} Satterthwaite Test: Do Not Reject H0, Conclude Site <= Background