Shatin to Central Link – Tai Wai to Hung Hom Section

Baseline Monitoring Report

(Works Contract 1109 - To Kwa Wan and Ma Tau Wai Stations and Tunnels)

(July 2012)

Verified by:	

Position: Independent Environmental Checker

Date: 2 Jul 2012

Shatin to Central Link – Tai Wai to Hung Hom Section

Baseline Monitoring Report

Works Contract 1109 - To Kwa Wan and Ma Tau Wai Stations and Tunnels (July 2012)

Certified by:	(Klwan
Position:	Environmental Team Leader
Date:	27th July 2019

Consultancy Agreement No. NEX/2213

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW-HUH)]

Baseline Monitoring Report

(Works Contract 1109 - To Kwa Wan and Ma Tau Wai Stations and Tunnels)

July 2012

	Name	Signature
Prepared & Checked:	Angela Tong	And
Reviewed & Approved:	Josh Lam	me Arter

Version: A	Date:	27July	2012
------------	-------	--------	------

This report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. NEX/2213 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

		F	Page
EXEC	UTIVE	SUMMARY	1
1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Purpose of the Baseline Monitoring Report	1
	1.3	Report Structure	
2	AIR G	QUALITY MONITORING	2
	2.1	Monitoring Requirement	2
	2.2	Monitoring Equipment	
	2.3	Monitoring Locations	2
	2.4	Monitoring Parameters, Frequency and Duration	3
	2.5	Monitoring Methodology	
	2.6	Results and Observations	4
	2.7	Action and Limit Levels	4
3	AIRB	ORNE NOISE MONITORING	6
	3.1	Monitoring Requirements	6
	3.2	Monitoring Equipment	
	3.3	Monitoring Locations	6
	3.4	Monitoring Parameters, Frequency and Duration	7
	3.5	Monitoring Methodology	
	3.6	Results and Observations	7
	3.7	Action and Limit Levels	9
4	CON	CLUSION	11
	4.1	Air Quality	11
	4.2	Airborne Construction Noise	11
List of	f Tables	s	
Table :	2.1	Air Quality Monitoring Equipments	
Table :	2.2	Locations of Baseline Air Quality Monitoring Stations	
Table :	-	Air Quality Monitoring Parameters, Frequency and Duration	
Table :		Summary of 1-hr TSP Baseline Monitoring Results	
Table :		Summary of 24-hr TSP Baseline Monitoring Results	
Table :		Derivation of Action and Limit Levels for Air Quality	
Table :		Action and Limit Levels for Air Quality	
Table :		Noise Monitoring Equipment	
Table		Locations of Baseline Noise Monitoring Stations	
Table		Noise Monitoring Parameters, Frequency and Duration	
Table :	3.4	Summary of Baseline Daytime Noise Monitoring Results of Normal Weekdays (0 – 1900 hrs))/00
Table	3.5	Summary of Baseline Evening Noise Monitoring Results of Normal Weekdays (1 – 2300 hrs)	1900
Table :	3.6	Summary of Baseline Daytime and Evening Noise Monitoring Results of Sunday Public Holiday (0700 – 2300 hrs)	and
Table :	3 7	Summary of Baseline Night-time Noise Monitoring Results of All Days (2300-0700)	hre\
Table :		Criteria for Action and Limit Levels for Construction Noise	1113)

Consultancy Agreement No. NEX/2213 SCL(TAW-HUH) Baseline Monitoring Report (Part 1) Works Contract 1109 – To Kwa Wan and Ma Tau Wai Stations and Tunnels

MTR Corporation Limited

List of Figures

NEX2213/C/361/ACM/M63/001 General Alignment of SCL (Tai Wai to Hung Hom)
NEX2213/C/361/ACM/M63/002 Locations of Off-Site Works Areas

NEX2213/C/361/ACM/M63/011 Locations of Dust Monitoring Stations
NEX2213/C/361/ACM/M63/012 Locations of Dust Monitoring Stations

NEX2213/C/361/ACM/M63/021 Locations of Noise Monitoring Stations (Construction Airborne

Noise)

NEX2213/C/361/ACM/M63/022 Locations of Noise Monitoring Stations (Construction Airborne

Noise)

List of Appendices

Appendix A Calibration Certificates of Monitoring Equipments

Appendix B Baseline Air Quality Monitoring Results
Appendix C Baseline Noise Monitoring Results

EXECUTIVE SUMMARY

Shatin to Central Link – Tai Wai to Hung Hom Section [SCL(TAW-HUH)] (the Project) is an approximately 11 km long extension of the Ma On Shan Line and connects the West Rail Line at Hung Hom forming a strategic east-west rail corridor. It is a Designated Project under the *Environmental Impact Assessment Ordinance (Cap. 499)* (EIAO) and is currently governed by an Environmental Permit (EP No. EP-438/2012/A) for the construction and operation of the Project.

In accordance with the approved Environmental Monitoring and Audit Manual (EM&A Manual) for the Project, baseline environmental monitoring should be conducted prior to the commencement of construction works. Pursuant to EP Condition 3.3, Baseline Monitoring Report shall be submitted to the Director of Environmental Protection at least 2 weeks before the commencement of construction of the Project. As the construction of To Kwa Wan (TKW) and Ma Tau Wai Stations (MTW) and Tunnels, which are under Works Contract 1109, is tentatively scheduled to commence in September 2012, baseline air quality and airborne noise monitoring was conducted according to the EM&A Manual before the commencement of construction works at To Kwa Wan and Ma Tau Wai.

The baseline monitoring for air quality and airborne noise was carried out between 10 May 2012 and 13 July 2012 at the monitoring locations sited in the vicinity of the works areas at To Kwa Wan and Ma Tau Wai. Background air quality was measured in terms of 1-hr total suspended particulate (TSP) and 24-hr TSP. Continuous baseline noise monitoring for A-weighted levels $L_{\rm eq}$, $L_{\rm 10}$ and $L_{\rm 90}$ was conducted in a sample period of 30 minutes for non-restricted hours (0700 - 1900 hrs of normal weekdays) and 5 minutes for restricted hours (1900 - 2300 hrs and 2300 - 0700 hrs of normal weekdays and whole day of Sundays and Public Holidays). Baseline monitoring for air quality and airborne noise was conducted for a period of at least 14 consecutive days and at least two weeks respectively.

The averaged 1-hr TSP levels and 24-hr TSP levels at Air Quality Monitoring Stations at To Kwa Wan and Ma Tau Wai areas (i.e. DMS-6 to DMS-10) are summarized in the following table:

	Air Quality Monitoring Locations (Station ID)						
Baseline TSP Monitoring Results	No. 420 Prince Edward Road West (DMS-6)	Parc 22 (DMS-7)	SKH Good Shepherd Primary School (DMS-8)	Lucky Building (East Façade) (DMS-9)	Chat Ma Mansion (DMS-10)		
1-hr TSP	1-hr TSP						
Average (µg/m³)	59.7	61.0	76.8	81.6	68.7		
Range (µg/m³)	55.4 - 64.7	48.6 – 81.7	65.6 – 89.6	51.0 – 94.5	55.7 – 82.8		
24-hr TSP		•		•			
Average (µg/m³)	41.2	56.4	34.7	47.5	62.1		
Range (µg/m³)	25.9 – 68.1	17.4 – 122.1	17.1 – 64.2	13.9 – 134.0	24.7 – 139.3		

The averaged baseline airborne noise levels at Airborne Noise Monitoring Stations at To Kwa Wan and Ma Tau Wai areas (i.e. NMS-CA-6 to NMS-CA-10) are summarized in the following table:

	Noise Monitoring Locations (Station ID)					
Measured Noise Levels	No. 420 Prince Edward Road West (NMS-CA-6)	Skytower Tower 2 (NMS-CA-7)	SKH Good Shepherd Primary School (NMS-CA-8)	Lucky Building (East Façade) NMS-CA-9)	Chat Ma Mansion (NMS-CA-10)	
Averaged baseline noise level during daytime of normal weekdays (Leq, 30min, dB(A)) ⁽¹⁾	<u>76</u>	70	<u>75</u>	69	<u>77</u>	

Consultancy Agreement No. NEX/2213 SCL(TAW-HUH)

Baseline Monitoring Report (Part 1)

Works Contract 1109 –

MTR Corporation Limited

To Kwa Wan and Ma Tau Wai Stations and Tunnels

	Noise Monitoring Locations (Station ID)				
Measured Noise Levels	No. 420 Prince Edward Road West (NMS-CA-6)	Skytower Tower 2 (NMS-CA-7)	SKH Good Shepherd Primary School (NMS-CA-8)	Lucky Building (East Façade) NMS-CA-9)	Chat Ma Mansion (NMS-CA-10)
Averaged baseline noise level during evening time of normal weekdays (L _{eq,5min} , dB(A))	75	68	74	68	76
Averaged baseline noise level during daytime and evening time of General Holiday including Sunday (Leq, 5min, dB(A))	76	67	74	68	75
Averaged baseline noise level during night-time ($L_{eq, 5min}$, dB(A))	73	64	70	65	73

Note:

⁽¹⁾ Numbers in bold and underlined indicate the measured baseline daytime noise levels (L_{eq, 30min}) exceed the stipulated EIAO noise limits of 75dB(A) for residential premises or 70dB(A) for educational institutions.

1 INTRODUCTION

1.1 Background

- 1.1.1 Shatin to Central Link Tai Wai to Hung Hom Section [SCL(TAW-HUH)] (the Project), is an approximately 11 km long extension of the Ma On Shan Line and connects the West Rail Line at Hung Hom forming a strategic east-west rail corridor.
- 1.1.2 The EIA Report (Register No.: AEIAR-167/2012) for the Project was approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance (*EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012 (EP No: EP-438/2012) for the construction and operation of the Project. Variation of Environmental Permit (VEP) was subsequently applied and the latest Environmental Permit (EP No: EP-438/2012/A) was issued by Director of Environmental Protection (DEP) on 12 July 2012.
- 1.1.3 Prior to the commencement of construction works, baseline environmental monitoring should be conducted to review the baseline conditions and establish Action and Limit Levels, according to the EM&A Manual.
- 1.1.4 Given that the construction of To Kwa Wan and Ma Tau Wai Stations and Tunnels (Works Contract 1109) is tentatively scheduled to commence in September 2012, baseline environmental monitoring at the monitoring locations sited in the vicinity of the works areas at To Kwa Wan and Ma Tau Wai had commenced in May 2012 and was completed in July 2012.
- SCL (TAW-HUH) alignment 1.1.5 overall view of is shown in NEX2213/C/361/ACM/M63/001 and the tentative locations of off-site works areas (e.g. office, general storage, barging facilities, magazine sites) are shown in NEX2213/C/361/ACM/M63/002.

1.2 Purpose of the Baseline Monitoring Report

- 1.2.1 In accordance with the EM&A Manual, environmental baseline monitoring was carried out for air quality and airborne noise at five monitoring stations, which are located in the vicinity of the works areas at To Kwa Wan and Ma Tau Wai Stations and Tunnels (Works Contract 1109). This Baseline Monitoring Report contains baseline findings of these five monitoring stations.
- 1.2.2 The purposes of this Baseline Monitoring Report are to:
 - Summarise the findings of baseline air quality and airborne noise monitoring; and
 - Establish the Action and Limit (A/L) levels in accordance with the EM&A Manual for the subsequent impact monitoring during construction stage.

1.3 Report Structure

- 1.3.1 This Baseline Monitoring Report comprises the following sections:
 - Section 1 introduces the background of the Project and purpose of this Report;
 - Section 2 presents the baseline monitoring requirements, methodologies and monitoring results of air quality;
 - Section 3 presents the baseline monitoring requirements, methodologies and monitoring results of airborne noise; and
 - Section 4 concludes the findings of baseline monitoring.

AIR QUALITY MONITORING

2.1 **Monitoring Requirement**

2.1.1 In accordance with the EM&A Manual, baseline 1-hr and 24-hr total suspended particulate (TSP) levels should be established by conducting baseline 1-hr and 24-hr TSP monitoring daily for at least 14 consecutive days prior to the commissioning of major construction works.

2.2 **Monitoring Equipment**

221 24-hr TSP air quality monitoring at the monitoring stations were performed using High Volume Sampler (HVS), of which their locations and operation satisfy all the requirements stated in the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hr TSP monitoring. Portable direct reading dust meters used in this baseline monitoring were proven to IEC to be capable of achieving comparable result as that of the HVS and could be used for sampling. Brand and model of the equipments are given in **Table 2.1**.

Table 2.1 **Air Quality Monitoring Equipments**

Equipments Brand and Mode		Quantity	Serial Number
Portable direct reading dust meter (1-hr TSP)	Sibata Digital Dust Monitor (Model No. LD-3)	4	A.005.11a, A.005.12a, A.005.14a, A.005.15a
High Volume Sampler (24-hr TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170)	3	A-001-81T, A-001-82T, A-001-83T

- 2.2.2 The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- 2.2.3 Each HVS was calibrated using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix A**.
- 2.2.4 The 1-hr TSP meter was calibrated at 1-year interval against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix A.

2.3 **Monitoring Locations**

- 2.3.1 Monitoring stations DMS-8, DMS-9 and DMS-10 were set up at the locations in accordance with Section 7 of the EM&A Manual. However, permission of access and setting up the HVS could not be obtained from Prosperity House, and thus DMS-6 was relocated to the roof of No. 420 Prince Edward Road West, which is located opposite to Prosperity House. Also, with no suitable monitoring location identified at the podium level of Skytower Tower 2 and the considerable separation distance between the roof at 58/F and the works areas, monitoring location DMS-7 was relocated to the roof (12/F) of Parc 22, which is located opposite to Skytower Tower 2. Both alternative monitoring locations (DMS-6 & DMS-7) were agreed with IEC prior to monitoring.
- 2.3.2 of air quality monitoring stations are Locations shown in Figure NEX2213/C/361/ACM/M63/011 and 012. Table 2.2 describes the details of the monitoring stations.

Table 2.2 **Locations of Baseline Air Quality Monitoring Stations**

Monitoring Station ID	Original Monitoring Location in EM&A Manual Manual Alternative Monitoring Location		Description	Monitoring Period
DMS-6	Prosperity House	No. 420 Prince Edward Road West	Roof (6/F)	27 Jun – 11 Jul 2012
DMS-7	Skytower Tower 2	Parc 22	Roof (12/F)	15 Jun – 29 Jun 2012
DMS-8	SKH Good Shepherd Primary School	-	Roof (6/F)	10 May – 24 May 2012
DMS-9	Lucky Building (East Façade)	-	Roof (19/F)	06 Jun – 20 Jun 2012
DMS-10	Chat Ma Mansion	-	Roof (9/F)	21 Jun – 05 Jul 2012

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of baseline TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Duration	Frequency and
1-hr TSP	14 consecutive days prior to	3 times per day
Continuous 24-hr TSP	commencement of major construction works	Daily

2.5 **Monitoring Methodology**

24-hr TSP Monitoring

- 2.5.1 With the consideration of criteria stated in Section 7.6 of the EM&A Manual, the HVS was installed in the vicinity of the air sensitive receivers.
- 2.5.2 The relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper, and any special phenomena observed were recorded. The weather information was referenced from Hong Kong Observatory (http://www.weather.gov.hk/wxinfo/pastwx/extractc.htm).
- A HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (HOKLAS no.: 066), with 2.5.3 constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments, to handle the 24-hr TSP samples, was employed for sample analysis, and equipment calibration and maintenance.
- 2.5.4 Filter papers of size 8"x10" were labelled before sampling. They were inspected to be clean with no pin holes and conditioned in a humidity controlled chamber for over 24-hr and were pre-weighed before use for the sampling.
- The 24-hr TSP levels were measured by following the standard high volume sampling method 2.5.5 for TSP as set out in the Title 40 of the United States Code of Federal Regulations, Chapter 1 (Part 50), Appendix B. TSP was sampled by drawing air through a conditioned, pre-weighted filter paper inside the HVS at a controlled air flow rate. After 24-hr sampling, the filter papers loaded with dust were kept in a clean and tightly sealed plastic bag, and then returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with a readout down to 0.1 mg.
- 2.5.6 All the collected samples were kept in a good condition for 6 months before disposal.

1-hr TSP Monitoring

- 2.5.7 The 1-hr TSP measurement followed manufacturer's instruction manual. Before initiating a measurement, zeroing the portable dust monitor was carried out to ensure maximum accuracy of concentration measurements.
- 2.5.8 The 1-hr TSP was sampled by drawing air into the portable dust monitor where particular concentrations were measured instantaneously with an in-built silicon detector sensing light scattered by the particulates in the sampled air. Continuous TSP levels were indicated and logged by a built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

2.6 Results and Observations

- 2.6.1 The baseline air quality monitoring was conducted between 10 May and 11 July 2012, during which, the weather was sunny and occasionally unstable. Major dust source affecting the monitoring results was observed as the nearby traffic emissions. Details of influencing factors such as weather conditions and site observation are presented in Appendix B.
- 2.6.2 The baseline monitoring results for 1-hr and 24-hr TSP are summarized in **Tables 2.4** and **2.5** respectively. Detailed air quality monitoring results are presented in **Appendix B**.

Table 2.4 Summary of 1-hr TSP Baseline Monitoring Results

1-hr TSP Levels	No. 420 Prince Edward Road West (DMS-6)	Parc 22 (DMS-7)	SKH Good Shepherd Primary School (DMS-8)	Lucky Building (East Façade) (DMS-9)	Chat Ma Mansion (DMS-10)
Average (µg/m³)	59.7	61.0	76.8	81.6	68.7
Range (µg/m³)	55.4 - 64.7	48.6 – 81.7	65.6 – 89.6	51.0 – 94.5	55.7 – 82.8

Table 2.5 Summary of 24-hr TSP Baseline Monitoring Results

24-hr TSP Levels	No. 420 Prince Edward Road West (DMS-6)	Parc 22 (DMS-7)	SKH Good Shepherd Primary School (DMS-8)	Lucky Building (East Façade) (DMS-9)	Chat Ma Mansion (DMS-10)
Average (µg/m³)	41.2	56.4	34.7	47.5	62.1
Range (µg/m³)	25.9 – 68.1	17.4 – 122.1	17.1 – 64.2	13.9 – 134.0	24.7 – 139.3

2.7 Action and Limit Levels

2.7.1 The air quality monitoring results, in terms of 1-hr TSP and 24-hr TSP, were below the Limit Level set out in the EIAO-TM and Air Quality Objective (AQO) respectively at the monitoring locations. The Action and Limit Levels for air quality impact monitoring were established according to the criteria and methodology in the EM&A Manual as presented in **Table 2.6**.

Table 2.6 Derivation of Action and Limit Levels for Air Quality

Parameter	Action Level	Limit Level
1-hr TSP Level in µg/m ³	For Baseline Level ≤ 384 µg/m³, Action Level = (baseline level *1.3 + Limit level) /2 For Baseline Level > 384 µg/m³, Action Level = Limit Level	500 μg/m³
24-hr TSP Level in µg/m³	For Baseline Level ≤ 200 µg/m³, Action Level = (baseline level *1.3 + Limit level) /2 For Baseline Level > 200 µg/m³, Action Level = Limit Level	260 μg/m³

2.7.2 **Table 2.7** shows the derived Action and Limit Levels for air quality impact monitoring for the Project.

Table 2.7 Action and Limit Levels for Air Quality

Parameter	Monitoring Station	Action Level (µg/m³)	Limit Level (µg/m³)
	DMS-6	288.8	500
	DMS-7	289.7	500
1-hr TSP Level in µg/m³	DMS-8	300.0	500
	DMS-9	303.0	500
	DMS-10	294.7	500
	DMS-6	156.8	260
	DMS-7	166.7	260
24-hr TSP Level in μg/m ³	DMS-8	152.2	260
	DMS-9	160.9	260
	DMS-10	170.4	260

AIRBORNE NOISE MONITORING

3.1 **Monitoring Requirements**

3.1.1 In accordance with the EM&A Manual, baseline noise monitoring should be conducted for at least two weeks to obtain background noise levels prior to the commissioning of major construction works.

3.2 **Monitoring Equipment**

3.2.1 Noise monitoring was performed using sound level meter at each monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 **Noise Monitoring Equipment**

Equipment	Brand and Model	Quantity	Serial Number
Integrated Sound Level Meter	B&K (Model No. 2238)	4	2255677, 2800927, 2285692, 2255680
Acoustic Calibrator	B&K (Model No. 4231)	2	1790985, 1850426

3.2.2 The sound level meters and acoustic calibrators were verified by the certified laboratory once every two years. Calibration certificates of the sound level meters and acoustic calibrator are provided in Appendix A.

3.3 **Monitoring Locations**

3.3.1 Monitoring stations NMS-CA-7, NMS-CA-8, NMS-CA-9 and NMS-CA-10 were set up at the locations in accordance with EM&A Manual. However, access permission to monitoring station NMS-CA-6 could not be obtained from Prosperity House. With consideration of selection criteria stated in Section 8.5 of EM&A Manual, No. 420 Prince Edward Road West, which is located opposite to NMS-CA-6, has been selected as alternative monitoring location and it was approved by EPD on 6 July 2012. The baseline airborne noise monitoring was conducted between 10 May and 13 July 2012. NEX2213/C/361/ACM/M63/021 and 022 show the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 **Locations of Baseline Noise Monitoring Stations**

Monitoring Station ID	Original Monitoring Location in EM&A Manual	Alternative Monitoring Location	Description	Monitoring Period
NMS-CA-6	Prosperity House	No. 420 Prince Edward Road West	Roof (6/F)	27 Jun – 29 Jun, 1 Jul – 13 Jul 2012 ⁽²⁾
NMS-CA-7	Skytower Tower 2	-	Podium	20 Jun – 29 Jun, 1 Jul – 06 Jul 2012 ⁽²⁾
NMS-CA-8	SKH Good Shepherd Primary School	-	Roof (6/F)	10 May – 23 May 2012
NMS-CA-9	Lucky Building (East Façade)	-	Roof (19/F)	06 Jun – 15 Jun, 1 Jul – 06 Jul 2012 ⁽¹⁾
NMS-CA-10	Chat Ma Mansion	-	Roof (9/F)	27 Jun – 29 Jun, 1 Jul – 13 Jul 2012 ⁽²⁾

Remark:

⁽¹⁾ Airborne noise monitoring was suspended due to bad weather conditions from 16 to 19 Jun 2012 (Cyclone TALIM).

⁽²⁾ Airborne noise monitoring was suspended due to bad weather conditions from 29 and 30 Jun 2012 (Cyclone DOKSURI).

3.4 Monitoring Parameters, Frequency and Duration

Table 3.3 summarizes the monitoring parameters, frequency and duration of baseline noise 3.4.1 monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Time Period	Duration, min	Parameters
Daytime:	30 (L _{eq(30-min)})	
0700-1900 hrs on normal weekdays		
Evening:		
1900-2300 hrs on normal weekdays		1 121
General Holidays and Sundays	15 (average of 3 consecutive L _{ea(5-min)})	L _{eq} , L ₁₀ & L ₉₀
0700-2300 hrs	13 (average of 3 consecutive Leq(5-min))	
Night-time:		
2300-0700 hrs on all days		

3.5 **Monitoring Methodology**

- 3.5.1 The monitoring procedures are summarised as below:
 - (a) Façade measurements were made at all monitoring locations.
 - (b) The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement (c) time were set as follows:
 - frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) parameters: L_{eq} , L_{10} and L_{90}
 - time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00-1900(iv) hrs on normal weekdays; $L_{\text{eq}(5\text{-minutes})}$ during restricted hours i.e. 19:00-23:00hrs and 23:00 - 07:00 hrs of normal weekdays, whole day of Sundays and **Public Holidays**
 - Prior to and after each noise measurement, the meter was calibrated using the (d) acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.

3.6 **Results and Observations**

- 3.6.1 There was no other major activity influencing the measured noise level during the baseline noise monitoring period. The dominant noise sources were community noise and nearby traffic. Details of influencing factors such as weather conditions and site observation are presented in Appendix C.
- 3.6.2 Baseline noise monitoring was conducted for at least two weeks to obtain the background noise data. The baseline noise monitoring results are summarized in Tables 3.4 to 3.6. Detailed noise monitoring results are presented in **Appendix C**.

Table 3.4 Summary of Baseline Daytime Noise Monitoring Results of Normal Weekdays (0700 - 1900 hrs)

Monitoring	30-min Ave	rage Noise Levels, dB(A)		Range, dB(A)		
Location (Station ID)	L_{eq}	L ₁₀	L ₉₀	L _{eq}	L ₁₀	L ₉₀
No. 420 Prince Edward Road West (NMS-CA-6)	<u>76</u>	78	73	75 - 77	78 - 79	71 - 74

To Kwa Wan and Ma Tau Wai Stations and Tunnels

Monitoring	30-min Average Noise Levels, dB(A)			Range, dB(A)		
Location (Station ID)	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L ₁₀	L ₉₀
Skytower Tower 2 (NMS-CA-7)	70	72	67	68 – 71	70 – 74	64 – 68
SKH Good Shepherd Primary School (NMS-CA-8)	<u>75</u>	78	70	74 - 76	77 - 79	67 - 71
Lucky Building (East Façade) (NMS-CA-9)	69	71	67	69 - 70	70 - 71	66 - 68
Chat Ma Mansion (NMS-CA-10)	<u>77</u>	78	73	76 - 77	77 - 79	72 - 74

Note:

Table 3.5 Summary of Baseline Evening Noise Monitoring Results of Normal Weekdays (1900 – 2300 hrs)

Monitoring	5-min Average Noise Levels, dB(A)			Range, dB(A)		
Location (Station ID)	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L ₁₀	L ₉₀
No. 420 Prince Edward Road West (NMS-CA-6)	75	77	71	74 - 76	76 - 79	69 - 73
Skytower Tower 2 (NMS-CA-7)	68	69	65	67 - 69	68 - 70	64 - 66
SKH Good Shepherd Primary School (NMS-CA-8)	74	77	67	73 - 75	76 - 78	64 - 69
Lucky Building (East Façade) (NMS-CA-9)	68	69	66	68 - 68	69 - 70	65 - 66
Chat Ma Mansion (NMS-CA-10)	76	77	72	76 - 77	77 - 78	72 - 73

Table 3.6 Summary of Baseline Daytime and Evening Noise Monitoring Results of Sunday and Public Holiday (0700 – 2300 hrs)

Monitoring	5-min Average Noise Levels, dB(A)			Range, dB(A)		
Location (Station ID)	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L ₁₀	L ₉₀
No. 420 Prince Edward Road West (NMS-CA-6)	76	78	72	72 - 79	75 - 82	66 - 73
Skytower Tower 2 (NMS-CA-7)	67	69	64	65 - 69	67 - 71	60 - 66
SKH Good Shepherd Primary School (NMS-CA-8)	74	77	67	72 - 80	75 - 80	63 - 71
Lucky Building (East Façade) (NMS-CA-9)	68	70	66	67 - 70	68 - 71	64 - 68
Chat Ma Mansion (NMS-CA-10)	75	77	72	74 - 76	76 - 78	69 - 74

⁽²⁾ Numbers in bold and underlined indicate the measured baseline daytime noise levels (L_{eq, 30min}) exceed the stipulated noise limits of 75dB(A) for residential premises or 70dB(A) for educational institutions.

Table 3.7 Summary of Baseline Night-time Noise Monitoring Results of All Days (2300-0700 hrs)

Monitoring	5-min Average Noise Levels, dB(A)			Range, dB(A)		
Location (Station ID)	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L ₁₀	L ₉₀
No. 420 Prince Edward Road West (NMS-CA-6)	73	76	68	70 - 75	74 - 78	64 - 71
Skytower Tower 2 (NMS-CA-7)	64	67	61	62 - 67	64 - 69	57 - 64
SKH Good Shepherd Primary School (NMS-CA-8)	70	74	61	65 - 74	68 - 77	55 - 66
Lucky Building (East Façade) (NMS-CA-9)	65	67	62	62 - 68	64 - 70	58 - 65
Chat Ma Mansion (NMS-CA-10)	73	75	68	71 - 76	73 - 78	63 - 72

- 3.6.3 Results indicated that the average baseline daytime noise monitoring results at all monitoring locations exceeded the criteria of 75dB(A) for residential premises and 70dB(A) for educational institutions except Skytower Tower 2 (NMS-CA-7) and Lucky Building (NMS-CA-9). The major noise sources affecting the noise background at No. 420 Prince Edward Road West (NMS-CA-6), SKH Good Shepherd Primary School (NMS-CA-8) and Chat Ma Mansion (NMS-CA-10) were observed to be traffic noise from the adjoining Prince Edward Road West, Ma Tau Wai Road, and Chatham Road North respectively.
- 3.6.4 As identified by baseline monitoring, the ambient noise levels at NMS-CA-6 and NMS-CA-10 exceeded the criteria of 75dB(A) for residential premises and at NMS-CA-8 exceeded both stipulated Limit Levels of 70dB(A) for educational institution and 65dB(A) during examination period.

3.7 Action and Limit Levels

- 3.7.1 The Limit Levels are only applicable for the monitoring stations where no residual impact is anticipated. In the event that residual impact is predicted in the Construction Noise Mitigation Measures Plan (CNMMP) which would be submitted under EP-438/2012/A Condition 2.9, the residual impact shall be taken into account by comparing the future impact monitoring results with the Predicted Construction Noise Levels in the CNMMP instead of the Limit Level.
- 3.7.2 During the impact monitoring period, the baseline noise level should be deducted from the future impact monitoring result for comparison with the Limit Level or the Predicted Construction Noise Level in case residual impact is anticipated as predicted in the approved CNMMP.
- 3.7.3 The Action and Limit Levels of noise monitoring have been set in accordance with the criteria specified in the EM&A Manual as shown in **Table 3.8** below.

Table 3.8 Criteria for Action and Limit Levels for Construction Noise

Time Period ⁽¹⁾	Monitoring Station	Action Level	Limit Level, dB(A)	Predicted Maximum Construction Noise Level ⁽²⁾ , dB(A)
0700-1900 hrs of normal	No. 420 Prince Edward Road West (NMS-CA-6)	When one documented	75	80 (at Prosperity House)
weekdays	Skytower Tower 2 (NMS-CA-7)	valid complaint is received	75	<u>76</u>

To Kwa Wan and Ma Tau Wai Stations and Tunnels

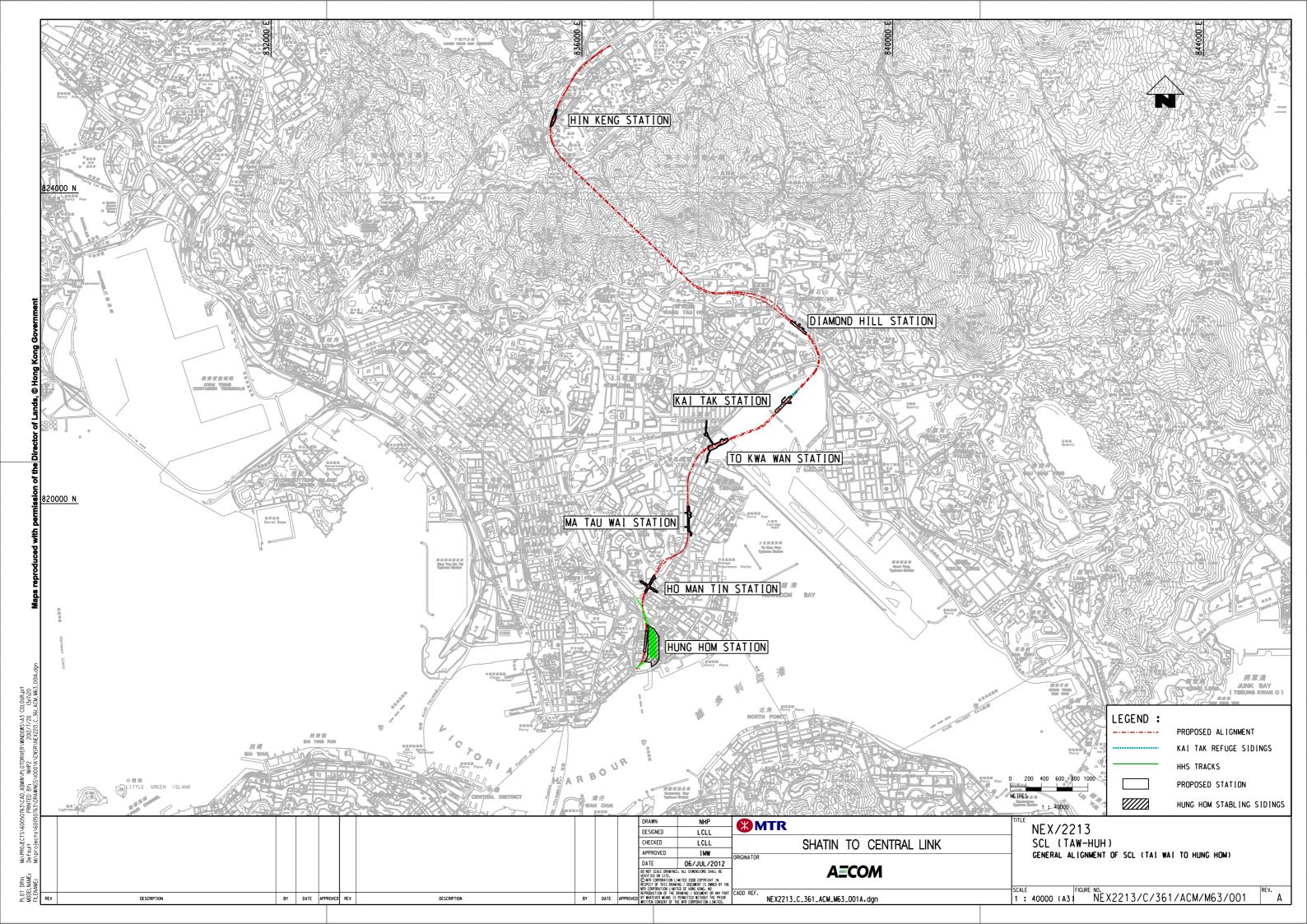
Time Period ⁽¹⁾	Monitoring Station	Action Level	Limit Level, dB(A)	Predicted Maximum Construction Noise Level ⁽²⁾ , dB(A)
	SKH Good Shepherd Primary School (NMS-CA-8)		70 (during normal school time) 65 (during examination period)	<u>79</u>
	Lucky Building (East Façade) (NMS-CA-9)		75	<u>80</u>
	Chat Ma Mansion (NMS-CA-10)		75	71

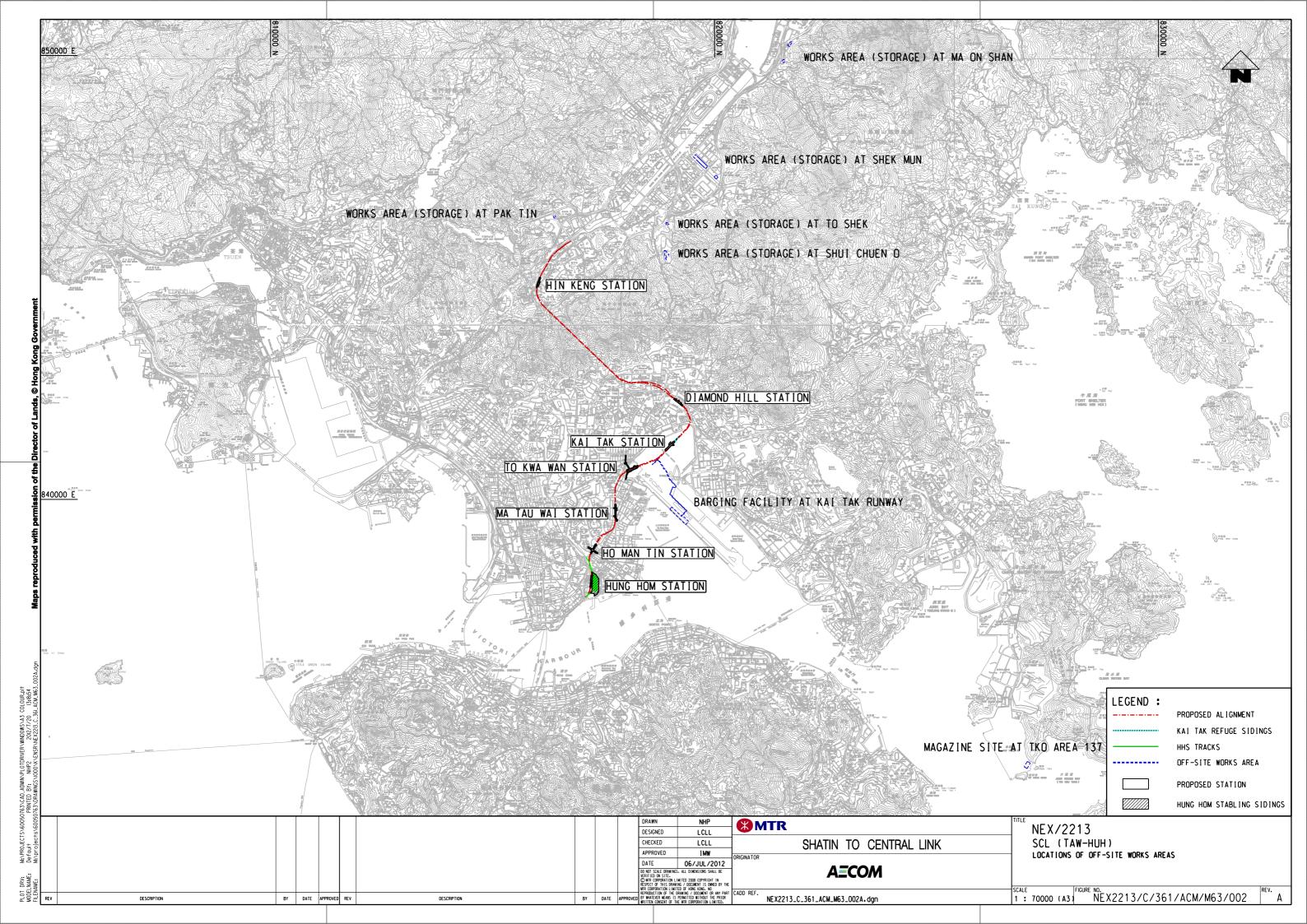
Note:

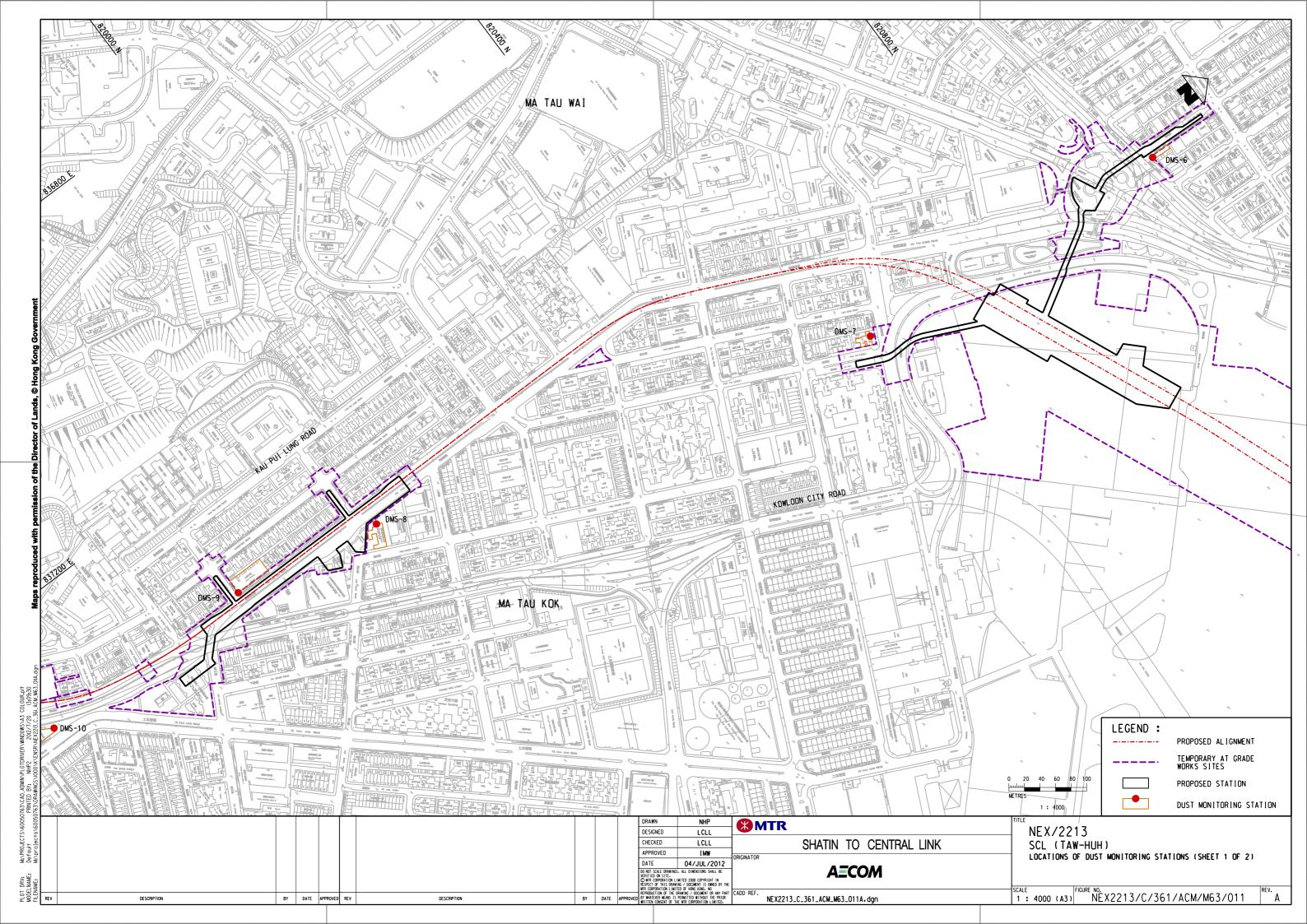
- (1) If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority should be followed.
- (2) Predicted maximum construction noise levels are taken from the approved SCL(TAW-HUH) EIA Report for reference only. Numbers in bold and underlined indicate the predicted maximum construction noise levels exceed the stipulated noise limits of 75dB(A) for residential premises or 70dB(A) for educational institutions. The latest predicted maximum construction noise levels should refer to the findings of the CNMMP.

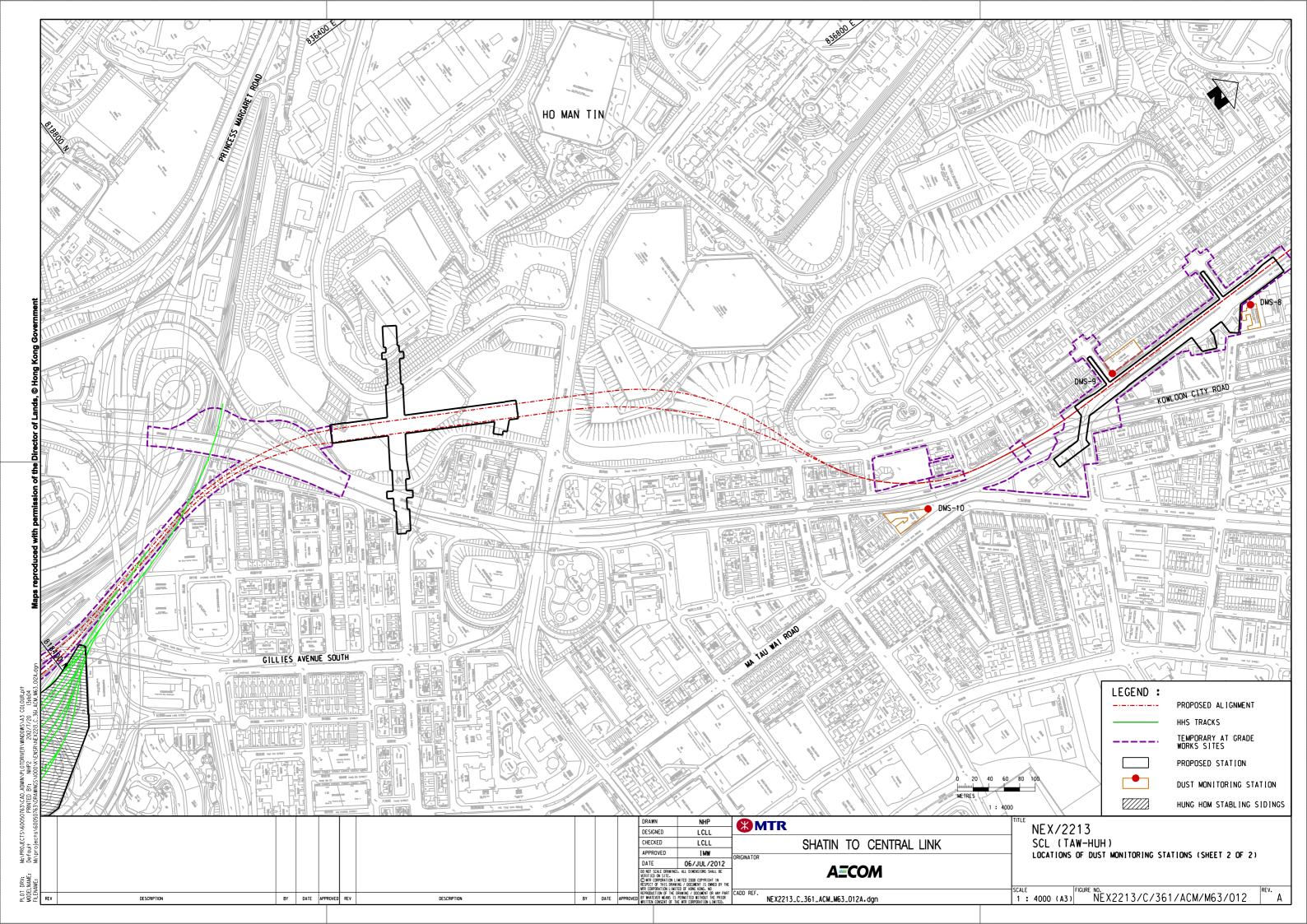
4 CONCLUSION

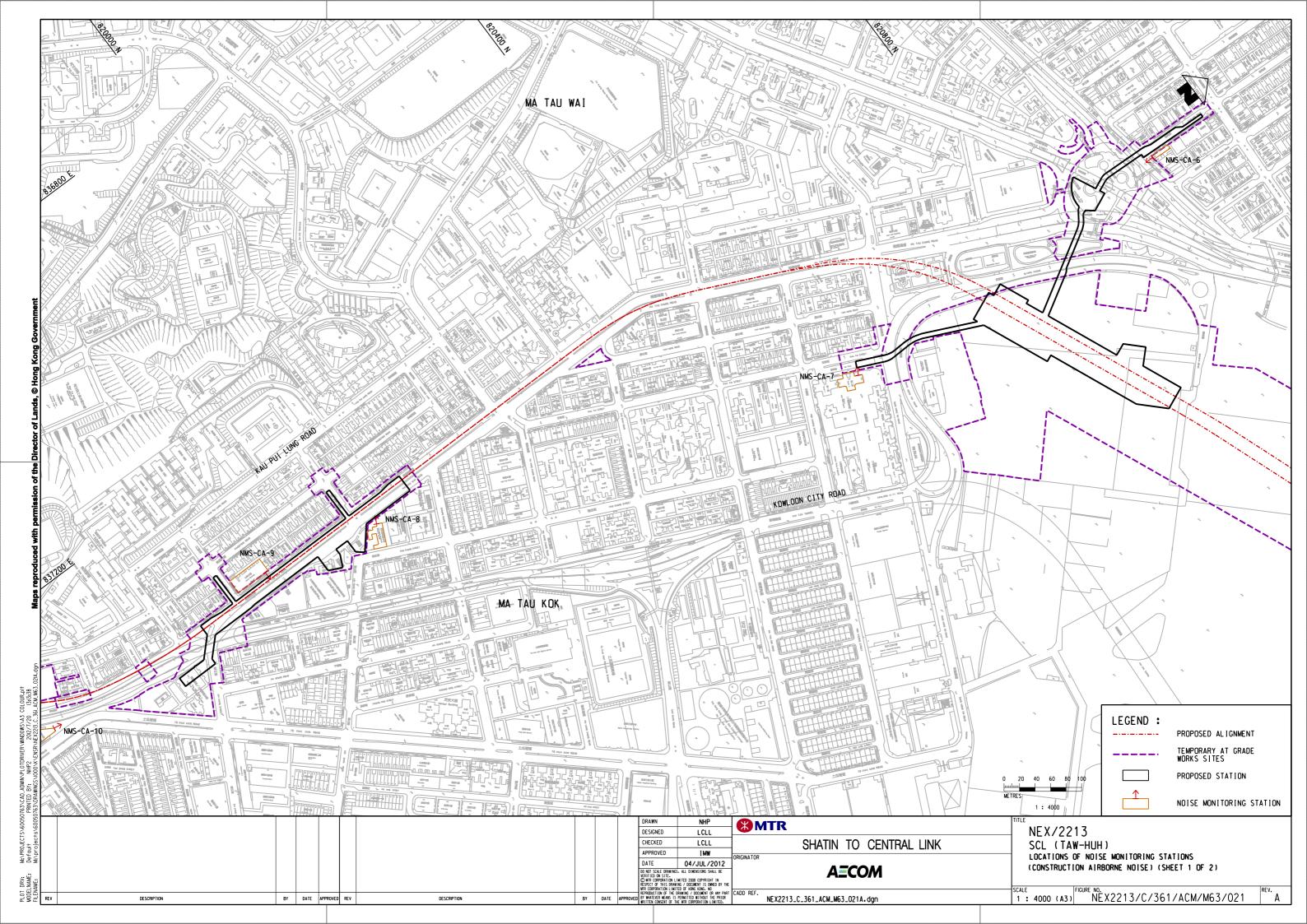
4.1 Air Quality

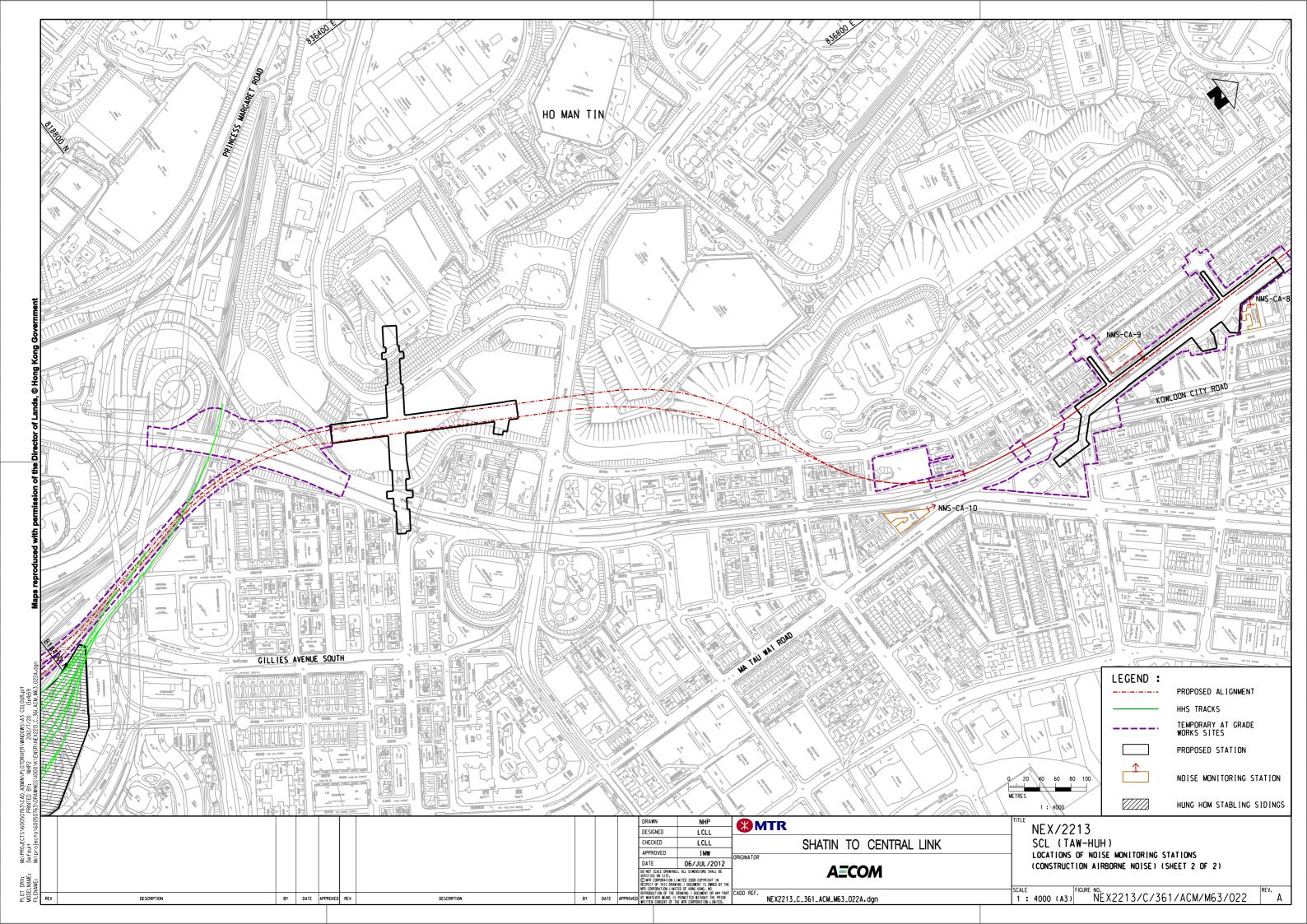

- 4.1.1 Baseline air quality monitoring was carried out between 10 May and 11 July 2012 at 5 monitoring stations at To Kwa Wan and Ma Tau Wai areas. Among these 5 monitoring stations, monitoring stations DMS-6 and DMS-7 as specified in EM&A Manual was inaccessible and inappropriate for monitoring respectively. Details of selection of alternative locations have been discussed, and therefore there is no revision for inclusion in the EM&A Manual.
- 4.1.2 The air quality monitoring results, in terms of 1-hr TSP and 24-hr TSP, were below the Limit Level set out in the EIAO-TM and Air Quality Objective (AQO) respectively at all monitoring locations. Action and Limit Levels for air quality at each location were derived from the baseline monitoring results.


4.2 Airborne Construction Noise


- 4.2.1 Baseline noise monitoring was carried out between 10 May and 13 July 2012 at 5 monitoring stations at To Kwa Wan and Ma Tau Wai areas. Among these 5 monitoring stations, only monitoring station NMS-CA-6 as specified in EM&A Manual was inaccessible and thus it was relocated to other location. Proposal for this alternative location was submitted and approved by EPD, and therefore there is no revision for inclusion in the EM&A Manual.
- 4.2.2 At all monitoring locations, the averaged baseline daytime noise monitoring results exceeded the criteria of 75dB(A) for residential premises and 70dB(A) for educational institutions except Skytower Tower 2 (NMS-CA-7) and Lucky Building (NMS-CA-9). The major noise sources affecting the noise background at No. 420 Prince Edward Road West (NMS-CA-6), SKH Good Shepherd Primary School (NMS-CA-8) and Chat Ma Mansion (NMS-CA-10) were observed to be traffic noise from the adjoining Prince Edward Road West, Ma Tau Wai Road, and Chatham Road North respectively.
- 4.2.3 The Action Level of construction noise is based on documented valid complaints received, while the Limit Level for each monitoring location is set at a specific limit according to EIAO-TM and the EM&A Manual.


11


Figures



APPENDIX A

CALIBRATION CERTIFICATES OF MONITORING EQUIPMENTS

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date = Ma Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) = Pa (mm) -	295 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3860 0.9700 0.8690 0.8290 0.6840	3.2 6.4 7.9 8.8 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9951 0.9908 0.9887 0.9876 0.9824	0.7179 1.0215 1.1378 1.1913 1.4363	1.4137 1.9993 2.2353 2.3444 2.8275	********	0.9957 0.9915 0.9894 0.9883 0.9831	0.7184 1.0222 1.1385 1.1921 1.4372	0.8859 1.2528 1.4007 1.4690 1.7717
Qstd slop	t (b) = ent (r) =	1.97048 -0.00546 0.99991 		Qa slope intercept coefficient v axis =	t (b) =	1.23388 -0.00342 0.99991

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT (H2O (Pa/760) (298/Ta))] = b \}$ $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Station	420 Prince Edwa	ard Road West; D	DMS - 6	Operator:	nm Yuen		
Cal. Date:	27-Jun-12			Next Due Date:	26-Aug-12		
quipment No.:	A-001-81T			Serial No.	54		
	4		Ambient	Condition			
Temperatu	ıre, Ta (K)	304.5	Pressure, F	Pa (mmHg)		756.8	
W 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Tar Algert (ag)		Orifice Transfer S	tandard Informatio	n e	- e je i ji cik	
Seria	l No:	843	Slope, mc	2.00834	Interce		
Last Calibra	ation Date:	15-Nov-11]		= [DH x (Pa/760) x		
Next Calibra	ation Date:	15-Nov-12		Qstd = {[DH x (F	Pa/760) x (298/Ta)]	1/2 -bc) / mc	
		•					
		f. 135414 A	Calibration o	f TSP Sampler		lan en en en la	
	Orfice			HV	S Flow Recorder		
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Recorde Reading IC (CFM) Y-axis	
18	7.8	2.76		1.39	44.0	43.44	
13	6.4	2.50		1.26	40.0	39.49	
10	5.3	2.27		1.15	36.0	35.54	
7	3.7	1.90		0.96	30.0	29.62	
5	2.3	1.50		0.76	22.0	21.72	
Slope , mw = Correlation Coe	-		.9977	intercept, bw =	-4.0	387	
If Correlation Co	pefficient < 0.990,	check and recal	ibrate.				
			Set Point	Calculation			
rom the TSP Fi	eld Calibration Cu	rve, take Qstd =	: 1.30m ³ /min				
rom the Regres	sion Equation, the	e "Y" value accor	rding to				
					400		
		mw	v x Qstd + bw = IC	x [(Pa/760) x (298/Л	Га)] ^{wz}		
hanafa 0-10	aint IC - /	Dold Lhushir 1/2	760 / De \ v / T= / 00	ne 11 ^{1/2} _		41.30	
herefore, Set Pe	oint; IC = (mw x t	⊋sta + dw) x [(/	760 / Pa) x (Ta / 29	16)] =			
							
Remarks:							
wittel AU.			-				
	1.7					- D - P	
OC Davisons	Yu	(4/	Cianoturo:	9/		Date: 2d Jun -1	

Station 420 Prince Edward Road West; DMS - 6

Cal. Date: <u>27-Jun-12</u>

Next Due Date: 26-Aug-12

Set Point (IC) <u>41.30</u>

IC (CFM)	Qstd (m ³ /min)
24	0.813
25	0.842
26	0.871
27	0.900
28	0.929
29	0.958
30	0.987
31	1.016
32	1.045
33	1.075
34	1.104
35	1.133
36	1.162
37	1.191
38	1 220
39	1.249
40	1.278
41	1.307
42	1.336
43	1.365
44	1.394
45	1.423
46	1.452
47	1.481
48	1.510
49	1.539
50	1.568
51	1.597
52	1.626
53	1.655
54	1.684
55	1.713
56	1.742
57	1.771
58	1.800
59	1.829
60	1.858
61	1.887
62	1.916
63	1.945
64	1.974
65	2.003

	PARC 22; DMS	. 7		Operator: Shum Kam Yuen				
Cal. Date:	15-Jun-12	_		Next Due Date:	14-Aug-12			
Equipment No.:	A-001-83T			Serial No. 3457			•	
	-11-11		Ambient	Condition				
Temperatu	ire, Ta (K)	302.8	Pressure, F	Pa (mmHg)		757.0		
d est pet a	चौक्रमुखा स	THE THE C	Orifice Transfer St	andard Informatio	n etc.			
Seria	l No:	843	Slope, mc	2.00834	Interce		-0.02923	
Last Calibra	ation Date:	15-Nov-11		mc x Qstd + bc = [DH x (Pa/760) x (298/Ta)] 1/2				
Next Calibration Date: 15-Nov-12				Qstd = {[DH x (Pa/760) x (298/Ta)] 1/2 -bc} / mc				
			Calibration o	f TSP Sampler		C. III CONTROL D		
	Orfice		HVS Flow Records					
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m ³ /min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF		
18	6.8	2.58		1.30	42.0	41.58	3	
13	5.7	2.36		1.19	38.0	37.62		
10	4.8	2.17		1.09	34.0	33.66		
7	3.4	1.83		0.92	28.0	27.72		
5	2.2	1.47		0.75	20.0	19.80)	
•	inear Regression of Y on X be , mw = 38.9334				8.8	452	_	
- אוווי, שקטוי	prelation Coefficient* = 0.9980							
•	micient =		000					
Correlation Coe	-	check and recalib		_				
orrelation Coe	-	check and recalib	rate.	Calculation	e even ees			
Correlation Coe	pefficient < 0.990,		rate. Set Point	Calculation	g raph page			
From the TSP Fi	pefficient < 0.990,	ırve, take Qstd = 1	Set Point	Calculation	क्षा स्थल क्ष		······································	
f Correlation Coe	pefficient < 0.990,		Set Point	Calculation	2 - 14 Page			
f Correlation Coe	pefficient < 0.990,	urv e, take Qstd = 1 e "Y" value accord	Set Point .30m³/min ling to	Calculation x [(Pa/760) x (298/7				
f Correlation Coeff Correlation Coeff Correlation Coeff Correlation Coeff Coef	pefficient < 0.990, eld Calibration Cu asion Equation, th	urve, take Qstd = 1 e "Y" value accord mw :	Set Point .30m³/min ling to x Qstd + bw = IC	x [(Pa/760) x (298/1				
f Correlation Coeff Correlation Coeff Correlation Coeff Correlation Coeff Coef	pefficient < 0.990, eld Calibration Cu asion Equation, th	urve, take Qstd = 1 e "Y" value accord mw :	Set Point .30m³/min ling to	x [(Pa/760) x (298/1		42.19		
Correlation Coe If Correlation Coe From the TSP Fi	pefficient < 0.990, eld Calibration Cu asion Equation, th	urve, take Qstd = 1 e "Y" value accord mw :	Set Point .30m³/min ling to x Qstd + bw = IC	x [(Pa/760) x (298/1				
f Correlation Coeff Coef	pefficient < 0.990, eld Calibration Cu asion Equation, th	urve, take Qstd = 1 e "Y" value accord mw :	Set Point .30m³/min ling to x Qstd + bw = IC	x [(Pa/760) x (298/1				
from the TSP Fi	pefficient < 0.990, eld Calibration Cu asion Equation, th	urve, take Qstd = 1 e "Y" value accord mw :	Set Point .30m³/min ling to x Qstd + bw = IC	x [(Pa/760) x (298/1				
from the TSP Fi	pefficient < 0.990, eld Calibration Cu asion Equation, th	urve, take Qstd = 1 e "Y" value accord mw :	Set Point .30m³/min ling to x Qstd + bw = IC	x [(Pa/760) x (298/1				
Correlation Coe If Correlation Coe From the TSP Fi	pefficient < 0.990, eld Calibration Cu asion Equation, th	urve, take Qstd = 1 e "Y" value accord mw :	Set Point .30m³/min ling to x Qstd + bw = IC	x [(Pa/760) x (298/1				

Station PARC 22; DMS - 7

Cal. Date: <u>15-Jun-12</u>

Next Due Date: 14-Aug-12

Set Point (IC) 42.19

IC (CFM)	Qstd (m³/min)
24	0.844
25	0.869
26	0.895
27	0.921
28	0,946
29	0.972
30	0.998
31	1.023
32	1.049
33	1.075
34	1,100
35	1.126
36	1.152
37	1.178
38	1.203
39	1.229
40	1.255
41	1.280
42	1.306
43	1.332
44	1.357
45	1.383
46	1,409
47	1.434
48	1,460
49	1.486
50	1,511
51	1.537
52	1.563
53	1.588
54	1.614
55	1.640
56	1.666
57	1.691
58	1.717
59	1.743
60	1.768
61	1.794
62	1:820
63	1.845
64	1.871
65	1.897

Operator:

Shum Kam Yuen

SKH Good Shepherd Primary School; DMS - 8

Station

Cal. Date:	10-May-12			Next Due Date:	<u>09-Ju</u>	ıl-12 	_
Equipment No.:	A-001-81T	Serial No.			34	54	_
	V		Ambient	Condition			
Temperatu		305.5				760.2	<u> </u>
Temperati	ile, la (N)	300.5	1 1633010, 1	Pressure, Pa (mmHg) 760.2			
		(Orifice Transfer S	tandard Informatio	n .	The state of the s	
Seria	al No:	843	Slope, mc	2.00834	Interce		-0.02923
Last Calibr	ation Date:	15-Nov-11			c = [DH x (Pa/760) x (298/Ta)] 1/2		
Next Calibr	ration Date:	15-Nov-12		Qstd = {[DH x (Pa/760) x (298/Ta)]	-bc} / mc	
			O liberation o	of TSP Sampler			
21.01	<u> </u>			or 15P Sampler		S Flow Recorder	
Resistance	Orfice		Т .				
Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m ³ /min) X - axis	Flow Recorder Reading (CFM)	Continuous Fl Reading IC (C	
18	7.7	2.74		1.38	44.0	43.	46
13	6.4	2.50		1.26	40.0	39.	51
10	5.3	2.27		1.15	36.0	35.	56
7	3.6	1.87		0.95	30.0	29.	63
5	2.4		1.53	0.78	22.0	21.	73
By Linear Regre Slope , mw =	ession of Y on X 35.2627			Intercept, bw =	-4.8748		
Correlation Coefficient* = 0.9936							
*If Correlation Co	oefficient < 0.990	, check and recalib	orate.				
4			Set Doint	Calculation			r gaze in a sin
C-11		urve, take Qstd = 1		Calculation		<u>,</u>	
		e "Y" value accord					
From the Regres	ssion Equation, in	e i value accord	ing to				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Γa)] ^{1/2}		
Therefore Set P	oint: IC = / mw v	Qstd + bw) x [(76	50 / Pa \ v (Ta / 29	98 11 ^{1/2} =		41.47	
Therefore, Sect	oint, to - (inw x	QSIG · DH / X [(I V	5071 a 7 x (1 a 7 2 c	, , , , , , , , , , , , , , , , , , ,			
<u> </u>							
Remarks:							
						. 1 A	
QC Reviewer: _	This	hy	Signature:	1/		Date:	101/12
QUITOTIONEI.	(<u>-</u>	

Station SKH Good Shepherd Primary School; DMS - 8

Cal. Date: <u>10-May-12</u>

Next Due Date: 09-Jul-12

Set Point (IC) 41.47

IC (CFM)	Qstd (m³/min)
24	0.819
25	0.847
26	0.876
27	0.904
28	0.932
29	0.961
30	0.989
31	1.017
32	1.046
33	1.074
34	1.102
35	1.131
36	1.159
37	1.188
38	1.216
39	1.244
40	1.273
41	1.301
42	1.329
43	1.358
44	1.386
45	1.414
46	1.443
47	1,471
	3102
48	1.499
49	1.528
50	1.556
51	1.585
52	1:613
53	1.641
54	1.670
55	1,698
56	1.726
57 58	1.755
	1.811
59	1.840
60 61	1.840
62	1.896
63	1.925
64	1.953
65	1,982
05	1.302

Temperature, Serial No Last Calibration Next Calibration Resistance Plate No	DH (orifice), in. of water 7.6 6.4 5.2 3.5	843 15-Nov-11 15-Nov-12	Orifice Transfer S Slope, mc	tandard Informatio 2.00834 mc x Qstd + bc Qstd = {[DH x (Formation of TSP Sampler Qstd (m³/min) X - axis 1.37	n interce = [DH x (Pa/760) x Pa/760) x (298/Ta)]	757.5 ept, bc -0.029 (298/Ta)] 1/2 1/2 -bc} / mc S Flow Recorder Continuous Flow Recorde Reading IC (CFM) Y-axi
Serial No Last Calibration Next Calibration Next Calibration Resistance Plate No. 18 13 10 7 5 By Linear Regression *If Correlation Coefficient *If Coefficient	Ta (K) D: n Date: n Date: DH (orifice), in. of water 7.6 6.4 5.2 3.5	843 15-Nov-11 15-Nov-12	Pressure, For Stope, mc Calibration of Orfice 60) x (298/Ta)] ^{1/2} 2.72	Condition Pa (mmHg) tandard Informatio 2.00834 mc x Qstd + bc Qstd = {[DH x (Formation of TSP Sampler)]} Qstd (m³/min) X - axis 1.37	n Interce = [DH x (Pa/760) x Pa/760) x (298/Ta)] HV3 Flow Recorder Reading (CFM)	757.5 apt, bc -0.029 (298/Ta)] 1/2 1/2 -bc} / mc S Flow Recorder Continuous Flow Recorder Reading IC (CFM) Y-axi
Serial No Last Calibration Next Calibration Next Calibration Resistance Plate No. 18 13 10 7 5 By Linear Regression *If Correlation Coefficity *If C	DH (orifice), in. of water 7.6 6.4 5.2 3.5	843 15-Nov-11 15-Nov-12	Pressure, For Stope, mc Calibration of Orfice 60) x (298/Ta)] ^{1/2} 2.72	tandard Informatio 2.00834 mc x Qstd + bc Qstd = {[DH x (Formation of TSP Sampler Qstd (m³/min) X - axis 1.37	n Interce = [DH x (Pa/760) x Pa/760) x (298/Ta)] HV3 Flow Recorder Reading (CFM)	757.5 ept, bc -0.029 (298/Ta)] 1/2 1/2 -bc} / mc S Flow Recorder Continuous Flow Recorder Reading IC (CFM) Y-axi
Serial No Last Calibration Next Calibration Resistance Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficient *If Correlation Coefficient From the TSP Field (DH (orifice), in. of water 7.6 6.4 5.2 3.5	843 15-Nov-11 15-Nov-12	Orifice Transfer S Slope, mc Calibration of Orfice 60) x (298/Ta)] ^{1/2} 2.72	tandard Informatio 2.00834 mc x Qstd + bc Qstd = {[DH x (Formation of TSP Sampler] Qstd (m³/min) X - axis 1.37	Interce [DH x (Pa/760) x Pa/760) x (298/Ta)] HV3 Flow Recorder Reading (CFM)	ept, bc -0.029 (298/Ta)] 1/2 1/2 -bc} / mc S Flow Recorder Continuous Flow Recorder Reading IC (CFM) Y-axi
Serial No Last Calibration Next Calibration Resistance Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficit *If Coe	DH (orifice), in. of water 7.6 6.4 5.2 3.5	843 15-Nov-11 15-Nov-12	Calibration of Orfice 60) x (298/Ta)] ^{1/2} 2.72	2.00834 mc x Qstd + bc Qstd = {[DH x (For TSP Sampler] Qstd (m³/min) X - axis 1.37	Interce [DH x (Pa/760) x Pa/760) x (298/Ta)] HV3 Flow Recorder Reading (CFM)	(298/Ta)] 1/2 (298/Ta)] 1/2 1/2 -bc} / mc S Flow Recorder Continuous Flow Recorde Reading IC (CFM) Y-axi
Serial No Last Calibration Next Calibration Resistance Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficit *If Coe	DH (orifice), in. of water 7.6 6.4 5.2 3.5	843 15-Nov-11 15-Nov-12	Calibration of Orfice 60) x (298/Ta)] ^{1/2} 2.72	2.00834 mc x Qstd + bc Qstd = {[DH x (For TSP Sampler] Qstd (m³/min) X - axis 1.37	Interce [DH x (Pa/760) x Pa/760) x (298/Ta)] HV3 Flow Recorder Reading (CFM)	(298/Ta)] 1/2 (298/Ta)] 1/2 1/2 -bc} / mc S Flow Recorder Continuous Flow Recorde Reading IC (CFM) Y-axi
Resistance Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficients *If	DH (orifice), in. of water 7.6 6.4 5.2 3.5	15-Nov-11 15-Nov-12	Calibration of Drfice 60) x (298/Ta)] ^{1/2} 2.72	mc x Qstd + bc Qstd = {[DH x (For TSP Sampler] Qstd (m³/min) X - axis 1.37	Pa/760) x (298/Ta)] HVS Flow Recorder Reading (CFM)	(298/Ta)] 1/2 1/2 -bc} / mc S Flow Recorder Continuous Flow Recorder Reading IC (CFM) Y-axi
Resistance Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficient Coeff	DH (orifice), in. of water 7.6 6.4 5.2 3.5	15-Nov-12	Orfice 60) x (298/Ta)] ^{1/2} 2.72	Qstd = {[DH x (For TSP Sampler]] Qstd (m³/min) X - axis 1.37	Pa/760) x (298/Ta)] HV5 Flow Recorder Reading (CFM)	S Flow Recorder Continuous Flow Recorder Reading IC (CFM) Y-axi
Resistance Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficient Coeff	DH (orifice), in. of water 7.6 6.4 5.2 3.5	eret er a	Orfice 60) x (298/Ta)] ^{1/2} 2.72	Ostd (m³/min) X - axis 1.37	Flow Recorder Reading (CFM)	S Flow Recorder Continuous Flow Recorde Reading IC (CFM) Y-axi
Resistance Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficit *If Correlation Coefficit From the TSP Field (DH (orifice), in. of water 7.6 6.4 5.2 3.5		Orfice 60) x (298/Ta)] ^{1/2} 2.72	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	S Flow Recorder Continuous Flow Recorder Reading IC (CFM) Y-axi
Resistance Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficient Coeff	DH (orifice), in. of water 7.6 6.4 5.2 3.5		Orfice 60) x (298/Ta)] ^{1/2} 2.72	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	S Flow Recorder Continuous Flow Recorder Reading IC (CFM) Y-axi
Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficient Coeffici	7.6 6.4 5.2 3.5		60) x (298/Ta)] ^{1/2}	- axis	Flow Recorder Reading (CFM)	Continuous Flow Recorde Reading IC (CFM) Y-axi
Plate No. 18 13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficient *If Correlation Coefficient From the TSP Field 6	7.6 6.4 5.2 3.5	[DH x (Pa/7	2.72	- axis	Reading (CFM)	Reading IC (CFM) Y-axi
13 10 7 5 By Linear Regression Slope, mw = Correlation Coefficient *If Correlation Coefficient From the TSP Field (6.4 5.2 3.5				44.0	10.10
10 7 5 By Linear Regression Slope, mw = Correlation Coefficit *If Correlation Coefficit From the TSP Field (5.2 3.5		2.50			43.48
7 5 By Linear Regression Slope, mw = Correlation Coefficit *If Correlation Coefficit From the TSP Field (3.5			1.26	40.0	39.53
By Linear Regression Slope , mw = Correlation Coeffice *If Correlation Coeffice From the TSP Field (_	1	2.25		34.0	33.60
By Linear Regression Slope , mw = Correlation Coefficit *If Correlation Coefficit From the TSP Field (2.4	1.85		0.94	28.0	27.67
By Linear Regression Slope , mw = Correlation Coefficit *If Correlation Coefficit From the TSP Field (2.4	1.53		0.78	22.0	21.74
From the TSP Field (36.3556	_ 0.	9951	Intercept, bw =	-6.6	338
	icient < 0.990,	check and recali	brate.	_		
			Set Point	Calculation	e militar el	
From the Regression	Calibration Cu	rve, take Qstd =	1.30m ³ /min			
	n Equation, the	e "Y" value accor	ding to			
		M414	v Ootel ± bur = IC	x [(Pa/760) x (298/1	Гэ)] ^{1/2}	
		IIIM	X Gara a pm - 10	X [(F & F 00) X (230F)	(۵)]	
Therefore, Set Point;	t; IC = (mw x 0	Qstd + bw) x [(7	60 / Pa) x (Ta / 29	98)] 1/2=		41.12
				<u>.</u>	·	
Remarks:						
_						
QC Reviewer:		0	Signature:	9/		Date: 7- Juy 12

Station Lucky Building; DMS - 9

Cal. Date: <u>06-Jun-12</u>

Next Due Date: 05-Aug-12

Set Point (IC) 41.12

IC (CFM)	Qstd (m³/min)
24	0.843
25	0.870
26	0.898
27	0.925
28	0.953
29	0.980
30	1.008
31	1.035
32	1.063
33	1.090
34	1.118
35	1.145
36	1.173
37	1.200
38	1.228
39	1.255
40	1.283
17700	10200000
41	1.310
42	1.338
43	1.365
44	1:393
45	1.420
46	1.448
47	1.475
48	1.503
49	1.530
50	1.558
51	1.585
52	1.613
53	1.640
54	1.668
55	1.695
56	1.723
57	1.750
58	1.778
59	1.805
60	1.833
61	1.860
62	1.888
63	1.915
64	1.943
65	1.970
65	1.970

Station Chat Ma Building; DMS - 10				Operator:	Shum Kam Yuen			
Cal. Date:				Next Due Date:	20-Aug-12			
Equipment No.:				Serial No.	34	55		
		e de la companya de l La companya de la co	Ambient	Condition	40 · · · · · · · · · · · · · · · · · · ·			
Temperatu		302.6		Pa (mmHg)		756.6		
	1			, ,,				
E RAIL			Orifice Transfer S	tandard Informatio	n e			
Serial No: 843 Slope, mc				2.00834	Interce	ept, bc -0.0292		
Last Calibra	ation Date:	15-Nov-11	_	mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] 1/2		
Next Calibra	ation Date:	15-Nov-12		Qstd = {[DH x (Pa/760) x (298/Ta)]	1/2 -bc} / mc		
	and the state	a statistica e	Calibration of	f TSP Sampler	\$ 1 m miles 1 1 2 1	A such the state of the		
		0	rfice		HV	S Flow Recorder		
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis		
18	7.6		2.73	1.37	44.0	43.57		
13	6.3		2.49	1.25	40.0	39,61		
10	5.2		2.26	1.14	34.0	33.67		
7	3.6	1	1.88		28.0	27.72		
5	2.3		1.50	0.76	22.0	21.78		
By Linear Regression of Y on X Slope , mw = 36.0518 Correlation Coefficient* = 0.9926				intercept, bw =	-6.2207			
	-	check and recalit		_				
			Set Point	Calculation				
rom the TSP Fig	eld Calibration Cu	rve, take Qstd =	1.30m ³ /min	-				
		e "Y" value accord						
ŭ	•		_					
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/1	Га)] ^{1/2}			
				410				
herefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] "=		41.05		
Remarks:								
			_ 					
	٧.	Stana		9/		Date: 22- Juy-12		
OC Reviewer		~ I woul	Signature:			Date:		

Station Chat Ma Building; DMS - 10

Cal. Date: <u>21-Jun-12</u>

Next Due Date: 20-Aug-12

Set Point (IC) <u>41.05</u>

IC (CFM)	Qstd (m³/min)
24	0.838
25	0.866
26	0.894
27	0.921
28	0.949
29	0.977
30	1.005
31	1.032
32	1.060
33	1.088
34	1,116
35	1.143
36	1.171
37	1.199
38	1.227
39	1.254
40	1.282
41	1.310
42	1.338
43	1.365
44	1.393
45	1.421
46	1:448
47	1.476
48	1.504
49	1.532
50	1.559
51	1.587
52	1.615
53	1.643
54	1.670
55	1,698
56	1.726
57	1.754
58	1.781
59	1.809
60	1.837
61	1.865
62	1 892
63	1.920
64	1.948
65	1.976

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting:				Laser Dust Monitor						
				LD-3						
				LD-3 A.005.11	<u> </u>					
				799 CPI						
Sensitivity Adjustment Obside Colling.										
Operator:				Mike Shek (MSKM)						
Standa	rd Equipment	-								
Equip	ment:		precht & Pat			19				
Venue):		erport (Pui Y	ing Seco	ndary So	hool)		- 6		
Model	No.:	Serie	es 1400AB							
Serial	No:	Cont		AB21989			···			
_		Sens		OC14365	59803	K _o : <u>12500</u>	<u> </u>			
Last C	alibration Date*:	4 Ju	ne 2011	•						
*Remar	ks: Recommend	ed interval	for hardwar	e calibra	tion is 1 y	vear ear				
Calibra	tion Result									
04	tota a A alticatus and	Caala Catt	ina /Poforo	Calibratic	m)-	799 CP	м ·			
Sensit	ivity Adjustment ivity Adjustment	Scale Sett	ing (before v	Calibration'	ж.). \-	799 CP				
Sensit	ivity Adjustinent	Scale Sell	ing (Alter G	alibration	<i>)</i> -	O,	171			
Hour	Date	T	me	Am	pient	Concentration	Total	Count/		
1100.	(dd-mm-yy)			Cond	dition	(mg/m³)	Count ²	Minute ³		
	(11		•	Temp	R.H.	Y-axis		X-axis		
				(°C)	(%)		(740	00.00		
1	02-07-11	09:30	- 10:30	31.1	70	0.04305	1718	28.63 28.38		
2	02-07-11	10:30	- 11:30	31.1	71 71	0.04257 0.04424	1703 1763	29.38		
3 4	02-07-11 02-07-11	11:30 12:30	- 12:30 - 13:30	31.2	71	0.04632	1855	30.92		
Note:						ashnick TEOM®		1 00,00		
Note:	2. Total Count					SIIION I EGIN				
	3. Count/minut									
					•					
	ar Regression of	Y or X								
	(K-factor):		0.0015							
Correl	ation coefficient:		0.9961							
Validit	y of Calibration F	Record:	1 July 201	12						
	,				····					
Remark	s:									
								:		
					53			1		
1										
L	<u> </u>									
					ta .	/				
QC Re	eviewer: YW I	-ung	Signa	ture:	<u> </u>	Date	e: 4 July	2011		

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting: Operator: Standard Equipment Equipment: Venue: Model No.: Ruppred Cyberpo Series 1	1	SIBATA LD-3B A.005.12a 805 CPM Mike She	1	0	ě	
Equipment No.: Sensitivity Adjustment Scale Setting: Operator: Standard Equipment Equipment: Venue: Model No.: Ruppred Cyberpo Series 1		A.005.12a BO5 CPW	1	0	÷	
Sensitivity Adjustment Scale Setting: Operator: Standard Equipment Equipment: Ruppred Venue: Cyberpo Model No.: Series 1		805 CPIV	1	0	. 0	
Sensitivity Adjustment Scale Setting: Operator: Standard Equipment Equipment: Ruppred Venue: Cyberpo Model No.: Series 1				9		
Standard Equipment Equipment: Ruppred Venue: Cyberpo Model No.: Series 1		Mike She	k (MSKN	<u>0</u>		
Equipment: Ruppred Venue: Cyberpo Model No.: Series 1						
Venue: Cyberpo Model No.: Series 1				. 		
Venue: Cyberpo Model No.: Series 1	ont X. Wot	achnick 1	reow®			
Model No.: Series 1				(hool)		
		ing occor	idal y Ou	W (CO)		
O : 111-		AB21989	0002			
Serial No: Control:				V - 12500		
Sensor: Last Calibration Date*: 4 June 2		OC14365	9803	K₀: <u>12500</u>		- 31
*Remarks: Recommended interval for	hardwar	e calibrat	ion is 1 y	/ear		
Calibration Result			63	72		
C. W. M. A. H. and and C. Carlin Collins	(Defens	C-1:b4:-	_\.	90E CE	СРМ	
Sensitivity Adjustment Scale Setting						10
Sensitivity Adjustment Scale Setting	(After Ca	llibration)	:	805CP	'M _.	,,,12
Hour Date Time		Ambient		Concentration ¹ (mg/m ³)	Total	Count
(dd-mm-yy)			lition		Count ²	Minute
` ""		Temp	R.H.	Y-axis		X-axis
		(°C)	(%)			
1 02-07-11 09:30 -	10:30	31.1	70	0.04305	1843 •	30.72
2 02-07-11 10:30 -	11:30	31.1	71	0.04257	1826	30.43
3 02-07-11 11:30 -	12:30	31.2	71	0.04424	1893	31.55
4 02-07-11 12:30 -	13:30	31.2	-71	0.04632	1994	33.23
Note: 1. Monitoring data was meas 2. Total Count was logged by 3. Count/minute was calcular	y Laser D	Dust Moni	itor	ishnick TEOM®		
By Linear Regression of Y or X	0044					
	.0014 .9947					
				<u>\$</u>		
Validity of Calibration Record:1	July 201	2				
Remarks:						~
				5		
i	45					

-

Type:	facturer/Bra	nd:	-	Laser D	ust Moni	itor				
Mode		iid.	-	LD-3B						
	ment No.:		-	A.005.14	a					
		nent Scale Se	tting:	786 CPM						
Opera	ator:		_	Mike Shek (MSKM)						
Standa	rd Equipme	ent								
<u> </u>										
Equip			pprecht & Pa							
			Syberport (Pui Ying Secondary School)							
Model			eries 1400AB ontrol: 140AB219899803							
Serial	NO:									
Last C	Calibration D		nsor: <u>12</u> 6 1ay 2012	00C1436	59803	K _o : <u>12500</u>)			
*Remar	ks: Recomm	nended interva	al for hardwa	re calibra	tion is 1	year				
Calibra	tion Result									
Sansif	inity Adiusta	ant Scala Sc	Hina (Poforo	Colibratia	m):	786 CF	36.4			
				ting (Before Calibration): ting (After Calibration):			786 CPM 786 CPM			
Selisii	ivity Aujustii	ient Stale Se	ung (Anter C	alibration	,.	CF	*IVI			
Hour	Date		Time	Aml	pient	Concentration ¹	Total	Count/		
1.00	(dd-mm-y			Condition		(mg/m³)	Count ²	Minute		
	()	"		Temp	R.H.	Y-axis		X-axis		
	·			(°C)	(%)			** *******		
1	02-06-12	2 13:15	- 14:15	27.9	63	0.04073	1746	29.10		
2	02-06-12	2 14:15	- 15.15	27.9	63	0.04154	1778	29.63		
3	02-06-12	2 15:15	- 16:15	28.1	64	0.04269	1830	30.50		
4	02-06-12	2 16:15	- 17:15	28.1	64	0.04136	1769	29.48		
Note:	1. Monitori	ing data was r	neasured by	Rupprec	nt & Pata	shnick TEOM®				
		ount was logg								
		ninute wás cal								
By Lines	ar Regressio	n of V or X								
	(K-factor):	III OI I OI X	0.0014							
	ation coeffic	ient [.]	0.9963							
001101			0.0000							
Validit	y of Calibrati	on Record:	1 June 20	013						
Remark	e.						22			
Coman	<u>. </u>									
1										
1										
										
•		a		_	4 /	_				
QC Re	eviewer: <u>Y</u>	W Fung	Signa	ture:	-1/-	Date	e: <u>4 June</u>	2012		

Type:	:			Laser D	ust Mon	itor		
Manufacturer/Brand:				SIBATA	<u></u>			
Mode	l No.:			LD-3B				
Equip	Equipment No.:				īa .			
Sensitivity Adjustment Scale Setting:				786 CP	M			
Operator:				Mike Shek (MSKM)				
Standa	rd Equipment			_				
Equip			precht & Pa					
Venue			erport (Pui)	Ying Seco	ondary S	chool)		
Mode			es 1400AB					
Serial	NO:	Con		DAB2198		14 40500		
Loot	Calibration Date*	Sen		00C1436	59803	K _o : <u>12500</u>		
Last	Jalibration Date"	<u> 5 IVI8</u>	ay 2012					
*Remar	rks: Recommend	led interval	for hardwai	re calibra	tion is 1	year		
Calibra	tion Result							
	tivity Adjustment					_734 CP	M	
Sensit	tivity Adjustment	Scale Sett	ing (After Ca	alibration):	734 CP	M	
				_	10			
Hour	Date	Ti	ime		pient	Concentration ¹ (mg/m ³)	Total	Count/
	(dd-mm-yy)				dition		Count ²	Minute ³
	i			Temp	R.H.	Y-axis		X-axis
	00.00.40	40.45	4445	(°C)	(%)	0.045		
1	02-06-12	13:15	- 14:15	27.9	63	0.04073	1748	29.13
2	02-06-12	14:15	- 15:15 10:15	27.9	63	0.04154	1780	29.67
3	02-06-12 02-06-12	15:15 16:15	- 16:15	28.1	64	0.04269	1826	30.43
			- 17:15	28.1	64	0.04136	1773	29.55
Note:						ashnick TEOM®	-	
	Total CountCount/minut							
	5. Countrillia	e was calc	culated by (I	Otal Cou	1000)			
By Line:	ar Regression of	Y or X						
	(K-factor):	1017	0.0014					
	ation coefficient:		0.9949					
								
Validit	y of Calibration F	Record:	1 June 20	13				
Remark	s:							
						 _		
					,			
QC Re	eviewer: YW F	ung	Signat	ure:	4/	Date	: 4 June	2012

G/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港資竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mall: smec@clgismec.com Website: www.clgismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7538

CERTIFICATE OF CALIBRATION

Certificate No.:

11CA0711 01-01

Page

2

Item tested

Description:

Sound Level Meter (Type:1)

Microphone

Manufacturer: Type/Model No.:

B&K 2238

B&K

Serial/Equipment No.:

2255677

4188

Adaptors used:

2250455

Item submitted by

Customer Name:

AECOM'ASIA CO., L'TD.

Address of Customer: Request No.:

Date of receipt:

11-Jul-2011

Date of test:

11-Jul-2011

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 DS 360

Serial No.

Explry Date: 09-May-2012

Traceable to: CIGISMEC

Signal generator Signal generator

DS 360

2288444 33873 61227

30-May-2012 30-May-2012

CEPREI CEPREI

Ambient conditions

Temperature:

(22 ± 1):°C (55±5) %

Relative humidity: Air pressure;

(990 ± 5) hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152. 2,

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3. between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

ed Signatory:

Huang Jlan dicaFeng Jun Qi

The results reported in this certificate refer to the condition of the instrument on the date of calibration and Comments: carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

B/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mall: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fex: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

11CA0711 01-01

Page

of

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Coverage Factor		
Self-generated noise	A	Pass	0.3		
-	C	Pass	0.8 2.1		
	Lin	Pass	1.6 2.2		
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3		
	Reference SPL on all other ranges	Pass	0.3		
	2 dB below upper limit of each range	Pass	0.3.		
	2 dB above lower limit of each range	Pass	0.3		
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3		
Frequency weightings	Α	Pass	0.3		
	C	Pass	0.3		
	Lin	Pass	0.3		
l'ime weightings	Single Burst Fast	Pass.	0.3		
	Single Burst Slow	Pass	0.3		
Peak response	Single 100µs rectangular pulse	Pass	0.3		
R.M.S. accuracy	Crest factor of 3.	Pass	0.3		
l'ime weighting Í	Single burst 5 ms at 2000 Hz	Pass	0.3		
	Repeated at frequency of 100 Hz	Pass	0.3		
Time averaging.	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3		
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass.	0.3		
Pulse range	Single burst 10 ms at 4 kHz	Pass.	0.4		
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4		
Overload indication	SPL	Pass	0.3		
	Leq.	Pass	0.3		

2, Acoustic tests.

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3, Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi

End

1 Checked by

13-Jul-201

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

O Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

11CA0711 01-02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

B&K

B&K

Type/Model No.:

2238

4188

Serial/Equipment No.:

2255680 / N.009.01

2250447

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

11-Jul-2011

Date of test:

12-Jul-2011

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

B&K 4226 DS 360

2288444 33873

09-May-2012 30-May-2012 CIGISMEC CEPREI

Signal generator

DS 360

61227

30-May-2012

CEPRE

Ambient conditions

Temperature: Air pressure:

(22 ± 1) °C

Relative humidity:

 (55 ± 5) % (995 ± 5) hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of ±20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Huang

Approved Signatory:

Date:

ng Jun Qi

13-Jul-2011

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

11CA0711 01-02

Page

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

in t reference range , Step 5 dB at 4 kHz eference SPL on all other ranges dB selow upper limit of each range	Pass Pass Pass Pass	0.3 0.8 1.6 0.3 0.3	2.1 2.2
in t reference range , Step 5 dB at 4 kHz eference SPL on all other ranges dB below upper limit of each range	Pass Pass Pass Pass	0.8 1.6 0.3	
reference range, Step 5 dB at 4 kHz eference SPL on all other ranges dB below upper limit of each range	Pass Pass	0.3	2.2
eference SPL on all other ranges dB below upper limit of each range	Pass		
dB below upper limit of each range		0.3	
	D		
dB above lower limit of each range	Pass	0.3	
AD ADOVE LOWER HITHE OF EACH 1911AG	Pass	0.3	
reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Pass	0.3	
	Pass	0.3	
n	Pass	0.3	
ingle Burst Fast	Pass	0.3	
ingle Burst Slow	Pass	0.3	
ingle 100μs rectangular pulse	Pass	0.3	
rest factor of 3	Pass	0.3	
ingle burst 5 ms at 2000 Hz	Pass	0.3	
epeated at frequency of 100 Hz	Pass	0.3	
ms burst duty factor 1/103 at 4kHz	Pass	0.3	
ms burst duty factor 1/104 at 4kHz	Pass	0.3	
ingle burst 10 ms at 4 kHz	Pass	0.4	
ingle burst 10 ms at 4 kHz	Pass	0.4	
PĽ	Pass	0.3	
eq	Pass	0.4	
	nngle Burst Fast ngle Burst Slow ngle 100µs rectangular pulse rest factor of 3 ngle burst 5 ms at 2000 Hz epeated at frequency of 100 Hz ms burst duty factor 1/10³ at 4kHz ms burst duty factor 1/10⁴ at 4kHz ngle burst 10 ms at 4 kHz ngle burst 10 ms at 4 kHz ngle burst 10 ms at 4 kHz	dB above lower limit of each range reference range, Step 5 dB at 4 kHz Pass Pass Pass no Pass nogle Burst Fast Pass nogle Burst Slow Pass nogle 100 \(\text{µs} \) rectangular pulse Pass rest factor of 3 Pass nogle burst 5 ms at 2000 Hz Pass pepated at frequency of 100 Hz Pass ms burst duty factor 1/10 ³ at 4kHz Pass nogle burst 10 ms at 4 kHz Pas	dB above lower limit of each range reference range , Step 5 dB at 4 kHz Pass 0.3 Pass 0.3 Pass 0.3 Pass 0.3 Pass 0.3 In Pass 0.3 Ingle Burst Fast Pass 0.3 Ingle Burst Slow Pass 0.3 Ingle burst 5 ms at 2000 Hz Pass 0.3 Ingle burst 5 ms at 2000 Hz Pass 0.3 Ingle burst 5 ms at 2000 Hz Pass 0.3 Ingle burst 5 ms at 2000 Hz Pass 0.3 Ingle burst 5 ms at 4 kHz Pass 0.3 Ingle burst duty factor 1/10 ³ at 4kHz Pass 0.3 Ingle burst 10 ms at 4 kHz Pass 0.4 Ingle burst 10 ms at 4 kHz Pass 0.4 Ingle burst 10 ms at 4 kHz Pass 0.4 Ingle burst 10 ms at 4 kHz Pass 0.3 Ingle burst 10 ms at 4 kHz Pass 0.4 Ingle burst 10 ms at 4 kHz Pass 0.4 Ingle burst 10 ms at 4 kHz Pass 0.3

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
•	Weighting A at 8000 Hz	Pass	0.5

3, Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by

Date:

ANN

(Fung Chi Yipi)

12-Jul-2011

Checked by

Date:

Chan Chun Lain 13-Jul-2011

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

End

Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

CERTIFICATE OF CALIBRATION

Certificate No.: 2KS12-DEMO Page 1 of 2

Calibration of:

Description:

Sound Level Meter

Microphone

Manufacture:

Brüel & Kjær

Type No.

2238

4188

Serial No.

2285692

2641129

Client:

Spectris China Limited 706 Miramar Tower 132 Nathan Road

TST, Kln.

HK

Calibration Conditions:

Air Temperature :

23 °C

Air Pressure

101.0 kPa

Relative Humidity:

59 %

Test Specifications:

The Sound Level Meter has been calibrated in accordance with the requirements as specified in IEC 60651 and IEC 60804 type 1, and vendor specific procedures.

The measurements has been performed with the assistance of:

Brüel & Kjær's Sound Level Meter Calibration System B&K 9600 CAL2238A, Ver.25.10.1999 The standard(s) and instrument(s) used in the calibration are traceable to international standard and are calibrated on a schedule which is adjusted to maintain the required accuracy level.

Test Result:

A list of the performed (sub) tests is stated on page 2 of this certificate. Actual Measurement are documented on worksheet.

Date of Calibration: 22 April, 2012

Certificate issued: 22 April, 2012 Approved signatory:

Calibrated By:

Jacky Leung

Jacky Leung

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.

CERTIFICATE OF CALIBRATION

Certificate No.: 2KS12-DEMO Page 2 of 2

Results:

List of performed (sub) test with test status:

"OK" Means the result of the (sub)test is Inside the tolerances stated in the test specifications.

"-" Means the result of the (sub)test is Outside these tolerances.

Test:	Subtest:	Status:
Noise	Α	-
Noise	C	-
Noise	Lin	
Acoustic Response	A	OK.
Acoustic Response	Lin	OK

Calibration Equipment:

Brüel & Kjær's Sound	Level Meter Calibi	ration System	B&K 9600 CAL	2238A, Ver.25.10.1999
Description:	Make & Model:	Serial No.:	Last Cal. Date:	Traceable to:
Digital Multi-meter	Datron 1281	27361	23 Sept, 2011	HKSCL (HOKLAS)
Sine/Noise Generator	B&K 1049	1314978	Test	B&K Conformance
Test Waveform Generator	B&K 5918	1482949	Test	B&K Conformance
Acoustical Calibrator	B&K 4226	1843104	09 Aug, 2011	NPL via B&K (UKAS)

Calibrated By: Surface : 22 April, 2012

Checked By: Date: 22 April, 2012

Sound Level Meter Type 2238 SerialNo. 2285692 Date 22.04.2012 Microphone Type 4188 SerialNo. 2641129

B 20 SELF GENERATED NOISE

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level : Calculated mean value of 10 measurements in dB

measured using the DC output of the SLM, or value

directly from indicator.

Noise Level in A Weighting dB 13.5

Noise Level in C Weighting dB 17.5

Noise Level in Lin dB 22.2

A 2 FREQUENCY WEIGHTING

The frequency response of the weighting networks has been tested electricaly with reference to 1000 Hz. The test has been performed as an "Inverse curve test". The input to the SLM has been increased by the same amount as the nominal attenuation of the filter.

The test level is FSD - 36 dB in the reference range.

Frequency : Frequency of input sine in Hz
Input Level : Level of input sine in dBuV
Exp. Level : Expected SLM reading in dB
Actual Level : Actual SLM reading in dB

Tolerance : IEC 651 tolerance

Sound Level Meter Type 2238 SerialNo. 2285692 Microphone Type 4188 SerialNo. 2641129

Date 22.04.2012

A2 ACOUSTICAL RESPONSE

The acoustic response of the Sound Level Meter and the microphone is tested in the frequency range from 31.5 Hz. to 12.5 kHz. using a B&K type 4226 Multifunction Acoustic Calibrator.

The test can be performed in both linear and A weighting.

Reference frequency : 1 kHz.
Reference level : 94 dB.
Tolerance : IEC 651.

Acoustic response A.

		Le	vel	Toler	ance	
Frequency	FF-Corr.	Exp.	Actual	Pos.	Neg.	Dev
1000.0	0.2		93.8		_	
31.5	0.0	54.7	55.0	1.5	1.5	0.3
63.0	0.0	67.9	68.0	1.5	1.5	0.1
125.0	0.0	78.0	77.9	1.0	1.0	-0.1
250.0	0.0	85.4	85.3	1.0	1.0	-0.1
500.0	0.1	90.7	90.6	0.9	0.9	-0.1
2000.0	0.3	94.8	94.7	0.9	0.9	-0.1
4000.0	1.3	93.8	93.9	0.9	0.9	0.1
8000.0	4.0	88.9	89.2	1.3	2.8	0.3
12500.0	7.2	82.5	82.6	2.8	5.8	0.1

Acoustic response Lin.

		Le	vel	Toler	ance	
Frequency	FF-Corr.	Exp .	Actual	Pos.	Neg.	Dev
1000.0	0.2		93.8			
31.5	0.0	94.1	94.2	1.5	1.5	0.1
63.0	0.0	94.1	94.1	1.5	1.5	0.0
125.0	0.0	94.1	94.0	1.0	1.0	-0.1
250.0	0.0	94.0	93.9	1.0	1.0	-0.1
500.0	0.1	93.9	93.8	0.9	0.9	-0.1
2000.0	0.3	93.6	93.5	0.9	0.9	-0.1
4000.0	1.3	92.8	92.9	0.9	0.9	0.1
8000.0	4.0	90.0	90.5	1.3	2.8	0.5
12500.0	7.2	86.8	87.2	2.8	5.8	0.4

MANUFACTURER'S CERTIFICATE OF CONFORMANCE

has been tested and passed all production tests, confirming compliance with We certify that Brüel & Kjær -2238--001the manufacturer's published specification at the date of the test. Serial No. 2800927

National or International Standards or by ratio measurements. The final test has been performed using calibrated equipment, traceable to

Brüel & Kjær is certified under ISO 9001:2008 assuring that all test data is retained on file and is available for inspection upon request.

Nærum 20-jun-2012

Torben Bjørn

Vice President, Operations

HEADQUARTERS; Brüel & Kjær Sound & Vibration Measurement A/S · DK·2850 Nærum · Denmark Telephone: +45 77412000 · Fax: +45 4580 1405 · www.bksv.com · info@bksv.com

Local representatives and service organisations worldwide

For information on our calibration services please contact your nearest Bruel & Kjær office

Please note that this document is not a calibration certificate

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

11CA0711 01-04

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B&K

Type/Model No.:

BK4231

Serial/Equipment No.:

1790985 / N.004.01

Adaptors used:

Yes

Item submitted by

Curstomer:

AECOM ASIA CO. LTD.

Address of Customer:

-

Request No.: Date of receipt:

11-Jul-2011

Date of test:

11-Jul-2011

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	18-May-2012	SCL
Preamplifier	B&K 2673	2239857	14-Dec-2011	CEPREI
Measuring amplifier	B&K 2610	2346941	15-Dec-2011	CEPREI
Signal generator	DS 360	61227	30-May-2012	CEPREI
Digital multi-meter	34401A	US36087050	09-Dec-2011	CEPREI
Audio analyzer	8903B	GB41300350	27-May-2012	CEPREI
Universal counter	53132A	MY40003662	30-May-2012	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

 $55 \pm 5 \%$

Air pressure:

990 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Fe

Approved Signatory

Date:

13-Jul-2011

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

11CA0711 01-04

Page:

of

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

			(Output level in dB re 20 μPa)
Frequency	Output Sound Pressure	Measured Output	Estimated
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.08	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 999.8 Hz

Estimated uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.4%

Estimated uncertainty

0.7%

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

- End

Date: 11-Jul-2011

Checked by

Date:

Chan Chun Lam 13-Jul-2011

The standard(s) and equipmer t used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

11CA0711 01-03

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: B & K BK4231

Type/Model No.: Serial/Equipment No.:

1850426 / N.004.02

Adaptors used:

Yes

item submitted by

Curstomer:

AECOM ASIA CO. LTD.

Address of Customer:

-

Request No.: Date of receipt:

11-Jul-2011

Date of test:

11-Jul-2011

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	18-May-2012	SCL
Preamplifier	B&K 2673	2239857	14-Dec-2011	CEPREI
Measuring amplifier	B&K 2610	2346941	15-Dec-2011	CEPREI
Signal generator	DS 360	61227	30-May-2012	CEPREI
Digital multi-meter	34401A	US36087050	09-Dec-2011	CEPREI
Audio analyzer	8903B	GB41300350	27-May-2012	CEPRE
Universal counter	53132A	MY40003662	30-May-2012	CEPREI

Ambient conditions

Temperature: Relative humidity:

Air pressure:

22 ± 1 °C 55 ± 5 % 990 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory.

Date:

13-Jul-2011

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

@ Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F, 9/F, 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

11CA0711 01-03

Page:

2

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 μPa) Frequency Output Sound Pressure Measured Output Estimated Shown Level Setting Sound Pressure Level Uncertainty Ηz dΒ dB dB 94.00 1000 94.07 0.10

2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 999.8 Hz

Estimated uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5%

Estimated uncertainty

0.7%

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

allbrated by

Date:

Fung Chi Yip

11-Jul-2011

Date:

Checked by

Chen Chun Lam 13-Jul-2011

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

APPENDIX B BASELINE AIR QUALITY MONITORING RESULTS

Appendix B Baseline Air Quality Monitoring Results 24-hour TSP Monitoring Results

Station ID: DMS-6 (420 Prince Edward Road West)

Site Observation: No construction works were conducted in the vicinity during the monitoring period.

Date	Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	$(\mu g/m^3)$
27-Jun-12	Fine	28.8	1003.6	1.33	1.33	1.33	1915.2	2.8104	2.9193	0.1089	333.81	357.81	24.00	56.9
28-Jun-12	Fine	29.4	1005.1	1.36	1.36	1.36	1955.5	2.8042	2.9135	0.1093	357.81	381.81	24.00	55.9
29-Jun-12	Cloudy	29.4	1005.0	1.42	1.42	1.42	2037.6	2.7683	2.8322	0.0639	381.86	405.81	23.95	31.4
30-Jun-12	Fine	29.4	1000.4	1.36	1.36	1.36	1955.5	2.7517	2.8024	0.0507	405.81	429.81	24.00	25.9
1-Jul-12	Sunny	26.6	1004.6	1.36	1.36	1.36	1955.5	2.6659	2.7990	0.1331	429.81	453.81	24.00	68.1
2-Jul-12	Sunny	27.8	1008.5	1.36	1.36	1.36	1955.5	2.8323	2.9241	0.0918	453.81	477.81	24.00	46.9
3-Jul-12	Sunny	28.3	1007.9	1.36	1.36	1.36	1955.5	2.7564	2.8626	0.1062	477.81	501.81	24.00	54.3
4-Jul-12	Rainy	29.6	1004.8	1.36	1.36	1.36	1955.5	2.7070	2.7888	0.0818	501.81	525.81	24.00	41.8
5-Jul-12	Sunny	27.8	1005.0	1.36	1.36	1.36	1955.5	2.7646	2.8380	0.0734	525.81	549.81	24.00	37.5
6-Jul-12	Sunny	28.5	1006.1	1.39	1.39	1.39	1997.3	2.7371	2.8149	0.0778	549.81	573.81	24.00	39.0
7-Jul-12	Sunny	29.1	1005.9	1.36	1.36	1.36	1955.5	2.7276	2.7972	0.0696	573.81	597.81	24.00	35.6
8-Jul-12	Rainy	29.3	1006.7	1.39	1.39	1.39	1997.3	2.7493	2.8011	0.0518	597.81	621.81	24.00	25.9
9-Jul-12	Sunny	29.8	1007.8	1.39	1.39	1.39	1997.3	2.7359	2.7915	0.0556	621.81	645.81	24.00	27.8
10-Jul-12	Sunny	29.9	1007.2	1.39	1.39	1.39	1997.3	2.7381	2.7963	0.0582	645.81	669.81	24.00	29.1
_													Average	41.2

Min

Max

25.9

68.1

Station ID: DMS-7 (Parc 22)

Site Observation: No construction works were conducted in the vicinity during the monitoring period.

Date	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
15-Jun-12	Fine	28.0	1000.5	1.31	1.31	1.31	1861.1	2.7672	2.8074	0.0402	0.00	23.75	23.75	21.6
16-Jun-12	Fine	26.1	1000.3	1.31	1.31	1.31	1865.0	2.6934	2.7259	0.0325	23.75	47.55	23.80	17.4
17-Jun-12	Cloudy	26.7	1001.3	1.31	1.31	1.31	1868.9	2.7337	2.7823	0.0486	47.55	71.40	23.85	26.0
18-Jun-12	Fine	27.3	998.6	1.31	1.31	1.31	1857.1	2.6804	2.7957	0.1153	71.40	95.10	23.70	62.1
19-Jun-12	Fine	28.2	995.0	1.31	1.31	1.31	1876.7	2.6567	2.8484	0.1917	95.10	119.05	23.95	102.1
20-Jun-12	Sunny	29.9	997.8	1.31	1.31	1.31	1880.6	2.7387	2.8150	0.0763	119.05	143.05	24.00	40.6
21-Jun-12	Fine	28.3	1003.1	1.31	1.31	1.31	1880.6	2.6077	2.7866	0.1789	143.05	167.05	24.00	95.1
22-Jun-12	Cloudy	28.5	1004.2	1.31	1.31	1.31	1880.6	2.7232	2.8028	0.0796	167.05	191.05	24.00	42.3
23-Jun-12	Cloudy	28.8	1003.5	1.31	1.31	1.31	1880.6	2.7710	2.8483	0.0773	191.05	215.05	24.00	41.1
24-Jun-12	Cloudy	28.8	1003.7	1.31	1.31	1.31	1880.6	2.6264	2.8561	0.2297	215.05	239.05	24.00	122.1
25-Jun-12	Fine	28.9	1003.7	1.31	1.31	1.31	1880.6	2.7024	2.8409	0.1385	239.05	263.05	24.00	73.6
26-Jun-12	Fine	28.8	1003.6	1.31	1.31	1.31	1880.6	2.7226	2.8092	0.0866	263.05	287.05	24.00	46.0
27-Jun-12	Fine	29.4	1005.1	1.31	1.31	1.31	1880.6	2.7032	2.7753	0.0721	287.05	311.05	24.00	38.3
28-Jun-12	Fine	29.4	1005.0	1.31	1.31	1.31	1880.6	2.7252	2.8402	0.1150	311.05	335.05	24.00	61.1
													Average	56.4
													Min	17.4
													Max	122.1

Appendix B Baseline Air Quality Monitoring Results 24-hour TSP Monitoring Results

Station ID: DMS-8 (SKH Good Shepherd Primary School)

Minor works for changing waterpipes were being conducted at Ma Tau Wai Road as observed on 10 and 17 May. Given the works were in small scale and localised,

Site Observation: it is anticipated that the baseline monitoring results would not be affected

Date	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	$(\mu g/m^3)$
10-May-12	Sunny	32.5	1008.8	1.33	1.33	1.33	1867.3	2.7356	2.8106	0.0750	0.10	23.60	23.50	40.0
11-May-12	Sunny	27.9	1008.4	1.33	1.33	1.33	1860.9	2.7548	2.8753	0.1205	23.60	47.12	23.52	64.2
12-May-12	Cloudy	28.7	1007.0	1.33	1.33	1.33	1884.9	2.7542	2.8115	0.0573	47.12	70.64	23.52	30.5
13-May-12	Cloudy	29.6	1005.3	1.33	1.33	1.33	1915.2	2.7655	2.8006	0.0351	70.64	94.54	23.90	18.4
14-May-12	Cloudy	32.2	1006.9	1.33	1.33	1.33	1915.2	2.7803	2.8286	0.0483	94.54	118.54	24.00	25.2
15-May-12	Fine	30.3	1007.6	1.33	1.33	1.33	1915.2	2.7682	2.8059	0.0377	118.54	142.54	24.00	19.7
16-May-12	Cloudy	29.2	1006.1	1.33	1.33	1.33	1915.2	2.7624	2.7945	0.0321	142.54	166.12	23.58	17.1
17-May-12	Rainy	28.9	1006.5	1.33	1.33	1.33	1915.2	2.7632	2.8004	0.0372	166.12	190.12	24.00	19.4
18-May-12	Rainy	27.2	1008.1	1.33	1.33	1.33	1915.2	2.7577	2.8107	0.0530	190.12	214.12	24.00	27.7
19-May-12	Rainy	30.0	1007.1	1.33	1.33	1.33	1888.9	2.7700	2.8166	0.0466	214.12	237.79	23.67	24.7
20-May-12	Rainy	30.7	1005.6	1.33	1.33	1.33	1915.2	2.8193	2.8927	0.0734	237.79	261.79	24.00	38.3
21-May-12	Sunny	28.1	1007.6	1.33	1.33	1.33	1915.2	2.7649	2.8549	0.0900	261.79	285.79	24.00	47.0
22-May-12	Sunny	27.6	1008.5	1.33	1.33	1.33	1915.2	2.8407	2.9527	0.1120	285.79	309.79	24.00	58.5
23-May-12	Sunny	28.5	1006.6	1.33	1.33	1.33	1915.2	2.8313	2.9376	0.1063	309.79	333.79	24.00	55.5
													Average	34.7

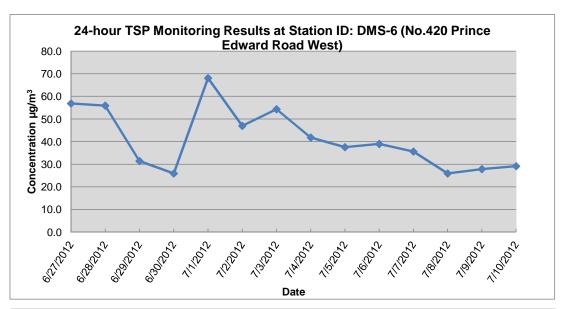
Average 34.7
Min 17.1
Max 64.2

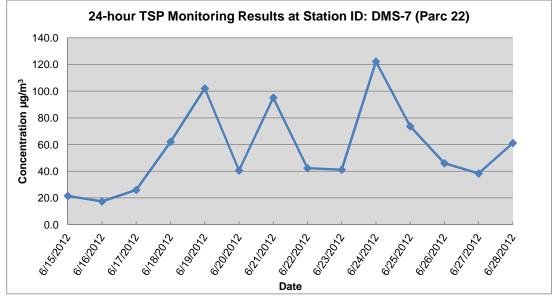
Station ID: DMS-9 (Lucky Building)

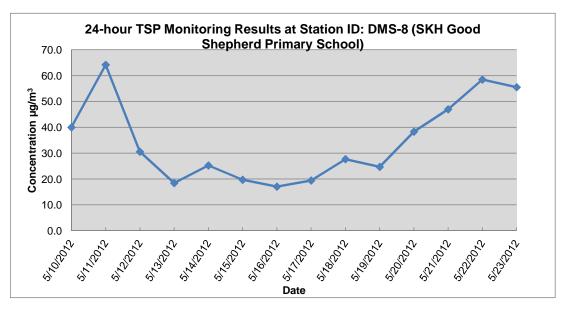
Site Observation: No construction works were conducted in the vicinity during the monitoring period.

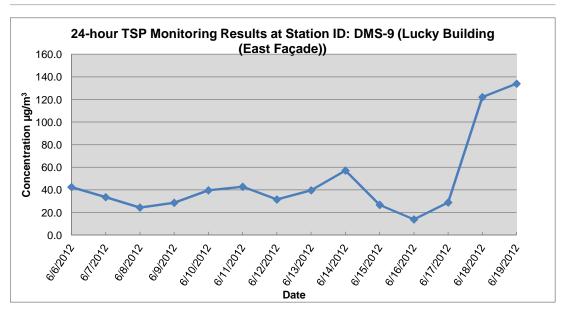
Date	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
6-Jun-12	Sunny	28.3	1004.0	1.34	1.34	1.34	1926.7	2.8168	2.8987	0.0819	0.14	24.14	24.00	42.5
7-Jun-12	Sunny	28.5	1004.2	1.34	1.34	1.34	1926.7	2.8203	2.8851	0.0648	24.14	48.14	24.00	33.6
8-Jun-12	Sunny	29.5	1004.5	1.34	1.34	1.34	1926.7	2.8251	2.8722	0.0471	48.14	72.14	24.00	24.4
9-Jun-12	Sunny	29.1	1003.5	1.34	1.34	1.34	1926.7	2.8073	2.8625	0.0552	72.14	96.14	24.00	28.6
10-Jun-12	Sunny	29.0	1001.1	1.34	1.34	1.34	1926.7	2.8076	2.8839	0.0763	96.14	120.14	24.00	39.6
11-Jun-12	Sunny	29.4	999.4	1.34	1.34	1.34	1926.7	2.8013	2.8839	0.0826	120.14	144.14	24.00	42.9
12-Jun-12	Sunny	28.9	999.7	1.34	1.34	1.34	1926.7	2.7493	2.8100	0.0607	144.14	168.14	24.00	31.5
13-Jun-12	Rainy	26.3	1001.0	1.34	1.34	1.34	1926.7	2.8076	2.8839	0.0763	168.14	192.14	24.00	39.6
14-Jun-12	Fine	27.4	1001.2	1.34	1.34	1.34	1926.7	2.7356	2.8457	0.1101	192.14	216.14	24.00	57.1
15-Jun-12	Fine	28.0	1000.5	1.34	1.34	1.34	1926.7	2.7566	2.8082	0.0516	216.14	240.14	24.00	26.8
16-Jun-12	Rainy	26.1	1000.3	1.34	1.34	1.34	1926.7	2.8391	2.8659	0.0268	240.14	264.14	24.00	13.9
17-Jun-12	Rainy	26.7	1001.3	1.34	1.34	1.34	1926.7	2.8273	2.8831	0.0558	264.14	288.14	24.00	29.0
18-Jun-12	Rainy	27.3	998.6	1.34	1.34	1.34	1926.7	2.5863	2.8218	0.2355	288.14	312.14	24.00	122.0
19-Jun-12	Sunny	28.2	995.0	1.34	1.34	1.34	1926.7	2.7392	2.9977	0.2585	312.14	336.14	24.00	134.0

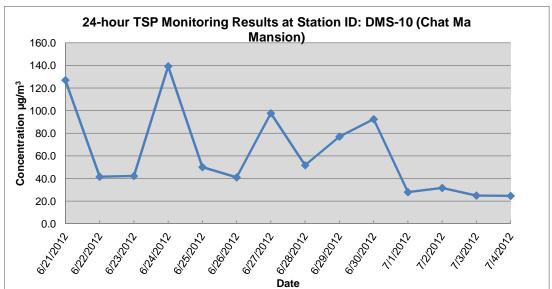
Average 47.5 Min 13.9 Max 134.0


Appendix B Baseline Air Quality Monitoring Results 24-hour TSP Monitoring Results


Station ID: DMS-10 (Chat Ma Mansion)


Site Observation: No construction works were conducted in the vicinity during the monitoring period.


Date	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
21-Jun-12	Fine	28.3	1003.1	1.31	1.31	1.31	1887.8	2.6752	2.9150	0.2398	336.14	360.14	24.00	127.0
22-Jun-12	Cloudy	28.5	1004.2	1.31	1.31	1.31	1887.8	2.8351	2.9135	0.0784	360.14	384.14	24.00	41.5
23-Jun-12	Cloudy	28.8	1003.5	1.31	1.31	1.31	1887.8	2.7184	2.7981	0.0797	384.14	408.14	24.00	42.2
24-Jun-12	Cloudy	28.8	1003.7	1.31	1.31	1.31	1887.8	2.5581	2.8210	0.2629	408.14	432.14	24.00	139.3
25-Jun-12	Fine	28.9	1003.7	1.31	1.31	1.31	1887.8	2.7165	2.8111	0.0946	432.14	456.14	24.00	50.1
26-Jun-12	Fine	28.8	1003.6	1.31	1.31	1.31	1887.8	2.7486	2.8261	0.0775	456.14	480.14	24.00	41.1
27-Jun-12	Fine	29.4	1005.1	1.31	1.31	1.31	1887.8	2.6072	2.7917	0.1845	480.14	504.14	24.00	97.7
28-Jun-12	Fine	29.4	1005.0	1.31	1.31	1.31	1887.8	2.7417	2.8393	0.0976	504.14	528.14	24.00	51.7
29-Jun-12	Fine	29.4	1000.4	1.31	1.31	1.31	1886.4	2.7295	2.8749	0.1454	528.14	552.14	24.00	77.1
30-Jun-12	Fine	26.6	1004.6	1.31	1.31	1.31	1886.4	2.6014	2.7759	0.1745	552.14	576.14	24.00	92.5
1-Jul-12	Fine	27.8	1008.5	1.31	1.31	1.31	1886.4	2.7261	2.7788	0.0527	576.14	600.14	24.00	27.9
2-Jul-12	Sunny	28.3	1007.9	1.31	1.31	1.31	1886.4	2.7658	2.8255	0.0597	600.14	624.14	24.00	31.6
3-Jul-12	Sunny	29.1	1005.3	1.31	1.31	1.31	1886.4	2.7012	2.7483	0.0471	624.14	648.14	24.00	25.0
4-Jul-12	Sunny	29.6	1004.8	1.39	1.39	1.39	2005.9	2.7186	2.7681	0.0495	648.14	672.14	24.00	24.7


Average 62.1 Min 24.7 Max 139.3

Appendix B Baseline Air Quality Monitoring Results 1-hour TSP Monitoring Results

Station ID: DMS-6 (420 Prince Edward Road West)

	Start	1st Hour	2nd Hour	3rd Hour
Date	Time	Conc.	Conc.	Conc.
	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
27-Jun-12	14:30	58.3	57.2	58.6
28-Jun-12	14:30	62.4	63.1	63.3
29-Jun-12	14:30	58.8	59.8	60.4
30-Jun-12	14:10	60.9	60.0	62.3
1-Jul-12	14:30	59.3	58.1	58.7
2-Jul-12	14:30	59.9	59.1	60.6
3-Jul-12	14:30	64.7	63.8	62.8
4-Jul-12	14:30	58.3	59.1	61.0
5-Jul-12	14:30	55.7	55.4	56.9
6-Jul-12	15:00	59.3	60.5	58.2
7-Jul-12	15:10	61.4	62.6	60.4
8-Jul-12	15:25	58.3	59.2	57.7
9-Jul-12	15:30	57.7	57.3	59.3
10-Jul-12	15:40	57.1	60.3	59.0
			Average	59.7
			Min	55.4
			Max	64.7

Station ID: DMS-7 (Parc 22)

Ī	Ctout	4 - 4 1	المال المال	مريما المريس
_	Start	1st Hour	2nd Hour	3rd Hour
Date	Time	Conc.	Conc.	Conc.
	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
15-Jun-12	16:30	69.9	68.6	67.7
16-Jun-12	15:30	48.6	50.8	49.3
17-Jun-12	15:30	56.8	58.4	59.8
18-Jun-12	15:30	56.5	59.8	57.8
19-Jun-12	15:30	60.2	62.5	65.7
20-Jun-12	15:50	78.3	81.7	80.5
21-Jun-12	16:15	59.8	58.3	59.0
22-Jun-12	15:55	57.3	58.2	56.6
23-Jun-12	15:51	59.9	60.8	59.0
24-Jun-12	15:40	56.5	58.7	59.2
25-Jun-12	15:40	60.5	62.4	61.0
26-Jun-12	15:40	56.2	55.5	57.8
27-Jun-12	15:45	59.5	62.5	63.7
28-Jun-12	15:50	60.6	63.0	62.5
			Average	61.0
			Min	48.6
			Max	81.7

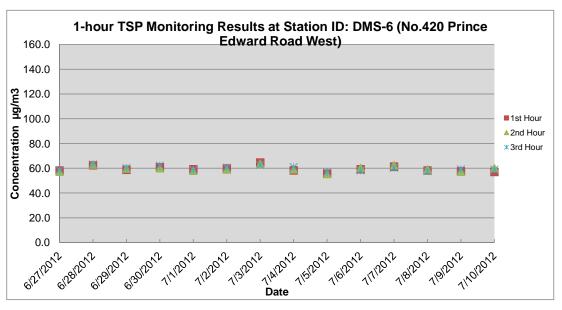
Appendix B Baseline Air Quality Monitoring Results 1-hour TSP Monitoring Results

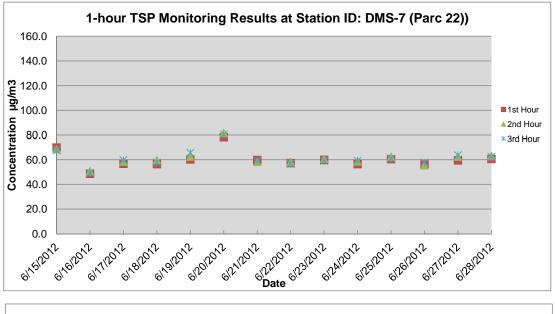
Station ID: DMS-8 (SKH Good Shepherd Primary School)

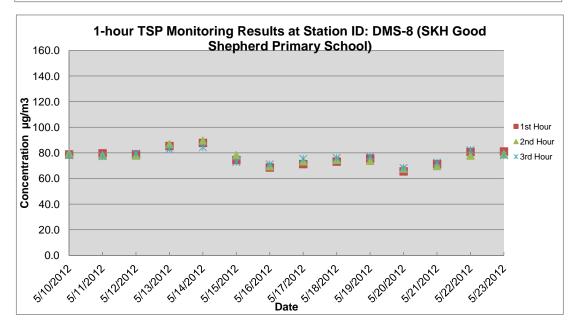
	Start	1st Hour	2nd Hour	3rd Hour
Date	Time	Conc.	Conc.	Conc.
	(hh:mm)	(µg/m³)	(μg/m³)	(µg/m³)
10-May-12	15:10	78.8	79.4	78.2
11-May-12	14:35	79.6	78.0	77.4
12-May-12	14:00	78.8	78.0	79.5
13-May-12	13:40	85.4	86.8	82.9
14-May-12	13:45	87.8	89.6	84.4
15-May-12	13:50	74.4	78.2	72.9
16-May-12	14:00	68.6	69.7	71.1
17-May-12	13:30	71.3	73.5	75.4
18-May-12	15:30	73.2	74.7	76.1
19-May-12	15:40	75.6	73.9	77.3
20-May-12	15:20	65.6	67.8	68.2
21-May-12	15:10	71.3	69.8	72.4
22-May-12	15:20	80.8	78.0	82.2
23-May-12	15:20	81.1	79.0	78.2
			Average	76.8
			Min	65.6
			Max	89.6

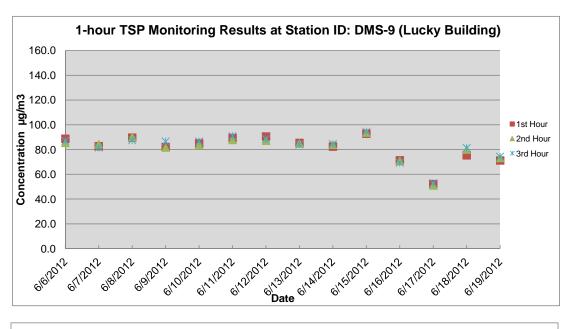
Station ID: DMS-9 (Lucky Building)

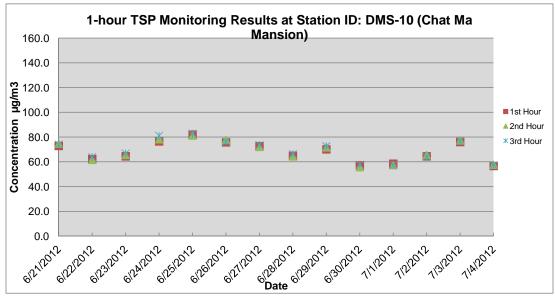
'	Start	1st Hour	2nd Hour	3rd Hour
Date	Time	Conc.	Conc.	Conc.
<u>'</u>	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
6-Jun-12	15:05	88.8	85.4	87.1
7-Jun-12	15:05	82.8	84.4	81.7
8-Jun-12	15:05	89.7	90.1	87.6
9-Jun-12	15:05	82.1	81.7	86.6
10-Jun-12	15:15	85.0	83.7	86.6
11-Jun-12	15:15	89.4	87.8	90.9
12-Jun-12	15:15	90.6	87.2	88.5
13-Jun-12	15:15	85.4	85.0	84.1
14-Jun-12	15:15	82.5	83.9	84.5
15-Jun-12	15:15	92.9	93.7	94.5
16-Jun-12	15:15	71.3	70.9	69.4
17-Jun-12	15:15	52.1	51.0	52.8
18-Jun-12	15:15	75.4	80.1	81.4
19-Jun-12	15:15	71.2	73.2	74.3
			Average	81.6
		ļ	Min	51.0


Max


94.5


Appendix B Baseline Air Quality Monitoring Results 1-hour TSP Monitoring Results


Station ID: DMS-10 (Chat Ma Mansion)


	Start	1st Hour	2nd Hour	3rd Hour
Date	Time	Conc.	Conc.	Conc.
	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
21-Jun-12	15:15	72.9	74.8	74.1
22-Jun-12	15:10	62.3	61.7	64.0
23-Jun-12	15:10	64.5	65.6	66.9
24-Jun-12	15:05	76.5	78.3	81.2
25-Jun-12	15:15	82.0	81.3	82.8
26-Jun-12	15:15	75.8	77.8	76.3
27-Jun-12	15:10	72.7	72.1	73.6
28-Jun-12	15:15	64.9	64.4	66.3
29-Jun-12	15:15	70.1	71.8	72.6
30-Jun-12	15:05	57.1	55.7	57.8
1-Jul-12	15:20	58.5	57.4	57.5
2-Jul-12	15:20	64.5	65.6	64.1
3-Jul-12	15:10	76.1	77.4	76.7
4-Jul-12	15:10	56.7	57.7	57.4
			Average	68.7
			Min	55.7
			Max	82.8

APPENDIX C BASELINE NOISE MONITORING RESULTS

Baseline Noise Monitoring Result

Location: NMS-CA-6 No. 420 Prince Edward Road West

Baseline

monitoring period: 6/27/2012 - 6/29/2012; 7/01/2012 - 7/13/2012 Site Observation: No construction works were conducted in the

No construction works were conducted in the

vicinity during the monitoring period.

Weather Trace rainfall was observed throughout the monitoring period. **condition:** Amber rainstorm warning signal was hoisted between 0920 and

1020 hrs on 5 July. Given the short period of rainstorm, it is considered that the data collected on 5 Jul remains valid.

Note: Airborne noise monitoring was suspended due to

bad weather conditions from 29 to 30 Jun 2012

(Cyclone DOKSURI).

Parameter: Leq

Time Slot Averaged Baselines

1) Weekdays Daytime Noise Level, dB(A)

Time slot	Leq, 30 min	L10	L90
07:00-07:30	75.3	77.6	71.2
07:30-08:00	75.9	78.2	72.3
08:00-08:30	75.9	78.2	72.3
08:30-09:00	75.9	78.1	72.6
09:00-09:30	76.0	78.1	72.6
09:30-10:00	76.0	78.2	72.4
10:00-10:30	76.0	78.2	72.3
10:30-11:00	76.2	78.3	72.8
11:00-11:30	76.2	78.4	72.8
11:30-12:00	76.0	78.2	72.7
12:00-12:30	76.0	78.2	72.6
12:30-13:00	76.2	78.3	72.7
13:00-13:30	76.2	78.3	72.8
13:30-14:00	76.2	78.2	72.8
14:00-14:30	76.2	78.4	72.9
14:30-15:00	76.1	78.2	72.8
15:00-15:30	76.2	78.3	73.1
15:30-16:00	76.4	78.4	73.4
16:00-16:30	76.4	78.4	73.3
16:30-17:00	76.4	78.4	73.4
17:00-17:30	76.5	78.5	73.6
17:30-18:00	76.4	78.4	73.2
18:00-18:30	76.1	78.2	73.0
18:30-19:00	76.0	78.2	72.7
Average	76.1	78.2	72.8
Max	76.5	78.5	73.6
Min	75.3	77.6	71.2

Noise Control Period Averaged Baselines

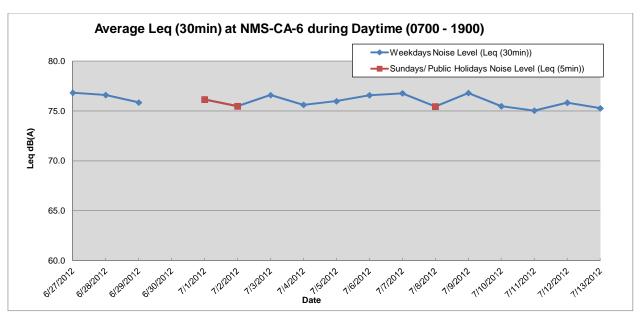
2) Weekdays Evening Noise Level, dB(A)

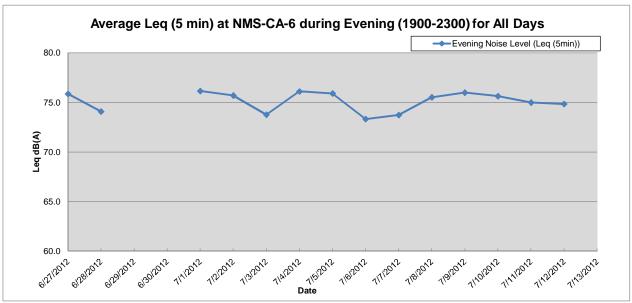
Time Slot	Leq, 5min	L10	L90
19:00-19:15	75.5	77.9	71.6
	76.1	78.1	72.1
	75.8	77.8	72.4
19:15-19:30	76.1	78.3	72.6
	74.6	77.1	70.7
	75.4	77.8	71.7
19:30-19:45	75.7	78.0	71.9
	75.9	78.2	72.4
	75.7	77.9	72.5
19:45-20:00	75.2	77.6	71.2
	75.2	77.6	71.4
	75.8	78.1	72.2
20:00-20:15	75.3	77.7	71.5
	75.1	77.4	71.0
	74.7	77.0	70.8
20:15-20:30	74.9	77.2	71.1
	74.8	77.1	70.9
	76.1	79.0	71.2
20:30-20:45	74.7	77.0	69.9
	74.7	77.2	70.5
	74.7	77.0	70.4
20:45-21:00	75.3	77.5	71.5
	74.0	76.6	69.6
	75.6	77.6	71.4
21:00-21:15	74.4	76.7	70.2
	75.0	77.4	70.7
	74.5	77.1	69.6
21:15-21:30	74.0	76.6	69.5
	74.5	77.1	70.4
	75.3	77.4	70.5
21:30-21:45	74.4	76.7	70.0
	75.0	77.5	70.8
	74.9	77.2	71.4
21:45-22:00	74.5	77.0	70.5
	74.6	77.1	70.4
	74.7	77.2	70.5
22:00-22:15	74.5	77.1	70.6
	75.7	78.0	72.0
00.45.00.00	75.7	78.0	71.5
22:15-22:30	75.2	77.5	70.8
	75.7	78.0	71.8
00.00 00:45	75.0	77.5	70.8
22:30-22:45	75.3	77.7	70.9
	74.1	76.6	69.9
00.45 00:00	73.9	76.4	69.8
22:45-23:00	74.4	76.9	69.9
	74.5	77.1	70.0
	74.0	76.5	69.1
Average	75.1	77.4	71.0
Max	76.1	79.0	72.6
Min	73.9	76.4	69.1

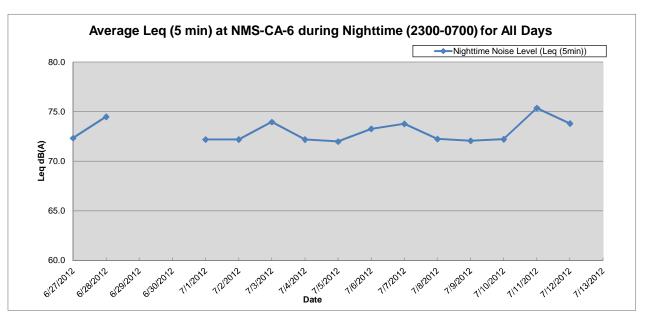
3) General Holidays (including Sundays) (0700-2300) Noise Level, dB(A)

Time Slot	Leq, 5min	L10	L90
0700-07:15	74.0	76.7	68.5
	72.3	75.4	65.7
	74.3	77.0	70.1
07:15-07:30	72.7	75.6	66.8
	73.6	76.6	67.6
	72.2	75.4	66.5
07:30-07:45	76.1	78.3	72.3
	72.3	76.0	65.7
07:45.00:00	73.8	76.7	68.8
07:45-08:00	73.0	76.1	67.6
	74.3	77.1	69.3
08:00-08:15	73.9 75.0	76.8 77.7	68.3 70.3
06.00-06.15	74.5	77.4	70.3 69.6
	74.5	77.4	69.7
08:15-08:30	74.7	77.5	69.4
00.10-00.00	74.7	77.0	69.4
	74.4	77.3	68.5
08:30-08:45	74.3	77.0	69.6
3.00 00.10	74.2	76.6	70.0
	75.2	77.7	70.0
08:45-09:00	74.9	77.4	70.6
	74.3	77.0	68.9
	74.6	77.1	69.8
09:00-09:15	75.3	77.9	71.0
	75.2	77.6	71.4
	74.8	77.5	69.8
09:15-09:30	74.5	77.5	69.9
	75.4	78.1	70.6
	74.9	77.6	70.5
09:30-09:45	74.8	77.5	69.8
	75.1	77.6	70.9
00.45.40.00	75.0	77.5	70.5
09:45-10:00	75.4	77.9	71.4
	75.0 75.3	77.3	71.1
10:00-10:15	74.7	77.9 77.2	70.7
10.00-10.13	75.1	77.4	71.1
	76.7	78.6	70.7
10:15-10:30	75.3	77.6	71.2
	75.5	77.8	70.9
	75.1	77.5	70.9
10:30-10:45	75.1	77.7	70.6
	75.5	77.9	71.9
	75.5	77.7	71.4
10:45-11:00	74.8	77.3	70.6
	75.2	77.6	71.0
	75.7	77.9	71.6
11:00-11:15	75.0	77.6	70.9
	74.9	77.4	71.2
44.45.44.00	76.0	77.5	70.9
11:15-11:30	75.2	77.6	71.5
	75.3	77.8	71.8
44.20 44.45	75.1	77.5	71.3 71.1
11:30-11:45	75.1	77.4	71.1

	75.0	77.5	71.0
	75.3	77.8	71.5
11:45-12:00	76.0	77.3	71.2
	75.5	77.8	72.0
	75.6	78.1	71.8
12:00-12:15	75.5	77.8	72.0
	76.5	78.4	73.2
	75.5	78.0	71.7
12:15-12:30	75.6	77.7	72.0
	75.6	77.7	72.3
	75.9	78.0	72.5
12:30-12:45	76.0	77.9	72.4
	75.5	77.8	72.2
<u> </u>	75.9	78.3	72.2
12:45-13:00	75.8	78.1	72.4
İ	75.6	77.9	71.8
	76.0	78.0	72.2
13:00-13:15	76.1	77.9	72.8
	75.4	77.7	71.8
	75.6	77.6	72.1
13:15-13:30	75.5	77.8	72.2
	75.8	77.9	72.6
	76.0	78.3	72.2
13:30-13:45	75.7	78.0	72.4
	75.7	77.9	71.9
	75.6	78.0	71.8
13:45-14:00	75.7	78.0	72.1
	75.4	77.4	72.0
	75.5	77.7	72.7
14:00-14:15	76.1	78.2	72.8
	75.8	77.9	72.9
44454400	75.7	78.2	72.0
14:15-14:30	75.5	78.0	71.5
	75.8	77.9	72.3
44.20 44.45	75.4	77.8	71.9
14:30-14:45	/5.5	77.0	71.2
	75.8 75.7	77.9	72.8
14:45-15:00	75.7 75.5	77.7 77.8	72.6 72.6
14.45-15.00	75.6	77.8	71.9
İ	75.8	77.9	72.5
15:00-15:15	75.8	78.0	72.3
13.00-13.13	75.4	77.5	72.2
	75.6	77.9	71.9
15:15-15:30	76.0	78.2	72.6
10.10 10.00	75.7	77.8	72.3
	75.9	78.3	72.1
15:30-15:45	75.6	77.8	71.9
	76.2	78.1	72.7
	75.1	77.4	71.2
15:45-16:00	75.9	78.0	72.5
	75.9	78.3	72.7
	76.2	78.3	72.8
16:00-16:15	76.3	78.4	73.0
	75.9	78.0	72.5
	76.0	78.3	12.9
16:15-16:30	76.0 75.9	78.3 78.0	72.9 72.8


Ī	75.9	78.0	72.4
16:30-16:45	76.0	78.1	72.7
	75.9	78.0	72.9
	75.7	77.9	72.1
16:45-17:00	75.8	77.7	72.4
	76.1	78.3	72.7
	76.2	78.3	73.0
17:00-17:15	76.1	78.3	72.9
	76.1	78.4	73.1
	76.1	78.1	72.7
17:15-17:30	76.1	78.1	73.3
	75.7	77.9	72.2
	75.9	78.0	72.6
17:30-17:45	75.7	77.8	72.2
	75.9	78.2	72.5
	76.4	78.5	72.9
17:45-18:00	76.0	78.2	72.8
	76.0	78.1	72.4
	76.1	78.3	72.7
18:00-18:15	76.1	78.5	72.6
	76.0	78.3	72.4
	76.1	78.4	72.9
18:15-18:30	76.3	78.4	73.4
	76.0	78.2	71.9
	75.7	77.9	72.4
18:30-18:45	76.9	78.5	72.8
	76.1	78.3	72.4
	76.8	77.8	72.1
18:45-19:00	76.3	78.2	72.5
	76.7	78.3	72.7
	76.4	78.2	72.6
19:00-19:15	75.8	78.0	72.6
	76.5	78.4	73.0
	76.1	78.1	72.5
19:15-19:30	75.9	78.0	72.5
	75.4	77.4	72.5
	75.7	77.9	71.7
19:30-19:45	75.6	78.1	72.2
	76.0	78.4	71.9
10.45.00.00	76.2	78.4	72.6
19:45-20:00	76.1	78.2	72.7
	75.9	78.1	71.5
20.00 20.45	75.5	77.9	71.3
20:00-20:15	76.2	78.6 77.8	72.4 71.5
	75.5	77.8 77.4	71.3
20:15-20:30	75.2 75.1	77.2	70.8
20.10-20.30	75.1 75.2	77.3	70.8
	75.2 76.8	77.3 78.7	71.4
20:30-20:45	75.9	78.2	71.4
20.00-20.40	78.9	82.2	72.7
	77.8	77.9	70.6
20:45-21:00	75.9	77.8	71.2
20.70-21.00	76.9	79.0	71.2
	75.7	79.0	71.7
21:00-21:15	75.7	77.7	71.6
21.00 21.10	74.7	77.3	70.4
	75.5	76.9	70.7
	10.0	70.5	10.1


21:15-21:30	75.3	77.8	70.8
	75.2	77.8	70.9
	75.6	78.1	71.5
21:30-21:45	75.0	77.3	70.9
	75.6	78.1	71.7
	75.8	77.9	72.0
21:45-22:00	75.9	78.2	72.2
	76.0	77.5	71.8
	75.3	77.7	71.8
22:00-22:15	75.7	78.0	72.1
	75.7	77.9	71.9
	75.3	77.5	71.9
22:15-22:30	75.7	78.0	72.1
	75.3	77.8	71.3
	75.1	77.4	71.3
22:30-22:45	75.1	77.3	71.3
	75.8	78.0	71.5
	75.3	77.8	71.2
22:45-23:00	75.5	77.9	71.5
	75.5	77.7	71.9
	74.4	77.0	69.0
Average	75.6	77.9	71.8
Max	78.9	82.2	73.4
Min	72.2	75.4	65.7


4) Night-time (for all days) Noise Level, dB(A)

Time Slot	Leq, 5min	L10	L90
23:00-23:15	74.7	77.2	69.8
	74.9	77.4	70.3
	75.4	77.8	70.9
23:15-23:30	75.3	77.7	71.1
	74.6	77.2	70.0
	74.6	77.1	70.3
23:30-23:45	74.3	76.7	69.4
	74.4	77.0	69.2
	74.2	76.8	69.6
23:45-00:00	74.0	76.7	69.4
	74.1	76.7	69.3
00.00.00.45	74.1	76.3	68.3
00:00-00:15	73.9	76.5	68.4
	74.1	76.9	68.5
00.45 00.20	73.7	76.6	68.9
00:15-00:30	74.7	77.4	70.0
	74.0	76.7	68.9 69.0
00:30-00:45	74.0 73.9	76.8 76.7	68.6
00.30-00.43	73.5	76.4	68.0
	72.7	75.7	67.1
00:45:01:00	72.6	75.6	66.9
00.40.01.00	72.1	75.2	66.1
	72.7	75.6	66.8
01:00-01:15	72.5	75.4	67.4
	71.9	75.0	66.3
	73.6	76.1	68.1
01:15-01:30	71.2	74.3	65.2
	73.2	75.9	67.5
	73.0	76.1	67.1
01:30-01:45	72.4	75.4	67.0
	72.6	75.6	67.0
	73.4	75.1	66.5
01:45-02:00	72.1	75.1	66.7
	73.2	75.9	67.6
	72.7	75.6	66.0
02:00-02:15	72.3	75.2	66.9
	73.2	75.7	68.8
20.45.22.22	72.2	75.1	66.9
02:15-02:30	71.9	75.0	66.3
	72.4 72.9	75.3	66.8 68.2
02:30-02:45	73.3	75.5	
UZ.3U-UZ.43	73.3 72.5	76.0 75.2	68.8 67.8
	72.5 72.9	75.2 75.5	67.8
02:45-03:00	72.9	75.5	66.1
02.40 00.00	72.0	74.8	66.0
	71.9	74.7	66.0
03:00-03:15	73.9	77.3	67.3
	71.2	74.4	65.1
	71.9	74.8	66.8
03:15-03:30	73.0	75.7	68.1
	71.6	74.6	66.6
	72.4	75.0	67.1
03:30-03:45	71.8	74.7	66.0

l	70.4	73.7	64.1
	72.1	74.9	66.3
03:45-04:00	72.1	74.9	68.0
	73.7	77.1	67.0
	71.9	74.9	66.3
04:00-04:15	72.4	75.0	67.9
	73.1	75.8	68.5
	71.6	74.6	66.7
04:15-04:30	72.9	75.6	68.4
	72.7	75.4	67.5
	71.2	74.3	65.3
04:30-04:45	72.4	75.4	67.5
	72.2	75.0	66.4
	72.5	75.2	67.3
04:45-05:00	72.0	74.8	66.2
	71.7	74.8	66.3
	73.4	75.1	67.0
05:00-05:15	71.8	75.0	66.3
	72.1	75.1	66.5
	73.0	75.8	68.4
05:15-05:30	73.1	76.0	68.3
	72.9	75.9	67.3
	73.3	76.1	68.7
05:30-05:45	72.4	75.4	67.3
	72.2	75.2	67.2
	73.0	75.7	68.0
05:45-06:00	72.7	75.5	67.3
	72.5	75.5	67.7
	72.7	75.8	66.9
06:00-06:15	72.7	75.7	67.9
	72.4	75.5	66.9
	73.8	76.5	69.1
06:15-06:30	73.2	76.1	68.2
	73.5	76.3	68.3
	74.6	77.9	68.6
06:30-06:45	73.9	76.6	68.9
	73.4	76.3	68.4
	74.6	77.2	70.2
06:45-07:00	75.0	77.5	70.9
	74.2	76.7	69.6
	74.6	77.2	69.8
Average	73.1	75.9	68.0
Max	75.4	77.9	71.1
Min	70.4	73.7	64.1

Baseline Noise Monitoring Result

Location: NMS-CA-7 Skytower Tower 2

Baseline

monitoring 6/20/2012 - 6/29/2012; period: 7/01/2012 - 7/06/2012

Site Observation: No construction works were conducted in the

vicinity during the monitoring period.

Weather Trace rainfall was observed throughout the monitoring period. condition: Amber rainstorm warning signal was hoisted between 0920

and 1020 on 5 July. Given the short period of rainstorm, it is considered that the data collected on 5 Jul remains valid.

Note: Airborne noise monitoring was suspended due

to bad weather conditions from 29 to 30 Jun

2012 (Cyclone DOKSURI).

Parameter: Leq

Time Slot Averaged Baselines

1) Weekdays Daytime Noise Level, dB(A)

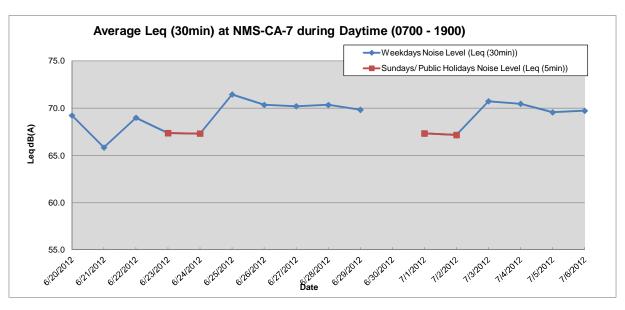
Time slot	Leq, 30 min	L10	L90
07:00-07:30	67.7	69.6	64.1
07:30-08:00	69.2	70.2	65.1
08:00-08:30	69.3	71.1	66.2
08:30-09:00	70.5	72.6	67.1
09:00-09:30	70.0	72.0	66.8
09:30-10:00	70.1	72.2	66.8
10:00-10:30	70.6	72.8	66.7
10:30-11:00	70.0	72.2	66.5
11:00-11:30	70.2	72.4	66.8
11:30-12:00	69.7	71.6	66.3
12:00-12:30	68.6	70.4	65.5
12:30-13:00	68.6	70.4	65.7
13:00-13:30	69.9	72.0	66.5
13:30-14:00	70.9	73.3	67.0
14:00-14:30	70.6	72.9	66.7
14:30-15:00	70.7	73.1	66.9
15:00-15:30	70.3	72.5	66.5
15:30-16:00	69.6	71.7	66.4
16:00-16:30	71.2	73.6	67.4
16:30-17:00	71.0	73.0	67.5
17:00-17:30	70.8	73.1	67.5
17:30-18:00	70.6	72.9	67.1
18:00-18:30	69.5	71.5	66.4
18:30-19:00	68.3	69.9	65.7
Average	70.0	72.0	66.5
Max	71.2	73.6	67.5
Min	67.7	69.6	64.1

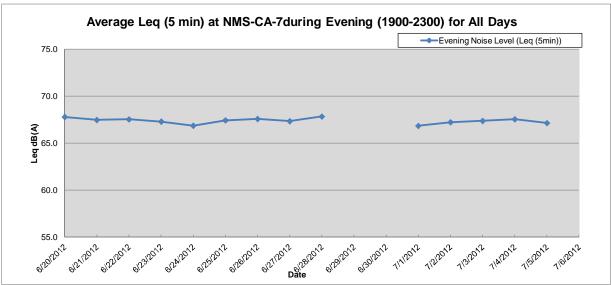
Noise Control Period Averaged Baselines

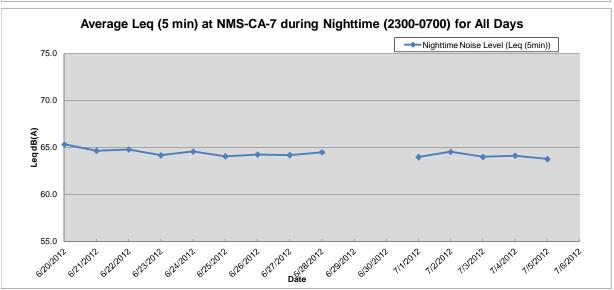
2) Weekdays Evening Noise Level, dB(A)

65.5 65.5 65.8 65.6 65.7 65.5 65.7 65.1 65.4 65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9
65.8 65.6 65.7 65.5 65.7 65.1 65.4 65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.6 65.7 65.5 65.7 65.1 65.4 65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.7 65.5 65.7 65.1 65.4 65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.5 65.7 65.1 65.4 65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.7 65.1 65.4 65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.1 65.4 65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.4 65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.2 65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.3 65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.3 65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.1 65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.4 65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
65.1 64.8 65.0 64.9 65.2 64.8 64.9 64.8
64.8 65.0 64.9 65.2 64.8 64.9
65.0 64.9 65.2 64.8 64.9
64.9 65.2 64.8 64.9 64.8
64.9 65.2 64.8 64.9 64.8
64.8 64.9 64.8
64.9 64.8
64.9 64.8
64.8
64.8
64.4
64.7
64.7
64.5
64.3
64.7
64.6
64.4
64.7
64.5
64.5
64.7
64.5
64.6
64.8
64.6
64.7
64.9
64.8
64.4
64.4
64.3
64.4
64.3
64.4
64.9 65.8

Time Slot	Leq, 5min	L10	L90
0700-07:15	65.4	67.9	61.5
	64.5	67.2	60.2
	64.9	67.0	61.4
07:15-07:30	66.3	68.7	62.5
	65.5	67.8	61.5
	65.3	67.7	61.5
07:30-07:45	65.7	68.2	61.2
	65.2	67.3	61.9
	66.3	68.6	62.6
07:45-08:00	65.7	67.8	62.0
	67.0	69.0	63.7
	66.6	68.6	63.1
08:00-08:15	66.4	68.4	63.3
	66.3	68.5	62.9
	65.7	67.8	62.2
08:15-08:30	67.2	69.6	62.8
	67.1	69.4	62.9
	66.7	69.2	62.8
08:30-08:45	67.1	69.0	63.2
	67.0	69.0	63.4
	66.8	69.1	63.6
08:45-09:00	67.6	70.0	64.2
	67.9	70.2	64.3
	67.0	69.0	63.2
09:00-09:15	67.3	69.3	63.7
	66.8	69.0	62.8
00.45.00.00	67.7	69.7	63.7
09:15-09:30	66.4	68.5	62.8
	67.7	70.1	63.3
00-00 00-45	66.6	68.4	62.5
09:30-09:45	67.4 66.7	69.0	63.7 63.3
	67.4	68.6 69.0	63.7
09:45-10:00	67.4	68.8	63.8
09.43-10.00	66.7	68.7	63.0
	67.3	69.2	63.8
10:00-10:15	66.6	68.5	63.9
10.00 10.10	66.8	68.4	63.7
	66.9	69.0	63.7
10:15-10:30	66.8	69.0	63.9
10.10 10.00	66.5	68.5	63.5
	67.2	69.2	64.0
10:30-10:45	67.2	69.5	63.8
	67.3	69.6	63.8
	67.5	69.9	64.0
10:45-11:00	67.1	69.2	64.1
	67.5	69.3	64.6
	67.0	68.9	64.3
11:00-11:15	67.6	69.4	64.5
-	67.0	69.2	63.7
	67.1	68.5	63.8
11:15-11:30	67.3	69.2	64.3
	67.7	69.3	64.2
	66.7	68.7	63.7
11:30-11:45	66.8	69.0	63.7


	66.4	68.6	63.2
	66.6	68.3	63.7
11:45-12:00	67.0	68.9	64.0
	67.2	69.6	64.0
	67.0	69.0	64.2
12:00-12:15	67.7	70.5	63.4
	67.7	69.9	64.2
	66.8	68.8	63.5
12:15-12:30	67.1	68.7	64.0
	66.9	68.7	64.4
	67.1	68.9	64.3
12:30-12:45	67.5	69.4	64.7
	67.8	69.7	65.0
	67.8	69.3	65.3
12:45-13:00	68.1	69.9	64.8
	68.0	69.9	64.9
	67.6	69.7	64.4
13:00-13:15	67.1	69.2	63.7
	67.2	69.2	64.0
	67.2	69.0	64.1
13:15-13:30	67.8	70.1	64.2
	67.3	69.7	63.7
	67.1	69.2	64.1
13:30-13:45	67.8	69.9	64.5
	68.2	70.2	64.3
	67.1	69.0	63.8
13:45-14:00	66.6	68.5	63.4
	66.9	68.8	64.0
	67.0	69.4	63.8
14:00-14:15	67.1	68.8	64.3
	67.3	69.3	64.5
	67.7	69.5	64.8
14:15-14:30	67.3	68.9	64.9
	67.4	69.3	64.5
	67.6	69.2	65.2
14:30-14:45	69.0	71.3	65.4
	67.1	68.8	63.9
	68.0	70.1	64.0
14:45-15:00	67.8	69.7	64.8
	67.7	69.6	64.9
	68.1	70.1	65.0
15:00-15:15	67.9	69.8	64.6
	68.1	69.4	65.0
	67.8	69.8	64.8
15:15-15:30	68.0	70.1	64.7
	67.3	69.3	64.3
	67.4	69.0	64.8
15:30-15:45	67.9	70.0	64.9
	68.5	70.0	65.3
	67.1	69.0	64.2
15:45-16:00	67.4	69.2	64.6
	68.2	70.0	65.3
	67.7	69.4	64.6
16:00-16:15	67.5	68.8	65.0
	67.5	69.4	64.5
	67.8	69.8	64.9
16:15-16:30	67.4	69.0	64.9
	67.7	69.5	65.1


	67.6	69.5	64.7
16:30-16:45	67.5	69.4	64.8
	67.5	69.3	64.8
	67.9	69.5	65.5
16:45-17:00	68.1	70.1	65.3
	67.8	69.7	64.9
	67.7	69.5	64.9
17:00-17:15	68.1	69.8	64.9
	67.7	69.4	64.8
	67.5	69.0	64.6
17:15-17:30	67.3	69.0	64.5
	67.6	69.4	64.4
	68.0	69.2	64.3
17:30-17:45	67.2	68.7	64.4
	67.8	69.4	65.0
47.45.40.00	67.3	68.7	64.8
17:45-18:00	66.9	68.8	64.4
	67.4	69.6	64.5
10.00 10.15	67.3	68.9	64.8
18:00-18:15	67.0	68.5	64.5
	67.4 67.8	68.8 70.0	64.9 64.8
18:15-18:30	67.4	69.1	65.0
10.15-16.50	67.1	68.6	64.7
	67.3	68.9	64.9
18:30-18:45	67.4	69.1	64.6
10.30-10.43	67.1	68.9	64.8
	66.9	68.4	64.5
18:45-19:00	67.4	69.2	64.3
10.10 10.00	66.9	68.5	64.5
	67.0	68.8	64.5
19:00-19:15	67.2	68.5	64.8
	67.2	69.0	64.4
	67.2	69.1	64.8
19:15-19:30	67.4	68.4	64.1
	67.1	68.9	64.6
	66.8	68.4	64.5
19:30-19:45	67.3	69.3	64.7
	67.2	68.8	64.6
	67.0	68.8	64.5
19:45-20:00	67.4	68.8	64.4
	67.1	68.7	64.4
	67.2	69.2	64.6
20:00-20:15	67.3	68.8	64.4
	66.8	68.4	64.4
00.45.00.00	66.7	68.5	64.4
20:15-20:30	67.0	68.8	63.9
	67.4	68.9	65.2
20.20 20.45	66.7 66.9	68.4	64.3
20:30-20:45		68.6	64.2
	68.1 67.1	70.4 68.9	64.7 64.4
20:45-21:00	66.6	68.3	64.3
20.75-21.00	67.5	69.3	64.2
	67.5	69.3	64.8
21:00-21:15	67.4	69.8	64.5
21.00 21.10	67.1	68.6	64.7
	67.1	68.2	64.5
	01.1	00.2	U 1 .U


21:15-21:30	67.0	68.7	64.5
	66.4	67.9	64.3
	66.9	68.8	64.5
21:30-21:45	66.7	68.3	64.1
	67.2	68.8	64.9
	66.5	68.3	64.0
21:45-22:00	67.2	68.9	64.1
	66.8	68.4	64.4
	66.9	68.4	64.3
22:00-22:15	66.8	68.4	64.3
	67.0	68.4	64.5
	66.9	68.7	64.4
22:15-22:30	66.7	68.0	64.3
	67.4	68.9	64.6
	67.2	68.9	64.5
22:30-22:45	66.9	68.6	64.4
	67.1	68.5	64.4
	67.0	68.8	64.5
22:45-23:00	66.8	68.5	64.4
	67.1	68.8	64.1
	66.8	68.6	63.8
Average	67.2	69.1	64.3
Max	69.0	71.3	65.5
Min	64.5	67.0	60.2

Time Slot	Leq, 5min	L10	L90
23:00-23:15	66.8	68.5	64.2
	67.0	68.7	64.3
Ī	66.6	68.4	64.1
23:15-23:30	66.5	68.3	63.8
	66.9	68.6	64.0
<u> </u>	66.5	68.4	63.7
23:30-23:45	66.5	68.1	63.7
	66.2	67.8	63.4
	66.1	67.8	63.2
23:45-00:00	66.1	68.0	63.2
	66.2	68.1	63.2
<u></u>	66.0	67.8	63.2
00:00-00:15	65.7	67.4	62.7
	65.6	67.3	62.6
	65.5	67.3	62.8
00:15-00:30	65.4	67.3	62.4
Ī	65.6	67.3	62.3
	65.4	67.2	62.3
00:30-00:45	65.4	67.2	62.1
	65.2	67.0	62.1
	65.6	67.6	62.1
00:45:01:00	65.2	67.1	61.7
Ī	64.5	66.4	61.2
04.00.01.:-	64.6	66.5	61.4
01:00-01:15	64.3	66.2	61.3
	64.9	66.5	61.4
04.45 04.00	65.4	67.3	62.0
01:15-01:30	65.2	67.3	61.7
	64.7	66.7	61.2
01:30-01:45	64.4 64.8	66.4 66.9	61.0 61.5
01.00-01.40	64.7	66.6	61.5
	64.7	66.1	60.6
01:45-02:00	64.0	66.3	60.5
20 02.00	64.0	66.0	60.6
	64.1	66.4	60.3
02:00-02:15	63.6	65.8	59.9
	63.6	65.7	59.7
	63.4	65.7	59.1
02:15-02:30	63.7	65.9	59.5
	64.1	66.3	60.1
	63.1	65.3	59.6
02:30-02:45	64.1	66.4	59.6
	63.8	65.9	59.8
	63.6	66.2	58.9
02:45-03:00	62.7	65.2	58.4
	62.2	64.6	57.7
	63.1	64.8	57.9
03:00-03:15	62.8	65.0	58.0
	62.6	64.9	57.7
	62.2	64.6	57.7
03:15-03:30	61.7	64.2	57.5
	62.4	64.7	57.4
	62.0	64.5	57.4
03:30-03:45	61.8	64.3	57.0

	61.5	64.2	56.9
	61.9	64.3	57.0
03:45-04:00	62.3	64.6	57.2
	62.0	64.5	57.3
	61.9	64.4	57.1
04:00-04:15	62.0	64.3	57.1
	62.2	64.5	57.0
	61.7	64.2	56.9
04:15-04:30	61.9	64.6	56.8
	62.5	64.9	58.3
	62.4	65.1	58.1
04:30-04:45	62.3	64.9	57.3
	61.9	64.5	57.1
	62.4	64.9	57.6
04:45-05:00	62.3	64.7	57.3
	62.4	64.8	57.8
	62.7	65.0	57.8
05:00-05:15	62.7	65.2	57.8
	62.8	65.5	58.0
	62.5	65.1	57.9
05:15-05:30	62.2	64.8	57.3
	62.6	65.3	57.7
	61.9	64.2	57.7
05:30-05:45	62.5	64.8	58.0
	63.1	65.5	58.6
	63.2	65.7	58.6
05:45-06:00	63.5	65.9	58.9
	64.0	66.4	59.3
	64.1	66.6	59.7
06:00-06:15	64.3	66.6	60.1
	64.5	66.9	60.1
	64.6	67.0	60.3
06:15-06:30	64.8	67.2	60.5
	65.2	67.5	60.9
	65.5	67.8	61.4
06:30-06:45	66.2	68.4	62.2
	66.3	68.2	62.6
	66.6	68.8	62.9
06:45-07:00	66.6	68.8	63.1
	66.6	68.9	62.6
	66.3	68.3	62.7
Average	64.4	66.5	60.7
Max	67.0	68.9	64.3
Min	61.5	64.2	56.8

Baseline Noise Monitoring Result

Location: NMS-CA-8 SKH Good Shepherd Primary School

Baseline 5/10/2012 - 5/25/2012

monitoring period:

Site Observation: Minor works for changing waterpipes were being conducted at Ma

Tau Wai Road as observed on 10 and 17 May. Given the works were in small scale and localised, it is anticipated that the baseline

monitoring results would not be affected.

Weather Trace rainfall was observed throughout the monitoring period. **condition:** Amber rainstorm warning signal was hoisted between 0855 and

1045 hrs on 18 May. Given the short period of rainstorm, it is considered that the data collected on 18 May remains valid.

Note: N/A

Parameter: Leq

Time Slot Averaged Baselines

1) Weekdays Daytime Noise Level, dB(A)

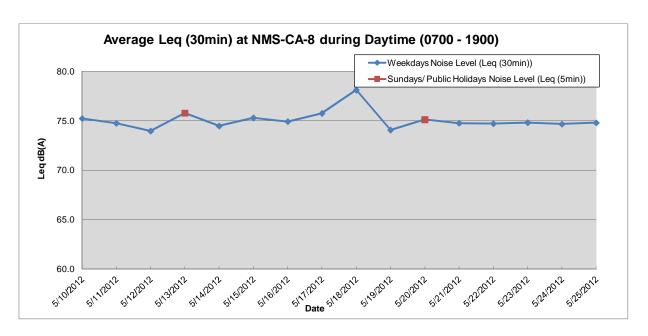
Time slot	Leq, 30 min	L10	L90
07:00-07:30	73.9	77.4	67.4
07:30-08:00	74.7	77.8	68.6
08:00-08:30	75.5	78.4	70.1
08:30-09:00	75.6	78.7	70.1
09:00-09:30	75.5	78.6	69.4
09:30-10:00	75.1	78.3	69.0
10:00-10:30	76.0	78.7	69.4
10:30-11:00	75.7	78.9	68.8
11:00-11:30	75.6	78.4	69.5
11:30-12:00	75.0	77.8	68.9
12:00-12:30	74.8	77.7	68.5
12:30-13:00	75.0	77.8	68.7
13:00-13:30	74.9	77.8	68.7
13:30-14:00	75.2	77.9	69.5
14:00-14:30	75.7	78.2	70.7
14:30-15:00	76.3	79.3	70.8
15:00-15:30	75.4	78.1	70.1
15:30-16:00	75.7	78.3	70.7
16:00-16:30	75.5	78.1	70.3
16:30-17:00	75.7	78.4	70.6
17:00-17:30	75.4	78.2	70.2
17:30-18:00	75.6	78.4	69.9
18:00-18:30	75.4	78.3	69.6
18:30-19:00	75.5	78.7	68.9
Average	75.4	78.4	69.7
Max	76.3	79.3	70.8
Min	73.9	77.4	67.4

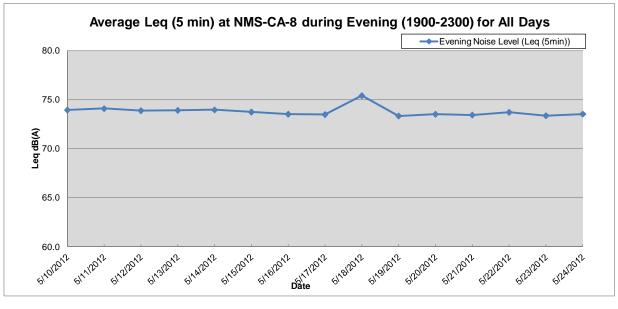
Noise Control Period Averaged Baselines

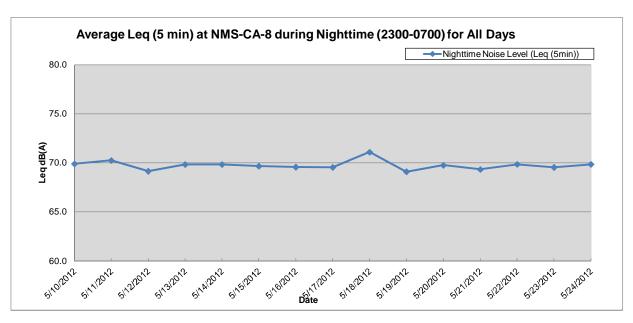
2) Weekdays Evening Noise Level, dB(A)

Time Slot	Leq, 5min	L10	L90
19:00-19:15	74.5	77.4	68.9
	74.6	77.4	69.4
	74.4	77.4	68.8
19:15-19:30	74.7	77.4	68.9
	74.2	77.1	68.2
	74.3	77.2	68.1
19:30-19:45	74.3	77.1	67.9
	74.6	77.5	68.0
	74.4	77.3	68.4
19:45-20:00	74.7	77.5	68.4
	74.6	77.6	68.4
	74.3	77.0	68.2
20:00-20:15	74.2	77.2	67.4
	73.8	77.1	66.8
	73.8	77.2	65.8
20:15-20:30	74.7	77.6	66.3
	74.3	77.7	66.6
	73.5	77.2	66.5
20:30-20:45	73.3	76.9	65.4
	74.1	77.5	67.6
	73.8	77.2	67.1
20:45-21:00	74.0	77.2	67.3
	73.9	77.4	66.5
	73.3	76.8	65.9
21:00-21:15	73.7	77.1	66.7
	73.5	76.9	66.0
	73.4	76.9	65.8
21:15-21:30	73.0	76.7	65.1
	74.7	77.3	65.6
	73.4	76.6	64.7
21:30-21:45	73.1	76.4	65.2
	73.4	76.8	66.4
04.45.00.00	73.2	76.8	64.8
21:45-22:00	73.2	76.6	65.7
	72.9	76.6	64.6
00:00 00:45	73.3	76.5	66.0
22:00-22:15	73.6	76.4	66.2
	73.3	76.8	65.4
20.45 20.20	73.0	76.4	65.5
22:15-22:30	73.4 73.1	77.3 76.6	64.0
	73.1	76.6 76.8	64.9
22:30-22:45	73.4 74.5	76.8 76.5	65.6
ZZ.3U - ZZ.43	73.3	76.5 76.9	64.9 63.9
	73.8	76.9 76.9	65.6
22:45-23:00	73.8	76.9 76.9	64.9
۷۷. ۲۵- ۷۵.۷۷	73.4	76.9	65.1
	73.5	77.0	65.3
Avorage	73.3	76.9 77.0	66.7
Average	73.9	77.0	
Max			69.4
Min	72.9	76.4	63.9

Time Slot	Leq, 5min	L10	L90
0700-07:15	72.1	75.8	63.3
	72.6	75.6	66.6
	71.9	75.3	64.0
07:15-07:30	71.8	75.3	64.8
	72.7	76.5	64.8
	72.5	76.0	65.6
07:30-07:45	71.5	74.9	64.1
	72.8	76.5	64.3
07.45.00.00	71.8	75.5	64.0
07:45-08:00	72.8	76.5	65.4
	71.7 72.4	75.6 75.8	63.5 65.8
08:00-08:15	73.4	75.6 77.1	65.5
06.00-06.15	73.5	76.5	67.6
	72.6	76.0	65.8
08:15-08:30	74.3	77.5	65.8
00.10 00.00	72.5	76.3	65.3
	73.6	77.0	67.1
08:30-08:45	73.1	76.5	67.0
	73.6	77.3	68.0
	73.7	77.3	66.0
08:45-09:00	74.6	77.8	67.6
	73.6	76.1	65.8
	74.0	77.3	66.9
09:00-09:15	73.9	77.0	67.8
	72.8	76.4	67.5
22.45.22.22	73.9	77.8	67.3
09:15-09:30	73.7	77.0	67.1
	73.3 74.9	76.5 77.6	67.0 68.8
09:30-09:45	72.8	76.3	66.8
03.30 03.43	73.7	77.0	67.3
	75.3	78.3	68.5
09:45-10:00	74.5	77.5	67.0
	74.9	77.3	69.3
	73.8	76.3	67.3
10:00-10:15	73.6	77.1	66.9
	72.9	76.0	65.8
	73.8	77.0	66.5
10:15-10:30	74.1	77.0	68.6
	73.3	76.3	65.8
10.00.10.15	73.5	76.5	65.5
10:30-10:45	72.9	76.0	65.0
	73.1	76.5	65.8
10:45 11:00	74.3	76.8	67.0
10:45-11:00	73.9 73.7	76.8 77.3	67.6 66.3
	73.1	77.3 76.0	66.8
11:00-11:15	73.1	76.3	65.5
1.1.00 11.10	73.7	76.8	67.1
	74.2	76.5	66.6
11:15-11:30	75.0	77.3	66.5
	73.0	76.0	66.3
	74.2	77.5	66.8
11:30-11:45	73.3	76.5	66.8


I	74.0	77.3	66.3
	74.4	77.5	66.8
11:45-12:00	74.0	77.0	66.8
	73.6	76.8	65.9
	73.7	76.5	65.8
12:00-12:15	73.8	76.8	66.3
	73.5	76.8	67.1
	73.8	76.5	66.8
12:15-12:30	74.0	77.0	64.0
	73.2	76.3	66.1
	74.3	76.8	69.0
12:30-12:45	76.3	76.6	67.0
	73.8	76.5	66.9
	73.7	76.8	66.3
12:45-13:00	73.7	76.5	66.5
	74.1	77.3	66.9
	74.6	78.1	67.3
13:00-13:15	74.0	76.9	67.0
	74.2	77.3	66.3
	74.5	77.3	67.3
13:15-13:30	74.2	77.5	67.0
	74.0	77.1	67.3
	74.3	77.0	66.8
13:30-13:45	73.9	77.0	66.2
	73.5	76.5	65.8
	74.1	77.3	66.0
13:45-14:00	73.8	76.8	66.5
	74.1	77.5	66.3
	74.3	77.3	68.3
14:00-14:15	73.8	76.8	66.8
	74.1	76.5	69.2
	74.3	77.0	68.3
14:15-14:30	74.1	77.0	68.0
	73.9	76.8	67.4
	74.3	77.3	69.3
14:30-14:45	74.6	77.5	69.0
	73.5	76.5	67.8
	74.3	76.8	67.6
14:45-15:00	74.9	78.0	68.4
	75.7	78.6	69.3
	75.6	78.4	68.9
15:00-15:15	74.9	78.1	67.8
	75.5	78.3	69.1
	75.7	78.6	70.0
15:15-15:30	74.7	77.8	68.3
	74.0	77.3	67.0
	74.9	77.4	68.8
15:30-15:45	75.5	78.5	68.1
	74.6	77.6	69.3
	74.3	77.3	67.1
15:45-16:00	74.9	77.8	67.8
	74.0	77.4	68.1
	73.9	76.8	67.8
16:00-16:15	74.3	77.5	68.3
	73.4	76.5	66.8
	74.5	77.0	70.0
16:15-16:30	74.0	77.0	68.0
	74.0	76.5	69.3


Ī	73.9	76.5	69.1
16:30-16:45	74.5	77.3	67.5
	73.6	76.8	66.3
	74.2	77.3	68.5
16:45-17:00	74.1	77.3	66.9
	74.1	77.3	68.3
	74.0	76.8	66.8
17:00-17:15	74.8	77.5	69.1
	74.2	77.0	67.8
	73.6	76.5	68.0
17:15-17:30	75.6	77.5	69.0
	74.0	77.0	67.8
	74.6	77.6	68.1
17:30-17:45	73.6	76.8	65.8
	74.5	77.3	68.8
	74.4	77.3	68.1
17:45-18:00	74.5	77.6	67.6
	73.6	76.5	66.4
	74.3	77.3	68.3
18:00-18:15	74.1	77.3	67.5
	74.9	77.3	69.8
	74.0	76.8	68.3
18:15-18:30	74.8	77.3	69.8
	73.9	76.5	68.3
	74.2	76.8	67.8
18:30-18:45	74.3	76.8	68.8
	74.7	77.8	68.5
	74.7	77.3	69.1
18:45-19:00	74.3	77.3	67.8
	75.7	78.1	71.3
	75.4	78.3	69.2
19:00-19:15	75.0	77.9	68.0
	74.3	77.3	68.3
	79.7	80.3	68.6
19:15-19:30	74.9	77.3	69.3
	74.5	77.0	67.1
	74.9	77.3	66.0
19:30-19:45	73.3	76.3	65.5
	74.4	77.0	69.5
10.45.00.00	73.0	76.0	64.3
19:45-20:00	74.1	76.6	68.5
	73.5	76.3	66.3
20.00 20.45	72.7	76.0	65.1
20:00-20:15	74.0	77.0	68.3
	73.6	76.5	66.0
20.45 20.20	72.4	76.3	65.3
20:15-20:30	73.6	76.5	67.3
	73.1	76.4	67.3
20:30-20:45	72.3	75.8 77.0	65.6
20.30-20.43	73.9 73.2	77.0 76.5	68.0 65.8
	73.2 72.4	76.5 75.8	
20:45-21:00	72.4 72.1	75.8 75.5	66.5 65.8
۷۷. ۹ ۵-۷۱.۵۷	73.0	76.5	66.6
	73.1	76.3	65.5
21:00-21:15	73.1		
∠1.00 - ∠1.13	72.6 72.9	76.0	66.4 65.8
	72.9	76.5	
	13.3	76.6	66.6


21:15-21:30	73.1	76.5	65.3
	73.5	76.6	67.3
	72.3	75.6	65.6
21:30-21:45	72.3	76.0	65.3
	75.4	78.5	64.1
	72.9	76.0	67.8
21:45-22:00	73.3	77.1	67.3
	72.8	76.5	66.0
	73.3	76.5	67.3
22:00-22:15	73.1	76.3	65.9
	72.8	76.5	65.3
	73.1	76.5	67.5
22:15-22:30	72.9	76.3	64.9
	73.0	76.5	65.0
	72.7	76.6	65.4
22:30-22:45	72.6	76.5	63.8
	73.0	76.3	66.8
	72.6	76.3	64.8
22:45-23:00	72.7	76.1	65.8
	73.1	76.3	65.6
	72.7	76.0	64.8
Average	73.9	76.9	67.2
Max	79.7	80.3	71.3
Min	71.5	74.9	63.3

Time Slot	Leq, 5min	L10	L90
23:00-23:15	73.3	76.7	64.6
	73.1	76.8	65.6
	72.9	76.5	65.3
23:15-23:30	72.9	76.6	65.6
	73.2	76.9	65.6
	73.1	76.7	65.4
23:30-23:45	72.9	76.9	65.0
	73.0	76.6	65.1
	72.9	76.7	64.9
23:45-00:00	72.6	76.5	65.1
	72.8	76.6	65.6
	73.0	76.5	64.8
00:00-00:15	72.0	75.7	64.8
	72.0	76.0	63.5
	72.4	76.2	64.4
00:15-00:30	71.9	75.9	64.2
	71.9	75.8	63.5
	71.2	75.0	62.9
00:30-00:45	71.1	75.1	61.8
	71.3	75.2	62.7
	71.0	74.6	62.0
00:45:01:00	71.1	74.7	61.9
	70.8	74.8	61.2
	70.2	74.4	60.5
01:00-01:15	69.9	73.9	60.8
	68.9	72.9	59.7
	68.5	72.7	58.7
01:15-01:30	69.0	73.2	59.4
	68.5	72.5	59.6
	68.3	72.1	58.3
01:30-01:45	68.5	72.5	58.5
	68.1	72.4	58.3
04.45.00.00	67.8	71.7	58.2
01:45-02:00	68.7	72.5	58.0
	68.1	72.0	58.1
00.00.00.45	69.2	72.0	57.4
02:00-02:15	68.1	71.9	59.0
	67.8	71.9	58.8
00.45 00.00	68.6	71.8	59.0
02:15-02:30	67.6	71.5	58.5
	67.4	71.6	57.8
00.20 00.45	66.6	70.6	56.8
02:30-02:45	68.6	70.9	57.0
	66.1	69.8	56.6
02:45 02:00	66.2	70.2	56.6
02:45-03:00	67.1	70.2	56.2
	65.5	69.3	55.5 56.0
02:00 02:45	65.9	69.8	56.0
03:00-03:15	65.8	69.7	55.4 55.7
	65.8	69.5	55.7
02:15 02:20	65.9	69.7	55.8 55.2
03:15-03:30	65.7	69.5	55.2
	65.3	69.2	55.3 55.1
02.20 02.45	65.1	69.0	55.1
03:30-03:45	65.5	69.3	55.0

	64.5	68.6	54.7
	64.7	68.3	55.3
03:45-04:00	65.7	69.9	55.4
	65.4	68.9	55.2
	66.5	70.0	55.8
04:00-04:15	65.8	69.5	55.8
	66.6	70.5	56.1
	65.5	69.0	56.2
04:15-04:30	66.8	69.7	55.5
	65.8	69.6	55.9
	66.1	69.7	56.4
04:30-04:45	66.1	70.1	56.0
	65.8	69.3	56.3
	65.7	69.4	57.0
04:45-05:00	66.2	69.5	57.8
	66.1	69.9	56.6
	67.1	70.6	57.1
05:00-05:15	67.7	71.0	57.4
	67.9	71.7	58.2
	66.9	70.8	57.7
05:15-05:30	67.0	71.0	57.0
	67.0	70.7	57.1
	67.1	71.2	57.3
05:30-05:45	66.7	70.3	57.6
	67.3	71.0	58.3
	68.2	71.9	58.4
05:45-06:00	68.6	72.3	59.3
	68.9	72.7	60.6
	69.4	73.1	61.2
06:00-06:15	69.7	73.1	60.9
	70.0	73.9	61.9
	70.6	74.4	62.9
06:15-06:30	71.1	74.9	63.1
	71.4	74.8	63.4
	71.9	75.3	63.0
06:30-06:45	72.5	76.2	65.0
	72.4	75.7	65.0
	73.0	76.6	66.2
06:45-07:00	73.0	76.6	65.4
	73.5	76.6	66.3
	72.6	76.5	65.6
Average	69.8	73.5	61.3
Max	73.5	76.9	66.3
Min	64.5	68.3	54.7

Baseline Noise Monitoring Result

Location: NMS-CA-9 Lucky Building (East Façade)

Baseline 6/6/2012 - 6/15/2012; monitoring period: 7/1/2012 - 7/6/2012

Site Observation: No construction works were conducted in the

vicinity during the monitoring period.

Weather Trace rainfall was observed throughout the monitoring period.

Condition: Amber rainstorm warning signal was hoisted between 1515 and

1640 hrs on 13 Jun, and between 0920 and 1020 hrs on 5 July. Given the short period of rainstorm, it is considered that the data

collected on on 13 Jun and 5 Jul remains valid.

Note: Airborne noise monitoring was suspended due to

bad weather conditions from 16 to 19

Jun 2012 (Cyclone TALIM).

Parameter: Leq

Time Slot Averaged Baselines

1) Weekdays Daytime Noise Level, dB(A)

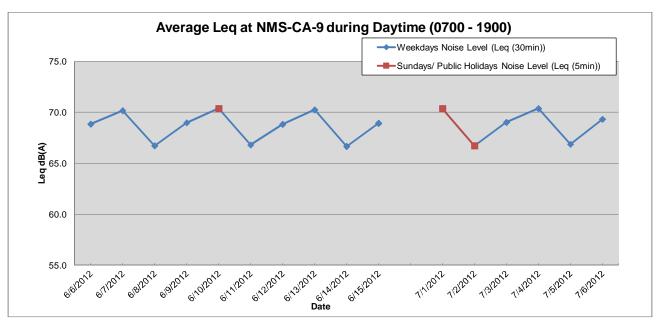
Time slot	Leq, 30 min	L10	L90
07:00-07:30	68.7	70.3	66.1
07:30-08:00	69.4	70.7	67.1
08:00-08:30	69.5	70.8	67.5
08:30-09:00	69.1	70.4	67.2
09:00-09:30	69.5	70.8	67.6
09:30-10:00	69.5	70.8	67.4
10:00-10:30	69.4	70.7	67.2
10:30-11:00	69.4	70.8	67.3
11:00-11:30	69.3	70.7	67.2
11:30-12:00	69.3	70.6	67.3
12:00-12:30	69.3	70.6	67.2
12:30-13:00	69.1	70.5	67.0
13:00-13:30	69.1	70.5	67.0
13:30-14:00	69.3	70.7	67.2
14:00-14:30	69.4	70.7	67.3
14:30-15:00	69.0	70.3	67.0
15:00-15:30	69.0	70.3	66.9
15:30-16:00	69.1	70.4	67.0
16:00-16:30	69.1	70.4	67.1
16:30-17:00	68.9	70.3	66.8
17:00-17:30	68.8	70.1	66.7
17:30-18:00	68.8	70.1	66.7
18:00-18:30	68.9	70.2	66.6
18:30-19:00	68.5	69.9	66.3
Average	69.2	70.5	67.0
Max	69.5	70.8	67.6
Min	68.5	69.9	66.1

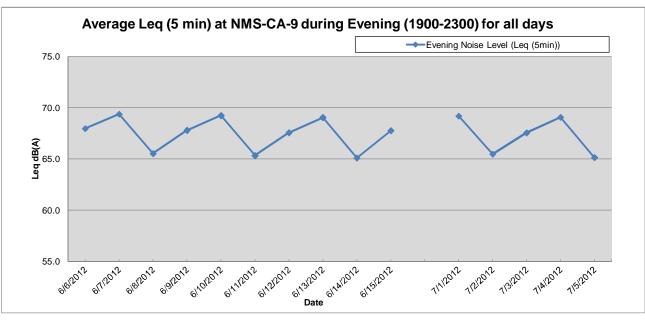
Noise Control Period Averaged Baselines

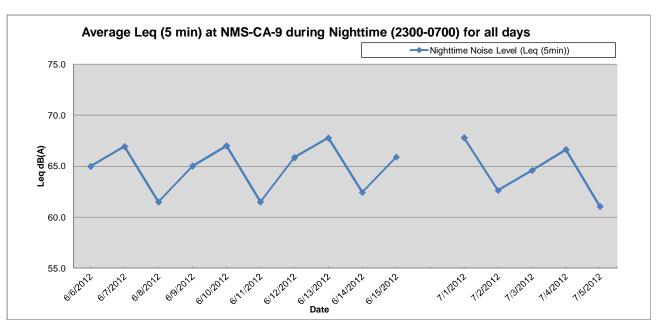
2) Weekdays Evening Noise Level, dB(A)

Time Slot	Leq, 5min	L10	L90
19:00-19:15	68.3	69.6	66.2
	68.4	69.7	66.3
	68.2	69.5	66.2
19:15-19:30	68.3	69.6	66.4
	68.1	69.4	66.1
	68.2	69.6	65.9
19:30-19:45	68.2	69.7	65.9
	68.4	69.6	65.9
	68.4	69.7	66.1
19:45-20:00	68.1	69.4	65.9
	67.8	69.2	65.6
	68.0	69.3	65.7
20:00-20:15	68.2	69.6	66.0
	68.1	69.5	65.9
	68.1	69.5	66.0
20:15-20:30	67.9	69.3	65.6
	68.2	69.6	66.0
	68.3	69.6	65.7
20:30-20:45	67.8	69.2	65.6
	68.0	69.4	65.5
	68.1	69.6	65.6
20:45-21:00	67.7	69.2	65.1
	67.8	69.3	65.4
	67.9	69.2	65.5
21:00-21:15	67.9	69.4	65.6
	68.0	69.4	65.5
	67.9	69.1	65.5
21:15-21:30	67.8	69.4	65.3
	68.1	69.5	65.5
	68.0	69.4	65.5
21:30-21:45	67.7	69.2	65.3
	67.8	69.3	65.4
	68.0	69.4	65.5
21:45-22:00	67.8	69.3	65.4
	68.0	69.4	65.7
	68.1	69.5	65.5
22:00-22:15	68.0	69.3	65.6
	68.1	69.5	65.7
	67.9	69.5	65.6
22:15-22:30	67.9	69.4	65.3
	67.8	69.2	65.5
	68.0	69.4	65.5
22:30-22:45	67.7	69.1	65.2
	67.8	69.4	65.2
	68.0	69.3	65.7
22:45-23:00	67.9	69.4	65.2
	67.8	69.3	65.4
	67.9	69.3	65.4
Average	68.0	69.4	65.7
Max	68.4	69.7	66.4
Min	67.7	69.1	65.1

Time Slot	Leq, 5min	L10	L90
0700-07:15	68.8	70.3	65.4
	67.7	69.6	64.6
	67.9	69.8	65.3
07:15-07:30	67.5	69.1	64.5
	68.1	69.6	65.3
	67.9	69.3	65.6
07:30-07:45	67.5	69.3	64.1
	67.6	69.3	64.3
	67.7	69.5	64.8
07:45-08:00	67.4	69.3	63.8
	67.5	69.3	64.3
	67.6	69.3	64.8
08:00-08:15	67.7	69.8	64.3
	68.1	70.3	65.3
	67.8	69.8	65.3
08:15-08:30	68.1	70.0	65.3
	67.8	69.5	65.0
	68.4	70.0	65.5
08:30-08:45	68.1	69.8	65.5
	68.4	70.3	65.5
	68.2	69.8	65.5
08:45-09:00	68.2	69.8	65.5
	68.1	69.6	65.3
	68.0	69.5	65.5
09:00-09:15	68.4	69.8	66.0
	68.4	70.0	65.5
	68.2	69.5	65.5
09:15-09:30	68.5	70.0	65.5
	68.8	70.3	66.5
	68.3	69.8	66.0
09:30-09:45	67.9	69.5	65.5
	68.6	70.0	66.5
	68.1	69.5	66.3
09:45-10:00	68.5	69.5	66.3
	68.4	69.8	66.3
	68.3	69.5	66.0
10:00-10:15	68.2	69.5	66.3
	68.5	69.8	66.3
	68.2	70.0	65.5
10:15-10:30	68.5	70.0	66.3
	68.2	69.8	66.0
	68.7	70.3	66.0
10:30-10:45	67.9	69.5	65.0
	68.0	69.5	66.0
	68.0	69.5	65.5
10:45-11:00	68.0	69.3	65.5
	67.9	69.3	65.5
	69.2	70.8	66.6
11:00-11:15	69.8	70.9	67.8
	69.7	70.9	67.6
	69.2	70.8	66.6
11:15-11:30	68.8	70.0	66.6
	68.8	70.0	66.3
	68.4	69.8	66.3
11:30-11:45	68.8	70.3	66.3
	68.5	69.8	66.3


1	68.4	70.0	66.0
11:45-12:00	68.9	70.0	66.8
	68.6	70.0	66.5
	68.8	70.0	66.3
12:00-12:15	68.2	69.5	65.8
	68.8	70.0	66.5
	68.1	69.8	65.6
12:15-12:30	68.3	69.5	66.3
	68.4	69.5	66.5
	68.5	69.8	66.3
12:30-12:45	68.4	69.5	66.5
	68.6	70.0	66.3
	68.8	70.0	66.5
12:45-13:00	68.8	70.0	66.9
	68.9	70.0	66.5
	68.6	70.0	66.5
13:00-13:15	68.7	69.8	66.5
	68.4	69.8	66.3
	68.4	69.8	66.3
13:15-13:30	68.4	69.5	66.3
	68.3	69.8	66.3
	68.3	69.5	66.3
13:30-13:45	68.5	70.0	66.3
	68.6	70.0	66.0
10.45.44.00	68.5	70.0	66.3
13:45-14:00	68.6	70.0	66.0
	68.2	69.5	66.3
44.00.44.45	68.5	69.8	66.0
14:00-14:15	68.4	69.8	66.0
	68.5	69.8	66.0
14:15-14:30	68.3 68.1	69.3 69.8	66.3 65.5
14.15-14.50	68.4	69.8	66.0
	68.4	69.8	66.4
14:30-14:45	68.3	69.7	66.0
14.00 14.40	68.6	70.2	66.4
	68.5	70.0	66.3
14:45-15:00	68.3	70.0	66.0
	68.0	69.3	66.0
	68.1	69.5	65.5
15:00-15:15	68.5	69.8	66.0
	67.9	69.3	65.5
	68.2	69.8	66.0
15:15-15:30	68.1	69.2	65.9
	68.3	69.7	65.8
	68.1	69.5	66.0
15:30-15:45	68.2	69.7	65.7
	68.0	69.2	66.0
	67.9	69.3	65.7
15:45-16:00	68.0	69.5	65.7
	68.2	69.5	66.2
	68.3	69.5	65.9
16:00-16:15	68.5	69.7	66.0
	68.5	69.7	65.7
	67.9	69.3	65.5
16:15-16:30	68.0	69.5	65.7
	68.0	69.3	65.7
	68.3	69.7	66.2
16:30-16:45	68.0	69.5	65.7


ĺ	68.0	69.3	65.8
	67.8	69.5	65.3
16:45-17:00	68.2	69.5	65.7
	69.0	69.4	65.7
	68.1	69.5	65.8
17:00-17:15	67.9	69.3	65.4
	68.2	69.5	65.5
	68.0	69.7	65.7
17:15-17:30	68.3	69.7	65.8
	67.8	69.2	65.3
	68.2	69.5	66.0
17:30-17:45	68.2	69.3	66.3
	68.0	69.5	65.7
	68.0	69.2	65.8
17:45-18:00	68.3	69.9	65.8
	68.3	69.5	66.2
	68.3	69.5	65.5
18:00-18:15	68.0	69.5	65.4
	68.3	69.5	65.5
40:45 40.00	68.2	69.5	66.2
18:15-18:30	68.7	69.5	66.0
	68.3	69.5	66.0
10.20 10.45	68.3	69.9	66.0
18:30-18:45	68.0	69.2	65.5
	68.3	69.7	66.2
18:45-19:00	67.8 67.7	69.2 69.0	65.7 65.7
10.43-19.00	67.8	69.2	65.7
	68.2	69.5	65.8
19:00-19:15	68.0	69.5	65.5
10.00 10.10	67.4	68.9	65.3
	67.6	69.2	65.2
19:15-19:30	67.9	69.3	65.3
	67.7	69.0	65.5
	67.4	68.7	65.2
19:30-19:45	67.3	68.7	65.2
	67.7	69.2	65.3
	67.3	68.8	65.0
19:45-20:00	67.4	68.7	65.0
	67.6	69.0	64.8
	67.3	68.8	64.9
20:00-20:15	67.2	68.7	64.8
	67.6	69.2	65.3
	66.8	68.3	64.3
20:15-20:30	67.7	69.2	64.9
	67.6	69.3	64.8
00.00.00.45	67.6	69.0	65.2
20:30-20:45	67.0	68.5	64.5
	67.3	68.8	65.0
20:45 24:00	67.3	68.7	65.0
20:45-21:00	67.5 67.3	69.2	65.0 64.7
	67.3	68.8 68.7	64.7
21:00-21:15	67.4	69.0	65.4
21.00-21.10	67.1	68.4	64.5
	67.3	69.1	64.6
21:15-21:30	67.3	69.0	64.7
21.10 21.00	67.4	69.2	64.9
	67.3	68.8	64.7
	07.0	55.5	01.7


21:30-21:45	67.5	69.2	65.0
	67.5	69.2	65.0
	67.4	68.8	64.9
21:45-22:00	67.4	68.7	65.1
	67.8	69.5	64.7
	67.5	69.0	65.3
22:00-22:15	67.6	69.0	65.3
	67.3	69.0	64.5
	67.6	69.2	64.9
22:15-22:30	67.4	68.7	65.0
	67.9	69.5	65.5
	67.5	69.2	64.9
22:30-22:45	67.4	68.9	64.9
	67.5	69.0	65.0
	67.6	69.2	65.2
22:45-23:00	67.2	68.7	64.5
	67.7	69.4	65.2
	67.5	69.0	64.7
Average	68.0	69.5	65.6
Max	69.8	70.9	67.8
Min	66.8	68.3	63.8

Time Slot	Leq, 5min	L10	L90
23:00-23:15	67.4	68.8	64.8
	67.3	68.8	64.8
	67.5	69.0	64.7
23:15-23:30	67.3	68.8	64.8
	67.4	69.0	64.6
	67.3	68.8	64.6
23:30-23:45	67.2	68.8	64.7
	67.2	68.6	64.8
	67.0	68.5	64.3
23:45-00:00	67.0	68.6	64.2
	67.0	68.8	64.2
	67.1	68.9	64.4
00:00-00:15	66.6	68.4	63.7
	67.1	68.8	64.0
	66.9	68.6	64.0
00:15-00:30	66.8	68.7	63.6
	66.3	68.2	63.0
	66.3	67.9	63.2
00:30-00:45	66.0	67.9	62.6
	65.7	67.5	62.5
	65.8	67.7	62.4
00:45:01:00	65.4	67.4	62.1
	65.3	67.3	61.8
	64.8	66.9	61.2
01:00-01:15	64.3	66.3	60.9
01.00 01.10	64.3	66.1	60.9
	64.0	65.9	60.6
01:15-01:30	63.6	65.6	60.3
01.10 01.00	64.2	66.1	60.6
	63.7	65.8	60.1
01:30-01:45	63.6	65.6	59.9
01.00 01.10	63.4	65.5	59.7
	63.6	65.7	59.7
01:45-02:00	63.6	65.6	59.7
01.10 02.00	63.2	65.3	59.4
	63.3	65.3	59.5
02:00-02:15	63.4	65.4	59.6
02.00 02.10	63.6	65.7	59.8
	63.4	65.5	59.6
02:15-02:30	63.3	65.4	59.3
	63.2	65.2	59.5
	63.1	65.3	59.5
02:30-02:45	63.0	65.0	59.3
J	63.0	65.0	59.2
	63.1	65.2	59.2
02:45-03:00	62.9	65.0	58.9
J 10 JO.00	62.4	64.7	58.5
	63.2	65.5	58.8
03:00-03:15	63.1	65.3	59.4
55.00 55.10	62.8	64.8	58.9
	62.7	64.7	58.8
03:15-03:30	62.5	64.7	58.6
00.10 00.00	62.6	64.8	58.6
	62.3	64.5	58.2
	02.3	04.0	50.2
03:30-03:45	62.3	64.4	58.3

	62.1	64.3	58.4
03:45-04:00	62.3	64.7	58.1
	62.3	64.6	58.2
	62.6	64.9	58.5
04:00-04:15	62.6	64.9	58.4
	62.5	64.8	58.3
	63.0	65.3	58.7
04:15-04:30	62.9	65.1	59.0
	62.8	65.2	58.8
	62.6	64.7	58.5
04:30-04:45	62.6	64.9	58.5
	62.6	65.0	58.3
	62.8	65.0	58.7
04:45-05:00	63.0	65.2	59.1
	63.4	65.6	59.3
	63.5	65.7	59.4
05:00-05:15	63.4	65.5	59.4
	63.5	65.9	59.4
	63.4	65.8	59.2
05:15-05:30	63.4	65.6	59.4
	63.8	66.0	59.6
	63.6	65.8	59.6
05:30-05:45	64.0	66.2	59.8
	64.1	66.4	60.2
	64.8	66.9	60.9
05:45-06:00	64.7	66.8	60.9
	64.9	67.1	61.3
	64.8	67.1	61.0
06:00-06:15	65.2	67.4	61.5
	65.9	67.8	62.0
	66.2	68.3	62.6
06:15-06:30	66.3	68.3	62.8
	66.3	68.4	62.8
	66.5	68.5	63.2
06:30-06:45	67.0	68.8	63.7
	67.5	69.5	64.3
	67.5	69.3	64.5
06:45-07:00	67.7	69.4	64.9
	68.0	69.6	65.4
	68.0	69.7	65.1
Average	65.3	67.2	61.9
Max	68.0	69.7	65.4
Min	62.1	64.3	58.1

Baseline Noise Monitoring Result

NMS-CA-10 Chat Ma Mansion Location:

Baseline

monitoring period: 6/27/2012 - 6/29/2012;

7/01/2012 - 7/13/2012

Site Observation: No construction works were conducted in the

vicinity during the monitoring period.

Weather Trace rainfall was observed throughout the monitoring period. Amber rainstorm warning signal was hoisted between 0920 and condition:

> 1020 hrs on 5 July. Given the short period of rainstorm, it is considered that the data collected on 5 Jul remains valid.

Note: Airborne noise monitoring was suspended due to

bad weather conditions from 29 to 30 Jun 2012

(Cyclone DOKSURI).

Parameter: Leq

Time Slot Averaged Baselines

1) Weekdays Daytime Noise Level, dB(A)

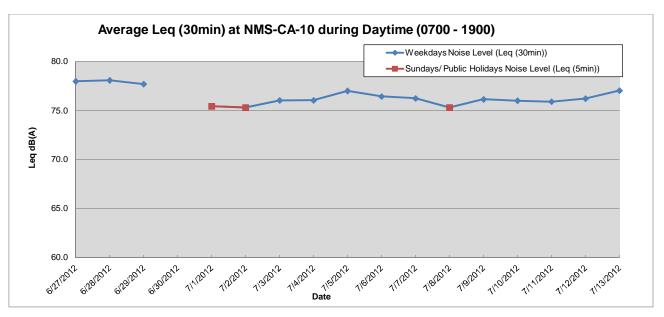
Time slot	Leq, 30 min	L10	L90
07:00-07:30	76.8	78.5	72.9
07:30-08:00	77.1	78.6	73.7
08:00-08:30	77.1	78.3	74.2
08:30-09:00	76.7	78.0	73.8
09:00-09:30	76.9	78.2	74.0
09:30-10:00	77.1	78.4	74.1
10:00-10:30	76.7	78.1	73.6
10:30-11:00	76.9	78.4	73.6
11:00-11:30	76.7	78.2	73.6
11:30-12:00	76.7	78.1	73.4
12:00-12:30	76.9	78.2	73.5
12:30-13:00	76.6	78.1	73.4
13:00-13:30	76.6	78.0	73.3
13:30-14:00	76.5	77.9	73.4
14:00-14:30	76.8	78.2	73.5
14:30-15:00	76.2	77.6	73.1
15:00-15:30	76.2	77.6	72.8
15:30-16:00	76.5	77.9	73.1
16:00-16:30	76.4	77.7	73.1
16:30-17:00	76.4	77.7	73.1
17:00-17:30	76.2	77.6	73.0
17:30-18:00	76.1	77.4	72.9
18:00-18:30	76.1	77.4	73.0
18:30-19:00	75.6	76.8	72.4
Average	76.6	78.0	73.4
Max	77.1	78.6	74.2
Min	75.6	76.8	72.4

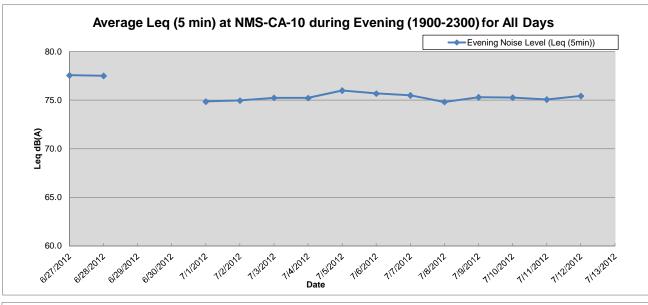
Noise Control Period Averaged Baselines

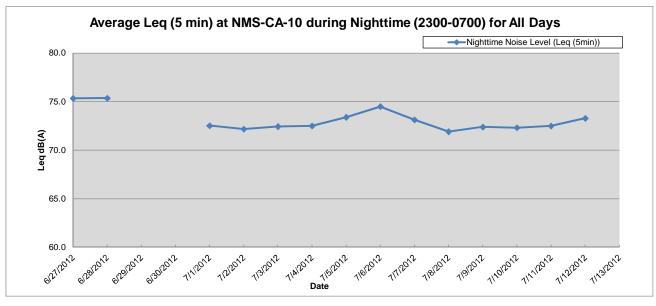
2) Weekdays Evening Noise Level, dB(A)

Time Slot	Leq, 5min	L10	L90
19:00-19:15	75.7	77.1	72.4
	76.0	77.3	72.4
	75.8	77.1	72.6
19:15-19:30	75.7	76.9	72.5
	75.7	77.1	72.5
	76.0	77.3	72.7
19:30-19:45	76.0	77.2	72.8
	76.2	77.4	72.8
	76.0	77.2	72.7
19:45-20:00	76.4	77.5	72.8
	75.8	77.1	72.6
	75.9	77.4	72.5
20:00-20:15	76.3	77.2	72.5
	76.0	77.3	72.4
	76.0	77.4	72.6
20:15-20:30	75.7	77.1	72.8
	76.6	77.4	72.7
	76.0	77.4	72.3
20:30-20:45	76.1	77.5	72.5
	75.8	77.0	72.5
	75.7	77.0	72.3
20:45-21:00	75.9	77.4	72.0
	75.6	77.2	72.0
	75.8	77.0	72.1
21:00-21:15	75.5	77.0	71.6
	75.7	77.1	72.2
	75.8	77.4	72.0
21:15-21:30	75.8	77.2	72.1
	75.6	77.2	72.1
	75.7	77.3	72.0
21:30-21:45	75.7	77.2	72.1
	75.6	77.1	72.1
	76.0	77.2	72.3
21:45-22:00	75.7	77.2	72.0
	75.7	77.1	72.2
	76.0	77.5	72.3
22:00-22:15	76.3	77.6	72.4
	75.7	77.3	72.3
	76.0	77.4	72.2
22:15-22:30	76.0	77.4	72.4
	75.9	77.3	72.3
22.22.22.17	76.0	77.4	72.2
22:30-22:45	75.8	77.4	72.2
	75.9	77.4	72.3
00.45.00.00	75.6	77.2	71.9
22:45-23:00	75.8	77.2	72.3
	75.9	77.4	72.1
	75.8	77.4	72.1
Average	75.9	77.3	72.3
Max	76.6	77.6	72.8
Min	75.5	76.9	71.6

Time Slot	Leq, 5min	L10	L90
0700-07:15	74.7	77.0	69.5
	75.4	77.3	69.8
	73.9	76.0	69.5
07:15-07:30	74.5	76.5	69.3
	74.6	76.5	69.3
	74.5	76.8	70.3
07:30-07:45	74.3	76.5	69.5
	74.2	76.8	69.5
07.45.00.00	74.2	77.0	68.8
07:45-08:00	74.3	76.5	69.8
	74.4	76.8	69.8
08:00-08:15	74.6 74.6	76.8 76.5	70.8 70.3
08:00-08:15	74.6 74.6	76.5 76.8	70.8
	74.7	76.8	70.5
08:15-08:30	75.2	77.5	70.8
00.10-00.00	74.9	76.8	71.5
	75.3	77.5	71.0
08:30-08:45	74.8	77.0	70.5
55.55 55.16	75.8	78.0	71.0
	75.1	77.3	70.8
08:45-09:00	75.1	77.0	70.8
	75.3	77.3	71.8
	74.8	76.8	70.5
09:00-09:15	75.0	77.5	70.3
	75.4	77.5	71.8
	75.2	77.5	71.5
09:15-09:30	75.3	77.3	71.5
	75.4	77.3	71.8
	75.7	77.8	71.8
09:30-09:45	75.4	77.5	72.0
	75.4	77.5	71.3
00.45.40.00	75.3	77.0	71.8
09:45-10:00	75.5	77.3	72.3
	75.1 75.1	76.8 76.8	71.3
10:00-10:15	75.1 75.4	76.8 77.5	72.0 72.3
10.00-10.13	75.3	77.0	72.0
	75.8	77.5	71.5
10:15-10:30	75.6	77.5	71.3
13.13 10.00	75.0	76.8	71.5
	75.4	77.0	72.3
10:30-10:45	75.1	76.8	71.3
	75.3	77.3	72.0
	74.8	76.8	71.0
10:45-11:00	74.6	76.5	71.8
	74.9	76.8	71.8
	74.6	76.5	70.8
11:00-11:15	75.3	77.0	71.8
	75.1	77.3	71.8
	75.5	77.3	72.3
11:15-11:30	75.2	77.0	71.5
	75.4	77.5	71.5
	75.5	77.3	72.3
11:30-11:45	75.5	77.3	72.3


	75.8	77.5	72.5
	75.3	77.5	71.8
11:45-12:00	75.7	77.5	72.8
	75.4	77.0	72.5
	75.9	77.8	72.5
12:00-12:15	75.3	77.3	71.8
	75.5	77.3	72.3
	75.5	77.5	72.5
12:15-12:30	75.0	77.0	71.5
	75.3	77.0	71.8
	75.1	77.0	71.8
12:30-12:45	75.3	77.0	72.3
	75.4	77.0	72.8
	75.7	77.3	73.5
12:45-13:00	75.5	77.3	72.5
	75.7	77.5	72.5
	75.5	77.0	72.5
13:00-13:15	75.4	77.0	72.3
	75.5	77.8	71.8
	75.8	77.5	72.3
13:15-13:30	75.7	77.5	72.8
	75.5	77.3	72.3
	75.3	77.0	72.0
13:30-13:45	75.6	77.5	72.0
	76.1	77.3	72.5
	75.4	77.3	72.1
13:45-14:00	75.9	77.5	72.5
	75.7	77.5	72.3
	75.8	77.5	72.5
14:00-14:15	75.6	77.5	72.5
	75.3	77.0	72.3
44.45.44.00	75.6	77.3	72.5
14:15-14:30	75.3	77.2	72.2
	75.4	77.3	72.2
14.20 14.45	75.6	77.5	72.6
14:30-14:45	75.4 75.6	77.0	72.9
	75.6	77.3 77.5	72.3
14:45-15:00	75.8 76.2	77.5	71.8 72.5
14.43-13.00	75.3	77.0	72.3
	75.6	77.5	72.8
15:00-15:15	75.2	77.3	71.9
10.00 10.10	75.6	77.4	72.2
	74.9	76.8	71.5
15:15-15:30	75.2	76.8	72.3
	75.4	77.7	72.1
	75.3	77.4	71.2
15:30-15:45	75.4	77.0	72.2
.5.55 10.70	75.2	77.2	71.9
	75.3	77.0	72.2
15:45-16:00	75.4	77.0	71.9
	75.4	77.3	72.0
	75.5	77.4	72.3
16:00-16:15	75.6	77.7	72.5
	75.5	77.2	72.0
	75.0	77.2	71.7
16:15-16:30	75.5	77.5	72.0
	75.2	77.0	71.7


I	75.3	77.2	72.0
16:30-16:45	75.1	77.0	71.9
	75.2	77.0	71.8
	75.0	76.8	72.2
16:45-17:00	75.4	77.2	72.4
	75.8	77.2	72.0
	75.3	77.2	72.2
17:00-17:15	75.4	76.8	71.9
	75.2	77.2	71.8
	75.3	77.2	72.3
17:15-17:30	75.2	76.8	72.0
	75.6	77.0	71.7
	75.0	77.0	71.9
17:30-17:45	75.1	76.8	72.0
	75.4	77.2	72.5
	75.3	77.3	71.8
17:45-18:00	75.4	77.0	72.6
	75.7	77.5	73.0
	75.5	77.3	72.5
18:00-18:15	75.2	77.0	72.2
	75.7	77.2	72.2
	75.8	77.3	73.0
18:15-18:30	75.8	77.5	72.5
	75.6	77.4	72.0
	76.0	78.1	72.8
18:30-18:45	75.4	77.2	72.5
	75.3	77.2	72.2
	75.4	77.3	72.5
18:45-19:00	75.3	77.0	72.4
	75.1	76.7	72.0
10.00 10.15	75.2	77.2	72.2
19:00-19:15	75.4	77.0	72.2
	75.0	77.0	71.7 71.8
19:15-19:30	75.1 75.3	77.0 76.8	71.6
19.10-19.50	74.9	76.5	72.0
	74.9	76.5	71.4
19:30-19:45	74.4	76.3	71.0
13.50-13.43	74.6	76.5	71.3
	74.7	76.7	71.7
19:45-20:00	74.6	76.3	71.7
10.10 20.00	74.8	76.5	71.7
	74.4	76.5	70.8
20:00-20:15	74.3	76.4	70.8
	74.3	76.2	70.5
	74.8	76.7	71.5
20:15-20:30	74.6	76.3	71.4
	74.8	76.9	71.3
	74.4	76.4	71.0
20:30-20:45	75.1	76.8	71.4
	74.6	76.3	71.0
	74.6	76.5	71.3
20:45-21:00	75.3	76.8	71.8
	75.1	77.0	71.3
	74.5	76.5	71.4
21:00-21:15	74.6	76.3	71.4
	74.8	76.8	71.4
	75.1	76.6	71.7


21:15-21:30	74.8	76.7	71.5
	75.0	76.8	72.2
	75.0	76.8	71.9
21:30-21:45	74.8	76.5	72.0
ľ	74.8	76.5	72.0
	75.1	77.0	71.9
21:45-22:00	75.0	76.8	71.8
	74.8	76.3	71.7
	75.0	76.7	72.1
22:00-22:15	74.7	76.8	71.5
	75.0	76.9	72.0
ľ	75.3	77.0	71.8
22:15-22:30	75.1	76.7	72.5
	75.2	77.0	72.4
	75.2	77.0	71.9
22:30-22:45	74.7	76.3	71.7
	75.1	76.7	71.9
	74.9	76.8	71.7
22:45-23:00	74.8	76.8	71.5
	75.1	77.0	71.7
ľ	75.3	77.0	72.1
Average	75.2	77.0	71.9
Max	76.2	78.1	73.5
Min	73.9	76.0	68.8

Time Slot	Leq, 5min	L10	L90
23:00-23:15	75.6	77.2	71.9
	75.5	77.1	71.9
	75.6	77.2	71.9
23:15-23:30	75.4	77.0	71.8
	75.6	77.0	71.8
	75.4	77.1	71.5
23:30-23:45	75.5	77.0	71.6
	75.0	76.8	71.0
	75.2	76.8	71.3
23:45-00:00	75.3	76.9	71.4
	75.2	76.9	70.9
	75.3	77.0	71.3
00:00-00:15	74.8	76.7	70.8
	74.9	76.6	70.6
	75.1	76.8	70.7
00:15-00:30	74.8	76.6	70.3
	74.5	76.4	70.0
	74.5	76.3	69.7
00:30-00:45	74.4	76.3	69.6
	74.3	76.2	69.3
	73.8	75.7	68.6
00:45:01:00	74.1	75.9	68.7
	73.6	75.6	68.6
	73.0	75.1	67.7
01:00-01:15	73.1	75.1	67.6
	73.3	75.1	68.2
	73.0	75.1	67.8
01:15-01:30	73.3	75.2	68.4
	73.1	75.0	68.5
04.00.04.45	73.0	74.9	68.2
01:30-01:45	72.3	74.6	66.6
	72.7	74.5	66.6
04:45.00:00	71.9	74.1	66.3
01:45-02:00	72.3	74.4	66.4
	72.2	74.2	66.4
02:00 02:45	72.0	73.9	66.1
02:00-02:15	71.9 71.9	74.0	65.5 66.1
	71.9	74.0 74.0	65.7
02:15-02:30	72.3	73.8	65.4
02.13-02.30	71.8	73.9	65.1
	71.8	73.9	65.8
02:30-02:45	72.2	73.7	64.8
02.30 02.43	71.8	73.8	65.3
	71.6	73.7	65.5
02:45-03:00	71.5	73.7	65.1
02.70 00.00	71.4	73.3	64.6
	71.5	73.4	64.5
03:00-03:15	71.7	73.8	64.4
	71.7	73.6	64.7
	71.2	73.3	64.4
03:15-03:30	70.7	73.3	63.8
00.10 00.00	70.8	73.2	63.2
	71.0	73.3	62.9
03:30-03:45	. / 1.0	1 0.0	UZ.U

1	70.7	73.2	63.0
	70.5	73.1	63.2
03:45-04:00	70.7	73.1	63.5
	70.9	73.4	63.5
	70.6	73.0	63.1
04:00-04:15	70.6	73.2	63.1
	70.6	73.2	62.7
	70.6	73.1	62.9
04:15-04:30	71.1	73.6	63.9
	71.7	73.5	63.8
	71.3	73.7	63.8
04:30-04:45	71.2	73.8	64.5
	71.1	73.4	63.7
	71.2	73.5	64.0
04:45-05:00	71.8	74.0	64.1
	71.5	74.0	63.8
	71.7	74.0	64.7
05:00-05:15	71.9	74.1	64.3
	71.4	74.0	64.1
	71.7	74.1	64.5
05:15-05:30	71.6	74.1	64.5
	71.7	74.0	64.3
	72.2	74.5	65.2
05:30-05:45	72.2	74.4	65.3
	72.5	74.7	66.1
	72.6	74.8	66.0
05:45-06:00	72.9	75.2	65.9
	73.1	75.3	66.2
	73.1	75.5	67.0
06:00-06:15	73.0	75.3	66.6
	73.8	75.7	67.9
	74.0	76.2	67.9
06:15-06:30	74.3	76.4	68.7
	74.2	76.5	68.6
	74.7	76.7	69.2
06:30-06:45	75.1	76.9	69.2
	75.2	77.3	70.4
	76.1	77.9	71.2
06:45-07:00	76.0	77.8	71.4
	76.1	77.9	71.6
	76.2	77.9	72.0
Average	73.3	75.2	68.0
Max	76.2	77.9	72.0
Min	70.5	72.9	62.7

