MTR Corporation Limited

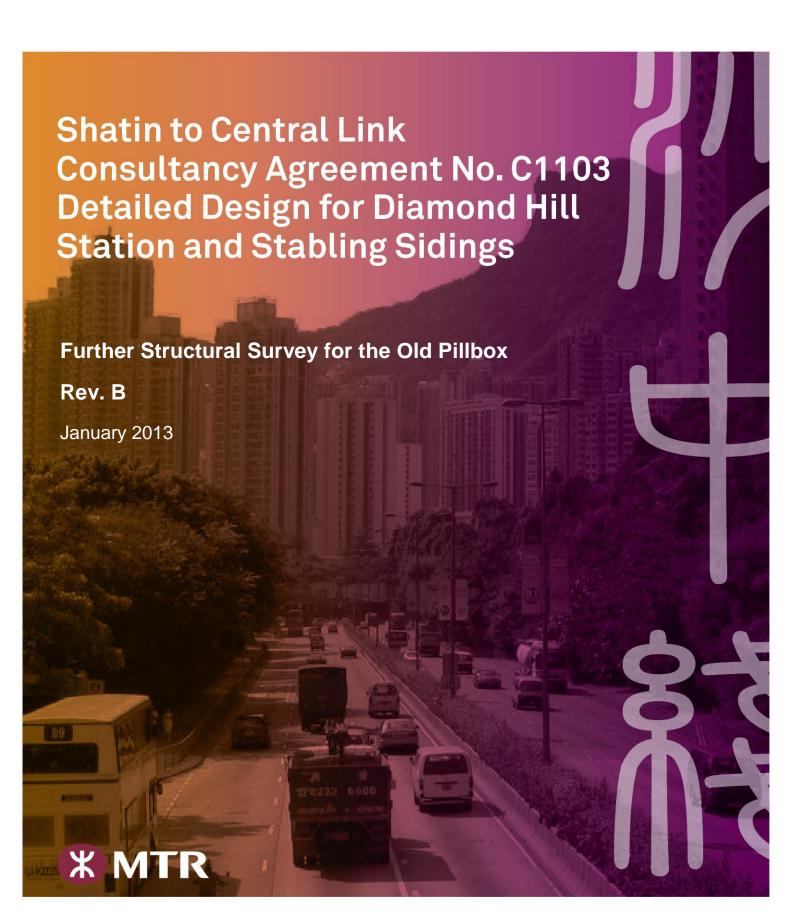
Shatin to Central Link – Tai Wai to Hung Hom Section

Conservation Plan
for the Old Pillbox
at the former Tai Hom Village site

(March 2013)

Verified by	y: <u>To</u>	m Chapman	P.S. Chayn
Position: <u>l</u>	ndepende	ent Environme	ental Checker
Date:	14/3/	2013	

MTR Corporation Limited


Shatin to Central Link – Tai Wai to Hung Hom Section

Conservation Plan
for the Old Pillbox
at the former Tai Hom Village site

(March 2013)

Certified by:	Richard Kwan
Position:	Environmental Team Leader
Date:	18 Mar 2013

MTR Corporation Limited

Shatin to Central Link

Consultancy Agreement No. C1103

Detailed Design for Diamond Hill Station and **Stabling Sidings**

Further Structural Survey for the Old Pillbox

Rev. B

January 2013

Date	Rev.	F	Prepared		Checked	A	pproved
Nov 2012	Α	SPC		HLHK		IMW	
Jan 2013	В	SPC	0-	HLHK	Alek	IMW	Whileton
					5	/)

ePMS Transmittal No.: C1103-COR-ACM-SUR-000006

File: 60146520 / 17.A3.0J2

Table of Contents

1.	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Scope of this Report	2
	1.3	Report Structure	2
2.	SUM	MARY OF FINDINGS OF THE FACTUAL INVESTIGATION REPORT	3
	2.1	Scope of Investigation	3
	2.2	Structural Investigation	3
	2.3	Trial Pits	4
	2.4	Factual Investigation Reports	5
3.	STRU	JCTURAL APPRAISAL	6
	3.1	Form of Construction	6
	3.2	Overall Strength and Conditions of Pillbox	6
	3.3	Weight Estimation	7
4.	GEO	TECHNICAL APPRAISAL	9
	4.1	Existing Founding Conditions	9
5.	RELO	OCATION OF THE PILLBOX	10
	5.1	Strengthening and Temporary Bracing / Support	10
	5.2	Underpinning	10
	5.3	Lifting and Transport	10
	5.4	Issues and Constraints	11
6.	WAY	FORWARD	12
	6.1	Summary	12
	6.2	Wav Forward	13

Appendices

Appendix A Proposed Method Statement for Additional Trial Pits and Structural

Investigation for Old Pillbox

Appendix B Final Fieldwork Report of Pillbox at Diamond Hill and Final Report on

Laboratory Testing - Pillbox at Diamond Hill prepared by Geotechnics

& Concrete Engineering (Hong Kong) Ltd.

Appendix C Structural Assessment of Capacity of Dome Profile Roof

Appendix D Estimation of Soil Bearing Pressure at Base of Wall

Appendix E Configuration and Basic Approximate Dimensions and Weight

Estimation of Pillbox

Appendix F Proposed Lifting and Transporting Method for Pillbox prepared by

VSL Hong Kong Ltd.

Appendix G Responses to Comments (ref. AMO's e-mail dated 16 Nov 2012 &

AMO's letter ref. () in LCSD/CS/AMO 81-5/21 Pt.19 dated 14

December 2012)

Drawings

Drawing No. Title

1106/W/301/ACM/C21/501 Heritage – Pillbox Relocation Underpinning (Sheet 1)

1106/W/301/ACM/C21/502 Heritage – Pillbox Relocation Underpinning (Sheet 2)

1106/W/301/ACM/C21/503 Heritage – Pillbox Relocation Underpinning (Sheet 3)

1106/T/301/ACM/C21/504 Heritage – Pillbox Relocation

Proposed Permanent Strengthening Method for Entire Structure

1. INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is one of the ten large-scale infrastructure projects announced by the Chief Executive in his 2007-2008 Policy Address. In mid-2008 the Executive Council requested the Corporation to proceed with further planning and design for this line. The Preliminary Design of the SCL was substantially completed in December 2009.
- 1.1.2 In January 2010, the MTR Corporation employed AECOM Asia Company Limited to undertake the Detailed Design for Consultancy Agreement C1103 Diamond Hill Station and Stabling Sidings, including: an integrated KTL/SCL station, Diamond Hill Station (DIH), occupying part of a vacant Comprehensive Development Area (CDA) site; the semi-underground Diamond Stabling Sidings (DHS) with property development above, also on the CDA site; and modifications to Pat Heung Depot, all to suit commissioning of the East West Line (EWL) of SCL. The design of pedestrian links at Tsz Wan Shan is also included, although the Links are not part of SCL Project.
- 1.1.3 In March 2011, the Corporation identified the opportunity to provide part of the stabling facilities for SCL-EWL at the disused freight yard at Hung Hom. The proposed Hung Hom Stabling Sidings (HHS) is located at the east of the existing Hung Hom Station (HUH), with the sidings occupying the yard area formerly used for freight operations.
- 1.1.4 The "Cultural Heritage Impact" from the EIA Study for Tai Wai to Hung Hom Section recommended that the Old Pillbox would be moved in one piece; and the Former Royal Air Force Hangar would be dismantled and reassembled in some form.
- 1.1.5 It is a requirement that any proposal for dismantling and partial reassembly of heritage structures must be fully justified from the perspective of heritage preservation, with due considerations from the practicability of retaining/reusing the existing members/ components/materials.
- 1.1.6 A Working Paper on Proposal for the Heritage Structures was subsequently submitted to AMO in August 2010, which had provided more detailed justification on the relocation and reinstatement proposals from the heritage preservation view point, with due consideration given to the discussion and recommendations with AMO.
- 1.1.7 While the Working Paper has outlined the approach for preserving the heritage structures in line with principles agreed with AMO, the final schemes will depend on the ultimate users / maintenance bodies for these structures, who may impose specific requirements to suit their operation and maintenance needs.

- 1.1.8 Condition survey and structural investigation on the heritage structures should have commenced to collect more information for completing the preservation and reinstatement proposals. Following the conduction of an asbestos containing materials (ACM) survey by an independent consultants of MTR in March 2010, suspect ACM were found in the Former Royal Air Force Hanger. The Asbestos Investigation Report (AIR) and a draft Asbestos Abatement Plan (AAP) were forwarded to RDO in August 2010 for submission to EPD on behalf of Lands Department. Pending the completion of any asbestos abatement works as required by EPD, condition survey and structural investigation on the structure are to be arranged.
- 1.1.9 As no suspect ACM was found within the Pillbox, structural investigation on the Pillbox in the form of trial pit and core sampling and testing was conducted in July 2010. Proposed method statement for the investigation and reinstatement was submitted to AMO for agreement prior to carrying out the actual site works.

1.2 Scope of this Report

- 1.2.1 The purpose of this Report is to present the outcome of the structural investigation, based on which an appraisal on the existing structural and foundation conditions of the Pillbox is given.
- 1.2.2 An initial recommendation for relocating the Pillbox showing the design intent is provided, which shall be further developed pending a detailed geometric survey on the Pillbox and further study and review on method of construction, temporary support, transportation and storage.

1.3 Report Structure

- 1.3.1 This Report is structured as follows:
 - Chapter 2: Summary of Findings of the Factual Investigation Report
 Provides a summary of the findings of investigation, materials testing results and critical geometric information as presented in the investigation report prepared by MTR's term contractor.
 - Chapter 3: Structural Appraisal
 - Provides a qualitative assessment on the overall structural strength and conditions of the Pillbox, the anticipated form of construction and an estimation of its weight.
 - Chapter 4: Geotechnical Appraisal
 - Provides an assessment on the existing foundation and soil conditions of the Pillbox.
 - Chapter 5: Initial Recommendation for Relocating the Pillbox
 - Provides an initial recommendation on the method to underpin and remove the Pillbox, lifting and transportation, and means to safeguard its structural stability and integrity during the relocation.
 - Chapter 6: Way Forward
 - Provides conclusions and recommendations, and an outline of further work to be carried out in accomplishing the preservation and relocation proposal.

2. SUMMARY OF FINDINGS OF THE FACTUAL INVESTIGATION REPORT

2.1 Scope of Investigation

- 2.1.1 The purpose and scope of the structural investigation is to assess the materials used in the construction of the Pillbox, their current conditions, the possible form of construction and the existing foundation, soil conditions and any possible underground features. This information is necessary as input to the design of temporary measures required for the proposed removal, transportation and possible reinstatement of the Pillbox from its current location to an ultimate location where it is proposed to be preserved. It also serves to collect useful information required for the documentation and record of condition as part of the preservation process.
- 2.1.2 It was proposed to extract a total of 4 no. of core samples that would go through the full thickness of the elements being sampled; two located on the wall of the Pillbox, one on the roof dome and one through the base slab. 4 no. trial pits were proposed adjacent to the Pillbox to expose the side wall and foundation details, and to identify the soil materials. Two of them served also for taking the core samples through the wall of the Pillbox.
- 2.1.3 To safeguard against possible damage to the Pillbox during any part of the investigation, method statement for the investigation and reinstatement as well as precautionary measures as agreed by AMO were stipulated for the investigation contractor to observe and comply.
- 2.1.4 Scope of the investigation and method statement are included in **Appendix A**.

2.2 Structural Investigation

Concrete Block Wall

- 2.2.1 Two core samples were taken at two wall locations. However, due to the geometry of the hollow blocks, sufficient length of intact sample was not available for a standard compression test to determine the concrete strength of the structural component. An alternative test was carried out to test the strength of the complete hollow block using the two spare components found outside the Pillbox.
- 2.2.2 The compression test on the two hollow block samples revealed that their crushing strength are 13.8 MPa (2,000 psi) and 20.0 MPa (2,900 psi) respectively.

Reinforced Concrete Roof Slab

- 2.2.3 One concrete core sample was taken from the reinforced concrete roof slab for testing. The results revealed that the crushing strength of the core sample is only 6.5 MPa (940 psi). In addition, it should also be noted that there may be some deviation in the core test result due to the following:
 - The size of core specimen cannot comply with the standard requirement due to the actual site constraints.
 - The failure load of the roof specimen is lower than the minimum calibrated range of the compression machine 50kN.

- The sampling size is too small and cannot meet the rate of sampling concrete as stipulated from the building regulation. Thus the result of this isolated test is not conclusive to establish the concrete strength.
- 2.2.4 The surface of the roof was scanned by cover meter randomly. The result revealed that the roof slab is reinforced with re-bars of irregular spacing ranged between 160mm to 340mm in orthogonal directions.

Reinforced Concrete Base Slab

- 2.2.5 One concrete core sample was taken from the reinforced concrete base slab for testing. The core test result shows that its crushing strength is 13.5 MPa (1,960 psi).
- 2.2.6 The surface of the base slab was again scanned randomly by cover meter. The result revealed that the portion of the base slab next to the core hole S1 is reinforced with re-bars of irregular spacing ranged between 155mm to 210mm in orthogonal directions.

2.3 Trial Pits

- 2.3.1 Four trial pits were carried out adjacent to the four sides of the Pillbox to investigate the soil condition, to expose the side wall and foundation of the Pillbox for visual inspection, and to facilitate taking core samples at the wall. The location of the trail pits is shown on **Drawing No. 1106/K/301/ACM/C01/005** included in **Appendix E**.
- 2.3.2 According to the trial pit records, in general, the Pillbox is underlain by a thin layer of about 0.1m thick top soil comprising mainly soft, sandy silt. Below the top soil is a layer of fill with thickness varies from 0.2m to 1.5m. This fill mainly consists of dense, silty fine to coarse sand with occasional angular fine to coarse gravel sized quartz fragment with some decayed plant piece and occasional plastic fragments. Occasional pockets of fill comprise of loose, silty sand and firm, clayey sandy silt is also encountered. Below fill is alluvium comprise of stiff, moist, brown, clayey sandy silt. At least 300mm thick alluvium was found below the base slab of the Pillbox.
- 2.3.3 No seepage of water was observed in the trial pits during excavation. Several utilities / features were found in the trial pits and summarized as follows:
 - A PVC pipe with diameter of about 50mm was encountered at trial pit no. 11202/SCL/TP154 just below the ground.
 - Two cables with diameter of about 25mm were located in trial pit no. 11202/SCL/TP157 at about 0.7m and 0.9m below ground level and two HKTC PVC pipes were also encountered in the pit at about 1.15m below ground level.
 - A concrete pipe with diameter of about 170mm connected to the Pillbox was encountered in trial pit no. 11202/SCL/TP156 at depth of about 1.1m below ground level.
 - Concrete blocks were recorded in trial pit no. 11202/SCL/TP155 at about 0.2m below ground level with thickness about 0.25m.
 - A concrete slab (about 0.1m thick) possible previous pavement was encountered at trial pits no. 11202/SCL/TP155 and TP157 at about 0.1m below ground level.

- 2.3.4 Block samples were taken at depth 0.5m below ground level in each trial pit. Laboratory testing was carried out to determine the following properties of soil:
 - Density of soil (by linear measurement method);
 - Moisture content of soil;
 - Atterberg limits of soil;
 - Particle size distribution of soil;
 - Particle density;
 - Dry density/moisture content relationship of soil;
 - Chemical content of soil.
- 2.3.5 The results of the laboratory testing are summarized in the **Tables 2.1 and 2.2** below:

Table 2.1 Summary of result of density, moisture content, atterberg limits and particle density of soil

Trial Pit No.	Bulk	Dry	Moisture	Liquid	Plastic	Plasticity	Liquidity	Particle
	Density	Density	Content	Limit	Limit	Index	Index	Density
	Mg/m³	Mg/m³	%	%	%	%	%	Mg/m³
11202/SCL/TP154	2.01	1.74	14	41	20	21	0.238	2.64
11202/SCL/TP155	1.83	1.68	8.8	38	21	17	0.076	2.63
11202/SCL/TP156	1.72	1.56	11	44	22	22	0.032	2.64
11202/SCL/TP157	2.03	1.75	17	48	23	25	0.260	2.64

Table 2.2 Summary of result of particle size distribution of soil

Trial Pit No.	Sample Depth	Materials	Clay %	Silt %	Sand %	Gravel %
11202/SCL/TP154	0.5m b.g.l	Fill/Alluvium	29	11	59	1
11202/SCL/TP155	0.5m b.g.l	Fill	10	8	67	15
11202/SCL/TP156	0.5m b.g.l	Fill	19	11	61	9
11202/SCL/TP157	0.5m b.g.l	Fill	30	11	56	3

2.3.6 Determination of Dry Density / Moisture Content relationship of soil test was carried out in fill material sampled at 0.5m depth at trial pit no. 11202/SCL/TP155. Result shows that the maximum dry density is 2.03 Mg/m³ and optimum moisture content is 9.1%.

2.4 Factual Investigation Reports

2.4.1 Copy of the Final Fieldwork Report of Pillbox at Diamond Hill and Final Report on Laboratory Testing - Pillbox at Diamond Hill prepared by the investigation contractor are included in **Appendix B**.

3. STRUCTURAL APPRAISAL

3.1 Form of Construction

3.1.1 The Pillbox consists of a semi basement with its base slab sunken around 0.95m to 1.35m below existing ground. The maximum height of the roof is around 2.2m above existing ground and the maximum clear headroom inside is around 2.5m. The structure is composed of a dome shape reinforced concrete roof of thickness varies from 480mm to 580mm. The dome merges into a flatter roof at the entrance of the stair. The roof is supported by hollow concrete block wall of various thicknesses ranged between 665mm to 730mm around the perimeter of the Pillbox. The dome shape profile of the roof enables the roof slab to span with arching effect against vertical loads. The hollow block wall provides the lateral stability and vertical support to roof of the Pillbox and also acts as the basement wall to retain the underground soil. The circular layout of the Pillbox enables the wall to have some arching effect against lateral load. This wall rests on a reinforced concrete base slab of thickness varies from 120mm to 380mm.

3.2 Overall Strength and Conditions of Pillbox

3.2.1 A superficial and visual inspection has been carried out and it is found that the Pillbox is in fair condition in general with no sign of distress. There is spalled concrete at some spots on the roof, and reinforcement is exposed at these areas. Based on the testing results of samples taken from the structural elements and visual observations, a qualitative assessment of the anticipated strength of each structural element is discussed below.

Concrete Block Wall

- 3.2.2 The compression test on the two hollow block samples revealed that their crushing strength are 13.8 MPa (2,000 psi) and 20.0 MPa (2,900 psi) respectively. In accordance with the LCC By Law 1952, the crushing strength of loading bearing concrete block should achieve 750psi minimum for concrete to be for structural use. Therefore the strength of the hollow blocks is found to be qualified for load bearing elements.
- 3.2.3 However, from the opening up trial pit inspection, there is no evidence or trace of mortar between concrete blocks. The concrete blocks may have been dry packed together or the mortar has been washed away with time. There is not enough information to assess the strength of wall as the mechanism of concrete block wall rely on interaction between concrete blocks and mortar.

Reinforced Concrete Roof Slab

3.2.4 The crushing strength of the core sample taken from the concrete roof slab is only 6.5 MPa (940 psi) which is considered weak even in the Fifties. In accordance with the LCC By Law 1952, the crushing strength of the weakest concrete for structural use is Grade III (1:2:4) ordinary mix and the required crushing strength is at least 2,250 psi. Therefore, the crushing strength of the coring samples indicates that the concrete of the Pillbox does not satisfy the minimum strength for structural concrete.

- 3.2.5 Though surface scanning by cover meter revealed the presence of reinforcement bars in the roof slab, the actual strength of the reinforced concrete slab cannot be ascertained as there is not enough evidence on the reinforcement size and no test on the reinforcement strength was made.
- 3.2.6 Nevertheless, based on the limited structural information collected during the investigation together with some reasonable assumptions, an analytical assessment on the structural capacity of the dome shape roof has been performed (Details refer to **Appendix C**). The advantage of the arching effect can be easily demonstrated by comparing the modelling results of the roof as a flat roof of the same span. It is found that the moment on the flat roof will easily exceed the moment capacity of the roof. However, with a dome profile, the bulk of the roof is subject to compression while the perimeter of the roof is subject to tension. The magnitude of the tension is very small, and should be easily taken if there is minimal reinforcement provided in the perimeter ring as evidenced during the investigation. The moment on the roof together with the beneficial effect of a small compression due to the dome profile roof is barely within the estimated capacity of the roof slab with assumption in reinforcement size and strength to the prevailing code.

Reinforced Concrete Base Slab

- 3.2.7 The compression test result on the core sample taken from the concrete base slab shows that its crushing strength is 13.5 MPa (1,960 psi) which is about 13% lower than the Grade III concrete of the Fifties.
- 3.2.8 Though surface scanning by cover meter again revealed the presence of reinforcement bars at the portion of the base slab next to the core hole S1, it is imprudent to assess the strength of this base slab solely according to these core test and reinforcement scanning results for the similar reasons mentioned.
- 3.2.9 The base slab is believed to be a slab on grade. It also acts as a footing for the concrete block wall. The estimated soil bearing pressure is around 50kPa (Details refer to **Appendix D**), which is still barely within the bearing capacity in case it is resting on a very loose stratum.

3.3 Weight Estimation

Methodology of measurement

3.3.1 The overall and inside dimensions of the Pillbox were taken during the site inspection using measuring tape and other simple tools, or derived from the basic surveying measurements. The thicknesses of the roof slab, base slab and concrete block wall were measured through the cored holes where samples had been taken, the number of which being limited as destructive tests on the Pillbox should be kept minimal. Additional measurements on the thicknesses of the base slab were taken at the trial pits locations where the base slab was exposed. The configuration of the Pillbox together with its approximate dimensions and structural sizes thus measured and estimated shown Drawing No. 1106/K/301/ACM/C01/005 included in Appendix E.

Shatin to Central Link Consultancy Agreement C1103 – Diamond Hill Station and Stabling Sidings Further Structural Survey for the Old Pillbox

Principle of Weight Estimation

3.3.2 The above measurement takings revealed that the roof slab, base slab and concrete block walls are not of uniform thickness. To compensate the deficiency in the limited number of readings taken and the precision of the measuring tape used, it is desirable to use the upper bound readings of each element for weight estimation. The summary of the weight estimation and its breakdown is shown in **Appendix E**.

4. GEOTECHNICAL APPRAISAL

4.1 Existing Founding Conditions

- 4.1.1 Based on the trial pit records, the base slab of the Pillbox is basically founded on fill and alluvium materials. Trial pit nos. 11202/SCL/TP155 and TP157 revealed that it is founded on fill and the thickness of fill below the base slab is about 120mm. Trial pit nos. 11202/SCL/TP154 and TP156 showed that it is founded directly on alluvium with thickness of at least 300mm.
- 4.1.2 Based on the particle size distribution of soil test result, variation of fill material occurs in the study site and pocket of sandy silty clay fill is present.
- 4.1.3 No seepage of water was recorded during the trial pit excavation. Based on the available groundwater monitoring records, the measured highest groundwater level in the vicinity is up to about +9mPD which is at about 1.5m below the base slab of the Pillbox. The founding stratum is believed to be intermediate between dry and fully submerged. Moreover, seasonal fluctuation of water level may occur and the ground water level may higher than the excavation for underpinning works for relocation of the Pillbox.

5. RELOCATION OF THE PILLBOX

5.1 Strengthening and Temporary Bracing / Support

- 5.1.1 An empirical check on the Pillbox structure using the current Hong Kong wind code reveals that there is no stability problem in terms of overturning of the Pillbox. The dead weight imposed on each concrete block is heavy enough to prevent the individual block from uplifting due to wind effect even though there is no mortar between blocks. The maximum compressive stress on the block is less than 0.4MPa (58 psi) which is much less than the minimum crushing strength 750 psi of load bearing hollow block in accordance with the LCC By Law 1952. However, due to the unknown properties of the concrete, reinforcement and concrete blocks, it is recommended that strengthening work of the Pillbox should be installed to prolong the life of the structure as well as for protection during mobilisation.
- 5.1.2 The proposed permanent strengthening details are shown on **Drawing no. 1106/T/301/ACM/C21/504**.

5.2 Underpinning

- 5.2.1 Relocation of the Pillbox by removing the entire structure requires underpinning to support it during transportation. It is proposed to install a steel structure supporting frame underneath its base slab to support the whole Pillbox structure before transporting it to the temporary storage area.
- 5.2.2 The schematic proposal for installation of the steel structural frame and underpinning works are shown in Drawing nos. 1106/W/301/ACM/C21/501 to **503**. The 1st layer of the steel frame will be formed by contiguous horizontal pipe piling at about half metre below the base slab of the Pillbox. The 2nd layer will be four steel universal beams at approximate equal spacing. The steel beams at the two edges will be installed by minor open excavation while the intermediate installed by mine tunnelling beams will be method Drawing no. 1106/W/301/ACM/C21/501). Finally the four steel beams will be tied up with another two steel beams above to form a rigid frame structure as shown in **Drawing no. 1106/W/301/ACM/C21/502**.
- 5.2.3 Before installation of the steel frame, eight pre-bored H-piles shall be installed to provide temporary support for the steel frame. The soil of approximately 2m depth below the steel frame shall be removed upon completion of the steel frame in order to free up working space for preparation of subsequent lifting operation.
- 5.2.4 Although the trial pit excavation did not reveal existence of cobbles/boulders and presence of utilities at shallow depth, possible obstruction from boulders/cobbles, utilities and any other artificial hard material that may be encountered during the installation of pre-bored H-pile and steel structural frame cannot be ascertained as the depth of trial pit excavation was only to 1.5m below ground. Further investigation shall be carried out to obtain sufficient information to develop the final underpinning scheme.

5.3 Lifting and Transport

5.3.1 In order to limit the possible deformation during transportation and the resulting stresses imposed on the relatively weak structure of unknown strength, a separate study has been undertaken by an independent consultant VSL Hong Kong Ltd. Mechanically operated lifting jacks are proposed to be installed at the

underpinning support platform to raise the structure off its supporting ground, as shown in **Appendix F**. The lifting jacks are evenly distributed along the edge of the platform, and the lifting operation is controlled to ensure the same and uniform movement takes place on all the jacks. In this manner, accidental tilting, unwanted movement and deflection, and vibration and transit stresses possibly induced by conventional crane lifting can largely be eliminated, and hence the risks of damage to the structure can be reduced.

5.3.2 With an appropriate choice of the travelling range of the jacks, the support platform can be raised from its underpinning installed level to the adjacent existing ground level. The structure can then be moved off its original position, either after backfilling the construction pit, or using some form of temporary bridging structure, and be transported to its temporary storage along temporary guide rails. This is illustrated in **Appendix F**.

5.4 Issues and Constraints

- 5.4.1 The lifting mechanism is subject to height restriction, and its usage will need to be reviewed if the proposed relocation of the Pillbox is underneath the existing Tate's Cairn Tunnel approaches flyover. In addition, the installation of sliding platform and associated guide rails will require significant space for working area which will constrain the station construction activities.
- 5.4.2 This transportation method has the merit that the entire Pillbox structure is relocated in one piece and no re-assembly is needed. The feasibility of this method shall be verified by the Contractor who shall prepare calculations and method statements to ensure his proposed method will protect the structural integrity of the Pillbox during the transportation operation.
- 5.4.3 Other potential risks relating to relocating the Pillbox as one whole unit include:
 - a) The operation is required to hoist a minimum of 120 tonnes.
 - b) The strengthening work requires substantial preparation.
 - c) Depending on the final location and the route, the structure has to undergo several direction/gradient changes during the course of relocation. Disjointing and cracking of the concrete blocks can easily occur if any of the movements are not synchronized, particularly when there is no mortar between the block.
- Differential deflection of the steel supporting frame shown on Drawings no. 1106/W/301/ACM/C21/501 and 502 shall be kept to an acceptable limit and shall be stipulated in the Contract for the Contractor to follow in his design and method statement submissions. The general rule L/1500 shall be followed and that the normal block wall can tolerate in the lifting operation. In addition, since no mortar is found between the blocks makes the wall even more susceptible to crack and disjointing during transportation, the steel frame with ring beams shall be of sufficient tightness to minimise deformation.

6. WAY FORWARD

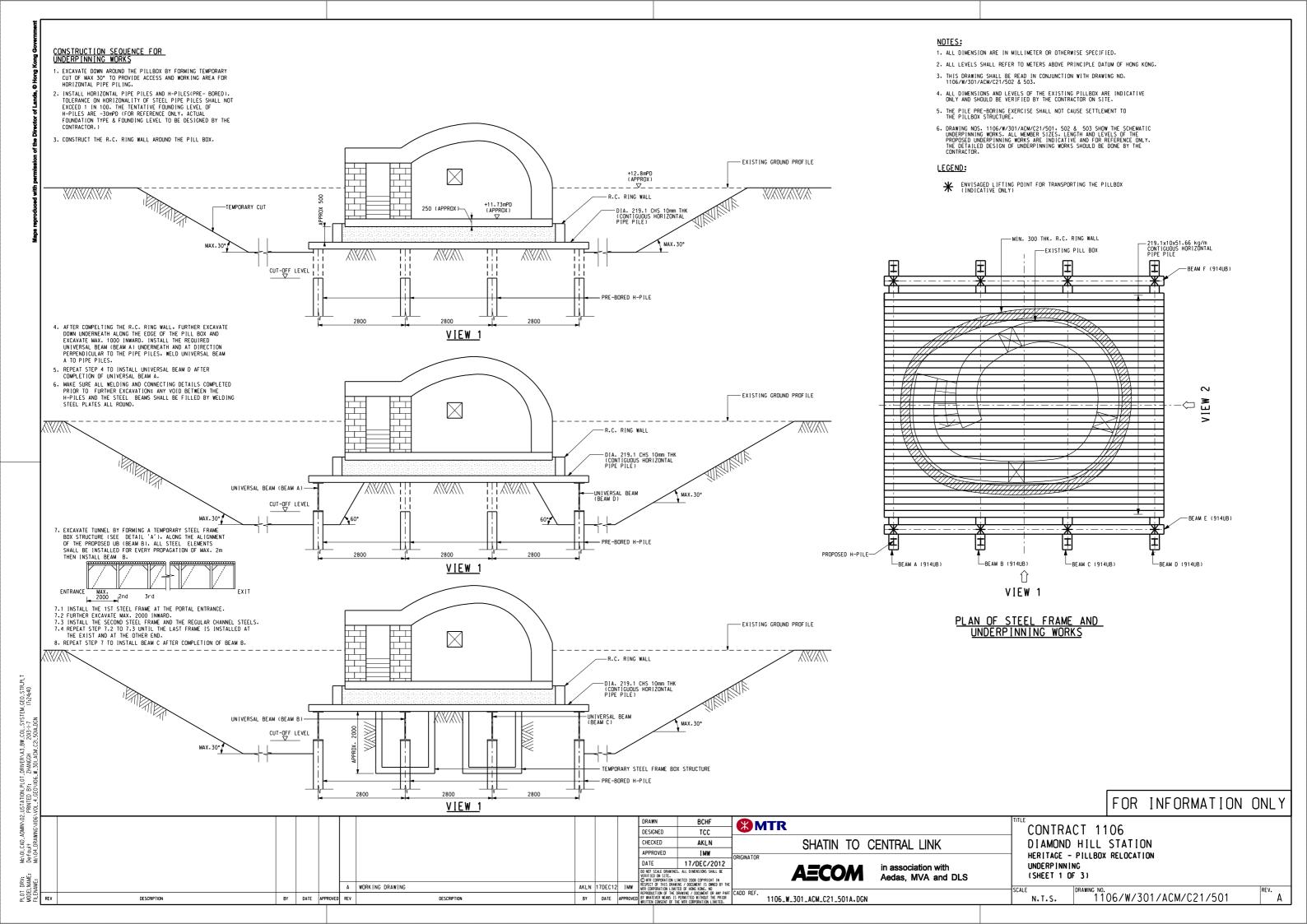
6.1 Summary

Conditions of Pillbox

- 6.1.1 Based on a superficial and visual inspection on the Pillbox, it is found that the Pillbox is in fair condition as it stands.
- 6.1.2 In order that minimal damage is caused to the structure, testing and investigation information collected is minimal. The concrete strength of the roof slab and base slab is lower than acceptable even by the standards of the Fifties. This fact, coupled with the lacking in full information on the material properties, can only warrant a qualitative assessment on the anticipated strength of the structure to be made, on the basis of which strengthening works of the Pillbox is recommended for protection during relocation.
- 6.1.3 The trial pit records and laboratory testing results reveals that the base slab of the Pillbox is in general founded on fill or alluvium in dry condition. Based on the previous monitoring records, the groundwater level may rise to about 1.5m below the base slab.

Transporting the Entire Structure

- 6.1.4 While a sound engineering solution has been identified as possible for strengthening the Pillbox and enhancing its stability as an integral entity during the relocation process as well as in its prolonged life, the high risks associated with moving the fairly heavy object within a constrained site should not be overlooked.
- 6.1.5 While all effort shall be put to designing as rigid a base as possible to support the structure during relocation, this is limited by the available equipment and construction method as also related to the physical site constraints. The design of the steel structural frame shall ensure differential deflection due to transit movement is kept to an acceptable level.
- Though the Pillbox shows no sign of distress as it currently stands, given the poor state of conditions of the various structural elements/components as revealed by this investigation together with the lacking of sufficient information to carry out a full structural analysis, the possibility of transit stresses induced by the deformation during the transportation should not be overlooked. Any consequential signs of distress, or cracking shall be checked after the relocation and proper remedial works shall be undertaken to reinstate the structure.
- 6.1.7 The identified solution included in this report shows the design intent only; the anticipated deformation and stresses and the resulting construction risks would very much relate to the ultimate relocation method adopted by the contractor, as well as subject to a detailed geometric survey. Should this option be adopted, it is proposed that the details should be developed as the contractor's design in association with a heavy weight lifting specialist sub-contractor.


6.2 Way Forward

- 6.2.1 On the basis of the Pillbox investigation and assessment of the risks of the possible transportation methods, transporting the entire structure is a viable option for relocating the Pillbox.
- 6.2.2 The option to relocate the Pillbox intact in one piece is in line with the on-going discussion with AMO.
- 6.2.3 It is necessary to carry out detailed survey of the dimensions and geometry of the Pillbox to ascertain its condition and integrity.

Drawings

Rev. B January 2013

DATE DATE APPROVED BY MATTER MODERN TO PIECE WIRT CORPORATION LIMITED. COMBONITOR IN WIRTER CORPORATION EVENT FOR COMBONITOR AND PIECE OF THE COMBONITOR OF THE WIRTER COMBONITOR AND PIECE OF THE COM

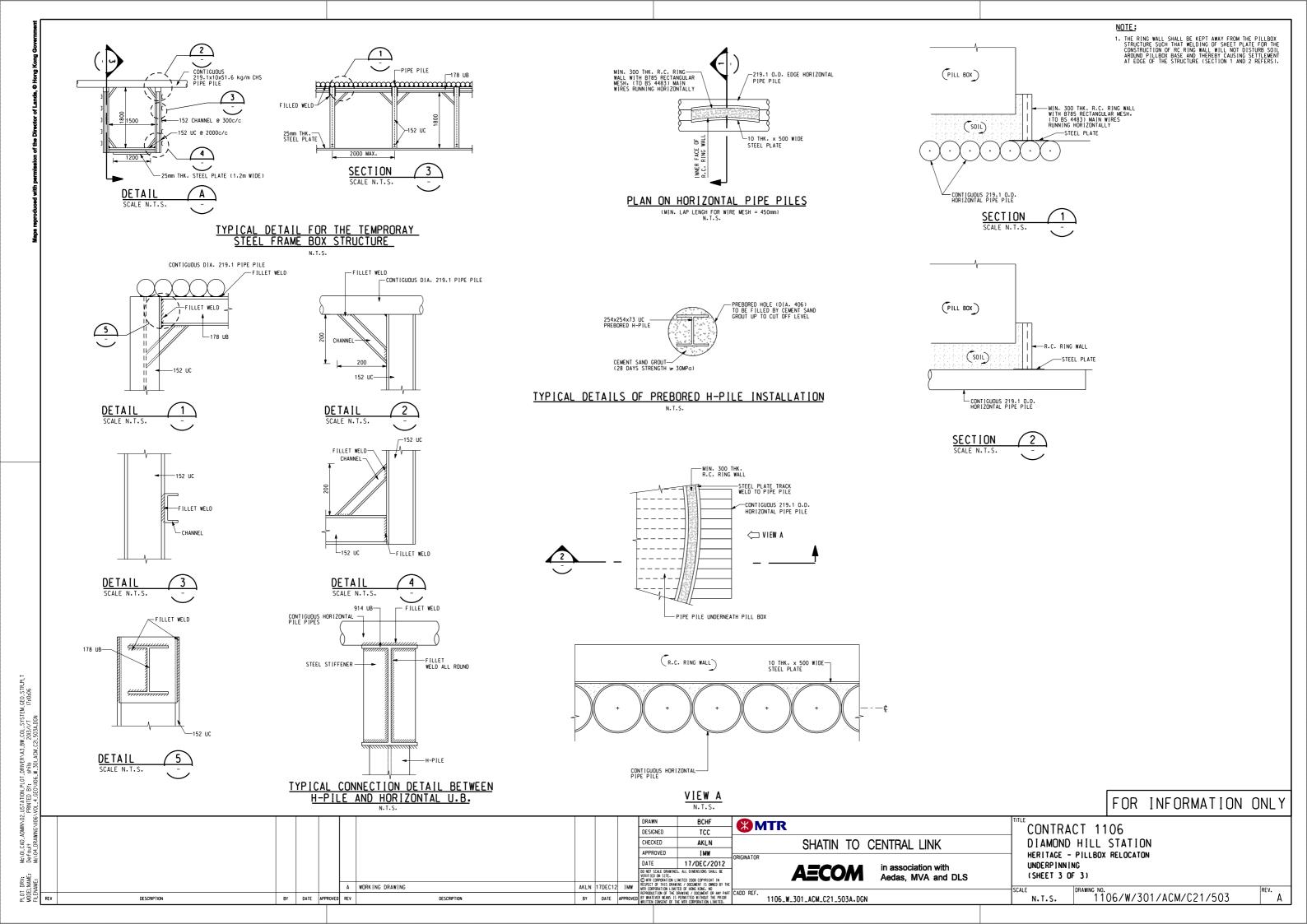
A WORKING DRAWING

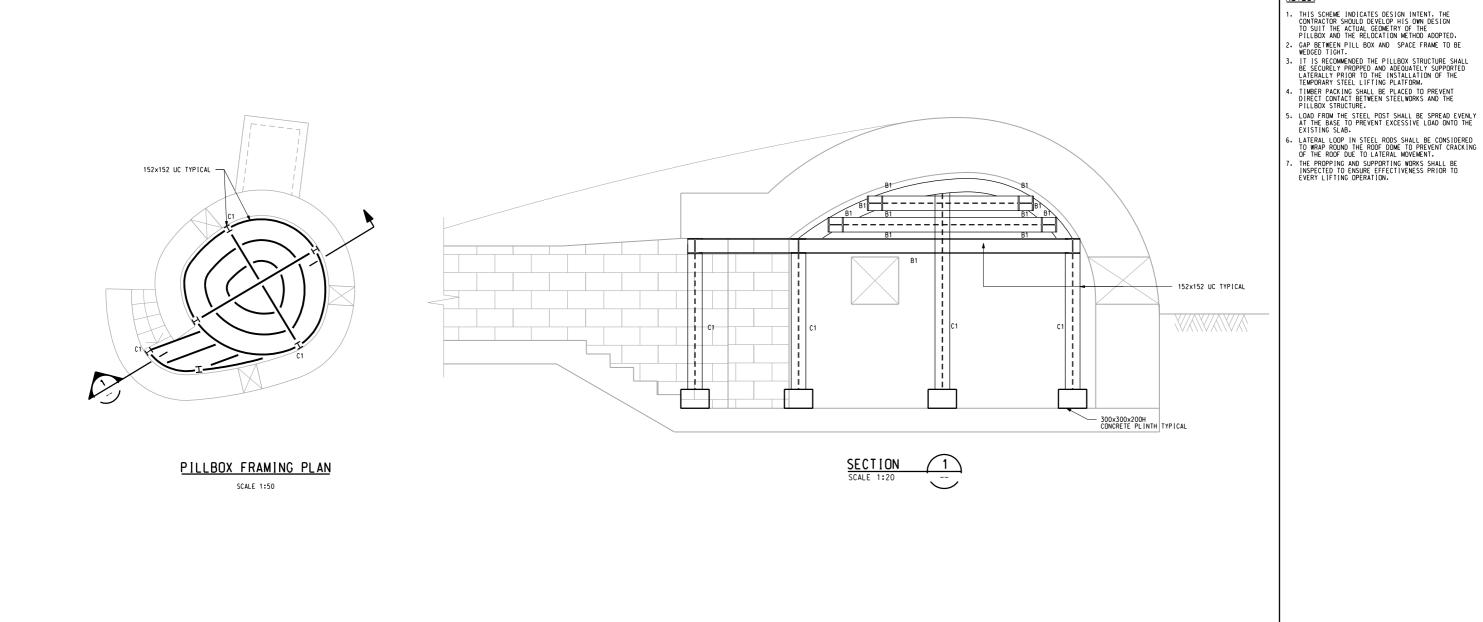
DESCRIPTION

BY DATE APPROVED REV

HERITAGE - PILLBOX RELOCATION UNDERPINNING

DRAWING NO. 1106/W/301/ACM/C21/502


(SHEET 2 OF 3)


in association with Aedas, MVA and DLS

1106_W_301_ACM_C21_502A.DGN

PLOT DRY: M4-VOLCAD_ADMNVO2_USTATION_PLOT_DRIVERVA3_BM_COL_SYSTEM_GEO_STR.PL MODELNAME: Defout PRINTED BY: ZHANGGH 2013-F7 KE57:09 FILENAME: M*-O4_DRAWNOS\UGGN_VOL_4_GEO\UGG_W_3OL_ACM_C2L_SO2A_DGN

DESCRIPTION

FOR INFORMATION ONLY

NOTES:

CTJ **MTR** CONTRACT 1106 DESIGNED TWF DIAMOND HILL STATION CHECKED SPC SHATIN TO CENTRAL LINK HERITAGE - PILLBOX DATE 24/JUL/2012

SPC 26NOV12 IMW

SPC 24JUL12 IMW

SPC 24JUL12 IMW

BY DATE APPROVED FOR MERCHANDES AND DIMENSIONS SHALL BE CONTROLLED FOR SHALL BE C RELOCATION PROPOSED PERMANENT in association with Aedas, MVA and DLS STRENGTHENING METHOD FOR ENTIRE STRUCTURE B REPLY AMO'S COMMENT A ISSUE FOR TENDER ADDENDUM SCALE 1: 50 @ A1 | DRAWING NO. 11 06/T/301/ACM/C21/504 REV. B BY DATE APPROVED REV 1106_T_301_ACM_C21_504B.dgn DESCRIPTION

LUSTATION_PLOT_DRIVER\A3_BW_COL_SYSTEM_PLT
PRINTED BY: CHENKY 2012-II-26 16:34:17
VOI 4 GENVING T 301 ACM C21 5.048 Acm

DRV: NAME:

Appendix A

PROPOSED METHOD STATEMENT FOR ADDITIONAL TRIAL PITS AND STRUCTURAL INVESTIGATION FOR OLD PILLBOX

Rev. B January 2013

<u>Proposed Method Statement for Additional Trial Pits and Structural Investigation for Old Pillbox</u>

A) <u>Structural Investigation</u>

The purpose of this additional structural investigation is to assess the materials used in the construction of the Old Pillbox and their condition. This information is necessary as input to the design and planning of temporary measures required for the proposed removal, transportation and reinstatement of the Pillbox from its current location to an alternative location where it can be preserved. It also serves to provide useful information required for the documentation and record of condition and structural component inventory as part of the preservation process.

It is proposed to extract a total of 4 No. of 75mm to 100mm diameter core samples that will go through the full thickness of the elements being sampled. The attached plan shows the locations of the 4 core samples as below:

- 1. Located on the roof dome within a metre of the intersection with the wall but away from any wall openings as far as possible (R1);
- Located within a trial pit on the wing wall of the stairs going down to the Pillbox (W1);
- 3. Located within a trial pit on the wall of the Pillbox (W2);
- 4. Located in approximately the centre of the base slab (S1).

The coring locations shall also avoid any area with features.

Visual examination of the extracted cores would confirm the thickness of the materials, the actual materials present (e.g. hollow blocks or concrete filled hollow blocks) and their visual condition. Additional testing that could also be performed on the cores if considered appropriate after visual examination would include:

- 1. Compressive strength;
- Tensile strength;
- 3. Cement content;
- 4. Shell content;
- 5. Clay lumps/ friable particles;
- 6. Steel grade;
- 7. Salt/ chloride content;
- 8. Petrography;
- 9. Resistivity;
- 10. Potential survey;
- 11. Organic material content;
- 12. Etc.

In addition to the core sampling to obtain further information on the construction system and as a precautionary measure for the coring, a cover meter survey would be completed over approximately a 1m² surface area at each of the core locations. The cover meter would be expected to identify the presence and position of embedded steel close to the surface e.g. reinforcement bars. Any identified steel would be avoided during the coring and could be separately exposed by hand breakout to access its condition/ purpose in the structure.

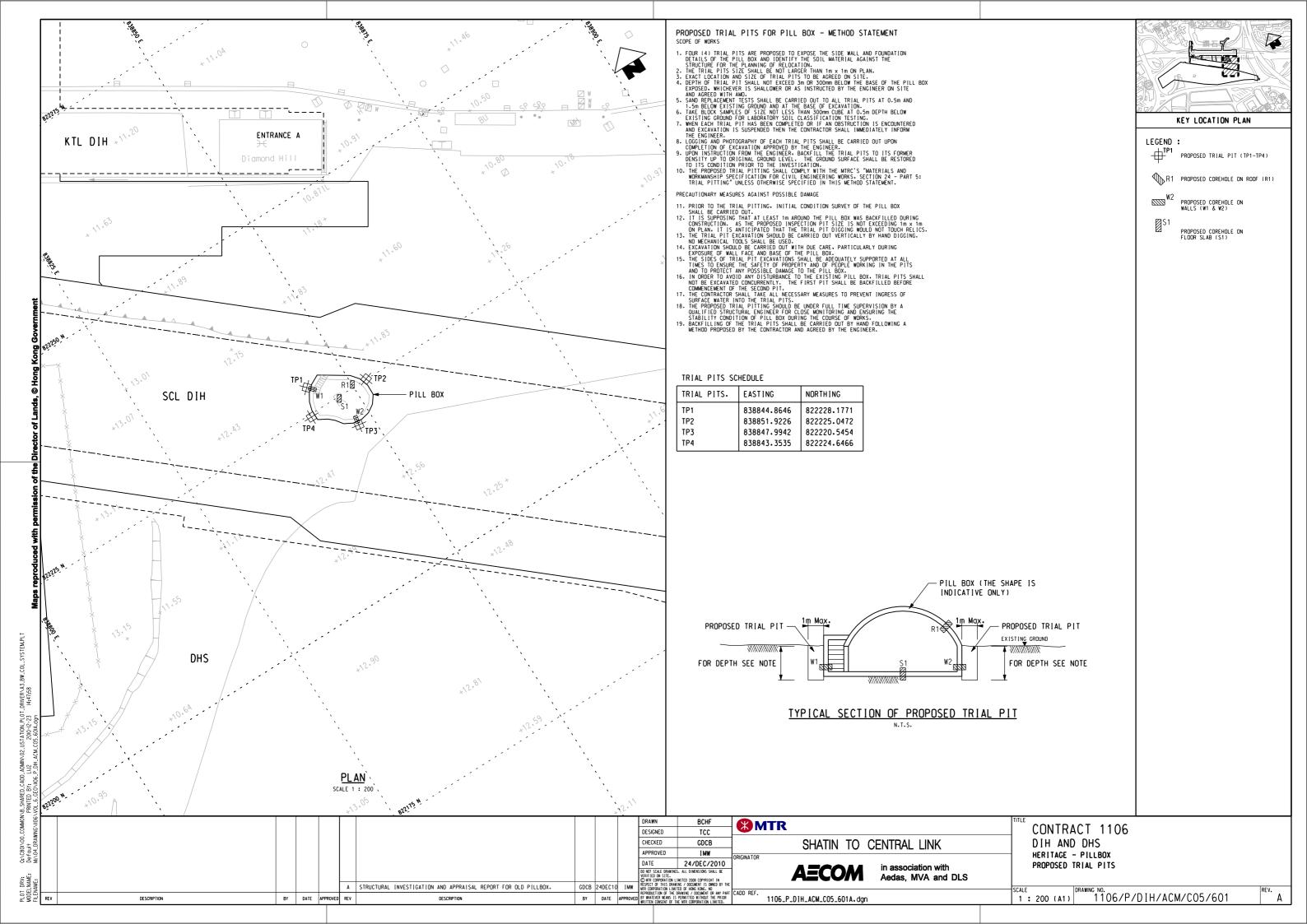
Core sampling would be completed in accordance with normal good practice for site coring by a HOKLAS accredited laboratory using a water cooled coring barrel and machine using the following procedure/ work sequence:

- 1. Select the required core sampling area from the approved sample location drawing;
- 2. Check that adequate safety measures are in place e.g. temporary support of trial pits;
- 3. Use cover meter to scan approximately a 1m² area around the core location to check for embedded steel on both the inside and outside face of each location (except the floor slab where only the top surface would be available for cover meter survey);
- 4. Record the results of cover survey on site proforma and mark any steel locations on the structure using removable white chalk;
- 5. If steel is identified report for further instructions;
- 6. Select the precise core location to avoid embedded steel conflicting with both the core barrel and the core machine mounting bolt;
- 7. Install suitable core machine removable mounting bolts and firmly mount core machine onto structure, with necessary cushion materials / protective layers to protect the surface of the structure; check that the core machine will not move during coring;
- 8. Connect water and electricity supply to core machine and carefully core through full depth of element being cored;
- 9. Carefully extract core sample in order to preserve in as intact condition as possible;
- 10. Mark core clearly to identify location and orientation of the extracted sample. In the event that the core breaks into more than one piece, mark the individual pieces so that they can be easily assembled back into their original position/orientation to permit examination/assessment;
- 11. Carefully photograph and measure element thickness and condition within core hole and record on site proforma;
- 12. After instruction to back fill core holes, fill the core holes with a proprietary non shrink repair mortar to finish flush with surrounding surfaces or as otherwise instructed:
- 13. Remove the core machine mounting bolts and fill the bolt holes using similar method;
- 14. Photographic records of each coring location as well as the mounting bolt hole locations shall be taken, both before commencement of coring/mounting and after completion of reinstatement.

The extracted cores shall be retained together with the relevant site proforma and all salient details logged.

B) Trial Pits

4 No. of trial pits are proposed to expose the side wall and foundation details of the Pillbox and identify the soil material against the structure for the planning of relocation. In addition, two of them are also required for taking core samples through the wall of the Pillbox, as noted above. Locations of the proposed trial pits are shown on the attached plan.


Details of the trial pit and method for excavating the trial pit are as follows:

- 1. The trial pit size shall not be larger than 1m x 1m on plan.
- 2. Exact location and size of trial pit to be agreed on site.
- 3. Depth of trial pit shall not exceed 3m or 300mm below the base of the Pillbox exposed, whichever is shallower, or as instructed by the Engineer on site and agreed with AMO.
- 4. Sand replacement tests shall be carried out to all trial pits at 0.5m and 1.5m below existing ground and at the base of excavation.
- 5. Block samples of size not less than 300mm cube at 0.5m depth below existing ground shall be taken for laboratory soil classification testing.
- 6. When each trial pit has been completed or if an obstruction is encountered and excavation is suspended, the Contractor shall immediately inform the Engineer.
- 7. Upon instruction by the Engineer, the trial pit shall be backfilled to its former density up to the original ground level. The ground surface shall be restored to its condition prior to the investigation.
- 8. The proposed trial pit shall comply with MTRC's "Materials and Workmanship Specification for Civil Engineering Works, Section 24 Part 5: Trial Pitting" unless otherwise specified in this method statement.
- 9. Logging and photography of each trial pit shall be carried out before and upon completion of excavation approved by the Engineer.

The following precautionary measures shall be observed to safeguard against possible damage to the Pillbox:

- 1. Prior to the trial pitting, initial condition survey of the Pillbox shall be carried out.
- 2. The trial pit excavation shall be carried out vertically by hand digging; no mechanical tools shall be used.
- 3. It is assumed that at least 1m around the Pillbox was backfilled during construction. As the proposed inspection pit size is not exceeding 1m x 1m on plan, it is anticipated that the trial pit excavation would not touch relics. However, if the excavation shows signs of relics, the Contractor shall report immediately to the Engineer.
- 4. Excavation shall be carried out with due care, particularly during exposure of wall face and base of the Pillbox.
- 5. The sides of the trial pit excavation shall be adequately supported at all times to ensure the safety of property and of people working in the pits, and to protect any possible damage to the Pillbox.
- 6. In order to avoid any disturbance to the Pillbox, trial pits shall not be excavated concurrently. The first pit shall be backfilled before commencement of the second pit, etc.
- 7. The Contractor shall take all necessary measures to prevent ingress of surface water into the trial pit.

- 8. The proposed trial pitting shall be under full time supervision of a qualified structural engineer for close monitoring and ensuring the stability condition of the Pillbox during the course of works.
- 9. Backfilling of the trial pits shall be carried out by hand following a method proposed by the Contractor and agreed by the Engineer.

Appendix B

FINAL FIELDWORK REPORT OF PILLBOX AT DIAMOND HILL AND FINAL REPORT ON LABORATORY TESTING - PILLBOX AT DIAMOND HILL PREPARED BY GEOTECHNICS & CONCRETE ENGINEERING (HONG KONG) LTD.

Rev. B January 2013

GROUND INVESTIGATION REPORT

By

GEOTECHNICS & CONCRETE ENGINEERING (HONG KONG) LTD.

FINAL FIELDWORK REPORT OF PILLBOX AT DIAMOND HILL

CLIENT	MTR.Corporation Limited
CONTRACT NO.	11202
JOB NO. / WORKS ORDER NO.	GCE1001SI
PROJECT TITLE	Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link
	Checked and Certified by:

6 KO SHAN ROAD,
GROUND FLOOR,
HUNG HOM, KOWLOON,
HONG KONG.

TEL.:

852-2365 9123

FAX NO.: 852-2765 8034

E-MAIL: gce@gce.com.hk

JAMES LU

Geotechnical Engineer

DATE 26 August 2010

GCE Job No. GCE1001SI

Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

PILLBOX AT DIAMOND HILL

CONTENTS

TABLE

Table 1 --- Investigation Station Co-ordinates and Ground Levels

APPENDICES

Appendix A	 Checklists for Rock and Soil Description
Appendix B	 Legend Patterns
Appendix C	 Trial Pit Record
Appendix D	 Trial Pit Photograph
Appendix E	 In-situ Density Test Record
Appendix F	 Testing Results of Pillbox
Appendix G	 Drilling and Core Extraction Record
Appendix H	 Ground Investigation Plan

TABLE

	·			
		c	c	
Table 1 - Inve	stination Station	Co-ordinates and	Ground Lavale	
Table 1 – Inve	stigation Station	Co-ordinates and	Ground Levels	
Table 1 – Inve	stigation Station	Co-ordinates and	Ground Levels	
	stigation Station	Co-ordinates and	Ground Levels	
	stigation Station	Co-ordinates and	Ground Levels	
	stigation Station	Co-ordinates and	Ground Levels	
	stigation Station	Co-ordinates and	Ground Levels	
	stigation Station	Co-ordinates and	Ground Levels	
		Co-ordinates and	Ground Levels	
		Co-ordinates and	Ground Levels	
			Ground Levels	

INVESTIGATION STATION CO-ORDINATES AND GROUND LEVELS FOR PILLBOX

Contract No.: 1120	2 Job No. :	GCE1001SI
--------------------	--------------------	-----------

Project : Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

Page 1 of 1

	CO - ORI	CO - ORDINATES		REMARKS	
	E	N	(mPD)	KEWAKKS	
S1	838848.53	822224.18	11.73	PILLBOX	
W1	838844.01	822225.26	12.26	PILLBOX	
W2	838851.16	822224.22	13.15	PILLBOX	
R1	838850.58	822224.70	14.02	PILLBOX	
ROOF	838848.52	822224.18	14.81	PILLBOX	
11202/SCL/TP154	838843.82	822224.67	12.79	Point AB	
	838842.66	822225.28	12.72	Point BC	
	838843.16	822226.31	12.73	Point CD	
	838844.30	822225.70	12.75	Point DA	
11202/SCL/TP155	838848.81	822227.64	12.85	Point AB	
	838849.54	822228.86	12.78	Point BC	
	838850.32	822228.33	12.76	Point CD	
	838849.71	822227.33	12.89	Point DA	
11202/SCL/TP156	838851.68	822225.39	12.91	Point AB	
	838852.94	822225.55	12.73	Point BC	
	838853.13	822224.16	12.48	Point CD	
	838851.82	822224.12	12.73	Point DA	
11202/SCL/TP157	838850.13	822221.45	12.50	Point AB	
	838851.20	822220.00	12.45	Point BC	
	838849.99	822219.22	12.58	Point CD	
	838849.11	822220.82	12.65	Point DA	

Appendix A – Checklists for Rock and Soil Descriptiond

CHECKLIST FOR ROCK DESCRIPTION

GEOTECHNICAL ENGINEERING OFFICE, HKSAR

1. STRENGTH

Term Identification Easily crumbled by hand; indented deeply by thumbnail. Very weak Crumbled with difficulty; scratched easily by thumbnail; peeled easily by pocket Weak Broken into pieces by hand; scratched by thumbnail; peeled by pocket knife; deep indentations (to 5 mm) by point of geological pick; hand-held specimen easily broken by single light hammer blow. Broken with difficulty in two hands; scratched with difficulty by thumbnail; difficult to peel but easily scratched by pocket knife; shallow indentations Moderately weak easily made by point of pick; hand-held specimen usually broken by single light hammer blow. Scratched by pocket knife; shallow indentations made by firm blow with point of pick; hand-held specimen usually broken by single firm hammer blow. Point load strength (PLS) 0.5 - 2 MPa. Firm blows with point of pick cause only superficial surface damage; hand-held specimen requires more than one firm hammer blow to break. PLS 2 - 4 Very strong Many hammer blows required to break specimen. PLS 4 - 8 MPa. Extremely strong Specimen only chipped by hammer blows. PLS > 8 MPa.

2. COLOUR

Parameter Light, Dark

Pinkish, Reddish, Yellowish, Orangish, Brownish, Greenish, Bluish, Purplish,

Pink, Red, Yellow, Orange, Brown, Green, Blue, Purole, White, Grev, Black

For uniform colour distribution, choose a hue, supplemented by a value and/or chroma if necessary.

For non-uniform distribution, repeat this procedure using one of the following descriptors: spotted, mottled, dappled, streaked, striped (e.g. light pinkish grey spotted with black).

State whether sample was wet or dry when described.

3. TEXTURE/FABRIC

Texture Terms (Applicable Mainly to Igneous Rocks)

Equigranular, Inequigranular, Megacrystic, Porphyritic, Crystalline, Cryptocrystalline, Aphanitic

Fabric

Describe preferred orientation of grains/crystals where apparent.

Describe Intensity, spacing, continuity and any preferred orientation of microfractures where

4. MATERIAL WEATHERING/ALTERATION

Decomposition	Grade	
<u>Term</u>	Symbol	Typical Characteristics
Residual	VI	Original rock texture completely destroyed; can be crumbled by
Soit		hand and finger pressure into constituent grains.
Completely	V	Original rock texture preserved; can be crumbled by hand and
Decomposed		finger pressure into constituent grains; easily indented by point of geological pick; slakes in water; completely discoloured compared with fresh rock.
Highly	IV	Can be broken by hand into smaller pieces; makes a dull sound
Decomposed		when struck by hammer, not easily indented by point of pick; does not slake in water, completely discoloured compared with fresh rock.
Moderately	HI	Cannot usually be broken by hand; easily broken by hammer;
Decomposed		makes a dull or slight ringing sound when struck by hammer; completely stained throughout.
Slightly	H.	Not broken easily by hammer; makes a ringing sound when struck
Decomposed		by hammer, fresh rock colours generally retained but stained near joint surfaces.
Fresh	1	Not broken easily by hammer; makes a ringing sound when struck
Rock		by hammer; no visible signs of decomposition (i.e. no

ation is applicable to igneous and volcanic rocks and other rocks of equivalent strength in fresh state.

<u>Disintegration</u> - Describe small-scale cracking and fracturing caused by mechanical weathering, where apparent.

Pyroclastic

Describe state of alteration (e.g. mineralised, kaolinised) where apparent.

5. ROCK NAME (Including Grain Size)

: Coarse- (6-20 mm), Medium- (2-6 mm) & Fine- (0.06-2 mm) grained GRANITE; GRANODIORITE. Very Fine-grained (< 0.06 mm) RHYOLITE; BASALT. (Common types only, see Geoguide 3 for others).

PYROCLASTIC BRECCIA (> 60 mm), Lapilli TUFF (2-60 mm), Coarse ash TUFF (0.06-2 mm), Fine ash TUFF (< 0.06 mm).

Foliated - SCHIST (> 0.06 mm), PHYLLITE (< 0.06 mm). Non-foliated -

MARBLE, QUARTZITE, FAULT BRECCIA.

CONGLOMERATE, BRECCIA (> 2 mm), Sedimentary SANDSTONE (0.06-2 mm). MUDSTONE (< 0.06 mm) = SILTSTONE (0.002-0.06 mm) + CLAYSTONE

(< 0.002 mm). (Common types only).

If rock name cannot be identified, describe grain size quantitatively, including textural term where appropriate.

6. STRUCTURE

Structural Term Rock Type Bedded, Laminated, Massive Sedimentary Massive, Flow-banded Igneous, Pyroclastic Foliated, Banded, Cleaved

Very thick (> 2 m), Thick (0.6-2 m), Medium (200-600 mm).

Thin (60-200 mm), Very thin (20-60 mm),

Thickly-laminated (Sedimentary) (6-20 mm) or Narrow (Igneous, Metamorphic) (6-20 mm), Thinly-laminated (Sedimentary) (< 6 mm) or Very narrow (Igneous, Metamorphic) (< 6 mm).

Examples: Thickly-bedded SANDSTONE, Narrowly flow-banded RHYOLITE.

7. DISCONTINUITIES

Nature (Type of Discontinuity)

Fault zone Cleavage Fissure Beddina Fault Schistocity Tension crack

Location and Orientation

Record location as co-ordinates or relative position along datum line, preferably on map or plan.

ord orientation as dip direction/dip in degrees (e.g. 032/55).

Spacino

Extremely widely-spaced (> 6 m), Very widely-spaced (2-6 m), Widely-spaced (0.6-2 m), Medium-spaced (200-600 mm Ciosely-spaced (60-200 mm), Very closely-spaced (20-60 mm), Extremely closely-spaced (< 20 mm).

exposures, supplement spacing with description of rock block shape where possible. Descriptors: Blocky, Tabular, Columnar, Polyhedral.

Persistence (Areal extent or size of a discontinuity within a plane)

Measured maximum persistence dimension should be used where possible (e.g. the discontinuity trace length on the surfaces of rock exposures). For general descriptions of different discontinuity sets, relative terms should be used.

Roughness

Waviness (large-scale): Estimate/measure wavelength and amplitude in metres.

Unevenness (small-scale), use one term from the following:

Rough stepped Smooth stepped Slickensided stepped Rough undulating Smooth undulating Slickensided undulating Rough planar Smooth planar Slickensided planar

Wide (> 200 mm), Moderately wide (60-200 mm), Moderately narrow (20-60 mm), Narrow (6-20 m), Very narrow (2-6 mm), Extremely narrow (> 0-2 mm), Tight (zero).

<u>Infilling</u> (Nature)

Clean Decomposed/ disintegrated rock Non-cohesive soil Cohesive soil Manganese Quartz Other (Specify)

Give full description of infill materials/minerals where appropriate.

Seepage

Seepage present (estimate quantity in 1/sec or 1/min) Damn/wet

In borehole cores, measure the following: Total Core Recovery (TCR), Solid Core Recovery (SCR), Rock Quality Designation (RQD), Fracture Index (FI). See Geoguide 3 for definitions.

8. MASS WEATHERING

Term	Zone Symbol	Typical Characteristics
Residual	RS	
Soil	r/o	Residual soil derived from insitu weathering; mass structure and material texture/fabric completely destroyed: 100% soil
	/ PW	Less than 30% rock
	0/30	Soil retains original mass structure and material texture/fabric (i.e. saprolite)
		Rock content does not affect shear behaviour of mass, but relict \cdot discontinuities in soil may do so.
Partially	1	Rock content may be significant for investigation and construction.
Weathered	↑ PW	30% to 50% rock
Rock	30/50	Both rock content and relict discontinuities may affect shear behaviour of mass.
	PW	50% to 90% rock
	50/90	Interlocked structure.
	∖ PW	Greater than 90% rock
	`90/100	Small amount of the material converted to soil along discontinuities.
Unweathered	UW	100% rock
Rock		May show slight discolouration along discontinuities.

9. ADDITIONAL GEOLOGICAL INFORMATION

Record geological formation name if known. Avoid conjecture. Refer to HKGS maps & memoirs for further information.

NOTES:

- Rock material description normally includes: strength, colour, texture/fabric, material weathering/alteration and ROCK NAME.
- Rock mass description normally includes: strength, colour, structure, mass weathering, ROCK NAME, discontinuities and additional geological information. Can be supplemented with more detailed information on texture/fabric and material weathering/alteration of different materials within the mass where necessary.

CHECKLIST FOR SOIL DESCRIPTION

GEOTECHNICAL ENGINEERING OFFICE, HKSAR

1. STRENGTH (Compactness & Consistency)

Soil Type Very Coarse	Term CLoose	<u>Identification</u>
(COBBLES & BOULDERS)	Dense	By inspection of voids and particle packing in the field.
	/ Very loose	SPT 'N' value 0-4.
Coarse	Loose	SPT 4-10; can be excavated with spade; 50 mm peg easily driven.
(SANDS &	Medium dense	SPT 10-30.
GRAVELS)	Dense	SPT 30-50; requires pick for excavation; 50 mm peg hard to drive.
	Very dense	SPT > 50.
	Very soft	Undrained shear strength (USS) < 20 kPa; exudes between fingers when squeezed in hand.
Fine	Soft	USS 20-40 kPa; moulded by light finger pressure.
(CLAYS &	Firm	USS 40-75 kPa; can be moulded by strong finger pressure.
SILTS)	Stiff	USS 75-150 kPa; cannot be moulded by fingers; can be indented by thumb.
	Very stiff or hard	USS > 150 kPa; can be indented by thumbnail.
Organic	Compact	Fibres already compressed together.
(ORGANIC CLAYS, SILTS	Spongy	Very compressible and open structure.
SANDS & PEATS	Plastic	Can be moulded in hand and smears fingers.

Terms applicable only to transported soils. For soils derived from insitu rock weathering, record actual values of quantitative tests (e.g. SPT 'N' value) as part of the description, where appropriate.

2. COLOUR

<u>Parameter</u>	<u>Terms</u>
Value	Light, Dark
Chroma	Pinkish, Reddish, Yellowish, Orangish, Brownish, Greenish, Bluish, Purplish, Grevish
Hue	Pink, Red, Yellow, Orange, Brown, Green, Blue, Purple, White, Grey, Black

For uniform colour distribution, choose a hue, supplemented by a value and/or chroma if necessary.

For non-uniform distribution, repeat this procedure using one of the following descriptors: spotted, mottled, dappled, streaked, striped (e.g. light yellowish brown mottled with red).

State whether sample was wet or dry when described.

3. PARTICLE SHAPE & COMPOSITION

Characteristic	Terms
Form	Equidimensional, Flat, Elongate, Flat & Elongate
Angularity	Angular, Subangular, Subrounded, Rounded
Surface Texture	Smooth, Rough, Glassy, Honeycombed, Pitted, Striated

Describe composition of coarse particles where appropriate. Gravel and larger particles are usually rock fragments (e.g. granite, tuff); sand particles are usually individual minerals (e.g. quartz, feldspar).

4. STRUCTURE

Soil Type	<u>Term</u>	<u>Identification</u>
Coarse &	Homogenous Interstratified	Deposit consists essentially of one type. Alternating layers of varying types or with bands or lenses of or
Fine	(interbedded or Interlaminated)	materials.
Coarse	Heterogenous	A mixture of types.
Fine	Fissured Intact	Breaks into polyhedral fragments along fissures. No fissures.
Organic	{ Fibrous Amorphous	Plant remains recognizable & retain some strength. No recognizable plant remains.

Describe spacing of bedding planes, fissures, shell bands, etc using the spacing terms given in items 6 & 7 for rock description (see other side).

Above terms applicable only to transported soils. For soils derived from insitu rock weathering, describe relict structures in accordance with item 6 of rock description (see other side).

5. WEATHERING

Soils Derived from Insitu Weathering of Rocks

There are two main types: saprolites (rock texture/structure retained) and residual solis (rock texture/structure completely destroyed). Describe state of weathering in accordance with items 4 & 8 for rock description (see other side).

Sedimentary (Transported) Soils

Coarse soils: Describe overall discolouration of soil and degree of decomposition of gravel and larger particles (see item 4, other side). Also note any signs of disintegration of large particles where apparent.

Fine Soils: Describe overall discolouration of soil where apparent.

6. SOIL NAME

A. Basic Soil	Types		•
Soil Type	Particle S	zes (mm)	<u>Identification</u>
BOULDERS	-	> 200	Only seen complete in pits or exposures.
COBBLES	-	60 - 200	Often difficult to recover from boreholes.
GRAVELS	Coarse Medium Fine	20 - 60 6 - 20 2 - 6	Easily visible to naked eye; particle shape and grading can be described. Well-graded: wide range of grain sizes. Poorly-graded: not well-graded (split further into uniform or gap-graded).
SANDS	Coarse Medium Fine	0.6 - 2 0.2 - 0.6 0.06 - 0.2	Visible to naked eye; very little or no cohesion; grading can be described. May be well-graded or poorly-graded (uniform or gap-graded) as for gravel.
SILTS	Coarse Medium Fine	0.02 - 0.06 0.006 - 0.02 - 0.002 - 0.006	powdered easily between fingers.
CLAYS	-	< 0.002	Dry lumps can be broken by hand but not powdered between the fingers. Disintegrates in water more slowly than silt; smooth to the touch; exhibits plasticity but no dilatancy; sticks to the fingers and dries slowly; shrinks appreciably on drying, usually showing czacks. These properties more noticeable with increasing plasticity.
ORGANIC			
CLAYS, SILTS OR SANDS	-	varies	Contains much organic vegetable matter; often has a noticeable smell and changes colour on oxidation.
PEATS	-	varies	Predominantly plant remains; usually dark brown or black in colour, often with distinctive smell; low bulk density.

B. Composite Soil Types (Mixtures of Basic Types)

Principal	Terminology	Term for Secondary	% of Secondary
Soil Type	Sequence	Constituent	Constituent
Very coarse (BOULDERS &	Secondary	With a little	< 5
COBBLES) (> 50% of	constituents (finer material) ▲	With some	5 - 20
soil > 60 mm)	after principal	With much	20 - 50
•		/ Slightly (slity, clayey	20-00
		or silty/clayey) * - (silty, clayey	< 5
		or silty/clayey) *	5 - 15
Coarse	Secondary	Very (silty, clayey	
(GRAVELS &	constituents	or silty/clayey) *	15 - 35
SANDS)	before principal	AND/OR	
(> 65% gravel	(excluding cobbles	Slightly (gravelly .	
& sand sizes)	& boulders) +	or sandy) *	< 5
		- (gravelly	
		or sandy) *	. 5 - 20
		Very (gravelly	
	0	or sandy) *	20 - 50
Fine (SILTS	Secondary constituents	Slightly (gravelly	
& CLAYS)		or sandy or	
(> 35% sitt &	before principal (excluding cobbles	both) *	< 35
clay sizes)	& boulders) +	(gravelly	
	4 DOMES) T	· or sandy) *	35 - 65

- Full name of finer material should be given (see examples below).
- Secondary soil type as appropriate; use 'silty/clayey' when a distinction cannot be made between the two.
- If cobbles or boulders are also present in a coarse or fine soil, this can be indicated by using one of the following terms relating to the very coarse fraction after the principal: 'with occasional' (< 5), 'with some' (5-20), 'with many' (20-50), where figures in brackets are % very coarse material expressed as a fraction of the whole soil (see examples below).</p>

Examples: Slightly silty/clayey, sandy GRAVEL. Slightly gravelly, sandy SILT. Very gravelly SAND. Sandy GRAVEL with occasional boulders. BOULDERS with much finer material (silty/clayey, very sandy gravel).

For fine soils, plasticity terms should also be described where possible, viz: 'non-plastic' (generally silts), 'intermediate plasticity' (lean clays), 'high plasticity' (fat clays).

7. DISCONTINUITIES

Full description of discontinuities, where necessary, should be made using the methods and terms given in item 7 for rock description (see other side).

8. ADDITIONAL GEOLOGICAL INFORMATION

Record geological name which Indicates geological origin or soil type (e.g. Alluvium, Colluvium, Marine sand etc.). Refer to HKGS maps & memoirs for further information,

NOTES:

- Mass characteristics of soils (i.e. structure, weathering, discontinuities) can only be described satisfactorily in undisturbed field exposures or large undisturbed samples.
- 2. For full descriptions of soils derived from insitu rock weathering:
 - (a) saprolites describe as rocks, supplemented by soil strength and soil name terms in brackets,
 - (b) residual soils describe as soils, supplemented by name of parent rock where apparent from field evidence,

Appendix B – Legend Patterns

Legend Code (Field GEOL LEG)

Material CodeDescriptionAGGLOMAgglomerateASPHALTAsphaltBASALTBasaltBIOCLASTShellsBLANKVoidBLDRBouldersBLDRCBBLBoulders and

BLDRCBBL Boulders and Cobbles
BRECCIA Breccia
CBBL Cobbles

CBBL Cobbles
CLAY Clay
CLAYSTON Claystone
CONCRETE Concrete
CONGLOM Conglomerate

DOLOMITE Dolomitic Limestone / Dolomite

FILL Artificial Fill FISSIN Fissure Infill

GABBRO Gabbro, Lamprophyre

GNEISS Gneiss
GRANITE Granite
GRAV Gravel

GRAVCBBL Gravel and Cobbles

LST Limestone

LSTSLT Interbedded Limestone and Siltstone

MARBLE Marble

METACON
METAREG
MUDSTONE
Metamorphic Rock - contact
Metamorphic Rock - regional
Mudstone
Mudstone

ORGANICS Organics, Peat
PEGMTITE Pegmatite
PHYLLITE Phyllite, Mylonite
QUARTZIT Quartzite
RHYOLITE Rhyolites

SAND Sand
SANDSTON Sandstone
SCHIST Schist
SHALE Shale
SILT Silt
SILTSTON Siltstone

SYENITE Granodiorite, Syenite, Monzonite

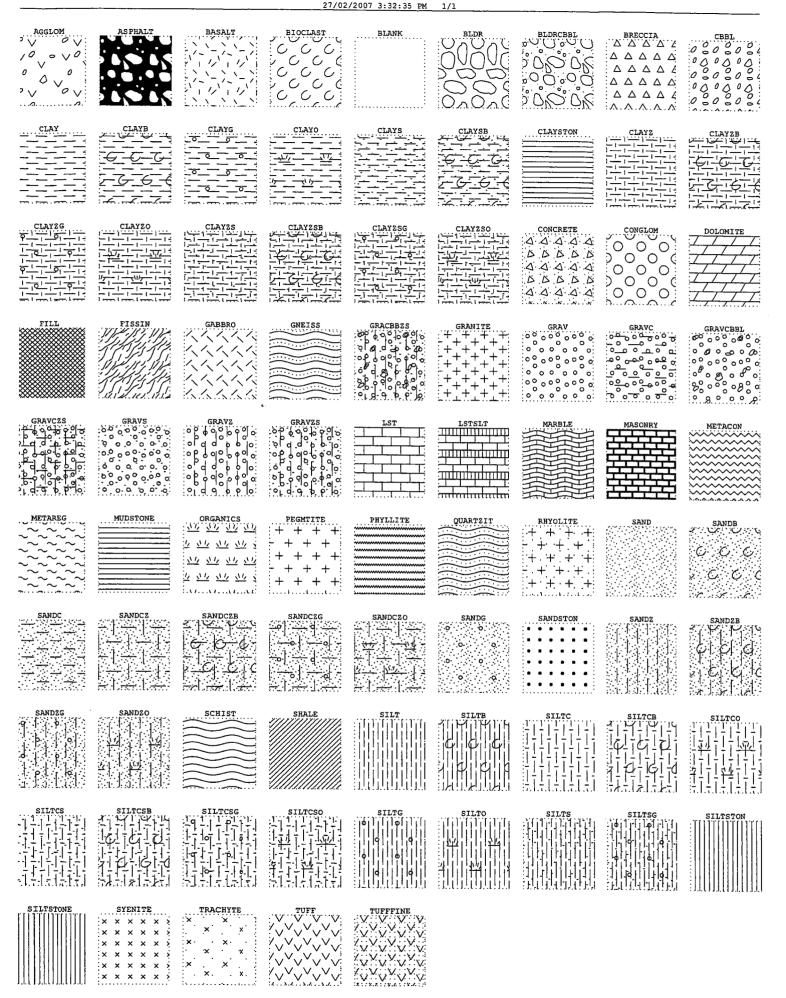
TRACHYTE Trachyte

TUFF Coarse Ash Tuff, Lapilli Tuff

TUFFFINE Fine Ash Tuff

Notes:

In common ground the following codes should be added to the main descriptor in the order stated below to denote secondary constituents :


 (i) C - clay
 (v) K - cobbles

 (ii) Z - silt
 (vi) O - organics

 (iii) S - sand
 (vii) B - shells

 (iv) G - gravel

e.g. a silty CLAY with occasional shells and organic material would be coded as CLAYZOB

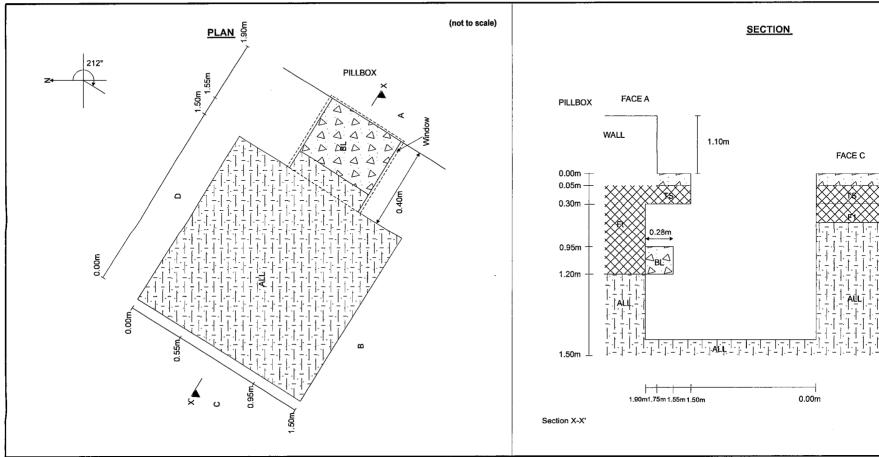
Appendix C – Trial Pit Record

amples Test	Depth (m)	P1 Sketch	P1	Depth (m)	Legend	Description	Grade
	_	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX8XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.05 0.20	\(\times\ti	Grey, CONCRETE. (PAVEMENT)	
1	1 =			}		Soft, dry, dark brown, sandy SILT with much rootlet. (TOP SOIL / FILL)	
	0.5		- - - - - - - - - -	0.5		Dense, moist, dark grey, clayey silty fine to coarse SAND with	
				E		occasional angular fine to coarse gravel and cobble sized moderately decomposed tuff with much rootlet, occasional	
	1.0	DBL		1.0		plastic fragments and root fragments. (FILL)	
		 	╸╢╺╟╼╢╼╫╼╫╼╫╼╫╾╟╾╟╾╟╾╟╾╟╾╟╾╢╾	1.20	-1-1-1-	Stiff, moist, yellowish brown, clayey sandy SILT. (ALLUVIUM)	
_	1.5	- - +	- 1 AGE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.5	-	Trial pit was terminated at a depth of 1.50m.	1
	=	BL : CONCRETE (BLINDING)		F		Notes:	
	2.0	Ft : Grey, CONCRÈTE BLOCK. (FOOTING) R : Root fragments.		2.0		1. Block sample was taken at a depth of 0.50m.	
	=	P1 : Grey, PVC pipe of diameter 50mm. Window : 0.35m x 0.40m x 1.10m.		F		Insitu density tests were carried out at the depths of 0.50m and 1.50m.	
	2.5	Wildow : 0.35in x 0.40in x 1.10in.		2.5			
	=			þ			}
	3.0			3.0			
] =			F			
	3.5			3.5			
	=			F			
	4.0			4.0			
	=			=			
	4.5			4.5			
	=			E			
	5.0			5.0 			
	=			=			
	5.5			5.5			
				_			
	6.0	FACE A: 1.50 m FACE B: 1.50 m FACE	EC: 1.50 m FACED: 1.50 m	6.0	1		

SY	MBOLS	REMARKS	PLAN	(not to scale)	Contract No. :	11202
1	Small Disturbed Sample	Ground Water Nil			Job No. Co-ordinates :	: GCE1001SI
1	Large Disturbed Sample	Plant Used Hand dug	See sheet 2 o	f 2 for details.	Point AB: E 838843. Point BC: E 838842.	66 N 822225.28
	Undisturbed Vertical Sample	Shoring Timber shoring over full height			Point CD: E 838843. Point DA: E 838844.	
-	Undisturbed Horizontal Sample	Stability	SECTION		Ground Level: Point AB: 12.79 mPD Point CD: 12.73 mPD	
	Block Sample	Stable		Logged by	: Y.K. Lee	
ប	Insitu Density Test	Depth at pit centre 1.50m	See sheet 2 o	f 2 for details.	Date logged	: 15/07/2010
•	Water Sample				Checked by	: James Lu
+	Water Seepage	Others Nil			Date Checked	: 16/07/2010

PROJECT

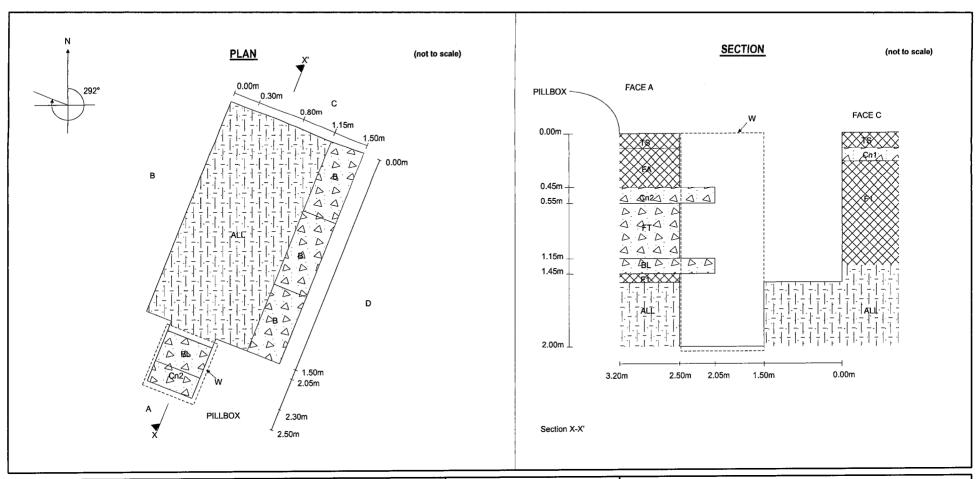
Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

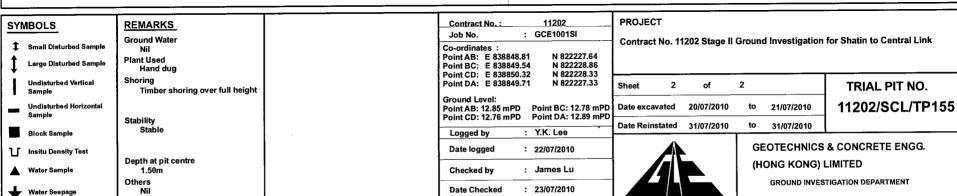

Sheet	1	of	2		
Date excavated		14/07/2010	to	14/07/2010	
Date Reins	tated	16/07/2010	to	16/07/2010	

TRIAL PIT NO. 11202/SCL/TP154

GEOTECHNICS & CONCRETE ENGG. (HONG KONG) LIMITED

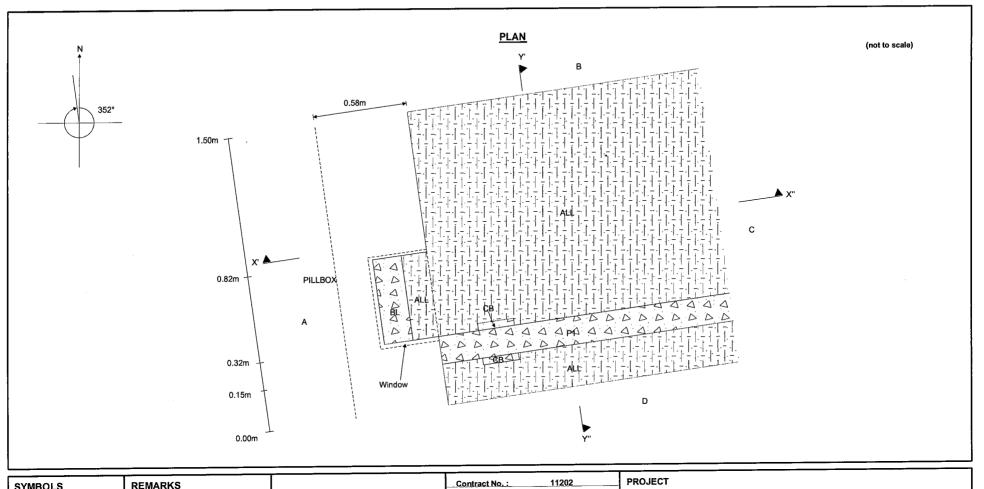
GROUND INVESTIGATION DEPARTMENT


(not to scale)


SYMBOLS	REMARKS	Contract No. : 11202 Job No. : GCE1001SI	PROJECT
Small Disturbed Sample Large Disturbed Sample	Ground Water Nil Plant Used Hand dug	Co-ordinates : Point AB: E 838843.82 N 822224.67 Point BC: E 838842.66 N 822225.28 Point CD: E 838843.16 N 822226.31	Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link
Undisturbed Vertical Sample	Shoring Timber shoring over full height	Point DA: E 838844.30 N 822225.70	Sheet 2 of 2 TRIAL PIT NO.
Undisturbed Horizontal Sample	Stability	Ground Level: Point AB: 12.79 mPD Point BC: 12.72 mPD Point CD: 12.73 mPD Point DA: 12.75 mPE	
Block Sample	Stable	Logged by : Y.K. Lee	Date Reinstated 16/07/2010 to 16/07/2010
Insitu Density Test	Depth at pit centre 1.50m Others Nil	Date logged : 15/07/2010	GEOTECHNICS & CONCRETE ENGG.
▲ Water Sample		Checked by : James Lu	(HONG KONG) LIMITED
₩ Water Seepage		Date Checked : 16/07/2010	GROUND INVESTIGATION DEPARTMENT

Samples & Test	Depth (m)	w	Sketch	Cn1	Depth (m)	Legend	Description	Grade
บ ■₁	0.5			B	0.20 0.45 0.5 0.55		Soft, moist, dark grey, sandy SILT with much angular fine to coarse gravel sized concrete fragments. (TOP SOIL / FILL) Dense, moist, dark brownish grey, silty fine to coarse SAND with occasional angular fine to coarse gravel sized quartz fragments with some decayed plant piece. (FILL)	
	1.0			1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1.0 1.20		Stiff, moist, brown, clayey sandy SILT. (ALLUVIUM)	
ឋ	1.5	ALL	·*************************************	7 1 7 1 AUC 1 3 1 1 1	1.5			
ប	2.0		Not Excavated	*	2.0 - 2.1 - 2.5	 	Trial pit was terminated at a depth of 1.50m.	
	3.0	BL : Grev. CONCI	ETE BLOCK sized 0.45m x 0.20m. RETE. (BLINDING) CRETE. (PAVEMENT) RETE SLAB.		3.0		Block sample was taken at a depth of 0.50m. Insitu density tests were carried out at the depths of 0.50m, 1.50m and 2.10m.	
	3.5	FA : Firm, moist, occasional ar FT : Grey, CONCE	brown spotted white, clayey sandy ngular fine gravel sized quartz frag RETE BLOCK (ayer. (FOOTING) i 1.00m x 0.50m x 2.00m.	/ SILT with ments. (FILL)	3.5		·	
	4.0			·	4.0			
	4.5 				5.0			
	5.5				5.5			
	6.0	FACE A: 1.50 m FACE B:	1.50 m FACE C: 1.50 m	FACE D: 1.50 m	6.0			

n


SYMBOLS	REMARKS Ground Water	PLAN (not to scale)	Contract No. : 11202 Job No. : GCE1001SI	PROJECT Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link
Small Disturbed Sample Large Disturbed Sample	Nil Plant Used Hand dug	See sheet 2 of 2 for details.	Co-ordinates: Point AB: E 838848.81 N 822227.64 Point BC: E 838849.54 N 822228.86 Point CD: E 838850.32 N 822228.33	Contract No. 11202 Stage if Ground investigation for Shauli to Central Link
Undisturbed Vertical Sample	Shoring Timber shoring over full height		Point DA: E 838849.71 N 822227.33	Sheet 1 of 2 TRIAL PIT NO.
Undisturbed Horizontal Sample	Stability	SECTION	Ground Level: Point AB: 12.85 mPD Point BC: 12.78 mPD Point CD: 12.76 mPD Point DA: 12.89 mPD	
Block Sample	Stable		Logged by : Y.K. Lee	Date Reinstated 31/07/2010 to 31/07/2010
Insitu Density Test	Depth at pit centre	See sheet 2 of 2 for details.	Date logged : 22/07/2010	GEOTECHNICS & CONCRETE ENGG.
▲ Water Sample	1.50m		Checked by : James Lu	(HONG KONG) LIMITED
₩ater Seepage	Others Nil		Date Checked : 23/07/2010	GROUND INVESTIGATION DEPARTMENT

Samples & Test	Depth (m)	0.38m 0.38m Wind	dow Sket	t ch 0.15 ↓0.10m ↔	m	Depth (m)	Legend	Description	Grade
_ປ ∎¹	0.5			- 15 to 15 t		0.10 0.5 		Soft, dry, dark brown, sandy SILT with much rootlet fragments. (TOP SOIL/FILL) Dense, moist, yellowish brown spotted white, silty fine to coarse SAND. (FILL)	
	1.0					1.0 1.05 1.30		Dense, moist, light brownish grey, silty fine to coarse SAND with occasional angular fine to coarse gravel and cobble sized	
ιη	1.5	P1 ALL CB	₹ - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- - - - - - - - - - - - - - - - - - - 	- - ALU - - -	1.5 1.60	ALL I	moderately decomposed tuff fragments. (FILL) Stiff, moist, yellowish brown, clayey sandy SILT. (ALLUVIUM) Trial pit was terminated at a depth of 1.55m.	
	2.0	BL : CONCRET	NCRETE BLOCK sized 0 TE. (BLINDING) y, brownish grey, silty fi	ne to coarse SAND with	much angular	2.0 - - - - 2.5		Notes: 1. Block sample was taken at a depth of 0.50m.	
	3.0	P1 : Grev. CON	fine to coarse gravels CRETE pipe of diamete m x 0.70m x 1.30m.	sized concrete fragment r 170mm.	s. (FILL)	2.5 3.0		Insitu density tests were carried out at the depths of 0.50m, 1.50m and 1.60m.	
	3.5					3.5			
	4.0					4.0 			
	4.5					4.5 5.0			
	5.0					5.0 _ _ _ _ 5.5			
	5.5 6.0			FACE C: 1.50 m	FACE D: 1.50 m	6.0			

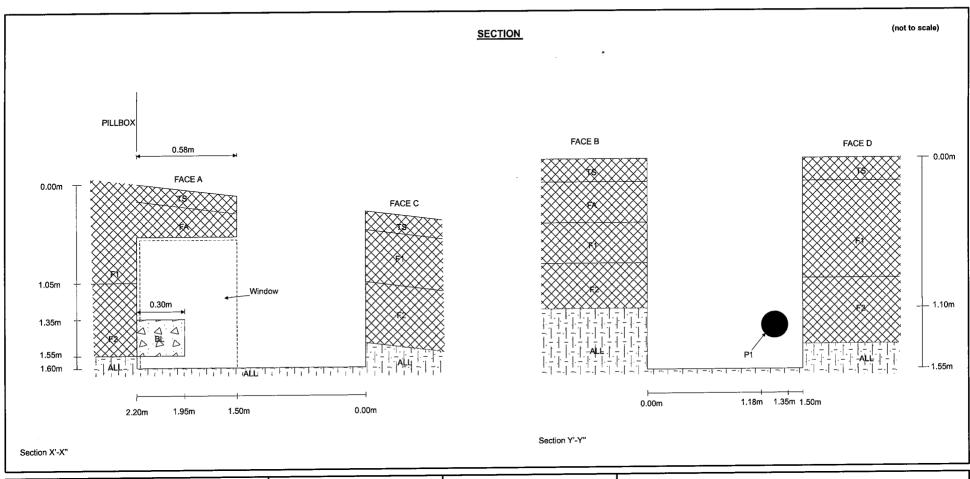
SYMBOLS	REMARKS	PLAN (not to scale)	Contract No.: 11202 Job No. : GCE1001SI	PROJECT	S Chastin to Control Link	
Small Disturbed Sample Large Disturbed Sample	Ground Water Nil Plant Used Hand dug	See sheet 2 of 3 for details.	Co-ordinates: Point AB: E 838851.68 N 822225.39 Point BC: E 838852.94 N 822225.55	Contract No. 11202 Stage II Ground Investigation	for Shatin to Central Link	
Undisturbed Vertical Sample	Shoring Timber shoring over full height		Point CD: E 838853.13 N 822224.16 Point DA: E 838851.82 N 822224.12 Ground Level:	Sheet 1 of 3	TRIAL PIT NO.	
Undisturbed Horizontal Sample	Stability	<u>SECTION</u>	Point AB: 12.91 mPD Point BC: 12.73 mPD Point CD: 12.48 mPD Point DA: 12.73 mPD		11202/SCL/TP156	
Block Sample	Stable Depth at pit centre 1.55m Others Nil	Stable See sheet 3 of 3 for details.		Logged by : Y.K. Lee Date logged : 15/07/2010		& CONCRETE ENGG.
Insitu Density Test Water Sample			Checked by : James Lu	(HONG KONG)		
₩ater Sample Water Seepage			Date Checked : 16/07/2010	GROUND INVES	TIGATION DEPARTMENT	

SY	ABULS	KEWAKKS				
‡	Small Disturbed Sample	Ground Water Nil				
1	Large Disturbed Sample	Plant Used Hand dug				
I	Undisturbed Vertical Sample	Shoring Timber shoring over full height				
-	Undisturbed Horizontal Sample	Stability				
	Block Sample	Stable	ĺ			
ប	Insitu Density Test	Depth at pit centre				
	Water Sample	1.55m				
+	Water See page	Others Nil				

Job No.	:	GCE1001SI
Co-ordinates :		
Point AB: E 83885	1.68	N 822225.39
Point BC: E 838852	2.94	N 822225.55
Point CD: E 838853	3.13	N 822224.16
Point DA: E 83885	1.82	N 822224.12
Ground Level:		
Point AB: 12.91 mPl	D	Point BC: 12.73 mPD
Point CD: 12.48 mPl	D	Point DA: 12.73 mPD
Logged by	:	Y.K. Lee
Date logged	:	15/07/2010
Checked by	:	James Lu
Date Checked	:	16/07/2010

PROJECT Contract No

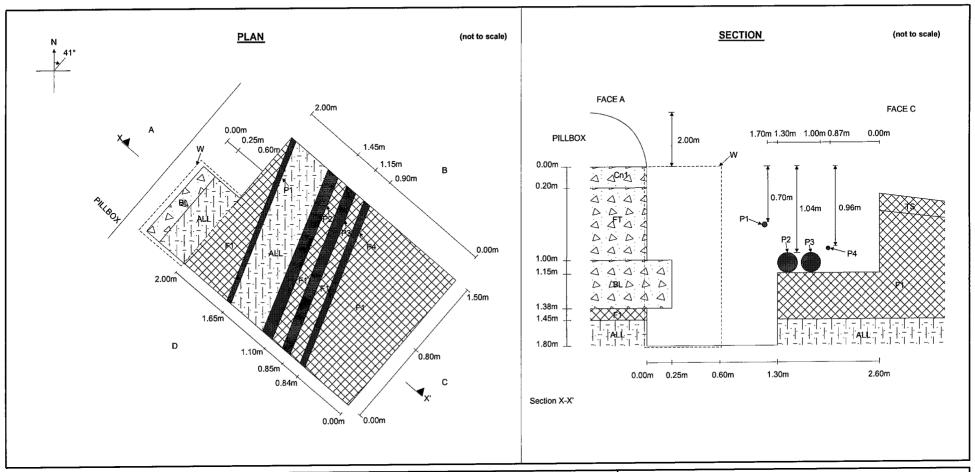
Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

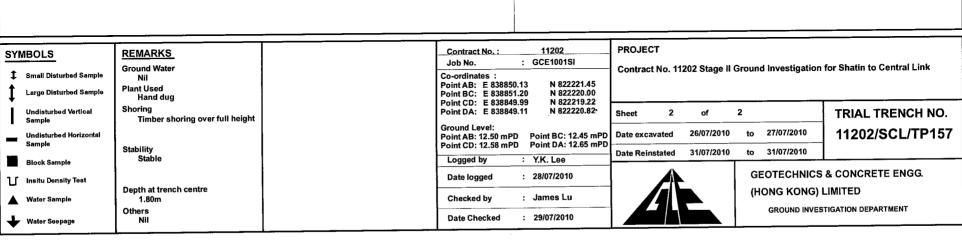

Sheet	2	of	3	
Date excavat	ed	14/07/2010	to	14/07/2010
Date Reinsta	ted	16/07/2010	to	16/07/2010

TRIAL PIT NO. 11202/SCL/TP156

GEOTECHNICS & CONCRETE ENGG. (HONG KONG) LIMITED

GROUND INVESTIGATION DEPARTMENT



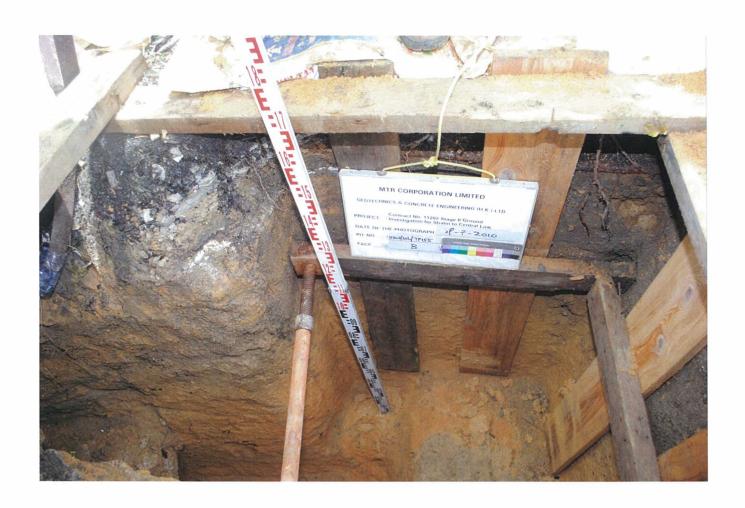

\$YMBOLS \$\Pi\$ Small Disturbed Sample Large Disturbed Sample	REMARKS Ground Water Nil Plant Used Hand dug	Contract No.: Job No. Co-ordinates: Point AB: E 838 Point BC: E 838	852.94 N 822225.55	PROJECT Contract No.	11202 Stage II (Ground Investigation	n for Shatin to Central Link
Undisturbed Vertical Sample	Shoring Timber shoring over full height	Point CD: E 838 Point DA: E 838 Ground Level:		Sheet :	3 of	3	TRIAL PIT NO.
Undisturbed Horizontal Sample	Stability	Point AB: 12.91 r Point CD: 12.48 r	mPD Point DA: 12.73 mPD				11202/SCL/TP156
Block Sample	Stable	Logged by	: Y.K. Lee				
Insitu Density Test	Depth at pit centre	Date logged	: 15/07/2010		E	GEOTECHNICS (HONG KONG)	S & CONCRETE ENGG. LIMITED
▲ Water Sample	1.55m	1.55m Checked by : James Lu				l ,	STIGATION DEPARTMENT
₩ater Seepage	Others Nil	Date Checked	: 16/07/2010			GROUND INVE	SHOATION DEFANTMENT

Samples & Test	Depth (m)	Sketch	Depth (m)	Legend	Description Grade
ប ■₁	0.5	C11, A BA FIA FIA BA FI	0.10 0.20 0.5	75	Soft, moist, dark grey, sandy SILT with much angular fine to coarse gravel sized concrete fragments. (TOP SOIL / FILL) Dense, moist, dark brownish grey, silty fine to coarse SAND with occasional angular fine to coarse gravel sized quartz fragments. (FILL)
	1.0	P4 P3 P2	- - - - - - - - - - - - 1.5	45	
ប ប	2.0		1.80	- - - ALL -	Stiff, moist, brown, clayey sandy SILT. (ALLUVIUM) Trial trench was terminated at a depth of 1.80m.
	2.5	Not Excavated B: Grey, CONCRETE BLOCK sized 0.27m x 0.30m.			Notes: 1. Block sample was taken at a depth of 0.50m. 2. Insitu density tests were carried out at the depths of 0.50m, 1.50m and 1.80m.
	3.0	BL: Grey, CONCRETE. (BLINDING) Cn1: Grey, CONCRETE. (PAVEMENT) FT: Grey, CONCRETE BLOCK layer. (FOOTING) P1 and P4: Black, CABLE of diameter 25mm. P2 and P3: Grey, PVC pipe of diameter 110mm. (HKTC)	3.0		
	3.5	W : Window sized 1.70m x 0.80m x 0.60m.	3.5 - - - - 4.0		
	4.5		4.5	0	
	5.0		5.0 		
	5.5		5.5		
	6.0	FACE A: 1.50 m FACE B: 2.00 m FACE C: 1.50 m FACE D: 2.00 m			

. .

	SYMBOLS	REMARKS Ground Water	PLAN (not to scale)	<u>Contract No.: 11202</u> Job No. : GCE1001SI	PROJECT Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link	
	Small Disturbed Sample Large Disturbed Sample	Ground Water Nil Plant Used Hand dug	See sheet 2 of 2 for details.	Co-ordinates : Point AB: E 838850.13 N 822221.45 Point BC: E 838851.20 N 822220.00	Contract No. 11202 Stage is Ground investigation for Chairman to Contract	
	Undisturbed Vertical Sample	Shoring Timber shoring over full height		Point CD: E 838849.99 N 822219.22 Point DA: E 838849.11 N 822220.82	Sheet 1 of 2 TRIAL TRENCH NO.	,
	Undisturbed Horizontal Sample	Stability	SECTION	Ground Level: Point AB: 12.50 mPD Point BC: 12.45 mPD Point CD: 12.58 mPD Point DA: 12.65 mPD		7
1	Block Sample	Stable		Logged by :	Date removated	ᅥ
	Insitu Density Test	Depth at trench centre 1.80m Others Nil	See sheet 2 of 2 for details.		GEOTECHNICS & CONCRETE ENGG.	
	▲ Water Sample			Checked by : James Lu	(HONG KONG) LIMITED	1
1	₩ater Seepage			Date Checked : 29/07/2010	GROUND INVESTIGATION DEPARTMENT	

Appendix D – Trial Pit Photograph



Appendix E – In-situ Density Test Record

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. TEL.: 852-2365 9123 FAX NO.: 852-2765 8034

REPORT ON DETERMINATION OF INSITU BULK & DRY DENSITIES OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST 11.1

Page 1 of 6

CLIENT*

: MTR Corporation Limited

ADDRESS*

: --

SITE*

: Contract No. 11202 Stage II Ground Investigation for Shatin

to Central Link

W.O. NO * : -- CONTRACT NO.* : 11202

REPORT NO. : INS10070072

JOB NO

: GCE/PS/100476

TEST UNIT NO. : ITP 100437

DATE TESTED : 14/07/2010

DESCRIPTION : --

WEATHER CONDITION : Sunny

LOCATION OF TEST POSITION* : Pill Box at Tai Hom Tsuen

NAME AND AFFILIATION OF PERSON WHO LOCATED ON SITE* : Mr. K.H. Cheung (GFT)

CORRECTION FOR ENCOUNTERING LARGE EXCAVATED PARTICLES RETAINED ON 20mm AND 37.5mm TEST SIEVES :

Trial pit no.*		11202/SCL/ TP154	11202/SCL/ TP154	
Sample no.*		1	2	
Depth of hole*	mm	150	. 150	
Depth of trial pit*	m	0.5	1.5	
Depth of level*	mPD			
Mass of rock group retained on 20mm sieve	g			
Mass of rock group retained on 37.5mm sieve	g			
Mass of concrete/brick group retained on 20mm sieve	g			
Mass of concrete/brick group retained on 37.5mm sieve	g			

Note : Densities of rock and concrete/brick are assumed as 2.65 Mg/m^3 and 2.45 Mg/m^3 respectively.

TEST RESULTS :

Bulk density	Mg/m ³	1.68	1.62	
Moisture content (Ref. : GEOSPEC 3 : 2001 Test 5.2)	용	16	20	
Dry density	Mg/m³	1.45	1.35	

FOR INFORMATION ONLY :

Laboratory compaction	Optimum moisture content	8	 	
test results	Maximum dry density	Mg/m³	 	

Note : These results refer to test report no. -- which is in accordance with Test __--

The following evaluations are only based on the opinion of the laboratory and are not under the scope of accreditation by HOKLAS :

provide the second seco			·	
Dolatico gamestica	٠.	1		I
Relative compaction	3			l I
			<u> </u>	

(Ref. : Clause 6.68 of General Specification for Civil Engineering Works (1992))

NOTE: *Information provided by client

REMARKS:

TESTED BY : K.W. Cheung

CHECKED BY :

W.K.Chan

CERTIFIED BY :

CHEUNG WING TAI : Deputy Manager

POST

: Lab. Technician : 14/07/2010

POST

: 29/07/2010

: Reporting Officer

POST DATE : 29/07/2010

DATE

Form No.: SOI-P21/R Issue 1 Rev. 0 (20-2-2002) Page 26 of 27

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. FAX NO.: 852-2765 8034 TEL.: 852-2365 9123

REPORT ON DETERMINATION OF INSITU BULK & DRY DENSITIES OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST 11.1

Page 2 of 6

CLIENT*

: MTR Corporation Limited

ADDRESS* : --SITE*

: Contract No. 11202 Stage II Ground Investigation for Shatin

to Central Link

: --WO NO *

CONTRACT NO. * 11202

REPORT NO. : INS10070072

JOB NO. : GCE/PS/100476 TEST UNIT NO. : ITP 100437

DATE TESTED : 20/07/2010

DESCRIPTION : --

WEATHER CONDITION : Sunny

LOCATION OF TEST POSITION* : Pill Box at Tai Hom Tsuen

NAME AND AFFILIATION OF PERSON WHO LOCATED ON SITE* : Mr. K.H. Cheung (GFT)

CORRECTION FOR ENCOUNTERING LARGE EXCAVATED PARTICLES RETAINED ON 20mm AND 37.5mm TEST SIEVES:

Trial pit no.*	11202/SCL/ TP155
Sample no.*	1
Depth of hole*	m 150
Depth of trial pit*	m 0.5
Depth of level* mPI	D
Mass of rock group retained on 20mm sieve	g
Mass of rock group retained on 37.5mm sieve	g
Mass of concrete/brick group retained on 20mm sieve	g
Mass of concrete/brick group retained on 37.5mm sieve	g

Note : Densities of rock and concrete/brick are assumed as $2.65 \, \text{Mg/m}^3$ and $2.45 \, \text{Mg/m}^3$ respectively.

TEST RESULTS :

Bulk density	Mg/m³	1.64	
Moisture content (Ref.: GEOSPEC 3: 2001 Test 5.2)	8	16	
Dry density	Mg/m³	1.41	

FOR INFORMATION ONLY :

	<u></u>			
Laboratory compaction	Optimum moisture content	ક		
test results	Maximum dry density	Mg/m³		

which is in accordance with Test __-_ Note : These results refer to test report no.

The following evaluations are only based on the opinion of the laboratory and are not under the scope of accreditation by HOKLAS :

웃 Relative compaction

(Ref. : Clause 6.68 of General Specification for Civil Engineering Works (1992))

NOTE: *Information provided by client

: Lab. Technician

: 20/07/2010

REMARKS:

TESTED BY : K.W. Cheung

CHECKED BY :

POST

DATE

W.K.Chan : Reporting Officer

: 29/07/2010 Form No.: SOI-P21/R Issue 1 Rev. 0 (20-2-2002) Page 26 of 27 CERTIFIED BY :

CHEING WING TAI POST DATE

: Deputy Manager : 29/07/2010

The Hong Kong Accreditation Services (HKAS) has accredited Geotechnics & Concrete Engineering (H.K.) Limited (GCE) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report/certificate were determined by this laboratory in accordance with its term of accreditation. The copyright of this report/certificate is owned by GCE. It may not be reproduced except with prior written approval from the issuing laboratory.

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. FAX NO.: 852-2765 8034 TEL.: 852-2365 9123

REPORT ON DETERMINATION OF INSITU BULK & DRY DENSITIES OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST 11.1

Page 3 of 6

CLIENT*

: MTR Corporation Limited

ADDRESS*

: --

SITE*

: Contract No. 11202 Stage II Ground Investigation for Shatin

to Central Link

W.O. NO. * : -- CONTRACT NO. * : 11202

REPORT NO. : INS10070072

JOB NO

: GCE/PS/100476

TEST UNIT NO. : ITP 100437

DATE TESTED : 21/07/2010

DESCRIPTION : --

WEATHER CONDITION : Cloudy

LOCATION OF TEST POSITION* : Pill Box at Tai Hom Tsuen

NAME AND AFFILIATION OF PERSON WHO LOCATED ON SITE* : Mr. K.H. Cheung (GFT)

CORRECTION FOR ENCOUNTERING LARGE EXCAVATED PARTICLES RETAINED ON 20mm AND 37.5mm TEST SIEVES:

Trial pit no.*		11202/SCL/ TP155	11202/SCL/ TP155	
Sample no.*		2	3	
Depth of hole*	mm	150	150	
Depth of trial pit*	m	1.5	2.1	
Depth of level*	mPD			
Mass of rock group retained on 20mm sieve	g			
Mass of rock group retained on 37.5mm sieve	g			
Mass of concrete/brick group retained on 20mm sieve	g			
Mass of concrete/brick group retained on 37.5mm sieve	∍ g			100

Note : Densities of rock and concrete/brick are assumed as 2.65 Mg/m^3 and 2.45 Mg/m^3 respectively.

TEST RESULTS :

Bulk density	Mg/m³	1.65	1.43	
Moisture content (Ref. : GEOSPEC 3 : 2001 Test 5.2)	8	17	17	
Dry density	Mg/m³	1.41	1.22	

FOR INFORMATION ONLY :

Laboratory compaction	Optimum moisture content	8	 -	
test results	Maximum dry density	Mg/m³	 	

Note : These results refer to test report no. -- which is in accordance with Test __-_

The following evaluations are only based on the opinion of the laboratory and are not under the scope of accreditation by HOKLAS :

Relative compaction		ું જ	 	
 ;				

(Ref. : Clause 6.68 of General Specification for Civil Engineering Works (1992))

NOTE: *Information provided by client

REMARKS:

TESTED BY : K.W. Cheung

CHECKED BY :

W.K.Chan : Reporting Officer

CERTIFIED BY :

CHEUNG WING TAI : Deputy Manager

POST

: Lab. Technician : 21/07/2010

POST DATE

: 29/07/2010

Form No.: SOI-P21/R Issue 1 Rev. 0 (20-2-2002) Page 26 of 27

POST DATE

: 29/07/2010

REPORT ON DETERMINATION OF INSITU BULK & DRY DENSITIES OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST 11.1

Page 4 of 6

CLIENT*

SITE*

: MTR Corporation Limited

: --

ADDRESS*

: Contract No. 11202 Stage II Ground Investigation for Shatin

to Central Link

W.O. NO.*

CONTRACT NO.* : 11202

REPORT NO. : INS10070072

JOB NO.

: GCE/PS/100476

TEST UNIT NO. : ITP 100437

DATE TESTED : 14/07/2010

DESCRIPTION : --

WEATHER CONDITION : Sunny

LOCATION OF TEST POSITION* : Pill Box at Tai Hom Tsuen

NAME AND AFFILIATION OF PERSON WHO LOCATED ON SITE* : Mr. K.H. Cheung (GFT)

CORRECTION FOR ENCOUNTERING LARGE EXCAVATED PARTICLES RETAINED ON 20mm AND 37.5mm TEST SIEVES:

Trial pit no.*		11202/SCL/ TP156	11202/SCL/ TP156	11202/SCL/ TP156
Sample no.*		1	2	3
Depth of hole*	mm	150	150 '	150
Depth of trial pit*	m	0.5	1.5	1.6
Depth of level*	mPD			
Mass of rock group retained on 20mm sieve	g			
Mass of rock group retained on 37.5mm sieve	g			
Mass of concrete/brick group retained on 20mm sieve	g			
Mass of concrete/brick group retained on 37.5mm sieve	e g			T

Note : Densities of rock and concrete/brick are assumed as 2.65 Mg/m^3 and 2.45 Mg/m^3 respectively.

TEST RESULTS :

Bulk density	Mg/m³	1.45	1.45	1.44
Moisture content (Ref. : GEOSPEC 3 : 2001 Test 5.2)	8	14	16	17
Dry density	Mg/m ³	1.27	1.25	1.23

FOR INFORMATION ONLY :

Inhoratory compagion	Optimum moisture content	<u> </u>	 	
Laboratory compaction	Optimum moisture content	ъ	 	
test results	Maximum dry density	Mg/m ³	 	

Note : These results refer to test report no. _ which is in accordance with Test _

The following evaluations are only based on the opinion of the laboratory and are not under the scope of accreditation by HOKLAS:

Relative compaction	용	 }

(Ref. : Clause 6.68 of General Specification for Civil Engineering Works (1992))

NOTE : *Information provided by client

REMARKS:

TESTED BY : K.W. Cheung

CHECKED BY :

: Reporting Officer

CERTIFIED BY :

CHEUNG WING TAI : Deputy Manager

POST DATE : Lab. Technician : 14/07/2010

POST DATE

: 29/07/2010

POST DATE

: 29/07/2010

Form No.: SOI-P21/R Issue 1 Rev. 0 (20-2-2002) Page 26 of 27

W.K.Chan

REPORT ON DETERMINATION OF INSITU BULK & DRY DENSITIES OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST 11.1

Page 5 of 6

CLIENT*

SITE*

ADDRESS*

: MTR Corporation Limited

: Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

W.O. NO.*

CONTRACT NO.* : 11202

REPORT NO. : INS10070072

TEST UNIT NO. : ITP 100437

DATE TESTED : 26/07/2010

DESCRIPTION : --

JOB NO. : GCE/PS/100476

WEATHER CONDITION : Sunny

LOCATION OF TEST POSITION* : Pill Box at Tai Hom Tsuen

NAME AND AFFILIATION OF PERSON WHO LOCATED ON SITE* : Mr. K.H. Cheung (GFT)

CORRECTION FOR ENCOUNTERING LARGE EXCAVATED PARTICLES RETAINED ON 20mm AND 37.5mm TEST SIEVES:

Trial pit no.*		11202/SCL/ TP157	
Sample no.*		1	
Depth of hole*	mm	150	
Depth of trial pit*	m	0.5	
Depth of level*	mPD		
Mass of rock group retained on 20mm sieve	g		
Mass of rock group retained on 37.5mm sieve	g		
Mass of concrete/brick group retained on 20mm sieve	g		
Mass of concrete/brick group retained on 37.5mm sieve	g		

Note: Densities of rock and concrete/brick are assumed as 2.65 Mg/m^3 and 2.45 Mg/m^3 respectively.

TEST RESULTS :

Bulk density	Mg/m³	1.68	
Moisture content (Ref. : GEOSPEC 3 : 2001 Test 5.2)	ક	12	
Dry density	Mg/m³	1.50	

FOR INFORMATION ONLY :

Laboratory compaction	Optimum moisture content	ક		
test results	Maximum dry density	Mg/m³		

Note : These results refer to test report no. ___ ___ which is in accordance with Test __--

The following evaluations are only based on the opinion of the laboratory and are not under the scope of accreditation by HOKLAS :

Relative compaction	જ	

(Ref. : Clause 6.68 of General Specification for Civil Engineering Works (1992))

NOTE: *Information provided by client

REMARKS:

TESTED BY : K.W. Cheung

CHECKED BY :

W.K.Chan

CERTIFIED BY :

CHEUNG WING TAI

POST DATE : Lab. Technician

POST DATE : Reporting Officer

POST DATE : Deputy Manager

: 26/07/2010

: 29/07/2010 Form No.: SOI-P21/R Issue 1 Rev. 0 (20-2-2002) Page 26 of 27

: 29/07/2010

REPORT ON DETERMINATION OF INSITU BULK & DRY DENSITIES OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST 11.1

Page 6 of 6

CLIENT*

: MTR Corporation Limited

ADDRESS*

: --

SITE*

: Contract No. 11202 Stage II Ground Investigation for Shatin

to Central Link

W.O. NO.*

CONTRACT NO.* : 11202

REPORT NO. : INS10070072

JOB NO.

: GCE/PS/100476

TEST UNIT NO. : ITP 100437

DATE TESTED : 27/07/2010

DESCRIPTION : --

WEATHER CONDITION : Sunnv

LOCATION OF TEST POSITION* : Pill Box at Tai Hom Tsuen

NAME AND AFFILIATION OF PERSON WHO LOCATED ON SITE* : Mr. K.H. Cheung (GFT)

CORRECTION FOR ENCOUNTERING LARGE EXCAVATED PARTICLES RETAINED ON 20mm AND 37.5mm TEST SIEVES:

Trial pit no.*	11202/SCL/ TP157	11202/SCL/ TP157		
Sample no.*		2	3	
Depth of hole*	mm	150	150	
Depth of trial pit*	m	1.5	1.8	
Depth of level*	mPD			
Mass of rock group retained on 20mm sieve	g			
Mass of rock group retained on 37.5mm sieve	g			
Mass of concrete/brick group retained on 20mm sieve	g			
Mass of concrete/brick group retained on 37.5mm sieve	e g			

Note: Densities of rock and concrete/brick are assumed as 2.65 Mg/m^3 and 2.45 Mg/m^3 respectively.

TEST RESILTS :

Bulk density	Mg/m³	1.40	1.44	
Moisture content (Ref. : GEOSPEC 3 : 2001 Test 5.2)	ક	18	18	
Dry density	Mg/m³	1.19	1.22	

FOR INFORMATION ONLY :

Laboratory compaction	Optimum moisture content	ક	 	
test results	Maximum dry density	Mg/m³	 	

Note : These results refer to test report no. ___ ___ which is in accordance with Test __-_

The following evaluations are only based on the opinion of the laboratory and are not under the scope of accreditation by HOKLAS :

Relative compaction	8	 	

(Ref. : Clause 6.68 of General Specification for Civil Engineering Works (1992))

NOTE: *Information provided by client

REMARKS .

TESTED BY : K.W. Cheung

CHECKED BY :

W.K.Chan

: Reporting Officer

: 29/07/2010

CERTIFIED BY :

POST

CHEUNG WING TAI

POST DATE : Lab. Technician : 27/07/2010

DATE

POST

Form No.: SOI-P21/R Issue 1 Rev. 0 (20-2-2002) Page 26 of 27

DATE

: Deputy Manager : 29/07/2010

Appendix F – Testing Results of Pillbox

Fc-rm No. : BLO-P5/R Issue 1 Rev. 0 (12-01-2004) Page 13 of 16

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF PRECAST CONCRETE MASONRY UNITS

MICOUNT O	11110					
In accordance with	h BS 6073 : Part 1 :	1981 Appendix B	(AMD 3944 & 446	2)		Page 1 of 2
Report No.	: GCD10080067	1		Date of Issue	: 16-8-	•
Sample Details as	Supplied by Client:					
Client	: MTR Corporation	on Limited		Contract No.	: 1120)2
Address	:					
Project / Site	: Contract No. 1	1202 Stage II Grou	und Investigation for	Shatin to Central	Link	
Manufacturer	: Unknown	_		Date Manufac	tured :	
Source of masonry	y units : Unkwor	ר		Type of maso	nry units : Hollo	w concrete block
Specified strength	: Unkwor	1		Colour of mas	onry units: Grey	
Nominal Size	: (440 x	215 x 225) mm w	ith two perforated s	quare holes (140)	(100) mm	
Laboratory Test R	<u>esults</u>					
Date Received	:29-7-20	010		GCE Reg. No.	: GCE	101157
Date Tested	: 13-8-20	010		Test Unit No.	:PB 1	0028
Test Location	: GCE Br	anch Laboratory at	San Po Kong			
			TESTING OF BLOC	K		497
Specimen No.	Nominal Length	Thickness	Nominal Height	Gross Area	Maximum Load	Crushing Strength
	(mm)	(mm)	(mm)	(mm²)	(kN)	(N/mm ²)
HB 1	440	225	214	99000	1976.3	20.0
— НВ 2	440	224	213	98560	1358.6	13.8
					<u> </u>	
				14.000		
Standard Deviatio	on, S				(N/mm ²)	
A [·] verage crushing	strength (Compres	sive Strength) of	the sample		(N/mm ²)	
A cceptance Crite	ria (Client's Specifi	cation : General M	laterials & Workman	ship Specification	- Clause 26.5.1a)	
	hing strength of the			_		
Notes: 1. Al	I test results relate of	only to the cample	tostad			
	sample of masonry	•		cks.		
	est samples were sp					
Remarks :)	
Tested By	: C.N. Huang /	1	Approved S	Signatory	<u></u>	_
resieu by	. C.N. Huang		Approved (AU SUN HUNG, IVA	N .
C hecked By	: /	٢	Post	: S	enior Testing Manag	ger

PHOTOGRAPHIC RECORD

Page 2 of 2

Report No.

: GCD100800671

Date of Issue

: 16-8-2010

Sample Details as Supplied by Client:

Client

MTR Corporation Limited

Contract No.

: 11202

Project / Site

: Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

GCE Reg. No.

: GCE 101157

Test Unit No.

: PB 10028

SAMPLE NO.

HB 1

HB 2

As-received condition

End preparation by cement mortar capping

Compression test by **Universal Testing** Machine

Failure pattern after test

RECORD ON OBTAINING OF CORE SAMPLES

In Accordance With CS 1: 1990 Section 15 (AMD 1201)

Form N $_{\odot}$: CON-S12/WS Issue 5 Rev. 0 (02-05-2003) Page 5 of 5

				Page 1 01 1
as Supplied by 0	Client :			
MTR Corporation	Limited		Serial No.	
			,	
			for Shatin to Central	Link
No. :			Contract No.	11202
			Concrete Grade	Unknown
: Unknow	'n			
5				
Equipment Detail	<u>s :</u>			
: 19-7-20	10		Sampled By	: W.F. Cheung
e No. : <u>N009-0</u>	001		Core Nominal Dia	meter (mm) : <u>75</u>
lo. : <u>NO11-0</u>	001		Condition of Store	age of Core : Good
	· · · · · · · · · · · · · · · · · · ·			
Measured Length	Date Cast	Drilling Direction Relative to	Description of Reinforcement	Location of Coring
	J	Casting Direction (H/V/D)		
	Unknown		Nii	Base slab of Pillbox
				Λ
				-A
: Fi	ing		Checked By :	
			•	TONY T.T. CHAN Testing Manager
:	19-7-2010		Date :	21-7-2010
	MTR Corporation Contract No. 112 No. : D. : Unknow : Unknow : 19-7-20 e No. : N009-0 Measured Length (mm) 120 :	Contract No. 11202 Stage II of No. : D. : Unknown : Unknown : Unknown Equipment Details : : 19-7-2010 e No. : N009-0001 Io. : N011-0001 Measured Date Cast (mm) 120 Unknown : W.F. Cheung GCE-Drilling Team Text	MTR Corporation Limited	MTR Corporation Limited Contract No. 11202 Stage II Ground Investigation for Shatin to Central No.: — Contract No. Contract No. Contract No. Concrete Grade: Unknown Equipment Details: Sampled By Core Nominal Dia Condition of Store Measured Length Cast Cast Casting Direction (H/V/D) 120 Unknown Vertical Nil 120 Unknown Vertical Nil 120 Unknown Vertical Nil Condition of Store Condition of Store Cast Casting Direction Relative to Casting Direction (H/V/D) Condition of Store Contract No. Concrete Grade: Concrete Grade: Contract No. Concrete Grade: Core Nominal Dia Condition of Store Contract No. Concrete Grade: Contract No. Concrete Grade: Core Nominal Dia Condition of Store Contract No. Concrete Grade: Core Nominal Dia Condition of Store Contract No. Concrete Grade: Core Nominal Dia Condition of Store Contract No. Concrete Grade: Concrete Grad

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CORE In Accordance With CS 1:1990: Section 15 (AMD 1201, 1203 & 1205)

Page 1 of 3

m / tooordanoo mar	00 1 1 1000 1 0000011 10	(2007			rage 1015
Report No.	COR10080036				Dat	te of Issue: 16/08/2010
Sample Details as Si Client Address Project / Site	upplied by Client : : MTR CORPORATION : : CONTRACT NO. 1120		n			
r roject / Site	INVESTIGATION FOR				Contract I	
Core Mark Date Cast	: BASE SLAB OF PILLE : S1 : ative to Casting Direction	Con Date	crete Grade Drilled ERTICAL	: : 19/07/2010	W.O. No. Job No. Concrete Storage C PWL Req Client Red	: - Mix I.D. : Condition : GOOD
Sampling Record : A	SAMPLING RECORD IS	S AVAILABLE AND A	COPY OF THE	RECORD IS ATTAC	HED IN THIS RE	PORT.
Laboratory Test Resi Date Received Date Commenced Date Completed	ults: : 04/08/2010 : 04/08/2010 : 14/08/2010			: GCE101157 :-	Test Unit No. Condition on Re	: CR10069 eceipt : GOOD
Description of Specir Presence of Cracks Maximum Size Compaction of Conc Extent of Voids	: NIL : 40mm		ls .	rials : UNEVEN ANGULAR Medium Voids N/A	General Type	: GRANITE Large Voids N/A
Measurement of Rein Size of Reinforcing B Spacing of Reinforcin	Bar : - /	-		of Bar from Drilling Sur of Bar from Nearer End		d : - / - / - / : - / - / - /
	ndricity, Flatness, Square					
Cylindricity Flatness		: PASS : PASS	Squarene Parallelisr	ss n	: l : l	PASS PASS
Measurement of Dim Minimum Length As- Cutting Location from Average Diameter Average Length after Saturated Density	n Drilling Surface	: 107 mm : 13 mm : 76.1 mm : 85.2 mm : 2290 kg/m^3	Method of Average L Length aft	Length As-received f End Preparation Length before Capping for Capping / Diamete Saturated Density	;	114 mm CAPPED /W SUL C 83.2 mm 1.12
De termination of Cor Maximum Load at Fa Estimated In-Situ Cu	ailure	: 63.4 kN : 13.5 N/mm^2	Measured Type of F	Compressive Streng		14.0 N/mm^2 NORMAL
2.	All test results relate only Curing of concrete cores THE SIZE OF CORE SP	from date of receipt o	f specimen is in			,
Torotad Dr	2.075 ~ 4					
Tested By : K.S	S. SZE		Α	approved Signatory	: <u>Y</u> l	J LEE KIEN, PETER
Ch ecked By :			F	Post	: Ma	anaging Director

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CORE

In Accordance With CS 1: 1990: Section 15 (AMD 1201, 1203 & 1205)

Page 2 of 3

Report No.

: COR10080036

11202

Date of Issue

: 16/08/2010

Contract No.

(e)

Job Title

: CONTRACT NO. 11202 STAGE II GROUND INVESTIGATION

FOR SHATIN TO CENTRAL LINK

W.I. / Job No.

. 1

Location of concrete from where core is taken :

BASE SLAB OF PILLBOX

Core Mark

: S1

Sample Lab. Ref. No.

: COR10080036

Photographs of Core taken at 90 degrees intervals as received

1st VIEW (0 - 90) degrees

2nd VIEW (90 - 180) degrees

Remark:

1) THE SIZE OF CORE SPECIMEN DOES NOT COMPLY WITH THE REQUIREMENT OF CLAUSE 15.3.1 OF CS 1: 1990.

FAX No.: 852-2765 8034

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CORE

In Accordance With CS 1: 1990: Section 15 (AMD 1201, 1203 & 1205)

Page 3 of 3

Report No.

: COR10080036

11202

Date of Issue

: 16/08/2010

Contract No.

Job Title

: CONTRACT NO. 11202 STAGE II GROUND INVESTIGATION

FOR SHATIN TO CENTRAL LINK

W.I. / Job No.

: -/-

Location of concrete from where core is taken :

BASE SLAB OF PILLBOX

Core Mark

: S1

Sample Lab. Ref. No.

: COR10080036

Photographs of Core taken at 90 degrees intervals as received

3rd VIEW (180 - 270) degrees

4th VIEW (270 - 360) degrees

Remark:

1) THE SIZE OF CORE SPECIMEN DOES NOT COMPLY WITH THE REQUIREMENT OF CLAUSE 15.3.1 OF CS 1: 1990.

RECORD ON OBTAINING OF CORE SAMPLES

In Accordance With CS 1: 1990 Section 15 (AMD 1201)

					Page <u>1</u> of <u>1</u>
Sample Details	s as Supplied by	Client :			
Client :	MTR Corporation	Limited	# .V=	Serial No. :	
Address :					
Project :	Contract No. 11	202 Stage II	Ground Investigation	for Shatin to Central	Link
W.O. No. / Jo	b No. : <u></u>			Contract No. :	11202
Concrete Mix	I.D. : Unknow	/n		Concrete Grade :	Unknown
Admixture	: <u>Unknow</u>	/n			
Sampling and	Equipment Detail	<u>s :</u>			
Date of Drillin	g : <u>20-7-20</u>	010		Sampled By :	K.M. Tang
Coring Machir	ne No. : <u>N009-0</u>	001		Core Nominal Diar	netër (mm) : <u>75</u>
Coring Barrel	No. : <u>N011-0</u>	001		Condition of Stora	ge of Core : Good
	T	[T
Core Mark	Measured Length (mm)	Date Cast	Drilling Direction Relative to Casting Direction (H/V/D)	Description of Reinforcement	Location of Coring
R1	515	Unknown	Horizontal	Nil	Roof dome of Pillbox
				· ·	
			Towns 10 - 11 - 17 - 1 - 1 - 1 - 1		
	-				
-13h					
Remærks:				***	A_{ℓ}
Recorded By	: <i>V</i>	Nan		Checked By :	/ W/
,		K.M. Tang ling Team Te	chnician	, <u></u>	TONY T.T. CHAN Testing Manager
Date	:	20-7-2010	S. I. NOIGI	Date :	21-7-2010

Form N1 o. : CON-S12/WS Issue 5 Rev. 0 (02-05-2003) Page 5 of 5

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CORE

In Accordance W	Vith CS 1 : 1990 : Section 15	(AMD 1201, 1203 & 1205)		Page 1 of 3
Report No.	: COR10080035			Date of Issue	: 16/08/2010
Sample Details a Client Address Project / Site		N LIMITED 02 STAGE II GROUND R SHATIN TO CENTRAL	LINK	Contract No.	: 11202
Core Location Core Mark Date Cast Drilling Direction	: ROOF DOME OF PIL : R1 : Relative to Casting Direction	Concret Date Dri	e Grade : illed : 20/07/2010 ZONTAL	W.O. No. Job No. Concrete Mix I.D. Storage Condition PWL Request No. Client Request No.	: - : - : GOOD : - : -
Sampling Record	d : A SAMPLING RECORD I	S AVAILABLE AND A CO	PY OF THE RECORD IS ATTAC	HED IN THIS REPORT.	
Laboratory Test Date Received Date Commence Date Completed	: 04/08/2010 ed : 04/08/2010	GCE Re Age at T		Test Unit No. Condition on Receipt	: CR10069 : GOOD
Description of Sp Presence of Crac Maximum Size Compaction of C Extent of Voids	: 40mm		tion of Materials : UNEVEN Shape : ANGULAR Medium Voids BLE N/A	General Type : GRANI Large \ N/A	
Measurement of Size of Reinforci Spacing of Reinfo	ng Bar : - /	-	Position of Bar from Drilling Su Position of Bar from Nearer En		- - - -
Measurement of	Cylindricity, Flatness, Squar	eness and Parallelism :			
Cylindricity Flatness		: PASS : PASS	Squareness Parallelism	: PASS : PASS	
Minimum Length	from Drilling Surface er after Capping	: 95 mm : 10 mm : 72.1 mm : 85.3 mm : 2190 kg/m^3	Maximum Length As-received Method of End Preparation Average Length before Capping Length after Capping / Diamete Corrected Saturated Density	: CAPPED ; 3 : 81.4	mm
	Compressive Strength : at Failure	: 25.5 kN : 6.5 N/mm^2	Measured Compressive Streng Type of Fracture	th : 6.0 : NORMAL	N/mm^2
Notes : Remarks :	1) THE MAXIMUM LOAD A	from date of receipt of sports FAILURE OF THE SPEE (i.e 50kN). 2) THE SIZE	ecimen is in accordance with CS CIMEN IS LOWER THAN THE N E OF CORE SPECIMEN DOES N	MINIMUM CALIBRATED RA	NGE OF
Tested By :	K.S. SZE		Approved Signatory	: YU LEE KIEI	N. PETER
Checked By :			Post	: Managing Dir	

FAX No.: 852-2765 8034

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CORE

In Accordance With CS 1: 1990: Section 15 (AMD 1201, 1203 & 1205)

Page 2 of 3

Report No.

: COR10080035

Date of Issue

: 16/08/2010

Contract No.

11202

Job Title

: CONTRACT NO. 11202 STAGE II GROUND INVESTIGATION

FOR SHATIN TO CENTRAL LINK

W.I. / Job No.

Location of concrete from where core is taken:

ROOF DOME OF PILLBOX

Core Mark

: R1

Sample Lab. Ref. No.

: COR10080035

Photographs of Core taken at 90 degrees intervals as received

1st VIEW (0 - 90) degrees

2nd VIEW (90 - 180) degrees

Remark:

1) THE MAXIMUM LOAD AT FAILURE OF THE SPECIMEN IS LOWER THAN THE MINIMUM CALIBRATED RANGE OF COMPRESSION MACHINE (i.e 50kN). 2) THE SIZE OF CORE SPECIMEN DOES NOT COMPLY WITH THE REQUIREMENT

OF CLAUSE 15.3.1 OF CS 1: 1990.

FAX No.: 852-2765 8034

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CORE

In Accordance With CS 1: 1990: Section 15 (AMD 1201, 1203 & 1205)

Page 3 of 3

Report No.

: COR10080035

Date of Issue

: 16/08/2010

Contract No.

11202

Job Title

: CONTRACT NO. 11202 STAGE II GROUND INVESTIGATION

FOR SHATIN TO CENTRAL LINK

W.I. / Job No.

Location of concrete from where core is taken:

ROOF DOME OF PILLBOX

Core Mark

: R1

Sample Lab. Ref. No.

: COR10080035

Photographs of Core taken at 90 degrees intervals as received

3rd VIEW (180 - 270) degrees

4th VIEW (270 - 360) degrees

Remark:

1) THE MAXIMUM LOAD AT FAILURE OF THE SPECIMEN IS LOWER THAN THE MINIMUM CALIBRATED RANGE OF COMPRESSION MACHINE (i.e 50kN). 2) THE SIZE OF CORE SPECIMEN DOES NOT COMPLY WITH THE REQUIREMENT OF CLAUSE 15.3.1 OF CS 1: 1990.

Appendix G – Drilling and Core Extraction Record

DRILLING RECORD

Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

Date drilled

15 July 2010

Core location

Trial Pit (TP154) - Wing Wall

Drill length

665 mm

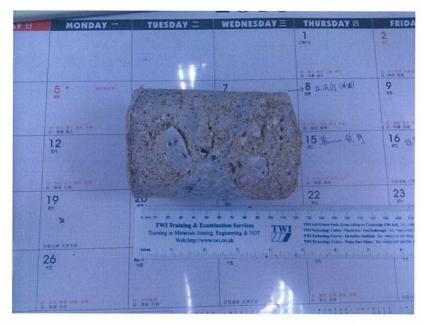
Date drilled

15 July 2010

Core location

Wall of pillbox just above existing ground level of trial pit, TP156

Drill length


665 mm

:

DRILLING RECORD

Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

Date drilled : 19 July 2010

Core location : Base slab of Pillbox, S1

Drill length : 120 mm

Date drilled : 20 July 2010 Core location : Roof dome, R1

Drill length : 515 mm with top 15mm screed

Contract No. 11202 Stage II Ground Investigation for Shatin to Central Link

Photographic Record for Core extraction

Core location: Trial Pit (TP154) - Wing Wall

Cover-meter scanning for checking of reinforcement

Date drilled: 15 July 2010

Core drilling

Extracted core samples, mark W1-1 and W1-2, revealed the wing wall of pillbox was constructed by two rows of concrete hollow blocks

Thickness of wing wall measured through the core-hole is 665mm

Core-hole and bolt hole were reinstated by FORSOC Renderoc HB40 immediately after inspection

Internal and external wall were made good with client's satisfaction

Core location: Wall of pillbox just above existing ground level of trial pit, TP156

Core location of core mark, W2

Core Drilling

Thickness of wing wall measured through the core-hole is 730mm

Internal and external wall were made good with client's satisfaction

Cover-meter scanning

Extracted core samples, mark W2-1 and W2-2, revealed the wall of pillbox was constructed by two rows of concrete hollow blocks

Core-hole and bolt hole were reinstated by FORSOC Renderoc HB40 immediately after inspection

Core location: Base slab of Pillbox, S1

Date drilled: 19 July 2010

Cover-meter scanning

Extracted core

Core-hole and bolt hole were reinstated by FORSOC Renderoc HB40 immediately after Inspection

Core drilling

Thickness of slab is 120mm

Core location: Roof dome, R1

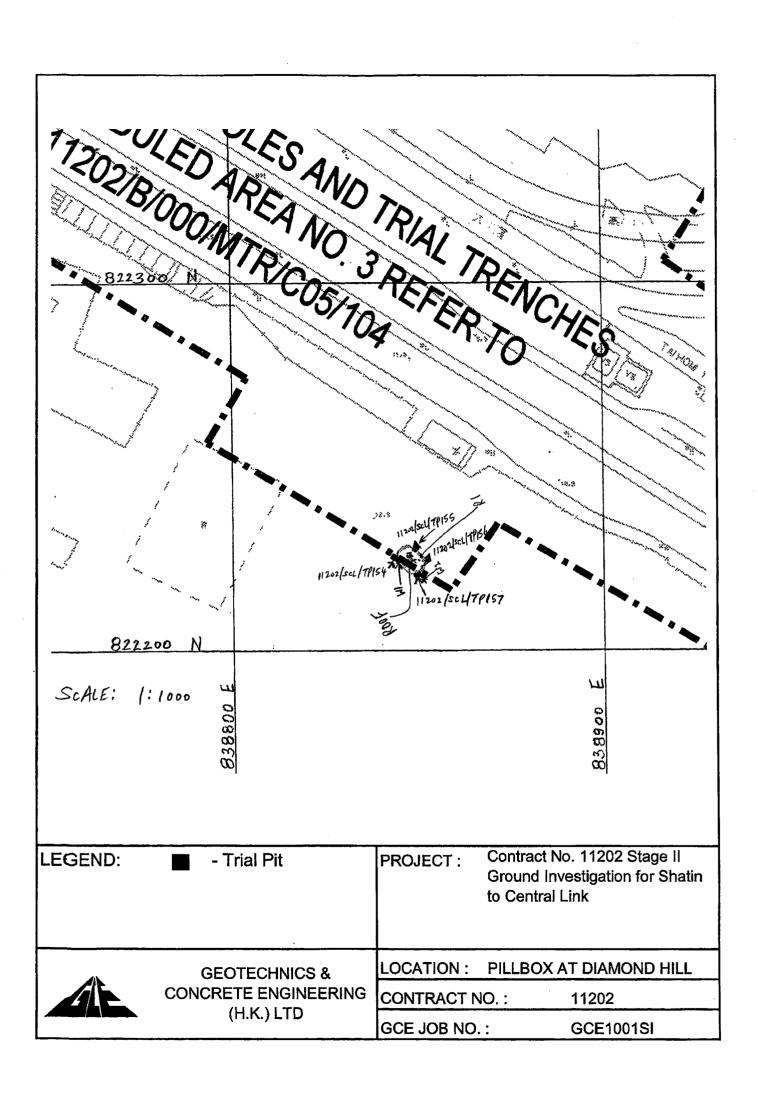
Date drilled: 20 July 2010

Cover-meter scanning at roof dome, R1

Extracted core

Core-hole and bolt hole were reinstated

Core drilling



Thickness of roof dome is 515mm

Rebar was encountered at 110mm

Appendix H – Ground Investigation Plan

香港土力混凝土工程有限公司 九龍紅磡高山道六號地下 電話: 852-2365 9123

MATERIAL TESTING LABORATORY

FINAL REPORT ON LABORATORY TESTING PILLBOX AT DIAMOND HILL

Client

: MTR Corporation Limited

Contract No.

: 11202

Project

: Contract No. 11202 Stage II Ground

Investigation for Shatin to Central Link

Date

: 6 October 2010

CERTIFIED BY:

W.T. Cheung Deputy Manager

Geotechnics & Concrete Engineering (H.K.) Ltd.

Soil & Rock Testing Laboratory

Note

- ➤ This laboratory report contains the testing results for which was accredited by HOKLAS and was NOT accredited by HOKLAS.
- > The two sets of results are separated by a colour (green) divider sheet.

Geotechnics & Concrete Engineering (H.K.) Ltd.

Soil & Rock Testing Laboratory

Note

- > The tests are divided into two sections.
- > Section One contains results of tests for which the laboratory was accredited by HOKLAS.
- Section Two, following the colour (green) divider sheet, contains the results of tests for which the laboratory was NOT accredited at the date of testing.

CONTENTS

- 1) SUMMARY OF SOIL TEST RESULTS
- 2) MOISTURE CONTENTS TEST RESULTS
- 3) ATTERBERG LIMITS TEST RESULTS
- 4) PARTICLE SIZE DISTRIBUTION CURVES
- 5) BULK & DRY DENSITY TEST RESULTS
- 6) SPECIFIC GRAVITY TEST RESULTS
- 7) STANDARD COMPACTION TEST RESULTS
- 8) CHEMICAL TEST RESULTS (SOIL)
 (ORGANIC MATTER, CHLORIDE CONTENT, pH VALUE, MASS LOSS ON IGNITION & SULPHATE CONTENT)
- 9) CHEMICAL TEST RESULTS (PRESENCE OF HYDROGEN SULPHIDE)

					REPORT NO.	SUM 10100022	
CLIEN	MTR Corpora					<u></u>	
SITE	Stage II Grou	nd Investiga	tion for Shatin to Cer	ntral Link			
CONT	RACT NO. 112	02		WORKS ORDER	R NO		
JOB NO. GCE/SI/PB				DATE	06/10/2010		
	Hole No.		11202/SCL/TP154				
Jate	Sample / Specime	n No.	1				
	Туре		BLOCK				
S	Sample Depth	(m)	0.5				
	•	·			1		
	Description		Moist orangish brown sandy SILT/CLAY (*FILL)				
3	MC 105°C	(%)	14				
In-situ	Density Bulk	(Mg/m³)	2.01				
	Dry	(**************************************	1.74				
	cific gravity		2.64				
srg S	Liquid Limit (LL)		41				
T = 1	Plastic Limit (PL)		20				
	Plasticity Index (P		0.238				
							
:: 1	Clay	(%)	29				
ë	Silt	(%)	11				
artic	Sand	(%)	59				
	Gravel	(%)	1				
<u>-</u>	Normal Stress (kPa)	s'					
2	Shear Stress (kPa)	t					
iax	σ_3 '	(kPa)					
F	Type of test	•					
-	Organic Matter co	ontent (%)	0.4				
	Carbonate conten		<1.0				
	Chloride content	(%)	<0.01				
cal	pH value		7.0				
Chemical	Sulphate content	(%)	<0.01				
ភ	Resistivity (20°C)	Ωm					
	Redox Potential	mV					
	Presence of Hydrog	en Sulphide	None				
	Presence of Carbon	ate Content					
or.	Optimum m.c.	(%)					
Compr.	Max. dry density	(Mg/m ³)					
ن	Type of test						
Remarks			*Information provided	by client			

	T MTR Corporation Limited						
SITE	Stage II Gro	und Investiga	tion for Shatin to Cen	tral Link			
~ ~ \ 17							
		202			S ORDER NO.		
JOB N	١٥ . <u>ن</u> ز	CE/SI/PB		DATE		06/10/2010	
a	Hole No.		11202/SCL/TP155				
Site Data	Sample / Specim	en No.	1				1
ite	Туре		BLOCK				
	Sample Depth	(m)	0.5				
	Description		Moist dark brown clayey gravelly SAND (*FILL)				
a	MC 105°C	(%)			i		
In-situ	Density Bulk	(Mg/m ³)	1.83				
1	Dry Dry		1.68 2.63				
	Liquid Limit (LL)		38				<u> </u>
ts	Plastic Limit (PL)		21				
,	Plasticity Index (I		17				
₹~	Liquidity Index (L		0.076				
	Clay	(%)					
75 h	Silt	(%)	8			<u> </u>	
tici	Sand	(%)	67				
Par	Gravel	(%)					
	Normal Stress (kPa)	s'					
3	Shear	t					
жiа	Stress (kPa)						
Ţ	σ ₃ ' Type of test	(kPa)					
	Organic Matter co	ontent (%)	0.6			+	<u> </u>
ļ	Carbonate conte						
ļ	Chloride content		<0.01			 	
Gal	pH value	, , ,	7.2			1	
Chemica	Sulphate content	t (%)	0.09			 	
ğ [Resistivity (20°C)) Ωm					1
	Redox Potential	mV					
ŀ	Presence of Hydrog		None				
	Presence of Carbor						
Ē.	Optimum m.c.	(%)					
O 1	Max. dry density	(Mg/m ³)				 	
	Type of test		2.5kg				
	Remarks		*Information provided	by client			

					F	REPORT NO.	SUM 10100024	
	NT MTR Corpor							
SITE	Stage II Gro	ound Investiga	tion for Shatin to Ce	entral Link				
CONT	ΓRACT NO. <u>11</u>	1202		WORKS	ORDER NO.	-		
JOB 1	10 . <u>G</u> (CE/SI/PB		DATE		06/10/2010		
ū	Hole No.		11202/SCL/TP156					
Site Data	Sample / Specimen No.		1					
ite	Туре		BLOCK					
S	Sample Depth	(m)	0.5					
	Description		Moist dark brown very clayey gravelly SAND (*FILL)					
3	MC 105°C	(%)						
In-situ	Density Bulk	(Mg/m³)	1.72					
	Dry	(mg/ /	1.56					
	cific gravity		2.64					
p s	Liquid Limit (LL)		44					
= = 1	Plastic Limit (PL	·	22					
tte	Plasticity Index (22					
	Liquidity Index (0.032					
ize	Clay	(%)	19					
e S	Silt	(%)	11			T		
Particle Size	Sand	(%)	61					
Ра	Gravel	(%)	9					
mpr.	Normal Stress (kPa)	s'						
	Shear Stress (kPa)	t						
ä	σ ₃ '	(kPa)						
	Type of test					<u> </u>		
1	Organic Matter of							
	Carbonate conte		<1.0					
	Chloride content	t (%)	<0.01					
1	pH value		6.5					
Je I	Sulphate conten		<0.01					
- 1	Resistivity (20°C		<u> </u>			<u> </u>		
	Redox Potential		<u> </u>					
	Presence of Hydro		None					
	Presence of Carbo							
P.	Optimum m.c.	(%)				<u> </u>		
0 1	Max. dry density	/ (Mg/m³)	<u> </u>					
<u>.</u>	Type of test		<u> </u>					
	Remarks		*Information provide	ed by client				

	NT MATE Compa	· - U 1 tastes at	,		REPORT NO.	SUM 10100025	
CLIENT MTR Corporation Limited							
SITE	Stage II Gro	und Investiga	ation for Shatin to Cer	ntral Link			
					 		
		202		WORKS ORDER NO.			
JOB I	NO. <u>G</u> C	CE/SI/PB		DATE	06/10/2010	06/10/2010	
	Hole No.		11202/SCL/TP157		T		
ا ٽڏ	Sample / Specimen No.		1				
ite [Туре		BLOCK				
S.	Sample Depth	(m)	 				
		***		I			
		1	Moist orangish bro	own sandy SILT/CLAY		I	
	Description	1	(*FILL)				
		I					
	MC 105°C.	(%)				T	
In-situ	Bulk		2.03			e.	
ا <u>غ</u>	Density Dry	(Mg/m³)	1.75				
Spe	cific gravity		2.64				
	Liquid Limit (LL)		48				
oerr lits	Plastic Limit (PL)		23				
T 5 1	Plasticity Index (I		25				
₹	Liquidity Index (L		0.260				
ze	Clay	(%)	30				
e Si	Silt	(%)	 				
중시	Sand	(%)	56				
Par	Gravel	(%)	 				
	Normal	1					
mpr	Stress (kPa)	s'	1				
Ŝ	Shear						
Triaxial Compr.	Stress (kPa)	t					
ria)	σ ₃ '	(kPa)					
	Type of test						
r	Organic Matter co						
1	Carbonate conte						
	Chloride content	t (%)					
.≖ ⊦	pH value	. (9/)	7.2				
hen	Sulphate content						
- 1	Resistivity (20°C)						
- 1	Redox Potential		None				
	Presence of Hydrog Presence of Carbon	····	None				
	Optimum m.c.	(%)					
npr	Max. dry density						
0 1	Type of test	(mg/m)					
	Type or test						
	Remarks		*Information provided	I by client			

SECTION ONE

Test result was accredited by HOKLAS.

Geotechnics & Concrete Engineering (H.K.) Ltd.

Soil & Rock Testing Laboratory

Note

> The following test results are for tests for which the laboratory was accredited by HOKLAS.

2) MOISTURE CONTENTS TEST RESULTS

REPORT ON DETERMINATION OF MOISTURE CONTENT OF SOIL

Page 1 of 1

: MOT10100002

REPORT NO.

: Stage II Ground Investigation for Shatin to Central Link

CONTRACT NO.*: 11202 W.O. NO.*

TEST LOCATION: GROUND FLOOR, 18 PAK KUNG STREET, HUNG HOM, KOWLOON

DATE RECEIVED : 01/09/2010

TEST UNIT NO. : STS 100001 Moisture M.C. Content Diff Hole No.* Sample Sample Depth* Drying Temp. Date Started Date Completed Test Description (Spec. Depth) 11202/SCL/TP154 BLOCK 5.2 105 + 5 06/09 07/09 Moist orangish brown sandy SILT/CLAY (*FILL) 0.50 14 11202/SCL/TP155 1 0.50 BLOCK 8.8 5.2 105 ± 5 06/09 07/09 Moist dark brown clayev gravelly SAND (*FILL) ___ 105 ± 5 11202/SCL/TP156 1 BLOCK 11 5.2 06/09 07/09 Moist dark brown very clavey gravelly SAND (*FILL) 07/09 Moist orangish brown sandy SILT/CLAY (*FILL) 11202/SCL/TP157 BLOCK ___ 5.2 105 + 5 06/09 17

* : Information provided by client

REMARKS:

TESTED BY : T.K. LAM

CHECKED BY :

CERTIFIED BY :

CHEUNG WING TAI

POST : Lab. Technician DATE : 06/10/2010

W.K. Chan POST : Reporting Officer

POST

DATE : 06/10/2010

: Dept. Manager

Form No.: SOI-P17/R Issue 1 Rev.2 (29-03-2010) Page 13 of 14

: 06/10/2010

DATE

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG TEL.: 852-2365 9123 FAX NO.: 852-2765 8034

IN ACCORDANCE WITH GEOSPEC 3 · 2001 CLIENT* : MTR Corporation Limited ADDRESS* : 9/F. Citylink Plaza. 1 Shatin Station Circuit Shatin. New Territories JOB NO. : GCE/SI/PB

3) ATTERBERG LIMITS TEST RESULTS

CLIENT*

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. TEL: 852-2365 9123 FAX NO.: 852-2765 8034

REPORT ON DETERMINATION OF ATTERBERG LIMITS OF SOIL

IN ACCRODANCE WITH GEOSPEC 3 : 2001 TESTS 6.1 & 6.2

: MTR Corporation Limited

Page 1 of 1

REPORT NO. : ALP10090020

DATE RECEIVED : 01/09/2010

ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories

STTE* : Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION : GROUND FLOOR, 21-23 SAN WAI STREET, HUNG HOM, KOWLOON DATE STARTED : 06/09/2010 W.O. NO.* : --CONTRACT NO.* : 11202 DATE COMPLETED: 11/09/2010

JOB NO. : GCE/SI/PB TEST UNIT NO. : STS 100001 SAMPLE TYPE* : BLOCK

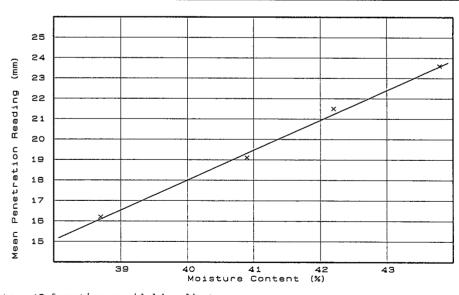
HOLE NO. * : 11202/SCL/TP154 SAMPLE NO.* SAMPLE DEPTH* : 0.50 m DESCRIPTION : Moist orangish brown sandy SILT/CLAY (*FILL) SPEC. DEPTH : 0.50

SAMPLE PREPARATION :

Mass of wet / dry subsample : $\underline{336.52}$ g / $\underline{294.07}$ g ; Moisture content of subsample : $\underline{14.4}$ %

Total mass of wet / dry sample used for the test : $\underline{652.03}$ g / $\underline{569.96}$ g

Mass / Percentage of material retained on 425 μ m test sieve : $\underline{241.33}$ g / $\underline{42.3}$ %


Equivalent moisture content of fraction passing 425 μm test sieve : $\underline{25.0}$ %

Condition of soil sample : sieved specimen

Type of drying process : tested after oven-drying at ≤ 50°C Duration of soil equilibrated with distilled water : $\underline{{}}$ hours Mixing time of soil and distilled water

TEST RESULTS :

Test no.		LL1	LL2	LL3	LL4	PL1	PL2
Mass of wet soil + contain	ner g	73.36	75.30	71.23	50.38	38.41	37.84
Mass of dry soil + contain	ner g	69.24	70.28	66.88	45.33	36.75	36.44
Mass of container	g	58.60	58.01	56.57	33.81	28.37	29.42
Mass of water	g	4.12	5.02	4.35	5.05	1.66	1.40
Mass of dry soil	g	10.64	12.27	10.31	11.52	8.38	7.02
Moisture content	8	38.7	40.9	42.2	43.8	19.8	19.9
Mean penetration reading	mm	16.2	19.1	21.5	23.6	-	-
Mixing time	min	14	12	1.0	10	7	

FINAL SUMMARY

LIQUID LIMIT 41 % PLASTIC LIMIT 20 % PLASTICITY INDEX = 21 % LIQUIDITY INDEX = 0.238

Note : *Information provided by client

: Lab. Technician

Remarks:

TESTED BY : Y.H. Kwok

CHECKED BY :

POST

W.K. Chan : Reporting Officer

CERTIFIED BY : CHEUNG WING TAI

: 11/09/2010 DATE DATE : 06/10/2010 Form No.: SOI-P18/R1 Issue 1 Rev.2 (29-03-2010) Page 16 of 19 POST : Dept. Manager DATE : 06/10/2010

The Hong Kong Accreditation Services (HKAS) has accredited Geotechnics & Concrete Engineering (H.K.) Limited (GCE) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report/certificate were determined by this laboratory in accordance with its term of accreditation. The copyright of this report/certificate is owned by GCE. It may not be reproduced except with prior written approval from the issuing laboratory.

REPORT ON DETERMINATION OF ATTERBERG LIMITS OF SOIL

IN ACCRODANCE WITH GEOSPEC 3 : 2001 TESTS 6.1 & 6.2

Page 1 of 1

REPORT NO. : ALP10090021

CLIENT* : MTR Corporation Limited DATE RECEIVED : 01/09/2010

ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories

SITE* : Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION: GROUND FLOOR, 21-23 SAN WAI STREET, HUNG HOM, KOWLOON DATE STARTED : 06/09/2010 W.O. NO.* : --CONTRACT NO.* : 11202 DATE COMPLETED: 11/09/2010

JOB NO. : GCE/SI/PB TEST UNIT NO. : STS 100001 SAMPLE TYPE* : BLOCK HOLE NO.* : 11202/SCL/TP155 SAMPLE NO.* : 1

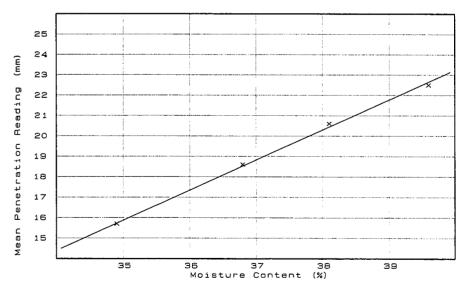
SAMPLE DEPTH* : 0.50 m DESCRIPTION : Moist dark brown clayey gravelly SAND (*FILL) SPEC. DEPTH : 0.50 m

SAMPLE PREPARATION :

Mass of wet / dry subsample : $\underline{553.04}$ g / $\underline{508.19}$ g ; Moisture content of subsample : $\underline{8.8}$ %

Total mass of wet / dry sample used for the test : $\underline{748.30}$ g / $\underline{687.78}$ g

Mass / Percentage of material retained on 425 μ m test sieve : $\underline{416.24}$ g / $\underline{60.5}$ %


Equivalent moisture content of fraction passing $425\mu m$ test sieve : 22.3 %

Condition of soil sample : sieved specimen

Type of drying process : tested after oven-drying at ≤ 50°C Duration of soil equilibrated with distilled water : - hours : -- minutes Mixing time of soil and distilled water

TEST RESULTS :

Test no.	LL1	$_{ m LL2}$	LL3	LL4	PL1	PL2
Mass of wet soil + container g	95.39	72.62	52.05	51.34	38.17	36.70
Mass of dry soil + container g	91.32	68.31	47.57	47.33	36.62	35.28
Mass of container g	79.67	56.59	35.81	37.20	29.42	28.56
Mass of water g	4.07	4.31	4.48	4.01	1.55	1.42
Mass of dry soil g	11.65	11.72	11.76	10.13	7.20	6.72
Moisture content %	34.9	36.8	38.1	39.6	21.5	21.1
Mean penetration reading mm	15.7	18.6	20.6	22.5		
Mixing time min	13	13	11	10	\neg	

FINAL SUMMARY

LIQUID LIMIT 38 % PLASTIC LIMIT 21 % PLASTICITY INDEX = 17 % LIQUIDITY INDEX = 0.076

Note : *Information provided by client Remarks:

TESTED BY : Y.H. Kwok

CHECKED BY :

W.K. Chan

CERTIFIED BY :

CHEUNG WING TAI

: Lab. Technician : 11/09/2010 Form No.: SOI-P18/R1 Issue 1 Rev.2 (29-03-2010) Page 16 of 19

POST DATE : Reporting Officer : 06/10/2010

POST DATE : Dept. Manager : 06/10/2010

REPORT ON DETERMINATION OF ATTERBERG LIMITS OF SOIL

IN ACCRODANCE WITH GEOSPEC 3 : 2001 TESTS 6.1 & 6.2

Page 1 of 1

REPORT NO. : ALP10090022

CLIENT* : MTR Corporation Limited DATE RECEIVED : 01/09/2010

ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories

SITE* : Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION : GROUND FLOOR, 21-23 SAN WAI STREET, HUNG HOM, KOWLOON DATE STARTED : 06/09/2010 W.O. NO.* : --CONTRACT NO.* : 11202 DATE COMPLETED: 11/09/2010

JOB NO. : GCE/SI/PB TEST UNIT NO. : STS 100001 SAMPLE TYPE* : BLOCK

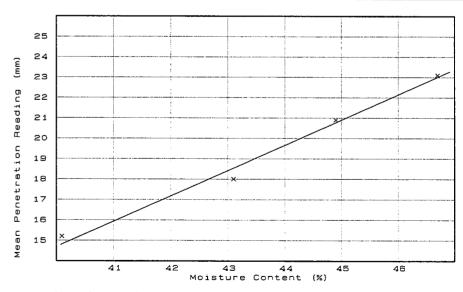
HOLE NO.* : 11202/SCL/TP156 SAMPLE NO.* : 1 SAMPLE DEPTH* : 0.50 m DESCRIPTION : Moist dark brown very clayey gravelly SAND (*FILL) SPEC. DEPTH : 0.50

SAMPLE PREPARATION :

Mass of wet / dry subsample : 408.45 g / 366.85 g ; Moisture content of subsample : 11.3 %

Total mass of wet / dry sample used for the test : $\underline{696.70}$ g / $\underline{625.97}$ g

Mass / Percentage of material retained on 425 μ m test sieve : 314.42 g / 50.2 %


Equivalent moisture content of fraction passing 425 μm test sieve : $\underline{22.7}$ %

Condition of soil sample : sieved specimen

Type of drying process : tested after oven-drying at ≤ 50°C Duration of soil equilibrated with distilled water : - hours Mixing time of soil and distilled water : <u>--</u> minutes

TEST RESULTS :

Test no.	LL1	LL2	LL3	LL4	PL1	PL2
Mass of wet soil + container g	70.51	52.90	110.15	52.41	39.00	37.00
Mass of dry soil + container g	66.52	48.35	105.08	47.21	37.27	35.47
Mass of container g	56.57	37.79	93.79	36.07	29.34	28.44
Mass of water g	3.99	4.55	5.07	5.20	1.73	1.53
Mass of dry soil g	9.95	10.56	11.29	11.14	7.93	7.03
Moisture content %	40.1	43.1	44.9	46.7	21.8	21.8
Mean penetration reading mm	15.2	18.0	20.9	23.1		
Mixing time min	14	13	12	11	_	

FINAL SUMMARY

LIQUID LIMIT 44 % PLASTIC LIMIT 22 % PLASTICITY INDEX = 22 % LIOUIDITY INDEX = 0.032

Note : *Information provided by client

Remarks:

DATE

TESTED BY : Y.H. Kwok

: Lab. Technician : 11/09/2010

CHECKED BY :

POST

DATE

W.K. Chan : Reporting Officer

: 06/10/2010 Form No.: SOI-P18/R1 Issue 1 Rev.2 (29-03-2010) Page 16 of 19 CERTIFIED BY :

POST

CHEUNG WING TAI : Dept. Manager DATE : 06/10/2010

FAX NO.: 852-2765 8034

m

REPORT ON DETERMINATION OF ATTERBERG LIMITS OF SOIL

IN ACCRODANCE WITH GEOSPEC 3 : 2001 TESTS 6.1 & 6.2

Page 1 of 1

REPORT NO. : ALP10090023

CLIENT* : MTR Corporation Limited

DATE RECEIVED : 01/09/2010

ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories

: Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION : GROUND FLOOR, 21-23 SAN WAI STREET, HUNG HOM, KOWLOON DATE STARTED : 06/09/2010 W.O. NO.* : --CONTRACT NO.* : 11202 DATE COMPLETED: 11/09/2010

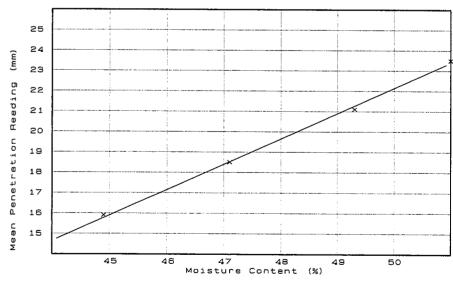
JOB NO. : GCE/SI/PB TEST UNIT NO. : STS 100001 SAMPLE TYPE* : BLOCK HOLE NO. * : 11202/SCL/TP157 SAMPLE NO.* : 1 SAMPLE DEPTH* : 0.50 DESCRIPTION : Moist orangish brown sandy SILT/CLAY (*FILL) SPEC. DEPTH : 0.50

SAMPLE PREPARATION :

Mass of wet / dry subsample : $\underline{542.16}$ g / $\underline{462.88}$ g ; Moisture content of subsample : $\underline{17.1}$ %

Total mass of wet / dry sample used for the test : $\underline{656.46}$ g / $\underline{560.60}$ g

Mass / Percentage of material retained on 425 μ m test sieve : $_235.21$ g / $_42.0$ %


Equivalent moisture content of fraction passing 425 μm test sieve : 29.5 %

Condition of soil sample : sieved specimen

Type of drying process : tested after oven-drying at ≤ 50°C Duration of soil equilibrated with distilled water : $\underline{{}^{-}}$ hours Mixing time of soil and distilled water

TEST RESULTS :

Test no.		LL1	LL2	LL3	LL4	PL1	PL2
Mass of wet soil + cont	ainer g	88.77	105.54	53.36	53.07	37.76	37.06
Mass of dry soil + cont	ainer g	84.69	99.55	47.63	47.33	36.01	35.49
Mass of container	g	75.60	86.84	36.01	36.07	28.29	28.44
Mass of water	g	4.08	5.99	5.73	5.74	1.75	1.57
Mass of dry soil	g	9.09	12.71	11.62	11.26	7.72	7.05
Moisture content	8	44.9	47.1	49.3	51.0	22.7	22.3
Mean penetration readir	ig mm	15.9	18.5	21.1	23.5	 	
Mixing time	min	14	12	10	10		

FINAL SUMMARY

LIQUID LIMIT 48 % PLASTIC LIMIT 23 % PLASTICITY INDEX = 25 % LIQUIDITY INDEX = 0.260

Note : *Information provided by client

: Lab. Technician

Remarks:

POST

TESTED BY : Y.H. Kwok

CHECKED BY :

POST

W.K. Chan

: Reporting Officer

POST

CERTIFIED BY :

CHEUNG WING TAI

DATE : 11/09/2010 DATE : 06/10/2010 Form No.: SOI-P18/R1 Issue 1 Rev.2 (29-03-2010) Page 16 of 19 DATE

: Dept. Manager : 06/10/2010

4) PARTICLE SIZE DISTRIBUTION CURVES

m

REPORT ON DETERMINATION OF PARTICLE SIZE DISTRIBUTION OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST(S) 8.1 / 8.5 / 8.7

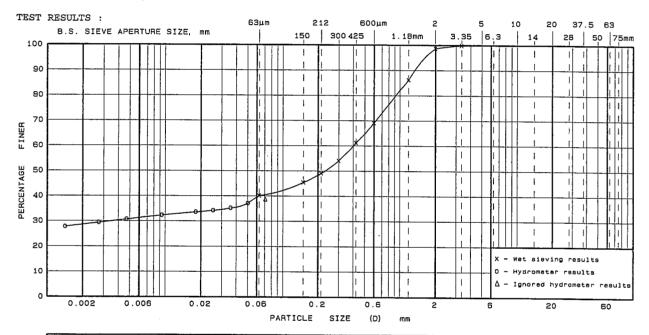
Page 1 of 1

REPORT NO. : PSD10090029

CLIENT* : MTR Corporation Limited

DATE RECEIVED : 01/09/2010

ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories


SITE* : Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION : GROUND FLOOR, 20 PAK KUNG STREET, HUNG HOM, KOWLOON DATE STARTED : 06/09/2010 W.O. NO.* : -- CONTRACT NO.* : 11202 DATE COMPLETED: 10/09/2010

JOB NO. : GCE/SI/PB TEST UNIT NO. : STS 100001 SAMPLE TYPE* : BLOCK
HOLE NO.* : 11202/SCL/TP154 SAMPLE NO.* : 1 SAMPLE DEPTH* : 0.50
DESCRIPTION : Moist orangish brown sandy SILT/CLAY (*FILL) SPEC. DEPTH : 0.50

SAMPLE PREPARATION:

Procedure for sieving test : Method A

I	CLAY	Fine	Medium	Coarse	Fine	Medium	Coerse	Fine Medium		Coarse	СОВ-	1
L		SILT				SAND		GRAVEL			BLES	
												_

The following information are only based on the opinion of the laboratory and are not under the scope of accreditation by HOKLAS:

ANALYSIS OF PARTICLE SIZE CURVE

Effective Diameter (D_{10}) = — mm CLAY = 29 Median Diameter (D_{50}) = 0.23 mm SILT = 11 Median Uniformity Coefficient $(U = D_{60}/D_{10})$ = — SAND = 59 Median Diameter $(U = D_{60}/D_{10})$ = — SAND = 59 Median Diameter $(U = D_{60}/D_{10})$ = — SAND = 59 Median Diameter (D_{50}) SAND = 50 Median Diameter (D_{50}) SAND = 50 Median Diameter (D_{50}) SAND = 50 Media

Note: *Information provided by client Remarks:

TESTED BY : C.H. CHOY CHECKED BY :

Form No.: SOI-P19/R Issue 1 Rev.0 (29-03-2010) Page 38 of 40

CERTIFIED BY :

CHEUNG WING TAI
POST : Dept. Manager
DATE : 06/10/2010

FINAL SUMMARY

The Hong Kong Accreditation Services (HKAS) has accredited Geotechnics & Concrete Engineering (H.K.) Limited (GCE) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report/certificate were determined by this laboratory in accordance with its term of accreditation. The copyright of this report/certificate is owned by GCE. It may not be reproduced except with prior written approval from the issuing laboratory.

CLIENT*

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. TEL.: 852-2365 9123

FAX NO.: 852-2765 8034

m

REPORT ON DETERMINATION OF PARTICLE SIZE DISTRIBUTION OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST(S) 8.1 / 8.5 / 8.7

: MTR Corporation Limited

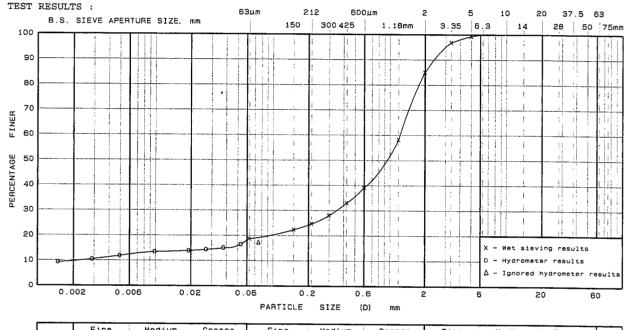
Page 1 of 1

REPORT NO.

: PSD10090030 DATE RECEIVED : 01/09/2010

ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories

SITE* : Stage II Ground Investigation for Shatin to Central Link


TEST LOCATION : GROUND FLOOR, 20 PAK KUNG STREET, HUNG HOM, KOWLOON DATE STARTED : 06/09/2010 W.O. NO.* : --CONTRACT NO.* : 11202 DATE COMPLETED: 10/09/2010

JOB NO. : GCE/SI/PB TEST UNIT NO. : STS 100001 SAMPLE TYPE* : BLOCK HOLE NO.* : 11202/SCL/TP155 SAMPLE NO.* : 1 SAMPLE DEPTH* : 0.50

DESCRIPTION : Moist dark brown clayey gravelly SAND (*FILL) SPEC. DEPTH : 0.50

SAMPLE PREPARATION:

Procedure for sieving test : Method A

CLAY	Fine	Medium	Coarse	Fine	Medium	Coerse	Fine	Medium	Coarse	сов-
OLAT	SILT				SAND		GRAVEL			BLES
					 	 			~	

The following information are only based on the opinion of the laboratory and are not under the scope of accreditation by HOKLAS :

ANALYSI	S_O	F	PARTICLE	SIZE	CURVE
		_			

Effective Diameter	(D ₁₀)	=	0.0024	mm	CLAY	=	10	용
Median Diameter	(D ₅₀)	=	0.97	mm	SILT	=	8	ક
Uniformity Coefficient	$(U = D_{60}/D_{10})$	=	518		SAND	=	67	용
(Ref. : Clause 6.59(4) of Engineering Works	General Specific	atio	on for C	ivil	GRAVEL	=	15	૪

W.K. Chan

Note : *Information provided by client

Remarks:

TESTED BY : C.H. CHOY CHECKED BY :

: Lab. Technician POST : Reporting Officer

DATE : 10/09/2010 DATE : 06/10/2010 Form No.: SOI-P19/R Issue 1 Rev.0 (29-03-2010) Page 38 of 40 CERTIFIED BY :

CHEUNG WING TAI : Dept. Manager POST

FINAL SUMMARY

DATE : 06/10/2010

m

REPORT ON DETERMINATION OF PARTICLE SIZE DISTRIBUTION OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST(S) 8.1 / 8.5 / 8.7

Page 1 of 1

REPORT NO. : PSD10090031

CLIENT*

: MTR Corporation Limited

DATE RECEIVED : 01/09/2010

ADDRESS*

: 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories

SITE*

: Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION : GROUND FLOOR, 20 PAK KUNG STREET, HUNG HOM, KOWLOON

DATE STARTED : 06/09/2010

W.O. NO.*

: --

CONTRACT NO.* : 11202

DATE COMPLETED: 10/09/2010

JOB NO.

: GCE/SI/PB

TEST UNIT NO. : STS 100001

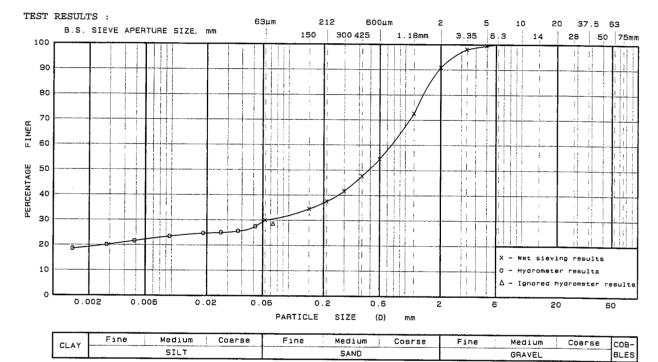
SAMPLE TYPE* : BLOCK

HOLE NO.*

SAMPLE NO.* : 1

SAMPLE DEPTH* : 0.50

: 11202/SCL/TP156


DESCRIPTION

: Moist dark brown very clayey gravelly SAND (*FILL)

SPEC. DEPTH : 0.50

SAMPLE PREPARATION:

Procedure for sieving test : Method A

The following information are only based on the opinion of the laboratory and are not under the scope of accreditation by ${\tt HOKLAS}$:

ANALYSIS OF PARTICLE SIZE CURVE

Effective Diameter	(D ₁₀)	=	_	mm	CLAY	=	19	용
Median Diameter	(D ₅₀)	=	0.49	mm	SILT	=	11	ક
Uniformity Coefficient	$(U = D_{60}/D_{10})$	=			SAND	=	61	%
(Ref. : Clause 6.59(4) of Engineering Works	General Specific (1992))	cation	for C	ivil!	GRAVEL	=	9	ક

Note : *Information provided by client

Remarks:

TESTED BY : C.H. CHOY

CHECKED BY :

W.K. Chan

CERTIFIED BY :

POST

DATE

CHEUNG WING TAI : Dept. Manager : 06/10/2010

FINAL SUMMARY

: Lab. Technician

POST DATE

: Reporting Officer : 06/10/2010

DATE

POST

: 10/09/2010

Form No.: SOI-P19/R Issue 1 Rev.0 (29-03-2010) Page 38 of 40

REPORT ON DETERMINATION OF PARTICLE SIZE DISTRIBUTION OF SOIL

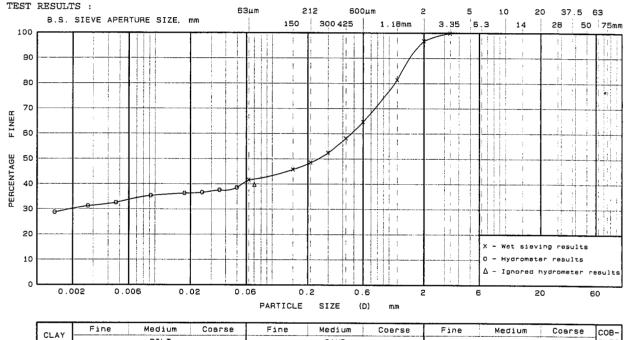
IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST(S) 8.1 / 8.5 / 8.7

Page 1 of 1

REPORT NO. : PSD10090032

CLIENT* : MTR Corporation Limited DATE RECEIVED : 01/09/2010

ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories


SITE* : Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION : GROUND FLOOR, 20 PAK KUNG STREET, HUNG HOM, KOWLOON DATE STARTED : 06/09/2010 W.O. NO.* : --CONTRACT NO.* : 11202 DATE COMPLETED: 10/09/2010

JOB NO. : GCE/SI/PB TEST UNIT NO. : STS 100001 SAMPLE TYPE* : BLOCK HOLE NO. * : 11202/SCL/TP157 SAMPLE NO.* : 1 SAMPLE DEPTH* : 0.50 DESCRIPTION : Moist orangish brown sandy SILT/CLAY (*FILL) SPEC. DEPTH : 0.50

SAMPLE PREPARATION.

Procedure for sieving test : Method A

SILT SAND GRAVEL BLES	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	сов-
	Luca	T 071 T			SAND			GRAVEL			

The following information are only based on the opinion of the laboratory and are not under the scope of accreditation by ${\tt HOKLAS}$:

Effective Diameter	(D ₁₀)	=		mm	CLAY	=	30	ક
Median Diameter	(D ₅₀)	=	0.25	mm	SILT	=	11	ક
Uniformity Coefficient	$(U = D_{60}/D_{10})$	=	_		SAND	=	56	ક
(Ref. : Clause 6.59(4) of Engineering Works	General Specific (1992))	ation	for C	Civil	GRAVEL	=	3	ક

Note: *Information provided by client Remarks:

TESTED BY : C.H. CHOY CHECKED BY :

W.K. Chan POST : Lab. Technician POST : Reporting Officer DATE : 10/09/2010 DATE : 06/10/2010

Form No.: SOI-P19/R Issue 1 Rev.0 (29-03-2010) Page 38 of 40

CERTIFIED BY :

CHEUNG WING TAI POST : Dept. Manager DATE

: 06/10/2010 J

5) BULK & DRY DENSITY TEST RESULTS

IN ACCORDANCE WITH BS 1377: PART 2: 1990 SECTION 7.2

Page 1 of 1

CLIENT*

: MTR Corporation Limited

REPORT NO.

: DEN10090005

ADDRESS*

: 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories

CONTRACT NO.*

: 11202

SITE*

: Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION

: Ground Floor, 18 - 20 Pak Kung Street, Hung Hom, Kowloon

W.O. NO.*

JOB NO.

: GCE/SI/PB

TEST UNIT NO. : STS 100001 DATE RECEIVED

: 01/09/2010

Hole No.*	Sample No.*	Sample Depth* (Spec. Depth)	Sample Type*	Bulk Density	Dry Density	Date Started	Date Completed	Description
		m		Mg/m³	Mg/m³			
11202/SCL/TP154	1	0.50 (0.50)	BLOCK	2.01	1.74	06/09/2010	07/09/2010	Moist orangish brown sandy SILT/CLAY (*FILL)
11202/SCL/TP155	1	0.50 (0.50)	BLOCK	1.83	1.68	06/09/2010	07/09/2010	Moist dark brown clayey gravelly SAND (*FILL)
11202/SCL/TP156	1	0.50 (0.50)	BLOCK	1.72	1.56	06/09/2010	07/09/2010	Moist dark brown very clayey gravelly SAND (*FILL)
11202/SCL/TP157	1	0.50 (0.50)	BLOCK	2.03	1.75	06/09/2010	07/09/2010	Moist orangish brown sandy SILT/CLAY (*FILL)
	•	:						
		·						- Application -

NOTE: *: Information provided by client

REMARKS:

TESTED BY W.K. WONG

Technician

: 07/09/2010

CHECKED BY

POST

DATE

W.K. CHAN

Reporting Officer

10/09/2010

CERTIFIED BY

POST

CHEUNG WING TAI

Deputy Manager

DATE : 10/09/0201

GEOTECHNICS & CON 6 KO SHAN RD., GROUND F TEL.: 852-2365 9123

CONCRETE ENGINEERING (H.K.) LTD UND FL., HUNG HOM, KOWLOON, HONG KONG FAX NO.: 852-2765 8034

Form No. : SOI-P13/R Issue 1 Rev. 0 (02-05-2006) Page 8 of 9

POST

DATE

6) SPECIFIC GRAVITY TEST RESULTS

REPORT ON DETERMINATION OF PARTICLE DENSITY

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST 7.2

: MTR Corporation Limited

ADDRESS* : 9/F, Citylink Plaza. 1 Shatin Station Circuit Shatin, New Territories

SITE* : Stage II Ground Investigation for Shatin to Central Link

TEST LOCATION : GROUND FLOOR, 20 PAK KUNG STREET, HUNG HOM, KOWLOON

JOB NO. : GCE/SI/PB TEST UNIT NO. : STS 100001 Page 1 of 1

REPORT NO.

: PDY10100002

CONTRACT NO.* : 11202

W.O. NO *

DATE RECEIVED : 01/09/2010

Hole	Sample	Sample Depth*	Sample	Part Dens	icle	Date	Date	
No.*	No.*	(Spec. Depth)	Type*	(Mg		Started	Completed	Description
		m	ļ	ρ _s	mean		İ	
11202/SCL/TP154	1	0.50 (0.50)	BLOCK	2.646 2.641	2.64	06/09	08/09	Moist orangish brown sandy SILT/CLAY (*FILL)
11202/SCL/TP155	1	0.50	1	2.637	I		08/09	Moist dark brown clayey gravelly SAND (*FILL)
11202/SCL/TP156	1	(0.50)		2.646	ľ		08/09	Moist dark brown very clayey gravelly SAND (*FILL)
11202/SCL/TP157	1	(0.50 (0.50)		2.642		1	09/09	Moist orangish brown sandy SILT/CLAY (*FILL)
	İ	1						
	<u> </u>							

* : Information provided by client

REMARKS:

CLIENT*

TESTED BY : S.L. KWONG

: Lab. Technician

CHECKED BY :

POST

DATE

W.K. Chan

CERTIFIED BY :

CHEUNG WING TAI

: Reporting Officer : 06/10/2010

: 06/10/2010 Form No. : SOI-P22/R Issue 1 Rev. 0 (25-03-2003) Page 12 of 13

DATE

GEOTECHNICS & CON 6 KO SHAN RD., GROUND FTEL.: 852-2365 9123

CONCRETE ENGINEERING (H.K.) LTD UND FL., HUNG HOM, KOWLOON, HONG KONG FAX NO.: 852-2765 8034

7) STANDARD COMPACTION TEST RESULTS

m

REPORT ON DETERMINATION OF DRY DENSITY / MOISTURE CONTENT RELATIONSHIP OF SOIL

IN ACCORDANCE WITH GEOSPEC 3 : 2001 TEST 10.2

Page 1 of 1

REPORT NO. : COM10090001

CLIENT* : MTR Corporation Limited

DATE RECEIVED : 01/09/2010

ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories

SITE* : Stage II Ground Investigation for Shatin to Central Link

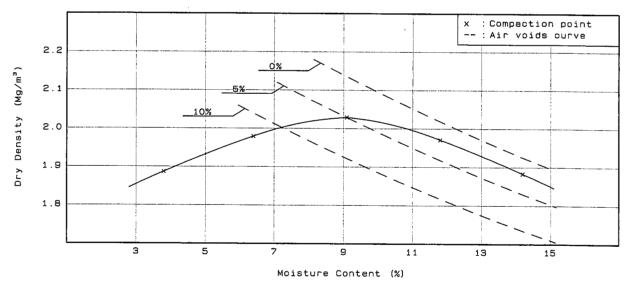
TEST LOCATION : GROUND FLOOR, 21-23 SAN WAI STREET, HUNG HOM, KOWLOON DATE STARTED : 06/09/2010 W.O. NO.* : -- CONTRACT NO.* : 11202 DATE COMPLETED: 10/09/2010

HOLE NO.* : 11202/SCL/TP155 SAMPLE NO.* : 1 SAMPLE DEPTH* : 0.50

DESCRIPTION : Moist dark brown clayey gravelly SAND (*FILL) SPEC. DEPTH : 0.50

SAMPLE PREPARATION :

Total mass of wet / dry sample used for the test = $\underline{16640}$ g / $\underline{15294}$ g


Percentage of material retained on 37.5mm / 20mm test sieve = 0 % / 0 %

Mould pattern: 1000cc; Blows per layer: 27; Separate batches

The type of drying process: $\frac{\text{oven-drying at a temperature of } \leq 50 °C}{\text{Volume of mould (V)}}$ cm³; Particle density = $\frac{2.65}{\text{Mg/m}^3}$ (Assumed)

TEST RESULTS :

Test no.		. Pl	P2	Р3	P4 .	P5
Bulk density	Mg/m³	1.958	2.106	2.213	2.203	2.151
Moisture content	ક	3.8	6.4	9.1	11.8	14.2
Dry density	Mg/m³	1.887	1.979	2.029	1.971	1.883

FINAL SUMMARY

MAXIMUM DRY DENSITY = 2.03 Mg/m³ OPTIMUM MOISTURE CONTENT = 9.1 %

Note : *Information provided by client Remarks:

TESTED BY : P.K. Yun

CHECKED BY :

W.K. Chan

CERTIFIED BY

POST : Lab. Technician POST : Reporting Officer DATE : 10/09/2010 DATE : 06/10/2010

Form No.: SOI-P20/R Issue 1 Rev.2 (29-03-2010) Page 30 of 31

POST DATE CHEUNG WING TAI : Dept. Manager : 06/10/2010 8) CHEMICAL TEST RESULTS (SOIL)
(ORGANIC MATTER, CHLORIDE CONTENT, pH VALUE, MASS
LOSS ON IGNITION & SULPHATE CONTENT)

POST

DATE

Assistant Chemist, Laboratory Assistant

30/09/2010

Form No. : SOI-C4/R Issue 2 Rev. 7 (15-8-2009) Page 12 of 14

POST

DATE

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. TEL.: 852-2365 9123 FAX NO.: 852-2765 8034

TEST REPORT ON CHEMICAL ANALYSIS OF SOIL

Page 1 of 1

REPORT NO. : CHM 10090147

CLIENT*	:	MTR Corporation L	imited				
CLIENT ADDRESS*	:	9/F, Citylink Plaza,	1 Shatin Station	Circuit	Shatin, New Territo	ries	
SITE*	:	Stage II Ground Inv	estigation for Sha	tin to	Central Link		
TEST LOCATION	:	1/F, 18 Pak Kung S	Street, Hung Hom,	Kowl	oon.	DATE RECEIVED	: 01/09/2010
REQUEST NO.*	:		CLIENT REF. N	0.*	: -	DATE STARTED	: 15/09/2010
W.O. NO.*	:	_	CONTRACT NO	D.*	: 11202	DATE COMPLETE	
SERIAL NO.	:	-	SAMPLING DA	TE*	: -	SAMPLE TYPE*	: BLOCK
JOB NO.	:	GCE/SI/PB	TEST UNIT NO		: CTS 100001	SAMPLE DEPTH*	: 0.50m
HOLE NO.*	:	11202/SCL/TP154	SAMPLE NO.*		: 1	SPEC. DEPTH	: 0.50m
DESCRIPTION	:	Moist orangish brow	wn sandy SILT/CL	AY. (*	FILL)		
DESCRIPTION					TEST REFER	ENCE	RESULT
The Percentage by D	Dry	Mass of the	0.1		GEOSPEC 3 : 200	01 Test 9.1	99
Original Sample Pass	sing	2 mm Sieve	%		BS 1377 : Part 3 :	1990 Cl. 3	-
Organic Matter Content %					GEOSPEC 3: 200	01 Test 9.1	0.4
y y					BS 1377 : Part 3 :	1990 Cl. 3	•
arbonate Content (as CO ₂) %					BS 1377 : Part 3 :	1990 CI. 6.3	<1.0
Acid-Soluble Chloride	cid-Soluble Chloride Content (as CI)			BS 1377 : Part 3 :	1990 Cl. 7.3	-	
/ater-Soluble Chloride Content (as CI)		***************************************	GEOSPEC 3: 200	01 Test 9.4	<0.01		
Water : Soil ratio = [2:1]	%		BS 1377 : Part 3 :	1990 CI. 7.2	-
oH Value				GEOSPEC 3 : 2001 Test 9.5			7.0
				BS 1377 : Part 3 : 1990 Cl. 9			-
Viass Loss On Ignitio	n (l	LOD	. %	GEOSPEC 3 : 2001 Test 9.2			_
video 2000 Ott Igilillo	/·· \·		70 :	BS 1377 : Part 3 : 1990 Cl. 4			-
Fotal Sulphate Conte	ent	(as SO ₂)	%		GEOSPEC 3: 200	1 Test 9.3	<0.01
			/0 		BS 1377 : Part 3 :	-	
Water-Soluble Sulpha	ate	Content (as SO ₂)	%	GEOSPEC 3 : 2001 Test 9.3			_
			70		BS 1377 : Part 3 :	1990 CI. 5	-
		l by client ratory has no respons	sibility on sampling	g, all t	he test results relate	only to the sample to	ested.
REMARKS: -				 End -			
				Liiu -	•	APPROVED SIGNATORY :	111
TESTED BY :	P.F.	YU, C.H. LEUNG	CHECKED BY	:	W.K. CHAN	•	GUCHIN

Reporting Officer

02/10/2010

POST

DATE

Chemist

02/10/2010

POST

DATE

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. TEL.: 852-2365 9123 FAX NO.: 852-2765 8034

TEST REPORT ON CHEMICAL ANALYSIS OF SOIL

Page 1 of 1

REPORT NO. : CHM 10090148

CLIENT*	: MTR Corporatio	n Limited			1000014	
CLIENT ADDRESS*			Circuit Shatin, New Territ	ories		
SITE*		Investigation for Sha		5.705	· · · · · · · · · · · · · · · · · · ·	
TEST LOCATION		ng Street, Hung Hom		DATE RECEIVED	: 01/09/2010	
REQUEST NO.*	: -	CLIENT REF. N		DATE STARTED	: 15/09/2010	
W.O. NO.*	: -	CONTRACT N	O.* : 11202	DATE COMPLETED	· · · · · · · · · · · · · · · · · · ·	
SERIAL NO.	: -	— SAMPLING DA	ATE* : -	SAMPLE TYPE*	: BLOCK	
JOB NO.	: GCE/SI/PB	TEST UNIT NO). : CTS 100001	•	: 0.50m	
HOLE NO.*	: 11202/SCL/TP155	SAMPLE NO.*	: 1	SPEC. DEPTH	: 0.50m	
DESCRIPTION	: Moist dark brow	n clayey gravelly SA	ND. (*FILL)	-	-	
DESCRIPTION			TEST REFE	RENCE	RESULT	
The Percentage by D	Ory Mass of the		GEOSPEC 3 : 20	001 Test 9.1	85	
Original Sample Pass		%	BS 1377 : Part 3	: 1990 Cl. 3		
0			GEOSPEC 3 : 20	001 Test 9.1	0.6	
Organic Matter Cont	ent	%	BS 1377 : Part 3	: 1990 Cl. 3	-	
Carbonate Content (as CO ₂)	%	BS 1377 : Part 3	: 1990 CI. 6.3	<1.0	
Acid-Soluble Chloride	e Content (as CI)	%	BS 1377 : Part 3	: 1990 Cl. 7.3	-	
Vater-Soluble Chloride Content (as Cl)			GEOSPEC 3 : 20	001 Test 9.4	<0.01	
Water : Soil ratio = [2:1]	%	BS 1377 : Part 3	1990 Cl. 7.2	-	
oH Value			GEOSPEC 3 : 20	01 Test 9.5	7.2	
			BS 1377 : Part 3	-		
Mass Loss On Ignitio	Associated On Invitation (I OI)			GEOSPEC 3 : 2001 Test 9.2		
		%	BS 1377 : Part 3	-		
otal Sulphate Conte	ent (as SO _o)	%	GEOSPEC 3 : 20	0.09		
		<i>7</i> 6	BS 1377 : Part 3	-		
Vater-Soluble Sulpha	ate Content (as SO ₃)	%	GEOSPEC 3: 20	-		
		70	BS 1377 : Part 3	: 1990 Cl. 5	-	
*: Information provid NOTE: This la	•	onsibility on sampling	g, all the test results relate	only to the sample te	sted.	
			- End			
			-	APPROVED SIGNATORY :		
ESTED BY :	P.F. YU, C.H. LEUNG	CHECKED BY	: W.K. CHAN		GU CHIN	

Reporting Officer

02/10/2010

POST

DATE

Chemist

02/10/2010

POST

DATE

: Assistant Chemist, Laboratory Assistant

Form No.: SOI-C4/R Issue 2 Rev. 7 (15-8-2009) Page 12 of 14

30/09/2010

TEST REPORT ON CHEMICAL ANALYSIS OF SOIL

Page 1 of 1 REPORT NO. : CHM 10090149 CLIENT* : MTR Corporation Limited CLIENT ADDRESS* : 9/F, Citylink Plaza, 1 Shatin Station Circuit Shatin, New Territories Stage II Ground Investigation for Shatin to Central Link **TEST LOCATION** 1/F, 18 Pak Kung Street, Hung Hom, Kowloon. DATE RECEIVED : 01/09/2010 REQUEST NO.* CLIENT REF. NO.* : -DATE STARTED 15/09/2010 W.O. NO.* CONTRACT NO.* : 11202 DATE COMPLETED 30/09/2010 SERIAL NO. SAMPLING DATE* SAMPLE TYPE* BLOCK JOB NO. GCE/SI/PB TEST UNIT NO. : CTS 100001 SAMPLE DEPTH* 0.50m HOLE NO.* 11202/SCL/TP156 SAMPLE NO.* SPEC. DEPTH 0.50m DESCRIPTION Moist dark brown very clayey gravelly SAND. (*FILL) DESCRIPTION TEST REFERENCE RESULT GEOSPEC 3: 2001 Test 9.1 The Percentage by Dry Mass of the 92 % Original Sample Passing 2 mm Sieve BS 1377: Part 3: 1990 Cl. 3 GEOSPEC 3: 2001 Test 9.1 0.6 Organic Matter Content % BS 1377: Part 3: 1990 Cl. 3 Carbonate Content (as CO₂) % BS 1377: Part 3: 1990 Cl. 6.3 <1.0 Acid-Soluble Chloride Content (as CI) BS 1377: Part 3: 1990 Cl. 7.3 % Water-Soluble Chloride Content (as CI) GEOSPEC 3: 2001 Test 9.4 < 0.01 % Water : Soil ratio = [2.1 BS 1377: Part 3: 1990 Cl. 7.2 _ GEOSPEC 3: 2001 Test 9.5 6.5 pH Value BS 1377: Part 3: 1990 Cl. 9 GEOSPEC 3: 2001 Test 9.2 Mass Loss On Ignition (LOI) % BS 1377: Part 3: 1990 Cl. 4 GEOSPEC 3: 2001 Test 9.3 < 0.01 Total Sulphate Content (as SO₃) % BS 1377: Part 3: 1990 Cl. 5 GEOSPEC 3: 2001 Test 9.3 Water-Soluble Sulphate Content (as SO₃) % BS 1377: Part 3: 1990 Cl. 5 *: Information provided by client NOTE: This laboratory has no responsibility on sampling, all the test results relate only to the sample tested. **REMARKS:** ---- End -----APPROVED

Form No.: SOI-C4/R Issue 2 Rev. 7 (15-8-2009) Page 12 of 14

P.F. YU, C.H. LEUNG

: Assistant Chemist, Laboratory Assistant

30/09/2010

TESTED BY :

POST

DATE

W.K. CHAN

Reporting Officer

02/10/2010

CHECKED BY :

POST

DATE

SIGNATORY

POST

DATE

GU CHIN

Chemist

02/10/2010

DATE

30/09/2010

Form No. : SOI-C4/R Issue 2 Rev. 7 (15-8-2009) Page 12 of 14

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. TEL.: 852-2365 9123 FAX NO.: 852-2765 8034

TEST REPORT ON CHEMICAL ANALYSIS OF SOIL

Page 1 of 1

Chemist

02/10/2010

REQUEST NO.* : - CLIENT REF. NO.* : - DATE STARTED : 15/M W.O. NO.* : - CONTRACT NO.* : 11202 DATE COMPLETED : 30/M SERIAL NO. : - SAMPLING DATE* : - SAMPLE TYPE* : BLO JOB NO. : GCE/SI/PB TEST UNIT NO. : CTS 100001 SAMPLE DEPTH* : 0.50 HOLE NO.* : 11202/SCL/TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50 DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION TEST REFERENCE RESU The Percentage by Dry Mass of the Original Sample Passing 2 mm Sieve 88 S 1377 : Part 3 : 1990 Cl. 3 - SECRIPTION SECR	Section Sect							REPORT NO.	:	CHM 100901
Stage	Count Investigation for Shatin to Central Link K Kung Street, Hung Hom, Kowloon. DATE RECEIVED 15/09/2010 15/0	CLIENT*	:	MTR Corporation Li	mited					
TEST LOCATION : 17F, 18 Pak Kung Street, Hung Hom, Kowloon. DATE RECEIVED : 01/K REQUEST NO.* : - CLIENT REF. NO.* : - DATE STARTED : 15/K W.O. NO.* : - CONTRACT NO.* : 11202 DATE COMPLETED : 30/K SERIAL NO. : - SAMPLING DATE* : - SAMPLE TYPE* : BLO JOB NO. : GCE/SI/PB TEST UNIT NO. : CTS 100001 SAMPLE DEPTH* : 0.50 HOLE NO.* : 11202/SCL/TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50 DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION : GEOSPEC 3 : 2001 Test 9.1	K Kung Street, Hung Hom, Kowloon. DATE RECEIVED : 01/09/2010	CLIENT ADDRESS*	:	9/F, Citylink Plaza,	1 Shatin Station C	Circuit	Shatin, New Territo	ries		
REQUEST NO.* : - CLIENT REF. NO.* : - DATE STARTED : 15// W.O. NO.* : - CONTRACT NO.* : 11202 DATE COMPLETED : 30// SERIAL NO. : - SAMPLING DATE* : - SAMPLE TYPE* : BLO JOB NO. : GCE/SI/PB TEST UNIT NO. : CTS 100001 SAMPLE DEPTH* : 0.50 HOLE NO.* : 11202/SCL/TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50 DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION : TEST REFERENCE RESULTANGE STATED ST	CLIENT REF. NO.* :	SITE*	:	Stage II Ground Inv	estigation for Shat	tin to	Central Link			
REQUEST NO.* : - CLIENT REF. NO.* : - DATE STARTED : 15/M W.O. NO.* : - CONTRACT NO.* : 11202 DATE COMPLETED : 30/M SERIAL NO. : - SAMPLING DATE* : - SAMPLE TYPE* : BLO JOB NO. : GCE/SI/PB TEST UNIT NO. : CTS 100001 SAMPLE DEPTH* : 0.50 HOLE NO.* : 11202/SCL/TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50 DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION : TEST REFERENCE RESL The Percentage by Dry Mass of the Original Sample Passing 2 mm Sieve 88 1377 : Part 3 : 1990 Cl. 3 - Organic Matter Content (as CO ₂) % BS 1377 : Part 3 : 1990 Cl. 3 - Carbonate Content (as CO ₂) % BS 1377 : Part 3 : 1990 Cl. 6.3 <1 Acid-Soluble Chloride Content (as CI) % BS 1377 : Part 3 : 1990 Cl. 7.3 - Water-Soluble Chloride Content (as CI) % BS 1377 : Part 3 : 1990 Cl. 7.2 - pH Value GEOSPEC 3 : 2001 Test 9.4 <0.0 Mass Loss On Ignition (LOI) % BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 9 - BS 1377 : Part 3 : 1990 Cl. 4 - BS	CLIENT REF. NO.* :	TEST LOCATION	:	1/F, 18 Pak Kung S	treet, Hung Hom,	Kowl	oon.	DATE RECEIVED	:	01/09/2010
SERIAL NO. : - SAMPLING DATE* : - SAMPLE TYPE* : BLO JOB NO. : GCE/SI/PB TEST UNIT NO. : CTS 100001 SAMPLE DEPTH* : 0.50 HOLE NO.* : 11202/SCL/TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50 DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) TEST REFERENCE RESULT/CLAY. (*FILL) DESCRIPTION TEST REFERENCE	SAMPLING DATE* : - SAMPLE TYPE* : BLOCK TEST UNIT NO. : CTS 100001 SAMPLE DEPTH* : 0.50m TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50m gish brown sandy SILT/CLAY. (*FILL) TEST REFERENCE RESULT GEOSPEC 3 : 2001 Test 9.1 99 BS 1377 : Part 3 : 1990 Cl. 3 - GEOSPEC 3 : 2001 Test 9.1 0.6 BS 1377 : Part 3 : 1990 Cl. 3 - GEOSPEC 3 : 2001 Test 9.1 0.6 BS 1377 : Part 3 : 1990 Cl. 6.3 < 1.0 BS 1377 : Part 3 : 1990 Cl. 7.3 - GEOSPEC 3 : 2001 Test 9.4 < 0.01 BS 1377 : Part 3 : 1990 Cl. 7.2 - GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 9 - GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 4 - GEOSPEC 3 : 2001 Test 9.3 < 0.01 BS 1377 : Part 3 : 1990 Cl. 5 - GEOSPEC 3 : 2001 Test 9.3 - GEOSPEC 3 : 2001 Test	REQUEST NO.*	:	-	CLIENT REF. NO	0.*	: -	DATE STARTED	:	
JOB NO. GCE/SI/PB TEST UNIT NO. CTS 100001 SAMPLE DEPTH* 0.50	TEST UNIT NO. : CTS 100001 SAMPLE DEPTH* : 0.50m TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50m gish brown sandy SILT/CLAY. (*FILL) TEST REFERENCE RESULT GEOSPEC 3 : 2001 Test 9.1 99 BS 1377 : Part 3 : 1990 Cl. 3 GEOSPEC 3 : 2001 Test 9.1 0.6 BS 1377 : Part 3 : 1990 Cl. 3 % BS 1377 : Part 3 : 1990 Cl. 6.3 < 1.0 % BS 1377 : Part 3 : 1990 Cl. 7.3 GEOSPEC 3 : 2001 Test 9.4 < 0.01 BS 1377 : Part 3 : 1990 Cl. 7.2 GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 7.2 GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 9 GEOSPEC 3 : 2001 Test 9.2 GEOSPEC 3 : 2001 Test 9.3 < 0.01 BS 1377 : Part 3 : 1990 Cl. 5 GEOSPEC 3 : 2001 Test 9.3 < 0.01 BS 1377 : Part 3 : 1990 Cl. 5 GEOSPEC 3 : 2001 Test 9.3 GEOSPE	W.O. NO.*	:	-	CONTRACT NO).*	: 11202	DATE COMPLETE	o :	30/09/2010
HOLE NO.* : 11202/SCL/TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50 DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) DESCRIPTION : TEST REFERENCE RESULT REFERENCE RESULT REPORT SAMPLE NO.* : 1 SPEC. DEPTH : 0.50 The Percentage by Dry Mass of the Original Sample Passing 2 mm Sieve BS 1377 : Part 3 : 1990 Cl. 3 SEC SPEC 3 : 2001 Test 9.1 SEC SPEC 3 : 2001 Test 9.2	TP157 SAMPLE NO.* : 1 SPEC. DEPTH : 0.50m gish brown sandy SILT/CLAY. (*FILL) TEST REFERENCE RESULT GEOSPEC 3 : 2001 Test 9.1 99 BS 1377 : Part 3 : 1990 Cl. 3 - GEOSPEC 3 : 2001 Test 9.1 0.6 BS 1377 : Part 3 : 1990 Cl. 3 - M BS 1377 : Part 3 : 1990 Cl. 6.3 < 1.0 M BS 1377 : Part 3 : 1990 Cl. 7.3 - GEOSPEC 3 : 2001 Test 9.4 < 0.01 BS 1377 : Part 3 : 1990 Cl. 7.2 - GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 9 - GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 4 - GEOSPEC 3 : 2001 Test 9.3 < 0.01 BS 1377 : Part 3 : 1990 Cl. 5 - GEOSPEC 3 : 2001 Test 9.3 - GEOSPEC 3 : 2001 Test 9.	SERIAL NO.	:	-	SAMPLING DA	TE*	: -	SAMPLE TYPE*	:	BLOCK
DESCRIPTION : Moist orangish brown sandy SILT/CLAY. (*FILL) TEST REFERENCE RESULT REFERENCE The Percentage by Dry Mass of the Original Sample Passing 2 mm Sieve GEOSPEC 3: 2001 Test 9.1 96 BS 1377: Part 3: 1990 Cl. 3 - Organic Matter Content GEOSPEC 3: 2001 Test 9.1 0.6 BS 1377: Part 3: 1990 Cl. 3 - Carbonate Content (as CO ₂) % BS 1377: Part 3: 1990 Cl. 6.3 <1	TEST REFERENCE RESULT	JOB NO.	:	GCE/SI/PB	TEST UNIT NO.	•	: CTS 100001	SAMPLE DEPTH*	:	0.50m
DESCRIPTION TEST REFERENCE RESU The Percentage by Dry Mass of the Original Sample Passing 2 mm Sieve % GEOSPEC 3 : 2001 Test 9.1 . 98 BS 1377 : Part 3 : 1990 Cl. 3 . GEOSPEC 3 : 2001 Test 9.1 0.6 Organic Matter Content % BS 1377 : Part 3 : 1990 Cl. 3 Carbonate Content (as CO ₂) % BS 1377 : Part 3 : 1990 Cl. 6.3 <1	TEST REFERENCE GEOSPEC 3 : 2001 Test 9.1 99 BS 1377 : Part 3 : 1990 Cl. 3 GEOSPEC 3 : 2001 Test 9.1 0.6 BS 1377 : Part 3 : 1990 Cl. 3 6 BS 1377 : Part 3 : 1990 Cl. 6.3 7 BS 1377 : Part 3 : 1990 Cl. 7.3 GEOSPEC 3 : 2001 Test 9.4 GEOSPEC 3 : 2001 Test 9.4 GEOSPEC 3 : 2001 Test 9.4 GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 7.2 GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 9 GEOSPEC 3 : 2001 Test 9.2 GEOSPEC 3 : 2001 Test 9.2 GEOSPEC 3 : 2001 Test 9.3	HOLE NO.*	:	11202/SCL/TP157	SAMPLE NO.*		: 1	SPEC. DEPTH	:	0.50m
The Percentage by Dry Mass of the Original Sample Passing 2 mm Sieve ### BS 1377 : Part 3 : 1990 Cl. 3 GEOSPEC 3 : 2001 Test 9.1 98 BS 1377 : Part 3 : 1990 Cl. 3	GEOSPEC 3 : 2001 Test 9.1	DESCRIPTION	:	Moist orangish brov	vn sandy SILT/CLA	AY. (*	FILL)			
Original Sample Passing 2 mm Sieve Mass Loss On Ignition (LOI) BS 1377 : Part 3 : 1990 Cl. 3 Jest 3 : 1990 Cl. 6.3 Jest 3 : 1990 Cl. 6.3 Jest 3 : 1990 Cl. 6.3 Jest 3 : 1990 Cl. 7.3 Jest 3 : 1990 Cl. 7.2 Jest 3 : 1990 Cl. 9 Jest 3 : 1990 Cl. 4 Jes	## BS 1377 : Part 3 : 1990 Cl. 3 ## GEOSPEC 3 : 2001 Test 9.1 ## BS 1377 : Part 3 : 1990 Cl. 3 ## BS 1377 : Part 3 : 1990 Cl. 6.3 ## BS 1377 : Part 3 : 1990 Cl. 6.3 ## GEOSPEC 3 : 2001 Test 9.4 ## GEOSPEC 3 : 2001 Test 9.4 ## GEOSPEC 3 : 2001 Test 9.5 ## GEOSPEC 3 : 2001 Test 9.5 ## BS 1377 : Part 3 : 1990 Cl. 7.2 ## GEOSPEC 3 : 2001 Test 9.5 ## GEOSPEC 3 : 2001 Test 9.2 ## BS 1377 : Part 3 : 1990 Cl. 4 ## GEOSPEC 3 : 2001 Test 9.3 ## GEO	DESCRIPTION					TEST REFER	RENCE		RESULT
Original Sample Passing 2 mm Sieve Mass Loss On Ignition (LOI) BS 1377 : Part 3 : 1990 Cl. 3 Jest 3 : 1990 Cl. 6.3 Jest 3 : 1990 Cl. 6.3 Jest 3 : 1990 Cl. 6.3 Jest 3 : 1990 Cl. 7.3 Jest 3 : 1990 Cl. 7.2 Jest 3 : 1990 Cl. 9 Jest 3 : 1990 Cl. 4 Jes	## BS 1377 : Part 3 : 1990 Cl. 3 ## GEOSPEC 3 : 2001 Test 9.1 ## BS 1377 : Part 3 : 1990 Cl. 3 ## BS 1377 : Part 3 : 1990 Cl. 6.3 ## BS 1377 : Part 3 : 1990 Cl. 6.3 ## GEOSPEC 3 : 2001 Test 9.4 ## GEOSPEC 3 : 2001 Test 9.4 ## GEOSPEC 3 : 2001 Test 9.5 ## GEOSPEC 3 : 2001 Test 9.5 ## BS 1377 : Part 3 : 1990 Cl. 7.2 ## GEOSPEC 3 : 2001 Test 9.5 ## GEOSPEC 3 : 2001 Test 9.2 ## BS 1377 : Part 3 : 1990 Cl. 4 ## GEOSPEC 3 : 2001 Test 9.3 ## GEO	The Percentage by D)rv	Mass of the			GEOSPEC 3 : 200	01 Test 9.1		00
BS 1377 : Part 3 : 1990 Cl. 3	## BS 1377 : Part 3 : 1990 CI. 3				%	l .				
BS 1377 : Part 3 : 1990 Cl. 3 - Carbonate Content (as CO ₂) % BS 1377 : Part 3 : 1990 Cl. 6.3 <1 Acid-Soluble Chloride Content (as Cl) % BS 1377 : Part 3 : 1990 Cl. 7.3 - Water-Soluble Chloride Content (as Cl) % GEOSPEC 3 : 2001 Test 9.4 <0.4 BS 1377 : Part 3 : 1990 Cl. 7.2 - Water : Soil ratio = [2:1]	BS 1377 : Part 3 : 1990 Cl. 3	Organia Master C					GEOSPEC 3 : 200	01 Test 9.1		0.6
Acid-Soluble Chloride Content (as CI) Water-Soluble Chloride Content (as CI) Water : Soil ratio = [2:1] OH Value Mass Loss On Ignition (LOI) Water : Soluble Chloride Content (as CI) BS 1377 : Part 3 : 1990 CI. 7.2 GEOSPEC 3 : 2001 Test 9.5 7.2 GEOSPEC 3 : 2001 Test 9.5 GEOSPEC 3 : 2001 Test 9.5 GEOSPEC 3 : 2001 Test 9.2 BS 1377 : Part 3 : 1990 CI. 4	BS 1377 : Part 3 : 1990 CI. 7.3 GEOSPEC 3 : 2001 Test 9.4 SS 1377 : Part 3 : 1990 CI. 7.2 GEOSPEC 3 : 2001 Test 9.5 GEOSPEC 3 : 2001 Test 9.5 ASS 1377 : Part 3 : 1990 CI. 9 GEOSPEC 3 : 2001 Test 9.2 BS 1377 : Part 3 : 1990 CI. 4 GEOSPEC 3 : 2001 Test 9.3	Organic Watter Cont	ent		% -		BS 1377 : Part 3 :	: 1990 CI. 3	-	
Water-Soluble Chloride Content (as CI) Water: Soil ratio = [2:1] BS 1377: Part 3: 1990 CI. 7.2 BS 1377: Part 3: 1990 CI. 9 GEOSPEC 3: 2001 Test 9.2 GEOSPEC 3: 2001 Test 9.2 BS 1377: Part 3: 1990 CI. 4	GEOSPEC 3 : 2001 Test 9.4 <0.01 BS 1377 : Part 3 : 1990 Cl. 7.2	Carbonate Content (as (CO ₂)	%		BS 1377 : Part 3 :	1990 Cl. 6.3	***************************************	<1.0
Water : Soil ratio = [2:1]	BS 1377 : Part 3 : 1990 CI. 7.2 GEOSPEC 3 : 2001 Test 9.5 BS 1377 : Part 3 : 1990 CI. 9 GEOSPEC 3 : 2001 Test 9.2 BS 1377 : Part 3 : 1990 CI. 4 GEOSPEC 3 : 2001 Test 9.3	Acid-Soluble Chloride Content (as CI) %					BS 1377 : Part 3 :	1990 CI. 7.3		
Water : Soil ratio = [2:1] BS 1377 : Part 3 : 1990 Cl. 7.2 - GEOSPEC 3 : 2001 Test 9.5 7.2 BS 1377 : Part 3 : 1990 Cl. 9 - GEOSPEC 3 : 2001 Test 9.2 - BS 1377 : Part 3 : 1990 Cl. 4 -	BS 1377 : Part 3 : 1990 CI. 7.2					GEOSPEC 3 : 200	01 Test 9.4		< 0.01	
BS 1377 : Part 3 : 1990 Cl. 9 - GEOSPEC 3 : 2001 Test 9.2 - BS 1377 : Part 3 : 1990 Cl. 4 -	BS 1377 : Part 3 : 1990 Cl. 9 - GEOSPEC 3 : 2001 Test 9.2 - BS 1377 : Part 3 : 1990 Cl. 4 - GEOSPEC 3 : 2001 Test 9.3 <0.01 BS 1377 : Part 3 : 1990 Cl. 5 - GEOSPEC 3 : 2001 Test 9.3 - GEOSPEC 3 : 2001 Test 9.3 - BS 1377 : Part 3 : 1990 Cl. 5 -	Water : Soil ratio = [2:1]	%		BS 1377 : Part 3 :	1990 CI. 7.2		-
BS 1377 : Part 3 : 1990 Cl. 9 - GEOSPEC 3 : 2001 Test 9.2 - BS 1377 : Part 3 : 1990 Cl. 4 -	GEOSPEC 3 : 2001 Test 9.2 BS 1377 : Part 3 : 1990 Cl. 4 GEOSPEC 3 : 2001 Test 9.3 <0.01 BS 1377 : Part 3 : 1990 Cl. 5 GEOSPEC 3 : 2001 Test 9.3 GEOSPEC 3 : 2001 Test 9.3 BS 1377 : Part 3 : 1990 Cl. 5						GEOSPEC 3 : 200	01 Test 9.5		7.2
Mass Loss On Ignition (LOI) % BS 1377 : Part 3 : 1990 Cl. 4 -	BS 1377 : Part 3 : 1990 CI. 4 - GEOSPEC 3 : 2001 Test 9.3 <0.01 BS 1377 : Part 3 : 1990 CI. 5 - GEOSPEC 3 : 2001 Test 9.3 - BS 1377 : Part 3 : 1990 CI. 5 -						BS 1377 : Part 3 :	1990 CI. 9		
BS 1377 : Part 3 : 1990 Cl. 4	BS 1377 : Part 3 : 1990 CI. 4 - GEOSPEC 3 : 2001 Test 9.3 <0.01 BS 1377 : Part 3 : 1990 CI. 5 - GEOSPEC 3 : 2001 Test 9.3 - BS 1377 : Part 3 : 1990 CI. 5 -	Mass Loss On Ignitio	n (1	OD	0/.	GEOSPEC 3 : 2001 Test 9.2				-
	BS 1377 : Part 3 : 1990 CI. 5 - GEOSPEC 3 : 2001 Test 9.3 - BS 1377 : Part 3 : 1990 CI. 5 -				/6	BS 1377 : Part 3 : 1990 Cl. 4				-
	BS 1377 : Part 3 : 1990 Cl. 5 - GEOSPEC 3 : 2001 Test 9.3 - BS 1377 : Part 3 : 1990 Cl. 5 -	Fotal Sulphate Conte	nt I	(as SO ₂)	0/_	GEOSPEC 3 : 2001 Test 9.3				<0.01
	SO ₃)			· •	70	BS 1377 : Part 3 : 1990 Cl. 5				•
	BS 1377 : Part 3 : 1990 Cl. 5	Water-Soluble Sulpha	ate	Content (as SO ₃)	%_	GEOSPEC 3 : 2001 Test 9.3				-
= ''	responsibility on sampling, all the test results relate only to the sample tested.			3,	,,,		BS 1377 : Part 3 :	1990 Cl. 5		-
* : Information provided by client	responsibility on sampling, all the test results relate only to the sample tested.	•		,	:112.					-
EMARKS: -						End		APPROVED		
End								SIGNATORY :		/J/
End APPROVED	APPROVED	TESTED BY :	P.F.	YU, C.H. LEUNG	CHECKED BY :	:	W.K. CHAN			GU CHIN
APPROVED SIGNATORY :	APPROVED SIGNATORY :	POST : Assist	tant C	Chemist, Laboratory Assistant	POST :	:F	Reporting Officer	POST :		Chemist

02/10/2010

DATE

DATE

SECTION TWO

Test result was NOT accredited by HOKLAS.

Geotechnics & Concrete Engineering (H.K.) Ltd.

Soil & Rock Testing Laboratory

Note

> The following test results are for tests for which the laboratory was NOT accredited by HOKLAS.

9) CHEMICAL TEST RESULTS (PRESENCE OF HYDROGEN SULPHIDE)

TEST REPORT OF QUALITATIVE CHECK ON CHEMICAL ANALYSIS OF SOIL

Page 1 of 1

				Report No.	: CHM 10090165
Client*	: MTR Corporation Limited			Date Received	: 01/09/2010
Client Address	s*: 9/F, Citylink Plaza, 1 Shat	in Station Circuit S	Shatin, New Territories		
Site*	: Stage II Ground Investigat	ion for Shatin to C	Central Link		The second secon
Test Location	: 1/F, 18 Pak Kung Street,	Hung Hom, Kowlo	on.	Date Started	: 15/09/2010
W.O. No.*	: <u>-</u>	Contract No.*	: 11202	Date Completed	: 17/09/2010
Serial No.	:	Sampling Date*	· : <u>-</u>	Sample Type*	: BLOCK
Job No.	: GCE/SI/PB	Test Unit No.	: CTS 100001	Sample Depth*	: 0.50m
Hole No.*	: 11202/SCL/TP154	Sample No.*	1	Specimen Depth	: 0.50m
Description	: Moist orangish brown san	dy SILT/CLAY. (*f	FILL)		
DESCRIPTION			TEST RE	FERENCE	RESULT
Presence of Su	ulphate Content in the Soil		BS 1377 : Part 3 :	1990 Section 5.5.3	-
Presence of Hy	ydrogen Sulphide in the Soil		BS 1377 : Part 3 :	1990 Section 3.4.3	None
Presence of Ca	arbonate Content in the Soil		BS 1377 : Part 3 :	-	
Presence of Ch	hloride Content in the Soil		BS 1377 : Part 3 : 1	-	
* : Information	n provided by client				·
Note :	This laboratory has no respons	ibility on sampling	and all the test results	relate only to the sam	ple tested.
Ot.					
Remarks :	-	, , , , , , , , , , , , , , , , , , , ,	End		
Tested Bv	: C.H. LEUNG		Chec	ked By :	/.J.k
,			3.100	-, -	GU CHIN
Post	: Laboratory Assistant		Post	:	Chemist
Date	: 17/09/2010		Date	÷	02/10/2010

Form No. : SOI-C14/R2 (16-01-2003)

Form No. : SOI-C14/R2 (16-01-2003)

TEST REPORT OF QUALITATIVE CHECK ON CHEMICAL ANALYSIS OF SOIL

Page 1 of 1

				Report No.	: CHM 10090166
Client*	: MTR Corporation Limited	i		Date Received	: 01/09/2010
Client Address	s* : 9/F, Citylink Plaza, 1 Sha	atin Station Circuit	Shatin, New Territories		
Site*	: Stage II Ground Investig	ation for Shatin to	Central Link		
Test Location	: 1/F, 18 Pak Kung Street	, Hung Hom, Kowl	oon.	Date Started	: 15/09/2010
W.O. No.*	: -	Contract No.*	: 11202	Date Completed	: 17/09/2010
Serial No.	: <u>-</u>	Sampling Date	* : -	Sample Type*	: BLOCK
Job No.	: GCE/SI/PB	Test Unit No.	: CTS 100001	Sample Depth*	: 0.50m
Hole No.*	: 11202/SCL/TP155	Sample No.*	1	Specimen Depth	: 0.50m
Description	: Moist dark brown clayey	gravelly SAND. (*)	FILL)		
DESCRIPTION			TEST RE	ERENCE	RESULT
Presence of Su	ulphate Content in the Soil		BS 1377 : Part 3 :	_	
Presence of Hy	drogen Sulphide in the Soil		BS 1377 : Part 3 : 1	1990 Section 3.4.3	None
Presence of Ca	arbonate Content in the Soil		BS 1377 : Part 3 :	-	
Presence of Ch	oloride Content in the Soil		BS 1377 : Part 3 : 19	-	
t: Information	provided by client				
Note:	This laboratory has no respons	sibility on sampling	and all the test results	relate only to the sam	ple tested.
Remarks :					
			End		
ested By :	C.H. LEUNG		Check	ed By :	GU CHIN
ost :	Laboratory Assistant	···	Post	:	Chemist
ate :	17/09/2010	-	Date	:	02/10/2010

TEST REPORT OF QUALITATIVE CHECK ON CHEMICAL ANALYSIS OF SOIL

Page 1 of 1

				Report No.	: CHM 10090167
Client*	: MTR Corporation Limited	**		Date Received	: 01/09/2010
Client Addres	ss* : 9/F, Citylink Plaza, 1 Shati	n Station Circuit	Shatin, New Territo	ories	
Site*	: Stage II Ground Investigati	ion for Shatin to (Central Link		
Test Location	: 1/F, 18 Pak Kung Street, F	lung Hom, Kowlo	on.	Date Started	: 15/09/2010
W.O. No.*	:	Contract No.*	: 11202	Date Completed	: 17/09/2010
Serial No.	: -	Sampling Date*	: -	Sample Type*	: BLOCK
Job No.	: GCE/SI/PB	Test Unit No.	: CTS 100001	Sample Depth*	: 0.50m
Hole No.*	: 11202/SCL/TP156	Sample No.*	1	Specimen Depth	: 0.50m
Description	: Moist dark brown very clay	ey gravelly SAND). (*FILL)		
DESCRIPTION	ı	•	TEST	T REFERENCE	RESULT
Presence of S	ulphate Content in the Soil		BS 1377 : Part	3: 1990 Section 5.5.3	-
Presence of H	lydrogen Sulphide in the Soil		BS 1377 : Part	3: 1990 Section 3.4.3	None
Presence of C	arbonate Content in the Soil		BS 1377 : Par	t 3 : 1990 Section 6.3	-
Presence of C	hloride Content in the Soil		BS 1377 : Part 3	-	
* : Information	n provided by client				
Note:	This laboratory has no responsit	oility on sampling	and all the test res	sults relate only to the samp	ole tested.
Remarks :	-				
			End		
Tested By	: C.H. LEUNG		С	hecked By :	GU CHÍN
Post	: Laboratory Assistant		Pe	ost :	Chemist
Date	:17/09/2010		Di	ate :	02/10/2010
Form No. : SOI-C14	I/R2 (16-01-2003)				

TEST REPORT OF QUALITATIVE CHECK ON CHEMICAL ANALYSIS OF SOIL

Page 1 of 1

				Report No.	: CHM 10090168		
Client*	: MTR Corporation Limited			Date Received	: 01/09/2010		
Client Address*	: 9/F, Citylink Plaza, 1 Shatin	Station Circuit S	Shatin, New Territories				
Site*	: Stage II Ground Investigation	on for Shatin to C	entral Link				
Test Location	: 1/F, 18 Pak Kung Street, He	ung Hom, Kowloo	on.	: 15/09/2010			
W.O. No.*	: -	Contract No.*	: 11202	Date Completed	: 17/09/2010		
Serial No.	: -	Sampling Date*	: -	Sample Type*	: BLOCK		
Job No.	: GCE/SI/PB	Test Unit No.	: CTS 100001	Sample Depth*	: 0.50m		
Hole No.*	: 11202/SCL/TP157	Sample No.*	1	Specimen Depth	: 0.50m		
Description	: Moist orangish brown sandy	SILT/CLAY. (*F	ILL)				
DESCRIPTION			TEST REFERE	ENCE	RESULT		
Presence of Sulp	hate Content in the Soil		BS 1377 : Part 3 : 199	0 Section 5.5.3	-		
Presence of Hydi	rogen Sulphide in the Soil		BS 1377 : Part 3 : 1990	O Section 3.4.3	None		
Presence of Carb	onate Content in the Soil		BS 1377 : Part 3 : 199	90 Section 6.3	-		
Presence of Chlo	ride Content in the Soil		BS 1377 : Part 3 : 1990 Section 7.2.3.3				
* : Information p	rovided by client						
Note: Th	nis laboratory has no responsibi	ility on sampling a	and all the test results rela	te only to the sam	ple tested.		
Remarks :							
			End				
Tested By :	C.H. LEUNG		Checked I	Зу :	GU CHIN		
Post :	Laboratory Assistant		Post	:	Chemist		
Date ;	17/09/2010		Date	:	02/10/2010		

Form No. : SOI-C14/R2 (16-01-2003)

Appendix C

STRUCTURAL ASSESSMENT OF CAPACITY OF DOME PROFILE ROOF

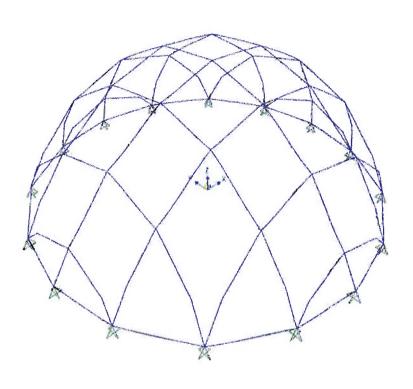
Rev. B January 2013

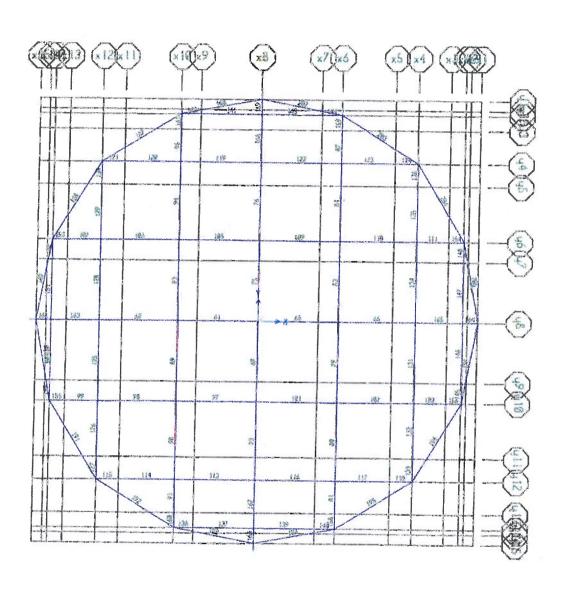
Structural Assessment of Capacity of Dome Profile Roof

Method of Analysis:

- 1. The dome profile roof is modelled in the SAP Program as attached.
- 2. The roof slab is divided into strips in orthogonal directions with peripheral ring beam at the edge.
- 3. The perimeter of the roof is supported by a series of pin supports to simulate the continuous block wall which is confined by underground soil, supporting the dome profile roof.
- 4. The dome is loaded with its self weight and the internal forces of the structural elements are found.
- 5. Design Code CP114 (Permissible Stress) is used for the capacity check.

Qualifications on missing information:


- 1. Reinforcement Size
- 2. Reinforcement Strength
- 3. Reinforcement spacing of slab
- 4. Reinforcement in ring beam
- 5. Concrete strength
- 6. Detail survey on the dimensions and configuration of the dome profile roof
- 7. Design Code used


Assumptions on the missing information:

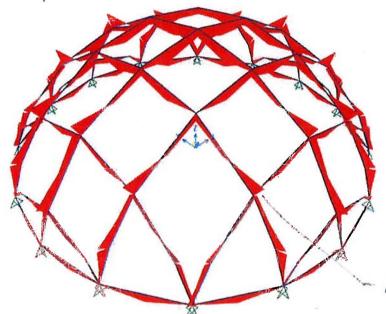
- 1. Reinforcement Size: 8mm diameter
- 2. Reinforcement Strength: allowable stress 124MPa (LCC By law 1938)
- 3. Reinforcement spacing of slab: 300mm on average
- 4. Reinforcement in ring beam: no assumption made
- 5. Concrete strength: fc=6.5MPa (Coring Test Result)
- 6. Detail survey on the dimensions and configuration of the dome profile roof: Own rough measurement by simple tool
- 7. Design Code used: no assumption made

Initial Findings:

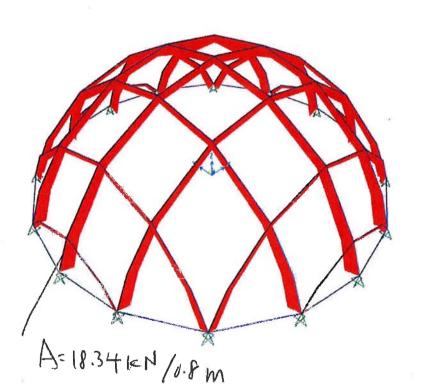
The dome profile RC roof slab is barely sufficient to withstand its own weight under the present state.

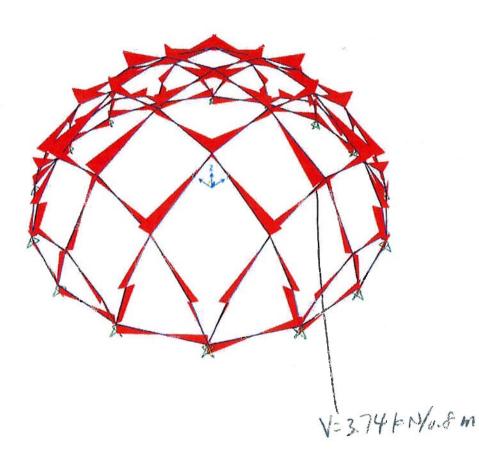
Frame	Station	OutputCas		P	W)	770	m	3.40			
Text	m	Text	e Case 1 ypa Text	KN	V2 KN	V3	, T	M2	M3	FrameElem	ElemStation
61		DEAD	LinStatic	-9.799		KN	KN-m	KN-m	KN-m	Text	m
61	0.40697		LinStatic	-10.217	-1.837 0.39	-1.13E-15	9.986E-16		0.4916		
61	0.81394		LinStatic	-10.635	2.617	-1.13E-15	9.986E-16		0.7862		0.4069
62		DEAD	LinStatic	-10.055	-0.575	-I.13E-15 1.393E-15	9.986E-16	4.009E-16	0.1744		0.8139
62	0.44809		LinStatic	-11.417	1.583	1.393E-15	-7.856E-17 -7.856E-17	6.446E-16	0.4601		
62	0.89617		LinStatic	-12.67	3.741	1.393E-15		2.024E-17	0.2342		0.4480
65		DEAD	LinStatic	-9.799	-1.837	-8.299E-16	-7.856E-17	-6.041E-16	-0.9586		0.8961
65	0.40697		LinStatic	-10.217	0.39	-8.299E-16	-5.046E-16 -5.046E-16	-2.252E-16	0.4916		D 40 60
65	0.813941		LinStatic	-10.635	2.617	-8.299E-16	-5.046E-16	1.126E-16	0.7862		0.4069
66		DEAD	LinStatic	-10.164	-0.575	-6.124E-16	-3.040E-10 -2.494E-16	4.503E-16	0.1744		0.8139
66	0.44809 1		LinStatic	-11.417	1.583	-6.124E-16	-2.494E-16	2.804E-17	0.4601		0.4400
66	0.89617 I		LinStatic	-12.67	3.741	-6.124E-16	-2.494E-16	3.025E-16	0.2342		0.44809
69		DEAD	LinStatic	-9.799	-1.837	8.839E-17	-1.985E-16	5.769E-16 -4.695E-16	-0.9586		0.8961
69	0.40697 I		LinStatic	-10.217	0.39	8.839E-17	-1.985E-16	-5.055E-16	0.4916		0.4050
69	0.81394 I		LinStatic	-10.635	2.617	8.839E-17	-1.985E-16	-5.415E-16	0.7862		0.40697
73		DEAD	LinStatic	-12.67	-3.741	-1.539E-15	9.58B-17	-5.415E-16	0.1744		0.81394
73	0.44809 I		LinStatic	-11.417		-1.539E-15	9.58E-17		-0.9586		0.44000
73	0.89617		LinStatic	-10.164		-1.539E-15	9.58E-17	1.804E-16	0.2342		0.44809
75		EAD	LinStatic	-9.799	-1.837	1.64E-15		8.697E-16	0.4601		0.89617
75	0.40697 D		LinStatic	-10.217	0.39	1.64E-15	-2.711E-16 -2.711E-16	9.741E-16	0.4916		0.40<00
75	0.81394 D		LinStatic	-10.635	2.617	1.64E-15	-2.711E-16 -2.711E-16	3.065E-16 -3.611E-16	0.7862	-	0.40697
76		EAD	LinStatic	-10.164	-0.575	1.298E-15	-2.711E-16 -1.279E-16	5.305E-16	0.1744		0.81394
76	0.44809 D		LinStatic	-11.417	1.583	1.298E-15	-1.279E-16		0.4601		0
76	0.89617 D		LinStatic	-12.67	3.741		-1.279E-16	-5.106E-17	0.2342		0.44809
79		EAD	LinStatic	-8.334	-1.601	0.446	-0.1038	-6.326E-16 0.2216	-0.9586		0.89617
79	0.40697 D		LinStatic	-8.751	0.627	0.446	-0.1038	0.2210	0.4736		0.40525
79	0.81394 D		LinStatic	-9.169	2.854	0.446	-0.1038	-0.1414	0.6718		0.40697
80		EAD	LinStatic	-8.999	-0.667	1.107	-0.1761	0.6543	-0.0364		0.81394
30	0.46804 D		LinStatic	-10.461	1.49	1.107	-0.1761		0.4004 8		0
0	0.93608 D		LinStatic	-11.922	3.648	1.107	-0.1761	0.1361 -0.382	0.2078 8		0.46804
1	0 DI	EAD	LinStatic	-12.265	-0.173	0.911	-0.0405	0.5704	-0.9945 { -0.2504 {		0.93608
1	0.28777 DI		LinStatic	-13.588	0.731	0.911	-0.0405	0.3082			0
1	0.57554 DI		LinStatic	-14.91	1.636	0.911	-0.0405	0.3082	-0.3307 8		0.28777
3	0 DI		LinStatic	-8.334	-1.601	-0.446	0.1038	-0.2216	-0.6714 8 0.4736 8		0.57554
3	0.40697 DI	EAD	LinStatic	-8.751	0.627	-0.446	0.1038	-0.0401	0.6718 8		0 40607
3	0.81394 DE		LinStatic	-9.169	2.854	-0.446	0.1038	0.1414			0.40697
4	0 DE		LinStatic	-8.999	-0.667	-1.107	0.1761	-0.6543	-0.0364 8 0.4004 8		0.81394
4	0.46804 DE		LinStatic	-10.461	1.49	-1.107	0.1761	-0.1361	0.2078 8		0.46904
4	0.93608 DE		LinStatic	-11.922	3.648	-1.107	0.1761	0.382	-0.9945 8		0.46804
7	0 DE		LinStatic	-12.265	-0.173	-0.911	0.0405	-0.5704	-0.2504 8		
7	0.28777 DE	4.5	LinStatic	-13.588	0.731	-0.911	0.0405	-0.3082	-0.2304 8		0 20277
	0.57554 DE		LinStatic	-14.91	1.636	-0.911	0.0405	-0.0461	-0.6714 8		0.28777 0.57554
)	0 DE		LinStatic	-8.334	-1.601	-0.446	0.1038	-0.2216	0.4736 8		
)	0.40697 DE		LinStatic	-8.751	0.627	-0.446	0.1038	-0.2216 -0.0401	0.4736 89		0 40607
	0.81394 DE		LinStatic	-9.169	2,854	-0.446	0.1038	0.1414	-0.0364 89		0.40697
1	0 DE		LinStatic	-8.999	-0.667	-1.107	0.1058	-0.6543			0.81394
	0.46804 DE		LinStatic	-10.461	1.49	-1.107	0.1761	-0.0343	0.4004 90		0 46004
	0.93608 DE		LinStatic	-11.922	3.648	-1.107	0.1761	0.382	-0.9945 90		0.46804
	0 DE		LinStatic	-12,265	-0.173	-0.911	0.1701	-0.5704	-0.9945 90		0.93608
(0.28777 DE		LinStatic	-13.588	0.731	-0.911	0.0405	-0.3704			0
	0.57554 DEA		LinStatic	-14.91	1.636	-0.911	0.0405	-0.0461	-0.3307 91		0.28777
	0 DEA		inStatic	-8.334	-1.601	0.446	-0.1038	0.2216	-0.6714 91		0.57554
(0.40697 DEA		inStatic	-8.751	0.627	0.446	-0.1038	0.0401	0.4736 93 0.6718 93		0
	0.81394 DEA		inStatic	-9.169	2.854	0.446	-0.1038				0.40697
	0 DEA		LinStatic	-8.999	-0.667	1.107	-0.1761	-0.1414	-0.0364 93		0.81394
0	.46804 DEA		inStatic	-10.461	1.49	1.107		0.6543	0.4004 94		0
	.93608 DEA	753	inStatic	-11.922	3.648	1.107	-0.1761	0.1361	0.2078 94		0.46804
_	0 DEA		inStatic	-12.265	-0.173	0.911	-0.1761	-0.382	-0.9945 94		0.93608
n	.28777 DEA		inStatic	-13.588	0.731		-0.0405	0.5704	-0.2504 95		0
	.57554 DEA		inStatic	-13.368	1.636	0.911	-0.0405	0.3082	-0.3307 95		0.28777
V	O DEA		inStatic		'-1.601	0.911	-0.0405	0.0461	-0.6714 95		0.57554
٥	.40697 DEA		inStatic			0.445	-0.1038	0.2216	0.4736 97-		0
	.81394 DEA			-8.751 0.160	0.627	0.446	-0.1038	0.0401	0.6718 97-		0.40697
U.	DEA PECIO. DEA		inStatic	-9.169 9.000	2.854	0.446	-0.1038	-0.1414	-0.0364 97-		0.81394
٨			inStatic	-8.999	-0.667	1.107	-0.1761	0.6543	0.4004 98-		0
U.	46804 DEA			-10.461 -11.922	1.49 3.648	1.107 1.107	-0.1761	0.1361	0.2078 98-	1	0.46804
	93608 DEA	D .	inStatic				-0.1761	-0.382	-0.9945 98-		

	99	0 DEAD	LinStatic	-12.265	-0.173	0.911	-0.0405	0.5704	-0.2504 99-1	0
	99	0.28777 DEAD	LinStatic	-13.588	0.731	0.911	-0.0405	0.3082	-0.3307 99-1	0.28777
	99	0.57554 DEAD	LinStatic	-14.91	1.636	0.911	-0.0405	0.0461	-0.6714 99-1	0.57554
	101	0 DEAD	LinStatic	-8.334	-1.601	-0.446	0.1038	-0.2216	0.4736 101-1	0
	101	0.40697 DEAD	LinStatic	-8.751	0.627	-0.446	0.1038	-0.0401	0.6718 101-1	0.40697
	101	0.81394 DEAD	LinStatic	-9.169	2.854	-0.446	0.1038	0.1414	-0.0364 101-1	0.81394
	102	0 DEAD	LinStatic	-8.999	-0.667	-1.107	0.1761	-0.6543	0.4004 102-1	0
	102 102	0.46804 DEAD 0.93608 DBAD	LinStatic	-10.461	1.49	-1.107	0.1761	-0.1361	0.2078 102-1	0.46304
	103	0.93008 DEAD 0 DEAD	LinStatic	-11.922	3.648	-1.107	0.1761	0.382	-0.9945 102-1	0.93608
	103	0.28777 DEAD	LinStatio	-12.265	-0.173	-0.911	0.0405	-0.5704	-0.2504 103-1	0
	103	0.57554 DEAD	LinStatic LinStatic	-13.588 -14.91	0.731	-0.911	0.0405	-0.3082	-0.3307 103-1	0.28777
	105	0 DEAD	LinStatic	-8.334	1.636 -1.601	-0.911 -0.446	0.0405	-0.0461	-0.6714 103-1	0.57554
	105	0.40697 DEAD	LinStatic	-8,751	0.627	-0.446	0.1038 0.1038	-0.2216	0.4736 105-1	0
	105	0.81394 DEAD	LinStatic	-9.169	2.854	-0.446	0.1038	-0.0401 0.1414	0.6718 105-1 -0.0364 105-1	0.40697
1	106	0 DEAD	LinStatic	-8 .9 99	-0.667	-1.107	0.1761	-0.6543	0.4004 106-1	0.81394 0
1	106	0.46804 DEAD	LinStatic	-10.461	1.49	-1.107	0.1761	-0.1361	0.2078 106-1	0.46804
1	06	0.93608 DEAD	LinStatic	-11.922	3,648	-1.107	0.1761	0.382	-0.9945 106-1	0.93608
	.07	0 DEAD	LinStatic	-12.265	-0.173	-0.911	0.0405	-0.5704	-0.2504 107-1	0.95008
	.07	0.28777 DEAD	LinStatic	-13.588	0.731	-0.911	0.0405	-0.3082	-0.3307 107-1	0.28777
	.07	0.57554 DEAD	LinStatic	-14.91	1.636	-0.911	0.0405	-0.0461	-0.6714 107-1	0.57554
	09	0 DEAD	LinStatic	-8.334	-1.601	0.446	-0.1038	0.2216	0.4736 109-1	0
	09	0.40697 DEAD	LinStatic	-8.751	0.627	0.446	-0.1038	0.0401	0.6718 109-1	0.40697
	09	0.81394 DEAD	LinStatic	-9.169	2.854	0.446	-0.1038	-0.1414	-0.0364 109-1	0.81394
	10 10	0 DEAD	LinStatic	-8.999	-0.667	1.107	-0.1761	0.6543	0.4004 110-1	0
	10	0.46804 DEAD 0.93608 DEAD	LinStatic	-10.461	1.49	1.107	-0.1761	0.1361	0.2078 110-1	0.46804
11		0 DEAD	LinStatic LinStatic	-11.922 -12.265	3.648	1.107	-0.1761	-0.382	-0.9945 110-1	0.93608
11		0.28777 DEAD	LinStatic	-13.588	-0.173	0.911	-0.0405	0.5704	-0.2504 111-1	0
11		0.57554 DEAD	LinStatic	-14.91	0.731 1.636	0.911 0.911	-0.0405	0.3082	-0.3307 111-1	0.28777
11		0 DEAD	LinStatic	-5.14	-1.632	0.521	-0.0405 -0.1165	0.0461 0.3903	-0.6714 111-1	0.57554
11		0.41552 DEAD	LinStatic	-5.767	0.596	0.521	-0.1165	0.3903	0.2258 113-1 0.4411 113-1	0 41550
11	3	0.83104 DBAD	LinStatic	-6.393	2.823	0.521	-0.1165	-0.0425	-0.2691 113-1	0.41552 0.83104
11		0 DEAD	LinStatic	-6.927	-0.525	1.277	-0.2268	1.0299	0.2929 114-1	0.65104
11		0.36336 DEAD	LinStatic	-8.25	1.006	1.277	-0.2268	0.566	0.2057 114-1	0.36336
11		0.72672 DEAD	LinStatic	-9.572	2.537	1.277	-0.2268	0.1021	-0.438 114-1	0.72672
11.		0 DEAD	LinStatic	-9.865	-0.86	1.277	-0.1737	0.173	-0.438 115-1	0
11.		0.22947 DEAD	LinStatic	-10.979	-0.234	1.277	-0.1787	-0.12	-0.3124 115-1	0.22947
11:		0.45894 DBAD	LinStatic	-12.093	0.393	1.277	-0.1787	-0.413	-0.3307 115-1	0.45894
110		0 DEAD 0.41552 DEAD	LinStatic	-5.14	-1.632	-0.521	0.1165	-0.3903	0.2258 116-1	0
116		0.83104 DEAD	LinStatic LinStatic	-5.767 -6.393	0.596	-0.521	0.1165	-0.1739	0.4411 116-1	0.41552
117		0 DEAD	LinStatic	-6.927	2,823 -0.525	-0.521	0.1165	0.0425	-0.2691 116-1	0.83104
117		0.36336 DEAD	LinStatic	-8.25	1.006	-1.277 -1.277	0.2268	-1.0299	0.2929 117-1	0
117		0.72672 DEAD	LinStatic	-9.572	2.537	-1.277	0.2268 0.2268	-0.566 -0.1021	0.2057 117-1 -0.438 117-1	0.36336
118	3	0 DEAD	LinStatic	-9.865	-0,86	-1.277	0.1787	-0.1021	-0.438 118-1	0.72672
118	3	0.22947 DEAD	LinStatic	-10.979	-0.234	-1.277	0.1787	0.12	-0.3124 118-1	0 0.22947
118		0.45894 DEAD	LinStatic	-12.093	0.393	-1.277	0.1787	0.413	-0.3307 118-1	0.45894
119		0 DEAD	LinStatic	-5.14	-1.632	-0.521	0.1165	-0.3903	0.2258 119-1	0
119		0.41552 DEAD	LinStatic	-5.767	0.596	-0.521	0.1165	-0.1739	0.4411 119-1	0.41552
119		0.83104 DEAD	LinStatic	-6.393	2.823	-0.521	0.1165	0.0425	-0.2691 119-1	0.83104
120		0 DEAD	LinStatic	-6.927	-0.525	-1.277	0.2268	-1.0299	0.2929 120-1	0
120		0.36336 DEAD	LinStatic	-8.25	1.006	-1.277	0.2268	-0.566	0.2057 120-1	0.36336
120 121		0.72672 DEAD	LinStatic	-9.572	2,537	-1.277	0.2268	-0.1021	-0.438 120-1	0.72672
121		0 DEAD 0.22947 DEAD	LinStatic	-9.86 5	-0.86	-1.277	0.1787	-0.173	-0.438 121-1	0
121		0.45894 DEAD	LinStatic LinStatic	-10.979 -12.093	-0.234	-1.277	0.1787	0.12	-0.3124 121-1	0.22947
122		0 DEAD	LinStatic	-12.093 -5,14	0.393	-1.277	0.1787	0.413	-0.3307 121-1	0.45894
122		0.41552 DEAD	LinStatic	-5.767	-1.632 0.596	0.521 0.521	-0.1165 -0.1165	0.3903	0.2258 122-1	0
122		0.83104 DEAD	LinStatic	-6.393	2.823	0.521	-0.1165	0.1739	0.4411 122-1	0.41552
123		0 DEAD	LinStatic	-6.927	-0,525	1.277	-0.1165	-0.0425 1.0299	-0.2691 122-1 0.2620 122 1	0.83104
123		0.36336 DEAD	LinStatic	-8.25	1.006	1.277	-0.2268	0.566	0.2929 123-1 0.2057 123-1	0 36336
123		0.72672 DEAD	LinStatic	-9.572	2.537	1.277	-0.2268	0.1021	-0.438 123-1	0.36336 0.72672
124		0 DBAD	LinStatic	-9.865	-0.86	1.277	-0.1787	0.173	-0.438 124-1	0.72072
124		0.22947 DEAD	LinStatic	-10.979	-0.234	1.277	-0.1787	-0.12	-0.3124 124-1	0.22947
124		0.45894 DEAD	LinStatic	-12.093	0.393	1.277	-0.1787	-0.413	-0.3307 124-1	0.45894
125		0 DEAD	LinStatic	-5.14	-1.632	-0.521	0.1165	-0.3903	0.2258 125-1	0.43654
125		0.41552 DEAD	LinStatic	-5.767	0.596	-0.521	0.1165	-0.1739	0.4411 125-1	0.41552
125		0.83104 DEAD	LinStatic	-6.393	2.823	-0.521	0.1165	0.0425	-0.2591 125-1	0.83104
										16 20 EST 10 EST


126	0 DEAD	LinStatic	-6.927	-0.525	-1.277	0.2268	-1.0299	0.2929 126-1	Ô
126	0.36336 DEAD	LinStatic	-8.25	1.006	-1.277	0.2268	-0.566	0.2057 126-1	0.36336
126 127	0.72672 DEAD	LinStatic	-9.572	2,537	-1.277	0.2268	-0.1021	-0.438 126-1	0.72672
127	0 DEAD 0,22947 DEAD	LinStatic	-9.865	-0.86	-1.277	0.1787	-0.173	-0.438 127-1	0
127	0.45894 DEAD	LinStatic	-10.979	-0.234	-1.277	0.1787	0.12	-0.3124 127-1	0.22947
128	0 DEAD	LinStatic LinStatic	-12.093	0.393	-1.277	0.1787	0.413	-0.3307 127-1	0.45894
128	0.41552 DEAD	LinStatic	-5.14 -5.767	-1.632	0.521	-0.1165	0.3903	0.2258 128-1	0
128	0.83104 DEAD	LinStatic	-5.767 -6.393	0.596	0.521	-0.1165	0.1739	0.4411 128-1	0.41552
129	0 DEAD	LinStatic	-6.927	2.823 -0.525	0.521	-0.1165	-0.0425	-0.2691 128-1	0.83104
129	0.36336 DEAD	LinStatic	-8.25	1.006	1.277 1.277	-0.2268	1.0299	0.2929 129-1	0
129	0.72672 DEAD	LinStatic	-9.572	2.537	1.277	-0.2268 -0.2268	0.566	0.2057 129-1	0.36336
130	0 DEAD	LinStatic	-9.865	-0.86	1.277	-0.1787	0.1021	-0.438 129-1 -0.438 130-1	0.72672
130	0.22947 DEAD	LinStatic	-10.979	-0.234	1.277	-0.1787	-0.12	-0.3124 130-1	0 0.22947
130	0.45894 DEAD	LinStatic	-12.093	0.393	1.277	-0.1787	-0.413	-0.3307 130-1	0.45894
131	0 DEAD	LinStatic	-5.14	-1.632	0.521	-0.1165	0.3903	0.2258 131-1	0.43654
131	0.41552 DEAD	LinStatic	-5.767	0.596	0.521	-0.1165	0.1739	0.4411 131-1	0.41552
131	0.83104 DEAD	LinStatic	-6.393	2.823	0.521	-0.1165	-0.0425	-0.2691 131-1	0.83104
132	0 DEAD	LinStatic	-6.927	-0.525	1.277	-0.2268	1.0299	0.2929 132-1	0.0510
132	0.36336 DEAD	LinStatic	-8.25	1.006	1.277	-0.2268	0.566	0.2057 132-1	0.36336
132	0.72672 DEAD	LinStatic	-9.572	2.537	1.277	-0.2268	0.1021	-0.438 132-1	0.72672
133	0 DEAD	LinStatic	-9.865	-0.86	1.277	-0.178 7	0.173	-0.438 133-1	0
133	0.22947 DEAD	LinStatic	-10.979	-0.234	1.277	-0.1787	-0.12	-0.3124 133-1	0.22947
133 134	0.45894 DEAD	LinStatic	-12.093	0.393	1.277	-0.1787	-0.413	-0.3307 133-1	0.45894
134	0 DEAD 0.41552 DEAD	LinStatic	-5.14	-1.632	-0.521	0.1165	-0.3903	0.2258 134-1	0
134	0.83104 DEAD	LinStatic	-5.767	0.596	-0.521	0.1165	-0.1739	0.4411 134-1	0.41552
135	0.85104 DEAD	LinStatic LinStatic	-6.393	2.823	-0.521	0.1165	0.0425	-0.2691 134-1	0.83104
135	0.36336 DEAD	LinStatic	-6.927 -8.25	-0,525	-1.277	0.2268	-1.0299	0.2929 135-1	0
135	0.72672 DEAD	LinStatic	-9.572	1.006 2.537	-1.277	0.2268	-0.566	0.2057 135-1	0.36336
136	0 DEAD	LinStatic	-9.865	-0.86	-1.277 -1.277	0.2268	-0.1021	-0.438 135-1	0.72672
136	0.22947 DEAD	LinStatic	-10.979	-0.234	-1.277	0.178 7 0.1787	-0.173	-0.438 136-1	0
136	0.45894 DEAD	LinStatic	-12.093	0.393	-1.277	0.1787	0.12 0.413	-0.3124 136-1 -0.3307 136-1	0.22947
137	0 DEAD	LinStatic	-2.967	-1.013	0.677	-0.0856	0.4479	0.366 137-1	0.45894
137	0.31623 DEAD	LinStatic	-3.524	0.658	0.677	-0.0856	0.2337	0.4221 137-1	0 0,31623
137	0.63246 DEAD	LinStatic	-4.081	2.328	0.677	-0.0856	0.0195	-0.05 137-1	0.63246
138	0 DEAD	LinStatic	-4.691	0.257	0.677	-0.0678	0.0557	-0.05 138-1	0.03.60
133	0.14142 DEAD	LinStatic	-5.248	0.814	0.677	-0.0678	-0.0401	-0.1257 138-1	0.14142
138	0.28284 DBAD	LinStatic	-5.805	1.371	0.677	-0.0678	-0.1359	-0.2803 138-1	0,28284
139	0 DEAD	LinStatic	-2.967	-1.013	-0.677	0.0856	-0.4479	0.366 139-1	C
139	0.31623 DEAD	LinStatic	-3.524	0.658	-0.677	0.0856	-0.2337	0.4221 139-1	0.31623
139 140	0.63246 DEAD	LinStatic	-4.081	2.328	-0.677	0.0856	-0.0195	-0.05 139-1	0.63246
140	0 DEAD 0.14142 DEAD	LinStatic	-4.691	0.257	-0.677	0.0678	-0.0557	-0.05 140-1	0
140	0.14142 DEAD 0.28284 DEAD	LinStatic	-5.248 6.806	0.814	-0.677	0.0678	0.0401	-0.1257 140-1	0.14142
141	0 DEAD	LinStatic LinStatic	-5.805 -2,967	1.371	-0.677	0.0678	0.1359	-0.2803 140-1	0.28284
141	0.31623 DEAD	LinStatic	-3.524	-1.013	-0.677	0.0856	-0.4479	0.366 141-1	0
141	0.63246 DEAD	LinStatic	-4.081	0.658 2,328	-0.677 -0.677	0.0856	-0.2337	0.4221 141-1	0.31623
142	0 DEAD	LinStatic	-4.691	0.257	-0.677	0.0856 0.0678	-0.0195	-0.05 141-1	0.63246
142	0.14142 DEAD	LinStatic	-5.248	0.814	-0.677	0.0678	-0.0557 0.0401	-0.05 142-1	0
142	0.28284 DEAD	LinStatic	-5.805	1.371	-0.677	0.0678	0.1359	-0.1257 142-1 -0.2803 142-1	0.14142
143	0 DEAD	LinStatic	-2.967	-1.013	0.677	-0.0856	0.4479	0.366 143-1	0.28284 0
143	0.31623 DEAD	LinStatic	-3.524	0.658	0.677	-0.0856	0.2337	0.4221 143-1	0.31623
143	0.63246 DEAD	LinStatic	-4.081	2.328	0.677	-0.0856	0.0195	-0.05 143-1	0.63246
144	0 DEAD	LinStatic	-4.691	0.257	0.677	-0.0678	0.0557	-0.05 144-1	0.05240
144	0.14142 DEAD	LinStatic	-5.248	0.814	0.677	-0.0678	-0.0401	-0.1257 144-1	0.14142
144	0.28284 DEAD	LinStatic	-5.805	1.371	0.677	-0.0678	-0.1359	-0.2803 144-1	0.28284
145	0 DEAD	LinStatic	-5.805	-1.371	0.677	-0.0678	0.1359	-0.2803 145-1	0
145	0.14142 DBAD	LinStatic	-5.248	-0.814	0.577	-0.0678	0.0401	-0.1257 145-1	0.14142
145	0.28284 DEAD	LinStatic	-4.691	-0.257	0.677	-0.0678	-0.0557	-0.05 145-1	0.28284
146	0 DEAD	LinStatic	-4.081	-2.328	0.677	-0.0856	-0.0195	-0.05 146-1	0
146	0.31623 DEAD	LinStatic	-3.524	-0.658	0,677	-0.0856	-0.2337	0.4221 146-1	0.31623
146	0.63246 DEAD	LinStatic	-2.967	1.013	0.677	-0.0856	-0.4479	0.365 146-1	0.63246
147	O DEAD	LinStatic	-2.967	-1.013	-0.677	0.0856	-0.4479	0.366 147-1	0
147 147	0.31623 DEAD 0.63246 DEAD	LinStatic	-3,524	0.658	-0.677	0.0856	-0.2337	0.4221 147-1	0.31623
148	0.05246 DEAD 0 DEAD	LinStatic	-4.081 4.601	2.328	-0.677	0.0856	-0.0195	-0.05 147-1	0.63246
148	0.14142 DBAD	LinStatic LinStatic	-4.691 -5.249	0,257	-0.677	0.0678	-0.0557	-0.05 148-1	O
148	0.28284 DEAD	LinStatic LinStatic	-5.248 -5.805	0.814	-0.677 0.622	0.0678	0.0401	-0.1257 148-1	0.14142
. 10		estingtill?	-5.005	1.371	-0.677	0.0678	0.1359	-0.2803 148-1	0.28284

149	0 DEAD	LinStatic	-5.8	05 -1.3	71 -0.6	77 0.06	78 -0.13	359 -0.2803 149-1	
149	0.14142 DEAD	LinStatic	-5.2						0 14140
149	0.28284 DEAD	LinStatic	-4.6						0.14142
150	0 DEAD	LinStatic	-4.0						0.28284
150	0.31623 DEAD	LinStatic	-3.52						0
150	0.63246 DEAD	LinStatic	-2.96			-			0.31623
151	0 DEAD	LinStatic	-2.96						0.63246
151	0.31623 DEAD	LinStatic	-3.52						0
151	0.63246 DEAD	LinStatic	-3.52 -4.08						0.31623
152	0 DEAD								0.63246
152	0.14142 DEAD	LinStatic	-4.69						0
152	0.28284 DEAD	LinStatic	-5.24						0.14142
153		LinStatic	-5.80					59 -0.2803 152-1	0.28284
153	0 DEAD	LinStatic	-14.86					44 -0.6714 153-1	0
	0.2136 DEAD	LinStatic	-15.98			0.028	3 0.140	01 -0.2943 153-1	0.2136
153	0.4272 DEAD	LinStatic	-17.09			0.028	3 0.334		0.4272
154	0 DEAD	LinStatic	-14.86		4 0.91	-0.028	3 0.054		0
154	0.2136 DEAD	LinStatic	-15.98	3 -1.556	6 0.911	-0.028			0.2136
154	0.4272 DEAD	LinStatic	-17.09	6 -1.139	0.91				0.4272
155	0 DEAD	LinStatic	-14.869	9 -1.974	4 0.911				0.4272
155	0.2136 DEAD	LinStatic	-15.983						
155	0.4272 DEAD	LinStatic	-17.096						0.2136
156	0 DEAD	LinStatic	-14.869						0.4272
156	0.2136 DEAD	LinStatic	-15.983						0
156	0.4272 DEAD	LinStatic	-17.096						0.2136
158	0 DEAD	LinStatic	-14.869						0.4272
158	0.2136 DEAD	LinStatic	-15.983						0
158	0.4272 DEAD	LinStatic	-17.096			-0.0283			0.2136
159	0 DEAD	LinStatic	-14.869			-0.0283			0.4272
159	0.2136 DEAD	LinStatic	-15.983			0.0283			0
159	0.4272 DEAD	LinStatic	-17.096			0.0283			0.2136
160	0 DEAD	LinStatic	-14.869			0.0283			0.4272
160	0.2136 DEAD	LinStatic	-15.983			0.0283			0
160	0.4272 DEAD	LinStatic	-17.096			0.0283			0.2136
161	0 DEAD	LinStatic			-0.911	0.0283			0.4272
161	0.2136 DEAD		-14.869	-1.974	0.911	-0.0283			0
161	0.4272 DEAD	LinStatic	-15.983	-1.556	0.911	-0.0283	-0.1401		0.2136
162	0.4272 DEAD	LinStatic	-17.096	-1.139	0.911	-0.0283	-0.3347		0.4272
162	0.2136 DEAD	LinStatic	-18.346	0.256	-7.778E-16	7.522E-19	3.17E-18		0
162	0.4272 DEAD	LinStatic	-17.233	0.674	-7.778E-16	7.522E-19	1.693E-16		0.2136
163	0.42 72 DBAD 0 DEAD	LinStatic	-16.119	1.092	-7.778E-16	7.522E-19	3.354E-16		0.4272
163		LinStatic	-16.647	-1.584	-1.315E-16	-3.41E-17	2.569E-16		0
163	0.42297 DEAD	LinStatic	-14.698	-0.262	-1.315E-16	-3.41E-17	3.126E-16	-0.354 163-1	0.42297
164	0.84595 DEAD	LinStatic	-12.75	1.061	-1.31 5E -16	-3.41E-17	3.682E-16	-0.5229 163-1	0.84595
	0 DEAD	LinStatic	-18.346	0.256	5.594E-16	-1.144E-17	-3.051E-17	-0.0109 164-1	0
164	0.2136 DEAD	LinStatic	-17.233	0.674	5.594E-16	-1.144E-17	-1.5E-16	-0.1102 164-1	0.2136
164	0.4272 DEAD	LinStatic	-16,119	1.092	5.594E-16	-1.144E-17	-2.695E-16	-0.2988 164-1	0.4272
165	0 DEAD	LinStatic	-16.647	-1.584	5.091E-16	-8.66E-17	-1.346E-16	-0.7444 165-1	0
165	0.42297 DEAD	LinStatic	-14.698	-0.262	5.091E-16	-8.66E-17	-3.499E-16	-0.354 165-1	0.42297
165	0.84595 DEAD	LinStatic	-12.75	1.061	5.091E-16	-8.66E-17	-5.652B-16	-0.5229 165-1	0.84595
166	0 DEAD	LinStatic	-18.346	0.256	3.103E-16	2.429E-17	6.477E-17	-0.0109 166-1	0
166	0.2136 DEAD	LinStatic	-17.233	0.674	3.103E-16	2.429E-17	-1.508E-18	-0.1102 166-1	0.2136
166	0.4272 DEAD	LinStatic	-16.119	1.092	3.103E-16	2.429E-17	-6.779E-17	-0.2988 166-1	0.4272
167	0 DEAD	LinStatic	-16.647	-1.584	-1.658E-15	2.883E-16	-3.767E-16	-0.7444 167-1	0
167	0.42297 DEAD	LinStatic	-14.698	-0.262	-1.658E-15	2.883E-16	3.248E-16	-0.354 167-1	0,42297
167	0.84595 DEAD	LinStatic	-12.75	1.061	-1.658E-15	2.883E-16	1.026E-15	-0.5229 167-1	0.84595
168	0 DEAD	LinStatic	-12.75		-2.302E-16	4.467E-17	-3.347E-16	-0.5229 168-1	0.04393
168	0.42297 DEAD	LinStatic	-14.698		-2.302E-16	4.467E-17	-2.374E-16	-0.354 168-1	0.42297
168	0.84595 DEAD	LinStatic	-16.647		-2.302E-16	4.467E-17	-1.4E-16	-0.7444 168-1	
169	0 DEAD	LinStatic	-16.119		-6.212E-16	7.488E-18	-2.859E-16	-0.2989 169-1	0.84595
169	0.2136 DEAD	LinStatic	-17.233		-6.212B-16		-1.532E-16		0
169	0.4272 DEAD	LinStatic	-18.346		-6.212E-16	7.488E-18	-2.056E-17	-0.1102 169-1	0.2136
186	0 DEAD	LinStatic	0	-2.266	0.21212-10	0.0055		-0.0109 169-1	0.4272
186	0.40697 DEAD	LinStatic	0	4.4418-16	0	0.0055	0	0 186-1	0
186	0.81394 DEAD	LinStatic	0	2,266	0		0	0.4611 186-1	0.40697
187	0 DEAD	LinStatic	o	-2.531	0	0.0055	0	-2.776E-16 186-1	0.81394
187	0.45449 DEAD	LinStatic		4.441E-16	0	-0.0424	0	0 187-1	0
187	0.90898 DEAD	LinStatic	0	2.531		-0.0424	0	0.5751 187-1	0.45449
188	0 DEAD	LinStatic	0		0	-0.0424		-4.441E-16 187-1	0.90898
188	0.45449 DEAD	LinStatic		-2.531	0	0.0424	0	0 188-I	0
188	0.90898 DEAD	LinStatic	0.	-8.882E-16	0	0.0424	0	0.5751 188-1	0.45449
***	CLEAN PROPERTY	Lamatatic	U	2.531	0	0.0424	0	6.661E-16 188-1	0.90898


				2 V2	V.	3 1	1	() N3	
189	0 DEAD	LinStatic	C	-2,266	0	-0.0055	0	0 189-1	0-
189	0.40697 DEAD	LinStatic	0	0	0	-0.0055	0	0.4611 189-1	0.40697
189	0.81394 DEAD	LinStatic	0	2,266	0	-0.0055	0	0 189-1	0.81394
190	0 DEAD	LinStatic	0	-2.266	0	0.0055	0	0 190-1	0.01354
190	0.40697 DEAD	LinStatic	0	4.441E-16	0	0.0055	0	0.4611 190-1	0.40697
190	0.81394 DEAD	LinStatic	0	2.266	0	0.0055	0	-2.776E-16 190-1	0.81394
191	0 DEAD	LinStatic	0	-2.531	0	-0.0424	0	0 191-1	0.01394
191	0.45449 DBAD	LinStatic	0	4.441E-16	0	-0.0424	0	0.5751 191-1	0.45449
191	0.90898 DEAD	LinStatic	0	2.531	0	-0.0424	0	-4.441E-16 191-1	0.90898
192	0 DEAD	LinStatic	0	-2.531	0	0.0424	0	0 192-1	0.50056
192	0.45449 DEAD	LinStatic	0	4.441E-16	0	0.0424	0	0.5751 192-1	0.45449
192	0.90898 DEAD	LinStatic	0	2.531	0	0.0424	0	-4,441E-16 192-1	0.90898
193	0 DEAD	LinStatic	0	-2.266	ō	-0.0055	0	0 193-1	0.90096
193	0.40697 DEAD	LinStatic	0	4.441E-16	0	-0.0055	0	0.4611 193-1	0.40697
193	0.81394 DEAD	LinStatic	0	2.266	0	-0.0055	0	-2.776E-16 193-1	0.81394
194	0 DEAD	LinStatic	0	-2.266	0	0.0055	0	0 194-1	0.61.394
194	0.40597 DEAD	LinStatic	0	0	Ô	0.0055	0	0.4611 194-1	0.40697
194	0.81394 DEAD	LinStatic	0	2.266	Ö	0.0055	0	0.4011 194-1	0.81394
195	0 DEAD	LinStatic	0	-2.531	0	-0.0424	0	0 195-1	0.01394
195	0.45449 DEAD	LinStatic	0	-8.882E-16	0	-0.0424	0	0.5751 195-1	0.45449
195	0.90898 DEAD	LinStatic	0	2.531	0	-0.0424	0	6.661E-16 195-1	0.90898
196	0 DEAD	LinStatic	0	-2.531	0	0.0424	0	0.00115-10.195-1	0.906.0
196	0.45449 DEAD	LinStatic	0	4.441E-16	Õ	0.0424	0	0.5751 196-1	0.45449
196	0.90898 DEAD	LinStatic	0	2.531	0	0.0424	0	-4.441E-16 196-1	0.90898
198	0 DEAD	LinStatic	0	-2.266	0	-0.0055	0	0 198-1	0.90896
198	0.40697 DEAD	LinStatic	0	4.441E-16	0	-0.0055	0	0.4611 198-1	0.40697
198	0.81394 DEAD	LinStatic	0	2.266	0	-0.0055	0	-2.776E-16 198-1	0.81394
202	0 DEAD	LinStatic	0	-2.266	0	-0.0055	0	0 202-1	0.01394
202	0.40697 DEAD	LinStatic	0	0	0	-0.0055	0	0.4611 202-1	0.40697
202	0.81394 DEAD	LinStatic	0	2.266	0	-0.0055	n	0 202-1	0.81394
203	O DEAD	LinStatic	0	-2.531	0	0.0424	0	0 203-1	0.81394
203	0.45449 DEAD	LinStatic	0	-8.882E-16	0	0.0424	0	0.5751 203-1	0.45449
203	0.90898 DEAD	LinStatic	0	2.531	0	0.0424	0	6.661E-16 203-1	0.90898
204	0 DEAD	LinStatic	0	-2.531	0	-0.0424	0	0 204-1	0.50,656
204	0.45449 DEAD	LinStatic	0	-8.882E-16	0	-0.0424	0	0.5751 204-1	0.45449
204	0.90898 DEAD	LinStatic	0	2.531	0	-0.0424	0	6.661E-16 204-1	0.90898
205	0 DEAD	LinStatic	0	-2.266	ő	0.0055	0	0 205-1	0.50556
205	0.40697 DEAD	LinStatic	0	0	0	0.0055	0	0.4611 205-1	0.40697
205	0.81394 DEAD	LinStatic	0	2.266	0	0.0055	0	0.4011 203-1	0.40697
				and the second second	~	2121222	0	∩ %UJ-1	0.61394


TABLE	E: Joint Displa	cements						
Joint			U1	U2	U3	R1	R2	R3
Text		Text		m	m	Radians	Radians	Radians
√ 55	DEAD	LinStatic	0	(•	O Radians	
56	DEAD	LinStatic	0.000001169	(0.000003312	
57	DEAD	LinStatic	4.991E-07	Č			0.000003312	
59	DEAD	LinStatic	0	Č			9.651E-07	
60	DEAD	LinStatic	-0.000001169	Ö			0.000003312	_
61	DEAD	LinStatic	-4.991E-07	Ö				0
63	DEAD	LinStatic	0	Ö				
64	DEAD	LinStatic	0	0.000001169		-0.000003312		
67	DEAD	LinStatic	0	0				
68	DEAD	LinStatic	0	4.991E-07		-0.000003731		_
69	DEAD	LinStatic	0	-0.000001169		0.000003312		_
70	DEAD	LinStatic	0	-4.991E-07		0.000003312		0
72	DEAD	LinStatic	0	0		9.651E-07		0
73	DEAD	LinStatic	-9.719E-07	9.719E-07	-0.000007557	-0.000002715		0
74	DEAD	LinStatic	-0.000000538	1.695E-07	-0.000003237	-0.000002713		2.865E-07
75	DEAD	LinStatic	-2.114E-07	-3.533E-07	-0.000001177	-0.000002532		8.273E-08
77	DEAD	LinStatic	-9.719E-07	-9.719E-07	-0.000007557	0.000002715		0.27312-00
78	DEAD	LinStatic	-0.000000538	-1.695E-07	-0.000003237	0.000002713		-2.865E-07
81	DEAD	LinStatic	-2.114E-07	3.533E-07	-0.000003237	0.000002532		-8.273E-08
82	DEAD	LinStatic	9.719E-07	9.719E-07	-0.000007557	-0.000001375	0.000002715	0.27325-08
83	DEAD	LinStatic	0.000000538	1.695E-07	-0.000003237	-0.000002713	0.000002713	-2.865E-07
84	DEAD	LinStatic	2.114E-07	-3.533E-07	-0.000001177	-0.000002532	9.427E-07	-8.273E-08
86	DEAD	LinStatic	9.719E-07	-9.719E-07	-0.000007557	0.000002715	0.000002715	-0.273.0-08
87	DEAD	LinStatic	0.000000538	-1.695E-07	-0.000003237	0.000002713	0.000002713	2.865E-07
88	DEAD	LinStatic	2.114E-07	3.533E-07	-0.000001177	0.000001573	9.427E-07	8.273E-08
90	DEAD	LinStatic	1.695E-07	0.000000538	-0.000003237	-0.000001527	0.000002952	2.865E-07
91	DEAD	LinStatic	-3.533E-07	2.114E-07	-0.000001177	-9.427E-07	0.000001573	8.273E-08
93	DEAD	LinStatic	-1.695E-07	0.000000538	-0.000003237	-0.000001527	-0.000002952	-2.865E-07
94	DEAD	LinStatic	3.533E-07	2.114E-07	-0.000001177	-9.427E-07	-0.000001573	-8.273E-08
96	DEAD	LinStatic	1.695E-07	-0.000000538	-0.000003237	0.000001527	0.000002952	-2.865E-07
97	DEAD	LinStatic	-3.533E-07	-2.114E-07	-0.000001177	9.427E-07	0.000001573	-8.273E-08
99	DEAD	LinStatic	-1.695E-07	-0.000000538	-0.000003237	0.000001527	-0.000002952	2.865E-07
100	DEAD	LinStatic	3.533E-07	-2.114E-07	-0.000001177	9.427E-07	-0.000001573	8.273E-08
102	DEAD	LinStatic	1.209E-07	4.534E-08	-0.000001106	-0.000001181	0.000002053	-5.871E-07
103	DEAD	LinStatic	0	0	0	-0.000001064	0.000001064	0
104	DEAD	LinStatic	-1.209E-07	4.534E-08	-0.000001106	-0.000001181	-0.000002053	5.871E-07
105	DEAD	LinStatic	0	0	0	-0.000001064	-0.000001064	0
106	DEAD	LinStatic	1.209E-07	-4.534E-08	-0.000001106	0.000001181	0.000002053	5.871E-07
107	DEAD	LinStatic	0	0	0	0.000001064	0.000001064	0
108	DEAD	LinStatic	-1.209E-07	-4.534E-08	-0.000001106	0.000001181	-0.000002053	-5.871E-07
109	DEAD	LinStatic	0	0	0	0.000001064	-0.000001064	0
110	DEAD	LinStatic	4.534E-08	1.209E-07	-0.000001106	-0.000002053	0.000001181	5.871E-07
111	DEAD	LinStatic	4.534E-08	-1.209E-07	-0.000001106	0.000002053	0.000001181	-5.871E-07
112	DEAD	LinStatic	-4.534E-08	1.209E-07	-0.000001106	-0.000002053	-0.000001181	-5.871E-07
	DEAD	LinStatic	-4.534E-08	-1.209E-07	-0.000001106	0.000002053	-0.000001181	5.871E-07
114	DEA D	LinStatic	0	-1.754E-07	-0.000001346	-0.000001308	0	0
	DEAD	LinStatic	1.482E-07	-9.891E-09	-5.252E-07	-7.938E-07	0.000001354	-3.533E-07
	DEAD	LinStatic	0	0	0	-7.267E-07	0.000001102	-2.322E-07
	DEAD	LinStatic	-1.482E-07	-9.891E-09	-5.252E-07	-7.938E-07	-0.000001354	3.533E-07
	DEAD	LinStatic	0	0	0	-7.267E-07	-0.000001102	2.322E-07
	DEAD	LinStatic	0	1.754E-07	-0.000001346	0.000001308	0	0
	DEAD	LinStatic	1.482E-07	9.891E-09	-5.252E-07	7.938E-07	0.000001354	3.533E-07
	DEAD	LinStatic	0	0	0	7.267E-07	0.000001102	2.322E-07
	DEAD	LinStatic	-1.482E-07	9.891E-09	-5.252E-07	7.938E-07		-3.533E-07
123	DEAD	LinStatic	0	0	0	7.267E-07		-2.322E-07

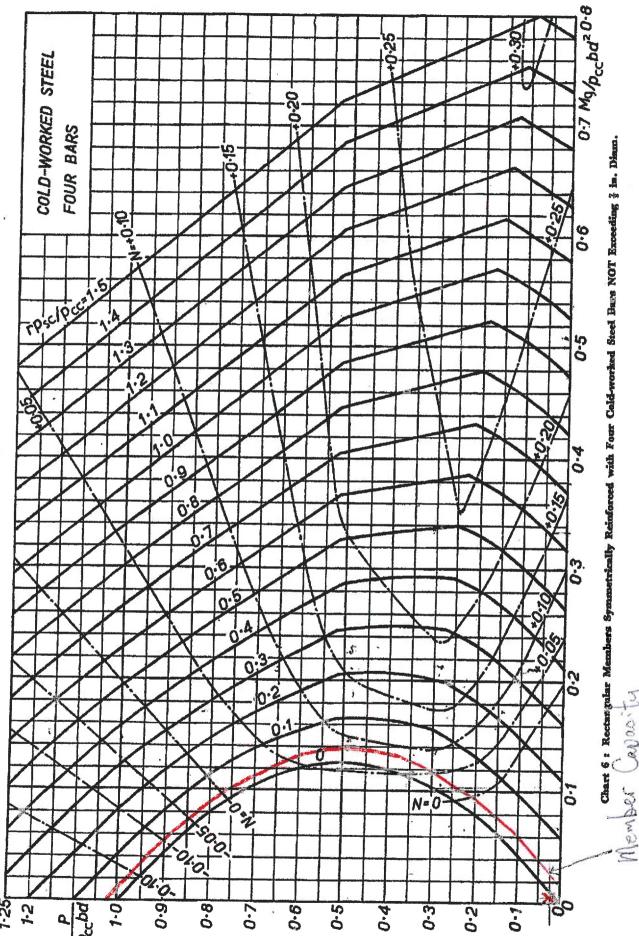
 124	DEAD-	LinStatic		A-		-0.000001102	-7.267E-07	9-9-9-07
125	DEAD	LinStatic	0.0017:00	1 4000 00	5.0507.07			
			9.891E-09	1.482E-07	-5.252E-07	-0.000001354	-7.938E-07	-3.533E-07
126	DEAD	LinStatic	1.754E-07	0	-0.000001346	0	-0.000001308	0
127	DEAD	LinStatic	9.891E-09	-1.482E-07	-5.252E-07	0.000001354	-7.938E-07	3.533E-07
128	DEAD	LinStatic	0	0	0	0.000001102	-7.267E-07	2.322E-07
129	DEAD	LinStatic	Ü	0	0	-0.000001102	7.267E-07	2.322E-07
130	DEAD	LinStatic	-9.891E-09	1.482E-07	-5.252E-07	-0.000001354	7.938E-07	3.533E-07
131	DEAD	LinStatic	-1.754E-07	0	-0.000001346	0	0.000001308	0
132	DEAD	LinStatic	-9.891E-09	-1.482E-07	-5.252E-07	0.000001354	7.938E-07	-3.533E-07
133	DEAD	LinStatic	0	0	0	0.000001102	7.267E-07	-2.322E-07

0.99 KNn/0.8m

PROJECT No. SHEET BY DT CHKD

PILLBOX 1

Existing ments

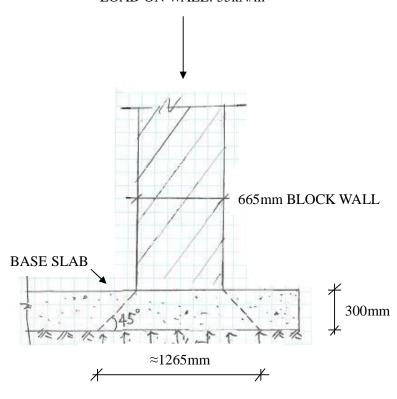

Reber \$ 8 @ 300 b= 800

Design slear

Deser morrent + Asial

check with Pannel Chart OK

DESIGN CHARTS



Appendix D ESTIMATION OF SOIL BEARING PRESSURE AT BASE OF WALL

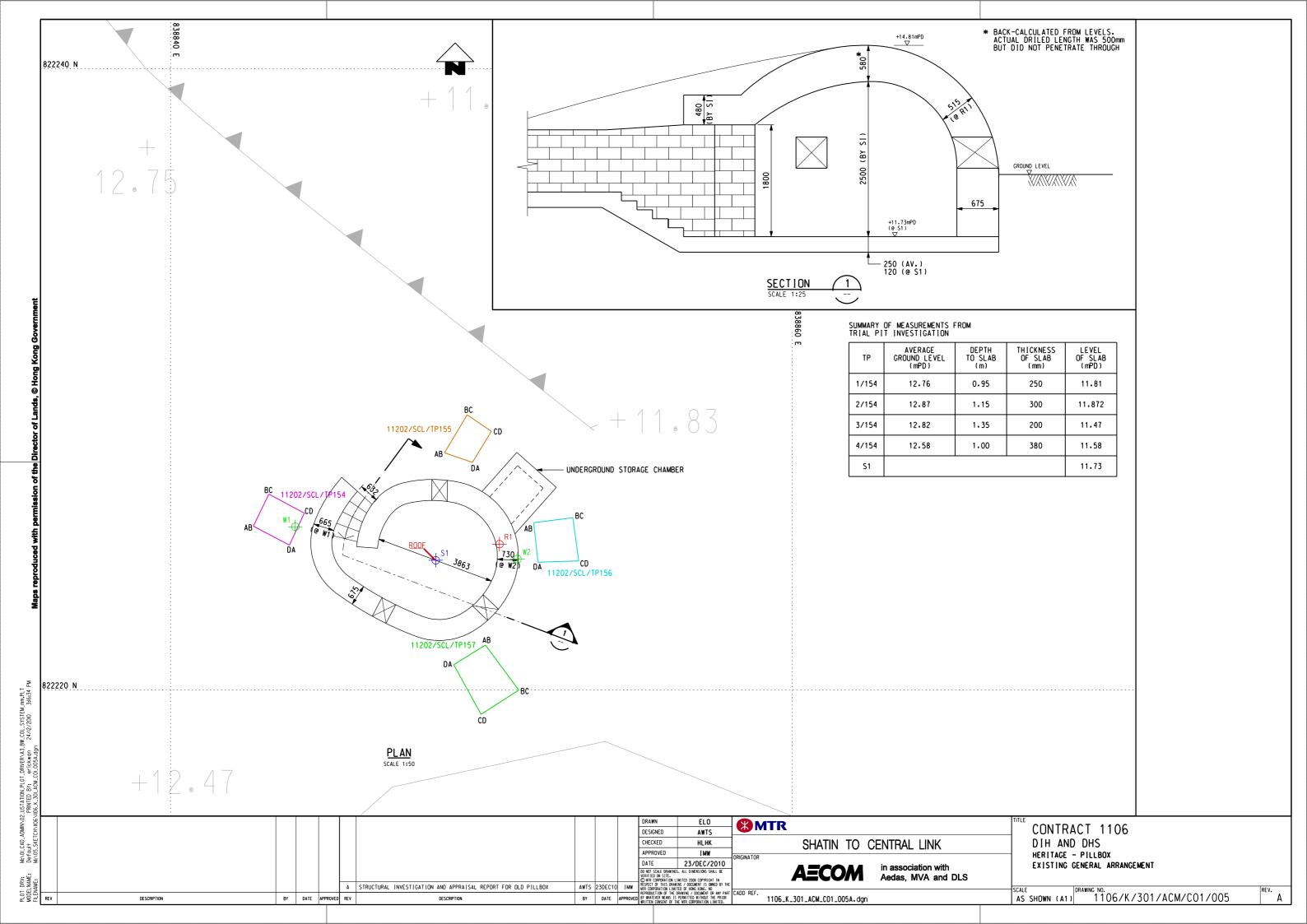
APPENDIX D

LOAD ON WALL: 55kN/m

Soil Bearing Pressure $= (55kN/1.265m^2) + 24 \times 0.3kPa$ $\approx 50kPa$

Appendix E

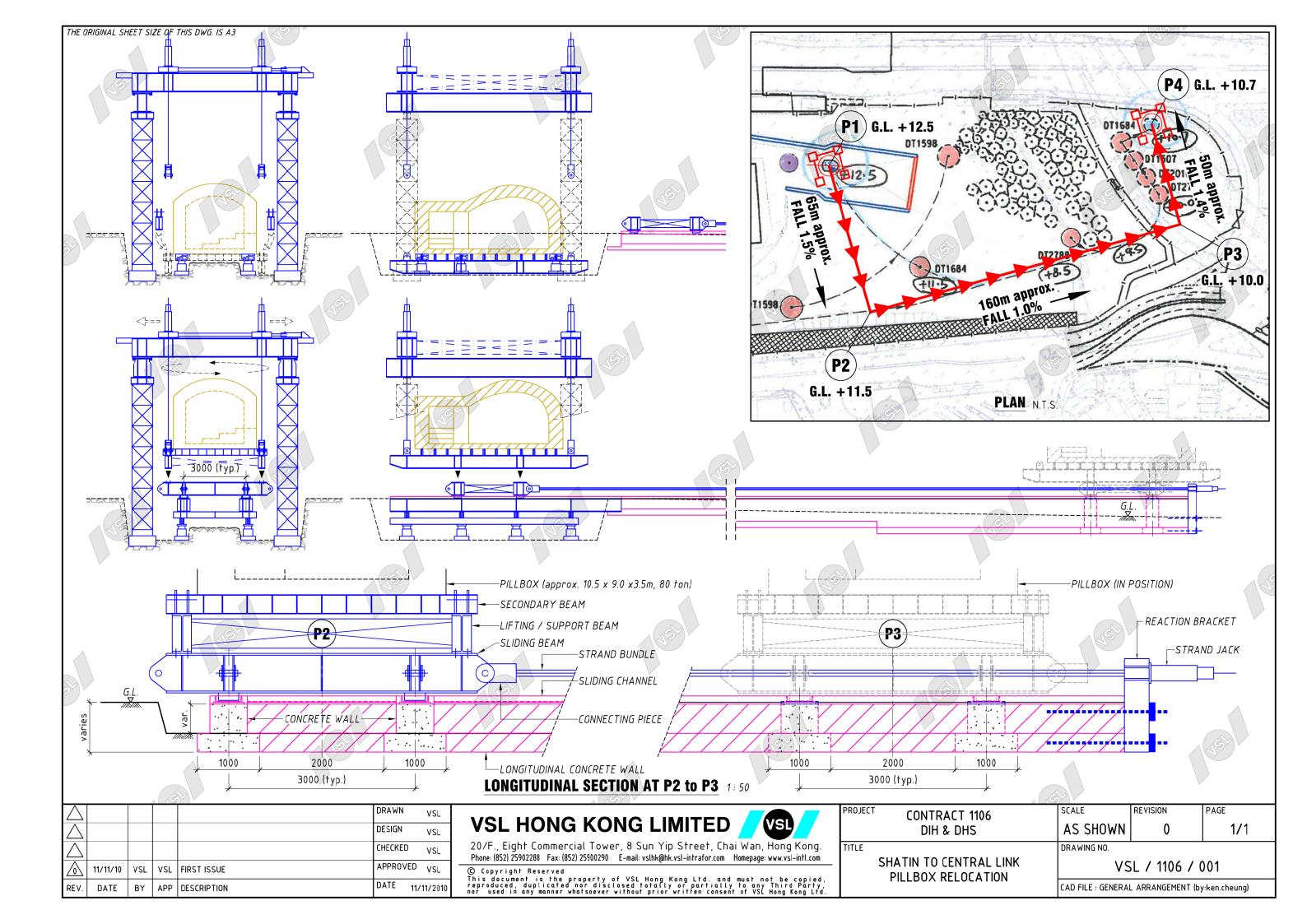
CONFIGURATION AND BASIC APPROXIMATE DIMENSIONS AND WEIGHT ESTIMATION OF PILLBOX



Weight Estimation of the Pillbox structure

Structural Member	Weight (kN)
Reinforced Concrete Roof	330
Concrete Block Walls	460
Reinforced Concrete Base Slab	250
Underground Storage Chamber	120
Total	1160

Notes:


- 1. The estimated weight is based on the upper bound of the readings taken on site.
- No measurement on the structural member size is taken at the Underground Storage Chamber and the weight above is based on engineering judgement. (refer to Drawing 1106/K/301/ACM/C01/005 for its overall size)

Appendix F

PROPOSED LIFTING AND TRANSPORTING METHOD FOR OLD PILLBOX PREPARED BY VSL HONG KONG LTD.

Appendix G

RESPONSES TO COMMENTS (REF. AMO'S E-MAIL DATED 16 NOV 2012 & AMO'S LETTER REF. () IN LCSD/CS/AMO 81-5/21 PT.19 DATED 14 DECEMBER 2012)

SCL – C1103 Detailed Design for Diamond Hill Station Further Structural Survey for the Old Pillbox (AMO's e-mail dated 16 November 2012)

Ref	Comment	Response from MTR Corporation
	Comment from AMO (e-mail dated 16 November 2012)	
	Part A – Preliminary Comments on Proposed Relocation of Pillbox	
1.	It is noted that piled foundation is used to support the temporary lifting platform. The pile pre-boring exercise shall not cause settlement to the pillbox structure.	Noted.
2.	Please clarify if the underground storage chamber (Drawing 1106/K/301/ACM/C01/005) is part of the pillbox construction and whether it would be retained as current lifting/relocation exercise failed to address this item in the temporary lifting platform.	The underground storage chamber is currently not intended to be retained based on available data.
3.	The estimated weight of the pillbox at 1160kN does not include the weight of soil, ring wall and temporary steelworks and these shall be allowed in the final lifting calculation.	The estimated weight given in Appendix E is only the self weight of the pillbox. The weight of the soil and the support systems will be allowed in the final lifting calculation which will be assessed by the Contractor.

Ref	Comment	Response from MTR Corporation
4.	The report Appendix XI clause 2.2.3 stated the core sample of the roof slab was not the standard requirement and the compression test of the core sample at 6.5 MPa is not conclusive to establish the concrete strength. Please confirm if further test be carried out to establish the concrete quality such that the roof is not too fragile to accommodate the relocation exercise.	The size of the core sample was reduced to 75mm to ensure as little damage as possible to the roof slab. Further tests can be carried out subject to AMO's agreement that destructive testing of the heritage structure is permitted.
5.	The report Appendix XI clause 3.2.3 also stated there is no evidence or trace of mortar between the concrete blocks in the load bearing walls. Care must be taken to minimize any vibration or lateral loads during the relocation exercise onto the pillbox structure.	Noted. The requirement to ensure the structure's stability during the relocation operation is stipulated in the Contract. Furthermore, the Contractor shall undertake an assessment and structural appraisal of the Old Pillbox structure after its relocation to ascertain the structural integrity and condition of the structure.
6.	The re-location exercise shall be studied further if there is sufficient space between the temporary storage location, final pillbox location and any new built structures on site to allow for the final relocation exercise. As the pillbox is not relocated to its final location, the consultant shall also be confident that the pillbox structure would not suffer further damage during another relocation.	Noted. As the final location for the Old Pillbox has yet to be identified, we are only able to prepare for the relocation operation to the temporary storage location. As stated in item 5 above, the Contractor shall undertake further assessment of the structure after its relocation to verify its integrity such that the subsequent relocation operation can address the mitigation measures required, if any.
7.	Please note that the concrete block work is much stronger than that shown on the test report as gross area was wrongly used in the calculation instead of the net area of the hollow block. However since the block sample was taken from site and justification shall be given as whether the sample block was truly the same block used for the pillbox construction.	As stipulated in the Contract, the Contractor shall undertake further tests to verify the condition of the Old Pillbox.

Ref	Coı	mment	Response from MTR Corporation
8.	moı	ase note that the above comments are not exhaustive and a re detailed study shall be carried out incorporating the ments in additional to the comments on drawings below.	Noted. See response to Item 7 above.
9.	stru	ase delete the alternative scheme from the CMP as well as this ctural survey as we understand that this scheme will not be her pursued.	The report has been revised as requested.
10.		ase include sequence schematics (diagram) for the removal of box and the dismantling of the Hangar.	These have been included in the CMP report.
11.	Dra 1.	wing 1106/T/301/ACM/C21/501 The levelled temporary steel lifting platform shall acknowledge the inclined base of the entrance steps with adequate vertical and lateral support as the RC ring wall is not able to retain the soil beneath the steps.	The staircase is above the base of the lifting platform, however, should this not be the case, layout of the RC ring wall can be adjusted to suit the inclined base.
	2.	Consideration shall be given to prevent soil escape into the side walls during the excavation of the tunnels beneath the pillbox.	Steel lagging plates or channels can be installed progressively to prevent soil escape into the excavation.
	3.	It is suggested the soil above the temporary steel lifting platform be consolidated with grouts.	Grouting requires drilling horizontal holes for installation of grout tubes within the 500mm gap between the horizontal pipe piles and the Pillbox base, the drilling operation might disturb the structure. Moreover, the grout under pressure might enter into the pillbox causing potential damage to the structure. This is not recommended.
	4.	Jacking of steel H sections shall be considered in lieu of pipe piles to improve the stiffness of the temporary lifting platform as the estimated deflection during the relocation is	Agreed that whilst steel H sections will improve the stiffness of the temporary platform, the jacking of the stiffer H sections will result in greater disturbance of the adjacent ground and

Ref	Co	mment	Response from MTR Corporation			
		considered excessive.	could damage the pillbox structure. This is not recommended. However, we would suggest contiguous pipe piles to form the base of the platform to improve the stiffness if required.			
	5.	The 914 mm universal beams A to F shall be drawn in the true scale to reflect the right proportion.	Noted.			
12.	Dra	awing 1106/T/301/ACM/C21/502				
	1.	The 914 mm universal beams A to F shall be drawn in the	Noted.			
		true scale to reflect the right proportion.				
13.	Dra	awing 1106/T/301/ACM/C21/503	The PC ring wall can be set back to give a 500mm electrone			
	1.	The ring wall shall be kept away from the pillbox structure	The RC ring wall can be set back to give a 500mm clearance from the pillbox base edges so that a 45 degree slope with			
		as welding of steel plate for the construction of RC ring wall	height of 500mm can be maintained in front of the pillbox to			
		will disturb soil around pillbox base and thereby causing	minimise disturbance to the soil around it.			
		settlement at edge of the structure (Section 3 refers).				
	2.	Consideration shall be given to prevent soil escape between pipe piles prior to welding of steel plates (View A refers).	Considering that the 219mm dia. horizontal pipe piles are closely spaced at 500mm c/c so that the gap is around 281mm, soil escape should be minimal. More stringent control can be achieved by carrying out the excavation of the subsequent welding of steel plates bay-by-bay such that exposed bare soil face can be further reduced.			

Ref	Comment	Response from MTR Corporation
14.	 Drawing 1106/T/301/ACM/C21/504 It is recommended the pillbox structure shall be propped and adequately supported laterally prior to the installation of the temporary steel lifting platform. Timber packing shall be placed to prevent direct contact between steelworks and the pillbox structure. Load from the steel post shall be spread at the base to prevent excessive load onto the existing slab. Lateral loop in steel rods shall be considered to wrap round the roof dome to prevent cracking of the roof due to lateral movement. The drawing title shows permanent strengthening details. Please clarify if the details are only temporary to facilitate the relocation and all strengthening work will be removed once in the final position. 	Additional notes have been added to drawing C21/504 to address comments 1 to 4. The strengthening works are proposed to be permanent to ensure structural stability of the structure after its relocation.
15.	Drawing 1106/T/301/ACM/C21/505 1. Scheme would not be commented as this lifting of roof option is withdrawn.	This drawing has been deleted.

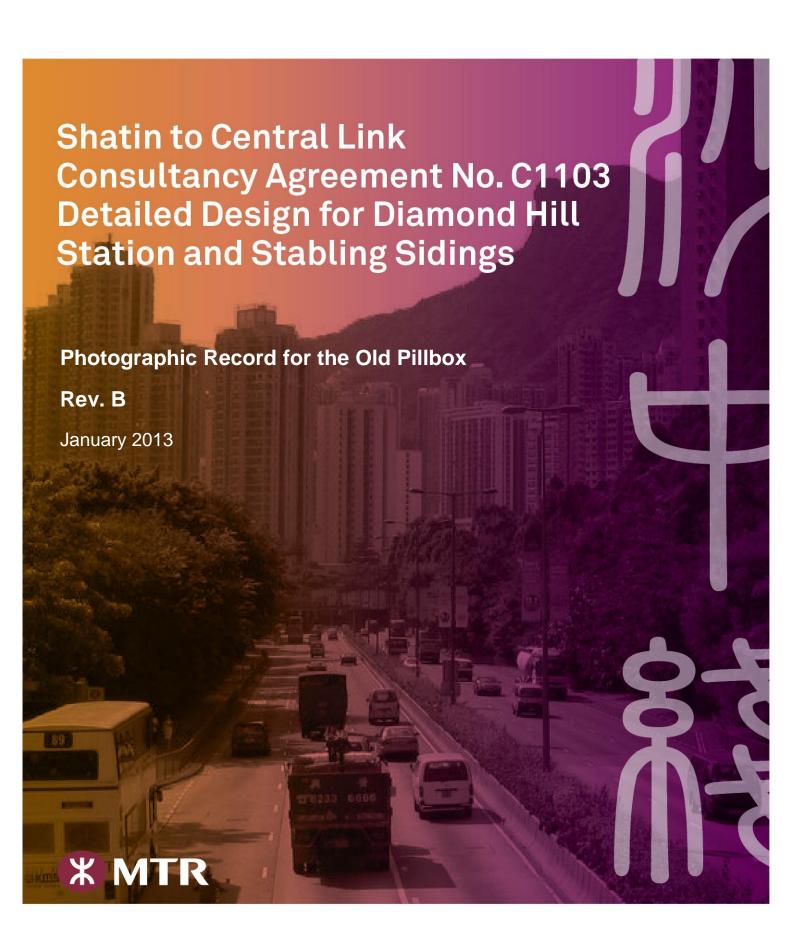
$\underline{SCL-C1103\ Detailed\ Design\ for\ Diamond\ Hill\ Station}$

Further Structural Survey for the Old Pillbox

(AMO's letter ref. () in LCSD/CS/AMO 81-5/21 Pt.19 dated 14 December 2012))

AMO's Comments on Further Structural Survey for the Old Pillbox	Response from MTR Corporation
AMO's letter ref. () in LCSD/CS/AMO 81-5/21 Pt.19 dated 14 December 2012	
General comments	
It is noted in Section 5.2.4 that there are still uncertainties in the structural information of the Pillbox. Please clarify what further investigation would be carried out. Please confirm if the proposed underpinning scheme, lifting up and transportation method is feasible.	Regarding underground condition, the Contractor should carry out pre-drilling for pre-bored H-piles and other additional vertical and horizontal boreholes where considered necessary to verify the ground condition prior to the relocation works. Moreover, the pile installation method adopted by the Contractor should be capable of drilling through underground obstruction.
Detailed comments	
In Section 3.2.2, Compression test results of blocks (commented previously) shall be revised.	The test results carried out by the testing contractor GCE were based on gross area to give an indication of the strength of the in-situ blocks. The strength with net area as commented will give a higher strength. The strength of masonry wall depends heavily on the interaction with mortar and not just the masonry block alone. These test results are for indication only and as stipulated in the Contract, the Contractor shall undertake further tests to verify the condition of the Old Pillbox.

	AMO's Comments on Further Structural Survey for the Old Pillbox	Response from MTR Corporation
2.	As mentioned in Section 5.3.1, a separate study has been undertaken by VSL Hong Kong Ltd., please provide more information of this company such as specialization, job reference etc.	VSL was consulted by the C1103 Diamond Hill Station detailed design consultant to appraise the feasibility of lifting the entire Old Pillbox for relocation. We would advise that the construction contract 1106 for the construction of the Diamond Hill Station has been awarded in December 2012. The Contractor is required to engage suitably qualified party to undertake the relocation works, details of the proposed company and job reference will be submitted by the Contractor in due course.
3.	In Section 6.1.7, a heavy weight lifting specialist sub-contractor is mentioned. Please clarify what a heavy weight lifting specialist contractor is and if there is any job reference or other information of the sub-contractor.	Please see responses to item 2 above.
4.	Our further comments to Appendix G, Responses to comments are as follow:-	
	For Item 2, justification shall be given as to why the underground chamber is less significant in heritage value or whether it was not part of the pillbox.	The underground chamber is not considered as a part of the pillbox because: 1 According to site inspection of the Old Pillbox, there is no physical connection between the chamber and the interior of the Old Pillbox.
		 No sign of military purpose regarding this kind of covered underground chamber could be identified. According to general typological study of pillboxes, no such structure was found, except, there is one pillbox in Britain with structure form similar to that of the Diamond Hill pillbox. However, they differed from


AMO's Comments on Further Structural Survey for the Old Pillbox	Response from MTR Corporation
	their location, size and appearance. Please see the attached document showing the comparison of both pillboxes.
For Item 11, sub-item 2, no matter how minimal is the soil escape must be soil loss. If contiguous pipe piles are proposed, there wo be such concern.	
For Item 11, sub-item 3 & 4, in view of the excavation method will soil loss between the pipe piles prior to welding of steel plates, ground necessary to fill up the void left and does not allow soil readjusting during the re-location. We would accept contiguous pipe piles howith greater diameter to improve stiffness while at the same time avanced of plate welding between the pipes and thus alleviate so between the pipes.	that the stiffness is doubled and soil loss between pipes is alleviated.
5. It is inexplicable that the responses to our previous comments we incorporated into the report and the design.	ere not The comments are addressed in the report Rev B.

According to general typological study of pillboxes, no such structure was found, except, there is one pillbox in Britain with structure looked similar to that of Diamond Hill pillbox. However, they differ from their location, size and appearance.

Table below: Comparison of the Diamond Hill pillbox and one of the pillboxes in Britain.

<u>·</u>	<u>-</u>
Diamond Hill Pillbox	British Pillbox
PALED OPENIO	9 <u>05</u>
The structure is away from entry	The structure is next to entry
(Covered) underground abomb or	(Open) sit
_	(Open) pit
Approx. 2m x 1.7m (size estimation refers to p.9, Condition Survey for	Approx. 2.5m x 2m
the Existing Stone House and Pillbox at DIH, Feb 2009)	Αρριολ. Σ.οπ λ Σπ
	(Covered) underground chamber Approx. 2m x 1.7m

MTR Corporation Limited

Shatin to Central Link

Consultancy Agreement No. C1103

Detailed Design for Diamond Hill Station and **Stabling Sidings**

Photographic Record for the Old Pillbox

Rev. B

January 2013

Date	Rev.	Rev. Prepared		Checked		Approved	
29 Nov 2012	0	PC		HLHK		IMW	
24 Dec 2012	А	PC		HLHK		IMW	
30 Jan 2013	А	PC	no Oca	HLHK	the Len	IMW	alde La
			14 1.		1		

ePMS Transmittal No.: C1103-COR-ACM-SUR-000004A

File: 60146520 / 15.9.21

Table of Contents

- 1. INTRODUCTION
- 2. SITE LOCATION AND DESCRIPTION
- 3. METHEDOLOGY
- 4. ACKNOWLEDGEMENT

Appendix

Appendix A Responses to Comments

Photographic Record for the Old Pillbox

December 2012

Prepared for

MTR Corporation Limited

Preparded by

AECOM Asia company Limited

13/F., Tower 2, Grand Central Plaza, 123 Shatin Rural Committee Road, Shatin, New Territories, Hong Kong SAR

T +852 3922 9000 F+852 3922 9791 www.aecom.com

Supported by

SEE Network Limited

Room 727, 7/F., Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, New Territories, Hong Kong SAR T 2127 4503 F 307 9037 www.project-see.net

Contents

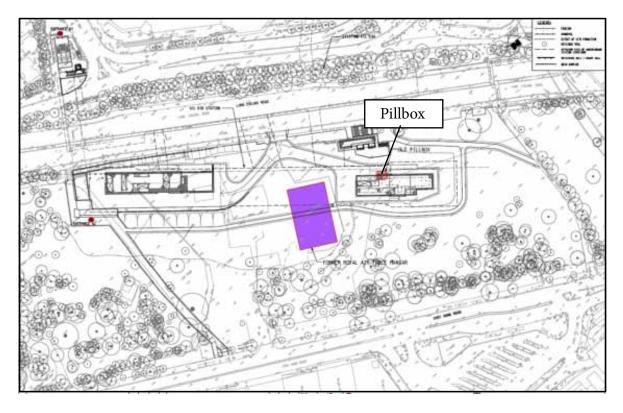
1. Introduction

2. Site location and description

3. Methodology

4. Acknowledgement

List of Appendices


Photo #1	View of pillbox roof.
Photo #2	View of pillbox roof.
Photo #3	Elevated view of pillbox entrance.
Photo #4	Elevated view of pillbox.
Photo #5	Elevation of the pillbox.
Photo #6	Elevation of the pillbox. An above ground embrasure is seen.
Photo #7	Elevation of the pillbox.
Photo #8	Elevation of the pillbox.
Photo #9	Elevation of the pillbox
Photo #10	View of the entrance. A spiral staircase leads to the semi-underground pillbox.
Photo #11	View of the entrance.
Photo #12	View of the loop-holed blast wall with narrow mounting.
Photo #13	An inside view of the entrance.
Photo #14	View of the embrasure.
Photo #15	View of the embrasure.
Photo #16	View of the embrasure.
Photo #17	View of the embrasure.
Photo #18	View of the embrasure.
Photo #19	The floor of the pillbox.
Photo #20	The floor of the pillbox.
Photo #21	The ceiling of the pillbox. Exposed steel bars can be seen.
Photo #22	The ceiling at the pillbox entrance.
Photo #23	An inside-looking out view of the entrance.
Photo #24	View of the blast wall.
Photo #25	The embrasure – detail.
Photo #26	The embrasure – detail.
Photo #27	The splayed embrasure – detail.
Photo #28	A sign, 'Ha Yuen Ling Fire Brigade no.6', attached on the external wall.

1. Introduction

- 1.1. SEE Network Limited (hereafter SEE) was commissioned by AECOM to carry out a photographic survey of the historic-grade Old Pillbox located within the construction area of the Shatin to Central Link.
- 1.2. The survey conforms to a specification making reference to *Understanding Historic Buildings:*A guide to good recording practice.
- 1.3. This photographic documentary archive will be submitted to the Antiquities and Monuments Office for long-term storage.

2. Site location and description

- 2.1. The pillbox is located at a vacant site in Diamond Hill. The site comprises approximately 7.2 hectares of land bounded by four vehicular roads: the Kwun Tong by-pass to the east, Choi Hung Road to the south, Po Kong Village Road to the west and Lung Cheung Road to the north.
- 2.2. The pillbox lies to the eastern side of the vacant site.

3. Methodology

- 3.1. The building survey was undertaken by Leung Chi Fai on 24-25 February, 28 February and 1 and 3 March 2011, using a Canon 1Ds camera with a 16-35mm lens.
- 3.2. Photographs were taken of the following: -
- All external elevations
- All external elevations
- The roof structure of the pillbox, internally and externally
- Architectural details, i.e. the embrasure, the signage, loop-holed blast wall
- A general internal photographic record of the building. Shots were taken of each side from sufficient points to show the form, general appearance and methods of construction.

3.3. Limitations:

- No direct overhead view has been taken to show the irregular dome-shape of the pillbox, due to difficulties in accessing above the pillbox.
- Full overview of the ceiling is not available because the low ceiling height limits the view angle.

4. Acknowledgement

4.1. SEE Network would like to thanks AECOM for this commission.

Photo # 1
View of pillbox roof.

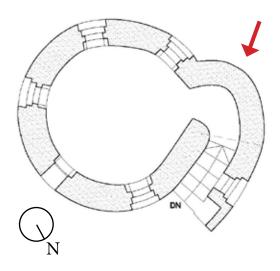


Photo # 2
View of pillbox roof.

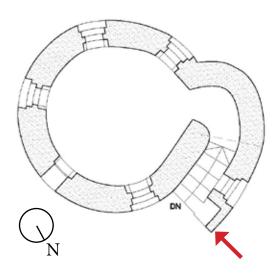
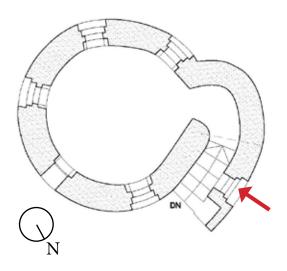
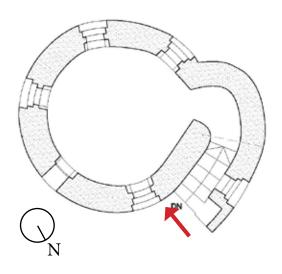
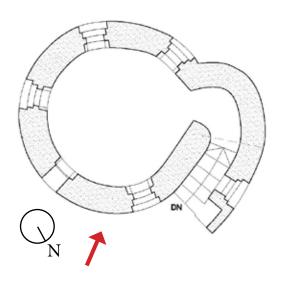


Photo # 3
Elevated view of pillbox entrance.


Photo # 4
Elevated view of pillbox.

View from exterior

Photo # 5
Elevation of the pillbox.

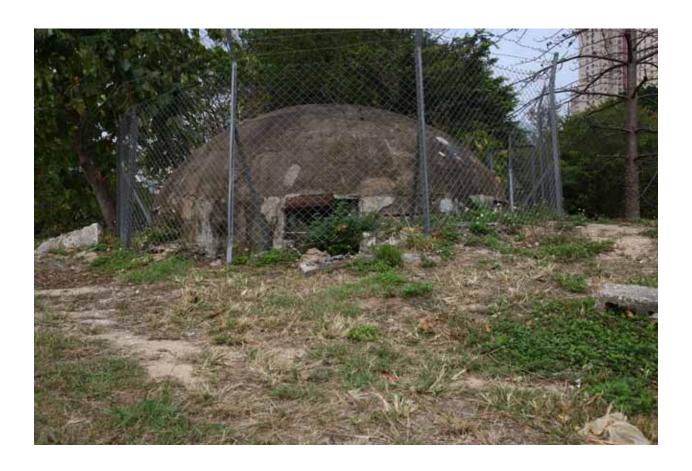


Photo # 6

Elevation of the pillbox. An above ground embrasure is seen.

Photo # 7
Elevation of the pillbox.

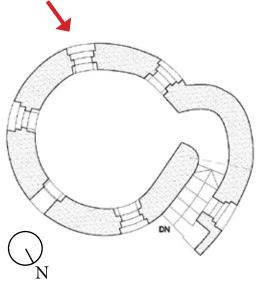


Photo # 8
Elevation of the pillbox.

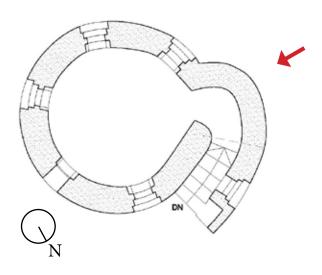


Photo # 9
Elevation of the pillbox.

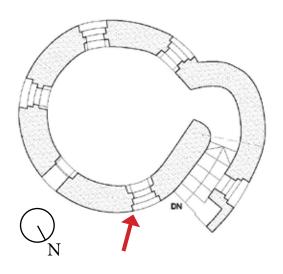


Photo # 10

View of the entrance. A spiral staircase leads to the semi-underground pillbox.

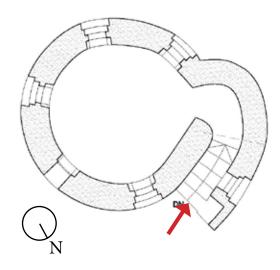


Photo # 11
View of the entrance.

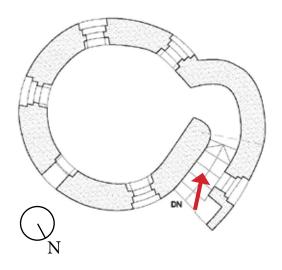
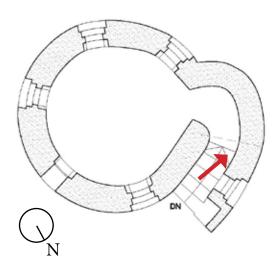



Photo # 12

View of the loopholed blast wall with narrow mounting.

View from Interior

Photo # 13
An inside view of the entrance.

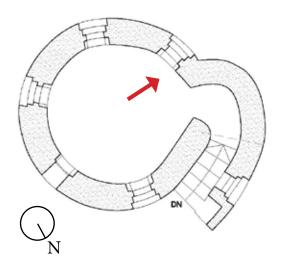


Photo # 14
View of the embrasure.

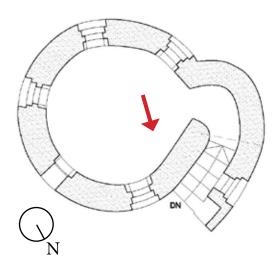


Photo # 15
View of the embrasure.

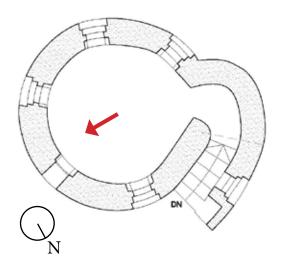


Photo # 16
View of the embrasure.

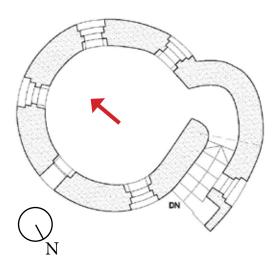


Photo # 17
View of the embrasure.

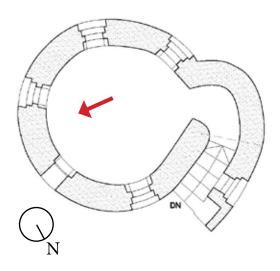


Photo # 18
View of the embrasure.

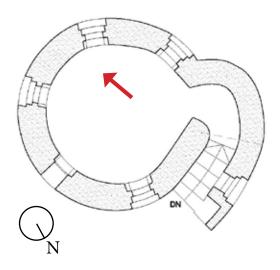


Photo # 19
The floor of the pillbox.

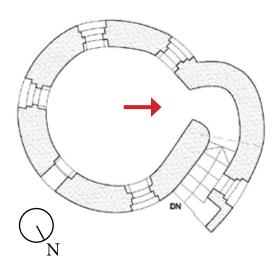


Photo # 20
The floor of the pillbox.

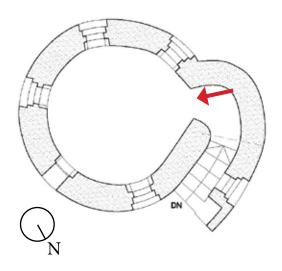


Photo # 21
The ceiling of the pillbox. Exposed steel bars can be seen.

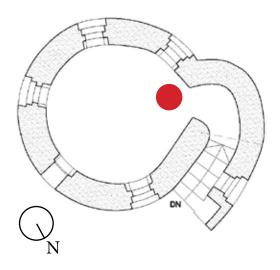


Photo # 22
The ceiling at the pillbox entrance.

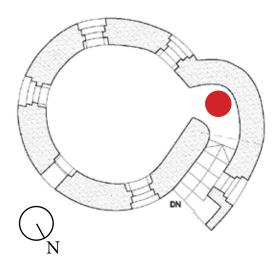


Photo # 23
An inside-looking out view of the entrance.

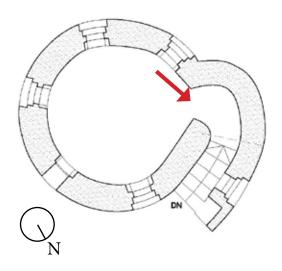
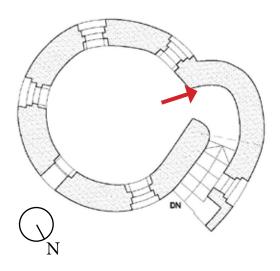



Photo # 24
View of the blast wall.

Close-up Details

Photo # 25
The embrasure - detail.

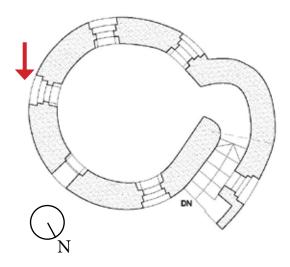
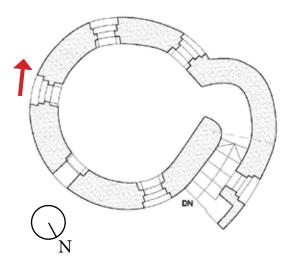



Photo # 26
The embrasure -detail.

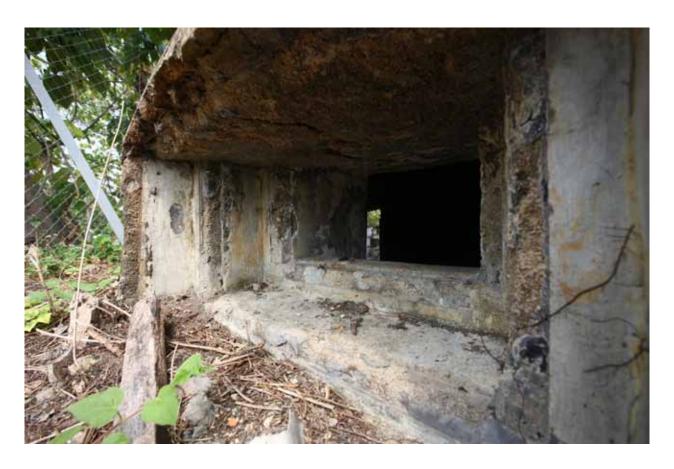


Photo # 27
The splayed embrasure -detail.

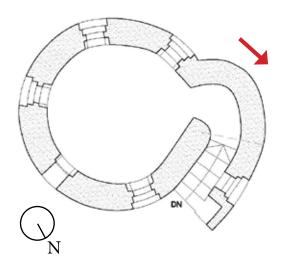
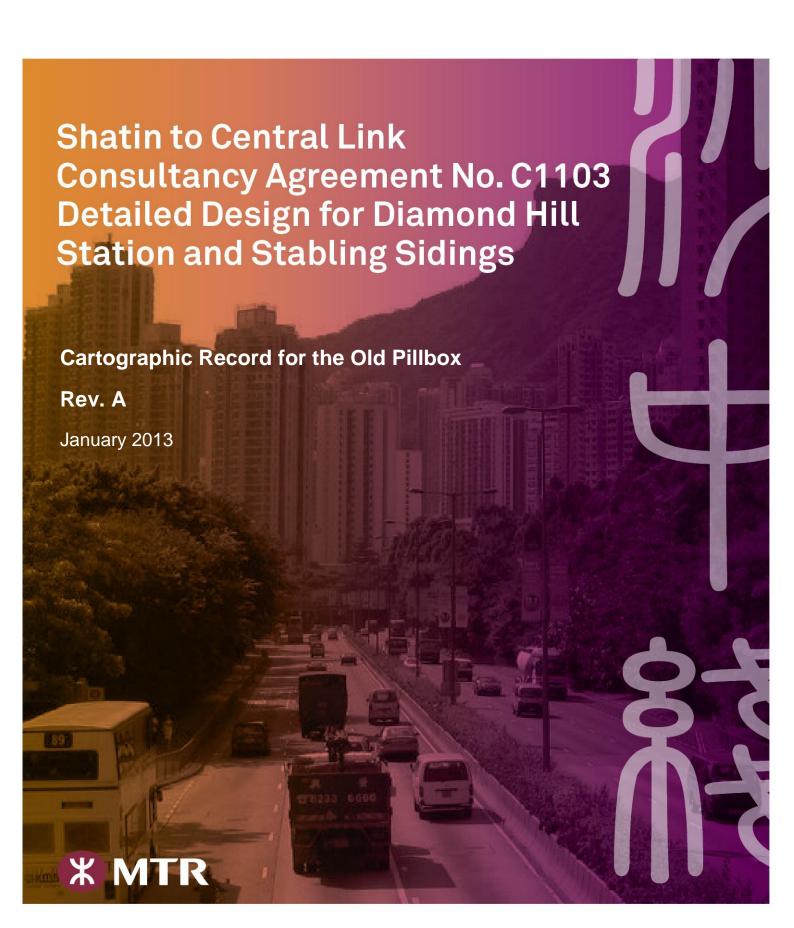



Photo # 28

A sign, "Ha Yuen Ling Fire Brigade no. 6", attached on the external wall.

Appendix A Responses to Comments


Rev. B January 2013

SCL – C1103 Detailed Design for Diamond Hill Station Photographic Record for the Old Pillbox (AMO's letter ref. () in LCSD/CS/AMO 81 5/21 detect 17 Jo

(AMO's letter ref. () in LCSD/CS/AMO 81-5/21 dated 17 January 2013)

	AMO's Comments on Photographic Record for the Old Pillbox	Response from MTR Corporation
AM	IO's letter ref. () in LCSD/CS/AMO 81-5/21 dated 17 January 2013	
	ank you for your letter dated 27.12.2012. Please note our comments follow:-	
For	the Old Pillbox	
1.	Good quality photos in printed & jpeg form. However it would be even better if files of larger resolution are submitted.	The resolution of the photos will become larger when opened in "Photoshop", which should generally good enough for viewing and printing in reasonable size. Moreover, the issue is being dealt with separately and separate submission of soft copy photos will be made if deem necessary.
2.	The entrance roof (photo 2) is greatly distorted. Please submit a replacement photo taken at a higher level when available.	All photos were taken via standard camera lens as stated in Section 3.1 of the report. Photo no. 2 was taken at a front view of the Pillbox with an appropriate manner and reasonable skill. Distance factor should be taken into account for interpretation of the photo.
3.	Please check if statements in Section 3.3 have been repeated. Please also explain the reason for no provision of photo for the overview of the ceiling of the Pillbox in Section 3.3.	Noted. The repeated statement due to typo was deleted. For interior, full overview of the ceiling is not available because of the low ceiling height that limits the view angle. The best practicable photos have been provided in Photo nos. 21 and 22. Such limitations are also stated in Section 3.3 of the report.

MTR Corporation Limited

Shatin to Central Link

Consultancy Agreement No. C1103

Detailed Design for Diamond Hill Station and **Stabling Sidings**

Cartographic Record for the Old Pillbox

Rev. A

January 2013

Date	Date Rev. Prepared		ed	Checked		Approved		
Nov 2012	0	PC		/	HLHK		IMW	
Jan 2013	Α	PC	00	am	HLHK	fele Le	IMW	a Hole I
			11			r –	/	1
						l i		

ePMS Transmittal No.: C1103-COR-ACM-SUR-000007

File: 60146520 / 17.A3.0J3

This report is prepared for MTR Corporation Limited (MTR) and is given for its sole benefit in relation to and pursuant to Shatin to Central Link Consultancy Agreement No. C1103 – Detailed Design for Diamond Hill Station and Stabling Sidings and may not be disclosed to, quoted to or relied upon by any person other than MTR (and other 3rd party recipient(s) as identified by MTR in accordance with Clause 14 of the General Conditions of Employment in relation to the Shatin to Central Link Entrustment Agreements) without our prior written consent. No person (other than MTR) into whose possession a copy of this report comes may rely on this report without our express written consent and MTR may not rely on it for any purpose other than as described above.

Table of Contents

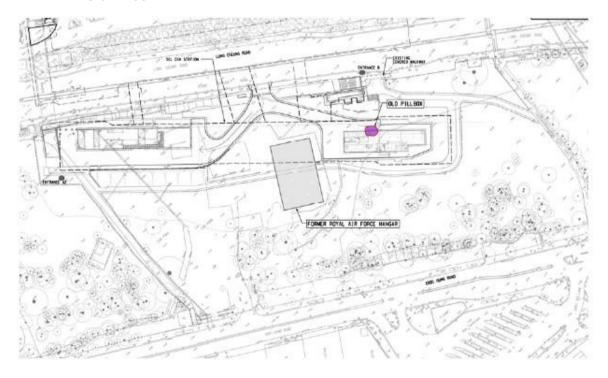
- 1. INTRODUCTION
- 2. SITE LOCATION AND DESCRIPTION
- 3. METHODOLOGY

Drawings

Drawing No.	Title
PILLBOX-PL-00	Drawing list
PILLBOX-PL-01	Pillbox – Floor Plan and Roof plan
PILLBOX-EL-01	Pillbox – South Elevation and East Elevation
PILLBOX-EL-02	Pillbox – North Elevation and West Elevation
PILLBOX-SE-01	Pillbox – Section A and Section D
PILLBOX-SE-02	Pillbox – Section B and Section C

Appendix

Appendix A Responses to Comments


Rev. A January 2013

1. INTRODUCTION

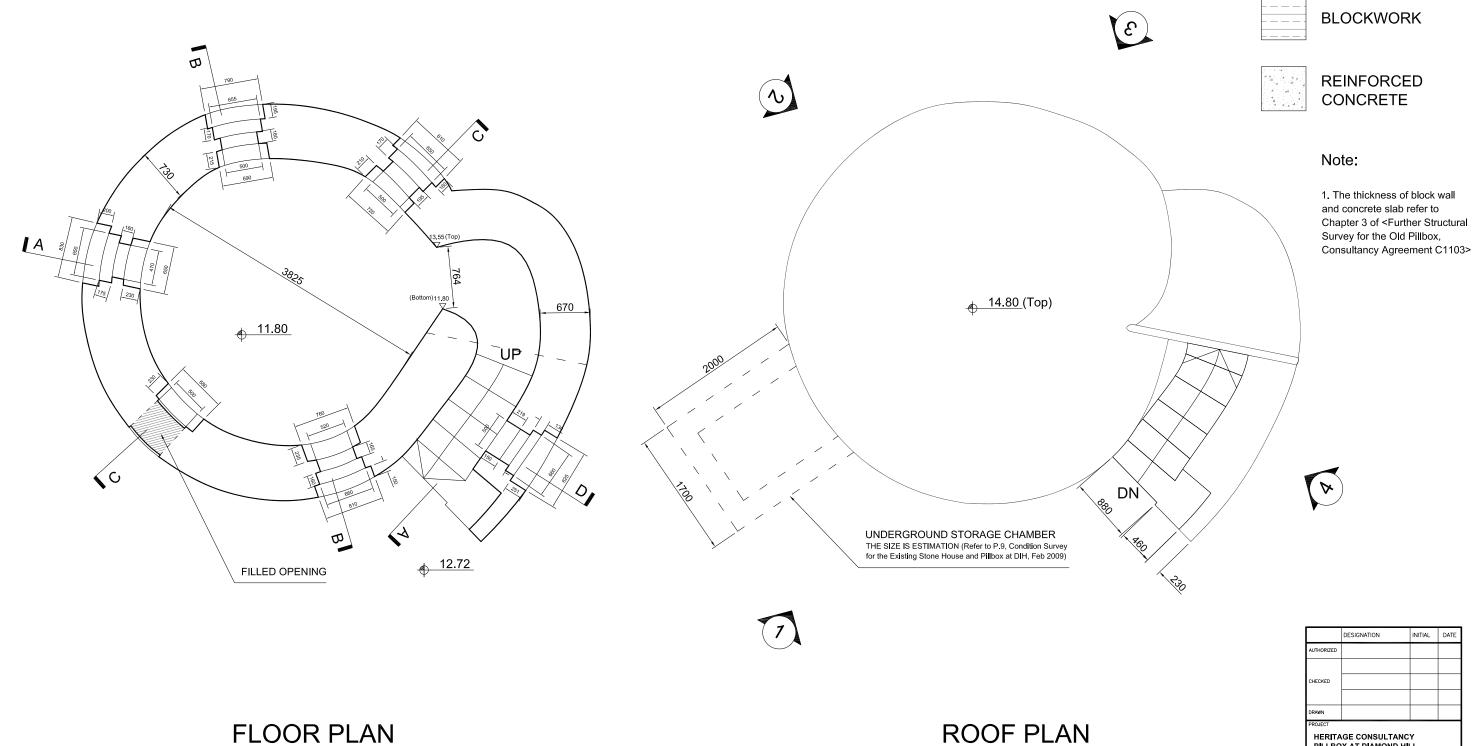
- 1.1 The EIA study for Tai Wai to Hung Hom Section recommended that the Old Pillbox to be affected by the construction of the DIH would be relocated. Cartographic record would be required to document the Old Pillbox prior to its relocation.
- This Record is to present the drawn to scale of the existing Old Pillbox on site. The documentation can help recreate the referential information that can show the possible original form, both visually and physically, of the historical structure for future relocation and reinstatement purposes.
- 1.3 This Record will be submitted to the Antiquities and Monuments Office for documentary archive.

2. SITE LOCATION AND DESCRIPTION

- 2.1 The Old Pillbox is presently located at a vacant site in Diamond Hill. The site comprises approximately 7.2 hectares of land bounded by four vehicular roads: the Kwun Tong by-pass to the east, Choi Hung Road to the south, Po Kong Village Road to the west and Lung Cheung Road to the north.
- The pink hatched area indicated in the map shown below is the location of the Old Pillbox.

Rev. A January 2013

3. METHODOLOGY

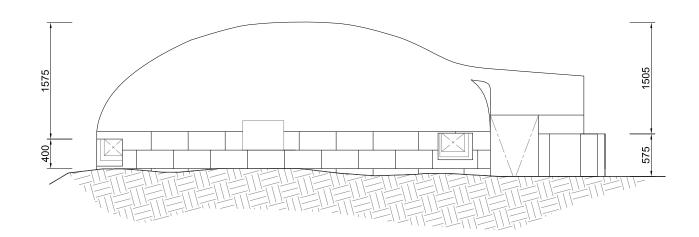

- 3.1 The cartographic record will involve direct measurement, sketch and surveying. A team of 6-8 would carry out fieldwork to take measurement and record all dimensions of major architectural features of the structure by using simple measuring devices like measuring tape and sonic meter. The team would avoid climbing up high level for measurements. Instead, electronic theodolite or alternative instruments would be used to determine the heights and elevations the structure.
- This exercise would be completed in accordance with normal good practice using the following procedure and work sequence. The safety guidelines for future inspection and surveys prepared by David Blair of Envex (HK) Ltd. would then be followed:
 - Make sketches of layouts, elevations and sections;
 - Measure the structure by simple measuring devices;
 - Take visual examination of building materials used for the structure;
 - Use electronic theodolite or alternative instruments to determine the elevations of the structure;
 - Take photographic record as cross reference and visual archive;
 - Verify all dimensions and check for discrepancies between each measurement;
 - Visit site again if discrepancies found;
 - Represent the record of the structure by orthographic drawings.

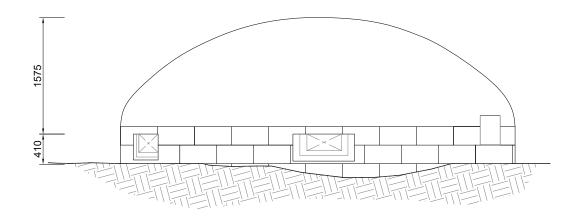
Rev. A January 2013

Drawings

	II						 	
DWG. NO.	DWG. TITLE		RE	:VIS	SIC	NC		
		/28/ m/11						
PL-00	DRAWING LIST	11/11	/-				 	
			/					
PLANS								
PL-01	FLOOR PLAN & ROOF PLAN	//	/					
ELEVATIONS								
EL-01	SOUTH ELEVATION & EAST ELEVATION	/	/					
EL-02	NORTH ELEVATION & WEST ELEVATION	/	/					
SECTION								
SE-01	SECTION A & SECTION D							
SE-02	SECTION B & SECTION C							
								

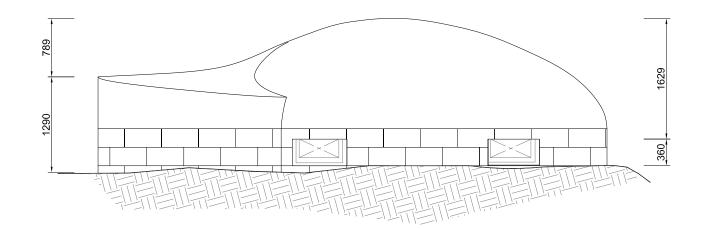
	DESIGNATION	INITIAL	DAT
AUTHORIZED			
CHECKED			
DRAWN			
2.000	NG LIST		
SCALE .			
DRAWING NO)X-PL-00		
DRAWING NO)X-PL-00		
PILLBO	0X-PL-00		
PILLBO	X-PL-00		
PILLBO)X-PL-00		

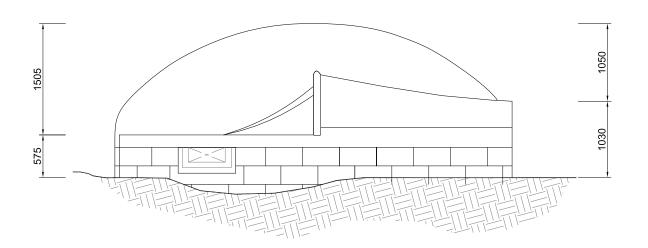



FLOOR PLAN AND ROOF PLAN **PILLBOX DIAMOND HILL**

ROOF PLAN

	DEGIGITATION	 0,112
AUTHORIZED		
CHECKED		
DRAWN		
DRAWING TITLE	X AT DIAMOND HII	
SCALE 1:	50 (A3)	
DRAWING NO		
PILLBO	X-PL-01	
SOURCE		

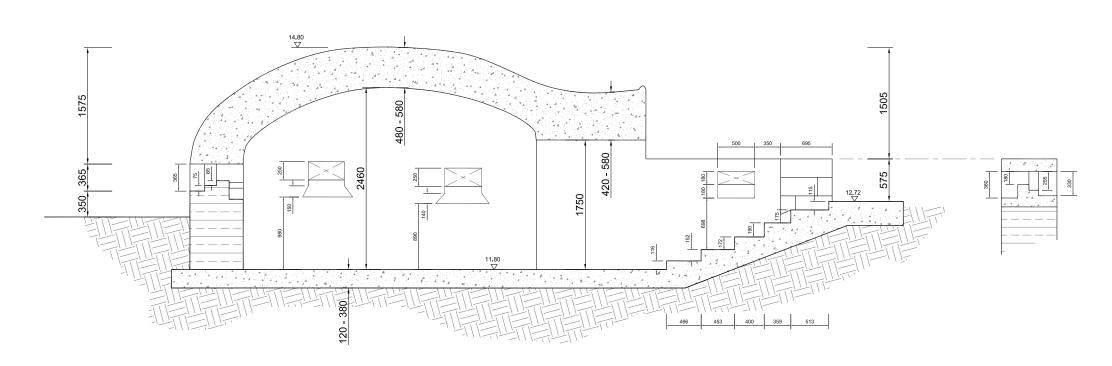

EAST ELEVATION (VIEW 1, PILLBOX-PL-01)


SOUTH ELEVATION (VIEW 2, PILLBOX-PL-01)

ELEVATIONS
PILLBOX
DIAMOND HILL

) 1 2 5m

	DESIGNATION	INITIAL	DATE
AUTHORIZED			
CHECKED			
DRAWN			
	GE CONSULTANC X AT DIAMOND HI		
SOUTH	ELEVATION ELEVATION		
SCALE 1:	50 (A3)		
DRAWING NO			
PILLBO	X-EL-01		
SOURCE			


WEST ELEVATION (VIEW 3, PILLBOX-PL-01)

NORTH ELEVATION (VIEW 4, PILLBOX-PL-01)

ELEVATIONS
PILLBOX
DIAMOND HILL

0	1	2	5m

	DESIGNATION	INITIAL	DATE
AUTHORIZED			
CHECKED			
DRAWN			
DRAWING TITLE			
NORTH	ELEVATION TELEVATION		
SCALE 1:	50 (A3)		
DRAWING NO			
PILLBO	X-EL-02		
SOURCE			
	<u> </u>		

SECTION A

SECTION D

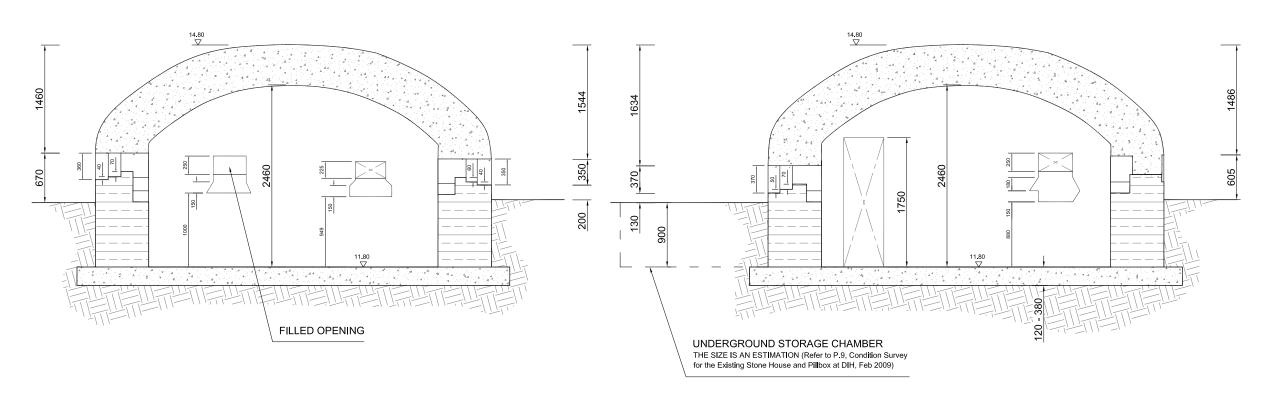
SECTIONS
PILLBOX
DIAMOND HILL

) 1 2 5m

Note:

The thickness of block wall and concrete slab refer to Chapter 3 of <Further Structural Survey for the Old Pillbox, Consultancy Agreement C1103>

	DESIGNATION	INITIAL	DATE
AUTHORIZED			
CHECKED			
DRAWN			
PILLBO	GE CONSULTANC X AT DIAMOND HI		
SECTIC & SECT	ON A		
SCALE 1:	50 (A3)		
DRAWING NO			
PILLBO	X-SE-01		
SOURCE			



REINFORCED CONCRETE

Note:

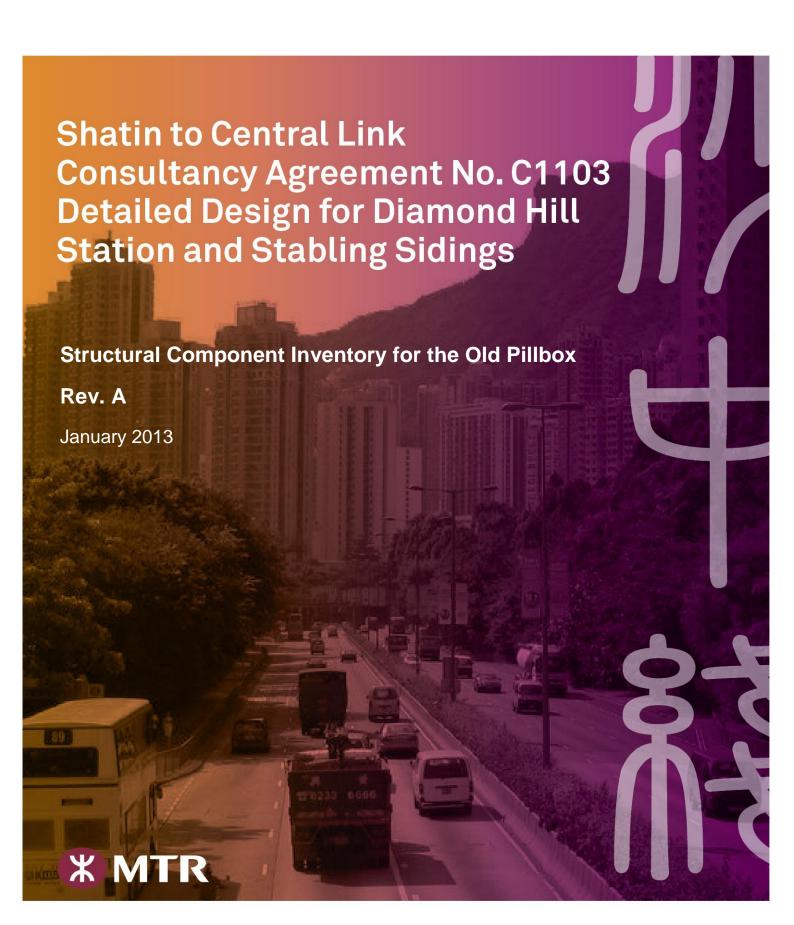
1. The thickness of block wall and concrete slab refer to Chapter 3 of <Further Structural Survey for the Old Pillbox, Consultancy Agreement C1103>

SECTION B SECTION C

SECTIONS
PILLBOX
DIAMOND HILL

0 1 2 5m

	DESIGNATION	INITIAL	DAT
AUTHORIZED			
CHECKED			
DRAWN			
SECTION	ON B		
& SECT	IJON C		
00WE 4 -	50 (A3)		
DRAWING NO			
DRAWING NO	0X-SE-02		
DRAWING NO			
PILLBO			
PILLBO			
PILLBO			
PILLBO			


Appendix A Responses to Comments

SCL – C1103 Detailed Design for Diamond Hill Station Cartographic Record for the Old Pillbox

(AMO's letter ref. () in LCSD/CS/AMO 81-5/21 Pt.20 dated 2 January 2013)

	AMO's Comments on Cartographic Record for the Old Pillbox	Response from MTR Corporation
(Al	MO's letter ref. () in LCSD/CS/AMO 81-5/21 Pt.20 dated 2 January 2013)	
Ge	neral comments	
A.	Regarding the underground storage chamber, please carry out further study and investigation for more information such as structure, use and condition, in order to assess the significance of the Pillbox. This should also be applied in the CMP.	Further structural investigation of the pillbox will be undertaken by the Contractor.
В.	Please study how to handle the underground storage chamber when lifting up the Pillbox.	Further structural investigation of the pillbox will be undertaken by the Contractor.
Spe	ecific comments	
Dra	nwing No. PILLBOX-PL-01	
1.	In the Floor Plan, please use thicker lines to indicate the wall of the pillbox to be consistent with the portion between A & B.	Thicker lines have been indicated on the drawings.
Dra	awing No. PILLBOX-EL-01 & 02	
2.	Please include the view no. (as shown in Drawing No.PILLBOX-PL-01) beside the caption.	View nos. have been included on the drawing.

MTR Corporation Limited

Shatin to Central Link

Consultancy Agreement No. C1103

Detailed Design for Diamond Hill Station and **Stabling Sidings**

Structural Component Inventory for the Old Pillbox

Rev. A

January 2013

Date	Rev.		Prepared		Checked	Α	pproved
Dec 2012	0	PC		HLHK		IMW	
Jan 2013	А	PC	an ann	HLHK	1600 her	IMW	14. ble La
			W O		1		7

ePMS Transmittal No.: C1103-COR-ACM-SUR-000009

File: 60146520 / 17.A3.0J1

Table of Contents

- 1. INTRODUCTION
- 2. SITE LOCATION AND DESCRIPTION
- 3. METHODOLOGY

Appendices

Appendix A Inventory Catalog of Components

Appendix B Location Drawings of Components

Appendix C Photographs of Components

Appendix D Responses to Comments

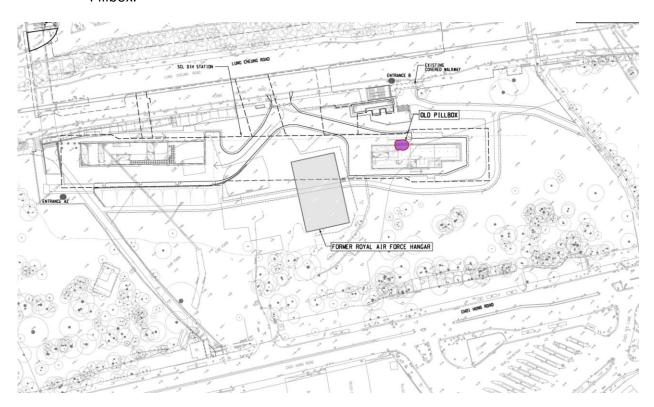
Drawings

Drawing No. Title

1106_T_301_ACM_C21_501B Pillbox Relocation Underpinning (Sheet 1)

1106_T_301_ACM_C21_502B Pillbox Relocation Underpinning (Sheet 2)

1106_T_301_ACM_C21_504B Pillbox Relocation Proposed Permanent Strengthening


Method for Entire Structure (Sheet 3)

1. INTRODUCTION

- 1.1 The EIA study for Tai Wai to Hung Hom Section recommended that the Old Pillbox to be affected by the construction of the DIH would be relocated. Structural Component Inventory would be required to document the Old Pillbox prior to its relocation.
- 1.2 This inventory is to provide a proper record of all components of the Old Pillbox. The record forms the basis for the Pillbox database. The database may then be analyzed to formulate the reinstatement strategy in future.
- 1.3 This Inventory will be submitted to the Antiquities and Monuments Office for documentary archive.

2. SITE LOCATION AND DESCRIPTION

- The Old Pillbox is presently located at a vacant site in Diamond Hill. The site comprises approximately 7.2 hectares of land bounded by four vehicular roads: the Kwun Tong by-pass to the east, Choi Hung Road to the south, Po Kong Village Road to the west and Lung Cheung Road to the north.
- 2.2 The pink hatched area indicated in the map shown below is the location of the Old Pillbox.

Site plan showing the location of Old Pillbox

3. METHODOLOGY

- 3.1 The Inventory will involve numbering and labelling of the components of the Old Pillbox. The data will be updated during the relocation process.
- 3.2 The Inventory will provide the following information:
 - A real component checklist of the structure that included part numbers and locations;
 - Drawings to indicate the locations of the components;
 - Photographs of the components.

Appendix A Inventory Catalog of Components

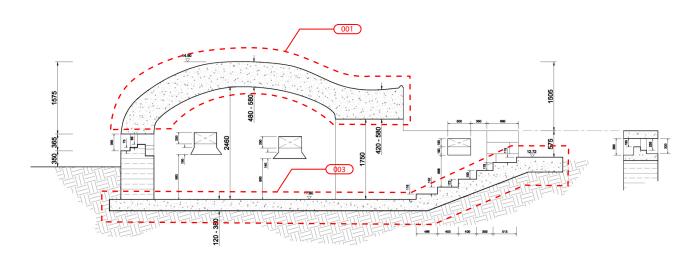
Item	* Code	Desc	ription	Location		Remarks
		Component Type	Material	Zoning	Plan Ref.	
001	R-001	Roof slab (main)	Reinforced concrete	Over the Pillbox	SE-01	-
002	W-002	Wall	Block works	Pillbox wall and staircase	PL-01	-
003	G-003	Floor slab	Reinforced concrete	Pillbox floor and staircase	SE-01	-
004	W-004	Embrasure	Concrete	Pillbox wall (North side)	PL-01	-
005	W-005	Embrasure	Concrete	Pillbox wall (East side)	PL-01	Filled opening
006	W-006	Embrasure	Concrete	Pillbox wall (South East side)	PL-01	-
007	W-007	Embrasure	Concrete	Pillbox wall (South side)	PL-01	-
800	W-008	Embrasure	Concrete	Pillbox wall (West side)	PL-01	-
009	W-009	Embrasure	Concrete	Wing wall	PL-01	-

Legend

* R-001: Roof Slab No. 001 W-002: Wall No. 002

G-003: Ground Slab No. 003

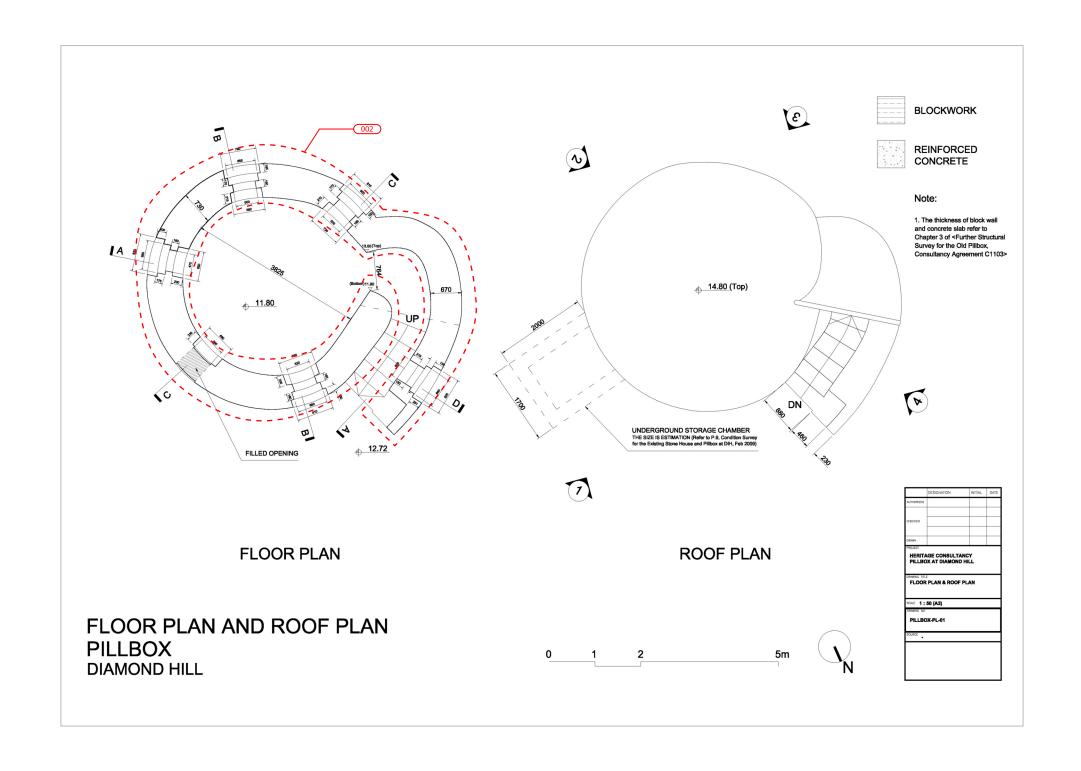
Appendix B Location Drawings of Components

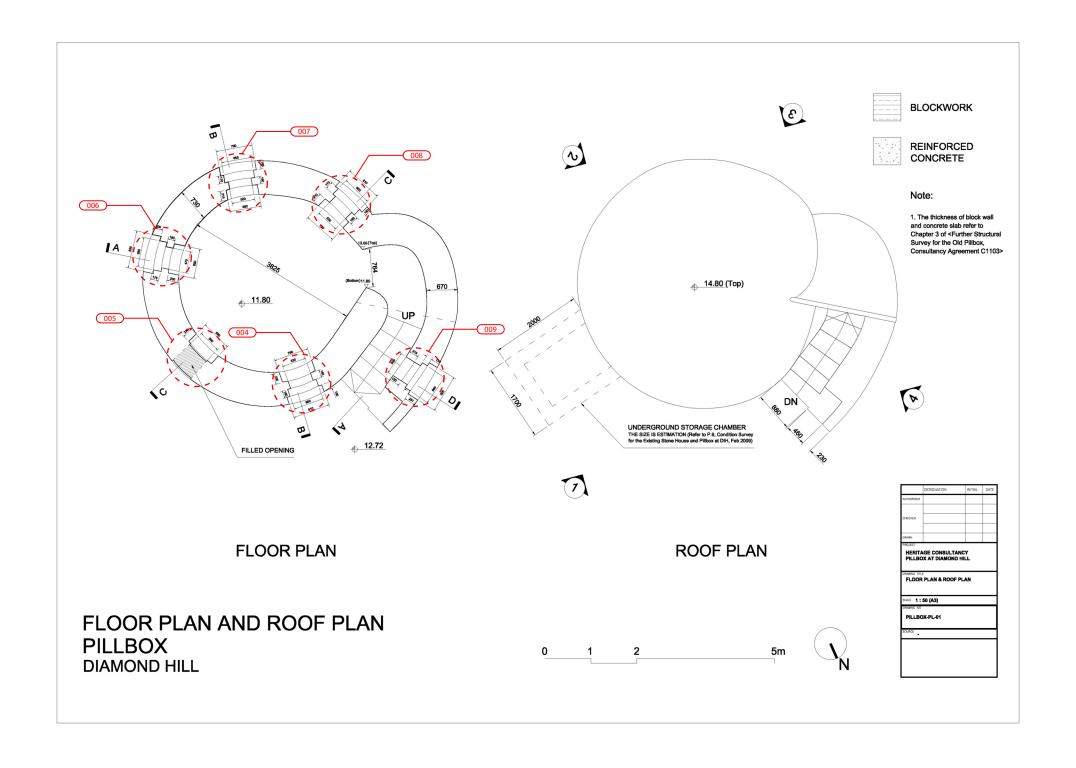


REINFORCED CONCRETE

Note:

 The thickness of block wall and concrete slab refer to Chapter 3 of <Further Structural Survey for the Old Pillbox, Consultancy Agreement C1103>




SECTION A SECTION D

SECTIONS PILLBOX DIAMOND HILL

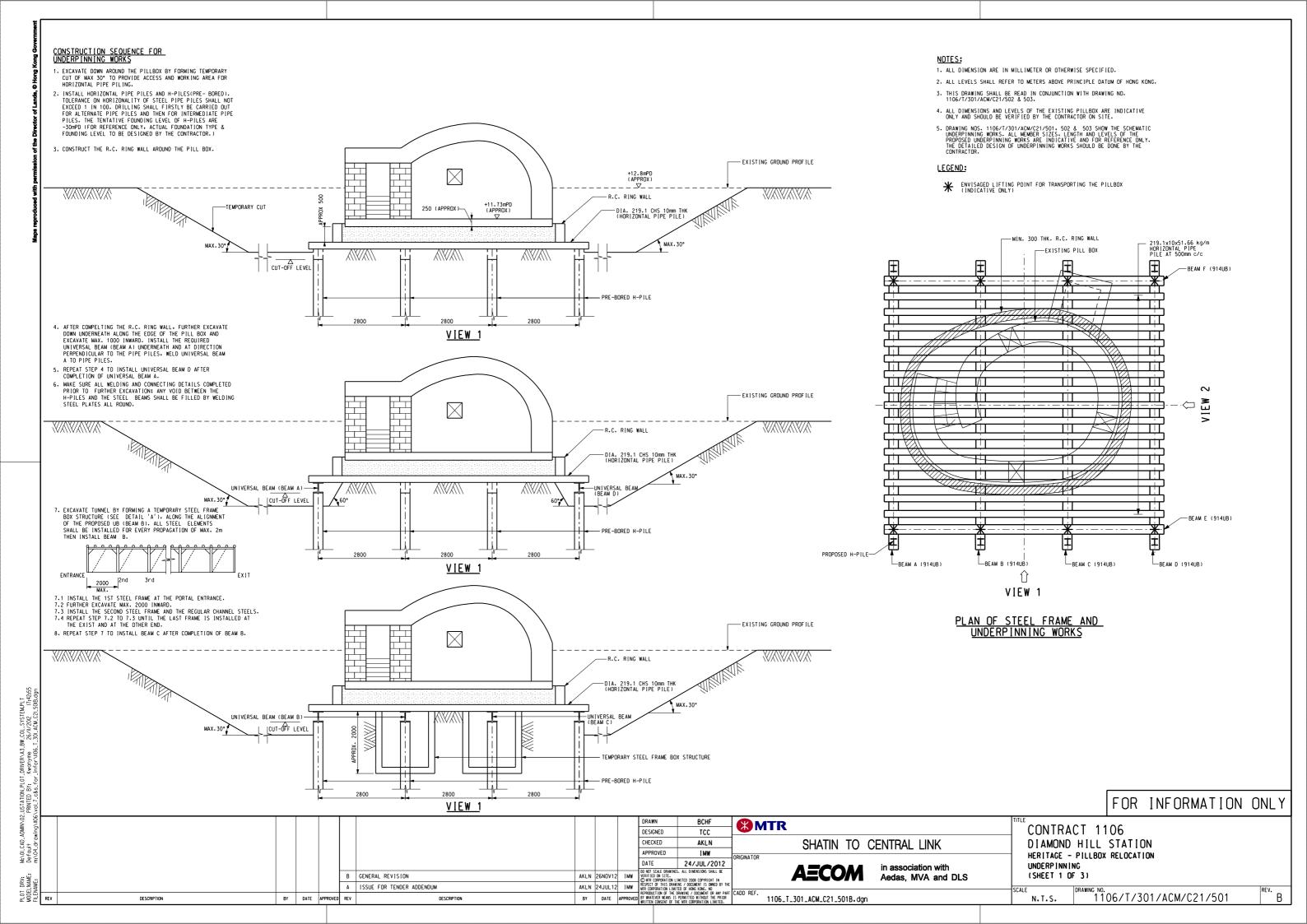
1 2 5m

	DESIGNATION	INITIAL	DA
AUTHORIZED			
CHECKED			
DRAWN			
SECTION SECTION	ON A		
SCALE 1:			
DRAWING NO			
DRAWING NO			
DRAWING NO			
PILLBO			
PILLBO			
PILLBO			

Appendix C Photographs of Components

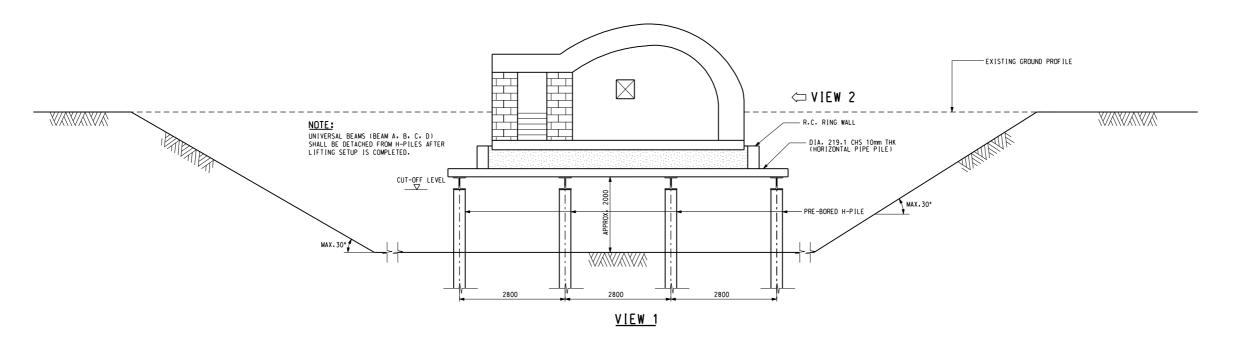
Code	Photo Ref.	Item	Code	Photo Ref.
R-001		006	W-006	
W-002		007	W-007	
	R-001	R-001	R-001 006	R-001 006 W-006

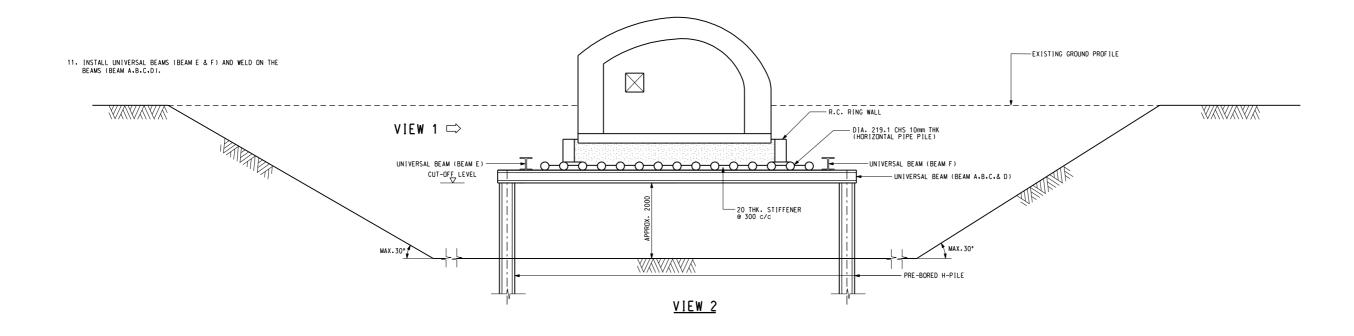
Item	Code	Photo Ref.	Item	Code	Photo Ref.
003	G-003		008	W-008	
004	W-004		009	W-009	

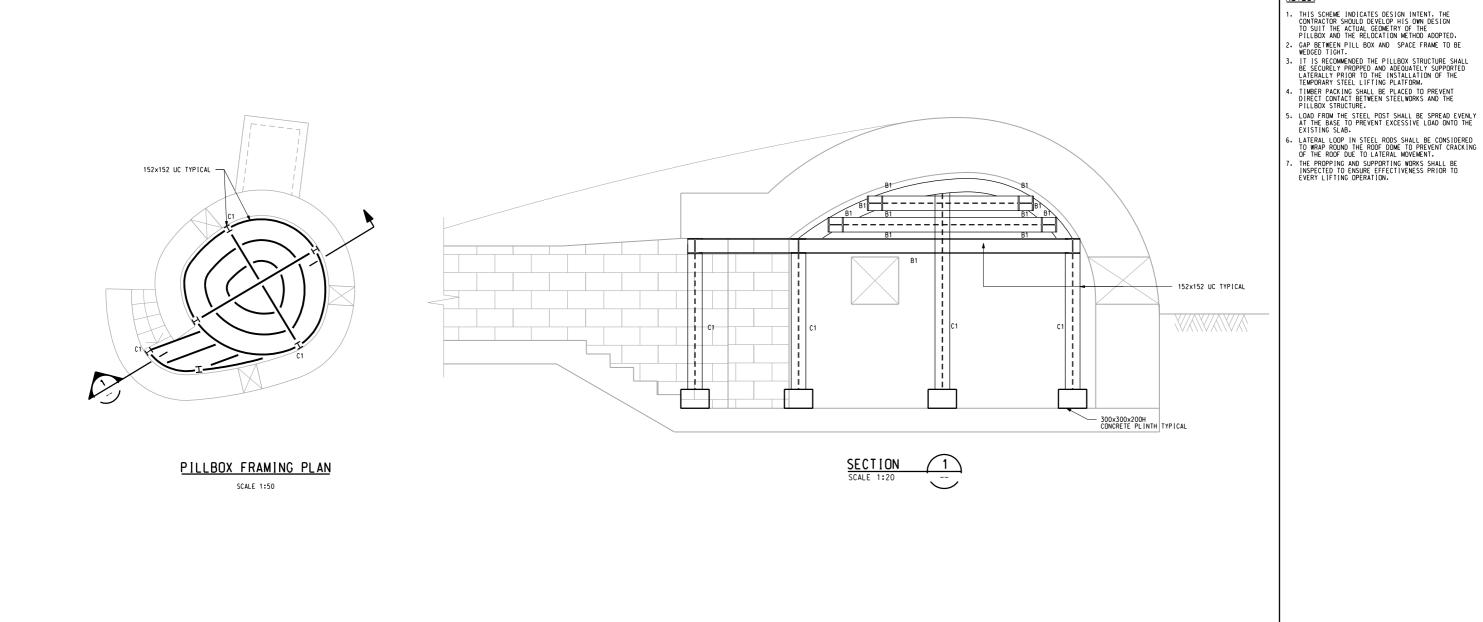

Item	Code	Photo Ref.	Item	Code	Photo Ref.
005	W-005		-	-	-

Appendix D Responses to Comments

<u>SCL – C1103 Detailed Design for Diamond Hill Station</u> <u>Structural Component Inventory for the Old Pillbox</u> (AMO's letter ref. () in LCSD/CS/AMO 81-5/21 dated 17 January 2013)


AMO's Comments on Structural component Inventory for the Old Pillbox	Response from MTR Corporation
(AMO's letter ref. () in LCSD/CS/AMO 81-5/21 dated 17 January 2013)	
1. It is suggested the line of the element e.g. 001 be drawn at the interface of two different construction materials.	Noted. This has been incorporated on the drawing.
2. Please provide legends for the alphabet in the "Code" column, if any.	Noted. Legend has been included for R = roof, W = wall, G = ground. These legends do not have any specific meaning, only to provide member references.


Drawings


- 9. EXCAVATE TO THE BOTTOM LEVEL OF THE STEEL FRAME TUNNEL AND REMOVE THE TEMPORARY STEEL FRAME BOX STRUCTURE.

 10. FURTHER EXCAVATE DOWN TO APPROX. 2m BELOW PIPE PILE.

JI. DRIVERNAS. BW. COL. SYSTEM.PLT Kwonyme Z6./II/20/2 17:42:56 or_infor\II06.1.30!. ACM. C2I.502B.dgn		VIEW 2	
TATION_PL(NTED BY:		FOR INFO	ORMATION ONLY
AD_ADMIN\02_US PRI Irawing\1106\vo		DRAWN BCHF DESIGNED TCC CHECKED AKLN SHATIN TO CENTRAL LINK DIAMOND HILL STATION	JAMATTON GNET
DRV: M:\OL_C/ NAME: Default ME: m:\O4_c		APPROVED IMW DATE 24/JUL/2012 ONUT SCALE DIAMNIKS. ALL DIMENSIONS SMALL BE ONUT SCALE DIAMNIKS. ALL DIAMNIKS. DIAMNIKS. ALL DIMENSIONS SMALL BE ONUT SCALE DIAMNIKS. ALL DIAMNIKS. DIAMNIKS. ALL DIAMNIKS. DIAMNIKS. DIAMNIKS. DIAMNIKS. DIAMNIKS. DIAMNIKS. DIAMNIKS. DIAMNIKS. DIAMNIKS. DIAMNIKS	
PLOT DRV: MODELNAME: FILENAME:	REV DESCRIPTION BY DATE APPROV	ARLIN 24JUL 12 IMM Cover corposation in unition 2008 corporation in unition 2008 corpo	M/C21/502 REV. B

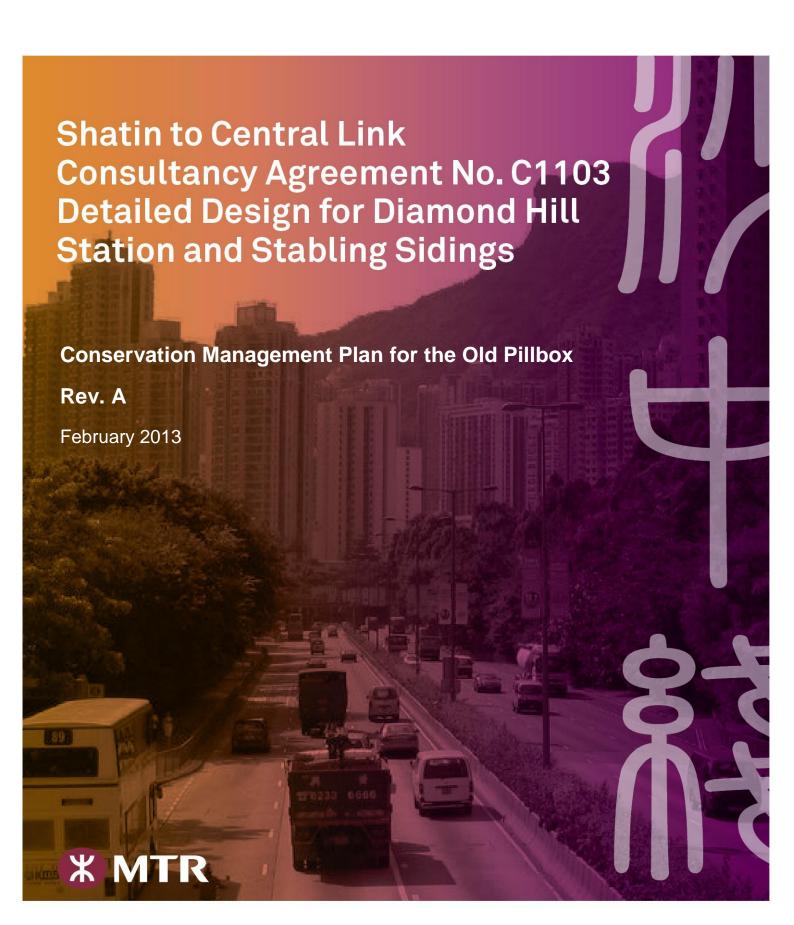
FOR INFORMATION ONLY

NOTES:

CTJ **MTR** CONTRACT 1106 DESIGNED TWF DIAMOND HILL STATION CHECKED SPC SHATIN TO CENTRAL LINK HERITAGE - PILLBOX DATE 24/JUL/2012

SPC 26NOV12 IMW

SPC 24JUL12 IMW


SPC 24JUL12 IMW

BY DATE APPROVED FOR MERCHANDES AND DIMENSIONS SHALL BE CONTROLLED FOR SHALL BE C RELOCATION PROPOSED PERMANENT in association with Aedas, MVA and DLS STRENGTHENING METHOD FOR ENTIRE STRUCTURE B REPLY AMO'S COMMENT A ISSUE FOR TENDER ADDENDUM SCALE 1: 50 @ A1 | DRAWING NO. 11 06/T/301/ACM/C21/504 REV. B BY DATE APPROVED REV 1106_T_301_ACM_C21_504B.dgn DESCRIPTION

LUSTATION_PLOT_DRIVER\A3_BW_COL_SYSTEM_PLT
PRINTED BY: CHENKY 2012-II-26 16:34:17
VOI 4 GENVING T 301 ACM C21 5.048 Acm

DRV: NAME:

MTR Corporation Limited

Shatin to Central Link

Consultancy Agreement No. C1103

Detailed Design for Diamond Hill Station and **Stabling Sidings**

Conservation Management Plan for the Old Pillbox

Rev. A

February 2013

Date	Rev. Prepared			Checked	Approved		
24 Dec 2012	0	PC		HLHK		IMW	
27 Feb 2013	А	PC	47655	HLHK	Ale Las	IMW	Meles
			1 1		F		1

ePMS Transmittal No.: C1103-COR-ACM-SUR-000002A

File: 60146520 / 15.9.19

Table of Contents

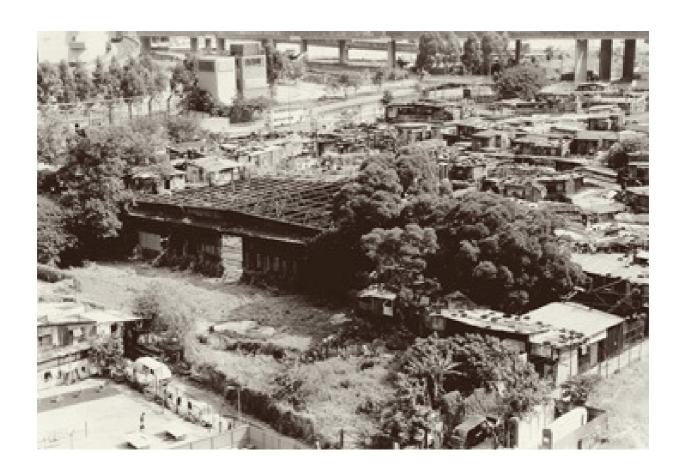
- 1. INTRODUCTION
- 2. HISTORY
- 3. ARCHITECTURAL APPRAISAL
- 4. STATEMENT OF CULTURAL SIGNIFICANCE
- 5. ASSESSMENT AND ANALYSIS OF THE LEVEL OF SIGNIFICANCE
- 6. IDENTIFICATION OF OPPORTUNITIES AND CONSTRAINTS
- 7. CONSERVATION PRINCIPLES AND GUIDELINES
- 8. CONCLUSION

BIBLIOGRAPHY

Appendices

Appendix I Context Relevant to an Understanding of the Old Pillbox

Appendix II Other Military Structures in Hong Kong


Appendix III Relocation Plan

Appendix IV Responses to Comments

Appendix V Implementation Programme & Maintenance and Management Schedule

Rev. A February 2013

CONSERVATION MANAGEMENT PLAN FOR THE OLD PILLBOX

Table of Contents

Chapter 1		Introduction		
	1.1	Background		
	1.2	Objectives of this CMP for the Old Pillbox		
	1.3	General Conservation Principles of "Relocation"		
	1.4	Definition and Key Concepts		
1.5		Scope of Study		
		1.5.1 Site Description		
		1.5.2 Study Aspects		
1.6		Methodology		
		1.6.1 Literature Review		
		1.6.2 Document/Media analysis		
		1.6.3 Case Referencing		
		1.6.4 Cross-disciplinary Review Meetings and Discussions		
Chapter 2		History		
2.1 2.2		Site Context		
		Historical Background of the Site – a Summary		
	2.3	Development History of the Old Pillbox		
	2.4	Chronological Outline of History		
Chapter 3		Architectural Appraisal		
	3.1	Setting and Layout		
	3.2	Physical Description		
3.3		Physical Assessment		
		3.3.1 Typology of the Pillbox		
		3.3.2 Pragmatic Design for Military Purposes		
		3.3.3 Surrounding Trees		
Chapter 4		Statement of Cultural Significance		
	4.1	Historical Significance		
	4.2	Architectural Significance		
	4.3	Social Significance		
Chapter 5		Assessment and Analysis of the Level of Significance		
	5.1	Definition of Character-Defining Elements		
	5.2	Identification of Character-Defining Elements		

Chapter 6		Identification of Opportunities and Constraints				
	6.1	Scheduled Timeframe for Infrastructure				
	6.2	Land Availability and compatibility with Future Planning Structural and Safety Constraint Chance to Halt Further Deterioration				
	6.3					
	6.4					
	6.5	Monumental Structures can be Integrated into Public Space				
Chapter 7		Conservation Principles and Guidelines				
	7.1	Introduction				
	7.2	Identification of Constraints on Relocation Work and Temporary				
		Storage				
	7.3	Relocation Work Proposal				
	7.4	Temporary Storage Proposal				
	7.5	Impact Assessment and Mitigation Measures				
	7.6	Management and Maintenance Plan				
Chapter 8		Conclusion				
	8.1	Site Supervision				
	8.2	Documentation				
	8.3	Management Structure				

Bibliography

Appendices

- I. Context Relevant to an Understanding of the Old Pillbox
- II. Other Military Structures in Hong Kong
- III. Relocation Plan
- IV. Responses to Comments
- V. Implementation Programme & Maintenance and Management Schedule

Acknowledgments

We would like to acknowledge the permission given by the following organizations and persons for the use of their records, maps, photographs and information included in the report:

- Antiquities and Monuments Office
- MTR Corporation
- AECOM
- Public Records Office
- Survey & Mapping Office, Lands Department

A special acknowledgement to the engineering team of AECOM, without whose professionalism and sensitivity to heritage conservation this report and the relocation of the Diamond Hill heritage structures would not have been possible.

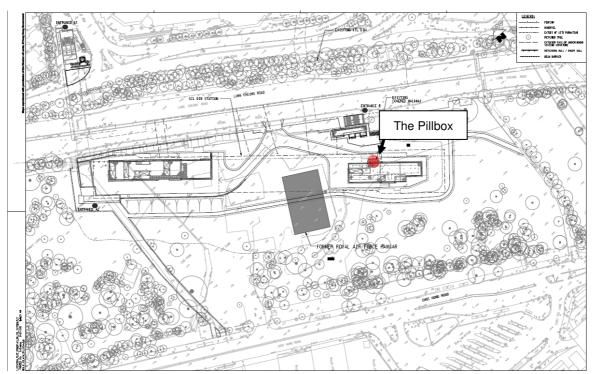
Research Team

Patsy CHENG Man Wah

BA (Public Admin), MSc (Urban Planning) Director of SEE Network Limited

Gary YEUNG Wai Keung

BSSc (Arch Studies), MArch Registered Architect, H.K.I.A. VBAS Assessor (List 2A)


Phoebe CHAU Wing Yan

BA (Com Lit)

Conservation Management Plan for the Old Pillbox

1.1 Background

Map 1.1 Map showing the location of the Old Pillbox in the construction area of the proposed new Diamond Hill MTR Station (AECOM, 2012).

The MTR Corporation's Shatin to Central Link (SCL) is a strategic railway line recommended in the Railway Development Strategy 2000. This proposed new alignment links Tai Wai and Admiralty with intervening railway stations covering the East Kowloon area and connecting to the existing railway network on Hong Kong Island.

Diamond Hill Station will be the interchange station for the Kwun Tong Line and SCL and will become the main railway hub for East Kowloon. In response to feedback and views collected from the public, the original proposal of locating stabling sidings in Diamond Hill is now cancelled and a new site at the former freight yard under the podium of Hung Hom Station will now accommodate the train stabling requirements of the SCL.

Under this revised plan, two graded historic structures, the Former RAF Hangar and the Old Pillbox, located within the SCL construction area (see Map 1.1) will be affected. The approved Environment Impact Assessment Study (EIA-197/2011) relating to the SCL works recommended these two historic structures be disassembled, placed in temporary storage compound, and reinstated within the Comprehensive Development Area (CDA) site, as on-site preservation is not practicable, since the Old Pillbox and the Hangar are directly impacted by the SCL Diamond Hill Station.

A separate Conservation Management Plan, further structural survey and documentation

(cartographic and photographic records) and structural component inventory for these historic structures are required to be submitted to the Antiquities and Monuments Office before the works start.

The MTR Corporation's engineering consultant, AECOM, commissioned SEE Network Limited to undertake this Conservation Management Plan (CMP), conducted in the period October 2011 to December 2012. The CMP entails a conservation study, statement of cultural significance and the management plans for conserving the Old Pillbox. The CMP for the Former RAF Hangar has been prepared in a separate report.

During the duration of the study, planning for the future CDA site within which the Former RAF Hangar and Old Pillbox are proposed to be located is yet to be determined. Consequently, to enable adequate consideration of the reinstatement location for the heritage structures within the future CDA site and due to the pending commencement of the SCL construction works in 2013, this CMP will only focus on: understanding the cultural significance; identifying the character-defining elements; and, the most possible and proper dismantling and temporary storage plans for the historic structures in order to ensure the greatest flexibility for future reinstatement planning.

1.2 Objectives of this CMP for the Old Pillbox

The proposed conservation for the site's heritage item is subject to the location and context of the future usage of the site and adjacent areas. The planning of the future CDA Site is yet to be determined.

Therefore, this CMP, with the yet unknown reinstatement location(s) of the affected Old Pillbox, seeks to achieve the following objectives:

- 1) To understand the cultural significance of the Old Pillbox;
- 2) To identify the character-defining elements based on its cultural significance and that will affect its dismantling and storage proposal;
- 3) To establish a set of dismantling and storage guidelines and methods for the Old Pillbox in a cautious approach to maximize its future reinstatement options, with the aim to retain its cultural significance as far as possible;
- 4) To propose the possible and feasible management arrangement for the dismantled Old Pillbox during the storage period.

1.3 General Conservation Principles of "Relocation"

Relocation of a structure or feature of cultural heritage value, where its removal is required in order to clear its site for a different purpose or construction, or where its removal is required to enable its use on a different site, is not a desirable outcome and usually not recommended in a conservation process.

Therefore, in this exceptional case, the general conservation principles, based on the internationally recognized Australia ICOMOS Charter for Places of Cultural Significance, known as The Burra Charter (adopted in 1979 and revised in 1999) are highlighted and re-examined:

- "6.1 The cultural significance of a place and other issues affecting its future are best understood by a sequence of collecting and analyzing information before making decisions. Understanding cultural significance comes first, then development of policy and finally management of the place in accordance with the policy."
- "6.2 The policy for managing a place must be based on an understanding of its cultural significance."
- "6.3 Policy development should also include consideration of other factors affecting the future of a place such as the owner's needs, resources, external constraints and its physical condition."
- "15.1 Change may be necessary to retain cultural significance, but is undesirable where it reduces cultural significance. The amount of change to a place should be guided by the cultural significance of the place and its appropriate interpretation."
- "15.3 Demolition of significant fabric of a place is generally not acceptable. However, in some cases minor demolition may be appropriate as part of conservation. Removed significant fabric should be reinstated when circumstances permit."

A Conservation Management Plan (CMP) is a comprehensive review document referencing The Burra Charter and other internationally recognized heritage conservation agreements. These agreements act as a guide for all involved in the various aspects of conservation work, including collecting relevant information, understanding cultural significance, developing a conservation policy and management measures.

Each heritage item is different in terms of its history, values, current physical condition and

limitations; therefore, no single conservation measure fits all cases. Drawing up a CMP is a process of exploration – and undertaken by using a cautious approach - to understand the tangible and intangible value of the heritage, and establish possible ways to retain or achieve minimum loss of the cultural significance as far as possible of each heritage item, even in this special relocation case.

1.4 Definitions and Key Concepts

1. The Old Pillbox

Refers to the name identifying the heritage-grade pillbox located in the Diamond Hill site described in the List of Graded Historic Buildings given by the Antiquities and Monuments Office and in the Environmental Impact Assessment Study (EIA-197/2011).

2. Located Site / former Tai Hom Village

Refers to the vacant site in Diamond Hill, and generally known as the "former Tai Hom Village". It was bounded by Choi Hung Road, Kwun Tong by-pass, Po Kong Village Road and Lung Cheung Road. The site is now zoned as a Comprehensive Development Area (CDA). Within the former Tai Hom Village, three historic structures are located: the Former RAF Hangar, the Old Pillbox and the No.4 Stone House, but only the first two structures are graded.

3. Boundary of Construction Area

Area of the proposed Diamond Hill Station (DIH). It covers part of the located site, and only two historic structures are within the construction area. They are the Former RAF Hangar and the Old Pillbox.

4. Related Place

In this report, "related place" refers to the former Kai Tak Airfield and general Diamond Hill area, as they contribute to the cultural significance of the two identified historic structures.

5. Cultural Significance

Cultural significance is a concept which helps in estimating the value of places. The places that are likely to be of significance are those which help an understanding of the past or enrich the present, and which will be of value to future generations.

Although there are a variety of adjectives used in definitions of cultural significance, based on Guidelines to the Burra Charter: Cultural Significance (1999) the following adjectives: "aesthetic", "historic", "scientific" and "social", are commonly and non-exclusively framed as assessment dimensions.

The location and size of Tai Hom Village has varied slightly from time to time:

- Before the Second World War (WWII): Tai Hom Village refers to the old village established by the Chu family.
- After WWII: Tai Hom Village refers to a village inside the Diamond Hill squatter area.

Means to put existing but disarticulated parts of a structure back together.

Means to put material components of a place, including the products of reassembly, back in its former position.

Means to build again as closely as possible to a documented earlier form, using new materials.

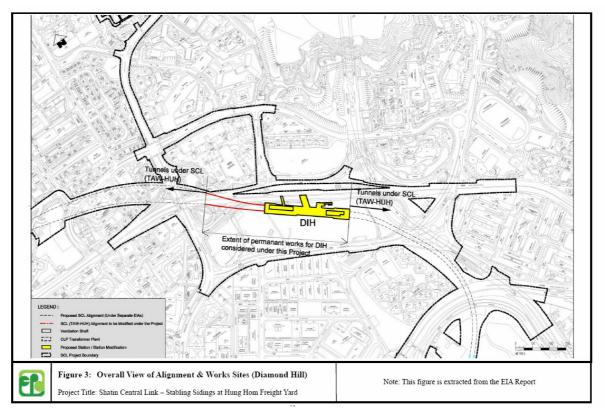
Means to relocate the structure to a new site, which provides a setting compatible with its cultural heritage value.

6. Tai Hom Village

- 7. Reassembly
- 8. Reinstatement
- 9. Reconstruction
- 10. Relocation

1.5 Scope of Study

1.5.1 Site Description



Map 1.2 Aerial photograph of a close view of the site, showing the location of the Old Pillbox. (Google Maps, 2011)

The Old Pillbox is presently located at a vacant site in Diamond Hill. The site comprises approximately 7.2 hectares of land bounded by four vehicular roads: the Kwun Tong by-pass (觀塘繞道) to the east, Choi Hung Road (彩虹道) to the south, Po Kong Village Road (蒲崗村道) to the west and Lung Cheung Road (龍翔道) to the north. Since the 1990s, the site was commonly known as the "Tai Hom Village" or the "Diamond Hill squatter area". It was cleared and has been vacant since 2001.

1.5.2 Study Aspects

This study covers part of the area known as the former Tai Hom Village. The Old Pillbox and the Former RAF Hangar will be affected by the construction of the SCL. It is noted that another historic structure, the stone house, is also located within this area but is unaffected by the SCL project. The two subject historic structures will be studied, and their associated context will also be addressed in this report; including through the development of local aviation and during WWII, as well as their adjacent areas, such as the former Kai Tak Airport and Diamond Hill Area.

Map 1.3 Overall View of SCL Alignment & Works Site in Diamond Hill

The scope of the CMP is mainly outlined in the Environmental Impact Assessment Study for the Stabling Sidings at Hung Hom Freight Yard (application number: EIA-197/2011), with guidelines given by the Antiquities and Monuments Office. The following key aspects will be discussed in this report, including:

- 1. Assessment of Cultural Significance;
- 2. Assessment of Analysis of Conservation Needs;
- 3. Identification of Constraints and Opportunities;
- 4. The Proposed Use: in existing stage, it becomes Dismantling and Storage Proposal that allows maximum future reinstatement options;
- 5. Review Arrangements; and
- 6. Supplementary Information, e.g. Bibliography and references, survey data.

1.6 Methodology

1.6.1 Literature Review

A comprehensive review was undertaken of historical records, old maps and photographs, books, periodicals and working papers including the Environmental Impact Assessment (EIA) report, engineering reports, and statutory documents, such as the Outline Zoning Plan and Buildings Ordinance.

1.6.2 Case Referencing

War-time and similar structures in Hong Kong and overseas are the reference points to position the identified structure and assess its significance.

1.6.3 Cross-disciplinary Review Meetings and Discussions

Conservation plans and different technical supporting surveys require input from different disciplines, including a conservation architect, structural engineer and community-planning consultant. Their different inputs put together can contribute the most feasible conservation approach to the historic structure.

Conservation Management Plan for the Old Pillbox

2.1 Site Context

Figure 2.1 Aerial photograph of East Kowloon showing the location of the former Tai Hom Village, where two historic structures are located and its surroundings. (Google Maps, 2011)

The two historic structures are set within Diamond Hill of East Kowloon, which was just adjacent to the Kai Tak Airport, including during the period of Japanese Occupation. To the north of the site is a residential area that includes the Galaxia (星河明居) and Bel Air Heights (悅庭軒) developments and the Housing Ownership Scheme (HOS) flats of Lung Poon Court (龍蟠苑). Nan Lian Garden is on its right; on its left are several community facilities.

South of the site is San Po Kong, an industrial area developed after the 1960s, mainly comprising warehouses, godowns, and more recently, office and hotel developments. During WWII, this area became part of the Kai Tak airport extension, so the site was once adjacent to the border of the airport. The relocation and construction of the existing hangar and pillbox are believed to be closely related to this wartime airport expansion, so it is

necessary to consider the history of this area as it may contribute to the cultural significance of the historic structures.

2.2 Historical Background of the Site – a Summary

The demolition of the Tai Hom Village squatter area in Diamond Hill was completed in 2001 and soon thereafter the existence of a wartime pillbox was rediscovered. Together with the nearby hangar and stone house, these historic structures drew public attention with regards to their future use.

Photo 2.1 The Old Pillbox was rediscovered in 2001 during the demolition of Tai Hom Village. (Photograph from 《晴天雨天大磡村》)

Appendix I provides a comprehensive overview of the background and history of the located site and related places, namely Tai Hom Village and nearby villages, the Kai Tak Bund and Kai Tak Airport, as they may contribute to understanding the cultural significance of the identified structures.

Briefly speaking, the location and size of Tai Hom Village has slightly varied from time to time. Whether it was referred to as an agricultural village in the 19th century or as a squatter village in the 1950s, its exact location within the boundary of the existing located site has varied. Naming this site "Tai Hom Village" could therefore be perceived as false, but it has over time become the prevalent name.

The Chu family established Tai Hom Village in the 18th century and by the 1920s Hong

Kong's population had considerably grown leading to a housing demand. Wealthy Chinese investors initially bought property in the area to build country villas and later the Kai Tak reclamation was begun as a housing development that later financially failed. The government took over this development in 1927 and soon after the land was utilized as the Kai Tak Airfield.

Phase Three of the Kai Tak reclamation was completed in 1930 and a permanent base for the Royal Air Force Kai Tak, established in 1927, was completed in 1932. Additionally, the facilities at the airfield were continuing to be upgraded, including the erection of aircraft hangars. To cope with demand a recommendation to further reclaim into Kowloon Bay and extend the airfield was made, but this plan was shelved because of Japanese military hostilities in Asia.

The invasion of Hong Kong by Japan commenced on 8 December 1941 - eight hours after the attack on Pearl Harbour - with Japanese aircraft attacking Kai Tak Airfield; a few minutes later the Japanese controlled Hong Kong airspace. During the Japanese Occupation, the Airfield was greatly expanded and extended inland, villages were cleared and streams diverted into a single nullah.

After the war and again after 1949, the area saw a great influx of refugees into illegal squatter housing in the area. After a few decades, squatter housing in the Diamond Hill area was cleared in stages and the final areas of Tai Hom Village and Ha Yuen Ling were cleared in 2001. Prior to this final clearance, Hong Kong film director Fruit Chan captured the final months of life in Tai Hom Village in his film *Hollywood-Hong Kong*.

2.3 Development History of the Old Pillbox

No plans and documentation can be found to prove the exact time of construction of the pillbox, however discussions on who built this pillbox is as follows:

(a) Pillboxes Erected for RAF Station, Kai Tak

The Hong Kong Defence Scheme was prepared in 1936 and describes possible wartime arrangements planned for the RAF Station, Kai Tak. During attacks by armed or partially armed personnel, "two platoons of infantry are to be provided by the British Garrison", and the area's pillboxes as defensive structures were also mentioned:

"The Commanding Officer, R.A.F. Station, Kai Tak, will in any emergency take over

command of the Army Detachments for the protection of the aerodrome. Arrangements for the defence of the aerodrome consist of the provision of a number of pill-boxes, each to hold two Vickers gun, sited at suitable intervals around the aerodrome"¹

No plans were attached in this Defence Scheme to show the exact location of the above-mentioned pillboxes. However, the pillbox design dimensions for holding two Vickers guns and the "suitable (placement) intervals" around the aerodrome are two crucial factors to infer if the existing pillbox in the former Tai Hom Village was one of the pillboxes planned for RAF Station, Kai Tak before the Japanese occupation.

Analysis 1: "suitable intervals"?

The two illustrations below show Kai Tak Airfield's layout and the surrounding area, the location of the pillbox and whether it had been placed in a line of similar pillboxes at "suitable intervals" prior to the Japanese Occupation

When comparing the boundaries of Kai Tak Airfield before and after WWII (Figures 2.2 and 2.3 are digested illustrations from the attached map on public record – HKRS156-88), it can be seen that the existing pillbox in Tai Hom Village was located far from the airfield before WWII, but was very close to the hangar re-erected by the Japanese during wartime.

There has been active discussion by historians and local amateur history buffs on whether the pillbox was built by either the RAF or the Japanese army. Some heritage concern groups and local amateur historians have discussed the origin of the pillbox on Internet forums, including the websites 'Gwulo: Old Hong Kong' (http://gwulo.com) and 'Hong Kong Place' (http://www.hk-place.com) and commonly supported the alternative opinion that the pillbox might have been built by the Japanese. Given the fact that it is of a unique design, situated on the northern border of the Kai Tak Airport extension, and 100 metres south-east of the re-erected Japanese hangar, it is highly possible that the pillbox is of a later construction and protected the Japanese airplane hangars and the extended airfield.

-

¹ Hong Kong Defence Scheme, 1936.

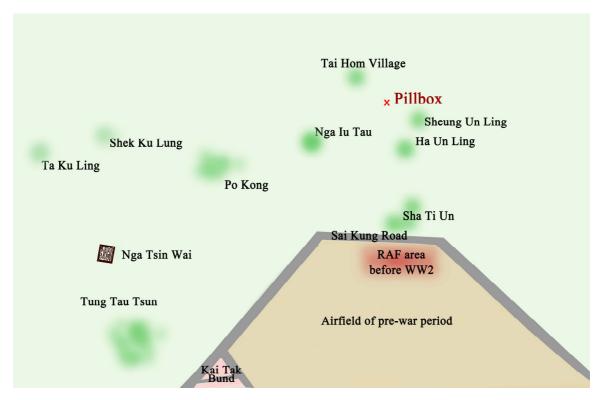


Figure 2.2 Layout of pre-WWII Kai Tak Airfield



Figure 2.3 Layout of Kai Tak Airfield during WWII

Analysis II: Design Dimensions - British Pillbox Standards to Hold Vickers Guns

In 1936, the United Kingdom War Office issued a *Manual of Field Engineering*, giving details for six standard designs of machine-gun pillboxes, one of which is specifically for a Vickers machine-gun² (see Figure 2.4).

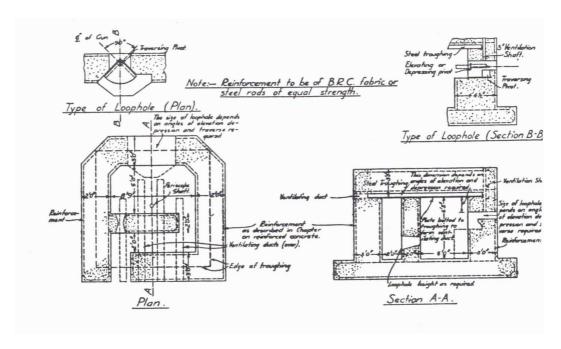


Figure 2.4 Plan of the standard pillbox for a Vickers Gun (see Wills, *Pillbox: A Study of UK Defences*, 1940)

Photo 2.2 & 2.3 Photographs from vickersgun.com: http://www.vickersgun.com/gallery.html

² Wills, Henry. *Pillbox: A Study of UK Defences*, 1940. London: Leo Cooper in association with Secker and Warburg, 1985. Print.

The Vickers gun is a water-cooled, .303 inch (7.7mm) machine gun produced by Vickers Limited, originally for the British Army. The machine gun, together with the water tank and tripod, weigh around 40kg³. Typically, it required a six to eight-man team to operate on a battlefield: one to fire, one to feed the ammunition, and the others to help carry the weapon and ammunition. For a pillbox intended to hold a Vickers gun, a Vickers mounting was a required design element for this type of pillbox (see Photo 2.4).

Photo 2.4 (Left) Non-firing museum-piece set up for a Vickers gun with mounting. Photo 2.5 (Right) Interior of the Tai Hom Village pillbox with no mounting.

From site observations and comparisons with the design of specifically designed Vickers gun pillboxes, no Vickers mounting or its traces can be found in the pillbox in Tai Hom Village. If it is purposely constructed to defend the colonial-era Kai Tak Airfield, the pillbox should have been constructed based on the design requirements set out by the UK War Office; however, judging from the outlook, structure and design, it is in no way similar to any of the standard designs.

During our study, contacted specialized "Pillbox study group" (http://www.pillbox-study-group.org.uk/) in the UK, which hosts an online forum. Some of their members replied that "the design (of the pillbox in the former Tai Hom Village) is unlike anything in the UK", and "the Royal Engineers followed very general design patterns, none of which match your pillbox."

(b) Pillboxes Erected by the Japanese

Furthermore, the Pillboxes erected by Japanese during wartime are the very useful source to support the discussion above.

Bishop, Chris. The Encyclopedia of Weapons: From World War II to the Present Day. USA: Thunder Bay Press, 2006, 66, Print.

According to documents produced by the British Army Aid Group (henceforth shortened as BAAG), the Old Pillbox in the Former Tai Hom Village has many physical similarities with other Japanese-erected pillboxes in Hong Kong during the Japanese Occupation (See table 2.1). Both pillboxes are circular in shape with a dome-shaped roof. Embrasures are opened along the periphery. The locations of embrasures are near ground level in which the interior space may probably be semi-sunken as well. One difference between the two is that Diamond Hill Pillbox has a winding staircase, while the pillbox recorded by BAAG has a direct entry.

Table 2.1

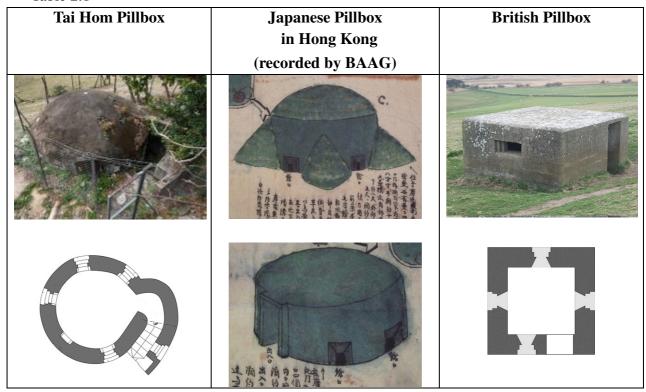


Table 2.1 comparing the appearance of three different pillboxes: the Tai Hom pillbox; a Japanese pillbox in Hong Kong drawn by the BAAG; and, a typical British pillbox

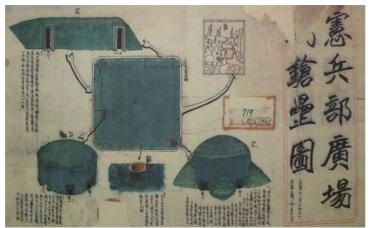


Figure 2.5 Pillbox housing a Japanese machine gun, positioned in the Japanese Kempeitai Square (present-day Chater Garden, Queen's Road Central – the former Hong Kong Cricket Club), circa 1943. (Source: drawing extracted from BAAG, held in the archives of the Australian War Memorial, Canberra.)

BAAG was founded by Colonel Lindsay Tasman Ride (1898-1977) during WWII. He was briefly detained at Sham Shui Po Prisoner-of-War Camp during the Japanese Occupation, but later escaped to Shaoguan. The drawings in Figure 2.5 are military intelligence drawn by BAAG secret agents and although very small, they show great detail of a Japanese pillbox located in Central Hong Kong. Official materials about Japanese facilities in wartime Hong Kong are rarely found and these drawings are a valuable resource for future reference and comparison.

The book *Pillboxes of Britain and Ireland* records more than a hundred different types of British pillbox, most of which were constructed with a flat roof slab, while the layout plans are usually rectangular or hexagonal in shape. A circular layout was seldom found. Also, there were always mountings for Vickers machine-guns inside British pillboxes. Looking at the Japanese pillbox drawn by BAAG, the roof is dome-shaped and the body is circular, which is very similar to the existing pillbox in Diamond Hill. This visual analysis may not allow a conclusive statement to justify the origins of the pillbox, however, it may help contribute to knowledge gaps, and provide a future reference for historians.

Photo 2.6 Interior of British-built pillbox

Photo 2.7 Interior of Diamond Hill pillbox

After the war, the former Tai Hom Village pillbox was abandoned and soon occupied as accommodation in the Diamond Hill squatter area (see photo 2.8 & 2.9) where it was discovered and retained after the clearance and demolition of Tai Hom Village.

Figure 2.8 & 2.9 Photographs show the pillbox converted into a domestic living space after WWII (Photographs from 《晴天雨天大磡村》)

2.4 Chronological Outline of History

Year	Event				
1943	It is believed that the pillbox was built near the relocated hangar, as a				
	defence military structure to protect the hangar that housed combat aircraft.				
	As archive shows that the hangar was built in 1943, it is hypothesized that				
	the pillbox was constructed in the same year.				
Post-war	The pillbox was abandoned soon after the war and occupied by people as				
	accommodation in the Diamond Hill Squatter Area.				
2000	The pillbox was discovered and retained after the clearance and demolition				
	of Tai Hom Village.				

Conservation Management Plan for the Old Pillbox

3.1 Setting and Layout

The pillbox is situated about 40 metres from the western side of the hangar. A winding staircase facing east leads to its semi-sunken interior. This is the only access into the pillbox. There is an underground concrete chamber next to the pillbox which appears to have no physical connection to the pillbox after superficial inspection. (Refer to P.9, Condition Survey for the Existing Stone House and Pillbox at DIH, February 2009). No sign of military purpose regarding this kind of covered underground chamber could be identified.

Photo 3.1 & 3.2 The above photos show the outlook and entrance of the pillbox.

3.2 Physical Description

The pillbox is semi-sunken with a winding staircase leading to its interior, 900mm below the existing ground level. The staircase headroom is 1.8m. The internal diameter of the pillbox is approximately 3.8 metres wide while the highest clear headroom is 2.5m.

The structure is composed of a dome shaped reinforced concrete roof of varying thickness of between 480mm to 580mm. The roof is supported by a hollow concrete block wall of various thicknesses ranging between 665mm to 730mm around the pillbox perimeter. The roof's dome shape profile spans to the periphery with an arching effect to compensate against vertical loads. The hollow block wall provides vertical support to the roof. The circular layout of the pillbox enables the wall to have some arching effect against the underground soil. This wall rests on a reinforced concrete base slab of thickness varying between 120mm to 380mm.

There are six embrasures with various dimensions along the perimeter of the dome. One has been blocked; while another is on the wing wall of the staircase. The thickness of the wing wall is approximately 700mm. The physical condition of the pillbox is generally good, except for spalled concrete found at some spots on the roof surface. The external cement mortar between masonry blocks has been lost due to weathering. The structural bonding has drastically weakened.

3.3 Physical Assessment

3.3.1 Typology of the Pillbox

As mentioned in the previous chapter, the Diamond Hill pillbox was most likely built by the Japanese army during WWII, rather than by the British.

	Diamond Hill Pillbox	Japanese Pillbox	Typical British Pillbox
		in Hong Kong	
		(recorded by BAAG)	
Exterior		在	
Layout		N/A	
Embrasures		N/A	
Interior		N/A	ICANAS ENC OHI

Table 3.1 Comparison of Pillboxes: the Diamond Hill pillbox (Left); a Japanese pillbox in Hong Kong drawn by the BAAG (Middle); a typical British pillbox (Right).

The table above demonstrates a morphological comparison between the three different pillboxes. It is observed that both the Diamond Hill pillbox and the pillbox recorded by BAAG have dome-shaped roof slabs. Furthermore, both pillboxes have a circular structure and layout plan; with embrasures that open along the exterior wall and probably no blindspots.

Pillboxes of Britain and Ireland is a publication outlining over a hundred different types of British pillboxes. Most of the British pillboxes were constructed with a flat roof slab, while the layout plans are usually rectangular or hexagonal in shape. A circular layout was seldom found. In addition, there were always mountings for Vickers machine-guns inside British pillboxes, of which there is no such similar installation inside the Diamond Hill pillbox. A shared characteristic is the splayed wall with stepped profile of the embrasure. However, this feature should be standard for all types of pillbox serving such a similar purpose. In Addition, there are still some military remains in Hong Kong which were built by British Army during WWII. They possesses similar physical characteristic of those pillboxes in Britain. Further information regarding Hong Kong pillboxes can refer to Appendix II.

This visual analysis may not allow a conclusive statement to justify the origins of the pillbox, however, it may help contribute to knowledge gaps, and provide future reference for historians.

Comparison with other pillboxes in Hong Kong

According to the general survey of other surviving pillboxes in Hong Kong, seldom do they have dome-shaped appearances. Besides, all of them have not yet been graded, in which the Pillbox in Diamond Hill built an additional heritage value as part of Hong Kong's military history.

The common rectangular shape Pillboxes built by British Army before WWII in Tai Tam Gap (left) and Waterfall Bay (right).

3.3.2 Pragmatic Design for Military Purposes

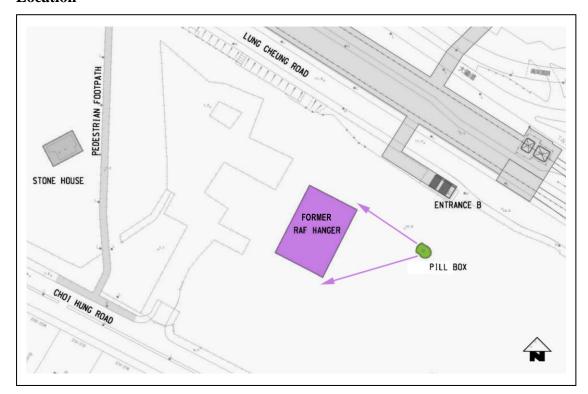
The pillbox is a pragmatic structure built purely for defensive military purposes. It can be deduced from all available information that the pillbox is most probably the only surviving WWII military structure built by the Japanese army in Hong Kong.

Size, Shape and Embrasure

The purpose of a pillbox is simple and direct and its size was carefully designed. It should be small in order to attain a defensive purpose; this is achieved by its circular form and semi-sunken nature to minimize any exposure to an enemy. On the other hand, the internal space should be large enough for armed soldiers to move around. The dome-shaped roof design can minimize the external (military target) surface area but, at the same time, can maintain a maximum internal space capacity.

The splayed walls (the interior opening is small while the exterior opening is large) of the embrasures allow greater sight coverage to guard a nearby strategic facility (the adjacent hangar, in this case), while, at the same time, keep soldiers inside secure if fired upon. Furthermore, one of the embrasures is open on the wing wall of the staircase: this design ensures all-round sight coverage with no blindspots towards its surrounding.

Construction


The pillbox was built using masonry blocks and a concrete roof slab. Masonry work is flexible and allows speedy construction. The dome-shaped roof both minimizes the exposure to an enemy and is more structurally sound than a flat roof and more efficient supporting vertical loads. A flat roof may also encounter problems of surface drainage and any accumulated rooftop rainwater will cause additional loading to the structure.

The semi-sunken setting minimizes the pillbox's surface area and reduces the chance of it becoming an enemy target. In addition, the inward loading from the underground soil can in turn strengthen the integrity of the whole structure.

Authenticity of the structure

This simple structure with no suspicious addition or removal has been noticed, except one of the embrasures on the eastern side of the Pillbox has been filled with plaster. It is probably to be done by the squatters who had occupied this space.

Location

Map 3.1 The map shows the position and distance between pillbox and hangar – both serving a military function.

The pillbox is located about 40 metres away from the hangar to provide military protection on the rear-side of the hangar. The pillbox is semi-sunken, however, it is situated on a sloping topography, higher than the surrounding ground. Although the hangar is much taller than the pillbox, this site setting makes the elevation of the pillbox similar to the hangar. The level of the pillbox roof is +14.80m above the principle datum; while the level of the hangar roof is +15.70m. This is a deliberate site design strategy to achieve the defensive purpose.

3.3.3 Underground Concrete Chamber

There is an underground concrete chamber next to the pillbox being found during the general survey and structural investigation. (Refer to P.9, Condition Survey for the Existing Stone House and Pillbox at DIH, February 2009). According to general typological study of pillboxes, no such structure was identified, except, there is one pillbox in Britain with structure looked similar to that of Diamond Hill pillbox. However, they differ from their location, size and appearance.

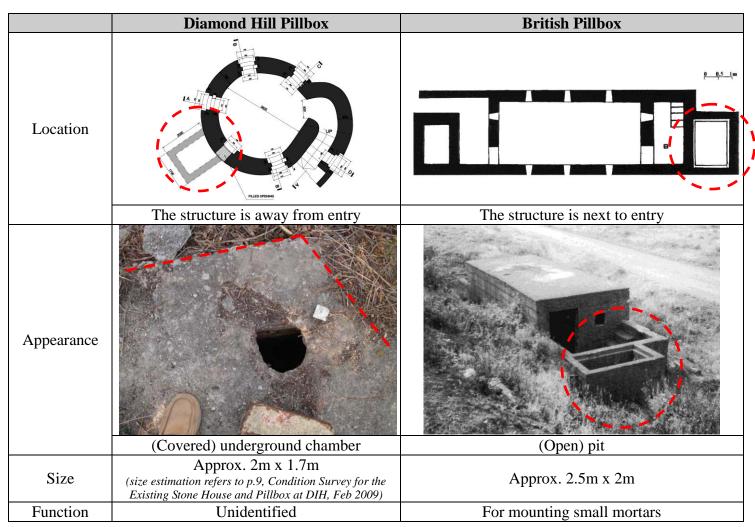


Table 3.2 Comparison of the chamber: Diamond Hill pillbox (left); British pillbox (right).

Although there is no proof of physical relationship between the chamber and Diamond Hill pillbox, it is still inconclusive that the chamber is historically, culturally or architecturally insignificant. Further investigation should be carried out by contractor to understand and identify the role of this structure.

3.3.4 Surrounding Trees

The pillbox was built by the Japanese army to protect the hangar 40 metres away. The present surrounding mature trees may not be the original intention, because they would block sightlines to the hangar. These trees may obscure the understanding of the place.

Conservation Management Plan for the Old Pillbox

4.1 Historical Significance

As the pillbox is most probably the only surviving WWII military facility built by the Japanese army in Hong Kong, it witnessed the Japanese occupation of Hong Kong and the first tactical military steps to take control of the entire Far East. It was specifically built to defend Japanese military flights at a strategically important military air base during WWII.

During the period of Japanese Occupation, a few pillboxes were built in urban areas, including in Central and Wan Chai, these can be identified in old photographs. Most pillboxes were demolished after the Japanese surrender and retreat from Hong Kong. The pillbox in Kai Tak Airport survived only because it had a domestic use in an area that was largely left undeveloped: it was a shelter for people during the difficult post-war economic period. Together with the hangar, the pillbox contributes a richer wartime history and its detailed design visualizes military considerations on this specific site.

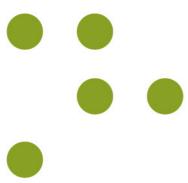


Photo 4.1 (top) & 4.2 (bottom) Photos from after 1941 show other pillboxes located at Hennessy Road Wan Chai and Central.

4.2 Architectural Significance

The Pillbox can be deduced from all available information that it is most probably the only surviving WWII military structure built by the Japanese Army in Hong Kong. As part of Hong Kong's military it has built heritage value.

It is pragmatic, purely an engineering construct. Its form and shape already speaks itself. The circular form, the dome-shaped roof and semi-sunken nature are aimed at minimizing the exposure to enemy; while its altitude with respect to the Hangar and the all-rounded embrasures ensures the full surveillance to its surroundings. Most probably, the Pillbox was once covered with vegetation and painted in earth tone to achieve the camouflage effect.


The building form, embrasures, entry leading to underground, internal space and semi-sunken arrangement are all inseparable character-defining elements to reflect the identity of the pillbox and contributes significantly to the Japanese military architecture of WWII. Pillbox is armored unit. Its essential role is to defend an area, or military facilities (to protect the Hangar in this case). Isolating the Pillbox or detaching its physical relationship (position and distance with respect to the Hangar) may substantially spoil its significance.

4.3 Social Significance

With its particular construction period during wartime, it is of historical local interest to military enthusiasts and historians and has a curiosity value to others.

After WWII, the pillbox was converted into a domestic living space and became part of the Diamond Hill squatter area, witnessing the poor living condition of refugees after World War Two, thus it also signifying the 'recent history' of the site. Squatter areas throughout Hong Kong were a social phenomenon after WWII due to the great influx of refugees from the mainland. The colonial government systematically planned the clearing of all squatter areas through its comprehensive housing and resettlement policies between the 1950s to 1990s. Prior to the Diamond Hill squatter area being cleared in 2001, it was the largest squatter area at that time and housed over 2,300 families.

Conservation Management Plan for the Old Pillbox

Assessment and Analysis of the Level of Significance

5.1 Definition of Character-Defining Elements

Although it was once occupied by squatters after WWII, the pillbox was built as a military structure solely for defensive purposes. Its dome-shape design, semi-sunken profile and close physical relationship (position and distance) with the hangar links the pillbox to the historic wartime period.

To understand the heritage value of an item, it is a common practice to analyze the significance of each part as well as a whole. The heritage value can be quantified or categorized into character-defining elements (CDEs) possessing different degrees of significance. According to the Standards and Guidelines for the Conservation of Historic Places in Canada, character-defining element refers to the materials, forms, location, spatial configurations, uses and cultural associations or meanings that contribute to the heritage value of an historic place, which must be retained to preserve its heritage value. A hierarchy of significance can then be established by specifying a degree of significance for a particular item. This method is useful as a basis to formulate a conservation policy, and then, the appropriateness of any conservation work can be justified.

CDEs are the specific attributes of a building, structure or place that determine heritage value and reveal the unique context behind the construction or its function. They refer to all those visual aspects and physical features, such as the overall shape of the buildings, its materials, craftsmanship, decorative details, interior spaces and features, as well as the various aspects of its site and environment.

Table 5.1 Grading and Definitions of Character-Defining Elements

Degree of	Meaning
significance	
High	Individual space, fabric or element that displays a major contribution to the overall
	significance of the place. Space, fabric or element exhibits a high degree of
	intactness and quality, though minor alterations or degradation may be evident.
Medium	Individual space, fabric or element that makes a substantial contribution to the
	overall significance of the place. Space, fabric or element originally of some
	intrinsic quality, and may have undergone minor or extensive alteration or
	degradation.
Low	Individual space, fabric or element that makes a minor contribution to the overall
	significance of the place. Space, fabric or element originally of little intrinsic
	quality, and may have undergone alteration or degradation. This category also
	includes original spaces, fabrics or elements of any quality, which have undergone
	extensive alteration or adaptation to the extent that only isolated remnants survive.

The CDE summary below identifies the materials, form, and spatial configurations, and cultural associations that contribute to the heritage value of a historic place or item, in this case, the Old Pillbox - and highlights elements that should be retained in order to preserve its heritage value.

5.2 Identification of Character-Defining Elements of Pillbox

Table 5.2 Pillbox

	Item	Photo	Level of	Remarks
			significance	
1	Existing building form		High	
2	Embrasures (Number and location)		High	The size and location of embrasures are critical to provide comprehensive military defence.
3	Stepped profile of embrasures		High	
4	Semi-sunken construction		Medium	
5	Physical relationship - distance and relative position with the hangar		Medium	The pillbox is an 'armored' structure. Its essential role is to defend an area, or military facilities (to protect the hangar, in this case). Isolating the pillbox or detaching its physical relationship away from the hangar may substantially spoil its significance.

Conservation Management Plan for the Old Pillbox

Identification of Opportunities and Constraints

6.1 Scheduled Timeframe for Infrastructure

The construction works of SCL is scheduled to commence in early 2013 in order to meet the targeted opening of the SCL in 2018. The conservation management plan for handling the Old Pillbox is required to be submitted before construction work begins. Within this timeframe, the conservation details such as the relocation site and forms are yet to be confirmed, and therefore, in this special case, maximum flexibility for future reinstatement and minimum loss of cultural significance are the criteria to follow in drafting the management plan. The purpose of heritage conservation is always to care for places and items of cultural heritage value and to take necessary steps to retain and reveal those values.

6.2 Land Availability and Compatibility with Future Planning

The Former Tai Hom Village Site is zoned as a Comprehensive Development Area (CDA), and is unallocated government land. The development planning on the future site will highly affect the reinstatement arrangements.

Part of this site is temporarily granted for SCL railway construction use and sufficient open space will also be needed and should be provided for preparatory work and repair of the pillbox. Proper access roads for mechanical plant are also anticipated to enable the relocation of the pillbox.

6.3 Structural and Safety Constraint

According to the "Structural Investigation and Appraisal Report for Old Pillbox", dated March 2011 and conducted by AECOM, the pillbox is generally in fair condition with no signs of distress. However, as there is no mortar between the masonry, the wall has an increased susceptibility to cracking and disjointing during transportation. There is spalled concrete at some spots on the roof, and the reinforcement steel is exposed. The crushing strength of the concrete roof slab is considered weak; therefore, the masonry wall and the concrete roof structure should be reinforced to enhance the integrity of the pillbox.

6.4 Chance to Halt Further Deterioration

The pillbox was left unattended after WWII and then occupied by squatters within the Diamond Hill village and again left unattended after squatter eviction was completed. It has only been during recent development proposals for the Diamond Hill CDA that the heritage value of the pillbox has been recognized. Although the pillbox has to be relocated and some

heritage value may be lost, the structure should be securely stored to prevent further deterioration. Furthermore, the masonry wall can be repaired with appropriate mortar to enhance the stability and integrity of the whole pillbox structure after its future reinstatement.

6.5 Monumental Structures can be Integrated into Public Space

The dismantling proposal for the pillbox in this CMP and for its storage on site allows for future opportunities that can be conducive to providing a sense of belonging for local residents and the community. Any proposal or opportunities for the pillbox's future use and location should be developed together with discussions about plans for the future CDA site; therefore allowing the overall environment and usage of the pillbox to be considered in a holistic manner.

Conservation Management Plan for the Old Pillbo

Conservation Principles and Guidelines

7.1 Introduction

The purpose of heritage conservation is always to care for places and items of cultural heritage value and to take necessary steps to retain and reveal those values. The physical relocation of cultural heritage items has great shortcomings as such action will separate the heritage from its historical location and the heritage could be irreversibly damaged during relocation. This practice is generally not encouraged unless this is the sole practical means of ensuring its survival.

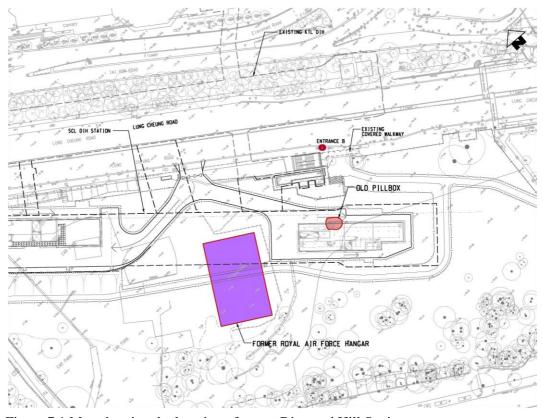


Figure 7.1 Map showing the location of a new Diamond Hill Station.

As shown in the diagram above, the location of the hangar and pillbox overlaps the physical location of a new Diamond Hill Station for the SCL – thus, also, overlapping the construction area for this new station. It is therefore recommended that the pillbox be conserved by relocation and later reinstatement.

The reinstatement proposal will be determined within the context of the planning for the future CDA site. In order to facilitate the approaching construction of the Diamond Hill Station, the two structures are recommended to be relocated and properly stored.

Considering the development history, architectural merits, and technical constraints of the pillbox, the following heritage conservation guidelines are generally recommended:

- 1. Respect its changes and its various uses over time. It is not necessary to simulate the original state;
- 2. Remove or alter the elements that may affect the comprehensiveness of the heritage value;
- 3. Replace such damaged elements only when they are too deteriorated to reuse and the replacement should match the forms, materials, and details of the original elements;
- 4. Respect the original character, architectural style, or building method of the heritage;
- 5. Retain its traditional material or structural system as much as possible;
- 6. Recognize the relevant location that can sustain the structure its heritage value;
- 7. Maintain the heritage value by minimum intervention in general;
- 8. Maintain any intervention physically and visually significant to the heritage;
- 9. Document any intervention made for future reference;

7.2 Identification of Constraints on Relocation Work and Temporary Storage

The pillbox is an integrated masonry structure with a reinforced concrete roof. It weighs approximately 120 tonnes. Relocation of the whole pillbox requires installation of substantial temporary reinforcement and bracing over and underneath the structure. Large mechanical lifting equipment is required to lift the whole structure to make it ready for relocation delivery to the temporary storage compound. Disjointing and cracking of the masonry wall may occur due to any unsynchronized movement during the course of transportation. A reinforced concrete ring wall may be installed to tie together the pillbox wall. It is noted that this process must be repeated from the storage area to the newly assigned site for reinstatement. Therefore, further site investigation, especially of the buried sections of the pillbox's walls and base slabs will be necessary to determine the feasibility of installing a temporary 'raft' to entirely support and suspend the pillbox.

7.3 Relocation Work Proposal

Generally, relocation of the pillbox in one piece can reduce loss to the heritage value of the pillbox. However, this process has inherent technical difficulties that may inadvertently

induce damage to the structure during the course of transportation. Extensive site investigation of the structure should be carried out in order to formulate a comprehensive strategy. The relocation work sequence to the temporary storage is proposed as shown below:

- 1. Excavate down and around the pillbox by forming a temporary cut of a maximum 30 degrees to provide access and working area for horizontal pipe piling.
- 2. Install horizontal pipe piles and pre-bored piles underneath the pillbox structure.
- 3. Construct a reinforced concrete ring wall around the pillbox.
- 4. Further excavate down and underneath along the edge of the pillbox and excavate a maximum of one metre inwards. Install the required universal beam underneath and at a perpendicular direction to the pipe piles, weld universal beam to the pipe piles.
- 5. Repeat step 4 above to install three more universal beams, and weld universal beams to the pipe piles.
- 6. Further excavate down to two metres below the horizontal pipe piles, and expose the pre-bored piles.
- 7. Install and weld another two universal beams to the previous four universal beams.
- 8. The universal beams form a steel frame platform underneath the pillbox. The platform together with the pillbox structure are hoisted and transferred to a sliding channel for delivery.

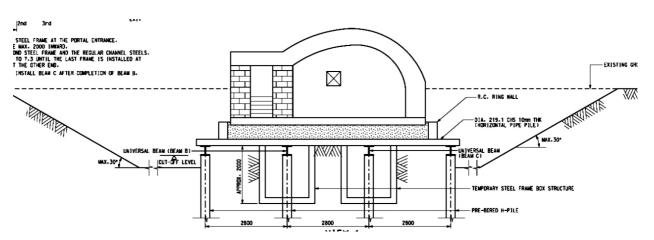


Figure 7.2 Site section shows the excavation and installation of pipe piling underneath the pillbox.

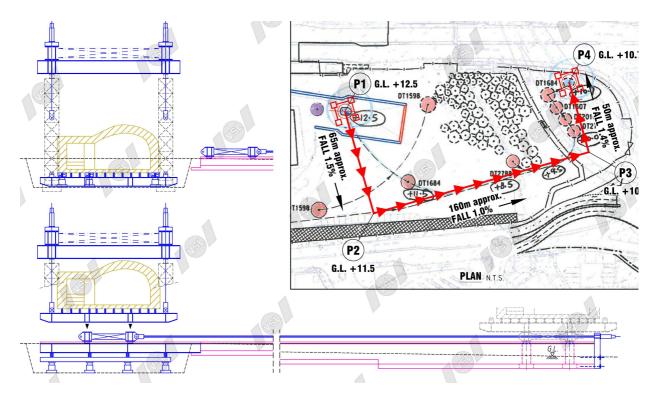


Figure 7.3 Diagrams show the proposed relocation process and tentative route to the temporary storage compound.

It is noted that the pillbox should be strengthened by installation of steel framing inside the pillbox prior to the course of delivery and should not be removed until reinstatement at a new location.

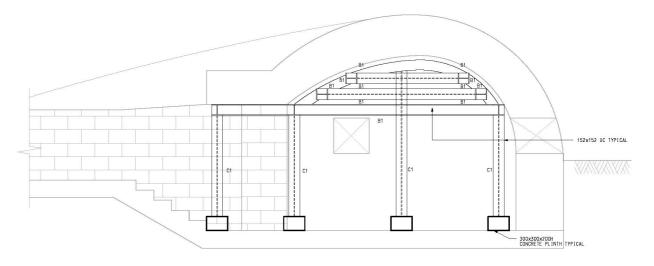
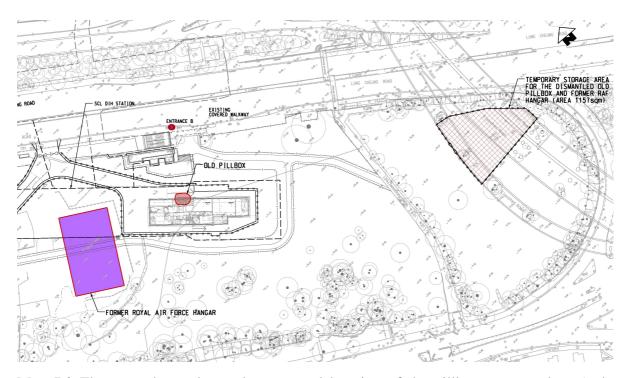



Figure 7.4 Steel framing to be installed inside the pillbox.

7.4 Temporary Storage Proposal

The reinstatement proposal has not yet been consolidated, however, in the interim; the dismantled elements should be securely stored and archived. The proposed storage place is located under the flyover to the Tate's Cairn Tunnel, which is located at the eastern side of the Diamond Hill site.

Map 7.2 The map above shows the proposed location of the pillbox storage place (red hatched area).

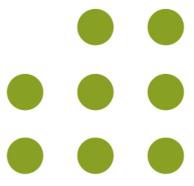
The storage place should be in the form of a temporary compound with enclosure to avoid rain and sunlight. The interior space should be well-illuminated, and well-ventilated either by mechanical fan or window at a high-level. The internal layout should be clear and direct, and should facilitate regular inspections. The floor should be paved with concrete and ground drains should be properly installed. All dismantled elements should be securely placed on concrete plinths at least 600mm above ground level.

7.5 Impact Assessment and Mitigation Measures

The relocation of the pillbox is unavoidable and its later reinstatement means that it cannot feasibly be kept intact. Under this circumstance, the impact to the heritage can never be negligible. A comprehensive mitigation measures should be carried out in order to

minimize the loss of its significance, in which the community can still enjoy and understand the heritage value even the said extensive changes (relocation and reinstatement) have been carried out.

- 1. Complete photography and cartographic survey of all structural components and overall geometric measurements for future reference;
- 2. Slight alterations may be required by a prescribed structural engineer to meet the current structural and fire safety standards.
- 3. Sufficient temporary bracing and underpinning should be installed to support the whole structure during transportation;
- 4. The route to the storage area should be carefully planned to minimize any accidental vibration during the course of transportation;


7.6 Management and Maintenance Plan

- 1. The reinstatement proposal will be determined together with the development of the CDA site planning.
- 2. In order to avoid any loss of information and heritage value of the pillbox, all the elements from the structure of the pillbox should be retained and properly stored.
- 3. The masonry structure should be carefully labeled with photographic records before transportation to the storage area.
- 4. The pillbox is enclosed by a hollow concrete block wall which supports a dome-shape reinforced concrete roof that rests on a reinforced concrete base slab. During relocation, care should be taken to preserve the pillbox's existing geometry, elevations, dimensions and masonry units.
- 5. The proposed relocation method should be fully supervised by a prescribed structural engineer and conservation consultant for close monitoring and to ensure safety and quality control during the course of all removal and reinstatement work.
- 6. The temporary storage area will be within the site bounded by Lung Chung Road and Choi Hung Road.

- 7. A temporary storage compound should be provided with appropriate measures to prevent further damage to the heritage structures.
- 8. All elements should be securely protected to avoid any physical damage and the area should be fenced off to prevent trespassing and to secure the structures.
- 9. Proper surface drainage should be constructed throughout the storage area. The retained structures should be elevated to keep the heritage items out of water.
- 10. The structure should be archived in a methodical way that they can easily be accessible for examination during the period of storage.
- 11. A directory or guidebook indicating the location of every dismantled part should be kept in the shelter for reference. Apart from the accommodation, the shelter should provide a working space to allow staff to withdraw the structure for examination and testing if necessary.
- 12. Maintenance work should be governed by The Burra Charter principle of 'do as much as necessary and as little as possible'. A maintenance schedule should be developed which includes:
 - i. Regular inspection to check the degree of any deterioration over time of all the retained parts;
 - ii. Regular inspection on the reinforced roof structure, floor slab and stairs of the pillbox;
 - iii. Regular monitoring of the site's drainage and of any sign of water entering into the storage shelter;
 - iv. Remedial procedures to handle any non-conforming situations.
- 13. The maintenance plan should be reviewed every six months by prescribed building management and conservation consultants to ensure the proper execution of the programme and meet current standards of quality control.
- 14. A maintenance manual or handbook delineating the recommended procedures of carrying out necessary maintenance work should be compiled and should be provided to future frontline maintenance staff to ensure their adequate understanding of their duties and the need to better maintain the stored structure.
- 15. The proposed Implementation Programme and Maintenance and Management Schedule are attached as Appendix V.

Conservation Management Plan for the Old Pillbox

The dismantling work and temporary storage of the pillbox heritage structure is at a midway point in the whole conservation process. The objective at this stage should be to keep the dismantled parts in order and in good condition so that all the dismantled parts can be properly delivered to the next, reinstatement, stage.

8.1 Site Supervision

The dismantling work should comply with the Buildings Ordinance. Good practice should take reference from other relevant statutory requirements to ensure the quality of the work. Apart from technical considerations, qualified supervision by a registered structural engineer and a conservation consultant are required to ensure that the dismantling work and temporary storage can be properly carried out. A site safety and quality supervision plan should be prepared before the commencement of work.

8.2 Documentation

Comprehensive documentation of every procedure should be carried out. Photographic and cartographic surveying should be conducted, with every component being numbered before dismantling. The whole dismantling process should also be recorded for future reference. All survey reports, conservation studies, progress reports, record drawings as well as site inspection records should be kept at the site office of the storage shed. The information should be made available for operators who are responsible for managing any changes to the heritage items.

8.3 Management Structure

Conservation consultants and prescribed building professionals should be appointed in the project team during the design and working stages to ensure that the conservation policies stated in the Conservation Management Plan can be properly executed. A management committee consisting of building professionals should be set up to monitor the operation of the management plan as well as to coordinate with the Planning Department to formulate the reinstatement proposal for the two structures.

BIBLIOGRAPHY

Archive

Aerodrome. CO129/498

"Clearance of Squatters on Mixed Lots in Diamond Hill". 1996. Web. 23 Mar 2011. http://www.legco.gov.hk/yr96-97/english/panels/hg/papers/hg0212-5.htm#E20E5.

Construction of hangar at Kai Tak Aerodrome. CO129/524/5

Development of Kai Tak Aerodrome. CO129/514/1

"Hangar on the north of Clear Water Bay Road - Kai Tak". HKRS156-1-2990A

Hong Kong Defence Scheme. 1936. BK002016

Hong Kong: Defence of. CO129/497

"Kai Tak Aerodrome - Duplicate sub-file containing spare copies of enclosures". HKRS163-1-356

Public Works Department. *Project Report on The Development Of Kai Tak Airport 1953*. Hong Kong: Govt. Printer, 1953

Report of the committee to enquire into the adequacy of the facilities at Kai Tak Aerodrome. CO129-587-1.

Meeting minutes, Hong Kong Legislative Council 6 Oct 1932

Book

Allaz, Camille. *History of Air Cargo and Airmail from 18th Century*. London: Christopher Foyle Publishing, 2004.

Banham, Tony. *Not The Slightest Chance, The Defence Of Hong Kong, 1941*. Hong Kong: Hong Kong University Press, 2003. Print.

Best, Antony. *Britain, Japan and Pearl Harbor, avoiding war in East Asia, 1936-1941.* 1. New York: Routledge, 1995. Print.

Bishop, Chris. *The Encyclopedia of Weapons: From World War II to the Present Day*. USA: Thunder Bay Press, 2006. Print.

Carl, Vincent. *No reason why: the Canadian Hong Kong tragedy: an examination.* Ontario: Canada's Wings Inc., 1981. 6-7. Print

Eather, Charles Edward James. *Airport of the nine dragons Kai Tak, Kowloon*. Surfers Paradise: ChingChic Publishers, 1996. Print.

Ko, Tim Keung, and Jason Wordie. Ruins of War: a guide to Hong Kong's Battlefields and

Wartime Sites. Hong Kong: Joint Publishing (H.K.) Co., Ltd., 1996. 16. Print.

Osborne, Mike. Pillboxes of Britain and Ireland. England: Tempus, 2008. Print.

Smart, Alan. *Making room: Squatter Clearance in Hong Kong*. Hong Kong: Centre of Asian Studies, University of Hong Kong, 1992. Print.

Snow, Philip. *The fall of Hong Kong: Britain, China and the Japanese occupation*. New Haven: Yale University Press, 2003. Print.

Thompson, Robert Smith. *Empires on the Pacific: World War II and the struggle for the mastery of Asia.* 1. New York: Basic Books, 2001. Print.

Tohmatsu, Haruo, and H.P Willmott. A Gathering Darknessthe: the coming of war to the Far East and the Pacific, 1921-1942. Lanham, MD: SR Books, 2004. Print.

Wills, Henry. *Pillbox: a study of UK defences, 1940*. London: Leo Cooper in association with Secker and Warburg, 1985. Print.

Wong, Mary. 50 Years of the Hong Kong Film Production and Distribution Industries: An Exhibition (1947-97). Hong Kong: Hong Kong Film Archive, 1997. Print.

《大磡村街坊福利會特刊》,香港:大磡村街坊福利會,1973年

吳邦謀:《再看啟德 從日佔時期說起》,香港:Zkoob Limited,2009年

沈克尼. *沈克尼:日軍島嶼兵要地志忽略了生存調查*. Interview. 新浪讀書. 23.03.2011. Web. < http://book.sina.com.cn/author/2011-03-23/1505284549.shtml >.

游子安:《黄大仙區風物志》,香港:黄大仙區議會,2003年

梁廣福:《晴天雨天大磡村:香港最大一個寮屋村的滄桑歲月》,香港:明窗出版社有限公司,2001年

鄭寶鴻:《香港冷月:香港的日治時代》,香港:香港大學美術博物館,2006 年

香港里斯本丸協會 編:《香港攻防戰之戰時防衛設施遺跡》,香港:画素社,2010 年

E-book

John C., Dunn. *Comeng: A History of Commonwealth Engineering*, 1921-1955. New South Wales: Rosenberg Publishing Pty Ltd, 2006. eBook.

Forum and website

"Japanese Pillbox at Diamond Hill." 23042008. Online Posting to *Gwulo: Old Hong Kong*. Web. 4 Apr 2011.

"Rare Dome shaped pillbox in Hong Kong." 13042011. Online Posting to *Pillbox Study Group Forum*. Web. 26 Apr 2011.

Government Report

Administrative Reports for the Year 1933

Administrative Reports for the Year 1934

Administration Reports for the year 1938

Lockhart, S. "Extracts from a Report by Mr. Stewart Lockhart on the Extension of the Colony of Hong Kong". Paper laid before the Legislative Council of Hong Kong. (1899)

Report of the Harbour Master and Director of Air Services for the year 1931.

Report on the General Post Office, Hong Kong, For the year 1924

Report of the General Post Office, Hong Kong, for the year 1933

Journal

Hayes, James. "The Kwun Yam - Tung Shan Temple of East Kowloon 1840-1940." *Journal of the Royal Asiatic Society Hong Kong Branch*. 23. (1983). Print.

P.H., Hase. "Beside the Yamen: Nga Tsin Wai Village." *Journal of the Royal Asiatic Society Hong Kong Branch*. 39. (1999). Print

"Conference on the limitation of armament, Washington, November 12 1921-February 6, 1922" *Papers Relating to the Foreign Relations of the United States: 1922*. Vol. 1. Web. 13 Nov 2011. http://www.ibiblio.org/pha/pre-war/1922/nav_lim.html.

Map

"Beliman Hangar in Kai Tak Airport-Dispute as to the ownership of the –". HKRS156-1-833

East Kowloon. Date unknown. Crown Lands and Survey Office, Hong Kong

Kowloon Peninsula. 1947. Crown Lands and Survey Office, Hong Kong

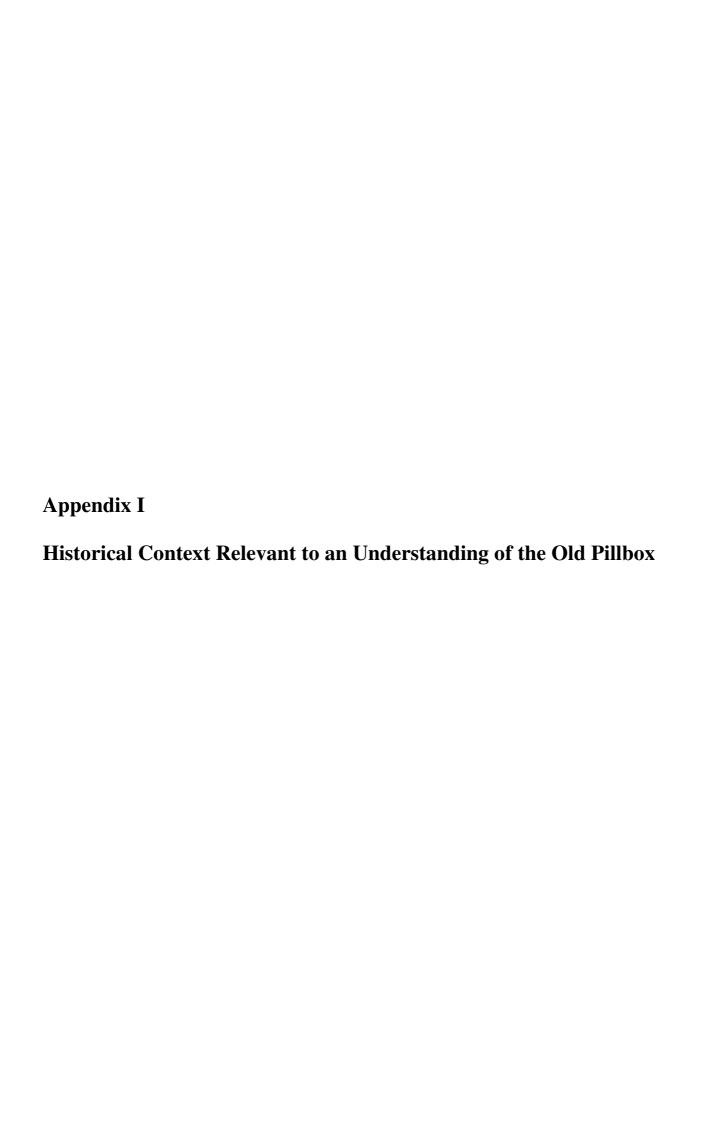
"Resumption of Land for Lung Cheung Road Extension-Stage II". HKRS934-8-120

Sheet number 11-NE-6B. 1975. Crown Lands and Survey Office, Hong Kong

Sheet number 11-NE-6D. 1975. Crown Lands and Survey Office, Hong Kong

Newspaper

"Inspection visit to Kowloon Tong Model Village rescheduled – airfield extension work commences on the 15th, villagers should take the bypass" *Overseas Chinese Daily News* 13 Sep 1942. Print.


"Age of aviation in Hong Kong, description of new civil hangar built at Kai Tak Aerodrome, stimulus for local services" *South China Morning Post.* 5 April 1932. Print.

Report

Archaeological Survey a Tai Hom Tsuen.

"Historic Building Appraisal – Old Pillbox, Diamond Hill, Hong Kong". The Antiquities and Monument Office.

Introduction

Figure a1 Map showing the CDA site and the historic structures.

The clearing and resumption of the Tai Hom Village squatter area was completed in 2001 and after this date the existence of a wartime pillbox was rediscovered. The following sections will explore the historical value(s) of the old pillbox and, provide an overview of the background of this area, covering the located site and the related place, namely Tai Hom Village and nearby villages. Also covered are the Kai Tak Bund and Kai Tak Airport, as they may each contribute to the cultural significance relating to the old pillbox.

While examining the history of this area, the location and size of Tai Hom Village has slightly varied from time to time. Whether it was referred to as an agricultural village in the 19th century or as a squatter village in the 1950s, its exact location within the boundary of the existing located site has varied. Calling this site "Tai Hom Village" could be perceived as false, but it has become the prevalent name. To understand any misconception related to the name of Tai Hom Village, it is necessary to analyse the origins of the village.

Tai Hom Village during the Qing Dynasty

The Chu family (朱氏家族) established Tai Hom Village, located south of Diamond Hill, in the 18th century. The Chu family's apical/titular ancestor lived in Kwangsi Province (廣西省) in the late

Ming Dynasty, but then moved to Waizhou in Guangdong Province. A sixteenth generation descendant born in 1771 moved to Kowloon City, and then to Diamond Hill and is said to have become wealthy from quarrying and construction, later acquiring many houses and farmland. In Tai Hom (Tai Tan Tsun in Figure a2), they formed three family branches (三房) derived from each of the sons¹.

At the time when Tai Hom was founded, some villages had long been established in East Kowloon, of which Nga Tsin Wai (衙前圍) and Po Kong (蒲崗) were the two leading villages, each with their own temple serving as a centre to discuss community affairs. Nga Tsin Wai was a walled city established in the 16th century. It headed an inter-village union named the "Kowloon League of Seven"(九龍七約), which comprised nine villages, namely: Nga Tsin Wai itself, Kak Hang (隔坑), Tai Hom (大磡), Shek Kwu Lung (石鼓壟), Ta Kwu Leng (打鼓嶺), Sha Po (沙浦), Nga Tsin Long (衙前塱), Ma Tau Wa (馬頭圍) and Ma Tau Chung (馬頭涌). Another alliance, called the "Six Villages Alliance" (六鄉) comprised: Po Kong (蒲崗), Chuk Yuen (竹圍), Sha Tei Yuen (沙地園), Nga Yiu Tau (瓦窰頭), Ngau Chi Wan (牛池灣) and Yuen Ling (元嶺)².

The inter-village alliance is a mutual defence grouping against outside attack. For more effective protection, alliance members usually comprised of adjacent villages. Though nearer to Po Kong (蒲 崗), Tai Hom joined the more distant "Kowloon League of Seven" (九龍七約) (see Figure a2). The reason is unknown, but Tai Hom's isolation from surrounding villages eventually led to the establishment of their own temple in front of their village.

The story of how the temple evolved is as follows: on the paddy fields where the Chu family grew rice, one family member placed an image of the Goddess of Mercy (觀音) near the field, after which better crops were produced. The village elders then erected a small Kuan Yan temple (觀音廟) in the $1840s^3$. The Chu clan managed this temple, and it soon became the religious focus for all the villages. In 1904, with financial support of merchants from the Nam Pak Hong (南北行) on Hong Kong Island, a new Tung Shan temple (東山廟) was built, just next to the Kuan Yam Temple⁴. These temples were treated by people as one entity and became the predominant community temples in East Kowloon in the early years of the 20_{th} century and maintained their popularity until the 1930s. These two temples were demolished during WWII as the villagers felt that the temple gods no longer offered protection for the community.

⁴ Ibid:213

.

Smart, Alan. *Making Room: Squatter Clearance in Hong Kong*. Hong Kong: Centre of Asian Studies, University of Hong Kong, 1992. 70 Print.

Archaeological Survey at Tai Hom Tsuen. 19.

Hayes, James. "The Kwun Yan – Tung Shan Temple of East Kowloon 1840-1940." *Journal of the Royal Asiatic Society Hong Kong Branch*. 23. (1983):212. Print

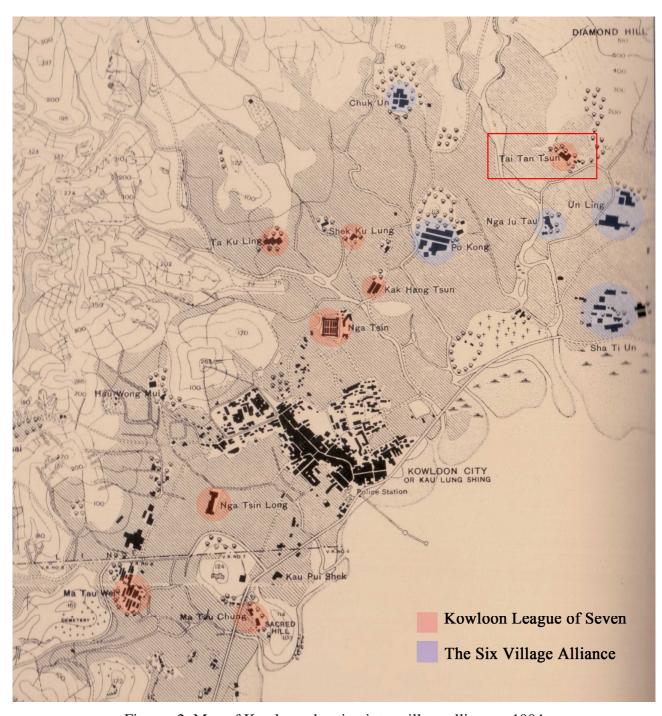


Figure a2. Map of Kowloon showing inter-village alliances, 1904

Early Development in the Diamond Hill Area

Hong Kong's population steadily grew during the 1920s, leading to an increase in housing demand. Large-scale private development schemes, such as the Kowloon Tong Estate and Kai Tak Bund, were launched in Kowloon and near Diamond Hill and the Kai Tak Company planned to reclaim

230 acres to build 6,000 houses, targeting wealthy Chinese businessmen.

However, the Diamond Hill area remained primarily an agricultural area unaffected by large development schemes because of its inaccessibility (see Figure a3). Some wealthy Chinese investors instead began buying land lots in the Diamond Hill area for building country villas; and a comprador, Mr. Leung Yan Po (梁仁甫), was one of a few people to apply for conversion of a block of hillside agricultural lots into a single building lot in 1921. This dispatch reply from the South District Office showed that Leung's private building project was one of many in Diamond Hill:

"This is an instance of development which is becoming more common in the district. Well-to-do Chinese purchase privately a collection of adjoining lots – convert a portion for a bungalow & have what really is a small country estate? (sic) They develop them gradually..."

Leung's own European-style residence was not completed until 1931, seriously behind its scheduled completion due to the 1925 strike and labour boycott. This was not an isolated case as other local land developers suffered financial losses because of construction delays due to the strike and the fall in value of local shares.

The developer of the Kai Tak Bund suffered severe financial losses and was unable to complete the remaining phases of the Kai Tak Bund reclamation. This project was taken over by the government in late 1927, and, as this Study outlines below, this reclaimed land was later used as an airfield - known before WWII as Kai Tak Airfield and after the war as Kai Tak Airport.

⁵ "Lots 1937 & 1928 S.D.2 – Conversion of an area in Lot 731, D.D.2 into Building Land and Purchase of certain lots in the neighbourhood". HKRS58-1-99

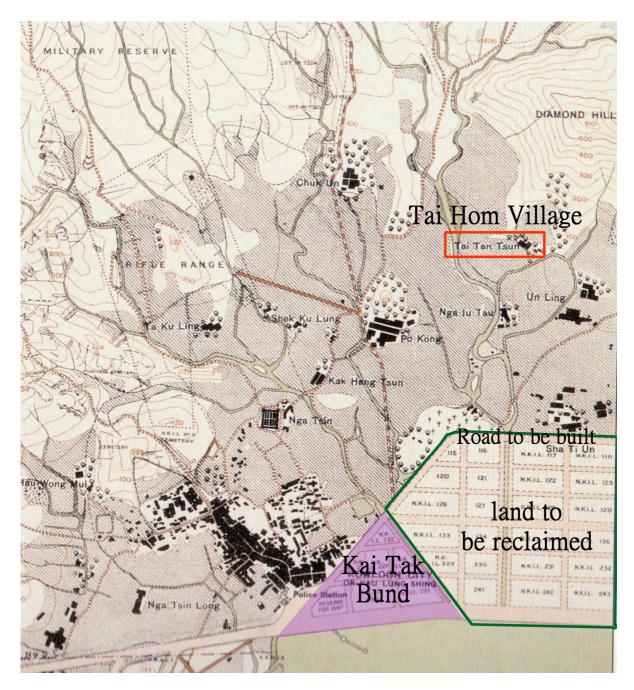


Figure a3 Map of Kowloon, 1924

Development of Kai Tak Aerodrome/Airfield (1925-1941)

To understand why and under what circumstances the Kai Tak Airfield was built, the political situation at that time should be considered. The 1911 Xinhai Revolution (辛亥革命) marked the end of over 2,000 years of dynastic rule in Imperial China, and subsequently there was great political unrest during the Republican period.

Alongside political disturbances in China, the establishment of the Chinese Air Force in 1924

encouraged the British Air Ministry to review the exigency of building an air base in Hong Kong. Discussions, however, were suspended by the Committee of Imperial Defence as Britain was restrained by the terms of Article 19 of the 1922 Washington Naval Treaty. According to these terms, Britain as a signatory agreed that there be "no increase...in the coast defences of (its) territories and possessions...." The *status quo* was reiterated in subsequent years, as seen in the document, "Notes on Proposals for Air Base at Hongkong" dispatched by the General Officer Commanding the Troops (in Hong Kong) on 4 December 1925:

"...(if) developments of Chinese Air Forces occur, or the present situation in China be materially altered, the Government might seem it necessary, in order to safeguard our interests in China, to establish an Air Base in Hong Kong in spite of the difficulties and great expense involved. There is, however, no intention of doing so at the moment..."

After the death of Sun Yat-sen (孫逸仙) in 1925, his successor Chiang Kai-shek (蔣介石) led the Northern Expedition (北伐), wiping out the Beiyang warlords (北洋軍閥) in Beijing and other warlords in Southern and Northern China. Due to political instability in China, further evaluations to construct an air base in Hong Kong were being discussed. On 22 November 1926 the Committee of Imperial Defence (in Britain) made a final decision:

"The Overseas Defence Committee at their 271st Meeting also expressed general agreement that, from the point of view of defence, the acquisition of the Kai Tak reclamation area was highly desirable."

This Committee also pointed out that the future airfield should fulfill five needs in the event of wartime operations:

- a) To accommodate air units to resist enemy air and sea-borne attacks;
- b) To co-operate with naval forces in the defence of Hong Kong and to furnish shore facilities for the Fleet Air Arm;
- c) To allow air co-operation with the Army in connection with coastal and landward defences of Hong Kong;
- d) To form an airport in the scheme of Empire Air Defence;
- e) To provide facilities for the work of aircraft dispatched to Hong Kong for possible operations against the Chinese.

8 Hong Kong: Defence of. CO129/497. P.374

[&]quot;Conference on the Limitation of Armament, Washington, November 12, 1921-February 6, 1922" (sic) *Papers Relating to the Foreign Relations of the United States: 1922.* Vol. 1. Web. 13 Nov 2011.

http://www.ibiblio.org/pha/pre-war/1922/nav_lim.html.

⁷ Aerodrome. CO129/498. P.443.

Raising capital for constructing the new airport was a major problem for the Hong Kong colonial government. In early 1926, the estimated construction cost was HK\$1,738,000, of which a million dollars was budgeted to resume the reclaimed Kai Tak land. By January 1927, the construction cost rose sharply to HK\$2,036,500, which was thought to be too high for Hong Kong to pay on its own. The British Government initially agreed to contribute three quarters of the cost, but as time went by, the cost had increased to at least HK\$2.5 million. With no further financial support from Britain, the Hong Kong Legislative Council appropriated HK\$1,080,000 as a Public Works Loan, to fund construction of the Kai Tak Aerodrome.

Phase Three of the Kai Tak Reclamation was completed by 1930, entailing basic construction, including sea walls, covering of nullahs, drainage and seaplane slipways. Prior to this, the Royal Air Force Kai Tak, established on 19 March 1927, occupied land just across the nullah. The RAF base began as a complex of matshed buildings on the western perimeter of the airfield, and its permanent base was not established until 1932. This was a makeshift measure to meet the terms of the 1922 Washington Naval Treaty, and which the British Government technically adhered to by designating Kai Tak a civilian aerodrome. As a civilian aerodrome there would be no restriction on receiving any aircraft and service⁹.

Civil aviation at Kai Tak began with the Hong Kong Flying Club's formation in mid-1929, and flight training commenced in the second half of 1930. The club started with two Avro Avian 594 MK 1V/M planes, which held the colony's initial aircraft registrations. Club membership grew significantly when Governor Sir Cecil Clementi became an active supporter. His intervention became so supportive that in 1930 the Legislative Council voted the club \$60,000 and an annual subsidy of \$30,000¹⁰. In 1931 there were 1,100 flights comprising civil aircraft and totalling 300 flying hours¹¹, the Hong Kong Flying Club was the principal user.

_

⁹ Eather, Charles Edward James. *Airport of the Nine Dragons Kai Tak, Kowloon*. Surfers Paradise: ChingChic Publishers, 1996. 12. Print.

¹⁰ Ibid:15-17

Hong Kong. Harbour Master and Director of Air Services. *Report of the Harbour Master and Director of Air Services for the Year 1931*. Hong Kong: Hong Kong Government, 1932.

Photo a1 & a2 Aerial views of RAF base (circa late 1920s to early 1930s)

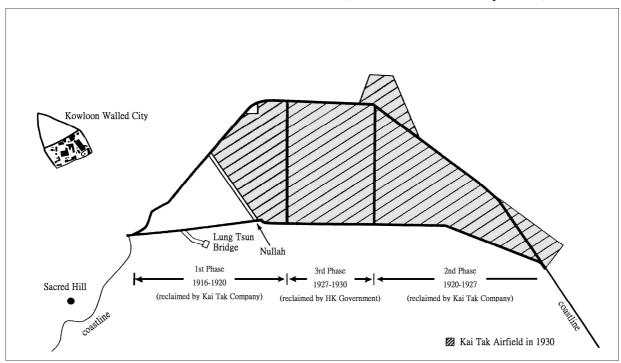


Figure a4 Kai Tak reclamation phases and Airfield location (shaded area) in 1930

In the Airfield's early days, passenger traffic appeared to play a secondary role to postal traffic. The Hong Kong Post Office had participated in the United States Trans-Continental Air Mail Service since 19 November 1924¹² and its air postal service had subsequently grown significantly. In 1933, an additional airmail service to Europe and intermediate countries opened, with an average transit time between Hong Kong and Great Britain of 15 days¹³.

Hong Kong's fledging aviation industry can be traced back to the mid-1920s with Charles Ricou's

Hong Kong. Breen, M. J., *Report on the General Post Office, Hong Kong, for the Year 1924*. Hong Kong: Hong Kong Government, 1924.

Hong Kong. Postmaster General. *Report of the General Post Office, Hong Kong, for the Year 1933*. Hong Kong: Hong Kong Government, 1933.

short-lived commercial service using amphibian aircraft between Macau and Repulse Bay. However a more significant day in Hong Kong's aviation history was the first commercial flight using Kai Tak Airfield, which arrived from Malaysia on 24 March 1936. The first commercial passenger to land at Kai Tak was a Kuala Lumpur man, Ong Eee Lim, who sat the entire journey from take-off to touch-down on 16 mailbags the aircraft carried. This event inaugurated the weekly air service between Penang (檳城) and Hong Kong and connected with the Imperial Airways routes to Australia and Great Britain¹⁴.

The continued growth of civil aviation caused a significant increase in the amount of traffic handled at Kai Tak Airport with the number of arrival and departure passengers rising from 3,685 in 1937 to 9,969 just a year later¹⁵. By 1938, Kai Tak had already become the Far East's major aviation terminal with four airline companies providing service to Hong Kong: Imperial Airways Limited, Air France, Pan American Airways and China National Aviation Corporation¹⁶.

In an effort to cope with increased demand, Kai Tak Airfield continued to update its facilities, and erected an additional hangar, constructing a pontoon landing stage and a temporary terminal building. On 22 September 1938, the Governor appointed a committee to study and make recommendations concerning the aerodrome expansion. After five meetings and sending out questionnaires to airline companies and pilots, they submitted a report to Hong Kong's Colonial Secretary in May 1939. Amongst a range of recommendations, the most significant was the suggestion to further reclaim Kowloon Bay and to extend the airfield south, on which were to be built three intersecting runways, with a minimum width of 150 yards (see figure a5). Other suggestions included erecting an up-to-date terminal building and at least two additional hangars ¹⁷. The British-based Air Council finally approved the proposal in 1940, as they considered it of great benefit to aviation development ¹⁸. The plan, however, was suspended because of Japanese military hostilities in Asia and the eventual invasion of Hong Kong.

Allaz, Camille. *The History of Air Cargo and Airmail from the 18th Century*. London: Christopher Foyle Publishing, 2004, 88.

Administration Reports for the Year 1938. 41

¹⁶ Ibid: 41

Report of the committee to enquire into the adequacy of the facilities at Kai Tak Aerodrome. CO129-587-1.

[&]quot;Kai Tak Aerodrome - Duplicate sub-file containing spare copies of enclosures". HKRS163-1-356

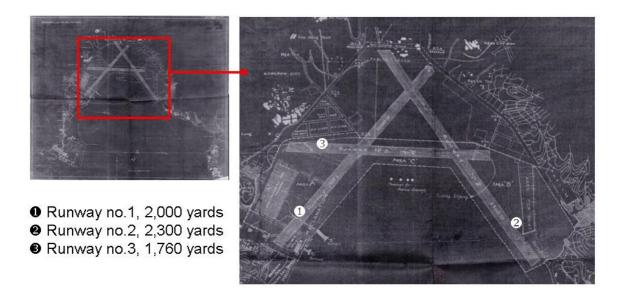


Figure a5. Plan of Kai Tak Airfield's proposed expansion, 1938. (Source: HKRS163-1-356)

Local History in the Early 1940s (WWII & Japanese Occupation of Hong Kong)

Britain was aware of a Japanese military threat to Hong Kong from as early as 1931, when the Japanese provoked the Mukden Incident (九一八事變) in Manchuria. The Committee of Imperial Defence decided in March 1932 to further strengthen the defences of the British Empire in the Far East ¹⁹. Various British defence studies had already concluded that Hong Kong would be extremely difficult to defend in the event of an attack, so Britain focused on Singapore, where a massive and (supposedly, at the time) well-protected naval base was constructed.

The first review of Hong Kong in light of its defence against a possible Japanese attack appears to have been made in 1935. The Inspector of Fixed Defences, General Barron, made a personal inspection of the colony's defences and submitted a report. He described the Hong Kong defences as "deplorable" and stated that the island of Hong Kong would be "easy prey...and that in the face of a determined attack by land or sea the fortress could not hold out even for the arbitrary period before relief." Because of the irregular coastline, the only practical defence was proposed to be built inland on the (Kowloon) mainland stretching from Junk Bay via Razor Hill (鷓鴣山) to Tide Cove (沙田海), and from there along the Shing Mun River (城門河) to Smuggler's Ridge (孖子徑) and Gin Drinker's Bay (醉酒灣)²⁰.

The 1936 Hong Kong defence scheme stated that, despite the gloomy prognostication of previous

Ko, Tim Keung, and Jason Wordie. *Ruins of War: a Guide to Hong Kong's Battlefields and Wartime Sites*. Hong Kong: Joint Publishing (H.K.) Co., Ltd., 1996. 16. Print.

²⁰ Carl, Vincent. *No Reason Why: the Canadian Hong Kong Tragedy: An Examination*. Ontario: Canada's Wings Inc., 1981. 6-7. Print

defence studies, "Hong Kong is ...a strategic point vital to the conduct of our Fleet, Army, and Air Force." Barron's recommendation was adopted, with slight adjustments. A line of pillboxes and bunkers, subsequently known as the Gin Drinker's Line (醉酒灣防線), was built in 1936 in the western New Territories. The British believed this defence line could protect the colony from Japanese invasion for at least six months – and, even called it the "Oriental Maginot Line" (東方馬奇諾防線).

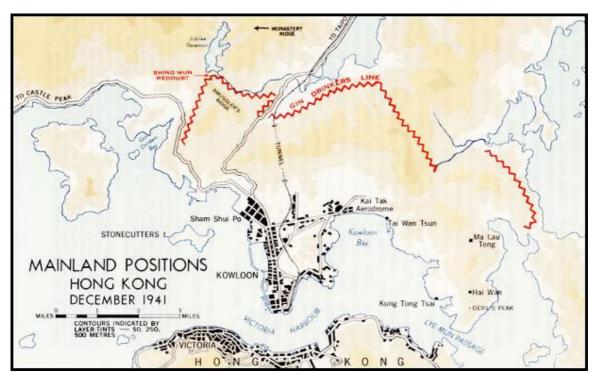


Figure a6 Location of Gin Drinker's Line (Source from website, "Six Years of War", http://www.ibiblio.org/hyperwar/UN/Canada/CA/SixYears/SixYears-14.html)

The Sino-Japanese War began on 7 July 1937, and within a year, Beijing, Nanjing and Shanghai had fallen. In October 1938, 30,000 Japanese troops landed at Bias Bay (大亞灣), now known as Daya Bay, Guangdong, just 24 kilometers north-east of Hong Kong. Within two weeks of landing, they had captured Guangzhou²¹. Despite this increased deployment of Japanese troops, no further major British reinforcement troops were deployed to Hong Kong. The Hong Kong Government decided to consolidate defence forces on Hong Kong Island, leaving only a minimal number of defensive sentry points in Kowloon and the New Territories to delay any enemy attack.

In the meantime, Japanese preparations for the attack and capture of Hong Kong had been in hand for some time. After 1938, the Japanese military had initiated military intelligence gathering activities on Hong Kong's defence forces, carried out by spies, secret agents and some Hong

Banham, Tony. *Not The Slightest Chance, The Defence Of Hong Kong, 1941*. Hong Kong: Hong Kong University Press, 2003. 8. Print.

Kong-based Japanese civilians, reporting information such as the location of British forces and important traffic positions. Based on this data, the Imperial Japanese Army General Staff Office produced a "Map of Hong Kong Defence Facilities" (《香港防禦設施圖》) drawn to a scale of 1: 25000, on which it accurately marked the location of facilities, including barracks, ammunition depots, searchlights, firing points, and the under-construction gun emplacement positions on Tsing Yi Island²².

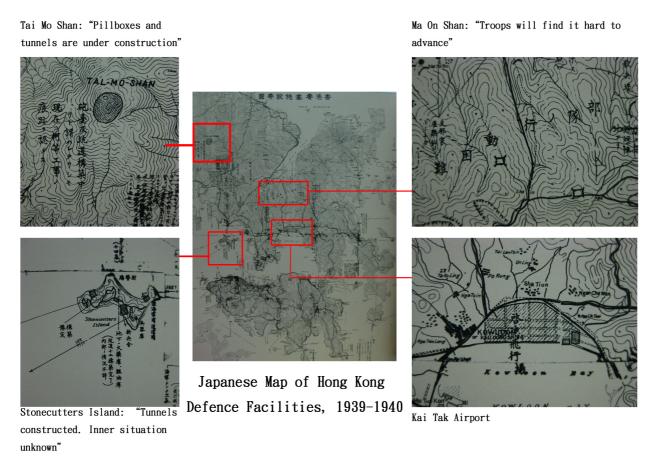


Figure a7. Japanese map of Hong Kong defence facilities (香港軍事要塞圖), annotated with observations in Japanese, 1930-1940. Source: *Mapping Hong Kong*, 146.

²² 沈克尼. *沈克尼:日軍島嶼兵要地志忽略了生存調査*. Interview. 新浪讀書. 23.03.2011. Web. http://book.sina.com.cn/author/2011-03-23/1505284549.shtml >.

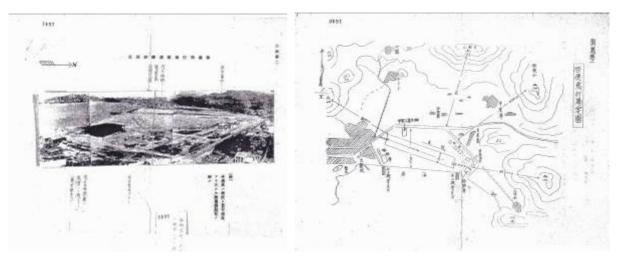


Figure a8 & a9 Japanese military intelligence diagrams of Kai Tak Airfield, before WWII

The Japanese Imperial General Headquarters ordered its Commander-in-Chief, China to prepare plans for the capture of Hong Kong in November 1941. The 38th Division of the 23rd Japanese Army was instructed to form the core of the invasion force and all preparations were to be completed by the end of November.

Eight hours after the Japanese Air Force devastated the U.S. Pacific Fleet at Pearl Harbour, the Japanese Empire launched an attack on the British Crown Colony of Hong Kong. On 8 December 1941 at 8:00 a.m., the colonial government was informed of the outbreak of war – and twenty minutes later, Japanese aircraft attacked Kai Tak Airfield, and within a few minutes they controlled Hong Kong airspace. Simultaneously, infantry units of the Japanese 23rd Army's 38th Division began to cross Shenzhen River into the New Territories by two routes: one advanced along the Kowloon-Canton Railway, entering Tai Po and Shatin; the other unit moved south-west and broke the defence at Gin Drinker's Line. The Japanese forces took Kowloon and the last British troops retreated to Hong Kong Island on 13 December 1941.

Photo a3 Japanese Army crossing the border between Hong Kong and Guangdong in December 1941

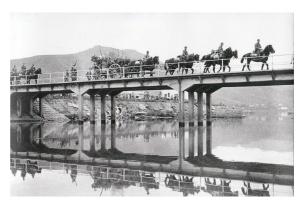


Photo a4 The Japanese Army crossing the Kwong Fuk Bridge near Tai Po Market in December 1941

On the night of 17 December 1941, the final essential preparations for an attack on Hong Kong Island were made by Japanese troops. They struck out across Victoria Harbour and reconnoitered a number of possible landing sites. Using only their rifles, they proceeded to disable British searchlights and mines that the British had laid. On the night of 18 December, 7,500 Japanese troops of the 38th Division commandeered every rowing boat, raft, rubber dinghy and junk they could muster, crept across the Harbour and made landfall in the districts of North Point and Shau Kei Wan (and separately, Aberdeen) on Hong Kong Island²³. Finally defeated on 25 December 1941, British colonial officials headed by the Governor of Hong Kong, Mark Aitchison Young (楊 京市) formally surrendered. Local people referred to the day as "Black Christmas".

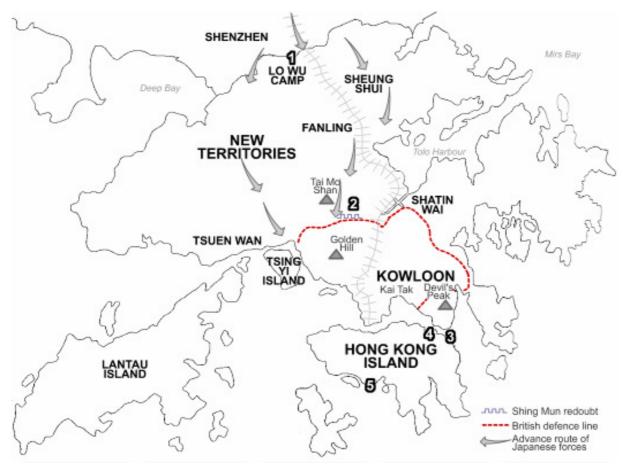


Figure a10 Map of Japanese lines of attack, December 1941

Snow, Philip. *The Fall of Hong Kong: Britain, China and the Japanese Occupation*. New Haven: Yale University Press, 2003. 64. Print.

Photo a5 British colonial officials headed by the Governor of Hong Kong, Sir Mark Aitchison Young (楊慕琦), surrendered on 25 December 1941 at Japanese military headquarters, The Peninsula Hotel, Tsim Sha Tsui

Diamond Hill under Japanese Occupation

Figure a11 Overseas Chinese Daily News, 20 June 1942

Shortly after the Japanese occupation of Hong Kong in 1941, the Japanese authorities announced plans for an extension of the Kai Tak Airfield and prior to the commencement of construction work a foundation stone laying ceremony was held in September 1942. A newspaper item titled "Kowloon City Villagers Help to Build Airfield", dated 20 June 1942 (see Figure a11), reported that the land of twenty villages in Diamond Hill (including half of Tai Hom Village) were seized for the extension of the airfield, an action affecting about 20,000 people. Most villagers fled to China or to urban areas and some were killed by the Japanese for not co-operating. Other villagers were relocated to Model Village in Kowloon Tsai with 25 huts built for the displaced.



Figure a12 Map showing the scale of expansion of Kai Tak Airfield during Japanese Occupation (map in HKRS156-1-88: Bellman Hangar in Kai Tak Airport-Dispute of ownership, 1947). Tai Pin Tsun, now Tai Hom Village, is circled in red

Construction work commenced on 15 September 1942²⁴, with Allied prisoners-of-war employed as

²⁴ "Inspection visit to Kowloon Tong Model Village rescheduled-airfield extension work commences on the 15th, villagers should take the bypass" *Overseas Chinese Daily News*. 13 September 1942. 4. Print.

forced labourers. Work included diverting all the streams of the area into a single huge stone-lined nullah, building a new road along the inner side of this nullah (Clear Water Bay Road, i.e. today's Choi Hung Road)²⁵. Villages and houses within the huge semicircle airfield extension area were then cleared and destroyed in a matter of weeks. The area's Sacred Hill and the wall of Kowloon Walled City were blasted and destroyed for fill for the new reclamation.

The airfield was greatly expanded inland and increased in area from 150 acres to 376 acres (see Figure a12). A barbed-wire fence was erected; and anyone found crossing this fence was executed.

Post-War Period

After the war, the Royal Air Force and Royal Navy used the extended airfield for a few years before an official development plan for Kai Tak Airport was released in 1954. The core idea of this master plan was to upgrade facilities for the rapidly expanding commercial aviation industry.

A new NW/SE 2,542 metre runway extending into Kowloon Bay by land reclamation replaced the previous two inter-crossing runways. The northern section of the former Po Kong Village was released for use and the actual airport was shifted south (see Figure a13).

In the meantime, north of the airport where the old villages once stood, a wave of refugees from China brought another great change to the area: a solid mass of squatter housing interspersed with small patches of vegetable fields. The Chu family, the dominant ancestral owners of Tai Hom, came back from China belatedly in 1948, only to find that their land was occupied by illegal housing. Some of those who had encroached on Chu land were willing to pay rent, while the remaining majority were non-paying resident squatters²⁶.

Hase, P.H.,. "Beside the Yamen: Nga Tsin Wai Village". *Journal of the Royal Asiatic Society Hong Kong Branch*. 39. (1999): 55. Print

Smart, Alan. *Making Room: Squatter Clearance in Hong Kong*. Hong Kong: Centre of Asian Studies, University of Hong Kong, 1992. 76. Print.



Figure a13 Map of East Kowloon (1967). The northern area was released and a new runway (with a new flight path orientation) was built between 1956 and 1960 on newly reclaimed land that extended into Kowloon Bay.

Hong Kong's first film industry studios began moving into Diamond Hill from the late 1930s The earliest to relocate was Zhao Shushen's (趙樹燊) Grandview Motion Pictures (大觀聲片廠), moving

ts studio from Pak Tai Street in To Kwa Wan to Diamond Hill, converting the former European-style residence of Leung Yan Po (梁仁甫) into a film studio²⁷. Film production was interrupted by WWII, however, later, it again thrived in Tai Hom Village once Japanese occupation ended. Grandview Motion Pictures changed ownership several times, with name changes, including Diamond Film Studio (鑽石片場) in the 1950s to Jiancheng Film Studio (堅城片場) in the 1970s. Television Broadcasting Limited (TVB) also rented the studio for the shooting of drama programmes in its early days²⁸.

Photo a6 Demolition and dismantling of Jiancheng Film Studio in the 1980s

The area's film studios attracted movie celebrities and the wealthy to move to the Diamond Hill area to live, including: Cantonese Opera singer Hong Xian-nu (紅線女), actor Pau Fong (鮑方), film director Moon Kwan (關文清). They each built a house in Tai Hom Village to be near their work. Actress Nancy Sit (薛家燕), singer Andy Lau (劉德華) and the Hui Brothers (許氏兄弟) also lived in the Tai Hom squatter area when they were young. The film industry also stimulated the growth of other industries; including shops for theatre props, shoe-making, dyeing factories and restaurants, of which Wing Lai-yuen (詠黎園) became famous for its Sichuan noodles.

_

Wong, Mary. 50 Years of the Hong Kong Film Production and Distribution Industries: An Exhibition (1947-97). Hong Kong: Hong Kong Film Archive, 1997. 24. Print.

Lam, Man Wai. Personal interview. 27 March 2011.

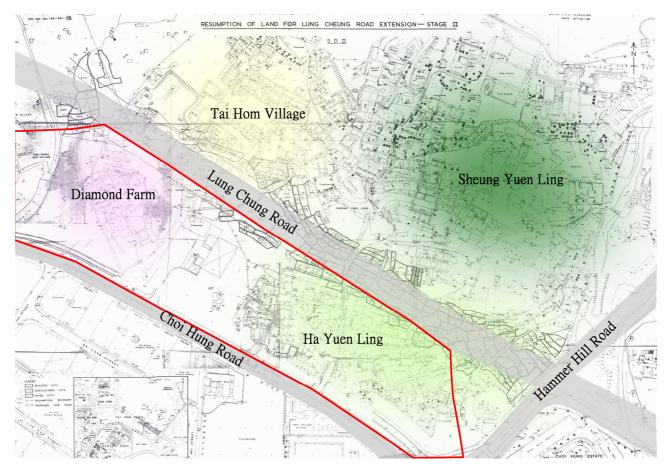


Figure a14 A conceptual map (circa mid-1960s) illustrating the area's later road networks and villages within the entire Diamond Hill squatter area (circa late-1970s). The red-lined area is the now vacant site known as the "Former Tai Hom Village" (despite the "original" Tai Hom Village's correct location as shown in this map)

In 1969, the government proposed to build a new road (Lung Cheung Road, 龍翔道) to ease traffic congestion on Choi Hung Road (彩虹道). The proposed freeway cut through the squatter area (see Figure a14 and Photo a7), dividing Tai Hom Village into North and South villages. Sections of land in Tai Hom Village and Sheung Yuen Ling Village were seized, and the construction of Lung Cheung Road commenced in 1973. For many years, the combined Diamond Hill squatter villages constituted one of Hong Kong's largest squatter sites, which at its peak comprised six squatter villages of 12,000 structures and 34,000 residents.

Photo a7 Diamond Hill Squatter Area in 1982.

In 1982, the Housing Department started to carry out surveys to count the number and prevalence of squatter areas around Hong Kong. A squatter occupancy survey was conducted in 1984, with only residents registered at that time eligible for re-housing when affected by later government clearance schemes.

After 1987, development plans, including the Tate's Cairn Tunnel (大老山隧道) and the residential project near Fung Tak Road (鳳德道), led to another wave of land seizures and the re-housing of 26,000 Diamond Hill squatter residents.

The clearance of Sheung Yuen Ling Village (上元嶺) was completed in early 1997 and the final Diamond Hill squatter settlements were concentrated in the two villages of Tai Hom and Ha Yuen Ling (下元嶺), both eventually cleared in 2001. During the time of demolition, the pillbox was discovered in Tai Hom Village. Covered with illegal structures, it had previously been used as a squatter home.

Before the demolition of Tai Hom Village, local film director Fruit Chan (陳果) used the village for the setting of *Hollywood-Hong Kong* (香港有個荷李活), capturing the last glimpses of Tai Hom Village.

Photo a8 Image retrieved from the Fruit Chan movie Hollywood-Hong Kong, 2001.

Appendix II

Other Military Structures in Hong Kong

Other military structures in Hong Kong

Declared Monuments

1. Fan Lau Fort (分流炮台)

Fan Lau, Lantau Island

Fan Lau Fort is located at the south-western tip of Lantau, overlooking a sea passage leading into the Pearl River Estuary. According to the Macau Gazetteer, the fort can be dated reliably to the 7th year of Yongzheng (1729), when it was recorded that two forts were constructed on Lantau. Fan Lau Fort was apparently one of them. Rectangular in shape, the fort measures 46m by 21m and its walls are built of semi-dressed stone and green bricks. It was believed that the fort was once occupied by pirates. However, after the surrender of pirates to the Qing government in 1810, the fort would have been retaken by government troops. It was probably abandoned around 1898 after the lease of the New Territories to Britain.

Initial restoration work was undertaken in early 1985. This was followed by a large scale restoration and repair project in 1990 which also provided for the clearance of the surrounding area.

2. Tung Chung Fort (東涌炮台)

Tung Chung, Lantau Island

Tung Chung Fort, referred to in the Qing Dynasty as the Tung Chung Suocheng (Tung Chung Battalion), was the naval headquarters of the Right Battalion of Dapeng. The carved granite slab above the entrance gives the date of the Fort as 1832. In 1898 when the New Territories was leased to Britain, the Fort was evacuated by the Qing authorities, then occupied, first as a police station, and then by Wa Ying College, the Rural Committee Office and the Public Primary School of Tung Chung.

3. Tung Chung Battery (東涌小炮台)

Tung Chung, Lantau Island

According to the Guangdong Annals, two military forts were built in the 22nd year of Jiaqing reign (1817) at the foot of the 'Rocky Lion Hill' at Tung Chung, Lantau Island. In 1980, the remains of a battery were discovered on a hill slope facing the sea near Tung Chung Pier. After clearing the dense undergrowth, an L-shaped wall with a platform at the corner, probably for gun emplacements, was revealed. There is little doubt that this ruin is one of the two forts built in 1817 as mentioned in the Guangdong Annals. Although some restoration has been carried out, the battery remains to be studied in greater detail.

4. Tung Lung Fort 東龍洲炮台

Tung Lung Chau, Sai Kung

Located at the north eastern tip of Tung Lung Chau, Tung Lung Fort was built in the reign of Kangxi (1662-1722) to guard against pirates according to the Xinan Gazetteer. Another historical document describes it as being built by order of Yang Lin, Viceroy of Guangdong and Guangxi from 1719 to 1724.

Measured 33.5m by 22.5m, the rectangular fort was enclosed by wall of 3m high with its main entrance at north wall. It consisted of fifteen guardhouses and was armed with eight cannons. A small detachment was stationed at the fort until the beginning of the 19th century, when it proved difficult to cope with a marked increase in piracy. Because of the difficulty in keeping this remote fort supplied, it was replaced by Kowloon Fort in 1810.

Repairs and partial restoration were then carried out to the fort between 1979 and 1982. While the restoration work was in progress, a systematic archaeological excavation of the interior of the fort was conducted by the Antiquities and Monuments Office with the assistance of volunteers. A large quantity of artefacts was unearthed.

5. Fortified Structure at no.55 Ha Pak Nai

No. 55 Ha Pak Nai

Built around 1910, the fortified structure at No. 55 Ha Pak Nai, Yuen Long is the only remaining building in Hong Kong with solid evidence of having direct connection with the revolutionary movement under the leadership of Dr. Sun Yat-sen (1866-1925) and his compatriots.

With its advantageous location overlooking Deep Bay and Shenzhen, No. 55 Ha Pak Nai was an operational base of the revolutionary movement. A place of refuge for the revolutionaries under the cover of a rice mill and sugar refinery was set up around 1910 at the site after the Mutiny of the New Army in Guangzhou. A fortified structure was also built at the site to keep watch on the area across Deep Bay, which was then under the administration of the Qing authority. The fortified structure was built by Mr. Tang Yam-nam (1846-1923), who was a core member of Hsing Chung Hui (Xing Zhong Hui, 興中會). The site was mainly owned by Mr. Li Ki-tong (1873-1943) who joined Hsing Chung Hui in 1900 and was a son of the wealthy businessman Mr. Li Sing (1830-1900).

Architecturally, the fortified structure in Ha Pak Nai is essentially a functional structure for surveillance. It is a two-storey rectangular structure built of grey bricks, with a mezzanine floor between the first floor and the roof. A staircase bulkhead is found on the flat roof. Gun loops at various levels on the elevations can still be found. Internally, the plain rooms have screeded floors. To serve defence purposes, tapered and recessed window openings allowed a greater viewing angle from the inside of the building.

The Antiquities and Monuments Office will provide display facilities at the site in the second half of 2011.

Proposed Grade I (by 23 Nov 2011, grading not yet confirmed)

Ngog Shuen Chau Barracks, Old Prison Area, Block 318	Ngong Shuen Chau Barracks, Old Prison Area, Block 319	
Stonecutters Island, Sham Shui Po, KLN	Stonecutters Island, Sham Shui Po, KLN	
Ngong Shuen Chau Barracks, Old Prison Area, Block A	Ngong Shuen Chau Barracks, Old Prison Area, Block H	
Stonecutters Island, Sham Shui Po, KLN	Stonecutters Island, Sham Shui, KLN	

Ngong Shuen Chau Barracks, South Shore Battery, Block 47A-B Ngong Shuen Chau Barracks, Stonecutters West Battery, Ruin of Stonecutters Island, Sham Shui Po, KLN **Generator House** Stonecutters Islandm Sham Shui Po, KLN Ngong Shuen Chau Barracks, Stonecutters West Battery, Block 37 Ngong Shuen Chau Barracks, Stonecutters West Battery, Block 41 Stonecutters Island, Sham Shui Po, KLN Stonecutters Island, Sham Shui Po, KLN

Ngong Shuen Chau Barracks, Stone cutters West Battery, Block Ngong Shuen Chau Barrack, Stonecutters East Battery, Defensive 24A-D **Loopholed Wall** Stonecutters Island, Sham Shui Po, KLN Stonecutters Island, Sham Shui Po, KLN Former Whitfield Barracks, KLN West II Battery KLN Park, Tsim Sha Tsui, KLN

Proposed Grade II (by 23 Nov 2011, grading not yet confirmed)

Ngong Shuen Chau Barracks, Stonecutters West Battery, Block 29	Ngong Shuen Chau Barracks, Old Prison Area, Block 322	
Stonecutters Island, Sham Shui Po, KLN	Stonecutters Island, Sham Shui Oi, KLN	
Ngong Shuen Chau Barrack, Stonecutters East Battery, Block	Ngong Shuen Chau Barracks, Stonecutters East Battery, Block 331	
Stonecutters Island, Sham Shui Po, KLN	Stonecutters Island, Sham Shui Po, KLN	
108		

Ngong Shuen Chau Barracks, Stonecutters East Battery, Block 332 Stonecutters Island, Sham Shui Po, KLN	Ngong Shuen Chau Barracks, Stonecutters East Battery, Block 333 A&B Stonecutters Island, Sham Shui Po, KLN
Ngong Shuen Chau Barracks, Stonecutters East Battery, Block 334	Ngong Shuen Chau Barracks, Ammunition Sub Depot Area, Block 01
Stonecutters Island, Sham Shui Po KLN	Stonecutters Island, Sham Shui Po, KLN
334	

Т	
Ngong Shuen Chau Barracks, Stonecutters West Battery, Block 36	Ngong Shuen Chau Barracks, Stonecutters Central Battery, Gun
Stonecutters Island, Sham Shui Po, KLN	Emplacement associated with underground magazines
	Stonecutters Island, Sham Shui Po, KLN
N. C. C. D. L. C. M. W. A. D. A. D. C. C.	
Ngong Shuen Chau Barracks, Stonecutters West Battery, Ruins of	Ngong Shuen Chau Barracks, South Shore Battery Centre Gun
Ngong Snuen Chau Barracks, Stonecutters West Battery, Ruins of West Battery	Ngong Shuen Chau Barracks, South Shore Battery Centre Gun Emplacement

Ngong Shuen Chau Barracks, Stonecutters West Battery, Block 43
Stonecutters Island, Sham Shui Po, KLN

Proposed Grade III (by 23 Nov 2011, grading not yet confirmed)

Military facility within Stonecutters Island,	Military facility within Stonecutters Island,	
Sham Shui Po, KLN	Sham Shui Po, KLN	
No picture	No picture	
Military facility within Stanley Peninsula,		
H.K.		
No Picture		

Some of the Nil Grade Military Structures

Wong Nai Chung Gap

Lei Yue Mun Fort (Now Hong Kong Museum of Coastal Defence)

Shing Mun Redoubt

Pinewood Battery

Fortress on the Devil Peak

Wartime bunker and shelters near Tai Tam Gap

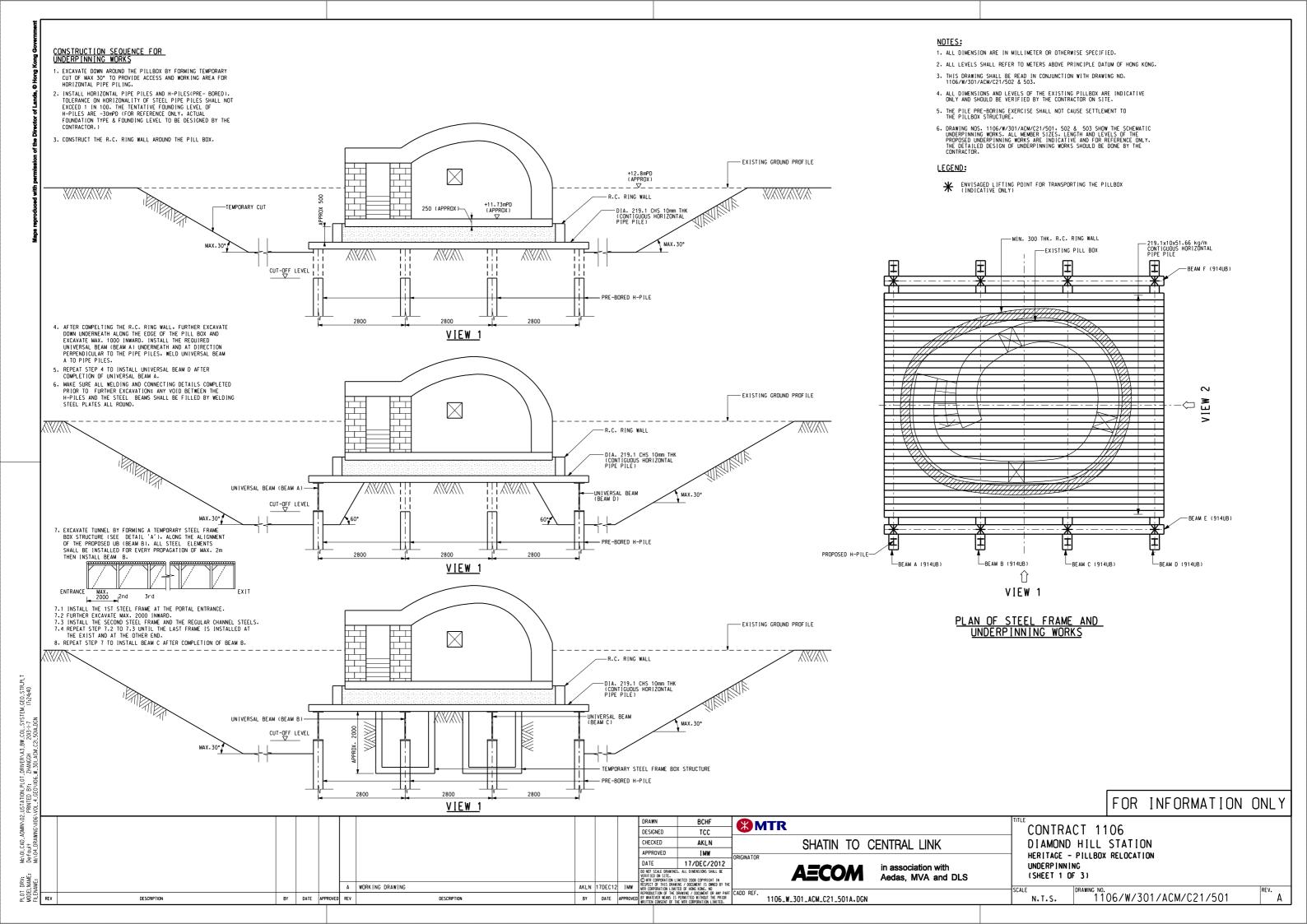
Artillery Observation Posts at Mt. Parker

Artillery Observation Posts at Stanley Mound

Artillery Observation Posts at the end of Harlech Road (High West)

Artillery Observation Posts at the summit of Jardine's Lookout

Artillery Observation Posts on Pottinger Peak


Artillery Observation Posts, Middle Spur

British Military Structure, Middle

Jubilee Battery

Mount Davis Battery

Appendix III Relocation Plan

DATE DATE APPROVED BY MATTER MODERN TO PIECE WIRT CORPORATION LIMITED. COMBONITOR IN WIRTER CORPORATION EVENT FOR COMBONITOR AND PIECE OF THE COMBONITOR AND PIECE OF THE COMBONITOR AND PIECE OF THE COMBONITOR AND PIECE OF THE COMBONITOR AND PIECE OF THE COMBONITOR AND PIECE OF THE COMBONITOR AND PIECE OF THE COMBONITOR OF THE WIRTER COMBONITOR AND PIECE OF THE COM

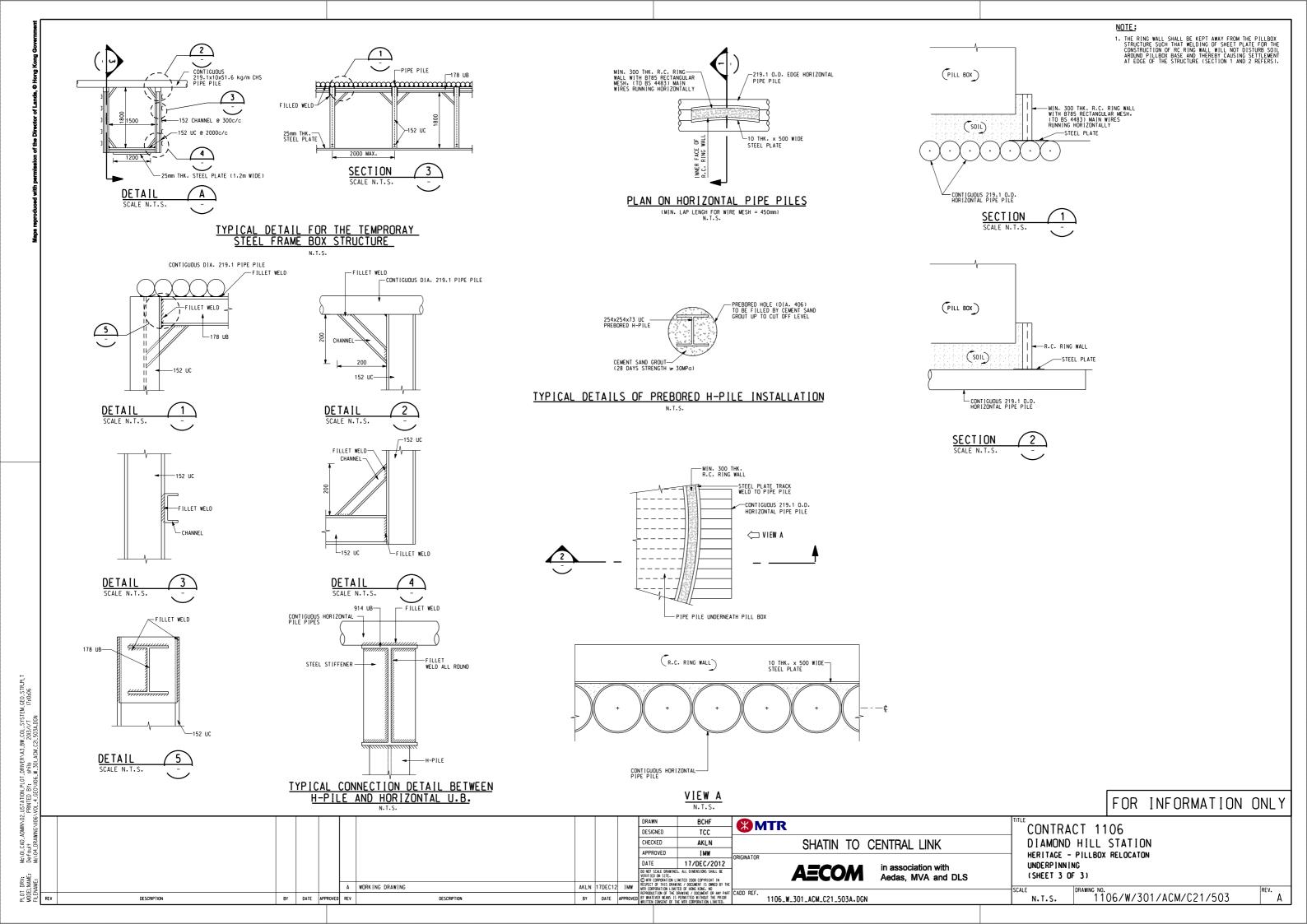
A WORKING DRAWING

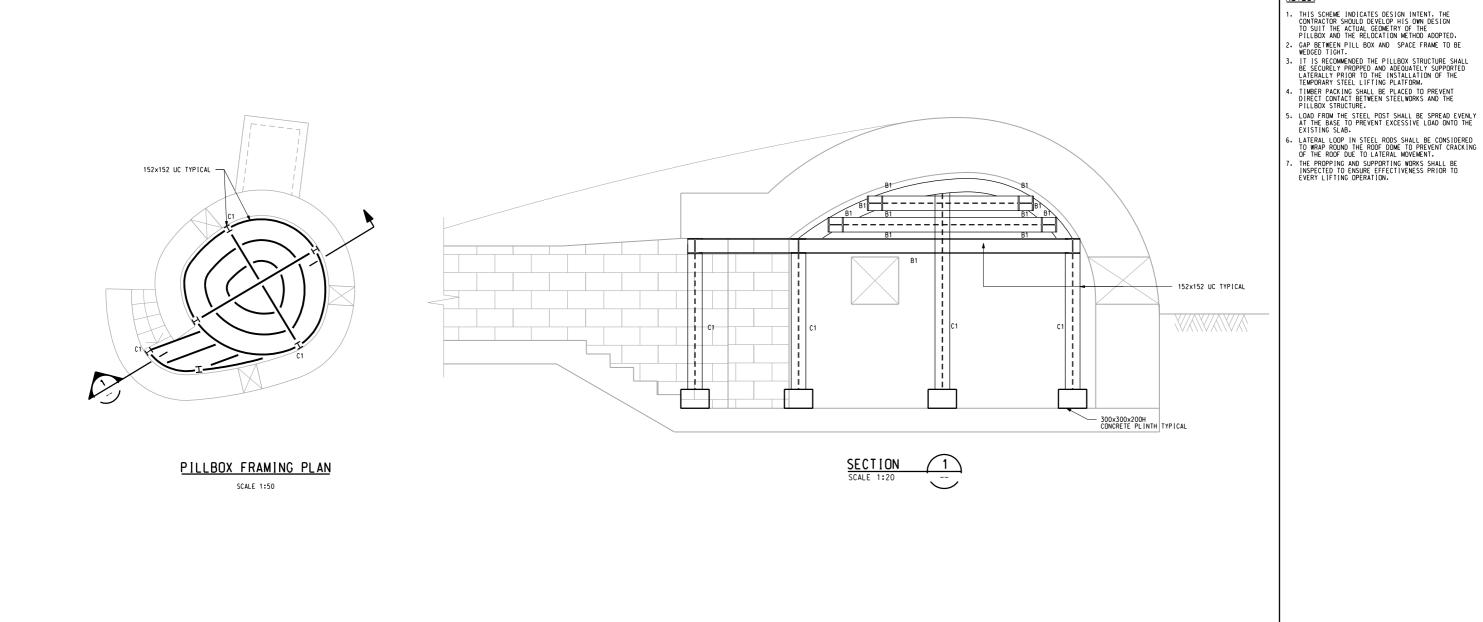
DESCRIPTION

BY DATE APPROVED REV

HERITAGE - PILLBOX RELOCATION UNDERPINNING

DRAWING NO. 1106/W/301/ACM/C21/502


(SHEET 2 OF 3)


in association with Aedas, MVA and DLS

1106_W_301_ACM_C21_502A.DGN

PLOT DRY: M4-VOLCAD_ADMNVO2_USTATION_PLOT_DRIVERVA3_BM_COL_SYSTEM_GEO_STR.PL MODELNAME: Defout PRINTED BY: ZHANGGH 2013-F7 KE57:09 FILENAME: M*-O4_DRAWNOVIOG-VOL_4_GEO_VIOG_W_30L_ACM_C2L_SO2A_DGN

DESCRIPTION

FOR INFORMATION ONLY

NOTES:

CTJ **MTR** CONTRACT 1106 DESIGNED TWF DIAMOND HILL STATION CHECKED SPC SHATIN TO CENTRAL LINK HERITAGE - PILLBOX DATE 24/JUL/2012

SPC 26NOV12 IMW

SPC 24JUL12 IMW

SPC 24JUL12 IMW

BY DATE APPROVED FOR MERCHANDES AND DIMENSIONS SHALL BE CONTROLLED FOR SHALL BE C RELOCATION PROPOSED PERMANENT in association with Aedas, MVA and DLS STRENGTHENING METHOD FOR ENTIRE STRUCTURE B REPLY AMO'S COMMENT A ISSUE FOR TENDER ADDENDUM SCALE 1: 50 @ A1 | DRAWING NO. 11 06/T/301/ACM/C21/504 REV. B BY DATE APPROVED REV 1106_T_301_ACM_C21_504B.dgn DESCRIPTION

LUSTATION_PLOT_DRIVER\A3_BW_COL_SYSTEM_PLT
PRINTED BY: CHENKY 2012-II-26 16:34:17
VOI 4 GENVING T 301 ACM C21 50:88 4000

DRV: NAME:

Appendix IV	Responses to Comments	

$\underline{SCL-C1103\ Detailed\ Design\ for\ Diamond\ Hill\ Station}$

Conservation Management Plan for the Old Pillbox

(AMO's letter ref. () in LCSD/CS/AMO 81-5/21 dated 18 January 2013)

AMO's Comments on Conservation Management Plan for the Old Pillbox	Response from MTR Corporation	
AMO's letter ref. () in LCSD/CS/AMO 81-5/21 dated 18 January 2013		
Thank you for your letter dated 27.12.2012. Please see our detailed comments as enclosed We would like to request you to confirm that MTR will carry out the Management and Maintenance Plan in Section 7.6 of CMP.		
1. Some comments are repetitive and mentioned in our previous comments, please check all comments are noted, responded and addressed.	if Noted. Checked.	
2. In Section 1.1, please give elaboration of "on site preservation is not practicable".	Noted. A statement as cited from the approved EIA Report was added for further elaboration.	
3. In Section 1.2, please review if the reinstatement form of the pillbox is not unknown.	Noted. Clarified.	
4. In Section 1.6.1, please rectify "Buildings Department" and there is no such "Code or Practices of Building Regulations".	of Noted. Amended in the revised report.	
5. In Section 2.4, please provide more information on how the construction year of 194 was estimated.	Noted. Amended in the revised report.	
6. In Section 3.1, please further verify the relationship of the underground chamber and the Pillbox.	Section 3.3.3 is added to review the chamber. However, further investigation will be taken by the contractor.	
7. In Chapter 3, please include study and comparison with other pillboxes in HK, information is available.	A paragraph is added to Section 3.3.1 and please refer to appendix II.	
8. Please provide more information for the location of pillbox in Photo 4.1 and 4.2, available.	if Noted. Location provided in the revised report.	
9. Please consider if the Pillbox has witnessed the poor living condition of refugees after	er Agree. Amended in the revised report.	

AMO's Comments on Conservation Management Plan for the Old Pillbox		Response from MTR Corporation	
	WWII in Section 4.3.		
10.	In Section 5.1, please consider to adopt the definition of CDE in <i>Standards and Guidelines for the Conservation of Historic Places in Canada</i> by Parks Canada.	Noted. Definition added in the revised report.	
11.	Please review the level of significance of Item 5 – Physical relationship in Table 5.2 as this relationship could not be verified.	The pillbox is located about 40 meters away from the hangar (armored range). The pillbox is located at a higher position than hangar; Pillbox roof is +14.80m above the Principal Datum; hangar roof is +15.70m. These are deliberate site design strategy to achieve the defensive purpose. The level of significance is thus considered as "Medium" which has been amended.	
12.	In item 8 of Section 7.1, the significance of the intervention should also be considered.	Noted. Amended in the revised report.	
13.	Please review the sentence "Generally, relocation of the pillbox in one piece can <u>reduce</u> <u>any loss</u> to the heritage value" in Section 7.3.	Noted. Amended in the revised report.	
14.	In Section 7.4 as well as other sections, we suggest the storage place be called temporary "building" instead of "shed".	We propose using "temporary storage compound" instead, as it is not proper to call it "building".	
15.	In Appendix I Figure a14, the red-lined area is not consistent with the description.	Noted. Amended in the revised report.	
16.	We understand that the demolition plan in Appendix III is conceptual only. Detailed demolition plan would be submitted to RDO and circulated for our comments.	In view of the nature of works (i.e., the Pillbox shall be relocated in one piece), Appendix III has been properly amended as Relocation Plan. The contractor has generally agreed to follow the Relocation Plan and a supplementary report with a detailed Relocation Plan will be submitted by the contractor. The contractor's supplementary report shall be properly checked and submitted to RDO and circulated to AMO for comment.	

AMO's Comments on Conservation Management Plan for the Old Pillbox	Response from MTR Corporation
17. A list of reference should be put at the end of the CMP.	Noted. The list of reference was added in the revised report.

Appendix V
Implementation Programme & Maintenance and Management Schedule

Diamond Hill CDA Site

Conservation Management Plan (CMP) – Implementation Programme

The proposed implementation programme of temporary relocation for the two heritages [being the Former RAF Hangar (the Hangar) and the Old Pillbox (the Pillbox)] is as below:-

Item	Description	Start	Finish	Remark
1	Finalization and obtaining AMO's	Nov 12	Apr 13	
	agreement of the sets of Engineer's			
	CMP reports for the Hangar and the			
	Pillbox			
2	Application of the CMP for EPD's	Feb 13	Apr 13	
	approval as per the EP with EPD's			
	approval granted			
3	Removal of affected trees around the	Jan 13	Mar 13	
	Hangar			
4	Application for EPD's permit and	Jan 13	Mar 13	
	removal of asbestos panels at the			
	Hangar			
5	Finalization and obtaining AMO's	Feb 13	Apr 13	
	agreement of the sets of Contractor's			
	supplementary submissions for the			
	Hangar and the Pillbox			
6	Finalization and submission of the	Feb 13	Apr 13	
	Relocation Plan for the Pillbox and			
	Dismantle Plan for the Hangar to RDO			
	and AMO			
7	Relocation works of the Pillbox to	May 13	Aug 13	
	temporary storage compound for storage			
8	Dismantle of the Hangar to temporary	May 13	Aug 13	
	storage compound for storage			
9	Tentative permanent relocation of the	-	Apr 18	The permanent
	Pillbox and the Hangar in the format as			location for the
	stated in the approved EIA report and			Hangar and the
	the CMP reports subject to approvals			Pillbox is pending
	and consents of relevant Government			Planning
	Departments.			Department's
				confirmation.

Management and Maintenance Schedule for the Old Pillbox

The Old Pillbox

Maintenance arrangement during storage proposal by the Contractor

The management and maintenance schedule should be reviewed every six months by MTRC, SLJV's Heritage Consultant and SLJV.

A. Reference document –

Conservation Management Plan for the Old Pillbox, rev. A, February, 2012.

B. Maintenance arrangement during storage –

- 1. A temporary storage compound should be provided with appropriate measures to prevent further damage to the heritage structures
 - The temporary storage compound shall be weather-proof, and the condition shall be checked bi-weekly by SLJV's Senior Site Agent.
 - The relocated pillbox should be rest on the as-constructed concrete plinths (1000mm width & 950mm height) to avoid flooding.
 - The drainage of the temporary storage compound and any sight of water entering into the storage temporary storage compound shall be checked weekly by SLJV's Site Foreman.
 - The temporary storage compound shall be checked weekly by SLJV's Site Foreman (Appendix A Weekly Inspection Checklist refers), or after the first warning by the Observatory that tropical cyclone warning signal no. 3 or above, or amber or red or black rainstorm warning signal is going to be hoisted.
 - The temporary storage compound shall be checked by SLJV's Site Foreman after the Observatory lowered all tropical cyclone warning signal and rainstorm warning signals.
- 2. All elements should be securely protected to avoid any physical damage and the area should be fenced off to prevent trespassing and to secure the structures
 - Record check by SLJV's site security once from 6.00 p.m. to 6.00 a.m. of the subsequent day everyday, and
 - The record shall be kept in SLJV's site office for checking by all parties.
- 3. Regular inspection on the reinforced concrete structure roof structure, floor slab and staircase of the pillbox
 - The reinforced concrete structure roof structure, floor slab and staircase of the pillbox shall be checked once per month by the Heritage Consultant of the Contractor with report prepared for any adverse observation, (e.g. deterioration or damage) and shall be submitted to MTRC for record purposes. MTRC shall notify AMO and relevant Government departments the situations as soon as

Management and Maintenance Schedule for the Old Pillbox

practicable. Remedial works shall be carried out if necessary after confirmation from MTRC with advices from AMO and relevant Government departments sought, where appropriate.

- The report shall include record photos of the roof structure (4 nos.), floor slab (1 no.), and staircase (1 no.).
- The report with record photo shall be submitted to MTRC for record purpose, and one copy will be kept in SLJV's Site Office for checking by all parties.
- SLJV's Senior Site Agent shall notify to MTRC for any adverse observation in the report.
- 4. Proper surface drainage should be constructed throughout the temporary storage compounds
 - The drainage of the temporary storage compound shall be checked once per week by SLJV's Site Foreman, and
 - The drainage shall be checked by SLJV's Site Foreman after the first warning by the Observatory that tropical cyclone warning signal no. 3 or amber rainstorm warning signal is going to be hoisted.
- 5. Remedial procedures to handle any non-conforming situations
 - All non-conforming situations shall be handled by SLJV's Senior Site Agent,
 - All remedial work to non-conforming work shall be completed within three days after receipt of the report of non-conforming work,
 - The remedial report shall be kept by SLJV's Site Office for checking by all parties.

Annex A - Weekly Inspection Checklist

Management and Maintenance Schedule for the Old Pillbox

Annex A – Weekly Inspection Checklist

Management and Maintenance Schedule for the Old Pillbox

Weekly Inspection Checklist

<u>Item</u>	Description	yes/no
A.	External envelope of temporary storage compound	
1.	Flooding around the temporary storage compound	
2.	Cracks on the wall surface	
3.	Wall damage, such as crashed into by vehicle	
4.	Broken window glazing	
B.	Ceiling	
1.	Water dripping from ceiling	
2.	Water condensation on ceiling surface	
3.	Water stain marks on ceiling surface	
4.	Cracks on ceiling	
C.	Floor	
1.	Water ponding on floor surface	
2.	Water stain marks on floor surface	
D.	Wall, door and window	
1.	Water seeping in from wall surface	
2.	Water stain marks on wall surface	
3.	Cracks on wall surface	
4.	Window can close properly	
5.	Door can close properly	
6.	Door lock damaged	
E.	Building services installation	
1.	Light fitting can function properly	
2.	Ventilation fan can function properly	
3.	Exit sign light can function properly	
4.	Emergency light fitting can function properly	
F.	Stored items	
1.	Signs of unauthorized search	
2.	Stored items collapsed	
G.	Pest control	
1.	Rats or signs of rats identified	
2.	Termite	
3.	Any other types of insects	
