Shatin to Central Link – Tai Wai to Hung Hom Section and Mong Kok East to Hung Hom Section

Monthly EM&A Report No. 11

[Period from 1 to 31 July 2013]

(August 2013)

Verified by:	Fredrick Leong	
Position: <u>Inde</u> p	endent Environment	tal Checker
Date:	14 August 2013	

Shatin to Central Link – Tai Wai to Hung Hom Section and Mong Kok East to Hung Hom Section

Monthly EM&A Report No. 11

[Period from 1 to 31 July 2013]

(August 2013)

Certified by	Richard Kwan	<u></u>
Position: _	Environmental Team Leader	_
Date:	14 Aug 2013	

Consultancy Agreements No. C11033 & C11033B

Shatin to Central Link - Tai Wai to Hung Hom Section and Mong Kok East to Hung Hom Section

Monthly EM&A Report No. 11

[Period from 1 to 31 July 2013]

	Name	Signature
Prepared & Checked:	Joanne Tsoi	1.90
Reviewed & Approved:	Josh Lam	

Version:	Α	Date:	13 August 2013

This Monthly EM&A Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 & C11033B and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this report comes may rely on this plan without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Contents

		Page
1	INTRO	DUCTION1
	1.1 1.2 1.3	Background 1 Project Programme 1 Purpose of the Report 2
2	ENVIR	ONMENTAL MONITORING AND AUDIT2
3		MENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMENTS
List of	Tables	
Table 1 Table 2 Table 2 Table 2 Table 2 Table 2 Table 3 Table 3	.1 .2 .3 .4 .5	Summary of Awarded Works Contracts Summary of Major Construction Activities in the Reporting Period Summary of 24-Hour TSP Monitoring Results in the Reporting Period Summary of Construction Noise Monitoring Results in the Reporting Period Summary of Continuous Noise Monitoring Results in the Reporting Period Cumulative Log for Environmental Complaints, Notification of Summons and Successful Prosecutions Summary of Status of Required Submissions for EP-438/2012/C Summary of Status of Required Submissions for EP-437/2012
List of	Append	lices
Append	lix A	11^{th} Monthly EM&A Report for Works Contract $1108A$ – Kai Tak Barging Point Facilities
Append	lix B	11^{th} Monthly EM&A Report for Works Contract 1109 – Stations and Tunnels of Kowloon City Section
Append	lix C	8^{th} Monthly EM&A Report for Works Contract 1101 – Ma On Shan Line Modification Works
Append	lix D	7^{th} Monthly EM&A Report for Works Contract 1111 – Hung Hom North Approach Tunnels
Append	lix E	6^{th} Monthly EM&A Report for Works Contract 1103 – Hin Keng to Diamond Hill Tunnels
Append	lix F	5 th Monthly EM&A Report for Works Contract 1106 – Diamond Hill Station
Append	lix G	3 rd Monthly EM&A Report for Works Contract 1107 – Diamond Hill to Kai Tak Tunnels
Append	lix H	$2^{\rm nd}$ Monthly EM&A Report for Works Contract 1112 – Hung Hom Station and Stabling Sidings
Append	lix I	$2^{\rm nd}$ Monthly EM&A Report for Works Contract 1108 – Kai Tak Station and Associated Tunnels

AECOM Asia Co. Ltd. i August 2013

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 Shatin to Central Link Tai Wai to Hung Hom Section [SCL (TAW-HUH)] and Shatin to Central Link Mong Kok East to Hung Hom Section [SCL (MKK-HUH) (hereafter referred to as "the Project") are parts of the SCL. Shatin to Central Link Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] is a proposed stabling sidings option for SCL (TAW HUH) at the former freight yard in Hung Hom.
- 1.1.3 The Environmental Impact Assessment (EIA) Reports for SCL (TAW-HUH) (Register No.: AEIAR-167/2012), SCL (MKK-HUH) (Register No.: AEIAR-165/2012) and SCL (HHS) (Register No.: AEIAR-164/2012) were approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Reports, two Environmental Permits (EPs) were granted on 22 March 2012, one covers SCL (TAW-HUH) and SCL (HHS)(EP No: EP-438/2012) and the other covers SCL (MKK-HUH) and SCL (HHS) (EP No.: EP-437/2012), for their construction and operation. Variations of environmental permit (VEP) was subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/C) was issued by Director of Environmental Protection (DEP) on 30 April 2013.

1.2 Project Programme

1.2.1 Nine civil construction works contracts of the Project have been awarded since July 2012. The construction of the Project commenced in September 2012 and is expected to complete in 2018. **Table 1.1** summarises the information of the awarded Works Contracts.

Table 1.1 Summary of Awarded Works Contracts

Works Contract	Description	Construction Start Date	Contractor	Environmental Team
1101	Ma On Shan Line Modification Works ⁽¹⁾	December 2012	Sun Fook Kong Joint Venture (SFKJV)	EDMS Consulting Ltd. (EDMS)
1103	Hin Keng to Diamond Hill Tunnels	February 2013	Vinci Construction Grands Projets	Ove Arup & Partners Hong Kong Ltd.
1106	Diamond Hill Station	March 2013	Sembawang – Leader Joint Venture	Cinotech Consultants Ltd. (Cinotech)
1107	Diamond Hill to Kai Tak Tunnels	May 2013	Chun Wo - SELI Joint Venture	Cinotech Consultants Ltd. (Cinotech)
1108	Kai Tak Station and Associated Tunnels	June 2013	Kaden -Chun Wo Joint Venture	Environmental Pioneers & Solutions Ltd.
1108A	Kai Tak Barging Point Facilities	September 2012	Concentric – Hong Kong River Joint Venture (CCL-HKR JV)	Cinotech Consultants Ltd. (Cinotech)
1109	Stations and Tunnels of Kowloon City Section	September 2012	Samsung-Hsin Chong JV (SHJV)	ERM-Hong Kong Limited (ERM)
1111	Hung Hom North Approach Tunnels	January 2013	Gammon-Kaden SCL1111 JV	AECOM Asia Co. Ltd.

AECOM Asia Co. Ltd. 1 August 2013

Works Contract	Description	Construction Start Date	Contractor	Environmental Team
1112	Hung Hom Station and Stabling Sidings	June 2013	Leighton Contractors (Asia) Limited	SMEC Asia Ltd., HK

(1) Only the EM&A works for works areas at Tai Wai Mei Tin Road and the offsite temporary storage areas are included in this Report.

1.3 Purpose of the Report

1.3.1 The Environmental Monitoring and Audit (EM&A) programme for the Project commenced in September 2012. This is the eleventh EM&A Report for the Project which summarises the EM&A works undertaken by the respective Contractor's ET during the period from 1 to 31 July 2013.

2 ENVIRONMENTAL MONITORING AND AUDIT

2.1.1 The construction of SCL has been divided into different civil construction works contracts which are covered by EP No. EP-437/2012 and/or EP-438/2012/C. As per the EP Conditions, EM&A Reports for the works contracts as shown in the table below have been prepared by the respective Contractor's ETs.

Works Contract	Contract Title	Works Covered in Environmental Permit No.
1101	Ma On Shan Modification Works	EP-438/2012/C
1103	Hin Keng to Diamond Hill Tunnels	EP-438/2012/C
1106	Diamond Hill Station	EP-438/2012/C
1107	Diamond Hill to Kai Tak Tunnels	EP-438/2012/C
1108	Kai Tak Station and Associated Tunnels	EP-438/2012/C
1108A	Kai Tak Barging Point Facilities	EP-438/2012/C
1109	Stations and Tunnels of Kowloon City Section	EP-438/2012/C
1111	Hung Hom North Approach Tunnels	EP-437/2012 & EP-438/2012/C
1112	Hung Hom Station and Stabling Sidings	EP-437/2012 & EP-438/2012/C

- 2.1.2 The EM&A Reports for Works Contracts 1108A, 1109, 1101, 1111, 1103, 1106, 1107, 1112 and 1108 prepared by the respective Contractor's ETs are provided in **Appendices A** to **I**, respectively. The EM&A Reports provide details of the project information, EM&A requirements, impact monitoring and audit results for the corresponding Contracts.
- 2.1.3 A summary of the major construction activities undertaken by the respective Contractors of various Works Contracts during the reporting period are presented in **Table 2.1**.

Table 2.1 Summary of Major Construction Activities in the Reporting Period

Works Contract	Site	Construction Activities			
1101	Tai Wai Mei Tin Road	Construction of noise cover over the viaduct at Tai Wai Mei Tin Road.			
1102 ⁽¹⁾	N/A	N/A			
	Diamond Hill Area	Diaphragm Wall Construction.			
1103	Hin Keng Area	Pipe Piling; andGround Investigation.			

AECOM Asia Co. Ltd. 2 August 2013

Works Contract	Site	Construction Activities
	Fung Tak Area	 Utilities Diversion; Ground Investigation; Hoarding Erection; and Platform Construction.
	Ma Chai Hang Area	 Site Formation; Jogging Path Diversion; Ground Investigation; Tree Transplant and Removal; Hoarding Erection; and Platform Construction.
1106	Diamond Hill Station Area	 D-wall construction; Archaeological survey-cum-excavation; Underpinning works of the Old Pillbox; and Pre-drilling work.
1107	Tunnel section next to Kai Tak Station	 Site investigation works; Investigation and removal of old foundation works; Hoarding erection; D-wall construction; and Preparation works for site access and drainage.
	Kai Tak Station (Area 3)	 General site clearance and removal of existing stockpile; Cut-off sheetpiling works commenced; Dewatering wall drilling commenced; Additional boreholes drilling and piezometer installation; and Construction of temporary haul road near Gate 1.
1108	Cut & Cover Area (Area 2)	 General site clearance was completed; Trial excavation for existing old seawall; and 6 nos. of additional piezometers were completed in this area.
	Open Cut Area (Area 1)	Breaking up of existing concrete pavement; and All at-grade settlement markers were completed in this area.
1108A	Kai Tak Barging Point Facilities	 Daily operation and maintenance of the Barging Point Facilities; and Marine transportation of received spoil to receptor sites.
1109	Ma Tau Wai (MTW) Works Area	 TKW/MTW Road Garden – Operation of bentonite plant and pier 15 pre-drilling works; and Along Ma Tau Wai Road - Construction of D-wall panel, predrilling for D-wall and trial pits for location of utilities.
	To Kwa Wan (TKW) Works Area	 SUW Playground – Pre-bored H pilling; Nam Kok Road – Installation of pipe pile and construction of grout curtain; and TKW Station – Archaeological survey, construction of grout curtain, sheet pile and

Works Contract	Site	Construction Activities				
		bored pile, and installation of socket steel H-piling.				
	Mong Kok Freight Terminal	ABWF & E&M works.				
1111	Hung Hom Area	 Drain / sewage pipe construction, ABWF & E&M works; Excavation work, man hole and drainage construction, RC structure construction, slope work, geological investigation; Hoarding erection, cross track duct construction, cable trough installation, cable hanger; Trial pit, tree transplant and tree felling, site formation, sheet pilling, OHL portals erection; and Pre-drilling, close loop, pipe pilling, hoarding re-alignment, site office setup. 				
1112	Hong Hom (HUH and HHS) Works Area	 Site clearance and set up at HUH; D-wall construction at HUH; Equipment mobilization at HUH; Ground investigation works at HUH; Underpinning at HUH; Initial excavation at HUH; and Demolition of building services system at HUH. 				

- (1) Construction works under the contract have not yet commenced
- N/A Not applicable
- 2.1.4 Impact monitoring for air quality and construction noise were conducted in accordance with the EM&A Manual in the reporting period. Under Works Contract 1109, continuous noise monitoring was also conducted according to the Continuous Noise Monitoring Plan (CNMP) in the reporting period. The air quality, construction noise and continuous noise monitoring results for this reporting month are summarised in **Tables 2.2** to **2.4**. Details of the monitoring requirements, locations, equipment, methodology and QA/QC procedures are presented in the EM&A Reports as provided in **Appendices A** to I.
- 2.1.5 The monitoring results indicated that no exceedance of the Action/Limit Levels of 24-hr TSP, and construction noise due to the Project construction was recorded during the reporting period. Exceedances of the Action and Limit Levels of the continuous noise monitoring were recorded at MTW-16-1 on 29 and 30 July 2013 during the reporting month. Investigation reports of the exceedances are under process. It will be reported during next reporting period.
- 2.1.6 Water quality monitoring was not carried out during this reporting period since no dredging activity was conducted in the reporting month.
- 2.1.7 No environmental complaints, notification of summons and successful prosecutions were received in the reporting period. Cumulative log for environmental complaints, notification of summons and successful prosecutions is provided in **Table 2.5**.
- 2.1.8 Regular site inspections were conducted by the respective Contractor's ET on a weekly basis to check the implementation of environmental pollution control and mitigation measures for the Project. No non-conformance was identified in the reporting period.

AECOM Asia Co. Ltd. 4 August 2013

Fable 2.2 Summary of 24-Hour TSP Monitoring Results in the Reporting Period						
Monitoring Station ID	Location	TSP Concentration (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)	Exceedance due to the Project Construction (Yes/No)	
Works Cont						
Works Cont						
Works Cont	1		1	T	I	
DMS-1	C.U.H.K.A.A. Thomas Cheung School	4.8 – 40.3	148.7	260	No	
DMS-2	Price Memorial Catholic Primary School	2.2 – 25.9	167.4	260	No	
Works Cont	racts 1103 and 1106					
DMS-3	Hong Kong S.K.H Nursing Home ⁽²⁾	4.4 – 21.9	159.1	260	No	
Works Cont	ract 1106 and 1107					
DMS-4	Block 1, Rhythm Garden	22.9 – 47.1	160.4	260	No	
Works Conti						
Works Conti						
Works Cont			1	1	T	
DMS-6	Katherine Building ⁽³⁾	68 - 81	156.8	260	No	
DMS-7	Parc 22 ⁽⁴⁾	69 - 85	166.7	260	No	
DMS-8	SKH Good Shepherd Primary School	73 – 93	152.2	260	No	
DMS-9	No. 26 Kowloon City Road ⁽⁵⁾	75 - 90	160.9	260	No	
DMS-10	Chat Ma Mansion	77 - 88	170.4	260	No	
Works Conti						
AM1 ⁽⁷⁾	No. 234 – 238 Chatham Road North ⁽⁸⁾	22.6 – 45.0	183.9	260	No	
Works Conti	Works Contract 1112					
AM2	Finger Pier ⁽⁹⁾	16.4 – 32.8	182	260	No	

- (1) Construction works under the contract have not yet commenced
- (2) Alternative monitoring location to Shek On House
- (3) Alternative monitoring location to Prosperity House
- (4) Alternative monitoring location to Skytower Tower 2
 (5) Alternative monitoring location to Lucky Building
- (6) No TSP monitoring is required under this contract
- (7) AM1 named as HUH-1-3 in SCL(TAW-HUH) and SCL(HHS) EIA Reports.
- (8) Alternative monitoring location to Wing Fung Building
- (9) Alternative monitoring location to Harbourfront Horizon

N/A Not applicable

Table 2.3 Summary of Construction Noise Monitoring Results in the Reporting Period

Monitoring		Noise Level (L _{Aeq,30mins} , dB(A))			Limit Level	Exceedance due to the	
Station ID	Location	Measured	Baseline	Corrected ⁽⁸⁾	(dB(A))	Project Construction (Yes/No)	
Works Contra							
Works Contra	ct 1102 ⁽¹⁾						
Works Contra	ct 1103						
NMS-CA-1	C.U.H.K.A.A. Thomas Cheung School	58.4 – 59.8	57.0	52.8 – 56.6	70 (65 during examination period)	No	
NMS-CA-2	Price Memorial Catholic Primary School	67.2 – 68.6	66.0	61.0 – 65.1	70 (65 during examination period)	No	
Works Contra	cts 1103 and 1106						
NMS-CA-3	Hong Kong S.K.H Nursing Home ⁽²⁾	67.2 – 69.5	73.0	< baseline	75	No	
Works Contra	ct 1106 and 1107						
NMS-CA-4	Block 1, Rhythm Garden (north-eastern façade)	67.6 – 74.5	71.0	< baseline – 71.9	75	No	
NMS-CA-5	Block 1, Rhythm Garden (northern façade) ⁽³⁾	68.4 – 73.7	74.0	< baseline	70 (65 during examination period)	No	
Works Contra	ct 1108 ^(′)						
Works Contra	ct 1108A ⁽⁷⁾						
Works Contra							
NMS-CA-6	No. 16-23 Nam Kok Road (4)	63.0 - 64.7	76.1	< baseline	75	No	
NMS-CA-7	Skytower Tower 2	67.3 – 68.7	70.0	< baseline	75	No	
NMS-CA-8	SKH Good Shepherd Primary School	74.5 – 77.0	75.4	< baseline – 71.9	70 (65 during examination period)	No	
NMS-CA-9	Kong Yiu Mansion ⁽⁵⁾	71.1 – 73.3	69.2	66.6 – 71.2	75	No	
NMS-CA-10	Chat Ma Mansion	76.3 – 77.5	76.6	< baseline – 70.2	75	No	
Works Contra	ct 1111						
NM1	Carmel Secondary School (South Block)	64.3 – 69.4	68.0	< baseline – 67.7	70 (65 during examination period)	No	
NM2	No. 234 – 238 Chatham Road North ⁽⁶⁾	68.4 – 75.3	79.0	< baseline	75	No	
Works Contra	ct 111 2⁽⁷⁾						

Note:

- (1) Construction works under the contract have not yet commenced.
- (2) Alternative monitoring location to Shek On House.
- (3) Alternative monitoring location to Canossa Primary School (San Po Kong).
- (4) Alternative monitoring location to Prosperity House.
- (5) Alternative monitoring location to Lucky Building.
- (6) Alternative monitoring location to Wing Fung Building.
- (7) No construction noise monitoring is required under this contract.
- (8) The measured noise levels are corrected against the corresponding baseline noise levels.

Table 2.4 Summary of Continuous Noise Monitoring Results in the Reporting Period

	NSR Description Continuous Noise Monitoring Location		Noise Level (L _{Aeq,30mins} , dB(A))			Action/Limit	Exceedance due to
NSR ID			Measured	Baseline	Corrected ⁽³⁾	Level ⁽⁴⁾ dB(A)	the Project Construction (Yes/No)
Works Contrac							
Works Contrac							
Works Contrac	et 1103	TAW-6-7				1	1
TAW-6-7	C.U.H.K.A.A. Thomas Cheung School	(C.U.H.K.A.A. Thomas Cheung School)	(5)	(5)	(5)	66 ⁽⁸⁾	(5)
Works Contract	ct 1103 & 1106	, , , , , , , , , , , , , , , , , , ,				•	
DIH-9-1 ⁽²⁾	Shek On Building	N/A	N/A	N/A	N/A	N/A	N/A
DIH-13-1 ⁽²⁾	Canossa Primary School	N/A	N/A	N/A	N/A	N/A	N/A
Works Contrac	et 1106 & 1107						
DIH-14-1 ⁽²⁾	Rhythm Garden Block 2	N/A	N/A	N/A	N/A	N/A	N/A
DIH-14-5 ⁽²⁾	Rhythm Garden Block 1	N/A	N/A	N/A	N/A	N/A	N/A
Works Contrac	et 1103, 1106 & 1107						
DIH-14-4 ⁽²⁾	Canossa Primary School (San Po Kong)	N/A	N/A	N/A	N/A	N/A	N/A
Works Contrac					1	I .	
Works Contract							
Works Contrac	ct 1109				1	1	1
TKW-1-1 ⁽²⁾	Parc 22	N/A	N/A	N/A	N/A	N/A	N/A
TKW-2-2 ⁽²⁾	Skytower Tower 2	N/A	N/A	N/A	N/A	N/A	N/A
TKW-3-2	Prosperity House	TKW-3-2(A) (No. 420 Prince Edward Road West)	(5)	(5)	(5)	80	(5)
MTW-12-3	Lucky Mansion	MTW-12-3 (Lucky Mansion)	(5)	(5)	(5)	80	(5)
MTW-12-4	352-354 Ma Tau Wai Rd (East Façade)	MTW-12-4 (352-354 Ma Tau Wai Rd (East Façade))	(5)	(5)	(5)	80	(5)
MTW-12-4-1	352-354 Ma Tau Wai Rd (North Facade)	MTW-12-4-1(A) (59 Maidstone Road)	(5)	(5)	(5)	82	(5)

	NSR Description Continuous Noise Monitoring Location		Noise Level (L _{Aeq,30mins,} dB(A))			Action/Limit	Exceedance due to
NSR ID			Measured	Baseline	Corrected ⁽³⁾	Level ⁽⁴⁾ dB(A)	the Project Construction (Yes/No)
MTW-12-10	Lucky Building (South Facade)	MTW-12-10 Lucky Building (South Façade)	(5)	(5)	(5)	84	(5)
MTW-12-10-1	Lucky Building (East Facade)	MTW-12-10-1 Lucky Building (East Façade)	(5)	(5)	(5)	80	(5)
MTW-12-11	Jing Ming Building	MTW-12-11 Jing Ming Building	(5)	(5)	(5)	81	(5)
MTW-16-1	SKH Good Shepherd Primary School	MTW-16-1 SKH Good Shepherd Primary School	74.0– 84.0	75.4	59.1 – 83.4	78	(10)(11)
MTW-18-2 ⁽⁹⁾	No. 2 Kowloon City Road	MTW-18-2(A) No. 20 Kowloon City Road	N/A	N/A	N/A	N/A	N/A
HOM-2-1A ⁽²⁾	Faerie Court (East Façade)	N/A	N/A	N/A	N/A	N/A	N/A
Works Contract	1111						
OM4a	Carmel Secondary School (South Block)	NM1 Carmel Secondary School (South Block)	(5)	(5)	(5)	69 ⁽⁸⁾	(5)
HH2 ⁽⁷⁾	Wing Fung Building	NM2 No. 234-238 Chatham Road North ⁽⁶⁾	(5)	(5)	(5)	77	(5)
Works Contract	! 1112 ⁽²⁾						

- (1) Construction works under the contract have yet to commence.
- (2) No continuous noise monitoring is required under this contract.
- (3) Measured noise level (above the baseline noise level) was corrected against the corresponding baseline level.
- (4) Reference to the predicted maximum noise level as contained in the corresponding CNMMP.
- (5) According to the CNMMP and CNMP, continuous noise monitoring is not required during this reporting month.
- (6) Alternative monitoring location to Wing Fung Building.
- (7) HH2 named as HUH-1-3 in SCL (TAW-HUH) and SCL(HHS) EIA Reports.
- (8) Action/Limit level will only be applicable during the examination period.
- (9) The building at MTW-18-2 has been demolished. During the period of residual noise impact exceeding criteria predicted in the corresponding CNMMP, there will be no NSR occupied at this location. It is therefore not necessary carry out continuous noise monitoring at this location.
- (10) According to the Event and Action Plan of the CNMP, exceedance is only confirmed if there are two consecutive exceedances of the Action/Limit Level.
- (11) Investigation is being conducted to identify the cause of the exceedance.
- N/A Not applicable

Table 2.5 Cumulative Log for Environmental Complaints, Notification of Summons and Successful Prosecutions

Works Contract	_	nmental olaints		ation of mons	Successful Prosecutions	
	Reporting Month	Cumulative Number	Reporting Month	Cumulative Number	Reporting Month	Cumulative Number
1101	0	0	0	0	0	0
1102 ⁽¹⁾	N/A	N/A	N/A	N/A	N/A	N/A
1103	0	0	0	0	0	0
1106	0	0	0	0	0	0
1107	0	0	0	0	0	0
1108	0	0	0	0	0	0
1108A	0	0	0	0	0	0
1109	0	0	0	0	0	0
1111	0	0	0	0	0	0
1112	0	0	0	0	0	0

(1) Construction works under the contract have not yet commenced $\ensuremath{\text{N/A}}$ Not applicable

3 IMPLEMENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMENTS

3.1.1 The respective Contractors have implemented all mitigation measures and requirements as stated in the EIA Reports, EM&A Manuals and EP (EP-438/2012/C and EP-437/2012). The status of required submissions under the EPs as of the reporting period are summarised in **Table 3.1** and **3.2**.

Table 3.1 Summary of Status of Required Submissions for EP-438/2012/C

EP Condition	Submission	Submission date
(EP-438/2012/C)		
Condition 1.12	Notification of Commencement Date of Construction of the Project	1 Aug 2012
Condition 2.3	Notification of Information of Community Liaison Groups	13 Jul 2012 (1 st submission) 31 Aug 2012 (2 nd submission) 30 Nov 2012 (3 rd submission)
Condition 2.7	Management Organisation of Main Construction Companies	27 Jul 2012 (1 st submission) 21 Aug 2012 (2 nd submission) 19 Dec 2012 (3 rd submission) 22 Jan 2013 (4 th submission) 30 Apr 2013 (5 th submission) 21 May 2013 (6 th submission)
Condition 2.8	Construction Programme and EP Submission Schedule	27 Jul 2012
Condition 2.9	Construction Noise Mitigation Measures Plan (CNMMP)	1 Aug 2012 (1 st submission) 28 Sep 2012 (2 nd submission) 30 Nov 2012 (3 rd submission) 11 Jan 2013 (4 th submission) 8 Feb 2013 (Approved for Contracts 1109, 1111 and 1103) 8 Feb 2013 (5 th submission) 26 Apr 2013 (6 th submission) 11 Jun 2013 (7 th submission) 12 July 2013 (Approved) 26 July 2013 (8 th submission)
Condition 2.10	Continuous Noise Monitoring Plan (CNMP)	1 Aug 2012 (1 st submission) 28 Sep 2012 (2 nd submission) 30 Nov 2012 (3 rd submission) 11 Jan 2013 (4 th submission) 8 Feb 2013 (Approved for Contracts 1109, 1111 and 1103) 8 Feb 2013 (5 th submission) 26 Apr 2013 (6 th submission) 11 Jun 2013 (7 th submission) 12 July 2013 (Approved) 26 July 2013 (8 th submission) 6 Jul 2012 (1 st submission)
Condition 2.11	Construction and Demolition Materials Management Plan (C&DMMP)	6 Jul 2012 (1 st submission) 12 Sep 2012 (2 nd submission) 10 Oct 2012 (Approved)
Condition 2.12	Sediment Management Plan	6 Jul 2012 (1st submission) 12 Sep 2012 (2 nd submission) 5 Oct 2012 (3 rd submission) 10 Oct 2012 (Approved) 4 Mar 2013 (4 th submission) 9 May 2013 (5 th submission) 24 July 2013 (6 th submission) 26 July 2013 (Approved)
Condition 2.13	Visual, Landscape, Tree Planting & Tree Protection Plan	6 Jul 2012 (1st submission) 30 Aug 2012 (2 nd submission) 3 Oct 2012 (3 rd submission) 13 Nov 2013 (Approved for Contracts 1101, 1106 and 1109) 14 Nov 2012 (4 th submission) 8 Feb 2013 (5 th submission)

EP Condition (EP-438/2012/C)	Submission	Submission date
		18 Mar 2013 (6 th submission) 18 June 2013 (7 th submission) 12 July 2013 (Approved)
Condition 2.14	Transplantation Proposal for Plant Species of Conservation Importance	22 Aug 2012 (1 st submission) 5 Oct 2012 (2 nd submission) 26 Nov 2012 (3 rd submission) 4 Dec 2012 (Approved)
Condition 2.15	Conservation Plan	31 Jan 2013 (1 st submission) 18 Mar 2013 (2 nd submission) 24 Apr 2013 (Approved)
Condition 2.16	Archaeological Action Plan(s) (AAP(s)) for Works Contract 1109	10 Aug 2012 (1 st submission) 3 Sep 2012 (2 nd submission) 21 Sep 2012 (Approved)
Condition 2.16	Archaeological Action Plan(s) (AAP(s)) for Works Contract 1106	29 Jan 2013 (1 st submission) 19 Mar 2013 (2 nd submission) 8 Apr 2013 (Approved)
Condition 2.23	Supplementary Contamination Assessment Report for New Territories South Animal Centre	28 Sep 2012 25 Oct 2012 (Approved)
Condition 3.3	Baseline Monitoring Report (Works Contract 1109 - Stations and Tunnels of Kowloon City Section)	27 Jul 2012
Condition 3.3	Baseline Monitoring Report (Works Contract 1108A – Kai Tak Barging Point Facilities)	31 Jul 2012
Condition 3.3	Baseline Monitoring Report (Works Contracts 1103, 1106 and 1111 – Hin Keng to Diamond Hill Tunnels, Diamond Hill Station, and Hung Hom North Approach Tunnels)	19 Oct 2012
Condition 3.4	Monthly EM&A Report No. 1 Monthly EM&A Report No. 2 Monthly EM&A Report No. 3 Monthly EM&A Report No. 4 Monthly EM&A Report No. 5 Monthly EM&A Report No. 6 Monthly EM&A Report No. 7 Monthly EM&A Report No. 8 Monthly EM&A Report No. 9 Monthly EM&A Report No. 9 Monthly EM&A Report No. 10	12 Oct 2012 14 Nov 2012 13 Dec 2012 14 Jan 2013 14 Feb 2013 14 Mar 2013 12 Apr 2013 14 May 2013 14 Jun 2013 12 Jul 2013

Table 3.2 Summary of Status of Required Submissions for EP-437/2012

EP Condition (EP-437/2012)	Submission	Submission date
Condition 1.11	Notification of Commencement Date of Construction of the Project	30 Nov 2012
Condition 2.3	Notification of Information of Community Liaison Groups	30 Nov 2012
Condition 2.5	Management Organisation of Main Construction Companies	19 Dec 2012 (1 st submission) 30 Apr 2013 (2 nd submission)
Condition 2.6	Construction Programme and EP Submission Schedule	19 Dec 2012
Condition 2.7	Construction Noise Mitigation Measures Plan (CNMMP)	30 Nov 2012 (1 st submission) 8 Feb 2013 (Approved for Contract 1111) 26 Apr 2013 (2 nd submission) 11 Jun 2013 (3 rd submission)
Condition 2.8	Continuous Noise Monitoring Plan (CNMP)	30 Nov 2012 (1 st submission) 11 Jan 2013 (2 nd submission) 8 Feb 2013 (Approved for Contract 1111) 26 Apr 2013 (3 rd submission)

EP Condition (EP-437/2012)	Submission	Submission date
Condition 2.9	Construction and Demolition Materials Management Plan (C&DMMP)	6 Jul 2012 (1 st submission) 12 Sep 2012 (2 nd submission) 15 Oct 2012 (Approved)
Condition 2.10	Sediment Management Plan	6 Jul 2012 (1st submission) 12 Sep 2012 (2 nd submission) 5 Oct 2012 (3 rd submission) 15 Oct 2012 (Approved)
Condition 2.11	Visual, Landscape, Tree Planting & Tree Protection Plan	14 Nov 2012 (1 st submission) 8 Feb 2013 (2 nd submission)
Condition 3.3	Baseline Monitoring Report (Works Contracts 1103, 1106 and 1111 – Hin Keng to Diamond Hill Tunnels, Diamond Hill Station, and Hung Hom North Approach Tunnels)	19 Oct 2012
Condition 3.4	Monthly EM&A Report No. 5 Monthly EM&A Report No. 6 Monthly EM&A Report No. 7 Monthly EM&A Report No. 8 Monthly EM&A Report No. 9 Monthly EM&A Report No. 10	14 Feb 2013 14 Mar 2013 12 Apr 2013 14 May 2013 14 Jun 2013 12 Jul 2013

Appendix A

11th EM&A Report for Works Contract 1108A – Kai Tak Barging Point Facilities

Shatin to Central Link – Tai Wai to Hung Hom Section

Monthly EM&A Report No. 11 [Period from 1 to 31 July 2013]

Works Contract 1108A – Kai Tak Barging Point Facilities

(August 2013)
Chy No
Certified by:Dr. Priscilla Choy
Position:Environmental Team Leader
Date: 9 th August 2013

Concentric - Hong Kong River Joint Venture

Shatin to Central Link – Contract 1108A Kai Tak Barging Point Facilities

Monthly Environmental Monitoring and Audit Report for July 2013

(Version 2.0)

Certified By

(Contractor's Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

	P	age
EX	ECUTIVE SUMMARY	1
Intr	oduction	1
Sur	nmary of Site Activities undertaken during Reporting Month	1
	vironmental Monitoring and Audit Progress	
	ter Quality	
	ste Management/ironmental Site Inspection	
	logy/Landscape and Visual	
	vironmental Exceedance/Non-conformance/Complaint/Summons and Prosecution	
	ure Key Issues	
1	INTRODUCTION	3
Pur	pose of the report	3
Str	acture of the report	3
2	PROJECT INFORMATION	4
Bac	kground	4
	neral Site Description	
	nstruction Programme and Activities	
	ject Organisation	
Sta	tus of Environmental Licences, Notification and Permits	6
3	ENVIRONMENTAL MONITORING REQUIREMENTS	8
	ter Quality Monitoring	
	tural Heritage	
	dscape and Visual	
Eco	ology	.11
4 RE	IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION QUIREMENTS	.12
5	MONITORING RESULTS	
	ter Quality	
	ste Managementste Management	
	idscape and Visual	
	ology	
6	ENVIRONMENTAL SITE INSPECTION	.14
Site	Audits	.14
Imp	elementation Status of Environmental Mitigation Measures	.14
7	ENVIRONMENTAL NON-CONFORMANCE	.16
Sur	nmary of Exceedances	.16
	nmary of Environmental Non-Compliance	
	nmary of Environmental Complaint	
	nmary of Environmental Summon and Successful Prosecution	
8	FUTURE KEY ISSUES.	
Key Cor	y Issues in the Coming Month	.17 .17
9	CONCLUSIONS AND RECOMMENDATIONS	.18
Co	nclusions	
	commendations	

LIST OF TABLES

Table I	Summary Table for Events Recorded in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table 2.1	Key Contacts of the Project
Table 2.2	Status of Environmental Licences, Notification and Permits
Table 3.1	Water Quality Monitoring Stations
Table 3.2	Water Quality Impact Monitoring Programme
Table 3.3	Laboratory analysis for SS
Table 4.1	Status of Required Submissions under EP
Table 5.1	Quantities of Waste Generated from the Project
Table 6.1	Observations and Recommendations of Site Audit

LIST OF FIGURES

Figure 2 Locations of Water Quality Monitoring Stations

LIST OF APPENDICES

Appendix A	Action and Limit Levels
Appendix B	Summary of Exceedance
Appendix C	Site Audit Summary
Appendix D	Event and Action Plans
Appendix E	Updated Environmental Mitigation Implementation Schedule
Appendix F	Waste Generation in the Reporting Month
Appendix G	Complaint Log
Appendix H	Tentative Construction Programme

EXECUTIVE SUMMARY

Introduction

1. This is the 11th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for MTR Contract no. 1108A "Shatin to Central Link - Kai Tak Barging Point Facilities". This report documents the findings of EM&A Works conducted in July 2013.

Summary of Site Activities undertaken during Reporting Month

- 2. The major site activities undertaken in the reporting month included:
 - Daily operation and maintenance of the Barging Point Facilities; and
 - Marine transportation of received spoil to receptor sites.

Environmental Monitoring and Audit Progress

- 3. A summary of the monitoring activities in this reporting period is listed below:
 - Water Quality Monitoring at each monitoring station.......Nil

Water Quality

4. No water quality monitoring was carried out as no dredging activity was conducted during the reporting month.

Waste Management

5. Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. 10 m³ of inert C&D materials and 5 m³ of non-inert C&D materials were generated during the reporting period. 10 kg of chemical wastes were generated during the reporting period. Non-inert C&D materials are made up of general refuse, steel materials and paper/cardboard packaging materials.

Environmental Site Inspection

6. A monthly joint environmental site inspection was carried out by the representatives of the Contractor, the IEC and the ET. Details of the audit findings and implementation status are presented in Section 6.

Ecology/Landscape and Visual

7. Details of the audit findings and implementation status on Ecology/Landscape and Visual are presented in Section 6.

Environmental Exceedance/Non-conformance/Complaint/Summons and Prosecution

8. Summary of the events and action taken and key information in the reporting month is tabulated in **Table I** and **Table II** respectively.

Table I Summary Table for Events Recorded in the Reporting Month

Parameter	No. of Exceedance		Action Taken
	Action Level	Limit Level	
Water Quality Monitoring	N/A	N/A	N/A

 Table II
 Summary Table for Key Information in the Reporting Month

Event	Event	Details	Action Taken	Status	Remark
Event	Number	Nature	Action Taken	Status	Kemark
Complaint received	0		N/A	N/A	
Changes to the assumptions and key construction / operation activities recorded	0		N/A	N/A	
Notifications of any summons & prosecutions	0		N/A	N/A	

Future Key Issues

- 9. Major site activities for the coming reporting month will include:
 - Daily operation and maintenance of the Barging Point Facilities; and
 - Marine transportation of received spoil to receptor sites.

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Concentric – Hong Kong River JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link Works Contract 1108A – Kai Tak Barging Point Facilities (hereafter referred to the Project).

Purpose of the report

1.2 This is the 11th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 1 July to 31 July 2013.

Structure of the report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** details the scope and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: **Environmental Monitoring Requirement -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.
 - Section 4: Implementation Status on Environmental Mitigation Measures summarises the implementation of environmental protection measures during the reporting period.
 - Section 5: **Monitoring Results** summarises the monitoring results obtained in the reporting period.
 - Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.
 - Section 7: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.
 - Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 9: Conclusions and Recommendations

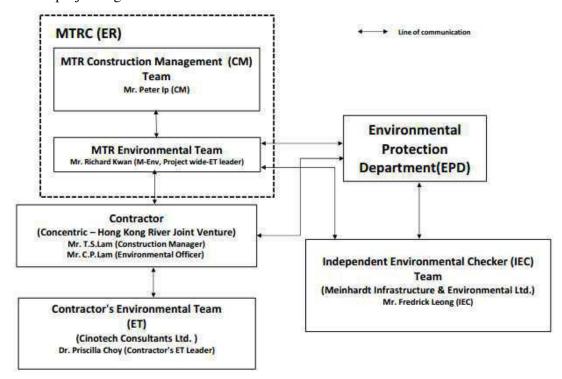
2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Tai Wai to Hung Hom Section (hereafter referred to as SCL (TAW-HUH)) is an approximately 11 km long extension of the Ma On Shan Line and links up with the West Rail Line at Hung Hom forming a strategic east-west rail corridor. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The construction of the SCL (TAW-HUH) has been divided into a series of civil construction Works Contracts. In addition to the temporary work site in the vicinity of the tunnel and station structures, there are some off-site temporary works sites/areas to facilitate the construction process. This Works Contract 1108A is one of the off-site temporary works sites covers the construction and operation of barging facilities.

General Site Description

2.3 The site layout plan is presented in **Figure 1**.


Construction Programme and Activities

- 2.4 A summary of the major site activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix H**.
 - Daily operation and maintenance of the Barging Point Facilities; and
 - Marine transportation of received spoil to receptor sites.

Project Organisation

- 2.5 Different parties with different levels of involvement in the project organization include:
 - Engineer or Engineer's Representative (ER) MTR Corporation (MTRC)
 - Contractor's Environmental Team (ET) Cinotech Consultants Ltd. (Cinotech)
 - Independent Environmental Checker (IEC) Meinhardt Infrastructure & Environment Ltd. (Meinhardt)
 - Contractor Concentric Hong Kong River Joint Venture (CCL-HKR JV)
- 2.6 The responsibilities of respective parties are detailed in Section 3 of the SCL (TAW-HUH) EM&A Manual.

2.7 The project organisation chart is shown as follows:

2.8 The key contacts of the Project are shown in **Table 2.1**.

Table 2.1 Key Contacts of the Project

Party	Role	Name	Position	Phone No.	Fax No.
ER Mr. Peter IP		Mr. Peter IP	Construction Manager	3507 6889	2334 0323
MTRC	Environmental Team	Mr. Richard KWAN	SCL Project Environmental Team Leader	2688 1283	2993 7577
	Contractor's	Dr. Priscilla CHOY	Contractor's ET Leader	2151 2089	
Cinotech	Environmental Team	Ms. Ivy TAM	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
Meinhardt	Independent Environmental Checker	Mr. Fredrick LEONG	Independent Environmental Checker	2858 0738	2540 1580
CCL-HKR		Mr. T.S. LAM	Construction Manager	9655 5486	
JV	Contractor	Mr. C.P. LAM	Environmental Officer	9212 9417	2398 8301
J V		Ms. Jane ZHU	Quality Engineer	6207 3974	

Status of Environmental Licences, Notification and Permits

- 2.9 Application for Variation of Environmental Permit (Application No. VEP-382/2012) was submitted by the Permit Holder on 17 October 2012 for amending Conditions 2.21 and 2.22 in Part C of Environmental Permit No. EP-438/2012/A. Environmental Permit No. EP-438/2012/B was issued by EPD on 26 October 2012 based on this application.
- 2.10 An updated Environmental Permit (EP) (EP No. EP-438/2012/C) was granted on 30 April 2013. A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.2**.

Table 2.2 Status of Environmental Licences, Notification and Permits

D	Valid	Period	S4-4
Permit / License No.	From	To	Status
Environmental Permit (EP)			
EP-438/2012/B	26/10/2012	29/04/2013	Superseded by EP-438/2012/C
EP-438/2012/C	30/04/2013	N/A	Valid
Construction Noise Permit (CNP)		
GW-RE0754-012	24/09/2012	23/03/2013	Expired
GW-RE0272-13	26/03/2013	23/09/2013	Valid
Marine Dumping Permits		l	
EP/MD/13-075	10/10/2012	09/11/2012	Expired
EP/MD/13-074	26/10/2012	25/11/2012	Expired
Notification pursuant to Air	Pollution Control (Const	truction Dust) Regu	lation
N/A	22/08/2012	N/A	Receipt acknowledged by EPD
Billing Account for Construc	ction Waste Disposal		
A/C# 7015860	29/08/2012	N/A	Valid
Registration of Chemical Wa	aste Producer		
WPN5213-286-C3752-01	17/09/2012	N/A	Valid
Effluent Discharge License u	ınder Water Pollution Co	ontrol Ordinance	
WT00014328-2012	07/11/2012	30/11/2017	Valid

Summary of EM&A Requirements

- 2.11 The EM&A programme under 1108A require construction phase water quality monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the project EIA study final report; and
 - Environmental requirements in contract documents.
- 2.12 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 2.13 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely water quality as well as audit works for the Project in the reporting month.

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Water Quality Monitoring

Monitoring Location

In accordance with the EM&A Manual, marine water quality monitoring should be carried out while dredging activities are conducting. The water quality monitoring stations and control stations of Project are shown in **Figure 2**. The co-ordinates of the proposed monitoring stations (construction phase – dredging activities) are listed in **Table 3.1**. As shown in **Figure 2**, the proposed locations are classified as Impact Station and Control Station according to their functions.

Table 3.1 Water Quality Monitoring Stations

Station	Description	East	North	Parameters to be measured
IS-1 ⁽¹⁾	Impact Station for Dredging Activities	838499	819333	DO, Turbidity, SS
CS-1	Control Station for IS-1	838170	818903	DO, Turbidity, SS
CS-2	Control Station for IS-1	838912	818997	DO, Turbidity, SS

Note: (1) As per Baseline Monitoring Report under consultancy agreement No. NEX/2213, there was a slight adjustment for the monitoring station IS-1 due to the site constraint as the original monitoring location (Easting: 838450, Northing: 819399) has been occupied by barges/dredgers of other projects.

Monitoring Parameters, Frequency and Programme

3.2 Water quality monitoring was conducted in accordance with the requirements stipulated in the approved SCL(TAW-HUH) EM&A Manual. **Table 3.2** summarized the monitoring frequency and water quality parameters for the impact monitoring.

Table 3.2 Water Quality Impact Monitoring Programme

	Impact Monitoring
Monitoring Period	During dredging period
Monitoring Frequency	3 Days in a Week, at mid-flood and mid-ebb tides
Monitoring Locations	IS-1, CS-1, CS-2
Monitoring Parameters	DO, temperature, turbidity, pH, salinity and SS
Intervals between 2 Sets of Monitoring	Not less than 36 hours
Tide Range	Individual flood and ebb tides not less than 0.5m

Monitoring Equipment and Methodology

Dissolved Oxygen and Temperature Measuring Equipment

- 3.3 The instrument should be portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring:
 - DO level in the range of 0 20 mg/ L and 0 200% saturation; and
 - Temperature of 0 45 degree Celsius.
- 3.4 The equipment should have a membrane electrode with automatic temperature compensation complete with a cable.

3.5 Should salinity compensation not be built-in to the DO equipment, in-situ salinity should be measured to calibrate the DO equipment prior to each DO measurement.

Turbidity Measurement Instrument

3.6 The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU (for example, Hach model 2100P or an approved similar instrument).

Water Sampler

3.7 A water sampler is required for SS monitoring. It should comprise a PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (for example, Kahlsico Water Sampler or an approved similar instrument).

Water Depth Detector

3.8 A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

Salinity Measuring Equipment

3.9 A portable salinometer capable of measuring salinity in the range of 0 - 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.

pH Measuring Equipment

3.10 A portable pH meter capable of measuring a range between 0.0 and 14.0 shall be provided to measure pH under the specified conditions (e.g., Orion Model 250A or an approved similar instrument).

Sample Containers and Storage

3.11 Water samples for SS determinations should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen) and shipment to the testing laboratory. The samples shall be delivered to the laboratory within 24 hours of collection and be analysed as soon as possible after collection.

Position Equipment

3.12 A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Calibration of In-Situ Instruments

3.13 The pH meter, DO meter and turbidimeter shall be checked and calibrated before use. DO meter and turbidimeter shall be certified by a laboratory accredited under HOKLAS

or any other international accreditation scheme, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.

Back-up Equipment and Vessels

- 3.14 Sufficient stocks of spare parts shall be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, malfunction, etc.
- 3.15 The water quality monitoring will involve three monitoring stations and measurements should be conducted within the prescribed tidal conditions in order to ensure the measurement/samples are representative. A multi-probe monitoring equipment set integrated with water sampler(s) is highly recommended to improve the monitoring efficiency. Depending on the actually operation, more than one field survey vessels might be required simultaneously to ensure the monitoring are conducted within the acceptable monitoring period. The ET shall also consider the use of unattended automatic sampling/monitoring devices at fixed stations where monitoring are required throughout the construction period. The use of such unattended automatic devices, however, shall be subject to the approval of the ER, IEC and EPD.

Laboratory Measurement / Analysis

3.16 At least 3 replicate samples from each independent sampling event are required for the suspended solids measurement which shall be carried in a HOKLAS or international accredited laboratory. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory measurement and analysis. The laboratory determination work shall start within 24 hours after collection of the water samples. The analysis for SS is summarized in **Table 3.3**.

Table 3.3 Laboratory analysis for SS

Parameters	Analytical Method	Reporting Limit	
Suspended Solid (SS)	APHA 2540-D	0.1 mg/L	

Action and Limit Levels

3.17 The action and limit levels for water quality monitoring are presented in **Appendix A**.

Event and Action Plan

3.18 Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan in **Appendix D** shall be carried out.

Cultural Heritage

- 3.19 According to the location of the Project and EIA report, there are no terrestrial archaeological resources and built heritage resources in vicinity of the Project. Archaeological monitoring works and the implementation of mitigation measures during the construction and operation phases of the Project is, therefore, not required.
- 3.20 However, the Contractor shall allow a 25m separation distance between the proposed dredging area and the Kowloon Rock as specified in the approved SCL(TAW-HUH) EIA Report.

Landscape and Visual

3.21 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is summarised in **Table 6.1** of Section 6.

Ecology

3.22 In accordance with the EM&A Manual, weekly site audits should be conducted by the ET during construction phase of the Project to check the recommended mitigation measures should be properly implemented.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix E**. Status of required submissions under the Environmental Permit (EP) during the reporting period is presented in **Table 4.1**.

Table 4.1 Status of Required Submissions under EP

Event	I	Event Details	Action Taken	Status	Domoniz
Event	Number	Nature	Action Taken	Status	Remark
Status of submissions under EP	1	Monthly EM&A Report (June 2013)	Submitted to EPD on 12 th July 2013 (EP Condition 3.4)	N/A	

5 MONITORING RESULTS

Water Quality

- 5.1 No water quality monitoring was carried out at the monitoring stations during this reporting period as the dredging activity was completed on 11 November 2012.
- 5.2 Action and Limit Levels for water quality monitoring were established in the baseline water quality monitoring conducted by MTR between 16 June 2012 and 14 July 2012 under consultancy agreement no. NEX/2213. Action and Limit Levels for water quality is summarised in **Appendix A**.

Waste Management

- 5.3 Waste potentially generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and dredging materials. Non-inert C&D materials are made up of general refuse, steel and paper/cardboard packaging materials. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table 5.1**. No paper/cardboard packaging, plastics and steel material were generated during the reporting period.
- 5.4 Detail of waste management data is presented in **Appendix F**.

Table 5.1 Quantities of Waste Generated from the Project

Reporting		Quantity							
Month				Chemical	ixecycled illaterials				
	Materials (inert) ^(a)	Materials (non- inert) ^(b)	Quantity (in bulk volume)	Waste	Paper/ cardboard	Plastics	Metals		
July 2013	$10 m^3$	$5 m^3$	$0 m^3$	10 kg	0 kg	0 kg	0 kg		

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
- (b) Non-inert C&D materials include steel, paper/cardboard packaging waste, plastics and other wastes such as general refuse. Steel materials generated from the project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.

Landscape and Visual

5.5 The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

Ecology

5.6 The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 6.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix C**.
- 6.2 Site audits were conducted on 3, 11, 16, 23 and 30 July 2013 by ET. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 11 July 2013. No site inspection was conducted by EPD during the reporting month. The details of observations during site audit can refer to **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the EMIS is provided in **Appendix E**.
- 6.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
	26 June 2013	Reminder: Clear the stagnant water at the hoarding and on the conveyor belt.	The observation was observed to be improved/rectified by the Contractor during the audit session on 3 July 2013.
	3 July 2013 Reminder: Rain water should be cleared to avoid accumulation.	The observation was observed to be improved/rectified by the Contractor during the audit session on 11 July 2013.	
Water Quality	11 July 2013	Reminder: Provide impervious sheeting between tipping hall and barging point to prevent sand and mud from entering the sea.	The observation was observed to be improved/rectified by the Contractor during the audit session on 16 July 2013.
	30 July 2013	Reminder: Fill out the uneven surface on the unpaved ground to avoid accumulation of rainwater.	Follow up action will be reported in next reporting period.
	30 July 2013	Reminder: Clear the sand and mud near the drainage to prevent discharge into public drainage.	Follow up action will be reported in next reporting period.
Noise	N/A	N/A	N/A
Ecology/ Landscape and Visual	N/A	N/A	N/A
Air Quality	3 July 2013	Reminder: Stockpile should be covered by impervious sheet to avoid dust generation.	The observation was observed to be improved/rectified by the Contractor during the audit session on 11 July 2013.
Air Quality	23 July 2013	Reminder: Stockpile should be covered by tarpaulin sheet to avoid dust generation.	The observation was observed to be improved/rectified by the Contractor during the audit session on 30 July 2013.

Parameters	Date	Observations and Recommendations	Follow-up
	23 July 2013	Observation: Windows of tipping hall should be shielded.	The observation was observed to be improved/rectified by the Contractor during the audit session on 30 July 2013.
	30 July 2013	Reminder: Provide water spray on the floating jetty to prevent dust generation.	Follow up action will be reported in next reporting period.
	18 June 2013	Reminder: Provide drip tray to chemical container at tipping hall No.2.	The observation was observed to be improved/rectified by the Contractor during the audit session on 3 July 2013.
	26 June 2013	Observation: Provide drip tray to chemical container at tipping hall No.2.	The observation was observed to be improved/rectified by the Contractor during the audit session on 3 July 2013.
	11 July 2013	Reminder: Shield the 4 sides of the chemical storing cage by half to avoid leakage of chemicals and allow adequate ventilation for volatile chemicals.	The observation was observed to be improved/rectified by the Contractor during the audit session on 30 July 2013.
Waste / Chemical Management	11 July 2013	Observation: Paint container should be removed from the chemical storage area.	The observation was observed to be improved/rectified by the Contractor during the audit session on 23 July 2013.
	16 July 2013	Reminder: Paint containers in the chemical waste storage area should be removed.	The observation was observed to be improved/rectified by the Contractor during the audit session on 23 July 2013.
	16 July 2013	Reminder: Oil stain in drip tray of generator should be cleared properly as chemical waste and avoid direct discharge into drainage system.	The observation was observed to be improved/rectified by the Contractor during the audit session on 23 July 2013.
	23 July 2013	Reminder: Cage storing chemical wastes should be provided with a drip tray with larger capacity.	The observation was observed to be improved/rectified by the Contractor during the audit session on 30 July 2013.
Permits / Licenses	N/A	N/A	N/A

7 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

7.1 No impact monitoring was conducted in the reporting month. The summary of exceedance is provided in **Appendix B**.

Summary of Environmental Non-Compliance

7.2 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

7.3 No environmental related complaint, prosecution or notification of summons was received in the reporting month. The Complaint Log is presented in **Appendix G**.

Summary of Environmental Summon and Successful Prosecution

7.4 There was no environmental complaint, prosecution or notification of summons received since the Project commencement.

8 FUTURE KEY ISSUES

Key Issues in the Coming Month

- 8.1 Key issues to be considered in the coming month include:
 - Potential dust and noise impacts arising from unloading and handling of C&D material during operation of barging point facilities;
 - Potential splashing of spoils into the surrounding seawater when handling/unloading the spoil at the discharge points; and
 - Potential water pollution problem due to the discharge of site runoff with the wet season approaching.

Site Activities for the Next Month

- 8.2 A tentative construction programme is provided in **Appendix H**. The major site activities in the coming month will include:
 - Daily operation and maintenance of the Barging Point Facilities; and
 - Marine transportation of received spoil to receptor sites.

9 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

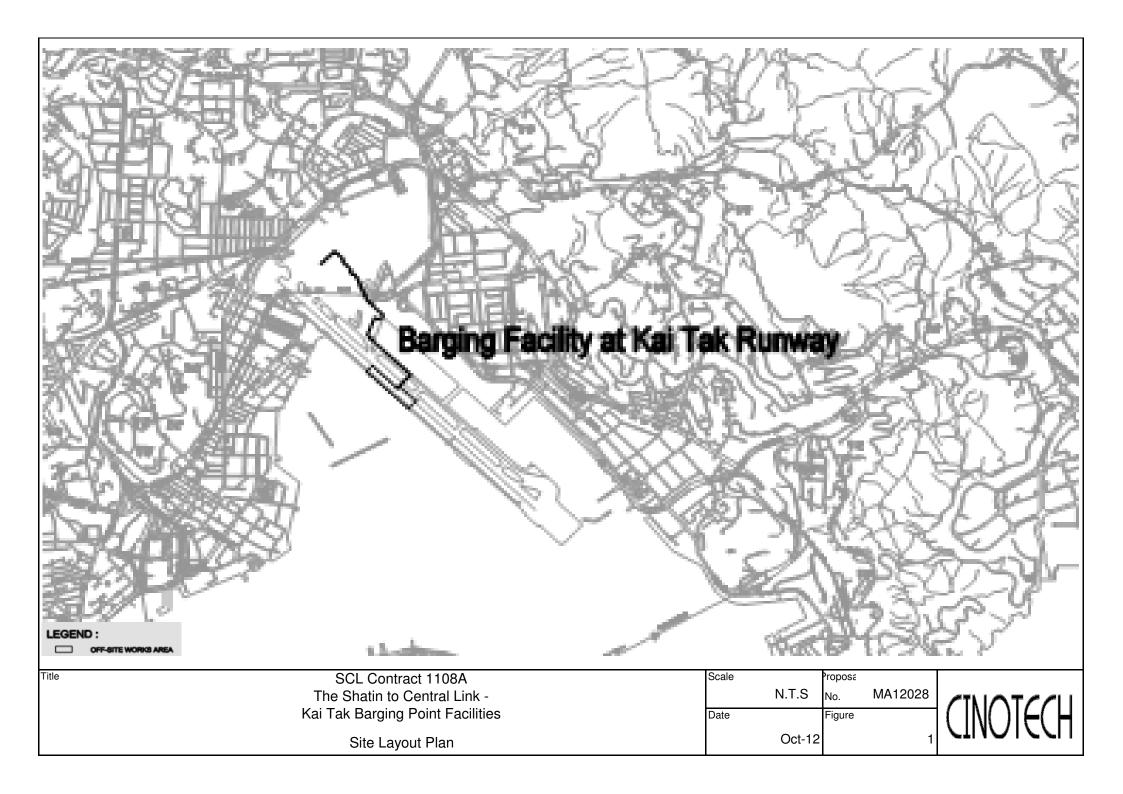
- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 July 2013 to 31 July 2013 in accordance with EM&A Manual and the requirement under EP-438/2012/C.
- 9.2 No impact monitoring was conducted in the reporting month.
- 9.3 There was no environmental complaint, prosecution or notification of summons received.
- 9.4 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

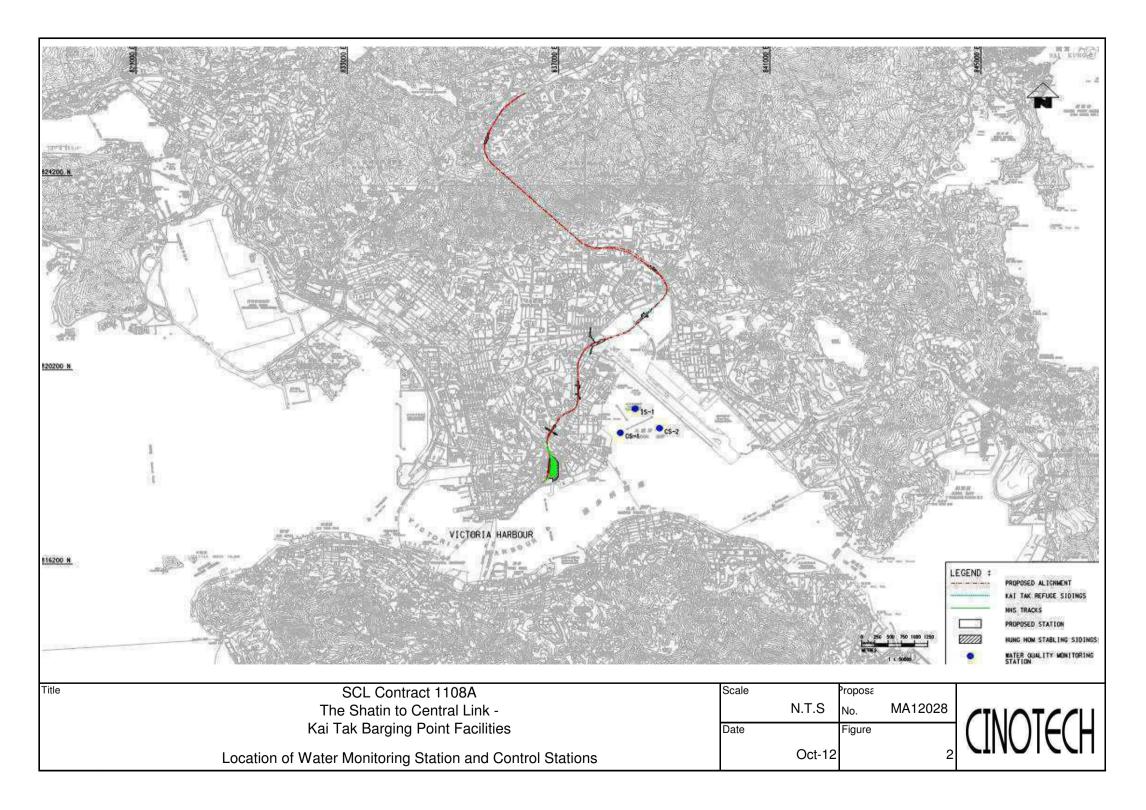
Recommendations

9.5 According to the environmental audit performed in the reporting month, the following recommendations were made:

Water Quality

• Provide adequate measures to avoid any splashing of spoils into the surrounding seawater when handling/unloading the spoil at the discharge points.


Air Quality


- Flexible dust curtains should be properly installed at the discharge point for dust suppression when in operation.
- Dust enclosures for the loading ramp should be properly installed and maintained in good condition to prevent fugitive dust emissions at barging point.

Waste / Chemical Management

- Provide and properly maintain drip trays with adequate capacity for equipment or temporary use of chemicals.
- Chemical wastes should be placed and labeled properly at designated area.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Action and Limit Levels for Water Quality

Parameter	Action	Limit
DO in mg/L	Surface & Middle:	Surface & Middle:
	4.6	4
	(5 percentile of baseline data)	Bottom:
	Bottom:	2
	3.9	
	(5 percentile of baseline data)	
SS in mg/L	6.1	6.3
	(95 percentile of baseline data)	(99 percentile of baseline data)
	or	or
	120% of upstream control station's SS at the same tide of the same day	130% of upstream control station's SS at the same tide of the same day
Turbidity in NTU	4.8	5.0
	(95 percentile of baseline data)	(99 percentile of baseline data)
	or	or
	120% of upstream control station's Turbidity at the same tide of the same day	130% of upstream control station's Turbidity at the same tide of the same day

APPENDIX B SUMMARY OF EXCEEDANCE

APPENIDX B – SUMMARY OF EXCEEDANCE

Reporting Month: July 2013

a) Exceedance Report for Water Quality Monitoring (NIL)

APPENDIX C SITE AUDIT SUMMARY

Inspection Information

Checklist Reference Number	130703
Date	3 July 2013 (Wednesday)
Time	10:30-11:30

Ref. No.	Non-Compliance	Related Item
		No.
	None identified	-

Ref. No.	Remarks/Observations	Related Item
	Part B - Water Quality	
130703-R02	Rain water should be cleared to avoid accumulation.	B 12
	Part C - Ecology/Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
130703-R01	Stockpile should be covered by impervious sheet to avoid dust generation.	D 7
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	, ė
	No environmental deficiency was identified during the site inspection.	
	Part G - Permit / Licenses	
	No environmental deficiency was identified during the site inspection.	
	Others	
	• Follow-up on previous audit section (Ref. No.:130626), all environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Kevin Lam	Kovell	3 July 2013
Checked by	Dr. Priscilla Choy	NZ	3 July 2013

CINOTECH MA12028 130703_audit130703.doc

Checklist Reference Number	130711
Date	11 July 2013 (Thursday)
Time	14:30-15:10

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B - Water Quality	
130711-R02	 Provide impervious sheeting between the tipping hall and the barging point to prevent sand and mud from entering the sea. 	В 27
	Part C - Ecology/Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	Ti No
	No environmental deficiency was identified during the site inspection.	*
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
130711-R01	• Shield the 4 sides of the chemical storing cage by half to avoid leakage of chemicals and allow adequate ventilation for volatile chemicals.	F 2i
130711-003	Paint container should be removed from the chemical storage area.	F 2ii
	Part G - Permit / Licenses	
	No environmental deficiency was identified during the site inspection.	
	Others	
	• Follow-up on previous audit section (Ref. No.:130703), all environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Kevin Lam	Kever	11 July 2013
Checked by	Dr. Priscilla Choy	WZ	11 July 2013

Checklist Reference Number	130716	
Date	16 July 2013 (Tuesday)	
Time	14:00-15:00	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	

Ref. No.	Remarks/Observations	Related Item No.
	Part B - Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C - Ecology/Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
130716-R01	Paint containers in the chemical waste storage area should be removed.	F 2i
130716-R02	Oil stain in drip tray of generator should be cleared properly as chemical waste and avoid direct discharge into drainage system.	F 8
	Part G - Permit / Licenses	
	No environmental deficiency was identified during the site inspection.	
	Others	
	• Follow-up on previous audit section (Ref. No.:130711), outstanding item 130711-R01 and 130711-R03 were not rectified and review is necessary in the next site inspection.	

Date	Signature	Name	
16 July 2013	Korist	Kevin Lam	Recorded by
16 July 2013	NA	Dr. Priscilla Choy	Checked by
_	NF		Checked by

Checklist Reference Number	130723
Date	23 July 2013 (Tuesday)
Time	14:00-15:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_

Ref. No.	Remarks/Observations	Related Item
	Part B - Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C - Ecology/Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
130723-R01	Stockpile should be covered by tarpaulin sheet to avoid dust generation.	D 7
130723-O03	Windows of tipping hall should be shielded.	D 18
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F - Waste/Chemical Management	
130723-R02	Cage storing chemical wastes should be provided with a drip tray with larger capacity.	F 9
	Part G - Permit / Licenses	
	No environmental deficiency was identified during the site inspection.	
	Others	
	• Follow-up on previous audit section (Ref. No.:130716), outstanding item 130711-R01 was remarked as 130723-R02 and review is necessary in the next site inspection.	

ame Signature	Date
n Lam	23 July 2013
cilla Choy	23 July 2013
	a Law

Checklist Reference Number	130730
Date	30 July 2013 (Tuesday)
Time	14:00-15:30

Ref. No.	Non-Compliance	Related Item
		No.
_	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B - Water Quality	
130 7 30-R01	• Fill out the uneven surface on the unpaved ground to avoid accumulation of rainwater.	В 12
130730-R02	Clear the sand and mud near the drainage to prevent discharge into public drainage.	В7
	Part C - Ecology/Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
130730-R03	Provide water spray on the floating jetty to prevent dust generation.	D 19
	Part E Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G - Permit / Licenses	
	No environmental deficiency was identified during the site inspection.	
	Others	
	Follow-up on previous audit section (Ref. No.:130723), all environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Kevin Lam	Kand	30 July 2013
Checked by	Dr. Priscilla Choy	WF	30 July 2013

APPENDIX D EVENT AND ACTION PLANS

Event and Action Plan for Water Quality

Event	ET	IEC	ER	Contractor
sampling day	 Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss remedial measures with IEC and Contractor and ER 	 Discuss with ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the implemented mitigation measures; and Make agreement on the remedial measures to be implemented. Supervise the implementation of agreed remedial measures 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ER, ET and IEC and propose remedial measures to IEC and ER; and Implement the agreed mitigation measures.
Action level being exceeded by more than one consecutive sampling days	Check monitoring data, all plant, equipment and Contractor's	 Discuss with ET Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	 Discuss with ET, IEC and Contractor on the proposed mitigation measures; Make agreement on the remedial measures to be implemented; and Discuss with ET IEC and Contractor on the effectiveness of the implemented remedial measures. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of remedial measures to ER and IEC within 3 working days of notification; and Implement the agreed mitigation measures.
Limit level being	1. Repeat measurement on next day	1. Discuss with ET, Contractor and	1. Discuss with IEC, ET and	1. Identify source(s) of impact;

Event	ET	IEC	ER	Contractor
exceeded by one sampling day	of exceedance to confirm findings; 2. Inform IEC, contractor and ER; 3. Rectify unacceptable practice; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Consider changes of working methods 6. Discuss mitigation measures with IEC, ER and Contractor; and 7. Ensure the agreed remedial measures are implemented;	ER on possible remedial actions; 2. Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures.	review the working methods; 3. Make agreement on the remedial measures to be implemented; and 4. Discuss with ET, IEC and	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER within 3 working days of notification; and Implement the agreed remedial measures.
Limit level being exceeded by more than one consecutive sampling days	 Inform IEC, contractor, ER and EPD Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; and Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days. 	 Discuss with ET, ER and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the implemented mitigation measures; Request Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; Discuss with ET and IEC on the effectiveness of the implemented mitigation measures; and Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the dredging activities until no exceedance of Limit level. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; Implement the agreed mitigation measures. As directed by the ER, to slow down or to stop all or part of the dredging activities until no exceedance of Limit level.

Event and Action Plan for Landscape and Visual during Construction Stage

Event		ET		IEC		ER		Contractor
Non-conformity on one occasion	 2. 3. 	Inform the Contractor, the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed	1. 2. 3.	Check inspection report Check the Contractor's working method Discuss with the ET, ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposedremedial measures.	 2. 3. 	Confirm receipt of notification of non-conformity in writing Review and agree on the remedial measures proposed by the Contractor Supervise implementation of remedial measures	 2. 3. 4. 	Identify Source and investigate the non-conformity Implement remedial measures Amend working methods agreed with the ER as appropriate Rectify damage and undertake any necessary replacement
Repeated Non-conformity	 1. 2. 3. 4. 5. 6. 	Identify Source Inform the Contractor, the IEC and the ER Increase inspection frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If non-conformity stops, cease additional monitoring	 2. 3. 4. 	Check inspection report Check the Contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures	1. 2. 3.	Notify the Contractor In consultation with the ET and IEC, agree with the Contractor on the remedialmeasures to be implemented Supervise implementation of remedial measures.	 2. 3. 4. 	Identify Source and investigate the non-conformity implement remedial measures Amend working methods agreed with the ER as appropriate Rectify damage and undertake any necessary replacement. Stop relevant portion of works as determined by the ER until the non-conformity is abated.

Note:

ET – Environmental Team

IEC – Independent Environmental Checker

ER – Engineer/Engineer's Representative

APPENDIX E UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
Ecology	(Pre-Cons	struction Phase)				1		_
S5.7	E3	Tree felling and vegetation removal	Minimize ecological	Contractor	Works sites	Prior to	• AFCD's	
		Precautionary checks of the vegetation for the presence of nesting bird	impacts		Kai Tak	site	requirements	
		species of conservation interest should be carried out before vegetation	to breeding bird		Barging Point	clearance		^
		clearance by an ecologist.	species of					
			conservation interest					
Ecology	(Construc	ction Phase)						
S5.7	E5	Good Site Practices	Minimise ecological	Contractor	All	During	• ProPECC	
		Impact to any habitats or local fauna should be avoided by implementing	impacts		construction	Constructi	PN 1/94	
		good site practices, including the containment of silt runoff within the site			sites	on		
		boundary, the containment of contaminated soils for removal from the						
		site, appropriate storage of chemicals and chemical waste away from						
		sites of ecological value and the provision of sanitary facilities for on-site						
		workers. Adoption of such measures should permit waste to be suitably						
		contained within the site for subsequent removal and appropriate						
		disposal.						
		The following good site practices should also be implemented:						
		Erection of temporary geotextile silt or sediment fences/oil traps						٨
		around any earth-moving works to trap any sediments and prevent						
		them from entering watercourses in particular the Tei Lung Hau						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		stream;						
		Avoidance of soil storage against trees or close to waterbodies in						^
		particular the Tei Lung Hau stream;						
		Delineation of works site by erecting hoardings to prevent						^
		encroachment onto adjacent habitats and fence off areas which						
		have some ecological value.						
		No on-site burning of waste;						٨
		Waste and refuse in appropriate receptacles.						٨
S5.7	E6	Sediment Removal	Reduce indirect	Contractor	Dredging Area	During	•TM-Water	
		Use closed grab in dredging works.	impacts of suspended			Dredging		N/A ⁽²⁾
		Install silt curtain during the dredging.	solids on sessile					N/A ⁽²⁾
			benthic and intertidal					
			fauna					
			Minimize marine					
			water					
			quality impacts					
Landscap	pe & Visu	al (Construction Phase)			.		1	•
S6.9.3	LV1	The following good site practices and measures for minimisation and	Minimize visual &	Contractor	Within Project	Constructi	•TM-EIAO	
		avoidance of potential impacts are recommended:	landscape impact		Site	on		
		Re-use of Existing Soil				stage		

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		For soil conservation, existing topsoil shall be re-used where						N/A ⁽²⁾
		possible for new planting areas within the project. The construction						
		program shall consider using the soil removed from one phase for						
		backfilling another. Suitable storage ground, gathering ground and						
		mixing ground may be set up on-site as necessary.						
		No-intrusion Zone						
		To maximize protection to existing trees, ground vegetation and						^
		the associated under storey habitats, construction contracts may						
		designate "No-intrusion Zone" to various areas within the site						
		boundary with rigid and durable fencing for each individual						
		no-intrusion zone. The contractor should closely monitor and						
		restrict the site working staff from entering the "no-intrusion zone",						
		even for indirect construction activities and storage of equipment.						
		Protection of Retained Trees						
		All retained trees should be recorded photographically at the						^
		commencement of the Contract, and carefully protected during the						
		construction period. Detailed tree protection specification shall be						
		allowed and included in the Contract Specification, which						
		specifying the tree protection requirement, submission and						
		approval system, and the tree monitoring system.						

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
		The Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works sites.						۸
S6.12	LV2	Erection of decorative screen during construction stage to screen off undesirable views of the construction site for visual and landscape sensitive areas. Hoarding should be designed to be compatible with the existing urban context. Management of facilities on work sites To provide proper management of the facilities on the sites, give control on the height and disposition/ arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs.	Minimize visual & landscape impact	Contractor	Within Project Site	Detailed design and constructi on stage	• EIAO – TM •ETWB TCW 2/2004 • ETWB TCW 3/2006	^ N/A ⁽¹⁾
Constru	ction Dus	t Impact						
S7.6.5	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	Contractor	All Construction Sites	Constructi on stage	APCO To control the dust impact to meet HKAQO and	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
							TM-	
							EIA criteria	
S7.6.5	D2	Mitigation measures in form of regular watering under a good site	Minimize dust impact	Contractor	All	Constructi	• APCO	
		practice should be adopted. Watering once per hour on exposed	at the		Construction	on	• To control	
		worksites and haul road in the Kowloon area should be conducted to	nearby sensitive		Sites	stage	the dust	
		achieve dust removal efficiencies of 91.7%. While the above watering	receivers				impact to	٨
		frequencies are to be followed, the extent of watering may vary					meet	
		depending on actual site conditions but should be sufficient to maintain					HKAQO and	
		an equivalent intensity of no less than 1.8 L/m ² to achieve the dust					TM-	
		removal efficiency					EIA criteria	
S7.6.5	D3	Proper watering of exposed spoil should be undertaken throughout	Minimize dust impact	Contractor	All	Constructi	• APCO	٨
		the construction phase;	at the		Construction	on	To control	
		Any excavated or stockpile of dusty material should be covered	nearby sensitive		Sites	stage	the dust	*
		entirely by impervious sheeting or sprayed with water to maintain	receivers				impact to	
		the entire surface wet and then removed or backfilled or reinstated					meet	
		where practicable within 24 hours of the excavation or unloading;					HKAQO and	
		Any dusty materials remaining after a stockpile is removed					TM-	٨
		should be wetted with water and cleared from the surface of					EIA criteria	
		roads;						
		A stockpile of dusty material should not be extend beyond the						٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		pedestrian barriers, fencing or traffic cones;						
		The load of dusty materials on a vehicle leaving a construction	n site					^
		should be covered entirely by impervious sheeting to ensure t	hat					
		the dusty materials do not leak from the vehicle;						
		Where practicable, vehicle washing facilities with high pressu	re					^
		water jet should be provided at every discernible or designate	d					
		vehicle exit point. The area where vehicle washing takes pla	ice					
		and the road section between the washing facilities and the e	xit					
		point should be paved with concrete, bituminous materials or						
		hardcores;						
		When there are open excavation and reinstatement works,						^
		hoarding of not less than 2.4m high should be provided and						
		properly maintained as far as practicable along the site bound	lary					
		with provision for public crossing; Good site practice shall also	be					
		adopted by the Contractor to ensure the conditions of the						
		hoardings are properly maintained throughout the constructio	ı					
		period;						
		The portion of any road leading only to construction site that i	s					٨
		within 30m of a vehicle entrance or exit should be kept clear of	of					
		dusty materials;						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		Surfaces where any pneumatic or power-driven drilling, cutting,						^
		polishing or other mechanical breaking operation takes place						
		should be sprayed with water or a dust suppression chemical						
		continuously;						
		Any area that involves demolition activities should be sprayed with						N/A ⁽²⁾
		water or a dust suppression chemical immediately prior to, during						
		and immediately after the activities so as to maintain the entire						
		surface wet;						
		Where a scaffolding is erected around the perimeter of a building						N/A ⁽²⁾
		under construction, effective dust screens, sheeting or netting						
		should be provided to enclose the scaffolding from the ground floor						
		level of the building, or a canopy should be provided from the first						
		floor level up to the highest level of the scaffolding;						
		Any skip hoist for material transport should be totally enclosed by						N/A ⁽²⁾
		impervious sheeting;						
		Every stock of more than 20 bags of cement or dry pulverized fuel						N/A ⁽²⁾
		ash (PFA) should be covered entirely by impervious sheeting or						
		placed in an area sheltered on the top and the 3 sides;						
		Cement or dry PFA delivered in bulk should be stored in a closed						N/A ⁽²⁾
		silo fitted with an audible high level alarm which is interlocked						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		with the material filling line and no overfilling is allowed;						
		Loading, unloading, transfer, handling or storage of bulk cement or						N/A ⁽²⁾
		dry PFA should be carried out in a totally enclosed system or						
		facility, and any vent or exhaust should be fitted with an effective						
		fabric filter or equivalent air pollution control system; and						
		Exposed earth should be properly treated by compaction, turfing,						N/A ⁽²⁾
		hydroseeding, vegetation planting or sealing with latex, vinyl,						
		bitumen, shotcrete or other suitable surface stabiliser within six						
		months after the last construction activity on the construction site						
		or part of the construction site where the exposed earth lies.						
S7.6.5	D4	The following mitigation measures should be adopted to prevent fugitive	Control construction	Contractor	Kai Tak	Constructi	Air Pollution	
		dust emissions at barging point:	dust		Barging Point	on	Control	
		All road surface within the barging facilities will be paved;				stage	(Construction	^
		Dust enclosures will be provided for the loading ramp;					Dust)	^
		Vehicles will be required to pass through designated wheels wash					Regulation	^
		facilities; and						
		Continuous water spray at the loading points						*
S7.6.5	D5	For the unloading of spoil from trucks at barging point, installation	Minimize dust impact	Contractor	Barging Points	Constructi	• APCO	*
		of 3-sided screen with top tipping hall and operating water	at the			on	• To control	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
		spraying and flexible dust curtains at the discharge point for dust suppression	nearby sensitive receivers			stage	the dust impact to meet HKAQO and TM- EIA criteria •EP Condition 2.18 (c)	
S7.6.5	D6	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Selected representative dust monitoring station	Constructi on stage	• TM-EIA	N/A ⁽¹⁾
Construc	ction Nois	se (Airborne)						
\$8.3.6	N1	 Implement the following good site practices: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or 	Control construction airborne noise	Contractor	All Construction Sites	Constructi on stage	• Annex 5, TM-EIA	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		should be throttled down to a minimum;						
		Plant known to emit noise strongly in one direction, where						^
		possible, be orientated so that the noise is directed away from						
		nearby NSRs;						
		Silencers or mufflers on construction equipment should be						N/A ⁽²⁾
		properly fitted and maintained during the construction works;						
		Mobile plant should be sited as far away from NSRs as possible						^
		and practicable;						
		Material stockpiles, mobile container site office and other						N/A ⁽²⁾
		structures should be effectively utilized, where practicable, to						
		screen noise from on-site construction activities.						
S8.3.6	N2	Install temporary hoarding located on the site boundaries between noisy	Reduce the	Contractor	All	Constructi	• Annex 5,	٨
		construction activities and NSRs. The conditions of the hoardings shall	construction noise		Construction	on	TM-EIA	
		be properly maintained throughout the construction period.	levels at low-level zone		Sites	stage		
			of NSRs through					
			partial screening.					
S8.3.6	N3	Install movable noise barriers (typical design is wooden framed barrier	Screen the noisy plant	Contractor	All	Constructi	• Annex 5,	N/A ⁽¹⁾
		with a small-cantilevered on a skid footing with 25mm thick internal sound	items to be used at all		Construction	on	TM-EIA	
		absorptive lining), acoustic mat or full enclosure, screen the noisy plants	construction sites		Sites	stage		

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		including air compressor, generators and saw.						
S8.3.6	N4	Use "Quiet plants"	Reduce the noise	Contractor	All	Constructi	• Annex 5,	۸
			levels of plant items		Construction	on	TM-EIA	
					Sites where	stage		
					practicable			
S8.3.6	N5	Sequencing operation of construction plants where practicable.	Operate sequentially	Contractor	All	Constructi	• Annex 5,	N/A ⁽¹⁾
			within the same work		Construction	on	TM-EIA	
			site to reduce		Sites where	stage		
			the construction		practicable			
			airborne					
			noise					
S8.3.6	N6	Implement a noise monitoring under EM&A programme.	Monitor the	Contractor	Selected	Constructi	•TM-EIA	N/A ⁽¹⁾
			construction noise		representative	on		
			levels at the selected		noise	stage		
			representative		monitoring			
			locations		station			
Water Qu	uality (Co	nstruction Phase)		1	•	•	1	
S10.7.1	W1	In accordance with the Practice Noise for Professional Persons on	To minimize water	Contractor	All	Constructi	• Water	
		Construction Site Drainage, Environmental Protection Department, 1994	quality impact from		construction	on	Pollution	
		(ProPECC PN1/94), construction phase mitigation measures shall	construction site runoff		sites	stage	Control	
	•	•	•	•	•	•		

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		include the following:	and general		where		Ordinance	
		Construction Runoff and Site Drainage	construction activities		practicable		• ProPECC	
		At the start of site establishment (including the barging facilities),					PN1/94	^
		perimeter cut-off drains to direct off-site water around the site					• TM-EIAO	
		should be constructed with internal drainage works and erosion					• TM-Water	
		and sedimentation control facilities implemented. Channels (both						
		temporary and permanent drainage pipes and culverts), earth						
		bunds or sand bag barriers should be provided on site to direct						
		stormwater to silt removal facilities. The design of the temporary						
		on-site drainage system will be undertaken by the contractor prior						
		to the commencement of construction.						
		The dikes or embankments for flood protection should be						^
		implemented around the boundaries of earthwork areas.						
		Temporary ditches should be provided to facilitate the runoff						
		discharge into an appropriate watercourse, through a						
		site/sediment trap. The sediment/silt traps should be incorporated						
		in the permanent drainage channels to enhance deposition rates.						
		The design of efficient silt removal facilities should be based on the						
		guidelines in Appendix A1 of ProPECC PN 1/94, which states that						
		the retention time for silt/sand traps should be 5 minutes under						

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref			recommended Measures &	implement the	measures	Implement	requirements	
				Main Concerns to address	measures?		the	or standards	
							measures?	for the	
								measures to	
								achieve?	
			maximum flow conditions. Sizes may vary depending upon the						
			flow rate, but for a flow rate of 0.1 m^3/s a sedimentation						
			basin of 30m^3 would be required and for a flow rate of $0.5 \text{ m}^3/\text{s}$						
			the basin would be 150 $\mathrm{m}^3.~$ The detailed design of the sand/silt						
			traps shall be undertaken by the contractor prior to the						
			commencement of construction.						
		•	All exposed earth areas should be completed and vegetated as						^
			soon as possible after earthworks have been completed, or						
			alternatively, within 14 days of the cessation of earthworks where						
			practicable. Exposed slope surfaces should be covered by						
			tarpaulin or other means.						
		•	The overall slope of the site should be kept to a minimum to						^
			reduce the erosive potential of surface water flows, and all traffic						
			areas and access roads protected by coarse stone ballast. An						
			additional advantage accruing from the use of crushed stone is the						
			positive traction gained during prolonged periods of inclement						
			weather and the reduction of surface sheet flows.						
		•	All drainage facilities and erosion and sediment control structures						*
			should be regularly inspected and maintained to ensure proper						
			and efficient operation at all times and particularly following						

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref			recommended Measures &	implement the	measures	Implement	requirements	
				Main Concerns to address	measures?		the	or standards	
							measures?	for the	
								measures to	
								achieve?	
		rainstorms	. Deposited silt and grit should be removed regularly						
		and dispos	sed of by spreading evenly over stable, vegetated areas.						
		• Measures	should be taken to minimize the ingress of site drainage						^
		into excava	ations. If the excavation of trenches in wet periods is						
		necessary,	they should be dug and backfilled in short sections						
		wherever p	practicable. Water pumped out from trenches or						
		foundation	excavations should be discharged into storm drains via						
		silt remova	al facilities.						
		Open stock	kpiles of construction materials (for example,						^
		aggregates	s, sand and fill material) of more than 50m ³ should be						
		covered wi	ith tarpaulin or similar fabric during rainstorms.						
		• Measures	should be taken to prevent the washing away of						*
		construction	on materials, soil, silt or debris into any drainage system.						
		Manholes	(including newly constructed ones) should always be						
		adequately	covered and temporarily sealed so as to prevent silt,						
		construction	on materials or debris being washed into the drainage						
		system and	d storm runoff being directed into foul sewers						
		 Precaution 	s be taken at any time of year when rainstorms are						^
		likely, actio	ons to be taken when a rainstorm is imminent or						
		forecasted	, and actions to be taken during or after rainstorms are						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		summarised in Appendix A2 of ProPECC PN 1/94. Particular						
		attention should be paid to the control of silty surface runoff during						
		storm events, especially for areas located near steep slopes						
		All vehicles and plant should be cleaned before leaving a						
		construction site to ensure no earth, mud, debris and the like is						٨
		deposited by them on roads. An adequately designed and sited						
		wheel washing facilities should be provided at every construction						
		site exit where practicable. Wash-water should have sand and						
		silt settled out and removed at least on a weekly basis to ensure						
		the continued efficiency of the process. The section of access						
		road leading to, and exiting from, the wheel-wash bay to the public						
		road should be paved with sufficient backfall toward the						
		wheel-wash bay to prevent vehicle tracking of soil and silty water						
		to public roads and drains.						
		Oil interceptors should be provided in the drainage system						
		downstream of any oil/fuel pollution sources. The oil interceptors						٨
		should be emptied and cleaned regularly to prevent the release of						
		oil and grease into the storm water drainage system after						
		accidental spillage. A bypass should be provided for the oil						
		interceptors to prevent flushing during heavy rain.				_		

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		Construction solid waste, debris and rubbish on site should be						
		collected, handled and disposed of properly to avoid water quality						^
		impacts.						
		All fuel tanks and storage areas should be provided with locks and						
		sited on sealed areas, within bunds of a capacity equal to 110% of						*
		the storage capacity of the largest tank to prevent spilled fuel oils						
		from reaching water sensitive receivers nearby						
		All the earth works involving should be conducted sequentially to						
		limit the amount of construction runoff generated from exposed						N/A ⁽²⁾
		areas during the wet season (April to September) as far as						
		practicable.						
		Adopt best management practices.						
								*
S10.7.1	W3	Sewage Effluent	To minimize water	Contractor	All	Constructi	• Water	
		Portable chemical toilets and sewage holding tanks are	quality from sewage		construction	on stage	Pollution	^
		recommended for handling the construction sewage generated by	effluent		sites where		Control	
		the workforce. A licensed contractor should be employed to			practicable		Ordinance	
		provide appropriate and adequate portable toilets and be					• TM-water	
		responsible for appropriate disposal and maintenance.						
S10.7.1	W4	Groundwater from Contaminated Area:	To minimize	Contractor	Excavation	Constructi	Water	

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref			recommended Measures &	implement the	measures	Implement	requirements	
				Main Concerns to address	measures?		the	or standards	
							measures?	for the	
								measures to	
								achieve?	
		•	No direct discharge of groundwater from contaminated areas	groundwater		areas	on	Pollution	N/A ⁽¹⁾
			should be adopted. Prior to the excavation works within these	quality impact from		where	stage	Control	
			potentially contaminated areas, the groundwater quality should be	contaminated area		contamination		Ordinance	
			reviewed with reference to the site investigation data in this EIA			is found.		• TM-water	
			report for compliance to the Technical Memorandum on Standards					• TM-EIAO	
			for Effluents Discharged into Drainage on Sewerage Systems,						
			Inland and Coastal Waters (TM-Water) and the existence of						
			prohibited substance should be confirmed. The review results						
			should be submitted to EPD for examination If the review results						
			indicated that the groundwater to be generated from the						
			excavation works would be contaminated, the contaminated						
			groundwater should be either properly treated in compliance with						
			the requirements of the TM-Water or properly recharged into the						
			ground.						
		•	If wastewater treatment is deployed, the wastewater treatment unit						N/A ⁽¹⁾
			shall deploy suitable treatment process (e.g. oil interceptor /						
			activated carbon) to reduce the pollution level to an acceptable						
			standard and remove any prohibited substances (e.g. TPH) to						
			undetectable range. All treated effluent from wastewater treatment						
			plant shall meet the requirements as stated in TM-Water and						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		should be discharged into the foul sewers						
		If groundwater recharging wells are deployed, recharging wells						
		should be installed as appropriate for recharging the contaminated						N/A ⁽¹⁾
		groundwater back into the ground. The recharging wells should be						
		selected at places where the groundwater quality will not be						
		affected by the recharge operation as indicated in the Section 2.3						
		of TM-Water. The baseline groundwater quality shall be						
		determined prior to the selection of the recharge wells, and submit						
		a working plan (including the laboratory analytical results showing						
		the quality of groundwater at the proposed recharge location(s) as						
		well as the pollutant levels of groundwater to be recharged) to EPD						
		for agreement. Pollution levels of groundwater to be recharged						
		shall not be higher than pollutant levels of ambient groundwater at						
		the recharge well. Prior to recharge, any prohibited substances						
		such as TPH products should be removed as necessary by						
		installing the petrol interceptor. The Contractor should apply for a						
		discharge licence under the WPCO through the Regional Office of						
		EPD for groundwater recharge operation or discharge of treated						
		groundwater.						
S10.7.1	W5	<u>Dredging Works</u>	To minimize sediment	Contractor	Kai Tak	Dredging	• Water	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		The following good practice shall apply for the dredging works:	suspension during		Barging Point	period	Pollution	
		Install efficient silt curtains at the point of seawall dredging to	dredging		during		Control	N/A ⁽²⁾
		control the dispersion of SS;			dredging		Ordinance	
		Implement water quality monitoring to ensure effective control of			works		• TM-EIAO	N/A ⁽²⁾
		water pollution and recommend additional mitigation measures						
		required;						
		The decent speed of grabs should be controlled to minimize the						N/A ⁽²⁾
		seabed impact and to reduce the volume of over-dredging; and						
		All vessels should be sized so that adequate clearance is						N/A ⁽²⁾
		maintained between vessels and the seabed in all tide conditions,						
		to ensure that undue turbidity is not generated by turbulence from						
		vessel movement or propeller wash.						
S10.7.1	W6	Operation of Barging Facilities	To minimize water	Contractor	All barging	Constructi	• Water	
		The following good practice shall apply for the barging facilities	quality impact from		facilities	on stage	Pollution	
		operations:	operation of				Control	
		All barges should be fitted with tight bottom seals to prevent	barging facility				Ordinance	^
		leakage of materials during transport;					• TM-EIA	
		Barges or hoppers should not be filled to a level that will cause						^
		overflow of materials or polluted water during loading or						
		transportation;						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		All vessels should be sized so that adequate clearance is						٨
		maintained between vessels and the seabed in all tide conditions,						
		to ensure that undue turbidity is not generated by turbulence from						
		vessel movement or propeller wash;						
		Loading of barges and hoppers should be controlled to prevent						*
		splashing of material into the surrounding water; and						
		Mitigation measures as outlined in W1 should be applied to						^
		minimise water quality impacts from site runoff and open stockpile						
		spoils at the proposed barging facilities where appropriate.						
S10.7.1	W7	In order to prevent accidental spillage of chemicals, the following is	To minimize water	Contractor	All	Constructi	• Water	
		recommended:	quality		construction	on	Pollution	
		All the tanks, containers, storage area should be bunded and the	impact from accidental		sites where	stage	Control	^
		locations should be locked as far as possible from the sensitive	spillage		practicable		Ordinance	
		watercourse and stormwater drains.					• ProPECC	
		The Contractor should register as a chemical waste producer if					PN1/94	^
		chemical wastes would be generated. Storage of chemical waste					• TM-EIAO	
		arising from the construction activities should be stored with					• TM-Water	
		suitable labels and warnings.						
		Disposal of chemical wastes should be conducted in compliance						٨
		with the requirements as stated in the Waste disposal (Chemical						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		Waste) (General) Regulation.						
S10.7.1	W8	Implement a marine water quality monitoring programme	Monitor marine water	Contractor	At identified	Prior to	• Water	
			quality		monitoring	and	Pollution	^
			prior to and during		location	during	Control	
			dredging			dredging	Ordinance	
			period			period	• TM-water	
							• EIA-TM	
Waste Ma	anagemei	nt (Construction Waste)						
S11.4.1.1	WM1	On-site sorting of C&D material	Separation of	Contractor	All	Constructi	• DEVB	
		Geological assessment should be carried out by competent	unsuitable rock from		construction	on	TC(W) No.	N/A ⁽²⁾
		persons on site during excavation to identify materials which are	ending up at concrete		sites	stage	6/2010	
		not suitable to use as aggregate in structural concrete (e.g.	batching plants and be					
		volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke	turned into concrete for					
		rock should be separated at the source sites as far as practicable	structural use					
		and stored at designated stockpile areas preventing them from						
		delivering to crushing facilities. The crushing plant operator should						
		also be reminded to set up measures to prevent unsuitable rock						
		from ended up at concrete batching plants and be turned into						
		concrete for structural use. Details regarding control measures at						
		source site and crushing facilities should be submitted by the						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		Contractors for the Engineer to review and agree. In addition, site						
		records should also be kept for the types of rock materials						
		excavated and the traceability of delivery will be ensured with the						
		implementation of Trip Ticket System and enforced by site						
		supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for						
		tracking of the correct delivery to the rock crushing facilities for						
		processing into aggregates. Alternative disposal option for the						
		reuse of volcanic rock and Aplite Dyke rock, etc should also be						
		explored.						
S11.5.1	WM2	Construction and Demolition Material	Good site practice to	Contractor	All	Constructi	• Land	
		Maintain temporary stockpiles and reuse excavated fill material for	minimize the waste		construction	on	(Miscellaneo	N/A ⁽²⁾
		backfilling and reinstatement;	generation and recycle		sites	stage	us	
		Carry out on-site sorting;	the C&D materials as				Provisions)	N/A ⁽²⁾
		Make provisions in the Contract documents to allow and promote	far as practicable so as				Ordinance	N/A ⁽²⁾
		the use of recycled aggregates where appropriate;	to reduce the amount				 Waste 	
		Adopt 'Selective Demolition' technique to demolish the existing	for final disposal				Disposal	N/A ⁽²⁾
		structures and facilities with a view to recovering broken concrete					Ordinance	
		effectively for recycling purpose, where possible;					• ETWB	
		Implement a trip-ticket system for each works contract to ensure					TCW No.	٨
		that the disposal of C&D materials are properly documented and					19/2005	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		verified; and						
		Implement an enhanced Waste Management Plan similar to						^
		ETWBTC (Works) No. 19/2005 - "Environmental Management on						
		Construction Sites" to encourage on-site sorting of C&D materials						
		and to minimize their generation during the course of construction.						
		In addition, disposal of the C&D materials onto any sensitive						^
		locations such as agricultural lands, etc. should be avoided. The						
		Contractor shall propose the final disposal sites to the Project						
		Proponent and get its approval before implementation						
S11.5.1	WM3	C&D Waste	Good site practice to	Contractor	All	Constructi	• Land	
		Standard formwork or pre-fabrication should be used as far as	minimize the waste		construction	on	(Miscellaneo	^
		practicable in order to minimize the arising of C&D materials.	generation and recycle		sites	stage	us	
		The use of more durable formwork or plastic facing for the	the C&D materials as				Provisions)	
		construction works should be considered. Use of wooden	far as practicable so as				Ordinance	
		hoardings should not be used, as in other projects. Metal	to reduce the amount				Waste	
		hoarding should be used to enhance the possibility of recycling.	for final disposal				Disposal	
		The purchasing of construction materials will be carefully planned					Ordinance	
		in order to avoid over ordering and wastage.					• ETWB	
		The Contractor should recycle as much of the C&D materials as					TCW	N/A ⁽²⁾
		possible on-site. Public fill and C&D waste should be segregated					No.19/2005	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the	Status
							measures to achieve?	
		and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage.						
S11.5.1	WM4	General Refuse General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law.	Minimize production of the general refuse and avoid odour, pest and litter impacts	Contractor	All construction sites	Constructi on stage	Waste Disposal Ordinance	^
		Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be						۸

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref			recommended Measures &	implement the	measures	Implement	requirements	
				Main Concerns to address	measures?		the	or standards	
							measures?	for the	
								measures to	
								achieve?	
			provided if feasible.						
		•	Office wastes can be reduced through the recycling of paper if						^
			volumes are large enough to warrant collection. Participation in a						
			local collection scheme should be considered by the Contractor.						
S11.5.1	WM6	Lan	d-based and Marine-based Sediment	To control pollution due	Contractor	Within Project	Constructi	• ETWB	
		•	All construction plant and equipment shall be designed and	to		Site	on	TCW No.	N/A ⁽¹⁾
			maintained to minimize the risk of silt, sediments, contaminants or	marine sediment		Area	Stage	34/2002	
			other pollutants being released into the water column or deposited						
			in the locations other than designated location;						
		•	All vessels shall be sized such that adequate draft is maintained						
			between vessels and the sea bed at all states of the tide to ensure						N/A ⁽¹⁾
			that undue turbidity is not generated by turbulence from vessel						
			movement or propeller wash;						
		•	Before moving the vessels which are used for transporting						
			dredged material, excess material shall be cleaned from the decks						N/A ⁽¹⁾
			and exposed fittings of vessels and the excess materials shall						
			never be dumped into the sea except at the approved locations;						
		•	Adequate freeboard shall be maintained on barges to ensure that						
			decks are not washed by wave action.						
		•	The Contractors shall monitor all vessels transporting material to						N/A ⁽¹⁾

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref			recommended Measures &	implement the	measures	Implement	requirements	
				Main Concerns to address	measures?		the	or standards	
							measures?	for the	
								measures to	
								achieve?	
			ensure that no dumping outside the approved location takes place.						
			The Contractor shall keep and produce logs and other records to						N/A ⁽¹⁾
			demonstrate compliance and that journeys are consistent with						
			designated locations and copies of such records shall be						
			submitted to the engineers;						
		•	The Contractors shall comply with the conditions in the dumping						
			licence.						
		•	All bottom dumping vessels (Hopper barges) shall be fitted with						N/A ⁽¹⁾
			tight fittings seals to their bottom openings to prevent leakage of						
			material;						N/A ⁽¹⁾
		•	The material shall be placed into the disposal pit by bottom						
			dumping;						
		•	Contaminated marine mud shall be transported by spit barge of						N/A ⁽¹⁾
			not less than 750m³ capacity and capable of rapid opening and						
			discharge at the disposal site;						N/A ⁽¹⁾
		•	Discharge shall be undertaken rapidly and the hoppers shall be						
			closed immediately. Material adhering to the sides of the hopper						
			shall not be washed out of the hopper and the hopper shall remain						N/A ⁽¹⁾
			closed until the barge returns to the disposal site.						
		•	For Type 3 special disposal treatment, sealing of contaminant						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		with geosynthetic containment before dropping into designated						
		mud pit would be a possible arrangement. A geosynthetic						N/A ⁽¹⁾
		containment method is a method whereby the sediments are						
		sealed in geosynthetic containers and, the containers would be						
		dropped into the designated contaminated mud pit where they						
		would be covered by further mud disposal and later by the mud pit						
		capping at the disposal site, thereby fulfilling the requirements for						
		fully confined mud disposal.						
S11.5.1	WM7	Chemical Waste	Control the chemical	Contractor	All	Constructi	• Waste	
		Chemical waste that is produced, as defined by Schedule 1 of the	waste		Construction	on	Disposal	^
		Waste Disposal (Chemical Waste) (General) Regulation, should	and ensure proper		Sites	Stage	(Chemical	
		be handled in accordance with the Code of Practice on the	storage, handling and				Waste)	
		Packaging, Labelling and Storage of Chemical Wastes.	disposal.				(General)	
		Containers used for the storage of chemical wastes should be					Regulation	٨
		suitable for the substance they are holding, resistant to corrosion,					Code of	
		maintained in a good condition, and securely closed; have a					Practice	
		capacity of less than 450 liters unless the specification has been					on the	
		approved by the EPD; and display a label in English and Chinese					Packaging,	
		in accordance with instructions prescribed in Schedule 2 of the					Labelling and	
		regulation.					Storage of	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
	Log Ref		recommended Measures &	implement the	measures	Implement	requirements	
			Main Concerns to address	measures?		the	or standards	
						measures?	for the	
							measures to	
							achieve?	
		The storage area for chemical wastes should be clearly labeled					Chemical	*
		and used solely for the storage of chemical waste; enclosed on at					Waste	
		least 3 sides; have an impermeable floor and bunding of sufficient						
		capacity to accommodate 110% of the volume of the largest						
		container or 20 $\%$ of the total volume of waste stored in that area,						
		whichever is the greatest; have adequate ventilation; covered to						
		prevent rainfall entering; and arranged so that incompatible						
		materials are adequately separated.						
		Disposal of chemical waste should be via a licensed waste						
		collector; be to a facility licensed to receive chemical waste, such						۸
		as the Chemical Waste Treatment Centre which also offers a						
		chemical waste collection service and can supply the necessary						
		storage containers; or be to a reuser of the waste, under approval						
		from the EPD.						

Remarks: ^

- Compliance of mitigation measure
- Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Recommendation was made during site audit but improved/rectified by the contractor.

N/A⁽¹⁾ Not Applicable

N/A⁽²⁾ Not Applicable at this stage

APPENDIX F WASTE GENERATION IN THE REPORTING MONTH

Concentric – Hong Kong River Joint Venture

MTR SCL Contract 1108A Kai Tak Barging Point Facilities

Monthly Summary Waste Flow Table for 2013 (year)

	Actual Quantities of Inert C&D Materials Generated Monthly							Actual Quantities of	C&D Wastes Ge	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	0.055	0.000	0.000	0.000	0.055	0.000	0.000	0.000	0.000	0.000	0.005
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005
Mar	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
*May	<0.005	-	-	-	-	-	-	-	-	-	-
June	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010
Sub-total	0.055	0.000	0.000	0.000	0.055	0.000	0.000	0.000	0.000	0.000	0.020
July	0.010	0.000	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.010	0.005
Aug	-	-	-	-	-	-	-	-	-	-	-
Sept	-	-	-	-	-	-	-	-	-	-	-
Oct	-	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-		-	-	-	-	-
Dec	-	-	-	-	-	-	-	-	-	-	-
G.Total	0.065	0.000	0.000	0.000	0.065	0.000	0.000	0.000	0.000	0.010	0.025

Remark: * As the inert or non-inert C&D materials generated from this Project in May 2013 was negligible (which is less than 5m³ in volume), no C&D materials were disposed in the reporting month. Such C&D materials will be disposed in the next month and the quantity of materials will be recorded in June 2013.

APPENDIX G COMPLAINT LOG

Appendix G - Complaint Log

Log Ref.	Date/Location	Complainant/ Date of Contact	Details of Complaint	Investigation/ Mitigation Action	File Closed
				1	

APPENDIX H TENTATIVE CONSTRUCTION PROGRAMME **⊗**MTR

MTR SCL 1108A KAITAK BARGING POINT FACILITIES

							3 Month Rollng Programme (Rev.02)	
Act ID	Description	Orig Dur	Early Start	Early Finish	%	Cal.	MAY III	2013 2014 NOV DEC 1AN EEP 144
COMMENCEMENT 8	& COMPLETION						MAY JUN JUL	AUG SEP OCT NOV DEC JAN FEB MAR
Completion of the V								
1108ACD01	Letter of Acceptance	0	10AUG12A		10	1		
1108ACD02	Commencement of Contract	0	13AUG12 A		10	! 		
1108ACD03A	Completion of Specified Parts of the Works	0		10FEB13A	10	0 2		
1108ACD03C	Completion of Contract	0		28AUG16		0 2		
1108ACD04B	Completion of 1st BPF for Operation	0		10DEC12A	10	0 2		
Time for Completio			1			,		
1108ACD04A	Completion of Specified Parts of the Works	187	13AUG12 A	15FEB13A	10			
1108ADC04B	Completion of 1st BPF for Operation	122	13AUG12 A	10DEC12 A	10	0 2		
1108ADC04C	Completion of The Whole of the Works	1477	13AUG12 A	28AUG16	2	4 2		
+Time for Possess	sion of Works Area					_		
		52	13AUG12 A	030CT 12 A	10	0 2		
Vacation of Works 1108ACD15V	Vacation of Portion 1108AW5	1 0	1	31DEC13*	1	ما ہ		
1108ACD16V	Taking over of Portion 1108AW6 by 1108		1	31MAY13 A	10	0 2		♦ Vacation of Portion 1108A.W5
					╀	╄	Taking over of Portion 1108A.W6 by 1108	
1108ACD17V	Taking over of Portion 1108A.W7 by 1108		1	31MAY13 A	10	0 2	◆ Taking over of Portion 1108A.W7 by 1108	
MILESTONES SCHE								
1108AMSA30	Satisfactory Impl'n of Safety & Env.req'ts.	0		31MAR13.A	10	0 2	Safety & Env. reg'ts	
1108AMSA41	Satisfactory Impl'n of Quality reg'ts.			28SEP13	1	0 2	parety & Env. req ts	Optionates Institutes at Operation and the
1108AMSA42	Satisfactory Impl'n of Prog. Mgt. System			28SEP13	+	0 2		Satisfactory Impl'n of Quality req'ts.
Milestones for Cos			<u> </u>	<u> </u>	<u> </u>	<u> </u>		Satisfactory Impl'n of Prog. Mgt. System
1108AMSB20	Complete ALL BPF & Ready for Operation	0		10FEB13A	10	0 2		
1108AMSB30	Mgt, Maint., & Operation of BPF	0		30JUN13 A	10	0 2	♦ ♦ Mgt., Maint., & Oper	tion of DDE
1108AMSB40	Mgt, Maint, & Operation of BPF	0		28DEC13	1	0 2	ywgt., wantt, α Oper	Mgt., Maint., & Operation of BPF
+EXECUTION OF OR	PTIONS			<u> </u>	<u>. </u>	<u> </u>		wgt, maint, α Operation of pr
		43	13AUG12 A	100CT 12 A	10	0		
+Value Engineering	Proposals	•		<u> </u>				
		27	10SEP12A	06OCT 12 A	10	0 2		
Cost Centre A								
Preliminaries 1108AA3010	Satisfactory Impl'n of Safety & Env.req'ts.	233	13AUG12 A	31MAR13.A	10	ol a		
1108AA4010	Satisfactory Implin of Quality regits.	415	13AUG12A	28SEP13	8	6 2	afety & Env. req'ts	
1108AA4020	Satisfactory Impl'n of Prog. Mgt. System	415	13AUG12A	28SEP13	8	6 2		Satisfactory Impl'n of Quality reg'ts
Cost Centre B	7			l .				Satisfactory Impl'n of Prog. Mgt. System
+Kai Tak BPF - Des	sign & Approval							
		58	13AUG12 A	310CT 12 A	10	0		
+Kai Tak BPF - Wo	rks Areas 1108A.W1 &W5							
		319	03OCT 12 A	17AUG13	9	5 2		
+Kai Tak BPF - Wo	rks Areas 1108AW2 &W3	1		Language				
- Wai Talk DDE - WA	orks Areas 1108A.W2 & W3 (Option)	1 42	27SEP12 A	18NOV12 A	10	u l 2		
+Nai Tak BPF - Wo	ins Areas 1100A.wz α wo (Option)	74	03SEP12A	15NOV12 A	10	o l 2		
+Kai Tak BPF - Wo	orks Areas 1108A.W4. W6 & W7		L	1		1		
I Wo		60	24SEP12A	22DEC12 A	10	0 2		
+Kai Tak BPF - Dre	edging Area				_			
	1	72	13AUG12 A	20NOV 12 A	10	0		
Kai Tak BPF - Mgt.,	Maintenance & Operation							
1108AB3010	Manage, Maintain & Operate the BPF	152	10DEC12A	30JUN13 A	10	0 2	Manage, Maintain & C	perate the BPF
1108AB4010	Manage, Maintain & Operate the BPF	182	30JUN13 A	28DEC13	1	7 2		Manage, Maintain & Operate the BPF
1108AB5010	Manage, Maintain & Operate the BPF	182	29DEC13	28JUN14	ĺ	0 2		
Start date 10AUG12 Finish date 28AUG16	<u> </u>	*			•	•	•	Early bar Date Revision Checked Approve
Data date 31JUL13 Run date 31JUL13	MTR SCL 1108A							Progress bar 11SEP12 comments (SContE)
Page number 1A	KAITAK BARGING POINT FACILIT	TIEC						Concentric - Hong Kong Piver Joint Venture Summary bar
c Primavera Systems, Inc.	NATIAN BANGING FOINT FACILIT	il-J						Start milestone point Start milestone noint

Appendix B

11th EM&A Report for Works Contract 1109 – Stations and Tunnels of Kowloon City Section

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Monthly EM&A Report No. 11

[Period from 1 to 31 July 2013]

Works Contract 1109 - Stations and Tunnels of Kowloon City Section

(August 2013)

Certified by: ____ Winnie Ko

Position: Environmental Team Leader

Date: 13 August 2013

MONTHLY EM&A REPORT

Samsung-Hsin Chong JV

Shatin to Central Link (SCL) - Tai Wai to Hung Hom Section: Works Contract 1109 – Stations and Tunnels of Kowloon City Section Monthly EM&A Report No.11

July 2013

Environmental Resources Management

16/F DCH Commercial Centre 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

MONTHLY EM&A REPORT

Samsung-Hsin Chong JV

Shatin to Central Link (SCL) - Tai Wai to Hung Hom Section: Works Contract 1109 – Stations and Tunnels of Kowloon City Section Monthly EM&A Report No.11

July 2013

Reference 0171181

For and on behalf of

ERM-Hong Kong, Limited

Approved by:

Frank Wan

Signed:

Position:

Partner

Date:

13 August 2013

CONTENTS

1	INTRODUCTION	1
1.1	PURPOSE OF THE REPORT	1
1.2	STRUCTURE OF THE REPORT	1
2	PROJECT INFORMATION	3
2.1	BACKGROUND	3
2.2	GENERAL SITE DESCRIPTION	3
2.3	CONSTRUCTION PROGRAMME AND ACTIVITIES	3
2.4	PROJECT ORGANISATION	4
2.5	STATUS OF ENVIRONMENTAL LICENCES, NOTIFICATION AND PERMITS	4
3	ENVIRONMENTAL MONITORING REQUIREMENTS	5
3.1	REGULAR CONSTRUCTION NOISE MONITORING	5
3.1.1	Monitoring Location	5
3.1.2	Monitoring Parameter and Frequency	5
3.1.3	Monitoring Equipment and Methodology	6
3.1.4	Action and Limit Levels	6
3.2	CONTINUOUS NOISE MONITORING	7
3.2.1	Monitoring Location	7
3.2.2	Monitoring Parameter and Frequency	7
3.2.3	Monitoring Equipment and Methodology	8
3.2.4	Action and Limit Levels	8
3.3	CONSTRUCTION DUST MONITORING	9
3.3.1	Monitoring Location	9
3.3.2	Monitoring Parameter and Frequency	9
3.3.3	Monitoring Equipment	10
3.3.4	Monitoring Methodology	10
3.3.5	Action and Limit Levels	12
3.4	CULTURAL HERITAGE	12
<i>3.</i> 5	LANDSCAPE AND VISUAL MITIGATION MEASURES	13
4	IMPLEMENTATION STATUS OF THE ENVIRONMENTAL PROTEC	TION
	REQUIREMENTS	14
5	MONITORING RESULTS	15
5.1	REGULAR CONSTRUCTION NOISE MONITORING	15
5.2	CONTINUOUS NOISE MONITORING	15
5.3	CONSTRUCTION DUST MONITORING	15
5.4	CULTURAL HERITAGE	16
5.5	Waste Management	16
5.6	LANDSCAPE AND VISUAL MITIGATION MEASURES	16
6	ENVIRONMENTAL SITE INSPECTION	18

7	ENVIRONMENTAL NON-CONFORMANCE	20
7.1	SUMMARY OF MONITORING EXCEEDANCE	20
7.2	SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE	20
7.3	SUMMARY OF ENVIRONMENTAL COMPLAINT	20
7.4	SUMMARY OF ENVIRONMENTAL SUMMON AND SUCCESSFUL PROSECUTION	20
8	FUTURE KEY ISSUES	21
8.1	KEY ISSUES FOR THE COMING MONTH	21
8.2	MONITORING SCHEDULE FOR THE NEXT MONTH	21
8.3	CONSTRUCTION PROGRAMME FOR THE NEXT MONTH	21
9	CONCLUSIONS	22

LIST OF ANNEXES

Annex A	The Alignment and Works Area for Works Contract
Annex B	Construction Programme for the Reporting Month and Coming Month
Annex C	Project Organization Chart and Contact Detail
Annex D	Locations of Monitoring Stations for Noise and Dust Monitoring
Annex E	Monitoring Schedule of the Reporting Period and the Next Month
Annex F	Calibration Reports
Annex G	Summary of Event /Action Plans
Annex H	Summary of Implementation Status
Annex I-1	Regular Noise Monitoring Results
Annex I-2	Continuous Noise Monitoring Results
Annex J	Construction Dust Monitoring Results
Annex K	Waste Flow Table
Annex L	Not Used
Annex M	Environmental Complaint, Environmental Summon and Prosecution Log

1 INTRODUCTION

ERM-Hong Kong, Limited (ERM) was appointed by Samsung-Hsin Chong JV (SSHCJV) as the Environmental Team (Contractor's ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during the construction phase of the MTR Shatin to Central Link (SCL) Works Contract 1109 – Stations and Tunnels of Kowloon City Section (the Project).

1.1 PURPOSE OF THE REPORT

This is the eleventh EM&A report which summarises the monitoring results and audit findings during the reporting period from 1 July to 31 July 2013.

1.2 STRUCTURE OF THE REPORT

Section 1: **Introduction**

It details the purpose and structure of the report.

Section 2: **Project Information**

It summarises the background and scope of the project, site description, project organization and contact details, construction programme, construction works undertaken and status of the Environmental Permits/Licenses during the reporting period.

Section 3: Environmental Monitoring Requirement

It summarises the monitoring parameters, programmes, methodologies, frequency, locations, Action and Limit Levels, Event / Action Plans.

Section 4: Implementation Status of Environmental Mitigation Measures

It summarises the implementation of environmental protection measures during the reporting period.

Section 5: Monitoring Results

It summarises the monitoring results obtained in the reporting period.

Section 6: **Environmental Site Inspection**

It summarises the audit findings of the weekly site inspections undertaken within the reporting period.

Section 7: Environmental Non-conformance

It summarises any monitoring exceedance, environmental complaints and summons within the reporting period.

Section 8: Future Key Issues

It summarises the forecast of environmental impact and monitoring schedule for the next three months.

Section 9: **Conclusions**

2 PROJECT INFORMATION

2.1 BACKGROUND

The Shatin to Central Link – Tai Wai to Hung Hom Section (hereafter referred to as SCL (TAW-HUH)) is an extension of the Ma On Shan Line and is approximately 11 km long. It links up with the West Rail Line at Hung Hom forming a strategic east-west rail corridor. It is a Designated Project under the *Environmental Impact Assessment Ordinance* (Cap. 499) (EIAO).

The construction of the SCL (TAW-HUH) has been divided into a series of civil construction Works Contracts and this Works Contract 1109 covers the construction of stations in To Kwa Wan (TKW) and Ma Tau Wai (MTW), and the tunnels between the TKW station and Ho Man Tin station (HOM).

2.2 GENERAL SITE DESCRIPTION

For the Works Contract 1109, the alignment runs from TKW station below Ma Tau Chung Road/Ma Tau Wai Road towards the west, reaching the MTW station. After leaving MTW station, the alignment passes Ko Shan Road and joins the HOM station at the intersection of Fat Kwong Street and Shun Yung Street. The underground sections of the alignment between TKW and HOM stations will be constructed by bored tunneling. Both the TKW and MTW stations will be constructed by cut-and-cover method.

The alignment and works area for the Works Contract 1109 are shown in *Annex A*.

2.3 CONSTRUCTION PROGRAMME AND ACTIVITIES

A summary of the major construction activities undertaken in this reporting period is shown in *Table 2.1*. The construction programme is presented in *Annex B*.

Table 2.1 Summary of the Construction Activities Undertaken during the Reporting Month

Construction Activities undertaken

Works in Ma Tau Wai (MTW)

- TKW/MTW Road Garden Operation of bentonite plant and pier 15 pre-drilling works;
- Along Ma Tau Wai Road Construction of D-wall panel, predrilling for D-wall and trial
 pits for location of utilities; and
- Nam Kok Road Installation of pipe pile and construction of grout curtain.

Works in To Kwa Wan (TKW)

- SUW Playground Pre-bored H pilling;
- TKW Station Archaeological survey, construction of grout curtain, sheet pile and bored pile, and installation of socket steel H-piling.

2.4 PROJECT ORGANISATION

The project organizational chart and contact details are shown in *Annex C*.

2.5 STATUS OF ENVIRONMENTAL LICENCES, NOTIFICATION AND PERMITS

A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project since the commencement of the construction works in September 2012 is presented in *Table 2.2*.

Table 2.2 Summary of the Status of Environmental Licence, Notification, Permit and Documentations

Permit/ Licences/ Notification	Reference	Validity Period	Remarks
Environmental Permit	EP-438/2012	-	Superseded by EP- 438/2012/A on 12 July 2012
	EP-438/2012/A	-	Superseded by EP- 438/2012/B on 26 October 2012
	EP-438/2012/B	-	Superseded by EP- 438/2012/C on 30 April 2013
	EP-438/2012/C	Throughout the Contract	Permit granted on 30 April 2013
Notification of Construction Works under the Air Pollution Control (Construction Dust) Regulation (Form NA)	348516	13 Aug 2012 – 30 Apr 2017	-
Notification of Construction Works under Air Pollution Control (Construction Dust) Regulation (Form NB)	351125	16 Oct 2012 – 30 Apr 2017	-
Wastewater Discharge Lice	ence		
Site at TKW	WT00014390-2012	30-Sep-2017	
Site at MTW	WT00016348-2013	30-Sep-2017	
Chemical Waste Producer	Registration		
Site at TKW	5213-286-S3682-01	Throughout the Contract	-
Site at MTW	5213-242-S3682-02	Throughout the Contract	-
Construction Noise Permit	t		
- Grout Pump and Generator at TKW/ MTW Garden	GW-RE0160-13	20-Aug-2013	-
- Powered Mechanical Equipment at TKW.	GW-RE0614-13	12-Dec-2013	-
Licence to Excavate and Search for Antiquities	342	29-Oct-2013	-
Billing Account for Disposal of Construction Waste	7015758	Throughout the Contract	-

3.1 REGULAR CONSTRUCTION NOISE MONITORING

3.1.1 Monitoring Location

In accordance with the EM&A Manual, monitoring of construction noise impact should be conducted at the designated monitoring stations. Since access to some of the proposed monitoring locations stated in the EM&A Manual was rejected or not available; alternative locations were proposed and agreed by the ER (Engineer's Representative), IEC (Independent Environmental Checker) and EPD (Environmental Protection Department). The construction noise monitoring locations are listed in *Table 3.1* and shown in *Annex D*. The noise sensitive receivers (NSRs) related to this Works Contract are also shown in *Annex D*.

Table 3.1 Regular Construction Noise Monitoring Location

Proposed Regular Construction Noise Monitoring Location	Description	Type of Measurement
NMS-CA-6 (a)	No.16-23 Nam Kok Road	Façade
NMS-CA-7	Skytower Tower 2	Façade
NMS-CA-8	SKH Good Shepherd Primary School	Façade
NMS-CA-9 (b)	Kong Yiu Mansion	Façade
NMS-CA-10	Chat Ma Mansion	Façade

Notes:

- (a) Access to the monitoring location at Prosperity House (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. Furthermore, the alternative location, No. 420 Prince Edward Road West, used in the baseline monitoring was also not available as access permission was rejected by the owner of the building. An alternative location (No.16-23 Nam Kok Road) was proposed and approved by the ER and agreed by the IEC and EPD.
- (b) As the Incorporated Owners Association of the monitoring location at Lucky Building (originally proposed in the approved EM&A Manual) did not reply to our request for access to their premise, an alternative location, Kong Yiu Mansion, was proposed and approved by the ER and agreed by the IEC and EPD.

3.1.2 Monitoring Parameter and Frequency

Weekly construction noise monitoring was conducted in accordance with the requirements stipulated in the EM&A Manual. If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed. The monitoring schedule for this reporting period is shown in *Annex E*.

The construction noise levels were measured in terms of the A-weighted equivalent continuous sound pressure level (L_{Aeq}) in decibels dB(A). L_{Aeq} (30min) was used as the monitoring metric for the time period between 0700 – 1900 hours on normal weekdays. The measured noise levels were logged every 5 minutes throughout the monitoring period.

3.1.3 Monitoring Equipment and Methodology

Construction noise measurements were conducted in accordance with the calibration and measurement procedures as stated in *Annex – General Calibration and Measurement Procedures* of *Technical Memorandum on Noise from Construction Work other than Percussive Piling (GW-TM)* issued under the *Noise Control Ordinance (NCO)* (Cap 400).

The sound level meters and calibrator used for the noise measurement, as listed in *Table 3.2*, compile with the IEC 651: 1979 and 804:1985 (Type 1) specification. The calibration certificates of the sound level meters are included in *Annex F*.

Table 3.2 Noise Monitoring Equipment

Monitoring Stations	Monitoring Equipment (Sound Level Meter and Calibrator)
NMS-CA-6, NMS-CA-7,	Calibrator: NC 73 (Serial No. 10997142)
NMS-CA-9 and NMS-CA-10	Sound Level Meter: NL 31 (Serial No. 00320533)
NMS-CA-8	Calibrator: NC-73 (Serial No. 10997142)
	Sound Level Meter: NL-31 (Serial No. 00983400)

Immedi1ately prior to and following the noise measurements, the accuracy of the measurement equipment was checked using an acoustic calibrator generating a known sound pressure level at a known frequency.

Measurements were accepted when the calibration level from before and after the noise measurement agreed to be within 1.0 dB(A).

3.1.4 Action and Limit Levels

The Action and Limit Levels are presented in *Table 3.3* and the Event / Action Plan (EAP) for noise monitoring is presented in *Annex G*.

Table 3.3 Action and Limit Levels for Noise Monitoring

Time Period	Regular Noise Monitoring Location	Action Level	Limit Level
0700 - 1900 hours on normal	NMS- CA-6	When one documented valid complaint is received	75 dB(A)
weekdays	NMS- CA-7	When one documented valid complaint is received	75 dB(A)
	NMS- CA-8	When one documented valid complaint is received	70 dB(A) 65 dB(A) during examination periods
	NMS-CA-9	When one documented valid complaint is received	75 dB(A)
	NMS- CA-10	When one documented valid complaint is received	75 dB(A)

Note:

3.2 CONTINUOUS NOISE MONITORING

3.2.1 Monitoring Location

With reference to the Continuous Noise Monitoring Plan (CNMP) and EP Condition 2.10, continuous noise monitoring should be conducted during the construction of the SCL (TAW-HUH) under Works Contract 1109 at eight noise sensitive receivers (NSRs), where the predicted residual air-borne construction noise impacts exceed the relevant noise criteria. The proposed continuous noise monitoring locations are presented in *Table 3.4* and shown in *Annex D*.

Table 3.4 Proposed Continuous Noise Monitoring Locations

TKW-3-2(A) MTW-12-3	No. 420 Prince Edward Road West	
MTW-12-3		
1711 77 12 0	Lucky Mansion	
MTW-12-4	352-354 Ma Tau Wai Rd (East Façade)	
TW-12-4-1(A) 59 Maidstone Road		
MTW-12-10	Lucky Building (South Façade)	
MTW-12-10-1	Lucky Building (East Façade)	
MTW-12-11	Jing Ming Building	
MTW-16-1	SKH Good Shepherd Primary School	

3.2.2 Monitoring Parameter and Frequency

Continuous monitoring of $L_{Aeq(30min)}$ noise levels are required to be carried out at the eight proposed continuous noise monitoring locations identified in *Table 3.4* during the normal construction working hours (0700 – 1900 Monday

⁽a) If works are to be carried out during restricted hours (ie, outside 0700 – 1900 on Monday to Saturday), the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

to Saturday) in the period that presented in the CNMP. The recommended measurement period for the continuous noise monitoring programme in the CNMP are presented in *Table 3.6*. If works are to be carried out during restricted hours (ie, outside 0700 – 1900 on Monday to Saturday), the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

3.2.3 Monitoring Equipment and Methodology

In accordance to the Technical Memorandum (TM) issued under the *Noise Control Ordinance* (NCO), sound level meters in compliance with the *International Electrotechnical Commission Publications* 651:1979 (Type 1) and 804:1985 (Type 1) specifications will be used for carrying out the noise monitoring.

Table 3.5 Noise Monitoring Equipment

Mor	Monitoring Stations Monitoring Equipment (Sound Level Meter and Calibrator)		
MTW-16-1 Calibrator: NC-73 (Serial No. 10997142)		Calibrator: NC-73 (Serial No. 10997142)	
		Sound Level Meter: NL-31 (Serial No. 00983400)	
Note	e:		
(a)	During the reporting period, continuous noise monitoring is only required at MTW-16-1		
	according to the schedule presented in CNMP.		

Immediately prior to the noise measurement, the accuracy of the sound level meter will be checked using an acoustic calibrator, which generated a known sound pressure level at a known frequency. The accuracy of the sound level meter will also be checked on an annual-basis. Measurements will be accepted as valid only if the calibration level before and after the noise measurement agrees to be within $1.0~{\rm dB(A)}$. Noise measurements will be made in accordance with standard acoustical principles and practices in relation to weather conditions.

3.2.4 Action and Limit Levels

The Action/Limit Levels for the continuous noise monitoring programme recommended in the latest CNMP are presented in *Table 3.6.*

Table 3.6 Action/Limit Levels for Continuous Noise Monitoring (a)

Proposed Continuous	Description	Action /	Measurement Period
Noise Monitoring		Limit	(a)
Stations		Level (a)	
TKW-3-2(A)	No. 420 Prince Edward Road West	80	Sept 2014 – Dec 2014
MTW-12-3	Lucky Mansion	80	Aug 2014 – Jan 2015, Mar 2015 – Jun 2015
MTW-12-4	352-354 Ma Tau Wai Rd (East Façade)	80	Aug 2014 – Jun 2015
MTW-12-4-1(A)	59 Maidstone Road	82	Oct 2014, Dec 2014 – Jun 2015
MTW-12-10	Lucky Building (South Façade)	84	Mar 2015 – Apr 2015, Sept 2015 – Jan 2016

Proposed Continuous Noise Monitoring Stations	Description	Action / Limit Level ^(a)	Measurement Period
MTW-12-10-1	Lucky Building (East Façade)	80	Dec 2014 – May 2015,
			Sept 2015 – Jan 2016
MTW-12-11	Jing Ming Building	81	Sept 2014 – Jun 2015
MTW-16-1	SKH Good Shepherd Primary	78	Apr 2013 – Dec 2013,
	School		May 2014,
			Aug 2014 – Mar 2016

Note:

The Event/Action Plan (EAP) of the latest CNMP for continuous noise monitoring is presented in *Annex G*.

3.3 CONSTRUCTION DUST MONITORING

3.3.1 Monitoring Location

The proposed dust monitoring stations for the construction phase of the Project, as recommended in the approved EM&A Manual, are listed in *Table* 3.7 and shown in *Annex D*. The proposed locations have been agreed with the ER, EPD and IEC.

Table 3.7 Construction Dust Monitoring Location

ption
ine Building
2
Good Shepherd Primary School
Kowloon City Road
Ia Mansion
_

Notes:

- (a) Access to the monitoring location at. Prosperity House (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. Furthermore, the alternative location at No. 420 Prince Edward Road West, which was used in the baseline monitoring, was also not available as access permission was not granted by the owner of the building. An alternative location, Katherine Building, was proposed and had been approved by the ER and agreed by the IEC and EPD.
- (b) As the Incorporated Owners Association of the originally proposed monitoring location at Lucky Building did not reply to our request for access to their premise, an alternative location, No. 26 Kowloon City Road, was proposed and had been approved by the ER and agreed by the IEC and EPD.

3.3.2 *Monitoring Parameter and Frequency*

The construction dust monitoring (in terms of Total Suspended Particulates (TSP)) was conducted at the designated monitoring stations in accordance with the requirements stipulated in the EM&A Manual. The 24-hour TSP levels were monitored at the frequency and duration stated in *Table 3.8*. The TSP monitoring was conducted as per the schedule presented in *Annex E*.

⁽a) The A/L Levels and Measurement Periods will be subject to the latest Construction Noise Mitigation Measures Plan (CNMMP) and CNMP.

Table 3.8 Construction Dust Monitoring Parameters and Frequency

Monitoring Period	Duration	Parameter	Frequency
Dust Monitoring	Throughout the construction period of the Project	24-hour TSP	Once per 6 days

3.3.3 Monitoring Equipment

24-hour averaged TSP monitoring was performed at the designated monitoring stations using High Volume Samplers (HVS) with the appropriate sampling inlets installed. The performance specification of HVS complied with the standard method "Determination of Suspended Particulate Matter in the Atmosphere (High Volume Method)" as stipulated in US EPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50 Appendix B). Table 3.9 summarises the equipment that was deployed for the 24-hour averaged monitoring.

Table 3.9 Construction Dust Monitoring Equipment

Monitoring Location	Monitoring Equipment (HVS and Calibrator)
DMS-6	TE-5170 (Serial No. 0107), CM-AIR-43 (Orifice ID 2323)
DMS-7	TE-5170 (Serial No. 3574), CM-AIR-43 (Orifice ID 2323)
DMS-8	TE-5170 (Serial No. 3572), CM-AIR-43 (Orifice ID 2323)
DMS-9	TE-5170 (Serial No. 0814), CM-AIR-43 (Orifice ID 2323)
DMS-10	TE-5170 (Serial No. 3573), CM-AIR-43 (Orifice ID 2323)

3.3.4 *Monitoring Methodology*

All HVSs were free-standing with no obstruction.

The following criteria were considered in the installation of the HVSs:

- appropriate support to secure the samplers against gusty wind needed to be provided at the monitoring stations;
- a minimum of 2m separation from walls, parapets and penthouses was required for rooftop samplers;
- no furnace or incinerator flues was nearby;
- airflow around the sampler was unrestricted; and
- permission could be obtained to set up the samplers and gain access to the monitoring stations.

Preparation of Filter Papers

 glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected;

- all filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25°C and not varied by more than \pm 3°C; the relative humidity (RH) was 40%; and
- SGS Hong Kong Ltd, a HOKLAS accredited laboratory, implemented comprehensive quality assurance and quality control programmes on the filters.

Field Monitoring

- the power supply was checked to ensure that the HVSs were working properly;
- the filter holder and area surrounding the filter were cleaned;
- the filter holder was removed by loosening the foul bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully;
- the filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
- the swing bolts were fastened to hold the filter holder down to the frame.
 The pressure applied should be sufficient to avoid air leakage at the edges;
- the shelter lid was closed and secured with an aluminium strip;
- the HVS was warmed-up for about 5 minutes to establish runtemperature conditions;
- a new flow rate record sheet was inserted into the flow recorder;
- the flow rates of the HVSs were checked and adjusted to between 1.22 1.37 m³min⁻¹, which was within the range specified in the EM&A Manual (i.e. 0.6 1.7 m³min⁻¹);
- the programmable timer was set for a sampling period of 24 hours \pm 1 hour, and the starting time, weather condition and filter number were recorded;
- the initial elapsed time was recorded;
- at the end of sampling, the sampled filter was removed carefully and folded in half so that only surfaces with collected particulate matter were in contact;
- the filter paper was placed in a clean plastic envelope and sealed;
- all monitoring information was recorded on a standard data sheet; and

the filters were sent to SGS Hong Kong Ltd for analysis.

Maintenance and Calibration

- the HVSs and their accessories were maintained in a good working condition. For example, motor brushes were replaced routinely and electrical wiring was checked to ensure a continuous power supply; and
- the flow rate of each HVS with mass flow controller was calibrated using an orifice calibrator. Initial calibrations of the dust monitoring equipment were conducted upon installation and prior to commissioning. Five-point calibration was carried out for HVSs using CM-AIR-43 Calibration Kit. HVSs are calibrated every six-month. The calibration records for the HVSs are given in *Annex F*.

Wind Data Monitoring

Average wind data (wind speed and direction) at the Kai Tak
meteorological station during the monitoring period were obtained from
the Hong Kong Observatory (HKO) and presented in *Annex J*.

3.3.5 Action and Limit Levels

The Action and Limit levels have been established and are presented in *Table 3.10*.

Table 3.10 Action and Limit Levels for Dust Monitoring

Parameters	Dust Monitoring Station	Action Level (µg m-3) (a)	Limit Level (µg m ⁻³) (a)
24-hour TSP	DMS-6	156.8	260
	DMS-7	166.7	260
	DMS-8	152.2	260
	DMS-9	160.9	260
	DMS-10	170.4	260
1-hour TSP (b)	DMS-6	288.8	500
	DMS-7	289.7	500
	DMS-8	300.0	500
	DMS-9	303.0	500
	DMS-10	294.7	500

Notes:

- (a) Reference to the Baseline Monitoring Report submitted in July 2012.
- (b) Action and Limit Levels for 1-hour TSP will only be used when 1-hour TSP is required to be monitored when a valid complaint is received.

The Event/Action Plan (EAP) for dust monitoring is presented in *Annex G*.

3.4 CULTURAL HERITAGE

The Licence to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance was obtained from the Antiquities and Monuments Office (AMO) on 29 October 2012. The archaeological survey-cum-

excavation and additional investigation at the Sacred Hill (North) commenced on 1 November 2012 and has been conducted in accordance with the Licence and the approved Archaeological Action Plan (AAP).

In accordance with the EM&A Manual, appropriate vibration monitoring on the identified built heritage will be agreed with the Building Department (BD)/Geotechnical Engineering Office (GEO) under the requirement of Buildings Ordinance and/or Blasting Permit as appropriate. Vibration levels will be controlled to appropriate levels. Vibration monitoring will be carried out by the Contractor. The structures requiring vibration monitoring during the relevant tunneling work for this Works Contract include S.K.H. Holy Trinity Church and Old Fast East Flying Training School.

3.5 LANDSCAPE AND VISUAL MITIGATION MEASURES

In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is given in *Annex H*.

4 IMPLEMENTATION STATUS OF THE ENVIRONMENTAL PROTECTION REQUIREMENTS

The Contractor has implemented all the environmental mitigation measures and requirements as stated in the EIA Report, Environmental Permit and EM&A Manual. The implementation status of the environmental mitigation measures for this Works Contract during the reporting period is summarized in *Annex H*. The status of the required submissions under the EP for this Works Contract during this reporting month is presented in *Table 4.1*.

Table 4.1 Status of Required Submission under Works Contract 1109

EP Condition	Submission	Submission Date
Condition 3.4	Tenth Monthly EM&A Report	12 July 2013
Condition 2.9	Construction Noise Mitigation Measures Plan (CNMMP)	26 July 2013
Condition 2.10	Continuous Noise Monitoring Plan	26 July 2013

5

5.1 REGULAR CONSTRUCTION NOISE MONITORING

A total of 25 sets of 30-minute construction noise measurements were carried out at the monitoring stations during normal weekdays of the reporting period. No exceedance of the limit level was recorded at NMS–CA-6, NMS–CA-7, NMS–CA-8 and NMS-CA-9.

The noise monitoring results of the measurements carried out at NMS-CA-10 on 2, 8, 19, 25 and 31 July are higher than the daytime construction noise criterion. However, the results are not considered as exceedance because they are either below the baseline level or below the limit level after deducting the baseline noise level.

The monitoring results together with their graphical presentations are presented in *Annex I-1*.

No exceedance of the Action and Limit Levels of regular construction noise due to the Project was recorded during the reporting period.

5.2 CONTINUOUS NOISE MONITORING

According to the prediction in the CNMP, continuous noise monitoring was only conducted at MTW-16-1 during the reporting month. Exceedances of the Action and Limit Levels of the continuous noise monitoring were recorded at MTW-16-1 on 29 and 30 July 2013 during the reporting period. The monitoring results are presented in *Annex I-2*.

5.3 CONSTRUCTION DUST MONITORING

A total of 30 sets of 24-hr TSP monitorings were carried out at the designated monitoring stations during normal weekdays of the reporting period. The monitoring results together with their graphical presentations are presented in *Annex J* and a summary of the dust monitoring results in this reporting month is given in *Table 5.1*.

Table 5.1 Summary of the Dust Monitoring Results in this Reporting Month

Monitoring Station	24-hour TSP Monitoring Results measured, µgm ^{-3 (a)}		Action Level, µgm ⁻³	Limit Level, µgm ⁻³	
	Average	Range			
DMS-6	74	68 - 81	156.8	260	
DMS-7	78	69 - 85	166.7	260	
DMS-8	81	73 - 93	152.2	260	
DMS-9	80	75 - 90	160.9	260	
DMS-10	82	77 - 88	170.4	260	

No exceedance of the Action and Limit Levels of the 24-hr TSP was recorded during the reporting period.

5.4 CULTURAL HERITAGE

A Licence to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance was obtained from Antiquities and Monuments Office (AMO) on 29 October 2012. The archaeological survey-cum-excavation at the Sacred Hill (North) commenced on 1 November 2012 and is being conducted in accordance with the Licence and the approved Archaeological Action Plan (AAP).

As tunnelling works have not commenced, no vibration monitoring was conducted during the reporting month.

5.5 WASTE MANAGEMENT

The waste generated from this Project includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in *Table 5.2*. Details of waste management data are presented in *Annex K*.

Table 5.2 Quantities of Waste Generated from the Project

Reporting	Quantity					
Month	Inert C&D	Chemical	Non-inert C&D Materials			
	Materials (a)	Waste	General	Recycled materials		<u> </u>
	(b)		Refuse/Vegetative	Paper/cardboard	Plastics	Metals
			Waste			
July 2013	6,116 m ³	400 kg	58 m ³	63 kg	868 kg	0 kg
NT .						

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
- (b) About 6,116 m³ of inert C&D materials were generated from the Project, and sent to 1108A Kai Tai Barging Facilities during the reporting month.

5.6 LANDSCAPE AND VISUAL MITIGATION MEASURES

Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 2 and 15 July 2013. Most of the mitigation measures given in *Annex H* have been implemented. Required Actions that were found are listed below:

2 July 2013

No observation was reported during the site inspection.

15 July 2013

6

Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 2, 8, 15, 22 and 29 July 2013. The representative of the IEC joined the site inspection on 8 July 2013. No non-compliance was recorded during the site inspections. Chemical leakage was observed at MTW works area inside the drip tray on 24 June and has been followed during this reporting period. Chemical leakage inside the drip tray at MTW works area had been cleaned as observed during the site inspection on 2 July 2013. Findings and recommendations are summarized as follows:

2 July 2013

 A stock of cement was observed not covered entirely by impervious sheeting at TKW works area. The Contractor was reminded to cover the stock entirely by impervious sheeting. The stock of cement at TKW works area which was observed not entirely covered by impervious sheeting had been removed as observed during the site inspection on 8 July 2013.

8 July 2013

- Dry cement used for absorbing excessive water was observed dusty.
 The Contractor was reminded to remove the excess cement. Dry cement was sprayed with water immediately during the site inspection on 8 July 2013. The cement becomes solidified after mixing with water.
- Noise barrier has been provided at the hoarding in front of SKH Good Shepherd Primary School. In order to have better protection towards the school, the Contractor was suggested to provide a higher noise barrier to further minimize noise nuisance.
- The Cement mixing facility at To Kwa Wan Works Area was observed without proper enclosure, namely not fully covered on the top and large openings were observed at sides, while works activities for handling cement was undertaking which emitted lots of fugitive dust. The Contractor stopped the works and was reminded to provide a full enclosure to prevent dust generation. The top shelter was closed even there is no cement mixing work as observed during site inspection on 15 July 2013.
- Oil spillage was observed from a mobile crane on unpaved road near Hong Kong Air Cadet Corps and assembly yard of To Kwa Wan Works Area which mixed with logged water and contaminating the mud. Mud trails were generated off the concerned spilled area when other vehicles passed by. The Contractor has immediately instructed workers to arrange for clearing the contaminated area. The Contractor was also reminded to fence off the concerned area. After inspection, the oil leakage was not due to nearby mobile crane, it may due to other sources

such as general vehicle. The oil stained was removed as chemical waste immediately on 8 July 2013.

15 July 2013

- Water pump was observed not enough in MTW works area during rainfall. The Contractor was reminded to provide adequate pumps and sandbags to direct surface run-off. No surface run-off was observed in pedestrian pavements and public area as observed during site inspection on 22 July 2013.
- Drip tray was found not enough for chemical containers in the TKW works area. The Contractor was reminded to provide adequate drip trays in order to prevent leakage. Drip tray had been provided for the chemical containers inside the TKW Works Area as observed during the site inspection on 22 July 2013.

22 July 2013

- Drip tray was found not enough for chemical containers in MTW Works area. The Contractor was reminded to provide adequate drip trays in order to prevent leakage. Drip trays had been provided for the chemical containers in MTW Works areas as observed during the site inspection on 29 July 2013.
- Drip tray was found not enough for chemical containers in TKW Works area. The Contractor was reminded to provide adequate drip trays in order to prevent leakage. Drip trays had been provided for the chemical containers in TKW Works areas as observed during the site inspection on 29 July 2013.

29 July 2013

• No observation was reported during the site inspection.

All the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 SUMMARY OF MONITORING EXCEEDANCE

No exceedance of the Action and Limit Levels of the regular construction noise and 24-hour TSP monitoring was recorded during the reporting month.

Exceedances of the Action and Limit Levels of the continuous noise monitoring were recorded at MTW-16-1 on 29 and 30 July 2013 during the reporting period.

Investigation reports of the exeedances on 29 and 30 July are under process. It will be reported during next reporting period.

7.2 SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE

No non-compliance event was recorded during the reporting month.

7.3 SUMMARY OF ENVIRONMENTAL COMPLAINT

No complaint was reported during the reporting month. The cumulative environmental complaint log is shown in *Annex M*.

7.4 SUMMARY OF ENVIRONMENTAL SUMMON AND SUCCESSFUL PROSECUTION

No summon was received during the reporting month. The cumulative summons/prosecution log is shown in *Annex M*.

FUTURE KEY ISSUES

8

8.1 KEY ISSUES FOR THE COMING MONTH

Works to be undertaken in the next reporting month are summarized in *Table 8.1*.

Table 8.1 Construction Works to be undertaken in the Next Reporting Month

Construction Activities to be undertaken

Work in Ma Tau Wai (MTW)

- Along Ma Tau Wai Road Construction of D-wall panel, pre-drilling for D Wall and trial pits for location of utilities;
- TKW/MTW Road Garden Operation of bentonite plant, installation of sheet pile and pier 15 underpinning works; and
- Nam Kok Road Installation of pipe pile and grout curtain

Work in To Kwa Wan (TKW)

- SUW Playground Pre-bored H-pile; and
- TKW Station Archaeological survey, construction of ground curtain, bored pile and sheet pile, and installation of socket steel H-piling.

Potential environmental impacts arising from the above construction activities are mainly associated with dust, construction noise and waste management.

8.2 MONITORING SCHEDULE FOR THE NEXT MONTH

The tentative schedule of regular construction noise monitoring and 24-hour TSP monitoring in the next reporting period is presented in *Annex E*. The regular construction noise monitoring and 24-hour TSP monitoring will be conducted at the same monitoring locations in the next reporting period. According to the schedule presented in the CNMP, continuous noise monitoring will be conducted in the next reporting period.

8.3 CONSTRUCTION PROGRAMME FOR THE NEXT MONTH

The construction programme for the Project for the next reporting month is presented in *Annex B*.

9 CONCLUSIONS

This 11th monthly Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 July 2013 to 31 July 2013 in accordance with the EM&A Manual and the requirement under EP-438/2012/C.

No exceedance of the Action and Limit Levels of the regular construction noise and 24-hour TSP monitoring was recorded at the designated monitoring stations during the reporting period.

Exceedances of the Action and Limit Levels of the continuous noise monitoring were recorded at MTW-16-1 on 29 and 30 July 2013 during the reporting period. Investigation reports of the exceedances are under process, and therefore it will be reported during next reporting period.

No non-compliance event was recorded during the reporting period.

No complaint and summons/prosecution was received during the reporting period.

The Contractor's ET will keep track of the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all the necessary mitigation measures.

EXECUTIVE SUMMARY

The construction works of MTR Shatin to Central Link Works Contract 1109 – Stations and Tunnels of Kowloon City Section commenced on 1 September 2012. This is the eleventh monthly Environmental Monitoring and Audit (EM&A) report presenting the EM&A works carried out during the period from 1 July to 31 July 2013 in accordance with the EM&A Manual.

Summary of the Construction Works undertaken during the Reporting Month

The major construction works undertaken during the reporting month include:

Construction Activities undertaken

Works in Ma Tau Wai (MTW)

- TKW/MTW Road Garden Operation of bentonite plant and pier 15 pre-drilling works;
- Along Ma Tau Wai Road Construction of D-wall panel, predrilling for D-wall and trial
 pits for location of utilities; and
- Nam Kok Road Installation of pipe pile and construction of grout curtain.

Works in To Kwa Wan (TKW)

- SUW Playground Pre-bored H pilling; and
- TKW Station Archaeological survey, construction of grout curtain, sheet pile and bored pile, and installation of socket steel H-piling.

Regular Construction Noise and Construction Dust Monitoring

A summary of the monitoring activities in this reporting period is listed below:

Regular construction noise monitoring during normal working hours

	•	NMS-CA-6	5 times
	•	NMS-CA-7	5 times
	•	NMS-CA-8	5 times
	•	NMS-CA-9	5 times
	•	NMS-CA-10	5 times
•	Co	onstruction dust (24-hour TSP) monitoring	
	•	DMS-6	6 times
	•	DMS-7	6 times
	•	DMS-8	6 times
	•	DMS-9	6 times
	•	DMS-10	6 times

Continuous Noise Monitoring

During the reporting period, continuous noise monitoring is only required at MTW-16-1 according to the schedule presented in CNMP.

Cultural Heritage

A Licence to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance has been obtained from Antiquities and Monuments Office (AMO) on 29 October 2012. The archaeological survey-cumexcavation at the Sacred Hill (North) commenced on 1 November 2012

and is being conducted in accordance with the Licence and the approved Archaeological Action Plan (AAP).

As tunnelling works have not yet commenced, no vibration monitoring was carried out during the reporting month.

Waste Management

Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. About 6,116 m³ of inert C&D materials were generated from the Project, which were sent to 1108A Kai Tai Barging Facilities during the reporting month. 868 kg of plastics was generated and sent to recyclers for recycling during the reporting period. About 58 m³ of non-recyclable non-inert C&D materials, such as general refuse, were disposed of at NENT Landfill. 400 kg of chemical waste was generated but no steel material was generated during this reporting month. 63 kg of paper/cardboard packaging was generated and sent to recyclers for recycling during the reporting period.

Landscape and Visual

Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 2 and 15 July 2013. No audit findings were observed during the reporting month. The implementation status is presented in *Section 5*.

Environmental Site Inspection

Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 2, 8, 15, 22 and 29 July 2013. The representative of the IEC joined the site inspection on 8 July 2013. Details of the audit findings and implementation status are presented in *Section 6*.

Environmental Exceedance/Non-conformance/Compliant/Summons and Prosecution

No exceedance of the Action and Limit Levels of regular construction noise monitoring and 24-hour TSP monitoring was recorded during the reporting period.

Exceedances of the Action and Limit Levels of the continuous noise monitoring were recorded at MTW-16-1 on 29 and 30 July 2013 during the reporting period. Investigation reports of the exceedance are being prepared, and it will be reported during next reporting period.

No non-compliance event was recorded during the reporting period.

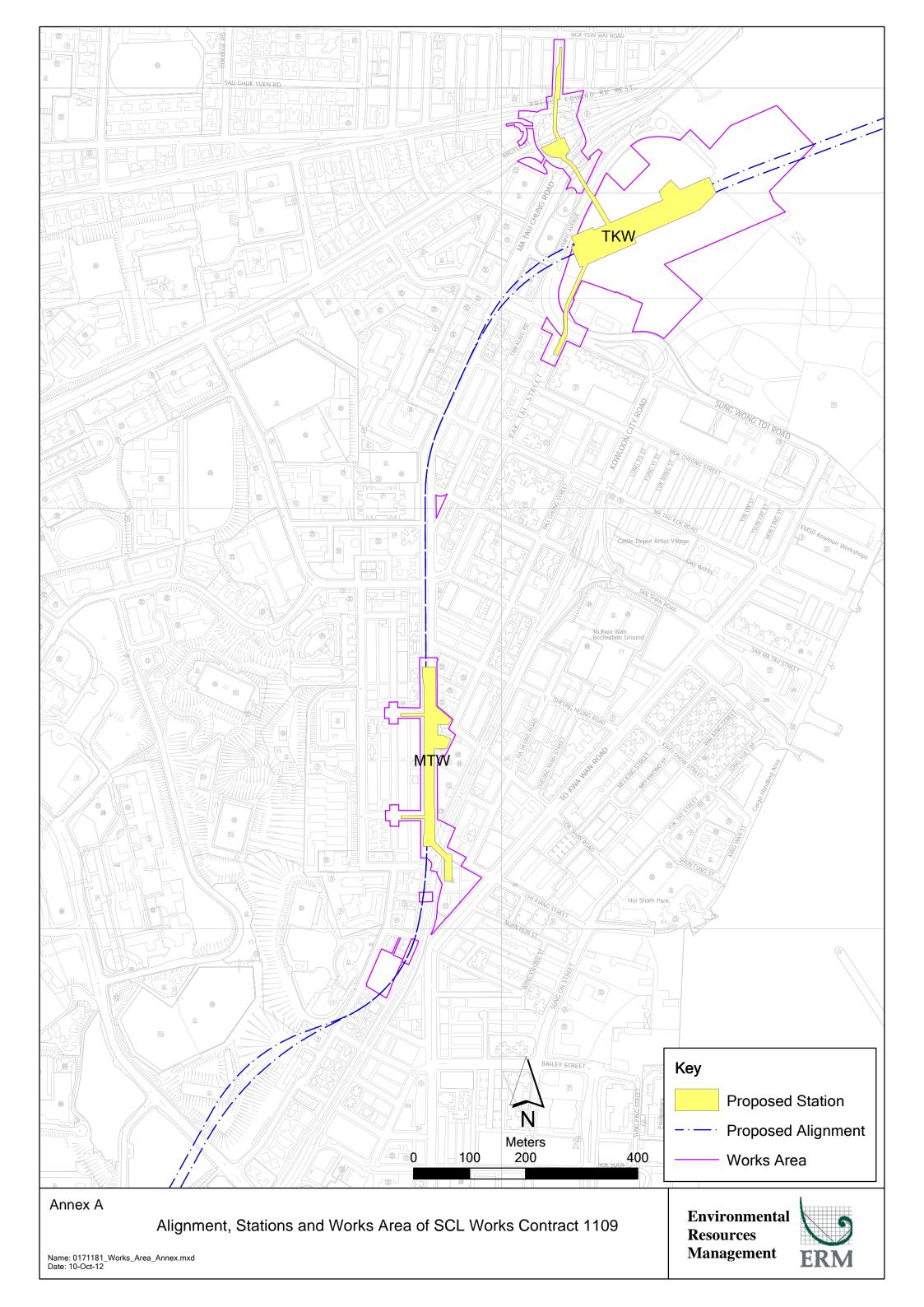
No environmental complaint and summons/prosecutions was received in this reporting period.

Future Key Issues

The major construction works to be undertaken in the next reporting month include:

Construction Activities to be undertaken

Work in Ma Tau Wai (MTW)

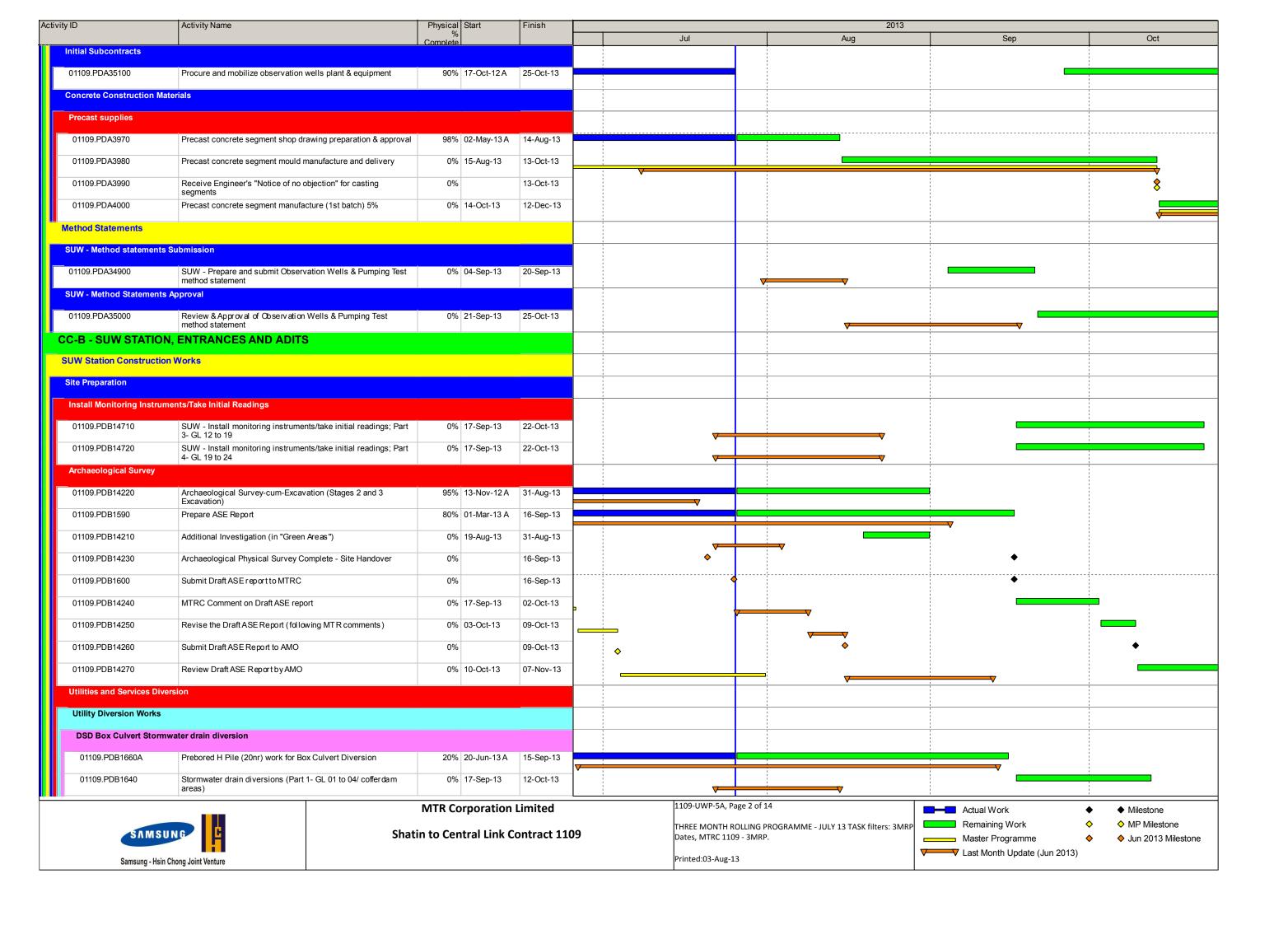

- Along Ma Tau Wai Road Construction of D-wall panel, pre-drilling for D Wall and trial
 pits for location of utilities;
- TKW/MTW Road Garden Operation of bentonite plant, installation of sheet pile and pier 15 underpinning works; and
- Nam Kok Road Installation of pipe pile and grout curtain.

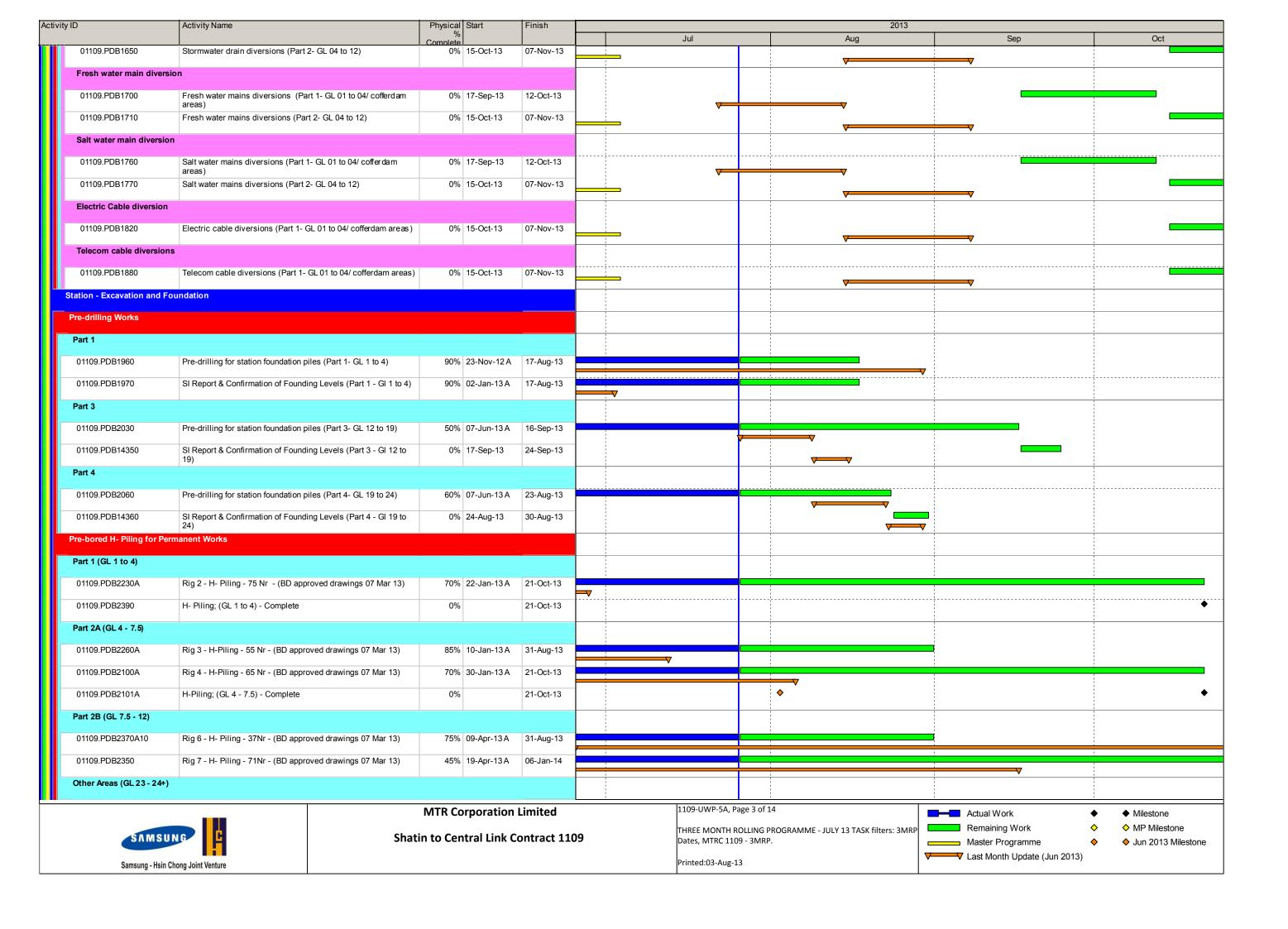
Work in To Kwa Wan (TKW)

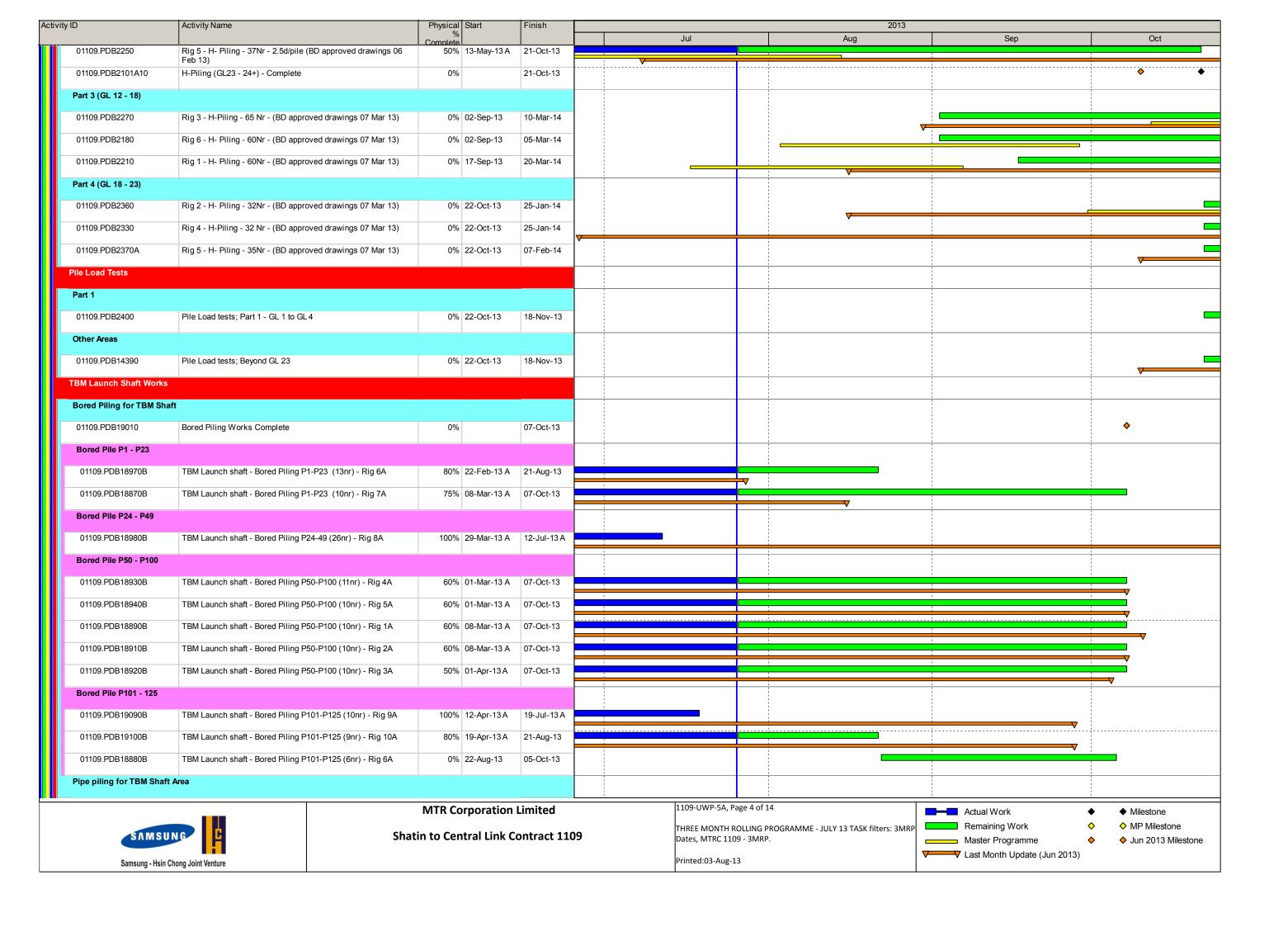
- SUW Playground Pre-bored H-pile; and
- TKW Station Archaeological survey, construction of ground curtain, bored pile and sheet pile, and installation of socket steel H-piling.

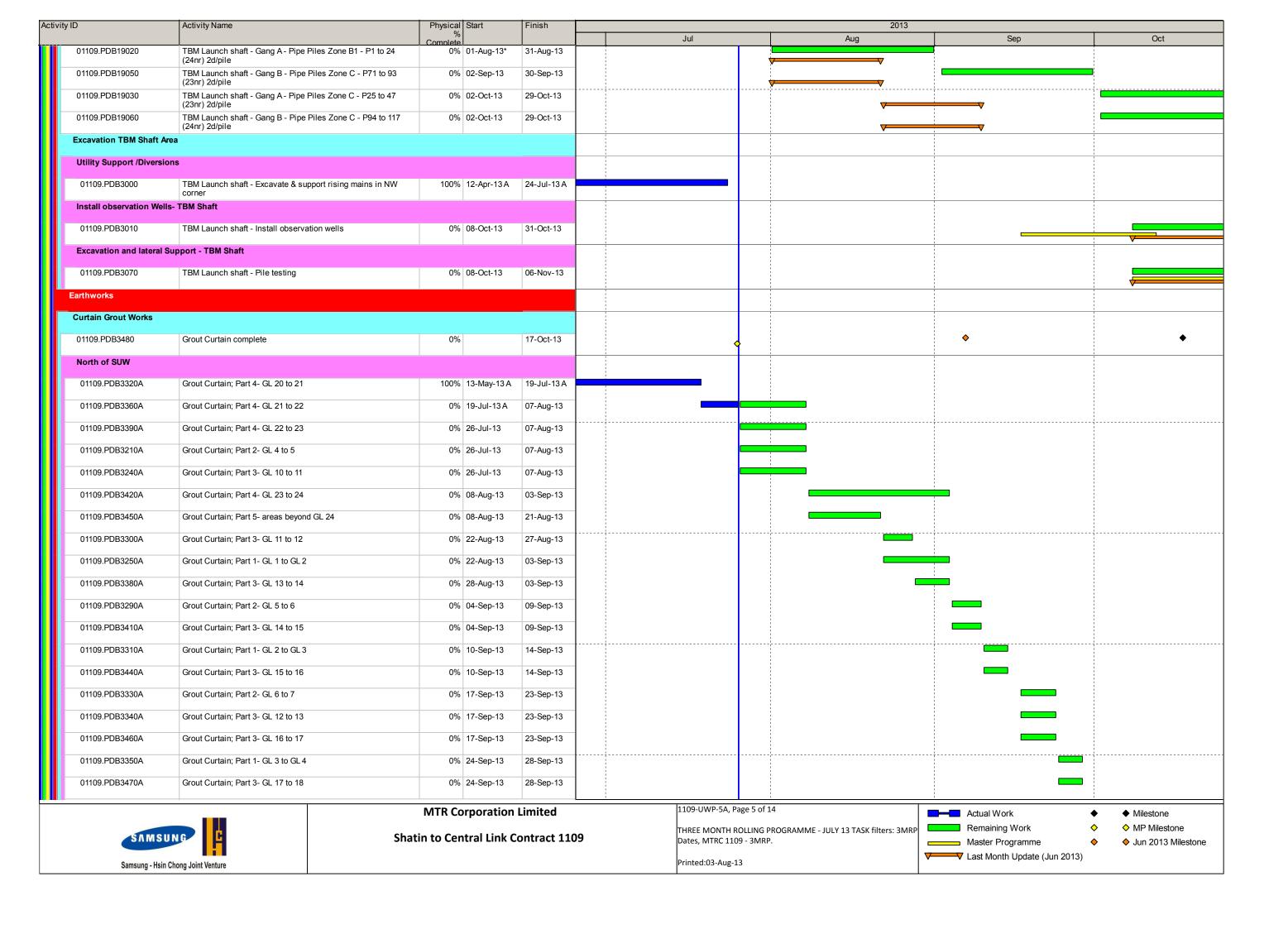
Annex A

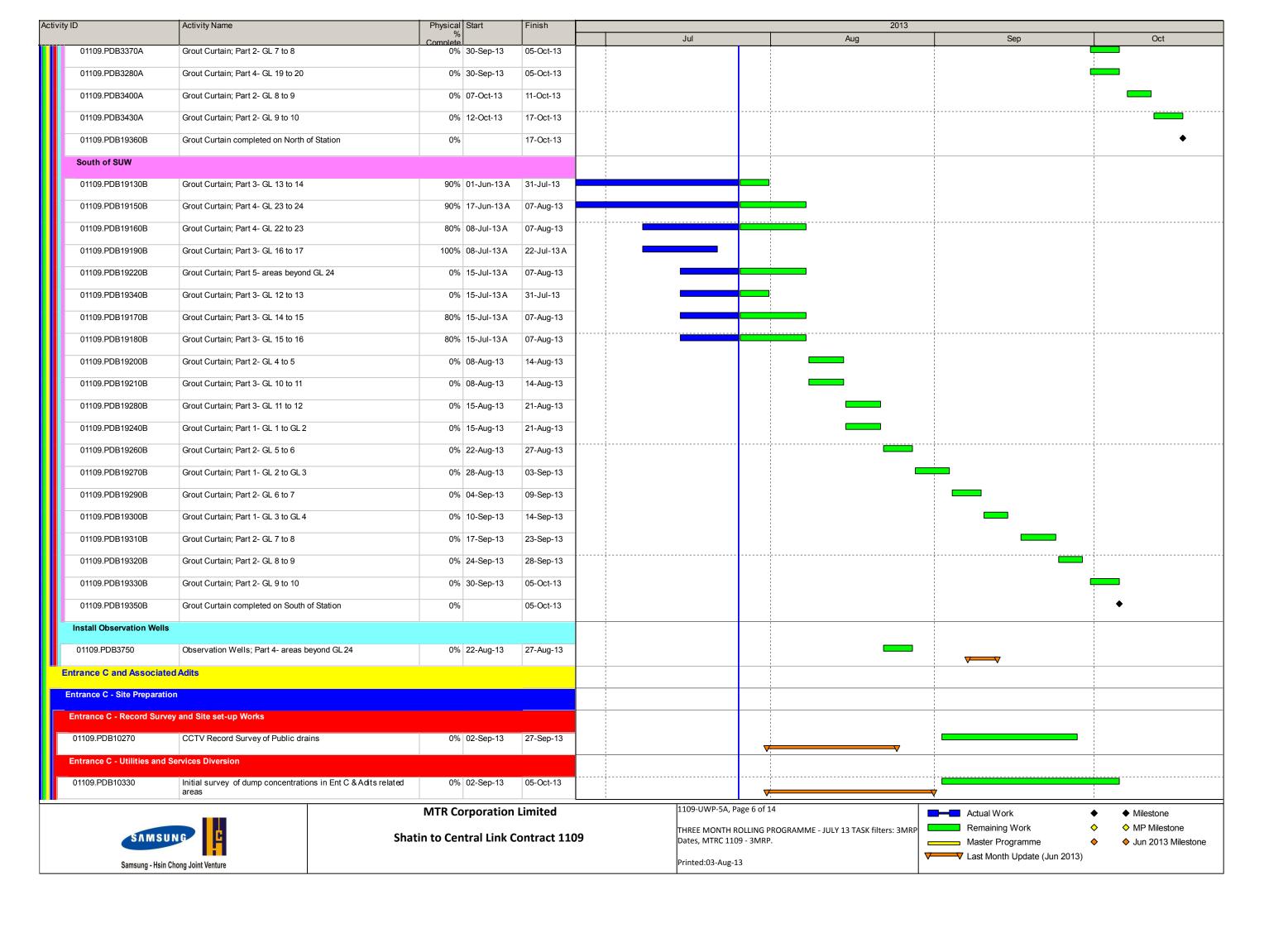
The Alignment and Works Area for Works Contract

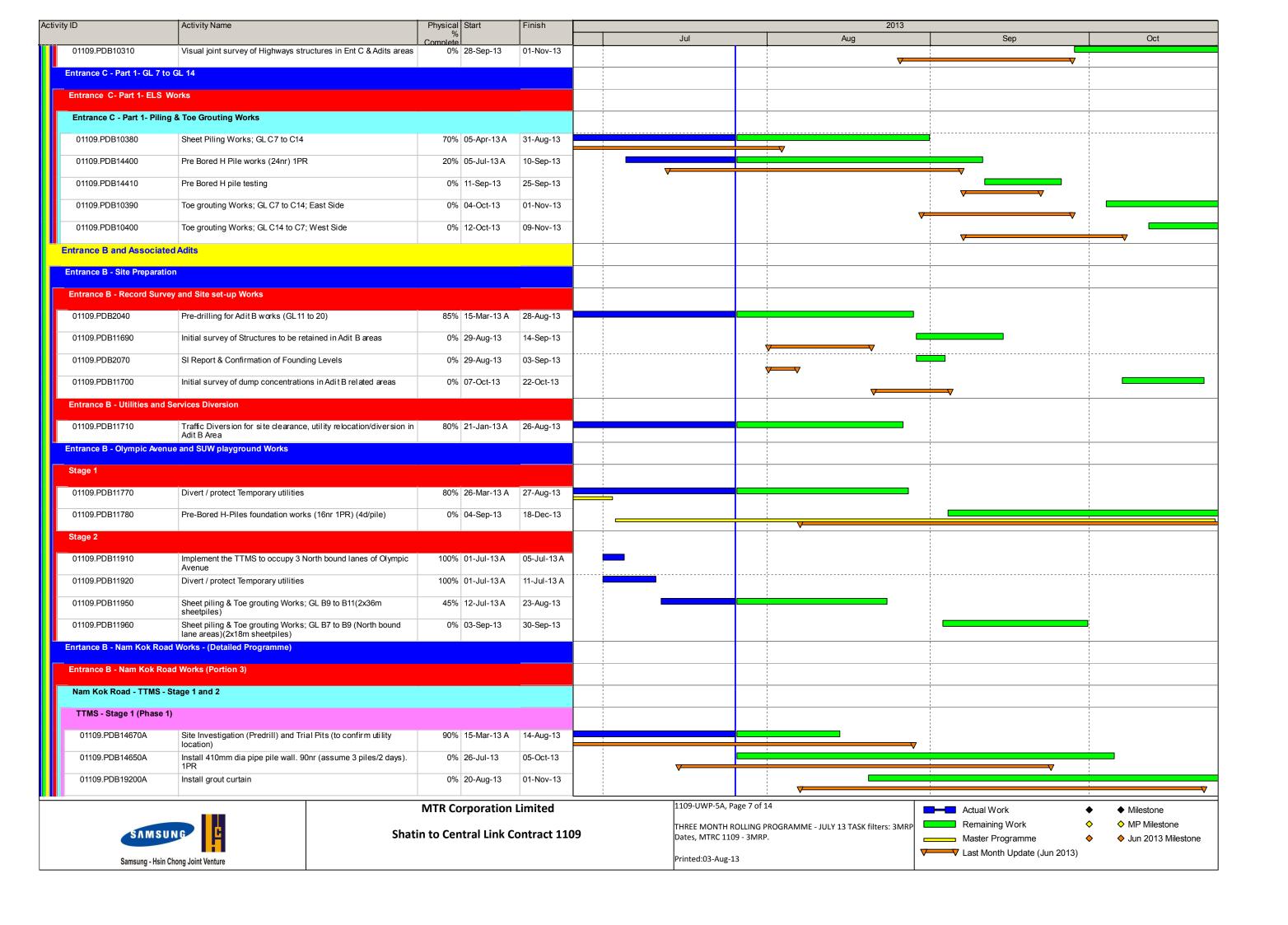


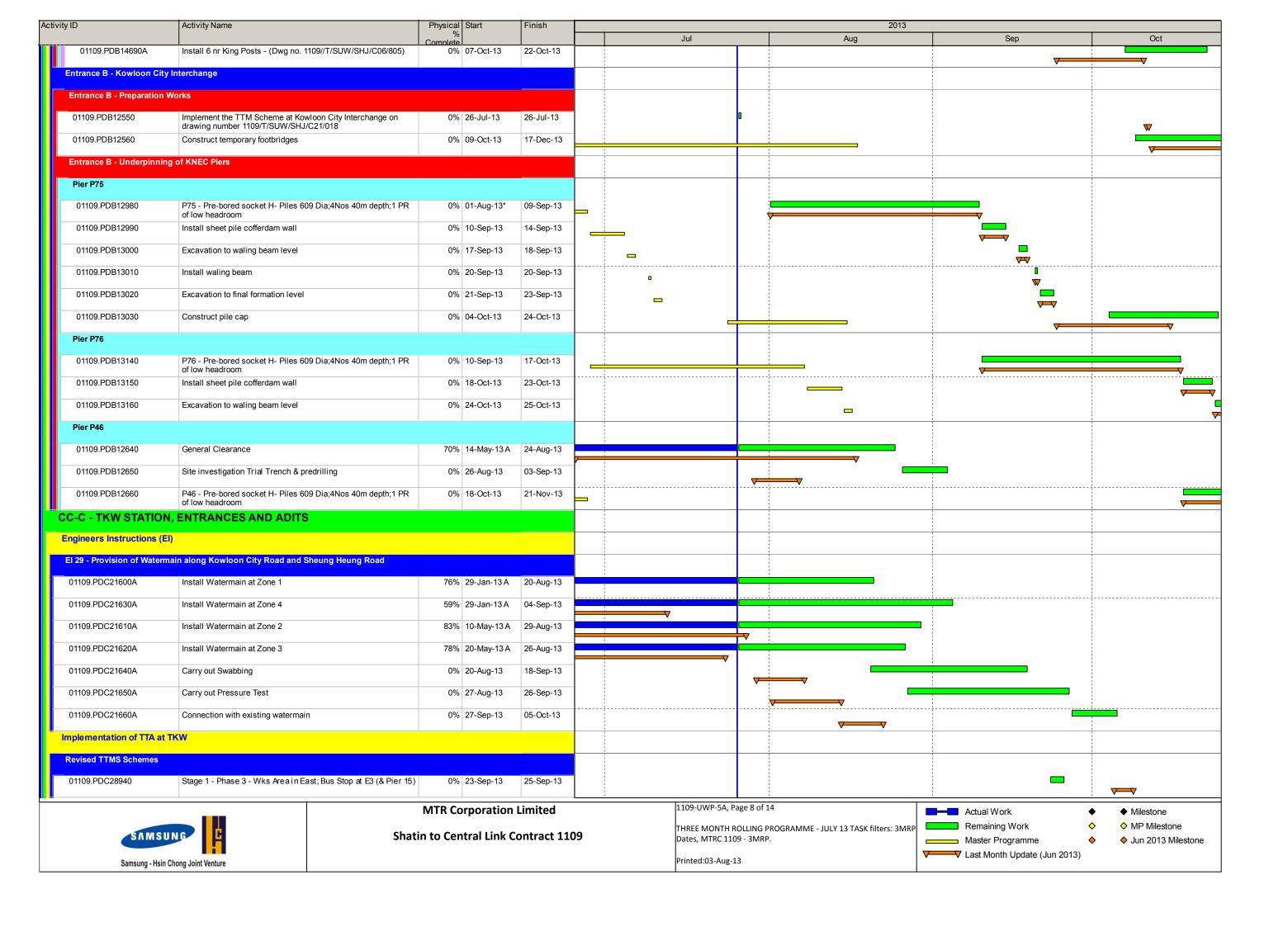

Annex B

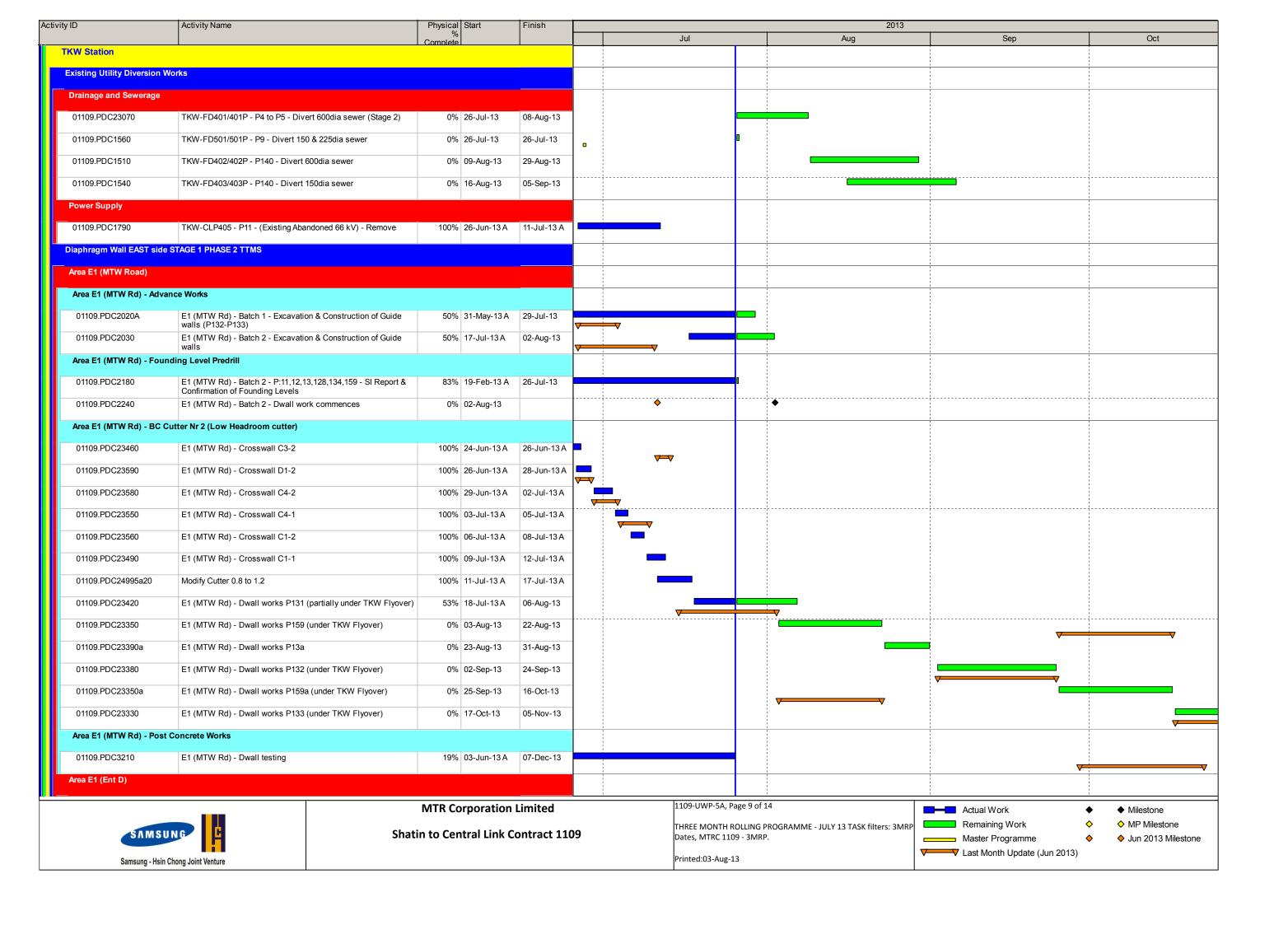

Construction Programme for the Reporting Month and the Coming Month (1)

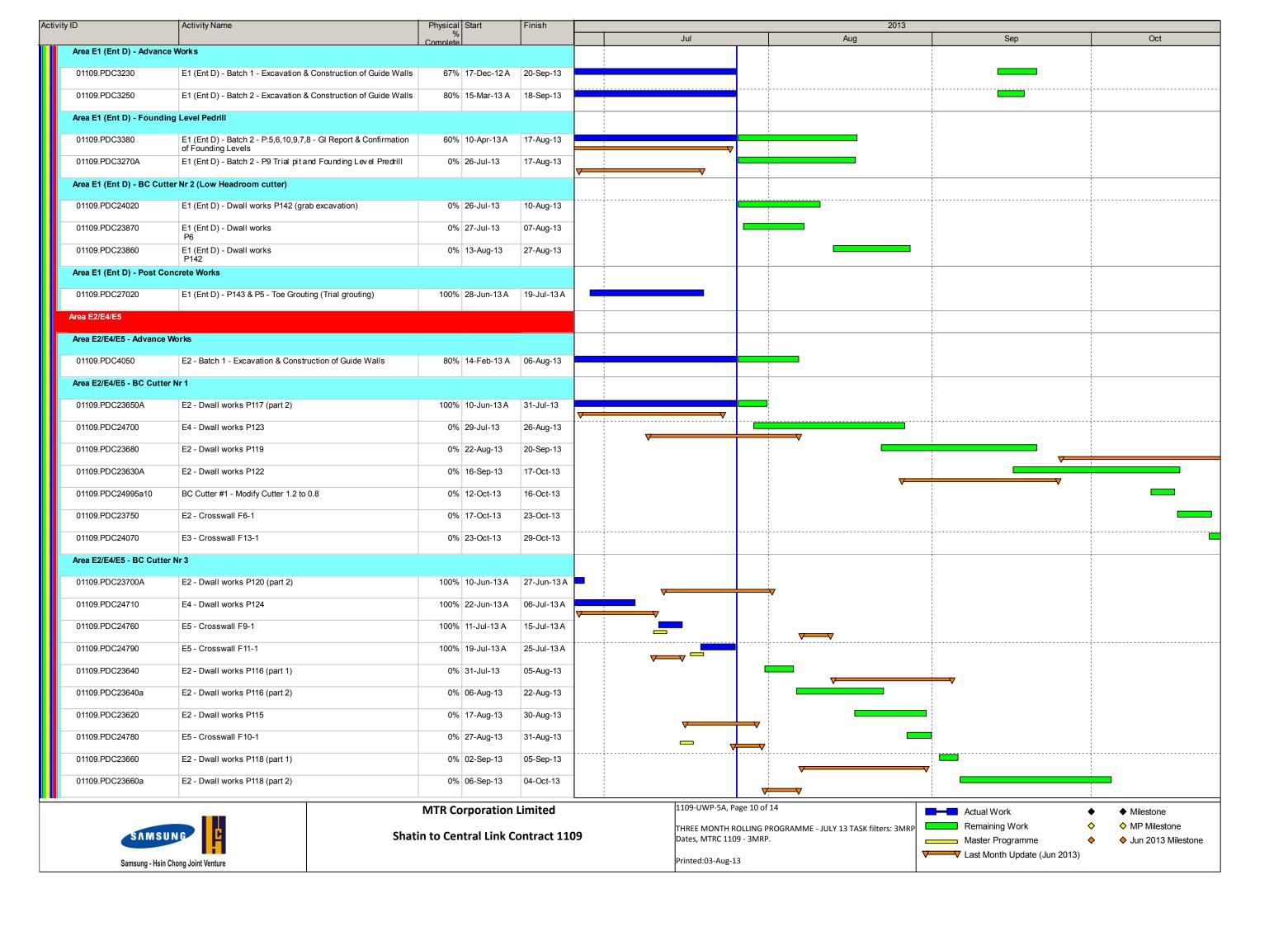

 $[\]label{thm:continuity} (1) Sung Wong Toi and To Kwa Wan Stations in the programme mean To Kwa Wan and Ma Tau Wai Stations in the Monthly EM&A Report respectively.$

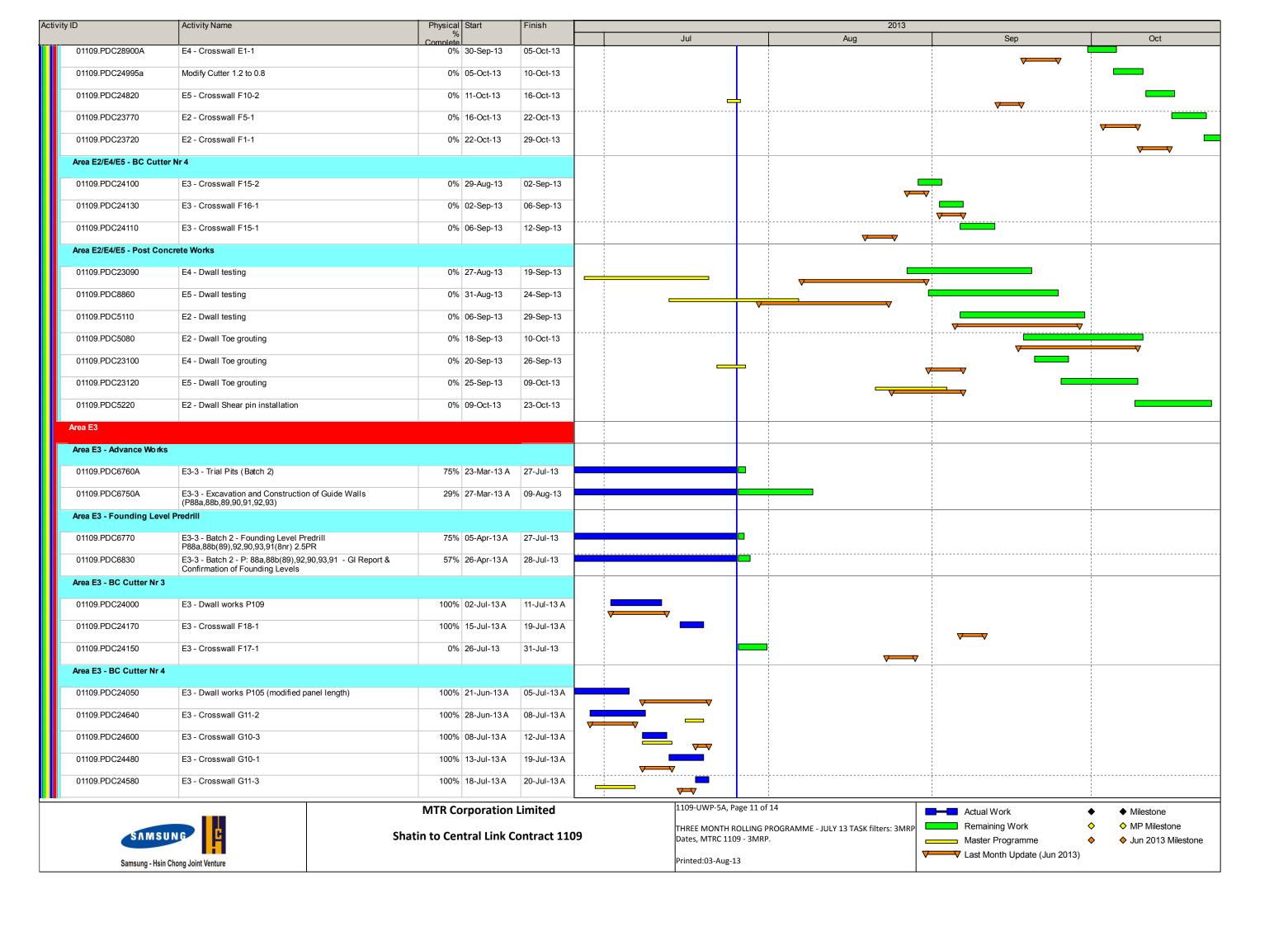

Data Date: 25-Jul-13 **SAMSUNG - HSIN CHONG JOINT VENTURE THREE MONTH ROLLING PROGRAMME - JULY 2013** Activity ID **Activity Name** Finish 2013 Jul Aug Sep Oct 1109 - SUW & TKW Stations and Tunnels JUL13 (UWP R5) **PROJECT DATES Specified Milestone Dates CC-A Milestones** A5 - Engr's confirmation of satisfac implementation of 01109.MSA1i 15-Sep-13* 8 0% Programming Mangmt Sys (1).(Wk37/13;15Sep13) **CC-B Milestones** B4(ii) - 60% of total numbers of pre-bored H piles 01109.MSB04ii 13-Sep-13* complete.(Wk41/13;13Oct13) 01109.MSB03i B3(i) - Archaeological survey-cum-excavation 0% 16-Sep-13* complete.(Wk24/13;16Jun13) 01109.MSB04iv B4(iv)-All Perm Works Material Control Schedules (as per GS 0% 13-Oct-13* Cl G4.16.1) approved by the Eng.(Wk41/13;13Oct13) **CC-C Milestones** C4(iii)-Cont dwg submission sch. approved for blkwork,glazed&metal 01109.MSC04iii 0% 15-Sep-13* C2-30% by plan length of permanent diaphragm wall 01109.MSC02 0% 12-Oct-13 complete.(25 Jun 13) **CC-D Milestones** 01109.MSD02ii D2(ii)- Investig.to confirm no exist. piles/obstructions to 26-Sep-13 proposed TBM tunnels comp.&accepted by D3-Submission of des.&manufact.data comp; obtain Engr Notice of no objection" for segments (Wk41/13;13Oct13) 01109.MSD03 0% 13-Oct-13 8 **CC-A - PRELIMINARIES AND GENERAL REQUIREMENTS Design and Approvals Temporary Traffic Arrangements** TKW Station, Entrances and Adits TTMS Design & Approval 01109.PDA1170 TKW - Stage 2A - TTM Design & Approval by SLG 0% 22-Oct-13 20-Nov-13 SUW Station, Entrances and Adits TTMS Design & Approval 01109.PDA1340 SUW - Sung Wong Toi & Pak Tai St - TTM Stage 1 - Design & 0% 09-Aug-13* 07-Oct-13 Approval by SLG 01109.PDA1350 SUW - Nam Kok Rd - TTM Stage 1 Phase 2 - Design & Approval 0% 24-Sep-13 22-Oct-13* by SLG **TTMS Gazette Notice** 01109.PDA1440 SUW - Nam Kok Rd - TTM Stage 1 Phase 2 - Gazette Notice 0% 22-Oct-13 21-Nov-13 **Management Systems** Existing Buildings and Structures (EBS) - Submission EBS Condition Survey - Investigation to confirm no exist piles/obstructions to proposed TBM tunnels 18% 15-May-13 A 26-Sep-13 01109.PDA3120 **Procurement** 1109-UWP-5A, Page 1 of 14 **MTR Corporation Limited** Actual Work Milestone Remaining Work ♦ MP Milestone THREE MONTH ROLLING PROGRAMME - JULY 13 TASK filters: 3MRP **Shatin to Central Link Contract 1109** Dates, MTRC 1109 - 3MRP Master Programme Jun 2013 Milestone → Last Month Update (Jun 2013) Printed:03-Aug-13 Samsung - Hsin Chong Joint Venture

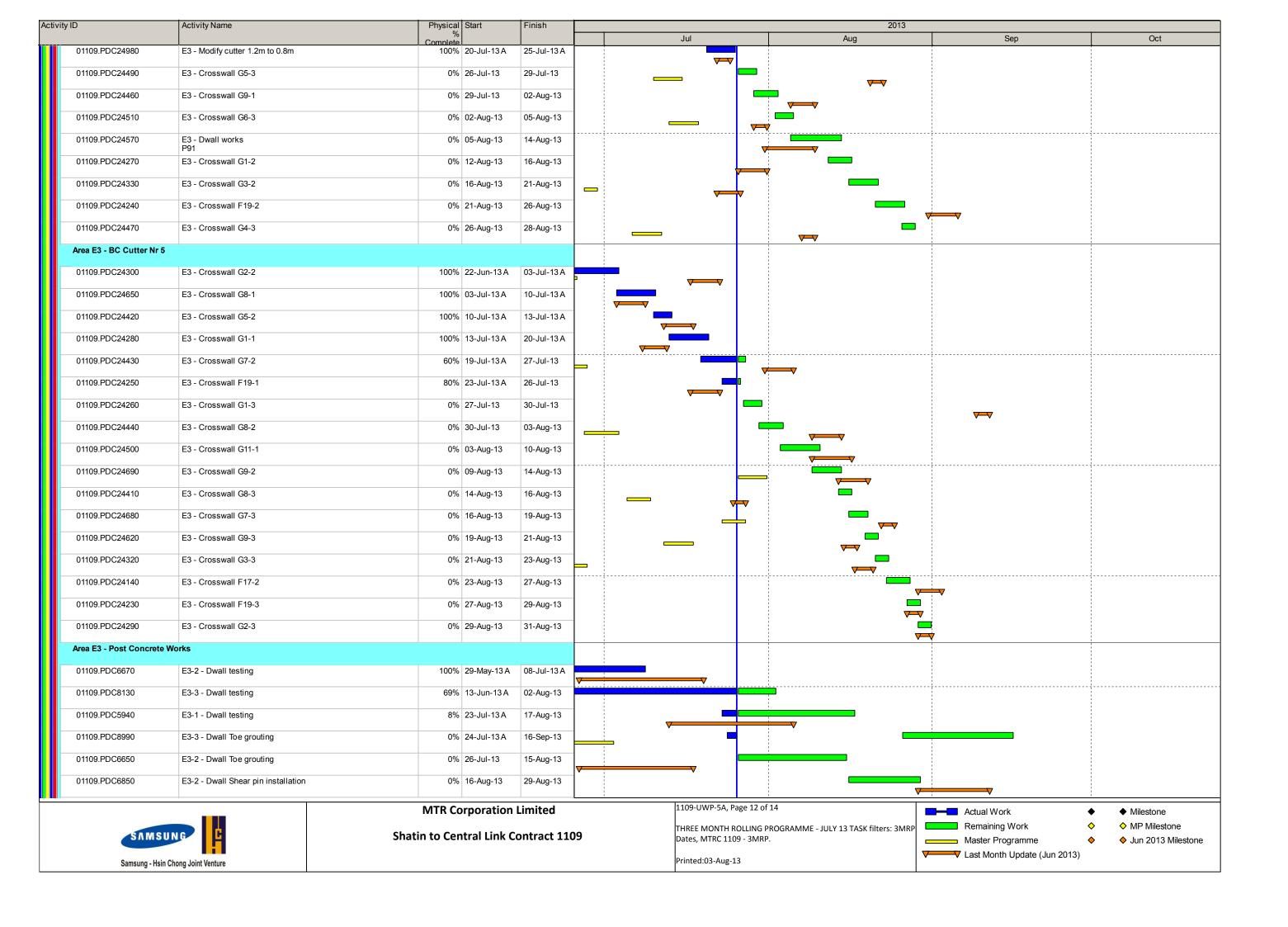


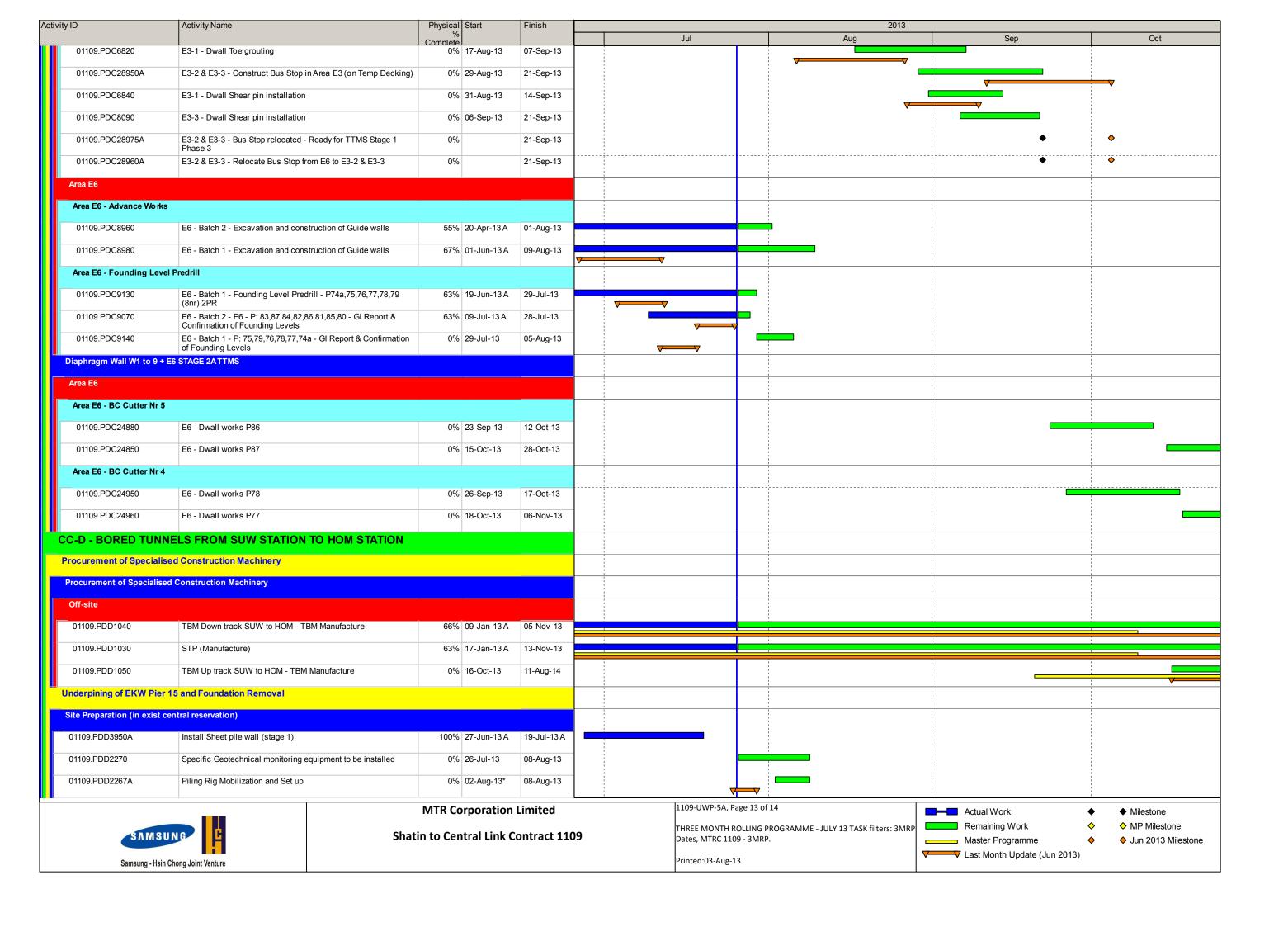


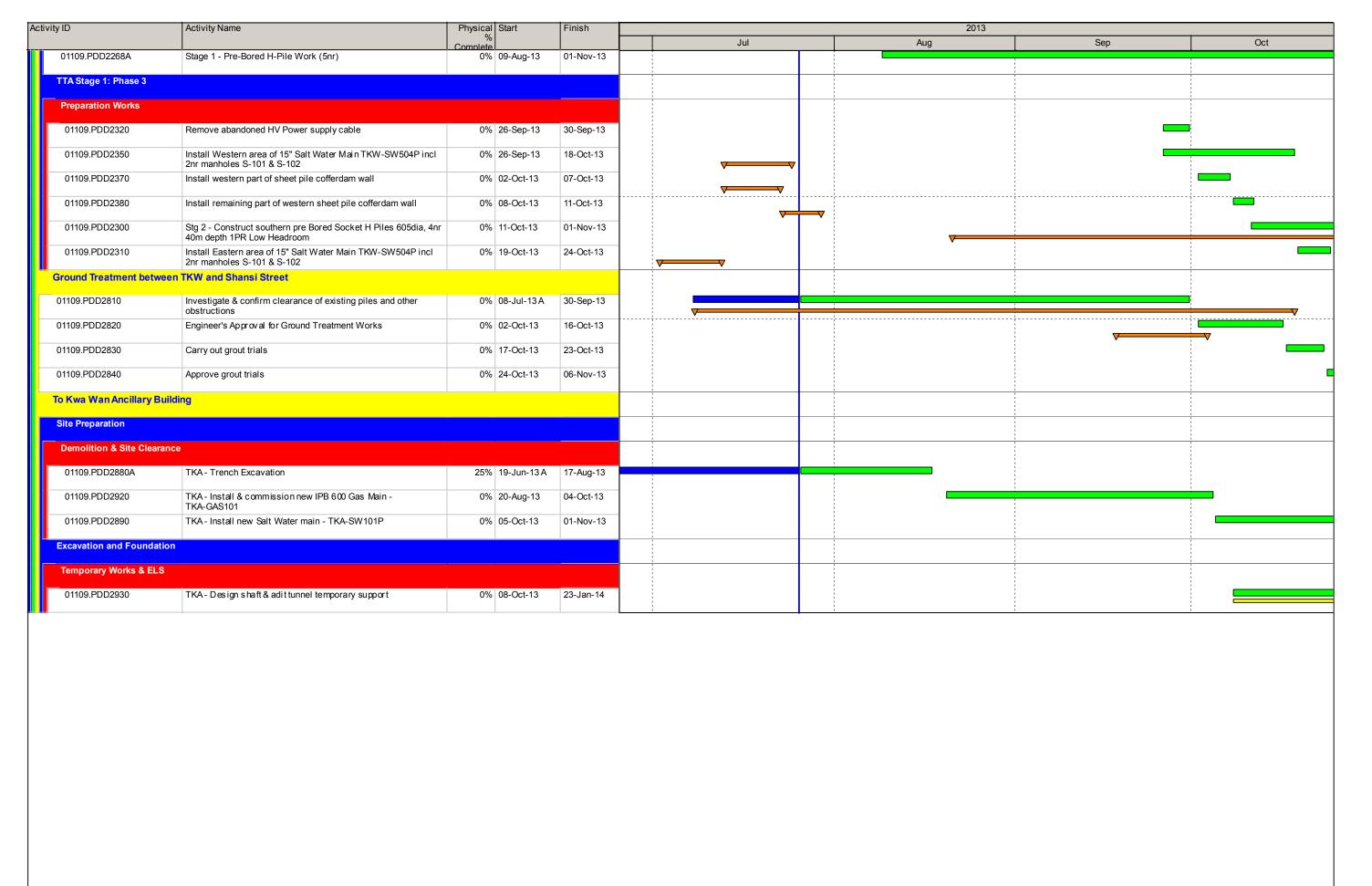












MTR Corporation Limited

Shatin to Central Link Contract 1109

1109-UWP-5A, Page 14 of 14

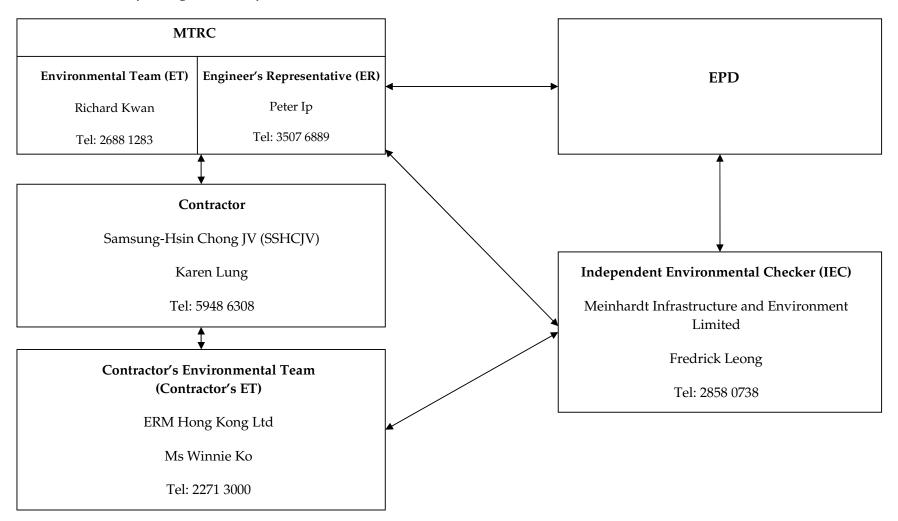
THREE MONTH ROLLING PROGRAMME - JULY 13 TASK filters: 3MRP
Dates, MTRC 1109 - 3MRP.

Printed:03-Aug-13

Actual Work

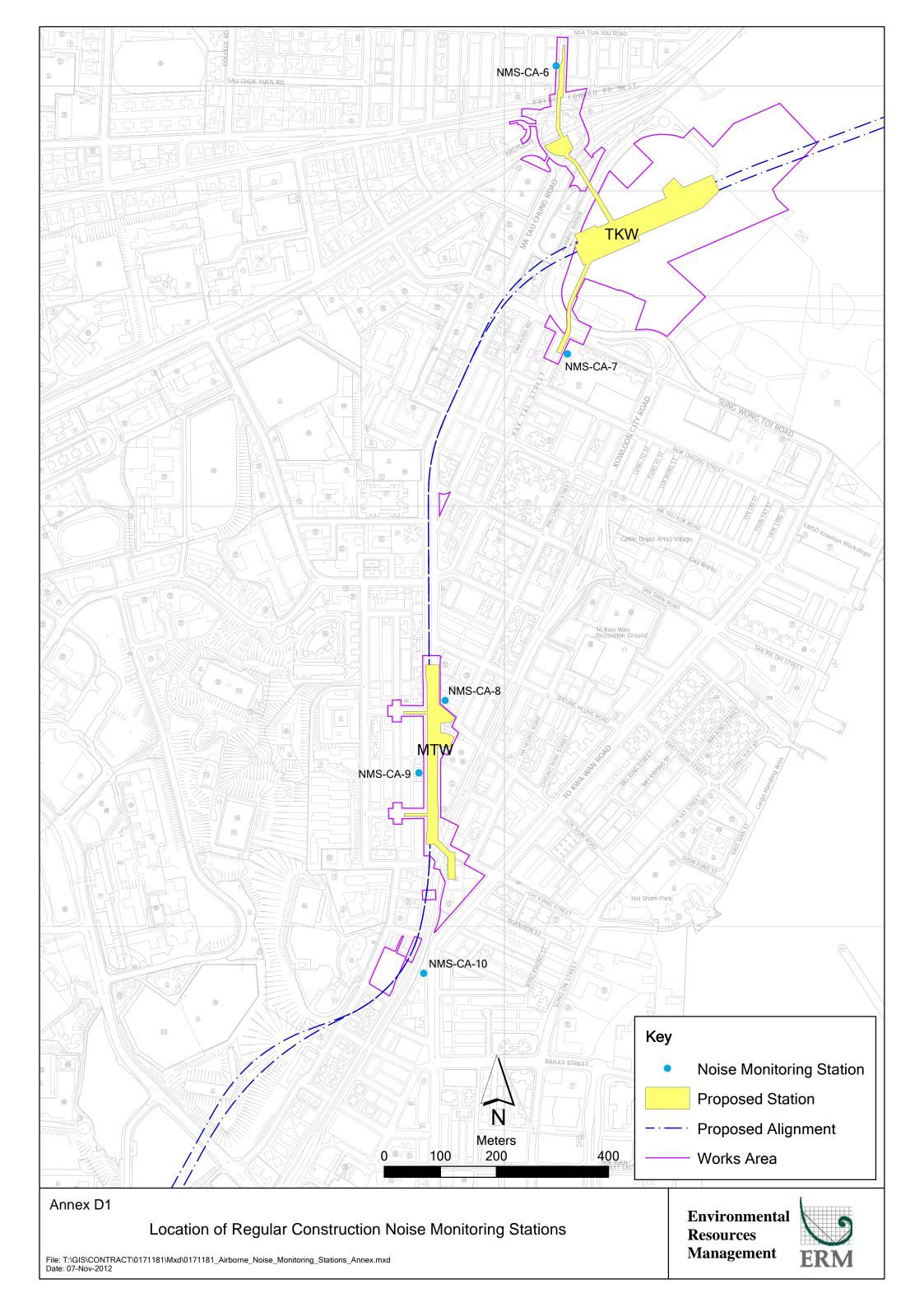
Remaining Work

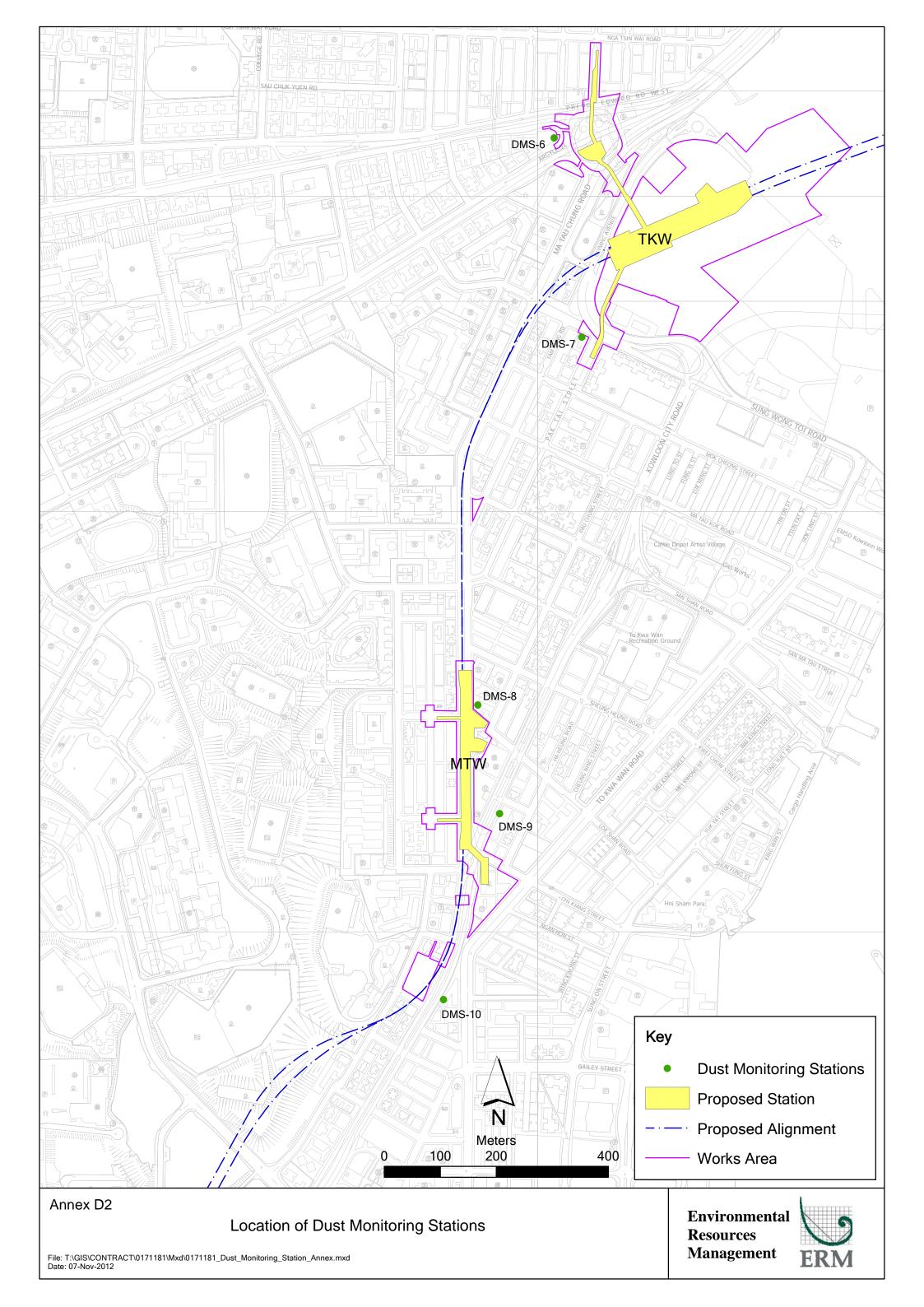
Master Programme

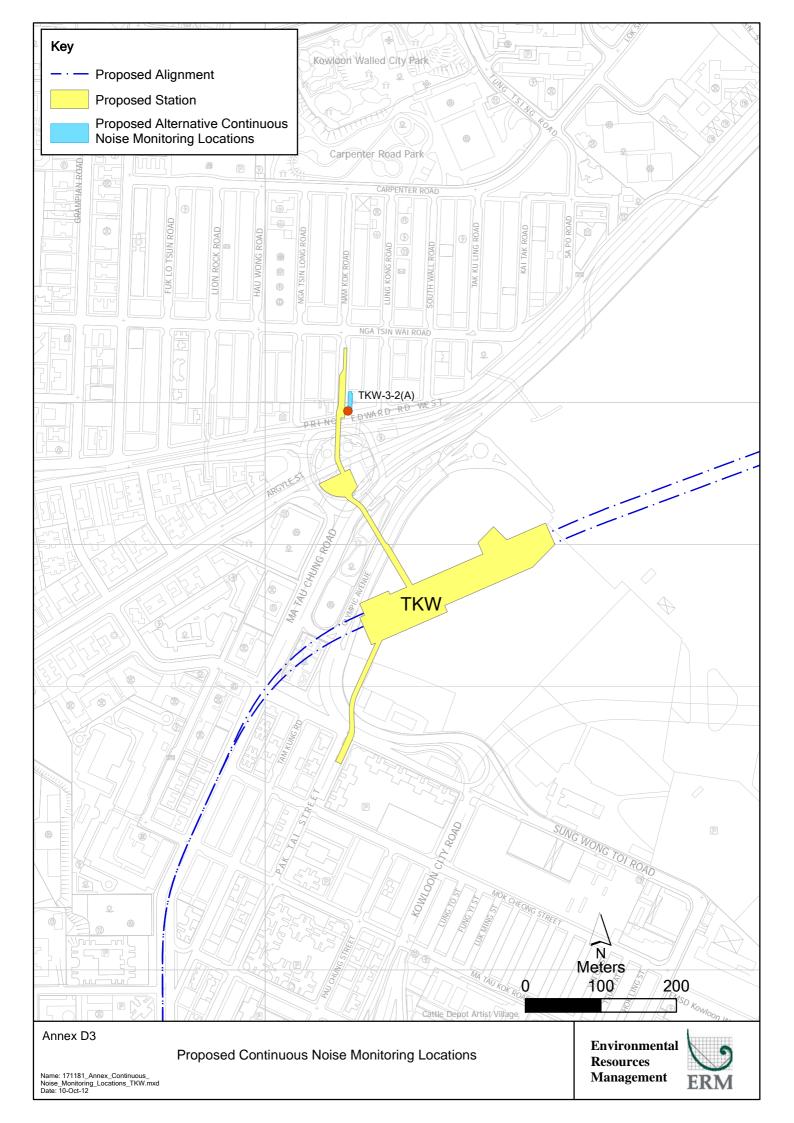

V Last Month Update (Jun 2013)

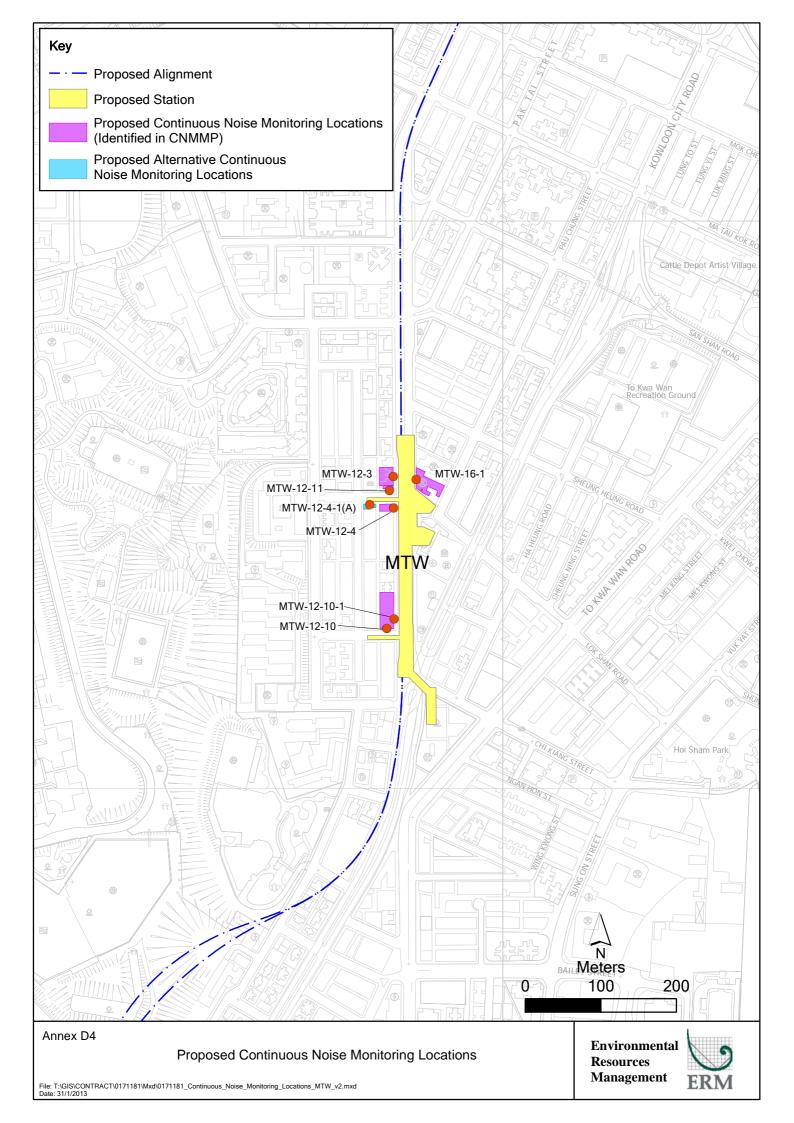
◆ Milestone◆ MP Milestone◆ Jun 2013 Milestone

Annex C


Project Organization Chart and Contact Detail


Annex C Project Organization of SCL Works Contract 1109




Annex D

Locations of Noise and Dust Monitoring Stations

Annex E

Monitoring Schedule of the Reporting Period and the Next Month

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-6 & NMS-CA-6 Monitoring Month : July 2013

Sunday		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		01-Jul	02-Jul	03-Jul	04-Jul	05-Jul	06-Jul
		Public Holiday	24-hr TSP Monitoring Noise Monitoring				
	07-Jul	08-Jul	09-Jul	10-Jul	11-Jul	12-Jul	13-Jul
		24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
	14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
						24-hr TSP Monitoring Noise Monitoring	
	21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
					24-hr TSP Monitoring Noise Monitoring		
	28-Jul	29-Jul	30-Jul	31-Jul			
				24-hr TSP Monitoring Noise Monitoring			

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-7 & NMS-CA-7 Monitoring Month : July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	01-Jul	02-Jul	03-Jul	04-Jul	05-Jul	06-Jul
	Public Holiday	24-hr TSP Monitoring Noise Monitoring				
07-Jul	08-Jul	09-Jul	10-Jul	11-Jul	12-Jul	13-Jul
	24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
					24-hr TSP Monitoring Noise Monitoring	
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
				24-hr TSP Monitoring Noise Monitoring		
28-Jul	29-Jul	30-Jul	31-Jul			
			24-hr TSP Monitoring Noise Monitoring			

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-8 & NMS-CA-8 Monitoring Month : July 2013

Sunday		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		01-Jul	02-Jul	03-Jul	04-Jul	05-Jul	06-Jul
		Public Holiday	24-hr TSP Monitoring Noise Monitoring				
	07-Jul	08-Jul	09-Jul	10-Jul	11-Jul	12-Jul	13-Jul
		24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
	14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
						24-hr TSP Monitoring Noise Monitoring	
	21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
					24-hr TSP Monitoring Noise Monitoring		
	28-Jul	29-Jul	30-Jul	31-Jul			
				24-hr TSP Monitoring Noise Monitoring			

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-9 & NMS-CA-9 Monitoring Month : July 2013

Sunday		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		01-Jul	02-Jul	03-Jul	04-Jul	05-Jul	06-Jul
		Public Holiday	24-hr TSP Monitoring Noise Monitoring				
	07-Jul	08-Jul	09-Jul	10-Jul	11-Jul	12-Jul	13-Jul
		24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
	14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
						24-hr TSP Monitoring Noise Monitoring	
	21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
					24-hr TSP Monitoring Noise Monitoring		
	28-Jul	29-Jul	30-Jul	31-Jul			
				24-hr TSP Monitoring Noise Monitoring			

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-10 & NMS-CA-10 Monitoring Month : July 2013

Sunday		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		01-Jul	02-Jul	03-Jul	04-Jul	05-Jul	06-Jul
		Public Holiday	24-hr TSP Monitoring Noise Monitoring				
	07-Jul	08-Jul	09-Jul	10-Jul	11-Jul	12-Jul	13-Jul
		24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
	14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
						24-hr TSP Monitoring Noise Monitoring	
	21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
					24-hr TSP Monitoring Noise Monitoring		
	28-Jul	29-Jul	30-Jul	31-Jul			
				24-hr TSP Monitoring Noise Monitoring			

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-6 & NMS-CA-6 Monitoring Month : August 2013

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					01-Aug	02-Aug	03-Aug
	04-Aug	05-Aug	06-Aug	07-Aug	08-Aug	09-Aug	10-Aug
			24-hr TSP Monitoring Noise Monitoring				
F	11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
		24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
	18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
						24-hr TSP Monitoring Noise Monitoring	
	25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
					24-hr TSP Monitoring Noise Monitoring		

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-7 & NMS-CA-7 Monitoring Month : August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				01-Aug	02-Aug	03-Aug
04-Aug	05-Aug	06-Aug	07-Aug	08-Aug	09-Aug	10-Aug
		24-hr TSP Monitoring Noise Monitoring				
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
	24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
40.4	10.4	20.4	24.4	00.4	22.4	24.4
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
					24-hr TSP Monitoring Noise Monitoring	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
20-Aug	ZO-Aug	27-Aug	Zo-Aug	24-hr TSP Monitoring Noise Monitoring	30-Aug	31-Aug

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-8 & NMS-CA-8 Monitoring Month : August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	•	•		01-Aug		03-Aug
04-Aug	05-Aug	06-Aug	07-Aug	08-Aug	09-Aug	10-Aug
		24-hr TSP Monitoring Noise Monitoring				
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
	24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
					24-hr TSP Monitoring Noise Monitoring	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
				24-hr TSP Monitoring Noise Monitoring		

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-9 & NMS-CA-9 Monitoring Month : August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
·	•	·	•	01-Aug	02-Aug	03-Aug
04-Aug	05-Aug	06-Aug	07-Aug	08-Aug	09-Aug	10-Aug
		24-hr TSP Monitoring				
		Noise Monitoring				
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
TT-Aug	12-Aug	10-Aug	14-Aug	10-Aug	10-Aug	17-Aug
	24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
					04 by TCD Manitaring	
					24-hr TSP Monitoring Noise Monitoring	
					Noise Monitoring	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
				24-hr TSP Monitoring		
				Noise Monitoring		

Stations and Tunnels of Kowloon City Section Construction Air Quality and Regular Noise Monitoring Schedule

DMS-10 & NMS-CA-10 Monitoring Month : August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
•	,	•	•	01-Aug	02-Aug	03-Aug
04-Aug	05-Aug	06-Aug	07-Aug	08-Aug	09-Aug	10-Aug
		24-hr TSP Monitoring Noise Monitoring				
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
	24-hr TSP Monitoring Noise Monitoring					24-hr TSP Monitoring
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
					24-hr TSP Monitoring Noise Monitoring	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
				24-hr TSP Monitoring Noise Monitoring		

Annex F

Calibration Reports

Annex F Calibration Reports

Dust Monitoring Equipment

Monitoring Station ID	Location	Monitoring Equipment		Last Calibration Date	Next Calibration Date
24-hr TSP		HVS	Calibrator		
DMS-6	Katherine Building	TE-5170 (S/N 0107)	CM-AIR-43 (Orifice I.D. 2323)	8 March 2013	8 September 2013
DMS-7	Parc 22	TE-5170 (S/N 3574)	CM-AIR-43 (Orifice I.D. 2323)	8 March 2013	8 September 2013
DMS-8	SHK Good Shepherd Primary School	TE-5170 (S/N 3572)	CM-AIR-43 (Orifice I.D. 2323)	8 March 2013	8 September 2013
DMS-9	No. 26 Kowloon City Road	TE-5170 (S/N 0814)	CM-AIR-43 (Orifice I.D. 2323)	8 March 2013	8 September 2013
DMS-10	Chat Ma Mansion	TE-5170 (S/N 3573)	CM-AIR-43 (Orifice I.D. 2323)	8 March 2013	8 September 2013

Noise Monitoring Equipment

Monitoring Station ID	Monitoring Equipment	Model & Serial No.	Last Calibration Date	Next Calibration Date
NMS-CA-6, NMS-CA-7, NMS	- Calibrator	Rion NC-73 (S/N 10997142)	9 July 2012	9 July 2013
CA-9 and NMS-CA-10		Rion NC-73 (S/N 10997142)	12 July 2013	12 July 2014
	Sound Level Meter	Rion NL-31 (S/N 00320533)	9 July 2012	9 July 2013
		Rion NL-31 (S/N 00320533)	12 July 2013	12 July 2014
NMS-CA-8, MTW-16-1	Calibrator	Rion NC-73 (S/N 10997142)	9 July 2012	9 July 2013
		Rion NC-73 (S/N 10997142)	12 July 2013	12 July 2014
	Sound Level Meter	Rion NL-31 (S/N 00983400)	30 January 2013	30 January 2014

ENVIROTECH SERVICES CO.

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : DMS-6(Katherine Building)

Calibrated by : K.T.Ho
Date : 08/03/2013

Sampler

Model : TE-5170 Serial Number : S/N 0107

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2323

 Service Date
 :
 26 Dec 2012

 Slope (m)
 :
 2.09107

 Intercept (b)
 :
 -0.02838

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1012 Ta(K) : 298

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
1	18 holes	12.7	3.599	1.735	54	54.5
2	13 holes	9.7	3.146	1.518	47	47.5
3	10 holes	7.5	2.766	1.336	40	40.4
4	7 holes	4.6	2.166	1.050	30	30.3
5	5 holes	2.9	1.720	0.836	22	22.2

Sampler Calibration Relationship

Slope(m): <u>36.090</u> Intercept(b): <u>-7.7</u>	Correlation Coefficient(r): 0.9996
Checked by: Magnum Fan	Date: 11/03/2013

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : DMS-7(Parc 22)
Calibrated by : P.F.Yeung
Date : 08/03/2013

Sampler

Model : TE-5170 Serial Number : S/N 3574

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2323

 Service Date
 :
 26 Dec 2012

 Slope (m)
 :
 2.09107

 Intercept (b)
 :
 -0.02838

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 295

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
1	18 holes	12.5	3.571	1.721	62	62.6
2	13 holes	9.7	3.146	1.518	55	55.6
3	10 holes	7.7	2.803	1.354	48	48.5
4	7 holes	4.8	2.213	1.072	38	38.4
5	5 holes	3.0	1.749	0.850	28	28.3

Sampler Calibration Relationship

 $Slope(m): \underline{39.220} \quad Intercept(b): \underline{-4.449} \qquad \qquad Correlation \ Coefficient(r): \underline{0.9991}$

Checked by: Magnum Fan Date: 11/03/2013

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : DMS-8(SHK Good Shepherd Primary School)

Calibrated by : P.F.Yeung Date : 08/03/2013

Sampler

Model : TE-5170 Serial Number : S/N 3572

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2323

 Service Date
 :
 26 Dec 2012

 Slope (m)
 :
 2.09107

 Intercept (b)
 :
 -0.02838

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 295

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
1	18 holes	12.4	3.557	1.714	62	62.6
2	13 holes	9.7	3.146	1.518	55	55.6
3	10 holes	7.6	2.784	1.345	48	48.5
4	7 holes	5.0	2.258	1.094	38	38.4
5	5 holes	3.0	1.749	0.850	28	28.3

Sampler Calibration Relationship

Slope(m):39.920 Intercept(b): -5.411 Correlation Coefficient(r): 0.9997

Checked by: Magnum Fan Date: 11/03/2013

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : DMS-9(No. 26 Kowloon City Road)

Calibrated by : P.F.Yeung Date : 08/03/2013

Sampler

Model : TE-5170 Serial Number : S/N 0814

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2323

 Service Date
 :
 26 Dec 2012

 Slope (m)
 :
 2.09107

 Intercept (b)
 :
 -0.02838

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 295

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
1	18 holes	12.7	3.599	1.735	66	66.7
2	13 holes	9.9	3.178	1.533	59	59.6
3	10 holes	7.7	2.803	1.354	52	52.5
4	7 holes	4.8	2.213	1.072	40	40.4
5	5 holes	2.7	1.660	0.807	30	30.3

Sampler Calibration Relationship

Slope(m):39.740 Intercept(b):-1.784 Correlation Coefficient(r):0.9995

Checked by: Magnum Fan Date: 11/03/2013

<u>High-Volume TSP Sampler</u> 5-Point Calibration Record

Location : DMS-10(Chat Ma Mansion)

Calibrated by : P.F.Yeung
Date : 08/03/2013

Sampler

Model : TE-5170 Serial Number : S/N 3573

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2323

 Service Date
 : 26 Dec 2012

 Slope (m)
 : 2.09107

 Intercept (b)
 : -0.02838

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 295

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
1	18 holes	11.8	3.470	1.673	61	61.6
2	13 holes	9.6	3.129	1.510	54	54.5
3	10 holes	7.5	2.766	1.336	48	48.5
4	7 holes	4.9	2.236	1.083	37	37.4
5	5 holes	2.1	1.464	0.714	21	21.2

Sampler Calibration Relationship

Slope(m):41.960 Intercept(b): 8.359 Correlation Coefficient(r): 0.9995

Checked by: Magnum Fan Date: 10/03/2013

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - !		Rootsmeter Orifice I.I		438320 2323	Ta (K) - Pa (mm) -	295 753.11
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4440 1.0240 0.9120 0.8720 0.7200	3.2 6.4 8.0 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		`Va .	(x axis) Qa	(y axis)
0.9967 0.9925 0.9903 0.9893 0.9840	0.6902 0.9693 1.0858 1.1345 1.3666	1.4149 2.0010 2.2372 2.3464 2.8299		0.9957 0.9915 0.9893 0.9883 0.9830	0.6896 0.9683 1.0847 - 1.1334 1.3652	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slo intercep coeffici	t (b) = ent (r) =	2.09107 -0.02838 0.99996 	Ta)]	Qa slop intercep coeffici y axis =	t (b) =	1.30939 0.01775 0.99996


CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C124011

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-1674)

Description / 儀器名稱 :

Sound Level Calibrator

Manufacturer / 製造商

Rion

Model No. / 型號

NC-73

Serial No. / 編號

10997142

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS/測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

9 July 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

Certified By 核證

K C Lee

Date of Issue

:

10 July 2012

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel 電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C124011

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A <u>Description</u>
Universal Counter
Multifunction Acoustic Calibrator
Measuring Amplifier

Certificate No. C123541 DC110233 C120886

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.5	± 0.2

5.2 Frequency Accuracy

1 Todata j 1 Todatao j			
UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.990	$1 \text{ kHz} \pm 2 \%$	± 1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C134307

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-1709)

Description / 儀器名稱

Sound Level Calibrator

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號

NC-73 10997142

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

12 July 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

Certified By 核證

K M Wu

Date of Issue

15 July 2013

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C134307

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter

Multifunction Acoustic Calibrator Measuring Amplifier Certificate No. C133632 DC130171

C120886

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

Dound Deverriedund			
UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.7	± 0.5	± 0.2

5.2 Frequency Accuracy

i requestre j rice arac j			
UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.988	1 kHz ± 2 %	± 1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-1674)

Description / 儀器名稱 :

Sound Level Meter

Manufacturer / 製造商

Rion NL-31

Model No. / 型號 Serial No. / 編號

00320533

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

C124012

Line Voltage / 電壓 : ---

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

9 July 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification. (after adjustment)

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Precision Measurement Ltd., UK
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

L K Yeung

Certified By

核證

K C Lee

Date of Issue 簽發日期 10 July 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c'o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

韓則工程有限公司-校正及機測實驗所 co香港新界屯門與安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵:

E-mail 電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C124012

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test form 6.1.1.2 to 6.4.
- The results presented are the mean of 3 measurements at each calibration point. 3.
- 4. Test equipment:

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C120016 DC110233

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- Reference Sound Pressure Level 6.1.1

6.1.1.1 Before Adjustment

	UUT	Setting .		Applied Value		UUT	IEC 60651 Type 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)	(dB) Weighting Weighting				(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	* 91.6	± 0.7

^{*} Out of Mfr's Spec.

6.1.1.2 After Adjustment

rici riajusti	iiciit							
	UUT	Setting		Applied	d Value	UUT	IEC 60651 Type 1	
Range	Range Mode Frequency Time				Freq.	Reading	Spec.	
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)	
30 - 120	L _A	A	Fast	94.00	1	94.0	± 0.7	

6.1.2 Linearity

	UU	T Setting		Applie	d Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L _A	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C124012

證書編號

6.2 Time Weighting

Continuous Signal 6.2.1

	UU	T Setting		Applied	Value	UUT	IEC 60651 Type 1
Range Mode Frequency Time				Level	Freq.	Reading	Spec.
(dB)					(kHz)	(dB)	(dB)
30 - 120	30 - 120 L _A A Fast				1	94.0	Ref.
			Slow			94.0	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

Tone Dars	t Digital (2 h	112)					
	J	JUT Setting		App	lied Value	UUT	IEC 60651 Type 1
Range	Range Mode Frequency Time				Burst	Reading	Spec.
(dB)	(dB) Weighting Weighting		(dB)	Duration	(dB)	(dB)	
20 -110	20 -110 L _A A Fast		106.00	Continuous	106.0	Ref.	
	L _A max				200 ms	105.0	-1.0 ± 1.0
	L_{A}		Slow		Continuous	106.0	Ref.
	L _A max				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UL	JT Setting		Appl	ied Value	UUT	IEC 60651 Type 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	31.5 Hz	54.4	-39.4 ± 1.5
					63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5; -3.0)
					12.5 kHz	90.0	-4.3 (+3.0; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C124012

證書編號

6.3.2 C-Weighting

CHOISINI		JT Setting		Appl	ied Value	UUT	IEC 60651 Type 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	31.5 Hz	90.7	-3.0 ± 1.5
					63 Hz	93.0	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	93.9	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.3	-0.8 ± 1.0
					8 kHz	91.0	-3.0 (+1.5; -3.0)
					12.5 kHz	88.2	-6.2 (+3.0; -6.0)

Time Averaging 6.4

	UU	JT Setting			1		UUT	IEC 60804		
Range	Mode	Frequency	Integrating	Freq.	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
20 - 110	L _{Aeq}	A	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						$1/10^2$		90	90.0	± 0.5
			60 sec.			$1/10^{3}$		80	80.0	± 1.0
			5 min.			1/104		70	70.0	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz $: \pm 0.35 \text{ dB}$

> 250 Hz - 500 Hz : \pm 0.30 dB $: \pm 0.20 \text{ dB}$ 2 kHz - 4 kHz $: \pm 0.35 \text{ dB}$ 8 kHz $\pm 0.45 \, dB$ 12.5 kHz $: \pm 0.70 \text{ dB}$

104 dB : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 114 dB : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ Burst equivalent level

 $: \pm 0.2 \text{ dB (Ref. 110 dB)}$ continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building. 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

co香港新界屯門興安里一號青山灣機樓四樓

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C134308

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-1709)

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號

NL-31 00320533

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}C$

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

12 July 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification. (after adjustment)

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

Certified By 核證

K M Wu

Date of Issue

15 July 2013

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory o 4 F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 co 香港新界屯門興安里一號青山灣機樓四樓

Tel 電話: 2927 2606 Fax 傳真: 2744 8986

Website/網址: www.suncreation.com

Page 1 of 4

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C134308

證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration using the internal standard (After Adjustment) was performed before the test form 6.1.1.2 to 6.4. 2.
- The results presented are the mean of 3 measurements at each calibration point. 3.
- 4. Test equipment:

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C130019 DC130171

- 5. Test procedure: MA101N.
- Results: 6.
- Sound Pressure Level 6.1
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Adjustment

	UUT	Setting		Applied Value		UUT	IEC 60651 Type 1
Range	Range Mode Frequency Time			Level	Freq.	Reading	Spec.
(dB)	(dB) Weighting Weighting			(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	* 92.6	± 0.7

^{*} Out of Mfr's Spec.

6.1.1.2 After Adjustment

1 11ttl I Iujusti		2.0		4 1' 1	X 7 1	TITIO	IDO COCCI D
	UUI	Setting		Applied	Value	UUT	IEC 60651 Type 1
Range	Range Mode Frequency Time				Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L	A	Fast	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UU	T Setting	Applie	d Value	UUT	
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L _A	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

co 4/F. Tsing Shan Wan Exchange Building. 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

co香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail 電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

證書編號

Certificate No.: C134308

6.2 Time Weighting

6.2.1 Continuous Signal

0 0111111111111111111111111111111111111	191101						
	UU'	Γ Setting		Applied	l Value	UUT	IEC 60651 Type 1
Range Mode Frequency Time				Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	94.0	Ref.
			Slow			93.9	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	J	JUT Setting		App	lied Value	UUT	IEC 60651 Type 1
Range	Mode Frequency Time		Level	Burst	Reading	Spec.	
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
20 -110	L_{A}	A	Fast	106.00	Continuous	106.0	Ref.
	L _A max				200 ms	105.0	-1.0 ± 1.0
	L_{A}		Slow		Continuous	106.0	Ref.
	L _A max				500 ms	102.1	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UU	T Setting		Applied Value		UUT	IEC 60651 Type 1	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.	
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)	
30 - 120	L _A	L _A A Fast 94.0		94.00	31.5 Hz	54.4	-39.4 ± 1.5	
					63 Hz	67.7	-26.2 ± 1.5	
					125 Hz	77.8	-16.1 ± 1.0	
					250 Hz	85.3	-8.6 ± 1.0	
					500 Hz	90.7	-3.2 ± 1.0	
					1 kHz	94.0	Ref.	
					2 kHz	95.2	$+1.2 \pm 1.0$	
					4 kHz	95.1	$+1.0 \pm 1.0$	
					8 kHz	92.9	-1.1 (+1.5; -3.0)	
					12.5 kHz	90.0	-4.3 (+3.0; -6.0)	

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C134308

證書編號

6.3.2 C-Weighting

	UL	T Setting		Applied Value		UUT	IEC 60651 Type 1	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.	
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)	
30 - 120	L _C	L _C C Fast 94.00 31.5 Hz		31.5 Hz	90.8	-3.0 ± 1.5		
					63 Hz	93.1	-0.8 ± 1.5	
					125 Hz	93.7	-0.2 ± 1.0	
					250 Hz	93.9	0.0 ± 1.0	
					500 Hz	94.0	0.0 ± 1.0	
					1 kHz	94.0	Ref.	
					2 kHz	93.9	-0.2 ± 1.0	
					4 kHz	93.3	-0.8 ± 1.0	
					8 kHz	91.0	-3.0 (+1.5; -3.0)	
					12.5 kHz	88.2	-6.2 (+3.0; -6.0)	

6.4 Time Averaging

	UU	T Setting		1	UUT	IEC 60804				
Range	Mode	Frequency	Integrating	Freq.	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
20 - 110	L_{Aeq}	А	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						$1/10^2$		90	90.0	± 0.5
			60 sec.			$1/10^{3}$		80	80.0	± 1.0
			5 min.			$1/10^4$		70	70.0	± 1.0

Remarks: - UUT Microphone Model No.: UC-53A & S/N: 320128

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

250 Hz - 500 Hz : $\pm 0.30 \text{ dB}$ 1 kHz : $\pm 0.20 \text{ dB}$ 2 kHz - 4 kHz : $\pm 0.35 \text{ dB}$ 8 kHz : $\pm 0.45 \text{ dB}$

12.5 kHz : $\pm 0.70 \text{ dB}$

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) Burst equivalent level : ± 0.2 dB (Ref. 110 dB) continuous sound level)

continuous sound i

- The uncertainties are for a confidence probability of not less than 95 %.

Note

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

E-mail/電郵: callab@suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C130686

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0285)

Description / 儀器名稱 :

Sound Level Meter

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號

NL-31 00983400

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度:

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

30 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

Date of Issue

30 January 2013

Certified By 核證

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司-校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Page 1 of 3

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130686

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration was performed before the test.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

> Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C130019

DC110233

5. Test procedure: MA101N.

Results:

Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UUT Setting			Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	93.8	± 1.1

6.1.2 Linearity

	U	JT Setting		Applied	Value	UUT
Range	Mode	Frequency	Time	Level Freq.		Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L_A	A	Fast	94.00	1	93.8 (Ref.)
				104.00		103.8
				114.00		113.9

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

Time Weighting

	UUT Setting				Value	UUT.	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L_A	A	Fast	94.00	1	93.8	Ref.
			Slow			93.7	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130686

證書編號

Frequency Weighting

6.3.1 A-Weighting

11 WOISITCHIE												
	UU'	T Setting		Appl	ied Value	UUT	IEC 61672 Class 1					
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)					
	Ť	A	The state of the s		(2 II-							
30 - 120	L_A	A	Fast	94.00	63 Hz	67.5	-26.2 ± 1.5					
				125 Hz		77.5	-16.1 ± 1.5					
10					250 Hz	85.1	-8.6 ± 1.4					
					500 Hz	90.5	-3.2 ± 1.4					
					1 kHz	93.8	Ref.					
					2 kHz	95.1	$+1.2 \pm 1.6$					
					4 kHz	95.0	$+1.0 \pm 1.6$					
					8 kHz	92.8	-1.1 (+2.1; -3.1)					
					12.5 kHz	89.9	-4.3 (+3.0; -6.0)					

6.3.2 C-Weighting

-	C- Weighting							
		UU	T Setting		Appl	ied Value	UUT	IEC 61672 Class 1
	Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
	(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
	30 - 120	L_{C}	С	Fast	94.00	63 Hz	92.9	-0.8 ± 1.5
					125 Hz		93.6	-0.2 ± 1.5
						250 Hz	93.8	0.0 ± 1.4
						500 Hz	93.9	0.0 ± 1.4
						1 kHz	93.9	Ref.
						2 kHz	93.7	-0.2 ± 1.6
						4 kHz	93.2	-0.8 ± 1.6
						8 kHz	90.9	-3.0 (+2.1; -3.1)
						12.5 kHz	88.1	-6.2 (+3.0; -6.0)

Remarks: - UUT Microphone Model No.: UC-53A & S/N: 315241

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

 $250 \text{ Hz} - 500 \text{ Hz} : \pm 0.30 \text{ dB}$ $\pm 0.20 \text{ dB}$ 2 kHz - 4 kHz $\pm 0.35 \text{ dB}$ 8 kHz $\pm 0.45 \text{ dB}$ 12.5 kHz $\pm 0.70 \text{ dB}$

104 dB : 1 kHz $\pm 0.10 \text{ dB (Ref. 94 dB)}$

114 dB : 1 kHz $\pm 0.10 \text{ dB (Ref. 94 dB)}$

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

co香港新界屯門興安里一號青山灣機樓四樓

Tel 電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Annex G

Summary of Event/ Action Plans

Annex G1 Event and Action Plan for Regular Construction Noise Monitoring

EVENT	Action			
	Contractor's Environmental Team	Independent Environmental	Engineer Representative (ER)	The Contractor
	(Contractor's ET)	Checker (IEC)		
Exceeding Action Level	 Notify the IEC, Contractor and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Increase the monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Notify the Contractor, IEC and ET; Review and agree on the remedial measures proposed by the Contractor; Supervise the implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; Implement noise mitigation proposals.
Exceeding Limit Level	 Notify the IEC, Contractor and EPD; Repeat measurement to confirm findings; Increase the monitoring frequency; Carry out analysis of the Contractor's working procedures to determine possible mitigation to be implemented; 	Contractor on the potential remedial measures; 4. Review and advise the ET and ER on the effectiveness of the	5. If exceedance continues, consider what portion	 causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals;
	 5. Arrange meeting with the IEC, Contractor and ER to discuss the remedial measures to be taken; 6. Inform the IEC, ER and EPD the causes and actions taken for the exceedances 7. Assess the effectiveness of the Contractor's remedial measures and keep the IEC, ER and EPD informed of the results 	remedial measures proposed by the Contractor	of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	5. Revise and resubmit proposals if problem is still not under control;6. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Annex G2 Event and Action Plan for Continuous Noise Monitoring

Event	Action							
	Works Contract 1	1109 ET	IEC	C	ER		Co	ntractor
Exceeding Action/Limit Level	Identify sour Repeat meas consecutive a Action/Limithen confirm If exceedance	ce urement. If two measurements exceed t Level, the exceedance is ed e is confirmed, notify IEC,	 2. 3. 	Check monitoring data submitted by the Works Contract 1109 ET Check the Contractor's working method Discuss with the ER, Works Contract 1109 ET and Contractor on	1. 2. 3.	Confirm receipt of notification of exceedance in writing Notify the Contractor and IEC In consultation with the Works Contract 1109 ET and IEC, agree with the Contractor on the remedial	1.	Identify source with Works Contract 1109 ET If exceedance is confirmed, investigate the cause of exceedance and take immediate action to avoid further exceedance
	4. Investigate the and check Comprocedures to mitigation to 5.	ER and Contractor Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented Discuss jointly with the IEC, ER and Contractor and formulate remedial	the potential remedial measures 4. Review and advise the Works Contract 1109 ET and ER on the effectiveness of the remedial measures proposed by the Contractor	4.5.	measures to be implemented Ensure the proper implementation of remedial measures If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	 4. 5. 	Submit proposals for remedial measures to the ER with copy to the IEC and ET of notification Implement the agreed proposals Liaise with ER to optimize the effectiveness of the agreed mitigation Revise and resubmit proposals if	
		iveness of Contractor's ions and keep IEC and ER the results					7.	problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated

Annex G3 Event and Action Plan for Construction Dust Monitoring

Event	Action			
	Contractor's Environmental Team	Independent Environmental Checker	Engineer Representative (ER)	The Contractor
	(Contractor's ET)	(IEC)		
Action Level				
Exceedance for one sample	 Inform the IEC, Contractor and ER; Discuss with the Contractor, 	by the ET; 2. Check the Contractor's working	 Confirm receipt of notifications of exceedance in writing; 	Identify reason(s), investigate the causes of exceedance and propose remedial measures;
	IEC and ER on the remedial measures required;3. Repeat measurement to confirm findings;	method; 3. Review and advise the ET and ER on the effectiveness of the proposed remedial measures.		2. Implement remedial measures;3. Amend working methods and agree them with the ER as appropriate.
	4. Increase the monitoring frequency			
Exceedance for two or more consecutive samples	1. Inform the IEC, Contractor and ER;	1. Check the monitoring data submitted by the ET;	 Confirm receipt of notification of exceedance in writing; 	 Identify reasons and investigate the causes of exceedance;
	Discuss with the ER, IEC and Contractor on the remedial measures required;		 Notify the Contractor, IEC and ET; Review and agree on the remedial measures proposed by the 	2. Submit proposals of remedial measures to the ER with a copy to the ET and IEC within three
	3. Repeat measurements to confirm findings;	the effectiveness of the proposed	Contractor; 4. Supervise the Implementation of	working days of notification; 3. Implement the agreed proposals;
	4. Increase the monitoring frequency to daily;		remedial measures.	4. Amend the proposal as appropriate.
	5. If exceedance continues, arrange meeting with the IEC, ER and Contractor:			
	6. If exceedance stops, the monitoring frequency will resume normal.			

Event	Action			
	Contractor's Environmental Team (Contractor's ET)	Independent Environmental Checker (IEC)	Engineer Representative (ER)	The Contractor
Limit Level				_
Exceedance for one sample	 Inform the IEC, Contractor and ER; Repeat measurement to confirm findings; Increase the monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check the monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	exceedance in writing; 2. Notify the Contractor, IEC and ET; 3. Review and agree on the remedial measures proposed by the Contractor; 4. Supervise the implementation of	 Identify reason(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals of remedial measures to ER with a copy to the ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify the IEC, Contractor and EPD; Repeat measurement to confirm findings; Increase the monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC, Contractor and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep the IEC, EPD and ER informed of the results; If exceedance stops, the monitoring frequency will return to normal. 	the effectiveness of Contractor's remedial measures.	exceedance in writing; 2. Notify the Contractor, IEC and ET; 3. In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented;	 Identify reason(s) and investigate the causes of exceedance; Take immediate actions to avoid further exceedance; Submit proposals of remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Annex G4 Event and Action Plan for Landscape and Visual Impacts during the Construction Phase

Event	Action			
	Contractor's Environmental Team	Independent Environmental Checker	Engineer Representative (ER)	The Contractor
	(Contractor's ET)	(IEC)		
Non-conformity on one occasion	 Inform the Contractor, the IEC and the ER. 	 Check the inspection report. Check the Contractor's working 	 Confirm receipt of notifications of nonconformity in writing. 	1. Identify reasons and investigate the non-conformity.
	2. Discuss remedial actions with	method.	2. Review and agree on the remedial	2. Implement remedial measures
	the IEC, ER and Contractor.3. Monitor remedial actions until rectification has been	3. Discuss with the ET, ER and Contractor on possible remedial measures.	measures proposed by the Contractor.3. Supervise the implementation of	3. Amend working methods and agree them with the ER as appropriate.
	completed.	4. Advise the ER on the effectiveness of	remedial measures.	4. Rectify the damage and
	completed.	proposed remedial measures.	remedial measures.	undertake any necessary
				replacement.
Repeated Nonconformity	 Identify Reasons. 	 Check the inspection report. 	1. Notify the Contractor.	1. Identify Reasons and investigate
	2. Inform the Contractor, IEC and	2. Check the Contractor's working	2. In consultation with the ET and IEC,	the non-conformity.
	ER.	method.	agree with the Contractor on the	Implement remedial measures.
	3. Increase the inspection	3. Discuss with the ET and Contractor	remedial measures to be	3. Amend working methods and
	frequency.	on possible remedial measures.	implemented.	agree them with the ER as
	4. Discuss remedial actions with	4. Advise the ER on the effectiveness of	3. Supervise the implementation of	appropriate.
	the IEC, ER and Contractor.	proposed remedial measures.	remedial measures.	4. Rectify the damage and
	Monitor remedial actions until rectification has been			undertake any necessary replacement.
	completed.			5. Stop relevant works as
	6. If non-conformity stops, the			determined by the ER until the
	inspection frequency return to normal (ie,. Once every two weeks)			non-conformity is abated.

Annex H

Summary of Implementation Status

Annex H Environmental Mitigation Implementation Status – SCL Works Contract 1109 (Stations and Tunnels of Kowloon City Section)

Note:

- * Reference has been made to the approved SCL (TAW-HUH) EM&A Manual.
- ✓ Compliance of Mitigation Measures
- <> Compliance of Mitigation but need improvement
- x Non-compliance of Mitigation Measures
- ▲ Non-compliance of Mitigation Measures but rectified by Samsung-Hsin Chong JV
- Δ Deficiency of Mitigation Measures but rectified by Samsung-Hsin Chong JV
- N/A Not Applicable in Reporting Period

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
Cultural l	Heritage Im	pact					
S4.9	СН3	Submit an Archaeological Action Plan Conduct survey-cum-excavation and additional boreholes/trenches investigation at the Sacred Hill (North) Study Area prior to construction.	Salvage cultural remains at the Sacred Hill (North) Study Area	Contractor	Sacred Hill (North) Area	Prior to the Construction Phase of TKW and associated tunnels	√
Ecology (Construction	n Phase)					
S5.7	E5	Good Site Practices Impact on any habitats or local fauna should be avoided by implementing good site practices, including the containment of silt runoff within the site boundary, containment of contaminated soils for removal from the site, appropriate storage of chemicals and chemical waste away from sites of ecological value and the provision of sanitary facilities for on-site workers. Adoption of such measures should permit waste to be suitably contained within the site for subsequent removal and appropriate disposal.	Minimise ecological impacts	Contractor	All construction sites	Construction Stage	√

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		The following good site practices should also be implemented:					
		 Erection of temporary geotextile silt or sediment fences/oil traps around earthmoving works to trap sediments and prevent them from entering watercourses; Avoidance of soil storage against trees or close to water bodies; Delineation of works site by erecting hoardings to prevent encroachment onto adjacent habitats and fence off areas which have some ecological value e.g. tunnel on hill at top of slope stabilisation works; No on-site burning of waste; Store waste and refuse in appropriate receptacles. 					
Landscap	e & Visual (Construction Phase)					
S6.9.3	LV1	The following good site practices and measures for minimisation and avoidance of potential impacts are recommended:	Minimize visual & landscape impact	Contractor	Within Project Site	Construction Stage	√
		Re-use of Existing Soil • For soil conservation, existing topsoil shall be re-used where possible for new planting areas within the project. The construction program shall consider using the soil removed from one phase for backfilling another. Suitable storage ground, gathering ground and mixing					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures &	Who to implement	Location of the implementation of	When to implement the measures?	Implementation Status
			Main Concerns to address	the	measures		
				measures?			

ground may be set up on-site as necessary.

No-intrusion Zone

 To maximize protection to existing trees, ground vegetation and associated under storey habitats, construction contracts may designate "No-intrusion Zone" to various areas within the site boundary with rigid and durable fencing. The contractor should closely monitor and restrict the site working staff from entering the "nointrusion zone", even for indirect construction activities and storage of equipment.

Protection of Retained Trees

- All retained trees including trees in contractor's works sites should be recorded and photographed at the commencement of the Contract, and carefully protected during the construction period. Detailed tree protection specification shall be allowed and included in the Contract Specification, which specifies the tree protection requirement, submission and approval system, and the tree monitoring system.
- The Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
S6.12	LV2	trees in Contractor's works sites. Decorative Hoarding Erection of decorative screen in visual and landscape sensitive areas during the construction stage to screen off undesirable views of the construction site. Hoarding should be designed to be compatible with the existing urban context.	Minimize visual & landscape impact	Contractor	Within Project Site	Construction Stage	√
		 Management of facilities on work sites To provide proper management of the on-site facilities, control the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent Visual Sensitive Receivers (VSRs). 					
		 Tree Transplanting Trees of high to medium survival rates that would be affected by the works shall be transplanted where possible and practicable. Tree transplanting proposal including the final locations for the transplanted trees shall be submitted separately to seek relevant government department's approval, in accordance with ETWB TCW No 3/2006. 					
Construct	ion Dust						
S7.6.5	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	√

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
S7.6.5	D2	Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul roads in the Kowloon area should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.8 l/m² to achieve the dust removal efficiency	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	1
S7.6.5	D3	 Proper watering of exposed spoil should be undertaken throughout the construction phase; Any excavated or stockpile of dusty material should be covered entirely by an impervious sheeting or sprayed with water to maintain an entirely wet surface and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile has been removed should be wetted with water and cleared from the surface of roads; A stockpile of dusty materials should not be extended beyond the pedestrian barriers, fencing or traffic cones. The load of dusty materials on a vehicle leaving a construction site should be covered entirely by an impervious 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	<>

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
	Log Ker	sheeting to ensure that the dusty materials do not leak from the vehicle; • Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; • When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; • The portion of any road which leads only	Main Concerns to address	the	=	the measures?	Status
		 to construction site and is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operations take place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or 					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain an entirely wet surface Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building upward, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by an impervious sheeting; Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by an impervious sheeting or placed in an area sheltered on the top and 3 sides; 	Main Concerns to address		measures		
		 Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; 					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					
S7.6.5	D6	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Selected representative dust monitoring station	Construction stage	√
EP Conditio n 2.18(a)	D7	Watering once every working hour for active works areas, exposed areas and paved haul roads shall be provided in Kowloon area to keep these active works areas, exposed areas and paved haul roads wet.	Minimize construction dust impact	Contractor	All construction sites	Construction stage	<>
EP Conditio n 2.19	D8	All diesel fuelled construction plant, including marine vessels if possible, used by the contractors within the works areas of the Project shall be powered by ultra low sulphur diesel fuel.	Minimize aerial emissions of sulphur dioxide from construction plant	Contractor	All construction sites	Construction stage	√
Construct	ion Noise (A	Airborne)					
S8.3.6	N1	 Implement the following good site practices: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work 	Control construction airborne noise	Contractor	All construction sites	Construction stage	<>

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		periods or should be throttled down to a					
		minimum;					
		 plant known to emit noise strongly in one 					
		direction, where possible, should be					
		orientated so that the noise is directed away from nearby NSRs;					
		 silencers or mufflers on construction 					
		equipment should be properly fitted and					
		maintained during the period of construction works;					
		 mobile plant should be sited as far away 					
		from NSRs as possible and practicable;					
		 material stockpiles, mobile container site 					
		office and other structures should be					
		effectively utilised, where practicable, to screen noise from on-site construction activities.					
S8.3.6	N2	Install temporary hoarding located on the site	Reduce the construction noise	Contractor	All construction sites	Construction stage	\checkmark
		boundaries between noisy construction	levels at low-level zone of			O	
		activities and NSRs. The conditions of the	NSRs through partial				
		hoardings shall be properly maintained	screening.				
		throughout the construction period.	· ·				
S8.3.6	N3	Install movable noise barriers (typical design	Screen the noisy plant items to	Contractor	All construction sites	Construction stage	\checkmark
		is wooden framed barrier with a small-	be used at all construction		where practicable		
		cantilevered on a skid footing with 25mm	sites				
		thick internal sound absorptive lining),					
		acoustic mat or full enclosure, screen the noisy					
		plants including air compressor, generators					
		and saw.					
S8.3.6	N4	Use "Quiet plants"	Reduce the noise levels of	Contractor	All construction sites	Construction stage	\checkmark
			plant items		where practicable		
S8.3.6	N5	Sequencing operation of construction plants	Operate sequentially within	Contractor	Contractor All	Construction stage	\checkmark

	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		where practicable.	the same work site to reduce the construction airborne noise		construction sites where practicable		
S8.3.6	N6	Implement noise monitoring under EM&A programme.	Monitor the construction noise levels at the selected representative locations	Contractor	Selected representative noise monitoring station	Construction stage	√
Water Qua	lity		-				
S10.7.1	W1	In accordance with the Practice Noise for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), construction phase mitigation measures shall include the following: Construction Runoffs and Site Drainage • At the start of the site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system will be undertaken by the Contractor prior to the commencement of construction. • The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.	To minimize water quality impact from construction site runoffs and general construction activities	Contractor	All construction sites where practicable	Construction stage	

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates. • The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1 m³/s, a sedimentation basin of 30m³ would be required and for a flow rate of 0.5 m³/s the basin would be 150 m³. The detailed design of the sand/silt traps shall be undertaken by the Contractor prior to the commencement of construction. • All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, and definitely, within 14 days of the cessation of earthworks where practicable. Exposed slope surfaces should be covered by tarpaulin or other means. • The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by		measures?			

coarse stone ballast. An additional advantage from the use of crushed stone is the positive traction gained during prolonged periods of inclement weather and the reduction of surface sheet flows. • All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to	When to implement the measures?	Location of the implementation of measures	Who to implement the measures?	Objectives of the Recommended Measures & Main Concerns to address	Recommended Mitigation Measures	EM&A Log Ref*	EIA Ref.
ensure proper and efficient operations at all times and particularly following rainstorms. Deposited silts and grits should be removed regularly and disposed of by spreading them evenly over stable, vegetated areas. • Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, trenches should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. • Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.			measures?		 advantage from the use of crushed stone is the positive traction gained during prolonged periods of inclement weather and the reduction of surface sheet flows. All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operations at all times and particularly following rainstorms. Deposited silts and grits should be removed regularly and disposed of by spreading them evenly over stable, vegetated areas. Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, trenches should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris 		

EIA Ref. EM&A Log Ref	Recommended Mitigation Measures *	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
	ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. • Precautions should be taken at any time of year when rainstorms are likely. Actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoffs during storm events, especially for areas located near steep slopes. • All vehicles and plant should be cleaned before leaving a construction site to ensure that no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash		measures?			

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 silty water to public roads and drains. Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited in sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching nearby water sensitive receivers. All the earth works should be conducted sequentially to limit the amount of construction runoffs generated from exposed areas during the wet season (April to September) as far as practicable. 		measures			
S10.7.1	W2	 Adopt best management practices <u>Tunnelling Works</u> Uncontaminated discharge should pass through sedimentation tanks prior to off-site discharge. The wastewater with a high concentration 	To minimize construction water quality impact from tunnelling works	Contractor	All tunnelling portion	Construction stage	N/A

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		of suspended solids should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove oil, lubricants and grease from the wastewater. • Direct discharge of the bentonite slurry (as					
		a result of D-wall and bored tunnelling construction) is not allowed. The slurry should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related construction activities have been completed. The requirements in ProPECC PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.					
S10.7.1	W3	Sewage Effluent Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for their appropriate disposal and maintenance.	To minimize water quality from sewage effluent	Contractor	All construction sites where practicable	Construction stage	√
S10.7.1	W4	Groundwater from Contaminated Area in case contamination is found: No direct discharge of groundwater from	To minimize groundwater quality impact from contaminated area	Contractor	Excavation areas where contamination is found.	Construction stage	N/A

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		contaminated areas is allowed. Prior to the		incasures.			
		excavation works within potentially					
		contaminated areas, the groundwater					
		quality should be reviewed with reference					
		to the site investigation data in the EIA					
		report for compliance and the Technical					
		Memorandum on Standards for Effluents					
		Discharged into Drainage on Sewerage					
		Systems, Inland and Coastal Waters (TM-					
		Water). The existence of prohibited					
		substance should be confirmed. The					
		review results should be submitted to EPD					
		for examination if the review results					
		indicate that the groundwater to be					
		generated from the excavation works					
		would be contaminated. The contaminated					
		groundwater should be either properly					
		treated in compliance with the					
		requirements of the TM-Water or properly					
		recharged into the ground.					
		 If wastewater treatment is deployed, the 					
		wastewater treatment unit shall deploy					
		suitable treatment process (e.g. oil					
		interceptor / activated carbon) to reduce					
		the pollution level to an acceptable					
		standard and remove any prohibited					
		substances (e.g. total petroleum					
		hydrocarbon (TPH)) to undetectable					
		range. All treated effluent from the					
		wastewater treatment plant shall meet the					
		requirements as stated in TM Water and					
		should be discharged into the foul sewers.					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		• If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in the Section 2.3 of TM-Water. The baseline groundwater quality shall be determined prior to the selection of the recharge wells. It is necessary to submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of groundwater to be recharged shall not be higher than the pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substances such as TPH products should be removed as necessary by installing the petrol interceptor. The Contractor should apply for a discharge licence under the Water Pollution Control Ordinance (WPCO) through the Regional					
S10.7.1	W7	Office of EPD for groundwater recharge operation or discharge of treated groundwater. In order to prevent accidental spillage of chemicals, the following is recommended:	To minimize water quality impact from accidental	Contractor	All construction sites where practicable	Construction stage	<>

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains. The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical wastes should be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	spillage				
Waste Ma	nagement (Construction Waste)					
S11.4.1.1	WM1	On-site sorting of C&D (Construction and Demolition) material Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock should be separated at the source sites as far as practicable and stored in the designated stockpile areas avoiding delivering them to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from	Separation of unsuitable rock from ending up at Concrete batching plants and be turned into concrete for structural use	Contractor	All construction sites	Construction stage	

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status	
S11.5.1	WM2	being ended up at concrete batching plants and turned into concrete for structural use. Details regarding control measures at source sites and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated. The traceability of delivery will be ensured via the implementation of Trip Ticket System and enforcement by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc should also be explored. Construction and Demolition (C&D) Material Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Adopt 'Selective Demolition' technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible;	Good site practice to minimize waste generation and recycle C&D materials as far as practicable so as to reduce the amount for final disposal		All construction sites	Construction stage	✓	

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
S11.5.1	WM3	 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Implement an enhanced Waste management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and minimize waste generation during the course of construction. Disposal of the C&D materials to any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get his approval before implementation C&D Waste Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used. Metal hoarding should be used to enhance the possibility of recycling. The purchase of construction materials will be carefully planned in order to avoid over ordering and wastage. The Contractor should recycle as much of the C&D materials as possible on-site. 	Good site practice to minimize waste generation and recycle C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	✓

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage.					
S11.5.1	WM4	 General Refuse General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme 	odour, pest and litter impacts	Contractor	All construction sites	Construction stage	

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
S11.5.1	WM7	should be considered by the Contractor. Chemical Waste Chemical waste as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, that is produced should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed. They should have a capacity of less than 450 litres unless the specification has been approved by the EPD. A label in English and Chinese should be displayed in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides. It should also have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest. It should have adequate ventilation and be covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated.	Control the chemical waste and ensure proper storage, handling and disposal.	Contractor	All construction sites	Construction stage	

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		Disposal of chemical waste should be via a licensed waste collector; to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre (which also offers a chemical waste collection service and can supply the necessary storage containers); or to a reuser of the waste, under the approval from the EPD.		ricusures.			

Annex I - 1

Regular Noise Monitoring Results

Annex I-1 Regular Noise Monitoring Results

Station NMS-CA-6 No. 16-23 Nam Kok Road

Date	Start Time	End Time	Weather	Measured Noise level (dB(A)), L _{Aeq} (30 min)	Baseline (dB(A)), L _{Aeq} (30 min)	Corrected LAeq(dBA) ^(a)	Major Construction Noise Source(s) Observed	Other Noise Source(s) Observed	Temp. (℃)	Wind Speed (m/s)	Noise Meter Model / ID	Calibrator Model / ID
02-Jul-13	11:25	11:55	Fine	64.3	76.1	-(b)	-	Traffic noise	30.0	0.8	NL-31 00320533	NC-73 10997142
08-Jul-13	11:25	11:55	Sunny	63.0	76.1	-(b)	-	Traffic noise	29.0	0.5	NL-31 00320533	NC-73 10997142
19-Jul-13	11:20	11:50	Fine	64.2	76.1	-(b)	-	Traffic noise	27.0	0.5	NL-31 00320533	NC-73 10997142
25-Jul-13	11:20	11:50	Rainy	64.0	76.1	-(b)	-	Traffic noise	25.0	0.5	NL-31 00320533	NC-73 10997142
31-Jul-13	11:28	11:58	Fine	64.7	76.1	-(b)	-	Traffic noise	30.0	0.5	NL-31 00320533	NC-73 10997142

Station NMS-CA-7 Skytower Tower 2

Date	Start Time	End Time	Weather	Measured Noise level (dB(A)), L _{Aeq} (30 min)	Baseline (dB(A)), L _{Aeq} (30 min)	Corrected LAeq(dBA) ^(a)	Major Construction Noise Source(s) Observed	Other Noise Source(s) Observed	Temp. (℃)	Wind Speed (m/s)	Noise Meter Model / ID	Calibrator Model / ID
02-Jul-13	10:25	10:55	Fine	68.7	70.0	-(b)	-	Traffic noise	30.0	1.9	NL-31 00320533	NC-73 10997142
08-Jul-13	10:27	10:57	Sunny	66.7	70.0	-(b)	-	Traffic noise	29.0	0.5	NL-31 00320533	NC-73 10997142
19-Jul-13	10:20	10:50	Fine	67.6	70.0	-(b)	-	Traffic noise	27.0	0.5	NL-31 00320533	NC-73 10997142
25-Jul-13	10:25	10:55	Rainy	67.3	70.0	-(b)	-	Traffic noise	25.0	0.5	NL-31 00320533	NC-73 10997142
31-Jul-13	10:30	11:00	Fine	68.1	70.0	-(b)	-	Traffic noise	30.0	0.5	NL-31 00320533	NC-73 10997142

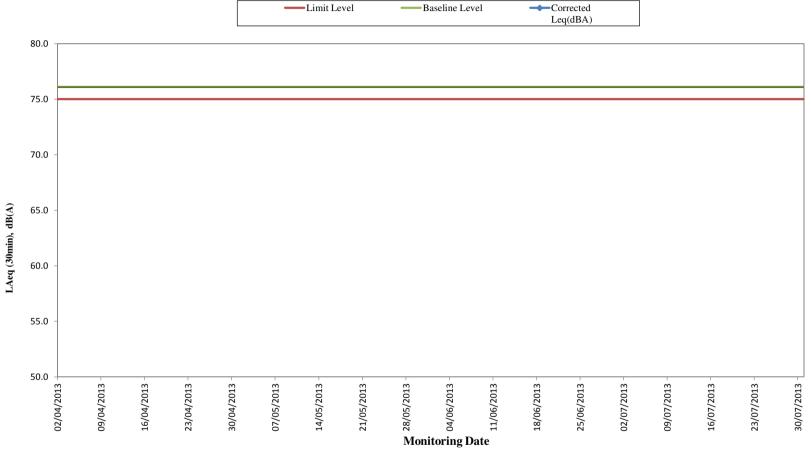
Station NMS-CA-8 SKH Good Shepherd Primary School

| Date | Start | End | Weather | Measured Noise level | Baseline (dB(A)), | Corrected | Major Construction | Other Noise | Noise Source(s) | Source(s) | Temp (%C) | Wind Start | Corrected | Noise Source(s) | Corrected | Corrected | Noise Source(s) | Corrected |

Date	Start Time	End Time	Weather	Measured Noise level (dB(A)), L _{Aeq} (30 min)	Baseline (dB(A)), L _{Aeq} (30 min)	Corrected LAeq(dBA) ^(a)	Major Construction Noise Source(s) Observed	Other Noise Source(s) Observed	Temp. (℃)	Wind Speed (m/s)	Noise Meter Model / ID	Calibrator Model / ID
02-Jul-13	8:35	9:05	Fine	76.7	75.4	70.8	Crane Operation	Traffic noise	30.0	1.1	NL-31 00983400	NC-73 10997142
08-Jul-13	8:40	9:10	Fine	74.5	75.4	-(b)	Crane Operation, backhole	Traffic noise	29.0	0.5	NL-31 00983400	NC-73 10997142
19-Jul-13	8:40	9:10	Fine	77.0	75.4	71.9	Crane Operation, backhole and breaker	Traffic noise	27.0	0.5	NL-31 00983400	NC-73 10997142
25-Jul-13	8:40	9:10	Rainy	76.4	75.4	69.5	Backhole, crane operation, hand held breaker	Traffic noise	25.0	0.5	NL-31 00983400	NC-73 10997142
31-Jul-13	8:45	9:15	Fine	75.0	75.4	-(b)	Backhole, crane operation, hand held breaker	Traffic noise	30.0	0.5	NL-31 00983400	NC-73 10997142

NMS-CA-9 Kong Yiu Mansion Station **Major Construction** Other Noise End Measured Noise level Baseline (dB(A)), Corrected Wind Speed Noise Meter Calibrator Model Start Date Weather Noise Source(s) Source(s) Temp. (°C) Time Time (dB(A)), L_{Aeq}(30 min) L_{Aeq}(30 min) LAeq(dBA) (a) (m/s) Model / ID / ID Observed Observed NL-31 00320533 NC-73 10997142 71.1 69.2 66.6 02-Jul-13 7:55 8:25 30.0 1.0 Fine Crane Operation Traffic noise 08-Jul-13 8:00 8:30 Fine 71.1 69.2 66.6 Crane Operation Traffic noise 29.0 0.5 NL-31 00320533 NC-73 10997142 Breaker and Crane 19-Jul-13 8:00 8:30 Fine 73.3 69.2 71.2 Traffic noise 27.0 0.5 NL-31 00320533 NC-73 10997142 Operation 25-Jul-13 8:00 8:30 73.3 69.2 71.2 25.0 0.5 NL-31 00320533 NC-73 10997142 Rainy Crane Operation Traffic noise 8:00 Fine 71.9 69.2 68.6 Traffic noise 30.0 NL-31 00320533 NC-73 10997142 31-Jul-13 8:30 0.8 Crane Operation

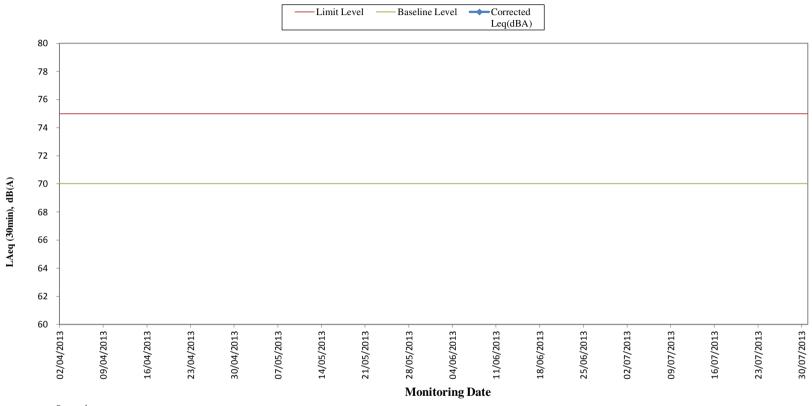
Station	Station NMS-CA-10		Chat Ma Mansion									
Date	Start Time	End Time	Weather	Measured Noise level (dB(A)), L _{Aeq} (30 min) ^(c)	Baseline (dB(A)), L _{Aeq} (30 min)	Corrected LAeq(dBA) ^(a)	Major Construction Noise Source(s) Observed	Other Noise Source(s) Observed	Temp. (℃)	Wind Speed (m/s)	Noise Meter Model / ID	Calibrator Model / ID
02-Jul-13	9:30	10:00	Fine	76.8	76.6	63.3	Crane operation	Traffic noise	30.0	1.0	NL-31 00320533	NC-73 10997142
08-Jul-13	9:30	10:00	Fine	76.3	76.6	-(b)	Backhole	Traffic noise	29.0	0.5	NL-31 00320533	NC-73 10997142
19-Jul-13	9:22	9:52	Fine	76.8	76.6	63.3	Backhole	Traffic noise	27.0	0.5	NL-31 00320533	NC-73 10997142
25-Jul-13	9:32	10:02	Cloudy	77.5	76.6	70.2	Bachole and Crane Operation	Traffic noise	25.0	0.5	NL-31 00320533	NC-73 10997142
31-Jul-13	9:35	10:05	Fine	76.9	76.6	65.1	Backhole	Traffic noise	30.0	0.5	NL-31 00320533	NC-73 10997142


Remarks:

....

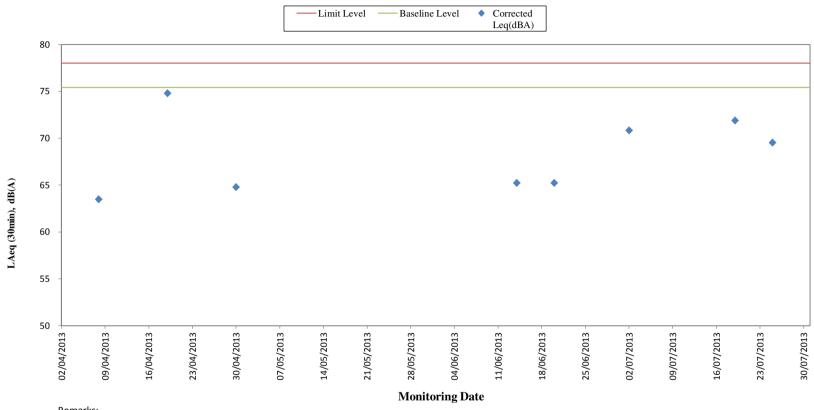
(a) The Measured LAeq is corrected against the corresponding Baseline Level.

- (b) No correction was made as the measured noise levels were equal to or below the baseline noise levels.
- (c) The noise monitoring results of the measurements carried out at NMS-CA-10 on 2, 8, 19, 25 and 31 July are higher than the daytime construction noise criterion. However, the results are not considered as exceedance as they are below the limit level after deducting the baseline noise level.


Regular Noise Monitoring Results at NMS-CA-6 (No. 16-23 Nam Kok Road) (LAeq, 30min) for the Past 4 Months

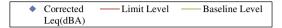
Remarks:

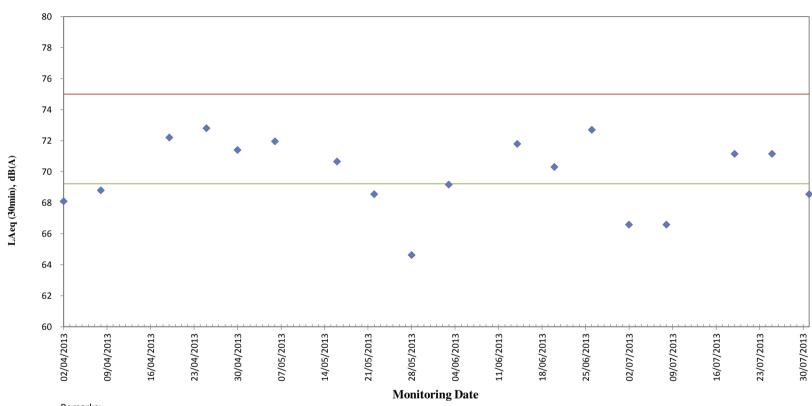
- For those corrected noise levels that are not shown in this graph, the measured noise level s are below baseline level.


Regular Noise Monitoring Results at NMS-CA-7 (Skytower Tower 2) (LAeq, 30min) for the Past 4 Months

Remarks.

- For those corrected noise levels that are not shown in this graph, the measured noise level s are below baseline level.

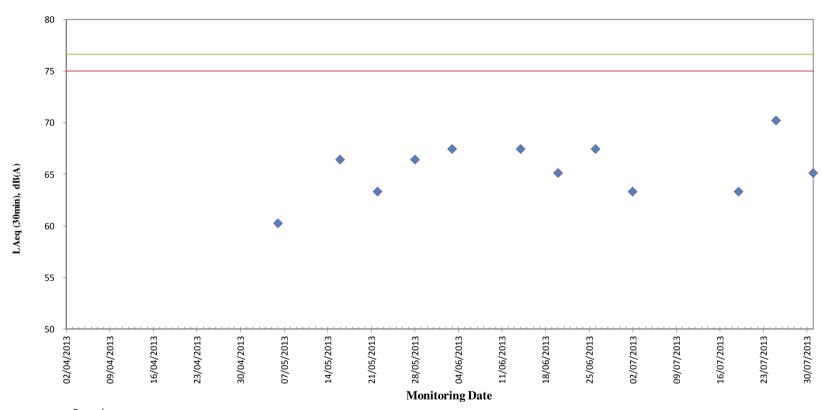

Regular Noise Monitoring Results at NMS-CA-8 (SKH Good Shepherd Primary School) (LAeq, 30min) for the Past 4 Months



Remarks:

- For those corrected noise levels that are not shown in this graph, the measured noise level s are below baseline level.
- The limit level was 78dB(A) as continuous noise monitoring was conducted in this period.

Regular Noise Monitoring Results at NMS-CA-9 (Kong Yiu Mansion) (LAeq, 30min)) for the Past 4 Months



Remarks:

- For those corrected noise levels that are not shown in this graph, the measured noise level s are below baseline level.

Regular Noise Monitoring Results at NMS-CA-10 (Chat Ma Mansion) (LAeq, 30min) for the Past 4 Months

Remarks:

- For those corrected noise levels that are not shown in this graph, the measured noise level s are below baseline level.

Annex I - 2

Continuous Noise Monitoring Results

Location ID	Name	Year (YYYY)			Hour (HH)	Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	10	2	78.9	75.4	76.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	10	32	79	75.4	76.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	11	2	79.1	75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	11	32	78.9	75.4	76.3	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	2	12 12	2 32	78.1 78.2	75.4 75.4	74.8 75.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	13	2	79.1	75.4 75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	13	32	79	75.4	76.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	14	2	78.8	75.4	76.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	14	32	77.5	75.4	73.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	15	2	78.5	75.4	75.6	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	2	15 16	32 2	78.9 78	75.4 75.4	76.3 74.5	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	16	32	80	75.4 75.4	78.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	17	2	79.1	75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	17	32	78.9	75.4	76.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	18	2	77.9	75.4	74.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	2	18	32	76.4	75.4	69.5	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	3 3	7 7	2 32	75.7 78.2	75.4 75.4	63.9 75.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	8	2	76.2 79.2	75.4 75.4	76.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	8	32	79.6	75.4	77.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	9	2	79.4	75.4	77.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	9	32	77.5	75.4	73.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	10	2	77.6	75.4	73.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	10	32	79.2	75.4	76.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	11	2	79.3	75.4	77.0	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	3 3	11 12	32 2	79.4 79.1	75.4 75.4	77.2 76.7	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	12	32	78.8	75.4 75.4	76.7 76.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	13	2	79.6	75.4	77.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	13	32	79.3	75.4	77.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	14	2	79.3	75.4	77.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	14	32	78.7	75.4	76.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	15	2	77.9	75.4	74.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	15	32	78.2	75.4	75.0	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	3 3	16 16	2 32	78.7 78.7	75.4 75.4	76.0 76.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	17	2	79.7	75.4 75.4	76.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	17	32	78.6	75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	18	2	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	3	18	32	75.1	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	7	2	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	7	32	76.9	75.4	71.6	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	4 4	8 8	2 32	77 79.1	75.4 75.4	71.9 76.7	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	9	2	79	75.4	76.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	9	32	79.1	75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	10	2	78.8	75.4	76.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	10	32	77.8	75.4	74.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	11	2	76.1	75.4	67.8	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	4 4	11 12	33 3	77.9 78.5	75.4 75.4	74.3 75.6	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	12	33	76.5 77.9	75.4 75.4	74.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	13	3	78.6	75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	13	33	79.3	75.4	77.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	14	3	78.6	75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	14	33	78.6	75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	15	3	78.8	75.4	76.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	15	33	78.2	75.4	75.0	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	4 4	16 16	3 33	78.2 79.3	75.4 75.4	75.0 77.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	17	3	78.3	75.4 75.4	75.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	17	33	77.9	75.4	74.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	18	3	77.5	75.4	73.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	4	18	33	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	7	3	76.9	75.4	71.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	7	33	79.6	75.4	77.5	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	5 5	8 8	3 33	78.5 79.1	75.4 75.4	75.6 76.7	78 78	N N
MTW-16-1	SKH Good Snepherd Primary School SKH Good Shepherd Primary School	2013	7	5 5	9	33	79.1 79	75.4 75.4	76.7 76.5	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	9	33	78.7	75.4 75.4	76.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	10	3	78.6	75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	10	33	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	11	3	78.5	75.4	75.6	78	N

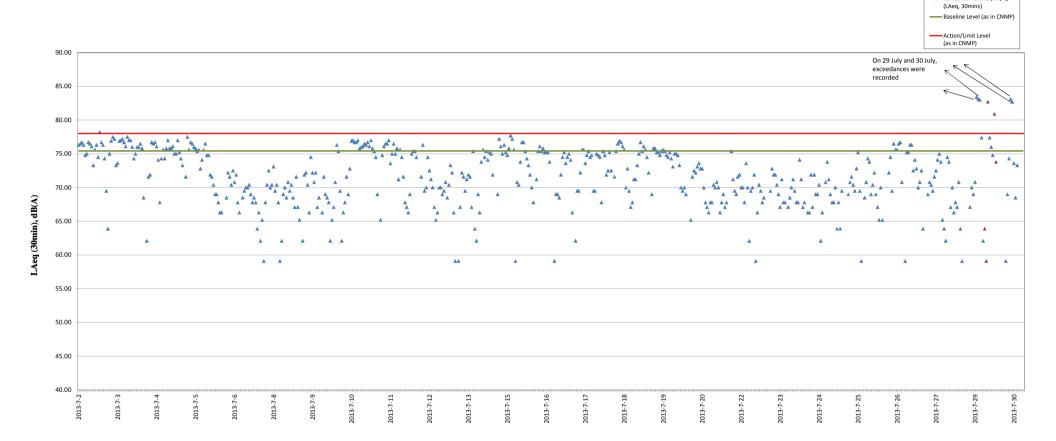
Location ID	Name	Year (YYYY)			Hour (HH)	Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	11	33	77.3	75.4	72.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	12	3	77.8	75.4	74.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	12	33	78.5	75.4	75.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	13	3	79 70.4	75.4	76.5	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	5 5	13 14	33 3	78.1 78.1	75.4 75.4	74.8 74.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	14	33	77	75.4 75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	15	3	76.9	75.4	71.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	15	33	76.6	75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	16	3	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	16	33	76.3	75.4	69.0	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	5 5	17 17	3 33	76.1 75.9	75.4 75.4	67.8 66.3	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	18	3	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	5	18	33	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	7	3	74.8	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	7	33	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	8	3	77.1	75.4	72.2	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	6 6	8 9	33 3	76.9 76.6	75.4 75.4	71.6 70.4	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	9	33	77.2	75.4 75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	10	3	76.7	75.4	70.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	10	33	77	75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	11	3	76.1	75.4	67.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	11	33	75.9	75.4	66.3	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	6 6	12 12	3 33	75.2 76.2	75.4 75.4	<baseline level<br="">68.5</baseline>	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	6	13	3	76.2 76.4	75.4 75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	13	33	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	14	3	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	14	33	76.6	75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	15	3	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	6 6	15	33 3	76.1 76.2	75.4 75.4	67.8	78 70	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	6	16 16	33	76.2 76.1	75.4 75.4	68.5 67.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	17	3	75.7	75.4	63.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	17	33	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	18	3	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	6	18	33	75.8	75.4	65.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	8	7 7	3	75.5	75.4	59.1	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	8 8	8	33 3	76.1 76.6	75.4 75.4	67.8 70.4	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	8	33	77.2	75.4	72.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	9	3	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	9	33	76.6	75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	10	3	77.4	75.4	73.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	10	35	76.4	75.4	69.5	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	8 8	11 11	5 35	76.6 76.1	75.4 75.4	70.4 67.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	12	5	75.5	75.4 75.4	59.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	12	35	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	13	5	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	13	35	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	14	5	76.2	75.4	68.5	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	8 8	14 15	35 5	76.7 76.4	75.4 75.4	70.8 69.5	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	15	35	76.6	75.4 75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	16	5	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	16	35	76	75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	17	5	76.9	75.4	71.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	17	35	76	75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	8	18	5	75.8	75.4	65.2	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	8 9	18 7	35 5	75.1 75.6	75.4 75.4	<baseline level<br="">62.1</baseline>	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	7	35	77.0	75.4 75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	8	5	77.1	75.4	72.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	8	35	76.6	75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	9	5	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	9	35	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	10	5 35	77.1 76.7	75.4 75.4	72.2 70.8	78 79	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	9 9	10 11	35 5	76.7 77.1	75.4 75.4	70.8 72.2	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	11	35	76	75.4 75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	12	5	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	12	35	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N

Location ID	Name	Year (YYYY)	Month (MM)	Date (DD)		Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	13	5	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	13	35	76.9	75.4	71.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	14	5	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	14	35	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	15	5	76.1	75.4	67.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	15	35	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	9 9	16	5	75.8	75.4 75.4	65.2	78 78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	9	16 17	35 5	76 76.7	75.4 75.4	67.1 70.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	17	35	78.9	75.4 75.4	76.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	18	5	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	9	18	35	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	7	5	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	7	35	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	8	5	76.1	75.4	67.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	8	35	76.9	75.4	71.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	9	5	76.3	75.4 75.4	69.0	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	10 10	9 10	35 5	77.3 79.2	75.4 75.4	72.8 76.9	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	10	35	79.3	75.4 75.4	77.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	11	5	79.1	75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	11	35	79.1	75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	12	5	79.3	75.4	77.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	12	35	78.6	75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	13	5	78.7	75.4	76.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	13	35	78.8	75.4	76.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	14	5	79	75.4	76.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	14	35	78.9	75.4	76.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	10 10	15 15	5	79.1	75.4 75.4	76.7	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	10	16	35 5	78.8 79.3	75.4 75.4	76.1 77.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	16	35	78.6	75.4 75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	17	5	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	17	35	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	18	5	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	10	18	35	75.1	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	7	5	75.8	75.4	65.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	7	35	78.1	75.4	74.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	8	5	78.8	75.4	76.1	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School	2013 2013	7 7	11	8 9	35 5	79 79	75.4	76.5	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013	7	11 11	9	35	79.3	75.4 75.4	76.5 77.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	10	5	77.6	75.4 75.4	73.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	10	35	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	11	5	79	75.4	76.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	11	35	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	12	5	78.6	75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	12	35	76.8	75.4	71.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	13	6	78.5	75.4	75.6	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	13	36	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	11 11	14 14	6 36	76.9 76.1	75.4 75.4	71.6 67.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	15	6	76.1	75.4 75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	15	36	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	16	6	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	16	36	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	17	6	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	17	36	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	18	6	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	11	18	36	75.1	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	7	6	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	7	36	76.9	75.4	71.6	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	12 12	8 8	6 36	78.9 76.4	75.4 75.4	76.3 69.5	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	9	6	76.5	75.4 75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	9	36	78.3	75.4 75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	10	6	77.2	75.4	72.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	10	36	76.8	75.4	71.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	11	6	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	11	36	76	75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	12	6	75.8	75.4	65.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	12	36	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	13	6	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	13	36 6	76.5	75.4 75.4	70.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	14	6	76.3	75.4	69.0	78	N

Location ID	Name	Year (YYYY)			Hour (HH)	Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	14	36	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	15	6	76.7	75.4	70.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	15	36	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	16	6	76.6	75.4	70.4	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	12 12	16 17	36 6	77.5 77.1	75.4 75.4	73.3 72.2	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	17	36	75.9	75.4 75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	18	6	75.5	75.4	59.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	12	18	36	74.7	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	7	6	75.5	75.4	59.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	7	36	76 77.4	75.4	67.1	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	13 13	8 8	6 36	77.1 76.9	75.4 75.4	72.2 71.6	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	9	6	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	9	36	76.8	75.4	71.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	10	6	77	75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	10	36	76.9	75.4	71.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	11	6	76	75.4	67.1	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	13 13	11 12	36 6	78.4 75.7	75.4 75.4	75.4 63.9	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	12	36	75.7 75.6	75.4 75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	13	6	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	13	36	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	14	6	77.7	75.4	73.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	14	36	78.5	75.4	75.6	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	13	15 15	6	78 78.4	75.4 75.4	74.5 75.4	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	13 13	16	36 6	77.8	75.4 75.4	74.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	16	36	78.3	75.4	75.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	17	6	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	17	36	77	75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	13	18	6	75.2	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	13	18 7	36	74.6 76.3	75.4 75.4	<baseline level<="" td=""><td>78 70</td><td>N N</td></baseline>	78 70	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	15 15	7	6 36	76.3 79.4	75.4 75.4	69.0 77.2	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	8	6	78.8	75.4	76.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	8	36	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	9	6	78.9	75.4	76.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	9	36	78.3	75.4	75.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	15	10	6	78.1	75.4	74.8	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	15 15	10 11	36 6	78.6 79.7	75.4 75.4	75.8 77.7	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	11	36	79.4	75.4	77.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	12	6	78.5	75.4	75.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	12	43	75.5	75.4	59.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	13	13	76.7	75.4	70.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	13	43	76.6	75.4	70.4	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	15 15	14 14	13 43	77.7 79.1	75.4 75.4	73.8 76.7	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	15	13	79.1	75.4 75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	15	43	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	16	13	77.9	75.4	74.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	16	43	77.5	75.4	73.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	17	13	77 70 F	75.4	71.9	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	15 15	17 18	43 13	76.5 76.1	75.4 75.4	70.0 67.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	15	18	43	74.9	75.4 75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	7	13	76.8	75.4	71.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	7	43	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	8	13	78.8	75.4	76.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	8	43	78.4	75.4	75.4	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013	7 7	16	9	13	78.6	75.4 75.4	75.8 75.2	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013 2013	7	16 16	9 10	43 13	78.3 78.3	75.4 75.4	75.2 75.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	10	43	78.3	75.4 75.4	75.2 75.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	11	13	77.7	75.4	73.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	11	43	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	12	13	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	12	43	75.5	75.4	59.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16 16	13	13	76.3	75.4 75.4	69.0	78 79	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	16 16	13 14	43 13	76.3 76.2	75.4 75.4	69.0 68.5	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	14	43	76.2 77	75.4 75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	15	13	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	15	43	78.3	75.4	75.2	78	N

Location ID	Name	Year (YYYY)			Hour (HH)	Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	16	13	77.6	75.4	73.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	16	43	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	17	13	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	16	17	43	77.8	75.4	74.1	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	16 16	18 18	13 43	75.9 74.8	75.4 75.4	66.3 <baseline level<="" td=""><td>78 78</td><td>N N</td></baseline>	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	7	13	74.6 75.6	75.4 75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	7	43	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	8	13	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	8	43	77.1	75.4	72.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	9	13	78.5	75.4	75.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	9	43	78.5	75.4	75.6	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	17 17	10 10	13 43	77.6 78.1	75.4 75.4	73.6 74.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	11	13	78.4	75.4 75.4	74.8 75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	11	43	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	12	13	78.1	75.4	74.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	12	43	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	13	13	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	13	43	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	14	13	78.1	75.4	74.8	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	17 17	14 15	43 13	78 76.1	75.4 75.4	74.5 67.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	15	43	78.4	75.4 75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	16	13	78.1	75.4	74.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	16	43	77	75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	17	13	77.2	75.4	72.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	17	43	78.3	75.4	75.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	18	13	77.2	75.4	72.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	17	18	43	74.6	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	18 18	7 7	13 43	76.9 78.4	75.4 75.4	71.6 75.4	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	8	13	76. 4 79	75.4 75.4	76.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	8	43	79.2	75.4	76.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	9	13	79.1	75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	9	43	78.8	75.4	76.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	10	13	78.5	75.4	75.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	10	43	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	11	13	77.3	75.4	72.8	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	18 18	11 12	43 13	76.4 76	75.4 75.4	69.5 67.1	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	12	43	76.1	75.4	67.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	13	13	76.8	75.4	71.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	13	43	76.8	75.4	71.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	14	13	77.5	75.4	73.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	14	43	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	15	13	79.1	75.4	76.7	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	18 18	16 16	8 38	78.4 78.8	75.4 75.4	75.4 76.1	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	17	8	78.5	75.4 75.4	75.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	17	38	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	18	8	77.1	75.4	72.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	18	18	38	75.1	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	7	3	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	7	33	78.6	75.4	75.8	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	19 19	8 8	3 33	78.6 78.3	75.4 75.4	75.8 75.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	9	3	78.3	75.4 75.4	75.2 75.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	9	33	78.1	75.4	74.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	10	3	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	10	33	78.5	75.4	75.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	11	3	78.4	75.4	75.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	11	33	78.1	75.4	74.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	12	3	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013	7 7	19	12	33	78.3	75.4 75.4	75.2 74.2	78 79	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School	2013 2013	7	19 19	13 13	3 33	77.9 77.4	75.4 75.4	74.3 73.1	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	14	3	78.2	75.4 75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	14	33	78.2	75.4	75.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	15	3	78.1	75.4	74.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	15	33	77.5	75.4	73.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	16	3	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	16	33	76.4 76.5	75.4 75.4	69.5 70.0	78 79	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	19 19	17 17	3 33	76.5 76.3	75.4 75.4	70.0 69.0	78 78	N N
	2 Good Shophold I lilliary Gollool	_010	•		.,	00	, 0.0	70.4	00.0	, 0	

MTW-1-9- DIFF Content	Location ID	Name	Year (YYYY)			Hour (HH)	Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
Marth	MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	18	3	75.3	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
Marth	MTW-16-1	SKH Good Shepherd Primary School	2013	7	19	18	33	74.9	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MITW-1-6- BIFFLOOD Shippure Primary School 2013 7 20 8 33 77.2 75.4 77.5 78 N		· · ·										
MTW-1-16 SH-1 Good Singhard Prinainey Solthool 2013 7 20 8 33 77.1 75.4 72.2 73 N N MTW-1-16 SH-1 Good Singhard Prinainey Solthool 2013 7 20 9 33 77.6 75.4 73.6 73.6 73 N N MTW-1-16 SH-1 Good Singhard Prinainey Solthool 2013 7 20 10 33 77.3 75.4 72.8 73 N N MTW-1-16 SH-1 Good Singhard Prinainey Solthool 2013 7 20 10 30 77.3 75.4 72.8 73 N N MTW-1-16 SH-1 Good Singhard Prinainey Solthool 2013 7 20 10 30 77.3 75.4 72.8 73 N N MTW-1-16 SH-1 Good Singhard Prinainey Solthool 2013 7 20 10 30 77.3 75.6 75.4 70.9 73 73 N MTW-1-16 SH-1 Good Singhard Prinainey Solthool 2013 7 20 10 30 77.3 75.6 75.4 70.9 73 73 73 74 75.4 75.5 75.5 75.4 75.5 7		· · ·										
Memory M		· · ·										
MITW-16 SMC Good Shephard Primary School 2013 7 20 9 33 77.6 75.4 73.8 78 N		· · ·										
MTW 1-16 SRC Good Shepherd Primary School 2013 7 20 10 20 31 7.5								77.6				
MITW 1-16 SRM-Good Shepined Primary School 0313 7 20 11 3 76.5 75.4 70.0 78 N N N N N N N N N	MTW-16-1	SKH Good Shepherd Primary School	2013	7	20	10	3	77.3	75.4	72.8	78	N
MINU 1-16 SRH-Good Shephord Primary School 2013 7 20 11 33 76 75 4 67.4 78 N		· · ·										
MITW-1-6 SINC Good Shephed Primary School 2013 7 20 12 3 76 75.4 67.6 78 N		· · ·										
MTW-1-16 SKH Good Shephen Primary School 2013 7 20 13 33 75.1 75.4 68.3 78 N		· · ·										
MW-1-16 SKH Cood Shephed Primary School 2013 7 20 13 33 75.1 75.4 75.6 76.8 78 N		· · ·										
MIW-1-16 SKH Good Shepherd Primary School 0.11	MTW-16-1	· · ·	2013	7	20	13	3	76.1	75.4	67.8	78	N
MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 14 33 76.5 75.4 70.0 78 N N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 76.5 75.4 70.0 78 N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 76.5 75.4 70.0 78 N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 76.1 75.4 67.8 78 N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 76.1 75.4 67.8 78 N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 76.1 75.4 67.8 78 N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 76.1 75.4 67.8 78 N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 76.1 75.4 67.8 78 N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 76.1 75.4 67.8 78 N N MIW-1-16 SKH Good Shepherd Primary School 2013 7 22 7 33 75.4 75.4 4.8	MTW-16-1	SKH Good Shepherd Primary School	2013	7	20	13	33	76.1	75.4	67.8	78	N
MTW 1-16 SHC Good Singhender Finany School 2013 7 20 15 33 76.5 75.4 70.0 78 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 16 33 75.1 75.4 66.3 78 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 16 33 75.1 75.4 66.0 78 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 17 23 76 75.4 67.8 67.8 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 18 33 76.1 75.4 67.8 78 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 18 33 76.1 75.4 67.8 78 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 18 33 76.1 75.4 67.8 78 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 18 33 76.1 75.4 67.8 78 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 18 33 76.1 75.4 67.8 R SHC MIN 1-16 SHC Good Singhender Brimany School 2013 7 20 18 33 76.1 75.4 67.8 4 67.8 75.4 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 18 33 76.1 75.4 75.4 75.4 76.8 N N MTW 1-16 SHC Good Singhender Brimany School 2013 7 20 18 33 76.1 75.4 75.		· · ·										
MTW-161 SKH Good Shepherd Primary School 2013 7 20 15 33 76.5 75.4 70.0 78 N N MTW-161 SKH Good Shepherd Primary School 2013 7 20 16 33 75.9 75.4 67.8 78 N N MTW-161 SKH Good Shepherd Primary School 2013 7 20 17 33 76.3 75.4 67.1 78 N N MTW-161 SKH Good Shepherd Primary School 2013 7 20 17 33 76.3 75.4 67.1 78 N N MTW-161 SKH Good Shepherd Primary School 2013 7 20 17 33 76.3 75.4 67.1 78 N N MTW-161 SKH Good Shepherd Primary School 2013 7 20 18 33 76.1 75.4 67.8 R N MTW-161 SKH Good Shepherd Primary School 2013 7 20 18 33 76.1 75.4 67.8 R N MTW-161 SKH Good Shepherd Primary School 2013 7 20 18 33 76.1 75.4 67.8 R SKH Good Shepherd Primary School 2013 7 20 18 33 76.1 75.4 67.8 R SKH Good Shepherd Primary School 2013 7 20 7 30 75.6 75.4 67.8 76.8 N MTW-161 SKH Good Shepherd Primary School 2013 7 20 7		· · ·										
MW-1-16 SKH Good Shepherd Primary School 2013 7 20 16 33 75.1 75.4 68.5 78 N MW-1-16 SKH Good Shepherd Primary School 2013 7 20 17 33 76.5 75.4 69.0 78 N MW-1-16 SKH Good Shepherd Primary School 2013 7 20 17 33 76.5 75.4 69.0 78 N MW-1-16 SKH Good Shepherd Primary School 2013 7 20 18 33 76.1 75.4 67.8 78 N MW-1-16 SKH Good Shepherd Primary School 2013 7 20 18 33 76.1 75.4 67.8 78 N MW-1-16 SKH Good Shepherd Primary School 2013 7 20 18 33 76.1 75.4 68.5 78 N MW-1-16 SKH Good Shepherd Primary School 2013 7 20 20		· · ·										
MTW-161 SKH Good Shiphord Primary School 2013 7 20 16 33 76.1 75.4 67.8 78 N												
MTW-1-15 SKH Good Shepherd Primary School 2013 7 20 17 8 33 76 754 678 78 N		' '										
MTW-161 SKH Good Shepherd Primary School 2013 7 20 18 3 7.47 7.54 - 6.Baseline Level 78 N MTW-161 SKH Good Shepherd Primary School 2013 7 20 8 3 7.54 7.54 - 7.54 - 7.54 7.54 7.54 N MTW-161 SKH Good Shepherd Primary School 2013 7 22 7 3 7.54 7.54 - 7.54 7.54 7.54 7.54 N MTW-161 SKH Good Shepherd Primary School 2013 7 22 8 3 7.68 7.54 7	MTW-16-1	SKH Good Shepherd Primary School	2013	7	20	17	3	76.3	75.4	69.0	78	N
MTW-1-15 SKH Good Shepherd Primary School 2013 7 22 7 3 7-54	MTW-16-1	SKH Good Shepherd Primary School	2013		20	17	33	76	75.4		78	
MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 7 33 75.4 75.4 -Baseline Level 78 N MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 8 3 76.3 75.4 75.4 69.5 78 N MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 9 3 76.5 75.4 75.4 69.5 78 N MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 9 3 76.5 75.4 75.4 69.5 78 N MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 9 3 76.5 75.4 71.6 78 N MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 10 3 76.5 75.4 70.0 78 N MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 10 3 76.5 75.4 70.0 78 N MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 11 3 3 76.5 75.4 70.0 78 N MTW-1-1-1 SKH Good Shepherd Primary School 2013 7 22 11 3 3 76.5 75.4 70.0 78 N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 12 3 3 76.5 75.4 70.0 78 N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 12 3 3 76.5 75.4 70.0 78 N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 12 3 3 76.5 75.4 70.0 78 N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 12 3 3 76.5 75.4 70.0 78 N N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 13 3 76.5 75.4 70.0 78 N N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 15 3 3 76.5 75.4 70.0 78 N N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 15 3 3 76.5 75.4 70.0 78 N N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 15 3 3 76.5 75.4 70.0 78 N N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 15 3 4 75.3 75.5 75.4 75.4 75.4 75.8 N N MTW-1-1 SKH Good Shepherd Primary School 2013 7 22 16 54 75.4 75.4 75.4 75.4 75.4 75.8 N N												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 8 3 3 78.4 75.4 75.4 76 N		' '										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 8 3 76,8 76,4 75,4 69,6 78 N		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 9 3 76.3 75.4 75.4 71.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 10 33 76.5 75.4 71.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 10 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 77.6 75.4 75.4 73.6 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 75.6 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 77.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 54 75.9 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 54 75.9 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.6 75.4 67.6 76.4 76.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.6 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.6 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.6 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 54 76.5 7		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 10 3 76.5 75.4 71.6 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 10 3 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 37.6 75.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 37.6 75.4 75.4 71.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 33 76.5 75.4 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 33 75.5 75.4 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 34 75.9 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 24 76.6 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 24 76.6 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 24 76.1 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 24 76.1 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 24 76.6 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 24 76.6 7	MTW-16-1	SKH Good Shepherd Primary School	2013	7	22	8	33	76.4	75.4	69.5	78	N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 10 3 37, 7 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 77.6 75.4 75.4 76.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 77.6 75.4 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 75.6 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 75.6 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 75.6 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 75.6 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 54 75.9 75.4 75.9 75.4 76.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 54 75.9 75.4 56.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 54 75.9 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 75.9 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.4 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 54 76.4 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 54 76.4 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 34 76.6 75.4 67.4 67.6 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18	MTW-16-1	SKH Good Shepherd Primary School	2013		22		3	76.3	75.4	69.0	78	
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 75.4 73.6 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 73.6 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 73.6 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 34 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 54 75.9 75.4 66.3 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.6 75.4 70.4 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.6 75.4 76.4 69.5 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 54 76.2 75.4 69.5 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 54 76.2 75.4 69.5 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 54 76.2 75.4 69.5 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 24 76.5 75.4 69.5 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 78 24 76.5 75.4 75.4 69.5 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 78 24 76.5 75.4 75.4 69.5 78 N N MTW-16-1 SKH		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 3 37.6 75.4 75.4 73.6 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 3 37.6 75.4 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.5 75.4 69.5 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 69.5 78 N M M M M M M M M M		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 11 33 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.5 75.4 62.1 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 3 77 75.4 71.9 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 75.9 75.4 66.3 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.4 75.4 66.3 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.4 75.4 68.5 78 N M M M M M M M M M		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 12 33 76.5 75.4 62.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.6 75.4 62.1 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 33 75.5 75.4 59.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 54 75.9 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 75.9 75.4 66.3 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.4 75.4 66.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.1 75.4 66.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.2 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 24 76.1 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 24 75.3 75.4 4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 24 75.3 75.4 4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 24 75.3 75.4 4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 24 75.3 75.4 4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 24 75.4 75.4 69.5 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 1		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 75.6 75.4 62.1 78 N	MTW-16-1	· · ·	2013		22	12	3	77.6	75.4	73.6	78	N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 13 33 76.4 75.4 69.5 78 N	MTW-16-1	SKH Good Shepherd Primary School	2013	7	22	12	33	76.5	75.4	70.0	78	N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 76.5 75.4 70.0 78 N												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 14 33 77 75.4 71.9 78 N		'										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 3 75.5 75.4 59.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 15 54 75.9 75.4 66.3 78 N N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 24 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 24 76.1 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 54 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 54 76.2 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 48aseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 48aseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 7 4 74.9 75.4 48aseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 7 4 74.9 75.4 48aseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 34 77.3 75.4												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 24 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.1 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 24 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 24 76.1 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 24 75.3 75.4 <baseline 10="" 12="" 18="" 2013="" 22="" 23="" 24="" 34="" 4="" 67.1="" 67.8="" 7="" 74.9="" 75.3="" 75.4="" 76.1="" 76.3="" 76.4="" 76.6="" 77="" 77.4="" 77.9="" 78="" 8="" 9="" <baseline="" caseline="" good="" level="" m="" m<="" mtw-16-1="" n="" primary="" school="" shepherd="" skh="" td="" =""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></baseline>												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 16 54 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 24 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 «Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 «Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 54 74.5 75.4 «Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 7 4 74.9 75.4 «Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 34 77.3 75.4 «Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 34 77.3 75.4 4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 34 77.3 75.4 72.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 34 76.6 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 34 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 34 76.6 75.4 69.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 34 76.6 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.8 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 76.1 75.4 67.8 78 N MTW-16-1 SKH	MTW-16-1	· · ·		7	22	15	54	75.9	75.4			N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 24 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 76.2 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 <baseline 10="" 11="" 12="" 13="" 18="" 2013="" 22="" 23="" 34="" 4="" 54="" 67.1="" 67.5="" 67.8="" 69.0="" 69.5="" 7="" 71.9="" 74.5="" 74.9="" 75.4="" 76.1="" 76.3="" 76.4="" 76.6="" 76.8="" 77="" 77.3="" 78="" 8="" 9="" <baseline="" good="" level="" m="" m<="" mtw-16-1="" n="" primary="" school="" shepherd="" skh="" td="" =""><td>MTW-16-1</td><td>SKH Good Shepherd Primary School</td><td>2013</td><td>7</td><td>22</td><td>16</td><td>24</td><td>76.6</td><td>75.4</td><td>70.4</td><td>78</td><td>N</td></baseline>	MTW-16-1	SKH Good Shepherd Primary School	2013	7	22	16	24	76.6	75.4	70.4	78	N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 17 54 76.2 75.4 68.5 78 N												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 24 75.3 75.4 -Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 54 74.5 75.4 -Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 7 4 76.4 75.4 -Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 4 77.3 75.4 72.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 3 77 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 34 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 22 18 54 74.5 75.4 - 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 7 4 74.9 75.4 - 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 4 77.3 75.4 72.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 4 77.3 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 4 77.7 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 4 76.3 75.4 69.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 4 76.3 75.4		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 7 4 74.9 75.4 - Baseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 7 34 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 4 77.3 75.4 72.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 4 77 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 34 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 4 76.3 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 4 76.8 75.4<!--</td--><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>		·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 4 77.3 75.4 72.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 34 77 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 4 77 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 4 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 4 76.8 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.1 75.4 67.8		'										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 8 34 77 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 4 77 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 34 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 4 76.3 75.4 69.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 4 76.8 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 4 76.1 75.4 67.8 <td>MTW-16-1</td> <td>SKH Good Shepherd Primary School</td> <td>2013</td> <td>7</td> <td>23</td> <td>7</td> <td>34</td> <td>76.4</td> <td>75.4</td> <td>69.5</td> <td>78</td> <td>N</td>	MTW-16-1	SKH Good Shepherd Primary School	2013	7	23	7	34	76.4	75.4	69.5	78	N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 4 77 75.4 71.9 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 34 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 4 76.3 75.4 69.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 4 76.8 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 75.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 76.1 75.4 67.												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 9 34 76.6 75.4 70.4 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 4 76.3 75.4 69.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 4 76.8 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 4 76 75.4 67.1<												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 4 76.3 75.4 69.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 4 76.8 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 76.1 75.4 48aseline Level 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 34 76.2 75.4												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 10 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 4 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 75.1 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 4 76.2 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 4 76.5 75.4 69		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 11 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 75.1 75.4 <8aseline Level												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 75.1 75.4 <baseline level<="" td=""> 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 4 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 34 76.2 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 4 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 34 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 4 76.4 75.4</baseline>	MTW-16-1	SKH Good Shepherd Primary School	2013	7	23	11	4	76.8	75.4	71.2	78	N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 12 34 75.1 75.4 <baseline level<="" th=""> 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 4 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 34 76.2 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 4 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 34 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 4 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 34 76.1 75.4</baseline>		SKH Good Shepherd Primary School	2013	7	23	11	34	76.1	75.4	67.8	78	N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 4 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 34 76.2 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 4 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 34 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 4 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 34 76.1 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 4 76.1 75.4 67												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 13 34 76.2 75.4 68.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 4 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 34 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 4 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 34 76.1 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 34 77.8 75.4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 4 76.5 75.4 70.0 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 34 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 4 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 34 77.8 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 4 76.8 75.4												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 14 34 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 4 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 34 77.8 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 4 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 34 76 75.4 6		· · ·										
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 4 76.4 75.4 69.5 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 15 34 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 34 77.8 75.4 74.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 4 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 4 76.1 75.4 67												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 34 77.8 75.4 74.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 4 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 34 74.8 75.4 </td <td></td>												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 16 34 77.8 75.4 74.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 4 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 34 74.8 75.4 48seline Level 78 N			2013		23	15		76.1	75.4	67.8	78	N
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 4 76.8 75.4 71.2 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 34 74.8 75.4 <baseline level<="" td=""> 78 N</baseline>												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 17 34 76 75.4 67.1 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 34 74.8 75.4 <baseline level<="" td=""> 78 N</baseline>												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 4 76.1 75.4 67.8 78 N MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 34 74.8 75.4 <baseline 78="" level="" n<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></baseline>												
MTW-16-1 SKH Good Shepherd Primary School 2013 7 23 18 34 74.8 75.4 <baseline 78="" level="" n<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></baseline>												
		· · ·										


Location ID	Name	Year (YYYY)			Hour (HH)	Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	7	34	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	8	4	77	75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	8	34	76	75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	9	4	77 70.0	75.4	71.9	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	24 24	9 10	34 4	76.3 76.3	75.4 75.4	69.0 69.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	10	34	76.6	75.4 75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	11	4	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	11	34	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	12	4	75.3	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	12	34	76.7	75.4	70.8	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	24 24	13 13	4 34	77.7 76.8	75.4 75.4	73.8 71.2	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	14	4	76.3	75.4 75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	14	34	76.1	75.4	67.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	15	4	76.1	75.4	67.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	15	34	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	16	4	75.7	75.4	63.9	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	24 24	16 17	34 4	76.1 75.7	75.4 75.4	67.8 63.9	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	17	34	76.4	75.4 75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	18	4	74.1	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	24	18	34	74	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	7	4	75.2	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	7	34	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	8	4	76.7	75.4	70.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	8	34	76.9	75.4	71.6	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	25 25	9 9	4 34	76.6 76.4	75.4 75.4	70.4 69.5	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	10	4	76.4	75.4 75.4	72.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	10	34	78.3	75.4	75.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	11	4	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	11	34	75.5	75.4	59.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	12	4	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	12	34	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	13	4	76.7	75.4	70.8	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	25 25	13 14	34 4	77.9 77.7	75.4 75.4	74.3 73.8	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	14	34	76.3	75.4 75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	15	4	76.6	75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	15	31	77.1	75.4	72.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	16	1	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	16	31	76	75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	17	1	75.8	75.4	65.2	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	25 25	17 18	31 1	76.5 75.8	75.4 75.4	70.0 65.2	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	18	31	75.0	75.4 75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	25	19	1	74.6	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	7	1	75.2	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	7	31	77.1	75.4	72.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	8	1	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	8	31	76.4	75.4	69.5	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	26 26	9 9	1 31	79 78.5	75.4 75.4	76.5 75.6	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	10	1	78.5	75.4	75.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	10	31	79	75.4	76.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	11	1	79.1	75.4	76.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	11	31	76.7	75.4	70.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	12	1	75.2	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	12	31	75.5	75.4	59.1	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013	7 7	26	13	1	78.3 78.3	75.4	75.2 75.2	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013 2013	7	26 26	13 14	31 1	78.9	75.4 75.4	76.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	14	31	78.9	75.4	76.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	15	1	77.2	75.4	72.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	15	31	77.8	75.4	74.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	16	1	77.3	75.4	72.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	16	31	76.5	75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	17	1	76.7	75.4	70.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26 26	17	31	77.2 75.7	75.4 75.4	72.5	78 79	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	26 26	18 18	1 31	75.7 74.9	75.4 75.4	63.9 <baseline level<="" td=""><td>78 78</td><td>N N</td></baseline>	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	26	19	1	74.5	75.4 75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	7	1	76.3	75.4	69.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	7	31	76.7	75.4	70.8	78	N

Location ID	Name	Year (YYYY)			Hour (HH)	Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	8	1	76.6	75.4	70.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	8	31	76.4	75.4	69.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	9	1	76.9	75.4	71.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	9	31	77.2	75.4	72.5	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	27 27	10 10	1 31	77.8 78.2	75.4 75.4	74.1 75.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	11	1	77.7	75.4 75.4	73.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	11	31	75.8	75.4	65.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	12	1	75.7	75.4	63.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	12	31	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	13	1	78 77 7	75.4	74.5	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	27 27	13 14	31 1	77.7 76	75.4 75.4	73.8 67.1	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	14	31	76.5	75.4 75.4	70.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	15	1	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	15	31	76.1	75.4	67.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	16	1	76	75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	16	31	76.7	75.4	70.8	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	27 27	17 17	1 31	75.7 75.5	75.4 75.4	63.9 59.1	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	18	1	75.3 75.3	75.4 75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	18	31	75	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	27	19	1	74.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	7	1	74.9	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	7	31	76	75.4	67.1	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013	7 7	29	8 8	1 31	76.5 76.3	75.4 75.4	70.0 69.0	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013 2013	7	29 29	9	1	76.3 76.7	75.4 75.4	70.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	9	31	84	75.4	83.4	78	Y
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	10	1	83.8	75.4	83.1	78	Υ
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	10	31	83.7	75.4	83.0	78	Υ
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	11	1	79.5	75.4	77.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	29	11	31 1	75.6 75.7	75.4 75.4	62.1	78 70	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	29 29	12 12	31	75.7 75.5	75.4 75.4	63.9 59.1	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	13	43	83.4	75.4	82.7	78	Y
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	14	13	79.5	75.4	77.4	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	14	43	78.7	75.4	76.0	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	15	13	78.1	75.4	74.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7 7	29	15	43	82 77.7	75.4	80.9	78 70	Y
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7	29 29	16 16	13 43	77.7 75.2	75.4 75.4	73.8 <baseline level<="" td=""><td>78 78</td><td>N N</td></baseline>	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	17	13	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	17	43	75	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	18	13	75	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	29	18	43	74.5	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	7	3	75.5 76.0	75.4	59.1	78 70	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	30 30	7 8	33 3	76.3 77.9	75.4 75.4	69.0 74.3	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	8	33	83.8	75.4 75.4	83.1	78	Y
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	9	3	83.4	75.4	82.7	78	Υ
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	9	33	77.6	75.4	73.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	10	3	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	10	33	77.5	75.4	73.3	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	30 30	11 11	3 33	75.8 75.7	75.4 75.4	65.2 63.9	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	12	3	75.7 75.1	75.4 75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	12	33	75.7	75.4	63.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	13	3	75.9	75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	13	33	76.3	75.4	69	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	14	3	78.3	75.4	75.2	78	N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013	7 7	30	14	33	81.4 76.4	75.4 75.4	80.1 69.5	78 78	Y N
MTW-16-1	SKH Good Shepherd Primary School	2013 2013	7	30 30	15 15	3 33	75.9	75.4 75.4	66.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	16	3	75.6	75.4 75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	16	33	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	17	3	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	17	33	75.3	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	18	3	75.2	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	30	18 7	33	74.6	75.4 75.4	<baseline level<="" td=""><td>78 79</td><td>N N</td></baseline>	78 79	N N
MTW-16-1 MTW-16-1	SKH Good Shepherd Primary School SKH Good Shepherd Primary School	2013 2013	7 7	31 31	7 7	3 33	74.8 75.6	75.4 75.4	<baseline level<br="">62.1</baseline>	78 78	N N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	8	3	75.6	75.4 75.4	72.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	8	33	77.3	75.4	72.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	9	3	75.6	75.4	62.1	78	N

Location ID	Name	Year (YYYY)	Month (MM)		Hour (HH)	Minutes (MM)	Measured LAeq,30mi ns	Baseline Level (LAeq, 30mins)	Corrected Results (dB(A)) (LAeq, 30mins)	Action/Limit Level (as in CNMP)	Exceedance
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	9	33	77.2	75.4	72.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	10	3	79.7	75.4	77.7	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	10	33	79.6	75.4	77.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	11	3	79.2	75.4	76.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	11	33	75	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	12	3	74.5	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	12	33	75.2	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	13	3	77	75.4	71.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	13	33	78.5	75.4	75.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	14	3	77.1	75.4	72.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	14	33	78.6	75.4	75.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	15	3	78.9	75.4	76.3	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	15	33	76.8	75.4	71.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	16	3	77.4	75.4	73.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	16	33	78	75.4	74.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	17	3	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	17	33	75.7	75.4	63.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	18	3	75.4	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	7	31	18	33	75.8	75.4	65.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	7	3	74.7	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	7	33	75.5	75.4	59.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	8	3	76.5	75.4	70	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	8	33	76.9	75.4	71.6	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	9	3	75.7	75.4	63.9	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	9	33	75.5	75.4	59.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	10	3	77.1	75.4	72.2	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	10	33	77.3	75.4	72.8	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	11	3	76.2	75.4	68.5	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	11	33	75.6	75.4	62.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	12	3	75.2	75.4	<baseline level<="" td=""><td>78</td><td>N</td></baseline>	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	12	33	76	75.4	67.1	78	N
MTW-16-1	SKH Good Shepherd Primary School	2013	8	1	13	3	76.8	75.4	71.2	78	N

Continuous Noise Monitoring at MTW-16-1 (SKH Good Shepherd Primary School) in June 2013- (LAeq, 30min)

▲ Corrected Results (dB(A))

Monitoring Date

Remarks:

- For those corrected noise levels that are not shown the in this graph, the measured noise levels are below baseline level.

Annex J

Construction Dust Monitoring Results and Wind Data Monitoring Results

Annex J Construction Dust Monitoring Results

Station DMS-6 Katherine Building

Otation	DIVIO-0	Ratherine	Danani	1														
									Sampling		_			Action	Limit	Observations /		l l
Start		Finish		Weather	Filter We	eight (g)	Elapsed Tir	ne Reading	Time	Flow Rat	e (m³/min)		TSP Conc.	Level	Level	Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(μg/m ³)	(µg/m³)	(μg/m ³)		ID	ID
																Construction		
02-Jul-13	11:10	03-Jul-13	11:10	Fine	2.8741	3.0119	11336.30	11360.30	24.00	1.37	1.37	1.37	70	156.8	260	work in progress	0107	7710
																Construction		
08-Jul-13	11:10	09-Jul-13	11:10	Sunny	2.8699	3.0086	11360.30	11384.30	24.00	1.37	1.37	1.37	70	156.8	260	work in progress	0107	7733
																Construction		
13-Jul-13	9:20	14-Jul-13	9:20	Sunny	2.8818	3.0280	11384.30	11408.30	24.00	1.26	1.26	1.26	81	156.8	260	work in progress	0107	7756
																Construction		
19-Jul-13	11:05	20-Jul-13	11:05	Fine	2.8840	3.0069	11408.30	11432.30	24.00	1.26	1.26	1.26	68	156.8	260	work in progress	0107	7795
																Construction		
25-Jul-13	11:05	26-Jul-13	11:05	Rainy	2.8175	2.9607	11432.30	11456.30	24.00	1.26	1.26	1.26	79	156.8	260	work in progress	0107	7842
																Construction		
31-Jul-13	11:15	01-Aug-13	11:15	Fine	2.8166	2.9559	11456.30	11480.30	24.00	1.26	1.26	1.26	77	156.8	260	work in progress	0107	7883
													0.0	1				

Minimum 68
Average 74
Maximum 81

Station	DMS-7	Parc 22																
									Sampling					Action	Limit	Observations /		
Start		Finish		Weather	Filter We	ight (g)	Elapsed Tir	ne Reading	Time	Flow Rat	e (m³/min)		TSP Conc.	Level	Level	Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(μg/m ³)	(µg/m³)	(μg/m ³)		ID	ID
												_				Construction		
02-Jul-13	10:15	03-Jul-13	10:15	Fine	2.8972	3.0491	01513.17	01537.17	24.00	1.24	1.24	1.24	85	156.8	260	work in progress	3574	7709
																Construction		
08-Jul-13	10:15	09-Jul-13	10:15	Sunny	2.8700	3.0119	01537.17	01561.17	24.00	1.24	1.24	1.24	79	166.7	260	work in progress	3574	7732
																Construction		
13-Jul-13	9:10	14-Jul-13	9:10	Sunny	2.8989	3.0269	01561.17	01585.17	24.00	1.23	1.23	1.23	72	166.7	260	work in progress	3574	7755
																Construction		
19-Jul-13	10:10	20-Jul-13	10:10	Fine	2.8808	3.0021	01585.17	10609.17	24.00	1.24	1.22	1.22	69	166.7	260	work in progress	3574	7794
																Construction		
25-Jul-13	10:17	26-Jul-13	10:17	Rainy	2.8335	2.9691	01609.17	01633.17	24.00	1.23	1.23	1.23	77	166.7	260	work in progress	3574	7841
																Construction		
31-Jul-13	10:20	01-Aug-13	10:20	Fine	2.8175	2.9662	01633.17	01657.17	24.00	1.23	1.23	1.23	84	166.7	260	work in progress	3574	7882

Minimum 69 Average 78 Maximum 85

Station	DMS-8	SKH Goo	d Sheph	erd Primary	School													
									Sampling					Action	Limit	Observations /		
Start		Finish		Weather	Filter We	ight (g)	Elapsed Tir	me Reading	Time	Flow Rat	e (m³/min)		TSP Conc.	Level	Level	Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(µg/m³)	(µg/m³)	(µg/m³)		ID	ID
																Construction		
02-Jul-13	8:38	03-Jul-13	8:38	Fine	2.8798	3.0114	01483.11	01507.11	24.00	1.25	1.25	1.25	73	152.2	260	work in progress	3572	7708
																Construction		
08-Jul-13	8:43	09-Jul-13	8:43	Fine	2.8801	3.0256	01507.11	01531.11	24.00	1.25	1.25	1.25	81	152.2	260	work in progress	3572	7730
																Construction		
13-Jul-13	8:50	14-Jul-13	8:50	Sunny	2.8888	3.0331	01531.11	01555.11	24.00	1.23	1.23	1.23	81	152.2	260	work in progress	3572	7754
																Construction		
19-Jul-13	8:43	20-Jul-13	8:43	Fine	2.8690	2.9989	01555.11	1579.11	24.00	1.23	1.23	1.23	73	152.2	260	work in progress	3572	7793
																Construction		
25-Jul-13	8:43	26-Jul-13	8:43	Rainy	2.8117	2.9600	01579.11	01603.11	24.00	1.23	1.23	1.23	84	152.2	260	work in progress	3572	7840
																Construction		
31-Jul-13	8:50	01-Aug-13	8:50	Fine	2.8127	2.9771	01603.11	01627.11	24.00	1.23	1.23	1.23	93	152.2	260	work in progress	3572	7881
					•					•		Minimum	73					

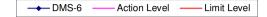
 Minimum
 73

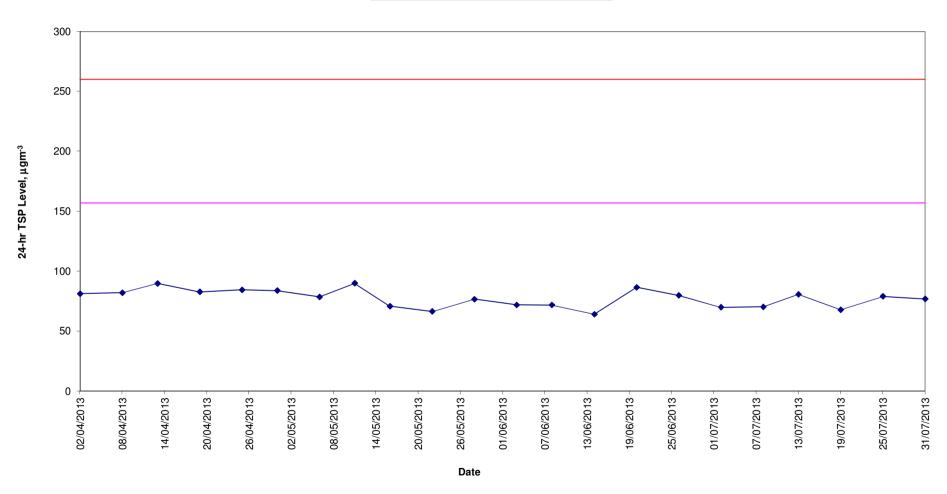
 Average
 81

 Maximum
 93

DMS-9	No. 26 Ko	owloon C	ity Road														
								Sampling					Action	Limit	Observations /		
Start		Finish		Filter Weight (g)		Elapsed Time Reading		Time	Flow Rate (m ³ /min)			TSP Conc.	Level	Level	Remarks	Sampler	Filter
Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(μg/m ³)	(µg/m³)	(μg/m ³)		ID	ID
															Construction		
9:17	03-Jul-13	9:17	Fine	2.8813	3.0241	12225.40	12249.40	24.00	1.21	1.21	1.21	82	160.9	260	work in progress	0814	7707
															Construction		
8:14	09-Jul-13	8:14	Fine	2.8855	3.0221	12225.40	12249.40	24.00	1.21	1.21	1.21	78	160.9	260		0814	7730
															Construction		
8:42	14-Jul-13	8:42	Sunny	2.8863	3.0258	12249.40	12273.40	24.00	1.24	1.24	1.24	78	160.9	260		0814	7753
8:51	20-Jul-13	8:51	Fine	2.8625	3.0015	12273.40	12297.40	24.00	1.24	1.24	1.24	78	160.9	260		0814	7792
9:22	26-Jul-13	9:22	Rainy	2.8242	2.9577	12297.40	12321.40	24.00	1.24	1.24	1.24	75	160.9	260		0814	7839
9:23	01-Aug-13	9:23	Fine	2.8069	2.9677	12321.40	12345.40	24.00	1.24	1.24		90	160.9	260	work in progress	0814	7880
	Time 9:17 8:14 8:42 8:51	Finish Time Date 9:17 03-Jul-13 8:14 09-Jul-13 8:42 14-Jul-13 8:51 20-Jul-13 9:22 26-Jul-13	Finish Time Date Time 9:17 03-Jul-13 9:17 8:14 09-Jul-13 8:14 8:42 14-Jul-13 8:42 8:51 20-Jul-13 8:51 9:22 26-Jul-13 9:22	Finish Weather Time Date Time 9:17 03-Jul-13 9:17 Fine 8:14 09-Jul-13 8:14 Fine 8:42 14-Jul-13 8:42 Sunny 8:51 20-Jul-13 8:51 Fine 9:22 26-Jul-13 9:22 Rainy	Finish Weather Filter Weather Date Time 9:17 03-Jul-13 9:17 Fine 2.8813 8:14 09-Jul-13 8:14 Fine 2.8855 8:42 14-Jul-13 8:42 Sunny 2.8863 8:51 20-Jul-13 8:51 Fine 2.8625 9:22 26-Jul-13 9:22 Rainy 2.8242	Finish Weather Filter Weight (g) Time Date Time Initial Final 9:17 03-Jul-13 9:17 Fine 2.8813 3.0241 8:14 09-Jul-13 8:14 Fine 2.8855 3.0221 8:42 14-Jul-13 8:42 Sunny 2.8863 3.0258 8:51 20-Jul-13 8:51 Fine 2.8625 3.0015 9:22 26-Jul-13 9:22 Rainy 2.8242 2.9577	Finish Weather Filter Weight (g) Elapsed Tir 9:17 03-Jul-13 9:17 Fine 2.8813 3.0241 12225.40 8:14 09-Jul-13 8:14 Fine 2.8855 3.0221 12225.40 8:42 14-Jul-13 8:42 Sunny 2.8863 3.0258 12249.40 8:51 20-Jul-13 8:51 Fine 2.8625 3.0015 12273.40 9:22 26-Jul-13 9:22 Rainy 2.8242 2.9577 12297.40	Finish Weather Filter Weight (g) Elapsed Time Reading Time Date Time Initial Final Initial Final 9:17 03-Jul-13 9:17 Fine 2.8813 3.0241 12225.40 12249.40 8:14 09-Jul-13 8:14 Fine 2.8855 3.0221 12225.40 12249.40 8:42 Sunny 2.8863 3.0258 12249.40 12273.40 8:51 20-Jul-13 8:51 Fine 2.8625 3.0015 12273.40 12297.40 9:22 26-Jul-13 9:22 Rainy 2.8242 2.9577 12297.40 12321.40	Finish Weather Filter Weight (g) Elapsed Time Reading Time Date Time Initial Final Initial Final (hrs) 9:17 03-Jul-13 9:17 Fine 2.8813 3.0241 12225.40 12249.40 24.00 8:14 09-Jul-13 8:14 Fine 2.8855 3.0221 12225.40 12249.40 24.00 8:42 14-Jul-13 8:42 Sunny 2.8863 3.0258 12249.40 12273.40 24.00 8:51 20-Jul-13 8:51 Fine 2.8625 3.0015 12273.40 12297.40 24.00 9:22 26-Jul-13 9:22 Rainy 2.8242 2.9577 12297.40 12321.40 24.00	Finish Weather Filter Weight (g) Elapsed Time Reading Time Flow Rat Time Date Time Initial Final Initial Final (hrs) Initial F	Finish Weather Filter Weight (g) Elapsed Time Reading Time Flow Rate (m³/min)	Finish Weather Filter Weight (g) Elapsed Time Reading Time Flow Rate (m³/min)	Finish Weather Filter Weight (g) Elapsed Time Reading Time Flow Rate (m³/min) TSP Conc.	Finish Weather Filter Weight (g) Elapsed Time Reading Time Flow Rate (m³/min) TSP Conc. Level (µg/m³)	Finish Weather Filter Weight (g) Elapsed Time Reading Time Flow Rate (m³/min) TSP Conc. Level Lev	Finish Weather Filter Weight (g) Elapsed Time Reading Time Flow Rate (m³/min) TSP Conc. Level Lev	Finish Weather Filter Weight (g) Elapsed Time Reading Time Flow Rate (m³/min) TSP Conc. Level Level Remarks Sampler

 Minimum
 75

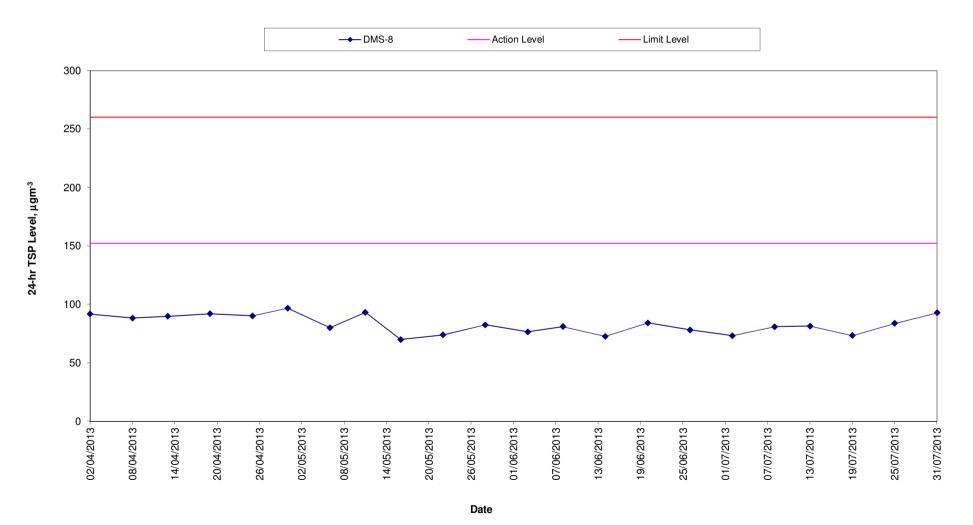

 Average
 80


 Maximum
 90

Station	DMS-10	Chat Ma N	Mansion															
									Sampling		•			Action	Limit	Observations /		
Start		Finish		Weather Filter Weight (g)		Elapsed Time Reading		Time	Flow Rate (m ³ /min)			TSP Conc.	Level	Level	Remarks	Sampler	Filter	
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(μg/m ³)	(µg/m³)	$(\mu g/m^3)$		ID	ID
																Construction		
02-Jul-13	9:33	03-Jul-13	9:33	Fine	2.8813	3.0295	01501.20	01525.20	24.00	1.24	1.24	1.24	83	170.4	260	work in progress	3573	7706
																Construction		
08-Jul-13	9:33	09-Jul-13	9:33	Fine	2.8822	3.0197	01525.20	01549.20	24.00	1.24	1.24	1.24	77	170.4	260	work in progress	3573	7729
																Construction		
13-Jul-13	8:30	14-Jul-13	8:30	Sunny	2.8988	3.0369	01549.20	01573.20	24.00	1.22	1.22	1.22	79	170.4	260	work in progress	3573	7752
																Construction		
19-Jul-13	9:25	20-Jul-13	9:25	Fine	2.8616	3.0115	01573.20	1597.20	24.00	1.22	1.22	1.22	85	170.4	260	work in progress	3573	7791
																Construction		
25-Jul-13	9:35	26-Jul-13	9:35	Rainy	2.8069	2.9609	01597.20	01621.20	24.00	1.22	1.22	1.22	88	170.4	260	work in progress	3573	7838
																Construction		
31-Jul-13	9:38	01-Aug-13	9:38	Fine	2.8441	2.9903	01621.20	01645.20	24.00	1.22	1.22	1.22	83	170.4	260	work in progress	3573	7879

Minimum 77 Average 82 Maximum 88

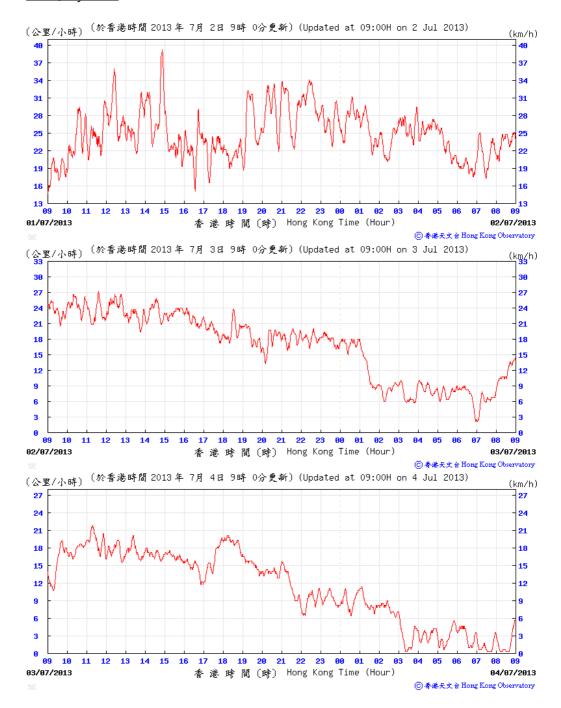
Construction Dust Monitoring Results for the Past 4 Months DMS-6 (Katherine Building)



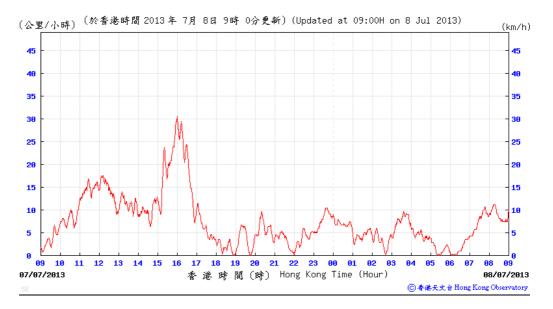

Construction Dust Monitoring Results for the Past 4 Months DMS- 7 (Parc 22)

Construction Dust Monitoring Results for the Past 4 Months DMS-8 (SKH Good Shepherd Primary School)

Construction Dust Monitoring Results for the Past 4 Months DMS-9 (No. 26 Kowloon City Road)

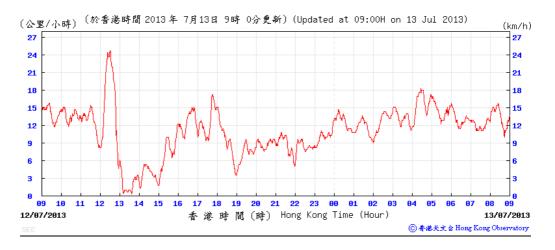


Construction Dust Monitoring Results for the Past 4 Months DMS-10 (Chat Ma Mansion)

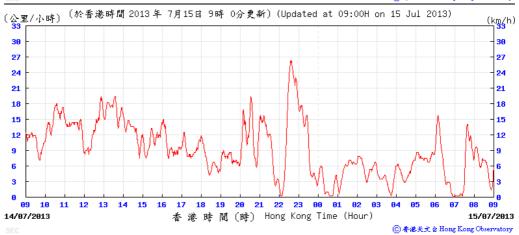


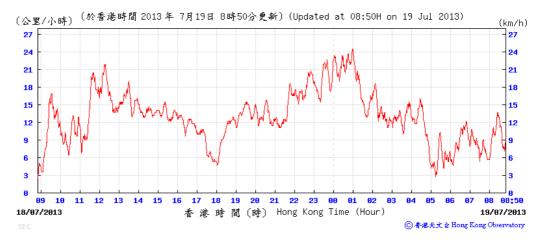

Average wind speed obtained from the meteorological station at Kai Tak from the Hong Kong Observatory (HKO)

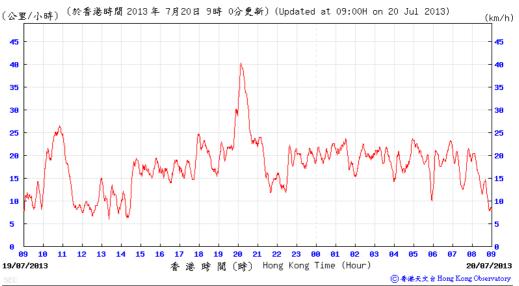
2 – 3 July 2013

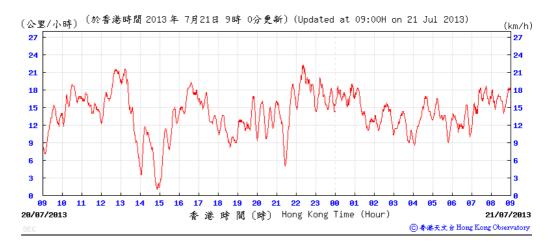


8 - 9 July 2013

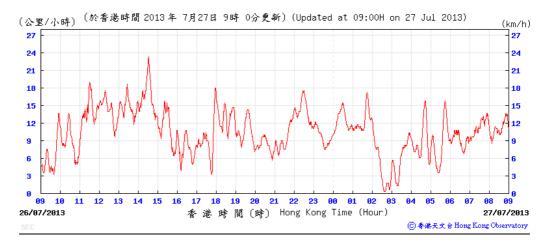


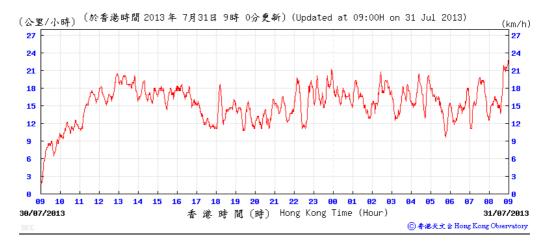

13-14 July 2013

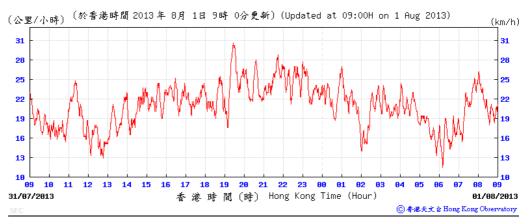


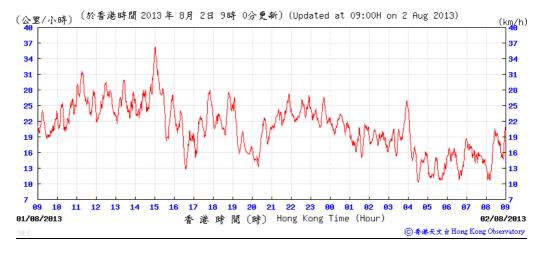


19 - 20 July 2013

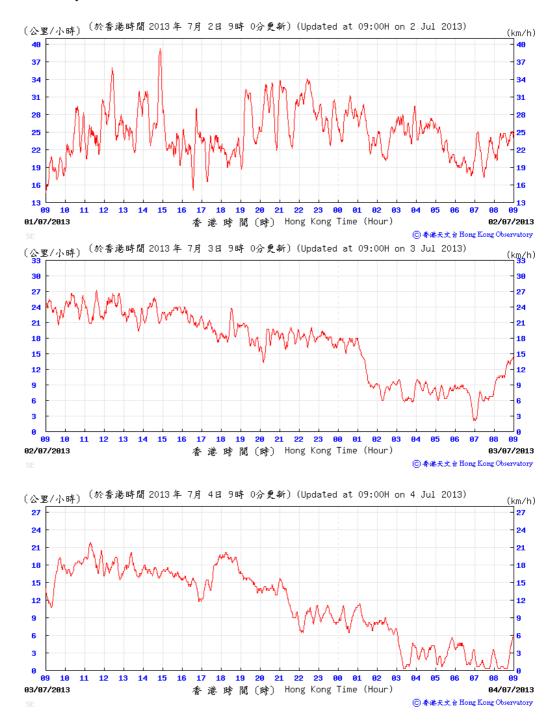



25- 26 July 2013





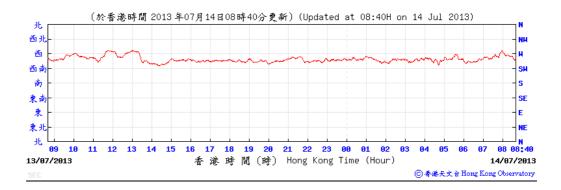
31 July - 1 August 2013

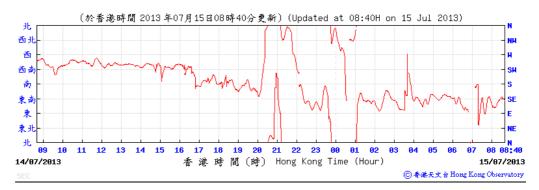


Average wind direction obtained from the meteorological station at Kai Tak from the Hong Kong Observatory (HKO)

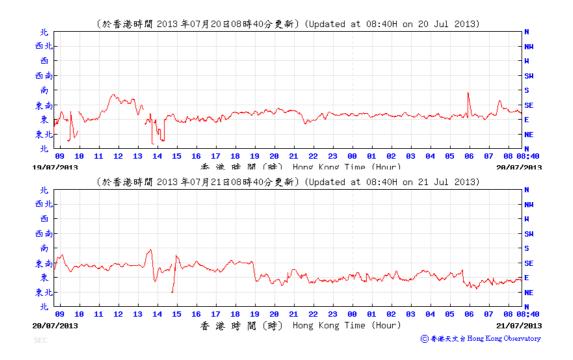
2 – 3 July 2013

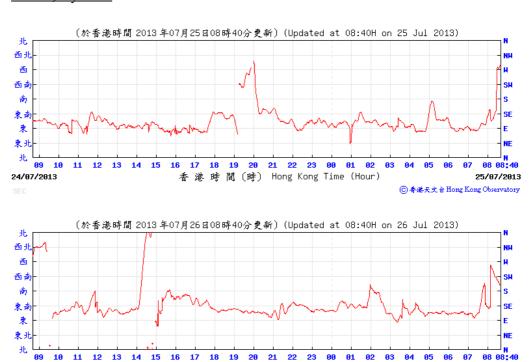
8 - 9 July 2013



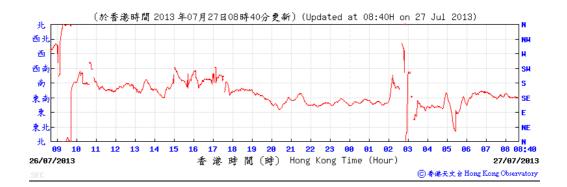


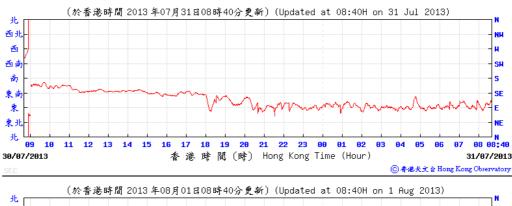
13-14 July 2013

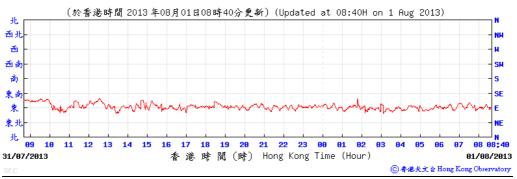



<u>19 – 20 July 2013</u>

25- 26 July 2013


25/07/2013


香港時間(時) Hong Kong Time (Hour)


26/07/2013

© 香港天文 含 Hong Kong Observatory

31 July - 1 August 2013

Annex K

Waste Flow Table

Annex K - Waste Flow Table

Monthly Summary Waste Flow Table for the year 2012-2013

	Actu	ıal Quantities of In	ert C&D Material	s Generated Month	nly			Actual Quantities of No	tes Generated Mor	nthly		
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete (See Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill (See Note 5)	Inert C&D Materials Delivered to 1108A Kai Tai Barging Facilities (See Note 6)	Metals	Paper/ cardboard packaging	Plastics (See Note 2)	Chemical Waste (See Note 10)	Others, e.g. general refuse (See Note 5)	Imported Fill
	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in'000kg)	(in '000m ³)	(in '000m³)
Jan												
Feb												
Mar	= =	==		==	==		==		==	==	==	==
Apr												
May	==	==		==	==		==		==	==	==	==
June	= =	= =	==	= =	= =		= =	= =	= =	= =		= =
July												
Aug												
Sub-total												
Sept	0.004	0.000	0.000	0.000	0.004	-	0.000	0.000	5.300	0.000	0.144	0.000
Oct	0.000	0.000	0.000	0.000	0.000	-	12.800	0.242	0.013	0.000	0.514	0.000
Nov	0.624	0.000	0.605	0.000	0.019	-	0.000	0.154	0.002	0.000	0.172	6.804
Dec	16.844	0.000	0.000	0.000	0.005	16.839	0.000	0.000	0.000	0.000	0.057	0.000
Jan	19.828	0.000	0.000	0.000	0.006	19.822	0.000	0.036 (See Note 7)	0.416	0.000	0.081 (See Note 8)	0.000
Feb	8.372	0.000	0.000	0.000	0.005	8.366	0.000	0.036	0.443	0.000	0.021	0.000
March	14.673	0.000	0.000	0.000	0.000	14.673	0.000	0.036	0.463	0.000	0.064 (See Note 9)	0.000
April	13.557	0.000	0.000	0.000	0.025	13.533	0.000	0.036	0.148	0.000	0.086	0.000
May	9.969	0.000	0.000	0.000	0.000	9.969	0.000	0.000	0.481	0.000	0.065	0.000
June	5.538	0.000	0.000	0.000	0.000	5.538	0.000	0.045	0.784	0.32 (See Note 11)	0.065	0.000
July	6.116	0.000	0.000	0.000	0.000	6.116	0.000	0.063	0.868	0.400	0.058	0.000
Total	95.526	0.000	0.605	0.000	0.064	94.856	12.800	0.612	8.918	0.720	1.182	6.804

Notes

- -1 The performance targets are given below:
 - All excavated materials to be sorted for recovering the inert portion of C&D materials, e.g. hard rocks, soil and broken concrete, for reuse on the Site or disposal to designated outlets;
 - All metallic waste to be recovered for collection by recycling contractors;
 - All cardboard and paper packaging (for plant, equipment and materials) to be recovered, properly stockpiled in dry and covered condition to prevent cross contamination;
 - All chemical wastes to be collected and properly disposed of by specialist contractors; and
 - All demolition debris to be stored to recover broken concrete, reinforcement bars, mechanical and electrical fittings, hardware as well as other fitting / materials that have established recycling outlets.
- Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- Broken concrete for recycling into aggregates.
- -4 The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- Density Assumption: 1.6(kg/l) for Public Fill and 0.9(kg/l) for General Refuse
- Inert C&D Material was delivered to contract 1108A from 10-Dec-2012.
- -7 The quantity of paper/ cardboard packaging generated in January 2013 was updated by the Contractor in March 2013.
- -8 The quantity of general refuse generated in January 2013 was updated by the Contractor in March 2013.
- -9 The quantity of general refuse generated in March 2013 was updated by the Contractor in April 2013.
- -10 Chemical waste includes waste oil. It is assumed density of waste oil to be 0.8 kg/L.
- -11 The quantity of chemical waste generated in June 2013 was updated by the Contractor in August 2013.

Annex L

(Not Used)

Annex M

Environmental Complaint, Environmental Summon and Prosecution

Annex M Environmental Complaint, Environmental Summon and Prosecution Log

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
September 2012	0	0
October 2012	0	0
November 2012	0	0
December 2012	0	0
January 2013	0	0
February 2013	0	0
March 2013	0	0
April 2013	0	0
May 2013	0	0
June 2013	0	0
July 2013	0	0
Overall Total	0	0

Appendix C

8th EM&A Report for Works Contract 1101 – Ma On Shan Line Modification Works

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Monthly EM&A Report
[Period from 1 to 31 July 2013]

Works Contract 1101

Ma On Shan Modification Works

(August 2013)

Certified by	:James Choi_	alus
Position: _	Environmental Te	eam Leader
Date:	14 August 2012	

EDMS Consulting Limited

SCL Contract No. 1101

Ma On Shan Line Modification Works

Monthly EM&A Report (SCL) (July 2013)

for

Sun Fook Kong Joint Venture

Prepared By	Checked By		Approved for Issue	
E Yue	A Lee	A	J Choi Ollies	
Version	0	Date	2 August 2013	
1				

The information contained in this report is, to the best of our knowledge, correct at the time of printing. The interpretation and recommendations in the report are based on our experience, using reasonable professional skill and judgment, and based upon the information that was available to us. These interpretations and recommendations are not necessarily relevant to any aspect outside the restricted requirements of the brief. This report has been prepared for the sole and specific use of our client and EDMS Consulting Limited accepts no responsibility for its use by others.

This report is copyright and may not be reproduced in whole or in part without prior written permission. All rights reserved.

Table of Contents

EXE	CUTIVE	E SUMMARY	1
1.	INTE	RODUCTION	2
	1.1	Background	2
	1.2	Description of the Construction Works	2
	1.3	Purpose of this Report	2
2.	PRO.	JECT INFORMATION	3
	2.1	Project Organization and Management Structure	3
	2.2	Construction Activities	3
	2.3	Status of License, Permit and Submissions under Environmental Protection Requires	ments3
3.	WAS	STE MANAGEMENT	4
4.	SITE	INSPECTION	5
5.	ENV	IRONMENTAL COMPLAINT	6
6.		IMARY OF NOTIFICATION OF SUMMONS, SUCCESSFUL PROSECUTIONS RECTIVE ACTIONS	
7.	FUT	URE KEY ISSUES	8

List of Tables

- Table 3.1 Waste Generated in the Reporting Month
- Table 5.1 Cumulative Statistic of Environmental Complaint

List of Appendices

Location Plan of Works Area and Storage Yard
Updated Construction Programme
Organisation Chart of Environmental Management
Status of License, Permit and Submissions under Environmental Protection Requirements
Waste Flow Table
Summary of Site Inspections and Recommendations
Mitigation Measures Implementation Schedule for Construction Stage
Environmental Complaint Log

i

Sun Fook Kong Joint Venture
SCL Contract No. 1101
Ma On Shan Line Modification Works
Monthly EM&A Report – SCL (July 2013)

EXECUTIVE SUMMARY

Sun Fook Kong Join Venture (SFKJV) was awarded the Shatin to Central Link (SCL) Contract No. 1101 Ma On Shan Line (MOL) Modification Works (this Project). EDMS Consulting Limited (EDMS) was commissioned by SFKJV as the Environmental Team (ET) for undertaking the Environmental Monitoring and Audit (EM&A) works during the construction period. The works areas under this Project covered by Environmental Permit (EP-438/2012/C) for the SCL Tai Wai to Hung Hom Section (TAW-HUH) included works sites at Tai Wai Mei Tin Road, To Shek Storage Yard and Shek Mun Storage Yard of which EM&A programme according to the EM&A Manual of SCL (TAW-HUH) should be implemented.

Construction Activities

During the reporting month, major construction activities undertaken by the Contractor includes erection of steel structure of noise cover at Tai Wai Mei Tin Road.

Air Quality and Noise Monitoring

According to the EM&A Manual of SCL (TAW-HUH), there is no designated monitoring stations for work sites at Tai Wai Mei Tin Road, To Shek Storage Yard and Shek Mun Storage Yard.

Environmental Auditing

Weekly site inspections were carried out by ET to ensure proper implementation of environmental mitigation measures and compliance with environmental legislation. During the reporting month, a total of 5 site inspections were conducted and the joint site inspection with IEC was conducted on 23 July 2013. All observations, which were recorded in inspection checklist and together with the ET's recommendations, were passed to the Contractor and ER for necessary corrective action.

Waste Disposal

No C&D materials and chemical wastes were disposed off in the reporting month and 6.50m³ of general refuse were disposed of to NENT Landfill in the reporting month.

Complaint Log

No environmental complaint was received during the reporting month.

Notification of Summon and Successful Prosecution

No Notification of Summons or successful prosecution was received during the reporting month.

Future Key Issues

The major construction activities in the upcoming months will include construction of steel noise cover at Tai Wai Mei Tin Road during restricted hours. It is anticipated that construction noise will be the key issue. The Contractor has been reminded to properly implement construction noise control measures in order to minimize the potential environmental impacts due to the construction works of the Project.

Reporting Changes

No reporting change was observed during the reporting month.

1. INTRODUCTION

1.1 Background

The Shatin to Central Link - Tai Wai to Hung Hom Section (hereafter referred to as SCL (TAW-HUH)) is an extension of the Ma On Shan Line (MOL) and is approximately 11 km long. It links up with the West Rail Line at Hung Hom forming a strategic east-west rail corridor. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).

The construction of the SCL (TAW-HUH) has been divided into a series of civil construction Works Contracts and this Works Contract 1101 covers the works sites at Tai Wai Mei Tin Road, To Shek Storage Yard and Shek Mun Storage Yard of which EM&A programme according to the EM&A Manual of SCL (TAW-HUH) should be implemented.

EDMS Consulting Limited (EDMS) was commissioned by Sun Fook Kong Joint Venture (SFKJV), the main contractor as the Environmental Team (ET) during the construction phase of SCL(TAW-HUH) for Contract No. 1101.

1.2 Description of the Construction Works

The major activities of the Construction Works include:

• Construction of noise cover over the viaduct at Tai Wai Mei Tin Road

The works areas including works sites at Tai Wai Mei Tin Road, To Shek Storage Yard and Shek Mun Storage Yard are shown in *Appendix A* and the updated construction programme of the construction works is shown in *Appendix B*.

1.3 Purpose of this Report

This is the 8th monthly EM&A report summarising audit findings of the EM&A program carried out according to EM&A Manual for SCL (TAW-HUH) by ET during the reporting month in July 2013.

As there is no designated air quality, noise and water quality monitoring stations for works sites at Tai Wai Mei Tin Road, To Shek Storage Yard and Shek Mun Storage Yard, this report mainly summarises the waste management details, site inspections findings, environmental complaint records and investigations, and any notification of summons, prosecutions and corrective actions in the reporting month. This monthly EM&A Report is organised as follows:

- Section 1 Introduction
- Section 2 Project Information
- Section 3 Waste Management
- Section 4 Site Inspection
- Section 5 Environmental Complaint
- Section 6 Summary of Notification of Summons, Successful Prosecutions and Corrective Actions
- Section 7 Future Key Issues

2. PROJECT INFORMATION

2.1 Project Organization and Management Structure

The organization chart, contact detail and lines of communication with respect to the environmental management are shown in Appendix C.

2.2 Construction Activities

In the reporting month, major site construction activities undertaken by the Contractor include:

Tai Wai Mei Tin Road:

• Erection of steel structure of noise cover

Offsite works areas at To Shek Storage Yard and Shek Mun Storage Yard were only used for storage of construction materials and no construction activities were carried out.

2.3 Status of License, Permit and Submissions under Environmental Protection Requirements

A summary of relevant permits and licences related to environmental protection for the Construction Works and submission under EP-438/2012/C for contract no. 1101 is given in *Table 1* and *Table 2* in *Appendix D*.

3. WASTE MANAGEMENT

The status of waste management in the reporting month is summarized in the following table. Details of the quantities of waste materials generated during the reporting month are shown in the waste flow table given in Appendix E.

 Table 3.1
 Waste Generated in the Reporting Month

Waste Type	Quantity this month m ³	Cumulative-to-Date m ³
Inert C&D materials disposed	0	13.00
Inert C&D materials recycled	0	0
Non-inert C&D materials disposed	0	0
Non-inert C&D materials recycled	0	3.00
General waste disposed of to NENT Landfill	6.50	114.0
Chemical waste disposed off to Chemical Waste Treatment Centre at Tsing Yi	0	0

Sun Fook Kong Joint Venture
SCL Contract No. 1101
Ma On Shan Line Modification Works
Monthly EM&A Report – SCL (July 2013)

4. SITE INSPECTION

Weekly site inspections were carried out at the sites on 3, 10, 17, 23, 31 July 2013. The joint site inspection with IEC was carried out on 23 July 2013. All observations together with the appropriate recommended mitigation measures where necessary were recorded in the site inspection checklists that were passed to the Contractor. Major environmental deficiencies observed during the site inspection and recommendations made by the ET are given in Appendix F.

During site inspections in the reporting month, no non-conformance of implementation of environmental mitigation measures was identified. All relevant environmental mitigation measures for construction stages as stated in the EM&A Manual of SCL (TAW-HUH) was carried out properly in the reporting month. The mitigation measures implementation schedule is shown in *Appendix G*.

5. ENVIRONMENTAL COMPLAINT

No complaint was received during the reporting month.

A log of environmental complaints is shown in *Appendix H*. Cumulative statistic of environmental complaints is shown in *Table 5.1*.

 Table 5.1
 Cumulative Statistic of Environmental Complaint

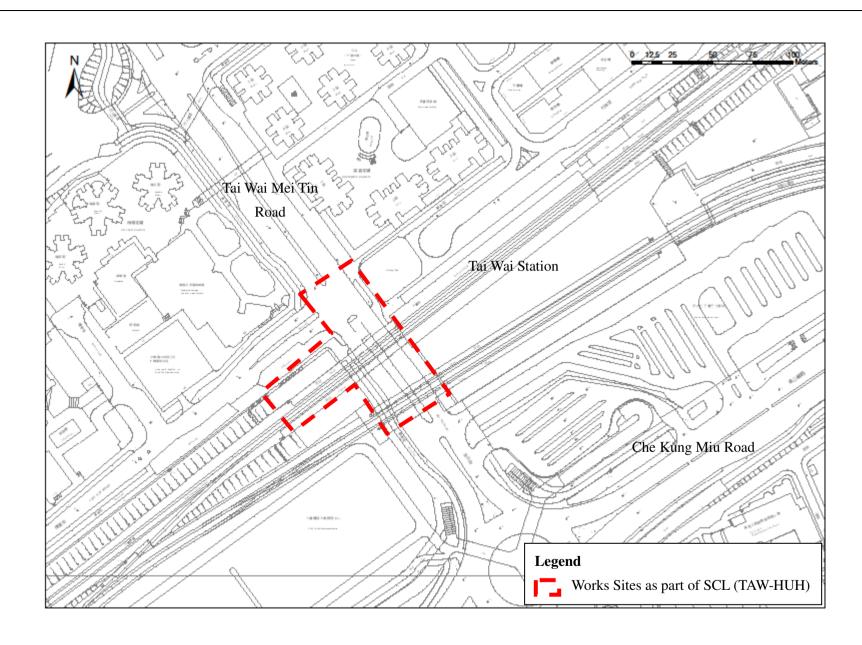
Compliant Received in the Reporting Month	Cumulative Number of Compliant
0	0

Sun Fook Kong Joint Venture
SCL Contract No. 1101
Ma On Shan Line Modification Works
Monthly EM&A Report – SCL (July 2013)

6. SUMMARY OF NOTIFICATION OF SUMMONS, SUCCESSFUL PROSECUTIONS AND CORRECTIVE ACTIONS

Neither Notification of Summon nor successful prosecution was received by the Contractor during the reporting month.

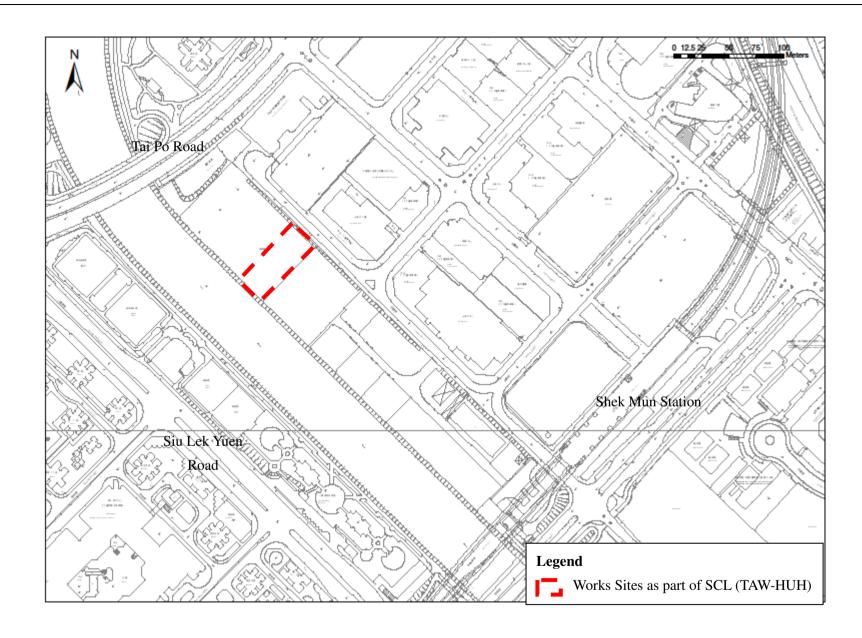
Sun Fook Kong Joint Venture
SCL Contract No. 1101
Ma On Shan Line Modification Works
Monthly EM&A Report – SCL (July 2013)


7. FUTURE KEY ISSUES

The major construction activities in the upcoming months will include construction of steel noise cover at Tai Wai Mei Tin Road during restricted hours. It is anticipated that construction noise will be the key issue. The Contractor has been reminded to properly implement construction noise control measures in order to minimize the potential environmental impacts due to the construction works of the Project.

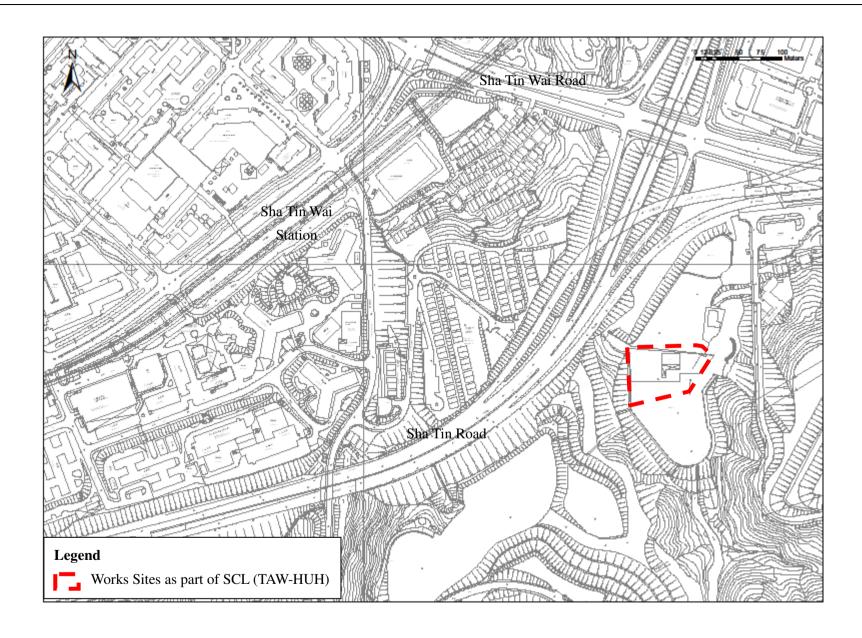
APPENDIX A

LOCATION PLAN OF WORKS AREA AND STORAGE YARD



 SCALE
 N.T.S.
 DATE
 4 June 2013

 CHECK
 LYMA
 DRAWN
 YSWE


 Ref.
 FIGURE NO.
 REV

 App A (Sheet 1 of 3)
 1

SCALE	N.T.S.	DATE	4 June	2013
CHECK	LYMA	DRAWN	YS	ΝE
Ref.		FIGURE NO.		REV
SCL Co	ontract No.1101	App (Sheet :		1

 SCALE
 N.T.S.
 DATE
 4 June 2013

 CHECK
 LYMA
 DRAWN
 YSWE

 Ref.
 FIGURE NO.
 REV

 App A (Sheet 3 of 3)
 1

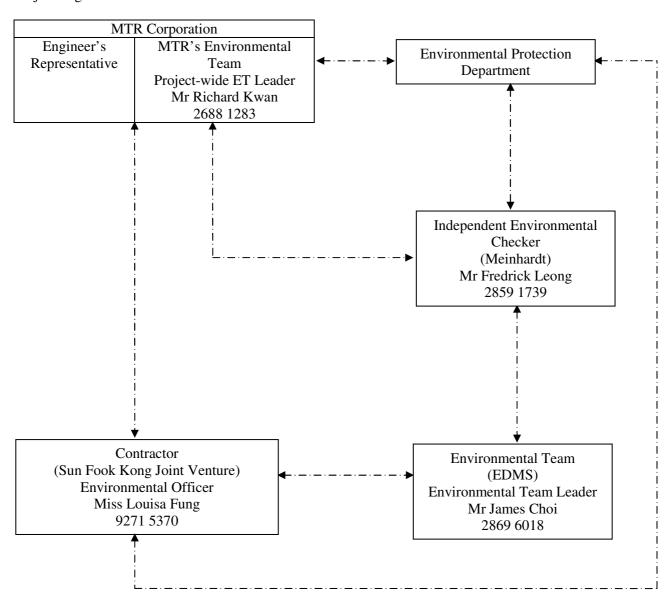
APPENDIX B UPDATED CONSTRUCTION PROGRAMME

Project : SCL1101 Updated on 2013/07/08

Construction Programme (SCL)

			20	12							20	13											201	4											2015									2	2016			
Work site	Activities	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr I	May J	un .	Jul A	ug :	Sep	Oct N	ν De	c Ja	ın F	eb	Mar	Apr	Мау	Jun	Jul
Tai Wai Mei Tin Road	Noise Barrier Installation Work			-	1	1	1	1	1	_	1	1	_																																			

2 No construction activity had been carried out at To Shek Storage Yard and Shek Mun Storage Yard.


APPENDIX C

ORGANISATION CHART OF ENVIRONMENTAL MANAGEMENT

Appendix C Organisation Chart of Environmental Management

Project Organization Chart

----- Line of communication

APPENDIX D

STATUS OF LICENSE, PERMIT AND SUBMISSIONS UNDER ENVIRONMENTAL PROTECTION REQUIREMENTS

Appendix D Status of License, Permits and Submission under Environmental Protection Requirements

Table 1 Environmental Management Related Licenses and Permits

Subject	Reference No.	Application Date	Issued Date	Effective Date	Expired Date
Environmental Permit					
Shatin to Central Link (SCL) - Tai Wai to Hung Hom Section	EP-438/2012/C	15 April 2013	30 April 2013	30 April 2013	N/A
Construction Noise Permit					
Tai Wai Station (At Tai Wai Mei Tin Road)	GW-RN0086-13	28 January 2013	15 February 2013	18 February 2013	17 August 2013
Chemical Waste Producer					
Tai Wai Station (At Tai Wai Mei Tin Road)	5213-757-S3683-02	6 September 2012	8 October 2012	8 October 2012	N/A
To Shek Storage Yard	5213-759-S3683-08	10 January 2013	14 February 2013	14 February 2013	N/A
Wastewater Discharge Licence					
Tai Wai Station (At Tai Wai Mei Tin Road)	WT00014550-2012	5 November 2012	19 November 2012	19 November 2012	30 November 2017
To Shek Storage Yard	WT00014628-2012	12 November 2012	12 December 2012	12 December 2012	31 December 2017

Note: Only include those valid or under application; "N/A" for non-applicable item(s).

Table 2 Summary of Submission Status under EP-438/2012/C

EP Condition	Submission	Date of Submission
Condition 3.4	Monthly EM&A Report (June 2013)	12 July 2013

APPENDIX E

WASTE FLOW TABLE

Waste Flow Table for 2012 (year) (in cu. meter) for SCL

	Actual Q	Quantities of Inert C&		ted Monthly	Actual Quantities of	Other C&D Wastes C	Generated Monthly
Month	Total Quantity Generated	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Recyclable Metals	Non-inert Waste / General Refuse	Chemical Waste
January							
February							
March							
April							
May							
June							
Sub-total							
July							
August							
September	0.00	0.00	0.00	0.00	0.00	0.00	0.00
October	0.00	0.00	0.00	0.00	0.00	0.00	0.00
November	13.00	0.00	0.00	13.00	0.00	26.00	0.00
December	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cumulative Total	13.00	0.00	0.00	13.00	0.00	26.00	0.00

Remark: Waste Generated from site at Tai Wai Mei Tin Road, To Shek Storage Area and Tai Shui Hang Storage area.

1 full loaded dumping truck is assumed equivalent to 6.5 m³ by volume from Archsd D/OL03/09.002

Waste Flow Table for 2013 (year) (in cu. meter) for SCL

	Actual Q	Quantities of Inert C&	D Materials Genera	Actual Quantities of	Actual Quantities of Other C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Reused in the Contract Reused in Other Projects		Disposed as Public Fill	Recyclable Metals	Non-inert Waste / General Refuse	Chemical Waste		
January	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
February	0.00	0.00	0.00	0.00	0.00	3.50	0.00		
March	0.00	0.00	0.00	0.00	0.00	3.25	0.00		
April	0.00	0.00	0.00	0.00	3.00	16.25	0.00		
May	0.00	0.00	0.00	0.00	0.00	35.75	0.00		
June	0.00	0.00	0.00	0.00	0.00	22.75	0.00		
Sub-total	13.00	0.00	0.00	13.00	3.00	107.50	0.00		
July	0.00	0.00	0.00	0.00	0.00	6.50	0.00		
August									
September									
October									
November									
December									
Cumulative Total	13.00	0.00	0.00	13.00	3.00	114.00	0.00		

Remark: Waste generated from site at Tai Wai Mei Tin Road, Shek Mun Storage Yard, To Shek Storage Area and Tai Shui Hang Storage area from January 2013 – April 2013.

Waste generated from site at Tai Wai Mei Tin Road, Shek Mun Storage Yard and To Shek Storage Area only during May 2013.

Tai Shui Hang Storage area has been handed back to land owner on 15/04/2013

1 full loaded dumping truck is assumed equivalent to 6.5 m³ by volume from Archsd D/OL03/09.002

APPENDIX F

SUMMARY OF SITE INSPECTIONS AND RECOMMENDATIONS

Environmental Site Walk on 3.7.2013

ET's Observations and Recommendations	Follow-up Action
No site observation	NA

Environmental Site Walk on 10.7.2013

ET's Observations and Recommendations	Follow-up Action
No site observation	NA

Environmental Site Walk on 17.7.2013

ET's Observations and Recommendations	Follow-up Action
No site observation	NA

Environmental Site Walk on 23.7.2013 (Joint Site Inspection with IEC)

ET's Observations and Recommendations	Follow-up Action
No site observation	NA

Environmental Site Walk on 31.7.2013

ET's Observations and Recommendations	Follow-up Action
No site observation	NA

Remark:

No construction activity had been carried out at To Shek Storage Yard and Shek Mun Storage Yard.

APPENDIX G

MITIGATION MEASURES IMPLEMENTATION SCHEDULE FOR CONSTRUCTION STAGE

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
Ecology (C	onstruction	Phase)						
S5.7	E5	 Good Site Practices Impact to any habitats or local fauna should be avoided by implementing good site practices, including the containment of silt runoff within the site boundary, the containment of contaminated soils for removal from the site, appropriate storage of chemicals and chemical waste away from sites of ecological value and the provision of sanitary facilities for on-site workers. Adoption of such measures should permit waste to be suitably contained within the site for subsequent removal and appropriate disposal. The following good site practices should also be implemented: Erection of temporary geotextile silt or sediment fences/oil traps around any earth-moving works to trap any sediments and prevent them from entering watercourses in particular the Tei Lung Hau stream; Avoidance of soil storage against trees or close to waterbodies in particular the Tei Lung Hau stream; Delineation of works site by erecting hoardings to prevent encroachment onto adjacent habitats and fence off areas which have some ecological value e.g. Tei Lung Hau Stream and the adjoining secondary woodland, tunnel on hill at top of slope stabilization works; 	Minimise ecological impacts	Contractor	All construction sites	During construction	• ProPECC PN 1/94	^

Remarks:

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		No on-site burning of waste;Waste and refuse in appropriate receptacles.						
Landscape	& Visual (C	Construction Phase)				1		
S6.9.3	LV1	The following good site practices and measures for minimization and avoidance of potential impacts are recommended: Re-use of Existing Soil • For soil conservation, existing topsoil shall be re-used where possible for new planting areas within the project. The construction program shall consider using the soil removed from one phase for backfilling another. Suitable storage ground, gathering ground and mixing ground may be set up on-site as necessary. No-intrusion Zone • To maximize protection to existing trees, ground vegetation and the associated under storey habitats, construction contracts may designate "No-intrusion Zone" to various areas within the site boundary with rigid and durable fencing for each individual no-intrusion zone. The contractor should closely monitor and restrict the site working staff from entering the "no-intrusion zone", even for indirect construction activities and storage of equipment. Protection of Retained Trees	Minimize visual & landscape impact	Contractor	Within Project Site	Contraction stage	TM-EIAO	^

Remarks:

[^] Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		 All retained trees should be recorded photographically at the commencement of the Contract, and carefully protected during the construction period. Detailed tree protection specification shall be allowed and included in the Contract Specification, which specifying the tree protection requirement, submission and approval system, and the tree monitoring system. The Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works sites. 						
S6.12	LV2	 Decorative Hoarding Erection of decorative screen during construction stage to screen off undesirable views of the construction site for visual and landscape sensitive areas. Hoarding should be designed to be compatible with the existing urban context. Management of facilities on work sites To provide proper management of the facilities on the sites, give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs. Tree Transplanting 	Minimize visual & landscape impact	Contractor	Within Project Site	Detailed design and construction stage	EIAO-TM ETWB TCW 2/2004 ETWB TCW 3/2006	^

Remarks:

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		Trees of high to medium survival rate would be affected by the works shall be transplanted where possible and practicable. Tree transplanting proposal including final location for transplanted trees shall be submitted separately to seek relevant government department's approval, in accordance with ETWB TCW No 3/2006.						
Construction	n Dust Imp	act						
\$7.6.5	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIA criteria	^
S7.6.5	D2	• Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road in the Kowloon area and once per 1.5 hour at those in the Tai Wai area should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.8 L/m2 to achieve the dust removal efficiency	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIA criteria	^

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

EIA Ref. EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
S7.6.5 D3	 Proper watering of exposed spoil should be undertaken throughout the construction phase: Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones. The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practices, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIA criteria	٨

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

EIA Ref. EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
	 When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing; Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surface where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting; 						

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

- x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		 Every stock of more than 20 bags of cement or by pulverized fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and 						
		Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabilizer within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies.						
Construction	on Noise (A	irborne)		•				
S8.3.6	N1	Implement the following good site practices: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;	Control construction airborne noise	Contractor	All construction sites	Construction stage	• Annex 5, TM-EIA	^

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		 Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Plant down to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; Mobile plant should be sited as far away from NSRs as possible and practicable; Material stockpiles, mobile container site office and other structures should be effectively utilized, where practicable, to screen noise from on-site construction activities. 						
S8.3.6	N2	Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoarding shall be properly maintained throughout the construction period.	Reduce the construction noise level at low-level zone of NSRs through partial screening	Contractor	All construction sites	Construction stage	• Annex 5, TM-EIA	^
S8.3.6	N3	Install movable noise barriers (typical design is wooden framed barrier with a small-cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure, screen the noisy plants including air compressor, generators and saw.	Screen the noisy plant items to be used at all construction sites	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM-EIA	۸

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
\$8.3.6	N4	Use "Quiet plants"	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM-EIA	^
S8.3.6	N5	Sequencing operation of construction plants where practicable	Operate sequentially within the same work site to reduce the construction airborne noise	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM-EIA	۸
Water Qua	lity (Constru	action Phase)						
S10.7.1	W1	In accordance with the Practice Noise for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), construction phase mitigation measures shall include the following: Construction Runoff and Site Drainage • At the start of site establishment (including the barging facilities), perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the	To minimize water quality impact from construction site runoff and general construction activities	Contractor	All construction sites where practicable	Construction stage	Water Pollution Control Ordinance ProPECC PN1/94 TM-EIAO TM-Water	٨

[^] Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref. EMC Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
	 the contractor prior to the commencement of construction. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilities the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediments/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1m³/s a sedimentation basin of 30m³ would be required and for a flow rate of 0.5m³/s the basin would be 150m³. The detailed design of the sand/silt traps shall be undertaken by the constructor prior to the commencement of construction. All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. Exposed slope surface should be covered by tarpaulin or other means. 						

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		 The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by coarse stone ballast. An additional advantage accruing from the use of crushed stone is the positive traction gained during prolonged periods of inclement weather and the reduction of surface sheet flows. All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas. Measures should be taken to minimize the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m³ should be covered with tarpaulin or similar fabric during 						

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

EIA Ref. EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
	 Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. Precautions be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm in imminent or forecasted, and actions to be taken during or after rainstorms are summarized in Appendix A2 or ProPECC PN 1/94. Particular attention should be paid to the control of silt surface runoff during storm events, especially for areas located near steep slopes. All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads 						

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

- x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		 Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. All the earth works involving should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Adopt best management practices. 						
S10.7.1	W3	Sewage Effluent Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor	To minimize water quality from sewage effluent	Contractor	All construction sites where practicable	Construction stage	Water Pollution Control Ordinance TM-water	^

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.						
S10.7.1	W7	 In order to prevent accidental spillage of chemicals, the following is recommended: All the tanks, containers, storage area should be bunded and the location should be locked as far as possible from the sensitive watercourse and stormwater drains. The Contractor should register as a chemical waste produce if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical waste should be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize water quality impact from accidental spillage	Contractor	All construction sites where practicable	Construction stage	Water Pollution Control Ordinance ProPECC PN1/94 TM-EIAO TM-Water	٨
Waste Man	agement (C	Construction Waste)		1	•	1	1	1
S11.4.1.1	WM1	 On-site sorting of C&D material Geological assessment should be carried out by competent persons on site during excavation to identity materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke roke should be separated at the source sites as far as practicable and stored at designated stockpile areas preventing them 	Separation of unsuitable rock from ending up at concrete batching plants and be turned into concrete for structural use	Contractor	All construction sites	Construction stage	• DEVB TC(W) No.6/2010	٨

[^] Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		from delivering to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from ended up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Apilte Dyke rock, etc should also be explored.						
S11.5.1	WM2	 Construction and Demolition Material Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Adopt "Selective Demolition" technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No.19/2005	^

[^] Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	Log Ref.		Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		 purpose, where possible; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documents and verified; and Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction; In addition, disposal of the C&D materials onto ant sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation. 						
S11.5.1	WM3	Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage.	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No.19/2005	^

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage.						
S11.5.1	WM4	 General Refuse General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labeled bins for their deposit should be provided if feasible. 	Minimize production of the general refuse and avoid odour, pest and litter impacts	Contractor	All construction sites	Construction stage	Waste Disposal Ordinance	>

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

- x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
		Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor.						
S11.5.1	WM7	 Chemical Waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20% of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that 	Control the chemical waste and ensure proper storage, handling and disposal.	Contractor	All construction sites	Construction stage	Waste Disposal (Chemical Waste General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste	٨

Implement mitigation measure in the reporting month
Not Applicable in the reporting month

x Non-compliance of mitigation measure
 * Not satisfactory but rectified by the contractor

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Status
	 incompatible materials are adequately separated; Disposal of chemical waste should be via a licensed waste collector, be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD. 							
EM&A Proj	ject							
S14.2	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	Control EM&A Performance	MTR Corporation	All construction sites	Construction Stage	• EIAO Guidance Note No.4/2010 • TM-EIAO	^
S14.2-14.4	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	Perform environmental monitoring & auditing	MTR Corporation/ Contractor	All construction sites	Construction stage	• EIAO Guidance Note No. 4/2010 • TM-EIAO	^

^ Implement mitigation measure in the reporting month N/A Not Applicable in the reporting month

APPENDIX H ENVIRONMENTAL COMPLAINT LOG

Appendix H Environmental Complaint Log

Complaint Log No.	Name of Complainant	Date Complaint Received	Complaint Date	Complaint Location	Details of Complaint	Date Complaint Received by ET	ET's Investigation Date	Investigation/ Mitigation Measures	Validity To Project
Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil

Appendix D

7th EM&A Report for Works Contract 1111 – Hung Hom North Approach Tunnel

Gammon-Kaden SCL 1111 Joint Venture

Shatin to Central Link -Tai Wai to Hung Hom Section and Mong Kok East to Hung Hom Section

Works Contract 1111 - Hung Hom North Approach Tunnels

Monthly EM&A Report for July 2013

August 2013

	Name	Signature
Prepared & Checked:	Isabella Yeung	The
Reviewed, Approved & Certified:	Y T Tang (Contractor's Environmental Team Leader)	Constitution

Version: 0	Date:	14 August 2013
------------	-------	----------------

Disclaimer

This Monthly EM&A Report is prepared for Gammon-Kaden SCL1111 JV and is given for its sole benefit in relation to and pursuant to SCL1111 and may not be disclosed to, quoted to or relied upon by any person other than Gammon-Kaden SCL1111 JV without our prior written consent. No person (other than Gammon-Kaden SCL1111 JV) into whose possession a copy of this report comes may rely on this report without our express written consent and Gammon-Kaden SCL1111 JV may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

			Page				
EXEC	UTIVE	SUMMARY	1				
1	INTRODUCTION						
	1.1 1.2	Purpose of the ReportReport Structure					
2	PROJ	ECT INFORMATION	4				
	2.1 2.2 2.3 2.4 2.5	Background	4 5 5				
3	ENVI	RONMENTAL MONITORING REQUIREMENTS	8				
	3.1 3.2 3.3 3.4	Construction Dust Monitoring	11 13				
4	IMPL	EMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	15				
5	MONI	TORING RESULTS	15				
	5.1	Construction Dust Monitoring					
	5.2 5.3	Regular Construction Noise Monitoring Continuous Noise Monitoring					
	5.4	Waste Management					
	5.5	Landscape and Visual					
6	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	17				
7	ENVI	RONMENTAL NON-CONFORMANCE	19				
	7.1	Summary of Monitoring Exceedances	19				
	7.2	Summary of Environmental Non-Compliance	19				
	7.3	Summary of Environmental Complaints					
	7.4	Summary of Environmental Summon and Successful Prosecutions	19				
8	FUTU	RE KEY ISSUES					
	8.1	Construction Programme for the Next Month	20				
	8.2 8.3	Key Issues for the Coming Month	20 20				
9	CON	CLUSIONS AND RECOMMENDATIONS	21				
	9.1	Conclusions	21				
	9.2	Recommendations					
List o	f Tables	S					
Table Table Table Table Table	2.1 3.1 3.2	Contact Information of Key Personnel Status of Environmental Licenses, Notifications and Permits Air Quality Monitoring Equipment Locations of Air Quality Monitoring Stations Air Quality Monitoring Parameters, Frequency and Duration					

Table 3.4	Noise Monitoring Parameters, Frequency and Duration
Table 3.5	Noise Monitoring Equipment for Regular Noise Monitoring
Table 3.6	Locations of Impact Noise Monitoring Stations
Table 3.7	Summary of Proposed Continuous Noise Monitoring Location
Table 3.8	Noise Monitoring Equipment for Continuous Noise Monitoring
Table 3.9	Summary of Proposed Continuous Noise Monitoring Plan
Table 4.1	Status of Required Submission under Environmental Permit
Table 5.1	Summary of 24-hour TSP Monitoring Results in the Reporting Period
Table 5.2	Summary of Impact Noise Monitoring Results in the Reporting Period
Table 6.1	Observations and Recommendations of Site Audit

List of Figures

Figure 1.1	General Layout Plan
Figure 2.1	Location of Air Quality Monitoring Station
Figure 3.1	Locations of Impact Noise Monitoring Stations

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organisation Structure
Appendix C	Implementation Schedule of Environmental Mitigation Measures
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipments
Appendix F	EM&A Monitoring Schedules
Appendix G	Air Quality Monitoring Results and their Graphical Presentations
Appendix H	Noise Monitoring Results and their Graphical Presentations
Appendix I	Event and Action Plan
AppendixJ	Cumulative Statistics on Complaints, Notification of Summons and Successful
	Prosecutions
Appendix K	Monthly Summary Waste Flow Table

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1111 – Hung Hom North Approach Tunnels (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL) which aimed to convey a total of 17km extension of the existing Ma On Shan Line (MOL) through east Kowloon to West Rail Line and also East Rail Line (EAL) through Hung Hom across the harbour to Admiralty Station (ADM). The Project covers construction activities at Mong Kok Freight Terminal and part of the construction activities located at Hung Hom Area for SCL (TAW-HUH), SCL (MKK-HUH) and SCL (HHS).

The EM&A programme commenced in January 2013. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 1 and 31 July 2013. As informed by the Contractor, major activities in the reporting period were:-

Hung Hom Area

- Drain / sewage pipe construction, ABWF & E&M works.
- Excavation work, man hole and drainage construction, RC structure construction, slope work, geological investigation.
- Hoarding erection, cross track duct construction, cable trough installation, cable hanger.
- Trial pit, tree transplant and tree felling, site formation, sheet pilling, OHL portals erection.
- Pre-drilling, close loop, pipe pilling, hoarding re-alignment, site office setup.

Mong Kok Freight Terminal

- ABWF & E&M works.

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Level of 24-hour TSP monitoring was recorded at the monitoring location in the reporting month.

Breaches of Action and Limit Levels for Noise

Regular Noise Monitoring

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Continuous Noise Monitoring

As the construction works identified by the Construction Noise Mitigation Measures Plan (CNMMP) to be potentially causing exceedance of noise criteria have not commenced during this reporting month, no continuous noise monitoring was carried out.

Complaint, Notification of Summons and Successful Prosecution

No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

Hung Hom Area

- Drain/sewage pipe construction, ABWF and E&M works.
- Excavation work, man hole and drainage construction, RC structure construction, slope work, geological investigation, demolition of OLB shelter, EVA construction.
- Cross track duct construction, cable trough installation, ADMS installation, tree felling, cable hanger.
- Trial pit, fencing/hoarding erection, pile pilling, pre drilling, site formation, sheet pilling, OHL portals erection, grouting.
- EMSD control room and ELS structure.

Mong Kok Freight Terminal

- Noise panel installation, ABWF and E&M works.

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise and waste management.

1 INTRODUCTION

Gammon-Kaden SCL1111 Joint Venture (GKSCLJV) was commissioned by MTR as the Civil Contractor for Works Contract 1111. AECOM Asia Company Limited (AECOM) was appointed by GKSCLJV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the seventh monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period from 1 to 31 July 2013.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is organised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendation

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No.: AEIAR-167/2012), SCL Mong Kok East to Hung Hom Section [SCL (MKK-HUH)] (Register No.: AEIAR-165/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No.: AEIAR-164/2012) were approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Reports, two Environmental Permits (EPs) were granted on 22 March 2012, one covers SCL (TAW-HUH) and SCL (HHS)(EP No: EP-438/2012) and the other covers SCL (MKK-HUH) and SCL (HHS) (EP No.: EP-437/2012), for their construction and operation. Variations of environmental permit (VEP) was subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/C) was issued by Director of Environmental Protection (DEP) on 30 April 2013.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and Works Contract 1111 Hung Hom North Approach Tunnels (hereafter referred to as "the Project") covers construction activities at Mong Kok Freight Terminal and part of the construction activities located at Hung Hom under the two EPs.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1111 include:
 - SCL (MKK-HUH) (i) Construction of an realigned and modified railway from Portal 1A near Oi Man Estate to Hung Hom Station; (ii) Construction of Noise Enclosure at Portal 1A; (iii) modification works on the existing Homantin Siding; and (iv) new EVA near Hung Hom Station.
 - SCL (TAW-HUH) Part of the railway tunnel from Ho Man Tin Station to Hung Hom.
 - SCL (HHS) Construction of tracks and noise barrier of Hung Hom Stabling Sidings.
- 2.2.2 **Figure 1.1** shows the works areas for the Works Contract 1111.

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:-

Hung Hom Area

- Drain / sewage pipe construction, ABWF & E&M works.
- Excavation work, man hole and drainage construction, RC structure construction, slope work, geological investigation.
- Hoarding erection, cross track duct construction, cable trough installation, cable hanger.
- Trial pit, tree transplant and tree felling, site formation, sheet pilling, OHL portals erection.
- Pre-drilling, close loop, pipe pilling, hoarding re-alignment, site office setup.

Mong Kok Freight Terminal

- ABWF & E&M works.
- 2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 1.1.**

Table 1.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
		Construction Manager	Mr. Michael Fu	3127 6201	3124 6422
MTR	Residential Engineer (ER)	SCL Project Environmental Team Leader	Mr. Richard Kwan	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
	Contractor	Project Manager	Mr. Alan Yan	9855 0361	
GKSCKJV		Environmental Manager	Mr. Brian Kam	9456 9541	3904 9630
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y T Tang	3922 9393	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.1**.

Table 2.1 Status of Environmental Licenses, Notifications and Permits

Permit / License	Valid F	Period	Status	Remarks
No. / Notification/ Reference No.	From	То		
Environmental Perr		. •		
EP-437/2012	22 Mar 2012		Valid	
EP-437/2012 EP-438/2012/C	30 Apr 2013	-	Valid	<u>-</u>
EF-430/2012/C	30 Apr 2013	-	valiu	-
Construction Noise		.		
GW-RE0479-13	19 May 2013	14 Jul 2013	Valid	For Slip Road from Chatham Road North to Hong Chong Road
GW-RE0537-13	31 May 2013	13 Jul 2013	Valid	For Cross-track Duct (Workfronts No.1, 2 & 3)
GW-RE0541-13	01 Jun 2013	31 Jul 2013	Valid	For E&M Works at Mong Kok East Station Concourse
GW-RE0587-13	14 Jun 2013	12 Aug 2013	Valid until	For Extended Hours of
			cancellation on	ABWF and E&M works at
			31 July 2013	Mong Kok Freight Yard
GW-RE0618-13	21 Jun 2013	31 Jul 2013	Valid until	For Cross-track Duct
			cancellation on 26 July 2013	Installation (Cable Hanger) at Workfronts No.7)
GW-RE0621-13	19 Jun 2013	07 Sep2013	Valid	For Hung Hom Station Reprovisioning Works
GW-RE0626-13	20 Jun 2013	15 Aug 2013	Valid	For Noise Panel Installation at Mong Kok East Station
GW-RE0640-13	03 Jul 2013	30 Aug 2013	Valid	For Tree Felling at Slip Road adjoining Hong Chong Road and Chatham Road North
GW-RE0663-13	29 Jun 2013	31 Jul 2013	Valid	For 6m Hoarding Works at Oi Sen Path Rest Area near Chatham Road North
GW-RE0670-13	03 Jul 2013	28 Dec 2013	Valid	For Cross Track Duct Installation at Oi Sen Path near Workfronts No. 5 & 6
GW-RE0681-13	05 Jul 2013	31 Aug 2013	Valid until cancellation on 19 July 2013	For TBM mobilization works at Oi Sen Path and Rest Area at Workfronts No. 5 & 6
GW-RE0732-13	14 Jul 2013	15 Nov 2013	Valid	For Cross-track Duct Installation and Hoarding Erection at Workfronts No. 1, 2 & 3
GW-RE0735-13	19 Jul 2013	31 Aug 2013	Valid	For Tree Felling Works at Oi Sen Path near Workfronts No. 5 & 6
GW-RE0741-13	18 Jul 2013	31 Dec 2013	Valid	For ADMS Installation Works near Hung Hom Station
GW-RE0770-13	26 Jul 2013	31 Aug 2013	Valid	For Cross-track Duct Installation (Cable Hanger) at Workfronts No. 7
GW-RE0794-13	31 Jul 2013	26 Jan 2014	Valid	For General Works at Mong Kok Freight Terminal

Permit / License No. / Notification/	Valid F	Period Status		Remarks
Reference No.	From	То		
Wastewater Discha				
WT00015148-2013	20 Feb 2013	28 Feb 2018	Valid	For Winslow Street Works
WT00015644-2013	16 Apr 2013	30 Apr 2018	Valid	For Homantin Sidings Works
WT00015606-2013	25 Apr 2013	30 Apr 2018	Valid	For Mong Kok Freight Terminal Works
WT00016090-2013	14 Jun 2013	30 Jun 2018	Valid	For Hung Hom Station Works
WT00016108-2013	14 Jun 2013	30 Jun 2018	Valid	For Slip Road Works from Chatham Road North and underneath Princess Margaret Road Link (Discharge Point near Hong Chong Road)
WT00015859-2013	14 May 2013	31 May 2018	Valid	For Works near Chatham Road North
EP682/243/0251/I	-	-	Application was made on 04 Jun 2013 and is pending for EPD's approval	For Winslow Street Slope Works Between Chatham Road North and Wai Fung Street
EP482/236/0107/I	-	-	Application was made on 14 Jun 2013 and is pending for EPD's approval	For Slip Road Works from Chatham Road North and underneath Princess Margaret Road Link (Discharge Point near Oi Sen Path)
Chemical Waste Pro	oducer Registrat	tion		
5213-213-G2618-01	22 Mar 2013	-	Valid	For Winslow Street Works
5213-213-G2618-03	8 Apr 2013	-	Valid	For Hung Hom Station Reprovisioning Works
5213-222-G2618-05	25 Apr 2013	-	Valid	For Mong Kok Freight Terminal Works
5213-213-G2618-06	16 Apr 2013	-	Valid	For Homantin Sidings Works
5213-236-G2618-10	14 Jun 2013	-	Valid	For Slip Road Works from Chatham Road North and underneath Princess Margaret Road Link
5213-236-G2618-11	27 May 2013	-	Valid	For Works near Chatham Road North
Billing Account for		aste Disposal		
7016658	24 Jan 2013	-	Account Active	-
Notification Under				n
353991	02 Jan 2013	18 Apr 2018	Notified	-

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model	
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:894-0835))	
Calibration Kit	TISCH Environmental Orifice (Model TE-5025A (Orifice I.D.: 0843))	

Monitoring Locations

3.1.3 One monitoring station was set up at the proposed location in accordance with the approved EM&A Manuals for SCL (TAW-HUH), SCL (MKK-HUH) and SCL (HHS) as well as the works areas of the Project. The location of the construction dust monitoring station is summarised in **Table 3.2** and shown in **Figure 2.1.**

Table 3.2 Locations of Construction Dust Monitoring Stations

ID	Location	Monitoring Station	
A N // 1	No. 234 – 238 Chatham	Roof top of the premises facing Chatham Road	
AM1	Road North	North	

Note:

AECOM Asia Co. Ltd. 8 August 2013

⁽¹⁾ Permission of access could not be obtained from Wing Fung Building (originally proposed in the approved EM&A Manuals) and hence the monitoring location was relocated to No. 234-248 Chatham Road North. The alternative monitoring location has been approved by IEC and EPD.

Monitoring Methodology

3.1.4 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (v) No furnace or incinerator flues nearby.
 - (vi) Airflow around the sampler was unrestricted.
 - (vii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (viii) A secured supply of electricity was obtained to operate the samplers.
 - (ix) The sampler was located more than 20 meters from any dripline.
 - Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xi) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.5 The schedule for environmental monitoring in July 2013 is provided in **Appendix F**.

3.2 Regular Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manuals, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.4** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.4 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency	
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L10 and L90 would be recorded.	At least once per week	

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.5**.

Table 3.5 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model	
Integrated Sound Level Meter	Rion (Model No. NL-31 (S/N: 00320528)), B&K (Model No. 2250L (S/N: 2681366)) & B&K (Model No. 2238 (S/N: 2285692))	
Acoustic Calibrator	Rion (Model No. NC-73 (S/N: 10307216), (S/N: 10307223) & (S/N: 10186482))	

Monitoring Locations

3.2.3 Two monitoring stations were set up at the proposed locations in accordance with the approved EM&A Manuals for SCL (TAW-HUH), SCL (MKK-HUH) and SCL (HHS) as well as the works areas of the Project. Locations of the noise monitoring stations are summarised in **Table 3.6** and shown in **Figure 3.1**.

Table 3.6 Locations of Regular Construction Noise Monitoring Stations

ID	Location	Monitoring Station	Type of Measurement
NM1	Carmel Secondary School (South Block)	1m from the exterior of the roof top façade of the premises facing Oi Sen Path	Façade
NM2	No. 234 – 238 Chatham Road North ⁽¹⁾	Free-field on the rooftop of the premise	Free Field

Note:

AECOM Asia Co. Ltd. 11 August 2013

⁽¹⁾ Permission of access could not be obtained from Wing Fung Building (originally proposed in the approved EM&A Manuals) and hence the monitoring location was relocated to No. 234-248 Chatham Road North. The alternative monitoring location has been approved by IEC and EPD.

Monitoring Methodology

3.2.4 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NM2. A correction of +3 dB(A) shall be made to the free field measurements.
- (b) Façade measurements were made at NM1.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.2.5 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.2.6 The schedule for environmental monitoring in July 2013 is provided in **Appendix F**.

3.3 Continuous noise monitoring

Monitoring Requirements

3.3.1 According to EP conditions under EP-437/2012 (Condition 2.8) and EP-438/2012/C (Condition 2.10), continuous noise monitoring should be conducted at the NSRs as identified by the Construction Noise Mitigation Measures Plan (CNMMP) to have residual air-borne noise impacts. A Continuous Noise Monitoring Plan (CNMP) was prepared and submitted to EPD before the commencement of the construction of the Project.

Monitoring Locations

3.3.2 With reference to the CNMP, continuous noise monitoring should be conducted during period at which the predicted airborne construction noise levels exceed the relevant noise criteria at the respective NSRs. The proposed continuous noise monitoring locations are presented in **Table 3.7** and shown in **Figure 2.1**.

Table 3.7 Summary of Proposed Continuous Noise Monitoring Location

NSR ID	NSR Description	Uses	Proposed Continuous Noise Monitoring Location	Alternative Noise Monitoring Location
OM4a	Carmel Secondary School (South Block)	Educational	NM1	-
HH2	Wing Fung Building	Residential	NM2	No. 234-238 Chatham Road North ⁽¹⁾

Note:

Monitoring Equipment

3.3.3 Continuous noise monitoring will be performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator will be deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.8.**

Table 3.8 Noise Monitoring Equipment for Continuous Noise Monitoring

Equipment	Brand and Model	
Integrated Sound Level Meter	Rion (Model No. NL-31)	
Acoustic Calibrator	Rion (Model No. NC-73)	

AECOM Asia Co. Ltd. 13 August 2013

⁽¹⁾ Permission of access could not be obtained from Wing Fung Building (originally proposed in the approved EM&A Manuals) and hence the monitoring location was relocated to No. 234-248 Chatham Road North. The alternative monitoring location is considered as an appropriate alternative noise monitoring station in the CNMP.

Monitoring Parameters, Frequency and Duration

3.3.4 Continuous noise level will be measured in terms of the A-weighted equivalent continuous sound pressure level for 30 minutes (L_{eq}, 30 min) for time period between 0700 and 1900 hours on normal working hours (i.e. Mondays to Saturdays) during the construction period that the predicted noise levels exceed the relevant noise criteria at the identified NSRs. The recommended measurement period for the continuous noise monitoring programme in the CNMP is summarised in **Table 3.9**.

Monitoring Methodology

3.3.5 Immediately prior to the noise measurement, the accuracy of the sound level meter will be checked using an acoustic calibrator, which generated a known sound pressure level at a known frequency. The accuracy of the sound level meter will also be checked on an annual-basis. Measurement will be accepted as valid only if the calibration level before and after the noise measurement agrees to within 1.0dB. Noise measurement will be made in accordance with standard acoustical principles and practices in relation to weather conditions.

Event and Action Plan

3.3.6 Summary of the proposed continuous noise monitoring programme are presented in **Table 3.9**. The Event and Action Plan for the continuous noise monitoring programme recommended in the CNMP is presented in **Appendix I**.

Table 3.9 Summary of Proposed Continuous Noise Monitoring Plan

Monitoring Location	NSR Description	Action/Limit Level, dB(A)	Measurement Period
NM1	Carmel Secondary School (South Block)	69 ⁽¹⁾	Dec of 2014 Mar of 2015 Mar of 2017
NM2	No. 234-238 Chatham Road North ⁽²⁾	77	Sep to Dec of 2014 Jan / Mar to May 2015

Note:

3.4 Landscape and Visual

3.4.1 As per the EM&A Manuals, the landscape and visual mitigation measures should be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

⁽¹⁾ Action/Limit level will only be applicable during the examination period.

⁽²⁾ Permission of access could not be obtained from Wing Fung Building (originally proposed in the approved EM&A Manuals) and hence the monitoring location was relocated to No. 234-248 Chatham Road North. The alternative monitoring location is considered as an appropriate alternative noise monitoring station in the CNMP.

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EPs and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C**. Status of required submissions under the EPs during the reporting period is summarised in **Table 4.1**.

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 (EP-437/2012) & Condition 3.4 (EP-438/2012/C)	Monthly EM&A Report for June 2013	12 July 2013

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 The monitoring results for 24-hour TSP are summarised in **Table 5.1**. Detailed air quality monitoring results and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Results in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AM1	29.3	22.6 – 45.0	183.9	260

- 5.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.3 The event action plan is annexed in **Appendix I**.
- 5.1.4 Major dust sources during the monitoring included construction dust from the Project site and other nearby construction sites and also nearby traffic emission.

5.2 Regular Construction Noise Monitoring

5.2.1 The monitoring results for noise are summarized in **Table 5.2** and the monitoring data is provided in **Appendix H**.

Table 5.2 Summary of Impact Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
NM 1 ⁽²⁾	59.7 – 67.7	70 (65) ⁽¹⁾
NM 2 ⁽²⁾	68.4 – 75.3	75

Note:

- (1) Daytime noise Limit Level of 70dB(A) applies to education institutions while 65dB(A) applies during school examination period.
- (2) Baseline correction will be made to the measured Leq when the measured noise level exceeded the corresponding baseline noise level and presented in the table. No correction was made to NM2 as all measured noise levels were below the baseline noise level.
- 5.2.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 5.2.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 5.2.4 The event action plan is annexed in **Appendix I**.
- 5.2.5 Major noise sources during the monitoring included construction noise from the Project site and other nearby construction sites, nearby traffic noise and noise from school activities and the community.

5.3 Continuous Noise Monitoring

5.3.1 As the construction works that have been identified by the CNMMP to be potentially causing exceedance of noise criteria have not commenced during this reporting month, no continuous noise monitoring was carried out.

5.4 Waste Management

- 5.4.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.4.2 As advised by the Contractor, 3,805m³ of inert C&D material was generated and disposed as public fills at TKO 137 and TM38 while 93,320kg of general refuse was disposed at NENT landfill in the reporting month. No paper/cardboard packaging, plastics and metals were collected by recycling contractor in the reporting month. No inert C&D materials were reused on site. No chemical waste was collected by licensed contractor in the reporting period. The waste flow table is annexed in **Appendix K.**
- 5.4.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.4.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.5 Landscape and Visual

- 5.5.1 Inspection of the implementation of landscape and visual mitigation measures were conducted bi-weekly. A summary of the site inspection is provided in **Appendix C**. The observations and recommendations made during the site inspections are presented in **Table 6.1**.
- 5.5.2 The event action plan is annexed in **Appendix I**.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the site inspection is provided in **Appendix C**.
- 6.1.2 In the reporting month, 4 site inspections were carried out on 4, 11, 18 and 25 July 2013. The one held on 18 July 2013 was a joint inspection with the IEC, ER, the Contractor and the ET. No site inspection was conducted by EPD during the reporting month. No non-compliance was recorded during the site inspections. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
	4 July 2013	The Contractor should cover the stockpile in EWL8, Hong Chong Road and Homantin Siding entirely with impervious sheeting and provide sufficient sand bags to prevent any non-complied discharge during rainstorm.	The item was observed to be rectified by the Contractor on 18 July 2013.
	4 & 11 July 2013	The Contractor should cover the stockpile in EWL8 with impervious sheeting entirely.	The item was observed to be rectified by the Contractor on 20 June 2013.
	11 July 2013	Wheel washing facilities provided in EWL8 was found ineffective. The Contractor should review the wheel washing facilities implemented in EWL8 to ensure deposited slit was washed off from the vehicle effectively.	The item was rectified by the Contractor on 17 July 2013.
Water Quality	18 July 2013	The Contractor should cover the public drainage at works area in Cross Track 5, 6 East Bound properly and check the condition of sand bags to prevent grits from entering the drainage system.	The item was rectified by the Contractor on 24 July 2013.
		The Contractor should clear deposited grits in the trenches in Homantin Siding regularly and provide sand bags at the periphery of site boundary to prevent any non-complied discharge occurs.	The item was observed to be rectified by the Contractor on 25 July 2013.
	18 & 25 July 2013	The Contractor should review and maintain the effectiveness of the effluent treating facility in Homantin Siding. Moreover, water in internal drainage channel shall be pumped and treated by the effluent treating facility before discharge.	The item will be follow-up in August.
	25 July 2013	Public drainage system was observed to be exposed to waste water in Homantin Siding. The Contractor should provide sand bags at the periphery of the gully to prevent effluent from entering the public drainage.	The item will be follow-up in August.

Parameters	Date	Observations and Recommendations	Follow-up
		The Contractor should cover the temporary slope at works area in Winslow Street entirely with impervious sheeting and provide sand bags or wooden board at the periphery of public trench to prevent effluent from entering the trench.	The item was rectified by the Contractor on 31 July 2013.
Air Quality	4 July 2013	The Contractor was reminded to provide sufficient spraying of water in Homantin Siding regularly to ensure EP compliance.	The item was rectified by the Contractor on 10 July 2013.
Noise	N/A	N/A	N/A
	4 July 2013	 Accumulation of waste was observed on bare ground in Homantin Siding. The Contractor was reminded to clear the waste in timely manner. 	The item was rectified by the Contractor on 10 July 2013.
		Leakage of lubricating oil was observed from the driller head in EWL8. The Contractor should clear the leaked oil and dispose of as chemical waste. Moreover, drip tray or equivalent mechanism should be provided to retain leakage, if any.	The item was rectified by the Contractor on 11 July 2013.
Waste/ Chemical Management	4 & 11 July 2013	 Accumulation of waste was observed in the receptacle in EWL8, The Contractor was reminded to clear the waste in timely manner. 	The item was observed to be rectified by the Contractor on 18 July 2013.
	18 July 2013	Stagnant water was observed in drip trays near the site entrance in EWL8. The Contractor should clear the stagnant water in drip tray in timely manner.	The item was observed to be rectified by the Contractor on 25 July 2013.
	25 July 2013	 Accumulation of waste was observed in receptacles at works area in Homantin Siding. The Contractor should clear the accumulated waste in regularly. 	The item was rectified by the Contractor on 31 July 2013.
Landscape & Visual	N/A	N/A	N/A
Permits/ Licenses	N/A	N/A	N/A

- 6.1.3 All the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed into the following weekly site inspection conducted during the reporting period.
- 6.1.4 The items of which their inspection for follow-up actions were outstanding as recorded in the last reporting month have already been rectified by the Contractor as confirmed by the ET during the reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP results were below the Action and Limit level at all monitoring locations in the reporting month.
- 7.1.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 7.1.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint was received in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix J**.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Month

8.1.1 The major construction works in August and September 2013 will be:-

Hung Hom Area

- Drain/sewage pipe construction, ABWF and E&M works.
- Excavation work, man hole and drainage construction, RC structure construction, slope work, geological investigation, demolition of OLB shelter, EVA construction.
- Cross track duct construction, cable trough installation, ADMS installation, tree felling, cable hanger.
- Trial pit, fencing/hoarding erection, pile pilling, pre drilling, site formation, sheet pilling, OHL portals erection, grouting.
- EMSD control room and ELS structure.

Mong Kok Freight Terminal

- Noise panel installation, ABWF and E&M works.

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise and waste management.

8.3 Monitoring Schedule for the Next Month

8.3.1 The tentative schedule for environmental monitoring in August 2013 is provided in **Appendix F**.

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring results complied with the Action / Limit Level at in the reporting month.
- 9.1.3 No noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 9.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.5 As the construction works that have been identified by the CNMMP to be potentially causing exceedance of noise criteria have not commenced during this reporting month, no continuous noise monitoring was carried out.
- 9.1.6 4 nos. of environmental site inspections were carried out in July 2013. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.7 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

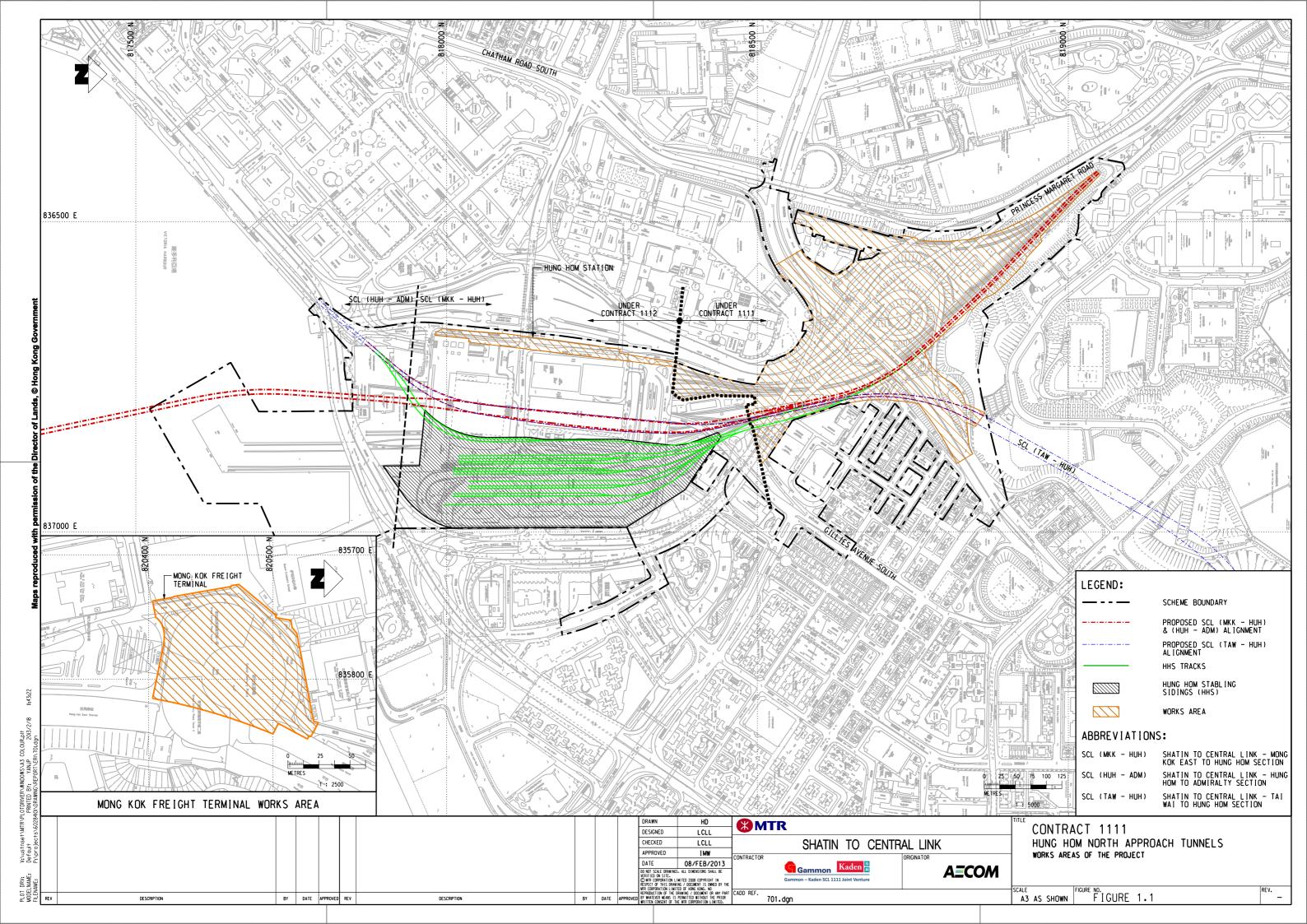
9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

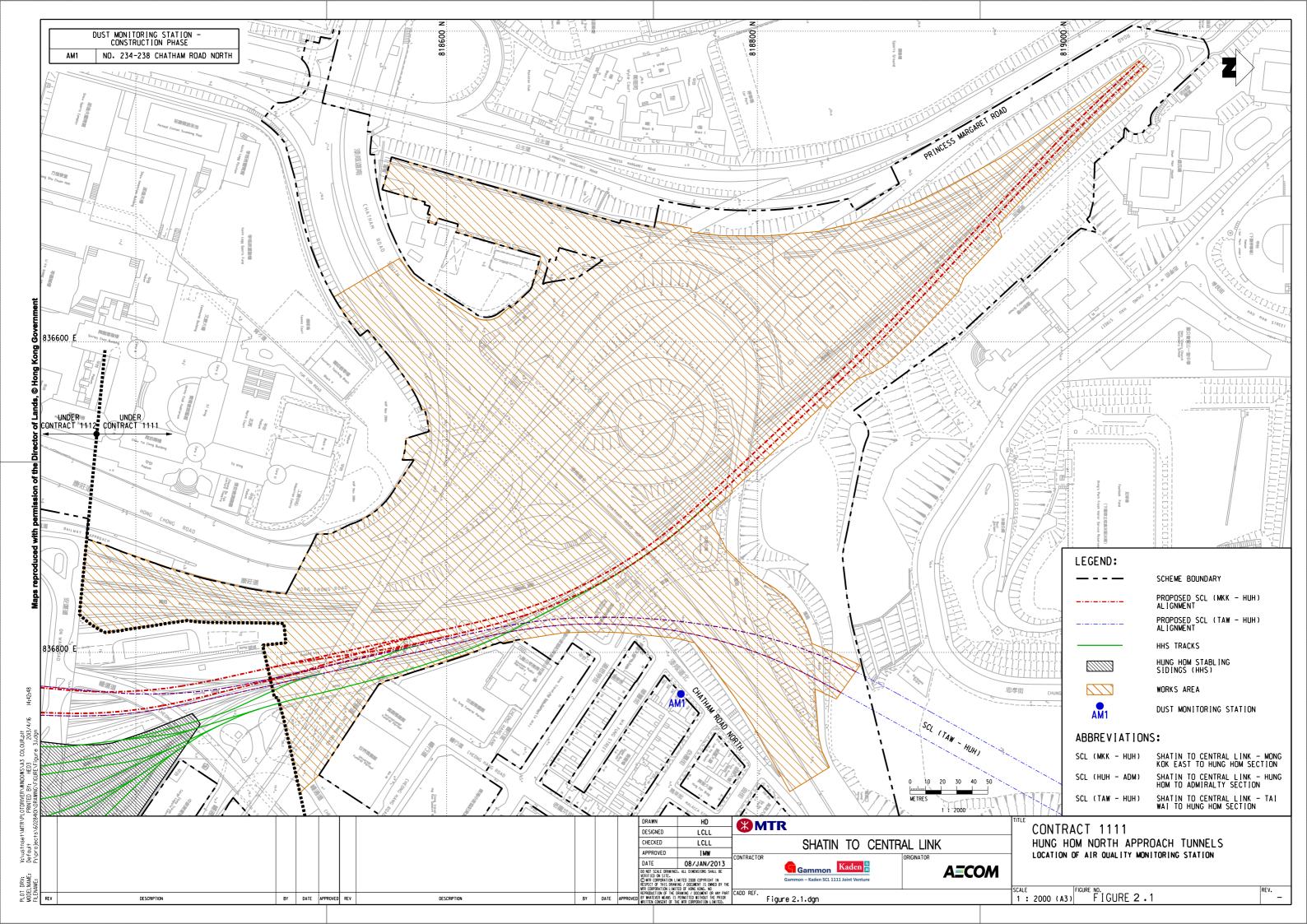
Air Quality Impact

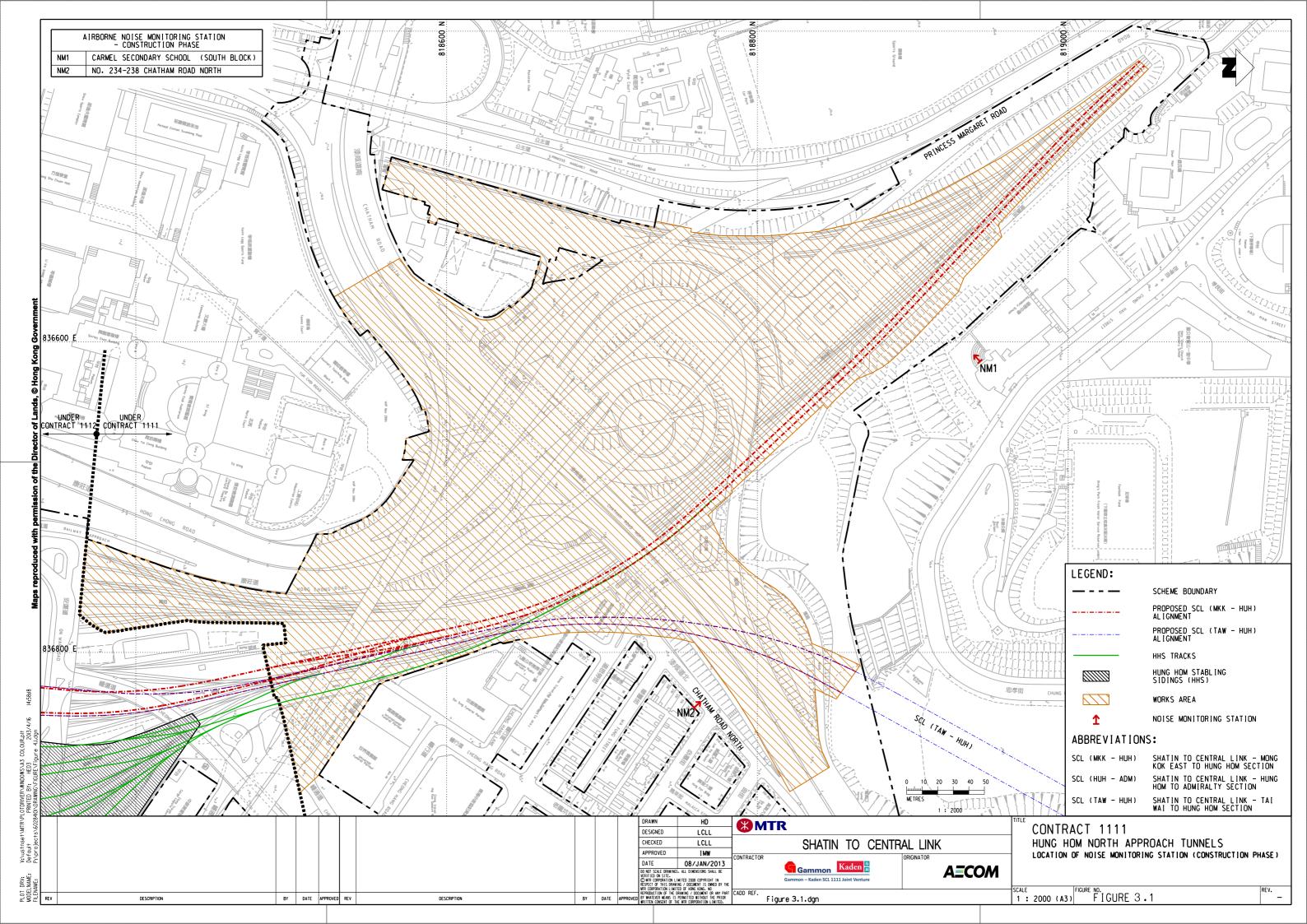
• Implement effective measures to avoid dust impact.

Construction Noise Impact

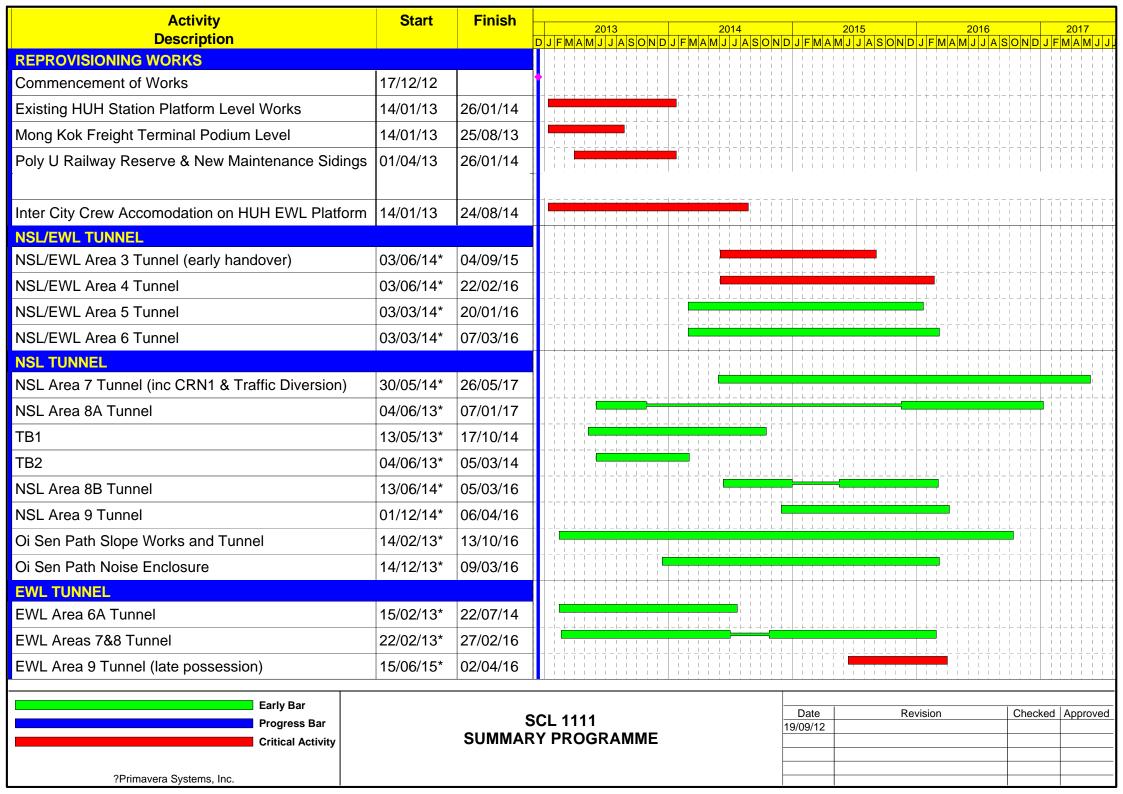
• No specific observation was identified in the reporting month.

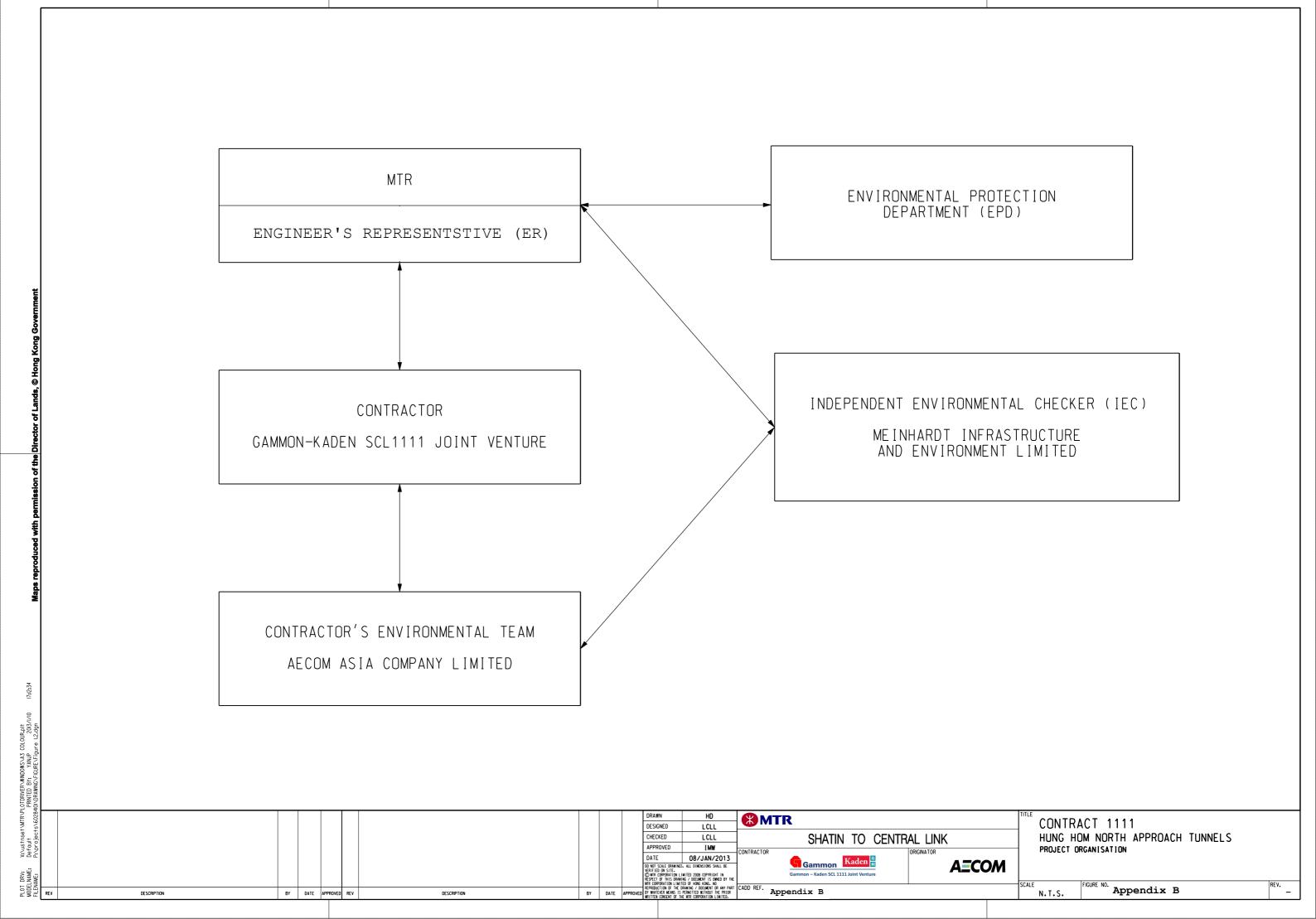

Water Quality Impact


• Implement effective measures to avoid surface runoff into the drainage system.


Chemical and Waste Management

- · Avoid accumulation of waste materials on site.
- · Provide proper chemical waste management.




APPENDIX A

Construction Programme

APPENDIX B

Project Organization Structure

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

Appendix C - Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	Environmental Mi	tigation Measures	Location	Implementation Status		
Landscape and	andscape and Visual Impact					
S6.9.3	Minimize visual	Existing topsoil shall be re-used where possible for new planting	All construction	N/A		
(TAW-HUH),	& landscape	areas within the Project.	sites			
S6.12 (HHS),	impact	Ground vegetation and the associated under storey habitats,	All construction	N/A		
S6.12		construction contracts may designate "No-intrusion Zone" to various	sites			
(TAW-HUH),		areas within the site boundary with rigid and durable fencing for each				
Table 6.9 (HHS)		individual no-intrusion zone.				
& Table 4.9		All retained trees should be recorded photographically at the	All construction	V		
(MKK-HUH)		commencement of the Contract, and carefully protected during the	sites			
		construction period.				
		Erection of decorative screen during construction stage to screen off	All construction	V		
		undesirable views of the construction site for visual and landscape	sites			
		sensitive areas.				
		Giving control on the height and disposition/ arrangement of all	All construction	V		
		facilities on the works site to minimize visual impact to adjacent VSRs.	sites			
I		Trees of medium to high survival rate that would be affected by the	All construction	N/A		
		works shall be transplanted where possible and practicable.	sites			

	Compensatory tree & shrub planting shall be provided to compensate	All construction	N/A
	for the loss of shrub planting in amenity areas.	sites	
	Control of night-time lighting glare	All construction	N/A
		sites	
	All hard and soft landscape areas disturbed temporarily during	All construction	N/A
	construction shall be reinstated to equal or better quality, to the	sites	
	satisfaction of the relevant Government Departments.		

Construction Noise Impact					
8.3.6	To control	Only well-maintained plant should be operated on-site and plant	All construction	V	
(TAW-HUH) ,	construction	should be serviced regularly during the construction programme.	sites		
S8.5.6 (HHS) &	airborne noise	Machines and plant (such as trucks, cranes) that may be in intermittent	All construction	V	
S6 (MKK-HUH)		use should be shut down between work periods or should be throttled	sites	V	
		down to a minimum			
		Plant known to emit noise strongly in one direction, where possible, be	All construction	V	
		orientated so that the noise is directed away from nearby NSRs	sites	V	
		Silencers or mufflers on construction equipment should be properly	All construction	V	
		fitted and maintained during the construction works	sites	V	
		Mobile plant should be sited as far away from NSRs as possible and	All construction	V	
		practicable;	sites	V	
		Material stockpiles, mobile container site office and other structures	All construction	V	
		should be effectively utilised, where practicable, to screen noise from	sites	V	
		on-site construction activities			
		The following quiet PME should be used:	Works areas	N/A	
		Asphalt Paver (SWL=101dB(A))	where required	IV/A	
		Backhoe (SWL=106dB(A))			
		Backhoe with Hydraulic Breaker (SWL=110dB(A))			
		Concrete lorry mixer (SWL=96dB(A))			
		Concrete mixer truck (SWL=96dB(A))			
		Concrete Pump (SWL=106dB(A))			

Concrete Pump Truck (SWL=106dB(A))		
Crane, mobile (SWL=94dB(A))		
Crawler Crane (SWL=102dB(A))		
Drill, hand-held (SWL=98dB(A))		
Dump truck (SWL=104dB(A))		
Excavator (SWL=106dB(A))		
Flat Bed Lorry (SWL=102dB(A))		
Generator (SWL=95dB(A))		
Giken Piler and Power-pack (SWL=94dB(A))		
Hydraulic breaker (SWL=110dB(A))		
Hydraulic excavator (SWL=106dB(A))		
Lorry (SWL=102dB(A))		
Lorry with crane/ grab (SWL=94dB(A))		
Mini Piling Rig (SWL=112dB(A))		
Piling Rig (SWL=112dB(A))		
Poker, vibrator, hand-held (SWL=98dB(A))		
Road Roller (SWL=101dB(A))		
Rock Drill (SWL = 108dB(A)		
Roller (SWL = 101dB(A)		
Truck (SWL=103dB(A))		
Vibratory Hammer (SWL=118dB(A))		
Install temporary hoarding located on the site boundaries between	All construction	V
noisy construction activities and NSRs.	sites	V

		Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants	All construction sites	V
		Sequencing operation of construction plants where practicable.	All construction sites	V
		Particularly noisy construction activities will be scheduled to avoid school examination period as far as practicable.	Works areas near the Carmel	V
Construction Air	· Ovality Immant		Secondary School	
Construction Air		Wetering and have an average weeken and have read should be	All construction	
S7.6.5 (TAW-HUH) ,	Minimize dust impact at	Watering once per hour on exposed worksites and haul road should be conducted to achieve dust removal efficiencies of 91.7%.	sites	@
S7.6.6 (HHS), S5.50, 5.51 &5.57	nearby sensitive receivers	Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet.	All construction sites	@
(MKK-HUH)		Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads	All construction sites	N/A
		A stockpile of dusty material should not be extended beyond the pedestrian barriers, fencing or traffic cones.	All construction sites	V
		The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle	All construction sites	N/A
		Vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point.	All construction sites	@

The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.	All construction sites	V
When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided.	All construction sites	V
The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials.	All construction sites	N/A
Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously.	All construction sites	V
Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet.	All construction sites	N/A
Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building.	All construction sites	V
Any skip hoist for material transport should be totally enclosed by impervious sheeting.	All construction sites	N/A
Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs.	All construction sites	N/A

Every stock of more than 20 bags of cement or dry pulverized fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.	All construction sites	N/A
Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed.	All construction sites	N/A
Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system.	All construction sites	N/A
Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site.	All construction sites	N/A
Imposition of speed controls for vehicles on site haul roads.	All construction sites	N/A

Construction W	ater Quality Impa	ct		
S10.7.1	To minimize	Construction Site Drainage should be implemented to control site	Site drainage	V
(TAW-HUH),	construction	run-off and drainage as well as any site effluents generated from the	system	
S10.7.1 (HHS)	water quality	works areas, and to prevent run-off and construction wastes from		
& S8	impactt	entering nearby water environment.		
(MKK-HUH)		Surface run-off from construction sites should be discharged into storm	Site drainage	@
		drains via adequately designed sand/silt removal facilities such as	system	
		sand traps, silt traps and sedimentation basins.		
		Channels or earth bunds or sand bag barriers should be provided on	All works area	@
		site to properly direct stormwater to such silt removal facilities.		
		Perimeter channels at site boundaries should be provided on site	All works area	V
		boundaries where necessary to intercept storm run-off from outside the		
		site so that it will not wash across the site.		
		Silt removal facilities, channels and manholes should be maintained	All construction	@
		and the deposited silt and grit should be removed regularly.	sites	
		Construction works should be programmed to minimize soil excavation	All construction	N/A
		works in rainy seasons.	sites	
		Temporary exposed slope surfaces should be covered e.g. by	All construction	@
		tarpaulin, and temporary access roads should be protected by crushed	sites	@
		stone or gravel, as excavation proceeds.		
		Earthworks final surfaces should be well compacted and the	All construction	N/A
		subsequent permanent work or surface protection should be carried	sites	

All construction	@
sites	
All construction	V
sites	
All construction	V
sites	
All construction	V
sites	
All construction	V
sites	
All construction	V
sites	
	All construction sites All construction sites All construction sites All construction sites All construction sites

either be dewatered or mixed with inert fill material for disposal to a		
public filling area.		
A cofferdam wall should be built as necessary to limit groundwater	Excavation works	N/A
inflow to the excavation works areas.	areas	
Wastewater generated should not be discharged into the stormwater	All construction	V
drainage system.	sites	
Acidic wastewater generated from acid cleaning, etching, pickling and	All construction	N/A
similar activities should be neutralized to within the pH range of 6 to 10	sites	
before discharging into foul sewers.		
Appropriate numbers of portable toilets shall be provided by a licensed	All construction	V
contractor to serve the construction workers over the construction site	sites	
The Contractor should apply for a discharge license under the WPCO	All construction	N/A
through the Regional Office of EPD for groundwater recharge	sites where	
operation or discharge of treated groundwater.	practicable	
Appropriate measures will be deployed to minimize the intrusion of	All construction	N/A
groundwater into excavation works areas.	sites	
Measures should be put in place in order to mitigate any drawdown	All construction	N/A
effects to the groundwater table during the operation of the temporary	sites	
dewatering works		

Waste Managem	ent			
S11.5.1(TAW-H	Good site	Maintain temporary stockpiles and reuse excavated fill material for	All construction	N/A
UH),	practice to	backfilling and reinstatement;	sites	
S11.5.1(HHS) &	minimize the	Sorting of demolition debris and excavated materials from demolition	All construction	V
S9 (MKK-HUH)	generation and	works to recover reusable/ recyclable portions.	sites	
	impact of the	Segregation and storage of different types of waste in different	All construction	V
	waste.	containers, skips or stockpiles to enhance reuse or recycling of	sites	
		materials and their proper disposal.		
		Proper storage and site practices to minimize the potential for damage	All construction	@
		or contamination of construction materials.	sites	
		Plan and stock construction materials carefully to minimize amount of	All construction	N/A
		waste generated and avoid unnecessary generation of waste.	sites	
		Waste, such as soil, should be handled and stored well to ensure	All construction	V
		secure containment, thus minimizing the potential of pollution.	sites	
		Maintain and clean storage areas routinely.	All construction	V
			sites	
		Stockpiling area should be provided with covers and water spraying	All construction	@
		system to prevent materials from wind-blown or being washed away.	sites	
		Waste should be removed in timely manner	All construction	@
			sites	
		Waste collectors should only collect wastes prescribed by their	All construction	V
		permits.	sites	

Waste should be disposed of at licensed waste disposal facilities.	All construction	V
	sites	
Implement a trip-ticket system for each works contract to ensure that	All construction	V
the disposal of C&D materials are properly documented and verified.	sites	
Containers used for the storage of chemical wastes should be suitable	All construction	V
for the substance they are holding, resistant to corrosion, maintained in	sites	
a good condition, and securely closed.		
The storage area for chemical wastes should be clearly labelled and	All construction	V
used solely for the storage of chemical waste; enclosed on at least 3	sites	
sides.		
The Contractor should register as a chemical waste producer if	All construction	V
chemical wastes would be generated.	sites	
Disposal of chemical waste should be via a licensed waste collector.	All construction	V
	sites	V
Stockpiling of contaminated sediments should be avoided as far as	All construction	N/A
possible.	sites	
All storage of asbestos waste should be carried out properly in a	All construction	N/A
secure place isolated from other substances so as to prevent any	sites	
possible release of asbestos fibres into the atmosphere and		
contamination of other substances.		

Contaminated La	and			
S10.24- 10.34	To act as a	Precautionary measures such as visual inspection are recommended	Within Project	N/A
(MKK-HUH)	general	to be undertaken during construction activities that disturb soil.	Boundary where	
	precautionary	If soil discolouration or the presence of oil/unnatural odour is noted	signs of	N/A
	measure to	during visual inspection, sampling and testing should also be	contamination is	
	screen soils for	undertaken to verify the presence of contamination.	identified	
	the presence			
	contamination			
	during			
	construction.			
	To remediate	If land contamination is identified, CAR and RAP detailing the		N/A
	contaminated	proposed remediation works should be prepared. RR should then be		
	soil	prepared and submitted to EPD to demonstrate that the		
		decontamination work is adequate and has been carried out in		
		accordance with the endorsed CAR and RAP.		

Legend: V = implemented;

x = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location Action Level		Limit Level	
AM1	No. 234 – 238 Chatham Road North	183.9 μg/m³	260.0 μg/m³	

Table 2 Action and Limit Levels for Regular Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
NM1	Carmel Secondary School (South Block)	When one documented complaint, related to 0700 – 1900 hours on	65 / 70 dB(A) ⁽¹⁾
NM2	No. 234 – 238 Chatham Road North	normal weekdays, is received from any one of the sensitive receivers.	75 dB(A)

Note:

Table 3 Action and Limit Levels for Continuous Noise

ID	Location	Action/Limit Level
NM1	Carmel Secondary School (South Block)	69 dB(A) ⁽¹⁾
NM2	No. 234-238 Chatham Road North	77 dB(A)

Note:

(1) Action/Limit level will only be applicable during the examination period.

⁽¹⁾ Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

APPENDIX E

Calibration Certificates of Equipments

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	234 - 238 Chatha	am Road North;	SCL - DMS - 11	Operator:	Shum Ka	num Kam Yuen		
Cal. Date:	13-May-13			ny-13 Next Due Dat	Next Due Date:	13-Jul-13		_
Equipment No.:				Serial No.	894-	0835		
			Ambien	t Condition				
Temperatu	re, Ta (K)	302	Pressure,	Pa (mmHg)		754.7		
				Standard Information			0.0005	
Serial		843	Slope, mc	1.99238		ept, bc	-0.0035	
Last Calibra		06-Dec-12			= [DH x (Pa/760) x			
Next Calibra	ation Date:	06-Dec-13		Qstd = {[DH x (Pa/760) x (298/Ta)]	" ² -bc} / mc		
		•	Calibration	of TSP Sampler				
		(Orfice		HV	S Flow Recorder		
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	(60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X -	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFI		
18	8.9		2.95	1.48	50.0	49.49)	
13	7.0		2.62	1.32	42.0	41.58	}	
10	5.9		2.40	1.21	36.0	35.64		
7	4.2		2.03	1.02	28.0	27.72)	
5	3.1	1.74		0.88	22.0	21.78	}	
By Linear Regre Slope , mw = Correlation Coe	45.7423 fficient* =		.9976	Intercept, bw =	-18.	7845	- 11	
*If Correlation Co	efficient < 0.990,	check and recal	ibrate.					
			Set Point	Calculation				
From the TSP Fie	eld Calibration Cu	ırve, take Qstd =	1.30m ³ /min					
From the Regres	sion Equation, th	e "Y" value accoi	rding to					
			A 88	*/B 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- >=1/2			
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	ı a)]¨¯			
Therefore, Set Pe	oint; IC = (mw x	Qstd + bw) x [(7	760 / Pa) x (Ta / 2	98)] ^{1/2} =		41.10		
	S-2 3/83		200 to 200				-	
				- A				
Remarks:								
			,	/		11 M		
00 Davisona	Vin		Signature: V			Data: 6 Min	415	

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	234 - 238 Chatha	m Road North;	SCL - DMS - 11	Operator:	Shum Ka	m Yuen	
Cal. Date:	12-Jul-13			Next Due Date:	e: 12-Sep-13		
Equipment No.:				Serial No.	894-0)835	-
			Ambient	Condition			
Temperati	ure, Ta (K)	303	Pressure, F	Pa (mmHg)		752.7	
	•						
			Orifice Transfer S	tandard Informatio	n		
Seria	al No:	843	Slope, mc	1.99238	Interce		-0.00351
Last Calibr	ration Date:	6-Dec-12		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calib	ration Date:	6-Dec-13		Qstd = {[DH x (I	Pa/760) x (298/Ta)] ¹	^{/2} -bc} / mc	
		w					
			Calibration of	f TSP Sampler			
			Orfice		HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	760) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (CF	
18	8.8		2.93	1.47	50.0	49.3	5
13	7.0		2.61	1.31	42.0	41.4	5
10	5.8		2.38	1.19	35.0	34.5	4
7	4.2		2.02		28.0	27.6	3
5	3.2	1.77		0.89	21.0	20.7	3
Slope , mw = Correlation Co	48.4665 efficient* = coefficient < 0.990,		9.9967 librate.	Intercept, bw =	-22.:	2868	_
			Set Point	Calculation		II	
From the TSP F	Field Calibration Cu	rve, take Qstd =	= 1.30m ³ /min				
From the Regre	ession Equation, th	e "Y" value acco	ording to				
					4.0		
		m\	w x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}		
Th (0 - 1)	D-:1-10 /	Ootd 1 h \ v. [/	760 / Do \ v / To / 2	00 \11/2_		41.26	
Therefore, Set	Point; IC = (mw x	Qsta + bw) x [(760 / Pa) x (Ta / 2	90)] -	3.4	41.20	
					8. 1		
Remarks:							
1 torrianto.						,	
	60		Signature:	1		Date: 15/	7/17

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - De Operator		Rootsmeter Orifice I.I	- ,	438320 0843	Ta (K) - Pa (mm) -	293 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4040 0.9860 0.8850 0.8420 0.6930	3.2 6.4 8.0 8.8 12.9	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0018 0.9976 0.9953 0.9943 0.9888	0.7136 1.0118 1.1247 1.1809 1.4269	1.4186 2.0061 2.2429 2.3524 2.8371		0.9957 0.9915 0.9893 0.9883 0.9828	0.7092 1.0056 1.1178 1.1737 1.4182	0.8828 1.2485 1.3959 1.4640 1.7657
Qstd slop intercept coefficiency y axis =	t (b) = ent (r) =	1.99238 -0.00351 0.99992 	 	Qa slope intercept coefficie y axis =	t (b) =	1.24760 -0.00219 0.99992

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

12CA1008 02

Page

Item tested

Description: Manufacturer: Type/Model No.:

Adaptors used:

Sound Level Meter (Type 1)

Rion Co., Ltd.

NL-31

Microphone Rion Co., Ltd. UC-53A

Preamp Rion Co., Ltd.

2

00320528/NOOT. 03A

90565

NH-19 75883

Item submitted by

Serial/Equipment No.:

Customer Name: Address of Customer: AECOM ASIA CO., LTD.

Request No .:

Date of receipt:

08-Oct-2012

Date of test:

08-Oct-2012

Reference equipment used in the calibration

Description: Multi function sound calibrator Signal generator Signal generator

Model: B&K 4226 DS 360 DS 360

Serial No. 2288444 33873 61227

Expiry Date: 22-Jun-2013 29-May-2013 29-May-2013

Traceable to: CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

(22 ± 1) °C (60 ± 10) % (1000 ± 5) hPa

Relative humidity: Air pressure:

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2. replaced by an equivalent capacitance within a tolerance of +20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

Date:

08-Oct-2012

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄 竹 坑 道 3 7 號 利 達 中 心 地 下 , 9 樓 , 1 2 樓 , 1 3 樓 及 2 0 樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA0305 01-01

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

B&K

2250-L

B&K 4950

Type/Model No.: Serial/Equipment No.:

2681366 (~.011.01)

2665582

Microphone

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO LIMITED

Address of Customer:

Request No .: Date of receipt:

05-Mar-2013

Date of test:

05-Mar-2013

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model:

B&K 4226

DS 360 DS 360

Serial No. 2288444

33873 61227

Expiry Date:

23-May-2013 29-May-2013 29-May-2013 Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature: Relative humidity: 21 ± 1 °C 60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian N ng Jun Qi Date:

05-Mar-2013

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黃竹 坑 道 3 7 號 利 達 中 心 地 下 , 9 樓 , 1 2 樓 , 1 3 樓 及 2 0 樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA0325 01-01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.: **B&K**

B&K

Serial/Equipment No.:

2238

4188

Adaptors used:

2285692

2250420

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No .:

Date of receipt:

25-Mar-2013

Date of test:

26-Mar-2013

Reference equipment used in the calibration

Description:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator

Model: B&K 4226 DS 360 DS 360

2288444 33873 61227

22-Jun-2013 29-May-2013 29-May-2013 CIGISMEC **CEPREI** CEPREI

Ambient conditions

Temperature:

Air pressure:

22 ± 1 °C

Relative humidity:

60 ± 10 % 1000 ± 10 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Min/Fena Jun Qi

Actual Measurement data are documented on worksheets.

Huang Jian

Approved Signatory:

Date:

26-Mar-2013

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA0313 02

Page:

of

2

Item tested

Description: Manufacturer: Acoustical Calibrator (Class 1)

Type/Model No.:

Rion Co., Ltd. NC-73

Serial/Equipment No.:

10307216 / N.004.06

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO. LTD

Address of Customer:

Request No.: Date of receipt:

13-Mar-2013

Date of test:

14-Mar-2013

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	29-May-2013	SCL
Preamplifier	B&K 2673	2239857	17-Dec-2013	CEPREI
Measuring amplifier	B&K 2610	2346941	17-Dec-2013	CEPREI
Signal generator	DS 360	61227	29-May-2013	CEPREI
Digital multi-meter	34401A	US36087050	10-Dec-2013	CEPREI
Audio analyzer	8903B	GB41300350	29-May-2013	CEPREI
Universal counter	53132A	MY40003662	29-May-2013	CEPREI

Ambient conditions

Temperature: Relative humidity: 22 ± 1 °C 60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B 1, and the lab calibration procedure SMTP004-CA-156.
- The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique. 2,
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

14-Mar-2013

Company Chop:

ENGIN

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

線合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12 , 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

12CA0817 01

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Rion Co., Ltd. NC-73

Serial/Equipment No.:

10307223 / N.004.08

Adaptors used:

-

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.:

_

Date of receipt:

17-Aug-2012

Date of test:

17-Aug-2012

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	29-May-2013	SCL
Preamplifier	B&K 2673	2239857	05-Jan-2013	CEPREI
Measuring amplifier	B&K 2610	2346941	29-Dec-2012	CEPREI
Signal generator	DS 360	61227	29-May-2013	CEPREI
Digital multi-meter	34401A	US36087050	16-Dec-2012	CEPREI
Audio analyzer	8903B	GB41300350	29-May-2013	CEPREI
Universal counter	53132A	MY40003662	29-May-2013	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 995 ± 5 hPa

Supplement ■ Permitted Supplement Supplement

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

Details of the performed measurements are presented on page 2 of this certificate.

eng Jun Qi

Approved Signatory:

Date:

17-Aug-2012

Company Chop:

WAS ENGINEER IN SENGINEER IN S

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

線合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F, 9/F, 12/F, 13/F & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA0325 01-03

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Rion Co., Ltd. NC-73

Serial/Equipment No.:

10186482 / N.004.09

Adaptors used:

-

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

-

Request No.: Date of receipt:

25-Mar-2013

Date of test:

26-Mar-2013

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	29-May-2013	SCL
Preamplifier	B&K 2673	2239857	17-Dec-2013	CEPREI
Measuring amplifier	B&K 2610	2346941	17-Dec-2013	CEPREI
Signal generator	DS 360	61227	29-May-2013	CEPREI
Digital multi-meter	34401A	US36087050	10-Dec-2013	CEPREI
Audio analyzer	8903B	GB41300350	29-May-2013	CEPREI
Universal counter	53132A	MY40003662	29-May-2013	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

26-Mar-2013

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link Contract 1111 - Hung Hom North Approach Tunnels Impact Monitoring Schedule for July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	01-Jul	02-Jul	03-Jul	04-Jul	05-Jul	06-Jul
		24-hour TSP (AM1)	Noise (NM1, NM2)			
07-Jul	08-Jul	09-Jul	10-Jul	11-Jul	12-Jul	13-Jul
	24-hour TSP (AM1)	Noise (NM1, NM2)				24-hour TSP (AM1)
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
		Noise (NM1, NM2)			24-hour TSP (AM1)	
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
				24-hour TSP (AM1)	Noise (NM1, NM2)	
28-Jul	29-Jul	30-Jul	31-Jul			
			24-hour TSP (AM1)			

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Shatin to Central Link Contract 1111 - Hung Hom North Approach Tunnels Tentative Impact Monitoring Schedule for August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				01-Aug	02-Aug	03-Aug
				Noise (NM1, NM2)		
04-Aug	05-Aug	06-Aug	07-Aug	08-Aug	09-Aug	10-Aug
		24-hour TSP (AM1)	Noise (NM1, NM2)			
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
	24-hour TSP (AM1)	Noise (NM1, NM2)				24-hour TSP (AM1)
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
		Noise (NM1, NM2)			24-hour TSP (AM1)	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
				24-hour TSP (AM1)	Noise (NM1, NM2)	

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX G

Air Quality Monitoring Results and their Graphical Presentations

Appendix G
Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AM1 (No. 234 – 238 Chatham Road North)

t	End		Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
0:00	03-Jul-13	0:00	Sunny	29.4	1007.9	1.30	1.30	1.30	1877.8	3.5535	3.6060	0.0525	12793.87	12817.87	24.00	28.0
0:00	09-Jul-13	0:00	Sunny	28.8	1010.8	1.33	1.33	1.33	1916.6	3.6477	3.7071	0.0594	12817.87	12841.87	24.00	31.0
0:00	14-Jul-13	0:00	Rainy	30.1	1001.0	1.43	1.43	1.43	2054.9	3.6203	3.7127	0.0924	12841.87	12865.87	24.00	45.0
0:00	20-Jul-13	0:00	Cloudy	26.8	1005.9	1.33	1.33	1.33	1916.6	3.6720	3.7154	0.0434	12865.87	12889.87	24.00	22.6
0:00	26-Jul-13	0:00	Cloudy	25.7	1004.3	1.33	1.33	1.33	1916.6	3.6810	3.7309	0.0499	12889.87	12913.87	24.00	26.0
0:00	01-Aug-13	0:00	Sunny	29.4	1004.7	1.33	1.33	1.33	1916.6	3.7400	3.7846	0.0446	12913.87	12937.87	24.00	23.3
	0:00 0:00 0:00 0:00 0:00	Time Date 0:00 03-Jul-13 0:00 09-Jul-13 0:00 14-Jul-13 0:00 20-Jul-13 0:00 26-Jul-13	Time Date Time 0:00 03-Jul-13 0:00 0:00 09-Jul-13 0:00 0:00 14-Jul-13 0:00 0:00 20-Jul-13 0:00 0:00 26-Jul-13 0:00	Time Date Time Condition 0:00 03-Jul-13 0:00 Sunny 0:00 09-Jul-13 0:00 Sunny 0:00 14-Jul-13 0:00 Rainy 0:00 20-Jul-13 0:00 Cloudy 0:00 26-Jul-13 0:00 Cloudy	Time Date Time Condition Temp. (°C) 0:00 03-Jul-13 0:00 Sunny 29.4 0:00 09-Jul-13 0:00 Sunny 28.8 0:00 14-Jul-13 0:00 Rainy 30.1 0:00 20-Jul-13 0:00 Cloudy 26.8 0:00 26-Jul-13 0:00 Cloudy 25.7	Time Date Time Condition Temp. (°C) Pressure (hPa) 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33 1.33	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1.30 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1.33 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 1.43 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33 1.33 1.33	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) (m³) 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1.30 1877.8 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1.33 1916.6 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 1.43 2054.9 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 1916.6 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33 1.33 1.33 1916.6	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) (m³) Initial 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1.30 1877.8 3.5535 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1.33 1916.6 3.6477 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 1.43 2054.9 3.6203 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 1916.6 3.6810 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33 1.33 1.33 1916.6 3.6810	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) (m³) Initial Final 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1.30 1877.8 3.5535 3.6060 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1.33 1916.6 3.6477 3.7071 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 1.43 2054.9 3.6203 3.7127 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 1916.6 3.6810 3.7309 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33 1.33 1.33 1916.6 3.6810 3.7309	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) (m³) Initial Final weight(g) 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1877.8 3.5535 3.6060 0.0525 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1916.6 3.6477 3.7071 0.0594 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 1.43 2054.9 3.6203 3.7127 0.0924 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 1916.6 3.6720 3.7154 0.0434 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33 1.33 1.33 1916.6 3.6810 3.7309 0.0499	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) (m³) Initial Final weight(g) Initial 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1877.8 3.5535 3.6060 0.0525 12793.87 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1916.6 3.6477 3.7071 0.0594 12817.87 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 1.43 2054.9 3.6203 3.7127 0.0924 12841.87 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 1916.6 3.6720 3.7154 0.0434 12865.87 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33 1.33 1.33 1916.6 3.6810 3.7309 0.0499 12889.87	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) (m³) Initial Final weight(g) Initial Final 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1877.8 3.5535 3.6060 0.0525 12793.87 12817.87 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1916.6 3.6477 3.7071 0.0594 12817.87 12841.87 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 1.43 2054.9 3.6203 3.7127 0.0924 12841.87 12865.87 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 1916.6 3.6720 3.7154 0.0434 12865.87 12899.87 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3 1.33 1.33 <t< td=""><td>Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) (m³) Initial Final weight(g) Initial Final Time(hrs.) 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1877.8 3.5535 3.6060 0.0525 12793.87 12817.87 24.00 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1916.6 3.6477 3.7071 0.0594 12817.87 12841.87 24.00 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 2054.9 3.6203 3.7127 0.0924 12841.87 12865.87 24.00 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 1916.6 3.6720 3.7154 0.0434 12865.87 1289.87 24.00 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3</td></t<>	Time Date Time Condition Temp. (°C) Pressure (hPa) Initial Final (m³/min) (m³) Initial Final weight(g) Initial Final Time(hrs.) 0:00 03-Jul-13 0:00 Sunny 29.4 1007.9 1.30 1.30 1877.8 3.5535 3.6060 0.0525 12793.87 12817.87 24.00 0:00 09-Jul-13 0:00 Sunny 28.8 1010.8 1.33 1.33 1916.6 3.6477 3.7071 0.0594 12817.87 12841.87 24.00 0:00 14-Jul-13 0:00 Rainy 30.1 1001.0 1.43 1.43 2054.9 3.6203 3.7127 0.0924 12841.87 12865.87 24.00 0:00 20-Jul-13 0:00 Cloudy 26.8 1005.9 1.33 1.33 1.33 1916.6 3.6720 3.7154 0.0434 12865.87 1289.87 24.00 0:00 26-Jul-13 0:00 Cloudy 25.7 1004.3

 Average
 29.3

 Minimum
 22.6

 Maximum
 45.0

Appendix G Air Quality Monitoring Results

AECOM

Snatin to Central Link Works Contract 1111-	SCALE CHECK	14.1.0.	DATE DRAWN	Aug-1		
Trung from North Approach Funners	CHECK	TYUT	DRAWN	IYYS	>	
Graphical Presentations of Impact 24-hour TSP	JOB NO.		APPEND	X No.	Rev.	
Monitoring Results		60284101	(G		

Appendix G Extract of Meteorological Observations for King's Park* Automatic Weather Station, July 2013

	Total	Prevailing	Mean
Date	Rainfall	Wind	Wind Speed
Date	(mm)	Direction	(km/h)
		(degrees)	
Jul-01	33.0	120	15.1
Jul-02	0.0	160	11.8
Jul-03	0.0	160	7.9
Jul-04	0.0	290	7.4
Jul-05	0.0	290	7.5
Jul-06	4.0	180	7.2
Jul-07	12.5	210	6.5
Jul-08	2.0	180	7.3
Jul-09	0.0	130	5.5
Jul-10	26.5	150#	5.0#
Jul-11	0.0	290	4.9
Jul-12	0.0	290	8.6
Jul-13	0.0	280	8.8
Jul-14	33.5	280	8.9
Jul-15	36.0	120	5.1
Jul-16	5.5	120	5.8
Jul-17	23.5	120	9.7
Jul-18	0.5	120	7.4
Jul-19	10.0	120#	10.4#
Jul-20	2.5	120	11.1
Jul-21	0.5	120	11.3
Jul-22	9.0	120	11.6
Jul-23	10.5	120	10.1
Jul-24	24.0	120	9.4
Jul-25	51.0	120	7.7
Jul-26	55.5	190	9.0
Jul-27	14.5	180	8.3
Jul-28	9.0	120	7.7
Jul-29	0.0	120	6.8
Jul-30	0.0	120	6.0
Jul-31	1.5	120	13.8
Mean		120#	8.5#
Total	365		
Maximum	55.5		15.1#
Minimum	0.0		4.9#

^{*}Meterological data of the nearest Automatic Weather Station is presented.

missing (less than 24 hourly observations a day)

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected

APPENDIX H

Noise Monitoring Results and their Graphical Presentations

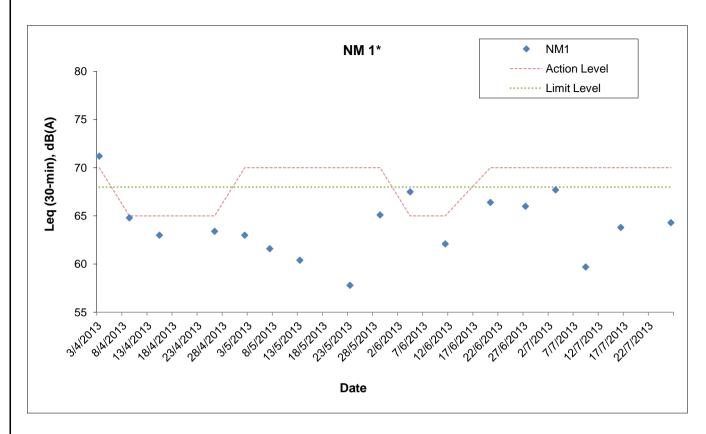
Appendix H Regular Construction Noise Monitoring Results

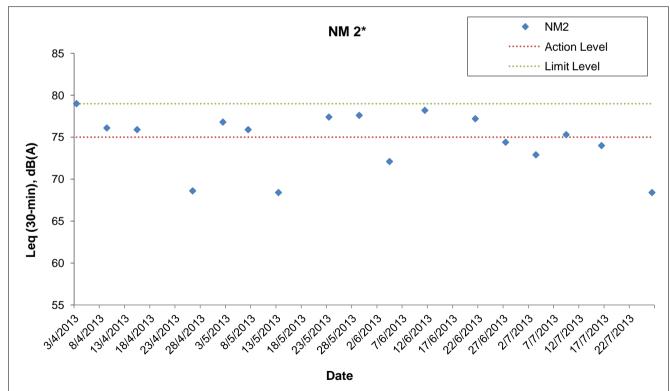
Daytime Noise Monitoring Results at Station NM 1 (Carmel Secondary School (South Block))

Date Weather	Nois	e Level fo	r 30-min, c	IB(A) ⁺	Baseline Corrected	Baseline Noise Limit Level***,	Exceedance		
2410	Condition	Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
03-Jul-13	Sunny	10:15	65.5	69.5	67.7	67.7	68.0	70	N
09-Jul-13	Sunny	10:03	65.7	70.3	68.6	59.7#	68.0	70	N
16-Jul-13	Cloudy	10:00	67.0	71.1	69.4	63.8#	68.0	70	N
26-Jul-13	Cloudy	10:10	61.7	69.8	64.3	64.3	68.0	70	N
		Min	61.7	69.5		59.7			
		Max	67.0	71.1		67.7			

Daytime Noise Monitoring Results at Station NM 2 (No. 234 – 238 Chatham Road North)

Date	Weather	Noise Level for 30-min, o		B(A)**	Baseline Corrected Baseline Noise	Corrected Baseline Noise		Limit Level***,	Exceedance
	Condition	Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
03-Jul-13	Sunny	10:00	70.5	74.5	72.9	72.9	79.0	75	N
09-Jul-13	Sunny	10:45	71.6	77.1	75.3	75.3	79.0	75	N
16-Jul-13	Cloudy	10:48	68.6	77.0	74.0	74.0	79.0	75	N
26-Jul-13	Cloudy	11:00	62.9	70.0	68.4	68.4	79.0	75	N
		Min	62.9	70.0		68.4			
		Max	71.6	77.1		75.3			


^{+ -} Façade measurement


^{++ -} Free field measurement

^{*** -} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

^{# -} The noise monitoring results of the measurements are higher than the daytime construction noise criterion. However, the results are not considered as exceedance if they are either below the baseline level or below the limit level after deducting the baseline noise level.

Appendix H Regular Construction Noise Monitoring Results

* - The noise monitoring results of the measurements are higher than the daytime construction noise criterion. However, the results are not considered as exceedance if they are either below the baseline level or below the limit level after deducting the baseline noise level.

A=COM

Shatin to Central Link Works Contract 1111 Hung Hom North Approach Tunnels Graphical Presentations of Noise Monitoring Results	SCALE	N.T.S.	DATE	Aug-1	3
Hung Hom North Approach Tunnels		TYUT	DRAWN	IYYS	;
	JOB NO.	60284101	APPENDI 60284101		Rev
Results		"			-

APPENDIX I

Event Action Plan

Appendix I – Event and Action Plan

Event / Action Plan for Construction Dust

EVENT	ACTION							
EVENT	ET	IEC	ER	Contractor				
ACTION LEVEL		•						
1. Exceedance	Inform the Contractor, IEC and	Check monitoring data	Confirm receipt of notification of	Identify source(s), investigate				
for one	ER;	submitted by the ET;	exceedance in writing.	the causes of exceedance and				
sample	2. Discuss with the Contractor and	2. Check Contractor's working		propose remedial measures;				
	IEC on the remedial measures	method;		Implement remedial measures;				
	required;	3. Review and advise the ET and		Amend working methods agreed				
	3. Repeat measurement to confirm	ER on the effectiveness of the		with the ER as appropriate.				
	findings;	proposed remedial measures.						
	4. Increase monitoring frequency							

	EVENT		ACTION								
			ET		IEC		ER		Contractor		
2.	Exceedance	1.	Inform the Contractor, IEC and	1.	Check monitoring data	1.	Confirm receipt of notification of	1.	Identify source and investigate		
	for two or		ER;		submitted by the ET;		exceedance in writing;		the causes of exceedance;		
	more	2.	Discuss with the ER, IEC and	2.	Check Contractor's working	2.	Review and agree on the	2.	Submit proposals for remedial		
	consecutive		Contractor on the remedial		method;		remedial measures proposed by		measures to the ER with a copy		
	samples		measures required;	3.	Review and advise the ET and		the Contractor;		to ET and IEC within three		
		3.	Repeat measurements to		ER on the effectiveness of the	3.	Supervise Implementation of		working days of notification;		
			confirm findings;		proposed remedial measures.		remedial measures.	3.	Implement the agreed		
		4.	Increase monitoring frequency						proposals;		
			to daily;					4.	Amend proposal as appropriate.		
		5.	If exceedance continues,								
			arrange meeting with the IEC,								
			ER and Contractor;								
		6.	If exceedance stops, cease								
			additional monitoring.								

EVENT	ACTION							
LVLINI	ET	IEC	ER	Contractor				
LIMIT LEVEL								
1. Exceedance	Inform the Contractor, IEC, EPD	Check monitoring data	Confirm receipt of notification of	Identify source(s) and investigate				
for one	and ER;	submitted by the ET;	exceedance in writing;	the causes of exceedance;				
sample	2. Repeat measurement to confirm	Check the Contractor's working	2. Review and agree on the	2. Take immediate action to avoid				
	findings;	method;	remedial measures proposed by	further exceedance;				
	3. Increase monitoring frequency	3. Discuss with the ET, ER and	the Contractor;	3. Submit proposals for remedial				
	to daily;	Contractor on possible remedial	3. Supervise implementation of	measures to ER with a copy to				
	4. Discuss with the ER, IEC and	measures;	remedial measures.	ET and IEC within three working				
	contractor on the remedial	4. Review and advise the ER and		days of notification;				
	measures and assess the	ET on the effectiveness of		4. Implement the agreed proposals;				
	effectiveness.	Contractor's remedial measures.		5. Amend proposal if appropriate.				

EVENT	ACTION								
EVENI	ET	IEC		ER		Contractor			
2. Exceedance	1. Notify Contractor, IEC, EPD and	Check monitoring data	1.	Confirm receipt of notification of	1.	Identify source(s) and			
for two or more	ER;	submitted by the ET;		exceedance in writing;		investigate the causes of			
consecutive	2. Repeat measurement to confirm	Check the Contractor's working	2.	In consultation with the ET and		exceedance;			
samples	findings;	method;		IEC, agree with the Contractor	2.	Take immediate action to avoid			
	3. Increase monitoring frequency to	3. Discuss with ET, ER, and		on the remedial measures to be		further exceedance;			
	daily;	Contractor on the potential		implemented;	3.	Submit proposals for remedial			
	4. Carry out analysis of the	remedial measures;	3.	Supervise the implementation of		measures to the ER with a copy			
	Contractor's working procedures	4. Review and advise the ER and		remedial measures;		to the IEC and ET within three			
	with the ER to determine possible	ET on the effectiveness of	4.	If exceedance continues,		working days of notification;			
	mitigation to be implemented;	Contractor's remedial measures.		consider what portion of the	4.	Implement the agreed			
	5. Arrange meeting with the IEC and			work is responsible and instruct		proposals;			
	ER to discuss the remedial			the Contractor to stop that	5.	Revise and resubmit proposals if			
	measures to be taken;			portion of work until the		problem still not under control;			
	6. Review the effectiveness of the			exceedance is abated.	6.	Stop the relevant portion of			
	Contractor's remedial measures					works as determined by the ER			
	and keep IEC, EPD and ER					until the exceedance is abated.			
	informed of the results;								
	7. If exceedance stops, cease								
	additional monitoring.								

Event / Action Plan for Regular Construction Noise

EVENT	ACTION							
EVENT	ET	IEC	ER	Contractor				
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals. 				

EVENT	ACTION							
EVENT	ET	IEC	ER	Contractor				
Exceedance of Limit Level	1. Notify the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency; 4. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Inform IEC, ER and EPD the causes and actions taken for the exceedances 7. Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and 8. If exceedance stops, cease additional monitoring.	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of failure in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 				

Event / Action Plan for Continuous Construction Noise

Event / Action Plan for Landscape and Visual during Construction Stage

EVENT	ET	IEC	ER	Contractor
ACTION LEVEL Non-conformity on one occasion	1. Inform the Contractor, the IEC and the ER 2. Discuss remedial actions with the IEC, the ER and the Contractor 3. Monitor remedial actions until rectification has been completed	1. Check inspection report 2. Check the Contractor's working method 3. Discuss with the ET, ER and the Contractor on possible remedial measures 4. Advise the ER on effectiveness of proposed remedial measures.	Confirm receipt of notification of non-conformity in writing Review and agree on the remedial measures proposed by the Contractor Supervise implementation of remedial measures	1. Identify Source and investigate the non-conformity 2. Implement remedial measures 3. Amend working methods agreed with the ER as appropriate 4. Rectify damage and undertake any necessary replacement
Repeated Non-conformity	 Identify source Inform the Contractor, the IEC and the ER Increase inspection frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If non-conformity stops, cease additional monitoring 	1. Check inspection report 2. Check the Contractor's working method 3. Discuss with the ET and the Contractor on possible remedial measures 4. Advise the ER on effectiveness of proposed remedial measures	Notify the Contractor In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented Supervise implementation of remedial measures.	1. Identify Source and investigate the non-conformity 2. Implement remedial measures 3. Amend working methods agreed with the ER as appropriate 4. Rectify damage and undertake any necessary replacement. Stop relevant portion of works as determined by the ER until the non-conformity is abated.

APPENDIX J

Cumulative Statistics of Complaints, Notification of Summons and Successful Prosecutions

Appendix J Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environment al complaints	-	-	-	0	0
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

APPENDIX K

Waste Flow Table

Appendix K Monthly Summary Waste Flow Table

Month	Actual Quantities of Inert C&D Materials Generated Monthly (Note 1)								Actual Quantities of non-inert C&D Materials (i.e. C&D Wastes) Generated Monthly						
	Generated				Disposed						Recycled			Disposed	
	Fill Material Soil and	Artificial Material		Quatity	in the in othe	Reused in other Projects	at HH	Disposed as Public Fills at	Disposed as Public Fills at	Total Quatity Disposal	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	General Refuse (Note 2)
	Rock	Broken Concrete	Asphalt			,	Point	TKO137	TM38	•		(Note 3)			,
Unit	('000m ³)	('000m ³)	('000m ³⁾	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)
Jan	0.043	0.000	0.021	0.065	0.000	0.000	0.000	0.065	0.000	0.065	0.000	0.000	0.000	0.000	17.110
Feb	0.172	0.004	0.019	0.195	0.026	0.000	0.000	0.165	0.004	0.195	0.000	0.000	0.000	0.000	29.440
Mar	0.280	0.010	0.094	0.384	0.000	0.000	0.001	0.347	0.036	0.384	7.490	0.000	0.000	0.000	112.240
Apr	0.726	0.041	0.073	0.840	0.000	0.000	0.000	0.777	0.062	0.840	0.000	0.000	0.000	0.000	213.390
May	2.032	0.087	0.064	2.183	0.000	0.000	0.000	1.695	0.488	2.183	0.000	0.077	0.000	0.000	112.700
Jun	3.920	0.035	0.065	4.020	0.000	0.000	0.000	1.088	2.932	4.020	0.000	0.189	0.000	0.000	213.570
SUB-TOTAL	7.173	0.177	0.337	7.687	0.026	0.000	0.001	4.137	3.522	7.687	7.490	0.266	0.000	0.000	698.450
Jul	3.776	0.022	0.007	3.805	0.000	0.000	0.000	0.044	3.761	3.805	0.000	0.161	0.000	0.000	93.320
Aug															
Sep															
Oct															
Nov															
Dec			_	_	_				_						
TOTAL	10.949	0.199	0.343	11.491	0.026	0.000	0.001	4.181	7.283	11.491	7.490	0.427	0.000	0.000	791.770

Note:

App K Monthly Summary Waste Flow Table August 2013

^{1.} Assume the density of fill is 2 ton/m³.

^{2.} Refuses disposed of at NENT landfill.

Appendix E

6th EM&A Report for Works Contract 1103 – Hin Keng to Diamond Hill

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Monthly EM&A Report No. 6
[Period from 1 to 31 July 2013]

Works Contract 1103 – Hin Keng to Diamond Hill Tunnels

(August 2013)

Certified by:_	Coleman Ng
Position:	Environmental Team Leader
Date: /2/	08/2013

MTR Corporation Limited

SCL1103 Hin Keng to Diamond Hill Tunnels Construction Stage -Environmental Services

Monthly Environmental Monitoring and Audit Report – July 2013

228105-27

August 2013

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 228105-27

Ove Arup & Partners Hong Kong Ltd Level 5 Festival Walk

Level 5 Festival Walk 80 Tat Chee Avenue Kowloon Tong Kowloon Hong Kong www.arup.com

Contents

			Page				
1	Environmental Status						
	1.1	Project Background	6				
	1.2	Construction Programme	6				
	1.3	Work Undertaken During the Reporting Month	6				
	1.4	Project Organization	7				
	1.5	Project Area and Environmental Monitoring locations	7				
	1.6	Impact Monitoring Schedule	7				
	1.7	Status of Environmental Licensing and Permitting	8				
	1.8	Purpose of the Report	9				
2	Implementation Status						
	2.1	Implementation Status of Mitigation Measures	10				
	2.2	Updated Implementation Schedule	10				
3	Air Quality Monitoring						
	3.1	Air Quality Monitoring Requirements	11				
	3.2	Air Quality Monitoring Methodology	12				
	3.3	Monitoring Results and Observations	14				
4	Noise Monitoring						
	4.1	Noise Monitoring Requirements	15				
	4.2	Noise Monitoring Methodology	16				
	4.3	Monitoring Results and Observations	17				
5	Landscape and Visual Monitoring						
	5.1	Introduction	19				
	5.2	Mitigation Measures	19				
6	Waste	e Disposal	20				
7	Environmental Performance						
	7.1	Environmental Site Inspection	21				
	7.2	Summary of Environmental Complaint	24				
	7.3	Summary of Environmental Non-Compliance	24				
	7.4	Summary of Environmental Summon and Successful Prosecution	24				
8	Future Key Issues						
	8.1	Key Issues for the Coming Month	25				
	8.2	Environmental Monitoring Program for the Coming Month	25				

	8.3	Construction Program for the Coming Month	25									
9	Conc	Conclusions and Recommendations										
	9.1	Conclusions	26									
	9.2	Recommendations	26									
10	Refe	rence	27									
Figures	.											
Figure 1	1.1:	Locations of Project Works Areas – General Site Layor Keng Works Area (Sheet 1 of 6)	ut of Hing									
Figure 1	Locations of Project Works Areas – General Site Diamond Hill Works Area (Sheet 2 of 6)	ite Layout of										
Figure 1	1.3:	Locations of Project Works Areas – Site layout Plan of Fung Tak EAP/EEP (Sheet 3 of 6)										
Figure 1	1.4:	Locations of Project Works Areas – Site Layout Plan o Hang Shaft (Sheet 4 of 6)	f Ma Chai									
Figure 1	1.5:	Locations of Project Works Areas – General Site Layo Chuen O Works Area (Sheet 5 of 6)	ut of Shui									
Figure 1	1.6:	Locations of Project Works Areas – General Alig Contract 1103 (Sheet 6 of 6)	nment of									
Figure 1	1.7:	Project Organisation – Environmental Management										
Figure 1		Location of Dust Monitoring Stations (Sheet 1 of 3)										
Figure 1		Location of Dust Monitoring Stations (Sheet 2 of 3)										
Figure 1	1.10:	Location of Dust Monitoring Stations (Sheet 3 of 3)										
Figure 1	1.11:	Location of Noise Sensitive Receiver (Construction	Airborne									
		Noise) (Sheet 1 of 3)										
Figure 1	1.12:	Location of Noise Sensitive Receiver (Construction Noise) (Sheet 2 of 3)	Airborne									
Figure 1	1.13:	Location of Noise Sensitive Receiver (Construction	Airborne									

Noise) (Sheet 3 of 3)

Appendices

Appendix A: Construction programme

Appendix B: Environmental Monitoring Programme in the Reporting Month

Appendix C: Environmental Mitigiation Implementation Schedule (EMIS)

Appendix D: Calibration Certificates for Air Monitoring Equipment

Appendix E: Dust Results

Appendix F: Wind Data

Appendix G: Calibration Certificates of Noise Monitoring Equipment

Appendix H: Noise Results

Appendix I: Event/Action Plan for Air Quality, Airborne Noise and Landscape

and Visual

Appendix J: Monthly Waste Flow Table

Appendix K: Environmental Monitoring Programme for Coming Month

Appendix L: Cumulative Log for Complaints, Notifications of Summons and

Successful Prosecutions

Executive Summary

This is the sixth monthly Environmental Monitoring and Audit (EM&A) report prepared by Ove Arup & Partners Hong Kong Limited (Arup), the designated Environmental Team (ET), for the Project "SCL1103 Hin Keng to Diamond Hill Tunnels". Construction works of this works contract commenced on 14 February 2013 and this report presents the results of EM&A works conducted in the month of July 2013 (1 to 31 July 2013).

In the reporting month, the following activities took place for the Project:

- Diaphragm Wall Construction at Diamond Hill;
- Pipe Piling and Ground Investigation at Hin Keng;
- Utilities Diversion, Ground Investigation, Hoarding Erection and Platform Construction at Fung Tak; and
- Site Formation, Jogging Path Diversion, Ground Investigation, Tree Transplant and Removal, Hoarding Erection and Platform Construction at Ma Chai Hang.

Air Quality and noise monitoring were performed and the results were checked and reviewed. Site audits were conducted on weekly basis. The implementation of the environmental mitigation measures, Event and Action Plans and environmental complaint handling procedures were checked.

Impact monitoring was carried out at 3 air quality and 3 noise monitoring stations during the reporting month.

Environmental Monitoring Works – Breaches of Action and Limit Levels

Air Quality

All measured 24-hour TSP concentrations in the reporting month were below the Action and Limit Levels.

Noise

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of regular construction noise was recorded during the reporting month.

Landscape and Visual Audit

Landscape and visual site audits in accordance with the requirements stipulated in the EM&A manual were conducted in the reporting month. Based on the site inspections, no substantial change of Landscape Resources, Landscape Character Areas and Visual Sensitive Receivers was noted.

Waste Disposal

Inert C&D Materials with an actual amount of 3319m³ were generated and disposed of at public fill in TKO137FB and Kai Tak Barging Point Facility

(Contract 1108A). 41m³ of general refuse was generated and disposed of at NENT landfill.

Environmental Auditing

A total of 5 environmental site audits were conducted on a weekly basis in the reporting month. The first site inspection was on 3 July 2013 and the final, an IEC joint site audit, was undertaken on 31 July 2013. No non-conformance to the environmental requirements was identified during the reporting period.

Complaint Log

No complaint in relation to the environmental issues was made against the Project in the reporting period.

Notifications of Summons and Successful Prosecutions

No summons or prosecution related to the environmental issues were made against the Project in the reporting period.

Reporting Changes

There were no reporting changes in the reporting month.

Future Key Issues

Waste management is a key environmental issue. The waste management plan should be strictly followed in accordance with the requirements described in the EIA report.

Water Quality impact is also a key environmental issue. The drainage system should be well maintained. All wastewater generated within the site shall be collected and treated prior to discharge. The solid and liquid waste management should be strictly followed in accordance with the requirements stipulated in the EIA report.

1 Environmental Status

1.1 Project Background

The Shatin to Central Link – Tai Wai to Hung Hom Section (hereafter referred to as SCL (TAW-HUH)) is an extension of the Ma On Shan Line and is approximately 11 km long. It links up with the West Rail Line at Hung Hom forming a strategic east-west rail corridor. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).

The construction of the SCL (TAW-HUH) has been divided into a series of civil construction Works Contracts and this Works Contract 1103 covers the construction of the tunnels between Diamond Hill (DIH) and Hin Keng (HIK).

1.2 Construction Programme

An up-to-date rolling construction programme is attached in **Appendix A**.

1.3 Work Undertaken During the Reporting Month

The major construction activities carried out by the Contractor in the reporting month are summarized in **Table 1.1**. Location of the works area is indicated in **Figures 1.1** to **1.6**. The structure of the project organisation in relation to the environmental management is shown in **Figure 1.7**. Contacts of key environmental staff of the Project are shown in **Table 1.2**.

 Table 1.1
 Construction Activities in the Reporting Month

Locations	Major Works Undertaken	
Diamond Hill	Diaphragm Wall Construction.	
Hin Keng	Pipe Piling Work and Ground Investigation.	
Fung Tak	Utilities Diversion, Ground Investigation, Preparation of Hoarding Erection and Platform Construction.	
Ma Chai Hang	Site Formation, Jogging Path Diversion, Ground Investigation, Tree Transplant and Removal, Hoarding Erection and Platform Construction.	

1.4 Project Organization

Contacts of key environmental staff of the Project and are shown in **Table 1.2**.

 Table 1.2
 Contacts of Key Environmental Staff

Organisation	Name	Telephone
Project Proponent: MTRC		
Engineer's Representative	Thomas Barrett	2163 6181
SCL Project-wide Environmental Team Leader	Richard Kwan	2688 1283
Independent Environmental Checker: Meinhardt		
Infrastructure & Environment Ltd.		
Independent Environmental Checker	Fredrick Leong	2859 1739
Contractor: VINCI Constructions Grand Projects		
Project Director	Francois Dudouit	3765 5610
IMS Manager	L K Mak	3765 5635
Contractor's Environmental Team: Ove Arup & Partners		
Hong Kong Ltd.		
Designated Environmental Team Leader for Works Contract	Coleman Ng	2268 3097
1103	Colonian Ng	2200 3071

1.5 Project Area and Environmental Monitoring locations

The Project area is shown in **Figures 1.1** to **1.6**, while **Table 1.3** and **Figures 1.8** to **1.13** show the names and locations of the monitoring stations.

Table 1.3 Summary of Air Quality and Noise Monitoring Stations

ID	Premise
Air Quality	
DMS-1	C.U.H.K.A.A. Thomas Cheung School
DMS-2	Price Memorial Catholic Primary School
DMS-3 ^(Note 2) / DMS-4 ^(Note 3)	Hong Kong Sheng Kung Hui Nursing Home (Note 1)
Noise	
NMS-CA-1	C.U.H.K.A.A. Thomas Cheung School
NMS-CA-2	Price Memorial Catholic Primary School
NMS-CA-3 ^(Note 2) / NMS-CA-4 ^(Note 3)	Hong Kong Sheng Kung Hui Nursing Home

Note:

Note 1: Hong Kong Sheng Kung Hui Nursing Home was selected as an alternative monitoring location to Shek On House.

Note 2: Station ID as identified in approved EM&A Manual / EIA Report for SCL (TAW - HUH).

Note 3: Station ID as identified in approved EM&A Manual / EIA Report for SCL (HHS).

1.6 Impact Monitoring Schedule

Environmental monitoring and audit was carried out in accordance with the requirements stipulated in the EM&A Manual. Air quality and noise monitoring as well as weekly site audit schedule for the reporting month with respect to the construction programme is shown in **Appendix B**.

1.7 Status of Environmental Licensing and Permitting

All permits/licences for the reporting month are summarised in **Table 1.4**. They are all properly kept by the contactor at their site office.

 Table 1.4
 Summary of Environmental Licensing Status

Types of Permits / Licenses	Reference No.	Site	Valid from	Valid to
Environmental Permit	EP-438/2012	All	22 Mar 2012	Superseded
	EP-438/2012A	All	12 July 2012	Superseded
	EP-438/2012/B	All	26 Oct 2012	Superseded
	EP-438/2012/C	All	30 Apr 2013	Throughout the contract
Discharge License under WPCO	WT00014697-2012	Diamond Hill	30 Nov 2012	30 Nov 2017
	WT00014650-2012	Hin Keng	10 Dec 2012	31 Dec 2017
	WT00014648-2012	Hin Keng	10 Dec 2012	31 Dec 2017
	WT00015145-2013	Shui Chuen O	21 Feb 2013	28 Feb 2018
	WT00015513-2013	Ma Chai Hang	2 Apr 2013	30 Apr 2018
	WT00015430-2013	Fung Tak	18 Mar 2013	31 Mar 2018
Notification of Construction Works under the Air Pollution Control (Construction Dust) Regulation	351345	All	22 Oct 2012	15 Apr 2018
Construction Noise Permit	GW-RE0118-13	Diamond Hill	14 Feb 2013	13 Aug 2013
	GW-RE0130-13	Diamond Hill	14 Feb 2013	Expired
	GW-RE0145-13	Diamond Hill	20 Feb 2013	10 Aug 2013
	GW-RE0411-13	Diamond Hill	3 May 2013	Expired
	GW-RE0295-13	Ma Chai Hang	28 Mar 2013	Expired
	GW-RE0366-13	Hin Keng	17 July 2013	16 Jan 2014
Chemical Waste Producer Registration	5213-759-V2179-01	Hin Keng	13 Dec 2012	Throughout the Contract
	5213-281-V2180-01	Diamond Hill	12 Dec 2012	Throughout the Contract
	5213-281-V2179-03	Fung Tak	5 Mar 2013	Throughout the Contract
	5213-282-V2180-02	Ma Chai Hang	18 Mar 2013	Throughout the Contract
Billing Account for Disposal of Construction Waste	7016250	All	2 Nov 2012	Throughout the Contract

1.8 Purpose of the Report

The purpose of this monthly EM&A report is to provide the information on monitoring methodology, monitoring results, environmental permit status, site audit findings, recommendations and conclusions during the construction of this works contract for the EM&A conducted during the construction period. This is the sixth monthly EM&A report summarising the monitoring methodology, locations, periods, frequencies, results and any observation from the air quality, noise, ecology, waste management, landscape and visual monitoring and environmental site audit from 1 to 31 July 2013.

2 Implementation Status

2.1 Implementation Status of Mitigation Measures

During weekly site inspections, the environmental protection, and pollution control/mitigation measures in accordance with the requirements stipulated in the EIA were observed. The key observations and ET's corresponding recommendations while the Contractor's response and follow-up status are described in **Section 7.1**.

2.2 Updated Implementation Schedule

According to the Environmental Permit, the mitigation measures detailed in the permits are required to be implemented. The Implementation Schedule of Mitigation Measures was inspected during the weekly site inspections in reporting month. The details of the findings/observations are described in **Section 7.1**. An updated summary of the Implementation Schedule of Mitigation Measures is presented in **Appendix C**. The status of the required submissions under the Environmental Permit (EP) of the reporting period is presented in **Table 2.1**.

Table 2.1 Status of Required Submissions under the EP

EP Condition	Submission	Submission Date	
Condition 3.4	Monthly EM&A Report (June	12 th July 2013	
	2013)		

3 Air Quality Monitoring

3.1 Air Quality Monitoring Requirements

Monitoring Parameters

Regular 24-hour TSP levels shall be monitored during the construction stage while 1-hour TSP levels shall be required to monitor in case of complaints received.

Monitoring Frequency

The monitoring frequency is summarised in **Table 3.1**.

Table 3.1 Air quality monitoring parameters and frequency

Parameters	Monitoring Frequency	
24-hour TSP	Once every 6 days	
1-hour TSP	3 times every 6 days	
1-110th 131	(as required in case of complaints)	

Monitoring Locations

In accordance with the EM&A Manual and the subsequent Baseline Monitoring Report, three air quality monitoring locations during construction stage are required. The locations of the three air quality monitoring stations are shown below in **Table 3.2**:

 Table 3.2
 Air Quality Monitoring Locations

ID	Premise		
DMS -1	C.U.H.K.A.A. Thomas Cheung School		
DMS -2	Price Memorial Catholic Primary School		
DMS-3 ^(Note 2) / DMS-4 ^(Note 3)	Hong Kong Sheng Kung Hui Nursing Home (Note 1)		

Note:

Note 1: Hong Kong Sheng Kung Hui Nursing Home was selected as an alternative monitoring location to Shek On House.

Note 2: Station ID as identified in approved EM&A Manual / EIA Report for SCL (TAW - HUH).

Note 3: Station ID as identified in approved EM&A Manual / EIA Report for SCL (HHS).

Wind Monitoring

Wind monitoring data including wind speed and wind directions shall be collected from Hong Kong Observatory – Kai Tak and Sha Tin Meteorological Stations and shown in **Appendix F**.

Environmental / Quality Performance Limits

The monitoring results will be checked against the Action and Limit levels described in the Baseline Monitoring Report, of which they are excerpted and summarised in **Tables 3.3** and **3.4**.

 Table 3.3
 Action and Limit Level for Air Quality Monitoring of 24-hour TSP level

Level	Air Monitoring Stations				
	DMS-1 DMS-2 DMS-3 / DMS-4				
Action Level, µg/m ³	148.7	167.4	159.1		
Limit Level, μg/m ³	260				

Table 3.4 Action and Limit Level for Air Quality Monitoring of 1-hour TSP level

Level	Air Monitoring Stations			
	DMS-1	DMS-2	DMS-3 / DMS-4	
Action Level, μg/m ³	283.9	276.2	278.4	
Limit Level, µg/m ³	500			

Note:

Note 1: 1-hr TSP monitoring would be required in case of receiving complaints.

3.2 Air Quality Monitoring Methodology

3.2.1 Monitoring Equipment

High Volume Sampler (HVS) was used to monitor the 24-hour TSP. **Table 3.5** shows the equipment used for the air quality monitoring.

 Table 3.5
 Air Quality Equipment List for Impact Air Quality Monitoring

Equipment	Manufacturer & Model No	Measurement Parameter	Serial No.
High Volume Sampler	TE-5170	24 hour TCD	3761, 3762, 3763
Fibreglass Filter	G810	24-hour TSP	-
HVS Calibration Kit	GMW-2535		2421

3.2.2 Maintenance and Calibration

The HVSs and their accessories were frequently checked and maintained in accordance with the manufacturer's operation and maintenance manual. The maintenance included checking of supporting screen and gasket, as well as routine replacement of motor carbon brushes for the blower motor. The power cords and power supply were checked each time before sampling to ensure proper operation.

The HVSs were calibrated at 2-month intervals using GMW-2535 calibration kit which is re-calibrated by the manufacturer after one year of use. The calibration spreadsheets of the HVSs and calibration certificate of the calibration kit are provided in **Appendix D**.

3.2.3 Monitoring Procedures

Specifications of the HVS are as follows:

- $0.6 1.7 \text{ m}^3/\text{min} (20 60\text{SCFM});$
- Equipped with a timing/control device with +/- 5 minutes accuracy for 24 hour operation;

- Installed with elapsed time meter with +/- 2 minutes accuracy for 24 hour operation;
- Capable of providing a minimum exposed area of 406 cm² (63in²);
- Flow control accuracy: +/-2.5% deviation over 24-hour sampling period;
- Equipped with a shelter to protect the filter and sampler;
- Incorporated with an electronic mass flow rate controller or other equivalent devices;
- Equipped with a flow recorder for continuous monitoring;
- Provided with a peaked roof inlet;
- Incorporated with a manometer;
- Able to hold and seal the filter paper to the sampler housing at horizontal position;
- Easy to change the filter; and
- Capable of operating continuously for 24-hour period.

The HVSs were equipped with an electronic mass flow controller and calibrated against a traceable standard at regular intervals. All equipment, calibration kit and filter papers were clearly labelled.

The relevant data including temperature, pressure, weather conditions, elapsedtime meter reading for the start and stop of the sampler, identification and weight of the filter paper, and other special phenomena observed and work progress of the concerned site were recorded.

A HOKLAS accredited laboratory (ALS Technichem (HK) Pty Ltd (HOKLAS no.: 066)), in accordance with their standard QA/QC procedures, with constant temperature and humidity control as well as equipped with necessary measuring and conditioning instruments to handle the 24-hour TSP samples was employed for sample analysis, and equipment calibration and maintenance. Filter papers of size 8"x10" were labelled before sampling. They were inspected clean with no pin holes and conditioned in a humidity controlled chamber for over 24-hour and be pre-weighed before use for the sampling.

The 24-hour TSP levels were measured by following the standard High Volume Method for Total Suspended Particulates as set out in the Title 40 of the United States Code of Federal Regulations, Chapter 1 (Part 50), Appendix B. TSP was sampled by drawing air through a conditioned, pre-weighted filter paper inside the HVS at a controlled air flow rate. After 24-hour sampling, the filter papers loaded with dust were kept in a clean and tightly sealed plastic bag, and then returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with a readout down to 0.1 mg. All the collected samples shall be kept in a good condition for 6 months before disposal.

3.3 Monitoring Results and Observations

3.3.1 Weather Condition

No adverse weather conditions were recorded during the monitoring dates.

3.3.2 Air Quality Monitoring Results

Monitoring of 24-hour TSP was conducted on 3, 9, 15, 20, 26 July 2013. All monitoring data and graphical presentation of the monitoring results are provided in **Appendix E** and are summarised in **Table 3.6**. The graphical presentations of the monitoring results are provided in **Appendix E**. Wind data obtained from the Hong Kong Observatory – Kai Tak and Sha Tin stations during the reporting period are presented in **Appendix F**.

 Table 3.6
 Summary of Impact Air Quality Monitoring Results

Monitoring	24- hour TSP Monitoring Results (μg/m ³⁾		Action	Limit
Station	Average	Range	Level	Level
DMS-1	16.9	35.5	148.7	260
DMS-2	11.5	23.7	167.4	260
DMS-3 / DMS-4	14.3	17.5	159.1	260

All 24-hour TSP measurements during the reporting month were below the Action/Limit Level. No exceedance of action and limit level was found.

The event and action plan is provided in **Appendix I**.

3.3.3 General Observations

Major construction works including site formation, ground investigation, diaphragm wall construction, hoarding erection, pipe piling, tree transplant and removal and utilities detection, and diversion. No abnormal condition was recorded during the monitoring period.

4 Noise Monitoring

4.1 Noise Monitoring Requirements

4.1.1 Impact Monitoring

Monitoring Parameters

Construction noise shall be measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). L_{10} and L_{90} shall also be recorded as supplementary reference information for data auditing.

Monitoring Frequency

Noise measurements shall be conducted on a weekly basis. The monitoring time periods, monitoring parameters and frequency are summarised in **Table 4.1.**

 Table 4.1
 Construction Noise Monitoring Parameters and Frequency

Time Period (when construction activity is found)	Parameters	Monitoring Frequency
Between 0700-1900 hours on normal weekdays	L _{eq(30 min)}	Once per week

Monitoring Location

In accordance with the EM&A Manual and the subsequent Baseline Monitoring Report, three noise monitoring locations during the construction stage are required, namely:

 Table 4.2
 Noise Monitoring Locations

ID	Premise
NMS-CA-1	C.U.H.K.A.A. Thomas Cheung School
NMS-CA-2	Price Memorial Catholic Primary School
NMS-CA-3 ^(Note 2) / NMS-CA-4 ^(Note 3)	Hong Kong Sheng Kung Hui Nursing Home (Note 1)

Notes:

Note 1: Hong Kong Sheng Kung Hui Nursing Home was selected as an alternative monitoring location to Shek On house.

Note 2: Station ID as identified in approved EM&A Manual / EIA Report for SCL (TAW - HUH).

Note 3: Station ID as identified in approved EM&A Manual / EIA Report for SCL (HHS).

Environmental / Quality Performance Limits

The monitoring results will be checked against the Action and Limit levels described in the Baseline Monitoring Report, of which they are excerpted and summarised in **Tables 4.3**.

Table 4.3 Action and Limit Levels of construction noise

Location (Note 1)	Time Period (note 3)	Action Level	Limit Level dB(A)
NMS-CA-1 & NMS-CA-2	0700 - 1900 hours on normal weekdays	When one documented	70/65 ^(Note 2)
NMS-CA-3 / NMS-CA-4		complaint is received	75

Notes:

- 1. The detail of monitoring locations was presented in Table 1.3.
- 2. For normal day-time working hours, the noise criteria is 70 dB(A) and 65 dB(A) for normal teaching periods and examination periods respectively.
- If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

4.2 Noise Monitoring Methodology

4.2.1 Monitoring Equipment

Noise level was measured by a Sound Level Meter (SLM) in terms of A-weighted equivalent continuous sound pressure level. Leq, L_{10} and L_{90} were recorded as supplementary information for data auditing. **Table 4.4** shows the equipment list of the noise monitoring.

 Table 4.4
 Noise Equipment List for Impact Noise Monitoring

Equipment	Manufacturer & Model No.	Serial No.	Precision Grade
Integrated SLM	Brüel & Kjær 2238	2562763	IEC 651 Type 1 IEC 804 Type 1
Sound level calibrator	Brüel & Kjær 4231	2713427	IEC 942 Type 1

4.2.2 Maintenance and Calibration

The SLM and calibrator in compliance with the International Electrotechnical Commission (IEC) Publication 651:1979 (Type 1) and 804:1985 (Type 1) specifications according to the EM&A manual.

SLM complying with the standards of IEC 651 (Fast, Slow, Impulse rms detector tests) and IEC 804 (L_{eq} functions) and acoustical calibrator complying with IEC 942 were adopted for the noise measurement. All equipments are calibrated externally. The calibration certificates for the noise equipment are given in **Appendix G**.

4.2.3 Monitoring Procedures

- The SLM and battery were checked to ensure that they are in proper condition. The SLM was set on a tripod at 1.2m above ground and at least 1m from the exterior of the building façade;
- Before conducting the measurement, the SLM was calibrated by an acoustical calibrator;

- Measurement parameter was set to A-weighted sound pressure level. The time weighting was set in fast response and the time period of measurement at 30 minutes;
- Wind speed was checked during noise monitoring to ensure the steady wind speed does not exceed 5m/s, or wind with gusts does not exceed 10m/s;
- Any abnormal conditions that generated intrusive noise during the measurement was recorded on the field record sheet;
- After each measurement, the equivalent continuous sound pressure level (L_{eq}), L_{10} and L_{90} were recorded on the field record sheet;
- After conducting the measurement, the SLM was calibrated by an sound level calibrator; and
- The SLM was re-calibrated by the sound level calibrator to confirm that there is no significant drift of reading. Measurements shall be accepted as valid only if the calibration levels before and after the noise measurement agrees to within 1.0 dB.

4.3 Monitoring Results and Observations

4.3.1 Weather Condition

The weather condition was mainly overcast with periods of rain during the noise monitoring period in the reporting month.

4.3.2 Noise Monitoring Results

Impact Monitoring

Monitoring of the construction noise level was conducted on 4, 10, 16, 22 and 29 July 2013. All monitoring data and graphical presentation of the monitoring results are provided in **Appendix H** and are summarised in **Tables 4.5 - 4.7**. The graphical presentations of the monitoring results are provided in **Appendix H**.

 Table 4.5
 Summary of Impact Noise Monitoring at Location NMS-CA-1

Date	Time	Measured Noise Level, dB(A)	Baseline Noise Level, dB(A)	Construction Noise Level(Note1), dB(A)	Limit Level (Note 2)
		Leq (30min)	Leq (30min)	Leq (30min)	dB(A)
4 July 13	13:40-14:10	59.8		56.6	
10 July 13	13:30-14:00	58.9		54.4	
16 July 13	15:00-15:30	58.7	57.0	53.8	70/65
22 July 13	14:30-15:00	58.4		52.8	
29 July 13	14:10-14:40	59.2		55.2	

Notes:

- 1. Construction Noise Level = Measured Noise Level Baseline Noise Level.
- 2. For normal day-time working hours, the noise criteria is 70 dB(A) and 65 dB(A) for normal teaching periods and examination periods respectively.

 Table 4.6
 Summary of Impact Noise Monitoring at Location NMS-CA-2

Date	Time	Measured Noise Level, dB(A)	Baseline Noise Level, dB(A)	Construction Noise Level(Note1), dB(A)	Limit Level (Note 2)
		Leq (30min)	Leq (30min)	Leq (30min)	dB(A)
4 July 13	09:40-10:10	68.6		65.1	
10 July 13	09:10-09:40	67.5		62.2	
16 July 13	09:05-09:35	67.2	66.0	61.0	70/65
22 July 13	09:20-09:50	67.9		63.4	
29 July 13	09:30-10:00	68.4		64.7	

Notes:

- Construction Noise Level = Measured Noise Level Baseline Noise Level.
- 2. For normal day-time working hours, the noise criteria is 70 dB(A) and 65 dB(A) for normal teaching periods and examination periods respectively.

Table 4.7 Summary of Impact Noise Monitoring at Location NMS-CA-3/NMS-CA-4

Date	Time	Measured Noise Level, dB(A)	Baseline Noise Level, dB(A)	Construction Noise Level(Note1), dB(A)	Limit Level
		Leq (30min)	Leq (30min)	Leq (30min)	dB(A)
4 July 13	11:30-12:00	69.5		< Baseline Level	
10 July 13	11:00-11:30	68.2		< Baseline Level	
16 July 13	11:25-11:55	67.9	73.0	< Baseline Level	75
22 July 13	11:30-12:00	67.2		< Baseline Level	
29 July 13	11:20-11:50	67.2		< Baseline Level	

Note:

1. Construction Noise Level = Measured Noise Level – Baseline Noise Level.

4.3.3 Exceedance of Limit and Action Levels for Construction Noise

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of regular construction noise was recorded during the reporting month.

The event and action plan is provided in **Appendix I**.

4.3.4 General Observations

The construction site has been under normal operation during the noise monitoring period and no unusual operation was observed.

5 Landscape and Visual Monitoring

5.1 Introduction

In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The event and action plan is provided in **Appendix I**.

5.2 Mitigation Measures

Bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted during the reporting month on 3, 17 and 31 July 2013. During the site inspections the following actions were found to be required:

17 July 2013

• The Contractor is reminded to ensure that tree protection zones are adequate.

31 July 2013

 A broken tree trunk was observed on a transplanted tree. The Contractor shall seek ITS advice to enhance tree protection during transplantation.

6 Waste Disposal

The actual amounts of different types of waste generated by the activities of the Project during the reporting month are shown in **Table 6.1**. The monthly waste summary flow table is provided in **Appendix J.**

 Table 6.1
 Amount of Waste Generated

Waste Type	Amount	Disposal Locations
Inert C&D Materials	3,319m ³	TKO137FB and Kai Tak Barging Point Facility (1108A)
Chemical Waste	0	Disposed of by a licensed collector
Paper / cardboard packaging	0	
Plastic	0	-
Metal	0	
General Refuse	$41 \mathrm{m}^3$	NENT Landfill

7 Environmental Performance

7.1 Environmental Site Inspection

Environmental site inspections were carried out on a weekly basis, with the IEC joint site inspection being carried out on 31 July 2013, to monitor environmental issues on the construction sites to ensure that all mitigation measures were implemented timely and properly. A summary of the site inspections in the reporting month is presented in **Table 7.1**.

 Table 7.1
 Key Findings of Weekly Environmental Site Audit

Inspection Date	Works Area	Key Observations and Recommendations	Contractor's Response / Environmental Outcome	Closed Date / Follow up Status
		Air Quality		
3 July 2013 and 17 July 2013	Ma Chai Hang	The Contractor is reminded to ensure that stockpiles are properly covered when not in use.	Agreed with ET's Advice.	The contractor rectified the situation and covered the stockpile with tarpaulin sheet. Closed 24 July 2013.
3 July2013	Hin Keng	The Contractor is reminded to ensure that stockpiles are properly covered when not in use.	Agreed with ET's Advice.	The contractor rectified the situation and covered the stockpile with tarpaulin sheet. Closed 10 July 2013.
		Water Quality		1
10 July 2013	Fung Tak	The contractor is reminded to replace the worn-out sandbags surrounding the sewer.	Agreed with ET's Advice	The contractor has rectified the issue and placed new sandbags around the sewer. Closed 17 July 2013.
10 July 2013	Hin Keng	The contractor is reminded to provide additional sandbags to prevent overflowing of muddy water at the drill rig.	Agreed with ET's Advice	The issue has been resolved as the drilling works are completed and the drilling rigs have been removed from site. Closed 17

Inspection Date	Works Area	Key Observations and Recommendations	Contractor's Response / Environmental Outcome	Closed Date / Follow up Status
				July 2013.
24 July 2013		The contractor is reminded to check the digital display of the pH meter for sedimentation tank regularly.	Agreed with ET's Advice	The contractor has rectified the issue. Closed 31 July 2013.
24 July 2013	Fung Tak	The contractor is reminded to increase the height of sand bags around stockpiles.	Agreed with ET's Advice	The contractor has rectified the issue and increase the height of sand bags. Closed 31 July 2013.
31 July	Hin Keng	The contractor is reminded to ensure that the pH level is adequate in the Waste Water Treatment Plant.		The contractor will follow up. The status will be reported by the ET in the next reporting month.
		Noise	•	•
17 July 2013	Hin Keng	Drill rigs were observed without proper noise mitigation measures. The contractor shall place acoustic barriers in the vicinity of drill rigs in order to mitigate noise impacts.	Agreed with ET's Advice	The contractor rectified the situation and properly placed acoustic barriers. Closed 24 July 2013.
		Landscape and Visual		
26 June 2013	Ma Chai Hang	Construction materials are located next to planters. The contractor shall set up a clear boundary in order to protect them.	Agreed with ET's Advice	The contractor has rectified the issue and set up a clear tree boundary.
17 July 2013	Ma Chai Hang	The contractor is reminded to enhance tree protection zones.	Agreed with ET's Advice	The contractor rectified the issue and ensured that all tree protection zones are adequate. Closed 24 July 2013.

228105-27 | August 2013
G/IENVAPROJECT/228105-27/12 REPORTS DELIVERABLESIMONTHLY EMBAIREPORT TEXTUULY 2013/MONTHLY EMBA V4.DOCX

Page 23

Inspection Date	Works Area	Key Observations and Recommendations	Contractor's Response / Environmental Outcome	Closed Date / Follow up Status
31 July 2013	Ma Chai Hang	A broken tree trunk was observed on a transplanted tree. The contractor shall seek ITS advice to enhance tree protection during transplantation.	Agreed with ET's Advice	The contractor will follow up. The status will be reported by the ET in the next reporting month.
		Waste	l	
26 June 2013	Diamond Hill	The contractor is reminded to provide drip trays for reagents of sedimentation tank.	Agreed with ET's Advice.	The reminder has been noted and the contractor has provided drip trays. Closed 3 July 2013.
26 June 2013	Ma Chai Hang	The contractor is reminded to ensure the dryness of drip tray of pump and liquid should be treated as chemical waste in accordance with WDO.	Agreed with ET's Advice.	The reminder has been noted and the contractor ensured that drip trays were regularly emptied properly. Closed 3 July 2013.
3 July 2013	Diamond Hill	Minor oil stain was observed near the chemical storage cabinet. The Contractor shall clear it as chemical waste as soon as possible	Agreed with ET's Advice.	The contractor has rectified the issue removed the contaminated soil. Closed 10 July 2013.
24 July 2013	Diamond Hill	The contractor is reminded to increase the height of drip trays in order to prevent overflow during the rainy season.	Agreed with ET's Advice.	The contractor has rectified the issue and improved the drip trays. Closed 31 July 2013.
31 July 2013	Hin Keng	The contractor is reminder to ensure that drip trays are plugged and any liquid is removed and treated in accordance with WDO.	Agreed with ET's Advice.	The contractor will follow up. The status will be reported by the ET in the

228105-27 | | August 2013

Inspection Date	Works Area	Key Observations and Recommendations	Contractor's Response / Environmental Outcome	Closed Date / Follow up Status
				next reporting month.

7.2 Summary of Environmental Complaint

No environmental complaints regarding environmental issue were recorded in the reporting month. The updated statistical summary of complaint is presented in **Table 7.2**. The updated complaint logs, if any, of the Project in the reporting month is shown in **Appendix L**.

Table 7.2 Summary of Complaints

Reporting Period	Complaint Statistics		Area of Concern	Validity to the Project	Status
	Number	Cumulative			
01/07/13-	0	0	N/A	N/A	N/A
31/07/13	U	U	IN/A	N/A	IN/A

7.3 Summary of Environmental Non-Compliance

There was no non-compliance identified during the reporting month so review of the non-compliance was not required.

7.4 Summary of Environmental Summon and Successful Prosecution

No summons of prosecutions related to environmental issues were received or made against the project in the reporting month. Please refer to **Appendix L** for a Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions.

8 Future Key Issues

8.1 Key Issues for the Coming Month

Works to be undertaken in the coming reporting month are summarised in **Table 8.1** below.

 Table 8.1
 Tentative Programme of Construction Works for the Coming Month

Locations	Major Works Undertaken
Diamond Hill	Diaphragm Wall Construction.
Hin Keng	Pipe Piling Work, Site Setup and Site Formation.
Fung Tak	Utilities Diversion, Hoarding Erection and Platform Construction.
Ma Chai Hang	Diaphragm Wall Construction, Hoarding Erection and Platform Construction and Site Setup and Preparation.

8.2 Environmental Monitoring Program for the Coming Month

Environmental monitoring and audit will be carried out in accordance with the requirements stipulated in the EM&A manual. Tentative air and noise monitoring as well as weekly site audit schedule for the coming month with respect to the construction programme is shown in **Appendix K**.

8.3 Construction Program for the Coming Month

The construction programme for the coming month is shown in **Appendix A.**

9 Conclusions and Recommendations

9.1 Conclusions

The construction phase of the project commenced on 14 February 2013. The EM&A programme has since been implemented, including air quality, noise and environmental site audits. Five environmental site audits were conducted in the reporting month.

No exceedance of the Action and Limit Levels of regular construction noise was recorded at the designated monitoring stations during the reporting period.

No exceedance of the Action and Limit Levels of 24-hour TSP monitoring was recorded at the designated monitoring stations during the reporting period.

No non-compliance event was recorded during the reporting period.

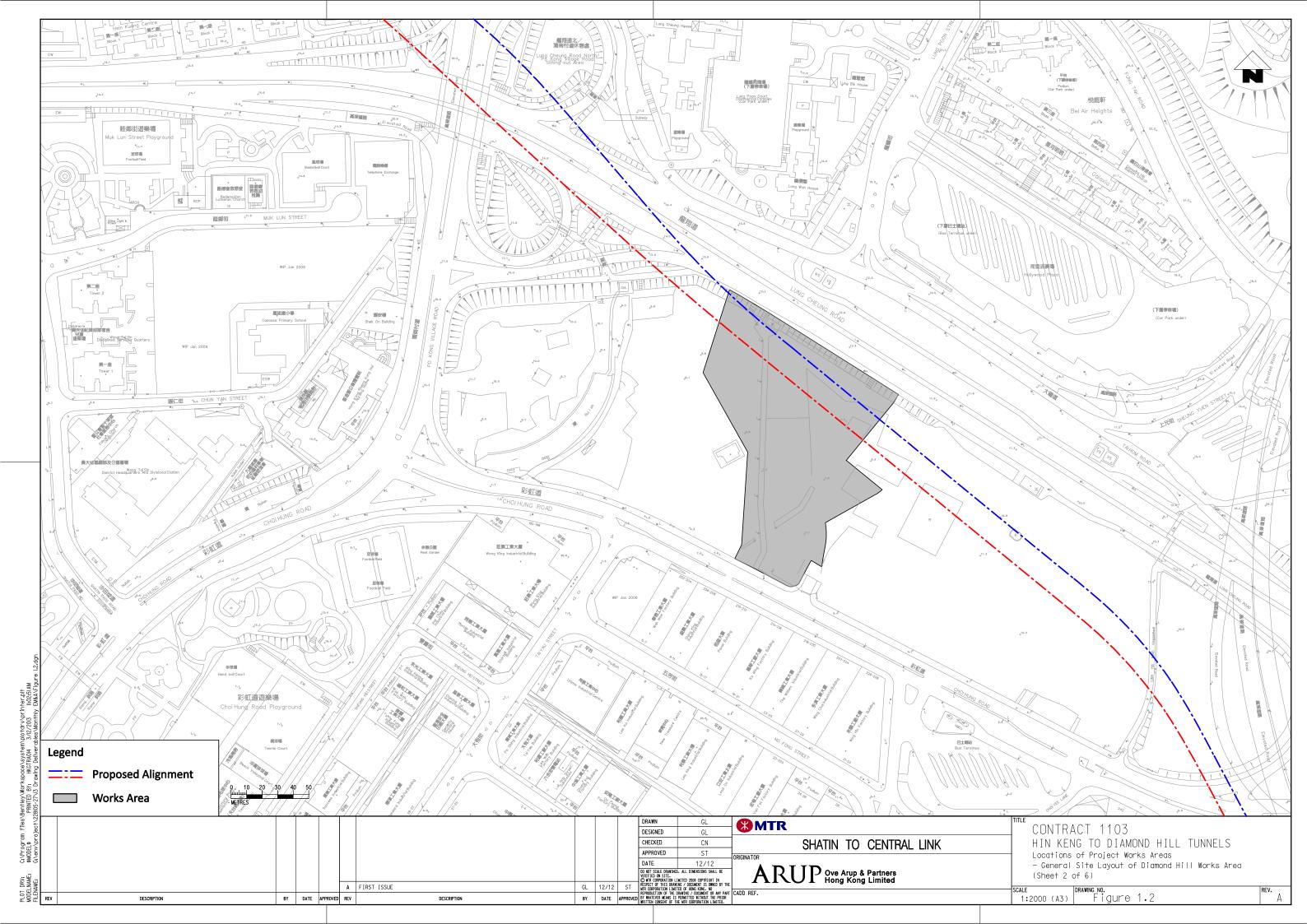
No complaint and summons/prosecution was received during the reporting period.

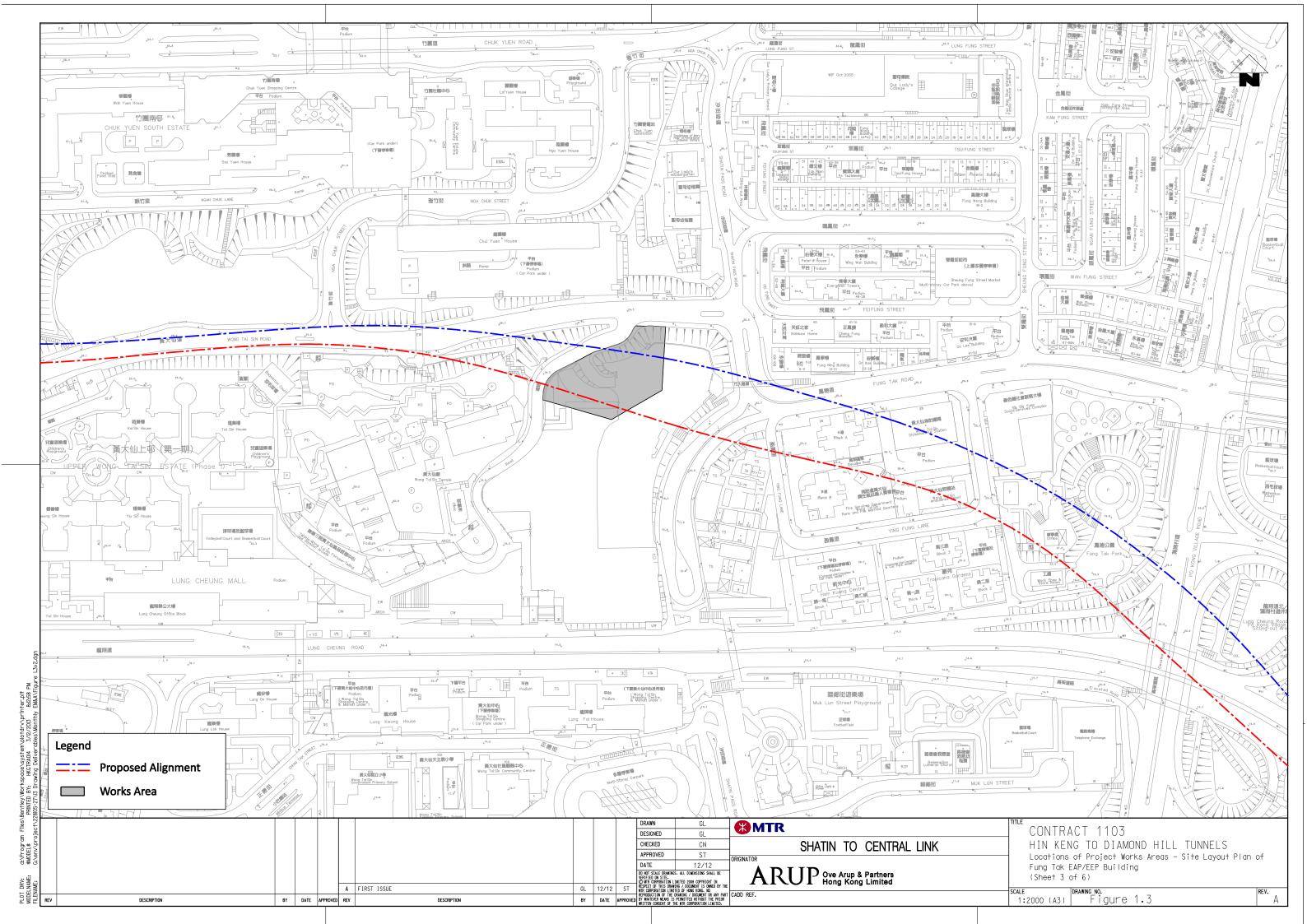
The Contractor's ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

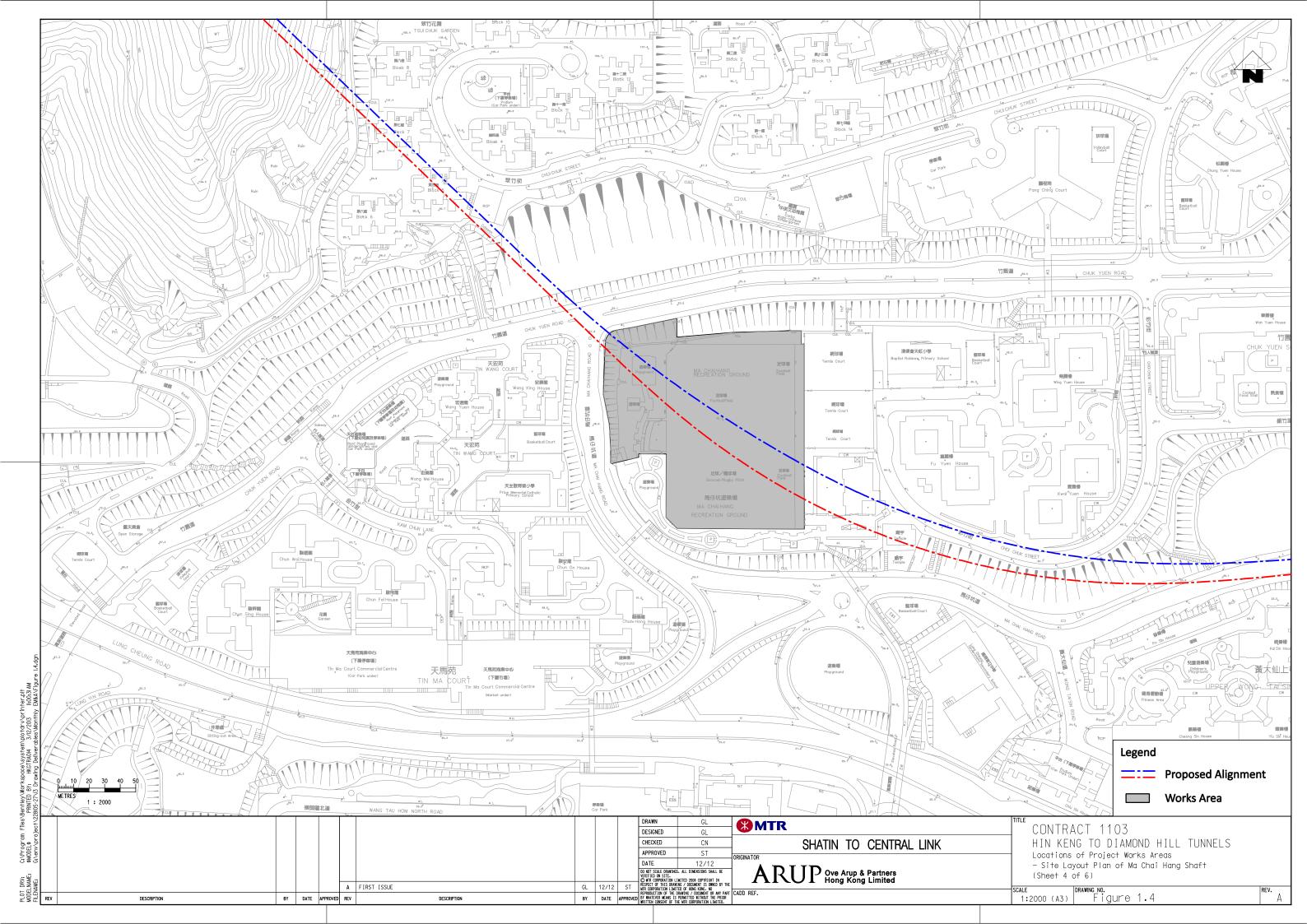
9.2 Recommendations

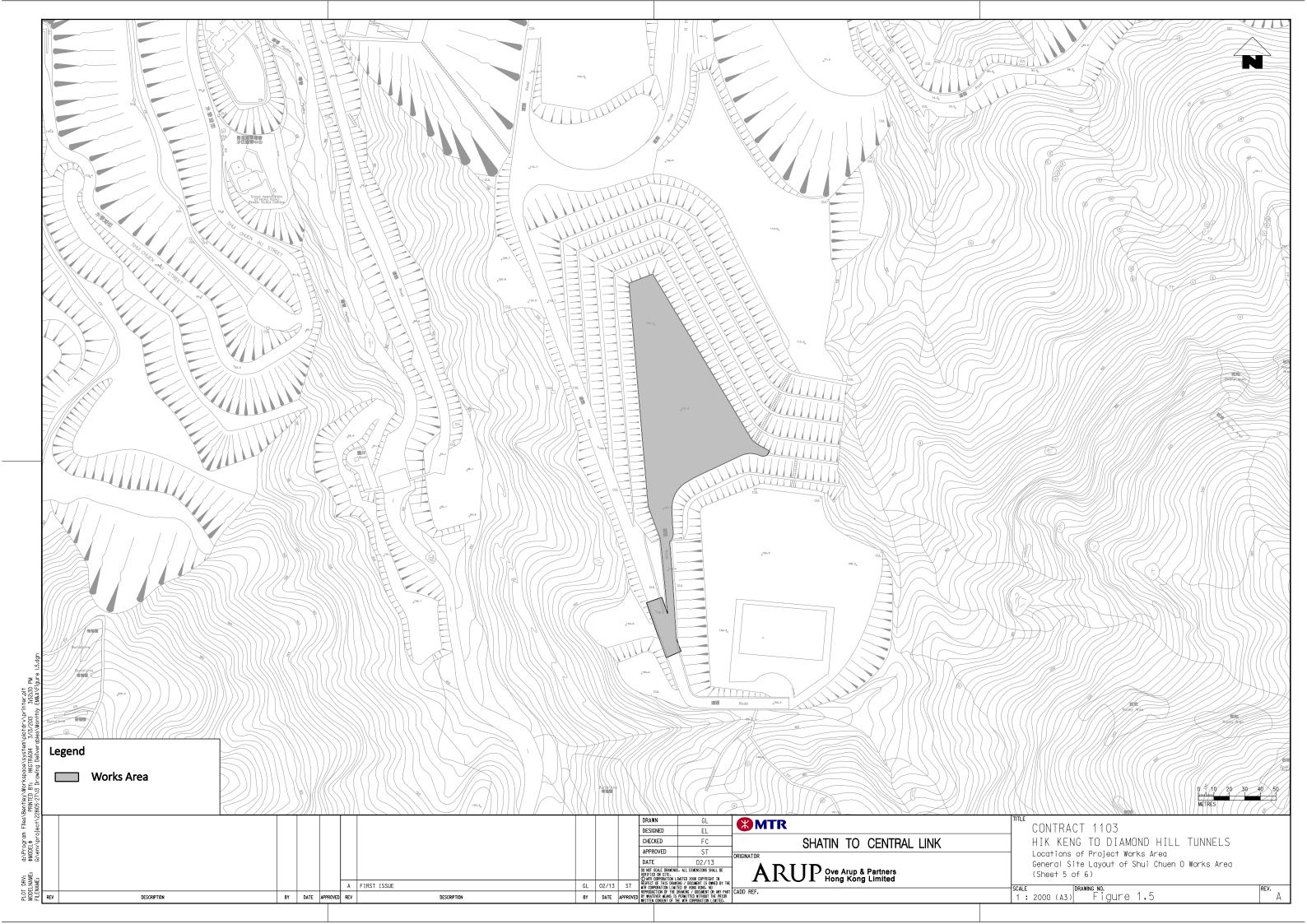
Impact monitoring will continue to be carried out in the following month and will follow the requirements stipulated in the EM&A manual. Attention will be paid to the environmental issues identified in the EIA report and weekly site audit. Mitigation measures recommended in EIA report and Implementation Schedule of Mitigation Measure will be fully implemented.


Waste management is a key environmental issue. The waste management plan should be strictly followed in accordance with the requirements described in the EIA report.


Water Quality impact is also a key environmental issue. The drainage system should be well maintained. All wastewater generated within the site shall be collected and treated prior to discharge. The solid and liquid waste management should be strictly followed in accordance with the requirements stipulated in the EIA report.


10 Reference


- (1) MTR Corporation Limited. SCL NEX/2206 EIA Study for Tai Wai to Hung Hom Section. Final Environmental Impact Assessment Report. October 2011.
- (2) MTR Corporation Limited. SCL NEX/2206 EIA Study for Tai Wai to Hung Hom Section. Environmental Monitoring and Audit Manual. October 2011.
- (3) MTR Corporation Limited. SCL NEX/2206 EIA Study for Stabling Sidings at Hung Hom Freight Yard. Final Environmental Impact Assessment Report. October 2011.
- (4) MTR Corporation Limited. SCL NEX/2206 EIA Study for Stabling Sidings at Hung Hom Freight Yard. Environmental Monitoring and Audit Manual. October 2011.


Figures

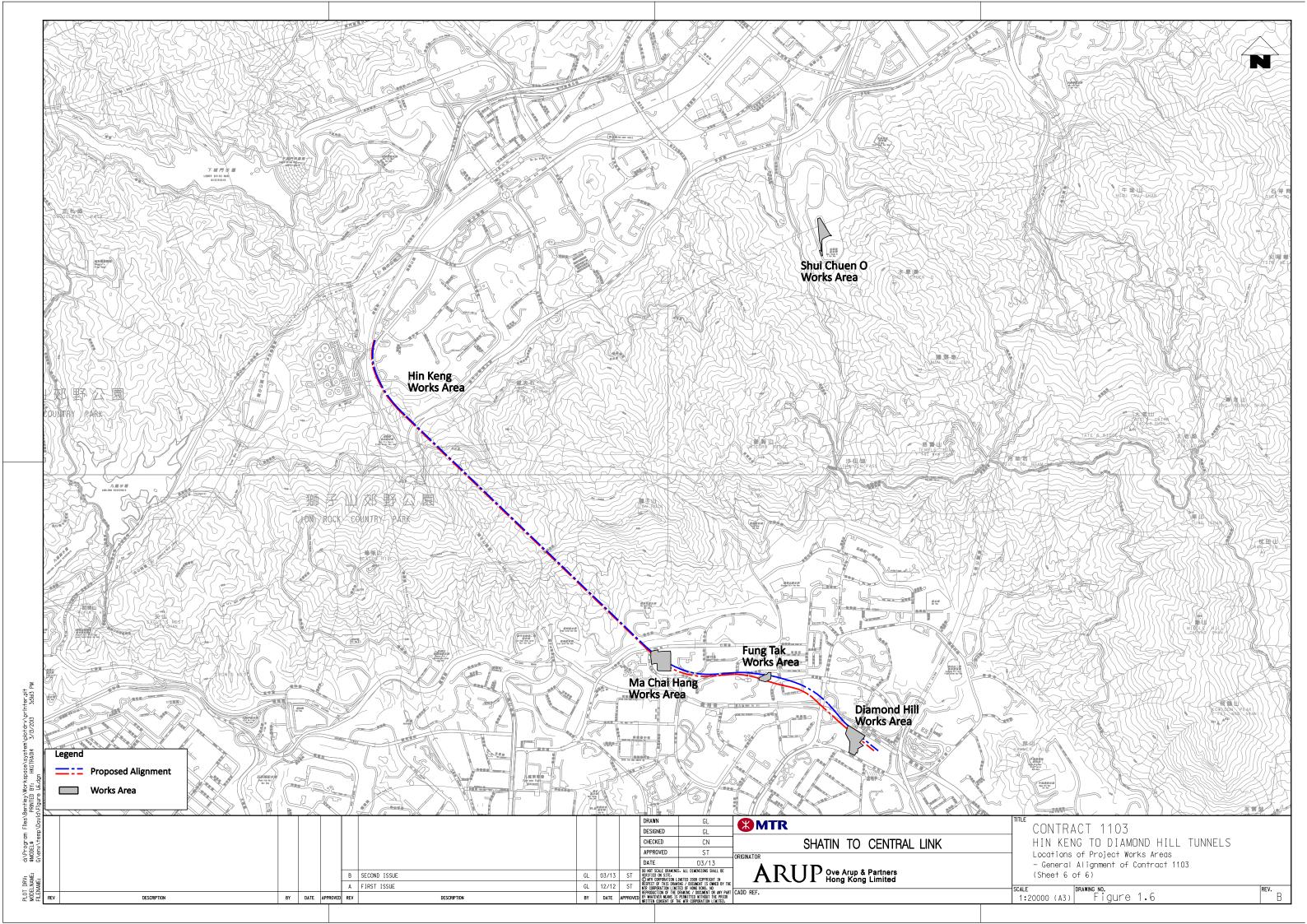
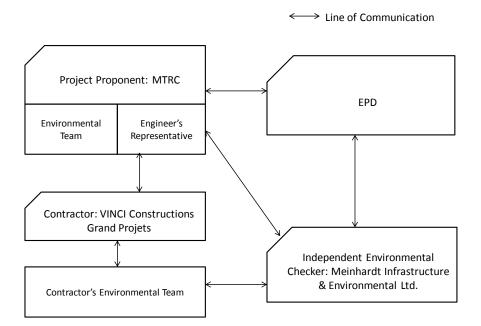
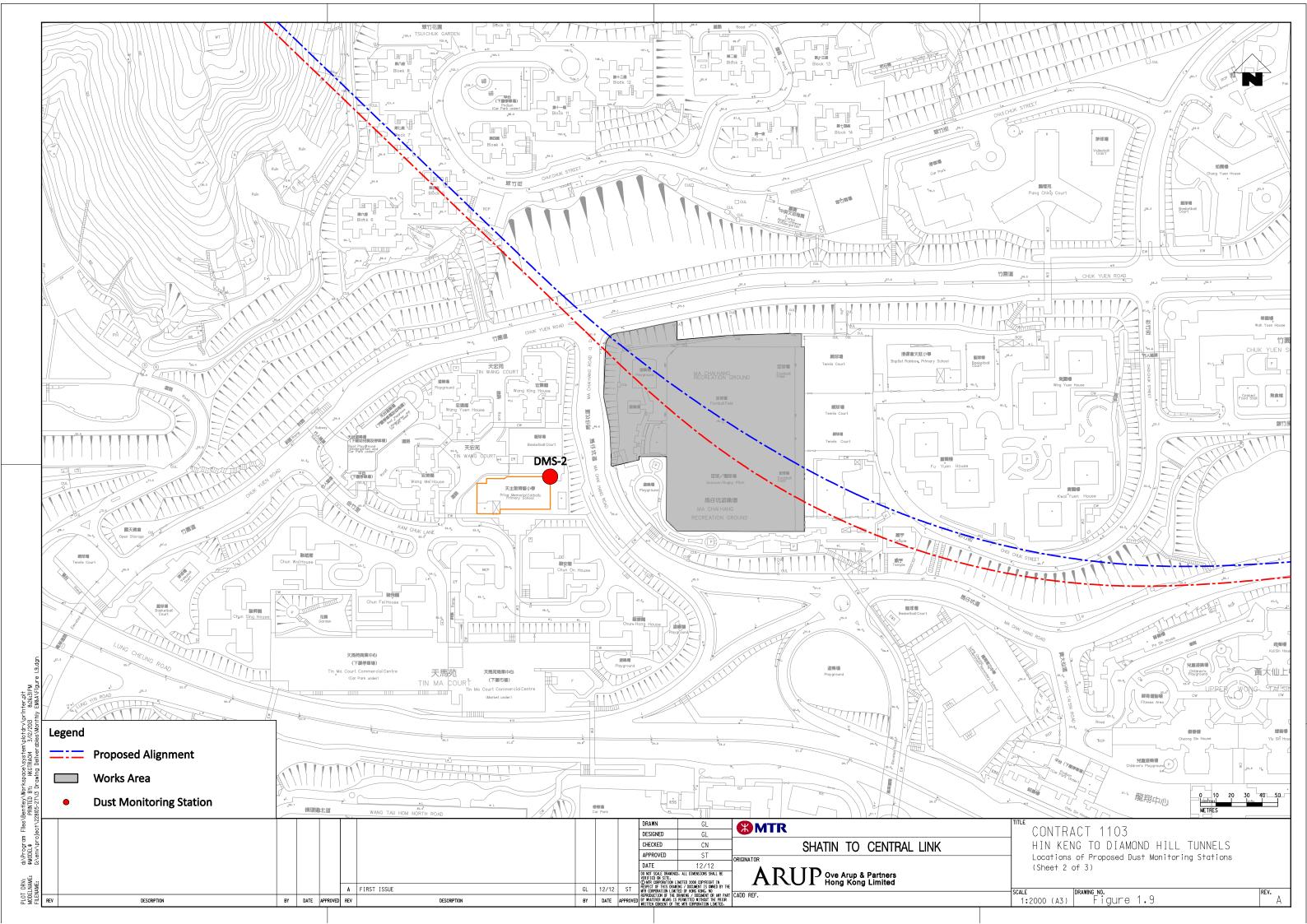
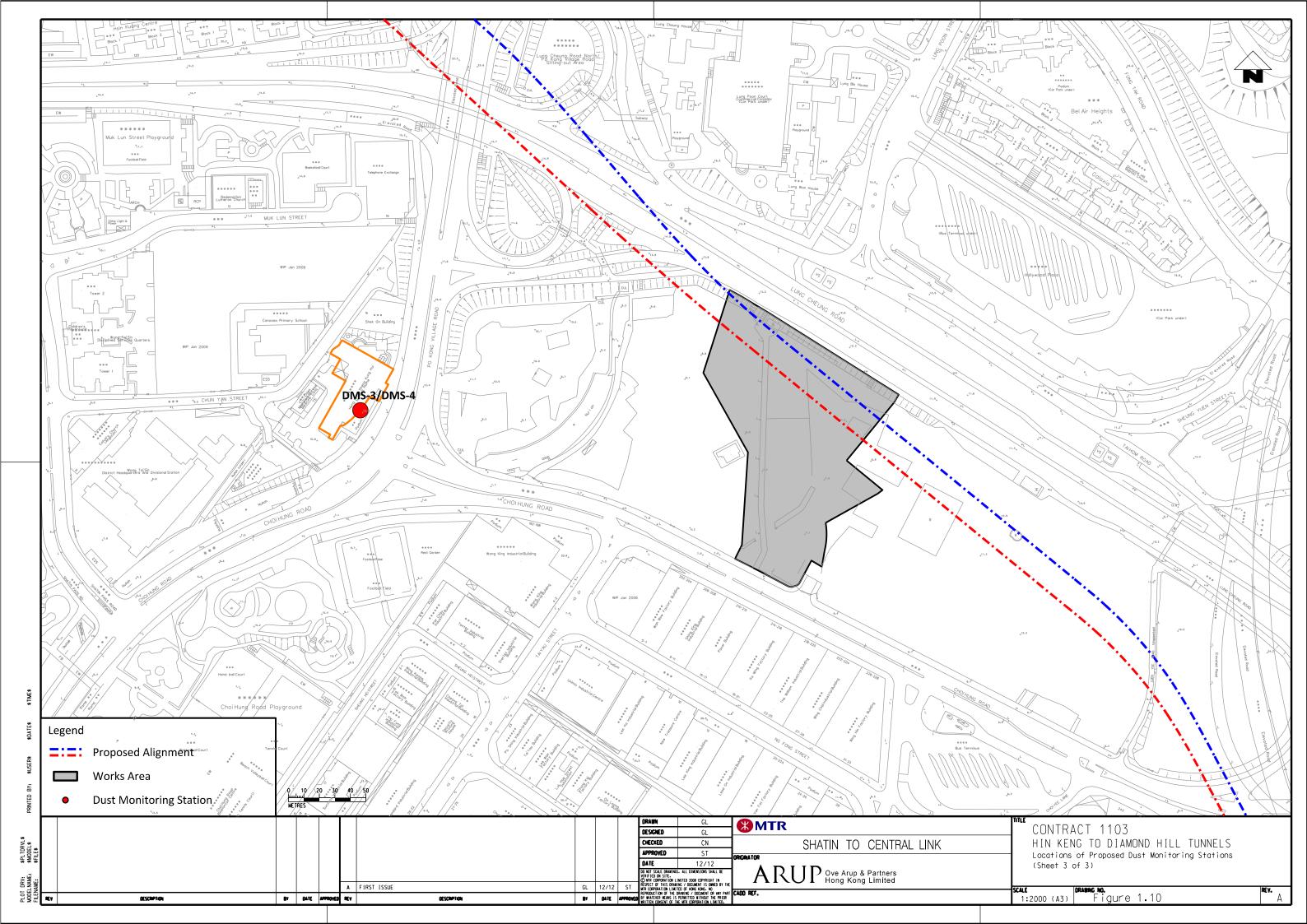
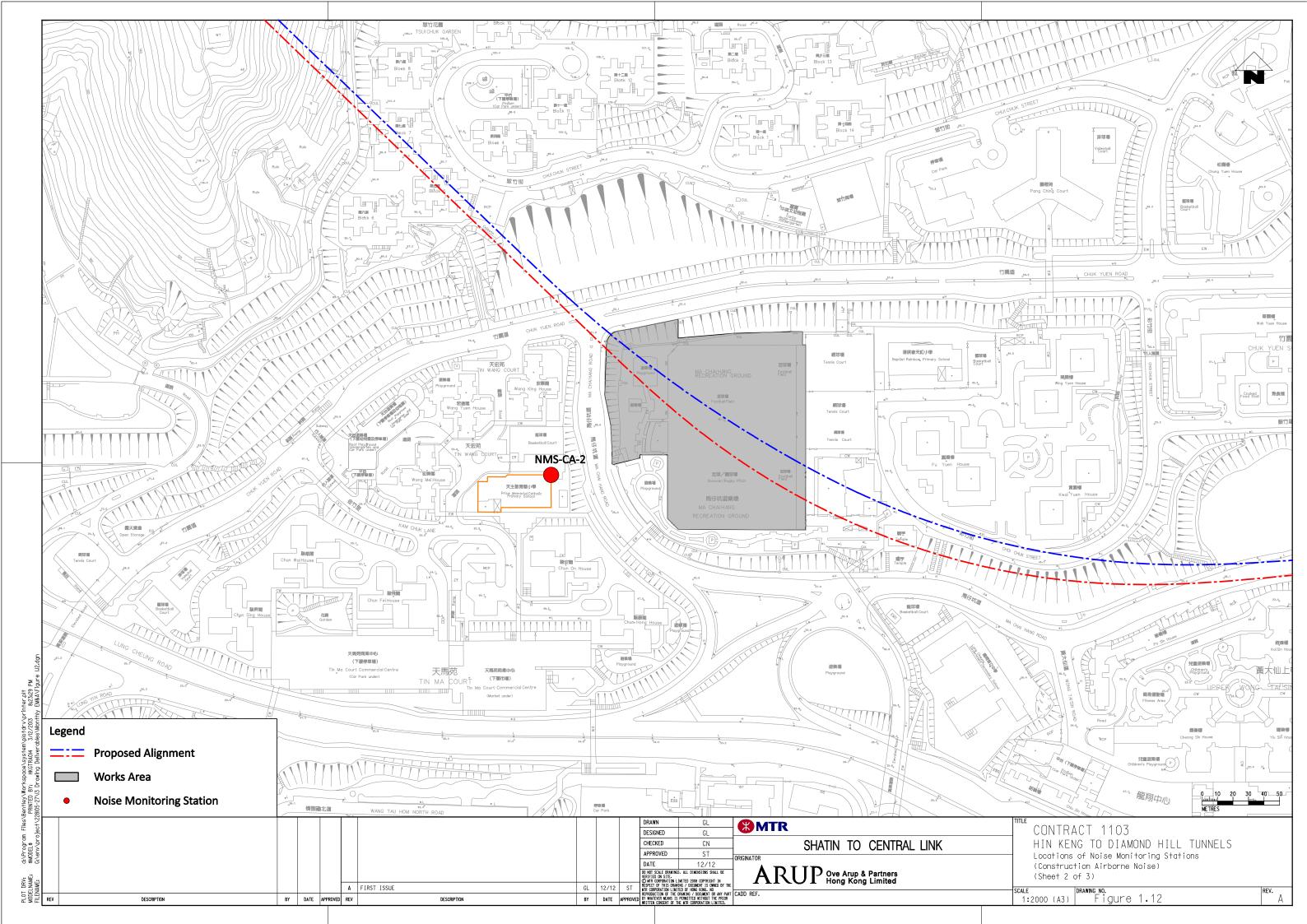
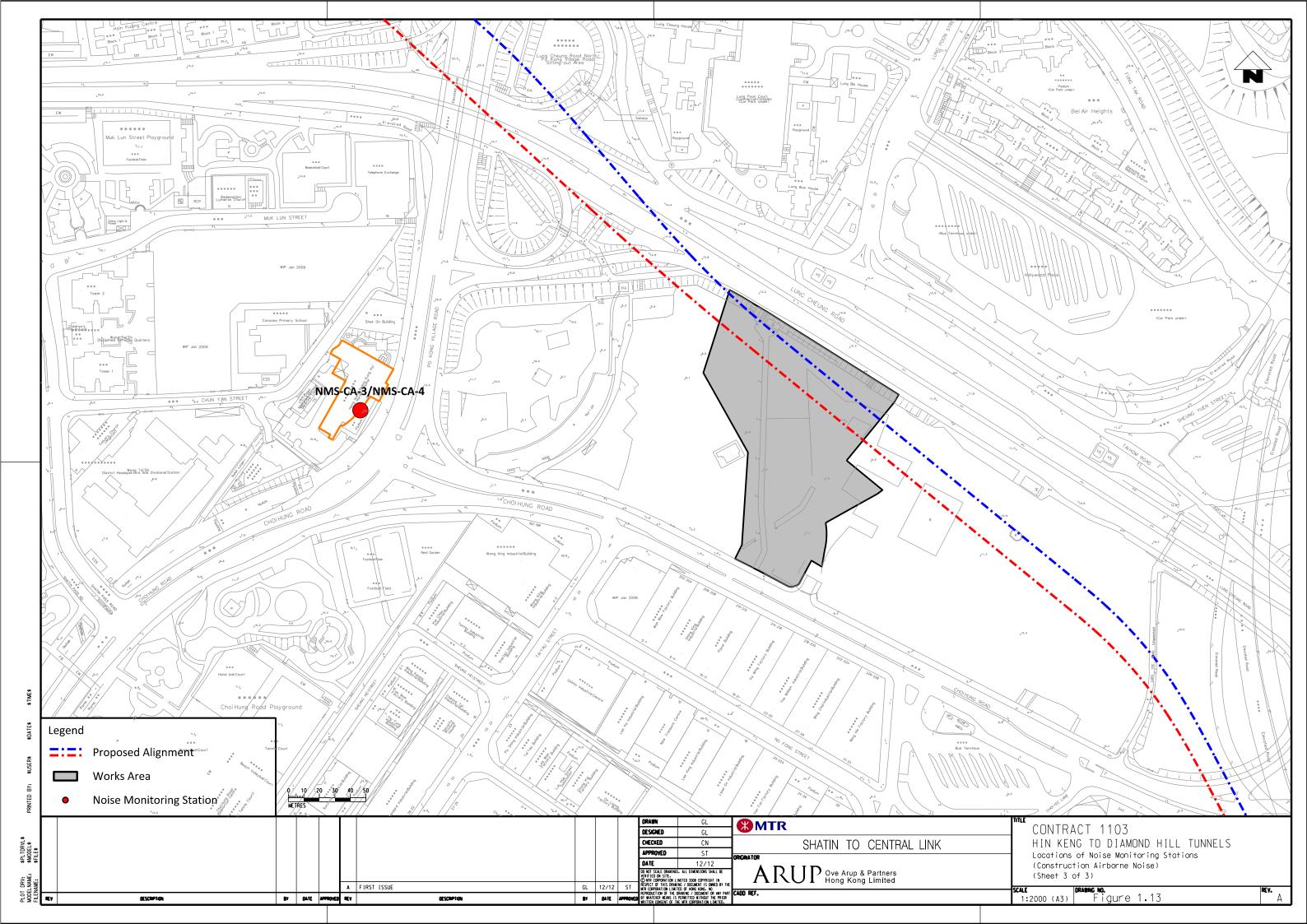
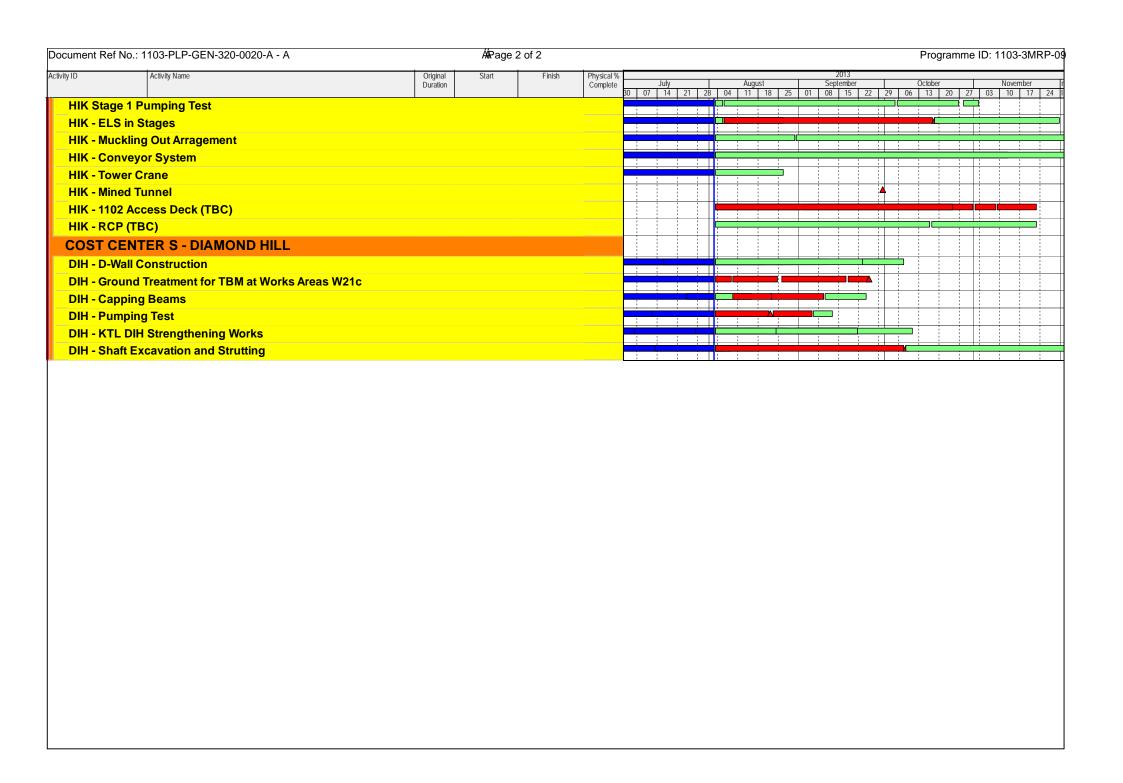





Figure 1.7 - Project Organisation for Environmental Works







Appendix A

Construction Programme

As of 31-7-2013

Appendix B

Environmental Monitoring Programme in Reporting Month

SCL Works Contract 1103 - Hin Keng to Diamond Hill Tunnels Impact Monitoring Schedule - July 2013

Date	Air Quality	Noise	Oita Imamaatian
	24-hours TSP	L _{Aeq} , 30 min	Site Inspection
01-Jul-13 Mon			
02-Jul-13 Tue			
03-Jul-13 Wed			
04-Jul-13 Thu			
05-Jul-13 Fri			
06-Jul-13 Sat			
07-Jul-13 Sun			
08-Jul-13 Mon			
09-Jul-13 Tue			
10-Jul-13 Wed			
11-Jul-13 Thu			
12-Jul-13 Fri			
13-Jul-13 Sat			
14-Jul-13 Sun			
15-Jul-13 Mon			
16-Jul-13 Tue			
17-Jul-13 Wed			
18-Jul-13 Thu			
19-Jul-13 Fri			
20-Jul-13 Sat			
21-Jul-13 Sun			
22-Jul-13 Mon			
23-Jul-13 Tue			
24-Jul-13 Wed			
25-Jul-13 Thu			
26-Jul-13 Fri			
27-Jul-13 Sat			
28-Jul-13 Sun			
29-Jul-13 Mon			
30-Jul-13 Tue			
31-Jul-13 Wed			

Public Holiday
Monitoring Day

Monitoring Details

Monitoring	Locations	Parameters
Air Quality	DMS-1 - C.U.H.K.A.A Thomas Cheung School, DMS-2 - Price Memorial Catholic Primary School and DMS- 3 / DMS-4 - Hong Kong Sheng Kung Hui Nursing Home	24-hour TSP
Noise	NMS-CA-1 - C.U.H.K.A.A Thomas Cheung School, NMS-CA-2 - Price Memorial Catholic Primary School and NMS- CA-3 / NMS-CA-4 - Hong Kong Sheng Kung Hui Nursing Home	L _{Aeq(30 min)} , L ₁₀ , L ₉₀

Appendix C

Environmental Mitigation Implementation Schedule (EMIS)

Note: Chapters 1 to 3 of the EIA report present the background information of the Project, identified concurrent projects, objectives and scope for various environmental aspects, and description on alternative options and construction description. Chapters 4 to 14 of the EIA report present the EIA findings and mitigation measures are described below with cross-reference to the EIA report for the reporting month. Chapters 15 & 16 describe the environmental monitoring requirements and conclusion.

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
Ecology (F	Pre-Const	truction Phase)					
S5.4	E1	Engineering works should not encroach into country park boundary, Tei Lung Hau Stream and secondary woodland near the portal at Hin Keng	Minimize ecological impacts	Lion Rock Country Park, Tei Lung Hau Stream	Detailed design and construction stage	AFCD's requirements EIAO Country Parks Ordinance	✓
	E2	Habitat Loss A detailed vegetation survey should be conducted in the Hin Keng Portal area to locate and enumerate individuals of <i>Aquilaria sinensis</i> which will potentially be affected by construction and operation of the Portal. A suitable site for transplanting all affected individuals within the footprint area should be identified and assessed for its suitability. A transplantation plan should then be drawn up and details of the transplantation methodologies and programme along with post-transplantation monitoring should be included.	Minimize ecological impacts on important species	Hin Keng Portal areas	Prior to site clearance	•AFCD's requirements	✓
S5.7	E3	Tree felling and vegetation removal Precautionary checks of the vegetation for the presence of nesting bird species of conservation interest should be carried out before vegetation clearance by an ecologist.	Minimize ecological impacts to breeding bird species of conservation interest	Works sites for DIH	Prior to site clearance	•AFCD's requirements	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
Ecology (Construc	tion Phase)					
S5.7	E5	Good Site Practices Impact to any habitats or local fauna should be avoided by implementing good site practices, including the containment of silt runoff within the site boundary, the containment of contaminated soils for removal from the site, appropriate storage of chemicals and chemical waste away from sites of ecological value and the provision of sanitary facilities for on-site workers. Adoption of such measures should permit waste to be suitably contained within the site for subsequent removal and appropriate disposal. The following good site practices should also be implemented: • Erection of temporary geotextile silt or sediment fences/oil traps around any earth-moving works to trap any sediments and prevent them from entering watercourses in particular the Tei Lung Hau stream; • Avoidance of soil storage against trees or close to waterbodies in particular the Tei Lung Hau stream; • Delineation of works site by erecting hoardings to prevent encroachment onto adjacent habitats and fence off areas which have some ecological value e.g. Tei Lung Hau Stream and the adjoining secondary woodland, tunnel on hill at top of slope stabilisation works; • No on-site burning of waste; • Waste and refuse in appropriate receptacles.	Minimize ecological impacts	All construction sites	Construction stage		* * * * *

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
\$5.7	E7	 Water Quality and Hydrology Implement water control measures (ETWB TCW No. 5/2005, Protection of natural streams/ rivers from adverse impacts arising from construction works to avoid direct or indirect impacts on the Tei Lung Hau Stream) and good site practices. Canopy tubes should be installed from the shaft structure and extend the full width of the stream. These canopy tubes with sieves along its length should be grouted and form a stable and low permeable 'umbrella' for further mining works to be carried out in stages. The canopy tubes beneath the stream area are within Completely Decomposed Granite (CDG) stratum. 	Avoid indirect water impact to any wetland habitats or wetland fauna Minimize the drawdown of water table	Works area in Hin Keng	Construction stage	• TCW No. 5/2005	√ N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
Landscape	e and Visi	ual (Construction Phase)					
S6.9.3	LV1	The following good site practices and measures for minimisation and avoidance of potential impacts are recommended:	Minimize visual & landscape impact	Within Project Site	Construction stage	TM-EIAO	
		 Re-use of Existing Soil For soil conservation, existing topsoil shall be re-used where possible for new planting areas within the project. The construction program shall consider using the soil removed from one phase for backfilling another. Suitable storage ground, gathering ground and mixing ground may be set up on-site as necessary. 					✓
		No-intrusion Zone					
		To maximize protection to existing trees, ground vegetation and the associated under storey habitats, construction contracts may designate "No-intrusion Zone" to various areas within the site boundary with rigid and durable fencing for each individual no-intrusion zone. The contractor should closely monitor and restrict the site working staff from entering the "no-intrusion zone", even for indirect construction activities and storage of equipment.					Rdr
		Protection of Retained Trees					
		 All retained trees should be recorded photographically at the commencement of the Contract, and carefully protected during the construction period. Detailed tree protection specification shall be allowed and included in the Contract Specification, which specifying the tree protection requirement, submission and approval system, and the tree monitoring system. 					Obs
		The Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		prior to undertaking any works adjacent to all retained trees, including trees in contractor's works sites.					√
S6.12	LV2	 Decorative Hoarding Erection of decorative screen during construction stage to screen off undesirable views of the construction site for visual and landscape sensitive areas. Hoarding should be designed to be compatible with the existing urban context. Management of facilities on work sites To provide proper management of the facilities on the sites, give control on the height and disposition/ arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs. Tree Transplanting Trees of high to medium survival rate would be affected by the works shall be transplanted where possible and practicable. Tree transplanting proposal including final location for transplanted trees shall be submitted separately to seek relevant government department's approval, in accordance with ETWB TCW No 3/2006. 	Minimize visual & landscape impact	Within Project Site	Detailed design and construction stage	EIAO – TM ETWB TCW 2/2004 ETWB TCW 3/2006	✓

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
Constructi	ion Dust l	Impact					
S7.6.5	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIA criteria	~
S7.6.5	D2	Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road in the Kowloon area and once per 1.5 hour at those in the Tai Wai area should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.8 L/m2 to achieve the dust removal efficiency	Minimize dust impact at the nearby sensitive receivers	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIA criteria	√
S7.6.5	D3	 Proper watering of exposed spoil should be undertaken throughout the construction phase: Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; A stockpile of dusty material should not be extend beyond the 	Minimize dust impact at the nearby sensitive receivers	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIA criteria	√ Rdr √ √
		- A stockpile of dusty material should not be extend beyond the					

Notes (*): ✓ - Compliance; N/A – Not Applicable; N/O – Not Observed; Rdr – Reminder; Obs – Observation; N/C – Non Compliance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		pedestrian barriers, fencing or traffic cones.					✓
		 The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; 					
		 Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; 					√
		 When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing; Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; 					✓
		 The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; 					,
		 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; 					·
		 Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; 					N/A
		Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting					✓

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		 should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting; Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; 					√
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;					√
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and					✓
		 Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					N/A
S7.6.5	D6	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Selected representative dust monitoring station	Construction stage	• TM-EIA	√

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
Constructi	ion Noise	(Airborne)					
S8.3.6	N1	 Implement the following good site practices: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 	Control construction airborne noise	All construction sites	Construction stage	• Annex 5, TM-EIA	* * * * *
S8.3.6	N2	Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period.	Reduce the construction noise levels at low-level zone of NSRs through partial screening.	All construction sites	Construction stage	• Annex 5, TM-EIA	√
S8.3.6	N3	Install movable noise barriers (typical design is wooden framed barrier with a small-cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure, screen the noisy plants including air compressor, generators and	Screen the noisy plant items to be used at all construction sites	All construction sites where practicable	Construction stage	• Annex 5, TM-EIA	Obs

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		saw.					
S8.3.6	N4	Use "Quiet plants"	Reduce the noise levels of plant items	All construction sites where practicable	Construction stage	• Annex 5, TM-EIA	✓
\$8.3.6	N5	Sequencing operation of construction plants where practicable.	Operate sequentially within the same work site to reduce the construction airborne noise	All construction sites where practicable	Construction stage	• Annex 5, TM-EIA	✓
S8.3.6	N6	Implement a noise monitoring under EM&A programme.	Monitor the construction noise levels at the selected representative locations	Selected representative noise monitoring station	Construction stage	• TM-EIA	√

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
Water Qua	ality (Con	struction Phase)					
\$10.7.1	W1	In accordance with the Practice Noise for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), construction phase mitigation measures shall include the following: Construction Runoff and Site Drainage At the start of site establishment (including the barging facilities), perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system will be undertaken by the contractor prior to the commencement of construction.	To minimize water quality impact from construction site runoff and general construction activities	All construction sites where practicable	Construction stage	Water Pollution Control Ordinance ProPECC PN1/94 TM-EIAO TM-Water	Rdr
		The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates.					✓
		The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1 m³/s a sedimentation basin of 30m³ would be required and for a flow rate of 0.5 m³/s the basin would be 150 m³. The detailed design of the sand/silt traps shall be undertaken by the contractor prior to the					√

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		commencement of construction.					
		 All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. Exposed slope surfaces should be covered by tarpaulin or other means. 					√
		 The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by coarse stone ballast. An additional advantage accruing from the use of crushed stone is the positive traction gained during prolonged periods of inclement weather and the reduction of surface sheet flows. 					✓
		 All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas. 					Rdr
		 Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. 					~
		 Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. 					✓
		Manholes (including newly constructed ones) should always be					

Notes (*): ✓ - Compliance; N/A – Not Applicable; N/O – Not Observed; Rdr – Reminder; Obs – Observation; N/C – Non Compliance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.					Rdr
		 Precautions be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes. 					✓
		• All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.					√
		Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain.					✓
		 Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. 					✓
		All fuel tanks and storage areas should be provided with locks					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		 and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. All the earth works involving should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Adopt best management practices 					√ ✓
S10.7.1	W2	 Tunnelling Works Cut-&-cover/ open cut tunnelling work should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Uncontaminated discharge should pass through sedimentation tanks prior to off-site discharge The wastewater with a high concentration of SS should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove the oil, lubricants and grease from the wastewater. Direct discharge of the bentonite slurry (as a result of D-wall and bored tunnelling construction) is not allowed. It should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related construction activities are 	To minimize construction water quality impact from tunneling works	All tunneling portion	Construction stage	Water Pollution Control Ordinance ProPECC PN 1/94 TM-water TM-EIAO	N/A N/A N/A
S10.7.1	W3	completed. The requirements in ProPECC PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. Sewage Effluent	To minimize water quality	All construction sites	Construction	Water Pollution	

Notes (*): ✓ - Compliance; N/A – Not Applicable; N/O – Not Observed; Rdr – Reminder; Obs – Observation; N/C – Non Compliance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		 Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance. 	from sewage effluent	where practicable	stage	Control Ordinance TM-water	√
S10.7.1	W4	On direct discharge of groundwater from contaminated areas should be adopted. Prior to the excavation works within these potentially contaminated areas, the groundwater quality should be reviewed with reference to the site investigation data in this EIA report for compliance to the Technical Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters (TM-Water) and the existence of prohibited substance should be confirmed. The review results should be submitted to EPD for examination If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, the contaminated groundwater should be either properly treated in compliance with the requirements of the TM-Water or properly recharged into the ground.	To minimize groundwater quality impact from contaminated area	Excavation areas where contamination is found.	Construction stage	Water Pollution Control Ordinance TM-water TM-EIAO	N/A
		 If wastewater treatment is deployed, the wastewater treatment unit shall deploy suitable treatment process (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (e.g. TPH) to undetectable range. All treated effluent from wastewater treatment plant shall meet the requirements as stated in TM-Water and should be discharged into the foul sewers. If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the 					N/A

Notes (*): ✓ - Compliance; N/A – Not Applicable; N/O – Not Observed; Rdr – Reminder; Obs – Observation; N/C – Non Compliance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		will not be affected by the recharge operation as indicated in the Section 2.3 of TM-Water. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substances such as TPH products should be removed as necessary by installing the petrol interceptor. The Contractor should apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.					
S10.7.1	W7	 In order to prevent accidental spillage of chemicals, the following is recommended: All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains. The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. 	To minimize water quality impact from accidental spillage	All construction sites where practicable	Construction stage	Water Pollution Control Ordinance ProPECC PN1/94 TM-EIAO TM-Water	Rdr
		Disposal of chemical wastes should be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation.					~

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
Waste Man	agement	(Construction Phase)					
S11.4.1.1	WM1	 On-site sorting of C&D material Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock should be separated at the source sites as far as practicable and stored at designated stockpile areas preventing them from delivering to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from ended up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc should also be explored. 	Separation of unsuitable rock from ending up at concrete batching plants and be turned into concrete for structural use	All construction sites	Construction stage	• DEVB TC(W) No. 6/2010	✓
S11.5.1	WM2	Construction and Demolition Material Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	All construction sites	Construction stage	• Land (Miscellaneous Provisions) Ordinance • Waste Disposal Ordinance	✓

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		promote the use of recycled aggregates where appropriate; • Adopt 'Selective Demolition' technique to demolish the existing				• ETWB TCW No. 19/2005	~
		structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible;					√
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; and 					✓
		Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction.					✓
		In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation					√
S11.5.1	WM3	 C&D Waste Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	All construction sites	Construction stage	Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No. 19/2005	✓
		The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be					N/A

Notes (*): ✓ - Compliance; N/A – Not Applicable; N/O – Not Observed; Rdr – Reminder; Obs – Observation; N/C – Non Compliance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
		crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage.					
S11.5.1	WM4	 General Refuse General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. 	Minimize production of the general refuse and avoid odour, pest and litter impacts	All construction sites	Construction stage	Waste Disposal Ordinance	✓
		Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor.					√
S11.5.1	WM5	Excavated Contaminated Soils Details of the mitigation measures on handling of the contaminated soil shall be referred to Section on Land Contamination below.	To remediate contaminated soil	Site L4 (Former Tai Hom Village)	Site remediation	Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boat yards and Car Repair/Dismantling Workshop.	

Notes (*): ✓ - Compliance; N/A – Not Applicable; N/O – Not Observed; Rdr – Reminder; Obs – Observation; N/C – Non Compliance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
S11.5.1	WM7	Chemical Waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation.	Control the chemical waste and ensure proper storage, handling and disposal.	All construction sites	Construction stage	Waste Disposal (Chemical Waste) General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste	Obs
		The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated.					✓
		Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD.					✓

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Location of the measures	When to implement the measures?	What requirements or standards for the measures to achieve?	Implementation Status
S14.2	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	Control EM&A Performance	All construction sites	Construction stage	• EIAO Guidance Note No.4/2010 • TM-EIAO	✓
S14.2 – 14.4	EM2	An Environmental Team needs to be employed as per the EM&A Manual.	Perform environmental monitoring & auditing	All construction sites	Construction stage	• EIAO Guidance Note No.4/2010 • TM-EIAO	√
		2) Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures.					√
		3) An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with.					√

Appendix D

Calibration Certficates for Air Monitoring Equipment

Ove Arup Partners (Hong Kong) Limited

High Volume Air Sampler Calibration Worksheet

Calibration date

3-Jun-13

Next Calibration date

2-Aug-13

Sampler location

DMS1 - Thomas Cheung School

Sampler model Sampler serial number TE-5170 3763

 P_{std} T_{std}

Barometric pressure

Tempature (°C)

Tempature (K)

756 mm Hg

30 °C 303 K

298 K

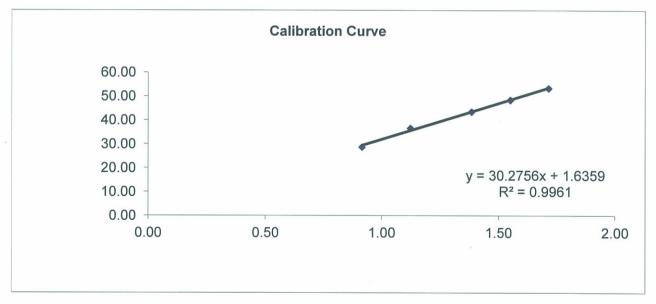
760 mm Hg

Calibrator model

GMW-2535

Calibrator serial number

2421


Slope of the standard curve, ms

2.0458

Intercept of the standard curve, b.

0.0019

Resistance Plate No.	Manometer Reading (inch H₂O)	Flow Recorder Reading (CFM)	Calculated Q _{std} (m³/min)	Continuous Flow Recorder Reading IC (CFM)
5	3.60	29.00	0.92	28.68
7	5.40	37.00	1.12	36.60
10	8.20	44.00	1.38	43.52
13	10.30	49.00	1.55	48.47
18	12.60	54.00	1.72	53.41

Linear Regression

Sampler slope (m): Sampler intercept (b): 30.2756 1.6359

Correlation coefficient (R²): **0.9961**

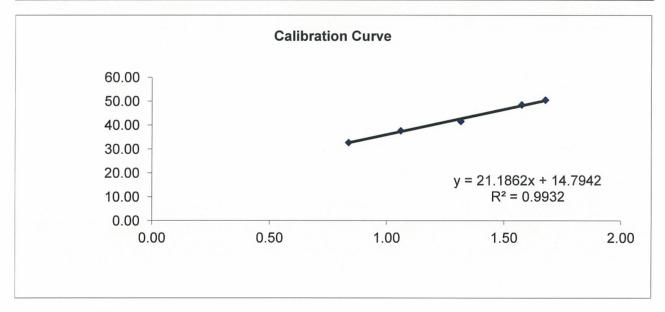
Correlation coefficient is greater than 0.9900 and the calibration result is accepted.

Performed by:

Date:

Checked by:

Date:


Ove Arup Partners (Hong Kong) Limited

High Volume Air Sampler Calibration Worksheet

Calibration date 28-Jun-13 Barometric pressure 755 mm Hg **Next Calibration date** Tempature (°C) 29 °C 27-Aug-13 Sampler location DMS2 - Price Memorial Catholic Pri Tempature (K) 302 K Sampler model TE-5170 760 mm Hg Pstd Sampler serial number 3761 298 K T_{std}

Calibrator model GMW-2535
Calibrator serial number 2421
Slope of the standard curve, m_s 2.0458
Intercept of the standard curve, b_s 0.0019

Resistance Plate No.	Manometer Reading (inch H ₂ O)	Flow Recorder Reading (CFM)	Calculated Q _{std} (m³/min)	Continuous Flow Recorder Reading IC (CFM)
5	3.00	33.00	0.84	32.67
7	4.80	38.00	1.06	37.62
10	7.40	42.00	1.32	41.58
13	10.60	49.00	1.57	48.51
18	12.00	51.00	1.68	50.49

Linear Regression

Sampler slope (m) : 21.1862 Sampler intercept (b) : 14.7942 Correlation coefficient (\mathbb{R}^2) : 0.9932

Correlation coefficient is greater than 0.9900 and the calibration result is accepted.

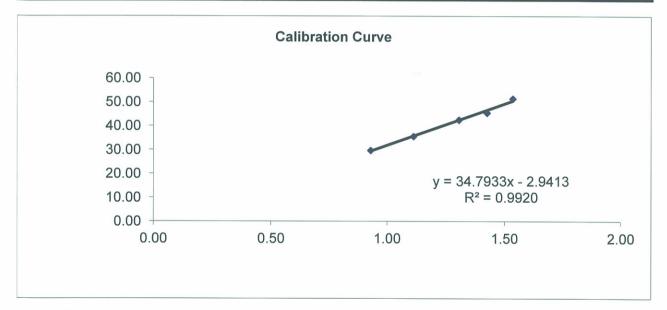
Performed by:

Checked by:

Date:

Date:

4.7.13


Ove Arup Partners (Hong Kong) Limited

High Volume Air Sampler Calibration Worksheet

Calibration date 3-Jun-13 Barometric pressure 756 mm Hg **Next Calibration date** 2-Aug-13 Tempature (°C) 30 °C Sampler location DMS3 - Sheng Kung Hui Nursing Hr Tempature (K) 303 K Sampler model TE-5170 Pstd 760 mm Hg Sampler serial number 3762 T_{std} 298 K

Calibrator model GMW-2535
Calibrator serial number 2421
Slope of the standard curve, m_s 2.0458
Intercept of the standard curve, b_s 0.0019

Resistance Plate No.	Manometer Reading (inch H₂O)	Flow Recorder Reading (CFM)	Calculated Q _{std} (m³/min)	Continuous Flow Recorder Reading IC (CFM)
5	3.70	30.00	0.93	29.67
7	5.30	36.00	1.11	35.61
10	7.30	43.00	1.31	42.53
13	8.70	46.00	1.43	45.50
18	10.10	52.00	1.54	51.43

Linear Regression

Sampler slope (m): 34.7933 Sampler intercept (b): -2.9413 Correlation coefficient (\mathbb{R}^2): 0.9920

Correlation coefficient is greater than 0.9900 and the calibration result is accepted.

Performed by:

Date:

3.6115

Checked by:

Date:

10-6-13

Appendix E

Dust Results

Location: DMS-1 - C.U.H.K.A.A. Thomas Cheung School

Details of 24-Hour TSP Monitoring

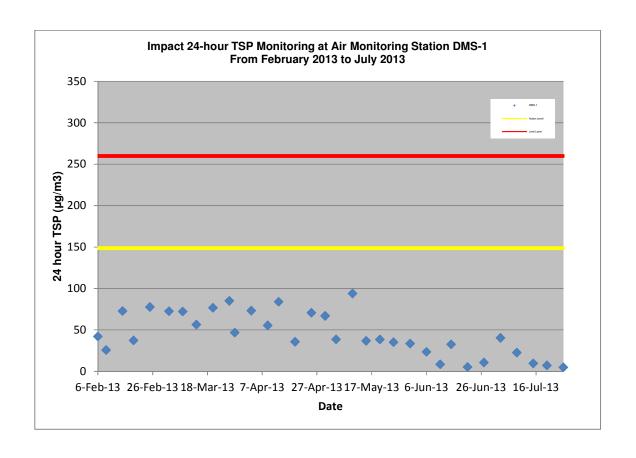
		The second of					Flow Recorder Reading									Average					24-hour	Action				
		Time periods		Receptor	Weather	Site	Pressure (mmHg)		Temperature (oC)		(CFM)		Filter W	eight (g)	TSP	Flow Rate (m ³ /min)		Flow	Elapse Time		Sampling	Total	TSP	Level	Limit Level	
Filter No.	Month	Date	Start	Finish	No.	condition	condition	Initial	Final	Initial	Final	Initial	Final	Initial	Final	weight (g)	Initial	Final	Rate	Start	Finish	Time (mins.)	vol. (m³)	Level	(µg/m ³)	(μg/m³)
			Start	1111511															(m ³ /min)					(mg/m ³)	1	
102720	Jul-13	3-Jul-13	00:00	00:00	DMS1	Fine	Normal Operation	756.0	756.0	30.0	30.0	41.0	42.0	3.5360	3.6115	0.0755	1.2854	1.3181	1.3018	672.29	696.29	1440.00	1874.52	40.3	148.7	260.0
102723	Jul-13	9-Jul-13	00:00	00:00	DMS1	Cloudy	Normal Operation	755.0	755.0	29.0	30.0	42.0	42.0	3.5481	3.5910	0.0429	1.3195	1.3172	1.3184	696.29	720.29	1440.00	1898.42	22.6	148.7	260.0
102726	Jul-13	15-Jul-13	00:00	00:00	DMS1	Rainy	Normal Operation	754.0	754.0	26.0	27.0	44.0	44.0	3.5402	3.5593	0.0191	1.3911	1.3887	1.3899	720.29	744.29	1440.00	2001.46	9.5	148.7	260.0
102728	Jul-13	20-Jul-13	00:00	00:00	DMS1	Cloudy	Normal Operation	753.0	753.0	27.0	27.0	42.0	42.0	3.5443	3.5579	0.0136	1.3222	1.3222	1.3222	744.29	768.29	1440.00	1903.97	7.1	148.7	260.0
102733	Jul-13	26-Jul-13	00:00	00:00	DMS1	Rainy	Normal Operation	752.0	752.0	26.0	27.0	41.0	40.0	3.5317	3.5405	0.0088	1.2908	1.2558	1.2733	768.29	792.29	1440.00	1833.55	4.8	148.7	260.0

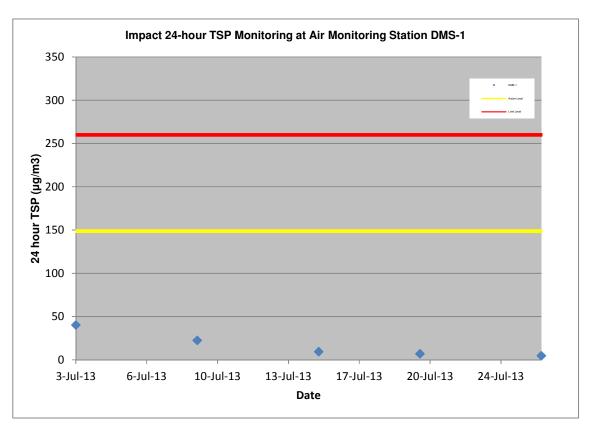
Average (μg/m3) 16.9 Max (μg/m3) 40.3 Min (μg/m3) 4.8

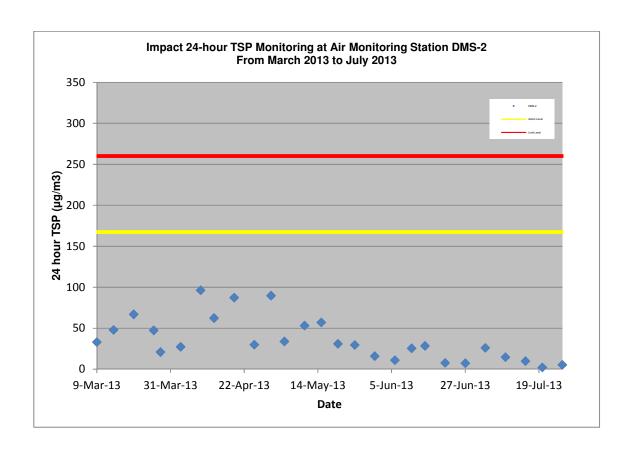
Location: DMS-2 Price Memorial Catholic Primary School

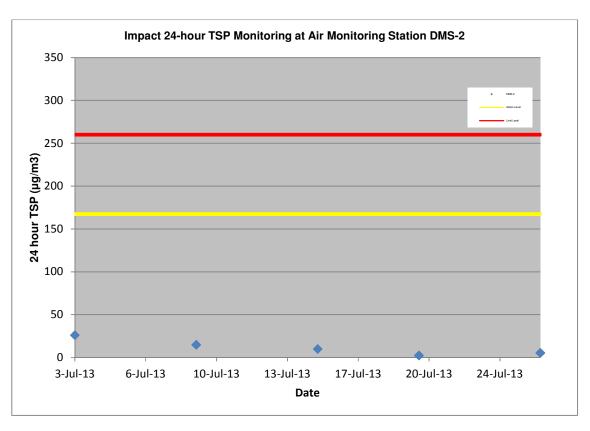
Details of 24-Hour TSP Monitoring

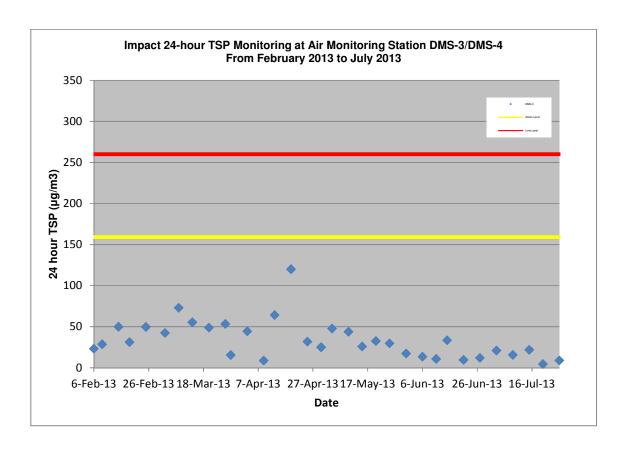
											Flow Recorder Reading								Average					24-hour	Action	
		Time periods		Time periods Rece		Weather	Site	Pressure	e (mmHg)	Tempera	ture (oC)	(CI	FM)	Filter W	eight (g)	TSP	Flow Rate	(m³/min)	Flow	Elaps	e Time	Sampling	Total	TSP	Level	Limit Level
Filter No.	Month	Date	Start	Finish	No.	condition	condition	Initial	Final	Initial	Final	Initial	Final	Initial	Final	weight (g)	Initial	Final	Rate	Start	Finish	Time (mins.)	vol. (m³)	Level	(μg/m ³)	(μg/m ³)
			Start	FIIIISII															(m ³ /min)					(mg/m ³)		
102721	Jul-13	3-Jul-13	00:00	00:00	DMS2	Fine	Normal Operation	756.0	756.0	30.0	30.0	41.0	40.0	3.5383	3.5828	0.0445	1.2158	1.1691	1.1925	528.39	552.39	1440.00	1717.13	25.9	167.4	260.0
102724	Jul-13	9-Jul-13	00:00	00:00	DMS2	Cloudy	Normal Operation	755.0	755.0	29.0	30.0	42.0	41.0	3.5483	3.5744	0.0261	1.2645	1.2146	1.2396	552.39	576.39	1440.00	1784.95	14.6	167.4	260.0
102727	Jul-13	15-Jul-13	00:00	00:00	DMS2	Rainy	Normal Operation	754.0	754.0	26.0	27.0	44.0	44.0	3.5445	3.5638	0.0193	1.3669	1.3634	1.3652	576.39	600.39	1440.00	1965.82	9.8	167.4	260.0
102730	Jul-13	20-Jul-13	00:00	00:00	DMS2	Cloudy	Normal Operation	753.0	753.0	27.0	27.0	41.0	42.0	3.5515	3.5554	0.0039	1.2215	1.2684	1.2450	600.39	624.39	1440.00	1792.73	2.2	167.4	260.0
102732	Jul-13	26-Jul-13	00:00	00:00	DMS2	Rainy	Normal Operation	752.0	752.0	26.0	27.0	40.0	41.0	3.5443	3.5533	0.0090	1.1767	1.2203	1.1985	624.39	648.39	1440.00	1725.84	5.2	167.4	260.0

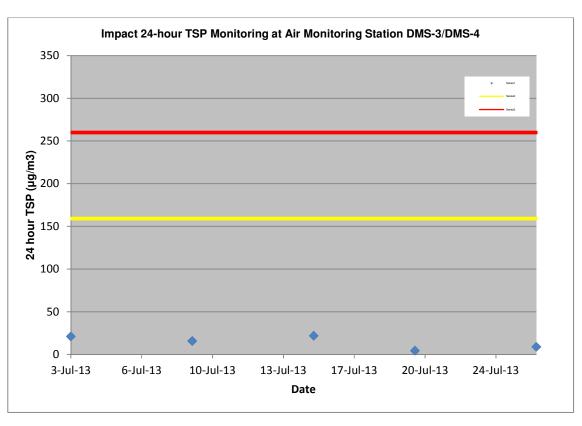

Average (μg/m3) 11.5 Max (μg/m3) 25.9 Min (μg/m3) 2.2


Location: DMS-3/DMS-4 - Hong Kong Sheng Kung Hui Nursing Home


Details of 24-Hour TSP Monitoring


			Time n	Time periods Pecenter Weather Site					Flow Recorder Reading						Flow Rate (m³/min)		Average	Elapse Time Sampling				24-hour	Action			
			Receptor		Weather	Site	Pressure (mmHg)		Temperature (oC)		(CFM)		Filter Weight (g)				TSP			Flow	Sampling	Total	TSP	Level	Limit Level	
Filter No.	Month	Date	Start	Finish	No.	condition	condition	Initial	Final	Initial	Final	Initial	Final	Initial	Final	weight (g)	Initial	Final	Rate	Start	Finish	Time (mins.)	vol. (m³)	Level	(µg/m³)	(μg/m³)
																			(m³/min)					(µa/m³)		
102722	Jul-13	3-Jul-13	00:00	00:00	DMS3	Fine	Normal Operation	756.0	756.0	30.0	30.0	42.0	40.0	3.5349	3.5726	0.0377	1.2785	1.2216	1.2501	672.40	696.40	1440.00	1800.07	20.9	159.1	260.0
102725	Jul-13	9-Jul-13	00:00	00:00	DMS3	Cloudy	Normal Operation	755.0	755.0	29.0	30.0	40.0	41.0	3.5402	3.5680	0.0278	1.2228	1.2493	1.2361	696.40	720.40	1440.00	1779.91	15.6	159.1	260.0
102729	Jul-13	15-Jul-13	00:00	00:00	DMS3	Rainy	Normal Operation	754.0	754.0	26.0	27.0	43.0	44.0	3.5418	3.5836	0.0418	1.3135	1.3399	1.3267	720.40	744.40	1440.00	1910.45	21.9	159.1	260.0
102731	Jul-13	20-Jul-13	00:00	00:00	DMS3	Cloudy	Normal Operation	753.0	753.0	27.0	27.0	40.0	41.0	3.5386	3.5464	0.0078	1.2250	1.2536	1.2393	744.40	768.40	1440.00	1784.59	4.4	159.1	260.0
102734	Jul-13	26-Jul-13	00:00	00:00	DMS3	Rainy	Normal Operation	752.0	752.0	26.0	27.0	40.0	40.0	3.5416	3.5572	0.0156	1.2262	1.2243	1.2253	768.40	792.40	1440.00	1764.36	8.8	159.1	260.0


Average (μg/m3) 14.3 Max (μg/m3) 21.9 Min (μg/m3) 4.4

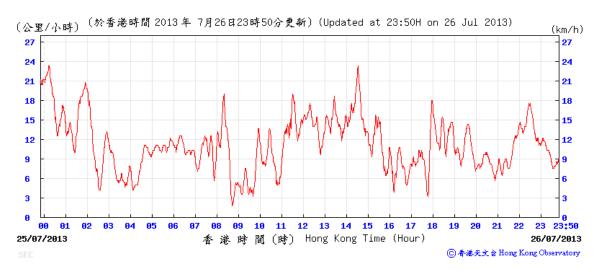


Appendix F

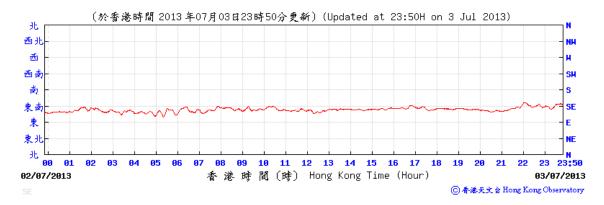
Wind data

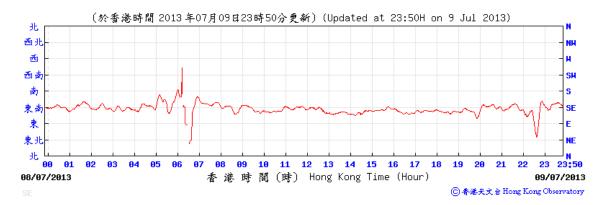
Average wind speed obtained from the meteorological station at Kai Tak from the Hong Kong Observatory (HKO)

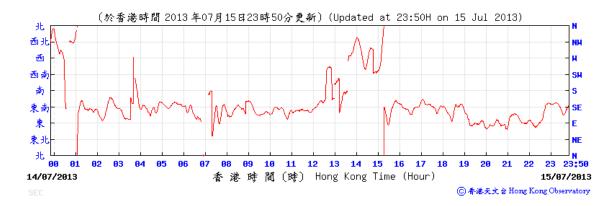
3 July 2013



15 July 2013

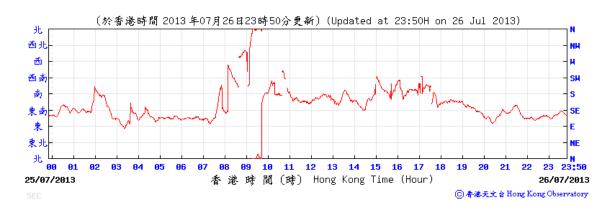

20 July 2013




Average wind direction obtained from the meteorological station at Kai Tak from the Hong Kong Observatory (HKO)

3 July 2013




9 July 2013

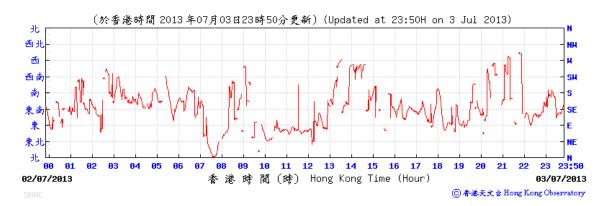
20 July 2013

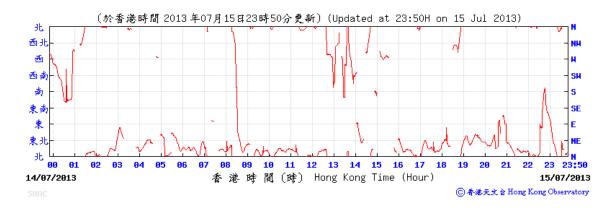
Average wind speed obtained from the meteorological station at Sha Tin from the Hong Kong Observatory (HKO)

3 July 2013

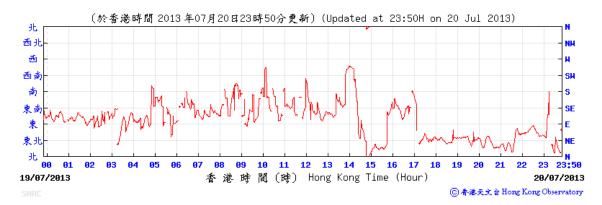


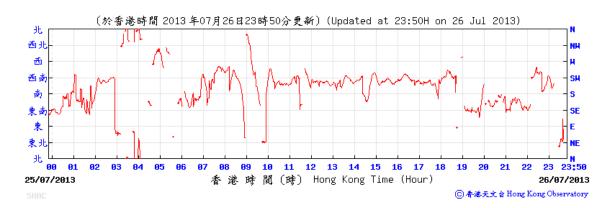
9 July 2013


20 July 2013


Average wind direction obtained from the meteorological station at Sha Tin from the Hong Kong Observatory (HKO)

3 July 2013




9 July 2013

20 July 2013

Appendix G

Calibration Certificates of Noise Monitoring Equipment

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

證書編號

Certificate No.: C124325

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-1839)

Description / 儀器名稱

Integrating Sound Level Meter

Manufacturer / 製造商

Bruel & Kjaer

Model No./型號

2238

Serial No. / 編號

2562763

Supplied By / 委託者

Ove Arup & Partners Hong Kong Co., Ltd.

Level 5, Festival Walk, 80 Tat Chee Avenue, Kowloon Tong,

Kowloon

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

Relative Humidity / 相對濕度 :

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

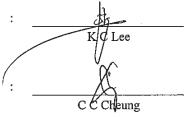
DATE OF TEST / 測試日期

25 July 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.


The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Precision Measurement Ltd., UK
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

Certified By 核證

Date of Issue 簽發日期

26 July 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

written approval of this laboratory 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門與安里一號背山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Page 1 of 4

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 松元熟書

Certificate No.:

C124325

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.3.2.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator C120016

DC110233

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

	UUT	Setting		Applied	Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)	•	Weighting	Weighting_	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	A	F	94.00	. 1	94.2

6.1.1.2 After Self-calibration

		Applied Value		UUT	IEC 60651		
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting_	(dB)	(kHz)	(dB)	(dB)
50 - 130	LAFP	A	F	94,00	1	94.0	± 0.7

6.1.2 Linearity

	UU'	Γ Setting		Applie	d Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部被印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traccable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited
Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C124325

證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	Donamada Digital							
	UUT	Setting		Applie	d Value	UUT	IEC 60651	
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.	
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)	
50 - 130	L _{AFP}	A	F	94.00	1	94.0	Ref.	
	L _{ASP}		S			94.1	± 0.1	
	L _{AIP}		I			94.1	± 0.1	

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		App	lied Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Burst	Reading	Type 1 Spec.
(dB)	·	Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	LAFP	A	F	106.0	Continuous	106.0	Ref.
	LAFMax				200 ms	105.1	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

111113111113		Setting		Appli	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{AFP}	Α	F	94.00	31.5 Hz	54.8	-39.4 ± 1.5
					63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
			•		4 kHz	94.9	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準・局部複印本證書需先獲本實驗所書面批准・

Sun Creation Engineering Limited **Calibration and Testing Laboratory**

Certificate of Calibration

Certificate No.:

C124325

證書編號

C-Weighting 6.3.2

C- Weighting		Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L_{CFP}	С	F	94.00	31.5 Hz	91.1	-3.0 ± 1.5
					63 Hz	93.2	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
]		250 Hz	93.9	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
		ŀ			2 kHz	93.8	-0.2 ± 1.0
1					4 kHz	93.1	-0.8 ± 1.0
					8 kHz	90.9	-3.0 (+1.5 ; -3.0)
					12.5 kHz	87.8	-6.2 (+3.0 ; -6.0)

6.4 Time Averaging

	UUT	Setting		Applied Value					UUT	IEC 60804
Range	Parameter	Frequency	Integrating	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
, ,					(ms)	Factor	(dB)	(dB)	'	(dB)
30 - 110	L _{Acq}	Α	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						1/10 ²		90	89.7	± 0.5
			60 sec.		 	1/10 ³		80	79.7	± 1.0
			5 min.			1/104		70	69.8	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

94 dB : 31.5 Hz - 125 Hz : ± 0.35 dB - Uncertainties of Applied Value:

250 Hz - 500 Hz : $\pm 0.30 \text{ dB}$: \pm 0.20 dB 1 kHz 2 kHz - 4 kHz $: \pm 0.35 \text{ dB}$ $: \pm 0.45 \text{ dB}$ 8 kHz 12.5 kHz $: \pm 0.70 \text{ dB}$

104 dB: 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 114 dB: 1 kHz $:\pm 0.2 \text{ dB}$ (Ref. 110 dB)

Burst equivalent level continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司 – 校正及檢測實驗所

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C124803

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-1839)

Description / 儀器名稱 :

Acoustical Calibrator

Manufacturer / 製造商

Bruel & Kjaer

Model No./型號

4231

Serial No./編號

2713427

Supplied By / 委託者

Ove Arup & Partners Hong Kong Co., Ltd.

Level 5, Festival Walk, 80 Tat Chee Avenue, Kowloon Tong,

Kowloon

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

16 August 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

Certified By 核證 K C Lee

Date of Issue 簽發日期

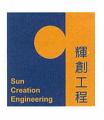
Website/網址: www.suncreation.com

17 August 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory


c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com

Page 1 of 2

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C124803

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement 1. of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID

CL130

CL281 TST150A Description

Universal Counter

Multifunction Acoustic Calibrator

Measuring Amplifier

Certificate No.

C123541 DC110233

C120886

Test procedure: MA100N.

5. Results:

Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

Frequency Accuracy 5.2

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Appendix H

Noise Results

Location: NMS-CA-1 - C.U.H.K.A.A Thomas Cheung School

Daytime Noise Monitoring Results

		Measure	Measured Noise Level, dB(A)			Baseline Noise Level, dB(A)	Baseline Corrected Level
Date	Time	L _{Aeq} ,30min	Limit	L ₁₀ ,30min	L ₉₀ ,30min	L _{Aeq} ,30min	L _{Aeq} ,30min
04-Jul-13	13:40 - 14:10	59.8	70.0	61.5	53.5	57.0	56.6
10-Jul-13	13:30 - 14:00	58.9	70.0	61.0	52.5	57.0	54.4
16-Jul-13	15:00 - 15:30	58.7	70.0	61.0	52.5	57.0	53.8
22-Jul-13	14:30 - 15:00	58.4	70.0	60.0	51.0	57.0	52.8
29-Jul-13	14:10 - 14:40	59.2	70.0	61.0	53.5	57.0	55.2

Notes: (*): Façade correction is included

(#): Baseline Corrected Level = Measured Noise Level - Baseline Noise Level

Averag	je L _{Aeq} ,30min	59.0
Max	L _{Aeq} ,30min	59.8
Min	L _{Aeq} ,30min	58.4

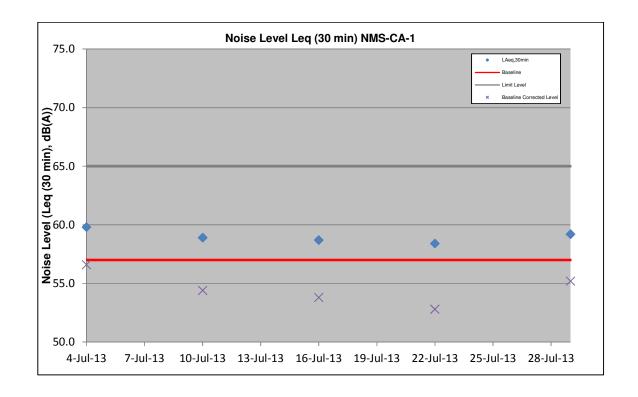
Location: NMS-CA-2 - Price Memorial Catholic Primary School

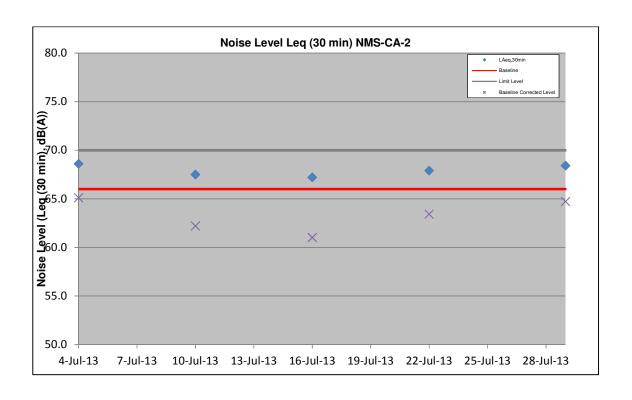
		Measured Noise Level, dB(A)				Baseline Noise Level, dB(A)	Baseline Corrected Level
Date	Time	L _{Aeq} ,30min	Limit	L ₁₀ ,30min I	L ₉₀ ,30min	L _{Aeq} ,30min	L _{Aeq} ,30min
04-Jul-13	09:40 - 10:10	68.6	70.0	69.5	61.0	66.0	65.1
10-Jul-13	09:10 - 09:40	67.5	70.0	68.5	60.5	66.0	62.2
16-Jul-13	09:05 - 09:35	67.2	70.0	68.5	60.5	66.0	61.0
22-Jul-13	09:20 - 09:50	67.9	70.0	69.5	61.0	66.0	63.4
29-Jul-13	09:30 - 10:00	68.4	70.0	70.0	61.5	66.0	64.7

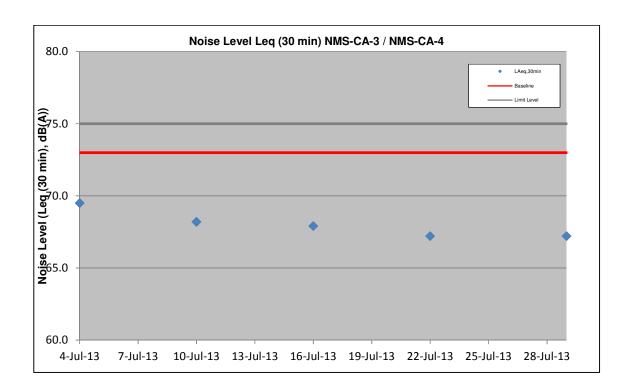
Notes: (*): Façade correction is included

(#): Baseline Corrected Level = Measured Noise Level - Baseline Noise Level

Average	L _{Aeq} ,30min	67.9
Max	L _{Aeq} ,30min	68.6
Min	L _{Aeq} ,30min	67.2


Location: NMS-CA-3 / NMS-CA-4 - Hong Kong Sheng Kung Hui Nursing Home


		Measure	d Noise Le	vel, dB(A)		Baseline Noise Level, dB(A)	Baseline Corrected Level
Date	Time	L _{Aeq} ,30min	Limit	L ₁₀ ,30min	L ₉₀ ,30min	L _{Aeq} ,30min	L _{Aeq} ,30min
04-Jul-13	11:30 - 12:00	69.5	75.0	71.0	63.0	73.0	< Baseline Level
10-Jul-13	11:00 - 11:30	68.2	75.0	69.5	62.0	73.0	< Baseline Level
16-Jul-13	11:25 - 11:55	67.9	75.0	69.5	62.0	73.0	< Baseline Level
22-Jul-13	11:30 - 12:00	67.2	75.0	69.5	60.5	73.0	< Baseline Level
29-Jul-13	11:20 - 11:50	67.2	75.0	69.0	61.0	73.0	< Baseline Level


Notes: (*): Façade correction is included

(#): Baseline Corrected Level = Measured Noise Level - Baseline Noise Level

Avera	age L _{Aeq} ,30min	68.0
Max	L _{Aeq} ,30min	69.5
Min	L _{Aeg} ,30min	67.2

Appendix I

Event/Action Plan for Air Quality, Airborne Noise and Landscape and Visual

Event and Action Plan for Air Quality

		,	Action		
Event	ET	IEC	ER	Contractor	
Action Level					
Exceedance for one sample	Inform the IEC, Contractor and ER; Discuss with the Contractor, IEC and ER on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency	Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of exceedance in writing;	Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.	
Exceedance for two or more consecutive samples	Inform the IEC, Contractor and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring.	Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of exceedance in writing; Notify the Contractor, IEC and ET; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures.	Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate.	

	Limit Level								
1.	Exceedance for one sample	1. 2. 3. 4.	Inform the IEC, Contractor and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness.	1. 2. 3. 4.	Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures.	1. 2. 3. 4.	Confirm receipt of notification of exceedance in writing; Notify the Contractor, IEC and ET; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures.	 1. 2. 3. 4. 5. 	Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2.	Exceedance for two or more consecutive samples	1. 2. 3. 4. 5. 6.	Notify IEC, Contractor and EPD; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC, Contractor and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring.	1. 2. 3. 4.	Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures.	1. 2. 3. 4. 5.	Confirm receipt of notification of exceedance in writing; Notify the Contractor, IEC and ET; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	 1. 2. 3. 4. 5. 6. 	Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Airborne Noise

Frant		A	ction	
Event	ET	IEC	ER	Contractor
Action Level	Notify the IEC, Contractor and ER Discuss with the ER, IEC and Contractor on the remedial measures required Increase monitoring frequency to check mitigation effectiveness	Review the investigation results submitted by the contractor; Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor.	Confirm receipt of notification of complaint in writing Notify the Contractor, IEC and ET Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures	 Investigate the complaint and propose remedial measures Report the results of investigation to the IEC, ET and ER Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification. Implement noise mitigation proposals
Limit Level	 Notify the IEC, Contractor and EPD Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Arrange meeting with the IEC, Contractor and ER to discuss the remedial measures to be taken; Inform IEC, ER and EPD the causes and actions taken for the exceedances Assess effectiveness of the Contractor's remedial measures and keep IEC, ER and EPD informed of the results 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	Confirm receipt of notification of exceedance in writing Notify the Contractor, IEC and ET In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented Supervise the implementation of remedial measures If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	 Identify source and investigate the causes of exceedance Take immediate action to avoid further exceedance Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification. Implement the agreed proposals Revise and resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated

Event / Action Plan for Landscape and Visual

Action Level	ET	IEC	ER	Contractor
Non-conformity on one occasion	Inform the Contractor, the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed	 Check inspection report Check the Contractor's working method Discuss with the ET, ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures. 	Confirm receipt of notification of non-conformity in writing Review and agree on the remedial measures proposed by the Contractor Supervise implementation of remedial measures	Identify Source and investigate the non-conformity Implement remedial measures Amend working methods agreed with the ER as appropriate Rectify damage and undertake any necessary replacement
Repeated Non-conformity	 Identify Source Inform the Contractor, the IEC and the ER Increase inspection frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If non-conformity stops, cease additional monitoring 	 Check inspection report Check the Contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures 	Notify the Contractor In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented Supervise implementation of remedial measures.	Identify Source and investigate the non-conformity Implement remedial measures Amend working methods agreed with the ER as appropriate Rectify damage and undertake any necessary replacement. Stop relevant portion of works as determined by the ER until the non-conformity is abated.

Note:

ET – Environmental Team

IEC – Independent Environmental CheckerER – Engineer's Representative

Appendix J

Waste Flow Table

Monthly Summary Waste Flow Table for 2013

	Actual Quantities of Inert C&D Materials Generated Monthly							Quantities of	C&D Wastes	Generated I	Vionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	1.694	0.000	0.000	0.000	1.694	0.000	0.000	0.000	0.000	0.000	0.087
Feb	1.962	0.000	0.000	0.526	1.436	1.339	0.000	0.000	0.000	0.000	0.014
Mar	3.171	0.000	0.440	1.537	1.194	2.199	0.000	0.000	0.000	0.000	0.025
Apr	3.319	0.000	0.000	2.621	0.698	0.000	0.000	0.000	0.000	0.000	0.045
Мау	4.776	0.000	0.000	3.848	0.928	0.000	0.000	0.000	0.000	0.600	0.044
Jun	4.128	0.000	0.000	3.130	0.998	0.000	0.000	0.000	0.000	0.800	0.037
Sub-total	19.050	0.000	0.440	11.662	6.948	3.538	0.000	0.000	0.000	1.400	0.253
Jul	3.319	0.000	0.110	2.006	1.203	0.000	0.000	0.000	0.000	0.000	0.041
Aug											
Sep											
Oct											
Nov											
Dec											
Total	22.369	0.000	0.550	13.668	8.151	3.538	0.000	0.000	0.000	1.400	0.294

Comment:

- 1) Assumption: The densities of Rock, Soil, Mix Rock and Soil, and Regular Spoil are 2.0 ton/m3; the density of general refuse is 1.0 ton/m3; the density of waste oil is 1.0 ton/m3.
- 2) The amounts of waste in Jul and cut-off date of data for TKO137FB/TM38FB, NENT Landfill, Kai Tak (Contact 1108A) are 2406.67ton as at 24/7/13, 41.28ton, as at 24/7/13, 4011.621ton as at 24/7/13.
- 3) The amount of chemical waste in Jul and cut-off date of data is 0 as at 26/7/13. Chemical Waste will be collected by registered chemical waste collector.
- 4) The amount of spoil reuse in Kai Tak Nursery and cut-off date is 22 trucks as at 26/7/13.

Appendix K

Environmental Monitoring Programme for Coming Month

SCL Works Contract 1103 - Hin Keng to Diamond Hill Tunnels Tentative Impact Monitoring Schedule - August 2013

Date		Air Quality	Noise	Cita Inanastian
		24-hours TSP	L _{Aeq} , 30 min	Site Inspection
01-Aug-13	Thu			
02-Aug-13	Fri			
03-Aug-13	Sat			
04-Aug-13	Sun			
05-Aug-13	Mon			
06-Aug-13	Tue			
07-Aug-13	Wed			
08-Aug-13	Thu			
09-Aug-13	Fri			
10-Aug-13	Sat			
11-Aug-13	Sun			
12-Aug-13	Mon			
13-Aug-13	Tue			
14-Aug-13	Wed			
15-Aug-13	Thu			
16-Aug-13	Fri			
17-Aug-13	Sat			
18-Aug-13	Sun			
19-Aug-13	Mon			
20-Aug-13	Tue			
21-Aug-13	Wed			
22-Aug-13	Thu			
23-Aug-13	Fri			
24-Aug-13	Sat			
25-Aug-13	Sun			
26-Aug-13	Mon			
27-Aug-13	Tue			
28-Aug-13	Wed			
29-Aug-13	Thu			
30-Aug-13	Fri			
31-Aug-13	Sat			

Public Holiday
Monitoring Day

Monitoring Details

Monitoring	Locations	Parameters
Air Quality	DMS-1 - C.U.H.K.A.A Thomas Cheung School, DMS-2 - Price Memorial Catholic Primary School and DMS- 3 / DMS-4 - Hong Kong Sheng Kung Hui Nursing Home	24-hour TSP
Noise	NMS-CA-1 - C.U.H.K.A.A Thomas Cheung School, NMS-CA-2 - Price Memorial Catholic Primary School and NMS- CA-3 /NMS-CA-4 - Hong Kong Sheng Kung Hui Nursing Home	L _{Aeq(30 min)} , L ₁₀ , L ₉₀

Appendix L

Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions Ove Arup and Partners HK Ltd.

SCL 1103 Hin Keng to Diamond Hill Tunnels Construction Stage Environmental Complaint Log (July 2013)

ET's Complaint Log Ref. no.	Incoming Complaint Ref no.	Name of Complainant	Date Complaint Received	Complaint Date/ Period	Complaint Location	Area of Concern	Details of Complaint	Date Complaint Received by ET	ET's Investigation Date	Investigation/Mitigation Measures	Validity to Project	Status
-	-	-	-	-	-	-	-	-	-	-	-	-

SCL 1103 Hin Keng to Diamond Hill Tunnels Construction Stage Environmental Complaint Log (Cumulative)

Reporting Month	Number of Complaints in	Number of Summons in Reporting Month	Number of Prosecutions in	
	Reporting Month	Transfer of	Reporting Month	
February 2013	0	0	0	
March 2013	0	0	0	
April 2013	0	0	0	
May 2013	0	0	0	
June 2013	0	0	0	
July 2013	0	0	0	
Total	0	0	0	

Appendix F

5th EM&A Report for Works Contract 1106 – Diamond Hill Station

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Monthly EM&A Report No. 5
[Period from 1 to 31 July 2013]

Works Contract 1106 - Diamond Hill Station

(August 2013)

Certified by: Dr. Priscilla Choy

Position: Environmental Team Leader

Date: 8th August 2013

Sembawang – Leader Joint Venture

Shatin to Central Link – Contract 1106 Diamond Hill Station

Monthly Environmental Monitoring and Audit Report for July 2013

(Version 1.1)

Certified By

Dr. Priscilla Choy

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	1
Introduction	1
Summary of Construction Works undertaken during Reporting Month	
Environmental Monitoring and Audit Progress	
Regular Construction Noise and Construction Dust Monitoring	
Cultural Heritage	
Waste Management	
Landscape and Visual	
Environmental Site Inspection	
Environmental Exceedance/Non-conformance/Complaint/Summons and Successful	
Prosecution	2
Future Key Issues	
1 INTRODUCTION	
Purpose of the Report	
Structure of the Report	3
2 PROJECT INFORMATION	4
Background	
General Site Description	
Construction Programme and Activities	
Project Organisation	
Status of Environmental Licences, Notification and Permits	
Summary of EM&A Requirements	
3 ENVIRONMENTAL MONITORING REQUIREMENTS	6
Regular Construction Noise Monitoring	6
Monitoring Parameter and Frequency	
Monitoring Equipment and Methodology	7
Field Monitoring	7
Monitoring Equipment	7
Maintenance and Calibration	8
Action & Limit Level for Construction Noise Monitoring	8
Continuous Noise Monitoring	8
Regular Construction Dust Monitoring	8
Monitoring Parameter and Frequency	9
Monitoring Equipment	
Instrumentation	9
HVS Installation	9
Filters Preparation	10
Operating/Analytical Procedures	10
Maintenance/Calibration	
Action and Limit Levels for Dust Monitoring	11
Cultural Heritage	
Landscape and Visual	
4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION	
REQUIREMENTS	. 12
5 MONITODING DECLIETS	12

Regu Cultu Wast	ular Construction Noise Monitoring	13 14 14
6	ENVIRONMENTAL SITE INSPECTION	16
	Auditsementation Status of Environmental Mitigation Measures	
-	ENVIRONMENTAL NON-CONFORMANCE	
Sum Sum Sum	mary of Exceedances	18 18 18
	FUTURE KEY ISSUES	
Key	Issues in the Next Month	19
9	CONCLUSIONS AND RECOMMENDATIONS	20
	elusionsommendations	
LIST	T OF TABLES	
Table Table Table Table Table Table Table Table	Regular Construction Noise Monitoring Location Noise Monitoring Equipment Dust Monitoring Location Dust Monitoring Parameters and Frequency Dust Monitoring Equipment Status of Required Submissions under EP Summary Table of Dust Monitoring Results during the reporting month Quantities of Waste Generated from the Project	
LIST	Γ OF FIGURES	
Figur Figur Figur Figur	re 2 Locations of Construction Noise Monitoring re 3 Locations of Dust Monitoring	

LIST OF APPENDICES

Appendix A	Tentative Construction Programme
Appendix B	Action and Limit Levels
Appendix C	Calibration Certificates for Monitoring Equipment
Appendix D	Impact Monitoring Schedule
Appendix E	24-hour TSP Monitoring Results and Graphical Presentations
Appendix F	Noise Monitoring Results and Graphical Presentations
Appendix G	Summary of Exceedance
Appendix H	Site Audit Summary
Appendix I	Event and Action Plans
Appendix J	Updated Environmental Mitigation Implementation Schedule
Appendix K	Waste Generation in the Reporting Month
Appendix L	Cumulative Log for Complaints, Notifications of Summons and Successful
	Prosecutions

EXECUTIVE SUMMARY

Introduction

1. This is the 5th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for **MTR Shatin to Central Link (SCL) Works Contract 1106 – Diamond Hill Station**. This report documents the findings of EM&A Works conducted from 1 July to 31 July 2013.

Summary of Construction Works undertaken during Reporting Month

- 2. The major site activities undertaken in the reporting month include:
 - D-wall construction;
 - Archaeological survey-cum-excavation;
 - Underpinning works of the Old Pillbox;
 - Pre-drilling work.

Environmental Monitoring and Audit Progress

3. A summary of the monitoring activities in this reporting period is listed below:

Regular Construction Noise and Construction Dust Monitoring

- Regular construction noise monitoring during normal working hours Noise Monitoring Station ID
 - NMS-CA-3⁽¹⁾⁽³⁾/NMS-CA-4⁽²⁾⁽³⁾ (H.K. Sheng Kung Hui Nursing Home) 5 times • NMS-CA-4⁽¹⁾/NMS-CA-3⁽²⁾ (Block 1, Rhythm Garden (north-eastern façade)) 5 times • NMS-CA-5⁽¹⁾/NMS-CA-2⁽²⁾ (Block 1, Rhythm Garden (northern façade)) 5 times
- Construction Dust (24-hour TSP) Monitoring

Dust Monitoring Station ID

• DMS-3 ^{(1) (4)} /DMS-4 ^{(2) (4)} (H.K. Sheng Kung Hui Nursing Home)	5 times
• DMS-4 ⁽¹⁾ / DMS-3 ⁽²⁾ (Block 1, Rhythm Garden)	6 times

Remarks:

- (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Noise monitoring on NMS-CA-3⁽¹⁾/ NMS-CA-4⁽²⁾ (Hong Kong Sheng Kung Hui Nursing Home) is carried out by Environmental Team of SCL Works Contract 1103.
- (4) Dust monitoring on DMS-3⁽¹⁾/ DMS-4⁽²⁾ (Hong Kong Sheng Kung Hui Nursing Home) is carried out by Environmental Team of SCL Works Contract 1103.

Cultural Heritage

4. An Archaeological Action Plan (AAP) for the survey-cum-excavation at the former Tai Hom Village site was approved by EPD on 8 April 2013. A Licence to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance has been subsequently obtained from Antiquities and Monuments Office (AMO) on 19 April 2013. The archaeological survey-cum-excavation at Former Tai Hom Village commenced on 25 April 2013 and is being conducted in accordance with the Licence granted and the approved AAP.

The Conservation Plans for the two historic buildings, namely Former Royal Air Force Hangar and the Old Pillbox at the former Tai Hom Village site, were approved by EPD on 24 April 2013. Dismantling works on Former Royal Air Force Hangar was carried out in accordance with the approved Conservation Plan and completed in June 2013. Preparation works to relocate the Old Pillbox was carried in July 2013 in accordance with the approved Conservation Plan.

Waste Management

5. Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. About 2,560 m^3 of inert C&D materials were generated from the Project and were sent to SCL1108A, Tuen Mun Area 38 Fill Bank and Fill Bank at Tseung Kwan O Area 137 during the reporting month. About 321 m^3 of non-recyclable non-inert C&D materials, such as general refuse, were disposed of at NENT Landfill. About 640 kg of chemical wastes was also generated and collected by licensed collector. No steel material, plastics and paper/cardboard packaging were generated during this reporting month.

Landscape and Visual

6. Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 2, 16 and 30 July 2013. Most of the necessary mitigation measures have been implemented and recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

7. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 2, 12, 16, 23 and 30 July 2013. The representative of the IEC joined the site inspection on 23 July 2013. Details of the audit findings and implementation status are presented in Section 6.

Environmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution

- 8. No exceedance of the Action and Limit Levels of regular construction noise monitoring and 24-hour TSP monitoring was recorded during the reporting period.
- 9. No non-compliance event was recorded during the reporting period.
- 10. No Project related environmental complaint and notification of summons/ successful prosecutions were received in this reporting period.

Future Key Issues

- 11. Major site activities for the coming reporting month will include:
 - D-wall construction;
 - Archaeological survey-cum-excavation;
 - Underpinning works and relocation of the Old Pillbox;
 - Construction of temporary storage compound for the Old Pillbox; and
 - Pre-drilling works.

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Sembawang – Leader Joint Venture (SLJV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL)Works Contract 1106 – Diamond Hill Station (hereafter referred to as the Project).

Purpose of the Report

1.2 This is the 5th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 1 July to 31 July 2013.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** details the scope and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: **Environmental Monitoring Requirement -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.
 - Section 4: **Implementation Status on Environmental Mitigation Measures -** summarises the implementation of environmental protection measures during the reporting period.
 - Section 5: **Monitoring Results** summarises the monitoring results obtained in the reporting period.
 - Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.
 - Section 7: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.
 - Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.
 - **Section 9: Conclusions and Recommendations**

2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Tai Wai to Hung Hom Section (hereafter referred to as SCL (TAW-HUH)) is an approximately 11 km long extension of the Ma On Shan Line and links up with the West Rail Line at Hung Hom forming a strategic east-west rail corridor. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The construction of the SCL (TAW-HUH) has been divided into a series of civil construction Works Contracts. This Works Contract 1106 covers the construction of Shatin-to-Central Link (SCL) station in Diamond Hill (DIH).

General Site Description

2.3 For Works Contract 1106, the works area for the DIH station is located to the northeast of Choi Hung Road next to the existing Kwun Tong Line DIH Station. The DIH station will be constructed by cut-and-cover method. The alignment and works area for the Works Contract 1106 are shown in **Figure 1**.

Construction Programme and Activities

- 2.4 A summary of the major construction activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix A**.
 - D-wall construction;
 - Archaeological survey-cum-excavation;
 - Underpinning works of the Old Pillbox; and
 - Pre-drilling work.

Project Organisation

2.5 The project organizational chart and contact details are shown in **Figure 4.**

Status of Environmental Licences, Notification and Permits

2.6 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project since the commencement of the construction works in March 2013 is presented in **Table 2.1**.

Table 2.1 Summary of the Status of Environmental Licences, Notification and Permits

Downit / License No	Valid Period		Chatria		
Permit / License No.	From	To	Status		
Environmental Permit (EP)					
EP-438/2012/C	30/04/2013	N/A	Valid		
Notification pursuant to Air Pol	lution Control (Cons	truction Dust) Regula	tion		
No.: 353668	19/12/2012	N/A	Valid		
Billing Account for Construction	n Waste Disposal				
Account No.: 7016601	01 27/12/2012 N/A Valid		Valid		
Registration of Chemical Waste	Registration of Chemical Waste Producer				
5213-281-S3711-01	11/01/2013 N/A Va		Valid		
Effluent Discharge License under Water Pollution Control Ordinance					
WT00014959-2012	959-2012 14/01/2013 31/01/2018 Valid				
Construction Noise Permit (CNI	Construction Noise Permit (CNP)				
GW-RE0340-13	12/04/2013	11/10/2013	Valid		

Summary of EM&A Requirements

- 2.7 The EM&A programme under Works Contract 1106 requires regular dust and noise monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirements in contract documents.
- 2.8 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 2.9 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely construction noise & dust monitoring as well as audit works for the Project in the reporting month.

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Regular Construction Noise Monitoring

3.1 In accordance with the EM&A Manual, monitoring of construction noise impact should be conducted at the designated monitoring stations. Since access to some of the proposed monitoring locations stated in the EM&A Manual was rejected; alternative locations were proposed and agreed by the ER (Engineer's Representative), IEC (Independent Environmental Checker) and EPD (Environmental Protection Department). The construction noise monitoring locations are listed in **Table 3.1** and shown in **Figure 2**.

Table 3.1 Regular Construction Noise Monitoring Location

Regular Construction Noise Monitoring Location	Description	Type of Measurement
NMS-CA-3 ⁽¹⁾⁽³⁾⁽⁴⁾ / NMS-CA-4 ⁽²⁾⁽³⁾⁽⁴⁾	Hong Kong Sheng Kung Hui Nursing Home	Façade
NMS-CA-4 ⁽¹⁾ / NMS-CA-3 ⁽²⁾	Block 1, Rhythm Garden (north-eastern façade)	Façade
NMS-CA-5 ^{(1) (5)} / NMS-CA-2 ⁽²⁾⁽⁵⁾	Block 1, Rhythm Garden (northern façade)	Façade

Note:

- (1) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Access to the monitoring location at Shek On House (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (Hong Kong S.K.H Nursing Home) was proposed and approved by the ER and agreed by the IEC and EPD.
- (4) Noise monitoring on NMS-CA-3⁽¹⁾/ NMS-CA-4⁽²⁾ (Hong Kong Sheng Kung Hui Nursing Home) is carried out by Environmental Team of SCL Works Contract 1103.
- (5) Access to the monitoring location at Canossa Primary School (San Po Kong) (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (Block 1, Rhythm Garden (northern façade)) was proposed and approved by the ER and agreed by the IEC and EPD.

Monitoring Parameter and Frequency

- 3.2 Weekly construction noise monitoring was conducted in accordance with the requirements stipulated in the EM&A Manual. If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed. The monitoring schedule for this reporting period of monitoring stations at Rhythm Garden is shown in **Appendix D**.
- 3.3 The construction noise levels were measured in terms of the A-weighted equivalent continuous sound pressure level (L_{Aeq}) in decibels dB(A). L_{Aeq} (30min) (as six consecutive L_{eq} , 5-min readings) was used as the monitoring metric for the time period between 0700 1900 hours on normal weekdays.

Monitoring Equipment and Methodology

Field Monitoring

- 3.4 The monitoring procedures are as follows:
 - The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
 - The battery condition was checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting : Atime weighting : Fast

- measurement time : 5 minutes (obtaining six consecutive L_{eq,5min} readings for a

 $L_{eq,30 \text{ min}}$ reading)

- Prior to and after noise measurement, the meter was calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement was required after re-calibration or repair of the equipment.
- The wind speed at the monitoring station was checked with the portable wind meter. Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
- Noise measurement was paused during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- At the end of the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- A façade correction of +3dB(A) shall be made to the noise parameter obtained by free field measurement.

Monitoring Equipment

3.5 The sound level meters and calibrator used for the noise measurement, as listed in **Table** 3.2, compile with the IEC 651: 1979 and 804:1985 (Type 1) specification. The calibration certificates of the sound level meters are included in **Appendix C**.

Table 3.2 Noise Monitoring Equipment

Monitoring Equipment	Model (Serial no.)		
Sound Level Meter	SVANTEK – SVAN 957 (Serial no.: 14303 & 21459)		
Calibrator	SVANTEK – SV30A (Serial no.: 10929 & 24803)		

Maintenance and Calibration

- 3.6 Maintenance and Calibration procedures were as follows:
 - The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator were checked and calibrated at yearly intervals. Copies of calibration certificates are attached in **Appendix C**.

Action & Limit Level for Construction Noise Monitoring

3.7 The Action and Limit Levels are presented in **Appendix B** and the Event / Action Plan (EAP) for noise monitoring is presented in **Appendix I.**

Continuous Noise Monitoring

3.8 With reference to the latest Continuous Noise Monitoring Plan (CNMP) and Construction Noise Mitigation Measures Plan (CNMMP) prepared and submitted under EP Condition 2.10, it is predicted that no residual air-borne construction noise impacts exceeding the relevant noise criteria will be anticipated. Therefore, no continuous noise monitoring is required during the construction of the SCL (TAW-HUH) under Works Contract 1106.

Regular Construction Dust Monitoring

3.9 The proposed dust monitoring stations for the construction phase of the Project, as recommended in the approved EM&A Manual, are listed in **Table 3.3** and shown in **Figure 3**. The proposed locations have been agreed with the ER, EPD and IEC.

Table 3.3 Dust Monitoring Location

Regular Dust Monitoring Location	Description	
DMS-3 ⁽¹⁾⁽³⁾⁽⁴⁾ / DMS-4 ⁽²⁾⁽³⁾⁽⁴⁾ /	Hong Kong Sheng Kung Hui Nursing Home	
DMS-4 ⁽¹⁾ / DMS-3 ⁽²⁾	Block 1, Rhythm Garden	

Note:

- (1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Access to the monitoring location at Shek On House (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (Hong Kong S.K.H Nursing Home) was proposed and approved by the ER and agreed by the IEC and EPD.
- (4) Dust monitoring on DMS-3⁽¹⁾/DMS-4⁽²⁾ (Hong Kong Sheng Kung Hui Nursing Home) is carried out by Environmental Team of SCL Works Contract 1103.

Monitoring Parameter and Frequency

3.10 The dust monitoring (in terms of Total Suspended Particulates (TSP)) was conducted at the designated monitoring stations in accordance with the requirements stipulated in the EM&A Manual. The 24-hour TSP levels were monitored at the frequency and duration stated in **Table 3.4**. The TSP monitoring at Rhythm Garden was conducted as per the schedule presented in **Appendix D**.

Table 3.4 Dust Monitoring Parameters and Frequency

Monitoring Period Duration		Parameter	Frequency
Impact Monitoring ⁽¹⁾	Throughout the construction period	24-hour TSP	Once per 6 days

Note:

(1) 1- hour TSP shall be conducted when one documented valid complaint is received.

Monitoring Equipment

3.11 **Table 3.5** summarizes the equipment used for the dust monitoring.

Table 3.5 Dust Monitoring Equipment

Equipment	Model and Make			
HVS Tisch Environmental, Inc.; Model no. TE-5170, Serial no.: 2352		1		
Calibration Orifice	Tisch Environmental, Inc.; Model no. TE – 5025A Orifice ID: 2323	1		

Instrumentation

3.12 High Volume Samplers (HVS) connected with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 Appendix B (Part 50).

HVS Installation

- 3.13 The following guidelines were adopted during the installation of HVS:
 - Sufficient support was provided to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The samplers were more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction

during monitoring.

Filters Preparation

- 3.14 Fiberglass filters were used which have a collection efficiency of larger than 99% for particles of 0.3 μ m diameter. A HOKLAS accredited laboratory, Wellab Ltd. (HOKLAS Registration No. 083), was responsible for the preparation of pre-weighed filter papers for Cinotech's monitoring team.
- 3.15 All filters, which were prepared by Wellab Ltd., were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- 3.16 Wellab Ltd. has a comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

- 3.17 Operating/analytical procedures for the TSP monitoring were highlighted as follows:
 - Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard.
 - The power supply was checked to ensure the sampler worked properly.
 - The filter holding frame and the area surrounding the filter were cleaned.
 - On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the air quality monitoring station.
 - The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
 - The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts to avoid air leakage at the edges.
 - The shelter lid was closed and secured with the aluminum strip.
 - A new flow rate record chart was set into the flow recorder.
 - The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
 - The flow rate of the HVS sampler would be verified to be constant and recorded on the data sheet before and after sampling.
 - The elapsed time and other relevant information was recorded. After sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
 - It was then placed in a clean plastic envelope and sealed and sent to the Wellab Ltd. for weighing.
 - Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned to Cinotech for further analysis of TSP concentrations.

Maintenance/Calibration

- 3.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - Calibration of the HVS (five point calibration) using Calibration Kit was carried out every two months. Copies of calibration certificates are attached in **Appendix C**.
 - The HVS calibration orifice will be calibrated annually.

Action and Limit Levels for Dust Monitoring

3.19 The Action and Limit levels have been established and are presented in **Appendix B** and the Event / Action Plan (EAP) for dust monitoring is presented in **Appendix I.**

Cultural Heritage

- 3.20 An Archaeological Action Plan (AAP) for the survey-cum-excavation at the former Tai Hom Village site was approved by EPD on 8 April 2013. A Licence to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance has been subsequently obtained from Antiquities and Monuments Office (AMO) on 19 April 2013. The archaeological survey-cum-excavation at Former Tai Hom Village commenced on 25 April 2013 and is being conducted in accordance with the Licence granted and the approved AAP.
- 3.21 The Conservation Plans for the two historic buildings, namely Former Royal Air Force Hangar and the Old Pillbox at the former Tai Hom Village site, were approved by EPD on 24 April 2013. Dismantling works on Former Royal Air Force Hangar was commenced on 30 May 2013 and is carried out in accordance with the approved Conservation Plan.

Landscape and Visual

3.22 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is given in **Appendix J**. The Event / Action Plan (EAP) for landscape and visual is presented in **Appendix I**.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix J**. Status of required submissions under the Environmental Permit (EP) of the reporting period is presented in **Table 4.1**.

Table 4.1 Status of Required Submissions under EP

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report (June 2013)	12 th July 2013

5 MONITORING RESULTS

Regular Construction Noise Monitoring

- 5.1 A total of 10 sets of 30-minute construction noise measurements were carried out at the monitoring stations during normal weekdays of the reporting period by ET of SCL Works Contract 1106. No exceedance of the limit level was recorded at designated monitoring stations.
- 5.2 The noise monitoring results recorded at NMS-CA-5⁽¹⁾/NMS-CA-2⁽²⁾ (Block 1, Rhythm Garden (northern façade)) on 3, 9, 15 and 22 July 2013 exceeded the daytime construction noise criterion. However, the results are not considered as exceedance as they were below the baseline noise level.
- 5.3 Based on observation during the on-site monitoring, road traffic nearby is considered as a potential noise source other than construction works of the Project that affects the monitoring results of the reporting month.
- 5.4 The noise monitoring results together with their graphical presentations are presented in **Appendix** $\mathbf{F}^{(3)}$.
- 5.5 No exceedance of the Action and Limit Levels of construction noise due to the Project was recorded during the reporting period.

Regular Dust Monitoring

5.6 A total of 6 sets of 24-hour TSP monitoring were carried out at the designated monitoring stations during normal weekdays of the reporting period by ET of SCL Works Contract 1106. The monitoring results together with their graphical presentations are presented in **Appendix E**⁽³⁾ and a summary of the dust monitoring results in this reporting month is given in **Table 5.1**.

Table 5.1 Summary Table of Dust Monitoring Results during the reporting month

Parameter	Minimum μg/m³	Maximum μg/m³	Average μg/m³	Action Level, μg/m³	Limit Level, μg/m³
24-hr TSP (DMS-3 ⁽¹⁾⁽⁴⁾ / DMS-4 ⁽²⁾⁽⁴⁾)	4.4	21.9	14.3	159.1	260
24-hr TSP (DMS-4 ⁽¹⁾ / DMS-3 ⁽²⁾)	22.9	47.1	30.2	160.4	260

Remarks:

- (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) The monitoring results and graphical presentation for H.K. Sheng Kung Hui Nursing Home are presented in Monthly EM&A Report for Contract 1103.
- (4) Dust monitoring on DMS-3⁽¹⁾/DMS-4⁽²⁾ (Hong Kong Sheng Kung Hui Nursing Home) is carried out by Environmental Team of SCL Works Contract 1103
- 5.7 Based on observation during the on-site monitoring, road traffic emission nearby is considered as a potential dust source other than construction works of the Project that affects the monitoring results of the reporting month.
- 5.8 Wind monitoring data were obtained from Kai Tak Meteorological Station of Hong

Kong Observatory and shown on **Appendix E**.

5.9 No exceedance of the Action and Limit Levels of the 24-hour TSP was recorded during the reporting period.

Cultural Heritage

- 5.10 An Archaeological Action Plan (AAP) for the survey-cum-excavation at the former Tai Hom Village site was approved by EPD on 8 April 2013. A Licence to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance has been subsequently obtained from Antiquities and Monuments Office (AMO) on 19 April 2013. The archaeological survey-cum-excavation at Former Tai Hom Village commenced on 25 April 2013 and is being conducted in accordance with the Licence granted and the approved AAP.
- 5.11 The Conservation Plans for the two historic buildings, namely Former Royal Air Force Hangar and the Old Pillbox at the former Tai Hom Village site, were approved by EPD on 24 April 2013. Dismantling works on Former Royal Air Force Hangar was carried out in accordance with the approved Conservation Plan and completed in June 2013. Preparation works to relocate the Old Pillbox was carried in July 2013 in accordance with the approved Conservation Plan.

Waste Management

5.12 Waste generated from this Project includes inert construction and demolition (C&D) materials and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes like plastics and paper/cardboard packaging materials. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table 5.2**. No steel material, paper/cardboard packaging and plastics were generated during this reporting month. Detail of waste management data is presented in **Appendix K**.

Table 5.2 Quantities of Waste Generated from the Project

Reporting Month	Quantity						
	COD	C&D Materials (non-inert) (b)					
	C&D Materials (inert) ^(a)	General Refuse	Chemical Waste	Recycled materials			
				Paper/ cardboard	Plastics	Metals	
July2013	$2,560 m^3$	$321 m^3$	640 kg	0 <i>kg</i>	0 kg	0 <i>kg</i>	

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil, which were delivered to SCL 1108A, Fill Bank at Tseung Kwan O Area 137 and Tuen Mun Area 38 Fill Bank during the reporting month.
- (b) Non-inert C&D materials include steel, paper/cardboard packaging waste, plastics and other wastes such as general refuse and vegetative wastes. Steel materials generated from the project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. General refuse was delivered to designated landfill for disposal.

Landscape and Visual

5.13 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 2, 16 and 30 July 2013. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 6.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix H**.
- 6.2 Site audits were conducted on 2, 12, 16, 23 and 30 July 2013 by ET. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 23 July 2013. No site inspection was conducted by EPD during the reporting month. The details of observations during site audit can refer to **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix J**.
- 6.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up		
Water Quality	25 Jun 2013	Stagnant water should be clear and pump into appropriate water tank.	According to the Contractor, accumulated water at the identified location will be pumped back into water tank regularly. The water pump was operating for pumping the water during the site inspection on 2 July 2013.		
	Drainage system for properly treating muddy water is advised to be enhanced.		Sand bags were provided in the U-channel for interception of runoff and the accumulated sediment in the U-channel was cleared by the Contractor on 23 July 2013.		
	30 Jul 2013	To clear the accumulated slurry in U-channel to prevent blockage.	Follow up actions will be reported in next month.		
	30 Jul 2013	Reminder: It is reminded the Contractor to clear the slurry on the haul roads regularly.	Follow up actions will be reported in next month.		
Noise	12 Jul 2013	Reminder: It is recommended to further enhance the noise mitigation measures near the desander next to Lung Cheung Road where possible.	Installation works of acoustic fabrics was completed on 23 July 2013.		
	2 Jul 2013	Retained trees next to wheel washing bay shall be properly fenced off.	Tree protection zones were set up for the identified retained trees on 12 July 2013.		
Landscape and Visual	2 Jul 2013	Tree (DT 2002) at bar bending area is reminded to be carefully protected. Broken branches should be cut off.	Broken branches were cut off by the Contractor. No further damage on the identified tree was observed on 12 July 2013.		
	12 Jul 2013	Reminder: It is reminded to remove the construction materials near the trees next	According to the photo provided by the Contractor, the construction		

Parameters	Date	Observations and Recommendations	Follow-up
23 Jul 2013		to the wheel washing bay.	materials near the trees were removed on 16 July 2013.
		To remove the materials and skip within the tree protection zone and properly erect the tree protection fence for better tree protection.	The materials were removed and the skip was moved away from tree protection zone on 30 July 2013.
	30 Jul 2013	Materials placed next to trees should be removed to avoid damage to trees. (Area W8)	Follow up actions will be reported in next month.
Cultural Heritage	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A
	2 Jul 2013	Drip tray for generator near new desander was observed damaged and shall be repaired to avoid any fuel leakage.	The drip tray was repaired by the Contractor on 12 July 2013.
Waste / Chemical Management	12 Jul 2013	Oily mixture was leaked out from drip trays for generators on-site. The Contractor was recommended to properly repair or plug the drain hole to avoid any oily mixture leakage.	Drain hole of the identified drip tray was plugged by the Contractor. Leaked oily mixture was also removed by the Contractor on 16 July 2013.
	16 Jul 2013	Oily mixture or stagnant water accumulated on the drip trays for generator is recommended to be cleared.	Oily mixture and stagnant water accumulated on the drip trays was cleared by the Contractor on 23 July 2013.
	23 Jul 2013	Reminder: To remove the construction materials in the drip tray to avoid contamination.	The materials in drip tray were cleared by the Contractor on 30 July 2013.
Permits/ Licenses	N/A	N/A	N/A

7 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

7.1 No exceedance of the Action and Limit Levels of the regular construction noise and 24-hour TSP monitoring was recorded during the reporting month. The summary of exceedance is provided in **Appendix G**.

Summary of Environmental Non-Compliance

7.2 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

7.3 No environmental Project-related complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix L**.

Summary of Environmental Summon and Successful Prosecution

7.4 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix L**.

8 FUTURE KEY ISSUES

Construction Programme for the Next Month

- 8.1 A tentative construction programme is provided in **Appendix A**. The major construction activities in the coming month will include:
 - D-wall construction;
 - Archaeological survey-cum-excavation;
 - Underpinning works and relocation of the Old Pillbox;
 - Construction of temporary storage compound for the Old Pillbox; and
 - Pre-drilling works.

Key Issues in the Next Month

- 8.2 Key issues to be considered in the coming month include:
 - Dust arising from loading, unloading, transfer, handling or storage of bulk cement or dry PFA and bentonite and excavated materials;
 - Control of silty surface runoff during wet season;
 - Preservation of Former Royal Air Force Hangar and Old Pillbox after dismantling and relocation:
 - Preservation and protection of retained and transplanted trees; and
 - Implementation of mitigation measures for noise nuisance from construction works.

Monitoring Schedule in the Next Month

8.3 The tentative schedule of regular construction noise monitoring and 24-hour TSP monitoring at Rhythm Garden in the next reporting period is presented in **Appendix D**. The regular construction noise monitoring and 24-hour TSP monitoring will be conducted at the same monitoring locations in the next reporting period.

9 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 July to 31 July 2013 in accordance with EM&A Manual and the requirement under EP.
- 9.2 No exceedance of the Action and Limit Levels of regular construction noise and 24-hour TSP monitoring was recorded at the designated monitoring stations during the reporting month.
- 9.3 5 times of joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET and 3 times of bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted during the reporting period.
- 9.4 There was no Project related environmental complaint, successful prosecution or notification of summons received during the reporting month.
- 9.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

9.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

Water Quality

- All drainage facilities and erosion and sediment control structures should be regularly
 inspected and maintained to ensure proper and efficient operation at all times and
 particularly following wet seasons.
- It is recommended particular attention should be paid to the control of silty surface runoff during wet season. Stockpiles of materials that are likely to generate silty surface runoff should be covered by impervious sheets whenever practicable.

Construction Noise

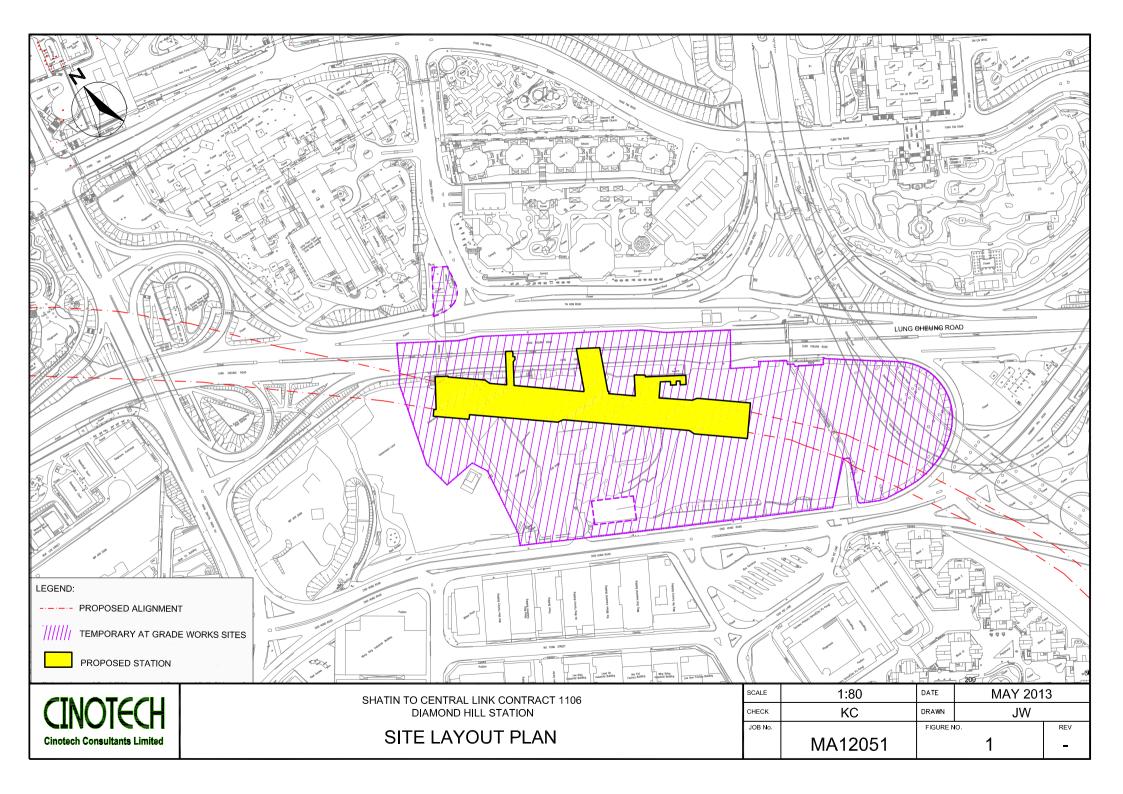
• Regular review on the noise mitigation measures and the conditions of the implemented noise mitigation measures shall be properly maintained.

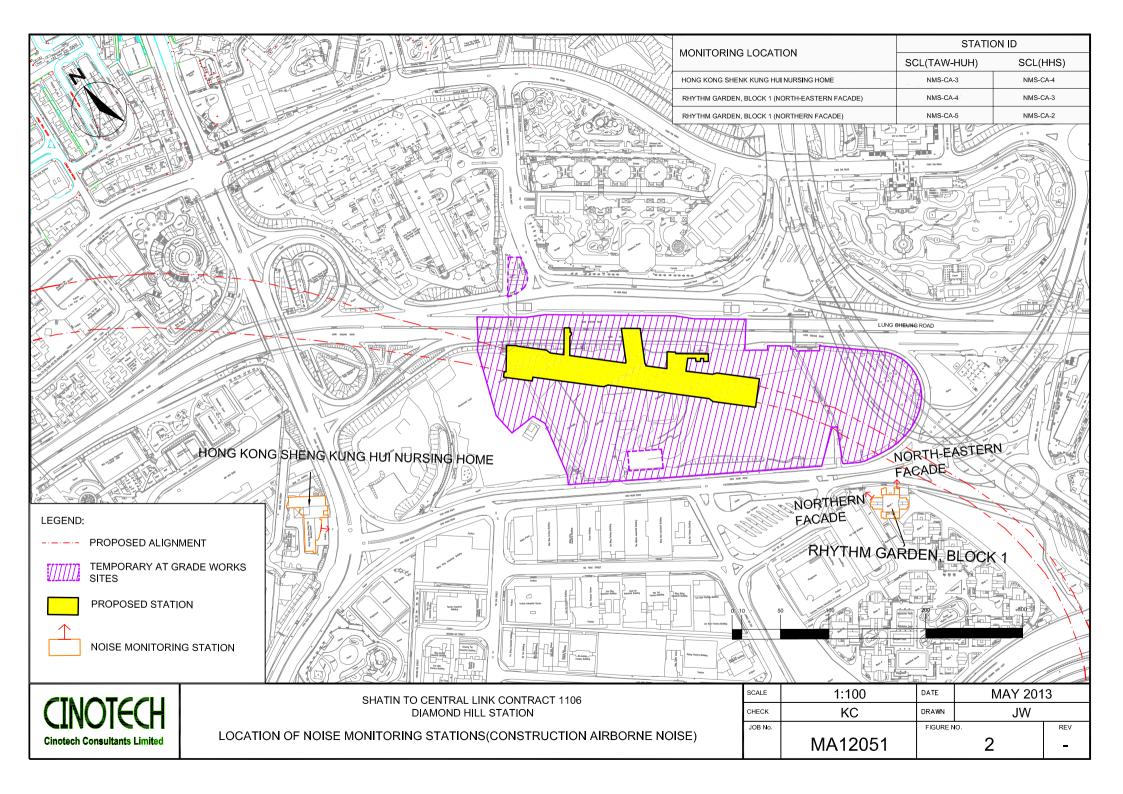
Landscape and Visual

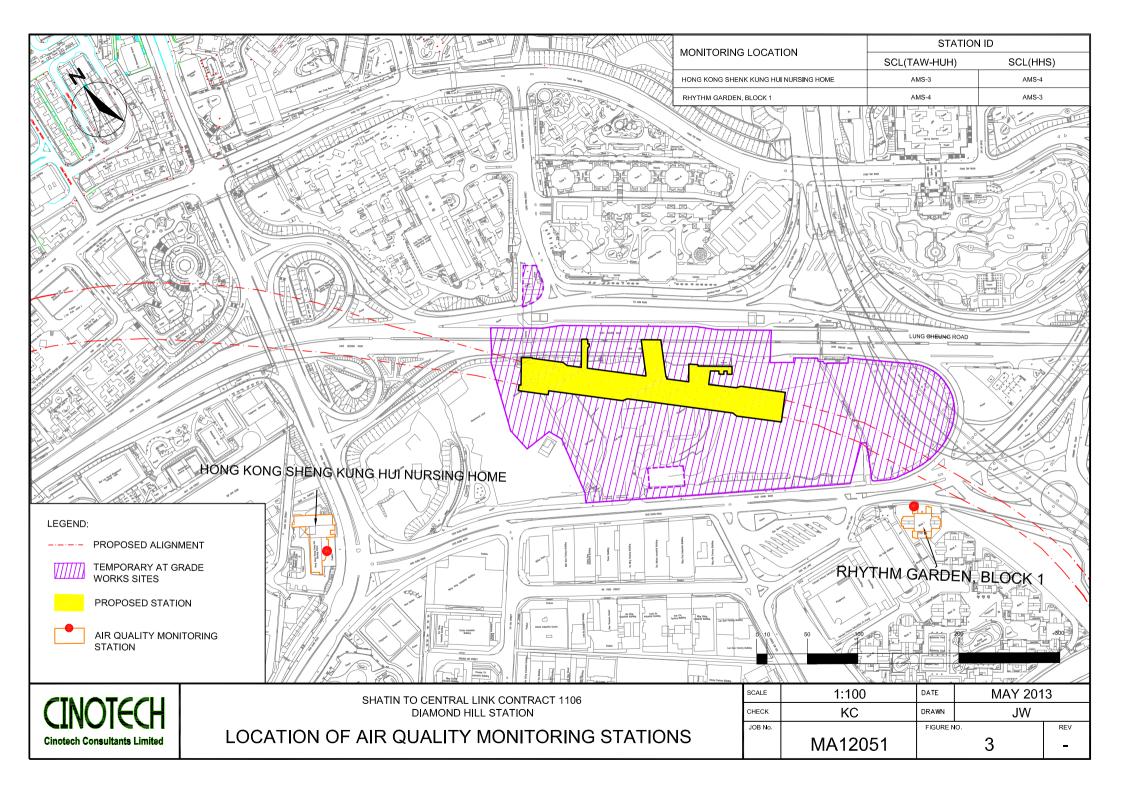
• "No-intrusion zone" should be established and maintained for existing trees as far as practicible. The Contractor is reminded to closely monitor and restrict the site working staff from entering the erected "no-intrusion zone" for existing trees and avoid placing construction materials within the tree protection zone for maximizing the protection.

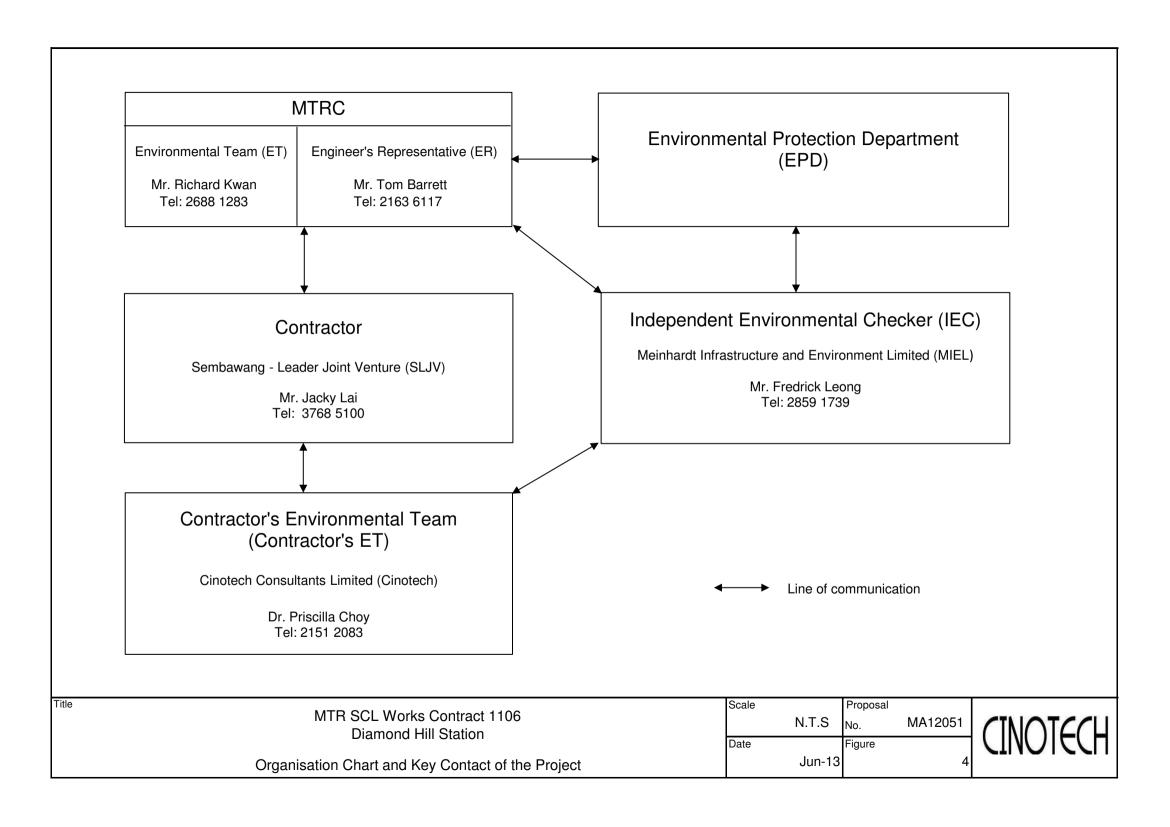
Air Quality

- Regular water spraying on site is reminded to be implemented as per EP requirement.
- Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the

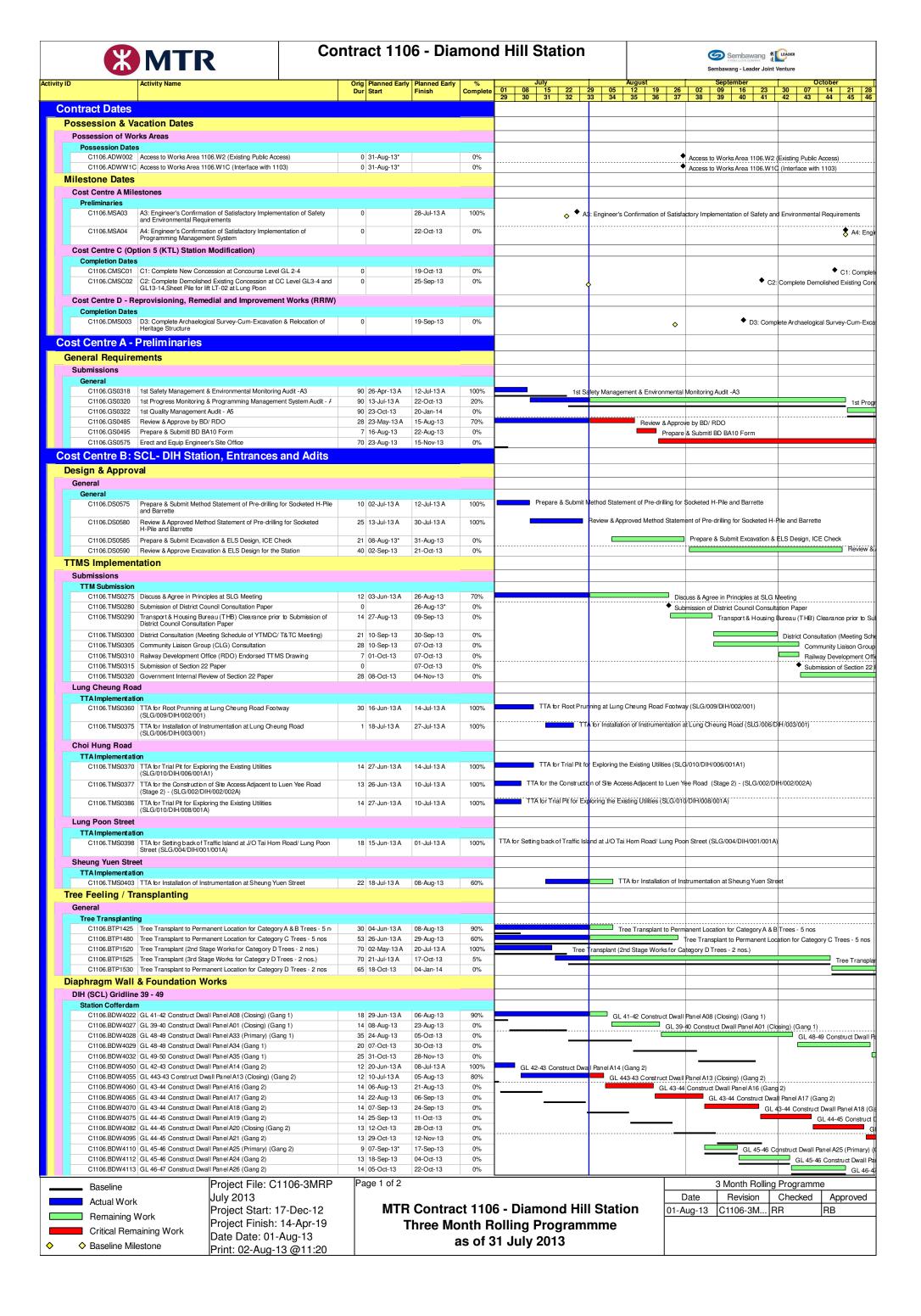


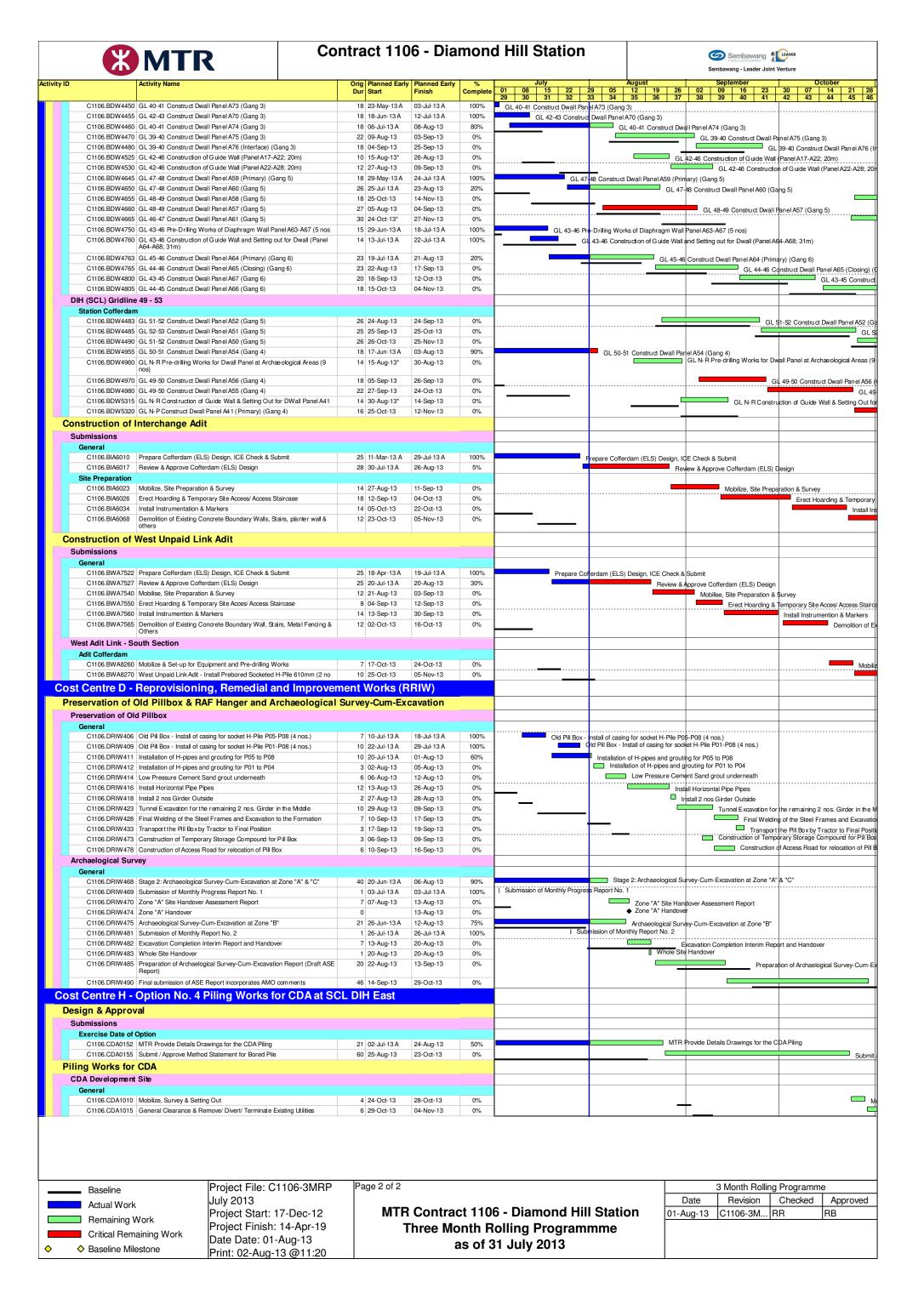

excavation or unloading.


Waste/Chemical Management


- Good site practice of providing drip trays for temporary use of chemicals shall be sustained. Drip trays should be properly maintained.
- On-site sorting of materials are advised to be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal whenever practicable.
- Provision of preventive mitigation measures to avoid oil leakage during oil filling works.

FIGURES





APPENDIX A TENTATIVE CONSTRCUTION PROGRAMME

APPENDIX B ACTION AND LIMIT LEVELS

APPENDIX B – Action and Limit Levels

24-Hour TSP

Regular Dust Monitoring Location	Description	Action Level, μg/m ³	Limit Level, μg/m³
DMS-3 ⁽¹⁾⁽³⁾⁽⁴⁾ / DMS-4 ⁽²⁾⁽³⁾⁽⁴⁾ /	Hong Kong Sheng Kung Hui Nursing Home	159.1	260
DMS-4 ⁽¹⁾ / DMS-3 ⁽²⁾	Block 1, Rhythm Garden	160.4	260

Note:

- (1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Access to the monitoring location at Shek On House (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (Hong Kong S.K.H Nursing Home) was proposed and approved by the ER and agreed by the IEC and EPD.
- (4) Dust monitoring on DMS-3⁽¹⁾/DMS-4⁽²⁾ is carried out by Environmental Team of SCL Works Contract 1103.

Construction Noise

Regular Construction Noise Monitoring Location ⁽¹⁾	Description	Time Period	Action Level	Limit Level
NMS-CA-3 ⁽¹⁾⁽³⁾⁽⁴⁾ / NMS-CA-4 ⁽²⁾⁽³⁾⁽⁴⁾	Hong Kong Sheng Kung Hui Nursing Home		When one	75 dB(A)
NMS-CA-4 ⁽¹⁾ / NMS-CA-3 ⁽²⁾	Block 1, Rhythm Garden (north- eastern façade)	0700-1900 hrs on normal weekdays	When one documented complaint is	75 dB(A)
NMS-CA-5 (1) (5)/ NMS-CA-2 (2)(5)	Block 1, Rhythm Garden (northern façade)		received	65 / 70 dB(A) ⁽⁶⁾

Note:

- (1) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Access to the monitoring location at Shek On House (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (Hong Kong S.K.H Nursing Home) was proposed and approved by the ER and agreed by the IEC and EPD.

 (4) Noise monitoring on NMS-CA-3⁽¹⁾/ NMS-CA-4⁽²⁾ is carried out by Environmental Team of SCL Works Contract
- 1103.
- (5) Access to the monitoring location at Canossa Primary School (San Po Kong) (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (Block 1, Rhythm Garden (northern façade)) was proposed and approved by the ER and agreed by the IEC and EPD.
- (6) Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

APPENDIX C
CALIBRATION CERTIFICATES FOR
MONITORING EQUIPEMENT

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	MA12051/57/0002	
Station			Operator:		WK			
Date:			1	Next Due Date:		100		
Equipment No.:			Serial No.		2352			
			Ambient	Condition				
Temperatu	re, Ta (K)	299.9	Pressure, Pa	a (mmHg)	758.3			
		Or	ifice Transfer St	andard Inform	ation			
Equipme	ent No.:	A-04-05	Slope, mc	0.0592	Intercep		-0.0283	
Last Calibra	ation Date:	26-Dec-12			$c = [\Delta H x (Pa/760) x (298/Ta)]^{1/2}$			
Next Calibr	ation Date:	25-Dec-13		$Qstd = \{ [\Delta H :$	x (Pa/760) x (298	x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc		
		•		erren el				
		Or		TSP Sampler		HVS		
Calibration Point	ΔH (orifice), in. of water	Orfice [ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM) X - axis	ΔW (HVS), in. of		60) x (298/Ta)] ^{1/2} Y axis	
1	11.4	3	.36	57.27	7.3		2.69	
2	8.9	2	.97	50.66	5.4		2.31	
3	7.0	2	63	44.98	4.3		2.06	
4	4.6	2	.14	36.55	2.8	·	1.67	
5	2.9	100,000	.70	29.12	1.7		1.30	
Slope, mw = Correlation c	oefficient* =		993	Intercept, bw	-0.12	30		
II Correlation (Coefficient < 0.23	oo, check and rec	inoraic.	on, freely some distribution and the	· Na like a model place of the latest	3700 CE 0 17 18 18 18 18 18 18 18	No construction of the No.	
				Calculation				
		Curve, take Qstd =						
from the Regres	ssion Equation, th	ie "Y" value acco	rding to					
		mw x ($Qstd + bw = \Delta W $	v (Pa/760) v (2	98/Ta)11/2			
		mu x v	Sara i Dii - IZII	A (1 11 100) A (2	50/ Tu)			
Therefore, S	et Point; W = (m	nw x Qstd + bw)2	x(760/Pa)x(Ta / 298) =	3.92	2		
					<u> </u>			
	7.00							
Remarks:	_			W				
	-		Salahara anana					
			L	ſ			121112	
Conducted by:	INK. Tang	Signature:	Mwan			Date:	13/5/13	
Checked by	(A)	Signature:		1		Date: /	3 MAN NO13	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	MA12051/57/0003
tation	DMS-4 - Rhythn	n Garden, Block		Operator:	WK		
ate:	9-Jul-13 ment No.: A-01-57		1		8-Sep-		
-				Serial No.	2352		
100		Action to the Williams Co.	W. 12-5. June 11 1115	The state of the s		The Martin Res	
	The state of the s	Tagaler (pros	Ambient (4.5
Temperatur	e, Ta (K)	301.3	Pressure, Pa	(mmHg)		760.2	
ra Aleksiya		0.	ifice Transfer Sta	andard Inform	ation		
r.	at No.	A-04-05	Slope, mc	0.0592	Intercep	t, bc	-0.0283
Equipme		26-Dec-12	Brope, me		$c = [\Delta H \times (Pa/76)]$)]1/2
Last Calibra		25-Dec-12 25-Dec-13		Ostd = $\{ \Delta H \}$	(Pa/760) x (298	/Ta)]1/2 -bc}	/ mc
Next Calibra	ition Date:	23-Dec-13		Carr (I		/1	
			Calibration of	TSP Sampler			
		Ort	fice			HVS	
Calibration Point	ΔH (orifice), in. of water		0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of	[∆W x (Pa/	760) x (298/Ta)] ^{1/2} Y axis
1	11.5	3	1.37	57.45	7.4		2.71
2	8.9	2	2.97	50.60	5.5		2.33
3	7.2	1	2.67	45.56	4.4		2.09
4	4.6	2	2.13	36.51	2.7		1.63
5	2.9		1.69	29.09	1.7		1.30
Slope, mw = Correlation of	oefficient* =	0.9 90, check and rec	9995 alibrate.	Intercept, bw	-0.16	29	-
n conclation (Soornoidin + 415						
				Calculation	T MORESCHILL	randominato (1984)	
		Curve, take Qstd					
from the Regres	ssion Equation, t	he "Y" value acco	ording to				
		mw x	$Qstd + bw = [\Delta W$	x (Pa/760) x (2	298/Ta)] ^{1/2}		
Therefore, S	Set Point; W = (1	mw x Qstd + bw)	² x (760 / Pa) x (Ta/298) =	3.9	2	-0
		WW.			V3005		
Remarks:							
			L			2011	9/7/13
Conducted by:	WK. TAVIS	Signature:	Mu	iai /	_	Date:	
Checked by	: (h 0	Signature:		1	_	Date:	9 July do

TISCH ENVIROMENTAL, INC.
145 SOUTH MIAMI AVE.
VILLAGE OF CLEVES, OH 45002
513.467.9000
877.263.7610 TOLL FREE
513.467.9009 FAX
WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - De Operator	ec 26, 2012 Tisch	Ta (K) - Pa (mm) -	295 - 753.11			
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4440 1.0240 0.9120 0.8720 0.7200	3.2 6.4 8.0 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9967 0.9925 0.9903 0.9893 0.9840	0.6902 0.9693 1.0858 1.1345 1.3666	1.4149 2.0010 2.2372 2.3464 2.8299		0.9957 0.9915 0.9893 0.9883 0.9830	0.6896 0.9683 1.0847 1.1334 1.3652	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slop	t (b) =	2.09107 -0.02838 0.99996	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Qa slope intercept coefficie	= (b) $=$	1.30939 -0.01775 0.99996
y axis =	SQRT[H2O(I	?a/760)(298/5	' Га)]	y axis =	SQRT [H2O (7	Ca/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT (H2O(Pa/760) (298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinc

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130104

Date of Issue: 2013-01-05 Date Received: 2013-01-04

Date Tested: 2013-01-04

Date Completed: 2013-01-05 Next Due Date: 2014-01-04

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955 : 14303

Serial No.
Microphone No.

: 35222

Equipment No.

: N-08-05

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 59%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

Remark: 1)This report supersedes the one dated 2012/01/21 with certificate number C/N/120120/1.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/120901/2
Date of Issue: 2012-09-02

Date Received: 2012-09-01 Date Tested: 2012-09-01

Date Completed: 2012-09-02

Next Due Date:

2013-09-01

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21459

Microphone No.

: 43676

Equipment No.

: N-08-08

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 67%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/120921/1
Date of Issue:	2012-09-22
Date Received:	2012-09-21

Date Received: 2012-09-21

Date Tested: 2012-09-21

Date Completed: 2012-09-22

Date Completed: 2012-09-22 Next Due Date: 2013-09-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 10929

Equipment No.

: N-09-01

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 56%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/121005/1
Date of Issue: 2012-10-07
Date Received: 2012-10-05

Date Tested: 2012-10-05

Date Completed: 2012-10-07 Next Due Date: 2013-10-06

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 64%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

APPENDIX D IMPACT MONITORING SCHEDULE

Shatin to Central Link – Contract 1106 Diamond Hill Station Impact Air Quality and Noise Monitoring Schedule for July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jul	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul
		24 hr TSP	Noise			
7-Jul	8-Jul	9-Jul	10-Jul	11-Jul	12-Jul	13-Jul
	24 hr TSP	Noise				24 hr TSP
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
	Noise				24 hr TSP	
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
	Noise			24 hr TSP		
28-Jul	29-Jul	30-Jul	31-Jul			
	Noise		24 hr TSP			

Air Quality Monitoring Station

Noise Monitoring Station

DMS-4: - Rhythm Garden, Block 1

NMS-CA-4: - Block 1, Rhythm Garden (north-eastern façade)

NMS-CA-5: - Block 1, Rhythm Garden (northern façade)

Shatin to Central Link – Contract 1106 Diamond Hill Station Tentative Impact Air Quality and Noise Monitoring Schedule for August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Aug	2-Aug	3-Aug
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
				_	_	_
		A / 1				
		24 hr TSP		Noise		
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
g						
	24 hr TSP	Noise				24 hr TSP
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
	Noise				24 hr TSP	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
	- "0		<u>O</u>			
	Noise			24 hr TSP		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

Noise Monitoring Station

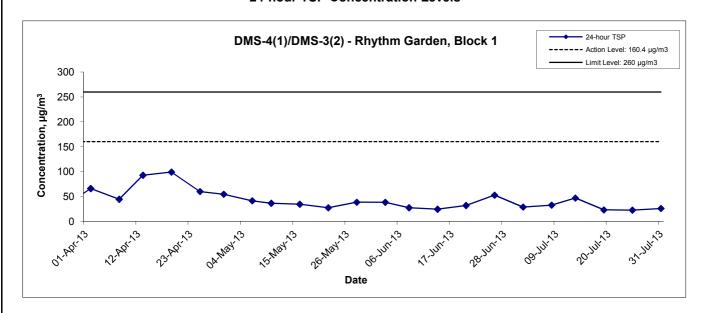
DMS-4: - Rhythm Garden, Block 1

NMS-CA-4: - Block 1, Rhythm Garden (north-eastern façade)

NMS-CA-5: - Block 1, Rhythm Garden (northern façade)

APPENDIX E 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONIS

Appendix E - 24-hour TSP Monitoring Results

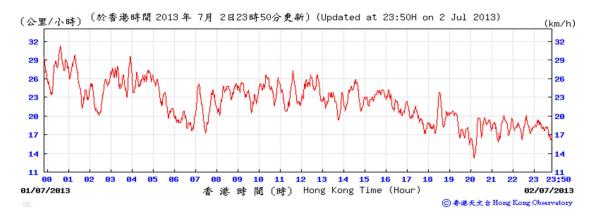

Location DMS-4(1)/DMS-3(2) - Rhythm Garden, Block 1

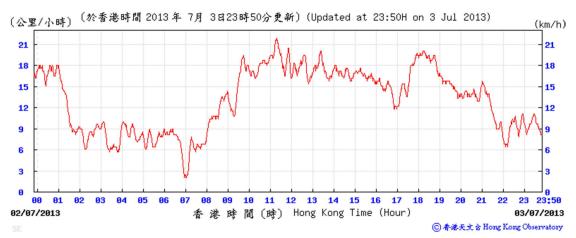
Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
2-Jul-13	09:00	Sunny	302.1	757.7	3.0394	3.0900	0.0506	1289.9	1313.9	24.0	1.21	1.21	1.21	1741.7	29.1
8-Jul-13	09:00	Sunny	301.1	760.7	3.0583	3.1158	0.0575	1313.9	1337.9	24.0	1.21	1.21	1.21	1747.7	32.9
13-Jul-13	09:00	Sunny	303.6	753.1	3.0318	3.1134	0.0816	1337.9	1361.9	24.0	1.20	1.20	1.20	1734.0	47.1
19-Jul-13	09:00	Sunny	300.1	756.8	3.8808	3.9215	0.0407	1361.9	1385.9	24.0	1.21	1.21	1.21	1747.2	23.3
25-Jul-13	09:00	Cloudy	298.3	755.4	3.0275	3.0676	0.0401	1385.9	1409.9	24.0	1.22	1.22	1.22	1750.7	22.9
31-Jul-13	09:00	Cloudy	301.8	756.1	3.6398	3.6854	0.0456	1409.9	1433.9	24.0	1.21	1.21	1.21	1742.0	26.2
-		3		-			-			-				Min	22.9
Remarks:														Max	47.1
(1) ASR ID as id	(1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).								Average	30.2					

(2) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).

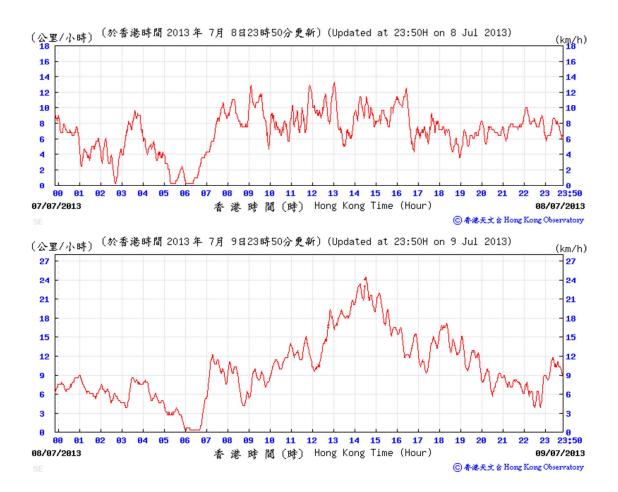
App E - 24hr TSP 1 of 2 Cinotech

24-hour TSP Concentration Levels

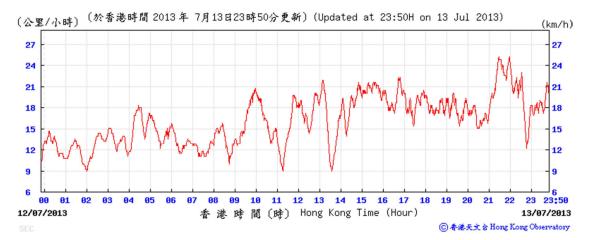


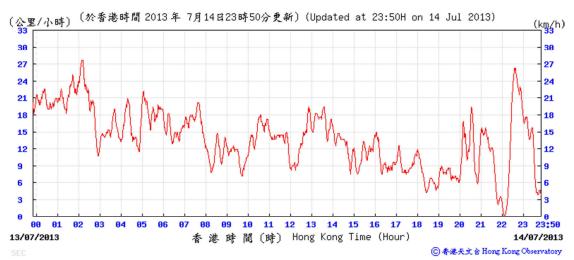

Remarks:

- (1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).

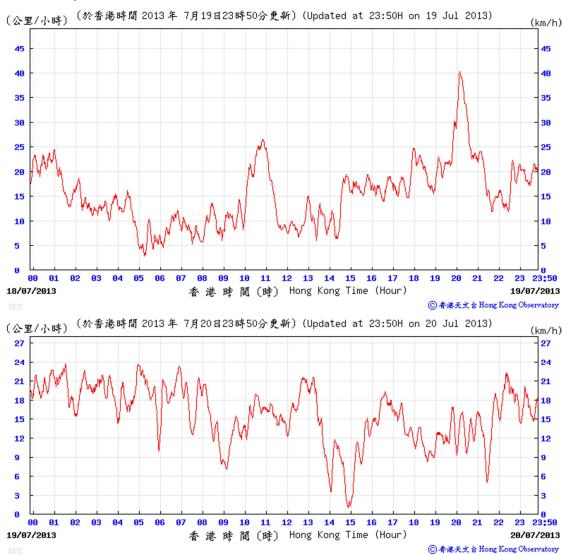

Title Shatin to Central Link – Contract 1106 Diamond Hill Station	Scale N.T.S	Project No. MA12051	CINOTECH
Graphical Presentation of 24-hour TSP Monitoring Results	Date Jul 13	Appendix E	CINOISCU

2-3 July 2013

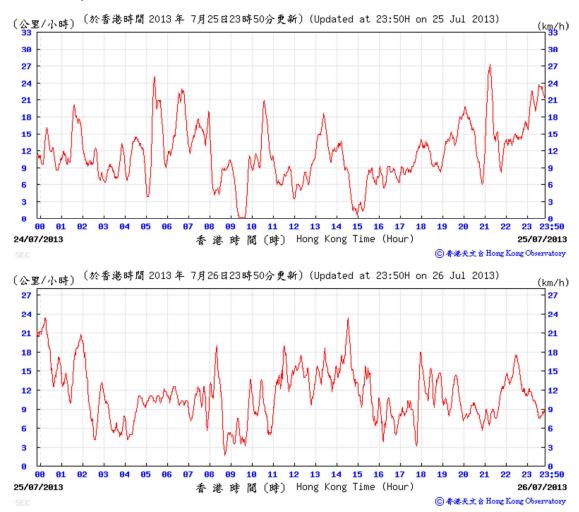


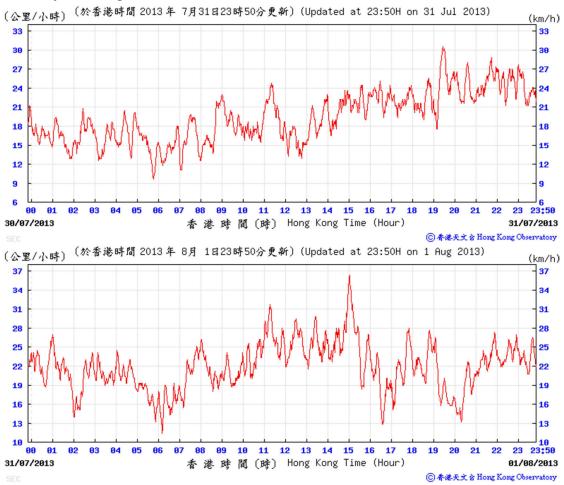


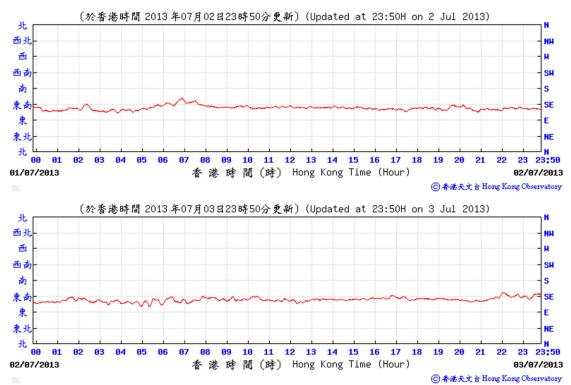
8-9 July 2013

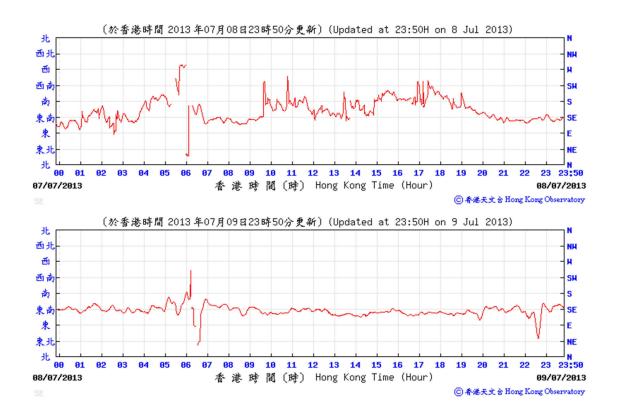


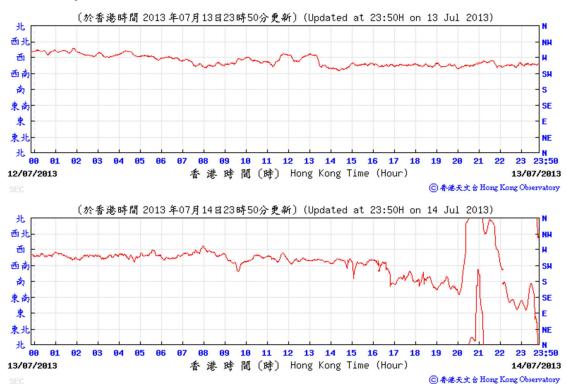
13-14 July 2013

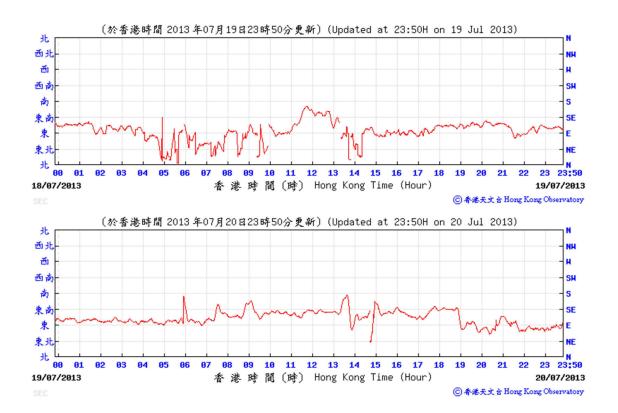


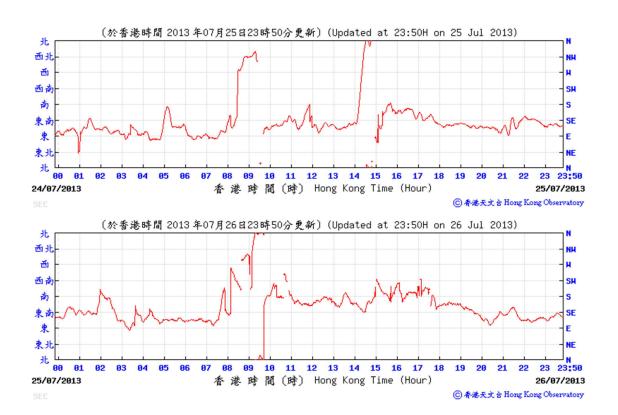

19-20 July 2013

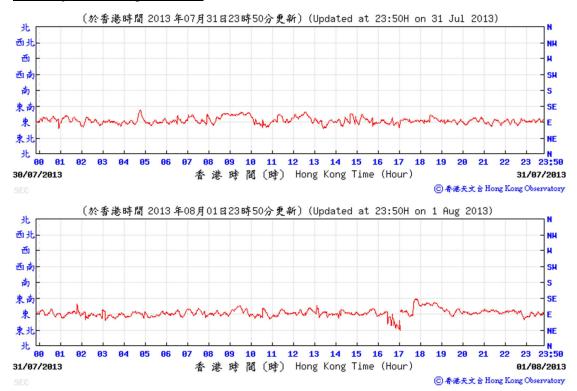

25-26 July 2013


31- July to 1 August 2013


2-3 July 2013


8-9 July 2013


13-14 July 2013


19-20 July 2013

25-26 July 2013

31- July to 1 - August 2013

APPENDIX F NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - Noise Monitoring Results

Location NMS-CA-4(1)/NMS-CA-3(2) - Block 1, Rhythm Garden (north-eastern façade)								
Dete	\\\\a_atha_=	Time	Uni	t: dB (A) (5-r	nin)	Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		13:00	70.1	72.3	68.8			
		13:05	70.3	72.7	68.6			
3-Jul-13	Sunny	13:10	70.4	72.8	68.8	70.3		70.3 Measured≦ Baseline Level
3-3ul-13	Suring	13:15	70.2	72.7	68.8	70.5		70.5 Wedsured _ Daseline Level
		13:20	70.4	72.7	68.9			
		13:25	70.4	72.8	68.9			
		13:16	71.6	72.7	70.2			
		13:21	71.5	72.7	70.0			
9-Jul-13	Sunny	13:26	71.7	72.8	70.3	71.6		62.7
9-Jul- 13	Suring	13:31	71.6	72.7	70.2	7 1.0		02.7
		13:36	71.4	72.5	70.1	1		
		13:41	71.8	72.7	70.3			
		13:00	74.5	76.1	71.9			
		13:05	74.5	76.0	72.1	74.5	71	71.9
15-Jul-13	Cloudy	13:10	74.7	76.2	72.3			
15-Jul-13	Cloudy	13:15	74.4	76.0	71.7			
		13:20	74.2	75.8	71.5			
		13:25	74.6	76.4	72.1			
		14:15	73.7	74.9	72.2			69.9
		14:20	73.5	74.7	72.1			
22-Jul-13	Cuppy	14:25	72.9	74.3	72.3	73.5		
22-Jui-13	Sunny	14:30	73.4	74.2	72.3	73.5		
		14:35	73.6	74.8	72.5			
		14:40 73.6 7	74.8	72.7				
		13:00	67.4	68.6	66.1		1	
		13:05	67.7	68.7	66.3			
20 1 42	Cummu	13:10	67.7	68.7	66.4	67.6		C7 C Management Changling Laws
29-Jul-13	Sunny	13:15	67.5	68.6	66.1	67.6		67.6 Measured≦ Baseline Level
		13:20	67.4	68.5	66.0			
		13:25	67.7	68.8	66.3			

Remarks:

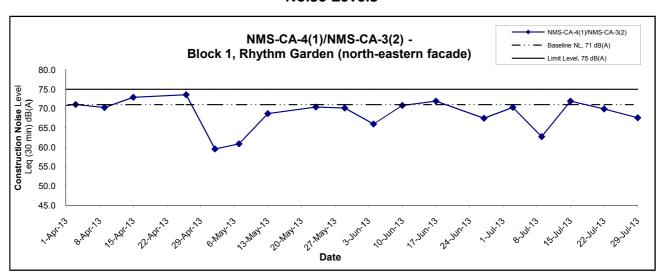
App F - Noise Cinotech

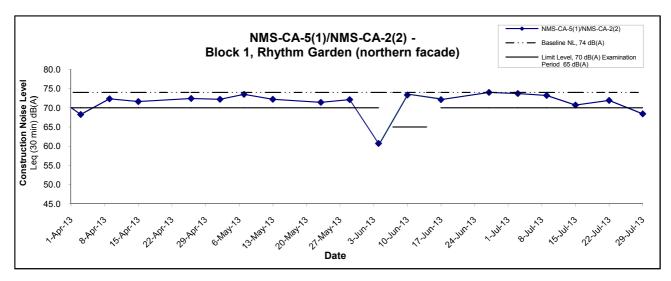
⁽¹⁾ Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).

⁽²⁾ Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).

Appendix F - Noise Monitoring Results

Location NMS-	Location NMS-CA-5(1)/NMS-CA-2(2) - Block 1, Rhythm Garden (northern façade)							
Dete	VA/a atla an	T:	Uni	t: dB (A) (5-r	nin)	Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		13:35	73.7	74.8	72.1			
		13:40	73.6	75.0	72.3			
3-Jul-13	Sunny	13:45	73.7	74.9	72.1	73.7		73.7 Measured≦ Baseline Level
3-3ul-13	Suring	13:50	73.7	74.8	72.0	75.7		73.7 Weasured Daseline Level
		13:55	73.8	74.9	72.3			
		14:00	73.7	74.8	72.0			
		15:50	73.1	74.3	71.7			
		15:55	73.3	74.5	72.0			
9-Jul-13	Sunny	16:00	73.0	74.2	71.6	73.2		73.2 Measured≦ Baseline Level
9-3ul-13	Suring	16:05	73.2	74.5	71.6	13.2		73.2 Weasured Daseline Level
		16:10	73.3	74.5	71.7			
		16:15	73.2	74.3	71.5			
		11:25	70.8	72.3	68.1		74	70.7 Measured≦ Baseline Level
		11:30	70.7	72.5	68.3	70.7		
15-Jul-13	Cloudy	11:35	70.5	71.9	67.7			
15-501-15	Cloudy	11:40	70.7	72.3	68.5			
		11:45	70.8	72.5	68.3			
		11:50	70.8	72.4	68.3			
		13:30	71.8	72.8	70.5			
		13:35	71.8	72.9	70.4			
22-Jul-13	Sunny	13:40	71.9	72.9	70.5	71.9		71.9 Measured≦ Baseline Level
22-Jul-13	Suring	13:45	72.0	73.0	70.5	71.9		71.9 Weasured Baseline Level
		13:50	72.1	73.2	70.6			
		13:55	72.0	73.1	70.7			
		13:40	68.5	69.6	67.2			
		13:45	68.0	69.3	67.0			
29-Jul-13	Sunny	13:50	68.3	69.6	67.3	68.4		68.4 Measured≦ Baseline Level
29-Jul- 13	Suring	13:55	68.3	69.5	67.5	00. 4		
		14:00	68.6	70.0	67.7			
		14:05	68.4	69.4	67.5			


Remarks:


App F - Noise Cinotech

⁽¹⁾ Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).

⁽²⁾ Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).

Noise Levels

Remarks:

- (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) In case of Measured Level \leq Baseline Level, only Measured Level is presented on the graphical presentation.

Title Scale Project Shatin to Central Link - Contract 1106 - Diamond Hill Station No. N.T.S MA12051 **Graphical Presentation of Construction Noise Monitoring** Date Appendix Jul 13 Results

F

APPENDIX G SUMMARY OF EXCEEDANCE

APPENIDX G - SUMMARY OF EXCEEDANCE

Reporting Month: July 2013

- a) Exceedance Report for Dust Monitoring (NIL)
- b) Exceedance Report for Noise Monitoring (NIL)

APPENDIX H SITE AUDIT SUMMARY

Inspection Information

Checklist Reference Number	130702
Date	2 July 2013 (Tuesday)
Time	09:00 – 10:40

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B - Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C Ecology	
	No environmental deficiency was identified during the site inspection.	
	Part D Landscape & Visual	
130702-O02	Retained trees next to wheel washing bay shall be properly fenced off.	D2.
130702-O03	Tree (DT 2002) at bar bending area is reminded to be carefully protected. Broken branches should be cut off.	D3.
	Part E – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part F – Cultural Heritage	
	No environmental deficiency was identified during the site inspection.	
	Part G - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part H - Waste/Chemical Management	
130702-O01	Drip tray for generator near new desander was observed damaged and shall be repaired to avoid any fuel leakage.	H10.
	repaired to avoid any rues leakage.	
	Part I – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part J - Others	
	Follow-up on previous audit section (Ref. No.:130625), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Ken Cheng	Ken.	2 July 2013
Checked by	Dr. Priscilla Choy	WZ	2 July 2013

CINOTECH MA12051 130702_audit130702

Checklist Reference Number	130712
Date	12 July 2013 (Friday)
Time	10:30 – 11:45

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C – Ecology	
	No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
130 7 12-R02	It is reminded to remove the construction materials near the trees next to the wheel washing bay.	D3.
	Part E – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part F – Cultural Heritage	
	No environmental deficiency was identified during the site inspection.	
	Part G - Construction Noise Impact	
130712-R03	It is recommended to further enhance the noise mitigation measures near the desander next to Lung Cheung Road where possible.	G7.
	Part H – Waste/Chemical Management	
130712-001	Oily mixture was leaked out from drip trays for generators on-site. The Contractor was recommended to properly repair or plug the drain hole to avoid any oily mixture leakage.	Н9. & Н10.
	Part I – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part J - Others	
	Follow-up on previous audit section (Ref. No.:130702), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Ken Cheng	Cen-	12 July 2013
Checked by	Dr. Priscilla Choy	WF	12 July 2013

Checklist Reference Number	130716
Date	16 July 2013 (Tuesday)
Time	09:00 – 11:00

Re	f. No.	Non-Compliance	Related Item No.
	-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	
130716-O02	Drainage system for properly treating muddy water is advised to be enhanced.	B1. & B15i.
	Part C Ecology	
	No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part E – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part F - Cultural Heritage	·
	No environmental deficiency was identified during the site inspection.	
	Part G - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part H – Waste/Chemical Management	
130716-O01	Oily mixture or stagnant water accumulated on the drip trays for generator is recommended to be cleared.	H10.
	Part I Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part J - Others	
	• Follow-up on previous audit section (Ref. No.:130712), rectification for 130712-R03 was in progress according to the Contractor and will be followed up during next site inspection.	

	Name	Signature	Date
Recorded by	Gary Lau	1/2/	16 July 2013
Checked by	Dr. Priscilla Choy	- NJ	16 July 2013

Checklist Reference Number	130723
Date	23 July 2013 (Tuesday)
Time	09:00 - 10:30

Ref. No.	Non-Compliance	Related Item
		No.
	None identified	_

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C – Ecology	
	No environmental deficiency was identified during the site inspection.	
	Part D Landscape & Visual	
130723-001	• To remove the materials and skip within the tree protection zone and properly erect the tree protection fence for better tree protection.	D 3
	Part E – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part F – Cultural Heritage	
	No environmental deficiency was identified during the site inspection.	
	Part G - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part H – Waste/Chemical Management	
13072 3 -R02	To remove the construction materials in the drip tray to avoid contamination.	H 10
	Part I – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part J - Others	
	Follow-up on previous audit section (Ref. No.:130716), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Date
lingh	24 July 2013
· · · · · · · · · · · · · · · · · · ·	24 July 2013
	noy WZ

Checklist Reference Number	130730
Date	30 July 2013 (Tuesday)
Time	09:00 – 10:30

Ref. No.	Non-Compliance	Related Item
_	None identified	- 100.

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	
130730-O01 130730-R03	 To clear the accumulated slurry in U-channel to prevent blockage. It is reminded the Contractor to clear the slurry on the haul roads regularly. 	В7 В 17
	Part C Ecology	
	No environmental deficiency was identified during the site inspection.	
	Part D Landscape & Visual	
130730-O02	Materials placed next to trees should be removed to avoid damage to trees. (Area W8)	D 3
	Part E - Air Quality No environmental deficiency was identified during the site inspection.	
	Part F - Cultural Heritage	
	No environmental deficiency was identified during the site inspection.	
	Part G - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	ļ
	Part H Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	3
	Part I – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part J - Others	
	Follow-up on previous audit section (Ref. No.:130723), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Gary Lau	Canh	30 July 2013
	Dr. Priscilla Choy	WI	30 July 2013
Checked by	Dr. Priscilla Choy	1 1	

APPENDIX I EVENT AND ACTION PLANS

Event and Action Plan for Air Quality Monitoring during Construction Phase

EV/ENT		A	ACTION	
EVENT	Works Contract 1106 ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	Inform the IEC, Contractor and ER; Discuss with the Contractor, IEC and ER on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing;	Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.
2.Exceedance for two or more consecutive samples	 Inform the IEC, Contractor and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	1. Confirm receipt of notification of exceedance in writing; 2. Notify the Contractor, IEC and ET; 3. Review and agree on the remedial measures proposed by the Contractor; 4. Supervise Implementation of remedial measures.	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate.

LIMIT LEVEL				
1.Exceedance for one	Inform the IEC, Contractor and ER;	Check monitoring data submitted	Confirm receipt of notification of	Identify source(s) and investigate the causes
sample	2. Repeat measurement to confirm	by the ET;	exceedance in writing;	of exceedance;
	findings;	2. Check the Contractor's working	2. Notify the Contractor, IEC and ET;	2. Take immediate action to avoid further
	3. Increase monitoring frequency to daily;	method;	3. Review and agree on the remedial	exceedance;
	4. Discuss with the ER, IEC and contractor	3. Discuss with the ET, ER and	measures proposed by the Contractor;	3. Submit proposals for remedial measures to
	on the remedial measures and assess	Contractor on possible remedial	4. Supervise implementation of remedial	ER with a copy to ET and IEC within three
	the effectiveness.	measures;	measures.	working days of notification;
		4. Review and advise the ER and ET		4. Implement the agreed proposals;
		on the effectiveness of		5. Amend proposal if appropriate.
		Contractor's remedial measures.		
2.Exceedance for two or more	1. Notify IEC, Contractor and EPD;	Check monitoring data submitted	Confirm receipt of notification of	Identify source(s) and investigate the causes
consecutive samples	2. Repeat measurement to confirm	by the ET;	exceedance in writing;	of exceedance;
	findings;	2. Check the Contractor's working	2. Notify the Contractor, IEC and ET;	2. Take immediate action to avoid further
	3. Increase monitoring frequency to daily;	method;	3. In consultation with the ET and IEC,	exceedance;
	4. Carry out analysis of the Contractor's	3. Discuss with ET, ER, and	agree with the Contractor on the	3. Submit proposals for remedial measures to
	working procedures with the ER to	Contractor on the potential	remedial measures to be implemented;	the ER with a copy to the IEC and ET within
	determine possible mitigation to be	remedial measures;	4. Supervise the implementation of	three working days of notification;
	implemented;	4. Review and advise the ER and ET	remedial measures;	4. Implement the agreed proposals;
	5. Arrange meeting with the IEC,	on the effectiveness of	5. If exceedance continues, consider	5. Revise and resubmit proposals if problem
	Contractor and ER to discuss the	Contractor's remedial measures.	what portion of the work is responsible	still not under control;
	remedial measures to be taken;		and instruct the Contractor to stop that	6. Stop the relevant portion of works as
	6. Review the effectiveness of the		portion of work until the exceedance is	determined by the ER until the exceedance
	Contractor's remedial measures and		abated.	is abated.
	keep IEC, EPD and ER informed of the			
	results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event and Action Plan for Noise Monitoring during Construction Phase

EVENT			ACTION	
	Works Contract 1106 ET	IEC	ER	CONTRACTOR
Action Level	 Notify the IEC, Contractor and ER Discuss with the ER, IEC and Contractor on the remedial measures required Increase monitoring frequency to check mitigation effectiveness 	Review the investigation results submitted by the contractor; Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor	 Confirm receipt of notification of complaint in writing Notify the Contractor, IEC and ET Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures 	 Investigate the complaint and propose remedial measures Report the results of investigation to the IEC, ET and ER Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification. Implement noise mitigation proposals
Limit Level	 Notify the IEC, Contractor and EPD Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Arrange meeting with the IEC, Contractor and ER to discuss the remedial measures to be taken; Inform IEC, ER and EPD the causes and actions taken for the exceedances Assess effectiveness of the Contractor's remedial measures and keep IEC, ER and EPD informed of the results 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	1. Confirm receipt of notification of exceedance in writing 2. Notify the Contractor, IEC and ET 3. In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented 4. Supervise the implementation of remedial measures 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	 Identify source and investigate the causes of exceedance Take immediate action to avoid further exceedance Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification. Implement the agreed proposals Revise and resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated

Event and Action Plan for Landscape and Visual during Construction Phase

Action Level	Works Contract 1106 ET	IEC	ER	Contractor
Non-conformity on	1. Inform the Contractor, the IEC and	Check inspection report	Confirm receipt of	Identify Source and
one occasion	the ER	2. Check the Contractor's working	notification of non-	investigate the non-conformity
	2. Discuss remedial actions with the	method	conformity in writing	2. Implement remedial
	IEC, the ER and the Contractor	3. Discuss with the ET, ER and	2. Review and agree on the	measures
	3. Monitor remedial actions until	the Contractor on possible remedial	remedial measures proposed by	3. Amend working methods
	rectification has been completed	measures	the Contractor	agreed with the ER as
		4. Advise the ER on effectiveness	3. Supervise implementation	appropriate
		of proposed remedial measures.	of remedial measures	4. Rectify damage and
				undertake any necessary
				replacement
Repeated Non-	Identify Source	Check inspection report	Notify the Contractor	Identify Source and
conformity	2. Inform the Contractor, the IEC and	2. Check the Contractor's working	2. In consultation with the ET	investigate the non-conformity
	the ER	method	and IEC, agree with the	2. Implement remedial
	3. Increase inspection frequency	3. Discuss with the ET and the	Contractor on the remedial	measures
	4. Discuss remedial actions with the	Contractor on possible remedial	measures to be implemented	3. Amend working methods
	IEC, the ER and the Contractor	measures	3. Supervise implementation	agreed with the ER as
	5. Monitor remedial actions until	4. Advise the ER on effectiveness	of remedial measures.	appropriate
	rectification has been completed	of proposed remedial measures		4. Rectify damage and
	6. If non-conformity stops, cease			undertake any necessary
	additional monitoring			replacement. Stop relevant
				portion of works as determined
				by the ER until the
				non-conformity is abated.

APPENDIX J UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
Cultural	Heritag	e Impact (Construction Phase)						
S4.8.1	CH1	Submit an Archaeological Action Plan.	Salvage cultural remains at	Contractor	Former Tai Hom	Prior to the	• AMO's	^
		Survey-cum-excavation shall be conducted prior to the construction	the Former Tai Hom Village		Village Site	Construction	requirements	۸
		works at the former Tai Hom Village site.	Site			Phase of DIH		
						site		
S4.8.2	CH2	Submit a Conservation Plan for the Former Royal Air Force Hangar and	Proposal for conservation	Contractor	Former Tai Hom	Prior to the	• AMO's	۸
		the Old Pillbox to AMO for agreement.	of		Village Site	Construction	requirements	
			2 historical buildings			Phase of DIH	Principles for the	
						site	Conservation of	
							Heritage Sites in	
							China	
							Burra Charter, the	
							Australia's ICOMOS	
							Charter for Places of	
							Cultural Significance	
Ecology	(Const	ruction Phase)						
S5.7	E1	Good Site Practices	Minimise ecological	Contractor	All construction	During	• ProPECC PN 1/94	
		Impact to any habitats or local fauna should be avoided by implementing	impacts		sites	Construction		*
		good site practices, including the containment of silt runoff within the site						
		boundary, appropriate storage of chemicals and chemical waste away						
		from sites of ecological value and the provision of sanitary facilities for						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		on-site workers. Adoption of such measures should permit waste to be						
		suitably contained within the site for subsequent removal and						
		appropriate disposal. The following good site practices should also be						
		implemented:						۸
		No on-site burning of waste;						٨
		Waste and refuse in appropriate receptacles.						
Landsca	ape & Vi	sual (Construction Phase)						
S6.12	LV1	The following good site practices and measures for minimisation and	Minimize visual &	Contractor	Within Project	Construction	•TM-EIAO	
		avoidance of potential impacts are recommended:	landscape impact		Site	stage		
		Re-use of Existing Soil						۸
		For soil conservation, existing topsoil shall be re-used where						
		possible for new planting areas within the project. The						
		construction program shall consider using the soil removed from						
		one phase for backfilling another. Suitable storage ground,						
		gathering ground and mixing ground may be set up on-site as						
		necessary.						
		No-intrusion Zone						*
		To maximize protection to existing trees, ground vegetation and						
		the associated under storey habitats, construction contracts may						
		designate "No-intrusion Zone" to various areas within the site						
		boundary with rigid and durable fencing for each individual						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		no-intrusion zone. The contractor should closely monitor and						
		restrict the site working staff from entering the "no-intrusion zone",						
		even for indirect construction activities and storage of equipment.						
		Protection of Retained Trees						*
		All retained trees should be recorded photographically at the						
		commencement of the Contract, and carefully protected during						
		the construction period. Detailed tree protection specification shall						
		be allowed and included in the Contract Specification, which						
		specifying the tree protection requirement, submission and						
		approval system, and the tree monitoring system.						٨
		The Contractor shall be required to submit, for approval, a						
		detailed working method statement for the protection of trees prior						
		to undertaking any works adjacent to all retained trees, including						
		trees in contractor's works sites.						
Table 6.9	LV2	Decorative Hoarding	Minimize the visual and	Contractor	Within Project	Detailed design	• EIAO – TM	
		Erection of decorative screen during construction stage to screen	landscape impact of the		Site	and	•ETWB TCW 2/2004	٨
		off undesirable views of the construction site for visual and	Project during construction			construction	• ETWB TCW	
		landscape sensitive areas. Hoarding should be designed to be	phase			stage	3/2006	
		compatible with the existing urban context.						
		Management of facilities on work sites						
		To provide proper management of the facilities on the sites, give						٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		control on the height and disposition/ arrangement of all facilities						
		on the works site to minimize visual impact to adjacent VSRs.						
		Tree Transplanting						
		Trees of medium to high survival rate that would be affected by						N/A
		the works shall be transplanted where possible and practicable.						
		Tree transplanting proposal including final location for						
		transplanted trees shall be submitted separately to seek relevant						
		government department's approval, in accordance with ETWB						
		TCW No 3/2006.						
Constru	ction D	ust Impact						
S7.6.6	D1	The contractor shall follow the procedures and requirements given in the	Minimize dust impact at the	Contractor	All Construction	Construction	•APCO	٨
		Air Pollution Control (Construction Dust) Regulation	nearby sensitive receivers		Sites	stage	To control the dust	
							impact to meet	
							HKAQO and TM-	
							EIA criteria	
S7.6.6	D2	Mitigation measures in form of regular watering under a good site	Minimize dust impact at the	Contractor	All Construction	Construction	•APCO	٨
		practice should be adopted. Watering once per hour on exposed	nearby sensitive receivers		Sites	stage	To control the dust	
		worksites and haul road in the Kowloon area should be conducted to					impact to meet	
		achieve dust removal efficiencies of 91.7%. While the above watering					HKAQO and TM-	
		frequencies are to be followed, the extent of watering may vary					EIA criteria	
		depending on actual site conditions but should be sufficient to maintain						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		an equivalent intensity of no less than 1.8 L/m² to achieve the dust						
		removal efficiency						
S7.6.6	D3	Any excavated or stockpile of dusty material should be covered	Minimize dust impact at the	Contractor	All Construction	Construction	• APCO	۸
		entirely by impervious sheeting or sprayed with water to maintain	nearby sensitive receivers		Sites	stage	To control the dust	
		the entire surface wet and then removed or backfilled or reinstated					impact to meet	
		where practicable within 24 hours of the excavation or unloading;					HKAQO and TM-	۸
		Any dusty materials remaining after a stockpile is removed should					EIA criteria	
		be wetted with water and cleared from the surface of roads;						۸
		A stockpile of dusty material should not be extend beyond the						
		pedestrian barriers, fencing or traffic cones.						۸
		The load of dusty materials on a vehicle leaving a construction site						
		should be covered entirely by impervious sheeting to ensure that						
		the dusty materials do not leak from the vehicle;						٨
		Where practicable, vehicle washing facilities with high pressure						
		water jet should be provided at every discernible or designated						
		vehicle exit point. The area where vehicle washing takes place						
		and the road section between the washing facilities and the exit						
		point should be paved with concrete, bituminous materials or						
		hardcores;						۸
		When there are open excavation and reinstatement works,						
		hoarding of not less than 2.4m high should be provided and						

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log			recommended Measures	implement	measures	Implement the	or standards for	
	Ref			& Main Concerns to	the		measures?	the measures to	
				address	measures?			achieve?	
			properly maintained as far as practicable along the site boundary						
			with provision for public crossing; Good site practice shall also be						
			adopted by the Contractor to ensure the conditions of the						
			hoardings are properly maintained throughout the construction						
			period;						۸
		•	The portion of any road leading only to construction site that is						
			within 30m of a vehicle entrance or exit should be kept clear of						
			dusty materials;						۸
		•	Surfaces where any pneumatic or power-driven drilling, cutting,						
			polishing or other mechanical breaking operation takes place						
			should be sprayed with water or a dust suppression chemical						
			continuously;						٨
		•	Any area that involves demolition activities should be sprayed with						
			water or a dust suppression chemical immediately prior to, during						
			and immediately after the activities so as to maintain the entire						
			surface wet;						N/A
		•	Where a scaffolding is erected around the perimeter of a building						
			under construction, effective dust screens, sheeting or netting						
			should be provided to enclose the scaffolding from the ground						
			floor level of the building, or a canopy should be provided from the						
			first floor level up to the highest level of the scaffolding;						٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		Any skip hoist for material transport should be totally enclosed by						
		impervious sheeting;						۸
		Every stock of more than 20 bags of cement or dry pulverised						
		fuel ash (PFA) should be covered entirely by impervious sheeting						
		or placed in an area sheltered on the top and the 3 sides;						۸
		Cement or dry PFA delivered in bulk should be stored in a closed						
		silo fitted with an audible high level alarm which is interlocked						
		with the material filling line and no overfilling is allowed;						۸
		Loading, unloading, transfer, handling or storage of bulk cement						
		or dry PFA should be carried out in a totally enclosed system or						
		facility, and any vent or exhaust should be fitted with an effective						
		fabric filter or equivalent air pollution control system; and						N/A
		Exposed earth should be properly treated by compaction, turfing,						
		hydroseeding, vegetation planting or sealing with latex, vinyl,						
		bitumen, shotcrete or other suitable surface stabiliser within six						
		months after the last construction activity on the construction site						
		or part of the construction site where the exposed earth lies.						
S7.6.6	D4	Implement regular dust monitoring under EM&A programme during the	Monitoring of dust impact	Contractor	Selected	Construction	• TM-EIA	۸
		construction stage.			representative	stage		
					dust monitoring			
					station			

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
Constru	ction Ai	irborne Noise						
S8.5.6	AN1	Implement the following good site practices:	Control construction	Contractor	All Construction	Construction	• Annex 5, TM-EIA	
		only well-maintained plant should be operated on-site and plant	airborne		Sites where	stage		۸
		should be serviced regularly during the construction programme;	noise		practicable			
		machines and plant (such as trucks, cranes) that may be in						۸
		intermittent use should be shut down between work periods or						
		should be throttled down to a minimum;						
		plant known to emit noise strongly in one direction, where						۸
		possible, be orientated so that the noise is directed away from						
		nearby NSRs;						
		silencers or mufflers on construction equipment should be						N/A
		properly fitted and maintained during the construction works;						
		mobile plant should be sited as far away from NSRs as possible						۸
		and practicable;						
		material stockpiles, mobile container site office and other						۸
		structures should be effectively utilised, where practicable, to						
		screen noise from on-site construction activities.						
S8.5.6	AN2	Install temporary hoarding located on the site boundaries between noisy	Reduce the construction	Contractor	All Construction	Construction	• Annex 5, TM-EIA	٨
		construction activities and NSRs. The conditions of the hoardings shall	noise levels at low-level		Sites	stage		
		be properly maintained throughout the construction period.	zone of NSRs through					
			partial					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
			screening.					
S8.5.6	AN3	Install movable noise barriers (typical design is wooden framed barrier	Screen the noisy plant	Contractor	All Construction	Construction	• Annex 5, TM-EIA	*
		with a small-cantilevered on a skid footing with 25mm thick internal	items		Sites	stage		
		sound absorptive lining), acoustic mat or full enclosure, screen the noisy	to be used at all					
		plants including air compressor, generators and saw.	construction					
			sites					
S8.5.6	AN4	Use "Quiet" plant	Reduce the noise levels of	Contractor	All Construction	Construction	• Annex 5, TM-EIA	۸
			plant items		Sites where	stage		
					practicable			
S8.5.6	AN5	Sequencing operation of construction plants where practicable.	Operate sequentially within	Contractor	All Construction	Construction	• Annex 5, TM-EIA	٨
			the same work site to		Sites where	stage		
			reduce		practicable			
			the construction airborne					
			noise					
S8.5.6	AN6	Implement a noise monitoring under EM&A programme.	Monitor the construction	Contractor	Selected	Construction	•TM-EIA	٨
			noise levels at the selected		representative	stage		
			representative locations		noise monitoring			
					station			
Water Q	uality (0	Construction Phase)						
S10.7.1	W1	In accordance with the Practice Noise for Professional Persons on	To minimize water quality	Contractor	All construction	Construction	Water Pollution	
		Construction Site Drainage, Environmental Protection Department, 1994	impact from construction		sites	stage	Control Ordinance	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		(ProPECC PN1/94), construction phase mitigation measures shall	site		where practicable		• ProPECC PN1/94	
		include the following:	runoff and general				• TM-EIAO	
		Construction Runoff and Site Drainage	construction activities				• TM-Water	
		At the start of site establishment (including the barging facilities),						٨
		perimeter cut-off drains to direct off-site water around the site						
		should be constructed with internal drainage works and erosion						
		and sedimentation control facilities implemented. Channels						
		(both temporary and permanent drainage pipes and culverts),						
		earth bunds or sand bag barriers should be provided on site to						
		direct stormwater to silt removal facilities. The design of the						
		temporary on-site drainage system will be undertaken by the						
		contractor prior to the commencement of construction.						
		The dikes or embankments for flood protection should be						٨
		implemented around the boundaries of earthwork areas.						
		Temporary ditches should be provided to facilitate the runoff						
		discharge into an appropriate watercourse, through a						
		site/sediment trap. The sediment/silt traps should be incorporated						
		in the permanent drainage channels to enhance deposition rates.						
		The design of efficient silt removal facilities should be based on						
		the guidelines in Appendix A1 of ProPECC PN 1/94, which states						
		that the retention time for silt/sand traps should be 5 minutes						

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log			recommended Measures	implement	measures	Implement the	or standards for	
	Ref			& Main Concerns to	the		measures?	the measures to	
				address	measures?			achieve?	
			under maximum flow conditions. Sizes may vary depending						
			upon the flow rate, but for a flow rate of 0.1 m ³ /s a sedimentation						
			basin of 30m ³ would be required and for a flow rate of 0.5 m ³ /s						
			the basin would be 150 m ³ . The detailed design of the sand/silt						
			traps shall be undertaken by the contractor prior to the						
			commencement of construction.						
		•	All exposed earth areas should be completed and vegetated as						٨
			soon as possible after earthworks have been completed, or						
			alternatively, within 14 days of the cessation of earthworks where						
			practicable. Exposed slope surfaces should be covered by						
			tarpaulin or other means.						
		•	The overall slope of the site should be kept to a minimum to						۸
			reduce the erosive potential of surface water flows, and all traffic						
			areas and access roads protected by coarse stone ballast. An						
			additional advantage accruing from the use of crushed stone is						
			the positive traction gained during prolonged periods of inclement						
			weather and the reduction of surface sheet flows.						
		•	All drainage facilities and erosion and sediment control structures						*
			should be regularly inspected and maintained to ensure proper						
			and efficient operation at all times and particularly following						
			rainstorms. Deposited silt and grit should be removed regularly						

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log			recommended Measures	implement	measures	Implement the	or standards for	
	Ref			& Main Concerns to	the		measures?	the measures to	
				address	measures?			achieve?	
			and disposed of by spreading evenly over stable, vegetated						
			areas.						
		•	Measures should be taken to minimise the ingress of site drainage						N/A
			into excavations. If the excavation of trenches in wet periods is						
			necessary, they should be dug and backfilled in short sections						
			wherever practicable. Water pumped out from trenches or						
			foundation excavations should be discharged into storm drains via						
			silt removal facilities.						
		•	Open stockpiles of construction materials (for example,						۸
			aggregates, sand and fill material) of more than 50m ³ should be						
			covered with tarpaulin or similar fabric during rainstorms.						
		•	Measures should be taken to prevent the washing away of						۸
			construction materials, soil, silt or debris into any drainage						
			system. Manholes (including newly constructed ones) should						
			always be adequately covered and temporarily sealed so as to						
			prevent silt, construction materials or debris being washed into the						
			drainage system and storm runoff being directed into foul sewers						*
		•	Precautions be taken at any time of year when rainstorms are						
			likely, actions to be taken when a rainstorm is imminent or						
			forecasted, and actions to be taken during or after rainstorms are						
			summarised in Appendix A2 of ProPECC PN 1/94. Particular						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		attention should be paid to the control of silty surface runoff during						
		storm events, especially for areas located near steep slopes						
		All vehicles and plant should be cleaned before leaving a						٨
		construction site to ensure no earth, mud, debris and the like is						
		deposited by them on roads. An adequately designed and sited						
		wheel washing facilities should be provided at every construction						
		site exit where practicable. Wash-water should have sand and						
		silt settled out and removed at least on a weekly basis to ensure						
		the continued efficiency of the process. The section of access						
		road leading to, and exiting from, the wheel-wash bay to the public						
		road should be paved with sufficient backfall toward the						
		wheel-wash bay to prevent vehicle tracking of soil and silty water						
		to public roads and drains.						
		Oil interceptors should be provided in the drainage system						
		downstream of any oil/fuel pollution sources. The oil interceptors						N/A
		should be emptied and cleaned regularly to prevent the release of						
		oil and grease into the storm water drainage system after						
		accidental spillage. A bypass should be provided for the oil						
		interceptors to prevent flushing during heavy rain.						
		Construction solid waste, debris and rubbish on site should be						
		collected, handled and disposed of properly to avoid water quality						٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		impacts.						
		All fuel tanks and storage areas should be provided with locks and						
		sited on sealed areas, within bunds of a capacity equal to 110% of						۸
		the storage capacity of the largest tank to prevent spilled fuel oils						
		from reaching water sensitive receivers nearby						
		All the earth works involving should be conducted sequentially to						
		limit the amount of construction runoff generated from exposed						*
		areas during the wet season (April to September) as far as						
		practicable.						
		Adopt best management practices.						
								^
S10.7.1	W3	Sewage Effluent	To minimize water quality	Contractor	All construction	Construction	Water Pollution	
		Portable chemical toilets and sewage holding tanks are	from sewage effluent		sites where	stage	Control Ordinance	۸
		recommended for handling the construction sewage generated by			practicable		• TM-water	
		the workforce. A licensed contractor should be employed to						
		provide appropriate and adequate portable toilets and be						
		responsible for appropriate disposal and maintenance.						
S10.7.1	W5	Accidental Spillage	To minimize water quality	Contractor	All construction	Construction	Water Pollution	
		In order to prevent accidental spillage of chemicals, the following is	impact from accidental		sites where	stage	Control Ordinance	
		recommended:	spillage		practicable		• ProPECC PN1/94	
		Proper storage and handling facilities should be provided;					• TM-EIAO	*

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
	_		address	measures?			achieve?	
		All the tanks, containers, storage area should be bunded and					• TM-Water	
		thelocations should be locked as far as possible from the						*
		sensitive watercourse and stormwater drains;						
		The Contractor should register as a chemical waste producer if						
		chemical wastes would be generated. Storage of chemical waste						٨
		arising from the construction activities should be stored with						
		suitable labels and warnings; and						
		Disposal of chemical wastes should be conducted in compliance						
		with the requirements as stated in the Waste disposal (Chemical						٨
		Waste) (General) Regulation.						
Waste N	lanagen	nent (Construction Waste)						
S11.4.1.1	WM1	On-site sorting of C&D material	Separation of unsuitable	Contractor	All construction	Construction	• DEVB TC(W) No.	
		Geological assessment should be carried out by competent	rock from ending up at		sites	stage	6/2010	N/A
		persons on site during excavation to identify materials which are	concrete batching plants					
		not suitable to use as aggregate in structural concrete (e.g.	and be turned into concrete					
		volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke	for structural use					
		rock should be separated at the source sites as far as practicable						
		and stored at designated stockpile areas preventing them from						
		delivering to crushing facilities. The crushing plant operator should						
		also be reminded to set up measures to prevent unsuitable rock						
		from ended up at concrete batching plants and be turned into						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		concrete for structural use. Details regarding control measures at						
		source site and crushing facilities should be submitted by the						
		Contractors for the Engineer to review and agree. In addition, site						
		records should also be kept for the types of rock materials						
		excavated and the traceability of delivery will be ensured with the						
		implementation of Trip Ticket System and enforced by site						
		supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for						
		tracking of the correct delivery to the rock crushing facilities for						
		processing into aggregates. Alternative disposal option for the						
		reuse of volcanic rock and Aplite Dyke rock, etc should also be						
		explored.						
S11.5.1	WM2	Construction and Demolition Material	Good site practice to	Contractor	All construction	Construction	• Land	
		Maintain temporary stockpiles and reuse excavated fill material for	minimize the waste		sites	stage	(Miscellaneous	۸
		backfilling and reinstatement;	generation and recycle the				Provisions)	
		Carry out on-site sorting;	C&D materials as far as				Ordinance	۸
		Make provisions in the Contract documents to allow and promote	practicable so as to reduce				Waste Disposal	۸
		the use of recycled aggregates where appropriate;	the amount for final				Ordinance	
		Adopt 'Selective Demolition' technique to demolish the existing	disposal				• ETWB TCW No.	N/A
		structures and facilities with a view to recovering broken concrete					19/2005	
		effectively for recycling purpose, where possible;						
		Implement a trip-ticket system for each works contract to ensure						۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		that the disposal of C&D materials are properly documented and						
		verified; and						
		Implement an enhanced Waste Management Plan similar to						٨
		ETWBTC (Works) No. 19/2005 – "Environmental Management on						
		Construction Sites" to encourage on-site sorting of C&D materials						
		and to minimize their generation during the course of construction.						
		In addition, disposal of the C&D materials onto any sensitive						٨
		locations such as agricultural lands, etc. should be avoided. The						
		Contractor shall propose the final disposal sites to the Project						
		Proponent and EPD and get their approval before						
		implementation						
S11.5.1	WM3	C&D Waste	Good site practice to	Contractor	All construction	Construction	• Land	
		Standard formwork or pre-fabrication should be used as far as	minimize the waste		sites	stage	(Miscellaneous	٨
		practicable in order to minimise the arising of C&D materials.	generation and recycle the				Provisions)	
		The use of more durable formwork or plastic facing for the	C&D materials as far as				Ordinance	
		construction works should be considered. Use of wooden	practicable so as to reduce				Waste Disposal	
		hoardings should not be used, as in other projects. Metal	the amount for final				Ordinance	
		hoarding should be used to enhance the possibility of recycling.	disposal				• ETWB TCW	
		The purchasing of construction materials will be carefully planned					No.19/2005	
		in order to avoid over ordering and wastage.						
		The Contractor should recycle as much of the C&D materials as						۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		possible on-site. Public fill and C&D waste should be segregated						
		and stored in different containers or skips to enhance reuse or						
		recycling of materials and their proper disposal. Where						
		practicable, concrete and masonry can be crushed and used as						
		fill. Steel reinforcement bar can be used by scrap steel mills.						
		Different areas of the sites should be considered for such						
		segregation and storage.						
S11.5.1	WM4	General Refuse	Minimize production of the	Contractor	All construction	Construction	Waste Disposal	
		General refuse generated on-site should be stored in enclosed	general refuse and avoid		sites	stage	Ordinance	٨
		bins or compaction units separately from construction and	odour, pest and litter					
		chemical wastes.	impacts					
		A reputable waste collector should be employed by the Contractor						۸
		to remove general refuse from the site, separately from						
		construction and chemical wastes, on a daily basis to minimize						
		odour, pest and litter impacts. Burning of refuse on construction						
		sites is prohibited by law.						
		Aluminium cans are often recovered from the waste stream by						N/A
		individual collectors if they are segregated and made easily						
		accessible. Separate labelled bins for their deposit should be						
		provided if feasible.						
		Office wastes can be reduced through the recycling of paper if						N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		volumes are large enough to warrant collection. Participation in a						
		local collection scheme should be considered by the Contractor.						
S11.5.1	WM6	Chemical Waste	Control the chemical waste	Contractor	All Construction	Construction	Waste Disposal	
		Chemical waste that is produced, as defined by Schedule 1 of the	and ensure proper storage,		Sites	Stage	(Chemical Waste)	٨
		Waste Disposal (Chemical Waste) (General) Regulation,should	handling and disposal.				(General)	
		be handled in accordance with the Code of Practice on the					Regulation	
		Packaging, Labelling and Storage of Chemical Wastes.					Code of Practice	
		Containers used for the storage of chemical wastes should be					on the Packaging,	*
		suitable for the substance they are holding, resistant to corrosion,					Labelling and	
		maintained in a good condition, and securely closed; have a					Storage of	
		capacity of less than 450L unless the specification has been					Chemical Waste	
		approved by the EPD; and display a label in English and Chinese						
		in accordance with instructions prescribed in Schedule 2 of the						
		regulation.						
		The storage area for chemical wastes should be clearly labelled						٨
		and used solely for the storage of chemical waste; be enclosed on						
		at least 3 sides; have an impermeable floor and bunding of						
		sufficient capacity to accommodate 110% of the volume of the						
		largest container or 20 % of the total volume of waste stored in						
		that area, whichever is the greatest; have adequate ventilation; be						
		covered to prevent rainfall entering; and be arranged so that						

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log			recommended Measures	implement	measures	Implement the	or standards for	
	Ref			& Main Concerns to	the		measures?	the measures to	
				address	measures?			achieve?	
			incompatible materials are adequately separated.						
		•	Disposal of chemical waste should be via a licensed waste						٨
			collector; and be to a facility licensed to receive chemical						
			waste, such as the Chemical Waste Treatment Centre which also						
			offers a chemical waste collection service and can supply the						
			necessary storage containers; or be to a reuser of the waste,						
			under approval from the EPD.						

Remarks: ^

- Compliance of mitigation measure
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Recommendation was made during site audit but improved/rectified by the contractor.

N/A Not Applicable

APPENDIX K
WASTE GENERATION IN THE
REPORTING MONTH

Contract No: MTR SCL 1106 - Diamond Hill Station

Date of Report: July, 2013

Monthly Summary Waste Flow Table for 2013

	Actual Quantities of C&D Materials Generated Monthly				Actual Quantities of Non-inert C&D Wastes Generated Monthly							
Monthly	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects (See Note 2)	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste (See Note 3)	Others, e.g. general refuse	Remarks
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)	
Jan	0.610	0.000	0.000	0.000	0.610	0.000	0.000	0.000	0.00	0.000	0.267	
Feb	2.171	0.000	0.000	0.272	1.899	0.000	0.000	0.000	0.00	0.000	0.203	
Mar	1.416	0.000	0.000	0.392	1.024	0.000	0.000	0.000	0.00	1.500	0.172	
Apr	1.977	0.000	0.000	0.463	1.514	0.000	0.000	0.000	0.00	0.000	1.545	
May	2.638	0.000	0.000	0.400	2.238	0.000	0.000	0.050	0.00	0.000	1.396	
Jun	2.467	0.000	0.000	0.000	2.467	0.000	0.002	0.000	0.00	0.480	0.609	
Sub-total	11.280	0.000	0.000	1.527	9.752	0.000	0.002	0.050	0.000	1.980	4.192	
Jul	2.560	0.000	0.000	1.972	0.588	0.000	0.000	0.000	0.000	0.640	0.321	
Aug												
Sept				_	_	_	_	_	_	_		_
Oct												
Nov												
Dec												
Total	13.840	0.000	0.000	3.500	10.340	0.000	0.002	0.050	0.000	2.620	4.513	

Notes:

¹⁾ Assume the densities of Rock, Soil, Mix Rock and Soil, are Regular Spoil to be 2.0 tonnes/m³. Assumption the densities of general refuse is 1.0 tonnes/m³

²⁾ Inert C&D material was delivered to Kai Tak Barging Point Facility (Contract 1108A)

³⁾ Chemical waste includes waste diesel oil. It is assumed density of diesel oil to be 0.8kg/L.

APPENDIX L CUMULATIVE LOG FOR COMPLAINT LOGS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log

Log Ref.	Date/Location	Complainant/ Date of Contact	Details of Complaint	Investigation/ Mitigation Action	File Closed
			-		

Cumulative Log for Notifications of Summons

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Cumulative Log for Successful Prosecutions

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

Appendix G

3rd EM&A Report for Works Contract 1107 – Diamond Hill to Kai Tak Tunnels

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Monthly EM&A Report

[Period from 1 to 31 July 2013]

Works Contract 1107 – Diamond Hill to Kai Tak
Tunnels

	(July 2013)
Certified by:	Priscilla Choy
Position: <u>Enviro</u>	nmental Team Leader
Date	12 th August 2013

Chun Wo - SELI Joint Venture

Shatin to Central Link – Contract 1107 Diamond Hill to Kai Tak Tunnels

Monthly Environmental Monitoring and Audit Report for July 2013

(Version 3.0)

Certified By

Dr. Priscilla Choy (Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	1
Introduction	1
Summary of Construction Works undertaken during Reporting Month	
Variation in Construction Method.	
Environmental Monitoring and Audit Progress	
Regular Construction Noise and Construction Dust Monitoring	
Waste Management	
Landscape and Visual Environmental Site Inspection	
Environmental Exceedance/Non-conformance/Complaint/Summons and Successful	Z
Prosecution	2
Future Key Issues	
1 INTRODUCTION	3
Purpose of the Report	3
Structure of the Report	
2 PROJECT INFORMATION	4
Background	4
General Site Description	4
Construction Programme and Activities	4
Project Organisation	
Status of Environmental Licences, Notification and Permits	
Summary of EM&A Requirements	5
3 ENVIRONMENTAL MONITORING REQUIREMENTS	6
Regular Construction Noise Monitoring	6
Monitoring Parameter and Frequency	
Monitoring Equipment and Methodology	
Field Monitoring	
Monitoring Equipment	
Maintenance and Calibration.	
Action & Limit Level for Construction Noise Monitoring	
Regular Construction Dust Monitoring	
Monitoring Parameter and Frequency	
Monitoring Equipment	
Instrumentation	
HVS Installation	9
Filters Preparation	9
Operating/Analytical Procedures	10
Maintenance/Calibration	11
Action and Limit Levels for Dust Monitoring	11
Landscape and Visual	
4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION	10
REQUIREMENTS	
5 MONITORING RESULTS	
Regular Construction Noise Monitoring	13

Waste Mana	st Monitoringagement und Visual	14
6 ENVIR	RONMENTAL SITE INSPECTION	15
Site Audit		15
	tion Status of Environmental Mitigation Measures	
7 ENVIR	RONMENTAL NON-CONFORMANCE	17
Summary of	Exceedances	17
	Environmental Non-Compliance	
	Environmental Complaint	
•	Environmental Summon and Successful Prosecution	
8 FUTUI	RE KEY ISSUES	18
Construction	n Programme for the Next Month	18
Key Issues i	n the Next Month	18
Monitoring	Schedule in the Next Month	18
9 CONC	LUSIONS AND RECOMMENDATIONS	19
Conclusions	· · · · · · · · · · · · · · · · · · ·	19
	lations	
LIST OF T	ABLES	
Table 2.1	Status of Environmental Licences, Notification and Permits	
Table 3.1	Regular Construction Noise Monitoring Location	
Table 3.2	Noise Monitoring Equipment	
Table 3.3	Dust Monitoring Location	
Table 3.4	Dust Monitoring Parameters and Frequency	
Table 3.5	Dust Monitoring Equipment	
Table 4.1	Status of Required Submissions under EP	
Table 5.1	Summary Table of Dust Monitoring Results during the reporting month	
Table 5.2	Quantities of Waste Generated from the Project	
Table 6.1	Observations and Recommendations of Site Audit	
LIST OF F	IGURES	
TD* - 1		
Figure 1	The Alignment and Works Area for Works Contract 1107	
Figure 2	Locations of Construction Noise Monitoring	
Figure 3	Location of Dust Monitoring	
Figure 4	Organisation Chart and Key Contact of the Project	
LIST OF A	PPENDICES	
Appendix A	Tentative Construction Programme	
Appendix A Appendix B	<u> </u>	
Appendix C		
Appendix D		
Appendix E	<u> </u>	

Appendix F	Noise Monitoring Results and Graphical Presentations
Appendix G	Summary of Exceedance
Appendix H	Site Audit Summary
Appendix I	Event and Action Plans
Appendix J	Updated Environmental Mitigation Implementation Schedule
Appendix K	Waste Generation in the Reporting Month
Appendix L	Cumulative Log for Complaints, Notifications of Summons and Successful
	Prosecutions

EXECUTIVE SUMMARY

Introduction

1. This is the 3rd monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for **MTR Shatin to Central Link (SCL) Works Contract 1107 – Diamond Hill to Kai Tak Tunnels**. This report documents the findings of EM&A Works conducted from 1 July to 31 July 2013.

Summary of Construction Works undertaken during Reporting Month

- 2. The major site activities undertaken in the reporting month include:
 - Site investigation works;
 - Investigation and removal of old foundation works;
 - Hoarding erection;
 - D-wall construction; and
 - Preparation works for site access and drainage.

Variation in Construction Method

3. As of the reporting month, an alignment section of approximately 90m long between DIH and KAT under this Works Contract 1107 will be constructed by the cut-and-cover method, instead of bored tunnelling method as assessed in the approved Environmental Impact Assessment (EIA) Report of Shatin to Central Link - Stabling Sidings at Hung Hom Freight Yard (hereafter referred to as SCL (HHS)) [Register No.: AEIAR-164/2012] due to increased construction risk caused by potential left-in piles. Also, pile removal works would be conducted if reinforced bored piles are identified along the bored tunnelling section. Application for variation of Environmental Permit (VEP) was approved and the updated EP (EP No.: EP-438/2012/C) was issued by EPD on 30 April 2013 for the varied construction method.

Environmental Monitoring and Audit Progress

4. A summary of the monitoring activities in this reporting period is listed below:

Regular Construction Noise and Construction Dust Monitoring

- Regular construction noise monitoring during normal working hours <u>Noise Monitoring Station ID</u>
 - NMS-CA-4⁽¹⁾⁽³⁾/NMS-CA-3⁽²⁾⁽³⁾ (Block 1, Rhythm Garden (north-eastern façade))
 - NMS-CA-5⁽¹⁾⁽⁴⁾/NMS-CA-2⁽²⁾⁽⁴⁾ (Block 1, Rhythm Garden (northern façade)) 5 times
- Construction Dust (24-hour TSP) Monitoring <u>Dust Monitoring Station ID</u>
 - DMS-4⁽¹⁾⁽⁵⁾/ DMS-3⁽²⁾⁽⁵⁾ (Block 1, Rhythm Garden)

6 times

5 times

Remarks:

- (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Noise monitoring on NMS-CA-4⁽¹⁾/ NMS-CA-3⁽²⁾ (Block 1, Rhythm Garden (north-eastern façade) is carried out by Environmental Team of SCL Works Contract 1106.
- (4) Noise monitoring on NMS-CA-5⁽¹⁾/ NMS-CA-2⁽²⁾ (Block 1, Rhythm Garden (northern façade) is carried out by Environmental Team of SCL Works Contract 1106.
- (5) Dust monitoring on DMS-4⁽¹⁾/ DMS-3⁽²⁾ (Block 1, Rhythm Garden) is carried out by Environmental Team of SCL Works Contract 1106.

Waste Management

5. Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Details of waste management data is presented in Section 5 and **Appendix K**.

Landscape and Visual

6. Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 12 and 26 July 2013. Most of the necessary mitigation measures have been implemented and recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

7. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 5, 12, 19 and 26 July 2013. The representative of the IEC joined the site inspection on 19 July 2013. Details of the audit findings and implementation status are presented in Section 6.

Environmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution

- 8. No exceedance of the Action and Limit Levels of regular construction noise monitoring and 24-hour TSP monitoring was recorded during the reporting period.
- 9. No non-compliance event was recorded during the reporting period.
- 10. No Project related environmental complaint and notification of summons/ successful prosecutions was received in this reporting period.

Future Key Issues

- 11. Major site activities for the coming reporting month will include:
 - Site investigation works;
 - Investigation and removal of old foundation works;
 - Hoarding erection:
 - D-wall construction; and
 - Preparation works for site access and drainage.

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Chun Wo – SELI Joint Venture (CSJV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL)Works Contract 1107 – Diamond Hill to Kai Tak Tunnels (hereafter referred to as the Project).

Purpose of the Report

1.2 This is the 3rd EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 1 July to 31 July 2013. The major construction works for Contract 1107 commenced on 27 May 2013.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** details the scope and structure of the report.
 - Section 2: **Project Information -** summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: **Environmental Monitoring Requirement -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.
 - Section 4: **Implementation Status on Environmental Mitigation Measures -** summarises the implementation of environmental protection measures during the reporting period.
 - Section 5: **Monitoring Results** summarises the monitoring results obtained in the reporting period.
 - Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.
 - Section 7: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.
 - Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Tai Wai to Hung Hom Section (hereafter referred to as SCL (TAW-HUH)) is an approximately 11 km long extension of the Ma On Shan Line and links up with the West Rail Line at Hung Hom forming a strategic east-west rail corridor. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The construction of the SCL (TAW-HUH) and SCL (HHS) have been divided into a series of civil construction works contracts. This Works Contract 1107 covers the construction of running tunnel from Kai Tak (KAT) North to SCL Diamond Hill (DIH) Station which is under the approved SCL (HHS) EIA Report. This construction contract was awarded to Chun Wo SELI Joint Venture (CSJV) in March 2013.

General Site Description

2.3 The construction of tunnel from KAT to DIH will employ either cut-and-cover method or bored tunneling. The alignment and works area for the Works Contract 1107 are shown in **Figure 1**.

Construction Programme and Activities

- 2.4 A summary of the major construction activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix A**.
 - Site investigation works;
 - Investigation and removal of old foundation works;
 - Hoarding erection:
 - D-wall construction; and
 - Preparation works for site access and drainage.

Project Organisation

2.5 The project organizational chart and contact details are shown in Figure 4.

Status of Environmental Licences, Notification and Permits

2.6 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.1**. New Construction Noise Permits (CNP) (Permit No. PP-RE0028-13 and GW-RE0781-13) were granted by EPD on 27 June 2013 and 23 July 2013 respectively.

Valid Period Permit / License No. **Status** From To **Environmental Permit (EP)** EP-438/2012/C 30/04/2013 N/A Valid Notification pursuant to Air Pollution Control (Construction Dust) Regulation Ref no.: 357051 18/03/2013 Valid N/A **Billing Account for Construction Waste Disposal** Account No. 7017163 26/03/2013 N/A Valid **Registration of Chemical Waste Producer** 5213-286-C3798-01 29/04/2013 N/A Valid **Effluent Discharge License under Water Pollution Control Ordinance** WT00015861-2013 13/05/2013 31/05/2018 Valid WT00016009-2013 23/05/2013 31/05/2018 Valid **Construction Noise Permit (CNP)** GW-RE0781-13 24/07/2013 26/07/2013 **Expired**

Table 2.1 Summary of the Status of Environmental Licences, Notification and Permits

Summary of EM&A Requirements

2.7 The EM&A programme under Works Contract 1107 require regular dust and noise monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:

14/01/2014

15/07/2013

- All monitoring parameters:
- Action and Limit levels for all environmental parameters;
- Event / Action Plans;

PP-RE0028-13

- Environmental mitigation measures, as recommended in the Project EIA study final report; and
- Environmental requirements in contract documents.
- 2.8 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 2.9 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely construction noise & dust monitoring as well as audit works for the Project in the reporting month.

Valid

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Regular Construction Noise Monitoring

3.1 In accordance with the EM&A Manual, monitoring of construction noise impact should be conducted at the designated monitoring stations. Since access to some of the proposed monitoring locations stated in the EM&A Manual was rejected; alternative locations were proposed and agreed by the ER (Engineer's Representative), IEC (Independent Environmental Checker) and EPD (Environmental Protection Department). The construction noise monitoring locations are listed in **Table 3.1** and shown in **Figure 2**.

Table 3.1 Regular Construction Noise Monitoring Location

Regular Construction Noise Monitoring Location ⁽⁴⁾⁽⁵⁾	Description	Type of Measurement
NMS-CA-4 ⁽¹⁾ / NMS-CA-3 ⁽²⁾	Block 1, Rhythm Garden (north-eastern façade)	Façade
NMS-CA-5 (1) (3)/ NMS-CA-2 (2)(3)	Block 1, Rhythm Garden (northern façade)	Façade

Note:

- (1) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Access to the monitoring location at Canossa Primary School (San Po Kong) (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (Block 1, Rhythm Garden (northern façade)) was proposed and approved by the ER and agreed by the IEC and EPD.
- (4) Noise monitoring on NMS-CA-4⁽¹⁾/ NMS-CA-3⁽²⁾ (Block 1, Rhythm Garden (north-eastern façade) is carried out by Environmental Team of SCL Works Contract 1106.
- (5) Noise monitoring on NMS-CA-5⁽¹⁾/ NMS-CA-2⁽²⁾ (Block 1, Rhythm Garden (northern façade) is carried out by Environmental Team of SCL Works Contract 1106.

Monitoring Parameter and Frequency

- 3.2 Weekly construction noise monitoring was conducted in accordance with the requirements stipulated in the EM&A Manual. If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed. The monitoring schedule for this reporting period of monitoring stations at Rhythm Garden is shown in **Appendix D**.
- 3.3 The construction noise levels were measured in terms of the A-weighted equivalent continuous sound pressure level (L_{Aeq}) in decibels dB(A). L_{Aeq} (30min) (as six consecutive $L_{eq, 5-min}$ readings) was used as the monitoring metric for the time period between 0700 1900 hours on normal weekdays.

CINOTECH

Monitoring Equipment and Methodology

Field Monitoring

- 3.4 The monitoring procedures are as follows:
 - The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
 - The battery condition was checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting : Atime weighting : Fast

L_{eq},30 min reading)

- Prior to and after noise measurement, the meter was calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement was required after re-calibration or repair of the equipment.
- The wind speed at the monitoring station was checked with the portable wind meter. Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
- Noise measurement was paused during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- At the end of the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- A façade correction of +3dB(A) shall be made to the noise parameter obtained by free field measurement.

Monitoring Equipment

3.5 The sound level meters and calibrator used for the noise measurement, as listed in **Table 3.2**, compile with the IEC 651: 1979 and 804:1985 (Type 1) specification. The calibration certificates of the sound level meters are included in **Appendix C**.

Table 3.2 Noise Monitoring Equipment

Monitoring Equipment	Model (Serial no.)
Sound Level Meter	SVANTEK – SVAN 955 (Serial no.: 14303), SVAN 957 (Serial no.: 21459)
Calibrator	SVANTEK – SV30A (Serial no.: 10929, 24803)

CINOTECH

Monthly EM&A Report – July 2013

Maintenance and Calibration

- 3.6 Maintenance and Calibration procedures were as follows:
 - The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator were checked and calibrated at yearly intervals. Copies of calibration certificates are attached in **Appendix** C.

Action & Limit Level for Construction Noise Monitoring

3.7 The Action and Limit Levels are presented in **Appendix B** and the Event / Action Plan (EAP) for noise monitoring is presented in **Appendix I.**

Continuous Noise Monitoring

3.8 With reference to the latest Continuous Noise Monitoring Plan (CNMP) and Construction Noise Mitigation Measures Plan (CNMMP) prepared submitted under EP Condition 2.9 and Condition 2.10 respectively, it is predicted that no residual air-borne construction noise impacts exceeding the relevant noise criteria will be anticipated. Therefore, no continuous noise monitoring is required during the construction of the SCL (TAW-HUH) under Works Contract 1107.

Regular Construction Dust Monitoring

3.9 The proposed dust monitoring stations for the construction phase of the Project, as recommended in the approved EM&A Manual, are listed in **Table 3.3** and shown in **Figure 3**. The proposed locations have been agreed with the ER, EPD and IEC.

Table 3.3 Dust Monitoring Location

Regular Dust Monitoring Location	Description
DMS-4 ⁽¹⁾⁽³⁾ / DMS-3 ⁽²⁾⁽³⁾	Block 1, Rhythm Garden

Note:

- (1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Dust monitoring on DMS-4⁽¹⁾/DMS-3⁽²⁾ (Block 1, Rhythm Garden) is carried out by Environmental Team of SCL Works Contract 1106.

Monitoring Parameter and Frequency

3.10 The dust monitoring (in terms of Total Suspended Particulates (TSP)) was conducted at the designated monitoring stations in accordance with the requirements stipulated in the EM&A Manual. The 24-hour TSP levels were monitored at the frequency and duration stated in **Table 3.4**. The TSP monitoring at Rhythm Garden was conducted as per the schedule presented in **Appendix D**.

Table 3.4 Dust Monitoring Parameters and Frequency

Monitoring Period	Duration	Parameter	Frequency
Impact Monitoring ⁽¹⁾	Throughout the	24-hour TSP	Once per 6 days
	construction period		

Note:

(1) 1- hour TSP shall be conducted when one documented valid complaint is received.

Monitoring Equipment

3.11 **Table 3.5** summarizes the equipment used for the dust monitoring.

Table 3.5 Dust Monitoring Equipment

Equipment	Model and Make	Qty.
HVS	Tisch Environmental, Inc.; Model no. TE-5170, Serial no.: 2352	1
Calibration Orifice	Tisch Environmental, Inc.; Model no. TE – 5025A Orifice ID: 2323	1

Instrumentation

3.12 High Volume Samplers (HVS) connected with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 Appendix B (Part 50).

HVS Installation

- 3.13 The following guidelines were adopted during the installation of HVS:
 - Sufficient support was provided to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The samplers were more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.

Filters Preparation

3.14 Fiberglass filters were used which have a collection efficiency of larger than 99% for particles of 0.3 µm diameter. A HOKLAS accredited laboratory, Wellab Ltd. (HOKLAS Registration No. 083), was responsible for the preparation of pre-weighed filter papers for Cinotech's monitoring team.

- 3.15 All filters, which were prepared by Wellab Ltd., were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- 3.16 Wellab Ltd. has a comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

- 3.17 Operating/analytical procedures for the TSP monitoring were highlighted as follows:
 - Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard.
 - The power supply was checked to ensure the sampler worked properly.
 - The filter holding frame and the area surrounding the filter were cleaned.
 - On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the air quality monitoring station.
 - The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
 - The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts to avoid air leakage at the edges.
 - The shelter lid was closed and secured with the aluminum strip.
 - A new flow rate record chart was set into the flow recorder.
 - The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
 - The flow rate of the HVS sampler would be verified to be constant and recorded on the data sheet before and after sampling.
 - The elapsed time and other relevant information was recorded. After sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
 - It was then placed in a clean plastic envelope and sealed and sent to the Wellab Ltd. for weighing.
 - Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned to Cinotech for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 3.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - Calibration of the HVS (five point calibration) using Calibration Kit was carried out every two months. Copies of calibration certificates are attached in **Appendix C**.
 - The HVS calibration orifice will be calibrated annually.

Action and Limit Levels for Dust Monitoring

3.19 The Action and Limit levels have been established and are presented in **Appendix B** and the Event / Action Plan (EAP) for dust monitoring is presented in **Appendix I.**

Landscape and Visual

3.20 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The Event / Action Plan (EAP) for landscape and visual is presented in **Appendix I**. The implementation status is given in **Appendix J**.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix J**. Status of required submissions under the Environmental Permit (EP) of the reporting period is presented in **Table 4.1**.

Table 4.1 Status of Required Submissions under EP

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report (June 2013)	12 th July 2013

5 MONITORING RESULTS

Regular Construction Noise Monitoring

- 5.1 A total of 10 sets of 30-minute construction noise measurements were carried out at the monitoring stations during normal weekdays of the reporting period by ET of SCL Works Contract 1106. No exceedance of the limit level was recorded at designated monitoring stations.
- 5.2 The noise monitoring results recorded at NMS-CA-5⁽¹⁾/NMS-CA-2⁽²⁾ (Block 1, Rhythm Garden (northern façade)) on 3, 9, 15 and 22 July 2013 exceeded the daytime construction noise criterion. However, the results are not considered as exceedance as they are below or equal to the baseline level.
- 5.3 Based on observation during the on-site monitoring, road traffic nearby is considered as a potential noise source other than construction works of the Project that affects the monitoring results of the reporting month.
- 5.4 The noise monitoring results together with their graphical presentations are presented in **Appendix F**.
- 5.5 No exceedance of the Action and Limit Levels of construction noise due to the Project was recorded during the reporting period.

Regular Dust Monitoring

5.6 6 sets of 24-hour TSP monitoring were carried out at the designated monitoring stations during normal weekdays of the reporting period by ET of SCL Works Contract 1106. The monitoring results together with their graphical presentations are presented in **Appendix E** and a summary of the dust monitoring results in this reporting month is given in **Table 5.1**.

Table 5.1 Summary Table of Dust Monitoring Results during the reporting month

Parameter	Minimum	Maximum	Average	Action Level,	Limit Level,
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
24-hr TSP (DMS-4 ⁽¹⁾⁽³⁾ / DMS-3 ⁽²⁾⁽³⁾)	22.9	47.1	30.2	160.4	260

- 5.7 Based on observation during the on-site monitoring, road traffic emission nearby is considered as a potential dust source other than construction works of the Project that affects the monitoring results of the reporting month.
- 5.8 Wind monitoring data were obtained from Kai Tak Meteorological Station of Hong Kong Observatory and shown on **Appendix E**.
- 5.9 No exceedance of the Action and Limit Levels of the 24-hour TSP was recorded during the reporting period.

Remarks:

- (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Dust monitoring on DMS-4⁽¹⁾/DMS-3⁽²⁾ (Block 1, Rhythm Garden) is carried out by Environmental Team of SCL Works Contract 1106.

Waste Management

5.10 Waste generated from this Project includes inert construction and demolition (C&D) materials and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes like plastics and paper/cardboard packaging materials. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table 5.2**. No paper/cardboard packaging and plastics were generated during this reporting month. Details of waste management data is presented in **Appendix K**.

Table 5.2 Quantities of Waste Generated from the Project

			Quantity				
Reporting	CAD		C&D Materi	ials (non-inert)	(b)		
Month	C&D Materials		Chamia l	Recycled materials			
TVIOITII	(inert) (a)	General Refuse Chemical Waste		Paper/ cardboard	Plastics	Metals	
July 2013	880 m³	$35 m^3$	0 kg	0 kg	0 kg	100 kg	

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil,
- (b) Non-inert C&D materials include steel, paper/cardboard packaging waste, plastics and other wastes such as general refuse and vegetative wastes. Steel materials generated from the project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.

Landscape and Visual

5.11 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 12 and 26 July 2013. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION

Site Audit

- 6.1 Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audit are attached in **Appendix H**.
- 6.2 Site audits were conducted on 5, 12, 19 and 26 July 2013 by ET. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 19 July 2013. No site inspection was conducted by EPD during the reporting month. The details of observations during site audit can refer to **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix J**.
- During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

 Table 6.1
 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
	5 Jul 2013	Sand bag bunding should be provided for all sides of gully to avoid untreated runoff discharge.	The observation was observed to be improved/rectified by the Contractor during the audit session on 12 Jul 2013.
	5 Jul 2013	Reminder: To provide sand bag bunding to U-channel near site boundary.	The observation was observed to be improved/rectified by the Contractor during the audit session on 12 Jul 2013.
Water Quality	19 Jul 2013	Stagnant water is observed in the U-channel near the site boundary. The Contractor is reminded to provide sand bag bunding to avoid runoff out of the site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 2 Aug 2013.
	19 Jul 2013	Footings of hoarding at the site boundary should be sealed up to avoid surface runoff out of the site.	Follow up action will be reported in next reporting month.
	26 Jul 2013	Muddy water observed discharged to U-channel out of the site. The Contractor is reminded to avoid surface runoff out of site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 2 Aug 2013.
	26 Jul 2013	Reminder: Footings of hoarding at the site boundary should be sealed up under good weather conditions to avoid surface runoff.	Follow up action will be reported in next reporting month.
Noise			
Landscape and Visual	28 Jun 2013	Reminder: It is recommended tree protection zone to be enlarged whenever practicable and remove materials within the protection zone.	The observation was observed to be improved/rectified by the Contractor during the audit session on 5 Jul 2013.
	5 Jul 2013	Reminder: Enlarge the tree protection zone and properly maintain the retained trees on-	The observation was observed to be improved/rectified by

Parameters	Date	Observations and Recommendations	Follow-up
		site.	the Contractor during the audit session on 12 Jul 2013.
	12 Jul 2013	Construction materials and boulders should be removed from near the tree. The Contractor is reminded to set up a tree protection area.	Follow up action will be reported in next reporting month.
	19 Jul 2013	Construction materials should be removed from near the tree. The Contractor is reminded to set up tree protection area.	The observation was observed to be improved/rectified by the Contractor during the audit session on 26 Jul 2013.
	28 Jun 2013	Stockpiles of materials are advised to be covered by impervious sheeting.	The observation was observed to be improved/rectified by the Contractor during the audit session on 5 Jul 2013.
	5 Jul 2013	Dust generation observed from grouting plant. The Contractor is reminded to provide a proper enclosure to avoid dust generation.	The observation was observed to be improved/rectified by the Contractor during the audit session on 12 Jul 2013.
Air Quality	5 Jul 2013	Reminder: To provide sufficient water spray to haul road and keep the on-site record for water spray.	The observation was observed to be improved/rectified by the Contractor during the audit session on 12 Jul 2013.
	12 Jul 2013	Reminder: Properly cover the stockpile of dusty material.	Follow up action will be reported in next reporting month.
	19 Jul 2013	Reminder: Properly cover the stockpile of dusty material.	Follow up action will be reported in next reporting month.
	26 Jul 2013	Reminder: Properly cover stockpile of dusty material.	Follow up action will be reported in next reporting month.
	28 Jun 2013	Reminder: It is reminded non-chemical wastes should be removed from chemical wastes storage area.	The observation was observed to be improved/rectified by the Contractor during the audit session on 5 Jul 2013.
Waste / Chemical	28 Jun 2013	Reminder: It is reminded stagnant water on drip tray for generator should be cleared.	The observation was observed to be improved/rectified by the Contractor during the audit session on 5 Jul 2013.
Management	19 Jul 2013	Reminder: To provide tarpaulin sheets for placing the breaker to avoid chemical leakage to unpaved ground.	The observation was observed to be improved/rectified by the Contractor during the audit session on 26 Jul 2013.
	26 Jul 2013	Chemical leakage observed on unpaved ground. The Contractor is reminded to provide a plug to drip tray to avoid further leakage.	The observation was observed to be improved/rectified by the Contractor during the audit session on 2 Aug 2013.
Permits/ Licenses			

Contract 1107 Diamond Hill to Kai Tak Tunnels Monthly EM&A Report – July 2013

7 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

7.1 No exceedance of the Action and Limit Levels of regular construction noise monitoring and 24-hour TSP monitoring was recorded during the reporting period. The summary of exceedance is provided in **Appendix G**.

Summary of Environmental Non-Compliance

7.2 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

7.3 No environmental Project-related complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix L**.

Summary of Environmental Summon and Successful Prosecution

7.4 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix L**.

8 FUTURE KEY ISSUES

Construction Programme for the Next Month

- 8.1 A tentative construction programme is provided in **Appendix A**. The major construction activities in the coming month will include:
 - Site investigation works;
 - Investigation and removal of old foundation works;
 - Hoarding erection;
 - D-wall construction; and
 - Preparation works for site access and drainage.

Key Issues in the Next Month

- 8.2 Key issues to be considered in the coming month include:
 - Dust impact from excavating works;
 - Dust arising from loading, unloading, transfer, handling or storage of bulk cement or dry PFA and bentonite;
 - Treatment of wastewater from D-wall construction;
 - To ensure the performance of sorting of C&D materials at source (during generation); and
 - To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.

Monitoring Schedule in the Next Month

8.3 The tentative schedule of regular construction noise monitoring and 24-hour TSP monitoring at Rhythm Garden in the next reporting period is presented in **Appendix D**. The regular construction noise monitoring and 24-hour TSP monitoring will be conducted at the same monitoring locations in the next reporting period.

9 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 July to 31 July 2013 in accordance with EM&A Manual and the requirement under EP.
- 9.2 No exceedance of the Action and Limit Levels of regular construction noise and 24-hour TSP monitoring was recorded at the designated monitoring stations during the reporting month.
- 9.3 4 times of joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET and 2 times of bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted during the reporting period.
- 9.4 There was no Project related environmental complaint, successful prosecution or notification of summons received during the reporting month.
- 9.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

9.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

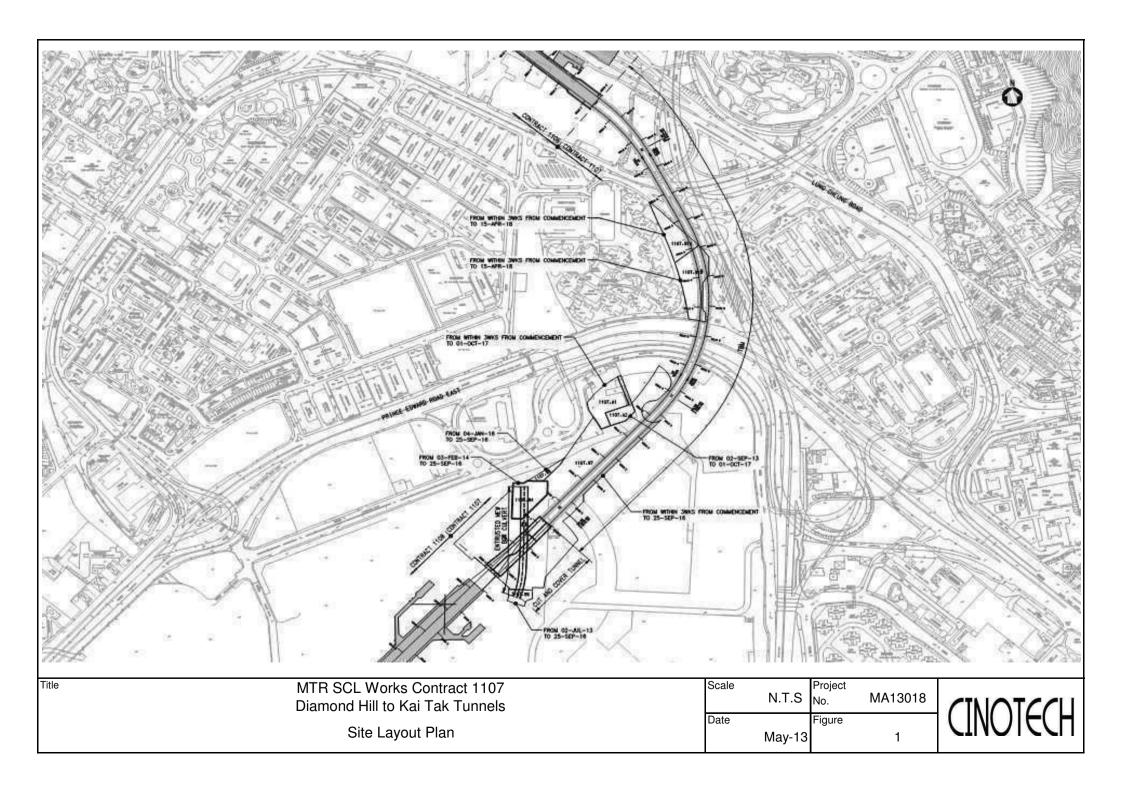
Water Quality

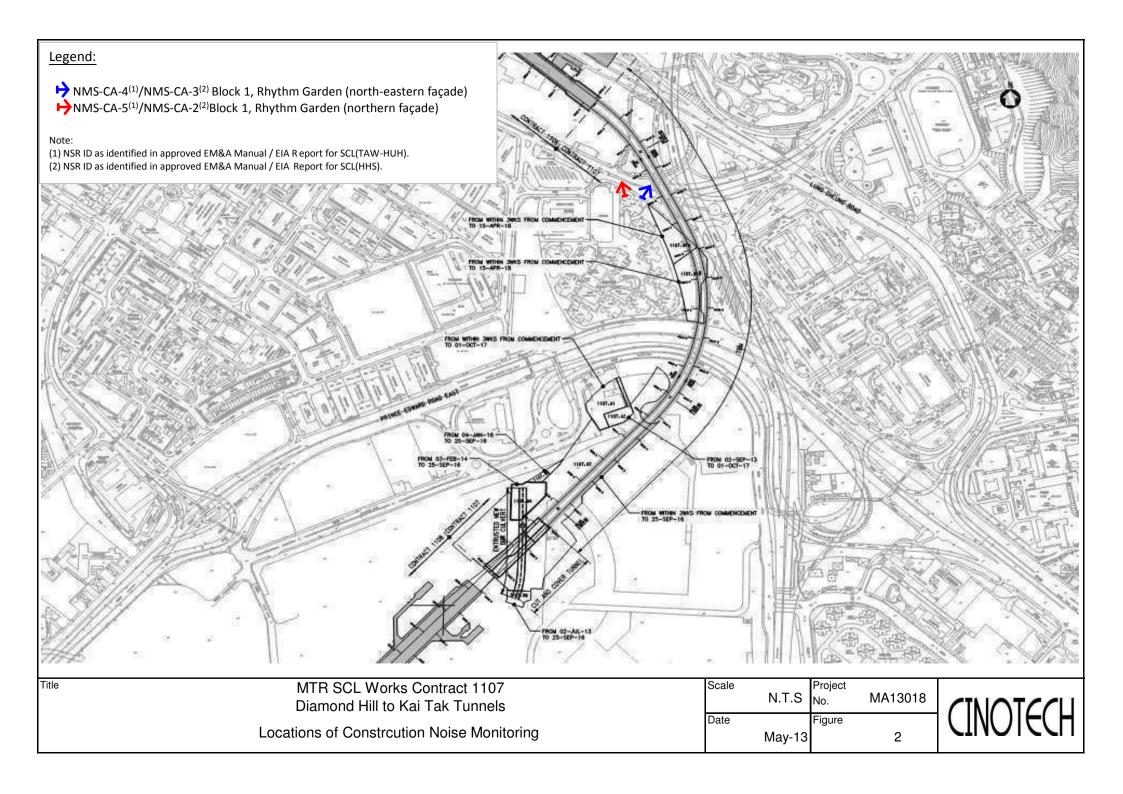
- It is recommended an adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process.
- It is recommended particular attention should be paid to the control of silty surface runoff into existing drainage during storm events, especially during coming wet season.

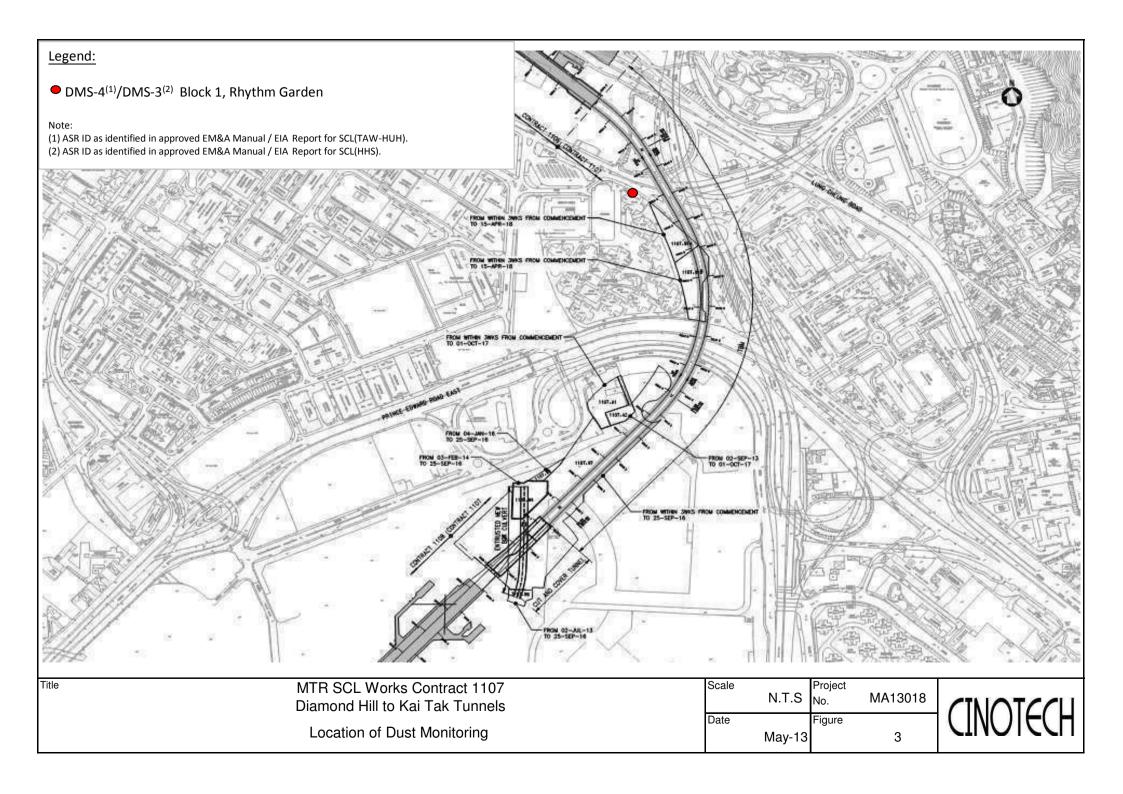
Landscape and Visual

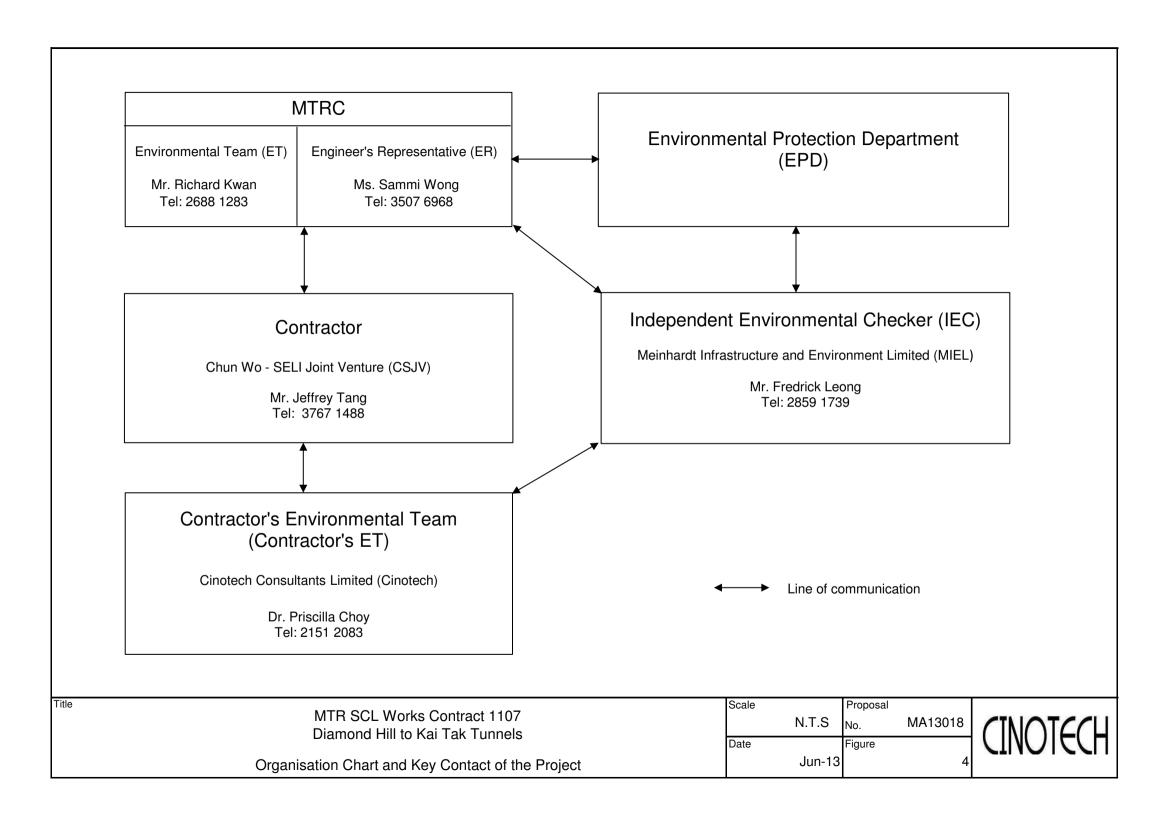
• It is recommended to set up "no-intrusion zone" for existing trees on site in order to restrict the site working staff from entering into the zone prior to any tree survey or assessment.

Air Quality


- It is reminded that any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet.
- It is reminded that a proper enclosure for the grouting plant should be provided to avoid dust generation.


Waste/Chemical Management


• It is reminded good site practice should be adopted by providing drip tray with


- adequate capacity for powered mechanical equipment whenever practicable. Drip tray should also be properly maintained in good condition such to prevent from accidental fuel/chemicals spillage.
- It is reminded that tarpaulin sheets should be provided for placing the breaker to avoid chemical leakage to unpaved ground.

FIGURES

APPENDIX A TENTATIVE CONSTRCUTION PROGRAMME

Activity ID	Activity Name	BL Start	BL Finish	Original	Start	Finish	2013		2013	
				Duration			Jun	Jul	Aug	Sep
MTRC SCL	1107 Diamond Hill to Kai Tak Tunnels	11-Mar-13	11-Dec-13	226	11-Mar-13 A	11-Dec-13		1		
Shedule of	Completion Obligation & Other Contr	24-Jun-13	29-Sep-13	81	24-Jun-13 A	29-Sep-13	-			√
Schedule of	Milestone Dates - Cost Centre A	14-Jul-13	29-Sep-13	65	14-Jul-13	29-Sep-13		▼		_
1107.MS10160	A2a Approval of Preliminary Master Programme & Time Chainage Programme		14-Jul-13	0		14-Jul-13*		*		
1107.MS10170	A2b Engr confirm satisfactory implementation of safety & envir requirements in accordance with the Specified Plans		14-Jul-13	0		14-Jul-13*		•		
1107.MS10180	A3 Approval of Detailed Interface Specifications with all the Designated Contractors (PS Appendix J)		29-Sep-13	0		29-Sep-13*				•
Schedule of	Milestone Dates - Cost Centre C	11-Jul-13	11-Jul-13	0	11-Jul-13	11-Jul-13		V		
1107.MS10380	C1 Submit design and manuf'g data complete & Engr's 'notice of no objection' obtained for mould manufacture 25AUG13		11-Jul-13	0		11-Jul-13*		•		
Schedule of	Milestone Dates - Cost Centre D	09-Aug-13	09-Aug-13	0	14-Aug-13	14-Aug-13			▼	
1107.MS10540	D2a 30% by plan length of Dwalls complete at Kai Tak Box 2A and Box 1A shaft 28JUL13 Proposed 11AUG13		09-Aug-13	0		14-Aug-13*		· ·	*	
Schedule of	Milestone Dates - Cost Centre F	24-Jun-13	24-Jun-13	0	24-Jun-13 A	24-Jun-13 A	▼			
1107.MS10660	F3 TTMS at Choi Hung Road (East) for water main replacement scheme approved 30JUN13		24-Jun-13	0		24-Jun-13 A	•			
Schedule of	Milestone Dates - Cost Centre I (for Option 2 i	11-Jul-13	11-Jul-13	0	11-Jul-13	11-Jul-13		▼		
1107.MS10750	I1 Submit design and manuf'g data complete & Engr's 'notice of no objection' obtained for mould manufacture 25AUG13		11-Jul-13	0		11-Jul-13*		•		
Schedule of	Access Dates for Works Areas	22-Jul-13	22-Sep-13	53	22-Jul-13	22-Sep-13				7
1107.AD11030	Access for 1107.W6	22-Jul-13		0	22-Jul-13*			*		
1107.AD11070	Access for 1107.A2	22-Sep-13		0	22-Sep-13*					•
Cost Centr	e A - Preliminaries	11-Mar-13	25-Sep-13	200	11-Mar-13 A	11-Nov-13				
Contractor S	Submission Schedule	11-Mar-13	25-Sep-13	162	11-Mar-13 A	25-Sep-13				
1107.11200	P2.7 Preparation & Submission of Detailed Supervision Plan	11-Mar-13	16-Mar-13	6	11-Mar-13 A	24-Jun-13 A				
1107.11240	P4.5.11, G2.9.1 Construction of 6 nos. of Project Sign Boards	11-Mar-13	25-Mar-13	13	11-Mar-13 A	16-Jul-13				
1107.11260	G6.8.3 First SLG Approval	11-Mar-13	28-Mar-13	16	11-Mar-13 A	26-Jun-13 A				
1107.11290	G13.1.1 Plant & Material Testings	11-Mar-13	06-Apr-13	20	11-Mar-13 A	24-Jul-13				
1107.11310	COC13.2 Submit Guarantee to Employer	11-Mar-13	08-Apr-13	21	11-Mar-13 A	15-Jun-13 A		1 1 1 1 1		
1107.11370	P19.7 Endorsement of Road closure Order (TTMS)	11-Mar-13	10-Apr-13	23	11-Mar-13 A	01-Jun-13 A				
1107.11460	P41.1.1 Supply Survey Equipment	11-Mar-13	10-Apr-13	23	11-Mar-13 A	15-Jun-13 A		1 1 1 1 1		
1107.11590	G7.5.1 Preparation & Submission of Schedule of Utility Services arrangements	11-Mar-13	01-Jun-13	66	11-Mar-13 A	15-Jul-13				
1107.11610	G1.7.1 Submit Survey Method Statement	11-Mar-13	08-Jun-13	72	11-Mar-13 A	21-Jun-13 A		·		;
1107.11620	P7.3.21 Preparation & Submission of Tunnel Construction Method Statement & Temp Works Design for 1106 & 1108 Review	11-Mar-13			11-Mar-13 A	04-Jun-13 A				
1107.11640	P11.1.13 Provision of Common Temporary Haul Road	11-Mar-13	08-Jun-13	72	11-Mar-13 A	10-Jul-13				
	DATA DATE: 20 Jun 12	1_				_				

PAGE: 1 OF 10

PROJECT ID: SCL1107 M-3MR-004-1

02-Jul-13

Contract 1107 Diamond Hill to Kai Tak Tunnels

3 Month Rolling Programme -DD 1st JUL 2013

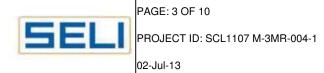
Date	Revision	Checked	Approved
02-Jul-13	0	KCL	

tivity ID	Activity Name	BL Start	BL Finish	Original	Start	Finish			013	
1107.11650	P13.6.1 Preparation & Submission of Tunnel Survey Method Statement	11-Mar-13	08-Jun-13	Duration 72	11-Mar-13 A	29-Jun-13 A	Jun	Jul	Aug	Sep
1107.11660	P31.5 Preparation & Submission of Contractor's Cooperative Training Scheme (CCTS)	11-Mar-13	08-Jun-13	72	11-Mar-13 A	02-Jul-13		1		
1107.11690	P55.2 Preparation & Complete Building Information Model based on Engr's Dwgs	11-Mar-13	08-Jun-13	72	02-Jul-13	24-Sep-13				
1107.11700	G3.11.4 Conduct First Safety Baseline Audit	09-Jul-13		0	09-Jul-13*			•		
1107.11730	G5.1.13, 5.1.14 Submit First Environmental Objectives & Targets	11-Mar-13	11-Mar-13	1	02-Jul-13	02-Jul-13		0		
1107.11750	G3.39.5 First Inspection of Safety Hamesses - NOT APPLICABLE	11-Mar-13	09-Apr-13	22	27-Jun-13 A	29-Jun-13 A				
1107.11760	G3.43.3 Submission of First Dangerous Goods Register- NOT APPLICABLE	11-Mar-13	09-Apr-13	22	27-Jun-13 A	29-Jun-13 A		 		
1107.11790	G17.1.5, 17.17 Submission of First Monthly Hazard Log incl Emergency Plan	04-Jul-13	29-Jul-13	22	09-Jul-13	02-Aug-13			-	
1107.11800	P4.5.12 Submission of First Monthly As-Built Hoarding Plan	11-Mar-13	09-Apr-13	1	02-Jul-13	02-Jul-13		0		
1107.11810	P10.13 Submission of First Monthly Earned Value Report	15-Jul-13	08-Aug-13	22	15-Jul-13	08-Aug-13	 			
1107.11820	P10.14 Submission of First Monthly List of Sub-contractors Disciplines	11-Mar-13	09-Apr-13	22	11-Mar-13 A	18-Jun-13 A				
1107.11830	P22.20, 22.66 Submission of First Monthly Environmental Monitoring & Audit Report	11-Mar-13	09-Apr-13	22	11-Mar-13 A	14-Jun-13 A				
1107.11840	Submission of First Monthly Noise Forecast Report	11-Mar-13	09-Apr-13	22	11-Mar-13 A	03-Jul-13				
1107.11860	G5.1.16 Submit First Fuel Consumption Record	11-Mar-13	08-Jun-13	72	11-Mar-13 A	08-Jun-13 A				
1107.11870	P22.17 Submission of First Monthly Environmental Monitoring & Audit for Air Noise & Water	11-Mar-13	09-Apr-13	22	11-Mar-13 A	14-Jun-13 A				
1107.11880	P22.49 Submission of First Monthly Environmental Monitoring & Audit for Waste Flow Table	11-Mar-13	09-Apr-13	22	11-Mar-13 A	14-Jun-13 A				
1107.11910	COC26.3 Effect Professional Indemnity Insurance	11-Mar-13	10-May-13	36	02-Jul-13	12-Aug-13				
1107.11940	G1.11.1, 7.5.1 Preparation & Submission of Deformation Monitoring Scheme	11-Mar-13	10-May-13	48	11-Mar-13 A	24-Jun-13 A				
1107.11970	G3.33.6 Submit Tunnel Ventilation Design by Engineer	11-Mar-13	10-May-13	48	11-Mar-13 A	29-Jun-13 A	1			
1107.12010	G5.5.4 Application to EPD for Water Pollution Control Ordinance License	11-Mar-13	10-May-13	48	11-Mar-13 A	13-Jun-13 A				
1107.12020	G5.7.10 Preparation & Application of Construction Noise Permit	11-Mar-13	10-Jun-13	73	11-Mar-13 A	13-Jun-13 A				
1107.12170	P11.11.3 Conduct Underground Obstruction Survey	11-Mar-13	10-May-13	48	11-Mar-13 A	17-Jun-13 A		<u> </u>		
1107.12190	P13.14 Preparation & Submission of Details & Tests of GFRP	11-Mar-13	06-Apr-13	20	11-Mar-13 A	15-Jun-13 A				
1107.12220	P17.6.6 Submission of EPD Billing Account for Disposal of Construction Waste	11-Mar-13	06-Jun-13	70	11-Mar-13 A	04-May-13 A				
1107.12260	P19.3 Submit First TTMS As-built Records	09-Sep-13	25-Sep-13	14	09-Sep-13	25-Sep-13				
1107.12330	P29.5.3 Install Instrumentation & Submit Baseline Readings	11-Mar-13	10-May-13	48	11-Mar-13 A	24-Jun-13 A				
1107.12350	P43.11.1 Review Detail Plan of Project Related Events/Ceremonies	11-Mar-13	09-Apr-13	6	02-Jul-13	08-Jul-13				
Project Aud	dit	08-Jun-13	08-Jul-13	24	08-Jun-13 A	08-Jul-13	V			
1107.12440	1st Audit of safety & environmental plans	08-Jun-13	08-Jul-13	24	08-Jun-13 A	08-Jul-13				
Site Enablin	na Works	11-Mar-13	10-Sep-13	200	11-Mar-13 A	11-Nov-13		<u> </u>		

PAGE: 2 OF 10

PROJECT ID: SCL1107 M-3MR-004-1

02-Jul-13


Contract 1107 Diamond Hill to Kai Tak Tunnels

3 Month Rolling Programme -DD 1st JUL 2013

Date	Revision	Checked	Approved
02-Jul-13	0	KCL	

tivity ID	Activity Name	BL Start	BL Finish	Original	Start	Finish		20				
Site Setup		30-Apr-13	10-Sep-13	Duration 157	06-May-13 A	11-Nov-13	Jun	Jul	Aug		Sep)
	te Accomodation		10-Sep-13	111		11-Nov-13						
							<u> </u>			1		
1107.12620	Engr's Site Accomodation- First Design Submission & Review of Building Plans	30-Apr-13	25-May-13	21	02-Jul-13	25-Jul-13				 		
1107.12630	Engr's Site Accomodation- Final Submission of Building Plans	27-May-13	08-Jun-13	12	26-Jul-13	08-Aug-13						
1107.12640	Engr's Site Accomodation- Final Approval of Building Plans	10-Jun-13	17-Jun-13	6	09-Aug-13	15-Aug-13						
1107.12650	Engr's Site Accomodation- Construction Works	18-Jun-13	10-Sep-13	72	16-Aug-13	11-Nov-13						
Misc Items		06-May-13	03-Jun-13	24	06-May-13 A	13-May-13 A						
1107.12710	Site Condition Survey incl EBS	06-May-13	03-Jun-13	24	06-May-13 A	13-May-13 A	<u> </u>			1		
Hoarding Ere	ction	07-May-13	04-Jun-13	24	07-May-13 A	04-Jun-13 A				1		
1107.12790	Hoarding - Erection	07-May-13	04-Jun-13	24	07-May-13 A	04-Jun-13 A			 			
Temporary Si		11-Mar-13	25-May-13		11-Mar-13 A	26-Jun-13 A						
1107.12800	Temporary Drainage - Submit Plan to MTR	11-Mar-13	25-Apr-13	36	11-Mar-13 A	25-Apr-13 A						
1107.12810	Temporary Drainage - Construct Temp Drains	26-Apr-13	25-May-13	24	26-Apr-13 A	26-Jun-13 A						
Instrumentati	on & Monitoring	04-May-13	14-Jun-13	34	04-May-13 A	14-Jun-13 A				1		
1107.12820	Predrilling for D-walls 4 nos	04-May-13	15-May-13	10	04-May-13 A	15-May-13 A				1		
1107.12830	Install 8 nos. Peizometers outside D-wall Footprint	16-May-13	14-Jun-13	24	16-May-13 A	14-Jun-13 A				i		
Cost Centi	re B - Procurement of TBM	11-Mar-13	22-Oct-13	183	11-Mar-13 A	22-Oct-13						
1107.12840	Submission & Approval of TBM Design	11-Mar-13	24-May-13	59	11-Mar-13 A	24-May-13 A						
1107.12850	TBM Detailed Design	25-May-13	27-Jun-13	28	25-May-13 A	27-Jun-13 A						
1107.12851	TBM Manufacture & Refurbishment	28-Jun-13	30-Aug-13	54	28-Jun-13 A	30-Aug-13						
1107.12852	Back Up Pre-assembly	31-Aug-13	22-Oct-13	42	31-Aug-13	22-Oct-13						
	·	31-Aug-13			31-Aug-13							
1107.12920	B1 Design of tunnel boring machine (TBM) approved by the Engineer and order for TBM placed		26-May-13	0		26-May-13 A				 		
Cost Cent	re C - Tunnel Construction by TBM	11-Mar-13	11-Dec-13	226	11-Mar-13 A	11-Dec-13						
Site Enablin	ng Works for TBM	11-Mar-13	11-Dec-13	226	11-Mar-13 A	11-Dec-13						
Ground Treat	ment	11-Mar-13	02-Dec-13	218	11-Mar-13 A	02-Dec-13						
Jet Grouting	Treatment for KAT TBM Launch Shaft	11-Mar-13	16-Jul-13	102	11-Mar-13 A	16-Jul-13				1		
1107.12940	Procurement of Grouting Sub-contractor	11-Mar-13	10-May-13	48	11-Mar-13 A	10-May-13 A						
1107.12950	Submission & Approval of Method Statement	11-May-13	02-Jul-13	42	11-May-13 A	02-Jul-13			1			
1107.12960	Mobilisation	03-Jul-13	16-Jul-13	12	03-Jul-13	16-Jul-13						
	Treatment for Cross Passage 3	10-Jul-13	12-Sep-13	56		12-Sep-13		—				
Jet Grouting	Treatment for Gross Fassage 3	10 00110	12 OGP-13		10 001-10	12 06μ-10					•	
	T- :							·				
	DATA DATE: 30-Jun-13	Contra	act 1107 Diar	mond Hill to	Kai Tak Tunne	els			Date Rev	/ision	Checked	Approve

3 Month Rolling Programme -DD 1st JUL 2013

Date	Revision	Checked	Approved
02-Jul-13	0	KCL	

Act	vity ID	Activity Name	BL Start	BL Finish	Original	Start	Finish		20	13	
					Duration			Jun	Jul	Aug	Sep
	1107.13030	Prepare TTMS & Submit	10-Jul-13	13-Aug-13	30	10-Jul-13	13-Aug-13				
П	1107.13040	Obtain Approval from SLG	14-Aug-13	12-Sep-13	26	14-Aug-13	12-Sep-13				
П	Jet Grouting Tro	eatment for Cross Passage 1	15-Jul-13	21-Oct-13	82	15-Jul-13	21-Oct-13		-		
	1107.13238	GI Boreholes 2 nos.	15-Jul-13	25-Jul-13	10	15-Jul-13	25-Jul-13				
П	1107.13239	Design of Grouting	26-Jul-13	21-Oct-13	72	26-Jul-13	21-Oct-13				
П	Pressure Grout	ing Treatment to Pier Z5 Foundation	08-Jul-13	08-Oct-13	78	08-Jul-13	08-Oct-13		-		
П	1107.13297	Commence G.I. Boring works	08-Jul-13		0	08-Jul-13*			······		-
	1107.13298	GI Borehole 1 no.	08-Jul-13	13-Jul-13	6	08-Jul-13	13-Jul-13				
Ш	1107.13299	Design of Grouting	15-Jul-13	08-Oct-13	72	15-Jul-13	08-Oct-13				
	1107.13300	Commence Pressure Grouting works	16-Sep-13		0	16-Sep-13*				; 	•
	1107.13310	Site Clearance Plant set up	16-Sep-13	30-Sep-13	12	16-Sep-13	30-Sep-13				
Ш	Pressure Grouti	ing Treatment for DIH TBM Retrieval Shaft	02-Sep-13	02-Dec-13	76	02-Sep-13	02-Dec-13				-
	1107.13387	1107 Allowed access to Retreival Shaft area for GI (Subject to Completion Date of Archealogical Dig by 1106)	02-Sep-13		0	02-Sep-13*					•
Ш	1107.13388	GI Boreholes 2 nos.	02-Sep-13	12-Sep-13	10	02-Sep-13	12-Sep-13				
П	1107.13389	Design of Grouting	13-Sep-13	02-Dec-13	66	13-Sep-13	02-Dec-13				
11	OPTION 3 - Obs	struction Removal	11-Mar-13	11-Dec-13	226	11-Mar-13 A	11-Dec-13				
	Removal of Aba	indoned Airport Admin Bldg 1 Foundations	15-Jul-13	11-Dec-13	126	15-Jul-13	11-Dec-13		-		
	1107.13490	Trial Pit to Locate Foundations (PROVISIONAL, To be Confirmed)	15-Jul-13	27-Jul-13	12	15-Jul-13*	27-Jul-13				
Ш	1107.13500	Remove Pile Caps (PROVISIONAL, To be Confirmed)	29-Jul-13	07-Sep-13	36	29-Jul-13	07-Sep-13	·			
	1107.13510	Remove Abandoned Airport Admin. Bldg Piles (PROVISIONAL, To be Confirmed)	09-Sep-13	11-Dec-13	78	09-Sep-13	11-Dec-13				
	Removal of Aba	ndoned Airport Admin Bldg 2 Foundations	09-Sep-13	06-Nov-13	48	09-Sep-13	06-Nov-13				V
	1107.13540	Trial Pit to Locate Foundations (PROVISIONAL, To be Confirmed)	09-Sep-13	23-Sep-13	12	09-Sep-13	23-Sep-13			·	
	1107.13550	Remove Pile Caps (PROVISIONAL, To be Confirmed)	24-Sep-13	06-Nov-13	36	24-Sep-13	06-Nov-13				
	Removal of Aba	indoned Pre-existing Structure Foundations	11-Mar-13	21-Oct-13	182	11-Mar-13 A	21-Oct-13				
	1107.13590	Preliminary Discussions with MTR, Engineers	11-Mar-13	25-Apr-13	36	11-Mar-13 A	25-Apr-13 A				
	1107.13600	Prepare TTMS & Submit	26-Apr-13	01-Jun-13	30	26-Apr-13 A	01-Jun-13 A			1 1 1 1 1	
	1107.13610	Obtain Approval from SLG	03-Jun-13	09-Jul-13	30	03-Jun-13 A	09-Jul-13			1 	
	1107.13620	Mobilisation (PROVISIONAL, To be Confirmed)	10-Jul-13	23-Jul-13	12	10-Jul-13	23-Jul-13	}			
	1107.13630	Stage 1 TTMS - Trail Pits (PROVISIONAL, To be Confirmed)	24-Jul-13	10-Aug-13	16	24-Jul-13	10-Aug-13				
	1107.13640	Stage 1 TTMS - Demolish Planter (PROVISIONAL, To be Confirmed)	12-Aug-13	29-Aug-13	16	12-Aug-13	29-Aug-13				
		1]			i. <u>I</u> i.		1	1

PAGE: 4 OF 10

PROJECT ID: SCL1107 M-3MR-004-1

02-Jul-13

Contract 1107 Diamond Hill to Kai Tak Tunnels

3 Month Rolling Programme -DD 1st JUL 2013

Date	Revision	Checked	Approved
02-Jul-13	0	KCL	

ge 1 TTMS - Extract Old Foundations (PROVISIONAL, To be			Duration			lean lead Access Com-
		21.2.12		22.4	21.0.110	Jun Jul Aug Sep
	30-Aug-13		42	30-Aug-13	21-Oct-13	
oned Blackdown Barracks Foundations	25-Mar-13	09-Oct-13	161	25-Mar-13 A	09-Oct-13	
epare TTMS & Submit	25-Mar-13	20-Apr-13	20	25-Mar-13 A	20-Apr-13 A	
tain Approval from SLG	22-Apr-13	23-May-13	26	22-Apr-13 A	23-May-13 A	
ge 1 TTMS & Install New Directional Sign Footings & Posts	24-May-13	22-Jul-13	49	24-May-13 A	22-Jul-13	
ge 2 TTMS & Relocate Directional Sign Board	23-Jul-13	27-Jul-13	5	23-Jul-13	27-Jul-13	
ge 3 TTMS & Modify Site Access with Drop Kerbs	29-Jul-13	17-Aug-13	18	29-Jul-13	17-Aug-13	
ge 4 TTMS & Install Traffic Line Marking	18-Aug-13	19-Aug-13	2	18-Aug-13	19-Aug-13	
	20-Aug-13	16-Sep-13	24	20-Aug-13	16-Sep-13	
•	17-Sep-13	24-Sep-13	6	17-Sep-13	24-Sep-13	
al Pit to Locate Foundations (PROVISIONAL, To be Confirmed)	25-Sep-13	09-Oct-13	12	25-Sep-13	09-Oct-13	
re - Cast Tunnel Lining	25-May-13	28-Oct-13	129	25-May-13 A	28-Oct-13	
RC Fibres	25-May-13	28-Sep-13	106	25-May-13 A	28-Sep-13	
urcing of Steel Fibre Supplier	25-May-13	28-Jun-13	29	25-May-13 A	28-Jun-13 A	
omission of Steel Fibre Literature & Samples	29-Jun-13	13-Jul-13	12	29-Jun-13 A	13-Jul-13	
sign of Concrete Mix	29-Jun-13	28-Sep-13	77	29-Jun-13 A	28-Sep-13	
ments	25-May-13	28-Oct-13	129	25-May-13 A	28-Oct-13	
ulds Design	25-May-13	11-Jul-13	39	25-May-13 A	11-Jul-13	
urcing for Mould Fabricator	25-May-13	11-Jul-13	39	25-May-13 A	11-Jul-13	
ulds Fabrication - Detail Design	12-Jul-13	15-Aug-13	30	12-Jul-13	15-Aug-13	
uld Fabrication - Manufacture	16-Aug-13	28-Oct-13	60	16-Aug-13	28-Oct-13	
Submit design and manuf'g data complete & Engr's 'notice of no ection' obtained for mould manufacture		25-Aug-13	0		25-Aug-13*	•
- KAT Cut & Cover Tunnels	11-Mar-13	01-Nov-13	192	11-Mar-13 A	01-Nov-13	
sions	11-Mar-13	01-Nov-13	192	11-Mar-13 A	01-Nov-13	
	11-Mar-13	28-Sep-13	165	11-Mar-13 A	28-Sep-13	
ile Wall & ELS for C&C Tunnels	11-Mar-13	28-Sep-13	165	11-Mar-13 A	28-Sep-13	
mp Sheet Pile Wall - AIP Submission	11-Mar-13	12-Apr-13	25	11-Mar-13 A	12-Apr-13 A	
mp Sheet Pile Wall - MTR & ICE Review	13-Apr-13	26-Apr-13	12	13-Apr-13 A	26-Apr-13 A	
mp Sheet Pile Wall - Design Report	11-Mar-13	31-May-13	65	11-Mar-13 A	31-May-13 A	
mp Sheet Pile Wall - 'Approval In Principal' from MTR		26-Apr-13	0		26-Apr-13 A	
tta ig gg	ain Approval from SLG ge 1 TTMS & Install New Directional Sign Footings & Posts ge 2 TTMS & Relocate Directional Sign Board ge 3 TTMS & Modify Site Access with Drop Kerbs ge 4 TTMS & Install Traffic Line Marking ge 5 TTMS & Install Traffic Line Marking ge 5 TTMS & Install Hoarding & Entrance Gate, Works Area W1A, B gy for use Setup of Foundation Removal Plant (PROVISIONAL, To be firmed) I Pit to Locate Foundations (PROVISIONAL, To be Confirmed) ge - Cast Tunnel Lining RC Fibres reing of Steel Fibre Supplier mission of Steel Fibre Literature & Samples ign of Concrete Mix nents alds Design reing for Mould Fabricator ald Fabrication - Detail Design ald Fabrication - Manufacture Submit design and manuf'g data complete & Engr's 'notice of no action' obtained for mould manufacture - KAT Cut & Cover Tunnels ions le Wall & ELS for C&C Tunnels ap Sheet Pile Wall - AIP Submission ap Sheet Pile Wall - Design Report	ain Approval from SLG 22-Apr-13 22-Apr-13 22-Apr-13 22-Apr-13 22-Apr-13 24-May-13 23-Jul-13 23-Jul-13 23-Jul-13 23-Jul-13 23-Jul-13 24-Arg-13 25-Jul-13 25-Aug-13 26-5 TTMS & Install Traffic Line Marking 25-Sep-13 26-5 TTMS & Install Traffic Line Marking 26-5 TTMS & Install Hoarding & Entrance Gate, Works Area W1A, By for use 25-Eup of Foundation Removal Plant (PROVISIONAL, To be firmed) 25-Sep-13 26-Cast Tunnel Lining 26-May-13 27-May-13 28-May-13 28-May-13 29-Jun-13 29-Jun-13 29-Jun-13 29-Jun-13 29-Jun-13 29-Jun-13 29-Jun-13 20-Aug-13 20-Aug-	ain Approval from SLG 22-Apr-13 23-May-13 22-Jul-13 22-Jul-13 22-Jul-13 27-Jul-13 28-Jul-13 29-Jul-13 29-Jul-13 29-Jul-13 29-Jul-13 29-Jul-13 29-Jul-13 29-Jul-13 20-Aug-13 20-Aug-13	ain Approval from SLG ge 1 TTMS & Install New Directional Sign Footings & Posts 24-May-13 22-Jul-13 49 22-Jul-13 23-Jul-13 27-Jul-13 5 ge 3 TTMS & Relocate Directional Sign Board 23-Jul-13 17-Aug-13 18 ge 3 TTMS & Modify Site Access with Drop Kerbs 29-Jul-13 17-Aug-13 18 19-Aug-13 24 49 25 TTMS & Install Traffic Line Marking 18-Aug-13 19-Aug-13 24 25 Setup of Foundation Removal Plant (PROVISIONAL, To be 17-Sep-13 24-Sep-13 65 66 67 67 67 67 67 67 67 67	ain Approval from SLG 22-Apr-13 23-May-13 26 22-Apr-13 A 24-May-13 22-Jul-13 24-May-13 A 24-May-13 B 24-May-13 B 25-Jul-13 25-Jul-13 25-Jul-13 26 27-Jul-13 27-Jul-13 29-Jul-13 29-Jul-13 29-Jul-13 29-Jul-13 29-Jul-13 20-Aug-13 20-Aug-13	22-Apr-13 23-May-13 26 22-Apr-13 A 23-May-13 A 24-May-13 A 25-May-13 A 25-May-

PAGE: 5 OF 10

PROJECT ID: SCL1107 M-3MR-004-1

02-Jul-13

Contract 1107 Diamond Hill to Kai Tak Tunnels

3 Month Rolling Programme -DD 1st JUL 2013

Date	Revision	Checked	Approved
02-Jul-13	0	KCL	

tivity ID	Activity Name	BL Start E	3L Finish	Original	Start	Finish			2013			
				Duration			Jun	Jul		Aug	Se	p
1107.14890	Temp Sheet Pile Wall - Detail Drawings	11-Mar-13 3	31-May-13	65	11-Mar-13 A	31-May-13 A						
1107.14900	Temp Sheet Pile Wall - Review & Comments from BD	01-Jun-13 0)2-Jul-13	25	01-Jun-13 A	02-Jul-13		<u> </u>	; ; ; ;			
1107.14910	Temp Sheet Pile Wall - Issue of Working Drawings	03-Jul-13 1	16-Jul-13	12	03-Jul-13	16-Jul-13						
1107.14920	C&C Tunnels ELS - Design Report	03-Jul-13 1	16-Aug-13	39	03-Jul-13	16-Aug-13			<u> </u>			
1107.14930	C&C Tunnels ELS - Detail Drawings	17-Jul-13 1	16-Aug-13	27	17-Jul-13	16-Aug-13		_				
1107.14940	C&C Tunnels ELS - Review & Comments from BD	17-Aug-13 1	13-Sep-13	24	17-Aug-13	13-Sep-13						
1107.14950	C&C Tunnels ELS - Issue of Working Drawings	14-Sep-13 2	28-Sep-13	12	14-Sep-13	28-Sep-13						
Temporary Dia	aphragm Wall & ELS for Launch Shafts	11-Mar-13 2	23-Aug-13	135	11-Mar-13 A	23-Aug-13				▼		
1107.14960	Temp D-Walls - AIP Submission	11-Mar-13 1	12-Apr-13	25	11-Mar-13 A	12-Apr-13 A						
1107.14970	Temp D-Walls - MTR & ICE Review	13-Apr-13 2	26-Apr-13	12	13-Apr-13 A	26-Apr-13 A						
1107.14980	Temp D-Walls - Design Report	11-Mar-13 C)3-May-13	42	11-Mar-13 A	03-May-13 A			 			
1107.14990	Temp D-Walls - 'Approval In Principal' from MTR	2	26-Apr-13	0		26-Apr-13 A			 			
1107.15000	Temp D-Walls - Detail Drawings	11-Mar-13 C)3-May-13	42	11-Mar-13 A	03-May-13 A		<u> </u>				
1107.15010	Temp D-Walls- Review & Comments from BD	04-May-13)1-Jun-13	24	04-May-13 A	01-Jun-13 A	; = !		 			
1107.15020	Temp D-Walls - Issue of Working Drawings	03-Jun-13 1	17-Jun-13	12	03-Jun-13 A	17-Jun-13 A						
1107.15030	Temp D-Walls - Documentation for sub-contract	11-Mar-13 1	11-Apr-13	24	11-Mar-13 A	11-Apr-13 A						
1107.15040	Launch Shafts ELS - Design Report	03-Jun-13 1	12-Jul-13	33	03-Jun-13 A	12-Jul-13		i				
1107.15050	Launch Shafts ELS - Detail Drawings	18-Jun-13 1	12-Jul-13	21	18-Jun-13 A	12-Jul-13		i	 			
1107.15060	Launch Shafts ELS - Review & Comments from BD	13-Jul-13 C)9-Aug-13	24	13-Jul-13	09-Aug-13						
1107.15070	Launch Shafts ELS - Issue of Working Drawings	10-Aug-13 2	23-Aug-13	12	10-Aug-13	23-Aug-13						
Submission &	Testing of GFRP	27-Apr-13 0	9-Jul-13	59	27-Apr-13 A	14-Aug-13						
1107.18890	Sourcing of GFRP Supplier	27-Apr-13)1-Jun-13	29	27-Apr-13 A	01-Jun-13 A	<u> </u>					
1107.18900	Submission of GFRP Literature & Samples to MTR	03-Jun-13 0)8-Jun-13	6	03-Jun-13 A	08-Jun-13 A						
1107.18910	Testing of GFRP Material	10-Jun-13 2	24-Jun-13	12	10-Jun-13 A	24-Jun-13 A						
1107.18920	Order & Delivery of GFRP Material to Site	03-Jun-13 0)9-Jul-13	30	03-Jun-13 A	14-Aug-13		-				
Cut & Tunnels	Permanent Works	03-Jun-13 C)1-Nov-13	126	03-Jun-13 A	01-Nov-13	•					
1107.15080	C&C Tunnels - AIP Submission	03-Jun-13 1	16-Jul-13	36	03-Jun-13 A	16-Jul-13						
1107.15090	C&C Tunnels - MTR & ICE Review	17-Jul-13 3	30-Jul-13	12	17-Jul-13	30-Jul-13		<u> </u>				
1107.15100	C&C Tunnels - 'Approval In Principal' from MTR	3	30-Jul-13	0		30-Jul-13	1 1 1 1		•			
1107.15110	C&C Tunnels - Detail Drawings	31-Jul-13 C)1-Nov-13	78	31-Jul-13	01-Nov-13	1 1 1 1					
							!	<u> </u>	1			
	DATA DATE: 30-Jun-13	Contract	1107 Diam	nond Hill to K	ai Tak Tunne	ls			Date	Revision	Checked	Approved
	PAGE: 6 OF 10	2 Man	th Ball	lina Drog	rammo :	-DD 1st JU	II 2012		02-Jul-13	0	KCL	
	PROJECT ID: SCL1107 M-3MR-004-1	3 IVION	itii NUll	mig Flog	yı anınını '	יסט ואָן אַנ	JL 2013					
	FNOJEO ID. 30L IU/ M-3MK-004-1	Chun Wo -	- SELI Joint \	Venture								
	02-Jul-13											

Activity ID	Activity Name	BL Start	BL Finish	Original	Start	Finish	2013
		11.11	11.11	Duration	44.14	11.11.10.1	Jun Jul Aug Sep
Site Enablin	g Works for C&C Tunnels	11-Mar-13	11-May-13	49	11-Mar-13 A	11-May-13 A	
Removal of Air	rcraft Hangar No. 4 Foundations	11-Mar-13	11-May-13	49	11-Mar-13 A	11-May-13 A	
1107.15190	Submission & Approval of Method Statements	11-Mar-13	16-Apr-13	28	11-Mar-13 A	16-Apr-13 A	
1107.15200	Expose Old Foundations in DWall Footprint	17-Apr-13	04-May-13	15	17-Apr-13 A	04-May-13 A	
1107.15210	Remove Abandoned Aircraft Hangar Foundations in DWall Footprint	06-May-13	11-May-13	6	06-May-13 A	11-May-13 A	
Diaphragm \	Walls	11-Mar-13	30-Sep-13	170	11-Mar-13 A	05-Oct-13	
Mobilisation &	Site Enabling Works	11-Mar-13	28-Jul-13	112	11-Mar-13 A	28-Jul-13	,
1107.15220	Site Clearance	11-Mar-13	10-May-13	48	11-Mar-13 A	10-May-13 A	
1107.15230	Construct Guide Walls	11-May-13	09-Jul-13	48	11-May-13 A	09-Jul-13	
1107.15240	D2b Pre-drilling for Dwall complete		28-Jul-13	0		28-Jul-13*	•
1107.18770	Plant Setup for DWall	03-Jun-13	22-Jun-13	17	03-Jun-13 A	22-Jun-13 A	
1107.18930	Install Settlement Markers	11-May-13	18-May-13	6	11-May-13 A	18-May-13 A	
1107.18940	Install Water Level Observation wells	20-May-13	01-Jun-13	12	20-May-13 A	01-Jun-13 A	
1107.18950	Construction of Haul Road to 1108 Boundary	11-May-13	14-Jun-13	28	11-May-13 A	14-Jun-13 A	
TBM Launch S	ihafts	12-Apr-13	30-Sep-13	146	12-Apr-13 A	05-Oct-13	
2 Grabs Comb	ination Team	12-Apr-13	30-Sep-13	146	12-Apr-13 A	05-Oct-13	
1107.15250	Temp D-Walls - Tender & Appoint Sub-Con	12-Apr-13	25-Apr-13	12	12-Apr-13 A	25-Apr-13 A	
1107.15260	Temp D-Walls - Mobilisation	26-Apr-13	01-Jun-13	30	26-Apr-13 A	01-Jun-13 A	
1107.15270	MG01 Temp D-Wall Panel 01 Excavation & Rebar Cage Fabrication	24-Jun-13	03-Jul-13	8	28-Jun-13 A	08-Jul-13	
1107.15280	MG01 Temp D-Wall Panel 01 Rebar & Concrete	04-Jul-13	05-Jul-13	2	09-Jul-13	10-Jul-13	
1107.15290	MG02 Temp D-Wall Panel 24 Excavation & Rebar Cage Fabrication	04-Jul-13	12-Jul-13	8	09-Jul-13	17-Jul-13	
1107.15300	MG02 Temp D-Wall Panel 24 Rebar & Concrete	13-Jul-13	15-Jul-13	2	18-Jul-13	19-Jul-13	
1107.15310	MG03 Temp D-Wall Panel 19 Excavation & Rebar Cage Fabrication	13-Jul-13	20-Jul-13	7	18-Jul-13	25-Jul-13	
1107.15319	Mobilise Hydraulic Grab	24-Jun-13	05-Jul-13	10	24-Jun-13 A	05-Jul-13	
1107.15320	HG01 Temp D-Wall Panel 23 Excavation & Rebar Cage Fabrication	17-Jul-13	22-Jul-13	5	22-Jul-13	26-Jul-13	
1107.15330	MG03 Temp D-Wall Panel 19 Rebar & Concrete	22-Jul-13	23-Jul-13	2	26-Jul-13	27-Jul-13	- •
1107.15340	HG01 Temp D-Wall Panel 23 Rebar & Concrete	24-Jul-13	25-Jul-13	2	29-Jul-13	30-Jul-13	- -
1107.15350	HG02 Temp D-Wall Panel 20 Excavation & Rebar Cage Fabrication	25-Jul-13	30-Jul-13	5	30-Jul-13	03-Aug-13	
1107.15360	MG04 Temp D-Wall Panel 27 Excavation & Rebar Cage Fabrication	22-Jul-13	27-Jul-13	6	26-Jul-13	01-Aug-13	
1107.15370	HG02 Temp D-Wall Panel 20 Rebar & Concrete	31-Jul-13	01-Aug-13	2	05-Aug-13	06-Aug-13	
	+	-!	-1	1			<u> </u>

PAGE: 7 OF 10

PROJECT ID: SCL1107 M-3MR-004-1

02-Jul-13

Contract 1107 Diamond Hill to Kai Tak Tunnels

3 Month Rolling Programme -DD 1st JUL 2013

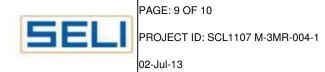
Date	Revision	Checked	Approved
02-Jul-13	0	KCL	

Activity ID	Activity Name	BL Start	BL Finish	Original	Start	Finish			2013	
				Duration			Jun	Jul	Aug	Sep
1107.15380	HG03 Temp D-Wall Panel 18 Excavation & Rebar Cage Fabrication	31-Jul-13	03-Aug-13	4	05-Aug-13	08-Aug-13		, 1 1 1	÷ =	
1107.15390	MG04 Temp D-Wall Panel 27 Rebar & Concrete	02-Aug-13	03-Aug-13	2	07-Aug-13	08-Aug-13		1 1 1 1	_ =	
1107.15400	HG04 Temp D-Wall Panel 21 Excavation & Rebar Cage Fabrication	05-Aug-13	07-Aug-13	3	09-Aug-13	12-Aug-13		 		
		_			_			 		
1107.15410	MG05 Temp D-Wall Panel 25 Excavation & Rebar Cage Fabrication	29-Jul-13	03-Aug-13	6	02-Aug-13	08-Aug-13		1 1 1		
1107.15420	HG03 Temp D-Wall Panel 18 Rebar & Concrete	05-Aug-13	06-Aug-13	2	09-Aug-13	10-Aug-13		 		
1107.15430	HG04 Temp D-Wall Panel 21 Rebar & Concrete	08-Aug-13	09-Aug-13	2	13-Aug-13	14-Aug-13		 	_ ■	
1107.15440	HG05 Temp D-Wall Panel 17 Excavation & Rebar Cage Fabrication	08-Aug-13	10-Aug-13	3	13-Aug-13	15-Aug-13		! ! !		·
								1 1 1		
1107.15450	MG05 Temp D-Wall Panel 25 Rebar & Concrete	10-Aug-13	12-Aug-13	2	15-Aug-13	16-Aug-13		1 1 1 1	-	
1107.15460	HG06 Temp D-Wall Panel 22 Excavation & Rebar Cage Fabrication	12-Aug-13	14-Aug-13	3	16-Aug-13	19-Aug-13		 	_ =	
1107.15470	MG06 Temp D-Wall Panel 03 Excavation & Rebar Cage Fabrication	05-Aug-13	10-Aug-13	6	09-Aug-13	15-Aug-13				
1107.15480	HG05 Temp D-Wall Panel 17 Rebar & Concrete	13-Aug-13	14-Aug-13	2	17-Aug-13	19-Aug-13		 	_ =	
								 	_	
1107.15490	HG06 Temp D-Wall Panel 22 Rebar & Concrete	15-Aug-13	16-Aug-13	2	20-Aug-13	21-Aug-13	1	1 1 1 1	= -	1 1 1
1107.15500	HG07 Temp D-Wall Panel 12 Excavation & Rebar Cage Fabrication	15-Aug-13	17-Aug-13	3	20-Aug-13	22-Aug-13				
1107.15510	MG06 Temp D-Wall Panel 03 Rebar & Concrete	17-Aug-13	19-Aug-13	2	22-Aug-13	23-Aug-13	1	1 1 1 1	_ =	1
1107.15520	HG08 Temp D-Wall Panel 15 Excavation & Rebar Cage Fabrication	19-Aug-13	21-Aug-13	3	23-Aug-13	26-Aug-13	1	1 1 1 1	_ =	1
1107.15530	MG07 Temp D-Wall Panel 26 Excavation & Rebar Cage Fabrication	12-Aug-13	17-Aug-13	6	16-Aug-13	22-Aug-13	 	 		· ·
		_						1 1 1 1	_	
1107.15540	HG07 Temp D-Wall Panel 12 Rebar & Concrete	20-Aug-13	21-Aug-13	2	24-Aug-13	26-Aug-13		1 1 1 1	- -	
1107.15550	HG08 Temp D-Wall Panel 15 Rebar & Concrete	22-Aug-13	23-Aug-13	2	27-Aug-13	28-Aug-13		1 1 1 1	_ =	
1107.15560	HG09 Temp D-Wall Panel 11 Excavation & Rebar Cage Fabrication	22-Aug-13	24-Aug-13	3	27-Aug-13	29-Aug-13		 	_ =	
1107.15570	MG07 Temp D-Wall Panel 26 Rebar & Concrete	24-Aug-13	26-Aug-13	2	29-Aug-13	30-Aug-13	1	1 1 1 1	_ =	1 1 1
1107.15580	HG10 Temp D-Wall Panel 16 Excavation & Rebar Cage Fabrication		28-Aug-13	3		02-Sep-13	1	1 1 1 1		
				3				 		
1107.15590	MG08 Temp D-Wall Panel 04 Excavation & Rebar Cage Fabrication	19-Aug-13	24-Aug-13	6	23-Aug-13	29-Aug-13		1 1 1 1		
1107.15600	HG09 Temp D-Wall Panel 11 Rebar & Concrete	27-Aug-13	28-Aug-13	2	31-Aug-13	02-Sep-13		1 1 1 1	_ [-
1107.15610	HG10 Temp D-Wall Panel 16 Rebar & Concrete	29-Aug-13	30-Aug-13	2	03-Sep-13	04-Sep-13		1 1 1 1	-	
1107.15620	HG11 Temp D-Wall Panel 13 Excavation (GFRP) & Rebar Cage	29-Aug-13	31-Aug-13	3	03-Sep-13	05-Sep-13		 		
	Fabrication	_						1 1 1 1		
1107.15630	MG08 Temp D-Wall Panel 04 Rebar & Concrete	31-Aug-13	02-Sep-13	2	05-Sep-13	06-Sep-13		: 	•	- -
1107.15640	HG12 Temp D-Wall Panel 09 Excavation (GFRP) & Rebar Cage Fabrication	02-Sep-13	04-Sep-13	3	06-Sep-13	09-Sep-13		: ! !		
1107.15650	MG09 Temp D-Wall Panel 06 Excavation & Rebar Cage Fabrication	26-Aug-13	31-Aug-13	6	30-Aug-13	05-Sep-13		; 		
1107.15660	HG11 Temp D-Wall Panel 13 Rebar & Concrete (GFRP)	03-Sep-13	04-Sep-13	2	07-Sep-13	09-Sep-13				_ =
1107.15670	HG12 Temp D-Wall Panel 09 Rebar & Concrete (GFRP)	05-Sep-13	06-Sep-13	2	10-Sep-13	11-Sep-13				
	, , , , , , , , , , , , , , , , , , , ,		21,310	_		225.0		: ! !		: — !

PAGE: 8 OF 10

PROJECT ID: SCL1107 M-3MR-004-1

02-Jul-13


Contract 1107 Diamond Hill to Kai Tak Tunnels

3 Month Rolling Programme -DD 1st JUL 2013

Revision	Checked	Approved
0	KCL	
	Revision 0	U KCI

ctivity ID	Activity Name	BL Start	BL Finish	Original	Start	Finish		20	13
				Duration			Jun	Jul	Aug Sep
1107.15680	HG13 Temp D-Wall Panel 14 Excavation (GFRP) & Rebar Cage Fabrication	05-Sep-13	07-Sep-13	3	10-Sep-13	12-Sep-13		1 1 1	- -
1107.15690	MG09 Temp D-Wall Panel 06 Rebar & Concrete	07-Sep-13	09-Sep-13	2	12-Sep-13	13-Sep-13		1 1 1 1	– •
1107.15700	HG14 Temp D-Wall Panel 10 Excavation (GFRP) & Rebar Cage Fabrication	09-Sep-13	11-Sep-13	3	13-Sep-13	16-Sep-13		 	_ =
1107.15710	MG10 Temp D-Wall Panel 02 Excavation & Rebar Cage Fabrication	02-Sep-13	07-Sep-13	6	06-Sep-13	12-Sep-13			
1107.15720	HG13 Temp D-Wall Panel 14 Rebar & Concrete (GFRP)	10-Sep-13	11-Sep-13	2	14-Sep-13	16-Sep-13			_ =
1107.15730	HG14 Temp D-Wall Panel 10 Rebar & Concrete (GFRP)	12-Sep-13	13-Sep-13	2	17-Sep-13	18-Sep-13			_ •
1107.15740	HG15 Temp D-Wall Panel 05 Excavation & Rebar Cage Fabrication	12-Sep-13	14-Sep-13	3	17-Sep-13	19-Sep-13		<u> </u>	
1107.15750	MG10 Temp D-Wall Panel 02 Rebar & Concrete	14-Sep-13	16-Sep-13	2	19-Sep-13	21-Sep-13			_ =
1107.15760	HG16 Temp D-Wall Panel 07 Excavation & Rebar Cage Fabrication	16-Sep-13	18-Sep-13	3	21-Sep-13	24-Sep-13			_ =
1107.15770	HG15 Temp D-Wall Panel 05 Rebar & Concrete	17-Sep-13	18-Sep-13	2	23-Sep-13	24-Sep-13		<u> </u>	
1107.15780	HG16 Temp D-Wall Panel 07 Rebar & Concrete	19-Sep-13	21-Sep-13	2	25-Sep-13	26-Sep-13		! ! !	_ •
1107.15790	MG11 Temp D-Wall Panel 08 Excavation & Rebar Cage Fabrication	24-Sep-13	30-Sep-13	6	28-Sep-13	05-Oct-13		1 1 1 1	
1107.15820	D2a 30% by plan length of Dwalls complete at Kai Tak Box 2A and Box 1A shaft		28-Jul-13	0		28-Jul-13*		\	
Sheet Piling		27-Apr-13	17-Oct-13	142	27-Apr-13 A	17-Oct-13			
1107.15840	Order sheetpiles First Batch	27-Apr-13	10-Jul-13	60	27-Apr-13 A	10-Jul-13			
1107.15841	Mobilise Sheet Piling 1st Gang	11-Jul-13	29-Jul-13	16	11-Jul-13	29-Jul-13			
1107.15850	Sheet Pile Installation in Streches SD & 1108INT(58m)	30-Jul-13	07-Oct-13	58	30-Jul-13	07-Oct-13			
1107.15859	Mobilise Sheet Piling 2nd Gang	30-Jul-13	07-Aug-13	8	30-Jul-13	07-Aug-13			
1107.15860	Sheet Pile Installation in Strech ND & Removal of Any Left in Foundations (58m)	08-Aug-13	17-Oct-13	58	08-Aug-13	17-Oct-13		\	
Pump Tests		24-Aug-13	16-Sep-13	20	24-Aug-13	16-Sep-13			-
Launch Shafts		24-Aug-13	16-Sep-13	20	24-Aug-13	16-Sep-13		1 1 1 1	▼
1107.15910	Install Groundwater pumps 4 nos	24-Aug-13	16-Sep-13	20	24-Aug-13	16-Sep-13			
1107.15920	Install Groundwater Monitoring Points 4 nos	24-Aug-13	11-Sep-13	16	24-Aug-13	11-Sep-13			
Cost Centre	F3 - Utilities Protection / Diversion	25-Mar-13	18-Oct-13	168	25-Mar-13 A	18-Oct-13			
Diversion/ Re	eplacement of WaterMains at Choi Hung Road	25-Mar-13	08-Oct-13	160	25-Mar-13 A	08-Oct-13			
1107.17510	Appoint WSD Approved Sub contractor	13-May-13	03-Jun-13	18	13-May-13 A	03-Jun-13 A			
1107.17520	Appoint Asbestos CMR Sub contractor	13-May-13	03-Jun-13	18	13-May-13 A	03-Jun-13 A			
1107.17530	Submission & Approval of TTMS	25-Mar-13	24-Jun-13	72	25-Mar-13 A	24-Jun-13 A			
1107.17540	Stage 1 TTMS - Utilities Scanning & CCTV	19-Aug-13	24-Aug-13	6	19-Aug-13*	24-Aug-13			
1107.17550	Stage 2 TTMS - Trail Pit no. 1	26-Aug-13	07-Sep-13	12	26-Aug-13	07-Sep-13			
	!						i	i	i :

DATA DATE: 30-Jun-13 Contract 1107 Diamond Hill to Kai Tak Tunnels

3 Month Rolling Programme -DD 1st JUL 2013

Date	Revision	Criecked	Approved
02-Jul-13	0	KCL	

Activity ID	Activity Name	BL Start	BL Finish		Start	Finish	2013	
•				Duration			Jun Jul Aug	Sep
1107.17560	Stage 3 TTMS - Trail Pit no. 2	09-Sep-13	23-Sep-13	12	09-Sep-13	23-Sep-13		
1107.17570	Stage 4 TTMS - Trail Pit no. 3	24-Sep-13	08-Oct-13	12	24-Sep-13	08-Oct-13		
1107.17670	F3 TTMS at Choi Hung Road (East) for water main replacement scheme approved		30-Jun-13	0		30-Jun-13*	•	
Installation	of Utilities Monitoring Devices at Prince Edwar	25-Jun-13	18-Oct-13	96	25-Jun-13 A	18-Oct-13		
1107.17710	Stage 1 TTMS	25-Jun-13	01-Aug-13	32	25-Jun-13 A	01-Aug-13		
1107.17720	Installation of Monitoring Devices	02-Aug-13	18-Oct-13	64	02-Aug-13	18-Oct-13		
Cost Cent	re F4 - Landscaping	13-May-13	18-Sep-13	108	13-May-13 A	18-Sep-13		
1107.17750	Fell Trees within Cofferdam Footprint	13-May-13	18-Jun-13	30	13-May-13 A	18-Jun-13 A		
1107.17751	Transplant & Fell Trees	19-Jun-13	18-Sep-13	78	19-Jun-13 A	18-Sep-13		
Cost Cent	re G CEDD Entrusted Works	27-Apr-13	09-Oct-13	136	27-Apr-13 A	09-Oct-13		
Demolition	& Diversion of Nullah 2	27-Apr-13	09-Oct-13	136	27-Apr-13 A	09-Oct-13		
1107.17770	Cable Detection / UU Detection	27-Apr-13	11-May-13	12	27-Apr-13 A	11-May-13 A		
1107.17780	Joint Inspection with Utility Companies	13-May-13	20-May-13	6	13-May-13 A	20-May-13 A		
1107.17790	Confirm Scope of Works for Foundation Removal	21-May-13	27-May-13	6	21-May-13 A	27-May-13 A		
1107.17800	Verify feasibility of Diversion Alignment	28-May-13	18-Jun-13	18	28-May-13 A	18-Jun-13 A		
1107.17810	Preparation of Design Submission	19-Jun-13	17-Jul-13	24	19-Jun-13 A	17-Jul-13		
1107.17820	Submission to DSD	18-Jul-13	31-Jul-13	12	18-Jul-13	31-Jul-13		
1107.19350	Approval of Design	01-Aug-13	28-Aug-13	24	01-Aug-13	28-Aug-13		
Downstream	Section Pipes	29-Aug-13	09-Oct-13	34	29-Aug-13	09-Oct-13		V
1107.17970	Excavation to Base level	29-Aug-13	09-Oct-13	34	29-Aug-13	09-Oct-13		

PAGE: 10 OF 10

02-Jul-13

PROJECT ID: SCL1107 M-3MR-004-1

DATA DATE: 30-Jun-13 Contract 1107 Diamond Hill to Kai Tak Tunnels

3 Month Rolling Programme -DD 1st JUL 2013

Date	Revision	Checked	Approved
02-Jul-13	0	KCL	

APPENDIX B ACTION AND LIMIT LEVELS

APPENDIX B – Action and Limit Levels

24-Hour TSP

Regular Dust Monitoring Location	Description	Action Level, μg/m³	Limit Level, μg/m³
DMS-4 ⁽¹⁾⁽³⁾ / DMS-3 ⁽²⁾⁽³⁾	Block 1, Rhythm Garden	160.4	260

Note:

- (1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
 (3) Dust monitoring on DMS-3⁽¹⁾/DMS-4⁽²⁾ is carried out by Environmental Team of SCL Works Contract 1106.

Construction Noise

Regular Construction Noise Monitoring Location ⁽¹⁾	Description	Time Period	Action Level	Limit Level
NMS-CA-4 ⁽¹⁾⁽⁵⁾ / NMS-CA-3 ⁽²⁾⁽⁵⁾	Block 1, Rhythm Garden (north- eastern façade)	0700-1900 hrs on normal	When one documented	75 dB(A)
NMS-CA-5 (1) (3)(5)/ NMS-CA-2 (2)(3)(5)	Block 1, Rhythm Garden (northern façade)	weekdays	complaint is received	65 / 70 dB(A) ⁽⁴⁾

- (1) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) Access to the monitoring location at Canossa Primary School (San Po Kong) (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (Block 1, Rhythm Garden (northern façade)) was proposed and approved by the ER and agreed by the IEC and EPD.
- (4) Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.
- (5) Noise monitoring on Block 1, Rhythm Garden are carried out by Environmental Team of SCL Works Contract 1106.

APPENDIX C
CALIBRATION CERTIFICATES FOR
MONITORING EQUIPEMENT

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	MA12051/57/0002
Station	DMS-4 - Rhythi	n Garden, Block	1	Operator:	WK	<u> </u>	
Date:	13-May-13		1	Next Due Date:	12-Jul	-13	
Equipment No.:	A-01-57	With the Control of t		Serial No.	2352	2	
			Ambient	Condition			
Temperatu	re, Ta (K)	299.9	Pressure, Pa	(mmHg)		758.3	
				A. Markana de propositione			
		Or	ifice Transfer St	andard Inform	ation		
Equipme	ent No.:	A-04-05	Slope, mc	0.0592 Intercept, bc		-0.0283	
Last Calibra	ation Date:	26-Dec-12			$c = \Delta H \times (Pa/7)$		
Next Calibr	ation Date:	25-Dec-13		$Qstd = \{[\Delta H]\}$	x (Pa/760) x (298	3/Ta) ^{1/2} -bc} /	me
		incompanies and a	reschiligis areaccis #1618			Usa Paranda (Alemanda)	
	I		Calibration of	TSP Sampler			
Calibration	ATTA COL	Ori		Loui (om o	ANY	HVS	(0) (000 27) 1/2 -
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76)	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of	[ΔW x (Pa//	60) x (298/Ta)] ^{1/2} Y axis
1	11.4	3	.36	57.27	7.3		2.69
2	8.9	2	.97	50.66	5.4		2.31
3	7.0	2	.63	44.98	4.3		2.06
4	4.6	2.14		36.55	2.8	A CONTRACTOR OF THE CONTRACTOR	1.67
5	2.9	1	.70	29.12	1.7		1.30
Slope, mw = Correlation c	cession of Y on X 0.0487 coefficient* = Coefficient < 0.99	0.9	993	Intercept, bw	-0.12	30	
A CONTOURION		,	occurrence solicitation and a contraction	The Parties and the Control of the	, exist a consideration of the	entre de la constanta de la co	
			Set Point (Calculation			
	ield Calibration C						
From the Regres	ssion Equation, th	e "Y" value acco	rding to				
		mw v ($Qstd + bw = [\Delta W]$	v (Pa/760) v (2	08/Ta)11/2		
		mw x c	Zatu + Dii - IZii	X (1 a/ /00) X (2	30/1a) ₁		
Therefore, S	et Point; W = (m	w x Qstd + bw)2	x(760/Pa)x(Ta / 298) =	3.92	2	
		- P1115060155511					
Remarks:							
			L	ſ			1216/2
Conducted by:	INK. Tang	Signature:	Kwan			Date:	1317112
Charles how	LA V	Cianatura		1		Doto:	2 MAN NOIS

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

restant to						File No.	
tation	DMS-4 - Rhythn	Garden, Block 1	1	Operator:	WK		
ate:	9-Jul-13	100	T.		8-Sep-		
1	ment No.: A-01-57			Serial No.	2352		
T1904 100 II. 12000	994 <u> 11.525-5 1. 12.52</u> 5-1	TO STANKE STANFORD	195,5, 1 3 T	2 marting		ing Marine and	
	interior grades to the terminal	Salatan Sistems of	Ambient (1,74	760.2	
Temperatur	re, Ta (K)	301.3	Pressure, Pa	(mmHg)		700.2	
		Or	ifice Transfer Sta	ndard Informa	ation		
Equipment No.: A-04-05		A-04-05	Slope, mc	0.0592	Intercep		-0.0283
Last Calibra		26-Dec-12		mc x Qstd + b	$c = [\Delta H \times (Pa/76)]$	50) x (298/Ta))11/2
Next Calibra		25-Dec-13		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298	/Ta)] ^{1/2} -bc} /	me
							STREET SECURITION FROM BEING
			Calibration of	TSP Sampler			
Calibration		Ort	fice		1997	HVS	(200 m-)1/2 su
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of	[ΔW x (Pa/7	(60) x (298/Ta)] ^{1/2} Y axis
1	11.5	3	3.37	57.45	7.4		2.71
2	8.9		2.97	50.60	5.5		2.33
3	7.2	2	2.67	45.56	4.4		2.09
4	4.6	2	2.13	36.51	2.7	1.63	
5	2.9		1.69	29.09	1.7		1.30
	ression of Y on 2	ζ.					
By Linear Regr Slope , mw = Correlation c	0.0496 coefficient* =	_	9995 alibrate.	Intercept, bw	-0.16	29	
By Linear Regr Slope , mw = Correlation c	0.0496 coefficient* =	0.9	alibrate.	-	-0.16	29	
By Linear Regr Slope , mw = Correlation c	0.0496 coefficient* = Coefficient < 0.99	0.9 90, check and rec	alibrate. Set Point	Intercept, bw : - Calculation	-0.16	29	
By Linear Regr Slope , mw = Correlation of If Correlation C	0.0496 coefficient* = Coefficient < 0.99	0.9 90, check and rec	Set Point	-	-0.16	29	
By Linear Regr Slope , mw = Correlation of If Correlation C	0.0496 coefficient* = Coefficient < 0.99	0.9 90, check and rec Curve, take Qstd	Set Point of the Set Po	Calculation		29	
By Linear Regr Slope , mw = Correlation of If Correlation C	0.0496 coefficient* = Coefficient < 0.99	0.9 90, check and rec Curve, take Qstd	Set Point	Calculation		29	
By Linear Regressions, mw = Correlation Correlation Correlation Correlation Correlation Correlation Corror the TSP Form the Regression the Regression Correlation Corror the Regression Corror the Regression Corror the Regression Corror the Regression Correlation Corror the Regression Co	0.0496 coefficient* = Coefficient < 0.99 cield Calibration (ssion Equation, t	0.9 90, check and rec Curve, take Qstd = the "Y" value acco	Set Point = 43 CFM ording to Qstd + bw = [ΔW	Calculation 'x (Pa/760) x (2	298/Ta)] ^{1/2}		
By Linear Regr Slope, mw = Correlation of If Correlation Correlation Correlation Correlation Correlation Correlation Corror the TSP Form the Regress	0.0496 coefficient* = Coefficient < 0.99 cield Calibration (ssion Equation, t	0.9 90, check and rec Curve, take Qstd = the "Y" value acco	Set Point of the Set Po	Calculation 'x (Pa/760) x (2			
By Linear Regr Slope, mw = Correlation of If Correlation Correlation Correlation Correlation Correlation Correlation Correlation the TSP Form the Regress	0.0496 coefficient* = Coefficient < 0.99 cield Calibration (ssion Equation, t	0.9 90, check and rec Curve, take Qstd = the "Y" value acco	Set Point = 43 CFM ording to Qstd + bw = [ΔW	Calculation 'x (Pa/760) x (2	298/Ta)] ^{1/2}		
By Linear Regr Slope, mw = Correlation of If Correlation Correlation Correlation Correlation Correlation Correlation Corror the TSP Form the Regress	0.0496 coefficient* = Coefficient < 0.99 cield Calibration (ssion Equation, t	0.9 90, check and rec Curve, take Qstd = the "Y" value acco	Set Point = 43 CFM ording to Qstd + bw = [ΔW	Calculation 'x (Pa/760) x (2	298/Ta)] ^{1/2}		
by Linear Regression Correlation Correlation Correlation Correlation Correlation Coron the TSP Forom the Regression Therefore, S	0.0496 coefficient* = Coefficient < 0.99 cield Calibration (ssion Equation, t	0.9 90, check and rec Curve, take Qstd = the "Y" value acco	Set Point = 43 CFM ording to Qstd + bw = [ΔW	Calculation 'x (Pa/760) x (2	298/Ta)] ^{1/2}		
By Linear Regr Slope, mw = Correlation of If Correlation Of From the TSP Form the Regress	0.0496 coefficient* = Coefficient < 0.99 cield Calibration (ssion Equation, t	0.9 90, check and rec Curve, take Qstd = the "Y" value acco	Set Point = 43 CFM ording to Qstd + bw = [ΔW	Calculation 'x (Pa/760) x (2	298/Ta)] ^{1/2}		
By Linear Regr Slope, mw = Correlation of If Correlation Of From the TSP F	0.0496 coefficient* = Coefficient < 0.99 cield Calibration (ssion Equation, t	0.9 90, check and rec Curve, take Qstd = the "Y" value acco	Set Point = 43 CFM ording to Qstd + bw = [ΔW	Calculation 'x (Pa/760) x (2	298/Ta)] ^{1/2}		
By Linear Regr Slope, mw = Correlation of If Correlation Of From the TSP Form the Regress	0.0496 coefficient* =	0.9 90, check and rec Curve, take Qstd = the "Y" value acco	Set Point $= 43 \text{ CFM}$ ording to Qstd + bw = [Δ W	Calculation 'x (Pa/760) x (2	298/Ta)] ^{1/2}		917113

TISCH ENVIROMENTAL, INC.
145 SOUTH MIAMI AVE.
VILLAGE OF CLEVES, OH 45002
513.467.9000
877.263.7610 TOLL FREE
513.467.9009 FAX
WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - De Operator		Rootsmeter Orifice I.I		138320 2323	Ta (K) - Pa (mm) -	295 - 753.11
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4440 1.0240 0.9120 0.8720 0.7200	3.2 6.4 8.0 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9967 0.9925 0.9903 0.9893 0.9840	0.6902 0.9693 1.0858 1.1345 1.3666	1.4149 2.0010 2.2372 2.3464 2.8299		0.9957 0.9915 0.9893 0.9883 0.9830	0.6896 0.9683 1.0847 1.1334 1.3652	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slop intercept coefficie	t (b) =	2.09107 -0.02838 0.99996		Qa slope intercept coefficie	= (b) $=$	1.30939 -0.01775 0.99996
y axis =	SQRT [H2O(I	?a/760)(298/	ı Га)]	y axis =	SQRT[H2O(T	Ta/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT (H2O(Pa/760) (298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: Date of Issue:

C/N/130104 2013-01-05

Date Received:

2013-01-04

Date Tested:

2013-01-04

Date Completed:

2013-01-05

Next Due Date:

2014-01-04

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No. Microphone No. : 14303 : 35222

Equipment No.

: N-08-05

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 59%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

1) This report supersedes the one dated 2012/01/21 with certificate number C/N/120120/1.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

ATTN:

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Mr. W.K. Tang

Shatin, NT, Hong Kong

Test Report No.: C/N/120901/2
Date of Issue: 2012-09-02

Date Received: 2012-09-01

Date Tested: 2012-09-01

Date Completed: 2012-09-02 Next Due Date: 2013-09-01

Dogo

Page: 1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21459

Microphone No.

: 43676 : N-08-08

Equipment No.

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 67%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/120921/1
Date of Issue:	2012-09-22
Date Received:	2012-09-21
Date Tested:	2012-09-21
Data Completed	2012.00.22

Page:

Next Due Date:

2013-09-21 1 of 1

ATTN:

Mr. W.K. Tang

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 10929

Equipment No.

: N-09-01

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 56%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/121005/1
Date of Issue: 2012-10-07

Date Received: 2012-10-05

Date Tested: 2012-10-05

Date Completed: 2012-10-07

Next Due Date:

2013-10-06

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 64%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX D IMPACT MONITORING SCHEDULE

Shatin to Central Link – Contract 1107 Diamond Hill to Kai Tak Tunnels Impact Air Quality and Noise Monitoring Schedule for July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jul	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul
		24 hr TSP	Noise			
7-Jul	8-Jul	9-Jul	10-Jul	11-Jul	12-Jul	13-Jul
	24 hr TSP	Noise				24 hr TSP
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
	Noise				24 hr TSP	
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
	Noise			24 hr TSP		
28-Jul	29-Jul	30-Jul	31-Jul			
	Noise		24 hr TSP			

Air Quality Monitoring Station

Noise Monitoring Station

DMS-4(1)/DMS-3(2): - Rhythm Garden, Block 1

NMS-CA-4(1)/NMS-CA-3(2): - Block 1, Rhythm Garden (north-eastern façade) NMS-CA-5(1)/NMS-CA-2(2): - Block 1, Rhythm Garden (northern façade)

- (1)Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2)Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).

Shatin to Central Link – Contract 1106 Diamond Hill Station Tentative Impact Air Quality and Noise Monitoring Schedule for August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Aug	2-Aug	3-Aug
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
		244 555				
		24 hr TSP		Noise		
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
	S				Ç	
	24 hr TSP	Noise				24 hr TSP
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
S	S					
	Noise				24 hr TSP	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
	_011mg	_, 11mg	_01108		201148	
	Noise			24 hr TSP		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

Noise Monitoring Station

DMS-4(1)/DMS-3(2): - Rhythm Garden, Block 1

NMS-CA-4(1)/NMS-CA-3(2): - Block 1, Rhythm Garden (north-eastern façade) NMS-CA-5(1)/NMS-CA-2(2): - Block 1, Rhythm Garden (northern façade)

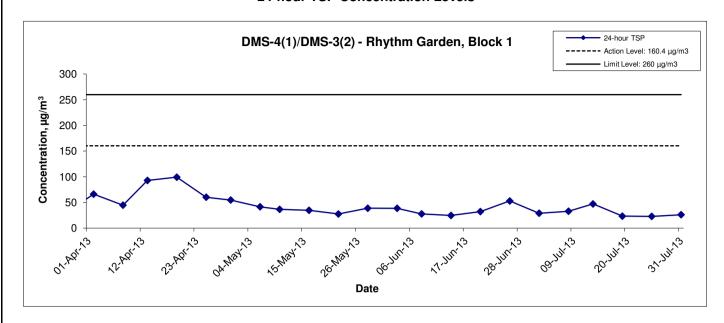
- (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2)Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).

APPENDIX E 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONIS

Appendix E - 24-hour TSP Monitoring Results

Location DMS-4(1)/DMS-3(2) - Rhythm Garden, Block 1

Compling Data	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Tille	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
2-Jul-13	09:00	Sunny	302.1	757.7	3.0394	3.0900	0.0506	1289.9	1313.9	24.0	1.21	1.21	1.21	1741.7	29.1
8-Jul-13	09:00	Sunny	301.1	760.7	3.0583	3.1158	0.0575	1313.9	1337.9	24.0	1.21	1.21	1.21	1747.7	32.9
13-Jul-13	09:00	Sunny	303.6	753.1	3.0318	3.1134	0.0816	1337.9	1361.9	24.0	1.20	1.20	1.20	1734.0	47.1
19-Jul-13	09:00	Sunny	300.1	756.8	3.8808	3.9215	0.0407	1361.9	1385.9	24.0	1.21	1.21	1.21	1747.2	23.3
25-Jul-13	09:00	Cloudy	298.3	755.4	3.0275	3.0676	0.0401	1385.9	1409.9	24.0	1.22	1.22	1.22	1750.7	22.9
31-Jul-13	09:00	Cloudy	301.8	756.1	3.6398	3.6854	0.0456	1409.9	1433.9	24.0	1.21	1.21	1.21	1742.0	26.2

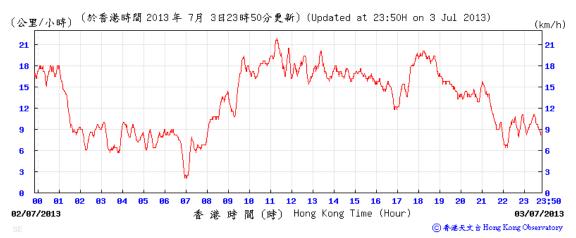

Remarks:

(1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).

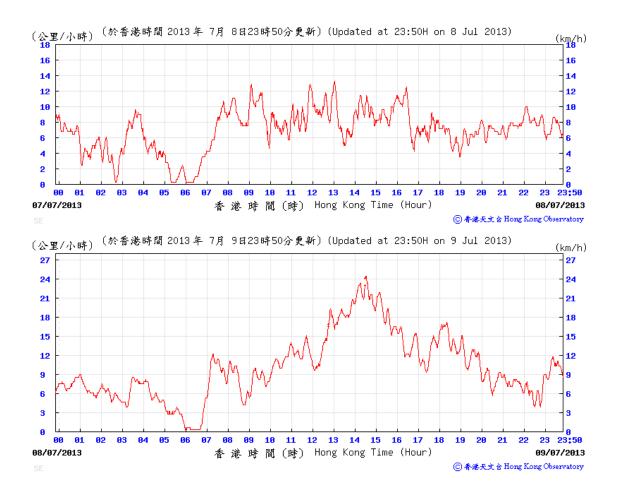
(2) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).

Min 22.9 Max 47.1 Average 30.2

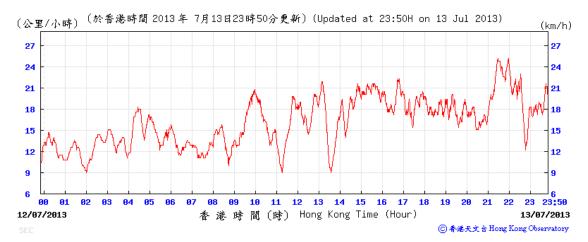

24-hour TSP Concentration Levels

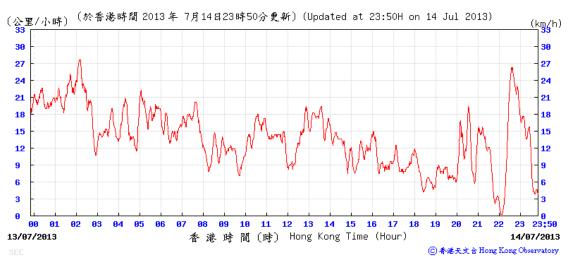


- (1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).

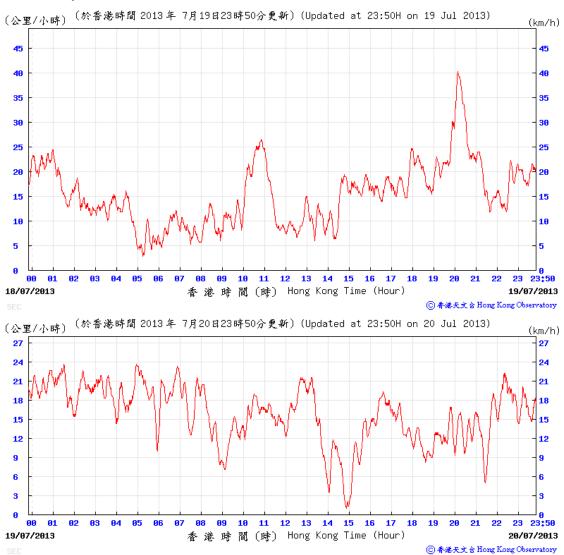

Title	Shatin to Central Link - Contract 1107 - Diamond Hill to Kai Tak Tunnels	Scale		Project No.	MA13018	CINOTECH
	Graphical Presentation of 24-hour TSP Monitoring Results	Date	Jul 13	Appendix	E E	CINOIECU

2-3 July 2013

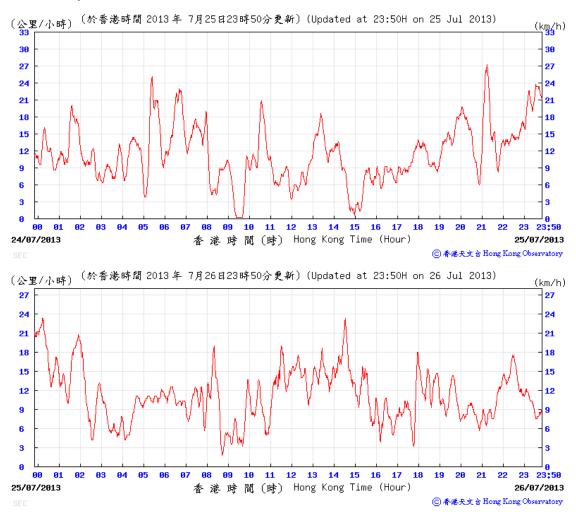


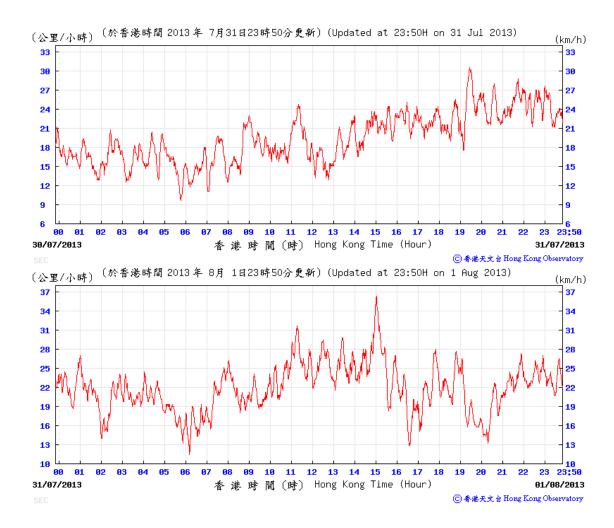


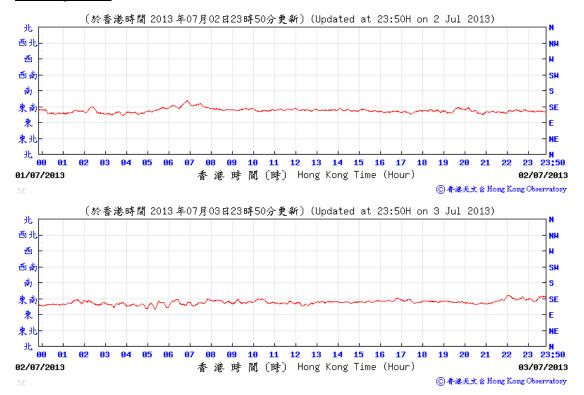
8-9 July 2013

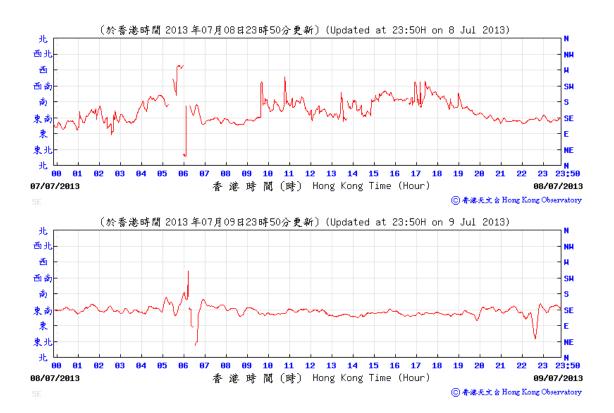


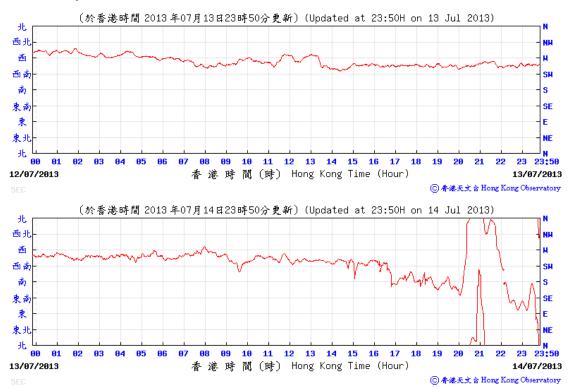
13-14 July 2013



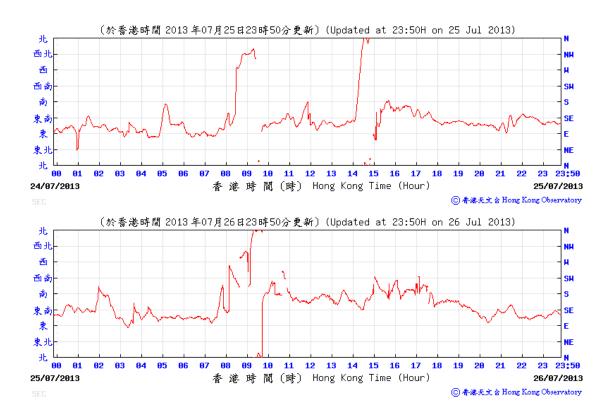

19-20 July 2013


25-26 July 2013


31- July to 1 August 2013


2-3 July 2013


8-9 July 2013


13-14 July 2013

19-20 July 2013

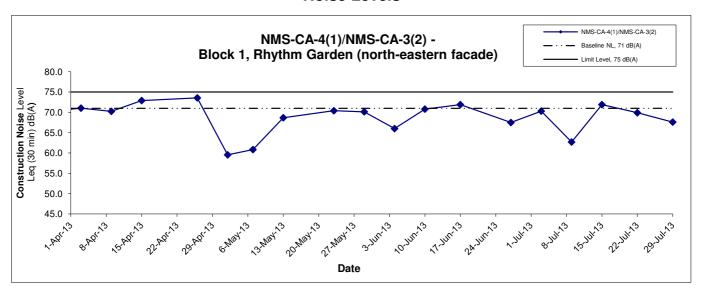
25-26 July 2013

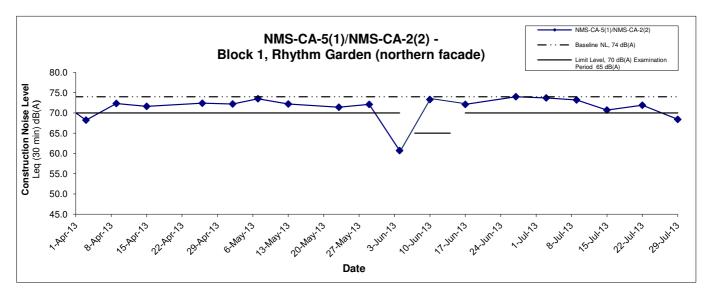
31- July to 1 - August 2013

APPENDIX F NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - Noise Monitoring Results

	-CA-4(1)/NMS		Unit: dB (A) (5-min)			Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		13:00	70.1	72.3	68.8			
		13:05	70.3	72.7	68.6			
3-Jul-13	Sunny	13:10	70.4	72.8	68.8	70.3		70.3 Measured≤ Baseline Level
3-3ul-13	Suring	13:15	70.2	72.7	68.8	70.5		70.5 Measured = Dasellile Level
		13:20	70.4	72.7	68.9			
		13:25	70.4	72.8	68.9			
		13:16	71.6	72.7	70.2			
		13:21	71.5	72.7	70.0			
9-Jul-13	Sunny	13:26	71.7	72.8	70.3	71.6		62.7
9-0ul-13	Suring	13:31	71.6	72.7	70.2	71.0		02.7
		13:36	71.4	72.5	70.1			
		13:41	71.8	72.7	70.3			
		13:00	74.5	76.1	71.9	74.5		
		13:05	74.5	76.0	72.1		71	
15-Jul-13	Cloudy	13:10	74.7	76.2	72.3			71.9
13-341-13	Cloudy	13:15	74.4	76.0	71.7			71.9
		13:20	74.2	75.8	71.5			
		13:25	74.6	76.4	72.1			
		14:15	73.7	74.9	72.2			
		14:20	73.5	74.7	72.1			
22-Jul-13	Sunny	14:25	72.9	74.3	72.3	73.5		69.9
22-Jul-13	Suring	14:30	73.4	74.2	72.3	73.3		69.9
		14:35	73.6	74.8	72.5			
		14:40	73.6	74.8	72.7			
		13:00	67.4	68.6	66.1			
		13:05	67.7	68.7	66.3			
29-Jul-13	Supp.	13:10	67.7	68.7	66.4	07.0		67.6 Measured≤ Baseline Level
	Sunny	13:15	67.5	68.6	66.1	67.6		o7.0 ivieasureu≥ daseiirie Levei
		13:20	67.4	68.5	66.0			
		13:25	67.7	68.8	66.3			


⁽¹⁾ Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
(2) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
App F - Noise


Appendix F - Noise Monitoring Results

	-CA-5(1)/NMS 	` .		t: dB (A) (5-n		Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}	L _{eq}
		13:35	73.7	74.8	72.1			
		13:40	73.6	75.0	72.3			
3-Jul-13	Sunny	13:45	73.7	74.9	72.1	73.7		73.7 Measured≤ Baseline Level
3-Jul- 13	Suring	13:50	73.7	74.8	72.0	13.1		75.7 Weasureu = Daseilire Lever
		13:55	73.8	74.9	72.3			
		14:00	73.7	74.8	72.0			
		15:50	73.1	74.3	71.7			
		15:55	73.3	74.5	72.0			
9-Jul-13	Sunny	16:00	73.0	74.2	71.6	73.2		73.2 Measured≦ Baseline Level
9-Jul-13	Suriny	16:05	73.2	74.5	71.6	73.2		75.2 Wedsured Baseline Level
		16:10	73.3	74.5	71.7			
		16:15	73.2	74.3	71.5			
	Cloudy	11:25	70.8	72.3	68.1	70.7	74	
		11:30	70.7	72.5	68.3			
15-Jul-13		11:35	70.5	71.9	67.7			70.7 Measured≤ Baseline Level
13-341-13	Cloudy	11:40	70.7	72.3	68.5			70.7 Measureu ≥ Daseilire Lever
		11:45	70.8	72.5	68.3			
		11:50	70.8	72.4	68.3			
		13:30	71.8	72.8	70.5			
		13:35	71.8	72.9	70.4			
22-Jul-13	Sunny	13:40	71.9	72.9	70.5	71.9		71.9 Measured≤ Baseline Level
22-Jul-13	Suring	13:45	72.0	73.0	70.5	71.9		71.9 Weasured ≥ Daseille Level
		13:50	72.1	73.2	70.6			
		13:55	72.0	73.1	70.7			
		13:40	68.5	69.6	67.2			
		13:45	68.0	69.3	67.0	68.4		
29-Jul-13	Sunny	13:50	68.3	69.6	67.3			68.4 Measured≦ Baseline Level
29-0ul-13	Suring	13:55	68.3	69.5	67.5	00.4		00.4 Measureu = Daseille Level
		14:00	68.6	70.0	67.7			
		14:05	68.4	69.4	67.5			

⁽¹⁾ Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).

Noise Levels

- (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(TAW-HUH).
- (2) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HHS).
- (3) In case of Measured Level \leq Baseline Level, only Measured Level is presented on the graphical presentation.

Title	Shatin to Central Link - Contract 1107 - Diamond Hill to Kai Tak Tunnels	Scale	Project No. MA13018	CINOTCCII
	Graphical Presentation of Construction Noise Monitoring Results	Date	Appendix F	CINOTECH

APPENDIX G SUMMARY OF EXCEEDANCE

APPENIDX G – SUMMARY OF EXCEEDANCE

Reporting Month: July 2013

- a) Exceedance Report for Dust Monitoring (NIL)
- b) Exceedance Report for Noise Monitoring (NIL)

APPENDIX H SITE AUDIT SUMMARY

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	130705
Date	5 July 2013(Friday)
Time	09:00 – 11:00

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B - Water Quality	
130705-O02	• Sand bag bunding should be provided for all sides of gully to avoid untreated runoff discharge.	В7
130705-R03	To provide sand bag bunding to U-channel near site boundary.	В7
	Part C – Landscape & Visual	
130705-R05	Enlarge the tree protection zone and properly maintain the retained trees on-site.	C3
	Part D – Air Quality	
130705-O01	• Dust generation observed from grouting plant. The Contractor is reminded to provide a proper enclosure to avoid dust generation.	D11
130705-R04	To provide sufficient water spray to haul road and keep the on-site record for water spray.	D5
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	• Follow-up on previous audit section (Ref. No.:130628), all environmental deficiency was observed improved/rectified by the Contractor.	

	Name	, Signature	Date
Recorded by	Johnny Fung	1,9-	5 July 2013
Checked by	Dr. Priscilla Choy	WI	5 July 2013

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	130712	
Date	12 July 2013(Friday)	
Time	09:00 - 10:30	

Ref. No.	Non-Compliance		Related Item
			No.
_	None identified	·	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C – Landscape & Visual	·
130712-O02	Construction materials and boulders should be removed from near the tree. The Contractor is reminded to set up a tree protection area.	C2, 3
	Part D – Air Quality	
130712-R01	Properly cover the stockpile of dusty material.	D6
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	Follow-up on previous audit section (Ref. No.:130705), all environmental deficiency was observed improved/rectified by the Contractor.	

	Name	, ~Signature	Date
Recorded by	Johnny Fung	1	12 July 2013
Checked by	Dr. Priscilla Choy	NA	12 July 2013

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	130719
Date	19 July 2013(Friday)
Time	09:00 - 10:15

Ref. No.	Non-Compliance	Related Item No.
-	None identified	

Ref. No.	Remarks/Observations	Related Item
		No.
	Part B – Water Quality	
130719-O01	Stagnant water is observed in the U-channel near the site boundary. The Contractor is reminded to provide sand bag bunding to avoid runoff out of the site.	В7
130719-O03	• Footings of hoarding at the site boundary should be sealed up to avoid surface runoff out of the site.	B2
	Part C – Landscape & Visual	
130719-O02	Construction materials should be removed from near the tree. The Contractor is reminded to set up tree protection area.	C2, 3
	Part D – Air Quality	
130719-R04	Properly cover the stockpile of dusty material.	D6
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
130719-R05	To provide tarpaulin sheets for placing the breaker to avoid chemical leakage to unpaved ground.	F9
	Part G – Permits/Licenses	
<u> </u>	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	• Follow-up on previous audit section (Ref. No.:130712), follow up action is needed to be reviewed for item 130712-R01 and 130712-O02.	

Name	Signature	Date
Johnny Fung	VO~	19 July 2013
Dr. Priscilla Choy	W.T.	19 July 2013
	Johnny Fung Dr. Priscilla Choy	Johnny Fung Dr. Priscilla Choy

CINOTECH MA13018 130722_audit130719.doc

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	130726
Date	26 July 2013(Friday)
Time	9:45 – 11:30

Ref. No.	Non-Compliance	Related Item
		No.
	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	110.
130726-001	Muddy water observed discharged to U-channel out of the site. The Contractor is reminded to avoid surface runoff out of site.	B5
130726-R03	Footings of hoarding at the site boundary should be sealed up under good weather conditions to to avoid surface runoff.	B2
	Part C – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
130726-R04	Properly cover stockpile of dusty material.	D6
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
130726-002	Chemical leakage observed on unpaved ground. The Contractor is reminded to provide a plug to drip tray to avoid further leakage.	F9, 10
	Part G – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	• Follow-up on previous audit section (Ref. No.:130719), follow up action is needed to be reviewed for item 130719-001, 130719-R03 and 130719-R04.	

	Name	Signature	Date
Recorded by	Johnny Fung	100	26 July 2013
Checked by	Dr. Priscilla Choy	KIZ	26 July 2013

APPENDIX I EVENT AND ACTION PLANS

Appendix I - Event and Action Plan for Noise Monitoring during Construction Phase

EVENT			ACTION	
	Works Contract 1107 ET	IEC	ER	CONTRACTOR
Action Level	Notify the IEC, Contractor and ER Discuss with the ER, IEC and Contractor on the remedial measures required Increase monitoring frequency to check mitigation effectiveness	Review the investigation results submitted by the contractor; Review and advise the ET and ER on effectiveness of the remedial measures proposed by the Contractor	Confirm receipt of notification of complaint in writing Notify the Contractor, IEC and ET Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures	 Investigate the complaint and propose remedial measures Report the results of investigation to the IEC, ET and ER Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification. Implement noise mitigation proposals
Limit Level	 Notify the IEC, Contractor and EPD Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Arrange meeting with the IEC, and ER to discuss the remedial measures to be taken; Inform IEC, ER and EPD the causes and actions taken for the exceedances Assess effectiveness of the Contractor's remedial measures and keep IEC, ER and EPD informed of the results 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	1. Confirm receipt of notification of exceedance in writing 2. Notify the Contractor, IEC and ET 3. In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented 4. Supervise the implementation of remedial measures 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	 Identify source and investigate the causes of exceedance Take immediate action to avoid further exceedance Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification. Implement the agreed proposals Revise and resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated

Appendix I - Event and Action Plan for Air Quality Monitoring during Construction Phase

EVENT			ACTION	
EVENT	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Inform the IEC, Contractor and ER; Discuss with the Contractor, IEC and ER on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing;	 Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.
2.Exceedance for two or more consecutive samples	 Inform the IEC, Contractor and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease addtional monitoring 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify the Contractor, IEC and ET; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures. 	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate.

Appendix I - Event and Action Plan for Air Quality Monitoring during Construction Phase

LIMIT LEVEL								
1.Exceedance for one	1.	Inform the IEC, Contractor and ER;	1.	Check monitoring data submitted	1.	Confirm receipt of notification of	1.	Identify source(s) and investigate the causes of
sample	2.	Repeat measurement to confirm		by the ET;		exceedance in writing;		exceedance;
		findings;	2.	Check the Contractor's working	2.	Notify the Contractor, IEC and ET;	2.	Take immediate action to avoid further
	3.	Increase monitoring frequency to daily;		method;	3.	Review and agree on the remedial		exceedance;
	4.	Discuss with the ER, IEC and contractor	3.	Discuss with the ET, ER and		measures proposed by the Contractor;	3.	Submit proposals for remedial measures to ER
		on the remedial measures and assess		Contractor on possible remedial	4.	Supervise implementation of remedial		with a copy to ET and IEC within three working
		the effectiveness.		measures;		measures.		days of notification;
			4.	Review and advise the ER and ET			4.	Implement the agreed proposals;
				on the effectiveness of			5.	Amend proposal if appropriate.
				Contractor's remedial measures.				
2.Exceedance for two or more	1.	Notify IEC, Contractor and EPD;	1.	Check monitoring data submitted	1.	Confirm receipt of notification of	1.	Identify source(s) and investigate the causes of
consecutive samples	2.	Repeat measurement to confirm		by the ET;		exceedance in writing;		exceedance;
		findings;	2.	Check the Contractor's working	2.	Notify the Contractor, IEC and ET;	2.	Take immediate action to avoid further
	3.	Increase monitoring frequency to daily;		method;	3.	In consultation with the ET and IEC,		exceedance;
	4.	Carry out analysis of the Contractor's	3.	Discuss with ET, ER, and		agree with the Contractor on the	3.	Submit proposals for remedial measures to the
		working procedures with the ER to		Contractor on the potential		remedial measures to be implemented;		ER with a copy to the IEC and ET within three
		determine possible mitigation to be		remedial measures;	4.	Supervise the implementation of		working days of notification;
		implemented;	4.	Review and advise the ER and ET		remedial measures;	4.	Implement the agreed proposals;
	5.	Arrange meeting with the IEC,		on the effectiveness of	5.	If exceedance continues, consider	5.	Revise and resubmit proposals if problem still
		Contractor and ER to discuss the		Contractor's remedial measures.		what portion of the work is responsible		not under control;
		remedial measures to be taken;				and instruct the Contractor to stop that	6.	Stop the relevant portion of works as determined
	6.	Review the effectiveness of the				portion of work until the exceedance is		by the ER until the exceedance is abated.
		Contractor's remedial measures and				abated.		
		keep IEC, EPD and ER informed of the						
		results;						
	7.	If exceedance stops, cease additional						
		monitoring.						

Appendix I - Event and Action Plan for Landscape and Visual during Construction Phase

EVENT			ACTION	
	Works Contract 1107 ET	IEC	ER	CONTRACTOR
Non-conformity	1. Inform the Contractor, the IEC and the	Check inspection report	Confirm receipt of notification of	Identify Source and investigate the non-conformity
on one occasion	ER	Check the Contractor's working method	non-conformity in writing	2. Implement remedial measures
	2. Discuss remedial actions with the IEC,	3. Discuss with the ET, ER and the	2. Review and agree on the remedial	3. Amend working methods agreed with the ER as
	the ER and the Contractor	Contractor on possible remedial	measures proposed by the Contractor;	appropriate
	3. Monitor remedial actions until	measures	3. Supervise implementation of remedial	4. Rectify damage and undertake any necessary
	rectification has been completed	4. Advise the ER on effectiveness of	measures	replacement
		proposed remedial measures.		
Repeated	Identify Source	Check inspection report	Notify the Contractor	Identify Source and investigate the non-conformity
Non-conformity	2. Inform the Contractor, the IEC and the	2. Check the Contractor's working	2. In consultation with the ET and IEC,	2. Implement remedial measures
	ER	method	agree with the Contractor on the	3. Amend working methods agreed with the ER as
	Increase inspection frequency	3. Discuss with the ET and the	remedial measures to be implemented	appropriate
	4. Discuss remedial actions with the IEC,	Contractor on possible remedial	3. Supervise implementation of remedial	4. Rectify damage and undertake any necessary
	the ER and the Contractor	measures	measures.	replacement. Stop relevant portion of works as
	5. Monitor remedial actions until	4. Advise the ER on effectiveness of		determined by the ER until the non-conformity is
	rectification has been completed	proposed remedial measures		abated.
	6. If non-conformity stops, cease additional			
	monitoring			

APPENDIX J UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
Landsca	ape & Vi	sual (Construction Phase)						
S6.12	LV1	The following good site practices and measures for minimisation and	Minimize visual &	Contractor	Within Project	Construction	•TM-EIAO	
		avoidance of potential impacts are recommended:	landscape impact		Site	stage		
		Re-use of Existing Soil						
		For soil conservation, existing topsoil shall be re-used where						N/A
		possible for new planting areas within the project. The						
		construction program shall consider using the soil removed from						
		one phase for backfilling another. Suitable storage ground,						
		gathering ground and mixing ground may be set up on-site as						
		necessary.						
		No-intrusion Zone						
		To maximize protection to existing trees, ground vegetation and						*
		the associated under storey habitats, construction contracts may						
		designate "No-intrusion Zone" to various areas within the site						
		boundary with rigid and durable fencing for each individual						
		no-intrusion zone. The contractor should closely monitor and						
		restrict the site working staff from entering the "no-intrusion zone",						
		even for indirect construction activities and storage of equipment.						
		Protection of Retained Trees						
		All retained trees should be recorded photographically at the						^
		commencement of the Contract, and carefully protected during						
		the construction period. Detailed tree protection specification shall						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		be allowed and included in the Contract Specification, which specifying the tree protection requirement, submission and						
		approval system, and the tree monitoring system.						
		The Contractor shall be required to submit, for approval, a						۸
		detailed working method statement for the protection of trees prior						
		to undertaking any works adjacent to all retained trees, including						
		trees in contractor's works sites.						
Table 6.9	LV2	Decorative Hoarding	Minimize the visual and	Contractor	Within Project	Detailed design	• EIAO – TM	
		Erection of decorative screen during construction stage to screen	landscape impact of the		Site	and	•ETWB TCW 2/2004	N/A
		off undesirable views of the construction site for visual and	Project during construction			construction	• ETWB TCW	
		landscape sensitive areas. Hoarding should be designed to be	phase			stage	3/2006	
		compatible with the existing urban context.						
		Management of facilities on work sites						
		To provide proper management of the facilities on the sites, give						N/A
		control on the height and disposition/ arrangement of all facilities						
		on the works site to minimize visual impact to adjacent VSRs.						
		Tree Transplanting						
		Trees of medium to high survival rate that would be affected by						N/A
		the works shall be transplanted where possible and practicable.						
		Tree transplanting proposal including final location for						
		transplanted trees shall be submitted separately to seek relevant						
		government department's approval, in accordance with ETWB						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		TCW No 3/2006.						
Constru	ction D	ust Impact						
S7.6.6	D1	The contractor shall follow the procedures and requirements given in the	Minimize dust impact at the	Contractor	All Construction	Construction	• APCO	۸
		Air Pollution Control (Construction Dust) Regulation	nearby sensitive receivers		Sites	stage	To control the dust	
							impact to meet	
							HKAQO and TM-	
							EIA criteria	
S7.6.6	D2	Mitigation measures in form of regular watering under a good site	Minimize dust impact at the	Contractor	All Construction	Construction	• APCO	*
		practice should be adopted. Watering once per hour on exposed	nearby sensitive receivers		Sites	stage	To control the dust	
		worksites and haul road in the Kowloon area should be conducted to					impact to meet	
		achieve dust removal efficiencies of 91.7%. While the above watering					HKAQO and TM-	
		frequencies are to be followed, the extent of watering may vary					EIA criteria	
		depending on actual site conditions but should be sufficient to maintain						
		an equivalent intensity of no less than 1.8 L/m ² to achieve the dust						
		removal efficiency						
S7.6.6	D3	Any excavated or stockpile of dusty material should be covered	Minimize dust impact at the	Contractor	All Construction	Construction	• APCO	*
		entirely by impervious sheeting or sprayed with water to maintain	nearby sensitive receivers		Sites	stage	To control the dust	
		the entire surface wet and then removed or backfilled or reinstated					impact to meet	
		where practicable within 24 hours of the excavation or unloading;					HKAQO and TM-	
		Any dusty materials remaining after a stockpile is removed should					EIA criteria	
		be wetted with water and cleared from the surface of roads;						^
		A stockpile of dusty material should not be extend beyond the						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		pedestrian barriers, fencing or traffic cones.						۸
		The load of dusty materials on a vehicle leaving a construction						
		site should be covered entirely by impervious sheeting to ensure						N/A
		that the dusty materials do not leak from the vehicle;						
		Where practicable, vehicle washing facilities with high pressure						
		water jet should be provided at every discernible or designated						N/A
		vehicle exit point. The area where vehicle washing takes place						
		and the road section between the washing facilities and the exit						
		point should be paved with concrete, bituminous materials or						
		hardcores;						
		When there are open excavation and reinstatement works,						
		hoarding of not less than 2.4m high should be provided and						N/A
		properly maintained as far as practicable along the site boundary						
		with provision for public crossing; Good site practice shall also be						
		adopted by the Contractor to ensure the conditions of the						
		hoardings are properly maintained throughout the construction						
		period;						
		The portion of any road leading only to construction site that is						
		within 30m of a vehicle entrance or exit should be kept clear of						٨
		dusty materials;						
		Surfaces where any pneumatic or power-driven drilling, cutting,						
		polishing or other mechanical breaking operation takes place						۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		should be sprayed with water or a dust suppression chemical						
		continuously;						
		Any area that involves demolition activities should be sprayed with						
		water or a dust suppression chemical immediately prior to, during						٨
		and immediately after the activities so as to maintain the entire						
		surface wet;						
		Where a scaffolding is erected around the perimeter of a building						
		under construction, effective dust screens, sheeting or netting						N/A
		should be provided to enclose the scaffolding from the ground						
		floor level of the building, or a canopy should be provided from the						
		first floor level up to the highest level of the scaffolding;						
		Any skip hoist for material transport should be totally enclosed by						
		impervious sheeting;						N/A
		Every stock of more than 20 bags of cement or dry pulverised						
		fuel ash (PFA) should be covered entirely by impervious sheeting						٨
		or placed in an area sheltered on the top and the 3 sides;						
		Cement or dry PFA delivered in bulk should be stored in a closed						
		silo fitted with an audible high level alarm which is interlocked						٨
		with the material filling line and no overfilling is allowed;						
		Loading, unloading, transfer, handling or storage of bulk cement						
		or dry PFA should be carried out in a totally enclosed system or						٨
		facility, and any vent or exhaust should be fitted with an effective						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		fabric filter or equivalent air pollution control system; and						
		Exposed earth should be properly treated by compaction, turfing,						
		hydroseeding, vegetation planting or sealing with latex, vinyl,						N/A
		bitumen, shotcrete or other suitable surface stabiliser within six						
		months after the last construction activity on the construction site						
		or part of the construction site where the exposed earth lies.						
S7.6.6	D4	Implement regular dust monitoring under EM&A programme during the	Monitoring of dust impact	Contractor	Selected	Construction	• TM-EIA	۸
		construction stage.			representative	stage		
					dust monitoring			
					station			
Constru	ction Ai	irborne Noise						
S8.5.6	AN1	Implement the following good site practices:	Control construction	Contractor	All Construction	Construction	• Annex 5, TM-EIA	
		only well-maintained plant should be operated on-site and plant	airborne		Sites where	stage		۸
		should be serviced regularly during the construction programme;	noise		practicable			
		machines and plant (such as trucks, cranes) that may be in						٨
		intermittent use should be shut down between work periods or						
		should be throttled down to a minimum;						
		plant known to emit noise strongly in one direction, where						۸
		possible, be orientated so that the noise is directed away from						
		nearby NSRs;						
		silencers or mufflers on construction equipment should be						N/A
		properly fitted and maintained during the construction works;						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		mobile plant should be sited as far away from NSRs as possible						۸
		and practicable;						
		material stockpiles, mobile container site office and other						N/A
		structures should be effectively utilised, where practicable, to						
		screen noise from on-site construction activities.						
S8.5.6	AN2	Install temporary hoarding located on the site boundaries between noisy	Reduce the construction	Contractor	All Construction	Construction	• Annex 5, TM-EIA	N/A
		construction activities and NSRs. The conditions of the hoardings shall	noise levels at low-level		Sites	stage		
		be properly maintained throughout the construction period.	zone of NSRs through					
			partial					
			screening.					
S8.5.6	AN3	Install movable noise barriers (typical design is wooden framed barrier	Screen the noisy plant	Contractor	All Construction	Construction	• Annex 5, TM-EIA	N/A
		with a small-cantilevered on a skid footing with 25mm thick internal	items		Sites	stage		
		sound absorptive lining), acoustic mat or full enclosure, screen the noisy	to be used at all					
		plants including air compressor, generators and saw.	construction					
			sites					
S8.5.6	AN4	Use "Quiet" plant	Reduce the noise levels of	Contractor	All Construction	Construction	• Annex 5, TM-EIA	N/A
			plant items		Sites where	stage		
					practicable			
S8.5.6	AN5	Sequencing operation of construction plants where practicable.	Operate sequentially within	Contractor	All Construction	Construction	• Annex 5, TM-EIA	^
			the same work site to		Sites where	stage		
			reduce		practicable			
			the construction airborne					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
			noise					
S8.5.6	AN6	Implement a noise monitoring under EM&A programme.	Monitor the construction	Contractor	Selected	Construction	•TM-EIA	^
			noise levels at the selected		representative	stage		
			representative locations		noise monitoring			
					station			
Water Q	uality (C	Construction Phase)						
S10.7.1	W1	In accordance with the Practice Noise for Professional Persons on	To minimize water quality	Contractor	All construction	Construction	Water Pollution	
		Construction Site Drainage, Environmental Protection Department, 1994	impact from construction		sites	stage	Control Ordinance	
		(ProPECC PN1/94), construction phase mitigation measures shall	site		where practicable		• ProPECC PN1/94	
		include the following:	runoff and general				• TM-EIAO	
		Construction Runoff and Site Drainage	construction activities				• TM-Water	
		At the start of site establishment (including the barging facilities),						*
		perimeter cut-off drains to direct off-site water around the site						
		should be constructed with internal drainage works and erosion						
		and sedimentation control facilities implemented. Channels						
		(both temporary and permanent drainage pipes and culverts),						
		earth bunds or sand bag barriers should be provided on site to						
		direct stormwater to silt removal facilities. The design of the						
		temporary on-site drainage system will be undertaken by the						
		contractor prior to the commencement of construction.						
		The dikes or embankments for flood protection should be						*
		implemented around the boundaries of earthwork areas.						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		Temporary ditches should be provided to facilitate the runoff						
		discharge into an appropriate watercourse, through a						
		site/sediment trap. The sediment/silt traps should be incorporated						
		in the permanent drainage channels to enhance deposition rates.						
		The design of efficient silt removal facilities should be based on						
		the guidelines in Appendix A1 of ProPECC PN 1/94, which states						
		that the retention time for silt/sand traps should be 5 minutes						
		under maximum flow conditions. Sizes may vary depending						
		upon the flow rate, but for a flow rate of 0.1 m ³ /s a sedimentation						
		basin of 30m ³ would be required and for a flow rate of 0.5 m ³ /s						
		the basin would be 150 m ³ . The detailed design of the sand/silt						
		traps shall be undertaken by the contractor prior to the						
		commencement of construction.						
		All exposed earth areas should be completed and vegetated as						N/A
		soon as possible after earthworks have been completed, or						
		alternatively, within 14 days of the cessation of earthworks where						
		practicable. Exposed slope surfaces should be covered by						
		tarpaulin or other means.						
		The overall slope of the site should be kept to a minimum to						N/A
		reduce the erosive potential of surface water flows, and all traffic						
		areas and access roads protected by coarse stone ballast. An						
		additional advantage accruing from the use of crushed stone is						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		the positive traction gained during prolonged periods of inclement						
		weather and the reduction of surface sheet flows.						
		All drainage facilities and erosion and sediment control structures						^
		should be regularly inspected and maintained to ensure proper						
		and efficient operation at all times and particularly following						
		rainstorms. Deposited silt and grit should be removed regularly						
		and disposed of by spreading evenly over stable, vegetated						
		areas.						
		Measures should be taken to minimise the ingress of site drainage						N/A
		into excavations. If the excavation of trenches in wet periods is						
		necessary, they should be dug and backfilled in short sections						
		wherever practicable. Water pumped out from trenches or						
		foundation excavations should be discharged into storm drains via						
		silt removal facilities.						
		Open stockpiles of construction materials (for example,						N/A
		aggregates, sand and fill material) of more than 50m ³ should be						
		covered with tarpaulin or similar fabric during rainstorms.						
		Measures should be taken to prevent the washing away of						*
		construction materials, soil, silt or debris into any drainage						
		system. Manholes (including newly constructed ones) should						
		always be adequately covered and temporarily sealed so as to						
		prevent silt, construction materials or debris being washed into the						

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log			recommended Measures	implement	measures	Implement the	or standards for	
	Ref			& Main Concerns to	the		measures?	the measures to	
				address	measures?			achieve?	
			drainage system and storm runoff being directed into foul sewers						
		•	Precautions be taken at any time of year when rainstorms are						^
			likely, actions to be taken when a rainstorm is imminent or						
			forecasted, and actions to be taken during or after rainstorms are						
			summarised in Appendix A2 of ProPECC PN 1/94. Particular						
			attention should be paid to the control of silty surface runoff during						
			storm events, especially for areas located near steep slopes						
		•	All vehicles and plant should be cleaned before leaving a						۸
			construction site to ensure no earth, mud, debris and the like is						
			deposited by them on roads. An adequately designed and sited						
			wheel washing facilities should be provided at every construction						
			site exit where practicable. Wash-water should have sand and						
			silt settled out and removed at least on a weekly basis to ensure						
			the continued efficiency of the process. The section of access						
			road leading to, and exiting from, the wheel-wash bay to the public						
			road should be paved with sufficient backfall toward the						
			wheel-wash bay to prevent vehicle tracking of soil and silty water						
			to public roads and drains.						
		•	Oil interceptors should be provided in the drainage system						N/A
			downstream of any oil/fuel pollution sources. The oil interceptors						
			should be emptied and cleaned regularly to prevent the release of						
			oil and grease into the storm water drainage system after						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		accidental spillage. A bypass should be provided for the oil						
		interceptors to prevent flushing during heavy rain.						
		Construction solid waste, debris and rubbish on site should be						^
		collected, handled and disposed of properly to avoid water quality						
		impacts.						
		All fuel tanks and storage areas should be provided with locks and						N/A
		sited on sealed areas, within bunds of a capacity equal to 110% of						
		the storage capacity of the largest tank to prevent spilled fuel oils						
		from reaching water sensitive receivers nearby						
		All the earth works involving should be conducted sequentially to						۸
		limit the amount of construction runoff generated from exposed						
		areas during the wet season (April to September) as far as						
		practicable.						
		Adopt best management practices.						^
S10.7.1	W2	Tunneling Works	To minimize construction	Contractor	All tunneling	Construction	Water Pollution	
		Cut-&-cover/ open cut tunnelling work should be conducted	water quality impact from		portion	stage	Control Ordinance	۸
		sequentially to limit the amount of construction runoff generated	tunneling works				• ProPECC PN	
		from exposed areas during the wet season (April to September)					1/94	
		as far as practicable.					• TM-water	
		Uncontaminated discharge should pass through sedimentation					• TM-EIAO	N/A
		tanks prior to off-site discharge						
		The wastewater with a high concentration of SS should be treated						N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		(e.g. by sedimentation tanks with sufficient retention time) before						
		discharge. Oil interceptors would also be required to remove the						
		oil, lubricants and grease from the wastewater.						
		Direct discharge of the bentonite slurry (as a result of D-wall and						N/A
		bored tunnelling construction) is not allowed. It should be						
		reconditioned and reused wherever practicable. Temporary						
		storage locations (typically a properly closed warehouse) should						
		be provided on site for any unused bentonite that needs to be						
		transported away after all the related construction activities are						
		completed. The requirements in ProPECC PN 1/94 should be						
		adhered to in the handling and disposal of bentonite slurries.						
S10.7.1	W3	Sewage Effluent	To minimize water quality	Contractor	All construction	Construction	Water Pollution	
		Portable chemical toilets and sewage holding tanks are	from sewage effluent		sites where	stage	Control Ordinance	۸
		recommended for handling the construction sewage generated by			practicable		• TM-water	
		the workforce. A licensed contractor should be employed to						
		provide appropriate and adequate portable toilets and be						
		responsible for appropriate disposal and maintenance.						
S10.7.1	W5	Accidental Spillage	To minimize water quality	Contractor	All construction	Construction	Water Pollution	
		In order to prevent accidental spillage of chemicals, the following is	impact from accidental		sites where	stage	Control Ordinance	
		recommended:	spillage		practicable		• ProPECC PN1/94	
		Proper storage and handling facilities should be provided;					• TM-EIAO	N/A
		All the tanks, containers, storage area should be bunded and					• TM-Water	*

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		thelocations should be locked as far as possible from the						
		sensitive watercourse and stormwater drains;						
		The Contractor should register as a chemical waste producer if						۸
		chemical wastes would be generated. Storage of chemical waste						
		arising from the construction activities should be stored with						
		suitable labels and warnings; and						
		Disposal of chemical wastes should be conducted in compliance						N/A
		with the requirements as stated in the Waste disposal (Chemical						
		Waste) (General) Regulation.						
Waste N	lanagen	nent (Construction Waste)						
S11.4.1.1	WM1	On-site sorting of C&D material	Separation of unsuitable	Contractor	All construction	Construction	• DEVB TC(W) No.	
		Geological assessment should be carried out by competent	rock from ending up at		sites	stage	6/2010	۸
		persons on site during excavation to identify materials which are	concrete batching plants					
		not suitable to use as aggregate in structural concrete (e.g.	and be turned into concrete					
		volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke	for structural use					
		rock should be separated at the source sites as far as practicable						
		and stored at designated stockpile areas preventing them from						
		delivering to crushing facilities. The crushing plant operator						
		should also be reminded to set up measures to prevent unsuitable						
		rock from ended up at concrete batching plants and be turned into						
		concrete for structural use. Details regarding control measures at						
		source site and crushing facilities should be submitted by the						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		Contractors for the Engineer to review and agree. In addition, site						
		records should also be kept for the types of rock materials						
		excavated and the traceability of delivery will be ensured with the						
		implementation of Trip Ticket System and enforced by site						
		supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for						
		tracking of the correct delivery to the rock crushing facilities for						
		processing into aggregates. Alternative disposal option for the						
		reuse of volcanic rock and Aplite Dyke rock, etc should also be						
		explored.						
S11.5.1	WM2	Construction and Demolition Material	Good site practice to	Contractor	All construction	Construction	• Land	
		Maintain temporary stockpiles and reuse excavated fill material for	minimize the waste		sites	stage	(Miscellaneous	٨
		backfilling and reinstatement;	generation and recycle the				Provisions)	
		Carry out on-site sorting;	C&D materials as far as				Ordinance	٨
		Make provisions in the Contract documents to allow and promote	practicable so as to reduce				Waste Disposal	٨
		the use of recycled aggregates where appropriate;	the amount for final				Ordinance	
		Adopt 'Selective Demolition' technique to demolish the existing	disposal				• ETWB TCW No.	N/A
		structures and facilities with a view to recovering broken concrete					19/2005	
		effectively for recycling purpose, where possible;						
		Implement a trip-ticket system for each works contract to ensure						٨
		that the disposal of C&D materials are properly documented and						
		verified; and						
		Implement an enhanced Waste Management Plan similar to						٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials						
		and to minimize their generation during the course of construction.						
		In addition, disposal of the C&D materials onto any sensitive						٨
		locations such as agricultural lands, etc. should be avoided. The						
		Contractor shall propose the final disposal sites to the Project						
		Proponent and EPD and get their approval before						
		implementation						
S11.5.1	WM3	C&D Waste	Good site practice to	Contractor	All construction	Construction	• Land	
		Standard formwork or pre-fabrication should be used as far as	minimize the waste		sites	stage	(Miscellaneous	٨
		practicable in order to minimise the arising of C&D materials.	generation and recycle the				Provisions)	
		The use of more durable formwork or plastic facing for the	C&D materials as far as				Ordinance	
		construction works should be considered. Use of wooden	practicable so as to reduce				Waste Disposal	
		hoardings should not be used, as in other projects. Metal	the amount for final				Ordinance	
		hoarding should be used to enhance the possibility of recycling.	disposal				• ETWB TCW	
		The purchasing of construction materials will be carefully planned					No.19/2005	
		in order to avoid over ordering and wastage.						
		The Contractor should recycle as much of the C&D materials as						٨
		possible on-site. Public fill and C&D waste should be						
		segregated and stored in different containers or skips to enhance						
		reuse or recycling of materials and their proper disposal.						
		Where practicable, concrete and masonry can be crushed and						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		used as fill. Steel reinforcement bar can be used by scrap steel						
		mills. Different areas of the sites should be considered for such						
		segregation and storage.						
S11.5.1	WM4	General Refuse	Minimize production of the	Contractor	All construction	Construction	Waste Disposal	
		General refuse generated on-site should be stored in enclosed	general refuse and avoid		sites	stage	Ordinance	^
		bins or compaction units separately from construction and	odour, pest and litter					
		chemical wastes.	impacts					
		A reputable waste collector should be employed by the Contractor						٨
		to remove general refuse from the site, separately from						
		construction and chemical wastes, on a daily basis to minimize						
		odour, pest and litter impacts. Burning of refuse on construction						
		sites is prohibited by law.						
		Aluminium cans are often recovered from the waste stream by						N/A
		individual collectors if they are segregated and made easily						
		accessible. Separate labelled bins for their deposit should be						
		provided if feasible.						
		Office wastes can be reduced through the recycling of paper if						^
		volumes are large enough to warrant collection. Participation in a						
		local collection scheme should be considered by the Contractor.						
S11.5.1	WM6	Chemical Waste	Control the chemical waste	Contractor	All Construction	Construction	Waste Disposal	
		Chemical waste that is produced, as defined by Schedule 1 of the	and ensure proper storage,		Sites	Stage	(Chemical Waste)	*
		Waste Disposal (Chemical Waste) (General) Regulation, should	handling and disposal.				(General)	

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log			recommended Measures	implement	measures	Implement the	or standards for	
	Ref			& Main Concerns to	the		measures?	the measures to	
				address	measures?			achieve?	
			be handled in accordance with the Code of Practice on the					Regulation	
			Packaging, Labelling and Storage of Chemical Wastes.					Code of Practice	
		•	Containers used for the storage of chemical wastes should be					on the Packaging,	*
			suitable for the substance they are holding, resistant to corrosion,					Labelling and	
			maintained in a good condition, and securely closed; have a					Storage of	
			capacity of less than 450L unless the specification has been					Chemical Waste	
			approved by the EPD; and display a label in English and Chinese						
			in accordance with instructions prescribed in Schedule 2 of the						
			regulation.						
		•	The storage area for chemical wastes should be clearly labelled						*
			and used solely for the storage of chemical waste; be enclosed on						
			at least 3 sides; have an impermeable floor and bunding of						
			sufficient capacity to accommodate 110% of the volume of the						
			largest container or 20 % of the total volume of waste stored in						
			that area, whichever is the greatest; have adequate ventilation; be						
			covered to prevent rainfall entering; and be arranged so that						
			incompatible materials are adequately separated.						
		•	Disposal of chemical waste should be via a licensed waste						N/A
			collector; and be to a facility licensed to receive chemical						
			waste, such as the Chemical Waste Treatment Centre which also						
			offers a chemical waste collection service and can supply the						
			necessary storage containers; or be to a reuser of the waste,						

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What requirements	Status
	Log		recommended Measures	implement	measures	Implement the	or standards for	
	Ref		& Main Concerns to	the		measures?	the measures to	
			address	measures?			achieve?	
		under approval from the EPD.						

Remarks: ^

- Compliance of mitigation measure
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Recommendation was made during site audit but improved/rectified by the contractor.

N/A Not Applicable

APPENDIX K
WASTE GENERATION IN THE
REPORTING MONTH

Ver: 1st 1107 Diamond Hill to Kai Tak Tunnels Date: May 2013

CW - SELI Joint Venture

Name of Department: MTRC Contract No.:1107 Appendix C1

Monthly Summary Waste Flow Table for 2013

		Estimate	d Quanti	ties of In	ert C&D	Material	s (in '00	Om³) (se	e Note 4)			Es	timated C	uantities	of C&D	Wastes			
Year	Total C Gene	Quantity erated	Suitat Recy Aggre	/cled	Reused in the Contract			Reused in other Projects Disposed as Public Fill		Metals		Paper/cardboard packaging		Plastics (see Note 3)		Chemical Waste		Others, e.g. general refuse		
	(8	a)	(k	o)	(c)		(0	d)	(e=a-l	b-c-d)	(in '00	0kg)	(in '0	00kg)	(in '0	00kg)	(in '000kg)		(in '000m3)	
	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.
January																				
February																				
March	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.080	0.000
June	1.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.800	0.000	0.000	1.780	0.100	0.000	0.000	0.000	0.000	0.000	0.080	0.030
July	1.800	0.880	0.000	0.000	0.000	0.000	0.000	0.255	1.800	0.625	0.000	0.100	0.100	0.000	0.100	0.000	0.000	0.000	0.080	0.035
August	1.800		0.000		0.000		0.000		1.800		0.000		0.100		0.000		0.000		0.100	
September	1.800		0.000		0.000		0.000		1.800		1.000		0.100		0.000		0.000		0.100	
October	1.000		0.000		0.000		0.000		1.000		1.000		0.100		0.000		0.000		0.100	
November	5.500		0.000		0.000		0.000		5.500		0.000		0.100		0.000		0.100		0.100	
December	5.500		0.000		0.000		0.000		5.500		0.000		0.100		0.100		0.000		0.100	
Total	19.300	0.880	0.000	0.000	0.000	0.000	0.000	0.255	19.300	0.625	2.000	1.880	0.700	0.000	0.200	0.000	0.100	0.000	0.740	0.065

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (3) The quantitles of C&D Materials, in m³, was calculated by multiply the no. of truck with the volume of truck, which is 5m³.

APPENDIX L CUMULATIVE LOG FOR COMPLAINT LOGS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log

Log Ref.	Date/Location	Complainant/ Date of Contact	Details of Complaint	Investigation/ Mitigation Action	File Closed
			-		

Cumulative Log for Notifications of Summons

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Cumulative Log for Successful Prosecutions

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

Appendix H

2nd Monthly EM&A Report for Works Contract 1112 – Hung Hom Station and Stabling Sidings

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section and Mong Kok East to Hung Hom Section

Monthly EM&A Report No.2

[Period from 1 to 31 July 2013]

Contract 1112 - Hung Hom Station and Stabling Sidings

(August 2013)

Certified by:_	Vivian Chan Vizie
Position:	Environmental Team Leader
Date:	12 August 2013

2nd Monthly EM&A Report for July 2013

Shatin to Central Link – Works Contract 1112 Hung Hom Station and Stabling Sidings

August 2013

Project/Deliverable No.	7076187 04/01
Project Name	Shatin to Central Link – Works Contract 1112 Hung Hom Station and Stabling Sidings
Report Name	2 nd Monthly EM&A Report for July 2013
Report Date	August 2013
Report for	Leighton Contractors (Asia) Limited

PREPARATION, REVIEW AND AUTHORISATION

Revision #	Date	Prepared by	Reviewed by	Approved by
1.0 (Draft)	August 2013	Winnie MA	Vivian CHAN	Alexi BHANJA
2.0 (Final)	August 2013	Winnie MA	Vivian CHAN	Alexi BHANJA

ISSUE REGISTER

Distribution List	Date Issued	Number of Copies
Leighton Contractors (Asia) Limited	August 2013	1 soft copy
MTR Corporation Limited	August 2013	1 soft copy
SMEC Project File:		1 electronic

SMEC COMPANY DETAILS

SMEC Asia Limited

27/F Ford Glory Plaza, 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong **T** +852 3995 8100 | **F** +852 3995 8101 smecasia@smec.com | www.smec.com

The information within this document is and shall remain the property of **SMEC Asia Limited**

CONTENTS

EXE	CUTIVE	SUMMARY	IV
	Intro	duction	iv
	Lands	scape and Visual Monitoring	iv
	Air Qı	uality Monitoring	iv
	Noise	Quality Monitoring	iv
	Wast	e Management	iv
	Enviro	onmental Auditing	v
	Comp	pliant, Notification of Summons and Successful Prosecution	v
	Futur	e Key Issues	V
1	INTRO	ODUCTION	1
	1.1	Project Background	1
	1.2	Purpose of the Report	1
	1.3	Report Structure	1
2	PROJ	ECT INFORMATION	2
	2.1	General Site Description	2
	2.2	Construction Programme and Activities	3
	2.3	Project Organisation	3
	2.4	Status of Environmental Licences, Notification and Permits	4
3	ENVI	ORNMENTAL MONITORTING PARAMETERS	5
	3.1	Air Quality Monitoring	5
	3.2	Construction Noise Monitoring	7
	3.3	Landscape and Visual Impact	8
4	IMPL	EMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	9
5	MON	ITORING RESULTS	10
	5.1	Air Quality Monitoring	10
	5.2	Regular Construction Noise Monitoring	10
	5.3	Waste Management	10
	5.4	Landscape and Visual	10
6	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	11
7	ENVI	RONMENTAL NON-CONFORMANCE	13
	7.1	Summary of Monitoring Exceedances	13
	7.2	Summary of Environmental Non-Compliance	13

	7.3	Summary of Environmental Complaint	13
	7.4	Summary of Environmental Summons and Successful Prosecution	. 13
8	FUTUR	E KEY ISSUES	.14
	8.1	Construction Programme for Next Month	14
	8.2	Key Issues for the Coming Months	14
	8.3	Monitoring Schedule for Next Month	.14
9	CONCL	USIONS AND RECOMMENDATIONS	.15
	9.1	Conclusions	15
	9.2	Recommendations	15

APPENDICES

Appendix A	Project Works Boundary
Appendix B	Construction Programme
Appendix C	Project Organisation for Environmental Works
Appendix D	Location of Air Quality Monitoring Station
Appendix E	Calibration Certificates of Monitoring Equipment
Appendix F	Wind Data
Appendix G	Environmental Monitoring Programme
Appendix H	Implementation Schedule of Environmental Mitigation Measures
Appendix I	Measures Monitoring Results and their Graphical Presentations
Appendix J	Event and Action Plan
Appendix K	Waste Flow Table
Appendix L	Cumulative Statistics of Complaints, Notification of Summons and Successful Prosecutions

TABLES

Table 2-1	Contact Information of Key Personnel
Table 2-2	Status of Environmental Licenses, Notification and Permits
Table 3-1	Air Quality Monitoring Parameters and Frequency
Table 3-2	Air Quality Monitoring Location
Table 3-3	Air Quality Monitoring Equipment
Table 4-1	Summary of Status of Required Submission under EP
Table 5-1	Summary of 24-hour TSP Monitoring Results
Table 6-1	Observations and Recommendations of Site Audits

EXECUTIVE SUMMARY

Introduction

The construction works of MTRC Shatin to Central Link Works Contract 1112- Hung Hom Station and Stabling Sidings (the Project) comprise permanent works and the necessary temporary works for Hung Hom Station (HUH), Hung Hom Sidings (HHS), the South Approach Tunnels (SAT) and the North Approach Tunnels (NAT) to the new station, HHS and any reprovisioning remedial and improvement works (RRIW).

Construction works of the Project commenced on 3 June 2013. This is the 2nd monthly Environmental Monitoring and Audit (EM&A) Report presenting the EM&A works carried out during the period from 1 to 31 July 2013 in accordance with the EM&A manual.

During the reporting month, the following activity took place for the Project:

- Site clearance and set up at HUH
- D-wall construction at HUH
- Equipment mobilization at HUH
- Ground investigation works at HUH
- Underpinning at HUH
- Initial excavation at HUH
- Demolition of building services system at HUH

Landscape and Visual Monitoring

Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 9 and 23 July 2013. All necessary mitigation measures have been implemented by the Contractor.

Air Quality Monitoring

Air Quality (24-hour TSP) monitoring was carried out on 4, 10, 16, 22 and 27 July 2013. No exceedance of Action and Limit Level of 24-hour TS monitoring was recorded at the monitoring location in the reporting month.

Noise Quality Monitoring

Construction airborne noise monitoring can be referred to the Monthly EM&A Report for Contract 1111.

Waste Management

As advised by the Contractor, 16,870 kg of general refuse was generated from the Project and disposed of at NENT landfill. 365,335kg of metals was recycled from the Project. 238m³ inert construction and demolition (C&D) materials, no chemical waste or other recycled non-inert C&D material was generated during the reporting month.

Environmental Auditing

A total of 4 weekly environmental site audits were conducted on 4, 11, 18 and 25 July 2013. The IEC joint site audit was undertaken on 18 July 2013.

Compliant, Notification of Summons and Successful Prosecution

No complaint in relation to the environmental issues was recorded during the reporting period.

No summons or prosecution related to the environmental issues were received in the reporting period.

Future Key Issues

Major site activities for the coming reporting month will include:

- Initial excavation at HUH
- D-wall construction at HUH
- Underpinning at HUH
- Demolition of Wagon Examination Office / Freight Document Store Room / BS Store Room / Amenity Building
- Bored piling for Diversion of Cheong Wan Road Viaduct

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise and waste management.

1 INTRODUCTION

1.1 Project Background

- 1.1.1 The Shatin to Central Link (SCL) is a designated project (DP) under the Environmental Impact Assessment Ordinance (EIAO). For the purposes of the Environmental Impact Assessment (EIA), five EIA studies have been conducted to cover different sections of the SCL. These are Tai Wai to Hung Hom Section (SCL (TAW-HUH)), Mong Kok East to Hung Hom Section (SCL (MKK-HUH)), Hung Hom to Admiralty Section (SCL (HUH-ADM)), Protection Works at Causeway Bay Typhoon Shelter and Stabling Sidings at Hung Hom Freight Yard (SCL (HHS)).
- 1.1.2 Three EIA reports are of relevance to Works Contract 1112 (the Project), namely EIA for SCL (TAW-HUH) (Register No. AEIAR-167/2012), EIA for SCL (MKK-HUH) (Register No. AEIAR-165/2012) and EIA for SCL (HHS) (Register No. AEIAR-164/2012). These were submitted and subsequently approved with conditions by the Environmental Protection Department (EPD) on 17 February 2012. Two Environmental Permits (EPs), Environmental Permit No. EP-437/2012 for SCL (MKK-HUH) and Environmental Permit No. EP-438/2012 for SCL (TAW-HUH) were subsequently obtained on 22 March 2012. A recent application for variation of the EP for SCL (TAW-HUH) was approved and a varied EP (EP-438/2012/C) was issued on 30 April 2013.
- 1.1.3 Construction of the SCL has been divided into a number of works contracts. This Works Contract 1112 was awarded to Leighton Contractors (Asia) Limited (the Contractor) in March 2013. Leighton has engaged SMEC Asia Limited as the Environmental Team under the EIAO for Works Contract 1112.

1.2 Purpose of the Report

1.2.1 This is the 2nd EM&A report which summarizes the monitoring results and audit findings during the reporting period from 1 to 31 July 2013.

1.3 Report Structure

- Section 1: Introduction
- Section 2: Project Information
- Section 3: Environmental Monitoring Parameters
- Section 4: Implementation Status of Environmental Mitigation Measures
- Section 5: Monitoring Results
- Section 6: Environmental Site Inspection and Audit
- Section 7: Environmental Non-conformance
- Section 8: Future Key Issues
- Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

2.1 General Site Description

- 2.1.1 The works under Works Contract 1112 comprise permanent works and the necessary temporary works for Hung Hom Station (HUH), Hung Hom Sidings (HHS), the South Approach Tunnels (SAT) and the North Approach Tunnels (NAT) to the new station, HHS and any reprovisioning remedial and improvement works (RRIW). The major permanent works under Works Contract 1112 generally comprise the following:
 - New HUH integrated with the existing HUH station, with associated entrances, ventilation facilities, plant rooms, other ancillary facilities, and ABWF works.
 - Modification of the existing HUH station to allow interchange between EAL and EWL of SCL, and between NSL and EWL comprising alteration and addition works at podium level, mid-level, and platform level.
 - Running tunnels of the EWL at the south and north ends of the new HUH to the
 existing stub tunnel of WRL and interface with Works Contract 1111.
 - Running tunnels of the NSL at the south and north ends of the new HUH to the proposed North Ventilation Building and interface with Works Contract 1111.
 - Extensive underpinning and modification of the existing podium structure of HUH and the Hong Kong Coliseum, and associated protection works.
 - Diversion, modification and dismantling of existing building services associated with underpinning and modification of existing structures.
 - Demolition and clearance of the majority of the existing Hung Hom Freight Terminal infrastructure.
 - Protection, diversion, and modification of utilities and services.
 - Launching and retrieval track connecting the EWL to HHS from the turnout close to WRL at the south and interface with Works Contract 1111 at the north.
 - CLP Transformer Building.
 - Demolition of the existing International Mail Centre adjacent to Salisbury Road, the MTR Freight Operations Building within the southern end of the Hung Hom Freight Terminal, and other ancillary buildings.
 - Reconstruction of Cheong Wan Road Viaduct.
 - Civil, BS and ABWF provisions for designated and interfacing contracts.
 - Landscape works.
 - Modification to various parts of existing disused Freight Yard structure for provision of HHS, comprising alteration and addition works at underground level, ground level, mezzanine level and podium level including new accommodation and plant areas and stablings and associated track provisions connecting to the interface with Works Contract 1111.
 - Extensive underpinning of the podium structures above the existing disused Freight Yard for provision of HHS and its associated works.

- Construct part of the shunting track.
- Construct the emergency track and its associated works which connect the stabling siding to the mainline which run parallel with the northern approach of HUH.
- Construct the semi-enclosed noise enclosure and its associated works over the entire HHS north fan area.
- 2.1.2 The works area for the Works Contract 1112 is shown in *Appendix A*.

2.2 Construction Programme and Activities

- 2.2.1 The summary of construction programme is presented in *Appendix B*.
- 2.2.2 The major construction activities carried out by the Contractor in the reporting period are summarized as below:
 - Site clearance and set up at HUH
 - D-wall construction at HUH
 - Equipment mobilization at HUH
 - Ground investigation works at HUH
 - Underpinning at HUH
 - Initial excavation at HUH
 - Demolition of building services system at HUH

2.3 Project Organisation

2.3.1 The project organization structure is presented in *Appendix C*. The contact names and numbers for key personnel of the Project are summarized in *Table 2-1*.

Table 2-1 Contact Information of Key Personnel

Company	Position	Name	Telephone	Fax
MTR	Construction Manager	Mr Patrick Cheng	3127 6203	3127 6422
	SCL Project Environmental Team Leader	Mr Richard KWAN	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Mr Fredrick Leong	2859 1739	2540 1580
Leighton	Environmental Manager	Mr Kevin HARMAN	3973 0270	2356 9355
SMEC	ET Leader	Ms Vivian CHAN	3995 8140	3995 8101

2.4 Status of Environmental Licences, Notification and Permits

2.4.1 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in *Table 2-2*.

Table 2-2 Status of Environmental Licenses, Notification and Permits

Permit / Licence No. /	Valid Period		Status	Remark		
Notification / Reference No.	From	То				
Environmental Per	mit					
EP-437/2012	22 Mar 2012	-	Valid	EP for SCL (MKK- HUH)		
EP-438/2012/C	30 Apr 2013	-	Valid	EP for SCL (TAW- HUH)		
Construction Noise	e Permit					
GW-RE0564-13	5 Jun 2013	30 Nov 2013	Valid	For erection or dismantling of scaffolding, and handling of scaffolding material.		
GW-RE0705-13	15 Jul 2013	30 Sep 2013	Valid	Relocation of overhead line mast A0370		
GW-RE0761-13	26 Jul 2013	31 Aug 2013	Valid	Delivery of heavy vehicles		
Wastewater Disch	arge License					
WT00015983- 2013	28 Jun 2013	30 Jun 2018	Valid	-		
Chemical Waste Pi	oducer Registra	ation				
5213-213-L2603- 03	28 Jun 2013	-	Valid	-		
Billing Account for Construction Waste Disposal						
7017179	27 Mar 2013	-	Active Account	-		
Notification Under	Notification Under Air Pollution Control (Construction Dust) Regulation					
357078	18 Mar 2013	-	Notified	-		

3 ENVIORNMENTAL MONITORTING PARAMETERS

3.1 Air Quality Monitoring

Parameter, Frequency and Duration

3.1.1 In accordance with the EM&A Manual, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required throughout the construction period. The monitoring parameters and frequency are provided in *Table 3-1*.

Table 3-1 Air Quality Monitoring Parameters and Frequency

Parameter	Frequency
1-hour TSP	When one documented valid complaint is received
24-hour TSP ^[1]	Once per 6 days

Note:

Monitoring Location

3.1.2 One air quality monitoring station was set up at the location in accordance with the approved EM&A Manuals. The location of the construction dust monitoring stations is summarised in *Table 3-2 and* shown in *Appendix D*.

Table 3-2 Air Quality Monitoring Location

ID	Location
AM2 ^[1]	Harbourfront Horizon ^[2]

Note:

- Different IDs were used in various EM&A Manuals for dust monitoring location at Harbourfront Horizon, DMS-12 was used in EM&A Manual for SCL(TAW-HUH), AM2 were used in EM&A Manual and EIA report for SCL(MKK-HUH), and DMS-1 Works Contract 1112were used in EM&A Manual and EIA report for HHS. For ease of future reference, AM2 will be adopted for EM&A reporting for Works Contract 1112 when referring to this monitoring location.
- 2. Air quality monitoring location at Harbourfront Horizon is the same as monitoring station CD6a as proposed in the EM&A Manual for "Kwun Tong Line Extension (KTE)". Access to Harbourfront Horizon was rejected by the owner during preparation for baseline monitoring for the KTE in early 2011. A representative monitoring location at the adjacent Finger Pier, at about 25m from Harbourfront Horizon, was adopted as an alternative monitoring location for KTE. This monitoring location is considered the most appropriate alternative monitoring location for AM2 and have been adopted for dust monitoring for Contract 1112.

Monitoring Equipment

3.1.3 The air quality monitoring was performed using High volume sampler (HVS). The HVS meets all the requirements of the EM&A Manual. Detail of the HVS used in air quality monitoring is provided in *Table 3-3*.

^{1. 24-}hour TSP will be conducted when project-related construction activities are being undertaken within a radius of 500m from monitoring stations.

Table 3-3 Air Quality Monitoring Equipment

Equipment	Brand and Model	Serial Number
High Volume Sampler	GS-2310 Accu-vol	694-0665
Calibration Kit	Tisch (TE-5025A)	1941

3.1.4 The HVS were calibrated in every six months interval using calibration kit which is recalibrated by the manufacturer after one year of use. The calibration certificate of the calibration kit and the calibration spreadsheet of the HVS is provided in *Appendix E*.

Monitoring Procedures

- 3.1.5 Specifications of HVS are as follow:
 - i. 0.6 1.7m³ per minute adjustable flow range
 - ii. Equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation
 - iii. Installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation
 - iv. Capable of providing a minimum exposed area of 406cm2
 - v. Flow control accuracy: +/- 2.5% deviation over 24-hour sampling period
 - vi. Equipped with a shelter to protect the filter and sampler
 - vii. Incorporated with an electronic mass flow rate controller or other equivalent devices
 - viii. Equipped with a flow recorder for continuous monitoring
 - ix. Provided with a peaked roof inlet
 - x. Incorporated with a manometer
 - xi. Able to hold and seal the filter paper to the sampler housing at horizontal position
 - xii. Easily changeable filter and
 - xiii. Capable of operating continuously for a 24-hour period.

3.1.6 Preparation of Filter Papers

- i. Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- ii. All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25°C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- iii. All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

3.1.7 Field Monitoring

- i. The power supply was checked to ensure the HVS works properly.
- ii. The filter holder and the area surrounding the filter were cleaned.
- iii. The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- iv. The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- v. The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- vi. Then the shelter lid was closed and was secured with the aluminium strip.
- vii. The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- viii. A new flow rate record sheet was set into the flow recorder.
- ix. On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- x. The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- xi. The initial elapsed time was recorded.
- xii. At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- xiii. The final elapsed time was recorded.
- xiv. The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- xv. It was then placed in a clean plastic envelope and sealed.
- xvi. All monitoring information was recorded on a standard data sheet.
- xvii. Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

Wind Data Monitoring

3.1.8 Average wind data (wind speed and direction) at the King's Park meteorological station during the monitoring period were obtained from the Hong Kong Observatory (HKO) and presented in *Appendix F*.

Monitoring Schedule

3.1.9 The schedule for environmental monitoring in July 2013 is provided in *Appendix G*.

3.2 Construction Noise Monitoring

- 3.2.1 In accordance with the approved EM&A Manuals for SCL (TAW-HUH), SCL (MKK-HUH) and SCL (HHS), construction noise monitoring is required at No. 234-238 Chatham Road North (originally proposed as Wing Fung Building in the approved EM&A Manuals).
- 3.2.2 Construction airborne noise monitoring requirement details at No. 234-238 Chatham Road North (NM2) can be referred to the Monthly EM&A Report for Contract 1111.

3.3 Landscape and Visual Impact

3.3.1 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period.

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

- 4.1.1 All environmental mitigation measures and requirements as started in EIA Reports, Environmental Permit and EM&A Manual are implemented. The implementation status of the environmental mitigation measures for this Works Contract during the reporting period is summarized in *Appendix H*.
- 4.1.2 Submissions to EPD during construction stage had been made in accordance with the EP requirements. A summary of EP submission requirements and their status is presented in *Table 4-1*.

Table 4-1 Summary of Status of Required Submission under EP

Required Submission	Environmental Permit	Date of Submission	Status
EP Condition 3.4 - Monthly Environmental Monitoring &	EP-437/2012	12 July 2013	Submitted
Audit (EM&A) Report	EP-438/2012/C	12 July 2013	Submitted

5 MONITORING RESULTS

5.1 Air Quality Monitoring

5.1.1 The monitoring results for 24-hour TSP are summarized in *Table 5-1* Summary of 24-hour TSP Monitoring Results . Detailed air quality monitoring results are presented in *Appendix I*.

Table 5-1 Summary of 24-hour TSP Monitoring Results

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AM2	26.1	16.4 – 32.8	182	260

- 5.1.2 No Action and Limit Level exceedanced was recorded in the reporting month.
- 5.1.3 The Event and Action Plan is provided in *Appendix J*.

5.2 Regular Construction Noise Monitoring

5.2.1 Construction airborne noise monitoring results in the reporting month can be referred to the Monthly EM&A Report for Contract 1111.

5.3 Waste Management

- 5.3.1 Receptacles for collection of general refuse were provided at the site. As advised by the Contractor, 16,870 kg of general refuse was generated from the Project and disposed of at NENT landfill. 238 m³ inert construction and demolition (C&D) material was generated for disposal or reuse at site during the reporting month. No paper/cardboard packaging, plastic, but 365,335 kg metals were collected by recycling contractor in the reporting month. No chemical waste was generated and collected by licenced contractor in the reporting period. The waste flow table is presented in *Appendix K*.
- 5.3.2 A billing account for construction waste disposal has been approved and a trip ticket system was implemented to record the waste generated from the Project in the reporting month.

5.4 Landscape and Visual

- 5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 9 and 23 July 2013. All necessary mitigation measures have been implemented by the Contractor.
- 5.4.2 The Event and Action Plan for Landscape and Visual Impact Monitoring is provided in *Appendix J*.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Weekly site audits were conducted by the ET and attended by the ER and the Contractor to monitor the timely implementation of proper environmental management practices and mitigation measures at the site. 4 site audits were carried out on 4, 11, 18 and 25 July 2013 during the reporting month. Representative of the IEC joined the site inspection on 18 July 2013. A summary of the implementation schedule of environmental mitigation measures is provided in *Appendix H*.
- 6.1.2 No site inspection was conducted by EPD during the reporting month.
- 6.1.3 During the weekly site inspections, no non-conformance was identified. Details of observations recorded during site inspection are summarized in *Table 6-1*.

Table 6-1 Observations and Recommendations of Site Audits

Parameters	Date	Description	Status
Water Quality	27 June 2013	Sand/silt was observed near surface drainage channel. Sand bags should be provided to prevent surface runoff.	The item was observed to be rectified by the Contractor on 11 July 2013.
Noise	11 July 2013	No noise shield or barrier provided to ground breaker. Noise shield/barrier should be provided.	The item was observed to be rectified by the Contractor on 18 July 2013.
Air Quality	11 July 2013	Dusty ground at worker access roads and works areas were found to be dry. More frequent and extensive watering to cover all unpaved and paved area should be implemented.	The item was observed to be rectified by the Contractor on 18 July 2013.
Landscape and Visual	N/A	N/A	N/A
	4 July 2013	Oil leakage of lighting generator was observed.	The item was observed to be rectified by the Contractor on 11 July 2013.
Wests/Charrieds	11 July 2013	Oil stain was observed under a crane outside International Mail Centre. Drip tray or floor covering should be provided during lube oil changing processing.	The item was observed to be rectified by the Contractor on 18 July 2013.
Waste/Chemicals Management		Garbage bins should be provided and housekeeping should be enhanced. Garbage should be removed and disposed of by licensed waste collector.	The item was observed to be rectified by the Contractor on 18 July 2013.
	18 July 2013	Oil leakage was observed from backhoe and mobile crane. The Contractor should clear oil leakage properly and was reminded to provide	The item will be followed up in August.

Parameters	Date	Description	Status
		measures to prevent such	
		issue to occur during machine	
		maintenance.	
		Some oil drums were	The item was observed to
		observed without drip tray.	be rectified by the
		The Contractor should provide	Contractor on 25 July
		drip tray to prevent	2013.
		contamination and remove	
		stagnant water inside the drip	
		tray.	
Permits/License	N/A	N/A	N/A

6.1.4 Follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting period. Inspection for follow-up actions that are outstanding in the reporting month will be carried out in following inspections, until the corresponding action has been undertaken by the Contractor.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP results were below the Action and Limit level at all monitoring locations in the reporting month.
- **7.2** Summary of Environmental Non-Compliance
- 7.2.1 No environmental non-compliance event was recorded during the reporting month.
- 7.3 Summary of Environmental Complaint
- 7.3.1 No environmental related complaint was reported during the reporting month.
- 7.3.2 Cumulative statistics on environmental complaints is provided in *Appendix L*.
- 7.4 Summary of Environmental Summons and Successful Prosecution
- 7.4.1 No summon was received during the reporting month.
- 7.4.2 The cumulative statistics on notification of summons and successful prosecutions is provided in *Appendix L*.

8 FUTURE KEY ISSUES

8.1 Construction Programme for Next Month

- 8.1.1 The construction programme for the upcoming month is provided in *Appendix B* and the key issues to be considered in the upcoming months include:
 - Initial excavation at HUH
 - D-wall construction at HUH
 - Underpinning at HUH
 - Demolition of Wagon Examination Office / Freight Document Store Room / BS
 Store Room / Amenity Building
 - Bored piling for Diversion of Cheong Wan Road Viaduct

8.2 Key Issues for the Coming Months

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise and waste management.

8.3 Monitoring Schedule for Next Month

8.3.1 The tentative schedule for environmental monitoring in August 2013 is provided in *Appendix G*.

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 The construction phase of the Project was commenced on 3 June 2013. The EM&A programme has been implemented to include air quality monitoring and environmental site audits. This is the 2nd monthly Environmental Monitoring and Audit (EM&A) Report presenting the EM&A works carried out during the period from 1 to 31 July 2013.
- 9.1.2 5 nos. of 24-hour TSP monitoring were carried out in the reporting month.
- 9.1.3 No exceedance of the Action and Limit Levels of air quality monitoring was recorded at the designated monitoring stations during reporting period.
- 9.1.4 Two landscape and visual monitoring and four environmental site audits were conducted in the reporting month. Recommendations on remedial actions were provided to the Contractor for deficiencies identified during the site audits.
- 9.1.5 There was no environmental complaint, prosecution or notification of summons received.
- 9.1.6 The ET will keep track on the EM&A programme to ensure the compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

9.2 Recommendations

9.2.1 According to the environmental audit performed in the reporting month, the following recommendations were made:

Construction Dust Impact

• Implement effective measures to avoid dust impact.

Airborne Noise Impact

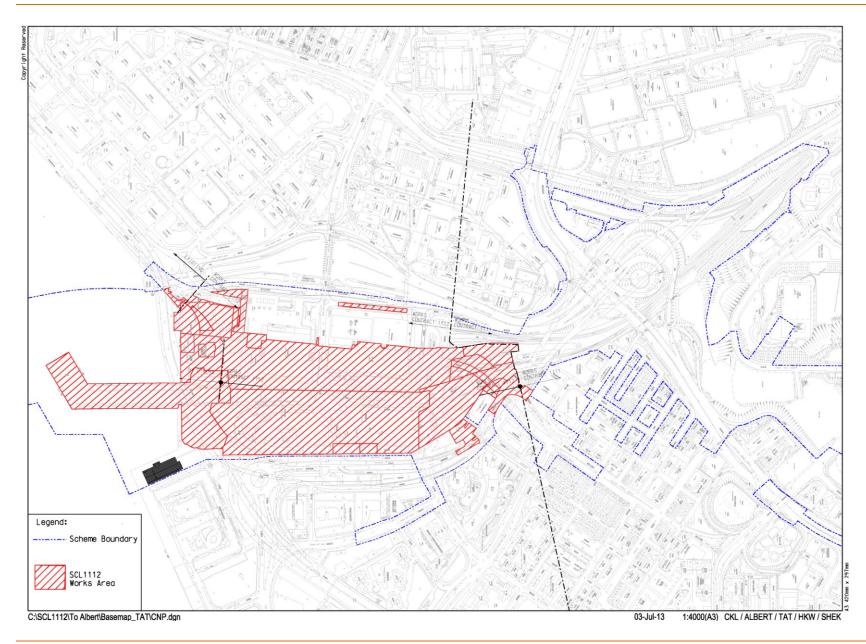
• Ensure acoustic barrier and other mitigation measures are fully implemented.

Water Quality Impact

• Implement effective measures to avoid surface runoff into drainage system.

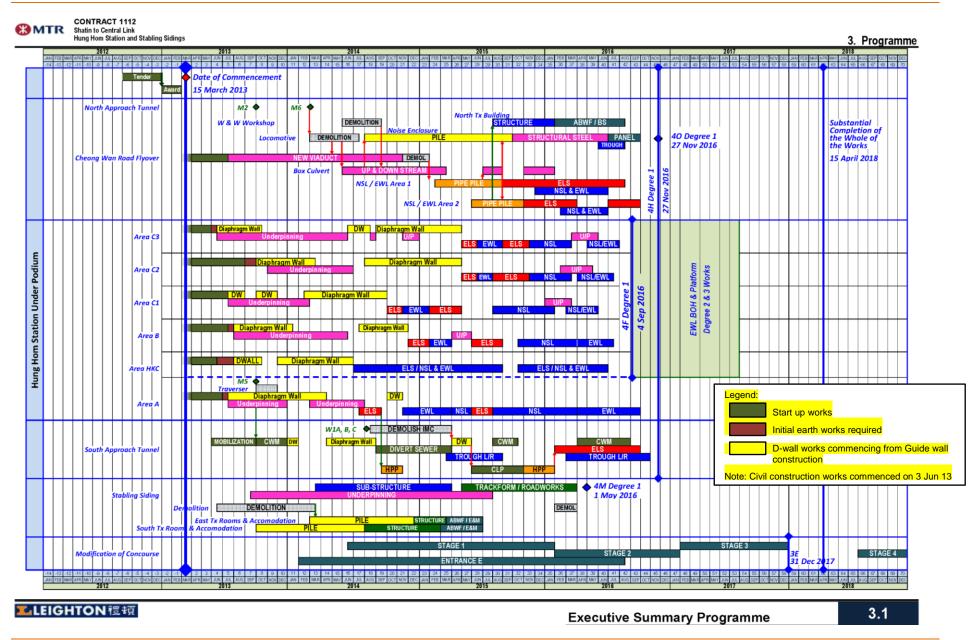
Chemical and Waste Management

- Provide drip trays to all lighting generators and oil drums to avoid potential land contamination.
- Properly maintain plant/equipment and enhance training to prevent oil spillage during oil refilling process.


Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings 2nd Monthly EM&A Report for July 2013

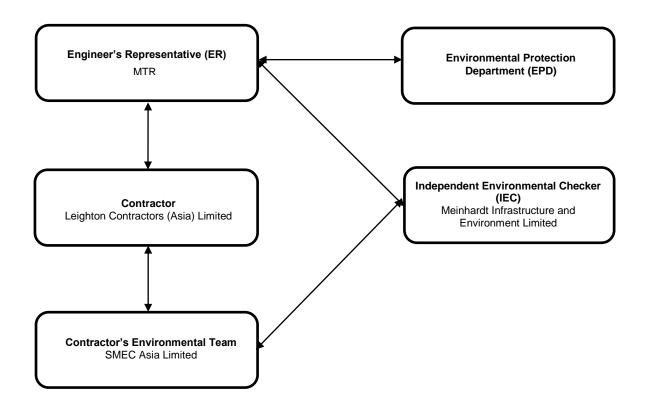
APPENDIX A

Project Works Boundary


Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings $2^{\rm nd}$ Monthly EM&A Report for July 2013

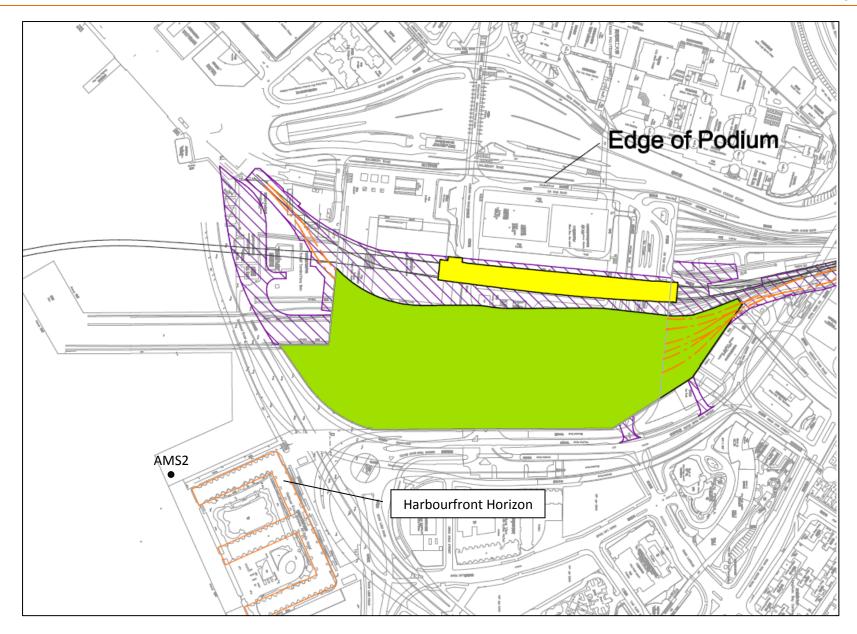
APPENDIX B

Construction Programme


Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings 2nd Monthly EM&A Report for July 2013

APPENDIX C

Project Organisation for Environmental Works



APPENDIX D

Location of Air Quality Monitoring Station

APPENDIX E

Calibration Certificates for Monitoring Equipment

TSP Sampler Calibration

SITE

Location: Hung Hom Sampler: Hunghom MTR TSP Serial No 694-0665 Calibration Date: June 5, 2013 Next Calibration Date: August 5, 2013 Tech: Sam Wong

			CONDITIONS		
Barometric Pressure	(in Hg):	39.64	Corrected Pressure	(mm Hg):	1007
Temperature	(deg F):	85	Temperature	(deg K):	302
Average Press.	(in Hg):	39.64	Corrected Average	(mm Hg):	1007
Average Temp.	(deg F):	85	Average Temp.	(deg K):	302

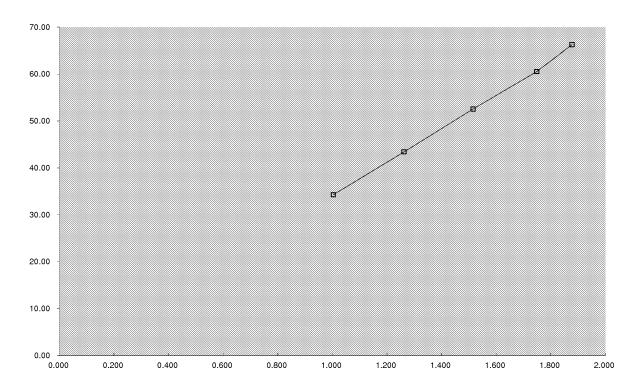
CALIBRATION ORIFICE						
Make:	Tisch	Qstd Slope:	2.11662			
Model:	TE-5025A	Qstd Intercept:	-0.01714			
Serial#:	1941	Date Certified:	April 9, 2013			

CALIBRATIONS						
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION	
1	12.00	1.878	58.0	66.27	Slope =	36.1714
2	10.40	1.749	53.0	60.55	Intercept =	-2.1805
3	7.80	1.516	46.0	52.56	Corr. coeff.=	0.9996
4	5.40	1.262	38.0	43.42		
5	3.40	1.003	30.0	34.28	# of Observations:	5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate


IC = corrected chart response
I = actual chart response
m = calibrator Qstd slope
b = calibrator Qstd intercept
Ta = actual temperature during calibration (deg K)
Pa = actual temperature during calibration (mm Hg)
Tstd = 298 deg K
Pstd = 760 mm Hg
For subsequent calculation of sampler flow:
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure

Reviewer: Sam Wong Signature:

Date: June 5, 2013

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513,467,9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator Tisch Orifice I.D 1941 Pa (mm) - 75							
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF · H2O (in.)	
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00	1.4710 1.0370 0.9270 0.8840 0.7300	3.3 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00	

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va.	(x axis) Qa	(y axis)
0.9916	0.6741	1.4113		0.9956	0.6768	0.8874
0.9874	0.9521	1.9959		0.9914	0.9560	1.2549
0.9854	1.0630	2.2315		0.9894	1.0673	1.4030
0.9843	1.1134	2.3405		0.9883	1.1180	1.4715
0.9790	1.3410	2.8227		0.9829	1.3465	1.7747
<pre>Qstd slope (m) = 2.11662</pre>				Qa slope	t (b) =	1.32539
intercept (b) = -0.01714				intercept		-0.01078
coefficient (r) = 0.99999				coefficie		0.99999
y = SQRT[H2O(Pa/760)(298/Ta)]				y axis = SQRT[H2O(Ta/Pa)]		

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

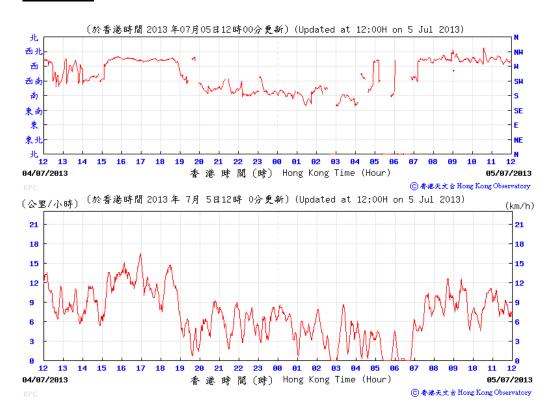
Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

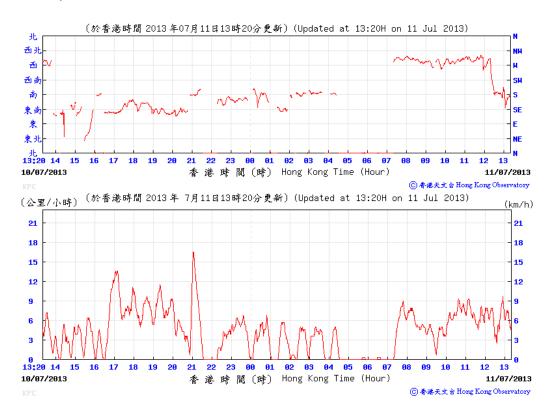
For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{ [SQRT(H2O(Ta/Pa)] - b\}$

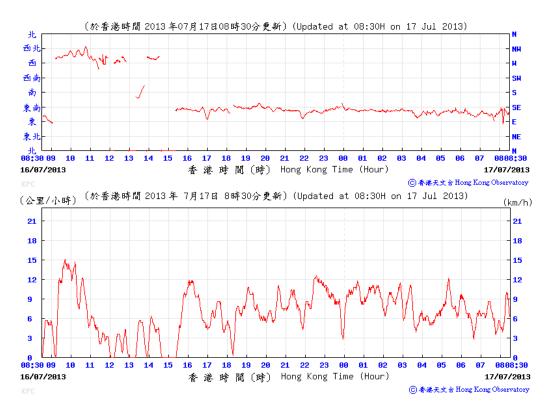
Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings 2nd Monthly EM&A Report for July 2013



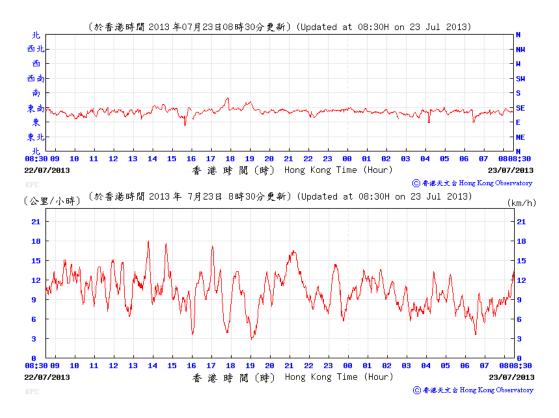
Appendix F


Wind Data

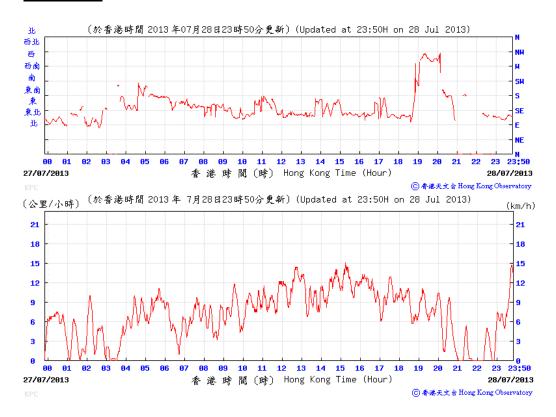
4 July 2013



10 July 2013



16 July 2013



22 July 2013

27 July 2013

Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings $2^{\rm nd}$ Monthly EM&A Report for July 2013

Appendix G

Environmental Monitoring Programme

Environmental Monitoring Schedule for SCL1112 in July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1	2	3	4	5	6
				24 hr TSP		
7	8	9	10	11	12	13
			24 hr TSP			
14	15	16	17	18	19	20
		24 hr TSP				
21	22	23	24	25	26	27
	24 hr TSP					24 hr TSP
28	29	30	31			

Environmental Monitoring Schedule for SCL1112 in August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1	2	3
					24 hr TSP	
4	5	6	7	8	9	10
				24 hr TSP		
11	12	13	14	15	16	17
			24 hr TSP			
18	19	20	21	22	23	24
		24 hr TSP				
25	26	27	28	29	30	31
	24 hr TSP					24 hr TSP

Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings 2nd Monthly EM&A Report for July 2013

	DEI		IV I	Ш
AP	PEI	וטע	IA I	П

Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	isual (Construction Phase)						1
S6.9.3 and S6.12 of Ref.1; Table 4.9 of Ref. 2; S6.12 of Ref. 3	The following good site practices and measures for minimisation and avoidance of potential impacts are recommended: Re-use of existing soil For soil conservation, existing topsoil will be re-used where possible for new planting areas within the project. The construction programme will consider using the soil removed from one phase for backfilling another. Suitable storage ground, gathering ground and mixing ground may be set up onsite as necessary. No-intrusion zone To maximise protection to existing trees, ground vegetation and the associated under storey habitats, construction contracts may designate "No-intrusion Zone" to various areas within the site boundary with rigid and durable fencing for each individual no-intrusion zone. The contractor will closely monitor and restrict the site working staff from entering the "no-intrusion zone", even for indirect construction activities and storage of equipment. Protection of retained trees All retained trees will be recorded photographically at the commencement of the contract, and carefully protected during the construction period. The contractor will be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works sites.	Minimise visual and landscape impact	Contractor	Within project site	Construction Stage	EIAO-TM	^ ^
S6.12 of Ref.1; Table 4.9 of Ref. 2; Table 6.9 of Ref. 3	Erection of decorative screen during construction stage to screen off undesirable views of the construction site for visual and landscape sensitive areas. Hoarding will be designed to be compatible with the existing urban context. Management of facilities on work sites To provide proper management of the facilities on the site, give control on the height and disposition/ arrangement of all facilities on the works site to minimise visual impact to adjacent VSRs. Tree transplanting Trees of medium to high survival rate that would be affected by the works will be transplanted where possible and	Minimise the visual and landscape impact of the Project during construction phase	Contractor	Within project site	Detailed design and construction stage	EIAO-TM ETWB TCW 2/2004 ETWB TCW 3/2006	^

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	practicable. Tree transplanting proposal including final location for transplanted trees will be submitted separately to seek relevant government department's approval, in accordance with ETWB TCW No 3/2006.						
Construction [Dust Impact						
S7.6.5 of Ref. 1; S7.6.6 of Ref. 3	The contractor will follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.	Minimise dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	Air Pollution Control Ordinance (APCO) To control the dust impact to meet HKAQO and EIAO-TM criteria	^
S5.20, S5.21, S5.50 and Table 5.4 of Ref. 2	 Unloading of spoils to barge – the unloading process should be undertaken within a 3-sided screen with top tipping hall. Water spraying and flexible dust curtains should be provided at the discharge point for dust suppression. Transportation of the spoil from the construction sites to the Barging Point – watering once along all paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7L/m² to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual. Vehicles leaving the barging facilities – vehicles would be required to pass through the wheel washing facilities to be provided at site exit. 	To minimize the construction dust impacts to the nearby sensitive receivers	Contractor	Barging point at Hung Hom Freight Pier	Construction stage	АРСО	N/A N/A

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
S7.6.5 of Ref. 1; S5.50 of Ref. 2; S7.6.6 of Ref. 3	Mitigation measures in form of regular watering under a good site practice will be adopted. Watering once per hour on exposed worksites and haul road will be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but will be sufficient to maintain an equivalent intensity of no less than 1.8 L/m ² to achieve the dust removal efficiency.	Minimise dust impact at the nearby sensitive receivers	Contractor	Active works areas, exposed areas and paved haul roads	Construction stage	APCO To control the dust impact to meet HKAQO and EIAO-TM criteria	*
S7.6.5 of Ref. 1; S5.51 of Ref. 2; S7.6.6 of Ref. 3	 Any excavated or stockpile of dusty material will be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading. Any dusty materials remaining after a stockpile is removed will be wetted and cleared from the surface of roads. A stockpile of dusty material will not be extend beyond the pedestrian barriers, fencing or traffic cones. The load of dusty materials on a vehicle leaving a construction site will be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle. Where practicable, vehicle washing facilities with high pressure water jet will be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point will be paved with concrete, bituminous materials or hardcore. When there are open excavation and reinstatement works, hoarding of not less than 2.4m high will be provided and properly maintained as far as practicable along the site boundary with provision for public crossing; Good site practice will also be adopted by the contractor to ensure the conditions of the hoardings are properly maintained in construction period. The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit will be kept clear of dusty materials. Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place will be sprayed with water or a dust suppression chemical continuously. 	Minimise dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	APCO Air Pollution Control (Construction Dust) Regulation To control the dust impact to meet HKAQO and EIAO-TM criteria	* ^ ^

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	 Any area that involves demolition activities will be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet. Where scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting will be provided to enclose the scaffolding from the ground floor level of the building, or a canopy will be provided from the first floor level up to the highest level of the scaffolding. Any skip hoist for material transport will be totally enclosed by impervious sheeting. Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) will be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. Cement or dry PFA delivered in bulk will be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed. Loading, unloading, transfer, handling or storage of bulk cement or dry PFA will be carried out in a totally enclosed system or facility, and any vent or exhaust will be fitted with an effective fabric filter or equivalent air pollution control system. Exposed earth will be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 						^ ^ ^
S7.6.5 of Ref. 1; S5.57 of Ref. 2; S7.6.6 of Ref. 3	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Harbourfront Horizon	Construction stage	EIAO-TM APCO	۸

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
Construction A	irborne Noise						
S8.3.6 of Ref. 1; S6.61 of Ref. 2; S8.5.6 of Ref. 3	 Implement the following good site practices: Only well-maintained plant will be operated on-site and plant will be serviced regularly during the construction programme. Machines and plant (such as trucks, cranes) that may be in intermittent use will be shut down between work periods or will be throttled down to a minimum. Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs. Silencers or mufflers on construction equipment will be properly fitted and maintained during the construction works. Mobile plant will be sited as far away from NSRs as possible and practicable. Material stockpiles, mobile container site office and other structures will be effectively utilised, where practicable, to 	Control construction airborne noise	Contractor	All construction sites where practicable	Construction stage	Annex 5, EIAO- TM	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
\$8.3.6 of Ref. 1; \$6.68 of Ref. 2; \$8.5.6 of Ref. 3	screen noise from onsite construction activities. Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings will be properly maintained throughout the construction period.	Reduce the construction noise levels at low-level zone of NSRs through partial screening.	Contractor	All construction sites where practicable	Construction stage	Annex 5, EIAO- TM	۸
\$8.3.6 of Ref. 1; \$6.64 – 6.67 and Table 6.20 of Ref. 2; \$8.5.6 of Ref. 3	Install movable noise barriers (typical design is wooden framed barrier with a small-cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure, screen the noisy plants including air compressor, gene rators and saw.	Screen the noisy plant items to be used at all construction sites	Contractor	All construction sites where practicable	Construction stage	Annex 5, EIAO- TM	*
S8.3.6 of Ref. 1; S6.62 – 6.63 and Table 6.19 of Ref. 2; S8.5.6 of Ref. 3	The following quiet PME should be used: • Asphalt Paver (SWL=101dB(A)) • Backhoe (SWL=106dB(A)) • Backhoe with Hydraulic Breaker (SWL=110dB(A)) • Concrete lorry mixer (SWL=96dB(A)) • Concrete mixer truck (SWL=96dB(A)) • Concrete Pump (SWL=106dB(A)) • Concrete Pump Truck (SWL=106dB(A))	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	Annex 5, EIAO- TM	٨

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	 Crane, mobile (SWL=94dB(A)) Crawler Crane (SWL=102dB(A)) Drill, hand-held (SWL=98dB(A)) Dump truck (SWL=104dB(A)) Excavator (SWL=106dB(A)) Flat Bed Lorry (SWL=102dB(A)) Generator (SWL=95dB(A)) Giken Piler and Power-pack (SWL=94dB(A)) Hydraulic breaker (SWL=110dB(A)) Hydraulic excavator (SWL=106dB(A)) Lorry (SWL=102dB(A)) Lorry with crane/ grab (SWL=94dB(A)) Mini Piling Rig (SWL=112dB(A)) Piling Rig (SWL=112dB(A)) Poker, vibrator, hand-held (SWL=98dB(A)) Road Roller (SWL=101dB(A)) Rock Drill (SWL = 108dB(A) Roller (SWL=101dB(A)) Truck (SWL=103dB(A)) Vibratory Hammer (SWL=118dB(A)) 						
S8.3.6 of Ref. 1; S8.5.6 of Ref. 3	Sequencing operation of construction plants where practicable.	Operate sequentially within the same work site to reduce the construction airborne noise	Contractor	All construction sites where practicable	Construction stage	Annex 5, EIAO- TM	۸
S8.3.6 of Ref. 1; S8.5.6 of Ref. 3	Implement noise monitoring under EM&A programme.	Monitoring of construction noise impact	Contractor	Wing Fung Building	Construction stage as required by IEC	TM-EIA	۸

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	(Construction Phase)			T			
\$10.7.1 of Ref. 1;\$8.41 – 8.39 and \$8.50 of Ref. 2; \$10.7.1 of Ref. 3	In accordance with the Practice Noise for Professional Persons on Construction Site Drainage, EPD, 1994 (ProPECC PN1/94), construction phase mitigation measures will include the following: Construction runoff and site drainage At the start of site establishment, perimeter cut-off drains to direct off-site water around the site will be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers will be provided onsite to direct stormwater to silt removal facilities. The design of the temporary onsite drainage system will be undertaken by the contractor prior to commencement of construction. The dikes or embankments for flood protection will be implemented around the boundaries of earthwork areas. Temporary ditches will be provided to facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediment/silt traps will be incorporated in the permanent drainage channels to enhance deposition rates. The design of silt removal facilities will be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps will be 5 minutes under maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1m ³ /s a sedimentation basin of 30m ³ would be required and for a flow rate of 0.5m ³ /s the basin would be 150m ³ . Detailed design of the sand/silt traps will be undertaken by the contractor prior to the commencement of works. All exposed earth areas will be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. Exposed slope surfaces will be covered by tarpaulin or other means. All drainage facilities and erosion and sediment control structures will be regularly inspected and maintained to ensure proper and efficient operation at all times and pa	To minimize water quality impact from construction site runoff and general construction activities	Contractor	All construction sites where practicable	Construction stage	Water Pollution Control Ordinance (WPCO) ProPECC PN1/94 EIAO-TM TM-Water Technical Memorandum on Effluent Discharge Standard (TM-DSS)	*

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	 over stable, vegetated areas. Measures will be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they will be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations will be discharged into 						۸
	 storm drains via silt removal facilities. Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m³ will be covered with tarpaulin or similar fabric during rainstorms. Measures will be taken to prevent the washing away of 						*
	construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) will always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the						۸
	 drainage system and storm runoff being directed into foul sewers. Precautions be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms 						۸
	 are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention will be paid to the control of silty surface runoff during storms, especially areas near steep slopes. All vehicles and plant will be cleaned before leaving a construction site to ensure no earth, mud, debris and the like 						۸
	is deposited by them on roads. An adequately designed and sited wheel washing facilities will be provided at every construction site exit where practicable. Wash-water will have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the						
	process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road will be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.						
	 Oil interceptors will be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors will be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage 						^

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	 system after accidental spillage. A bypass will be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site will be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas will be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. All the earth works involving will be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Adopt Best Management Practices. 						*
S10.7.1 of Ref. 1; S10.7.1 of Ref. 3	Tunnelling works Cut-and-cover/ open-cut tunnelling work will be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Uncontaminated discharge will pass through sedimentation tanks prior to off-site discharge. The wastewater with a high concentration of SS will be treated (eg, by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove the oil, lubricants and grease from the wastewater. Direct discharge of the bentonite slurry (as a result of D-wall and bored tunnelling construction) is not allowed. It will be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) will be provided on site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC PN 1/94 will be adhered to in the handling and disposal of bentonite slurries.	To minimize construction water quality impact from tunnelling works	Contractor	All tunnelling portion	Construction stage	WPCO ProPECC PN1/94 EIAO-TM TM-Water	^ ^

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
\$8.68 of Ref. 2; \$10.7.1 of Ref. 1	 Operation of Barging Facilities The following good practice shall apply for the barging facilities operations: All barges should be fitted with tight bottom seals to prevent leakage of materials during transport; Barges or hoppers should not be filled to a level that will cause overflow of materials or polluted water during loading or transportation; All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; and Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. Mitigation measures as outlined for control of construction runoff and site drainage provide above should be applied to minimise water quality impacts from site runoff and open stockpile spoils at the proposed barging facilities where 	To minimize water quality impact from operation of barging facility	Contractor	All barging facilities	Construction stage	WPCO TM-EIA	N/A N/A N/A N/A
S8.51 – 8.52 of Ref. 2	appropriate. Bentonite Slurries: Bentonite slurries used in diaphragm wall construction should be reconditioned and used again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the used slurry should either be dewatered or mixed with inert fill material for disposal to a public filling area. If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS.	To minimize water quality impact from bentonite slurries	Contractor	All works area	Construction stage	WPCO TM-EIA	^
S8.53 – 8.54 of Ref. 2	Before commencing any demolition works, all sewer and drainage connections should be sealed to prevent building debris, soil, sand etc. from entering public sewers/drains Wastewater generated from building construction activities including concreting, plastering, internal decoration, cleaning of works and similar activities should not be discharged into the stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should undergo the removal of	To minimize water quality impact from building construction	Contractor	All construction sites where practicable	Construction stage	WPCO EIAO-TM	^ N/A

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	settleable solids in a silt removal facility, and pH adjustment as washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO licence which is under the ambit of regional office of EPD.						
S8.62 of Ref. 2	Excavation Activities: • The construction programme should be properly planned to minimise soil excavation, if any, in rainy seasons. This prevents soil erosion from exposed soil surfaces. Any exposed soil surfaces should also be properly protected to minimise the potential for dust emission, increased siltation and contamination of runoff. In areas where a large amount of exposed soils exist, earth bunds or sand bags should be provided. Exposed stockpiles should be covered with tarpaulin or impervious sheets at all times. The stockpiles of materials should be placed at locations away from water environment so as to avoid releasing materials into the water bodies. Final surfaces of earthworks should be compacted and protected by permanent work.	To minimize water quality impact from excavation activities	Contractor	All excavation works areas	Construction stage	WPCO EIAO-TM	^
S8.63 of Ref. 2	Diaphragm Wall The mitigation measures as outlined in the ProPECC PN 1/94 Construction Site Drainage should be implemented to control site run-off and drainage as well as any site effluents generated from the works areas, and to prevent run-off and construction wastes from entering nearby water environment. Proper handling of bentonite slurries used in diaphragm wall construction should be adopted.	To minimize water quality impact from diaphragm walling	Contractor	All diaphragm walling works areas	Construction stage	WPCO EIAO-TM	۸
S8.60 – 8.61 of Ref. 2; S10.7.1 of Ref. 3	Sewage effluent Portable chemical toilets are recommended for handling the construction sewage generated by the workforce. A licensed contractor will be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	To minimize water quality from sewage effluent	Contractor	All construction sites where practicable	Construction stage	WPCO TM-Water	۸

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
S8.64 of Ref. 2; S10.7.1 of Ref. 3	Groundwater seepage As some proposed works areas at Hung Hom are near Victoria Harbour, high ground water level regime due to both tidal effects and rainwater infiltration is anticipated. Appropriate measures will be deployed to minimise the intrusion of groundwater into excavation works areas. In case seepage of groundwater occurs, groundwater will be pumped out from the works areas and discharged into the storm system via silt removal facilities. Groundwater from dewatering process will also be discharged into the storm system via silt traps.	To minimize groundwater quality impact from contaminated area	Contractor	Excavation areas where contamination is found.	Construction stage	WPCO TM-Water EIAO-TM	۸
S10.7.1 of Ref. 1; S8.57 – 8.59 of Ref. 2; S10.7.1 of Ref. 3	Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: • Proper storage and handling facilities will be provided. • All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. • The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. • Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation.	To minimize water quality impact from accidental spillage	Contractor	All construction sites where practicable	Construction stage	WPCO ProPECC PN1/94 EIAO-TM TM-Water	# ^ ^
S8.72 of Ref.2	Regular site inspections should be undertaken to inspect the construction activities and works areas	To ensure the recommended water quality mitigation measures are properly implemented	Contractor	All construction sites	Construction stage	EIAO-TM WPCO ProPECC PN 1/94 TM-DSS WDO	۸

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
Waste Manage	ment (Construction Phase)						
S11.4.1.1 of Ref. 1; S9.80 – 9.83 of Ref. 2; S11.4.1.1 of Ref.3	Onsite sorting of C&D material Geological assessment will be carried out by competent persons onsite during excavation to identify materials which are not suitable to use as aggregate in structural concrete (eg, volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock will be separated at the source sites as far as practicable and stored at designated stockpile areas preventing them from delivering to crushing facilities. The crushing plant operator will also be reminded to set up measures to prevent unsuitable rock from ended up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities will be submitted by the Contractors for the Engineer to review and agree. In addition, site records will also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) ref: 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc will also be explored.	Separation of unsuitable rock from ending up at concrete batching plants and be turned into concrete for structural use	Contractor	All construction sites	Construction stage	DEVB TC(W) ref. 6/2010	^
S11.5.1 of Ref.1; S9.72 – 9.74 of Ref. 2; S11.5.1 of Ref.3	 Construction and demolition material Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement. Carry out onsite sorting. Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate. Adopt 'selective demolition' technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible. Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified. Implement an enhanced Waste Management Plan similar to ETWBTC (Works) ref 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction. In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. will be avoided. The 	Good site practice to minimise the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW Ref 19/2005	^ ^

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	contractor will propose the final disposal sites to the Project Proponent and EPD and get their approval before implementation.						
S11.5.1 of Ref.1; S9.73 of Ref. 2; S11.5.1 of Ref.3	Standard formwork or pre-fabrication will be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works will be considered. Use of wooden hoardings will not be used, as in other projects. Metal hoarding will be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. The contractor will recycle as much of the C&D materials as possible onsite. Public fill and C&D waste will be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites will be considered for such segregation and storage.	Good site practice to minimise the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW Ref 19/2005	^
S11.5.1 of Ref.1; S9.100- 9.102 of Ref.2; S11.5.1 of Ref. 3	 General refuse General refuse generated onsite will be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector will be employed by the contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimise odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans will be often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit will be provided if feasible. Office wastes will be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme will be considered by the contractor. 	Minimize production of the general refuse and avoid odour, pest and litter impacts	Contractor	All construction sites	Construction stage	Waste Disposal Ordinance	*

Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
 Land-based sediment The basic requirements and procedures for excavated sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. The Project Proponent should agree in advance with MFC of CEDD on the site allocation. Subject to the final decision by MFC, Type 1 sediments are typically disposed to South Cheung Chau and/or East of Ninepin as open sea disposal while Type 2 sediments are disposed to East Sha Chau as confined marine disposal. Sampling and Testing Plan(s) should be prepared in accordance with ETWB TC(W) No. 34/2002. Site investigation, based on the Sediment Sampling and Testing Plan(s), should be carried out in order to confirm the disposal arrangements for the proposed excavated sediments. A Sediment Quality Report (SQR) should then be submitted to EPD for agreement prior to the tendering of the construction contract, discussing in details the site investigation, testing results as well as the delineation of each of the categories of excavated materials and the corresponding types of disposal. The excavated sediments is expected to be loaded onto the dumping trucks and transferred to the barging point where 	address To ensure the sediment is handled and disposed of in a least impacted way and in accordance to the statutory	Contractor	All construction sites	Construction stage		N/A N/A
the sediments would be transported via barge to the existing designated disposal sites allocated by the MFC. The excavated sediment would be disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002. Requirements of the Air Pollution Ordinance (Construction Dust) Regulation, where relevant, shall be adhered to during excavation, transportation and disposal of sediments. Stockpiling of contaminated sediments should be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should						N/A N/A
	 The basic requirements and procedures for excavated sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. The Project Proponent should agree in advance with MFC of CEDD on the site allocation. Subject to the final decision by MFC, Type 1 sediments are typically disposed to South Cheung Chau and/or East of Ninepin as open sea disposal while Type 2 sediments are disposed to East Sha Chau as confined marine disposal. Sampling and Testing Plan(s) should be prepared in accordance with ETWB TC(W) No. 34/2002. Site investigation, based on the Sediment Sampling and Testing Plan(s), should be carried out in order to confirm the disposal arrangements for the proposed excavated sediments. A Sediment Quality Report (SQR) should then be submitted to EPD for agreement prior to the tendering of the construction contract, discussing in details the site investigation, testing results as well as the delineation of each of the categories of excavated materials and the corresponding types of disposal. The excavated sediments is expected to be loaded onto the dumping trucks and transferred to the barging point where the sediments would be transported via barge to the existing designated disposal sites allocated by the MFC. The excavated sediment would be disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002. Requirements of the Air Pollution Ordinance (Construction Dust) Regulation, where relevant, shall be adhered to during excavation, transportation and disposal of sediments. Stockpiling of contaminated sediments should be avoided as far as possible. If temporary stockpiling of contaminated sediments should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contamination to underlying soil	Land-based sediment • The basic requirements and procedures for excavated sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. • The Project Proponent should agree in advance with MFC of CEDD on the site allocation. Subject to the final decision by MFC, Type 1 sediments are typically disposed to South Cheung Chau and/or East of Ninepin as open sea disposal while Type 2 sediments are disposed to East Sha Chau as confined marine disposal. • Sampling and Testing Plan(s) should be prepared in accordance with ETWB TC(W) No. 34/2002. Site investigation, based on the Sediment Sampling and Testing Plan(s), should be carried out in order to confirm the disposal arrangements for the proposed excavated sediments. A Sediment Quality Report (SQR) should then be submitted to EPD for agreement prior to the tendering of the construction contract, discussing in details the site investigation, testing results as well as the delineation of each of the categories of excavated materials and the corresponding types of disposal. • The excavated sediments is expected to be loaded onto the dumping trucks and transferred to the barging point where the sediments would be transported via barge to the existing designated disposal options and ETWB TC(W) No. 34/2002. • Requirements of the Air Pollution Ordinance (Construction Dust) Regulation, where relevant, shall be adhered to during excavation, transportation and disposal of sediments. • Stockpiling of contaminated sediments should be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpiling of contaminated and	Recommended mitigation measures for Works Contract 1112 Land-based sediment The basic requirements and procedures for excavated sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. The Project Proponent should agree in advance with MFC of CEDD on the site allocation. Subject to the final decision by MFC, Type 1 sediments are typically disposed to South Cheung Chau and/or East of Ninepin as open sea disposal while Type 2 sediments are disposed to East Sha Chau as confined marine disposal. Sampling and Testing Plan(s) should be prepared in accordance with ETWB TC(W) No. 34/2002. Site investigation, based on the Sediment Sampling and Testing Plan(s), should be carried out in order to confirm the disposal arrangements for the proposed excavated sediments. A Sediment Quality Report (SQR) should then be submitted to EPD for agreement prior to the tendering of the construction contract, discussing in details the site investigation, testing results as well as the delineation of each of the categories of excavated materials and the corresponding types of disposal. The excavated sediments is expected to be loaded onto the dumping trucks and transferred to the barging point where the sediments would be transported via barge to the existing designated disposal options and ETWB TC(W) No. 34/2002. Requirements of the Air Pollution Ordinance (Construction Dust) Regulation, where relevant, shall be adhered to during excavation, transportation and disposal of sediments. Stockpiling of contaminated sediments is necessary, the excavated sediment should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contaminated and be provided for stockpiling of contaminated and be provided for stockpiling of contaminated and	Land-based sediment • The basic requirements and procedures for excavated sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. • The Project Proponent should agree in advance with MFC of CEDD on the site allocation. Subject to the final decision by MFC, Type 1 sediments are typically disposed to South Cheung Chau and/or East of Ninepin as open sea disposal while Type 2 sediments are typically disposed to South Cheung Chau and/or East of Ninepin as open sea disposal while Type 2 sediments are disposed to East Sha Chau as confined marine disposal. • Sampling and Testing Plan(s) should be prepared in accordance with ETWB TC(W) No. 34/2002. Site investigation, based on the Sediment Sampling and Testing Plan(s), should be carried out in order to confirm the disposal arrangements for the proposed excavated sediments. A Sediment Quality Report (SCR) should then be submitted to EPD for agreement prior to the tendering of the construction contract, discussing in details the site investigation, testing results as well as the delineation of each of the categories of excavated materials and the corresponding types of disposal. • The excavated sediments is expected to be loaded onto the dumping trucks and transferred to the barging point where the sediment would be transported via barge to the existing designated disposal sites allocated by the MFC. The excavated sediment would be disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002. • Requirements of the Air Pollution Ordinance (Construction Dust) Regulation, where relevant, shall be adhered to during excavation, transportation and disposed for seminated sediments. Secondary stockpiling of contaminated sediments is necessary, the excavated sediment should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas should be cought to contaminated or covered by linings	Recommended mitigation measures for Works Contract 1112 Land-based sediment The basic requirements and procedures for excavated sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. The Project Proponent should agree in advance with MFC of CEDO on the site allocation. Subject to the final decision by MFC, Type 1 sediments are typically disposed to South Cheung Chau and/or East of Ninepin as open sea disposal while Type 2 sediments are disposal of the statutory. Sampling and Testing Plan(s) should be prepared in accordance with ETWB TC(W) No. 34/2002. Site investigation, based on the Sediment Sampling and Testing Plan(s), should be carried out in order to confirm the disposal arrangements for the proposed excavated sediments. A Sediment Quality Report (SQR) should then be submitted to EPD for agreement prior to the tendering of the construction contract, discussing in details the site investigation, testing results as well as the delineation of each of the categories of excavated materials and the corresponding types of disposal. The excavated sediment would be disposed of according to its determined disposal options and ETWB TC(W). No. 34/2002. Requirements of the Air Pollution Ordinance (Construction Dust) Regulation, where relevant, shall be adhered to during excavation, transportation and disposal of sediments. Stockpling of contaminated sediments should be covered by transpared value sediment should be covered by transpared value for excavated reasons and the corresponding the solution of the completely paved or covered by linings in order to avoid contaminated about the underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpling of contaminated about the order of a void contaminated about the order of voided for stockpling of contaminated and disposal of sediments. Am in concrarse to the statutory To constructor of the st	Land-based sediment

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimize the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments should be wetted during excavation / material handling and should be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge should be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. The barge transporting the sediments to the designated						^
	disposal sites should be equipped with tight fitting seals to prevent leakage and should not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In order to minimize the exposure to contaminated materials, workers should, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site.						N/A N/A
S11.5.1 of Ref.1; S8.94 – 9.97 of Ref. 2; S11.5.1 of Ref. 3	Chemical waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, will be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes will be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450L unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes will be clearly labelled and used solely for the storage of chemical waste; be enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; be covered to prevent rainfall entering;	Control the chemical waste and ensure proper storage, handling and disposal.	Contractor	All construction sites	Construction stage	Waste Disposal (Chemical Waste) General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste	^ ^ N/A

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	 and be arranged so that incompatible materials are adequately separated. Disposal of chemical waste will be via a licensed waste collector; and be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD. 						۸
S9.98 – 9.99 of Ref 2	All storage of asbestos waste should be carried out properly in a secure place isolated from other substances so as to prevent any possible release of asbestos fibres into the atmosphere and contamination of other substances. The storage area should bear warning panels to alert people of the presence of asbestos waste. Collection, transportation and disposal of asbestos waste will follow the trip-ticket system. Licensed asbestos waste collectors will be appointed to collect the asbestos waste and deliver to the designated landfill for disposal. The Project Proponent should notify to EPD in advance for disposal of asbestos waste. After processing the notification, EPD will issue specific instructions and directions for disposal. The waste producer must strictly follow these directions	To ensure the asbestos wastes are handled and disposed of in accordance with the statutory requirements	Contractor	All construction sites	Construction stage	Code of practice on the Handling, Transportation and Disposal of Asbestos Waste	N/A N/A

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
Land Contamin S10.24 –		To act as a general	Contractor	All construction	Construction	"Guidance Note	
10.34 of Ref 2	Precautionary measures Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process should involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odurs, which may also indicate soil and/or groundwater contamination. If soil discolouration or the presence of oil/unnatural odour is noted during visual inspection, sampling and testing should also be undertaken to verify the presence of contamination.	precautionary measure to screen soils for the presence contamination during construction	Contractor	sites	stage	for Contaminated Land Assessment and Remediation" "Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management	^
\$10.35 of Ref 2	 Potential remediation of contaminated soil If land contamination is identified, CAR and RAP detailing the proposed remediation works should be prepared. RR should then be prepared and submitted to EPD to demonstrate that the decontamination work is adequate and has been carried out in accordance with the endorsed CAR and RAP. Information such as soil treatment/disposal records (including trip tickets), confirmatory sampling results and photographs should be included in the RR. No construction work should be carried out prior to endorsement of the RR by EPD. 	To remediate contaminated soil	Contractor	All construction sites	Construction stage	"Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair /Dismantling Workshop"	N/A N/A
	 In order to minimise environmental impacts arising from the handling of potentially contaminated materials, the following environmental precautionary measures are recommended to be utilised during the course of any required site remediation: 						N/A N/A
	 Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; 						N/A
	 Excavation should be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; 						N/A
	 Supply of suitable clean backfill material is needed after excavation; 						N/A

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
	 If proposed remediation methods employ chemical oxidation methods as the contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and 						N/A
	Personal Protective Equipment Vehicles containing any excavated materials should be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates should be sealed to prevent any discharge during						۸
	transport or during wet conditions; • Speed control for the trucks carrying coVehicle wheel and body washing facilities at the site's exit points should be established and used; and contaminated materials should be enforced;						۸
	 Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control should be implemented and complied with relevant regulations and guidelines. 						^
\$10.36 of Ref 2	The Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations should be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures should be implemented as far as possible: Set up a list of safety measures for site workers. Provide written information and training on safety for site workers. Keep a log-book and plan showing the contaminated zones and clean zones.	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	All construction sites	Site remediation and prior to construction phase	"Guidance Note for Contaminated Land Assessment and Remediation" "Guidance Manual for Use of Risk-based	^
	Maintain a hygienic working environment. Avoid dust generation. Provide face and respiratory protection gear to site workers. Provide personal protective clothing (e.g. chemical resistant jackboot,					Remediation Goals for Contaminated Land Management	
	liquid tight gloves) to site workers. Provide first aid training and materials to site workers.					Management "Occupation Safety and Health Ordinance (Chapter 509)"	

EIA Ref.	Recommended mitigation measures for Works Contract 1112	Objectives of the recommended measures & main concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	What requirements or standards for measures to achieve?	Status
EM&A Project							
S14.2 – 14.4 of Ref. 1; S13.2 – 13.4 of Ref. 3 1.	 An Environmental Team needs to be employed as per this EM&A Manual. Prepare a systematic EMP to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in this EM&A Manual are fully complied with. 	Perform environmental monitoring & auditing	Contractor	All construction sites	Construction stage	EIAO Guidance Note Ref4/2010 EIAO-TM	۸

Remark for Status:

- ^ Compliance of mitigation measure
- + Non-compliance but rectified by the contractor N/A Not Applicable

- X Non-compliance of mitigation measure
- * Recommendation was made during site audit but improved/rectified by the contractor
- # Recommendation was made during site audit and improvement/rectification not yet completed by the contractor

Notes:

Ref. 1 - EIA Report for SCL (TAW-HUH)

Ref. 2 – EIA Report for SCL (MKK-HUH)

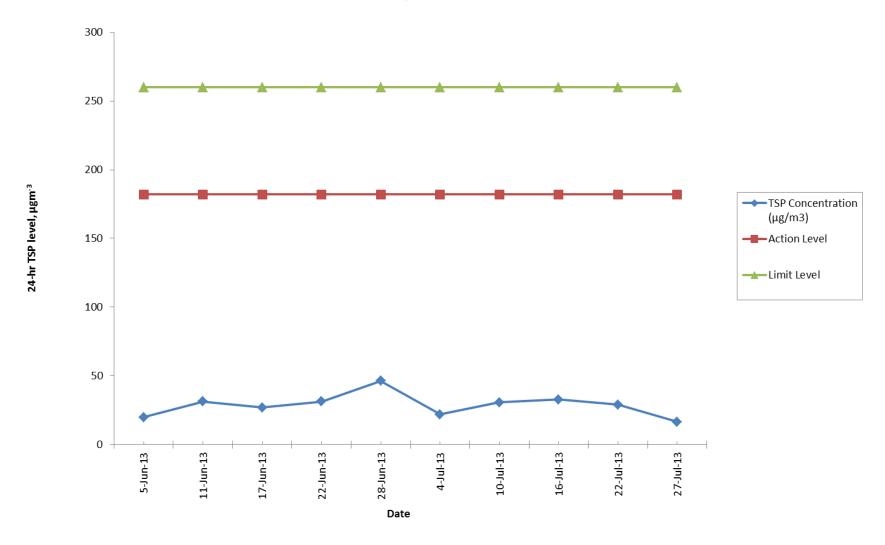
Ref. 3 – EIA Report for SCL (HHS)

This EMIS contains only those requirements that are relevant to Works Contract 1112 in terms of:

- EM&A required under Works Contract 1112
- Who to implement the measures the Contractor (Leighton)
- The location of the measures within and in the vicinity of the Works Contract 1112 Site Boundary
- When to implement the measures during the design and construction

Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings $2^{\rm nd}$ Monthly EM&A Report for July 2013

APPENDIX I


Monitoring Results and their Graphical Presentations

		Wt	. of paper	(g)		Elapse Tim	ie	Flow	w Rate (CFM) Total TSP Weather I		Reference			
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	(m³)	Concentration (μg/m3)		
04/07/13	205033	3.5713	3.6068	0.0355	9726.15	9750.15	24.00	40	40	40.0	1631.05	21.7651	Sunny	-
10/07/13	205034	3.5579	3.6078	0.0499	9750.15	9774.15	24.00	40	40	40.0	1631.05	30.5938	Sunny	-
16/07/13	205035	3.5706	3.6241	0.0535	9774.15	9798.17	24.02	40	40	40.0	1632.41	32.7736	Cloudy	-
22/07/13	205036	3.5594	3.6067	0.0473	9798.17	9822.17	24.00	40	40	40	1631.05	28.9997	Rainy	-
27/07/13	205037	3.5549	3.5817	0.0268	9822.17	9846.17	24.00	40	40	40.0	1631.05	16.4311	Sunny	-

Construction Dust Monitroing Results for AM2 (Harbourfront Horizon)

Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings 2nd Monthly EM&A Report for July 2013

APPENDIX J

Event and Action Plan

Event and Action Plan for Air Quality

Event	ET	IEC	ER	Contractor
Action level				
1. Exceedance for one sample	 Inform the IEC, Contractor and ER Discuss with the Contractor, IEC and ER on the remedial measures required Repeat measurement to confirm findings Increase monitoring frequency 	 Check monitoring data submitted by the ET Check Contractor's working method Review and advise the ET and ER on the effectiveness of the proposed remedial measures 	Confirm receipt of notification of exceedance in writing	 Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate
2. Exceedance for two or more consecutive samples	 Inform the IEC, Contractor and ER Discuss with the ER, IEC and Contractor on the remedial measures required Repeat measurements to confirm findings Increase monitoring frequency to daily If exceedance continues, arrange meeting with the IEC, ER and Contractor If exceedance stops, cease additional monitoring 	 Check monitoring data submitted by the ET Check Contractor's working method Review and advise the ET and ER on the effectiveness of the proposed remedial measures 	 Confirm receipt of notification of exceedance in writing Review and agree on the remedial measures proposed by the Contractor Supervise Implementation of remedial measures 	 Identify source and investigate the causes of exceedance Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification Implement the agreed proposals Amend proposal as appropriate

Event	ET	IEC	ER	Contractor
Limit Level				
1. Exceedance for one sample	 Inform the IEC, EPD, Contractor and ER Repeat measurement to confirm findings Increase monitoring frequency to daily Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check monitoring data submitted by the ET Check the Contractor's working method Discuss with the ET, ER and Contractor on possible remedial measures Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing Notify the Contractor, IEC and ET Review and agree on the remedial measures proposed by the Contractor Supervise implementation of remedial measures. 	 Identify source(s) and investigate the causes of exceedance Take immediate action to avoid further exceedance Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification Implement agreed proposals Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IEC, Contractor & EPD Repeat measurement to confirm findings Increase monitoring frequency to daily Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented Arrange meeting with the IEC, Contractor and ER to discuss the remedial measures to be taken Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET Check the Contractor's working method Discuss with ET, ER, and Contractor on the potential remedial measures Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing Notify the Contractor, IEC and ET In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented Supervise the implementation of remedial measures If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source(s) and investigate the causes of exceedance Take immediate action to avoid further exceedance Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification Implement the agreed proposals Revise and resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Note:

ET – Environmental Team, IEC – Independent Environmental Checker, ER – Engineer's Representative

Event and Action Plan for Landscape and Visual Impact Monitoring

Event	ET	IEC	ER	Contractor
Action level				
Non-conformity on one occasion	 Inform the contractor, the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed 	 Check inspection report Check the contractor's working method Discuss with the ET, ER and the contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures. 	 Confirm receipt of notification of non-conformity in writing Review and agree on the remedial measures proposed by the contractor Supervise implementation of remedial measures 	 Identify source and investigate the non-conformity Implement remedial measures Amend working methods agreed with the ER as appropriate Rectify damage and undertake any necessary replacement
Repeated Non-conformity	 Identify source Inform the contractor, the IEC and the ER Increase inspection frequency Discuss remedial actions with the IEC, the ER and the contractor Monitor remedial actions until rectification has been completed If non-conformity stops, cease additional monitoring 	Check inspection report Check the contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures	 Notify the contractor In consultation with the ET and IEC, agree with the contractor on the remedial measures to be implemented Supervise implementation of remedial measures. 	 Identify source and investigate the non-conformity Implement remedial measures Amend working methods agreed with the ER as appropriate Rectify damage and undertake any necessary replacement. Stop relevant portion of works as determined by the ER until the non-conformity is abated.

Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings 2nd Monthly EM&A Report for July 2013

APPENDIX K

Waste Flow Table

Waste Flow Table												
	Actual Quantities of Inert C&D Materials Generated Monthly							Actual Quantities of non-intert C&D Wastes Generated Monthly				
	Generated		Disposed				Recycled			Disposed		
Month	Total Quantity Generated	Hard Rock and Broken Concrete	Reused in the Contract	Reused in other Projects	Diposed as Public Fills at HH Barging Point	Disposed as Public Fills at TKO137	Disposed as Public Fills at TM38	Metals	Paper/cardboard packaging	Plastics	Chemical Waste	General Refuse [Note 2]
Unit	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000Kg)	(in '000Kg)	(in '000Kg)	(in '000Kg)	(in '000Kg)
Jun-13	0	0	0	0	0	0	0	137.301	0	0	0	6.55
Jul-13	0.238	0	0	0	0	0	0.238	365.335	0	0	0	16.87
Aug-13												
Sep-13												
Oct-13												
Nov-13												
Dec-13												
TOTAL	0.238	0	0	0	0	0	0.238	502.636	0	0	0	23.42

Note:

- 1. Assume the density of fill is 2ton/m³.
- 2. Refuses disposed of at NENT landfill.

Shatin to Central Link – Contract 1112 Hung Hom Station and Stabling Sidings $2^{\rm nd}$ Monthly EM&A Report for July 2013

APPENDIX L

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. recorded since project commencement
Environmental complaints	-	-	-	0	0
Notification of summons	-	-	-	0	0
Successful Prosecution	-	-	-	0	0

Appendix I

2nd Monthly EM&A Report for Works Contract 1108 – Kai Tak Station and Associated Tunnels

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Monthly EM&A Report

[Period from 1 to 31 July 2013]

Works Contract 1108 –Kai Tak Station and Associated Tunnels

(July 2013)

Certified by:	Goldie Fung	
Position: <u>Enviro</u>	onmental Team	Leader

Date: 12 Angust 2013

Kaden - Chun Wo Joint Venture (KCJV)

Shatin to Central Link -

Contract 1108

Kai Tak Station and Associated Tunnels

Monthly Environmental Monitoring & Auditing Report for July 2013

The Contents of this report have been certified by:

Ms. Goldie Fung

(Environmental Team Leader)

Environmental Pioneers & Solutions Limited

Flat A, 19/F, Chaiwan Industrial Centre,

20 Lee Chung Street, Chai Wan, Hong Kong

Tel: 2556 9172 Fax: 2856 2010

TABLE OF CONTENT

Exe	cutive	Summary	3
1	Intro	oduction	5
	1.1	Purpose of the Report	5
	1.2	Structure of the Report	5
2	Proj	ect Information	7
	2.1	Background	7
	2.2	General Site Description	7
	2.3	Construction Programme and Activities	7
	2.4	Project Organization	7
	2.5	Status of Environmental Licences, Notification and Permits	8
	2.6	Summary of EM&A Requirements	9
3	Env	ironmental Monitoring Requirements	10
	3.1	Culture Heritage	10
	3.2	Landscape and Visual	10
4	Imp	lementation Status on Environmental Protection Requirements	11
5	Mor	nitoring Results	12
	5.1	Cultural Heritage	12
	5.2	Landscape and Visual	12
	5.3	Waste Management	12
6	Env	ironmental Site Inspection	13
	6.1	Site Audit	13
	6.2	Implementation Status of Environmental Mitigation Measures	13
7	Env	ironmental Non-Conformance	16
	7.1	Summary of Environmental Exceedances	16
	7.2	Summary of Environmental Non-Compliance	16
	7.3	Summary of Environmental Complaint	16
	7.4	Summary of Environmental Summon and Successful Prosecution	16
8	Futu	re Key Issues	17
9	Con	clusions and Recommendations	18
	9.1	Conclusions	18
	9.2	Recommendations	18

LIST OF APPENDICES

Appendix A: Site Location Plan

Appendix B: Construction Programme

Appendix C: Project Organization Chart & Contact Details

Appendix D: Buffer Zone for Lung Tsun Stone Bridge & Former Kowloon City Pier

Appendix E: Event/Action Plan for landscape & Visual During Construction Stage

Appendix F: Waste Flow Table

Appendix G: Updated Environmental Mitigation Implementation Schedule

Appendix H: Cumulative Log for Environmental Exceedance, Complaints, Notification of Summons and Successful Prosecutions

LIST OF TABLES

- Table 2.1: Summary of the Status of Environmental Licences, Notification and Permits
- Table 4.1: Status of Required Submissions under EP
- Table 5.1: Quantities of Waste Disposed from the Project
- Table 6.1: Summary Results of Site Inspections Findings

Executive Summary

This is the second monthly Environmental Monitoring and Audit (EM&A) Report for MTR Shatin to Central Link (SCL) Works Contract 1108 – Kai Tak Station and Associated Tunnels. The project commenced on 17th June 2013. This report documents the finding of EM&A Works conducted from 1st July 2013 to 31st July 2013.

Summary of the Construction Works undertaken during the Reporting Month

The major site activities in this reporting period were including:

- Station Area (Area 3)
 - General site clearance and removal of existing stockpile
 - Cut-off sheetpiling works commenced
 - Dewatering wall drilling commenced
 - Additional boreholes drilling and piezometer installation
 - Construction of temporary haul road near Gate 1
- Cut & Cover Area (Area 2)
 - General site clearance was completed
 - Trial excavation for existing old seawall
 - 6 nos. of additional piezometers were completed in this area
- Open cut Area (Area 1)
 - Breaking up of existing concrete pavement
 - All at-grade settlement markers were completed in this area

Variation in Construction Method

No variation in construction method from the proposed construction programme was noted in this reporting month.

Environmental Monitoring and Audit Progress

Culture Heritage

As tunneling works have not commenced, no audit for the Lung Tsun Stone Bridge and Former Kowloon City Pier was conducted during the reporting month.

Landscape and Visual

The implementation of landscape and visual mitigation measures was inspected during the weekly environmental site inspection. Most of the necessary mitigation measures have been implemented. Details of the audit findings and implementation status are presented in Section 6.

Waste Management

According to Contractor's waste flow data, 7,256 m³ of inert C&D materials were generated during this reporting month and were disposed to the receiving facility of Contract 1108A. 2,370m³ of non-inert C&D waste were generated and disposed at landfill site.

Environmental Site Inspection

Joint weekly inspections were conducted by representatives of the Contractor, Engineer and ET on 5th, 11th, 18th, 23rd, and 30th July 2013. The representative of the IEC jointed the site inspection on 5th July 2013. Details of the audit findings and implementation status are presented in Section 6.

<u>Environmental Exceedance / Non-conformance / Compliant / Summons and Successful</u> Prosecution

No breaches of Action and Limits levels, non-compliance event, environmental complaint, notification of summons and successful prosecution against the Project were received in this reporting month.

Future Key Issues

The major construction works to be undertaken in the next reporting month include:

- Driving of extended cut-off sheet pile wall
- Installation of dewatering wells and observation wells will continue
- Additional boreholes drilling and piezometers installation will continue
- Hoarding works at newly occupied Works Area W4 will commence
- Gate 1 Control by KCJV will be implemented in early August 2013. All relevant sections of new temporary haul road will be completed

1 Introduction

The Environmental Team (ET), Environmental Pioneers & Solutions Limited (EPSL), was appointed by Kaden – Chun Wo Joint Venture (KCJV) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL) Works Contract 1108 – Kai Tak Station and Associated Tunnels (the Project). The project commenced on 17th June 2013.

1.1 Purpose of the Report

This is the second monthly EM&A Report which summarises the audit findings for the EM&A programme during the reporting period from 1st July 2013 to 31st July 2013.

1.2 Structure of the Report

The structure of the report is as follow:

Section 1: Introduction - details the scope and structure of the report.

Section 2: Project Information - summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.

Section 3: Environmental Monitoring Requirement - summarises the monitoring requirements and environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.

Section 4: Implementation Status on Environmental Mitigation Measures - summarises the implementation of environmental protection measures during the reporting period.

Section 5: Monitoring Results - summarises the monitoring results obtained in the reporting period.

Section 6: Environmental Site Inspection - summarises the audit findings of the weekly site inspections undertaken within the reporting period.

Section 7: Environmental Non-conformance - summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.

Section 8: Future Key Issues - summarises the impact forecast and monitoring schedule for the next three months.

Section 9: Conclusions and Recommendations

2 Project Information

2.1 Background

The Shatin to Central Link – Tai Wai to Hung Hom Section (SCL (TAW-HUH)) is an approximately 11 km long extension of the Ma On Shan Line and links up with the West Rail Line at Hung Hom forming a strategic East-West rail corridor. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).

The construction of the SCL (TAW-HUH) and SCL (HHS) have been divided into a series of civil construction works contracts. This Works Contract 1108 covers the construction of Kai Tak Station (KAT) and the section of tunnel between KAT and Sung Wong Toi Station (SUW) plus a short section of tunnel from KAT towards Diamond Hill Station (DIH). This construction contract was awarded to Kaden - Chun Wo Joint Venture (KCJV) in April 2013.

2.2 General Site Description

The works area includes work sites in the Kai Tak New Development Area. The construction of tunnel will employ cut & cover method. The alignment and works area for the Project is shown in **Appendix A**.

2.3 Construction Programme and Activities

A summary of the major construction activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix B**.

- Station Area (Area 3)
 - General site clearance and removal of existing stockpile
 - Cut-off sheetpiling works commenced
 - Dewatering wall drilling commenced
 - Additional boreholes drilling and piezometer installation
 - Construction of temporary haul road near Gate 1
- Cut & Cover Area (Area 2)
 - General site clearance was completed
 - Trial excavation for existing old seawall
 - 6 nos. of additional piezometers were completed in this area
- Open cut Area (Area 1)

- Breaking up of existing concrete pavement
- All at-grade settlement markers were completed in this area

2.4 Project Organization

The project organization chart and contact details are shown in **Appendix C.**

2.5 Status of Environmental Licences, Notification and Permits

A summary of the relevant permits, licences, and notifications on environmental protection for this Project is presented in Table 2.1. Application for Effluent Discharge License under WPCO is under approval.

Table 2.1 Summary of the Status of Environmental Licences, Notification and Permits

		Period	lecines, i votification and i crimis								
Permit / License No.	vanu .	1 61 100	Status								
	From	То									
Environmental Permit (EP)											
EP-438/2012/C	30/04/2013	N/A	Valid								
Notification pursuant to Air Pollution Control (Construction Dust) Regulation											
Ref. Number 359540	16/05/2013	N/A	Valid								
Waste Disposal (Charges for Disposal of Construction Waste) Regulation											
Billing Account No. 7017544	07/06/2013	N/A	Valid								
Construction Noise Permit for	the Carrying O	ut of Percussive	Piling								
PP-RE0026-13	02/07/2013	31/12/2013	Valid								
Construction Noise Permit for	General Works										
GW-RE0720-13	12/07/2013	08/01/2014	Valid								
Effluent Discharge License											
NT / A	NI/A	NI/A	Application was made on 5 th June 2013								
N/A	N/A	N/A	and is pending for EPD's approval								
Registration of Chemical Waste	e Producer										
WPN 5213-286-K3069-01	09/07/2013	N/A	Valid								

2.6 Summary of EM&A Requirements

The EM&A programme under Works Contract 1108 require regular environmental site audits. The EM&A requirements are described in the following sections, including:

- Weekly inspection for Cultural Heritage;
- Weekly inspection for Landscape and Visual;
- Environmental mitigation measures, as recommended in the Project EIA study final report; and
- Environmental requirements in contract documents.

The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.

3 Environmental Monitoring Requirements

3.1 Culture Heritage

In accordance with the EM&A Manual, a buffer zone shall be maintained between both Lung Tsun Stone Bridge and Former Kowloon City Pier and SCL (TAW-HUH) works sites during the tunneling work. For Lung Tsun Stone Bridge, a horizontal distance of 25m between the bridge and the buffer boundary shall be maintained. For Former Kowloon City Pier, a vertical buffer distance of 1.8 - 2.2m from the top of the tunnel shall be maintained. The layout of the buffer zone was attached in **Appendix D**. No at-grade construction activities shall be allowed within the buffer zone. Audit shall be conducted on a weekly basis throughout the construction period for the mined tunnel within the horizontal buffer zone.

3.2 Landscape and Visual

In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted every week throughout the construction period. The implementation status is given in **Appendix G**.

The event/action plan for Landscape and Visual during Construction Stage is attached in **Appendix E**.

4 Implementation Status on Environmental Protection Requirements

The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix G**. Status of required submissions under the Environmental Permit (EP) as of the reporting period is presented in Table 4.1.

Table 4.1 Status of Required Submissions under EP

EP Condition	Submission	Submission Date		
Condition 3.4	First Monthly EM&A Report	12 th July 2013		

5 Monitoring Results

5.1 Cultural Heritage

As tunneling works have not been commenced, no audit was conducted during the reporting month.

5.2 Landscape and Visual

Inspections of the implementation of landscape and visual mitigation measures were conducted on weekly basis. The observations and recommendations made during the audit sessions are summarized in Table 6.1.

5.3 Waste Management

With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in Table 5.1. The inert C&D materials were disposed to the Contract 1108A receiving facility. The general refuse was disposed to designated landfill site. No steel metals, paper/cardboard packaging and plastics were generated during this reporting month. Detail of waste management data is presented in **Appendix F**.

Table 5.1 Quantities of Waste Disposed from the Project

	Quantity								
Reporting	C&D	C&D Materials (non-inert) (b)							
Month	Materials	General	Chemical	Recycled					
	(inert) (a)	Refuse	Waste	Paper/cardboard	Plastics	Metals			
July 2013	7,256m ³	2,370 m ³	0 kg	0 kg	0 kg	0 kg			

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
- (b) Non-inert C&D materials include steel, paper/cardboard packaging waste, plastics and other wastes such as general refuse and vegetative wastes. Steel metal generated from the Project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.

6 Environmental Site Inspection

6.1 Site Audit

Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site.

Joint weekly inspections were conducted by representatives of the Contractor, Engineer and ET on 5th, 11th, 18th, 23rd and 30th July 2013. The representative of the IEC jointed the site inspection on 5th July 2013. No site inspection was conducted by EPD during the reporting month. The details of observations during site audit can refer to Table 6.1.

6.2 Implementation Status of Environmental Mitigation Measures

According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. Updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix G**.

During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in Table 6.1.

Table 6.1 Summary results of site inspections findings

Parameters	Date	Findings	Advice from ET	Action taken	Closing date	Remarks
Noise	30 Jul 13	Mitigation measures on noise for concrete breaking was insufficient.	Contractor was reminded to properly wrap the breaker tip with sound absorbing material.	Follow up action will be reported in next reporting period.	N/A	/
Air Quality	25 Jun 13	25 Jun 13 Stockpiles of excavated material were observed without covering. Contractor was reminded to bared stockpiles with tarpau avoid erosion and dust generated and the contractor was reminded to bared stockpiles with tarpau avoid erosion and dust generated and the contractor was reminded to bared stockpiles with tarpau avoid erosion and dust generated and the contractor was reminded to bared stockpiles with tarpau avoid erosion and dust generated without covering.		The stockpiles of excavated material were removed.	5 Jul 13	/
	5 Jul 13	The pressure of the water jet for water spraying during concrete breaking was insufficient.	Contractor was reminded to enhance the pressure of the water jet or mount the water jet to the breaker tip to ensure the efficiency of dust suppression during concrete breaking.	Water jet was mounted with the breaker tip for more efficient dust suppression during concrete breaking.	18 Jul 13	/
	1 7 1111 13	Although watering by water spraying truck was observed during this inspection, the site was dry and dusty.	Contractor was reminded to provide more frequent watering to reduce the dust impact.	Water spraying was provided by water spraying truck every working hour. A logbook was kept for recording watering frequency.	23 Jul 13	/

Parameters	Date	Findings	Advice from ET	Action taken	Closing date	Remarks
	5 Jul 13	Wheel washing facilities were missing at main site exits.	Contractor was reminded to install wheel washing bay and water jet for vehicle washing to avoid dust generation.	Follow up action will be reported in next reporting period.	N/A	/
	11 Jul 13	Unloading of excavated material was observed without dust suppression measures and the stockpile of excavated material was observed without covering.	Contractor was suggested to provide watering during unloading of excavated material to avoid dust generation. Contractor was reminded to cover the remaining surface with impervious material entirely to avoid dust generation.	Some part of the earthy stockpile has been covered with tarpaulin on 30 Jul 13. The status of follow up action will be reported in next reporting period.	N/A	/
	30 Jul 13	Dust suppression measure for concrete breaking was not observed.	Contractor was reminded to provide water spraying during concrete breaking.	Follow up action will be reported in next reporting period.	N/A	/
	30 Jul 13	Although regular watering by water spraying truck has been provided by Contractor, the haul road was dry and dusty.	Contractor was reminded to provide more frequent watering to avoid dust generation.	Follow up action will be reported in next reporting period.	N/A	/
Water Quality	25 Jun 13	Muddy surface runoff entered into an existing channel was observed.	Contractor was reminded to block the remaining sections of channel as soon as possible.	During the inspection on 18 Jul 13, the section of channel near the buffer zone was blocked by sandbags. Rectification for other sections is still in progress.	N/A	/
Waste / Chemical Management	25 Jun 13	Accumulated water was observed inside a drip tray.	Contractor was reminded to remove the accumulated water maintain sufficient capacity of the drip tray for storing the leaked oil.	The accumulated water inside the drip tray was removed.	5 Jul 13	/
	25 Jun 13	A paint container was observed without secondary containment.	Contractor was recommended to provide a drip tray for storing the chemicals to avoid land contamination as if leakage.	The paint container without secondary containment was removed.	5 Jul 13	/
	25 Jun 13	Oil stain was observed on the ground	Contractor was advised to remove the oil stain and contaminated soil as chemical waste with proper storage and disposal method. Contractor was also reminded to regularly check and maintain the equipments to prevent oil leakage.	The oil stain on the ground was removed by Contractor.	5 Jul 13	/
	5 Jul 13		Contractor was advised to provide drip tray underneath the container for chemical storage. It is reminded that the outlet of the drip tray should be plugged and accumulated water should be removed.	A drip tray was observed for storage of paint containers during the inspection on 11 Jul 13. However, the outlet of the drip tray was not enclosed and accumulated water was observed inside the tray. As reported by Contractor on 18 Jul 2013, the accumulated water was removed, covering was provided and the outlet was enclosed.	18 Jul 13	/

Parameters	Date	Findings	Advice from ET	Action taken	Closing date	Remarks
	5 Jul 13	A temporary chemical waste storage container was observed to be stored with other construction material, without proper labeling and not covered properly.	Contractor was reminded that chemical waste should be stored in a totally enclosed container with proper warning label and only chemical waste should be allowed to be stored inside the container. Contractor was advised to remove the accumulated water.	Accumulated water was observed inside the container during the inspection on 18 Jul 13. The paint containers inside the temporary storage container were removed on 30 Jul 2013. The rectification for removal of accumulated water will be reported in next reporting period.	N/A	/
	5 Jul 13	on bared ground.	Contractor was reminded to store the waste in a container properly to maintain good environmental condition within the site.	The stockpile of green waste was removed.	11 Jul 13	/
	11 Jul 13	observed on the drip tray.	Contractor was advised to remove them to maintain sufficient capacity for storage of leaked oil.	The power generator has been removed. As reported by Contractor, the general refuse and accumulated water on the drip tray were removed	18 Jul 13	/
	18 Jul 13		Contractor was advised to provide drip tray for storage of chemical to avoid land contamination.	The paint containers at Area 1 were removed.	30 Jul 13	/
	30 Jul 13	Secondary containment was missing for storage of fuel containers.	Contractor was advised to provide drip tray for storage of chemical to avoid land contamination.	Follow up action will be reported in next reporting period.	N/A	/
	30 Jul 13	The outlet of drip trays was not plugged.	Contractor was reminded to plug the outlet to avoid land contamination in case of leakage.	Follow up action will be reported in next reporting period.	N/A	/
Cultural Heritage	25 Jun 13		Contractor was reminded to provide temporary fencing and proper signage to restrict construction vehicles and workers entering the buffer zone before the completion of the installation work.	Installation of hoarding was completed. Signage for restricting construction vehicles and workers entering the buffer zone were attached around the buffer zone.	11 Jul 13	/
Landscape and Visual	N/A	N/A	N/A	N/A	N/A	/
Permits/ Licenses	11 Jun 13	The environmental permit was not properly displayed at the site entrance.	Contractor was reminded to display the updated environmental permit as soon as possible.	The environmental permit was displayed at the site entrance.	5 Jul 13	/

7 Environmental Non-Conformance

7.1 Summary of Environmental Exceedances

No breaches of Action and Limit levels was recorded in the reporting month.

7.2 Summary of Environmental Non-Compliance

No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaint

No environmental Project-related complaint was received in the reporting month.

7.4 Summary of Environmental Summon and Successful Prosecution

There was no successful environmental prosecution or notification of summons received since the Project commencement.

The Cumulative Log for environmental exceedance, non-compliance, complaint and summon and successful prosecution since the commencement of the Project is presented in **Appendix H**.

8 Future Key Issues

The major construction activities in the coming month will include:

- Driving of extended cut-off sheet pile wall
- Installation of dewatering wells and observation wells will continue
- Additional boreholes drilling and piezometers installation will continue
- Hoarding works at newly occupied Works Area W4 will commence
- Gate 1 Control by KCJV will be implemented in early August 2013. All relevant sections of new temporary haul road will be completed

Potential environmental impacts arising from the above construction activities are mainly associated with dust, construction noise and waste management. The Contractor has been reminded to properly implement dust and construction noise control measures as well as proper waste management in order to minimize the potential environmental impacts due to the construction works of the Project.

9 Conclusions and Recommendations

9.1 Conclusions

This is the second monthly Environmental Monitoring and Audit (EM&A) Report presenting the EM&A works undertaken during 1st July 2013 to 31st July 2013 in accordance with the EM&A Manual and the requirement under EP-438/2012/C.

5 nos. of environmental site inspections were carried out in this reporting month. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.

No exceedances, non-compliance event, complaint and summons/prosecution was received during the reporting period.

The ET will keep tracking of the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all the necessary mitigation measures.

9.2 Recommendations

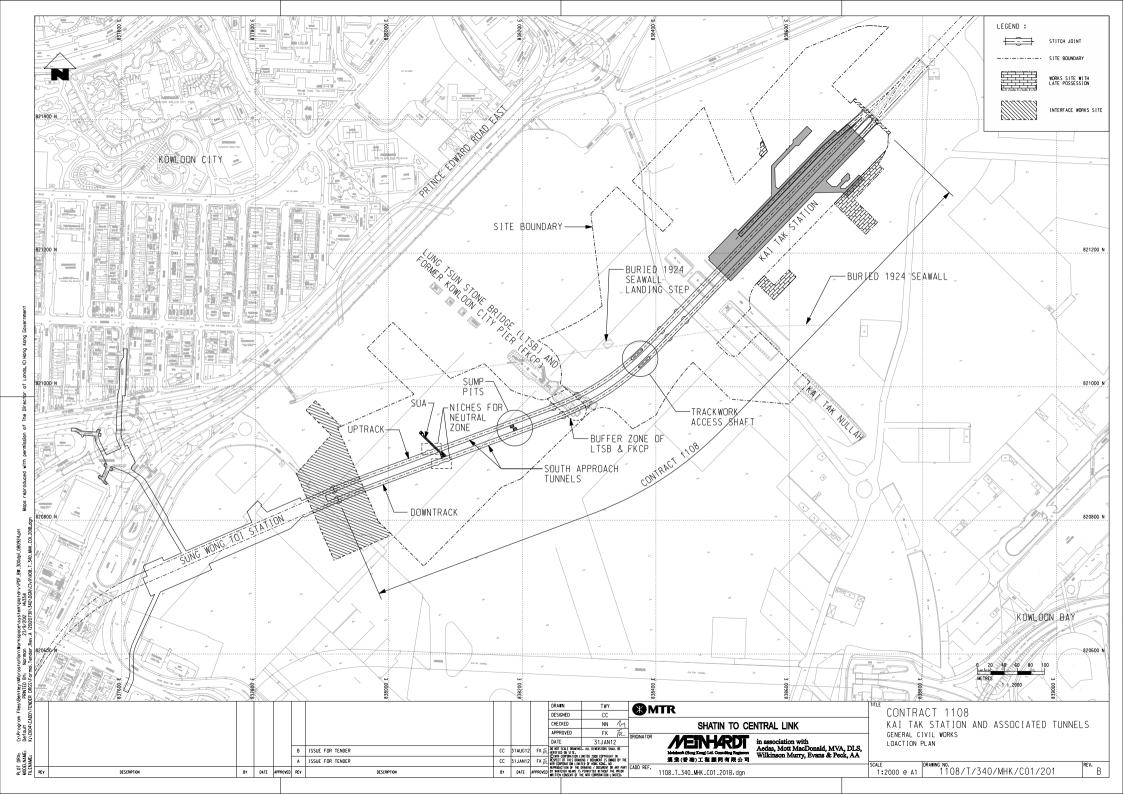
According to the environmental audit performed in the reporting month, the following recommendations were made:

Noise Impact

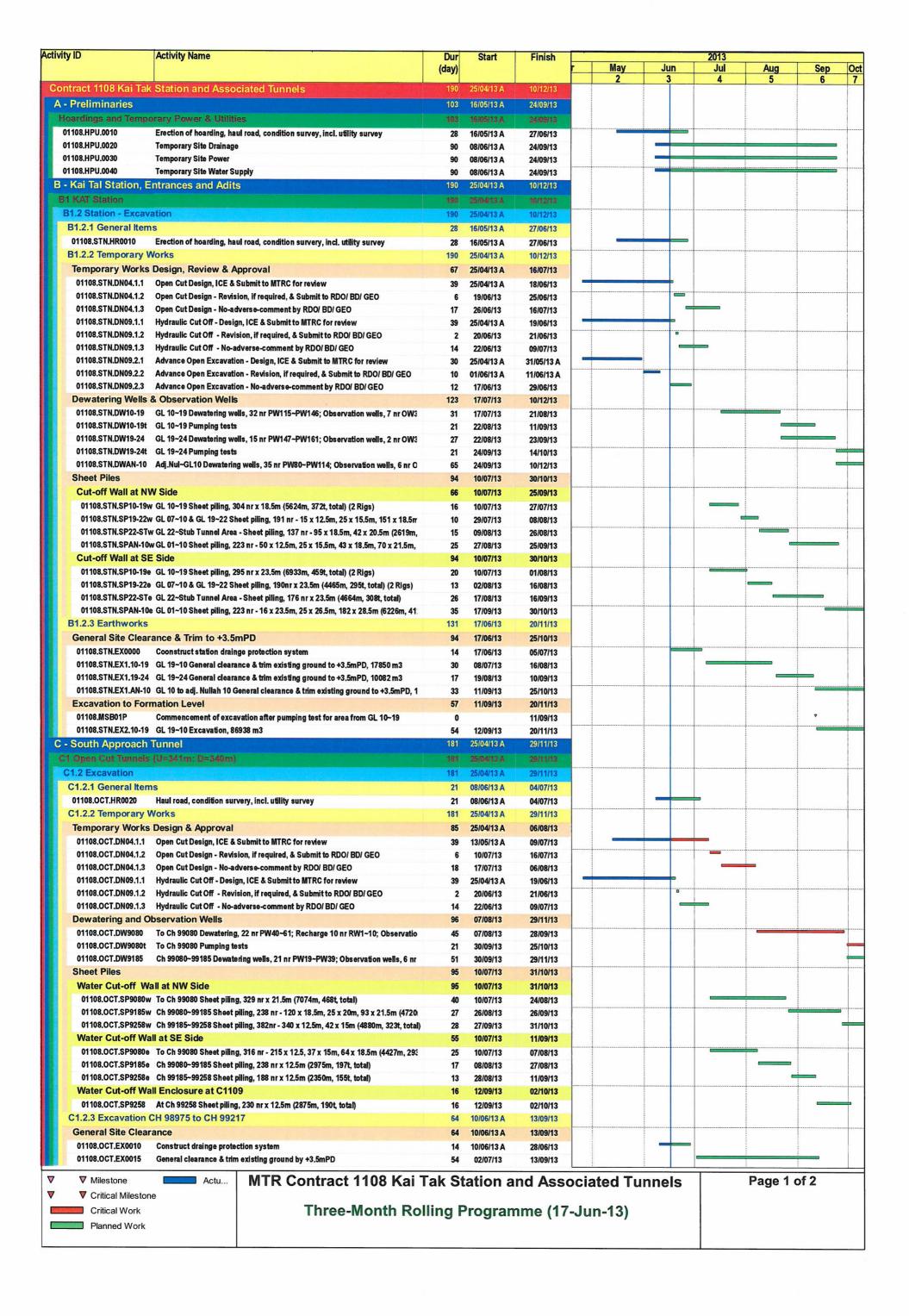
Provide sufficient mitigation measures for noisy activities.

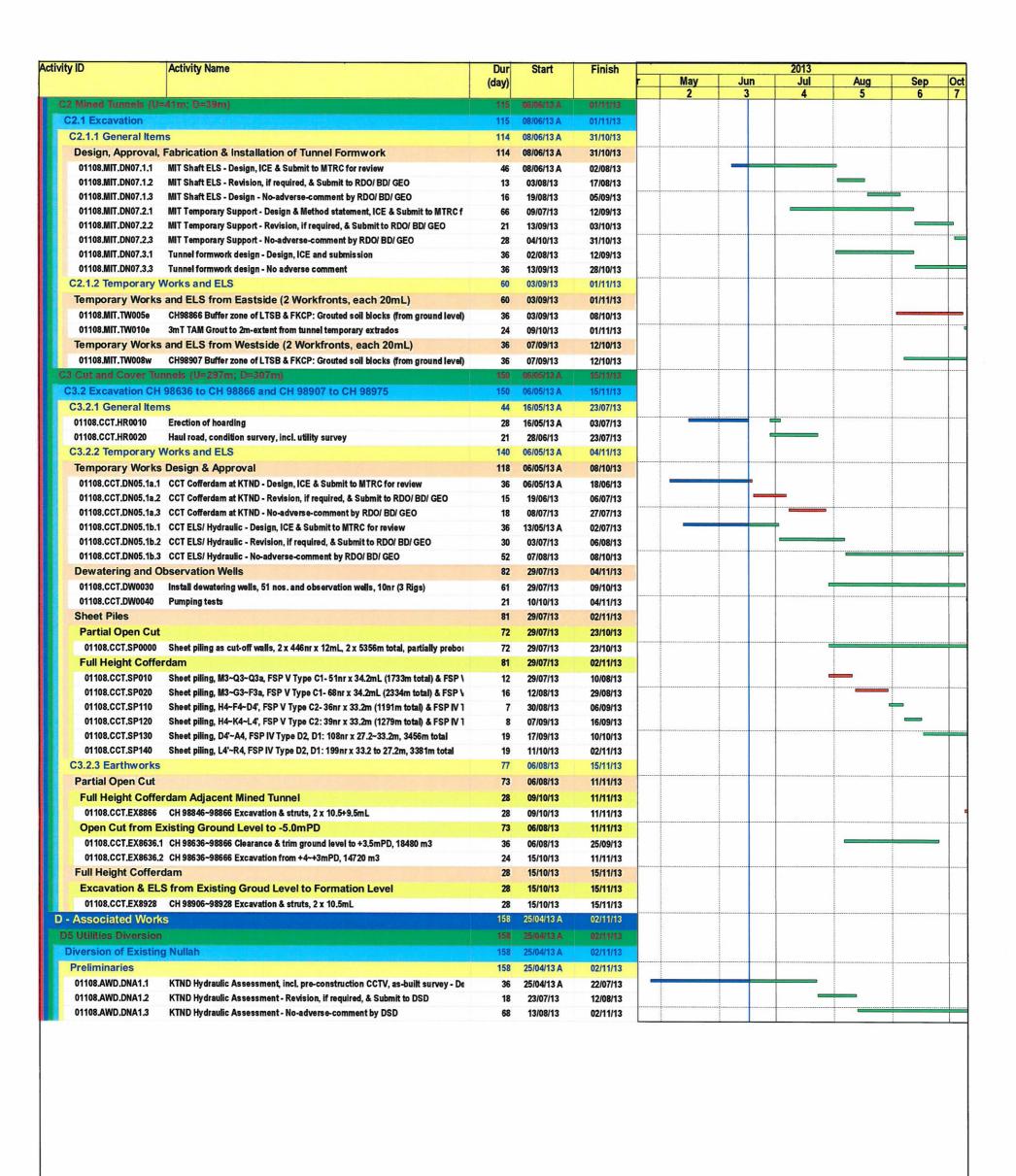
Dust Impact

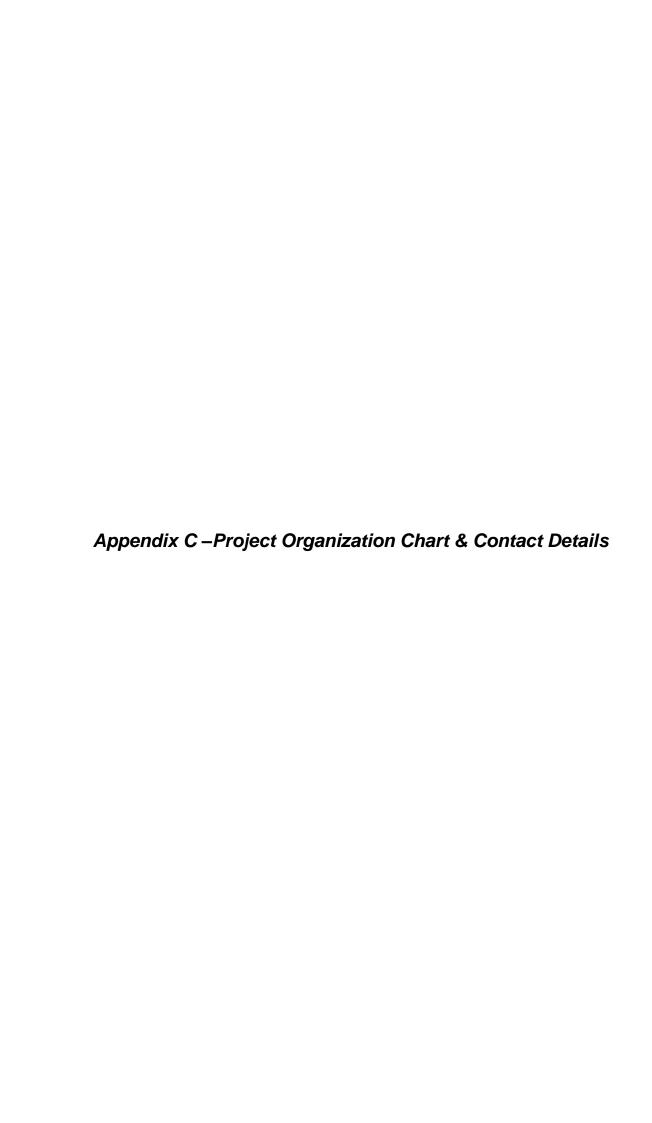
- Regularly spray water and cover the dusty surface to minimize the dust impact.
- Provide wheel washing facilities for vehicle washing to avoid dust generation.

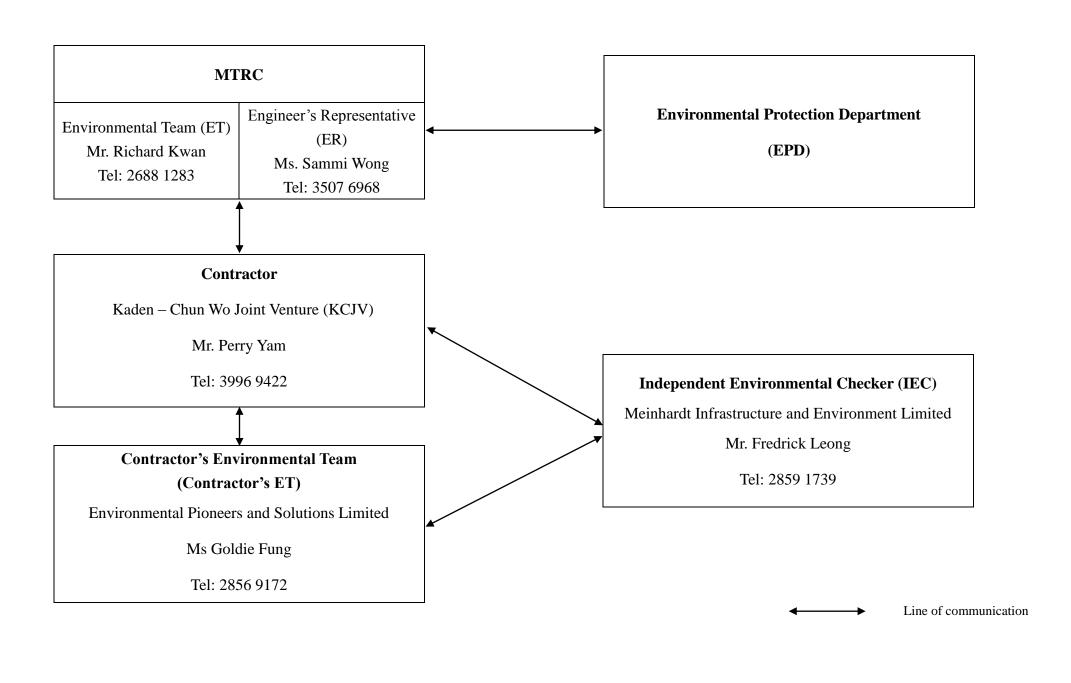

Water Quality Impact

- Provide sandbags to avoid surface runoff entering into existing drainage.
- Remove stagnant water regularly.


Waste / Chemical Management


- Provide drip tray with adequate capacity for fuel-powered equipment and fuel/chemical containers.
- Store chemical waste in a proper container with warning labels.







Appendix D – Buffer Zone for Lung Tsun Stone Bridge & Former Kowloon City Pier

Appendix E – Event/Action Plan for landscape & Visual During Construction Stage

Event / Action Plan for Landscape and Visual during Construction Stage

Action Level		ET		IEC		ER		Contractor
Non-conformity	1)	Inform the Contractor, the IEC	1)	Check inspection report	1)	Confirm receipt of	1)	Identify Source and investigate
on one occasion		and the ER	2)	Check the Contractor's		notification of		the non-conformity
	2)	Discuss remedial actions with the		working method		non-conformity in	2)	Implement remedial measures
		IEC, the ER and the Contractor	3)	Discuss with the ET, ER		writing	3)	Amend working methods agreed
	3)	Monitor remedial actions until		and the Contractor on	2)	Review and agree on		with the ER as appropriate
		rectification has been completed		possible remedial measures		the remedial	4)	Rectify damage and undertake
			4)	Advise the ER on		measures proposed		any necessary replacement
				effectiveness of proposed		by the Contractor		
				remedial measures.	3)	Supervise		
						implementation of		
						remedial measures		
Repeated	1)	Identify Source	1)	Check inspection report	1)	Notify the Contractor	1)	Identify Source and investigate
Non-conformity	2)	Inform the Contractor, the IEC	2)	Check the Contractor's	2)	In consultation with		the non-conformity
		and the ER		working method		the ET and IEC,	2)	Implement remedial measures
	3)	Increase inspection frequency	3)	Discuss with the ET and		agree with the	3)	Amend working methods agreed
	4)	Discuss remedial actions with the		the Contractor on possible		Contractor on the		with the ER as appropriate
		IEC, the ER and the Contractor		remedial measures		remedial measures to	4)	Rectify damage and undertake
	5)	Monitor remedial actions until	4)	Advise the ER on		be implemented		any necessary replacement. Stop
		rectification has been completed		effectiveness of proposed	3)	Supervise		relevant portion of works as
	6)	If non-conformity stops, cease		remedial measures		implementation of		determined by the ER until the
		additional monitoring				remedial measures.		non-conformity is abated.

Monthly Summary Waste Flow Table for <u>2013</u> (year)

	Actual Quan	tities of Inert	C&D Materia	ls Generated	<u>Monthly</u>		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rocks & Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fills at Kai Tak Barging Point	Disposed as Public Fill	Metals	Paper / cardboard packaging	Plastics	Chemical Waste	Others (general refuse)
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan											
Feb											
Mar											
Apr											
May											
June	0.376	0	0	0	0.376	0	0	0	0	0	0
Sub-total	0.376	0	0	0	0.376	0	0	0	0	0	0
July	7.256	0	0	0	7.256	0	0	0	0	0	2.370
Aug											
Sept											
Oct											
Nov											
Dec											
Total	7.632	0	0	0	7.632	0	0	0	0	0	2.370

Environmental Mitigation Implementation Schedule –SCL Contract 1108 (Kai Tak Station and Associated Tunnels)

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
Cultural He	eritage Im	pact (Construction and Operational Phase)					
\$4.9	CH4	Maintain a buffer distance as shown in Appendix D . A 1.8-2.2m vertical separation distance shall be maintained between the top of tunnel and the piles of the Former Kowloon City Pier.	Reserve sufficient area for necessary archaeological conservation and display works for Lung Tsun Stone Bridge in the future. Avoid direct impact on the Lung Tsun Stone Bridge and the	MTR Corporation Contractor	Lung Tsun Stone Bridge & Former Kowloon City Pier.	During the Construction of the tunnel section at Kai Tak	*
Landscape	& Visual	(Construction Phase)	Former Kowloon City Pier.				
S6.9.3	LV1	The following good site practices and measures for minimisation and avoidance of potential impacts are recommended:	Minimize visual & landscape impact	Contractor	Within Project Site	Construction stage	~
		 Re-use of Existing Soil For soil conservation, existing topsoil shall be re-used where possible for new planting areas within the project. The construction program shall consider using the soil removed from one phase for backfilling another. Suitable storage ground, gathering ground and mixing ground may be set up on-site as necessary. 					

EIA Ref.	EM&A Log Ref		Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		•	No-intrusion Zone To maximize protection to existing trees, ground vegetation and the associated under storey habitats, construction contracts may designate "No-intrusion Zone" to various areas within the site boundary with rigid and durable fencing for each individual no-intrusion zone. The contractor should closely monitor and restrict the site working staff from entering the "no-intrusion zone", even for indirect construction activities and storage of equipment.					
		•	Protection of Retained Trees All retained trees should be recorded photographically at the commencement of the Contract, and carefully protected during the construction period. Detailed tree protection specification shall be allowed and included in the Contract Specification, which specifying the tree protection requirement, submission and approval system, and the tree monitoring system. The Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees,					
S6.12	LV12	•	Decorative Hoarding Erection of decorative screen during construction stage to screen off	Minimize visual & landscape impact	Contractor	Within Project Site	Detailed design and	N/A

	EM&A		Objectives of the	Who to		When to	
EIA Ref.	Log	Recommended Mitigation Measure	Recommended Measures	implement	Location of the	implement	Implementation
	Ref	Tecommonava Pringarion Preudazo	& Main Concerns to	the	measures	the	Status
	KCI		address	measures?		measures?	
		undesirable views of the construction site for visual and landscape				construction	
		sensitive areas. Hoarding should be designed to be compatible with the				stage	
		existing urban context					
		Management of facilities on work sites					
		To provide proper management of the facilities on the sites, give					
		control on the height and disposition/ arrangement of all facilities on					
		the works site to minimize visual impact to adjacent VSRs.					
		• Tree Transplanting					
		Trees of high to medium survival rate would be affected by the works					
		shall be transplanted where possible and practicable. Tree					
		transplanting proposal including final location for transplanted trees					
		shall be submitted separately to seek relevant government department's					
		approval, in accordance with ETWB TCW No 3/2006.					
Constructio	n Dust In	pact					
S7.6.5	D1	The contractor shall follow the procedures and requirements given in the Air	Minimize dust impact at the	Contractor	All construction sites	Construction	✓
		Pollution Control (Construction Dust) Regulation	nearby sensitive receivers			stage	
S7.6.5	D2	Mitigation measures in form of regular watering under a good site practice	Minimize dust impact at the	Contractor	All construction sites	Construction	*
		should be adopted. Watering once per hour on exposed worksites and haul	nearby sensitive receivers			stage	
		road in the Kowloon area should be conducted to achieve dust removal					
		efficiencies of 91.7%. While the above watering frequencies are to be					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		followed, the extent of watering may vary depending on actual site conditions					
		but should be sufficient to maintain an equivalent intensity of no less than 1.8					
97.65	D2	L/m ² to achieve the dust removal efficiency.	No. 1	C	A 11		*
S7.6.5	D3		Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	٠
		Any excavated or stockpile of dusty material should be covered					
		entirely by impervious sheeting or sprayed with water to maintain the					
		entire surface wet and then removed or backfilled or reinstated where					
		practicable within 24 hours of the excavation or unloading;					
		Any dusty materials remaining after a stockpile is removed should be					
		wetted with water and cleared from the surface of roads;					
		A stockpile of dusty material should not be extend beyond the					
		pedestrian barriers, fencing or traffic cones.					
		The load of dusty materials on a vehicle leaving a construction site					
		should be covered entirely by impervious sheeting to ensure that the					
		dusty materials do not leak from the vehicle;					
		Where practicable, vehicle washing facilities with high pressure water					
		jet should be provided at every discernible or designated vehicle exit					
		point. The area where vehicle washing takes place and the road section					
		between the washing facilities and the exit point should be paved with					
		concrete, bituminous materials or hardcores;					
		When there are open excavation and reinstatement works, hoarding of					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing; Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously;					
		 Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting; Every stock of more than 20 bags of cement or dry pulverised fuel ash 					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		 (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					
Construct	tion Noise	(Airborne)					
\$8.3.6	N1		Control construction airborne noise	Contractor	All construction sites	Construction	*

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		 be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 					
S8.3.6	N2	Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period.	Reduce the construction noise levels at low-level zone of NSRs through partial screening.	Contractor	All construction sites	Construction stage	~
S8.3.6	N3		Screen the noisy plant items to be used at all construction sites	Contractor	All construction sites where practicable	Construction stage	N/A
S8.3.6	N4	Use "Quiet plants"	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	V
S8.3.6	N5	Sequencing operation of construction plants where practicable.	Operate sequentially within the same work site to reduce the construction airborne noise	Contractor	All construction sites where practicable	Construction stage	~

	EM&A		Objectives of the	Who to		When to	
EIA Ref.	Log	Recommended Mitigation Measure	Recommended Measures	implement	Location of the	implement	Implementation
	Ref		& Main Concerns to	the	measures	the	Status
Water Ougl	itu (Canat	ruction Phase)	address	measures?		measures?	
-			T	Ctt	A 11	Ctti	*
S10.7.1	W1	In accordance with the Practice Noise for Professional Persons on	To minimize water quality	Contractor	All construction sites	Construction	·
		Construction Site Drainage, Environmental Protection Department, 1994	impact from construction site		where practicable	stage	
		(ProPECC PN1/94), construction phase mitigation measures shall	runoff and general				
		include the following:	construction activities				
		Construction Runoff and Site Drainage					
		• At the start of site establishment (including the barging facilities),					
		perimeter cut-off drains to direct off-site water around the site should					
		be constructed with internal drainage works and erosion and					
		sedimentation control facilities implemented. Channels (both					
		temporary and permanent drainage pipes and culverts), earth bunds or					
		sand bag barriers should be provided on site to direct stormwater to silt					
		removal facilities. The design of the temporary on-site drainage system					
		will be undertaken by the contractor prior to the commencement of					
		construction.					
		The dikes or embankments for flood protection should be implemented					
		around the boundaries of earthwork areas. Temporary ditches should					
		be provided to facilitate the runoff discharge into an appropriate					
		watercourse, through a site/sediment trap. The sediment/silt traps					
		should be incorporated in the permanent drainage channels to enhance deposition rates					

EIA Ref.	EM&A Log Ref	Recomme	nded Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		guidelines in Appendix the retention time for maximum flow condition rate, but for a flow rate would be required and 150 m³. The detaile undertaken by the construction. All exposed earth areas as possible after earth within 14 days of the Exposed slope surfaces The overall slope of the erosive potential of surfaces roads protected by con accruing from the use of during prolonged perion surface sheet flows. All drainage facilities should be regularly ins	silt removal facilities should be based on the A1 of ProPECC PN 1/94, which states that silt/sand traps should be 5 minutes under ons. Sizes may vary depending upon the flow are of 0.1 m³/s a sedimentation basin of 30m³ for a flow rate of 0.5 m³/s the basin would be design of the sand/silt traps shall be contractor prior to the commencement of as should be completed and vegetated as soon works have been completed, or alternatively, as cessation of earthworks where practicable, should be covered by tarpaulin or other means, site should be kept to a minimum to reduce the ace water flows, and all traffic areas and access arease stone ballast. An additional advantage of crushed stone is the positive traction gained dis of inclement weather and the reduction of and erosion and sediment control structures spected and maintained to ensure proper and lit times and particularly following rainstorms.					

EIA Ref.	EM&A Log Ref		Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		•	Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas. Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. Precautions be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events,					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		 especially for areas located near steep slopes. All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the 					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. All the earth works involving should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Adopt best management practices					
S10.7.1	W2	 Cut-&-cover/ open cut tunnelling work should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Uncontaminated discharge should pass through sedimentation tanks prior to off-site discharge The wastewater with a high concentration of SS should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove the oil, lubricants and grease from the wastewater. Direct discharge of the bentonite slurry (as a result of D-wall and bored tunnelling construction) is not allowed. It should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related 	To minimize construction water quality impact from tunneling works	Contractor	All tunneling portion	Construction stage	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		construction activities are completed. The requirements in ProPECC					
		PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.					
S10.7.1	W3	Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	To minimize water quality from sewage effluent	Contractor	All construction sites where practicable	Construction stage	
S10.7.1	W4	• No direct discharge of groundwater from contaminated areas should be adopted. Prior to the excavation works within these potentially contaminated areas, the groundwater quality should be reviewed with reference to the site investigation data in this EIA report for compliance to the Technical Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters (TM-Water) and the existence of prohibited substance should be confirmed. The review results should be submitted to EPD for examination If the review results indicated that the groundwater to be generated from the excavation works would be contaminated; the contaminated groundwater should be either properly treated in compliance with the requirements of the TM-Water or	To minimize groundwater quality impact from contaminated area	Contractor	Excavation areas where contamination is found	Construction stage	N/A

EIA Ref.	EM&A Log Ref		Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		•	If wastewater treatment is deployed, the wastewater treatment unit shall deploy suitable treatment process (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (e.g. TPH) to undetectable range. All treated effluent from wastewater treatment plant shall meet the requirements as stated in TM-Water and should be discharged into the foul sewers. If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in the Section 2.3 of TM-Water. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharged) to EPD for agreement. Pollution levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substances such as TPH products should be removed as necessary by installing the petrol interceptor. The Contractor should					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		apply for a discharge licence under the WPCO through the Regional					
		Office of EPD for groundwater recharge operation or discharge of treated groundwater.					
S10.7.1	W7	 In order to prevent accidental spillage of chemicals, the following is recommended: All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains. The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical wastes should be conducted in compliance with 	To minimize water quality impact from accidental spillage	Contractor	All construction sites where practicable	Construction stage	
		the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation.					
	ı	t (Construction Waste)			I	1	
S11.4.1.1	WM1	 On-site sorting of C&D material Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock should be separated at 	Separation of unsuitable rock from ending up at concrete batching plants and be turned into concrete for structural use	Contractor	All construction sites	Construction stage	
		the source sites as far as practicable and stored at designated stockpile					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		areas preventing them from delivering to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from ended up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc should also be explored.					
S11.5.1	WM2	 Construction and Demolition Material Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Adopt 'Selective Demolition' technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible; 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; and Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction. In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation 					
S11.5.1	WM3	• Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered Use of wooden hoardings should not be used, as	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage.					
S11.5.1	WM4	 General Refuse General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor. 	Minimize production of the general refuse and avoid odour, pest and litter impacts	Contractor	All construction sites	Construction stage	*
S11.5.1	WM6	 Land-based and Marine-based Sediment All construction plant and equipment shall be designed and maintained to minimize the risk of silt, sediments, contaminants or other pollutants being released into the water column or deposited in the locations other than designated location; 	To control pollution due to marine sediment	Contractor	Within Project Site Area	Construction Stage	N/A

EIA Ref.	EM&A Log Ref		Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		•	All vessels shall be sized such that adequate draft is maintained					
			between vessels and the sea bed at all states of the tide to ensure that					
			undue turbidity is not generated by turbulence from vessel movement					
			or propeller wash;					
		•	Before moving the vessels which are used for transporting dredged					
			material, excess material shall be cleaned from the decks and					
			exposed fittings of vessels and the excess materials shall never be					
			dumped into the sea except at the approved locations;					
		•	Adequate freeboard shall be maintained on barges to ensure that decks					
			are not washed by wave action.					
		•	The Contractors shall monitor all vessels transporting material to					
			ensure that no dumping outside the approved location takes place. The					
			Contractor shall keep and produce logs and other records to					
			demonstrate compliance and that journeys are consistent with					
			designated locations and copies of such records shall be submitted to					
			the engineers;					
		•	The Contractors shall comply with the conditions in the dumping					
			licence.					
		•	All bottom dumping vessels (Hopper barges) shall be fitted with tight					
			fittings seals to their bottom openings to prevent leakage of material;					
		•	The material shall be placed into the disposal pit by bottom dumping;					
		•	Contaminated marine mud shall be transported by spit barge of not less					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		 than 750m ³ capacity and capable of rapid opening and discharge at the disposal site; Discharge shall be undertaken rapidly and the hoppers shall be closed immediately. Material adhering to the sides of the hopper shall not be washed out of the hopper and the hopper shall remain closed until the barge returns to the disposal site. For Type 3 special disposal treatment, sealing of contaminant with geosynthetic containment before dropping into designated mud pit would be a possible arrangement. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping at the disposal site, thereby fulfil confined mud disposal. 					
S11.5.1	WM7	 Chemical Waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 	Control the chemical waste and ensure proper storage, handling and disposal.	Contractor	All construction sites	Construction stage	*

EIA Ref.	EM&A Log Ref		Recommended Mitigation Measure	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		•	liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD.					
EM&A Proj	ject		, 11	<u> </u>		<u> </u>		
S14.2 – 14.4	EM2	 2) 3) 	An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A	Perform environmental monitoring & auditing	MTR Corporation/ Contractor	All construction sites	Construction stage	~

EIA Ref.	EM&A Log Ref		Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		Manual are fully complied with.					

Remarks:

- ✓ Compliance of mitigation measure
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Recommendation was made during site audit but improved/rectified by the contractor.
- N/A Not Applicable

Appendix Complaints,	H – Cumulati Notification o	ve Log for E f Summons	and Succes	al Exceedar	ice, utions

Cumulative Log for Environmental Exceedance, Complaints, Notification of Summons and Successful Prosecution

Reporting	Number of Exceedance	Number of Environmental	Number of Notification of	Number of Successful
Month		Complaints	Summons	Prosecutions
June 2013	0	0	0	0
July 2013	0	0	0	0
Total	0	0	0	0