Dragages -China Harbour-VSL JV

Contract HY/2011/09

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Monthly EM&A Report

August 2013 (Version 2.0)

Certified By

Dr. H.F. Chan

Environmental Team Leader (Date: 11 September 2013)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

		Page
EX	KECUTIVE SUMMARY	1
Int	roduction	
	vironmental Monitoring and Audit Progress	
	eaches of Action and Limit Levels	
Fu	ture Key Issues	3
1	INTRODUCTION	5
Pu	rpose of the report	5
	ructure of the report	
2	CONTRACT INFORMATION	7
Ba	ckground	7
	ontract Organisation	
	nstruction Programme	
	mmary of Construction Works Undertaken During Reporting Month	
	ntus of Environmental Licences, Notification and Permits	
3	AIR QUALITY MONITORING	13
Mo	onitoring Requirements	13
	onitoring Location	
	onitoring Equipment	
	onitoring Parameters, Frequency and Duration	
	onitoring Methodology and QA/QC Procedure	
	nour and 24-hour TSP Air Quality Monitoring	
Ins	strumentation	14
	S Installation	
	ters Preparation	
	perating/Analytical Procedures	
	sults and Observations	
EV	ent and Action Plan	
4	NOISE MONITORING	17
Mo	onitoring Requirements	17
	onitoring Location	
	onitoring Equipment	
	onitoring Parameters, Frequency and Duration	
M	onitoring Methodology and QA/QC Procedures	18
	nintenance and Calibration	
	sults and Observationsent and Action Plan	
5	WATER QUALITY MONITORING	
	onitoring Requirements	
	onitoring Locations	
	onitoring Equipment	
	onitoring Parameters, Frequency	
	onitoring Methodology	
	perating/Analytical Procedures	
	boratory Analytical Methods	

QA/QC Requirements	24
Maintenance and Calibration	
Results and Observations	25
Event and Action Plan	26
6 DOLPHIN-RELATED MONITORING	27
Monitoring Requirements.	27
DOLPHIN MONITORING (LINE-TRANSECT VESSEL SURVEY)	27
Monitoring Requirements	27
Monitoring Location	27
Monitoring Frequency	28
Monitoring Day	28
Monitoring Results	28
7 ENVIRONMENTAL SITE INSPECTION	30
Site Audits	30
Implementation Status of Environmental Mitigation Measures	
Advice on the Solid and Liquid Waste Management Status	32
8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)	33
Summary of Exceedances	33
Summary of Environmental Complaint	33
Summary of Notification of Summons and Successful Prosecution	33
9 FUTURE KEY ISSUES	34
Key Issues in the Coming Month	34
Monitoring Schedule for the Next Month	
Construction Programme for the Next Month	34
10 CONCLUSIONS AND RECOMMENDATIONS	35
Conclusions	35
Recommendations	35

LIST OF TABLES

Table I	Summary Table for Monitoring Activities in the Reporting Month
Table II	Summary Table for Events Recorded in the Reporting Month
Table 2.1	Key Contacts of the Contract
Table 2.2	Status of Environmental Licences, Notification and Permits
Table 3.1	Location for Air Quality Monitoring Locations
Table 3.2	Air Quality Monitoring Equipment
Table 3.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.4	Summary Table of 1-hour TSP Monitoring Results during the Reporting Month
Table 3.5	Summary Table of 24-hour TSP Monitoring Results during the Reporting
	Month
Table 3.6	Observation at Dust Monitoring Stations
Table 4.1	Noise Monitoring Equipment
Table 4.2	Noise Monitoring Parameters, Frequency and Duration
Table 4.3	Summary Table of Noise Monitoring Results during the Reporting Month
Table 4.4	Observation at Noise Monitoring Stations
Table 5.1	Location for Marine Water Quality Monitoring Locations
Table 5.2	Water Quality Monitoring Equipment
Table 5.3	Water Quality Monitoring Parameters and Frequency
Table 5.4	Methods for Laboratory Analysis for Water Samples
Table 5.5	Summary of Water Quality Exceedances
Table 6.1	Co-ordinates of transect lines in WL survey area
Table 6.2	Dolphin encounter rates (sightings per 100 km of survey effort) in August's surveys
Table 7.1	Observations and Recommendations of Site Audit

LIST OF FIGURE

Figure 1a-d	Site Layout Plan
Figure 2	Project Organisation for Environmental Works
Figure 3	Locations of Air Quality, Noise and Wind Monitoring Stations
Figure 4	Locations of Water Quality Monitoring Stations

LIST OF APPENDICES

Appendix A	Construction Programme
Appendix B	Action and Limit Levels
Appendix C	Copies of Calibration Certificates
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results
Appendix F	24-hour TSP Monitoring Results
Appendix G	Noise Monitoring Results
Appendix H	Water Quality Monitoring Results
Appendix I	Dolphin Monitoring Report (Line Transect)
Appendix J	Wind Data
Appendix K	Event Action Plans
Appendix L	Summary of Exceedance
Appendix M	Site Audit Summary
Appendix N	Updated Environmental Mitigation Implementation Schedule
Appendix O	Waste Generation in the Reporting Month
Appendix P	Complaint Log

EXECUTIVE SUMMARY

Introduction

1. This is the 7th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the project "Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill" (hereinafter called the "Contract"). This report documents the findings of EM&A Works conducted in August 2013.

Environmental Monitoring and Audit Progress

2. A summary of the monitoring activities in this reporting month is listed in **Table I** below:

 Table I
 Summary Table for Monitoring Activities in the Reporting Month

Parameter(s)	Date(s)
1-hr TSP Monitoring	1 st , 7 th , 13 th , 19 th , 23 rd and 29 th August 2013
24-hr TSP Monitoring	1 st , 7 th , 13 th , 19 th , 23 rd and 29 th August 2013
Noise Monitoring	8 th , 15 th , 20 th and 26 th August 2013
Water Quality Monitoring	3 rd , 5 th , 7 th , 9 th , 12 th , 16 th , 19 th , 21 st , 23 rd , 26 th , 28 th and 31 st August 2013
Dolphin Monitoring (Line-transect Vessel Surveys)	21st and 26th August 2013
Construction-phase underwater Noise Monitoring	⁽¹⁾ N/A
Dolphin Behaviour Monitoring	⁽¹⁾ N/A
Land-based Dolphin Behaviour and Movement Monitoring	(1)(2)N/A
Environmental Site Inspection	6 th , 13 th , 20 th and 29 th August 2013
Archaeological Site Inspection	(3)N/A

Remark: (1)30days of construction-phase underwater noise monitoring, dolphin behavior monitoring and land-based dolphin behavior and movement monitoring have been completed in July 2013 according to EM&A Manual for HKLR. Results analysis is being undertaken and the final results will be provided in a separate report in September 2013 tentatively.

⁽²⁾No additional Land-based Dolphin Behaviour and Movement Monitoring were conducted in August 2013 as the results analysis has not finished.

⁽³⁾ No archaeological site inspection was conducted in the reporting month.

Breaches of Action and Limit Levels

3. Summary of the environmental exceedances of the reporting month is tabulated in **Table II**.

Table II Summary Table for Events Recorded in the Reporting Month

Environmental Monitoring	Parameter	No. of Exceedance		related Constr Activitie	ceedance I to the ruction es of this tract
		Action Level	Limit Level	Action Level	Limit Level
Air Quality	1-hr TSP	0	0	0	0
All Quality	24-hr TSP	0	0	0	0
Noise	$L_{\text{eq(30min)}}$	0	0	0	0
	Dissolved Oxygen (DO) (Surface & Middle)	0	0	0	0
Water Quality	Dissolved Oxygen (DO) (Bottom)	0	0	0	0
water Quarity	Turbidity	0	0	0	0
	Suspended Solids (SS)	1	2	0	0

1-hour TSP Monitoring

4. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

5. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

6. All construction noise monitoring was conducted as scheduled in the reporting month.

No Action/Limit Level exceedance was recorded.

Water Quality

7. All water quality monitoring was conducted as scheduled in the reporting month. There is one Action Level and two Limit Level exceedances for suspended solids were recorded.

Monthly EM&A Report – August 2013

8. According to the investigation, no pollution discharge from the marine works. All exceedances are considered not due to the Contract as sediment plume due to natural fluctuation of shallow water was observed and water quality mitigation measures such as casing and silt curtains were properly implemented.

Complaint Log

9. No environmental complaint was received in the reporting month.

Notification of Summons and Successful Prosecutions

10. No notification of summons and successful prosecution was received in the reporting month.

Reporting Changes

11. This report has been developed in compliance with the reporting requirements for the subsequent monthly EM&A Report as required by the EM&A Manual for Hong Kong Link Road (EM&A Manual).

Future Key Issues

12. Major site activities for the coming reporting month will include:

WA4

- Fabrication of rebar cages
- Fabrication of temporary piling platforms

WA7

- Fabrication of rebar cages
- Loading and Unloading

Land Viaduct (P85 to P114)

- Set up of water treatment system
- Set up of piling platforms
- Set up of barriers
- Site clearance
- Forming of site access
- Marine landing access establishment work
- Land piling
- Slewing the tele-communication cable and AA's COM cable
- Tree felling/transplant
- Drainage and water main diversion
- Pre-drilling work

Marine Viaduct (P0 to P84)

• Piling works for temporary jetty

- Installation of piling jacket
- Installation of permanent casings
- Installation of temporary casings
- Pile excavation by Reverse Circulation Drilling (RCD) method
- Pile excavation by Kelly method
- Pre-drilling Work
- Setting up of silt-curtain
- Platform installation for pre-drilling works and bored piling works

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Dragages -China Harbour-VSL JV (hereinafter called "the Contractor") as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill" (hereinafter called the "Contract") in accordance with EP Conditions 2.1.

Purpose of the report

1.2 This is the 7th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme in August 2013.

Structure of the report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** purpose and structure of the report.
 - Section 2: **Contract Information** summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: **Water Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Dolphin-Related Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels and monitoring results.
 - Section 7: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
 - Section 8: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
 - Section 9: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 10: Conclusions and Recommendation

Monthly EM&A Report – August 2013

2 CONTRACT INFORMATION

Background

- 2.1 The proposed Hong Kong Zhuhai Macao Bridge Hong Kong Link Road (HKLR) is 12km long connecting the Hong Kong-Zhuhai-Macao Bridge (HZMB) at the HKSAR Boundary with the Hong Kong Boundary Crossing Facilities (HKBCF) situated at the north eastern waters of the Hong Kong International Airport, opening a new and direct connection route between Hong Kong, Macao and the Western Pearl River Delta.
- 2.2 The HKLR comprises a 9.4km long viaduct section from the HKSAR boundary to Scenic Hill on the Airport Island; a 1km tunnel section to the reclamation formed along the east coast of the Airport Island and a 1.6km long at-grade road section on the reclamation connecting to the HKBCF. The tunnel section of HKLR will pass under Scenic Hill, Airport Road and Airport Railway to minimize the environmental and visual impacts to Tung Chung residents.
- 2.3 An application (No ESB-110/2003) for an Environmental Impact Assessment (EIA) Study Brief under Section 5(1) of the Environmental Impact Assessment Ordinance (EIAO) was submitted by Highways Department (the Project Proponent) on 8 October 2003 with a Project Profile (No. No. PP-201/2003) for the Hong Kong Zhuhai Macao Bridge Hong Kong Section and North Lantau Highway Connection. The Hong Kong Zhuhai Macao Bridge Hong Kong Section and North Lantau Highway Connection has subsequently been renamed as HKLR. EPD issued an EIA Study Brief (No: ESB-110/2003) in November 2003 to the Project Proponent to carry out an EIA study.
- 2.4 An EIA Study (Reg. No. AEIAR-144/2009) has been undertaken to provide information on nature and extent of environmental impacts arising from the construction and operation of HKLR. The Environmental Permit was issued on 4 November 2009 (Permit No. EP-352/2009). Pursuant to Section 13 of the EIAO, the Director of Environmental Protection amends the Environmental Permit (No. EP-352/2009) based on the Application No. VEP-339/2011 and the environmental Permit (Permit No. EP-352/2009/A) was issue on 9 November 2011 for HKLR to the Highways Department as the Permit Holder. Subsequently, the Director of Environmental Protection amends the Environmental Permit (No. EP-352/2009/A) based on the Application No. VEP-409/2013 and the environmental Permit (Permit No. EP-352/2009/B) was issue on 1 August 2013.
- 2.5 **Figure 1a-d** shows the layout of the Contract and the scope of the Contract works comprises the following major items:
 - a dual 3-lane carriageway in the form of viaduct from the HKSAR boundary (connecting with the HZMB Main Bridge) to the Scenic Hill (connecting with the tunnel under separate Contract No. HY/2011/03), of approximately 9.4km in length with a hard shoulder for each bound of carriageway and a utilities trough on the outer edge of each bound of viaducts;
 - a grade-separated turnaround facility located near San Shek Wan, composed of sliproads in the form of viaduct with single-lane carriageway bifurcated from the HKLR mainline with an elevated junction above the mainline;
 - provision of ancillary facilities including, but not limited to, meteorological enhancement measures including the provisioning of anemometers and

- modification of the wind profiler station at hillside of Sha Lo Wan, provisioning of a compensatory marine radar, and provisioning of security systems; and
- associated civil, structural, geotechnical, marine, environmental protection, landscaping, drainage and highways electrical and mechanical (E&M) works, street lightings, traffic aids and sign gantries, marine navigational aids, ship impact protection system, water mains and fire hydrants, lightning protection system, structural health monitoring and maintenance management system (SHM&MMS), supervisory control and data acquisition (SCADA) system, as well as operation and maintenance provisions of viaducts, provisioning of facilities for installation of traffic control and surveillance system (TCSS), provisioning of facilities for installation of telecommunication cables/equipments and reprovisioning works of affected existing facilities/utilities.

Contract Organisation

- 2.6 Different parties with different levels of involvement in the Contract organization include:
 - Supervising Officer's Representative (SOR) Ove Arup & Partners Hong Kong Limited (ARUP)
 - Contractor Dragages China Harbour-VSL JV (DCVJV)
 - Environmental Team (ET) Cinotech Consultants Ltd. (Cinotech)
- 2.7 The proposed project organization and lines of communication with respect to the onsite environmental management structure are shown in **Figure 2**. The key personnel contact names and numbers are summarized in **Table 2.1**.

Table 2.1 Key Contacts of the Contract

Party	Position	Position	Phone No.	Fax No.	
SOR	SOR (ARUP) CRE Mr. Michael Chan Mr. Colin Meadows	Mr. Michael Chan	3767 5803	3767 5922	
(ARUP)		Mr. Colin Meadows	3767 5801	3/0/ 3922	
ENPO/IEC	Environmental Project Office Leader	Mr. Y. H Hui	3465 2888	3465 2899	
(Environ)	Independent Environmental Checker	Mr. Antony Wong	3465 2888	3465 2899	
	Deputy Project Director	Mr. W.K Poon	3121 6638	2121 ((00	
Contractor (DCVJV)	Environmental Officer	Mr. CHU Chung Sing	3121 6672	3121 6688	
	24-hour Hotline		6898 6161		
ET (Cinotech)	Environmental Team Leader	Dr. H.F Chan	2151 2088	3107 1388	

2.8 ENVIRON Hong Kong Ltd. (Environ) is employed by the Highways Department as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

Construction Programme

2.9 A copy of Contractor's construction programme is provided in **Appendix A**.

Summary of Construction Works Undertaken During Reporting Month

2.10 The major site activities undertaken in the reporting month included:

Land Viaduct (P84 to Eastern Abutment) and Preparation Works

- (a) Land piling works are in progress with 5 and 1 no of pile concreted in Portion C and Portion A respectively.
- (b) Formation of piling platform along seawall is in progress. 10 nos. of platform (P98 to P107) were completed in this reporting period. Three other platforms (P95 to P97) were being filled up to level of +3mPD.
- (c) First two batches of steel formworks for column of land viaduct were delivered to Portion C.
- (d) Setting up of water-filled barrier along edge of carriageway at Portion A was completed. Site clearance was also completed except for areas pending for tree felling. Formation of site access along the top of the existing seawall is in progress.
- (e) Telecommunication cable slewing (near P113) was completed. Concrete surround will be completed.
- (f) Tracing of AA COM cables alignment and terminals was completed with report submitted. Cable terminals were also checked in the survey.
- (g) Marine landing access establishment work near P82 is in progress.
- (h) Diversion to existing 1350mm drainage pipe and the 600mm water main for construction of piling works of P106 to P108 is ready but still pending for tree felling permit with the Works Permit from AA received.

Marine Viaduct (P0 - P84)

- (i) Piling works for the temporary jetty at P69 P70 continued and remains in progress (57% of piling completed); Steel structure erection was started (6% completed);
- (j) Installation of temporary casings at P47R, P71L & P54R is in progress.
- (k) Piling Jacket were installed at P47L & P71L;
- (1) Permanent casing were installed at P47R, P54R, P71L & P53R;
- (m) Pile excavation by RCD method at P47, P50, P53, P54 and P71 in this reporting period with 11 piles concreted;
- (n) 11 nos. piles using RCD method were concreted in this reporting period;
- (o) Finished dismantle jacket at P52 & P50;
- (p) Sonic Test carried out at P50L;

- (q) Installation of piling platform at P43 and P45 were completed
- (r) Installation of permanent casing at P43 was completed and is on-going at P19 & P45;
- (s) Installation of temporary piles for piling platform at P16 was completed and is ongoing at P40;
- (t) Piling platforms at P74 and P78 were removed;
- (u) Pile excavation by Kelly method at P0, P20, P43, P48 and P49 in this reporting period with 15 piles concreted;
- (v) Progress of pile construction at P0 was affected by difficult ground conditions encountered, further investigation is required;
- (w) Sonic test for the completed piles at P78 had been carried out;

Status of Environmental Licences, Notification and Permits

2.11 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Contract is presented in **Table 2.2**.

Table 2.2 Status of Environmental Licences, Notification and Permits

Dawnit / License No	Valid	Ctatus			
Permit / License No.	From	To	Status		
Environmental Permit (EP)	Environmental Permit (EP)				
EP-352/2009/B	01/08/2013	N/A	Valid		
Consruction Noise Permit (CNP)					
P48-P52: GW-RS0171-13	24/02/2013(07:00)	23/08/2013(23:00)	Expired		
WA7: GW-RS0125-13	28/02/2013(19:00)	27/08/2013(23:00)	Expired		
Pier 0: GW-RS0353-13	07/04/2013(07:00)	06/10/2013(23:00)	Valid		
Pier 0: GW-RS0361-13	07/04/2013(23:00)	06/10/2013(23:00)	Valid		
P19-P20: GW-RS0370-13	17/04/2013(23:00)	16/10/2013(23:00)	Valid		
Waters in works area Portion A: GW-RS0426-13	22/04/2013(07:00)	21/10/2013 (23:00)	Superseded by GW-RS0895-13		
WA3B: GW-RS0499-13	15/05/2013 (00:00)	14/11/2013 (24:00)	Valid		
P106-P114: GW-RS0553-13	23/05/2013(19:00)	22/11/2013 (23:00)	Valid		
P67-P74: GW-RS0571-13	25/05/2013(01:30)	31/08/2013 (07:00)	Expired		
P43-P47: GW-RS0580-13	27/05/2013(19:00)	26/11/2013(23:00)	Cancel		
P17-P19: GW-RS0596-13	10/06/2013(19:00)	09/12/2013(23:00)	Valid		
P71-P73: GW-RS0636-13	17/06/2013(19:00)	28/07/2013(23:00)	Valid		
P83: GW-RS0648-13	21/06/2013(19:00)	16/12/2013(24:00)	Superseded by GW-RS0956-13		
P69-P70: GW-RS0664-13	24/06/2013(19:00)	23/12/2013(23:00)	Valid		
WA4B: GW-RW0427-13	27/06/2013(00:00)	26/12/2013(24:00)	Superseded by GW-RW0550-13		
WA7: GW-RW0484-13	15/07/2013(23:00)	14/01/2014(07:00)	Valid		
WA4: GW-RW0496-13	19/07/2013(19:00)	18/01/2014(23:00)	Valid		
P50-P64: GW-RS0792-13	24/07/2013(23:00)	24/01/2014(07:00)	Valid		
P46-P54: GW-RS0860-13	02/08/2013(19:00)	01/02/2014(23:00)	Superseded by GW-RS0970-13		

D '//I' N	Valid	64-4	
Permit / License No.	From	To	Status
P65-P66: GW-RS0865-13	02/08/2013(23:00)	01/02/2014(07:00)	Valid
P76-P80: GW-RS0868-13	02/08/2013(23:00)	01/02/2014(07:00)	Valid
P69-P70: GW-RS0869-13	02/08/2013(23:00)	01/02/2014(07:00)	Valid
WA7: GW-RW0524-13	27/08/2013(19:00)	27/02/2014(23:00)	Valid
WA4B: GW-RW0550-13	12/08/2013(23:00)	11/02/2014(07:00)	Valid
Waters in works area Portion A:	13/08/2013(07:00)	21/10/2013(23:00)	Valid
GW-RS0895-13	20/00/2012/07 00	26/02/2014(22.00)	77.11.1
P16-P18 and P21-P25:	28/08/2013(07:00)	26/02/2014(23:00)	Valid
GW-RS0975-13	20/00/2012(07:00)	20/02/2014(22-00)	37-1: 1
P76-P80: GW-RS0981-13	30/08/2013(07:00)	28/02/2014(23:00)	Valid
P0-P21: GW-RS0940-13	23/08/2013(23:00)	22/02/2014(07:00)	Valid
P83: GW-RS0956-13	24/08/2013(19:00)	23/02/2014(24:00)	Valid
P46-P64: GW-RS0970-13	27/08/2013(23:00)	26/02/2014(07:00)	Valid
Notification pursuant to Air Polluti			
345773	04/06/2012	N/A	Receipt acknowledged by EPD
Billing Account for Construction W	Vaste Disposal		
A/C# 7015341	13/06/2012	N/A	Valid
(Construction Site)	13/00/2012	11/11	v und
A/C# 7016948	15/05/2013	31/08/2013	Expired
(Vessel Disposal)	15/ 05/ 2015	31,00,2013	Empireu
A/C# 7016948	01/09/2013	30/11/2013	Valid
(Vessel Disposal)	01/03/2015	0 0/11/2015	, will
Registration of Chemical Waste Pr	oducer	I	
WPN 5213-951-D2499-01	18/07/2012	N/A	Valid
Effluent Discharge License under V	Water Pollution Cont	rol Ordinance	
WA6A(DCVJV site office): WT00014053-2012	12/09/2012	30/09/2017	Valid
WA6B (SOR site office): WT00014447-2012	30/10/2012	31/10/2017	Valid
WA3: WT00015118-2013	30/01/2013	31/01/2018	Valid
Portion C: WT00015356-2013	22/02/2013	28/02/2018	Valid
Portion A: WT00016076-2013	21/05/2013	31/05/2018	Valid
<u>WA4B:</u> WT00014750-2012	12/08/2013	31/08/2018	Valid
Marine Dumping Permit			
Dumping of Phase 1 marine	11/04/2013	10/10/2013	Superseded by
sediment at South Cheung Chau: EP/MD/13-125			EP/MD/14-043
Dumping of Phase 2a marine	23/04/2013	22/10/2013	
sediment at South Cheung Chau: EP/MD/13-142			
Dumping of Phase 2b, 2c and 2d marine sediment at South Cheung Chau:	23/04/2013	22/10/2013	
EP/MD/14-003			

D 4/11 N	Valid	Period	G4 4
Permit / License No.	From	To	Status
Dumping of Phase 1 (Type 1D	03/07/2013	02/08/2013	Superseded by
and Type 2) marine sediment at			EP/MD/14-042
East Sha Chau			
EP/MD/14-031			
Dumping of Phase 2a (Type 1D	03/07/2013	02/08/2013	
and Type 2)			
marine sediment at East Sha			
<u>Chau</u>			
EP/MD/14-030			
Dumping of Phase Phase 2b, 2c	03/07/2013	02/08/2013	
and 2d (Type 1D			
and Type 2) marine sediment at			
East Sha Chau			
EP/MD/14-029			
Dumping of Phase 1, 2a, 2b, 2c	05/08/2013	04/02/2014	Valid
and 2d (Type 1-Open Sea			
Disposal) marine sediment			
EP/MD/14-043			
Dumping of Phase Phase 1, 2a,	07/08/2013	06/09/2013	Valid
2b, 2c and 2d			
(Type 1D and Type 2) marine			
sediment			
EP/MD/14-042			

3 AIR QUALITY MONITORING

Monitoring Requirements

- 3.1 In accordance with the EM&A Manual, impact 1-hour TSP and 24-hour TSP monitoring were conducted to monitor the air quality for the Contract. **Appendix B** shows the established Action/Limit Levels for the air quality monitoring works.
- 3.2 Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was conducted for at least once every 6 days at 2 air quality monitoring stations.

Monitoring Location

3.3 Impact air quality monitoring was conducted at the 2 monitoring stations under the Contract, as shown in **Figure 3**. **Table 3.1** describes the locations of the air quality monitoring stations.

Table 3.1 Location for Air Quality Monitoring Locations

Monitoring Stations	Location
AMS1	Sha Lo Wan
AMS4	San Tau

Monitoring Equipment

3.4 **Table 3.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix C**.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
HVS Sampler	TISCH Model: TE-5170	2
Calibrator	TISCH Model: TE-5025A	2
Wind Anemometer	DAVIS Model: Vantage PRO2 6152CUK	2

Monitoring Parameters, Frequency and Duration

3.5 **Table 3.3** summarizes the monitoring parameters and frequencies of impact dust monitoring during the course of the Contract activities. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 3.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour and 24-hour TSP Air Quality Monitoring

Instrumentation

3.6 High Volume Samplers (HVS) completed with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

HVS Installation

- 3.7 The following guidelines were adopted during the installation of HVS:
 - Sufficient support was provided to secure the sampler against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The samplers were more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
 - Permission must be obtained to set up the samples and to obtain access to the monitoring stations; and
 - A secured supply of electricity is needed to operate the samplers.

Filters Preparation

- 3.8 Filter paper of size 8" X 10" was used. A HOKLAS accredited laboratory, ETS Testconsult Limited (ETS), was responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for Cinotech's monitoring team.
- 3.9 All filters, which were prepared by ETS, were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ± 3 °C; the relative humidity (RH) was < 50% and not variable by more than ± 5 %. A convenient working RH was 40%.
- 3.10 ETS has comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

3.11 Operating/analytical procedures for the air quality monitoring were highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- The power supply was checked to ensure the sampler worked properly.
- On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and secured with the aluminum strip.
- The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter was removed and sent to the ETS for weighing. The elapsed time was also recorded.
- Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned to Cinotech for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 3.12 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - All HVS were calibrated (five point calibration) using Calibration Kit prior to the commencement of the baseline monitoring and thereafter at bi-monthly intervals.

Results and Observations

3.13 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in **Table 3.4** and 3.5 respectively. Detailed monitoring results and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.

Table 3.4 Summary Table of 1-hour TSP Monitoring Results during the Reporting Month

	1 0			
Monitoring	Concentration (µg/m3)		Action	Limit Level, µg/m³
Station	Average	Range	Level, μg/m ³	μg/m
AMS1	44	19 - 103	381	500
AMS4	44	19 - 68	352	300

Table 3.5 Summary Table of 24-hour TSP Monitoring Results during the Reporting Month

Monitoring Station	Concentration (μg/m3)		Action	Limit Level,
Station	Average	Range	Level, μg/m ³	μg/m ³
AMS1	25	9 - 50	170	260
AMS4	31	18 - 52	171	200

- 3.14 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.15 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.16 According to our field observations, the major dust source identified at the designated air quality monitoring stations in the reporting month are as follows:

Table 3.6 Observation at Dust Monitoring Stations

Monitoring Station	Major Dust Source
AMS1	Exhaust from marine traffic
AMS4	N/A

- 3.17 The wind speed and wind direction were recorded by the installed Wind Anemometer set at AMS4. The location is shown in **Figure 3**.
- 3.18 The wind data for the reporting month is summarized in **Appendix J**.

Event and Action Plan

3.19 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

4 NOISE MONITORING

Monitoring Requirements

4.1 In accordance with EM&A Manual, two noise monitoring stations, namely NMS1 and NMS4 were selected for impact monitoring for the Contract. Impact noise monitoring was conducted for at least once per week during the construction phase of the Contract. **Appendix B** shows the established Action and Limit Levels for the noise monitoring works.

Monitoring Location

4.2 Impact noise monitoring was conducted at the 2 monitoring stations under the Contract, as shown in **Figure 3**. **Table 4.1** describes the locations of the air quality monitoring stations.

Table 4.1 Location for Air Quality Monitoring Locations

Monitoring Stations	Location
NMS1	Sha Lo Wan
NMS4	San Tau

Monitoring Equipment

4.3 **Table 4.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix C**.

Table 4.2Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 957	2
Calibrator	SV 30A	2

Monitoring Parameters, Frequency and Duration

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Period	Frequency
NMS1 NMS4	$\begin{array}{c} L_{10}(30 \text{ min.}) \text{ dB(A)} \\ L_{90}(30 \text{ min.}) \text{ dB(A)} \\ L_{eq}(30 \text{ min.}) \text{ dB(A)} \text{ (as} \\ \text{six consecutive } L_{eq, 5 \text{min}} \\ \text{readings)} \end{array}$	0700-1900 hrs on normal weekdays	Once per week

Monitoring Methodology and QA/QC Procedures

- The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weightingtime weightingFast

time measurement : $L_{eq}(30 \text{ min.}) \text{ dB(A)}$ (as six consecutive $L_{eq, 5min}$ readings) during non-restricted hours (i.e. 0700-1900 hrs on normal weekdays)

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- During the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Maintenance and Calibration

- 4.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 4.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 4.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

4.8 The noise monitoring results are summarized in **Table 4.4**. Detailed monitoring results and graphical presentations of noise monitoring are shown in **Appendices G**.

Monthly EM&A Report – August 2013

Table 4.4 Summary Table of Noise Monitoring Results during the Reporting Month

Manitanina Station	Noise Level, I	I imit I aval	
Monitoring Station	Average	Range	Limit Level
NMS1	71	69 – 72	75 dB(A)
NMS4	60	50 - 62	73 ub(A)

Remark: +3dB(A) Façade correction included

- All noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 4.10 According to our field observations, the major noise source identified at the designated noise monitoring stations in the reporting month are as follows:

Observation at Noise Monitoring Stations Table 4.5

Monitoring Station	Major Noise Source	
NMS1	Air traffic & marine traffic noise	
NMS4	Air traffic & marine traffic noise	

Event and Action Plan

4.11 Should non-compliance of the criteria occur, action in accordance with the Action Plan in Appendix K shall be carried out.

Wonting Ewice Report Rugust

5 WATER QUALITY MONITORING

Monitoring Requirements

- 5.1 According to EM&A Manual, impact water quality monitoring shall be carried out three days per week during the construction period. The interval between two sets of monitoring will not be less than 36 hours.
- 5.2 Replicate in-situ measurements and samples collected from each independent sampling event shall be collected to ensure a robust statistically interpretable database.
- 5.3 Impact water quality monitoring was conducted two times per monitoring day during mid ebb (within ± 1.75 hours of the predicted time) and mid flood tides (within ± 1.75 hours of the predicted time) at three depths (i.e. 1m below surface, mid-depth and 1m above seabed, except where the water depth less than 6m, mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station was monitored) Dissolved oxygen, Suspended solids (SS), turbidity, pH, salinity and temperature were monitored in accordance with the requirements set out in the EM&A Manual.
- 5.4 The proposal for changing Action and Limit Levels for water quality monitoring was submitted to EPD on 15 March 2013. No objection was received from EPD according to the letter (ref. (10) in Ax(3) to EP2/G/A/129pt.4) dated 25 March 2013. Therefore, the updated Action and Limit Levels for water quality monitoring was used for comparison starting from 25 March 2013.
- 5.5 **Appendix B** shows the established Action/Limit Levels for the water quality monitoring works.

Monitoring Locations

5.6 Impact water quality monitoring was conducted at 14 monitoring stations under the Contract which are summarized in **Table 5.1**. The monitoring station is also shown in **Figure 4**.

Table 5.1 Location for Marine Water Quality Monitoring Locations

Manitanina Stations	Coor	dinates
Monitoring Stations	Easting	Northing
IS1	803474	815060
IS2	804851	815715
IS3	806502	815743
IS4	807008	816986
CS1	801784	812711
CS2	805849	818780
SR1	803126	812379
SR2	807856	816953
SR3	810525	816456
SR6	805837	821818
ST1	802677	816006
ST2	804055	818840

Manitaring Stations	Coor	dinates
Monitoring Stations	Easting	Northing
ST3	800667	810126
SRA	809872	817152

Monitoring Equipment

Instrumentation

5.7 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.8 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.9 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.10 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.11 Salinity compensation was built-in in the DO equipment.

Turbidity

5.12 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids. The turbidity measurement was carried out on split water sample collected from the same depths of suspended solids samples.

Sampler

5.13 A water sampler, consisting of a transparent PVC or glass cylinder of a capacity of not less than two litres which can be effectively sealed with cups at both ends was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth.

Water Depth Detector

5.14 A portable, battery-operated echo sounder was used for the determination of water depth

Monthly EM&A Report – August 2013

at each designated monitoring station.

<u>pH</u>

5.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Salinity

5.16 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Monitoring Position Equipment

5.17 A hand held Differential Global Positioning System (DGPS) was used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Sample Container and Storage

5.18 Following collection, water samples for laboratory analysis were stored in high density polythene bottles (250ml/1L) with no preservatives added, packed in ice (cooled to 4°C without being frozen) and kept in dark during both on-site temporary storage and shipment to the testing laboratory. The samples were delivered to the laboratory as soon as possible and the laboratory determination works were started within 24 hours after collection of the water samples. Sufficient volume of samples was collected to achieve the detection limit.

Calibration of In Situ Instruments

- 5.19 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 5.20 For the on site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 5.21 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.
- 5.22 The equipment used for impact water quality monitoring is shown in **Table 5.2** and copies of the calibration certificates are shown in **Appendix C**. All the monitoring

equipment complied with the requirements set out in the EM&A Manual.

Table 5.2 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty
Sonar Water Depth Detector	Garmin Fishfinder 140	2
Monitoring Position Equipment	KODEN DGPS	2
Wollitoring Fosition Equipment	(KGP913MKIID, GA-08 & BA-03)	
Multi-parameter Water Quality	YSI 6820-C-M / YSI 6920-M	1
System	131 0820-C-W1/ 131 0920-W1	4
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	2

Monitoring Parameters, Frequency

5.23 **Table 5.3** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring. The water quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 5.3 Water Quality Monitoring Parameters and Frequency

	water Quarty Monttoring Lurameters and Frequency						
Monitoring Stations	Parameters, unit	Depth	Frequency				
IS1, IS2, IS3 IS4, CS1, CS2, SR1, SR2, SR3, SR6, ST1, ST2, ST3, SRA	 Temperature(°C) pH(pH unit) turbidity (NTU) water depth (m) salinity (ppt) dissolved oxygen (DO) (mg/L and % of saturation) suspended solids (SS) (mg/L) 	 3 water depths: 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted. 	• Impact monitoring: 3 days per week, at mid-flood and mid-ebb tides during the construction period of the Contract				

5.24 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

Monitoring Methodology

Instrumentation

5.25 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Operating/Analytical Procedures

5.26 The monitoring stations were accessed by the guide of a hand-held Differential Global Positioning System (DGPS) during water quality monitoring in accordance with the EM&A Manual. The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ

measurement equipment were lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements were carried out accordingly.

- 5.27 At each measurement, two consecutive measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 5.28 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples at three depths (1 m below water surface, middepth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible. In addition, field information as described in Section 5.23 was also recorded.

Laboratory Analytical Methods

5.29 The testing of all parameters was conducted by CMA Testing and Certification Laboratories (HOKLAS Registration No.004) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method, reporting limit and detection limit are provided in **Table 5.4**.

Table 5.4 Methods for Laboratory Analysis for Water Samples

		<i>y</i>	
Determinant	Instrumentation	Analytical Method	Detection Limit
Suspended Solid (SS)	Weighing	APHA 21e 2540D	0.5 mg/L

QA/QC Requirements

Decontamination Procedures

5.30 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

5.31 All sampling bottles were labelled with the sample I.D (including the indication of sampling station and tidal stage e.g. IS1_me_a), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.

Monthly EM&A Report – August 2013

5.32 The laboratory determination works were started within 24 hours after collection of the water samples.

Quality Control Measures for Sample Testing

- 5.33 The samples testing were performed by CMA Testing and Certification Laboratories.
- 5.34 The following quality control programme was performed by the CMA Testing and Certification Laboratories for every batch of 20 samples:
 - ♦ One set of quality control (QC) samples.

Maintenance and Calibration

5.35 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme.

Results and Observations

- 5.36 The monitoring results and graphical presentation of water quality at the monitoring stations is shown in **Appendix H.**
- 5.37 The summary of exceedance record in reporting month is shown in **Appendix L** and summarized in the **Table 5.5**.

Section between HKSAR Boundary and Scenic Hill

Monthly EM&A Report – August 2013

Table 5.5 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (Surface	& Middle)	DO(Botto	m)	Turbidity		SS		Total N	lumber edances
	Level	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood
IS1	Action Level Limit Level									0	0
IS2	Action Level Limit Level								21/08/2013	0	1 0
IS3	Action Level Limit Level									0	0
IS4	Action Level Limit Level								21/08/2013	0	0
SR1	Action Level Limit Level									0	0
SR2	Action Level Limit Level								21/08/2013	0	0
SR3	Action Level Limit Level									0	0
SR6	Action Level Limit Level									0	0
ST1	Action Level Limit Level									0	0
ST2	Action Level Limit Level									0	0
ST3	Action Level Limit Level									0	0
SRA	Action Level Limit Level									0	0
Total	Action Level Limit Level	0	0	0	0	0	0	0	1 2		

- 5.38 All water quality monitoring was conducted as scheduled in the reporting month. There is one Action Level and two Limit Level exceedances for suspended solids were recorded.
- 5.39 According to the investigation, no pollution discharge from the marine works. All exceedances are considered not due to the Contract as sediment plume due to natural fluctuation of shallow water was observed and water quality mitigation measures such as casing and silt curtains were properly implemented.

Event and Action Plan

5.40 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

6 DOLPHIN-RELATED MONITORING

Monitoring Requirements

- 6.1 According to Section 10 of the EM&A Manual, four kinds of ecological monitoring works are required during the construction phase, namely dolphin monitoring, construction-phase underwater noise monitoring, dolphin behavior monitoring and land-based dolphin behavior and movement monitoring.
- 6.2 The monitoring work shall be undertaken by suitably qualified specialist(s), (i.e. dolphin specialist and bio-acoustician), who shall have sufficient (at least 5-10 years) relevant post-graduate experience and publication in the respective aspects. They should be approved by Agriculture, Fisheries and Conservation Department (AFCD) and Environmental Protection Department (EPD).
- 6.3 Construction-phase underwater noise monitoring, dolphin behavior monitoring and land-based dolphin behavior and movement monitoring have been completed in July 2013 according to EM&A Manual for HKLR. Results analysis is being undertaken and the final results will be provided in a separate report in September 2013 tentatively.

Dolphin Monitoring (Line-transect Vessel Survey)

Monitoring Requirements

- 6.4 According to EM&A Manual Section 10.3.2, a dolphin monitoring programme should be set up to verify the predictions of impacts and to ensure that there are no unforeseen impacts on the dolphin population during construction phase.
- 6.5 Following the requirement in the EM&A Manual Section 10.4.1, the dolphin monitoring should adopt line-transect vessel survey method, and cover the following line-transect survey areas as in AFCD annual marine mammal monitoring programme.

Monitoring Location

6.6 For this contract, dolphin monitoring will be carried out in the West Lantau (WL) along the line transect as depicted in **Figure 1** of **Appendix I**. The co-ordinates of all transect lines are shown in **Table 6.1**.

Table 6.1 Co-ordinates of transect lines in WL survey area

	Line No.	Easting	Northing	Line No.		Easting	Northing
1	Start Point	803750	818500	7	Start Point	800200	810450
1	End Point	803750	815500	7	End Point	801400	810450
2	Start Point	803750	815500	8	Start Point	801300	809450
2	End Point	802940	815500	8	End Point	799750	809450
3	Start Point	802550	814500	9	Start Point	799400	808450
3	End Point	803700	814500	9	End Point	801430	808450

	Line No.	Easting	Northing		Line No.	Easting	Northing
4	Start Point	803120	813600	10	Start Point	801500	807450
4	End Point	801640	813600	10	End Point	799600	807450
5	Start Point	801100	812450	11	Start Point	800300	806500
5	End Point	802900	812450	11	End Point	801750	806500
6	Start Point	802400	811500	12	Start Point	801760	805450
6	End Point	800660	811500	12	End Point	800700	805450

Monitoring Frequency

6.7 Dolphin transect survey was carried out at least twice a month (i.e. complete all the transect lines of West Lantau survey area twice per month) throughout the construction period.

Monitoring Day

6.8 Dolphin monitoring was carried out on 21st and 26th August 2013. The dolphin monitoring schedule for the reporting period is shown in **Appendix D**.

Monitoring Results

- 6.9 From these surveys, a total of 64.3 km of survey effort was collected, with 100.0% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) Out of the 64.3 km of survey effort, the total survey effort conducted on primary lines (the vertical lines perpendicular to the coastlines) was 42.39 km.
- 6.10 10 groups of 35 Chinese White Dolphins were sighted from primary lines. These sightings were evenly distributed throughout the WL survey area, which was very different from previous months of monitoring when most sightings were made at the middle and southern portions of the survey area. Notably, two dolphin sightings were made near the HKLR09 alignment.
- 6.11 Dolphin encounter rates deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) are shown in **Table 6.2**.

Table 6.2 Dolphin encounter rates (sightings per 100 km of survey effort) in August's surveys

		Encounter rate (STG)	Encounter rate (ANI)	
		(no. of on-effort dolphin	(no. of dolphins from all on-	
		sightings per 100 km of	effort sightings per 100 km of	
		survey effort)	survey effort)	
		Primary Lines Only	Primary Lines Only	
WL	Set 1: August 21 st	9.3	41.7	
WL	Set 2: August 26 th	38.5	125.0	

6.12 A total of 19 re-sightings of known individual Chinese White Dolphins were made during the August's surveys.

- 6.13 No adverse impact on Chinese white dolphins was noticeable from general observations.
- 6.14 Evaluation of impacts on dolphins due to construction work will be conducted in the quarterly EM&A report.
- 6.15 Detailed monitoring methodology and results can be found in **Appendix I**.

7 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 7.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Contract site. The summaries of site audits are attached in **Appendix M**.
- 7.2 Site audits were conducted on 6th, 13th, 20th and 29th August 2013 by ET after the commencement of construction works for the Contract. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 29th August 2013. The details of observations during site audit can refer to **Table 7.1**.
- 7.3 According to EP condition 4.7 and EM&A Manual, periodic monitoring (every three months) of construction works shall be conducted to ensure the avoidance of any impacts on Sha Lo Wan (West) Archaeological Site. Access to Sha Lo Wan (West) Archaeological site for works areas and storage of construction equipment is not allowed. The 2nd inspection to the Sha Lo Wan (West) Archaeological Site was conducted on 18th June 2013 and next inspection will be conducted in September 2013.

Implementation Status of Environmental Mitigation Measures

- 7.4 According to the EIA Study Report, Environmental Permit and the EM&A Manual, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the EMIS is provided in **Appendix N**.
- 7.5 Regular marine travel route for marine vessels were implemented properly in accordance with the submitted plan and relevant records were kept properly.
- 7.6 Acoustic decoupling measures for the stationary equipment (generators, winch generators and air compressors) mounted on boards were adopted according to the approved Acoustic Decoupling Measures Plan.
- 7.7 Dolphin exclusion zone was implemented by ET's trained dolphin observer in accordance with EP Condition 3.4. In addition, dolphin exclusion zone and dolphin watching plan according to EM&A Manual, Section 10.2.12 and EP Condition 3.5 was implemented by DCVJV's trained dolphin watcher.
- 7.8 Spill kits and booms are ready on site for the event of accidental spillage of oil or other hazardous chemicals from construction activities including vessels operating for the Contract.
- 7.9 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 7.1**.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill

Monthly EM&A Report – August 2013

Table 7.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
1 at affecters	Date	Observations and Recommendations	
	06/08/2013	To review the sedimentation process at Portion C.	Rectification/improvement was observed during the follow-up audit session on 13 August 2013.
	13/08/2013	Clear or replace the damage sand bag at Southeast Quay.	Rectification/improvement was observed during the follow-up audit session on 20 August 2013.
Water Quality	13/08/2013	Provide sand bag bund at the water barrier near the pile at Portion C to prevent leakage of muddy water to the public road.	Rectification/improvement was observed during the follow-up audit session on 20 August 2013.
	20/08/2013	To replace the damage sand bags at P20.	Rectification/improvement was observed during the follow-up audit session on 29 August 2013.
	20/08/2013	To reinforce the sand bag bund at P49.	Rectification/improvement was observed during the follow-up audit session on 29 August 2013.
Ecology	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Air Quality	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Noise	29/08/2013	To close the door of the air compressor at P54.	Rectification/improvement was observed during the follow-up audit session on 3 September 2013.
	06/08/2013	To remove the construction materials which at near the trees at Portion A and C.	Follow-up action was needed for the item.
	06/08/2013	To clear the drainage channels at Portion C.	Rectification/improvement was observed during the follow-up audit session on 13 August 2013.
Waste / Chemical -	06/08/2013	To seal the hole of the drip tray and clear the oil leakage at near the office containers at Portion C.	Rectification/improvement was observed during the follow-up audit session on 13 August 2013.
Management	13/08/2013	Remove the construction materials at near the trees at Portion A (near P106) and C.	Rectification/improvement was observed during the follow-up audit session on 20 August 2013.
	13/08/2013	Clear the general refuse at near P102 at Portion A.	Rectification/improvement was observed during the follow-up audit session on 20 August 2013.
	29/08/2013	To seal the hole of the drip tray at P54.	Rectification/improvement was observed during the follow-up audit session on 3 September 2013.
Landscape & Visual Impact	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Other(s)	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Cultural Heritage (Sha Lo Wan (West)	N/A ⁽²⁾	N/A ⁽²⁾	N/A ⁽²⁾

Section between HKSAR Boundary and Scenic Hill

Monthly EM&A Report – August 2013

Parameters	Date	Observations and Recommendations	Follow-up
Archaeological			
Site)			

Remark: N/A⁽¹⁾ No major environmental deficiency was identified during the site inspection in the reporting month.

N/A⁽²⁾ No archaeological site inspection was conducted in the reporting month.

Advice on the Solid and Liquid Waste Management Status

- 7.10 According to the Contractor, 12,107m³ inert C&D materials were generated during the reporting month.
- 7.11 The Contractor was advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in approved waste management plan shall be fully implemented.
- 7.12 The amount of wastes generated by the activities of the Contract during the reporting month is shown in **Appendix O**.

Monthly EM&A Report – August 2013

8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)

Summary of Exceedances

- 8.1 Summary of exceedance is provided in **Appendix** L.
- 8.2 No Action/Limit Level exceedance was recorded for air quality and construction noise.
- 8.3 All water quality monitoring was conducted as scheduled in the reporting month. There is one Action Level and two Limit Level exceedances for suspended solids were recorded.
- 8.4 According to the investigation, no pollution discharge from the marine works. All exceedances are considered not due to the Contract as sediment plume due to natural fluctuation of shallow water was observed and water quality mitigation measures such as casing and silt curtains were properly implemented.

Summary of Environmental Complaint

8.5 No environmental related complaint was received in the reporting month. The Complaint Log is attached in **Appendix P**.

Summary of Notification of Summons and Successful Prosecution

8.6 There was no prosecution or notification of summons received since the Contract commencement.

9 FUTURE KEY ISSUES

Key Issues in the Coming Month

9.1 Major site activities for the coming reporting month will include:

WA4

- Fabrication of rebar cages
- Fabrication of temporary piling platforms

WA7

- Fabrication of rebar cages
- Loading and Unloading

Land Viaduct (P85 to P114)

- Set up of water treatment system
- Set up of piling platforms
- Set up of barriers
- Site clearance
- Forming of site access
- Marine landing access establishment work
- Land piling
- Slewing the tele-communication cable and AA's COM cable
- Tree felling/transplant
- Drainage and water main diversion
- Pre-drilling work

Marine Viaduct (P0 to P84)

- Piling works for temporary jetty
- Installation of piling jacket
- Installation of permanent casings
- Installation of temporary casings
- Pile excavation by RCD method
- Pile excavation by Kelly method
- Pre-drilling Work
- Setting up of silt-curtain
- Platform installation for pre-drilling works and bored piling works

Monitoring Schedule for the Next Month

9.2 The tentative environmental monitoring schedule for the next month is shown in **Appendix D**.

Construction Programme for the Next Month

9.3 A tentative construction programme is provided in **Appendix A**.

10 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 10.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken in August 2013 in accordance with EM&A Manual.
- 10.2 No Action/Limit Level exceedance was recorded for air quality and construction noise.
- 10.3 For water quality monitoring, there is one Action Level and two Limit Level exceedances for suspended solids were recorded.
- 10.4 According to the investigation, no pollution discharge from the marine works. All exceedances are considered not due to the Contract as sediment plume due to natural fluctuation of shallow water was observed and water quality mitigation measures such as casing and silt curtains were properly implemented.
- 10.5 Dolphin transect survey was carried out on 21st and 26th August 2013. No adverse impact on Chinese White Dolphins was noticeable from general observations.
- 10.6 Environmental site inspection was conducted on 6th, 13th, 20th and 29th August 2013 by ET in the reporting month. All deficiencies identified during the site inspection have already rectified / improved during the follow-up audit session.
- 10.7 There was no environmental complaint, no notification of summons and successful prosecution received.
- 10.8 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

10.9 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

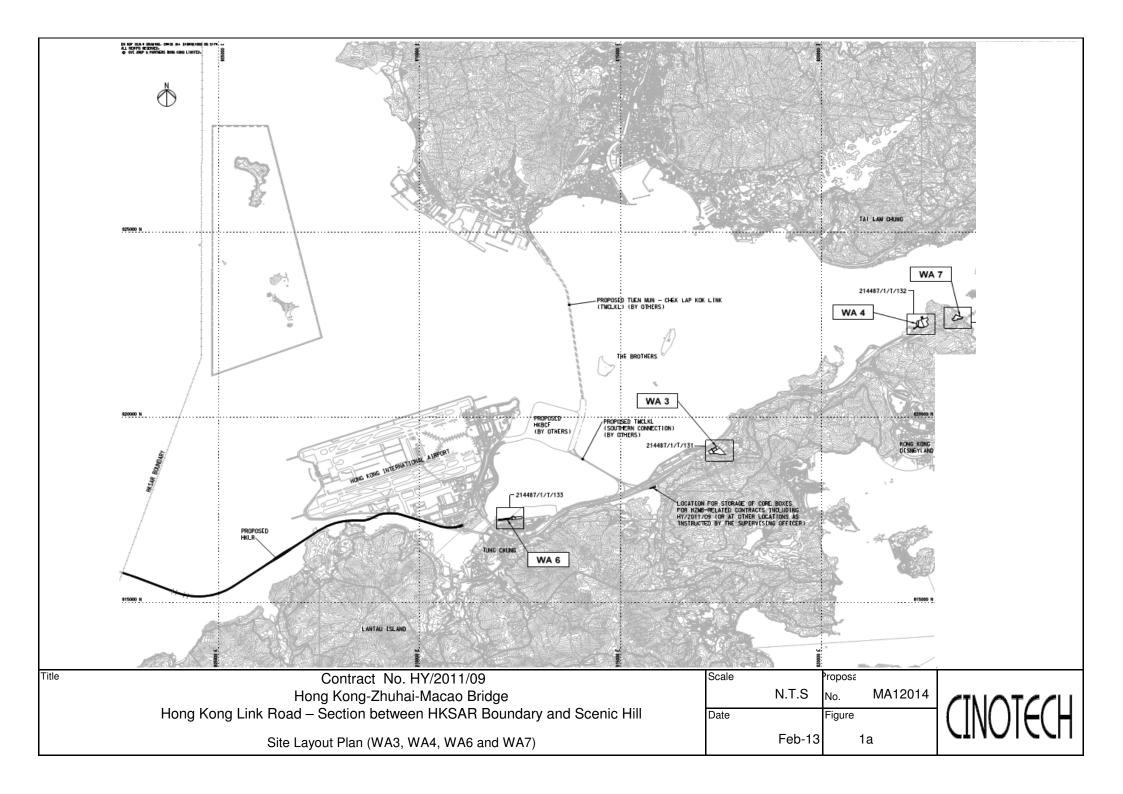
- To regularly maintain the quality of machinery and vehicles on site.
- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To provide hoarding along the entire length of that portion of the site boundary.

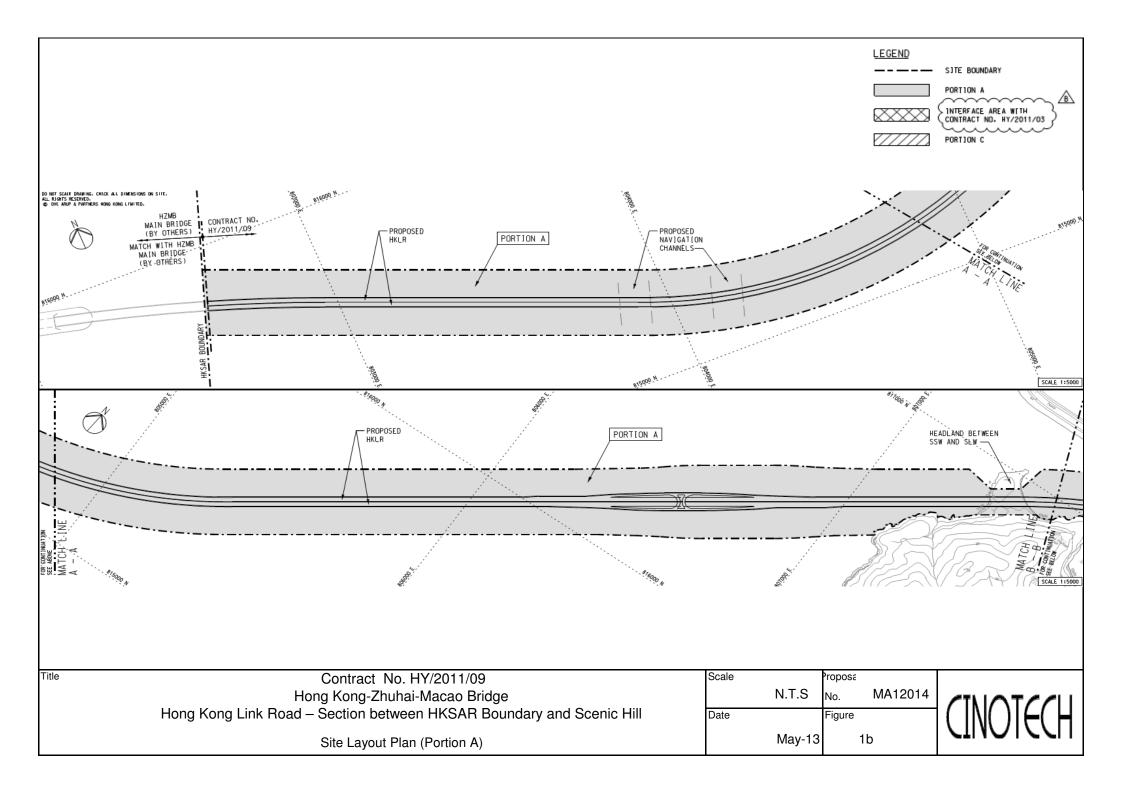
Noise Impact

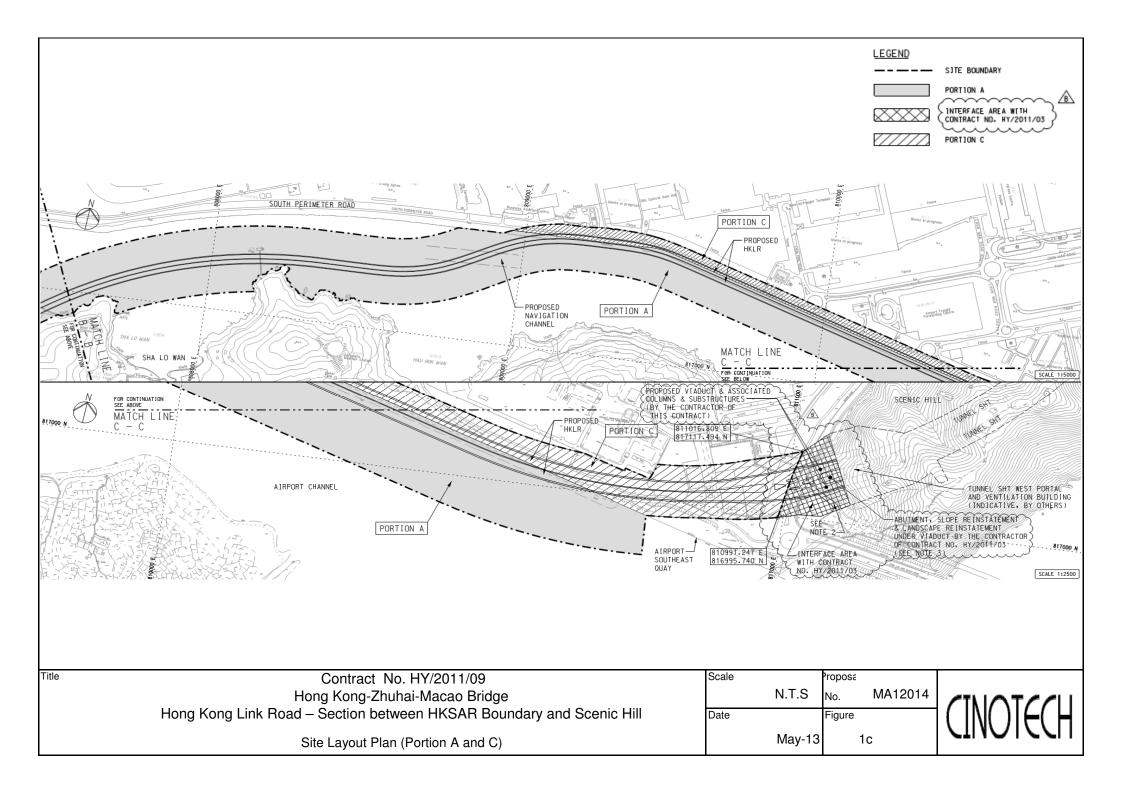
- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers, if necessary.

Water Impact

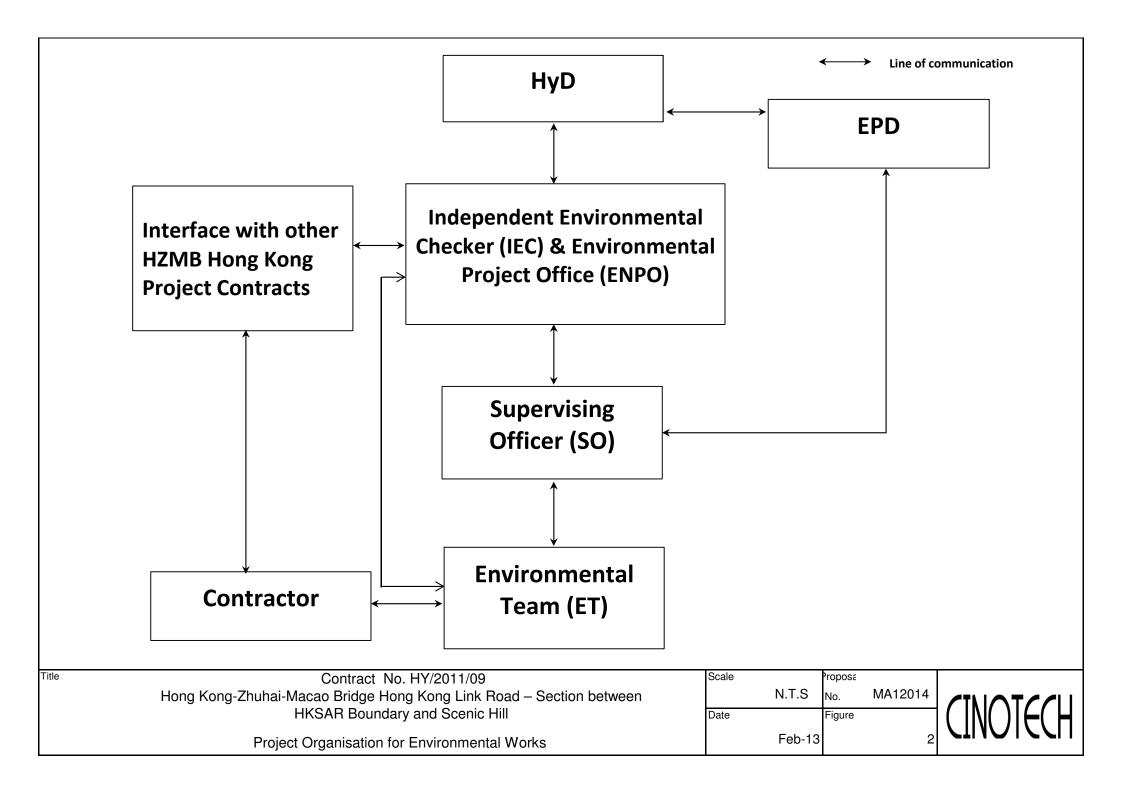
- To prevent any surface runoff discharge into any stream course and sea.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To avoid accumulation of stagnant and ponding water on site.

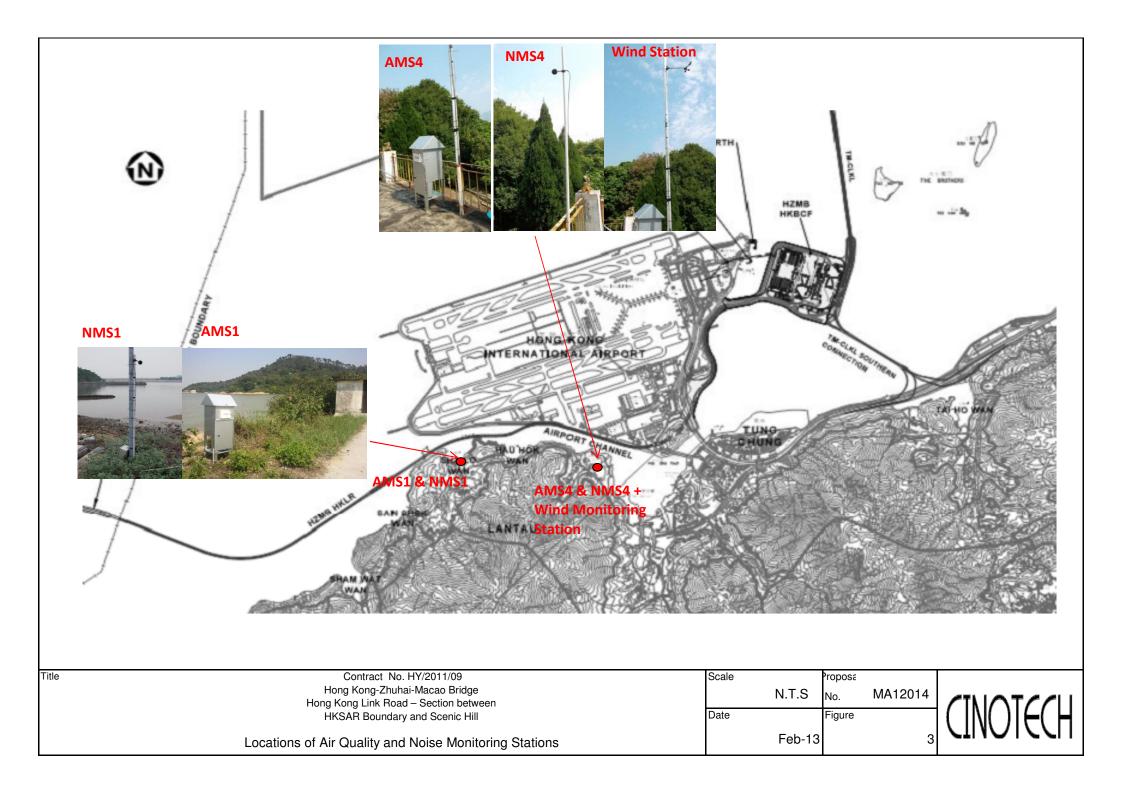

Ecology Impact

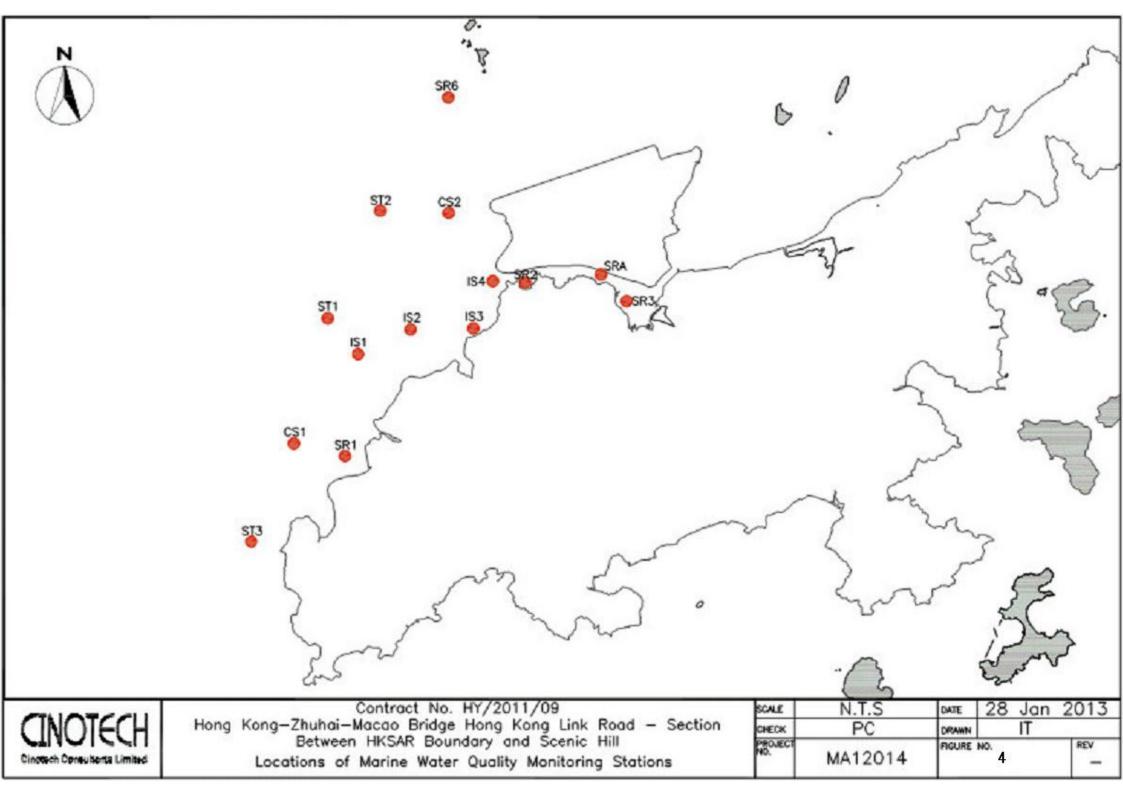

- To implement Spill Response Plan in the event of accidental spillage of or other hazardous chemicals.
- To implement Dolphin Exclusion Zone during the installation of bored pile casing located in the waters to the west of Airport.
- To implement Dolphin Watching Plan after the bored piling casing is installed.
- To ensure the acoustically-decoupled measures were implemented for air compressors and other noisy equipment mounted on construction vessels according to acoustic decoupling measures plan.

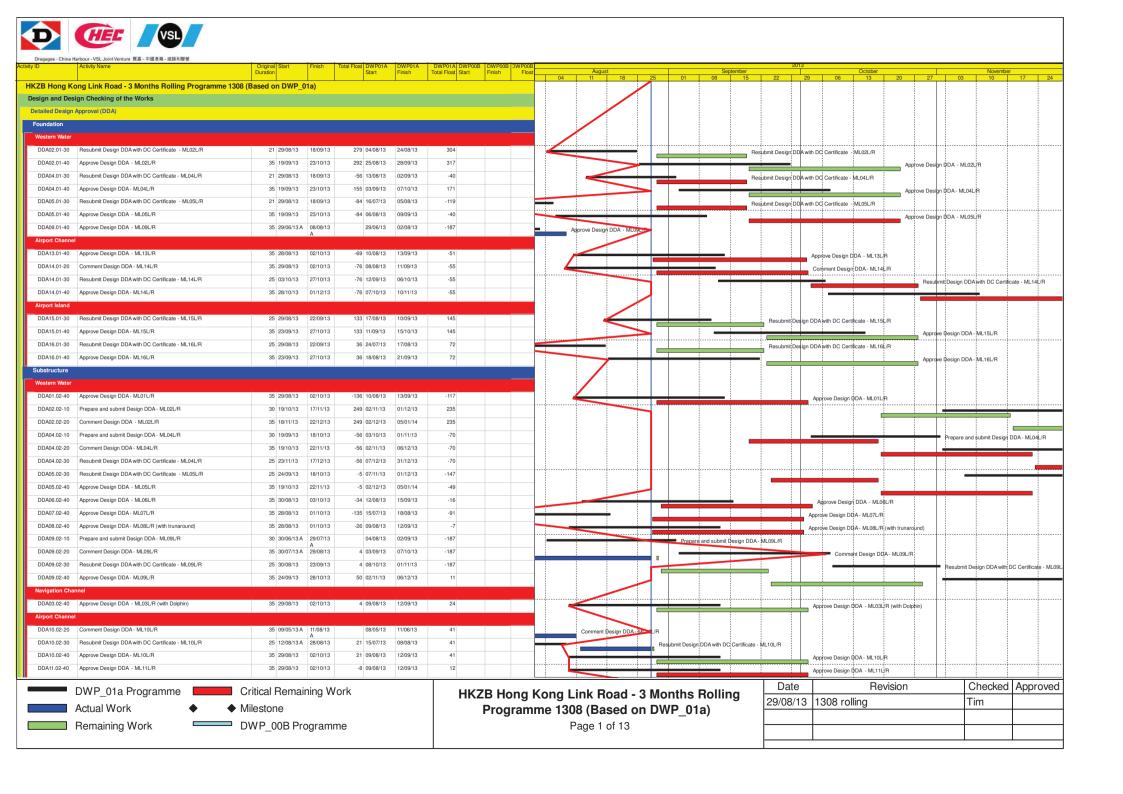

Waste/Chemical Management

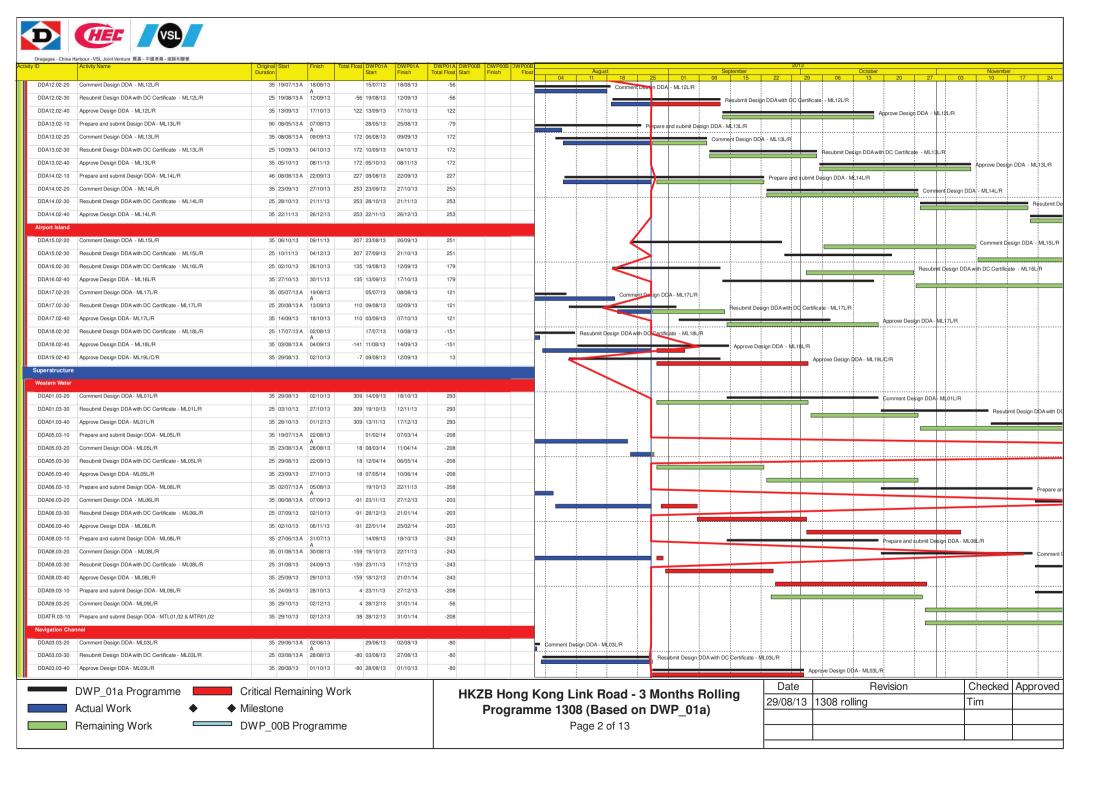
- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation):
- To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To avoid improper handling or storage of oil drum on site.

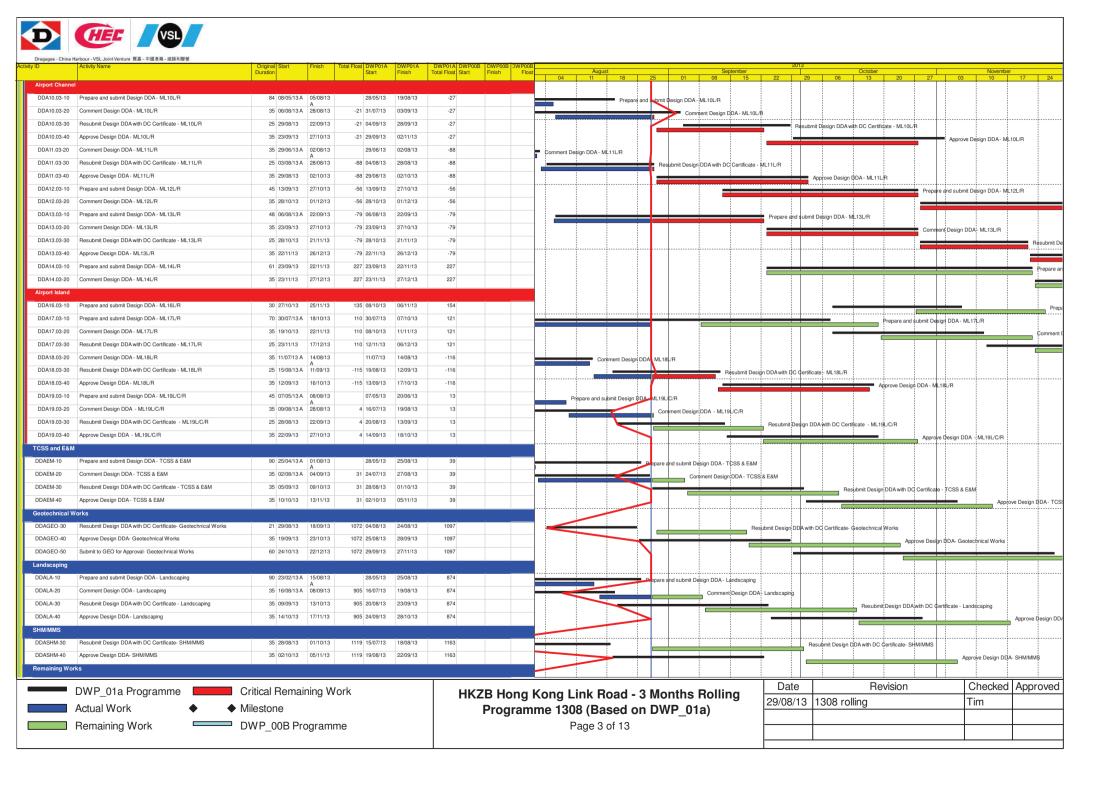

FIGURE(S)

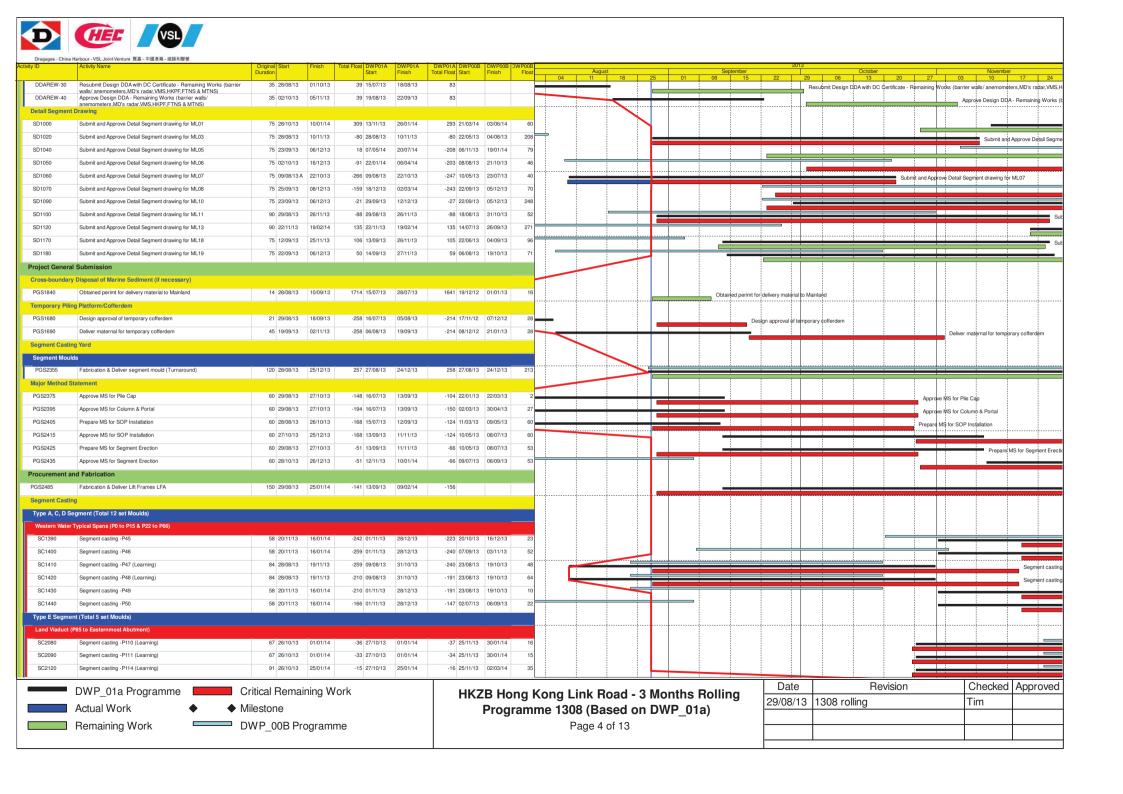


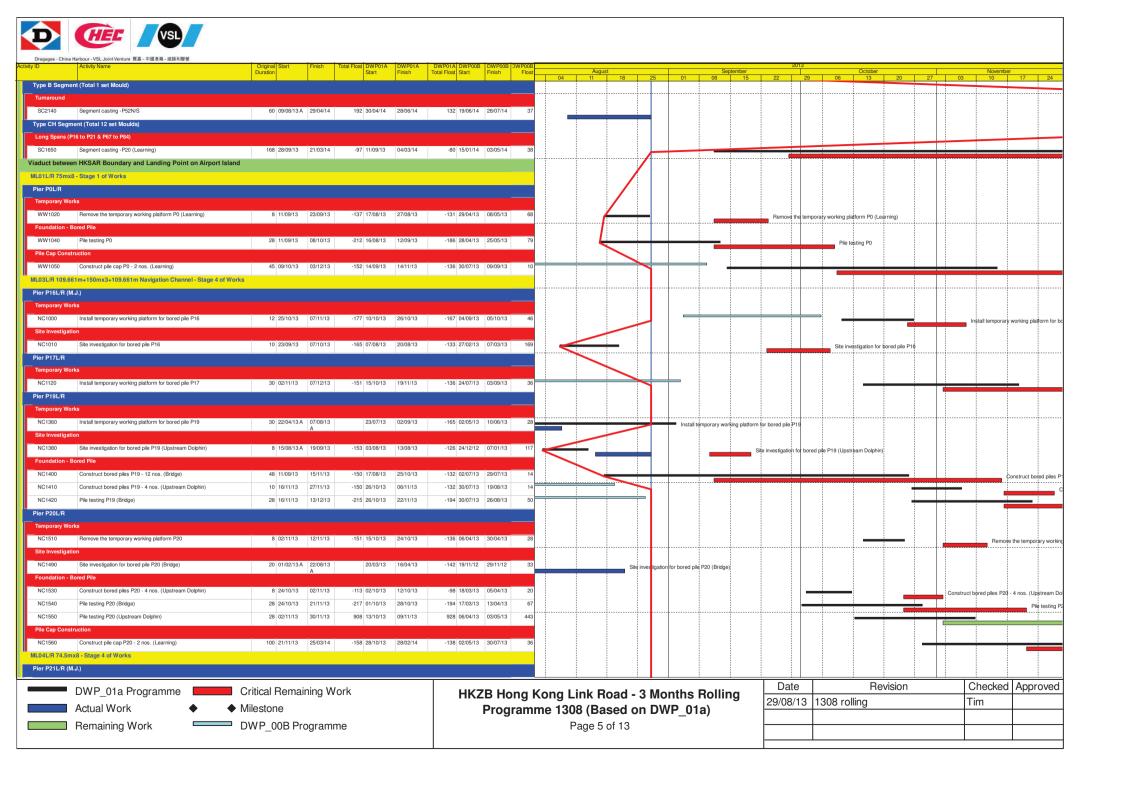


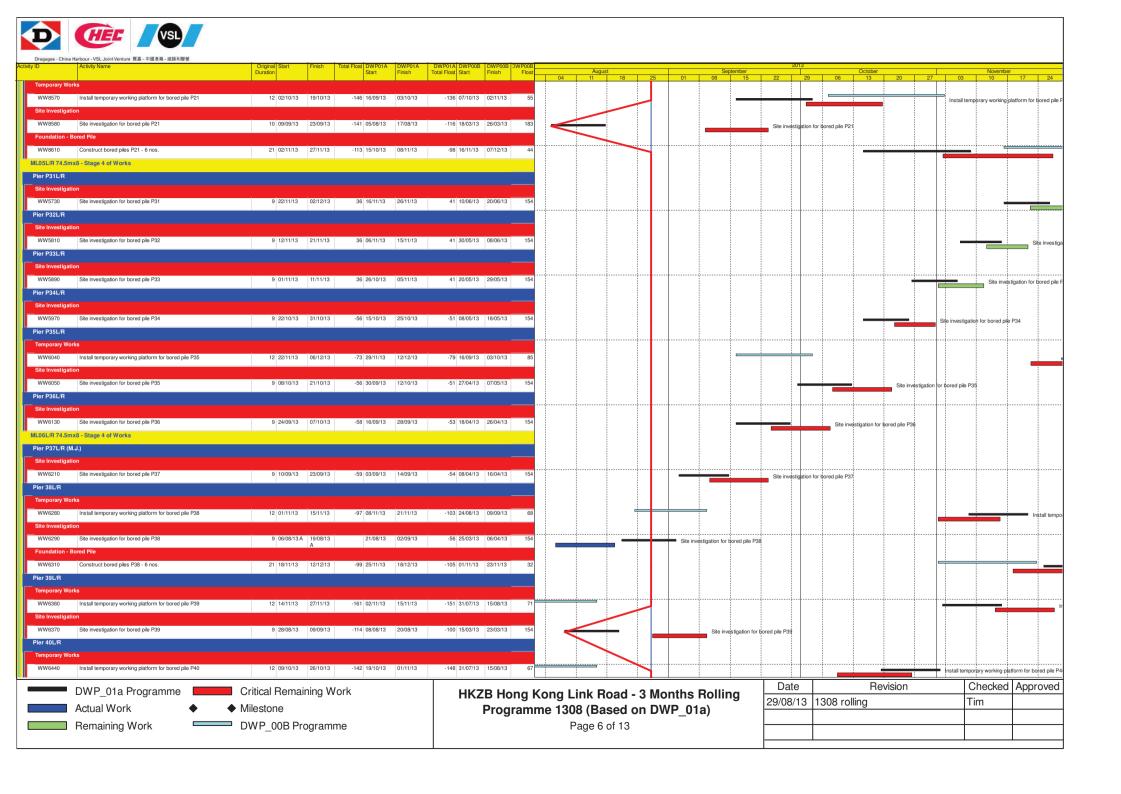


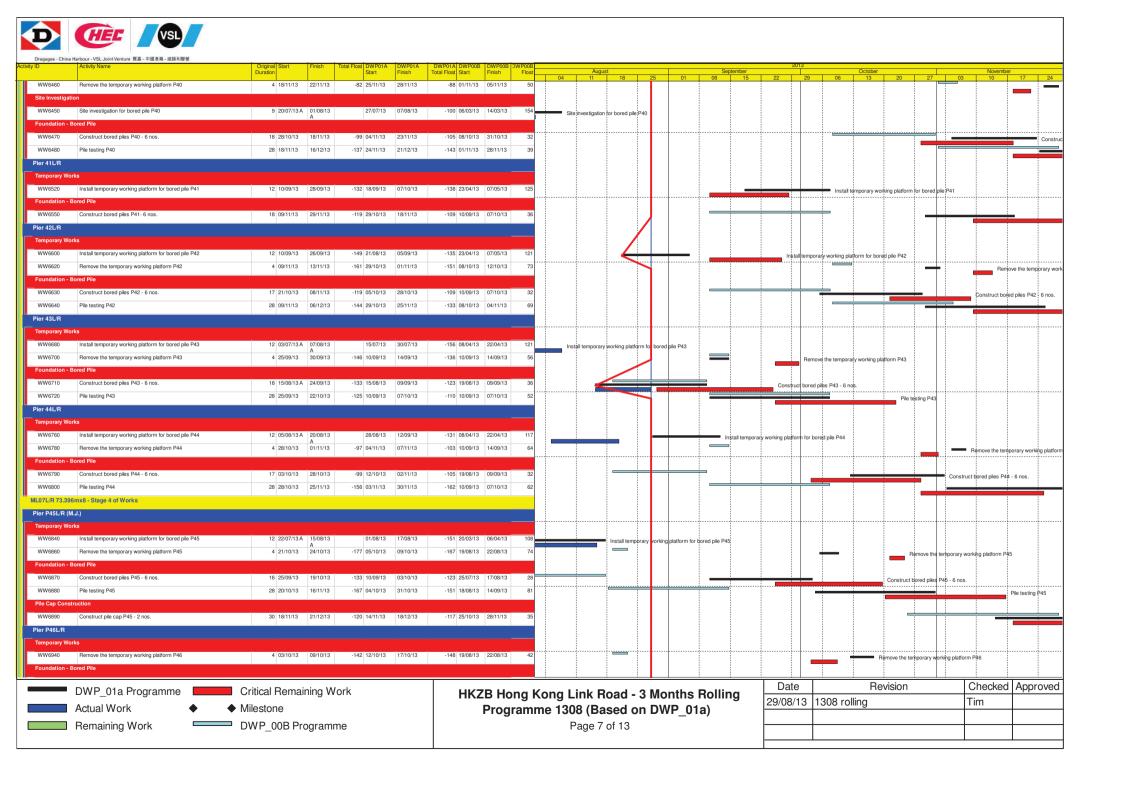


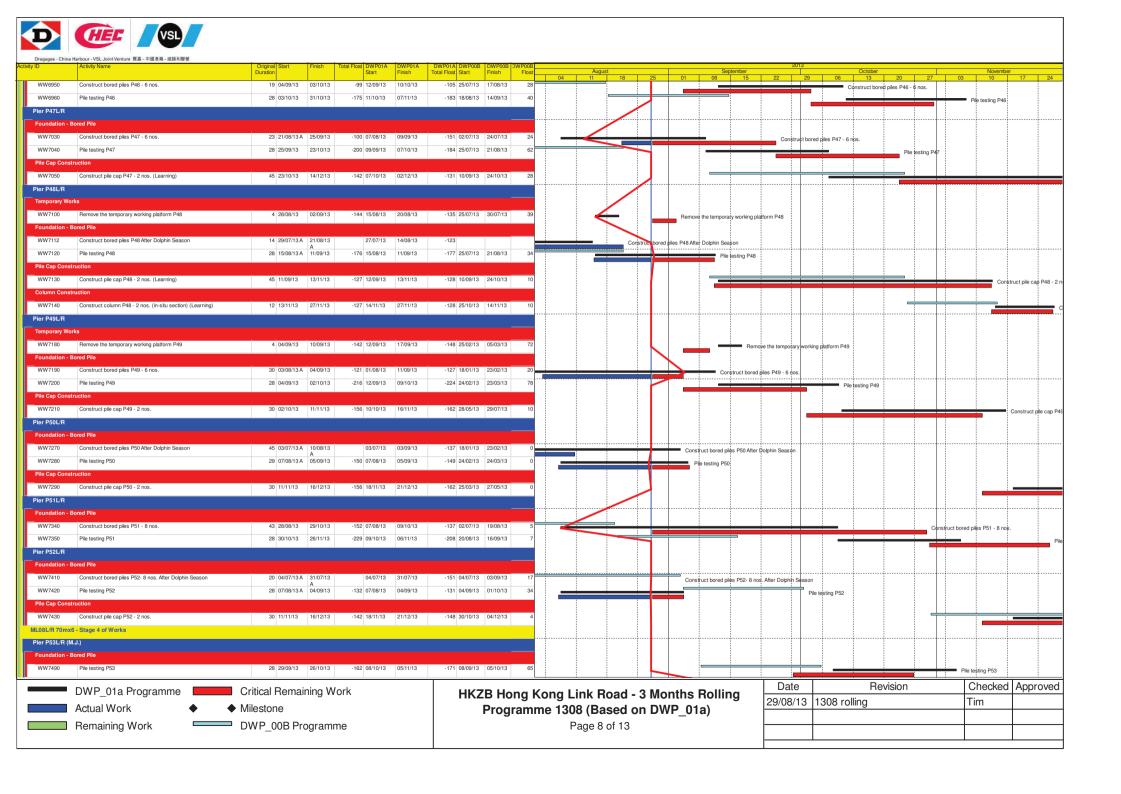


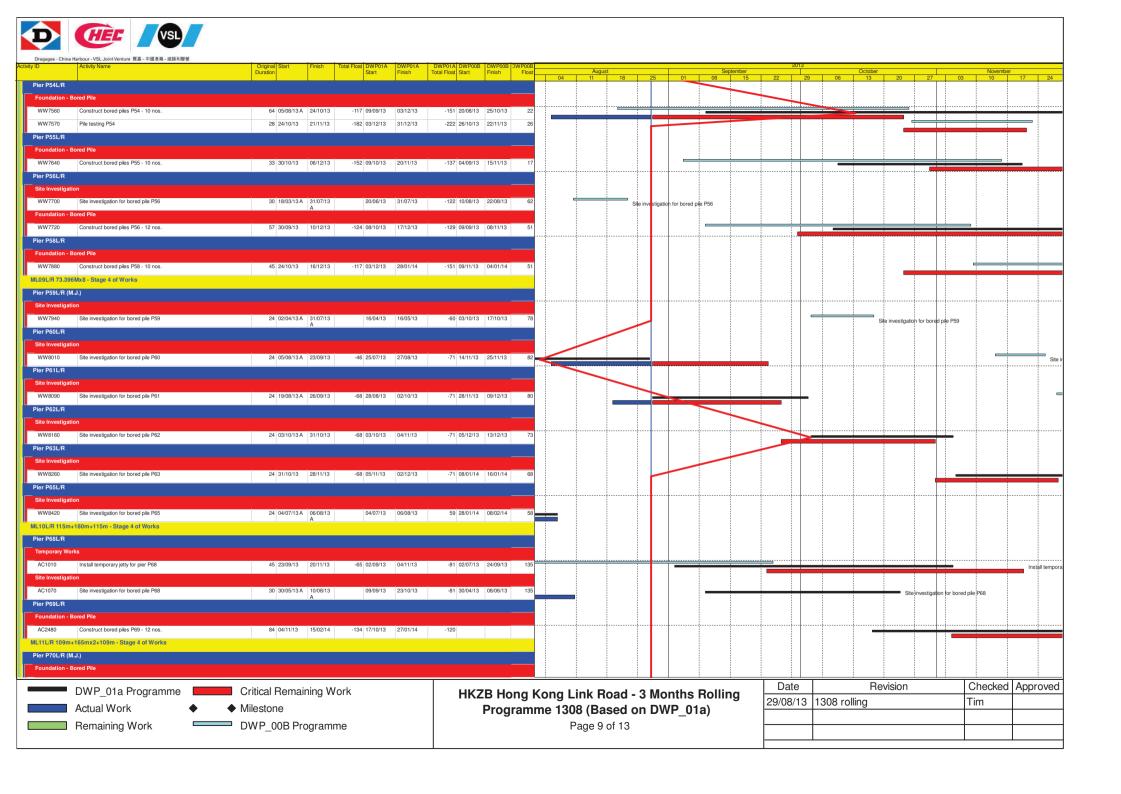


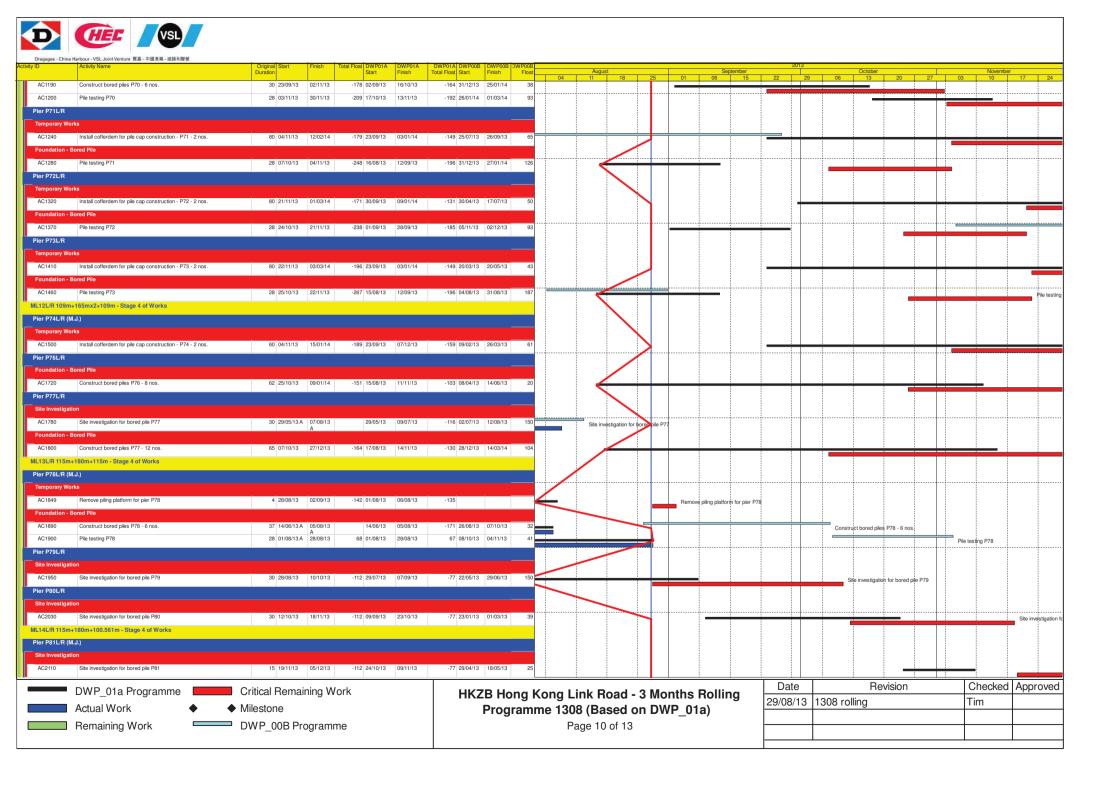

APPENDIX A CONSTRUCTION PROGRAMME

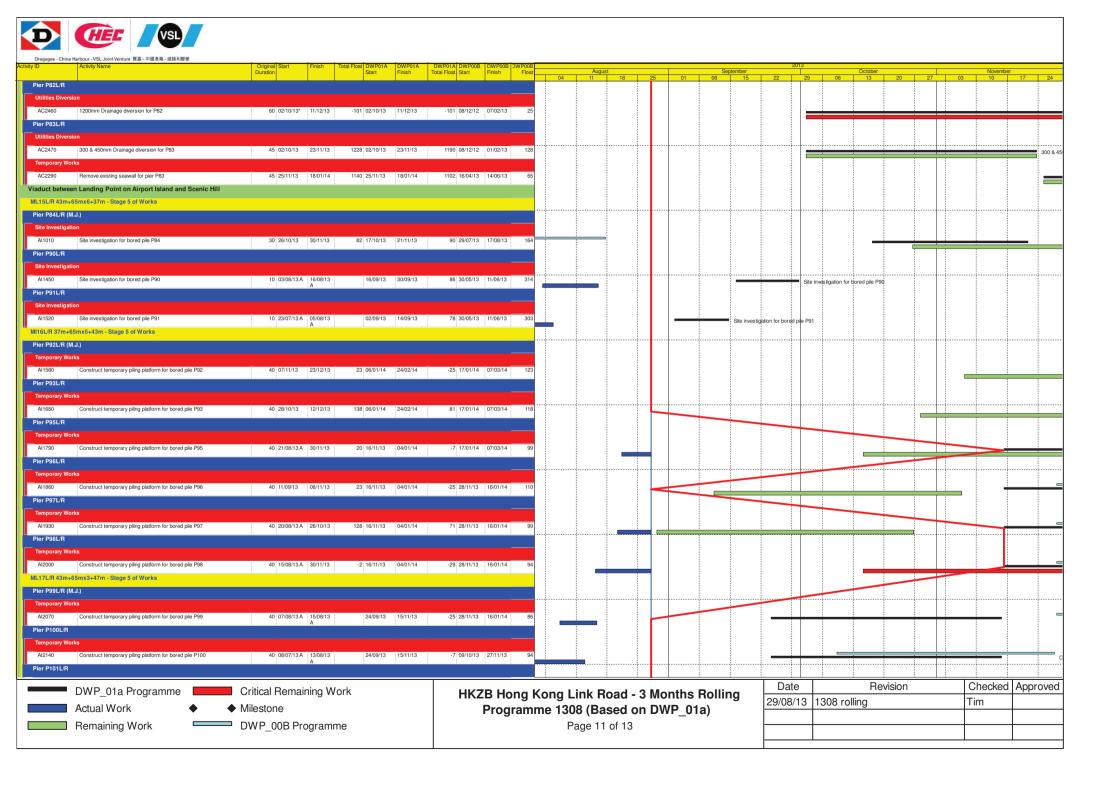


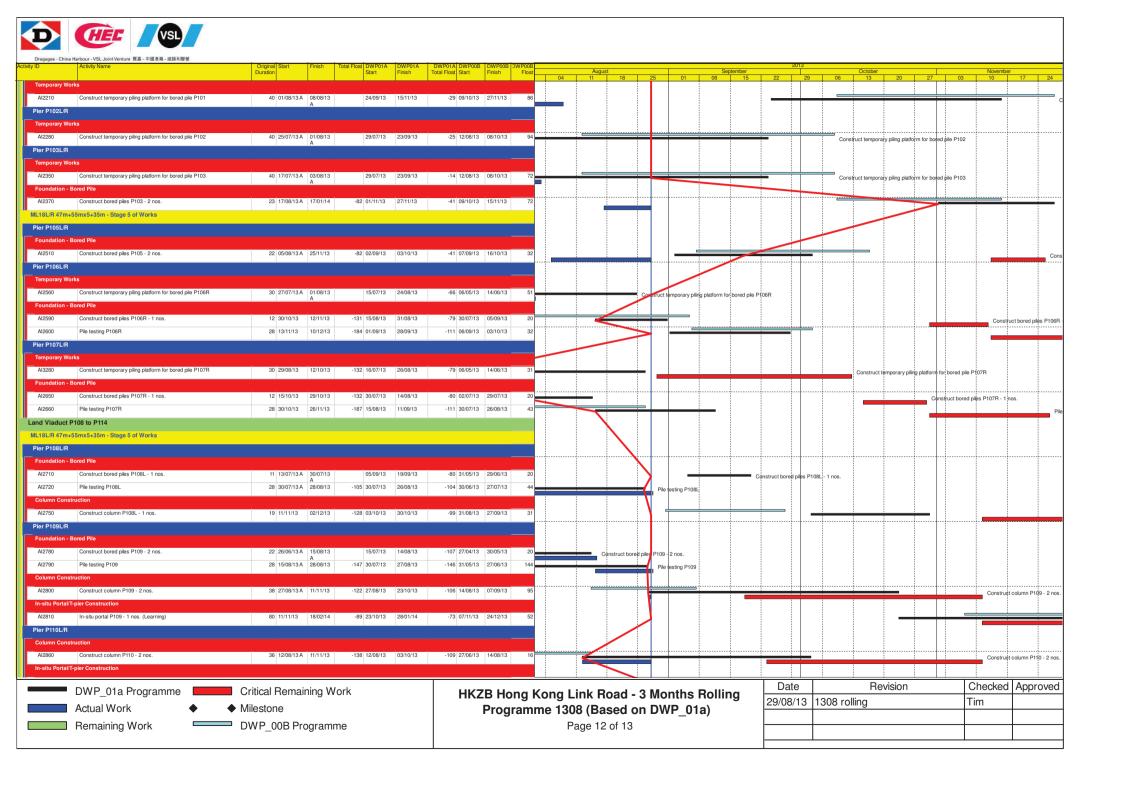


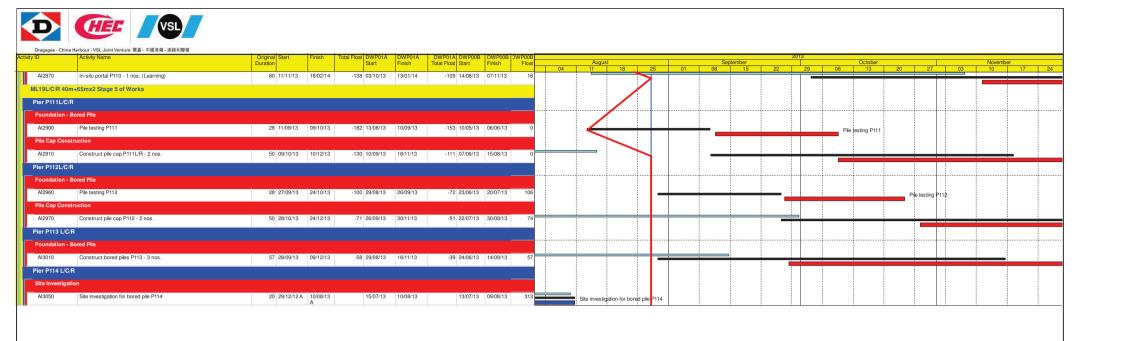












DWP_01a Programme Critical Remaining Work

Actual Work Milestone

Remaining Work DWP_00B Programme

HKZB Hong Kong Link Road - 3 Months Rolling Programme 1308 (Based on DWP_01a)

٠,				
Page	13	of	13	

Date	Revision	Checked	Approved
29/08/13	1308 rolling	Tim	

APPENDIX B ACTION AND LIMIT LEVELS

Appendix B - Action and Limit Levels

Table B-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AMS1	381	500
AMS4	352	500

Table B-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AMS1	170	260
AMS4	171	260

Table B-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) *

Noted: If works are to be carried during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

^(*) reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Table B-4 Action and Limit Levels for Water Quality

Parameter (unit)	Water Depth	Action Level	Limit Level
Dissolved Oxygen (mg/L) (surface,	Surface and Middle	<u>5.0</u>	4.2 except 5 for FCZ
middle, bottom)	Bottom	<u>4.7</u>	3.6
Turbidity (NTU)	Depth average	27.5 and 120% of upstream control station's turbidity at the same tide of the same day	47.0 and 130% of turbidity at the upstream control station at the same tide of same day
Suspended Solids (mg/L)	Depth average	23.5 and 120% of upstream control station's SS at the same tide of the same day	34.4 and 130% of SS at the upstream control station at the same tide of same day and 10mg/L for WSD Seawater Intakes

Note

- (1) Depth-averaged is calculated by taking the arithmetic means of reading of all three depths
- (2) For DO, non-compliance of the water quality limit occurs when monitoring result is lower that the limit.
- (3) For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- (4) All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.
- (5) The 1%-ile of baseline data for dissolved oxygen (surface and middle) and dissolved oxygen (bottom) are 4.2mg/L and 3.6mg/L respectively.

APPENDIX C COPIES OF CALIBRATION CERTIFCATES

File No. MA12014/67/0003

Project No.	AMS 1 - Sha Lo	Wan		Operator:	Hei		
Date:	17-Jun-13		Next Due Date:		16-Aug	-13	
Equipment No.:	A-01-67			Serial No.			
Control of the state of the state of		View and the different face may extra suff	Markara nata da akabibita da a rada da ar				
			Ambient C	Condition	T		
Temperatur	re, Ta (K)	301.2	Pressure, Pa	(mmHg)		755.4	
		<u> </u>	er er				
Equipme	nt No .	A-04-05	fice Transfer Sta Slope, mc	0.0592	Intercept	, bc -0.0283	2000
Last Calibra		26-Dec-12			$c = [\Delta H \times (Pa/760]]$		\dashv
Next Calibra		25-Dec-13			(Pa/760) x (298/I		
Next Callora	aton Date.	25-1500-15		Quid ([ZH X	(14,700) 1 (250)	tujį bej ine	_
			Calibration of	TSP Sampler			1155. 1155.
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	$[\Delta W \times (Pa/760) \times (298/Ta)]^{1}$ Y-axis	/2
1	11.8	3	3.41	58.02	6.9	2.60	
2	9.4	3	3.04	51.84	5.4	2.30	
3	7.1	1	2.64	45.11	4.2	2.03	
4	4.6	2	2.13	36.40	2.9	1.69	
5	2.8		1.66	28.51	1.9	1.37	
By Linear Regr Slope , mw =				Intercept, bw	• 0.177-	4	
Correlation co	oefficient* =	0.9	993				
*If Correlation C	Coefficient < 0.99	0, check and rec	calibrate.	-			
From the TSP Fi	eld Calibration (Turve take Octd	Set Point C	alculation			A H&H
From the Regres		-					
			_		4 50		
		mw x Q	$std + bw = [\Delta W]$	(Pa/760) x (2)	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (Ta / 298)=	3.90		
Remarks:							_
Conducted by: Checked by:	Mi. Who Tang	Signature:	hei hw or		-	Date: $\frac{17/6/13}{17/6/2013}$	_

File No. MA12014/74/0003

Project No.	AMS 4 - San Ta	u		Operator:	Hei	•	111111111111111111111111111111111111111
Date:	17-Jun-13	Next Due Da		Next Due Date:	16-Aug-13		
Equipment No.:	A-01-74		Serial No			2202	
Lastistonististores, kiedinostas							
			Ambient (
Temperatu	re, Ta (K)	300.8	Pressure, Pa	a (mmHg)		755.9	
		Ori	fice Transfer Sta	ndard Inform	ation		
Equipme	ent No.:	A-04-05	Slope, mc	0.0592	Intercept	t, bc	-0.0283
Last Calibra	i	26-Dec-12			$c = [\Delta H \times (Pa/760)]$		
Next Calibra		25-Dec-13			(Pa/760) x (298/		
		4					
			Calibration of	TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/70 Y	60) x (298/Ta)] ^{1/2} -axis
1	11.4		3.35	57.09	7.7		2.75
2	9.2		3.01	51.34	6.5		2.53
3	7.0		2.63	44.84	5,2		2.26
4	4.5		2.11	36.05	3.4		1.83
5	2.7		1.63	28.03	2.2		1.47
By Linear Regr Slope , mw =		(Intercept, bw	. 0.230	6	
Correlation c		- 0.9	1992	1 /			
	Coefficient < 0.99			_			
			Set Point C	alculation			
From the TSP Fi	ield Calibration (Curve, take Ostd					
From the Regres		•					
	4		_				
		mw x Q	$pstd + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (Ta / 298)=	4.69		A CONTRACTOR OF THE CONTRACTOR
					·		
Remarks:							
Conducted by:	hei	Signature:	he.			Date:	1716/13
Checked by:	Lack Jano	Signature:	Kan	où.	-	Date:	716/13
	1	Q 	7,000		-		1.1 -1.

CINOTECH

File No. MA12014/67/0004

Project No.	AMS 1 - Sha Lo Wan			Operator:		Hei	
Date:	16-Aug-13		Next Due Date:		15-Oct-13		
Equipment No.:	A-01-67			Serial No.			
		V	Ambient C	Condition			
Temperatu	ire, Ta (K)	299.7	Pressure, Pa	(mmHg)		753.1	
			.1.2.2.1.1.2.1.1.11			Tanggaranan	
	le de a comedidad de la legación de La comedia de la legación de la leg		fice Transfer Sta				
	Equipment No.: A-04-05			0.0592	Intercept		-0.0283
Last Calibr		26-Dec-12			$c = [\Delta H \times (Pa/760)]$		
Next Calibr	ration Date:	25-Dec-13		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Γa)]"" -bc} /	me
表现的2000年1月2日的 2000年1月2日		<u> </u>	Calibration of	TSP Sampler			
Calibration	ATT (owifice)		fice	Ootd (CEM)	ΔW	HVS	/760) x (298/Ta)] ^{1/2}
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	(HVS), in. of oil	_{[Δwx(ra}	Y-axis
1	11.9		3.42	58,32	6.9		2.61
2	9.5		3.06	52.16	5.5		2.33
3	7.2		2.66	45.47	4.3		2.06
4	4.6	2.13		36.44	2.9		1.69
5	2.8		1.66	28.54	1.8		1.33
By Linear Reg	ression of Y on X			Intercept, bw	. 0.132	3	
	coefficient* =	- 0.9	998	• •			'
	Coefficient < 0.99			-			
		·					
			Set Point C	alculation			
From the TSP F	ield Calibration (Curve, take Qstd	= 43 CFM				
From the Regre	ssion Equation, th	ie "Y" value acc	ording to				
			$std + bw = \Delta W $	r (Da/760) v (1	00/Ta)11/2		
		mw x Q	/sta + DW = [ZW]	((r a/ / 00) X (2	90/14)		
Therefore, S	set Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (Ta / 298) =	3.87		
-		,					
Remarks:		***************************************					
0 1 11	hei	O*1	h .	~		Data	1/10/2012
Conducted by:	4	Signature:	<i>Ne</i> Viwa:	₹		Date:	16 (8 /10/2
Unecked by	: W.K. Jan	Signature:		, m. m	.	Date:	10 10 12015

CINOTECH

File No. MA12014/74/0004

Project No.	AMS 4 - San Ta	u		Operator:			
Date:	16-Aug-13	-Aug-13		Next Due Date: _		13	
Equipment No.:	A-01-74			Serial No.	2202		
		en de la englisha di far					
			Ambient C	Condition	<u> </u>		
Temperature, Ta (K) 300			Pressure, Pa	(mmHg)		752.8	
14 A.D., 14		Ori	fice Transfer Sta	ndard Inform:	ation		A STATE OF THE STA
Equipme	ent No.:	A-04-05	Slope, mc	0.0592	Intercept	, bc	-0.0283
Last Calibra	ntion Date:	26-Dec-12		me x Qstd + bo	$c = [\Delta H \times (Pa/760]]$) x (298/Ta)	1/2
Next Calibra	ation Date:	25-Dec-13		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \ \mathbf{x}] \}$	(Pa/760) x (298/	Γa)] ^{1/2} -bc} /	mc
		•			and the confidence of the state		
			Calibration of	TSP Sampler			
Calibration	ATT (10°)	Ori	ice	10.1/0510	A 747	HVS	- co
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil		760) x (298/Ta)] ^{1/2} Y-axis
1	11.3	3	.33	56.80	7.8		2.77
2	9.3	3	.02	51.58	6.5		2.53
3	7.0	2	.62	44.81	5.3		2.28
4	4.6	2	13	36.41	3.4		1.83
5	2.8] 1	.66	28.52	2.3		1.50
By Linear Regr Slope, mw = Correlation of	0.0452 oefficient* =	0.9	985	Intercept, bw : -	0.213	4	
*If Correlation C	Coefficient < 0.99	o, check and rec	alibrate.				
				alculation			
From the TSP Fi	eld Calibration C	Curve, take Qstd	= 43 CFM				
From the Regres	sion Equation, th	e "Y" value acco	ording to				
		mw x Q	$std + bw = [\Delta W]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	w x Qstd + bw) ²	x(760/Pa)x(Ta / 298)=	4.72		-
						,	
Remarks:							
Conducted by: Checked by:	Kei w.K.Thy	Signature:	hei Mwai		•	Date:	16 (8/2013

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - De Operator	•	Rootsmeter Orifice I.I		438320 2323	Ta (K) - Pa (mm) -	295 - 753.11
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4440 1.0240 0.9120 0.8720 0.7200	3.2 6.4 8.0 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9967	0.6902	1.4149		0.9957	0.6896	0.8851
0.9925	0.9693	2.0010		0.9915	0.9683	1.2517
0.9903	1.0858	2.2372		0.9893	1.0847	1.3995
0.9893	1.1345	2.3464		0.9883	1.1334	1.4678
0.9840	1.3666	2.8299		0.9830	1.3652	1.7702
Qstd slope (m) = 2.09107			Qa slope (m) = 1.30939			
intercept (b) = -0.02838			intercept (b) = -0.01775			
coefficient (r) = 0.99996			coefficient (r) = 0.99996			
y = SQRT[H2O(Pa/760)(298/Ta)]				y = SQRT[H2O(Ta/Pa)]		

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Calibration Certificate

Certificate No. 34537

Page of 2 Pages

Customer: Dragages - China Habour - VSL Joint Venture

Address : 3/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q30108

Date of receipt

4-Jul-13

Item Tested

Description : Vantage Pro2 Weather Stations

Model

Manufacturer: Davis

: 6152 CUK

Serial No.

: AK130520006

Test Conditions

Date of Test:

 $(23 \pm 3)^{\circ}C$

Supply Voltage

Relative Humidity: (50 ± 25) %

Test Specifications

Ambient Temperature:

Calibration check.

Ref. Document/Procedure: Z04.

Test Results

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

\$155

Std. Anemometer

Cert. No.

NSC201331006

Traceable to

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation. overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date: 6-Aug-13

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fex: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

51:51 510S .euA 70 ы

: ON XA7

FROM:

Calibration Certificate

Certificate No. 34537

Page 2 of 2 Pages

Results:

1. Wind Speed

Applied Value (m/s)	UUT Reading (m/s)
2.7	2.7
5.3	5,4
7.5	7.6
10.4	10.7
15.3	15.6
19.0	20.1

Uncertainty: $\pm (2 \% + 0.2 \text{ m/s})$

2. Wind Direction

Reference Value	UUT Indication				
N (0°)	N (0°)				
NE (45°)	NE (45°)				
E (90°)	E (90°)				
SE (135°)	SE (135°)				
S (180°)	S (180°)				
SW (225°)	SW (225°)				
W (270°)	W (270°)				
NW (315°)	NW (315°)				

Remark: 1. UUT: Unit-Under-Test

- 2. Atmospheric Pressure: 1 003 hPa
- 3. Before the calibration of the Wind Direction function, the Arrow Head was adjusted to the magnetic NORTH direction while the monitor indicated N. The customer is reminded to do the alignment again after installation.

----- END -----

FAX NO.:

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130600

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0227)

Description / 儀器名稱

Sound & Vibration Analyser

Manufacturer / 製造商 Model No./型號

Syantek

Serial No./編號

SVAN957 21460

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

Chan An Ohn H C Chan

Certified By 核證

Date of Issue 簽發日期

28 January 2013

The test equipment used for edibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in fulf, without the prior written approval of this laborater

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 co 香港新界屯門與安里一號青山灣機機四樓

1世電話: 2927 2606 Fax/傳真: 2744-8986

E-mail 電郵: callab@suncreation.com

Website Allih: www.suncreation.com

Page 1 of 3

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130600

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

Self-calibration using the Svantek acoustic calibrator SV30A, S/N: 24791 was performed before the test. 2.

The results presented are the mean of 3 measurements at each calibration point. 3.

Test equipment: 4.

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

Multifunction Acoustic Calibrator

C130019

DC110233

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UU'	Γ Setting		Applied Value		UUT	IEC 61672
Range	Mode	Frequency Time Level			Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	A	Fast	114.00	1	114.2	± 1,1

6.1.2 Linearity

_	U	UT Setting		Applie	d Value	UUT
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
HIGH	SPL	A	Fast	114.00	1	114.2 (Ref.)
				104.00]	104.2
				94.00		94.2

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	A	Fast	114.00	1	114.2	Ref.
			Slow			114.2	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可潮源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C130600

證書編號

6.3 Frequency Weighting

A_Weighting 6.3.1

	U	JT Setting		Applied Value		UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
HIGH	SPL	Ä	Fast	114.00	63 Hz	88.0	-26.2 ± 1.5
					125 Hz	98.0	-16.1 ± 1.5
					250 Hz	105.5	-8.6 ± 1.4
					500 Hz	110.9	-3.2 ± 1.4
					1 kHz	114.2	Ref.
					2 kHz	115.4	$\pm 1.2 \pm 1.6$
					4 kHz	115.2	$\pm 1.0 \pm 1.6$
					8 kHz	113.2	-1.1 (+2.1; -3.1)
					12.5 kHz	109.9	-4.3 (+3.0; -6.0)

C-Weighting 6.3.2

7,0,5,.,		JT Setting		Applied Value		UUT	IEC 61672
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)		(dB)	(dB)
HIGH	SPL	C	Fast	114,00	63 Hz	113.4	-0.8 ± 1.5
					125 Hz	114.0	-0.2 ± 1.5
					250 Hz	114.2	0.0 ± 1.4
					500 Hz	114.2	0.0 ± 1.4
					1 kHz	114.2	Ref.
					2 kHz	114.0	-0.2 ± 1.6
					4 kHz	113.5	-0.8 ± 1.6
					8 kHz	111.3	-3.0 (+2.1; -3.1)
					12.5 kHz	108.0	-6.2 (+6.0 ; -∞)

Remarks: - UUT Microphone Model No.: AC07052H & S/N: 43679

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz $: \pm 0.45 \, dB$

250 Hz - 500 Hz $: \pm 0.40 \text{ dB}$ $: \pm 0.30 \text{ dB}$ 1 kHz 2 kHz - 4 kHz $: \pm 0.45 \, dB$ $: \pm 0.55 \, dB$ 8 kHz

 $: \pm 0.80 \text{ dB}$ 12.5 kHz

104 dB : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 114 dB : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。 局部復印本證書需先獲本實驗所書面批准

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司。校正及檢測實驗所

c/o 香港新界电門與安里一號青山灣機樓四樓

Fax/傳真: 2744 8986 Tel/電話: 2927 2606 E-mail/電郵: callab@sunereation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No. :

C130601

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0227)

Description / 儀器名稱

Sound & Vibration Analyser

Manufacturer / 製造商 Model No./型號

Svantek

Serial No. / 編號

SVAN957 23851

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

Chan Kon C

Certified By

核證

Date of Issue

簽發日期

28 January 2013

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可滴源至國際標準。局部復印本證書需先獲本實驗所書面批准

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C130601

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.

Self-calibration using the Svantek acoustic calibrator SV30A, S/N: 24780 was performed before the test. 2.

The results presented are the mean of 3 measurements at each calibration point. 3.

Test equipment: 4.

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

C130019

Multifunction Acoustic Calibrator

DC110233

5. Test procedure: MA101N.

6. Results:

Sound Pressure Level 6.1

Reference Sound Pressure Level 6.1.1

Itelefoliec De	mina i i cosui	CLOTOL					
	UU	T Setting		Applied Value		UUT	IEC 61672
Range	Mode	Frequency	Time	Level Freq.		Reading	Class 1 Spec.
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	Α	Fast	114.00	1	113.8	± 1.1

6.1.2 Linearity

	Ŭ	UT Setting		Applie	d Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
		Weighting	Weighting	(dB)	(kHz)	(dB)
HIGH	SPL	Α	Fast	114.00	1	113.8 (Ref.)
				104.00		103.8
				94.00		93,8

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

Γ		UUT	`Setting		Applied Value		UUT	IEC 61672
I	Range Mode Frequency Time		Level	Freq.	Reading	Class 1 Spec.		
	J		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
	HIGH	SPL	Α	Fast	114.00	1	113.8	Ref.
				Slow			113.8	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司。校正及檢測實驗所

cio 香港新界屯門與安里一號青山灣機樓四樓 Tel電話: 2927 2606 Fax側真: 2744 8986

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior scritten approval of this laborator

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C130601

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

A-weighth		JT Setting		Appl	ied Value	UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class I Spec. (dB)
HIGH	SPL	A	Fast	114.00	63 Hz	87.6	-26.2 ± 1.5
					125 Hz	97.6	-16.1 ± 1.5
					250 Hz	105.1	-8.6 ± 1.4
					500 Hz	110.5	-3.2 ± 1.4
					1 kHz	113.8	Ref.
					2 kHz	115.0	+1.2 ± 1.6
					4 kHz	114.8	$+1.0 \pm 1.6$
					8 kHz	112.8	-1.1 (+2.1; -3.1)
					12.5 kHz	109.6	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

weigniu		JT Setting		Applied Value		UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
HIGH	SPL	C	Fast	114,00	63 Hz	113.0	-0.8 ± 1.5
					125 Hz	113.6	-0.2 ± 1.5
					250 Hz	113.8	0.0 ± 1.4
					500 Hz	113.8	0.0 ± 1.4
					1 kHz	113.8	Ref.
					2 kHz	113.7	-0.2 ± 1.6
					4 kHz	113.1	-0.8 ± 1.6
	İ				8 kHz	110.9	-3.0 (+2.1; -3.1
					12.5 kHz	107.6	-6.2 (+6.0 , -∞)

Remarks: - UUT Microphone Model No.: AC07502E & S/N: 48532

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.45 dB

250 Hz - 500 Hz : ± 0.40 dB 1 kHz : ± 0.30 dB 2 kHz - 4 kHz : ± 0.45 dB 8 kHz : ± 0.55 dB 12.5 kHz : ± 0.80 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可滴漂至國際標準。局部復印本證書儒先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司。按正及檢測實驗所

co 香港新界电門與安里一號青山樹楼樓四樓

Tel-電話: 2927-2606 Fax/傳真: 2744-8986 E-mail/電影: callab@suncreation.com Website/創華: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130599

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0227)

Description / 儀器名稱 :

Acoustic Calibrator

Manufacturer / 製造商 Model No. / 型號 Svantek

Model No. / 型號 Serial No. / 編號 SV30A 24780

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

· ---

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

H C Chan

Certified By

核證

K Lee

Date of Issue 簽發日期

28 January 2013

. 20 Junuary 2011

The test equipment used for enhibitation are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之淵試器材均可淵潭至國際標準。 局部復印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/f, Tsing Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 按正及檢測實驗所

co 香港新界屯門與安里一號青山灣機樓四樓

Tel·電話: 2927 2606 Fax/傳真: 2744 8986 E-mail·電郵: callab@suncreati

E-mail/電影; callab@suncreation.com Website/掲址: www.suncreation.com

Page 1 of 2

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130599

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL130

Universal Counter

C123541

CL281 TST150A Multifunction Acoustic Calibrator Measuring Amplifier

DC110233 C120886

Test procedure: MA100N.

5. Results:

Sound Level Accuracy 5.1

	Journa Dovortioonino,	704374 2017174 201749						
ſ	UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value				
	Nominal Value	(dB)	(dB)	(dB)				
	94 dB, 1 kHz	94.1	± 0.3	± 0.2				
Ī	114 dB. 1 kHz	114.0						

Frequency Accuracy 5.2

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0,999 99	1 kHz ± 0.02 %	± 0.01

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traccable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

本證書所載校正用之測試器材均可溯源至固際標準。 局部複印本證書需先復本實驗所書面批准

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130598

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0227)

Description / 儀器名稱

Acoustic Calibrator

Manufacturer / 製造商

Svantek

Model No./型號 Serial No./編號

SV30A 24791

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

than Um (H C Chan

Certified By

核證

Date of Issue

28 January 2013

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測潔至國際標準。局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C130598

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

The results presented are the mean of 3 measurements at each calibration point. 2.

3. Test equipment:

Equipment ID

CL130

Description Universal Counter

Multifunction Acoustic Calibrator

C123541 DC110233

Certificate No.

CL281 TST150A

Measuring Amplifier

C120886

Test procedure: MA100N. 4.

5. Results:

Sound Level Accuracy 5.1

Dount Bott Houng				
UUT Measured Value		Mfr's Spec.	Uncertainty of Measured Value	
Nominal Value	(dB)	(dB)	(dB)	
94 dB, 1 kHz	93,9	± 0.3	± 0.2	
114 dB. 1 kHz	113.9			

Frequency Accuracy 5.2

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 00	$1 \text{ kHz} \pm 0.02 \%$	± 0.01

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

本讀書所載校正用之測試器材均可測源至國際標準。 局部複印本證書醫先獲本實驗所書面批准。

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 07-06-2013

Page 1A of 1 pages

Castco LRN: EN0130514-18

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6920 Serial No.: 03H1764AA Instrument No.: W.03.03

Date of Calibration: 20-05-2013

Date of Next Calibration: 20-08-2013

pH Value Check (pH Probe: YSI 6561 - 10E)

<u> </u>					
	Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Reference
	4.00	4.03	0.03		-
	7.02	7.01	-0.01	± 0.2	APHA 21e, 4500-H ⁺ B
	10.06	10.01	-0.05		ĺ

Turbidity Check (Turbidity Sensor: YSI 6136 - 09M100672)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Reference
4.00	3.9	-2.5		
10.00	9.5	-5.0		
20.00	19.0	-5.0	± 10	APHA 21e, 2130B
50.00	50.5	1.0		
100.00	100.5	0.5		1

Conductivity Performance Check (Conductivity Sensor: YSI 6560 - 10C100151)

Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Reference
1412 at 25 °C	1490 at 25 °C	5.5	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: YSI 6560 - 10C100151)

Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Reference
35	34.83	-0.5	± 10	APHA 19e, 2520B

Dissolved Oxygen Check (Dissolved Oxygen Sensor: YSI 6562 - 12A100930)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Reference
8.20	8.27	0.07	± 0.20	APHA 21e, 4500-O
4.76	4.80	0.04	± 0.20	C&G

Water Level Meter Check

Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Reference
1.00	1.01	0.01	± 0.05	YSI Sondes Procedure

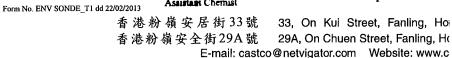
Temperature Check

Temperature oncor					
j	Expected Reading (°C)	Sonde Reading (℃)	Tolerance (°C)	Tolerance Limit (℃)	Method Reference
	25.0	25.1	0.1	± 2.0	Telarc Technical Guide No.3 1986

End of Report

Remark:

Checked by:


1. This thes report supersedes previous test report of Castco LRN: EN0130514-18 issued on 21-05-2013.

LI YIN SHAN
Assistan Chemist

Certified by:

LEE STEPHEN SHU HANG Ph.D.

Technical Director

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 07-06-2013 Page 1A of 1 pages

Castco LRN: EN0130514-19

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6820 Serial No.: 11J101088 Instrument No.: W.03.11

Date of Calibration: 20-05-2013 Date of Next Calibration: 20-08-2013

pH Value Check (pH Probe: YSI 6561 - 11H)

	pri value cheek (pri robe.	. 1010301 1111)			
	Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Reference
ı	(110111)				
ı	4.00	4.06	0.06	!	
ı	7.02	7.03	0.01	± 0.2	APHA 21e, 4500-H ⁺ B
ı	10.06	9.97	-0.09	!	

Turbidity Check (Turbidity Sensor: YSI 6136 - 11J100474)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Reference
4.00	3.8	-5.0		
10.00	9.6	-4.0		
20.00	19.1	-4.5	± 10	APHA 21e, 2130B
50.00	48.8	-2.4		ĺ
100.00	95.5	-4.5		

Conductivity Performance Check (Conductivity Sensor: YSI 6560 - 11J100023)

Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Reference
1412 at 25 °C	1459 at 25 °C	3.3	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: YSI 6560 - 11J100023)

Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Reference
35	33.49	-4.3	± 10	APHA 19e, 2520B

Dissolved Oxygen Check (Dissolved Oxygen Sensor: YSI 6562 - 11J100272)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Reference
8.20	8.18	-0.02	± 0.20	APHA 21e, 4500-O
4.76	4.86	0.10		C&G

Water Level Meter Check

Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Reference
1.00	1.01	0.01	± 0.05	YSI Sondes Procedure

Temperature Check

Expected Reading (°C)	Sonde Reading (℃)	Tolerance (°C)	Tolerance Limit (℃)	Method Reference
25.0	25.1	0.1	± 2.0	Telarc Technical Guide No.3 1986

End of Report

Remark:

1. This thes report supersedes previous test report of Castco LRN: EN0130514-19 issued on 21-05-2013.

Shan Checked by: LI YIN SHAN

Form No. ENV SONDE_T1 dd 22/02/2013 Assistant Chemist

Certified by:

LEE STEPHEN SHU HANG

33, On Kui Street, Fanling, H

香港粉嶺安居街33號 29A, On Chuen Street, Fanling, I 香港粉嶺安全街29A號 E-mail: castco@netvigator.com Website: www

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 20-08-2013

Page 1 of 1 pages

Castco LRN: EN0130816-1

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6920 Serial No.: 02D0293AA Instrument No.: W.03.02

Date of Calibration: 16-08-2013
Date of Next Calibration: 16-11-2013

pH Value Check (pH Probe: Model: 6589, L/N: 12C)

Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Refrence
4.00	4.09	+0.09 +0.10	± 0.2	ADIIA 21- 4500 H ⁺ D
7.02 10.06	7.12 10.09	+0.10	± 0.2	APHA 21e, 4500-H ⁺ B

Turbidity Check (Turbidity Sensor: Model: 6136, S/N: 11J100475)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
4.00	4.0	0.0		_
10.00	9.7	-3.0		
20.00	18.9	-5.5	± 10	APHA 21e, 2130B
50.00	48.2	-3.6		
100.00	96.7	-3.3		

Conductivity Performance Check (Conductivity Sensor: Model: 6560, L/N: 12B100106)

ſ	Expected Read	ing (μS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
Ī	1412	at 25 °C	1481 at 25 °C	+4.9	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: Model: 6560, L/N: 12B100106)

Expected	Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
	35	35.12	+0.3	± 10	APHA 19e, 2520B

Dissolved Oxygen Check (Dissolved Oxygen Sensor: Model: 6562, L/N: 08C100810)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Refrence
8.50	8.48	-0.02	± 0.20	APHA 21e, 4500-O C&G
4.82	4.74	-0.08	1 0.20	711 111 210, 4500-0 C&G

Water Level Meter Check

Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Refrence
1.00	0.97	-0.03	± 0.05	YSI Sondes Procedure Manual

Temperature Check

tomperatare enters				
Expected Reading (°C)	Expected Reading (°C) Sonde Reading (°C)		Tolerance Limit (℃)	Method Refrence
25.0	24.3	-0.7	± 2.0	Telarc Technical Guide No.3 1986

Checked by:

LI YIU WAH

End of Report

Certified by:

LEE STEPHEN SHU HANG

Technical Director

Form No. ENV SONDE_T1 dd 22/02/2013

E-mail: castco@netvigator.com Website: www.castco.com.hk

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 27-08-2013

Page 1A of 1 pages

Castco LRN: EN0130816-2

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6820 Serial No.: 12B100804

Instrument No.: W.03.13
Date of Calibration: 16-08-2013
Date of Next Calibration: 16-11-2013

pH Value Check (pH Probe: Model: 6589, L/N: 12C)

	the chieff (piritode;	1110dol. 0507, Litt. 120)			
	Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Refrence
'	4.00	4.16	+0.16		
	7.02	7.05	+0.03	± 0.2	APHA 21e, 4500-H ⁺ B
<u></u>	10.06	9.98	-0.08	·	111111 210, 4500-11 D

Turbidity Check (Turbidity Sensor: Model: 6136, S/N: 12B100645)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
4.00	3.9	-2.5		
10.00	10.3	-3.0		
20.00	19.1	-4.5	± 10	APHA 21e, 2130B
50.00	49.1	-1.8		111111210, 21500
100.00	99.7	-0.3		

Conductivity Performance Check (Conductivity Sensor: Model: 6560, L/N: 12B100055)

Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
1412 at 25 °C	1522 at 25 °C	+7.8	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: Model: 6560, L/N: 12B100055)

Expected Reading (ppt)	ected Reading (ppt) Sonde Reading (ppt)		Tolerance Limit (%)	Method Refrence	
35	34.72	-0.8	± 10	APHA 19e, 2520B	

Dissolved Oxygen Check (Dissolved Oxygen Sensor: Model: 6562, L/N: 12A100930)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Refrence
8.47 4.87	8.36 4.73	-0.11 -0.14	± 0.20	APHA 21e, 4500-O C&G

Water Level Meter Check

Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Refrence	
1.00	0.98	-0.02	± 0.05	YSI Sondes Procedure Manual	

Temperature Check

Expected Reading (°C)	Sonde Reading (°C)	Sonde Reading (°C) Tolerance (°C) Tolerance Limit		Method Refrence	
25.0	24.9	-0.1	± 2.0	Telarc Technical Guide No.3 1986	

End of Report

Remark: 1. This test report supersedes previous test report of Castco LRN: EN0130816-2 issued on 20-08-2013.

Checked by:____

LI YIU WAH Senior Chemist Certified by:

LEE STEPHEN SHU HANG Ph.D.

Form No. ENV SONDE_T1 dd 22/02/2013

香港粉嶺安居街33號 33, On Kui Street, F 香港粉嶺安全街29A號 29A, On Chuen Street, E-mail: castco@netvigator.com Web

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Impact Air Quality and Noise Monitoring Schedule in August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
-				1-Aug	2-Aug	3-Aug
				24 hr TSP 1 hr TSP X 3		
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
			24 hr TSP 1 hr TSP X 3	Noise		
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
		24 hr TSP 1 hr TSP X 3		Noise		
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
	24 hr TSP 1 hr TSP X 3	Noise			24 hr TSP 1 hr TSP X 3	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
	Noise			24 hr TSP 1 hr TSP X 3		

Air Quality Monitoring Stations

AMS1 - Sha Lo Wan AMS4 - San Tau Noise Monitoring Stations

NMS1 - Sha Lo Wan NMS4 - San Tau

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Impact Air Quality and Noise Monitoring Schedule in September 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Sep	2-Sep		4-Sep			
			24 hr TSP 1 hr TSP X 3	Noise		
8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep
		24 hr TSP 1 hr TSP X 3	Noise			
15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep
	24 hr TSP 1 hr TSP X 3	Noise				24 hr TSP 1 hr TSP X 3
22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep
	Noise				24 hr TSP 1 hr TSP X 3	
29-Sep	30-Sep					
	Noise					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Stations

AMS1 - Sha Lo Wan AMS4 - San Tau **Noise Monitoring Stations**

NMS1 - Sha Lo Wan NMS4 - San Tau

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Impact Water Quality Monitoring Schedule in August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Aug	2-Aug	3-Aug
						Water Quality Monitoring
						Mid-Ebb 10:53 Mid-Flood 18:04
						10.04
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Ebb 12:08 Mid-Flood 18:59		Mid-Ebb 13:15 Mid-Flood 19:51		Mid-Ebb 14:20 Mid-Flood 20:49	
	18.39		19.31		Wild-F100d 20.49	
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Flood 09:54		Mid-Flood *Cancelled		Mid-Ebb 08:14	
	Mid-Ebb 16:03		Mid-Ebb *Cancelled		Mid-Flood 15:40	
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Ebb 11:14		Mid-Ebb 12:52		Mid-Flood 08:00	
	Mid-Flood 18:22		Mid-Flood 19:36		Mid-Ebb 14:18	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
	Water Quality Monitoring		Water Quality Monitoring			Water Quality Monitoring
	stor Quarry Fromtoning					
	Mid-Flood 10:17		Mid-Flood 12:26			Mid-Ebb 09:31
	Mid-Ebb 16:09		Mid-Ebb 17:34			Mid-Flood 17:11

^{*} Cancelled due to advserse weather condition (Typhoon Signal No. 8 and 3)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Impact Water Quality Monitoring Schedule in September 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Sep		3-Sep				
	Water Quality Monitoring Mid-Ebb 11:03 Mid-Flood 17:57		Water Quality Monitoring Mid-Ebb 12:15 Mid-Flood 18:44		Water Quality Monitoring Mid-Ebb 13:25 Mid-Flood 19:40	
	Wiid-Fi00d 17.57		Miu-rioou 18.44		Mid-F1000 19.40	
8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep
	Water Quality Monitoring Mid-Flood 09:09 Mid-Ebb 15:13		Water Quality Monitoring Mid-Flood 10:59 Mid-Ebb 16:46			Water Quality Monitoring Mid-Ebb 07:44 Mid-Flood 15:33
15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep
	Water Quality Monitoring Mid-Ebb 10:04 Mid-Flood 17:16		Water Quality Monitoring Mid-Ebb 11:48 Mid-Flood 18:25			Water Quality Monitoring Mid-Ebb 13:56 Mid-Flood 19:58
22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep
	Water Quality Monitoring Mid-Flood 09:14 Mid-Ebb 15:06		Water Quality Monitoring Mid-Flood 10:50 Mid-Ebb 16:13			Water Quality Monitoring Mid-Ebb 07:02 Mid-Flood 19:53
29-Sep	30-Sep					
	Water Quality Monitoring Mid-Ebb 09:31 Mid-Flood 16:44					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Construction-Phase Dolphin Monitoring in West Lantau (Line Transect Vessel Survey) in August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		•		1-Aug	2-Aug	3-Aug
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
44.1		40.1		45.	46.1	
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
10-Aug	19-Aug	20-Aug	21-Aug	22-Aug	25-Aug	24-Aug
			Line Transect Vessel Survey			
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
		-,			3,1-1,6	71110
	Line Transect Vessel Survey					

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Construction-Phase Dolphin Monitoring in West Lantau (Line Transect Vessel Survey) in September 2013

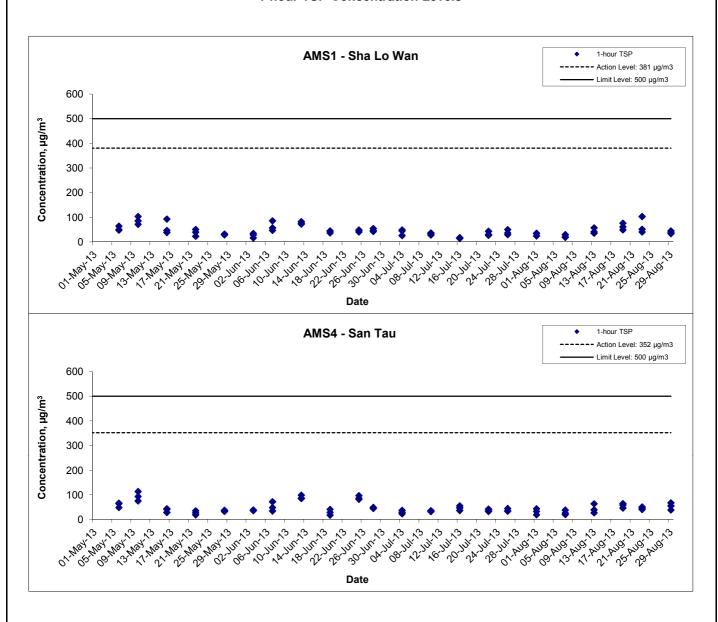
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Sep	2-Sep	3-Sep	4-Sep	5-Sep	6-Sep	7-Sep
8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep
			Line Transect Vessel Survey			
15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep
			Line Transect Vessel Survey			
22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep
29-Sep	30-Sep					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Location AMS1 - Sha Lo Wan


Compling Data	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
1-Aug-13	09:04	Sunny	303.3	755.8	2.8130	2.8156	0.0026	2023.8	2024.8	1.0	1.21	1.21	1.21	72.8	36
1-Aug-13	10:06	Sunny	303.5	755.5	2.7528	2.7553	0.0025	2024.8	2025.8	1.0	1.21	1.21	1.21	72.7	34
1-Aug-13	13:00	Sunny	305.1	755.6	2.7888	2.7906	0.0018	2025.8	2026.8	1.0	1.21	1.21	1.21	72.5	25
7-Aug-13	09:50	Cloudy	303.1	759.8	2.7575	2.7597	0.0022	2050.8	2051.8	1.0	1.22	1.22	1.22	73.0	30
7-Aug-13	10:55	Cloudy	303.3	759.6	2.7527	2.7542	0.0015	2051.8	2052.8	1.0	1.22	1.22	1.22	73.0	21
7-Aug-13	13:02	Cloudy	303.2	759.7	2.7548	2.7562	0.0014	2052.8	2053.8	1.0	1.22	1.22	1.22	73.0	19
13-Aug-13	08:57	Rainy	303.3	754.8	2.7507	2.7549	0.0042	2077.8	2078.8	1.0	1.21	1.21	1.21	72.7	58
13-Aug-13	09:59	Rainy	303.5	754.7	2.7805	2.7835	0.0030	2078.8	2079.8	1.0	1.21	1.21	1.21	72.7	41
13-Aug-13	11:00	Rainy	303.7	754.5	2.7887	2.7913	0.0026	2079.8	2080.8	1.0	1.21	1.21	1.21	72.7	36
19-Aug-13	08:54	Cloudy	302.3	754.5	2.7982	2.8038	0.0056	2104.9	2105.9	1.0	1.22	1.22	1.22	73.1	77
19-Aug-13	09:56	Cloudy	302.5	754.3	2.7541	2.7586	0.0045	2105.9	2106.9	1.0	1.22	1.22	1.22	73.1	62
19-Aug-13	10:59	Cloudy	302.7	754.1	2.7994	2.8030	0.0036	2106.9	2107.9	1.0	1.22	1.22	1.22	73.0	49
23-Aug-13	08:57	Cloudy	298.3	752.0	2.7922	2.7998	0.0076	2131.9	2132.9	1.0	1.23	1.22	1.23	73.5	103
23-Aug-13	09:59	Cloudy	298.5	751.8	2.7601	2.7639	0.0038	2132.9	2133.9	1.0	1.22	1.22	1.22	73.5	52
23-Aug-13	11:00	Cloudy	298.7	751.6	2.7913	2.7943	0.0030	2133.9	2134.9	1.0	1.22	1.22	1.22	73.4	41
29-Aug-13	08:53	Sunny	301.7	755.6	2.8034	2.8067	0.0033	2158.9	2159.9	1.0	1.22	1.22	1.22	73.2	45
29-Aug-13	09:56	Sunny	301.9	755.4	2.8165	2.8190	0.0025	2159.9	2160.9	1.0	1.22	1.22	1.22	73.2	34
29-Aug-13	10:59	Sunny	302.0	755.2	2.8049	2.8077	0.0028	2160.9	2161.9	1.0	1.22	1.22	1.22	73.2	38
														Min	19
														Max	103
														Average	44

Location AMS4 - San Tau

Compling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
1-Aug-13	13:02	Sunny	305.3	755.4	2.7774	2.7806	0.0032	1553.7	1554.7	1.0	1.21	1.21	1.21	72.5	44
1-Aug-13	14:04	Sunny	305.5	755.2	2.7595	2.7619	0.0024	1554.7	1555.7	1.0	1.21	1.21	1.21	72.5	33
1-Aug-13	15:06	Sunny	306.7	755.0	2.7619	2.7633	0.0014	1555.7	1556.7	1.0	1.21	1.20	1.21	72.3	19
7-Aug-13	14:30	Windy	303.4	759.8	2.7792	2.7811	0.0019	1580.7	1581.7	1.0	1.22	1.22	1.22	73.0	26
7-Aug-13	15:31	Windy	303.6	759.6	2.7742	2.7770	0.0028	1581.7	1582.7	1.0	1.22	1.22	1.22	73.0	38
7-Aug-13	16:32	Windy	303.8	759.5	2.7814	2.7829	0.0015	1582.7	1583.7	1.0	1.22	1.22	1.22	72.9	21
13-Aug-13	14:25	Rainy	299.1	754.1	2.7894	2.7941	0.0047	1607.7	1608.7	1.0	1.22	1.22	1.22	73.3	64
13-Aug-13	15:28	Rainy	299.3	753.9	2.7730	2.7750	0.0020	1608.7	1609.7	1.0	1.22	1.22	1.22	73.2	27
13-Aug-13	16:31	Rainy	299.5	753.7	2.7778	2.7807	0.0029	1609.7	1610.7	1.0	1.22	1.22	1.22	73.2	40
19-Aug-13	14:08	Cloudy	302.1	753.4	2.7708	2.7755	0.0047	1634.7	1635.7	1.0	1.21	1.21	1.21	72.5	65
19-Aug-13	15:11	Cloudy	302.3	753.2	2.7565	2.7599	0.0034	1635.7	1636.7	1.0	1.21	1.21	1.21	72.5	47
19-Aug-13	16:13	Cloudy	302.5	753.1	2.7993	2.8036	0.0043	1636.7	1637.7	1.0	1.21	1.21	1.21	72.4	59
23-Aug-13	13:03	Cloudy	300.4	751.1	2.8109	2.8146	0.0037	1661.7	1662.7	1.0	1.21	1.21	1.21	72.6	51
23-Aug-13	14:05	Cloudy	300.6	750.9	2.8259	2.8291	0.0032	1662.7	1663.6	1.0	1.21	1.21	1.21	69.7	46
23-Aug-13	15:08	Cloudy	300.8	750.7	2.7854	2.7884	0.0030	1663.6	1664.6	1.0	1.21	1.21	1.21	72.5	41
29-Aug-13	13:01	Sunny	305.1	754.3	2.8060	2.8100	0.0040	1688.6	1689.6	1.0	1.20	1.20	1.20	72.2	55
29-Aug-13	14:03	Sunny	305.3	754.1	2.7884	2.7933	0.0049	1689.6	1690.6	1.0	1.20	1.20	1.20	72.1	68
29-Aug-13	15:06	Sunny	305.5	753.9	2.7613	2.7641	0.0028	1690.6	1691.6	1.0	1.20	1.20	1.20	72.1	39
		-		-						-				Min	19
														Max	68
														Average	44

App E - 1hr TSP Cinotech

1-hour TSP Concentration Levels

Title Contract No. HY/2011/09
Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road –
Section between HKSAR Boundary and Scenic Hill

Graphical Presentation of 1-hour TSP Monitoring Results

Scale Project
N.T.S No. MA12014

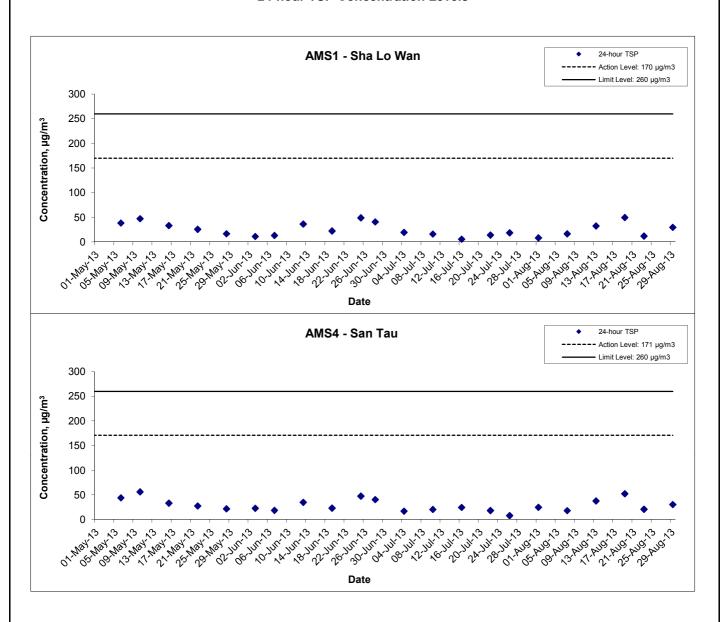
Date
Aug 13

Appendix
E

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AMS1 - Sha Lo Wan


Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
1-Aug-13	15:10	Rainy	305.5	755.2	2.7733	2.7881	0.0148	2026.8	2050.8	24.0	1.21	1.21	1.21	1739.2	9
7-Aug-13	14:05	Cloudy	303.4	759.5	2.7668	2.7960	0.0292	2053.8	2077.8	24.0	1.22	1.22	1.22	1751.3	17
13-Aug-13	13:25	Windy	298.9	754.3	2.7757	2.8330	0.0573	2080.8	2104.8	24.0	1.22	1.22	1.22	1759.0	33
19-Aug-13	13:15	Cloudy	301.9	753.4	2.7955	2.8827	0.0872	2107.9	2131.9	24.0	1.22	1.22	1.22	1754.6	50
23-Aug-13	14:45	Cloudy	300.6	750.9	2.7993	2.8204	0.0211	2134.9	2158.9	24.0	1.22	1.22	1.22	1755.5	12
29-Aug-13	13:10	Cloudy	302.7	754.7	2.7921	2.8444	0.0523	2161.9	2185.9	24.0	1.22	1.22	1.22	1753.8	30
														Min	9
														Max	50
														Average	25

Location AMS4 - San Tau

Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
1-Aug-13	16:08	Rainy	306.9	754.9	2.7679	2.8111	0.0432	1556.7	1580.7	24.0	1.20	1.20	1.20	1734.8	25
7-Aug-13	17:35	Windy	303.9	759.3	2.7762	2.8079	0.0317	1583.7	1607.7	24.0	1.22	1.22	1.22	1750.1	18
13-Aug-13	17:35	Windy	299.6	753.5	2.7625	2.8288	0.0663	1610.7	1634.7	24.0	1.22	1.22	1.22	1756.6	38
19-Aug-13	17:15	Cloudy	302.5	752.9	2.8019	2.8930	0.0911	1637.7	1661.7	24.0	1.21	1.21	1.21	1738.5	52
23-Aug-13	16:15	Cloudy	300.9	750.7	2.8094	2.8457	0.0363	1664.6	1688.6	24.0	1.21	1.21	1.21	1740.9	21
29-Aug-13	16:10	Cloudy	305.5	753.7	2.7771	2.8299	0.0528	1691.6	1715.6	24.0	1.20	1.20	1.20	1730.0	31
														Min	18
														Max	52
														Average	31

App F - 24hr TSP Cinotech

24-hour TSP Concentration Levels

Title Contract No. HY/2011/09
Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road –
Section between HKSAR Boundary and Scenic Hill
Graphical Presentation of 24-hour TSP Monitoring Results

Scale
N.T.S
No. MA12014

Date
Aug 13

Appendix
F

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results

Location NMS	1 - Sha Lo W	an						
Dete)	Time	Un	it: dB (A) (5-n	nin)	Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		11:23	70.4	73.8	57.0			
		11:28	71.7	76.8	46.8	1		
9 Aug 12	Sunny	11:33	69.0	74.1	47.8	71		71 Measured ≤ Limit Level
8-Aug-13	Suring	11:38	70.1	74.5	46.1	1		7 i Measured ≥ Limit Level
		11:43	73.3	78.3	47.7			
		11:48	69.4	71.4	43.4			
		11:00	72.2	77.5	55.2			
		11:05	71.7	75.6	53.9			
15-Aug-13	-13 Cloudy	11:10	72.2	75.2	52.3	70		70 Measured ≤ Limit Level
15-Aug-15		11:15	55.5	57.7	52.2	70		70 Measured ≤ Limit Level
		11:20	71.0	77.0	55.9			
		11:25	56.4	57.9	54.3		66.9	
		11:25	71.2	76.0	54.0		00.9	
		11:30	67.7	73.4	53.6			
20-Aug-13	Cloudy	11:35	72.9	78.1	52.6	72		72 Measured ≤ Limit Level
20-Aug-13	Cloudy	11:40	70.2	75.6	51.3	12		72 Measured ≤ Littil Level
		11:45	75.3	51.2	50.1			
		11:50	70.1	73.8	51.8			
		09:50	67.5	73.9	58.2			
		09:55	69.2	74.9	59.2			
26 Aug 13	Aug-13 Cloudy	10:00	71.1	75.4	62.1	69		69 Measured ≤ Limit Level
20-Aug-13	Cloudy	10:05	68.3	73.8	59.0	09		03 Measureu ≥ Limit Level
		10:10	71.4	75.5	62.8			
		10:15	67.1	72.8	57.1			

Remark: * +3dB(A) Façade correction included

Dete	\\/th	T:	Uni	it: dB (A) (5-n	nin)	Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		14:49	60.9	62.2	58.5			
		14:54	60.1	61.5	58.1			
9 Λυσ 13	Sunny	14:59	59.2	59.9	58.1	60		60 Measured ≤ Limit Leve
8-Aug-13	Suring	15:04	59.4	59.9	58.4	00		00 Measured ≤ Littil Levi
		15:09	58.7	60.5	58.9			
		15:14	59.7	60.5	58.9			
		13:50	60.8	61.6	60.1			
		13:55	61.0	61.8	60.2			
15 Aug 13	-Aug-13 Cloudy	14:00	62.6	63.5	62.0	62		62 Measured ≤ Limit Lev
15-Aug-15		14:05	61.1	61.9	60.2	02		62 Measured ≤ Littlit Lev
		14:10	61.5	62.6	60.3			
		14:15	61.9	62.7	61.1		56.0	
		14:35	59.3	60.8	58.0		50.0	
		14:40	63.1	63.4	57.4			
20-Aug-13	Cloudy	14:45	59.4	61.0	57.4	60		60 Measured ≤ Limit Leve
20-Aug-13	Cloudy	14:50	60.4	62.4	58.3	00		00 Measured ≤ Littil Levi
		14:55	59.3	60.5	57.0			
		15:00	59.3	60.6	58.0			
		13:20	50.2	51.5	48.4			
		13:25	49.2	50.2	48.1			
26-Aug-13	6-Aug-13 Cloudy	13:30	50.8	51.7	50.0	50		50 Measured ≤ Limit Lev
20-Aug-13	Cloudy	13:35	49.5	50.6	48.1	50		Jo Measureu ≥ Liffiit Levi
		13:40	48.8	49.7	48.0			
		13:45	49.6	50.9	48.1			

Remark: * +3dB(A) Façade correction included

App G - Noise Cinotech

Noise Levels NMS1 NMS 1 - Sha Lo Wan Baseline NL, 66.9 dB(A) Limit Level, 75 dB(A) 80 Construction Noise Level dB(A) 75 70 65 60 55 50 45 Vorwah, 3 Date NMS4 NMS 4 - San Tau Baseline NL, 56.0 dB(A) Limit Level, 75 dB(A) 80 Construction Noise Level dB(A) 75 70 65 60 55 50 45 10.W81.3 VO'Way 13 3 JULY 3 NULLY 3 NULLY 3 SCHILLS SCHURTS TIRUTYS

Title Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Construction Noise Monitoring
Results

Scale
N.T.S
Project
No.
MA12014

Date
Aug 13
Appendix
G

APPENDIX H
WATER QUALITY MONITORING
RESULTS AND GRAPHICAL
PRESENTATION

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Part	Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
August A	Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
August A					Surface	1	27.9	27.0	8.3	8.4	24.0	24.6	87.5	87.5	6.0	6.0		1.0	1.0		1.1	0.0	
August A					Juliace	'	27.9	21.9	8.4	0.4	25.1	24.0	87.4	07.5	6.0	0.0	5.0	1.0	1.0		0.6	0.9	
Solution 12 279	3-Aug-13	Rainv	Moderate	10:03	Middle	6.5		28.0		8.3		24 7		84.4		5.8	0.0		13	5.7		1.8	14
Section Sect	o riag io	ramy	Moderate	10.00	wiidaic	0.0		20.0		0.0		2-1.7		04.4		0.0			1.0	0.7		1.0	
SAMP 1 Cloudy Calm 11:52					Bottom	12		27.9		8.3		26.2		78 1		5.3	5.3		14.9			14	
SAUGH 1 1 1 1 2 2 2 2 3 3 6 2 2 3 3 6 2 2 3 3 6 2 3 3 6 3 3 3 3																	*.*						
SAUg-13 Cloudy Galm 1152					Surface	1		28.3		8.2		23.7		80.3		5.8			5.3			3.7	
Sender Grown Fig. 1. Senter Se						, i											5.6						
Policy P	5-Aug-13	Cloudy	Calm	11:52	Middle	6.5		27.9		8.2		26.7		73.9		5.3			3.7	7.1		3.0	3.4
Section Fig. Sect		•																					
7-Aug-13 Sunny Moderate 12:48					Bottom	12		27.6		8.2		28.3		71.3		5.2	5.2		12.2			3.4	
Note Part	+													1					1				
7.Aug-13 Sunny Moderate 12.48 Middle 6 28.6 8.2 8.2 8.2 27.7 7.8 76.5 76.5 75.3 75.9 5.5 5.4 5.5 8.7 73.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3					Surface	1		29.1		8.2		25.0		82.9		6.0			5.2			3.7	
FAUGH FAUG																	5.8						
Bottom 11 28.4 8.2 8.2 29.5 29.6 71.0 70.9 5.1 5.1 5.1 5.1 15.0 15.2 3.0 3.8 3.4	7-Aug-13	Sunny	Moderate	12:48	Middle	6		28.6		8.2		27.6		75.9		5.5			7.3	9.2		4.0	3.7
Sum																							
9-Aug-13 Sunny Moderate 13-45 Middle 6.5 28.7 28.8 8.1 8.1 22.6 23.1 88.1 84.8 6.2 6.2 6.1 5.4 5.6 5.6 5.6 5.0					Bottom	11		28.4		8.2		29.6		70.9		5.1	5.1		15.2			3.4	
9-Aug-13 Sunny Moderate 13:45 Middle 6.5 28.7 28.8 8.1 8.1 22.6 23.1 83.5 64.8 6.0 6.1 6.7 7.0 6.9 6.7 7.0 6.9 7.0	i i																						
9-Aug-13 Sunny Moderate 13:45 Middle 6.5 28.7 28.8 8.1 8.1 26.0 27.1 26.6 71.7 73.0 5.2 5.3 5.3 5.3 6.7 6.9 6.1					Surface	1		29.4		8.1		23.1		84.8		6.1			5.6			5.0	
9-Aug-13 Sunny Moderate 13-49 Modera		_															5.7						١
School 12 284 284 81 81 293 293 672 074 4.9	9-Aug-13	Sunny	Moderate	13:45	Middle	6.5		28.8		8.1		26.6		73.0		5.3			6.9	8.7		3.7	4.4
12-Aug-13 Sunny Calm 15:48 Surface 1 30.6 30.2 8.2 8.2 22.8 22.4 72.8 73.5 5.0 5.0 5.0 5.0 5.1 4.9 4.5 4.4 4.5 5.3 4.9 4.7					D-#	40	28.4	20.4	8.1	0.4	29.3	20.2	67.6	67.4	4.9	4.0	4.0	13.6	40.0		4.9	4.4	
12-Aug-13 Sunny Calm 15:48 Middle 5.5 29.4 29.8 30.2 8.2 22.8 22.4 72.8 73.5 5.0 5.0 5.0 5.0 5.0 4.9 4.5 4.6 5.0 5.1 4.9 4.5 4.6 5.0 5.1 4.9 4.5 4.6 5.0 5					Bottom	12	28.4	28.4	8.1	8.1	29.3	29.3	67.2	67.4	4.9	4.9	4.9	13.5	13.6		3.9	4.4	
12-Aug-13 Sunny Calm 15:48 Middle 5.5 29.4 29.8 8.2 28.2 26.5 26.6 76.7 75.3 5.2 5.0 5.1 4.9 4.4 4.4 4.4 12-Aug-13 Sunny Calm 15:48 Middle 5.5 29.4 29.3 8.2 28.2 26.5 26.6 76.7 77.3 75.3 5.2 5.2 5.2 5.2 7.5 4.9 4.6 4.9 4.7 15:48 Middle 5.5 29.4 29.3 8.2 28.2 28.2 75.6 76.5 76.1 5.1 5.2 5.2 5.2 7.9 8.6 4.0 4.0 4.0 4.3 15:48 Middle 5.5 29.1 29.					Surface	1	30.6	20.2	8.2	0.2	21.9	22.4	74.2	72.5	5.0	5.0		4.1	4.5		5.3	4.0	
12-Aug-13 Suny Calm 15:48 Middle 5.5 29.1 29.3 8.2 8.2 26.6 26.6 76.7 79.9 7.5 5.2 5.2 5.2 7.9 8.6 4.6 4.9 4.9 4.7 Bottom 10 28.7 28.6 28.2 28.2 28.2 75.6 76.1 5.1 5.1 5.2 5.2 5.2 7.9 8.6 4.6 4.0 4.3					Surface	'	29.8	30.2	8.2	6.2	22.8	22.4	72.8	13.5	5.0	5.0	5.1	4.9	4.5		4.4	4.9	
Rough Roug	12 Aug 13	Sunny	Calm	15:48	Middle	5.5	29.4	20.3		8.2	26.5	26.6	76.7	75.3	5.2	5.1	J. 1	4.6	5.0	6.0	5.1	4.0	17
Second S	12-Aug-10	Outliny	Gaiiii	10.40	Middle	5.5		25.5		0.2		20.0		70.0		0.1			5.0	0.0		4.5	7.7
16-Aug-13 Cloudy Rough					Bottom	10		28 7		8.2		28.2		76 1		5.2	5.2		8.6			4.3	
16-Aug-13 Cloudy Rough																	· · -						
16-Aug-13 Cloudy Rough 08:08 Middle 6.5 28.1 28.1 7.9 7.9 15.7 15.7 79.8 79.6 79.7 5.7 5.7 5.7 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4					Surface	1		28.1		7.9		15.5		80.3		5.8			9.2			9.2	
10-Aug-13 Rough							_										5.8						
Bottom 12 28.1 28.1 7.9 7.9 16.3 16.2 16.3 79.4 79.3 79.4 5.7 5.7 5.7 5.7 12.4 12.5	16-Aug-13	Cloudy	Rough	08:08	Middle	6.5		28.1		7.9		15.7		79.7		5.7			10.4	10.7		9.4	9.1
Bottom 12 28.1 7.9 7.9 16.2 16.3 79.3 79.4 5.7 5.7 5.7 12.6 12.5 8.3 8.6																			1				
19-Aug-13 Rainy Rough 10:40 Rough					Bottom	12	_	28.1		7.9		16.3		79.4		5.7	5.7		12.5			8.6	
19-Aug-13 Rainy Rough 10:40 Rough																			1				
19-Aug-13 Rainy Rough 10:40 Middle 5.5 27.6 27.5 27.6 7.9 7.9 7.9 19.0 23.4 21.2 68.1 66.1 67.1 5.1 4.9 5.0 7.4 7.2 7.7 9.2 8.2 8.7 9.3 8.0 8.0 8.0 26.8 25.7 68.3 68.5 5.0 5.0 5.0 5.0 8.5 8.8 9.4 10.0 9.7 21-Aug-13 Cloudy Moderate 12:49 Middle 5.5 27.6 27.6 27.6 27.6 7.9 7.9 7.9 23.5 23.6 70.7 71.4 71.1 5.2 5.2 5.2 12.8 12.6 11.7 4.2 3.9 4.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8					Surface	1	_	28.1		7.7		9.9		65.3	-	5.1			7.1			9.6	
19-Aug-13 Rainy Rough 10:40 Middle 5.5 27.5 27.6 7.9 7.9 23.4 21.2 66.1 67.1 4.9 5.0 7.4 7.2 7.7 8.2 8.7 9.3 9.3 10:40 Moderate 10:40 Moderate 12:49 Middle 5.5 27.6 27.6 27.6 7.9 7.9 7.9 23.4 21.2 66.1 67.1 4.9 5.0 7.4 7.2 7.7 8.2 8.7 9.3 9.4 10.0 9.7 9.3 10:40 Moderate 12:49 Middle 5.5 27.6 27.6 27.6 7.9 7.9 23.5 23.6 23.6 70.7 71.1 5.2 5.2 5.2 12.8 12.6 11.7 4.2 3.9 13.1 12.6 11.7 4.2 3.9 13.1 12.6 11.7 12.3 12.6 11.7 12.3 12.6 11.7 12.3 12.6 12.3 12.6 11.7 12.3 12.6 12																	5.1						
Bottom 10 27.4 27.5 8.0 8.0 8.0 26.8 25.7 68.3 68.5 5.0 5.0 5.0 9.0 8.8 9.4 10.0 9.7 Surface 1 28.1 28.1 7.6 7.6 7.6 13.2 13.1 70.3 68.8 69.6 5.1 5.0 5.0 5.0 5.0 7.8 7.8 7.8 7.8 7.8 7.8 12.4 Middle 5.5 27.6 27.6 7.9 7.9 23.5 23.6 70.7 71.4 71.1 5.2 5.2 5.2 5.2 12.8 12.8 12.8 12.8 12.3 12.6 13.6 12.9 13.1 70.3 6.8 12.9 13.1 70.3 6.8 12.9 13.1 70.3 6.8 12.9 13.1 70.3 6.8 12.9 13.1 70.3 6.8 12.9 13.1 70.3 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.9 13.1 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12	19-Aug-13	Rainy	Rough	10:40	Middle	5.5		27.6		7.9		21.2		67.1		5.0			7.2	7.7		8.7	9.3
21-Aug-13 Cloudy Moderate 12:49 Middle 5.5 27.6 27.6 27.6 7.9 7.9 23.6 23.6 71.4 71.1 5.2 5.2 5.2 15.4 14.6 11.7 4.2 3.9 4.1 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4																							
21-Aug-13 Cloudy Moderate 21-49 Middle 5.5 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6					Bottom	10	27.5	27.5	8.0	8.0	24.6	25.7	68.3	68.5	5.0	5.0	5.0	8.5	8.8		10.0	9.7	
21-Aug-13 Cloudy Moderate 21-49 Middle 5.5 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6					Curfoos	1	28.1	20.4	7.6	7.6	12.9	12.1	70.3	60.6	5.1	E 1		7.8	7.0		3.8	4.0	
21-Aug-13 Cloudy Moderate 12:49 Middle 5.5 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6					Surrace		28.1	∠6.1		0.1	13.2	13.1	68.8	09.60		5.1	5.2	7.7	7.8		4.1	4.0	
27.6 7.9 23.6 71.4 5.2 12.3 3.6 80 80 26.3 26.2 84.8 85.2 5.8 5.9 5.9 15.4 14.6 4.4 4.4	21-Aug-12	Cloudy	Moderate	12.40	Middle	5.5	27.6	27.6		7 0		23.6	70.7	71 1	5.2	5.2	J.2	12.8	12.6	11 7	4.2	3.0	41
I I I I Bottom I 10 I I 275 I I 80 I I 262 I I 852 I I 50 I 50 I I 146 I I I 44 I	21-Aug-13	Cidudy	woodiale	14.40	WINGUIG	5.5		21.0		٠.١		20.0		7 1.1		J.2			12.0	1 1.7		5.5	7.1
27.5 2.0 8.0 5.5 26.0 25.2 5.9 5.5 5.9 5.5 13.8 1.0 4.4					Bottom	10		27.5		8.0		26.2		85.2		5.9	5.9		14.6			44	
					Dottom	10	27.5	27.0	8.0	0.0	26.0	20.2	85.5	00.2	5.9	0.0	0.0	13.8	17.0		4.4	7.7	

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.3 27.2	27.3	7.8 7.9	7.9	12.4 12.4	12.4	78.9 71.9	75.4	5.7 5.2	5.5	5.3	6.9 6.9	6.9		3.3 5.1	4.2	
23-Aug-13	Cloudy	Moderate	13:52	Middle	5.5	27.3 27.2	27.3	7.8 7.9	7.9	15.2 14.3	14.8	75.0 64.5	69.8	5.5 4.5	5.0	5.5	7.4 7.5	7.5	8.4	5.9 4.4	5.2	4.5
				Bottom	10	27.2 27.2	27.2	7.9 7.9	7.9	20.6 18.3	19.5	73.1 64.5	68.8	5.2 4.5	4.9	4.9	11.1 10.5	10.8		3.9 4.1	4.0	
				Surface	1	27.8 27.5	27.7	7.7 7.7	7.7	12.9 13.8	13.4	87.6 88.0	87.8	6.0 6.0	6.0	6.0	8.4 8.2	8.3		4.8 3.7	4.3	
26-Aug-13	Sunny	Calm	15:42	Middle	6	27.3 27.3	27.3	7.9 7.9	7.9	23.7 23.7	23.7	84.9 84.2	84.6	5.9 5.9	5.9	0.0	9.8 9.3	9.6	11.7	3.9 4.0	4.0	4.7
				Bottom	11	27.1 27.1	27.1	7.9 7.9	7.9	27.7 27.7	27.7	77.0 77.2	77.1	5.6 5.6	5.6	5.6	16.8 17.3	17.1		5.8 5.8	5.8	
				Surface	1	28.5 28.5	28.5	7.4 7.4	7.4	5.9 5.9	5.9	91.1 88.4	89.8	6.9 6.7	6.8	6.0	6.6 6.5	6.6		3.8 4.3	4.1	
28-Aug-13	Fine	Calm	17:43	Middle	6	26.7 26.7	26.7	8.0 8.0	8.0	22.6 23.0	22.8	68.3 67.4	67.9	5.1 5.0	5.1	0.0	8.4 8.4	8.4	11.2	4.8 5.5	5.2	5.0
				Bottom	11	26.6 26.6	26.6	8.0 8.0	8.0	23.8 23.8	23.8	65.4 65.3	65.4	4.9 4.9	4.9	4.9	18.1 18.9	18.5		5.8 5.7	5.8	
				Surface	1	28.3 27.4	27.9	7.8 7.9	7.9	8.8 8.8	8.8	76.9 77.8	77.4	5.7 5.8	5.8	5.4	4.1 4.1	4.1		3.7 3.1	3.4	
31-Aug-13	Cloudy	Moderate	09:24	Middle	7	28.3 26.6	27.5	7.7 7.9	7.8	21.5 23.2	22.4	68.7 68.8	68.8	5.0 5.0	5.0	0.4	4.6 4.8	4.7	6.4	4.2 2.8	3.5	3.6
				Bottom	13	27.4 26.6	27.0	7.9 8.0	8.0	29.6 29.7	29.7	67.8 67.7	67.8	4.9 4.9	4.9	4.9	10.6 9.9	10.3		4.8 3.2	4.0	

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Γurbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	1 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.3 28.3	28.3	8.3 8.3	8.3	22.6 22.6	22.6	87.7 87.2	87.5	6.0 6.0	6.0	0.0	5.6 5.6	5.6		1.7 1.5	1.6	
3-Aug-13	Rainy	Moderate	17:31	Middle	7	28.3 28.3	28.3	8.3 8.3	8.3	20.1 24.1	22.1	84.5 85.1	84.8	5.9 5.8	5.9	6.0	5.6 5.5	5.6	10.4	2.5 0.6	1.6	1.6
				Bottom	13	28.1 28.1	28.1	8.3 8.3	8.3	24.2 24.2	24.2	80.7 80.1	80.4	5.5 5.5	5.5	5.5	19.4 20.3	19.9		1.5 1.5	1.5	
				Surface	1	30.0 29.8	29.9	8.0 8.0	8.0	15.2 15.3	15.3	81.9 82.3	82.1	6.0 6.0	6.0		6.9 7.2	7.1		5.6 6.7	6.2	
5-Aug-13	Cloudy	Calm	18:38	Middle	6	29.2 29.1	29.2	8.1 8.1	8.1	18.2 19.1	18.7	75.8 78.9	77.4	5.6 5.8	5.7	5.9	8.8 8.7	8.8	10.3	5.5 4.9	5.2	5.5
				Bottom	11	28.4	28.4	8.1 8.1	8.1	23.0	22.7	69.5 72.1	70.8	5.1 5.3	5.2	5.2	15.8 14.3	15.1		5.7 4.6	5.2	
				Surface	1	29.3 29.3	29.3	8.2 8.2	8.2	23.1 24.1	23.6	83.4 83.6	83.5	6.0 6.0	6.0		4.0 4.1	4.1		4.8 6.4	5.6	
7-Aug-13	Fine	Moderate	19:13	Middle	7	28.8	28.8	8.2 8.2	8.2	26.6	26.5	77.9 79.7	78.8	5.6 5.7	5.7	5.9	5.2	5.1	7.6	4.7 5.6	5.2	5.6
				Bottom	13	28.5 28.4	28.5	8.2 8.2	8.2	29.0 27.8	28.4	69.7 69.7	69.7	5.0 5.0	5.0	5.0	13.5 13.4	13.5		6.0 5.9	6.0	
				Surface	1	29.3 29.3	29.3	8.2 8.2	8.2	24.1 24.1	24.1	81.5 82.0	81.8	5.9 5.9	5.9		5.6 5.5	5.6		2.9 1.9	2.4	
9-Aug-13	Sunny	Moderate	20:25	Middle	5.5	28.7 28.7	28.7	8.1 8.1	8.1	27.3 27.2	27.3	75.0 74.1	74.6	5.4 5.3	5.4	5.7	6.9 6.9	6.9	8.1	3.3	3.3	2.9
				Bottom	10	28.4 28.4	28.4	8.1 8.1	8.1	29.2 27.7	28.5	68.3 68.0	68.2	4.9 4.9	4.9	4.9	11.9 11.8	11.9		3.5 2.7	3.1	
				Surface	1	29.8 29.8	29.8	8.0 8.0	8.0	20.4	20.4	78.8 78.1	78.5	5.4 5.4	5.4		4.4 4.3	4.4		4.2 3.2	3.7	
12-Aug-13	Sunny	Calm	10:02	Middle	5.5	29.4 29.4	29.4	8.0 8.0	8.0	22.6 21.9	22.3	76.0 76.6	76.3	5.2 5.3	5.3	5.4	5.9 6.3	6.1	9.2	3.3 4.3	3.8	3.9
				Bottom	10	29.1 29.1	29.1	8.1 8.1	8.1	24.0	24.1	74.1 75.3	74.7	5.1 5.2	5.2	5.2	17.2 17.1	17.2		4.8	4.1	
				Surface	1	28.2	28.2	7.8	7.8	15.0	15.0	77.4	77.5	5.6	5.6		15.1	14.1		9.7	11.6	
16-Aug-13	Rainy	Moderate	15:10	Middle	6	28.2	28.3	7.8	7.8	14.9 15.3	15.3	77.5 76.4 76.3	76.4	5.6 5.5	5.5	5.6	13.1	16.4	16.6	13.5	10.2	11.0
				Bottom	11	28.3	28.3	7.8	7.8	15.3 16.3	16.3	74.7	74.5	5.5 5.3	5.3	5.3	16.6 19.6	19.2		8.8 11.2	11.2	
				Surface	1	28.3	28.2	7.8 7.3	7.4	7.9 7.4	7.7	74.3 67.8 68.4	68.1	5.3 5.2 5.3	5.3		4.3	4.3		9.8	10.1	
19-Aug-13	Rainy	Rough	17:52	Middle	5.5	28.2 28.2 28.2	28.2	7.4 7.5 7.5	7.5	9.7 9.5	9.6	68.4 67.7 68.3	68.0	5.3 5.3 5.3	5.3	5.3	7.1 8.5	7.8	9.6	10.4 12.4 19.0	15.7	13.4
				Bottom	10	28.2 28.2	28.2	7.5 7.5 7.5	7.5	9.8 9.6	9.7	61.0 60.6	60.8	4.9 4.8	4.9	4.9	16.2 16.9	16.6		17.0 11.8	14.4	
				Surface	1	28.2 28.2	28.2	7.5 7.5 7.5	7.5	10.6 10.6	10.6	75.4 68.5	72.0	5.4 5.0	5.2		19.8 21.0	20.4		11.2 10.8	11.0	
21-Aug-13	Rainy	Rough	19:29	Middle	5.5	28.2 28.6	28.4	7.5 7.5 7.7	7.6	10.6 13.2	11.9	75.0 67.2	71.1	5.4 4.9	5.2	5.2	20.1 19.0	19.6	23.0	9.5 9.7	9.6	10.1
				Bottom	10	28.2 28.6	28.4	7.7 7.5 7.7	7.6	13.2 13.6 13.2	13.4	69.3 67.0	68.2	5.1 4.9	5.0	5.0	29.0 28.7	28.9		10.3	9.6	
				l		20.0	1	1.1	<u> </u>	13.2	l l	07.0		4.9	<u> </u>		20.1	<u> </u>		0.0		

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.3 27.3	27.3	7.6 7.6	7.6	10.7 10.7	10.7	78.8 78.3	78.6	5.9 5.9	5.9	5.7	7.9 8.0	8.0		6.8 6.5	6.7	
23-Aug-13	Cloudy	Moderate	07:43	Middle	5.5	27.3 27.3	27.3	7.5 7.5	7.5	11.3 11.4	11.4	73.0 72.5	72.8	5.4 5.4	5.4	5.7	7.4 7.6	7.5	7.5	6.5 6.1	6.3	6.6
				Bottom	10	27.4 27.4	27.4	7.6 7.6	7.6	11.9 12.0	12.0	72.8 72.4	72.6	5.4 5.4	5.4	5.4	7.1 7.0	7.1		6.8 6.5	6.7	
				Surface	1	26.9 26.9	26.9	7.6 7.6	7.6	12.3 12.3	12.3	81.6 82.7	82.2	6.0 6.1	6.1	5.6	6.3 5.8	6.1		4.5 4.4	4.5	
26-Aug-13	Sunny	Calm	10:14	Middle	7	26.9 26.9	26.9	7.6 7.6	7.6	12.5 12.4	12.5	69.6 69.5	69.6	5.1 5.1	5.1	5.0	9.6 9.5	9.6	8.9	4.1 3.7	3.9	4.4
				Bottom	13	26.9 26.9	26.9	7.6 7.7	7.7	22.4 24.8	23.6	64.7 64.3	64.5	4.8 4.8	4.8	4.8	10.6 11.3	11.0		5.2 4.6	4.9	
				Surface	1	27.8 27.8	27.8	7.4 7.4	7.4	7.2 7.2	7.2	85.2 84.6	84.9	6.5 6.4	6.5	5.9	6.3 6.2	6.3		7.6 16.2	11.9	
28-Aug-13	Sunny	Calm	12:05	Middle	7	27.7 27.7	27.7	7.5 7.5	7.5	8.4 8.6	8.5	71.3 71.2	71.3	5.3 5.3	5.3	5.9	5.1 5.1	5.1	8.3	16.2 12.4	14.3	11.1
				Bottom	13	27.2 27.2	27.2	7.9 7.9	7.9	18.9 19.2	19.1	66.5 66.0	66.3	5.0 4.9	5.0	5.0	13.3 13.6	13.5		7.7 6.5	7.1	
	_		_	Surface	1	28.5 28.5	28.5	7.7 7.7	7.7	9.7 9.7	9.7	80.9 82.9	81.9	6.0 6.2	6.1	6.0	6.9 6.2	6.6		3.2 2.9	3.1	_
31-Aug-13	Rainy	Moderate	17:01	Middle	6	28.0 28.0	28.0	7.7 7.7	7.7	14.8 14.8	14.8	78.8 77.4	78.1	5.8 5.7	5.8	0.0	6.7 6.2	6.5	8.7	2.3 3.5	2.9	2.9
				Bottom	11	27.2 27.1	27.2	7.8 7.8	7.8	27.8 28.0	27.9	75.5 73.3	74.4	5.4 5.2	5.3	5.3	13.9 12.2	13.1		2.6 2.8	2.7	

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.0	28.0	8.4	8.4	25.3	25.3	97.1	96.8	6.6	6.6		1.6	1.7		2.0	1.5	
				Surface		28.0	20.0	8.4	0.4	25.3	25.5	96.5	90.6	6.6	0.0	6.6	1.7	1.7		1.0	1.5	
2 410 12	Dainy	Madarata	00:12	Middle	2.5	28.0	28.0	8.4	8.4	25.3	25.3	95.4	95.5	6.5	6.5	0.0	1.8	1.0	2.5	1.5	1.5	2.2
3-Aug-13	Rainy	Moderate	09:13	Middle	3.5	28.0	28.0	8.4	8.4	25.3	25.3	95.5	95.5	6.5	6.5		1.8	1.8	3.5	1.4	1.5	2.2
				D-#	6	27.9	07.0	8.3	0.0	26.3	00.0	81.4	00.7	5.5			7.0			1.6	2.0	
				Bottom	6	27.9	27.9	8.3	8.3	26.3	26.3	79.9	80.7	5.4	5.5	5.5	6.7	6.9		5.5	3.6	
i						29.0		8.1		22.4		85.7		6.2			6.1			2.1		
				Surface	1	28.9	29.0	8.1	8.1	19.4	20.9	86.3	86.0	6.2	6.2		6.1	6.1		2.7	2.4	
l	<u>.</u>					27.5		8.2		28.5		74.0		5.3		5.8	12.3		1	3.2		
5-Aug-13	Cloudy	Calm	10:48	Middle	3	27.7	27.6	8.2	8.2	28.1	28.3	74.8	74.4	5.3	5.3		11.1	11.7	10.2	3.1	3.2	3.1
						27.5		8.2		29.0		70.8		5.0			12.5			2.0		
				Bottom	5	27.5	27.5	8.2	8.2	29.1	29.1	72.4	71.6	5.1	5.1	5.1	13.1	12.8		5.5	3.8	
i i		1				29.6	l I	8.2	1	21.3		93.9		6.5		<u> </u>	4.8	1	Ì	2.2		
				Surface	1	29.4	29.5	8.2	8.2	21.4	21.4	82.1	88.0	5.7	6.1		4.8	4.8		3.0	2.6	
						29.4		8.2		26.1		98.3		6.7	-	6.4	7.8	+		5.1		
7-Aug-13	Sunny	Moderate	13:32	Middle	4	29.1	29.1	8.2	8.2	25.9	26.0	94.9	96.6	6.5	6.6		7.0	7.9	8.8	4.2	4.7	4.0
						28.4		8.2		27.5		79.9		5.5			14.2			3.7		
				Bottom	7	28.4	28.4	8.2	8.2	27.5	27.5	83.8	81.9	5.7	5.6	5.6	13.4	13.8		5.5	4.6	
ļ <u> </u>																						
				Surface	1	29.9	29.9	8.1	8.1	21.5	21.1	99.5	98.4	6.9	6.9		5.0	5.2		2.3	3.0	
						29.8		8.1		20.6		97.3		6.8		6.3	5.4			3.7		
9-Aug-13	Sunny	Moderate	12:53	Middle	3.5	28.8	28.8	8.1	8.1	26.1	26.1	80.9	81.2	5.6	5.7		9.1	8.9	10.6	3.5	3.9	3.8
	,					28.8		8.1		26.1		81.5		5.7			8.7			4.2		
				Bottom	6	28.4	28.4	8.2	8.2	28.4	28.4	73.1	73.1	5.1	5.1	5.1	17.2	17.6		3.2	4.4	
						28.4	_	8.2		28.4		73.0		5.1			18.0			5.5		
				Surface	1	29.9	30.0	8.1	8.1	21.4	21.4	98.2	97.6	6.8	6.8		3.5	3.4		7.1	6.1	
					, i	30.0		8.1	4	21.3		97.0		6.7		6.1	3.2			5.1		
12-Aug-13	Sunny	Calm	14:35	Middle	3.5	29.1	29.0	8.0	8.1	25.3	25.7	77.3	77.1	5.3	5.3		6.9	7.4	7.9	3.9	4.5	5.1
127.09.0	ouy	- Cu			0.0	28.9	20.0	8.1	0	26.0	20	76.8		5.3	0.0		7.9			5.0		0.1
				Bottom	6	28.1	28.1	8.1	8.1	29.5	29.6	71.7	71.5	4.9	4.9	4.9	13.1	13.0		4.0	4.8	
				Bottom	ŭ	28.0	20	8.1	0	29.6	20.0	71.3		4.9			12.9			5.5		
				Surface	1	28.0	28.0	7.8	7.8	15.3	15.3	81.6	81.5	6.2	6.2		11.9	11.9		7.7	8.3	
				Gunade	· ·	28.0	20.0	7.8	7.0	15.3	10.0	81.3	01.0	6.2	0.2	6.2	11.8	11.0		8.8	0.0	
16-Aug-13	Cloudy	Rough	06:46	Middle	3	28.0	28.0	7.8	7.8	15.4	15.4	79.8	79.9	6.1	6.1	0.2	11.8	11.8	11.0	8.2	8.0	7.6
10-Aug-10	Oloudy	Rough	00.40	Wildaic	3	28.0	20.0	7.8	7.0	15.4	10.4	80.0	75.5	6.1	0.1		11.7	11.0	11.0	7.7	0.0	7.0
				Bottom	5	28.2	28.2	7.8	7.8	16.5	16.5	77.1	77.0	5.9	5.9	5.9	9.3	9.3		7.7	6.6	
				Dottom	3	28.2	20.2	7.8	7.0	16.5	10.5	76.9	77.0	5.9	5.9	5.9	9.3	9.5		5.5	0.0	
				Curfoso	1	28.7	28.7	7.6	7.6	4.5	4.5	84.7	84.6	6.8	6.8		7.9	8.4		2.3	2.7	
				Surface	1	28.7	20.7	7.6	7.0	4.4	4.5	84.5	04.0	6.8	0.0	6.4	8.9	0.4		3.0	2.1	
10 10 12	Dainy	Dough	09:39	Middle	4	28.0	28.0	7.9	7.9	22.3	22.3	79.5	79.0	6.0	6.0	0.4	11.5	11.5	13.9	5.2	4.8	4.5
19-Aug-13	Rainy	Rough	09.39	Middle	4	28.0	20.0	7.9	7.9	22.3	22.3	78.5	79.0	5.9	6.0		11.5	11.5	13.9	4.3	4.0	4.5
				Datta	7	27.8	07.0	8.0	0.0	28.2	00.0	81.1	00.0	5.9	5.0		22.3	04.7		6.5	0.0	
				Bottom	7	27.8	27.8	8.0	8.0	28.3	28.3	80.0	80.6	5.9	5.9	5.9	21.0	21.7		5.5	6.0	
i				04	4	28.6	20.0	7.3	7.0	7.5	7.0	70.8	70.4	5.4			7.8	0.0		3.7	0.7	
				Surface	1	28.6	28.6	7.3	7.3	7.6	7.6	70.0	70.4	5.3	5.4		8.1	8.0		3.6	3.7	
	011	, , , , , , ,	44.54	N. C. L. U.		27.8	07.0	7.9	7.0	27.2	07.4	82.8	00.0	5.8		5.7	13.7	45.0	45.0	6.6	0.0	
21-Aug-13	Cloudy	Moderate	11:54	Middle	4	27.8	27.8	7.9	7.9	27.5	27.4	83.8	83.3	5.9	5.9		16.9	15.3	15.0	6.6	6.6	6.2
					_	27.8		8.0		28.0		80.8		5.7			20.9			11.0		
				Bottom	7	27.8	27.8	8.0	8.0	28.1	28.1	79.9	80.4	5.6	5.7	5.7	22.5	21.7		5.5	8.3	
									•				•									

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСР	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	7.8 7.8	7.8	11.2 11.2	11.2	101.3 101.7	101.5	7.7 7.7	7.7	7.6	5.5 5.5	5.5		3.7 4.3	4.0	
23-Aug-13	Cloudy	Moderate	12:50	Middle	3	27.8 27.8	27.8	7.8 7.8	7.8	12.2 12.3	12.3	96.7 96.2	96.5	7.4 7.3	7.4	7.0	9.3 9.2	9.3	11.4	3.1 3.2	3.2	3.8
				Bottom	5	27.7 27.7	27.7	7.7 7.7	7.7	13.2 13.2	13.2	88.8 88.8	88.8	6.8 6.8	6.8	6.8	19.5 19.1	19.3		3.0 5.5	4.3	
				Surface	1	28.6 28.6	28.6	7.6 7.5	7.6	9.5 9.6	9.6	79.6 79.6	79.6	5.9 5.9	5.9	5.7	4.7 4.6	4.7		2.9 2.6	2.8	
26-Aug-13	Sunny	Calm	14:25	Middle	4	27.2 27.2	27.2	7.9 7.9	7.9	24.8 24.9	24.9	79.9 79.5	79.7	5.5 5.5	5.5	5.7	5.2 5.4	5.3	6.8	3.1 2.8	3.0	3.2
				Bottom	7	27.1 27.1	27.1	8.0 8.0	8.0	28.4 28.4	28.4	80.7 81.4	81.1	5.5 5.5	5.5	5.5	10.2 10.3	10.3		2.3 5.5	3.9	
				Surface	1	28.7 28.9	28.8	7.6 7.8	7.7	9.5 7.7	8.6	89.6 90.0	89.8	6.6 6.7	6.7	6.8	12.7 14.8	13.8		6.5 4.3	5.4	
28-Aug-13	Fine	Calm	18:25	Middle	4	27.6 27.4	27.5	7.8 7.8	7.8	24.7 24.8	24.8	103.0 96.2	99.6	7.1 6.6	6.9	0.0	13.0 13.6	13.3	14.7	5.0 4.0	4.5	5.1
				Bottom	7	27.3 27.2	27.3	7.8 7.9	7.9	27.5 27.6	27.6	95.4 92.1	93.8	6.5 6.3	6.4	6.4	16.6 17.5	17.1		5.5 5.5	5.5	
				Surface	1	27.6 27.6	27.6	7.7 7.7	7.7	10.2 9.8	10.0	79.2 78.6	78.9	5.9 5.9	5.9	5.7	3.8 3.8	3.8		2.7 2.6	2.7	
31-Aug-13	Cloudy	Moderate	08:03	Middle	4	26.6 26.6	26.6	7.9 7.9	7.9	22.2 22.2	22.2	73.0 73.1	73.1	5.4 5.4	5.4	0.7	4.1 4.1	4.1	5.8	3.0 2.4	2.7	3.2
				Bottom	7	26.1 26.1	26.1	7.9 7.9	7.9	26.5 26.5	26.5	69.8 69.7	69.8	5.1 5.1	5.1	5.1	9.3 9.4	9.4		3.1 5.5	4.3	

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	·· (··· <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.4	28.4	8.2	8.2	20.7	20.8	92.0	91.7	6.4	6.4		4.7	4.7		2.3	1.7	
				Surface		28.4	20.4	8.2	0.2	20.8	20.0	91.3	31.7	6.3	0.4	6.1	4.7	4.7		1.0	1.7	
3-Aug-13	Rainy	Moderate	16:32	Middle	3	28.2	28.2	8.2	8.2	21.7	21.8	82.8	83.0	5.7	5.8	0.1	6.4	6.5	5.9	2.8	3.5	2.4
o riag io	ramiy	Moderate	10.02	Miladic	ŭ	28.2	20.2	8.2	0.2	21.8	21.0	83.1	00.0	5.8	0.0		6.5	0.0	0.0	4.1	0.0	
				Bottom	5	28.1	28.2	8.2	8.2	21.9	21.9	81.2	81.0	5.6	5.6	5.6	6.7	6.6		2.1	2.0	
					_	28.2		8.2	ļ	21.8		80.8		5.6		*.*	6.5			1.8		
				Surface	1	29.5	29.5	8.0	8.0	16.7	16.8	88.0	88.4	6.3	6.4		6.6	7.2		4.5	4.7	
						29.5		8.0		16.8		88.7		6.4		6.3	7.7		-	4.9		
5-Aug-13	Cloudy	Calm	17:33	Middle	3.5	29.3	29.3	8.0	8.0	17.9	17.8	83.8	84.1	6.0	6.1		8.1	7.9	8.8	5.0	4.8	5.0
						29.3		8.0		17.7		84.4		6.1			7.7		1	4.5		
				Bottom	6	28.9 28.8	28.9	8.0 8.0	8.0	20.1 21.1	20.6	80.0 81.2	80.6	5.7 5.8	5.8	5.8	10.4 12.3	11.4		5.8 5.1	5.5	
-							1						1					1	1			
				Surface	1	29.5	29.5	8.2	8.2	21.3	21.2	87.4	89.6	6.1	6.3		5.4	5.5		3.8	4.4	
						29.5 29.1		8.2 8.2		21.1 25.4		91.7 95.6		6.4 6.5		6.3	5.6 7.8	1	1	4.9 4.1		
7-Aug-13	Fine	Moderate	20:40	Middle	3.5	28.5	28.8	8.2	8.2	26.3	25.9	95.0 87.4	91.5	6.0	6.3		7.6	7.6	7.3	3.7	3.9	3.9
						28.3		8.2		27.6		72.7		5.0			8.9		1	4.3		
				Bottom	6	28.4	28.4	8.2	8.2	27.6	27.6	74.6	73.7	5.1	5.1	5.1	8.7	8.8		2.5	3.4	
						28.8		8.2		21.4		102.7		7.2			4.8			2.0		
				Surface	1	28.8	28.8	8.2	8.2	21.4	21.4	102.0	102.4	7.1	7.2		4.7	4.8		3.4	2.7	
	_					27.9		8.2		25.8		90.4		6.3		6.8	6.0		1	4.0		
9-Aug-13	Sunny	Moderate	19:21	Middle	3.5	28.1	28.0	8.2	8.2	25.3	25.6	91.3	90.9	6.3	6.3		5.7	5.9	8.7	3.9	4.0	4.0
				D. 11	_	27.4	07.4	8.2	0.0	28.5	00.0	74.6	74.0	5.2		5.0	15.9	45.5	1	5.3	5.0	
				Bottom	6	27.3	27.4	8.2	8.2	28.6	28.6	73.8	74.2	5.1	5.2	5.2	15.1	15.5		5.2	5.3	
				Surface	1	29.6	29.7	8.0	8.0	22.1	22.1	84.1	84.1	5.8	5.8		5.2	5.8		4.6	3.8	
				Surface		29.7	29.7	8.0	8.0	22.1	22.1	84.0	04.1	5.8	5.6	5.8	6.4	5.6		2.9	3.0	
12-Aug-13	Sunny	Calm	08:18	Middle	3.5	29.6	29.6	8.0	8.0	22.2	22.2	81.9	81.7	5.7	5.7	5.0	5.3	5.5	8.3	3.3	3.9	3.9
12-Aug-10	Outliny	Callii	00.10	Wildelic	0.0	29.5	25.0	8.0	0.0	22.2	22.2	81.5	01.7	5.7	5.7		5.6	5.5	0.0	4.4	0.5	0.0
				Bottom	6	29.0	29.0	8.1	8.1	25.8	25.8	76.7	76.6	5.3	5.3	5.3	12.7	13.7		4.6	3.9	
					•	29.0		8.1	4	25.8		76.4		5.3	***		14.7			3.2		
				Surface	1	28.1	28.1	7.7	7.7	15.1	15.1	81.1	81.0	6.2	6.2		14.9	14.9		8.3	8.2	
						28.1		7.7		15.1		80.8		6.2		6.1	14.8			8.0		
16-Aug-13	Rainy	Moderate	14:12	Middle	3.5	28.2	28.2	7.7	7.7	15.5	15.5	79.0	79.1	6.0	6.0		16.3	16.2	16.9	7.8	7.6	8.5
	-					28.2 28.2		7.7		15.5 16.2		79.1 77.4		6.0 5.9			16.0 19.4		1	7.3 12.2		
				Bottom	6	28.2	28.2	7.7 7.7	7.7	16.2	16.2	77.4 77.4	77.4	5.9	5.9	5.9	19.4	19.7		7.2	9.7	
						28.6	<u> </u>	7.2	<u> </u>	6.1		74.0		5.5			14.3	1		9.0	1	
				Surface	1	28.6	28.6	7.2	7.2	6.1	6.1	74.0	73.9	5.5 5.5	5.5		13.7	14.0		26.7	17.9	
						28.5	1	7.3		8.5		72.3		5.4		5.5	22.0	1	1	9.3		
19-Aug-13	Rainy	Rough	16:56	Middle	3.5	28.5	28.5	7.3	7.3	9.8	9.2	72.6	72.5	5.4	5.4		21.8	21.9	21.9	9.3	9.3	15.6
					_	28.5		7.6		14.6		72.2		5.6			28.7		i	28.7		
				Bottom	6	28.4	28.5	7.7	7.7	12.4	13.5	69.8	71.0	5.5	5.6	5.6	31.1	29.9		10.3	19.5	
				0	,	28.2	00.0	7.1	7.0	7.2	7.0	69.4	00.0	5.5			14.5	45.0	Ì	13.7	44.0	
				Surface	1	28.2	28.2	7.2	7.2	7.2	7.2	69.2	69.3	5.4	5.5		15.5	15.0		8.3	11.0	
21 Aug 12	Doiny	Bough	18:32	Middle	4	28.3	28.3	7.1	7.2	7.8	7.8	68.8	68.8	5.4	5.4	5.5	20.1	20.1	22.3	23.0	24.2	17.2
21-Aug-13	Rainy	Rough	10.32	ivildale	4	28.3	20.3	7.2	1.2	7.8	1.0	68.7	00.0	5.4	5.4		20.0	20.1	22.3	25.3	24.2	17.2
				Bottom	7	28.3	28.3	7.6	7.7	16.9	17.3	76.5	76.6	5.7	5.7	5.7	32.9	31.8		17.4	16.4	
				DOLLOITI	′	28.3	20.0	7.7	1.1	17.7	17.3	76.7	70.0	5.7	3.1	3.1	30.6	31.0	<u> </u>	15.4	10.4	<u> </u>
			_			_						_	_	_	_	_		_				

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	•	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.7 27.7	27.7	7.5 7.5	7.5	10.4 10.4	10.4	86.7 86.6	86.7	6.6 6.6	6.6	6.4	8.2 8.1	8.2		4.9 5.9	5.4	
23-Aug-13	Cloudy	Moderate	06:34	Middle	3.5	27.8 27.8	27.8	7.5 7.5	7.5	11.4 11.4	11.4	81.2 80.9	81.1	6.2 6.2	6.2	0.4	12.4 12.1	12.3	11.7	5.8 5.4	5.6	5.2
				Bottom	6	27.8 27.8	27.8	7.6 7.6	7.6	12.2 12.2	12.2	79.4 79.5	79.5	6.0 6.1	6.1	6.1	14.5 14.5	14.5		5.2 4.1	4.7	
				Surface	1	27.6 27.7	27.7	7.7 7.7	7.7	14.3 14.3	14.3	84.7 81.0	82.9	6.2 5.9	6.1	5.9	6.1 5.1	5.6		7.2 5.5	6.4	
26-Aug-13	Sunny	Calm	08:33	Middle	3.5	27.3 27.3	27.3	7.8 7.8	7.8	19.3 19.0	19.2	79.3 77.1	78.2	5.6 5.5	5.6	5.9	8.0 7.9	8.0	8.1	6.1 4.9	5.5	5.7
				Bottom	6	27.3 27.2	27.3	7.9 7.9	7.9	23.6 24.4	24.0	78.8 76.9	77.9	5.5 5.3	5.4	5.4	9.9 11.6	10.8		4.4 5.7	5.1	
				Surface	1	28.8 28.7	28.8	7.4 7.5	7.5	6.6 6.7	6.7	84.8 74.2	79.5	6.3 5.5	5.9	5.8	10.8 13.5	12.2		3.3 4.1	3.7	
28-Aug-13	Sunny	Calm	13:10	Middle	4	28.2 28.2	28.2	7.4 7.4	7.4	9.8 10.2	10.0	74.7 75.7	75.2	5.5 5.6	5.6	5.0	12.4 12.8	12.6	14.2	6.2 4.8	5.5	4.8
				Bottom	7	28.1 27.8	28.0	7.5 7.8	7.7	11.2 12.0	11.6	75.1 76.2	75.7	5.5 5.6	5.6	5.6	16.1 19.6	17.9		4.8 5.6	5.2	
				Surface	1	28.1 28.0	28.1	7.6 7.6	7.6	7.9 7.7	7.8	82.9 82.4	82.7	6.2 6.2	6.2	6.2	5.4 5.6	5.5		3.2 2.9	3.1	
31-Aug-13	Rainy	Moderate	15:45	Middle	3.5	27.3 27.3	27.3	7.7 7.7	7.7	13.5 13.5	13.5	80.5 82.1	81.3	6.1 6.2	6.2	0.2	5.4 5.5	5.5	11.3	3.9 3.7	3.8	3.6
				Bottom	6	26.5 26.5	26.5	7.8 7.8	7.8	23.3 23.3	23.3	68.1 67.7	67.9	5.0 5.0	5.0	5.0	23.2 22.7	23.0		4.0 3.5	3.8	

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	8.4 8.4	8.4	25.5 25.5	25.5	98.6 98.6	98.6	6.8 6.8	6.8		3.0 2.9	3.0		2.6 0.8	1.7	
Aug-13	Rainy	Moderate	11:40	Middle	4.5	28.0	28.0	8.4	8.4	25.7	25.7	96.5	96.5	6.6	6.7	6.8	3.4	3.3	8.3	1.8	1.9	1.7
				Bottom	8	27.9	28.0	8.4	8.3	25.6 26.4	26.4	96.5 87.0	86.6	6.7	6.0	6.0	3.2 18.8	18.6		0.8	1.6	Ì
				Surface	1	28.0 28.6	28.6	8.3 8.2	8.2	26.4 21.9	22.5	86.1 83.2	83.0	5.9 6.0	6.0		18.3 4.3	4.3		2.3 3.7	4.0	
Aug-13	Cloudy	Calm	12:50	Middle	4	28.6 28.1	28.1	8.2 8.3	8.3	23.0 25.9	25.9	82.7 79.9	80.1	5.9 5.7	5.7	5.9	4.3 3.7	3.7	5.3	4.2 2.4	2.8	3.5
	,			Bottom	7	28.1 27.5	27.5	8.3	8.3	25.9 29.6	29.6	70.0	70.0	5.7	5.0	5.0	3.7 7.7	7.9		3.1 4.8	3.8	
						27.5		8.3		29.6		69.9		5.0			8.0			2.8		
				Surface	1	29.3 29.2	29.3	8.2 8.2	8.2	22.3 22.3	22.3	91.0 87.5	89.3	6.3 6.1	6.2	6.3	5.1 5.6	5.4		3.2	3.3	1
Aug-13	Sunny	Moderate	12:18	Middle	5	28.7 28.9	28.8	8.2 8.2	8.2	25.2 24.4	24.8	90.9 94.4	92.7	6.2 6.5	6.4		5.7 5.2	5.5	8.4	4.1 3.5	3.8	3.4
				Bottom	9	28.3 28.3	28.3	8.2 8.2	8.2	28.3 28.3	28.3	73.6 79.7	76.7	5.0 5.4	5.2	5.2	12.9 15.4	14.2		3.1 3.3	3.2	
				Surface	1	29.6 29.6	29.6	8.2 8.2	8.2	22.6 22.5	22.6	89.3 89.1	89.2	6.2 6.2	6.2	6.2	5.8 5.9	5.9		4.3 3.2	3.8	
Aug-13	Sunny	Moderate	15:00	Middle	4	28.9 28.9	28.9	8.2 8.2	8.2	25.9 25.8	25.9	87.7 87.9	87.8	6.1 6.1	6.1		4.9 4.8	4.9	7.9	3.0 5.5	4.3	3.7
				Bottom	7	28.4 28.5	28.5	8.2 8.2	8.2	28.0 28.0	28.0	73.3 73.2	73.3	5.1 5.1	5.1	5.1	13.2 12.5	12.9		2.4 3.8	3.1	
				Surface	1	31.3 31.3	31.3	8.2 8.2	8.2	19.2 19.0	19.1	99.1 99.9	99.5	6.8 6.8	6.8	5.9	2.4 2.4	2.4		7.8 5.1	6.5	
Aug-13	Sunny	Calm	16:40	Middle	5	28.8 28.7	28.8	8.1 8.2	8.2	26.8 27.0	26.9	72.8 73.2	73.0	5.0 5.0	5.0	5.9	9.3 8.4	8.9	7.7	4.6 4.6	4.6	5.3
				Bottom	9	27.9 27.9	27.9	8.2 8.2	8.2	30.2 30.1	30.2	70.9 70.7	70.8	5.0 5.0	5.0	5.0	11.6 12.1	11.9		5.0 4.6	4.8	ĺ
				Surface	1	28.0 28.0	28.0	7.8 7.8	7.8	15.6 15.6	15.6	79.5 79.4	79.5	6.1 6.0	6.1		11.7 11.6	11.7		6.4 6.0	6.2	
Aug-13	Cloudy	Rough	09:08	Middle	4	28.0 28.0	28.0	7.8 7.8	7.8	15.7 15.7	15.7	79.4 79.2	79.3	6.0 6.0	6.0	6.1	11.9 11.9	11.9	11.9	6.6 6.3	6.5	6.4
				Bottom	7	28.0 28.0	28.0	7.8 7.8	7.8	16.2 16.2	16.2	79.0 78.8	78.9	6.0 6.0	6.0	6.0	12.2 12.2	12.2		5.5 7.5	6.5	1
				Surface	1	28.7 28.7	28.7	7.4 7.4	7.4	5.5 5.3	5.4	71.4 71.0	71.2	5.7 5.7	5.7		9.0 10.5	9.8		3.0 2.6	2.8	
Aug-13	Rainy	Rough	11:23	Middle	4.5	28.4 28.5	28.5	7.7 7.7	7.7	12.4 11.1	11.8	76.3 75.5	75.9	6.0 5.9	6.0	5.9	6.1 6.2	6.2	16.9	5.1 6.1	5.6	4.4
				Bottom	8	27.8 27.8	27.8	8.0 8.0	8.0	28.1	28.1	77.1 76.6	76.9	5.9 5.7 5.6	5.7	5.7	34.6 34.6	34.6		3.9	4.8	
				Surface	1	28.6 28.6	28.6	7.4 7.4	7.4	9.6	9.6	68.9 67.0	68.0	5.2	5.2		6.8	7.0		7.3 6.8	7.1	
Aug-13	Cloudy	Moderate	13:17	Middle	5	28.1	28.2	7.9	7.9	9.6	20.0	77.2	76.4	5.1 5.6	5.6	5.4	7.1 17.9	17.7	19.8	3.8	4.7	5.8
	Í			Bottom	9	27.8	27.9	8.0	8.0	27.1	26.3	77.2	76.4	5.5	5.5	5.5	35.5	34.6		5.3	5.5	
Aug-13	Cloudy	Moderate	13:17		-	28.2			7.8	7.8	7.8 7.9 18.7 27.9 8.0 8.0 27.1	7.8 7.9 18.7 20.0 27.9 8.0 8.0 27.1 26.3	7.9 18.7 20.0 75.5 27.9 8.0 8.0 27.1 26.3 77.2	7.9 8.0 8.0 27.1 26.3 77.2 76.4	7.9 8.0 8.0 27.1 26.3 77.2 76.4 5.5 75.9 75.9 76.4 75.5	7.8	7.8	7.8	7.8 7.9 8.0 8.0 27.1 26.3 77.2 76.4 5.5 5.5 5.5 35.5 34.6	7.8 7.9 18.7 20.0 75.5 76.4 5.5 5.5 17.4 17.7 19.8 27.9 8.0 8.0 27.1 26.3 77.2 76.4 5.5 5.5 5.5 35.5 34.6	7.8	7.8

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.8 27.8	27.8	7.7 7.7	7.7	7.1 7.1	7.1	94.7 93.4	94.1	7.2 7.1	7.2	7.0	8.9 9.0	9.0		3.6 3.3	3.5	
23-Aug-13	Cloudy	Moderate	14:50	Middle	4	27.8 27.8	27.8	7.8 7.8	7.8	11.0 11.0	11.0	88.4 89.2	88.8	6.7 6.8	6.8	7.0	17.3 16.9	17.1	16.8	5.0 2.7	3.9	3.7
				Bottom	7	27.8 27.8	27.8	7.8 7.8	7.8	12.4 12.4	12.4	84.4 84.1	84.3	6.4 6.4	6.4	6.4	22.3 26.5	24.4		3.6 3.5	3.6	
				Surface	1	27.8 27.8	27.8	7.7 7.7	7.7	12.2 12.2	12.2	78.2 77.4	77.8	5.7 5.7	5.7	5.5	6.5 5.4	6.0		3.2 3.0	3.1	
26-Aug-13	Sunny	Calm	16:22	Middle	5	27.2 27.2	27.2	7.9 7.9	7.9	25.5 25.4	25.5	77.0 77.3	77.2	5.3 5.3	5.3	5.5	7.9 8.4	8.2	12.5	3.1 3.3	3.2	3.2
				Bottom	9	27.1 27.1	27.1	8.0 8.0	8.0	28.5 28.5	28.5	77.5 78.0	77.8	5.3 5.3	5.3	5.3	22.7 23.8	23.3		3.2 3.4	3.3	
				Surface	1	28.0 29.0	28.5	7.6 7.9	7.8	10.9 10.5	10.7	93.5 88.4	91.0	6.9 6.5	6.7	6.6	8.1 8.5	8.3		6.2 6.0	6.1	
28-Aug-13	Fine	Calm	17:14	Middle	5	27.5 27.6	27.6	7.9 7.8	7.9	21.4 23.4	22.4	94.0 89.4	91.7	6.6 6.2	6.4	0.0	6.0 7.1	6.6	9.3	6.2 6.3	6.3	6.3
				Bottom	9	27.1 27.1	27.1	7.9 7.9	7.9	28.7 28.8	28.8	97.8 93.6	95.7	6.6 6.3	6.5	6.5	12.4 13.3	12.9		6.2 6.8	6.5	
				Surface	1	27.7 27.7	27.7	7.7 7.7	7.7	7.8 7.8	7.8	83.5 83.7	83.6	6.3 6.3	6.3	6.2	4.3 4.2	4.3		2.7 3.6	3.2	
31-Aug-13	Cloudy	Moderate	10:14	Middle	5	27.3 27.3	27.3	7.8 7.8	7.8	15.4 15.7	15.6	80.8 81.8	81.3	6.1 6.1	6.1	J.Z	3.3 3.4	3.4	3.7	4.4 3.0	3.7	3.2
				Bottom	9	26.6 26.6	26.6	7.9 7.9	7.9	23.8 23.0	23.4	75.4 75.6	75.5	5.5 5.6	5.6	5.6	3.5 3.4	3.5		2.4 2.7	2.6	

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ar (111 <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.4 28.4	28.4	8.3 8.3	8.3	21.0 21.1	21.1	79.3 78.5	78.9	5.5 5.4	5.5		4.5 4.5	4.5		2.5 2.1	2.3	
3-Aug-13	Rainy	Moderate	18:47	Middle	4	28.3 28.3	28.3	8.3 8.3	8.3	21.3 21.3	21.3	76.2 76.6	76.4	5.3 5.3	5.3	5.4	5.5 5.4	5.5	6.7	2.4	2.2	2.2
				Bottom	7	28.2 28.2	28.2	8.3 8.3	8.3	21.8 21.8	21.8	72.5 72.2	72.4	5.0 5.0	5.0	5.0	9.9 10.1	10.0		2.3	2.2	
				Surface	1	29.5 29.5	29.5	8.0 8.0	8.0	16.1 16.1	16.1	87.8 87.9	87.9	6.3 6.3	6.3	6.2	6.9 6.9	6.9		7.1 3.2	5.2	
5-Aug-13	Cloudy	Calm	19:40	Middle	4.5	29.4 29.3	29.4	8.0 8.1	8.1	17.1 16.9	17.0	84.9 85.0	85.0	6.1 6.1	6.1	0.2	8.0 7.9	8.0	10.2	6.9 6.4	6.7	5.8
				Bottom	8	28.8 28.9	28.9	8.2 8.2	8.2	20.8 20.7	20.8	80.8 80.7	80.8	5.8 5.8	5.8	5.8	15.5 15.8	15.7		5.9 4.9	5.4	
				Surface	1	29.2 29.3	29.3	8.2 8.2	8.2	22.1 22.1	22.1	78.6 86.0	82.3	5.5 6.0	5.8	6.1	6.5 6.4	6.5		2.0 3.9	3.0	
7-Aug-13	Fine	Moderate	19:22	Middle	5	28.9 28.9 28.5	28.9	8.2 8.2 8.2	8.2	23.7 23.6 27.4	23.7	91.3 91.6 85.2	91.5	6.3 6.3 5.8	6.3		4.9 4.8 9.8	4.9	7.2	3.8 4.6 13.0	4.2	5.0
				Bottom	9	28.4	28.5	8.2 8.1	8.2	27.7 18.8	27.6	79.6 103.6	82.4	5.4 7.2	5.6	5.6	10.8	10.3		2.8	7.9	
				Surface	1	30.0 28.1	30.0	8.1 8.2	8.1	19.4	19.1	103.7	103.7	7.2 6.4	7.2	6.9	4.5	4.5		3.2 4.9	3.4	
9-Aug-13	Sunny	Moderate	21:23	Middle	4.5	28.1	28.1	8.2	8.2	24.6	24.6	94.7 82.9	93.3	6.6 5.8	6.5	5.0	6.7	6.8	7.3	3.4 8.7	4.2	5.5
				Bottom	8	27.8 29.6	27.8	8.2 8.1	8.2	26.4 20.8	26.5	82.9 86.3	82.9	5.8 6.0	5.8	5.8	10.6	10.7		8.8 5.8	8.8	
				Surface	1	29.7 29.2	29.7	8.1 8.1	8.1	20.5	20.7	86.0 76.5	86.2	6.0 5.3	6.0	5.7	4.8	4.8		4.1 3.9	5.0	
12-Aug-13	Sunny	Calm	10:21	Middle	5.5	29.3	29.3	8.1 8.1	8.1	23.7	23.8	77.4 73.4	77.0	5.4 5.1	5.4		9.3 15.4	9.6	9.9	3.5	3.7	4.1
				Bottom	10	28.7	28.7	8.2 7.8	8.2	26.8	26.8	73.1 81.7	73.3	5.0	5.1	5.1	15.0	15.2		3.9	3.7	<u> </u>
16-Aug-13	Rainy	Moderate	16:26	Surface Middle	4.5	28.1 28.2	28.1	7.8 7.8	7.8 7.8	14.7 15.5	14.7 15.5	82.0 80.6	81.9 80.8	6.2 6.1	6.2	6.2	8.3 11.0	8.3	10.6	7.5 8.0	7.9	10.2
10-Aug-13	Railly	Wioderate	10.20	Bottom	8	28.2 28.1	28.1	7.8 7.8	7.8	15.5 15.8	15.8	81.0 78.6	78.6	6.2 6.0	6.0	6.0	11.1 12.3	12.3	10.0	14.8 11.3	11.3	10.2
				Surface	1	28.1 28.6	28.6	7.8	7.3	7.0	7.0	78.6 72.1	72.0	6.0 5.4	5.4	0.0	12.3 10.3	10.4		9.7	10.0	
19-Aug-13	Rainy	Rough	18:58	Middle	5	28.6 28.5	28.5	7.3	7.3	7.0 8.3	8.3	71.9 73.4	73.3	5.4 5.4	5.4	5.4	10.5	18.1	21.5	10.3	20.0	16.5
	-	-		Bottom	9	28.5 28.4 28.3	28.4	7.3 7.7 7.7	7.7	8.2 15.3 15.3	15.3	73.2 63.6 63.1	63.4	5.4 5.0 4.9	5.0	5.0	18.3 35.1 36.8	36.0		26.7 25.7 13.3	19.5	1
				Surface	1	28.8 28.8	28.8	7.4 7.5	7.5	10.4 11.0	10.7	80.4 77.0	78.7	6.1 5.8	6.0		9.4 9.5	9.5		10.4 9.8	10.1	<u> </u>
21-Aug-13	Rainy	Rough	19:57	Middle	5.5	28.2 28.2	28.2	7.7 7.7	7.7	18.0 18.7	18.4	77.9 77.1	77.5	5.7 5.7	5.7	5.9	19.6 20.7	20.2	20.5	17.0 17.8	17.4	14.5
				Bottom	10	28.1 28.1	28.1	7.8 7.8	7.8	20.8	20.8	78.6 78.2	78.4	5.7 5.7	5.7	5.7	30.7 32.9	31.8		17.8 14.0	15.9	1

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.8 27.8	27.8	7.5 7.5	7.5	12.2 12.2	12.2	75.0 75.2	75.1	5.7 5.7	5.7	5.7	6.9 6.8	6.9		5.5 5.7	5.6	
23-Aug-13	Cloudy	Moderate	08:17	Middle	4.5	27.8 27.8	27.8	7.5 7.5	7.5	12.2 12.2	12.2	74.6 75.4	75.0	5.7 5.7	5.7	5.7	12.8 12.3	12.6	12.4	6.8 6.1	6.5	6.1
				Bottom	8	27.9 27.9	27.9	7.5 7.5	7.5	12.7 12.7	12.7	70.0 69.6	69.8	5.3 5.3	5.3	5.3	17.6 17.5	17.6		6.5 5.8	6.2	
				Surface	1	27.4 27.5	27.5	7.4 7.5	7.5	8.7 8.6	8.7	69.8 70.5	70.2	5.3 5.3	5.3	5.5	6.2 6.4	6.3		4.5 3.9	4.2	
26-Aug-13	Sunny	Calm	10:29	Middle	5	27.4 27.4	27.4	7.5 7.6	7.6	10.7 11.1	10.9	74.2 74.8	74.5	5.5 5.6	5.6	3.3	6.9 7.5	7.2	15.5	7.7 7.4	7.6	6.7
				Bottom	9	27.2 27.2	27.2	7.9 7.9	7.9	23.8 24.0	23.9	74.6 75.0	74.8	5.2 5.2	5.2	5.2	34.5 31.7	33.1		5.9 10.5	8.2	
				Surface	1	28.2 28.3	28.3	7.3 7.5	7.4	6.9 6.9	6.9	69.7 72.1	70.9	5.2 5.4	5.3	5.2	8.2 7.4	7.8		3.6 4.2	3.9	
28-Aug-13	Sunny	Calm	11:50	Middle	5	27.7 27.8	27.8	7.2 7.3	7.3	11.7 10.2	11.0	66.2 69.5	67.9	4.9 5.2	5.1	5.2	7.7 8.0	7.9	8.1	4.0 2.7	3.4	3.6
				Bottom	9	27.3 27.4	27.4	7.9 7.7	7.8	27.9 25.5	26.7	76.6 75.6	76.1	5.2 5.1	5.2	5.2	8.8 8.2	8.5		4.0 3.0	3.5	
				Surface	1	28.0 28.0	28.0	7.7 7.7	7.7	8.6 8.6	8.6	80.6 80.4	80.5	6.0 6.0	6.0	6.4	6.3 6.2	6.3		2.7 3.1	2.9	
31-Aug-13	Rainy	Moderate	18:05	Middle	4	27.6 27.6	27.6	7.8 7.8	7.8	13.1 12.9	13.0	89.0 89.3	89.2	6.7 6.7	6.7	J. T	11.7 12.2	12.0	10.8	2.4 2.5	2.5	2.9
				Bottom	7	26.7 26.7	26.7	7.8 7.8	7.8	21.0 20.9	21.0	77.1 76.0	76.6	5.7 5.6	5.7	5.7	14.3 14.1	14.2		3.5 2.8	3.2	

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	8.4 8.4	8.4	25.6 25.6	25.6	95.1 95.0	95.1	6.6 6.6	6.6		2.7 2.7	2.7		0.9 1.6	1.3	
3-Aug-13	Rainy	Moderate	12:00	Middle	3.5	28.0 28.0	28.0	8.4 8.4	8.4	25.7 25.7	25.7	92.8 92.8	92.8	6.4 6.4	6.4	6.5	3.3 3.5	3.4	6.9	1.6 1.9	1.8	1.6
				Bottom	6	28.0 28.0	28.0	8.3 8.3	8.3	26.4 26.4	26.4	84.8 83.9	84.4	5.8 5.8	5.8	5.8	14.9 14.1	14.5		1.4 1.9	1.7	
				Surface	1	28.6	28.6	8.2	8.2	22.6	23.0	81.1	81.2	5.8	5.8		4.5	4.5		4.5	3.4	
5-Aug-13	Cloudy	Calm	13:05	Middle	3	28.5	28.0	8.2	8.3	23.3	26.8	81.3 77.1	77.3	5.8	5.5	5.7	3.8	3.7	5.3	3.3	3.1	3.3
	·			Bottom	5	27.9 27.5	27.5	8.3	8.3	26.8	29.7	77.5 73.9	73.2	5.5 5.3	5.3	5.3	3.5 7.4	7.6		3.8	3.3	
				Surface	1	27.4 29.3	29.3	8.3 8.0	8.1	29.7	22.3	72.5 106.2	95.9	5.2 7.3	6.6		7.8 5.1	5.2		2.8 1.9	2.4	
7-Aug-13	Sunny	Moderate	11:59	Middle	3.5	29.2	28.8	8.2	8.2	22.4	24.7	85.6 92.4	94.2	5.9 6.4	6.5	6.6	5.3 3.6	3.5	5.6	3.2	3.1	2.8
	,			Bottom	6	28.9	28.3	8.2	8.2	24.6	28.3	95.9 80.8	78.6	6.6 5.5	5.4	5.4	3.3 8.2	8.1		2.9	2.8	
				Surface	1	28.3	29.6	8.2	8.2	28.2	22.6	76.3 89.0	89.0	5.2 6.2	6.2		7.9 5.7	5.7		5.2	4.4	
9-Aug-13	Sunny	Moderate	15:15	Middle	3	29.6 28.9	28.9	8.2	8.2	22.6 26.1	26.1	88.9 86.3	86.6	6.2	6.0	6.1	5.7 4.8	5.0	9.4	3.5 5.0	4.7	4.4
	·			Bottom	5	28.9	28.4	8.2	8.2	28.3	28.3	71.8	71.5	5.0	5.0	5.0	5.1 17.3 17.8	17.6		4.3	4.1	
				Surface	1	28.4 30.0	29.9	8.2 8.2	8.2	28.3 24.1	24.1	71.1 87.5	86.6	5.0 6.0	6.0		6.3	6.1		3.9 5.3	5.2	
12-Aug-13	Sunny	Calm	17:07	Middle	3.5	29.7 28.8	28.9	8.2 8.2	8.2	24.1 27.0	26.9	85.7 82.6	82.7	5.9 5.7	5.7	5.9	5.8 4.9	4.9	7.3	5.1 3.8	3.9	4.4
	,			Bottom	6	28.9 28.4	28.5	8.2 8.2	8.2	26.7 28.4	28.4	82.7 76.4	76.1	5.7 5.2	5.2	5.2	4.9 11.1	10.9		3.9 4.6	4.2	
				Surface	1	28.5 28.0	28.0	7.8	7.8	28.3 15.6	15.6	75.7 79.5	79.5	5.2 6.1	6.1	0.2	10.6 11.7	11.7		3.8 6.6	6.8	
16-Aug-13	Cloudy	Rough	09:25	Middle	3	28.0 28.0	28.0	7.8 7.8	7.8	15.6 15.6	15.6	79.4 79.1	79.1	6.0 6.0	6.0	6.1	11.7 12.0	12.0	12.0	7.0 5.6	5.9	6.2
10-Aug-13	Oloudy	rtough	03.23	Bottom	5	28.0 28.0	28.0	7.8 7.8	7.8	15.6 16.1	16.1	79.1 78.7	78.7	6.0 6.0	6.0	6.0	12.0 12.1	12.2	12.0	6.2 6.4	5.9	0.2
				Surface	1	28.0 28.8	28.8	7.8 7.7	7.8	16.0 11.0	11.6	78.7 77.2	77.2	6.0	6.0	0.0	12.2 8.4	8.4		5.4 2.8	3.3	
19-Aug-13	Rainy	Rough	11:50	Middle	3.5	28.7 28.0	28.0	7.8 7.9	7.9	12.1 21.5	22.5	77.1 77.5	77.3	6.0 5.8	5.8	5.9	8.3 8.8	8.3	10.1	3.7 5.1	6.1	4.8
10 / tag 10	rany	rtough	11.00	Bottom	6	28.0 27.8	27.8	7.9 7.9	8.0	23.4 26.2	26.6	77.0 75.2	75.1	5.8 5.6	5.6	5.6	7.8 13.2	13.5	10.1	7.1 4.6	5.0	4.0
				Surface	1	27.8 28.5	28.5	7.5	7.6	27.0 12.6	13.4	75.0 68.0	68.5	5.6 5.1	5.1	0.0	13.7 6.8	6.9		5.4 3.9	4.4	
21-Aug-13	Cloudy	Moderate	13:47	Middle	3.5	28.4 28.2	28.2	7.6 7.7	7.8	14.1 16.7	16.9	69.0 74.4	74.4	5.1 5.5	5.5	5.3	6.9	6.9	12.8	4.8 5.6	4.9	10.7
	Siduay		10.41	Bottom	6	28.2 28.2	28.2	7.8 7.8	7.8	17.0 18.5	18.5	74.3 65.4	65.4	5.4 4.8	4.9	4.9	6.9 25.3	24.6	12.0	4.1 23.2	22.7	10.7
				Dottom	3	28.2	20.2	7.8	7.0	18.4	10.0	65.4	00.4	4.9	7.5	٠.٥	23.8	24.0		22.2	22.1	

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	БСР	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.8 27.8	27.8	7.7 7.7	7.7	10.6 10.6	10.6	87.6 87.4	87.5	6.7 6.7	6.7	6.3	7.0 7.0	7.0		4.1 4.6	4.4	
23-Aug-13	Cloudy	Moderate	15:12	Middle	3.5	27.7 27.8	27.8	7.7 7.7	7.7	14.1 13.6	13.9	77.0 76.9	77.0	5.9 5.9	5.9	0.5	9.4 9.2	9.3	11.5	4.3 3.6	4.0	4.0
				Bottom	6	27.6 27.6	27.6	7.9 7.9	7.9	23.9 23.9	23.9	67.9 67.4	67.7	5.2 5.1	5.2	5.2	19.1 17.2	18.2		4.3 2.9	3.6	
				Surface	1	27.9 27.8	27.9	7.6 7.7	7.7	10.7 12.6	11.7	75.9 76.9	76.4	5.6 5.6	5.6	5.5	6.2 6.5	6.4		3.0 3.9	3.5	
26-Aug-13	Sunny	Calm	16:52	Middle	3.5	27.3 27.3	27.3	7.9 7.9	7.9	23.8 23.7	23.8	76.8 76.3	76.6	5.3 5.3	5.3	5.5	12.5 11.9	12.2	13.2	3.3 3.9	3.6	3.5
				Bottom	6	27.1 27.1	27.1	7.9 7.9	7.9	27.3 27.3	27.3	78.6 79.2	78.9	5.4 5.4	5.4	5.4	20.6 21.3	21.0		3.1 3.5	3.3	
				Surface	1	28.3 27.6	28.0	7.6 7.9	7.8	11.0 12.8	11.9	99.6 97.8	98.7	7.3 7.2	7.3	7.1	6.8 6.7	6.8		4.5 5.2	4.9	
28-Aug-13	Fine	Calm	16:58	Middle	3.5	27.9 27.7	27.8	7.7 7.8	7.8	21.3 21.1	21.2	98.5 95.0	96.8	6.9 6.7	6.8	7.1	7.3 8.6	8.0	8.7	4.5 4.8	4.7	5.0
				Bottom	6	27.1 27.3	27.2	7.9 7.9	7.9	28.5 28.4	28.5	102.9 96.7	99.8	7.0 6.5	6.8	6.8	11.1 11.4	11.3		5.8 5.2	5.5	
				Surface	1	27.5 27.5	27.5	7.8 7.8	7.8	10.8 10.7	10.8	85.6 85.7	85.7	6.4 6.4	6.4	6.0	4.6 4.6	4.6		3.7 2.8	3.3	
31-Aug-13	Cloudy	Moderate	10:32	Middle	4	26.4 26.4	26.4	7.9 7.9	7.9	24.5 24.4	24.5	75.5 76.0	75.8	5.5 5.6	5.6	0.0	3.9 3.9	3.9	8.3	4.0 3.1	3.6	3.4
				Bottom	7	26.3 26.3	26.3	7.9 7.9	7.9	25.9 25.9	25.9	67.7 67.0	67.4	5.0 4.9	5.0	5.0	15.9 16.7	16.3		3.3 3.4	3.4	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.4 28.4	28.4	8.3 8.3	8.3	20.9 20.9	20.9	77.5 77.6	77.6	5.4 5.4	5.4	5.4	4.5 4.4	4.5		4.4 0.9	2.7	
3-Aug-13	Rainy	Moderate	19:10	Middle	3	28.4 28.4	28.4	8.3 8.3	8.3	21.1 21.0	21.1	76.8 76.9	76.9	5.3 5.3	5.3	5.4	4.6 4.5	4.6	5.8	5.4 3.4	4.4	3.8
				Bottom	5	28.2 28.2	28.2	8.3 8.3	8.3	21.5 21.6	21.6	73.2 72.9	73.1	5.1 5.0	5.1	5.1	8.0 8.3	8.2		4.1 4.4	4.3	
				Surface	1	29.5 29.5	29.5	8.1 8.1	8.1	16.2 15.6	15.9	87.1 87.5	87.3	6.3 6.3	6.3	6.2	7.1 7.0	7.1		7.3 6.7	7.0	
5-Aug-13	Cloudy	Calm	19:55	Middle	3.5	29.4 29.4	29.4	8.1 8.1	8.1	16.9 16.9	16.9	84.9 84.9	84.9	6.1 6.1	6.1	0.2	7.7 7.8	7.8	7.6	6.8 5.9	6.4	6.7
				Bottom	6	29.1 29.1	29.1	8.1 8.1	8.1	19.5 18.6	19.1	82.7 82.9	82.8	5.9 5.9	5.9	5.9	7.8 7.8	7.8		6.7 6.5	6.6	
				Surface	1	29.2 29.3	29.3	8.2 8.2	8.2	22.1 22.1	22.1	89.3 89.6	89.5	6.2 6.2	6.2	6.3	5.5 5.3	5.4		4.6 3.1	3.9	
7-Aug-13	Fine	Moderate	19:01	Middle	3.5	28.8 29.0	28.9	8.2 8.2	8.2	24.1 23.6	23.9	90.7 93.7	92.2	6.3 6.5	6.4	0.5	4.9 4.5	4.7	6.8	4.6 3.7	4.2	4.0
				Bottom	6	28.3 28.5	28.4	8.2 8.2	8.2	28.2 27.6	27.9	91.9 85.6	88.8	4.9 5.8	5.4	5.4	10.2 10.4	10.3		5.0 2.9	4.0	
				Surface	1	28.9 28.9	28.9	8.1 8.1	8.1	21.8 22.0	21.9	92.2 92.1	92.2	6.4 6.4	6.4	6.3	5.8 6.4	6.1		3.3 3.8	3.6	
9-Aug-13	Sunny	Moderate	21:38	Middle	3.5	28.2 28.2	28.2	8.2 8.2	8.2	24.5 24.5	24.5	86.8 87.3	87.1	6.0 6.1	6.1	0.0	6.7 6.8	6.8	6.9	4.8 4.8	4.8	4.2
				Bottom	6	27.7 27.7	27.7	8.2 8.2	8.2	26.6 26.6	26.6	79.1 79.7	79.4	5.5 5.5	5.5	5.5	8.2 7.6	7.9		4.2 4.1	4.2	
				Surface	1	29.8 29.8	29.8	8.1 8.1	8.1	21.5 21.6	21.6	82.1 82.2	82.2	5.7 5.7	5.7	5.7	3.6 4.0	3.8		3.7 3.4	3.6	
12-Aug-13	Sunny	Calm	10:43	Middle	3.5	29.7 29.6	29.7	8.1 8.1	8.1	22.5 22.6	22.6	81.9 81.7	81.8	5.7 5.7	5.7	0	10.1 12.1	11.1	10.3	4.2 3.5	3.9	3.6
				Bottom	6	29.4 29.5	29.5	8.1 8.1	8.1	23.6 23.3	23.5	79.9 80.2	80.1	5.5 5.5	5.5	5.5	15.9 16.0	16.0		2.9 3.9	3.4	
				Surface	1	28.1 28.1	28.1	7.8 7.8	7.8	15.2 15.3	15.3	81.1 80.6	80.9	6.2 6.1	6.2	6.1	8.7 9.3	9.0		10.7 10.2	10.5	
16-Aug-13	Rainy	Moderate	16:46	Middle	3.5	28.2 28.2	28.2	7.8 7.8	7.8	15.5 15.5	15.5	78.2 78.7	78.5	6.0 6.0	6.0	_	11.1 10.9	11.0	10.7	14.2 11.8	13.0	11.2
				Bottom	6	28.2 28.2	28.2	7.8 7.8	7.8	15.7 15.7	15.7	77.5 77.3	77.4	5.9 5.9	5.9	5.9	12.0 11.9	12.0		11.5 8.5	10.0	
				Surface	1	28.7 28.7 28.6	28.7	7.3 7.4 7.4	7.4	8.0 8.4 8.8	8.2	74.3 72.7 73.6	73.5	5.6 5.5 5.5	5.6	5.6	13.4 16.0 16.8	14.7		19.8 21.0 19.0	20.4	
19-Aug-13	Rainy	Rough	19:22	Middle	3.5	28.6 28.7	28.6	7.4 7.4 7.5	7.4	8.8 9.5	8.8	73.6 73.0 64.1	73.3	5.5 5.5 5.1	5.5		18.0	17.4	19.9	19.0 16.6 27.3	17.8	21.5
				Bottom	6	28.7 28.5	28.7	7.5 7.5 7.3	7.5	9.5 9.5 8.5	9.5	63.5 70.5	63.8	5.1 5.1 5.4	5.1	5.1	25.9 11.9	27.6		25.3 25.3	26.3	
				Surface	1	28.5 28.5 28.4	28.5	7.3 7.3 7.6	7.3	8.8 15.3	8.7	70.5 70.4 74.1	70.5	5.4 5.4 5.5	5.4	5.5	13.6 14.1	12.8		18.3 18.0 21.0	18.2	
21-Aug-13	Rainy	Rough	20:20	Middle	3.5	28.4 28.4 28.2	28.4	7.6 7.6 7.8	7.6	15.3 15.4 19.2	15.4	73.8 77.6	74.0	5.5 5.5 5.7	5.5		12.6 24.9	13.4	16.8	21.0 21.0 37.0	21.0	25.3
				Bottom	6	28.2	28.2	7.8	7.8	19.2	19.2	77.7	77.7	5.7	5.7	5.7	23.7	24.3		36.3	36.7	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ıration (%)	Disso	lved Oxygen	(mg/L)	•	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.8 27.8	27.8	7.5 7.5	7.5	12.0 12.0	12.0	75.4 75.8	75.6	5.7 5.8	5.8	5.7	6.5 6.5	6.5		7.1 6.5	6.8	
23-Aug-13	Cloudy	Moderate	08:42	Middle	3.5	27.8 27.8	27.8	7.5 7.5	7.5	12.0 12.0	12.0	72.8 70.8	71.8	5.5 5.4	5.5	5.7	7.1 7.0	7.1	8.4	5.5 5.7	5.6	6.5
				Bottom	6	27.9 27.9	27.9	7.5 7.5	7.5	12.8 12.8	12.8	68.6 69.4	69.0	5.2 5.3	5.3	5.3	11.2 11.8	11.5		7.1 7.0	7.1	
				Surface	1	27.6 27.5	27.6	7.4 7.5	7.5	9.0 9.6	9.3	71.1 70.7	70.9	5.3 5.3	5.3	5.3	7.4 8.6	8.0		4.3 5.7	5.0	
26-Aug-13	Sunny	Calm	10:54	Middle	3.5	27.4 27.5	27.5	7.5 7.5	7.5	10.3 10.2	10.3	71.0 70.9	71.0	5.3 5.3	5.3	5.5	21.0 17.6	19.3	16.4	3.6 6.2	4.9	6.6
				Bottom	6	27.4 27.4	27.4	7.5 7.5	7.5	11.2 11.1	11.2	71.3 71.5	71.4	5.3 5.3	5.3	5.3	22.8 21.1	22.0		12.2 7.8	10.0	
				Surface	1	28.0 28.2	28.1	7.3 7.4	7.4	7.0 6.9	7.0	67.5 68.5	68.0	5.1 5.1	5.1	5.2	7.5 7.8	7.7		5.7 4.6	5.2	
28-Aug-13	Sunny	Calm	11:32	Middle	3.5	27.8 27.9	27.9	7.2 7.3	7.3	7.6 7.2	7.4	69.0 69.5	69.3	5.2 5.2	5.2	5.2	7.7 7.7	7.7	7.5	5.9 3.6	4.8	4.7
				Bottom	6	27.6 27.7	27.7	7.5 7.4	7.5	15.4 15.8	15.6	65.8 66.2	66.0	4.8 4.9	4.9	4.9	7.2 6.9	7.1		3.5 4.4	4.0	
				Surface	1	28.0 27.9	28.0	7.7 7.6	7.7	7.8 7.7	7.8	80.1 80.4	80.3	6.0 6.0	6.0	6.4	5.7 5.7	5.7		3.0 3.3	3.2	
31-Aug-13	Rainy	Moderate	18:18	Middle	3	27.6 27.6	27.6	7.8 7.8	7.8	13.0 13.0	13.0	89.3 89.5	89.4	6.7 6.7	6.7	5.4	10.2 10.1	10.2	11.8	2.2 2.6	2.4	2.9
				Bottom	5	26.7 26.7	26.7	7.8 7.8	7.8	21.1 21.0	21.1	74.3 73.7	74.0	5.5 5.5	5.5	5.5	18.2 20.9	19.6		2.6 3.3	3.0	

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	8.3 8.3	8.3	25.3 25.3	25.3	82.2 81.2	81.7	5.6 5.5	5.6	F 0	4.0 4.0	4.0		0.7 1.5	1.1	
3-Aug-13	Rainy	Moderate	09:37	Middle	-	-	-	-	-		-	-	-	-	-	5.6	-	-	7.4	-	-	1.4
				Bottom	4.4	27.9 27.9	27.9	8.2 8.2	8.2	25.7 25.1	25.4	76.0 75.1	75.6	5.2 5.1	5.2	5.2	10.8 10.7	10.8		1.9 1.4	1.7	
				Surface	1	29.9 30.0	30.0	8.1 8.1	8.1	19.0 18.8	18.9	84.6 84.1	84.4	6.1 6.1	6.1	0.4	4.8 5.3	5.1		4.7 5.1	4.9	
5-Aug-13	Cloudy	Calm	11:29	Middle	-	-	-	-	-		-	-	-	-	-	6.1	-	-	8.1	-	-	3.9
				Bottom	4.3	27.5 27.5	27.5	8.2 8.2	8.2	28.1 28.3	28.2	69.6 70.1	69.9	5.0 5.1	5.1	5.1	10.3 11.9	11.1		3.6 2.1	2.9	
				Surface	1	28.9 28.9	28.9	8.1 8.1	8.1	24.9 25.2	25.1	97.2 97.2	97.2	6.9 6.9	6.9		7.3 7.0	7.2		6.0 5.2	5.6	
7-Aug-13	Sunny	Moderate	12:09	Middle	-		-	-	-	-	-	-	-	-	-	6.9	-	-	8.9	-	-	5.4
				Bottom	4.3	28.6 28.6	28.6	8.1 8.1	8.1	27.4 27.4	27.4	74.3 73.8	74.1	5.3 5.3	5.3	5.3	10.3 10.7	10.5		6.0 4.2	5.1	
				Surface	1	30.1 30.1	30.1	8.1 8.1	8.1	20.7	20.7	86.5 85.1	85.8	6.2 6.1	6.2		8.5 8.4	8.5		4.1	4.0	
9-Aug-13	Sunny	Moderate	13:17	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	13.6	-	-	4.9
				Bottom	4.7	29.2 29.2	29.2	8.2 8.2	8.2	24.6 24.4	24.5	75.5 77.6	76.6	5.5 5.6	5.6	5.6	18.8 18.5	18.7		5.9 5.6	5.8	
				Surface	1	30.0 30.1	30.1	8.2 8.2	8.2	22.7 23.1	22.9	80.8 75.0	77.9	5.5 5.1	5.3		6.6 6.8	6.7		5.5 4.7	5.1	
12-Aug-13	Sunny	Calm	16:12	Middle	-	-	-	-	-	-	-	-	-	-	-	5.3	-	-	8.8	-	-	5.2
				Bottom	4.1	28.9 28.8	28.9	8.2 8.2	8.2	27.3 27.3	27.3	77.0 73.9	75.5	5.2 5.0	5.1	5.1	11.5 10.1	10.8		5.1 5.4	5.3	
				Surface	1	28.1 28.1	28.1	7.8 7.8	7.8	15.5 15.5	15.5	91.0 89.9	90.5	6.5 6.5	6.5		7.0 7.0	7.0		8.1 8.4	8.3	1
16-Aug-13	Cloudy	Rough	07:41	Middle	-	-	-		-	-	-	-	-	-	-	6.5	-	-	8.8	-	-	8.2
				Bottom	4.7	28.1 28.1	28.1	7.9 7.9	7.9	15.8 15.8	15.8	81.4 81.2	81.3	5.8 5.8	5.8	5.8	10.5 10.4	10.5		8.7 7.2	8.0	
				Surface	1	28.0 28.0	28.0	7.8 7.8	7.8	12.4 12.5	12.5	66.6 66.3	66.5	5.2 5.1	5.2		8.8 11.0	9.9		4.2 4.2	4.2	
19-Aug-13	Rainy	Rough	10:17	Middle	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	13.5	-	-	7.0
				Bottom	4.7	27.6 27.6	27.6	7.9 7.9	7.9	21.9 21.7	21.8	65.3 66.1	65.7	4.9 4.9	4.9	4.9	18.4 15.8	17.1		9.2 10.4	9.8	
				Surface	1	28.1 28.1	28.1	7.6 7.6	7.6	12.8 12.9	12.9	77.4 75.6	76.5	5.6 5.5	5.6		9.6 9.9	9.8		4.8	4.3	
21-Aug-13	Cloudy	Moderate	12:17	Middle	-		-		-	-	-		-		-	5.6		-	17.9		-	4.3
				Bottom	4.5	27.7 27.6	27.7	7.9 7.9	7.9	23.2	23.3	72.3 73.1	72.7	5.0 5.1	5.1	5.1	26.5 25.3	25.9	•	4.2	4.3	

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	•	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.2 27.3	27.3	7.8 7.9	7.9	11.5 11.2	11.4	79.4 79.0	79.2	5.6 5.5	5.6	5.6	8.0 8.1	8.1		5.9 4.5	5.2	
23-Aug-13	Cloudy	Moderate	14:18	Middle	-	-	-	-	-	1 1	-	-	-	1 1	-	5.0	-	-	11.4	-	-	4.9
				Bottom	4.1	27.2 27.2	27.2	7.8 7.9	7.9	20.0 22.1	21.1	69.4 68.8	69.1	5.1 5.0	5.1	5.1	13.3 15.9	14.6		4.3 4.9	4.6	
				Surface	1	27.6 27.7	27.7	7.6 7.6	7.6	12.2 12.2	12.2	82.5 81.3	81.9	6.1 6.0	6.1	6.1	8.5 8.4	8.5		3.7 3.7	3.7	
26-Aug-13	Sunny	Calm	16:06	Middle	-	-	-	-	1	1 1	-	-	-	1 1	-	0.1	-	-	12.7	-	1	4.2
				Bottom	4.2	27.2 27.1	27.2	7.9 7.9	7.9	26.3 26.6	26.5	79.7 80.6	80.2	5.5 5.5	5.5	5.5	16.6 17.2	16.9		5.0 4.1	4.6	
				Surface	1	27.7 27.7	27.7	7.5 7.5	7.5	7.6 7.5	7.6	84.0 83.4	83.7	6.4 6.4	6.4	6.4	6.9 7.2	7.1		5.0 6.2	5.6	
28-Aug-13	Fine	Calm	18:11	Middle	-	-	-	-	1	1 1	-	-	-	1 1	-	0.4	-	-	9.4	-	1	5.2
				Bottom	4.2	26.8 26.8	26.8	8.0 8.0	8.0	22.1 21.5	21.8	70.3 70.7	70.5	5.3 5.3	5.3	5.3	11.7 11.6	11.7		5.0 4.3	4.7	
	_	_	_	Surface	1	28.3 27.3	27.8	7.7 7.9	7.8	8.6 8.8	8.7	77.6 77.6	77.6	5.8 5.8	5.8	5.8	4.8 4.9	4.9	_	3.7 3.4	3.6	_
31-Aug-13	Cloudy	Moderate	08:56	Middle	-	-	-	-	-	1 1	-	-	-	1 1	-	5.0	-	-	4.9	-	-	3.2
				Bottom	4.9	28.3 27.3	27.8	7.7 7.9	7.8	24.0 20.7	22.4	72.7 72.1	72.4	5.3 5.3	5.3	5.3	4.6 5.0	4.8		2.7 2.8	2.8	

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	ъері	ar (111 <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.4 28.3	28.4	8.3 8.3	8.3	25.5 25.3	25.4	81.6 86.2	83.9	5.6 5.9	5.8	5.8	8.3 7.7	8.0		2.3 1.9	2.1	
3-Aug-13	Rainy	Moderate	17:54	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	15.8	-	-	2.1
				Bottom	4.8	28.3 28.3	28.3	8.3 8.3	8.3	25.9 21.1	23.5	77.1 75.4	76.3	5.2 5.2	5.2	5.2	23.4 23.8	23.6		2.0 2.2	2.1	
				Surface	1	30.3 30.2	30.3	8.1 8.1	8.1	15.0 15.1	15.1	84.6 84.6	84.6	6.2 6.2	6.2	6.2	10.7 11.1	10.9		5.4 4.5	5.0	
5-Aug-13	Cloudy	Calm	19:04	Middle	-	30.0	-	- - 8.1	-	- - 15.8	-	83.5	-	- - 6.1	-		16.6	-	14.6	6.1	-	5.3
				Bottom	4.1	29.8 28.9	29.9	8.1 8.2	8.1	16.4	16.1	81.3 82.0	82.4	5.9	6.0	6.0	19.9	18.3		5.1	5.6	
				Surface	1	29.0	29.0	8.2	8.2	26.1	26.2	75.5	78.8	5.4	5.7	5.7	8.3	8.1		9.6	9.0	
7-Aug-13	Fine	Moderate	20:04	Middle	-	28.6	-	8.2	-	26.6	-	- 69.2	-	- 5.0	-		- 10.1	-	9.2	8.5	-	7.9
				Bottom	4.7	28.6 31.3	28.6	8.2 8.1	8.2	27.8 20.6	27.2	70.4 87.9	69.8	5.1 6.3	5.1	5.1	10.4 5.9	10.3		5.0	6.8	
0 400 42	Cuppy	Madarata	20:20	Surface	1	31.0	31.2	8.1	8.1	20.9	20.8	87.6	87.8	6.3	6.3	6.3	7.2	6.6	0.0	3.6	3.7	3.4
9-Aug-13	Sunny	Moderate	20:30	Middle Bottom	4.1	29.2	29.2	8.1	8.1	24.6	24.6	- 75.8	75.8	- 5.5	5.5	5.5	13.3	13.2	9.9	3.5	3.0	3.4
						29.2 29.6		8.1 8.1		24.6 20.8		75.8 88.0		5.5 6.1		0.0	13.1 23.4			2.5		
40 A 40	0	0-1	09:36	Surface	1	29.6	29.6	8.1	8.1	20.8	20.8	84.9	86.5	5.9 -	6.0	6.0	20.7	22.1	21.1	2.7	2.7	2.0
12-Aug-13	Sunny	Calm	09.30	Middle Bottom	4.5	29.5	29.5	8.0	8.0	21.6	21.6	82.2	82.1	5.7	5.7	5.7	18.5	20.0	21.1	3.6	3.7	3.2
				Surface	1	29.5 28.2	28.2	8.0 7.8	7.8	21.6 14.6	14.6	81.9 77.4	77.5	5.6 5.6	5.6	5.7	21.5 10.2	10.1		3.7 6.2	8.4	
16-Aug-13	Rainy	Moderate	15:38	Middle		28.2	20.2	7.8	7.0	14.6	14.0	77.6	-	5.6	3.0	5.6	10.0	-	13.2	10.5	0.4	9.0
10 Aug 10	ramy	Woderate	10.00	Bottom	4.1	28.3	28.3	7.8	7.8	15.6	15.7	75.5	75.4	5.4	5.4	5.4	15.7	16.2	10.2	9.0	9.5	0.0
				Surface	1	28.3	28.4	7.8	7.5	15.8 8.4	8.5	75.2 67.8	67.1	5.4	5.3		9.0	9.4		11.0	10.3	
19-Aug-13	Rainy	Rough	18:19	Middle	-	28.4	-	7.5 -	-	8.6	-	66.4	-	5.2	-	5.3	9.7	-	13.0	9.6	-	11.0
				Bottom	4.4	28.4 28.4	28.4	7.5 7.5	7.5	8.8 8.7	8.8	61.1 60.7	60.9	4.9 4.8	4.9	4.9	16.9 16.0	16.5		11.6 11.6	11.6	
		<u> </u>		Surface	1	28.2 28.1	28.2	7.5 7.6	7.6	11.0 11.9	11.5	71.7 73.6	72.7	5.2 5.4	5.3	<u>.</u> -	20.4 22.9	21.7		23.0 20.3	21.7	
21-Aug-13	Rainy	Rough	19:57	Middle	-		-		-		-		-		-	5.3	-	-	22.0		-	20.6
				Bottom	4.2	28.2 28.1	28.2	7.5 7.5	7.5	11.0 11.5	11.3	70.2 71.3	70.8	5.1 5.1	5.1	5.1	20.7	22.3		20.0	19.5	

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.2 27.2	27.2	7.6 7.6	7.6	10.3 10.3	10.3	74.9 75.0	75.0	5.6 5.6	5.6	5.6	7.8 7.9	7.9		6.3 5.7	6.0	
23-Aug-13	Cloudy	Moderate	07:13	Middle	-	1 1	-	-	-	-	-	-	-		-	5.0	-	-	7.6	-	-	5.8
				Bottom	4.4	27.3 27.3	27.3	7.6 7.6	7.6	11.9 11.8	11.9	72.3 72.0	72.2	5.4 5.3	5.4	5.4	7.2 7.2	7.2		6.0 4.9	5.5	
				Surface	1	27.0 27.0	27.0	7.5 7.5	7.5	9.3 9.3	9.3	74.2 73.0	73.6	5.4 5.4	5.4	5.4	10.8 10.9	10.9		4.2 2.8	3.5	
26-Aug-13	Sunny	Calm	09:39	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	5.4	-	-	14.5	-	-	3.1
				Bottom	4.9	27.0 27.0	27.0	7.5 7.5	7.5	20.3 20.3	20.3	70.5 69.5	70.0	5.1 5.1	5.1	5.1	17.5 18.4	18.0		3.0 2.3	2.7	
				Surface	1	28.1 27.9	28.0	7.3 7.3	7.3	5.4 5.8	5.6	85.7 87.5	86.6	6.5 6.7	6.6	6.6	18.6 17.9	18.3		11.1 2.5	6.8	
28-Aug-13	Sunny	Calm	11:36	Middle	ı	1 1	-	-	-	-	-	-	-	1 1	-	0.0	-	-	17.2	-	-	5.2
				Bottom	4.9	27.6 27.6	27.6	7.5 7.5	7.5	10.0 9.7	9.9	68.6 70.0	69.3	5.1 5.2	5.2	5.2	15.4 16.7	16.1		3.2 4.0	3.6	
				Surface	1	28.5 27.8	28.2	7.8 7.8	7.8	9.6 9.6	9.6	77.5 76.4	77.0	5.7 5.6	5.7	5.7	6.0 5.6	5.8		2.7 2.6	2.7	
31-Aug-13	Rainy	Moderate	17:28	Middle	i	1 1	-	-	-	-	-	-	-	1 1	-	5.7	-	-	5.8	-	-	2.6
				Bottom	4.3	28.6 27.9	28.3	7.8 7.8	7.8	16.7 14.7	15.7	68.5 69.2	68.9	4.9 5.0	5.0	5.0	5.9 5.5	5.7		2.8 2.0	2.4	

Water Quality Monitoring Results at IS4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	ъері	a (111 <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	8.4 8.4	8.4	25.6 25.6	25.6	92.6 92.5	92.6	6.4 6.4	6.4		2.9 2.9	2.9		2.5 4.8	3.7	
3-Aug-13	Rainy	Moderate	12:19	Middle	4.5	28.0 28.0	28.0	8.4 8.4 8.4	8.4	25.7	25.7	92.5 91.2 91.0	91.1	6.3	6.3	6.4	3.3	3.3	6.4	1.1	1.1	2.0
				Bottom	8	28.0 28.0 28.0	28.0	8.3 8.3	8.3	25.7 26.4 26.4	26.4	84.1	83.7	6.3 5.8	5.8	5.8	3.3 12.4 13.5	13.0		1.0 0.6 1.7	1.2	
				Surface	1	28.4	28.4	8.3	8.3	23.0	23.5	83.3 80.8	80.7	5.7 5.8	5.8		4.2	4.2		4.2	3.5	
5-Aug-13	Cloudy	Calm	13:20	Middle	4.5	28.4 27.9 27.9	27.9	8.3 8.3 8.3	8.3	23.9 27.9 27.8	27.9	80.6 77.1 77.1	77.1	5.8 5.5 5.5	5.5	5.7	3.2 3.3	3.3	6.0	2.8 5.7 2.2	4.0	3.4
				Bottom	8	27.9 27.4 27.4	27.4	8.3 8.3	8.3	29.8 29.8 29.8	29.8	71.0 70.9	71.0	5.5 5.1 5.1	5.1	5.1	10.6 10.3	10.5		3.2 2.2	2.7	
				Surface	1	29.3 29.0	29.2	7.5 8.2	7.9	23.6 24.3	24.0	94.1 91.4	92.8	6.4 6.3	6.4		5.3 5.3	5.3		2.6	3.3	
7-Aug-13	Sunny	Moderate	11:31	Middle	3.5	28.5 29.0	28.8	8.1 8.1	8.1	27.0 25.9	26.5	83.5 84.2	83.9	5.7 5.7	5.7	6.1	6.9 6.9	6.9	7.0	4.0 3.8	3.9	3.1
				Bottom	6	28.4 28.4	28.4	8.2 8.2	8.2	27.8 27.7	27.8	77.0 76.6	76.8	5.3 5.2	5.3	5.3	9.1 8.5	8.8		1.6 2.8	2.2	
				Surface	1	29.5 29.6	29.6	8.2 8.2	8.2	23.0 22.7	22.9	88.6 88.9	88.8	6.2 6.2	6.2	6.1	6.0 6.0	6.0		2.8 3.3	3.1	
9-Aug-13	Sunny	Moderate	15:29	Middle	4	28.9 28.9	28.9	8.2 8.2	8.2	26.2 26.2	26.2	84.6 85.4	85.0	5.9 5.9	5.9	0	5.3 5.3	5.3	8.2	2.7 3.6	3.2	3.0
				Bottom	7	28.4 28.4	28.4	8.2 8.2	8.2	28.3 28.3	28.3	71.5 71.0	71.3	5.0 5.0	5.0	5.0	13.0 13.6	13.3		3.3 2.3	2.8	
				Surface	1	30.2 31.0	30.6	8.2 8.2	8.2	22.9	21.7	97.0 97.9	97.5	6.6 6.7	6.7	6.1	4.8 4.5	4.7		3.6 2.0	2.8	
12-Aug-13	Sunny	Calm	17:22	Middle	3.5	28.8 28.8	28.8	8.2 8.2	8.2	26.7 26.9	26.8	80.5 80.1	80.3	5.5 5.5	5.5		4.5 4.8	4.7	7.7	4.2	4.1	3.8
				Bottom	6	28.4 28.4	28.4	8.2 8.2	8.2	28.4 28.5	28.5	74.9 74.6	74.8	5.2 5.1	5.2	5.2	12.6 14.9	13.8		4.4	4.6	
				Surface	1	28.0 28.0 28.0	28.0	7.8 7.8 7.8	7.8	15.5 15.5 15.6	15.5	79.2 79.2 79.2	79.2	6.0 6.0 6.0	6.0	6.0	11.8 11.8 11.9	11.8		6.2 5.6 6.2	5.9	
16-Aug-13	Cloudy	Rough	09:42	Middle	4.5	28.0 28.0	28.0	7.8 7.8	7.8	15.6 16.1	15.6	79.2 78.7	79.2	6.0	6.0		11.9 12.2	11.9	12.0	5.7 6.8	6.0	6.1
				Bottom	8	28.0 28.6	28.0	7.8 7.8	7.8	16.0 12.7	16.1	78.8 76.9	78.8	6.0	6.0	6.0	12.2 8.1	12.2		6.1 7.6	6.5	
19-Aug-13	Rainy	Rough	12:17	Surface Middle	3.5	28.5 27.9	28.6	7.8 7.9	7.8 7.9	13.0 23.6	12.9 23.6	76.6 75.6	76.8 75.7	5.9 5.7	6.0 5.7	5.9	9.1 8.5	8.6	11.0	4.4	6.0 4.5	5.5
.5 / tag 10	, willy	7.009.1	12.17	Bottom	6	28.0 27.8	27.8	7.9 8.0	8.0	23.5	26.9	75.7 74.8	74.7	5.7 5.5	5.5	5.5	9.0	15.5	11.0	5.0 6.0	6.1	0.0
				Surface	1	27.8 28.9	28.8	7.6 7.7	7.7	27.0 12.8	13.9	74.5 74.8	74.6	5.5 5.6 5.5	5.6		7.4	8.0		7.1 4.6	5.9	
21-Aug-13	Cloudy	Moderate	11:33	Middle	3.5	28.6 27.9 27.9	27.9	7.7 7.9 7.9	7.9	14.9 26.1 25.9	26.0	74.4 82.6 80.9	81.8	5.5 5.9 5.8	5.9	5.8	8.6 13.1 14.2	13.7	16.9	16.5 14.2	15.4	10.1
				Bottom	6	27.8 27.8	27.8	8.0 8.0	8.0	27.9 28.0	28.0	85.7 83.3	84.5	6.0 5.9	6.0	6.0	29.9 28.0	29.0		9.0	8.9	-

Water Quality Monitoring Results at IS4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Temper	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.8 27.8	27.8	7.7 7.7	7.7	10.6 10.6	10.6	85.3 85.4	85.4	6.5 6.5	6.5	6.4	7.1 7.1	7.1		4.0 4.3	4.2	
23-Aug-13	Cloudy	Moderate	15:40	Middle	4	27.8 27.8	27.8	7.7 7.7	7.7	11.7 11.7	11.7	80.2 80.8	80.5	6.1 6.2	6.2	0.4	20.5 20.1	20.3	17.9	3.7 3.2	3.5	4.0
				Bottom	7	27.6 27.6	27.6	7.9 7.9	7.9	24.1 24.1	24.1	67.4 67.9	67.7	5.1 5.2	5.2	5.2	25.5 27.0	26.3		4.5 4.0	4.3	
				Surface	1	28.0 28.1	28.1	7.6 7.6	7.6	10.6 9.5	10.1	76.5 74.9	75.7	5.7 5.6	5.7	5.5	6.3 6.4	6.4		3.3 4.7	4.0	
26-Aug-13	Sunny	Calm	17:08	Middle	3.5	27.3 27.3	27.3	7.9 7.9	7.9	23.5 23.4	23.5	75.4 75.6	75.5	5.2 5.3	5.3	5.5	12.0 11.9	12.0	12.0	2.9 3.6	3.3	3.7
				Bottom	6	27.1 27.1	27.1	7.9 7.9	7.9	27.2 27.3	27.3	76.5 77.0	76.8	5.2 5.3	5.3	5.3	16.3 18.8	17.6		4.2 3.6	3.9	
				Surface	1	28.2 28.3	28.3	7.3 7.6	7.5	11.7 10.8	11.3	125.6 102.3	114.0	9.2 7.5	8.4	8.0	5.7 6.8	6.3		4.8 5.5	5.2	
28-Aug-13	Fine	Calm	16:30	Middle	3.5	27.2 27.3	27.3	7.7 7.9	7.8	28.2 26.5	27.4	114.6 107.8	111.2	7.8 7.4	7.6	0.0	8.8 8.2	8.5	8.8	5.1 5.4	5.3	5.3
				Bottom	6	27.0 27.1	27.1	7.9 7.9	7.9	28.7 28.6	28.7	112.0 106.8	109.4	7.6 7.2	7.4	7.4	11.5 11.6	11.6		5.6 5.2	5.4	
				Surface	1	27.6 27.6	27.6	7.8 7.8	7.8	9.3 9.3	9.3	86.1 87.2	86.7	6.5 6.5	6.5	6.0	4.4 4.4	4.4		3.3 3.4	3.4	
31-Aug-13	Cloudy	Moderate	10:52	Middle	5	26.6 26.6	26.6	7.9 7.9	7.9	23.1 23.2	23.2	73.8 75.4	74.6	5.4 5.5	5.5	0.0	3.9 4.0	4.0	9.2	3.9 3.1	3.5	3.3
				Bottom	9	26.2 26.2	26.2	7.9 7.9	7.9	26.0 26.0	26.0	67.0 66.2	66.6	4.9 4.8	4.9	4.9	18.3 20.0	19.2		2.7 3.5	3.1	

Water Quality Monitoring Results at IS4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	n (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	1 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.4	28.4	8.3	8.3	20.7	20.7	77.5	77.6	5.4	5.4		4.3	4.2		4.5	4.6	
				Curidoo		28.4	20	8.3	0.0	20.7		77.6		5.4	0.1	5.3	4.1 5.9			4.6		
3-Aug-13	Rainy	Moderate	19:31	Middle	4.5	28.3 28.3	28.3	8.3 8.3	8.3	21.2 21.2	21.2	74.5 74.7	74.6	5.2 5.2	5.2		5.9 5.7	5.8	5.9	5.2 4.1	4.7	4.6
				5 "	_	28.3		8.3		21.3	24.2	71.9		5.0			7.9			5.0		
				Bottom	8	28.3	28.3	8.3	8.3	21.3	21.3	72.1	72.0	5.0	5.0	5.0	7.6	7.8		4.0	4.5	
				Surface	1	29.5	29.5	8.1	8.1	16.2	16.2	86.9	86.8	6.2	6.2		7.2	7.4		5.4	5.1	
				04.1400		29.5	20.0	8.1	0	16.2	.0.2	86.6	00.0	6.2	0.2	6.2	7.5			4.7	0	
5-Aug-13	Cloudy	Calm	20:09	Middle	4.5	29.4 29.4	29.4	8.1 8.0	8.1	16.5 15.7	16.1	85.8 86.1	86.0	6.2 6.2	6.2		7.7 7.5	7.6	7.5	7.2 4.3	5.8	5.0
						29.2		8.1		18.2		84.0		6.0			7.5			6.2		
				Bottom	8	29.2	29.2	8.1	8.1	18.6	18.4	83.6	83.8	6.0	6.0	6.0	7.5	7.5		2.2	4.2	
				Surface	1	29.2	29.1	8.2	8.2	23.9	24.0	77.2	77.5	5.3	5.4		6.1	6.2		3.0	2.8	
				Surface	'	29.0	23.1	8.2	0.2	24.0	24.0	77.7	11.5	5.4	3.4	5.6	6.2	0.2		2.5	2.0	
7-Aug-13	Fine	Moderate	18:33	Middle	3	29.0	28.9	8.1	8.1	24.7	25.4	84.8	84.4	5.8	5.8		9.3	9.6	9.4	2.7	3.0	3.5
						28.8 28.7		8.1 8.1		26.0 27.2		83.9 82.5		5.8 5.6			9.9 11.8			3.2 4.9		
				Bottom	5	28.5	28.6	8.2	8.2	26.9	27.1	80.0	81.3	5.5	5.6	5.6	12.8	12.3		4.2	4.6	
				Curfoso	1	29.5	29.6	8.1	8.1	20.4	20.3	92.1	92.3	6.4	6.4		5.2	5.1		3.3	3.6	
				Surface	ı	29.6	29.0	8.1	0.1	20.2	20.3	92.4	92.3	6.4	6.4	6.3	5.0	5.1		3.9	3.0	
9-Aug-13	Sunny	Moderate	21:53	Middle	4.5	28.3	28.4	8.2	8.2	24.3	24.2	87.7	87.9	6.1	6.1	0.0	7.2	7.0	7.7	3.3	3.7	3.9
	,					28.4		8.2		24.1		88.0		6.1	-		6.8			4.0		
				Bottom	8	27.6 27.6	27.6	8.2 8.2	8.2	27.2 27.3	27.3	77.4 77.1	77.3	5.4 5.4	5.4	5.4	10.8 11.4	11.1		5.1 3.4	4.3	
				0	4	29.8	20.0	8.1	0.4	21.7	24.0	83.1	82.9	5.8	5.0		4.4	4.0		2.5	0.0	
				Surface	1	29.9	29.9	8.1	8.1	21.5	21.6	82.7	82.9	5.7	5.8	5.8	5.1	4.8		3.0	2.8	
12-Aug-13	Sunny	Calm	11:00	Middle	3.5	29.7	29.7	8.1	8.1	22.2	22.2	81.8	81.9	5.7	5.7	5.0	9.0	8.4	10.5	4.4	2.4	2.9
	,					29.7		8.1		22.2		82.0		5.7	_		7.7			0.3		
				Bottom	6	29.5 29.5	29.5	8.1 8.1	8.1	23.1 22.8	23.0	80.1 79.9	80.0	5.5 5.5	5.5	5.5	17.7 18.6	18.2		3.9 3.0	3.5	
i				0 (28.2		7.8		15.5		77.4		5.9			10.6	40.0		17.8		
				Surface	1	28.2	28.2	7.8	7.8	15.5	15.5	77.4	77.4	5.9	5.9	5.9	10.6	10.6		15.5	16.7	
16-Aug-13	Rainy	Moderate	17:06	Middle	4.5	28.2	28.2	7.8	7.8	15.5	15.5	77.3	77.3	5.9	5.9	5.9	11.2	11.2	11.1	11.5	11.4	13.0
107.09.0		ouo.uto	11.00	maaio		28.2		7.8		15.5	10.0	77.3		5.9	0.0		11.2			11.3		10.0
				Bottom	8	28.2 28.2	28.2	7.8 7.8	7.8	15.5 15.5	15.5	77.1 77.0	77.1	5.9 5.9	5.9	5.9	11.4 11.4	11.4		10.3 11.7	11.0	
+						28.7		7.4		8.0		74.0		5.6			11.4			12.4		
				Surface	1	28.7	28.7	7.4	7.4	8.1	8.1	72.8	73.4	5.5	5.6	5.0	13.5	12.5		13.0	12.7	
19-Aug-13	Rainy	Rough	19:42	Middle	3.5	28.6	28.6	7.4	7.4	8.9	8.9	74.1	73.6	5.6	5.6	5.6	16.8	16.2	17.5	22.4	17.3	15.3
13-Aug-13	rainy	rtougii	15.42	Middle	0.0	28.6	20.0	7.4	77	8.8	0.5	73.0	70.0	5.5	0.0		15.6	10.2	17.5	12.2	17.0	10.0
				Bottom	6	28.7	28.7	7.5 7.5	7.5	9.5	9.5	64.4	64.2	5.1 5.1	5.1	5.1	24.9 22.5	23.7		20.0	15.8	
1						28.7 28.8		7.5		9.5 12.4		63.9 86.0		6.4			16.7	1		11.6 10.0		
				Surface	1	28.8	28.8	7.5 7.5	7.5	12.4	12.4	85.6	85.8	6.4	6.4	0.4	16.7	16.5		10.0	10.0	
21 Aug 12	Doiny	Dough	18:02	Middle	3	28.8	28.8	7.5	7.5	13.0	12.0	85.7	85.7	6.4	6.4	6.4	16.9	15.3	20.9	23.7	22.9	44.3
21-Aug-13	Rainy	Rough	10.02	iviluule	3	28.8	20.0	7.5	7.5	13.0	13.0	85.6	00.7	6.4	0.4		13.6	10.0	20.9	22.0	22.5	44.3
				Bottom	5	28.3	28.4	7.8	7.8	20.5	20.5	87.6	87.5	6.4	6.4	6.4	30.5	30.8		112.7	100.1	
					•	28.4		7.8		20.5	-	87.3		6.3	<u> </u>		31.1		<u> </u>	87.5		<u> </u>

Water Quality Monitoring Results at IS4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.8 27.8	27.8	7.5 7.5	7.5	11.9 11.9	11.9	75.3 75.8	75.6	5.7 5.8	5.8	5.6	6.8 6.9	6.9		6.6 6.6	6.6	
23-Aug-13	Cloudy	Moderate	09:14	Middle	4.5	27.8 27.8	27.8	7.5 7.5	7.5	12.0 12.0	12.0	69.9 70.6	70.3	5.3 5.4	5.4	5.0	7.2 7.1	7.2	8.7	7.3 8.0	7.7	7.0
				Bottom	8	27.9 27.9	27.9	7.6 7.6	7.6	14.7 14.5	14.6	63.7 63.2	63.5	4.9 4.8	4.9	4.9	12.3 11.7	12.0		6.3 6.8	6.6	
				Surface	1	27.5 27.5	27.5	7.5 7.5	7.5	9.8 9.9	9.9	71.6 71.2	71.4	5.4 5.3	5.4	5.4	13.4 13.8	13.6		3.0 8.2	5.6	
26-Aug-13	Sunny	Calm	11:22	Middle	3.5	27.5 27.5	27.5	7.5 7.5	7.5	10.1 10.0	10.1	71.3 70.9	71.1	5.3 5.3	5.3	5.4	17.6 16.9	17.3	16.7	4.4 3.5	4.0	5.2
				Bottom	6	27.4 27.4	27.4	7.5 7.5	7.5	10.7 10.3	10.5	71.6 71.5	71.6	5.3 5.3	5.3	5.3	20.1 18.4	19.3		7.8 4.4	6.1	
				Surface	1	28.2 28.1	28.2	7.3 7.4	7.4	7.0 7.1	7.1	93.2 79.8	86.5	6.3 6.0	6.2	6.2	8.0 7.6	7.8		2.7 2.7	2.7	
28-Aug-13	Sunny	Calm	11:00	Middle	3.5	27.7 27.9	27.8	7.2 7.3	7.3	7.9 7.9	7.9	81.9 79.2	80.6	6.2 6.0	6.1	0.2	6.6 8.1	7.4	7.1	3.5 1.8	2.7	3.2
				Bottom	6	27.6 27.6	27.6	7.5 7.6	7.6	24.6 24.5	24.6	79.5 77.9	78.7	5.5 5.6	5.6	5.6	6.4 5.7	6.1		4.1 4.3	4.2	
				Surface	1	28.0 28.0	28.0	7.6 7.7	7.7	7.8 8.0	7.9	78.7 80.0	79.4	5.9 6.0	6.0	6.4	7.0 6.7	6.9		2.7 3.2	3.0	
31-Aug-13	Rainy	Moderate	18:32	Middle	4	27.6 27.6	27.6	7.8 7.8	7.8	12.9 12.9	12.9	90.0 90.4	90.2	6.8 6.8	6.8	5.4	11.7 11.8	11.8	11.9	1.2 2.3	1.8	2.6
				Bottom	7	26.8 26.8	26.8	7.8 7.8	7.8	20.5 20.4	20.5	77.0 75.9	76.5	5.7 5.6	5.7	5.7	17.2 16.5	16.9		3.5 2.7	3.1	

Water Quality Monitoring Results at SR1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salir	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTU	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
			44.00	Surface	-	- - 27.9	-	- - 8.4	-	- - 25.1	-	- - 85.0	-	- - 5.8	-	5.8	- - 1.5	-		2.7	-	
3-Aug-13	Rainy	Moderate	11:02	Middle	0.9	27.9	27.9	8.4	8.4	25.1	25.1	84.5	84.8	5.8	5.8		1.5	1.5	1.5	0.9	1.8	1.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
5-Aug-13	Cloudy	Calm	12:42	Surface Middle	1.3	28.6	28.7	8.2	8.2	21.5	21.2	71.5	73.8	5.2	5.4	5.4	8.5	9.1	9.1	4.8	3.8	3.8
5-Aug-13	Cloudy	Callii	12.42	Bottom	-	28.8	-	8.2	-	20.9	-	76.0 -	-	5.5 -	-	-	9.6	9.1	9.1	2.7	-	3.6
				Surface	_	-	_	-	_	-	<u> </u>	-	_	-	_		-	<u> </u>		-	_	
7-Aug-13	Sunny	Moderate	13:42	Middle	0.9	29.2 29.2	29.2	8.2	8.2	24.4	24.4	83.0	83.6	6.0	6.0	6.0	4.5 4.3	4.4	4.4	3.2 2.9	3.1	3.1
				Bottom	-	- - -	-	8.2 - -	-	24.4 - -	-	84.1 - -	-	6.0 - -	-	-		-			-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.1		-			-	
9-Aug-13	Sunny	Moderate	14:55	Middle	1.3	29.4 29.4	29.4	8.2 8.2	8.2	23.5 23.5	23.5	84.0 84.6	84.3	6.0 6.1	6.1	0.1	5.9 5.7	5.8	5.8	5.1 4.4	4.8	4.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	30.6	-	- - 8.2	-	20.1	-	103.3	-	7.0	-	7.0	3.1	-		3.9	-	
12-Aug-13	Sunny	Calm	15:06	Middle	0.9	30.6	30.6	8.2	8.2	20.1	20.1	103.3	103.0	7.0	7.0		3.1	3.1	3.1	2.2	3.1	3.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	- - 28.1	-	- - 7.8	-	- - 15.4	-	- - 78.9	-	- - 5.7	-	5.7	8.5	-		9.2	-	
16-Aug-13	Cloudy	Rough	09:10	Middle	1.2	28.1	28.1	7.8	7.8	15.4	15.4	78.9	78.9	5.7	5.7		8.3	8.4	8.4	7.8	8.5	8.5
				Bottom	-	-	-	-	-	-	-	<u>-</u>	-	-	-	-	<u>-</u>	-		<u>-</u>	-	
19-Aug-13	Rainy	Rough	11:28	Surface Middle	1.3	28.2	28.2	7.7	7.7	11.0	11.1	66.1	66.2	5.2	5.2	5.2	7.8	7.7	7.7	11.0	10.6	10.6
10-Aug-10	ramy	Nough	11.20	Bottom	-	28.1	-	7.7	-	11.2	-	66.2	-	5.2	-	_	7.6	-	1.1	10.2	-	10.0
				Surface	-	-	-	-	_	-	-	-	-	-	-		-	-		-	_	
21-Aug-13	Cloudy	Moderate	13:48	Middle	1.4	28.2 28.2	28.2	7.6 7.6	7.6	- 11.8 11.9	11.9	76.6 75.4	76.0	5.3 5.2	5.3	5.3	7.8 7.9	7.9	7.9	3.5 4.0	3.8	3.8
				Bottom	-		-		-		-		-		-	-		-			-	

Water Quality Monitoring Results at SR1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	1 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
23-Aug-13	Cloudy	Moderate	12:55	Middle	8.0	27.3 27.3	27.3	7.8 7.8	7.8	12.1 12.1	12.1	77.0 75.4	76.2	5.6 5.5	5.6	5.0	6.8 6.8	6.8	6.8	5.8 4.9	5.4	5.4
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	1 1	-	5.8	-	-		-	-	
26-Aug-13	Sunny	Calm	14:46	Middle	0.9	27.6 27.6	27.6	7.6 7.6	7.6	13.0 13.0	13.0	78.8 77.7	78.3	5.8 5.7	5.8	3.0	7.6 7.6	7.6	7.6	3.7 4.9	4.3	4.3
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-		-	-	-	-	-		-	1 1	-	6.4	-	-		-	-	
28-Aug-13	Fine	Calm	16:38	Middle	0.9	28.2 28.2	28.2	7.4 7.4	7.4	6.2 6.2	6.2	82.7 84.9	83.8	6.3 6.5	6.4	0.4	6.1 6.3	6.2	6.2	3.7 3.7	3.7	3.7
				Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-		-	-	
31-Aug-13	Cloudy	Moderate	10:22	Middle	1.3	28.1 28.1	28.1	7.9 7.9	7.9	13.1 12.8	13.0	81.3 81.1	81.2	5.9 5.9	5.9	5.9	5.2 5.1	5.2	5.2	3.8 3.7	3.8	3.8
				Bottom	-		-	-	-	-	-	-	-	1 1	-	-	-	-			-	

Water Quality Monitoring Results at SR1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-		-	-	
3-Aug-13	Rainy	Moderate	16:46	Middle	1.3	28.3 28.3	28.3	8.3 8.3	8.3	22.6 22.6	22.6	86.5 84.5	85.5	5.9 5.8	5.9	5.9	14.6 12.2	13.4	13.4	1.7 1.9	1.8	1.8
				Bottom		-	-	-	-	-	-	-	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	0.4		-		-	-	
5-Aug-13	Cloudy	Calm	17:46	Middle	1	29.7 29.7	29.7	8.1 8.1	8.1	15.5 15.5	15.5	86.4 87.4	86.9	6.3 6.4	6.4	6.4	8.2 8.2	8.2	8.2	7.6 4.7	6.2	6.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-		-	-	
7-Aug-13	Fine	Moderate	18:26	Middle	1.3	29.2 29.2	29.2	8.2 8.2	8.2	24.3 24.3	24.3	85.9 85.9	85.9	6.2 6.1	6.2	0.2	3.8 3.9	3.9	3.9	7.6 6.0	6.8	6.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-		-	-	
9-Aug-13	Sunny	Moderate	19:21	Middle	0.8	29.4 29.4	29.4	8.2 8.2	8.2	23.4 23.4	23.4	85.0 85.1	85.1	6.1 6.1	6.1	0.1	5.7 5.7	5.7	5.7	3.4 3.7	3.6	3.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
12-Aug-13	Sunny	Calm	10:43	Middle	1.3	29.8 29.9	29.9	8.0 8.0	8.0	20.4 20.3	20.4	80.8 80.6	80.7	5.6 5.6	5.6	5.0	4.1 4.0	4.1	4.1	3.4 3.4	3.4	3.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-		-	-	
16-Aug-13	Rainy	Moderate	14:22	Middle	1.3	28.2 28.2	28.2	7.8 7.8	7.8	15.0 15.0	15.0	80.2 80.1	80.2	5.8 5.8	5.8	5.6	10.6 10.8	10.7	10.7	10.5 10.0	10.3	10.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-		-	-	
19-Aug-13	Rainy	Rough	17:05	Middle	0.9	28.2 28.2	28.2	7.2 7.2	7.2	7.0 7.1	7.1	69.8 68.3	69.1	5.5 5.4	5.5	5.5	13.1 13.0	13.1	13.1	9.6 9.2	9.4	9.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-		-	-	
21-Aug-13	Rainy	Rough	18:17	Middle	0.9	28.6 28.6	28.6	7.6 7.6	7.6	11.5 11.5	11.5	78.3 77.7	78.0	5.7 5.6	5.7	5.1	15.2 15.0	15.1	15.1	7.3 8.3	7.8	7.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	7	Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	1 1	-	-	-	-	-	1 1	-	1 1	-	5.6	-	-		-	-	
23-Aug-13	Cloudy	Moderate	08:51	Middle	1.3	27.3 27.3	27.3	7.6 7.6	7.6	10.9 10.9	10.9	75.5 75.5	75.5	5.6 5.6	5.6	5.0	6.7 6.7	6.7	6.7	6.2 6.2	6.2	6.2
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	1	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	-	1 1	-	5.5	-	-		-	-	
26-Aug-13	Sunny	Calm	11:11	Middle	1.3	26.9 26.9	26.9	7.6 7.6	7.6	12.3 12.4	12.4	74.6 75.2	74.9	5.5 5.5	5.5	5.5	6.5 6.2	6.4	6.4	3.5 2.5	3.0	3.0
				Bottom	-	-	-	-	-	-	-		-		-	-	-	-		-	-	
				Surface	-	1 1	-		-	-	-	1 1	-	1 1	-	6.6	-	-		-	-	
28-Aug-13	Sunny	Calm	13:13	Middle	1.3	27.9 27.9	27.9	7.4 7.4	7.4	6.7 6.8	6.8	86.5 86.5	86.5	6.6 6.6	6.6	0.0	6.8 6.9	6.9	6.9	15.4 11.0	13.2	13.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	i	1 1	-	-	-	-	-	1 1	ı	1 1	-	5.7	-	-		-	-	
31-Aug-13	Rainy	Moderate	16:07	Middle	0.9	28.6 28.6	28.6	7.6 7.6	7.6	9.4 9.4	9.4	77.8 77.2	77.5	5.7 5.7	5.7	5.7	6.9 6.8	6.9	6.9	3.2 2.8	3.0	3.0
				Bottom	i	1 1	-		-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(!!!)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
3-Aug-13	Rainy	Moderate	09:28	Surface Middle	0.7	27.8	27.9	8.2	8.3	25.3	25.3	92.4	92.5	6.3	6.3	6.3	4.0	4.0	4.0	0.7	- 0.6	0.6
	,			Bottom	-	27.9 - -	-	8.3	-	25.3	-	92.6	-	6.3	-	-	4.0	-			-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
5-Aug-13	Cloudy	Calm	11:16	Middle	1.1	29.0 29.0	29.0	8.2 8.2	8.2	21.2 18.9	20.1	81.5 80.8	81.2	5.9 5.9	5.9	5.9	9.3 9.0	9.2	9.2	3.4 3.6	3.5	3.5
				Bottom	-		-		-		-		-		-	-		-			-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.0		-			-	
7-Aug-13	Sunny	Moderate	12:01	Middle	0.5	29.7 29.7	29.7	8.1 8.1	8.1	23.5 23.5	23.5	84.2 84.2	84.2	6.0 6.0	6.0	6.0	8.7 8.6	8.7	8.7	17.5 10.8	14.2	14.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-		-	-	-	1 1	-	-	-	1 1	-	6.0	-	-		-	-	
9-Aug-13	Sunny	Moderate	13:11	Middle	0.7	29.8 29.8	29.8	8.1 8.1	8.1	21.5 20.4	21.0	83.8 83.3	83.6	6.0 6.0	6.0		9.9 9.9	9.9	9.9	3.0 2.8	2.9	2.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	31.7	-	8.2	-	21.0	-	- - 85.2	-	- - 5.7	-	5.7	8.5	-		5.0	-	
12-Aug-13	Sunny	Calm	16:19	Middle	0.9	31.7	31.7	8.2	8.2	21.1	21.1	85.6	85.4	5.7	5.7		8.7	8.6	8.6	6.1	5.6	5.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	28.1	-	7.8	-	15.2	-	80.0	-	5.7	-	5.7	14.4	-		9.1	-	
16-Aug-13	Cloudy	Rough	07:31	Middle	0.7	28.1	28.1	7.8	7.8	15.2	15.2	79.8	79.9	5.7	5.7		14.4	14.4	14.4	8.5	8.8	8.8
				Bottom Surface	-	-	-	-	<u> </u>	-	-	-	<u> </u>	-	-	-	-	-		-	-	
19-Aug-13	Rainy	Rough	10:09	Middle	1.2	28.0	28.0	7.7	7.7	10.5	10.7	66.9	66.7	5.2	5.2	5.2	11.5	11.1	11.1	4.4	4.4	4.4
	,			Bottom	-	28.0	-	7.7	-	10.8	-	66.4	-	5.2	-	-	10.7	-		4.4	-	
				Surface	-	-	-	-	_	-	_	-	_	-	_		-	_		-	-	
21-Aug-13	Cloudy	Moderate	12:01	Middle	0.9	28.0 28.0	28.0	7.5 7.5	7.5	11.7 11.8	11.8	74.8 82.5	78.7	5.5 5.6	5.6	5.6	10.1 10.0	10.1	10.1	5.8 6.5	6.2	6.2
				Bottom	-	-	-	- -	-		-		-		-	-		-			-	

Water Quality Monitoring Results at SR2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-		-	-	
23-Aug-13	Cloudy	Moderate	13:56	Middle	0.8	27.4 27.4	27.4	7.7 7.7	7.7	11.3 11.3	11.3	76.2 79.5	77.9	5.6 5.8	5.7	5.7	10.7 10.8	10.8	10.8	5.7 5.5	5.6	5.6
				Bottom	-	1 1	-	-	-	-	-	-	-	1 1	-	-		-		-	-	
				Surface	-	1 1	=	-	-	-	-	-	-	1 1	-	6.0	-	-		-	-	
26-Aug-13	Sunny	Calm	16:20	Middle	0.6	27.1 27.1	27.1	7.9 7.9	7.9	26.9 26.6	26.8	86.6 86.9	86.8	5.9 6.0	6.0	0.0	11.6 12.0	11.8	11.8	3.8 3.9	3.9	3.9
				Bottom	ı	1 1	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	-	-	1 1	-	6.2	-	-		-	-	
28-Aug-13	Fine	Calm	18:21	Middle	0.5	28.6 28.6	28.6	7.7 7.7	7.7	8.2 8.1	8.2	81.0 81.5	81.3	6.2 6.2	6.2	0.2	11.6 11.0	11.3	11.3	4.8 4.2	4.5	4.5
				Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.7		-		-	-	
31-Aug-13	Cloudy	Moderate	08:42	Middle	0.8	28.2 28.2	28.2	7.8 7.8	7.8	11.4 12.0	11.7	78.0 78.0	78.0	5.7 5.7	5.7	5.7	4.1 4.1	4.1	4.1	4.4 4.2	4.3	4.3
				Bottom	i	1 1	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	(!!!)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-		-	1 1	-	-	-	6.1	-	-		-	-	
3-Aug-13	Rainy	Moderate	18:07	Middle	0.9	28.7 28.6	28.7	8.4 8.4	8.4	23.4 23.4	23.4	89.5 89.6	89.6	6.1 6.1	6.1		21.5 20.6	21.1	21.1	1.9 1.7	1.8	1.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	- - 29.9	-	- - 8.1	-	20.3	-	83.5	-	- - 6.0	-	6.0	10.4	-		7.4	-	
5-Aug-13	Cloudy	Calm	19:24	Middle	8.0	29.9	29.9	8.1	8.1	20.3	20.3	83.3	83.4	6.0	6.0		10.4	10.7	10.7	5.6	6.5	6.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-		-	-	-	5.7		-		-	-	
7-Aug-13	Fine	Moderate	20:15	Middle	0.7	29.4 29.4	29.4	8.2 8.2 -	8.2	24.5 23.4	24.0	79.1 78.9	79.0	5.7 5.7	5.7		11.2 11.5	11.4	11.4	9.4 9.4	9.4	9.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	- -	-		-	-	
				Surface	-	30.0	-	8.1	-	22.5	-	81.3	-	5.8	-	5.8	8.7	-		3.3	-	
9-Aug-13	Sunny	Moderate	20:38	Middle	0.5	30.0	30.0	8.1	8.1	22.5	22.5	81.3	81.3	5.8	5.8		8.7	8.7	8.7	3.2	3.3	3.3
				Bottom	-	-	-	<u>-</u>	-	-	-	-	<u>-</u>	-	<u>-</u>	-	-	-		-	-	
				Surface	-	29.6	-	8.0	-	22.3	-	89.4	-	6.1	-	6.1	9.8	-		3.2	-	
12-Aug-13	Sunny	Calm	09:30	Middle	0.8	29.5	29.6	8.0	8.0	22.3	22.3	88.5	89.0	6.1	6.1		9.7	9.8	9.8	4.5	3.9	3.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	28.2	-	7.9	-	- 14.6	-	83.4	-	6.0	-	6.0	7.7	-		6.6	-	
16-Aug-13	Rainy	Moderate	16:06	Middle	0.5	28.2	28.2	7.9	7.9	14.6	14.6	83.2	83.3	6.0	6.0		7.8	7.8	7.8	5.9	6.3	6.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
19-Aug-13	Rainy	Rough	18:26	Surface Middle	0.5	28.3	28.3	7.7	7.7	- 11.4	11.4	- 72.1	71.7	5.6	5.6	5.6	13.0	12.6	12.6	11.4	11.7	11.7
13-Aug-13	Railly	Rougil	10.20			28.3		7.7	1.1	11.4	11.4	71.3		5.5			12.1		12.0	12.0	11.7	11.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	28.1	-	7.4	-	9.2	-	71.9	-	5.3	-	5.3	19.2	-	46 -	40.7	-	
21-Aug-13	Rainy	Rough	20:10	Middle	0.9	28.1	28.1	7.4	7.4	9.1	9.2	71.7	71.8	5.3	5.3		18.8	19.0	19.0	41.3	41.0	41.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
23-Aug-13	Cloudy	Moderate	06:58	Middle	0.8	27.2 27.2	27.2	7.6 7.6	7.6	10.1 10.1	10.1	74.8 75.2	75.0	5.6 5.6	5.6	5.0	7.7 7.7	7.7	7.7	6.0 6.2	6.1	6.1
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-		-	-		-		-	-	
				Surface	-	1 1	-	-	-	1 1	-	1 1	-	1 1	-	5.3	-	-		-	-	
26-Aug-13	Sunny	Calm	09:29	Middle	0.8	27.0 27.2	27.1	7.7 7.7	7.7	13.9 13.9	13.9	76.1 70.1	73.1	5.5 5.0	5.3	5.5	13.1 13.9	13.5	13.5	7.2 7.7	7.5	7.5
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-	1 1	-	-		-		-	-	
				Surface	-	1 1	-	-	-	1 1	-	1 1	-	1 1	-	5.7	1 1	-		-	-	
28-Aug-13	Sunny	Calm	11:25	Middle	0.8	28.9 29.1	29.0	7.9 7.9	7.9	12.6 12.4	12.5	74.6 75.0	74.8	5.7 5.7	5.7	5.7	15.7 15.8	15.8	15.8	4.7 2.1	3.4	3.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	1 1	-	1 1	-	1 1	-	6.2	1 1	-		-	-	
31-Aug-13	Rainy	Moderate	17:47	Middle	0.6	28.6 28.6	28.6	7.9 7.9	7.9	12.0 12.0	12.0	85.6 85.2	85.4	6.2 6.2	6.2	0.2	8.8 8.3	8.6	8.6	3.6 2.4	3.0	3.0
				Bottom	-	-	-	-	-	1 1	-	-	-		-	-		-		-	-	

Water Quality Monitoring Results at SR3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	- - 27.8	-	- - 8.3	-	- - 21.9	-	- - 91.0	-	- - 6.3	-	6.3	7.0	-		3.4	-	
3-Aug-13	Rainy	Moderate	09:11	Middle	0.8	27.9	27.9	8.3 -	8.3	21.9	21.9	90.7	90.9	6.3	6.3		6.9	7.0	7.0	1.6	2.5	2.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1
5-Aug-13	Cloudy	Calm	10:53	Surface Middle	0.8	29.6	29.6	7.6	7.6	19.0	19.0	92.9	94.0	6.7	6.8	6.8	9.2	9.2	9.2	5.8	6.0	6.0
0 / lug 10	o.ouu,	- Cuiiii	10.00	Bottom	-	29.6 - -	-	7.5 - -	-	19.0 - -	-	95.0	-	6.8 -	-	-	9.1	-	0.2	6.1 -	-	0.0
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
7-Aug-13	Sunny	Moderate	11:49	Middle	0.7	29.8 29.8	29.8	8.0 8.0	8.0	22.9 22.9	22.9	93.1 92.9	93.0	6.6 6.6	6.6	6.6	8.6 8.4	8.5	8.5	12.6 10.9	11.8	11.8
				Bottom	-	1 1	-	- -	-	-	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.5		-		-	-	
9-Aug-13	Sunny	Moderate	12:57	Middle	1	30.4 30.4	30.4	8.1 8.2 -	8.2	21.0 21.0	21.0	91.5 91.4	91.5	6.5 6.5	6.5		10.3 9.9	10.1	10.1	4.0 3.5	3.8	3.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	30.9	-	- - 8.2	-	22.6	-	- - 81.2	-	- - 5.5	-	5.5	12.7	-		- - 11.0	-	
12-Aug-13	Sunny	Calm	16:34	Middle Bottom	1.2	30.8	30.9	8.2	8.2	22.6	22.6	81.4	81.3	5.5	5.5		12.7	12.7	12.7	6.1	8.6	8.6
				Surface	-	-	-	-	<u>-</u>	-	<u> </u>	-	<u>-</u>	-	_	-	-			-	<u> </u>	
16-Aug-13	Cloudy	Rough	06:53	Middle	0.8	28.1	28.1	7.8	7.8	15.2	15.2	83.6	83.5	6.0	6.0	6.0	10.8	10.9	10.9	12.1	10.7	10.7
	,			Bottom	-	28.1	-	7.8	-	15.2 -	-	83.4	-	6.0	-	-	11.0	-		9.3	-	
				Surface	-	-	-	<u>-</u> -	_	-	-	-	-	-	-		-	_		-	-	
19-Aug-13	Rainy	Rough	09:53	Middle	1.3	28.0 28.0	28.0	7.7 7.7	7.7	8.8 8.8	8.8	75.9 75.9	75.9	5.9 5.9	5.9	5.9	5.6 5.6	5.6	5.6	5.0 4.2	4.6	4.6
				Bottom	-	-	-	- -	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	-	1 1	-	5.8	-	-		-	-	
21-Aug-13	Cloudy	Moderate	11:41	Middle	1.3	28.7 28.7	28.7	7.5 7.5	7.5	10.0 10.0	10.0	79.5 78.9	79.2	5.8 5.7	5.8		8.6 8.5	8.6	8.6	5.8 5.5	5.7	5.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	7	urbidity(NTU	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	1 1	-	-	-	-	-	1 1	-	1 1	-	5.5	-	-		-	-	
23-Aug-13	Cloudy	Moderate	14:35	Middle	1.2	27.5 27.5	27.5	7.7 7.7	7.7	12.9 12.9	12.9	75.8 74.6	75.2	5.5 5.4	5.5	5.5	10.8 11.1	11.0	11.0	6.4 4.2	5.3	5.3
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	-	1 1	-	5.9		-		-	-	
26-Aug-13	Sunny	Calm	16:46	Middle	0.6	28.2 28.1	28.2	7.7 7.7	7.7	12.0 12.0	12.0	80.4 79.8	80.1	5.9 5.8	5.9	5.9	10.7 10.2	10.5	10.5	2.9 3.3	3.1	3.1
				Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	1 1	-		-	-	-	1 1	-	1 1	-	6.5	-	-		-	-	
28-Aug-13	Fine	Calm	18:43	Middle	0.6	29.6 29.6	29.6	8.2 8.2	8.2	9.6 9.5	9.6	83.4 84.9	84.2	6.4 6.5	6.5	0.0	7.2 7.0	7.1	7.1	5.2 15.7	10.5	10.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	ı	1 1	ı	6.1	-	ı		-	-	
31-Aug-13	Cloudy	Moderate	08:10	Middle	0.9	28.2 28.2	28.2	7.7 7.7	7.7	9.3 8.9	9.1	82.0 82.1	82.1	6.1 6.1	6.1	0. 1	5.0 5.0	5.0	5.0	2.6 2.8	2.7	2.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.3		-			-	
3-Aug-13	Rainy	Moderate	18:44	Middle	0.9	28.3 28.2	28.3	8.4 8.4	8.4	23.3 23.4	23.4	91.8 91.1	91.5	6.3 6.2	6.3		13.6 13.0	13.3	13.3	5.3 1.9	3.6	3.6
		<u> </u>		Bottom	-	-	-	-	-	-	<u>-</u>	-	<u>-</u>	-	<u>-</u>	-	-	-		-	-	
5-Aug-13	Cloudy	Calm	19:38	Surface Middle	1	30.2	30.2	8.1	8.1	18.7	18.7	103.9	102.3	7.4	7.3	7.3	12.9	12.8	12.8	7.6	6.8	6.8
3-Aug-13	Cloudy	Calli	19.50	Bottom	-	30.2	-	8.1 -	-	18.7	-	100.7	-	7.2	-	-	12.6	-	12.0	6.0	-	0.0
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
7-Aug-13	Fine	Moderate	20:28	Middle	0.9	29.8 29.8	29.8	8.2 8.2	8.2	23.1 23.1	23.1	85.7 85.7	85.7	6.1 6.1	6.1	6.1	11.4 11.3	11.4	11.4	6.4 6.0	6.2	6.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-		-	-	-		-		-	-	-	6.1	-	-		-	-	
9-Aug-13	Sunny	Moderate	20:47	Middle	0.7	30.5 30.4	30.5	8.2 8.2	8.2	20.8 21.0	20.9	84.6 84.5	84.6	6.1 6.1	6.1		9.1 9.1	9.1	9.1	3.7 2.4	3.1	3.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	- - 29.7	-	- - 8.0	-	22.0	-	96.0	-	6.6	-	6.6	- - 11.5	-		4.8	-	
12-Aug-13	Sunny	Calm	09:07	Middle	1.2	29.7	29.7	8.0	8.0	22.0	22.0	95.5	95.8	6.5	6.6		12.0	11.8	11.8	3.8	4.3	4.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
40 4 40	Deim	Madassta	40.00	Surface	0.6	28.2	28.2	7.9	7.9	- 14.5	14.5	80.2	80.4	5.8	5.8	5.8	7.8	7.8	7.0	6.2	7.0	7.0
16-Aug-13	Rainy	Moderate	16:36	Middle Bottom	-	28.2	-	7.9	7.9	14.5	14.5	80.5	00.4	5.8 -	-	_	7.7	7.0	7.8	7.7	7.0	7.0
				Surface	-	-	-	-	_	-	<u> </u>	-	<u> </u>	-	<u> </u>		-			-		
19-Aug-13	Rainy	Rough	18:45	Middle	1.1	28.4 28.4	28.4	7.7 7.7	7.7	9.8 9.8	9.8	74.3 73.8	74.1	5.8 5.7	5.8	5.8	12.8 10.8	11.8	11.8	18.3 9.7	14.0	14.0
				Bottom	-		-	- -	-	9.8 - -	-		-	5. <i>1</i> - -	-	-		-			-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	F 2		-			-	
21-Aug-13	Rainy	Rough	20:48	Middle	1.3	28.1 28.1	28.1	7.4 7.4	7.4	8.5 8.6	8.6	72.8 71.8	72.3	5.3 5.2	5.3	5.3	19.9 18.2	19.1	19.1	12.6 14.0	13.3	13.3
				Bottom	-	-	-	-	-	1 1	-		-		-	-	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	7	urbidity(NTU	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	1 1	-	-	-	-	-	1 1	-		-	5.9	-	-		-	-	
23-Aug-13	Cloudy	Moderate	06:38	Middle	1.2	27.2 27.2	27.2	7.5 7.5	7.5	9.8 9.8	9.8	78.7 78.0	78.4	5.9 5.9	5.9	5.9	10.7 10.7	10.7	10.7	6.2 4.4	5.3	5.3
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 -	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	-	1 1	-	6.1	-	-		-	-	
26-Aug-13	Sunny	Calm	09:06	Middle	0.9	27.3 27.3	27.3	7.7 7.7	7.7	13.5 13.5	13.5	81.9 82.6	82.3	6.0 6.1	6.1	0.1	9.8 9.4	9.6	9.6	8.5 9.2	8.9	8.9
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	-	-	-	6.1	-	-		-	-	
28-Aug-13	Sunny	Calm	11:06	Middle	0.9	28.6 28.6	28.6	8.0 8.0	8.0	13.2 13.2	13.2	79.2 80.2	79.7	6.0 6.1	6.1	0.1	7.3 7.3	7.3	7.3	13.5 12.8	13.2	13.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	i	1 1	-	-	-	-	-	1 1	-	1 1	ı	6.3	-	ı		-	-	
31-Aug-13	Rainy	Moderate	18:23	Middle	0.7	28.8 28.8	28.8	8.1 8.1	8.1	14.1 14.2	14.2	88.9 88.6	88.8	6.3 6.3	6.3	0.0	8.9 8.8	8.9	8.9	2.5 2.6	2.6	2.6
				Bottom	i	1 1	-		-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR6 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.0 28.0	28.0	8.4 8.4	8.4	25.3 25.3	25.3	94.6 94.6	94.6	6.4 6.4	6.4		1.9 1.8	1.9		1.8 1.4	1.6	
3-Aug-13	Rainy	Moderate	09:51	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	1.9	-	-	1.9
				Bottom	4.7	28.0 28.0	28.0	8.4 8.4	8.4	25.4 25.4	25.4	92.4 92.2	92.3	6.3 6.3	6.3	6.3	1.9 1.9	1.9		2.8 1.4	2.1	
				Surface	1	28.7 28.7	28.7	8.2 8.2	8.2	20.6	21.8	82.3 81.2	81.8	5.9 5.8	5.9		4.1 4.9	4.5		4.3 2.9	3.6	
5-Aug-13	Cloudy	Calm	11:18	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	5.1	-	-	2.9
				Bottom	4.2	27.8 27.9	27.9	8.2 8.3	8.3	28.0 27.7	27.9	79.0 78.8	78.9	5.6 5.6	5.6	5.6	5.8 5.4	5.6		1.6 2.7	2.2	
				Surface	1	29.5	29.5	8.2	8.2	21.3	21.4	95.7	94.1	6.6	6.5		5.4	5.1		1.9	2.3	
7-Aug-13	Sunny	Moderate	14:03	Middle	-	29.5	-	8.2	_	21.4	_	92.4	-	6.4	-	6.5	4.8	-	5.0	2.7	_	3.1
	·			Bottom	4	29.4 29.0	29.2	8.2 8.2	8.2	21.8 22.4	22.1	98.3 90.8	94.6	6.8 6.3	6.6	6.6	4.8 4.7	4.8		5.7	3.9	
				Surface	1	29.8	29.8	8.2	8.2	21.3	21.2	95.5	95.3	6.7	6.7		5.1	5.2		5.4	4.0	
9-Aug-13	Sunny	Moderate	13:26	Middle	-	29.8	-	8.2	_	21.1	_	95.0	-	6.6	_	6.7	5.2	-	8.5	2.6	_	3.8
	,			Bottom	4.2	28.5	28.5	8.2	8.2	27.4	27.4	73.9	74.3	5.2	5.2	5.2	11.7	11.7		3.4	3.6	
				Surface	1	28.5 30.1	30.1	8.2	8.1	27.4	21.4	74.7 93.2	93.2	5.2 6.4	6.4		3.2	3.3		4.8	4.8	
12-Aug-13	Sunny	Calm	15:07	Middle	_	30.0	-	8.1	_	21.5	_	93.1	_	6.4	_	6.4	3.4	_	5.9	4.7	_	4.3
	,			Bottom	3.2	28.9	28.9	8.1	8.1	26.1	26.2	74.7	74.5	5.2	5.2	5.2	8.5	8.5		3.5	3.7	
				Surface	1	28.9 28.0	28.0	7.8	7.8	26.2 15.4	15.4	74.3 78.1	78.1	5.1 5.9	5.9	0.2	8.4 11.7	11.7		3.9 7.8	8.7	
16 Aug 12	Cloudy	Daugh	07:22	Middle	'	28.0	20.0	7.8	7.0	15.4	15.4	78.1 -	70.1	5.9 -	5.9	5.9	11.7	11.7	11.7	9.5	0.7	8.6
16-Aug-13	Cloudy	Rough	01.22		- 10	28.1		7.8	7.0	- 15.6	- 45.0	77.0		- 5.9	-		- 11.5		11.7	8.5	- 0.4	6.0
				Bottom	4.3	28.1 28.7	28.1	7.8 7.6	7.8	15.6 4.8	15.6	77.1 81.0	77.1	5.9 6.5	5.9	5.9	11.6 8.4	11.6		8.3 4.7	8.4	
40.4 . 40	D.:	D .	40.04	Surface	1	28.7	28.7	7.6	7.6	5.7	5.3	81.0	81.0	6.5	6.5	6.5	7.7	8.1	40.0	4.2	4.5	
19-Aug-13	Rainy	Rough	10:04	Middle	-	27.9	-	7.9	-	22.8	-	78.3	-	- 5.9	-		13.7	-	10.9	6.7	-	6.6
				Bottom	3.2	27.9	27.9	7.9	7.9	24.8 9.5	23.8	77.8 72.8	78.1	5.8 5.5	5.9	5.9	13.5	13.6		10.5	8.6	
				Surface	1	28.4	28.4	7.3	7.3	9.9	9.7	72.6	72.7	5.5	5.5	5.5	7.5	7.8		4.7	4.5	
21-Aug-13	Cloudy	Moderate	12:23	Middle	-	28.2	-	7.6	-	15.6	-	66.6	-	5.2	-		21.4	-	15.0	7.8	-	5.3
				Bottom	3.1	28.2 28.2	28.2	7.6 7.6	7.6	15.6 15.0	15.3	66.6	66.6	5.2 5.1	5.2	5.2	21.4 23.0	22.2		7.8 4.1	6.0	

Water Quality Monitoring Results at SR6 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	7	Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	БСР	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	7.8 7.8	7.8	11.4 11.4	11.4	96.6 96.2	96.4	7.4 7.3	7.4	7.4	5.8 5.9	5.9		4.0 2.8	3.4	
23-Aug-13	Cloudy	Moderate	13:16	Middle	-	-	-	-	-	-	-	-	-	1 1	i	7.4	-	-	9.2	-	-	3.4
				Bottom	3	27.8 27.8	27.8	7.8 7.8	7.8	12.1 12.1	12.1	92.1 92.4	92.3	7.0 7.0	7.0	7.0	12.7 12.2	12.5		3.4 3.1	3.3	
				Surface	1	27.8 27.8	27.8	7.7 7.7	7.7	11.9 12.2	12.1	80.1 79.7	79.9	5.9 5.9	5.9	5.9	5.0 5.4	5.2		3.3 2.5	2.9	
26-Aug-13	Sunny	Calm	14:51	Middle	-	-	-	-	-	-	-	-	-		-	5.5	-	-	6.5	-	-	3.2
				Bottom	3.2	27.2 27.2	27.2	7.9 7.9	7.9	25.4 25.3	25.4	78.5 78.7	78.6	5.4 5.4	5.4	5.4	8.0 7.6	7.8		2.7 4.2	3.5	
				Surface	1	29.6 29.0	29.3	7.6 7.8	7.7	6.5 6.6	6.6	94.9 94.4	94.7	7.0 7.0	7.0	7.0	7.0 6.3	6.7		5.2 4.3	4.8	
28-Aug-13	Fine	Calm	18:56	Middle	-	-	-	-	-	-	-	-	-		-	7.0	-	-	6.5	-	-	4.8
				Bottom	4	27.8 27.6	27.7	7.7 7.8	7.8	28.0 27.9	28.0	102.6 95.2	98.9	6.9 6.4	6.7	6.7	6.3 6.3	6.3		4.8 4.7	4.8	
				Surface	1	27.7 27.7	27.7	7.7 7.7	7.7	9.1 9.4	9.3	79.6 80.2	79.9	6.0 6.0	6.0	6.0	4.0 3.9	4.0		2.6 2.2	2.4	
31-Aug-13	Cloudy	Moderate	08:33	Middle	-	-	-	-	-	-	-	-	-	1 1	-	5.0	-	-	4.0	-	-	2.7
				Bottom	4.9	26.6 26.6	26.6	7.9 7.9	7.9	22.6 22.8	22.7	72.1 72.5	72.3	5.2 5.2	5.2	5.2	4.2 3.8	4.0		2.7 3.2	3.0	

Water Quality Monitoring Results at SR6 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.5 28.5	28.5	8.2 8.2	8.2	19.4 19.4	19.4	85.8 85.8	85.8	6.0 6.0	6.0	6.0	3.2 3.2	3.2		4.3 3.5	3.9	
3-Aug-13	Rainy	Moderate	17:08	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	4.3	-	-	4.1
				Bottom	4.3	28.3 28.3	28.3	8.2 8.2	8.2	21.4 21.3	21.4	80.0 80.2	80.1	5.5 5.6	5.6	5.6	5.2 5.3	5.3		4.2 4.2	4.2	
				Surface	1	29.5 29.5	29.5	8.0 8.0	8.0	17.0 16.9	17.0	88.3 87.9	88.1	6.4 6.3	6.4	6.4	6.7 7.0	6.9		4.3 3.8	4.1	
5-Aug-13	Cloudy	Calm	18:06	Middle	-	-	-	-	-		-		-	-	-	0.4	-	-	8.1	-	-	4.5
				Bottom	4.5	29.1 29.1	29.1	8.0 8.0	8.0	18.2 18.0	18.1	85.9 84.9	85.4	6.2 6.1	6.2	6.2	9.5 8.9	9.2		4.8 4.9	4.9	
				Surface	1	29.4 29.5	29.5	8.2 8.2	8.2	21.2 21.0	21.1	77.2 92.4	84.8	5.4 6.4	5.9	5.9	3.9 4.2	4.1		2.9 3.3	3.1	
7-Aug-13	Fine	Moderate	21:09	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	4.5	-	-	2.5
				Bottom	4	29.1 29.1	29.1	8.2 8.2	8.2	22.1 22.1	22.1	92.2 91.4	91.8	6.4 6.3	6.4	6.4	5.1 4.7	4.9		1.9 1.9	1.9	
				Surface	1	28.8 28.8	28.8	8.2 8.2	8.2	21.4 21.5	21.5	95.2 95.1	95.2	6.6 6.6	6.6	6.6	5.1 5.1	5.1		6.0 4.1	5.1	
9-Aug-13	Sunny	Moderate	19:51	Middle	-		-	-	-	-	-		-	-	-		-	-	6.8	-	-	5.2
				Bottom	4.6	27.6 27.6	27.6	8.2 8.2	8.2	27.2 27.1	27.2	79.2 79.7	79.5	5.5 5.5	5.5	5.5	8.5 8.2	8.4		5.0 5.6	5.3	
				Surface	1	29.7 29.7	29.7	8.0 8.0	8.0	22.1 22.1	22.1	83.0 83.0	83.0	5.7 5.8	5.8	5.8	5.2 5.3	5.3		4.5 4.1	4.3	
12-Aug-13	Sunny	Calm	08:48	Middle	-		-	-	-	-	-	-	-	-	-		-	-	7.4	-	-	4.9
				Bottom	2.9	29.5 29.6	29.6	8.0 8.0	8.0	22.3 22.2	22.3	80.8 80.5	80.7	5.6 5.6	5.6	5.6	9.2 9.5	9.4		4.7 6.0	5.4	
				Surface	1	28.2 28.2	28.2	7.7 7.7	7.7	14.8 14.8	14.8	81.1 81.2	81.2	6.2 6.2	6.2	6.2	10.1 10.0	10.1		8.3 7.2	7.8	
16-Aug-13	Rainy	Moderate	14:46	Middle	-	28.2	-	7.7	-	15.0	-	- - 79.8	-	- - 6.1	-		- - 12.1	-	11.2	7.2	-	7.5
				Bottom	4.7	28.2 28.2 28.6	28.2	7.7 7.2	7.7	15.2 6.1	15.1	79.6 79.1	79.7	6.1	6.1	6.1	12.5	12.3		7.2	7.2	1
				Surface	1	28.6	28.6	7.2	7.2	6.1	6.1	72.1	72.1	5.4	5.4	5.4	13.1	13.9		24.7	27.7	
19-Aug-13	Rainy	Rough	17:26	Middle	-	28.5	-	7.4	-	9.9	-	61.6	-	4.9	-		29.0	-	21.1	12.0	-	20.0
				Bottom	2.8	28.5 28.0	28.5	7.4	7.4	9.9	9.9	61.4 68.3	61.5	4.9 5.1	4.9	4.9	27.4	28.2		12.3	12.2	
04.4	5	D	10.51	Surface	1	28.0	28.0	7.2	7.2	9.8	9.9	68.1	68.2	5.1	5.1	5.1	14.8	14.6	40.7	7.8	8.4	10.7
21-Aug-13	Rainy	Rough	18:54	Middle	-	28.0	-	7.3	7.0	- 11.6	-	- 67.9		- 5.1	-		- 24.9		19.7	- 17.6	-	12.7
				Bottom	3.1	28.0	28.0	7.3	7.3	11.6	11.6	67.7	67.8	5.1	5.1	5.1	24.5	24.7		16.2	16.9	

Water Quality Monitoring Results at SR6 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.7 27.7	27.7	7.5 7.5	7.5	10.0 10.0	10.0	82.9 83.2	83.1	6.3 6.3	6.3	6.3	7.9 7.6	7.8		7.1 6.0	6.6	
23-Aug-13	Cloudy	Moderate	06:59	Middle	-	-	-	-	-		-	-	-	-	-	0.5	-	-	9.6	-	-	5.8
				Bottom	4.8	27.8 27.8	27.8	7.5 7.5	7.5	11.6 11.6	11.6	78.6 78.3	78.5	6.0 6.0	6.0	6.0	11.2 11.5	11.4		5.1 4.6	4.9	
				Surface	1	27.6 27.7	27.7	7.7 7.7	7.7	14.0 13.9	14.0	79.2 78.1	78.7	5.8 5.7	5.8	5.8	6.0 5.3	5.7		6.2 6.4	6.3	
26-Aug-13	Sunny	Calm	08:55	Middle	-	-	-	-	-	1 1	-	-	-		-	3.0	-	-	7.8	-	-	6.8
				Bottom	2.9	27.3 27.2	27.3	7.9 7.9	7.9	21.8 22.1	22.0	76.8 75.6	76.2	5.4 5.3	5.4	5.4	9.5 10.3	9.9		4.3 10.0	7.2	
				Surface	1	28.2 28.3	28.3	7.3 7.3	7.3	7.0 6.9	7.0	72.6 71.6	72.1	5.5 5.4	5.5	5.5	7.6 8.5	8.1		4.7 4.1	4.4	
28-Aug-13	Sunny	Calm	13:41	Middle	-	-	-	-	1	1 1	-	-	-	1 1	-	3.3	1 1	-	7.8	-	1	4.3
				Bottom	4.3	27.8 27.7	27.8	7.2 7.2	7.2	11.4 12.0	11.7	74.0 68.1	71.1	5.5 5.0	5.3	5.3	7.6 7.2	7.4		4.3 3.9	4.1	
				Surface	1	28.0 28.0	28.0	7.6 7.6	7.6	7.9 8.0	8.0	80.9 81.2	81.1	6.1 6.1	6.1	6.1	5.3 5.3	5.3		3.4 4.0	3.7	
31-Aug-13	Rainy	Moderate	16:18	Middle	-	-	-	-	-	1 1	-	-	-	1 1	-	5.1	-	-	9.5	-	-	4.2
				Bottom	4.1	26.6 26.6	26.6	7.8 7.8	7.8	23.1 22.8	23.0	68.4 69.4	68.9	4.9 5.0	5.0	5.0	14.8 12.4	13.6		4.9 4.2	4.6	

Water Quality Monitoring Results at SRA - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTU	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.8 27.8 27.8	27.8	8.3 8.3 8.3	8.3	22.1 22.1 23.6	22.1	90.6 89.9 87.3	90.3	6.3 6.2 6.0	6.3	6.2	5.6 5.5 5.0	5.6		0.8 1.7 3.2	1.3	
3-Aug-13	Rainy	Moderate	09:16	Middle	3.5	27.8	27.8	8.3	8.3	23.6	23.6	86.2	86.8	5.9	6.0		5.1	5.1	5.2	0.8	2.0	1.6
				Bottom	6	27.9 27.9	27.9	8.3 8.3	8.3	24.5 24.5	24.5	84.0 82.9	83.5	5.8 5.7	5.8	5.8	4.8 4.8	4.8		2.5 0.2	1.4	
				Surface	1	28.9 29.0	29.0	8.1 8.1	8.1	17.8 20.1	19.0	98.7 94.0	96.4	7.2 6.8	7.0	6.4	6.6 7.1	6.9		3.5 3.6	3.6	
5-Aug-13	Cloudy	Calm	11:02	Middle	4	28.0 27.9	28.0	8.2 8.2	8.2	24.5 24.9	24.7	84.9 73.7	79.3	6.1 5.4	5.8	0.4	11.1 10.8	11.0	11.1	3.7 5.2	4.5	4.3
				Bottom	7	28.0 28.1	28.1	8.2 8.2	8.2	24.4 24.1	24.3	76.5 75.5	76.0	5.5 5.5	5.5	5.5	15.7 15.2	15.5		4.2 5.2	4.7	
				Surface	1	29.1 29.1	29.1	8.0 8.0	8.0	23.4 23.4	23.4	88.7 88.5	88.6	6.4 6.4	6.4	0.0	7.2 7.3	7.3		9.5 8.3	8.9	
7-Aug-13	Sunny	Moderate	11:52	Middle	3.5	29.0 29.0	29.0	8.0 8.0	8.0	23.6 23.6	23.6	86.2 85.3	85.8	6.2 6.2	6.2	6.3	8.8 8.9	8.9	9.1	10.8 7.8	9.3	7.8
				Bottom	6	28.8 28.8	28.8	8.0	8.0	24.6 24.6	24.6	77.3 77.4	77.4	5.6 5.6	5.6	5.6	10.9 11.2	11.1		6.6	5.3	
				Surface	1	29.7 29.7	29.7	8.2 8.2	8.2	21.4 21.3	21.4	88.0 86.1	87.1	6.3 6.2	6.3		10.9 10.9	10.9		4.6 4.3	4.5	
9-Aug-13	Sunny	Moderate	13:01	Middle	4	29.4 29.4	29.4	8.2 8.2	8.2	22.8 22.8	22.8	78.9 78.9	78.9	5.7 5.7	5.7	6.0	12.5 12.7	12.6	12.8	3.9 3.7	3.8	4.6
				Bottom	7	29.3 29.4	29.4	8.2 8.2	8.2	23.0	22.9	76.2 75.7	76.0	5.5 5.5	5.5	5.5	14.7 15.1	14.9		7.7	5.5	
				Surface	1	30.7 30.5	30.6	8.2 8.2	8.2	21.9 22.1	22.0	89.0 76.4	82.7	6.0 5.1	5.6		3.7 3.7	3.7		4.9 5.7	5.3	
12-Aug-13	Sunny	Calm	16:24	Middle	4	29.4 29.9	29.7	8.1 8.1	8.1	24.2	24.1	77.9 77.1	77.5	5.3 5.2	5.3	5.5	8.8 8.8	8.8	7.3	5.0 5.4	5.2	5.1
				Bottom	7	29.1 29.0	29.1	8.1 8.1	8.1	25.7 25.8	25.8	72.0 72.4	72.2	4.9 4.9	4.9	4.9	9.5 9.1	9.3		5.2 4.4	4.8	
				Surface	1	28.1 28.1	28.1	7.8 7.8	7.8	15.2 15.2	15.2	81.8 81.6	81.7	5.9 5.9	5.9		11.1 11.1	11.1		7.7	8.3	
16-Aug-13	Cloudy	Rough	07:07	Middle	4	28.1	28.1	7.8	7.8	15.3	15.3	81.2	81.2	5.8	5.8	5.9	15.2	15.3	15.3	8.0	7.9	8.4
				Bottom	7	28.1	28.2	7.8 7.8	7.8	15.3 18.6	18.7	81.1 76.2 75.9	76.1	5.8 5.4 5.3	5.4	5.4	15.3 19.2	19.5		7.7 8.9	9.0	
				Surface	1	28.2	28.1	7.8	7.7	18.8 8.2	8.4	73.4	72.0	5.8	5.7		19.7 6.9	7.7		9.1 8.4	8.2	
19-Aug-13	Rainy	Rough	09:57	Middle	3.5	28.1 27.7	27.7	7.7	7.9	8.5 18.2	18.8	70.6 66.4	67.8	5.5 5.0	5.1	5.4	8.5 16.7	16.3	13.7	10.0	9.4	8.9
				Bottom	6	27.7 27.5	27.5	7.9 7.9	7.9	19.4 24.0	23.2	69.1 66.4	66.1	5.2 4.9	4.9	4.9	15.9 18.2	17.1		9.0	9.2	
				Surface	1	27.5	28.9	7.9 7.5	7.5	10.0	10.0	65.8 88.6	87.6	6.4	6.4		15.9	14.0		9.4 5.7	5.7	
21-Aug-13	Cloudy	Moderate	11:47	Middle	4	28.9 27.7	27.7	7.5	7.8	20.9	20.9	86.6 78.0	78.1	6.3 5.4	5.4	5.9	13.1 24.2	23.6	20.6	5.7 5.5	6.1	7.5
1.29.10	,			Bottom	7	27.7 27.5	27.5	7.8	7.9	20.8	25.0	78.2 72.4	72.6	5.4 5.1	5.1	5.1	22.9	24.2		6.7 11.5	10.8	
		<u> </u>				27.5		7.9	-	25.0		72.8		5.1			24.6			10.0		

Water Quality Monitoring Results at SRA - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.5 27.3	27.4	7.7 7.8	7.8	11.5 13.4	12.5	75.3 76.2	75.8	5.5 5.6	5.6	5.4	9.4 9.2	9.3		4.9 4.5	4.7	
23-Aug-13	Cloudy	Moderate	14:25	Middle	4	27.5 27.1	27.3	7.7 7.9	7.8	11.5 13.3	12.4	75.8 72.0	73.9	5.2 5.2	5.2	5.4	13.0 14.4	13.7	12.4	4.7 5.9	5.3	4.8
				Bottom	7	27.3 27.1	27.2	7.7 7.9	7.8	23.2 24.5	23.9	68.1 67.7	67.9	4.9 4.9	4.9	4.9	13.7 14.6	14.2		5.1 3.6	4.4	
				Surface	1	27.7 27.7	27.7	7.7 7.7	7.7	14.8 14.7	14.8	82.4 80.9	81.7	6.0 5.9	6.0	5.7	19.6 19.4	19.5		3.4 2.9	3.2	
26-Aug-13	Sunny	Calm	16:31	Middle	3.5	27.4 27.5	27.5	7.9 7.8	7.9	24.0 23.9	24.0	77.7 78.5	78.1	5.4 5.4	5.4	5.7	19.9 17.2	18.6	22.9	3.3 3.3	3.3	3.4
				Bottom	6	27.2 27.2	27.2	7.9 7.9	7.9	25.7 25.8	25.8	76.6 76.4	76.5	5.3 5.3	5.3	5.3	30.7 30.7	30.7		4.7 2.6	3.7	
				Surface	1	28.9 28.9	28.9	7.8 7.8	7.8	8.4 8.5	8.5	87.4 87.8	87.6	6.7 6.7	6.7	6.1	7.3 7.4	7.4		4.7 4.7	4.7	
28-Aug-13	Fine	Calm	18:32	Middle	3.5	28.2 28.2	28.2	7.9 7.9	7.9	13.9 14.0	14.0	73.4 73.6	73.5	5.5 5.5	5.5	0.1	8.8 9.0	8.9	10.4	6.0 5.2	5.6	5.1
				Bottom	6	27.2 27.2	27.2	7.9 7.9	7.9	19.0 19.2	19.1	67.7 66.4	67.1	5.1 5.0	5.1	5.1	14.9 15.1	15.0		5.0 5.2	5.1	
				Surface	1	28.2 27.2	27.7	7.7 7.9	7.8	9.9 10.7	10.3	80.3 80.4	80.4	5.9 5.9	5.9	5.8	4.6 4.5	4.6		2.4 2.8	2.6	
31-Aug-13	Cloudy	Moderate	08:27	Middle	3.5	28.2 26.6	27.4	7.7 7.9	7.8	26.8 26.7	26.8	77.2 79.7	78.5	5.5 5.7	5.6	0.0	4.6 4.6	4.6	6.0	2.2 3.7	3.0	3.1
				Bottom	6	27.2 26.6	26.9	7.9 7.9	7.9	31.7 31.7	31.7	70.8 70.5	70.7	5.0 5.0	5.0	5.0	8.7 9.0	8.9		3.8 3.6	3.7	

Water Quality Monitoring Results at SRA - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.2	28.2	8.4	8.4	23.4	23.4	90.8	90.7	6.2	6.2		12.6	12.5		1.5	1.9	
				Surface	· ·	28.2	20.2	8.4	0.4	23.4	23.4	90.5	90.7	6.2	0.2	6.2	12.4	12.5		2.2	1.9	
0.4	D-:	M = d = ==4=	40.00	NA: dalla	2.5	28.2	28.2	8.3	8.4	23.7	23.6	89.4	89.8	6.1	0.0	0.2	14.4	13.8	40.0	2.8	0.4	0.0
3-Aug-13	Rainy	Moderate	18:26	Middle	3.5	28.2	28.2	8.4	8.4	23.4	23.6	90.1	89.8	6.2	6.2		13.1	13.8	16.0	2.0	2.4	2.3
				D . #	•	28.1	00.4	8.3	0.0	24.3	04.0	82.9	00.0	5.7			21.5	04.0		1.9	0.0	
				Bottom	6	28.1	28.1	8.3	8.3	24.3	24.3	81.7	82.3	5.6	5.7	5.7	21.7	21.6		3.3	2.6	
						30.1	00.4	8.1		18.8	40.0	96.5		6.9			12.2	10.1		6.6		
				Surface	1	30.1	30.1	8.1	8.1	18.8	18.8	94.9	95.7	6.8	6.9		12.5	12.4		6.2	6.4	
	a					29.3	20.0	8.1		20.6		85.6		6.2		6.5	16.4	40.0	1	8.2		
5-Aug-13	Cloudy	Calm	19:30	Middle	4	29.0	29.2	8.1	8.1	21.6	21.1	80.8	83.2	5.8	6.0		16.7	16.6	16.1	4.0	6.1	6.2
					_	28.9		8.1		22.0		80.0		5.8			19.0			7.0		
				Bottom	7	28.8	28.9	8.1	8.1	22.1	22.1	76.3	78.2	5.5	5.7	5.7	19.5	19.3		4.9	6.0	
						29.5		8.1		23.2		83.1		6.0			8.3			7.8		
				Surface	1	29.7	29.6	8.1	8.1	23.1	23.2	76.1	79.6	5.5	5.8		8.1	8.2		12.9	10.4	
						28.9		8.1		25.0		76.2		5.5		5.8	9.5		-	7.0		
7-Aug-13	Fine	Moderate	20:20	Middle	3.5	29.2	29.1	8.1	8.1	23.4	24.2	80.6	78.4	5.8	5.7		9.6	9.6	10.0	6.0	6.5	8.2
						28.7		8.1		26.3		70.2		5.1			12.0			9.0		
				Bottom	6	28.7	28.7	8.1	8.1	26.1	26.2	77.7	74.0	5.6	5.4	5.4	12.1	12.1		6.4	7.7	
<u> </u>						30.2	1	8.2		21.3		83.7		6.0			8.0	1	Ì	4.8		
				Surface	1	30.2	30.2	8.2	8.2	21.3	21.3	83.7	83.7	6.0	6.0		8.0	8.0		3.2	4.0	
						29.7		8.2		22.7		79.1		5.7	-	5.9	9.8	1		3.6		
9-Aug-13	Sunny	Moderate	20:42	Middle	3.5	29.7	29.7	8.2	8.2	22.7	22.7	79.1 79.1	79.1	5.7 5.7	5.7		9.6	9.9	10.5	3.0	3.3	3.3
						28.8		8.2	-	26.9		_		_			13.8		4	2.4		
				Bottom	6		28.8		8.2		26.9	71.4	71.1	5.2	5.2	5.2		13.6			2.6	
						28.8		8.2		26.9		70.7		5.1			13.4	1		2.7		
				Surface	1	29.6	29.7	8.0	8.0	22.0	22.0	91.5	89.6	6.3	6.2		12.0	11.8		2.5	2.8	
						29.7		8.0		21.9		87.7		6.0		6.1	11.5			3.0		
12-Aug-13	Sunny	Calm	09:16	Middle	3.5	29.5	29.6	8.0	8.0	22.6	22.5	86.6	86.0	5.9	5.9		13.7	13.6	15.0	3.5	2.8	2.7
	•					29.6		8.0		22.3		85.4		5.9			13.4		_	2.0		
				Bottom	6	29.3	29.5	8.0	8.0	23.4	22.7	81.2	83.0	5.6	5.7	5.7	19.2	19.6		2.1	2.5	
						29.7		8.0	ļ	22.0		84.8		5.8			19.9	<u> </u>		2.9		
				Surface	1	28.2	28.2	7.9	7.9	14.6	14.6	82.0	82.0	5.9	5.9		8.0	8.0		9.6	8.5	
						28.2		7.9		14.5		81.9		5.9		5.9	8.0		_	7.4		
16-Aug-13	Rainy	Moderate	16:20	Middle	3	28.2	28.2	7.9	7.9	15.1	15.1	80.7	80.6	5.8	5.8		9.3	9.3	9.2	6.8	7.3	7.7
	•					28.2		7.9		15.1		80.4		5.8			9.3			7.7		
				Bottom	5	28.2	28.2	7.9	7.9	15.4	15.4	79.1	79.0	5.7	5.7	5.7	10.3	10.4		6.4	7.2	
						28.2		7.9		15.4		78.8		5.6		• • •	10.5			7.9		
				Surface	1	28.3	28.3	7.7	7.7	10.0	10.0	75.9	73.7	5.9	5.7		11.2	12.2		14.7	16.1	
				Guilago	·	28.3	20.0	7.7		10.0		71.4		5.5	0	5.7	13.1			17.5		
19-Aug-13	Rainy	Rough	18:32	Middle	4	28.2	28.3	7.7	7.7	11.3	11.0	72.0	72.1	5.6	5.6		17.3	17.2	16.7	7.2	7.1	11.0
10 / lug 10		. tougi.	.0.02	madio	·	28.3	20.0	7.7		10.7		72.1		5.6	0.0		17.1	=		7.0		
				Bottom	7	28.1	28.1	7.7	7.8	13.2	13.9	69.9	69.0	5.4	5.3	5.3	20.4	20.6		6.8	9.8	
				Bottom	,	28.0	20.1	7.8	7.0	14.5	10.0	68.1	00.0	5.2	0.0	0.0	20.7	20.0		12.8	0.0	
				Surface	1	28.1	28.2	7.4	7.5	9.5	10.2	74.7	76.0	5.2	5.3		19.8	20.0		25.2	23.4	
I				Juliace	,	28.2	20.2	7.5	7.5	10.9	10.2	77.2	10.0	5.3	5.5	5.3	20.1	20.0		21.6	20.4	
21-Aug-13	Rainy	Rough	20:33	Middle	3.5	28.1	28.1	7.4	7.5	9.3	10.1	74.5	76.4	5.2	5.3	0.0	19.4	19.5	21.0	20.6	19.6	21.3
2 1-Aug-13	ixairiy	Rough	20.00	Midule	3.3	28.0	20.1	7.6	7.5	10.8	10.1	78.3	70.4	5.4	3.3		19.5	19.5	21.0	18.6	19.0	21.0
				Bottom	6	28.2	28.1	7.5	7.6	14.0	14.1	70.9	71.8	5.1	5.2	5.2	22.6	23.6		20.6	21.0	
				וויטווטם	U	28.0	20.1	7.6	7.0	14.2	14.1	72.6	/ 1.0	5.2	5.2	5.2	24.5	23.0		21.4	21.0	

Water Quality Monitoring Results at SRA - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.2 27.2	27.2	7.5 7.5	7.5	10.2 10.2	10.2	76.4 75.8	76.1	5.7 5.7	5.7	5.6	7.6 7.7	7.7		5.1 6.2	5.7	
23-Aug-13	Cloudy	Moderate	06:44	Middle	3.5	27.3 27.3	27.3	7.6 7.6	7.6	11.5 11.6	11.6	72.4 72.9	72.7	5.4 5.4	5.4	5.0	7.0 7.0	7.0	7.4	5.6 5.8	5.7	5.8
				Bottom	6	27.4 27.4	27.4	7.6 7.6	7.6	12.9 12.8	12.9	72.3 72.5	72.4	5.3 5.4	5.4	5.4	7.4 7.3	7.4		5.0 7.2	6.1	
				Surface	1	27.3 27.3	27.3	7.7 7.7	7.7	13.9 13.9	13.9	83.3 82.8	83.1	6.1 6.1	6.1	5.9	11.0 10.9	11.0		11.5 9.7	10.6	
26-Aug-13	Sunny	Calm	09:14	Middle	3.5	27.2 27.1	27.2	7.8 7.8	7.8	15.8 16.4	16.1	76.9 76.8	76.9	5.6 5.6	5.6	5.9	14.6 14.4	14.5	14.0	9.3 10.0	9.7	11.7
				Bottom	6	26.9 26.9	26.9	7.9 7.8	7.9	21.2 22.5	21.9	71.9 71.1	71.5	5.1 5.1	5.1	5.1	16.6 16.3	16.5		15.7 14.0	14.9	
				Surface	1	28.8 28.8	28.8	8.0 8.0	8.0	13.0 13.1	13.1	79.1 80.4	79.8	6.0 6.1	6.1	5.9	7.7 7.7	7.7		2.7 1.7	2.2	
28-Aug-13	Sunny	Calm	11:13	Middle	3.5	28.6 28.6	28.6	8.0 8.0	8.0	14.0 14.0	14.0	74.1 75.4	74.8	5.5 5.6	5.6	5.5	8.4 8.1	8.3	9.1	3.3 3.7	3.5	3.1
				Bottom	6	27.7 28.0	27.9	7.9 7.9	7.9	17.5 16.7	17.1	66.6 65.2	65.9	4.9 4.8	4.9	4.9	11.8 10.6	11.2		3.7 3.3	3.5	
				Surface	1	28.6 28.6	28.6	8.1 8.1	8.1	14.8 14.8	14.8	92.7 93.9	93.3	6.6 6.7	6.7	6.5	5.9 6.2	6.1		4.3 2.8	3.6	
31-Aug-13	Rainy	Moderate	18:08	Middle	3.5	28.5 28.5	28.5	8.1 8.1	8.1	16.3 16.3	16.3	87.9 86.6	87.3	6.2 6.1	6.2	0.0	10.9 10.5	10.7	9.9	3.3 2.9	3.1	3.2
				Bottom	6	27.8 27.9	27.9	7.9 8.0	8.0	22.6 22.1	22.4	78.8 76.8	77.8	5.5 5.3	5.4	5.4	12.4 13.6	13.0		3.3 2.6	3.0	

Water Quality Monitoring Results at ST1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.0 28.0	28.0	8.5 8.5	8.5	24.0 24.0	24.0	104.4 104.2	104.3	7.2 7.2	7.2		2.4 2.3	2.4		2.5 5.0	3.8	
3-Aug-13	Rainy	Moderate	11:17	Middle	5	28.0	28.0	8.5	8.5	24.2	24.3	99.8	99.8	6.9	6.9	7.1	3.0	3.1	6.7	1.4	2.6	2.7
3-Aug-13	Railly	Moderate	11.17	Middle	5	28.0	20.0	8.4	0.5	24.4	24.3	99.8	99.0	6.9	0.9		3.2	3.1	0.7	3.8	2.0	2.1
				Bottom	9	28.0 28.0	28.0	8.3 8.3	8.3	26.8 26.8	26.8	83.8 82.7	83.3	5.8 5.7	5.8	5.8	13.9 15.5	14.7		0.9 2.3	1.6	
				Surface	1	28.4	28.4	8.2	8.2	24.0	24.1	82.1	82.1	5.9	5.9		4.3	4.3		3.2	4.1	
5-Aug-13	Cloudy	Calm	12:35	Middle	4.5	28.4 27.9	27.9	8.2 8.3	8.3	24.2 26.9	27.5	82.0 76.3	76.3	5.9 5.4	5.4	5.7	4.2 4.5	4.6	6.8	5.0 2.8	2.4	3.1
3-Aug-13	Cloudy	Callii	12.55	Wildule	4.5	27.8 27.4	21.5	8.3 8.2	0.5	28.0 29.7	27.5	76.3 69.6	70.5	5.4 4.9	3.4		4.6 11.5	4.0	0.0	1.9 2.6	2.4	3.1
				Bottom	8	27.4	27.4	8.2	8.2	29.7	29.7	69.5	69.6	4.9	4.9	4.9	11.5	11.5		3.0	2.8	
				Surface	1	29.2	29.2	8.2	8.2	22.3 22.2	22.3	81.0	80.8	5.6	5.6		5.1	5.1		3.5	4.3	
7-Aug-13	Cuppy	Moderate	12:39	Middle	5	29.2 28.8	29.0	8.2 8.2	8.2	24.1	24.0	80.6 88.6	91.2	5.6 6.1	6.3	6.0	5.0 5.2	5.1	7.2	5.0 4.2	4.8	4.6
7-Aug-13	Sunny	Moderate	12.39	Middle	5	29.1 28.4	29.0	8.2	0.2	23.8	24.0	93.7 83.4	91.2	6.4 5.7	0.5		5.0 11.2	5.1	7.2	5.3 5.7	4.0	4.0
				Bottom	9	28.4	28.4	8.2 8.2	8.2	27.9 27.2	27.6	81.4	82.4	5.7	5.7	5.7	11.2	11.3		3.7	4.7	
				Surface	1	29.6 29.7	29.7	8.2 8.2	8.2	22.5 22.5	22.5	93.9 93.5	93.7	6.5 6.5	6.5		5.9	5.9		2.3 5.0	3.7	
0.400.42	Cunnu	Madarata	14:45	Middle	4.5	29.7	29.0	8.2	8.2	25.6	25.6	91.3	91.7	6.3	6.4	6.5	5.8 4.7	4.8	6.5	2.0	1.7	2.4
9-Aug-13	Sunny	Moderate	14.45	ivildale	4.5	29.0 28.5	29.0	8.2 8.2	0.2	25.5 27.7	25.0	92.0 79.7	91.7	6.4 5.5	0.4		4.9 8.2	4.0	0.5	1.3	1.7	2.4
				Bottom	8	28.5 28.5	28.5	8.2	8.2	27.7 27.9	27.8	79.7 78.3	79.0	5.5 5.4	5.5	5.5	9.1	8.7		1.7	1.8	
				Surface	1	31.2 31.3	31.3	8.2 8.2	8.2	19.2 19.2	19.2	101.0 100.0	100.5	6.9 6.8	6.9		2.4 2.1	2.3		5.5 5.0	5.3	
12-Aug-13	Sunny	Calm	16:21	Middle	5	28.7	28.8	8.1	8.1	26.9	26.9	74.5	74.6	5.1	5.1	6.0	7.2	7.8	7.4	6.4	5.6	5.2
12-Aug-13	Suring	Callii	10.21	iviluale		28.8 27.8	20.0	8.1 8.2	0.1	26.8 30.4	20.9	74.6 71.1	74.0	5.1 5.0	5.1		8.3 12.4		7.4	4.7	5.0	5.2
				Bottom	9	27.8	27.9	8.2	8.2	30.4	30.3	71.1	71.2	5.0	5.0	5.0	11.5	12.0		4.8	4.7	
				Surface	1	28.0	28.0	7.8	7.8	15.6	15.6	79.8	79.8	6.1	6.1		11.2	11.2		13.3	9.2	
16-Aug-13	Cloudy	Dough	08:46	Middle	4.5	28.0 28.0	28.0	7.8 7.8	7.8	15.6 15.8	15.8	79.8 79.4	79.4	6.1 6.0	6.0	6.1	11.2 11.9	11.9	11.7	5.0 9.2	9.0	8.8
16-Aug-13	Cloudy	Rough	06.46	ivildale	4.5	28.0 28.0	20.0	7.8 7.8	7.0	15.8 16.7	15.6	79.4 78.6	79.4	6.0 6.0	6.0		11.9 11.9	11.9	11.7	8.7 8.8	9.0	0.0
				Bottom	8	28.0	28.0	7.8 7.8	7.8	16.7	16.7	78.6	78.6	6.0	6.0	6.0	11.9	11.9		7.5	8.2	
				Surface	1	28.7 28.7	28.7	7.4 7.5	7.5	5.4 5.5	5.5	74.9 74.5	74.7	6.0 6.0	6.0		8.4 9.2	8.8		4.2 5.0	4.6	
19-Aug-13	Rainy	Rough	11:04	Middle	5	28.1	28.3	7.5	7.8	19.5	19.4	80.4	79.0	6.1	6.1	6.1	6.4	6.5	17.1	9.5	8.9	6.8
19-Aug-13	Railly	Rough	11.04	Middle	5	28.4 27.8	20.3	7.7 7.9	7.0	19.3 28.2	19.4	77.5 78.0	79.0	6.0 5.7	0.1		6.5 37.0	0.5	- 17.1	8.2 7.0	0.9	0.6
				Bottom	9	27.8	27.8	7.9 8.0	8.0	28.1	28.2	78.0 78.1	78.1	5.7	5.7	5.7	34.7	35.9		7.0	7.0	
				Surface	1	29.1	29.1	7.3	7.4	7.8	7.8	70.5	69.8	5.3	5.3		8.6	8.5		6.4	5.7	
21 A ~ 42	Claudy	Moderate	13:00	Middle	5	29.1 28.1	28.1	7.4 7.9	7.9	7.8 21.0	22.5	69.1 79.7	80.1	5.2 5.7	5.7	5.5	8.4 6.5	6.3	12.6	5.0 4.8	4.8	5.3
21-Aug-13	Cloudy	Moderate	13.00	wildule	5	28.0	20.1	7.9	7.9	23.9	22.5	80.4	OU. I	5.7	5.7		6.0	0.3	12.0	4.8	4.0	5.3
				Bottom	9	27.7 27.7	27.7	8.0 8.0	8.0	28.9 28.9	28.9	79.9 78.6	79.3	5.6 5.5	5.6	5.6	24.0 22.0	23.0		5.6 5.1	5.4	
		•				•			•				•					•	•		•	•

Water Quality Monitoring Results at ST1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Temper	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСР	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.8 27.8	27.8	7.7 7.7	7.7	6.9 6.9	6.9	94.9 95.3	95.1	7.2 7.3	7.3	7.1	9.1 9.1	9.1		4.1 5.0	4.6	
23-Aug-13	Cloudy	Moderate	14:22	Middle	4.5	27.8 27.8	27.8	7.7 7.7	7.7	10.5 10.7	10.6	90.7 90.4	90.6	6.9 6.9	6.9	7.1	17.4 17.1	17.3	17.3	3.5 4.7	4.1	4.0
				Bottom	8	27.7 27.7	27.7	7.8 7.8	7.8	12.7 12.7	12.7	84.1 84.2	84.2	6.4 6.4	6.4	6.4	25.2 25.5	25.4		2.9 3.5	3.2	
				Surface	1	28.4 28.5	28.5	7.6 7.6	7.6	11.9 9.5	10.7	78.1 77.8	78.0	5.7 5.7	5.7	5.6	5.2 5.2	5.2		3.4 5.0	4.2	
26-Aug-13	Sunny	Calm	16:02	Middle	5	27.2 27.2	27.2	7.9 7.9	7.9	25.4 25.4	25.4	77.7 77.7	77.7	5.4 5.4	5.4	5.0	8.2 7.6	7.9	11.5	3.5 3.3	3.4	3.5
				Bottom	9	27.1 27.1	27.1	8.0 8.0	8.0	28.5 28.5	28.5	78.4 78.4	78.4	5.3 5.3	5.3	5.3	20.2 22.6	21.4		3.0 2.6	2.8	
				Surface	1	29.2 29.5	29.4	7.4 7.7	7.6	9.1 9.9	9.5	113.3 110.0	111.7	8.0 7.6	7.8	7.4	6.3 6.1	6.2		6.2 5.0	5.6	
28-Aug-13	Fine	Calm	17:32	Middle	5	27.4 27.0	27.2	7.8 7.9	7.9	28.6 29.7	29.2	104.1 104.3	104.2	7.0 7.0	7.0	7	8.5 9.1	8.8	9.7	7.0 6.7	6.9	6.2
				Bottom	9	26.9 26.9	26.9	7.9 7.9	7.9	30.1 30.1	30.1	102.9 98.9	100.9	7.0 6.7	6.9	6.9	13.4 14.9	14.2		6.5 5.5	6.0	
				Surface	1	27.7 27.7	27.7	7.7 7.7	7.7	7.6 7.6	7.6	83.8 83.7	83.8	6.3 6.3	6.3	6.0	4.3 4.2	4.3		4.1 5.0	4.6	
31-Aug-13	Cloudy	Moderate	09:53	Middle	5	27.1 27.1	27.1	7.8 7.8	7.8	18.0 18.0	18.0	73.7 75.0	74.4	5.5 5.6	5.6	0.0	3.8 4.0	3.9	4.9	2.0 2.6	2.3	3.1
				Bottom	9	26.2 26.5	26.4	7.9 7.9	7.9	25.3 23.2	24.3	72.4 72.5	72.5	5.3 5.3	5.3	5.3	6.5 6.5	6.5		2.1 2.9	2.5	

Water Quality Monitoring Results at ST1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	1	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.6	28.6	8.2	8.2	19.2	19.3	83.2	83.3	5.8	5.8		3.3	3.1		2.6	2.7	
				Surface		28.5	20.0	8.2	0.2	19.3	19.5	83.3	00.0	5.8	5.0	5.7	2.8	3.1		2.8	2.1	
3-Aug-13	Rainy	Moderate	18:32	Middle	4.5	28.3	28.3	8.3	8.3	20.7	20.7	79.9	80.0	5.6	5.6	5.7	4.5	4.5	4.8	2.2	2.6	3.7
o nag io	ramiy	Moderate	10.02	Miladic	1.0	28.3	20.0	8.2	0.0	20.7	20.7	80.0	00.0	5.6	0.0		4.4	1.0	4.0	2.9	2.0	0.7
				Bottom	8	28.1	28.1	8.2	8.2	22.1	22.0	72.5	72.5	5.0	5.0	5.0	7.0	6.9		8.9	5.8	
					-	28.1		8.2	ļ	21.9		72.4		5.0		*.*	6.8			2.6		
				Surface	1	29.4	29.4	8.1	8.1	17.4	17.4	85.8	85.8	6.2	6.2		7.6	7.6		4.2	4.2	
						29.3	_	8.1		17.4		85.8		6.2		6.1	7.6		_	4.2		
5-Aug-13	Cloudy	Calm	19:25	Middle	4.5	29.2	29.2	8.0	8.0	17.7	17.4	84.0	84.1	6.0	6.0		9.2	9.2	12.2	4.6	4.7	5.0
						29.2		8.0		17.0		84.2		6.0			9.1		4	4.7		
				Bottom	8	28.7 28.6	28.7	8.1 8.1	8.1	21.6 20.9	21.3	79.8 79.8	79.8	5.7 5.7	5.7	5.7	20.8 19.0	19.9		5.8 6.1	6.0	
-							1						1					1				
				Surface	1	29.3	29.3	8.2	8.2	22.2	22.2	92.8	85.3	6.4	5.9		4.3	4.3		3.7	3.5	
						29.2 29.0		8.2 8.2		22.2		77.8 92.9		5.4 6.4		6.1	4.3 5.1	1		3.2 2.9		
7-Aug-13	Fine	Moderate	19:44	Middle	5	29.0	29.0	8.2	8.2	23.2	23.2	90.4	91.7	6.2	6.3		5.4	5.3	5.0	3.9	3.4	4.0
						28.5		8.2		27.8		86.1		5.9			5.3			5.3		
				Bottom	9	28.5	28.5	8.2	8.2	27.3	27.6	84.8	85.5	5.8	5.9	5.9	5.5	5.4		4.7	5.0	
1						28.7		8.2		21.8		91.9		6.4			5.3			14.3		
				Surface	1	28.7	28.7	8.2	8.2	21.8	21.8	92.1	92.0	6.4	6.4		5.2	5.3		10.4	12.4	
	_				_	28.0		8.2		25.7		83.2		5.8		6.1	5.4	l		13.6		
9-Aug-13	Sunny	Moderate	21:08	Middle	5	28.0	28.0	8.2	8.2	25.5	25.6	83.7	83.5	5.8	5.8		5.5	5.5	8.5	19.9	16.8	10.9
				D. 11	_	27.4	07.4	8.2	0.0	28.5	00.5	72.1	74.0	5.0		5.0	14.5	44.0		2.7	0.4	
				Bottom	9	27.4	27.4	8.2	8.2	28.5	28.5	70.3	71.2	4.9	5.0	5.0	14.6	14.6		4.0	3.4	
				Surface	1	29.7	29.7	8.1	8.1	20.5	20.5	87.6	87.5	6.1	6.1		4.0	3.8		2.6	3.0	
				Surface		29.7	29.7	8.1	0.1	20.4	20.5	87.4	67.5	6.1	0.1	5.8	3.6	3.0		3.3	3.0	
12-Aug-13	Sunny	Calm	10:03	Middle	6	29.4	29.4	8.1	8.1	23.6	23.7	77.6	77.4	5.4	5.4	5.0	5.6	5.6	7.2	3.7	3.7	3.8
12-Aug-10	Outliny	Callii	10.00	Wildaic	U	29.3	25.4	8.1	0.1	23.7	20.1	77.2	11.4	5.3	0.4		5.6	5.0	7.2	3.7	5.1	0.0
				Bottom	11	28.8	28.8	8.1	8.1	26.6	26.7	73.8	74.1	5.1	5.1	5.1	11.7	12.3		4.7	4.7	
					• • •	28.8		8.1	4	26.7		74.3		5.1	***	• • •	12.9			4.6		
				Surface	1	28.1	28.1	7.8	7.8	14.7	14.7	81.1	81.0	6.2	6.2		8.3	8.3		12.8	12.3	
						28.1		7.8		14.7		80.8		6.2		6.1	8.3		_	11.8		
16-Aug-13	Rainy	Moderate	16:10	Middle	5	28.1	28.1	7.8	7.8	15.1	15.2	79.0	79.1	6.0	6.0		9.4	9.5	9.6	11.3	11.5	11.3
						28.1 28.2		7.8 7.8		15.2 15.5		79.2 77.5		6.0 5.9			9.6 11.1	1		11.7 10.8		
				Bottom	9	28.2	28.2	7.8	7.8	15.5	15.5	77.3	77.4	5.9	5.9	5.9	11.1	11.1		9.2	10.0	
1						28.6	 	7.2	1	6.8		72.4		5.4			16.7	1		15.6		
				Surface	1	28.6	28.6	7.2	7.3	6.9	6.9	71.9	72.2	5.4	5.4		16.7	16.8		12.8	14.2	
						28.5		7.3		8.6		73.8		5.5		5.5	17.6			15.3		
19-Aug-13	Rainy	Rough	18:36	Middle	6	28.5	28.5	7.3	7.3	8.5	8.6	73.5	73.7	5.5	5.5		17.7	17.7	21.3	13.3	14.3	14.7
						28.3	22.2	7.7		15.2	45.0	64.4		5.0			29.9			21.7		
				Bottom	11	28.3	28.3	7.7	7.7	15.2	15.2	63.9	64.2	5.0	5.0	5.0	28.8	29.4		9.3	15.5	
İ				Curfoos	1	28.3	20.2	7.2	7.0	9.1	0.0	67.9	67.0	5.2	F 2		12.3	10.0		8.3	7.5	
				Surface	1	28.3	28.3	7.3	7.3	9.2	9.2	67.6	67.8	5.2	5.2	5.3	12.1	12.2		6.7	7.5	
21-Aug-13	Rainy	Rough	19:41	Middle	5	28.3	28.3	7.5	7.6	13.9	15.2	71.4	72.0	5.4	5.4	5.5	18.9	18.3	19.9	7.7	7.0	13.6
2 1-Aug-13	Railly	Rougil	19.41	Midule	υ	28.2	20.3	7.7	7.0	16.5	10.2	72.6	12.0	5.4	0.4		17.6	10.3	19.9	6.2	7.0	13.0
				Bottom	9	28.1	28.1	7.7	7.7	18.7	18.7	75.6	75.7	5.6	5.6	5.6	29.6	29.3		27.0	26.2	
				Dolloil	3	28.1	20.1	7.7	1.1	18.7	10.7	75.8	10.1	5.6	0.0	0.0	29.0	20.0		25.3	20.2	

Water Quality Monitoring Results at ST1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.7 27.7	27.7	7.5 7.5	7.5	11.0 11.0	11.0	80.3 80.8	80.6	6.1 6.2	6.2	6.2	6.8 6.8	6.8		5.5 5.0	5.3	
23-Aug-13	Cloudy	Moderate	07:57	Middle	5	27.8 27.8	27.8	7.5 7.5	7.5	11.7 11.7	11.7	79.0 79.6	79.3	6.0 6.1	6.1	0.2	17.1 17.3	17.2	17.0	6.5 5.8	6.2	5.9
				Bottom	9	27.8 27.8	27.8	7.5 7.5	7.5	12.3 12.3	12.3	77.1 76.6	76.9	5.9 5.8	5.9	5.9	27.0 26.9	27.0		6.7 5.7	6.2	
				Surface	1	27.4 27.4	27.4	7.4 7.4	7.4	8.5 8.8	8.7	69.1 69.1	69.1	5.2 5.2	5.2	5.4	6.6 6.1	6.4		6.2 7.1	6.7	
26-Aug-13	Sunny	Calm	10:02	Middle	6	27.4 27.4	27.4	7.6 7.6	7.6	11.8 11.3	11.6	73.5 74.7	74.1	5.4 5.6	5.5	5.4	7.8 7.8	7.8	13.6	7.7 5.1	6.4	6.7
				Bottom	11	27.2 27.2	27.2	7.9 7.9	7.9	23.8 23.8	23.8	74.1 74.6	74.4	5.2 5.2	5.2	5.2	26.4 26.9	26.7		6.8 7.2	7.0	
				Surface	1	28.8 28.2	28.5	7.6 7.8	7.7	12.8 13.5	13.2	96.8 89.7	93.3	6.6 6.3	6.5	6.2	5.7 5.8	5.8		4.2 3.5	3.9	
28-Aug-13	Sunny	Calm	12:14	Middle	5	27.9 27.8	27.9	7.8 7.8	7.8	19.0 20.0	19.5	77.7 83.7	80.7	5.6 5.9	5.8	0.2	4.8 4.5	4.7	5.5	3.2 3.5	3.4	3.6
				Bottom	9	27.4 27.4	27.4	7.9 7.9	7.9	25.2 25.4	25.3	79.1 80.3	79.7	5.4 5.5	5.5	5.5	6.4 5.8	6.1		4.0 2.8	3.4	
				Surface	1	28.0 28.0	28.0	7.6 7.6	7.6	7.9 8.0	8.0	81.4 81.2	81.3	6.1 6.1	6.1	6.4	5.6 5.5	5.6		2.4 3.0	2.7	
31-Aug-13	Rainy	Moderate	17:48	Middle	4.5	27.2 27.7	27.5	7.7 7.7	7.7	17.3 15.3	16.3	88.5 89.9	89.2	6.6 6.7	6.7	0.4	4.8 4.5	4.7	8.7	2.8 2.5	2.7	2.9
				Bottom	8	26.5 26.5	26.5	7.8 7.8	7.8	23.3 23.3	23.3	69.2 69.2	69.2	5.1 5.1	5.1	5.1	15.7 16.1	15.9		4.0 2.5	3.3	

Water Quality Monitoring Results at ST2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.0	28.0	8.4	8.4	25.4	25.4	94.0	94.0	6.4	6.4		1.7	1.7		2.1	2.1	
						28.0 28.0		8.4 8.4		25.4 25.4		93.9 92.6		6.4 6.3		6.4	1.6		-	2.0		
3-Aug-13	Rainy	Moderate	10:41	Middle	4.5	28.0	28.0	8.4	8.4	25.4	25.4	93.0	92.8	6.3	6.3		1.7	1.8	5.7	2.0	2.0	1.8
				Bottom	8	27.9	28.0	8.3	8.3	26.5	26.5	86.5	86.2	5.9	5.9	5.9	14.9	13.7		1.3	1.3	
				Dottom	Ů	28.0	20.0	8.3	0.0	26.4	20.0	85.8	00.2	5.9	0.0	0.0	12.5	10.7		1.2	1.0	
				Surface	1	28.4 28.4	28.4	8.2 8.2	8.2	23.5 23.4	23.5	84.5 84.0	84.3	6.1 6.0	6.1		4.3 4.2	4.3		3.9 3.1	3.5	
			40.00			28.1	20.4	8.3		26.3		80.6		5.8		6.0	4.0		-	4.7		
5-Aug-13	Cloudy	Calm	12:03	Middle	4	28.1	28.1	8.3	8.3	26.3	26.3	80.6	80.6	5.8	5.8		4.0	4.0	6.1	3.1	3.9	3.4
				Bottom	7	27.5	27.5	8.2	8.2	29.7	29.7	71.4	71.3	5.1	5.1	5.1	9.9	10.0		2.6	2.9	
						27.5 29.6		8.2		29.7 21.0		71.1 94.7		5.0 6.4			10.0			3.2 4.5		
				Surface	1	29.5	29.6	7.6 8.2	7.9	21.0	21.2	94.7 97.1	95.9	6.6	6.5		4.0	4.1		2.0	3.3	
7-Aug-13	Cuppy	Moderate	13:05	Middle	3	28.5	28.6	8.2	8.2	26.0	25.9	84.2	87.1	5.8	6.0	6.3	7.0	7.1	6.9	2.6	2.8	3.3
1-Aug-13	Sunny	Widderate	13.03	Midule	3	28.7	20.0	8.2	0.2	25.7	25.9	90.0	07.1	6.2	0.0		7.1	7.1	0.9	2.9	2.0	3.3
				Bottom	5	28.3 28.4	28.4	8.2 8.2	8.2	27.7 27.6	27.7	76.1 80.9	78.5	5.2 5.5	5.4	5.4	9.4 9.6	9.5		3.5 4.0	3.8	
						29.7		8.2		21.5		94.4		6.6			5.1			3.2		
				Surface	1	29.7	29.7	8.2	8.2	21.7	21.6	93.8	94.1	6.6	6.6	6.1	5.1	5.1		2.1	2.7	
9-Aug-13	Sunny	Moderate	14:05	Middle	4	28.8	28.8	8.2	8.2	26.4	26.4	79.8	80.5	5.6	5.6	0.1	6.7	6.7	9.0	4.5	3.6	2.9
o rag io	ou,	odorato	11.00			28.8	20.0	8.2	0.2	26.3	20.1	81.2	00.0	5.6	0.0		6.6	0	-	2.7	0.0	
				Bottom	7	28.3 28.3	28.3	8.2 8.2	8.2	28.6 28.6	28.6	70.7 70.1	70.4	4.9 4.9	4.9	4.9	15.0 15.5	15.3		1.8 2.9	2.4	
İ				Surface	1	30.0	30.0	8.1	8.1	21.7	21.8	92.1	91.7	6.3	6.3		3.4	3.5		7.2	6.0	
				Surface	ı	29.9	30.0	8.1	0.1	21.9	21.0	91.2	91.7	6.3	6.3	5.7	3.6	3.5		4.8	0.0	
12-Aug-13	Sunny	Calm	15:42	Middle	4	28.9 28.9	28.9	8.1 8.1	8.1	26.0 26.0	26.0	74.2 74.0	74.1	5.1	5.1		8.1 8.0	8.1	8.3	5.8 4.1	5.0	5.5
						28.1		8.1		29.5		70.4		5.1 4.8			13.2			5.9		-
				Bottom	7	28.1	28.1	8.1	8.1	29.5	29.5	70.5	70.5	4.9	4.9	4.9	13.1	13.2		5.2	5.6	
				Surface	1	28.0	28.0	7.8	7.8	15.3	15.3	82.1	82.2	6.3	6.3		11.8	11.8		7.8	7.5	
					·	28.0	20.0	7.8		15.3	10.0	82.3	02.2	6.3	0.0	6.3	11.8			7.2	1.0	
16-Aug-13	Cloudy	Rough	08:09	Middle	4	28.1 28.1	28.1	7.8 7.8	7.8	15.5 15.5	15.5	81.5 81.5	81.5	6.2 6.2	6.2		12.3 12.3	12.3	11.6	8.2 6.5	7.4	7.5
				D-#	7	28.1	20.4	7.8	7.0	15.9	45.0	80.2	00.0	6.1	0.4	0.4	10.6	40.0		6.8	7.0	
				Bottom	7	28.1	28.1	7.8	7.8	15.9	15.9	80.2	80.2	6.1	6.1	6.1	10.6	10.6		8.3	7.6	
				Surface	1	28.7	28.7	7.6	7.6	4.7	4.6	81.7	81.2	6.5	6.5		8.2	8.0		4.2	3.7	
						28.7 28.0		7.6 7.9		4.5 22.6		80.6 77.4		6.5 5.8		6.2	7.7		_	3.2 4.9		_
19-Aug-13	Rainy	Rough	10:32	Middle	4	27.9	28.0	7.9	7.9	22.8	22.7	76.4	76.9	5.7	5.8		13.0	12.1	14.2	8.5	6.7	6.3
				Bottom	7	27.8	27.8	8.0	8.0	28.1	28.0	77.5	77.4	5.7	5.7	5.7	21.9	22.5		9.5	8.6	
				Dottom	,	27.8	27.0	8.0	0.0	27.9	20.0	77.2	77.7	5.7	5.1	5.7	23.0	22.0		7.7	0.0	
				Surface	1	28.3 28.4	28.4	7.4 7.4	7.4	10.9 10.8	10.9	70.1 71.5	70.8	5.4 5.5	5.5		7.4 7.5	7.5		5.4 3.6	4.5	
			40.40			28.4		7.4	 	16.5	10.1	71.5		5.3		5.5	8.4		1	5.5		1
21-Aug-13	Cloudy	Moderate	12:42	Middle	4	28.2	28.2	7.7	7.7	16.2	16.4	71.6	71.3	5.4	5.4		8.5	8.5	10.8	5.8	5.7	4.6
				Bottom	7	27.8	27.8	7.9	7.9	27.4	27.4	75.6	75.7	5.4	5.4	5.4	17.4	16.5		5.3	3.6	
					•	27.8		7.9		27.4		75.7		5.4		***	15.5			1.8		

Water Quality Monitoring Results at ST2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	7.8 7.8	7.8	11.4 11.4	11.4	95.8 95.4	95.6	7.3 7.3	7.3	7.2	5.5 5.4	5.5		3.7 3.7	3.7	
23-Aug-13	Cloudy	Moderate	13:50	Middle	4	27.8 27.8	27.8	7.8 7.8	7.8	11.9 11.9	11.9	92.4 92.9	92.7	7.0 7.1	7.1	1.2	6.0 6.1	6.1	9.6	2.7 3.2	3.0	3.2
				Bottom	7	27.7 27.7	27.7	7.8 7.8	7.8	13.2 13.1	13.2	83.4 82.1	82.8	6.4 6.3	6.4	6.4	17.3 17.1	17.2		2.4 3.4	2.9	
				Surface	1	28.2 27.9	28.1	7.6 7.6	7.6	11.5 11.8	11.7	79.6 78.6	79.1	5.8 5.8	5.8	5.6	4.8 5.0	4.9		4.8 2.8	3.8	
26-Aug-13	Sunny	Calm	15:24	Middle	3.5	27.2 27.2	27.2	7.9 7.9	7.9	25.0 25.1	25.1	77.1 77.7	77.4	5.3 5.4	5.4	5.0	9.1 8.2	8.7	8.9	1.7 3.1	2.4	2.7
				Bottom	6	27.1 27.1	27.1	8.0 8.0	8.0	28.4 28.4	28.4	77.9 78.5	78.2	5.3 5.3	5.3	5.3	12.3 14.0	13.2		1.9 1.9	1.9	
				Surface	1	29.9 29.6	29.8	7.8 7.7	7.8	8.2 8.0	8.1	90.2 83.4	86.8	6.6 6.1	6.4	6.4	8.5 9.1	8.8		6.5 5.5	6.0	
28-Aug-13	Fine	Calm	18:00	Middle	3	27.5 27.3	27.4	7.8 7.8	7.8	27.7 27.5	27.6	91.1 96.0	93.6	6.2 6.5	6.4	0.4	5.9 6.7	6.3	7.8	7.0 5.7	6.4	6.0
				Bottom	5	26.9 26.9	26.9	7.9 7.9	7.9	30.1 30.0	30.1	97.7 98.0	97.9	6.6 6.6	6.6	6.6	8.1 8.5	8.3		4.7 6.2	5.5	
				Surface	1	27.7 27.7	27.7	7.7 7.7	7.7	7.7 7.7	7.7	83.7 83.8	83.8	6.3 6.3	6.3	6.0	4.2 4.5	4.4		4.2 2.7	3.5	
31-Aug-13	Cloudy	Moderate	09:14	Middle	5	26.9 27.0	27.0	7.8 7.8	7.8	19.5 18.8	19.2	72.2 76.8	74.5	5.4 5.7	5.6	0.0	3.7 3.6	3.7	5.1	3.4 3.1	3.3	3.6
				Bottom	9	26.2 26.1	26.2	7.9 7.9	7.9	26.2 26.4	26.3	71.9 71.7	71.8	5.2 5.2	5.2	5.2	6.9 7.4	7.2		4.2 3.7	4.0	

Water Quality Monitoring Results at ST2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бсрі	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.6 28.6	28.6	8.2 8.2	8.2	19.2 19.2	19.2	85.0 85.1	85.1	5.9 5.9	5.9		2.6 2.6	2.6		2.9 2.1	2.5	
3-Aug-13	Rainy	Moderate	17:51	Middle	4	28.3 28.3	28.3	8.2 8.2	8.2	21.0 21.0	21.0	80.9 81.2	81.1	5.6 5.6	5.6	5.8	5.0 4.9	5.0	4.4	1.4 1.4	1.4	1.9
				Bottom	7	28.2 28.2	28.2	8.2 8.2	8.2	21.2 21.2	21.2	77.7 77.4	77.6	5.4 5.4	5.4	5.4	5.5 5.7	5.6		2.1 1.3	1.7	
				Surface	1	29.4 29.4	29.4	8.1 8.1	8.1	17.2 17.2	17.2	87.4 86.9	87.2	6.3 6.2	6.3	0.0	7.0 7.1	7.1		4.4 4.8	4.6	
5-Aug-13	Cloudy	Calm	18:45	Middle	4.5	29.2 29.2	29.2	8.0 8.0	8.0	17.8 17.8	17.8	84.4 84.5	84.5	6.1 6.1	6.1	6.2	9.2 9.1	9.2	11.2	4.0 3.8	3.9	4.3
				Bottom	8	28.6 28.6	28.6	8.1 8.1	8.1	22.0 22.0	22.0	79.4 79.1	79.3	5.7 5.7	5.7	5.7	17.2 17.6	17.4		4.3 4.4	4.4	
				Surface	1	29.5 29.4	29.5	8.2 8.2	8.2	21.3 21.3	21.3	87.5 79.4	83.5	6.1 5.5	5.8	0.4	5.5 5.4	5.5		3.9 4.0	4.0	
7-Aug-13	Fine	Moderate	20:12	Middle	3.5	29.1 28.6	28.9	8.2 8.2	8.2	26.0 26.0	26.0	97.2 90.2	93.7	6.6 6.2	6.4	6.1	7.9 8.6	8.3	8.3	4.7 3.9	4.3	4.7
				Bottom	6	28.4 28.4	28.4	8.2 8.2	8.2	27.6 27.6	27.6	84.0 76.4	80.2	5.7 5.2	5.5	5.5	11.8 10.5	11.2		6.2 5.2	5.7	
				Surface	1	28.7 28.7	28.7	8.2 8.2	8.2	21.9 21.6	21.8	92.6 92.6	92.6	6.5 6.5	6.5	6.1	5.3 5.2	5.3		4.0 2.2	3.1	
9-Aug-13	Sunny	Moderate	20:36	Middle	4.5	27.9 27.9	27.9	8.2 8.2	8.2	26.0 26.1	26.1	80.0 79.4	79.7	5.6 5.5	5.6	0.1	6.2 6.0	6.1	7.8	3.0 6.1	4.6	4.0
				Bottom	8	27.4 27.4	27.4	8.2 8.2	8.2	28.5 28.4	28.5	70.3 70.0	70.2	4.9 4.9	4.9	4.9	12.5 11.6	12.1		3.4 5.0	4.2	
				Surface	1	29.7 29.7	29.7	8.0 8.1	8.1	22.1 22.1	22.1	82.3 82.0	82.2	5.7 5.7	5.7	5.7	5.4 5.2	5.3		3.6 3.5	3.6	
12-Aug-13	Sunny	Calm	09:27	Middle	4	29.6 29.6	29.6	8.0 8.1	8.1	22.1 22.1	22.1	81.2 81.2	81.2	5.6 5.6	5.6	· · ·	8.5 8.4	8.5	9.4	3.4 3.4	3.4	3.7
				Bottom	7	29.0 29.0	29.0	8.1 8.1	8.1	25.7 25.7	25.7	74.8 74.7	74.8	5.2 5.2	5.2	5.2	15.1 13.8	14.5		3.9 4.4	4.2	
				Surface	1	28.2 28.2	28.2	7.7 7.7	7.7	14.8 14.7	14.8	80.7 80.7	80.7	6.1 6.1	6.1	6.1	11.1 11.2	11.2		8.8 7.7	8.3	
16-Aug-13	Rainy	Moderate	15:29	Middle	4.5	28.2 28.2	28.2	7.8 7.8	7.8	14.8 14.8	14.8	80.3 80.3	80.3	6.1 6.1	6.1		11.2 11.1	11.2	11.9	9.3 8.8	9.1	8.7
				Bottom	8	28.2 28.2	28.2	7.7 7.7	7.7	15.6 15.6	15.6	77.9 77.8	77.9	5.9 5.9	5.9	5.9	13.2 13.2	13.2		8.8 8.8	8.8	
				Surface	1	28.6 28.6	28.6	7.2 7.2	7.2	6.1 6.2	6.2	71.6 71.1	71.4	5.3 5.3	5.3	5.5	21.6 21.8	21.7		21.3 12.7	17.0	
19-Aug-13	Rainy	Rough	18:05	Middle	4	28.5 28.5 28.5	28.5	7.3 7.3 7.5	7.3	8.6 8.6	8.6	74.9 74.4 64.3	74.7	5.6 5.5 5.1	5.6		28.2 26.8 21.2	27.5	23.4	20.3 12.0 28.0	16.2	21.3
				Bottom	7	28.5	28.5	7.5	7.5	11.4 11.3	11.4	63.6 66.4	64.0	5.0	5.1	5.1	20.9	21.1		33.3	30.7	
				Surface	1	28.1 28.2 28.3	28.2	7.1 7.2	7.2	7.5 7.8 10.4	7.7	66.9 69.8	66.7	5.2 5.3 5.4	5.3	5.4	21.5 20.7	20.7		5.4 5.6 34.7	5.5	
21-Aug-13	Rainy	Rough	19:20	Middle	3.5	28.3 28.3 28.1	28.3	7.3 7.3 7.6	7.3	10.4 10.9 17.5	10.7	69.6 71.0	69.7	5.4 5.4 5.3	5.4		19.6 34.5	20.2	24.7	29.7 22.3	32.2	19.6
				Bottom	6	28.1	28.1	7.6	7.6	16.5	17.0	69.4	70.2	5.2	5.3	5.3	32.1	33.3		20.0	21.2	

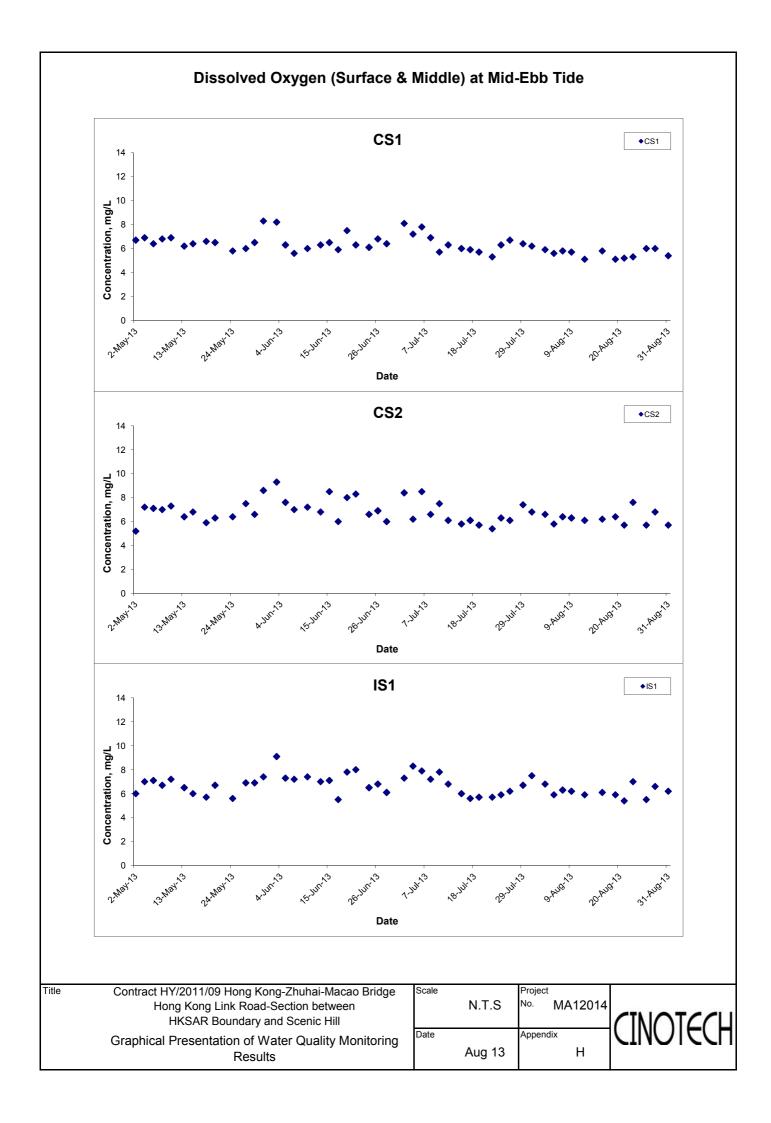
Water Quality Monitoring Results at ST2 - Mid-Flood Tide

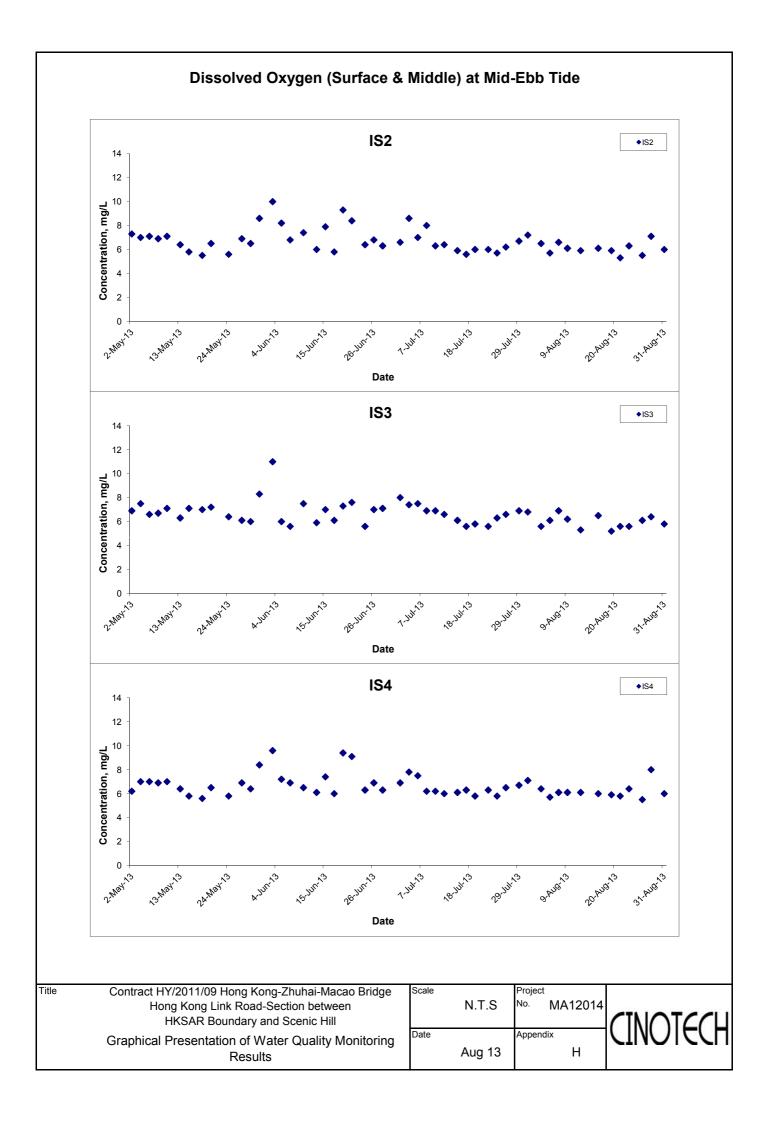
Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salir	Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
Date	Condition	Condition**	Time	БСР	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
				Surface	1	27.7 27.7	27.7	7.5 7.5	7.5	11.0 11.0	11.0	84.4 84.8	84.6	6.4 6.5	6.5	6.4	7.7 7.9	7.8		4.2 5.3	4.8		
23-Aug-13	Cloudy	Moderate	07:30	Middle	4.5	27.8 27.8	27.8	7.5 7.5	7.5	11.2 11.2	11.2	82.0 81.5	81.8	6.2 6.2	6.2	0.4	14.5 14.6	14.6	14.2	5.0 4.8	4.9	4.9	
				Bottom	8	27.8 27.8	27.8	7.5 7.5	7.5	12.1 12.1	12.1	79.0 79.0	79.0	6.0 6.0	6.0	6.0	20.3 19.9	20.1		5.4 4.8	5.1		
				Surface	1	27.6 27.6	27.6	7.7 7.7	7.7	14.3 14.1	14.2	77.6 77.6	77.6	5.7 5.7	5.7	5.5	6.1 5.9	6.0		6.2 4.0	5.1		
26-Aug-13	Sunny	Calm	09:24	Middle	4	27.3 27.3	27.3	7.8 7.8	7.8	19.7 19.8	19.8	74.4 75.1	74.8	5.3 5.3	5.3	5.5	7.9 8.0	8.0	8.3	6.9 5.6	6.3	7.6	
				Bottom	7	27.2 27.2	27.2	7.9 7.9	7.9	24.7 23.7	24.2	74.3 74.9	74.6	5.1 5.2	5.2	5.2	10.8 10.7	10.8		12.5 10.5	11.5		
				Surface	1	28.8 28.6	28.7	7.8 7.8	7.8	9.8 10.0	9.9	81.9 78.9	80.4	6.0 5.8	5.9	6.1	6.7 6.1	6.4		3.0 3.6	3.3		
28-Aug-13	Sunny	Calm	12:49	Middle	3.5	27.9 27.9	27.9	7.8 7.8	7.8	20.2 20.1	20.2	87.7 88.8	88.3	6.2 6.2	6.2	0.1	5.3 5.4	5.4	6.8	4.6 4.4	4.5	3.9	
				Bottom	6	27.3 27.3	27.3	7.9 7.9	7.9	26.0 26.7	26.4	79.3 76.7	78.0	5.4 5.2	5.3	5.3	8.0 9.2	8.6		4.1 3.6	3.9		
				Surface	1	28.0 28.0	28.0	7.6 7.6	7.6	8.1 8.1	8.1	80.2 80.4	80.3	6.0 6.0	6.0	6.2	5.3 5.3	5.3		3.4 3.0	3.2		
31-Aug-13	Rainy	Moderate	17:06	Middle	4.5	27.4 27.7	27.6	7.7 7.7	7.7	12.8 11.2	12.0	83.9 82.3	83.1	6.4 6.3	6.4	J.Z	5.2 4.9	5.1	9.2	2.7 4.4	3.6	3.3	
				Bottom	8	26.5 26.5	26.5	7.8 7.8	7.8	23.5 23.5	23.5	69.6 68.9	69.3	5.1 5.1	5.1	5.1	17.2 17.4	17.3		3.7 2.7	3.2		

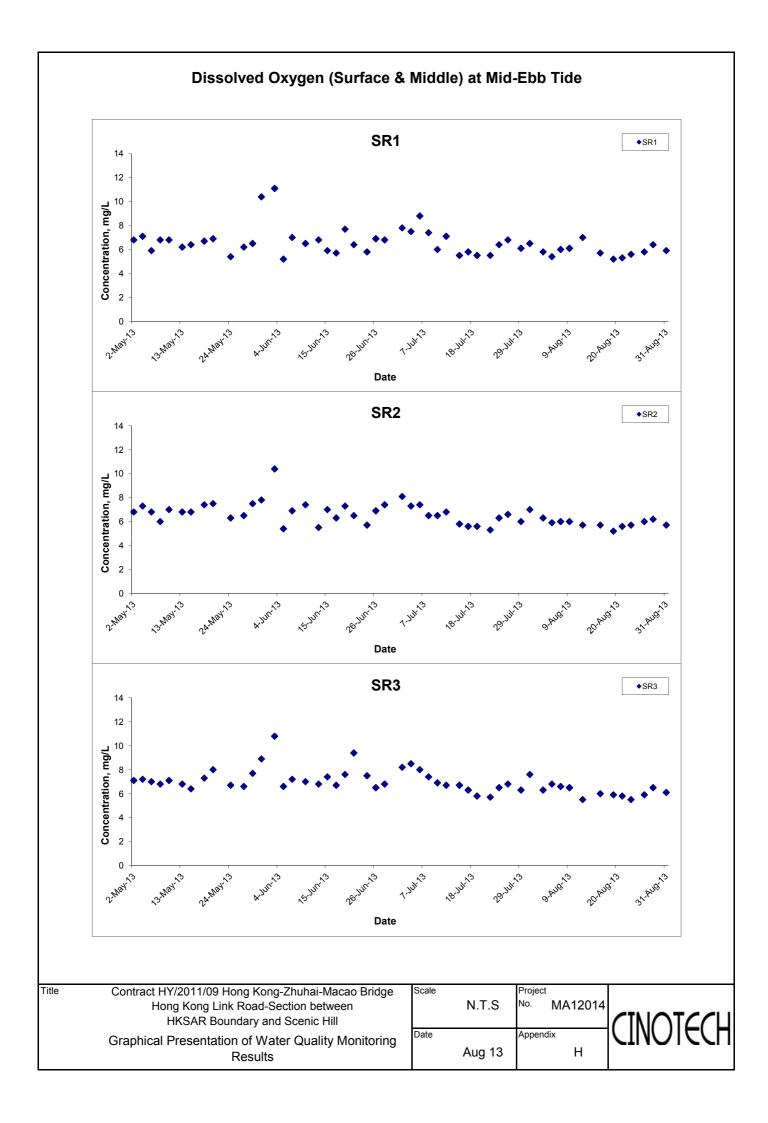
Water Quality Monitoring Results at ST3 - Mid-Ebb Tide

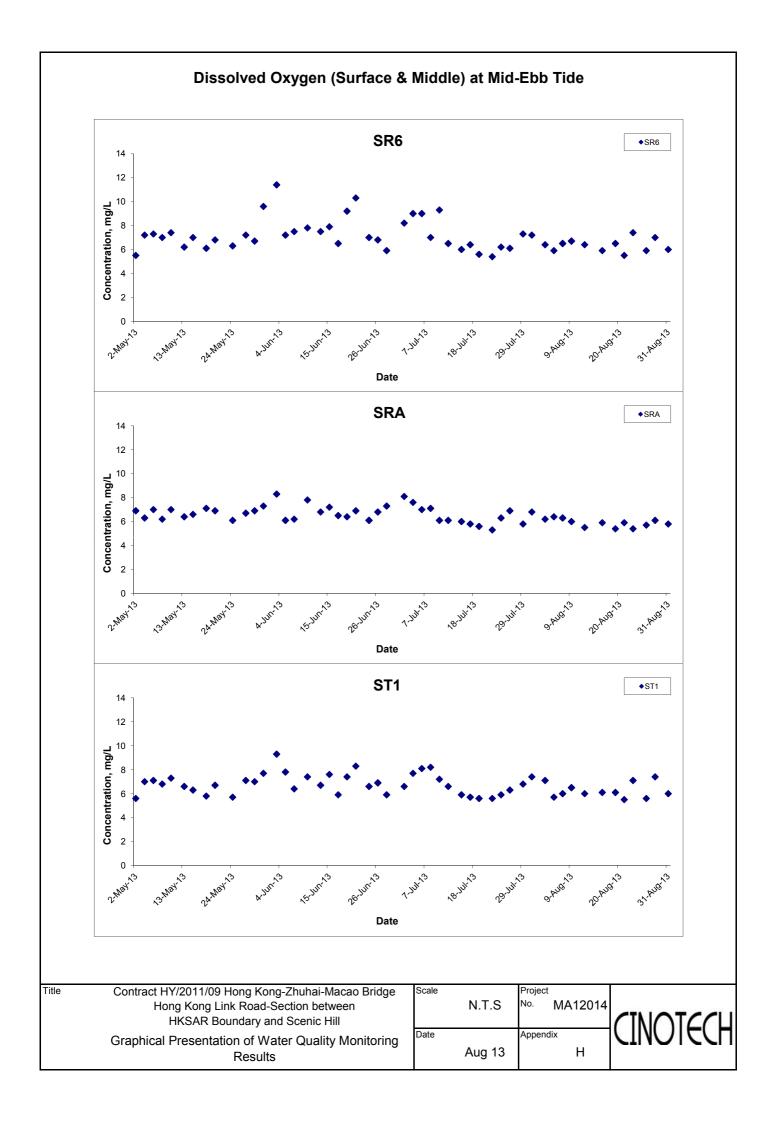
Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9	27.9	8.4	8.4	25.1	25.1	85.0	85.3	5.8	5.8		1.7	1.6		1.4	1.2	
						27.9		8.4		25.1 25.4		85.5 77.5		5.8 5.3		5.6	1.4 6.9			0.9 1.7		
3-Aug-13	Rainy	Moderate	10:40	Middle	6.5	28.0 28.0	28.0	8.3 8.3	8.3	25.4 24.0	24.7	77.5 77.5	77.5	5.3	5.3		6.9	6.9	9.7	0.6	1.2	1.2
				D. 11	40	27.9	07.0	8.3	0.0	26.2	00.0	75.7	75.4	5.1		F 4	19.8	00.5	-	1.2	4.0	
				Bottom	12	27.9	27.9	8.3	8.3	26.2	26.2	74.5	75.1	5.0	5.1	5.1	21.1	20.5		1.3	1.3	
				Surface	1	28.5	28.7	8.2	8.2	23.4	22.9	74.1	73.2	5.4	5.4		4.4	4.8		4.6	4.2	
				04.1400	·	28.8	20	8.2	0.2	22.4		72.3		5.3	0	5.3	5.2			3.7		
5-Aug-13	Cloudy	Calm	12:15	Middle	6	27.8 27.8	27.8	8.2 8.2	8.2	26.9 26.6	26.8	73.2 70.6	71.9	5.3 5.1	5.2		4.5 4.6	4.6	6.8	2.3 2.8	2.6	7.2
						27.7		8.2		24.9		69.3		5.1			10.6			3.3		
				Bottom	11	27.7	27.7	8.2	8.2	27.7	26.3	68.7	69.0	5.0	5.1	5.1	11.1	10.9		26.0	14.7	
				Surface	1	29.1	29.2	8.2	8.2	24.8	24.7	83.6	83.5	6.0	6.0		4.4	4.5		4.4	3.2	
				Curiacc		29.2	20.2	8.2	0.2	24.5	24.7	83.3	00.0	6.0	0.0	5.7	4.6	1.0		2.0	0.2	
7-Aug-13	Sunny	Moderate	13:17	Middle	6.5	28.6 28.8	28.7	8.2 8.2	8.2	27.9 26.7	27.3	72.4 77.7	75.1	5.2 5.6	5.4		8.1 8.3	8.2	9.3	4.2 3.2	3.7	3.7
						28.4		8.2		29.2		70.0		5.0			15.1		_	6.2		
				Bottom	12	28.4	28.4	8.2	8.2	29.3	29.3	71.3	70.7	5.1	5.1	5.1	15.3	15.2		2.0	4.1	
				Surface	1	29.3	29.3	8.2	8.2	23.9	23.9	82.7	83.0	5.9	6.0		5.8	5.7		4.0	3.7	
				Surface		29.3	29.5	8.2	0.2	23.9	25.9	83.3	03.0	6.0	0.0	5.7	5.6	5.7		3.4	5.7	
9-Aug-13	Sunny	Moderate	14:21	Middle	7	28.8	28.8	8.1	8.1	27.1	27.2	74.3	73.9	5.4	5.4	•	6.3	6.3	7.6	3.0	3.2	3.3
	•					28.8 28.4		8.1 8.1		27.2 29.1		73.4 68.2		5.3 4.9			6.2 10.9		_	3.3		
				Bottom	13	28.4	28.4	8.1	8.1	29.2	29.2	67.8	68.0	4.9	4.9	4.9	10.8	10.9		2.8	3.0	
				Surface	1	29.5	29.5	8.2	8.2	24.4	24.0	80.5	78.9	5.4	5.3		4.9	4.8		5.8	5.0	
				Surface	'	29.5	29.5	8.2	0.2	23.6	24.0	77.3	10.9	5.2	5.5	5.3	4.6	4.0		4.1	5.0	
12-Aug-13	Sunny	Calm	15:27	Middle	6	28.9	29.0	8.2	8.2	27.1	27.0	77.6	77.9	5.2	5.3	0.0	6.2	5.9	7.3	4.2	4.4	4.8
						29.0 28.6		8.2 8.2		26.8 27.6		78.2 75.6		5.3 5.1			5.5 11.7		_	4.5 5.5		
				Bottom	11	28.5	28.6	8.2	8.2	28.3	28.0	75.3	75.5	5.1	5.1	5.1	10.6	11.2		4.5	5.0	
				0	4	28.1	00.4	7.9	7.0	15.4	45.4	79.4	70.4	5.7			10.3	40.0		10.0	7.0	
				Surface	1	28.1	28.1	7.9	7.9	15.4	15.4	79.4	79.4	5.7	5.7	5.7	10.3	10.3		5.7	7.9	
16-Aug-13	Cloudy	Rough	08:39	Middle	7.5	28.1	28.1	7.9	7.9	15.5	15.6	79.2	79.1	5.7	5.7	0.7	12.6	12.6	10.5	6.3	6.2	6.7
	,				-	28.1 28.1		7.9 7.9		15.6 16.1		79.0 79.0		5.7 5.6	_		12.5 8.6			6.1 5.7	-	
				Bottom	14	28.1	28.1	7.9 7.9	7.9	16.1	16.1	79.0 78.8	78.9	5.6	5.6	5.6	8.8	8.7		6.0	5.9	
				o .		28.1	20.4	7.7		9.9	40.0	64.0		5.0			7.5			6.4		
				Surface	1	28.1	28.1	7.7	7.7	10.6	10.3	65.1	64.6	5.1	5.1	5.1	7.2	7.4		10.0	8.2	
19-Aug-13	Rainy	Rough	11:05	Middle	6	27.6	27.7	7.9	7.9	23.7	23.9	67.3	67.4	4.9	5.0	5.1	6.8	6.9	7.7	10.4	9.4	9.1
10 7 tag 10		. toug	11.00	madio		27.7		7.9		24.0	20.0	67.5	• • • • • • • • • • • • • • • • • • • •	5.0	0.0		7.0	0.0	1	8.4	0	
				Bottom	11	27.4 27.5	27.5	8.0 8.0	8.0	27.1 27.3	27.2	68.5 67.6	68.1	5.0 4.9	5.0	5.0	9.4 8.4	8.9		10.2 9.4	9.8	
						28.2		7.6		12.5		74.1		5.2			8.1			5.3		
				Surface	1	28.1	28.2	7.6	7.6	13.0	12.8	74.5	74.3	5.2	5.2	5.3	7.9	8.0		5.3	5.3	
21-Aug-13	Cloudy	Moderate	13:12	Middle	6	27.6	27.6	7.9	7.9	21.4	22.3	75.1	75.3	5.3	5.3	5.3	11.1	11.1	11.8	4.9	4.6	4.9
2 1-Aug-13	Sidudy	Moderate	10.12	Milduic	Ů	27.6	21.0	7.9	7.5	23.2	22.0	75.5	70.0	5.3	0.0		11.0	11.1	1 11.0	4.2	7.0	7.5
				Bottom	11	27.4	27.4	8.0 8.0	8.0	27.5	27.1	83.6	84.0	5.7 5.8	5.8	5.8	16.9	16.4		5.1	4.8	
		l	<u> </u>			27.4		8.0		26.6	ı	84.4	l	ე.გ	l		15.9	<u> </u>	1	4.5		<u> </u>

Water Quality Monitoring Results at ST3 - Mid-Ebb Tide

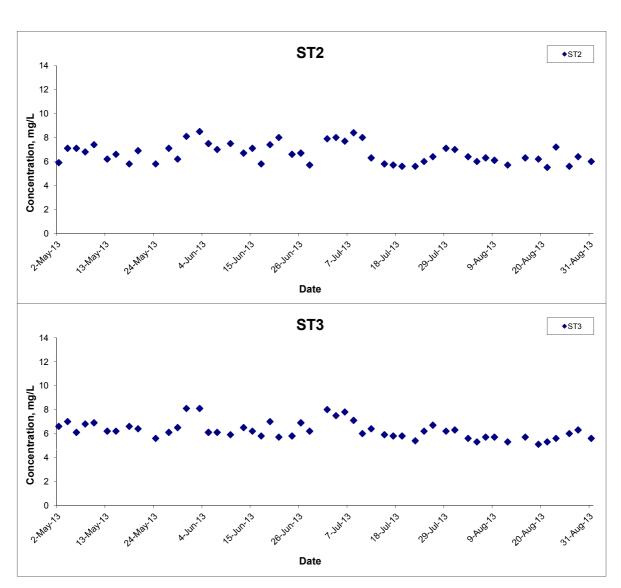

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)				Turbidity(NTl	J)	Suspended Solids (m		(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.3 27.2	27.3	7.8 7.9	7.9	12.2 12.2	12.2	76.1 71.7	73.9	5.6 5.2	5.4	5.6	6.9 6.9	6.9		4.2 4.6	4.4	
23-Aug-13	Cloudy	Moderate	13:18	Middle	6	27.3 27.1	27.2	7.8 7.9	7.9	17.6 16.8	17.2	77.6 77.1	77.4	5.8 5.7	5.8	5.0	7.5 7.6	7.6	9.2	3.9 3.7	3.8	4.0
				Bottom	11	27.2 27.1	27.2	7.9 7.9	7.9	24.2 24.8	24.5	70.3 70.5	70.4	5.1 5.1	5.1	5.1	12.9 13.3	13.1		4.4 3.4	3.9	
				Surface	1	28.2 28.0	28.1	7.6 7.6	7.6	12.2 13.2	12.7	80.9 84.2	82.6	5.9 6.2	6.1	6.0	12.6 11.7	12.2		3.7 4.0	3.9	
26-Aug-13	Sunny	Calm	15:13	Middle	6.5	27.2 27.2	27.2	7.9 7.9	7.9	25.6 25.2	25.4	83.3 83.4	83.4	5.7 5.8	5.8	0.0	9.5 9.2	9.4	14.5	4.1 6.0	5.1	4.7
				Bottom	12	27.1 27.1	27.1	7.9 7.9	7.9	27.8 27.8	27.8	81.8 80.6	81.2	5.6 5.5	5.6	5.6	20.9 23.0	22.0		6.4 3.6	5.0	
				Surface	1	28.6 28.3	28.5	7.3 7.3	7.3	5.9 6.2	6.1	92.1 91.9	92.0	7.0 7.0	7.0	6.3	6.4 6.3	6.4		3.3 3.5	3.4	
28-Aug-13	Fine	Calm	17:09	Middle	6.5	27.1 26.9	27.0	7.8 7.9	7.9	16.1 19.4	17.8	73.6 72.4	73.0	5.5 5.4	5.5	0.0	8.3 8.4	8.4	9.2	3.2 2.7	3.0	3.2
				Bottom	12	26.6 26.6	26.6	8.0 8.0	8.0	23.6 24.4	24.0	69.2 68.3	68.8	5.2 5.1	5.2	5.2	13.0 12.5	12.8		3.3 3.2	3.3	
				Surface	1	28.3 28.3	28.3	7.8 7.8	7.8	9.2 9.2	9.2	80.0 79.6	79.8	5.9 5.9	5.9	5.6	4.7 4.3	4.5		2.7 3.2	3.0	
31-Aug-13	Cloudy	Moderate	09:55	Middle	7	27.4 27.4	27.4	7.9 7.9	7.9	20.4 20.1	20.3	70.5 70.8	70.7	5.2 5.2	5.2	0.0	4.3 4.6	4.5	8.5	3.7 3.3	3.5	3.2
				Bottom	13	26.6 26.6	26.6	7.9 7.9	7.9	28.6 31.0	29.8	69.4 69.4	69.4	5.0 4.9	5.0	5.0	16.0 17.0	16.5		3.8 2.2	3.0	

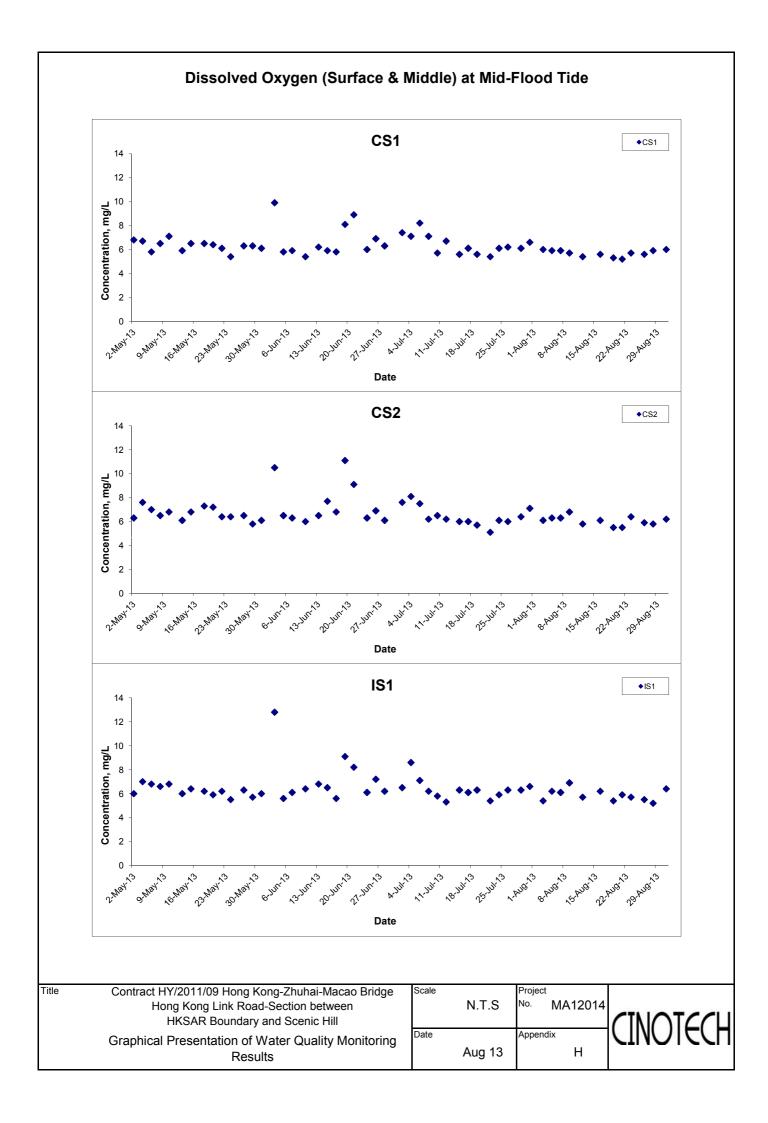

Water Quality Monitoring Results at ST3 - Mid-Flood Tide

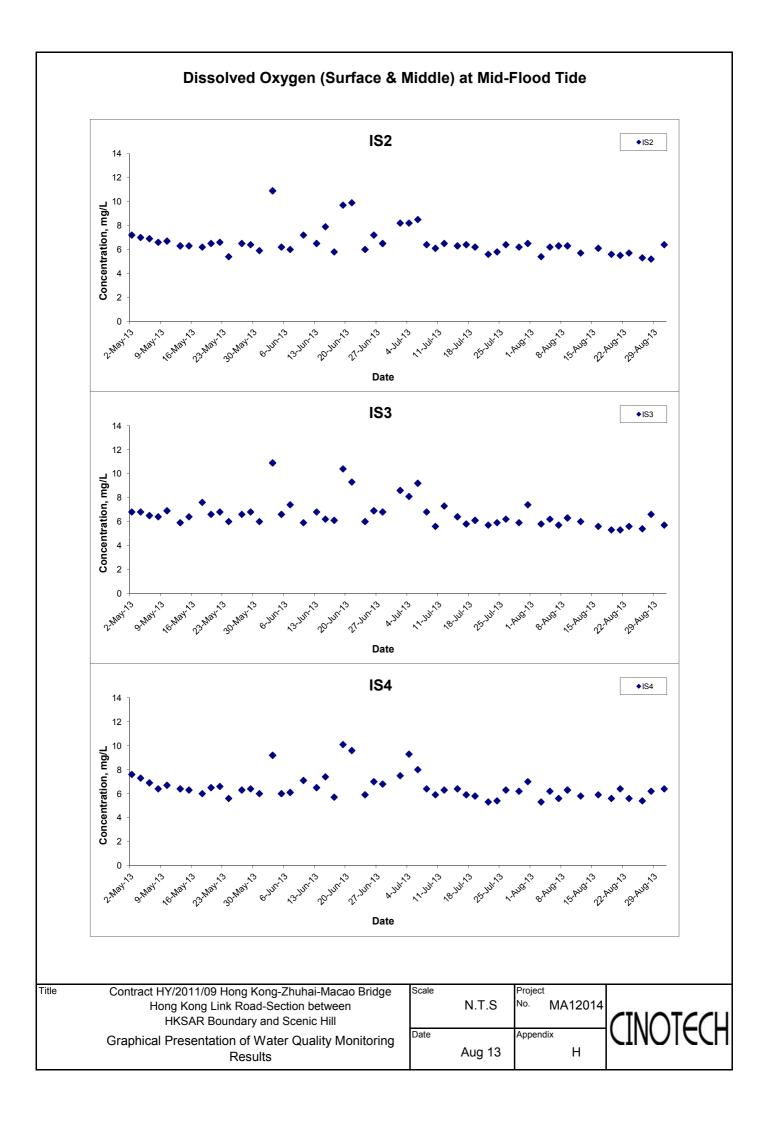

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.3 28.2	28.3	8.3 8.3	8.3	22.7 22.7	22.7	83.4 85.0	84.2	5.7 5.8	5.8		5.7 5.8	5.8		2.9 3.5	3.2	
3-Aug-13	Rainy	Moderate	17:00	Middle	7.5	28.3	28.3	8.3	8.3	24.1	24.0	83.5	83.6	5.7	5.7	5.8	6.0	6.0	9.0	3.9	4.1	3.1
	,			Bottom	14	28.3 28.1	28.1	8.3 8.3	8.3	23.8 24.1	24.1	83.7 79.6	79.2	5.7 5.4	5.4	5.4	5.9 14.8	15.2		4.2 1.6	1.9	
					14	28.1		8.3 8.1		24.1 14.8		78.7 83.5	_	5.4 6.1		3.4	15.5 8.6			2.2 5.4		
				Surface	1	29.9	29.9	8.1 8.0	8.1	14.9	14.9	89.3 79.8	86.4	6.5 5.9	6.3	6.2	8.6 8.6	8.6		4.9	5.2	-
5-Aug-13	Cloudy	Calm	18:10	Middle	5.5	29.4 29.4	29.4	8.0	8.0	16.7	16.8	82.1	81.0	6.0	6.0		8.2	8.4	9.2	4.0 6.5	5.3	5.8
				Bottom	10	28.5 28.5	28.5	8.1 8.1	8.1	22.1 22.0	22.1	75.4 75.8	75.6	5.5 5.5	5.5	5.5	10.8 10.3	10.6		6.7 6.8	6.8	
				Surface	1	29.2 29.3	29.3	8.2 8.2	8.2	24.3 24.2	24.3	85.9 82.8	84.4	6.1 5.9	6.0		4.2 4.5	4.4		4.9 4.9	4.9	
7-Aug-13	Fine	Moderate	18:47	Middle	7	28.7 28.8	28.8	8.2 8.2	8.2	26.9 26.6	26.8	77.4 77.0	77.2	5.5 5.5	5.5	5.8	6.1 5.7	5.9	6.9	4.9 3.5	4.2	4.3
				Bottom	13	28.4 28.5	28.5	8.2 8.2	8.2	29.2 29.1	29.2	69.2 70.2	69.7	5.0 5.0	5.0	5.0	10.3 10.4	10.4		3.7 3.8	3.8	
				Surface	1	29.4 29.4	29.4	8.2 8.2	8.2	24.0 24.0	24.0	84.5 84.4	84.5	6.1 6.1	6.1		5.3 5.3	5.3		5.3 3.3	4.3	
9-Aug-13	Sunny	Moderate	19:52	Middle	6.5	28.8	28.8	8.1 8.1	8.1	26.7 26.7	26.7	75.1 74.6	74.9	5.4 5.4	5.4	5.8	6.1 6.3	6.2	7.4	4.4	3.3	4.4
				Bottom	12	28.5 28.4	28.5	8.1 8.1	8.1	29.1 27.6	28.4	69.1 68.2	68.7	5.0 5.0	5.0	5.0	10.7 10.6	10.7		6.9	5.5	1
				Surface	1	29.8	29.9	8.0	8.0	20.4	20.4	80.1	80.4	5.5	5.6		4.1	4.1		2.5	2.7	
12-Aug-13	Sunny	Calm	10:24	Middle	5.5	29.9 29.5	29.5	8.0	8.0	20.3 21.6	21.6	80.6 78.2	78.8	5.6 5.4	5.5	5.6	4.0	4.7	7.9	2.9 4.3	4.3	3.5
12-Aug-13	Suring	Callii	10.24			29.5 29.2		8.0 8.1		21.6 23.5		79.3 76.9		5.5 5.3			5.0 16.6		7.5	4.2		5.5
				Bottom	10	29.3 28.2	29.3	8.0 7.8	8.1	23.6 15.0	23.6	79.0 79.5	78.0	5.4 5.7	5.4	5.4	13.4 14.5	15.0		2.1 11.0	3.4	
				Surface	1	28.2	28.2	7.8	7.8	15.0	15.0	79.5	79.5	5.7	5.7	5.7	14.9	14.7		10.3	10.7	
16-Aug-13	Rainy	Moderate	14:47	Middle	7	28.2 28.2	28.2	7.8 7.8	7.8	15.5 15.4	15.5	78.6 78.0	78.3	5.6 5.6	5.6		15.9 16.0	16.0	17.1	10.5 10.8	10.7	12.7
				Bottom	13	28.3 28.3	28.3	7.8 7.8	7.8	16.1 16.0	16.1	75.5 75.4	75.5	5.4 5.4	5.4	5.4	20.6 20.8	20.7		17.7 15.7	16.7	
				Surface	1	28.2 28.2	28.2	7.3 7.3	7.3	6.9 7.2	7.1	69.7 70.1	69.9	5.4 5.3	5.4	5.4	6.2 6.3	6.3		1.2 8.6	4.9	
19-Aug-13	Rainy	Rough	17:27	Middle	5.5	28.2 28.2	28.2	7.5 7.5	7.5	10.4 10.1	10.3	74.4 71.8	73.1	5.5 5.3	5.4	J. 4	8.0 7.2	7.6	7.9	10.2 9.8	10.0	10.5
				Bottom	10	28.2 28.2	28.2	7.6 7.5	7.6	13.2 13.1	13.2	64.5 63.2	63.9	5.0 5.0	5.0	5.0	10.1 9.4	9.8		17.0 16.2	16.6	
				Surface	1	28.6 28.5	28.6	7.6 7.6	7.6	11.9 12.2	12.1	76.5 71.0	73.8	5.5 5.1	5.3		20.6 22.2	21.4		8.8 8.2	8.5	
21-Aug-13	Rainy	Rough	18:58	Middle	5.5	28.6	28.5	7.6 7.7	7.7	11.9	12.5	75.6	71.4	5.5	5.2	5.3	20.9	21.1	25.9	8.8	8.8	8.5
				Bottom	10	28.4	28.5	7.6	7.7	13.1	12.7	67.1 70.5	68.9	4.8 5.1	5.0	5.0	21.2 35.0	35.1		8.7 8.1	8.3	
					-	28.4	-	7.7		13.1		67.2		4.9		-	35.1			8.4	-	

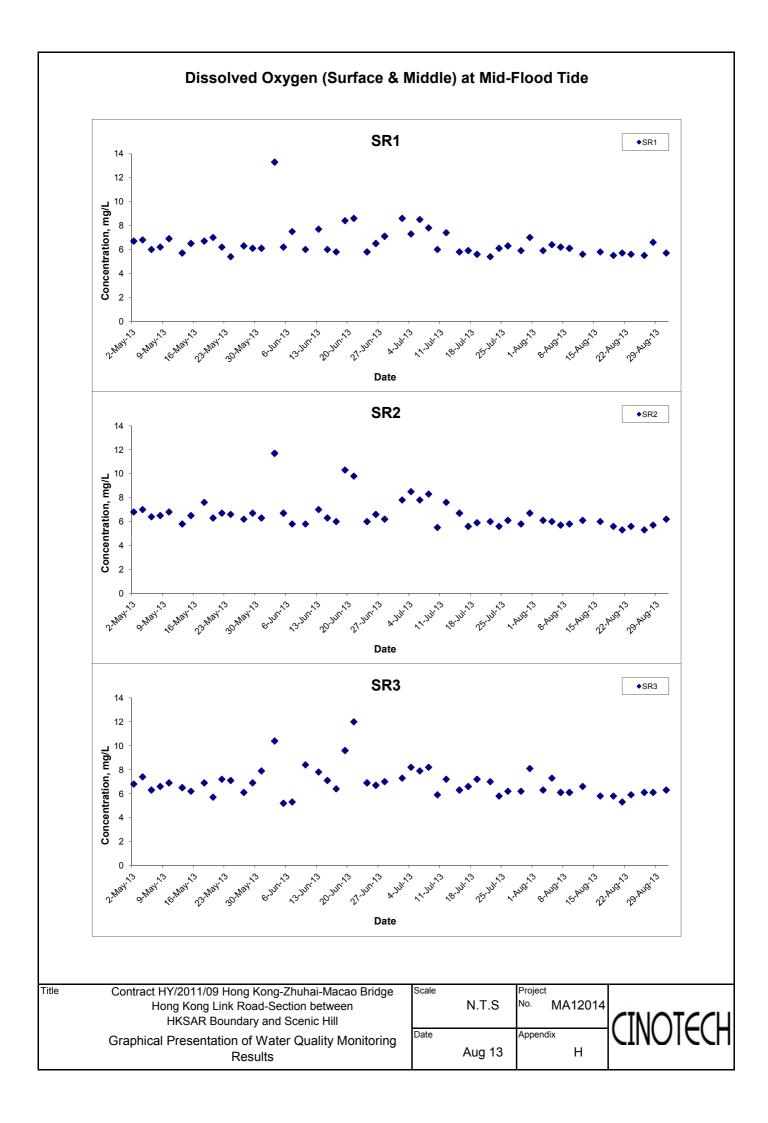

Water Quality Monitoring Results at ST3 - Mid-Flood Tide

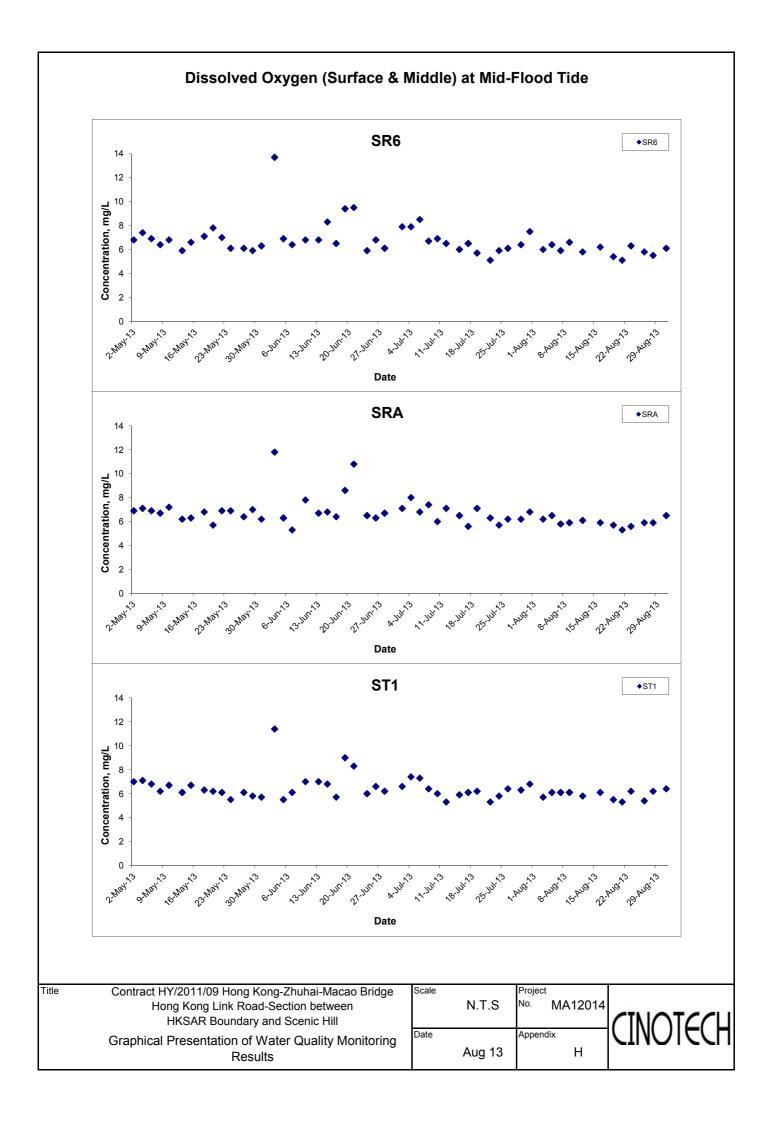
Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.3 27.3	27.3	7.6 7.6	7.6	10.9 10.9	10.9	74.5 75.0	74.8	5.6 5.6	5.6	5.6	6.7 6.8	6.8		7.2 6.4	6.8	
23-Aug-13	Cloudy	Moderate	08:19	Middle	5.5	27.3 27.3	27.3	7.6 7.6	7.6	11.5 11.6	11.6	73.9 74.1	74.0	5.5 5.5	5.5	5.0	6.8 6.9	6.9	6.9	6.6 7.1	6.9	6.7
			Bottom	10	27.4 27.4	27.4	7.6 7.6	7.6	12.8 12.2	12.5	73.0 71.6	72.3	5.4 5.3	5.4	5.4	7.1 7.1	7.1		6.2 6.4	6.3		
				Surface	1	26.9 26.9	26.9	7.6 7.6	7.6	13.4 13.1	13.3	85.5 81.1	83.3	6.1 6.0	6.1	5.8	8.5 7.0	7.8		4.0 3.0	3.5	
26-Aug-13	Sunny	Calm	10:34	Middle	7	26.9 26.9	26.9	7.6 7.6	7.6	13.6 13.7	13.7	73.2 74.8	74.0	5.3 5.4	5.4	5.0	8.4 6.8	7.6	11.9	3.9 4.4	4.2	4.0
				Bottom	13	26.9 26.9	26.9	7.8 7.8	7.8	24.8 23.1	24.0	70.0 70.3	70.2	5.0 5.1	5.1	5.1	18.7 21.6	20.2		3.9 4.8	4.4	
				Surface	1	27.9 27.9	27.9	7.4 7.4	7.4	7.0 7.0	7.0	86.7 87.9	87.3	6.6 6.7	6.7	6.1	6.8 6.6	6.7		5.8 5.5	5.7	
28-Aug-13	Sunny	Calm	12:39	Middle	7	27.8 27.8	27.8	7.5 7.5	7.5	9.9 9.9	9.9	72.9 74.4	73.7	5.4 5.6	5.5	0.1	3.9 3.8	3.9	8.8	6.2 7.3	6.8	6.8
				Bottom	13	27.0 27.0	27.0	7.9 7.9	7.9	22.7 22.4	22.6	65.2 65.6	65.4	4.9 4.9	4.9	4.9	15.8 15.9	15.9		7.5 8.5	8.0	
				Surface	1	28.6 28.6	28.6	7.6 7.6	7.6	9.6 9.6	9.6	74.2 74.0	74.1	5.5 5.4	5.5	5.3	6.1 6.1	6.1		3.1 2.7	2.9	
31-Aug-13	Rainy	Moderate	16:34	Middle	6.5	27.8 27.8	27.8	7.8 7.8	7.8	18.4 17.3	17.9	69.5 68.9	69.2	5.1 5.1	5.1	0.0	6.2 6.2	6.2	8.4	3.5 3.2	3.4	3.1
				Bottom	12	27.2 27.1	27.2	7.9 7.9	7.9	26.8 27.5	27.2	68.5 68.7	68.6	4.9 4.9	4.9	4.9	12.3 13.2	12.8		2.7 3.0	2.9	

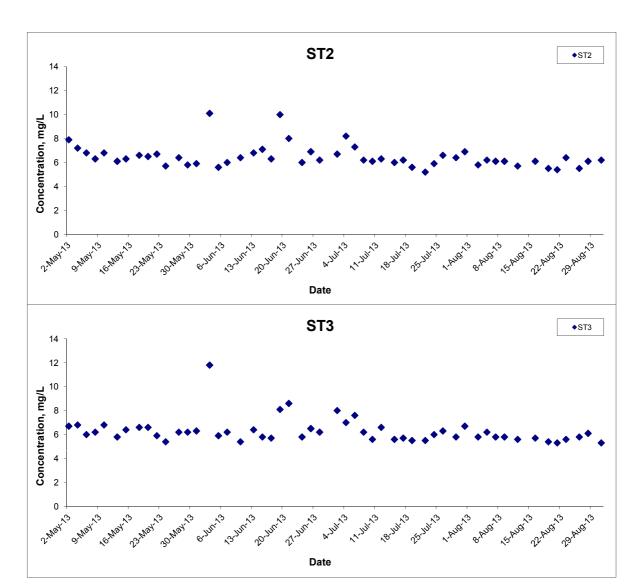


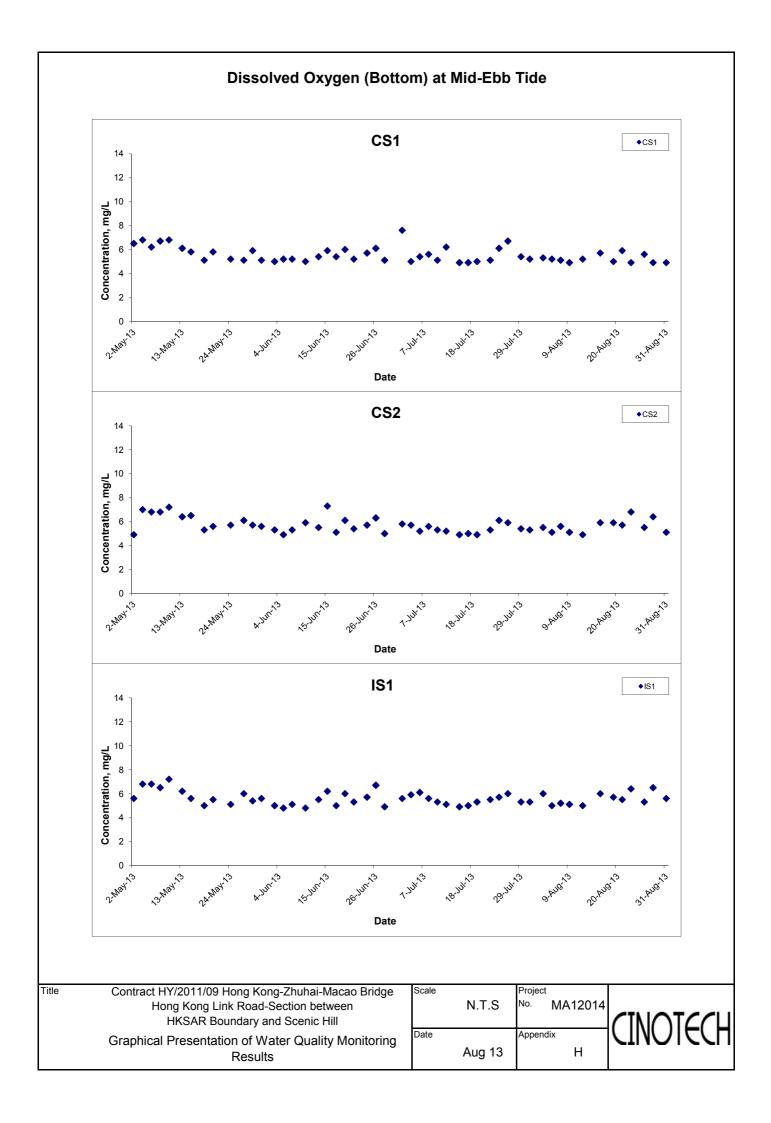

Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide

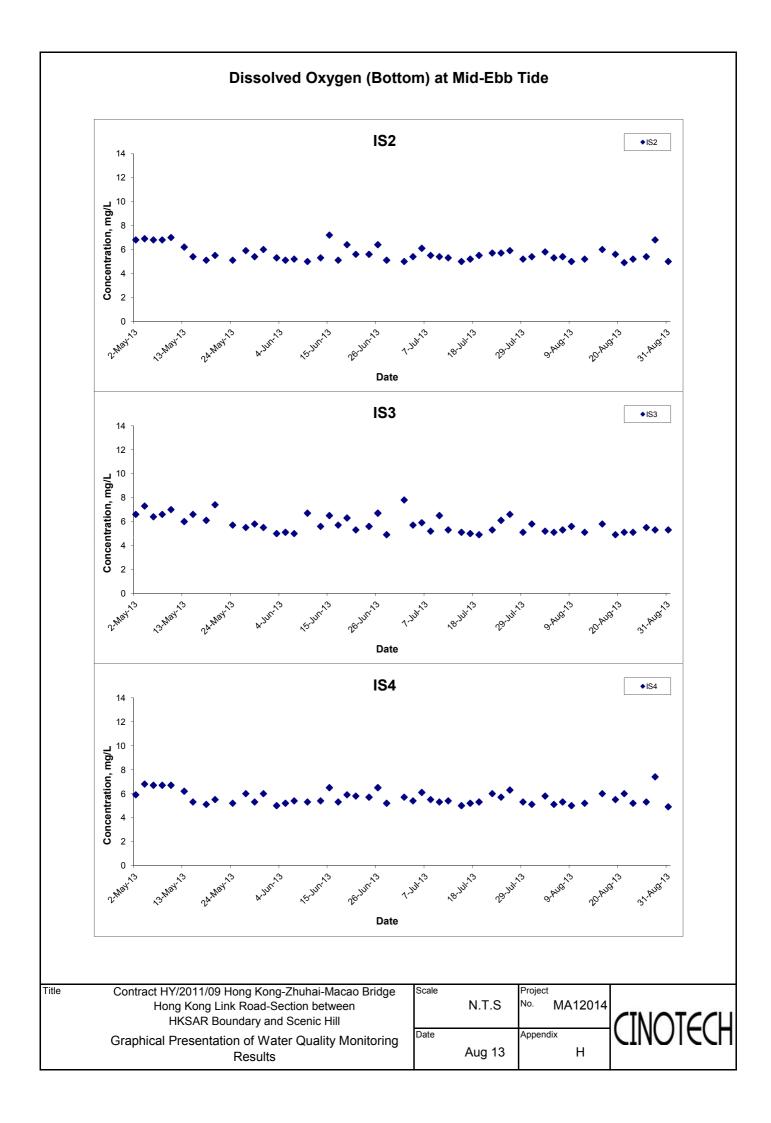


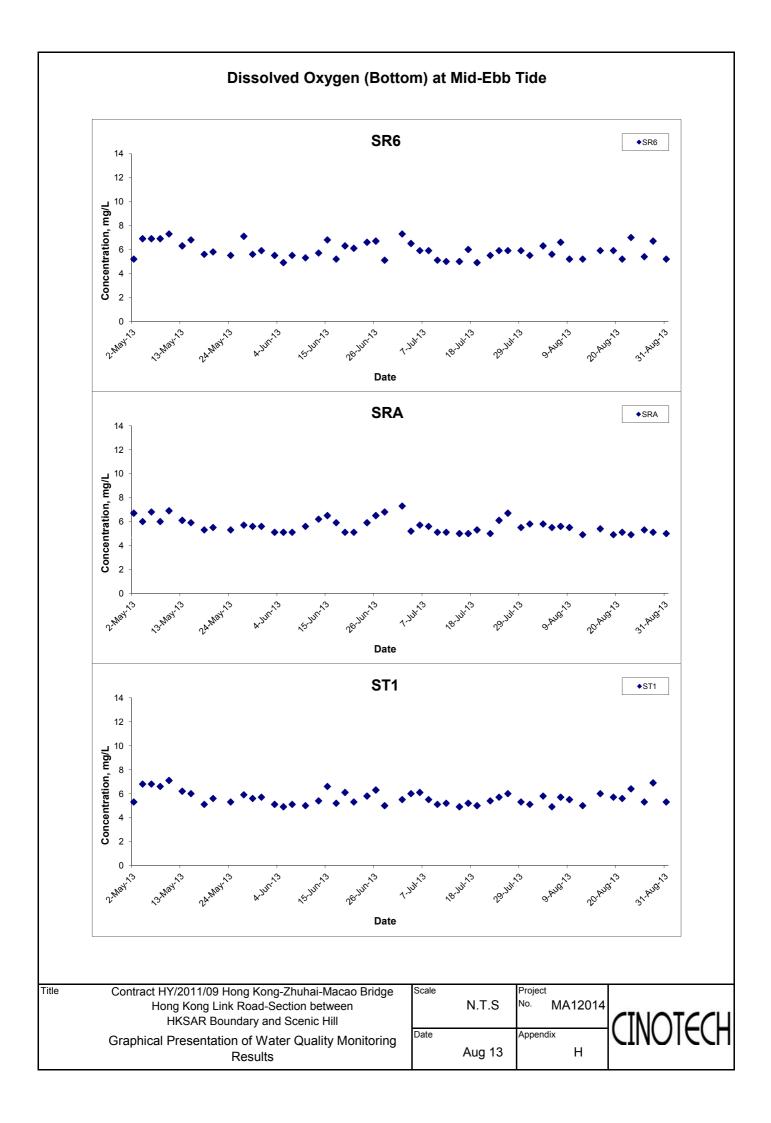

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

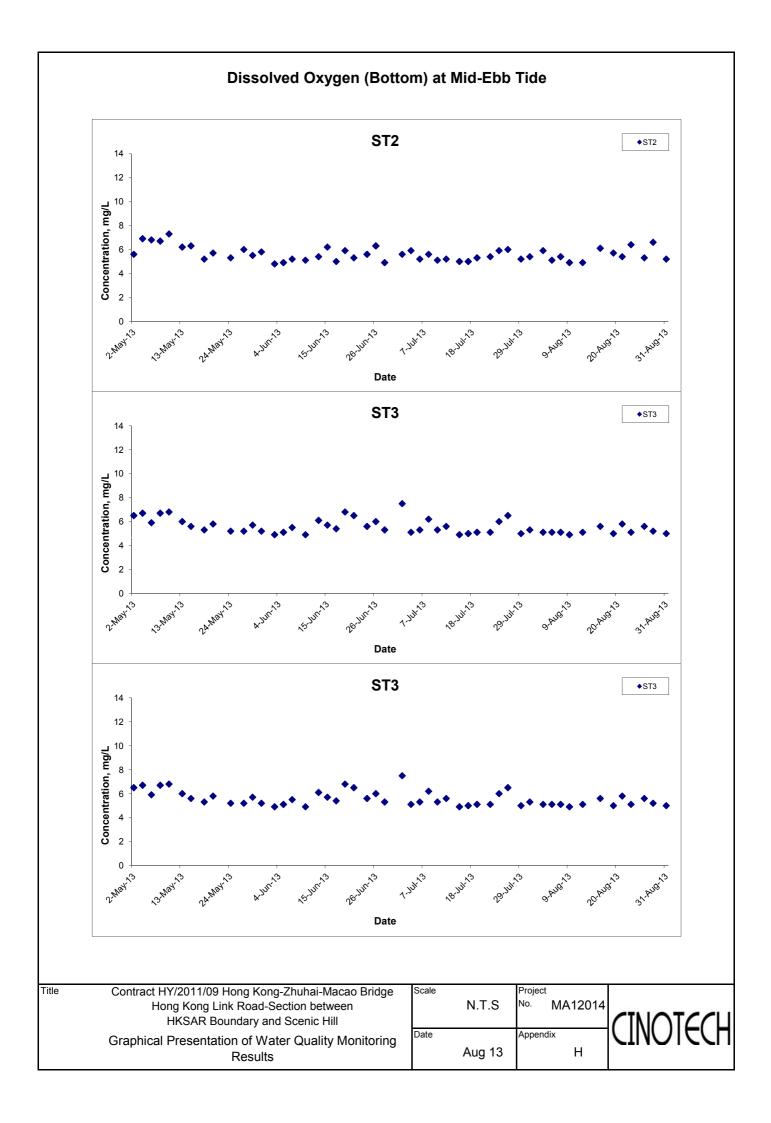

Title

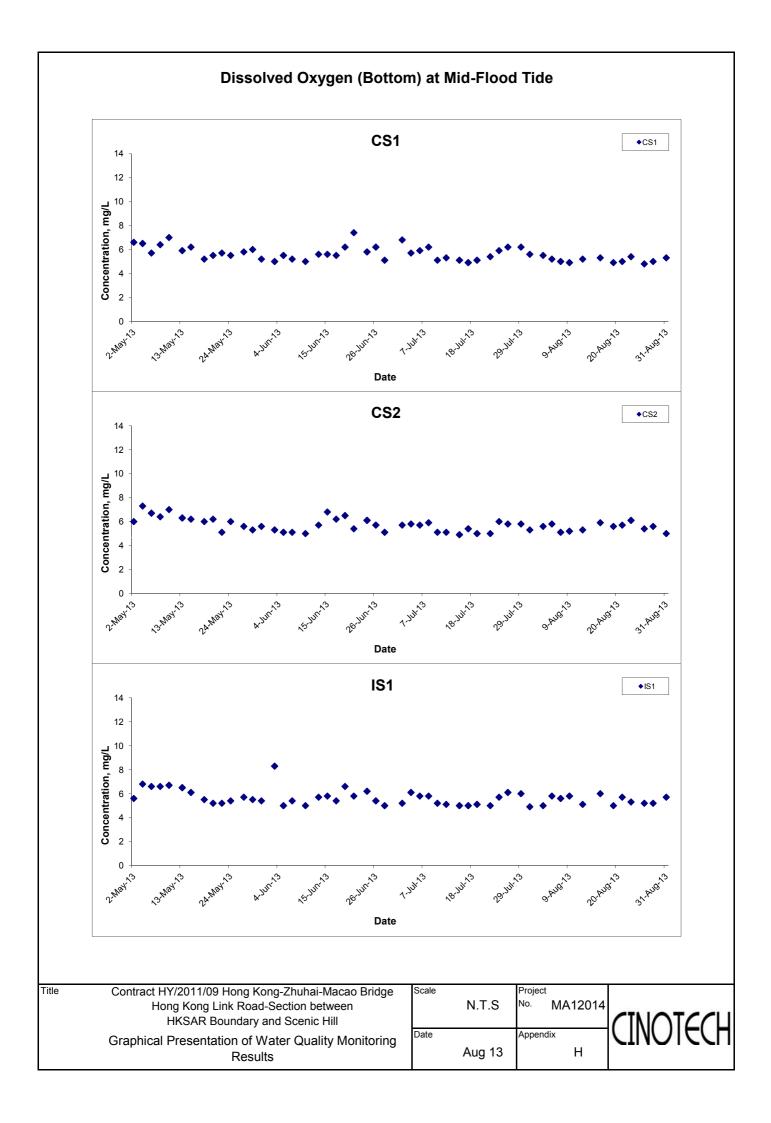


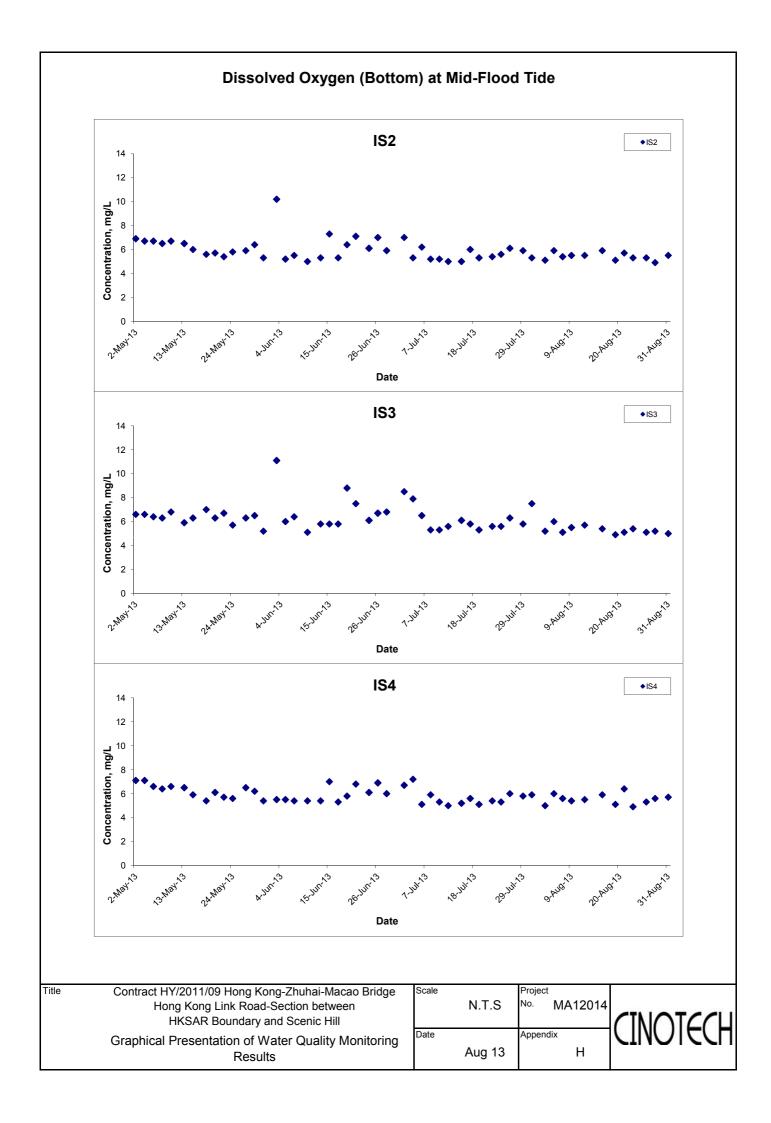

Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide

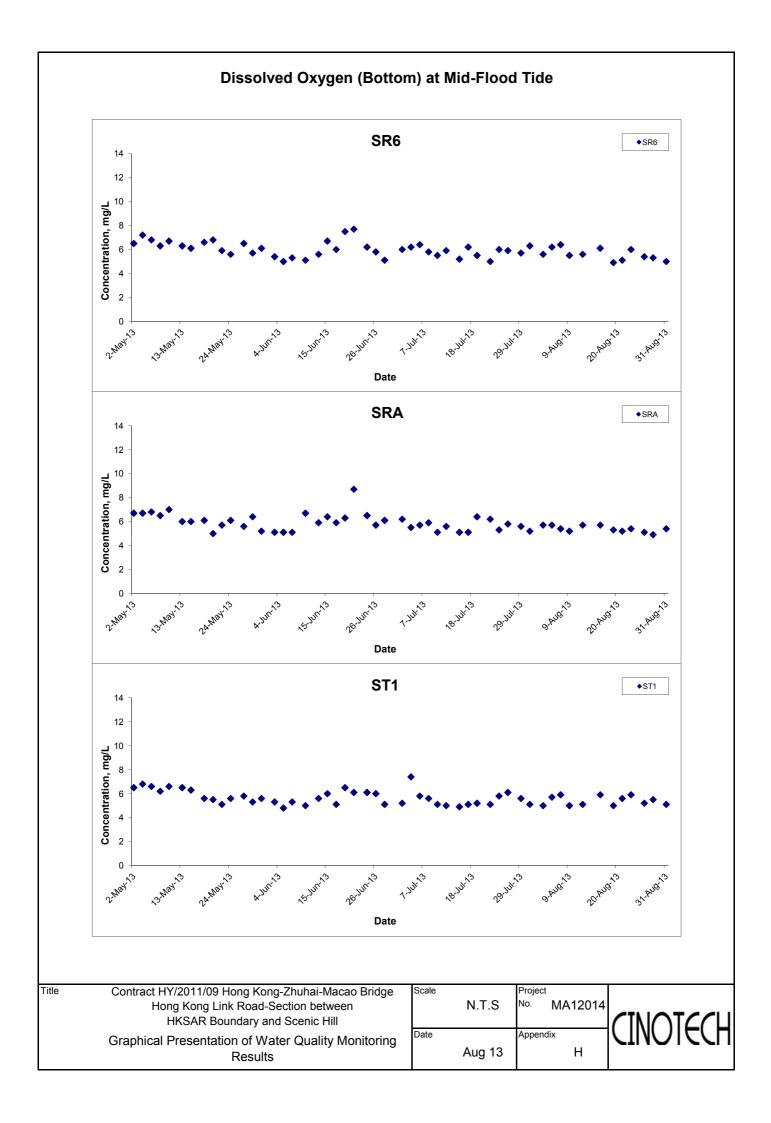


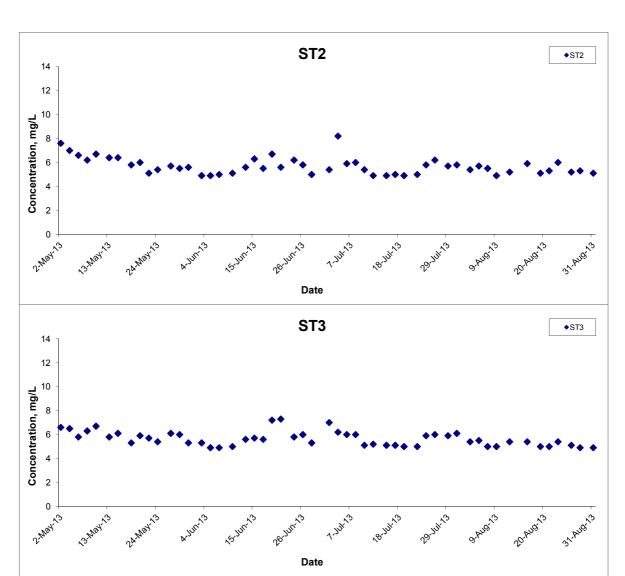

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results


Title

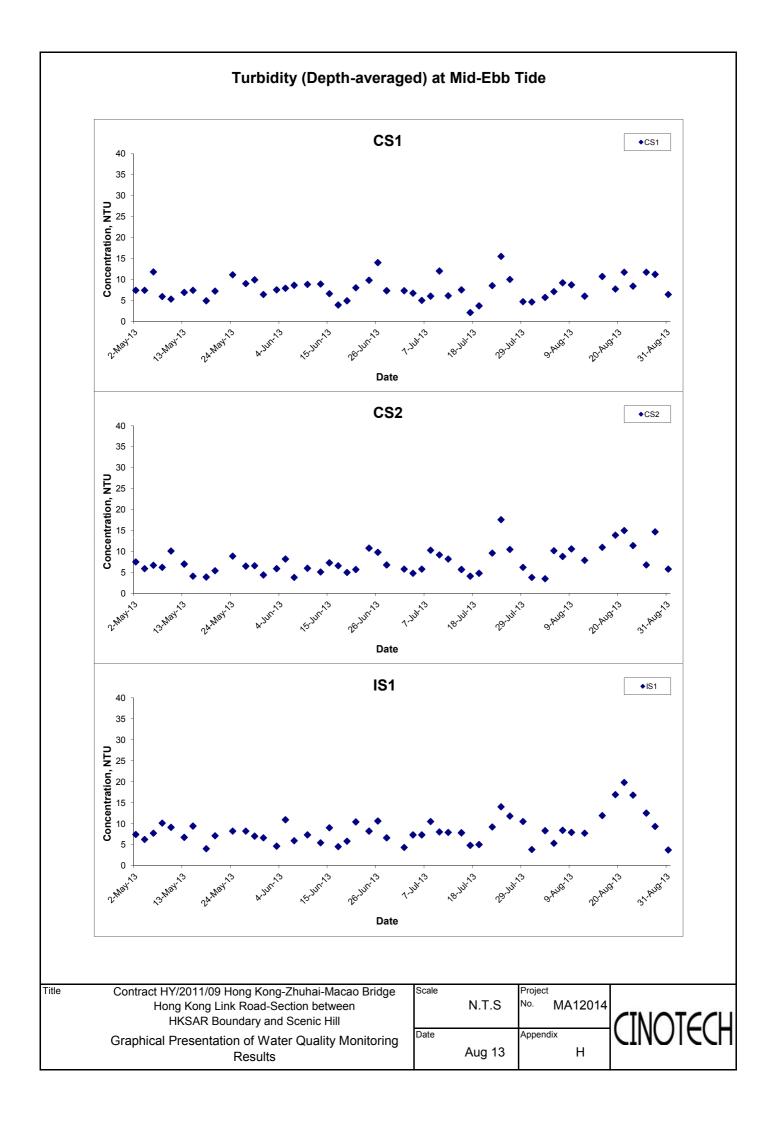


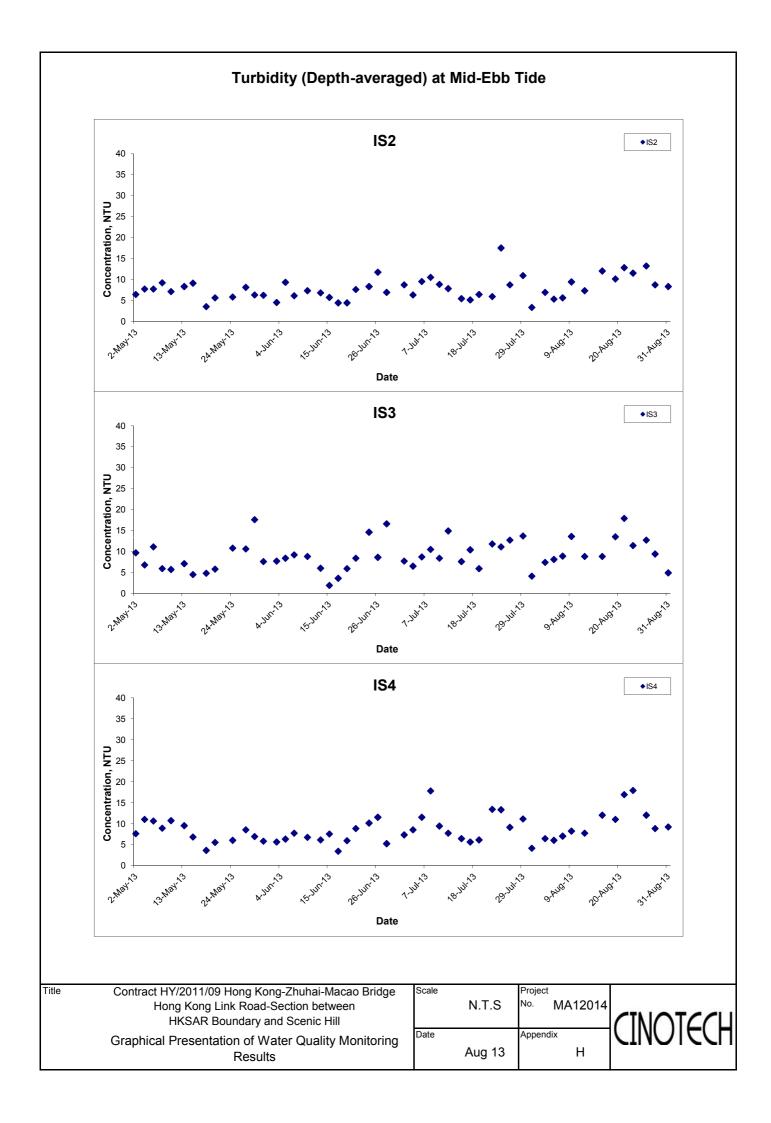




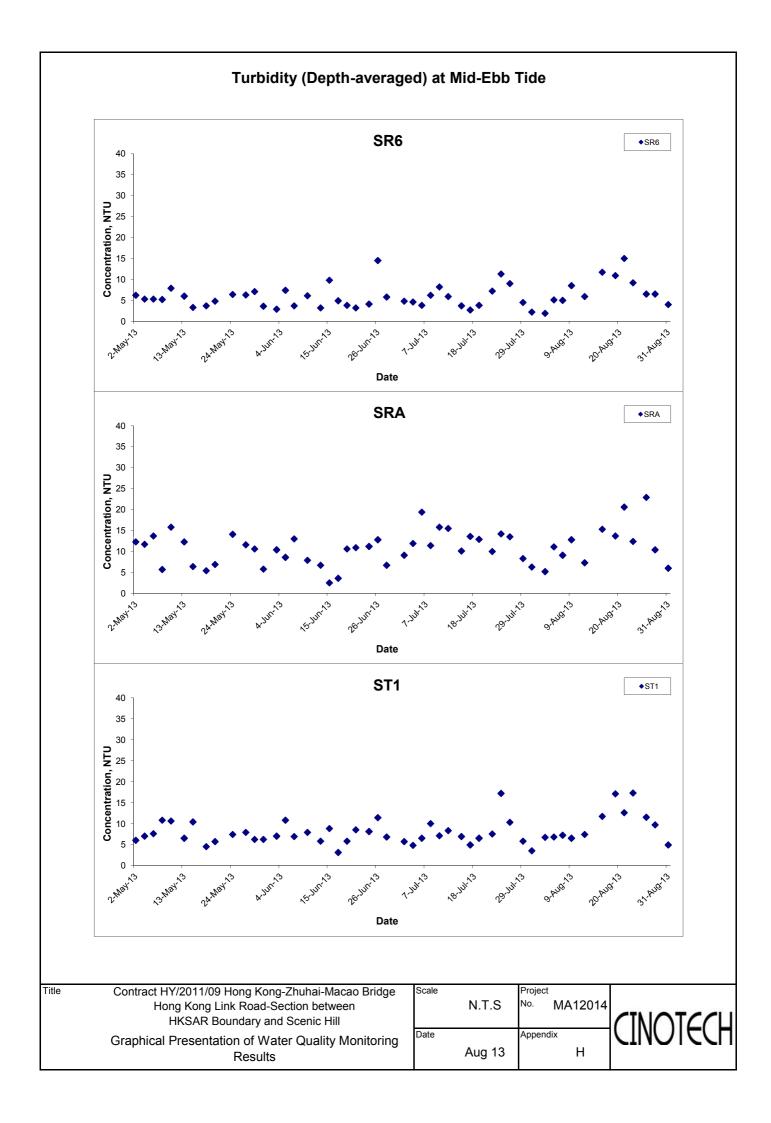


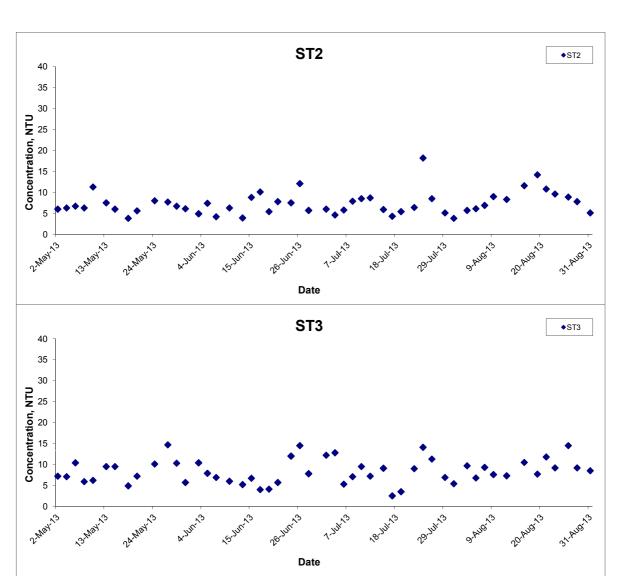
Dissolved Oxygen (Bottom) at Mid-Flood Tide




Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results


Title


Scale		Projec	ct
	N.T.S	No.	MA12014
Date		Apper	ndix
	Aug 13		Н



Turbidity (Depth-averaged) at Mid-Ebb Tide

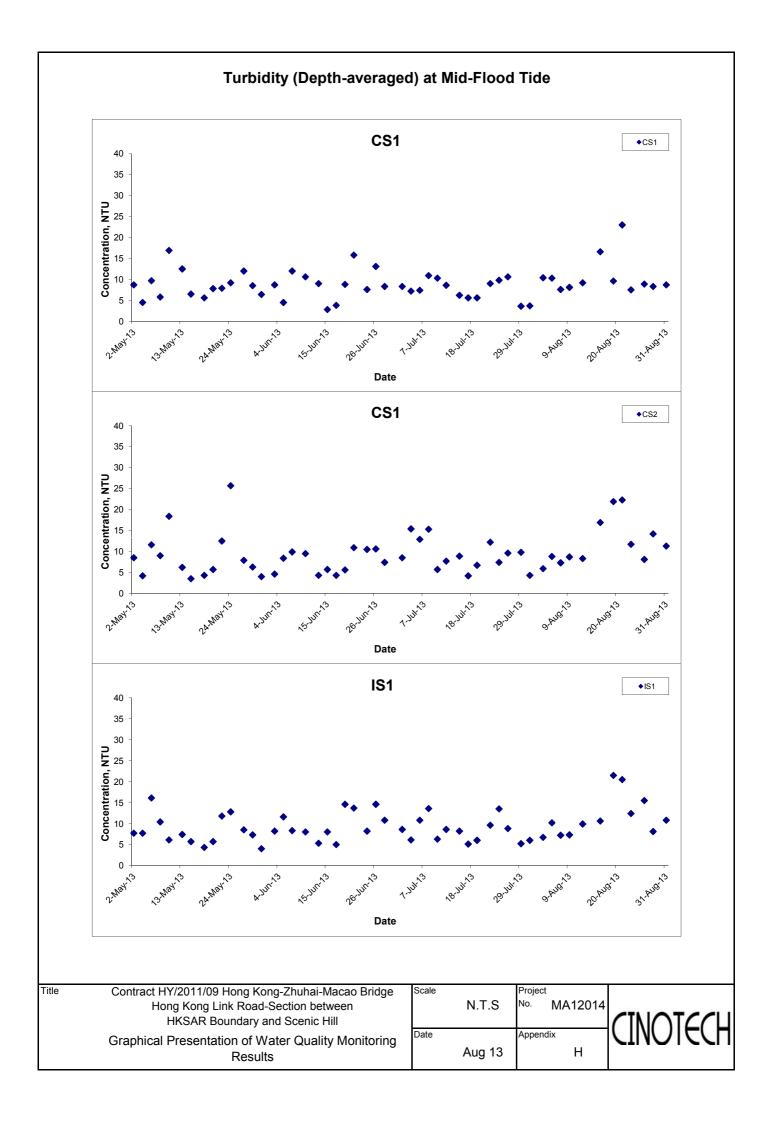
Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

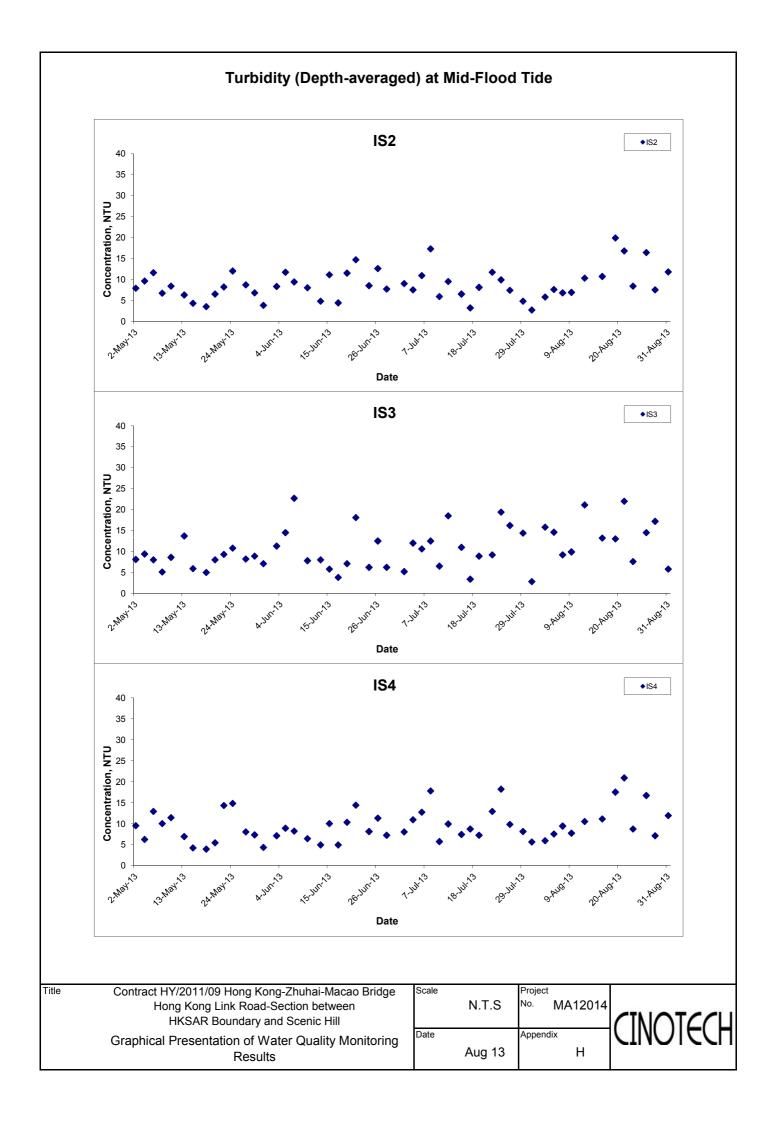
Title

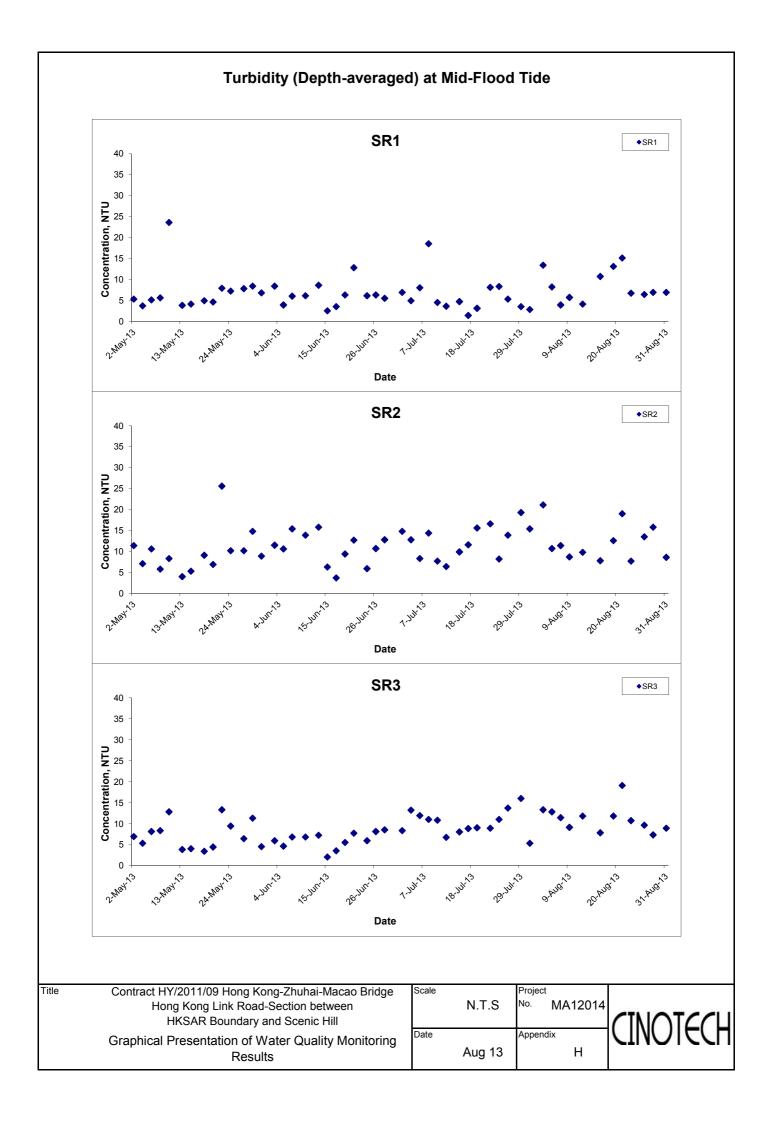
Scale

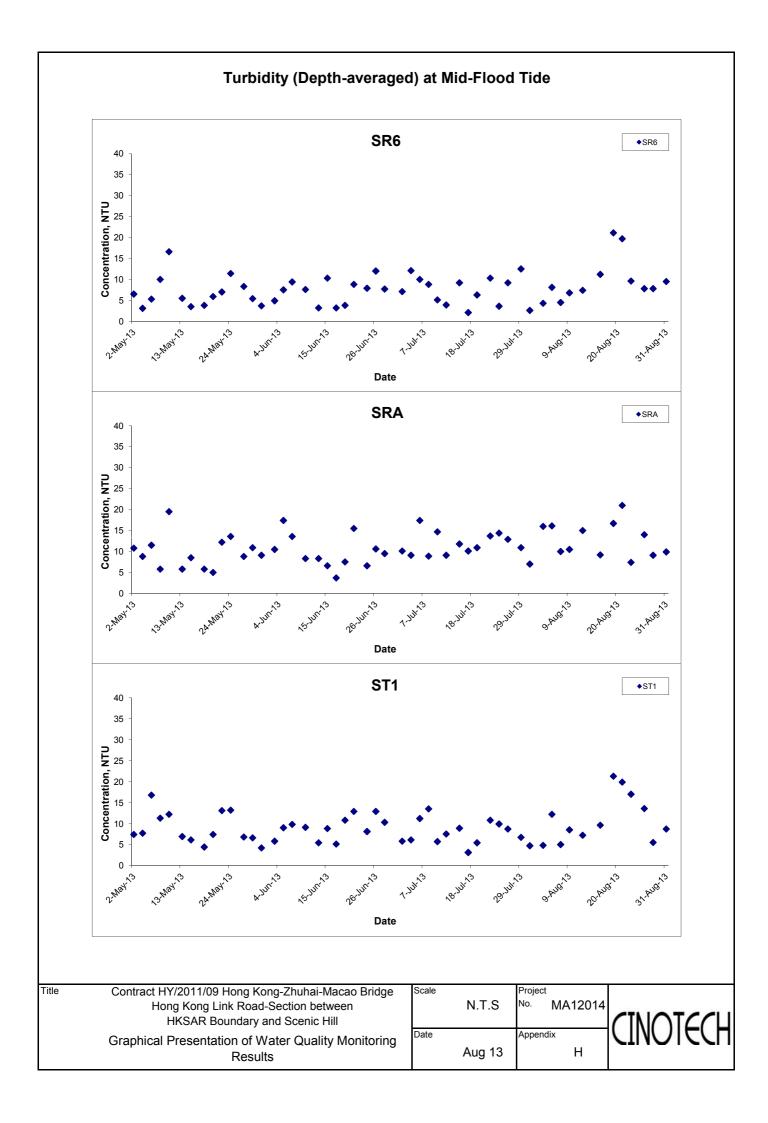
N.T.S

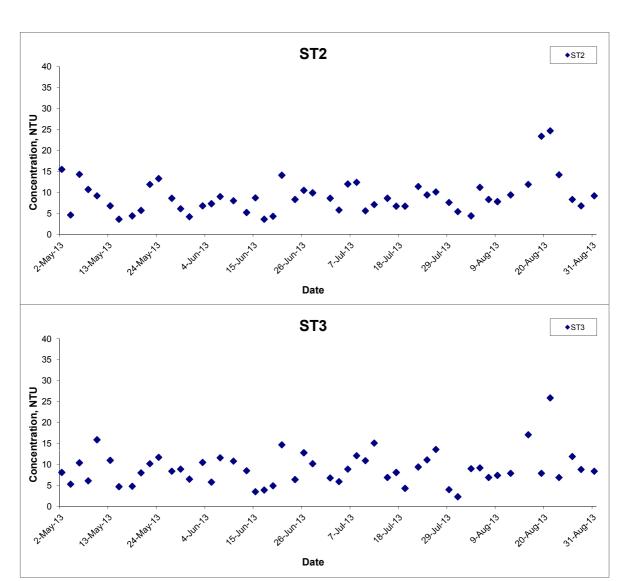
Project
No. MA12014

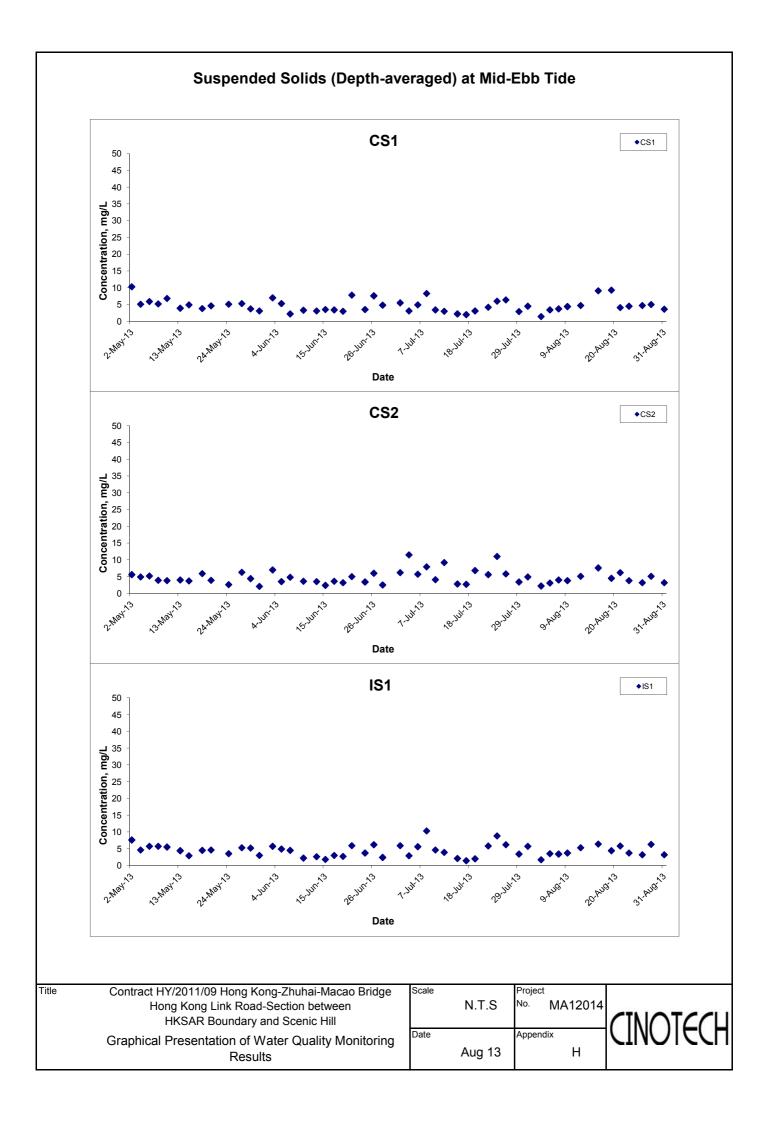

Date

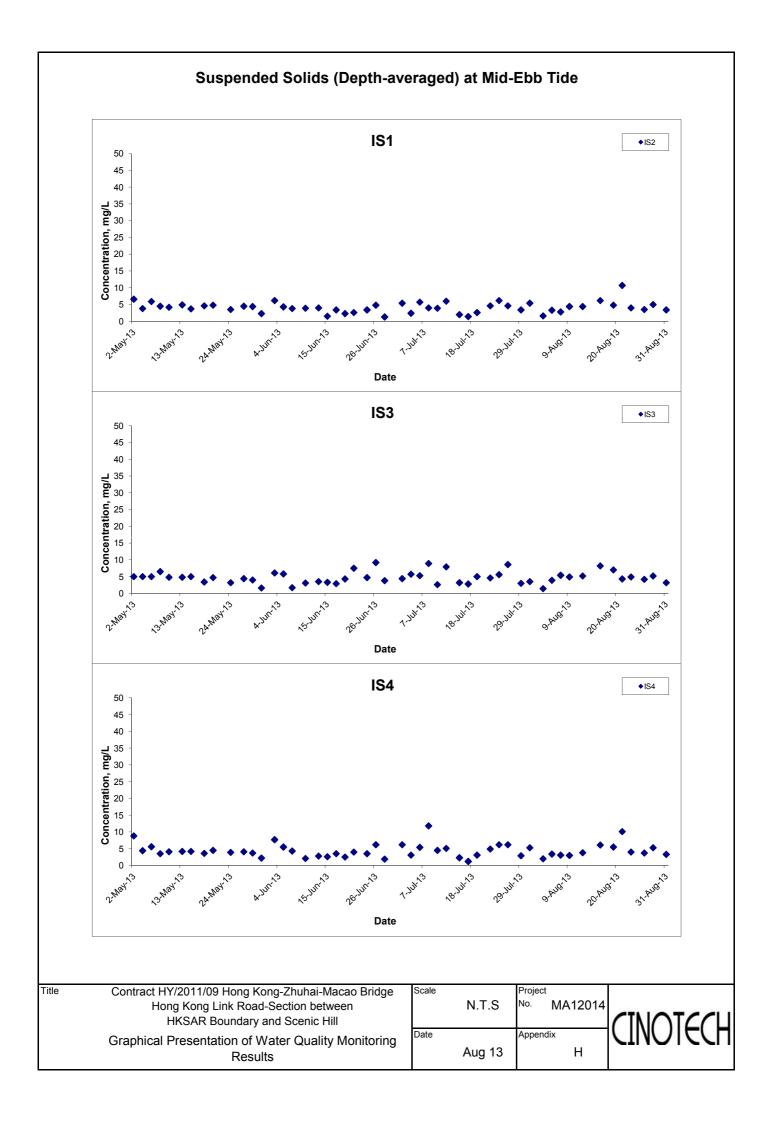

Appendix

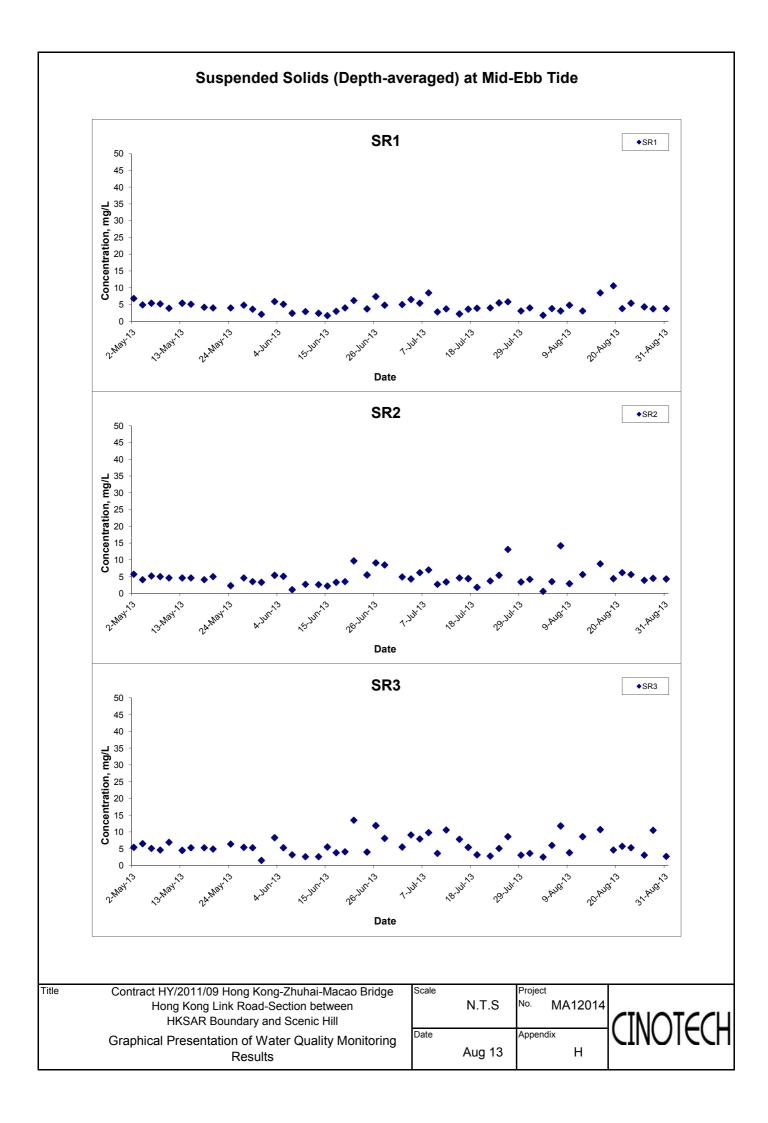

Aug 13


H

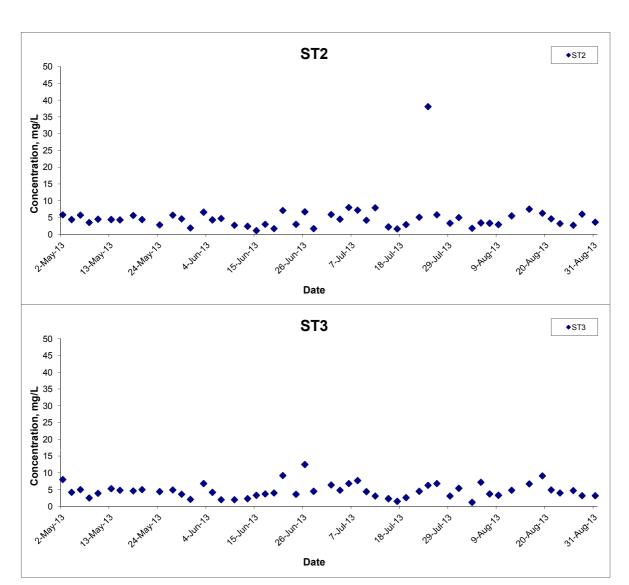




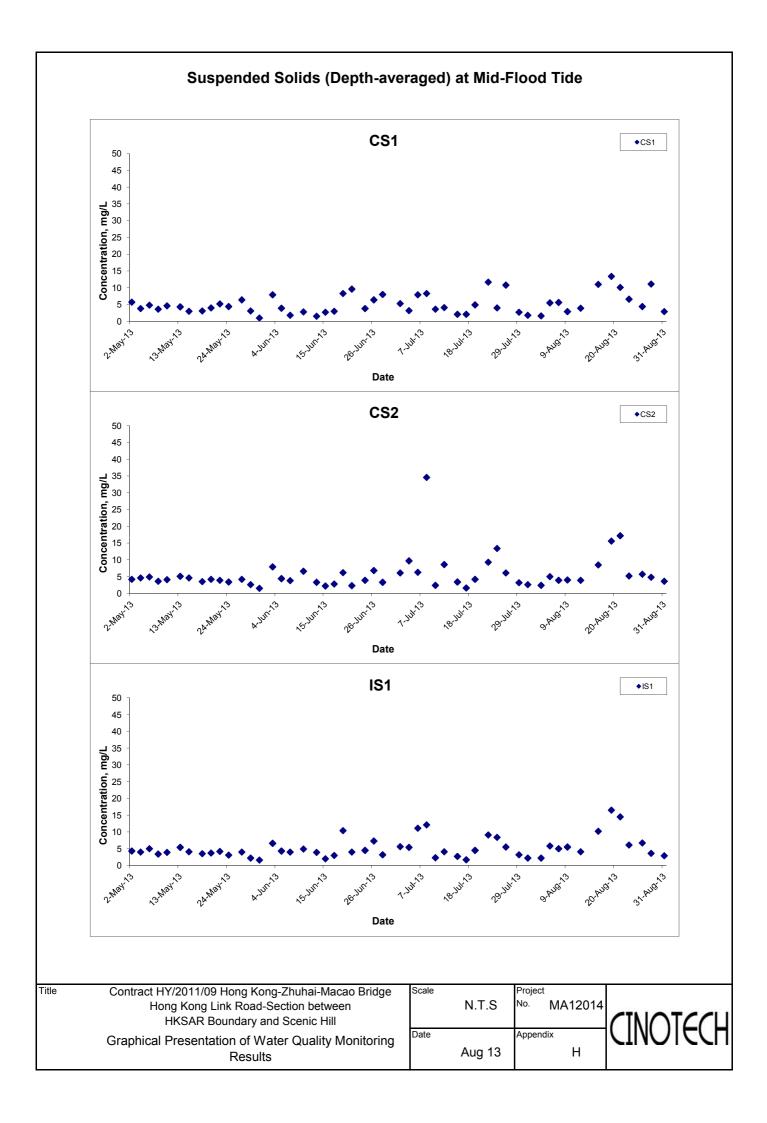

Turbidity (Depth-averaged) at Mid-Flood Tide

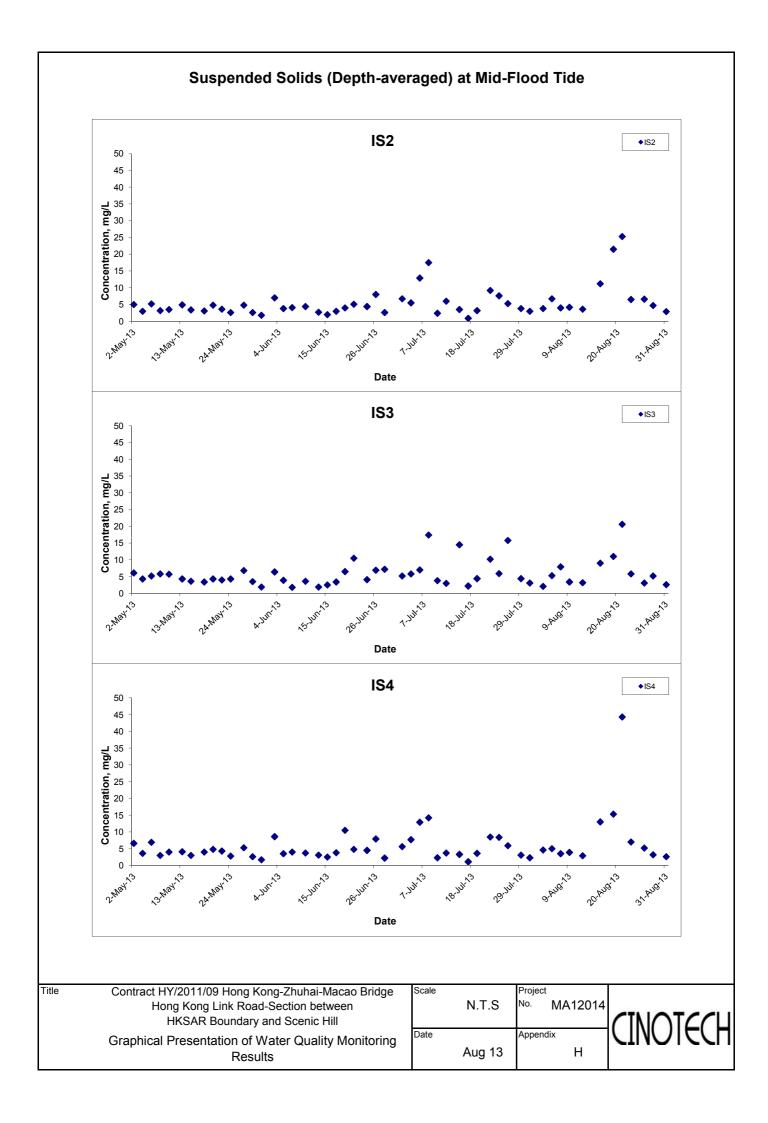


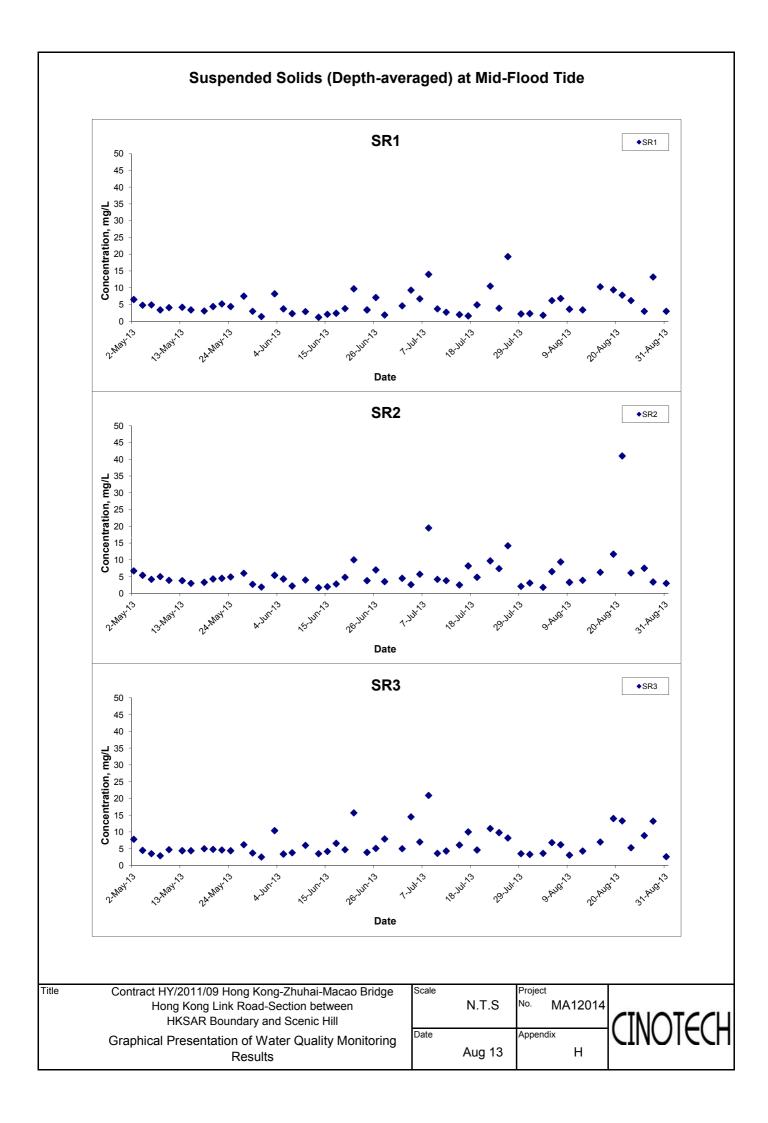
Title Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

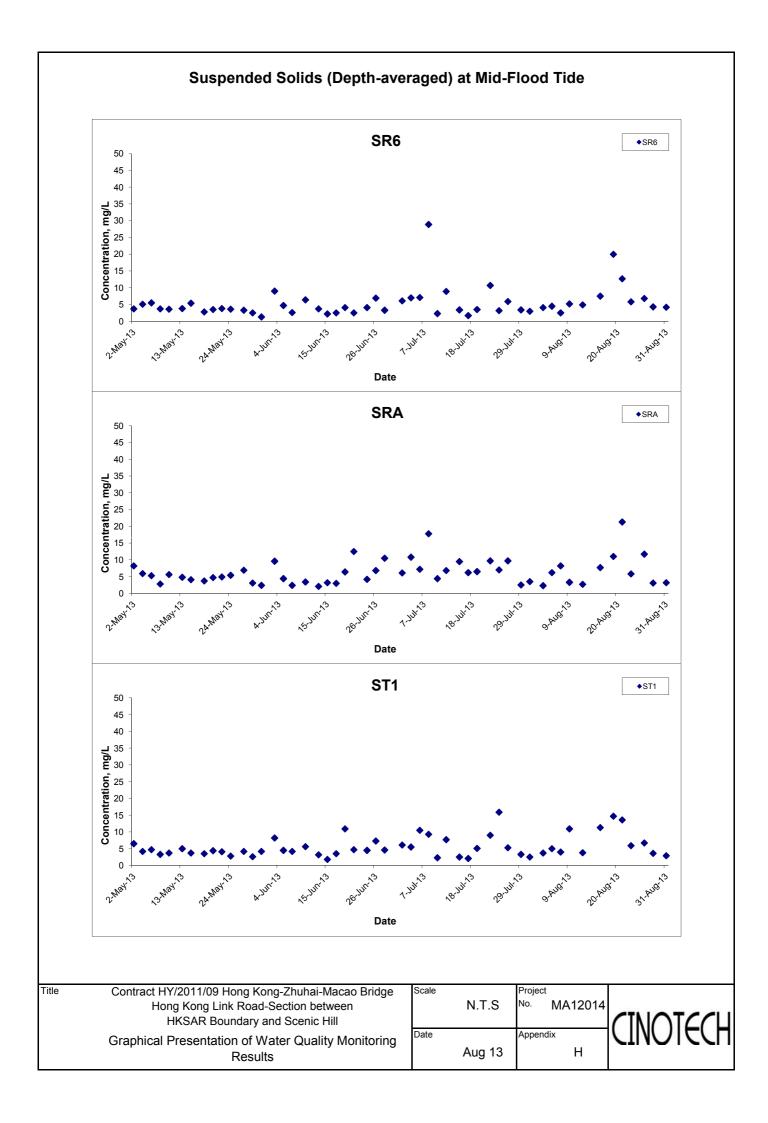


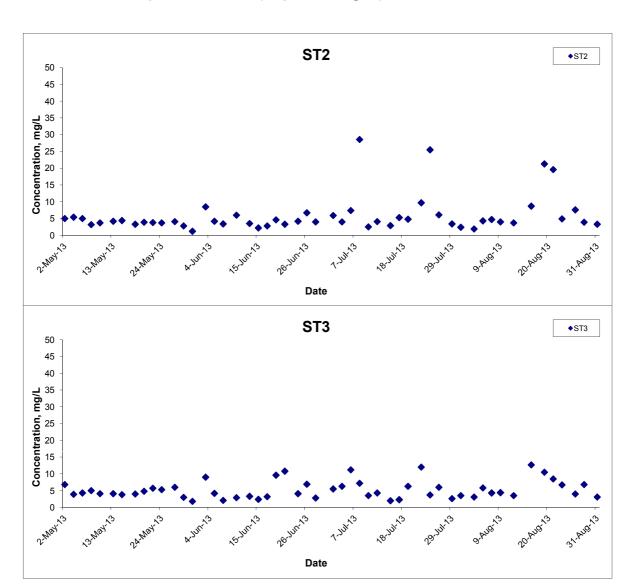
Suspended Solids (Depth-averaged) at Mid-Ebb Tide


Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results


Title


N.T.S Project
No. MA12014


Date Appendix H



Suspended Solids (Depth-averaged) at Mid-Flood Tide

Title	Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
	Hong Kong Link Road-Section between
	HKSAR Boundary and Scenic Hill
	Graphical Presentation of Water Quality Monitoring
	Results

Scale		Project
	N.T.S	No. MA12014
Date		Appendix
	Aug 13	Н

APPENDIX I DOLPHIN MONITORING REPORT (LINE TRANSECT)

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill Dolphin Monthly Monitoring

Seventh Monthly Progress Report (August 2013)

Submitted by

Samuel K.Y. Hung, Ph.D., Hong Kong Cetacean Research Project

31 August, 2013

1. Introduction

- 1.1. The Hong Kong Link Road (HKLR) serves to connect the Hong Kong-Zhuhai-Macao Bridge (HZMB) Main Bridge at the Hong Kong Special Administrative Region (HKSAR) Boundary and the HZMB Hong Kong Boundary Crossing Facilities (HKBCF) located at the northeastern waters of the Hong Kong International Airport.
- 1.2. According to the updated Environmental Monitoring and Audit (EM&A) Manual (for HKLR), monthly line-transect vessel surveys for Chinese White Dolphin should be conducted to cover the West Lantau survey area as in AFCD annual marine mammal monitoring programme.
- 1.3. In November 2012, Hong Kong Cetacean Research Project (HKCRP) has been commissioned by Dragages China Harbour VSL JV to conduct this 34-month dolphin monitoring study in order to collect data on Chinese White Dolphins during the construction phase (i.e. impact period) of the HKLR09 project in West Lantau (WL) survey area, and to analyze the collected survey data to monitor distribution, encounter rate, abundance, activities and occurrence of dolphin calves. Photo-identification will also be collected from individual Chinese White Dolphins to examine their individual range patterns and core area use.
- 1.4. From the monitoring results, any changes in dolphin occurrence within the study area will be examined for possible causes, and appropriate actions and additional mitigation measures will be recommended as necessary.

1.5. This report is the seventh monthly progress report under the HKLR09 construction phase dolphin monitoring programme, summarizing the results of the surveys findings during the month of August 2013.

2. Monitoring Methodology

- 2.1. Vessel-based Line-transect Survey
- 2.1.1. According to the requirement of the updated EM&A manual, dolphin monitoring programme should cover all transect lines in WL survey area (see Figure 1) twice per month throughout the entire construction period. The co-ordinates of all transect lines are shown in Table 1.

Table 1. Co-ordinates of transect lines in WL survey area

	Line No.	Easting	Northing	Line No.		ne No. Easting	
1	Start Point	803750	818500	7	Start Point	800200	810450
1	End Point	803750	815500	7	End Point	801400	810450
2	Start Point	803750	815500	8	Start Point	801300	809450
2	End Point	802940	815500	8	End Point	799750	809450
3	Start Point	802550	814500	9	Start Point	799400	808450
3	End Point	803700	814500	9	End Point	801430	808450
4	Start Point	803120	813600	10	Start Point	801500	807450
4	End Point	801640	813600	10	End Point	799600	807450
5	Start Point	801100	812450	11	Start Point	800300	806500
5	End Point	802900	812450	11	End Point	801750	806500
6	Start Point	802400	811500	12	Start Point	801760	805450
6	End Point	800660	811500	12	End Point	800700	805450

2.1.2. The survey team used standard line-transect methods (Buckland et al. 2001) to conduct the systematic vessel surveys, and followed the same technique of data collection that has been adopted over the last 16 years of marine

- mammal monitoring surveys in Hong Kong developed by HKCRP (see Hung 2012). For each monitoring vessel survey, a 15-m inboard vessel (*Standard* 31516) with an open upper deck (about 4.5 m above water surface) was used to make observations from the flying bridge area.
- 2.1.3. Two experienced observers (a data recorder and a primary observer) made up the on-effort survey team, and the survey vessel transited different transect lines at a constant speed of 13-15 km per hour. The data recorder searched with unaided eyes and filled out the datasheets, while the primary observer searched for dolphins and porpoises continuously through 7 x 50 *Steiner* marine binoculars. Both observers searched the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0°). One to two additional experienced observers were available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers were experienced in small cetacean survey techniques and identifying local cetacean species.
- 2.1.4. During on-effort survey periods, the survey team recorded effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance traveled in each series (a continuous period of search effort) with the assistance of a handheld GPS (*Garmin eTrex Legend*).
- 2.1.5. Data including time, position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.
- 2.1.6. When dolphins were sighted, the survey team would end the survey effort, and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel was diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, and behavioural observations. The perpendicular distance (PSD) of the dolphin group to the transect line was later calculated from the initial sighting distance and angle.
- 2.1.7. Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines (as indicated in Figure 1) was labeled as

"primary" survey effort, while the survey effort being conducted along the connecting lines between parallel lines was labeled as "secondary" survey effort. According to HKCRP long-term dolphin monitoring data, encounter rates of Chinese white dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in survey areas around Lantau Island. Therefore, primary and secondary survey effort were both presented as on-effort survey effort in this report.

2.1.8. Encounter rates of Chinese white dolphins (number of on-effort sightings per 100 km of survey effort) were calculated in WL survey area in relation to the amount of survey effort conducted during each month of monitoring survey. Only data collected under Beaufort 3 or below condition would be used for encounter rate analysis. Dolphin encounter rates were calculated using primary survey effort alone, as well as the combined survey effort from both primary and secondary lines.

2.2. Photo-identification Work

- 2.2.1. When a group of Chinese White Dolphins were sighted during the line-transect survey, the survey team would end effort and approach the group slowly from the side and behind to take photographs of them. Every attempt was made to photograph every dolphin in the group, and even photograph both sides of the dolphins, since the colouration and markings on both sides may not be symmetrical.
- 2.2.2. Two professional digital cameras (*Canon* EOS 7D and 60D models), each equipped with long telephoto lenses (100-400 mm zoom), were available on board for researchers to take sharp, close-up photographs of dolphins as they surfaced. The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer.
- 2.2.3. All digital images taken in the field were first examined, and those containing potentially identifiable individuals were sorted out. These photographs would then be examined in greater detail, and were carefully compared to the existing Chinese White Dolphin photo-identification catalogue maintained by HKCRP since 1995.
- 2.2.4. Chinese White Dolphins can be identified by their natural markings, such as nicks, cuts, scars and deformities on their dorsal fin and body, and their

- unique spotting patterns were also used as secondary identifying features (Jefferson 2000).
- 2.2.5. All photographs of each individual were then compiled and arranged in chronological order, with data including the date and location first identified (initial sighting), re-sightings, associated dolphins, distinctive features, and age classes entered into a computer database.

3. Monitoring Results

- 3.1. Vessel-based Line-transect Survey
- 3.1.1. During the month of August 2013, two complete sets of systematic line-transect vessel surveys were conducted on the 21st and 26th, to cover all transect lines in WL survey area twice. The survey routes of each survey day were presented in Figures 2-3.
- 3.1.2. From these surveys, a total of 64.3 km of survey effort was collected, with 100.0% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) (Appendix I). Moreover, the total survey effort conducted on primary lines (the vertical lines perpendicular to the coastlines) was 42.39 km, while the effort on secondary lines (the lines connecting the primary lines) was 21.91 km.
- 3.1.3. During the monitoring surveys in August 2013, a total of 17 groups of 53 Chinese White Dolphins were sighted (Appendix II). All except two sightings were made during on-effort search. Among the 15 on-effort sightings, ten of them were made on primary lines, while the other five were made on secondary lines. None of the dolphin groups was associated with any operating fishing vessel.
- 3.1.4. Distribution of all dolphin sightings made during August's surveys was shown in Figure 4. Besides a few sightings made near Fan Lau, most dolphin groups were sighted in the middle and northern portion of the survey area, while no dolphin was found between Peaked Hill and Fan Lau (Figure 4). Notably, one sighting was made adjacent to the HKLR09 alignment near the artificial island in Chinese waters.
- 3.1.5. During August's surveys, encounter rates of Chinese white dolphins deduced from the survey effort and on-effort sighting data made under favourable

Table 2. Dolphin encounter rates (sightings per 100 km of survey effort) per set during August's surveys

		Encounter rate (STG)	Encounter rate (ANI)
		(no. of on-effort dolphin sightings	(no. of dolphins from all on-effort
		per 100 km of survey effort)	sightings per 100 km of survey effort)
		Primary Lines Only	Primary Lines Only
\A/I	Set 1: August 21st	9.3	41.7
WL	Set 2: August 26 th	38.5	125.0

Table 3. Overall dolphin encounter rates (sightings per 100 km of survey effort) in August's surveys on primary lines only as well as both primary lines and secondary lines

	Encount	ter rate (STG)	Encounter rate (ANI)		
	(no. of on-effo	ort dolphin sightings	(no. of dolphins from all on-effort		
	per 100 km	of survey effort)	sightings per 100 km of survey effort)		
	Primary Both Primary		Primary	Both Primary	
	Lines Only and Secondary		Lines Only	and Secondary	
	Lines			Lines	
West Lantau	23.6 23.3		82.5	73.1	

3.1.6. The average group size of Chinese White Dolphins was 3.11 individuals per group during August's surveys. Most groups comprised of a few dolphins only, but three larger groups composed of 6, 7 and 10 animals were also sighted.

3.2. Photo-identification Work

- 3.2.1. A total of 19 re-sightings of known individual Chinese White Dolphins were made during the August's surveys (Appendices III and IV). Among these 19 re-sightings, 17 individuals were identified, as two individuals (WL68 and WL199) were re-sighted twice during the two sets of monitoring surveys.
- 3.2.2. Notably, three individuals (NL123, NL261 and NL285) were sighted at the boundary of NWL and WL survey areas before the start of the systematic line-transect survey on August 26th. These three individuals were usually sighted in North Lantau region in the past.

3.2.3. Two well-recognized mothers (NL123 and WL120) were accompanied with their calves during their re-sightings in August's surveys.

3.3. Conclusion

- 3.3.1. During this month of dolphin monitoring, marine construction activities have continued under this contract. However, no adverse impact on Chinese white dolphins was noticeable from general observations.
- 3.3.2. Due to the monthly variation in dolphin occurrence within the study area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of this project in the quarterly EM&A report, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

4. References

- Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, London.
- Hung, S. K. 2012. Monitoring of marine mammals in Hong Kong waters data collection: final report (2011-12). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government, 120 pp.
- Hung, S. K. 2013. Monitoring of marine mammals in Hong Kong waters data collection: inception report (2013-14). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government.
- Jefferson, T. A. 2000. Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildlife Monographs 144:1-65.

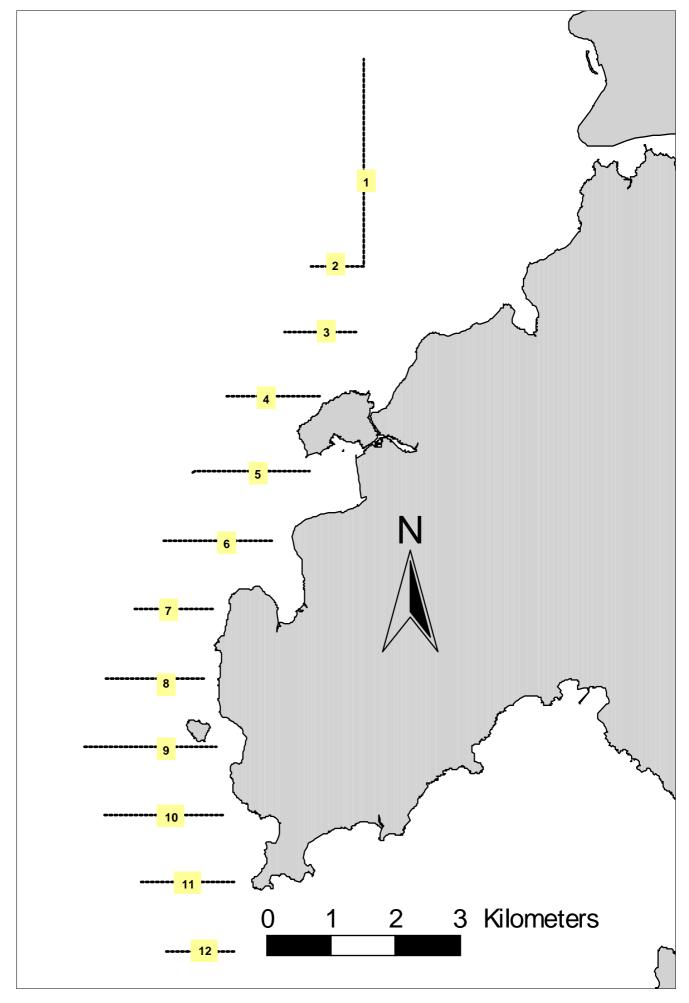


Figure 1. Transect Line Layout in West Lantau Survey Areas

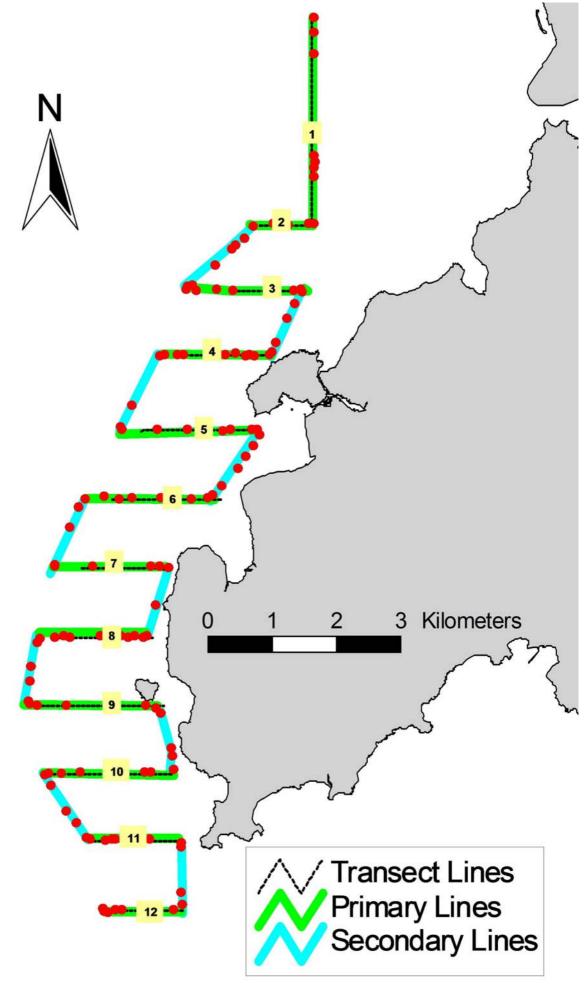


Figure 2. Survey Route on August 21st, 2013 (note: red dots represent the tracked positions of survey boat logged continuously by GPS throughout the course of the survey)

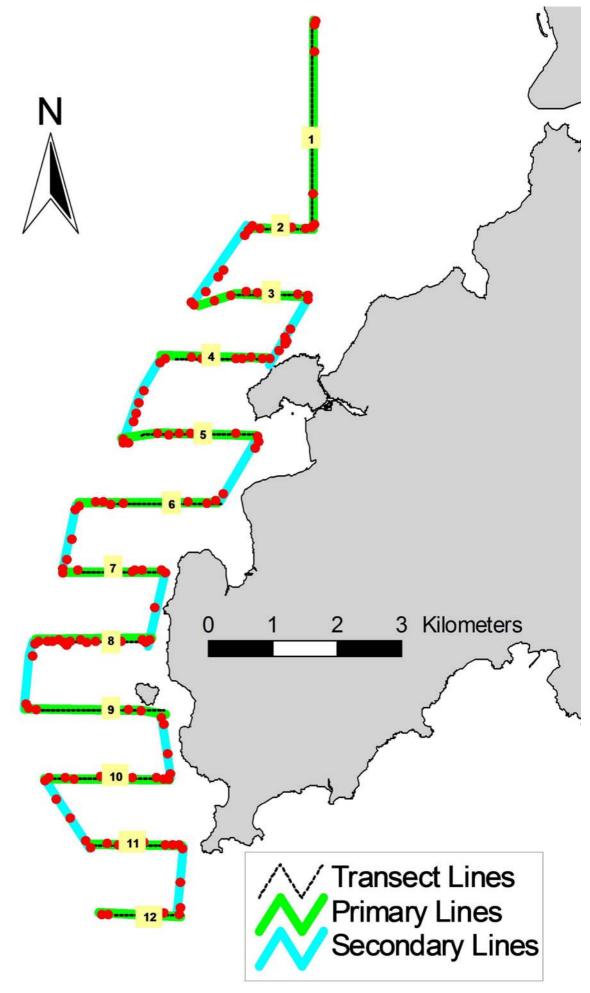


Figure 3. Survey Route on August 26th, 2013 (note: red dots represent the tracked positions of survey boat logged continuously by GPS throughout the course of the survey)

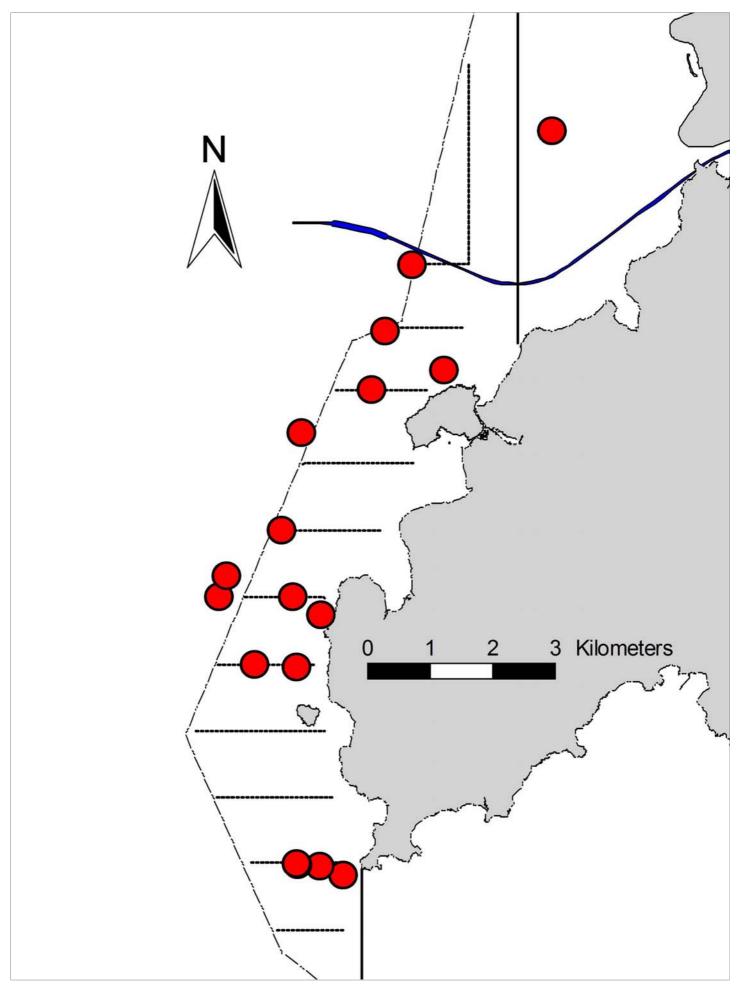


Figure 4. Distribution of Chinese White Dolphin Sighting during August 2013 HKLR09 Monitoring Surveys

Appendix I. HKLR09 Survey Effort Database (August 2013)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
21-Aug-13	W LANTAU	1	5.50	SUMMER	STANDARD31516	HKLR	Р
21-Aug-13	W LANTAU	2	15.90	SUMMER	STANDARD31516	HKLR	Р
21-Aug-13	W LANTAU	3	0.20	SUMMER	STANDARD31516	HKLR	Р
21-Aug-13	W LANTAU	1	1.60	SUMMER	STANDARD31516	HKLR	S
21-Aug-13	W LANTAU	2	9.40	SUMMER	STANDARD31516	HKLR	S
26-Aug-13	W LANTAU	1	8.13	SUMMER	STANDARD31516	HKLR	Р
26-Aug-13	W LANTAU	2	12.66	SUMMER	STANDARD31516	HKLR	Р
26-Aug-13	W LANTAU	1	6.19	SUMMER	STANDARD31516	HKLR	S
26-Aug-13	W LANTAU	2	4.72	SUMMER	STANDARD31516	HKLR	S

Appendix II. HKLR09 Chinese White Dolphin Sighting Database (August 2013)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance Determined; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
21-Aug-13	1	1106	3	W LANTAU	2	147	ON	HKLR	806273	801734	SUMMER	NONE	S
21-Aug-13	2	1116	2	W LANTAU	2	341	ON	HKLR	806418	801363	SUMMER	NONE	Р
21-Aug-13	3	1126	7	W LANTAU	2	6	ON	HKLR	806430	801013	SUMMER	NONE	Р
21-Aug-13	4	1243	3	W LANTAU	2	ND	OFF	HKLR	810464	799764	SUMMER	NONE	
21-Aug-13	5	1258	3	W LANTAU	2	180	ON	HKLR	810774	799889	SUMMER	NONE	S
26-Aug-13	1	1009	3	W LANTAU	2	ND	OFF	HKLR	817451	805067	SUMMER	NONE	
26-Aug-13	2	1048	10	W LANTAU	2	346	ON	HKLR	815451	802837	SUMMER	NONE	Р
26-Aug-13	3	1113	1	W LANTAU	1	226	ON	HKLR	814444	802402	SUMMER	NONE	Р
26-Aug-13	4	1127	3	W LANTAU	1	132	ON	HKLR	813855	803339	SUMMER	NONE	S
26-Aug-13	5	1137	1	W LANTAU	1	30	ON	HKLR	813559	802194	SUMMER	NONE	Р
26-Aug-13	6	1145	1	W LANTAU	1	484	ON	HKLR	812930	801069	SUMMER	NONE	S
26-Aug-13	7	1209	2	W LANTAU	1	872	ON	HKLR	811447	800756	SUMMER	NONE	Р
26-Aug-13	8	1222	2	W LANTAU	1	376	ON	HKLR	810461	800940	SUMMER	NONE	Р
26-Aug-13	9	1232	2	W LANTAU	2	74	ON	HKLR	810183	801393	SUMMER	NONE	S
26-Aug-13	10	1239	3	W LANTAU	2	322	ON	HKLR	809409	800989	SUMMER	NONE	Р
26-Aug-13	11	1254	6	W LANTAU	2	297	ON	HKLR	809433	800329	SUMMER	NONE	Р
26-Aug-13	12	1337	1	W LANTAU	2	100	ON	HKLR	806452	801003	SUMMER	NONE	Р

Appendix III. Individual dolphins identified during HKLR09 monitoring surveys in August 2013

ID#	DATE	STG#	AREA
CH153	26/08/13	2	WL
NL123	26/08/13	1	WL
NL188	26/08/13	2	WL
NL261	26/08/13	1	WL
NL285	26/08/13	1	WL
NL296	26/08/13	2	WL
SL35	21/08/13	3	WL
SL40	21/08/13	4	WL
WL25	26/08/13	10	WL
WL68	21/08/13	3	WL
	26/08/13	9	WL
WL73	21/08/13	3	WL
WL76	26/08/13	3	WL
WL120	26/08/13	2	WL
WL124	26/08/13	2	WL
WL166	26/08/13	11	WL
WL199	21/08/13	3	WL
	26/08/13	10	WL
WL208	26/08/13	11	WL

NL285_20130826_1

CH153_20130826_2

NL261_20130826_1

Appendix IV. Photographs of Identified Individual Dolphins in August 2013 (HKLR09)

WL124_20130826_2

WL25_20130826_10

Appendix IV. (cont'd)

Appendix IV. (cont'd)

APPENDIX J WIND DATA

Date	Time	Wind Speed m/s	Direction
1-Aug-2013	00:00	1.7	SW
1-Aug-2013	01:00	1.4	WNW
1-Aug-2013	02:00	1.2	WSW
1-Aug-2013	03:00	1.2	WSW
1-Aug-2013	04:00	1.2	WNW
1-Aug-2013	05:00	1.1	WSW
1-Aug-2013	06:00	1	WSW
1-Aug-2013	07:00	1	WSW
1-Aug-2013	08:00	1.9	WNW
1-Aug-2013	09:00	2.2	WNW
1-Aug-2013	10:00	2.2	WNW
1-Aug-2013	11:00	2.6	WNW
1-Aug-2013	12:00	3.6	W
1-Aug-2013	13:00	3.4	W
1-Aug-2013	14:00	2.7	SSW
1-Aug-2013	15:00	2.3	WSW
1-Aug-2013	16:00	2.3	SSW
1-Aug-2013	17:00	2.1	SW
1-Aug-2013	18:00	2	WSW
1-Aug-2013	19:00	3.3	SSW
1-Aug-2013	20:00	3.1	WNW
1-Aug-2013	21:00	3	SSW
1-Aug-2013	22:00	2.8	WNW
1-Aug-2013	23:00	2.9	W
2-Aug-2013	00:00	3.1	W
2-Aug-2013 2-Aug-2013	01:00	3.1	W
2-Aug-2013 2-Aug-2013	02:00	3.4	W
2-Aug-2013 2-Aug-2013	03:00	2.9	W
2-Aug-2013 2-Aug-2013	03:00	3.1	W
2-Aug-2013	05:00	2.9	WNW
2-Aug-2013	06:00	2.8	WSW
2-Aug-2013	07:00	2.8	W
2-Aug-2013	08:00	2.9	SW
2-Aug-2013 2-Aug-2013	09:00	4.6	WNW
2-Aug-2013	10:00	4.2	WSW
2-Aug-2013	11:00	4.6	W
2-Aug-2013	12:00	4.7	WNW
2-Aug-2013 2-Aug-2013	13:00	3.2	W
2-Aug-2013 2-Aug-2013	14:00	2.7	WNW
2-Aug-2013 2-Aug-2013	15:00	2.1	WNW
2-Aug-2013 2-Aug-2013	16:00	2.6	WNW
2-Aug-2013 2-Aug-2013	17:00	2.0	
2-Aug-2013 2-Aug-2013	18:00	1.6	WNW
2-Aug-2013 2-Aug-2013	19:00	1.0	W
2-Aug-2013 2-Aug-2013		1.3	W
The state of the s	20:00 21:00	1.5	W
2-Aug-2013	21:00	1.5	W
2-Aug-2013		1.3	W
2-Aug-2013	23:00		W
3-Aug-2013	00:00	1.3	
3-Aug-2013	01:00	3	W
3-Aug-2013	02:00	2.8	W
3-Aug-2013	03:00	2.7	WSW
3-Aug-2013	04:00	2.8	SSW
3-Aug-2013	05:00	2.7	SSW

Date	Time	Wind Speed m/s	Direction
3-Aug-2013	06:00	2.6	W
3-Aug-2013	07:00	4.2	WSW
3-Aug-2013	08:00	1	N
3-Aug-2013	09:00	2	N
3-Aug-2013	10:00	2	NE
3-Aug-2013	11:00	2.4	NE
3-Aug-2013	12:00	2.2	N
3-Aug-2013	13:00	2.1	W
3-Aug-2013	14:00	2.3	N
3-Aug-2013	15:00	3	W
3-Aug-2013	16:00	2.9	W
3-Aug-2013	17:00	2.1	ENE
3-Aug-2013	18:00	1.6	NNE
3-Aug-2013	19:00	1.1	NNE
3-Aug-2013	20:00	0.7	NNE
3-Aug-2013	21:00	0.9	WSW
3-Aug-2013	22:00	1	WSW
3-Aug-2013	23:00	1.4	NNE
4-Aug-2013	00:00	1.4	SSW
4-Aug-2013	01:00	1.4	W
4-Aug-2013	02:00	1.4	W
4-Aug-2013	03:00	1.2	WSW
4-Aug-2013	04:00	0.8	WNW
4-Aug-2013	05:00	1.2	W
4-Aug-2013	06:00	0.8	W
4-Aug-2013	07:00	0.6	NE NE
4-Aug-2013	08:00	1	NE NE
4-Aug-2013	09:00	1.7	W
4-Aug-2013	10:00	2.6	WSW
4-Aug-2013	11:00	3	SW
4-Aug-2013	12:00	3	WSW
4-Aug-2013	13:00	3.1	WSW
4-Aug-2013	14:00	3	WNW
4-Aug-2013	15:00	2.5	WNW
4-Aug-2013	16:00	2.9	WNW
4-Aug-2013	17:00	2.7	W
4-Aug-2013	18:00	2.2	WNW
4-Aug-2013	19:00	2.1	SW
4-Aug-2013	20:00	2.4	SW
4-Aug-2013	21:00	2.1	WSW
4-Aug-2013	22:00	2.9	SW
4-Aug-2013	23:00	1.9	S
5-Aug-2013	00:00	2.9	WSW
5-Aug-2013	01:00	2.5	W
5-Aug-2013	02:00	1.5	WNW
5-Aug-2013	03:00	1.3	W
5-Aug-2013 5-Aug-2013	04:00	1.3	W
5-Aug-2013 5-Aug-2013	05:00	2.1	WSW
5-Aug-2013 5-Aug-2013	06:00	1.5	WSW
5-Aug-2013 5-Aug-2013	07:00	2	WSW
5-Aug-2013 5-Aug-2013	08:00	2.8	WNW
5-Aug-2013 5-Aug-2013	09:00	3.1	WSW
5-Aug-2013 5-Aug-2013	10:00	2.8	WSW
5-Aug-2013 5-Aug-2013	11:00	4	W
5-Aug-2013	11.00	4	v v

Date	Time	Wind Speed m/s	Direction
5-Aug-2013	12:00	3.3	W
5-Aug-2013	13:00	3.9	WNW
5-Aug-2013	14:00	3.5	WNW
5-Aug-2013	15:00	3.9	W
5-Aug-2013	16:00	3.8	WSW
5-Aug-2013	17:00	3.2	WSW
5-Aug-2013	18:00	3.6	W
5-Aug-2013 5-Aug-2013	19:00	2.9	W
5-Aug-2013 5-Aug-2013	20:00	2.4	WNW
	21:00	2.4	WNW
5-Aug-2013			
5-Aug-2013	22:00	2.4	WNW
5-Aug-2013	23:00	2.6	WNW
6-Aug-2013	00:00	1.4	WSW
6-Aug-2013	01:00	1.3	SW
6-Aug-2013	02:00	1.2	SW
6-Aug-2013	03:00	1.1	WSW
6-Aug-2013	04:00	1.1	W
6-Aug-2013	05:00	1	SW
6-Aug-2013	06:00	1	SW
6-Aug-2013	07:00	1	W
6-Aug-2013	08:00	0.9	W
6-Aug-2013	09:00	1.3	S
6-Aug-2013	10:00	1.3	NNW
6-Aug-2013	11:00	2.1	WNW
6-Aug-2013	12:00	1.9	NNE
6-Aug-2013	13:00	1.5	NNE
6-Aug-2013	14:00	1.6	NNE
6-Aug-2013	15:00	1.9	S
6-Aug-2013	16:00	1.8	S
6-Aug-2013	17:00	1.2	SSE
6-Aug-2013	18:00	0.6	SW
6-Aug-2013	19:00	0.7	SW
6-Aug-2013	20:00	0.9	SSE
6-Aug-2013	21:00	0.5	SW
6-Aug-2013	22:00	1.5	E
6-Aug-2013	23:00	1.3	<u>_</u>
7-Aug-2013	00:00	2	WNW
7-Aug-2013	01:00	1.4	ENE
7-Aug-2013	02:00	1.3	ENE
7-Aug-2013 7-Aug-2013	03:00	1.9	W
7-Aug-2013 7-Aug-2013	04:00	1.8	E E
7-Aug-2013 7-Aug-2013	05:00	1.4	NW
7-Aug-2013 7-Aug-2013	06:00	1.1	N
7-Aug-2013 7-Aug-2013	07:00	1.1	NNE
	08:00	1.2	WNW
7-Aug-2013 7-Aug-2013			S
	09:00	1.6	S
7-Aug-2013	10:00	1.6	
7-Aug-2013	11:00	1.7	NNE
7-Aug-2013	12:00	2.9	<u>ENE</u>
7-Aug-2013	13:00	2.6	<u>E</u>
7-Aug-2013	14:00	1.6	NE
7-Aug-2013	15:00	2.1	NE NE
7-Aug-2013	16:00	2	NE
7-Aug-2013	17:00	1.5	NNE

Date	Time	Wind Speed m/s	Direction
7-Aug-2013	18:00	1.3	N
7-Aug-2013	19:00	1.4	NE
7-Aug-2013	20:00	1.8	NE
7-Aug-2013	21:00	1.7	W
7-Aug-2013	22:00	2	SW
7-Aug-2013	23:00	2.1	SW
8-Aug-2013	00:00	1.7	SW
8-Aug-2013	01:00	1.6	SSW
8-Aug-2013	02:00	1.5	W
8-Aug-2013	03:00	1.6	WSW
8-Aug-2013	04:00	1.3	SSW
8-Aug-2013	05:00	1.2	SW
8-Aug-2013	06:00	1	NNE
8-Aug-2013	07:00	1.1	SE
8-Aug-2013	08:00	1.3	SE
8-Aug-2013	09:00	1.6	NE
8-Aug-2013	10:00	1.7	NE
8-Aug-2013	11:00	2	SSW
8-Aug-2013	12:00	2.1	NNW
8-Aug-2013	13:00	2.3	NNW
8-Aug-2013	14:00	1.9	NNE
8-Aug-2013	15:00	1.7	E
8-Aug-2013	16:00	1.5	Ē
8-Aug-2013	17:00	1.1	SE
8-Aug-2013	18:00	0.9	SE
8-Aug-2013	19:00	0.7	SE
8-Aug-2013	20:00	0.2	ENE
8-Aug-2013	21:00	0.6	NE NE
8-Aug-2013	22:00	0.2	WSW
8-Aug-2013	23:00	0.3	W
9-Aug-2013	00:00	0.3	WSW
9-Aug-2013	01:00	0.3	SSW
9-Aug-2013	02:00	0.4	W
9-Aug-2013	03:00	0.3	WSW
9-Aug-2013	04:00	0.7	SW
9-Aug-2013	05:00	0.6	S
9-Aug-2013	06:00	1	NW
9-Aug-2013	07:00	† †	NNW
9-Aug-2013	08:00	1.2	NNE
9-Aug-2013	09:00	1.6	NNE
9-Aug-2013	10:00	2.3	NNE
9-Aug-2013	11:00	2.4	NNE
9-Aug-2013	12:00	2.1	NNE
9-Aug-2013 9-Aug-2013	13:00	2.2	NE
9-Aug-2013	14:00	1.9	ENE
9-Aug-2013	15:00	1.8	NNE
9-Aug-2013	16:00	1.4	NNE
9-Aug-2013	17:00	1.4	N
9-Aug-2013 9-Aug-2013	18:00	1	NNE
9-Aug-2013 9-Aug-2013	19:00	0.4	NE
9-Aug-2013 9-Aug-2013	20:00	0.4	NNE
9-Aug-2013 9-Aug-2013	21:00	0.4	NE NE
9-Aug-2013 9-Aug-2013	22:00	0.4	NNE
9-Aug-2013 9-Aug-2013	23:00	0.4	E
9-Muy-2013	23.00	0.5	L

Date	Time	Wind Speed m/s	Direction
10-Aug-2013	00:00	0.5	E
10-Aug-2013	01:00	0.5	NNE
10-Aug-2013	02:00	0.5	NE
10-Aug-2013	03:00	0.5	NE
10-Aug-2013	04:00	0.4	NE
10-Aug-2013	05:00	0.5	NE
10-Aug-2013	06:00	0.5	NE
10-Aug-2013	07:00	0.4	NE
10-Aug-2013	08:00	0.6	NE NE
10-Aug-2013	09:00	1.7	E
10-Aug-2013	10:00	1.9	ENE
10-Aug-2013	11:00	1.9	NE
10-Aug-2013	12:00	2	NE
10-Aug-2013			
10-Aug-2013	13:00	2.3	NNE
10-Aug-2013	14:00	2	NE NE
10-Aug-2013	15:00	2	NE
10-Aug-2013	16:00	1.6	Ē
10-Aug-2013	17:00	1.6	E
10-Aug-2013	18:00	0.9	<u>E</u>
10-Aug-2013	19:00	0.4	NE
10-Aug-2013	20:00	0.4	NE
10-Aug-2013	21:00	0.4	NNE
10-Aug-2013	22:00	0.3	NE
10-Aug-2013	23:00	0.2	NE
11-Aug-2013	00:00	0.2	NNE
11-Aug-2013	01:00	0.2	NE
11-Aug-2013	02:00	0.3	E
11-Aug-2013	03:00	0.3	ESE
11-Aug-2013	04:00	0.5	Е
11-Aug-2013	05:00	0.4	E
11-Aug-2013	06:00	0.5	WNW
11-Aug-2013	07:00	0.4	WNW
11-Aug-2013	08:00	0.3	WNW
11-Aug-2013	09:00	1.3	WNW
11-Aug-2013	10:00	1.5	WNW
11-Aug-2013	11:00	1.5	WNW
11-Aug-2013	12:00	1.2	WNW
11-Aug-2013	13:00	1.6	WNW
11-Aug-2013	14:00	1.1	W
11-Aug-2013	15:00	1.3	W
11-Aug-2013	16:00	1.6	NNE
11-Aug-2013	17:00	1.5	W
11-Aug-2013	18:00	0.9	N
11-Aug-2013 11-Aug-2013	19:00	0.6	N N
ű	20:00	0.6	W
11-Aug-2013 11-Aug-2013		0.4	W
	21:00	0.4	W
11-Aug-2013	22:00		
11-Aug-2013	23:00	0.4	SW
12-Aug-2013	00:00	0.5	WSW
12-Aug-2013	01:00	0.5	SW
12-Aug-2013	02:00	0.6	W
12-Aug-2013	03:00	0.5	WSW
12-Aug-2013	04:00	0.6	WNW
12-Aug-2013	05:00	0.7	W

Date	Time	Wind Speed m/s	Direction
12-Aug-2013	06:00	0.3	WNW
12-Aug-2013	07:00	0.8	WNW
12-Aug-2013	08:00	0.9	W
12-Aug-2013	09:00	1.1	W
12-Aug-2013	10:00	2	W
12-Aug-2013	11:00	1.9	W
12-Aug-2013	12:00	2.2	SSW
12-Aug-2013	13:00	2.4	SSW
12-Aug-2013	14:00	1.6	W
12-Aug-2013	15:00	1.5	W
12-Aug-2013	16:00	1.6	NNE
12-Aug-2013	17:00	1.4	NNE
12-Aug-2013	18:00	1.2	NNE
12-Aug-2013	19:00	1.1	ENE
12-Aug-2013	20:00	0.9	NE
12-Aug-2013	21:00	1	W
12-Aug-2013	22:00	1	WSW
12-Aug-2013	23:00	0.9	SW
13-Aug-2013	00:00	1	SW
13-Aug-2013	01:00	1.1	SW
13-Aug-2013	02:00	1.2	WSW
13-Aug-2013	03:00	1.2	WSW
13-Aug-2013	04:00	1.2	WSW
13-Aug-2013	05:00	1.1	WSW
13-Aug-2013	06:00	1	SW
13-Aug-2013	07:00	1 1	SW
13-Aug-2013	08:00	0.9	SW
13-Aug-2013	09:00	2.1	WSW
13-Aug-2013	10:00	2.4	WSW
13-Aug-2013	11:00	6	SW
13-Aug-2013	12:00	5.8	SW
13-Aug-2013	13:00	5.9	SSW
13-Aug-2013	14:00	4.9	SSW
13-Aug-2013	15:00	4.8	W
13-Aug-2013	16:00	4.6	W
13-Aug-2013	17:00	4.3	W
13-Aug-2013	18:00	3.9	 S
13-Aug-2013	19:00	3.7	SSE
13-Aug-2013	20:00	3.7	
13-Aug-2013	21:00	3.6	NNE
	22:00	3.6	W
13-Aug-2013	23:00	3.6	W
13-Aug-2013			WNW
14-Aug-2013	00:00	7.8	
14-Aug-2013	01:00	3.8	ENE
14-Aug-2013	02:00	5.8	NE NE
14-Aug-2013	03:00	7.6	NE W
14-Aug-2013	04:00	5.6	W
14-Aug-2013	05:00	5.4	WNW
14-Aug-2013	06:00	5.5	ENE
14-Aug-2013	07:00	3.6	W
14-Aug-2013	08:00	7.3	N N
14-Aug-2013	09:00	8.3	N
14-Aug-2013	10:00	9	WSW
14-Aug-2013	11:00	9.1	SW

Date	Time	Wind Speed m/s	Direction
14-Aug-2013	12:00	9.2	W
14-Aug-2013	13:00	5.1	W
14-Aug-2013	14:00	4.7	W
14-Aug-2013	15:00	4.6	W
14-Aug-2013	16:00	4.7	W
14-Aug-2013	17:00	4.6	ENE
14-Aug-2013	18:00	3.7	S
14-Aug-2013	19:00	3.6	W
14-Aug-2013	20:00	3.5	W
14-Aug-2013	21:00	3.6	W
14-Aug-2013	22:00	3.7	WNW
14-Aug-2013	23:00	3.8	W
15-Aug-2013	00:00	3.8	WNW
15-Aug-2013	01:00	3.9	NW
15-Aug-2013	02:00	3.9	W
15-Aug-2013	03:00	3.9	W
15-Aug-2013	04:00	4	WNW
15-Aug-2013	05:00	3.9	W
15-Aug-2013	06:00	3.9	SE
15-Aug-2013	07:00	3.6	SE
15-Aug-2013	08:00	3.6	NW
15-Aug-2013	09:00	1.7	W
15-Aug-2013	10:00	2.5	W
15-Aug-2013	11:00	3.3	E E
15-Aug-2013	12:00	3.2	WNW
15-Aug-2013	13:00	2.8	SW
15-Aug-2013	14:00	3.4	W
15-Aug-2013	15:00	3.2	WNW
15-Aug-2013	16:00	2.9	W
15-Aug-2013	17:00	2.1	E E
15-Aug-2013	18:00	2	NNE
15-Aug-2013	19:00	2.1	S
15-Aug-2013	20:00	1.7	SSW
15-Aug-2013	21:00	1.7	SSW
15-Aug-2013	22:00	1.7	SSW
15-Aug-2013	23:00	1.6	W
16-Aug-2013	00:00	1.7	W
16-Aug-2013	01:00	1.8	WNW
16-Aug-2013	02:00	1.7	W
16-Aug-2013	03:00	1.8	W
16-Aug-2013	04:00	1.8	W
16-Aug-2013	05:00	2	W
16-Aug-2013	06:00	1.9	W
16-Aug-2013	07:00	2	WSW
16-Aug-2013	08:00	1	W
16-Aug-2013	09:00	1.2	SW
16-Aug-2013	10:00	1.3	SSW
16-Aug-2013	11:00	1.5	SSW
16-Aug-2013	12:00	2.4	WSW
16-Aug-2013	13:00	2.4	SW
16-Aug-2013	14:00	1.8	NW
	15:00	2	W
16-Aug-2013			NW
16-Aug-2013	16:00	1.8	
16-Aug-2013	17:00	1.1	WNW

Date	Time	Wind Speed m/s	Direction
16-Aug-2013	18:00	0.8	S
16-Aug-2013	19:00	1.1	WNW
16-Aug-2013	20:00	0.8	WNW
16-Aug-2013	21:00	0.9	NNE
16-Aug-2013	22:00	1.1	NE
16-Aug-2013	23:00	0.8	ENE
17-Aug-2013	00:00	0.8	W
17-Aug-2013	01:00	0.7	SSW
17-Aug-2013	02:00	0.8	SSW
17-Aug-2013	03:00	0.9	NE
17-Aug-2013	04:00	0.9	S
17-Aug-2013	05:00	0.8	SSW
17-Aug-2013	06:00	0.8	W
17-Aug-2013	07:00	0.6	WSW
17-Aug-2013	08:00	1.1	WSW
17-Aug-2013	09:00	1.1	SSW
17-Aug-2013 17-Aug-2013	10:00	1.7	S
17-Aug-2013 17-Aug-2013	11:00	2.6	S
17-Aug-2013 17-Aug-2013		2.7	SW
<u> </u>	12:00 13:00	2.7	SW
17-Aug-2013			SW
17-Aug-2013	14:00	2.2	W Svv
17-Aug-2013	15:00	2.8	
17-Aug-2013	16:00	2.6	W
17-Aug-2013	17:00	1.9	ENE
17-Aug-2013	18:00	1.2	ESE
17-Aug-2013	19:00	0.8	ESE
17-Aug-2013	20:00	0.9	W
17-Aug-2013	21:00	0.7	WNW
17-Aug-2013	22:00	1	WNW
17-Aug-2013	23:00	0.8	SSW
18-Aug-2013	00:00	0.9	W
18-Aug-2013	01:00	0.9	WSW
18-Aug-2013	02:00	0.8	W
18-Aug-2013	03:00	1	SSW
18-Aug-2013	04:00	0.8	S
18-Aug-2013	05:00	0.7	E
18-Aug-2013	06:00	0.6	SW
18-Aug-2013	07:00	0.5	SW
18-Aug-2013	08:00	0.7	WNW
18-Aug-2013	09:00	1.7	WNW
18-Aug-2013	10:00	2.8	W
18-Aug-2013	11:00	2.8	W
18-Aug-2013	12:00	2.2	WSW
18-Aug-2013	13:00	2.7	W
18-Aug-2013	14:00	2.2	WNW
18-Aug-2013	15:00	2.1	W
18-Aug-2013	16:00	2.2	WSW
18-Aug-2013	17:00	1.6	SW
18-Aug-2013	18:00	1.5	WSW
18-Aug-2013	19:00	1.1	W
18-Aug-2013	20:00	0.8	W
18-Aug-2013	21:00	0.5	W
18-Aug-2013	22:00	0.6	WSW
18-Aug-2013	23:00	0.7	SSW

Date	Time	Wind Speed m/s	Direction
19-Aug-2013	00:00	0.9	S
19-Aug-2013	01:00	0.8	W
19-Aug-2013	02:00	1	W
19-Aug-2013	03:00	1.1	SW
19-Aug-2013	04:00	1.2	SW
19-Aug-2013	05:00	1.2	ENE
19-Aug-2013	06:00	1	ENE
19-Aug-2013	07:00	1.1	NE
19-Aug-2013	08:00	1.5	W
19-Aug-2013	09:00	1.9	SSW
19-Aug-2013	10:00	2	ENE
19-Aug-2013	11:00	2.2	WNW
19-Aug-2013	12:00	2.7	W
19-Aug-2013	13:00	2.5	WNW
19-Aug-2013	14:00	2.2	S
19-Aug-2013	15:00	2.4	WNW
19-Aug-2013	16:00	2.4	WNW
19-Aug-2013	17:00	2.4	WNW
19-Aug-2013	18:00	2.2	NW
19-Aug-2013	19:00	1.7	WNW
19-Aug-2013	20:00	1.6	W
19-Aug-2013	21:00	1.6	WNW
19-Aug-2013	22:00	1.5	W
19-Aug-2013	23:00	1.2	W
20-Aug-2013	00:00	1.2	NW
20-Aug-2013	01:00	1.6	W
20-Aug-2013	02:00	1.6	W
20-Aug-2013	03:00	1.4	WSW
20-Aug-2013	04:00	1.6	WNW
20-Aug-2013	05:00	1.6	SW
20-Aug-2013	06:00	1.4	WNW
20-Aug-2013	07:00	1.4	WSW
20-Aug-2013	08:00	1.6	W
20-Aug-2013	09:00	1.7	W
20-Aug-2013	10:00	2.8	W
20-Aug-2013	11:00	3.2	W
20-Aug-2013	12:00	3.2	W
20-Aug-2013	13:00	3.5	WNW
20-Aug-2013	14:00	2.6	WNW
20-Aug-2013	15:00	3	W
20-Aug-2013	16:00	2.5	W
20-Aug-2013	17:00	1.7	WSW
20-Aug-2013	18:00	1 1	SSW
20-Aug-2013	19:00	0.7	WSW
20-Aug-2013	20:00	0.5	SSW
20-Aug-2013	21:00	0.7	SW
20-Aug-2013	22:00	0.6	SW
20-Aug-2013	23:00	0.5	W
21-Aug-2013	00:00	0.8	W
21-Aug-2013 21-Aug-2013	01:00	1	W
21-Aug-2013 21-Aug-2013	02:00	0.8	WNW
21-Aug-2013 21-Aug-2013	03:00	1	W
21-Aug-2013 21-Aug-2013	04:00	0.7	W
21-Aug-2013 21-Aug-2013	05:00	0.7	W
21-Aug-2013	00.00	0.7	v v

Date	Time	Wind Speed m/s	Direction
21-Aug-2013	06:00	0.5	SW
21-Aug-2013	07:00	0.5	WSW
21-Aug-2013	08:00	0.8	W
21-Aug-2013	09:00	1.6	WNW
21-Aug-2013	10:00	2	WNW
21-Aug-2013	11:00	1.8	WNW
21-Aug-2013	12:00	2.4	WNW
21-Aug-2013	13:00	2.5	WNW
21-Aug-2013	14:00	1.9	SW
21-Aug-2013	15:00	2.3	WNW
21-Aug-2013	16:00	2	ENE
21-Aug-2013	17:00	1.5	SW
21-Aug-2013	18:00	1.1	WSW
21-Aug-2013	19:00	0.7	W
21-Aug-2013	20:00	0.6	WSW
21-Aug-2013	21:00	0.6	WSW
21-Aug-2013	22:00	0.5	WSW
21-Aug-2013	23:00	0.6	WSW
22-Aug-2013	00:00	0.4	WSW
22-Aug-2013	01:00	0.4	SW
22-Aug-2013	02:00	0.4	WSW
22-Aug-2013 22-Aug-2013	03:00	0.3	W
22-Aug-2013 22-Aug-2013	04:00	0.5	WSW
22-Aug-2013 22-Aug-2013	05:00	0.6	WSW
22-Aug-2013 22-Aug-2013	06:00	0.4	SSW
22-Aug-2013 22-Aug-2013	07:00	0.6	SSW
22-Aug-2013 22-Aug-2013	08:00	0.0	W
22-Aug-2013 22-Aug-2013	09:00	0.7	WNW
22-Aug-2013 22-Aug-2013	10:00	1.1	WNW
22-Aug-2013 22-Aug-2013	11:00	1.4	WNW
22-Aug-2013 22-Aug-2013	12:00	1.3	WNW
22-Aug-2013 22-Aug-2013	13:00	1.5	NNE
22-Aug-2013 22-Aug-2013	14:00	1.8	NNE
22-Aug-2013 22-Aug-2013	15:00	2.2	SSE
22-Aug-2013 22-Aug-2013	16:00	2.5	SSW
22-Aug-2013 22-Aug-2013	17:00	1.4	WNW
22-Aug-2013 22-Aug-2013	18:00	0.6	WNW
22-Aug-2013 22-Aug-2013	19:00	0.6	WSW
22-Aug-2013 22-Aug-2013	20:00	0.3	SW
22-Aug-2013 22-Aug-2013	21:00	0.3	WSW
22-Aug-2013 22-Aug-2013	22:00	0.5	SW
22-Aug-2013 22-Aug-2013	23:00	0.5	WNW
ÿ		0.4	SW
23-Aug-2013 23-Aug-2013	00:00 01:00	0.3	SW
23-Aug-2013 23-Aug-2013	02:00	0.4	SW
23-Aug-2013 23-Aug-2013	03:00	0.4	WSW
23-Aug-2013 23-Aug-2013	04:00	0.4	SE
23-Aug-2013 23-Aug-2013	05:00	0.6	ESE
23-Aug-2013 23-Aug-2013			
	06:00	0.4	ESE
23-Aug-2013	07:00	0.4	SW
23-Aug-2013	08:00	0.3	W
23-Aug-2013	09:00	1.3	SW
23-Aug-2013	10:00	2	N N
23-Aug-2013	11:00	3.2	N

Date	Time	Wind Speed m/s	Direction
23-Aug-2013	12:00	2.9	Е
23-Aug-2013	13:00	2.6	E
23-Aug-2013	14:00	2.6	E
23-Aug-2013	15:00	2.3	ENE
23-Aug-2013	16:00	1.7	NW
23-Aug-2013	17:00	1.2	N
23-Aug-2013	18:00	1	 E
23-Aug-2013	19:00	1.1	ESE
23-Aug-2013	20:00	1.4	ENE
23-Aug-2013	21:00	1.2	ENE
23-Aug-2013	22:00	1.4	ENE
23-Aug-2013	23:00	1.8	ENE
24-Aug-2013	00:00	2.2	NE NE
24-Aug-2013	01:00	1.1	N
24-Aug-2013	02:00	1.3	ENE
24-Aug-2013	03:00	1.1	ENE
24-Aug-2013	04:00	1.1	ENE
24-Aug-2013	05:00	1.9	E
24-Aug-2013	06:00	1.9	NE
24-Aug-2013 24-Aug-2013	07:00	2.6	NNE
24-Aug-2013	08:00	2.9	NNE
24-Aug-2013	09:00	3.2	W
24-Aug-2013	10:00	3.8	W
24-Aug-2013	11:00	3.2	W
24-Aug-2013	12:00	3.7	W
24-Aug-2013	13:00	3.9	WNW
24-Aug-2013	14:00	3.7	W
24-Aug-2013	15:00	3.1	W
24-Aug-2013	16:00	3.1	W
24-Aug-2013	17:00	3.1	WSW
24-Aug-2013	18:00	1.8	W
24-Aug-2013	19:00	2	W
24-Aug-2013	20:00	1.4	W
24-Aug-2013	21:00	1.4	W
24-Aug-2013	22:00	2.4	W
24-Aug-2013	23:00	2.7	WNW
25-Aug-2013	00:00	1.9	W
25-Aug-2013	01:00	1.6	W
25-Aug-2013	02:00	1.6	W
25-Aug-2013	03:00	1.4	W
25-Aug-2013	04:00	1.4	WNW
25-Aug-2013	05:00	1.6	WSW
25-Aug-2013	06:00	1.7	NNE
25-Aug-2013	07:00	1.7	NW
25-Aug-2013	08:00	1.9	W
25-Aug-2013	09:00	2.1	W
25-Aug-2013	10:00	2.7	W
25-Aug-2013	11:00	2.5	W
25-Aug-2013	12:00	2.2	NNE
25-Aug-2013	13:00	1.9	WNW
25-Aug-2013	14:00	1.9	WNW
25-Aug-2013	15:00	1.4	WNW
25-Aug-2013	16:00	1.2	WNW
25-Aug-2013	17:00	1	NNE

Date	Time	Wind Speed m/s	Direction
25-Aug-2013	18:00	0.9	NNE
25-Aug-2013	19:00	0.8	N
25-Aug-2013	20:00	0.5	W
25-Aug-2013	21:00	0.9	WNW
25-Aug-2013	22:00	0.8	SSW
25-Aug-2013	23:00	0.8	SW
26-Aug-2013	00:00	0.7	WSW
26-Aug-2013	01:00	0.7	SW
26-Aug-2013	02:00	0.7	WSW
26-Aug-2013	03:00	0.6	WSW
26-Aug-2013	04:00	0.6	WSW
26-Aug-2013	05:00	0.6	WSW
26-Aug-2013	06:00	1.2	W
26-Aug-2013	07:00	1.2	NNE
26-Aug-2013	08:00	1.5	NNE
26-Aug-2013	09:00	1.1	N N
26-Aug-2013	10:00	1.6	
26-Aug-2013	11:00	1.8	NNW
26-Aug-2013	12:00	1.6	N Nuar
26-Aug-2013	13:00	1.9	NW
26-Aug-2013	14:00	1.8	N
26-Aug-2013	15:00	1.7	WNW
26-Aug-2013	16:00	1.9	N
26-Aug-2013	17:00	1.7	NE
26-Aug-2013	18:00	1.4	NW
26-Aug-2013	19:00	0.9	ESE
26-Aug-2013	20:00	0.8	N
26-Aug-2013	21:00	0.5	NW
26-Aug-2013	22:00	0.4	NW
26-Aug-2013	23:00	0.4	N
27-Aug-2013	00:00	0.4	WNW
27-Aug-2013	01:00	0.3	WNW
27-Aug-2013	02:00	0.3	NW
27-Aug-2013	03:00	0.3	W
27-Aug-2013	04:00	0.7	NNE
27-Aug-2013	05:00	1.1	E
27-Aug-2013	06:00	1.2	E
27-Aug-2013	07:00	1.2	ENE
27-Aug-2013	08:00	1.5	ENE
27-Aug-2013	09:00	1.5	WNW
27-Aug-2013	10:00	1.4	NNE
27-Aug-2013	11:00	2.1	NE
27-Aug-2013	12:00	2	ENE
27-Aug-2013	13:00	2.2	Е
27-Aug-2013	14:00	2.3	NE
27-Aug-2013	15:00	2.6	NE
27-Aug-2013	16:00	2.5	NE
27-Aug-2013	17:00	2.2	W
27-Aug-2013	18:00	2.2	SSW
27-Aug-2013	19:00	1.5	ESE
27-Aug-2013 27-Aug-2013	20:00	1.7	ESE
27-Aug-2013 27-Aug-2013	21:00	1.8	W
27-Aug-2013 27-Aug-2013	22:00	1.6	NNE
27-Aug-2013 27-Aug-2013	23:00	1.7	NNE
21-Muy-2013	23.00	1.1	ININL

Date	Time	Wind Speed m/s	Direction
28-Aug-2013	00:00	1.6	ENE
28-Aug-2013	01:00	1.8	ENE
28-Aug-2013	02:00	1.5	ENE
28-Aug-2013	03:00	1.5	NE
28-Aug-2013	04:00	1.3	W
28-Aug-2013	05:00	1.1	N
28-Aug-2013	06:00	1.4	NNE
28-Aug-2013	07:00	1.3	NNE
28-Aug-2013	08:00	1.4	NNE
28-Aug-2013	09:00	1.8	ENE
28-Aug-2013	10:00	2.2	NNE
28-Aug-2013	11:00	2.6	NE
28-Aug-2013	12:00	2.8	NE
28-Aug-2013	13:00	2.4	ENE
28-Aug-2013	14:00	2.3	ENE
28-Aug-2013	15:00	2.1	ENE
28-Aug-2013	16:00	1.9	ENE
28-Aug-2013	17:00	1.9	NNE
28-Aug-2013	18:00	1.4	NNE
28-Aug-2013	19:00	1.1	NNE
28-Aug-2013	20:00	1.1	NE
28-Aug-2013	21:00	0.9	ENE
28-Aug-2013	22:00	0.8	NNE
28-Aug-2013	23:00	1	NNE
29-Aug-2013	00:00	1.7	NE
29-Aug-2013	01:00	2.2	NE
29-Aug-2013	02:00	2.4	NNE
29-Aug-2013	03:00	2.5	NE
29-Aug-2013	04:00	2.3	NNE
29-Aug-2013	05:00	2.7	NNE
29-Aug-2013	06:00	1.6	WNW
29-Aug-2013	07:00	1.7	ESE
29-Aug-2013	08:00	1.5	NE
29-Aug-2013	09:00	1.4	NE
29-Aug-2013	10:00	2.2	NNE
29-Aug-2013	11:00	2.4	NNE
29-Aug-2013	12:00	2.6	NNE
29-Aug-2013	13:00	2.8	NNE
29-Aug-2013	14:00	2.3	NNE
29-Aug-2013	15:00	2.2	NE
29-Aug-2013	16:00	1.8	NE NE
29-Aug-2013	17:00	1.7	NE NE
29-Aug-2013	18:00	1.4	NNE
29-Aug-2013 29-Aug-2013	19:00	0.9	N
29-Aug-2013	20:00	0.9	NNE
29-Aug-2013	21:00	1	NNE
29-Aug-2013	22:00	1.5	NNE
29-Aug-2013	23:00	1.4	NNE
30-Aug-2013	00:00	1.4	NNE
30-Aug-2013	01:00	1.4	NNE
30-Aug-2013	02:00	1.5	NNE
30-Aug-2013	03:00	1.3	NNE
30-Aug-2013	04:00	1.2	NNE
30-Aug-2013	05:00	1.1	NE
30-Aug-2013	03.00	1.1	INE

Date	Time	Wind Speed m/s	Direction
30-Aug-2013	06:00	0.9	NNE
30-Aug-2013	07:00	1	NNE
30-Aug-2013	08:00	1	NNE
30-Aug-2013	09:00	2	NE
30-Aug-2013	10:00	2.1	NNE
30-Aug-2013	11:00	2	NE
30-Aug-2013	12:00	2.2	NE
30-Aug-2013	13:00	1.4	NE
30-Aug-2013	14:00	1.9	NNE
30-Aug-2013	15:00	2.3	NNE
30-Aug-2013	16:00	1.7	NE
30-Aug-2013	17:00	1.2	NE
30-Aug-2013	18:00	0.8	NE
30-Aug-2013	19:00	0.8	NE
30-Aug-2013	20:00	0.9	NE
30-Aug-2013	21:00	0.5	NE
30-Aug-2013	22:00	1.5	NNE
30-Aug-2013	23:00	2.4	NE
31-Aug-2013	00:00	1.5	ENE
31-Aug-2013	01:00	1.5	E
31-Aug-2013	02:00	1.9	ENE
31-Aug-2013	03:00	1.7	NE
31-Aug-2013	04:00	1.5	NE
31-Aug-2013	05:00	1.6	NNE
31-Aug-2013	06:00	1.5	NNE
31-Aug-2013	07:00	1.5	N
31-Aug-2013	08:00	1.6	N
31-Aug-2013	09:00	1.5	E
31-Aug-2013	10:00	1.4	NE
31-Aug-2013	11:00	1.6	NNE
31-Aug-2013	12:00	1.7	NNE
31-Aug-2013	13:00	2.2	NNE
31-Aug-2013	14:00	2.1	NE
31-Aug-2013	15:00	2.2	ENE
31-Aug-2013	16:00	2.2	NE
31-Aug-2013	17:00	2.1	NE
31-Aug-2013	18:00	1.8	NNE
31-Aug-2013	19:00	2.1	NNE
31-Aug-2013	20:00	2	NNE
31-Aug-2013	21:00	1.7	N
31-Aug-2013	22:00	1.3	NNE
31-Aug-2013	23:00	1.5	ENE

APPENDIX K EVENT ACTION PLANS

Event / Action Plan for Air Quality

	ACTION							
EVENT	ET	IEC	so	CONTRACTOR				
ACTION LEVE	L							
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and SO; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.				
2.Exceedance for two or more consecutive samples	 Identify source; Inform IEC and SO; Advise the SO on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and SO; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor;	 Submit proposals for remedial to SO within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				

LIMIT LEVEL				
1.Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform SO, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the SO on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Amend proposal if appropriate.
2.Exceedance for two or more consecutive samples	 Notify IEC, SO, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and SO to discuss the remedial actions to 	 Discuss amongst SO, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of remedial 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the SO until the exceedance is

be taken;	measures.	5. If exceedance	abated.
 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional monitoring. 		continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	

Abbreviations: ET – Environmental Team, IEC – Independent Environmental Checker, SO – Supervising Office

Event / Action Plan for Construction Noise

EVENT	ACTION						
	ET	IEC	so	CONTRACTOR			
Action Level	 Identify source, investigate the causes of exceedance and propose remedial measures; Notify IEC and Contractor; Report the results of investigation to the IEC, SO and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the SO accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented	1. Submit noise mitigation proposals to IEC; 2. Implement noise mitigation proposals.			
Limit Level	 Identify source; Inform IEC, SO, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, SO and EPD 	1. Discuss amongst SO, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; 3. Supervise the implementation of	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control;			

EVENT	ACTION							
	ET	IEC	so	CONTRACTOR				
	the causes and actions taken for the exceedances; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional monitoring.	remedial measures.	problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	5. Stop the relevant portion of works as determined by the SO until the exceedance is abated.				

Event and Action Plan for Water Quality

Event	ET Leader	IEC	SO	Contractor
Action level being exceeded by one sampling day	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and SO; Check monitoring data, all plant, equipment and Contractor's working methods.	Check monitoring data submitted by ET and Contractor's working methods.	Confirm receipt of notification of non-compliance in writing; Notify Contractor.	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	Inform the Supervising Officer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SO and Contractor;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly.	Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to review the working methods.	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO.

Event	ET Leader	IEC	so	Contractor
Limit level being exceeded by two or more consecutive sampling days	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SO and Contractor; Ensure mitigation measures are implemented;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level.	Take immediate action to avoid further exceedance; Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

APPENDIX L SUMMARY OF EXCEEDANCE

Contract No. HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill

Exceedance Report

- (A) Exceedance Report for Air Quality (1 hour TSP) (NIL in the reporting period)
- (B) Exceedance Report for Air Quality (24 hours TSP) (NIL in the reporting period)
- (C) Exceedance Report for Construction Noise (NIL in the reporting period)

(D) Exceedance Report for Water Quality

Environmental Monitoring	Parameter	No. of Ex	ceedance	No. of Exceedance related to the Construction Activities of this Contract	
		Action Level	Limit Level	Action Level	Limit Level
	Dissolved Oxygen (DO) (Surface & Middle)	0	0	0	0
Water Quality	Dissolved Oxygen (DO) (Bottom)	0	0	0	0
	Turbidity	0	0	0	0
	Suspended Solids (SS)	1	2	0	0

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 21 August 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	Control Station(s)	Control	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Depth-average Measured Value (mg/L)	Justification*	Validity (Yes/No)
IS2								25.3	(2), (6a) & (6d)	No
IS4	Mid-flood	23.5	34.4	CS1	10.1	12.1	13.1	44.3	(2), (6b) & (6d)	No
SR2								41.0	(2), (6c) & (6d)	No

Note:

Bold Italic means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

*Remarks

- (1) No major marine construction activity was conducted.
- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) The exceeded results were similar or within the ranges baseline monitoring results.
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify:-

a) Summary of marine works on 21 August 2013 is as follow:-

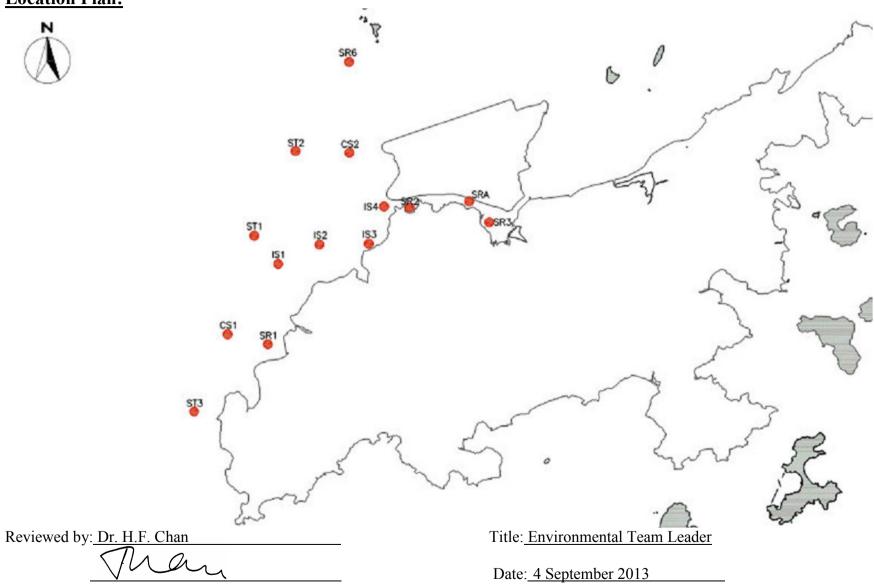
Pier(s)	Activities
P46	Jacket platform installation
P47	Driving Casing and Jacket Platform Welding Works
P54	RCD excavation within casing
P69/70	Jetty assembling and welding works
P71	RCD excavation within casing

No marine construction works were conducted in vicinity of monitoring station IS2.

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

- Notification of Environmental Quality Limit Exceedances
 - b) Human error in sampling caused high level of suspended solids at bottom level only.
 - c) Sediment plume due to natural fluctuation of shallow water was observed.
 - d) Water quality mitigation measures such as casing and silt curtains were properly implemented (see photos below)


Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the excedances were not related to the contract works, no further action to be required.

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Location Plan:

APPENDIX M SITE AUDIT SUMMARY

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	130806
Date	6 August 2013 (Tuesday)
	9:30 – 11:30

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
130806-R03	To review the sedimentation process at Portion C.	B4
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
130806-R01	To remove the construction materials which at near the trees at Portion A and C.	F4ii.
130806-R02	To clear the drainage channels at Portion C.	F6
130806-R04	• To seal the hole of the drip tray and clear the oil leakage at near the office containers at	F9
	Portion C.	ГЭ
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 130730), follow up action is needed for	
	the item 130730-R01, 130730-R02 & 130730-R03 and renamed as 130806-R01,	
	130806-R02 and 130806-R04 respectively.	

	Name	Signature	Date
Recorded by	Ivy Tam	lux	6 August 2013
Checked by	Dr. Priscilla Choy	WF	6 August 2013

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

<u>.Environmental Observations Identified during the Environmental Site Inspection</u> (6 August 2013)

Portion A

Portion C

Ref No: 130806-R01

Impact:

Waste / Chemical Management (F4ii.)

Details:

To remove the construction materials which at near the trees at Portion A and C.

Ref No: 130806-R02

Impact:

Waste / Chemical Management (F6)

Details

To clear the drainage channels at Portion C.

CINOTECH MA12014 Fig130806

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 130806-R03

Impact:

Water Quality (B4)

Details:

To review the sedimentation process at Portion C.

Ref No: 130806-R04

Impact:

Waste / Chemical Management (F9)

Details:

To seal the hole of the drip tray and clear the oil leakage at near the office containers at Portion C.

CINOTECH MA12014 Fig130806

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

Ins	pection	Iniormation

Checklist Reference Number	130813
Date	13 August 2013 (Tuesday)
Time	9:30 – 11:15

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality	
130813-R01	Clear or replace the damage sand bag at Southeast Quay.	B16
130813-R03	Provide sand bag bund at the water barrier near the pile at Portion C to prevent leakage of muddy water to the public road.	B16
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
130813-R02	Remove the construction materials at near the trees at Portion A (near P106) and C.	F4ii.
130813-R04	Clear the general refuse at near P102 at Portion A.	Fliii.
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 130806), follow up action is needed for the item 130806-R01 which is renamed as 130813-R02.	

	Name	Signatu	re Date
Recorded	by Ivy Tai	m Tuy	13 August 2013
Checked	by Dr. Priscilla	Choy With	_ 13 August 2013

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

.Environmental Observations Identified during the Environmental Site Inspection (13 August 2013)

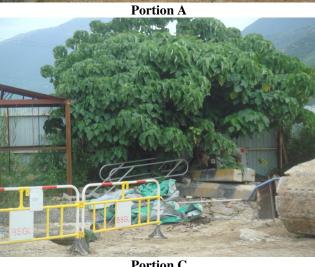
Ref No: 130813-R01

Impact:

Water Quality (B16)

Details:

Clear or replace the damage sand bag at Southeast Quay.


Ref No: 130813-R02

Impact:

Waste / Chemical Management (F4ii.)

Details:

Remove the construction materials at near the trees at Portion A (near P106) and C.

Portion C

CINOTECH MA12014 Fig130813

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 130813-R03

Impact:

Water Quality (B16)

Details:

Provide sand bag bund at the water barrier near the pile at Portion C to prevent leakage of muddy water to the public road.

Ref No: 130813-R04

Impact:

Water Quality (B16)

Details:

Clear the general refuse at near P102 at Portion A.

Fig130813

Kei 110. 130013-K04

CINOTECH MA12014

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 130806-R02

Impact:

Waste / Chemical Management (F6)

Details:

To clear the drainage channels at Portion C.

Follow Up:

The drainage channel at Portion C has been cleared.

Ref No: 130806-R03

Impact:

Water Quality (B4)

Details:

To review the sedimentation process at Portion C.

Follow Up:

The accumulated wastewater was pumped out to the sedimentation tank.

Ref No: 130806-R04

Impact:

Waste / Chemical Management (F9)

Details

To seal the hole of the drip tray and clear the oil leakage at near the office containers at Portion C.

Follow Up:

The oil leakage has been cleared and the drip tray was removed.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	130820	
Date	20 August 2013 (Tuesday)	
Time	9:00 – 11:30	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality	
130820-R01	To replace the damage sand bags at P20.	B20
130820-R02	To reinforce the sand bag bund at P49.	B22
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 130813), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	4mh	20 August 2013
Checked by	Dr. Priscilla Choy	NF	20 August 2013

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

<u>.Environmental Observations Identified during the Environmental Site Inspection</u> (20 August 2013)

Ref No: 130820-R01

Impact:

Water Quality (B20)

Details:

To replace the damage sand bags at P20.

Ref No: 130820-R02

Impact:

Water Quality (B22)

Details:

To reinforce the sand bag bund at P49.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies **Identified during Previous Audit Session**

Ref No: 130813-R01

Impact:

Water Quality (B16)

Details:

Clear or replace the damage sand bag at Southeast Quay.

Follow Up:-

Damage sand bag was replaced.

Ref No: 130813-R02

Impact:

Waste / Chemical Management (F4ii.)

Details:

Remove the construction materials at near the trees at Portion A (near P106) and C.

Follow Up:-

The construction materials at near the trees have been cleared

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 130813-R03

Impact:

Water Quality (B16)

Details:

Provide sand bag bund at the water barrier near the pile at Portion C to prevent leakage of muddy water to the public road.

Follow Up:-

Sand bag bund was provided to prevent leakage of muddy water to the public road.

Ref No: 130813-R04

Impact:

Water Quality (B16)

Details:

Clear the general refuse at near P102 at Portion A.

Follow Up:

The general refuse has been cleared.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

mapeenon minormanon	
Checklist Reference Number	130829
Date	29 August 2013 (Thursday)
Time	13:30 - 15:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
	No environmental deficiency was identified during site inspection.	
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
130829-R01	To close the door of the air compressor at P54.	E9
	E. Waste / Chemical Management	
130829-R02	To seal the hole of the drip tray at P54.	F9
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	Follow-up on previous site audit session (Ref. No. 130820), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	lux	29 August 2013
Checked by	Dr. Priscilla Choy	WF	29 August 2013

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

<u>.Environmental Observations Identified during the Environmental Site Inspection</u> (29 August 2013)

Ref No: 130829-R01

Impact: Noise (E9)

Details:

To close the door of the air compressor at P54.

Ref No: 130829-R02

Impact:

Waste / Chemical Management (F9)

Details:

To seal the hole of the drip tray at P54.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 130820-R01

Impact:

Water Quality (B20)

Details:

To replace the damage sand bags at P20.

Follow Up:

The damage sand bags have been replaced.

Ref No: 130820-R02

Impact:

Water Quality (B22)

Details:

To reinforce the sand bag bund at P49.

Follow Up:

Sand bag bund was provided to surround the works.

APPENDIX N UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
Air Quali	ity						
S5.5.6.1	A1	1) The contractor shall follow the procedures and requirements given in	Good construction site	Contractor	All construction	Construction	۸
		the Air Pollution Control (Construction Dust) Regulation	practices to control the dust		sites	stage	
			impact at the nearby				
			sensitive receivers to within				
			the relevant criteria.				
S5.5.6.2	A2	2) Proper watering of exposed spoil should be undertaken throughout the	Good construction site	Contractor	All construction	Construction	
		construction phase:	practices to control the dust		sites	stage	
		Any excavated or stockpile of dusty material should be covered	impact at the nearby				
		entirely by impervious sheeting or sprayed with water to maintain	sensitive receivers to within				۸
		the entire surface wet and then removed or backfilled or reinstated	the relevant criteria.				
		where practicable within 24 hours of the excavation or unloading;					
		Any dusty materials remaining after a stockpile is removed should					۸
		be wetted with water and cleared from the surface of roads;					
		A stockpile of dusty material should not be extend beyond the					۸
		pedestrian barriers, fencing or traffic cones.					
		The load of dusty materials on a vehicle leaving a construction site					۸
		should be covered entirely by impervious sheeting to ensure that the					
		dusty materials do not leak from the vehicle;					
		Where practicable, vehicle washing facilities with high pressure					
		water jet should be provided at every discernible or designated					۸
		vehicle exit point. The area where vehicle washing takes place and					
		the road section between the washing facilities and the exit point					
		should be paved with concrete, bituminous materials or hardcores;					
S5.5.6.2	A2	When there are open excavation and reinstatement works, hoarding	Good construction site	Contractor	All construction	Construction	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		of not less than 2.4m high should be provided as far as practicable	practices to control the dust		sites	stage	
		along the site boundary with provision for public crossing. Good site	impact at the nearby				
		practice shall also be adopted by the Contractor to ensure the	sensitive receivers to within				
		conditions of the hoardings are properly maintained throughout the	the relevant criteria.				
		construction period;					
		The portion of any road leading only to construction site that is within					٨
		30m of a vehicle entrance or exit should be kept clear of dusty					
		materials;					
		Surfaces where any pneumatic or power-driven drilling, cutting,					۸
		polishing or other mechanical breaking operation takes place should					
		be sprayed with water or a dust suppression chemical continuously;					
		Any area that involves demolition activities should be sprayed with					
		water or a dust suppression chemical immediately prior to, during					۸
		and immediately after the activities so as to maintain the entire					
		surface wet;					
		Where a scaffolding is erected around the perimeter of a building					
		under construction, effective dust screens, sheeting or netting					N/A
		should be provided to enclose the scaffolding from the ground floor					
		level of the building, or a canopy should be provided from the first					
		floor level up to the highest level of the scaffolding;					
		Any skip hoist for material transport should be totally enclosed by					۸
		impervious sheeting;					
		Every stock of more than 20 bags of cement or dry pulverised fuel					٨
		ash (PFA) should be covered entirely by impervious sheeting or					
		placed in an area sheltered on the top and the 3 sides;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
S5.5.6.2	A2	Cement or dry PFA delivered in bulk should be stored in a closed	Good construction site	Contractor	All construction	Construction	N/A
		silo fitted with an audible high level alarm which is interlocked with	practices to control the dust		sites	stage	
		the material filling line and no overfilling is allowed;	impact at the nearby				
		Loading, unloading, transfer, handling or storage of bulk cement or	sensitive receivers to within				۸
		dry PFA should be carried out in a totally enclosed system or facility,	the relevant criteria.				
		and any vent or exhaust should be fitted with an effective fabric filter					
		or equivalent air pollution control system; and					
		Exposed earth should be properly treated by compaction, turfing,					
		hydroseeding, vegetation planting or sealing with latex, vinyl,					۸
		bitumen, shotcrete or other suitable surface stabiliser within six					
		months after the last construction activity on the construction site or					
		part of the construction site where the exposed earth lies.					
S5.5.6.3	A3	3) The Contractor should undertake proper watering on all exposed spoil	Control construction dust	Contractor	All construction	Construction stage	۸
		(with at least 8 times per day) throughout the construction phase.			sites		
S5.5.6.4	A5	5) Implement regular dust monitoring under EM&A programme during the	Monitor the 24 hr and 1hr	Contractor	Selected	Construction	۸
		construction stage.	TSP levels at the		representative	stage	
			representative dust		dust		
			monitoring stations to ensure		monitoring station		
			compliance with relevant				
			criteria throughout the				
			construction period.				
S5.5.7.1	A6	The following mitigation measures should be adopted to prevent fugitive	Monitor the 24 hr and 1hr	Contractor	Selected	Construction	
		dust emissions for concrete batching plant:	TSP levels at the		representative	stage	
		Loading, unloading, handling, transfer or storage of any dusty	representative dust		dust		N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		materials should be carried out in totally enclosed system;	monitoring stations to ensure		monitoring station		
		All dust-laden air or waste gas generated by the process operations	compliance with relevant				N/A
		should be properly extracted and vented to fabric filtering system to	criteria throughout the				
		meet the emission limits for TSP;	construction period.				
		Vents for all silos and cement/pulverised fuel ash (PFA) weighing					N/A
		scale should be fitted with fabric filtering system;					
		The materials which may generate airborne dusty emissions should					
		be wetted by water spray system;					N/A
		All receiving hoppers should be enclosed on three sides up to 3m					
		above unloading point;					N/A
		All conveyor transfer points should be totally enclosed;					N/A
		All access and route roads within the premises should be paved and					N/A
		wetted; and					
		Vehicle cleaning facilities should be provided and used by all					N/A
		concrete trucks before leaving the premises to wash off any dust on					
		the wheels and/or body.					
S5.5.2.7	A7	The following mitigation measures should be adopted to prevent	Control construction dust	Contractor	All construction	Construction	
		fugitive dust emissions at barging point:			sites	stage	
		All road surface within the barging facilities will be paved;					N/A
		Dust enclosures will be provided for the loading ramp;					N/A
		Vehicles will be required to pass through designated wheels wash					N/A
		facilities; and					
		Continuous water spray at the loading points.					N/A
Construc	tion Nois	e (Air borne)					
S6.4.10	N1	1) Use of good site practices to limit noise emissions by considering the	Control construction airborne	Contractor	All construction	Construction	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		following:	noise by means of good site		sites	stage	
		only well-maintained plant should be operated on-site and plant	practices				^
		should be serviced regularly during the construction programme;					
		machines and plant (such as trucks, cranes) that may be in					^
		intermittent use should be shut down between work periods or					
		should be throttled down to a minimum;					
		plant known to emit noise strongly in one direction, where possible,					^
		be orientated so that the noise is directed away from nearby NSRs;					
		silencers or mufflers on construction equipment should be properly					^
		fitted and maintained during the construction works;					
		mobile plant should be sited as far away from NSRs as possible and					
		practicable;					^
		material stockpiles, mobile container site officer and other structures					
		should be effectively utilised, where practicable, to screen noise					^
		from on-site construction activities.					
S6.4.11	N2	2) Install temporary hoarding located on the site boundaries between	Reduce the construction	Contractor	All construction	Construction	۸
		noisy construction activities and NSRs. The conditions of the hoardings	noise levels at low-level		sites	stage	
		shall be properly maintained throughout the construction period.	zone of NSRs through partial				
			screening.				
S6.4.12	N3	3) Install movable noise barriers (typically density @14kg/m²), acoustic	Screen the noisy plant items	Contractor	For plant items	Construction	۸
		mat or full enclosure close to noisy plants including air compressor,	to be used at all construction		listed in Appendix	stage	
		generators, saw.	sites		6D of the EIA		
					report at all		
					construction sites		
S6.4.13	N4	4) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM	Reduce the noise levels of	Contractor	For plant items	Construction	^

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		standards.	plant items		listed in Appendix	stage	
					6D of the EIA		
					report at all		
					construction sites		
S6.4.14	N5	5) Sequencing operation of construction plants where practicable.	Operate sequentially within	Contractor	All construction	Construction	۸
			the same work site to reduce		sites where	stage	
			the construction airborne		practicable		
			noise				
	N6	6) Implement a noise monitoring under EM&A programme.	Monitor the construction	Contractor	Selected	Construction	۸
			noise levels at the selected		representative	stage	
			representative locations		noise monitoring		
					station		
Waste Ma	anageme	nt (Construction Waste)					
S8.3.8	WM1	Construction and Demolition Material	Good site practice to	Contractor	All construction	Construction	
		The following mitigation measures should be implemented in	minimize the waste		sites	stage	
		handling the waste:	generation and recycle the				
		Maintain temporary stockpiles and reuse excavated fill material for	C&D materials as far as				۸
		backfilling and reinstatement;	practicable so as to reduce				
		Carry out on-site sorting;	the amount for final disposal				۸
		Make provisions in the Contract documents to allow and promote					۸
		the use of recycled aggregates where appropriate;					
		Adopt 'Selective Demolition' technique to demolish the existing					
		structures and facilities with a view to recovering broken concrete					۸
		effectively for recycling purpose, where possible;					
		Implement a trip-ticket system for each works contract to ensure that					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		the disposal of C&D materials are properly documented and verified;					
		and					
		Implement an enhanced Waste Management Plan similar to					۸
		ETWBTC (Works) No. 19/2005 – "Environmental Management on					
		Construction Sites" to encourage on-site sorting of C&D materials					
		and to minimize their generation during the course of construction.					
		In addition, disposal of the C&D materials onto any sensitive					
		locations such as agricultural lands, etc. should be avoided. The					٨
		Contractor shall propose the final disposal sites to the Project					
		Proponent and get its approval before implementation					
S8.3.9 -	WM2	C&D Waste	Good site practice to	Contractor	All construction	Construction	
S8.3.11		Standard formwork or pre-fabrication should be used as far as	minimize the waste		sites	stage	۸
		practicable in order to minimise the arising of C&D materials. The	generation and recycle the				
		use of more durable formwork or plastic facing for the construction	C&D materials as far as				
		works should be considered. Use of wooden hoardings should not	practicable so as to reduce				
		be used, as in other projects. Metal hoarding should be used to	the amount for final disposal				
		enhance the possibility of recycling. The purchasing of construction					
		materials will be carefully planned in order to avoid over ordering					
		and wastage.					
		The Contractor should recycle as much of the C&D materials as					
		possible on-site. Public fill and C&D waste should be segregated					٨
		and stored in different containers or skips to enhance reuse or					
		recycling of materials and their proper disposal. Where					
		practicable, concrete and masonry can be crushed and used as fill.					
		Steel reinforcement bar can be used by scrap steel mills. Different					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		areas of the sites should be considered for such segregation and					
		storage.					
S8.2.12-	WM3	Chemical Waste	Control the chemical waste	Contractor	All construction	Construction	
S8.3.15		Chemical waste that is produced, as defined by Schedule 1 of the	and ensure proper storage,		sites	stage	۸
		Waste Disposal (Chemical Waste) (General) Regulation, should be	handling and disposal.				
		handled in accordance with the Code of Practice on the Packaging,					
		Labelling and Storage of Chemical Wastes.					
		Containers used for the storage of chemical wastes should be					۸
		suitable for the substance they are holding, resistant to corrosion,					
		maintained in a good condition, and securely closed; have a					
		capacity of less than 450 liters unless the specification has been					
		approved by the EPD; and display a label in English and Chinese in					
		accordance with instructions prescribed in Schedule 2 of the					
		regulation.					
		The storage area for chemical wastes should be clearly labelled and					۸
		used solely for the storage of chemical waste; enclosed on at least 3					
		sides; have an impermeable floor and bunding of sufficient capacity					
		to accommodate 110% of the volume of the largest container or 20					
		% of the total volume of waste stored in that area, whichever is the					
		greatest; have adequate ventilation; covered to prevent rainfall					
		entering; and arranged so that incompatible materials are					
		adequately separated.					
		Disposal of chemical waste should be via a licensed waste collector;					
		be to a facility licensed to receive chemical waste, such as the					۸
		Chemical Waste Treatment Centre which also offers a chemical					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		waste collection service and can supply the necessary storage					
		containers; or be to a reuser of the waste, under approval from the					
		EPD.					
S8.3.16	WM4	<u>Sewage</u>	Proper handling of sewage	Contractor	All construction	Construction	
		Adequate numbers of portable toilets should be provided for the	from worker to avoid odour,		sites	stage	
		workers. The portable toilets should be maintained in a state,	pest and litter impacts				^
		which will not deter the workers from utilizing these portable toilets.					
		Night soil should be collected by licensed collectors regularly.					
S8.3.17	WM5	General Refuse	Minimize production of the	Contractor	All construction	Construction stage	
		General refuse generated on-site should be stored in enclosed	general refuse and avoid		sites		*
		bins or compaction units separately from construction and chemical	odour, pest and litter impacts				
		wastes.					
		A reputable waste collector should be employed by the Contractor to					
		remove general refuse from the site, separately from construction					٨
		and chemical wastes, on a daily basis to minimize odour, pest and					
		litter impacts. Burning of refuse on construction sites is prohibited					
		by law.					
		Aluminium cans are often recovered from the waste stream by					
		individual collectors if they are segregated and made easily					٨
		accessible. Separate labelled bins for their deposit should be					
		provided if feasible.					
		Office wastes can be reduced through the recycling of paper if					
		volumes are large enough to warrant collection. Participation in a					
		local collection scheme should be considered by the Contractor. In					٨
		addition, waste separation facilities for paper, aluminum cans,					

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
			plastic bottles etc., should be provided.					
		•	Training should be provided to workers about the concepts of site					٨
			cleanliness and appropriate waste management procedure,					
			including reduction, reuse and recycling of wastes.					
Water Qu	ality (Co	nstr	ruction Phase)					
S9.11.1 –	W1	•	Mitigation during the marine works to reduce impacts to within	To control construction water	Contractor	During seawall	Construction	۸
S9.11.1.2			acceptable levels have been recommended and will comprise a	quality		dredging and	stage	
			series of measures that restrict the method and sequencing of			filling		
			dredging/backfilling, as well as protection measures. Details of the					
			measures are provided below and summarised in the Environmental					
			Mitigation Implementation Schedule in EM&A Manual.					
		•	Export for dredged spoils from NWWCZ avoiding exerting high					۸
			demand on the disposal facilities in the NWWCZ and, hence,					
			minimise potential cumulative impacts;					
		•	For the marine viaducts of HKLR, the bored piling will be undertaken					
			within a metal casing;					۸
		•	where public fill is proposed for filling below -2.5mPD, the fine					
			content in the public fill will be controlled to 25%;					N/A
		•	single layer silt curtains will be applied around all works;					۸
		•	during the first two months of dredging work for HKLR, the					
			silt-removal efficiency of the silt-curtains shall be verified by					N/A
			examining the results of water quality monitoring points. The water					
			quality monitoring points to be selected for the above shall be those					
			close to the locations of the initial period of dredging work. Details in					
			this regard shall be determined by the ENPO to be established,					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		taking account of the Contractor's proposed actual locations of his					
		initial period of dredging work.					
		silt curtain shall be fully maintained throughout the works.					۸
		In addition, dredging operations should be undertaken in such a manner					
		as to minimise resuspension of sediments. Standard good dredging					
		practice measures should, therefore, be implemented including the					
		following requirements which should be written into the dredging contract.					
		trailer suction hopper dredgers shall not allow mud to overflow;					N/A
		use of Lean Material Overboard (LMOB) systems shall be					
		prohibited;					۸
		mechanical grabs shall be designed and maintained to avoid					
		spillage and should seal tightly while being lifted;					۸
		barges and hopper dredgers shall have tight fitting seals to their					
		bottom openings to prevent leakage of material;					۸
		any pipe leakages shall be repaired quickly. Plant should not be					
		operated with leaking pipes;					۸
		loading of barges and hoppers shall be controlled to prevent					
		splashing of dredged material to the surrounding water. Barges or					۸
		hoppers shall not be filled to a level which will cause overflow of					
		materials or pollution of water during loading or transportation;					
		excess material shall be cleaned from the decks and exposed					*
		fittings of barges and hopper dredgers before the vessel is moved;					
		adequate freeboard shall be maintained on barges to reduce the					۸
		likelihood of decks being washed by wave action;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		all vessels shall be sized such that adequate clearance is					۸
		maintained between vessels and the sea bed at all states of the tide					
		to ensure that undue turbidity is not generated by turbulence from					
		vessel movement or propeller wash; and					
		the works shall not cause foam, oil, grease, litter or other					
		objectionable matter to be present in the water within and adjacent					٨
		to the works site.					
S9.11.1.3	W2	Land Works	To control construction water	Contractor	During seawall	Construction stage	
		General construction activities on land should also be governed by	quality		dredging and		
		standard good working practice. Specific measures to be written into			filling		
		the works contracts should include:					
		wastewater from temporary site facilities should be controlled to					۸
		prevent direct discharge to surface or marine waters;					
		sewage effluent and discharges from on-site kitchen facilities shall					N/A
		be directed to Government sewer in accordance with the					
		requirements of the WPCO or collected for disposal offsite. The					
		use of soakaways shall be avoided;					
		storm drainage shall be directed to storm drains via adequately					
		designed sand/silt removal facilities such as sand traps, silt traps					
		and sediment basins. Channels, earth bunds or sand bag barriers					۸
		should be provided on site to properly direct stormwater to such silt					
		removal facilities. Catchpits and perimeter channels should be					
		constructed in advance of site formation works and earthworks;					
		silt removal facilities, channels and manholes shall be maintained					*
		and any deposited silt and grit shall be removed regularly, including					

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
			specifically at the onset of and after each rainstorm;					
		•	temporary access roads should be surfaced with crushed stone or					۸
			gravel;					
		•	rainwater pumped out from trenches or foundation excavations					۸
			should be discharged into storm drains via silt removal facilities;					
		•	measures should be taken to prevent the washout of construction					۸
			materials, soil, silt or debris into any drainage system;					
		•	open stockpiles of construction materials (e.g. aggregates and					۸
			sand) on site should be covered with tarpaulin or similar fabric					
			during rainstorms;					
		•	manholes (including any newly constructed ones) should always be					۸
			adequately covered and temporarily sealed so as to prevent silt,					
			construction materials or debris from getting into the drainage					
			system, and to prevent storm run-off from getting into foul sewers;					
		•	discharges of surface run-off into foul sewers must always be					۸
			prevented in order not to unduly overload the foul sewerage system;					
		•	all vehicles and plant should be cleaned before they leave the					*
			construction site to ensure that no earth, mud or debris is deposited					
			by them on roads. A wheel washing bay should be provided at every					
			site exit;					
		•	wheel wash overflow shall be directed to silt removal facilities before					
			being discharged to the storm drain;					۸
		•	the section of construction road between the wheel washing bay and					
			the public road should be surfaced with crushed stone or coarse					۸
			gravel;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		wastewater generated from concreting, plastering, internal					٨
		decoration, cleaning work and other similar activities, shall be					
		screened to remove large objects;					
		vehicle and plant servicing areas, vehicle wash bays and lubrication					۸
		facilities shall be located under roofed areas. The drainage in					
		these covered areas shall be connected to foul sewers via a petrol					
		interceptor in accordance with the requirements of the WPCO or					
		collected for off site disposal;					
		the contractors shall prepare an oil / chemical cleanup plan and					
		ensure that leakages or spillages are contained and cleaned up					۸
		immediately;					
		waste oil should be collected and stored for recycling or disposal, in					۸
		accordance with the Waste Disposal Ordinance;					
		all fuel tanks and chemical storage areas should be provided with					
		locks and be sited on sealed areas. The storage areas should be					۸
		surrounded by bunds with a capacity equal to 110% of the storage					
		capacity of the largest tank; and					
		surface run-off from bunded areas should pass through oil/grease					
		traps prior to discharge to the stormwater system.					۸
S9.14	W3	Implement a water quality monitoring programme	Control water quality	Contractor	At identified	During	۸
					monitoring	construction period	
					location		
Ecology	(Constru	ction Phase)	1			1	
S10.7	E1	Good site practices to avoid runoff entering woodland habitats in	Avoid potential disturbance	Designer;	Scenic Hill	During	۸
		Scenic Hill	on habitat of Romer's Tree	Contractor		construction	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Reinstate works areas in Scenic Hill	Frog in Scenic Hill				N/A
		Avoid stream modification in Scenic Hill					۸
S10.7	E2	Use closed grab in dredging works.	Minimise marine water	Contractor	Seawall,	During	۸
		Install silt curtain during the construction.	quality impacts			construction	۸
		Limit dredging and works fronts.					۸
		Good site practices					۸
		Strict enforcement of no marine dumping.					۸
		Site runoff control					۸
		Spill response plan					۸
S10.7	E3	Reprovision of replacement Artificial Reefs (of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or operation	
						phase	
S10.7	E4	Watering to reduce dust generation; prevention of siltation of	Prevent Sedimentation from	Contractor	Land-based works	During	۸
		freshwater habitats; Site runoff should be desilted, to reduce the	Land-based works areas		areas	construction	
		potential for suspended sediments, organics and other					
		contaminants to enter streams and standing freshwater					
S10.7	E5	Good site practices, including strictly following the permitted	Prevent disturbance to	Contractor	Land-based works	During	۸
		works hours, using quieter machines where practicable, and	terrestrial fauna and habitats		areas	construction	
		avoiding excessive lightings during night time					
S10.7	E6	Dolphin Exclusion Zone;	Minimize temporary marine	Contractor	Marine works	During marine	۸
		Dolphin watching plan	habitat loss impact to			works	۸
			dolphins				
S10.7	E7	Decouple compressors and other equipment on working vessels	Minimise marine noise	Contractor	Marine works	During marine	۸
		Avoidance of percussive piling	impacts on dolphins			works	۸
		Marine underwater noise monitoring					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Temporal suspension of drilling bored pile casing in rock during peak					N/A
		dolphin calving season in May and June					
S10.7	E8	Control vessel speed	Minimise marine traffic	Contractor	Marine traffic	During marine	۸
		Skipper training.	disturbance on dolphins			works	۸
		Predefined and regular routes for working vessels; avoid Brothers					۸
		Islands.					
S10.10	E9	Dolphin vessel monitoring	Minimise marine traffic	Contractor	North Lantau and	Prior to	۸
			disturbance on dolphins		West Lantau	construction,	
						during	
						construction, and 1	
						year after	
						operation	
Fisheries	S						
S11.7	F1	Reprovision of replacement Artificial Reefs(of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or	
						operation	
						phase	
S11.7	F2	Reduce re-suspension of sediments	Minimise marine water	Contractor	Seawall,	During	۸
		Limit dredging and works fronts.	quality impacts			construction	۸
		Good site practices					۸
		Strict enforcement of no marine dumping					۸
		Spill response plan					۸
Landsca	pe & Visu	al (Construction Phase)					
S14.3.3.3	LV2	Mitigate both Landscape and Visual Impacts	Minimise visual &	Contractor	HKLR	Construction	
		G1. Grass-hydroseed bare soil surface and stock pile areas.	landscape impact			stage	N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		G2. Add planting strip and automatic irrigation system if appropriate					N/A
		at some portions of bridge or footbridge to screen bridge and traffic.					
		G3. For HKLR, providing aesthetic design on the viaduct, tunnel					N/A
		portals, at-grade roads (e.g. subtle colour tone and slim form for					
		viaduct, featured form of tunnel portals, roadside planting along					
		at-grade roads and landscape berm on) to beautify the HKLR					
		alignment.					
		G5. Vegetation reinstatement and upgrading to disturbed areas.					N/A
		G6. Maximize new tree, shrub and other vegetation planting to					N/A
		compensate tree felled and vegetation removed.					
		G7. Provide planting area around peripheral of and within HKLR for					N/A
		tree screening buffer effect.					
		G8. Plant salt tolerant native tree and shrubs etc along the planter					N/A
		strip at affected seawall.					
		G9. Reserve of loose natural granite rocks for re-use. Provide new					
		coastline to adopt "natural-look" by means of using armour rocks in					N/A
		the form of natural rock materials and planting strip area					
		accommodating screen buffer to enhance "natural-look" of the new					
		coastline (see Figure 14.4.2 for example).					
S14.3.3.3	LV3	Mitigate Visual Impacts					
		V1.Minimize time for construction activities during construction					۸
		period.					
		V2.Provide screen hoarding at the portion of the project site / works					۸
		areas / storage areas near VSRs who have close low-level views to					
		the Project during HKLR construction.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
EM&A							
S15.2.2	EM1	An Independent Environmental Checker needs to be employed as	Control EM&A Performance	Project	All construction	Construction	۸
		per the EM&A Manual.		Proponent	sites	stage	
S15.5 -	EM2	1) An Environmental Team needs to be employed as per the EM&A	Perform environmental	Contractor	All construction	Construction	۸
S15.6		Manual.	monitoring & auditing		sites	stage	
		2) Prepare a systematic Environmental Management Plan to ensure					۸
		effective implementation of the mitigation measures.					
		3) An environmental impact monitoring needs to be implementing by the					۸
		Environmental Team to ensure all the requirements given in the EM&A					
		Manual are fully complied with.					

Remarks:

- Compliance of mitigation measure
- * Recommendation was made during site audit but improved/rectified by the contractor

N/A Not Applicable at this stage as no such site activities were conducted in the reporting month (e.g. concrete batching plan, barging point, seawall dredging and filling, bored piling, landscaping works etc)

APPENDIX O WASTE GENERATION IN THE REPORTING MONTH

Contract No. HY/2011/09 Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road -Section between HKSAR Boundary and Scenic Hill

Appendix: C6 Monthly Summary Waste Flow Table

Name of Department: HyD Contract No.: HY/2011/09

Monthly Summary Waste Flow Table for 2013 (Year)

		Actual Quantit	ties of Inert C&I	Materials Gene	erated Monthly		Actual Quantities of C&D Wastes Generated Monthly				hly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete ⁶	Reused in the Contract ^{8,9}	Reused in other Projects ^{5,8,9}	Disposed as Public Fill ⁷	Imported Fill ^{6,7,8,9}	Metals	Paper/ cardboard packaging	Plastics ³	Chemical Waste	Others, e.g. general refuse ^{8,9}
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Jan	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.150
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.375	0.000	0.000	0.072
Mar	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.091
Apr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.410	0.000	0.000	0.098
May	1.436	0.000	0.000	0.000	1.436	0.000	0.000	0.465	0.000	0.000	0.117
Jun	5.335	0.000	0.000	0.000	5.335	0.000	0.000	0.426	0.000	0.000	0.111
Sub-Total	6.771	0.000	0.000	0.000	6.771	0.000	0.000	1.676	0.000	0.000	0.637
Jul	12.438	0.000	0.280	0.000	5.896	6.262	0.000	0.447	0.000	0.000	0.117
Aug	12.107	0.000	0.000	0.000	4.646	7.461	0.000	0.552	0.000	1.784	0.124
Sep											
Oct											
Nov											
Dec											
Total	31.316	0.000	0.280	0.000	17.313	13.723	0.000	2.675	0.000	1.784	0.878

Contract No. HY/2011/09
Hong Kong - Zhuhai - Macao Bridge
Hong Kong Link Road Section between HKSAR Boundary and Scenic Hill

Forecast of Total Quantities of C&D Materials to be Generated from the Contract 10										
Total Quantity Generated	Hard Rock and Large Broken Concrete ⁶	Reused in the Contract ^{8,9}	Reused in other Projects ^{5,8,9}	Disposed as Public Fill ⁷	Imported Fill ^{6,7,8,9}	Metals	Paper/ cardboard packaging	Plastics ³	Chemical Waste	Others, e.g. general refuse ^{8,9}
(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
145.054	0.000	0.000	121.054	2.000	22.000	0.000	9.681	0.000	64.224	2.940

Notes:

- (1) The performance targets are given in ER Appendix 8J Clause 14 and the EM&A Manual.
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (ER Part 8 Clause 8.8.5 (d) (ii) refers).
- (5) The materials reused in other Project shall not be treated as waste under the Waste Disposal Ordinance (CAP354).
- (6) According to the EIA Appendix 8B, the density of rock (bulked) is 2.0 tonnes/m³.
- (7) According to the EIA Appendix 8B, the density of soil (bulked) is 1.8 tonnes/m³.
- (8) Assuming the loading quantities of a 30-tonne truck is 8.0m³.
- (9) Assuming the loading quantities of a 24-tonne truck is 6.5m³.
- (10) The forcast of C&D materials to be generated from the Contract is sourced from the works program in December 2012.

APPENDIX P COMPLAINT LOG

Appendix P - Complaint Log

Log Ref.	Location	Received Date	Details of Complaint	Investigation/ Mitigation Action	Status
Com-2013-04-001	Near Tung Chung New Development Pier	8 April 2013	EPD received the complaint on 8 April 2013. The complainant complained about oil was dumped from various vessels operating for Hong Kong-Zhuhai-Macao Bridge Hong Kong (HZMB HK) Projects near Tung Chung New Development Pier over the past few months.	observed according to ET's site inspection conducted on 9 April 2013 at near Tung Chung New Development Ferry Pier. 3) Joint site inspection (DCVJV and ARUP) was conducted on 10 April	Closed
Com-2013-05-001	WA6	2 May 2013	ARUP received the complaint on 2 May 2013. The complainant alleged the noise nuisance was generated from the Works Area	out at WA6 on 1 May 2013. In	Closed

			1	Within Ewice Keport – J	
			WA6 at around 13:00 on 1 May 2013 (Wednesday).	WA6 according to the security guard who on duty at WA6 on 1 May 2013. Based on the information provided, the complaint regarding the construction noise at WA6 is not considered justifiable.	
Com-2013-05-002	WA6	18 May 2013	ARUP received the complaint on 18 May 2013. The complainant advised that the noise nuisance due to loading of metal parts at barge near the seawall of Works Area WA6 early morning (around8:45a.m) on 18 May 2013 (Saturday).	Based on the record of site activities at WA6 on 18 May 2013, 4 metal plates and 2 oxygen-acetylene set were lifted onto a derrick boat "Chiu Kee" by a crane near seawall at WA6 in the morning on that day. Such operation was commenced around 8:40a.m and completed in 10 minutes during the normal construction working hour (0700 – 1900 Monday to Saturday). However, the duration of aforesaid activities is very short and infrequent. Nevertheless, the Contractor was reminded to strengthen their site supervision and provide training for the workers regularly to increase awareness of their environmental responsibilities to minimize the noise impact to the nearby residents and the specific mitigation measures for the complaint including but not limited to:- • To place wooden planks or rubber	Closed

				Monthly EM&A Report – .	uly 2013
				 mats on ground for loading and unloading heavy or metal objects; and To deploy professional personnel to supervise the works. After receiving the complaint, 	
Com-2013-05-003	Near Tung Chung New Development Pier	18 May 2013	EPD received the public complaint on 18 May 2013. This complaint was a follow-up of a previous complaint received by EPD on 8 April 2013 (Com-2013-04-001). The complainant complained again about the oil was dumped from various vessels operating for Hong Kong-Zhuhai-Macao Bridge Hong Kong (HZMB HK) Projects near Tung Chung New Development Pier over the past months.	additional site inspection was conducted at near Tung Chung New Development Pier on 30 May 2013 to investigate whether oil dumped was due to Contract No. HY/2011/09's vessels. During the site inspection, three working vessels under Contract No.HY/2011/09 was anchored off near Tung Chung New Development Pier. No oil dumped from Contract No. HY/2011/09's vessels were observed and the water around the vessels was clear. The following mitigation measures have been implemented by DCVJV: DCVJV has sent the letter to the shipping agent to remind them to ensure the vessels under Contract No. HY/2011/09 are in good condition and any oil dumped to sea should be avoided to prevent water pollution. Provide training to the vessel skippers for prevention of pollution	Closed

				Monthly EM&A Report –.	July 2013
				from ships. • DCVJV requested vessel skippers to provide engine oil disposal records The vessel skippers assured to us that all waste lubricants were sent to waste collectors regularly and no oil discharge into seawater.	
Com-2013-07-001	Southeast Quay of Chek Lap Kok near the junction of Chek Lap Kok South Road and Scenic Road	17 July 2013	The complaint was received by EPD on 17 th July 2013. According to the EPD's letter, the complainant was concerned for the noise nuisance generated from the operation of concrete lorry mixers during evening and night-time period at Southeast Quay of Chek Lap Kok.	In response to the complaint, ET conducted two times site inspections at Southeast Quay at Chek Lap Kok between 18:45 and 20:30 hours on 23 July 2013 and 20:30 to 22:30 hours on 30 July 2013. During the inspections, the Ro-Ro barge was observed anchored off Southeast Quay at Chek Lap Kok but no concrete lorry mixer was observed throughout the inspection.	Closed

Contract No. HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill Monthly EM&A Report – July 2013

 Monthly EM&A Report – Jul	ly 2013
According to the Contractor, there was	
no concreting works for the pier sites	
on 23 July 2013 and therefore no	
loading and unloading operation at	
Southeast Quay at Chek Lap Kok.	
Concreting works were performed at	
Pier 0 on 30 July 2013. As the	
Contractor anticipated the arrival time	
of tug boat and flap-top barge at	
Southeast Quay will exceed 23:00	
hours after the concreting works, they	
decided to arrange the tug boat and	
flap-top barge with concrete lorry	
mixers anchored off around Pier 66	
after 23:00 hours. So, no loading and	
unloading operation at Southeast Quay	
at Chek Lap Kok was observed.	
Further night time site inspection was	
conducted on 22 August 2013 during	
the loading and unloading operation at	
Southeast Quay of Chek Lap Kok, the	
construction works conducted under	
Contract No. HY/2011/09 complied	
with the conditions in the CNP No.	
GW-RS0895-13.	