

Entrusted Portion of Widening of Tolo Highway / Fanling Highway between Island House Interchange and Fanling Stage 2

Quarterly EM&A Report

February 2015 to April 2015

Meinhardt Infrastructure and Environment Limited

Entrusted Portion of Widening of Tolo Highway / Fanling Highway between Island House Interchange and Fanling Stage 2

Quarterly EM&A Report

(February 2015 to April 2015)

Certified by:	Fredrick Leong
Position:	Environmental Team Leader
Date:	13 May 2015

Our ref AFK/TK/jn/bw/T329380/22.05/L-0071

т 2828 5919

terence.kong@mottmac.com.hk

Your ref

Hyder-Arup-Black & Veatch Joint Venture c/o Hyder Consulting Limited 47/F Hopewell Centre 183 Queen's Road East Wanchai, Hong Kong

Dear Sir,

13 May 2015 By Fax (2805 5028) & Post

Attn: Mr. James Penny

EM&A for Widening of Tolo Highway/Fanling Highway between Island House Interchange and Fanling Stage 2 (between Tai Hang to Wo Hop Shek Interchange) – Entrusted Works Environmental Permit No. EP-324/2008/C Quarterly EM&A Summary Report for February 2015 to April 2015 for the portion of Stage 2 works entrusted to CEDD under Contract No. CV/2012/09

We refer to the Quarterly EM&A Summary Report for February 2015 to April 2015 for the Project received on 11 and 12 May 2015 submitted by ET via email. We confirm we have no comment.

Yours faithfully

for MOTT MACDONALD HONG KONG LIMITED

Terence Kong

Independent Environmental Checker

c.c. HyD - Mr. Chung Lok Chin (Fax: 2714 5198) / Ms. Jackei Yin (Fax: 2761 4864)

CEDD/BCP - Mr. Desmond Lam (Fax: 3547 1659)

AECOM - Mr. Alan Lee (Fax: 3922 9797)

Meinhardt Infrastructure and Environment Limited – Mr. Fredrick Leong (Fax: 2540 1580)

Date	Revision	Prepared By	Checked By	Approved By
13 May 2015	0	lvan TING Cipdy KWOK	Fredrick LEONG	Helen COCHRANE
		for ly		$-1/h\sim$
			·	

Contents

	P	age
CUTIVE	SUMMARY	i
INTRO	DUCTION AND PROJECT INFORMATION	1
1.1	Background	1
1.2	Construction Programme and Activities	1
1.3	Project Organisation	2
1.4	Purpose of the Report	2
SUMN	IARY OF EM&A REQUIREMENTS	3
2.1	Monitoring Requirements	3
2.2	Environmental Mitigation Measures	3
SUMN		3
3.1	Monitoring Data	3
3.2	Summary of Monitoring Exceedances	4
WAST		5
ENVIR	ONMENTAL NON-CONFORMANCE	5
CONC	LUSION, COMMENTS AND RECOMMENDATIONS	5
	, and the second	
- 4 T - -		
	Monitoring Parameter	
	, ,	
0 0.2	Commany of Exposuration Events in the Hoporting Quarter	
of Figu	rae	
_		y
ro 0	between Island House Interchange and Fanling – Stage 2	
re Z	Environmental Monitoring Locations	
of Ann	andiasa	
endix C	Implementation Schedule of Environmental Mitigation Measures (EMIS)	
		ıs
	INTRO 1.1 1.2 1.3 1.4 SUMM 2.1 2.2 SUMM 3.1 3.2 WAST ENVIR CONC of Table 1.1 1e 2.1 1e 3.1 1e 3.2 of Figure 1 Ire 2 of Appendix A endix B endix C endix D endix E endix F	INTRODUCTION AND PROJECT INFORMATION 1.1 Background

EXECUTIVE SUMMARY

This report documents the findings of EM&A works conducted in the quarter between 1 February 2015 and 30 April 2015..

The impact stage EM&A programme for the Project includes air quality and noise monitoring.

The EM&A programme was carried out by the ET in accordance with the EM&A Manual requirements. It is concluded from the environmental monitoring and audit works that adequate environmental mitigation measures have been implemented by the civil works contractors where appropriate in the reporting quarter.

In the reporting quarter, 1 exceedance event was recorded. No necessary remedial actions have been taken.

No environmental non-compliance was recorded in the reporting quarter. No environmental complaint was received. No environmental related prosecution or notification of summons were received in the reporting quarter.

The box culvert works have been partially completed by the end of March 2014 except the last construction activity, i.e. installation of a base slab at Box Culvert ID4. Due to the loading requirement of a fresh water main under the box culvert, installation of the base slab at Box Culvert ID4 has to be scheduled in November 2015 after the utilities diversions were completed, and therefore the construction works were temporary suspended. The 4-week post construction water quality monitoring will be conducted after the installation of the base slab finishes, hence the completion of the box culvert works.

As such, impact monitoring for water quality was not necessary in the reporting quarter due to temporary suspension of the construction works and is anticipated to be resumed in November 2015 during the course of remaining box culvert works.

- i -

1 INTRODUCTION AND PROJECT INFORMATION

1.1 Background

- 1.1.1 The Project is a Designated Project under the Environmental Impact Assessment Ordinance (EIAO) (Cap. 499). An Environmental Impact Assessment (EIA) Report together with an Environmental Monitoring and Audit (EM&A) Manual were approved on 14 July 2000 (Register Number: EIA-043/2000). The Project is governed by an Environmental Permit (EP) (EP-324/2008) which was granted on 23 December 2008. A variation of EP (VEP) was applied and the VEP (EP-324/2008/A) was subsequently granted on 31 January 2012. An additional VEP has been applied on 24 February 2014 and the VEP (EP-324/2008/B) was subsequently granted on 17 March 2014. Furthermore, an additional VEP has been applied on 9 March 2015 and the VEP (EP-324/2008/C) was subsequently granted on 27 March 2015.
- 1.1.2 Chun Wo Construction & Engineering Co Ltd (Chun Wo) was commissioned by the Civil Engineering and Development Department (CEDD) as the Civil Contractor for the Entrusted Portion of Widening of Tolo Highway/Fanling Highway between Island House Interchange and Fanling Stage 2. Meinhardt Infrastructure & Environment Ltd (MIEL) has been appointed by Chun Wo as the Environmental Team (ET) to fulfill the corresponding EM&A requirements pursuant to Environmental Permit No. EP-324/2008/C in accordance with the Updated EM&A Manual (dated March 2015) for Widening of Tolo Highway/Fanling Highway between Island House Interchange and Fanling Stage 2. The EM&A programme commenced in 5 November 2013.
- 1.1.3 **Figure 1** shows the works areas for the Entrusted Portion of Widening of Tolo Highway/Fanling Highway between Island House Interchange and Fanling Stage 2.

1.2 Construction Programme and Activities

1.2.1 The construction programme is presented in **Appendix A**. The major construction activities undertaken in the reporting guarter are summarized below:

- 1 -

- Abutment construction for Bridge E;
- Box Culvert inlet structure;
- Cable detection and trial trenches:
- Erection of Temporary support at DSD nullah for Bridge E;
- Filling Works at Tong Hang East;
- Lagging wall and capping beam for bored pile wall;
- Storm drains laying;
- Diversion of DN600;
- Pier / Pier table Construction:
- Pile Cap works;
- Piling Works;

- Road works at Fanling Highway;
- Sewer works at TWSRW;
- Socket H-pile load test;
- Utilities duct laying;
- Viaduct segment erection;
- Water pipes laying;
- Tree felling works;
- Catch Fence Erection;
- Demolition of central divider at Fanling Highway;
- E & M work for new valve control & Telemetry House;
- Noise barrier construction;
- Pre-drilling;

1.3 Project Organisation

1.3.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project, together with the general enquiry hotline, are summarised in **Table 1.1**.

Table 1.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telepho ne	Fax
	Engineer's	Senior Resident Engineer	Mr. Alan Lee	2171 3303	2171
AECOM	Representative	Resident Engineer (Environmental)	Mr. Perry Yam	2171 3350	3498
Mott MacDonal d	Independent Environmental Checker (IEC)	IEC	Mr. Terence Kong	2828 5919	2827 1823
Chun Wa	Contractor	Site Agent	Mr. Daniel Ho	2638 6144	2638 7077
Chun Wo	Contractor	Environmental Officer	Mr. Victor Huang	2638 6181	
Meinhardt	Environmental Team (ET)	ET Leader	Mr. Fredrick Leong	2859 1739	2540 1580
Enquiry Hotline	General Enquiry		Ms Helena Mak	6355 1731	

1.4 Purpose of the Report

1.4.1 This is the Quarterly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period between 1 February 2015 and 30 April 2015.

- 2 -

2 SUMMARY OF EM&A REQUIREMENTS

2.1 Monitoring Requirements

2.1.1 In accordance with the Updated EM&A Manual, environmental parameters including Air Quality and Noise have been monitored. The specific parameters, monitoring frequency and the respective Action and Limit Levels are given in **Table 2.1** and the location of the monitoring station is shown in the **Figure 2**.

Table 2.1 Monitoring Parameter

Parameter	Unit	Action Level	Limit Level	Frequency	
	Air Quality				
1-hour TSP	μg/m³	292.7	500	Three times every 6 days	
24-hour TSP	μg/m³	170.3	260	Once every 6 days	
		Construction	n Noise		
Leq 30min	dB(A)	When one documented valid complaint is received	75	Once every Week	

Temporary Suspension of Box Culvert Works and Water Quality Monitoring

- 2.1.2 The box culvert works have been partially completed by the end of March 2014 except the last construction activity, i.e. installation of a base slab at Box Culvert ID4. Due to the loading requirement of a fresh water main under the box culvert, installation of the base slab at Box Culvert ID4 has to be scheduled in November 2015 after the utilities diversions were completed, and therefore the construction works are temporary suspended. The 4-week post construction water quality monitoring will be conducted after the installation of the base slab finishes, hence the completion of the box culvert works.
- 2.1.3 As such, impact monitoring for water quality was not necessary in the reporting quarter due to temporary suspension of the construction works and is anticipated to be resumed in November 2015 during the course of remaining box culvert works.

2.2 Environmental Mitigation Measures

2.2.1 Environmental mitigation measures have been recommended in the EM&A Manual and are given in **Appendix C**. The implementation status for the reporting quarter is also given in the Appendix.

3 SUMMARY OF EM&A Monitoring Data

3.1 Monitoring Data

3.1.1 Monitoring has been conducted in accordance with the specification in the EM&A Manual in the reporting quarter. Meteorological data for the reporting quarter have been extracted from Hong Kong Observatory and are given in **Appendix D**. Monitoring data with graphical presentation for the reporting quarter have been given in **Appendix E**. A summary on the monitoring results has also been given in **Table 3.1**.

- 3 -

Table 3.1 Summary of Monitoring Data in the Reporting Quarter

Monitoring Location	Minimum	Maximum	Average		
Air Quality					
	1 hour Total Suspended Particulate				
SR77	69.2μg/m ³	161.6μg/m³	112.4μg/m ³		
	24 hour Total Sus	spended Particulate			
SR77	54.2μg/m ³	138.9μg/m³	98.1μg/m ³		
Construction Noise					
SR77	68.0dB(A)	76.5dB(A)	71.3dB(A)		

3.2 Summary of Monitoring Exceedances

3.2.1 The number of exceedances event recorded in the reporting quarter is summarized in **Table 3.2**.

Table 3.2 Summary of Exceedance Events in the Reporting Quarter

Parameter		Number of Exceedances Events	Number of Project Related Exceedance Events		
	Air (Quality			
1-hour Total Suspended	Action Level	0	0		
Particulates	Limit Level	0	0		
24-hour Total Suspended	Action Level	0	0		
Particulates	Limit Level	0	0		
	Construction Noise				
Log 20min	Action Level	0	0		
Leq 30min	Limit Level	1	0		

- 3.2.2 The Contractor has been reminded to strengthen the mitigation measures including:
 - Water treatment facilities should be properly maintained and avoid untreated water entering stormdrain.
 - Secondary containment should be provided for all powered mechanical equipment within the construction site.
 - A spill response procedure shall be in place and absorption material available for minor spillages.
 - Provide proper chemical and chemical waste management.
 - Good housekeeping should be maintained and general refuse should be removed regularly.
 - Water spraying or covering of tarpaulin should be properly implemented whenever necessary for the unpaved roads, access roads and construction areas.
 - All vehicles should be washed to remove any dusty materials before leaving the construction site.
 - Wheel washing facilities should be properly maintained to ensure proper functioning.

- 4 -

Plant and equipment should be properly maintained to avoid emitting black smoke.

4 WASTE MANAGEMENT

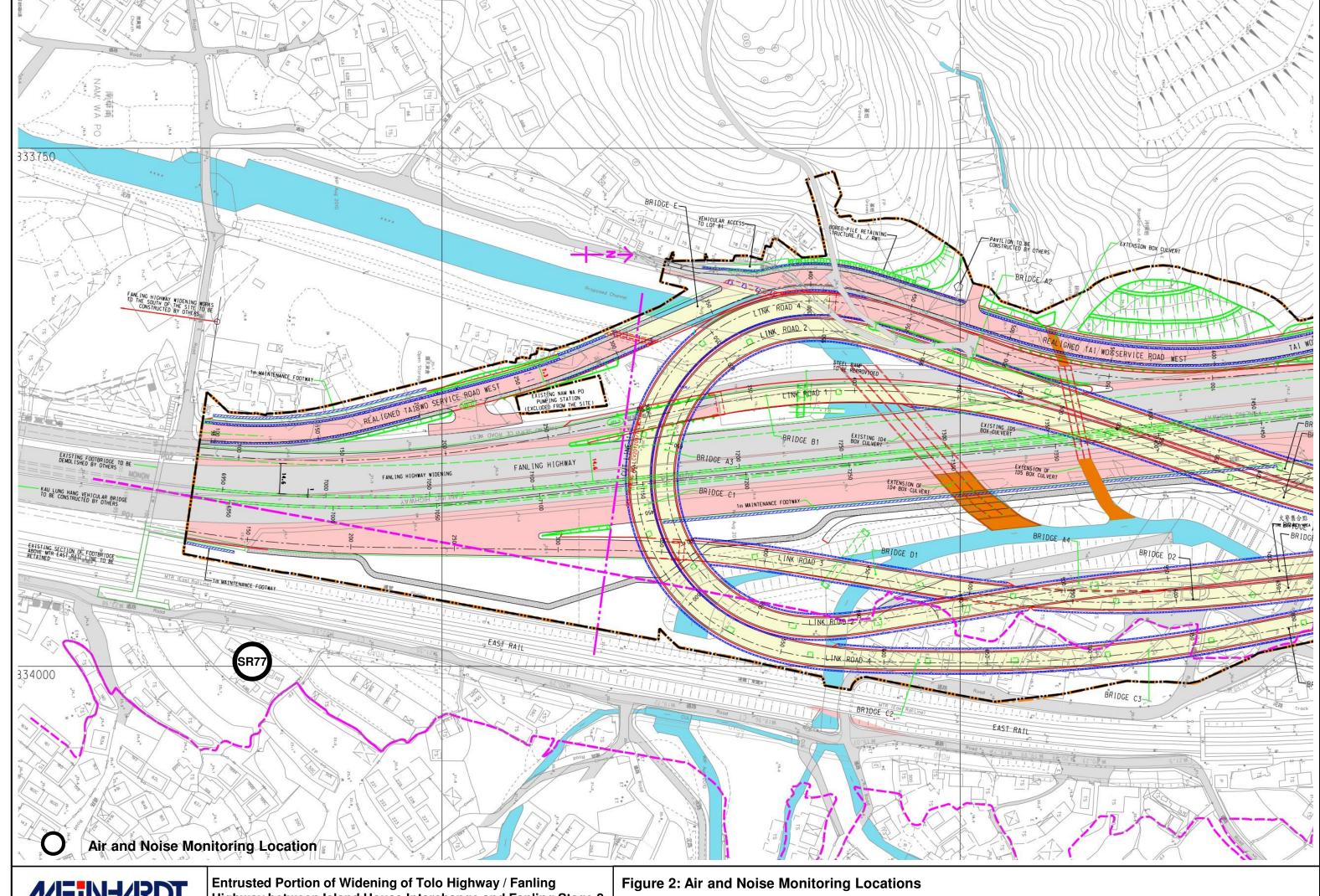
- 4.1.1 The Contractor has registered as a chemical waste producer of the Project. The C&D materials and waste sorting were carried out on-site. Receptacles were provided for general refuse collection.
- 4.1.2 During the reporting quarter, a total of 9,931m³ of excavated material has been generated. 5,643m³ of inert C&D materials was disposed of at public fill to Tuen Mun Area 38, while 4,096m³ of inert C&D materials was reused on site. 215m³ of general refuse was disposed of at North East New Territories (NENT) Landfill. 1,039m³ of plastics and no paper/cardboard packaging were collected by recycling contractor in the reporting quarter. 2,767m³ of metals were collected by recycling contractor in the reporting quarter. 9,000L of chemical waste was collected by licensed contractor in the reporting quarter. Details of the waste management data are presented in **Appendix F**.

5 ENVIRONMENTAL NON-CONFORMANCE

5.1.1 No environmental non-compliance was recorded in the reporting quarter. No environmental complaint was received. No environmental related prosecution or notification of summons was received in the reporting quarter. The summary for the non-compliance, complaints and prosecutions is provided in **Appendix G**.

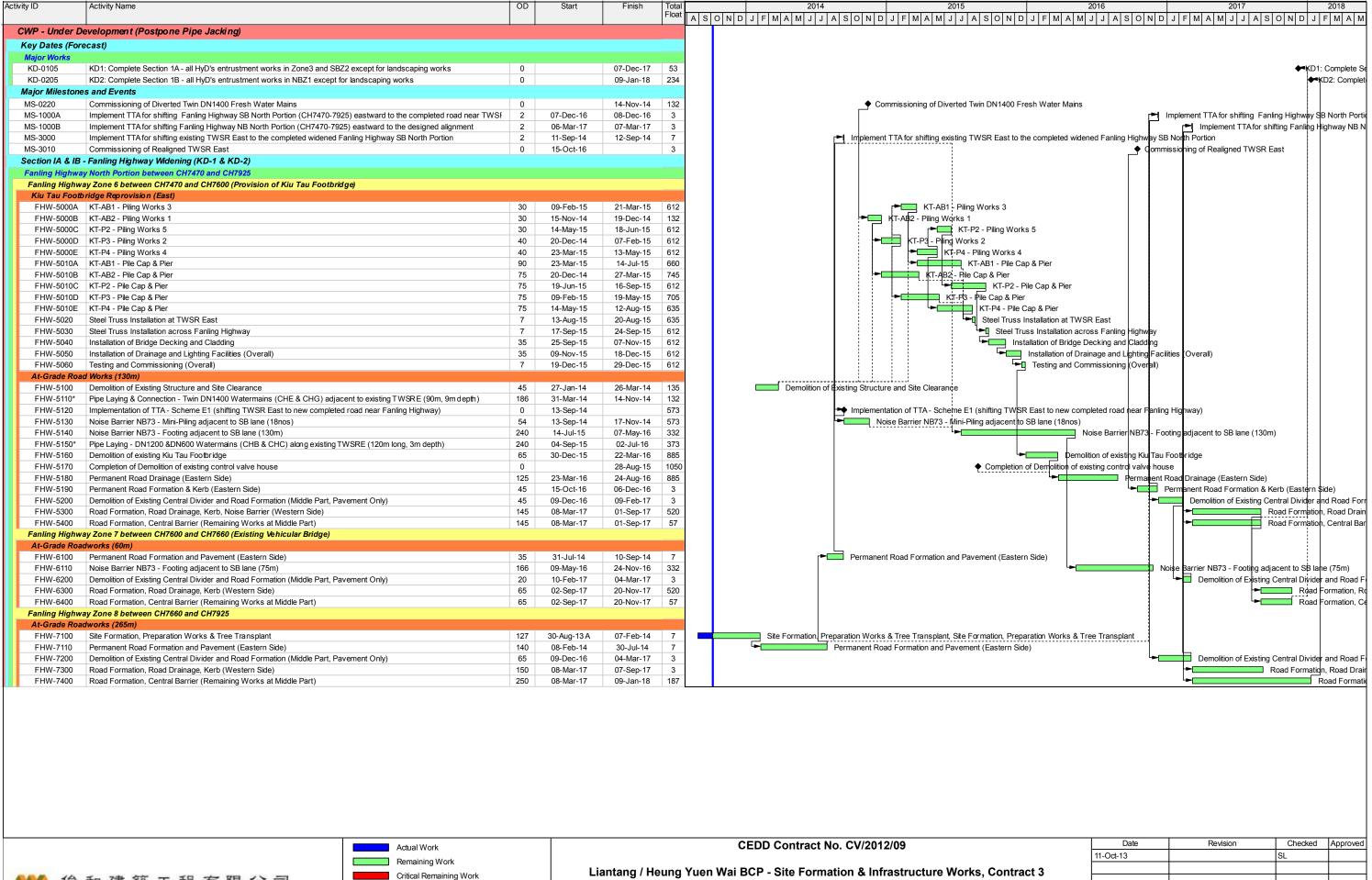
6 CONCLUSION, COMMENTS AND RECOMMENDATIONS

- 6.1.1 The EM&A programme was carried out by the ET in accordance with the EM&A Manual requirements. It is concluded from the environmental monitoring and audit works that adequate environmental mitigation measures have been implemented by the civil works contractors where appropriate in the reporting quarter.
- 6.1.2 In the reporting quarter, 1 exceedance event has been recorded. .
- 6.1.3 No environmental non-compliance was recorded in the reporting quarter. No environmental complaint was received. No environmental related prosecution or notification of summons were received in the reporting guarter.
- 6.1.4 The box culvert works have been partially completed by the end of March 2014 except the last construction activity, i.e. installation of a base slab at Box Culvert ID4. Due to the loading requirement of a fresh water main under the box culvert, installation of the base slab at Box Culvert ID4 has to be scheduled in November 2015 after the utilities diversions were completed, and therefore the construction works are temporary suspended. The 4-week post construction water quality monitoring will be conducted after the installation of the base slab finishes, hence the completion of the box culvert works.
- 6.1.5 As such, impact monitoring for water quality was not necessary in the reporting quarter due to temporary suspension of the construction works and is anticipated to be resumed in November 2015 during the course of remaining box culvert works.


- 5 -

Figure

Contract No. CV/2012/09 **俊和建築工程有限公司** Liantang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD. SETTING OUT POINTS 833867.6259 837368.5638 833945.6833 837375.1412 C 833721.8117 838310.5250 D 833782.3083 838375.1303 ENGLINE OF GRACES IS E TO ME COMO TRUCTED BY OTHERS Works Area for Entrusted Portion CV201209-T-CWC-SK-001g_AD_edit.dgn 22/1/2014 17:10:34

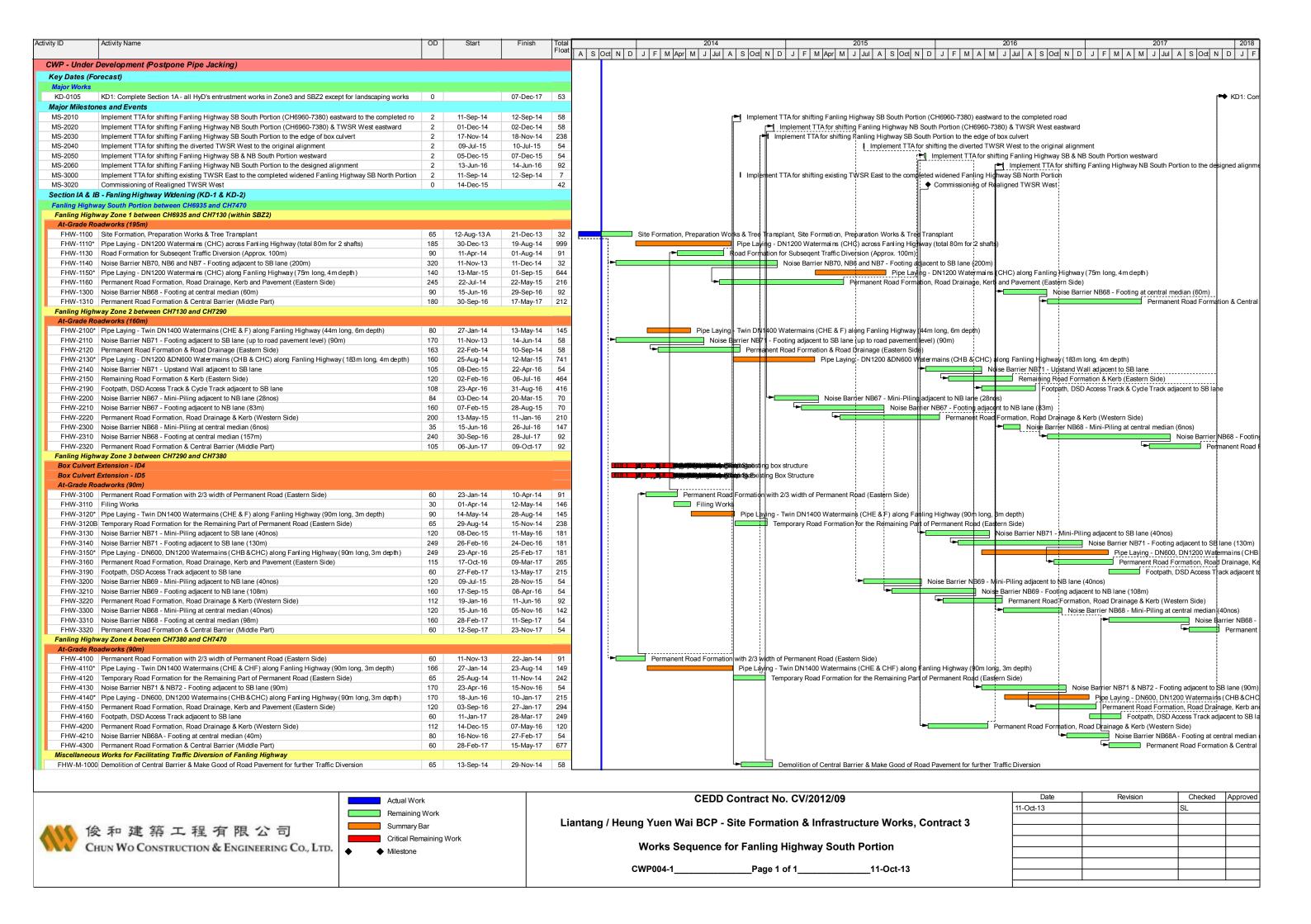


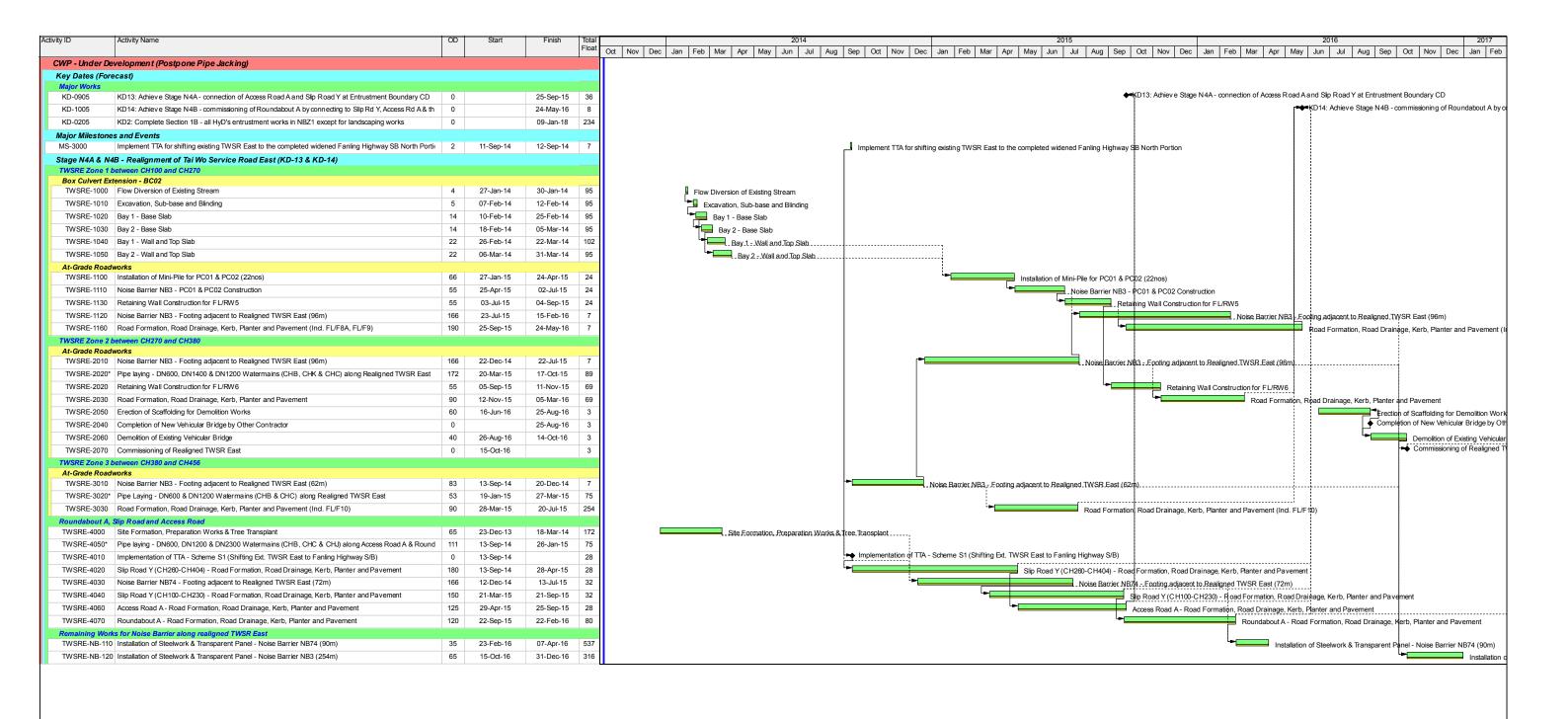
MEIN-ARDT

Highway between Island House Interchange and Fanling Stage 2

Appendix A Construction Programme

CWP004-1

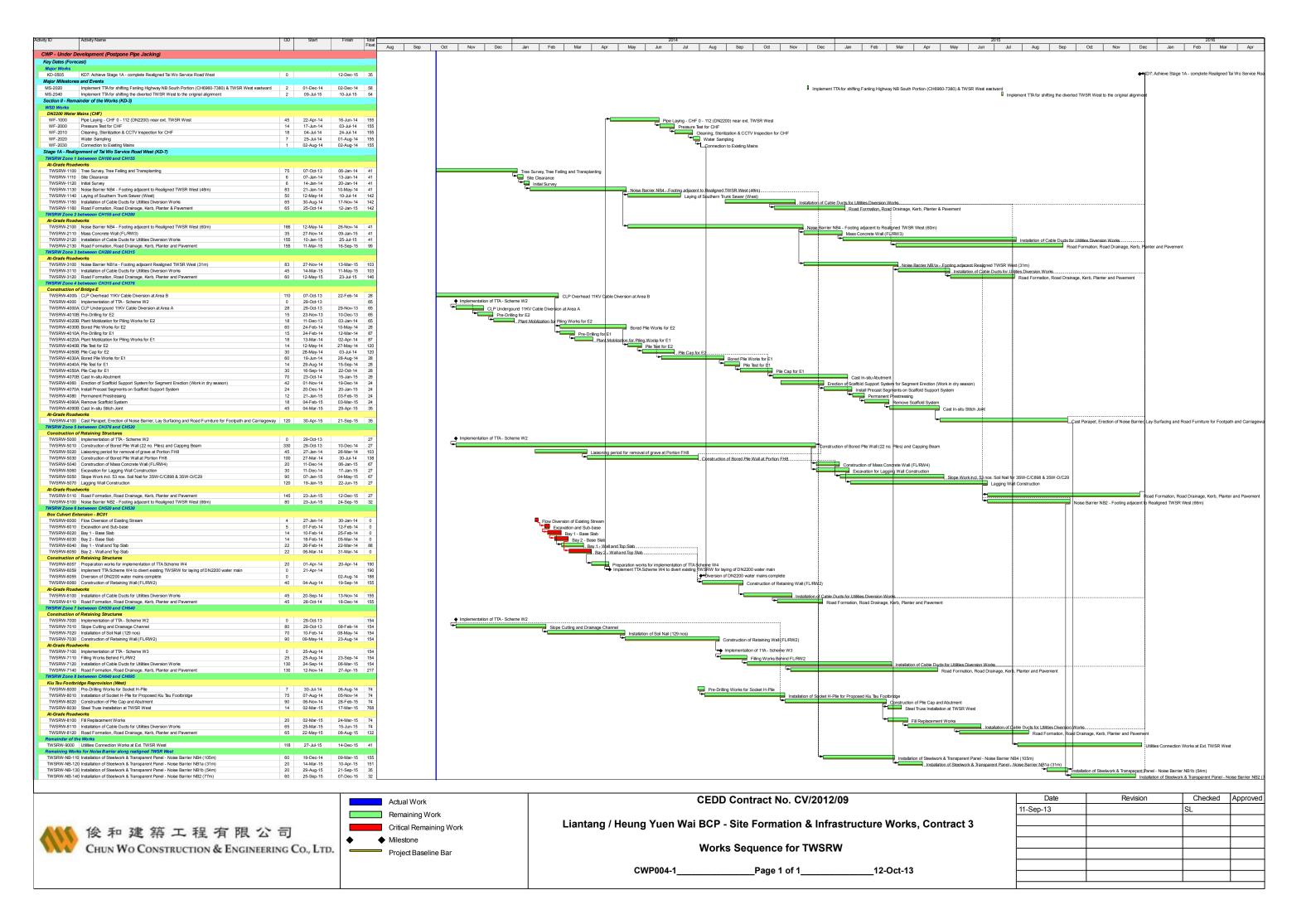



• •	Milestone
	Critical Remaining Work
	Remaining Work
	Actual Work

Works Sequence for Fanling Highway North Portion

Page 1 of 1 11-Oct-13

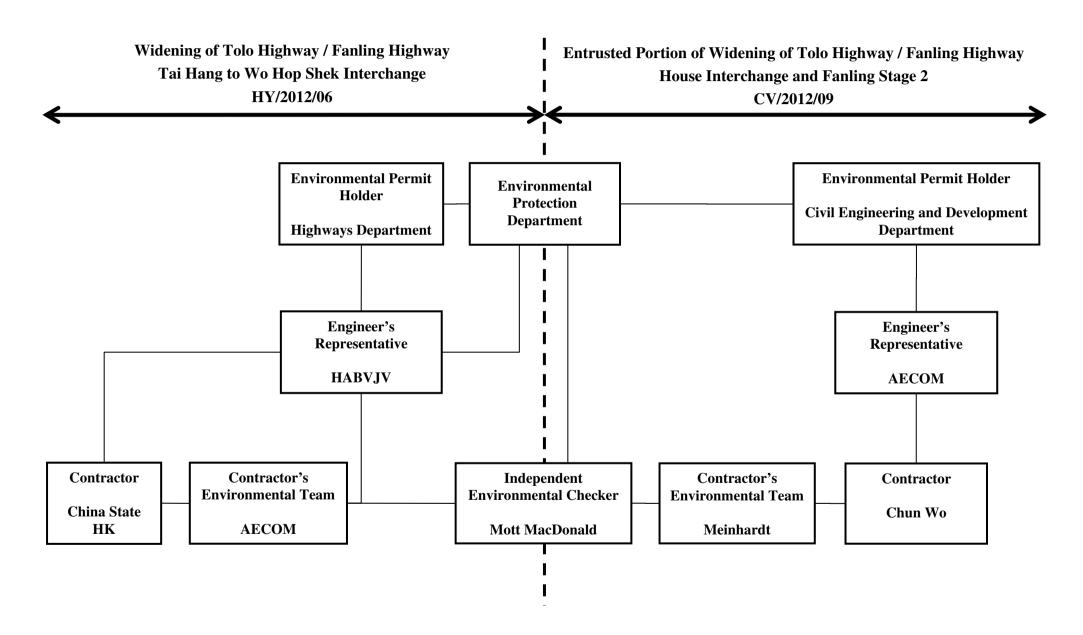
1-Oct-13	SL	


CEDD Contract No. CV/2012/09

Liantang / Heung Yuen Wai BCP - Site Formation & Infrastructure Works, Contract 3

Works Sequence for TWSRE

CWP004-1_______Page 1 of 1______11-Oct-13


Date	Revision	Спескеа	Approved
11-Oct-13		SL	

Appendix B Project Organization Structure

Appendix C Implementation Schedule of Environmental Mitigation Measures (EMIS)

Impact	Environmental Protection Measures	Timing	Responsibility	Implementation Status #
Air Quality				
Air Quality during Construction	Restricting heights from which materials are dropped, as far as practicable to minimize the fugitive dust arising from unloading/loading.	During Construction	Contractor	✓
	• All stockpiles of excavated materials or spoil of more than 50m³ shall be enclosed, covered or dampened during dry or windy conditions.			Rem
	Effective water sprays shall be used to control potential dust emission sources such as unpaved haul roads and active construction areas.			Rem
	All spraying of materials and surfaces shall avoid excessive water usage.			✓
	 Vehicles that have the potential to create dust while transporting materials shall be covered, with the cover properly secured and extended over the edges of the side and tail boards. 			✓
	Materials shall be dampened, if necessary, before transportation.			✓
	Travelling speeds shall be controlled to reduce traffic induced dust dispersion and re-suspension within the site from the operating haul trucks.			✓
	Vehicle washing facilities shall be provided to minimise the quantity of material deposited on public roads.			Rem and Obs
Air Quality during Operation	Not required	N/A	N/A	N/A
Noise	7.101.1000.100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1771	1 . 4
Noise during Construction	Use of silenced plant or plant equipped with mufflers or dampers in substitute of ordinary plant.	During Construction	Contractor	√
	Reduce the number of equipment and their percentage on-time.			✓
Noise during Operation	Not required	N/A	N/A	N/A
Water Quality				
Water Quality during	Road Widening Works, Earthworks and Culvert Extension Works	During Construction	Contractor	✓
Construction	Wastewater generated from any concrete batching washdown of equipment or similar activities should be discharged into foul sewers, after the removal of settable solids, and pH adjustment as necessary. All sewage discharges from the study area should meet the TM standards and approval from EPD through the licensing process is required.			

Impact	Environmental Protection Measures	Timing	Responsibility	Implementation Status #
	Sand traps, oil interceptors and other pollution prevention installations should be provided, properly cleaned and maintained.			√
	 Runoff from exposed working areas, unfinished slopes and from unlined temporary channels should be directed to stilling basins and/or silt traps before discharging to the drainage outfalls. 			Obs
	 Regular inspections of stilling basins and/or silt traps is required to ensure that sediment is not conveyed into the existing drainage system. 			✓
	Open stockpiles should be covered with a tarpaulin cover.			✓
	 During the wet season, any exposed top soils should be covered with a tarpaulin, shotcreted or hydroseeded. 			✓
	 Sand and silt from wash-water from vehicle washing should be settled out before discharging into storm drains. 			✓
	Fuels should be stored in bunded areas such that spillage can be easily collected.			Rem
Water Quality during Operation	Not required	N/A	N/A	N/A
Waste Management		T = .	T =	
Waste Management during Construction	General Waste Transport of wastes off site as soon as possible.	During Construction	Contractor	√
	Maintenance of accurate waste records.			✓
	Minimisation of waste generation for disposal (via reduction/recycling/re-use).			✓
	No on-site burning will be permitted.			✓
	Use of re-useable metal hoardings/signboards.			✓
	Vegetation from site clearance	During Construction	Contractor	✓
	Segregation of materials to facilitate disposal.			
	Mulching to reduce bulk and where possible review opportunities for the possible beneficial use within landscaping areas.			✓

Impact	Environmental Protection Measures	Timing	Responsibility	Implementation Status #
	Demolition Wastes	During Construction	Contractor	√
	Segregation of materials to facilitate disposal.			
	Appropriate stockpile management.			✓
	Excavated Materials	During Construction	Contractor	✓
	Segregation of materials to facilitate disposal / reuse.			
	Appropriate stockpile management.			✓
	Re-use of excavated material on or off site (where possible).			✓
	 Special handling and disposal procedures in the event that contaminated materials are excavated. 			N/A
	Construction Wastes	During Construction	Contractor	Obs
	• Segregation of materials to facilitate recycling/reuse (within designated area in appropriate containers/stockpiles).			
	Appropriate stockpile management.			✓
	Planning to reduce over ordering and waste generation.			✓
	 Recycling and re-use of materials where possible (e.g. metal, wood from formwork) 			✓
	• For material which cannot be re-used/recycled, collection should be carried out by an approved waste contractor for landfill disposal.			✓
	Bentonite Slurries	During Construction	Contractor	N/A
	Bentonite slurries should be reused as far as possible.			
	Disposal in accordance with Practice Note For Professional Persons ProPECC PN 1/94.			N/A
	Chemical Wastes	During Construction	Contractor	Rem and Obs
	Storage within locked, covered and bunded area.			
	• The storage area shall not be located adjacent to sensitive receivers e.g. drains.			✓

Impact	Environmental Protection Measures	Timing	Responsibility	Implementation Status #
	Minimise waste production and recycle oils/solvents where possible.			✓
	A spill response procedure shall be in place and absorption material available for minor spillages.			Obs
	Use appropriate and labelled containers.			Rem
	Educate site workers on site cleanliness/waste management procedures.			Rem
	If chemical wastes are to be generated, the contractor must register with EPD as a chemical waste producer.			✓
	The chemical wastes shall be collected by a licensed chemical waste collector.			✓
	Municipal Wastes	During Construction	Contractor	✓
	Waste shall be stored within a temporary refuse collection facility, in appropriate containers prior to collection and disposal.			
	Regular, daily collections are required by an approved waste collector.			✓
Waste Management during Operation	Not required.	N/A	N/A	N/A
Ecology				
Ecology during Construction	Accurate Delineation of Works Area	During Construction	Contractor	✓
	Boundaries of proposed works areas shall be clearly identified and separated from external areas by a physical barrier to prevent encroachment of adjacent habitats.			
	• Individual trees which fall within the works areas but which work plans show do not require removal are to be retained and fenced off to maximise protection.		✓	
	<u>Dust generation</u>	During Construction	Contractor	✓
	There are a number of measures which shall be taken as specified in the Air Pollution Control (Construction Dust) Regulation on 'Dust Control Requirements, including the following key measures to be applied during construction:			
	vehicle washing facilities to be provided at every discernible or designated vehicle exit point;			

Impact	Environmental Protection Measures	Timing	Responsibility	Implementation Status #
	all temporary site access roads shall be sprayed with water to suppress dust as necessary;			✓
	all dusty materials should be sprayed with water immediately prior to any handling; and			✓
	• all debris should be covered entirely by impervious sheeting or stored in a sheltered debris collection area.			✓
	Surface Run-off	During Construction	Contractor	✓
	In general, mitigation measures shall be in accordance with ProPECC PN1/94 on 'Construction Site Drainage'. Key measures include:			
	Bund and cover stockpiles to avoid run-off;			
	Channel any run-off through a system of oil, grease and sediment / silt traps and reuse water on site where ever practical;		✓	✓
	All vehicle maintenance to be undertaken within a bunded area; and			N/A
	Maximise vegetation retention on-site to maximise absorption (minimise transport).			✓
Ecology during Operation	• To conduct compensatory ecological planting as specified in the latest landscape plans approved by EPD (Clause 2.6 of the Environmental Permit refers).	During Construction and operation	Contractor (during construction) / LCSD* (during operation)	N/A
			(Note: * The division of vegetation planting and maintenance responsibilities shall follow the guidelines stipulated in ETWB TCW No. 2/2004.)	
Landscape and Visual			,	
Landscape and Visual during Construction	Preservation of Existing Vegetation Trees identified for retention within the project limit would be protected during the works	During Construction	Contractor	✓
	The tree transplanting and planting works shall be implemented by approved Landscape Contractors			✓

Impact	Environmental Protection Measures	Timing	Responsibility	Implementation Status #
	Temporary Works Areas • Where feasible the works areas would be screened using hoarding and	During Construction	Contractor	√
	existing vegetation would be retained where possible to reduce the landscape and visual impacts arising from the construction activity. The landscape of these works areas would be restored following the completion of the construction phase.			
	<u>Hoarding</u>	During Construction	Contractor	✓
	• A hoarding would be erected where practicable in the most visually sensitive locations to screen the temporary construction works from the local VSRs.			
	Top Soils	During Construction	Contractor	N/A
	 The works will result in disturbance to extensive areas of topsoil. Topsoil worthy of retention should be stockpiled for use following completion of the civil engineering works. It should either be temporarily vegetated with hydroseeded grass or turned over on a regular basis. 			
	Protection of Important Landscape Features	During Construction	Contractor	N/A
	 Important features such as temples, Island House and kilns within the study area, although remote from the proposed works retained and adequately protected. 			
Landscape and Visual during Operation	Not required.	N/A	N/A	N/A

Appendix D Meteorological Data Extracted from Hong Kong Observatory

Extract of Meteorological Observations for Sheung Shui Automatic Weather Station, February 2015 (Table 1)

	Mean		Air Temperatur	e	Mean	Re	lative Humid	ity
Date	Pressure at M.S.L. (hPa)	Max. (deg C)	Mean (deg C)	Min. (deg C)	Dew Point Temperature (deg C)	Max. (%)	Mean (%)	Min. (%)
Feb 1	1026.6	18.5	14.5	12.3	9.7	93	73	56
Feb 2	1025.5	24.2	16.6	12.7	11.6	92	74	47
Feb 3	1024.5	24.1	17.8	14.9	13.6	89	77	53
Feb 4	1023.7	20.2	16.2	12.7	11.2	93	73	55
Feb 5	1025.8	17.3	12.9	11.4	4.2	66	56	45
Feb 6	1024.8	16.3	12.9	10.1	6.3	77	6 4	54
Feb 7	1021.8	20.9	16.2	13.7	10.3	81	68	50
Feb 8	1023.8	20.2	15.5	12.6	2.3	67	43	26
Feb 9	1025.2	20.2	14.9	11.6	8.2	83	65	34
Feb 10	1022.1	19.7	14.3	9.8	8.6	92	70	47
Feb 11	1018.9	19.4	15.4	11.1	9.7	88	70	50
Feb 12	1018.4	25.1	16.1	10.2	7.6	92	62	20
Feb 13	1018.3	25.5	16.8	10.0	5.1	87	51	22
Feb 14	1016.7	23.3	19.3	15.1	8.9	73	52	35
Feb 15	1016.3	20.3	19.0	17.6	17.0	98	88	70
Feb 16	1016.6	23.2	19.3	16.2	17.4	99	89	72
Feb 17	1016.6	25.1	18.8	15.5	16.1	99	85	56
Feb 18	1018.8	21.0	18.7	17.1	13.1	91	70	60
Feb 19	1019.8	19.4	17.8	16.9	12.1	82	69	59
Feb 20	1018.0	23.0	18.6	16.2	15.1	88	80	65
Feb 21	1015.2	24.4	20.5	18.2	18.2	94	87	72
Feb 22	1015.7	24.4	20.8	18.8	19.1	98	90	75
Feb 23	1015.1	21.5	19.3	18.4	17.9	99	92	79
Feb 24	1014.3	24.0	20.2	19.0	18.3	95	89	74
Feb 25	1013.7	22.3	20.6	19.6	19.0	97	91	82
Feb 26	1013.8	26.7	22.5	19.6	19.6	97	84	65
Feb 27	1015.5	22.0	19.3	18.3	17.6	96	90	86
Feb 28	1016.9	21.3	19.2	18.2	16.5	94	84	73
Mean	1019.4	21.9	17.6	14.9	12.6	89	75	57
Maximum	1026.6	26.7	22.5	19.6	19.6	99	92	86
Minimum	1013.7	16.3	12.9	9.8	2.3	66	43	20

Extract of Meteorological Observations for Sheung Shui Automatic Weather Station, February 2015 (Table 2)

Date	Total Rainfall (mm)	Prevailing Wind Direction (degrees)	Mean Wind Speed (km/h)
Feb 1	0.0	***	****
Feb 2	0.0	***	****
Feb 3	0.0	***	****
Feb 4	0.0	***	****
Feb 5	0.0	***	****
Feb 6	0.0	***	****
Feb 7	0.0	***	****
Feb 8	0.0	***	****
Feb 9	0.0	***	****
Feb 10	0.0	***	****
Feb 11	0.0	***	****
Feb 12	0.0	***	****
Feb 13	0.0	***	****
Feb 14	0.0	***	****
Feb 15	0.5	***	****
Feb 16	0.0	***	****
Feb 17	0.0	***	****
Feb 18	0.0	***	****
Feb 19	0.0	***	****
Feb 20	0.0	***	****
Feb 21	0.0	***	****
Feb 22	7.0	***	****
Feb 23	3.5	***	****
Feb 24	0.0	***	****
Feb 25	0.0	***	****
Feb 26	0.0	***	****
Feb 27	0.0	***	****
Feb 28	0.0	***	****
Mean		***	****
Total	11.0		
Maximum	7.0		****
Minimum	0.0		****

^{***} unavailable

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected

[#] missing (less than 24 hourly observations a day)

Daily Extract of Meteorological Observations , March 2015 - Sheung Shui

Year 2015 Month 3 Go

		Air 7	empera				S .		
Day	Mean Pressure (hPa)	Absolute Daily Max (deg. C)	Mean (deg. C)	Absolute Daily Min (deg. C)	Mean Dew Point (deg. C)	Mean Relative Humidity (%)	Total Rainfall (mm)	Prevailing Wind Direction (degrees)	Mean Wind Speed (km/h)
01	1019.8	21.9	18.8	15.4	11.5	64	0.0	***	***
02	1016.3	18.4	17.4	16.8	13.6	79	0.0	***	***
03	1012.2	24.6	19.8	16.3	17.1	84	0.0	***	***
04	1015.3	19.3	16.4	14.3	14.5	88	0.5	***	***
05	1016.1	17.6	16.7	15.8	15.0	90	0.0	***	***
06	1017.0	17.9	17.0	15.1	15.7	92	0.0	***	***
07	1017.9	18.9	16.8	14.1	15.1	90	0.0	***	***
08	1017.6	21.2	19.2	17.5	16.0	82	0.0	***	***
09	1018.4	27.3	20.9	16.2	17.5	82	0.0	***	***
10	1021.9	22.2	18.0	15.8	11.9	68	0.0	***	***
11	1021.9	18.2	16.1	14.7	12.5	79	0.0	***	***
12	1020.9	15.7	14.7	13.3	13.2	91	8.0	***	***
13	1018.9	19.8	17.6	15.4	13.2	75	0.0	***	***
14	1018.2	21.0	19.8	18.1	16.9	83	0.0	***	***
15	1016.1	24.6	22.0	20.3	19.9	88	0.0	***	***
16	1015.2	28.1	23.1	20.6	20.7	87	0.0	***	***
17	1012.5	25.9	23.1	21.7	20.5	86	0.0	***	***
18	1011.2	27.7	24.0	21.9	21.2	85	0.0	***	***
19	1012.7	28.3	24.2	20.6	21.4	85	0.0	***	***
20	1015.0	28.3	23.6	19.8	20.4	84	0.0	***	***
21	1016.4	29.2	22.7	18.4	19.8	85	0.0	***	***
22	1017.5	23.4	21.3	19.8	17.2	78	0.0	***	***
23	1018.6	27.6	21.7	19.4	13.0	58	0.0	***	***
24	1022.3	24.5	20.0	18.3	14.8	73	0.0	***	***
25	1024.0	19.5	18.3	16.9	13.9	76	0.0	***	***
26	1024.1	21.3	19.1	17.3	14.9	77	0.0	***	***
27	1021.6	25.0	20.3	17.5	17.4	84	1.0	***	***
28	1018.1	28.0	21.4	17.4	17.1	78	0.0	***	***
29	1015.9	27.7	21.8	17.5	18.0	80	0.0	***	***
30	1014.4	28.4	24.1	21.2	20.2	80	0.0	***	***
31	1013.4	27.9	24.1	21.2	21.1	84	0.0	***	***

*** unavailable

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected

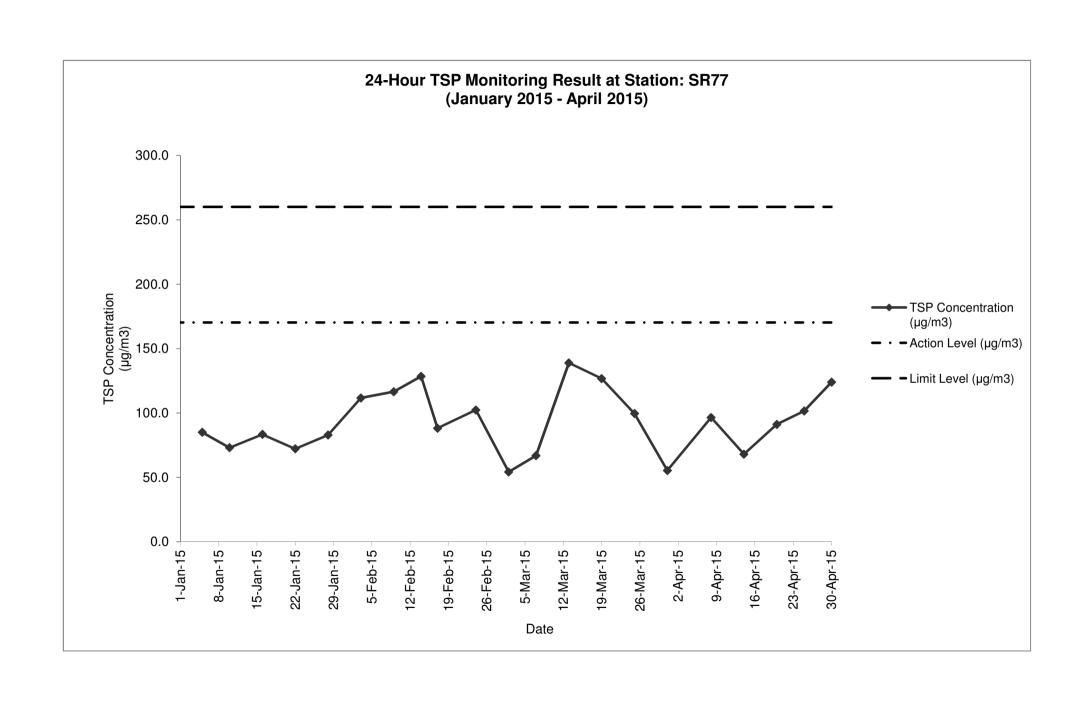
Daily Extract of Meteorological Observations, April 2015

Year 2015 ▼ Month 4 ▼ Go

				Hong Kong C	bservatory			
		Air	Tempera	ture			Mean	
Day	Mean Pressure (hPa)	Absolute Daily Max (deg. C)	Mean (deg. C)	Absolute Daily Min (deg. C)	Mean Dew Point (deg. C)	Mean Relative Humidity (%)	Amount of Cloud (%)	Total Rainfall (mm)
01	1012.2	27.2	24.4	22.7	22.1	87	80	0.0
02	1008.5	28.5	25.6	23.6	22.5	84	80	0.0
03	1007.6	26.9	25.9	25.0	23.0	84	82	Trace
04	1009.8	29.4	26.5	25.0	23.3	83	74	0.0
05	1011.3	30.6	26.0	24.0	22.1	80	38	0.0
06	1011.4	29.8	26.5	23.8	22.7	80	32	Trace
07	1013.7	27.1	24.9	22.0	21.8	83	81	0.1
08	1018.3	22.1	18.9	16.4	14.8	77	92	10.0
09	1017.8	19.4	18.0	15.9	16.1	89	94	1.3
10	1017.9	20.0	18.2	16.6	16.0	87	90	0.7
11	1019.1	17.9	17.1	16.4	16.6	97	100	52.0
12	1019.6	22.4	19.3	16.5	15.9	81	71	0.2
13	1018.7	27.2	22.4	18.6	13.1	57	9	0.0
14	1018.7	26.6	21.5	18.1	8.3	44	9	0.0
15	1016.1	27.5	22.1	18.4	12.5	56	15	0.0
16	1015.0	26.1	22.7	19.6	16.7	69	25	0.0
17	1012.4	27.4	23.7	20.7	18.8	75	52	0.0
18	1010.1	27.2	25.3	23.2	22.7	86	88	Trace
19	1008.6	27.5	26.6	25.8	23.5	83	88	Trace
20	1008.0	28.6	26.3	23.0	23.4	84	88	0.2
21	1012.7	25.7	23.7	22.5	19.1	75	81	Trace
22	1017.1	26.7	23.3	21.7	18.6	75	81	Trace
23	1018.4	23.6	22.6	22.1	16.0	66	88	Trace
24	1017.6	29.0	24.4	21.6	18.5	70	48	0.0
25	1017.1	27.2	23.9	22.2	19.6	77	52	0.0
26	1016.9	27.9	24.1	22.2	19.5	76	59	0.0
27	1014.3	30.3	24.8	21.8	20.7	79	27	0.0
28	1011.7	28.9	25.4	23.1	21.3	79	58	0.0
29	1011.1	30.1	26.6	24.3	22.7	80	66	0.0
30	1011.0	31.9	27.5	24.9	23.1	78	41	0.0
Mean/Total	1014.1	26.7	23.6	21.4	19.2	77	63	64.5
Normal§	1012.9	25.0	22.6	20.8	19.4	83	81	174.7

Appendix E Environmental Monitoring Data for Air and Noise

Appendix E Air Quality Monitoring Results and their Graphical Presentation

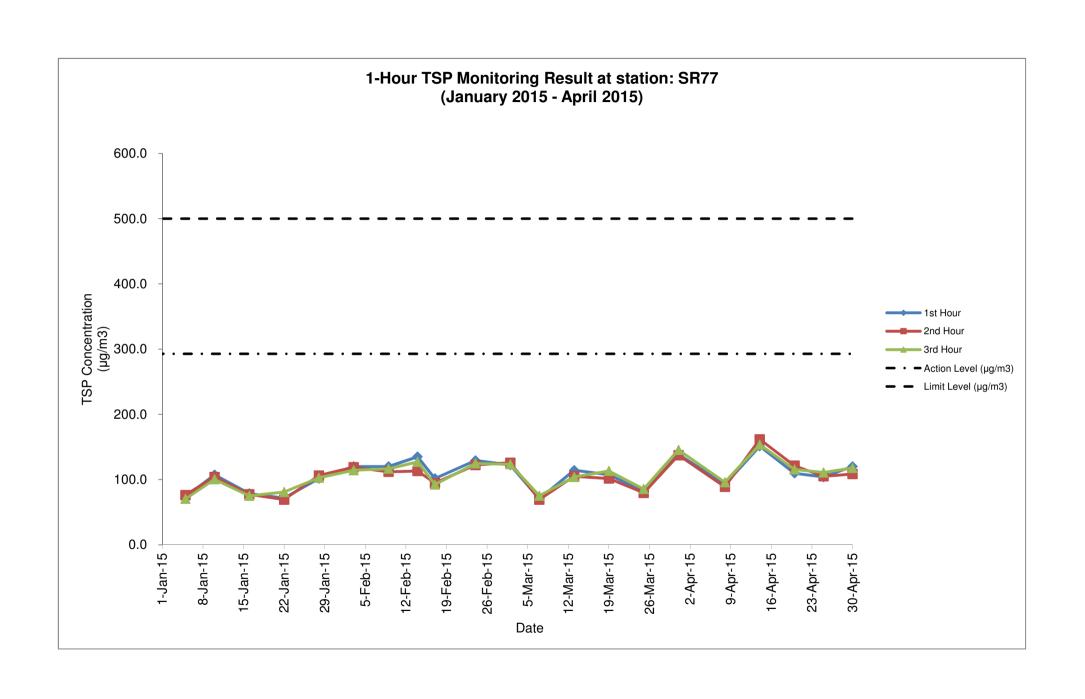

24-Hour TSP Monitoring Result at Station: SR77

Sampling Date	Weather Condition	Paper No.	W	t. of pape	r (g)	E	lapse Tim	ne	Flo	w Rate (C	FM)	Flov	v Rate (m³	/min)	Total Volume	TSP Concentratio	Action Level	Limit Level	Wind speed	Wind direction
Date	Condition		Initial Wt.	Final Wt.	Wt. of Dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	Initial	Final	Avg Flow Rate	(m³)	 (μg/m³)	(µg/m3)	(µg/m3)	m/s	uncetion
5-Jan-15	Fine	B15	2.8047	2.9814	0.1767	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	85.0	170.3	260.0	<5	N
10-Jan-15	Fine	B13	2.8025	2.9544	0.1519	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	73.0	170.3	260.0	<5	N
16-Jan-15	Fine	B11	2.8099	2.9833	0.1734	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	83.4	170.3	260.0	<5	N
22-Jan-15	Fine	B8	2.7922	2.9423	0.1501	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	72.2	170.3	260.0	<5	N
28-Jan-15	Fine	B7	2.7973	2.9697	0.1724	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	82.9	170.3	260.0	<5	N
3-Feb-15	Fine	B31	2.7855	3.0177	0.2322	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	111.7	170.3	260.0	<5	N
9-Feb-15	Fine	B32	2.7691	3.0114	0.2423	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	116.5	170.3	260.0	<5	N
14-Feb-15	Fine	B18	2.8089	3.0760	0.2671	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	128.4	170.3	260.0	<5	N
17-Feb-15	Cloudy	B19	2.8076	2.9909	0.1833	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	88.1	170.3	260.0	<5	N
24-Feb-15	Cloudy	B35	2.8219	3.0347	0.2128	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	102.3	170.3	260.0	<5	N
2-Mar-15	Cloudy	B34	2.8219	2.9347	0.1128	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	54.2	170.3	260.0	<5	N
7-Mar-15	Cloudy	B37	2.8120	2.9511	0.1391	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	66.9	170.3	260.0	<5	N
13-Mar-15	Fine	B39	2.7991	3.0880	0.2889	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	138.9	170.3	260.0	<5	N
19-Mar-15	Fine	B41	2.8002	3.0637	0.2635	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	126.7	170.3	260.0	<5	N
25-Mar-15	Cloudy	B43	2.7841	2.9911	0.2070	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	99.5	170.3	260.0	<5	N
31-Mar-15	Sunny	B65	2.8170	2.9321	0.1151	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	55.3	170.3	260.0	<5	N
8-Apr-15	Rainy	B67	2.8111	3.0118	0.2007	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	96.5	170.3	260.0	<5	N
14-Apr-15	Fine	B59	2.8093	2.9508	0.1415	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	68.0	170.3	260.0	<5	N
20-Apr-15	Cloudy	B60	2.8015	2.9910	0.1895	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	91.1	170.3	260.0	<5	N
25-Apr-15	Fine	B62	2.8018	3.0129	0.2111	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	101.5	170.3	260.0	<5	N
30-Apr-15	Fine	B64	2.7936	3.0513	0.2577	0.00	24.00	24.00	51	51	51.0	1.44	1.44	1.44	2079.59	123.9	170.3	260.0	<5	N

Summary For the Reporting Quarter (Feb 2015 - Apr 2015)							
Average	98.1						
Minimum	54.2						
Maximum 138.9							

Note:

No major dust source observed during the monitoring period Data in **Bold** denotes exceedanece of respective Action Level Data in **Bold Underline** denotes exceedance of respective Limit Level


Appendix E Air Quality Monitoring Results and their Graphical Presentation

1-Hour TSP Monitoring Result at Station: SR77

Data	Weather		T:			Conc.(µg/m³))	Action Level	Limit Level
Date	Condition		Time		1 st Hour	2 nd Hour	3 rd Hour	(µg/m3)	(µg/m3)
5-Jan-15	Fine	09:00	-	12:00	73.9	76.2	70.4	292.7	500.0
10-Jan-15	Fine	09:00	-	12:00	107.3	103.9	100.4	292.7	500.0
16-Jan-15	Fine	09:00	-	12:00	78.5	77.3	75.0	292.7	500.0
22-Jan-15	Fine	09:00	-	12:00	71.6	69.2	80.8	292.7	500.0
28-Jan-15	Fine	09:00	-	12:00	101.6	106.2	102.7	292.7	500.0
3-Feb-15	Fine	09:00	-	12:00	120.0	118.9	114.3	292.7	500.0
9-Feb-15	Fine	09:00	-	12:00	120.0	111.9	116.6	292.7	500.0
14-Feb-15	Fine	09:00	-	12:00	135.0	113.1	126.9	292.7	500.0
17-Feb-15	Cloudy	09:00	-	12:00	101.6	94.6	92.3	292.7	500.0
24-Feb-15	Cloudy	09:00	-	12:00	129.3	122.3	124.6	292.7	500.0
2-Mar-15	Cloudy	09:00	-	12:00	122.3	125.8	123.5	292.7	500.0
7-Mar-15	Cloudy	09:00	-	12:00	70.4	69.2	75.0	292.7	500.0
13-Mar-15	Fine	09:00	-	12:00	114.3	105.0	103.9	292.7	500.0
19-Mar-15	Fine	09:00	-	12:00	107.3	101.6	113.1	292.7	500.0
25-Mar-15	Cloudy	09:00	-	12:00	81.9	79.6	85.4	292.7	500.0
31-Mar-15	Sunny	09:00	-	12:00	138.5	137.3	145.4	292.7	500.0
8-Apr-15	Rainy	09:00	-	12:00	92.3	88.9	95.8	292.7	500.0
14-Apr-15	Fine	09:00	-	12:00	151.2	161.6	153.5	292.7	500.0
20-Apr-15	Cloudy	09:00	-	12:00	109.6	121.2	115.4	292.7	500.0
25-Apr-15	Fine	09:00	-	12:00	103.9	105.0	110.8	292.7	500.0
30-Apr-15	Fine	09:00	-	12:00	120.0	108.5	117.7	292.7	500.0

Summary For the Reporting Quarter (Feb 2015 - Apr 2015)							
Average 112.4							
Minimum	69.2						
Maximum	161.6						

Note: No major dust source observed during the monitoring period

Project Name:

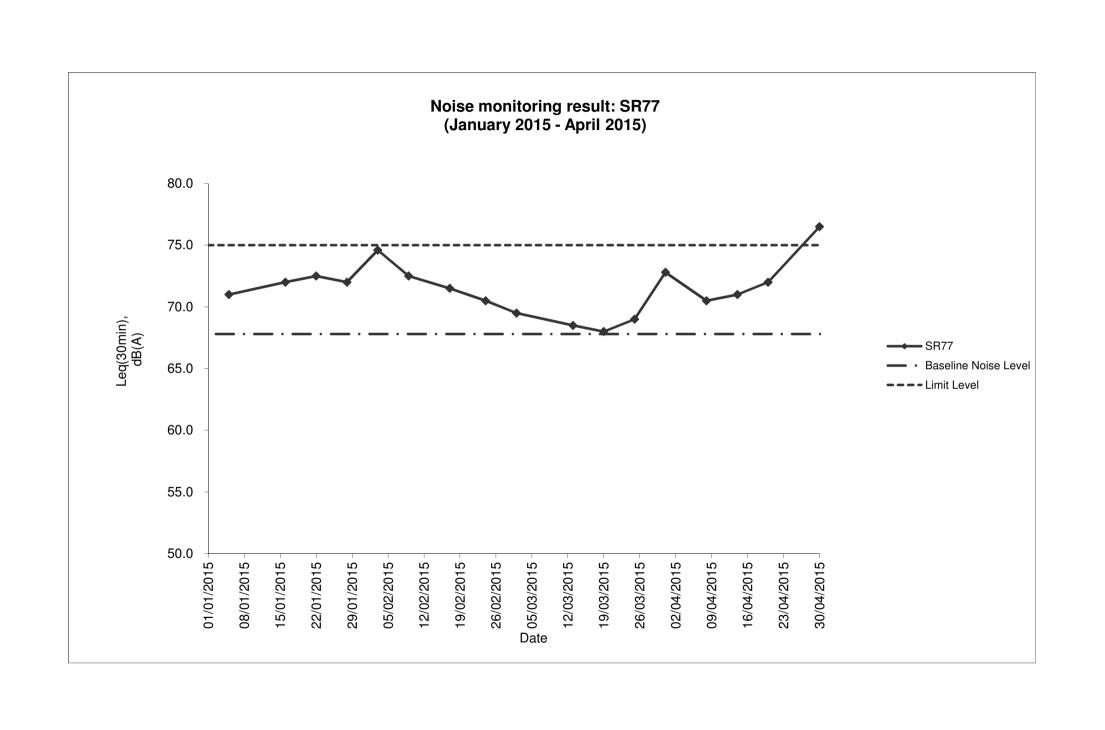
Contract No. CV/2012/09 Liantang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure works - Contract 3

illiastructure works - contract 5

Entrusted Portion of Widening of Tolo Highway / Fanling Highway between Island House Interchange

and Fanling - Stage 2

Noise Monitoring Result at SR77


Date	Weather	Start	End	Measure	ed Noise Level	(dB(A))*	Baseline Corrected	Baseline Noise Level	Limit Level	Exceedance
	Condition	Time	Time	L10(30min)	L90(30min)	Leq(30min)	Level, dB(A)**	(dB(A)), Leq(30min)	dB(A)	(Y / N)
2015/01/05	Fine	15:30	16:00	76.5	62.0	71.0	-	67.8	75.0	N
2015/01/16	Fine	14:00	14:30	75.0	65.0	72.0	-	67.8	75.0	N
2015/01/22	Fine	14:30	15:00	76.5	62.5	72.5	-	67.8	75.0	N
2015/01/28	Fine	14:00	14:30	78.5	63.5	72.0	-	67.8	75.0	N
2015/02/03	Fine	14:00	14:30	76.9	69.1	74.6	-	67.8	75.0	N
2015/02/09	Fine	14:30	15:00	76.0	68.5	72.5	-	67.8	75.0	N
2015/02/17	Fine	14:00	14:30	76.0	59.5	71.5	-	67.8	75.0	N
2015/02/24	Cloudy	15:30	16:00	75.5	61.5	70.5	-	67.8	75.0	N
2015/03/02	Cloudy	16:00	16:30	76.5	61.0	69.5	-	67.8	75.0	N
2015/03/13	Fine	14:00	14:30	75.0	60.5	68.5	-	67.8	75.0	N
2015/03/19	Fine	14:30	15:00	75.5	58.5	68.0	-	67.8	75.0	N
2015/03/25	Cloudy	16:00	16:30	77.0	60.0	69.0	-	67.8	75.0	N
2015/03/31	Sunny	11:00	11:30	78.0	61.0	72.8	-	67.8	75.0	N
2015/04/08	Rainy	16:30	17:00	76.0	60.5	70.5	-	67.8	75.0	N
2015/04/14	Fine	15:30	16:00	77.0	62.0	71.0	-	67.8	75.0	N
2015/04/20	Cloudy	11:00	11:30	77.5	65.0	72.0	-	67.8	75.0	N
2015/04/30	Fine	14:45	15:15	77.5	62.5	<u>76.5</u>	75.9	67.8	75.0	Υ

Summary For the Rep	orting Quarter			
(Feb 2015 - Apr 2015)				
Average	71.3			
Minimum	68.0			
Maximum	76.5			

Remarks

^{* +3}dB(A) Façade effect correction included

^{**} Baseline corrected level is only calculated when measured noise level (Leq) > limit level.

Appendix F Waste Flow Table

Monthly Summary Waste Flow Table

		Actual C	Quantities of Inc	ert C&D Materi	Actual Quantities of C&D Wastes Generated Monthly							
		Hard Rock							Paper/			
	Total	and Large		Soil Reused	Soil Reused				cardboard			General
	Quantity	Broken		in the	in other	Soil Disposed			packaging		Chemical	Refuse
Month	Generated	Concrete	Soil	Contract	Projects	as Public Fill	Imported Fill	Metals	(Note 3)	Plastics	Waste	(Note 2)
Unit	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in L)	(in '000m3)
Feb-15	2.478	0.049	2.429	1.518	1	0.911	0.100	-	1	0.009	9,000	0.070
Mar-15	3.742	0.029	3.713	0.270	1	3.443	0.100	-	-	1.030	-	0.080
Apr-15	3.711	0.115	3.597	2.308	-	1.289	0.090	2.767	-	-	-	0.065
Total	9.931	0.193	9.739	4.096	•	5.643	0.290	2.767	-	1.039	9,000	0.215

Note:

- 1. Assume the density of soil fill is 2 ton/m3.
- 2. Assume the density of rock and broken concrete is 2.5 ton/m3.
- 3. Assume each truck of C&D wastes is 5m3.
- 4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.
- 5. The slurry and bentonite are disposed at Tseung Kwun O 137.
- 6. The non-inert C&D wastes are disposed at NENT.
- 7. Assume the density of metal is 7,850 kg/m3.

Appendix G Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
C131126	26, November, 2013	Mr. Tony Hung from WWF	Mat Wat River (works sites for box culvert extension)	Suspected unauthorised discharge of water from a construction site to Ma Wat River, Tai Wo Service Road East, Tai Po	It was found that the water leaving the end of the steel pipes was the diverted water from the upstream of the existing box culverts, instead of being discharged from the construction works sites. An EM&A Programme is being undertaken to monitoring the environmental performance of the construction works, and the Contractor has also implemented appropriate mitigation measures to avoid silt-laden runoff discharging from the works sites into the river. The complaint is considered an invalid complaint under this Project.	Completed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
C141120	20 November, 2014	EPD	Ng Tung River and Ma Wat River nearby the site of the Liantang/ Heung Yuen Wai BCP Project (Contract Number CV/2012/09)	At Bridge NF426 in Fanling, the whole Ng Tung River showed milky and suspected illegal discharge by nearby factory has undertaken. (粉嶺近天橋編號 NF426 梧桐河整條河河水呈奶白色懷疑附近有工廠非法排放污水)	Water Supplies Department (WSD) conducted a washout procedure on 20 November 2014 at about 9:30am to flush the newly installed water pipe of diameter of 1400mm which has recently finished disinfection. It is understood that the procedure has lasted for about 1 hour and large amount of freshwater has been discharged into the Ma Wat River through a washout port. Although water was observed seeping from the gantry switch and flew into the works sites, the area is a sump pit and the water was unlikely to run off and entered the river directly. As such, it is anticipated that only freshwater has been discharged into Ma Wat River through the washout port. Both site inspections conducted by the ET before the complaint (19 November 2014), and after the complaint (24 November 2014) did not identify any deficiencies on environmental mitigation measures. Also, there were no rains during the period and the risk of construction site run-off is considered minimal.	Completed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
					The water from the Ma Wat Channel adjoins the Ng Tung River before passing through the complaint location, so other pollution sources may also occur at upstream of Ng Tung River	
					The complaint is considered unlikely due to the construction works of this project.	

Meinhardt Infrastructure and Environment Ltd

邁進基建環保工程顧問有限公司

4/F Wah Ming Centre 421 Queen's Road West Hong Kong 香港皇后大道西421號華明中心4樓

Tel 電話: +852 2858 0738 Fax 傳真: +852 2540 1580

mail@meinhardt.com.hk www.meinhardt-china.com www.meinhardtgroup.com