MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 7

[Period from 1 to 30 November 2014]

(December 2014)

Verified by:	Fredrick Leong	John John John John John John John John
Position: <u>Inder</u>	<u>pendent Environment</u>	al Checker
Date:	12 Deumber 2014	

MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 7

[Period from 1 to 30 November 2014]

(December 2014)

Certified by:	Richard Kwan_
Position:	Environmental Team Leader
Date:	12 December 2014

MTR Corporation Limited

Consultancy Agreements No. C11033B

Shatin to Central Link - Hung Hom to Admiralty Section

Monthly EM&A Report No. 7

[Period from 1 to 30 November 2014]

nature	Signature	Name	
4	1.4	Joanne Tsoi	Prepared & Checked:
4	1.4	Josh Lam	Reviewed & Approved:
	1.	Josh Lam	Reviewed & Approved:

Version: A Date: 12 December 2014

This Monthly EM&A Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033B and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this report comes may rely on this plan without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Contents

		Pa	age
1	INTROI	DUCTION	1
	1.1 1.2 1.3	Background	1
2	ENVIR	ONMENTAL MONITORING AND AUDIT	2
3	IMPLE!	MENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMEN	
List of 1	Γables		
Table 1. Table 2. Table 2. Table 2. Table 2. Table 2. Table 3.	1 2 3 4 5	Summary of Awarded Works Contracts Summary of Major Construction Activities in the Reporting Period Summary of 24-Hour TSP Monitoring Results in the Reporting Period Summary of Construction Noise Monitoring Results in the Reporting Period Summary of Marine Water Quality Monitoring Results in the Reporting Period Log for Environmental Complaints, Notification of Summons and Success Prosecutions Summary of EP Submissions Status	sful
List of A	Append	ices	
Appendi	ix A	Monthly EM&A Report for November 2014 $-$ SCL Works Contract 1129 Advar Works for NSL	nce
Appendi	ix B	Monthly EM&A Report for November 2014 – SCL Works Contract 11 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool	126
Appendi	ix C	Monthly EM&A Report for November 2014 – SCL Works Contract 11227 Advar Works for NSL Cross Harbour Tunnels	nce
Appendix D Monthly EM&A Report for November 2014 – SCL Works Contract 1128 Soventilation Building to Admiralty Tunnels			

AECOM Asia Co. Ltd. i December 2014

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 Shatin to Central Link Hung Hom to Admiralty Section [SCL (HUH ADM)] (hereafter referred to as "the Project") is part of the SCL.
- 1.1.3 The Environmental Impact Assessment (EIA) Report for SCL (HUH-ADM) (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) (EP No.: EP-436/2012) was granted on 22 March 2012 for construction and operation. Variations of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/A) was issued by Director of Environmental Protection (DEP) on 30 April 2014.

1.2 Project Programme

1.2.1 Four civil construction works contracts of the Project have been awarded since January 2014. The construction of the Project commenced in May 2014 and is expected to complete in 2020. The Project will have to interface with other infrastructure projects, including Wan Chai Development Phase II and Central-Wan Chai Bypass. **Table 1.1** summarises the information of the awarded Works Contracts.

Table 1.1 Summary of Awarded Works Contracts

Works Contract	Description	Construction Start Date	Contractor	Environmental Team
1126	Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool	July 2014	Kaden Leader JV	Cinotech Consultants Ltd. (Cinotech)
1128	South Ventilation Building to Admiralty Tunnels	November 2014	Dragages Bouygues J.V.	AECOM Asia Co. Ltd.
1129	SCL – Advance Works for NSL	May 2014	Hsin Chong Construction Co. Ltd.	AECOM Asia Co. Ltd.
11227	Advance Works for NSL Cross Harbour Tunnels	August 2014	Concentric-Hong Kong River Joint Venture	Cinotech Consultants Ltd. (Cinotech)

1.3 Purpose of the Report

1.3.1 The Environmental Monitoring and Audit (EM&A) programme for the Project commenced in May 2014. This is the seventh EM&A Report for the Project which summarises the EM&A works undertaken by the respective Contractor's ETs during the period from 1 to 30 November 2014.

AECOM Asia Co. Ltd. 1 December 2014

2 ENVIRONMENTAL MONITORING AND AUDIT

2.1 EM&A Results

- 2.1.1 The EM&A Report for Works Contracts 1129, 1126, 11227 and 1128 prepared by the respective Contractor's ETs are provided in **Appendices A** to **D** respectively. The EM&A Reports provide details of the project information, EM&A requirements, impact monitoring and audit results for the corresponding Contracts.
- 2.1.2 A summary of the major construction activities undertaken by the respective Contractors of various Works Contracts during the reporting period are presented in **Table 2.1**.

Table 2.1 Summary of Major Construction Activities in the Reporting Period

Works Contract	Site	Construction Activities		
	Wan Chai Sports Ground (WCSG)	Construction of Site Office.		
1126	Public Transport Interchange (PTI) Area	 Construction of Petrol Interception; Manhole construction & underground utilities connection; Construction of Store Room; and Construction of ducting for street lighting. 		
	Area W1 (Reclamation Works Area)	Site installation and potentially GI and instrumentation work.		
	Area W4c (Canal Road box culvert)	Transfer of facilities and instruments from 1129.		
	Area W4b (Canal Road flyover)	Trial trench for sheet pile driving; andGI and pile detection.		
1128	Area W6 (Wan Shing Street)	 Temporary Traffic Management Scheme (TTMS); and Trial pit to expose utilities and pile cap for pile detection. 		
	Area 14a & 14b	Site installation;Sheet pile installation; andELS work.		
	Area W1	H-piles Removal;Post Drilling; andConstruct Eastern Pile Cap.		
	Area W2	• Nil.		
1129	Area W3	 Site / Ramp Formation; Temporary Diversion of DN150 DI Fresh Water Main; Strengthen Abandon Box Culvert; and Utility Diversion. 		
11227	Shek O Casting Basin	Seabed leveling works at channel exit; andRock filling works in Casting Basin.		
	Victoria Harbour	 Dredging of trial trench in Victor Harbour. 		

2.1.3 During the reporting month, impact monitoring for air quality, construction noise and water quality were conducted in accordance with the EM&A Manual and EP Condition 2.23.7. Continuous noise monitoring was not required in the reporting period according to the Continuous Noise Monitoring Plan (CNMP). No exceedances of the Action/Limit Levels of 24-hr TSP, construction noise and water quality parameters due to the Project construction were recorded. Results of air quality, construction noise and water quality monitoring are summarised in Tables 2.2, 2.3 and 2.4 respectively. Details of the monitoring requirements,

locations, equipment and methodology are presented in the EM&A Reports (**Appendices A** to **D**).

Table 2.2 Summary of 24-Hour TSP Monitoring Results in the Reporting Period

Monitoring Station ID	Location	TSP Concentration (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)	Exceedance due to the Project Construction (Yes/No)
Works Contract	ct 1126				
AM2	Wan Chai Sports Ground ⁽¹⁾	42.8 – 133.6	160	260	No
АМЗ	Existing Harbour Road Sports Centre	88.9 – 116.1	169	260	No
Works Contrac	Works Contract 1128				
AM4	Pedestrian Plaza	168	198	260	No
Works Contrac	ct 1129 and 11227	(2)			

Note:

Table 2.3 Summary of Construction Noise Monitoring Results in the Reporting Period

		Noise Le		el (L _{Aeq,30mins,} dB(A))		Exceedance
Monitoring Station ID	Location	Measured	Baseline	Corrected ⁽¹⁾	Limit Level (dB(A))	due to the Project Construction (Yes/No)
Works Cont	ract 1126					
NM2 ⁽²⁾	Harbour Centre (7/F)	71.9 – 73.2	69.6	68.0 – 70.7	75	No
Work Contra	act 1128 and 1129					
NM1	Hoi Kung Court	68.4 – 70.8	71	< Baseline	75	No
Works Cont	Works Contract 11227 ⁽³⁾					

Note:

AECOM Asia Co. Ltd. 3 December 2014

⁽¹⁾ The spectator stand at Wan Chai Sports Ground was not available for impact dust monitoring, therefore impact monitoring was conducted at the existing water pump room area at Wan Chai Sports Ground.

⁽²⁾ No TSP monitoring is required under Works Contracts 1129 and 11227.

The measured noise levels are corrected against the corresponding baseline noise levels.

⁽²⁾ Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring. Alternative noise monitoring location proposed at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited. Impact noise monitoring was carried out at Harbour Centre from 20 August 2014 onwards.

⁽³⁾ No noise monitoring is required under Works Contract 11227.

Table 2.4 Summary of Marine Water Quality Monitoring Results in the Reporting Period (1)

	Parameters					
	•	Dissolved Oxyg			Depth- average	
Locat	ions	Surface & Middle	Bottom	Depth- average Turbidity (NTU)	Suspended Solids (mg/L)	
Shek O C	Shek O Casting Basin (Dry Season)					
00	Mean	7.5	7.3	3.6	4.5	
C3	Range	7.0 - 8.2	6.9 – 8.1	2.7 – 4.8	2.8 – 6.3	
C4	Mean	7.5	7.3	3.6	4.1	
C4	Range	7.0 - 8.4	6.9 - 8.5	1.8 – 4.9	2.7 – 6.8	
GB3	Mean	7.5	7.4	3.5	3.8	
GBS	Range	7.0 - 8.6	6.9 - 8.6	1.8 – 4.7	2.7 – 6.8	
Action	Level	6.8 (Dry sea 5.5 (Wet sea		5.0 (Dry season) 2.1 (Wet season)	9.3 (Dry season) 4.5 (Wet season)	
Limit I	_evel	6.5 (Dry season) 5.3 (Wet season)		5.6 (Dry season) 2.4 (Wet season)	9.3 (Dry season) 4.5 (Wet season)	
Exceedance (Yes/No)		No	No	No	No	
Victoria I	larbour (E	Ory Season) ⁽²⁾				
0.4	Mean	6.5	6.3	3.8	3.9	
C1	Range	4.4 - 8.4	4.0 - 8.1	2.3 – 5.0	2.7 – 4.8	
60	Mean	6.7	6.6	4.1	3.5	
C2	Range	4.7 – 8.6	4.2 – 8.5	3.3 – 5.1	2.7 – 4.7	
_	Mean	6.2	6.0	3.9	4.0	
A	Range	4.6 – 7.8	4.3 – 7.9	2.5 – 5.1	2.6 – 4.8	
WODO	Mean	6.6	6.4	3.7	3.8	
WSD9	Range	5.2 – 8.5	4.5 – 8.4	2.6 – 5.0	2.7 – 4.7	
Action	Action Level <2.1 (Dry & wet season)		5.3 (Dry & wet season)	5.0 (Dry season) 4.4 (Wet season)		
Limit I	_evel	<2 (Dry & wet	season)	5.6 (Dry & wet season)	5.5 (Dry season) 4.8 (Wet season)	
Excee (Yes		No	No	No	No	

Notes:

2.1.4 No environmental complaints, notification of summons and successful prosecutions were received in the reporting period. Log for environmental complaints, notification of summons and successful prosecutions is provided in **Table 2.5**.

Table 2.5 Log for Environmental Complaints, Notification of Summons and Successful Prosecutions

Works	Environmental Complaints Notification of Summons		Successful Prosecutions	
Contract	Reporting Month	Reporting Month	Reporting Month	
1126	0	0	0	
1128	0	0	0	
1129	0	0	0	
11227	0	0	0	

AECOM Asia Co. Ltd. 4 December 2014

⁽¹⁾ Marine water quality monitoring was conducted in the reporting period under Works Contract 11227.

⁽²⁾ As the construction activities in Victoria Harbour commenced on 11 September 2014, water quality monitoring in Victoria Harbour commenced on 12 September 2014. According to the Water Quality Monitoring Plan for Trial Trenching Works (WQMP) and the Baseline Water Quality Monitoring Report for Trial Trenching Works, water quality monitoring in Victoria Harbour will be carried out at two impact monitoring stations (namely A and WSD9) in dry season and four impact monitoring stations (namely A, WSD9, 14 and WSD17) in wet season.

2.1.5 Regular site inspections were conducted by the Contractor's ET on a weekly basis to check the implementation of environmental pollution control and mitigation measures for the Project. No non-conformance was identified in the reporting period.

3 IMPLEMENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMENTS

3.1.1 The respective Contractors have implemented all mitigation measures and requirements as stated in the EIA Report, EM&A Manual and EP (EP-436/2012/A). The status of required submissions under the EP as of the reporting period are summarised in **Table 3.1**.

Table 3.1 Summary of EP Submissions Status

EP Condition (EP-436/2012/A)	Submission	Submission date
Condition 1.11	Notification of Commencement Date of Construction of the Project	19 Dec 2012
Condition 2.3	Notification of Information of Community Liaison Groups	17 Mar 2014
Condition 2.5	Management Organisation of Main Construction Companies	4 Apr 2014
Condition 2.6	Construction Programme and EP Submission Schedule	19 Dec 2012
Condition 2.7	Construction Noise Mitigation Measures Plan (CNMMP)	9 Jun 2014 (1 st Submission)
Condition 2.8	Continuous Noise Monitoring Plan (CNMP)	9 Jun 2014 (1 st Submission)
Condition 2.9	Construction and Demolition Materials Management Plan (C&DMMP)	6 Jul 2012 (1 st Submission) 12 Sept 2012 (2 nd Submission) 15 Oct 2012 (approved)
Condition 2.10	Silt Curtain Deployment Plan for Trial Trenching in Victoria Harbour	11 Jul 2014
Condition 2.11	Silt Screen Deployment Plan	11 Jul 2014
Condition 2.12	Sediment Management Plan	6 Jul 2012 (1 st Submission) 12 Sept 2012 (2 nd Submission) 15 Oct 2012 (approved) 3 Jul 2014 (3 rd submission) 14 Nov 2012 (1 st Submission)
Condition 2.14	Visual, Landscape, Tree Planting & Tree Protection Plan	14 Nov 2012 (1 st Submission) 15 Feb 2013 (2 nd Submission) 3 Dec 2013 (3 rd Submission) 21 Aug 2014 (4 th Submission)
Condition 2.23.1	Silt Curtain Deployment Plan for Shek O	23 Jul 2014 (1 st Submission) 31 Jul 2014 (approved)
Condition 2.24	Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR)Remedial Action Plan (RAP) for the above-ground diesel tanks for Wan Chai Swimming Pool	CAP: 25 Sept 2012 (1 st Submission) 12 Nov 2012 (2 nd Submission) 22 Nov 2012 (approved) CAR: 19 Mar 2013 (1 st Submission) 16 Apr 2013 (2 nd Submission) 21 May 2013 (3 rd Submission) 7 Jun 2013 (approved)
	Baseline Monitoring Report (for noise and air quality)	4 Dec 2013 (1 st Submission) 5 Feb 2014 (2 nd Submission)
Condition 3.3	Baseline Water Quality Monitoring Report	23 Sept 2014 (1 st Submission)
Condition 5.5	Baseline Water Quality Monitoring Report for Temporary Marine Works at Shek O Casting Basin	8 Jul 2014 (1 st Submission) 11 Aug 2014 (2 nd Submission)
Condition 3.4	Monthly EM&A Reports No.1 - 5 Monthly EM&A Report No.6	Reported in previous Monthly EM&A Reports 14 Nov 2014

AECOM Asia Co. Ltd. 5 December 2014

Appendix A

Monthly EM&A Report for November 2014 – SCL Works Contract 1129 Advance Works for NSL

Hsin Chong Construction Co. Ltd.

Shatin to Central Link - Hung Hom to Admiralty Section

Works Contract 1129 -Advance Works for NSL

Monthly EM&A Report for November 2014

December 2014

	Name	Signature
Prepared & Checked:	Lemon Lam	\ mo
Reviewed, Approved & Certified:	Y T Tang (Contractor's Environmental Team Leader)	Contrain

Version: 0 Date: 10 December 2014

Disclaimer

This Contract Specific Environmental Monitoring and Audit Manual is prepared for Hsin Chong Construction Co. Ltd and is given for its sole benefit in relation to and pursuant to SCL1129 and may not be disclosed to, quoted to or relied upon by any person other than Hsin Chong Construction Co. Ltd without our prior written consent. No person (other than Hsin Chong Construction Co. Ltd into whose possession a copy of this Manual comes may rely on this plan without our express written consent and Hsin Chong Construction Co. Ltd may not rely on it for any purpose other than as described above.

Table of Contents

			Page
EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	3
	1.1 1.2	Purpose of the Report	
2	PRO	JECT INFORMATION	4
	2.1 2.2 2.3 2.4 2.5	Background Site Description Construction Programme and Activities Project Organisation Status of Environmental Licences, Notification and Permits	5 5
3	ENVI	RONMENTAL MONITORING REQUIREMENTS	7
	3.1 3.2	Construction Noise MonitoringLandscape and Visual	
4	IMPL	EMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURE	S9
5	MON	ITORING RESULTS	10
	5.1 5.2 5.3	Construction Noise Monitoring	10
6	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	11
7	ENVI	RONMENTAL NON-CONFORMANCE	12
	7.1 7.2 7.3 7.4	Summary of Monitoring Exceedances	12 12
8	FUTU	JRE KEY ISSUES	13
	8.1 8.2 8.3	Construction Programme for the Next Two Month	13
9	CON	CLUSIONS AND RECOMMENDATIONS	14
	9.1 9.2	ConclusionsRecommendations	

i

List of Tables

Table 2.1	Contact Information of Key Personnel
Table 2.2	Status of Environmental Licenses, Notifications and Permits
Table 3.1	Noise Monitoring Parameters, Frequency and Duration
Table 3.2	Noise Monitoring Equipment for Regular Noise Monitoring
Table 3.3	Noise Monitoring Stations during Construction Phase
Table 4.1	Status of Required Submission under Environmental Permit
Table 5.1	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 6.1	Observations and Recommendations of Site Audit

List of Figures

Figure 1.1	Works Area and Site Location of SCL1129
Figure 3.1	Location of Air-borne Noise Sensitive Receiver NM1

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organisation Structure
Appendix C	Environmental Mitigation Implementation Schedule
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Noise Monitoring Results and their Graphical Presentations
Appendix H	Event and Action Plan
Appendix I	Cumulative Statistics on Complaints, Notification of Summons and Successful
	Prosecutions
Appendix J	Monthly Summary Waste Flow Table

AECOM Asia Co. Ltd. ii November 2014

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1129 – Advance Works for North South Link (NSL) (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL) which aimed to comprises advance works for NSL – the extension of the existing East Rail Line (EAL) to Hong Kong Island.

The Project covers construction activities at Percival Street Footbridge, Causeway Flyover, Tunnel Approach Rest Garden (TARG) and demolition works at existing abandoned culvert near Wan Shing Street.

The EM&A programme commenced on 2 May 2014. The impact EM&A for the Project includes noise monitoring.

As informed by the Contractor, a part of works area in W2 has been handed over to other SCL contract on 25 and 27 August 2014, and another part of W2 has been handed over to other SCL contract on 25 October 2014.

This report documents the findings of EM&A works conducted in the period between 1 and 30 November 2014. As informed by the Contractor, major activities in the reporting period were:

Area W1

- H-piles Removal;
- Post Drilling; and
- Construct Eastern Pile Cap.

Area W2

- Nil.

Area W3

- Site / Ramp Formation;
- Temporary Diversion of DN150 DI Fresh Water Main;
- Strengthen Abandon Box Culvert; and
- Utility Diversion.

Breaches of Action and Limit Levels for Noise

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:

Area W1

- Construct Western Pile Cap;
- Hoarding Erection for W1C;
- Erect Eastern Pile Cap Temporary Staircase;
- Painting and E&M Installation; and
- Sheetpiling.

<u>Area W2</u>

- Nil.

Area W3

- Site / Ramp Formation;
- Strengthen Abandon Box Culvert;
- Diversion: and
- Remove Concrete Piles.

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

AECOM Asia Co. Ltd. 2 November 2014

1 INTRODUCTION

Hsin Chong Construction Co. Ltd (HC) was commissioned by MTR as the Civil Contractor for Works Contract 1129. AECOM Asia Company Limited (AECOM) was appointed by HC as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the seventh monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period from 1 to 30 November 2014.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is organised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) (VEP-433/2014) was applied on 2 April 2014 and the latest EP (EP No. EP-436/2012/A) was issued by the Director of Environmental Protection (DEP) on 30 April 2014.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and the Project covers construction activities at Percival Street Footbridge, Causeway Flyover, TARG and demolition works at existing abandoned culvert near Wan Shing Street under the EP.
- 2.1.4 As informed by the Contractor, a part of works area in W2 has been handed over to other SCL contract on 25 and 27 August 2014, and another part of W2 has been handed over to other SCL contract on 25 October 2014.

 The works areas and site location of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1129 include:
 - (a) Removal of 10 nos. of abandoned steel H-piles, provision of temporary staircase and diversion of pedestrians at Percival Street Footbridge; (Works Area W1)
 - (b) Underpinning of Pier A5 of Causeway Flyover including installation of 6 nos. 600mm diameter concrete bored piles and construction of pile cap; (Works Area W1)
 - (c) Site clearance, temporary take-up, storage and handover of feature stone at existing TARG, tree removal and utility diversions. Construction of temporary box culvert (in dry/wet season) without breakthrough of existing culvert at TARG; (Area W2) and
 - (d) Diversion and temporary support of utilities to facilitate pile extraction works at existing abandoned culvert near Wan Shing Street. Demolition on part of the abandoned culvert and removal of 6 nos. of 18" concrete square driven piles. Construction of minor slip road to facilitate road diversion. (Works Area W3)

AECOM Asia Co. Ltd. 4 November 2014

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Area W1

- H-piles Removal;
- Post Drilling; and
- Construct Eastern Pile Cap.

Area W2

- Nil.

Area W3

- Site / Ramp Formation;
- Temporary Diversion of DN150 DI Fresh Water Main;
- Strengthen Abandon Box Culvert; and
- Utility Diversion.
- 2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

Table 2.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
	Residential	Construction Manager	Mr. T.C. Lam	3143 9129	3127 6424
MTR	Engineer (ER)	SCL Project Environmental Team Leader	Mr. Richard Kwan	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
		Senior Project Manager	Mr. Nelson Cheng	2602 0918/ 9302 5927	2774 9322
HC	Contractor	Assistant Environmental Manager	Mr. Andy Leung	9489 0035	
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y T Tang	3922 9393	2317 7609

AECOM Asia Co. Ltd. 5 November 2014

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.2**.

Table 2.2 Status of Environmental Licenses, Notifications and Permits

Permit / License No. / Notification/	Valid Period		Status	Remarks			
Reference No.	From	То	Giuius	Romano			
Environmental Pern	Environmental Permit						
EP-436/2012	22 Mar 2012	-	Superseded by EP-436/2012/A on 30 Apr 2014	-			
EP-436/2012/A	30 Apr 2014	-	Valid	-			
Construction Noise	Permit						
GW-RS1024-14	24 Sep 2014	20 Mar 2015	Valid	Applied for plant mobilization (0100-0500)			
GW-RS0859-14	19 Aug 2014	18 Feb 2015	Valid	Applied for water pump at W1B (2300-0700)			
GW-RS1042-14	29 Sep 2014	28 Mar 2015	Valid	Applied for work at W1 (1900-2300)			
GW-RS0975-14	15 Sep 2014	14 Mar 2015	Valid	Applied for UMP installation at Wan Shing Street (2100-0600)			
Wastewater Dischar	rge License						
WT00018771-2014	4 Apr 2014	30 Apr 2019	Superseded by WT00020241-2 014 on 4 Nov 2014	-			
WT00020241-2014	4 Nov 2014	30 Apr 2019	Valid	-			
Chemical Waste Pro	oducer Registrat	tion					
WPN5213-135-H35 63-01	26 Feb 2014	End of Contract	Valid	For Hung Hing Flyover & Percival Street (Area W1)			
WPN5213-134-H35 65-01	26 Feb 2014	End of Contract	Valid	For Tunnel Approach Road & Wan Shing Footbridge (Area W3)			
Billing Account for Construction Waste Disposal							
7019335	13 Feb 2014	End of Contract	Valid	-			
Notification Under Air Pollution Control (Construction Dust) Regulation							
370021	28 Jan 2014	End of Contract	Valid	-			

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Noise Monitoring

Monitoring Requirements

3.1.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.1** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.1 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Equipment

3.1.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.2**.

Table 3.2 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
	Rion (Model No. NL-31 (S/N: 00320528))
Integrated Sound Level Meter	and
	B&K (Model No. 2238 (S/N: 2800927))
	Rion (Model No. NC-73 (S/N: 10307223))
Acoustic Calibrator	and
	Rion (Model No. NC-74 (S/N: 34246490))

Monitoring Locations

3.1.3 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manuals for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.3** and shown in **Figure 3.1**.

Table 3.3 Noise Monitoring Stations during Construction Phase

Identification No.	Noise Sensitive Receiver (NSR) ID in EIA Report	Noise Monitoring Station
NM1	CH2	Hoi Kung Court

AECOM Asia Co. Ltd. 7 November 2014

Monitoring Methodology

3.1.4 Monitoring Procedure

- (a) Façade measurement was made at NM1.
- (b) The battery condition was checked to ensure the correct functioning of the meter.
- (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.
- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (e) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.1.5 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.6 The schedule for environmental monitoring in November 2014 is provided in **Appendix F**.

3.2 Landscape and Visual

3.2.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

AECOM Asia Co. Ltd. 8 November 2014

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C**. Status of required submissions under the EP during the reporting period is summarised in **Table 4.1.**

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 (EP-436/2012/A)	Monthly EM&A Report for October 2014	14 November 2014

AECOM Asia Co. Ltd. 9 November 2014

5 MONITORING RESULTS

5.1 Construction Noise Monitoring

5.1.1 The monitoring results for noise are summarized in **Table 5.1** and the monitoring data is provided in **Appendix G**.

Table 5.1 Summary of Construction Noise Monitoring Results in the Reporting Period

ĺ	ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
	NM1 ^(*)	<baseline< th=""><th>75</th></baseline<>	75

^(*) Baseline correction will be made to the measured Leq when the measured noise level exceeded the corresponding baseline noise level and presented in the table.

- 5.1.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 5.1.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 5.1.4 The event and action plan is annexed in **Appendix H**.
- 5.1.5 Major noise sources during the monitoring included construction noise from the Project site, nearby traffic noise and the community.

5.2 Waste Management

- 5.2.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.2.2 As advised by the Contractor, 173m³ of inert C&D material was generated (142m³ was disposed as public fills at CWPFBP and 31m³ was disposed as fill bank at TKO137) in the reporting month. 2.5m³ of general refuse was generated in the reporting month. No metals, no paper/cardboard packaging materials and no plastics were collected by recycling contractor in the reporting month. No inert C&D materials were reused on site. No chemical waste was collected by licensed contractor in the reporting period. The waste flow table is annexed in **Appendix J.**
- 5.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.3 Landscape and Visual

5.3.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted on 13 and 27 November 2014. A summary of the site inspection is provided in **Appendix C**. The observations and recommendations made during the site inspections are presented in **Table 6.1**.

AECOM Asia Co. Ltd. 10 November 2014

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 4 site inspections were carried out on 6, 13, 20 and 27 November 2014. The one held on 13 November 2014 was a joint inspection with the IEC, ER, the Contractor and the ET. No site inspection was conducted by EPD during the reporting month. No non-compliance was recorded during the site inspections. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
	40.11	Mud trail and few plot of mud stain were observed at public road near site entrance at W3. The Contractor was reminded to ensure the vehicles are washed properly before leaving the site.	The item was rectified by the Contractor on 14 November 2014.
Air Quality	, 13 November 2014	Reminder: The cement mixing facility at W1 was observed not sheltered properly while it was not in operation. The Contractor was reminded to provide proper enclosure to the cement mixing facility while it is in operation.	The item was improved by the Contractor on 14 November 2014.
Noise	N/A	N/A	N/A
Water Quality	N/A	N/A	N/A
	6 November 2014	Reminder: The Contractor was reminded to dispose general refuse in a timely manner.	The item was improved by the Contractor on 7 November 2014.
Waste/ Chemical Management	13 November 2014	Chemical containers without label were observed within the chemical storage in W3. The Contractor was reminded to provide proper labelling for the chemical containers.	The item was rectified by the Contractor on 14 November 2014.
	20 November 2014	Oil Stain was observed on a metal plate at W1. The Contractor was reminded to clean the oil stain and avoid any oil leakage.	The item was rectified by the Contractor on 20 November 2014.
Landscape & Visual	N/A	N/A	N/A
Permits/ Licenses	N/A	N/A	N/A

6.1.3 All the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed into the following weekly site inspection conducted during the reporting period.

AECOM Asia Co. Ltd. 11 November 2014

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 7.1.2 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint was received in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix I**.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix I**.

AECOM Asia Co. Ltd. 12 November 2014

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Two Month

8.1.1 The major construction works in December 2014 and January 2015 will be:

Area W1

- Construct Western Pile Cap ;
- Hoarding Erection for W1C;
- Erect Eastern Pile Cap Temporary Staircase;
- ELS Works and Excavation;
- Grouting Trial for Underpinning;
- Jack up Pile Cap;
- Removal of Pile Cap Formwork;
- Backfilling to +1.5mPD;
- Painting and E&M Installation; and
- Sheetpiling.

Area W2

· Nil.

Area W3

- Site / Ramp Formation;
- Strengthen Abandon Box Culvert;
- Diversion; and
- Removal of Concrete Piles.

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

8.3 Monitoring Schedules for the Next Three Months

8.3.1 The tentative schedules for environmental monitoring in December 2014, January and February 2015 are provided in **Appendix F**.

AECOM Asia Co. Ltd. 13 November 2014

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 Noise monitoring was carried out in the reporting month.
- 9.1.2 No noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 9.1.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.4 4 nos. of environmental site inspections were carried out in November 2014. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.5 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

- The Contractor was reminded to ensure the vehicles are washed properly before leaving the site.
- The Contractor was reminded to provide proper enclosure to the cement mixing facility while it is in operation.

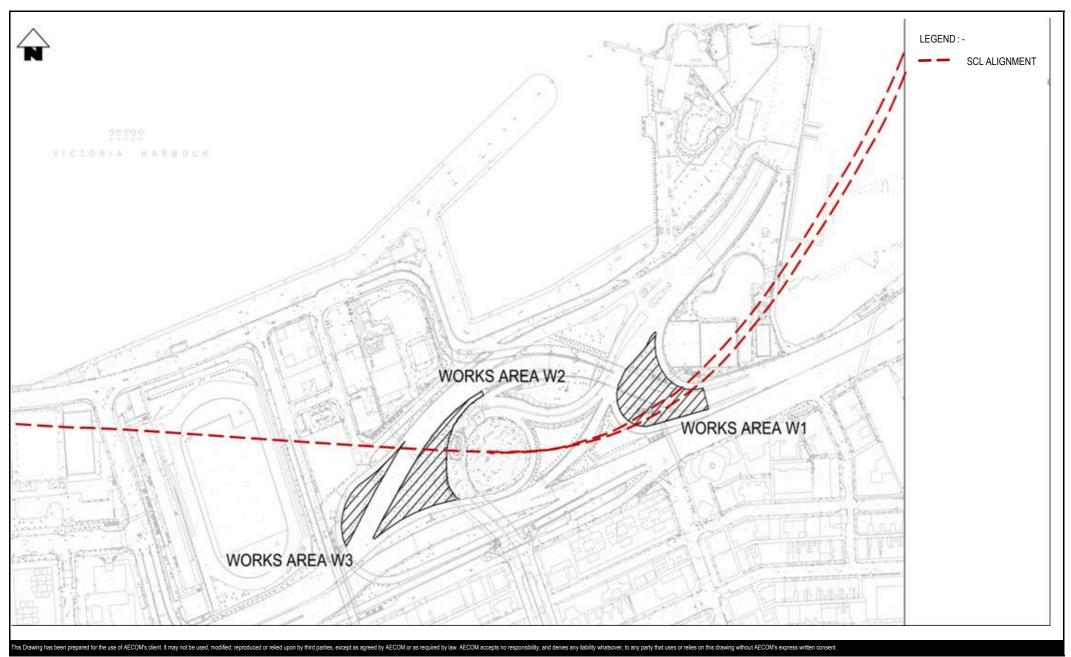
Construction Noise Impact

• No specific observation was identified in the reporting month.

Water Quality Impact

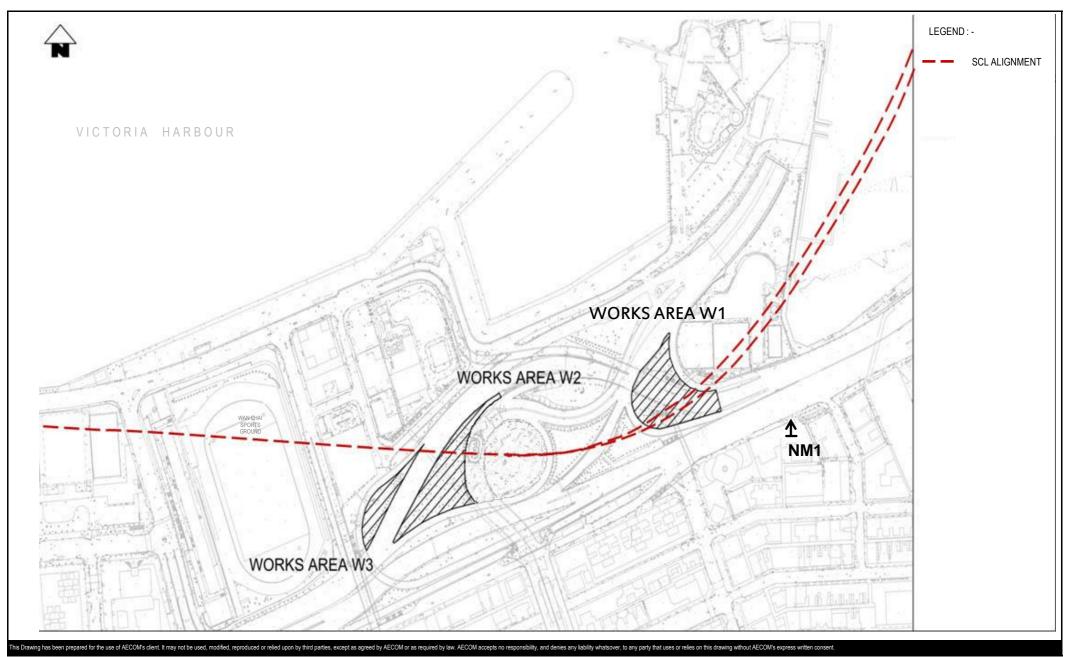
No specific observation was identified in the reporting month.

Chemical and Waste Management


- The Contractor was reminded to dispose general refuse in a timely manner.
- The Contractor was reminded to provide proper labelling for the chemical containers.
- The Contractor was reminded to clean the oil stain and avoid any oil leakage.

Permits/licenses

No specific observation was identified in the reporting month.

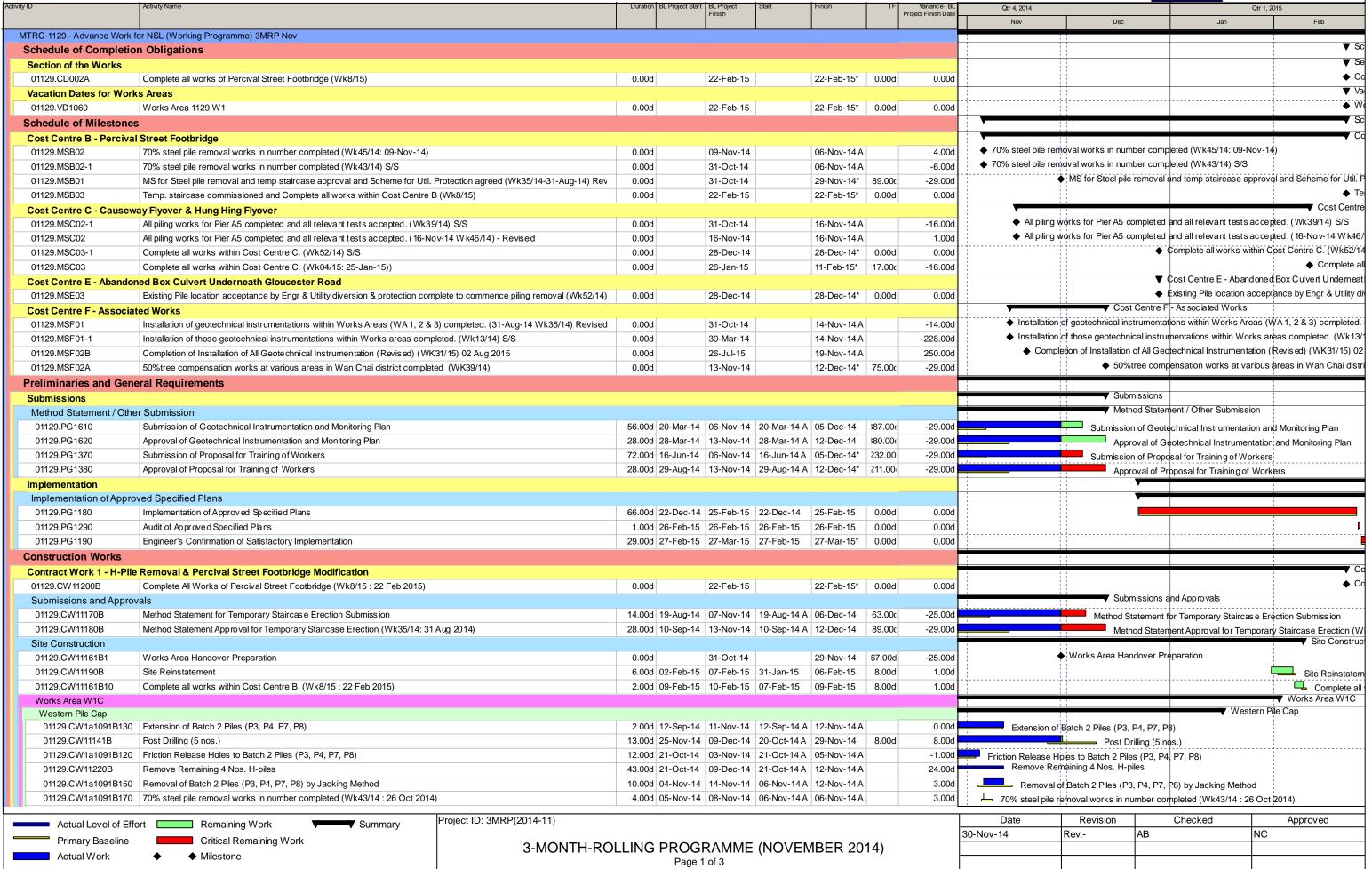

AECOM Asia Co. Ltd. 14 November 2014

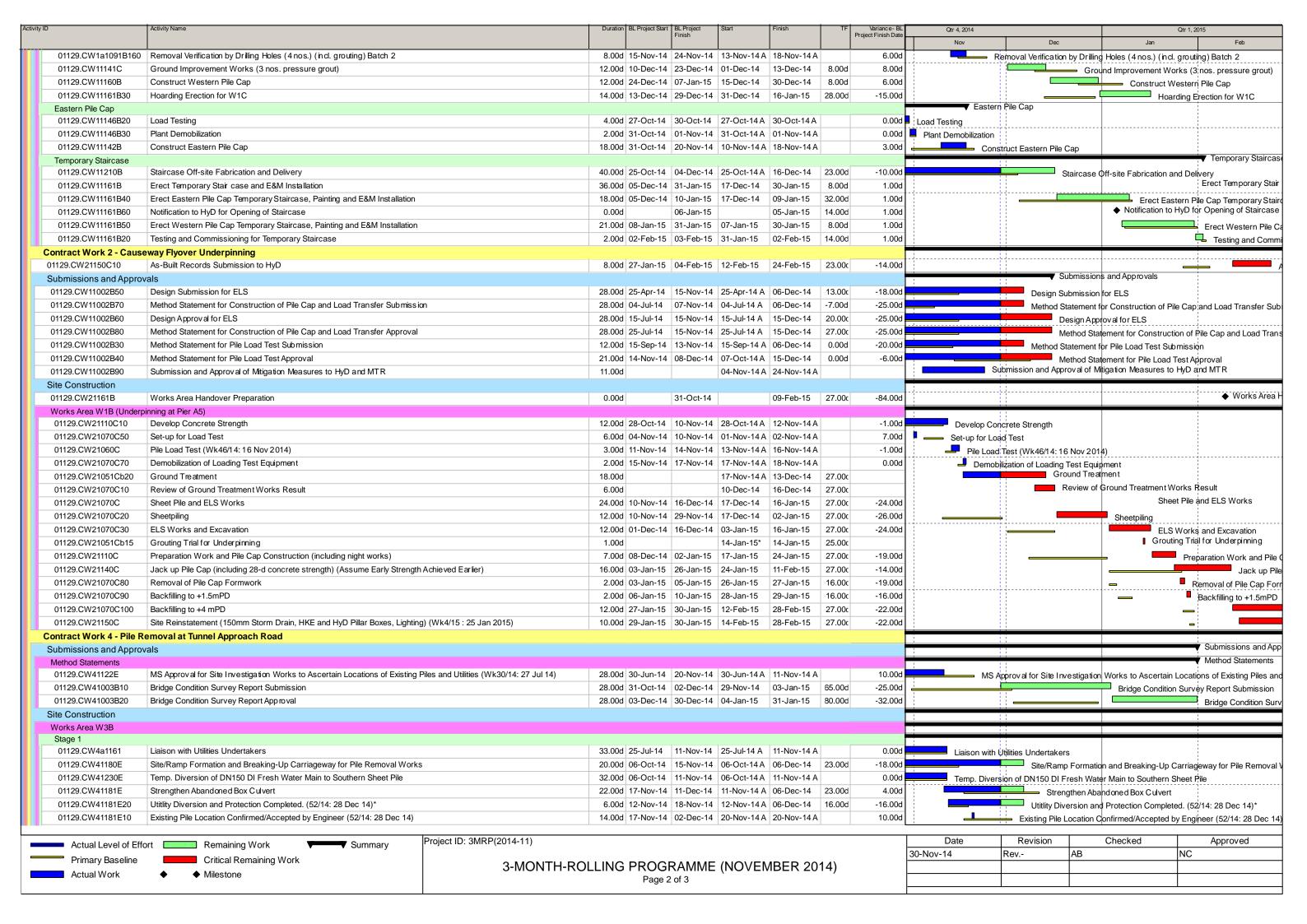
CONTRACT 1129 ADVANCED WORKS FOR NSL

Project No.: - Date: November 2014 Figure 1.1

CONTRACT 1129 ADVANCED WORKS FOR NSL

Project No.: - Date: November 2014 Figure 3.1


APPENDIX A

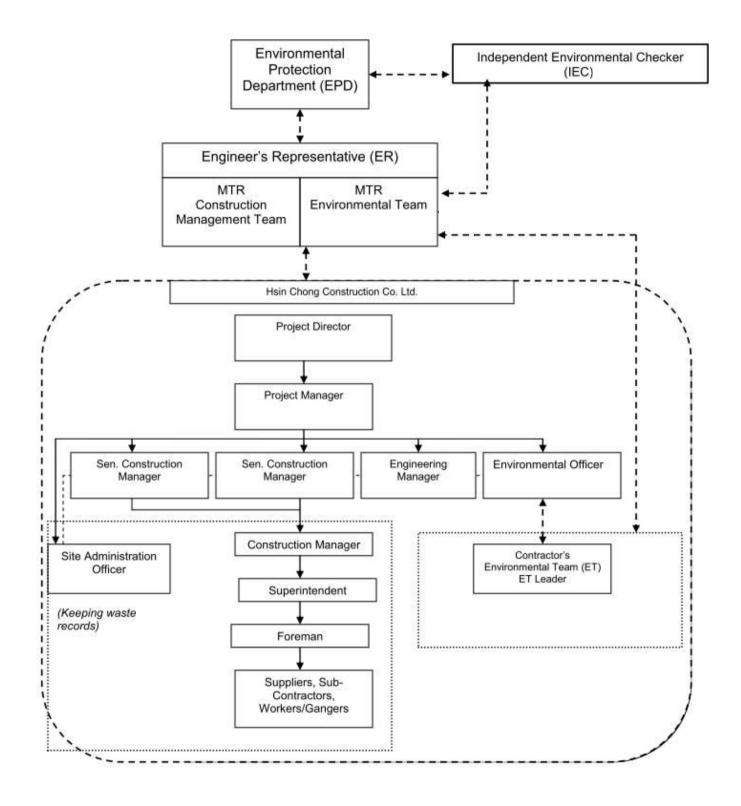

Construction Programme

CONTRACT 1129 - ADVANCE WORK FOR NSL

ID	Activity Name	Duration BL Project Star		BL Project Start Finish	Finish		Variance-BL Project Finish Date	Qtr 4, 2014		Qtr 1,	Qtr 1, 2015	
			FILISH				-roject Firiisii Date	Nov	Dec	Jan	Feb	
01129.CW4a1211	Proposal for Ground Improvement Works (Optional. In case Soil Profile Changes after Pile Removal) Not exercised.	42.00d 12-Nov	-14 02-Jan-15	20-Nov-14 A	20-Nov-14 A		34.00d			Proposal for Ground Ir	mprovement Works (O	
01129.CW41181E30	Plant Mobilization and Set-Up	5.00d		08-Dec-14	12-Dec-14	39.00d		Plant Mobilization and Set-Up				
01129.CW41200E	Remove 3 nos. Concrete Piles (Wk 17/15: 26 Apr 15)	45.00d 12-Dec	-14 04-Feb-15	13-Dec-14	06-Feb-15	39.00d	-2.00d				Remove 3 nos	
01129.CW41210E	Remove Portion of Abandoned Box Culvert (Wk 17/15: 26 Apr 15)	17.00d 05-Feb	·15 03-Mar-15	07-Feb-15	02-Mar-15	39.00d	1.00d					
Geotechnical Instrumer	ntation							▼ Geotechnic	cal Instrumentation		1	
01129.CW41151E30	Utility Monitoring Point Installation (16 nos.)	20.00d 07-Jul-	14 15-Nov-14	07-Jul-14 A	14-Nov-14 A		1.00d	Utility Mon	itoring Point Installation (1	S mos.)	1	
Associated Works			'	<u>'</u>	<u>'</u>			-	Associated \		1	
01129.AW1011F40	Submission of Plant Sample Photos for Approval	6.00d 24-Jul-	14 06-Nov-14	24-Jul-14 A	27-Nov-14 A		-17.00d		Submission of Plant Samp	e Photos for Approval	!	
01129.AW1009F	Compensate Shrubs + Ground Cover + Grass at Wan Chai Gap Park (Stage 1)	10.00d 31-Oct	14 11-Nov-14	08-Nov-14 A	29-Nov-14 A		-15.00d		Compensate Shrubs + C	round Cover + Grass at Wa	ः ah Chai Gap Park (Stag	
01129.AW1010F	Compensate 24 nos. of trees at Wan Chai Gap Park (Stage 1)	10.00d 31-Oct	14 11-Nov-14	08-Nov-14 A	29-Nov-14 A		-15.00d		Compensate 24 nos. of	rees at Wan Chai Gap Park	(Stage 1)	
01129.AW1008F	Compensate 5 nos. + Grass at Tai Hang Road Children Playground (Wk39/14: 28 Sep 2014) (Stage 1)	12.00d 31-Oct	14 13-Nov-14	29-Nov-14	12-Dec-14	63.00c	-25.00d		Compensate	5 nos. + Grass at Tai Hang	Road Children Playgro	
Geotechnical Instrumer	ntation (for WA4)								chnical Instrumentation (fo	r WA4)	1	
01129.OW3000	Excavation Permit (XP) Application	94.00d 04-Aug	14 22-Dec-14	04-Aug-14 A	19-Nov-14 A		29.00d			avation Permit (XP) Applicat		
01129.OW3105	TTMS Preparation for SLG Approval	18.00d 13-Oct	14 20-Nov-14	13-Oct-14 A	19-Nov-14 A		2.00d	TTMS	Preparation for SLG App	oval		
01129.OW3100	Building Settlement Marker Installation (13 nos.)	7.00d 23-Dec	-14 02-Jan-15	19-Nov-14 A	19-Nov-14 A		35.00d		_	Building Settlement Ma	rker Installation (13 nos	
01129.OW3110	Ground Settlement Marker Installation (19 nos.)	14.00d 12-Jan-	15 27-Jan-15	19-Nov-14 A	19-Nov-14 A		56.00d	I	 		Ground Settlement Mark	
01129.OW3120	Utility Settlement Marker Installation (17 nos.)	50.00d 23-Dec	-14 25-Feb-15	19-Nov-14 A	19-Nov-14 A		78.00d	I			1	
01129.OW3130	OBS/ Piezometer Installation (2 nos.)	20.00d 23-Dec	-14 17-Jan-15	19-Nov-14 A	19-Nov-14 A		48.00d	I		OBS/ Pie	zometer Installation (2 n	
01129.OW3140	Tilt Marker Installation (7 nos.)	7.00d 03-Jan-	15 10-Jan-15	19-Nov-14 A	19-Nov-14 A		42.00d	I		Tilt Marker Inst	allation (7 nos.)	
Geotechnical Instrume	ntation (for WA5)							▼ Geote	chnical Instrumentation (fo	r WA5)		
01129.OW4000	Excavation Permit (XP) Application	94.00d 04-Aug	·14 22-Jan-15	04-Aug-14 A	19-Nov-14 A		53.00d		1	Exca	vation Permit (XP) Appl	
01129.OW4005	TTMS Preparation for SLG Approval	43.00d 24-Mar	·15 18-May-15	19-Nov-14 A	19-Nov-14 A		143.00d	0				
01129.OW4110	Utility Settlement Marker Installation (13 nos.)	40.00d 19-May	-15 07-Jul-15	19-Nov-14 A	19-Nov-14 A		183.00d	I	!		!	
01129.OW4120	OBS/ Piezometer Installation (1 no.)	10.00d 19-May	-15 30-May-15	19-Nov-14 A	19-Nov-14 A		153.00d	I				
01129.OW4130	Tilt Marker Installation (6 nos.)	7.00d 28-May	-15 04-Jun-15	19-Nov-14 A	19-Nov-14 A		157.00d	I				
01129.OW4010	Building Settlement Marker Installation (12 nos.)	7.00d 19-May	-15 27-May-15	19-Nov-14 A	19-Nov-14 A		150.00d	ı	: ! !		1 1 1	
01129.OW4100	Ground Settlement Marker Installation (14 nos.)	12.00d 05-Jun	15 18- Jun-15	19-Nov-14 A	19-Νον-14 Δ		169.00d					

Actual Level of Effort Remaining Work Summary
Primary Baseline Critical Remaining Work
Actual Work Milestone

Project ID: 3MRP(2014-11)


3-MONTH-ROLLING PROGRAMME (NOVEMBER 2014)
Page 3 of 3

Date	Revision	Checked	Approved
30-Nov-14	Rev	AB	NC

APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

Appendix B AECOM

APPENDIX C

Environmental Mitigation Measures Implementation Schedule

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural H	leritage Impact					
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	Construction Phase	V
Ecologica	ıl Impact					
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	Construction Phase	V
Landscap	e and Visual Impact					
Construct	tion Phase					
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	Construction Phase	V
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Air Qualit	by			·	·	
/	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V V
Construc	tion Dust Impact					
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	Construction Phase	V
S8.90	 Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces 	To minimize dust impacts	Contractor	Works areas	Construction phase	
	 and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas 					V
	 close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. 					V
	 Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. 					V
	Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.					V
	• Establishment and use of vehicle wheel and body washing facilities at the exit points of the site.					@
	 Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. 					V
	 Provision of not less than 2.4m high hoarding from ground level along site 					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. Imposition of speed controls for vehicles on site haul roads. Where possible, routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise 					V V V
	Noise Impact ion Phase					
S9.55	The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be	To minimize construction noise impact	Contractor	Works areas	Construction phase	V
	 serviced regularly during the construction program Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program Mobile plant, if any, shall be sited as far from NSRs as possible Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs Material stockpiles and other structures shall be effectively utilized, wherever 	Праст				V V V
S9.56 & Table 9.16	racticable, in screening noise from on-site construction activities The following quiet PME shall be used: Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill	To minimize construction noise impact	Contractor	Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue	Construction phase	N/A N/A N/A V N/A N/A N/A N/A N/A V V V

Appendix C	Environmental Mitigation Implementation Schedule					
EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S9.58 – S9.59 & Table 9.17	 Lorry Wheel loader Roller vibratory Movable noise barrier shall be used for the following PME: Air compressor Asphalt paver Backhoe with hydraulic breaker Bar bender Bar bender and cutter (electric) Breaker, excavator mounted Concrete pump Concrete pump, stationary/lorry mounted 	To minimize construction noise impact	Contractor	to north of ADM South of ADM to Overrun Tunnel Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of	Construction phase	N/A V N/A V N/A V/A N/A N/A N/A N/A
Water Qua	 Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete 			Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel		V N/A N/A N/A N/A
Construct	ion Phase					
S11.222 to 11.245	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. Surface Run-off Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction Phase	V
	provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels shall be constructed in advance of site formation works and earthworks. • Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and realignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum distances of 100 m shall be maintained between the discharge points of construction site runoff and the existing saltwater intakes.					V
	• Construction works shall be programmed to minimize soil excavation works in rainy					V

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
/EM&A		Recommended Measures & Main	implement the	measure	implement the	Status
Log Ref.		Concern to Address	measures?		measures?	
	seasons (April to September). If excavation in soil cannot be avoided in these					
	months or at any time of year when rainstorms are likely, for the purpose of					
	preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by					
	tarpaulin, and temporary access roads shall be protected by crushed stone or					
	gravel, as excavation proceeds. Intercepting channels shall be provided (e.g.					
	along the crest / edge of excavation) to prevent storm runoff from washing across					
	exposed soil surfaces. Arrangements shall always be in place in such a way that adequate surface protection measures can be safely carried out well before the					
	arrival of a rainstorm.					
	Earthworks final surfaces shall be well compacted and the subsequent permanent					
	work or surface protection shall be carried out immediately after the final surfaces					V
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like					•
	intercepting channels shall be provided where necessary.					
	Measures shall be taken to minimize the ingress of rainwater into trenches. If					
	excavation of trenches in wet seasons is necessary, they shall be dug and					V
	backfilled in short sections. Rainwater pumped out from trenches or foundation					
	excavations shall be discharged into storm drains via silt removal facilities.					
	Open stockpiles of construction materials (e.g. aggregates, sand and fill material)					
	on sites shall be covered with tarpaulin or similar fabric during rainstorms.					V
	Manholes (including newly constructed ones) shall always be adequately covered					
	and temporarily sealed so as to prevent silt, construction materials or debris from					V
	getting into the drainage system, and to prevent storm run-off from getting into foul					
	sewers. Discharge of surface run-off into foul sewers must always be prevented in					
	order not to unduly overload the foul sewerage system.					
	Good site practices shall be adopted to remove rubbish and litter from construction sites as as to prevent the rubbish and litter from approaching from the site area. It is					V
	sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis.					·
	Boring and Drilling Water					
	Water used in ground boring and drilling for site investigation or rock / soil					
	anchoring shall as far as practicable be re-circulated after sedimentation. When					V
	there is a need for final disposal, the wastewater shall be discharged into storm					
	drains via silt removal facilities.					
	Wheel Washing Water					
	All vehicles and plant shall be cleaned before they leave a construction site to					V
	minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall					V
	be provided at every site exit if practicable and wash-water shall have sand and silt					
	settled out or removed before discharging into storm drains. The section of					
	construction road between the wheel washing bay and the public road shall be					
	paved with backfill to reduce vehicle tracking of soil and to prevent site run-off from					
	entering public road drains.					
	Bentonite Slurries					
	Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used again wherever practicable. If the disposal of a certain					V
	residual quantity cannot be avoided, the bentonite slurries shall either be d					
	ewatered or mixed with inert fill material for disposal to a public filling area.					
	If the used bentonite slurry is intended to be disposed of through the public					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	drainage system, it shall be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. Water for Testing & Sterilization of Water Retaining Structures and Water Pipes					
	Water used in water testing to check leakage of structures and pipes shall be used for other purposes as far as practicable. Surplus unpolluted water will be discharged into storm drains.					N/A
	 Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. Acid Cleaning, Etching and Pickling Wastewater 					N/A
	 Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. 					N/A
	 Wastewater from Site Facilities Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage tank on a 					N/A
	regular basis.Drainage serving an open oil filling point shall be connected to storm drains via					N/A
	 petrol interceptors with peak storm bypass. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. 					V
\$11.246 & 11.247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	Works areas	Construction Phase	V
S11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	V
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be	To control site run-off generated from any	Contractor	Any potential contaminated areas to	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	potential contaminated works areas.		be identified from the Stage 2 SI		
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells shall be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged shall not be higher than pollutant levels of groundwater at the recharge well. Prior to recharge, any prohibited substance such as TPH products shall be removed as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V

	- Environmental Mitigation Implementation Schedule		14/1 - 4 -	1	VAII 4	
EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.					
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
S11.256	Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows:	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	
	 Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area shall be selected at a safe location on site and adequate space shall be allocated to the storage area. 					V V V
Waste Ma	nagement Implications		L			<u> </u>
	ion Phase					
S12.75	Good Site Practices and Waste Reduction Measures Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites:	To reduce waste management impacts	Contractor	All Work Sites	Construction Phase	V
	 Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; 					V
	 Provision of sufficient waste disposal points and regular collection of waste; Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; 					V
	Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and					V
	 Separation of chemical wastes for special handling and appropriate treatment. 					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.76	Good Site Practices and Waste Reduction Measures (con't) Sorting of demolition debris and excavated materials from demolition works to	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V
	 recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; 					V
	 Encourage collection of aluminum cans by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; 					V
	 Proper storage and site practices to minimize the potential for damage or contamination of construction materials; 					V
	Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; and					V
	 Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle. 					V
S12.77	Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	N/A
S12.79	Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include:	To minimize potential adverse environmental	Contractor	Work Sites	Construction Phase	
	 Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; 	impacts arising from waste storage				V
	Maintain and clean storage areas routinely;					V
	 Stockpiling area shall be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and 					V
	 Different locations shall be designated to stockpile each material to enhance reuse. 					V
S12.80	Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal	To minimize potential adverse environmental	Contractor	Work Sites	Construction Phase	

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 outlets. The following suggestions shall be enforced to minimize the potential adverse impacts: Remove waste in timely manner Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) Waste shall be disposed of at licensed waste disposal facilities Maintain records of quantities of waste generated, recycled and disposed 	impacts arising from waste collection and disposal				V V V
S12.81	 Storage, Collection and Transportation of Waste (con't) Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.83 – 12.86	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials. The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut 	To minimize potential adverse environmental impacts during the handling, transportation and disposal of C&D materials	Contractor	Work Sites	Construction Phase	V V V
S12.88	and cover construction works for the Hung Hom south and north approach tunnels. Sediments	To ensure the	Contractor	All works areas with	Construction	N/A
	The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance.	sediment to be disposed of in an authorized and least impacted way	Contractor	sediments concern	Phase	1 1771
S12.89	 Sediments (con't) The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Detailed Design Stage and Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works.					
S12.91 – 12.94	 Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. The barge transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed.					
	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites	Construction Phase	@ V V
S12.97	 Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall: Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation. 	To register with EPD as a Chemical waste producer and store chemical waste in appropriate containers	Contractor	Work Sites	Construction Phase	V V V
S12.98	 Chemical Waste Storage Area Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Work Sites	Construction Phase	V V V V
S12.99	Chemical Waste Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place.	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	V

Appendix C – Environmental Mitigation Implementation Schedule

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	V
S12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	V
S12.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V

Legend: V = implemented;

= not implemented;

x @ = partially implemented;

N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
NM1	Hoi Kung Court	When one documented complaint is received	75 dB(A)

Appendix D AECOM

APPENDIX E

Calibration Certificates of Equipments

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA1107 01-01

Page

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.: Rion Co., Ltd.

Rion Co., Ltd.

NL-31

UC-53A

Serial/Equipment No.:

00320528 / N.007.03A

90565

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No :

Date of receipt:

07-Nov-2013

Date of test:

08-Nov-2013

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model:

Serial No.

Expiry Date:

Traceable to:

Signal generator Signal generator

B&K 4226 DS 360 DS 360

2288444 33873 61227

22-Jun-2014 15-Apr-2014 15-Арг-2014

CIGISMEC CEPREI **CEPREI**

Ambient conditions

Temperature: Relative humidity: 22 ± 1 °C

Air pressure:

60 ± 10 % 1000 ± 10 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

11-Nov-2013

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

ENGIN

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

13CA1107 01-01

Page

of

2

1, **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
Sell-generated hoise	Ĉ	Pass	1.0	2.1
	Lin	Pass	2.0	2.1
Lincarity range for Los				4.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	N/A	N/A	
3	Repeated at frequency of 100 Hz	N/A	N/A	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
5 5	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPĽ	Pass	0.3	
	Leq	Pass	0.4	

2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Fung Chi Yip

Checked by:

Lam Tze Wai

08-Nov-2013

Date:

11-Nov-2013

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA1106 04-01

Page

of

2

Item tested

Description: Manufacturer: Type/Model No .: Sound Level Meter (Type 1)

Rion Co., Ltd.

NL-31

00320528 / N 007 03A

Microphone Rion Co., Ltd.

UC-53A 90565

Adaptors used:

Item submitted by

Serial/Equipment No.:

Customer Name: Address of Customer:

Request No.:

Date of receipt:

AECOM ASIA CO., LTD.

06-Nov-2014

Date of test:

07-Nov-2014

Reference equipment used in the calibration

Description: Multi function sound calibrator

Signal generator Signal generator Model: B&K 4226 DS 360

DS 360

Serial No. 2288444

33873 61227

Expiry Date:

15-Jun-2015 09-Apr-2015 09-Apr-2015

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature: Relative humidity: Air pressure:

22 ± 1 °C 65 + 10 % 1010 ± 10 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Date:

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Approved Signatory:

Huang Jian Min/Feng Jun Qi

08-Nov-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

14CA1106 04-01

Page

of

2

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
· · · · · · · · · · · · · · · · ·	C	Pass	1.0	2.1
	Lin	Pass	2.0	2.1
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	2.2
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
requestor weightings	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
e neightinge	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	N/A	N/A	
·····o ···o··g·······g ·	Repeated at frequency of 100 Hz	N/A	N/A	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz			
Time averaging	1 ms burst duty factor 1/10 at 4kHz	Pass	0.3	
Dulas sasas		Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

- End

Checked by:

Date:

Fung Chi Yip 07-Nov-2014

Date:

Lam Tze Wai 08-Nov-2014

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0702 01-01

Page

٥f

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

B & K

B & K

Type/Model No.:

2238

Serial/Equipment No.:

4188 2791211

Adaptors used:

2800927 / N.009.06

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer: Request No.:

Date of receipt:

02-Jul-2014

Date of test:

03-Jul-2014

Reference equipment used in the calibration

Description:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator

Model: B&K 4226 DS 360 DS 360

2288444 33873 61227

20-Jun-2015 09-Apr-2015 09-Apr-2015

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1000 ± 10 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

in/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Huang Jian

Approved Signatory:

Date:

04-Jul-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

14CA0702 01-01

Page

of

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
Sell-generated hoise	Ĉ	Pass	1.0	2.1
	Lin	Pass	2.0	2.1
1 in a neith annua a faoil an				2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
3 3	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
·	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Fung Chi Yip 03-Jul-2014

Checked by:

Lam Tze Wai

Date:

04-Jul-2014

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA1107 01-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd.

Type/Model No.:

NC-73

Serial/Equipment No.:

Adaptors used:

10307223 / N.004.08

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

Request No: Date of receipt:

07-Nov-2013

Date of test:

08-Nov-2013

Reference equipment used in the calibration

Description: Model: Lab standard microphone B&K 4180 Preamplifier B&K 2673 Measuring amplifier B&K 2610 Signal generator DS 360 Digital multi-meter 34401A Audio analyzer 8903B Universal counter 53132A	Serial No. 2341427 2239857 2346941 61227 US36087050 GB41300350 MY40003662	Expiry Date: 17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014 10-Dec-2013 15-Apr-2014 15-Apr-2014	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
--	--	---	--

Ambient conditions

Temperature: Relative humidity: 22 ± 1 °C 60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

11-Nov-2013

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co. Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F, 9/F, 12/F, 13/F, & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄竹坑 道 3 7 號 利達 中心地下,9 樓,1 2 樓,1 3 樓及 2 0 樓

E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

13CA1107 01-02

Page:

(

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	(Output level in dB re 20 µPa) Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	93.86	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 988.6 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.2 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Fung Chi Yin

08-Nov-2013

Checked by:

Date:

Lam Tze Wai

Date:

11-Nov-2013

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

G/F, 9/F, 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA1106 04-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd.

Type/Model No.:

NC-73

Serial/Equipment No.:

10307223 / N.004.08

Adaptors used:

_

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

-

Request No.:
Date of receipt:

06-Nov-2014

Date of test:

07-Nov-2014

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	13-May-2015	SCL
Preamplifier	B&K 2673	2239857	10-Apr-2015	CEPREI
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI
Signal generator	DS 360	61227	09-Apr-2015	CEPREI
Digital multi-meter	34401A	US36087050	17-Dec-2014	CEPREI
Audio analyzer	8903B	GB41300350	07-Apr-2015	CEPREI
Universal counter	53132A	MY40003662	11-Apr-2015	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 65 ± 10 %

Relative humidity: Air pressure:

1010 ± 10 %

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date:

08-Nov-2014

Company Chop:

Huang Jian Min/Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com

Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

14CA1106 04-02

Page:

of

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

			(Output level in dB re 20 μPa)
Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	Estimated Expanded Uncertainty dB
1000	94.00	94.02	0.10

2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 988.9 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4. Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 1.3 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Fung Chi Yip

Checked by:

Lam Tze Wai

07-Nov-2014 Date:

Date:

08-Nov-2014

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0408 01-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Serial/Equipment No. Rion Co., Ltd. NC-74

Serial/Equipment No.: Adaptors used: 34246490 // 004 / 0

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer: Request No.:

-

Date of receipt:

08-Apr-2014

Date of test:

15-Apr-2014

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	17-Apr-2014	SCL
Preamplifier	B&K 2673	2239857	10-Apr-2015	CEPREI
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI
Signal generator	DS 360	61227	09-Apr-2015	CEPREI
Digital multi-meter	34401A	US36087050	17-Dec-2014	CEPREI
Audio analyzer	8903B	GB41300350	07-Apr-2015	CEPREI
Universal counter	53132A	MY40003662	11-Apr-2015	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1000 ± 10 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

23-Apr-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

14CA0408 01-02

Page:

2

Measured Sound Pressure Level 1,

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded Uncertainty dB
Shown	Level Setting	Sound Pressure Level	
Hz	dB	dB	
1000	94.00	93.88	0.10

Sound Pressure Level Stability - Short Term Fluctuations 2

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.003 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1001.9 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 1.3 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Fung Chi Yip

Checked by:

Lam Tze Wai

Date:

15-Apr-2014

Date:

23-Apr-2014

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP156-2/Issue 1/Rev C/01/05/2005

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link Contract 1129 - Advance Works for NSL Impact Environmental Monitoring Schedule for November 2014

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Nov
2 Nov	4 Nov	E Nov	6 Nov	7 Nov	8-Nov
3-1100	4-INUV	3-NOV	0-1107	/-INUV	O-INUV
		Noise			
		,			
10-Nov	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov
Noise					
(INIVIT)					
17-Nov	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov
				(NM1)	
24 Nov	25 Nov	26 Nov	27 Nov	20 Nov	29-Nov
24-INUV	25-1107	20-1107	27-1100	20-1107	29-1101
			Noise		
			(NM1)		
	3-Nov	3-Nov 4-Nov 10-Nov 11-Nov Noise (NM1) 17-Nov 18-Nov	3-Nov 4-Nov 5-Nov Noise (NM1) 10-Nov 11-Nov 12-Nov Noise (NM1) 17-Nov 18-Nov 19-Nov	3-Nov 4-Nov 5-Nov 6-Nov Noise (NM1) 10-Nov 11-Nov 12-Nov 13-Nov Noise (NM1) 17-Nov 18-Nov 19-Nov 20-Nov 24-Nov 25-Nov 26-Nov Noise	3-Nov 4-Nov 5-Nov 6-Nov 7-Nov Noise (NM1)

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Noise Monitoring Station

NM1 Hoi Kung Court

Monitoring Frequency

Once per week

Shatin to Central Link Contract 1129 - Advance Works for NSL **Tentative Impact Environmental Monitoring Schedule for December 2014**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Dec	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
			Noise (NM1)			
7-Dec	8-Dec	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec
		Noise (NM1)				
14-Dec	15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec
	Noise (NM1)					
21-Dec	22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec
		Noise (NM1)				
28-Dec	29-Dec	30-Dec	31-Dec			

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

NM1 Hoi Kung Court

Monitoring Frequency Once per week

Shatin to Central Link Contract 1129 - Advance Works for NSL **Tentative Impact Environmental Monitoring Schedule for January 2015**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jan	2-Jan	3-Jan
					Noise (NM1)	
4-Jan	5-Jan	6-Jan	7-Jan	8-Jan	9-Jan	10-Jan
			Noise (NM1)			
11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan
				Noise (NM1)		
18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan
			Noise (NM1)			
25-Jan	26-Jan	27-Jan	28-Jan	29-Jan	30-Jan	31-Jan
		Noise (NM1)				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Noise Monitoring Station

Hoi Kung Court NM1

Monitoring Frequency Once per week

Shatin to Central Link Contract 1129 - Advance Works for NSL **Tentative Impact Environmental Monitoring Schedule for February 2015**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Feb	2-Feb	3-Feb	4-Feb	5-Feb	6-Feb	7-Feb
	Noise (NM1)					
8-Feb	9-Feb	10-Feb	11-Feb	12-Feb	13-Feb	14-Feb
					Noise (NM1)	
15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb	21-Feb
	Noise (NM1)					
22-Feb	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb	28-Feb
			Noise (NM1)			

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Noise Monitoring Station

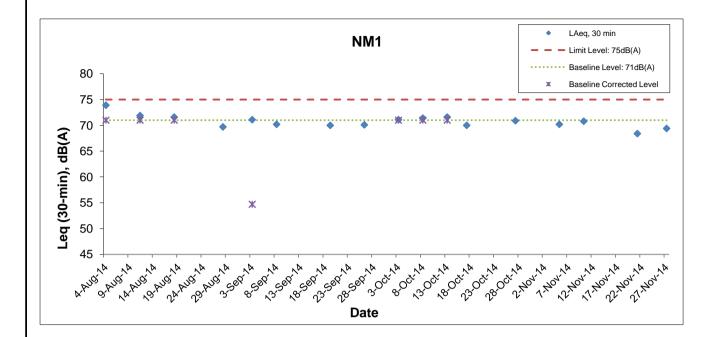
Hoi Kung Court

Monitoring Frequency Once per week

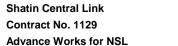
APPENDIX G

Noise Monitoring Results and their Graphical Presentations

Appendix G - Impact Daytime Construction Noise Monitoring Results


Daytime Noise Monitoring Results at Station NM1 - Hoi Kung Court, Rooftop-20/F

Date Weather		No	ise Level for 3	30-min, dB(A)	(A) Baseline Corrected Level, Baseline Noise Level,		Limit Level, dB(A) Exceedance (
Date	Condition	Time	L90	L10	Leq	dB(A) [#]	dB(A)	Limit Level, db(A)	Exceedance (Y/N)
5-Nov-14	Fine	11:30	68.8	73.7	70.2	<baseline level<="" td=""><td>71</td><td>75</td><td>N</td></baseline>	71	75	N
10-Nov-14	Sunny	11:00	69.0	71.5	70.8	<baseline level<="" td=""><td>71</td><td>75</td><td>N</td></baseline>	71	75	N
21-Nov-14	Sunny	10:24	64.7	70.3	68.4	<baseline level<="" td=""><td>71</td><td>75</td><td>N</td></baseline>	71	75	N
27-Nov-14	Sunny	10:22	65.2	71.7	69.4	<baseline level<="" td=""><td>71</td><td>75</td><td>N</td></baseline>	71	75	N


Remark:

^{*} Façade measurement.

^{*-}The measured Leq is corrected against the corresponding Baseline Level.

This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECOM's express written

APPENDIX H

Event Action Plan

Appendix H Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENIT.	ACTION								
EVENT	ET	IEC	ER	Contractor					
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals. 					
Exceedance of Limit Level	 Notify the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 					

APPENDIX I

Cumulative Statistics of Complaints, Notification of Summons and Successful Prosecutions

Appendix I

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	-	-	0	0
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

Appendix I AECOM

APPENDIX J

Waste Flow Table

SCL Contract 1129 Advance Works For NSL

Monthly Summary C&D Material Flow Table for 2014

updated to 30 November 2014

upuated to 30 Provenied 2014											
		Quantity for off-site disposal of Inert C&D materials (m ³)				Quantity for off-site disposal of Non-inert C&D materials					
Latest Programme for Generation & Import of Materials in each Reporting Period	Inert C&D material (m ³)			Metals (kg)	Paper / Cardboard (kg)	Plastics (kg)	Chemical Waste (kg)	General Waste (m³)	Sediment (m ³)		
	CWPFBP(1)	TKO137FB(2)	TKO137SF(3)	^Other Site	Total (m ³)	Total	Total		Total	Total	Total
2014/01 (Actual)	0	0	0	0	0	0	0	0	0	0	0
2014/02 (Actual)	0	0	0	0	0	0	0	0	0	0	0
2014/03 (Actual)	305	0	0	0	305	0	0	0	0	0	0
2014/04 (Actual)	308	75	0	0	382	0	0	0	0	0	0
2014/05 (Actual)	1,258	7	0	0	1,266	0	0	0	0	5.0	0
2014/06 (Actual)	63	19	0	0	82	4,210	0	0	0	4.9	0
Sub-total Sub-total	1,934	101	0	0	2,035	4,210	0	0	0	9.9	0
2014/07 (Actual)	663	116	0	0	779	0	0	0	0	4.4	0
2014/08 (Actual)	1,658	63	0	0	1,721	0	0	0	400	9.5	0
2014/09 (Actual)	1,032	182	0	0	1,214	0	0	0	0	11.3	0
2014/10 (Actual)	545	25	0	0	569	0	0	0	0	8.0	0
2014/11 (Actual)	142	31	0	0	173	0	0	0	0	2.5	0
2014/12 (Actual)											
Sub-total	4,039	416	0	0	4,455	0	0	0	400	35.7	0
Total					6,489	4,210	0	0	400	45.6	0

Remark: *Assume the density is 2 tonnes per cubic metre

^Required to be approved by EPD and MTR

1 CWPFBP Chai Wan Public Fill Barging Point

2 TKO137FB Fill Bank at Tseung Kwan O Area 137

Date: 12/9/2014

3 TKO137SF Sorting Facilities at Tseung Kwan O Area 137

Appendix B

Monthly EM&A Report for November 2014 – SCL Works Contract 1126 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool

MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No.5
[Period from 1 to 30 November 2014]

Works Contract 1126 – Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool

(December 2014)

Certified by: Dr. Priscilla Choy

Position: Environmental Team Leader

Date: 12th December 2014

Shatin to Central Link – Contract 1126 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool

Monthly Environmental Monitoring and Audit Report for November 2014

(Version 1.0)

Certified By

Dr. Priscilla Choy (Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

+TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	1
Introduction	1
Summary of Construction Works undertaken during Reporting Month	
Environmental Monitoring and Audit Progress	1
Regular Construction Noise and Construction Dust Monitoring	1
Waste Management	
Landscape and Visual	2
Environmental Site Inspection	2
Environmental Exceedance/Non-conformance/Complaint/Summons and Successful	
Prosecution	
Future Key Issues	2
1 INTRODUCTION	4
Purpose of the Report	4
Structure of the Report	
2 PROJECT INFORMATION	5
-	
Background	
Construction Programme and Activities	
Project Organisation	
Status of Environmental Licences, Notification and Permits	
Summary of EM&A Requirements	
3 ENVIRONMENTAL MONITORING REQUIREMENTS	
Regular Construction Noise Monitoring	
Monitoring Parameter and Frequency	
Monitoring Equipment and MethodologyField Monitoring	
Monitoring Equipment	
Maintenance and Calibration	
Action & Limit Level for Construction Noise Monitoring	
Continuous Noise Monitoring	
Regular Construction Dust Monitoring	
Monitoring Parameter and Frequency	
Monitoring Equipment	
Instrumentation	
HVS Installation	10
Filters Preparation	11
Operating/Analytical Procedures	
Maintenance/Calibration	
Action and Limit Levels for Dust Monitoring	
Landscape and Visual	12
4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION PROJUBEMENTS	12
REQUIREMENTS	
5 MONITORING RESULTS	
Regular Construction Noise Monitoring	
Regular Dust Monitoring	14

	ste Managementdscape and Visual	
6	ENVIRONMENTAL SITE INSPECTION	16
Site	Audit	16
Imp	lementation Status of Environmental Mitigation Measures	16
7	ENVIRONMENTAL NON-CONFORMANCE	18
Sum Sum	nmary of Exceedances nmary of Environmental Non-Compliance nmary of Environmental Complaint	18 18
	nmary of Environmental Summon and Successful Prosecution	
8	FUTURE KEY ISSUES	
Key	Issues in the Next Month	19
9	CONCLUSIONS AND RECOMMENDATIONS	
	ommendations	
LIS	T OF TABLES	
Table Table Table Table Table Table Table Table	le 2.1 Status of Environmental Licences, Notification and Permits Regular Construction Noise Monitoring Location Noise Monitoring Equipment Dust Monitoring Location Dust Monitoring Parameters and Frequency Dust Monitoring Equipment Status of Required Submissions under EP Summary Table of Dust Monitoring Results during the reporting month Quantities of Waste Generated from the Project Observations and Recommendations of Site Audit	
LIS	T OF FIGURES	
Figu	The Alignment and Works Area for Works Contract 1126 Locations of Construction Noise Monitoring Location of Dust Monitoring Organisation Chart and Key Contact of the Project	

LIST OF APPENDICES

Appendix A	Tentative Construction Programme
Appendix B	Action and Limit Levels
Appendix C	Calibration Certificates for Monitoring Equipment
Appendix D	Impact Monitoring Schedule
Appendix E	24-hour TSP Monitoring Results and Graphical Presentations
Appendix F	Noise Monitoring Results and Graphical Presentations
Appendix G	Summary of Exceedance
Appendix H	Site Audit Summary
Appendix I	Event and Action Plans
Appendix J	Updated Environmental Mitigation Implementation Schedule
Appendix K	Waste Generation in the Reporting Month
Appendix L	Cumulative Log for Complaints, Notifications of Summons and Successful
	Prosecutions

EXECUTIVE SUMMARY

Introduction

This is the 5th monthly Environmental Monitoring and Audit (EM&A) Report prepared 1. by Cinotech Consultants Limited for MTR Shatin to Central Link (SCL) Works Contract 1126 -Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool. This report documents the findings of EM&A Works conducted from 1 to 30 November 2014.

Summary of Construction Works undertaken during Reporting Month

2. The major site activities undertaken in the reporting month include:

At Wan Chai Sports Ground (WCSG)

Construction Site Office.

At Public Transport Interchange (PTI) Area

- Construction of Petrol Interception;
- Manhole construction & underground utilities connection;
- Construction of Store Room; and
- Construction of ducting for street lighting.

Environmental Monitoring and Audit Progress

3. A summary of the monitoring activities in this reporting period is listed below:

Regular Construction Noise and Construction Dust Monitoring

- Regular construction noise monitoring during normal working hours Noise Monitoring Station ID
 - NM2⁽¹⁾⁽³⁾ (Harbour Centre)

4 times

- Construction Dust (24-hour TSP) Monitoring Dust Monitoring Station ID
- AM2⁽¹⁾⁽²⁾ (Wan Chai Sports Ground)

5 times

• AM3⁽¹⁾ (Existing Harbour Road Sports Centre)

5 times

- (1) Station ID as identified in approved EM&A Manual for SCL(HUH-ADM).
- (2) The spectator stand at Wan Chai Sports Ground was not available for impact dust monitoring, therefore impact monitoring was conducted at the existing water pump room area at Wan Chai Sports Ground.
- (3) Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring. Alternative noise monitoring location proposed at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited. Impact noise monitoring was carried out at Harbour Centre from 20 August 2014 onwards.

Waste Management

4. Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Details of waste management data is presented in Section 5 and Appendix K.

Landscape and Visual

5. Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 12 and 26 November 2014. Most of the necessary mitigation measures have been implemented and recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

6. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 5, 12, 19 and 26 November 2014. The representative of the IEC joined the site inspection on 12 November 2014. Details of the audit findings and implementation status are presented in Section 6.

Environmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution

- 7. No exceedance of the Action and Limit Levels of regular construction noise monitoring and 24-hour TSP monitoring was recorded during the reporting period.
- 8. No non-compliance event was recorded during the reporting period.
- 9. No Project related environmental complaint and notification of summons/successful prosecutions were received in this reporting period.

Reporting Changes

10. N/A

Future Key Issues

11. Major site activities for the coming reporting month will include:

At Wan Chai Sports Ground (WCSG)

- Construction Site Office; and
- Material storage.

At Public Transport Interchange (PTI) Area

- Construction of Petrol Interception;
- Manhole construction & underground utilities connection;
- Construction of Store Room;
- Construction of ducting for street lighting;
- Construction of footing for bus shelter and signage post; and
- Construction of concrete pavement, tactile and kerb.
- 12. Key environmental impacts to be considered in the coming month include:
 - Dust impact from stockpile of dusty materials and unpaved works area;
 - Wastewater from surface runoff;
 - Waste management;

- Preservation and protection of retained and transplanted trees; and
- Noise impact from construction works.

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Kaden – Leader Joint Venture (KLJV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL)Works Contract 1126 –Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool (hereafter referred to as the Project).

Purpose of the Report

1.2 This is the 5th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 1 to 30 November 2014. The major construction works for Contract 1126 commenced on 9 July 2014.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** details the scope and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: **Environmental Monitoring Requirement -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.
 - Section 4: **Implementation Status on Environmental Mitigation Measures -** summarises the implementation of environmental protection measures during the reporting period.
 - Section 5: **Monitoring Results** summarises the monitoring results obtained in the reporting period.
 - Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.
 - Section 7: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.
 - Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.
 - **Section 9: Conclusions and Recommendations**

2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Hung Hom to Admiralty Section (hereafter referred to as SCL (HUH-ADM)) is an approximately 6km extension of the East Rail Line including a rail harbor crossing from Hung Hom across the harbor to Admiralty on Hong Kong Island. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The Environmental Impact Assessment (EIA) Report for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, Environmental Permits (EP) (EP No: EP-436/2012) was granted on 22 March 2012 for their construction and operation. Variations of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/A) was issued by Director of Environmental Protection (DEP) on 30 April 2014.
- 2.3 The construction of the SCL (HUH-ADM) has been divided into a series of civil construction Works Contracts and this Works Contract 1126 comprises of the Permanent Works and the Temporary Works for the re-provisioning of Harbour Road Sports Centre (HRSC) and Wan Chai Swimming Pool (WCSP). The major construction works for Contract 1126 commenced on 9 July 2014.

General Site Description

2.4 The major works of this Project that was classified as Designated Project under the EIAO include the demolition of grandstand superstructure and water pump room of WCSG, and the temporary works for the future Public Transport Interchange (PTI) Area. The PTI area has been obtained in phases. The alignment and works area for the Works Contract 1126 are shown in **Figure 1**.

Construction Programme and Activities

2.5 A summary of the major construction activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix A**.

At Wan Chai Sports Ground (WCSG)

- Construction Site Office.
 - At Public Transport Interchange (PTI) Area
- Construction of Petrol Interception;
- Manhole construction & underground utilities connection;
- Construction of Store Room; and
- Construction of ducting for street lighting.

Project Organisation

2.6 The project organizational chart and contact details are shown in **Figure 4.**

Status of Environmental Licences, Notification and Permits

2.7 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.1**.

Table 2.1 Summary of the Status of Environmental Licences, Notification and Permits

D	Valid	Valid Period			
Permit / License No.	From	То	Status		
Environmental Permit (EP)					
EP-436/2012/A	30/04/2014	N/A	Valid		
Notification pursuant to Air I	Pollution Control (Cons	truction Dust) Regulati	on		
Ref no.: 370563	14/02/2014	N/A	Valid		
Ref no.: 380674	17/10/2014	N/A	Valid		
Billing Account for Construct	tion Waste Disposal				
Account No.7019324	10/02/2014	N/A	Valid		
Registration of Chemical Wa	ste Producer	L L			
5213-135-K3101-01	14/05/2014	N/A	Valid		
5213-135-K3131-01	10/11/2014	N/A	Valid		
Effluent Discharge License u	nder Water Pollution Co	ontrol Ordinance			
WT00019352-2014	17/06/2014	30/06/2019	Valid		
Construction Noise Permit (C	CNP)	<u> </u>			
GW-RS0761-14 ⁽¹⁾	01/08/2014	31/01/2015	Valid		
GW-RS1194-14 ⁽²⁾	06/11/2014	05/05/2015	Valid		

Note:

- (1) For the use of A&A works in Wan Chai Sports Ground.
- (2) For construction works in PTI Area.

Summary of EM&A Requirements

- 2.8 The EM&A programme under Works Contract 1126 require regular dust and noise monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirements in contract documents.
- 2.9 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 2.10 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely construction noise & dust monitoring as well as audit works for the Project in the reporting month.

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Regular Construction Noise Monitoring

3.1 In accordance with the EM&A Manual, monitoring of construction noise impact should be conducted at the designated monitoring stations. Since access to the original baseline monitoring location was rejected, alternative location was proposed. The construction noise monitoring locations are listed in **Table 3.1** and shown in **Figure 2**.

Table 3.1 Regular Construction Noise Monitoring Location

Regular Construction Noise Monitoring Location	Description	Type of Measurement
NM2 ⁽¹⁾	Harbour Centre (7/F) (2)	Façade

Note:

- (1) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(HUH-ADM).
- (2) Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring. Alternative noise monitoring location proposed at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited. Impact noise monitoring was carried out at Harbour Centre from 20 August 2014 onwards.

Monitoring Parameter and Frequency

- 3.2 Weekly construction noise monitoring was conducted in accordance with the requirements stipulated in the EM&A Manual. If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed. The monitoring schedule for this reporting period is shown in **Appendix D**.
- 3.3 The construction noise levels were measured in terms of the A-weighted equivalent continuous sound pressure level (L_{Aeq}) in decibels dB(A). L_{Aeq} (30min) (one set of 30-minute measurement) was used as the monitoring metric for the time period between 0700 1900 hours on normal weekdays.

Monitoring Equipment and Methodology

Field Monitoring

- 3.4 The monitoring procedures are as follows:
 - The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
 - The battery condition was checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting : Atime weighting : Fast

- measurement time : 30 minutes (one set of 30-minute measurement of a L_{eq,30}

min reading)

- Prior to and after noise measurement, the meter was calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement was required after re-calibration or repair of the equipment.
- The wind speed at the monitoring station was checked with the portable wind meter. Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
- Noise measurement was paused during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- At the end of the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- A façade correction of +3dB(A) shall be made to the noise parameter obtained by free field measurement.

Monitoring Equipment

3.5 The sound level meters and calibrator used for the noise measurement, as listed in **Table 3.2**, compile with the IEC 651: 1979 and 804:1985 (Type 1) specification. The calibration certificates of the sound level meters are included in **Appendix C**.

Table 3.2 Noise Monitoring Equipment

Monitoring Equipment	Model (Serial no.)
Sound Level Meter	SVAN 957 (Serial no.: 21459 and 21460)
Calibrator	SV30A (Serial no.: 10965 and 24803) B&K 4231 (Serial no.: 2412367)

Maintenance and Calibration

- 3.6 Maintenance and Calibration procedures were as follows:
 - The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator were checked and calibrated at yearly intervals. Copies of calibration certificates are attached in **Appendix C**.

Action & Limit Level for Construction Noise Monitoring

3.7 The Action and Limit Levels are presented in **Appendix B** and the Event / Action Plan (EAP) for noise monitoring is presented in **Appendix I.**

Compliance Checking for Impact Monitoring

3.8 The Baseline noise monitoring was conducted between 1 and 14 September 2014 at Harbour Centre. The Baseline noise monitoring results (L_{eq}(30min.) dB(A)) during the period without construction works on normal weekdays ranged from 67.1dB(A) to 73.0dB(A). Result of the monitoring (i.e. 69.6dB(A)) was used for correcting the measured noise level during the construction stage of the Project for normal weekdays by this formula:

Measured L_{eq} at the Harbour Centre – Baseline Noise Level (69.6 dB)

= Construction Noise Level at the Harbour Centre

Continuous Noise Monitoring

3.9 With reference to the latest Continuous Noise Monitoring Plan (CNMP) and Construction Noise Mitigation Measures Plan (CNMMP) prepared submitted under EP Condition 2.8 and Condition 2.7 respectively, it is predicted that no residual air-borne construction noise impacts exceeding the relevant noise criteria is anticipated. Therefore, no continuous noise monitoring is required during the construction of the SCL (HUH-ADM) under Works Contract 1126.

Regular Construction Dust Monitoring

3.10 The proposed dust monitoring stations for the construction phase of the Project, as recommended in the approved EM&A Manual, are listed in **Table 3.3** and shown in **Figure 3**. The proposed locations have been agreed with the ER, EPD and IEC.

Table 3.3 Dust Monitoring Location

Regular Dust Monitoring Location	Description
$AM2^{(1)}$	Wan Chai Sports Ground (2)
AM3 ⁽¹⁾	Existing Harbour Road Sports Centre

Note:

- (1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HUH-ADM).
- (2) The spectator stand at Wan Chai Sports Ground was not available for impact dust monitoring, therefore impact monitoring was conducted at the existing water pump room area at Wan Chai Sports Ground.

Monitoring Parameter and Frequency

3.11 The dust monitoring (in terms of Total Suspended Particulates (TSP)) was conducted at the designated monitoring stations in accordance with the requirements stipulated in the EM&A Manual. The 24-hour TSP levels were monitored at the frequency and duration stated in **Table 3.4**. The TSP monitoring at two monitoring locations was conducted as per the schedule presented in **Appendix D**.

Table 3.4 Dust Monitoring Parameters and Frequency

Monitoring Period	Duration	Parameter	Frequency
Impact Monitoring ⁽¹⁾	Throughout the	24-hour TSP	Once per 6 days
	construction period		

(1) 1- hour TSP shall be conducted when one documented valid complaint is received.

Monitoring Equipment

3.12 **Table 3.5** summarizes the equipment used for the dust monitoring.

Table 3.5 Dust Monitoring Equipment

Equipment	Model and Make	
HVS	Tisch Environmental, Inc.; Model no. TE-5170, Serial no.: 1535, 5280	2
Calibration Orifice	Tisch Environmental, Inc.; Model no. TE – 5025A Orifice ID: 0993	1

Instrumentation

3.13 High Volume Samplers (HVS) connected with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 Appendix B (Part 50).

HVS Installation

- 3.14 The following guidelines were adopted during the installation of HVS:
 - A horizontal platform with appropriate support to secure the samplers against gusty wind should be provided;
 - Two samplers should not be placed less than 2m apart;
 - The distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
 - A minimum of 2m separation from walls, parapets and penthouses is required for rooftops samplers;
 - A minimum of 2m separation from any supporting structure, measures horizontally is required;
 - No furnace or incinerator flue is located nearby the samplers;
 - Airflow around the sampler is unrestricted;
 - The sampler is more than 20m from the dripline;
 - Any wire fence and gate to protect the sampler, should not cause any obstruction during monitoring:
 - Permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
 - A secured supply of electricity is needed to operate the samplers.

Filters Preparation

- 3.15 Fiberglass filters were used which have a collection efficiency of larger than 99% for particles of 0.3 µm diameter. A HOKLAS accredited laboratory, Wellab Ltd. (HOKLAS Registration No. 083), was responsible for the preparation of pre-weighed filter papers for Cinotech's monitoring team.
- 3.16 All filters, which were prepared by Wellab Ltd., were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was <50% and not variable by more than ±5%. A convenient working RH was 40%.
- 3.17 Wellab Ltd. has a comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

- 3.18 Operating/analytical procedures for the TSP monitoring were highlighted as follows:
 - Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard.
 - The power supply was checked to ensure the sampler worked properly.
 - The filter holding frame and the area surrounding the filter were cleaned.
 - On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the air quality monitoring station.
 - The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
 - The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts to avoid air leakage at the edges.
 - The shelter lid was closed and secured with the aluminum strip.
 - A new flow rate record chart was set into the flow recorder.
 - The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
 - The flow rate of the HVS sampler would be verified to be constant and recorded on the data sheet before and after sampling.
 - The elapsed time and other relevant information was recorded. After sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
 - It was then placed in a clean plastic envelope and sealed and sent to the Wellab Ltd. for weighing.
 - Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned to Cinotech for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 3.19 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - Calibration of the HVS (five point calibration) using Calibration Kit was carried out every two months. Copies of calibration certificates are attached in **Appendix C**.
 - The HVS calibration orifice will be calibrated annually.

Action and Limit Levels for Dust Monitoring

3.20 The Action and Limit levels have been established and are presented in **Appendix B** and the Event / Action Plan (EAP) for dust monitoring is presented in **Appendix I.**

Landscape and Visual

3.21 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is given in **Appendix J**.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix J**. Status of required submissions under the Environmental Permit (EP) of the reporting period is presented in **Table 4.1**.

Table 4.1 Status of Required Submissions under EP

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report (October 2014)	14 November 2014

5 MONITORING RESULTS

Regular Construction Noise Monitoring

- 5.1 A total of 4 sets of 30-minute construction noise measurements were carried out at the monitoring stations during normal weekdays of the reporting period by ET of SCL Works Contract 1126. No exceedance of the limit level was recorded at designated monitoring stations.
- 5.2 Based on observation during the on-site monitoring, road traffic nearby is considered as a potential noise source other than construction works of the Project that affects the monitoring results of the reporting month.
- 5.3 The noise monitoring results together with their graphical presentations are presented in **Appendix F** and a summary of the noise monitoring results in this reporting month is given in **Table 5.1**.

Table 5.1 Summary Table of Noise Monitoring Results during the reporting month

Parameter (1)	Location	Range, dB(A),	Limit Level, dB(A),
		$L_{eq (30 \text{ mins})}^{(2)}$	Leq (30 mins)
Noise (NM2)	Harbour Centre	68.0 – 70.7	75

Remarks:

- (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HUH-ADM).
- (2) The Range presented in the above table was baseline corrected noise level.
- 5.4 No exceedance of the Action and Limit Levels of construction noise due to the Project was recorded during the reporting period.

Regular Dust Monitoring

5.5 10 sets of 24-hour TSP monitoring were carried out at the designated monitoring stations during normal weekdays of the reporting period by ET of SCL Works Contract 1126. The monitoring results together with their graphical presentations are presented in **Appendix E** and a summary of the dust monitoring results in this reporting month is given in **Table 5.2**.

Table 5.2 Summary Table of Dust Monitoring Results during the reporting month

Parameter	Minimum μg/m³	Maximum μg/m³	Average μg/m³	Action Level, μg/m³	Limit Level, µg/m³
24-hr TSP (AM2 ⁽¹⁾)	42.8	133.6	89.5	160	260
24-hr TSP (AM3 ⁽¹⁾)	88.9	116.1	105.2	169	260

Remarks: (1) Station ID as identified in approved EM&A Manual / EIA Report for SCL(HUH-ADM).

- 5.6 Based on observation during the on-site monitoring, road traffic emission nearby is considered as a potential dust source other than construction works of the Project that affects the monitoring results of the reporting month.
- 5.7 Wind monitoring data were obtained from Star Ferry Meteorological Station of Hong Kong Observatory and shown on **Appendix E**.

5.8 No exceedance of the Action and Limit Levels of the 24-hour TSP was recorded during the reporting period.

Waste Management

5.9 Waste generated from this Project includes inert construction and demolition (C&D) materials and non-inert C&D materials. Non-inert C&D materials are made up of general refuse and recyclable wastes like plastics and paper/cardboard packaging materials. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table** 5.3. Details of waste management data is presented in **Appendix K**. 0 m³ of inert C&D material was re-used on-site and by other projects.

 Table 5.3 Quantities of Waste Generated from the Project

	Quantity					
Reporting	COD	C&D Materials (non-inert) (b)				
Month		General Refuse	Chemical Waste	Recycled materials		
TVIOITEII				Paper/ cardboard	Plastics	Metals
November 2014	$1,033 \text{ m}^3$	$36 m^3$	0kg	0 kg	0kg	0kg

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil,
- (b) Non-inert C&D materials include steel, paper/cardboard packaging waste, plastics and other wastes such as general refuse and vegetative wastes. Steel materials generated from the project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.

Landscape and Visual

5.10 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 12 and 26 November 2014. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION

Site Audit

- 6.1 Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audit are attached in **Appendix H**.
- 6.2 Site audits were conducted on 5, 12, 19 and 26 November 2014 by ET. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 12 November 2014. No site inspection was conducted by EPD during the reporting month. The details of observations during site audit can refer to **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix J**.
- 6.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality	5 Nov 2014	Observation: Sand bag bunds are not provided to the footing of site boundary at PTI Area. The Contractor is reminded to prevent leakage of wastewater from the site boundary.	The observation was observed to be improved/rectified by the Contractor during the audit session on 12 November 2014.
Noise			
Landscape and Visual	12 Nov 2014	Reminder: The Contractor is reminded to provide hoardings up to a higher level for the PTI Area.	The observation was observed to be improved/rectified by the Contractor during the audit session on 19 November 2014.
Air Quality	29 Oct 2014	Reminder: To cover the stockpile of dusty material properly by tarpaulin sheets at PTI Area.	The observation was observed to be improved/rectified by the Contractor during the audit session on 5 November 2014.
	12 Nov 2014	Reminder: White smoke observed from the generator. The Contractor is reminded to repair it properly.	The observation was observed to be improved/rectified by the Contractor during the audit session on 19 November 2014.
	12 Nov 2014	Reminder: The Contractor is reminded to provide hoardings up to a higher level for the PTI Area.	The observation was observed to be improved/rectified by the Contractor during the audit session on 19 November 2014.
	19 Nov 2014	Observation: Unpaved area and haul road observed dry in PTI Area. The Contractor is	The observation was observed to be improved/rectified by

Parameters	Date	Observations and Recommendations	Follow-up
		reminded to provide water spray to prevent dust generation.	the Contractor during the audit session on 26 November 2014.
	26 Nov 2014 Reminder: Stockpile of dusty material observed partially exposed in PTI Area. The Contractor is reminded to cover it by impervious sheet to prevent dust generation.		Follow up action will be reported in next reporting month.
Waste / Chemical Management			
Permits/ Licenses			

7 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

7.1 No exceedance of the Action and Limit Levels of regular construction noise monitoring and 24-hour TSP monitoring was recorded during the reporting period. The summary of exceedance is provided in **Appendix G**.

Summary of Environmental Non-Compliance

7.2 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

7.3 No environmental Project-related complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix L**.

Summary of Environmental Summon and Successful Prosecution

7.4 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix L**.

8 FUTURE KEY ISSUES

Construction Programme for the Next Month

8.1 A tentative construction programme is provided in **Appendix A**. The major construction activities in the coming month will include:

At Wan Chai Sports Ground (WCSG)

- Construction Site Office: and
- Material storage.

At Public Transport Interchange (PTI) Area

- Construction of Petrol Interception;
- Manhole construction & underground utilities connection;
- Construction of Store Room;
- Construction of ducting for street lighting;
- Construction of footing for bus shelter and signage post; and
- Construction of concrete pavement, tactile and kerb.

Key Issues in the Next Month

- 8.2 Key issues to be considered in the coming month include:
 - Dust impact from stockpile of dusty materials and unpaved works area;
 - Wastewater from surface runoff;
 - Waste management;
 - Preservation and protection of retained and transplanted trees; and
 - Noise impact from construction works.

Monitoring Schedule in the Next Month

8.3 The tentative schedule of regular construction noise monitoring and 24-hour TSP monitoring at all the monitoring locations in the next reporting period is presented in **Appendix D**. The regular construction noise monitoring and 24-hour TSP monitoring will be conducted at the same monitoring locations in the next reporting period.

9 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 to 30 November 2014 in accordance with EM&A Manual and the requirement under EP.
- 9.2 No exceedance of the Action and Limit Levels of regular construction noise and 24-hour TSP monitoring was recorded at the designated monitoring stations during the reporting month.
- 9.3 4 times of joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET and 2 times of bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted during the reporting period.
- 9.4 There was no Project related environmental complaint, successful prosecution or notification of summons received during the reporting month.
- 9.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

9.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

Water Quality

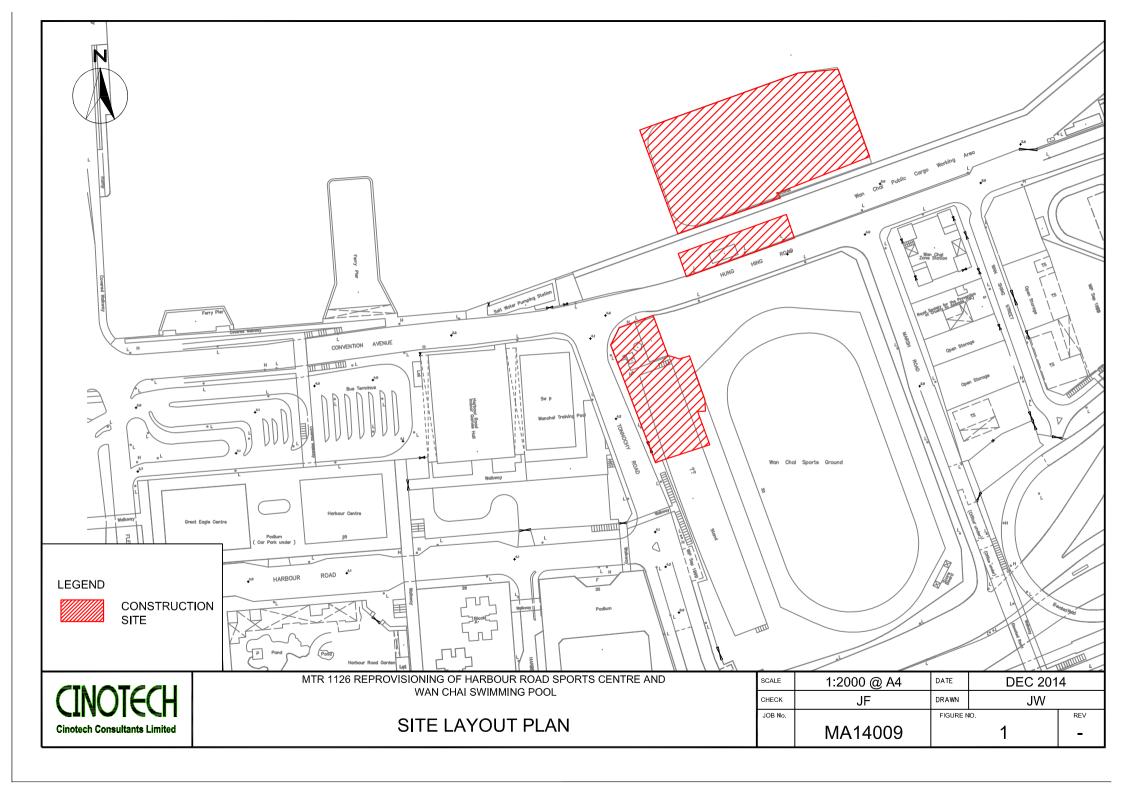
• Sand bag bunds are not provided to the footing of site boundary at PTI Area. The Contractor is reminded to prevent leakage of wastewater from the site boundary.

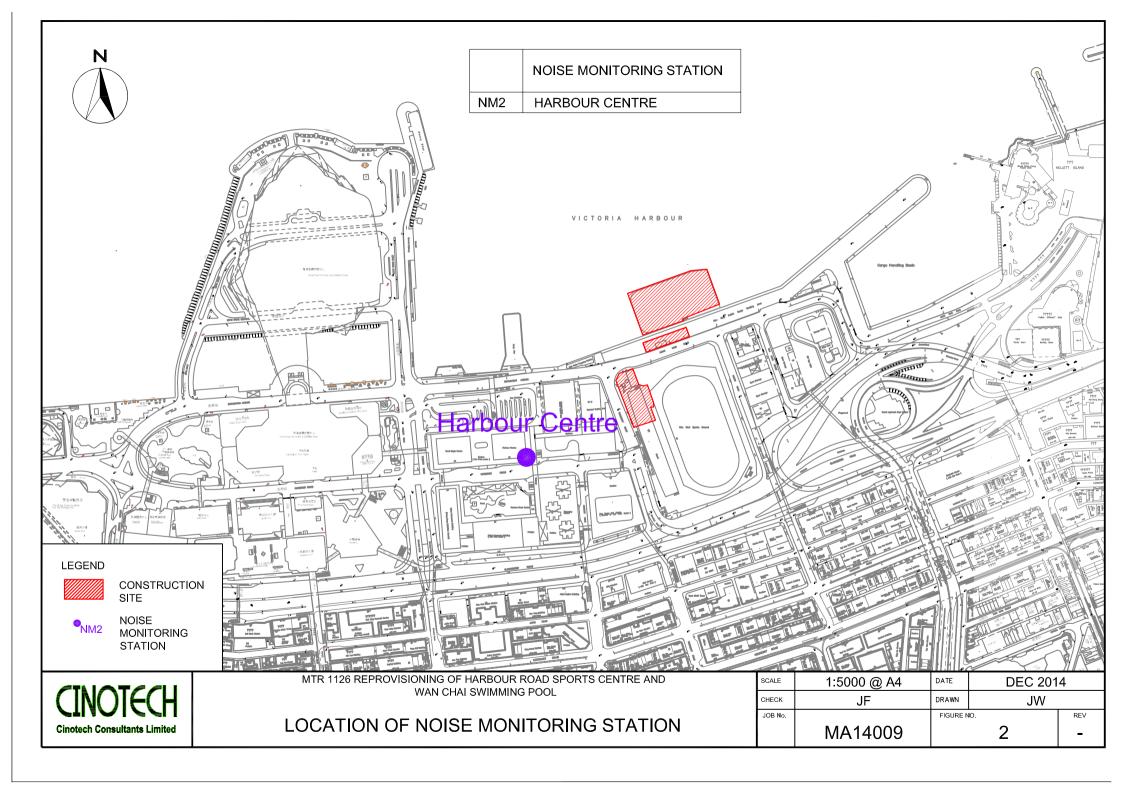
Landscape and Visual

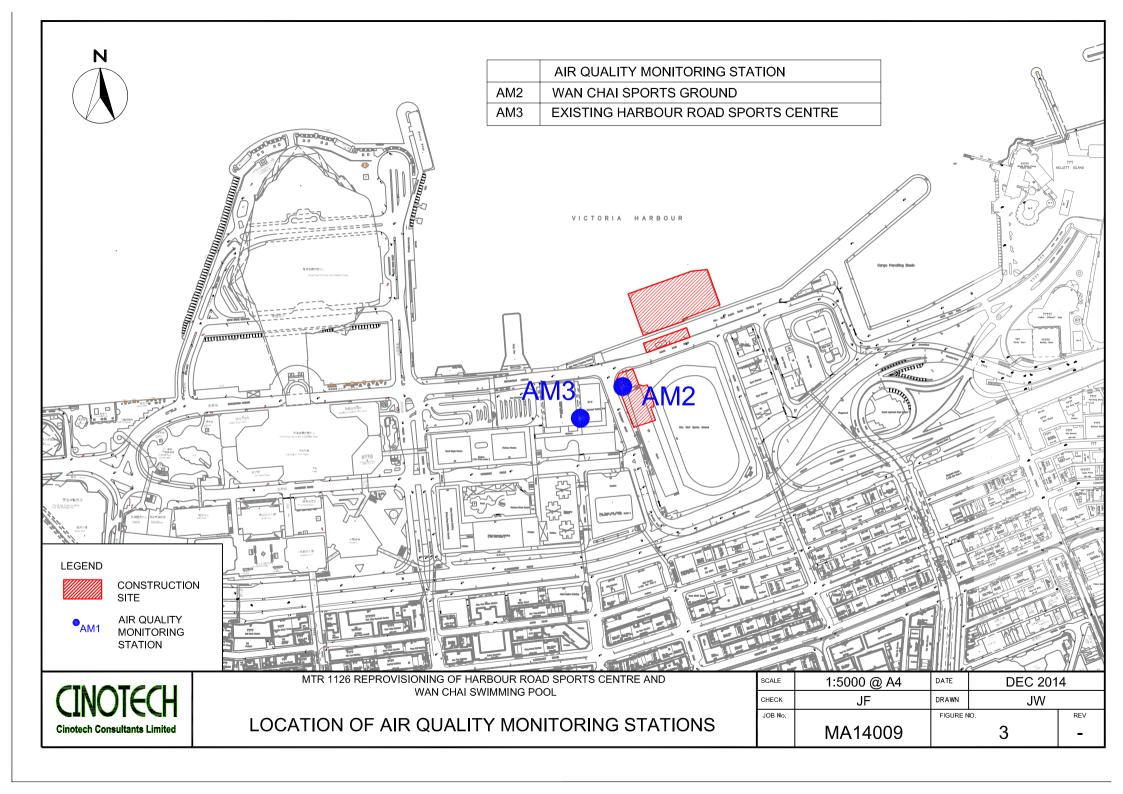
• The Contractor is reminded to provide hoardings up to a higher level for the PTI Area.

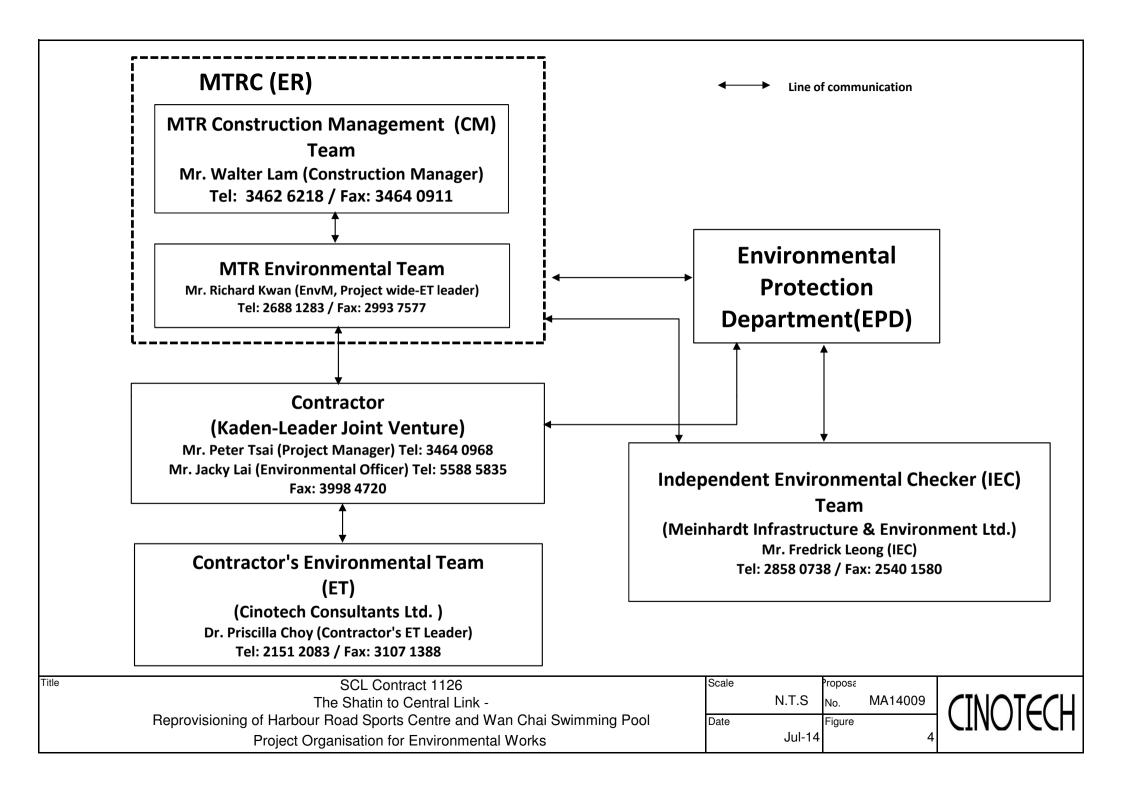
Noise

N/A

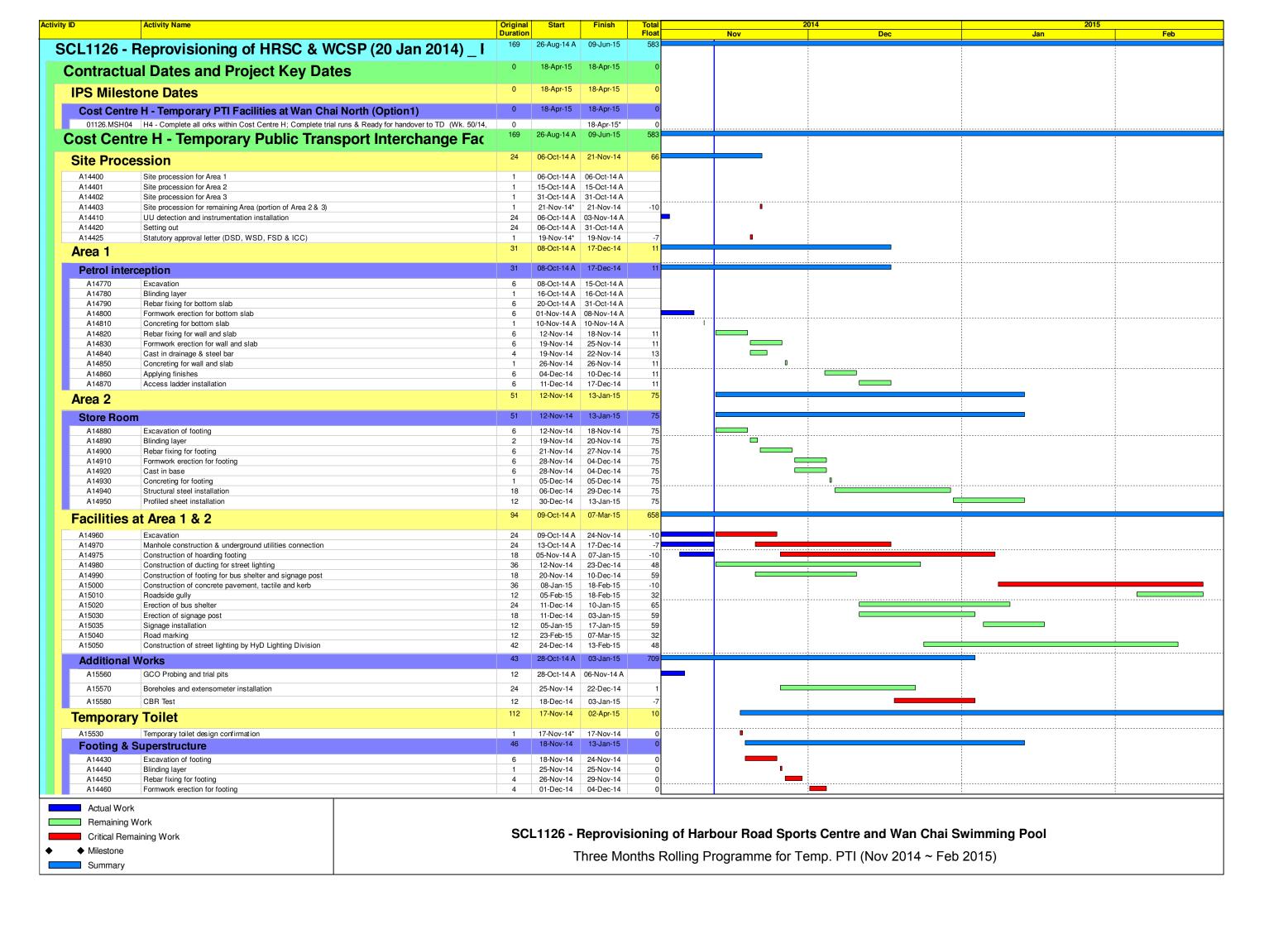

Air Quality

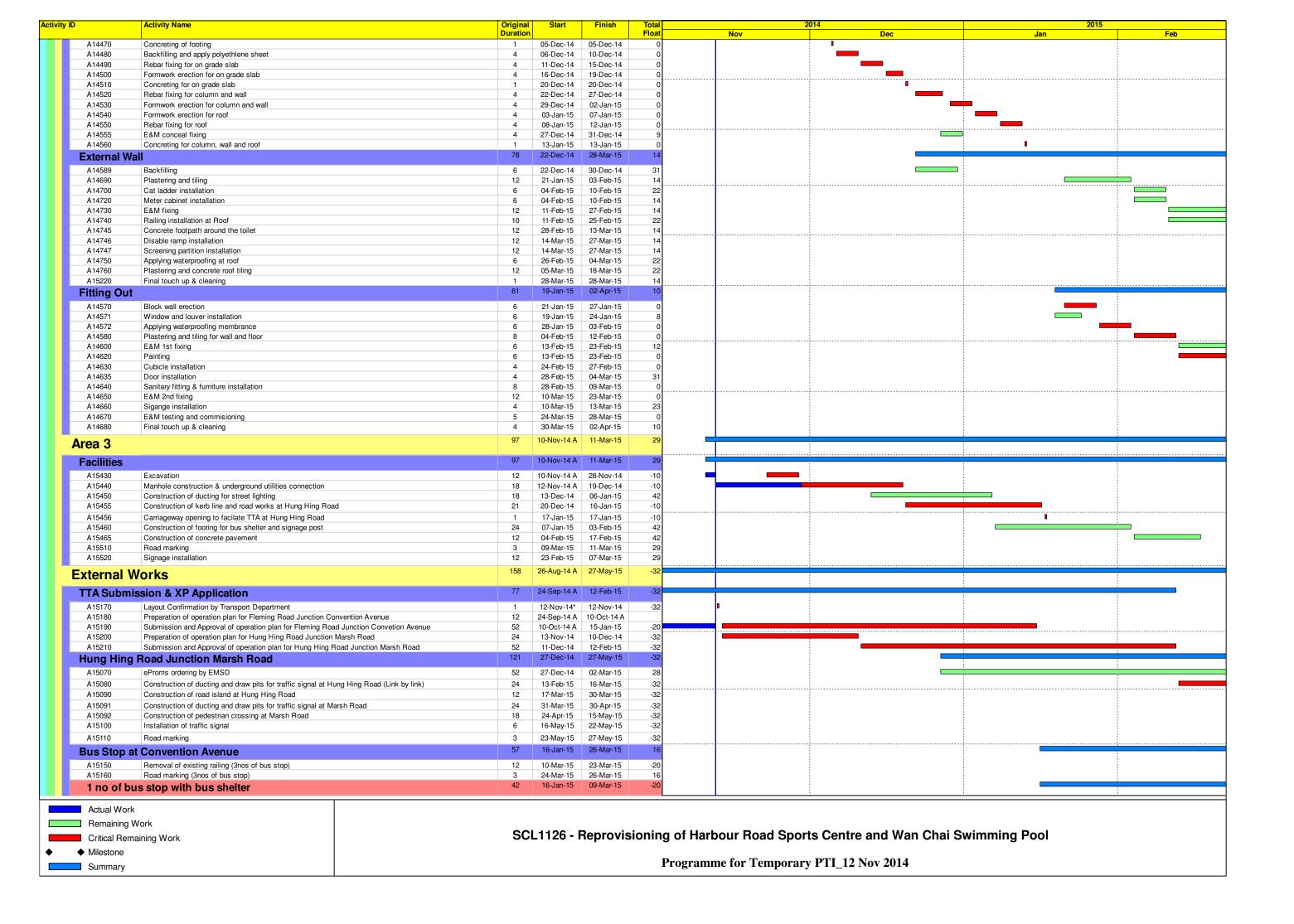

- The Contractor is reminded to repair the generator in PTI Area properly.
- The Contractor is reminded to provide hoardings up to a higher level for the PTI Area.
- The Contractor is reminded to provide water spray to unpaved area and haul road in PTI Area to prevent dust generation.
- The Contractor is reminded to cover the stockpile of dusty material properly by tarpaulin sheets at PTI Area.


Waste/Chemical Management


N/A

FIGURES


APPENDIX A TENTATIVE CONSTRCUTION PROGRAMME


Activity ID	Activity Name	Original	Start	Finish	Total		2014	2015	
		Duration	00.4 44.4	07.14 .45	Float	****	Dec	Jan	Feb
SCL1126 -	Reprovisioning of HRSC & WCSP (20 Jan 2014) _ I	247	28-Apr-14 A	07-Mar-15	736		!		
		108	28-Apr-14 A	30-Sep-14 A					
Cost Cen	ntre E - Temporary Reprovisioning Works at WCSG								
Design &	Shop Drawing	56	28-Apr-14 A	01-Aug-14 A					
		EC	00 Apr 14 A	01-Aug-14 A					
	fting Room	50	, i	, and the second					
A5840 A5850	Weight Lifting Room - Prepare & Submit - 1st Round Weight Lifting Room - Comment & Approval - 1st Round	12	· · · · · · · · · · · · · · · · · · ·	10-May-14 A 22-May-14 A					
A5860	Weight Lifting Room - Prepare & Submit - 2nd Round	5	-	28-May-14 A					
A5870	Weight Lifting Room - Comment & Approval - 2nd Round	6		30-Jul-14 A					
A7120	Weight Lifting Room - ICC Submission & Approval	6 24		01-Aug-14 A					
Site Prep	paration	24	30-Apr-14 A	13-Jun-14 A					
A3755	Site Procession	0	03-Jun-14 A	03-Jun-14 A					
A3760	Erection of covered hoarding outside Sports Ground	24		31-May-14 A					
A3770 A3780	Erection of protective barrier inside Sports Ground Diversion of existing irrigation pipes	7		05-Jun-14 A 12-Jun-14 A					
A3790	Tree felling (32nos), transplantion (5nos) and tree protection	10		13-Jun-14 A					
A3800	Transport and storage the existing fitness / weight lifting equipments	5		05-Jun-14 A					
Site Wor	ks	93	05-Jun-14 A	10-Sep-14 A					
Fitness B	oom and Kiosk	73	05-Jun-14 A	06-Sep-14 A					
A3840	Earthworks and excavation for footing construction	7	05-Jun-14 A	07-Jun-14 A					
A3850	Construction of footing	7		12-Jun-14 A					
A3860	Constrcution of column & wall	7		25-Jun-14 A					
A3870 A3880	Construction of Roof slab & beam Roof finish - Waterproof / thermal insulation / floor finish / surface channel / fall arrest / etc.	6 25		27-Jun-14 A 30-Aug-14 A					
A3890	Internal finish for wall, floor & ceiling - screed/skirt/tile/paint/rubber sheet with carpet cover/signage/etc.	35		03-Sep-14 A					
A3900	External finish for wall - plaster / paint / metal works	30		02-Sep-14 A					
A3920	Building Service - MVAC, electrical, fire service, plumbing & drainage	30 73		06-Sep-14 A					
	nging Room with HR Pump Room and Store room			· ·					
A3930 A3940	Earthworks and excavation for footing construction Construction of footing	7		11-Jun-14 A 14-Jun-14 A					
A3950	Construction of column & wall	7		24-Jun-14 A					
A3960	Construction of Roof slab & beam	7	23-Jun-14 A	05-Jul-14 A					
A3970	Roof finish - Waterproof / thermal insulation / floor finish / surface channel / fall arrest / etc.	25		28-Aug-14 A					
A3980 A3990	Internal finish for wall, floor & ceiling - block wall/screed/skirt/tile/paint/minor/locker/toilet cubicle/signage/etc External finish for wall - plaster / paint / metal works	35		03-Sep-14 A 02-Sep-14 A		-			
A4010	Building Service - MVAC, electrical, fire service, plumbing & drainage	30		06-Sep-14 A					
Marshall S	Seats Seats	70	09-Jun-14 A	06-Sep-14 A					
A4020	Earthworks and excavation for footing construction	5		13-Jun-14 A					
A4030 A4040	Construction of footing	7		21-Jun-14 A 24-Jul-14 A					
A4040 A4050	Constrcution of column / wall / beam / slab Erection of structural steel roof including cladding & corrugated sheet	18		11-Aug-14 A					
A4060	Metal Works - zinc gutter / grating / downpipe / balustrade / railing	18		03-Sep-14 A					
A4070	Furnitures & finish - mass concrete fill / screed / stadium plastic seat	12		02-Sep-14 A		-			
Weightlifi	Building Service - electrical, fire service, PA system	18 74		06-Sep-14 A 06-Sep-14 A					
A4090				23-Jun-14 A					
A4090 A4100	Earthworks and excavation for footing construction Construction of footing	7		23-Jun-14 A 27-Jun-14 A			<u> </u>		
A4110	Constrcution of column & wall	7	07-Jul-14 A	18-Jul-14 A					
A4120	Construction of Roof slab & beam Poof finish, Waterprof / thermal inculation / floor finish / quefoce channel / fall armet / etc.	4		24-Jul-14 A					
A4130 A4140	Roof finish - Waterproof / thermal insulation / floor finish / surface channel / fall arrest / etc. Internal finish for wall, floor & ceiling - screed / skirt / tile / paint / signage / etc.	20		29-Aug-14 A 03-Sep-14 A					
A4150	External finish for wall - plaster / paint / metal works	30	31-Jul-14 A	02-Sep-14 A					
A4170	Building Service - MVAC, electrical, fire service	19		06-Sep-14 A					
	oing & External Work	79		10-Sep-14 A					
A4180 A4190	Demolition of existing warn up track for temporary reprovisioning works Footway / drainage / U-channel / paving / drainage pipe / etc.	7 42	_	04-Sep-14 A 06-Sep-14 A					
A4190 A4200	Building Service - Lamp pole / floodlight / street hydant / earthing tap / irrigation system / etc.	42		06-Sep-14 A 06-Sep-14 A			<u> </u>		
A5570	Extension of warm up track - floor finish	4	05-Sep-14 A	10-Sep-14 A					
Testing 8	& Commisioning	5	08-Sep-14 A	11-Sep-14 A					
A4210	Internal - MVAC / Electrical / FS / P&D	5	08-Sep-14 A	11-Sep-14 A					
A4220	External - Irrigation / Lighting / FS / P&D	5	08-Sep-14 A	11-Sep-14 A					
Statutory	/ Inspection and Approval	58	28-Jul-14 A	30-Sep-14 A					
A4221	Form WWO46 Part IV Submission to WSD	4	08-Sep-14 A	10-Sep-14 A					
A4222	WSD Inspection	2		11-Sep-14 A					
A4223	Issue WWO46 Part V Certificate	4	12-Sep-14 A	23-Sep-14 A					
	. I								
Actual Wo									
Remaining		00	14400 '	Dam:::-:'	-l <i></i> :-!:	an of Howk over Door to	to Combro and W Ob. : 2	imamainas Daal	
Critical Re	emaining Work	SC	L1126 - I	Reprovis	sionin	ig of Harbour Road Spor	ts Centre and Wan Chai S	wimming Pool	
◆ Milestone			т	hroo Ma	onthe l	Polling Programme for W	ICSG (Nov 2014 ~ Feb 201	15)	

Summary

Three Months Rolling Programme for WCSG (Nov 2014 ~ Feb 2015)

ctivity ID	Activity Name	Original	Start	Finish	Total		2014	2015	
		Duration			Float	Nov	Dec	Jan	Feb
A4224	Submission of Final Amendment to FSD	2	28-Jul-14 A	28-Jul-14 A					
A4225	Approval of Final Amendment from FSD	24	29-Jul-14 A	29-Jul-14 A					
A4230	Submit Forms FS 314 & FS 501	10	29-Aug-14 A	24-Sep-14 A					
A4240	FS Inspection	1	25-Sep-14 A	25-Sep-14 A					
A4250	Obtain FS Certificate & OP	2	29-Sep-14 A	30-Sep-14 A					
A5590	Cleaning and Pre-handover to LCSD	1	10-Sep-14 A	11-Sep-14 A					
A5600	Site handover to LCSD (New Provisions)	1	12-Sep-14 A	12-Sep-14 A					
Cost Ce	entre F - Demolition Works at WCSG	247	12-May-14 A	07-Mar-15	736				
Demolit	tion Plan	87	12-May-14 A	10-Jul-14 A					
A9560	Demolition Plan - Prepare & Submit - 1st Round	6	12-May-14 A	16-May-14 A					
A9570	Demolition Plan - Comment & Approval - 1st Round	6		23-May-14 A					
A9580	Demolition Plan - Prepare & Submit - 2nd Round	6	24-May-14 A	12-Jun-14 A			:		:
A9590	Demolition Plan - Comment & Approval - 2nd Round	6	13-Jun-14 A	09-Jul-14 A					
A9600	Demolition Plan - ICC Submission & Approval	10	10-Jul-14 A	10-Jul-14 A					
Demolit	tion Works	235	03-Jun-14 A	07-Mar-15	736				
A9610	Site Procession	0	03-Jun-14 A	03-Jun-14 A					
A9620	Erection of covered hoarding and temp. staircase outside Sport Ground	12	03-Jun-14 A	16-Jun-14 A					
A9630	Erection of covered hoarding and temp. staircase inside Sport Ground	6	16-Jun-14 A	25-Jul-14 A					
A9640	Temporary works / precaution measures for demolition works	6	14-Jun-14 A	07-Jul-14 A					
A9650	Joint site inspection and obtain approval by ICC prior to actual demolition	3	08-Jul-14 A	08-Jul-14 A					
A9660	Demolition works	72	09-Jul-14 A	22-Sep-14 A					
A9670	Ground formation	26	23-Sep-14 A	26-Sep-14 A					
A9671	Pre-drill and Instrumentation installation (Piezometer and utilty settlement marker)	6	22-Sep-14 A	17-Oct-14 A					
A9680	Site cleaning and touch up	26	27-Sep-14 A	20-Oct-14 A					
A9681	Site container office	7	22-Nov-14 A	07-Mar-15					
A9690	Ready for site handover and Handover	60	30-Sep-14 A	30-Sep-14 A					

Activity II	0	Activity Name	Original	Start	Finish	Total		2014	2015	
			Duration			Float	Nov	Dec	Jan	Feb
	A15540	Relocation of street lighting (1no of bus stop)	24	16-Jan-15	12-Feb-15	-20				
	A15550	Construction of footing and erection of bus shelter	18	13-Feb-15	09-Mar-15	-20				
	Bus Stop at	Fleming Road	146	26-Aug-14 A	12-May-15	-20		1		
	A15230	Relocation of street lighting	18	10-Sep-14 A	11-Nov-14 A					
	A15240	Relocation of signage	12	15-Sep-14 A	26-Sep-14 A					
	A15250	Construction of bus lay-by	24	26-Aug-14 A	09-Dec-14	99				<u> </u>
	A15260	Road marking	3	09-May-15	12-May-15	-20				
	Modification	n Works at Fleming Road	39	24-Mar-15	12-May-15	-20				
	A15280	Relocation of street lighting	12	24-Mar-15	09-Apr-15	-20				
	A15290	Modification work of island	12	10-Apr-15	23-Apr-15	-20				
	A15300	Relocation of traffic signal	12	24-Apr-15	08-May-15	-20				<u> </u>
	A15310	Road marking	3	09-May-15	12-May-15	-20				
	Bus Stop at	t Harbour Road	1	12-May-15	12-May-15	-20				
	A15270	Road marking	1	12-May-15	12-May-15	-20				
	Statutory I	Inspection and Handover	57	30-Mar-15	09-Jun-15	583				
	A15051	Submission of FS314 and 251	12	30-Mar-15	15-Apr-15	0				
	A15052	FSD Inspection	2	16-Apr-15	17-Apr-15	0				
	A15053	FS Certificate	6	18-Apr-15	24-Apr-15	1				
	A15055	Handover to MTR	1	28-May-15	28-May-15	-32				
	A15060	Trial Run	10	29-May-15	09-Jun-15	583				

APPENDIX B ACTION AND LIMIT LEVELS

APPENDIX B – Action and Limit Levels

24-Hour TSP

Regular Dust Monitoring Location	Description	Action Level, μg/m³	Limit Level, μg/m³
AM2 ⁽¹⁾⁽²⁾	Wan Chai Sports Ground	160	260
AM3 ⁽¹⁾	Existing Harbour Road Sports Centre	169	260

Note:

- (1) ASR ID as identified in approved EM&A Manual / EIA Report for SCL(HUH-ADM).
- (2) The spectator stand at Wan Chai Sports Ground was not available for impact dust monitoring, therefore impact monitoring was conducted at the existing water pump room area at Wan Chai Sports Ground.

Construction Noise

Regular Construction Noise Monitoring Location ⁽¹⁾	Description	Time Period	Action Level	Limit Level
NM2 ⁽¹⁾⁽²⁾	Harbour Centre (7/F)	0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A)

Note:

- (1) NSR ID as identified in approved EM&A Manual / EIA Report for SCL(HUH-ADM).
- (2) Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring. Alternative noise monitoring location proposed at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited. Impact noise monitoring was carried out at Harbour Centre from 20 August 2014 onwards.

APPENDIX C
CALIBRATION CERTIFICATES FOR
MONITORING EQUIPEMENT

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA14009/53/0003

Ambient Condition Temperature, Ta (K) 303.5 Pressure, Pa (mmHg) 758.6 Orifice Transfer Standard Information	(298/Ta)] ^{1/2} s
Ambient Condition Temperature, Ta (K) 303.5 Pressure, Pa (mmHg) 758.6	(298/Ta)] ^{1/2} s
Temperature, Ta (K) 303.5 Pressure, Pa (mmHg) 758.6	(298/Ta)] ^{1/2} s
Temperature, Ta (K) 303.5 Pressure, Pa (mmHg) 758.6	(298/Ta)] ^{1/2} s
Calibration Date: Point	(298/Ta)] ^{1/2} s
	(298/Ta)] ^{1/2} s
	(298/Ta)] ^{1/2} s
Last Calibration Date: 27-Sep-14 mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ Calibration Date: Calibration of TSP Sampler Calibration Point Orfice HVS Calibration of TSP Sampler Calibration Point ΔH (orifice), in. of water $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ Qstd (CFM) ΔW [ΔW [ΔW (Pa/760) x ΔW	(298/Ta)] ^{1/2} s
Next Calibration Date: 26-Sep-15 Qstd = {[Δ H x (Pa/760) x (298/Ta)]^{1/2} -bc} / mc Calibration Point Orfice HVS AH (orifice), in. of water [Δ H x (Pa/760) x (298/Ta)]^{1/2} Qstd (CFM) Δ W (HVS), in. of oil [Δ W x (Pa/760) x Y-axis 1 11.5 3.36 58.11 6.7 2.56 2 8.9 2.95 51.17 5.3 2.28 3 7.5 2.71 47.01 4.3 2.05 4 4.8 2.17 37.69 2.8 1.66 5 3.1 1.74 30.38 1.9 1.36 By Linear Regression of Y on X Slope , mw = 0.0436 Intercept, bw : 0.0253	(298/Ta)] ^{1/2} s
Calibration of TSP Sampler Calibration Point Orfice HVS ΔH (orifice), in. of water [ΔH x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) AW (HVS), in. of oil ΔW (Pa/760) x (298/Ta)] Y-axis 1 11.5 3.36 58.11 6.7 2.56 2 8.9 2.95 51.17 5.3 2.28 3 7.5 2.71 47.01 4.3 2.05 4 4.8 2.17 37.69 2.8 1.66 5 3.1 1.74 30.38 1.9 1.36 By Linear Regression of Y on X Slope , mw = 0.0436 Intercept, bw : 0.0253	(298/Ta)] ^{1/2} s
Calibration Point Orfice HVS ΔH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) $X - axis$ ΔW (HVS), in. of oil $[\Delta W \times (Pa/760) \times Y - axis]$ 1 11.5 3.36 58.11 6.7 2.56 2 8.9 2.95 51.17 5.3 2.28 3 7.5 2.71 47.01 4.3 2.05 4 4.8 2.17 37.69 2.8 1.66 5 3.1 1.74 30.38 1.9 1.36 By Linear Regression of Y on X Slope , mw = 0.0436 Intercept, bw : 0.0253	(298/Ta)] ^{1/2} s
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	s
Point $AH \text{ (orifice)}, in. of water in. o$	s
1 11.5 3.36 58.11 6.7 2.56 2 8.9 2.95 51.17 5.3 2.28 3 7.5 2.71 47.01 4.3 2.05 4 4.8 2.17 37.69 2.8 1.66 5 3.1 1.74 30.38 1.9 1.36 By Linear Regression of Y on X Slope, mw = 0.0436 Intercept, bw : 0.0253	
2 8.9 2.95 51.17 5.3 2.28 3 7.5 2.71 47.01 4.3 2.05 4 4.8 2.17 37.69 2.8 1.66 5 3.1 1.74 30.38 1.9 1.36 By Linear Regression of Y on X Slope , mw = 0.0436 Intercept, bw : 0.0253	
3 7.5 2.71 47.01 4.3 2.05 4 4.8 2.17 37.69 2.8 1.66 5 3.1 1.74 30.38 1.9 1.36 By Linear Regression of Y on X Slope , mw = 0.0436 Intercept, bw : 0.0253	
5 3.1 1.74 30.38 1.9 1.36 By Linear Regression of Y on X Slope , mw = 0.0436 Intercept, bw : 0.0253	
By Linear Regression of Y on X Slope , mw = 0.0436 Intercept, bw : 0.0253	
By Linear Regression of Y on X Slope , mw = 0.0436 Intercept, bw : 0.0253	
L ATTAINING PARITIPIANI" - U.7776	
*If Correlation Coefficient < 0.990, check and recalibrate.	
Set Point Calculation	
From the TSP Field Calibration Curve, take Qstd = 43 CFM	
From the Regression Equation, the "Y" value according to	
mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$	
INTERPOLATION [21 X (Latitor) x (250 Xu)]	
Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 3.69$	
Remarks:	
Conducted by: WK Taya Signature: Twan Date: 3	10/14
Checked by: Signature: Date: 20	dow dell
V	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA14009/41/0003

Station	AM3 - Existing I	Harbour Road S _l	oorts Centre	Operator:	WK		_
Date:	3-Oct-14			lext Due Date:	2-Dec-	14	
Equipment No.:	A-01-41			Serial No.	5280		
ang gilas sa nesedes		*1 1. V *	Ambient C	ondition			
Temperatur	е, Та (К)	303.3	Pressure, Pa			760	
		, , , , , , , , , , , , , , , , , , , ,					
		Ori	fice Transfer Sta	idard Inform	ation		_
Equipme	nt No.:	A-04-04	Slope, mc	0.0582	Intercept		_
Last Calibra	tion Date:	27-Sep-14			$c = \Delta H \times (Pa/760)$		
Next Calibra	tion Date:	26-Sep-15		$Qstd = \{ \Delta H x \}$	(Pa/760) x (298/7	[a)] ^{1/2} -bc} / mc	_
The guide made and made detection							_
13-4-313-4-33-1-13-11		i il mis markin	Calibration of	ISP Sampler		*****	-
Calibration -	ΔH (orifice),	Or		Qstd (CFM)	ΔW	HVS [ΔW x (Pa/760) x (298/Ta)] ¹	12
Point	in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	X - axis	(HVS), in. of oil	Y-axis	
1	10.7	3	5.24	56.14	7.0	2.62	
2	8.4	2	2.87	49.79	5.6	2,35	
3	6.5	2	2.53	43.85	4.5	2.10	
4	4.2	2	2.03	35.33	2.9	1.69	
5	2.1	1	.44	25.11	1.8	1.33	
By Linear Regre	ession of Y on X 0.0422]	Intercept, bw	0.241	9	
Correlation co	oefficient* =	0.9	986				
*If Correlation C	Coefficient < 0.99	0, check and rec	alibrate.				
			Set Point C	alculation			_
From the TSP Fi	eld Calibration C	urve, take Ostd					1
From the Regress							
S	1				10		
		mw x Q	$std + bw = \Delta W x$	(Pa/760) x (25	98/Ta)] ^{1/2}		
Therefore, Set Point; W = $(\text{mw x Qstd} + \text{bw})^2 \times (760 / \text{Pa}) \times (\text{Ta}/298) = 4.31$							
Remarks:							
							_
Conducted by:		Signature: Signature:	Ku	sai	- -	Date: 3/10/14 Date: 3/10/14	<u>-</u>

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Description Calibration Orifice

Serial No.

0993

Model No.

TE-5025A

Date

27 September 2014

Manufacturer

Temperature, Ta (K) Pressure, Pa (mmHg) **TISCH** 299

761.8

7.00					
$-\sim$	HIID	m	nn+	\sim	
டப	ши			No.	-
	F-				

A-04-04

Plate	Diff.Vol (m ³)	Diff.Time (min)	Diff.Hg (mm)	Diff.H ₂ O (in.)
1	1.00	1.4230	3.3	2.00
2	1.00	1.0050	6.5	4.00
3	1.00	0.8950	8.2	5.00
4	1.00	0.8570	9.0	5.50
5	- 1.00	0.7080	13.0	8.00

DATA TABULATION

Vstd	(X axis) Qstd	(Y axis)
0.9947	0.6990	1.4135
0.9905	0.9856	1.9990
0.9883	1.1042	2.2350
0.9872	1.1519	2.3441
0.9820	1.3870	2.8270

Y axis= SQRT[H₂O(Pa/760)(298/Ta)]

Qstd Slope (m) = 2.05398

Intercept (b) = -0.02487

Coefficient (r) = 0.99996

Va	(X axis)	(Y axis)
	Qa	
0.9957	0.6997	0.8860
0.9915	0.9865	1.2530
0.9892	1.1053	1.4009
0.9882	1.1531	1.4693
0.9829	1 3883	1 7720

Y axis= SQRT[H₂O(Ta/Pa)]

Qa Slope (m) = 1.28617

Intercept (b) = -0.01559

Coefficient (r) = 0.99996

CALCULATIONS

Vstd=Diff. Vol[(Pa-Diff.Hg)/760](298/Ta) Qstd=Vstd/Time Va=Diff.Vol[(Pa-Diff.Hg)/Pa] Qa=Va/Time

For subsequent flow rate calculations:

 $Qstd=I/m{[SQRT(H₂O(Pa/760)(298/Ta))]-b}$

Qa=I/m{[SQRT H₂O(Ta/Pa)]-b}

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrat or tested.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/140822/3

Date of Issue: 2014-08-25

Date Received: 2014-08-22 Date Tested: 2014-08-22

Date Completed: 2014-08-25

Next Due Date: 2015-08-24

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21459

Microphone No.

: 43676

Equipment No.

: N-08-08

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 55%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/140822/1
Date of Issue:	2014-08-25
Date Received:	2014-08-22
Date Tested:	2014-08-22
Date Completed:	2014-08-25

ATTN:

Mr. W.K. Tang

Page:

Next Due Date:

1 of 1

2015-08-24

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21460

Microphone No.

: 43679

Equipment No.

: N-08-09

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 55%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

paragraph and control of the control	With the second
Test Report No.:	C/N/141101/1
Date of Issue:	2014-11-03
Date Received:	2014-11-01
Date Tested:	2014-11-01
Date Completed:	2014-11-03
Next Due Date:	2015-11-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 10965

Equipment No.

: N-09-02

Test conditions:

Room Temperatre

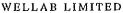
: 20 degree Celsius

Relative Humidity

: 55%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wcllab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/141003/1
Date of Issue:	2014-10-04
Date Received:	2014-10-03
Date Tested:	2014-10-03
Date Completed:	2014-10-04
Next Due Date:	2015-10-03

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 56%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 đB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/140822/2

Date of Issue: 2014-08-25

Date Received: 2014-08-22 Date Tested: 2014-08-22

Date Completed: 2014-08-25

Next Due Date: 2015-08-24

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 dB$
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX D IMPACT MONITORING SCHEDULE

Shatin to Central Link – Contract 1126 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool Environmental Monitoring Schedule for November 2014

Sunday	Monday Tuesday		Wednesday	Thursday	Friday	Saturday
						1-Nov
2-Nov	3-Nov	4-Nov	5-Nov	6-Nov	7-Nov	8-Nov
		24 hr TSP	Noise Monitoring			
			Č			
0.31	10.37	44.37	10.37	12.37	14.37	15.37
9-Nov	10-Nov	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov
	24 hr TSP		Noise Monitoring		24 hr TSP	
16-Nov	17-Nov	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov
10-1107	17-1101	10-1101	19-1101	20-1101	21-NOV	22-1101
		Noise Monitoring		24 hr TSP		
23-Nov	24-Nov	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov
			24 hr TSP	Noise Monitoring		
30-Nov						

Noise Monitoring Station

Air Quality Monitoring Station

NM2: Harbour Centre

AM2: Wan Chai Sports Ground

Shatin to Central Link - Contract 1126 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool Tentative Environmental Monitoring Schedule for December 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Dec	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
		24 hr TSP		Noise Monitoring		
7-Dec	8-Dec	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec
	24 hr TSP	Noise Monitoring			24 hr TSP	
14-Dec	15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec
		Noise Monitoring		24 hr TSP		
21-Dec	22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec
		24 hr TSP	Noise Monitoring			
28-Dec	ec 29-Dec 30-Dec		31-Dec			
	24 hr TSP	Noise Monitoring				

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Noise Monitoring Station

Air Quality Monitoring Station

NM2: Harbour Centre AM2: Wan Chai Sports Ground

Shatin to Central Link – Contract 1126 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool Tentative Environmental Monitoring Schedule for January 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
				1-Jan	2-Jan	3-Jan	
					24 hr TSP		
4-Jan	5-Jan	6-Jan	7-Jan	8-Jan	9-Jan	10-Jan	
			Noise Monitoring	24 hr TSP			
			rvoise Wollitoring	24 III 131			
11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan	
			24 L TCD	Niciae Maniteniae			
			24 hr TSP	Noise Monitoring			
18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan	
		24 hr TSP	Noise Monitoring				
25-Jan	26-Jan 27-Jan		28-Jan	29-Jan	30-Jan	31-Jan	
	24 hr TSP	Noise Monitoring			24 hr TSP		
The sale delegates to the sale	- 1 1 4	-4					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Noise Monitoring Station

Air Quality Monitoring Station

NM2: Harbour Centre AM2: Wan Chai Sports Ground

Shatin to Central Link – Contract 1126 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool Tentative Environmental Monitoring Schedule for February 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Feb	2-Feb	3-Feb	4-Feb	5-Feb	5-Feb 6-Feb	
				24 hr TSP	Noise Monitoring	
8-Feb	9-Feb	10-Feb	11-Feb	12-Feb	13-Feb	14-Feb
			24 hr TSP	Noise Monitoring		
15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb	21-Feb
	Noise Monitoring	24 hr TSP				
22-Feb	eb 23-Feb 24-Feb		25-Feb	26-Feb	27-Feb	28-Feb
	24 hr TSP		Noise Monitoring		24 hr TSP	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Noise Monitoring Station

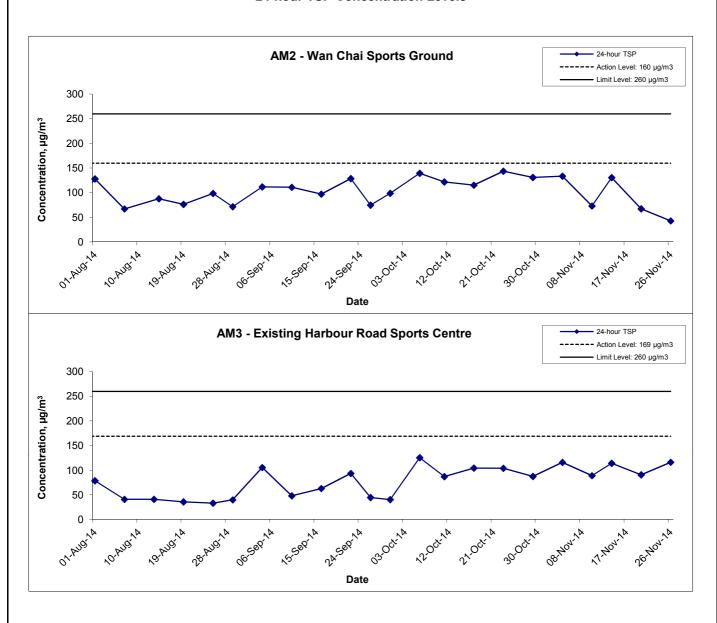
Air Quality Monitoring Station

NM2: Harbour Centre AM2: Wan Chai Sports Ground

APPENDIX E 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONIS

Appendix E - 24-hour TSP Monitoring Results

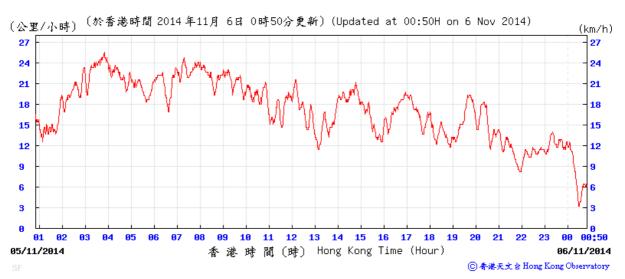
Location AM2 - Wan Chai Sports Ground


Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-Nov-14	09:00	Sunny	295.3	766.7	3.2145	3.4537	0.2392	6162.4	6186.4	24.0	1.24	1.24	1.24	1790.4	133.6
10-Nov-14	09:00	Cloudy	296.4	766.7	3.3169	3.4474	0.1305	6186.4	6210.4	24.0	1.24	1.24	1.24	1787.0	73.0
14-Nov-14	09:00	Cloudy	291.9	769.3	3.1733	3.4090	0.2357	6210.4	6234.4	24.0	1.25	1.25	1.25	1804.0	130.7
20-Nov-14	09:00	Sunny	294.6	768.2	3.2233	3.3440	0.1207	6234.4	6258.4	24.0	1.25	1.25	1.25	1794.3	67.3
26-Nov-14	09:00	Cloudy	296.5	764.0	3.2235	3.2999	0.0764	6258.4	6282.4	24.0	1.24	1.24	1.24	1783.5	42.8
														Min	42.8
														Max	133.6
														Average	89.5

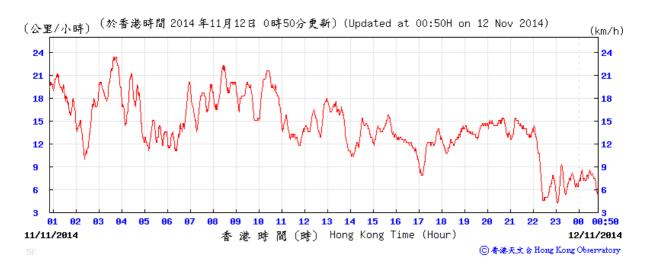
Location AM3 - Existing Harbour Road Sports Centre

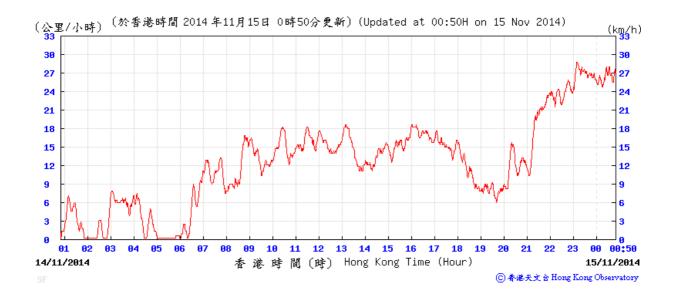
Sampling Date	Start Time	Weather	Air	Atmospheric	Filter Weight (g)		Particulate	Elapse Time		Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
Sampling Date		Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
4-Nov-14	09:00	Sunny	295.7	766.6	3.1825	3.3895	0.2070	3823.3	3847.3	24.0	1.24	1.24	1.24	1785.4	115.9
10-Nov-14	09:00	Cloudy	296.5	766.0	3.3027	3.4612	0.1585	3847.3	3871.3	24.0	1.24	1.24	1.24	1782.0	88.9
14-Nov-14	09:00	Cloudy	292.7	769.4	3.1789	3.3842	0.2053	3871.3	3895.3	24.0	1.25	1.25	1.25	1799.4	114.1
20-Nov-14	09:00	Sunny	294.9	768.5	3.2159	3.3783	0.1624	3895.3	3919.3	24.0	1.24	1.24	1.24	1790.7	90.7
26-Nov-14	09:00	Cloudy	296.6	763.9	3.2067	3.4133	0.2066	3919.3	3943.3	24.0	1.24	1.23	1.24	1778.8	116.1
														Min	88.9
														Max	116.1
														Average	105.2

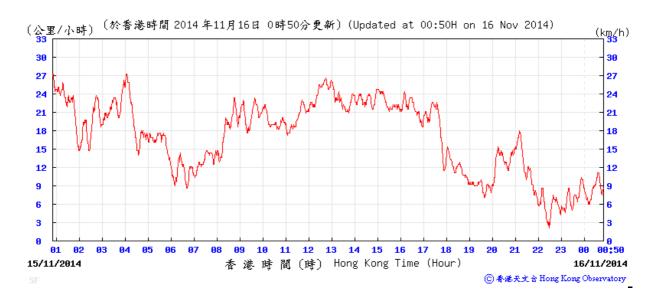
App E - 24hr TSP Cinotech


24-hour TSP Concentration Levels

Title	Shatin to Central Link – Contract 1126 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool	Scale	N.T.S	Project No.	MA14009	CINOTECH
	Graphical Presentation of 24-hour TSP Monitoring Results	Date	Nov 14	Appendix	K E	CINOIECU

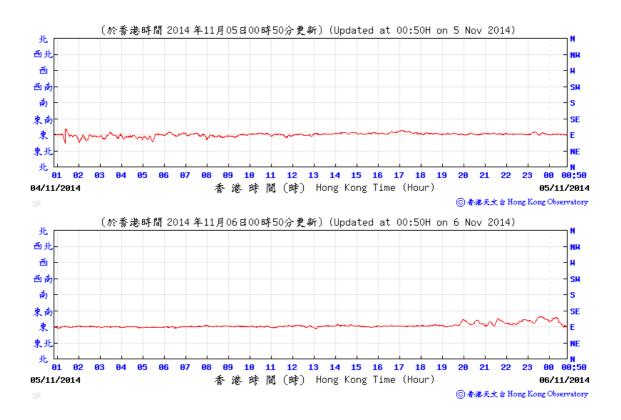

4-5 November 2014



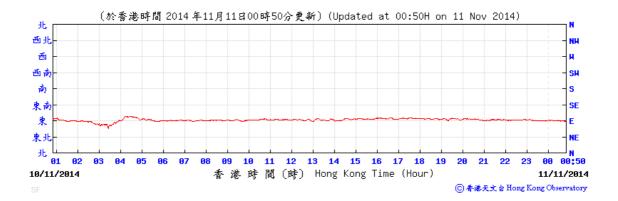

10-11 November 2014

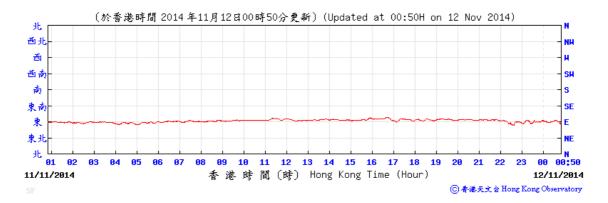
14-15 November 2014

20-21 November 2014

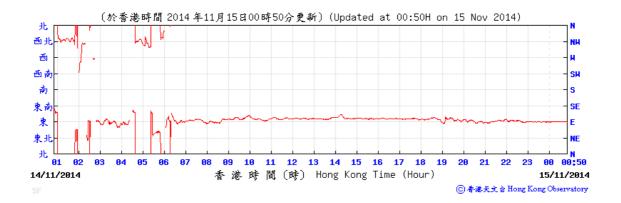


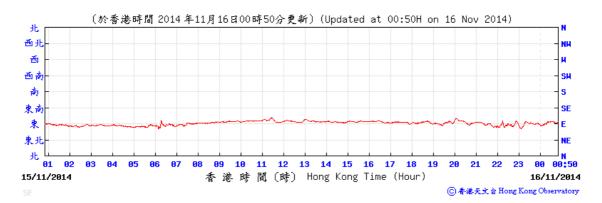
26-27 November 2014

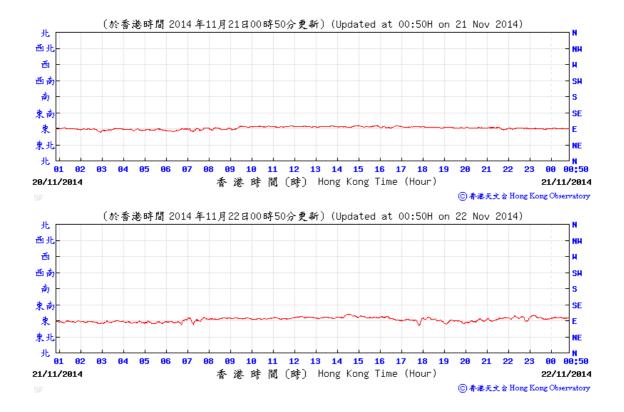




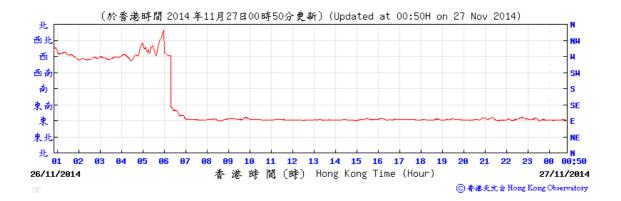
4-5 November 2014

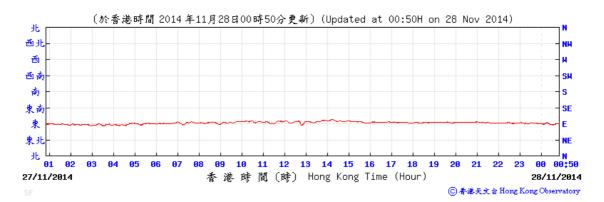



10-11 November 2014



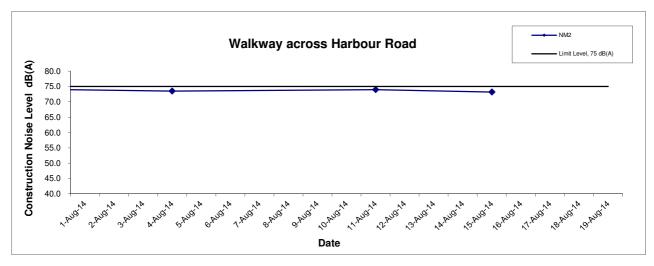
14-15 November 2014

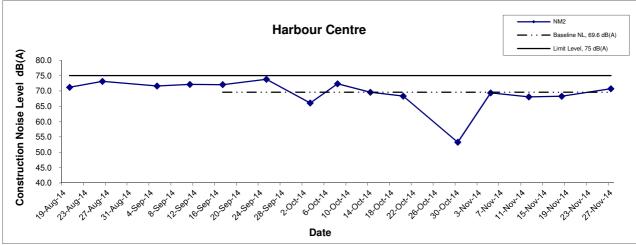



20-21 November 2014

Wind direction obtained from the meteorological station at Star Ferry from the Hong Kong Observatory (HKO)

26-27 November 2014


APPENDIX F NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS


App F - Noise Monitoring Results

Location NM2 - Harbour Centre							
				Unit: dB (A) (30-min)			
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
5-Nov-14	10:00	Cloudy	72.5	75.0	68.7		69.4
12-Nov-14	9:32	Cloudy	71.9	73.2	69.3	69.6	68.0
18-Nov-14	11:30	Cloudy	72.0	73.6	70.2	09.0	68.3
27-Nov-14	13:50	Cloudy	73.2	75.0	69.8		70.7

MA14009/Noise Cinotech

Shatin to Central Link - Contract 1126 Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool

Title

Graphical Presentation of Construction Noise Monitoring Results

Scale Project
No. MA14009

Date Appendix
Nov 14 F

APPENDIX G SUMMARY OF EXCEEDANCE

APPENIDX G – SUMMARY OF EXCEEDANCE

Reporting Month: November 2014

- a) Exceedance Report for Dust Monitoring (NIL)
- b) Exceedance Report for Noise Monitoring (NIL)

APPENDIX H SITE AUDIT SUMMARY

Inspection Information

Checklist Reference Number	141105
Date	5 November 2014 (Wednesday)
Time	10:00 – 11:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
141105-O01	 Part B – Water Quality Sand bag bunds are not provided to the footing of site boundary at PTI Area. The Contractor is reminded to prevent leakage of wastewater from the site boundary. Wastewater in WCSP is observed deposited in the site. The Contractor is 	B3
141105-R02	reminded to remove the wastewater by designated proper pits or sedimentation tanks.	B2, 4
	Part C – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F - Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	Follow-up on previous audit section (Ref. No.:141029), all environmental deficiencies were observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung		5 November 2014
Checked by	Ivy Tam	Tuh	5 November 2014

CINOTECH MA14009 141105.doc

Inspection Information

Checklist Reference Number	141112
Date	12 November 2014 (Wednesday)
Time	10:00 – 11:15

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality No environmental deficiency was identified during the site inspection.	
141112-R04	 Part C – Landscape & Visual The Contractor is reminded to provide hoardings up to a higher level for the PTI Area. 	C 4
	Part D – Air Quality	
141112-R02	Some sand and mud observed near the site entrance at Harbour Road. The Contractor is reminded to keep the site entrance clean and tidy.	D 3
141112-R03	• White smoke observed from the generator. The Contractor is reminded to repair it properly.	D 15
141112-R04	The Contractor is reminded to provide hoardings up to a higher level for the PTI Area.	D 10
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
141112-R01	 Part F – Waste/Chemical Management Construction waste observed deposited in WCSP. The Contractor is reminded to clear the waste regularly. 	F 4ii
	Part G – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others Follow-up on previous audit section (Ref. No.:141105), all environmental deficiencies were observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung		12 November 2014
Checked by	Dr. Priscilla Choy	NF	12 November 2014

Inspection Information

Checklist Reference Number	141119
Date	19 November 2014 (Wednesday)
Time	10:00 – 11:30

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B - Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part D Air Quality	
141119-O01	Unpaved area and haul road observed dry in PTI Area. The Contractor is reminded to provide water spray to prevent dust generation.	D 3
141119-R02	Some wooden ash observed near working station in WCSP. The Contractor is reminded to clear it regularly to prevent dust generation.	D 15
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	 Follow-up on previous audit section (Ref. No.:141112), all environmental deficiencies were observed improved/rectified by the Contractor. 	

	Name	Signature	Date
Recorded by	Johnny Fung	11/2	19 November 2014
Checked by	Ivy Tam	Tun	19 November 2014
Checked by	Ivy ram	<u> </u>	•

CINOTECH MA14009 141119.doc

Inspection Information

Checklist Reference Number	141126
Date	26 November 2014 (Wednesday)
Time	10:00 – 11:30

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
141126-R02	Stockpile of dusty material observed partially exposed in PTI Area. The Contractor is reminded to cover it by impervious sheet to prevent dust generation.	D 6
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
141126-O01	 Part F – Waste/Chemical Management Chemical container observed without secondary containment in WCSP. The Contractor is reminded to provide drip tray to avoid chemical leakage. 	F 10
	Part G Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	 Part H - Others Follow-up on previous audit section (Ref. No.:141119), all environmental deficiencies were observed improved/rectified by the Contractor. 	

	Name	Signature	Date	
Recorded by	Johnny Fung	- D	26 November 2014	
Checked by	Dr. Priscilla Choy	WF	26 November 2014	

CINOTECH MA14009 141126

APPENDIX I EVENT AND ACTION PLANS

Appendix I - Event and Action Plan for Construction Noise Monitoring

EVENT	ACTION					
EVENI	ET	IEC	ER	CONTRACTOR		
Action Level	 Notify the Contractor, IEC and ER Discuss with the ER and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness 	 Review the investigation results submitted by the contractor; Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification.; and Implement noise mitigation proposals. 		
Limit Level	 Notify the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with the IEC, and ER to discuss the remedial measures to be taken; Review the effectiveness of 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and 		

Appendix I - Event and Action Plan for Construction Noise Monitoring

EV/ENT	ACTION					
EVENT	ET	IEC	ER	CONTRACTOR		
	Contractor's remedial measures		exceedance is abated	6. Stop the relevant portion of		
	and keep IEC, EPD and ER			works as determined by the ER		
	informed of the results; and			until the exceedance is abated		
	7. If exceedance stops, cease additional monitoring the results.					

FVENT		AC	TION	
EVENT	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor on the remedial measures required; Repeat measurement to confirm findings; and Increase monitoring frequency 	 Check monitoring data submitted by the ET; Check Contractor's working method; and Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing;	 Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; and Amend working methods agreed with the ER as appropriate.
2.Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; and If exceedance stops, cease additional monitoring 	 Check monitoring data submitted by the ET; Check Contractor's working method; and Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise Implementation of remedial measures. 	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; and Amend proposal as appropriate.

Appendix I - Event and Action Plan for Construction Dust Monitoring

FVENIT		AC	TION	
EVENT	ET	IEC	ER	CONTRACTOR
LIMIT LEVEL				
1.Exceedance for one	1. Inform the Contractor, IEC,	Check monitoring data	Confirm receipt of	Identify source(s) and
sample	EPD and ER;	submitted by the ET;	notification of	investigate the causes of
	2. Repeat measurement to	2. Check the Contractor's	exceedance in writing;	exceedance;
	confirm findings;	working method;	2. Review and agree on	2. Take immediate action to avoid
	3. Increase monitoring frequency	3. Discuss with the ET, ER	the remedial measures	further exceedance;
	to daily; and	and Contractor on	proposed by the	3. Submit proposals for remedial
	4. Discuss with the ER, IEC and	possible remedial	Contractor; and	measures to ER with a copy to
	contractor on the remedial	measures; and	3. Supervise	ET and IEC within three working
	measures and assess the	4. Review and advise the	implementation of	days of notification;
	effectiveness.	ER and ET on the	remedial measures.	4. Implement the agreed
		effectiveness of		proposals;
		Contractor's remedial		5. Amend proposal if appropriate.
		measures.		

EVENT		AC	TION	
EVENI	ET	IEC	ER	CONTRACTOR
LIMIT LEVEL				
2.Exceedance for two or	1. Notify Contractor, IEC EPD and	Check monitoring data	Confirm receipt of	Identify source(s) and
more consecutive	ER;	submitted by the ET;	notification of	investigate the causes of
samples	2. Repeat measurement to confirm	2. Check the Contractor's	exceedance in writing;	exceedance;
	findings;	working method;	2. In consultation with the	2. Take immediate action to avoid
	3. Increase monitoring frequency	3. Discuss with ET, ER,	ET and IEC, agree with	further exceedance;
	to daily;	and Contractor on the	the Contractor on the	3. Submit proposals for remedial
	4. Carry out analysis of the	potential remedial	remedial measures to be	measures to the ER with a copy
	Contractor's working	measures; and	implemented;	to the IEC and ET within three
	procedures with the ER to	4. Review and advise the	3. Supervise the	working days of notification;
	determine possible mitigation to	ER and ET on the	implementation of	4. Implement the agreed
	be implemented;	effectiveness of	remedial measures; and	proposals;
	5. Arrange meeting with the IEC	Contractor's remedial	4. If exceedance	5. Revise and resubmit proposals
	and ER to discuss the remedial	measures.	continues, consider what	if problem still not under control;
	measures to be taken;		portion of the work is	6. Stop the relevant portion of
	6. Review the effectiveness of the		responsible and instruct	works as determined by the ER
	Contractor's remedial measures		the Contractor to stop	until the exceedance is abated.
	and keep IEC, EPD and ER		that portion of work until	
	informed of the results; and		the exceedance is	
	7. If exceedance stops, cease		abated.	
	additional monitoring.			

APPENDIX J UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Ecology (Co	onstruction Phase)						
S5.134 Landscape Table 7.9	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216and 11.219 to 11.256 of the EIA Report shall be adopted **Visual (Construction Phase)* CM1 - Trees unavoidably affected by the works shall be	Minimise the contamination of wastewater discharge Transplanting and	Contractor	All land based works areas All works sites	Construction phase Construction	• EIAO-TM	^
	transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation	reuse of affected trees			phase	• ETWB TC(W) 3/2006	
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	All works sites	Construction phase	• EIAO-TM • ETWB TC(W) 3/2006	۸
	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	All works sites	Construction phase	• EIAO-TM	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to	Status
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	All works sites	Construction phase	achieve? • EIAO-TM	۸
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	All works sites	Construction phase	• EIAO-TM	*
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs.	Control of height and deposition/arrangement of temporary facilities in works areas	MTR	All works sites	Construction phase	• EIAO-TM	۸
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like to-like basis to the satisfaction of the relevant Government Departments	Reinstatement of temporary works areas	MTR	All works sites	Construction phase	• EIAO-TM	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended	implement	measures	Implement the	requirements or	
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
S7.126	The following good site practice measures shall also be incorporated	Minimize landscape	Contractor	All works areas	Construction	• EIAO-TM	
	in the construction phase of the project:	and visual impact			phase		
	Topsoil, where identified, shall be stripped and stored for re-use						N/A
	in the construction of the soft landscape works.						
	Existing trees to be retained on site shall be carefully protected						٨
	during construction.						
Constructio	n Dust Impact						
S8.89	Watering once every working hour on active works areas, exposed	Minimize dust impact	Contractor	All works areas	Construction	· APCO	*
	areas and paved haul roads to reduce dust emission by 91.7%.				phase		
	This suppression efficiency is derived based on the average haul						
	road traffic, average evaporation rate and an assumed application						
	intensity of 1.0 L/m ² for Hong Kong side once every working hour.						
	Any potential dust impact and watering mitigation would be subject to						
	the actual site condition. For example, a construction activity that						
	produces inherently wet conditions or in cases under rainy weather,						
	the above water application intensity may not be unreservedly						
	applied. While the above watering frequency is to be followed, the						
	extent of watering may vary depending on actual site conditions but						
	should be sufficient to maintain an equivalent intensity of no less						
	than 1.0 L/m² for Hong Kong side to achieve the removal efficiency.						
	The dust levels would be monitored and managed under an EM&A						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main	Who to implement the	Location of the measures	When to Implement the measures?	What requirements or standards for the	Status
		Concerns to address	measures?			measures to achieve?	
	programme as specified in the EM&A Manual.						
S8.90	Dust suppression measures stipulated in the Air Pollution Control	Minimize dust impact	All works	Construction	• APCO	All works areas	
	(Construction Dust) Regulation and good site practices:		areas	phase	Air Pollution		
	Use of regular watering to reduce dust emissions from exposed site				Control		*
	surfaces and unpaved roads, particularly during dry weather.				(Construction		
	Use of frequent watering for particularly dusty construction areas				dust) Regulation		٨
	and areas close to ASRs						
	Side enclosure and covering of any aggregate or dusty material						٨
	storage piles to reduce emissions. Where this is not practicable						
	owing to frequent usage, watering shall be applied to aggregate						
	fines.						
	Open stockpiles shall be avoided or covered. Where possible,						*
	prevent placing dusty material storage piles near ASRs.						
	Tarpaulin covering of all dusty vehicle loads transported to, from and						٨
	between site locations						
	Establishment and use of vehicle wheel and body washing facilities						٨
	at the exit points of the site.						
	Provision of wind shield and dust extraction units or similar dust						٨
	mitigation measures at the loading area of barging point, and use						
	of water sprinklers at the loading area where dust generation is						
	likely during the loading process of loose material, particularly in						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	dry seasons/ periods.						
	Provision of not less than 2.4m high hoarding from ground level						*
	along site boundary where adjoins a road, streets or other						
	accessible to the public except for a site entrance or exit.						
	Imposition of speed controls for vehicles on site haul roads.						٨
	Where possible, routing of vehicles and positioning of construction						٨
	plant shall be at the maximum possible distance from ASRs.						
	Every stock of more than 20 bags of cement or dry pulverised fuel						٨
	ash (PFA) shall be covered entirely by impervious sheeting or						
	placed in an area sheltered on the top and the 3 sides.						
	Instigation of an environmental monitoring and auditing program to						٨
	monitor the construction process in order to enforce controls and						
	modify method of work if dusty conditions arise.						
Air Quality (Construction Phase)						
/	Emission from Vehicles and Plants	Reduce air pollution	Contractor	All construction	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	emission from		sites	stage		٨
	Only well-maintained plant should be operated on-site and	construction vehicles					*
	plant should be serviced regularly to avoid emission of black	and plants					
	smoke.						
	All diesel fuelled construction plant within the works areas						٨
	shall be powered by ultra low sulphur diesel fuel (ULSD)						

EIA Ref.	Recommended Mitigation Measures n Noise (Airborne)	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	•	Minimize construction	Contractor	All works areas	Construction	• EIAO-TM	
S9.55	The following good site practices shall be implemented:	Minimize construction	Contractor	All works areas	Construction	• EIAO-TWI	^
	Only well-maintained plant shall be operated on-site and plant shall	noise impact			phase		٨
	be serviced regularly during the construction program						
	Silencers or mufflers on construction equipment shall be						۸
	utilized and shall be properly maintained during the construction						
	program						
	Mobile plant, if any, shall be sited as far from NSRs as possible						^
	Machines and plant (such as trucks) that may be in intermittent						۸
	use shall be shut down between work periods or shall be throttled						
	down to a minimum						
	• Plant known to emit noise strongly in one direction shall, wherever						۸
	possible, be orientated so that the noise is directed away from the						
	nearby NSRs						
	Material stockpiles and other structures shall be effectively utilized,						٨
	wherever practicable, in screening noise from on-site construction						
	activities.						
S9.56 & Table	The following quiet PME shall be used:	To minimize	Contractor	Works areas under	Construction	• EIAO-TM	
9.16	Crane lorry, mobile	construction noise		this Contract	phase		N/A
	Crane, mobile	impact					N/A
	Asphalt paver						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Backhoe with hydraulic breaker						N/A
	Breaker, excavator mounted (hydraulic)						N/A
	Hydraulic breaker						N/A
	Concrete lorry mixer						N/A
	Poker, vibrator, hand-held						N/A
	Concrete pump						N/A
	Crawler crane, mobile						N/A
	Mobile crane						N/A
	Dump truck						N/A
	Excavator						N/A
	Truck						N/A
	Rock drill						N/A
	• Lorry						N/A
	Wheel loader						N/A
	Roller vibratory						N/A
S9.58 - S9.59	Movable noise barrier shall be used for the following PME:	Minimize construction	Contractor	Works areas under	Construction	• EIAO-TM	
& Table 9.17	Air compressor	noise impact		this Contract	phase		N/A
	Asphalt paver						N/A
	Backhoe with hydraulic breaker						N/A
	Bar bender						N/A
	Bar bender and cutter (electric)						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended	Who to implement	Location of the measures	When to	What requirements or	Status
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
	Breaker, excavator mounted						N/A
	Concrete pump						N/A
	Concrete pump, stationary/lorry						N/A
	Excavator						N/A
	Generator						N/A
	Grout pump						N/A
	Hand held breaker						N/A
	Hydraulic breaker						N/A
	Saw, concrete						N/A
S9.60 & Table	Noise insulating fabric shall be used for	Minimize construction	Contractor	Works areas under	Construction	• EIAO-TM	
9.17	Drill rig, rotary type	noise impact		this Contract	phase		N/A
	Piling, diaphragm wall, bentonite filtering plant						N/A
	Piling, diaphragm wall, grab and chisel						N/A
	Piling, diaphragm wall, hydraulic extractor						N/A
	Piling, large diameter bored, grab and chisel						N/A
	Piling, hydraulic extractor						N/A
	Piling, earth auger, auger						N/A
	Rock drill, crawler mounted (pneumatic)						N/A
Water Quali	ty (Construction Phase)						
S11.216	The following mitigation measures are proposed to minimize the	minimize release of	Contractor	Construction	Construction	• EIAO-TM	
	potential water quality impacts from the construction works at or close	construction wastes		works at or close	phase	• WPCO	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended	implement	measures	Implement the	requirements or	
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
	to the seafront:	from construction works		to the seafront			
	Temporary storage of construction materials (e.g. equipment, filling	at or close to the					٨
	materials, chemicals and fuel) and temporary stockpile of	seafront					
	construction and demolition materials shall be located well away from						
	the seawater front and storm drainage during carrying out of the						
	works.						
	Stockpiling of construction and demolition materials and dusty						٨
	materials shall be covered and located away from the seawater front						
	and storm drainage.						
	Construction debris and spoil shall be covered up and/or disposed						٨
	of as soon as possible to avoid being washed into the nearby						
	receiving waters.						
S11.222	The site practices outlined in ProPECC PN 1/94 "Construction Site	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	
to 11.245	Drainage" shall be followed where practicable.	impact from		sites where	phase	• WPCO	
		construction site runoff		practicable		• TM-DSS	
	Surface Run-off	and general				·WDO	
	Surface run-off from construction sites shall be discharged into	construction activities				• ProPECC PN	*
	storm drains via adequately designed sand/silt removal facilities					1/94	
	such as sand traps, silt traps and sedimentation basins. Channels						
	or earth bunds or sand bag barriers shall be provided on site to						
	properly direct stormwater to such silt removal facilities. Perimeter						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	channels at site boundaries shall be provided where necessary to						
	intercept storm run-off from outside the site so that it will not wash						
	across the site. Catchpits and perimeter channels shall be						
	constructed in advance of site formation works and earthworks.						
	Silt removal facilities, channels and manholes shall be maintained						٨
	and the deposited silt and grit shall be removed regularly, at the						
	onset of and after each rainstorm to prevent local flooding. Any						
	practical options for the diversion and re-alignment of drainage						
	shall comply with both engineering and environmental						
	requirements in order to provide adequate hydraulic capacity of all						
	drains. Minimum distances of 100 m shall be maintained between						
	the discharge points of construction site runoff and the existing						
	saltwater intakes.						
	Construction works shall be programmed to minimize soil						٨
	excavation works in rainy seasons (April to September). If						
	excavation in soil cannot be avoided in these months or at any						
	time of year when rainstorms are likely, for the purpose of						
	preventing soil erosion, temporary exposed slope surfaces shall						
	be covered e.g. by tarpaulin, and temporary access roads shall be						
	protected by crushed stone or gravel, as excavation						
	proceeds. Intercepting channels shall be provided (e.g. along the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	crest / edge of excavation) to prevent storm runoff from washing						
	across exposed soil surfaces. Arrangements shall always be in						
	place in such a way that adequate surface protection measures						
	can be safely carried out well before the arrival of a rainstorm.						
	Earthworks final surfaces shall be well compacted and the						N/A
	subsequent permanent work or surface protection shall be carried						
	out immediately after the final surfaces are formed to prevent						
	erosion caused by rainstorms. Appropriate drainage like						
	intercepting channels shall be provided where necessary.						
	Measures shall be taken to minimize the ingress of rainwater into						۸
	trenches. If excavation of trenches in wet seasons is necessary,						
	they shall be dug and backfilled in short sections. Rainwater						
	pumped out from trenches or foundation excavations shall be						
	discharged into storm drains via silt removal facilities.						
	Open stockpiles of construction materials (e.g. aggregates, sand						٨
	and fill material) on sites shall be covered with tarpaulin or similar						
	fabric during rainstorms.						
	Manholes (including newly constructed ones) shall always be						٨
	adequately covered and temporarily sealed so as to prevent silt,						
	construction materials or debris from getting into the drainage						
	system, and to prevent storm run-off from getting into foul						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. Good site practices shall be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the						٨
	construction sites on a regular basis. Boring and Drilling Water • Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities.						N/A
	Wheel Washing Water All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	and to prevent site run-off from entering public road drains.						
	Bentonite Slurries						
	Bentonite slurries used in diaphragm wall and						N/A
	bore-pile construction shall be reconditioned and used again						
	wherever practicable. If the disposal of a certain residual quantity						
	cannot be avoided, the bentonite slurries shall either be dewatered						
	or mixed with inert fill material for disposal to a public filling area.						
	If the used bentonite slurry is intended to be disposed of through						N/A
	the public drainage system, it shall be treated to the respective						
	effluent standards applicable to foul sewer, storm drains or the						
	receiving waters as set out in the TM-DSS.						
	Water for Testing & Sterilization of Water Retaining Structures and						
	Water Pipes						
	Water used in water testing to check leakage of structures and						٨
	pipes shall be used for other purposes as far as						
	practicable. Surplus unpolluted water will be discharged into storm						
	drains.						
	Sterilization is commonly accomplished by chlorination. Specific						N/A
	advice from EPD shall be sought during the design stage of the						
	works with regard to the disposal of the sterilizing water. The						
	sterilizing water shall be used again wherever practicable.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Wastewater from Building Construction						
	Before commencing any demolition works, all sewer and drainage						٨
	connections shall be sealed to prevent building debris, soil, sand						
	etc. from entering public sewers/drains.						
	Wastewater generated from building construction activities						٨
	including concreting, plastering, internal decoration, cleaning of						
	works and similar activities shall not be discharged into the						
	stormwater drainage system. If the wastewater is to be						
	discharged into foul sewers, it shall undergo the removal of						
	settleable solids in a silt removal facility, and pH adjustment as						
	necessary.						
	Acid Cleaning, Etching and Pickling Wastewater						
	Acidic wastewater generated from acid cleaning, etching, pickling						٨
	and similar activities shall be neutralized to within the pH range of						
	6 to 10 before discharging into foul sewers. If there is no public						
	foul sewer in the vicinity, the neutralized wastewater shall be						
	tankered off site for disposal into foul sewers or treated to a						
	standard acceptable to storm drains and the receiving waters.						
	Wastewater from Site Facilities						
	Wastewater collected from any temporary canteen kitchens,						٨
	including that from basins, sinks and floor drains, shall be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	discharged into foul sewer via grease traps. In case connection to						
	the public foul sewer is not feasible, wastewater generated from						
	kitchens or canteen, if any, shall be collected in a temporary						
	storage tank. A licensed waste collector shall be deployed to clean						
	the temporary storage tank on a regular basis.						
	Drainage serving an open oil filling point shall be connected to						٨
	storm drains via petrol interceptors with peak storm bypass.						
	Vehicle and plant servicing areas, vehicle wash bays and						٨
	lubrication bays shall as far as possible be located within roofed						
	areas. The drainage in these covered areas shall be connected to						
	foul sewers via a petrol interceptor. Oil leakage or spillage shall be						
	contained and cleaned up immediately. Waste oil shall be						
	collected and stored for recycling or disposal in accordance with						
	the Waste Disposal Ordinance.						
S11.246 &	Construction work force sewage discharges on site are expected to	minimize water quality	Contractor	All works areas	Construction	• EIAO-TM	٨
11.247	be discharged to the nearby existing trunk sewer or sewage	impacts due to sewage			phase	• WPCO	
	treatment facilities. If disposal of sewage to public sewerage system	generated from				• TM-DSS	
	is not feasible, appropriate numbers of portable toilets shall be	construction workforce				·WDO	
	provided by a licensed contractor to serve the construction workers						
	over the construction site to prevent direct disposal of sewage into						
	the water environment. The Contractor shall also be responsible for						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended	Who to implement	Location of the measures	When to Implement the	What requirements or	Status
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
	waste disposal and maintenance practices. Notices shall be posted						
	at conspicuous locations to remind the workers not to discharge any						
	sewage or wastewater into the nearby environment.						
S11.248	In case seepage of uncontaminated groundwater occurs,	minimize impact from	Contractor	All works areas	Construction	• EIAO-TM	٨
	groundwater shall be pumped out from the works areas and	discharge of			phase	·WPCO	
	discharged into the storm system via silt removal facilities.	uncontaminated				• TM-DSS	
	Uncontaminated groundwater from dewatering process shall also be	groundwater					
	discharged into the storm system via silt traps						
S11. 253	There is a need to apply to EPD for a discharge licence for discharge	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	٨
	of effluent from the construction site under the WPCO. The discharge	impact from effluent		works areas	phase	• WPCO	
	quality must meet the requirements specified in the discharge	discharges from				• TM-DSS	
	licence. All the runoff and wastewater generated from the works	construction sites					
	areas shall be treated so that it satisfies all the standards listed in the						
	TM-DSS. The beneficial uses of the treated effluent for other on-site						
	activities such as dust suppression, wheel washing and general						
	cleaning etc., can minimise water consumption and reduce the						
	effluent discharge volume. If monitoring of the treated effluent quality						
	from the works areas is required during the construction phase of the						
	Project, the monitoring shall be carried out in accordance with the						
	WPCO license which is under the ambit of Regional Office (RO) of						
	EPD.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended	implement	measures	Implement the	requirements or	
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
S11.254	Contractor must register as a chemical waste producer if chemical	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	٨
	wastes would be produced from the construction activities. The	impact from accidental		works areas	phase	• WPCO	
	Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in	spillage of chemical				• TM-DSS	
	particular the Waste Disposal (Chemical Waste) (General) Regulation					·WDO	
	shall be observed and complied with for control of chemical wastes.						
S11.255	Any service shop and maintenance facilities shall be located on hard	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	٨
	standings within a bunded area, and sumps and oil interceptors shall	impact from accidental		works areas	phase	• WPCO	
	be provided. Maintenance of vehicles and equipment involving	spillage of chemical				• TM-DSS	
	activities with potential for leakage and spillage shall only be					·WDO	
	undertaken within the areas appropriately equipped to control these						
	discharges.						
S11.256	Disposal of chemical wastes shall be carried out in compliance with	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	
	the Waste Disposal Ordinance. The "Code of Practice on the	impact from accidental		works areas	phase	• WPCO	
	Packaging, Labelling and Storage of Chemical Wastes" published	spillage of chemical				• TM-DSS	
	under the Waste Disposal Ordinance details the requirements to deal					·WDO	
	with chemical wastes. General requirements are given as follows:						
	Suitable containers shall be used to hold the chemical wastes to						٨
	avoid leakage or spillage during storage, handling and transport.						
	Chemical waste containers shall be suitably labelled, to notify and						٨
	warn the personnel who are handling the wastes, to avoid accidents.						
	Storage area shall be selected at a safe location on site and						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Wests Mans	adequate space shall be allocated to the storage area. gement (Construction Waste)						
S12.75	Good Site Practices and Waste Reduction Measures - Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; - Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; - Provision of sufficient waste disposal points and regular collection of waste; - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and - Separation of chemical wastes for special handling and	reduce waste management impacts	Contractor	All works sites	Construction phase	Waste Disposal Ordinance (Cap. 354) Land (Miscellaneous Provisions) Ordinance (Cap. 28) DEVB TCW No. 6/2010	^ ^
S12.76	appropriate treatment. Good Site Practices and Waste Reduction Measures (Con't) - Sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.);	achieve waste reduction	Contractor	All works sites	Construction phase	Waste Disposal Ordinance (Cap. 354) Land	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended	implement	measures	Implement the	requirements or	
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
	- Segregation and storage of different types of waste in different					(Miscellaneous	۸
	containers, skips or stockpiles to enhance reuse or recycling of					Provisions)	
	materials and their proper disposal;					Ordinance (Cap.	
	- Encourage collection of aluminum cans by providing separate					28)	٨
	labeled bins to enable this waste to be segregated from other general						
	refuse generated by the workforce;						
	- Proper storage and site practices to minimize the potential for						٨
	damage or contamination of construction						
	materials;						
	- Plan and stock construction materials carefully to minimize						٨
	amount of waste generated and avoid unnecessary generation of						
	waste; and						
	- Training shall be provided to workers about the concepts of site						٨
	cleanliness and appropriate waste management procedures,						
	including waste reduction, reuse and recycle.						
S12.77	Good Site Practices and Waste Reduction Measures (Con't)	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	
	- The Contractor shall prepare and implement a WMP as part of the	reduction			phase	No. 19/2005	٨
	EMP in accordance with ETWBTCW No. 19/2005 which describes						
	the arrangements for avoidance, reuse, recovery, recycling, storage,						
	collection, treatment and disposal of different categories of waste to						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended	implement	measures	Implement the	requirements or	
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
	be generated from the construction activities. Such a management						
	plan shall incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and						
	recyclable materials. The EMP shall be submitted to the Engineer						
	for approval. The Contractor shall implement the waste management						
	practices in the EMP throughout the construction stage of the Project.						
	The EMP shall be reviewed regularly and updated by the Contractor,						
	preferably in a monthly basis.						
S12.78	C&D materials would be reused in other local concurrent projects as	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	^
	far as possible. If all reuse outlets are exhausted during the	reduction			phase	No. 19/2005	
	construction phase, the C&D materials would be disposed of at						
	Taishan, China as a last resort.						
S12.79	Storage, Collection and Transportation of Waste	minimize potential	Contractor	All works sites	Construction	- ETWB TCW	
	Should any temporary storage or stockpiling of waste is required,	adverse environmental			phase	No. 19/2005	
	recommendations to minimize the impacts include:	impacts arising from					
	- Waste, such as soil, shall be handled and stored well to ensure	waste storage					٨
	secure containment, thus minimizing the potential of pollution;						
	- Maintain and clean storage areas routinely;						٨
	- Stockpiling area shall be provided with covers and water spraying						٨
	system to prevent materials from wind-blown or being washed away;						
	and						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	- Different locations shall be designated to stockpile each						۸
S12.80	material to enhance reuse	minimize netential	Contractor	All works sites	Canatruction	- ETWB TCW	
512.00	Storage, Collection and Transportation of Waste (Con't)	minimize potential	Contractor	All Works sites	Construction		
	Waste haulier with appropriate permits shall be employed by the	adverse environmental			phase	No. 19/2005	
	Contractor for the collection and transportation of waste from works	impacts arising from					
	areas to respective disposal outlets. The following suggestions shall	waste collection and					
	be enforced to minimize the potential adverse impacts:	disposal					
	- Remove waste in timely manner						۸
	- Waste collectors shall only collect wastes prescribed by their						٨
	permits						
	- Impacts during transportation, such as dust and odour, shall be						٨
	mitigated by the use of covered trucks or in enclosed containers						
	- Obtain relevant waste disposal permits from the appropriate						٨
	authorities, in accordance with the Waste Disposal Ordinance (Cap.						
	354), Waste Disposal (Charges for Disposal of Construction Waste)						
	Regulation (Cap. 345) and the Land (Miscellaneous Provisions)						
	Ordinance (Cap. 28)						
	- Waste shall be disposed of at licensed waste disposal facilities						٨
	- Maintain records of quantities of waste generated, recycled and						٨
	disposed						
S12.81	Storage, Collection and Transportation of Waste (Con't)	minimize potential	Contractor	All works sites	Construction	• DEVB TCW	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended	implement	measures	Implement the	requirements or	
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
	- Implementation of trip ticket system with reference to DevB TC(W)	adverse environmental			phase	No. 6/2010	٨
	No.6/2010 to monitor disposal of waste and to control fly-tipping at	impacts arising from					
	PFRFs or landfills. A recording system for the amount of waste	waste collection and					
	generated, recycled and disposed (including disposal sites) shall be	disposal					
	proposed						
S12.83 –	Sorting of C&D Materials	minimize potential	Contractor	All works sites	Construction	• DEVB TCW	
12.86	- Sorting to be performed to recover the inert materials, reusable	adverse environmental			phase	No. 6/2010	٨
	and recyclable materials before disposal off-site.	impacts during the				• ETWB TCW No.	
	- Specific areas shall be provided by the Contractors for sorting and	handling, transportation				33/2002	٨
	to provide temporary storage areas for the sorted materials.	and disposal of C&D				• ETWB TCW	
	- The C&D materials shall at least be segregated into inert and	materials				No. 19/2005	٨
	non-inert materials, in which the inert portion could be reused and						
	recycled as far as practicable before delivery to PFRFs as mentioned						
	for beneficial use in other projects. While opportunities for reusing the						
	non-inert portion shall be investigated before disposal of at						
	designated landfills.						
	- Possibility of reusing the spoil in the Project will be continuously						٨
	investigated in the detailed design and construction stages, it						
	includes backfilling to cut and cover construction works for the Hung						
	Hom south and north approach						
S12.97	Containers for Storage of Chemical Waste	register with EPD	Contractor	All works sites	Construction	Code of	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended	implement	measures	Implement the	requirements or	
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
	The Contractor shall register with EPD as a chemical waste producer	as a Chemical waste			phase	Practice on the	
	and to follow the guidelines stated in the Code of Practice on the	producer and store				Packaging,	
	Packaging, Labelling and Storage of Chemical Wastes. Containers	chemical waste in				Labelling and	
	used for storage of chemical waste shall:	appropriate containers				Storage of	
	- Be compatible with the chemical wastes being stored, maintained					Chemical Wastes	٨
	in good condition and securely sealed;						
	- Have a capacity of less than 450 litters unless the specifications						٨
	have been approved by EPD; and						
	- Display a label in English and Chinese in accordance with						٨
	instructions prescribed in Schedule 2 of the Waste Disposal						
	(Chemical Waste) (General) Regulation						
S12.98	Chemical Waste Storage Area	prepare appropriate	Contractor	All works sites	Construction	Code of	
	- Be clearly labeled to indicate corresponding chemical	storage areas for			phase	Practice on the	^
	characteristics of the chemical waste and used for storage of	chemical waste at				Packaging,	
	chemical waste only;	works areas				Labelling and	
	- Be enclosed on at least 3 sides;					Storage of	۸
	- Have an impermeable floor and bunding, of capacity to					Chemical Wastes	۸
	accommodate 110% of the volume of the largest container or 20% by						
	volume of the chemical waste stored in that area, whichever is the						
	greatest;						
	- Have adequate ventilation;						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	- Be covered to prevent rainfall from entering; and						٨
	- Be properly arranged so that incompatible materials are						٨
	adequately separated.						
S12.98	Chemical Waste	clearly label the	Contractor	All works sites	Construction	Code of	
	- Lubricants, waste oils and other chemical wastes would be	chemical waste at			phase	Practice on the	۸
	generated during the maintenance of vehicles and mechanical	works areas				Packaging,	
	equipments. Used lubricants shall be collected and stored in					Labelling and	
	individual containers which are fully labelled in English and Chinese					Storage of	
	and stored in a designated secure place.					Chemical Wastes	
S12.100	Collection and Disposal of Chemical Waste	To monitor the	Contractor	All works sites	Construction	Waste Disposal	٨
	A trip-ticket system shall be operated in accordance with the Waste	generation, reuse and			phase	(Chemical Waste)	
	Disposal (Chemical Waste) (General) Regulation to monitor all	disposal of chemical				(General)	
	movements of chemical waste. The Contractor shall employ a	waste				Regulation	
	licensed collector to transport and dispose of the chemical wastes, to						
	either the approved CWTC at Tsing Yi, or another licensed facility, in						
	accordance with the Waste Disposal (Chemical Waste) (General)						
	Regulation						
S12.101	General Refuse	properly store and	Contractor	All works sites	Construction	- Public Health	٨
	General refuse shall be stored in enclosed bins or compaction units	separate from other			phase	and Municipal	
	separate from C&D materials and chemical waste. A reputable waste	C&D materials for				Services	
	collector shall be employed by the contractor to remove general	subsequent collection				Ordinance (Cap.	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended	implement	measures	Implement the	requirements or	
		Measures & Main	the		measures?	standards for the	
		Concerns to address	measures?			measures to	
						achieve?	
	refuse from the site, separately from C&D materials and chemical	and disposal				132)	
	wastes. Preferably, an enclosed and covered area shall be provided						
	to reduce the occurrence of wind-blown light material.						
S12.102	General Refuse (Con't)	facilitate recycling of	Contractor	All works sites	Construction	- Public Health	۸
	The recyclable component of general refuse, such as aluminum cans,	recyclable portions of			phase	and Municipal	
	paper and cleansed plastic containers shall be separated from other	refuse				Services	
	waste. Provision and collection of recycling bins for different types of					Ordinance (Cap.	
	recyclable waste shall be set up by the Contractor. The Contractor					132)	
	shall also be responsible for arranging recycling companies to collect						
	these materials.						
S12.102	General Refuse (Con't)	raise workers'	Contractor	All works sites	Construction	- Public Health	٨
	The Contractor shall carry out an education programme for workers	awareness on recycling			phase	and Municipal	
	in avoiding, reducing, reusing and recycling of materials generation.	issue				Services	
	Posters and leaflets advising on the use of the bins shall also be					Ordinance (Cap.	
	provided in the sites as reminders					132)	

Remarks: ^

Compliance of mitigation measure

X Non-compliance of mitigation measure

- Non-compliance but rectified by the contractor
- * Observation/reminder was made during site audit but improved/rectified by the contractor.

N/A Not Applicable

APPENDIX K
WASTE GENERATION IN THE
REPORTING MONTH

Contract No: MTR SCL 1126 - Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool
November, 2014

Monthly Summary Waste Flow Table for 2014 at Wan Chai Sports Ground and Passengener Transport Interchange

		Actual Quantit	ies of C&D Ma	aterials Gener	rated Monthly		Actual Qu	antities of No	n-inert C&D W	astes Genera	ited Monthly	
Monthly	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse (see Note 3)	Remarks
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)	
Jul	0.267	0.000	0.000	0.000	0.267	0.000	3.780	0.000	0.000	0.000	0.020	
Aug	0.260	0.010	0.000	0.000	0.250	0.000	11.090	0.000	0.000	0.000	0.031	
Sept	0.163	0.009	0.000	0.000	0.154	0.000	24.550	0.000	0.000	0.000	0.023	
Oct	0.907	0.000	0.000	0.000	0.907	0.000	28.285	0.000	0.000	0.000	0.016	
Nov	1.033	0.000	0.000	0.000	1.033	0.000	0.000	0.000	0.000	0.000	0.036	
Dec												
Total	2.629	0.019	0.000	0.000	2.610	0.000	67.705	0.000	0.000	0.000	0.127	

Notes:

- 1) The waste flow table shall also include C&D materials that are specified in the contract to be imported for use at the site.
- 2) Plastic refer to plastic bottle/ containers, plastic sheets/ foam from packaging material.
- 3) The general refuse with non-recyclable materials were disposed to Landfill.

 Assume the densities of Rock, Soil, Mix Rock and Soil, are Regular Spoil to be 2.0 tonnes/m³. Assumption the densities of general refuse is 1.0 tonnes/m³

APPENDIX L CUMULATIVE LOG FOR COMPLAINT LOGS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log

Log Ref.	Date/Location	Complainant/ Date of Contact	Details of Complaint	Investigation/ Mitigation Action	File Closed
			-		

Cumulative Log for Notifications of Summons

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Cumulative Log for Successful Prosecutions

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

Appendix C

Monthly EM&A Report for November 2014 – SCL Works Contract 11227 Advance Works for NSL Cross Harbour Tunnels

MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No.4

[Period from 1 to 30 November 2014]

Works Contract 11227 – Advance Works for NSL

Cross Harbour Tunnels

(December 2014)

Certified by: Dr. Priscilla Choy

Position: Environmental Team Leader

Date: _____10th December 2014

Concentric - Hong Kong River Joint Venture

Shatin to Central Link – Contract 11227 Advance Works for NSL Cross Harbour Tunnels

Monthly Environmental Monitoring and Audit Report For November 2014

(version 1.0)

Certified By

Dr. Priscilla Choy

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

+TABLE OF CONTENTS

	Pag	
	MMARY	
	ruction Works undertaken during Reporting Month	
	nitoring and Audit Progress	
	lity Monitoring	
Waste Managemen	t	1
	ual	
	Inspection	I
	eedance/Non-conformance/Complaint/Summons and Successful	2
1 INTRODUCT	TION	3
Purpose of the Rep	ort	3
Structure of the Rep	oort	3
2 PROJECT IN	FORMATION	4
Background		4
	ption	
_	amme and Activities	
	n	
	ental Licences, Notification and Permits	
•	ENTAL MONITORING REQUIREMENTS	
	llity Monitoring	
	ter, Frequency and Programme	
	nent and Methodology	
	ement / Analysis for Marine Water	
	evels	
	lan	
1	ual	9
	ΓATION STATUS ON ENVIRONMENTAL PROTECTION S1	0
	NG RESULTS 1	
Water Ouality Mon	itoring1	1
	t1	
	ual1	
6 ENVIRONM	ENTAL SITE INSPECTION 1	2
Site Audit		2
Implementation Sta	tus of Environmental Mitigation Measures	2
	ENTAL NON-CONFORMANCE 1	
	dances1	
•	onmental Non-Compliance	
Summary of Enviro	onmental Complaint	4
Summary of Enviro	onmental Summon and Successful Prosecution	4

8	FUTURI	E KEY ISSUES	15
Con	struction I	Programme for the Next Month	15
		the Next Month	
Mor	_	hedule in the Next Month	
9	CONCL	USIONS AND RECOMMENDATIONS	16
Rec	ommendat	ions	16
LIS	T OF TA	BLES	
Tah	le 2.1	Status of Environmental Licences, Notification and Permits	
	le 3.1	Water Quality Monitoring Location	
	le 3.2	Water Quality Impact Monitoring Programme	
	le 3.3	Water Quality Monitoring Equipment	
Tab	le 3.4	Analytical Methods to be applied to Marine Water Quality Samples	
	le 4.1	Status of Required Submissions under EP	
Tab	le 6.1	Observations and Recommendations of Site Audit	
LIS	T OF FIG	EURES	
Figu	ıre 1a-1c	The Alignment and Works Area for Works Contract 11227	
Figu	ire 2	Locations of Water Quality Monitoring Station in Shek O	
_	ire 3	Locations of Water Quality Monitoring Station in Victoria Harbour	
Figu	ire 4	Project Organisation for Environmental Works	
LIS	T OF API	PENDICES	
App	endix A	Tentative Construction Programme	
	endix B	Action and Limit Levels	
	endix C	Water Quality Monitoring Schedule	
App	endix D	Water Quality Monitoring Results and Graphical Presentations	
	endix E	Copies of Calibration Certificates	
	endix F	Quality Control Reports for SS Laboratory Analysis	
	endix G	Summary of Exceedance	
	endix H	Site Audit Summary Event and Action Plans	
	endix I endix J	Updated Environmental Mitigation Implementation Schedule	
	endix K	Waste Generation in the Reporting Month	
	endix K	Cumulative Log for Complaints, Notifications of Summons and Success	ful
		Prosecutions	

EXECUTIVE SUMMARY

Introduction

1. This is the 4th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for **MTR Shatin to Central Link (SCL) Works Contract 11227 – Advance Works for NSL Cross Harbour Tunnels.** This report documents the findings of EM&A Works conducted from 1 to 30 November 2014.

Summary of Construction Works undertaken during Reporting Month

2. The major site activities undertaken in the reporting month include:

Shek O Casting Basin

- Seabed leveling works at channel exit; and
- Rock filling works in Casting Basin.

Victoria Harbour

• Dredging of trial trench in Victoria Harbour.

Environmental Monitoring and Audit Progress

3. A summary of the monitoring activities in this reporting period is listed below:

Regular Water Quality Monitoring

- Water Quality Monitoring at each monitoring station (Shek O Casting Basin) 12 times
- Water Quality Monitoring at each monitoring station (Victoria Harbour)

12 times

Waste Management

4. Wastes generated from this Project include marine sediments. Details of waste management data is presented in Section 5 and **Appendix K**.

Landscape and Visual

5. Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 5 and 19 November 2014. Most of the necessary mitigation measures have been implemented and recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

6. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 5, 12, 19 and 26 November 2014. The representative of the IEC joined the site inspection on 26 November 2014. Details of the audit findings and implementation status are presented in Section 6.

Environmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution

- 7. No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded during the reporting period.
- 8. No non-compliance event was recorded during the reporting period.
- 9. No Project related environmental complaint and notification of summons/successful prosecutions were received in this reporting period.

Reporting Changes

10. There was no reporting change in the reporting period.

Future Key Issues

- 11. Major site activities for the coming reporting month will include:
 - Decommissioning of silt curtains; and
 - Demobilization of vessels and equipment.
- 12. Key environmental impacts to be considered in the coming month include:
 - Water quality impact in the vicinity of the marine construction activities.

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Concentric – Hong Kong River Joint Venture (CCL-HKRJV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL)Works Contract 11227 –Advance Works for NSL Cross Harbour Tunnels (hereafter referred to as the Project).

Purpose of the Report

1.2 This is the 4th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 1 to 30 November 2014. The major construction works for Contract 11227 commenced on 1 August 2014 2014 for Shek O Casting Basin. The major construction works in Victoria Harbour for Contract 11227 commenced on 11 September 2014

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** details the scope and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: **Environmental Monitoring Requirement -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.
 - Section 4: **Implementation Status on Environmental Mitigation Measures -** summarises the implementation of environmental protection measures during the reporting period.
 - Section 5: **Monitoring Results** summarises the monitoring results obtained in the reporting period.
 - Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.
 - Section 7: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.
 - Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.
 - Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Hung Hom to Admiralty Section (hereafter referred to as SCL (HUH-ADM)) is an approximately 6km extension of the East Rail Line including a rail harbor crossing from Hung Hom across the harbor to Admiralty on Hong Kong Island. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The Environmental Impact Assessment (EIA) Report for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, Environmental Permits (EP) (EP No: EP-436/2012) was granted on 22 March 2012 for their construction and operation.
- 2.3 An "Environmental Review Report Design Changes of North Ventilation Building and Shek O Casting Basin" (ERR) was submitted to the EPD in February 2014 to identify and assess the likely environmental issues pertinent to the proposed design changes at North Ventilation (NOV) Building and Shek O Casting Basin, and to identify any additional environmental mitigation measures that may be required for compliance with environmental standards. Variations of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/A) was issued by Director of Environmental Protection (DEP) on 30 April 2014.
- 2.4 The construction of the SCL (HUH-ADM) has been divided into a series of civil construction Works Contracts and this Works Contract 11227 comprises of the seabed levelling and rock filling works in Shek O, and dredging of trial trench in Victoria Harbour. The major construction works for Contract 11227 commenced on 1 August and 11 September 2014 for Shek O Casting Basin and Victoria Harbour respectively.

General Site Description

2.5 The alignment and works area for the Works Contract 11227 are shown in **Figure 1a-1c**.

Construction Programme and Activities

2.6 A summary of the major construction activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix A**.

Shek O Casting Basin

- Seabed levelling works at channel exit; and
- Rock filling works in Casting Basin.

Victoria Harbour

• Dredging of trial trench in Victoria Harbour.

Project Organisation

2.7 The project organizational chart and contact details are shown in **Figure 4.**

4

Status of Environmental Licences, Notification and Permits

2.8 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.1**.

Table 2.1 Summary of the Status of Environmental Licences, Notification and Permits

Permit / License No.	Valid	C4a4ma					
Permit / License No.	From	To	Status				
Environmental Permit (EP)	Environmental Permit (EP)						
EP-436/2012/A	30/04/2014	N/A	Valid				
Notification pursuant to Air Pol	lution Control (Cons	truction Dust) Regulat	ion				
EPD Ref no.: 375940	20/06/2014	N/A	Valid				
Billing Account for Construction	n Waste Disposal	<u> </u>					
N/A							
Registration of Chemical Waste	Producer						
WPN5296-197-C3902-01	10/10/2014	N/A	Valid				
Effluent Discharge License unde	er Water Pollution Co	ontrol Ordinance					
N/A							
Construction Noise Permit (CNP)							
GW-RS0737-14	28/07/2014	27/01/2015	Valid				
GW-RS1052-14	04/10/2014	03/04/2015	Valid				
Marine Dumping Permit							
EP/MD/15-057	25/08/2014	24/02/2015	Valid				
EP/MD/15-137	27/10/2014	26/11/2014	Valid				

Summary of EM&A Requirements

- 2.9 The EM&A programme under Works Contract 11227 require regular water quality monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirements in contract documents.
- 2.10 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 2.11 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely marine water quality monitoring as well as audit works for the Project in the reporting month.

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Regular Water Quality Monitoring

- 3.1 In accordance with the EM&A Manual and the ERR, marine water quality monitoring should be carried out during the period of seabed levelling work in Shek O Casting Basin and trenching work in Victoria Harbour. The water quality monitoring stations and control stations of Project are shown in **Figure 2** and **Figure 3**. The co-ordinates of the proposed monitoring stations are listed in **Table 3.1**. As shown in **Table 3.1**, the proposed locations are classified as Impact Station and Control Station according to their functions.
- 3.2 According to the Water Quality Monitoring Plan for Trial Trenching Works (WQMP) and the Baseline Water Quality Monitoring Report for Trial Trenching Works, water quality monitoring in Victoria Harbour will be carried out in two impact monitoring stations (namely A and WSD9) in dry season and four impact monitoring stations (namely A, WSD9, 14 and WSD17) in wet season.

Table 3.1 Water Quality Monitoring Stations

Station	Description	East	North	Parameters to be measured
Shek O Cast	ting Basin	-	-	
GB3	Turtle Cove Beach	841120	810280	DO, Turbidity, SS
C3	Control Station for ebb tide	841200	806210	DO, Turbidity, SS
C4	Control Station for flood tide	843330	330 807320 DO, Turbidity, SS	
Victoria Ha	rbour (Dry Season) (3)			
A	Wan Chai WSD Flushing Water Intake (Reprovisioned)	836268(1)	816045(1)	DO, Turbidity, SS
WSD9	Tai Wan WSD Flushing Water Intake	837930(2)	818357(2)	DO, Turbidity, SS
C1	Control Station 1	833977	817442	DO, Turbidity, SS
C2	Control Station 2	841088	817223	DO, Turbidity, SS

Note:

- (1) According to the Baseline Water Quality Monitoring Report for Trial Trenching Works, the original coordinates of monitoring location A (Easting: 836286, Northing: 816024) is the exact location taken from the design of reprovisioned Wan Chai Salt Water Pumping Station and Salt Water Intake Culvert. Based on actual site condition for taking water sampling, minor adjustment was made on monitoring location.
- (2) According to the Baseline Water Quality Monitoring Report for Trial Trenching Works, the original coordinates of monitoring location WSD9 (Easting: 838133, Northing: 817790) as proposed in WQMP were minor moved closer to sensitive receiver according to the actual site condition.
- (3) According to the Water Quality Monitoring Plan for Trial Trenching Works (WQMP) and the Baseline Water Quality Monitoring Report for Trial Trenching Works, water quality monitoring in Victoria Harbour will be carried out in two impact monitoring stations (namely A and WSD9) in dry season and four impact monitoring stations (namely A, WSD9, 14 and WSD17) in wet season.

Monitoring Parameter, Frequency and Programme

3.3 Water quality monitoring was conducted in accordance with the requirements stipulated in the approved SCL(HUH-ADM) EM&A Manual and the ERR. **Table 3.2** summarized the monitoring frequency and water quality parameters for the impact monitoring. The monitoring schedule for this reporting period is shown in **Appendix C**.

 Table 3.2
 Water Quality Impact Monitoring Programme

	Impact Monitoring	
Monitoring Period	During seabed levelling work in Shek O Casting Basin and trenching work in Victoria Harbour	
Monitoring Frequency	3 Days in a Week, at mid-flood and mid-ebb tides	
Monitoring Locations	GB3, C3, C4, A, WSD9, C1, C2	
Monitoring Parameters	DO, temperature, turbidity, pH, salinity and SS	
Intervals between 2 Sets of Monitoring	Not less than 36 hours	
Tide Range	Individual flood and ebb tides not less than 0.5m	

Monitoring Equipment and Methodology

pH Measurement Instrument

3.4 The instrument should consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It should be readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 should be used for calibration of the instrument before and after use.

Dissolved Oxygen and Temperature Measuring Equipment

- 3.5 The Dissolved Oxygen (DO) measuring equipment should be portable and weatherproof. It should complete with cable and senor, and a DC power source. The equipment should be capable of measuring:
 - a DO level in the range of 0 20 mg·L⁻¹ and 0 200% saturation; and
 - a temperature of 0 45 degree Celsius (°C).
- 3.6 It should have a membrane electrode with automatic temperature compensation complete with a cable.
- 3.7 Should salinity compensation not be built-in to the DO equipment, in-situ salinity should be measured to calibrate the DO measuring equipment prior to each DO measurement.

Turbidity Measurement Instrument

3.8 The turbidity measuring instrument should be a portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU (for example, Hach model 2100P or an approved similar instrument).

Sampler

3.9 A water sampler is required for SS monitoring. It should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (for example, Kahlsico Water Sampler or an approved similar instrument).

Water Depth Detector

3.10 A portable, battery-operated echo sounder should be used for the determination of water

depth at each monitoring station. This unit can either be hand-held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

Salinity

3.11 A portable salinometer capable of measuring salinity in the range of 0 - 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring station.

Sample Containers and Storage

3.12 Water samples for SS monitoring should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4 °C without being frozen) and delivered to the laboratory and analyzed as soon as possible after collection.

Monitoring Position Equipment

3.13 A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message "screen pop-up" facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel at the correct location before taking measurements.

Calibration of In-Situ Instruments

- 3.14 The pH meter, DO meter and turbidimeter shall be checked and calibrated before use. DO meter and turbidimeter shall be certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 3.15 **Table 3.3** summarizes the equipment used in the water quality monitoring program. The calibration certificates for the in-situ instruments are presented in **Appendix E**.

Table 3.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	3
Multi-parameter Water Quality	YSI 6820-C-M	2
System	Aquaread AP-2000-D	1
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS- 320	2
Water Depth Detector	Fishfinder 140	2

Laboratory Measurement / Analysis for Marine Water

- 3.16 Sufficient stocks of spare parts shall be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment are under maintenance, calibration, etc.
- 3.17 Duplicate samples from each independent sampling event are required by EPD for all parameters. Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory SS determinations, with detection limit shown in **Table 3.4**. The SS determination work shall start within 24 hours after collection of the water samples. The analyses shall follow the standard methods according to Table 3.3 and as described in "American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater", 19th edition, unless otherwise specified.

Table 3.4 Analytical Methods to be applied to Marine Water Quality Samples

Determinant	Standard Method	Detection Limit
Suspended Solids (mg/L)	APHA 2540 D	0.1 mg/L

3.18 Quality Control Reports as attached in **Appendix F** are available for the SS analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Action and Limit Levels

3.19 The action and limit levels for water quality monitoring are presented in **Appendix B**.

Event and Action Plan

3.20 Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan in **Appendix I** shall be carried out.

Landscape and Visual

3.21 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is summarised in **Table 6.1** of Section 6.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit, EM&A Manual and the ERR. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix J**. Status of required submissions under the Environmental Permit (EP) of the reporting period is presented in **Table 4.1**.

Table 4.1 Status of Required Submissions under EP

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report (October 2014)	14 November 2014

5 MONITORING RESULTS

Water Quality Monitoring

- 5.1 A total of 12 sets of water quality monitoring were carried out at the designated monitoring stations in Shek O Casting Basin and Victoria Harbour respectively in this reporting period. All water quality monitoring was conducted as scheduled in the reporting month. The water quality impact monitoring schedule for this reporting period is shown in **Appendix C**.
- 5.2 The monitoring results together with graphical presentations are shown in **Appendix D**.
- 5.3 Action and Limit Levels for water quality monitoring in Shek O Casting Basin and in Victoria Harbour have been established in the baseline water quality monitoring conducted. Action and Limit Levels for water quality is summarised in **Appendix B**.
- 5.4 No exceedance of Action and Limit Levels of water quality was recorded during the reporting period.

Waste Management

- 5.5 Waste generated from this Project includes mainly marine sediments. Details of waste management data is presented in **Appendix K**.
- 5.6 With reference to relevant handling records of this Project, No materials Type 1 (Category L) sediments and contaminated materials Type 1 (dedicated sites) were generated from construction activities during this reporting period. 3,271 m³ (in total bulk volume) of Type 2 Confined Marine Disposal (Category M) sediments were generated from construction activities during this reporting period. Such materials would be collected and disposed at Mud Pits CMP1 or CMP2 of the exhausted Confined Marine Disposal Facility at South of The Brothers (or East of Sha Chau).

Landscape and Visual

5.7 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 5 and 19 November 2014. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION

Site Audit

- 6.1 Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audit are attached in **Appendix H**.
- 6.2 Site audits were conducted on 5, 12, 19 and 26 November 2014 by ET. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 26 November 2014. No site inspection was conducted by EPD during the reporting month. The details of observations during site audit can refer to **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix J**.
- 6.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up		
Shek O Casting Basin					
	5 Nov 2014	Reminder: To repair the gap at the silt curtain at the end of Southern Gate.	The observation was observed to be improved/rectified by the Contractor during the audit session on 19 Nov 2014.		
Water Quality	12 Nov 2014	Reminder: To repair the gap of the silt curtain at the Southern Gate.	The observation was observed to be improved/rectified by the Contractor during the audit session on 19 Nov 2014.		
	26 Nov 2014	Reminder: To clear the general refuse on the sea water near the silt curtain at Southern Gate.	The observation was observed to be improved/rectified by the Contractor during the audit session on 3 Dec 2014.		
Noise					
Landscape and Visual					
Air Quality					
Waste / Chemical Management	26 Nov 2014	Reminder: To clear the general refuse on the sea water near the silt curtain at Southern Gate.	The observation was observed to be improved/rectified by the Contractor during the audit session on 3 Dec 2014.		
Permits/ Licenses					
Victoria Harbo	ur				
Water Quality	29 Oct 2014	Observation: Some fabric of part of the frame- type silt curtain observed floating on the water at Victoria Harbour. The Contractor is	The observation was observed to be improved/rectified by the Contractor during the		

	1		1
		reminded to repair it properly.	audit session on 26 Nov 2014.
5 Nov 2014		Observation: Some fabric of part of the frame- type silt curtain is observed floating on the water at Victoria Harbour. The Contractor is reminded to repair it properly.	The observation was observed to be improved/rectified by the Contractor during the audit session on 26 Nov 2014.
Noise			
Landscape and Visual			
Air Quality			
Waste /	5 Nov 2014	Observation: Chemical leakage observed from the generators. The Contractor is reminded remove the chemical oil in the drip tray and the oil stain on the ground.	The observation was observed to be improved/rectified by the Contractor during the audit session on 26 Nov 2014.
Chemical Management	5 Nov 2014	Observation: Chemical containers observed without secondary containment. The Contractor is reminded to provide drip trays.	The observation was observed to be improved/rectified by the Contractor during the audit session on 26 Nov 2014.
Permits/ Licenses			

7 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

7.1 No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded during the reporting period. The summary of exceedance is provided in **Appendix G**.

Summary of Environmental Non-Compliance

7.2 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

7.3 No environmental Project-related complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix L**.

Summary of Environmental Summon and Successful Prosecution

7.4 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix** L.

8 FUTURE KEY ISSUES

Construction Programme for the Next Month

- 8.1 A tentative construction programme is provided in **Appendix A**. The major construction activities in the coming month will include:
 - Decommissioning of silt curtains; and
 - Demobilization of vessels and equipment.

Key Issues in the Next Month

- 8.2 Key issues to be considered in the coming month include:
 - Water quality impact in the vicinity of the marine construction activities.

Monitoring Schedule in the Next Month

8.3 The tentative schedule of regular water quality monitoring at all the monitoring locations in the next reporting period is presented in **Appendix C**. The regular construction water quality monitoring will be conducted at the same monitoring locations in the next reporting period.

9 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 to 30 November 2014 in accordance with EM&A Manual and the requirement under EP.
- 9.2 No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded at the designated monitoring stations during the reporting month.
- 9.3 4 times of joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET and 2 times of bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted during the reporting period.
- 9.4 There was no Project related environmental complaint, successful prosecution or notification of summons received during the reporting month.
- 9.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

9.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

Water Quality

- The contractor is reminded to properly repair the gap at the silt curtain at Southern Gate at the Shek O Casting Basin.
- The Contractor is reminded to repair the frame-type silt curtain at Victoria Harbour.
- The Contractor is reminded to clear properly the general refuse deposited near the silt curtain at Southern Gate at Shek O Casting Basin.

Landscape and Visual

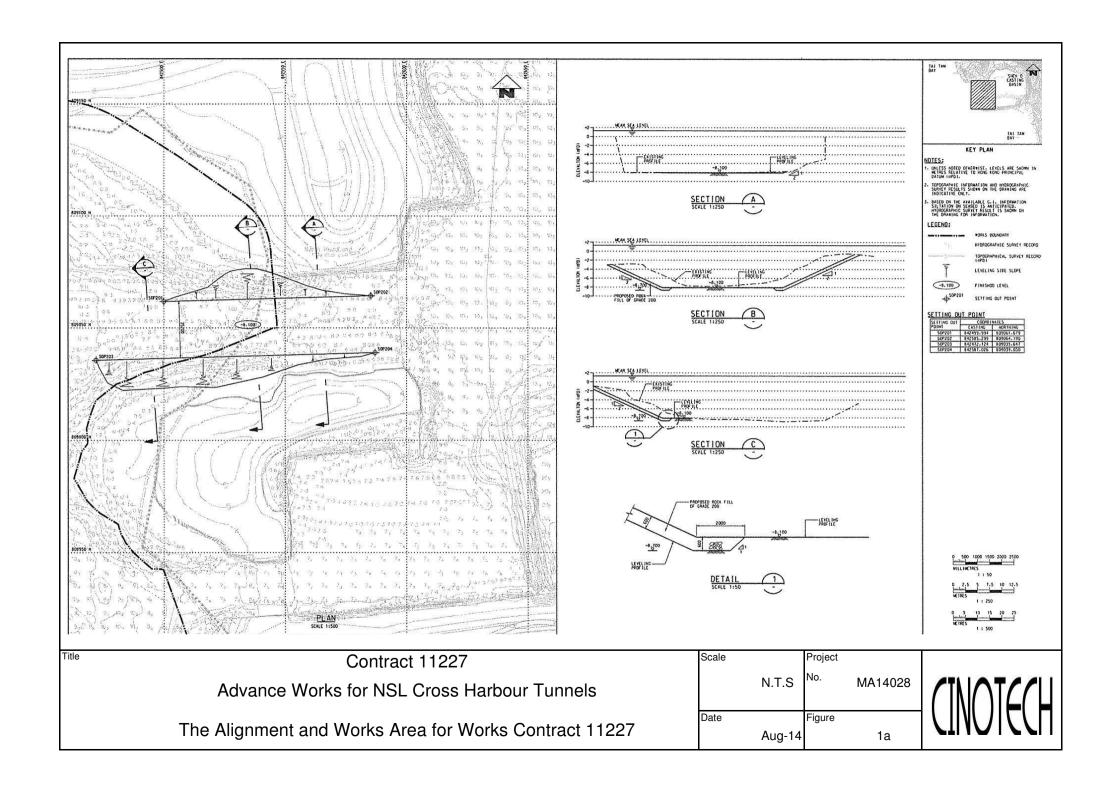
N/A

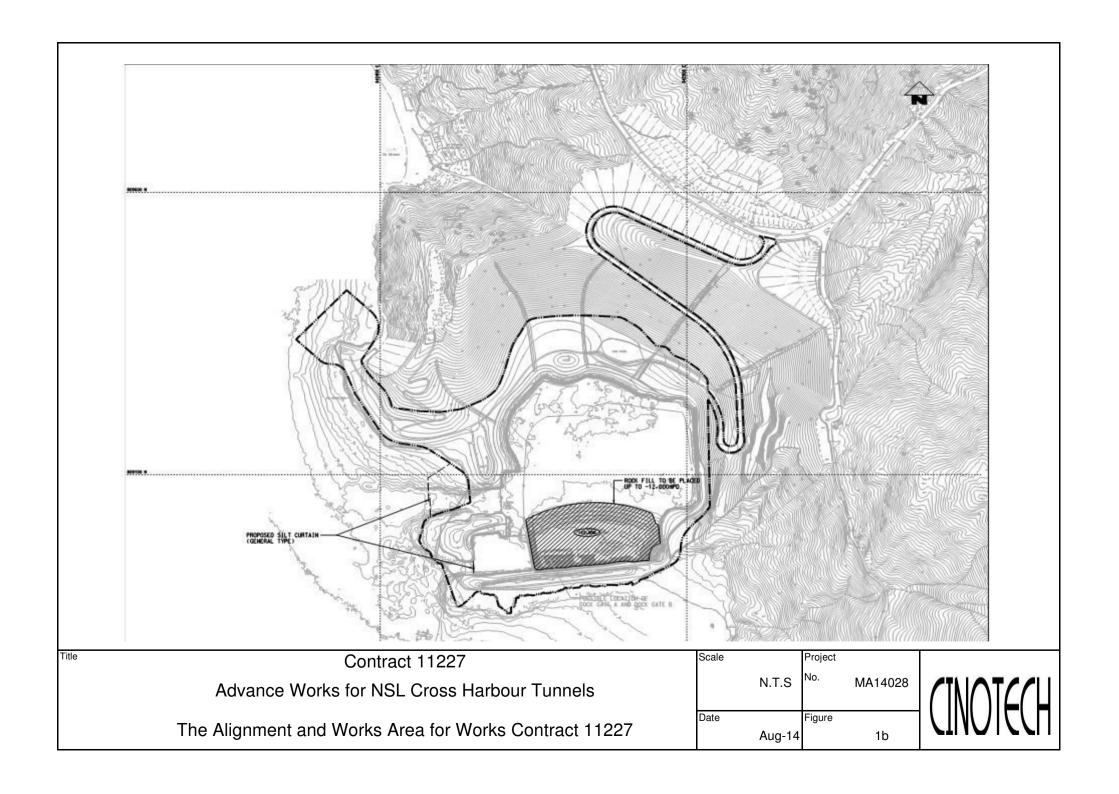
Noise

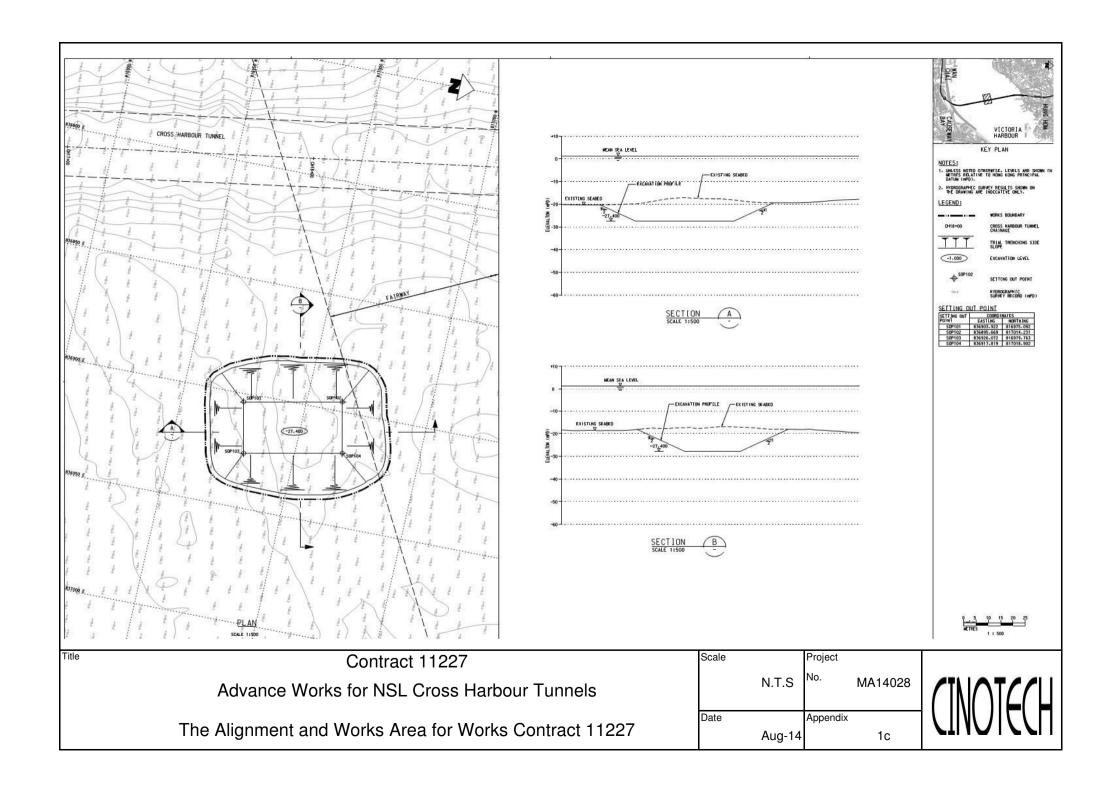
N/A

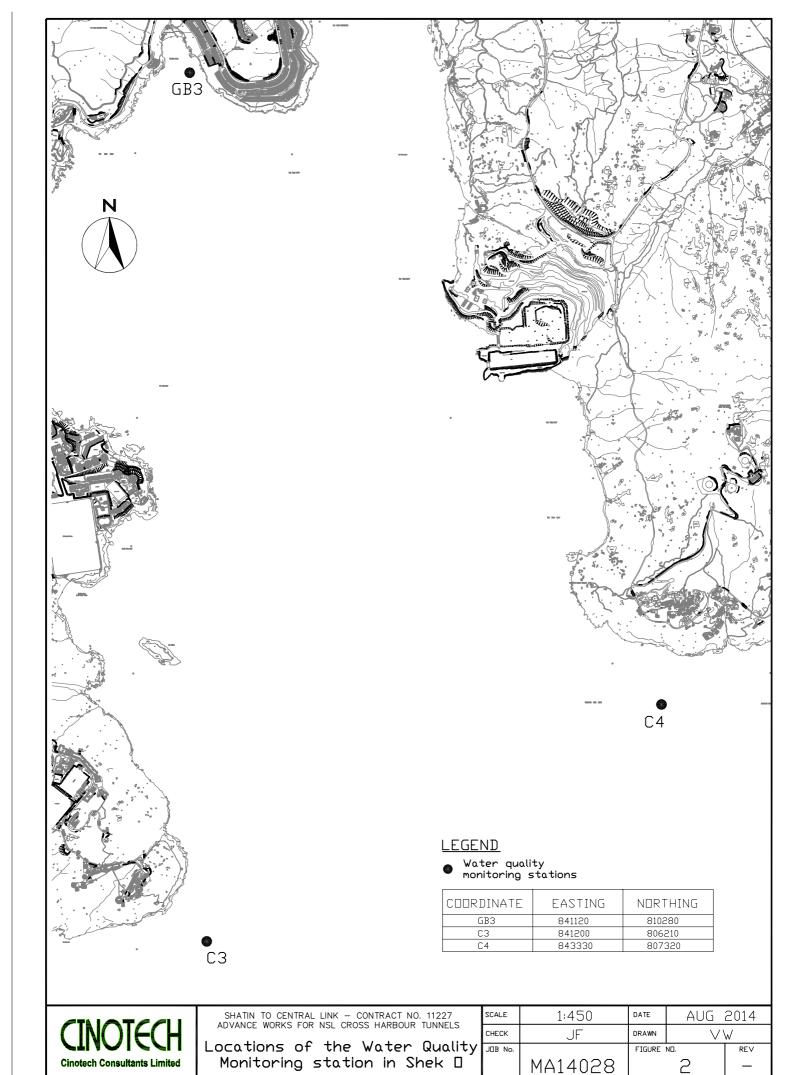
Air Quality

N/A


Waste/Chemical Management

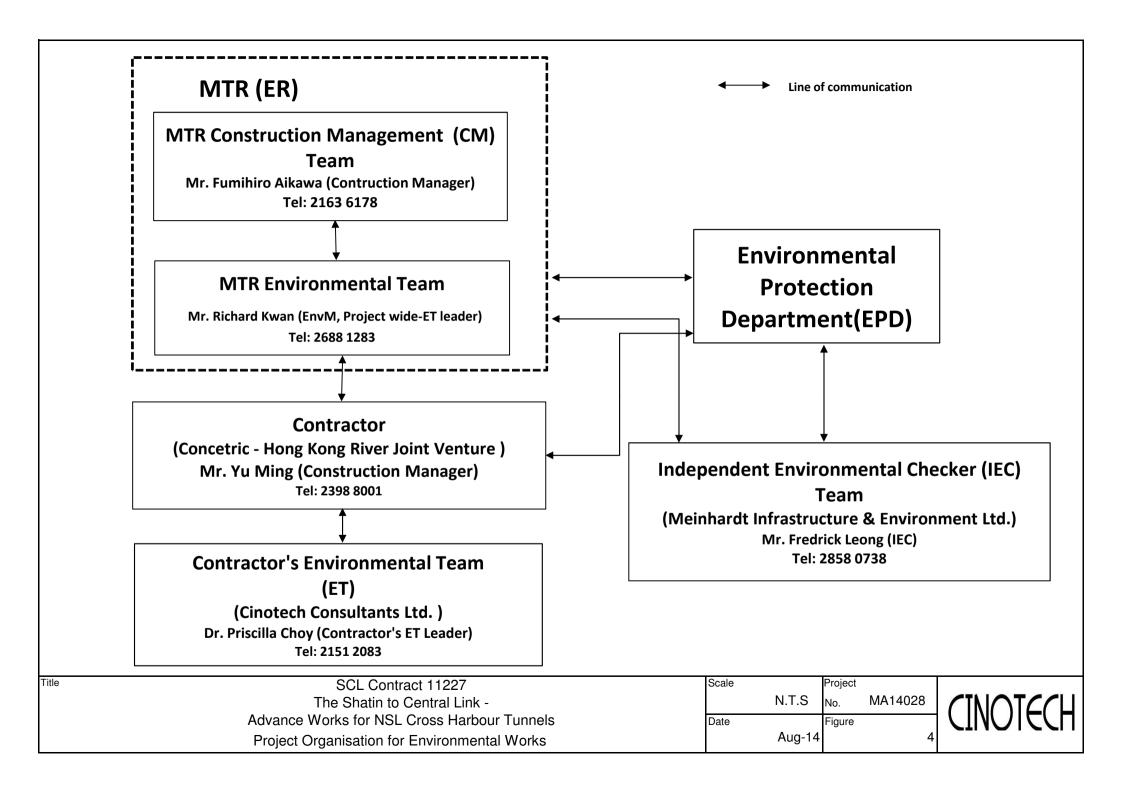

- The Contractor is reminded to clear properly the general refuse deposited near the silt curtain at Southern Gate at Shek O Casting Basin.
- The Contractor is reminded remove the chemical oil in the drip tray and the oil stain on the ground of the barge at Victoria Harbour.
- The Contractor is reminded to provide drip trays to chemical containers on the barge at Victoria Harbour.


Permits/Licenses


N/A

FIGURES

COORDINATE	EASTING	NORTHING
А	836268	816045
WSD9	837930	818357
C1	833977	817442
C2	841088	817223


LEGEND

Water Quality Monitoring Station (Dry Season)

CINOTECH Cinotech Consultants Limited SHATIN TO CENTRAL LINK - CONTRACT NO. 11227 ADVANCE WORKS FOR NSL CROSS HARBOUR TUNNELS

Locations of the Water Quality Monitoring station in Victoria Harbour

SCALE	1:30	DATE	NDV 20	14	
CHECK	JF	DRAWN	PRAWN VW		
J□B No.		FIGURE	ND.	RE∨	
	MA14028		3	_	

APPENDIX A TENTATIVE CONSTRCUTION PROGRAMME

Shatin to Central Link (SCL) Works Contract 11227 - Advance Works for NSL Cross Harbour Tunnels

Programme of Marine Works (Shek O)

	Activity			Year	2014		
Item			Aug	Sep	Oct	Nov	Dec
							•
1	Mobilization of vessels and equipment						
2	Deployment of silt curtain for seabed levelling (northern gate)		- - - - - - - -		: : : : :		
3	Seabed levelling works at channel exit	*******************			· · · ·	: :	
4	Deployment of silt curtain for rock filling (southern gate)						
5	Rock filling works in Casting Basin					<u>:</u> :	
6	Completion of marine works						♦
7	Demobilization of silt curtains						-
8	Demobilization of vessels and equipment						_

Shatin to Central Link (SCL) Works Contract 11227 - Advance Works for NSL Cross Harbour Tunnels

Programme of Marine Works (Victoria Harbour)

		Year 2014						
Item	Activity	Aug	Sep	Oct	Nov	Dec		
			•					
1	Mobilization of vessels and equipment		_					
2	Deployment of silt curtain		_					
3	Dredging and trimming of trial trench							
4	Completion of marine works					♦		
	Decommissioning of silt curtain					-		
6	Demobilzation of vessels and equipment					-		

APPENDIX B ACTION AND LIMIT LEVELS

APPENDIX B – Action and Limit Levels

Derived Action and Limit Levels for Water Quality at Intakes A and WSD9 (Dry Season)

Parameters	Action Level	Limit Level
DO in mg/L	<2.1	<2
SS in mg/L	5.0	5.5
Turbidity in NTU	5.3	5.6

Derived Action and Limit Levels for Water Quality at Intakes A, WSD9, 14 and WSD17 (Wet Season)

Parameters	Action Level	Limit Level
DO in mg/L	<2.1	<2
SS in mg/L	4.4	4.8
Turbidity in NTU	5.3	5.6

Derived Action and Limit Levels for Water Quality at GB3 (Dry Season)

Parameters	Action Level	Limit Level
DO in mg/L	6.8	6.5
SS in mg/L	9.3	9.3
Turbidity in NTU	5.0	5.6

Derived Action and Limit Levels for Water Quality at GB3 (Wet Season)

Parameters	Action Level	Limit Level
DO in mg/L	5.5	5.3
SS in mg/L	4.5	4.5
Turbidity in NTU	2.1	2.4

APPENDIX C WATER QUALITY MONITORING SCHEDULE

Shatin to Central Link - Contract No. 11227 Advance Works for NSL Cross Harbour Tunnels Water Quality Monitoring Schedule (November 2014) (Shek O)

Sunday	Monda	у	Tuesday	Wednesd	ay	Thursday	Friday	ý	Saturday	
										1-Nov
2-Nov		3-Nov	4-Nov		5-Nov	6-Nov		7-Nov		8-No
	l									
	Mid-Ebb Mid-Flood	9:00 15:42		Mid-Ebb Mid-Flood	10:48 16:58		Mid-Ebb Mid-Flood	12:21 18:08		
	IVIIG-FIOOG	15:42		IVIIQ-FIOOQ	16:58		IVIIG-FIOOG	18:08		
9-Nov		10-Nov	11-Nov		12-Nov	13-Nov		14-Nov		15-Nov
	Mid-Flood	8:54		Mid-Flood	10:40				Mid-Ebb	4:53
	*Mid-Ebb	14:17		*Mid-Ebb	15:32				Mid-Flood	13:53
16-Nov		17-Nov	18-Nov		19-Nov	20-Nov		21-Nov		22-Nov
	Mid-Ebb	8:07		Mid-Ebb	10:01		Mid-Ebb	11:25		
	Mid-Flood	15:07		Mid-Flood	15:59		Mid-Flood	16:57		
23-Nov		24-Nov	25-Nov		26-Nov	27-Nov		28-Nov		29-Nov
25-1107		24-1NOV	25-1101		20-1101	27-1 10 V		20-1101		29-110
	*Mid-Ebb	13:25		Mid-Flood	9:31		Mid-Flood	11:23		
	Mid-Ebb	18:44		*Mid-Ebb	14:57		*Mid-Ebb	16:57		

Water Quality Monitoring Stations

C3, C4, GB3

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Tai Miu Wan Station)

- 2) The reasons for choosing the monitoring day (i.e. 10, 12, 24, 26 and 28 November 2014) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Shatin to Central Link - Contract No. 11227 Advance Works for NSL Cross Harbour Tunnels Water Quality Monitoring Schedule (November 2014) (Victoria Harbour)

Sunday	Mond	Monday Tuesday		Wedneso	lay	Thursday	Frida	ay	Saturd	ay
										1-Nov
2-No	ov	3-Nov	4-Nov		5-Nov	6-Nov		7-Nov	,	8-No
	Mid-Ebb	9:07		Mid-Ebb	10:53		Mid-Ebb	12:25	;	
	Mid-Flood	15:49		Mid-Flood	17:03		Mid-Flood	18:12		
9-No	NV.	10-Nov	11-Nov		12-Nov	13-Nov		14-Nov	,	15-No
, T.		10 1101	111101		121,0,	15 1101		111101		10 110
	Mid-Flood	8:59		Mid-Flood	10:47				Mid-Ebb	5:1
	*Mid-Ebb	14:27		*Mid-Ebb	15:36				Mid-Flood	13:58
16-No	OV	17-Nov	18-Nov		19-Nov	20-Nov		21-Nov	r	22-No
	Mid-Ebb	8:10		Mid-Ebb	10:07		Mid-Ebb	11:31		
	Mid-Flood	15:12		Mid-Flood	16:04		Mid-Flood	17:04		
23-No	ov	24-Nov	25-Nov		26-Nov	27-Nov		28-Nov		29-No
	*Mid-Ebb	13:31		Mid-Flood	9:36		Mid-Flood	11:29	,	
	Mid-Flood	18:51		*Mid-Ebb	15:07		*Mid-Ebb	17:07		

Water Quality Monitoring Stations

A, C1, C2, WSD9

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

- 2) The reasons for choosing the monitoring day (i.e. 10, 12, 24, 26 and 28 November 2014) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Shatin to Central Link - Contract No. 11227 Advance Works for NSL Cross Harbour Tunnels Tentative Water Quality Monitoring Schedule (December 2014) (Shek O)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Dec	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
	Mid-Ebb 07:26 Mid-Flood 14:14		Mid-Ebb 09:33 Mid-Flood 15:43		*Mid-Ebb 11:20 Mid-Flood 17:00	
7-Dec	8-Dec	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec
	*Mid-Ebb 13:20 Mid-Flood 18:42		Mid-Flood 09:23 *Mid-Ebb 14:31		Mid-Flood 10:54 *Mid-Ebb 16:04	
14-Dec	15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec
	Mid-Flood 13:18 *Mid-Ebb 19:35		*Mid-Ebb 08:08 Mid-Flood 14:27		*Mid-Ebb 10:10 Mid-Flood 15:38	
21-Dec	22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec
	*Mid-Ebb 12:27 Mid-Flood 17:43		Mid-Flood 08:29 *Mid-Ebb 13:54			Mid-Flood 10:50 *Mid-Ebb 16:38
28-Dec	29-Dec	: 30-Dec	31-Dec			
	Mid-Flood 12:34 Mid-Ebb 19:02		*Mid-Ebb 08:00 Mid-Flood 14:17			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Water Quality Monitoring Stations

C3, C4, GB3

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Tai Miu Wan Station)

- 2) The reasons for choosing the monitoring day (i.e. 5, 8, 10, 12, 15, 17, 19, 22, 24, 27 and 31 December 2014) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Shatin to Central Link - Contract No. 11227 Advance Works for NSL Cross Harbour Tunnels Tentative Water Quality Monitoring Schedule (December 2014) (Victoria Harbour)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-D	ec 2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
	Mid-Ebb 07:3 Mid-Flood 14:2		Mid-Ebb 09:41 Mid-Flood 15:51		Mid-Ebb 11:27 Mid-Flood 17:07	
7-Dec	8-D	ec 9-Dec	10-Dec	11-Dec	12-Dec	13-Dec
	*Mid-Ebb 13:5 Mid-Flood 18:4		Mid-Flood 09:30 *Mid-Ebb 14:40		Mid-Flood 10:59 *Mid-Ebb 16:08	
14-Dec	15-D	ec 16-Dec	17-Dec	18-Dec	19-Dec	20-Dec
	Mid-Flood 13:2 *Mid-Ebb 19:4		*Mid-Ebb 08:14 Mid-Flood 14:32		*Mid-Ebb 10:19 Mid-Flood 15:47	
21-Dec	22-D	ec 23-Dec	24-Dec	25-Dec	26-Dec	27-Dec
	*Mid-Ebb 12:5 Mid-Flood 17:5		Mid-Flood 08:35 *Mid-Ebb 14:08			Mid-Flood 10:58 *Mid-Ebb 16:48
28-Dec	29-D	ec 30-Dec	31-Dec			
	Mid-Flood 12:4 Mid-Ebb 19:1		*Mid-Ebb 08:08 Mid-Flood 14:25			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Water Quality Monitoring Stations

A, C1, C2, WSD9

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

- 2) The reasons for choosing the monitoring day (i.e. 8, 10, 12, 15, 17, 19, 22, 24, 27 and 31 December 2014)) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

APPENDIX D WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Water Quality Monitoring Results at A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.7 25.0	24.9	7.8 7.8	7.8	25.9 27.1	26.5	71.7 69.9	70.8	5.1 5.0	5.1	4.9	2.1 2.3	2.2		3	3.0	
3-Nov-14	Cloudy	Moderate	09:21	Middle	5.5	26.0 25.9	26.0	8.2 8.2	8.2	28.5 28.4	28.5	66.9 67.0	67.0	4.6 4.6	4.6	4.9	2.9 3.1	3.0	3.4	5 5	5.0	3.7
				Bottom	10	26.5 26.6	26.6	8.1 8.2	8.2	28.8 28.9	28.9	66.1 66.1	66.1	4.5 4.5	4.5	4.5	4.9 5.1	5.0		3	3.0	
				Surface	1	26.5 26.5	26.5	7.8 7.8	7.8	28.8 28.9	28.9	77.5 76.7	77.1	5.3 5.2	5.3		2.9 3.0	3.0		4 4	4.0	
5-Nov-14	Sunny	Moderate	10:16	Middle	5.5	26.5 26.5	26.5	7.8 7.8	7.8	29.5 29.5	29.5	73.1 73.0	73.1	5.0 5.0	5.0	5.2	2.6 2.7	2.7	3.0	4	4.0	4.5
				Bottom	10	26.5 26.5	26.5	7.8 7.8	7.8	29.9 29.9	29.9	68.0 68.0	68.0	4.6 4.6	4.6	4.6	3.2 3.2	3.2		5	5.5	
				Surface	1	26.4	26.4	7.7	7.7	30.1	30.2	82.3	81.9	5.6	5.6		4.0	4.1		3	3.0	
7-Nov-14	Cloudy	Moderate	11:56	Middle	5.5	26.4 26.4	26.4	7.7	7.7	30.2 30.8	30.8	77.9	77.9	5.5	5.3	5.5	3.7	3.8	4.1	5	5.0	4.7
	·			Bottom	10	26.4 26.4	26.4	7.7	7.7	30.8 31.2	31.2	77.8 72.8	72.8	5.3 4.9	4.9	4.9	3.8 4.3	4.3		6	6.0	
				Surface	1	26.4	25.0	7.7	7.8	31.2 30.7	30.5	72.8 76.7	76.9	5.4	5.4		1.7	1.7		3	3.0	
10-Nov-14	Sunny	Moderate	14:16	Middle	4.5	25.6 25.4	25.6	7.8 7.9	7.9	30.2 30.1	30.2	77.0 78.7	78.1	5.3 5.4	5.4	5.4	3.5	3.6	3.3	3 <2.5	<2.5	2.8
	,			Bottom	8	25.7 25.6	25.7	7.9 7.8	7.9	30.3 30.2	30.4	77.5 77.9	77.9	5.3 5.4	5.4	5.4	3.6 4.5	4.5		<2.5 3	3.0	
				Surface	1	25.7 25.6	25.7	7.9 8.1	8.1	30.5 28.0	28.0	77.9 73.4	73.1	5.4 5.1	5.1		2.1	2.1		5	5.0	
12-Nov-14	Sunny	Moderate	14:54	Middle	5.5	25.7 25.7	25.7	8.1 8.1	8.1	28.0 28.1	28.1	72.8 69.8	69.7	5.1 4.9	4.9	5.0	2.1 3.8	3.8	3.6	5 4	4.0	4.3
12-1100-14	Suring	Woderate	14.54	Bottom	10	25.7 25.7	25.7	8.1 8.1	8.1	28.1 28.0	28.1	69.5 68.8	68.8	4.8 4.8	4.8	4.8	3.8 4.6	4.9	3.0	4	4.0	4.5
						25.7 22.2		8.1 8.3		28.1 25.1		68.7 97.5		4.8 7.3		4.0	5.2 2.1			3		
				Surface	1	22.5 23.4	22.4	8.3 8.5	8.3	26.3 27.7	25.7	97.6 99.7	97.6	7.3 7.2	7.3	7.3	2.4 6.7	2.3		<u>4</u> 6	3.5	
15-Nov-14	Fine	Moderate	06:05	Middle	5.5	23.3 23.9	23.4	8.5 8.4	8.5	27.6 28.0	27.7	99.1 100.1	99.4	7.2 7.2	7.2		6.4 6.1	6.6	5.1	6 5	6.0	4.8
				Bottom	10	23.9 23.2	23.9	8.4 7.9	8.4	28.0 30.6	28.0	100.2 83.3	100.2	7.2 6.0	7.2	7.2	6.4	6.3		5 <2.5	5.0	
				Surface	1	23.4	23.3	7.9 8.2	7.9	30.8 30.9	30.7	82.3 84.4	82.8	5.9 5.9	6.0	6.0	1.9	1.9		<2.5 <2.5	<2.5	
17-Nov-14	Sunny	Moderate	09:19	Middle	5.5	24.3	24.4	8.2 8.0	8.2	30.9 30.9	30.9	84.1 84.4	84.3	5.9 5.9	5.9		3.7 4.1	3.6	3.3	<2.5 <2.5	<2.5	<2.5
				Bottom	10	24.7	24.7	8.0 8.1	8.0	30.9 31.5	30.9	83.6	84.0	5.8 7.7	5.9	5.9	4.4	4.3	<u> </u>	<2.5 <2.5	<2.5	
				Surface	1	24.4	24.1	8.1	8.1	31.5	31.5	113.5 112.7	111.2	7.7 7.9 7.9	7.8	7.8	2.8	2.8		<2.5	<2.5	
19-Nov-14	Sunny	Moderate	10:25	Middle	5.5	24.2 24.5	24.4	8.1 8.1	8.1	31.8 32.5	32.2	111.6	112.2	7.7	7.8		4.0	3.7	3.9	3 3	3.0	2.7
				Bottom	10	24.4 24.4	24.4	8.1 8.2	8.2	31.8 32.5	32.2	110.9 110.2	110.6	7.7 7.7	7.7	7.7	4.9 5.5	5.2		<2.5 <2.5	<2.5	

Water Quality Monitoring Results at A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Deni	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бер	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.0 24.3	24.2	8.1 8.1	8.1	30.8 30.9	30.9	104.6 102.3	103.5	7.4 7.2	7.3	7.3	2.3 2.4	2.4		<2.5 <2.5	<2.5	
21-Nov-14	Sunny	Moderate	12:07	Middle	5.5	24.3 24.4	24.4	8.1 8.1	8.1	31.5 31.4	31.5	105.0 101.4	103.2	7.3 7.1	7.2	7.5	3.0 3.1	3.1	3.5	3	3.0	2.7
				Bottom	10	24.3 24.3	24.3	8.1 8.1	8.1	31.5 31.5	31.5	102.4 103.1	102.8	7.2 7.2	7.2	7.2	4.8 4.9	4.9		<2.5 <2.5	<2.5	
				Surface	1	24.7 24.7	24.7	8.4 8.4	8.4	33.7 33.8	33.8	111.4 111.8	111.6	7.6 7.7	7.7	7.8	1.9 2.1	2.0		3 3	3.0	
24-Nov-14	Sunny	Moderate	13:02	Middle	5.5	24.4 24.4	24.4	8.4 8.4	8.4	33.9 33.9	33.9	113.3 113.0	113.2	7.8 7.8	7.8	7.0	3.1 3.7	3.4	3.8	7 7	7.0	4.2
				Bottom	10	24.3 24.4	24.4	8.4 8.4	8.4	33.8 33.8	33.8	113.4 113.9	113.7	7.8 7.9	7.9	7.9	6.0 5.8	5.9		<2.5 <2.5	<2.5	
				Surface	1	24.8 24.9	24.9	8.1 8.1	8.1	29.6 29.6	29.6	77.3 76.7	77.0	5.4 5.4	5.4	5.3	2.1 2.3	2.2		3	3.0	
26-Nov-14	Cloudy	Moderate	14:13	Middle	5.5	24.9 24.9	24.9	8.0 8.0	8.0	29.7 29.7	29.7	73.8 73.5	73.7	5.2 5.1	5.2	3.3	3.1 3.3	3.2	3.5	4	4.0	4.7
				Bottom	10	24.9 24.9	24.9	8.0 8.0	8.0	29.7 29.7	29.7	72.8 72.6	72.7	5.1 5.1	5.1	5.1	5.0 5.3	5.2		7 7	7.0	
				Surface	1	23.9 23.9	23.9	8.3 8.3	8.3	30.2 30.5	30.4	109.2 107.0	108.1	7.8 7.6	7.7	7.3	1.6 1.7	1.7		6 6	6.0	
28-Nov-14	Cloudy	Moderate	16:25	Middle	5.5	24.1 24.1	24.1	8.3 8.3	8.3	33.3 33.3	33.3	99.8 99.8	99.8	6.9 6.9	6.9	7.5	2.1 2.2	2.2	2.5	3 4	3.5	4.5
				Bottom	10	24.1 24.1	24.1	8.3 8.3	8.3	33.3 33.3	33.3	95.7 95.7	95.7	6.7 6.7	6.7	6.7	3.5 3.8	3.7		4	4.0	

Water Quality Monitoring Results at A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.3 25.7	25.5	7.8 7.9	7.9	25.0 26.6	25.8	69.1 66.7	67.9	4.9 4.7	4.8	4.6	2.3 2.4	2.4		3 3	3.0	
3-Nov-14	Cloudy	Moderate	14:44	Middle	5.5	26.3 26.3	26.3	8.0 8.0	8.0	27.8 27.9	27.9	62.8 62.6	62.7	4.3 4.3	4.3	4.0	3.7 3.7	3.7	3.8	4 8	6.0	4.7
				Bottom	10	26.6 26.7	26.7	8.1 8.1	8.1	28.2 28.2	28.2	62.2 62.0	62.1	4.3 4.2	4.3	4.3	5.3 5.4	5.4		6 4	5.0	
				Surface	1	26.1 26.1	26.1	7.5 7.5	7.5	30.6 30.6	30.6	76.3 76.3	76.3	5.2 5.2	5.2		3.7 3.8	3.8		4 5	4.5	
5-Nov-14	Sunny	Moderate	16:25	Middle	6	26.1 26.1	26.1	7.5 7.5	7.5	30.7 30.9	30.8	74.6 75.2	74.9	5.1 5.1	5.1	5.2	3.9 4.0	4.0	3.9	5 4	4.5	4.0
				Bottom	11	26.1 26.1	26.1	7.5 7.5	7.5	33.9 35.6	34.8	69.6 69.7	69.7	4.7 4.6	4.7	4.7	4.0 4.0 4.0	4.0		3	3.0	
				Surface	1	25.0	25.0	7.3	7.3	30.6	30.6	79.2	79.2	5.5	5.5		4.8	4.9		6	6.0	<u> </u>
7-Nov-14	Cloudy	Moderate	17:37	Middle	6	25.0 25.0	25.0	7.3	7.3	30.6	30.8	79.2 77.5	77.9	5.5 5.4	5.4	5.5	5.0	5.1	5.0	3	3.0	4.3
				Bottom	11	25.0 25.0 25.0	25.0	7.3 7.3 7.3	7.3	30.9 33.9 33.6	33.8	78.2 72.8 72.1	72.5	5.4 5.0 4.9	5.0	5.0	5.1 5.1 5.1	5.1		3 4 4	4.0	
				Surface	1	25.0	25.3	7.8 7.8	7.8	29.8	29.3	79.1	75.9	5.5	5.3		2.1	2.3		5	5.5	
10-Nov-14	Sunny	Moderate	09:55	Middle	4.5	25.6 25.3	25.5	7.8	7.8	28.7	29.8	72.7 74.9	74.4	5.1 5.2	5.2	5.3	3.8	4.0	5.0	<2.5	<2.5	4.3
				Bottom	8	25.6 25.5	25.6	7.8	7.8	29.7	29.8	73.8 75.5	75.2	5.1	5.2	5.2	8.3	8.6		<2.5 5	5.0	
				Surface	1	25.6 25.5	25.6	7.8 8.2	8.2	29.8 28.4	28.4	74.9 75.2	74.7	5.2 5.2	5.2		1.9	1.9		3	3.0	
12-Nov-14	Sunny	Moderate	11:26	Middle	6	25.6 25.6	25.6	8.2 8.2	8.2	28.4 28.5	28.5	74.1 74.0	74.0	5.2 5.2	5.2	5.2	3.3	3.3	3.7	3 <2.5	<2.5	3.5
12 1107 11	ouy	modorato	20	Bottom	11	25.6 25.6	25.6	8.1 8.1	8.1	28.5 28.5	28.5	73.9 73.6	73.6	5.1 5.1	5.1	5.1	3.2 5.7	6.0	9	<2.5 5	5.0	0.0
				Surface	1	25.6 22.8	23.0	8.1 8.2	8.2	28.5 27.2	27.5	73.5 96.2	95.8	5.1 7.1	7.1	0.1	6.3 2.3	2.2		5 5	5.0	
15-Nov-14	Sunny	Moderate	14:26	Middle	5.5	23.1 23.7	23.7	8.2 8.4	8.4	27.8 27.0	27.0	95.3 97.1	96.2	7.0 7.0	7.0	7.1	2.1 4.3	4.5	4.1	5 4	3.5	4.5
15-1100-14	Suring	Woderate	14.20			23.7 23.9	_	8.4 8.4		27.0 27.4		95.2 96.0		6.9 6.9		0.0	4.6 5.7		4.1	<u>3</u> 5		4.5
				Bottom	10	24.0 23.9	24.0	8.4 8.3	8.4	27.4 31.3	27.4	95.7 93.2	95.9	6.9 6.6	6.9	6.9	5.2 1.8	5.5		5 4	5.0	
17-Nov-14	Cunni	Madarata	14:16	Surface	6	24.1 24.6	24.0	8.3 8.3	8.3	31.9 32.9	31.6 32.9	92.3 89.8	92.8 89.8	6.5 6.2	6.6	6.4	2.0 3.2	3.3	2.0	4	4.0	4.2
17-NOV-14	Sunny	Moderate	14:16	Middle		24.6 24.7		8.3 7.9		32.8 32.4		89.8 86.0		6.2 5.9		5.0	3.4 6.3		3.9	<u>4</u> 5		4.3
				Bottom	11	24.7 23.8	24.7	8.0 8.1	8.0	32.6 33.1	32.5	83.0 108.8	84.5	5.7 7.6	5.8	5.8	6.7 3.4	6.5		5 <2.5	5.0	
				Surface	1	24.6 24.4	24.2	8.1 8.1	8.1	32.3 33.1	32.7	107.9	108.4	7.5 7.5	7.6	7.6	3.8	3.6		<2.5 <2.5	<2.5	
19-Nov-14	Sunny	Moderate	15:50	Middle	5.5	24.4 24.6 24.5	24.5	8.1 8.1	8.1	33.0 33.1	33.1	107.8 107.2 106.9	107.5	7.4 7.4	7.5		4.4 4.4 6.2	4.4	4.8	<2.5 <2.5 <2.5	<2.5	<2.5
				Bottom	10	24.6	24.6	8.1	8.1	33.2	33.2	106.9	106.7	7.4	7.4	7.4	6.3	6.3		<2.5 <2.5	<2.5	

Water Quality Monitoring Results at A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 24.5	24.2	8.1 8.1	8.1	30.9 30.9	30.9	108.3 108.0	108.2	7.7 7.6	7.7	7.7	2.3 2.3	2.3		3 <2.5	2.8	
21-Nov-14	Sunny	Moderate	16:06	Middle	5.5	24.3 24.5	24.4	8.1 8.1	8.1	31.2 31.1	31.2	109.4 109.8	109.6	7.7 7.7	7.7	7.7	3.3 3.3	3.3	3.5	<2.5 <2.5	<2.5	2.6
				Bottom	10	24.4 24.4	24.4	8.1 8.1	8.1	31.3 31.6	31.5	109.8 110.6	110.2	7.7 7.7	7.7	7.7	4.9 5.0	5.0		<2.5 <2.5	<2.5	
				Surface	1	23.6 23.8	23.7	8.4 8.4	8.4	33.7 33.7	33.7	107.7 108.5	108.1	7.5 7.6	7.6	7.6	4.0 3.9	4.0		3 3	3.0	
24-Nov-14	Fine	Moderate	17:52	Middle	5.5	23.4 23.5	23.5	8.4 8.4	8.4	33.7 33.7	33.7	107.5 108.0	107.8	7.5 7.6	7.6	7.0	5.3 4.8	5.1	5.1	6 6	6.0	3.8
				Bottom	10	23.3 23.5	23.4	8.4 8.4	8.4	33.7 33.7	33.7	105.9 105.7	105.8	7.4 7.4	7.4	7.4	6.1 6.0	6.1		<2.5 <2.5	<2.5	
				Surface	1	24.7 24.8	24.8	8.1 8.1	8.1	30.1 30.1	30.1	79.1 78.1	78.6	5.5 5.5	5.5	5.5	2.1 2.2	2.2		5 5	5.0	
26-Nov-14	Cloudy	Moderate	09:54	Middle	6	24.8 24.8	24.8	8.1 8.1	8.1	30.1 30.1	30.1	78.0 77.9	78.0	5.5 5.4	5.5	5.5	3.5 3.5	3.5	3.7	4 4	4.0	3.8
				Bottom	11	24.8 24.8	24.8	8.1 8.1	8.1	30.2 30.2	30.2	77.6 77.4	77.5	5.4 5.4	5.4	5.4	5.3 5.6	5.5		<2.5 <2.5	<2.5	
				Surface	1	23.5 23.6	23.6	8.3 8.3	8.3	29.8 29.2	29.5	104.8 101.9	103.4	7.5 7.3	7.4	7.2	1.8 1.8	1.8		5 5	5.0	
28-Nov-14	Cloudy	Moderate	11:01	Middle	5.5	23.8 23.8	23.8	8.3 8.3	8.3	33.2 33.1	33.2	99.3 99.9	99.6	6.9 7.0	7.0	1.2	2.7 2.7	2.7	2.9	4	4.0	4.7
				Bottom	10	24.0 24.0	24.0	8.3 8.3	8.3	33.2 33.2	33.2	98.4 98.4	98.4	6.9 6.9	6.9	6.9	4.1 4.4	4.3		5 5	5.0	

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.4 25.6	25.5	7.8 7.8	7.8	28.6 28.7	28.7	82.9 82.3	82.6	5.8 5.7	5.8		2.1 2.1	2.1		3	3.0	
3-Nov-14	Cloudy	Moderate	09:37	Middle	4	26.3 26.1	26.2	7.9 7.9	7.9	28.9 28.9	28.9	79.3 80.1	79.7	5.4 5.5	5.5	5.7	3.3 3.3	3.3	3.3	5 5	5.0	4.3
				Bottom	7	26.5 26.6	26.6	8.1 8.1	8.1	29.0 29.0	29.0	78.9 78.7	78.8	5.4 5.4	5.4	5.4	4.5 4.6	4.6		5	5.0	
				Surface	1	26.6 26.6	26.6	7.9 7.9	7.9	30.9 30.9	30.9	98.9 98.6	98.8	6.7 6.7	6.7		2.9	2.9		<2.5 <2.5	<2.5	
5-Nov-14	Sunny	Moderate	10:32	Middle	4	26.6	26.6	7.9	7.9	31.1	31.1	95.2	95.2	6.4	6.4	6.6	3.0	3.0	3.0	3	3.0	2.7
				Bottom	7	26.6 26.6	26.6	7.9 7.9	7.9	31.1 31.1	31.2	95.2 87.7	87.8	6.4 5.9	5.9	5.9	3.0	3.2		<2.5	<2.5	
						26.6 26.5		7.9 7.8		31.2 32.2		87.9 103.9		5.9 7.0			3.2 4.0			<2.5 6		
				Surface	1	26.5 26.5	26.5	7.8	7.8	32.2 32.4	32.2	103.6	103.8	7.0	7.0	6.9	3.9	4.0		6	6.0	
7-Nov-14	Cloudy	Moderate	12:12	Middle	4	26.5 26.5	26.5	7.8 7.8	7.8	32.4 32.4	32.4	100.3	100.3	6.7 6.2	6.7		4.1	4.1	4.1	5	5.0	4.7
				Bottom	7	26.5	26.5	7.8	7.8	32.5	32.5	92.8	92.8	6.2	6.2	6.2	4.3	4.3		3	3.0	
				Surface	1	24.1 25.6	24.9	7.9 7.9	7.9	29.5 28.6	29.1	85.6 85.6	85.6	6.1 6.0	6.1	6.1	1.5 1.5	1.5		4	4.0	
10-Nov-14	Sunny	Moderate	14:29	Middle	4	25.5 25.6	25.6	7.9 7.9	7.9	30.5 30.6	30.6	87.7 85.8	86.8	6.0 5.9	6.0		3.8 3.7	3.8	4.2	3 3	3.0	4.5
				Bottom	7	25.1 25.2	25.2	7.9 7.9	7.9	29.1 29.5	29.3	84.7 84.6	84.7	5.9 5.9	5.9	5.9	7.2 7.1	7.2		6 7	6.5	
				Surface	1	25.5 25.5	25.5	8.2 8.2	8.2	28.2 28.2	28.2	84.1 84.0	84.1	5.9 5.9	5.9	6.0	2.5 2.6	2.6		<2.5 <2.5	<2.5	
12-Nov-14	Sunny	Moderate	15:08	Middle	4	25.5 25.5	25.5	8.2 8.2	8.2	28.3 28.3	28.3	84.9 85.3	85.1	5.9 6.0	6.0	0.0	3.9 4.0	4.0	3.8	3	3.0	3.7
				Bottom	7	25.5 25.5	25.5	8.2 8.2	8.2	28.4 28.4	28.4	85.5 85.5	85.5	6.0 6.0	6.0	6.0	4.8 4.8	4.8		5 6	5.5	
				Surface	1	22.9 23.0	23.0	8.1 8.1	8.1	27.8 27.8	27.8	89.1 82.8	86.0	6.5 6.1	6.3		2.9	2.9		<2.5 <2.5	<2.5	
15-Nov-14	Fine	Moderate	06:15	Middle	4	23.7 23.5	23.6	8.4 8.4	8.4	28.0 28.0	28.0	86.0 84.3	85.2	6.2	6.2	6.3	2.2	2.4	3.7	3	3.0	3.8
				Bottom	7	23.9	23.9	8.2	8.3	28.1	28.1	86.6	86.3	6.1	6.2	6.2	5.7	5.9		6	6.0	
				Surface	1	23.9 21.4	21.8	8.3 8.0	7.8	28.1 30.3	29.8	85.9 102.4	100.9	7.6	7.5		2.1	2.1		6 <2.5	<2.5	
17-Nov-14	Sunny	Moderate	09:05	Middle	4	22.1 23.9	23.9	7.5 7.9	7.8	29.3 30.4	30.4	99.3 90.5	90.7	7.3 6.4	6.5	7.0	3.7	3.8	3.6	<2.5 <2.5	<2.5	3.0
				Bottom	7	23.8 24.2	24.3	7.7 7.9	7.9	30.4 30.4	30.4	90.8 89.5	89.3	6.5 6.3	6.3	6.3	3.8 4.8	4.8		<2.5 4	4.0	
					1	24.3 23.2	23.7	7.9 8.2		30.4 33.5	33.7	89.1 117.6	117.5	6.3 8.3	8.2	0.0	4.7 1.6	1		4 <2.5	<2.5	
40.8144	0		40.44	Surface		24.2 24.1	_	8.2 8.2	8.2	33.8 33.3		117.3 115.6		8.1 8.0		8.1	1.6 3.6	1.6		<2.5 4		
19-Nov-14	Sunny	Moderate	10:41	Middle	4	24.3	24.2	8.2 8.2	8.2	33.6 33.2	33.5	115.9 114.2	115.8	8.0 7.9	8.0		3.6 5.0	3.6	3.4	4	4.0	3.5
				Bottom	7	24.3	24.3	8.2	8.2	33.5	33.4	115.9	115.1	8.0	8.0	8.0	4.7	4.9		4	4.0	

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Temper	ature (°C)	ŗ	Н	Salir	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.4 24.2	24.3	8.2 8.2	8.2	30.6 29.3	30.0	110.9 113.6	112.3	7.8 8.1	8.0	8.0	2.7 2.9	2.8		<2.5 <2.5	<2.5	
21-Nov-14	Sunny	Moderate	11:52	Middle	4	24.4 24.2	24.3	8.2 8.2	8.2	31.6 31.6	31.6	113.5 114.9	114.2	7.9 8.0	8.0	6.0	3.0 3.3	3.2	3.0	4	4.0	3.2
				Bottom	7	24.1 24.1	24.1	8.2 8.2	8.2	31.7 31.6	31.7	114.3 115.3	114.8	8.0 8.1	8.1	8.1	2.8 2.9	2.9		3	3.0	
				Surface	1	24.6 24.7	24.7	8.4 8.4	8.4	33.4 33.6	33.5	111.3 111.5	111.4	7.7 7.7	7.7	7.6	2.4 2.3	2.4		<2.5 <2.5	<2.5	
24-Nov-14	Sunny	Moderate	12:47	Middle	4	24.4 24.5	24.5	8.4 8.4	8.4	33.8 33.8	33.8	108.7 109.2	109.0	7.5 7.5	7.5	7.0	4.6 4.9	4.8	4.7	<2.5 3	2.8	3.1
				Bottom	7	24.3 24.4	24.4	8.4 8.4	8.4	33.8 33.7	33.8	107.2 107.2	107.2	7.4 7.4	7.4	7.4	6.9 6.8	6.9		4 4	4.0	
				Surface	1	24.7 24.7	24.7	8.2 8.1	8.2	29.8 29.8	29.8	88.0 87.9	88.0	6.2 6.2	6.2	6.3	2.2 2.3	2.3		3	3.0	
26-Nov-14	Cloudy	Moderate	14:28	Middle	4	24.7 24.7	24.7	8.2 8.2	8.2	29.9 29.9	29.9	88.8 89.2	89.0	6.2 6.3	6.3	0.5	3.5 3.5	3.5	3.6	<2.5 <2.5	<2.5	4.2
				Bottom	7	24.7 24.7	24.7	8.2 8.2	8.2	30.0 30.0	30.0	89.4 89.4	89.4	6.3 6.3	6.3	6.3	4.9 4.9	4.9		7 7	7.0	
				Surface	1	23.8 23.9	23.9	8.3 8.3	8.3	29.2 29.4	29.3	103.1 101.9	102.5	7.4 7.3	7.4	7.0	1.8 1.8	1.8		4 4	4.0	
28-Nov-14	Cloudy	Moderate	16:41	Middle	4	24.1 24.1	24.1	8.3 8.3	8.3	32.9 32.8	32.9	92.9 92.9	92.9	6.5 6.5	6.5	7.0	2.5 2.6	2.6	2.7	5 5	5.0	4.2
				Bottom	7	24.0 23.8	23.9	8.3 8.3	8.3	33.3 33.4	33.4	101.2 100.9	101.1	7.0 7.0	7.0	7.0	3.6 3.7	3.7		4 3	3.5	

The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.9	26.0	7.6	7.6	27.9	28.0	76.3	76.0	5.3	5.3		2.6	2.7		5	5.0	
				Curiaco	·	26.0	20.0	7.6		28.0	20.0	75.6	7 0.0	5.2	0.0	5.2	2.7			5	0.0	1
3-Nov-14	Cloudy	Moderate	14:33	Middle	4.5	26.5	26.5	7.8	7.8	28.1	28.1	73.6	73.8	5.1	5.1	-	3.9	3.9	3.7	4	4.0	4.7
	-					26.4 26.6		7.8 8.1		28.1		73.9 73.1		5.1 5.0			3.9 4.5			5		İ
				Bottom	8	26.6	26.6	8.1	8.1	28.2	28.2	73.1	73.1	5.0	5.0	5.0	4.6	4.6		5	5.0	1
						26.2		7.6		31.5	0.1.5	76.7		5.2			3.9			4		
				Surface	1	26.2	26.2	7.6	7.6	31.5	31.5	76.7	76.7	5.2	5.2	5.2	4.0	4.0		4	4.0	j
5-Nov-14	Sunny	Moderate	16:11	Middle	4	26.2	26.2	7.6	7.6	31.8	31.8	75.8	75.7	5.1	5.1	5.2	4.3	4.3	4.2	4	4.5	4.7
0	Cumy	moderate				26.2		7.6	7.0	31.8	01.0	75.6		5.1	0		4.2			5		
				Bottom	7	26.2 26.2	26.2	7.6 7.6	7.6	31.8 31.9	31.9	66.6 66.3	66.5	4.5 4.5	4.5	4.5	4.4 4.3	4.4		5 6	5.5	1
						25.1		7.4		31.5		79.6		5.5			4.8			3		
				Surface	1	25.1	25.1	7.4	7.4	31.5	31.5	79.6	79.6	5.5	5.5		4.8	4.8		3	3.0	1
7-Nov-14	Cloudy	Moderate	17:23	Middle	4	25.1	25.1	7.4	7.4	31.8	31.8	78.7	78.7	5.4	5.4	5.5	5.2	5.2	5.0	4	4.0	4.0
7-INOV-14	Cloudy	Moderate	17.23	ivildule	4	25.1	25.1	7.4	7.4	31.8	31.0	78.6	10.1	5.4	5.4		5.2	5.2	5.0	4	4.0	4.0
				Bottom	7	25.1	25.1	7.4	7.4	31.8	31.9	69.7	69.6	4.8	4.8	4.8	5.0	5.0		5	5.0	1
						25.1		7.4		31.9		69.4		4.8			5.0			5		<u> </u>
				Surface	1	25.5 25.6	25.6	8.1 8.1	8.1	29.5 26.4	28.0	81.3 78.4	79.9	5.6 5.5	5.6		3.0 3.1	3.1		5 5	5.0	1
						25.6		8.1		29.5		78.5		5.4		5.6	3.6			3		1
10-Nov-14	Sunny	Moderate	09:16	Middle	4	25.6	25.6	8.1	8.1	29.5	29.5	79.0	78.8	5.5	5.5		3.6	3.6	4.0	4	3.5	4.2
				Bottom	7	25.6	25.6	8.1	8.1	29.5	29.6	78.4	78.6	5.4	5.4	5.4	5.2	5.2	1	4	4.0	1
				DOLLOITI	,	25.6	25.0	8.1	0.1	29.6	29.0	78.7	70.0	5.4	3.4	3.4	5.2	J.2		4	4.0	<u> </u>
				Surface	1	25.6	25.6	8.2	8.2	28.3	28.3	82.4	82.4	5.7	5.7		2.7	2.6		6	6.0	1
						25.6 25.6		8.2 8.2		28.3		82.3 82.4		5.7 5.7		5.7	2.5 3.7			<u>6</u> 3		1
12-Nov-14	Sunny	Moderate	11:12	Middle	4	25.6 25.6	25.6	8.2	8.2	28.5	28.5	82.4 82.4	82.4	5.7 5.7	5.7		3.8	3.8	3.6	3	3.0	4.7
				D. 11	-	25.6	05.0	8.2	0.0	28.5	00.5	82.4	00.4	5.7			4.3			5	5.0	1
				Bottom	7	25.6	25.6	8.2	8.2	28.5	28.5	82.4	82.4	5.7	5.7	5.7	4.4	4.4		5	5.0	L
				Surface	1	23.3	23.4	8.3	8.3	27.0	27.1	87.4	87.0	6.4	6.4		3.7	3.6		6	5.5	
				0411400	·	23.4		8.3	0.0	27.1		86.5	07.10	6.3		6.4	3.4	0.0		5	0.0	i
15-Nov-14	Sunny	Moderate	14:16	Middle	4.5	23.9 23.8	23.9	8.4 8.4	8.4	27.3 27.3	27.3	89.3 87.6	88.5	6.4 6.3	6.4		3.9 4.1	4.0	4.1	<2.5 <2.5	<2.5	3.7
						23.9		8.5		27.3		88.3		6.4			4.1			3		1
				Bottom	8	23.9	23.9	8.5	8.5	27.4	27.4	88.1	88.2	6.4	6.4	6.4	4.8	4.6		3	3.0	1
				Surface	1	23.9	24.0	8.4	8.4	30.7	30.6	107.7	107.1	7.6	7.6		2.2	2.2		3	3.0	
				Surface		24.0	24.0	8.4	0.4	30.5	30.6	106.5	107.1	7.5	7.0	7.5	2.2	2.2		3	3.0	
17-Nov-14	Sunny	Moderate	14:29	Middle	4	24.5	24.5	8.4	8.4	31.5	31.4	104.6	104.8	7.3	7.3	7.0	3.3	3.4	3.2	3	3.0	2.8
	,		-			24.5		8.4		31.3		104.9 103.8		7.3			3.4		-	3		1
				Bottom	7	24.6 24.6	24.6	8.4 8.4	8.4	32.1 32.2	32.2	103.8	103.7	7.2 7.2	7.2	7.2	4.1 4.1	4.1		<2.5 <2.5	<2.5	1
i						23.6		8.2		33.1		120.6		8.5			3.9			3		
				Surface	1	24.3	24.0	8.2	8.2	32.6	32.9	122.6	121.6	8.5	8.5	8.5	3.4	3.7		3	3.0	ĺ
19-Nov-14	Sunny	Moderate	15:38	Middle	4	24.1	24.3	8.2	8.2	33.1	33.2	122.3	121.9	8.5	8.5	0.0	4.1	4.3	4.5	3	3.0	3.7
10-1404-14	Junity	Moderate	10.00	Middle	т	24.5	24.0	8.2	0.2	33.3	55.2	121.4	121.5	8.4	0.0		4.5	4.0	7.5	3	0.0	5.7
				Bottom	7	24.3	24.4	8.2	8.2	33.3	33.4	121.8	121.5	8.4	8.4	8.4	5.9	5.6		5	5.0	ĺ
						24.5		8.2		33.4		121.2		8.4	<u> </u>		5.2			5	<u> </u>	

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.4 24.3	23.9	8.2 8.2	8.2	32.0 31.7	31.9	116.5 116.4	116.5	8.3 8.1	8.2	8.2	1.5 1.5	1.5		3	3.0	
21-Nov-14	Sunny	Moderate	16:35	Middle	4	24.1 24.3	24.2	8.2 8.2	8.2	31.9 31.7	31.8	117.0 116.4	116.7	8.2 8.1	8.2	0.2	2.8 2.8	2.8	2.6	<2.5 <2.5	<2.5	2.7
				Bottom	7	24.3 24.3	24.3	8.2 8.2	8.2	31.9 31.8	31.9	115.5 115.7	115.6	8.1 8.1	8.1	8.1	3.3 3.9	3.6		<2.5 <2.5	<2.5	
				Surface	1	23.7 23.9	23.8	8.4 8.4	8.4	33.5 33.8	33.7	108.5 109.1	108.8	7.6 7.6	7.6	7.6	4.0 4.2	4.1		5 5	5.0	
24-Nov-14	Fine	Moderate	18:02	Middle	4	23.3 23.4	23.4	8.4 8.4	8.4	34.0 34.0	34.0	108.1 108.4	108.3	7.6 7.6	7.6	7.0	4.7 5.2	5.0	5.0	<2.5 <2.5	<2.5	3.3
				Bottom	7	23.2 23.4	23.3	8.4 8.4	8.4	34.0 33.9	34.0	108.0 108.5	108.3	7.6 7.6	7.6	7.6	6.1 5.7	5.9		<2.5 <2.5	<2.5	
				Surface	1	24.8 24.8	24.8	8.1 8.1	8.1	29.9 30.0	30.0	86.3 86.2	86.3	6.0 6.0	6.0	6.0	2.4 2.4	2.4		3	3.0	
26-Nov-14	Cloudy	Moderate	09:40	Middle	4	24.8 24.8	24.8	8.1 8.1	8.1	30.1 30.1	30.1	86.3 86.3	86.3	6.0 6.0	6.0	0.0	3.6 3.6	3.6	3.5	<2.5 <2.5	<2.5	3.5
				Bottom	7	24.8 24.8	24.8	8.1 8.1	8.1	30.1 30.2	30.2	86.3 86.3	86.3	6.0 6.0	6.0	6.0	4.3 4.4	4.4		5 5	5.0	
				Surface	1	23.6 23.7	23.7	8.3 8.3	8.3	32.7 32.8	32.8	91.3 90.8	91.1	6.4 6.4	6.4	6.2	2.4 2.3	2.4		4	4.0	
28-Nov-14	Cloudy	Moderate	10:46	Middle	4.5	24.1 24.1	24.1	8.3 8.3	8.3	33.0 33.0	33.0	86.4 86.5	86.5	6.0 6.0	6.0	0.2	3.2 3.2	3.2	3.1	3	3.0	4.5
				Bottom	8	24.1 24.1	24.1	8.3 8.3	8.3	33.1 33.1	33.1	85.9 85.9	85.9	6.0 6.0	6.0	6.0	3.8 3.8	3.8		6 7	6.5	

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ar (111 <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.4 26.5	26.5	7.8 7.8	7.8	29.0 29.0	29.0	78.8 78.7	78.8	5.4 5.4	5.4		2.7 2.8	2.8		6 7	6.5	
3-Nov-14	Cloudy	Moderate	09:48	Middle	9	26.7 26.6	26.7	8.4 8.3	8.4	29.2 29.1	29.2	77.9 78.1	78.0	5.3 5.3	5.3	5.4	4.1 4.2	4.2	3.8	4 5	4.5	4.7
				Bottom	17	26.7 26.7	26.7	8.0 8.1	8.1	29.3 29.3	29.3	78.1 78.1	78.1	5.3 5.3	5.3	5.3	4.2	4.3		3	3.0	
				Surface	1	26.2	26.2	7.8	7.8	31.2	31.2	74.0	74.0	5.0	5.0		2.7	2.8		3	3.0	
5-Nov-14	Sunny	Moderate	10:58	Middle	9	26.2 26.2	26.2	7.8 7.8	7.8	31.2 31.3	31.3	73.9 71.6	71.6	5.0 4.9	4.9	5.0	3.3	3.4	3.3	3	4.0	3.2
				Bottom	17	26.2 26.2	26.2	7.8	7.8	31.3 31.5	31.5	71.6 66.3	66.3	4.9	4.5	4.5	3.4	3.7	1	4 <2.5	<2.5	
				Surface	1	26.2	26.1	7.8	7.7	31.5 32.5	32.5	78.9	78.9	5.3	5.3		3.8	3.9		<2.5 5	5.0	
7-Nov-14	Cloudy	Moderate	12:39	Middle	9	26.1 26.1	26.1	7.7	7.7	32.5 32.6	32.6	78.8 76.4	76.4	5.3 5.2	5.2	5.3	3.9 4.4	4.5	4.4	5	5.0	4.7
				Bottom	17	26.1 26.1 26.1	26.1	7.7 7.7 7.7	7.7	32.6 32.8 32.8	32.8	76.4 71.1 71.0	71.1	5.2 4.8 4.8	4.8	4.8	4.5 4.7 4.9	4.8		5 4 4	4.0	
				Surface	1	25.0 25.6	25.3	8.0 7.8	7.9	29.6 28.5	29.1	89.9 89.3	89.6	6.3 6.2	6.3		1.2 1.2	1.2		<2.5 <2.5	<2.5	
10-Nov-14	Sunny	Moderate	15:08	Middle	7	25.5 25.6	25.6	8.0 7.8	7.9	30.5 30.7	30.6	90.1 89.7	89.9	6.2 6.2	6.2	6.3	3.7	3.9	4.8	3 4	3.5	2.8
				Bottom	13	25.5 25.5	25.5	7.9 7.8	7.9	30.8 30.8	30.8	90.2	90.1	6.2 6.2	6.2	6.2	9.9	9.4		<2.5 <2.5	<2.5	
				Surface	1	25.0 25.5	25.3	8.3 8.3	8.3	28.2 28.3	28.3	101.0 99.6	100.3	7.1 7.0	7.1		2.7 2.8	2.8		<2.5 <2.5	<2.5	
12-Nov-14	Sunny	Moderate	15:25	Middle	9	25.6 25.5	25.6	8.3 8.3	8.3	28.3 28.4	28.4	98.8	97.9	6.9	6.9	7.0	3.8 3.9	3.9	3.9	<2.5 <2.5 <2.5	<2.5	3.0
				Bottom	17	25.5	25.5	8.3 8.3	8.3	28.4 28.4 28.4	28.4	97.0 95.8 94.7	95.3	6.8	6.7	6.7	5.0	5.0		4 4	4.0	
				Surface	1	25.5	23.9	8.1	8.1	28.2	28.2	103.1	96.4	7.4	6.9		2.2	2.4		<2.5	<2.5	
15-Nov-14	Fine	Moderate	06:22	Middle	8	23.9 24.0 23.9	24.0	8.1 8.4 8.4	8.4	28.1 28.3 28.3	28.3	89.7 89.2 88.7	89.0	6.4 6.4 6.4	6.4	6.7	2.6 4.1 4.4	4.3	5.1	<2.5 4 4	4.0	4.2
				Bottom	15	24.0 24.0	24.0	8.2 8.2	8.2	28.4 28.4	28.4	88.9 88.1	88.5	6.4 6.3	6.4	6.4	8.3 8.7	8.5		6	6.0	
				Surface	1	23.0	23.7	8.7 7.0	7.9	25.7 25.9	25.8	100.3 98.5	99.4	7.4 7.1	7.3		1.9	2.0		<2.5	<2.5	
17-Nov-14	Sunny	Moderate	08:49	Middle	9	24.4 24.0 24.4	24.2	8.6 8.5	8.6	30.7 28.8	29.8	101.4 101.1	101.3	7.1 7.2 7.2	7.2	7.3	2.0 3.0 3.3	3.2	3.6	<2.5 5 5	5.0	3.5
				Bottom	17	24.4 24.4 24.4	24.4	8.5 8.5	8.5	29.8 30.3	30.1	104.4 104.7	104.6	7.4 7.4	7.4	7.4	5.8 5.5	5.7	1	3	3.0	
				Surface	1	22.9 24.3	23.6	8.2 8.2	8.2	33.4 31.9	32.7	120.9 122.9	121.9	8.6 8.6	8.6		3.3 3.4	3.4		4 4	4.0	
19-Nov-14	Sunny	Moderate	11:10	Middle	8	24.2 24.3	24.3	8.2 8.2	8.2	33.4 32.8	33.1	122.6 124.3	123.5	8.5 8.6	8.6	8.6	3.5	3.7	4.0	4 4	4.0	3.5
				Bottom	15	24.3 24.3	24.3	8.2 8.2	8.2	32.5 32.6	32.6	119.9 124.2	122.1	8.3 8.6	8.5	8.5	4.8 4.9	4.9	1	<2.5 <2.5	<2.5	

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.3 24.0	24.2	8.2 8.2	8.2	31.1 31.0	31.1	117.6 119.6	118.6	8.2 8.4	8.3	8.5	2.7 2.9	2.8		<2.5 <2.5	<2.5	
21-Nov-14	Sunny	Moderate	11:20	Middle	9	24.1 24.1	24.1	8.2 8.2	8.2	31.4 31.6	31.5	122.1 120.6	121.4	8.6 8.5	8.6	6.5	3.3 3.3	3.3	3.7	<2.5 <2.5	<2.5	<2.5
				Bottom	17	24.0 24.0	24.0	8.2 8.2	8.2	31.5 31.5	31.5	120.4 116.2	118.3	8.5 8.2	8.4	8.4	5.1 5.0	5.1		<2.5 <2.5	<2.5	
				Surface	1	24.4 24.5	24.5	8.4 8.4	8.4	30.4 31.6	31.0	113.2 113.7	113.5	8.0 7.9	8.0	7.9	3.6 3.2	3.4		<2.5 <2.5	<2.5	
24-Nov-14	Sunny	Moderate	12:32	Middle	9	24.4 24.4	24.4	8.4 8.4	8.4	34.0 33.9	34.0	113.7 113.9	113.8	7.8 7.8	7.8	7.5	5.6 5.3	5.5	5.1	<2.5 <2.5	<2.5	2.7
				Bottom	17	24.3 24.4	24.4	8.4 8.4	8.4	33.9 33.9	33.9	111.9 111.7	111.8	7.7 7.7	7.7	7.7	6.5 6.2	6.4		3	3.0	
				Surface	1	24.2 24.7	24.5	8.2 8.2	8.2	29.9 29.9	29.9	104.8 103.4	104.1	7.4 7.3	7.4	7.3	2.6 2.6	2.6		4 4	4.0	
26-Nov-14	Cloudy	Moderate	14:44	Middle	9	24.8 24.7	24.8	8.2 8.2	8.2	29.9 30.1	30.0	102.6 100.8	101.7	7.2 7.1	7.2	7.5	3.8 3.9	3.9	3.7	5 5	5.0	3.9
				Bottom	17	24.7 24.7	24.7	8.2 8.2	8.2	30.1 30.1	30.1	99.7 98.5	99.1	7.0 6.9	7.0	7.0	4.5 4.5	4.5		<2.5 3	2.8	
				Surface	1	23.5 23.5	23.5	8.3 8.3	8.3	30.6 35.1	32.9	107.7 107.7	107.7	7.7 7.5	7.6	7.2	2.7 2.5	2.6		3	3.0	
28-Nov-14	Cloudy	Moderate	16:54	Middle	9	24.2 24.1	24.2	8.3 8.3	8.3	33.6 33.5	33.6	96.6 98.8	97.7	6.7 6.9	6.8	7.2	3.5 3.7	3.6	3.4	4	4.0	3.3
				Bottom	17	24.2 24.2	24.2	8.3 8.3	8.3	33.6 33.6	33.6	96.8 96.8	96.8	6.7 6.7	6.7	6.7	3.8 4.1	4.0		3	3.0	

Water Quality Monitoring Results at C2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	1	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.2 26.5	26.4	7.8 7.9	7.9	28.3 28.7	28.5	75.6 75.1	75.4	5.2 5.1	5.2	5.2	2.7 2.8	2.8		5 5	5.0	
3-Nov-14	Cloudy	Moderate	14:21	Middle	9	26.5 26.5	26.5	8.3 8.3	8.3	28.8 28.6	28.7	74.3 74.2	74.3	5.1 5.1	5.1	5.2	3.6 3.6	3.6	4.1	3	3.0	3.7
				Bottom	17	26.6 26.6	26.6	8.7 8.7	8.7	29.0 29.2	29.1	75.2 75.7	75.5	5.1 5.2	5.2	5.2	5.7 5.8	5.8		3	3.0	
				Surface	1	25.9 25.9	25.9	7.6 7.6	7.6	29.4 29.4	29.4	69.3 69.0	69.2	4.8 4.8	4.8		4.0 3.9	4.0		5 6	5.5	
5-Nov-14	Sunny	Moderate	15:56	Middle	9.5	25.9 25.9	25.9	7.3 7.6	7.5	23.5 26.9	25.2	64.2 65.7	65.0	4.6 4.6	4.6	4.7	4.2 4.1	4.2	4.2	4	4.0	4.7
				Bottom	18	25.9 25.9 25.9	25.9	7.6 7.6	7.6	27.9 28.2	28.1	59.8 59.9	59.9	4.2 4.2	4.2	4.2	4.4 4.5	4.5		4 5	4.5	
				Surface	1	24.8	24.8	7.4	7.4	29.4	29.4	72.2	72.1	5.1	5.1		3.5	3.6		<2.5	<2.5	
7-Nov-14	Cloudy	Moderate	17:08	Middle	9.5	24.8	24.8	7.4	7.3	29.4	25.2	72.0 67.1	67.9	5.1 4.9	4.9	5.0	3.6 5.3	5.3	4.8	<2.5 <2.5	<2.5	3.0
	·			Bottom	18	24.8	24.8	7.4	7.4	26.9 27.9	28.1	68.7 62.9	63.0	4.9	4.5	4.5	5.2 5.5	5.6		<2.5 4	4.0	
				Surface	1	24.8	25.3	7.4 8.2	8.2	30.2	29.2	63.0 91.1	90.4	6.3	6.3		5.6 3.7	3.9		4	4.0	
10-Nov-14	Sunny	Moderate	09:35	Middle	7	25.5 25.5	25.5	8.2 8.2	8.2	28.1 30.0	30.1	89.7 90.3	90.2	6.3 6.2	6.2	6.3	4.1	4.6	4.7	5	5.0	4.0
	,			Bottom	13	25.5 25.5	25.5	8.2 8.2	8.2	30.2 30.2	30.2	90.0 89.7	89.8	6.2	6.2	6.2	4.6 5.5	5.5		3	3.0	
				Surface	1	25.5 25.5	25.5	8.1 8.1	8.1	30.2 28.3	28.3	89.8 88.6	88.6	6.2 6.2	6.2		5.5 2.9	2.9		4	4.0	
12-Nov-14	Sunny	Moderate	10:51	Middle	9.5	25.5 25.4	25.4	8.1 8.1	8.1	28.3 28.6	28.6	88.5 88.7	88.7	6.2 6.2	6.2	6.2	2.9 4.3	4.3	4.2	4	4.0	3.5
12-1100-14	Suring	Woderate	10.51	Bottom	18	25.4 25.4	25.4	8.1 8.1	8.1	28.6 28.7	28.7	88.7 88.6	88.7	6.2 6.2	6.2	6.2	4.3 5.2	5.3	4.2	4 <2.5	<2.5	3.3
						25.4 23.6		8.1 8.1		28.7 27.4		88.8 93.7		6.2		0.2	5.3			<2.5 <2.5		
				Surface	1	23.7 23.9	23.7	8.2 8.4	8.2	29.0 27.9	28.2	93.0 89.9	93.4	6.7 6.5	6.8	6.7	2.0	2.0		<2.5 <2.5	<2.5	
15-Nov-14	Sunny	Moderate	14:04	Middle	9	23.9 23.9	23.9	8.3 8.5	8.4	27.8 28.2	27.9	89.8 88.5	89.9	6.5 6.4	6.5		2.5 7.6	2.4	4.0	<2.5 3	<2.5	2.7
				Bottom	17	23.9 24.6	23.9	8.5 8.5	8.5	28.3 30.1	28.3	89.0 107.3	88.8	6.4 7.5	6.4	6.4	7.7	7.7		3	3.0	
				Surface	1	24.6 24.5	24.6	8.5 8.5	8.5	30.5 32.6	30.3	107.7	107.5	7.5 7.3	7.5	7.4	2.7	2.7		3	3.0	
17-Nov-14	Sunny	Moderate	14:43	Middle	9	24.5 24.4	24.5	8.5 8.4	8.5	32.6 32.8	32.6	105.3 104.8	105.2	7.3	7.3		3.8	3.8	3.6	3 4	3.0	3.3
				Bottom	17	24.4	24.4	8.3 8.0	8.4	32.8 31.3	32.8	104.5 119.9	104.7	7.2 8.5	7.3	7.3	4.3	4.3	<u> </u>	4 <2.5	4.0	
				Surface	1	24.4	24.1	8.2	8.1	31.8 32.4	31.6	121.0	120.5	8.4	8.5	8.5	2.0 2.9 4.5	2.9		<2.5 <2.5 <2.5	<2.5	
19-Nov-14	Sunny	Moderate	15:12	Middle	9	24.2	24.3	8.1 8.2	8.2	32.5	32.5	124.9 118.8	121.9	8.7 8.3	8.5		4.6	4.6	4.6	<2.5	<2.5	<2.5
				Bottom	17	24.2 24.2	24.2	8.2 8.2	8.2	31.3 31.6	31.5	120.0 117.0	118.5	8.4 8.2	8.3	8.3	6.2 6.1	6.2		<2.5 <2.5	<2.5	

Water Quality Monitoring Results at C2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.4 24.1	23.8	8.2 8.2	8.2	31.5 31.4	31.5	115.1 116.6	115.9	8.2 8.2	8.2	8.2	3.6 3.5	3.6		<2.5 <2.5	<2.5	
21-Nov-14	Sunny	Moderate	16:51	Middle	9	24.0 24.1	24.1	8.2 8.2	8.2	31.6 31.7	31.7	117.1 116.7	116.9	8.2 8.2	8.2	0.2	3.7 3.6	3.7	3.8	3	3.0	2.8
				Bottom	17	24.1 24.1	24.1	8.2 8.3	8.3	31.6 31.7	31.7	117.1 116.4	116.8	8.2 8.2	8.2	8.2	4.2 4.2	4.2		3 3	3.0	
				Surface	1	23.6 23.8	23.7	8.4 8.4	8.4	32.0 32.0	32.0	115.4 115.9	115.7	8.2 8.2	8.2	8.2	3.4 3.4	3.4		<2.5 <2.5	<2.5	
24-Nov-14	Fine	Moderate	18:12	Middle	9	23.3 23.4	23.4	8.4 8.4	8.4	34.3 34.3	34.3	114.8 115.2	115.0	8.0 8.1	8.1	0.2	4.8 4.9	4.9	5.0	<2.5 <2.5	<2.5	<2.5
				Bottom	17	23.2 23.4	23.3	8.4 8.4	8.4	34.2 34.1	34.2	114.2 114.6	114.4	8.0 8.0	8.0	8.0	6.8 6.6	6.7		<2.5 <2.5	<2.5	
				Surface	1	24.7 24.7	24.7	8.0 8.0	8.0	29.9 30.0	30.0	92.5 92.4	92.5	6.5 6.5	6.5	6.5	2.5 2.6	2.6		<2.5 <2.5	<2.5	
26-Nov-14	Cloudy	Moderate	09:19	Middle	9.5	24.6 24.6	24.6	8.0 8.0	8.0	30.2 30.2	30.2	92.6 92.6	92.6	6.5 6.5	6.5	0.0	3.3 3.3	3.3	3.7	<2.5 <2.5	<2.5	2.7
				Bottom	18	24.6 24.6	24.6	8.0 8.0	8.0	30.3 30.3	30.3	92.5 92.7	92.6	6.5 6.5	6.5	6.5	5.2 5.3	5.3		3 3	3.0	
				Surface	1	24.5 24.5	24.5	8.1 8.2	8.2	29.9 29.1	29.5	101.8 98.8	100.3	7.2 7.0	7.1	6.9	3.0 2.9	3.0		5 5	5.0	
28-Nov-14	Cloudy	Moderate	10:31	Middle	9	24.2 24.2	24.2	8.3 8.3	8.3	32.6 32.6	32.6	94.7 94.7	94.7	6.6 6.6	6.6	0.0	3.7 3.7	3.7	3.9	4 4	4.0	4.5
				Bottom	17	24.1 24.1	24.1	8.3 8.3	8.3	32.8 32.9	32.9	94.5 94.5	94.5	6.6 6.6	6.6	6.6	5.0 5.1	5.1		4 5	4.5	

Water Quality Monitoring Results at C3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.9	24.7	7.7 7.7	7.7	30.6 30.6	30.6	109.6 110.4	110.0	7.7 7.7	7.7	7.0	4.5 4.5	4.5		3 3	3.0	
3-Nov-14	Cloudy	Moderate	10:17	Middle	11.5	27.4 27.8	27.6	7.7 7.7	7.7	30.8 30.8	30.8	111.4 112.1	111.8	7.4 7.4	7.4	7.6	3.8 3.7	3.8	4.7	8 8	8.0	6.3
				Bottom	22	27.9 27.7	27.8	7.7 7.7	7.7	30.5 30.5	30.5	104.9 105.0	105.0	6.9 7.0	7.0	7.0	5.9 5.6	5.8		8	8.0	
				Surface	1	26.0 26.0	26.0	8.5 8.5	8.5	29.4 29.5	29.5	100.1 99.3	99.7	7.1 7.0	7.1		2.3 2.5	2.4		4	4.0	
5-Nov-14	Sunny	Moderate	11:20	Middle	12.5	26.0 26.0	26.0	8.5 8.5	8.5	29.4 29.5	29.5	99.8 99.3	99.6	7.0 7.1 7.0	7.1	7.1	2.5 2.5 2.5	2.5	2.8	6 5	5.5	4.8
				Bottom	24	26.0	26.0	8.5	8.5	29.5	29.5	99.4	99.4	7.0	7.0	7.0	3.3	3.5		5	5.0	
				Surface	1	26.0	25.2	8.5	8.1	29.5 25.8	25.6	99.3	87.6	7.0	7.2		2.9	3.0		5	5.0	
7-Nov-14	Cloudy	Moderate	12:31	Middle	11.5	25.6 25.1	25.4	8.2 8.1	8.1	25.4 27.1	27.3	84.5 86.9	85.2	6.9 7.1	7.0	7.1	3.0	3.1	3.5	5 8	8.0	5.5
	,			Bottom	22	25.7 25.5	25.6	8.0	8.1	27.5 29.2	29.4	83.5 84.6	84.1	7.0	7.0	7.0	2.9 4.4	4.3		4	3.5	
				Surface	1	25.7 25.3	25.4	7.6	7.7	29.5 32.3	32.3	83.5 106.1	105.9	7.3	7.3		1.2	1.3		3 4	4.0	
10-Nov-14	Sunny	Moderate	14:51	Middle	12	25.4 25.4	25.4	7.8 7.8	7.8	32.3 32.3	32.3	105.7 105.7	105.7	7.2 7.2	7.2	7.3	3.4	3.3	2.8	6	6.0	4.3
	,			Bottom	23	25.4 25.4	25.4	7.8 7.9	7.9	32.3 32.4	32.4	105.7 105.6	105.7	7.2 7.2	7.2	7.2	3.2	3.8		3	3.0	
				Surface	1	25.4 22.9	23.9	7.9 8.0	8.1	32.3 28.8	28.6	105.7 98.1	99.8	7.2 7.1	7.2	, ·- <u>-</u>	3.9 4.4	4.4		<u>3</u>	5.0	
12-Nov-14	Cummi	Moderate	15:30	Middle	11.5	24.8 24.3	24.6	8.1 8.0	8.0	28.3 28.1	28.3	101.4 98.6	99.6	7.2 7.0	7.1	7.2	4.4 3.5	3.6	4.6	5 7	7.0	6.0
12-NOV-14	Sunny	Woderate	15.50			24.9 24.6	24.8	8.0 8.2	8.2	28.4 30.8		100.5 100.5	100.8	7.1 7.0	7.1	7.1	3.6 5.8	5.9	4.0	7 6	6.0	6.0
				Bottom	22	24.9 24.4		8.2 8.5		29.4 32.2	30.1	101.1 106.0		7.1 7.4		7.1	5.9 2.4			6		
				Surface	1	24.4 24.4	24.4	8.5 8.5	8.5	32.1 32.4	32.2	107.3 106.4	106.7	7.5 7.4	7.5	7.5	2.4 3.3	2.4		3 <2.5	3.0	
15-Nov-14	Fine	Moderate	05:11	Middle	11.5	24.4	24.4	8.5 8.5	8.5	32.1 32.6	32.3	108.5 106.9	107.5	7.6 7.4	7.5		3.4	3.4	3.1	<2.5 4	<2.5	3.2
				Bottom	22	24.4	24.4	8.5 8.1	8.5	32.2 32.8	32.4	109.9	108.4	7.6 7.8	7.5	7.5	3.6	3.5		4	4.0	
				Surface	1	24.5 24.5	24.4	8.1 8.1	8.1	32.6 30.1	32.7	111.8 111.7	111.9	7.7 7.9	7.8	7.9	2.2	2.3		3	3.5	
17-Nov-14	Sunny	Moderate	08:25	Middle	11	24.5 24.5	24.5	8.1 8.1	8.1	30.0	30.1	111.6 109.3	111.7	7.8 7.7	7.9		4.6 5.4	4.8	4.2	3 7	3.0	4.5
				Bottom	21	24.5	24.5	8.1 8.2	8.1	29.5 26.8	29.6	109.1	109.2	7.7 7.8	7.7	7.7	5.5	5.5		7	7.0	
				Surface	1	23.7	23.0	7.8 7.4	8.0	27.8 28.1	27.3	90.0	89.2	7.6 7.7 7.6	7.8	7.7	3.6 4.8	3.6		3 5	3.0	
19-Nov-14	Sunny	Moderate	10:07	Middle	11.5	24.8	23.4	7.4	7.4	28.7	28.4	88.0	87.2	7.4	7.5		4.7	4.8	4.5	5	5.0	3.5
				Bottom	22	22.3 23.1	22.7	7.1 7.8	7.5	32.8 34.0	33.4	85.0 83.5	84.3	7.3 7.1	7.2	7.2	5.2 5.1	5.2		<2.5 <2.5	<2.5	

Water Quality Monitoring Results at C3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.5 23.5	23.5	7.9 7.9	7.9	26.4 26.7	26.6	108.3 108.5	108.4	7.9 7.9	7.9	7.9	3.2 3.2	3.2		8 8	8.0	
21-Nov-14	Sunny	Moderate	11:22	Middle	11	23.5 23.6	23.6	7.9 7.9	7.9	26.9 26.7	26.8	108.6 108.5	108.6	7.9 7.9	7.9	7.9	5.3 5.3	5.3	4.8	4	4.0	6.3
				Bottom	21	23.5 23.6	23.6	7.9 7.9	7.9	27.1 26.9	27.0	108.6 108.4	108.5	7.9 7.9	7.9	7.9	5.8 5.8	5.8		7 7	7.0	
				Surface	1	27.6 26.2	26.9	8.4 8.4	8.4	30.2 30.5	30.4	109.3 103.6	106.5	7.3 7.1	7.2	7.2	2.3 2.4	2.4		<2.5 <2.5	<2.5	
24-Nov-14	Sunny	Moderate	12:55	Middle	13	26.3 26.4	26.4	8.4 8.4	8.4	30.2 30.6	30.4	105.4 105.3	105.4	7.2 7.1	7.2	7.2	2.5 2.4	2.5	2.8	3	3.0	6.2
				Bottom	25	26.7 26.5	26.6	8.4 8.5	8.5	30.1 30.6	30.4	105.1 105.2	105.2	7.1 7.1	7.1	7.1	3.4 3.5	3.5		13 13	13.0	
				Surface	1	23.9 23.9	23.9	8.1 8.1	8.1	30.0 30.6	30.3	103.8 103.3	103.6	7.4 7.3	7.4	7.3	3.1 3.0	3.1		6 5	5.5	
26-Nov-14	Cloudy	Moderate	15:34	Middle	11	23.9 23.9	23.9	8.1 8.1	8.1	30.1 30.8	30.5	100.6 101.7	101.2	7.1 7.2	7.2	7.5	2.5 2.7	2.6	3.1	8 8	8.0	5.8
				Bottom	21	23.9 23.9	23.9	8.1 8.0	8.1	30.3 30.8	30.6	98.2 99.0	98.6	7.0 7.0	7.0	7.0	3.5 3.5	3.5		4 4	4.0	
				Surface	1	23.4 23.4	23.4	8.0 8.0	8.0	30.6 30.6	30.6	103.5 103.7	103.6	7.4 7.4	7.4	7.4	4.2 4.2	4.2		4 4	4.0	
28-Nov-14	Cloudy	Moderate	15:56	Middle	11	23.5 23.5	23.5	8.0 8.0	8.0	30.7 30.7	30.7	102.5 102.2	102.4	7.3 7.3	7.3	7.4	4.5 4.5	4.5	4.6	4	4.0	4.2
				Bottom	21	23.5 23.5	23.5	8.0 8.0	8.0	30.7 30.7	30.7	102.1 102.1	102.1	7.3 7.3	7.3	7.3	5.1 5.1	5.1		4 5	4.5	

Water Quality Monitoring Results at C3 - Mid-Flood Tide

Data	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salir	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Depti	II (IΠ)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.1	25.6	7.6	7.6	31.1	31.1	113.4	119.5	8.1	8.2		4.0	4.2		7	7.0	
				Odridoc		28.1	20.0	7.6	7.0	31.0	01.1	125.6	110.0	8.3	0.2	7.8	4.3	7.2		7	7.0	
3-Nov-14	Cloudy	Moderate	16:02	Middle	11.5	26.2	27.2	7.7	7.7	30.6	30.8	108.5	110.9	7.4	7.4		4.2	4.2	4.5	<2.5	<2.5	4.0
	-					28.2 27.2		7.6 7.6		30.9 31.3		113.3 106.2		7.4 7.1			4.2 5.0			<2.5 <2.5		
				Bottom	22	28.3	27.8	7.5	7.6	31.1	31.2	106.2	106.5	7.1	7.1	7.1	5.0	5.0		<2.5	<2.5	
						26.0		8.6		28.3		100.9	400 =	7.2			1.2	4.0		3		
				Surface	1	26.0	26.0	8.6	8.6	28.3	28.3	100.4	100.7	7.1	7.2	7.2	1.3	1.3		3	3.0	
5-Nov-14	Sunny	Moderate	16:02	Middle	12	26.0	26.0	8.6	8.6	28.3	28.4	101.1	100.8	7.2	7.2	1.2	3.3	3.4	2.8	<2.5	<2.5	2.8
0110114	Curiny	Wiodorato	10.02	Wilduic		26.0	20.0	8.6	0.0	28.4	20.7	100.4	100.0	7.1	/		3.4	0.1	2.0	<2.5	-2.0	2.0
				Bottom	23	26.0	26.0	8.6	8.6	28.3	28.4	100.7	100.5	7.2 7.1	7.2	7.2	3.7	3.8		3	3.0	
						26.0 24.2		8.6 8.2		28.4		100.3 96.3		7.1			3.9 2.9			5		
				Surface	1	25.4	24.8	8.2	8.2	26.5	26.4	85.7	91.0	7.9	7.5		3.1	3.0		5	5.0	
7.11. 44	01. 1		47.04		44.5	24.5	05.0	8.3	0.0	27.3	07.0	93.4	00.5	7.7	7.4	7.5	3.1	0.4	0.5	3	0.0	4.0
7-Nov-14	Cloudy	Moderate	17:31	Middle	11.5	25.5	25.0	8.2	8.3	26.7	27.0	85.5	89.5	7.0	7.4		3.1	3.1	3.5	3	3.0	4.0
				Bottom	22	24.8	25.2	8.1	8.1	29.6	29.3	90.0	87.4	7.4	7.2	7.2	4.4	4.3		4	4.0	
				Dottom		25.5	20.2	8.0	0.1	28.9	20.0	84.7	07.1	7.0	7.2	7.2	4.2	1.0		4	7.0	
				Surface	1	25.2	25.3	7.9	8.0	28.1	29.3	99.5	99.7	7.0	7.0		2.3	2.5		6	6.0	
						25.3 25.2		8.0 8.1		30.5 28.1		99.8 99.7		6.9 7.0		7.0	2.6			6		
10-Nov-14	Sunny	Moderate	09:55	Middle	12.5	25.2	25.3	8.0	8.1	30.4	29.3	99.7	99.8	6.9	7.0		2.7	2.5	2.8	5	4.5	4.7
				- · ·		25.2		8.2		30.5	22.4	100.1		6.9			3.2			4		
				Bottom	24	25.3	25.3	8.2	8.2	30.3	30.4	99.7	99.9	6.9	6.9	6.9	3.5	3.4		3	3.5	
				Surface	1	23.9	24.4	7.9	7.9	25.6	25.5	99.7	99.9	7.3	7.3		3.6	3.6		4	4.0	
				Odridoc		24.8	2-17	7.9	7.0	25.3	20.0	100.1	00.0	7.2	7.0	7.3	3.6	0.0		4	1.0	
12-Nov-14	Sunny	Moderate	11:36	Middle	11.5	24.2 24.9	24.6	8.1 8.0	8.1	28.7 28.4	28.6	99.0 101.7	100.4	7.1 7.2	7.2	-	3.8 3.8	3.8	4.0	3	3.0	3.3
						24.9		8.1		32.2		101.7		7.2			4.5			3		
				Bottom	22	25.0	24.7	8.2	8.2	31.6	31.9	100.4	100.3	6.9	7.0	7.0	4.5	4.5		3	3.0	
				0	4	24.2	04.0	8.5	0.5	31.9	20.0	112.5	440.5	7.9	7.0		3.6	2.0		3	2.0	
				Surface	1	24.2	24.2	8.5	8.5	32.1	32.0	112.5	112.5	7.9	7.9	7.9	3.5	3.6		3	3.0	
15-Nov-14	Sunny	Moderate	13:33	Middle	12	24.2	24.3	8.5	8.5	31.9	32.0	112.6	112.4	7.9	7.9	1.5	2.4	2.6	2.9	<2.5	<2.5	3.8
	ou,	ouorato	10.00			24.3	20	8.5	0.0	32.1	02.0	112.1		7.8	1.0		2.8	2.0		<2.5	2.0	0.0
				Bottom	23	24.3	24.3	8.5	8.5	31.9 32.1	32.0	113.5	113.2	7.9 7.9	7.9	7.9	2.6	2.5		6	6.0	
						24.3 24.4		8.5 8.1		33.6		112.8 116.6		8.0			2.3 3.0			4		
				Surface	1	24.4	24.4	8.1	8.1	33.6	33.6	116.7	116.7	8.1	8.1		3.6	3.3		3	3.5	
47 Nov. 44	0	M	40.50	Mistalla	40	24.6	24.6	8.1	0.4	33.3	22.2	117.3	117.3	8.1	8.1	8.1	3.1	2.8	2.7	<2.5	<2.5	2.0
17-Nov-14	Sunny	Moderate	13:56	Middle	12	24.6	24.6	8.1	8.1	33.2	33.3	117.2	117.3	8.1	8.1		2.5	2.8	2.7	<2.5	<2.5	3.3
				Bottom	23	24.5	24.5	8.1	8.1	30.6	30.6	112.4	112.2	7.9	7.9	7.9	1.8	1.9		4	4.0	
				Dottom		24.5	20	8.1	0.1	30.5	00.0	112.0		7.9	1.0	7.0	1.9			4		
				Surface	1	22.1 25.0	23.6	8.7 8.3	8.5	25.9 25.4	25.7	96.2 103.6	99.9	8.4 8.6	8.5		2.5 2.5	2.5		3	3.0	
			}			25.0		8.3		25.4		90.4		7.8		8.1	4.2		1	<2.5		
19-Nov-14	Sunny	Moderate	16:45	Middle	11.5	24.6	23.6	7.8	8.4	29.5	29.3	90.4	90.5	7.6	7.7		4.2	4.5	4.1	3	2.8	3.3
				Pottom	22	22.4	22.7	8.7	0.6	29.2	20.4	79.3	01.2	7.0	7.0	7.0	5.3	5.4	1	4	4.0	
				Bottom	22	24.9	23.7	8.5	8.6	29.5	29.4	83.2	81.3	7.0	7.0	7.0	5.5	5.4		4	4.0	

Water Quality Monitoring Results at C3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Temper	ature (°C)	ŗ	Н	Salin	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.2 23.6	23.4	7.9 8.0	8.0	23.6 25.7	24.7	110.5 110.7	110.6	8.2 8.1	8.2	8.2	3.2 3.3	3.3		5 5	5.0	
21-Nov-14	Sunny	Moderate	16:43	Middle	12	23.5 23.6	23.6	7.9 7.9	7.9	26.8 26.7	26.8	111.1 111.2	111.2	8.1 8.1	8.1	0.2	3.4 3.6	3.5	3.6	<2.5 <2.5	<2.5	3.8
				Bottom	23	23.6 23.6	23.6	7.9 7.9	7.9	26.9 26.9	26.9	111.0 111.3	111.2	8.1 8.1	8.1	8.1	4.0 4.2	4.1		4 4	4.0	
				Surface	1	27.1 26.2	26.7	8.4 8.4	8.4	31.5 31.8	31.7	114.5 107.1	110.8	7.6 7.2	7.4	7.5	1.2 1.4	1.3		6 6	6.0	
24-Nov-14	Fine	Moderate	19:01	Middle	11.5	26.5 26.1	26.3	8.4 8.4	8.4	31.7 32.0	31.9	112.2 108.5	110.4	7.6 7.3	7.5	7.5	3.4 3.4	3.4	2.9	<2.5 <2.5	<2.5	5.2
				Bottom	22	27.5 27.3	27.4	8.4 8.4	8.4	31.7 32.1	31.9	112.6 109.6	111.1	7.5 7.3	7.4	7.4	3.9 3.8	3.9		7 7	7.0	
				Surface	1	23.2 23.6	23.4	8.0 8.0	8.0	30.0 27.0	28.5	100.3 100.1	100.2	7.2 7.3	7.3	7.3	3.2 3.1	3.2		7 7	7.0	
26-Nov-14	Cloudy	Moderate	10:09	Middle	11.5	23.3 23.7	23.5	8.0 8.0	8.0	27.5 28.4	28.0	98.9 100.5	99.7	7.2 7.2	7.2	7.5	2.5 2.5	2.5	3.0	3	3.0	5.0
				Bottom	22	23.5 23.7	23.6	8.0 8.0	8.0	26.4 28.7	27.6	95.3 96.5	95.9	7.0 6.9	7.0	7.0	3.1 3.3	3.2		5 5	5.0	
				Surface	1	23.4 23.4	23.4	8.0 8.0	8.0	32.1 32.1	32.1	101.6 101.6	101.6	7.2 7.2	7.2	7.2	4.1 4.2	4.2		3	3.0	
28-Nov-14	Cloudy	Moderate	11:15	Middle	12	23.4 23.4	23.4	8.0 8.0	8.0	32.4 32.4	32.4	101.3 101.2	101.3	7.2 7.2	7.2	7.2	4.5 4.8	4.7	4.6	4	4.0	3.7
				Bottom	23	23.4 23.4	23.4	8.0 8.0	8.0	32.4 32.5	32.5	101.1 101.1	101.1	7.1 7.1	7.1	7.1	4.9 4.8	4.9		4	4.0	

Water Quality Monitoring Results at C4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	a (111 <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.0 28.0	26.5	7.7 7.6	7.7	31.3 30.0	30.7	105.6 109.2	107.4	7.3 7.2	7.3		4.0 4.2	4.1		3 3	3.0	
3-Nov-14	Cloudy	Moderate	10:10	Middle	9.5	26.0 28.2	27.1	7.7 7.6	7.7	31.2 31.3	31.3	106.1 114.1	110.1	7.2 7.5	7.4	7.4	4.0 3.7	3.9	4.5	<2.5 <2.5	<2.5	2.7
				Bottom	18	26.9 28.3	27.6	7.7 7.6	7.7	30.1 31.9	31.0	104.5 107.6	106.1	7.1 7.0	7.1	7.1	5.6 5.3	5.5		<2.5 <2.5	<2.5	
				Surface	1	26.1 26.1	26.1	8.5 8.4	8.5	29.5 29.6	29.6	99.8 99.5	99.7	7.0 7.0	7.0		1.6	1.6		8 8	8.0	
5-Nov-14	Sunny	Moderate	11:09	Middle	10	26.1	26.1	8.5	8.5	29.5	29.6	99.8	99.7	7.0	7.0	7.0	1.5 3.7	3.6	3.0	4	4.5	5.2
				Bottom	19	26.1 26.1	26.1	8.4	8.5	29.6 29.6	29.6	99.6 99.6	99.7	7.0	7.0	7.0	3.5	3.7		3	3.0	
				Surface	1	26.1 24.0	24.8	7.9	7.9	29.6	20.2	99.8 95.7	93.0	7.0 7.9	7.7		3.5 2.9	3.0		3 <2.5	<2.5	
7-Nov-14	Cloudy	Moderate	12:06	Middle	9.5	25.6 24.4	25.0	7.8 8.0	8.0	20.2	23.6	90.3 90.7	88.8	7.4 7.5	7.3	7.5	2.9	2.9	3.2	<2.5 3	3.0	2.7
	,			Bottom	18	25.6 25.0	25.4	8.0	8.3	23.4 26.6	28.1	86.9 86.2	84.6	7.1 7.1	7.0	7.0	2.8 3.9	3.8	-	3 <2.5	<2.5	
				Surface	1	25.7 25.3	25.3	7.8	7.9	29.5 31.0	30.6	83.0 103.8	103.9	6.8 7.2	7.2		3.7 1.5	1.4		<2.5 <2.5	<2.5	
10-Nov-14	Sunny	Moderate	14:42	Middle	10	25.2 25.3	25.3	7.9 7.8	7.9	30.2 31.1	30.7	103.9 103.9	103.9	7.2 7.2	7.2	7.2	1.3 3.4	3.3	2.8	<2.5 6	6.5	4.0
10 1404 14	Curry	Woderate	14.42	Bottom	19	25.3 25.3	25.3	7.9 7.8	7.9	30.3 31.4	31.1	103.9 103.9	104.0	7.2 7.2	7.2	7.2	3.2	3.7	2.0	3	3.0	1.0
						25.3 24.4	24.5	8.0 8.1		30.7 27.0	27.0	104.1 102.8	101.9	7.2 7.4	7.3	1.2	3.8	3.0		3 8		
40.1144		M. J	45.00	Surface	1	24.5 24.7		8.1 8.2	8.1	26.9 29.2		100.9 102.5		7.2 7.2		7.3	3.0 2.8			8 5	8.0	
12-Nov-14	Sunny	Moderate	15:23	Middle	9.5	24.9 25.0	24.8	8.1 8.1	8.2	27.6 30.9	28.4	102.2 102.3	102.4	7.2 7.1	7.2	7.4	2.7 4.4	2.8	3.4	6 7	5.5	6.8
				Bottom	18	25.2 24.5	25.1	8.2 8.5	8.2	30.5 31.1	30.7	101.7 109.0	102.0	7.0 7.6	7.1	7.1	4.1 1.4	4.3		7	7.0	
				Surface	1	24.5 24.5	24.5	8.5 8.5	8.5	31.4 31.2	31.3	109.7	109.4	7.7 7.6	7.7	7.7	1.4	1.4		3	3.0	
15-Nov-14	Fine	Moderate	05:02	Middle	9.5	24.4 24.5	24.5	8.5 8.5	8.5	31.4 31.3	31.3	108.8	109.1	7.6 7.7	7.6		3.4 3.7	3.5	2.9	6 <2.5	5.5	3.7
				Bottom	18	24.4	24.5	8.5 8.1	8.5	31.5 33.3	31.4	109.4 111.3	109.9	7.6 7.8	7.7	7.7	3.8	3.8		<2.5 6	<2.5	
				Surface	1	24.0 24.4	24.0	8.1 8.1	8.1	33.3 31.8	33.3	111.1	111.2	7.6 7.7 7.7	7.8	7.8	3.0	3.2		6 4	6.0	
17-Nov-14	Sunny	Moderate	08:43	Middle	9	24.4 24.4 24.4	24.4	8.1 8.1	8.1	31.9 30.7	31.9	110.0 110.0 109.2	110.0	7.7 7.7	7.7		4.2 5.0	4.1	4.2	4 3	4.0	4.3
				Bottom	17	24.4	24.4	8.1	8.1	30.6	30.7	109.0	109.1	7.7	7.7	7.7	5.4	5.2		3	3.0	
				Surface	1	22.9 21.7	22.3	8.6 8.7	8.7	32.5 32.8	32.7	90.2 95.9	93.1	7.6 8.2	7.9	7.6	4.1	4.1		4	4.0	
19-Nov-14	Sunny	Moderate	09:44	Middle	9	25.3 22.0	23.7	8.4 8.3	8.4	32.6 32.3	32.5	91.2 81.0	86.1	7.4 7.1	7.3		4.2 3.6	3.9	4.5	3	3.0	4.0
				Bottom	17	25.0 23.9	24.5	8.0 7.6	7.8	33.1 33.3	33.2	78.1 78.9	78.5	7.1 7.1	7.1	7.1	5.6 5.6	5.6		5 5	5.0	

Water Quality Monitoring Results at C4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Temper	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.1 23.6	23.4	7.9 7.9	7.9	26.2 26.1	26.2	110.4 108.7	109.6	8.1 7.9	8.0	8.1	2.0 2.2	2.1		<2.5 <2.5	<2.5	
21-Nov-14	Sunny	Moderate	11:46	Middle	9	23.5 23.6	23.6	7.9 7.9	7.9	26.3 26.3	26.3	110.2 109.0	109.6	8.1 8.0	8.1	0.1	3.2 3.6	3.4	3.0	<2.5 <2.5	<2.5	<2.5
				Bottom	17	23.5 23.6	23.6	7.9 7.9	7.9	26.5 26.4	26.5	109.9 109.0	109.5	8.0 7.9	8.0	8.0	3.5 3.5	3.5		<2.5 <2.5	<2.5	
				Surface	1	25.7 26.7	26.2	8.5 8.5	8.5	32.1 30.8	31.5	105.7 104.7	105.2	7.2 7.1	7.2	7.3	1.6 1.5	1.6		6 5	5.5	
24-Nov-14	Sunny	Moderate	12:44	Middle	10	27.0 26.2	26.6	8.5 8.5	8.5	32.1 30.6	31.4	107.9 106.7	107.3	7.2 7.3	7.3	7.5	3.8 3.5	3.7	3.0	4 4	4.0	4.0
				Bottom	19	25.7 26.4	26.1	8.5 8.5	8.5	32.1 30.6	31.4	107.2 103.2	105.2	7.3 7.0	7.2	7.2	3.9 3.5	3.7		<2.5 <2.5	<2.5	
				Surface	1	23.7 23.7	23.7	8.0 8.0	8.0	30.0 30.1	30.1	100.3 99.4	99.9	7.2 7.1	7.2	7.2	1.3 1.4	1.4		3	3.0	
26-Nov-14	Cloudy	Moderate	15:10	Middle	9	23.7 23.7	23.7	8.0 8.0	8.0	30.0 30.2	30.1	99.4 99.4	99.4	7.1 7.1	7.1	7.2	1.6 1.6	1.6	1.8	3	3.0	2.8
				Bottom	17	23.7 23.7	23.7	8.0 8.0	8.0	30.3 30.3	30.3	98.8 99.4	99.1	7.0 7.1	7.1	7.1	2.3 2.4	2.4		<2.5 <2.5	<2.5	
				Surface	1	23.3 23.4	23.4	8.0 8.0	8.0	30.3 30.4	30.4	105.5 105.5	105.5	7.6 7.5	7.6	7.6	4.3 4.2	4.3		4 4	4.0	
28-Nov-14	Cloudy	Moderate	16:10	Middle	9	23.5 23.5	23.5	8.0 8.0	8.0	30.4 30.4	30.4	104.8 104.8	104.8	7.5 7.5	7.5	7.0	4.5 4.7	4.6	4.6	3	3.0	3.5
				Bottom	17	23.5 23.5	23.5	8.0 8.0	8.0	30.5 30.5	30.5	104.6 104.6	104.6	7.5 7.5	7.5	7.5	4.9 4.9	4.9		4 3	3.5	

The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Water Quality Monitoring Results at C4 - Mid-Flood Tide

loudy	Condition** Moderate	Time	Depth	11 (111)	Value	A															
loudy	Moderate					Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
loudy	Moderate		Surface	1	22.9 28.0	25.5	7.6 7.7	7.7	30.7 30.4	30.6	112.1 120.7	116.4	8.1 8.0	8.1	7.7	5.7 5.7	5.7		<2.5 <2.5	<2.5	
		15:55	Middle	9.5	25.9 28.2	27.1	7.7 7.7	7.7	31.6 30.3	31.0	107.6 111.4	109.5	7.3 7.3	7.3	7.7	3.7 3.4	3.6	4.6	<2.5 <2.5	<2.5	3.5
			Bottom	18	27.0 28.4	27.7	7.7 7.7	7.7	30.7 31.2	31.0	104.5 106.6	105.6	7.0 7.0	7.0	7.0	4.0 4.8	4.4		6 5	5.5	
			Surface	1	25.9 25.9	25.9	8.6 8.6	8.6	28.4 28.6	28.5	100.2 99.7	100.0	7.1 7.1	7.1		2.6 2.6	2.6		3	3.0	
Sunny	Moderate	15:51	Middle	10	25.9	25.9	8.6	8.6	28.5	28.5	100.1	100.0	7.1	7.1	7.1	3.4	3.3	3.2	5	5.0	4.0
			Bottom	19	25.9	25.9	8.6	8.6	28.6	28.6	99.9	99.8	7.1	7.1	7.1	3.5	3.6		4 4	4.0	
			Surface	1	24.1	24.8	8.0	8.1	29.6	30.0	95.5	89.4	7.8	7.3		3.7	3.7		3	3.0	
loudy	Moderate	17:08	Middle	9	24.5	25.0	8.3	8.3	30.7	30.6	89.9	86.4	7.4	7.1	7.2	3.0	2.9	3.4	3	3.0	3.7
			Bottom	17	24.8	25.2	8.0	8.0	32.6	33.1	86.2	84.5	7.1	7.0	7.0	3.5	3.7		5	5.0	
			Surface	1	25.2	25.3	7.8	8.0	30.4	30.5	100.6	100.4	7.0	7.0		1.6	1.6		4	4.0	
Sunny	Moderate	09:43	Middle	10.5	25.3	25.3	8.1	8.1	30.4	30.5	100.5	100.5	7.0	7.0	7.0	3.7	3.6	3.0	6	6.0	5.7
			Bottom	20	25.3	25.3	8.2	8.2	30.4	30.5	100.3	100.4	6.9	6.9	6.9	3.9	3.7		7	7.0	
			Surface	1	24.0	24.5	8.1	8.2	26.0	26.4	99.9	101.2	7.3	7.3		3.0	3.0		<2.5 <2.5	<2.5	
Sunny	Moderate	11:12	Middle	9.5	24.3	24.7	8.2	8.2	28.9	29.0	101.2	101.7	7.2	7.2	7.3	3.1	3.1	3.5	3	3.0	3.0
			Bottom	18	24.5	24.8	8.1	8.2	33.2	33.2	101.9	102.5	7.0	7.0	7.0	4.4	4.4		4	3.5	
			Surface	1	24.4	24.4	8.5	8.5	32.6	32.8	107.6	107.7	7.5	7.5		3.7	3.7		3	3.0	
Sunny	Moderate	13:23	Middle	9.5	24.4	24.4	8.5	8.5	32.7	32.8	108.2	108.1	7.5	7.5	7.5	1.3	1.3	2.8	6	6.0	4.8
			Bottom	18	24.4	24.4	8.5	8.5	32.8	32.9	108.8	108.4	7.5	7.5	7.5	3.4	3.4		6	5.5	
			Surface	1	24.3	24.4	8.1	8.1	33.6	33.6	112.6	112.6	7.8	7.8		4.4	4.9		<2.5	<2.5	
Sunny	Moderate	14:13	Middle	9.5	24.5	24.5	8.1	8.1	33.7	33.7	120.0	120.3	8.3	8.3	8.1	5.8	5.7	4.9	3	3.0	3.2
			Bottom	18	24.4	24.4	8.1	8.1	31.0	31.0	117.1	116.8	8.2	8.2	8.2	3.9	4.0		4	4.0	
			Surface	1	22.8	23.4	8.8	8.4	28.6	28.6	93.6	97.8	8.0	8.3		3.9	3.9		4	4.0	
Sunny	Moderate	16:24	Middle	9.5	24.1	23.8	8.6	8.1	28.4	28.6	90.1	88.4	7.6	7.5	7.9	3.2	3.2	3.9	4	4.0	4.3
			Bottom	18	24.1	24.4	8.0	7.6	33.5	33.4	88.1	88.3	7.3	7.3	7.3	4.4	4.7		5	5.0	
dun	ny ny ny	ny Moderate ny Moderate ny Moderate ny Moderate	ny Moderate 17:08 Moderate 09:43 ny Moderate 11:12 ny Moderate 13:23 ny Moderate 14:13	Bottom Surface Middle Bottom Noderate 17:08 Middle Bottom Surface Middle Bottom Surface Middle Bottom Surface Middle Bottom Surface Middle Bottom 11:12 Middle Bottom Surface Middle Bottom Augusta Middle Bottom Surface Middle Bottom Surface Middle Bottom Surface Middle Bottom Surface Number Middle Bottom Surface Middle Bottom Surface Middle Bottom Surface Middle Bottom Surface Middle Bottom	Bottom 19	Bottom 19 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.4 25.4 25.4 25.4 25.4 25.4 25.4 24.8 25.5 25.3 25.0	Bottom 19	Bottom 19	Bottom 19	Bottom 19	Bottom 19 25.9 8.6 2	Bottom 19 25.9 8.6 28.5 99.9 99.9	Bottom 19 25.9 3.6 28.6 28.6 39.9 39.9 39.8	Bottom 19 25.9 8.6 28.6 28.6 29.9 99.9 99.8 7.1	Noderate 17:08 Bottom 19 25:9 25:9 8.6 28.6 28.6 28.6 28.6 99.9 99.8 7.1 7.1 7.1	Bottom 19 25.9 25.9 8.6 28.5 99.9 7.1	Moderate 17:08 Bottom 19 25:9 8.6 28.6 28.6 28.6 39.9 7.1 7.1 7.1 3.5 3.2	Bottom 19 25.9 8.6 28.5 99.9 99.8 7.1 7.1 3.5 3.2	Bottom 19 259 8.6 8.6 28.5 99.9 7.1 7.1 7.1 3.5 3.6	Bottom 19 25.9 25.8 8.6 8.6 28.6 99.9 99.9 7.1 7.1 7.1 3.5 3.6 4 Moderate 17:08 Middle 9 25.4 25.0 8.3 8.3 90.5 90.5 85.6 84 7.8 7.1 7.1 7.1 3.5 3.6 8.4 4 Moderate 17:08 Middle 9 25.4 25.0 8.3 8.3 90.5 90.5 90.6 83.6 8.6 7.1 7.1 7.1 9.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	Section 19 259 8.6 8.6 28.5 99.9 71 7.1 7.1 3.5 3.6 4 4.0

Water Quality Monitoring Results at C4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Temper	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.0 23.5	23.3	7.9 8.0	8.0	25.2 27.1	26.2	113.2 113.9	113.6	8.4 8.3	8.4	8.4	3.2 2.9	3.1		6 6	6.0	
21-Nov-14	Sunny	Moderate	17:03	Middle	9.5	23.2 23.6	23.4	7.9 7.9	7.9	27.2 27.2	27.2	115.6 114.0	114.8	8.5 8.3	8.4	0.4	3.6 4.0	3.8	3.7	3 4	3.5	4.5
				Bottom	18	23.4 23.6	23.5	7.9 7.9	7.9	27.3 27.2	27.3	118.3 114.7	116.5	8.6 8.3	8.5	8.5	4.2 4.2	4.2		4 4	4.0	
				Surface	1	27.6 25.8	26.7	8.4 8.5	8.5	30.6 32.1	31.4	112.2 109.0	110.6	7.5 7.4	7.5	7.6	2.7 2.9	2.8		4 4	4.0	
24-Nov-14	Fine	Moderate	18:43	Middle	9.5	26.3 26.4	26.4	8.4 8.4	8.4	30.6 31.4	31.0	112.0 112.6	112.3	7.6 7.6	7.6	7.0	3.3 3.3	3.3	3.3	4 4	4.0	4.7
				Bottom	18	26.8 27.7	27.3	8.5 8.4	8.5	30.6 31.5	31.1	108.8 109.7	109.3	7.3 7.2	7.3	7.3	3.7 3.6	3.7		6 6	6.0	
				Surface	1	23.1 23.7	23.4	8.0 8.0	8.0	29.6 27.3	28.5	104.3 102.9	103.6	7.5 7.5	7.5	7.5	3.1 3.0	3.1		5 5	5.0	
26-Nov-14	Cloudy	Moderate	09:52	Middle	9	23.3 23.7	23.5	8.0 8.0	8.0	27.1 27.4	27.3	102.8 101.9	102.4	7.5 7.4	7.5	7.5	3.6 3.6	3.6	3.4	5 5	5.0	4.3
				Bottom	17	23.5 23.8	23.7	8.0 8.0	8.0	24.0 27.4	25.7	94.0 102.1	98.1	7.0 7.4	7.2	7.2	3.4 3.5	3.5		3 3	3.0	
				Surface	1	23.4 23.4	23.4	8.0 8.0	8.0	32.1 32.1	32.1	101.7 101.9	101.8	7.2 7.2	7.2	7.2	4.2 4.6	4.4		3	3.0	
28-Nov-14	Cloudy	Moderate	11:29	Middle	9.5	23.4 23.4	23.4	8.0 8.0	8.0	32.1 32.1	32.1	101.6 101.6	101.6	7.2 7.2	7.2	7.2	4.3 4.4	4.4	4.6	4	4.0	4.3
				Bottom	18	23.4 23.4	23.4	8.0 8.0	8.0	32.2 32.2	32.2	101.3 101.3	101.3	7.2 7.2	7.2	7.2	4.8 4.9	4.9		6 6	6.0	

Water Quality Monitoring Results at GB3 - Mid-Ebb Tide

Data	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTl	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.0	26.1	7.4	7.5	30.8	31.1	110.6	115.9	7.8	7.9		4.3	4.1		4	4.0	ĺ
				Ouriacc		28.1	20.1	7.6	7.5	31.3	01.1	121.1	110.0	8.0	7.5	7.6	3.9	7.1		4	7.0	i
3-Nov-14	Cloudy	Moderate	10:01	Middle	3.5	26.0	27.1	7.5	7.6	33.9	32.6	107.7	109.1	7.2	7.2	7.0	4.8	4.5	4.6	8	8.5	6.8
	,					28.2		7.6		31.2		110.4		7.2			4.1	_		9		1
				Bottom	6	27.2 28.3	27.8	7.6 7.6	7.6	32.9 32.3	32.6	105.2 107.4	106.3	7.0 7.0	7.0	7.0	4.9 5.6	5.3		8	8.0	Ì
						26.1		8.3		29.0		107.4		7.0			2.6			<2.5		
				Surface	1	26.0	26.1	8.2	8.3	28.9	29.0	99.8	101.6	7.3	7.2		2.5	2.6		<2.5	<2.5	l
	_					26.1		8.3		29.0	<u> </u>	103.1		7.3		7.3	2.4		1	3	<u> </u>	1
5-Nov-14	Sunny	Moderate	10:56	Middle	4	26.1	26.1	8.3	8.3	29.2	29.1	101.9	102.5	7.2	7.3		2.4	2.4	2.9	3	3.0	2.7
				Dottom	7	26.1	26.4	8.1	8.2	28.2	20.0	96.4	99.4	6.9	7.1	7.1	3.7	3.6		<2.5	<2.5	l
				Bottom	,	26.1	26.1	8.3	0.2	29.3	28.8	102.3	99.4	7.2	7.1	7.1	3.5	3.0		<2.5	<2.5	1
				Surface	1	23.6	24.5	7.6	7.6	20.4	20.8	99.7	94.2	8.2	7.8		3.1	3.0		3	3.0	1
				Odridoo		25.3	24.0	7.6	7.0	21.1	20.0	88.6	01.2	7.3	7.0	7.7	2.9	0.0		3	0.0	l
7-Nov-14	Cloudy	Moderate	11:40	Middle	3.5	24.1	24.8	7.8	7.8	22.3	22.2	96.6	92.5	7.9	7.6		3.5	3.4	3.4	<2.5	2.8	2.9
	-					25.5 24.8		7.8 7.8		22.1 25.7		88.4 88.9		7.3 7.3			3.2 3.7			3	-	l
				Bottom	6	25.6	25.2	7.8	7.9	27.8	26.8	85.0	87.0	7.0	7.2	7.2	3.9	3.8		3	3.0	l
						25.5		7.7		32.8		110.0		7.5			2.1			4		
				Surface	1	25.4	25.5	7.8	7.8	33.0	32.9	108.6	109.3	7.4	7.5		2.1	2.1		3	3.5	l
40 Nov. 44	0	Madazata	44.00	Middle	2.5	25.5	25.5	7.7	7.0	32.8	22.0	109.9	400.0	7.5	7.5	7.5	3.4	0.4	2.4	<2.5	-0.5	2.5
10-Nov-14	Sunny	Moderate	14:28	Middle	3.5	25.4	25.5	7.8	7.8	33.0	32.9	109.3	109.6	7.4	7.5		3.3	3.4	3.1	<2.5	<2.5	3.5
				Bottom	6	25.5	25.5	7.9	7.9	32.9	33.0	108.9	109.2	7.4	7.5	7.5	3.9	3.8		4	4.5	l
				Dottom	, ,	25.4	20.0	7.9		33.0	00.0	109.5		7.5		7.0	3.7	0.0		5		
				Surface	1	23.8	24.3	8.0	8.0	27.2	27.2	101.1	101.9	7.3	7.3		3.3	3.0		4	4.0	ł
						24.8 24.1		8.0 8.1		27.2 30.7		102.6 100.3		7.3 7.1		7.2	3.8			4 <2.5	-	l
12-Nov-14	Sunny	Moderate	15:13	Middle	3.5	24.1	24.5	8.1	8.1	29.6	30.2	100.5	100.9	7.1	7.1		3.4	3.6	3.6	3	2.8	3.3
						24.4		8.1		33.5		100.3		6.9			4.2			3	<u> </u>	l
				Bottom	6	25.0	24.7	8.1	8.1	33.3	33.4	100.9	100.6	6.9	6.9	6.9	4.2	4.2		3	3.0	l
				Surface	1	24.3	24.3	8.5	8.5	27.0	29.9	108.7	109.4	7.8	7.8		1.6	1.6		<2.5	<2.5	
				Surface		24.3	24.3	8.5	6.5	32.7	29.9	110.1	109.4	7.7	7.0	7.8	1.6	1.0		<2.5	\2. 5	i
15-Nov-14	Fine	Moderate	04:50	Middle	3.5	24.3	24.3	8.5	8.5	28.0	30.4	109.2	109.7	7.8	7.7	7.0	3.7	3.6	3.0	3	3.5	3.2
						24.3		8.5		32.8		110.1		7.6			3.4			4		1
				Bottom	6	24.2	24.2	8.5	8.5	29.4	31.4	109.2	109.3	7.7	7.7	7.7	3.8	3.8		3	3.5	l
						24.2		8.5 8.0		33.3 31.7		109.3 112.5		7.6 7.9			3.7			3		
				Surface	1	23.7	23.8	8.0	8.0	31.6	31.7	112.0	112.3	7.9	7.9		3.3	3.2		3	3.0	l
	_	l				24.2	212	8.0		29.8		112.5		8.0		8.0	4.7			<2.5		
17-Nov-14	Sunny	Moderate	08:07	Middle	3	24.2	24.2	8.0	8.0	29.8	29.8	112.4	112.5	8.0	8.0		5.0	4.9	4.6	<2.5	<2.5	3.2
				Bottom	5	24.3	24.3	8.1	8.1	27.5	27.5	111.9	112.1	8.0	8.0	8.0	5.7	5.8		4	4.0	l
				DOLLOITI	3	24.3	24.5	8.1	0.1	27.4	27.5	112.2	112.1	8.0	0.0	0.0	5.9	5.0		4	4.0	
	·			Surface	1	23.7	24.2	8.5	8.5	30.0	30.5	99.3	98.3	8.3	8.2		3.8	3.8		4	4.0	
						24.6		8.5		31.0		97.3		8.0		7.7	3.7		1	4		i
19-Nov-14	Sunny	Moderate	09:23	Middle	3	24.2	23.9	8.3	8.5	31.9	31.7	83.5	85.7	7.0	7.2		4.5	4.6	4.7	3	3.0	3.7
						23.6 24.9	+	8.7 8.0		31.4 32.9		87.8 76.9		7.4 6.9			4.6 5.4	1	1	4		i
				Bottom	5	24.4	24.7	8.2	8.1	32.6	32.8	71.9	74.4	7.0	7.0	7.0	5.7	5.6		4	4.0	l
l l						47.7	<u> </u>	0.2		02.0		7 1.0	<u> </u>	1.0			J.1	1	<u> </u>			

Water Quality Monitoring Results at GB3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.0 23.6	23.8	7.2 7.8	7.5	24.7 27.1	25.9	110.4 113.3	111.9	8.1 8.2	8.2	8.2	2.2 2.0	2.1		<2.5 <2.5	<2.5	
21-Nov-14	Sunny	Moderate	10:57	Middle	3	23.9 23.6	23.8	7.4 7.8	7.6	26.6 27.2	26.9	111.9 113.4	112.7	8.1 8.2	8.2	0.2	3.0 3.1	3.1	3.6	5 5	5.0	4.8
				Bottom	5	23.7 23.5	23.6	7.5 7.8	7.7	27.0 27.3	27.2	112.1 112.6	112.4	8.1 8.2	8.2	8.2	5.4 5.7	5.6		7 7	7.0	
				Surface	1	26.9 26.9	26.9	8.4 8.4	8.4	32.1 32.2	32.2	110.1 107.8	109.0	7.3 7.2	7.3	7.4	2.5 2.6	2.6		4 4	4.0	
24-Nov-14	Sunny	Moderate	12:30	Middle	4	26.9 26.6	26.8	8.4 8.4	8.4	32.1 32.0	32.1	108.9 109.6	109.3	7.3 7.4	7.4	7.4	2.3 2.3	2.3	2.8	8 8	8.0	4.8
				Bottom	7	26.6 27.8	27.2	8.4 8.4	8.4	32.2 32.1	32.2	106.9 110.5	108.7	7.2 7.3	7.3	7.3	3.6 3.6	3.6		<2.5 <2.5	<2.5	
				Surface	1	24.1 24.1	24.1	8.0 8.0	8.0	29.8 28.6	29.2	98.9 97.6	98.3	7.0 7.0	7.0	7.0	1.6 1.5	1.6		5 5	5.0	
26-Nov-14	Cloudy	Moderate	14:42	Middle	3	24.1 24.1	24.1	8.0 8.0	8.0	29.9 30.7	30.3	99.4 99.6	99.5	7.0 7.0	7.0	7.0	1.6 1.5	1.6	1.8	3	3.0	5.0
				Bottom	5	24.1 24.1	24.1	8.0 8.0	8.0	30.1 30.8	30.5	100.8 100.3	100.6	7.1 7.1	7.1	7.1	2.1 2.1	2.1		7 7	7.0	
	•			Surface	1	24.1 24.0	24.1	7.8 7.8	7.8	30.6 30.7	30.7	104.8 105.0	104.9	7.4 7.4	7.4	7.4	4.1 4.2	4.2		3	3.0	
28-Nov-14	Cloudy	Moderate	15:42	Middle	3	23.8 23.6	23.7	7.9 7.9	7.9	30.7 30.8	30.8	104.1 104.5	104.3	7.4 7.4	7.4	77	4.3 4.5	4.4	4.5	4 4	4.0	4.7
				Bottom	5	23.6 23.6	23.6	7.9 7.9	7.9	30.8 30.8	30.8	104.5 104.5	104.5	7.4 7.4	7.4	7.4	4.9 5.1	5.0		7 7	7.0	

Water Quality Monitoring Results at GB3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.0 28.3	27.7	7.7 7.7	7.7	30.7 32.0	31.4	110.4 113.8	112.1	7.4 7.4	7.4		3.4 3.9	3.7		4	4.0	
3-Nov-14	Cloudy	Moderate	15:45	Middle	3.5	27.6 28.4	28.0	7.7 7.7	7.7	31.2 30.9	31.1	109.9 112.8	111.4	7.3 7.4	7.4	7.4	2.7 3.0	2.9	3.7	<2.5 <2.5	<2.5	3.2
				Bottom	6	28.0 28.5	28.3	7.7 7.7	7.7	31.0 30.1	30.6	109.2 108.1	108.7	7.2 7.1	7.2	7.2	4.5 4.6	4.6		3	3.0	
				Surface	1	26.2 26.1	26.2	8.7 8.7	8.7	28.6 28.6	28.6	111.9 110.1	111.0	7.9 7.8	7.9		3.2 3.0	3.1		3 3	3.0	
5-Nov-14	Sunny	Moderate	15:39	Middle	3.5	26.2 26.2	26.2	8.7 8.7	8.7	28.6 28.5	28.6	111.3 110.1	110.7	7.9 7.8	7.9	7.9	3.5 3.3	3.4	3.4	3	3.0	3.0
				Bottom	6	26.2 26.2 26.2	26.2	8.7 8.7	8.7	28.6 28.5	28.6	109.6 108.5	109.1	7.7 7.7	7.7	7.7	3.7 3.8	3.8		3	3.0	
				Surface	1	24.3	24.9	7.7	7.7	26.1	26.1	97.3	92.3	8.0	7.6		2.8	2.9		4	4.0	
7-Nov-14	Cloudy	Moderate	16:43	Middle	3.5	25.5 24.6	25.1	7.7	7.6	26.0	26.7	93.4	90.6	7.2	7.5	7.6	2.9	2.5	3.0	4	4.0	4.0
	·			Bottom	6	25.6 25.0 25.7	25.4	7.6 7.8 7.8	7.8	27.0 29.1 30.2	29.7	87.7 87.9 85.6	86.8	7.2 7.2 7.0	7.1	7.1	2.5 3.4 3.5	3.5		4 4 4	4.0	
				Surface	1	25.1	25.2	7.5 7.6	7.6	32.2 32.4	32.3	103.1 102.5	102.8	7.0 7.1 7.0	7.1		2.3 2.8	2.6		6	5.5	
10-Nov-14	Sunny	Moderate	09:30	Middle	4	25.2 25.2 25.2	25.2	7.6 7.8	7.7	32.2 32.4	32.3	102.8 102.2	102.5	7.0 7.1 7.0	7.1	7.1	2.4 2.4	2.4	2.9	4 5	4.5	5.5
				Bottom	7	25.2 25.2 25.2	25.2	7.7 7.8	7.8	32.3 32.4	32.4	102.6 102.1	102.4	7.0 7.0 7.0	7.0	7.0	3.6 3.5	3.6		7	6.5	
				Surface	1	25.4	25.3	7.9	7.9	28.3	28.4	101.0	100.5	7.1	7.1		3.1	2.9		<2.5	<2.5	
12-Nov-14	Sunny	Moderate	10:41	Middle	3.5	25.1 25.2	25.2	7.9 8.1	8.1	28.5	28.3	100.0 98.8	99.2	7.0 6.9	7.0	7.1	3.8	3.6	3.6	<2.5 <2.5	<2.5	3.0
	,			Bottom	6	25.1 25.2	25.2	8.1 8.1	8.2	28.6 30.3	30.6	99.5 100.0	100.2	7.0 6.9	7.0	7.0	3.4 4.1	4.3		<2.5 4	4.0	
				Surface	1	25.1 24.4	24.4	8.2 8.5	8.5	30.8 32.9	33.0	100.4 105.8	106.0	7.0	7.4		3.6	3.6		<2.5	<2.5	
15-Nov-14	Sunny	Moderate	13:17	Middle	4	24.4 24.4	24.4	8.5 8.5	8.5	33.0 32.9	33.0	106.2 106.4	106.3	7.4 7.4	7.4	7.4	3.6 2.3	2.3	3.0	<2.5 3	3.0	2.7
	,			Bottom	7	24.4 24.4	24.4	8.5 8.5	8.5	33.0 33.0	33.1	106.2 107.2	106.9	7.4 7.4	7.4	7.4	2.3 3.1	3.1		3 <2.5	<2.5	
				Surface	1	24.4	24.6	8.5 7.9	7.9	33.1 33.0	33.0	106.5 115.8	115.9	7.4 8.0	8.0		3.1 2.4	2.3		<2.5 <2.5	<2.5	
17-Nov-14	Sunny	Moderate	13:39	Middle	3	24.6 24.5	24.5	7.9 8.0	8.0	33.0 33.1	33.1	116.0 117.3	117.3	8.0 8.1	8.1	8.1	3.9	4.1	4.3	<2.5 <2.5	<2.5	3.0
	,			Bottom	5	24.5 24.4	24.4	8.0 8.0	8.0	33.1 33.2	33.3	117.3 117.7	117.8	8.1 8.1	8.2	8.2	4.3 6.3	6.5		<2.5 4	4.0	
				Surface	1	24.4	26.6	8.6	8.6	33.3 28.0	28.4	117.9 102.3	95.9	8.2 8.0	7.8		6.6 3.6	3.8		7	7.0	
19-Nov-14	Sunny	Moderate	16:01	Middle	3.5	24.9 26.5	25.9	8.6 8.3	8.2	28.8 29.2	29.2	89.5 83.0	82.2	7.5 6.9	6.9	7.4	3.9 2.8	2.6	3.8	7	4.5	5.2
13-1404-14	Juliny	woodcrate	10.01	Bottom	6	25.3 26.6	25.5	8.1 8.0	8.2	29.2 33.7	33.5	81.4 79.0	80.4	6.9 7.2	7.2	7.2	2.3 5.1	5.1	0.0	5 4	4.0	J. <u>Z</u>
				חוטווטם	б	24.3	25.5	8.3	0.2	33.2	აა.၁	81.7	00.4	7.2	1.2	1.2	5.0	5.1		4	4.0	

Water Quality Monitoring Results at GB3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСР	ar (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.3 23.7	24.0	7.9 7.9	7.9	26.7 27.2	27.0	115.2 118.1	116.7	8.3 8.6	8.5	8.6	2.8 2.8	2.8		3 3	3.0	
21-Nov-14	Sunny	Moderate	16:22	Middle	3.5	24.0 23.7	23.9	7.9 7.9	7.9	27.3 27.4	27.4	117.9 118.7	118.3	8.5 8.6	8.6	0.0	4.6 4.7	4.7	4.2	<2.5 <2.5	<2.5	3.2
				Bottom	6	23.9 23.7	23.8	7.9 7.9	7.9	26.6 27.5	27.1	118.5 118.9	118.7	8.6 8.6	8.6	8.6	5.0 4.9	5.0		4 4	4.0	
				Surface	1	27.7 26.7	27.2	8.5 8.5	8.5	28.8 30.6	29.7	117.7 116.6	117.2	7.9 7.9	7.9	7.8	3.4 3.0	3.2		<2.5 <2.5	<2.5	
24-Nov-14	Fine	Moderate	18:27	Middle	3.5	26.6 26.8	26.7	8.4 8.5	8.5	28.8 30.6	29.7	111.6 112.4	112.0	7.6 7.6	7.6	7.0	3.2 3.2	3.2	3.4	<2.5 <2.5	<2.5	3.0
				Bottom	6	27.2 26.6	26.9	8.5 8.4	8.5	30.5 30.6	30.6	113.8 108.3	111.1	7.6 7.3	7.5	7.5	3.8 3.7	3.8		4 4	4.0	
				Surface	1	23.9 23.9	23.9	8.0 8.0	8.0	28.1 28.5	28.3	100.4 100.1	100.3	7.2 7.2	7.2	7.2	1.2 1.2	1.2		<2.5 <2.5	<2.5	
26-Nov-14	Cloudy	Moderate	09:32	Middle	3.5	23.9 23.9	23.9	8.0 8.0	8.0	29.3 28.9	29.1	99.0 98.1	98.6	7.1 7.0	7.1	7.2	2.1 2.1	2.1	1.9	<2.5 <2.5	<2.5	2.8
				Bottom	6	23.9 23.9	23.9	8.0 8.0	8.0	29.3 29.0	29.2	99.0 98.0	98.5	7.1 7.0	7.1	7.1	2.2 2.4	2.3		3 4	3.5	
				Surface	1	23.6 23.6	23.6	7.7 7.8	7.8	32.4 31.2	31.8	104.4 104.2	104.3	7.4 7.4	7.4	7.3	3.8 3.9	3.9		6 6	6.0	
28-Nov-14	Cloudy	Moderate	10:55	Middle	3.5	23.6 23.6	23.6	7.9 7.9	7.9	32.5 32.5	32.5	102.3 102.3	102.3	7.2 7.2	7.2	7.0	4.2 4.5	4.4	4.3	4	4.0	4.8
				Bottom	6	23.6 23.6	23.6	7.9 7.9	7.9	32.5 32.5	32.5	100.5 100.3	100.4	7.1 7.1	7.1	7.1	4.6 4.6	4.6		4 5	4.5	

The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

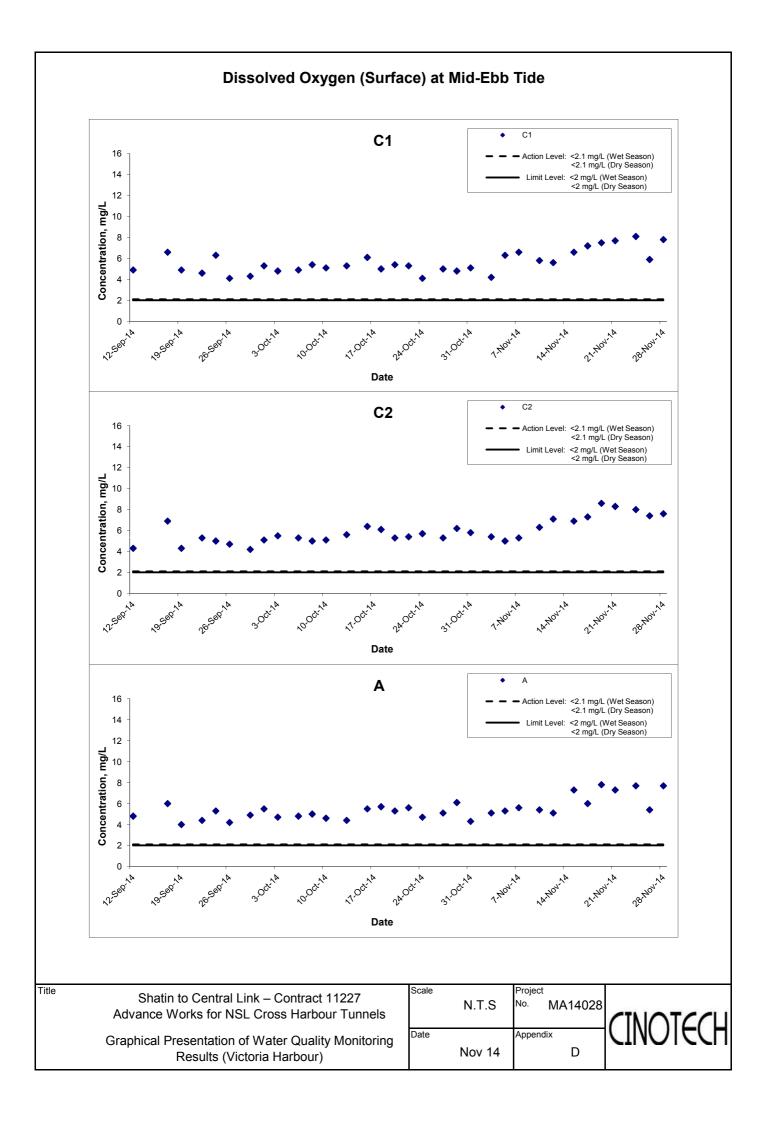
Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.4 25.6	25.5	7.8 7.8	7.8	28.6 28.7	28.7	82.9 82.3	82.6	5.8 5.7	5.8		2.1 2.1	2.1		3	3.0	
3-Nov-14	Cloudy	Moderate	09:37	Middle	4	26.3 26.1	26.2	7.9 7.9	7.9	28.9 28.9	28.9	79.3 80.1	79.7	5.4 5.5	5.5	5.7	3.3 3.3	3.3	3.3	5	5.0	4.3
				Bottom	7	26.5 26.6	26.6	8.1 8.1	8.1	29.0 29.0	29.0	78.9 78.7	78.8	5.4 5.4	5.4	5.4	4.5 4.6	4.6		5 5	5.0	
				Surface	1	26.6 26.6	26.6	7.9 7.9	7.9	30.9 30.9	30.9	98.9 98.6	98.8	6.7 6.7	6.7	0.0	2.9 2.8	2.9		<2.5 <2.5	<2.5	
5-Nov-14	Sunny	Moderate	10:32	Middle	4	26.6 26.6	26.6	7.9 7.9	7.9	31.1 31.1	31.1	95.2 95.2	95.2	6.4 6.4	6.4	6.6	3.0 3.0	3.0	3.0	3	3.0	2.7
				Bottom	7	26.6 26.6	26.6	7.9 7.9	7.9	31.1 31.2	31.2	87.7 87.9	87.8	5.9 5.9	5.9	5.9	3.1 3.2	3.2		<2.5 <2.5	<2.5	
				Surface	1	26.5 26.5	26.5	7.8 7.8	7.8	32.2 32.2	32.2	103.9 103.6	103.8	7.0 7.0	7.0	6.9	4.0 3.9	4.0		6 6	6.0	
7-Nov-14	Cloudy	Moderate	12:12	Middle	4	26.5 26.5	26.5	7.8 7.8	7.8	32.4 32.4	32.4	100.3 100.3	100.3	6.7 6.7	6.7	0.9	4.1 4.1	4.1	4.1	5 5	5.0	4.7
				Bottom	7	26.5 26.5	26.5	7.8 7.8	7.8	32.4 32.5	32.5	92.7 92.8	92.8	6.2 6.2	6.2	6.2	4.2 4.3	4.3		3	3.0	
				Surface	1	24.1 25.6	24.9	7.9 7.9	7.9	29.5 28.6	29.1	85.6 85.6	85.6	6.1 6.0	6.1	6.1	1.5 1.5	1.5		4	4.0	
10-Nov-14	Sunny	Moderate	14:29	Middle	4	25.5 25.6	25.6	7.9 7.9	7.9	30.5 30.6	30.6	87.7 85.8	86.8	6.0 5.9	6.0	0.1	3.8 3.7	3.8	4.2	3 3	3.0	4.5
				Bottom	7	25.1 25.2	25.2	7.9 7.9	7.9	29.1 29.5	29.3	84.7 84.6	84.7	5.9 5.9	5.9	5.9	7.2 7.1	7.2		6 7	6.5	
				Surface	1	25.5 25.5	25.5	8.2 8.2	8.2	28.2 28.2	28.2	84.1 84.0	84.1	5.9 5.9	5.9	6.0	2.5 2.6	2.6		<2.5 <2.5	<2.5	
12-Nov-14	Sunny	Moderate	15:08	Middle	4	25.5 25.5	25.5	8.2 8.2	8.2	28.3 28.3	28.3	84.9 85.3	85.1	5.9 6.0	6.0		3.9 4.0	4.0	3.8	3	3.0	3.7
				Bottom	7	25.5 25.5	25.5	8.2 8.2	8.2	28.4 28.4	28.4	85.5 85.5	85.5	6.0 6.0	6.0	6.0	4.8 4.8	4.8		5 6	5.5	
				Surface	1	22.9 23.0	23.0	8.1 8.1	8.1	27.8 27.8	27.8	89.1 82.8	86.0	6.5 6.1	6.3	6.3	2.9 2.9	2.9		<2.5 <2.5	<2.5	
15-Nov-14	Fine	Moderate	06:15	Middle	4	23.7 23.5	23.6	8.4 8.4	8.4	28.0	28.0	86.0 84.3	85.2	6.2 6.1	6.2		2.2	2.4	3.7	3	3.0	3.8
				Bottom	7	23.9 23.9	23.9	8.2 8.3	8.3	28.1 28.1	28.1	86.6 85.9	86.3	6.2 6.2	6.2	6.2	5.7 6.1	5.9		6	6.0	
				Surface	1	21.4 22.1	21.8	8.0 7.5	7.8	30.3 29.3	29.8	102.4 99.3	100.9	7.6 7.3	7.5	7.0	2.1 2.1	2.1		<2.5 <2.5	<2.5	
17-Nov-14	Sunny	Moderate	09:05	Middle	4	23.9	23.9	7.9 7.7	7.8	30.4	30.4	90.5 90.8	90.7	6.4 6.5	6.5		3.7	3.8	3.6	<2.5 <2.5	<2.5	3.0
				Bottom	7	24.2 24.3	24.3	7.9 7.9	7.9	30.4 30.4	30.4	89.5 89.1	89.3	6.3 6.3	6.3	6.3	4.8 4.7	4.8		4 4	4.0	
				Surface	1	23.2 24.2	23.7	8.2 8.2	8.2	33.5 33.8	33.7	117.6 117.3	117.5	8.3 8.1	8.2	8.1	1.6 1.6	1.6		<2.5 <2.5	<2.5	
19-Nov-14	Sunny	Moderate	10:41	Middle	4	24.1 24.3	24.2	8.2 8.2	8.2	33.3 33.6	33.5	115.6 115.9	115.8	8.0 8.0	8.0		3.6 3.6	3.6	3.4	4 4 4	4.0	3.5
				Bottom	7	24.2 24.3	24.3	8.2 8.2	8.2	33.2 33.5	33.4	114.2 115.9	115.1	7.9 8.0	8.0	8.0	5.0 4.7	4.9		4	4.0	

Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

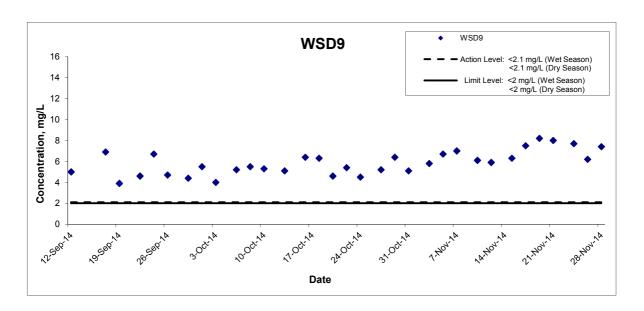
Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.4 24.2	24.3	8.2 8.2	8.2	30.6 29.3	30.0	110.9 113.6	112.3	7.8 8.1	8.0	8.0	2.7 2.9	2.8		<2.5 <2.5	<2.5	
21-Nov-14	Sunny	Moderate	11:52	Middle	4	24.4 24.2	24.3	8.2 8.2	8.2	31.6 31.6	31.6	113.5 114.9	114.2	7.9 8.0	8.0	6.0	3.0 3.3	3.2	3.0	4	4.0	3.2
				Bottom	7	24.1 24.1	24.1	8.2 8.2	8.2	31.7 31.6	31.7	114.3 115.3	114.8	8.0 8.1	8.1	8.1	2.8 2.9	2.9		3	3.0	
				Surface	1	24.6 24.7	24.7	8.4 8.4	8.4	33.4 33.6	33.5	111.3 111.5	111.4	7.7 7.7	7.7	7.6	2.4 2.3	2.4		<2.5 <2.5	<2.5	
24-Nov-14	Sunny	Moderate	12:47	Middle	4	24.4 24.5	24.5	8.4 8.4	8.4	33.8 33.8	33.8	108.7 109.2	109.0	7.5 7.5	7.5	7.0	4.6 4.9	4.8	4.7	<2.5 3	2.8	3.1
				Bottom	7	24.3 24.4	24.4	8.4 8.4	8.4	33.8 33.7	33.8	107.2 107.2	107.2	7.4 7.4	7.4	7.4	6.9 6.8	6.9		4 4	4.0	
				Surface	1	24.7 24.7	24.7	8.2 8.1	8.2	29.8 29.8	29.8	88.0 87.9	88.0	6.2 6.2	6.2	6.3	2.2 2.3	2.3		3	3.0	
26-Nov-14	Cloudy	Moderate	14:28	Middle	4	24.7 24.7	24.7	8.2 8.2	8.2	29.9 29.9	29.9	88.8 89.2	89.0	6.2 6.3	6.3	0.5	3.5 3.5	3.5	3.6	<2.5 <2.5	<2.5	4.2
				Bottom	7	24.7 24.7	24.7	8.2 8.2	8.2	30.0 30.0	30.0	89.4 89.4	89.4	6.3 6.3	6.3	6.3	4.9 4.9	4.9		7 7	7.0	
				Surface	1	23.8 23.9	23.9	8.3 8.3	8.3	29.2 29.4	29.3	103.1 101.9	102.5	7.4 7.3	7.4	7.0	1.8 1.8	1.8		4	4.0	
28-Nov-14	Cloudy	Moderate	16:41	Middle	4	24.1 24.1	24.1	8.3 8.3	8.3	32.9 32.8	32.9	92.9 92.9	92.9	6.5 6.5	6.5	7.0	2.5 2.6	2.6	2.7	5 5	5.0	4.2
				Bottom	7	24.0 23.8	23.9	8.3 8.3	8.3	33.3 33.4	33.4	101.2 100.9	101.1	7.0 7.0	7.0	7.0	3.6 3.7	3.7		4 3	3.5	

The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

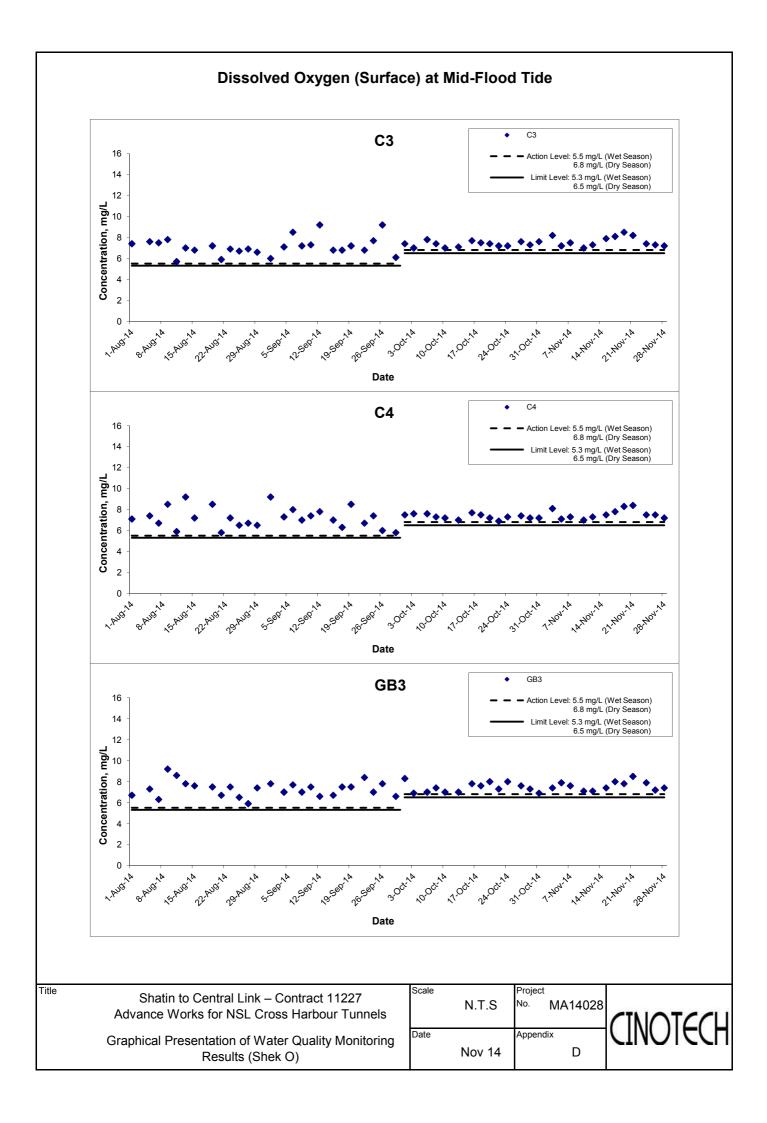
Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

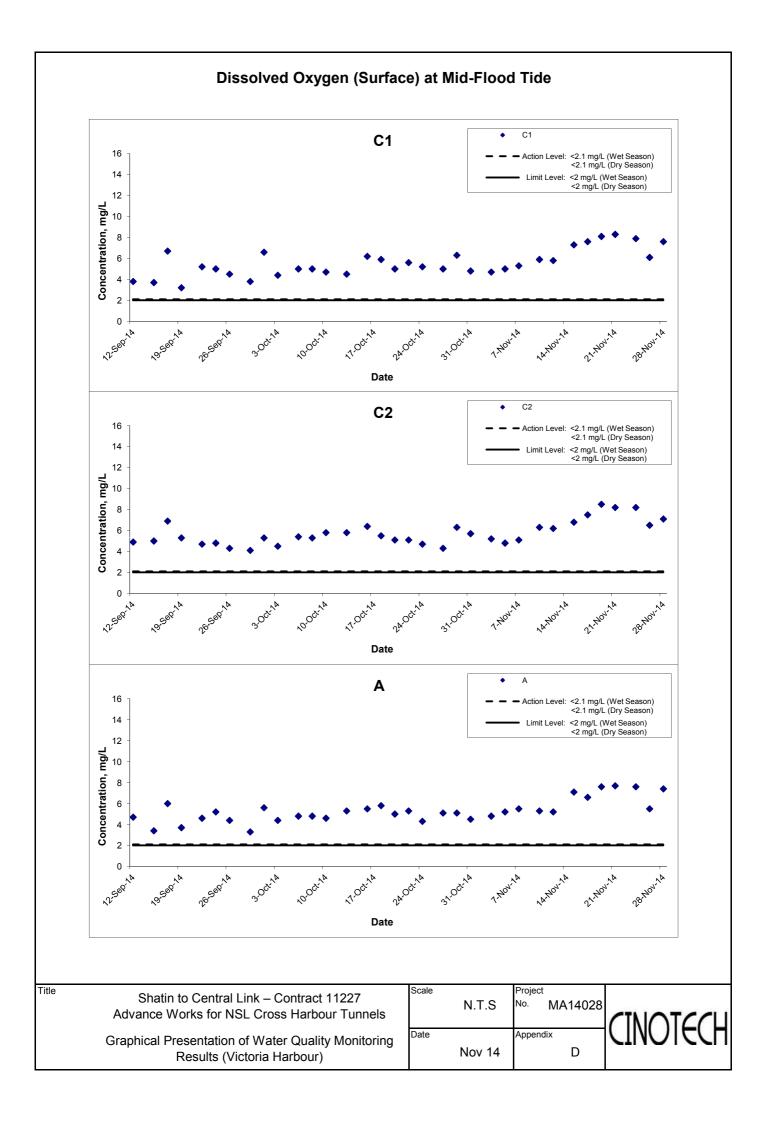

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.9 26.0	26.0	7.6 7.6	7.6	27.9 28.0	28.0	76.3 75.6	76.0	5.3 5.2	5.3		2.6	2.7		5 5	5.0	
3-Nov-14	Cloudy	Moderate	14:33	Middle	4.5	26.5 26.4	26.5	7.8 7.8	7.8	28.1 28.1	28.1	73.6 73.9	73.8	5.2 5.1 5.1	5.1	5.2	2.7 3.9 3.9	3.9	3.7	4 4	4.0	4.7
				Bottom	8	26.6 26.6	26.6	8.1 8.1	8.1	28.2	28.2	73.1 73.0	73.1	5.0 5.0	5.0	5.0	4.5 4.6	4.6		5	5.0	
				Surface	1	26.2	26.2	7.6	7.6	31.5	31.5	76.7	76.7	5.2	5.2		3.9	4.0	1	4	4.0	
5-Nov-14	Sunny	Moderate	16:11	Middle	4	26.2 26.2 26.2	26.2	7.6 7.6 7.6	7.6	31.5 31.8 31.8	31.8	76.7 75.8 75.6	75.7	5.2 5.1 5.1	5.1	5.2	4.0 4.3 4.2	4.3	4.2	4 5	4.5	4.7
				Bottom	7	26.2 26.2 26.2	26.2	7.6 7.6 7.6	7.6	31.8 31.9	31.9	66.6 66.3	66.5	4.5 4.5	4.5	4.5	4.4 4.3	4.4		5	5.5	
				Surface	1	25.1 25.1	25.1	7.4 7.4	7.4	31.5 31.5	31.5	79.6 79.6	79.6	5.5 5.5	5.5		4.8 4.8	4.8		3 3	3.0	
7-Nov-14	Cloudy	Moderate	17:23	Middle	4	25.1 25.1 25.1	25.1	7.4 7.4 7.4	7.4	31.8 31.8	31.8	78.7 78.6	78.7	5.4 5.4	5.4	5.5	5.2 5.2	5.2	5.0	4	4.0	4.0
				Bottom	7	25.1 25.1	25.1	7.4 7.4	7.4	31.8 31.9	31.9	69.7 69.4	69.6	4.8 4.8	4.8	4.8	5.0 5.0	5.0		5	5.0	
				Surface	1	25.5 25.6	25.6	8.1 8.1	8.1	29.5 26.4	28.0	81.3 78.4	79.9	5.6 5.5	5.6	5.6	3.0 3.1	3.1		5 5	5.0	
10-Nov-14	Sunny	Moderate	09:16	Middle	4	25.6 25.6	25.6	8.1 8.1	8.1	29.5 29.5	29.5	78.5 79.0	78.8	5.4 5.5	5.5	5.0	3.6 3.6	3.6	4.0	3 4	3.5	4.2
				Bottom	7	25.6 25.6	25.6	8.1 8.1	8.1	29.5 29.6	29.6	78.4 78.7	78.6	5.4 5.4	5.4	5.4	5.2 5.2	5.2		4 4	4.0	
				Surface	1	25.6 25.6	25.6	8.2 8.2	8.2	28.3 28.3	28.3	82.4 82.3	82.4	5.7 5.7	5.7	F 7	2.7 2.5	2.6		6	6.0	
12-Nov-14	Sunny	Moderate	11:12	Middle	4	25.6 25.6	25.6	8.2 8.2	8.2	28.5 28.5	28.5	82.4 82.4	82.4	5.7 5.7	5.7	5.7	3.7 3.8	3.8	3.6	3	3.0	4.7
				Bottom	7	25.6 25.6	25.6	8.2 8.2	8.2	28.5 28.5	28.5	82.4 82.4	82.4	5.7 5.7	5.7	5.7	4.3 4.4	4.4		5 5	5.0	
				Surface	1	23.3 23.4	23.4	8.3 8.3	8.3	27.0 27.1	27.1	87.4 86.5	87.0	6.4 6.3	6.4	6.4	3.7 3.4	3.6		6 5	5.5	
15-Nov-14	Sunny	Moderate	14:16	Middle	4.5	23.9 23.8	23.9	8.4 8.4	8.4	27.3 27.3	27.3	89.3 87.6	88.5	6.4 6.3	6.4	0.4	3.9 4.1	4.0	4.1	<2.5 <2.5	<2.5	3.7
				Bottom	8	23.9 23.9	23.9	8.5 8.5	8.5	27.3 27.4	27.4	88.3 88.1	88.2	6.4 6.4	6.4	6.4	4.4 4.8	4.6		3	3.0	
				Surface	1	23.9 24.0	24.0	8.4 8.4	8.4	30.7 30.5	30.6	107.7 106.5	107.1	7.6 7.5	7.6	7.5	2.2 2.2	2.2		3	3.0	
17-Nov-14	Sunny	Moderate	14:29	Middle	4	24.5 24.5	24.5	8.4 8.4	8.4	31.5 31.3	31.4	104.6 104.9	104.8	7.3 7.3	7.3		3.3 3.4	3.4	3.2	3	3.0	2.8
				Bottom	7	24.6 24.6	24.6	8.4 8.4	8.4	32.1 32.2	32.2	103.8 103.6	103.7	7.2 7.2	7.2	7.2	4.1	4.1		<2.5 <2.5	<2.5	
				Surface	1	23.6 24.3	24.0	8.2 8.2	8.2	33.1 32.6	32.9	120.6 122.6	121.6	8.5 8.5	8.5	8.5	3.9 3.4	3.7		3	3.0	
19-Nov-14	Sunny	Moderate	15:38	Middle	4	24.1 24.5	24.3	8.2 8.2	8.2	33.1 33.3	33.2	122.3 121.4	121.9	8.5 8.4	8.5		4.1 4.5	4.3	4.5	3	3.0	3.7
				Bottom	7	24.3 24.5	24.4	8.2 8.2	8.2	33.3 33.4	33.4	121.8 121.2	121.5	8.4 8.4	8.4	8.4	5.9 5.2	5.6		5 5	5.0	

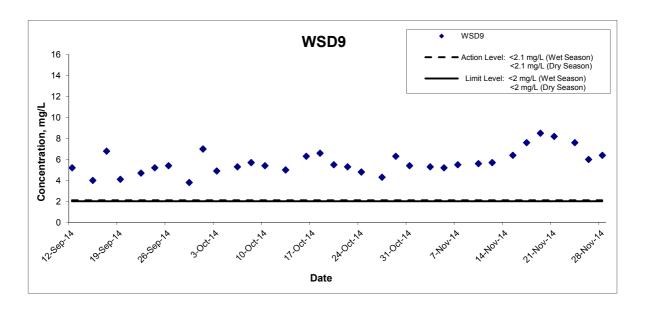
Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

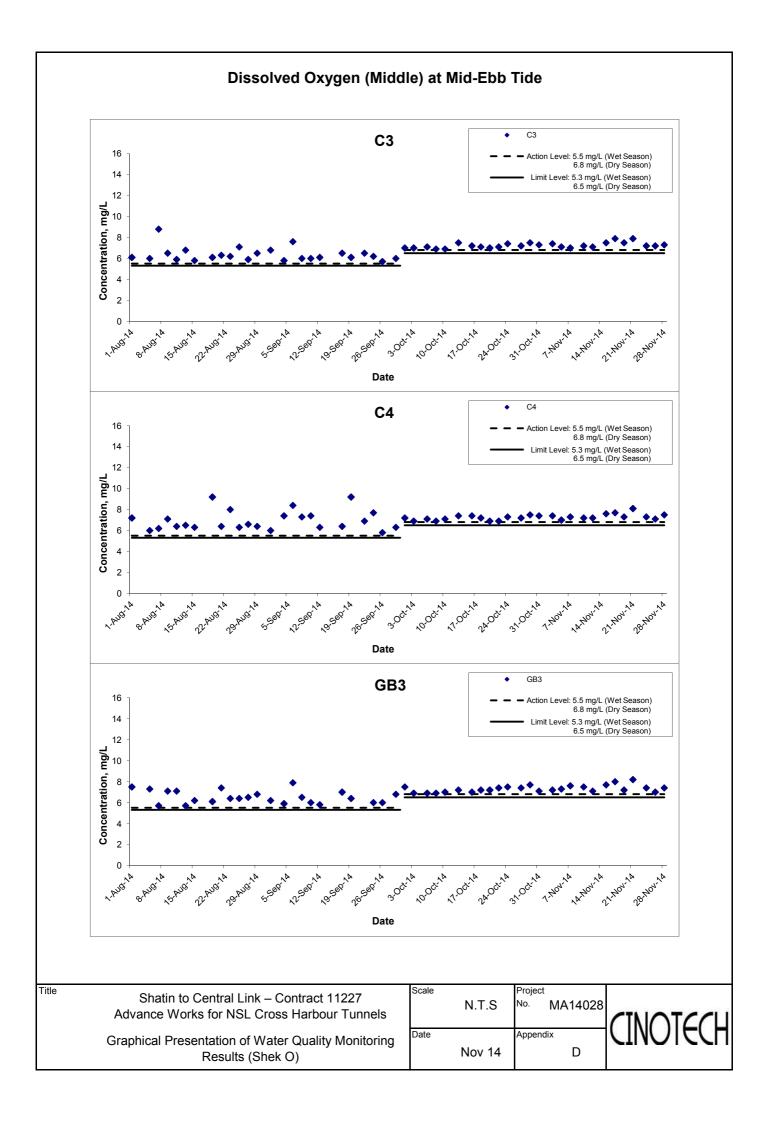

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	7	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Вері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.4 24.3	23.9	8.2 8.2	8.2	32.0 31.7	31.9	116.5 116.4	116.5	8.3 8.1	8.2	8.2	1.5 1.5	1.5		3 3	3.0	
21-Nov-14	Sunny	Moderate	16:35	Middle	4	24.1 24.3	24.2	8.2 8.2	8.2	31.9 31.7	31.8	117.0 116.4	116.7	8.2 8.1	8.2	0.2	2.8 2.8	2.8	2.6	<2.5 <2.5	<2.5	2.7
				Bottom	7	24.3 24.3	24.3	8.2 8.2	8.2	31.9 31.8	31.9	115.5 115.7	115.6	8.1 8.1	8.1	8.1	3.3 3.9	3.6		<2.5 <2.5	<2.5	
				Surface	1	23.7 23.9	23.8	8.4 8.4	8.4	33.5 33.8	33.7	108.5 109.1	108.8	7.6 7.6	7.6	7.6	4.0 4.2	4.1		5 5	5.0	
24-Nov-14	Fine	Moderate	18:02	Middle	4	23.3 23.4	23.4	8.4 8.4	8.4	34.0 34.0	34.0	108.1 108.4	108.3	7.6 7.6	7.6	7.0	4.7 5.2	5.0	5.0	<2.5 <2.5	<2.5	3.3
				Bottom	7	23.2 23.4	23.3	8.4 8.4	8.4	34.0 33.9	34.0	108.0 108.5	108.3	7.6 7.6	7.6	7.6	6.1 5.7	5.9		<2.5 <2.5	<2.5	
				Surface	1	24.8 24.8	24.8	8.1 8.1	8.1	29.9 30.0	30.0	86.3 86.2	86.3	6.0 6.0	6.0	6.0	2.4 2.4	2.4		3	3.0	
26-Nov-14	Cloudy	Moderate	09:40	Middle	4	24.8 24.8	24.8	8.1 8.1	8.1	30.1 30.1	30.1	86.3 86.3	86.3	6.0 6.0	6.0	0.0	3.6 3.6	3.6	3.5	<2.5 <2.5	<2.5	3.5
				Bottom	7	24.8 24.8	24.8	8.1 8.1	8.1	30.1 30.2	30.2	86.3 86.3	86.3	6.0 6.0	6.0	6.0	4.3 4.4	4.4		5 5	5.0	
				Surface	1	23.6 23.7	23.7	8.3 8.3	8.3	32.7 32.8	32.8	91.3 90.8	91.1	6.4 6.4	6.4	6.2	2.4 2.3	2.4		4	4.0	
28-Nov-14	Cloudy	Moderate	10:46	Middle	4.5	24.1 24.1	24.1	8.3 8.3	8.3	33.0 33.0	33.0	86.4 86.5	86.5	6.0 6.0	6.0	J.Z	3.2 3.2	3.2	3.1	3 3	3.0	4.5
				Bottom	8	24.1 24.1	24.1	8.3 8.3	8.3	33.1 33.1	33.1	85.9 85.9	85.9	6.0 6.0	6.0	6.0	3.8 3.8	3.8		6 7	6.5	

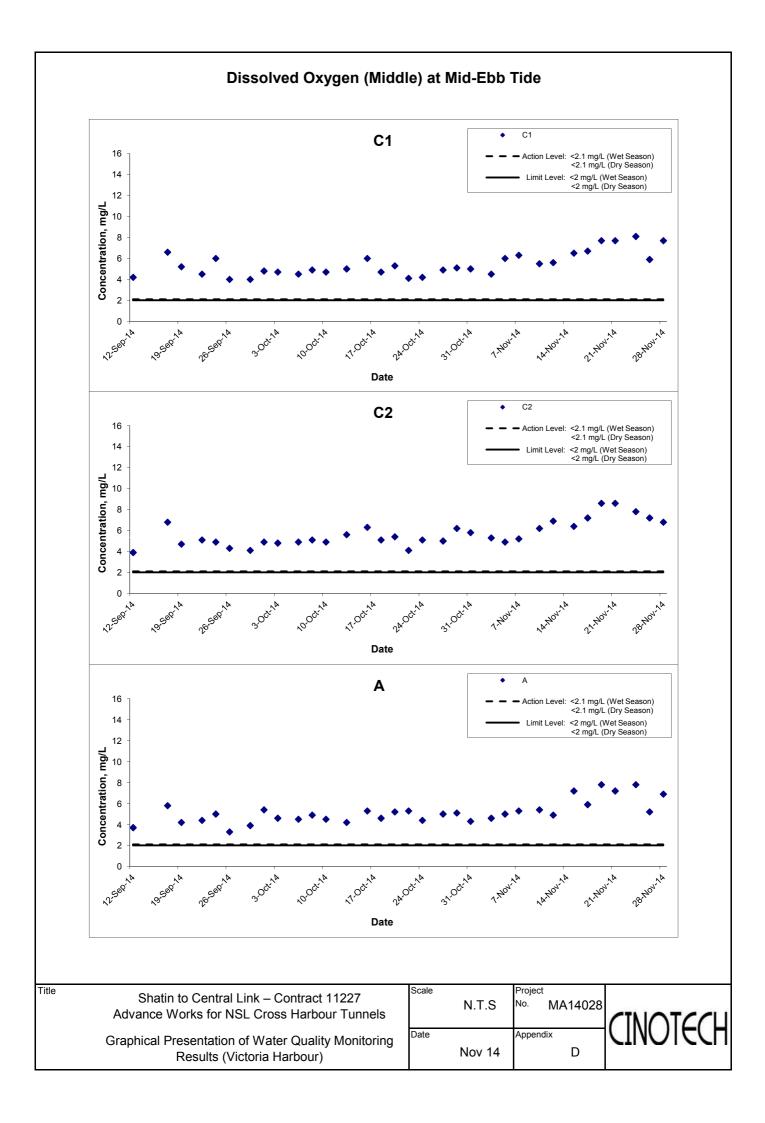
The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

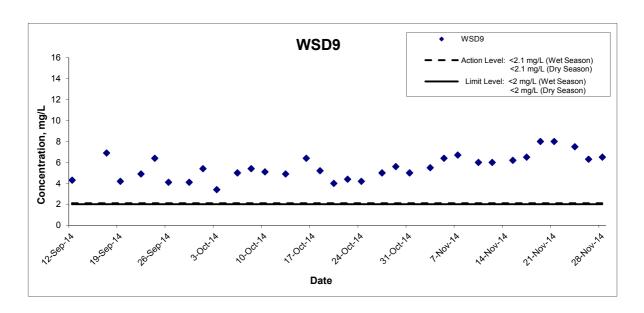


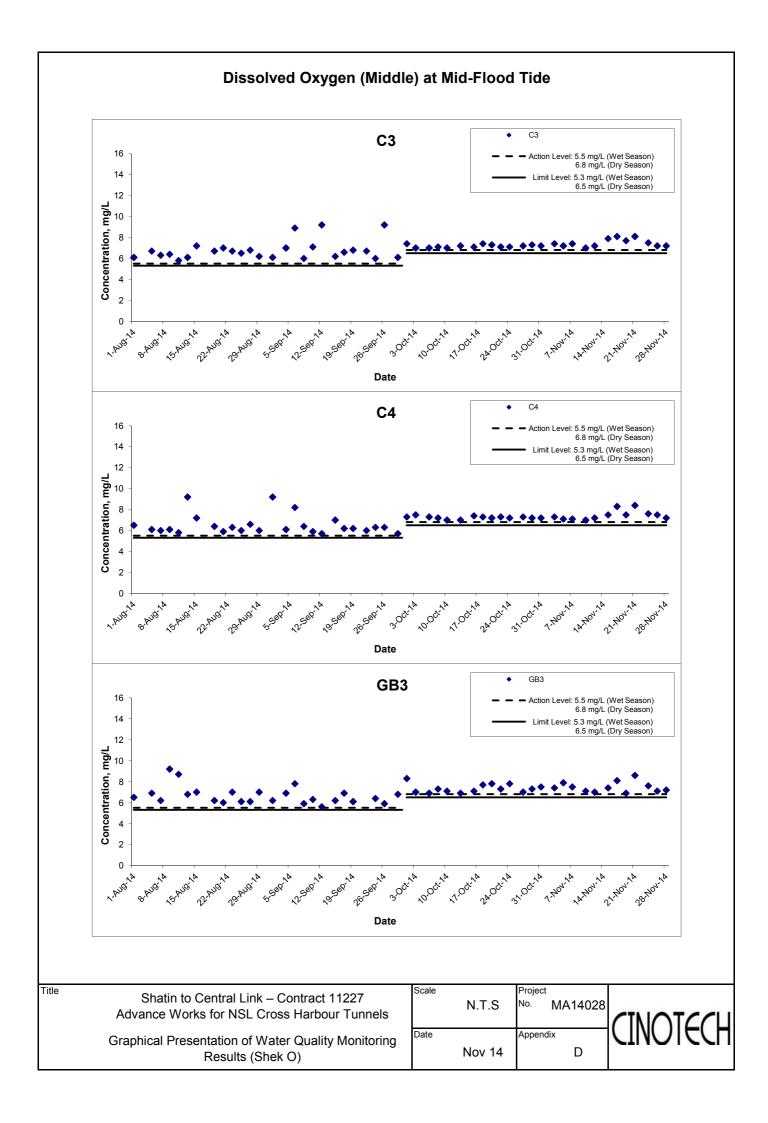

Dissolved Oxygen (Surface) at Mid-Ebb Tide

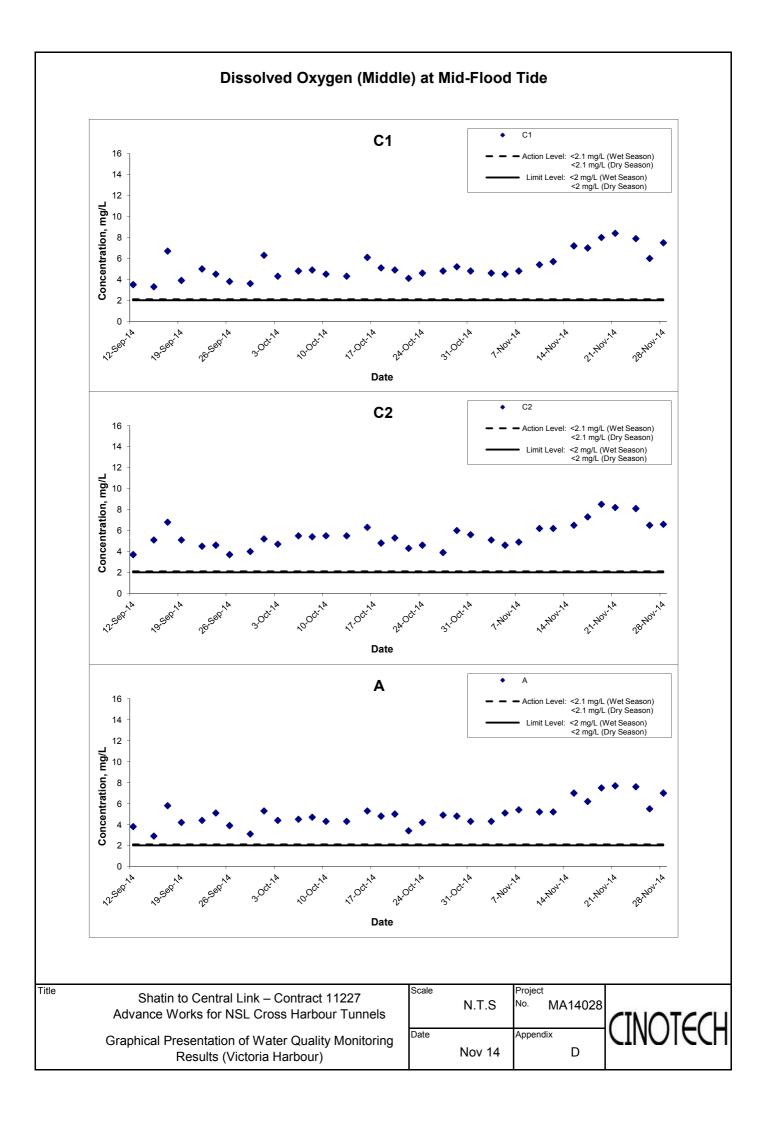

Scale		Projec	t
	N.T.S	No.	MA14028
Date		Appen	dix
	Nov 14		D

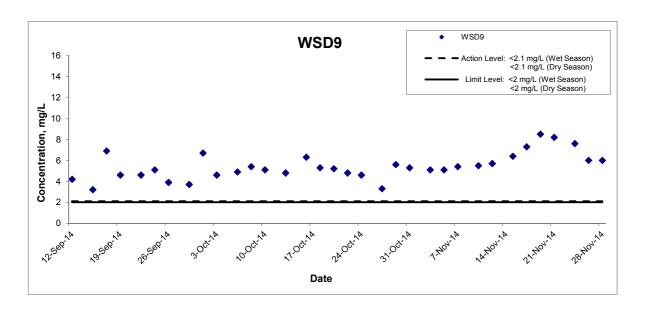


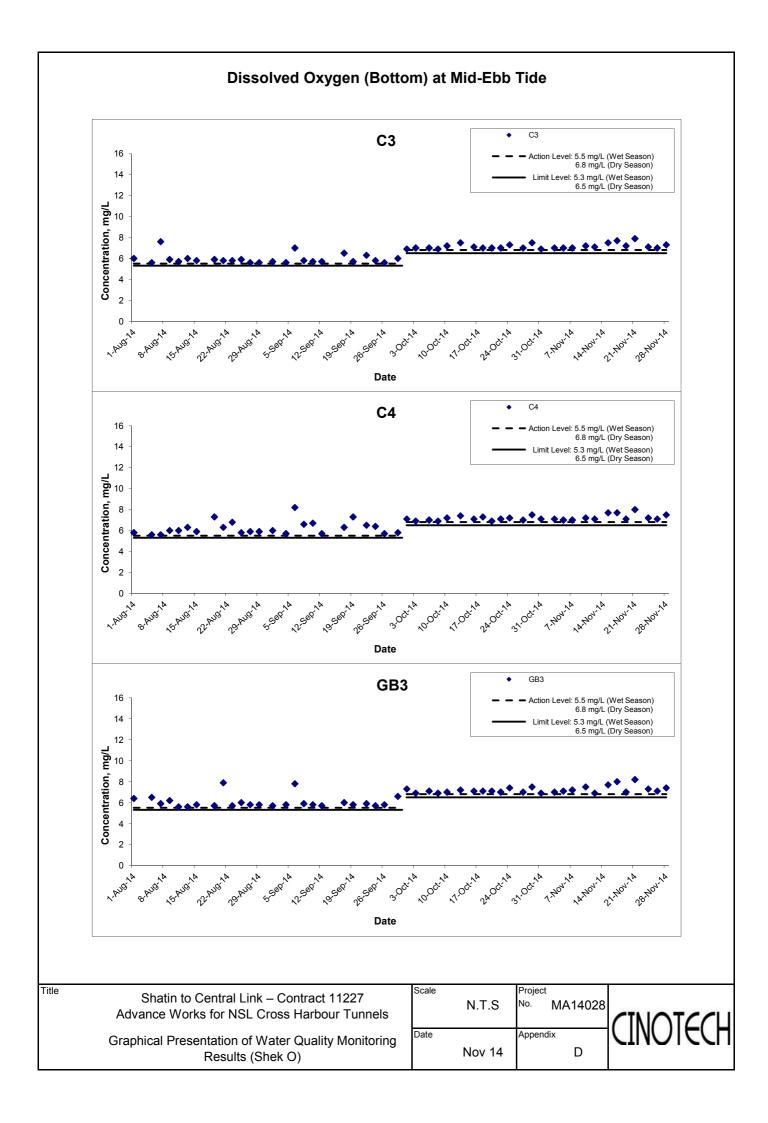

Dissolved Oxygen (Surface) at Mid-Flood Tide

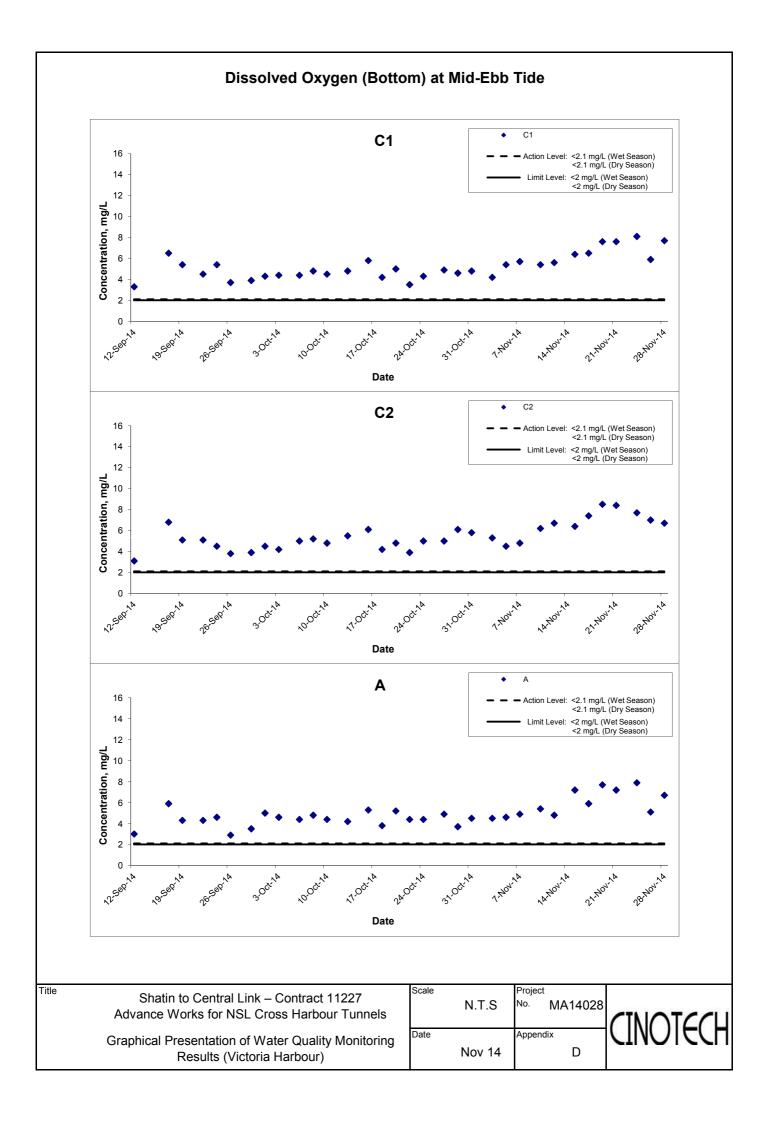

Scale		Project
	N.T.S	No. MA14028
Date		Appendix
	Nov 14	D

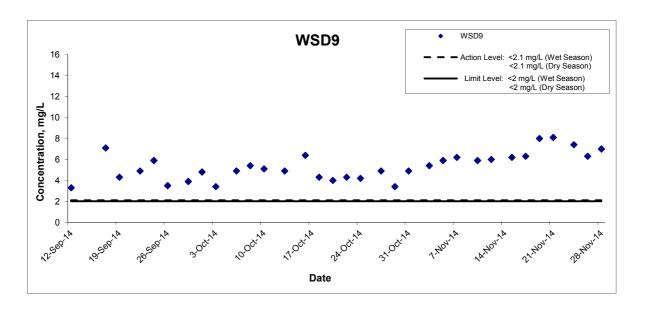


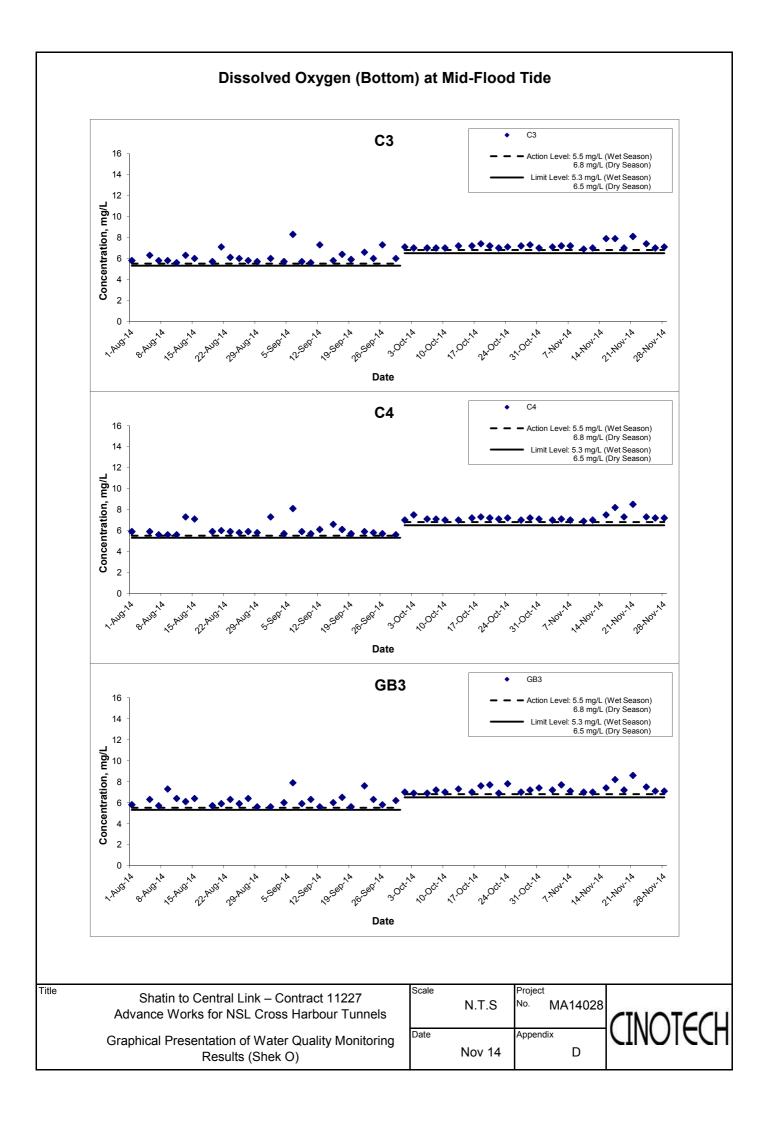

Dissolved Oxygen (Middle) at Mid-Ebb Tide

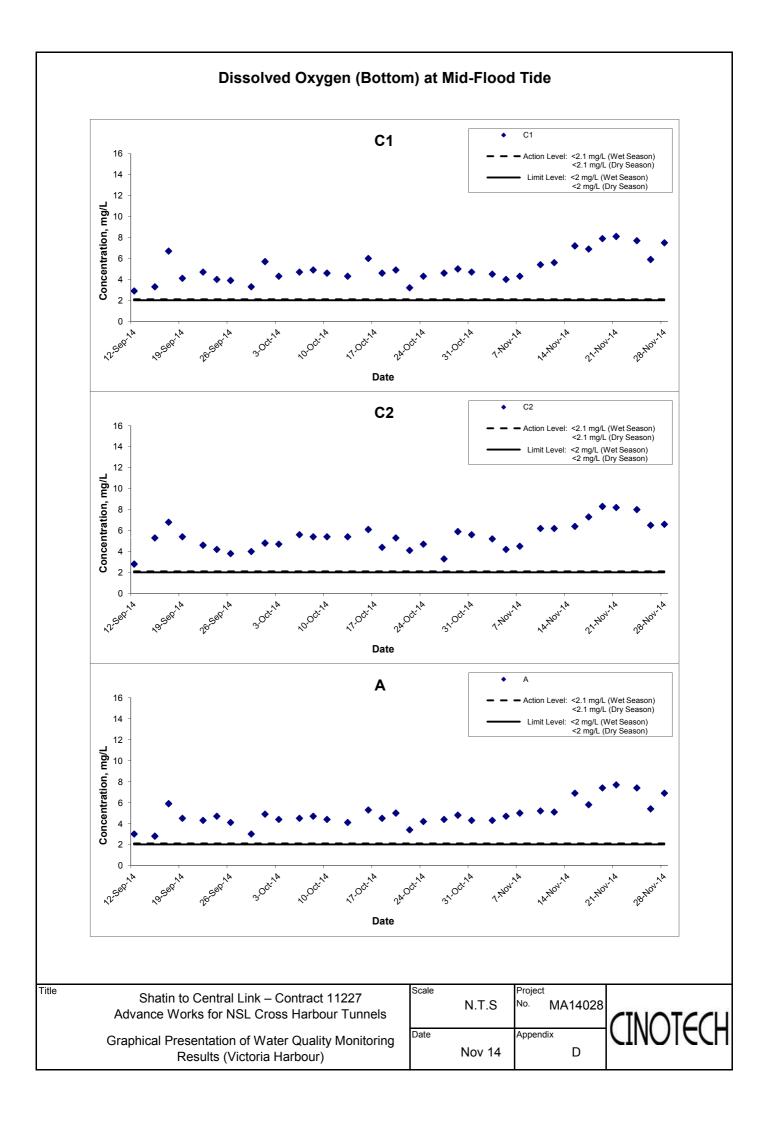

Scale		Projec	ct
	N.T.S	No.	MA14028
Date		Apper	ndix
	Nov 14		D



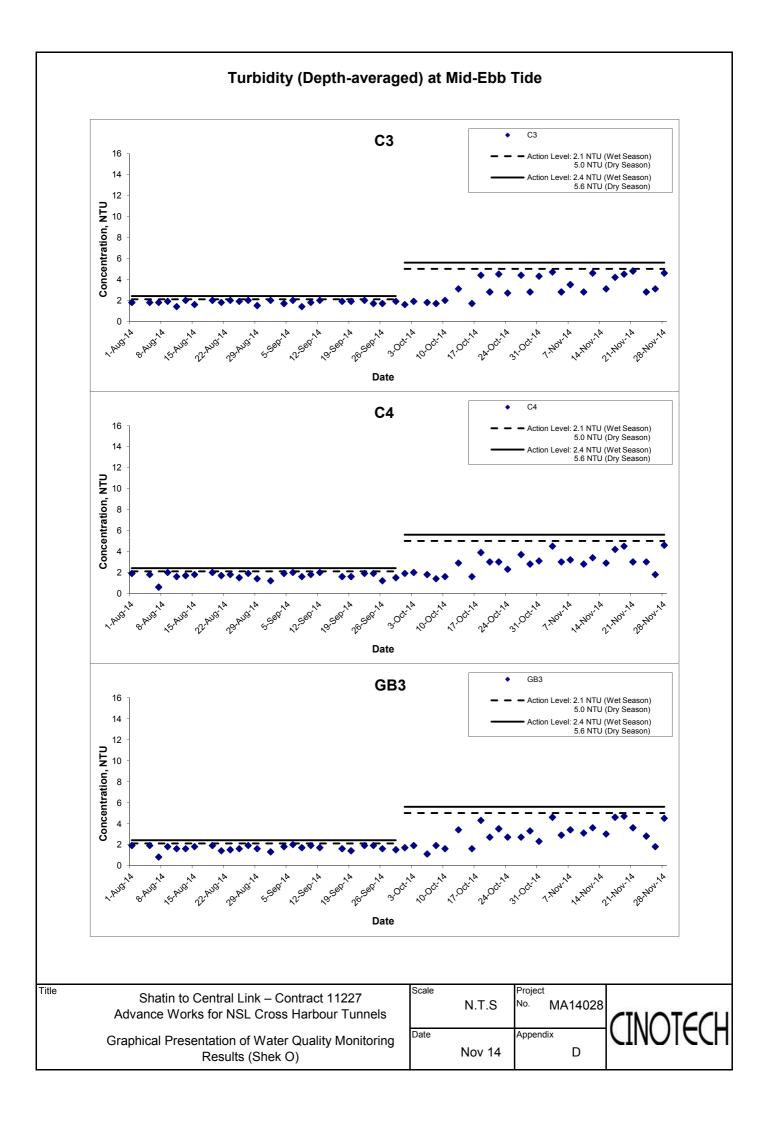

Dissolved Oxygen (Middle) at Mid-Flood Tide

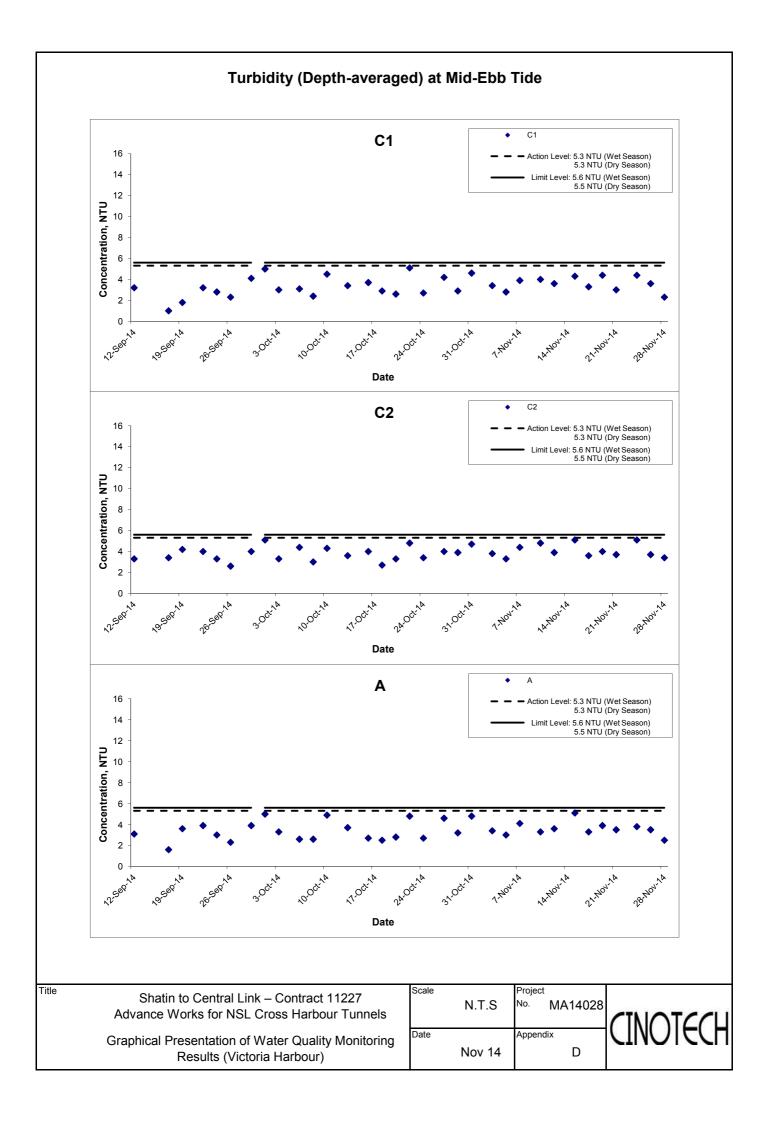

Scale		Projec	ot
	N.T.S	No.	MA14028
Date		Apper	ndix
	Nov 14		D

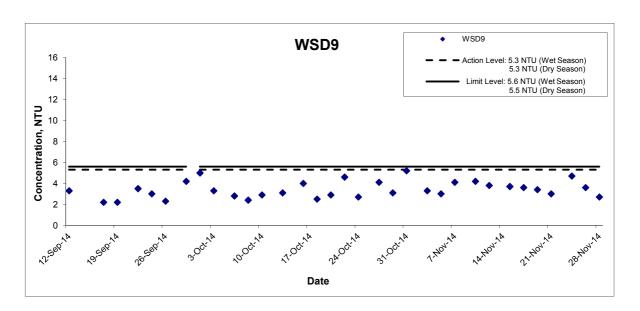


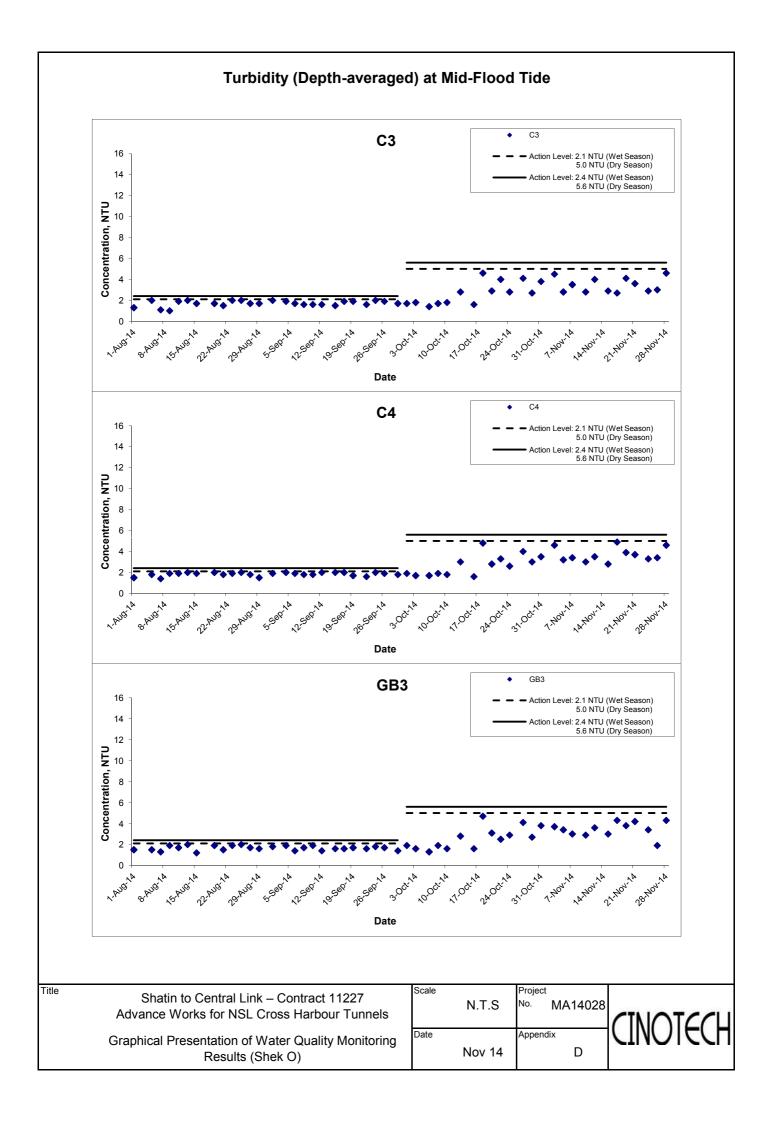

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

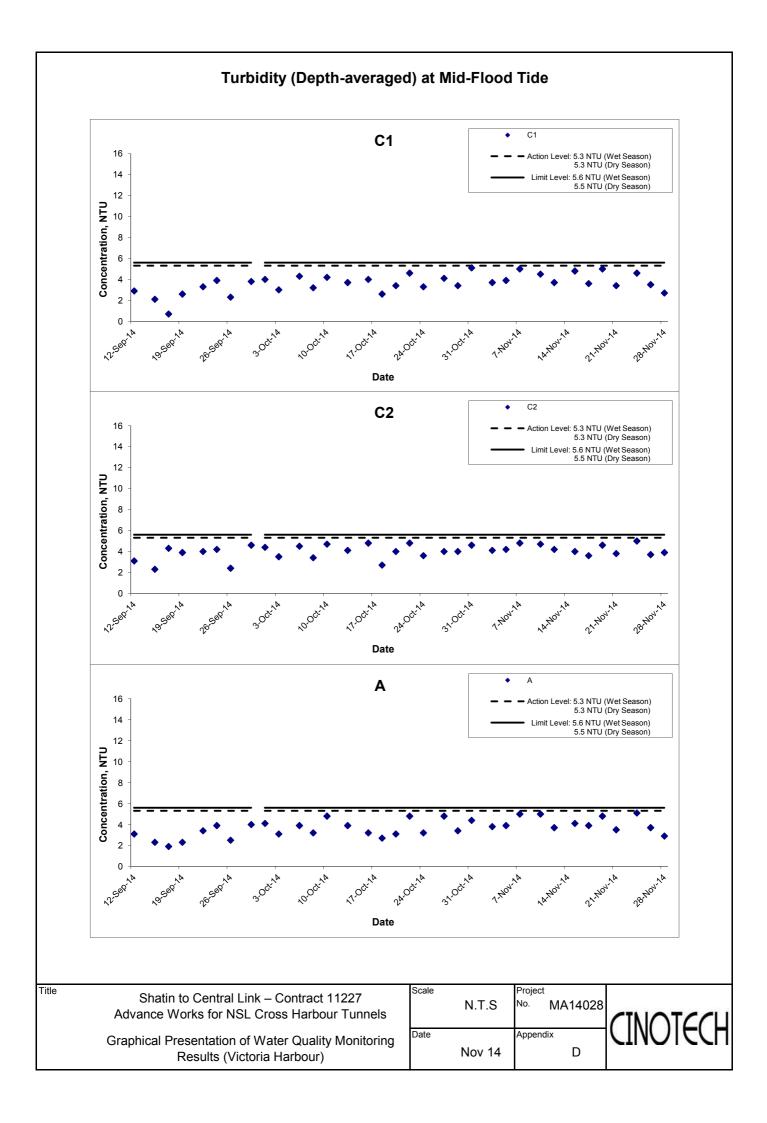
Shatin to Central Link – Contract 11227
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results (Victoria Harbour)

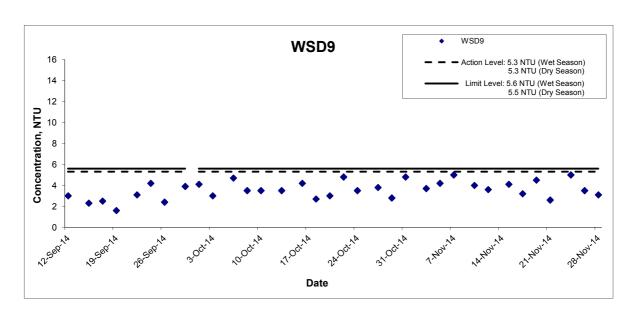


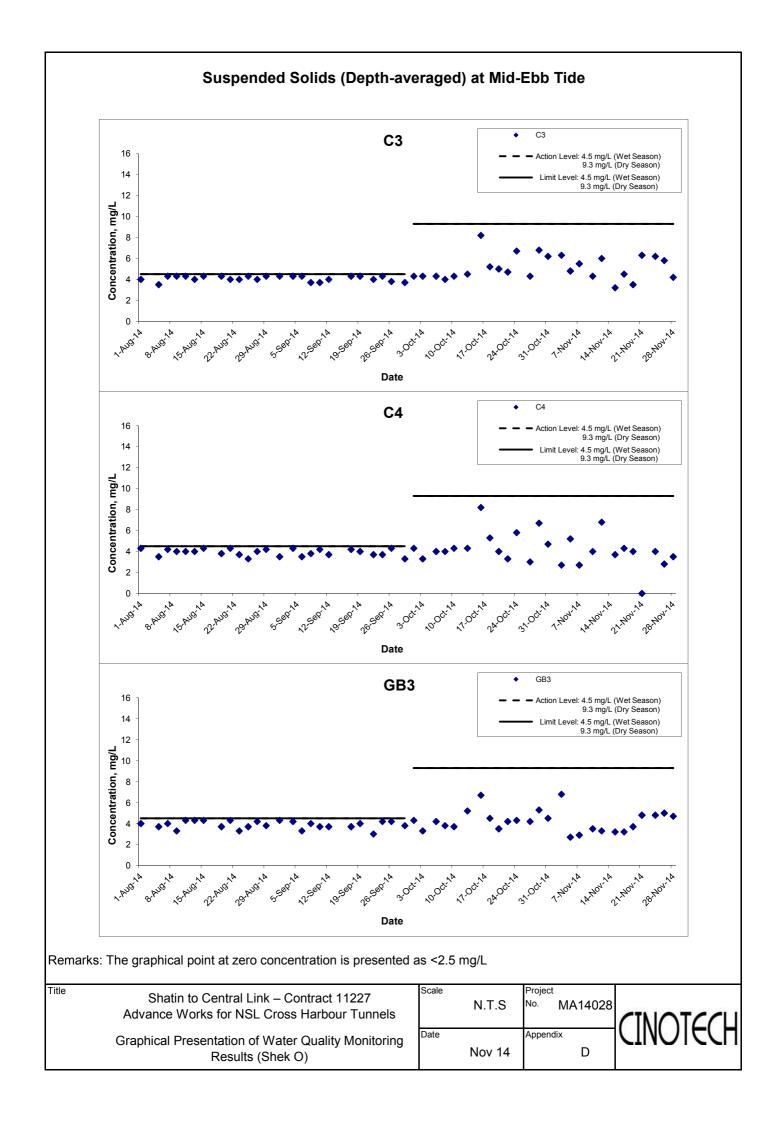

Dissolved Oxygen (Bottom) at Mid-Flood Tide

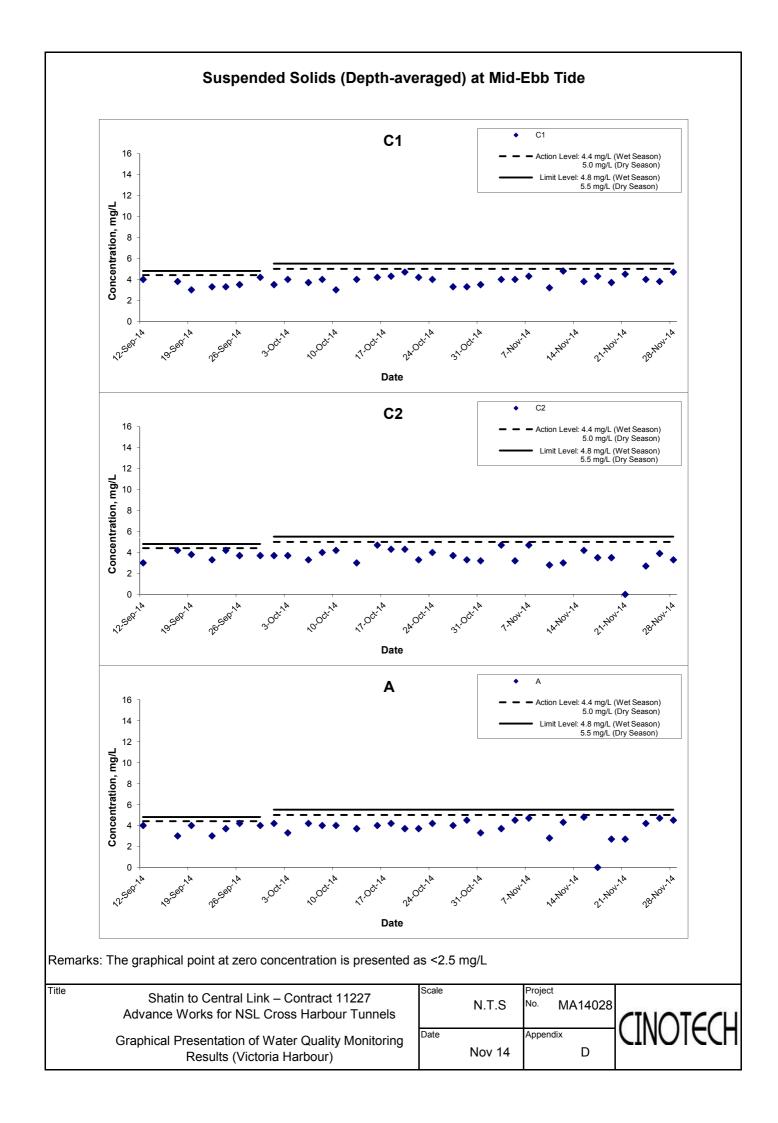

Scale		Project	
	N.T.S	No.	MA14028
Date		Append	lix
	Nov 14		D

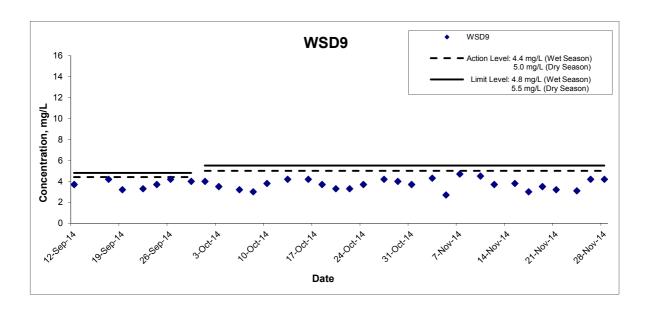



Turbidity (Depth-averaged) at Mid-Ebb Tide

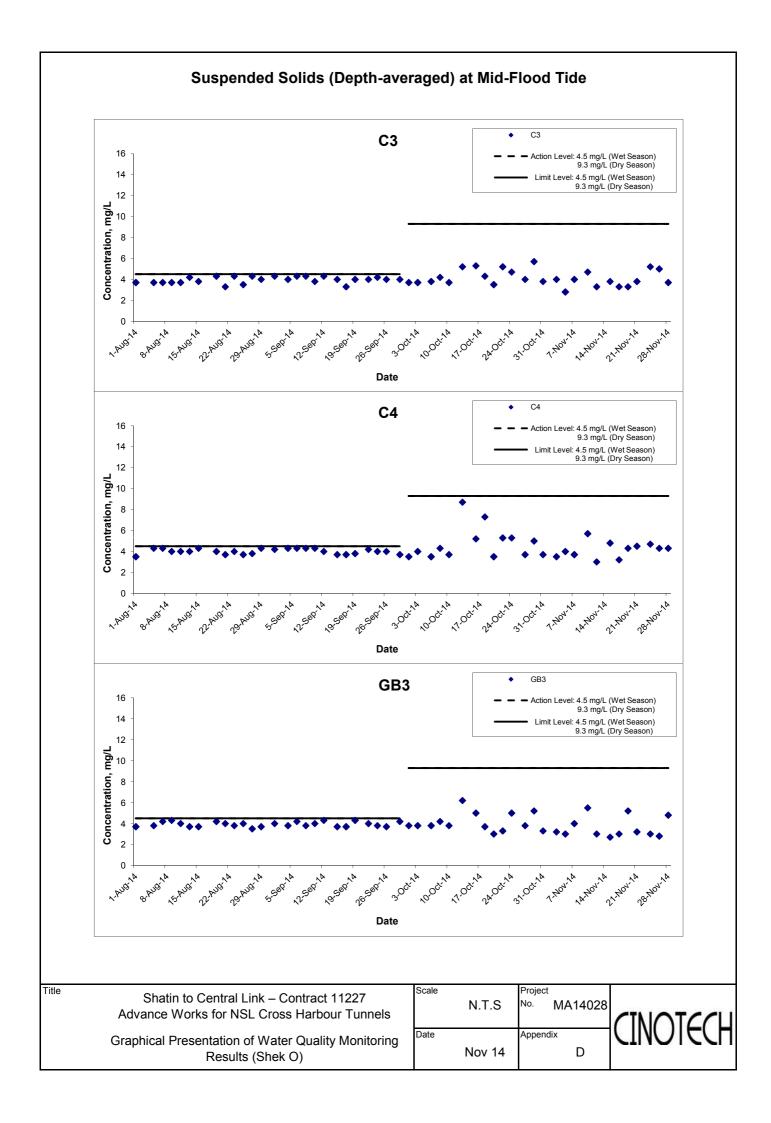

Scale		Projec	ct
	N.T.S	No.	MA14028
Date		Apper	ndix
	Nov 14		D

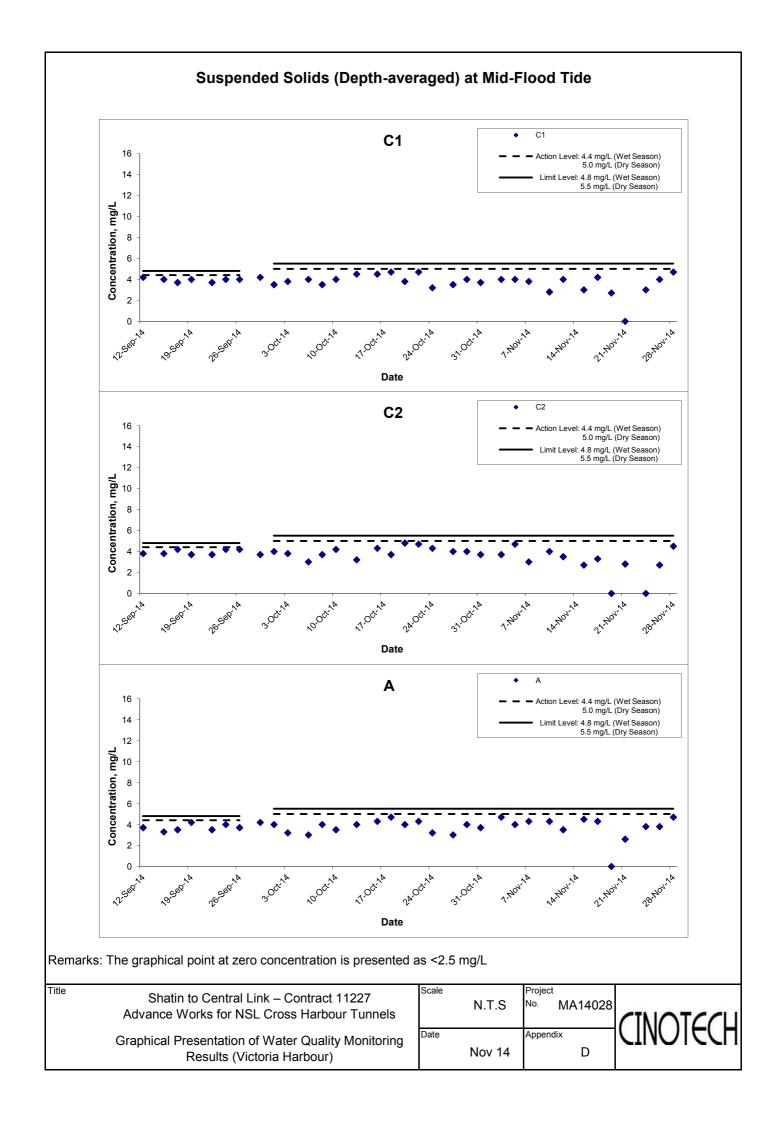



Turbidity (Depth-averaged) at Mid-Flood Tide

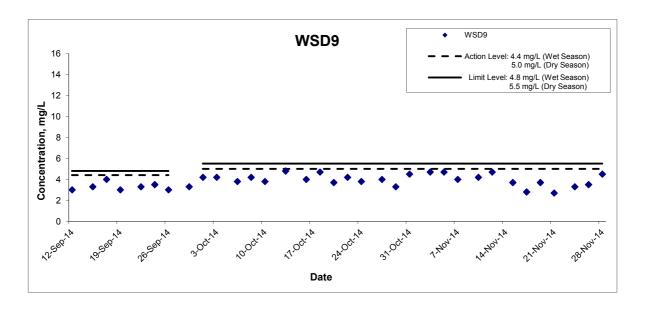

Scale		Project	
	N.T.S	No.	MA14028
Date		Appendix	
	Nov 14		D

Suspended Solids (Depth-averaged) at Mid-Ebb Tide




Shatin to Central Link – Contract 11227
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results (Victoria Harbour)

 N.T.S
 Project No.
 MA14028


 Date
 Appendix
 D

Suspended Solids (Depth-averaged) at Mid-Flood Tide

Scale		Projec	Project	
	N.T.S	No.	MA14028	
Date		Apper	Appendix	
	Nov 14		D	

APPENDIX E COPIES OF CALIBRATION CERTIFICATES

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/W/141031-1
Date of Issue:	2014-10-31
Date Received:	2014-10-31
Date Tested:	2014-10-31
Date Completed:	2014-10-31
Next Due Date:	2015-01-30

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M

Serial No.

: 02D0126AA

Equipment No.

: W.03.01

Test conditions:

Room Temperature

: 20 degree Celsius

Relative Humidity

: 56%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 11J100025

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 07E100029

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 12B100900

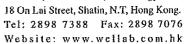
1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth


Methodologies:

- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards
 Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)
 Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B),
 pH (APHA 19th 4500-H+ B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Test Report No.:	C/W/141031-1
Date of Issue:	2014-10-31
Date Received:	2014-10-31
Date Tested:	2014-10-31
Date Completed:	2014-10-31
Next Due Date:	2015-01-30

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, μS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading Theoretical Value			
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	- 0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/140913-2
Date of Issue: 2014-09-13
Date Received: 2014-09-13
Date Tested: 2014-09-13

Date Completed: 2014-09-13 Next Due Date: 2014-12-12

ATTN:

Mr. W.K. Tang

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Page:

Manufacturer

: YSI

Model No.

: 6820-C-M : 12B100803

Serial No. Equipment No.

: W.03.12

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 56%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 12B10055

1. Conductivity performance check with Potassium Chloride standard solution

2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 12A100930

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 12B100644

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual

 In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)
 Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (APHA 19th 4500-H+ B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/140913-2
Date of Issue: 2014-09-13
Date Received: 2014-09-13
Date Tested: 2014-09-13
Date Completed: 2014-09-13
Next Due Date: 2014-12-12

Page:

2 of 2

Results:

/ELLAB 匯 Testing & Research

1. Conductivity performance check

Specific Conductivity, µS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

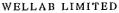
2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading Theoretical Value			
30.0	30.0	0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	${ m O_2/L}$	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check


Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/140912-1
Date of Issue: 2014-09-12
Date Received: 2014-09-12
Date Tested: 2014-09-12
Date Completed: 2014-09-12
Next Due Date: 2014-12-11

Page:

1 of 2

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer Model No. Serial No. : Aquaread Ltd :AP-2000-D :122430420

Equipment No. : W.18.05

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 62%

Test Specifications:

Dissolved Oxygen, Conductivity & Salinity Sensor,

- 1. Performance check against Winkler titration
- 2. Conductivity performance check with Potassium Chloride standard solution
- 3. Salinity performance check with Sodium Chloride standard solution

Turbidity Sensor, Batch: 12213

1. Calibration check with Formazin standard solution

pH / ORP electrode, Batch: 11933

- 1. Calibration check with standard pH buffer
- 2. Redox performance check with ZoBell's standard solution

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. Aquaprobe AP-2000 Manual

 In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)
 Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (ISO 10523, Section 9.1 and APHA 19ed 4500-H+B), Redox electrode (APHA 20ed 2580)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/140912-1

 Date of Issue:
 2014-09-12

 Date Received:
 2014-09-12

 Date Tested:
 2014-09-12

 Date Completed:
 2014-09-12

 Next Due Date:
 2014-12-11

Page:

2 of 2

Results:

1. Conductivity performance check

Specific (Conductivity, µS/cm		
Instrument Reading Theoretical Value		Correction, µS/cm	Acceptable range
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value	Correction, ppt	Acceptable range
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved O	xygen, mg O ₂ /L	Correction, mg	Acceptable
water at 20°C	D.O. Meter Winkler Titration		O ₂ /L	range
Saturated	9.1	9.1	0.0	±0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range	
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05	
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02	
Noise ΔpH _n , pH unit	0.00	Less than 0.02	

6. Redox Meter check

Redox		
Instrument Reading Theoretical Value		Acceptable range
228	229	229 <u>+</u> 10

7. Depth Meter check

Instrument Reading, m	Instrument Reading, m Calibration Value, m		Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

APPENDIX F QUALITY CONTROL REPORTS FOR SS LABORATORY ANALYSIS

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Pax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21358

Date of Issue: 2014/11/04

Date Received:

2014/11/03

Date Tested:

2014/11/03

Date Completed:

1 of 1

Page:

2014/11/04

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/11/03

Number of Sample: 84

Custody No.:

MA14028/141103

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	7	7	3	104

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21369

2014/11/06 Date of Issue:

Date Received: 2014/11/05

2014/11/05 Date Tested:

Date Completed: 2014/11/06

1 of 1

Page:

ATTN: Ms. Mei Ling Tang

Shatin to Central Link - Contract No.11227 Project Name:

Advance Works for NSL Cross Harbour Tunnels

Sampling Date: 2014/11/05

Number of Sample: 84

Custody No.:

MA14028/141105

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L mg/L %			
C3sf	3	3	2	104

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lei Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21391

Date of Issue:

2014/11/10

Date Received:

2014/11/07

Date Tested:

2014/11/07

Date Completed: Page:

2014/11/10

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/11/07

Number of Sample: 92

Custody No.:

MA14028/141107

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L mg/L %			
C3sf	5	6	3	100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lei Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wcllab.com.hk

TEST REPORT **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Completed: Page:

Laboratory No.:

Date of Issue:

Date Tested:

Date Received:

1 of 1

21396

2014/11/11

2014/11/10

2014/11/10

2014/11/11

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/11/10

Number of Sample: 84

Custody No.:

MA14028/141110

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	13	13	4	103

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Page:

Laboratory No.:

Date of Issue:

Date Tested:

Date Received:

Date Completed: 2014/11/13 1 of 1

21413

2014/11/13

2014/11/12

2014/11/12

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/11/12

Number of Sample: 84

Custody No.:

MA14028/141112

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	4	4	1	101

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21438

Page:

Date of Issue: 2014/11/17

Date Received: 2014/11/15

Date Tested: 2014/11/15

Date Completed: 2014/11/17

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date: 2014/11/15

Number of Sample: 84

Custody No.:

MA14028/141115

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	3	3	3	96

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21448

2014/11/18 Date of Issue:

Date Received: 2014/11/17

Date Tested: 2014/11/17

Date Completed: 2014/11/18 1 of 1 Page:

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/11/17

Number of Sample: 84

Custody No.:

MA14028/141117

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	4	3	5	98

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shalin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21459

Date of Issue: 2014/11/20

Date Received:

2014/11/19

Date Tested:

2014/11/19

Date Completed:

Page:

2014/11/20

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date: 2014/11/19

Number of Sample: 84

Custody No.:

MA14028/141119

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	3	3	1	99

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

21473 Laboratory No.:

Date of Issue: 2014/11/24

2014/11/21 Date Received:

2014/11/21 Date Tested:

Date Completed: 2014/11/24

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Shatin to Central Link - Contract No.11227 Project Name:

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/11/21

Number of Sample: 84

Custody No.:

MA14028/141121

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	5	5	3	102

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lei Street, Shatin, N.T, Hong Kong-Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21485

Date of Issue: 2014/11/25

Date Received: 2014/11/24

Date Tested: 2014/11/24

Date Completed: 2014/11/25

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date: 2014/11/24

Number of Sample: 84

Custody No.:

MA14028/141124

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	6	6	1	103

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED
Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T., Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21501

Date of Issue: 2014/11/27

Date Received: 2014/11/26

Date Tested: 2014/11/26
Date Completed: 2014/11/27

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/11/26

Number of Sample: 84

Custody No.:

MA14028/141126

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	7	6	1	93

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21517

Date of Issue: 2014/12/01

Date Received: 2014/11/28

Date Tested:

2014/11/28

Date Completed:

Page:

2014/12/01 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/11/28

Number of Sample: 84

Custody No.:

MA14028/141128

QC Recovery, % **Duplicate Analysis** Total Suspended Solids

Sampling Point Trial 1, Difference, Trial 2, mg/L mg/L% C4bf 3 100 6

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX G SUMMARY OF EXCEEDANCE

APPENIDX G – SUMMARY OF EXCEEDANCE

Reporting Month: November 2014

a) Exceedance Report for Water Quality Monitoring (NIL)

APPENDIX H SITE AUDIT SUMMARY

Inspection Information

Checklist Reference Number	141105
Date	5 November 2014 (Wednesday)
Time	13:30 – 14:30

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item
		No.
	Part B – Water Quality	
141105-R01	• To repair the gap at the silt curtain at the end of Southern Gate.	В9
	Part C – Ecology / Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part E - Construction Noise Impact	
!	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	• Follow-up on previous audit section (Ref. No.:141029), all environmental	
	deficiencies were observed improved/rectified by the Contractor.	

	Name	Şigņature	Date		
Recorded by	Johnny Fung		5 November 2014		
Checked by	Ivy Tam	Tud	5 November 2014		
\circ η					

CINOTECH MA14028 141105_SO.doc

Inspection Information

Checklist Reference Number	141112
Date	12 November 2014 (Wednesday)
Time	13:30 – 14:15

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	
141112-R01	To repair the gap of the silt curtain at the Southern Gate.	В9
	Part C – Ecology / Others	
1	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	• Follow-up on previous audit section (Ref. No.:141105), follow up action is needed to be reviewed for item 141105-R01	

	Name	Signature	Date
Recorded by	Johnny Fung		12 November 2014
Checked by	Dr. Priscilla Choy	WF	12 November 2014

CINOTECH MA14028 141112_SO.doc

Inspection Information

Checklist Reference Number	141119
Date	19 November 2014 (Wednesday)
Time	13:30 – 14:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	 Part B - Water Quality No environmental deficiency was identified during the site inspection. 	
	 Part C – Ecology / Others No environmental deficiency was identified during the site inspection. 	
	 Part D - Air Quality No environmental deficiency was identified during the site inspection. 	
	Part E - Construction Noise Impact • No environmental deficiency was identified during the site inspection.	
	Part F - Waste/Chemical Management • No environmental deficiency was identified during the site inspection.	
	 Part G – Permits/Licenses No environmental deficiency was identified during the site inspection. 	
	 Part H - Others Follow-up on previous audit section (Ref. No.:141112), all environmental deficiency was observed improved/rectified by the Contractor. 	

	Name	Signature	Date
Recorded by	Johnny Fung	12	19 November 2014
Checked by	Ivy Tam	Tud	19 November 2014
		V-7/	

CINOTECH MA14028 141119_SO.doc

Inspection Information

Checklist Reference Number	141126
Date	26 November 2014 (Wednesday)
Time	13:45 – 14:30

Ref. No.	Non-Compliance	Related Item
		No.
	None identified	_

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	1101
141126-R01	• To clear the general refuse on the sea water near the silt curtain at Southern Gate.	B 5
	Part C – Ecology / Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
141126-R01	To clear the general refuse on the sea water near the silt curtain at Southern Gate.	F li
	Part G – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	Follow-up on previous audit section (Ref. No.:141119), no environmental deficiency was identified during the site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung		26 November 2014
Checked by	Dr. Priscilla Choy	WI	26 November 2014

CINOTECH MA14028 141126_SO

Inspection Information

Checklist Reference Number	141105
Date	5 November 2014 (Wednesday)
Time	15:00 – 16:15

Ref. No.	Non-Compliance	Related Item
		No.
4	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
141105-O01	Part B – Water Quality Some fabric of part of the frame-type silt curtain is observed floating on the water at Victoria Harbour. The Contractor is reminded to repair it properly.	В7
	Part C – Ecology / Others No environmental deficiency was identified during the site inspection.	
	 Part D - Air Quality No environmental deficiency was identified during the site inspection. 	
	Part E - Construction Noise Impact No environmental deficiency was identified during the site inspection.	
141105-O02 141105-O03	 Part F – Waste/Chemical Management Chemical leakage observed from the generators. The Contractor is reminded remove the chemical oil in the drip tray and the oil stain on the ground. Chemical containers observed without secondary containment. The Contractor is reminded to provide drip trays. 	F8 F9
	 Part G – Permits/Licenses No environmental deficiency was identified during the site inspection. 	
	 Part H - Others Follow-up on previous audit section (Ref. No.:141029), follow up action is needed to be reviewed for item 141029-001. 	

	Name	Şignature	Date
Recorded by	Johnny Fung	<i>[]</i>	5 November 2014
Checked by	Ivy Tam	Tw	5 November 2014

CINOTECH MA14028 141105_VH.doc

Inspection Information

Checklist Reference Number	141126
Date	26 November 2014 (Wednesday)
Time	15:00 – 16:00

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item
	Part B – Water Quality	
	No environmental deficiency was identified during the site inspection.	
	Part C – Ecology / Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part E - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part H - Others	
	• Follow-up on previous audit section (Ref. No.:141105), all environmental deficiencies were observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung		26 November 2014
Checked by	Dr. Priscilla Choy	WI	26 November 2014

CINOTECH MA14028 141126_VH

APPENDIX I EVENT AND ACTION PLANS

Appendix I - Event and Action Plan for Marine Water Quality Monitoring

TEXTENIES.		ACT	TION	
EVENT	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	 Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; and Discuss remedial measures with the IEC and Contractor. 	 Discuss with the ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and Review and advise the ET and ER the effectiveness of the implemented mitigation measures. 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; and Supervise the implementation of agreed remedial measures. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER; and Implement the agreed remedial measures.
Action level being exceeded by more than one consecutive sampling days	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and 	 Discuss with the ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by the 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; and 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable

Appendix I - Event and Action Plan for Marine Water Quality Monitoring

TEXTENIO.	ACTION			
EVENT	ET IEC ER		CONTRACTOR	
	the Contractor's working methods; 4. Discuss remedial measures with the IEC and Contractor; and 5. Ensure remedial measures are implemented.	Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	3. Discuss with the ET and IEC on the effectiveness of the implemented remedial measures.	practice; 4. Check all plant and equipment; 5. Consider changes of working methods; 6. Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and 7. Implement the agreed remedial measures.

Appendix I - Event and Action Plan for Marine Water Quality Monitoring

EVENT	ACTION			
EVENI	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC, EPD and ER; Rectify unacceptable practice; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss with the ET and IEC and propose remedial measures to the IEC, EPD and ER; and Ensure the agreed remedial measures are implemented. 	 Discuss with the ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER the effectiveness of the implemented remedial measures. 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Request the Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; and Assess the effectiveness of the implemented remedial measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and Implement the agreed remedial measures.
Limit level being exceeded by more than one consecutive sampling days	 Inform the Contractor, IEC, EPD and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; 	 Discuss with the ET, ER and Contractor on the implemented measures; Review proposals on remedial measures submitted by the 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Request the Contractor to critically review the 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable

Appendix I - Event and Action Plan for Marine Water Quality Monitoring

TANZIANION	ACTION			
EVENT	ET	IEC	ER	CONTRACTOR
	 Discuss remedial measures with the the IEC, EPD, ER and Contractor; Ensure remedial measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	working methods; 3. Make agreement on the remedial measures to be implemented; 4. Discuss with the ET, IEC and Contractor on the effectiveness of the implemented remedial measures; and 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level.	practice; 4. Check all plant and equipment; 5. Consider changes of working methods; 6. Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; 7. Implement the agreed remedial measures; and 8. As directed by the ER, to slow down or to stop all or part of the marine works or construction activities.

APPENDIX J UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

SCL Works Contract 11227 - Environmental Mitigation Implementation Schedule

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	nstruction Phase)					514 O TM	
S5.134	Accidental chemical spillage and construction site run-off to the	Minimise the contamination	Contractor	All land based	Construction	• EIAO-TM	N/A
	receiving water bodies, mitigation measures such as removing	of wastewater discharge		works areas	phase		
	the pollutants before discharge into storm drain and paving the						
	section of construction road between the wheel washing bay						
	and the public road as suggested in Sections 11.216and						
	11.219 to 11.256 of the EIA Report shall be adopted						
ERR S3.6.3	Installation of floating type silt curtains around the area of site	Minimize indirect impact to	Contractor	Shek O Casting	Construction	• EIAO-TM	۸
	levelling works and construction and removal of earth bund.	the nearby subtidal and		Basin	phase		
		intertidal flora and fauna					
Fisheries Im	pact						
S6.57	The size of the dredging and underwater blasting areas shall	To minimize loss of fishing	Contractor/	All dredging and	Construction	• EIAO-TM	۸
	be minimized as much as possible	ground and fisheries	MTR	underwater	phase		
		resources		blasting works			
				areas			
S6.57	Mitigation measures recommended in Sections 11.200 to	To minimize change in	Contractor	Works Areas	Construction	• EIAO-TM	٨
	11.207, 11.209 to 11.211 and 11.213 to 11.256 of the EIA	water quality impact on			phase		
	Report to control water quality, i.e. use of effective site	fisheries resources and					
	drainage in land-based construction site and installation of silt	operation					
	curtain surrounding the dredging point, use of closed grab						
	dredger and reduction of dredging rate shall be implemented.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
Landscape &	Visual (Construction Phase)						
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time	MTR	All works sites	Construction	• EIAO-TM	٨
		glare due to the Project			phase		
		during construction phase					
Table 7.9	CM5 - Management of facilities on work sites which give	Control of height and	MTR	All works sites	Construction	• EIAO-TM	٨
	control on the height and disposition/arrangement of all	deposition/arrangement of			phase		
	facilities on the works site to minimize visual impact to	temporary facilities in			·		
	adjacent VSRs.	works areas					
Construction	n Dust Impact						
EP 2.25	All diesel fuelled construction plant used by the contractors	Mitigating Aerial	Contractor	All works areas	Construction	• EIAO-TM	٨
	within the works areas of the Project shall be powered by ultra	Emissions from			phase		
	low sulphur diesel fuel.	Construction Plant					
Construction	Noise (Airborne)					•	
S9.55	The following good site practices shall be implemented:	Minimize construction	Contractor	All works areas	Construction	• EIAO-TM	
	•Only well-maintained plant shall be operated on-site and plant	noise impact			phase		٨
	shall be serviced regularly during the construction program						
	Silencers or mufflers on construction equipment shall be						٨
	utilized and shall be properly maintained during the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	construction program						
	Mobile plant, if any, shall be sited as far from NSRs as						٨
	possible						
	Machines and plant (such as trucks) that may be in						٨
	intermittent use shall be shut down between work periods or						
	shall be throttled down to a minimum						
	Plant known to emit noise strongly in one direction shall,						٨
	wherever possible, be orientated so that the noise is directed						
	away from the nearby NSRs						
	Material stockpiles and other structures shall be effectively						٨
	utilized, wherever practicable, in screening noise from on-site						
	construction activities.						
Water Quality	(Construction Phase)						
S11.204	No more than one closed grab dredger shall be operated	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	٨
	outside the CBTS in the open harbor for SCL construction.	and contaminants from		areas in Victoria	phase	• WPCO	
		dredging in the Victoria		Harbour			
		Harbour					
Table 11.23	Silt screens shall be installed at the WSD Flushing Water	To protect the beneficial	Contractor	Flushing water	Construction	• EIAO-TM	N/A
	Intakes at Kowloon Station, Tai Wan, Quarry Bay and Wan	use of flushing water		intake points in	phase	• WPCO	
	Chai (namely Intakes 14, WSD9, WSD17 and A respectively)	intakes in Victoria Harbour		Victoria Harbour			
	during any dredging / filling works outside the CBTS for	from dredging / filling					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	temporary reclamation at SCL2 or for IMT construction	activities					
S11.210 -	If the marine works for SCL are to be carried out concurrently	To minimize loss of	Contractor	Marine works	Construction	Construction	۸
S11.211 &	with other dredging / filling activities in the Victoria Harbour, the	fines and contaminants		areas in Victoria	phase	phase	
Table	production rates of any dredging / filling work to be undertaken	from dredging / filling in		Harbour			
11.24	outside the CBTS for SCL construction in the open harbour	the Victoria Harbour					
	(including temporary reclamation at SCL2 and IMT						
	construction) shall not exceed 2,500 m³ per day at any time						
	throughout the entire construction period. The hourly						
	production rate for dredging or bulk filling within the open						
	Victoria Harbour (outside the breakwater of CBTS) shall not						
	exceed 156 m³ per hour (if there are other concurrent marine						
	works in Victoria Harbour) and the maximum working hour for						
	the dredging / bulkfilling works shall be 16 hours per day.						
	If the marine works for SCL are to be carried out with no other						۸
	concurrent dredging / filling activities in the Victoria Harbour,						
	the production rates of any dredging / filling work to be						
	undertaken outside the CBTS for SCL construction in the open						
	harbour (including temporary reclamation at SCL2 and IMT						
	construction) shall not exceed 4,500 m³ per day at any time						
	throughout the entire construction period. The hourly						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	production rate for dredging or bulk filling within the open						
	Victoria Harbour (outside the breakwater of CBTS) shall not						
	exceed 281 m³ per hour (if there is no other concurrent marine						
	works in Victoria Harbour) and the maximum working hour for						
	the dredging / bulk filling works shall be 16 hours per day.						
S11.215	The following good site practices shall be undertaken during	To minimize loss of	Contractor	Marine works	Construction	• EIAO-TM	
	dredging:	fines and contaminants		areas	phase	• WPCO	
	mechanical grabs, if used, shall be designed and	from dredging / filling					٨
	maintained to avoid spillage and sealed tightly while being						
	lifted;						
	all vessels shall be sized so that adequate clearance is						٨
	maintained between vessels and the seabed in all tide						
	conditions, to ensure that undue turbidity is not generated by						
	turbulence from vessel movement or propeller wash;						
	all hopper barges and dredgers shall be fitted with tight						٨
	fitting seals to their bottom openings to prevent leakage of						
	material;						
	construction activities shall not cause foam, oil, grease,						٨
	scum, litter or other objectionable matter to be present on the						
	water within the site or dumping grounds;						
	loading of barges and hoppers shall be controlled to						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	prevent splashing of dredged material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation; • before commencement of the temporary reclamation works, the holder of the Environmental Permit shall submit						N/A
S11.216	plans showing the phased construction of the reclamation, design and operation of the silt curtain. The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well	minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction phase	• EIAO-TM • WPCO	Λ
	away from the seawater front and storm drainage during carrying out of the works. • Stockpiling of construction and demolition materials and dusty materials shall be covered and located away from the seawater front and storm drainage. • Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the						^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	nearby receiving waters.						
S11.218	Silt screens are recommended to be deployed at the seawater	To avoid the pollutant and	Contractor	Proposed silt	Construction	• EIAO-TM	٨
	intakes during the construction works period. Regular	refuse entrapment		screens at water	phase	• WPCO	
	maintenance of the silt screens and refuse collection shall be	problems at the silt screens		intakes.			
	performed at the silt screens at regular intervals on a daily	to be installed at the water					
	basis. The Contractor shall be responsible for keeping the	intakes					
	water behind the silt screen free from floating rubbish and						
	debris during the impact monitoring period.						
S11.219	It is recommended that collection and removal of floating	To minimize water	Contractor	Marine works	Construction	• EIAO-TM	*
	refuse shall be performed within the marine construction areas	quality impacts from		area	phase	• WPCO	
	at regular intervals on a daily basis. The Contractor shall be	illegal dumping and				• WDO	
	responsible for keeping the water within the site boundary and	littering from marine					
	the neighbouring water free from rubbish during the dredging	vessels and runoff from					
	works.	the coastal area					
S11.246 &	Construction work force sewage discharges on site are	minimize water quality	Contractor	All works areas	Construction	• EIAO-TM	٨
11.247	expected to be discharged to the nearby existing trunk sewer	impacts due to sewage			phase	• WPCO	
	or sewage treatment facilities. If disposal of sewage to public	generated from				• TM-DSS	
	sewerage system is not feasible, appropriate numbers of	construction				• WDO	
	portable toilets shall be provided by a licensed contractor to	workforce					
	serve the construction workers over the construction site to						
	prevent direct disposal of sewage into the water environment.						

		recommended Messures	Who to	Location of the	When to	What	Status
		recommended Measures & Main Concerns to	implement the	measures	Implement the measures?	requirements or standards for the	
		address	measures?		illeasures :		
		aduress	illeasures :			measures to achieve?	
The	e Contractor shall also be responsible for waste disposal					acilieve :	
	·						
and	d maintenance practices.						
Notic	tices shall be posted at conspicuous locations to remind the						۸
	·						
	rkers not to discharge any sewage or wastewater into the						
	arby environment.					514 O TM	
	ntractor must register as a chemical waste producer if	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	N/A
chen	emical wastes would be produced from the construction	impact from accidental		works areas	phase	• WPCO	
activ	ivities. The Waste Disposal Ordinance (Cap 354) and its	spillage of chemical				• TM-DSS	
subs	osidiary regulations in particular the Waste Disposal					• WDO	
(Che	nemical Waste) (General) Regulation shall be observed and						
com	nplied with for control of chemical wastes.						
S11.255 Any	y service shop and maintenance facilities shall be located	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	*
on h	hard standings within a bunded area, and sumps and oil	impact from accidental		works areas	phase	• WPCO	
inter	erceptors shall be provided. Maintenance of vehicles and	spillage of chemical				• TM-DSS	
equi	uipment involving activities with potential for leakage and					·WDO	
spilla	lage shall only be undertaken within the areas appropriately						
equi	uipped to control these discharges.						
S11.256 Disp	posal of chemical wastes shall be carried out in compliance	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	
with	n the Waste Disposal Ordinance. The "Code of Practice on	impact from accidental		works areas	phase	• WPCO	
	Packaging, Labelling and Storage of Chemical Wastes"	spillage of chemical			•	• TM-DSS	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	published under the Waste Disposal Ordinance details the					·WDO	
	requirements to deal with chemical wastes. General						
	requirements are given as follows:						
	Suitable containers shall be used to hold the chemical wastes						٨
	to avoid leakage or spillage during storage, handling and						
	transport.						
	Chemical waste containers shall be suitably labelled, to notify						٨
	and warn the personnel who are handling the wastes, to avoid						
	accidents.						
	Storage area shall be selected at a safe location on site and						٨
	adequate space shall be allocated to the storage area.the						
	areas appropriately equipped to control these discharges.						
ERR S 8.5.1	Floating type silt curtains would be installed around the area of	minimize water quality	Contractor	Shek O Casting	Construction	·WPCO	٨
	site levelling works and construction and removal of earth bund	impact at Shek O Casting		Basin	phase		
	during the respective works.	Basin					
ERR S 8.5.1	Floating type silt curtains would be installed around the	minimize water quality	Contractor	Shek O Casting	Construction	·WPCO	*
	entrances of the basin during rock filling works.	impact at Shek O Casting		Basin	phase		
		Basin					
EP 2.23.3	All fill materials used in marine works at the Basin shall contain	minimize water quality	Contractor	Shek O Casting	Construction	·WPCO	٨
	no more than 5% fines (aggregates diameter smaller than	impact at Shek O Casting		Basin	phase		
	63μm) content.	Basin					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
EP 2.23.4	The sea bed levelling works shall not involve any dumping of	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	٨
	imported fill materials onto the seabed. The in-situ volume of	impact at Shek O Casting		Basin	phase		
	sea bed materials to be moved during the sea bed leveling	Basin					
	works shall not be more than 10,000m³. If sea bed materials						
	other than coarse sand, cobble and gravel as identified in the						
	previous marine investigation are encountered, alternative						
	leveling methods and/or additional mitigation measures shall						
	be proposed for the approval of the Director before the works						
	can proceed. The silt curtain shall be properly installed prior to						
	the commencement of sea bed leveling works, and if						
	necessary, double silt curtains shall be deployed to ensure full						
	enclosure of the leveling works at all times to prevent the						
	escape of sediment to water column outside the silt curtains.						
EP 2.23.5	The filling of the southern part of the Basin shall be carried out	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	٨
	using rocks or coarse aggregates with diameters	impact at Shek O Casting		Basin	phase		
	between 20mm and 200mm and with no more than 5% fines	Basin					
	(aggregates with diameter smaller than 63µm) content, up to a						
	level not higher than -12mPD. The maximum filling rate shall						
	be no more than 4,500m³/day.						
Waste Mana	gement (Construction Waste)	,				•	
S12.75	Good Site Practices and Waste Reduction Measures	reduce waste management	Contractor	All works sites	Construction	Waste Disposal	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	- Prepare a Waste Management Plan	impacts			phase	Ordinance (Cap.	۸
	(WMP) approved by the Engineer/Supervising Officer of the					354)	
	Project based on current practices on construction sites;					• Land	
	- Training of site personnel in, site cleanliness, proper waste					(Miscellaneous	٨
	management and chemical handling procedures;					Provisions)	
	- Provision of sufficient waste disposal points and regular					Ordinance (Cap.	٨
	collection of waste;					28)	
	- Appropriate measures to minimize windblown litter and dust					• DEVB TCW	٨
	during transportation of waste by either covering trucks or by					No. 6/2010	
	transporting wastes in enclosed containers;						
	- Regular cleaning and maintenance programme for drainage						٨
	systems, sumps and oil interceptors; and						
	- Separation of chemical wastes for special handling and						٨
	appropriate treatment.						
S12.76	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	Waste Disposal	
	(Con't)	reduction			phase	Ordinance (Cap.	
	- Sorting of demolition debris and excavated materials from					354)	٨
	demolition works to recover reusable/ recyclable portions (i.e.					• Land	
	soil, broken concrete, metal etc.);					(Miscellaneous	
	- Segregation and storage of different types of waste in					Provisions)	۸
	different containers, skips or stockpiles to enhance reuse or					Ordinance (Cap.	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	recycling of materials and their proper disposal;					28)	
	- Encourage collection of aluminum cans by providing						٨
	separate labeled bins to enable this waste to be segregated						
	from other general refuse generated by the workforce;						
	- Proper storage and site practices to minimize the potential						٨
	for damage or contamination of construction						
	materials;						
	- Plan and stock construction materials carefully to minimize						٨
	amount of waste generated and avoid unnecessary generation						
	of waste; and						
	- Training shall be provided to workers about the concepts of						٨
	site cleanliness and appropriate waste management						
	procedures, including waste reduction, reuse and recycle.						
S12.77	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	
	(Con't)	reduction			phase	No. 19/2005	
	- The Contractor shall prepare and implement a WMP as part						٨
	of the EMP in accordance with ETWBTCW No. 19/2005 which						
	describes the arrangements for avoidance, reuse, recovery,						
	recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the						
	construction activities. Such a management plan shall						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and						
	recyclable materials. The EMP shall be submitted to the						
	Engineer for approval. The Contractor shall implement the						
	waste management practices in the EMP throughout the						
	construction stage of the Project.						
	The EMP shall be reviewed regularly and updated by the						٨
	Contractor, preferably in a monthly basis.						
S12.78	C&D materials would be reused in other local concurrent	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	٨
	projects as far as possible. If all reuse outlets are exhausted	reduction			phase	No. 19/2005	
	during the construction phase, the C&D materials would be						
	disposed of at Taishan, China as a last resort.						
S12.79	Storage, Collection and Transportation of Waste	minimize potential	Contractor	All works sites	Construction	-	
	Should any temporary storage or stockpiling of waste is	adverse environmental			phase		
	required, recommendations to minimize the impacts include:	impacts arising from waste					
	- Waste, such as soil, shall be handled and stored well to	storage					٨
	ensure secure containment, thus minimizing the potential of						
	pollution;						
	- Maintain and clean storage areas routinely;						٨
	- Stockpiling area shall be provided with covers and water						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	spraying system to prevent materials from wind-blown or being						
	washed away; and						
	- Different locations shall be designated to stockpile each						٨
	material to enhance reuse						
S12.80	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	-	
	Waste haulier with appropriate permits shall be employed by	environmental impacts			phase		
	the Contractor for the collection and transportation of waste	arising from waste					
	from works areas to respective disposal outlets. The following	collection and disposal					
	suggestions shall be enforced to minimize the potential						
	adverse impacts:						
	- Remove waste in timely manner						٨
	- Waste collectors shall only collect wastes prescribed by						٨
	their permits						
	- Impacts during transportation, such as dust and odour, shall						٨
	be mitigated by the use of covered trucks or in enclosed						
	containers						
	- Obtain relevant waste disposal permits from the appropriate						٨
	authorities, in accordance with the Waste Disposal Ordinance						
	(Cap. 354), Waste Disposal (Charges for Disposal of						
	Construction Waste) Regulation (Cap. 345) and the Land						
	(Miscellaneous Provisions) Ordinance (Cap. 28)						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	- Waste shall be disposed of at licensed waste disposal						٨
	facilities						
	- Maintain records of quantities of waste generated, recycled						٨
	and disposed						
S12.81	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	• DEVB TCW	
	- Implementation of trip ticket system with reference to DevB	environmental impacts			phase	No. 6/2010	٨
	TC(W) No.6/2010 to monitor disposal of waste and to control	arising from waste					
	fly-tipping at PFRFs or landfills. A recording system for the	collection and disposal					
	amount of waste generated, recycled and disposed (including						
	disposal sites) shall be proposed						
S12.83 – 12.86	Sorting of C&D Materials	minimize potential adverse	Contractor	All works sites	Construction	• DEVB TCW	
	- Sorting to be performed to recover the inert materials,	environmental impacts			phase	No. 6/2010	٨
	reusable and recyclable materials before disposal off-site.	during the handling,				• ETWB TCW No.	
	- Specific areas shall be provided by the Contractors for	transportation and disposal				33/2002	٨
	sorting and to provide temporary storage areas for the sorted	of C&D materials				• ETWB TCW	
	materials.					No. 19/2005	
	- The C&D materials shall at least be segregated into inert						٨
	and non-inert materials, in which the inert portion could be						
	reused and recycled as far as practicable before delivery to						
	PFRFs as mentioned for beneficial use in other projects. While						
	opportunities for reusing the non-inert portion shall be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	investigated before disposal of at designated landfills.					acmeve:	
	- Possibility of reusing the spoil in the Project will be						۸
	continuously investigated in the detailed design and						
	construction stages, it includes backfilling to cut and cover						
	construction works for the Hung Hom south and north						
	approach						
S12.88	Sediments	To ensure the	Contractor	All works areas	Construction	ETWB TC(W) No.	
	The basic requirements and procedures for excavated /	sediment to be		with sediments	Phase	34/2002 &	٨
	dredged sediment disposal specified under ETWB TC(W) No.	disposed of in an		concern		Dumping at Sea	
	34/2002 shall be followed. MFC is managing the disposal	authorized and least				Ordinance	
	facilities in Hong Kong for the dredged and excavated	impacted way					
	sediment, while EPD is the authorityof issuing marine dumping						
	permit under the Dumping at Sea Ordinance						
S12.89	Sediments	To determine the best	Contractor	All works areas	Construction	ETWB TC(W) No.	
	The contractor for the excavation / dredging works shall apply	handling and disposal		with sediments	Phase	34/2002 &	۸
	for the site allocations of marine sediment disposal based on	option of the sediments		concern		Dumping at Sea	
	the prior agreement with MFC/CEDD. A request for reservation					Ordinance	
	of sediment disposal space have been submitted to MFC for						
	onward discussions of disposal approach and feasible disposal						
	sites and the letter is attached in Appendix 12.6. The Project						
	proponent shall also be responsible for the application of all						_

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to implement	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	necessary permits from relevant authorities, including the						
	dumping permit as required under DASO from EPD, for the						
	disposal of dredged and excavated sediment prior to the						
	commencement of the excavation works.						
S12.91-12.94	Sediments	To ensure handling of	Contractor	Work Sites,	Construction	ETWB TC(W) No.	
	- Stockpiling of contaminated sediments shall be avoided as	sediments are in		Sediment	Phase	34/2002 &	۸
	far as possible. If temporary stockpiling of contaminated	accordance to statutory		disposal sites		Dumping at Sea	
	sediments is necessary, the excavated sediment shall be	requirements				Ordinance	
	covered by tarpaulin and the area shall be placed within						
	earth bunds or sand bags to prevent leachate from entering						
	the ground, nearby drains and/or surrounding water bodies.						
	The stockpiling areas shall be completely paved or covered						
	by linings in order to avoid contamination to underlying soil						
	or groundwater. Separate and clearly defined areas shall be						
	provided for stockpiling of contaminated and						
	uncontaminated materials. Leachate, if any, shall be						
	collected and discharged according to the Water Pollution						
	Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions						٨
	during excavation and transportation of the sediment, the						
	excavated sediments shall be wetted during excavation /						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	material handling and shall be properly covered when						
	placed on trucks or barges. Loading of the excavated						
	sediment to the barge shall be controlled to avoid splashing						
	and overflowing of the sediment slurry to the surrounding						
	water.						
	- The barge transporting the sediments to the designated						٨
	disposal sites shall be equipped with tight fitting seals to						
	prevent leakage and shall not be filled to a level that would						
	cause overflow of materials or laden water during loading or						
	transportation. In addition, monitoring of the barge loading						
	shall be conducted to ensure that loss of material does not						
	take place during transportation. Transport barges or						
	vessels shall be equipped with automatic selfmonitoring						
	devices as specified by the DEP.						
	- In order to minimise the exposure to contaminated						٨
	materials, workers shall, when necessary, wear appropriate						
	personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning						
	facilities shall also be provided on site.						
S12.95	Sediments	To ensure handling of	Contractor	Work Sites,	Construction	ETWB TC(W) No.	
	A possible arrangement for Type 3 disposal is by geosynthetic	sediments are in		Sediment	Phase	34/2002 &	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to	Location of the measures	When to	What	Status
		& Main Concerns to	the	measures	measures?	requirements or standards for the	
		address	measures?		illeasures :	measures to	
		audress	illeasures :			achieve?	
	containment. A geosynthetic containment method is a method	accordance to statutory		disposal sites		Dumping at Sea	
				disposai sites		Ordinance	
	whereby the sediments are sealed in geosynthetic containers	requirements				Ordinance	
	and, at the disposal site, the containers would be dropped into						
	the designated contaminated mud pit where they would be						
	covered by further mud disposal and later by the mud pit						
	capping, thereby meeting the requirements for fully confined						
	mud disposal. The technology is readily available for the						
	manufacture of the geosynthetic containers to the						
	project-specific requirements. Similar disposal methods have						
	been used for projects in Europe, the USA and Japan and the						
	issues of fill retention by the geosynthetic fabrics, possible						
	rupture of the containers and sediment loss due to impact of						
	thecontainer on the seabed have been addressed.						
S12.97	Containers for Storage of Chemical Waste	register with EPD	Contractor	All works sites	Construction	• Code of	
	The Contractor shall register with EPD as a chemical waste	as a Chemical waste			phase	Practice on the	
	producer and to follow the guidelines stated in the Code of	producer and store				Packaging,	
	Practice on the Packaging, Labelling and Storage of Chemical	chemical waste in				Labelling and	
	Wastes. Containers used for storage of chemical waste shall:	appropriate containers				Storage of	
	- Be compatible with the chemical wastes being stored,					Chemical Wastes	٨
	maintained in good condition and securely sealed;						
	- Have a capacity of less than 450 litters unless the						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	specifications have been approved by EPD; and - Display a label in English and Chinese in accordance with						٨
	instructions prescribed in Schedule 2 of the Waste Disposal						
	(Chemical Waste) (General) Regulation						
S12.98	Chemical Waste Storage Area	prepare appropriate	Contractor	All works sites	Construction	• Code of	
	- Be clearly labeled to indicate corresponding chemical	storage areas for chemical			phase	Practice on the	N/A
	characteristics of the chemical waste and used for storage of	waste at works areas				Packaging,	
	chemical waste only;					Labelling and	
	- Be enclosed on at least 3 sides;					Storage of	N/A
	- Have an impermeable floor and bunding, of capacity to					Chemical Wastes	N/A
	accommodate 110% of the volume of the largest container or						
	20% by volume of the chemical waste stored in that area,						
	whichever is the greatest;						
	- Have adequate ventilation;						N/A
	- Be covered to prevent rainfall from entering; and						N/A
	- Be properly arranged so that incompatible materials are						N/A
	adequately separated.						
S12.98	Chemical Waste	clearly label the chemical	Contractor	All works sites	Construction	Code of	
	- Lubricants, waste oils and other chemical wastes would be	waste at works areas			phase	Practice on the	٨
	generated during the maintenance of vehicles and mechanical					Packaging,	
	equipments. Used lubricants shall be collected and stored in					Labelling and	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the	illeasures	measures?	standards for the	
		address	measures?		measures:	measures to	
		addiess	measures:			achieve?	
	individual containers which are fully labelled in English and					Storage of	
	Chinese and stored in a designated secure place.					Chemical Wastes	
S12.100	Collection and Disposal of Chemical Waste	To monitor the generation,	Contractor	All works sites	Construction	Waste Disposal	
012.100	A trip-ticket system shall be operated in accordance with the	reuse and disposal of	Contractor	7 III WORKS SILES	phase	(Chemical Waste)	N/A
	Waste Disposal (Chemical Waste) (General) Regulation to	chemical waste			priase	(General)	IN/A
	monitor all movements of chemical waste. The Contractor shall	Chemical waste				Regulation	
	employ a licensed collector to transport and dispose of the					riegulation	
	chemical wastes, to either the approved CWTC at Tsing Yi, or						
	another licensed facility, in accordance with the Waste						
	Disposal (Chemical Waste) (General) Regulation						
S12.101	General Refuse	properly store and	Contractor	All works sites	Construction	_	
312.101	General refuse shall be stored in enclosed bins or compaction	separate from other C&D	Contractor	All WOIRS Siles	phase		*
	units separate from C&D materials and chemical waste. A	materials for			priase		
	reputable waste collector shall be employed by the contractor	subsequent collection and					
	to remove general refuse from the site, separately from C&D	disposal					
	materials and chemical wastes. Preferably, an enclosed and						
	covered area shall be provided to reduce the occurrence of						
	wind-blown light material.						
S12.102	The recyclable component of general refuse, such as	facilitate recycling of	Contractor	All works sites	Construction	-	٨
	aluminum cans, paper and cleansed plastic containers shall be	recyclable portions of			phase		
	separated from other waste. Provision and collection of	refuse					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to implement	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	recycling bins for different types of recyclable waste shall be						
	set up by the Contractor. The Contractor shall also be						
	responsible for arranging recycling companies to collect these						
	materials.						
S12.102	The Contractor shall carry out an education programme for	raise workers' awareness	Contractor	All works sites	Construction	-	۸
	workers in avoiding, reducing, reusing and recycling of	on recycling issue			phase		
	materials generation. Posters and leaflets advising on the use						
	of the bins shall also be provided in the sites as reminders						

Remarks: ^

- Compliance of mitigation measure
- Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.

X

N/A Not Applicable

APPENDIX K
WASTE GENERATION IN THE
REPORTING MONTH

Monthly Summary Waste Flow Table for Year 2014

	Actual (Quantities o	f Inert C&D	Materials C	enerated M	onthly	Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000kg)	('000kg)	('000kg)	('000kg)	('000m ³)
August	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
September	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
October	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
November	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
December	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000

APPENDIX L CUMULATIVE LOG FOR COMPLAINT LOGS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log

Log Ref.	Date/Location	Complainant/ Date of Contact	Details of Complaint	Investigation/ Mitigation Action	File Closed

Cumulative Log for Notifications of Summons

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Cumulative Log for Successful Prosecutions

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

Appendix D

Monthly EM&A Report for November 2014 – SCL Works Contract 1128 South Ventilation Building to Admiralty Tunnels

Dragages Bouygues J.V.

Shatin to Central Link - Hung Hom to Admiralty Section

Works Contract 1128 - South Ventilation Building (SOV) to Admiralty Tunnels

Monthly EM&A Report for November 2014

December 2014

	Name	Signature
Prepared & Checked:	Lemon Lam	1 Juni
Reviewed, Approved & Certified:	Y T Tang (Contractor's Environmental Team Leader)	Touth

Version: 0 Date: 11 December 2014

Disclaimer

This Contract Specific Environmental Monitoring and Audit Manual is prepared for Dragages Bouygues J.V. and is given for its sole benefit in relation to and pursuant to SCL1128 and may not be disclosed to, quoted to or relied upon by any person other than Dragages Bouygues J.V. without our prior written consent. No person (other than Dragages Bouygues J.V. into whose possession a copy of this Manual comes may rely on this plan without our express written consent and Dragages Bouygues J.V. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Page

Table of Contents

EXE	CUTIVE	SUMMARY	1			
1	INTR	ODUCTION	2			
	1.1 1.2	Purpose of the Report				
2	PRO	JECT INFORMATION	3			
	2.1 2.2 2.3 2.4 2.5	Background Site Description Construction Programme and Activities Project Organisation Status of Environmental Licences, Notification and Permits	3 4			
3	ENVI	RONMENTAL MONITORING REQUIREMENTS	6			
	3.1 3.2	Construction Noise MonitoringLandscape and Visual				
4	IMPL	EMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	9			
5	MON	ITORING RESULTS	10			
	5.1 5.2 5.3	Construction Noise Monitoring	10			
6	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	11			
7	ENVI	RONMENTAL NON-CONFORMANCE	12			
	7.1 7.2 7.3 7.4	Summary of Monitoring Exceedances	12 12			
8	FUTU	JRE KEY ISSUES	13			
	8.1 8.2 8.3	Construction Programme for the Next Two Month	13			
9	CON	CONCLUSIONS AND RECOMMENDATIONS				
	9.1 9.2	ConclusionsRecommendations				

i

List of Tables

Table 2.1	Contact Information of Key Personnel
Table 2.2	Status of Environmental Licenses, Notifications and Permits
Table 3.1	Noise Monitoring Parameters, Frequency and Duration
Table 3.2	Noise Monitoring Equipment for Regular Noise Monitoring
Table 3.3	Noise Monitoring Stations during Construction Phase
Table 4.1	Status of Required Submission under Environmental Permit
Table 5.1	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 6.1	Observations and Recommendations of Site Audit

List of Figures

Figure 1.1	Site Layout Plan of SCL1128
------------	-----------------------------

Figure 3.1 Air Quality and Noise Monitoring Locations

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organisation Structure
Appendix C	Environmental Mitigation Implementation Schedule
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Air Quality Monitoring Results and their Graphical Presentations
Appendix H	Event and Action Plan
Appendix I	Cumulative Statistics on Complaints, Notification of Summons and Successful
	Prosecutions
Appendix J	Monthly Summary Waste Flow Table

AECOM Asia Co. Ltd. ii December 2014

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1128 – South Ventilation Building (SOV) to Admiralty Tunnels (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL).

The Project comprises the Permanent Works and the associated temporary works necessary for TBM tunnels between SOV and Admiralty Tunnels, short sections of cut and cover tunnels near SOV and Fenwick Pier Emergency Egress Point (FPP), Re-provisioning, Remedial and Improvement Works (RRIW) for government and public bodies facilities.

The EM&A programme commenced on 17 November 2014. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 17 and 30 November 2014. As informed by the Contractor, major activities in the reporting period were:

Area W1:

- Site installation and potentially GI and instrumentation work.

Canal Road box culvert (Area W4c):

- Transfer of facilities and instruments from 1129.

Canal Road flyover (Area W4b):

- Trial trench for sheet pile driving; GI and pile detection.

Wan Shing Street (Area W6):

- TTMS & Trial pit to expose utilities and pile cap for pile detection.

Area 14a & 14b:

- Site installation, Sheet pile installation and ELS work.

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action / Limit Level of air quality was recorded in the reporting month.

Breaches of Action and Limit Levels for Noise

Noise monitoring was carried out by SCL Contract 1129. Thus, no noise monitoring and no Action/Limit Level exceedance of noise were performed in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

- Ground Investigation additional borehole and obstruction detection:
- Underground utilities detection and diversion;
- Instrumentation installation;
- Sheet pile installation and prebored H-Piles at Canal Road Flyover;
- Sheet pile installation and essential bored piles construction at DSD Wan Chai west sewage screening plant;
- Slab replacement, sheetpile extraction and steel platform works at Canal Road Box Culvert ;and
- Pile detection at Wan Shing Street.

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

AECOM Asia Co. Ltd. 1 December 2014

1 INTRODUCTION

Dragages Bouygues J.V. (JV) was commissioned by MTR as the Civil Contractor for Works Contract 1128. AECOM Asia Company Limited (AECOM) was appointed by JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the first monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period from 17 to 30 November 2014.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is organised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

AECOM Asia Co. Ltd. 2 December 2014

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) (VEP-433/2014) was applied on 2 April 2014 and the latest EP (EP No. EP-436/2012/A) was issued by the Director of Environmental Protection (DEP) on 30 April 2014.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and the Project comprises the Permanent Works and the associated temporary works necessary for TBM tunnels between SOV and Admiralty Tunnels, short sections of cut and cover tunnels near SOV and Fenwick Pier Emergency Egress Point (FPP), Re-provisioning, Remedial and Improvement Works (RRIW) for government and public bodies facilities under the EP.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1128 include:
 - (a) Taking over the 160m section of the SCL tunnels (ME4 Tunnel) constructed under the Central Wan Chai Bypass (CWB) project and construction of walkways, sealing, connection and various finishing works inside the tunnels;
 - (b) Construction of cut and cover tunnels connecting from South Ventilation Building (SOV) to the ME4 Tunnel;
 - (c) Removal of temporary reclamation and reinstatement of seawall;
 - (d) Construction of SOV;
 - (e) Bored tunnels between SOV and Exhibition Station (EXH);
 - (f) Construction of cut and cover tunnels connecting from the SCL tunnels under Convention Avenue by Contract 1123 to the bored tunnels as stated in sub-clause
 - (g) Construction of Fenwick Pier Emergency Egress Point (FPP);
 - (h) Bored tunnels between Fenwick Pier Emergency Egress Point (FPP) and Admiralty Station (ADM);
 - (i) Pile/obstruction detections and removals for construction of SCL running tunnels and for future North Island Line (NIL) running tunnels;
 - (j) Demolition of existing Police Officer's Club (POC);
 - (k) Reprovisioning of new POC;
 - (I) Other RRIW;
 - (m) Essential piling works at future Government, Institution and Community (GIC) site
 - (n) Diversion and modification of utilities and services;
 - (o) Modification, re-provisioning or reinstatement of footpath, carriageway or road features;
 - (p) Provisions for Designated and Interfacing Contracts;
 - (q) Tree felling, tree compensation, transplanting works and landscaping works;
 - (r) Permanent reprovisioning works at the Fleet Arcade;
 - (s) Miscellaneous signage; and
 - (t) External works comprising new and reinstated roads, footpaths, drains, landscaping, staircase, street furniture and the like.

AECOM Asia Co. Ltd. 3 December 2014

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Area w1:

- Site installation and potentially GI and instrumentation work.

Canal Road box culvert (Area W4c):

- Transfer of facilities and instruments from 1129.

Canal Road flyover (Area W4b):

- Trial trench for sheet pile driving; GI and pile detection.

Wan Shing Street (Area W6):

- TTMS & Trial pit to expose utilities and pile cap for pile detection.

Area 14a & 14b:

- Site installation, Sheet pile installation and ELS work.
- 2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

Table 2.1 Contact Information of Key Personnel

Party	arty Role Position		Name	Telephone	Fax
	Residential Engineer (ER)	Construction Manager	Mr. T.C. Lam	3143 9129	3127 6424
MTR		SCL Project Environmental Team Leader	Mr. Richard Kwan	2688 1283	2993 7577
Meinhardt Independent Environmental Checker		Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
JV	Contractor	Project Director	Mr. Alain Hervio	6112 9197	2171 3715
		Environmental Manager	Mr. Marcus Cheung	6628 2685	21/13/15
AECOM Contractor's Environmental Team (ET)		ET Leader	Mr. Y T Tang	3922 9393	2317 7609

AECOM Asia Co. Ltd. 4 December 2014

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.2**.

Table 2.2 Status of Environmental Licenses, Notifications and Permits

Permit / License No. / Notification/	Valid Period		Status	Remarks	
Reference No.	From	То	Status	Remarks	
Environmental Permit					
EP-436/2012/A	30-Apr-2014	-	Valid	-	
Construction Noise	Permit				
GW-RS1216-14	7-Nov-14	6-May-15	Valid	Lung King Street near DSD Screening Plant (W14)	
GW-RS1271-14	15-Nov-14	14-May-15	Valid	Rest Garden near Wan Chai Interchange (W4)	
Wastewater Dischar	rge License				
-	-	-	Applications submitted to EPD on 8-Oct-14. Demand note for all application has been received and fee has been paid. Pending for approval	Works Areas W1, W4, W6 & W14	
-	-	-	Application has been submitted to EPD on 13-Nov-14.	Works Area at Wan Chai Sports ground	
Chemical Waste Pro	oducer Registra	ation			
-	-	-	Application has been submitted to	Victoria Park Road near POC (W1)	
-	-	-	EPD on 21-Nov-14.	Gloucester Road near Hung Hing Road (W4)	
-	-	-	Pending for Approval.	Lung King Street near DSD Screening Plant (W14)	
Billing Account for Construction Waste Disposal					
7020686	15-Sep-14	End of Contract	Valid	For disposal of C&D waste to public fills and landfills	
Notification Under Air Pollution Control (Construction Dust) Regulation					
378806	2-Sep-14	End of Contract	Valid	For Wan Chai, Casueway Bay, Hong Kong Island	
380227	7-Oct-14	End of Contract	Valid	For Gloucester Road near Cross Harbour Tunnel	
380228	7-Oct-14	End of Contract	Valid	Near Convention Avenue and Fenwick Pier Street, HK Island	

AECOM Asia Co. Ltd. 5 December 2014

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:10273))
Calibration Kit	TISCH Environmental Orifice (Model TE-5025A (Orifice I.D.: 0988))

Monitoring Locations

3.1.3 One monitoring station was set up at the proposed location in accordance with the approved EM&A Manuals for SCL (HUH-ADM) as well as the works areas of the Project. The location of the construction dust monitoring station is summarised in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Locations of Construction Dust Monitoring Station

ID	Air Sensitive Receiver (ASR) ID in EIA Report	Dust Monitoring Station	
AM4	EXA4	Pedestrian Plaza	

Monitoring Methodology

3.1.4 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each others;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) The sampler was located more than 20 meters from any dripline.
 - (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.

AECOM Asia Co. Ltd. 6 December 2014

- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.5 The schedule for environmental monitoring in November 2014 is provided in **Appendix F**.

AECOM Asia Co. Ltd. 7 December 2014

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Locations

3.2.2 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.4** and shown in **Figure 3.1**.

Table 3.4 Noise Monitoring Station during Construction Phase

Identification No.	Noise Sensitive Receiver (NSR) ID in EIA Report	Noise Monitoring Station
NM1*	CH2	Hoi Kung Court

^{*} The noise monitoring at NM1 was carried out by SCL Contract 1129. Upon the completion of their EM&A programmes, the monitoring works would be taken up by this Project.

3.3 Landscape and Visual

3.3.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

AECOM Asia Co. Ltd. 8 December 2014

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1.**

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
-	-	-

AECOM Asia Co. Ltd. 9 December 2014

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 Due to the installation of electricity supply which provided by the Pedestrian Plaza was completed on 24 November 2014, the 24-hr TSP monitoring session was started from 26 November 2014. The monitoring result for 24-hour TSP is summarised in **Table 5.1**. Detailed air quality monitoring result and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AM4	168	168	198	260

- 5.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.3 The event and action plan is annexed in **Appendix I**.
- 5.1.4 Major dust sources during the monitoring included construction dust from nearby traffic emission and other nearby construction sites.

5.2 Construction Noise Monitoring

5.2.1 Noise monitoring at NM1 was carried out by SCL Contract 1129. Thus, no noise monitoring and no Action/Limit Level exceedance of noise were performed in the reporting month.

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor, 313m³ of inert C&D material was generated (313m³ was disposed of as fill bank at TKO137) in the reporting month. No general refuse was generated in the reporting month. No metals, no paper/cardboard packaging material and no plastic was collected by recycling contractor in the reporting month. No inert C&D materials were reused on site. No chemical waste was collected by licensed contractor in the reporting period. The waste flow table is annexed in **Appendix J.**
- 5.3.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.4 Landscape and Visual

5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 24 November 2014. A summary of the site inspection is provided in Appendix C. The observations and recommendations made during the site inspections are presented in Table 6.1.

AECOM Asia Co. Ltd. 10 December 2014

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 2 site inspections were carried out on 17 and 24 November 2014. No joint inspection with the IEC, ER, the Contractor and the ET was conducted in the reporting month. No site inspection was conducted by EPD during the reporting month. No non-compliance was recorded during the site inspections. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality	17 November 2014	Reminder: The Contractor was reminded to water the exposed site area frequently as dust suppression.	The item was rectified by the Contractor on 24 November 2014.
Noise	N/A	N/A	N/A
Water Quality	24 November 2014	Reminder: The Contractor was reminded to provide preventive measures at the edge of site boundary to prevent potential surface runoff from site.	Report those follow up status during the next reporting month.
Waste/ Chemical Management	17 November 2014	Improper storage of chemical containers was observed at W14. The Contractor should provide drip tray for storage the chemical containers to retain leakage, if any.	Report those follow up status during the next reporting month.
Landscape & Visual	Landscape N/A		N/A
Permits/ Licenses	N/A	N/A	N/A

6.1.3 All the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed into the following weekly site inspection conducted during the reporting period.

AECOM Asia Co. Ltd. 11 December 2014

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit level at all monitoring location in the reporting month.
- 7.1.2 No noise monitoring was carried out in the reporting month. Thus, no Action/ Limit Level exceedance for noise was performed in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint was received in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix I**.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix I**.

AECOM Asia Co. Ltd. 12 December 2014

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

- 8.1.1 The major construction works in between December 2014 and February 2015 will be:
 - Ground Investigation additional borehole and obstruction detection;
 - Underground utilities detection and diversion;
 - Instrumentation installation;
 - Sheet pile installation and prebored H-Piles at Canal Road Flyover;
 - Sheet pile installation and essential bored piles construction at DSD Wan Chai west sewage screening plant;
 - Slab replacement, sheetpile extraction and steel platform works at Canal Road Box Culvert ;and
 - Pile detection at Wan Shing Street.

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

8.3 Monitoring Schedule for the Next Three Month

8.3.1 The tentative schedules for environmental monitoring in December 2014, January 2015 and February 2015 are provided in **Appendix F**.

AECOM Asia Co. Ltd. 13 December 2014

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP monitoring was carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring result complied with the Action / Limit Level at in the reporting month.
- 9.1.3 No noise monitoring was carried out in the reporting month. Thus, no Action/ Limit Level exceedance for noise was performed in the reporting month.
- 9.1.4 2 nos. of environmental site inspections were carried out in November 2014. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.5 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

• Implement effective measures to avoid dust impact.

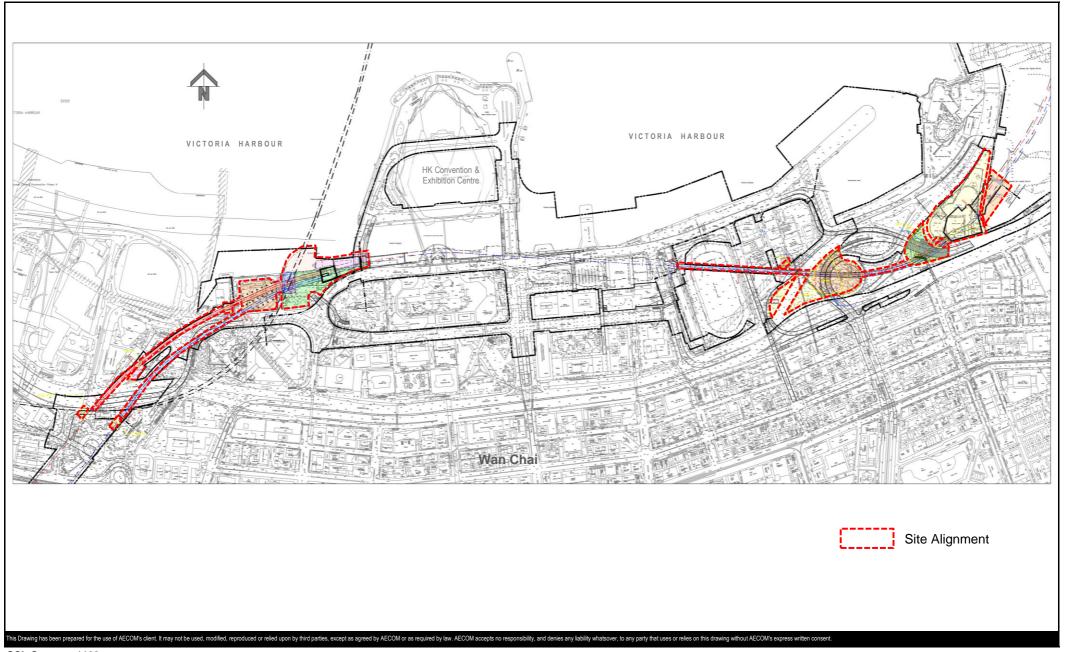
Construction Noise Impact

No specific observation was identified in the reporting month.

Water Quality Impact

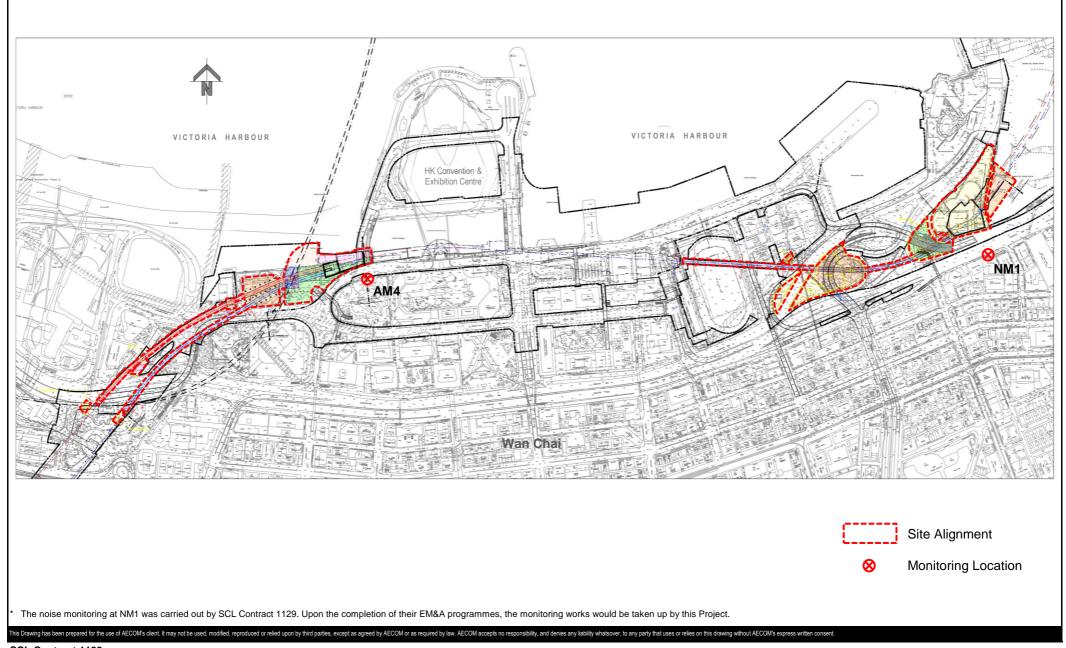
• Implement preventive measures to avoid surface runoff from the site.

Chemical and Waste Management


Provide proper chemical and construction waste management.

Permits/licenses

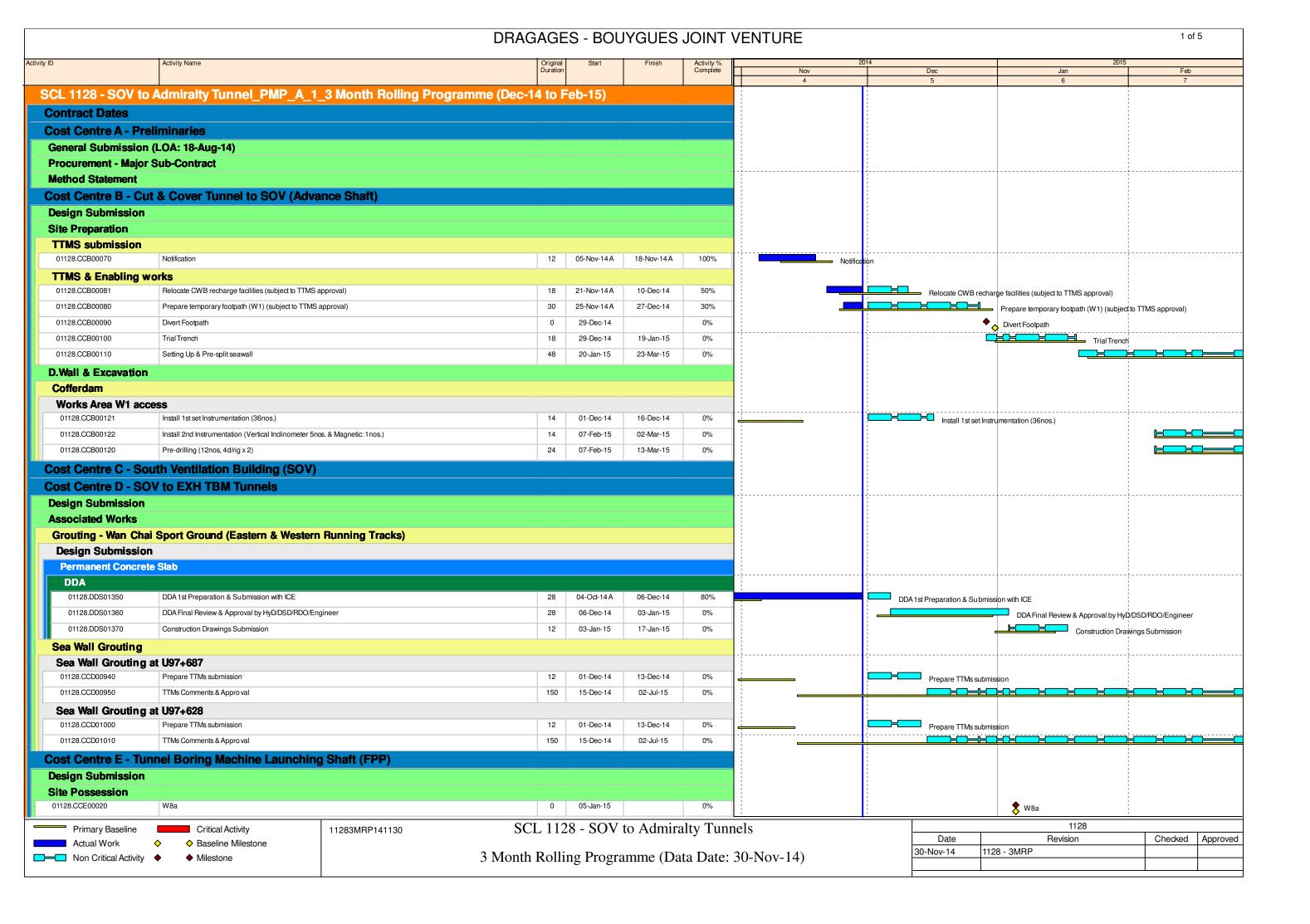
No specific observation was identified in the reporting month.

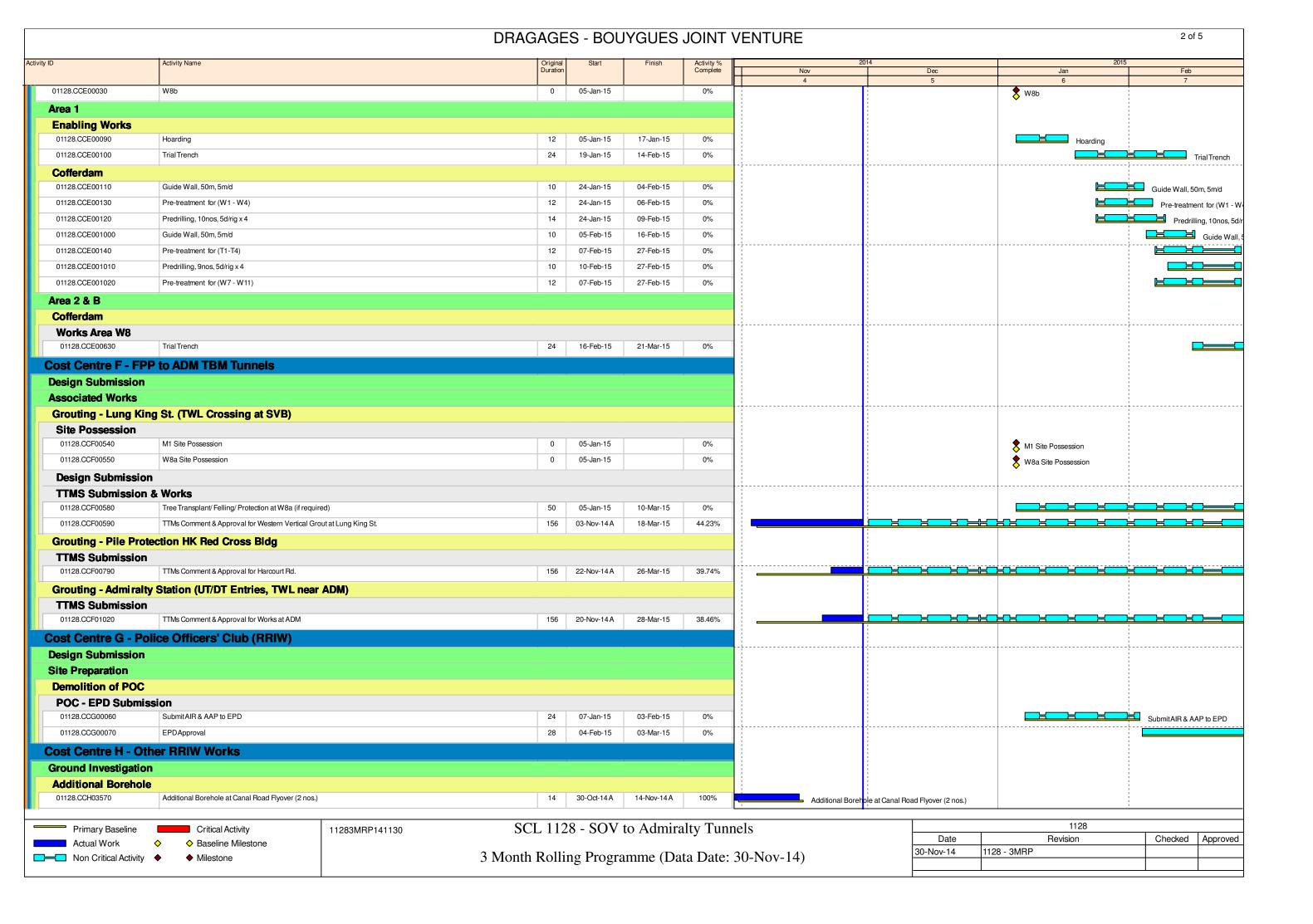

AECOM Asia Co. Ltd. 14 December 2014

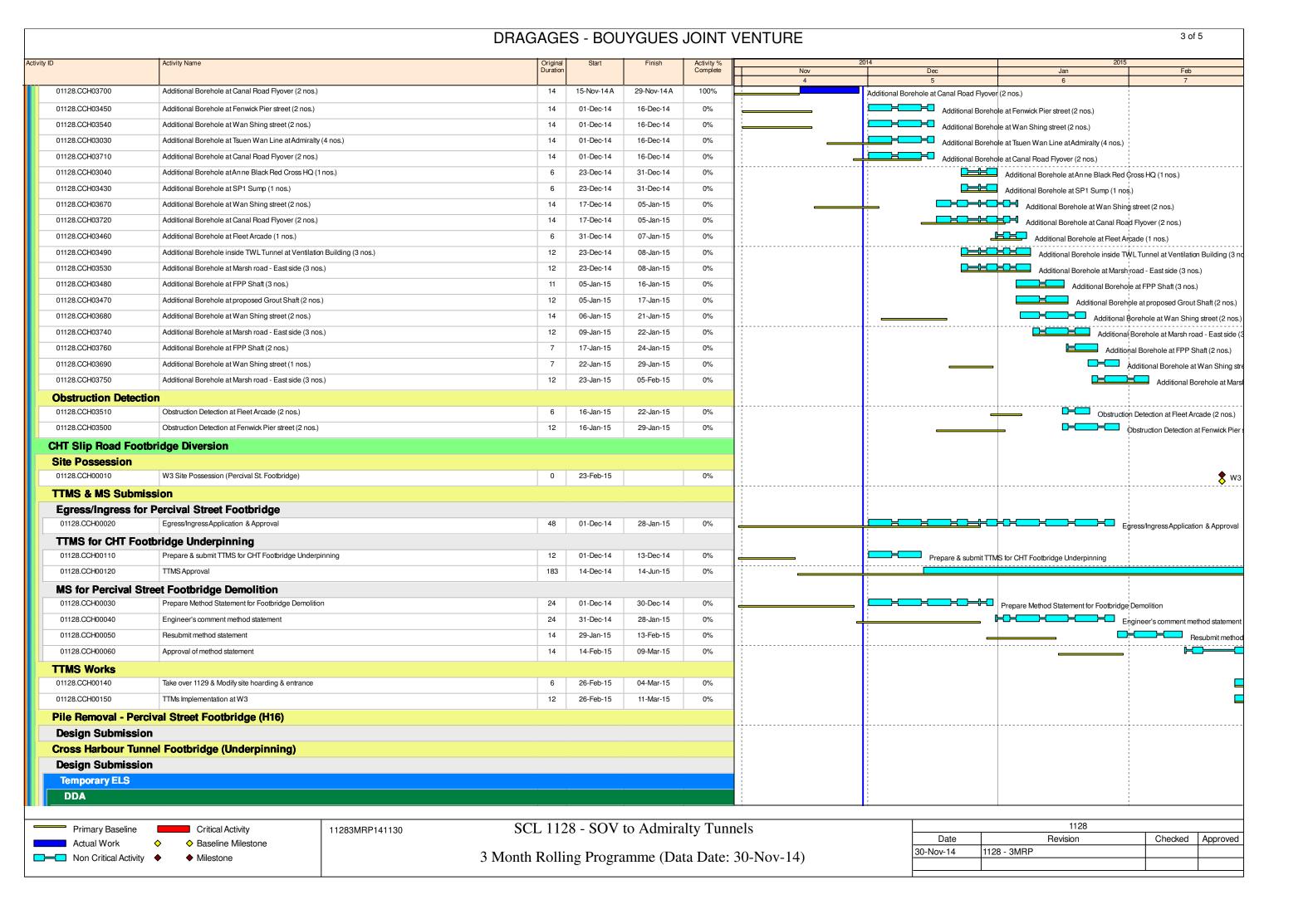
SCL Contract 1128
South Ventilation Building to Admiralty Tunnels

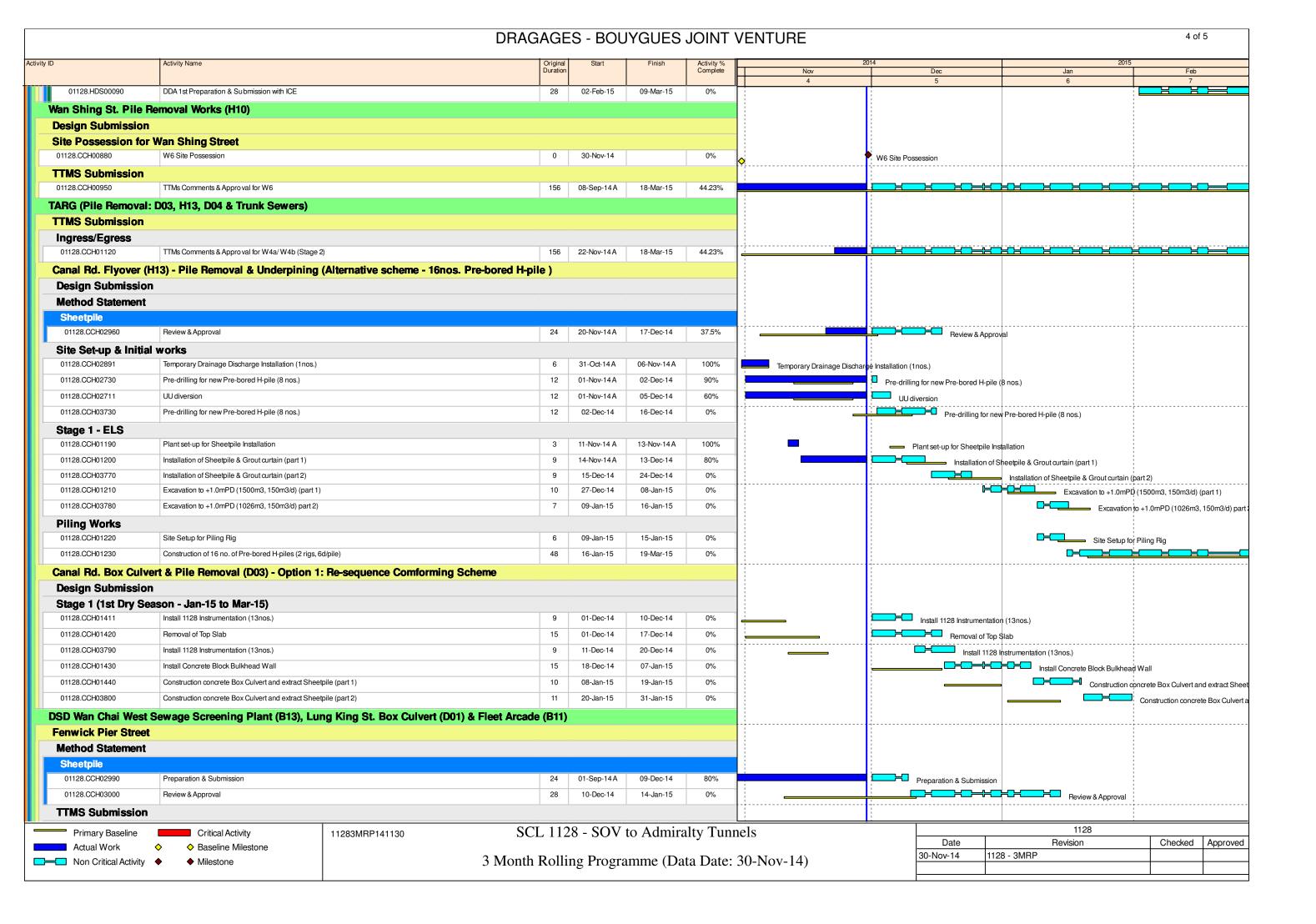
AECOM

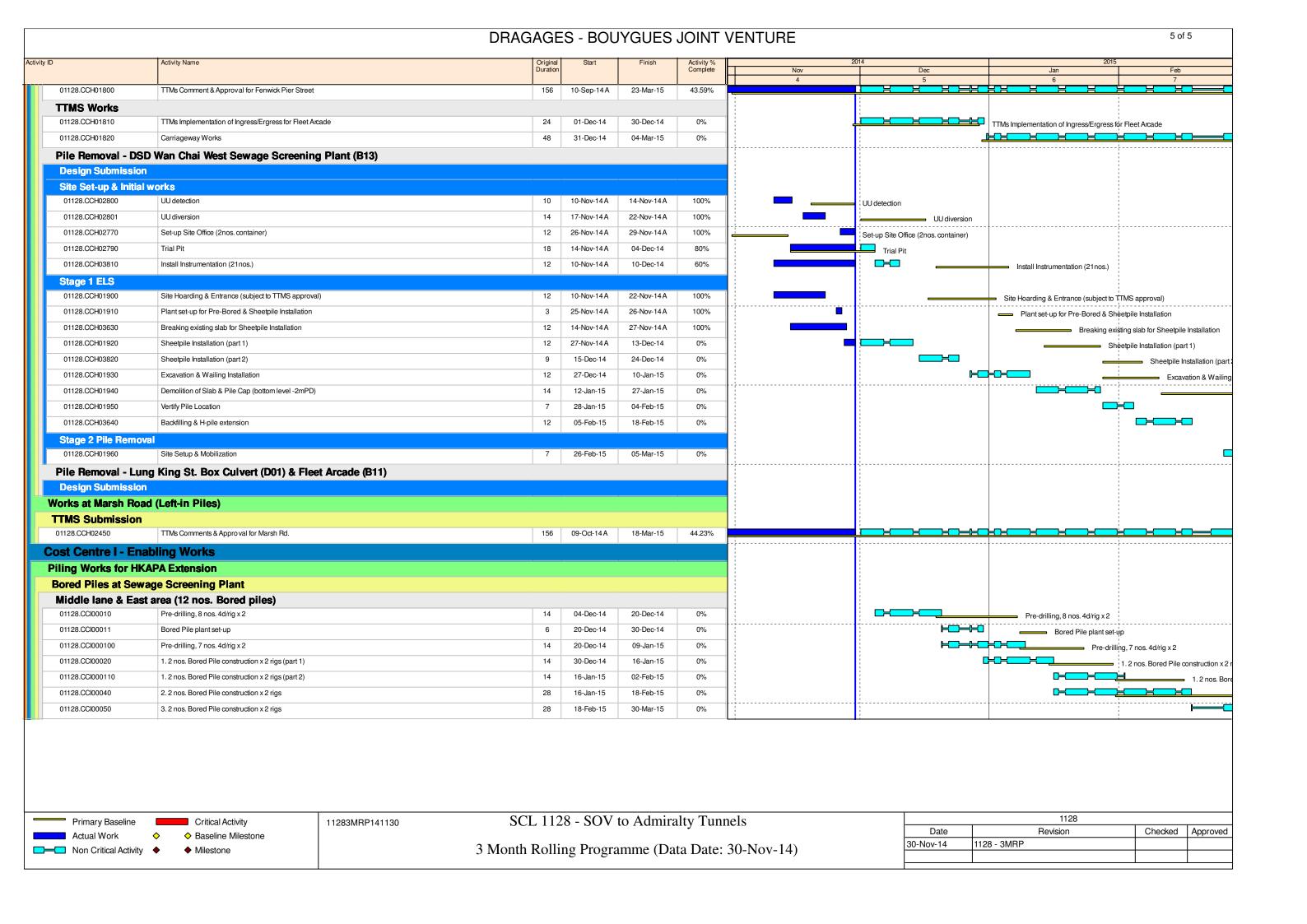
SCL Contract 1128

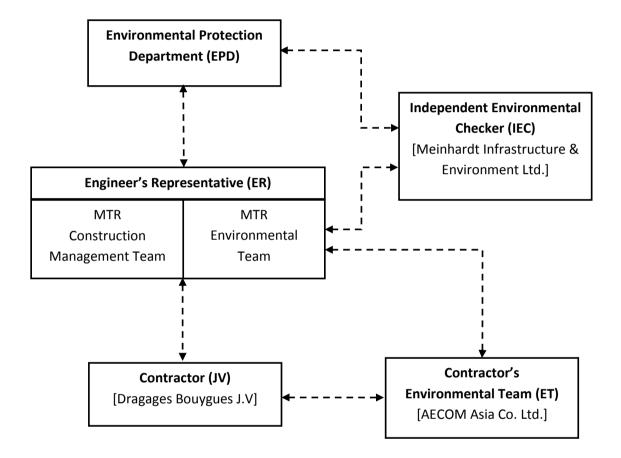

South Ventilation Building to Admiralty Tunnels


AECOM


Project No.: 60331173 Date: December 2014 Figure 3.1


APPENDIX A


Construction Programme



APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

Appendix B AECOM

APPENDIX C

Environmental Mitigation Measures Implementation Schedule

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural He	ritage Impact					
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	Construction Phase	V
Ecological	Impact					
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	Construction Phase	N/A
Landscape	and Visual Impact					
Construction	on Phase					
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	Construction Phase	V
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites	Construction Phase	N/A
Air Quality						
/	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Construction	on Dust Impact					
Table 8.5	 Barging facilities: Transportation of spoils to the barging point – Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every working hours to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.0 L/m² once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.0L/m² to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual. Unloading of spoil materials – Undertake the unloading process within a 3-sided screen with top tipping hall. Provide water spraying and flexible dust curtains at the discharge point for dust suppression. Vehicles leaving the barging facilities – Pass vehicles through the wheel washing facilities provided at site exits. 	To minimize dust impacts	Contractor	All barging points	Construction phase	N/A
S8.63	For concrete batching plant, the requirements and mitigation measures stipulated in the <i>Guidance</i> Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	N/A
Table 8.6	 During operation of concrete batching plant: Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system. Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. Weighing and batching of cementitious materials – Perform the whole process of weighing and mixing in a fully enclosed environment. Equip all the mixers with dust collectors. Loading of concrete from mixer into transit mixer of a truck – Directly load the concrete from the mixer into the transit mixer of a truck in "wet form". Tipper trucks and cement tankers leaving the Concrete Batching Plant – Haul road within the site is unpaved. Install wheel washing pit at the gate of the concrete batching plant. Transportation of materials within the plant – Provide watering twice a day would be provided. 	To minimize dust impacts	Contractor	Concrete Batching Plant	Construction phase	N/A
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S8.89	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall, provision of water spraying and flexible dust curtains to reduce dust emission	To minimize dust impact	Contractor	All barging points	Construction phase	N/A
S8.90	 Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. Imposition of speed controls for vehicles on site haul roads. Where possible, routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise 	To minimize dust impacts	Contractor	Works areas	Construction phase	V V N/A N/A N/A V N/A V V V V V V V V V V
Airborne N	•					
Construction		To minimize	Contractor	Works areas	Construction	
S9.55	 The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program Mobile plant, if any, shall be sited as far from NSRs as possible Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V N/A V V V N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S9.56 & Table 9.16	The following quiet PME shall be used: Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill Lorry Wheel loader Roller vibratory	To minimize construction noise impact	Contractor	Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction phase	N/A N/A N/A N/A N/A N/A N/A N/A V V V N/A N/A N/A
S9.58 – S9.59 & Table 9.17	Movable noise barrier shall be used for the following PME:	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
S9.60 & Table 9.17	Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic)	To minimize construction noise impact	Contractor	Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction phase	N/A N/A N/A N/A N/A N/A N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Qual	ity Impact					
Construction	on Phase					
S11.216	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works.	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction Phase	V
	Stockpiling of construction and demolition materials and dusty materials shall be covered and located away from the seawater front and storm drainage.					N/A
	Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters.					N/A
S11.222 to 11.245	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. Surface Run-off Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction Phase	N/A
	 run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels shall be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and re-alignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum distances of 100 m shall be maintained between the discharge points of construction site runoff and 					N/A
	the existing saltwater intakes. Construction works shall be programmed to minimize soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by tarpaulin, and temporary access roads shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.					V
	 Arrangements shall always be in place in such a way that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Earthworks final surfaces shall be well compacted and the subsequent permanent work or surface protection shall be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels shall be provided where 					N/A
	 necessary. Measures shall be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they shall be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations shall be discharged into storm drains via silt removal facilities. 					N/A
	Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites shall be					N/A
	 covered with tarpaulin or similar fabric during rainstorms. Manholes (including newly constructed ones) shall always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. 					N/A
	 Good site practices shall be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis. 					V

EIA Ref. /	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
EM&A Log Ref.		Recommended Measures & Main Concern to Address	implement the measures?	measure	implement the measures?	Status
	Boring and Drilling Water					
	 Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities. 					V
	 Wheel Washing Water All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if 					V
	practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.					
	Bentonite Slurries					
	Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the bentonite slurries shall either be dewatered or mixed with inert fill material for disposal to a public					N/A
	 filling area. If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. 					N/A
	 Water for Testing & Sterilization of Water Retaining Structures and Water Pipes Water used in water testing to check leakage of structures and pipes shall be used for other purposes 					N/A
	as far as practicable. Surplus unpolluted water will be discharged into storm drains. • Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought					N/A
	during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. Acid Cleaning, Etching and Pickling Wastewater					
	 Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. 					N/A
	 Wastewater from Site Facilities Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage 					N/A
	tank on a regular basis. • Drainage serving an open oil filling point shall be connected to storm drains via petrol interceptors					N/A
	 with peak storm bypass. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste 					N/A
S11.246 &	Disposal Ordinance. Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewage a vector is not	To minimize water	Contractor	Works areas	Construction Phase	N/A
11.247	trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices.	quality impacts due to sewage generated from construction workforce				
	Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.					
S11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	To control site run-off generated from any potential contaminated works areas.	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells shall be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substance such as TPH products shall be removed as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.252	 The following good site practices shall be adopted for the proposed barging points: all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash all hopper barges shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site loading of barges and hoppers shall be controlled to prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation 	To minimize water quality impacts generated from the barging points.	Contractor	Barging points	Construction Phase	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V (application in progress)

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V (application in progress)
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
S11.256	Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: • Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
	 during storage, handling and transport. Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are 					N/A
	 handling the wastes, to avoid accidents. Storage area shall be selected at a safe location on site and adequate space shall be allocated to the storage area. 					N/A
Waste Man	agement Implications		·			
Construction	on Phase					
S12.75	 Good Site Practices and Waste Reduction Measures Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; 	To reduce waste management impacts	Contractor	All Work Sites	Construction Phase	V
	 Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; 					V
	 Provision of sufficient waste disposal points and regular collection of waste; Appropriate measures to minimize windblown litter and dust during transportation of waste by 					V N/A
	 either covering trucks or by transporting wastes in enclosed containers; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and 					N/A
_	Separation of chemical wastes for special handling and appropriate treatment.		_			N/A
S12.76	 Good Site Practices and Waste Reduction Measures (con't) Sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); 	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	N/A
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; 					V
	 Encourage collection of aluminum cans by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; 					N/A V
	Proper storage and site practices to minimize the potential for damage or contamination of construction materials; Plan and stock construction materials construction materials construction materials.					V
	 Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; and Training shall be provided to workers about the concepts of site cleanliness and appropriate 					V
C10 77	waste management procedures, including waste reduction, reuse and recycle.	To ophicus wests	Contractor	All Morts Sitos	Conotraction	N/
S12.77	Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.					
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	N/A
S12.79	Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include:	To minimize potential adverse environmental	Contractor	Work Sites	Construction Phase	
	 Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; 	impacts arising from waste storage				N/A
	 Maintain and clean storage areas routinely; Stockpiling area shall be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and 					N/A N/A
S12.80	Different locations shall be designated to stockpile each material to enhance reuse. Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts:	To minimize potential adverse environmental impacts arising from waste	Contractor	Work Sites	Construction Phase	N/A
	 Remove waste in timely manner Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers 	collection and disposal				N/A N/A N/A
	 Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) 					N/A N/A
	 Waste shall be disposed of at licensed waste disposal facilities Maintain records of quantities of waste generated, recycled and disposed 					N/A
S12.81	 Storage, Collection and Transportation of Waste (con't) Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.83 – 12.86	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. 	To minimize potential adverse environmental impacts	Contractor	Work Sites	Construction Phase	V
	Specific areas shall be provided by the Contractors for sorting and to provide temporary	during the handling,				V
	 storage areas for the sorted materials. The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. 	transportation and disposal of C&D materials				V
	 Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north approach tunnels. 					V
S12.88	 Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance. 	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.89	 Sediments (con't) The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works. 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Detailed Design Stage and Construction Phase	N/A
\$12.91 - 12.94	 Sediments (con't) Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. The barge transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
/	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites	Construction Phase	@ V (Application in progress) N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.97	Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall:	To register with EPD as a Chemical waste producer and store chemical waste in	Contractor	Work Sites	Construction Phase	
	 Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; 	appropriate containers				N/A
	 Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and 					N/A
	 Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation. 					N/A
S12.98	 Chemical Waste Storage Area Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; 	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
	 Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; 	waste at works areas				N/A N/A
	 Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 					N/A N/A N/A
S12.99	Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place.	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
S12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	N/A
S12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	N/A
S12.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Land Conta	amination Impact					
\$13.23- 13.24	 For construction works at sites under the current stage of site investigation (Stage 1 SI): Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process shall involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odours, which may also indicate soil and/or groundwater contamination. If soil materials suspected to be contaminated are encountered during excavation, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Shall concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the Contamination Assessment Report (CAR) and Remediation Action Plans (RAP). 	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Within Project Boundary where signs of contamination is identified	During excavation works for Cut-and- Cover	N/A
S13.30	For some sites with currently no SI proposed (i.e. sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28), to be conservative, visual inspection shall be conducted during demolition and excavation to detect any abnormal colour, smell or other characteristics of the soil, due to the nearby land use and/ or construction method. If abnormal colour, smell or other characteristics of contamination are identified for any of these sites, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Should the concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the CAR and RAP.	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Areas with no SI proposed (Sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28)	During excavation works for Cut-and- Cover	N/A
S13.36 – 13.38	 For areas inaccessible for proper site appraisal and investigation (Stage 2 SI) (i) Site 2-15 Upon site access being granted, visual inspection shall be carried out where intrusive works and soil excavation is encountered, for attention on any potential contamination due to its current operation A supplementary CAP shall then be submitted to EPD for endorsement. A CAR/RAP shall be prepared and submitted to EPD for endorsement on completion of the SI and analytical testing. Shall remediation be undertaken a Remediation Report (RR) shall be prepared and submitted to EPD for endorsement to demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP. Information such as soil treatment/ disposal records (including trip tickets), confirmatory sampling results, and photographs shall be included in the aforesaid RR. No construction work shall be carried out prior to the endorsement of the RR by EPD. 	To identify areas with land contamination concern, report laboratory results and propose remediation measures if necessary. To ensure remediation works have been undertaken to before the commencement of any construction works of the Project.	Contractor	Areas unable to be accessed during Stage 1 SI (Site 2-15)	After land resumption and prior to the construction works commencement at the site	N/A
S13.39	 Potential Remediation of Contaminated Soil Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; Excavation shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Supply of suitable clean backfill material is needed after excavation; If remediation is required with chemical oxidation proposed as a contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and personal protective equipment (PPE). Vehicles containing any excavated materials shall be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates shall be sealed to prevent any discharge during transport or during wet conditions; Speed control for the trucks carrying contaminated materials shall be enforced; Vehicle wheel and body washing facilities at the site's exit points shall be established and used; and Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control shall be implemented and complied with relevant regulations and guidelines. 	To remediate contaminated soil	Contractor	Identified contaminated sites	Site remediation	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S13. 40	In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures shall be implemented as far as possible: • Set up a list of safety measures for site workers; • Provide written information and training on safety for site workers; • Keep a log-book and plan showing the contaminated zones and clean zones; • Maintain a hygienic working environment; • Avoid dust generation; • Provide face and respiratory protection gear to site workers; • Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and • Provide first aid training and materials to site workers.	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	Identified contaminated sites	Site remediation and prior to construction phase	N/A

Legend: V

: V = implemented; x = not implemented; @ = partially implemented; N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location Action Level		Limit Level	
AM4	Pedestrian Plaza	198 μg/m³	260 μg/m³	

Table 2 Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level	
NM1*	Hoi Kung Court	When one documented complaint is received	75 dB(A)	

The noise monitoring at NM1 was carried out by SCL Contract 1129. Upon the completion of their EM&A programmes, the monitoring works would be taken up by this Project.

Appendix D AECOM

APPENDIX E

Calibration Certificates of Equipments

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station Pedestrian Plaza			Operator:	Shum K			
Cal. Date:	24-Nov-14			Next Due Date:	24-F	24-Feb-15	
Equipment No.:	o.: A-001-70T Serial No.	10273		_			
Temperatu	ro To (V)	205		t Condition			
remperatu	ie, ia (N)	295	Pressure,	Pa (mmHg)		764.0	
		C	Prifice Transfer S	Standard Information	on		
Serial	No:	988	Slope, mc	, mc 1.97518 Intercept, bc			
Last Calibra	ation Date:	28-May-14		mc x Qstd + bc = $[H \times (Pa/760) \times (298/Ta)]^{1/2}$			
Next Calibra	ation Date:	28-May-15		mc x Qsta + bc	= [H x (Pa/760) x	(298/Ta)]" ²	
			Calibration (of TSP Sampler			
		O	fice	or 13F Sampler	LIV	S Flow Boosday	
Resistance Plate No.	DII / 15 1	T				S Flow Recorder	
	DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF		
18	7.4	2	2.74	1.39	45.0	45.35	5
13	6.2	2	.51	1.28	39.0	39.30)
10	5.0	2	25	1.15	35.0	35.27	
7	3.4	1	.86	0.95	27.0	27.21	
5	2.2	1	.49	0.76	21.0	21.16	
y Linear Regres lope , mw = _ orrelation Coeff	37.8140 ficient* =		954	Intercept, bw =	-8.1030		
Correlation Coe	efficient < 0.990,	check and recalibr	ate.	-			
				Calculation			
om the TSP Fiel	ld Calibration Cu	rve, take Qstd = 1.	30m³/min				
om the Regressi	ion Equation, the	e "Y" value accordi	ng to				
		mau v	Oatel 1 h 10 -	- I/D- I700\ - (000 T	· · · · 1/2		
		mw x	wstu + pw = IC)	([(Pa/760) x (298/T	a)]		
erefore, Set Poi	nt; IC = (mw x C	Qstd + bw) x [(760	/Pa)x(Ta/29	8)] ^{1/2} =		40.74	
				10.5	: -		
emarks:							
-							
2 Davies	1. K C	-		DI		1	1.
C Reviewer:	WS CHA	N Si	gnature:	4		Date: 25/11	114

D:\HVS Calibration Certificate (Existing

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3790 0.9720 0.8690 0.8260 0.6830	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd (x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9917 0.7191 0.9875 1.0159 0.9854 1.1339 0.9843 1.1916 0.9790 1.4333	1.4113 1.9959 2.2315 2.3405 2.8227	0.9957 0.9915 0.9894 0.9883 0.9829	0.7221 1.0201 1.1385 1.1965 1.4392	0.8874 1.2549 1.4030 1.4715 1.7747
Qstd slope (m) = intercept (b) = coefficient (r) =	1.97518 -0.01001 0.99998	Qa slope intercept coefficie	t (b) =	1.23683 -0.00630 0.99998
y axis = SQRT[H2O(H	Pa/760)(298/Ta)]	y axis =	SQRT[H20(Γa/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Impact Environmental Monitoring Schedule for November 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Nov
2-Nov	3-Nov	4-Nov	5-Nov	6-Nov	7-Nov	8-Nov
2-1100	3-1100	4-INUV	3-NOV	O-INOV	/-INUV	O-INUV
9-Nov	10-Nov	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov
16-Nov	17-Nov	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov
	-				-	-
OO Nev	O4 Nov	OF Nov	OC Nev	OZ Nev	20 Nov	20 Nev
23-Nov	24-Nov	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov
			Air Quality			
			(AM4)			
30-Nov						

Air Quality Monitoring Station

Pedestrian Plaza

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Tentative Impact Environmental Monitoring Schedule for December 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Dec	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
		Air Quality (AM4)				
7-Dec	8-Dec	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec
	Air Quality (AM4)					Air Quality (AM4)
14-Dec	15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec
					Air Quality (AM4)	
21-Dec	22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec
			Air Quality (AM4)			
28-Dec	29-Dec	30-Dec	31-Dec			
		Air Quality (AM4)				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Pedestrian Plaza

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Tentative Impact Environmental Monitoring Schedule for January 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jan	2-Jan	3-Jan
4-Jan	5-Jan	6-Jan	7-Jan	8-Jan	9-Jan	10-Jan
	Air Quality (AM4)					Air Quality (AM4)
11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan
			Air Quality (AM4)			
18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan
		Air Quality (AM4)				
25-Jan	26-Jan	27-Jan	28-Jan	29-Jan	30-Jan	31-Jan
	Air Quality (AM4)					Air Quality (AM4)

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Pedestrian Plaza

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels **Tentative Impact Environmental Monitoring Schedule for February 2015**

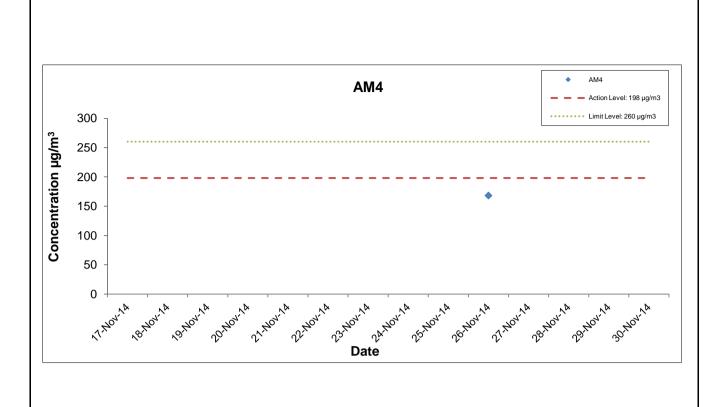
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Feb	2-Feb	3-Feb	4-Feb	5-Feb	6-Feb	7-Feb
					Air Quality (AM4)	
8-Feb	9-Feb	10-Feb	11-Feb	12-Feb	13-Feb	14-Feb
				Air Quality (AM4)		
15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb	21-Feb
			Air Quality (AM4)			
22-Feb	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb	28-Feb
		Air Quality (AM4)				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

AM4 Pedestrian Plaza

APPENDIX G


Air Quality Monitoring Results and their Graphical Presentations

Appendix G Air Quality Monitoring Results

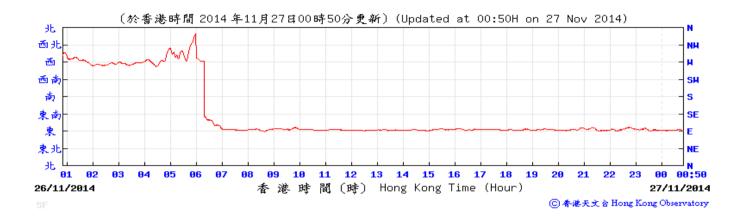
24-hour TSP Monitoring Results at Station AM4 (Pedestrian Plaza)

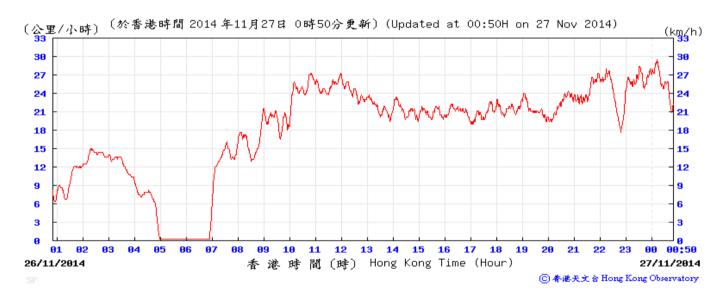
Star	t	End		Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
26-Nov-14	0:00	27-Nov-14	0:00	Sunny	22.2	1015.2	1.27	1.27	1.27	1833.1	2.7836	3.0920	0.3084	16929.00	16953.00	24.00	168.2
																Average	168.2
																Minimum	168.2
																Maximum	168.2

^{*} Due to the installation of electricity supply which provided by the Pedestrian Plaza was completed on 24 November 2014, the 24-hr TSP monitoring session was started from 26 November 2014.

Shatin Central Link Contract No. 1128

South Ventilation Building to Admiralty Tunnels


Date: December 2014



This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law, AECOM accepts no responsibility, and denies any liability whatover, to any party that uses or relies on this drawing without AECOM's expre

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, November 2014

26-Nov-14

APPENDIX H

Event Action Plan

Appendix H Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENIT.		AC	TION	
EVENT	ET	IEC	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor and IEC on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing.	Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures.	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate.

Appendix H Event Action Plan

Appendix H	Event Action Plan			
EVENT		ACT	TION	
EVENT	ET	IEC	ER	Contractor
LIMIT LEVEL				-
Exceedance for one sample	 Inform the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Appendix H Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENT		ACT	TION	
EVENT	ET	IEC	ER	Contractor
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals.
Exceedance of Limit Level	1. Notify the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency; 4. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Inform IEC, ER and EPD the causes and actions taken for the exceedances; 7. Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and 8. If exceedance stops, cease additional monitoring.	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated.

APPENDIX I

Cumulative Statistics of Complaints, Notification of Summons and Successful Prosecutions

Appendix I

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	-	-	0	0
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

Appendix I AECOM

APPENDIX J

Waste Flow Table

SCL Contract 1128

Monthly Summary C&D Material Flow Table for 2014

updated to 30th Nov 2014

Latest Programme for Generation	Quantity for off-site disposal of Inert C&D materials (m ³)						Quantity for off-site disposal of Non-inert C&D materials					
& Import of Materials in each Reporting Period		Inert C&D material (m ³)					Metals (kg)	Paper / Cardboard (kg)	Plastics (kg)	Chemical Waste (kg)	General Waste (m ³)	Sediment (m ³)
	CWPFBP(1)	TKO137FB(2)	TKO137SF(3)	TM38FB	^Other Site	Total (m ³)	Total	Total		Total	Total	Total
2014/11 (Actual)	0	313	0	0	0	313	0	0	0	0	0	0
2014/12 (Actual)												
Total	0	313	0	0	0	313	0	0	0	0	0	0

Remark: *Assume the density is 2 tonnes per cubic metre

^Required to be approved by EPD and MTR

CWPFBP Chai Wan Public Fill Barging Point

2 TKO137FB Fill Bank at Tseung Kwan O Area 137

3 TM38FB Fill Bank at Tuen Mun

4 TKO137SF Sorting Facilities at Tseung Kwan O Area 137