MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Contract 11227 – Advance Works for NSL Cross Harbour Tunnels

Final Environmental Monitoring and Audit

Review Report

(February 2015)

Verified by:	Fredrick Leong	Anh
Position: <u>Indep</u>	endent Environment	tal Checker
Date:	11 February 2015	

Concentric - Hong Kong River Joint Venture

Shatin to Central Link – Contract 11227 Advance Works for NSL Cross Harbour Tunnels

Final Environmental Monitoring and Audit Review Report

(version 2.0)

Certified By

Dr Priscilla Choy (Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

+TABLE OF CONTENTS

		Page
EX	ECUTIVE SUMMARY	1
	roduction	
	mmary of Construction Works undertaken in the Construction Periodvironmental Monitoring and Audit Works	
	ater Quality Monitoring	
	aste Management	
	ndscape and Visual	
	vironmental Site Inspectionvironmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution	
	nclusion	
1	INTRODUCTION	3
Pu	rpose of the Report	3
Str	ucture of the Report	3
2	PROJECT INFORMATION	4
Ba	ckground	4
	neral Site Description	
	nstruction Programme and Activities	
	oject Organisationmmary of EM&A Requirements	
3 3	ENVIRONMENTAL MONITORING REQUIREMENTS	
	nter Quality Monitoringpnitoring Parameter, Frequency and Programme	
	onitoring Equipment and Methodology	
Lal	boratory Measurement / Analysis for Marine Water	9
	tion and Limit Levels	
	ent and Action Plan	
<i>L</i> ui 4	IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION	10
-	EQUIREMENTSEQUIREMENTAL PROTECTION	11
5	SUMMARY OF EM&A WORKS	12
Wa	nter Quality Monitoring	12
Wa	aste Management	12
La	ndscape and Visual	13
	e Audit	
6	ENVIRONMENTAL NON-CONFORMANCE	
	mmary of Exceedances	
	mmary of Environmental Non-Compliancemmary of Environmental Complaint	
	mmary of Environmental Summon and Successful Prosecution	
7	COMMENTS, CONCLUSIONS AND RECOMMENDATIONS	
	lidity of EIA Predictions	
	mments on Overall EM&A Programme	
Ov	erall EM&A Data	16
Re	commendations and Conclusions	16

LIST OF TABLES

Table 3.1	Water Quality Monitoring Location
Table 3.2	Water Quality Monitoring Programme
Table 3.3	Water Quality Monitoring Equipment
Table 3.4	Analytical Methods to be applied to Marine Water Quality Samples
Table 4.1	Status of Required Submissions under EP
Table 5.1	Baseline, Impact and Post-Project Water Quality Monitoring Periods
Table 5.2	Summary of Quantity of Disposed Marine Sediments
Table 5.3	Major Findings and Corresponding Recommendations given During Site
	Audits

LIST OF FIGURES

Figure 1a-1c	The Alignment and Works Area for Works Contract 11227
Figure 2	Locations of Water Quality Monitoring Station in Shek O
Figure 3	Locations of Water Quality Monitoring Station in Victoria Harbour
Figure 4	Project Organisation for Environmental Works

LIST OF APPENDICES

Appendix A	Post-Project Water Quality Monitoring Schedule
Appendix B	Action and Limit Levels
Appendix C	Event and Action Plans
Appendix D	Post - Project Water Quality Monitoring Results and Graphical Presentations
Appendix E	Copies of Calibration Certificates
Appendix F	Quality Control Reports for SS Laboratory Analysis
Appendix G	Updated Environmental Mitigation Implementation Schedule
Appendix H	Waste Generation in the Construction Period

EXECUTIVE SUMMARY

Introduction

- 1. This is the Final Environmental Monitoring and Audit (EM&A) Review Report prepared by Cinotech Consultants Limited for MTR Shatin to Central Link (SCL) Works Contract 11227 Advance Works for NSL Cross Harbour Tunnels. This report documents the findings of EM&A Works of the Project.
- 2. The major construction works for Contract 11227 commenced on 1 August 2014 for Shek O Casting Basin. The major construction works in Victoria Harbour for Contract 11227 commenced on 11 September 2014.
- 3. The construction works for Contract 11227 was completed on 15 and 20 December 2014 for Victoria Harbour and Shek O Casting Basin respectively.

Summary of Construction Works undertaken in the Construction Period

4. The major site activities undertaken in the construction period include:

Shek O Casting Basin

- Seabed levelling works at channel exit; and
- Rock filling works in Casting Basin.
 - Victoria Harbour
- Dredging of trial trench in Victoria Harbour.

Environmental Monitoring and Audit Works

5. A summary of the monitoring activities is listed below:

Water Quality Monitoring

6. The baseline, impact and post-project water quality monitoring periods are summarized in the table below.

Activity	Temporary Works at Shek O Casting Basin	Trial Trench for Victoria Harbour
Baseline Monitoring	10 May – 5 June 2014	13 March – 8 April 2014
Impact Monitoring	1 August – 19 December 2014	12 September – 15 December 2014
Post-project Monitoring	22 December 2014 – 16 January 2015	17 December 2014 – 12 January 2015

Waste Management

7. Wastes generated from this Project include marine sediments. Details of waste management data is presented in Section 5 and **Appendix H**.

Landscape and Visual

8. Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted throughout the construction period. Most of the necessary mitigation measures have been implemented and recommended follow-up actions have been discharged by the Contractor.

Environmental Site Inspection

9. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET throughout the construction period. The representative of the IEC joined the site inspections once per month.

Environmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution

- 10. No exceedance of the Action and Limit Levels of water quality monitoring was recorded during the post-project monitoring period as well as the whole construction period.
- 11. No non-compliance event was recorded during the construction period.
- 12. No Project related environmental complaint and notification of summons/successful prosecutions were received in this construction period.

Conclusion

- 13. The EM&A programme were found to be effective in monitoring impacts arising from the Project. The findings of the environmental monitoring program suggest that no adverse impacts on sensitive receivers at the designated monitoring locations were brought about by the Project.
- 14. In conclusion the Project was environmentally acceptable in terms of water quality.

CINOTECH

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Concentric – Hong Kong River Joint Venture (CCL-HKRJV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL) Works Contract 11227 – Advance Works for NSL Cross Harbour Tunnels (hereafter referred to as the Project).

Purpose of the Report

1.2 This is the Final Environmental Monitoring and Audit (EM&A) Review Report prepared by Cinotech Consultants Limited for MTR Shatin to Central Link (SCL) Works Contract 11227 – Advance Works for NSL Cross Harbour Tunnels. This report documents the findings of EM&A Works of the Project.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** details the scope and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken during the construction period.
 - Section 3: **Environmental Monitoring Requirement -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.
 - Section 4: **Implementation Status on Environmental Mitigation Measures -**summarises the implementation of environmental protection measures during the construction period.
 - Section 5: **Summary of EM&A Works** summarises the EM&A works and results obtained in the construction period.
 - Section 6: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints and environmental summons within the construction period.
 - Section 7: Comments, Conclusions and Recommendations

2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Hung Hom to Admiralty Section (hereafter referred to as SCL (HUH-ADM)) is an approximately 6km extension of the East Rail Line including a rail harbor crossing from Hung Hom across the harbor to Admiralty on Hong Kong Island. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The Environmental Impact Assessment (EIA) Report for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, Environmental Permits (EP) (EP No: EP-436/2012) was granted on 22 March 2012 for their construction and operation.
- 2.3 An "Environmental Review Report Design Changes of North Ventilation Building and Shek O Casting Basin" (ERR) was submitted to the EPD in February 2014 to identify and assess the likely environmental issues pertinent to the proposed design changes at North Ventilation (NOV) Building and Shek O Casting Basin, and to identify any additional environmental mitigation measures that may be required for compliance with environmental standards. Variations of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/A) was issued by Director of Environmental Protection (DEP) on 30 April 2014.
- 2.4 The construction of the SCL (HUH-ADM) has been divided into a series of civil construction Works Contracts and this Works Contract 11227 comprises of the seabed levelling and rock filling works in Shek O, and dredging of trial trench in Victoria Harbour. The major construction works for Contract 11227 commenced on 1 August and 11 September 2014 for Shek O Casting Basin and Victoria Harbour respectively.
- 2.5 The construction works for Contract 11227 was completed on 15 and 20 December 2014 for Victoria Harbour and Shek O Casting Basin respectively.

General Site Description

2.6 The alignment and works area for the Works Contract 11227 are shown in **Figure 1a-1c**.

Construction Programme and Activities

2.7 A summary of the major construction activities undertaken in the construction period is shown as follows.

Shek O Casting Basin

- Seabed levelling works at channel exit; and
- Rock filling works in Casting Basin.

Victoria Harbour

• Dredging of trial trench in Victoria Harbour.

Project Organisation

2.8 The project organizational chart and contact details are shown in **Figure 4.**

Summary of EM&A Requirements

- 2.9 The EM&A programme under Works Contract 11227 require regular water quality monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirements in contract documents.
- 2.10 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely marine water quality monitoring as well as audit works for the Project in the construction period.

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Water Quality Monitoring

- 3.1 In accordance with the EM&A Manual and the ERR, marine water quality monitoring should be carried out during the period of seabed levelling work in Shek O Casting Basin and trenching work in Victoria Harbour. The water quality monitoring stations and control stations of Project are shown in **Figure 2** and **Figure 3**. The co-ordinates of the proposed monitoring stations are listed in **Table 3.1**. As shown in **Table 3.1**, the proposed locations are classified as Impact Station and Control Station according to their functions.
- 3.2 Baseline water quality monitoring for Trial Trenching Works and Temporary Works at Shek O Casting Basin was conducted by AECOM between March and June 2014 respectively under consultancy agreement no. C11033B.
- 3.3 According to the Water Quality Monitoring Plan for Trial Trenching Works (WQMP) and the Baseline Water Quality Monitoring Report for Trial Trenching Works, water quality monitoring in Victoria Harbour was carried out in two impact monitoring stations (namely A and WSD9) in dry season and four impact monitoring stations (namely A, WSD9, 14 and WSD17) in wet season.
- 3.4 Impact Water Quality Monitoring was completed on 15 and 19 December 2014 for Victoria Harbour and Shek O Casting Basin respectively as the construction works for this Project was completed.
- 3.5 The diving inspections for silt curtains at Shek O Casting Basin were carried out on 4 August, 5 & 19 September, 17 October and 23 December 2014. The silt curtains at Shek O Casting Basin were removed on 23 December 2014. For the silt curtains in Victoria Harbour, diving inspections were carried out on 19 September and 3 October 2014 and the silt curtain was removed on 15 December 2014.
- 3.6 Following the completion of all marine activities, a post project monitoring exercise on water quality was carried out for four weeks in the same manner as the impact monitoring. The post project water quality monitoring schedule is shown in **Appendix A**.

Table 3.1 Water Quality Monitoring Stations

Station	Description	East	North	Parameters to be measured
Shek O Cas	ting Basin	-		
GB3	Turtle Cove Beach	841120	810280	DO, Turbidity, SS
C3	Control Station for ebb tide	841200	806210	DO, Turbidity, SS
C4	Control Station for flood tide	843330	807320	DO, Turbidity, SS
Victoria Harbour (3)				
A	Wan Chai WSD Flushing Water Intake (Reprovisioned)	836268(1)	816045(1)	DO, Turbidity, SS
WSD9	Tai Wan WSD Flushing Water Intake	837930(2)	818357(2)	DO, Turbidity, SS
14	Flushing Water Intake for	834477	817891	DO, Turbidity, SS

Station	Description	East	North	Parameters to be measured
Shek O Cast	ting Basin			
	Kowloon Station			
WSD17	Quarry Bay WSD Flushing Water Intake	839863	817077	DO, Turbidity, SS
C1	Control Station 1	833977	817442	DO, Turbidity, SS
C2	Control Station 2	841088	817223	DO, Turbidity, SS

Note:

- (1) According to the Baseline Water Quality Monitoring Report for Trial Trenching Works, the original coordinates of monitoring location A (Easting: 836286, Northing: 816024) is the exact location taken from the design of reprovisioned Wan Chai Salt Water Pumping Station and Salt Water Intake Culvert. Based on actual site condition for taking water sampling, minor adjustment was made on monitoring location.
- (2) According to the Baseline Water Quality Monitoring Report for Trial Trenching Works, the original coordinates of monitoring location WSD9 (Easting: 838133, Northing: 817790) as proposed in WQMP were minor moved closer to sensitive receiver according to the actual site condition.
- (3) According to the Water Quality Monitoring Plan for Trial Trenching Works (WQMP) and the Baseline Water Quality Monitoring Report for Trial Trenching Works, water quality monitoring in Victoria Harbour will be carried out in two impact monitoring stations (namely A and WSD9) in dry season and four impact monitoring stations (namely A, WSD9, 14 and WSD17) in wet season.

Monitoring Parameter, Frequency and Programme

3.7 Water quality monitoring was conducted in accordance with the requirements stipulated in the approved SCL(HUH-ADM) EM&A Manual and the ERR. **Table 3.2** summarized the monitoring frequency and water quality parameters for the water quality monitoring programme.

Table 3.2 Water Quality Monitoring Programme

	Baseline Monitoring	Impact Monitoring	Post-Project Monitoring
Monitoring Period	Four weeks prior to the commencement of dredging works or any major marine works	During seabed levelling work in Shek O Casting Basin and trenching work in Victoria Harbour	Four weeks upon completion of all marine activities
Monitoring Frequency	3 Days in a	a Week, at mid-flood and mid-ebb tides	
Monitoring Locations	GB3, C3, C4, A, WSD9, C1, C2	Dry Season GB3, C3, C4, A, WSD9, C1, C2 Wet Season GB3, C3, C4, A, WSD9, 14, WSD17, C1, C2	GB3, C3, C4, A, WSD9, 14, WSD17, C1, C2
Monitoring Parameters	DO, temperature, turbidity, pH, salinity and SS		
Intervals between 2 Sets of Monitoring	Not less than 36 hours		
Tide Range	Individual	flood and ebb tides not less	than 0.5m

Monitoring Equipment and Methodology

3.8 The monitoring equipments and methodologies for post-project monitoring exercise are presented below. The post-project monitoring exercise was carried out in the same manner as the impact monitoring.

pH Measurement Instrument

3.9 The instrument should consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It should be readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 should be used for calibration of the instrument before and after use.

Dissolved Oxygen and Temperature Measuring Equipment

- 3.10 The Dissolved Oxygen (DO) measuring equipment should be portable and weatherproof. It should complete with cable and senor, and a DC power source. The equipment should be capable of measuring:
 - a DO level in the range of 0 20 mg·L⁻¹ and 0 200% saturation; and
 - a temperature of 0 45 degree Celsius (°C).
- 3.11 It should have a membrane electrode with automatic temperature compensation complete with a cable.
- 3.12 Should salinity compensation not be built-in to the DO equipment, in-situ salinity should be measured to calibrate the DO measuring equipment prior to each DO measurement.

Turbidity Measurement Instrument

3.13 The turbidity measuring instrument should be a portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU (for example, Hach model 2100P or an approved similar instrument).

Sampler

3.14 A water sampler is required for SS monitoring. It should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (for example, Kahlsico Water Sampler or an approved similar instrument).

Water Depth Detector

3.15 A portable, battery-operated echo sounder should be used for the determination of water depth at each monitoring station. This unit can either be hand-held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

Salinity

3.16 A portable salinometer capable of measuring salinity in the range of 0 - 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring station.

Sample Containers and Storage

CINOTECH

3.17 Water samples for SS monitoring should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4 °C without being frozen) and delivered to the laboratory and analyzed as soon as possible after collection.

Monitoring Position Equipment

3.18 A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message "screen pop-up" facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel at the correct location before taking measurements.

Calibration of In-Situ Instruments

- 3.19 The pH meter, DO meter and turbidimeter shall be checked and calibrated before use. DO meter and turbidimeter shall be certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 3.20 **Table 3.3** summarizes the equipment used in the post-project water quality monitoring program. The calibration certificates for the in-situ instruments are presented in **Appendix E**.

Table 3.3 Water Quality Monitoring Equipment

| Model and Make

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	3
Multi-parameter Water Quality	YSI 6820-C-M	2
System	Aquaread AP-2000-D	1
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS- 320	3
Water Depth Detector	Fishfinder 140	3

Laboratory Measurement / Analysis for Marine Water

- 3.21 Sufficient stocks of spare parts shall be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment are under maintenance, calibration, etc.
- 3.22 Duplicate samples from each independent sampling event are required by EPD for all parameters. Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory SS determinations, with detection

limit shown in **Table 3.4**. The SS determination work shall start within 24 hours after collection of the water samples. The analyses shall follow the standard methods according to Table 3.3 and as described in "American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater", 19th edition, unless otherwise specified.

Table 3.4 Analytical Methods to be applied to Marine Water Quality Samples

Determinant	Standard Method	Detection Limit
Suspended Solids (mg/L)	APHA 2540 D	0.1 mg/L

3.23 Quality Control Reports as attached in **Appendix F** are available for the SS analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Action and Limit Levels

3.24 The action and limit levels for water quality monitoring are presented in **Appendix B**.

Event and Action Plan

3.25 Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan in **Appendix C** was carried out.

Landscape and Visual

3.26 In accordance with the EM&A Manual, the landscape and visual mitigation measures was implemented and a site inspection was conducted once every two weeks throughout the construction period.

10

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit, EM&A Manual and the ERR. The implementation status of the environmental mitigation measures of the construction period is summarized in **Appendix G**. Status of required submissions under the Environmental Permit (EP) of this Project is presented in **Table 4.1**.

Table 4.1 Status of Required Submissions under EP

EP Condition	Submission	Submission Date
Condition 2.1	Employment of Environmental Team	22 nd July 2014
Condition 2.2	Employment of Independent Environmental Checker	14 th September 2012
Condition 2.2	Replacement of Independent Environmental Checker	21st May 2013
Condition 2.5	Management Organization of Main Construction Companies	22 nd July 2014
Condition 2.6	Construction Programme and EP Submission Schedule	8 th July 2014
Condition 2.10	Silt Curtain Deployment Plan for Trial Trenching in Victoria Harbour	11 th July 2014
Condition 2.11	Silt Screen Deployment Plan	11 th July 2014
Condition 2.23.1	Silt Curtain Deployment Plan for Shek O	1st Submission: 30th June 2014 2nd Submission: 23rd July 2014
Condition 3.3	Baseline Water Quality Monitoring Report for Temporary Marine Works at Shek O Casting Basin	1st Submission: 8th July 2014 2nd Submission: 11th August 2014
	Monthly EM&A Report (August 2014)	12 th September 2014
Condition 3.4	Monthly EM&A Report (September 2014)	14 th October 2014
	Monthly EM&A Report (October 2014)	14 th November 2014
	Monthly EM&A Report (November 2014)	12 th December 2014
	Monthly EM&A Report (December 2014)	14 th January 2015

5 SUMMARY OF EM&A WORKS

Water Quality Monitoring

5.1 The baseline, impact and post-project water quality monitoring periods are summarized in the **Table 5.1** below.

Table 5.1 Baseline, Impact and Post-Project Water Quality Monitoring Periods

Activity	Temporary Works at Shek O Casting Basin	Trial Trench for Victoria Harbour
Baseline Monitoring	10 May – 5 June 2014	13 March – 8 April 2014
Impact Monitoring	1 August – 19 December 2014	12 September – 15 December 2014
Post-project Monitoring	22 December 2014 – 16 January 2015	17 December 2014 – 12 January 2015

- Action and Limit Levels for water quality monitoring in Shek O Casting Basin and in Victoria Harbour have been established in the baseline water quality monitoring conducted. Action and Limit Levels for water quality is summarised in **Appendix B**.
- 5.3 The monitoring results for Post-project monitoring together with graphical presentations and statistical analysis of the trends of monitoring parameter over the course of the Project are shown in **Appendix D**.
- 5.4 With reference to the trends of monitoring parameters shown in **Appendix D**, the trends at the impact monitoring stations (namely GB3, 14, A, WSD17 and WSD9) are in line with those at their respective control stations (namely C3, C4 for GB3, and namely C1, C2 for 14, A, WSD17 and WSD9). The monitoring parameters were mainly influenced by seasonal fluctuations of the ambient seawater during impact and post-project monitoring period. Therefore, it is considered that no adverse environmental impact was brought to the water quality monitoring stations by this Project.
- 5.5 No exceedance of the Action and Limit Levels of water quality monitoring was recorded during the post-project monitoring period and the whole construction period.

Waste Management

- 5.6 Waste generated from this Project includes mainly marine sediments. Details of waste management data is presented in **Appendix H**.
- 5.7 With reference to relevant handling records of this Project, Type 1 (Category L) sediments, contaminated materials Type 1 (dedicated sites) and Type 2 Confined Marine Disposal (Category M) were generated from construction activities during the construction period. Such materials would be collected and disposed at Mud Pits CMP1 or CMP2 of the exhausted Confined Marine Disposal Facility at South of The Brothers (or East of Sha Chau). The quantity of disposed marine sediments is presented in **Table 5.2** below.

Table 5.2 Summary of Quantity of Disposed Marine Sediments

Reporting Month	Type 1 (Category L) sediments	Type 1 contaminated materials (dedicated sites)	Type 2 contaminated materials Confined Marine Disposal (Category M)
		(m³ in bulk volume)	
August 2014	0	0	0
September 2014	5,468	1,488	0
October 2014	1,912	0	11,910
November 2014	0	0	3,271
December 2014	0	0	0

Landscape and Visual

5.8 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted throughout the construction period. The observations and recommendations made during the audit sessions are summarized in each of the Monthly EM&A Report.

Site Audit

- 5.9 Site audit was carried out by representatives of the Contractor, Engineer and Contractor's ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The representative of the IEC joined the site inspections once per month.
- 5.10 No non-compliance was recorded during the site inspections throughout the construction period. Observations and recommendations recorded during the site inspections were summarized in each of the Monthly EM&A Reports.
- 5.11 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix G**.
- 5.12 The major findings and the corresponding recommendations given during the site audits are summarized in **Table 5.3**.

 $\begin{tabular}{ll} \textbf{Table 5.3 Major Findings and Corresponding Recommendations given During Site Audits} \end{tabular}$

Parameters	Observations	Corresponding Recommendations
Water Quality	Some gaps at the silt curtains in Northern and Southern Gates of Shek O Casting Basin were observed.	To provide extra fabric and repair the silt curtains properly.
	The silt curtain at grab in Victoria Harbour is under maintenance thus not useable.	To ensure the silt curtain can function properly before commencing the dredging works.
	Dusty material observed at near the side of target barge in Shek O and Victoria Harbour	To remove these dusty material to avoid washing to seawater
	Plume of silty water observed in the seawater near the end of the barge in Victoria Harbour	To locate the source of silty water and repair any equipments if necessary.
	General refuse observed deposited near the silt screen at Tai Wan	To remove the general refuse properly and regularly
	Some fabric of the silt curtain observed floating on the water at the Northern and Southern Gate of Shek O Casting Basin	To strengthen the anchorage of silt curtains or repair the silt curtain properly.
Noise		
Landscape and Visual		
Air Quality		
Waste/Chemical Management	Chemical containers on the barges in Shek O and Victoria Harbour were observed not provided with secondary confinement.	To provide drip tray to chemical containers accordingly.
Oily water observed on the barge in Shek O and Victoria Harbour.		To properly clear the oily water as "chemical waste" and provide absorptive material on the barge in the event of chemical leakage.
Permits/Licenses	Environmental Permit for the Project not displayed conspicuously in Shek O	To properly display Environmental Permit at the site entrance before commencement of works.

6 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

6.1 No exceedance of the Action and Limit Levels of impact water quality monitoring was recorded during the construction period.

Summary of Environmental Non-Compliance

6.2 No environmental non-compliance was recorded in the construction period.

Summary of Environmental Complaint

6.3 No environmental Project-related complaint was received in the construction period.

Summary of Environmental Summon and Successful Prosecution

6.4 There was no successful environmental prosecution or notification of summons received since the Project commencement.

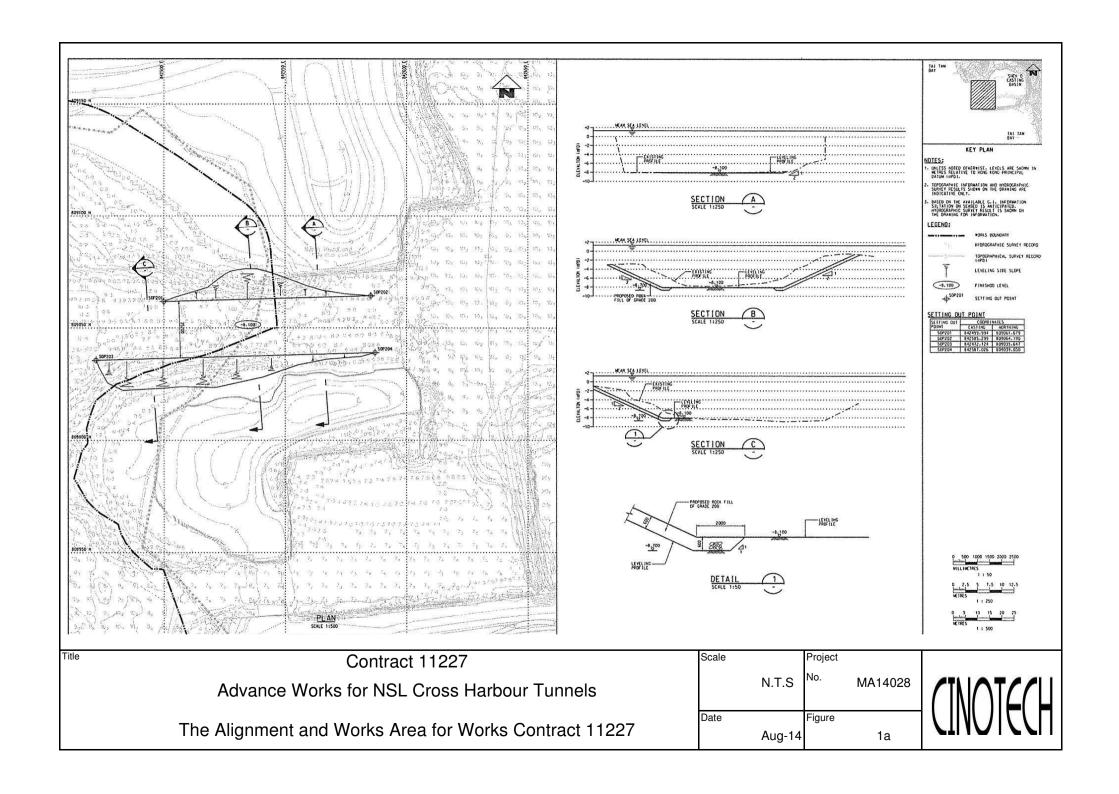
7 COMMENTS, CONCLUSIONS AND RECOMMENDATIONS

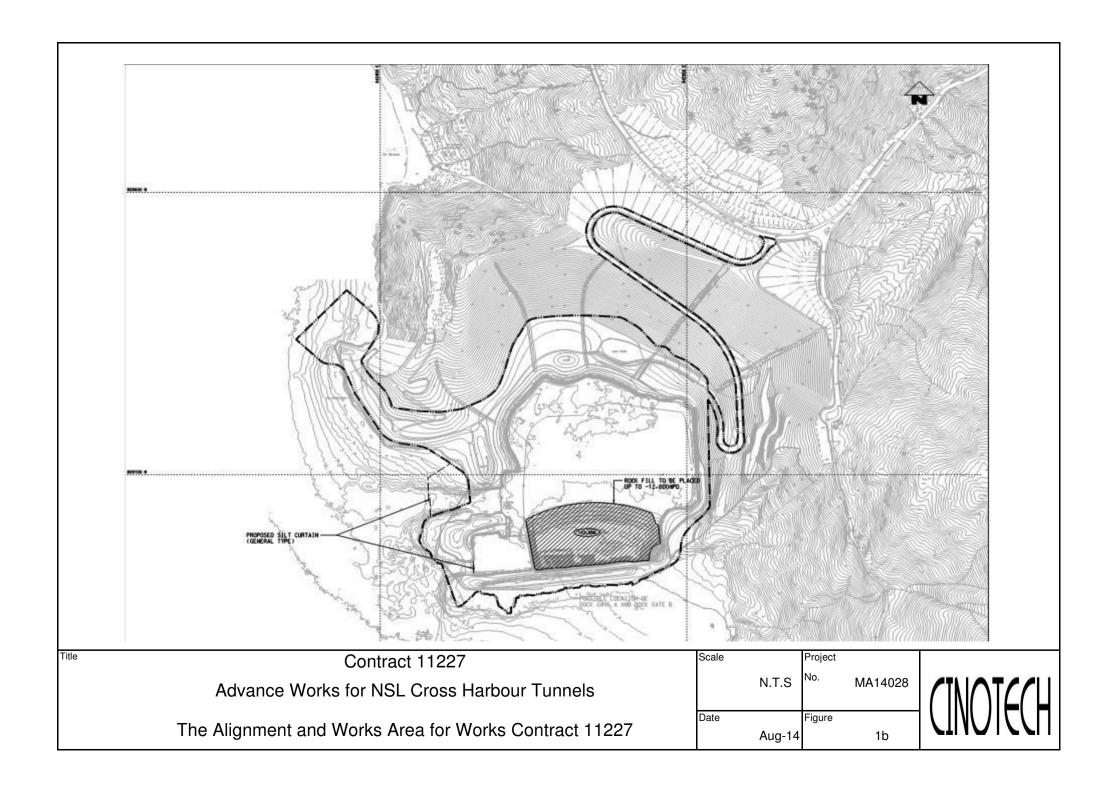
Validity of EIA Predictions

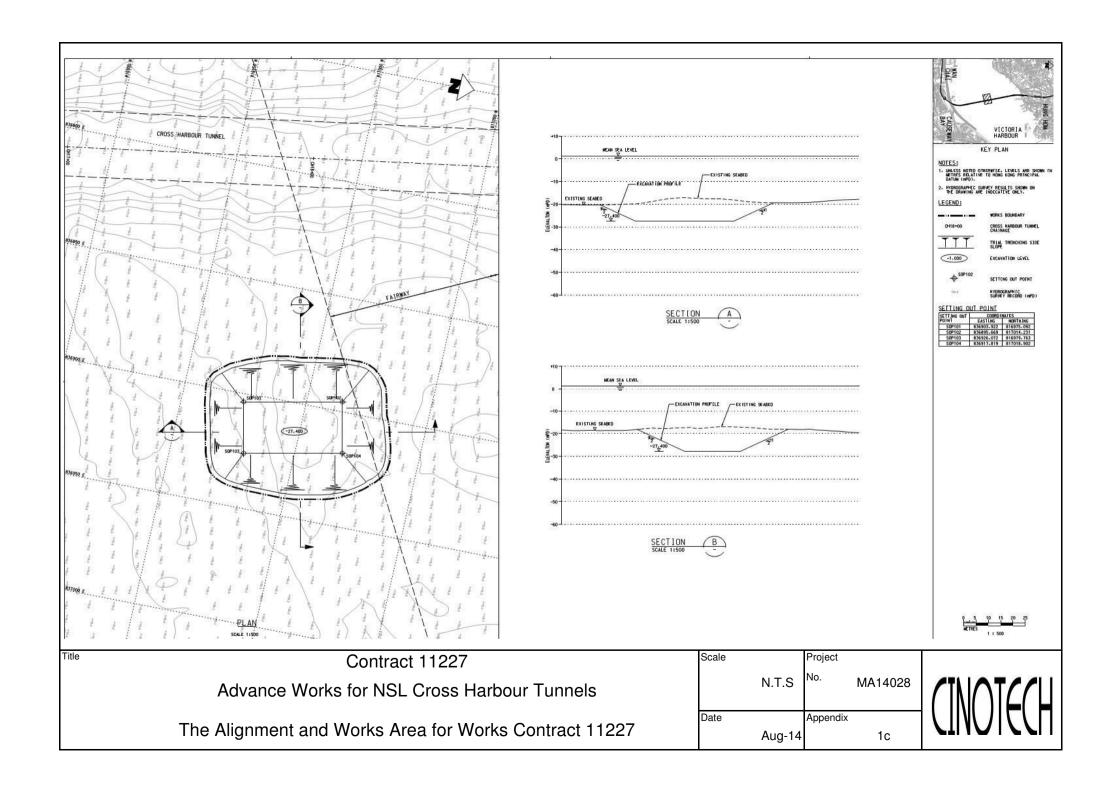
7.1 It is predicted in the EIA Report that with the implementation of the recommended mitigation measures, there would be no unacceptable water quality impacts arising from the Project-related construction works. Similarly in the ERR, no adverse water quality impacts was expected from the temporary marine works for Shek O Casting Basin. The impact water quality monitoring data obtained was in-line with the predictions as no Action/Limit Level exceedance was considered caused by the Project.

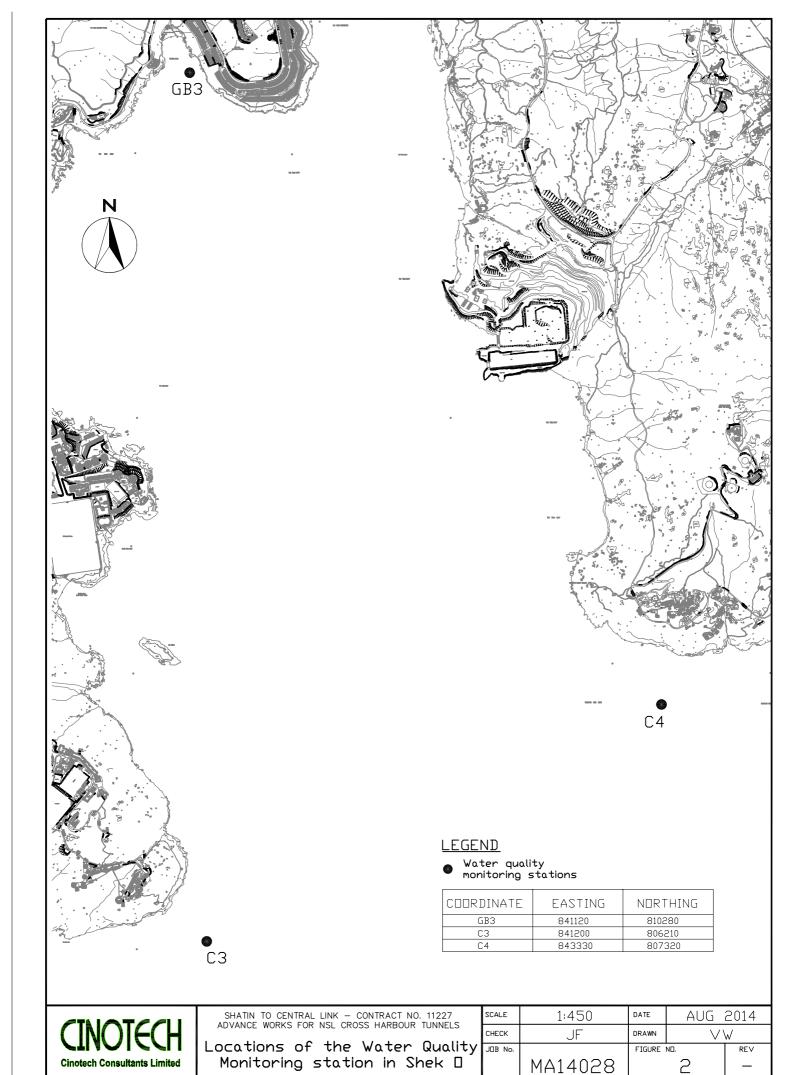
Comments on Overall EM&A Programme

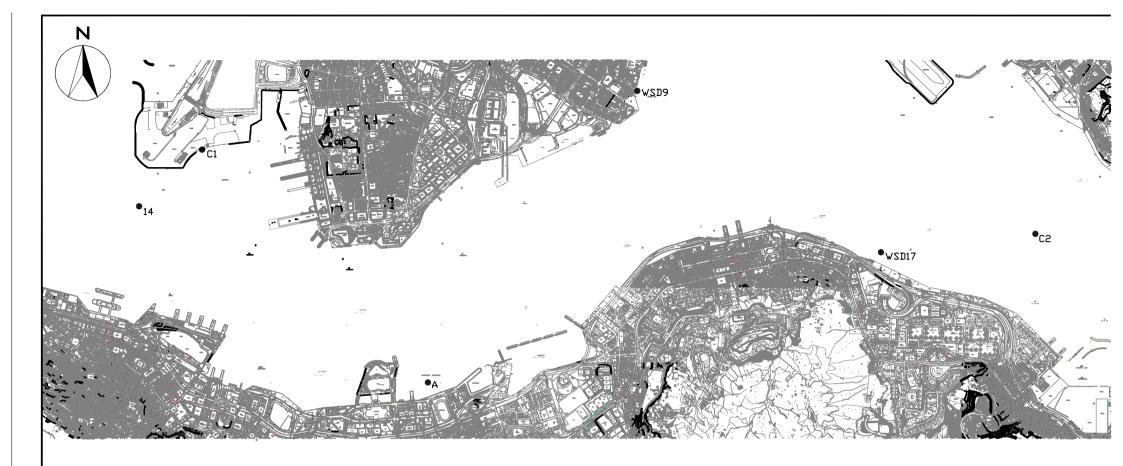
- 7.2 The mitigation measures detailed in the Environmental Permit, the Manual, the ERR and in the EIA report were implemented throughout the whole project period. With the environmental monitoring and site inspection to directly ensure the timely implementation of mitigation measures during the Project, the environmental performance of the Project was acceptable. Analysis of all EM&A data collected throughout the construction periods also demonstrated the environmental acceptability of the Project.
- 7.3 The overall performance of the monitoring methodology adopted and environmental management system in this Project was effective.


Overall EM&A Data


- 7.4 Baseline, impact and post-project water quality monitoring for temporary works in Shek O Casting Basin and Trial trenching works in Victoria Harbour were carried out according to the requirements in the EM&A Manual.
- 7.5 No exceedance of the Action and Limit Levels of water quality monitoring was recorded at the designated monitoring stations during the post-project monitoring period as well as the whole construction period.

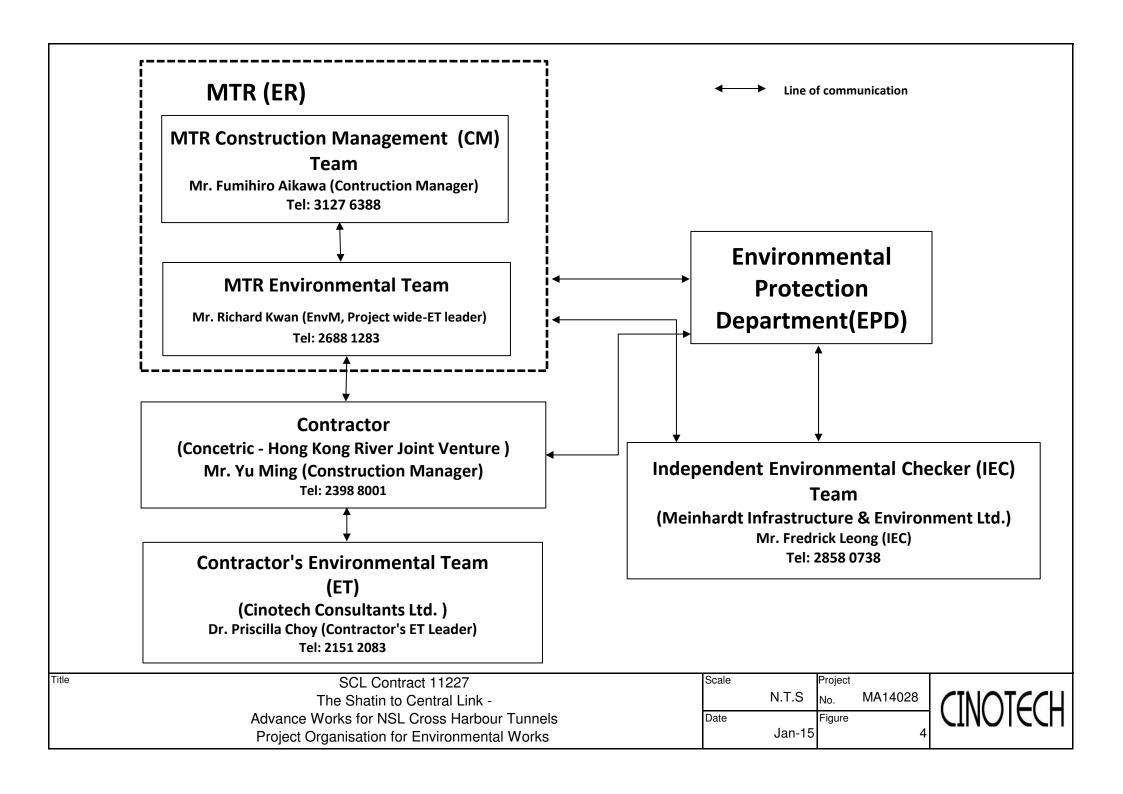

Recommendations and Conclusions


- 7.6 The EM&A programme was found to be effective in monitoring impacts arising from the Project. The findings of the environmental monitoring program suggest that no adverse impacts on sensitive receivers were brought about by the Project. In conclusion the Project was environmentally acceptable in terms of water quality.
- 7.7 With the success of the overall EM&A programme, the deterioration of the environment caused by the Project was cost-effectively identified and necessary prompt effective mitigation measures were implemented to avoid any unacceptable impacts.


FIGURES

COORDINATE	EASTING	NORTHING
Α	836268	816045
14	834477	817891
WSD9	837930	818357
WSD17	839863	817077
C1	833977	817442
C2	841088	817223

LEGEND


Water Quality Monitoring Station

SHATIN TO CENTRAL LINK - CONTRACT NO. 11227 ADVANCE WORKS FOR NSL CROSS HARBOUR TUNNELS

Locations of the Water Quality Monitoring station in Victoria Harbour

SCALE	1:30	DATE	AUG 20:	14
CHECK	JF	DRAWN	VW	
J□B No.		FIGURE	ND.	REV
	MA14028		3	_

APPENDIX A
POST-PROJECT WATER QUALITY
MONITORING SCHEDULE

Shatin to Central Link - Contract No. 11227 Advance Works for NSL Cross Harbour Tunnels Post-Project Water Quality Monitoring Schedule (Shek O) (December 2014)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Dec	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
7-Dec	8-Dec	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec
		, 211	10 2 0	11 200		10 200
14-Dec	15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec
21-Dec	22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec
	*Mid-Ebb 12:27 Mid-Flood 17:43		Mid-Flood 8:29 *Mid-Ebb 13:54			Mid-Flood 10:50 *Mid-Ebb 16:38
28-Dec	29-Dec	30-Dec	31-Dec			
	Mid-Flood 12:34		*Mid-Ebb 8:00			
	Mid-Ebb 19:02		Mid-Flood 14:17			

Water Quality Monitoring Stations

C3, C4, GB3

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Tai Miu Wan Station)

- 2) The reasons for choosing the monitoring day (i.e. 22, 24, 27 and 31 December 2014) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Shatin to Central Link - Contract No. 11227 Advance Works for NSL Cross Harbour Tunnels Post-Project Water Quality Monitoring Schedule (Shek O) (January 2015)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jan	2-Jan	3-Jan
					*Mid-Ebb 10:15 Mid-Flood 15:52	
4-Ja	n 5-J	an 6-Jan	7-Jan	8-Jan	9-Jan	10-Jan
	*Mid-Ebb 12: Mid-Flood 17:		Mid-Flood 8:18 *Mid-Ebb 13:35		Mid-Flood 9:22 *Mid-Ebb 14:46	
11-Ja	n 12-J	an 13-Jan	14-Jan	15-Jan	16-Jan	17-Jan
	Mid-Flood 11: *Mid-Ebb 17:		Mid-Flood 12:34 Mid-Ebb 19:27		*Mid-Ebb 8:39 Mid-Flood 14:08	
18-Ja	n 19-J	an 20-Jan	21-Jan	22-Jan	23-Jan	24-Jar
25-Ja	n 26-J	an 27-Jan	28-Jan	29-Jan	30-Jan	31-Jan

Water Quality Monitoring Stations

C3, C4, GB3

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Tai Miu Wan Station)

- 2) The reasons for choosing the monitoring day (i.e. 2, 5, 7, 9, 12, 16 January 2015) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Shatin to Central Link - Contract No. 11227 Advance Works for NSL Cross Harbour Tunnels Post-Project Water Quality Monitoring Schedule (Victoria Harbour) (December 2014)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Dec	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
7-Dec	8-Dec	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec
14-Dec	15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec
			*Mid-Ebb 8:14 Mid-Flood 14:32		*Mid-Ebb 10:19 Mid-Flood 15:47	
21-Dec	22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec
	*Mid-Ebb 12:35 Mid-Flood 17:51		Mid-Flood 8:35 *Mid-Ebb 14:08			Mid-Flood 10:58 *Mid-Ebb 16:48
28-Dec	29-Dec	30-Dec	31-Dec			
	Mid-Flood 12:40 Mid-Ebb 19:11		*Mid-Ebb 8:08 Mid-Flood 14:25			

Water Quality Monitoring Stations

14, A, C1, C2, WSD17, WSD9

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

- 2) The reasons for choosing the monitoring day (i.e. 17, 19, 22, 24, 27 and 31 December 2014) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Shatin to Central Link - Contract No. 11227 Advance Works for NSL Cross Harbour Tunnels

Post-Project Water Quality Monitoring Schedule (Victoria Harbour) (January 2015)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Dec	2-Dec	3-Dec	1-Jan	2-Jan	3-Jan
					*Mid-Ebb 10:26 Mid-Flood 16:00	
4-Jan	5-Jan	6-Jan	7-Jan	8-Jan	9-Jan	10-Jan
	*Mid-Ebb 12:39 Mid-Flood 17:57		Mid-Flood 8:25 *Mid-Ebb 13:46		Mid-Flood 9:23 *Mid-Ebb 14:51	
11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan
	Mid-Flood 11:15 *Mid-Ebb 17:11					
18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan
25-Jan	26-Jan	27-Jan	28-Jan	29-Jan	30-Jan	31-Jan

Water Quality Monitoring Stations

14, A, C1, C2, WSD17, WSD9

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

- 2) The reasons for choosing the monitoring day (i.e. 2, 5, 7, 9, 12 January 2015) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

APPENDIX B ACTION AND LIMIT LEVELS

APPENDIX B – Action and Limit Levels

Derived Action and Limit Levels for Water Quality at Intakes A and WSD9 (Dry Season)

Parameters	Action Level	Limit Level
DO in mg/L	<2.1	<2
SS in mg/L	5.0	5.5
Turbidity in NTU	5.3	5.6

Derived Action and Limit Levels for Water Quality at Intakes A, WSD9, 14 and WSD17 (Wet Season)

Parameters	Action Level	Limit Level
DO in mg/L	<2.1	<2
SS in mg/L	4.4	4.8
Turbidity in NTU	5.3	5.6

Derived Action and Limit Levels for Water Quality at GB3 (Dry Season)

Parameters	Action Level	Limit Level
DO in mg/L	6.8	6.5
SS in mg/L	9.3	9.3
Turbidity in NTU	5.0	5.6

Derived Action and Limit Levels for Water Quality at GB3 (Wet Season)

Parameters	Action Level	Limit Level
DO in mg/L	5.5	5.3
SS in mg/L	4.5	4.5
Turbidity in NTU	2.1	2.4

APPENDIX C EVENT AND ACTION PLANS

Appendix C - Event and Action Plan for Marine Water Quality Monitoring

EVENT	ACTION				
EVENI	ET	IEC	ER	CONTRACTOR	
Action level being exceeded by one sampling day	 Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; and Discuss remedial measures with the IEC and Contractor. 	and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and 3. Review and advise the agriculture and advise t	EC and Contractor on the implemented sitigation measures; Make agreement on the emedial measures to be implemented; and Supervise the implementation of the emedial measures.	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER; and Implement the agreed remedial measures. 	
Action level being exceeded by more than one consecutive sampling days	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and 	and Contractor on the implemented mitigation measures; mi 2. Review proposals on remedial measures rem	EC and Contractor on the implemented ditigation measures; Make agreement on the	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable 	

Appendix C - Event and Action Plan for Marine Water Quality Monitoring

		ACT	TION	
EVENT	ET	IEC	ER	CONTRACTOR
	the Contractor's working methods; 4. Discuss remedial measures with the IEC and Contractor; and 5. Ensure remedial measures are implemented.	Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	3. Discuss with the ET and IEC on the effectiveness of the implemented remedial measures.	practice; 4. Check all plant and equipment; 5. Consider changes of working methods; 6. Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and 7. Implement the agreed remedial measures.

Appendix C - Event and Action Plan for Marine Water Quality Monitoring

TAX/TAXI/ID		ACT	ION	
EVENT	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC, EPD and ER; Rectify unacceptable practice; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss with the ET and IEC and propose remedial measures to the IEC, EPD and ER; and Ensure the agreed remedial measures are implemented. 	 Discuss with the ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER the effectiveness of the implemented remedial measures. 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Request the Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; and Assess the effectiveness of the implemented remedial measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and Implement the agreed remedial measures.
Limit level being exceeded by more than one consecutive sampling days	 Inform the Contractor, IEC, EPD and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; 	 Discuss with the ET, ER and Contractor on the implemented measures; Review proposals on remedial measures submitted by the 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Request the Contractor to critically review the 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable

Appendix C - Event and Action Plan for Marine Water Quality Monitoring

TEXTENIO		ACT	TION	
EVENT	ET	IEC	ER	CONTRACTOR
	3. Discuss remedial measures with the the IEC, EPD, ER and Contractor; 4. Ensure remedial measures are implemented; and 5. Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days.	Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	working methods; 3. Make agreement on the remedial measures to be implemented; 4. Discuss with the the ET, IEC and Contractor on the effectiveness of the implemented remedial measures; and 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level.	practice; 4. Check all plant and equipment; 5. Consider changes of working methods; 6. Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; 7. Implement the agreed remedial measures; and 8. As directed by the ER, to slow down or to stop all or part of the marine works or construction activities.

APPENDIX D POST - PROJECT WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Water Quality Monitoring Results at C3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	ъері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	17.3 20.1	18.7	7.1 7.9	7.5	31.9 31.0	31.5	95.4 101.3	98.4	7.6 7.7	7.7		3.3 3.5	3.4		4	4.0	
22-Dec-14	Cloudy	Moderate	13:52	Middle	11	17.9 20.1	19.0	7.7 7.5	7.6	31.4 31.6	31.5	95.1 98.1	96.6	7.5 7.4	7.5	7.6	4.1 4.1	4.1	4.6	11 11	11.0	6.0
				Bottom	21	18.2 19.6	18.9	7.2 7.1	7.2	32.2 32.5	32.4	91.0 92.3	91.7	7.1 7.0	7.1	7.1	6.2 6.2	6.2		3	3.0	
				Surface	1	18.4	18.4	8.1 8.1	8.1	27.9 26.4	27.2	108.8 108.0	108.4	8.7	8.7		3.4	3.7		8	8.0	
24-Dec-14	Cloudy	Moderate	14:28	Middle	11	18.3 18.4 18.3	18.4	8.1 8.1 8.1	8.1	28.0 28.3	28.2	108.0 108.2 108.3	108.3	8.7 8.6 8.6	8.6	8.7	3.9 4.8 4.8	4.8	4.4	6	6.0	6.0
				Bottom	21	18.3 18.3	18.3	8.1 8.1	8.1	28.2 28.3	28.3	105.3 106.6	106.0	8.4 8.5	8.5	8.5	4.7 4.6	4.7		4	4.0	
				Surface	1	16.3 17.5	16.9	8.3 8.3	8.3	26.5 27.0	26.8	83.8 85.5	84.7	7.5 7.4	7.5		4.6 4.2	4.4		8	8.0	
27-Dec-14	Fine	Moderate	16:05	Middle	11	16.7 17.6	17.2	8.3 8.3	8.3	25.9 27.2	26.6	79.0 80.0	79.5	7.0 7.0	7.0	7.3	4.0	4.0	4.8	4 5	4.5	5.8
				Bottom	21	17.0 17.7	17.4	8.3 8.3	8.3	23.1 27.2	25.2	73.9 78.7	76.3	7.0 7.0	7.0	7.0	6.4 5.3	5.9		5 5	5.0	
				Surface	1	14.4 17.1	15.8	8.0 8.1	8.1	27.7 27.2	27.5	93.7 92.8	93.3	8.0 7.9	8.0	7.9	4.9 4.5	4.7		4 4	4.0	
29-Dec-14	Fine	Moderate	18:26	Middle	11	15.2 17.3	16.3	8.1 8.1	8.1	26.3 27.1	26.7	89.6 90.8	90.2	7.7 7.8	7.8		4.1 4.2	4.2	4.9	4	4.0	3.7
				Bottom	21	16.0 17.5	16.8	8.1 8.1	8.1	27.4 27.1	27.3	83.7 82.4	83.1	7.3 7.2	7.3	7.3	5.6 5.7	5.7		3	3.0	
				Surface	1	17.0 17.1	17.1	8.2 8.2	8.2	27.0 27.4	27.2	96.6 96.4	96.5	7.9 7.9	7.9	7.8	0.5 0.6	0.6	-	14 14	14.0	
31-Dec-14	Fine	Moderate	08:26	Middle	11	17.6 17.7	17.7	8.2 8.2	8.2	27.9 27.8	27.9	95.1 94.8	95.0	7.7 7.6	7.7		2.5	2.5	2.5	6	6.0	9.0
				Bottom	21	17.8 17.8	17.8	8.2 8.2 8.0	8.2	27.9 27.9 27.2	27.9	94.4 94.4 86.6	94.4	7.6 7.6 7.5	7.6	7.6	4.3 4.2 3.6	4.3	1	7 7	7.0	
				Surface	1	14.3 17.4 15.4	15.9	8.1 8.1	8.1	27.0 28.7	27.1	92.9 87.4	89.8	7.6 7.3	7.6	7.4	3.5 4.5	3.6	-	4 4 8	4.0	
2-Jan-15	Sunny	Moderate	09:51	Middle	11.5	17.5 16.4	16.5	8.1 8.1	8.1	28.9 28.9	28.8	86.9 86.2	87.2	7.0 7.1	7.2		4.5 5.7	4.5	4.6	8	8.0	6.5
				Bottom	22	17.6 17.6	17.0	8.1 8.3	8.1	28.9 31.5	28.9	82.9 99.7	84.6	6.7 7.9	6.9	6.9	5.7 1.2	5.7		7	7.5	
5-Jan-15	Sunny	Moderate	13:10	Surface Middle	1 11	17.6 17.6	17.6 17.6	8.3 8.3	8.3 8.3	31.5 32.3	31.5 31.6	99.9 100.6	99.8	7.9 7.9	7.9 7.9	7.9	1.2 1.7	1.2	1.7	6 9	6.0 8.5	7.2
3-0an-13	Junny	moderate	10.10	Bottom	21	17.6 17.6	17.6	8.3 8.3	8.3	30.8 32.8	31.7	99.5 100.8	100.1	7.9 7.9	7.9	7.9	2.3	2.3	- ''	7	7.0	1.2
				Surface	1	17.6 17.5	17.5	6.2	6.2	30.6 28.9	28.6	99.2 106.9	106.5	7.9 8.6	8.6		3.9	3.9	<u> </u>	7 <2.5	<2.5	
7-Jan-15	Sunny	Moderate	14:33	Middle	11	17.5 17.6	17.6	6.2	6.3	28.2	28.9	106.0 103.7	102.5	8.6 8.3	8.3	8.5	3.8	3.8	4.2	<2.5 3 3	3.0	3.8
				Bottom	21	17.6 17.7 17.7	17.7	6.3 6.2 6.2	6.2	28.0 30.0 30.2	30.1	99.3 99.3	99.3	7.9 7.9	7.9	7.9	3.8 5.0 5.0	5.0		6	6.0	

Water Quality Monitoring Results at C3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	17.5 17.5	17.5	8.1 8.1	8.1	29.8 29.9	29.9	109.1 109.2	109.2	8.7 8.7	8.7	8.7	2.4 2.2	2.3		6 6	6.0	
9-Jan-15	Sunny	Moderate	15:45	Middle	11	17.5 17.5	17.5	8.1 8.1	8.1	29.8 29.9	29.9	109.1 109.1	109.1	8.7 8.7	8.7	0.7	1.6 1.4	1.5	1.9	5 5	5.0	4.7
				Bottom	21	17.5 17.5	17.5	8.1 8.1	8.1	29.8 29.8	29.8	109.2 109.1	109.2	8.7 8.7	8.7	8.7	1.8 2.1	2.0		3 3	3.0	
				Surface	1	13.9 17.0	15.5	8.1 8.2	8.2	32.7 30.8	31.8	86.3 91.2	88.8	7.3 7.3	7.3	7.2	1.7 1.8	1.8		9 9	9.0	
12-Jan-15	Sunny	Moderate	16:09	Middle	11	16.1 17.2	16.7	8.2 8.2	8.2	31.9 30.7	31.3	87.6 88.7	88.2	7.1 7.1	7.1	7.2	3.0 3.0	3.0	3.3	8 8	8.0	7.8
				Bottom	21	16.5 17.2	16.9	8.2 8.2	8.2	32.7 32.6	32.7	88.3 90.1	89.2	7.1 7.1	7.1	7.1	5.1 5.2	5.2		7 6	6.5	
				Surface	1	16.5 16.5	16.5	8.2 8.2	8.2	29.7 29.8	29.8	107.8 107.6	107.7	8.8 8.8	8.8	8.8	1.5 1.6	1.6		7 7	7.0	
14-Jan-15	Sunny	Moderate	19:39	Middle	11	16.5 16.5	16.5	8.2 8.2	8.2	29.7 29.8	29.8	107.6 107.6	107.6	8.8 8.8	8.8	0.0	2.2 2.1	2.2	2.1	9 8	8.5	7.5
				Bottom	21	16.6 16.8	16.7	8.2 8.2	8.2	29.8 29.8	29.8	107.9 108.2	108.1	8.8 8.8	8.8	8.8	2.4 2.4	2.4		7 7	7.0	
				Surface	1	20.2 20.3	20.3	8.2 8.2	8.2	32.1 32.2	32.2	99.8 99.7	99.8	7.5 7.5	7.5	7.5	3.4 3.3	3.4		9	9.0	
16-Jan-15	Sunny	Moderate	08:41	Middle	11	20.4 20.4	20.4	8.2 8.2	8.2	32.3 32.3	32.3	99.2 98.5	98.9	7.4 7.4	7.4	7.5	3.9 3.9	3.9	4.0	8 8	8.0	8.7
				Bottom	21	20.4 20.4	20.4	8.2 8.2	8.2	32.6 32.6	32.6	97.6 96.9	97.3	7.3 7.2	7.3	7.3	4.7 4.5	4.6		9 9	9.0	

Water Quality Monitoring Results at C3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.6 20.4	19.5	7.6 7.5	7.6	30.9 29.6	30.3	105.6 107.4	106.5	8.2 8.1	8.2		3.8 3.9	3.9		7 6	6.5	
22-Dec-14	Cloudy	Moderate	17:30	Middle	11.5	18.7 20.3	19.5	7.7 7.7	7.7	30.2 30.0	30.1	97.0 101.4	99.2	7.6 7.7	7.7	8.0	3.3 3.3	3.3	4.2	3	3.0	4.8
				Bottom	22	19.2 20.1	19.7	7.5 7.3	7.4	30.9 31.1	31.0	93.3 92.1	92.7	7.2 7.0	7.1	7.1	5.4 5.3	5.4		5 5	5.0	
				Surface	1	18.2 18.2	18.2	8.3 8.3	8.3	32.0 32.2	32.1	104.5 104.6	104.6	8.1 8.1	8.1		3.9 3.8	3.9		9	9.0	
24-Dec-14	Cloudy	Moderate	09:20	Middle	11	18.2 18.2	18.2	8.3 8.3	8.3	32.0 32.2	32.1	104.6 104.4 104.5	104.5	8.1 8.1	8.1	8.1	5.2 5.1	5.2	4.4	6	6.0	7.7
				Bottom	21	18.2 18.2	18.2	8.3 8.3	8.3	32.1 32.2	32.2	104.5 104.6 104.7	104.7	8.1 8.1	8.1	8.1	4.3 4.1	4.2		8	8.0	
				Surface	1	17.8	17.9	8.3	8.3	27.4	27.4	84.3	84.2	7.3	7.3		3.5	3.6		7	7.5	
27-Dec-14	Fine	Moderate	11:55	Middle	11.5	17.9 17.8	17.9	8.3	8.3	27.4 27.4	27.4	84.1	84.2	7.2 7.3	7.3	7.3	3.6 4.8	4.7	4.8	8	8.0	7.8
				Bottom	22	17.9 17.9 17.9	17.9	8.3 8.3 8.2	8.3	27.4 27.4 27.5	27.5	84.1 84.0 84.0	84.0	7.2 7.2 7.2	7.2	7.2	4.5 6.2 6.2	6.2		8 8 8	8.0	
				Surface	1	17.9 17.7 17.9	17.8	8.1 8.1	8.1	27.1 25.2	26.2	81.4 81.3	81.4	7.1 7.1	7.1		3.9 3.9	3.9		10 10	10.0	
29-Dec-14	Fine	Moderate	13:40	Middle	11.5	17.8 17.9	17.9	8.1 8.1	8.1	27.1 25.2	26.2	80.8 81.2	81.0	7.1 7.1	7.1	7.1	4.8 4.7	4.8	4.7	6	6.0	6.7
				Bottom	22	17.9 17.9	17.9	8.1 8.1	8.1	27.1 27.2	27.2	80.1 80.1	80.1	7.0	7.0	7.0	5.6 5.4	5.5		4 4	4.0	
				Surface	1	17.1 17.2	17.2	8.2 8.3	8.3	28.2 27.0	27.6	96.4 93.8	95.1	7.8 7.7	7.8		1.6 1.5	1.6		6	6.0	
31-Dec-14	Fine	Moderate	14:49	Middle	11	17.6 17.7	17.7	8.3 8.3	8.3	27.1 27.3	27.2	90.5 90.4	90.5	7.3 7.3	7.3	7.6	3.2 3.9	3.6	2.5	6	5.5	4.7
				Bottom	21	17.7 17.9 17.9	17.9	8.3 8.3	8.3	27.5 27.5	27.5	89.5 89.3	89.4	7.2 7.2	7.2	7.2	2.6 2.2	2.4		<2.5 <2.5	<2.5	
				Surface	1	15.4 17.3	16.4	6.9 7.1	7.0	30.6 31.1	30.9	92.1 93.0	92.6	7.6 7.4	7.5		2.9	3.0		3 3	3.0	
2-Jan-15	Sunny	Moderate	16:15	Middle	11.5	16.2 17.4	16.8	7.0 7.1	7.1	31.1 31.0	31.1	87.8 90.3	89.1	7.2 7.2	7.2	7.4	4.1 4.8	4.5	4.5	3	3.0	3.0
				Bottom	22	16.8 17.5	17.2	7.0 7.1	7.1	31.2 30.9	31.1	88.2 88.9	88.6	7.1 7.1	7.1	7.1	5.9 5.9	5.9		3 3	3.0	•
				Surface	1	17.7 17.7	17.7	8.3 8.3	8.3	30.8 30.0	30.4	99.1 99.4	99.3	7.9 7.9	7.9		1.1 1.2	1.2		4 4	4.0	
5-Jan-15	Sunny	Moderate	17:52	Middle	11	17.7 17.7 17.7	17.7	8.3 8.3	8.3	32.4 33.3	32.9	100.1 101.0	100.6	7.9 7.9	7.9	7.9	1.4 1.5	1.5	1.4	<2.5 <2.5	<2.5	3.2
				Bottom	21	17.7 17.7 17.7	17.7	8.3 8.3	8.3	30.0 32.0	31.0	98.9 100.1	99.5	7.9 7.9	7.9	7.9	1.6 1.6	1.6	1	3	3.0	
				Surface	1	17.8 17.8	17.8	7.0 7.0	7.0	30.5 30.8	30.7	100.7 100.9	100.8	8.0 8.0	8.0		3.8 3.9	3.9		4 4	4.0	
7-Jan-15	Sunny	Moderate	08:27	Middle	11	17.8 17.8	17.8	6.9 6.8	6.9	31.3 31.4	31.4	99.5 99.7	99.6	7.8 7.9	7.9	8.0	3.8	3.9	4.0	3	3.0	3.5
				Bottom	21	17.8 17.8	17.8	6.8	6.8	31.7 31.7	31.7	100.4	100.5	7.9 7.9	7.9	7.9	4.4 4.2	4.3	1	3 4	3.5	

Water Quality Monitoring Results at C3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	17.5 17.5	17.5	8.1 8.1	8.1	29.5 29.7	29.6	109.3 109.2	109.3	8.8 8.7	8.8	8.8	2.2 2.7	2.5		5 5	5.0	
9-Jan-15	Sunny	Moderate	09:59	Middle	11	17.5 17.5	17.5	8.1 8.1	8.1	29.5 29.7	29.6	109.2 109.3	109.3	8.8 8.8	8.8	0.0	2.4 2.5	2.5	2.2	4	4.0	4.3
				Bottom	21	17.5 17.5	17.5	8.1 8.1	8.1	29.6 29.7	29.7	109.3 109.2	109.3	8.8 8.7	8.8	8.8	1.6 1.5	1.6		4	4.0	
				Surface	1	14.6 17.2	15.9	8.1 8.2	8.2	30.7 30.4	30.6	89.7 94.2	92.0	7.6 7.6	7.6	7.4	1.5 1.5	1.5		5 4	4.5	
12-Jan-15	Sunny	Moderate	11:46	Middle	11	16.2 17.3	16.8	8.1 8.2	8.2	31.1 31.4	31.3	87.5 89.9	88.7	7.1 7.2	7.2	7.4	2.1 2.2	2.2	2.4	4 5	4.5	4.3
				Bottom	21	16.6 17.3	17.0	8.1 8.2	8.2	32.1 33.0	32.6	87.9 88.5	88.2	7.1 7.0	7.1	7.1	3.4 3.5	3.5		4	4.0	
				Surface	1	17.0 17.0	17.0	8.3 8.3	8.3	29.6 29.8	29.7	108.7 108.8	108.8	8.8 8.8	8.8	8.8	1.6 1.8	1.7		3	3.0	
14-Jan-15	Sunny	Moderate	12:38	Middle	11	17.0 17.0	17.0	8.3 8.3	8.3	29.6 29.8	29.7	108.6 108.8	108.7	8.8 8.8	8.8	0.0	1.8 2.0	1.9	2.0	3	3.0	3.2
				Bottom	21	17.0 17.0	17.0	8.3 8.3	8.3	29.7 29.8	29.8	108.7 108.7	108.7	8.8 8.8	8.8	8.8	2.4 2.4	2.4		3 4	3.5	
				Surface	1	20.3 20.3	20.3	8.0 8.1	8.1	32.4 32.4	32.4	100.1 99.5	99.8	7.5 7.4	7.5	7.5	4.8 4.9	4.9		4	4.0	
16-Jan-15	Sunny	Moderate	13:14	Middle	10.5	20.4 20.4	20.4	8.1 8.1	8.1	32.6 32.6	32.6	98.9 98.9	98.9	7.4 7.4	7.4	7.0	3.8 3.8	3.8	4.5	6 6	6.0	4.8
				Bottom	20	20.4 20.4	20.4	8.1 8.1	8.1	32.8 32.8	32.8	97.3 97.2	97.3	7.2 7.2	7.2	7.2	4.7 4.6	4.7		4 5	4.5	

Water Quality Monitoring Results at C4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.0 18.6	19.3	7.9 7.7	7.8	31.2 34.0	32.6	104.6 105.0	104.8	7.9 8.0	8.0		2.6 2.5	2.6		<2.5 3	2.8	
22-Dec-14	Cloudy	Moderate	13:36	Middle	9.5	20.3	19.4	7.6 7.0	7.3	33.0 33.9	33.5	95.5 92.2	93.9	7.1 7.1	7.1	7.6	2.6 2.6	2.6	3.3	3 3	3.0	3.3
				Bottom	18	20.3	20.4	6.8 7.6	7.2	33.3 33.2	33.3	93.0 93.9	93.5	6.9 7.0	7.0	7.0	4.5 4.6	4.6		4 4	4.0	
				Surface	1	18.4	18.4	8.1	8.1	28.3	28.3	106.5	106.6	8.5	8.5		4.4	4.4		<2.5	<2.5	
24-Dec-14	Cloudy	Moderate	14:20	Middle	9.5	18.4 18.4 18.4	18.4	8.1 8.1 8.1	8.1	28.3 28.3 28.3	28.3	106.7 106.6 106.6	106.6	8.5 8.5 8.5	8.5	8.5	4.4 4.6 4.6	4.6	4.6	<2.5 5 4	4.5	4.0
				Bottom	18	18.4 18.4 18.4	18.4	8.1 8.1 8.1	8.1	28.3 28.4	28.4	105.8 105.5	105.7	8.4 8.4	8.4	8.4	4.8 4.7	4.8		5 5	5.0	
				Surface	1	17.2 17.8	17.5	8.3 8.3	8.3	27.3 27.3	27.3	88.0 89.6	88.8	7.6 7.7	7.7		4.3 3.6	4.0		5	5.0	
27-Dec-14	Fine	Moderate	15:41	Middle	9.5	17.6 17.9	17.8	8.3 8.3	8.3	27.0 27.3	27.2	83.4 96.8	90.1	7.2 8.3	7.8	7.8	3.4 2.9	3.2	3.9	6	6.0	5.3
				Bottom	18	17.7 17.9	17.8	8.3 8.3	8.3	27.2 27.3	27.3	81.6 82.6	82.1	7.1 7.1	7.1	7.1	4.1 5.1	4.6		5 5	5.0	
				Surface	1	15.4 17.3	16.4	8.0 8.1	8.1	26.6 26.5	26.6	97.7 99.2	98.5	8.3 8.4	8.4	8.2	3.5 3.6	3.6		5 4	4.5	
29-Dec-14	Fine	Moderate	18:12	Middle	9.5	16.1 17.5	16.8	8.0 8.1	8.1	27.4 27.1	27.3	93.5 94.4	94.0	8.0 8.0	8.0	0.2	3.2 3.3	3.3	3.6	<2.5 <2.5	<2.5	3.2
				Bottom	18	16.6 17.7	17.2	8.0 8.1	8.1	27.4 27.1	27.3	89.2 88.5	88.9	7.7 7.6	7.7	7.7	3.6 4.0	3.8		<2.5 <2.5	<2.5	
				Surface	1	17.4 17.8	17.6	8.1 8.2	8.2	27.1 27.3	27.2	96.5 95.5	96.0	7.9 7.7	7.8	7.8	1.5 1.6	1.6		9 9	9.0	
31-Dec-14	Fine	Moderate	08:14	Middle	9.5	17.8 17.8	17.8	8.2 8.2	8.2	27.4 27.5	27.5	95.6 95.4	95.5	7.7 7.7	7.7	7.0	3.6 3.2	3.4	2.4	11 11	11.0	8.5
				Bottom	18	17.8 17.9	17.9	8.1 8.2	8.2	27.6 27.5	27.6	95.4 94.8	95.1	7.7 7.6	7.7	7.7	2.2 2.0	2.1		6 5	5.5	
				Surface	1	15.1 17.5	16.3	7.9 8.0	8.0	28.7 28.7	28.7	89.2 93.4	91.3	7.5 7.5	7.5	7.4	2.2 2.5	2.4		3 4	3.5	
2-Jan-15	Sunny	Moderate	09:36	Middle	9	15.8 17.7	16.8	8.0 8.0	8.0	28.9 28.6	28.8	88.2 90.0	89.1	7.3 7.2	7.3		4.5 4.8	4.7	4.2	5 5	5.0	3.8
				Bottom	17	17.1 17.7	17.4	8.0 7.9	8.0	29.0 28.8	28.9	86.7 88.0	87.4	7.0 7.1	7.1	7.1	5.5 5.4	5.5		3	3.0	
				Surface	1	17.6 17.5	17.6	8.3 8.3	8.3	32.7 33.7	33.2	99.3	99.7	7.8 7.8	7.8	7.8	1.5	1.5		3	3.0	
5-Jan-15	Sunny	Moderate	13:01	Middle	9.5	17.6 17.5 17.6	17.6	8.3 8.3 8.3	8.3	32.7 32.5 33.4	32.6	99.3 99.4 99.7	99.4	7.8 7.8 7.8	7.8		1.7 1.8 1.9	1.8	1.7	4 4 5	4.0	4.0
				Bottom	18	17.5 17.5	17.6	8.3 8.3	8.3	31.3 31.5	32.4	98.7 98.7 97.6	99.2	7.8	7.8	7.8	1.9	1.9	I	5 5 <2.5	5.0	<u> </u>
				Surface	1	17.8 17.8	17.8	6.3 6.3	6.3	31.6 31.8	31.6	97.5 97.1	97.6	7.7 7.7 7.6	7.7	7.7	3.1 3.6	3.1		<2.5 <2.5 4	<2.5	
7-Jan-15	Sunny	Moderate	14:22	Middle	9.5	17.6 17.8 17.9	17.8	6.3 6.3	6.3	31.8 31.8	31.8	97.0 96.9	97.1	7.6 7.6	7.6		3.5 4.3	3.6	3.7	3 <2.5	3.5	2.8
				Bottom	18	17.8	17.9	6.3	6.3	31.9	31.9	96.8	96.9	7.6	7.6	7.6	4.4	4.4		<2.5 <2.5	<2.5	

Water Quality Monitoring Results at C4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	17.5 17.5	17.5	8.1 8.1	8.1	29.8 29.8	29.8	109.1 109.2	109.2	8.7 8.7	8.7	8.7	2.7 2.2	2.5		7 6	6.5	
9-Jan-15	Sunny	Moderate	15:29	Middle	9.5	17.5 17.5	17.5	8.1 8.1	8.1	29.8 29.8	29.8	109.1 109.2	109.2	8.7 8.7	8.7	0.7	1.3 1.3	1.3	1.9	6 5	5.5	5.3
				Bottom	18	17.5 17.5	17.5	8.1 8.1	8.1	29.8 29.8	29.8	109.2 109.1	109.2	8.7 8.7	8.7	8.7	1.8 2.0	1.9		4 4	4.0	
				Surface	1	13.9 16.8	15.4	8.1 8.2	8.2	32.6 31.2	31.9	87.5 93.5	90.5	7.4 7.5	7.5	7.4	1.8 1.7	1.8		4 5	4.5	
12-Jan-15	Sunny	Moderate	15:54	Middle	9.5	14.9 16.9	15.9	8.1 8.2	8.2	32.3 31.2	31.8	87.5 89.6	88.6	7.3 7.2	7.3	7.4	2.3 2.5	2.4	2.6	8 7	7.5	6.3
				Bottom	18	15.9 17.0	16.5	8.1 8.2	8.2	30.8 32.8	31.8	86.9 88.9	87.9	7.1 7.1	7.1	7.1	3.4 3.5	3.5		7 7	7.0	
				Surface	1	17.0 17.0	17.0	8.3 8.2	8.3	29.7 29.8	29.8	108.8 108.7	108.8	8.8 8.8	8.8	8.8	1.1 1.0	1.1		6 5	5.5	
14-Jan-15	Sunny	Moderate	19:14	Middle	9.5	17.0 17.0	17.0	8.2 8.3	8.3	29.7 29.8	29.8	108.8 108.7	108.8	8.8 8.8	8.8	0.0	2.0 1.9	2.0	1.9	7 7	7.0	5.5
				Bottom	18	17.0 17.0	17.0	8.2 8.2	8.2	29.8 29.8	29.8	108.7 108.7	108.7	8.8 8.8	8.8	8.8	2.4 2.7	2.6		4 4	4.0	
				Surface	1	20.1	20.1	8.2 8.2	8.2	32.2 32.2	32.2	100.3 99.8	100.1	7.5 7.5	7.5	7.4	3.6 3.8	3.7		6 7	6.5	
16-Jan-15	Sunny	Moderate	08:53	Middle	9	20.1 20.1	20.2	8.2 8.2	8.2	32.6 32.6	32.6	97.2 97.4	97.3	7.3 7.3	7.3	7.4	4.4 4.5	4.5	4.5	10 9	9.5	8.7
				Bottom	17	20.1 20.1	20.3	8.2 8.2	8.2	32.9 32.9	32.9	96.3 96.6	96.5	7.2 7.2	7.2	7.2	5.3 5.4	5.4		10 10	10.0	

Water Quality Monitoring Results at C4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time		11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.6	19.5	7.9	7.5	31.7	30.5	104.2	105.0	8.1	8.1		4.6	4.7		<2.5	<2.5	
					,	20.3		7.1		29.3		105.7		8.0		7.7	4.8	***		<2.5		
22-Dec-14	Cloudy	Moderate	17:16	Middle	9.5	19.1 20.7	19.9	7.5 7.8	7.7	33.0 33.4	33.2	97.0 97.9	97.5	7.4 7.2	7.3		4.3 4.1	4.2	4.8	11 11	11.0	8.0
						20.7		7.2		33.6		94.8		7.1			5.4			11		
				Bottom	18	20.9	20.5	7.4	7.3	33.7	33.7	95.0	94.9	7.0	7.1	7.1	5.6	5.5		10	10.5	
				0 (,	18.2	40.0	8.4	0.4	32.0	00.0	104.5	404.5	8.1	0.4		4.8	4.0		16	40.0	
				Surface	1	18.2	18.2	8.3	8.4	31.9	32.0	104.5	104.5	8.1	8.1	8.2	4.8	4.8		16	16.0	
24-Dec-14	Cloudy	Moderate	09:11	Middle	9.5	18.2	18.2	8.4	8.4	32.1	32.0	104.3	104.5	8.1	8.2	0.2	4.8	4.8	4.8	<2.5	<2.5	8.5
	,					18.2		8.3		31.9		104.6		8.2	-		4.7			<2.5		
				Bottom	18	18.2 18.2	18.2	8.3 8.2	8.3	32.1 32.2	32.2	104.1 104.4	104.3	8.1 8.1	8.1	8.1	4.8 4.5	4.7		7	7.0	
						17.9		8.3		27.4		82.5		7.1			5.1			3		
				Surface	1	17.9	17.9	8.3	8.3	27.4	27.4	82.6	82.6	7.1	7.1	7.4	5.3	5.2		3	3.0	
27-Dec-14	Fine	Moderate	11:38	Middle	9.5	17.9	17.9	8.3	8.3	27.4	27.4	82.6	82.6	7.1	7.1	7.1	3.3	3.5	4.6	11	11.0	8.7
27-Dec-14	rine	Moderate	11.30	ivildale	9.5	17.9	17.9	8.3	0.3	27.4	27.4	82.6	02.0	7.1	7.1		3.6	3.5	4.0	11	11.0	0.7
				Bottom	18	17.9	17.9	8.3	8.3	27.5	27.5	82.5	82.6	7.1	7.1	7.1	5.2	5.2		12	12.0	
						17.9		8.3		27.4		82.6		7.1			5.1			12		
				Surface	1	17.9 18.1	18.0	8.1 8.1	8.1	27.1 27.2	27.2	84.4 83.9	84.2	7.3 7.3	7.3		5.0 5.0	5.0		3	3.0	
						17.9		8.1		27.2		83.8		7.3		7.3	3.7			10		
29-Dec-14	Fine	Moderate	13:26	Middle	9.5	18.1	18.0	8.1	8.1	27.2	27.2	83.3	83.6	7.2	7.3		3.4	3.6	4.7	10	10.0	6.7
				Bottom	18	18.0	18.0	8.1	8.1	27.2	27.2	80.9	80.6	7.1	7.1	7.1	5.5	5.5	1	7	7.0	
				Dottom	10	18.0	10.0	8.0	0.1	27.2	21.2	80.3	00.0	7.0	7.1	7.1	5.4	5.5		7	7.0	
				Surface	1	16.4	16.5	8.0	8.2	23.7	23.1	99.6	99.0	8.4	8.4		2.5	2.5		7	7.0	
						16.5 17.0		8.3 8.3		22.5 24.2		98.3		8.4		8.3	2.5			7		
31-Dec-14	Fine	Moderate	14:35	Middle	9.5	17.0	17.1	8.3 8.3	8.3	24.2 24.7	24.5	96.7 95.6	96.2	8.1 8.0	8.1		2.6	2.6	2.6	4 4	4.0	4.5
						18.0	40.0	8.3		27.2		91.7	24.2	7.4			2.8			<2.5		
				Bottom	18	18.0	18.0	8.3	8.3	27.2	27.2	91.5	91.6	7.4	7.4	7.4	2.8	2.8		<2.5	<2.5	
				Surface	1	15.0	16.1	7.0	7.1	30.9	31.3	89.4	91.5	7.5	7.5		3.2	3.3		7	7.0	
				Odridoc		17.2	10.1	7.1	7	31.6	01.0	93.5	01.0	7.4	7.0	7.4	3.4	0.0		7	7.0	
2-Jan-15	Sunny	Moderate	15:59	Middle	9.5	15.6	16.5	7.0	7.1	31.1	31.3	88.4	89.1	7.3	7.2		4.1	4.2	4.0	3	3.0	5.5
	•					17.3 16.0		7.1 7.0		31.4 31.4		89.8 86.6		7.1 7.1			4.2 4.5			7		
				Bottom	18	17.4	16.7	7.0	7.1	31.4	31.4	88.2	87.4	7.1	7.1	7.1	4.6	4.6		6	6.5	
						17.6	4= 0	8.3		30.3		98.9		7.9			1.5			3		
				Surface	1	17.6	17.6	8.3	8.3	30.4	30.4	98.8	98.9	7.9	7.9	7.9	1.5	1.5		3	3.0	
5-Jan-15	Sunny	Moderate	17:39	Middle	9.5	17.6	17.6	8.3	8.3	31.4	32.0	99.4	99.8	7.9	7.9	7.9	1.8	1.8	1.7	7	7.0	5.0
0 00 10	ou,	moderate			0.0	17.6		8.3	0.0	32.5	02.0	100.1	00.0	7.9			1.8			7		0.0
				Bottom	18	17.6 17.6	17.6	8.3 8.3	8.3	30.8 33.3	32.1	98.9 100.4	99.7	7.9 7.9	7.9	7.9	1.9 1.9	1.9		5 5	5.0	
						17.0		6.3		28.4		100.4		8.4			4.8			5		
				Surface	1	17.7	17.7	6.3	6.3	29.2	28.8	104.8	104.2	8.3	8.4		4.8	4.8		5	5.0	
7 lon 15	Cunni	Moderate	00.26	Middle	0.5	17.8	17.0	6.4	6.4	29.4	20.4	97.2	97.2	7.8	7.0	8.1	2.9	2.0	10	<2.5	-2.5	2.2
7-Jan-15	Sunny	Moderate	08:36	Middle	9.5	17.8	17.8	6.4	6.4	29.4	29.4	97.1	97.2	7.7	7.8		2.7	2.8	4.0	<2.5	<2.5	3.3
				Bottom	18	17.8	17.8	6.4	6.4	30.8	31.0	97.4	97.6	7.7	7.7	7.7	4.3	4.4		<2.5	<2.5	
				30		17.8		6.3	.	31.1	00	97.7	00	7.7			4.5			<2.5		

Water Quality Monitoring Results at C4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	17.5 17.5	17.5	8.0 8.0	8.0	29.4 29.0	29.2	109.3 109.0	109.2	8.8 8.8	8.8	8.8	2.8 2.7	2.8		6 5	5.5	
9-Jan-15	Sunny	Moderate	09:47	Middle	9.5	17.5 17.5	17.5	8.0 8.0	8.0	29.4 29.5	29.5	109.2 109.1	109.2	8.8 8.7	8.8	0.0	1.9 1.7	1.8	2.1	5 5	5.0	4.3
				Bottom	18	17.5 17.5	17.5	8.0 8.0	8.0	29.5 29.6	29.6	109.2 109.2	109.2	8.8 8.7	8.8	8.8	1.6 1.6	1.6		<2.5 <2.5	<2.5	
				Surface	1	14.6 17.2	15.9	8.0 8.1	8.1	32.2 28.9	30.6	85.9 89.3	87.6	7.2 7.2	7.2	7.2	2.2 2.3	2.3		6 6	6.0	
12-Jan-15	Sunny	Moderate	11:29	Middle	9.5	16.1 17.2	16.7	8.1 8.2	8.2	31.2 29.0	30.1	87.4 89.5	88.5	7.1 7.2	7.2	7.2	1.8 1.8	1.8	2.8	6 7	6.5	6.5
				Bottom	18	16.5 17.3	16.9	8.1 8.1	8.1	31.4 32.4	31.9	85.8 87.1	86.5	6.9 6.9	6.9	6.9	4.4 4.4	4.4		7 7	7.0	
				Surface	1	17.2 17.1	17.2	8.1 8.1	8.1	29.5 29.7	29.6	108.6 108.5	108.6	8.8 8.8	8.8	8.8	1.5 1.5	1.5		8 8	8.0	
14-Jan-15	Sunny	Moderate	12:28	Middle	9.5	17.2 17.1	17.2	8.2 8.2	8.2	29.5 29.7	29.6	108.3 108.6	108.5	8.7 8.8	8.8	0.0	2.1 2.0	2.1	2.1	6 6	6.0	6.0
				Bottom	18	17.2 17.1	17.2	8.1 8.2	8.2	29.6 29.7	29.7	108.3 108.3	108.3	8.7 8.7	8.7	8.7	2.9 2.7	2.8		4	4.0	
				Surface	1	20.2 20.2	20.2	8.1 8.1	8.1	32.2 32.2	32.2	99.1 98.3	98.7	7.4 7.4	7.4	7.4	4.4 4.4	4.4		7 7	7.0	
16-Jan-15	Sunny	Moderate	13:27	Middle	9	20.2 20.2	20.2	8.1 8.1	8.1	32.6 32.6	32.6	97.2 97.0	97.1	7.3 7.3	7.3	1.4	4.7 4.6	4.7	4.8	9 9	9.0	8.8
				Bottom	17	20.3 20.3	20.3	8.1 8.1	8.1	32.8 32.8	32.8	96.2 96.6	96.4	7.2 7.2	7.2	7.2	5.4 5.2	5.3		10 11	10.5	

Water Quality Monitoring Results at GB3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.0 20.0	20.0	7.6 7.7	7.7	27.4 27.5	27.5	103.8 104.1	104.0	8.0 8.1	8.1		3.3 3.1	3.2		5 5	5.0	
22-Dec-14	Cloudy	Moderate	13:20	Middle	3	20.7 20.1	20.4	7.3 7.7	7.5	31.3 30.8	31.1	97.3 96.2	96.8	7.3 7.3	7.3	7.7	2.9	3.0	3.5	3 3	3.0	3.5
				Bottom	5	20.2	20.3	7.1 7.2	7.2	31.6 33.6	32.6	93.0 93.7	93.4	7.0 7.0	7.0	7.0	4.2 4.4	4.3		<2.5 <2.5	<2.5	
				Surface	1	18.3	18.2	7.9	8.0	28.1	28.3	108.5	109.1	8.6	8.7		4.3	4.2		6	6.0	
24-Dec-14	Cloudy	Moderate	14:08	Middle	3	18.0 18.3 18.1	18.2	8.0 8.0 8.0	8.0	28.4 28.1 28.4	28.3	109.6 108.4 108.6	108.5	8.8 8.6 8.7	8.7	8.7	4.1 3.8 3.9	3.9	3.8	6 <2.5 <2.5	<2.5	3.7
				Bottom	5	18.2 18.0	18.1	8.0 8.0	8.0	28.2 28.4	28.3	108.1 108.8	108.5	8.6 8.7	8.7	8.7	3.1 3.3	3.2		<2.5 <2.5 <2.5	<2.5	
				Surface	1	17.4 17.7	17.6	8.0 8.2	8.1	26.7 24.8	25.8	86.9 86.0	86.5	7.6 7.5	7.6	7.5	3.1 3.0	3.1		6	6.0	
27-Dec-14	Fine	Moderate	15:22	Middle	3.5	17.6 17.7	17.7	8.2 8.2	8.2	25.3 24.8	25.1	84.3 84.0	84.2	7.4 7.4	7.4	7.5	2.9 3.0	3.0	3.6	6	6.0	5.7
				Bottom	6	17.7 17.7	17.7	8.2 8.2	8.2	26.4 26.7	26.6	84.1 84.3	84.2	7.3 7.3	7.3	7.3	4.5 4.6	4.6		5 5	5.0	
				Surface	1	17.8 17.8	17.8	8.0 8.0	8.0	26.4 26.5	26.5	86.0 85.9	86.0	7.4 7.4	7.4	7.4	3.1 3.0	3.1		<2.5 <2.5	<2.5	
29-Dec-14	Fine	Moderate	17:48	Middle	3	17.8 17.8	17.8	8.0 8.0	8.0	26.4 26.5	26.5	85.8 85.8	85.8	7.4 7.4	7.4		3.2 2.8	3.0	3.6	<2.5 3	2.8	2.8
				Bottom	5	17.8 17.8	17.8	8.0 8.0	8.0	26.5 26.5	26.5	85.5 85.6	85.6	7.4 7.4	7.4	7.4	4.8	4.8		3	3.0	
				Surface	1	17.0 17.2	17.1	8.1 8.2	8.2	27.7 27.5	27.6	101.0	100.8	8.3 8.2	8.3	8.2	1.9 2.0 4.0	2.0	-	6	6.0	
31-Dec-14	Fine	Moderate	08:02	Middle	3	17.6 17.6 17.5	17.6	8.2 8.2 8.2	8.2	27.4 27.4 27.5	27.4	99.9 99.8 100.1	99.9	8.1 8.1 8.1	8.1		3.6 2.6	3.8	2.8	11 11 3	11.0	6.8
				Bottom	5	17.5 17.4	17.5	8.2 8.1	8.2	27.5 29.6	27.5	100.1 100.1 91.8	100.1	8.1 7.4	8.1	8.1	2.4	2.5		7	3.5	
				Surface	1	17.7 17.6	17.6	8.1 8.1	8.1	29.4 29.8	29.5	89.9 90.9	90.9	7.2	7.3	7.3	4.3	4.5		8	7.5	
2-Jan-15	Sunny	Moderate	09:17	Middle	3.5 6	17.7 17.7	17.7	8.2 8.1	8.2	29.4 29.7	29.6	89.8 89.8	90.4 89.7	7.2 7.2	7.3	7.2	3.5 4.1	3.5 4.4	4.1	4 6	4.0 6.0	5.8
				Bottom Surface	1	17.7 17.7	17.7	8.2 8.3	8.2	29.4 32.4	29.6 31.2	89.5 99.9	99.2	7.2 7.8	7.2	1.2	4.7 1.8	1.8	<u> </u> 	6 <2.5	6.0 <2.5	<u> </u>
5-Jan-15	Sunny	Moderate	12:48	Middle	3	17.7 17.7	17.7	8.3 8.3	8.3	29.9 30.6	30.8	98.4 98.7	98.8	7.8 7.8	7.8	7.8	1.8	1.3	1.7	<2.5 4	3.5	3.0
	,			Bottom	5	17.7 17.7 17.7	17.7	8.3 8.3 8.3	8.3	30.9 29.8 33.0	31.4	98.8 98.1 100.1	99.1	7.8 7.8 7.8	7.8	7.8	1.3 2.1 2.1	2.1		3 3 3	3.0	
				Surface	1	17.7 17.2 17.2	17.2	6.3 6.3	6.3	30.8 30.8	30.8	90.2 87.2	88.7	7.8 7.2 7.0	7.1		3.0	2.9		4 5	4.5	
7-Jan-15	Sunny	Moderate	14:45	Middle	3	17.5 17.3	17.4	6.2 6.4	6.3	31.2 31.2	31.2	92.2 88.1	90.2	7.3 7.0	7.2	7.2	3.9 3.4	3.7	3.7	<2.5 <2.5	<2.5	4.0
				Bottom	5	17.1 17.2	17.2	6.3 6.3	6.3	32.1 32.1	32.1	104.6 101.2	102.9	8.3 8.0	8.2	8.2	4.5 4.7	4.6		5 5	5.0	

Water Quality Monitoring Results at GB3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	17.5 17.5	17.5	8.1 8.1	8.1	29.7 29.8	29.8	109.1 109.2	109.2	8.7 8.7	8.7	8.7	1.9 1.8	1.9		4 4	4.0	
9-Jan-15	Sunny	Moderate	15:13	Middle	3	17.5 17.5	17.5	8.1 8.1	8.1	29.7 29.8	29.8	109.2 109.2	109.2	8.7 8.7	8.7	0.7	1.6 1.6	1.6	1.8	4 4	4.0	4.3
				Bottom	5	17.5 17.5	17.5	8.1 8.1	8.1	29.7 29.8	29.8	109.1 109.2	109.2	8.7 8.7	8.7	8.7	2.1 1.9	2.0		5 5	5.0	
				Surface	1	15.0 17.2	16.1	8.1 8.2	8.2	32.9 32.6	32.8	88.2 92.3	90.3	7.3 7.3	7.3	7.3	1.0 0.9	1.0		3 3	3.0	
12-Jan-15	Sunny	Moderate	15:36	Middle	3	16.5 17.2	16.9	8.2 8.2	8.2	32.9 32.6	32.8	89.2 91.4	90.3	7.1 7.2	7.2	7.3	2.5 2.5	2.5	1.8	12 11	11.5	6.2
				Bottom	5	17.0 17.2	17.1	8.2 8.2	8.2	32.7 32.6	32.7	86.5 87.6	87.1	6.9 6.9	6.9	6.9	1.9 1.9	1.9		4 4	4.0	
				Surface	1	16.9 16.9	16.9	8.3 8.2	8.3	29.7 29.8	29.8	108.7 108.5	108.6	8.8 8.8	8.8	8.8	1.7 1.7	1.7		3 3	3.0	
14-Jan-15	Sunny	Moderate	18:53	Middle	3	16.9 16.9	16.9	8.2 8.2	8.2	29.7 29.8	29.8	108.6 108.5	108.6	8.8 8.8	8.8	0.0	2.1 2.0	2.1	2.1	4 4	4.0	4.3
				Bottom	5	16.9 16.9	16.9	8.2 8.2	8.2	29.7 29.8	29.8	108.6 108.6	108.6	8.8 8.8	8.8	8.8	2.5 2.4	2.5		6 6	6.0	
				Surface	1	20.1 20.2	20.2	8.1 8.1	8.1	31.5 31.5	31.5	100.3 99.8	100.1	7.6 7.5	7.6	7.6	3.4 3.2	3.3		10 11	10.5	
16-Jan-15	Sunny	Moderate	08:27	Middle	-	-	-	-	-	-	-	-	-	1 1	-	7.0	-	-	3.6	-	-	8.5
				Bottom	4.6	20.3 20.3	20.3	8.1 8.1	8.1	31.7 32.7	32.2	98.8 99.0	98.9	7.4 7.4	7.4	7.4	3.9 3.7	3.8		7 6	6.5	

Water Quality Monitoring Results at GB3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.2	22.4	7.5	7.6	29.5	29.6	108.3	104.7	7.7	7.7		3.9	4.0		<2.5	<2.5	
				Curiaco	·	20.6		7.6	1.0	29.6	20.0	101.0		7.6		7.5	4.0			<2.5	2.0	
22-Dec-14	Cloudy	Moderate	17:02	Middle	3	22.0	21.2	7.2 7.2	7.2	32.8	32.8	100.2 97.9	99.1	7.2	7.3		3.2 3.3	3.3	4.2	5 5	5.0	3.3
						20.4 21.2		7.2		32.8 33.6		96.5		7.3 7.0			5.3			<2.5		
				Bottom	5	21.0	21.1	7.3	7.3	33.9	33.8	97.0	96.8	7.0	7.1	7.1	5.3	5.3		<2.5	<2.5	
						17.8	47.0	8.3		31.5	24.2	102.4	400.0	8.1			4.9			4		
				Surface	1	17.8	17.8	8.3	8.3	31.7	31.6	102.7	102.6	8.1	8.1	8.1	4.8	4.9		5	4.5	
24-Dec-14	Cloudy	Moderate	08:59	Middle	3.5	17.8	17.8	8.3	8.3	31.6	31.7	102.6	102.7	8.1	8.1	0.1	4.3	4.3	4.4	17	17.0	8.5
21 000 11	Oloudy	Woderate	00.00	Wildaio	0.0	17.8	17.0	8.3	0.0	31.7	01.7	102.7	102.7	8.1	0.1		4.2	4.0		17	17.0	0.0
				Bottom	6	17.8	17.8	8.3	8.3	31.7	31.8	103.1	103.1	8.1	8.1	8.1	3.8	3.9		4	4.0	
-						17.8		8.3		31.9		103.1		8.1		l	3.9			4		1
				Surface	1	17.7 17.8	17.8	8.3 8.3	8.3	26.8 25.0	25.9	84.4 84.0	84.2	7.3 7.3	7.3		4.6 4.5	4.6		8 8	8.0	
						17.7		8.3		26.8		84.5		7.3		7.3	4.3			5		
27-Dec-14	Fine	Moderate	11:18	Middle	3.5	17.7	17.7	8.3	8.3	27.0	26.9	84.2	84.4	7.3	7.3		4.3	4.3	4.7	5	5.0	6.7
				Bottom	6	17.7	17.7	8.2	8.3	26.9	27.0	84.1	84.3	7.3	7.3	7.3	5.0	5.1		7	7.0	
				DOLLOTT	Ü	17.7	17.7	8.3	0.3	27.1	27.0	84.5	04.3	7.3	1.3	7.3	5.1	5.1		7	7.0	
				Surface	1	17.5	17.7	7.9	8.0	26.2	26.2	89.8	89.2	7.7	7.7		3.7	3.7		4	4.0	
						17.8		8.0		26.2		88.5		7.6		7.6	3.6			4		
29-Dec-14	Fine	Moderate	13:12	Middle	3.5	17.6 17.8	17.7	7.9 8.0	8.0	26.8 26.3	26.6	85.9 85.5	85.7	7.4 7.4	7.4		4.4 4.5	4.5	4.5	5 5	5.0	4.8
						17.6		8.0		26.1		84.1		7.4			5.1			6		
				Bottom	6	17.8	17.8	8.0	8.0	26.4	26.3	84.1	84.1	7.3	7.3	7.3	5.4	5.3		5	5.5	
				Curfoss	1	19.7	10.7	8.4	8.4	21.6	22.6	90.8	92.0	7.3	7.0		0.4	0.5		<2.5	-O.E	
				Surface	1	19.6	19.7	8.4	0.4	25.6	23.6	93.2	92.0	7.3	7.3	7.8	0.5	0.5		<2.5	<2.5	
31-Dec-14	Fine	Moderate	14:25	Middle	3	18.4	18.4	8.4	8.4	23.4	23.4	100.6	100.7	8.2	8.2	7.0	2.8	2.8	2.6	4	4.0	4.0
0.200	0	moderate	20	11114410		18.4		8.4	0.1	23.4	20	100.8		8.2	U		2.7	2.0		4		
				Bottom	5	18.4	18.4	8.5 8.5	8.5	25.3 27.2	26.3	101.9	102.5	8.2	8.3	8.3	4.5 4.5	4.5		6	5.5	
 						18.3 18.1		7.0		32.3		103.1 94.0		8.3 7.3			2.6			5		
				Surface	1	18.0	18.1	7.0	7.0	31.3	31.8	96.0	95.0	7.5	7.4		2.5	2.6		3	3.0	
0 1 45	0		45.44	N 42 A 44 A	0.5	18.1	40.4	7.0	7.0	31.9	04.0	94.9	05.0	7.4	7.5	7.5	3.0			3	0.0	
2-Jan-15	Sunny	Moderate	15:41	Middle	3.5	18.0	18.1	7.0	7.0	31.3	31.6	96.2	95.6	7.6	7.5		2.7	2.9	3.3	3	3.0	3.2
				Bottom	6	18.1	18.1	7.0	7.0	31.9	31.7	95.3	95.9	7.4	7.5	7.5	4.5	4.5		4	3.5	
				Dottom	Ů	18.0	10.1	7.0	7.0	31.4	01.7	96.4	00.0	7.6	7.0	7.0	4.4	1.0		3	0.0	
				Surface	1	17.6	17.6	8.3	8.3	30.6	30.1	99.2	98.9	7.9	7.9		1.2	1.2		4	4.5	
						17.6 17.6		8.3 8.3		29.6 31.4		98.5 99.6		7.9 7.9		7.9	1.2			5 <2.5		
5-Jan-15	Sunny	Moderate	17:24	Middle	3.5	17.6	17.6	8.3	8.3	27.1	29.3	97.0	98.3	7.9	7.9		1.4	1.4	1.4	<2.5	<2.5	3.2
				D. 11.	_	17.6	47.0	8.3	0.0	30.6	00.0	99.2	00.4	7.9	7.0	7.0	1.5	4.5		<2.5	.0.5	
				Bottom	6	17.6	17.6	8.3	8.3	26.9	28.8	96.9	98.1	7.9	7.9	7.9	1.5	1.5		<2.5	<2.5	
				Surface	1	18.5	18.5	6.9	6.9	30.4	30.6	98.5	98.6	7.7	7.7		3.6	3.7		<2.5	<2.5	
				Juliace	'	18.5	10.0	6.9	0.5	30.7	50.0	98.7	30.0	7.7	1.1	7.8	3.7	5.7	1	<2.5	٠2.٥	
7-Jan-15	Sunny	Moderate	08:17	Middle	3.5	18.4	18.4	6.8	6.8	31.1	31.1	99.4	99.4	7.8	7.8		3.1	3.2	3.7	<2.5	<2.5	<2.5
	-					18.4 18.3		6.8		31.1 31.4	 	99.4 99.5		7.8 7.8			3.3 4.2		-	<2.5 <2.5	 	
				Bottom	6	18.3	18.3	6.7	6.7	31.4	31.5	99.5	99.5	7.8 7.8	7.8	7.8	4.4	4.3		<2.5 <2.5	<2.5	
			1			10.0	<u> </u>	0.1	1	01.0		JJ.7		7.0	1	<u> </u>		1		-2.0		<u> </u>

Water Quality Monitoring Results at GB3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	17.7 17.7	17.7	7.9 8.0	8.0	29.1 27.8	28.5	109.3 108.9	109.1	8.7 8.8	8.8	8.8	2.6 2.6	2.6		3	3.0	
9-Jan-15	Sunny	Moderate	09:31	Middle	3	17.7 17.7	17.7	7.9 8.0	8.0	29.2 29.4	29.3	109.3 109.2	109.3	8.7 8.7	8.7	0.0	2.6 2.3	2.5	2.3	<2.5 <2.5	<2.5	4.3
				Bottom	5	17.7 17.7	17.7	7.9 8.0	8.0	29.3 29.4	29.4	109.4 109.2	109.3	8.7 8.7	8.7	8.7	1.7 1.7	1.7		8 7	7.5	
				Surface	1	15.6 17.1	16.4	8.3 8.4	8.4	30.1 32.1	31.1	90.6 93.1	91.9	7.5 7.4	7.5	7.4	2.1 2.1	2.1		5 5	5.0	
12-Jan-15	Sunny	Moderate	11:15	Middle	3	15.9 17.2	16.6	8.4 8.4	8.4	30.4 32.1	31.3	88.5 90.4	89.5	7.3 7.2	7.3	7.4	2.6 2.4	2.5	2.5	6 6	6.0	5.5
				Bottom	5	16.7 17.2	17.0	8.4 8.4	8.4	31.4 32.1	31.8	87.0 86.6	86.8	7.0 6.9	7.0	7.0	2.9 2.9	2.9		5 6	5.5	
				Surface	1	16.9 16.9	16.9	8.1 8.1	8.1	29.3 29.7	29.5	107.5 108.5	108.0	8.7 8.8	8.8	8.8	1.4 1.6	1.5		<2.5 <2.5	<2.5	
14-Jan-15	Sunny	Moderate	12:16	Middle	3.5	16.9 17.0	17.0	8.1 8.1	8.1	29.4 29.7	29.6	107.3 108.8	108.1	8.7 8.8	8.8	0.0	1.6 1.6	1.6	2.0	5 5	5.0	4.5
				Bottom	6	16.9 17.0	17.0	8.1 8.2	8.2	29.4 29.4	29.4	107.7 107.6	107.7	8.7 8.7	8.7	8.7	2.8 2.7	2.8		6 6	6.0	
				Surface	1	20.1 20.1	20.1	8.0 8.1	8.1	31.5 31.4	31.5	99.3 99.7	99.5	7.5 7.5	7.5	7.5	3.8 3.9	3.9		7	7.0	
16-Jan-15	Sunny	Moderate	13:01	Middle	-	-	-	-	-	1 1	-	1 1	-	1 1	-	7.5	-	-	4.3	-	-	7.3
				Bottom	4.7	20.2 20.2	20.2	8.1 8.1	8.1	32.2 32.2	32.2	97.3 97.0	97.2	7.3 7.3	7.3	7.3	4.5 4.6	4.6		7 8	7.5	

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Dehi	(!!!)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.7 19.7	19.7	8.1 8.1	8.1	30.3 30.3	30.3	111.7 111.7	111.7	8.5 8.5	8.5		3.1 3.1	3.1		5 5	5.0	
17-Dec-14	Cloudy	Moderate	08:59	Middle	8	19.7 19.7 19.7	19.7	8.1 8.1	8.1	30.3 30.3	30.3	111.7 111.7 111.7	111.7	8.5 8.5	8.5	8.5	3.5 3.5	3.5	4.1	6	6.0	4.7
				Bottom	15	19.7 19.7 19.7	19.7	8.2 8.2	8.2	30.4 30.4	30.4	111.4 111.4	111.4	8.5 8.5	8.5	8.5	5.7 5.9	5.8		3	3.0	
				Surface	1	19.3	19.4	7.9	7.9	30.2	30.2	89.5	89.3	6.9	6.9		3.7	3.7		8	8.0	
19-Dec-14	Cloudy	Moderate	10:14	Middle	8	19.4 19.4	19.4	7.9 8.0	8.0	30.2	30.4	90.0	89.4	6.9 6.9	6.9	6.9	3.6 4.3	4.3	4.3	<2.5	<2.5	4.3
				Bottom	15	19.4 19.4 19.4	19.4	8.0 8.4 8.4	8.4	30.4 30.4 30.4	30.4	91.3 89.8	90.6	6.8 7.0 6.9	7.0	7.0	4.3 4.9 4.9	4.9		<2.5 <2.5 <2.5	<2.5	
				Surface	1	18.1	18.5	7.9	7.9	27.9	27.7	98.5	96.0	7.9	7.7		3.2	3.2		4	4.0	
22-Dec-14	Cloudy	Moderate	13:54	Middle	8	18.8 18.6 18.8	18.7	7.9 8.1 8.2	8.2	27.5 27.6 27.6	27.6	93.4 94.1 93.7	93.9	7.4 7.5 7.4	7.5	7.6	3.2 4.4 4.2	4.3	4.1	5 5	5.0	4.7
				Bottom	15	18.8 18.9	18.9	8.3 8.3	8.3	27.6 27.5	27.6	92.0 92.4	92.2	7.3 7.3	7.3	7.3	5.0 4.8	4.9		5	5.0	
				Surface	1	18.2 18.4	18.3	8.0 8.3	8.2	29.2 29.2	29.2	111.0 100.5	105.8	8.8 7.9	8.4	0.0	2.4	2.4		3	3.0	
24-Dec-14	Cloudy	Moderate	13:40	Middle	8	18.0 18.4	18.2	8.2 8.3	8.3	30.2 30.5	30.4	101.4 99.8	100.6	8.0 7.8	7.9	8.2	5.1 5.1	5.1	4.7	3	3.0	3.7
				Bottom	15	18.1 18.2	18.2	8.3 8.4	8.4	30.5 30.5	30.5	99.2 98.8	99.0	7.8 7.8	7.8	7.8	6.5 6.5	6.5		5 5	5.0	
				Surface	1	19.2 19.2	19.2	7.4 7.4	7.4	33.6 33.6	33.6	88.9 88.8	88.9	6.7 6.7	6.7	6.7	1.8 1.6	1.7		4	4.0	
27-Dec-14	Fine	Moderate	15:40	Middle	8	19.2 19.2	19.2	7.4 7.4	7.4	33.6 33.5	33.6	88.5 88.7	88.6	6.7 6.7	6.7	0.7	2.8 2.8	2.8	2.5	5 4	4.5	3.8
				Bottom	15	19.2 19.2	19.2	7.4 7.4	7.4	33.6 33.6	33.6	89.0 89.0	89.0	6.7 6.7	6.7	6.7	2.9 2.9	2.9		3	3.0	
				Surface	1	17.9 17.9	17.9	7.6 7.6	7.6	29.6 30.3	30.0	57.5 55.2	56.4	4.6 4.4	4.5	4.3	3.9 3.9	3.9		6 6	6.0	
29-Dec-14	Fine	Moderate	18:59	Middle	8	17.9 17.9	17.9	7.6 7.6	7.6	30.7 30.7	30.7	50.3 49.9	50.1	4.0 3.9	4.0	4.5	3.8 3.6	3.7	3.9	4	4.0	4.3
				Bottom	15	17.9 17.9	17.9	7.6 7.6	7.6	30.7 30.7	30.7	44.5 44.5	44.5	3.5 3.5	3.5	3.5	4.1 4.3	4.2		3 3	3.0	
				Surface	1	17.8 17.6	17.7	7.7 7.7	7.7	31.5 31.5	31.5	63.4 63.0	63.2	5.0 5.0	5.0	4.9	3.8 3.7	3.8		<2.5 <2.5	<2.5	
31-Dec-14	Fine	Moderate	08:21	Middle	8	17.4 17.7	17.6	7.7 7.7	7.7	31.6 31.6	31.6	58.6 59.8	59.2	4.6 4.7	4.7		4.0 4.1	4.1	4.1	6	6.0	4.8
				Bottom	15	17.6 17.4	17.5	7.7 7.7	7.7	31.8 32.0	31.9	52.3 51.3	51.8	4.1 4.1	4.1	4.1	4.3 4.4	4.4		6	6.0	
				Surface	1	17.8 17.9	17.9	8.1 8.1	8.1	32.0 32.0	32.0	79.3 78.0	78.7	6.2 6.1	6.2	6.2	3.3 4.1	3.7		4	4.0	
2-Jan-15	Sunny	Moderate	10:52	Middle	8	17.8 17.8	17.8	8.1 8.1	8.1	32.0 32.1	32.1	78.6 78.3	78.5	6.2 6.1	6.2		3.9 4.0	4.0	4.2	5 4	4.5	4.8
				Bottom	15	17.8 17.8	17.8	8.1 8.1	8.1	32.1 32.1	32.1	77.7 77.7	77.7	6.1 6.1	6.1	6.1	5.3 4.5	4.9		6 6	6.0	

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.4 18.4	18.4	8.6 8.6	8.6	26.7 26.1	26.4	99.3 97.6	98.5	8.0 7.8	7.9	7.8	2.4 2.6	2.5		5 5	5.0	
5-Jan-15	Sunny	Moderate	11:35	Middle	8	18.4 18.4	18.4	8.7 8.7	8.7	28.1 28.1	28.1	96.3 96.1	96.2	7.7 7.6	7.7	7.0	2.8 2.8	2.8	2.9	3	3.0	4.0
				Bottom	15	18.2 18.2	18.2	8.8 8.8	8.8	28.3 28.3	28.3	95.0 94.7	94.9	7.6 7.5	7.6	7.6	3.6 3.4	3.5		4 4	4.0	
				Surface	1	18.5 18.5	18.5	8.6 8.6	8.6	28.1 28.1	28.1	84.3 84.3	84.3	6.7 6.7	6.7	6.8	2.2 2.3	2.3		4 4	4.0	
7-Jan-15	Sunny	Moderate	13:15	Middle	8	18.5 18.5	18.5	8.8 8.8	8.8	28.2 28.2	28.2	85.3 85.1	85.2	6.8 6.7	6.8	0.0	2.4 2.4	2.4	2.8	<2.5 <2.5	<2.5	4.3
				Bottom	15	18.4 18.4	18.4	8.9 8.9	8.9	28.3 28.3	28.3	85.9 85.9	85.9	6.8 6.8	6.8	6.8	3.7 3.6	3.7		7 6	6.5	
				Surface	1	17.5 17.6	17.6	8.4 8.4	8.4	21.2 24.9	23.1	89.9 89.4	89.7	7.6 7.4	7.5	7.1	3.8 3.6	3.7		3 3	3.0	
9-Jan-15	Sunny	Moderate	15:05	Middle	8	18.1 18.1	18.1	8.5 8.5	8.5	28.1 28.2	28.2	84.3 84.2	84.3	6.7 6.7	6.7	7.1	4.1 4.3	4.2	3.8	<2.5 <2.5	<2.5	3.7
				Bottom	15	18.3 18.3	18.3	8.5 8.5	8.5	28.3 28.3	28.3	83.3 83.3	83.3	6.6 6.6	6.6	6.6	3.5 3.3	3.4		6 5	5.5	
				Surface	1	21.6 21.7	21.7	8.1 8.0	8.1	30.3 30.3	30.3	106.4 106.6	106.5	7.9 7.9	7.9	7.9	3.0 3.1	3.1		3	3.0	
12-Jan-15	Sunny	Moderate	16:04	Middle	8	22.1 22.1	22.1	8.0 7.9	8.0	30.7 30.6	30.7	107.3 107.3	107.3	7.8 7.8	7.8	7.5	5.4 5.8	5.6	5.1	4 4	4.0	3.7
				Bottom	15	20.1 20.3	20.2	7.7 7.7	7.7	32.0 31.9	32.0	104.3 104.8	104.6	7.8 7.9	7.9	7.9	6.7 6.4	6.6		4	4.0	

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.8	19.8	8.0	8.0	30.5	30.5	109.1	109.3	8.3	8.3		2.1	2.1		4	4.0	
					·	19.8		8.0		30.5		109.4		8.3		8.3	2.1			4		
17-Dec-14	Cloudy	Moderate	13:24	Middle	8	19.8 19.8	19.8	7.9 8.0	8.0	30.6 30.6	30.6	109.4 109.4	109.4	8.3 8.3	8.3		4.7 4.6	4.7	4.1	4	4.0	3.5
						19.7		7.8		30.4		110.8		8.5			5.5			<2.5	-	
				Bottom	15	19.7	19.7	7.8	7.8	30.4	30.4	111.1	111.0	8.5	8.5	8.5	5.7	5.6		<2.5	<2.5	
				04	1	19.0	19.1	7.8	7.8	27.8	28.9	91.9	91.3	7.2	7.1		3.4	3.4		<2.5	<2.5	
				Surface	'	19.2	19.1	7.8	7.0	29.9	20.9	90.7	91.3	7.0	7.1	7.0	3.4	3.4		<2.5	<2.5	
19-Dec-14	Cloudy	Moderate	14:40	Middle	8	19.4	19.4	8.0	8.0	30.2	30.3	90.2	90.2	6.9	6.9	7.0	4.7	4.7	4.5	5	5.0	3.3
	,					19.4		8.0 8.4		30.3		90.1		6.9 7.0			4.7 5.3			5 <2.5		
				Bottom	15	19.4 19.4	19.4	8.5	8.5	30.3	30.4	91.0 91.4	91.2	7.0	7.0	7.0	5.3	5.3		<2.5 <2.5	<2.5	
						17.7		7.9		26.5		92.9		7.6			3.8			5		
				Surface	1	18.8	18.3	7.9	7.9	26.7	26.6	94.6	93.8	7.5	7.6	7.6	3.8	3.8		5	5.0	
22-Dec-14	Cloudy	Moderate	17:18	Middle	8	18.5	18.7	8.2	8.2	27.4	27.5	95.6	94.5	7.6	7.5	7.0	6.2	6.1	5.0	3	3.0	3.8
22-000-14	Cloudy	Woderate	17.10	Middle		18.8	10.7	8.2	0.2	27.6	27.5	93.3	34.5	7.4	7.5		6.0	0.1	3.0	3	0.0	0.0
				Bottom	15	18.7	18.8	8.4	8.4	27.6	27.6	93.1	92.8	7.4	7.4	7.4	5.1	5.2		4	3.5	
						18.8 18.3		8.4 8.1		27.6 30.7		92.5 105.1		7.3 8.2			5.3 3.9			3 <2.5		
				Surface	1	18.4	18.4	8.1	8.1	30.7	30.5	99.9	102.5	7.8	8.0		4.0	4.0		<2.5	<2.5	
					_	18.3		8.3		30.5		100.6		7.9		8.0	3.7			<2.5		
24-Dec-14	Cloudy	Moderate	09:48	Middle	8	18.4	18.4	8.4	8.4	30.5	30.5	100.1	100.4	7.8	7.9		3.8	3.8	4.7	<2.5	<2.5	4.0
				Bottom	15	18.4	18.4	8.5	8.5	30.4	30.4	98.7	98.7	7.7	7.7	7.7	6.6	6.4		7	7.0	
				Dottom		18.3		8.5	0.0	30.4	00.1	98.6	00	7.7	- '''		6.1	0.1		7		
				Surface	1	19.0 19.0	19.0	7.4 7.4	7.4	33.2 33.2	33.2	86.1 85.8	86.0	6.6 6.5	6.6		1.7 1.9	1.8		5 4	4.5	
						19.0		7.4		33.2		85.3		6.5		6.6	2.5			3	 	
27-Dec-14	Fine	Moderate	11:26	Middle	8	19.0	19.0	7.4	7.4	33.2	33.2	85.3	85.3	6.5	6.5		2.5	2.5	2.4	3	3.0	4.5
				Bottom	15	19.0	19.0	7.4	7.4	33.3	33.3	84.4	84.3	6.4	6.4	6.4	2.8	2.8		6	6.0	
				DOLLOITI	13	19.0	19.0	7.4	7.4	33.3	33.3	84.2	04.5	6.4	0.4	0.4	2.8	2.0		6	0.0	
				Surface	1	19.3	19.3	7.9	7.9	29.8	29.8	74.4	74.3	5.8	5.8		2.5	2.5		3	3.5	
						19.3 19.3		7.9 7.9		29.8 30.4		74.1 71.3		5.7 5.5		5.7	2.5			4		
29-Dec-14	Fine	Moderate	11:49	Middle	8	19.3	19.3	7.9 7.9	7.9	30.4	30.4	71.3 71.3	71.3	5.5 5.5	5.5		2.6	2.8	2.8	4	4.0	4.2
				- ·		19.3	40.0	7.9		30.5		62.9		4.8			2.9			5		
				Bottom	15	19.3	19.3	7.9	7.9	30.5	30.5	64.7	63.8	5.0	4.9	4.9	3.0	3.0		5	5.0	
				Surface	1	18.0	18.0	7.7	7.7	29.3	30.0	76.9	76.5	6.1	6.1		4.4	4.4		6	6.0	
				Odridoc		18.0	10.0	7.7	7.7	30.6	00.0	76.1	70.0	6.0	0.1	5.8	4.3	7		6	0.0	
31-Dec-14	Fine	Moderate	14:44	Middle	8	18.0	18.1	7.7	7.7	31.3	31.3	67.8	68.6	5.3 5.4	5.4		4.1 4.3	4.2	4.4	4	4.0	4.3
						18.1 18.0		7.7 7.7		31.2 31.4		69.4 58.8		4.6			4.3			3		
				Bottom	15	17.9	18.0	7.7	7.7	31.5	31.5	56.9	57.9	4.5	4.6	4.6	4.5	4.5		3	3.0	
				04	4	18.2	40.0	8.1	0.4	32.4	20.4	91.1	04.0	7.1	7.4		3.9	4.0		<2.5	40.5	
				Surface	1	18.2	18.2	8.1	8.1	32.4	32.4	90.9	91.0	7.1	7.1	7.2	4.0	4.0		<2.5	<2.5	
2-Jan-15	Sunny	Moderate	16:02	Middle	8	18.0	18.0	8.1	8.1	32.4	32.4	91.7	91.6	7.2	7.2	1.2	5.2	5.2	5.1	4	4.0	4.0
				34.0		18.0	1.5.0	8.1		32.4		91.4		7.1	<u> </u>		5.1			4		
				Bottom	15	17.9 17.9	17.9	8.1 8.1	8.1	32.4 32.4	32.4	91.6 91.3	91.5	7.2 7.1	7.2	7.2	6.1 6.1	6.1		5 6	5.5	
						17.9	<u> </u>	0.1	ı	32.4	1	91.3	1	1.1	<u>I</u>		0.1	<u>I</u>	1	0		

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.4 18.4	18.4	8.6 8.6	8.6	26.5 27.1	26.8	97.5 97.3	97.4	7.8 7.8	7.8	7.7	2.8 2.9	2.9		3	3.0	
5-Jan-15	Sunny	Moderate	17:00	Middle	8	18.4 18.4	18.4	8.7 8.7	8.7	28.1 28.1	28.1	96.0 96.0	96.0	7.6 7.6	7.6	7.7	3.3 3.2	3.3	3.4	4 4	4.0	3.7
				Bottom	15	18.2 18.2	18.2	8.8 8.8	8.8	28.4 28.4	28.4	94.6 94.5	94.6	7.5 7.5	7.5	7.5	4.0 3.9	4.0		4	4.0	
				Surface	1	17.9 17.9	17.9	8.6 8.6	8.6	28.2 28.2	28.2	87.3 86.9	87.1	7.0 7.0	7.0	7.0	2.6 2.6	2.6		5 5	5.0	
7-Jan-15	Sunny	Moderate	09:36	Middle	8	17.9 17.9	17.9	8.7 8.8	8.8	28.5 28.4	28.5	86.0 86.1	86.1	6.9 6.9	6.9	7.0	3.0 3.0	3.0	3.0	4	4.0	4.7
				Bottom	15	17.8 17.8	17.8	8.9 8.9	8.9	28.6 28.7	28.7	86.8 86.9	86.9	7.0 7.0	7.0	7.0	3.5 3.4	3.5		5 5	5.0	
				Surface	1	17.8 17.7	17.8	8.4 8.4	8.4	25.9 25.1	25.5	88.1 88.7	88.4	7.2 7.3	7.3	7.1	3.5 3.0	3.3		6 5	5.5	
9-Jan-15	Sunny	Moderate	09:40	Middle	8	18.0 18.1	18.1	8.5 8.5	8.5	28.0 28.0	28.0	84.8 84.3	84.6	6.8 6.7	6.8	7.1	3.6 3.5	3.6	3.6	4	4.0	4.0
				Bottom	15	18.2 18.3	18.3	8.5 8.5	8.5	28.4 28.3	28.4	83.5 83.3	83.4	6.6 6.6	6.6	6.6	3.8 3.7	3.8		<2.5 <2.5	<2.5	
				Surface	1	21.1 21.2	21.2	8.0 8.0	8.0	30.6 30.6	30.6	110.8 110.0	110.4	8.2 8.2	8.2	8.2	2.1 2.1	2.1		3 3	3.0	
12-Jan-15	Sunny	Moderate	11:52	Middle	8	21.3 21.3	21.3	8.0 7.9	8.0	30.7 30.7	30.7	109.7 109.6	109.7	8.1 8.1	8.1	0.2	4.5 4.6	4.6	5.0	3	3.0	3.7
				Bottom	15	20.8 21.1	21.0	7.9 7.9	7.9	31.0 30.9	31.0	106.5 109.1	107.8	8.0 8.1	8.1	8.1	8.2 8.1	8.2		5 5	5.0	

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.4 19.9	19.2	8.0 8.0	8.0	31.8 31.9	31.9	96.9 98.1	97.5	7.5 7.4	7.5		2.3 2.4	2.4		4	4.0	
17-Dec-14	Cloudy	Moderate	08:19	Middle	9	19.6 20.1	19.9	8.0 8.0	8.0	31.6 31.8	31.7	95.2 96.7	96.0	7.2 7.3	7.3	7.4	4.5 4.5	4.5	3.9	3 4	3.5	4.8
				Bottom	17	19.8 20.2	20.0	8.2 8.2	8.2	31.1 31.0	31.1	94.7 94.7	94.7	7.2 7.2	7.2	7.2	4.8 5.0	4.9		7	7.0	
				Surface	1	18.8 18.9	18.9	7.9 7.9	7.9	30.7 30.6	30.7	109.8 109.6	109.7	8.5 8.5	8.5		3.3	3.4		4 4	4.0	
19-Dec-14	Cloudy	Moderate	09:43	Middle	9	19.0 19.0	19.0	8.0 8.0	8.0	30.5 30.4	30.5	109.8	109.8	8.5 8.5	8.5	8.5	3.4 4.2 4.3	4.3	4.2	<2.5 <2.5	<2.5	3.0
				Bottom	17	19.0 19.1 19.1	19.1	8.1 8.1	8.1	30.4 30.5	30.5	109.7 109.5 110.2	109.9	8.5 8.5	8.5	8.5	4.8 4.9	4.9		<2.5 <2.5 <2.5	<2.5	
				Surface	1	18.9	18.8	7.6	7.8	26.8	27.2	101.2	102.8	8.0	8.2		3.5	3.7		3	3.0	
22-Dec-14	Cloudy	Moderate	12:47	Middle	9	18.7 18.7	18.3	7.9 8.0	8.0	27.6 27.2	27.4	104.4	102.5	8.3 8.2	8.2	8.2	3.8 4.5	4.4	4.8	5	4.5	4.2
				Bottom	17	17.8 18.7 18.6	18.7	8.0 8.2 8.1	8.2	27.5 27.4 27.6	27.5	102.2 101.3 102.5	101.9	8.2 8.0 8.1	8.1	8.1	4.3 6.2 6.3	6.3	=	5 5	5.0	
				Surface	1	18.3 18.3	18.3	8.2 8.2	8.2	30.9 29.4	30.2	105.0 103.6	104.3	8.2 8.2	8.2		2.5 2.2	2.4		5 5	5.0	
24-Dec-14	Cloudy	Moderate	14:43	Middle	9	18.1 17.8	18.0	8.3 8.3	8.3	29.4 30.6	30.0	101.6 102.0	101.8	8.1 8.1	8.1	8.2	4.5 4.7	4.6	5.1	5 5	5.0	4.3
				Bottom	17	18.0 17.8	17.9	8.5 8.5	8.5	31.1 30.5	30.8	104.0 104.0	104.0	8.2 8.2	8.2	8.2	8.2 8.3	8.3		3	3.0	
				Surface	1	19.0 18.9	19.0	7.9 7.9	7.9	33.6 33.6	33.6	91.7 91.5	91.6	7.0 7.0	7.0	7.0	3.4 3.3	3.4		<2.5 <2.5	<2.5	
27-Dec-14	Fine	Moderate	16:51	Middle	9	18.9 18.9	18.9	7.9 7.8	7.9	33.7 33.6	33.7	90.4 90.2	90.3	6.9 6.9	6.9	7.0	4.3 4.3	4.3	4.1	<2.5 <2.5	<2.5	2.7
				Bottom	17	18.9 18.9	18.9	7.8 7.8	7.8	33.7 33.6	33.7	90.4 90.2	90.3	6.9 6.9	6.9	6.9	4.5 4.4	4.5		3	3.0	
				Surface	1	17.9 17.9	17.9	7.6 7.6	7.6	34.1 34.1	34.1	55.2 55.0	55.1	4.3 4.3	4.3		4.0 3.9	4.0		3	3.0	
29-Dec-14	Fine	Moderate	18:05	Middle	9	17.9 17.9	17.9	7.3 7.6	7.5	28.2 31.6	29.9	50.8 52.1	51.5	4.1 4.1	4.1	4.2	4.2 4.1	4.2	4.2	4 5	4.5	4.2
				Bottom	17	17.9 17.9	17.9	7.6 7.6	7.6	32.6 32.9	32.8	46.8 46.9	46.9	3.7 3.7	3.7	3.7	4.4 4.5	4.5		5 5	5.0	
				Surface	1	18.1 17.7	17.9	7.7 7.7	7.7	29.0 29.6	29.3	77.8 74.8	76.3	6.2 6.0	6.1		4.1 4.0	4.1		3	3.0	
31-Dec-14	Fine	Moderate	09:32	Middle	9	17.4 18.0	17.7	7.7 7.7	7.7	32.6 32.4	32.5	60.8 63.9	62.4	4.8 5.0	4.9	5.5	4.2 4.0	4.1	4.3	4	4.0	4.0
				Bottom	17	17.8 17.4	17.6	7.7 7.7	7.7	32.9 33.2	33.1	51.8 49.8	50.8	4.0 3.9	4.0	4.0	4.5 4.7	4.6		5 5	5.0	
				Surface	1	17.7 17.7	17.7	8.1 8.1	8.1	32.1 32.1	32.1	79.4 79.9	79.7	6.2 6.3	6.3	6.3	4.6 4.5	4.6		3 3	3.0	
2-Jan-15	Sunny	Moderate	09:37	Middle	9	17.7 17.7	17.7	8.1 8.1	8.1	32.2 32.2	32.2	79.6 80.0	79.8	6.3 6.3	6.3	0.0	4.7 4.5	4.6	4.6	5 6	5.5	4.7
				Bottom	17	17.7 17.7	17.7	8.1 8.1	8.1	32.2 32.2	32.2	79.5 80.2	79.9	6.3 6.3	6.3	6.3	4.7 4.6	4.7		5 6	5.5	

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.2 18.2	18.2	8.6 8.6	8.6	27.9 28.0	28.0	98.0 97.9	98.0	7.8 7.8	7.8	7.8	3.0 2.9	3.0		3 3	3.0	
5-Jan-15	Sunny	Moderate	12:06	Middle	9	18.1 18.1	18.1	8.7 8.7	8.7	28.2 28.2	28.2	97.0 97.0	97.0	7.7 7.7	7.7	7.0	3.6 3.5	3.6	3.5	5 5	5.0	3.7
				Bottom	17	18.1 18.1	18.1	8.8 8.8	8.8	28.2 28.2	28.2	96.7 96.7	96.7	7.7 7.7	7.7	7.7	3.7 3.8	3.8		3	3.0	
				Surface	1	18.3 18.3	18.3	8.7 8.7	8.7	24.1 27.9	26.0	93.4 94.1	93.8	7.6 7.5	7.6	7.6	2.6 2.6	2.6		4 4	4.0	
7-Jan-15	Sunny	Moderate	14:24	Middle	9	18.3 18.3	18.3	8.8 8.8	8.8	28.1 28.1	28.1	93.6 93.9	93.8	7.5 7.5	7.5	7.0	3.2 3.2	3.2	3.1	4 4	4.0	4.2
				Bottom	17	18.2 18.2	18.2	8.9 8.9	8.9	28.3 28.3	28.3	93.9 94.1	94.0	7.5 7.5	7.5	7.5	3.4 3.5	3.5		5 4	4.5	
				Surface	1	16.6 16.8	16.7	8.5 8.6	8.6	22.3 21.9	22.1	103.6 101.3	102.5	8.8 8.6	8.7	8.3	3.9 3.9	3.9		4 4	4.0	
9-Jan-15	Sunny	Moderate	14:17	Middle	9	17.5 17.6	17.6	8.6 8.6	8.6	28.1 28.1	28.1	98.2 97.9	98.1	7.9 7.9	7.9	0.5	4.1 4.3	4.2	4.2	3	3.0	3.3
				Bottom	17	17.9 17.9	17.9	8.7 8.7	8.7	28.5 28.5	28.5	96.4 96.5	96.5	7.7 7.7	7.7	7.7	4.5 4.4	4.5		3 3	3.0	
				Surface	1	21.6 21.7	21.7	8.0 8.1	8.1	30.6 30.7	30.7	111.8 110.5	111.2	8.2 8.1	8.2	8.1	3.3 3.6	3.5		3	3.0	
12-Jan-15	Sunny	Moderate	16:53	Middle	9	21.9 21.8	21.9	7.9 8.0	8.0	30.8 30.8	30.8	108.4 108.2	108.3	7.9 7.9	7.9	0.1	4.2 4.5	4.4	5.0	3 3	3.0	3.3
				Bottom	17	20.7 20.8	20.8	7.9 7.9	7.9	30.9 31.0	31.0	103.3 106.2	104.8	7.7 7.9	7.8	7.8	7.2 7.1	7.2		4 4	4.0	

Water Quality Monitoring Results at C2 - Mid-Flood Tide

Data	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	1 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.2	20.2	7.8	7.8	30.8	30.8	94.5	94.4	7.1	7.1		2.9	2.9		3	3.0	
				0411400		20.2		7.8	7.0	30.7	00.0	94.3	•	7.1		7.1	2.8	2.0		3	0.0	
17-Dec-14	Cloudy	Moderate	13:57	Middle	9	20.2	20.2	7.9	7.9	30.7	30.7	93.9	94.1	7.1	7.1		4.2	4.2	4.2	4	4.0	4.7
	•					20.2		7.9 8.0		30.7		94.2		7.1 7.1			4.2 5.2			7		
				Bottom	17	20.2	20.2	8.0	8.0	30.7	30.7	94.0	94.0	7.1	7.1	7.1	5.5	5.4		7	7.0	
						18.2		8.0		31.3		111.6		8.7			3.4			<2.5		
				Surface	1	18.5	18.4	7.9	8.0	31.1	31.2	110.6	111.1	8.6	8.7	8.6	3.4	3.4		<2.5	<2.5	
19-Dec-14	Cloudy	Moderate	15:21	Middle	9	19.0	19.0	8.0	8.0	30.5	30.5	110.1	110.1	8.5	8.5	0.0	4.4	4.4	4.4	3	3.0	2.8
13-000-14	Oloudy	Woderate	10.21	Middle	3	19.0	15.0	8.0	0.0	30.5	50.5	110.0	110.1	8.5	0.0		4.4	7.7	7.7	3	0.0	2.0
				Bottom	17	19.0	19.0	8.1	8.1	30.5	30.5	109.7	109.7	8.5	8.5	8.5	5.2	5.3		3	3.0	
						19.0		8.1		30.5		109.7		8.5			5.3			3		
				Surface	1	18.6 18.6	18.6	7.9 7.9	7.9	28.0 26.8	27.4	115.7 98.1	106.9	9.2 7.8	8.5		2.5 2.6	2.6		5 5	5.0	
						17.0		8.3		26.8		102.3		8.4		8.3	3.7			5		
22-Dec-14	Cloudy	Moderate	18:31	Middle	9	18.6	17.8	8.1	8.2	27.7	27.3	96.9	99.6	7.7	8.1		3.8	3.8	4.3	5	5.0	4.2
				D-#	47	18.0	40.0	8.5	0.5	28.1	07.0	100.9	400.4	8.1	0.0	0.0	6.4	0.0		<2.5	40.5	
				Bottom	17	18.6	18.3	8.4	8.5	27.6	27.9	99.2	100.1	7.9	8.0	8.0	6.7	6.6		<2.5	<2.5	
				Surface	1	18.5	18.6	8.1	8.1	29.5	29.9	106.3	108.0	8.4	8.5		3.3	3.5		8	7.5	
				Odridoo		18.6	10.0	8.1	0.1	30.3	20.0	109.7	100.0	8.6	0.0	8.5	3.6	0.0		7	7.0	
24-Dec-14	Cloudy	Moderate	08:57	Middle	9	18.1	18.1	8.1	8.1	30.1	30.3	107.3	107.7	8.5	8.5		4.2	4.4	4.8	<2.5	<2.5	4.2
	•					18.0		8.1		30.4		108.1		8.5			4.5			<2.5		
				Bottom	17	18.1 17.8	18.0	8.2 8.2	8.2	30.2 30.5	30.4	106.0 106.6	106.3	8.4 8.4	8.4	8.4	6.4 6.6	6.5		<2.5 <2.5	<2.5	
						19.0		8.1		33.6		90.0		6.8			3.0			6		
				Surface	1	18.9	19.0	8.0	8.1	33.6	33.6	89.8	89.9	6.8	6.8		2.6	2.8		6	6.0	
07 D 44	F:	Madazta	40.47	Middle		18.9	40.0	8.0	0.0	33.7	20.7	88.6	00.0	6.7	0.7	6.8	3.3	2.2	2.4	4	4.0	4.7
27-Dec-14	Fine	Moderate	10:17	Middle	9	18.9	18.9	8.0	8.0	33.6	33.7	88.5	88.6	6.7	6.7		3.3	3.3	3.1	4	4.0	4.7
				Bottom	17	18.9	18.9	8.0	8.0	33.7	33.7	88.7	88.6	6.7	6.7	6.7	2.9	3.2		4	4.0	
					• • • • • • • • • • • • • • • • • • • •	18.9		8.0		33.6		88.5		6.7	***		3.5			4		
				Surface	1	19.2	19.2	7.9	7.9	31.9	31.9	59.1	59.1	4.5	4.5		2.7	2.8		5	5.5	
						19.2 19.2		7.9 7.9		31.9 32.0		59.0 56.9		4.5 4.4		4.5	2.8 3.3			6 <2.5		
29-Dec-14	Fine	Moderate	12:53	Middle	9	19.2	19.2	7.9	7.9	32.0	32.0	56.9	56.9	4.4	4.4		3.4	3.4	3.3	<2.5	<2.5	3.8
						19.2	40.0	7.9		32.2		52.3		4.0			3.6			3		
				Bottom	17	19.2	19.2	7.9	7.9	32.2	32.2	52.2	52.3	4.0	4.0	4.0	3.8	3.7		4	3.5	
				Surface	1	17.8	17.7	7.7	7.7	33.2	33.2	70.8	70.7	5.5	5.5		4.3	4.3		<2.5	<2.5	
				Juliace		17.6	17.7	7.7	7.1	33.2	33.2	70.5	70.7	5.5	5.5	5.3	4.2	4.5		<2.5	12.5	
31-Dec-14	Fine	Moderate	13:35	Middle	9.5	17.5	17.7	7.7	7.7	33.3	33.3	64.4	65.3	5.0	5.1		4.4	4.5	4.5	<2.5	<2.5	4.0
						17.8		7.7		33.3		66.1		5.2			4.5			<2.5		
				Bottom	18	17.6 17.5	17.6	7.7 7.7	7.7	33.3 33.3	33.3	55.8 54.2	55.0	4.4 4.2	4.3	4.3	4.6 4.7	4.7		7 7	7.0	
						18.4		8.1		32.2		83.7		6.5			3.8			6		
				Surface	1	18.4	18.4	8.1	8.1	32.2	32.2	83.5	83.6	6.5	6.5	0.0	4.1	4.0		6	6.0	
2 lon 15	Cunni	Moderate	14.40	Middle	9	18.2	10.0	8.1	0.1	32.2	32.2	84.1	04.4	6.6	6.6	6.6	3.9	4.1	4.0	<2.5	-2.5	2.0
2-Jan-15	Sunny	Moderate	14:42	Middle	9	18.2	18.2	8.1	8.1	32.2	32.2	84.1	84.1	6.5	6.6		4.2	4.1	4.2	<2.5	<2.5	3.8
				Bottom	17	17.9	17.9	8.1	8.1	32.2	32.2	83.3	83.5	6.5	6.5	6.5	4.4	4.6		3	3.0	
				Dottom	17	17.9	17.0	8.1	0.1	32.2	02.2	83.6	00.0	6.5	0.0	0.0	4.7	7.0		3	0.0	

Water Quality Monitoring Results at C2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.2 18.2	18.2	8.6 8.6	8.6	28.0 28.0	28.0	97.8 97.6	97.7	7.8 7.8	7.8	7.8	2.8 3.0	2.9		4 4	4.0	
5-Jan-15	Sunny	Moderate	16:28	Middle	9	18.1 18.2	18.2	8.7 8.7	8.7	28.2 28.1	28.2	97.1 97.1	97.1	7.8 7.7	7.8	7.0	3.1 3.1	3.1	3.3	4 4	4.0	4.7
				Bottom	17	18.1 18.1	18.1	8.8 8.8	8.8	28.2 28.2	28.2	96.7 96.7	96.7	7.7 7.7	7.7	7.7	3.8 4.0	3.9		6 6	6.0	
				Surface	1	17.9 17.9	17.9	8.6 8.6	8.6	27.8 27.9	27.9	95.9 95.3	95.6	7.7 7.7	7.7	7.7	2.8 2.8	2.8		5 5	5.0	
7-Jan-15	Sunny	Moderate	08:36	Middle	9	17.8 17.8	17.8	8.7 8.7	8.7	28.3 28.3	28.3	94.5 94.5	94.5	7.6 7.6	7.6	7.1	3.1 3.1	3.1	3.2	3	3.0	4.8
				Bottom	17	17.7 17.7	17.7	8.8 8.8	8.8	28.5 28.5	28.5	94.4 94.3	94.4	7.6 7.6	7.6	7.6	3.6 3.7	3.7		7 6	6.5	
				Surface	1	17.0 16.4	16.7	8.6 8.5	8.6	27.6 27.7	27.7	102.5 109.7	106.1	8.4 9.1	8.8	8.4	3.4 3.4	3.4		6 6	6.0	
9-Jan-15	Sunny	Moderate	10:24	Middle	9	17.5 17.6	17.6	8.6 8.6	8.6	28.0 28.2	28.1	98.8 97.8	98.3	8.0 7.9	8.0	0.4	3.8 3.9	3.9	3.8	<2.5 <2.5	<2.5	4.8
				Bottom	17	17.8 17.8	17.8	8.7 8.7	8.7	28.5 28.5	28.5	96.7 96.8	96.8	7.8 7.8	7.8	7.8	4.1 4.0	4.1		6 6	6.0	
				Surface	1	21.2 21.1	21.2	8.0 7.9	8.0	30.4 30.5	30.5	111.2 110.8	111.0	8.3 8.3	8.3	8.3	2.2 2.3	2.3		3	3.0	
12-Jan-15	Sunny	Moderate	10:48	Middle	9	21.1 21.1	21.1	8.0 8.1	8.1	30.9 30.8	30.9	110.1 109.8	110.0	8.2 8.2	8.2	0.0	4.2 4.1	4.2	3.9	4	4.0	4.2
				Bottom	17	20.9 20.8	20.9	8.0 8.1	8.1	31.0 31.1	31.1	110.2 109.8	110.0	8.2 8.2	8.2	8.2	5.2 5.3	5.3		6 5	5.5	

Water Quality Monitoring Results at 14 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.1 20.1	20.1	8.0 8.0	8.0	30.6 30.6	30.6	89.0 88.7	88.9	6.7 6.7	6.7		2.1 2.2	2.2		5 5	5.0	
17-Dec-14	Cloudy	Moderate	09:14	Middle	4	20.1	20.1	8.2 8.2	8.2	30.7 30.7	30.7	92.1 91.9	92.0	7.0 7.0	7.0	6.9	2.8	2.8	3.5	4 4	4.0	4.0
				Bottom	7	20.1	20.1	8.2 8.2	8.2	30.6 30.6	30.6	92.3 92.4	92.4	7.0 7.0	7.0	7.0	5.2 5.6	5.4		3	3.0	
				Surface	1	19.5	19.5	7.8 7.8	7.8	30.0	30.1	88.8	88.8	6.8	6.8		3.0	3.1		<2.5 <2.5	<2.5	
19-Dec-14	Cloudy	Moderate	10:24	Middle	4	19.5 19.5 19.5	19.5	7.8 7.8 7.8	7.8	30.1 30.1 30.0	30.1	88.7 89.4 89.5	89.5	6.8 6.9 6.9	6.9	6.9	3.1 3.4 3.4	3.4	3.8	6 6	6.0	4.2
				Bottom	7	19.4	19.4	7.8 7.9 7.9	7.9	30.2	30.1	90.4	90.3	7.0	7.0	7.0	4.6 4.9	4.8		4 4	4.0	
				Surface	1	19.4	17.8	7.9	7.9	30.0 27.9	26.9	90.2	91.8	7.0	7.5		3.7	3.8		7	7.0	
22-Dec-14	Cloudy	Moderate	13:34	Middle	4	18.8 18.5	18.7	7.9 8.1	8.1	25.8 27.9	27.8	92.0 94.0	93.1	7.4	7.4	7.5	3.8 4.4	4.4	4.8	7	4.0	4.8
	-			Bottom	7	18.9 18.7 17.9	18.3	8.0 8.2 8.1	8.2	27.7 27.9 27.7	27.8	92.1 92.5 89.8	91.2	7.3 7.3 7.2	7.3	7.3	4.4 6.3 6.2	6.3	-	4 4 3	3.5	
				Surface	1	18.4 18.4	18.4	8.4 8.4	8.4	30.0 29.2	29.6	102.9 98.9	100.9	8.1 7.8	8.0		2.0	2.0		<2.5 <2.5	<2.5	
24-Dec-14	Cloudy	Moderate	13:25	Middle	4	18.2 18.0	18.1	8.5 8.4	8.5	30.5 30.3	30.4	102.5 98.0	100.3	8.1 7.7	7.9	8.0	3.4 3.6	3.5	4.8	4 4	4.0	3.0
				Bottom	7	18.1 18.0	18.1	8.5 8.4	8.5	30.4 30.4	30.4	99.0 97.8	98.4	7.8 7.7	7.8	7.8	8.9 9.1	9.0		<2.5 <2.5	<2.5	
				Surface	1	19.2 19.2	19.2	7.5 7.6	7.6	33.6 33.5	33.6	80.8 80.6	80.7	6.1 6.1	6.1		1.8 1.8	1.8		4 4	4.0	
27-Dec-14	Fine	Moderate	15:58	Middle	4	19.2 19.2	19.2	7.6 7.6	7.6	33.6 33.6	33.6	81.2 81.2	81.2	6.2 6.2	6.2	6.2	2.2	2.2	2.2	4	4.0	4.0
				Bottom	7	19.2 19.2	19.2	7.6 7.6	7.6	33.6 33.6	33.6	81.5 81.3	81.4	6.2 6.2	6.2	6.2	2.6	2.6		4 4	4.0	
				Surface	1	17.8 17.8	17.8	7.6 7.6	7.6	29.3 30.4	29.9	61.6 59.7	60.7	4.9 4.7	4.8		3.7 3.6	3.7		3 3	3.0	
29-Dec-14	Fine	Moderate	18:50	Middle	4	18.0 18.0	18.0	7.6 7.6	7.6	30.6 30.6	30.6	52.1 51.9	52.0	4.1 4.1	4.1	4.5	3.9 4.0	4.0	3.9	5 4	4.5	4.2
				Bottom	7	18.0 18.0	18.0	7.6 7.6	7.6	30.6 30.7	30.7	46.7 46.3	46.5	3.7	3.7	3.7	4.1 4.1	4.1	1	5	5.0	
				Surface	1	18.0 17.6	17.8	7.6 7.6	7.6	30.7 30.6	30.7	79.1 72.4	75.8	6.2 5.8	6.0		4.3	4.3		4 4	4.0	
31-Dec-14	Fine	Moderate	08:32	Middle	4	17.5 17.9	17.7	7.6 7.6	7.6	32.5 32.7	32.6	64.6 65.8	65.2	5.1 5.1	5.1	5.6	4.6 4.6	4.6	4.7	6	6.0	4.5
				Bottom	7	17.6 17.5	17.6	7.6 7.6	7.6	32.4 32.4	32.4	54.6 54.1	54.4	4.3 4.3	4.3	4.3	5.0 5.4	5.2		4 3	3.5	
				Surface	1	17.9 17.9	17.9	8.1 8.1	8.1	31.8 31.8	31.8	84.3 84.4	84.4	6.6 6.6	6.6	6.6	4.6 4.2	4.4		4 4	4.0	
2-Jan-15	Sunny	Moderate	10:41	Middle	4	17.9 17.9	17.9	8.1 8.1	8.1	31.8 31.8	31.8	83.8 83.8	83.8	6.6 6.6	6.6	6.6	3.7 3.7	3.7	4.5	5 5	5.0	4.8
				Bottom	7	17.8 17.8	17.8	8.1 8.1	8.1	31.9 31.9	31.9	82.2 81.5	81.9	6.5 6.4	6.5	6.5	5.4 5.2	5.3		5	5.5	

Water Quality Monitoring Results at 14 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	21.2 20.4	20.8	8.3 8.4	8.4	28.0 27.8	27.9	100.0 96.0	98.0	7.5 7.4	7.5	7.5	3.0 2.8	2.9		3 3	3.0	
5-Jan-15	Sunny	Moderate	11:28	Middle	4	18.7 18.7	18.7	8.6 8.6	8.6	28.0 28.0	28.0	93.8 93.4	93.6	7.4 7.4	7.4	7.5	3.2 3.1	3.2	3.4	5 5	5.0	4.2
				Bottom	7	18.4 18.4	18.4	8.7 8.7	8.7	28.3 28.3	28.3	94.0 94.0	94.0	7.5 7.5	7.5	7.5	3.9 4.0	4.0		4 5	4.5	
				Surface	1	18.4 18.4	18.4	8.7 8.7	8.7	24.4 24.4	24.4	86.5 86.4	86.5	7.0 7.0	7.0	7.0	2.6 2.5	2.6		3 3	3.0	
7-Jan-15	Sunny	Moderate	13:29	Middle	4	18.4 18.4	18.4	8.7 8.7	8.7	28.3 28.3	28.3	87.1 87.0	87.1	6.9 6.9	6.9	7.0	2.8 2.8	2.8	3.1	3	3.0	2.8
				Bottom	7	18.4 18.4	18.4	8.8 8.8	8.8	28.3 28.3	28.3	87.4 87.5	87.5	6.9 6.9	6.9	6.9	3.8 4.0	3.9		<2.5 <2.5	<2.5	
				Surface	1	17.2 17.4	17.3	8.3 8.3	8.3	25.2 25.7	25.5	91.8 89.5	90.7	7.6 7.4	7.5	7.2	3.0 2.9	3.0		3	3.0	
9-Jan-15	Sunny	Moderate	15:15	Middle	4	17.8 17.9	17.9	8.4 8.4	8.4	28.1 28.1	28.1	86.2 85.9	86.1	6.9 6.9	6.9	7.2	3.2 3.3	3.3	3.0	4 4	4.0	4.0
				Bottom	7	18.2 18.1	18.2	8.5 8.5	8.5	28.4 28.5	28.5	84.3 84.5	84.4	6.7 6.7	6.7	6.7	2.7 2.7	2.7		5 5	5.0	
				Surface	1	21.5 21.6	21.6	8.1 8.2	8.2	30.4 30.3	30.4	106.1 106.4	106.3	7.9 7.9	7.9	7.9	3.3 3.2	3.3		4 5	4.5	
12-Jan-15	Sunny	Moderate	15:54	Middle	4	21.1 21.4	21.3	8.1 8.2	8.2	30.6 30.4	30.5	105.7 106.1	105.9	7.9 7.9	7.9	7.9	4.6 4.6	4.6	5.0	4 3	3.5	4.0
				Bottom	7	20.8 20.8	20.8	8.3 8.2	8.3	30.8 30.8	30.8	105.2 105.1	105.2	7.9 7.9	7.9	7.9	7.2 7.1	7.2		4	4.0	

Water Quality Monitoring Results at 14 - Mid-Flood Tide

Date Con	ondition						ature (°C)		Н		ity ppt		ration (%)		lved Oxygen	· · · · · · · ·		Turbidity(NTl	-,			(mg/L)
		Condition**	Time	Depti	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.4	19.5	7.7	7.7	30.7	30.7	94.4	93.2	7.2	7.1		2.0	2.1		6	6.0	
						19.6 20.1		7.7 7.8	-	30.6 30.6		91.9 88.7		7.0 6.7		7.0	2.1			6 <2.5		
17-Dec-14 Clo	Cloudy	Moderate	13:11	Middle	4	20.1	20.1	7.8 7.8	7.8	30.6	30.7	89.1	88.9	6.8	6.8		2.9	2.9	3.5	<2.5 <2.5	<2.5	4.0
				Detter	7	20.1	00.4	8.0	8.0	30.7	30.7	88.3	88.3	6.7	0.7	6.7	5.3	5.4		4	3.5	•
				Bottom	7	20.1	20.1	8.0	0.0	30.7	30.7	88.3	00.3	6.7	6.7	0.7	5.4	5.4		3	3.5	
				Surface	1	19.5	19.5	7.8	7.8	30.0	30.0	88.7	88.8	6.8	6.8		2.9	3.0		3	3.0	
						19.5 19.5		7.8 7.8	-	30.0 30.0		88.8 88.8		6.8 6.8		6.9	3.0			3 <2.5		
19-Dec-14 Clo	Cloudy	Moderate	14:31	Middle	4	19.5	19.5	7.8	7.8	30.0	30.0	89.1	89.0	6.9	6.9		3.5	3.5	3.7	<2.5	<2.5	2.7
				D-#	7	19.4	40.4	7.9	7.0	30.0	20.4	90.1	00.0	6.9	0.0		4.5	4.5		<2.5	-0.5	
				Bottom	7	19.4	19.4	7.9	7.9	30.1	30.1	89.0	89.6	6.9	6.9	6.9	4.4	4.5		<2.5	<2.5	
				Surface	1	18.8	18.8	7.9	8.0	27.2	26.9	97.2	94.9	7.7	7.6		3.2	3.2		4	4.0	
						18.8 18.3		8.1 8.0		26.6 27.7		92.5 96.1		7.4 7.7		7.6	3.1 4.5			4 <2.5		-
22-Dec-14 Clo	Cloudy	Moderate	16:59	Middle	4	18.9	18.6	8.2	8.1	27.7	27.6	90.1	94.2	7.7	7.5		4.5	4.5	4.2	<2.5 <2.5	<2.5	4.2
				D-#	-	18.7	40.0	8.2	0.0	27.5	07.5	92.9	00.5	7.4	7.4	7.4	4.8	4.0		6		
				Bottom	7	18.9	18.8	8.3	8.3	27.5	27.5	92.0	92.5	7.3	7.4	7.4	4.8	4.8		6	6.0	
				Surface	1	18.1	18.3	8.1	8.1	30.7	29.6	100.8	99.6	7.9	7.9		2.5	2.5		<2.5	<2.5	
						18.4 18.0		8.1 8.3		28.4 30.8		98.3 100.1		7.8 7.9		7.9	2.4 5.1			<2.5 3		4
24-Dec-14 Clo	Cloudy	Moderate	09:34	Middle	4	18.0	18.0	6.3 8.1	8.2	30.6	30.7	97.9	99.0	7.9	7.8		5.1	5.1	4.4	3	3.0	2.7
				Detter	7	18.1	40.4	8.4	8.4	30.8	30.7	98.8	98.2	7.8	7.0	7.0	5.5	5.0		<2.5	<2.5	•
				Bottom	7	18.1	18.1	8.3	8.4	30.6	30.7	97.6	98.2	7.7	7.8	7.8	5.6	5.6		<2.5	<2.5	
				Surface	1	19.0	19.0	7.5	7.5	33.2	33.2	79.8	79.7	6.1	6.1		1.3	1.4		4	4.0	
						19.0 19.0		7.5 7.5	-	33.2 33.2		79.5 78.6		6.1 6.0		6.1	1.5 1.7			4		
27-Dec-14 Fi	Fine	Moderate	11:04	Middle	4	18.9	19.0	7.5	7.5	33.2	33.2	78.0	78.3	6.0	6.0		1.6	1.7	1.8	3	3.5	3.8
				Bottom	7	18.9	18.9	7.5	7.5	33.2	33.2	78.2	78.1	6.0	6.0	6.0	2.2	2.3		4	4.0	
				DULLUITI	,	18.9	10.9	7.5	7.5	33.2	33.2	78.0	70.1	6.0	0.0	0.0	2.3	2.3		4	4.0	<u> </u>
				Surface	1	19.4	19.4	7.9	7.9	31.2	31.2	63.4	63.4	4.9	4.9		3.1	3.1		3	3.0	
						19.4 19.4		7.9 7.9		31.1 31.2		63.4 60.4		4.9 4.6		4.8	3.0			3 4		-
29-Dec-14 Fi	Fine	Moderate	11:59	Middle	4	19.4	19.4	7.9	7.9	31.3	31.3	60.4	60.4	4.6	4.6		3.1	3.1	3.3	4	4.0	3.3
				Bottom	7	19.3	19.3	7.9	7.9	31.9	32.0	54.8	54.8	4.2	4.2	4.2	3.4	3.6		3	3.0	
				DOLLOITI	,	19.3	19.3	7.9	7.9	32.0	32.0	54.8	54.0	4.2	4.2	4.2	3.7	3.0		3	3.0	
				Surface	1	17.8	17.7	7.7	7.7	30.2	30.3	82.3	81.7	6.5	6.5		4.0	4.0		6	6.0	
						17.6 17.5		7.7 7.7		30.4 30.6		81.0 73.8		6.4 5.9		6.2	3.9 4.3			6 4		-
31-Dec-14 Fi	Fine	Moderate	14:35	Middle	4	17.8	17.7	7.7	7.7	30.6	30.6	74.4	74.1	5.9	5.9		4.3	4.3	4.2	4	4.0	4.7
				Bottom	7	17.6	17.6	7.7	7.7	30.8	30.9	62.9	62.8	5.0	5.0	5.0	4.3	4.4		4	4.0	
				Dottom	,	17.5	17.0	7.7	7.7	30.9	50.5	62.7	02.0	5.0	5.0	5.0	4.4	7.7		4	4.0	
				Surface	1	18.2 18.2	18.2	8.2 8.2	8.2	32.2 32.2	32.2	102.8 102.8	102.8	8.0 8.0	8.0		3.5	3.6		3	3.0	
					_	17.8		8.2	<u> </u>	32.2		102.8		7.8		7.9	3.6 4.3	 		7		1
2-Jan-15 Su	Sunny	Moderate	15:50	Middle	4	17.8	17.8	8.2	8.2	32.4	32.4	100.1	100.1	7.8	7.8		4.3	4.3	4.7	7	7.0	4.7
				Bottom	7	17.9	17.9	8.1	8.1	32.9	32.9	88.1	87.9	6.9	6.9	6.9	6.2	6.2		4	4.0	
				Dottom	'	17.9	17.5	8.1	0.1	32.9	02.0	87.6	07.5	6.8	0.5	0.5	6.1	0.2		4	7.0	<u> </u>

Water Quality Monitoring Results at 14 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСР	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	21.0 20.7	20.9	8.4 8.4	8.4	28.4 28.2	28.3	98.5 97.5	98.0	7.4 7.4	7.4	7.4	2.6 2.7	2.7		3 3	3.0	
5-Jan-15	Sunny	Moderate	17:12	Middle	4	18.4 18.7	18.6	8.6 8.6	8.6	29.2 28.0	28.6	93.8 93.7	93.8	7.4 7.4	7.4	7.4	3.0 2.9	3.0	3.2	5 5	5.0	4.3
				Bottom	7	18.3 18.3	18.3	8.7 8.7	8.7	28.3 28.3	28.3	94.2 94.0	94.1	7.5 7.5	7.5	7.5	4.0 4.0	4.0		5 5	5.0	
				Surface	1	17.6 17.6	17.6	8.6 8.6	8.6	27.8 28.4	28.1	91.3 90.3	90.8	7.4 7.3	7.4	7.3	2.5 2.6	2.6		3 3	3.0	
7-Jan-15	Sunny	Moderate	09:24	Middle	4.5	17.7 17.7	17.7	8.7 8.7	8.7	28.6 28.6	28.6	88.5 88.6	88.6	7.1 7.1	7.1	7.5	2.7 2.7	2.7	3.0	6 6	6.0	4.0
				Bottom	8	17.8 17.8	17.8	8.8 8.8	8.8	28.6 28.6	28.6	88.2 88.1	88.2	7.1 7.1	7.1	7.1	3.6 3.5	3.6		3 3	3.0	
				Surface	1	17.1 17.5	17.3	8.3 8.3	8.3	21.4 26.1	23.8	91.1 89.3	90.2	7.7 7.3	7.5	7.3	2.7 2.7	2.7		5 5	5.0	
9-Jan-15	Sunny	Moderate	09:30	Middle	4	17.9 17.8	17.9	8.4 8.4	8.4	28.2 27.9	28.1	85.7 86.4	86.1	6.9 7.0	7.0	7.5	3.0 2.9	3.0	3.0	5 5	5.0	4.3
				Bottom	7	18.1 18.1	18.1	8.5 8.5	8.5	28.4 28.4	28.4	84.6 84.6	84.6	6.7 6.7	6.7	6.7	3.2 3.3	3.3		3 3	3.0	
				Surface	1	21.2 21.3	21.3	7.8 7.8	7.8	29.4 29.3	29.4	107.9 107.9	107.9	8.1 8.1	8.1	8.1	1.6 1.4	1.5		5 6	5.5	
12-Jan-15	Sunny	Moderate	11:42	Middle	4.5	21.1 21.2	21.2	7.9 7.7	7.8	30.7 30.6	30.7	109.4 109.6	109.5	8.1 8.1	8.1	0.1	5.1 5.1	5.1	4.1	4 4	4.0	4.2
				Bottom	8	19.1 18.9	19.0	7.9 7.9	7.9	32.5 32.5	32.5	105.6 105.5	105.6	8.1 8.1	8.1	8.1	5.5 5.8	5.7		3	3.0	

Water Quality Monitoring Results at A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.3 19.4	19.4	8.0 8.0	8.0	31.1 31.0	31.1	112.9 112.7	112.8	8.7 8.6	8.7		2.3 2.3	2.3		6 6	6.0	
17-Dec-14	Cloudy	Moderate	08:46	Middle	5.5	19.6 19.6	19.6	8.1 8.1	8.1	30.8 30.8	30.8	112.7 112.2 112.3	112.3	8.6 8.6	8.6	8.7	4.1 4.2	4.2	3.9	3	3.0	4.3
				Bottom	10	19.8 19.8	19.8	8.3 8.3	8.3	30.7 30.7	30.7	109.5 109.3	109.4	8.3 8.3	8.3	8.3	4.9 5.2	5.1		4	4.0	
				Surface	1	19.2 19.2	19.2	7.9 7.9	7.9	30.5 30.5	30.5	91.0 90.9	91.0	7.0 7.0	7.0		3.2	3.2		<2.5 <2.5	<2.5	
19-Dec-14	Cloudy	Moderate	10:04	Middle	5.5	19.2 19.3 19.3	19.3	7.9 7.9 7.9	7.9	30.4 30.3	30.4	90.9 90.9 90.9	90.9	7.0 7.0 7.0	7.0	7.0	3.2 3.9 4.1	4.0	4.0	6	6.0	4.7
				Bottom	10	19.3 19.4	19.4	7.9 7.9 7.9	7.9	30.3 30.2	30.3	91.0 91.0	91.0	7.0 7.0 7.0	7.0	7.0	4.7 5.0	4.9		5	5.5	
				Surface	1	18.2	18.5	8.1	8.1	27.1	27.4	87.3	87.9	7.0	7.0		2.8	2.8		3	3.5	
22-Dec-14	Cloudy	Moderate	13:24	Middle	5.5	18.8 18.4 18.8	18.6	8.0 8.2 8.2	8.2	27.6 27.8 27.6	27.7	88.4 89.0 88.1	88.6	7.0 7.1 7.0	7.1	7.1	2.8 3.3 3.5	3.4	3.6	4 4 4	4.0	4.5
				Bottom	10	18.6 18.8	18.7	8.3 8.3	8.3	27.8 27.7	27.8	88.3 87.9	88.1	7.0 7.0 6.9	7.0	7.0	4.7 4.7	4.7		6	6.0	
				Surface	1	18.5 18.4	18.5	8.1 8.1	8.1	30.2 29.3	29.8	109.9 96.5	103.2	8.6 7.6	8.1	0.0	2.0	2.3		7	7.0	
24-Dec-14	Cloudy	Moderate	14:12	Middle	5.5	18.3 18.1	18.2	8.4 8.4	8.4	29.8 30.6	30.2	104.2 95.7	100.0	8.2 7.5	7.9	8.0	2.6 2.3	2.5	3.4	<2.5 <2.5	<2.5	4.0
				Bottom	10	17.9 18.4	18.2	8.6 8.6	8.6	30.8 30.6	30.7	96.8 95.5	96.2	7.6 7.5	7.6	7.6	5.4 5.2	5.3		<2.5 <2.5	<2.5	
				Surface	1	19.1 19.1	19.1	8.0 7.9	8.0	33.5 33.5	33.5	79.0 78.6	78.8	6.0 6.0	6.0	6.0	0.6 0.6	0.6		3 3	3.0	
27-Dec-14	Fine	Moderate	16:17	Middle	5.5	19.1 19.1	19.1	7.9 7.9	7.9	33.5 33.6	33.6	76.1 77.1	76.6	5.8 5.9	5.9	6.0	1.4 1.4	1.4	1.6	4	4.0	3.7
				Bottom	10	19.1 19.1	19.1	7.9 7.9	7.9	33.8 33.8	33.8	77.1 78.0	77.6	5.8 5.9	5.9	5.9	2.9 2.8	2.9		4	4.0	
				Surface	1	18.1 18.1	18.1	7.5 7.5	7.5	30.3 30.3	30.3	59.6 59.6	59.6	4.7 4.7	4.7	4.7	3.7 3.8	3.8		5 5	5.0	
29-Dec-14	Fine	Moderate	18:34	Middle	5.5	18.1 18.1	18.1	7.5 7.5	7.5	30.4 30.6	30.5	58.2 58.7	58.5	4.6 4.6	4.6	4.7	3.9 4.0	4.0	3.9	6 6	6.0	4.8
				Bottom	10	18.1 18.1	18.1	7.5 7.5	7.5	33.6 35.3	34.5	53.8 53.9	53.9	4.2 4.1	4.2	4.2	4.0 4.0	4.0		4 3	3.5	
				Surface	1	17.9 17.5	17.7	7.6 7.6	7.6	28.6 29.4	29.0	75.7 73.0	74.4	6.1 5.9	6.0	5.6	4.1	4.2		4	4.0	
31-Dec-14	Fine	Moderate	08:45	Middle	5.5	17.4 17.8	17.6	7.6 7.6	7.6	32.0 31.6	31.8	62.8 65.5	64.2	5.0 5.2	5.1		4.0 3.9	4.0	4.3	4	4.0	4.0
				Bottom	10	17.6 17.4	17.5	7.6 7.6	7.6	32.4 32.5	32.5	54.1 52.5	53.3	4.3 4.1	4.2	4.2	4.6 4.7	4.7		4	4.0	
				Surface	1	17.8 17.8	17.8	8.2 8.2	8.2	32.2 32.1	32.2	100.1	100.4	7.9 7.9	7.9	7.9	3.4	3.5		3	3.0	
2-Jan-15	Sunny	Moderate	10:20	Middle	5.5	17.5 17.5	17.5	8.2 8.2	8.2	32.3 32.3 32.8	32.3	99.2	99.9	7.8 7.9	7.9		3.0 3.2	3.1	4.6	4	4.0	4.0
				Bottom	10	17.5 17.5	17.5	8.1 8.1	8.1	32.8	32.8	89.4 89.5	89.5	7.0 7.0	7.0	7.0	6.7 7.5	7.1		5 5	5.0	

Water Quality Monitoring Results at A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.2 18.2	18.2	8.5 8.5	8.5	28.7 28.4	28.6	92.5 92.9	92.7	7.4 7.4	7.4	7.3	2.7 2.8	2.8		4 3	3.5	
5-Jan-15	Sunny	Moderate	11:45	Middle	5.5	18.3 18.3	18.3	8.6 8.6	8.6	27.8 27.9	27.9	89.2 88.9	89.1	7.1 7.1	7.1	7.3	2.8 2.8	2.8	3.4	3 4	3.5	3.3
				Bottom	10	18.3 18.3	18.3	8.7 8.7	8.7	28.1 28.1	28.1	87.1 87.3	87.2	6.9 7.0	7.0	7.0	4.4 4.8	4.6		3 3	3.0	
				Surface	1	18.5 18.5	18.5	8.5 8.5	8.5	25.1 26.1	25.6	85.5 85.8	85.7	6.9 6.9	6.9	6.9	2.5 2.6	2.6		4 4	4.0	
7-Jan-15	Sunny	Moderate	13:43	Middle	5.5	18.5 18.5	18.5	8.5 8.5	8.5	28.1 28.0	28.1	84.7 85.4	85.1	6.7 6.8	6.8	0.9	2.7 2.7	2.7	3.1	<2.5 <2.5	<2.5	4.8
				Bottom	10	18.5 18.5	18.5	8.6 8.6	8.6	28.1 28.2	28.2	83.8 83.7	83.8	6.6 6.6	6.6	6.6	3.8 4.0	3.9		8 8	8.0	
				Surface	1	16.2 16.5	16.4	8.4 8.4	8.4	25.6 26.1	25.9	89.4 87.3	88.4	7.5 7.3	7.4	7.0	3.9 4.0	4.0		<2.5 <2.5	<2.5	
9-Jan-15	Sunny	Moderate	14:53	Middle	5.5	17.6 17.5	17.6	8.5 8.5	8.5	28.2 28.2	28.2	81.2 81.1	81.2	6.5 6.6	6.6	7.0	4.1 4.1	4.1	4.0	3 3	3.0	2.8
				Bottom	10	18.0 18.0	18.0	8.6 8.6	8.6	28.3 28.3	28.3	80.1 80.2	80.2	6.4 6.4	6.4	6.4	3.6 3.9	3.8		3 3	3.0	
				Surface	1	22.2 22.3	22.3	8.0 8.0	8.0	30.1 30.1	30.1	105.7 105.9	105.8	7.7 7.7	7.7	7.8	3.0 3.2	3.1		3	3.0	
12-Jan-15	Sunny	Moderate	16:16	Middle	5.5	22.1 22.1	22.1	8.0 7.9	8.0	30.4 30.4	30.4	107.3 107.4	107.4	7.9 7.9	7.9	7.0	4.9 4.8	4.9	4.4	4	4.0	4.0
				Bottom	10	21.7 21.6	21.7	7.9 7.9	7.9	30.4 30.5	30.5	107.1 106.8	107.0	7.9 7.9	7.9	7.9	5.2 5.2	5.2		5 5	5.0	

Water Quality Monitoring Results at A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.8 19.8	19.8	7.9 7.9	7.9	30.7 30.7	30.7	109.0 109.0	109.0	8.3 8.3	8.3		2.0 2.1	2.1		<2.5 <2.5	<2.5	
17-Dec-14	Cloudy	Moderate	13:28	Middle	5.5	19.7 19.8	19.8	8.0 7.9	8.0	30.8 30.7	30.8	106.6 106.6	106.6	8.1 8.1	8.1	8.2	3.8 3.7	3.8	4.3	3	3.0	3.8
				Bottom	10	19.7	19.8	8.0	8.0	30.7	30.7	106.5	105.9	8.1	8.1	8.1	6.7	7.0		6	6.0	
				Surface	1	19.8 18.0	18.1	8.0 7.8	7.8	30.7 30.0	30.4	105.3 96.1	95.7	7.6	7.6		7.3	3.4		3	3.0	
19-Dec-14	Cloudy	Moderate	14:54	Middle	5.5	18.2 19.3	19.3	7.8 7.9	7.9	30.8 30.4	30.4	95.2 90.7	90.7	7.5 7.0	7.0	7.3	3.5 4.3	4.3	4.5	3 5	5.0	4.7
13-500-14	Cloudy	Woderate	14.54	Bottom	10	19.3 19.3	19.3	7.9 7.9	7.9	30.4 30.4	30.4	90.6 91.1	91.1	7.0 7.0	7.0	7.0	4.3 5.7	5.8	4.5	5 6	6.0	4.7
				Bottom	10	19.3 18.3		7.9 7.8	7.9	30.3 27.5		91.1 104.2		7.0 8.3		7.0	5.9 2.3	3.0		6	0.0	
				Surface	1	18.7 17.1	18.5	7.9 8.1	7.9	26.8 27.1	27.2	89.6 95.8	96.9	7.1 7.9	7.7	7.6	2.1	2.2		3	3.0	
22-Dec-14	Cloudy	Moderate	17:59	Middle	5.5	18.7	17.9	8.1	8.1	27.7	27.4	89.0	92.4	7.0	7.5		4.0	4.0	4.5	5	4.5	3.8
				Bottom	10	18.3 18.8	18.6	8.3 8.2	8.3	27.9 27.7	27.8	89.9 88.1	89.0	7.2 7.0	7.1	7.1	7.2 7.3	7.3		4	4.0	
				Surface	1	18.3 18.4	18.4	8.3 8.1	8.2	29.9 30.1	30.0	95.3 95.5	95.4	7.5 7.5	7.5	7.6	3.9 3.7	3.8		3	3.0	
24-Dec-14	Cloudy	Moderate	09:22	Middle	5.5	18.0 18.4	18.2	8.3 8.3	8.3	30.7 30.5	30.6	96.1 95.4	95.8	7.6 7.5	7.6		5.2 5.1	5.2	4.9	<2.5 <2.5	<2.5	2.7
				Bottom	10	17.8 18.2	18.0	8.5 8.5	8.5	30.7 30.6	30.7	94.9 94.9	94.9	7.5 7.5	7.5	7.5	5.4 5.9	5.7		<2.5 <2.5	<2.5	
				Surface	1	19.1 19.1	19.1	8.1 8.1	8.1	33.5 33.5	33.5	77.6 77.2	77.4	5.9 5.9	5.9	5.8	0.4 0.4	0.4		3	3.0	
27-Dec-14	Fine	Moderate	10:45	Middle	5.5	19.1 19.1	19.1	8.0 8.0	8.0	33.5 33.6	33.6	74.7 75.6	75.2	5.7 5.7	5.7	5.0	1.1 1.1	1.1	1.3	3	3.0	3.7
				Bottom	10	19.1 19.1	19.1	8.0 8.0	8.0	33.8 33.8	33.8	75.6 76.6	76.1	5.7 5.8	5.8	5.8	2.3 2.3	2.3		5 5	5.0	
				Surface	1	19.5 19.5	19.5	7.9 7.9	7.9	29.5 29.6	29.6	62.2 61.5	61.9	4.8 4.7	4.8		2.9 3.0	3.0		3	3.0	
29-Dec-14	Fine	Moderate	12:11	Middle	5.5	19.5 19.5	19.5	7.9 7.9 7.9	7.9	30.2 30.2	30.2	58.3 58.2	58.3	4.7 4.5 4.5	4.5	4.7	2.6 2.7	2.7	3.0	3	3.0	3.0
				Bottom	10	19.5	19.5	7.9	7.9	30.6	30.6	53.8	53.8	4.1	4.1	4.1	3.2 3.2	3.2		3	3.0	
				Surface	1	19.5	18.0	7.9 7.7	7.7	30.6 29.0	29.2	53.8 77.6	76.2	6.2	6.1		4.1	4.2		4	4.0	
31-Dec-14	Fine	Moderate	14:20	Middle	6	17.9 17.8	18.0	7.7	7.7	29.3 31.2	31.2	74.8 61.6	63.0	6.0 4.9	5.0	5.6	4.2	4.5	4.3	6	6.0	4.3
				Bottom	11	18.1 17.9	17.9	7.7	7.7	31.1 31.3	31.3	64.3 53.4	52.7	5.0 4.2	4.2	4.2	4.4	4.3		3	3.0	
				Surface	1	17.8 18.4	18.4	7.7 8.1	8.1	31.3 32.0	32.0	51.9 83.9	83.4	4.1 6.5	6.5	·- <u>-</u>	3.0	3.2	<u> </u>	5	4.5	
2-Jan-15	Sunny	Moderate	15:30	Middle	5.5	18.4 18.1	18.1	8.1 8.0	8.0	32.0 32.0	32.1	82.8 81.9	81.6	6.4 6.4	6.4	6.5	3.4 3.6	3.8	3.7	5	4.5	4.3
2-Jan-19	Julily	iviouciale	15.50			18.0 17.9		8.0 8.1		32.1 32.0		81.3 82.0		6.4 6.4		6.4	3.9 4.1		3.7	4		4.5
				Bottom	10	17.9	17.9	8.1	8.1	32.1	32.1	81.8	81.9	6.4	6.4	6.4	4.2	4.2		4	4.0	

Water Quality Monitoring Results at A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ıration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.2 18.2	18.2	8.5 8.5	8.5	27.8 27.6	27.7	95.8 94.6	95.2	7.7 7.6	7.7	7.4	2.5 2.7	2.6		4 4	4.0	
5-Jan-15	Sunny	Moderate	16:51	Middle	5.5	18.3 18.3	18.3	8.6 8.6	8.6	27.9 27.8	27.9	89.0 89.1	89.1	7.1 7.1	7.1	7.4	2.9 2.9	2.9	3.0	4 4	4.0	4.7
				Bottom	10	18.3 18.3	18.3	8.7 8.7	8.7	28.1 28.1	28.1	87.0 86.9	87.0	6.9 6.9	6.9	6.9	3.3 3.4	3.4		6 6	6.0	
				Surface	1	17.8 17.8	17.8	8.6 8.6	8.6	28.2 28.3	28.3	88.7 88.4	88.6	7.1 7.1	7.1	7.0	2.6 2.6	2.6		6 6	6.0	
7-Jan-15	Sunny	Moderate	09:12	Middle	5.5	17.9 17.9	17.9	8.6 8.6	8.6	28.4 28.4	28.4	84.9 85.4	85.2	6.8 6.8	6.8	7.0	3.0 3.1	3.1	3.0	5 5	5.0	4.7
				Bottom	10	17.9 17.9	17.9	8.7 8.7	8.7	28.5 28.5	28.5	84.4 84.4	84.4	6.8 6.8	6.8	6.8	3.4 3.4	3.4		3	3.0	
				Surface	1	16.8 16.6	16.7	8.4 8.4	8.4	27.1 26.5	26.8	85.1 86.5	85.8	7.0 7.2	7.1	6.9	3.2 3.3	3.3		3 3	3.0	
9-Jan-15	Sunny	Moderate	09:51	Middle	5.5	17.4 17.6	17.5	8.5 8.5	8.5	28.1 28.3	28.2	81.6 80.9	81.3	6.6 6.5	6.6	0.5	3.6 3.7	3.7	3.7	3	3.0	3.5
				Bottom	10	17.9 17.9	17.9	8.6 8.6	8.6	28.3 28.3	28.3	80.3 80.3	80.3	6.4 6.4	6.4	6.4	3.9 4.0	4.0		4 5	4.5	
				Surface	1	21.0 21.0	21.0	8.0 7.9	8.0	30.6 30.6	30.6	111.1 110.7	110.9	8.3 8.3	8.3	8.2	1.6 1.6	1.6		4 4	4.0	
12-Jan-15	Sunny	Moderate	11:29	Middle	5.5	21.3 21.2	21.3	8.0 7.9	8.0	30.7 30.8	30.8	109.7 109.6	109.7	8.1 8.1	8.1	0.2	2.6 2.9	2.8	2.7	3	3.0	3.7
				Bottom	10	21.2 21.1	21.2	7.8 7.9	7.9	30.8 30.8	30.8	108.9 110.0	109.5	8.1 8.2	8.2	8.2	3.8 3.7	3.8		4	4.0	

Water Quality Monitoring Results at WSD17 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.3 19.1	18.7	7.9 8.0	8.0	30.0 27.3	28.7	105.2 105.3	105.3	8.3 8.3	8.3	8.3	3.6 3.5	3.6		4 4	4.0	
17-Dec-14	Cloudy	Moderate	07:25	Middle	i	1 1	-	-	-	1 1	i	-	i	-	-	0.5	-	-	4.5	-	-	4.5
				Bottom	3.1	18.8 19.3	19.1	7.9 8.0	8.0	27.3 27.5	27.4	100.5 101.7	101.1	8.0 8.0	8.0	8.0	5.3 5.4	5.4		5 5	5.0	
				Surface	1	18.3 18.8	18.6	7.7 7.7	7.7	28.4 28.3	28.4	111.1 108.8	110.0	8.8 8.6	8.7	8.7	3.6 3.8	3.7		5 4	4.5	
19-Dec-14	Cloudy	Moderate	09:27	Middle	-	-	-	-	-	-	-	-	-	-	-	0.7	-	-	4.1	-	-	4.8
				Bottom	3.6	18.5 18.9	18.7	7.7 7.8	7.8	28.4 28.3	28.4	110.0 108.5	109.3	8.7 8.5	8.6	8.6	4.3 4.4	4.4		5 5	5.0	
				Surface	1	18.8 20.6	19.7	7.7 7.7	7.7	29.6 29.7	29.7	87.1 83.0	85.1	6.8 6.3	6.6	6.6	4.2 4.1	4.2		3 3	3.0	
22-Dec-14	Cloudy	Moderate	12:11	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	4.7	-	-	3.0
				Bottom	3.5	19.6 20.2	19.9	7.8 8.1	8.0	38.2 37.0	37.6	77.6 79.5	78.6	5.7 5.8	5.8	5.8	5.2 5.2	5.2		3 3	3.0	
				Surface	1	18.3 18.3	18.3	8.3 8.3	8.3	31.7 31.7	31.7	102.9 102.7	102.8	8.0 8.0	8.0	8.0	4.4 4.8	4.6		5 5	5.0	
24-Dec-14	Cloudy	Moderate	13:11	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.7	-	-	4.8
				Bottom	3.3	18.3 18.3	18.3	8.3 8.2	8.3	31.7 31.7	31.7	102.9 102.7	102.8	8.0 8.0	8.0	8.0	4.7 4.9	4.8		5 4	4.5	
				Surface	1	18.1 18.1	18.1	8.1 8.1	8.1	33.7 33.8	33.8	75.7 75.6	75.7	5.9 5.8	5.9	5.9	2.2 2.2	2.2		5 5	5.0	
27-Dec-14	Fine	Moderate	16:48	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.8	-	-	4.0
				Bottom	3	18.1 18.1	18.1	8.1 8.1	8.1	33.7 33.8	33.8	71.2 70.7	71.0	5.5 5.5	5.5	5.5	3.3 3.4	3.4		3 3	3.0	
				Surface	1	17.5 17.8	17.7	7.9 7.9	7.9	30.2 30.1	30.2	61.7 62.5	62.1	4.9 5.0	5.0	5.0	4.2 4.2	4.2	-	<2.5 <2.5	<2.5	
29-Dec-14	Fine	Moderate	19:06	Middle	-		-	-	-	-	-	-	-		-		-	-	4.0	-	-	<2.5
				Bottom	3	17.7 17.9	17.8	7.9 7.9	7.9	30.1 30.0	30.1	59.4 59.4	59.4	4.7 4.7	4.7	4.7	3.5 3.9	3.7		<2.5 <2.5	<2.5	
				Surface	1	17.5 17.5	17.5	7.6 7.6	7.6	30.0 30.3	30.2	70.1 67.9	69.0	5.6 5.4	5.5	5.5	4.1 4.1	4.1		3	3.5	
31-Dec-14	Fine	Moderate	09:20	Middle	-	- - 17.5	-	- - 7.7	-	33.3	-	51.7	-	4.1	-		- - 5.1	-	4.7	- 4	-	3.8
				Bottom	3.5	17.3 17.3	17.4	7.7 7.7 8.1	7.7	33.3 31.9	33.3	51.7 51.1 79.2	51.4	4.0	4.1	4.1	5.5	5.3		4 4	4.0	
				Surface	1	17.9	17.9	8.1	8.1	31.9	31.9	77.0	78.1	6.0	6.1	6.1	3.0	3.1		4	4.0	
2-Jan-15	Sunny	Moderate	09:53	Middle	-	- - 17.9	-	- - 8.1	-	32.0	-	73.8	-	5.8	-		4.5	-	3.8	3	-	3.8
				Bottom	3.6	17.9	17.9	8.0	8.1	32.0	32.0	72.2	73.0	5.7	5.8	5.8	4.5	4.5		4	3.5	

Water Quality Monitoring Results at WSD17 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.0 18.1	18.1	8.6 8.6	8.6	27.0 27.6	27.3	103.8 102.3	103.1	8.4 8.2	8.3	8.3	3.1 3.1	3.1		3	3.0	
5-Jan-15	Sunny	Moderate	12:02	Middle	-	1 1	1	-	-	-	-	-	-	1 1	-	0.5	-	-	3.6	-	-	4.0
				Bottom	3.8	18.1 18.1	18.1	8.7 8.7	8.7	28.0 28.0	28.0	96.3 96.2	96.3	7.7 7.7	7.7	7.7	4.1 4.0	4.1		5 5	5.0	
				Surface	1	18.3 18.3	18.3	8.6 8.6	8.6	26.2 26.2	26.2	87.6 87.6	87.6	7.1 7.1	7.1	7.1	3.1 3.2	3.2		5 4	4.5	
7-Jan-15	Sunny	Moderate	14:14	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	7.1	-	-	3.2	-	-	4.3
				Bottom	4.4	18.3 18.3	18.3	8.7 8.7	8.7	28.2 28.2	28.2	89.4 89.2	89.3	7.1 7.1	7.1	7.1	3.2 3.1	3.2		4 4	4.0	
				Surface	1	16.3 16.5	16.4	8.5 8.5	8.5	23.9 26.0	25.0	101.8 101.1	101.5	8.6 8.4	8.5	8.5	4.0 4.3	4.2		4 3	3.5	
9-Jan-15	Sunny	Moderate	14:29	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	0.5	-	-	4.1	-	-	3.3
				Bottom	3.5	17.6 17.7	17.7	8.6 8.6	8.6	28.4 28.4	28.4	96.1 95.8	96.0	7.7 7.7	7.7	7.7	4.2 3.7	4.0		3	3.0	
				Surface	1	22.3 22.3	22.3	8.0 8.0	8.0	30.4 30.4	30.4	106.3 106.2	106.3	7.8 7.7	7.8	7.8	3.4 3.8	3.6		3	3.0	
12-Jan-15	Sunny	Moderate	16:43	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	7.0	-	-	5.1	-	-	4.5
				Bottom	4	21.9 22.2	22.1	8.0 8.0	8.0	30.7 30.5	30.6	106.8 107.3	107.1	7.8 7.8	7.8	7.8	6.8 6.1	6.5		6 6	6.0	

Water Quality Monitoring Results at WSD17 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time		(1111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.3 19.4	19.4	8.0 8.0	8.0	26.0 26.2	26.1	98.9 100.7	99.8	7.8 7.9	7.9	7.9	4.2 4.2	4.2		4 4	4.0	
17-Dec-14	Cloudy	Moderate	14:01	Middle	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	4.5	-	-	4.5
				Bottom	3.4	19.3 19.4	19.4	8.0 8.0	8.0	26.0 26.1	26.1	100.1 101.2	100.7	7.9 8.0	8.0	8.0	4.7 4.7	4.7		5 5	5.0	
				Surface	1	18.9 19.0	19.0	7.8 7.8	7.8	28.3 28.2	28.3	108.2 108.0	108.1	8.5 8.5	8.5	8.5	3.7 3.8	3.8		4 5	4.5	
19-Dec-14	Cloudy	Moderate	14:18	Middle	-	-	-	-	-	1 1	-	-	i	-	-	0.5	-	-	3.7	-	i	3.7
				Bottom	3.4	18.9 19.0	19.0	7.8 7.8	7.8	28.3 28.2	28.3	108.2 108.0	108.1	8.5 8.5	8.5	8.5	3.6 3.6	3.6		3 <2.5	2.8	
				Surface	1	20.9 20.7	20.8	7.8 7.7	7.8	30.6 29.9	30.3	81.6 79.3	80.5	6.1 6.0	6.1	6.1	4.3 4.5	4.4		3	3.0	
22-Dec-14	Cloudy	Moderate	18:26	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	4.9	-	-	3.5
				Bottom	3.6	20.3 20.4	20.4	8.0 7.8	7.9	31.2 31.8	31.5	71.8 70.9	71.4	5.4 5.3	5.4	5.4	5.5 5.3	5.4		4	4.0	
				Surface	1	18.2 18.3	18.3	8.4 8.3	8.4	31.2 31.4	31.3	103.0 102.8	102.9	8.1 8.0	8.1	8.1	4.4 4.5	4.5		5 5	5.0	
24-Dec-14	Cloudy	Moderate	07:37	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.1	-	-	4.0
				Bottom	3.5	18.2 18.3	18.3	8.4 8.3	8.4	31.4 31.5	31.5	103.1 102.7	102.9	8.1 8.0	8.1	8.1	5.7 5.5	5.6		3	3.0	
				Surface	1	17.8 18.0	17.9	8.0 8.1	8.1	32.0 31.8	31.9	76.5 76.3	76.4	6.0 6.0	6.0	6.0	2.1 2.1	2.1		3	3.0	
27-Dec-14	Fine	Moderate	10:22	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.3	-	-	4.5
				Bottom	3	18.0 18.1	18.1	8.1 8.1	8.1	33.3 33.6	33.5	73.3 72.1	72.7	5.7 5.6	5.7	5.7	2.5 2.5	2.5		6	6.0	
				Surface	1	17.6 17.0	17.3	7.9 7.9	7.9	29.6 30.3	30.0	74.7 73.1	73.9	6.0 5.9	6.0	6.0	2.5 2.5	2.5		5 5	5.0	
29-Dec-14	Fine	Moderate	12:07	Middle	-		-		-	-	-	-	-	-	-		-	-	3.0	-	-	4.3
				Bottom	4	17.0 17.3	17.2	7.8 7.9	7.9	29.8 30.3	30.1	59.2 63.6	61.4	4.8 5.1	5.0	5.0	3.3	3.4		3 4	3.5	
				Surface	1	18.0 18.0	18.0	7.7 7.7 -	7.7	31.3 31.7	31.5	78.0 77.0	77.5	6.1 6.0	6.1	6.1	4.2 4.0	4.1		4	4.0	
31-Dec-14	Fine	Moderate	13:42	Middle	-	18.0	-	7.7	-	32.1	-	55.4	-	4.3	-		4.2	-	4.2	4	-	4.3
				Bottom	3.5	17.9 18.0	18.0	7.7	7.7	32.2 32.1	32.2	54.7 96.9	55.1	4.3 7.6	4.3	4.3	4.2	4.2		5	4.5	
				Surface	1	18.0	18.0	8.2	8.2	32.1	32.1	97.6	97.3	7.6	7.6	7.6	3.8	3.8		7	7.0	
2-Jan-15	Sunny	Moderate	14:57	Middle	-	18.0	-	8.1	-	32.6	-	88.7	-	6.9	-		5.5	-	4.6	<2.5	-	4.8
				Bottom	3.3	18.0	18.0	8.1	8.1	32.6	32.6	88.2	88.5	6.9	6.9	6.9	5.2	5.4		<2.5	<2.5	

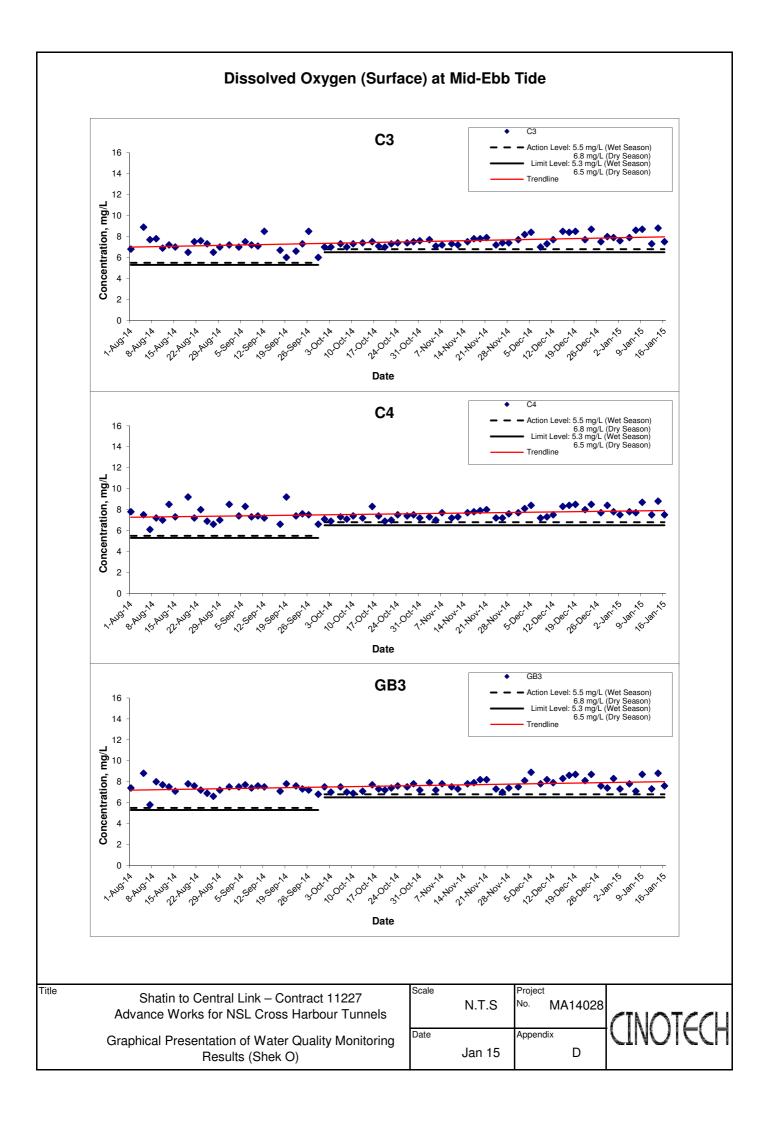
Water Quality Monitoring Results at WSD17 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.2 18.2	18.2	8.6 8.6	8.6	23.3 25.2	24.3	97.4 97.9	97.7	8.0 7.9	8.0	8.0	3.2 3.3	3.3		4 5	4.5	
5-Jan-15	Sunny	Moderate	16:35	Middle	i	1 1	-	-	-	-	-	-	-	1 1	-	0.0	-	1	3.7	-	-	4.3
				Bottom	3.6	18.1 18.1	18.1	8.7 8.7	8.7	27.9 27.5	27.7	96.5 96.6	96.6	7.7 7.7	7.7	7.7	4.2 4.0	4.1		4 4	4.0	
				Surface	1	17.7 17.7	17.7	8.6 8.6	8.6	28.2 28.4	28.3	89.7 89.1	89.4	7.2 7.2	7.2	7.2	3.4 3.3	3.4		5 5	5.0	
7-Jan-15	Sunny	Moderate	08:48	Middle	-	1 1	-	-	-	-	-	-	-		-	7.2	-	-	3.3	-	-	4.5
				Bottom	3.9	17.7 17.7	17.7	8.7 8.7	8.7	28.5 28.5	28.5	90.0 89.6	89.8	7.2 7.2	7.2	7.2	3.1 3.0	3.1		4 4	4.0	
				Surface	1	16.7 16.1	16.4	8.5 8.5	8.5	26.6 22.1	24.4	100.5 101.7	101.1	8.3 8.8	8.6	8.6	2.7 2.6	2.7		3 3	3.0	
9-Jan-15	Sunny	Moderate	10:13	Middle	ı	1 1	-	-	-	-	-	-	-	1 1	-	0.0	-	-	3.1	-	-	4.0
				Bottom	3.7	17.5 17.6	17.6	8.6 8.6	8.6	28.3 28.3	28.3	96.4 96.2	96.3	7.8 7.8	7.8	7.8	3.3 3.4	3.4		5 5	5.0	
				Surface	1	21.1 21.1	21.1	7.9 7.9	7.9	30.7 30.7	30.7	109.8 109.9	109.9	8.2 8.2	8.2	8.2	3.5 3.5	3.5		3 3	3.0	
12-Jan-15	Sunny	Moderate	11:02	Middle	-		-	-	-	-	-	-	-	-	-	J.2	-	-	4.0	-	-	4.0
				Bottom	3.7	21.1 21.2	21.2	7.8 7.7	7.8	30.8 30.8	30.8	109.4 109.6	109.5	8.1 8.1	8.1	8.1	4.5 4.5	4.5		5 5	5.0	

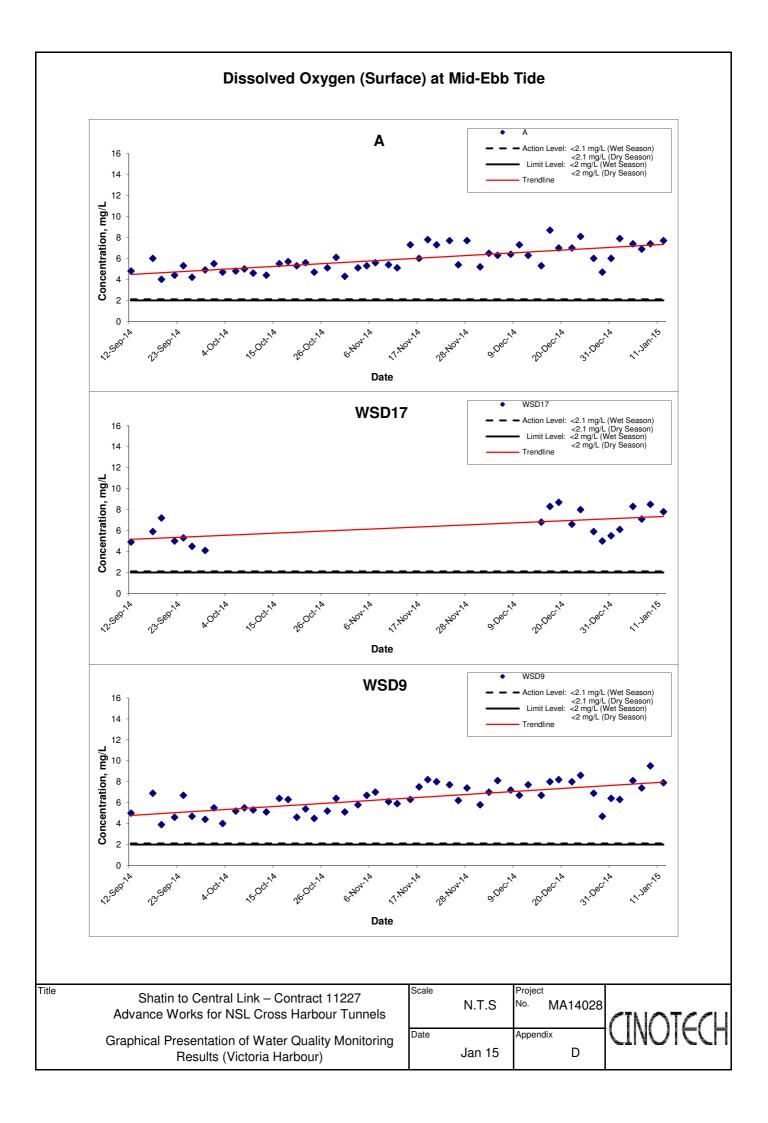
Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

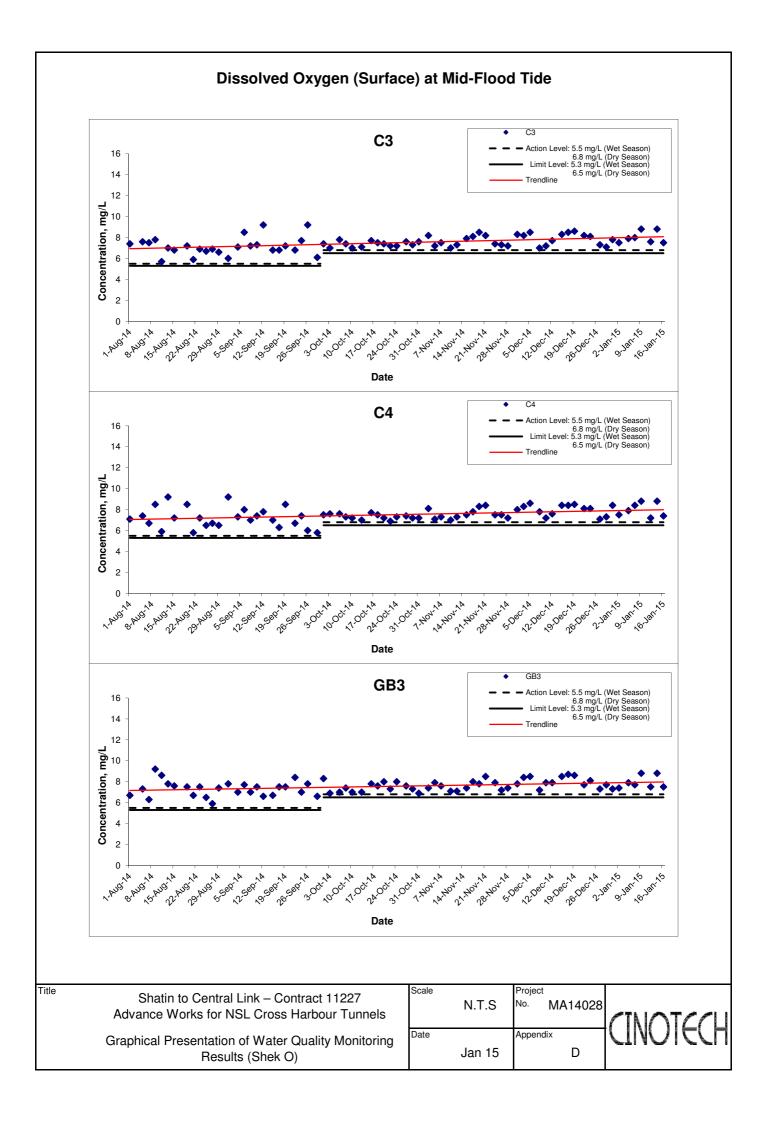
Date	Weather	Sea	Sampling	Dent	h (m)	Temperature (°C) pH			Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	Dissolved Oxygen (mg/L)			J)	Suspe	(mg/L)		
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.2 19.5	19.4	8.0 8.0	8.0	31.7 31.4	31.6	104.4 103.6	104.0	8.0 7.9	8.0		1.8 1.8	1.8		3	3.0	
17-Dec-14	Cloudy	Moderate	08:32	Middle	4	19.7 19.7	19.7	8.0 8.0	8.0	31.1 31.2	31.2	102.8 102.9	102.9	7.8 7.8	7.8	7.9	3.7 3.7	3.7	3.5	6	6.0	4.3
				Bottom	7	19.9 19.9	19.9	8.1 8.1	8.1	30.7 30.7	30.7	102.0 102.0	102.0	7.8 7.8	7.8	7.8	5.0 5.1	5.1		4	4.0	
				Surface	1	18.4 18.6	18.5	7.9 7.9	7.9	31.1 30.9	31.0	105.0 104.1	104.6	8.2 8.1	8.2		2.7 2.7	2.7		4 4	4.0	
19-Dec-14	Cloudy	Moderate	09:53	Middle	4	19.2 19.2	19.2	7.9 7.9	7.9	30.4 30.3	30.4	105.1 105.0	105.1	8.1 8.1	8.1	8.2	3.9 3.9	3.9	3.8	6	6.0	4.2
				Bottom	7	19.1 19.1	19.1	7.9 7.9	7.9	30.4 30.4	30.4	105.7 105.8	105.8	8.2 8.2	8.2	8.2	4.8 4.7	4.8		<2.5 <2.5	<2.5	
				Surface	1	18.9 18.5	18.7	7.9 8.0	8.0	27.6 27.1	27.4	100.9 99.9	100.4	8.0 8.0	8.0	8.0	3.4 3.5	3.5		3	3.0	
22-Dec-14	Cloudy	Moderate	13:01	Middle	4	18.9 18.6	18.8	8.1 8.1	8.1	27.7 27.9	27.8	102.6 99.2	100.9	8.1 7.9	8.0	6.0	4.8 4.8	4.8	4.9	<2.5 <2.5	<2.5	3.2
				Bottom	7	18.4 17.6	18.0	8.2 8.2	8.2	28.0 27.9	28.0	98.8 96.2	97.5	7.9 7.8	7.9	7.9	6.3 6.4	6.4		4	4.0	
	-Dec-14 Cloudy Moderate 14:2		Surface	1	18.5 18.6	18.6	8.0 8.0	8.0	30.1 30.4	30.3	112.5 107.5	110.0	8.8 8.4	8.6	8.6 2.1	2.1		<2.5 <2.5	<2.5			
24-Dec-14		Moderate	14:25	Middle	4	18.6 18.3	18.5	8.3 8.2	8.3	31.0 30.7	30.9	109.0 106.6	107.8	8.5 8.4	8.5		4.0 4.2	4.1	4.4	<2.5 <2.5	<2.5	<2.5
			Bottom	7	18.3 18.1	18.2	8.5 8.4	8.5	30.8 30.7	30.8	106.3 105.3	105.8	8.3 8.3	8.3	8.3	6.7 7.0	6.9		<2.5 <2.5	<2.5		
			Surface	1	18.8 18.6	18.7	7.9 7.9	7.9	33.3 32.9	33.1	89.7 87.9	88.8	6.9 6.8	6.9	6.9	1.9 1.9	1.9		3 3	3.0		
27-Dec-14	Fine	Moderate	16:34	Middle	4	18.9 18.7	18.8	7.8 7.8	7.8	33.3 32.9	33.1	90.5 89.0	89.8	6.9 6.8	6.9		2.3 2.2	2.3	2.2	4	4.0	4.0
				Bottom	7	18.9 18.6	18.8	7.8 7.8	7.8	33.3 32.9	33.1	92.8 90.9	91.9	7.1 7.0	7.1	7.1	2.3 2.6	2.5		5 5	5.0	
				Surface	1	18.2 18.2	18.2	7.6 7.6	7.6	31.2 31.2	31.2	59.9 59.9	59.9	4.7 4.7	4.7	4.7	3.9 4.0	4.0		4	4.0	
29-Dec-14	Fine	Moderate	18:20	Middle	4	18.2 18.2	18.2	7.6 7.6	7.6	31.5 31.5	31.5	59.2 59.0	59.1	4.6 4.6	4.6		4.3 4.2	4.3	4.2	5	5.0	4.3
				Bottom	7	18.2 18.2	18.2	7.6 7.6	7.6	31.5 31.6	31.6	51.2 51.0	51.1	4.0	4.0	4.0	4.4	4.4		4	4.0	
				Surface	1	17.6 17.4	17.5	7.7 7.7	7.7	28.1	28.4	80.3 78.1	79.2	6.5 6.3	6.4	5.9	4.0 3.9	4.0		<2.5 <2.5	<2.5	
31-Dec-14	Fine	Moderate	09:03	Middle	4	17.3 17.5	17.4	7.7 7.7	7.7	32.5 32.1	32.3	67.2 69.2	68.2	5.3 5.5	5.4		4.2 4.2	4.2	4.2	3	3.0	2.8
				Bottom	7	17.5 17.3	17.4	7.7 7.7	7.7	33.8 33.9	33.9	57.6 56.5	57.1	4.5 4.4	4.5	4.5	4.4 4.5	4.5		3	3.0	
				Surface	1	17.7 17.7	17.7	8.1 8.1	8.1	32.1 32.1	32.1	79.4 79.9	79.7	6.2 6.3	6.3	6.3	4.0 4.1	4.1		7 7	7.0	
2-Jan-15	Sunny	Moderate	10:05	Middle	4	17.7 17.7	17.7	8.1 8.1	8.1	32.2 32.2	32.2	79.6 80.0	79.8	6.3 6.3	6.3		4.3 4.1	4.2	4.2	<2.5 <2.5	<2.5	4.0
				Bottom	7	17.7 17.7	17.7	8.1 8.1	8.1	32.2 32.2	32.2	79.5 80.2	79.9	6.3 6.3	6.3	6.3	4.3 4.2	4.3		<2.5 <2.5	<2.5	

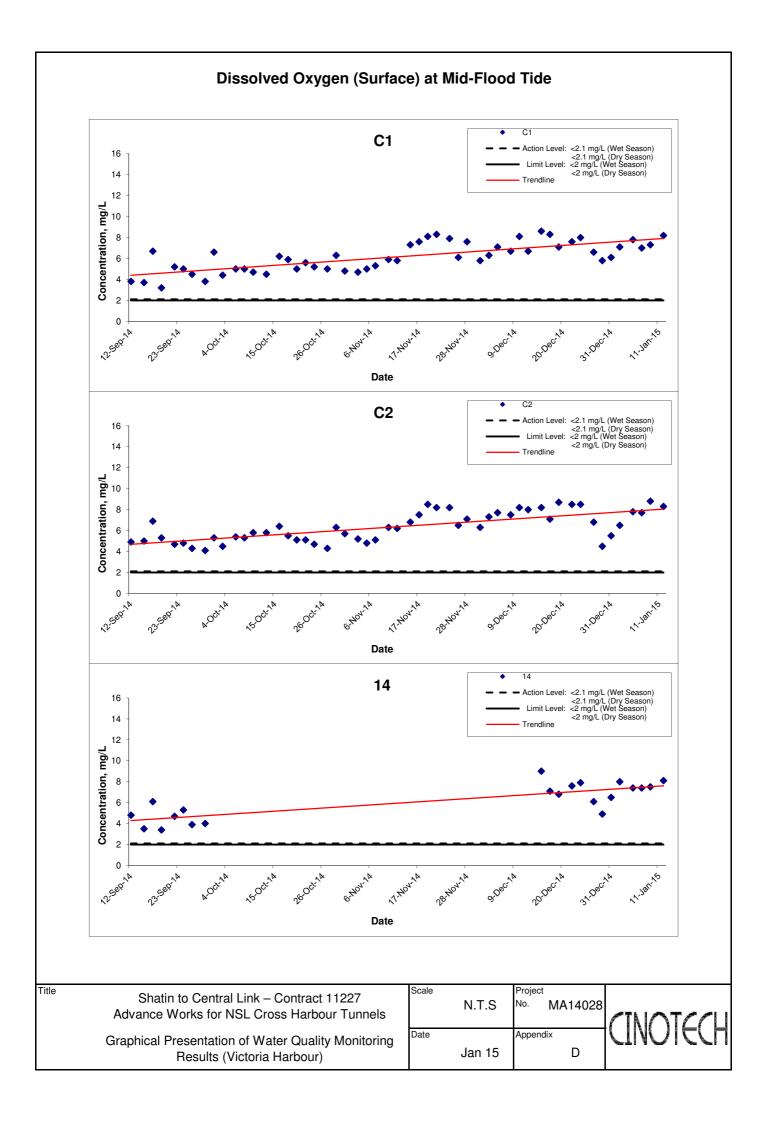
Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

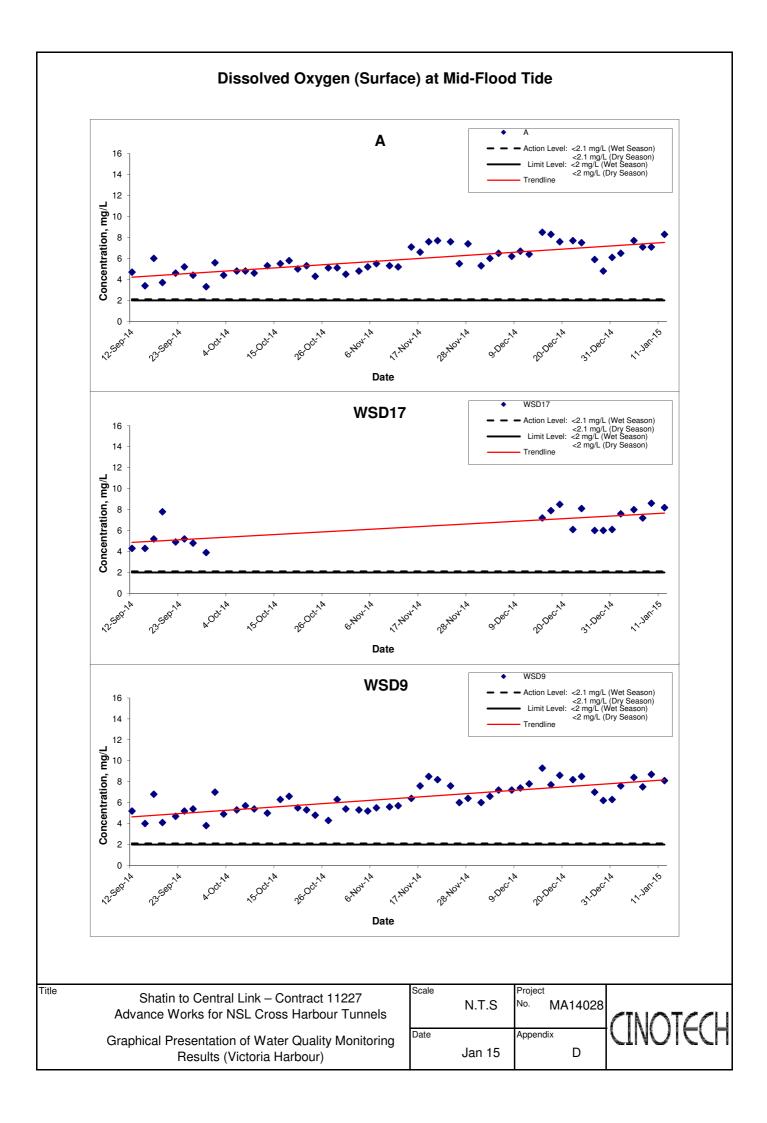

Date	Weather	Sea	Sampling	Dent	Depth (m)		ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	Suspended Solids (m									
Date	Condition	Condition**	Time	БСРІ	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*								
	5-Jan-15 Sunny Moderate 11:			Surface	1	18.4 18.4	18.4	8.6 8.6	8.6	27.5 27.6	27.6	100.9 102.0	101.5	8.0 8.1	8.1	8.0	3.1 3.4	3.3		3	3.0									
5-Jan-15		11:54	Middle	4	18.4 18.4	18.4	8.7 8.7	8.7	27.4 27.9	27.7	97.5 97.1	97.3	7.8 7.7	7.8	0.0	3.1 3.0	3.1	3.2	4	4.0	4.3									
				Bottom	7	18.4 18.4	18.4	8.8 8.8	8.8	28.0 28.0	28.0	96.0 96.1	96.1	7.6 7.6	7.6	7.6	3.2 3.3	3.3		6 6	6.0									
			Surface	1	18.3 18.3	18.3	8.6 8.6	8.6	25.4 28.3	26.9	91.8 92.5	92.2	7.4 7.4	7.4	7.4	2.6 2.7	2.7		3	3.0										
7-Jan-15	Sunny	Moderate	14:02	Middle	4	18.3 18.3	18.3	8.7 8.7	8.7	28.3 28.3	28.3	92.1 92.3	92.2	7.3 7.3	7.3	7.4	2.7 2.6	2.7	2.8	6 6	6.0	3.8								
		F	Bottom	7	18.3 18.3	18.3	8.9 8.9	8.9	28.4 28.4	28.4	92.2 92.1	92.2	7.3 7.3	7.3	7.3	3.0 3.0	3.0		<2.5 <2.5	<2.5										
			Surface	1	15.0 15.4	15.2	8.5 8.5	8.5	28.5 28.7	28.6	114.7 110.8	112.8	9.7 9.3	9.5	8.5	3.9 4.0	4.0		<2.5 <2.5	<2.5										
9-Jan-15	Sunny	Moderate	14:39	Middle	4	17.0 17.0	17.0	8.5 8.5	8.5	27.7 27.7	27.7	90.8 90.8	90.8	7.4 7.4	7.4	8.5	4.0 4.0	4.0	3.9	4 4	4.0	3.2								
												Bottom	7	18.1 18.1	18.1	8.5 8.5	8.5	28.3 28.3	28.3	85.6 85.6	85.6	6.8 6.8	6.8	6.8	3.8 3.7	3.8		3	3.0	
			Surface	1	22.1 21.9	22.0	8.0 8.0	8.0	30.3 30.4	30.4	107.4 107.2	107.3	7.9 7.9	7.9	7.9	2.4 2.4	2.4		3	3.0										
12-Jan-15	Sunny	Moderate	16:29	Middle	4	21.8 22.1	22.0	7.9 7.9	7.9	30.5 30.5	30.5	107.0 107.2	107.1	7.9 7.8	7.9	7.5	4.2 4.2	4.2	4.7	3	3.0	4.3								
				Bottom	7	22.0 22.0	22.0	7.8 7.9	7.9	30.6 30.6	30.6	107.1 107.0	107.1	7.8 7.8	7.8	7.8	7.2 7.6	7.4		7 7	7.0									

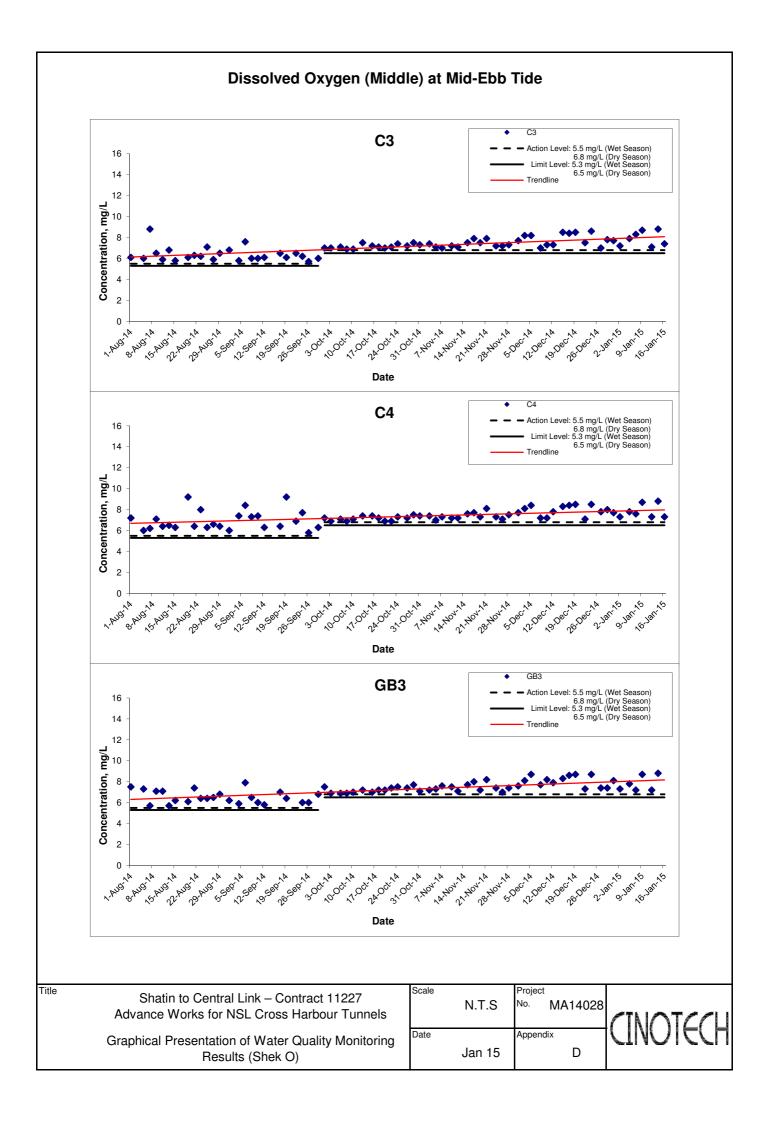
Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

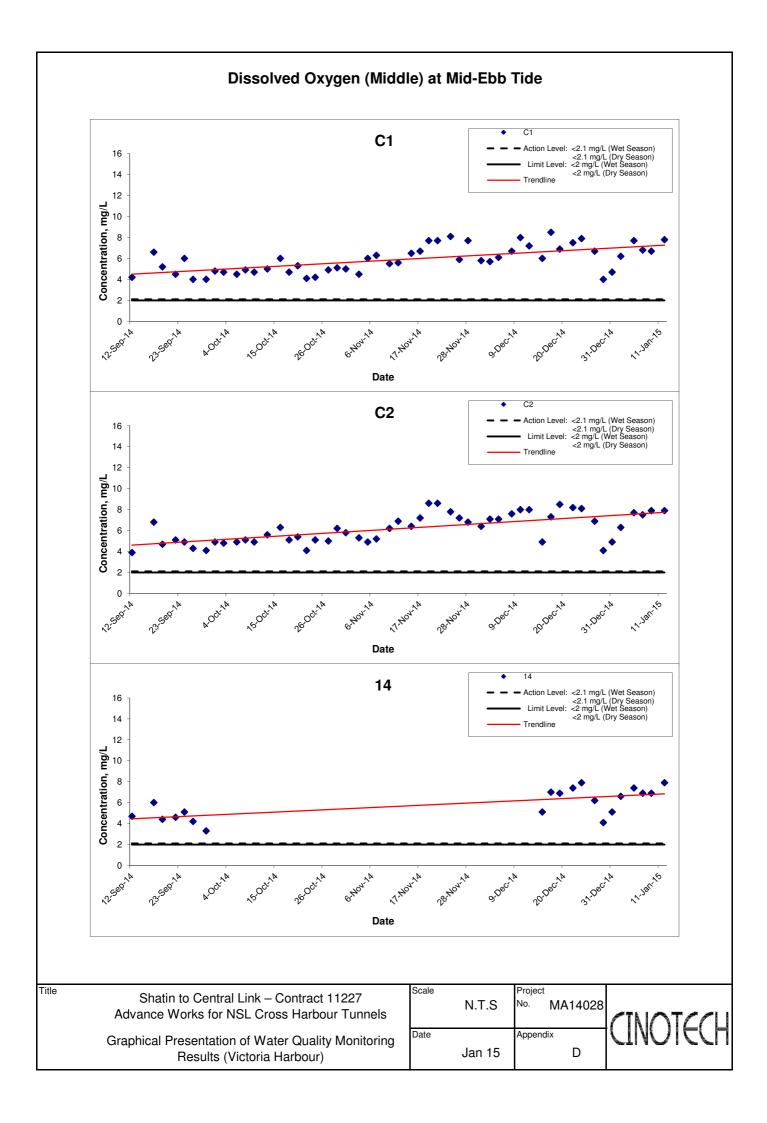

Date	Weather	Sea	Sampling	Dent	Depth (m)		Temperature (°C) pH			Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	Suspended Solids (mg				
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*			
				Surface	1	19.8 19.8	19.8	7.7 7.7	7.7	30.7 30.7	30.7	101.5 101.4	101.5	7.7 7.7	7.7		2.6 2.6	2.6		4	4.0				
17-Dec-14	Cloudy	Moderate	13:43	Middle	4	19.8 19.8	19.8	7.8 7.8	7.8	30.8 30.8	30.8	101.5 101.4	101.5	7.7 7.7	7.7	7.7	4.2 4.4	4.3	3.9	3 4	3.5	3.8			
				Bottom	7	19.8 19.8	19.8	7.8 7.8	7.8	30.8 30.8	30.8	101.4 101.4	101.4	7.7 7.7	7.7	7.7	4.8 4.7	4.8		4 4	4.0				
				Surface	1	17.4 17.6	17.5	7.9 7.9	7.9	30.7 31.2	31.0	107.3 106.8	107.1	8.6 8.5	8.6		3.7 3.5	3.6		5 5	5.0				
19-Dec-14	Cloudy	Moderate	15:09	Middle	4	19.1 19.1	19.1	7.9 7.9	7.9	30.5 30.5	30.5	104.8 105.1	105.0	8.1 8.1	8.1	8.4	4.3 4.4	4.4	4.3	<2.5 <2.5	<2.5	3.3			
				Bottom	7	19.1 19.1	19.1	7.9 7.9	7.9	30.3 30.4	30.4	105.7 105.6	105.7	8.2 8.2	8.2	8.2	5.0 4.7	4.9		<2.5 <2.5	<2.5				
				Surface	1	18.5 18.6	18.6	8.0 8.0	8.0	27.4 27.8	27.6	102.7 101.9	102.3	8.2 8.1	8.2	8.2	2.3 2.3	2.3		6 6	6.0				
22-Dec-14	Cloudy	Moderate	18:08	Middle	4	18.2 18.6	18.4	8.2 8.1	8.2	28.1 27.8	28.0	101.1 101.2	101.2	8.1 8.0	8.1	0.2	4.7 4.7	4.7	4.4	4 4	4.0	4.3			
				Bottom	7	18.5 18.6	18.6	8.3 8.3	8.3	27.9 27.8	27.9	100.6 100.2	100.4	8.0 7.9	8.0	8.0	6.3 6.2	6.3		3 3	3.0				
	-Dec-14 Cloudy Moderate 09		Surface	1	18.7 18.6	18.7	8.1 8.1	8.1	30.4 29.7	30.1	111.3 106.0	108.7	8.7 8.3	8.5	8.4	2.6 2.1	2.4		4 4	4.0					
24-Dec-14		Moderate	09:11	Middle	4	18.7 18.5	18.6	8.2 8.2	8.2	30.6 30.8	30.7	108.1 105.4	106.8	8.4 8.2	8.3	0.1	4.9 4.1	4.5	4.5	3	3.0	3.2			
				Bottom	7	17.8 17.9	17.9	8.4 8.3	8.4	30.9 30.8	30.9	104.0 103.2	103.6	8.2 8.1	8.2	8.2	6.6 6.6	6.6		<2.5 <2.5	<2.5				
			Surface	1	19.0 18.9	19.0	7.8 7.8	7.8	33.6 33.2	33.4	92.4 90.8	91.6	7.0 6.9	7.0	7.0	1.6 1.5	1.6		5 4	4.5					
27-Dec-14	Fine	Moderate	10:30	Middle	4	19.0 18.8	18.9	7.8 7.8	7.8	33.6 33.2	33.4	90.2 88.4	89.3	6.9 6.8	6.9		2.3	2.2	2.2	4 4	4.0	4.2			
				Bottom	7	19.0 18.8	18.9	7.7 7.8	7.8	33.6 33.2	33.4	89.4 87.6	88.5	6.8 6.7	6.8	6.8	2.8 2.7	2.8		4 4	4.0				
				Surface	1	19.6 19.6	19.6	8.0	8.0	31.6 31.6	31.6	81.2 80.9	81.1	6.2 6.2	6.2	6.1	2.9	2.9		3	3.0				
29-Dec-14	Fine	Moderate	12:27	Middle	4	19.6 19.6	19.6	8.0	8.0	31.8 31.8	31.8	77.9 77.9	77.9	5.9 5.9	5.9		3.0	3.0	3.0	5 6	5.5	4.5			
				Bottom	7	19.6 19.6	19.6	8.0	8.0	31.8 31.9	31.9	71.3 71.4	71.4	5.4 5.4	5.4	5.4	3.1 3.2	3.2		5 5	5.0				
				Surface	1	17.5 17.5	17.5	7.7 7.7	7.7	31.9 32.3	32.1	79.2 78.7	79.0	6.3 6.2	6.3	6.0	4.1	4.1		<2.5 <2.5	<2.5				
31-Dec-14	Fine	Moderate	14:02	Middle	4	17.5 17.5	17.5	7.7 7.7	7.7	32.5 32.4	32.5	69.5 71.4	70.5	5.5 5.6	5.6		4.7 4.7	4.7	4.5	3	3.5	3.3			
				Bottom	7	17.5 17.5	17.5	7.7 7.7	7.7	32.5 32.5	32.5	57.6 56.2	56.9	4.5 4.4	4.5	4.5	4.7 4.6	4.7		4	4.0				
				Surface	1	17.9 17.9	17.9	8.1 8.1	8.1	32.7 32.7	32.7	96.9 97.0	97.0	7.6 7.6	7.6	7.7	3.7 3.6	3.7		4	4.0				
2-Jan-15	Sunny	Moderate	15:10	Middle	4	17.7 17.7	17.7	8.1 8.1	8.1	32.7 32.7	32.7	97.9 97.6	97.8	7.7 7.7	7.7	1.1	3.6 3.9	3.8	3.8	<2.5 <2.5	<2.5	3.0			
				Bottom	7	17.7 17.7	17.7	8.1 8.1	8.1	32.8 32.9	32.9	96.8 96.1	96.5	7.6 7.5	7.6	7.6	3.7 4.0	3.9		<2.5 <2.5	<2.5				

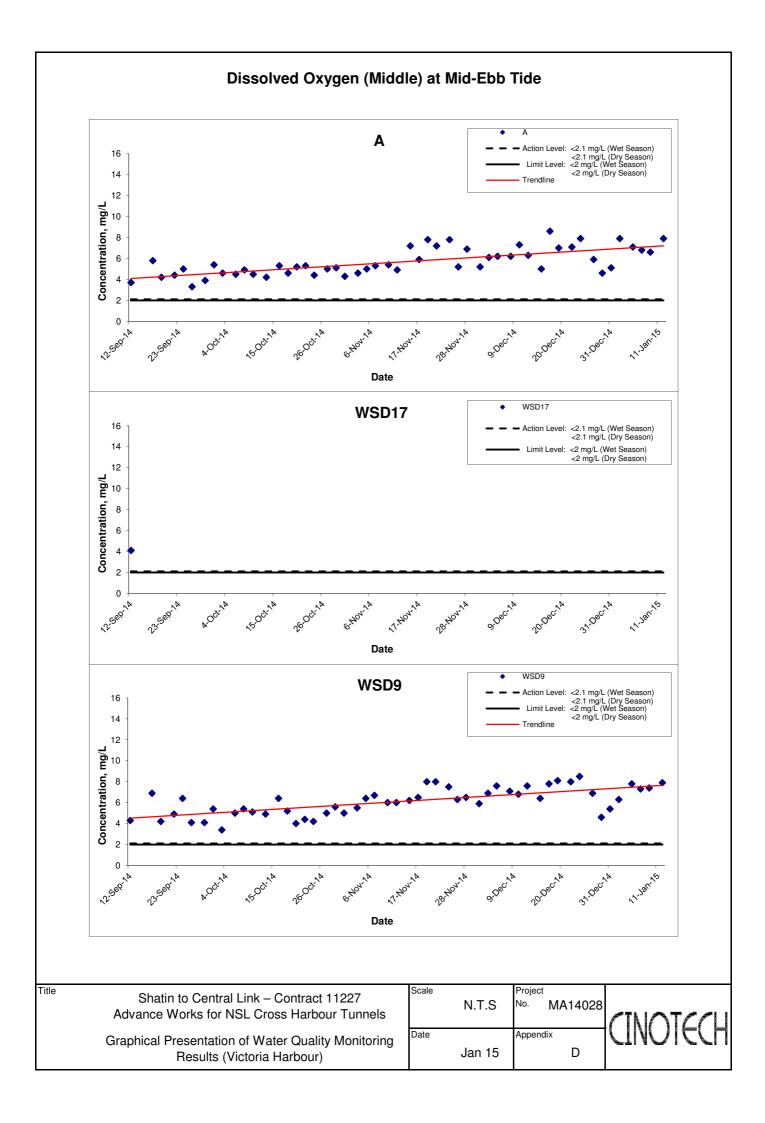

Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

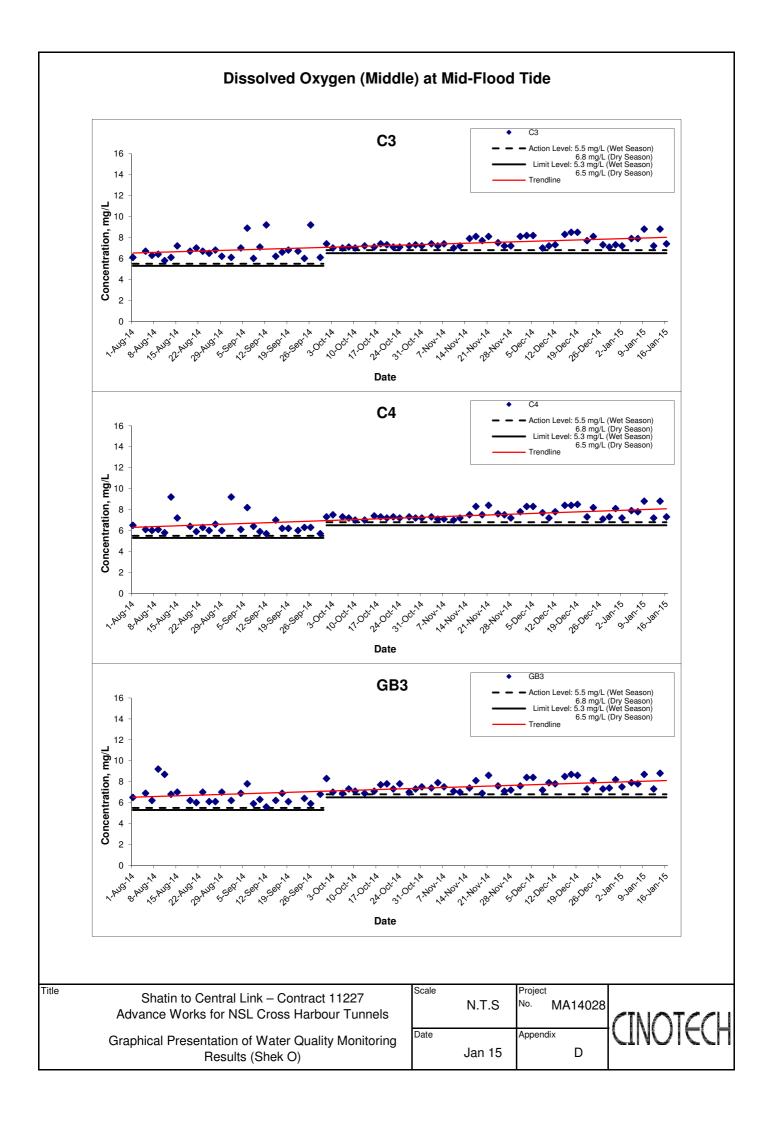

Date	Weather	Sea	Sampling	Dent	Depth (m)		ature (°C)	pН		Salir	nity ppt	DO Satu	DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)			
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*		
				Surface	1	18.4 18.4	18.4	8.6 8.6	8.6	26.1 27.6	26.9	104.2 104.0	104.1	8.4 8.3	8.4	8.1	2.8 2.8	2.8		5 5	5.0			
5-Jan-15	Sunny	Moderate	16:41	Middle	4	18.4 18.4	18.4	8.7 8.7	8.7	27.8 27.8	27.8	97.1 97.3	97.2	7.7 7.7	7.7	0.1	2.7 2.8	2.8	2.8	<2.5 3	2.8	3.6		
				Bottom	7	18.3 18.3	18.3	8.8 8.8	8.8	28.1 28.1	28.1	96.0 95.7	95.9	7.6 7.6	7.6	7.6	2.9 2.9	2.9		3	3.0			
			Surface	1	17.7 17.7	17.7	8.7 8.7	8.7	28.5 28.5	28.5	93.8 93.5	93.7	7.5 7.5	7.5	7.5	2.7 2.7	2.7		3 3	3.0				
7-Jan-15	Sunny	Moderate	09:00	Middle	4	17.7 17.7	17.7	8.8 8.8	8.8	28.7 28.7	28.7	93.1 93.1	93.1	7.5 7.5	7.5	7.5	2.7 2.7	2.7	2.8	5 4	4.5	4.3		
			Bottom	7	17.7 17.7	17.7	8.9 8.9	8.9	28.8 28.8	28.8	93.1 93.1	93.1	7.5 7.5	7.5	7.5	3.1 3.0	3.1		5 6	5.5				
				Surface	1	16.0 15.7	15.9	8.5 8.5	8.5	20.9 17.3	19.1	97.9 99.8	98.9	8.5 8.9	8.7	8.1	2.7 2.6	2.7		4	4.0			
9-Jan-15	Sunny	Moderate	10:02	Middle	4	16.8 17.3	17.1	8.5 8.5	8.5	27.2 28.1	27.7	91.7 89.3	90.5	7.6 7.2	7.4	0.1	3.1 3.0	3.1	3.1	<2.5 <2.5	<2.5	3.0		
						Bottom	7	18.0 18.0	18.0	8.5 8.5	8.5	28.3 28.3	28.3	85.9 85.9	85.9	6.9 6.9	6.9	6.9	3.5 3.4	3.5		<2.5 <2.5	<2.5	
			Surface	1	21.1 21.3	21.2	8.1 8.0	8.1	29.4 29.3	29.4	108.0 108.6	108.3	8.1 8.1	8.1	7.8	3.1 3.2	3.2		5 5	5.0				
12-Jan-15	Sunny	Moderate	11:14	Middle	4.5	21.0 21.1	21.1	7.8 7.8	7.8	30.6 30.5	30.6	98.6 97.9	98.3	7.4 7.3	7.4	7.0	4.5 4.6	4.6	4.3	5 5	5.0	4.7		
				Bottom	8	21.2 21.2	21.2	8.2 8.2	8.2	30.8 30.8	30.8	95.2 95.3	95.3	7.1 7.1	7.1	7.1	5.2 5.2	5.2		4	4.0			

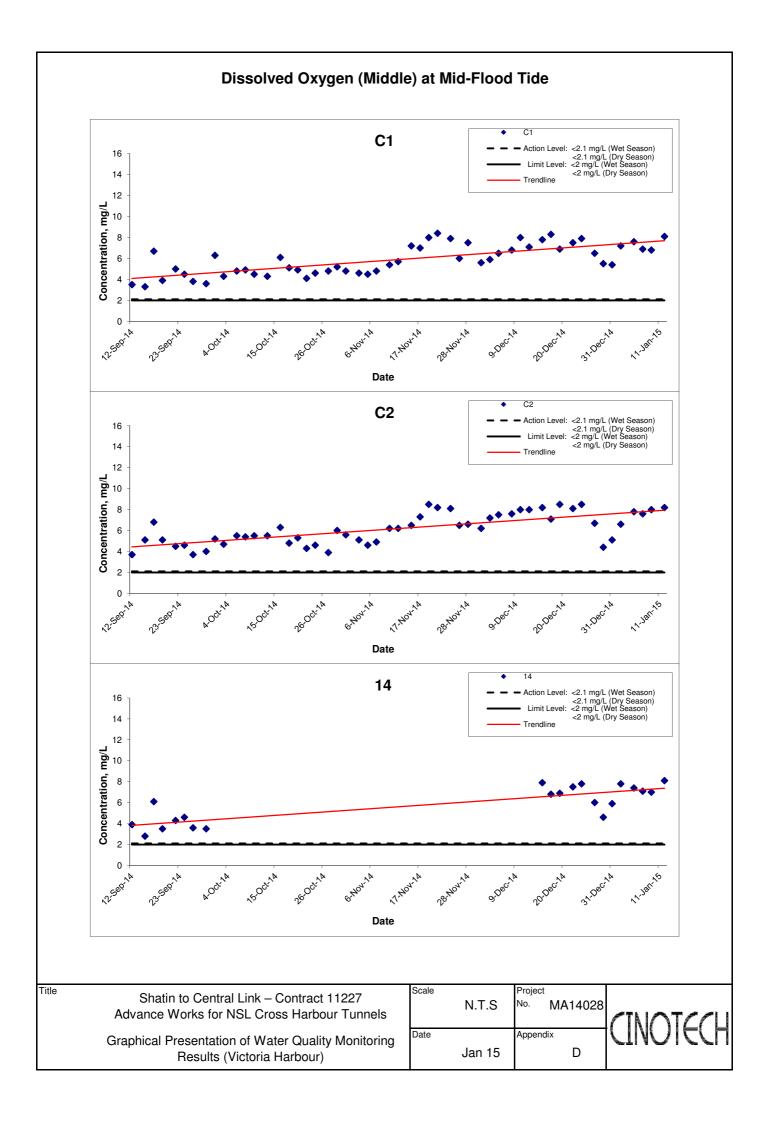


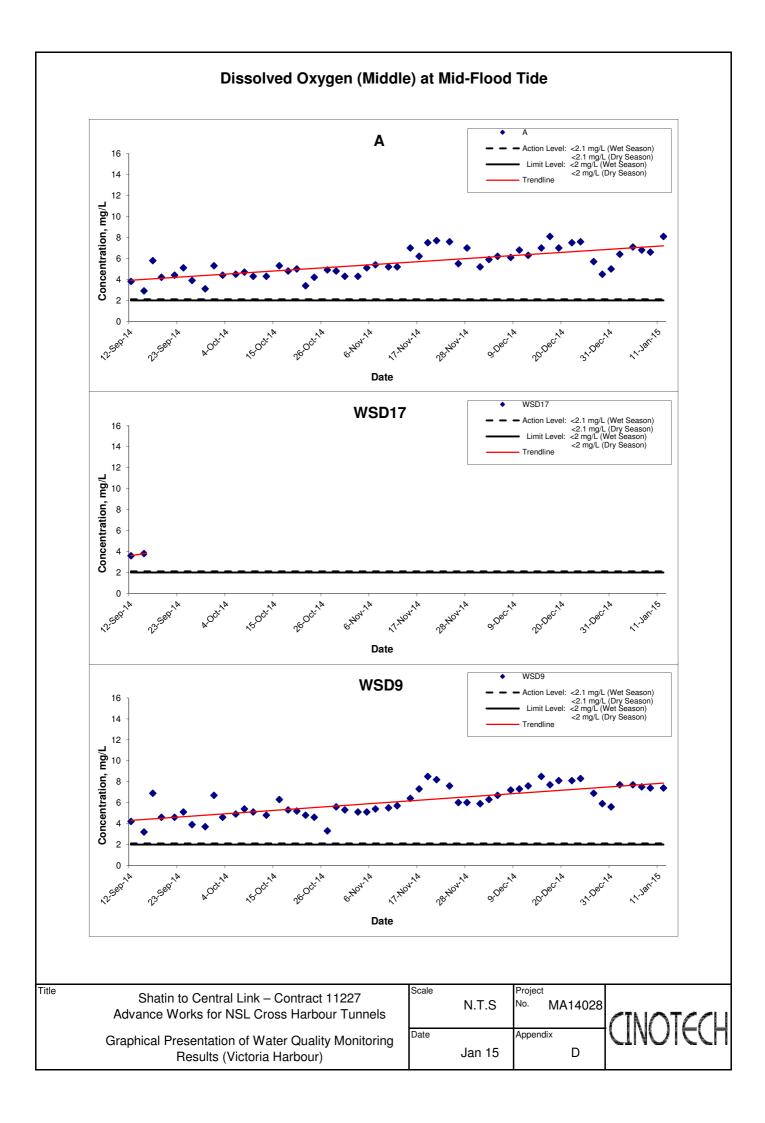


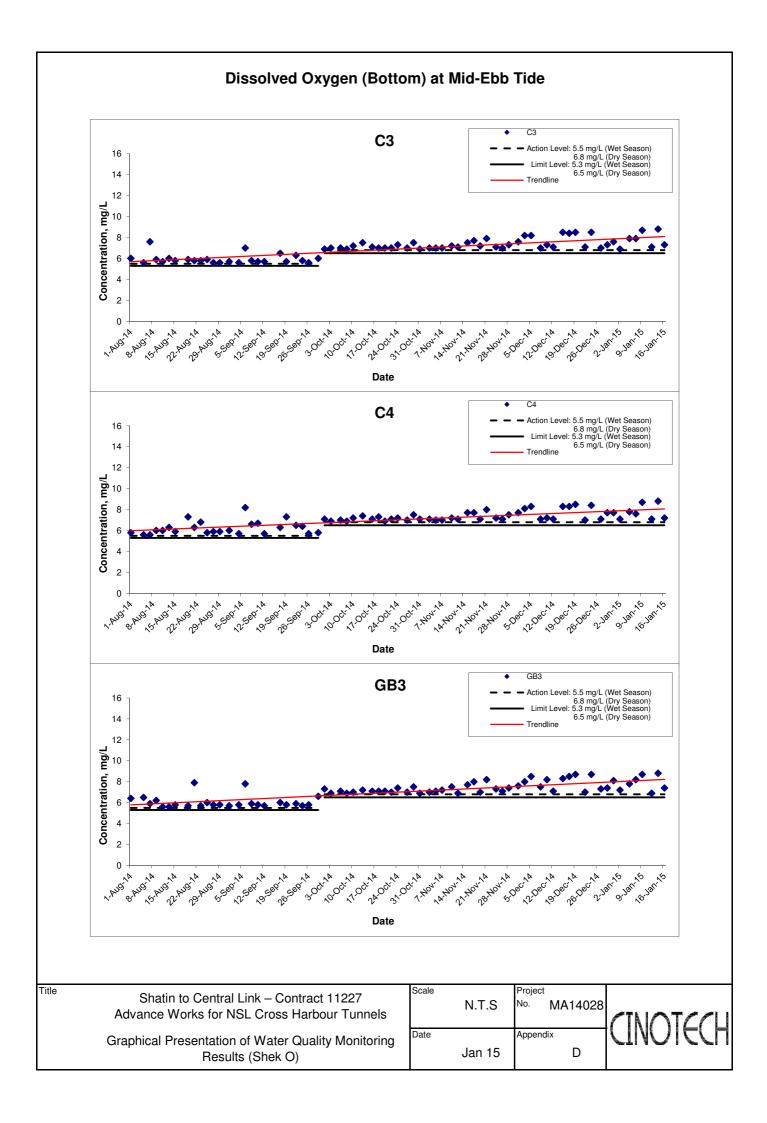


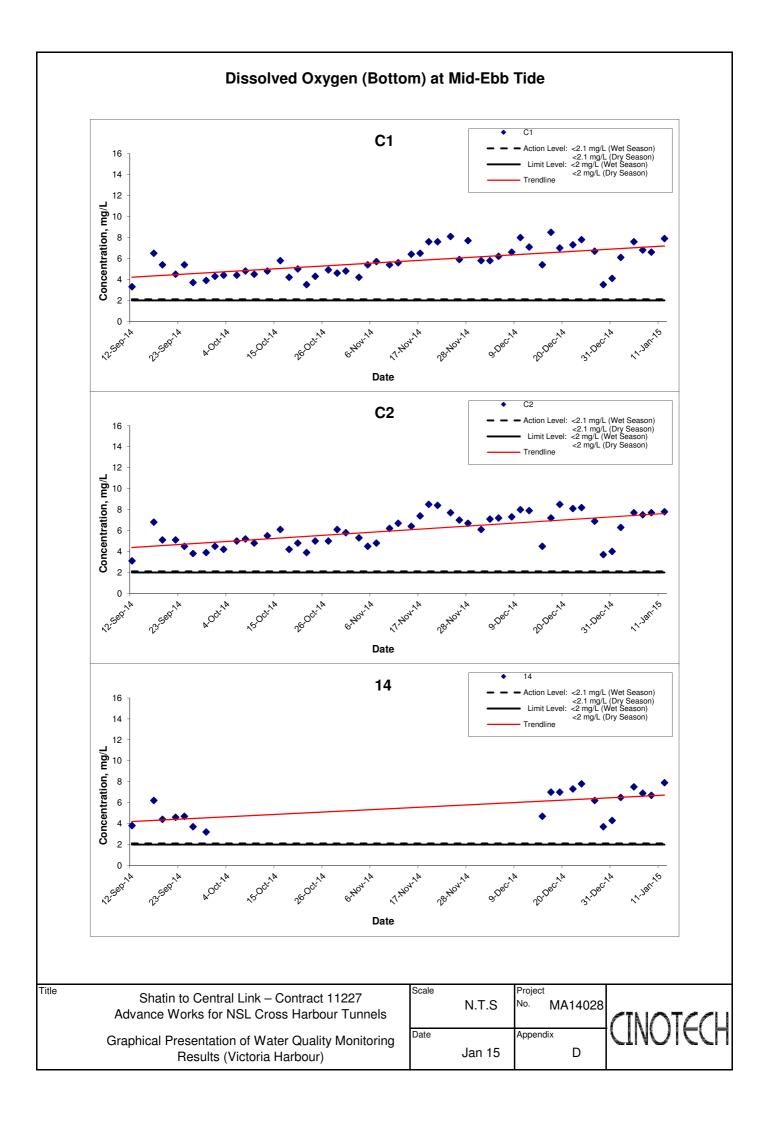


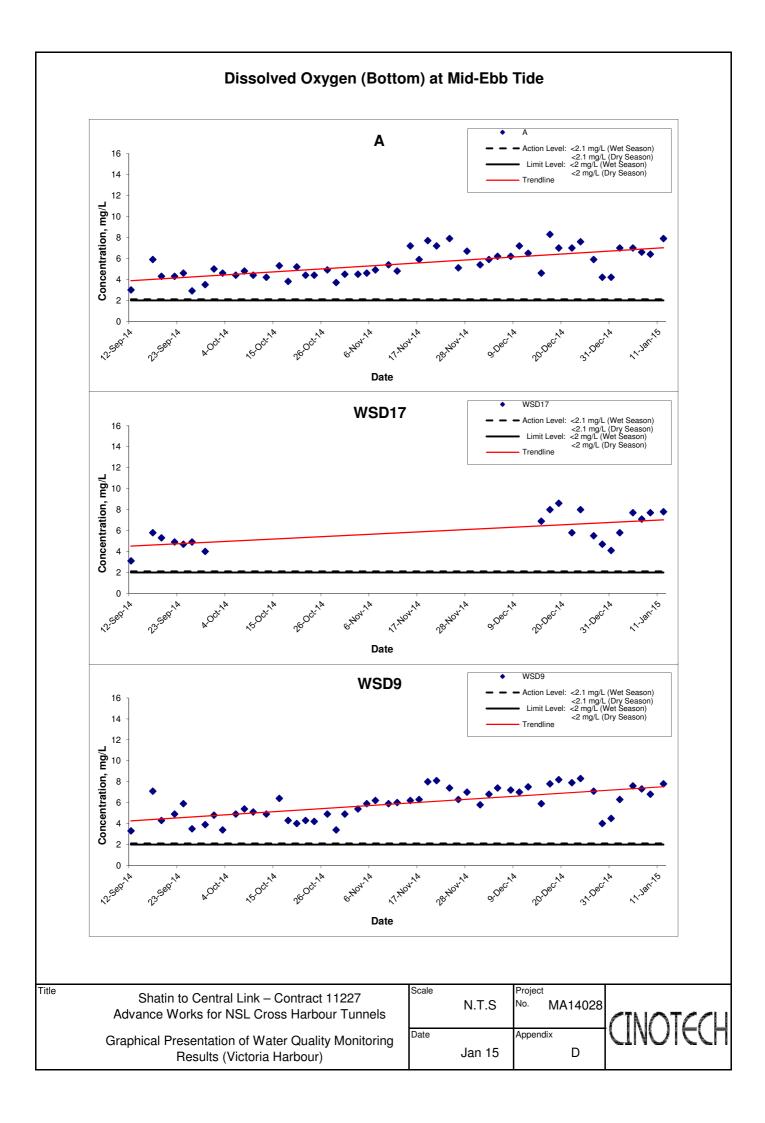


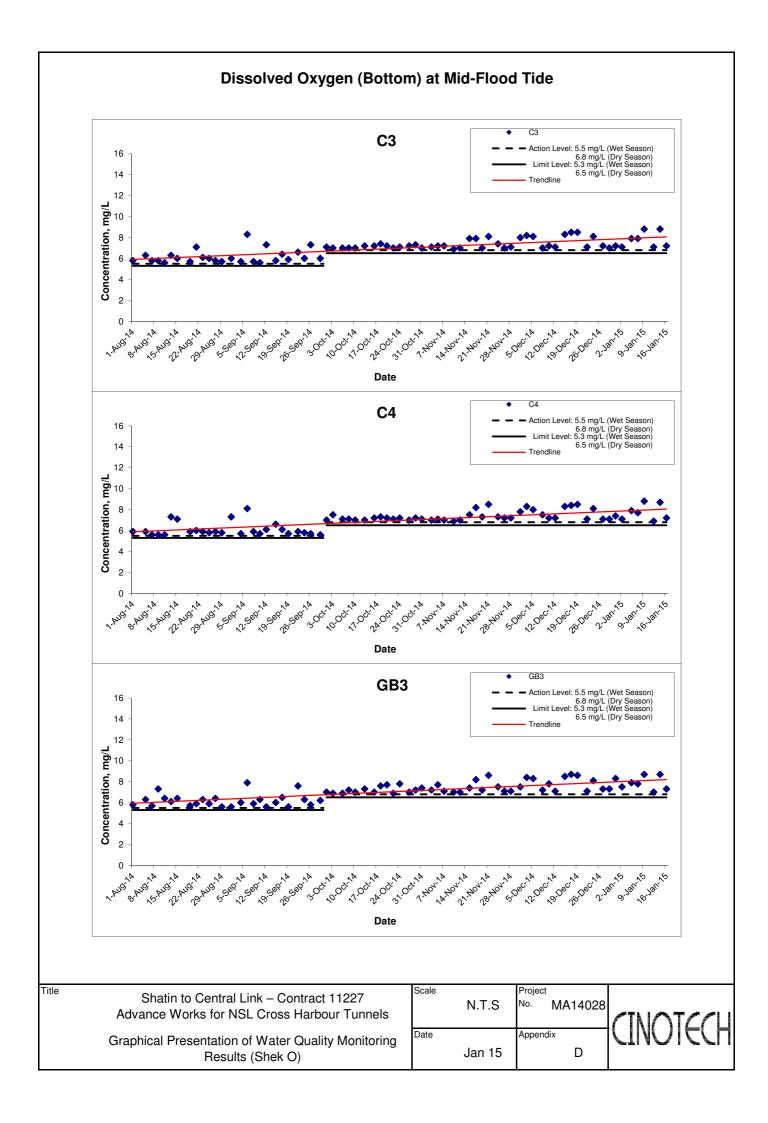


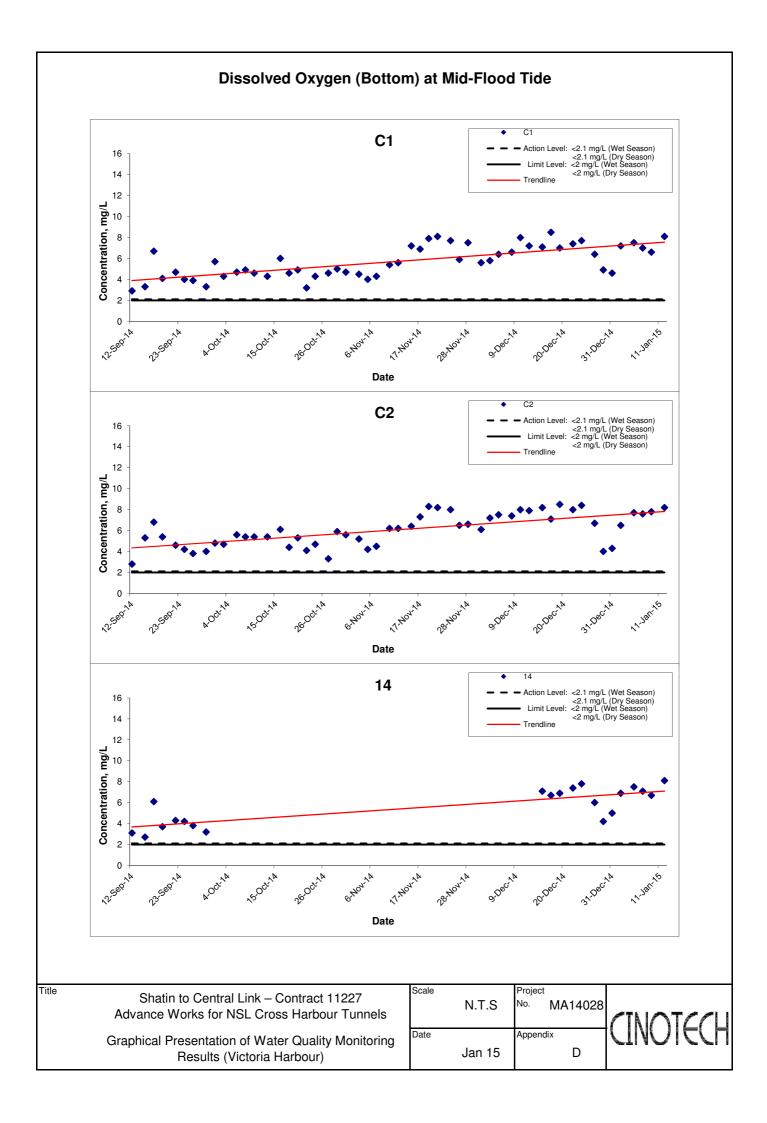




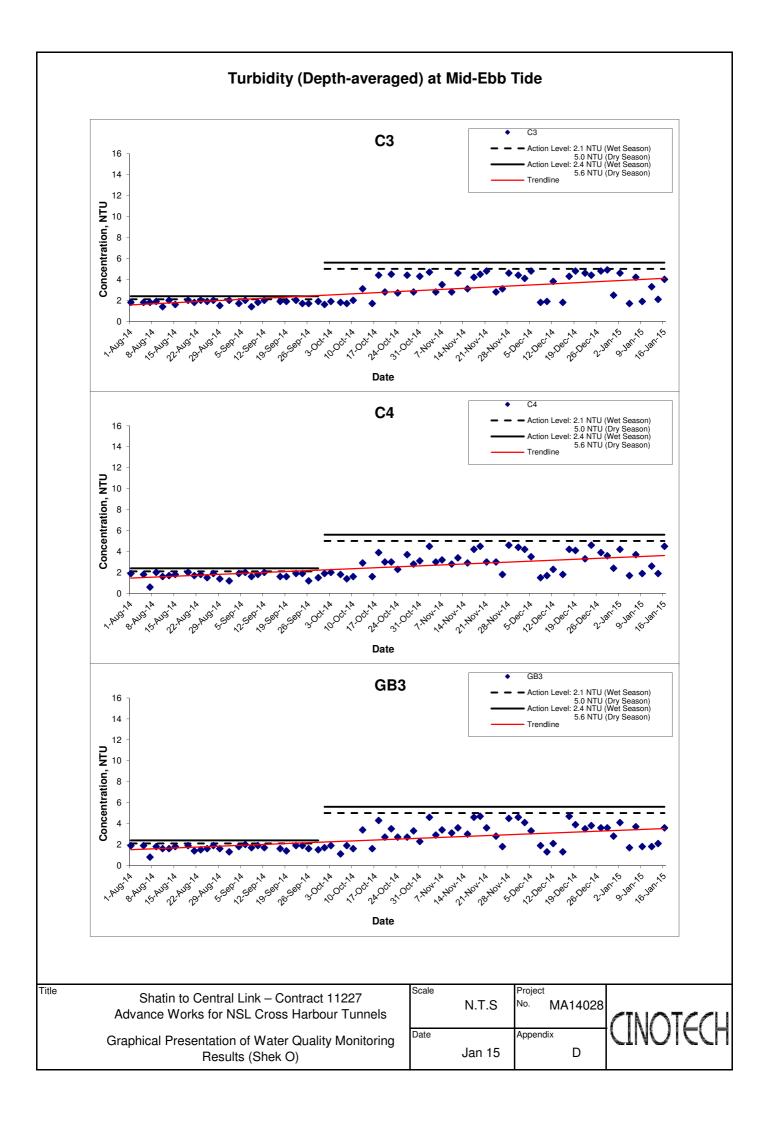


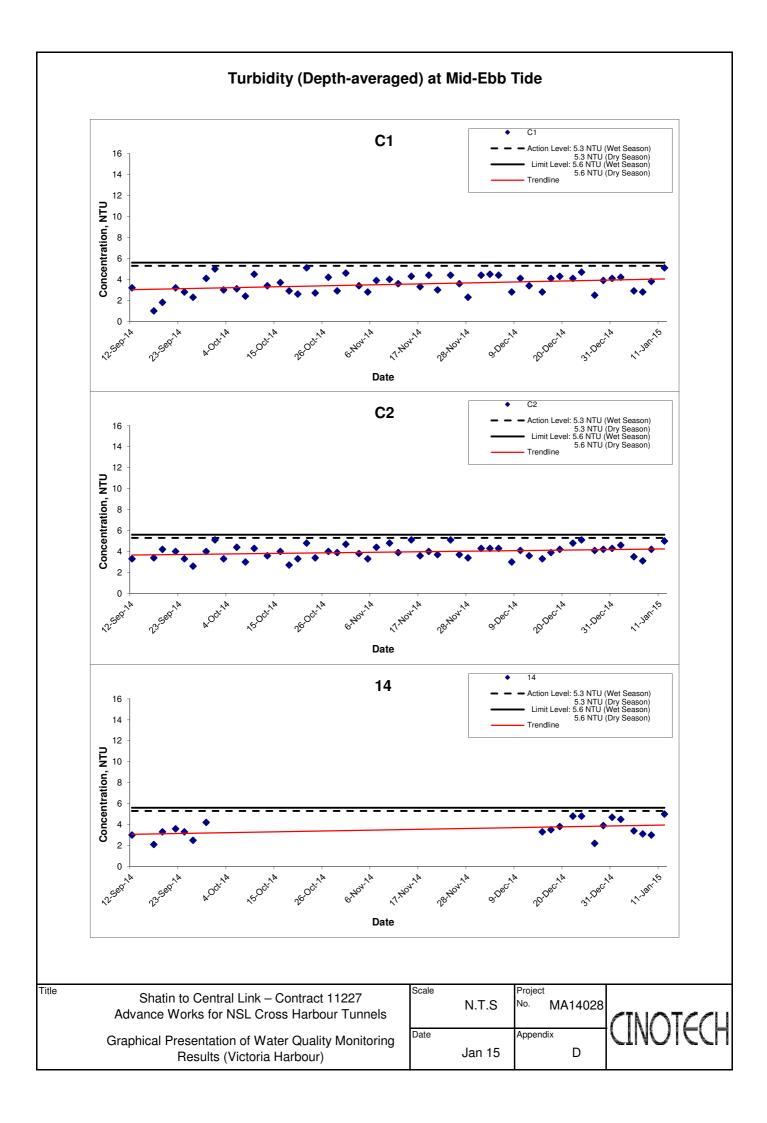


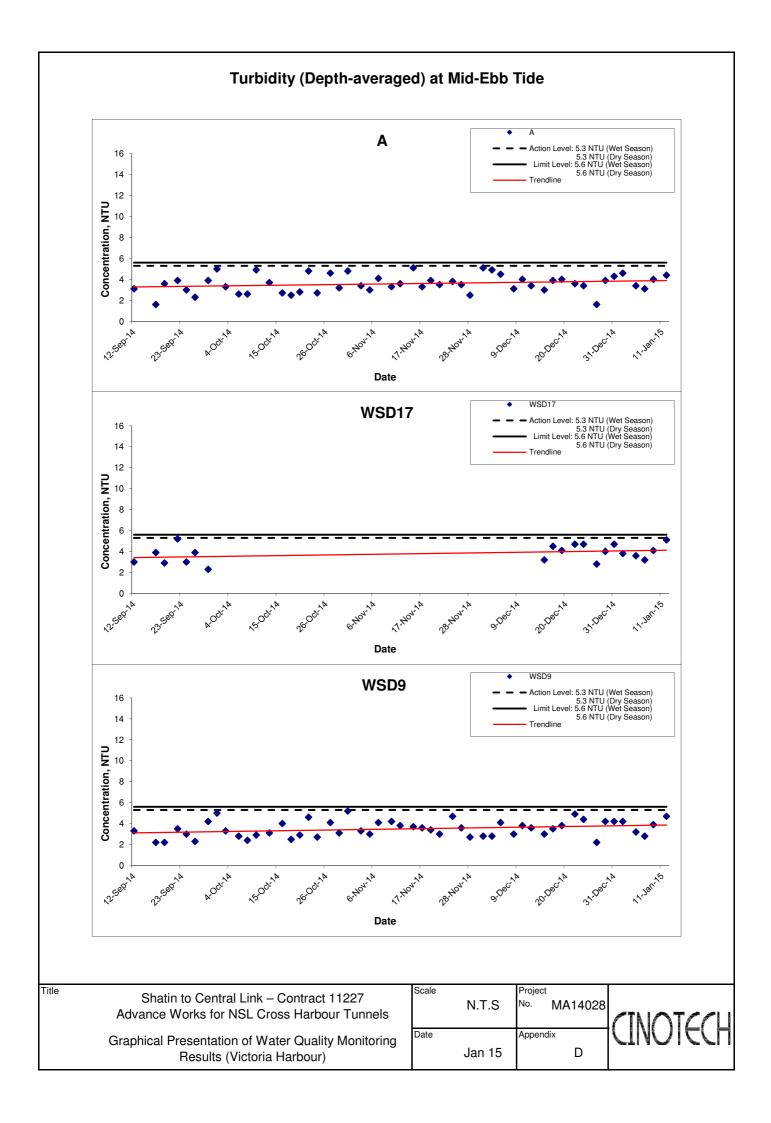


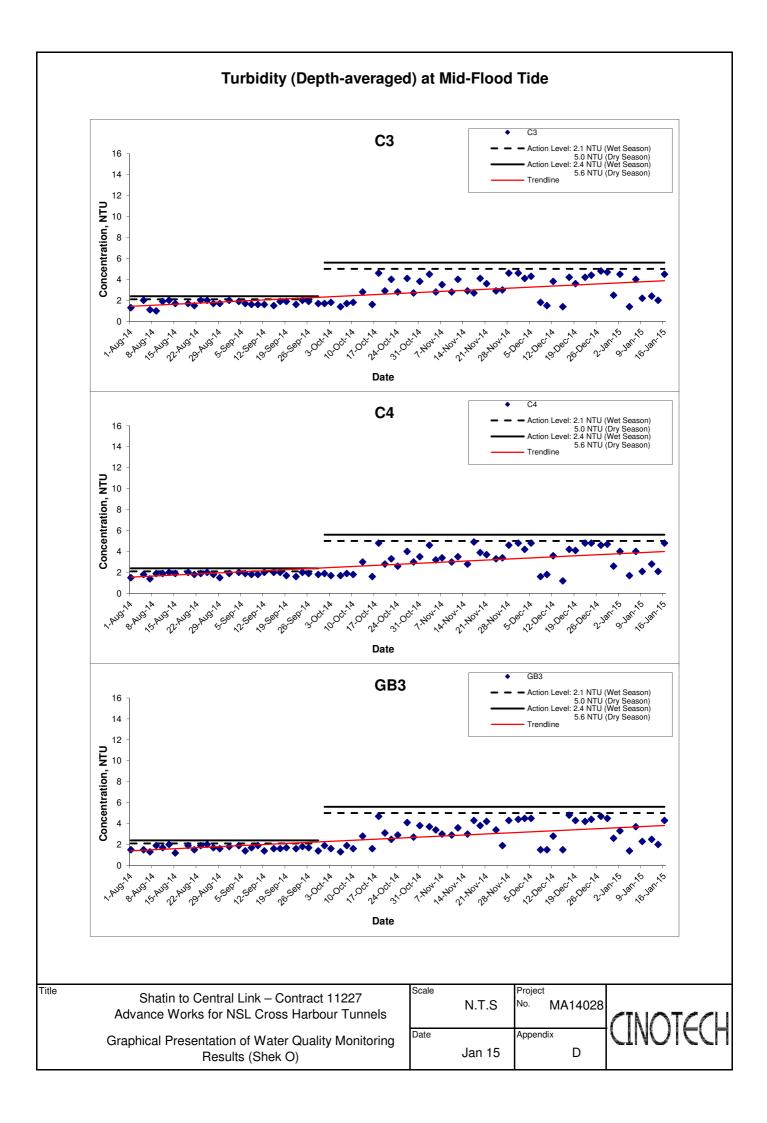


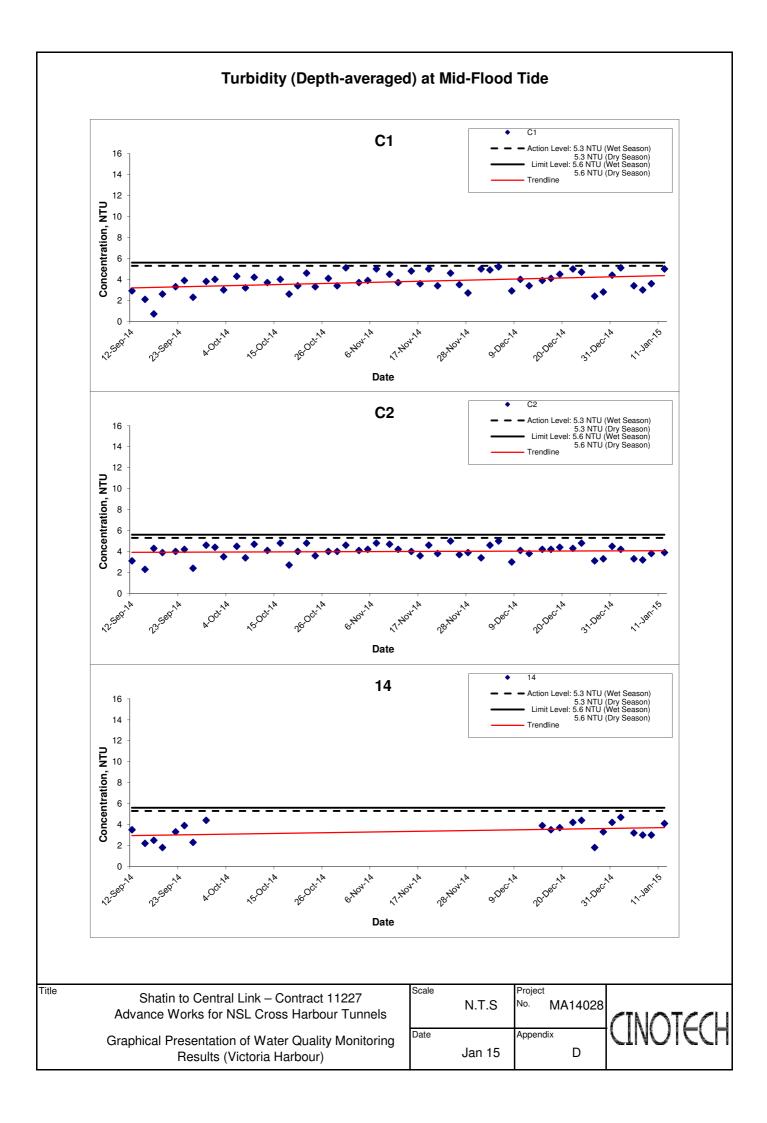


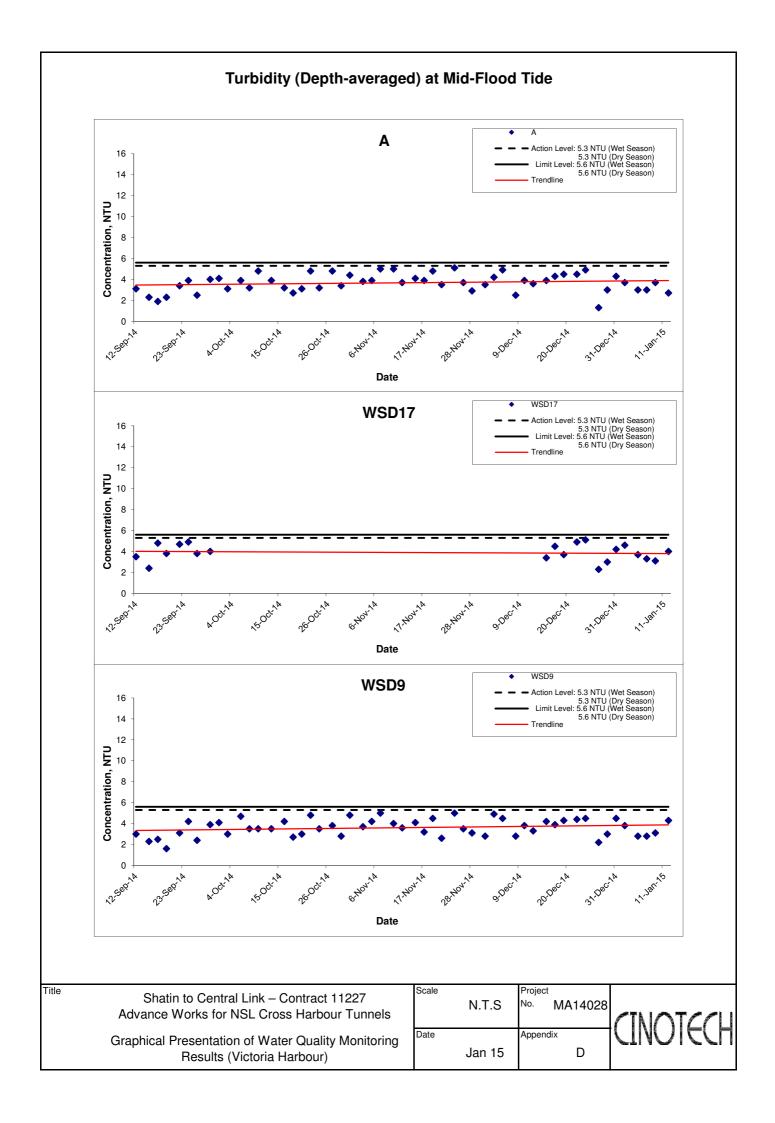


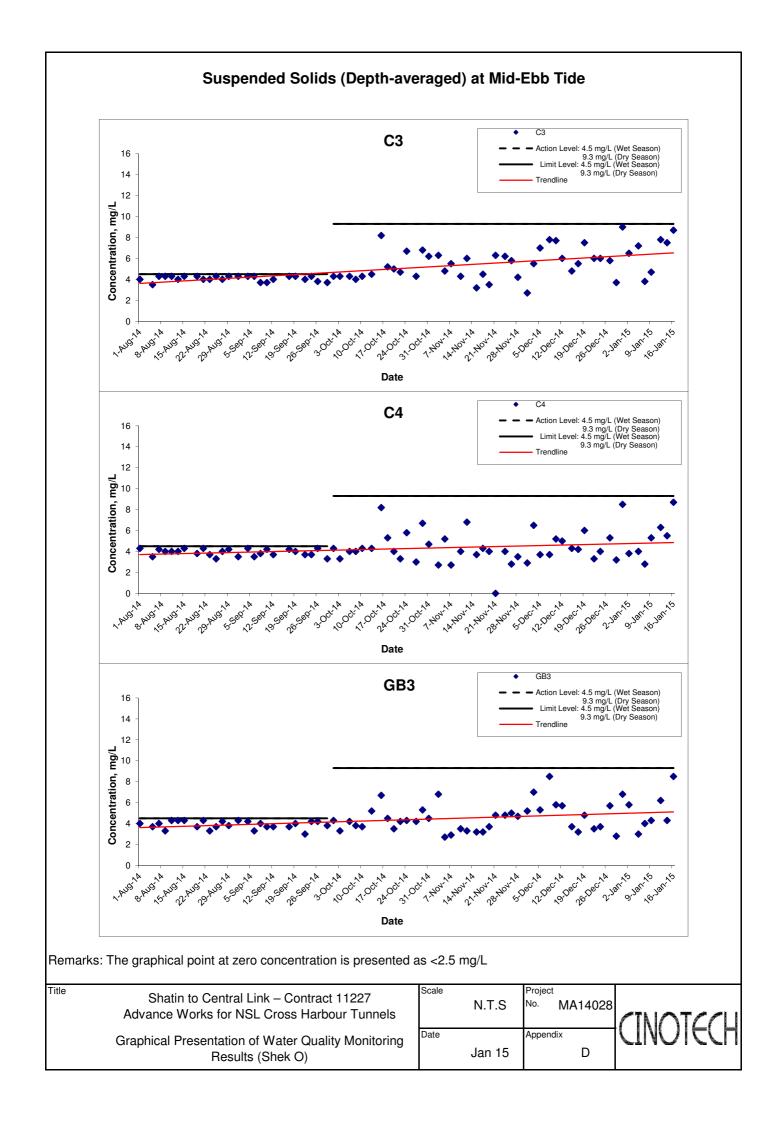


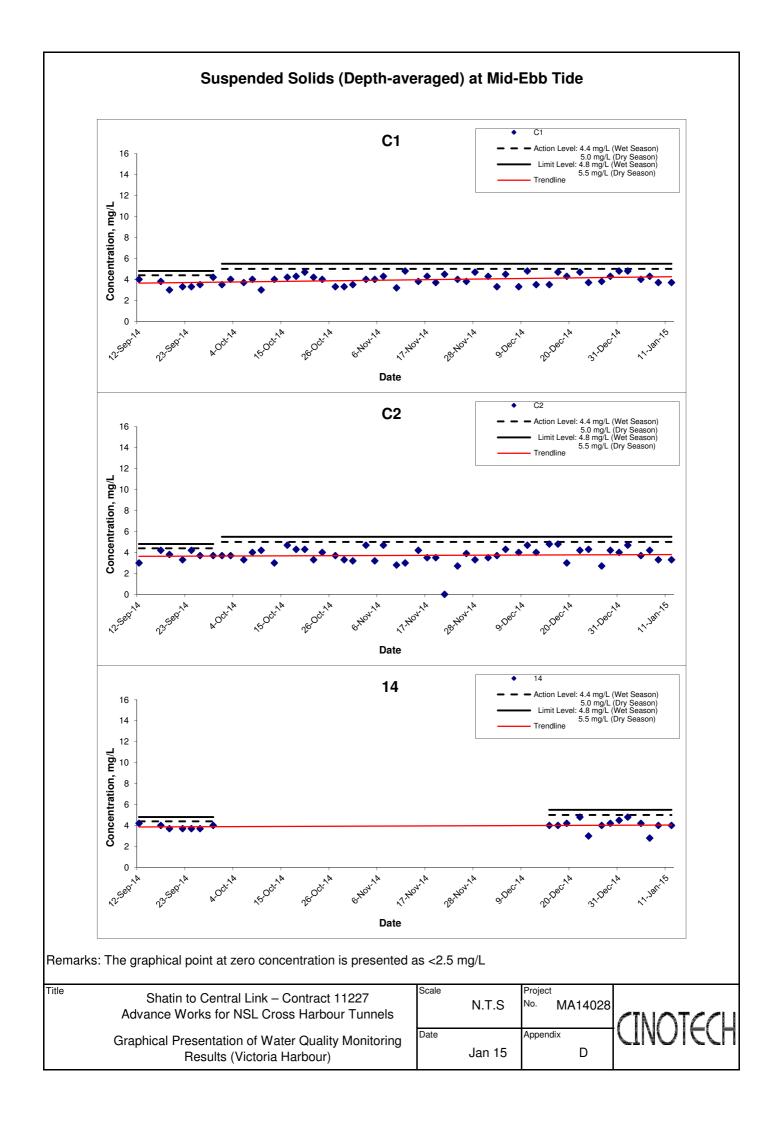


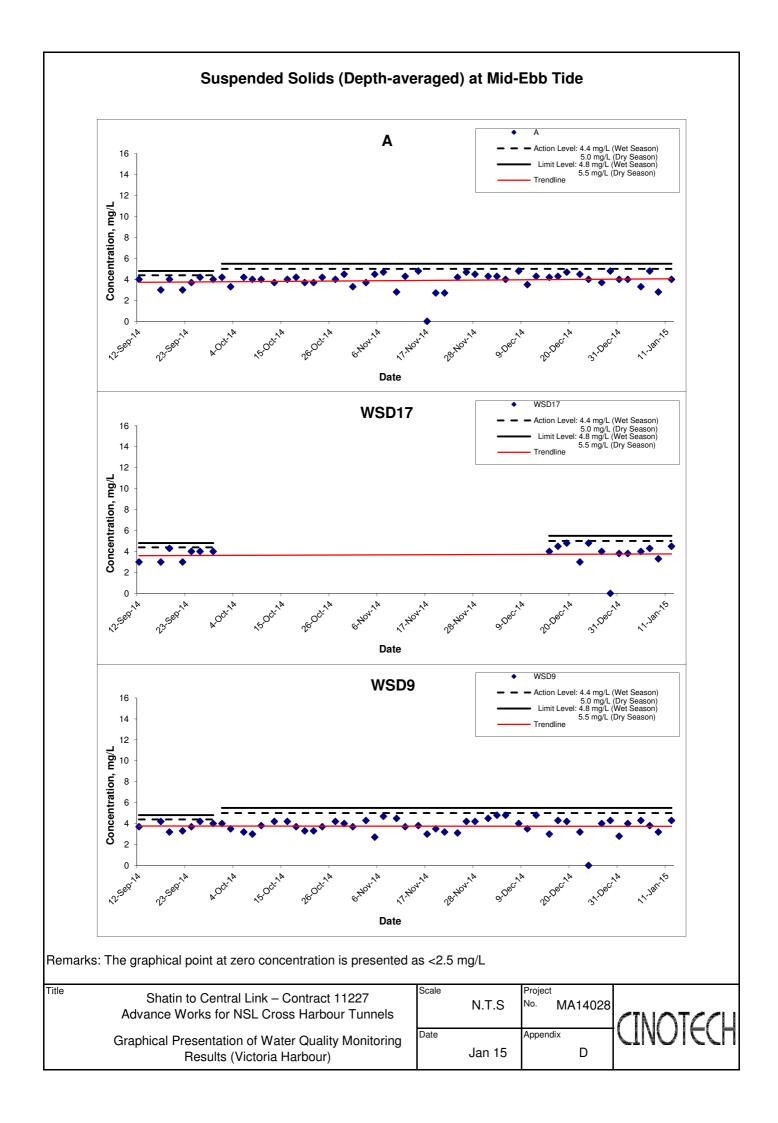


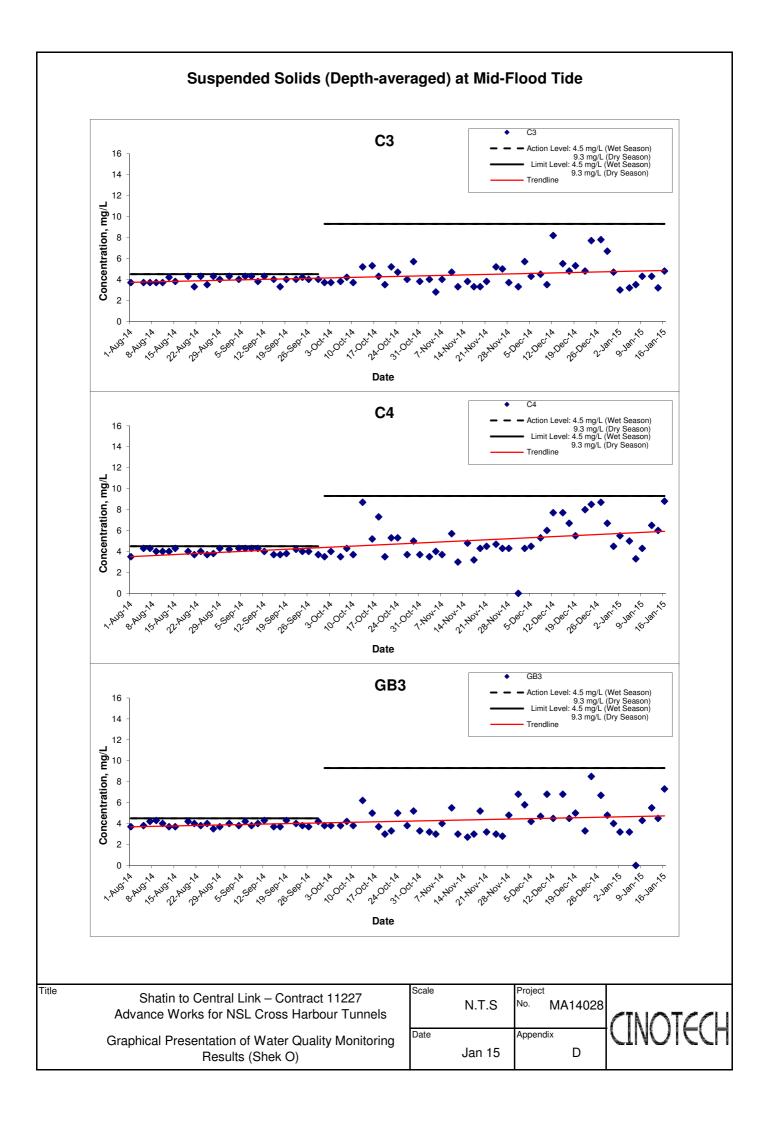


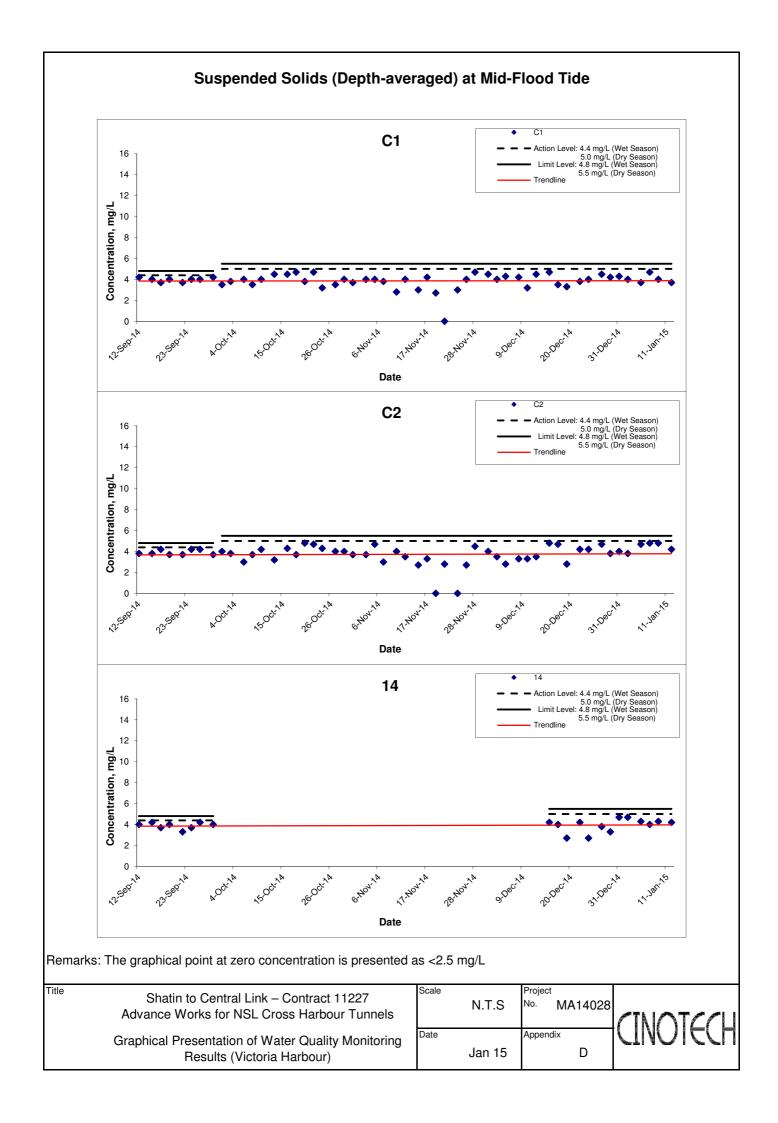


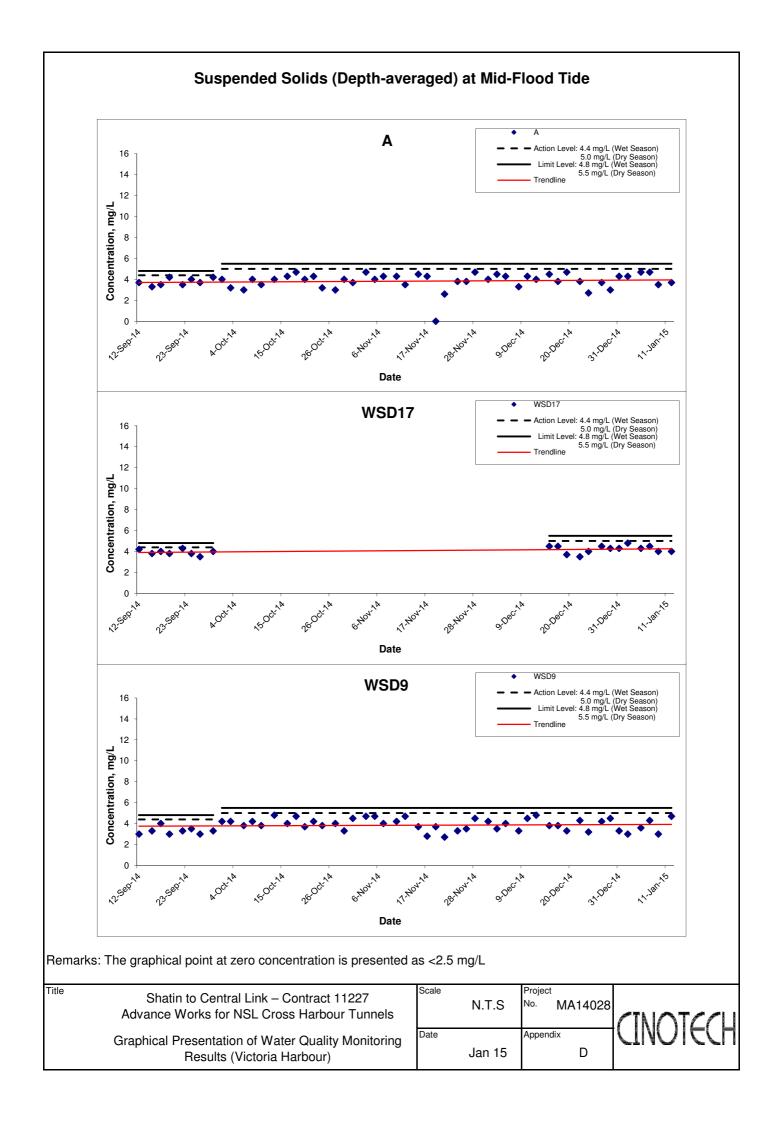












APPENDIX E COPIES OF CALIBRATION CERTIFICATES

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/W/141031-1
Date of Issue:	2014-10-31
Date Received:	2014-10-31
Date Tested:	2014-10-31
Date Completed:	2014-10-31
Next Due Date:	2015-01-30

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M

Serial No. Equipment No.

: 02D0126AA : W.03.01

Test conditions:

Room Temperature

: 20 degree Celsius

Relative Humidity

: 56%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 11J100025

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 07E100029

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 12B100900

1. Calibration check with Formazin standard solution

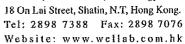
pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:


- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)
 Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (APHA 19th 4500-H+ B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

TEST REPORT

Test Report No.:	C/W/141031-1
Date of Issue:	2014-10-31
Date Received:	2014-10-31
Date Tested:	2014-10-31
Date Completed:	2014-10-31
Next Due Date:	2015-01-30

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, μS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1)	Theoretical Value (C2)	D = C1 - C2	
1420	1420	0	1420 ± 20

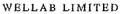
2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check


Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	- 0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/141212-1
Date of Issue: 2014-12-12
Date Received: 2014-12-12
Date Tested: 2014-12-12
Date Completed: 2014-12-12

Next Due Date:

2015-03-11

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M

Serial No.

: 12B100803

Equipment No.

: W.03.12

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 58%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 12B10055

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 12A100930

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 12B100644

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual

2. In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B) Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (APHA 19th 4500-H+ B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/141212-1 Date of Issue: 2014-12-12 Date Received: 2014-12-12 Date Tested: 2014-12-12 Date Completed: 2014-12-12 Next Due Date: 2015-03-11

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, μS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

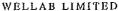
2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Ox	xygen, mg O ₂ /L	Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check


Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH_n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/141121-3
Date of Issue: 2014-11-21
Date Received: 2014-11-21
Date Tested: 2014-11-21
Date Completed: 2014-11-21
Next Due Date: 2015-02-20

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer Model No.

: Aquaread Ltd :AP-2000-D

Serial No. Equipment No.

: 122430520 : W.18.08

Test conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Dissolved Oxygen, Conductivity & Salinity Sensor,

- 1. Performance check against Winkler titration
- 2. Conductivity performance check with Potassium Chloride standard solution
- 3. Salinity performance check with Sodium Chloride standard solution

Turbidity Sensor, Batch: 12213

1. Calibration check with Formazin standard solution

pH / ORP electrode, Batch: 11933

- 1. Calibration check with standard pH buffer
- 2. Redox performance check with ZoBell's standard solution

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. Aquaprobe AP-2000 Manual

2. In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)

Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B),

pH (ISO 10523, Section 9.1 and APHA 19ed 4500-H+B),

Redox electrode (APHA 20ed 2580)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/141121-3
Date of Issue: 2014-11-21
Date Received: 2014-11-21
Date Tested: 2014-11-21
Date Completed: 2014-11-21
Next Due Date: 2015-02-20

Page:

2 of 2

Results:

1. Conductivity performance check

Specific (Conductivity, µS/cm		
Instrument Reading	Theoretical Value	Correction, μS/cm	Acceptable range
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salin	nity, ppt	pt Correction, ppt		
Instrument Reading	Theoretical Value	Correction, ppt	Acceptable range	
30.0	30.0	0.0	30.0 ± 3	

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Redox Meter check

Redox	, mV	
Instrument Reading	Theoretical Value	Acceptable range
228	229	229±10

7. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

APPENDIX F QUALITY CONTROL REPORTS FOR SS LABORATORY ANALYSIS

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21639

Date of Issue: 2014/12/18

Date Received: 2014/12/17

Date Tested:

2014/12/17

Date Completed:

2014/12/18

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/12/17

Number of Sample: 104

Custody No.:

MA14028/141217

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point			Difference,	
	mg/L	mg/L	%	
CO C	0	0	^	100

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21653

Date of Issue:

2014/12/22

Date Received:

2014/12/19

Date Tested:

2014/12/19

Date Completed:

2014/12/22

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/12/19

Number of Sample: 104

Custody No.:

MA14028/141219

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	8	8	0	99

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms B16, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21660

Date of Issue:

2014/12/23

Date Received:

2014/12/22

Date Tested:

2014/12/22

Date Completed:

2014/12/23

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/12/22

Number of Sample: 104

Custody No.:

MA14028/141222

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	7	7	3	113

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21677

Date of Issue:

2014/12/29

Date Received:

2014/12/24

Date Tested:

2014/12/24

Date Completed:

2014/12/29 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/12/24

Number of Sample: 104

Custody No.:

MA14028/141224

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3cf	Q	8	4	102

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patrahler

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21683

Date of Issue:

2014/12/29

Date Received:

2014/12/27

Date Tested:

2014/12/27

Date Completed: Page:

2014/12/29

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/12/27

Number of Sample: 104

Custody No.:

MA14028/141227

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	7	7	1	98

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21690

Date of Issue:

Date Completed:

2014/12/30

Date Received:

2014/12/29

Date Tested:

2014/12/29

2014/12/30

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/12/29

Number of Sample: 104

Custody No.:

MA14028/141229

Total Suspended Solids	Du	olicate Analysis		QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	•

mg/L 101 C3sf 10

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21715

Date of Issue:

2015/01/02

Date Received:

2014/12/31

Date Tested:

2014/12/31

Date Completed:

2015/01/02

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2014/12/31

Number of Sample: 104

Custody No.:

MA14028/141231

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	6	5	4	101

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21727

Date of Issue:

2015/01/05

Date Received:

2015/01/02

Date Tested:

2015/01/02

Date Completed:

2015/01/05

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2015/01/02

Number of Sample: 104

Custody No.:

C4sf

MA14028/150102

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Strakler

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lei Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

21734 Laboratory No.:

Date of Issue:

2015/01/06

Date Received:

2015/01/05

Date Tested:

2015/01/05

Date Completed:

2015/01/06

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2015/01/05

Number of Sample: 104

Custody No.:

MA14028/150105

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	· · · · · · · · · · · · · · · · · · ·
C2-6	4	1	1	00

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Websiter www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21751

Date of Issue:

2015/01/08

Date Received:

2015/01/07

Date Tested:

2015/01/07

Date Completed: Page:

2015/01/08

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2015/01/07

Number of Sample: 104

Custody No.:

MA14028/150107

Total Suspended Solids	5	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3sf	4	4	2	100

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21768

Date of Issue:

2015/01/12

Date Received:

2015/01/09

Date Tested:

2015/01/09 2015/01/12

Date Completed: Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2015/01/09

Number of Sample: 104

Custody No.:

MA14028/150109

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
COLE	- 5	Λ	6	102

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

21776 Laboratory No.:

2015/01/13 Date of Issue:

Date Received: 2015/01/12

Date Tested:

2015/01/12

Date Completed:

1 of 1

Page:

2015/01/13

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

Custody No.:

2015/01/12

Number of Sample: 104

MA14028/150112

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C4sf	6	6	3	103

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

21787 Laboratory No.:

Date of Issue: 2015/01/15

Date Received: 2015/01/14

Date Tested:

2015/01/14

Date Completed: Page:

2015/01/15

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2015/01/14

Number of Sample: 36

Custody No.:

MA14028/150114

Total Suspended Solids **Duplicate Analysis** QC Recovery, % Sampling Point Trial 1, Trial 2, Difference. mg/L mg/L % 2 101 C4sf 8 8

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 21803

Date of Issue: 2015/01/19

Date Received: 2015/01/16

Date Tested:

2015/01/16

Date Completed:

Page:

2015/01/19 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.11227

Advance Works for NSL Cross Harbour Tunnels

Sampling Date:

2015/01/16

Number of Sample: 32

Custody No.: MA14028/150116

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C3mf	6	6	4	98

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

APPENDIX G UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	nstruction Phase)		<u> </u>	_			
S5.134	Accidental chemical spillage and construction site run-off to the	Minimise the contamination	Contractor	All land based	Construction	• EIAO-TM	^
	receiving water bodies, mitigation measures such as removing	of wastewater discharge		works areas	phase		
	the pollutants before discharge into storm drain and paving the						
	section of construction road between the wheel washing bay						
	and the public road as suggested in Sections 11.216and						
	11.219 to 11.256 of the EIA Report shall be adopted						
ERR S3.6.3	Installation of floating type silt curtains around the area of site	Minimize indirect impact to	Contractor	Shek O Casting	Construction	• EIAO-TM	*
	levelling works and construction and removal of earth bund.	the nearby subtidal and		Basin	phase		
		intertidal flora and fauna					
Fisheries Im	pact						
S6.57	The size of the dredging and underwater blasting areas shall	To minimize loss of fishing	Contractor/	All dredging and	Construction	• EIAO-TM	٨
	be minimized as much as possible	ground and fisheries	MTR	underwater	phase		
		resources		blasting works			
				areas			
S6.57	Mitigation measures recommended in Sections 11.200 to	To minimize change in	Contractor	Works Areas	Construction	• EIAO-TM	٨
	11.207, 11.209 to 11.211 and 11.213 to 11.256 of the EIA	water quality impact on			phase		
	Report to control water quality, i.e. use of effective site	fisheries resources and					
	drainage in land-based construction site and installation of silt	operation					
	curtain surrounding the dredging point, use of closed grab						
	dredger and reduction of dredging rate shall be implemented.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Landscape &	Visual (Construction Phase)	I	T	I		1	
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	All works sites	Construction phase	• EIAO-TM	۸
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs.	Control of height and deposition/arrangement of temporary facilities in works areas	MTR	All works sites	Construction phase	• EIAO-TM	٨
Construction	n Dust Impact					•	
EP 2.25	All diesel fuelled construction plant used by the contractors within the works areas of the Project shall be powered by ultra low sulphur diesel fuel.	Mitigating Aerial Emissions from Construction Plant	Contractor	All works areas	Construction phase	• EIAO-TM	۸
Construction	Noise (Airborne)						
\$9.55	The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the	Minimize construction noise impact	Contractor	All works areas	Construction phase	• EIAO-TM	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	construction program						
	Mobile plant, if any, shall be sited as far from NSRs as						٨
	possible						
	Machines and plant (such as trucks) that may be in						٨
	intermittent use shall be shut down between work periods or						
	shall be throttled down to a minimum						
	Plant known to emit noise strongly in one direction shall,						٨
	wherever possible, be orientated so that the noise is directed						
	away from the nearby NSRs						
	Material stockpiles and other structures shall be effectively						٨
	utilized, wherever practicable, in screening noise from on-site						
	construction activities.						
Water Quality	(Construction Phase)						
S11.204	No more than one closed grab dredger shall be operated	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	٨
	outside the CBTS in the open harbor for SCL construction.	and contaminants from		areas in Victoria	phase	• WPCO	
		dredging in the Victoria		Harbour			
		Harbour					
Table 11.23	Silt screens shall be installed at the WSD Flushing Water	To protect the beneficial	Contractor	Flushing water	Construction	• EIAO-TM	N/A
	Intakes at Kowloon Station, Tai Wan, Quarry Bay and Wan	use of flushing water		intake points in	phase	• WPCO	
	Chai (namely Intakes 14, WSD9, WSD17 and A respectively)	intakes in Victoria Harbour		Victoria Harbour			
	during any dredging / filling works outside the CBTS for	from dredging / filling					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	temporary reclamation at SCL2 or for IMT construction	activities					
S11.210 -	If the marine works for SCL are to be carried out concurrently	To minimize loss of	Contractor	Marine works	Construction	Construction	۸
S11.211 &	with other dredging / filling activities in the Victoria Harbour, the	fines and contaminants		areas in Victoria	phase	phase	
Table	production rates of any dredging / filling work to be undertaken	from dredging / filling in		Harbour			
11.24	outside the CBTS for SCL construction in the open harbour	the Victoria Harbour					
	(including temporary reclamation at SCL2 and IMT						
	construction) shall not exceed 2,500 m³ per day at any time						
	throughout the entire construction period. The hourly						
	production rate for dredging or bulk filling within the open						
	Victoria Harbour (outside the breakwater of CBTS) shall not						
	exceed 156 m³ per hour (if there are other concurrent marine						
	works in Victoria Harbour) and the maximum working hour for						
	the dredging / bulkfilling works shall be 16 hours per day.						
	If the marine works for SCL are to be carried out with no other						۸
	concurrent dredging / filling activities in the Victoria Harbour,						
	the production rates of any dredging / filling work to be						
	undertaken outside the CBTS for SCL construction in the open						
	harbour (including temporary reclamation at SCL2 and IMT						
	construction) shall not exceed 4,500 m³ per day at any time						
	throughout the entire construction period. The hourly						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	production rate for dredging or bulk filling within the open						
	Victoria Harbour (outside the breakwater of CBTS) shall not						
	exceed 281 m³ per hour (if there is no other concurrent marine						
	works in Victoria Harbour) and the maximum working hour for						
	the dredging / bulk filling works shall be 16 hours per day.						
S11.215	The following good site practices shall be undertaken during	To minimize loss of	Contractor	Marine works	Construction	• EIAO-TM	
	dredging:	fines and contaminants		areas	phase	• WPCO	
	mechanical grabs, if used, shall be designed and	from dredging / filling					۸
	maintained to avoid spillage and sealed tightly while being						
	lifted;						
	all vessels shall be sized so that adequate clearance is						۸
	maintained between vessels and the seabed in all tide						
	conditions, to ensure that undue turbidity is not generated by						
	turbulence from vessel movement or propeller wash;						
	all hopper barges and dredgers shall be fitted with tight						۸
	fitting seals to their bottom openings to prevent leakage of						
	material;						
	construction activities shall not cause foam, oil, grease,						۸
	scum, litter or other objectionable matter to be present on the						
	water within the site or dumping grounds;						
	loading of barges and hoppers shall be controlled to						۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	prevent splashing of dredged material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation; • before commencement of the temporary reclamation works, the holder of the Environmental Permit shall submit plans showing the phased construction of the reclamation, design and operation of the silt curtain.						N/A
S11.216	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works.	minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction phase	• EIAO-TM • WPCO	*
	 Stockpiling of construction and demolition materials and dusty materials shall be covered and located away from the seawater front and storm drainage. Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the 						^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the	illeasures	measures?	standards for the	
		address			illeasures :		
		address	measures?			measures to	
						achieve?	
	nearby receiving waters.						
S11.218	Silt screens are recommended to be deployed at the seawater	To avoid the pollutant and	Contractor	Proposed silt	Construction	• EIAO-TM	٨
	intakes during the construction works period. Regular	refuse entrapment		screens at water	phase	• WPCO	
	maintenance of the silt screens and refuse collection shall be	problems at the silt screens		intakes.			
	performed at the silt screens at regular intervals on a daily	to be installed at the water					
	basis. The Contractor shall be responsible for keeping the	intakes					
	water behind the silt screen free from floating rubbish and						
	debris during the impact monitoring period.						
S11.219	It is recommended that collection and removal of floating	To minimize water	Contractor	Marine works	Construction	• EIAO-TM	*
	refuse shall be performed within the marine construction areas	quality impacts from		area	phase	·WPCO	
	at regular intervals on a daily basis. The Contractor shall be	illegal dumping and				·WDO	
	responsible for keeping the water within the site boundary and	littering from marine					
	the neighbouring water free from rubbish during the dredging	vessels and runoff from					
	works.	the coastal area					
S11.246 &	Construction work force sewage discharges on site are	minimize water quality	Contractor	All works areas	Construction	• EIAO-TM	٨
11.247	expected to be discharged to the nearby existing trunk sewer	impacts due to sewage			phase	• WPCO	
	or sewage treatment facilities. If disposal of sewage to public	generated from				· TM-DSS	
	sewerage system is not feasible, appropriate numbers of	construction				·WDO	
	portable toilets shall be provided by a licensed contractor to	workforce					
	serve the construction workers over the construction site to						
	prevent direct disposal of sewage into the water environment.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	The Contractor shall also be responsible for waste disposal and maintenance practices.						
	Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.						^
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction phase	• EIAO-TM • WPCO • TM-DSS • WDO	N/A
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction phase	• EIAO-TM • WPCO • TM-DSS • WDO	*
S11.256	Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes"	minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction phase	• EIAO-TM • WPCO • TM-DSS	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	published under the Waste Disposal Ordinance details the					·WDO	
	requirements to deal with chemical wastes. General						
	requirements are given as follows:						
	Suitable containers shall be used to hold the chemical wastes						۸
	to avoid leakage or spillage during storage, handling and						
	transport.						
	Chemical waste containers shall be suitably labelled, to notify						۸
	and warn the personnel who are handling the wastes, to avoid						
	accidents.						
	Storage area shall be selected at a safe location on site and						٨
	adequate space shall be allocated to the storage area.the						
	areas appropriately equipped to control these discharges.						
ERR S 8.5.1	Floating type silt curtains would be installed around the area of	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	*
	site levelling works and construction and removal of earth bund	impact at Shek O Casting		Basin	phase		
	during the respective works.	Basin					
ERR S 8.5.1	Floating type silt curtains would be installed around the	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	*
	entrances of the basin during rock filling works.	impact at Shek O Casting		Basin	phase		
		Basin					
EP 2.23.3	All fill materials used in marine works at the Basin shall contain	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	۸
	no more than 5% fines (aggregates diameter smaller than	impact at Shek O Casting		Basin	phase		
	63μm) content.	Basin					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
EP 2.23.4	The sea bed levelling works shall not involve any dumping of	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	٨
	imported fill materials onto the seabed. The in-situ volume of	impact at Shek O Casting		Basin	phase		
	sea bed materials to be moved during the sea bed leveling	Basin					
	works shall not be more than 10,000m³. If sea bed materials						
	other than coarse sand, cobble and gravel as identified in the						
	previous marine investigation are encountered, alternative						
	leveling methods and/or additional mitigation measures shall						
	be proposed for the approval of the Director before the works						
	can proceed. The silt curtain shall be properly installed prior to						
	the commencement of sea bed leveling works, and if						
	necessary, double silt curtains shall be deployed to ensure full						
	enclosure of the leveling works at all times to prevent the						
	escape of sediment to water column outside the silt curtains.						
EP 2.23.5	The filling of the southern part of the Basin shall be carried out	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	٨
	using rocks or coarse aggregates with diameters	impact at Shek O Casting		Basin	phase		
	between 20mm and 200mm and with no more than 5% fines	Basin					
	(aggregates with diameter smaller than 63μm) content, up to a						
	level not higher than -12mPD. The maximum filling rate shall						
	be no more than 4,500m³/day.						
Waste Manag	ement (Construction Waste)	ı				ı	1
S12.75	Good Site Practices and Waste Reduction Measures	reduce waste management	Contractor	All works sites	Construction	Waste Disposal	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to	Who to implement	Location of the measures	When to Implement the measures?	What requirements or standards for the	Status
		address	measures?		mououroo	measures to	
						achieve?	
	- Prepare a Waste Management Plan	impacts			phase	Ordinance (Cap.	۸
	(WMP) approved by the Engineer/Supervising Officer of the					354)	
	Project based on current practices on construction sites;					• Land	
	- Training of site personnel in, site cleanliness, proper waste					(Miscellaneous	٨
	management and chemical handling procedures;					Provisions)	
	- Provision of sufficient waste disposal points and regular					Ordinance (Cap.	٨
	collection of waste;					28)	
	- Appropriate measures to minimize windblown litter and dust					• DEVB TCW	٨
	during transportation of waste by either covering trucks or by					No. 6/2010	
	transporting wastes in enclosed containers;						
	- Regular cleaning and maintenance programme for drainage						۸
	systems, sumps and oil interceptors; and						
	- Separation of chemical wastes for special handling and						۸
	appropriate treatment.						
S12.76	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	Waste Disposal	
	(Con't)	reduction			phase	Ordinance (Cap.	
	- Sorting of demolition debris and excavated materials from					354)	٨
	demolition works to recover reusable/ recyclable portions (i.e.					• Land	
	soil, broken concrete, metal etc.);					(Miscellaneous	
	- Segregation and storage of different types of waste in					Provisions)	٨
	different containers, skips or stockpiles to enhance reuse or					Ordinance (Cap.	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	recycling of materials and their proper disposal;					28)	
	- Encourage collection of aluminum cans by providing						٨
	separate labeled bins to enable this waste to be segregated						
	from other general refuse generated by the workforce;						
	- Proper storage and site practices to minimize the potential						٨
	for damage or contamination of construction						
	materials;						
	- Plan and stock construction materials carefully to minimize						٨
	amount of waste generated and avoid unnecessary generation						
	of waste; and						
	- Training shall be provided to workers about the concepts of						٨
	site cleanliness and appropriate waste management						
	procedures, including waste reduction, reuse and recycle.						
S12.77	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	
	(Con't)	reduction			phase	No. 19/2005	
	- The Contractor shall prepare and implement a WMP as part						٨
	of the EMP in accordance with ETWBTCW No. 19/2005 which						
	describes the arrangements for avoidance, reuse, recovery,						
	recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the						
	construction activities. Such a management plan shall						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and						
	recyclable materials. The EMP shall be submitted to the						
	Engineer for approval. The Contractor shall implement the						
	waste management practices in the EMP throughout the						
	construction stage of the Project.						
	The EMP shall be reviewed regularly and updated by the						٨
	Contractor, preferably in a monthly basis.						
S12.78	C&D materials would be reused in other local concurrent	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	٨
	projects as far as possible. If all reuse outlets are exhausted	reduction			phase	No. 19/2005	
	during the construction phase, the C&D materials would be						
	disposed of at Taishan, China as a last resort.						
S12.79	Storage, Collection and Transportation of Waste	minimize potential	Contractor	All works sites	Construction	-	
	Should any temporary storage or stockpiling of waste is	adverse environmental			phase		
	required, recommendations to minimize the impacts include:	impacts arising from waste					
	- Waste, such as soil, shall be handled and stored well to	storage					٨
	ensure secure containment, thus minimizing the potential of						
	pollution;						
	- Maintain and clean storage areas routinely;						٨
	- Stockpiling area shall be provided with covers and water						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to implement	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	spraying system to prevent materials from wind-blown or being						
	washed away; and						
	- Different locations shall be designated to stockpile each						٨
	material to enhance reuse						
S12.80	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	-	
	Waste haulier with appropriate permits shall be employed by	environmental impacts			phase		
	the Contractor for the collection and transportation of waste	arising from waste					
	from works areas to respective disposal outlets. The following	collection and disposal					
	suggestions shall be enforced to minimize the potential						
	adverse impacts:						
	- Remove waste in timely manner						٨
	- Waste collectors shall only collect wastes prescribed by						٨
	their permits						
	- Impacts during transportation, such as dust and odour, shall						٨
	be mitigated by the use of covered trucks or in enclosed						
	containers						
	- Obtain relevant waste disposal permits from the appropriate						٨
	authorities, in accordance with the Waste Disposal Ordinance						
	(Cap. 354), Waste Disposal (Charges for Disposal of						
	Construction Waste) Regulation (Cap. 345) and the Land						
	(Miscellaneous Provisions) Ordinance (Cap. 28)						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to	Location of the measures	When to	What requirements or	Status
		& Main Concerns to	the	measures	measures?	standards for the	
		address	measures?		measures:	measures to	
		addiess	measures:			achieve?	
	- Waste shall be disposed of at licensed waste disposal						٨
	facilities						
	- Maintain records of quantities of waste generated, recycled						٨
	and disposed						
S12.81	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	• DEVB TCW	
012.01	- Implementation of trip ticket system with reference to DevB	environmental impacts	Contractor	7 III WOING GILGG	phase	No. 6/2010	٨
	TC(W) No.6/2010 to monitor disposal of waste and to control	arising from waste			pridoc	140. 6/2010	
	fly-tipping at PFRFs or landfills. A recording system for the	collection and disposal					
		collection and disposal					
	amount of waste generated, recycled and disposed (including						
	disposal sites) shall be proposed		_				
S12.83 – 12.86	Sorting of C&D Materials	minimize potential adverse	Contractor	All works sites	Construction	• DEVB TCW	
	- Sorting to be performed to recover the inert materials,	environmental impacts			phase	No. 6/2010	٨
	reusable and recyclable materials before disposal off-site.	during the handling,				• ETWB TCW No.	
	- Specific areas shall be provided by the Contractors for	transportation and disposal				33/2002	٨
	sorting and to provide temporary storage areas for the sorted	of C&D materials				• ETWB TCW	
	materials.					No. 19/2005	
	- The C&D materials shall at least be segregated into inert						٨
	and non-inert materials, in which the inert portion could be						
	reused and recycled as far as practicable before delivery to						
	PFRFs as mentioned for beneficial use in other projects. While						
	opportunities for reusing the non-inert portion shall be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	investigated before disposal of at designated landfills.						
	- Possibility of reusing the spoil in the Project will be						٨
	continuously investigated in the detailed design and						
	construction stages, it includes backfilling to cut and cover						
	construction works for the Hung Hom south and north						
	approach						
S12.88	Sediments	To ensure the	Contractor	All works areas	Construction	ETWB TC(W) No.	
	The basic requirements and procedures for excavated /	sediment to be		with sediments	Phase	34/2002 &	٨
	dredged sediment disposal specified under ETWB TC(W) No.	disposed of in an		concern		Dumping at Sea	
	34/2002 shall be followed. MFC is managing the disposal	authorized and least				Ordinance	
	facilities in Hong Kong for the dredged and excavated	impacted way					
	sediment, while EPD is the authorityof issuing marine dumping						
	permit under the Dumping at Sea Ordinance						
S12.89	Sediments	To determine the best	Contractor	All works areas	Construction	ETWB TC(W) No.	
	The contractor for the excavation / dredging works shall apply	handling and disposal		with sediments	Phase	34/2002 &	٨
	for the site allocations of marine sediment disposal based on	option of the sediments		concern		Dumping at Sea	
	the prior agreement with MFC/CEDD. A request for reservation					Ordinance	
	of sediment disposal space have been submitted to MFC for						
	onward discussions of disposal approach and feasible disposal						
	sites and the letter is attached in Appendix 12.6. The Project						
	proponent shall also be responsible for the application of all						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	necessary permits from relevant authorities, including the						
	dumping permit as required under DASO from EPD, for the						
	disposal of dredged and excavated sediment prior to the						
	commencement of the excavation works.						
S12.91-12.94	Sediments	To ensure handling of	Contractor	Work Sites,	Construction	ETWB TC(W) No.	
	- Stockpiling of contaminated sediments shall be avoided as	sediments are in		Sediment	Phase	34/2002 &	۸
	far as possible. If temporary stockpiling of contaminated	accordance to statutory		disposal sites		Dumping at Sea	
	sediments is necessary, the excavated sediment shall be	requirements				Ordinance	
	covered by tarpaulin and the area shall be placed within						
	earth bunds or sand bags to prevent leachate from entering						
	the ground, nearby drains and/or surrounding water bodies.						
	The stockpiling areas shall be completely paved or covered						
	by linings in order to avoid contamination to underlying soil						
	or groundwater. Separate and clearly defined areas shall be						
	provided for stockpiling of contaminated and						
	uncontaminated materials. Leachate, if any, shall be						
	collected and discharged according to the Water Pollution						
	Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions						٨
	during excavation and transportation of the sediment, the						
	excavated sediments shall be wetted during excavation /						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	material handling and shall be properly covered when						
	placed on trucks or barges. Loading of the excavated						
	sediment to the barge shall be controlled to avoid splashing						
	and overflowing of the sediment slurry to the surrounding						
	water.						
	- The barge transporting the sediments to the designated						٨
	disposal sites shall be equipped with tight fitting seals to						
	prevent leakage and shall not be filled to a level that would						
	cause overflow of materials or laden water during loading or						
	transportation. In addition, monitoring of the barge loading						
	shall be conducted to ensure that loss of material does not						
	take place during transportation. Transport barges or						
	vessels shall be equipped with automatic selfmonitoring						
	devices as specified by the DEP.						
	- In order to minimise the exposure to contaminated						٨
	materials, workers shall, when necessary, wear appropriate						
	personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning						
	facilities shall also be provided on site.						
S12.95	Sediments	To ensure handling of	Contractor	Work Sites,	Construction	ETWB TC(W) No.	
	A possible arrangement for Type 3 disposal is by geosynthetic	sediments are in		Sediment	Phase	34/2002 &	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	containment. A geosynthetic containment method is a method	accordance to statutory		disposal sites		Dumping at Sea	
	whereby the sediments are sealed in geosynthetic containers	requirements				Ordinance	
	and, at the disposal site, the containers would be dropped into						
	the designated contaminated mud pit where they would be						
	covered by further mud disposal and later by the mud pit						
	capping, thereby meeting the requirements for fully confined						
	mud disposal. The technology is readily available for the						
	manufacture of the geosynthetic containers to the						
	project-specific requirements. Similar disposal methods have						
	been used for projects in Europe, the USA and Japan and the						
	issues of fill retention by the geosynthetic fabrics, possible						
	rupture of the containers and sediment loss due to impact of						
	thecontainer on the seabed have been addressed.						
S12.97	Containers for Storage of Chemical Waste	register with EPD	Contractor	All works sites	Construction	Code of	
	The Contractor shall register with EPD as a chemical waste	as a Chemical waste			phase	Practice on the	
	producer and to follow the guidelines stated in the Code of	producer and store				Packaging,	
	Practice on the Packaging, Labelling and Storage of Chemical	chemical waste in				Labelling and	
	Wastes. Containers used for storage of chemical waste shall:	appropriate containers				Storage of	
	- Be compatible with the chemical wastes being stored,					Chemical Wastes	*
	maintained in good condition and securely sealed;						
	- Have a capacity of less than 450 litters unless the					_	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	specifications have been approved by EPD; and						
	- Display a label in English and Chinese in accordance with						٨
	instructions prescribed in Schedule 2 of the Waste Disposal						
	(Chemical Waste) (General) Regulation						
S12.98	Chemical Waste Storage Area	prepare appropriate	Contractor	All works sites	Construction	• Code of	
	- Be clearly labeled to indicate corresponding chemical	storage areas for chemical			phase	Practice on the	N/A
	characteristics of the chemical waste and used for storage of	waste at works areas				Packaging,	
	chemical waste only;					Labelling and	
	- Be enclosed on at least 3 sides;					Storage of	N/A
	- Have an impermeable floor and bunding, of capacity to					Chemical Wastes	N/A
	accommodate 110% of the volume of the largest container or						
	20% by volume of the chemical waste stored in that area,						
	whichever is the greatest;						
	- Have adequate ventilation;						N/A
	- Be covered to prevent rainfall from entering; and						N/A
	- Be properly arranged so that incompatible materials are						N/A
	adequately separated.						
S12.98	Chemical Waste	clearly label the chemical	Contractor	All works sites	Construction	• Code of	
	- Lubricants, waste oils and other chemical wastes would be	waste at works areas			phase	Practice on the	٨
	generated during the maintenance of vehicles and mechanical					Packaging,	
	equipments. Used lubricants shall be collected and stored in					Labelling and	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	individual containers which are fully labelled in English and					Storage of	
	Chinese and stored in a designated secure place.					Chemical Wastes	
S12.100	Collection and Disposal of Chemical Waste	To monitor the generation,	Contractor	All works sites	Construction	Waste Disposal	
	A trip-ticket system shall be operated in accordance with the	reuse and disposal of			phase	(Chemical Waste)	N/A
	Waste Disposal (Chemical Waste) (General) Regulation to	chemical waste				(General)	
	monitor all movements of chemical waste. The Contractor shall					Regulation	
	employ a licensed collector to transport and dispose of the						
	chemical wastes, to either the approved CWTC at Tsing Yi, or						
	another licensed facility, in accordance with the Waste						
	Disposal (Chemical Waste) (General) Regulation						
S12.101	General Refuse	properly store and	Contractor	All works sites	Construction	-	
	General refuse shall be stored in enclosed bins or compaction	separate from other C&D			phase		*
	units separate from C&D materials and chemical waste. A	materials for					
	reputable waste collector shall be employed by the contractor	subsequent collection and					
	to remove general refuse from the site, separately from C&D	disposal					
	materials and chemical wastes. Preferably, an enclosed and						
	covered area shall be provided to reduce the occurrence of						
	wind-blown light material.						
S12.102	The recyclable component of general refuse, such as	facilitate recycling of	Contractor	All works sites	Construction	-	٨
	aluminum cans, paper and cleansed plastic containers shall be	recyclable portions of			phase		
	separated from other waste. Provision and collection of	refuse					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for the	
		address	measures?			measures to	
						achieve?	
	recycling bins for different types of recyclable waste shall be						
	set up by the Contractor. The Contractor shall also be						
	responsible for arranging recycling companies to collect these						
	materials.						
S12.102	The Contractor shall carry out an education programme for	raise workers' awareness	Contractor	All works sites	Construction	-	۸
	workers in avoiding, reducing, reusing and recycling of	on recycling issue			phase		
	materials generation. Posters and leaflets advising on the use						
	of the bins shall also be provided in the sites as reminders						

Remarks: ^

- Compliance of mitigation measure
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Observation/reminder was made during site audit but improved/rectified by the contractor.

N/A Not Applicable

APPENDIX H WASTE GENERATION IN THE CONSTRUCTION PERIOD

Monthly Summary Waste Flow Table for Year 2014

	Actual (Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics	Chemical Waste	Others, e.g. general refuse	
	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000kg)	('000kg)	('000kg)	('000kg)	('000m ³)	
August	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	
September	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
October	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
November	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
December	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	