Sun Fook Kong – Bestwise Joint Venture

Contract No. DC/2009/10 HATS Stage 2A – Upgrading Works at Stonecutters Island Sewage **Treatment Works - Main Pumping** Station, Sedimentation Tanks and **Ancillary Facilities**

Monthly Environmental Monitoring and Audit Report August 2019

(Version 1.0)

Certified By (Environmental Team Leader) REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

Wellab accepts no responsibility for changes made to this report by third parties

WELLAB LTD Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2898 2083 Fax: (852) 2898 7076 Email: info@wellab.com.hk

CE/Harbour Area Treatment Scheme Drainage Services Department Sewage Services Branch Harbour Area Treatment Scheme Division 5/F, Western Magistracy 2A Pokfulam Road, Hong Kong

Attn: Mr. K K Kam

Our Reference EC/AFK/DC/rh/T261332/ 22.01/L-1406

3/F International Trade Tower 348 Kwun Tong Road Kowloon Hong Kong

T +852 2828 5757 F +852 2827 1823 mottmac.hk Agreement No. CE 8/2009(EP) Harbour Area Treatment Scheme Stage 2A Independent Environmental Checker for Construction Phase – Investigation

Contract No. DC/2009/10 – Upgrading Works at Stonecutters Island Sewage Treatment Works – Main Pumping Station, Sedimentation Tanks and Ancillary Facilities

Condition 4.4 – Monthly EM&A Report for August 2019 (no. 101) Version 1.0

12 September 2019

By Post

Dear Sir,

I refer to the captioned Monthly EM&A Report for August 2019 (version 1.0) submitted by ET on 12 September 2019 via email. In accordance with Condition 4.4 of Environmental Permit No. EP-322/2008/G, I hereby verify the captioned Monthly EM&A Report.

Yours faithfully for MOTT MACDONALD HONG KONG LIMITED

Ir Dr Anne F Kerr Independent Environmental Checker T +852 2828 5757 anne.kerr@mottmac.com

C.C.

Ove Arup & Partners HK Limited Sun Fook Kong – Bestwise Joint Venture Wellab Limited Mr. Jeremy Mark SparrowFaMr. Keith HoByDr. Priscilla ChoyBy

Fax: 2370 4377 By email By email

TABLE OF CONTENTS

		Page
EX	KECUTIVE SUMMARY	1
	Introduction	
	Environmental Monitoring Works	
	Environmental Licenses and Permits	
	Environmental Mitigation Implementation Schedule	
	Key Information in the Reporting Month Summary of Complaints and Prosecutions	
	Future Key Issues:	
1.	INTRODUCTION	
	Background	4
	Project Organizations	
	Summary of EM&A Requirements	
2.	AIR QUALITY	6
	Monitoring Requirements	6
	Monitoring Locations	6
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedure	6
	Results and Observations	9
3.	NOISE	10
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures Results and Observations	11
4.	ENVIRONMENTAL AUDIT	
4.		
	Site Audits	
	Implementation Status of Environmental Mitigation Measures Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	
	Implementation Status of Event Action Plans	14
	Summary of Complaints and Prosecutions	
5.	FUTURE KEY ISSUES	16
	Key Issues for the Coming Month	16
	Monitoring Schedule for the Next Month	
	Construction Program for the Next Month	16
6.	CONCLUSIONS AND RECOMMENDATIONS	17
	Conclusions	
	Recommendations for next reporting month	17

LIST OF TABLES

- Table I
 Summary Table for Non-compliance Recorded in the Reporting Month
- Table IISummary Table for Key Information in the Reporting Month
- Table 1.1Key Project Contacts
- Table 2.1Locations for Air Quality Monitoring
- Table 2.2Air Quality Monitoring Equipment
- Table 2.3Impact Dust Monitoring Parameters, Frequency and Duration
- Table 2.4Summary of 1-hour and 24-hour TSP Monitoring Result in Reporting Month
- Table 3.1Locations for Noise Monitoring Stations
- Table 3.2Noise Monitoring Equipment
- Table 3.3Noise Monitoring Parameters, Frequency and Duration
- Table 3.4Summary the Noise Monitoring Results in Reporting Month
- Table 4.1Observations of Site Audit
- Table 4.2Summary of Environmental Licence / Permit for DC/2009/10

LIST OF FIGURES

Figure 1	General Location Plan of the Project and
	Locations of Air Quality and Noise Monitoring Stations
Figure 2	ET's Organization Chart

LIST OF APPENDICES

А	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
С	Environmental Monitoring Schedules
D	1-hour and 24-hour TSP Monitoring Results and Graphical Presentations
E	Noise Monitoring Results and Graphical Presentations
F	Summary of Exceedance
G	Site Audit Summary
Н	Summary of Amount of Waste Generated
Ι	Event Action Plans
J	Environmental Mitigation Implementation Schedule (EMIS)
K	Complaint Log

L Construction Programme

ABBREVIATION AND ACRONYM

AL Levels	Action and Limit Levels
DSD	Drainage Services Department
E / ER	Engineer/Engineer's Representative
EIA	Environmental Impact Assessment
EM&A	Environmental Monitoring and Audit
EMIS	Environmental Mitigation Implementation Schedule
EP	Environmental Permit
EPD	Environmental Protection Department
ET	Environmental Team
HVS	High Volume Sampler
IEC	Independent Environmental Checker
RE	Resident Engineer
RH	Relative Humidity
QA/QC	Quality Assurance / Quality Control
SLM	Sound Level Meter
WMP	Waste Management Plan
SCISTW	Stonecutters Island Sewage Treatment Works
HATS Stage 2A	Harbour Area Treatment Scheme Stage 2A
SBJV	Sun Fook Kong - Bestwise Joint Venture

EXECUTIVE SUMMARY

Introduction

- This is the 101st Monthly Environmental Monitoring and Audit (EM&A) Report prepared by Wellab Limited for DSD Contract No. DC/2009/10 "HATS Stage 2A – Upgrading Works at Stonecutters Island Treatment Works – Main Pumping Station, Sedimentation Tanks and Ancillary Facilities" (The Project) which documents the key information of EM&A and environmental monitoring works undertaken by other Contracts at the SCISTW under HATS Stage 2A with the same Environmental Permit (Permit No. EP-322/2008/G).
- 2. The site activities undertaken in the reporting month included:

Riser Shaft

- Hack off C.J. and erect slab formwork for Riser Shaft Top Slab
- Concrete surround for DN600 centrate pipe and air vents is completed

External Works

- Construction of paving block road near DOU2 and Car Park Cover
- Construction of concrete pavement near CMB

MPS2

• Construction of standing platform for site visit

Environmental Monitoring Works

- 3. The environmental monitoring works of the Project were conducted by the ETs for Contract DC/2009/10, at the SCISTW under HATS 2A with the same Environmental Permit. The monitoring results were checked and reviewed and the site audits were conducted once per week. The implementation of the Environmental Mitigation Measures, Event Action Plans and Environmental Complaint Handling Procedures were also checked.
- 4. Summary of the non-compliance of the reporting month is tabulated in Table I.

Table I Summary Table for Non-compliance Recorded in the Reporting Month

Monitored	Monitoring		No. of Exceedance		No. of Exceedance Due to the Project		Action
By	Station	Parameter	Action Level	Limit Level	Action Level	Limit Level	Taken
	AM6a	1-hr TSP	0	0	0	0	N/A
	AMOa	24-hr TSP	0	0	0	0	N/A
	NM5	Noise	0	0	0	0	N/A
DC/2009/10	NM6	Noise	0	0	0	0	N/A
DC/2007/10	AM7	1-hr TSP	0	0	0	0	N/A
		24-hr TSP	0	0	0	0	N/A
	AM8	1-hr TSP	0	0	0	0	N/A
	ANIO	24-hr TSP	0	0	0	0	N/A

1-hour TSP Monitoring

5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

7. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

8. Licenses/Permits granted to the Project include the Environmental Permit (EP); Billing account for Disposal of Construction Waste, Registered as Chemical Waste Producer and Construction Noise Permits.

Environmental Mitigation Implementation Schedule

9. According to the EIA Report Section 3.74, 4.56 and 13.44, air quality, noise and landscape and visual would be the key environmental issues and mitigation measures shall be implemented during the construction phase. Details of the implementation of mitigation measures are provided in the **Appendix J.**

Key Information in the Reporting Month

10. Summary of key information in the reporting month is tabulated in **Table II**.

Event	Event Details		Action Taken	Status	Remark	
Event	Number	Nature	ACTOR LAKER	Status	Keinai K	
Complaint received	0		N/A	N/A		
Status of submissions under EP	1	Monthly EM&A Report for July 2019	Submitted on 14 August 2019	No Comment		
Notifications of any summons & prosecutions received	0		N/A	N/A		

Table II Summary Table for Key Information in the Reporting Month

Summary of Complaints and Prosecutions

- 11. No environmental complaint and prosecution was received for the Project in the reporting month.
- 12. There were no environmental complaint and prosecution received since the commencement of the Project. The Complaint Log is presented in **Appendix K**.

Future Key Issues:

13. Major site activities for the coming two months include:

Section 5 - (External works)

- Roadworks and CLP trench modification
- Landscaping works

MPS2

- FSI re-inspection and hot smoke test
- Pre-handover inspection for FS, MVAC and Process Water System
- Demonstration for operation of large KGV, Air-scouring system, Sparging & drainage system
- Main pump upgrading (after FSI re-inspection)
- RT for Chemical Dosing System (Cooling Water System)
- 2nd and 3rd session of Training
- Defect rectification
- Handover of MPS2

CEPT Tank

- Pre-handover inspection for northern PST (#47/49, #51/53) and FT5
- RT for FT5 (FMM/SMM)
- Maintenance works & Pre-handover inspection for southern PST (#48/50, #52/54) and FT6
- RT for FT6 (FMM/SMM)
- RT for Process Water & Protected Water System
- 2nd and 3rd session of Training

<u>DOU3</u>

• Upgrading 1st and 2nd BTF vessel and associated equipment.

Riser Shaft

- Construction of Top Slab for Riser Shaft
- 14. The environmental concerns in the coming months are mainly on chemicals and general refuse storage, surface runoff generated during rainstorm and wheel washing; dust control and treatment of wastewater generated from the construction works.

1. INTRODUCTION

Background

- 1.1 The Project 'HATS Stage 2A Upgrading works at Stonecutters Island Treatment Works (SCISTW) – Main Pumping Station, Sedimentation Tanks and Ancillary Facilities' under Contract No: DC/2009/10 mainly comprises the construction of a large underground pumping station with an internal diameter of 55 metres and a depth of more than 40 metres, the provision of additional double-tray sedimentation tanks, a new computer control system, the expansion and modification of existing installations of the SCISTW as well as the construction of other ancillary facilities. The general location plan of the Project is shown in **Figure 1**.
- 1.2 The Project is under Harbour Area Treatment Scheme (HATS) Stage 2A and is a designated project with Register No. : AEIAR-121/2008. The current works under the Project at SCISTW for HATS 2A are covered by the Environmental Permit (Permit No. EP-322/2008/G), which was issued on 9th May 2014 by the Environmental Protection Department (hereinafter called EPD) to the Drainage Services Department (hereinafter called the DSD) as the Permit Holder.
- 1.3 Sun Fook Kong -Bestwise Joint Venture (hereafter called the SBJV) was commissioned by the DSD to undertake the construction of the Contract No. DC/2009/10 "HATS 2A –Upgrading works at Stonecutters Island Treatment Works Main Pumping, Sedimentation Tanks and Ancillary Facilities". The date of commencement of construction of the Project is 24th February 2011.
- 1.4 Wellab Limited was commissioned by SBJV to undertake the Environmental Monitoring and Audit (EM&A) works for the project and was appointed as the Environmental Team (ET) of the Project under Condition 2.1 of the EP. The date of commencement of EM&A works is 14th April 2011. The Project cover the environmental monitoring works at monitoring stations AM6a, AM7, AM8, NM5 and NM6.
- 1.5 This is the 101st monthly EM&A report summarizing the EM&A works conducted for the Project in August 2019.

Project Organizations

1.6 The contacts of the Project are shown in **Table 1.1** and the organization chart of ET for Contract is shown in **Figure 2**.

	2 0			
Party	Role	Name	Position	Phone No.
Ove Arup & Partners Hong	Engineer's Representative	Mr. Ted Tang	Principal Resident Engineer	2370 4311
Kong Ltd	Coordinator	Ms. Natalie Kwok	Resident Engineer	6794 8844
		Dr. Priscilla Choy	ET Leader	2151 2089
Wellab	Environmental Team	Mr. C.M. Li	Project Coordinator & Audit Team	2151 2073

Table 1.1Key Project Contacts

4

Party	Role	Name	Position	Phone No.
Mott MacDonald	Independent Environmental Checker	Dr. Anne Kerr	Independent Environmental Checker	2828 5757
Sun Fook Kong -	Contractor	Mr. Keith Ho	Site Agent	2620 0070
Bestwise Joint Venture	Contractor	Mr. Albus Cheung	Environmental Officer	2620 0070

Summary of EM&A Requirements

- 1.7 The EM&A programme requires construction phase monitoring for air quality and construction noise, landscape and visual and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the project EIA study final report; and
 - Environmental requirements in contract documents.
- 1.8 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in **Section 4** of this report.
- 1.9 This report presents the monitoring results, observations, locations, equipment, period, for required monitoring parameter namely air quality, noise and audit works conducted for the Project in August 2019.

2. AIR QUALITY

Monitoring Requirements

2.1 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality. Appendix A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Three designated monitoring stations, AM6a, AM7 and AM8 were selected for impact dust monitoring for the Project. The pervious location of AM6 was inaccessible due to planned construction works and therefore an alternative monitoring station AM6a was proposed and adopted for subsequent impact monitoring starting on 4th January 2016. Table 2.1 describes the air quality monitoring locations, which are also depicted in Figure 1.

 Table 2.1
 Locations for Air Quality Monitoring

Monitoring Station	Monitored by	Location of Measurement
AM6a	DC/2009/10	Works site boundary
AM7		North West Kowloon Sewage Pumping Station
AM8		Block A of Government Dockyard

Monitoring Equipment

2.3 **Table 2.2** summarizes the air quality monitoring equipment and **Appendix B** shows the copies of calibration certificates for the equipment at AM6a, AM7 and AM8.

Table 2.2	Air Quality Monitoring Equipment
-----------	----------------------------------

Equipment	Model and Make	Quantity
Laser Dust Monitor	Met One Instruments no. AEROCET-831	3
HVS Sampler	TISCH: Model no. TE-5170	3
Calibrator	TISCH: Model TE-5025A	1

Monitoring Parameters, Frequency and Duration

2.4 **Table 2.3** summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for AM6a, AM7 and AM8 are shown in **Appendix C.**

Table 2.3Impact Dust Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Period	Frequency
All monitoring	1-hour TSP	0700-1900 hrs	3 times/ every 6 days
locations	24-hour TSP	0000-2400 hrs	once in every 6 days

Monitoring Methodology and QA/QC Procedure

2.5 The monitoring methodology and QA/QC procedures for monitoring station AM6a, AM7 and AM8 are presented as follow:

2.6 The general weather conditions (i.e. sunny, cloudy or rainy) were recorded by the field staff's observation on the monitoring day.

TSP Monitoring with Laser Dust Monitor

Measuring Procedures

- 2.7 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Remove the red rubber cap from the AEROCET-831 inlet nozzle.
 - Turn on the power switch that is located on the right side of the AEROCET-831.
 - On power up the product intro screen is displayed for 3 seconds. The intro screen displays the product name and firmware version.
 - Then the main counter screen will be displayed.
 - Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the $0.5\mu m$ and $5\mu m$ channels will show the cumulative counts of particles larger than $0.5\mu m$ and $5\mu m$ per cubic foot.
 - The AEROCET-831 is now checked out and ready for use.
 - To switch off the AEROCET-831 power to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.8 The following maintenance/calibration was required for the direct dust meters:
 - Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

TSP Monitoring with High Volume Sampler

Instrumentation

2.9 High Volume Sampler (HVS) completed with appropriate sampling inlets was employed for air quality monitoring. Each sampler comprised of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

HVS Installation

- 2.10 The following guidelines were adopted during the installation of HVS:
 - Sufficient support was provided to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured

horizontally was required.

- No furnaces or incineration flues were nearby.
- Airflow around the sampler was unrestricted.
- The samplers were more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.

Filters Preparation

- 2.11 Fibre glass filters, which have a collection efficiency of larger than 99% of particles of 0.3 μm in diameter, were used. A HOKLAS accredited laboratory, Wellab Ltd., was responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for Wellab's monitoring team.
- 2.12 All filters, which were prepared by Wellab Ltd., were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.</p>
- 2.13 Wellab Ltd. has a comprehensive quality assurance and quality control programme.

Operating/Analytical Procedures

- 2.14 Operating/analytical procedures for the air quality monitoring were highlighted as follows:
 - Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
 - The power supply was checked to ensure the sampler worked properly.
 - On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
 - The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centred with the stamped number upwards, on a supporting screen.
 - The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
 - The shelter lid was closed and secured with the aluminium strip.
 - The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
 - After sampling, the filter was removed and sent to the Wellab Ltd. for weighing. The elapsed time was also recorded.
 - Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than $\pm 3^{\circ}$ C; the relative humidity (RH) should be < 50% and not vary by more than $\pm 5\%$. A convenient working RH is 40%. Weighing results were returned to Wellab for further analysis of TSP concentrations collected

by each filter.

Maintenance/Calibration

- 2.15 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.

Results and Observations

2.16 **Table 2.4** summarizes the monitoring results at AM6a, AM7 and AM8 in the reporting month.

Table 2.4Summary of 1-hour and 24-hour TSP Monitoring Result in the
Reporting Month

Air Quality Monitoring Station	Average μg/m³	Range μg/m³	Action Level µg/m ³	Limit Level µg/m ³	
	1 hour TSP				
AM6a	37	7 - 83	346		
AM7	121.2	87.9 - 180.1	322	500	
AM8	76.2	59.2 - 85.5	307		
		24 hours TSP			
AM6a	39	26 - 65	196		
AM7	102	77 – 163	207	260	
AM8	32	17 - 43	158		

- 2.17 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Summary of exceedance is presented in **Appendix F.**
- 2.18 All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Summary of exceedance is presented in **Appendix F.**
- 2.19 The details and graphical presentations of the air quality monitoring results at AM6a, AM7 and AM8 are shown in **Appendix D**.
- 2.20 According to field observations during site inspection, the identified dust sources at the monitoring stations were mainly from loadings of material, vehicles movement of this Contract in the site.

3. NOISE

Monitoring Requirements

- 3.1 Two noise monitoring stations, namely NM5 and NM6 was designated in the EM&A Manual for impact monitoring. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.
- 3.2 Monitoring station (NM6) serves as an alternative location for FSD Diving Rescue and Diving Training Centre which is regarded as a Noise Sensitive Receiver (NSR) as it is an institution. Monitoring station (NM6) was set up at the proposed location in accordance with the Monitoring Proposal submitted by ET of Contract DC/2009/05, as agreed by the ER and IEC.

Monitoring Locations

3.3 Noise monitoring was conducted at two designated monitoring stations as listed in **Table 3.1.**

Monitoring Station	Monitored By	Location of Measurement
NM5	DC/2000/10	Near FSD Diving Rescue and Training Centre
NM6	DC/2009/10	Customs' Marine Base (Block H of Government Dockyard Rooftop)

Table 3.1Location of Noise Monitoring Stations

Monitoring Equipment

3.4 **Table 3.2** summarizes the noise quality monitoring equipment and **Appendix B** shows the copies of calibration certificates for the equipment used at NM5 and NM6 in the reporting month.

Table 3.2Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Level Meter	SVANTEK, Model no: SVAN 957 SVANTEK, Model no: SVAN 977 BSWA, Model no: BSWA 801	3
Calibrator	SVANTEK, Model no: SV 30A Bruel & Kjaer, Model No. 4231	3

Monitoring Parameters, Frequency and Duration

3.5 **Table 3.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule of the reporting month for NM5 and NM6 is shown in **Appendix C**.

Tuble ele Trobbe fromtoring Futumeters, Frequency und Durution				
Monitoring Stations	Parameter	Period	Frequency	
NM5	L _{eq} (30 min.) dB(A)	0700-1900 hrs. on weekdays	Once per week	
NM6	L _{eq} (5 min.) dB(A)	During restricted hours	Monitoring to be conducted when construction works were to be carried out	

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Methodology and QA/QC Procedures

- 3.6 The monitoring methodology and QA/QC procedure at NM5 and NM6 are presented as follow:
- 3.7 General weather conditions (i.e. sunny, cloudy or rainy) were recorded by field observation during equipment checking and estimated according to weather data from the Hong Kong Observatory.

Field Monitoring

- 3.8 The monitoring procedures are as follows:
 - The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels were adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - Frequency weighting : A
 - Time weighting : Fast
 - Measurement time : 30 minutes
 - Prior to and after noise measurement, the meter was calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement was required after re-calibration or repair of the equipment.
 - Noise monitoring was carried out 30 minutes during on the monitoring days. Monitoring data was recorded and stored automatically within the sound level meter system. At the end of the monitoring period, noise levels in term of L_{eq} , L_{90} and L_{10} were recorded.
 - All the monitoring data within the sound level meter system was downloaded through the computer software, and all these data was checked and reviewed within the computer.

Maintenance and Calibration

- 3.9 Maintenance and Calibration procedures were as follows:
 - The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator were checked and calibrated at yearly intervals.

Results and Observations

3.10 **Table 3.4** summarizes the monitoring results at NM5 and NM6 in the reporting month.

For the time period 0700-1900 hrs. on weekdays			
Noise Monitoring	Range, dB(A)	Limit Level	
Station	$L_{eq}(30 \text{ min.})$	dB(A)	
NM5	61.5 - 71.9	75.0	
NM6	62.4 - 70.2	75.0	

 Table 3.4
 Summary the Noise Monitoring Results in Reporting Month

- 3.11 The construction noise monitoring at the designated location was conducted by the ET of Contracts DC/2009/10 as scheduled in the reporting month. The monitoring results and graphical presentations could be referred to **Appendix E**.
- 3.12 1900-2300 hours noise monitoring was not conducted in the reporting month as there were no construction works during the period of restricted hours.
- 3.13 No Action/Limit Level exceedance was recorded in the reporting month. Summary of exceedance is presented in **Appendix F**.
- 3.14 The major noise sources identified at the designated noise monitoring stations were vehicle movement and construction equipment, as well as construction activities in Stonecutters Island STW.

4. ENVIRONMENTAL AUDIT

Site Audits

- 4.1 Site audits were conducted on a weekly basis to monitor the implementation of environmental management practices and mitigation measures at the site area by the Contractor.
- 4.2 Site inspections were undertaken to ensure and check that the implementation and maintenance of mitigation measures for Air Quality, Noise, Water Quality, Waste Management, Landscape and Visual are being properly carried out in the reporting month in accordance to section 14.1 of the EM&A Manual. No non-compliance was observed during the site inspections.
- 4.3 The summaries of site audits are attached in **Appendix G**.

Implementation Status of Environmental Mitigation Measures

- 4.4 Details of the implementation of mitigation measures are provided in the **Appendix J**.
- 4.5 During the weekly environmental site inspections in the reporting period, no nonconformance was identified. The observations of the site audit for the Projects are summarized in **Table 4.1**.

1 able 4.1	Observations of Site Audit			
Parameters	Ref. Number	Observations	Follow Up Action	
Water Quality	190822-002	Oil stain should be cleared at the non-using drill.	Oil stain was cleared.	
	190822-001	Excavated dusty materials should be covered by impervious	Follow up action will be reported	
	190829-001	materials.	in the next reporting month.	
Air Quality	190822-R01	Sufficient watering should be applied on dust generating	Follow up action will be reported	
Quanty	190829-R01	activities.	in the next reporting month.	
	190725-R01	Dusty material should be covered by impervious material.	The dusty material was cleared.	
Waste/ Chemical	190829-R02	General refuse should be collected	Follow up action will be reported	
Management	1,002,102	regularly on MPS2.	in the next reporting month.	
Landscape and Visual	N/A	There was no observation in the reporting month.	N/A	
Noise	N/A	There was no observation in the reporting month.	N/A	
Permit/ Licenses	N/A	There was no observation in the reporting month.	N/A	

Table 4.1Observations of Site Audit

Review of Environmental Monitoring Procedures

4.6 The monitoring works conducted by Contract DC/2009/10's ET were reviewed at a regular basis to ensure the monitoring procedures were carried out properly.

Status of Environmental Licensing and Permitting

4.7 All permits/licenses obtained for the Contract DC/2009/10 are summarized in **Table 4.2**.

Reference Valid Period		Period	Details	Status
Number	From	То		
Water Discha	arge License			
WT00023103- 2015	19/1/2016	31/1/2021	The application was approved on 19-1-2016.	Valid
WT00024404- 2016	19/5/2016	31/5/2021	The application was approved on 19-5-2016.	Valid
WT00025973- 2016	22/11/2016	31/5/2021	The application was approved on 22/11/2016.	Valid
Registered Cl	Registered Chemical Waste Producer			
WPN5213- 269-3584-01	N/A	N/A	The application was approved on 4-5-2011.	Valid
Billing Accou	int for Dispo	sal of Const	ruction Waste	•
CSW01444	16/3/2011	N/A	The application was approved on 16-3-2011.	Valid
Notification of	of Works Und	ler APCO		
327427	N/A	N/A	Notice form received by EPD on 2-3-2011.	N/A
Construction	Noise Permi	t	·	
GW- RW0212-19	17/05/2019	09/11/2019	The application was approved on 14-5-2019.	Valid

Table 4.2Summary of Environmental Licence / Permit for DC/2009/10

Status of Waste Management

4.8 The amount of wastes generated by the activities of the Project in the reporting month is shown in **Appendix H**.

Implementation Status of Event Action Plans

4.9 The Event Action Plans for air quality and noise are presented in **Appendix I.**

<u>1-hr TSP</u>

4.10 No Action/Limit Level exceedance was recorded.

<u>24-hr TSP</u>

4.11 No Action/Limit Level exceedance was recorded.

Construction Noise

4.12 No Action/Limit Level exceedance was recorded.

Landscape and Visual

4.13 No major deficiency was recorded.

Summary of Complaints and Prosecutions

4.14 No environmental complaint and prosecution was received for the Project in the reporting month.

4.15 There were no environmental complaint and prosecution received since the commencement of the Project. The Complaint Log is presented in **Appendix K**.

5. FUTURE KEY ISSUES

Key Issues for the Coming Month

- 5.1 Key environmental issues in the coming month include:
 - Storage of chemicals/fuel and chemical waste/waste oil on-site;
 - Drainage system should be well designed and maintained to prevent flooding and silty water from getting into the public area on rainy days;
 - Leakage of oil from equipment;
 - Generation of runoff during rainstorm;
 - Dust generation should be mitigated by adequate water spraying, especially in dry days;
 - Stockpile should be properly covered by tarpaulin to mitigate dust generation; and
 - Silt and dust getting into the public area by the leaving site vehicles at the site exits without adequate wheel washing facilities.

Monitoring Schedule for the Next Month

5.2 The tentative environmental monitoring schedule over the next month is shown in **Appendix C** of this report.

Construction Program for the Next Month

5.3 The tentative construction program is provided in **Appendix L**.

6. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

6.1 Environmental monitoring and audit works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hour TSP Monitoring

6.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

6.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

6.4 All Construction Noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Audit

6.5 Environmental site audits were conducted as weekly basis in the reporting month. No non-compliance was recorded.

Complaint and Prosecution

6.6 No environmental complaint and prosecution was received in the reporting month.

Recommendations for next reporting month

6.7 The following recommendations were made for the next report month:

Air Quality

- To provide adequate water spray on site;
- To mitigate dust generation by covering stockpile with tarpaulin;
- To regularly maintain the machinery and vehicles on site; and
- To follow up any exceedance caused by the construction works.
- Non-Road Mobile Machinery (NRMM) labels must be demonstrated on the registered equipment for inspection.

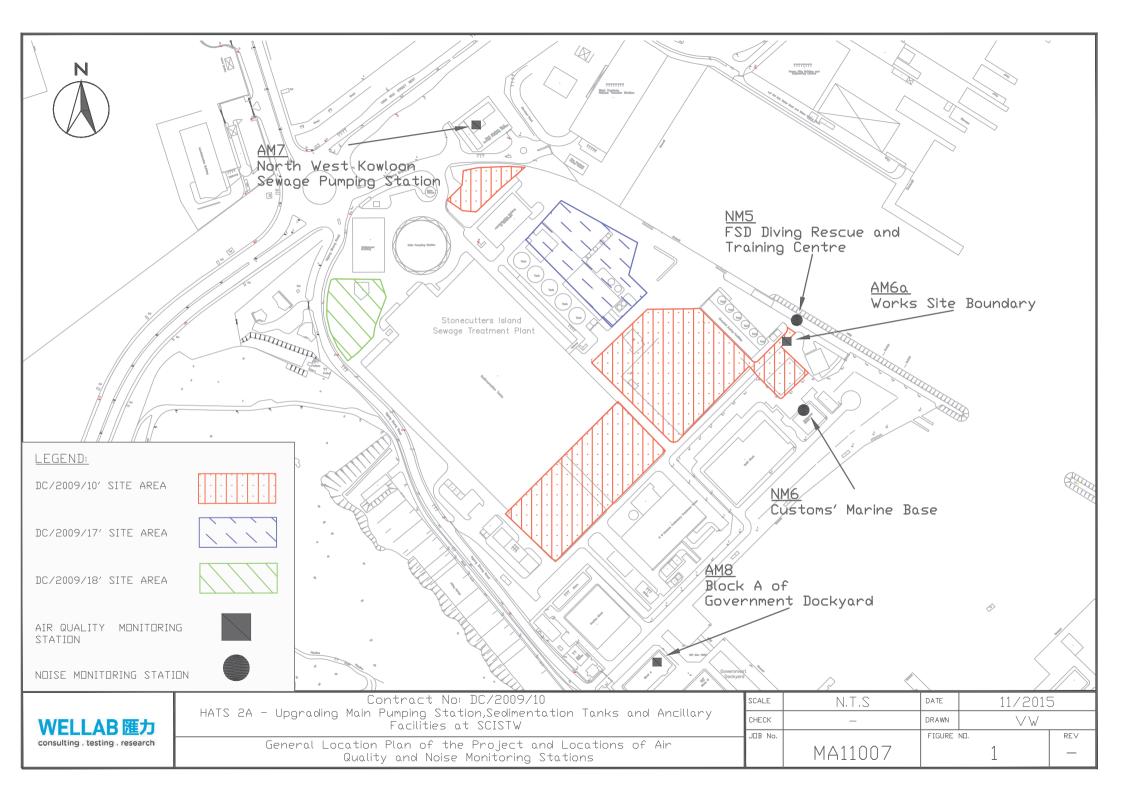
Noise

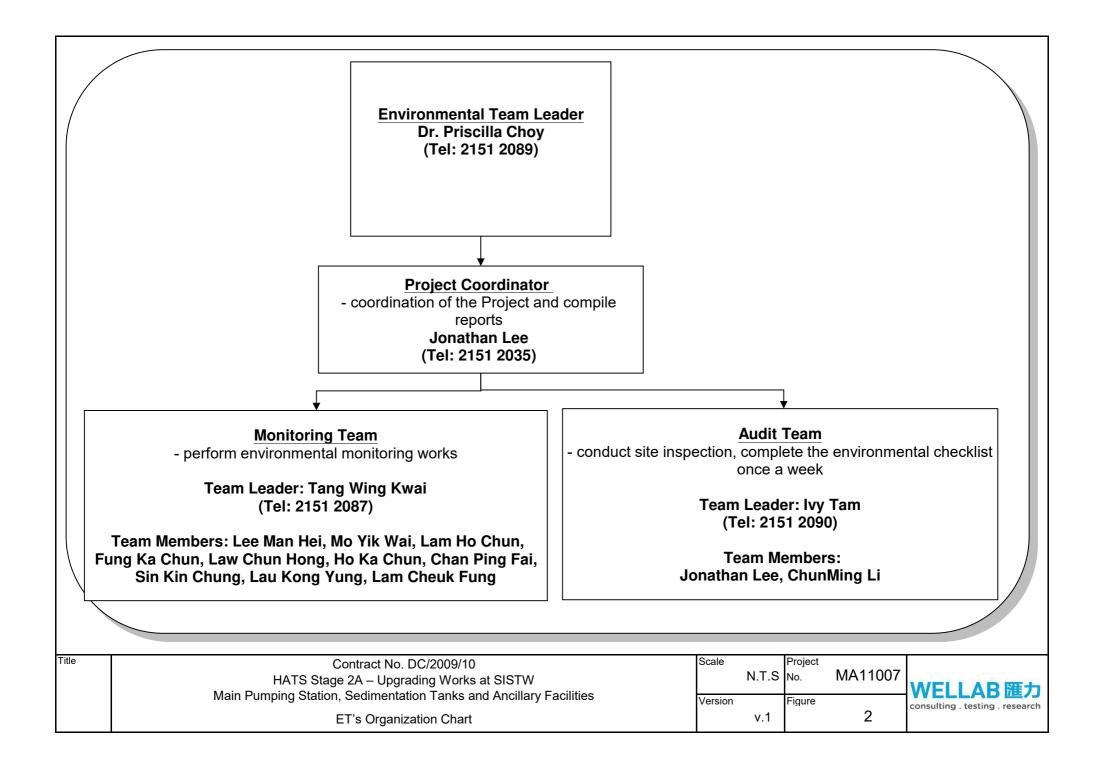
- To inspect the noise sources inside the site;
- To follow up any exceedance caused by the construction works;
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers;
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location;
- To provide adequate lubricant on mechanical equipments to reduce frictional noise; and

• To well maintain the mechanical equipments / machineries to avoid abnormal noise nuisance.

Water Quality

- To identify any discharge of wastewater from the construction site;
- To provide adequate temporary drainage system with adequate capacity;
- To provide adequate wastewater treatment facilities to treat the wastewater generated during construction works and heavy rain;
- To properly cover the stockpile to prevent the generation of surface runoff; and
- To avoid water accumulation on site and carry out larviciding against mosquito breeding for stagnant water when mosquito larvae are observed.


Waste/Chemical Management


- To provide proper rubbish bins / skips for waste collection;
- To check for any accumulation of wasted materials or rubbish on site;
- To provide adequate chemical waste storage area on site;
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the equipment; and
- To avoid improper handling or storage of oil drum and cement on site.

Landscape and Visual

- To erect and maintain the protection fence around the retained trees; and
- To avoid any construction materials being placed inside the tree protection zone.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS FOR AIR QUALITY AND NOISE QUALITY

Appendix A Action and Limit Levels

Table A-1Action and Limit Levels for 1-Hour TSP and 24-Hour TSP

Monitoning Stations	Action Level (µg/m ³)		Limit Level (µg/m ³)	
Monitoring Stations	1-hour	24-hour	1-hour	24-hour
AM6a	346	196	500	260
AM7	322	207	500	260
AM8	307	158	500	260

Table A-2 Action and Limit Level for Construction Noise

Monitoring Stations	Time Period	Action Level	Limit Level in dB(A)
	0700-1900 hours on normal weekdays	When one documented complaint is received	75
NM5 NM6	Evening Time of normal weekdays and General Holidays: All days during the evening (1900 to 2300 hours), and general holidays	N/A	70 ⁽¹⁾
	(including Sundays) during the day- time and evening (0700 to 2300 hours)		

Notes: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	31802
Date of Issue:	2019-07-15
Date Received:	2019-07-13
Date Tested:	2019-07-13
Date Completed:	2019-07-15
Next Due Date:	2019-09-12
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certifi	icate of Calibration	
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X23807	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-01	
Test Conditions:		
Room Temperature	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	
T + G if - time ? Mathedalogue		

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Kesuits:	
Correlation Factor (CF)	1.093

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PÁTRICK TSE General Manager

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	31802C
Date of Issue:	2019-07-15
Date Received:	2019-07-13
Date Tested:	2019-07-13
Date Completed:	2019-07-15
Next Due Date:	2019-09-12
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X23810	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-04	
Test Conditions:		
Room Temperature	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:	
Correlation Factor (CF)	1.121

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

31952A
2019-08-19
2019-08-17
2019-08-17
2019-08-19
2019-10-16
1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X24477	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-06	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	
Test Sastications & Methodology		

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:	
Correlation Factor (CF)	1.087

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT:Cinotech Consultants Limited
Room 1710, Technology Park,
18 On Lai Street,
Shatin, NT, Hong KongTest Report No.:2950
2018
Date of Issue:
Date Received:
2018

Test Report No.:	29500
Date of Issue:	2018-08-13
Date Received:	2018-08-11
Date Tested:	2018-08-11
Date Completed:	2018-08-13
Next Due Date:	2019-08-12
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21460
Microphone No.	: 43679
Equipment No.	: N-08-09

Test conditions:

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

•

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
. 94	94.0
114 .	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

NELLAB 歴 Testing & Research 力

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No .:	29815
Date of Issue:	2018-09-15
Date Received:	2018-09-14
Date Tested:	2018-09-14
Date Completed:	2018-09-15
Next Due Date:	2019-09-14
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Microphone No. Equipment No. : 'SVANTEK' Integrating Sound Level Meter : SVANTEK : SVAN 977 : 45482 : 63626 : N-08-14

Test conditions:

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30524C
Date of Issue:	2018-12-17
Date Received:	2018-12-15
Date Tested:	2018-12-15
Date Completed:	2018-12-17
Next Due Date:	2019-12-16
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: Sound & Vibration Analyser
Manufacturer	: BSWA
Model No.	: BSWA 801
Serial No.	: 35927
Equipment No.	: N-13-03
s:	

Test conditions:

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY: For and On Behalf of **WELLAB Ltd.**

PATRICK TSE Laboratory Manager

ELLAB 歴 Testing & Research ナ]			Technology Park, 18 On Lai S Shatin, N.T., Hong K Tel: 2898 7388 Fax: 2898 Website: www.wellab.co
	TEST	REPOR	Т	
APPLICANT:	Cinotech Consultants l Room 1710, Technolog 18 On Lai Street,		Test Report No. Date of Issue: Date Received:	: 29816 2018-09-29 2018-09-28
	Shatin, NT, Hong Kong	g	Date Tested: Date Completed Next Due Date:	2018-09-28 I: 2018-09-29
ATTN:	Mr. W.K. Tang		Page:	1 of 1
Item for calibra	ation:			
	Description Manufacturer Model No. Serial No. Equipment No.	: Acoustic : SVANTE : SV30A : 24803 : N-09-03	al Calibrator 3K	
Test conditions	:			
	Room Temperatre Relative Humidity	: 17-22 deg : 40-70%	gree Celsius	
Methodology:				
	The Sound Level Calibra			

documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

2019-09-28

1 of 1

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report No.:	29817
	Room 1710, Technology Park,	Date of Issue:	2018-09-29
	18 On Lai Street,	Date Received:	2018-09-28
	Shatin, NT, Hong Kong	Date Tested:	2018-09-28
		Date Completed:	2018-09-29

ATTN: Mr. W.K. Tang

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No. : Acoustical Calibrator : SVANTEK : SV30A : 24780 : N-09-05

Next Due Date:

Page:

Test conditions:

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong, Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

1 of 1

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report No.:	29683
	Room 1710, Technology Park,	Date of Issue:	2018-08-20
	18 On Lai Street,	Date Received:	2018-08-17
	Shatin, NT, Hong Kong	Date Tested:	2018-08-17
		Date Completed:	2018-08-20
		Next Due Date:	2019-08-19

ATTN: Mr. W.K. Tang

Item for calibration:

Description: Acoustical CalibratorManufacturer: Brüel & KjærModel No.: 4231Serial No.: 2412367Equipment No.: N-02-03

Test conditions:

Room Temperatre Relative Humidity

: 17-22 degree Celsius : 40-70 %

Page:

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

P'ATRICK TSE Laboratory Manager

W			LA	B	匯力
cons	ulti	ng	. testi	ng.	research

756.2

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

			File No.	MA11007/56/0023
Station	AM6 - Works Site Boundary	Operator:	WK	
Date:	15-Jul-19	Next Due Date:	14-Sep-19	
Equipment No.:	A-01-56	Serial No.	2353	
		Ambient Condition		

····	Or	ifice Transfer Sta	undard Inform		n en recent <u>i</u> tennet e se a de t
Serial No.	0993	Slope, mc	0.0572	Intercept, bc	-0.02285
Last Calibration Date:	25-Feb-19		mc x Qstd + l	oc = [ΔH x (Pa/760) x (298	/Ta)] ^{1/2}
Next Calibration Date:	25-Feb-20		Qstd = $\{[\Delta \mathbf{H} :$	x (Pa/760) x (298/Ta)] ^{1/2} -l	oc} / mc

Pressure, Pa (mmHg)

304.5

.

Temperature, Ta (K)

		Calibration of	f TSP Sampler				
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Y-axis		
1	12.6	3,50	61.63	8.1	2.81		
2	10.3	3.17	55.76	6.7	2.55		
3	7.6	2.72	47.95	5.1	2.23		
4	5.4	2.29	40.49	3.3	1.79		
5	3.2	1.77	31.26	2.1	1.43		
By Linear Regression of Y on X Slope , mw =Intercept, bw :							
From the TSP F	ield Calibration C	Set Point (urve, take Qstd = 43 CFM	Calculation				
		e "Y" value according to					
				o o /m 1/2			
		$\mathbf{m}\mathbf{w} \mathbf{x} \mathbf{Q}\mathbf{s}\mathbf{t}\mathbf{d} + \mathbf{b}\mathbf{w} = [\Delta \mathbf{W}$	x (Pa/760) x (2	98/Ta)]***			
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.94$							

Conducted by: NK CM	Signature:	Unai	Date:	15/7/19
Checked by: UPT MAN UP	Signature:	her.	Date:	15-7-2019

W	11213	ALC: NO.	A	B	浴室	1

consulting , testing , research

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

Station	AM7 - North Wes	t Kowloon Sewage	Pumping Station	Operator	WK		MA11007/55/0046
Date:	31-Jul-19			·	30-Sep-19		
Equipment No.:					2355	Real Real Property and	-
							_
	n Salata	· · ·	Ambient	Condition			
Temperatur	re, Ta (K)	301.5	Pressure, P	a (mmHg)		754	
e generalista		Or	ifice Transfer St	ondard Inform	ation	ing a compa	an a
Serial	No.	0993	Slope, mc	0.0572	Intercept	t be	-0.02285
Last Calibra		25-Feb-19	510p0, III0		$bc = [\Delta H x (Pa/76)]$,	
Next Calibra		25-Feb-20			x (Pa/760) x (298)		
				C G			
and the second states of the second sec			Calibration of	f TSP Sampler	n n na managaran ata 1		
Calibration		Ort	lice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (I	Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	12.6	3	.52	61.85	8.4		2.87
2	10.1	3	.15	55,41	6.9		2.60
3	7.1	2	.64	46.52	5.3	2.28	
4	5.2	2	.26	39.87	3.4		1.83
5	3.4	1	.83	32,32	2.4		1.53
By Linear Regre	ession of Y on X						
Slope , mw = _	0.0461			Intercept, bw :	0.0463	3	-
Correlation co	efficient* =	0.99	950				
*If Correlation Co	oefficient < 0.99	0, check and reca	llibrate.				
:	1000 B		Set Point C	Calculation	2 <u></u> 2		
From the TSP Fie	eld Calibration C	urve, take Qstd =					
From the Regress	ion Equation, th	e "Y" value accor	ding to				
		mw x Q	std + bw = $[\Delta W]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore Set	Point: W = (m)	$(v,v) \cap (v,d+hw)^2$	x (760 / Pa) x (Γο / 208 \	4.20		
		W X Q310 + 0W)	x(70071a)x(4.20		_
Remarks:							
_							· · · · · · · · · · · · · · · · · · ·
_	23			*****			· · · · · · · · · · · · · · · · · · ·
Conducted by:	W.K. Tang	Signature:	Kina:			Date:	31/7/2019

Checked by: JEF: Mrs HAST_Signature:

n: he . Date: Date:

31/7/2019

M	/E	-		B	匯力
con	sulti	ing	. test	ing .	research

-

.....

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No	D. MA11007/68/0045
Station	AM8 - Block	A of Governmer	nt Dockyard	Operator:	WK		
Date:	31-Jul-19			Next Due Date:	30-Sep	-19	
Equipment No.:	A-01-68			Serial No.	3219		
a filasta en		ell bare	Ambient	Condition		an ann an Ann Ann	
Temperatu	ıre, Ta (K)	301.5	Pressure, F	Pa (mmHg)		754	
i dug di unud data i kara	e a street specifier of the						·
		Or	ifice Transfer St	tandard Inform	ation	1.1.1.1.1.1.1	n gesterendet er sig
Seria	· · · · · · · · · · · · · · · · · · ·	0993	Slope, mc	0.0572	Intercept	· · · · · · · · · · · · · · · · · · ·	-0.02285
Last Calibr	ation Date:	25-Feb-19			$bc = [\Delta H \times (Pa/76)]$		
Next Calibr	ation Date:	25-Feb-20		$Qstd = \{[\Delta H]\}$	x (Pa/760) x (298/	$(Ta)]^{1/2}$ -bc	} / mc
The second second second	r argung in annan taonta ' taong '	•	· · · · · · · · · · · · · · · · · · ·				
			Calibration o	f TSP Sampler			
Calibration		Orf	ice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760)) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (I	Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	12.7	3	.53	62.09	8.0		2.80
2	10.2	3	.16	55.68	6.7		2.56
3	7.2	2	.66	46.85	4.7		2.15
4	5.0	2	.21	39.11	3.5		1.85
5	3.4	1	.83	32,32	2.3		1.50
Slope , mw = Correlation c	an internet sciences and a second	. 0.99	89	Intercept, bw :	0.1205	5	_
*If Correlation C	Coefficient < 0.99	0, check and reca	librate.				
			Set Point (Calculation			
From the TSP Fi	eld Calibration C	urve, take Ostd =					
	sion Equation, the						
		mw x Q	std + bw = [∆W	 the source of the source of the			
Therefore, Se	et Point; W = (my	w x Qstd + bw $)^2$	x (760 / Pa) x (Ta / 298) =	4.04		-
Remarks:	·····						
Conducted by:	WK. Ung	Signature:	Vara	<u>,</u>	.]	Date:	31/1/2019
Checked by: /	FE MAN MOL	Signature: –	he .)	Date:	31/7/2019

RECALIBRATION DUE DATE:

February 25, 2020

Pertificate of Calibration

			Å	/							
• • • • • • • • • •			Calibration	Certificatio	on Informat	ion					
Cal. Date:	February 2	5,2019	Rootsi	meter S/N:	438320	Ta:	294	°К			
Operator:	Jim Tisch					Pa:	762.0	mm Hg			
Calibration	Model #:	TE-5025A	Calib	prator S/N:	0993						
	[Val Inte	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ]			
	Run	Vol. Init (m3)	(m3)	4vol. (m3)	(min)	ωr (mm Hg)	۵n (in H2O)				
	1	1	2	1	1.4070	3.2	2.00				
	2	3	4		1.0000	6.3	4.00				
	3	5	6	1	0.8940	7.8	5.00				
	4	7	8	1	0.8520	8.7	5.50				
	5	9	10	1	0.7010	12.7	8.00]			
	[Data Tabula	tion						
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$	$-)(\frac{Tstd}{Ta})$		Qa	$\sqrt{\Delta H(Ta/Pa)}$				
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)				
	1.0120	0.7193	1.42	57	0.9958	0.7077	0.8784				
	1.0079	1.0079	2.01	52	0.9917	0.9917	1.2423				
	1.0059	1.1251	2.254		0.9898	1.1071	1.3889				
	1.0047	1.1792	2.364		0.9886	1.1603	1.4567				
	0.9993	1.4256	2.85:		0.9833	1.4028	1.7569				
	Arro		2.020		^		1.26519 -0.01408				
	QSTD	b= r=	-0.022 0.999		QA	/~/=	0.99995				
	L			Calculatio	ne	-]			
	Vstd=	AVol((Pa-AP))/Pstd)(Tstd/Ta			ΔVol((Pa-Δ	P)/Pa)				
		Vstd/∆Time	<u>/// 5,u/(/5/u/ //</u>	-,		Va/ATime	,,,,,,				
			For subsequ	ent flow ra	te calculatio	• /	· · · · · · · · · · · · · · · · · · ·				
	Qstd=	1/m ((Pa Tstd Pstd Ta))-b)	Qa=	//	H(Ta/Pa))-b)				
	Standard	Conditions									
Tstd:						RECA	LIBRATION				
Pstd:		mm Hg			LIS EPA reco	nmende a	nnual recalibratio	on ner 1999			
All colibrati		(ey ter reading (i	n H2O)				Regulations Part				
		eter reading (i					-				
		perature (°K)									
					Determination of Suspended Particulate the Atmosphere, 9.2.17, page 3						
Pa: actual ba	arometric p	ressure (mm	115)		ι τ n	e Aunosone	1 C. J.L.I/. Dave	<u> 30</u>			
Pa: actual bi b: intercept m: slope	the second s	ressure (mm			tn	e Atmosphe	ere, 5.2.17, page				

Tisch Environmental, Inc.

145 South Miami Avenue Village of Cleves, OH 45002 <u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

APPENDIX C ENVIRONMENTAL MONITORING SCHEDULES

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Aug	2-Aug	3-Aug
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
		1hr TSP X 3 Noise				
		NOISE				
	24 hr TSP				24 hr TSP	
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
	11. TOD X 2				11 TOD X 2	
	1hr TSP X 3 Noise				1hr TSP X 3	
	INDISC					
				24 hr TSP		
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
				1hr TSP X 3		
				Noise		
				110130		
			24 hr TSP			
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
			1hr TSP X 3			
			Noise			
			110150			
		24 hr TSP				

DC/2009/10, HATS 2A Upgrading Main Pumping Station, Sedimentation Tanks and Ancillary Facilities at SCISTW Impact Air Quality and Noise Monitoring Schedule (August 2019)

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM7 - West Kowloon No.2 Sewage Pumping Station AM8 - Block A of Government Dockyard AM6a - Works Site Boundary

Noise Monitoring Station

NM6 - Customs' Marine Base (Block H of Government Dockyard) Rooftop NM5 - FSD Diving Training Centre

Sunday Monday Tuesday Wednesday Thursday Friday Saturday 2-Sep 4-Sep 1-Sep 3-Sep 5-Sep 6-Sep 7-Sep 1hr TSP X 3 Noise 24 hr TSP 24 hr TSP 9-Sep 10-Sep 11-Sep 14-Sep 8-Sep 12-Sep 13-Sep 1hr TSP X 3 1hr TSP X 3 Noise 24 hr TSP 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 20-Sep 21-Sep 1hr TSP X 3 Noise 24 hr TSP 22-Sep 23-Sep 24-Sep 25-Sep 26-Sep 27-Sep 28-Sep 1hr TSP X 3 Noise 24 hr TSP 24 hr TSP 29-Sep 30-Sep 1hr TSP X 3 Noise

DC/2009/10, HATS 2A Upgrading Main Pumping Station, Sedimentation Tanks and Ancillary Facilities at SCISTW Tentative Impact Air Quality and Noise Monitoring Schedule (September 2019)

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM7 - West Kowloon No.2 Sewage Pumping Station AM8 - Block A of Government Dockyard AM6a - Works Site Boundary

Noise Monitoring Station

NM6 - Customs' Marine Base (Block H of Government Dockyard) Rooftop NM5 - FSD Diving Training Centre

APPENDIX D 1-HOUR AND 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix D - 1-hour TSP Monitoring Results

Location AM6a - Works Site Boundary

Start Date	Start Time	Weather	Air	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.	Filter
Start Date	Start Time	Condition	Temp. (K)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)	ID no.
6-Aug-19	9:00	Cloudy	302.6	3.5456	3.5474	0.0018	9585.6	9586.6	1.0	1.21	1.21	1.21	72.8	24.7	190701/005
6-Aug-19	10:00	Cloudy	302.8	3.5531	3.5583	0.0052	9586.6	9587.6	1.0	1.21	1.21	1.21	72.7	71.5	190701/006
6-Aug-19	11:00	Cloudy	303.2	3.5277	3.5287	0.0010	9587.6	9588.6	1.0	1.21	1.21	1.21	72.7	13.8	190701/007
12-Aug-19	10:00	Sunny	304.1	3.5603	3.5609	0.0006	9612.6	9613.6	1.0	1.21	1.21	1.21	72.6	8.3	190701/011
12-Aug-19	11:00	Sunny	304.3	3.5862	3.5867	0.0005	9613.6	9614.6	1.0	1.21	1.21	1.21	72.6	6.9	190701/012
12-Aug-19	14:00	Sunny	306.6	3.5491	3.5502	0.0011	9614.6	9615.6	1.0	1.20	1.20	1.20	72.2	15.2	190701/013
16-Aug-19	10:00	Sunny	304.9	3.5610	3.5670	0.0060	9639.6	9640.6	1.0	1.21	1.21	1.21	72.5	82.7	190701/018
16-Aug-19	11:00	Sunny	304.7	3.5445	3.5474	0.0029	9640.6	9641.6	1.0	1.21	1.21	1.21	72.5	40.0	190701/021
16-Aug-19	14:00	Sunny	303.9	3.6031	3.6048	0.0017	9641.6	9642.6	1.0	1.21	1.21	1.21	72.6	23.4	190701/023
22-Aug-19	10:00	Sunny	302.9	3.5580	3.5610	0.0030	9666.6	9667.6	1.0	1.22	1.21	1.22	72.9	41.2	190701/059
22-Aug-19	11:00	Sunny	303.1	3.5814	3.5851	0.0037	9667.6	9668.6	1.0	1.21	1.21	1.21	72.9	50.8	190701/060
22-Aug-19	14:00	Sunny	303.6	3.4999	3.5031	0.0032	9668.6	9669.6	1.0	1.21	1.21	1.21	72.7	44.0	190701/061
28-Aug-19	8:00	Sunny	301.6	3.4777	3.4787	0.0010	9693.6	9694.6	1.0	1.22	1.22	1.22	73.0	13.7	190702/001
28-Aug-19	9:10	Sunny	301.9	3.4750	3.4803	0.0053	9694.6	9695.6	1.0	1.22	1.22	1.22	73.0	72.6	190702/002
28-Aug-19	10:15	Sunny	302.3	3.5188	3.5225	0.0037	9695.6	9696.6	1.0	1.22	1.22	1.22	72.9	50.7	190702/003
													Min	7	

	Min	7	
	Max	83	
1	Average	37	

Appendix D - 1-hour TSP Monitoring Results

Location AM7 -	North West	Kowloon Sewage	Pumping Station
Date	Time	Weather	Particulate Concentration ($\mu g/m^3$)
6-Aug-19	13:00	Sunny	94.1
6-Aug-19	14:00	Sunny	99.0
6-Aug-19	15:00	Sunny	91.4
12-Aug-19	13:00	Sunny	118.5
12-Aug-19	14:00	Sunny	125.1
12-Aug-19	15:00	Sunny	139.1
16-Aug-19	14:00	Sunny	157.4
16-Aug-19	15:00	Sunny	177.6
16-Aug-19	16:00	Sunny	180.1
22-Aug-19	14:00	Sunny	113.6
22-Aug-19	15:00	Sunny	122.5
22-Aug-19	16:00	Sunny	116.1
28-Aug-19	13:00	Sunny	101.1
28-Aug-19	14:00	Sunny	94.3
28-Aug-19	15:00	Sunny	87.9
		Minimum	87.9
		Maximum	180.1
		Average	121.2

Location AM8 -	Block A of C	Government Dock	yard
Date	Time	Weather	Particulate Concentration (μ g/m3)
6-Aug-19	9:00	Sunny	83.5
6-Aug-19	10:00	Sunny	79.5
6-Aug-19	11:00	Sunny	82.3
12-Aug-19	9:00	Sunny	77.1
12-Aug-19	10:00	Sunny	74.8
12-Aug-19	11:00	Sunny	84.8
16-Aug-19	9:00	Sunny	79.0
16-Aug-19	10:00	Sunny	80.8
16-Aug-19	11:00	Sunny	85.5
22-Aug-19	9:00	Sunny	70.5
22-Aug-19	10:00	Sunny	74.4
22-Aug-19	11:00	Sunny	72.3
28-Aug-19	9:00	Sunny	66.1
28-Aug-19	10:00	Sunny	73.1
28-Aug-19	11:00	Sunny	59.2
		Minimum	59.2
		Maximum	85.5
		Average	76.2

Appendix D - 24-hour TSP Monitoring Results

Location AM6a - Works Site Boundary

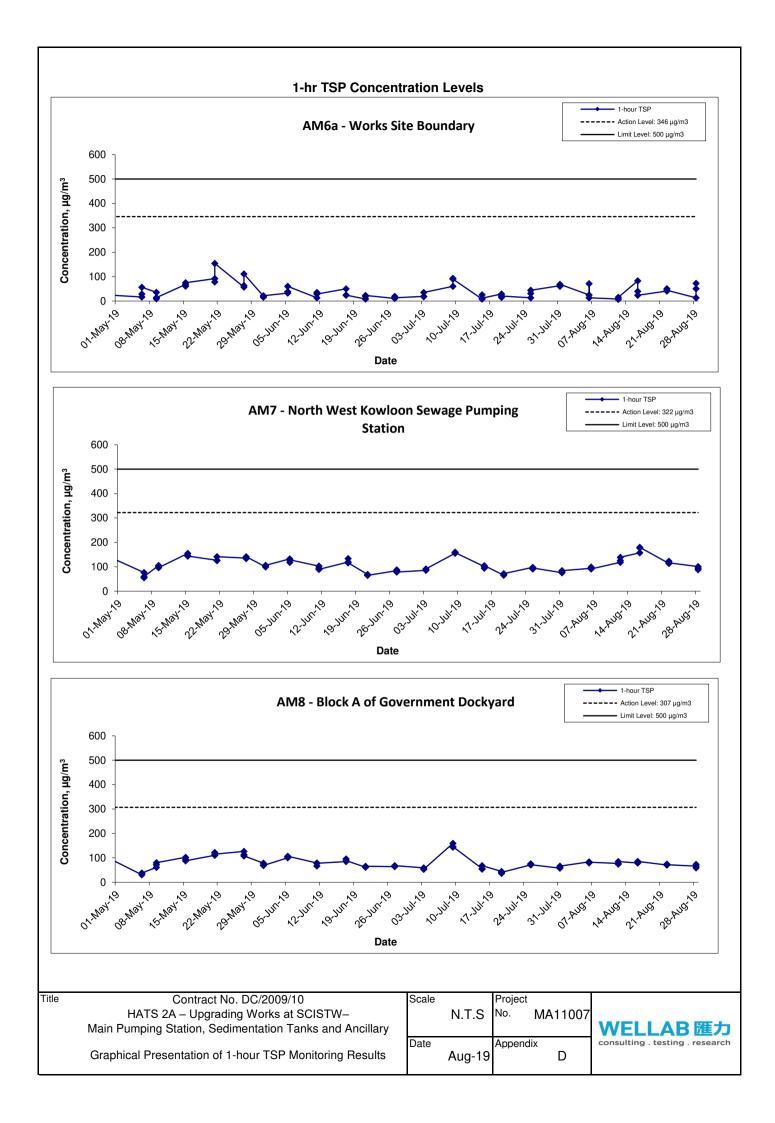
Start Date	Weather	Air	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.	Filter
Start Date	Condition	Temp. (K)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)	ID no.
5-Aug-19	Cloudy	302.4	3.4465	3.4911	0.0446	9561.6	9585.6	24.0	1.21	1.21	1.21	1747.7	25.5	190602/066
9-Aug-19	Cloudy	305.0	3.5497	3.6621	0.1124	9588.6	9612.6	24.0	1.21	1.20	1.21	1735.3	64.8	190701/008
15-Aug-19	Cloudy	304.3	3.5692	3.6409	0.0717	9615.6	9639.6	24.0	1.21	1.21	1.21	1741.3	41.2	190701/014
21-Aug-19	Sunny	302.9	3.5695	3.6298	0.0603	9642.6	9666.6	24.0	1.21	1.21	1.21	1748.5	34.5	190701/020
27-Aug-19	Sunny	302.8	3.5392	3.5938	0.0546	9669.6	9693.6	24.0	1.22	1.22	1.22	1750.7	31.2	190701/062
												Min	26	
												Max	65	

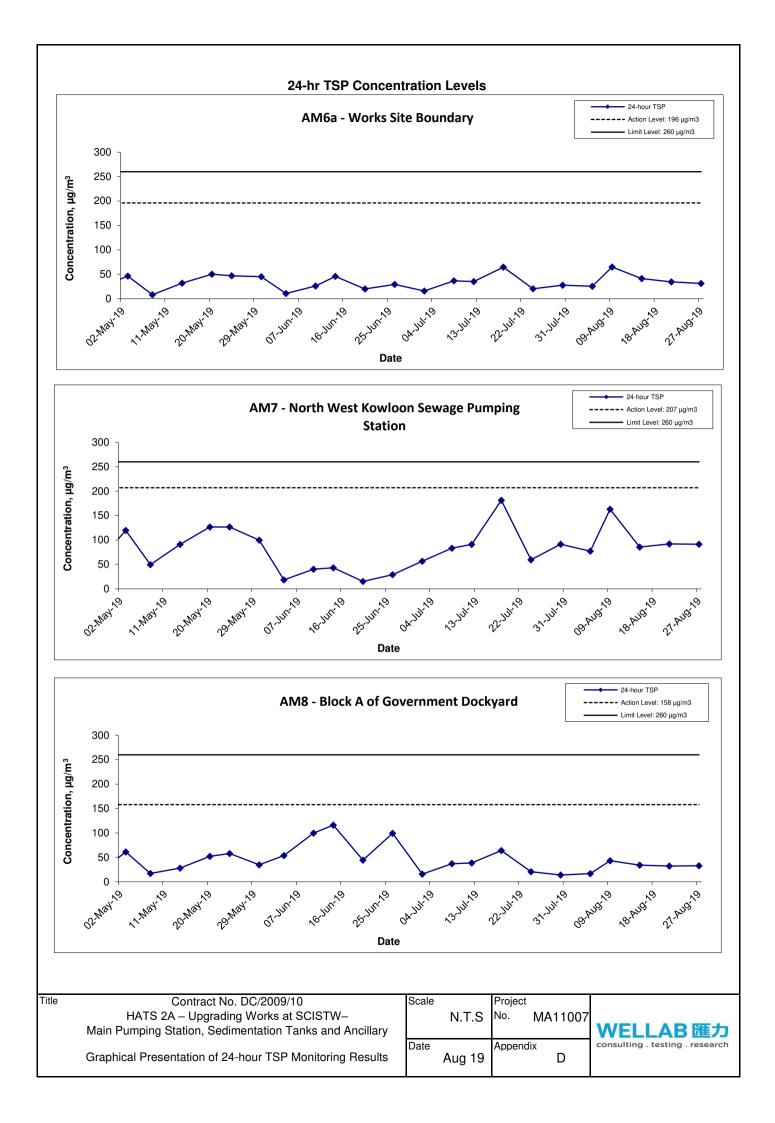
Location AM7 - North West Kowloon Sewage Pumping Station

Start Date	Weather	Air	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.	Filter
Start Date	Condition	Temp. (K)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)	ID no.
5-Aug-19	Cloudy	302.5	3.4693	3.6045	0.1352	38321.3	38345.3	24.0	1.22	1.22	1.22	1751.6	77.2	190602/067
9-Aug-19	Cloudy	304.9	3.5771	3.8606	0.2835	38345.3	38369.3	24.0	1.21	1.21	1.21	1739.3	163.0	190701/010
15-Aug-19	Cloudy	304.4	3.5373	3.6863	0.1490	38369.3	38393.3	24.0	1.21	1.21	1.21	1744.8	85.4	190701/016
21-Aug-19	Sunny	302.7	3.5976	3.7588	0.1612	38393.3	38417.3	24.0	1.22	1.22	1.22	1753.3	91.9	190701/019
27-Aug-19	Sunny	303.0	3.5297	3.6900	0.1603	38417.3	38441.3	24.0	1.22	1.22	1.22	1754.8	91.4	190701/063
												Min	77	
												Max	163	

Location AM8 - Block A of Government Dockyard

Start Date	Weather	Air	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.	Filter
Start Date	Condition	Temp. (K)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)	ID no.
5-Aug-19	Cloudy	302.3	3.5037	3.5328	0.0291	11826.0	11850.0	24.0	1.21	1.21	1.21	1741.9	16.7	190602/068
9-Aug-19	Cloudy	305.1	3.4997	3.5743	0.0746	11850.0	11874.0	24.0	1.20	1.20	1.20	1728.0	43.2	190701/009
15-Aug-19	Cloudy	304.5	3.5738	3.6331	0.0593	11874.0	11898.0	24.0	1.20	1.20	1.20	1733.8	34.2	190701/015
21-Aug-19	Sunny	302.6	3.5284	3.5847	0.0563	11898.0	11922.0	24.0	1.21	1.21	1.21	1743.2	32.3	190701/022
27-Aug-19	Sunny	302.9	3.5632	3.6203	0.0571	11922.0	11946.0	24.0	1.21	1.21	1.21	1744.3	32.7	190701/076
												Min	17	

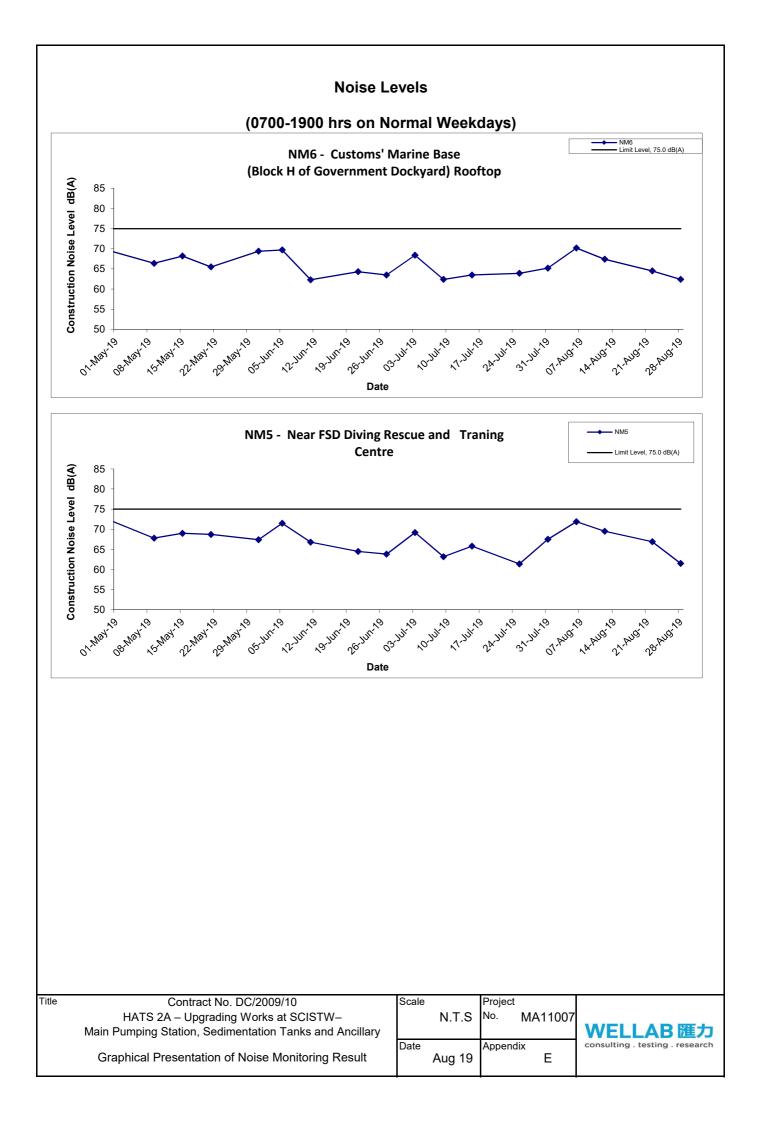

IVIIII	
Max	43
Average	32


Average

Average

39

102


APPENDIX E NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix E - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

Location NM5 - Near FSD Diving Rescue and Training Centre										
			Uni	t: dB (A) (30-	min)					
Date	Time	me Weather Measured Noise Leve								
		L ₉₀								
6-Aug-19	6-Aug-19 10:30 Sunny 71.9 72.6									
12-Aug-19	10:05	Sunny	69.5	71.2	60.3					
22-Aug-19	10:05	Sunny	66.9	67.2	62.3					
28-Aug-19	9:00	Sunny	61.5	63.0	60.7					
		Maximum	71.9							
		Minimum	61.5							

Location NM6 - Customs' Marine Base (Block H of Government Dockyard) Rooftop					
			Unit: dB (A) (30-min)		
Date	Time	Weather	Mea	sured Noise I	Level
			L _{eq}	L ₁₀	L ₉₀
6-Aug-19	9:25	Sunny	70.2	71.8	63.7
12-Aug-19	11:30	Sunny	67.4	70.5	61.3
22-Aug-19	11:30	Sunny	64.5	66.3	61.2
28-Aug-19	11:00	Sunny	62.4	63.5	60.9
		Maximum	70.2		
		Minimum	62.4		

APPENDIX F SUMMARY OF EXCEEDANCE

APPENDIX F – SUMMARY OF EXCEEDANCE

Reporting Month: August 2019

- a) Exceedance Report for 1-hr TSP (NIL)
- b) Exceedance Report for 24-hr TSP (NIL)
- c) Exceedance Report for Construction Noise (NIL)

APPENDIX G SITE AUDIT SUMMARY

Checklist Reference Number	190801
Date	1 August 2019 (Thursday)
Time	09:30-11:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_

Ref. No.	Remarks/Observations	Related Item No.
	Part A - Water Quality	
	• No environmental deficiency was identified during the site inspection	
	 <i>Part B – Landscape and Visual</i> No environmental deficiency was identified during the site inspection 	
	Part C - Air Quality	
	• No environmental deficiency was identified during the site inspection	
	 <i>Part D – Noise</i> No environmental deficiency was identified during the site inspection 	
	Part E – Waste / Chemical Management	
	• No environmental deficiency was identified during the site inspection	
	Part F - Permit / Licence	
	• No environmental deficiency was identified during the site inspection	
	OthersNo environmental deficiency was identified during the site inspection	
	 <i>Remark:</i> Follow-up on previous audit sessions: On previous audit session (Ref. No. 190725), all environmental deficiencies were improved by the Contractor. 	

Recorded by	ChunMing Li		7 August 2019
Checked by Dr	. Priscilla Choy	KP.	7 August 2019

Inspection Information

Checklist Reference Number	190808
Date	8 August 2019 (Thursday)
Time	09:30-11:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	**

Ref. No.	Remarks/Observations	Related Item No.
	Part A - Water Quality	
	• No environmental deficiency was identified during the site inspection	
	 Part B – Landscape and Visual No environmental deficiency was identified during the site inspection 	
	Part C - Air Quality	
	• No environmental deficiency was identified during the site inspection	
	 <i>Part D – Noise</i> No environmental deficiency was identified during the site inspection 	
	Part E – Waste / Chemical Management	
	• No environmental deficiency was identified during the site inspection	
	Part F - Permit / Licence	
	• No environmental deficiency was identified during the site inspection	
	OthersNo environmental deficiency was identified during the site inspection	
	<i>Remark:</i> • Follow-up on previous audit sessions: On previous audit session (Ref. No. 190801), no environmental deficiency was observed during the site inspection.	

	Name	Signature	Date
Recorded by	ChunMing Li	le.	8 August 2019
Checked by	Dr. Priscilla Choy	NI-	8 August 2019

,

Checklist Reference Number	190814
Date	14 August 2019 (Wednesday)
Time	09:30-11:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	

Ref. No.	Remarks/Observations	Related Item No.
	Part A - Water Quality	
	• No environmental deficiency was identified during the site inspection	
	 <i>Part B – Landscape and Visual</i> No environmental deficiency was identified during the site inspection 	
	Part C - Air Quality	
	• No environmental deficiency was identified during the site inspection	
	 <i>Part D – Noise</i> No environmental deficiency was identified during the site inspection 	
	Part E – Waste / Chemical Management	
	• No environmental deficiency was identified during the site inspection	
	 <i>Part F - Permit / Licence</i> No environmental deficiency was identified during the site inspection 	
	<i>Others</i>No environmental deficiency was identified during the site inspection	
	 Remark: Follow-up on previous audit sessions: On previous audit session (Ref. No. 190808), no environmental deficiency was observed during the site inspection. 	

	Name	Signature	Date
Recorded by	ChunMing Li	C.	16 August 2019
Checked by	Dr. Priscilla Choy	WI	16 August 2019

Checklist Reference Number	190822
Date	22 August 2019 (Thursday)
Time	09:30-11:45

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part A - Water Quality	
190822-002	• Oil stain should be cleared at the non-using drill.	A 17
2	 Part B – Landscape and Visual No environmental deficiency was identified during the site inspection 	
	Part C - Air Quality	
190822-O01 190822-R01	Excavated dusty materials should be covered by impervious materials.Sufficient watering should be applied on dust generating activities.	C 6 C 10
	Part D – Noise	
	• No environmental deficiency was identified during the site inspection	
	Part E – Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection	
	Part F - Permit / Licence	
	• No environmental deficiency was identified during the site inspection	
	Others	
	No environmental deficiency was identified during the site inspection	
	<i>Remark:</i> • Follow-up on previous audit sessions: On previous audit session (Ref. No. 190814), no environmental deficiency was observed during the site inspection.	

	Name	Signature	Date	
Recorded by	Kenneth Leung	Lemy	26 August 2019	
Checked by	Dr. Priscilla Choy	L.T.	26 August 2019	

Checklist Reference Number	190829
Date	29 August 2019 (Thursday)
Time	09:30-11:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part A - Water Quality	
	• No environmental deficiency was identified during the site inspection	
	 <i>Part B – Landscape and Visual</i> No environmental deficiency was identified during the site inspection 	
	Part C - Air Quality	
190829-001 190829-R01	 Excavated dusty materials should be covered by impervious materials. Sufficient watering should be applied on dust generating activities. 	C 6 C 10
	Part D – Noise	
	• No environmental deficiency was identified during the site inspection	
	Part E – Waste / Chemical Management	
190829-R02	• General refuse should be collected regularly on MPS2.	E 1iii
	Part F - Permit / Licence	
	• No environmental deficiency was identified during the site inspection	
	Others	
	• No environmental deficiency was identified during the site inspection	
	<i>Remark:</i> • Refer to the previous audit session, 190822-O01 and 190822-R01 are remarked as 190829-O01 and 190829-R01 respectively.	

	Name	Signature	Date
Recorded by	ChunMing Li		29 August 2019
Checked by	Dr. Priscilla Choy	I NI	29 August 2019
	-	1	

APPENDIX H SUMMARY OF AMOUNT OF WASTE GENERATED Name of Department:

Contract No. :

DC/2009/10

		Actual Quantities of	inert C&D Mat	erials Generated	d Monthly		Actu	ual Quantities of C	C&D Materials	Generated M	onthly
Month	Total Quantity	Hard Rock and Large	Reused in the	Reused in	Disposed as	Imported	Metals	Paper/	Plastics	Chemical	Other, e.g.
Woltun	Generated	Broken Concrete	Contract	other Projects	Public Fill	Fill		cardboard	(see Note 3)	Waste	general refuse
	(In '000m ³)	(In '000m ³)	(In '000m ³)	$(\ln '000m^3)$	(In '000m ³)	(In '000m ³)	(In '000kg)	(In '000kg)	(In '000kg)	(In '000kg)	(In '000m ³)
Jan	0.322	0.322	0.000	0.000	0.322	0.000	0.000	0.536	0.000	0.000	0.007
Feb	0.089	0.089	0.000	0.000	0.089	0.000	0.000	0.000	0.000	0.000	0.005
Mar	0.205	0.205	0.000	0.000	0.205	0.000	0.000	0.000	0.000	0.000	0.019
Apr	0.183	0.183	0.000	0.000	0.183	0.000	0.000	0.000	0.000	0.000	0.005
May	0.142	0.142	0.000	0.000	0.142	0.000	0.000	0.715	0.000	0.000	0.010
June	0.187	0.187	0.000	0.000	0.187	0.000	0.000	0.000	0.000	0.000	0.011
Sub-total	1.128	1.128	0.000	0.000	1.128	0.000	0.000	1.251	0.000	0.000	0.057
July	0.181	0.181	0.000	0.000	0.181	0.000	0.000	0.526	0.000	0.000	0.016
Aug	0.210	0.210	0.000	0.000	0.210	0.000	0.000	0.000	0.000	0.000	0.015
Sep											
Oct											
Nov											
Dec											
Total	1.519	1.519	0.000	0.000	1.519	0.000	0.000	1.777	0.000	0.000	0.089
Total since commence ment of project		61.304	0.000	0.000	61.304	0.000	372.871	11.676	3.314	2.227	2.049

Monthly Summary Waste Flow Table for 2019 (year)

Notes: (1) The performance targets are given in PS Clause 25.41(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material

DSD

(4) The conversion factor for tonne to m^3 for inert C&D materials is 1.9 tonne/ m^3 .

(5) The conversion factor for tonne to m^3 for general refuse is 1.8 tonne/m³.

APPENDIX I EVENT ACTION PLANS

APPENDIX I – Event / Action Plans

Table I-1 Event / Action Plan For Air Quality

	ACTION					
EVENT	ET	IEC	ER	CONTRACTOR		
ACTION LEVEL						
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 		
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failurein writing; Notify Contractor; Ensure remedial measures properly implemented 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate 		

	ACTION					
EVENT	ЕТ	IEC	ER	CONTRACTOR		
LIMIT LEVEL		·	·	·		
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate 		
2. Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under 		

	ACTION			
EVENT	ET	IEC	ER	CONTRACTOR
	implemented;	advise the ER accordingly;	5. If exceedance continues,	control;
	6. Arrange meeting with IEC and	5. Supervise the implementation of	consider what portion of the	5. Stop the relevant portion of
	ER to discuss the remedial actions	remedial measures.	work is responsible and	works as determined by the
	to be taken;		instruct the Contractor to stop	ER until the exceedance is
	7. Assess effectiveness of		that portion of work until the	abated
	Contractor's remedial actions and		exceedance is abated.	
	keep IEC, EPD and ER informed of			
	the results;			
	8. If exceedance stops, cease			
	additional monitoring			

Table I-2 Event / Action Plan For Construction Noise

	ACTION			
EVENT	ET	IEC	ER	CONTRACTOR
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in writing;	proposals to IEC and ER;
exceeded	3. Report the results of investigation to	2. Review the proposed	2. Notify Contractor;	2. Implement noise mitigation
exceeded	the IEC, ER and Contractor;	remedial measures by the	3. In consolidation with the IEC,	proposals
	4. Discuss with the IEC and	Contractor and advise the ER	agree with the Contractor on the	
	Contractor on remedial measures	accordingly;	remedial measures to be	
	required;	3. Advise the ER on the	implemented;	
	5. Increase monitoring frequency to	effectiveness of the proposed	4. Supervise the implementation of	
	check mitigation effectiveness	remedial measures	remedial measures	
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET,	1. Confirm receipt of	1. Take immediate action to
being	EPD;	and	notification of failure in writing;	avoid further exceedance;
exceeded	2. Repeat measurements to confirm	Contractor on the potential	2. Notify Contractor;	2. Submit proposals for
exceduca	findings;	remedial actions;	3. In consolidation with the	remedial actions to IEC
	3. Increase monitoring frequency;	2. Review Contractor's	IEC, agree with the Contractor on	and ER within 3 working
	4. Identify source and investigate the	remedial	the remedial measures to be	days of notification;
	cause of exceedance;	actions whenever necessary	implemented;	3. Implement the agreed
	5. Carry out analysis of Contractor's	to assure their effectiveness	4. Supervise the implementation of	proposals;
	working procedures;	and advise the ER accordingly.	remedial measures;	4. Submit further proposal if
	6. Discuss with the IEC, Contractor		5. If exceedance continues,	problem still not under
	and ER on remedial measures		consider stopping the Contractor to	control;
	required;		continue working on that portion of	5. Stop the relevant portion
	7. Assess effectiveness of Contractor's		work which causes the exceedance	of works as instructed by
	remedial actions and keep IEC, EPD		until the exceedance is abated	the ER until the exceedance is
	and ER informed of the results;			abated
	8. If exceedance stops, cease			
	additional monitoring			

APPENDIX J ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

APPENDIX J IMPLEMENTATION SCHEDULE OF ENVIRONMENTAL MITIGATION MEASURES (EMIS)

EIA	Recommended Mitigation Measures	Location of the measure	Implementation Status	
Ref.				
А	Air Quality			
3.74	Skip hoist for material transport should be totally enclosed by impervious sheeting.	All construction sites	۸	
	Vehicle washing facilities should be provided at every vehicle exit point.		٨	
	The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcore.		^	
	Where a site boundary adjoins a road, streets or other areas accessible to the public, hoarding of not less than 2.4 m high from ground level should be provided along the entire length except for a site entrance or exit.		N/A	
	Use of regular watering, with complete coverage, to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather.		#	
	Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.		^	
	Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs.		#	
	Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.		^	
	Imposition of speed controls for vehicles on unpaved site roads. Ten kilometers per hour is the recommended limit.		^	
	Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the 3 sides.		^	
	Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.		٨	
3.74	Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise.	All construction sites	^	

EIA	Recommended Mitigation Measures	Location of the measure	Implementation Status
Ref.			
В	Airborne Noise		
4.56-	Use of quiet PME, movable barriers and acoustic mats.	All construction sites	٨
4.61			
4.67	Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program.		^
	Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program.		^
	Mobile plant, if any, shall be sited as far away from NSRs as possible.		٨
	Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or shall be throttled down to a minimum.		^
4.67	Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.		^
	Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities.		^
С	Water Quality		
6.349 to 6.375	Construction Site Runoff and General Construction Activities The mitigation measures as outlined in the ProPECC PN 1/94 Construction Site Drainage	All construction sites	Λ
	should be adopted where applicable.		
6.376	Effluent Discharge There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD. Minimum distances of 100 m should be maintained between the discharge points of construction site effluent and the existing saltwater intakes.		Λ
6.377	Accidental Spillage of Chemicals		٨
	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General)		

EIA	Recommended Mitigation Measures	Location of the measure	Implementation Status
Ref.			
	Regulation should be observed and complied with for control of chemical wastes.		
6.378	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.		*
6.379	 Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area. 		Λ
6.380	Construction Works in Close Proximity of Storm Drains or Seafront:	All construction sites	۸
	 To minimize the potential water quality impacts from the construction works located at or near any watercourse, the practices outlined below should be adopted where applicable. The use of less or smaller construction plants may be specified to reduce the disturbance to the storm water courses or marine environment. Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works. Stockpiling of construction materials and dusty materials should be covered and located away from any water courses. Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers. Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable. Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert or sea. 		

EIA	Recommended Mitigation Measures	Location of the measure	Implementation Status
Ref.			

D	Waste Management		
9.107	Reusable steel or concrete panel shutters, fencing and hoarding and signboard should be used as a preferred alternative to items made of wood, to minimize wastage of wood. Attention should be paid to WBTC No. 19/2001 - Metallic Site Hoardings and Signboards to reduce the amount of timber used on construction sites. Metallic alternatives to timber are readily available and should be used rather than new timber. Precast concrete units should be adopted wherever feasible to minimize the use of timber formwork.	All construction sites	٨
9.109	 All waste materials should be segregated into categories covering: excavated materials suitable for reuse on-site; excavated materials suitable for public filling facilities; remaining C&D waste for landfill; chemical waste; and general refuse for landfill. 	All construction sites	٨
9.113	Sort C&D waste from demolition of existing facilities to recover recyclable portions such as metals.		^
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.		^
	Encourage collection of aluminum cans, PET bottles and paper by providing separate labeled bins to enable these wastes to be segregated from other general refuse generated by the work force.		۸
	Any unused chemicals or those with remaining functional capacity shall be recycled.		٨
	Proper storage and site practices to minimize the potential for damage or contamination of construction materials.		^
9.115	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.		۸
	Training of site personnel in proper waste management and chemical waste handling procedures.		^
9.115	Develop and provide toolbox talk for on-site sorting of C&D materials to enhance worker's awareness in handling, sorting, reuse and recycling of C&D materials.		۸
	Provision of sufficient waste disposal points and regular collection of waste.		٨
	Regular cleaning and maintenance programme for drainage systems, sumps and oil		٨

EIA	Recommended Mitigation Measures	Location of the measure	Implementation Status
Ref.			
	interceptors.		
9.125	Bentonite slurries used in diaphragm wall construction should be reconditioned and reused wherever practicable. The disposal of residual used bentonite slurry should follow the good practice guidelines stated in ProPECC PN 1/94 "Construction Site Drainage".	All construction sites	٨
9.131	Adequate number of portable toilets at temporary works areas or the PTWs to ensure that sewage from site staff would be properly collected.		٨
9.133	General refuse should be stored in enclosed bins, skips or compaction units separating from C&D material and disposed of at designated landfill.		#
9.135	The recyclable component of the municipal waste generated by the workforce, such as aluminum cans, paper and cleansed plastic containers should be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste should be set up by the Contractor. The Contractor should also be responsible for arranging recycling companies to collect these materials.		^
9.137	If chemical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes, to either the approved Chemical Waste Treatment Centre, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.		Λ
9.142	Prior to excavation of the marine deposit layer, the deposit should be tested in accordance with the ETWB TC(W) No. 34/2002 and the results should be presented in a Preliminary Sediment Quality Report. The marine deposit should be disposed of at the disposal site designated by the Marine Fill Committee (MFC) or Director of Environmental Protection (DEP) depending on the test results.		N/A

EIA	Recommended Mitigation Measures	Location of the measure	Implementation Status
Ref.			

Е	Terrestrial Ecology		
10.94	To implement effective noise mitigation measures as recommended in Section 4 of EIA.	All construction sites	N/A
10.95	Dust control practices such as regular watering, complete coverage of any aggregate or dusty material storage piles, and re-schedule of dusty activities during high-wind conditions as well as other measures recommended in Section 3 of EIA, should be implemented.	-	٨
10.96	Fences/hoardings should be erected and installed along the boundary of the works areas.		۸
10.97	Standard good site practices as suggested in Section 10 of EIA should be implemented.		N/A
10.98	Provision of proper drainage system and runoff control measures such as use of sand/silt traps, oil/grease separators, sedimentation tanks, etc.	-	٨
F	Landscape and Visual		
Table 13.7	Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where practical.	All construction sites	^
	Existing trees to be retained on site should be carefully protected during construction.		٨
	Trees unavoidably affected by the works should be transplanted where practical.		٨
	Compensatory tree planting should be provided to compensate for felled trees.	-	۸
	Control of night-time lighting.	-	۸
Table	Erection of decorative screen hoarding compatible with the surrounding setting.	All construction sites	N/A
13.7			
G	Marine Ecology		
11.137	To minimize the potential indirect impacts on water quality from construction site runoff and various construction activities, the practices outlined in ProPECC PN 1/94 Construction Site Drainage should be adopted.	All construction sites	٨
Н	Hazard to Life		
14A.201	Limiting use of cranes in terms of locations, lifting height, swing angle and setting up safety zone.	Exact location will be determined on construction site by the engineer	۸

Remarks:	 Compliance of mitigation measure; 			
	N/A Not Applicable;			
	* Recommendation was made during site audit but			
	mproved/rectified by the contractor.			
	# Recommendation was made during site audit and to be			
	improved / rectified by the contractor.			
	X Non-compliance of mitigation measure;			
	Non-compliance but rectified by the contractor;			

APPENDIX K COMPLAINT LOG

APPENDIX K – COMPLAINT LOG

Reporting Month: August 2019

Log Ref.	Location	Received Date	Details of Complaint	Investigation/Mitigation Action	Status
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

Remarks: No environmental complaint was received in the reporting month.

APPENDIX L CONSTRUCTION PROGRAMME

	Activity Name	Activity % Complete	Original Start Duration	Finish		Q4		Q1	Q2	2019 Q3		Q4	Q1	2020	0)2
rget Wor	ks Programme (Completion for Section 3, 4 and 5)															7 08
	Section 3					_						▼ 11-Dec-1	10 MPC2			• 0
IPS2 Staircase Pre	ssurisation System (ST3)											- I	19, MPS2 19, Stair¢ase Press	urisation Sys	stem (ST3)	
A2725	FSC door replacement (Beam+)	100%	60 02-Jan-19 A	12-Mar-19 A					replacement							
A2730	Testing and commissioning of Staircase pressurisation system	100%	50 14-Jan-19 A	12-Mar-19 A	_			Testing a	nd commissio	ning of Staircase pressurisation syste	m		in ductored as A D			
A2810	Relocation ductworks at B/4 ffice level, FS pump room)	0%	45 09-Oct-19	11-Dec-19		-					09-0	oct-19, F.S system (Office le	ion ductworks at B/- evel. FS bump room	- 1		
A9605	Installation of Fire Detection system in Wet well inlet valve (Pipe duct)	100%	40 15-Nov-18 A	09-Jan-19 A		· ·		Installation of Fire Detection sys	tem in Wet we	II inlet valve (Pipe duct)	• • • • •			1		
A9610	Rehearsal test for FS system	100%	6 20-Mar-19 A	26-Mar-19 A				Reh	earsal test for	FS system				ļ		
A9620	FSD Inspection (including FS, MVAC and Hot smoke test)	85%	210 27-Mar-19 A	09-Oct-19	_				1		FSD	Inspection (including FS, N	IVAC and Hot smol	ke test)		_
	chlorite Storage Compound sing pipes														27-Mar-20	
	DCS upgrading at Daytanks	0%	120 02-Nov-19	27-Mar-20	_						г	-			DCS upgra	
Documentat												f existing and new NaO¢L o				
A3585 A3588	Intergation of existing and new NaOCL dosing system RT for NaOCL dosing system	60% 0%	40 09-Sep-17 A 26 20-Sep-19*	19-Sep-19 21-Oct-19	_							RT for NaOCL dosing syste				
A3589	Training to ST2	0%	10 22-Oct-19	01-Nov-19								Training to ST2				
A3600	Handover of NaOCI storage compound (stage two)	0%	0	01-Nov-19	_							Handover of NaOCI sto	rage compound (st	age two)		
A3601	Traininig to ST2	0%	18 28-Mar-20	21-Apr-20						· · · · · · · · · · · · · · · · · · ·				╘	T T	raini
A3602	Handover inspection of NaOCI Daytank DSD/ST2 (Stage three)	0%	14 22-Apr-20	08-May-20	_											
A3605	Handover of NaOCI Daytank (stage three)	0%	0	08-May-20	_											-
	Section 5											14-Dec	-19, Works for Sec	tion 5		
me for Sec C0115	ional Completion Completion of Outstanding works in Section 5	100%	0	13-Apr-19 A	-					, Time for Sectional Completion of Outstanding works in Section 5						
	diffication works at NWK overflow chamber and SCIMPS2)	100%	0	13-Api-19A						, Portion 1 (Modification works at NW	Koverflow chamber an	nd SCIMPS2)		++		
civil works					_				Mar-19 A, Civi							
	Construction of DN1200 flowmeter chamber (CH80-70)	100%	30 14-May-18 A	19-Jun-18 A	wmeter c	chamber (CH80-70)										
P101809	TTA for traffic diversion (in porous pavement)	100%	10 05-Feb-19 A	15-Feb-19 A	_			TTA for traffic diver	1 I I I I I I I I I I I I I I I I I I I							
P101811 Connection	Construction of DN1200 overflow pipe (CH70-30)	100%	35 16-Feb-19 A	28-Mar-19 A	.			······································		N1200 overflow pipe (CH70-30) , Connection Works				÷÷		
P100330	Modification works for connection of overflow Pipe at NWK overflow chamber	100%	30 15-Feb-19 A	21-Mar-19 A				Modifi	cation works f	or connection of overflow Pipe at NWI	<pre><pre>verflow chamber</pre></pre>					
P100380	Reliability test of NWKOF	100%	14 29-Mar-19 A	13-Apr-19 A					Reliability t	est of NWKOF						
	ather station)							11-Feb-19 A, Portion								
\9075	Replacement of H2S sensors and weather station	100%	1 22-Jan-19 A	22-Jan-19A				Replacement of H2S sensor		station				÷		
A9080 <mark>xpert syste</mark>	Testing and Commissioning	100%	18 22-Jan-19 A	11-Feb-19A	_			Testing and Commis	sioning			14-Dec	:-19, Expert system			
A9090	Implementation of Phase 1 Expert System (MPS1, MPS2,)	100%	160 15-Aug-17 A	27-Feb-18 A	_							• 14 200	in a second second			
A9100	Implementation of Phase 2 Expert System (SDF, Chemcial dosing and Chlorination)	25%	105 13-Oct-18 A	03-Dec-19			i i						ation of Phase 2 Exp	pert System (S	SDF, Chem	cial
A9120	Training to DSD/ST2	0%	10 03-Dec-19	14-Dec-19								🛏 Training	g to DSD/ST2			
upplemer	tary Agreement No.2															28- <i>F</i>
IPS2 Pump	Jgrading (2nd Stage)				—							· · · · ·	29-Jan-2	0, MPS2 Pum	np Ugradinģ) (2n
	Manufacturing of 2nd batch of new impeller (3Nos)	100%	165 18-Sep-18 A		_			Manufacturin		of new impeller (3Nos)						
A9235 A9238	Delivery of 2nd batch of pump propeller (3nos) Manufacturing of 3rd and 4th batch of new impeller (2Nos)	100%	18 01-May-19 A 180 01-Nov-18 A	18-May-19 A 29-Apr-19 A	_					Delivery of 2nd batch of pump prope facturing of 3rd and 4th batch of new ir						
49239	Delivery of 3rd batch of pump impeller (2nos)	100%	45 16-Jun-19 A	31-Jul-19 A					ivia iu		of 3rd batch of pump in	mpeller (2nos)		++		
49246	Delivery of 4th batch of pump impeller (2nos)	100%	45 01-Jul-19 A	15-Aug-19 A							livery of 4th batch of pu					
9248	Off site RTD repairing No. 4	100%	21 19-May-19 A	08-Jun-19A						Off site RTD repairing No. 4						
49251	Replacement of Dn600 Centrate valve (Hall A)	100%	21 19-May-19 A	08-Jun-19 A					L=1	Replacement of Dn600 Centr	ra <mark>te valve (Hall A)</mark>					
A9252	Installation and testing of upgraded pumps (3Nos)	15%	120 03-Apr-19 A	12-Dec-19									tion and testing of u		···· · · · · · · · · · · · · · · · · ·	4110
.9262 .9272	Installation and testing of upgraded pumps (4Nos) Submit performance report, O&M manual for upgrading works	0%	120 02-Sep-19 30 31-Dec-19	30-Dec-19 29-Jan-20	-								nstallation and testi	erformance re		
OU3 upsizi		0,0		20 0411 20	_		-									28
A9310	Manufacturing and delivery of pump sets, filter media, demisters	100%	110 05-Dec-18 A	24-Mar-19 A				Manı	facturing and	delivery of pump sets, filter media, de	misters					
49320	Manufacturing and delivery of instruments	100%	119 05-Dec-18 A	02-Apr-19 A						nd delivery of instruments				<u> </u>		
19330	Manufacturing and delivery of 1st FRP vessels	100%	60 20-Dec-18 A	17-Feb-19 A				Manufacturing and		1 I I I	inco oir duoto and aco	ttalda				
9340 9350	Preparaton works for FPR vessel dismantling, including Mod of pipelines, air ducts and sc Discommissioning and replacement of new FRP vessels	100% 45%	30 22-Jan-19 A 24 20-Mar-19 A	20-Feb-19 A 15-Sep-19					S IUI FRA VESS	el dismantling, including Mod of pipel		molds oning and replacement of ne	ew FRP viessels			
9360	Replacement of recirculation pumps, nutrient pumps and assiociated pipeworks	45% 5%	18 13-Apr-19 A	02-Oct-19	_							ement of recirculation pump		and assiociate	ed pipewor	ks
9370	Installaton of instruments	5%	15 13-Apr-19 A	29-Sep-19								on of instruments				
9380	Testing and commissioning	0%	15 02-Oct-19	17-Oct-19							· · · ·	esting and commissioning	1		1	
9660	Manufacturing and delivery of 2nd FRP vessels	75%	45 30-Mar-19 A	13-Sep-19	_			Land 199		· · · · · · · · · · · · · · · · · · ·		and delivery of 2nd FRP ve		in all of the		
9670	Preparaton works for FPR vessel dismantling, including Mod of pipelines, air ducts and sc.	0%	20 02-Oct-19	22-Oct-19	_							Preparaton works for FPR Discommissioning		-		ies
9680 9690	Discommissioning and replacement of new FRP vessels Replacement of recirculation pumps, nutrient pumps and assiociated pipeworks	0%	24 22-Oct-19 18 15-Nov-19	15-Nov-19 03-Dec-19	-								- · · ·			nd
700	Installaton of instruments	0%	15 15-Nov-19	30-Nov-19							· • • • • • • • • • • • • • • • • • • •	Installaton of				
710	Testing and commissioning	0%	14 03-Dec-19	17-Dec-19									ng and commissioni	ng		
720	Manufacturing and delivery of 3rd FRP vessels	0%	45 23-Sep-19	07-Nov-19								Manufacturing and de				
9730	Preparaton works for FPR vessel dismantling, including Mod of pipelines, air ducts and sc.	0%	25 03-Dec-19	28-Dec-19									reparator works for	1 1		£
	Discommissioning and replacement of new FRP vessels	0%	24 08-Dec-19	01-Jan-20								ا ا ب ا	Discommissioning			
9740	Replacement of recirculation pumps, nutrient pumps and assiociated pipeworks	0%	16 01-Jan-20 14 01-Jan-20	17-Jan-20 15-Jan-20	_								Replacement		on pumps,	nut
9750	Installation of instruments			1J-Jd1-20			1			i i i	4		instanaturi ul l	nou unicilită		
9740 9750 9760	Installaton of instruments	0%	14 01 041 20		~					1 1 1				booked	Δ	
9750 9760	Installaton of instruments Jal Work Milestone	0%			Contra	act No. DC/2009/10)	· · · ·			Sheet 1 of 2	Date Revis	sion C	hecked	Аррг	.ove
750 760		0%				ict No. DC/2009/10		reatement Works			Sheet 1 of 2 26-Jul- 20-Nor 11-Feb	-18 Rev. 5 v-18 Rev. 6	sion C	hecked	Аррг	rov

Activity ID	Activity Name		6 Original Start	Finish	2019							
		Complete	Duration		Q4	Q1	Q2	Q3	Q4			
A9770	Testing and commissioning	0%	15 17-Jan-20	01-Feb-20								
A9780	Manufacturing and delivery of 4th FRP vessels	0%	45 07-Nov-19	22-Dec-19					-	Manufacturing an		
A9790	Preparaton works for FPR vessel dismantling, including Mod of pipelines, air ducts and sc	0%	24 17-Jan-20	10-Feb-20								
A9800	Discommissioning and replacement of new FRP vessels	0%	14 27-Jan-20	10-Feb-20								
A9810	Replacement of recirculation pumps, nutrient pumps and assiociated pipeworks	0%	12 10-Feb-20	22-Feb-20						-		
A9820	Installaton of instruments	0%	12 10-Feb-20	22-Feb-20								
A9830	Testing and commissioning	0%	10 22-Feb-20	03-Mar-20								
A9840	Final testing and commissioning (including air balancing and performance test)	0%	16 03-Mar-20	19-Mar-20								
A9850	Reliability test of upgraded DOU	0%	30 19-Mar-20	18-Apr-20								
A9860	As-built drawings and OM manual submission and defect rectification	0%	25 19-Mar-20	13-Apr-20								
A9870	Provide Operational Training to ST2	0%	5 18-Apr-20	23-Apr-20								
A9880	Handover to ST2	0%	5 23-Apr-20	28-Apr-20								
Replacem	ent of MPS1 inlet penstock						17-Mar-19 A, Replacement of MPS1 inlet pensto	ock				
2018/2019	Dry Season						17-Mar-19 A, 2018/2019 Dry Season					
A9950	Design and fabrication of temporary bulkhead in adit tunnel	100%	150 05-Mar-18 A	01-Aug-18 A	d fabrication of temporary bulkhead in adit tunnel							
A9980	Installation of bulkhead in two adit tunnel for isolation of MPS1	100%	14 01-Nov-18 A	14-Nov-18 A	Installation of bulkhe	ad in two adit tunn	el for isolation of MPS1					
A9985	Divert all flow to MPS2 during 2018/2019 dry season	100%	105 15-Nov-18 A	27-Feb-19 A	⊢		Divert all flow to MPS2 during 2018/2019 dry season					
A9990	Installation of two new inlet penstocks	100%	60 18-Dec-18 A	15-Feb-19 A			Ilation of two new inlet penstocks					
A9992	Electrical and control installation of two new inlet penstock	100%	9 07-Feb-19A	15-Feb-19 A		Elec	trical and control installation of two new inlet penstock					
A9994	Testing and commissioning	100%	9 16-Feb-19A	24-Feb-19 A		і Бел іт	esting and commissioning					
A9995	Dismantle of metal scaffold and final clearance	100%	7 25-Feb-19 A	03-Mar-19 A			Dismantle of metal scaffold and final clearance					
A9996	Implementation of 3rd two weeks by-pass	100%	0 04-Mar-19 A				 Implementation of 3rd two weeks by-pass 					
A9997	Dismantling of temporary bulkhead in two adit tunnel	100%	14 04-Mar-19 A	17-Mar-19 A		Let I	Dismantling of temporary bulkhead in two adit to	unnel				
A9998	Resume HATS1 flow	100%	0	17-Mar-19 A			Resume HATS1 flow					
Feature W	all at Existing CEPT					14 -F	eb 19 A, Feature Wall at Existing CEPT					
A10010	Design and construction of architectural features installation	100%	300 21-Apr-18 A	14-Feb-19 A		Desi	gn and construction of architectural features installatio	'n				
Existing R	ser shaft						▼	 	13-Oct-19, Existin	ng Riser shaft		
A10025	Demobilize of equipment and material in riser shaft	100%	60 18-Mar-19 A	16-May-19 A			Demobilize of equipment		naft			
A10030	Cosntruction top slab of existing riser shaft	72%	150 17-May-19 A	13-Oct-19			▶		Cosntruction top	slab of existing riser shaft		

Actual Work	♦ ♦ I	Milestone	Contract No. DC/2009/10	Sheet 2 of 2
Remaining Work		Summary	HATS Stage 2A - Upgrading works at StoneCutters Island Sewage Treatement Works	20-N
Critical Remaining Wor	rk			11-F
			Target Works Programme for Completion of Section 3, 4 and 5	

	Q3			Q4			Q1	2020		22
						L=	Testing a	and commis	sioning	
				-		anufacturin		ery of 4th F		essel disma
				+		L - -				acement of r
								Replacemer	t of recircu	lation pump
								nstallaton c	f instrumen and commis	
							Ģ			and commis
								-	Re	liability test
								┕╼		built drawing Provide Ope
							, , ,			Handover
penstock										
ason										
nstock				+			, , ,			
adit tunnel										
allation										
			13-0	Oct-19, Exis	ting Riser s	haft				
oment and	material	n riser sha					t 64			
I	1			ntruction top	STAD OF EXI	sung risers	inan	1	1	: :
				Date		evision		necked	۸	roved
	S	Sheet 2 of	26-Jul-	18	Rev. 5				мрр	proved
			20-Nov		Rev. 6					
			11-Feb-	19	Rev. 7		1		1	