NMAP

Ocean Park Corporation, Hong Kong

Repositioning and Long Term Operation Plan of Ocean Park: *Noise Mitigation and Audit Plan for Phase 3*

August 2014

Environmental Resources Management 16/F Berkshire House 25 Westlands Road Quarry Bay Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

NMAP

Ocean Park Corporation, Hong Kong

Repositioning and Long Term Operation Plan of Ocean Park: *Noise Mitigation and Audit Plan for Phase 3*

August 2014

Reference 0238176

For and on	behalf of
ERM-Hong	Kong, Limited
Approved	by: Frank Wan
Signed:	Warchert J.
Position:	Partner
-	
Date:	18 August 2014

This report has been prepared by ERM-Hong Kong, Limited with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

CONTENTS

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PURPOSES OF THIS PLAN	1
2	COMMISSIONING REQUIREMENTS AND PROPOSED MEASUREMENT METHODOLOGY	2
2.1	Commissioning Requirements	2
2.2	NOISE SOURCES OF THE VENUE AND MEASUREMENT LOCATIONS	2
2.3	COMMISSIONING NOISE MEASUREMENT METHODOLOGY	6
3	MEASUREMENT INSTRUMENTS	8

LIST OF ANNEXES

- ANNEX A LOCATIONS OF MAIN ENTRANCE, SIDE DOORS, OPERABLE WALLS AND WINDOWS
- ANNEX B LOCATION OF CHILLERS AND WATER PUMPS
- ANNEX C LOCATION OF AHUS AND FRESH AIR INTAKES
- ANNEX D LOCATION OF THE SPLIT TYPE AC UNIT
- ANNEX E WALL PANEL DRAWING
- ANNEX F ROOF PANEL DRAWING AND CEMENT BOARD SPECIFCATION
- ANNEX G SPECIFICATION OF THE OPERABLE WALL
- ANNEX H LABORATORY TESTING REPORT OF ACOUSTIC DOOR
- ANNEX I ACOUSTIC PERFORMANCE OF THE CURTAIN DOOR
- ANNEX J DRAWING AND REFERENCE OF THE WINDOW PANEL
- ANNEX K SPECIFICATION OF THE ACOUSTIC LOUVRE FOR CHILLERS
- ANNEX L SPECIFICATION OF THE EXHAUST SILENCER FOR CHILLER ENCLOSURE
- ANNEX M SPECIFICATION OF THE AHU CASING AND ACOUSTIC PLENUM
- ANNEX N SPECIFICATION OF SILENCER FOR AHU
- ANNEX O AUDIO CONTROL SYSTEM
- ANNEX P CALIBRATION CERTIFICATES

Ocean Park Master Redevelopment Project

Environmental Permit No. EP-249/2006/D - Condition 2.25

Noise Mitigation and Audit Plan for the Operation of the Facilities and Venues for Special Events

Submitted by ERM-Hong Kong, Limited dated 18-08-2014

This is to verify that

Noise Mitigation and Audit Plan for the Operation of the Facilities and Venues for Special Events

Submitted by ERM-Hong Kong, Limited

dated 18-08-2014

Has been verified by the undersigned.

Signed

Ir Eric Ching Independent Environmental Checker (IEC) Retained by Ocean Park Corporation pursuant to Environmental Permit No. EP-249/2006/D

Date

19 August 2014

P:\Hong Kong\ENL\PROJECTS\343760 Ocean Park Master Redevelopment Project Contract No. P007 - Additional IEC Works\03 Deliverables\01 IEC Certificates\140819 C2.25 Noise Mitigation and Audit Plan dated 18 August 2014.doc

Ocean Park Master Redevelopment Project

EP-249/2006/D - Condition 2.25

Noise Mitigation and Audit Plan for the Operation of the Facilities and Venues for Special Events

August 2014

hst

Certified by _

on 19-August-2014

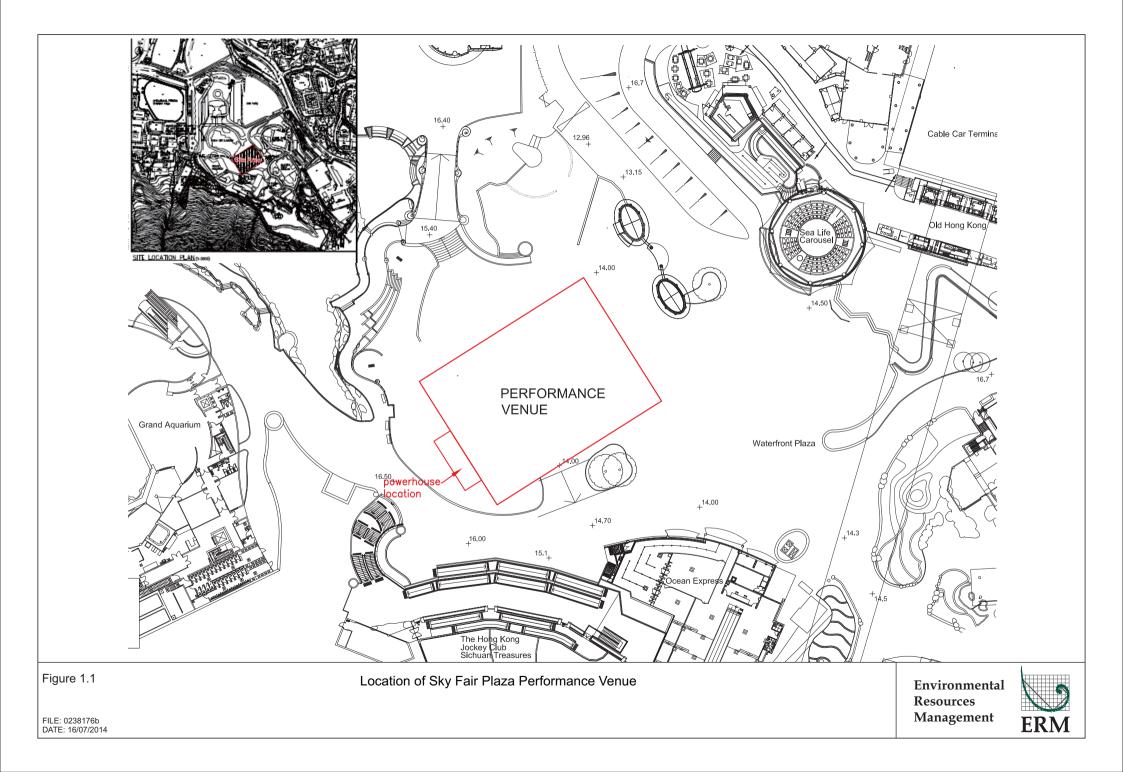
Winnie Ko (ETL)

Verified by Independent Environmental Checker on 19 August 2014 IEC Certificate attached in the submission? Yes

1 INTRODUCTION

1.1 BACKGROUND

Following the approval of the Repositioning and Long Term Operation Plan of Ocean Park (the Project) Environmental Impact Assessment (EIA) report (Register No.: AEIAR-101/2006) (hereafter referred to as the approved EIA Report), an Environmental Permit (EP) (EP-249/2006) was granted for the Project in July 2006 and amendments to the EP were approved in October 2006, November 2010 and December 2013. To update the opening hours of the Ocean Park (the Park) and the layout plans for the Waterfront and Summit, an application for Variation of EP (VEP) was submitted to the EPD and new EP (EP-249/2006/D) was issued on 2 July 2014.


In accordance with Condition 2.25 of the EP-249/2006/D, the Permit Holder shall deposit with the Director four hard copies and one electric copy of Noise Mitigation and Audit Plan(s) (NMAP), no later than two weeks before the noise measurement and audit works are carried out. The Permit Holder shall carry out noise measurement and audit works according to the Noise Mitigation and Audit Plan(s) (NMAP) and submit a *Report on Commissioning Test Results* to the Director for approval, prior to the implementation of the specified periods of the proposed extension of opening hours.

1.2 PURPOSES OF THIS PLAN

If the results of the commissioning test demonstrate that the mitigation measures have achieved the required Sound Power Levels, the extension of the opening hours will be implemented in three phases, as follows:

- Phase 1 extension of the opening hours of the Park from 10:00 to 09:00 hours and from 22:00 to 23:00 hours (excluding the Sky Fair Plaza Performance Venue and attractions for special events);
- Phase 2 extension of the opening hours of the Park during Special Events to 01:00 hours and extension of opening hours of Restaurants and Retail Shops from 09:00 to 08:00 hours and from 23:00 to 02:00 hours of the next day (excluding the Sky Fair Plaza Performance Venue); and
- Phase 3 operation of the Sky Fair Plaza Performance Venue (See *Figure* 1.1).

This *Plan* presents the proposed noise measurement methodology for the commissioning test for Phase 3 in accordance with Condition 2.31 of the EP-249/2006/D.

2 COMMISSIONING REQUIREMENTS AND PROPOSED MEASUREMENT **METHODOLOGY**

2.1 **COMMISSIONING REQUIREMENTS**

The Commissioning Requirements and the operational control for the Sky Fair Plaza Performance Venue during different time periods are given in *Table 2.1*.

Table 2.1 Commissioning Requirements and Operational Control

Commissioning Requirements	Operational Control				
<u>09:00 - 23:00 hrs - Not During Lagoon show:</u>					
Sky Fair Plaza09:00 - 23:00 hrs - Not During Lagoon show:PerformanceTotal SWL of the venue will not exceedTotal SWL of the venue					
95dB(A).	95dB(A).				
09:00 - 23:00 hrs - During Lagoon Show:					
Total SWL of the venue will not exceed	No Show, ie closed ^[a]				
90dB(A).					
During 23:00 - 01:00 hrs:					
Total SWL of the venue will not exceed	No Show, ie closed ^[a]				
85dB(A).					
During 01:00 – 02:00 hrs:					
Closed	No Show, ie closed ^[a]				
	09:00 - 23:00 hrs - Not During Lagoon sh Total SWL of the venue will not exceed 95dB(A). 09:00 - 23:00 hrs - During Lagoon Show: Total SWL of the venue will not exceed 90dB(A). During 23:00 - 01:00 hrs: Total SWL of the venue will not exceed 90dB(A). During 23:00 - 01:00 hrs: Total SWL of the venue will not exceed				

[a] As confirmed by OPC, there will be no show at the Sky Fair Plaza Performance Venue during lagoon show and after 23:00 hrs.

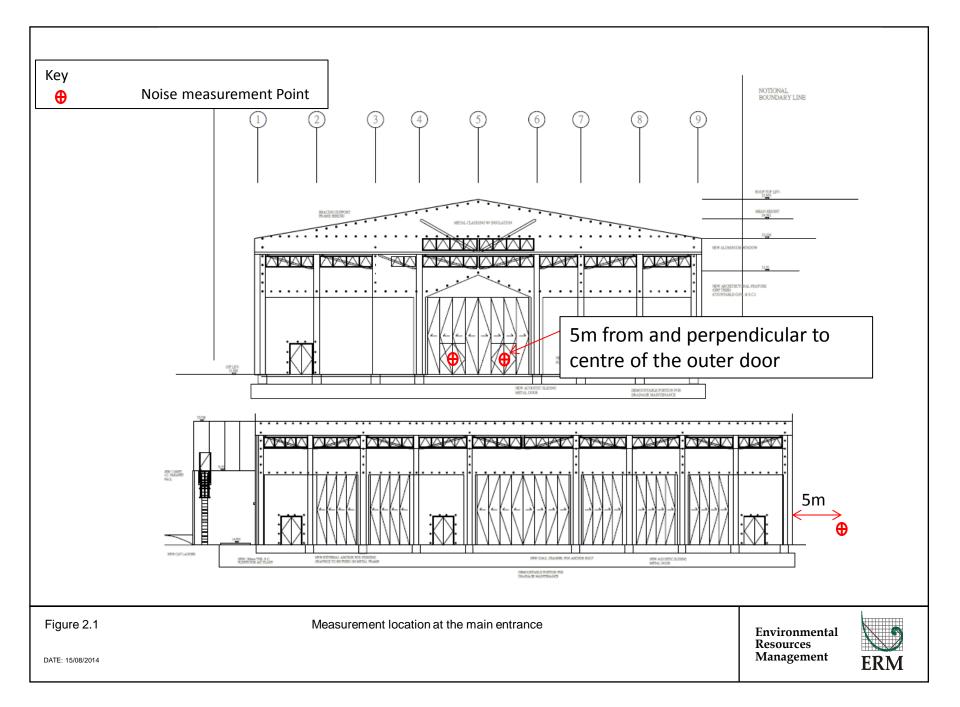
2.2 NOISE SOURCES OF THE VENUE AND MEASUREMENT LOCATIONS

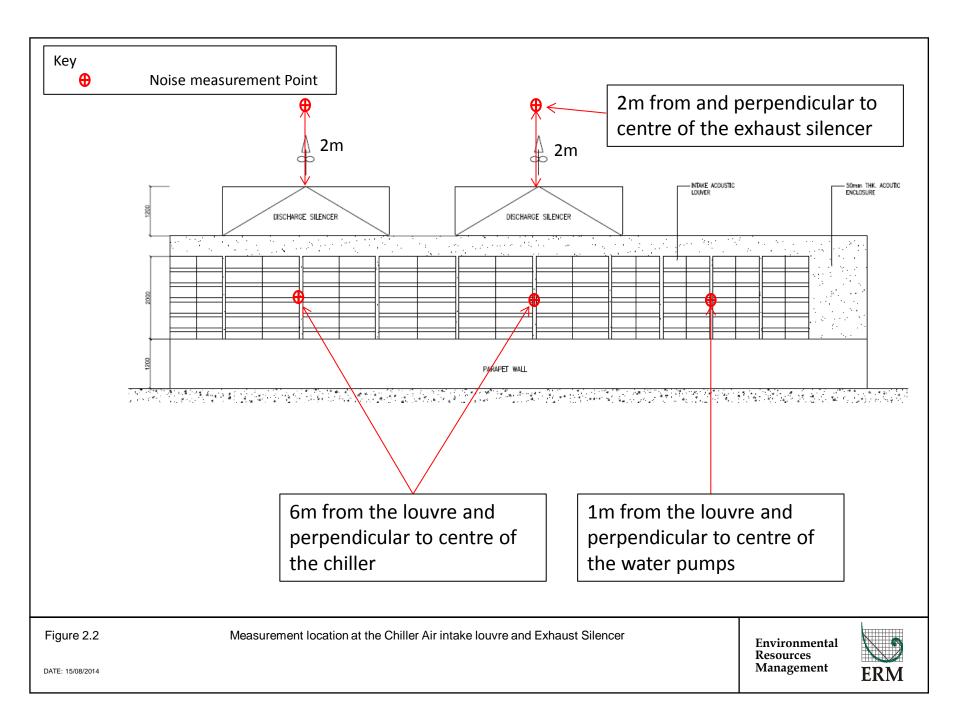
Shows and performance activities will be held inside the Sky Fair Plaza Performance Venue (the venue). The potential noise sources include the loudspeaker system inside the venue, two sets of chillers with three sets of associated water pumps, two sets of Air Handling Units (AHUs) and 2 splittype AC units.

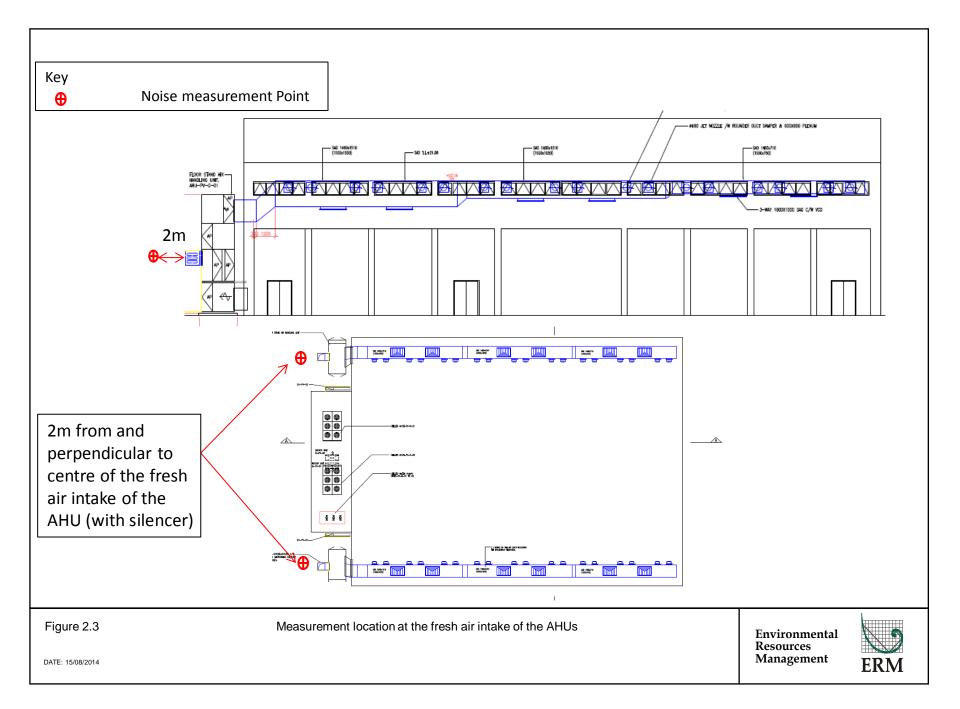
The venue is fully enclosed by fixed wall, operable walls and roof constructed with acoustic panel, acoustic doors for side doors, sealed windows, and main entrance with double doors.

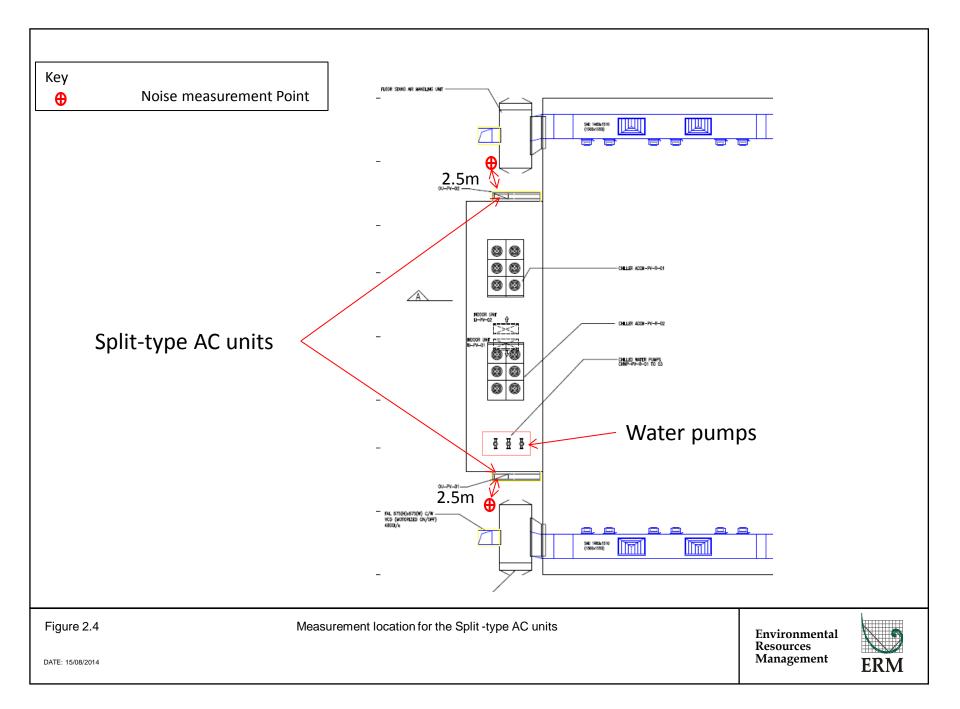
Operable walls and sealed windows are installed at various locations at the sides of the venue that will not be opened during the show. There is no opening on the roof. The acoustic doors and operable walls are installed with double retractable bottom seal to avoid noise leakage (Annex G). During the show, only the main entrance will be used for visitors and/or crews for getting in/out the venue. All other exits will be closed and in/out will not be allowed during the show, except for emergency. OPC confirmed that well-trained staff will be designated to control the in/out of people during the show to make sure at most one of the main entrance door is open during stage shows.

Elevations showing the locations of the main entrance, side doors, operable walls and windows on different sides of the venue are shown in *Annex A*. The locations of the chillers and associated water pumps are shown in *Annex B*. The location of the AHUs and the associated fresh air intakes are shown in *Annex C*, and the locations of the two split-type AC units are shown in *Annex D*.


Details of noise source identified, mitigation measure implemented, noise insulation performances of the mitigation measures, dimensions of noise sources and proposed measurement locations are summarized in *Table 2.2*.


Noise Source	Mitigation Measures	Noise insulation component	Surface Density/ Noise insulation rating	Details of Mitigation Measures	Potential Noise Leakage Location and dimensions	Measurement Location
Venue Music Enclosed by the ver structure	Enclosed by the venue structure	Wall Panel (acoustic panel made of 1.5mm thick galvanised mild steel (GMS) plate internally lined with 100mm thick fiberglass (80kg/m ³). The acoustic panel is then sandwiched by two layers of 0.6mm thick steel plate (Lysaght Prestige Panel))	Approx. 30kg/m ² ^(a)	Annex E	Main Entrance, 1.5m x 2.1m (H) each outer door (2 outer doors, total 4 door leaves)	of main door
		Roof Panel (constructed by corrugated panel (steel sheet thickness of 0.48mm), 100mm thick insulation wool (48kg/m ²) and 24mm (two layers of 12mm) thick cement board)	Approx. 38kg/m ² ^(b)	Annex F	-	
		Operable Wall (metal sliding doors)	STC49	Annex G		
		Acoustic door (side doors)	STC44	Annex H		
		Double Door for Main Entrance (inner doors are made of acoustic curtain and outer doors (total of two doors) are made of operable wall, internal	Outer Doors (operable	Annex I		
		sides of the double door box are covered by additional 0.4mm thick sound proof sheet (0.5kg/m ²)	wall) STC 49 Additional Sound Proof Sheet with 0.5kg/m ² : Rw 12dB			
		Window (6mm glass + 50mm air + 8mm glass)	$40 kg/m^{2(c)}$	Annex J	-	
2 Chillers and 3 associated water pumps	Enclosed by the chiller enclosure with provision of acoustic louvre and	Acoustic panel (1.5mm thick GMS)	$12 \text{ kg/m}^{2 (d)}$	Annex K	Acoustic louvre for 2 air inlets, Louvre: 16.6m x 2m	6m (based on >L/ π) from the louvre and perpendicular to centre
	silencer	Acoustic Louvre (model ALC-B2)	TL : 24dB at 500Hz and 28dB at 1000Hz	Annex K	(overall) Chiller: 4m x 3m x 2.4m (H) each Water pump: 0.2m x 0.2m x 0.8m (H), each	of each chiller. (<i>Figure 2.2</i>) 1m from the louvre and perpendicular to centre the water pumps (<i>Figures 2.2</i> and 2.4)


Table 2.2Details of Noise Source Identified, Mitigation Measure Implemented, Noise Insulation Performances of the Mitigation Measures,
Dimensions of Noise Sources and Proposed Measurement Locations of the Mitigation Measures


Noise Source	Mitigation Measures	Noise insulation component	Surface Density/ Noise insulation rating	Details of Mitigation Measures	Potential Noise Leakage Location and dimensions	Measurement Location
		Silencer (Model CSR-12 -4D)	TL : 26dB at 500Hz and 37dB at 1000Hz	Annex L	2 Exhaust air outlets, 3.5m x 2.2m each	2m (based on >L/п) from and perpendicular to centre of each exhaust (<i>Figure 2.2</i>)
2 AHU Enclosed by acoustic panel with provision of silencer at the fresh air intake	panel with provision of silencer at the fresh air	Casing, acoustic plenum (double skinned construction from polyurethane foam (88mm thick with density of 40kg/m ³) sandwiched between two layers of 1mm pre-painted galvanized steel sheet)	19kg/m ² ^(e)	Annex M	2 Fresh air intakes via silencers, 0.875m x 0.875m each	2m from and perpendicular to centre of the fresh air intake of the AHU (with silencer) (<i>Figure</i> 2.3)
		Silencer (Model 18RDS)	-	Annex N		
2 split-type AC units	-	-	-	-	0.85m x 0.30m x 1.1m(H) each	2.5m from each AC unit (<i>Figure 2.4</i>)
Notes:						
The surface The surface The surface	e density of 0.6mm thick st e density of 1.5mm thick G e density of 100mm thick fi	Alculated based on the volume density of 7,800kg/ eel plate = 7,800 x $0.6/1,000 = 5 \text{ kg/m}^2$ (x 2 for 2 of MS plate = 7,800 x $1.5/1,000 = 12 \text{ kg/m}^2$ iberglass = $80 \text{kg/m}^3 x 100/1000 = 8 \text{ kg/m}^2$ the wall panel is approximately 30 kg/m ² .				
• /		2g/cm ³ , ie 1,200 kg/m ³ (See <i>Annex F</i>). metal plate = 7,800 x 0.48/1,000 = 4 kg/m ²				
The surface	e density of 24mm thick ce	vool = 48 kg/m ³ x 100/1000 = 5 kg/m ² ment board = 1,200 kg/m ³ x 24/1000 = 29 kg/m ² the wall panel is approximately 38 kg/m ² .				
		Noise Control by David A Bies and Colin H Hansen,	4th ed Pages 409-414.			
. ,	5	MS plate = $7,800 \times 1.5/1,000 = 12 \text{ kg/m}^2$				
· /	,	-painted galvanized steel sheet = 7,800 x 1/1,000 =	0	ers) = $16kg/m^2$	1	
		blyurethane foam = $40 \text{kg/m}^3 \times 88/1000 = 3.5 \text{kg/m}^3$	•			

Therefore, the total surface density of the acoustic panel is approximately 19 kg/m².

With consideration of the venue is constructed by propriety high noise insulation materials with gap sealing technique, the potential noise leakage locations are identified at the main entrance, two fresh air intakes from the AHU's silencers, air intake of the chillers through the acoustic louver and exhaust of the chillers through the silencers. The sound power level of the venue is calculated by summation of the all sound power levels (SWL) of the noise leakage locations.

2.3 COMMISSIONING NOISE MEASUREMENT METHODOLOGY

2.3.1 Determination of the SWL of the Venue

During noise measurement, sound tracks of show music and visitor noise will be played by the loudspeaker system with the volume settings equivalent to the future operation. Volume of the loudspeaker will be controlled by a signal processor named "The Soundweb London BLU-160" which is scalable audio "Processing Objects" that can offer real-time control of parameters (see *Annex O*).

5-minutes A-weighted equivalent continuous noise level $(L_{Aeq, 5min})$ will be measured at the main entrance. The measurement distance from the main entrance is determined based on standard acoustical principles. For each measurement location, three set of measurement data will be taken.

In consideration that the main entrance will be used for visitors and/or crews for getting in/out the venue during the show, five scenarios of noise measurements will be conducted at this location:

- With both doors closed;
- With 4 outer acoustic door leaves closed and two inner curtain doors opened
- With 2 outer acoustic door leaves (the left door when viewing from outside) opened and two inner curtain doors closed.
- With 2 outer acoustic door leaves (right door when viewing from outside) opened and two inner curtain doors closed ; and
- With both doors (inner and outer doors) open with low volume setting of the background music (for a scenario loading in and out the guests before and after the stage show).

All side doors, other than the main entrance doors, will be closed during the stage shows, and before and after the show when people are entering and leaving the venue. Windows are all double-glazed and well-sealed, ie will not be opened at all time.

2.3.2 Determination of the SWL of the Chillers and Water Pumps

Two chillers and three associated water pumps are located inside the noise enclosure with provision of the acoustic louvre for air intake and two silencers for exhaust. Only one water pump is required to support the operation of a chiller. At most 2 water pumps will be operated simultaneously while the other one is a standby unit and water pumps are always operating with chillers. For each measurement location, three sets of measurement data will be taken. Noise level will be measured for each chiller and SWL of each chiller will be determined individually.

2.3.3 Determination of the SWL of the AHUs

Noise measurement for AHUs will be measured for each fresh air intake which has been installed with silencers. For each measurement location, three set of measurement data will be taken. SWL of each AHU will be determined individually.

2.3.4 Determination of the SWL of the Split-type AC unit

Noise measurement for split-type AC units will be measured for each unit. For each measurement location, three set of measurement data will be taken. SWL of each split-type AC unit will be determined individually.

2.3.5 Measurement of Background Noise

The background noise will be measured in terms of $L_{Aeq, (1 min)}$ at the each measurement point with loudspeaker system, chillers and its associated water pumps, AHUs and the split-type AC units switching off. At each location, one set of background noise data will be taken. If any abnormal intrusive noise exists during background noise measurement, the measurement data will be discarded. The measured noise levels will be subject to background noise correction in accordance with standard acoustical principles.

2.3.6 Comparison against Commissioning Requirement

The SWL of the venue is calculated by summation of the all SWL of the noise leakage area. The total SWL should not exceed the commissioning requirement as given in *Table 2.1*. All noise measurement will be supervised and endorsed by a qualified person possessing at least seven years of noise control experience and a corporate membership of Hong Kong Institute of Acoustics or equivalent.

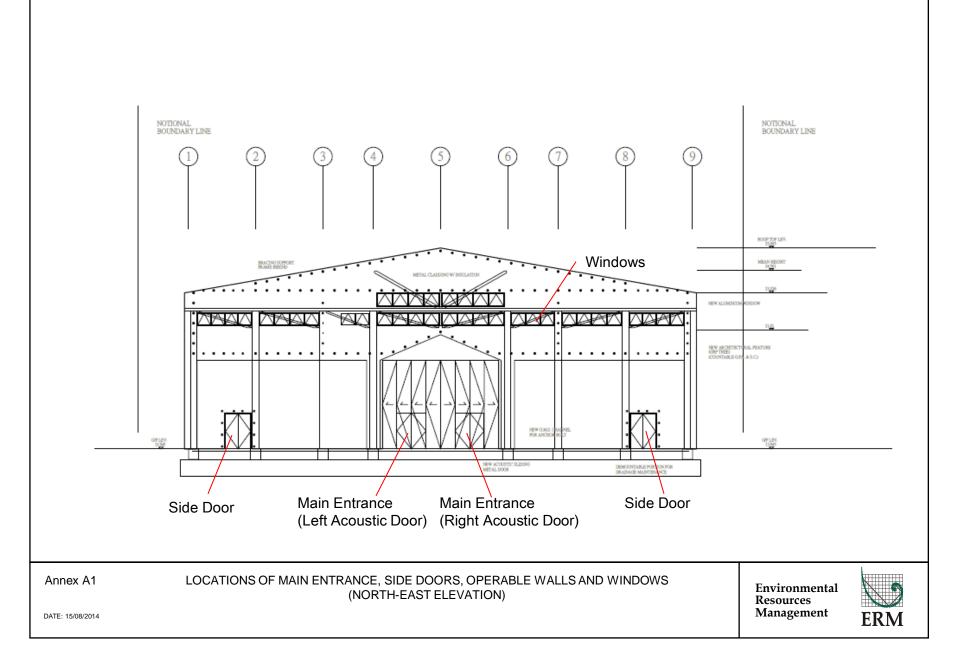
MEASUREMENT INSTRUMENTS

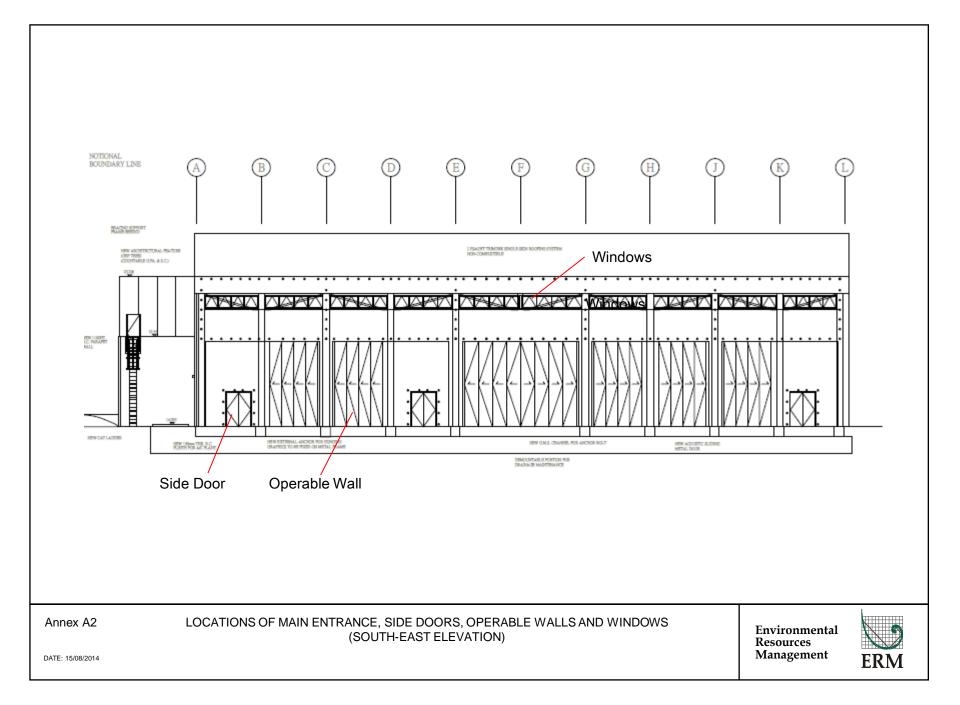
The instruments that will be used for the noise measurements shall comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1).

Before and after each series of measurements, a sound calibrator will be applied to each microphone to verify the calibration of the measuring system. The difference between the readings made before and after each series of measurements shall be less than or equal to 0.5 dB. If this value is exceeded, the results of this series of measurements shall be discarded.

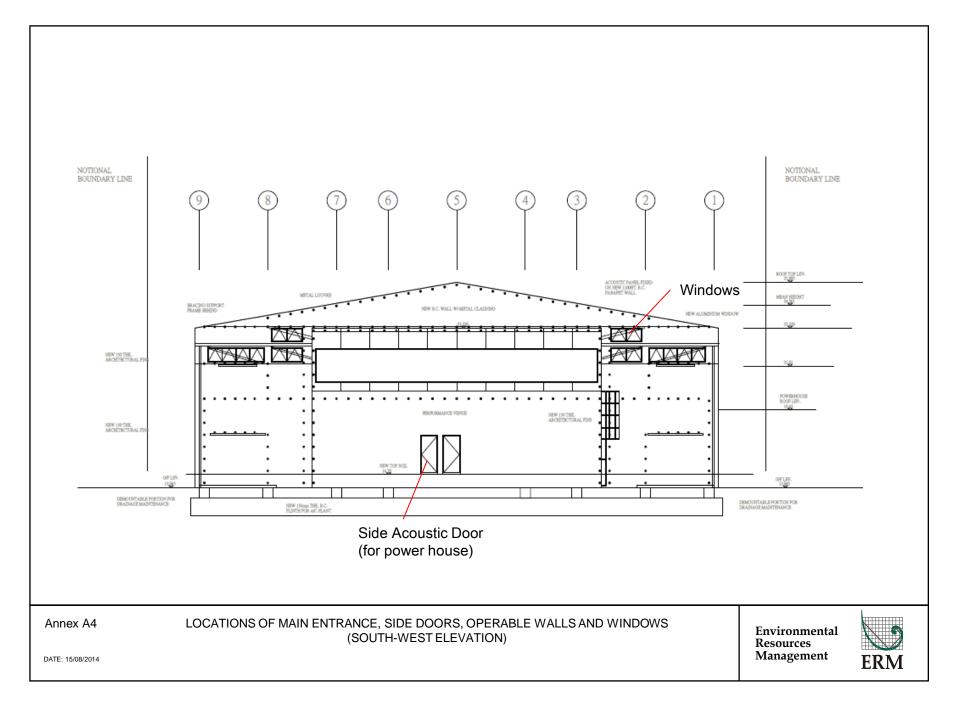
The sound calibrator will be calibrated at intervals not exceeding 1 year and the compliance of the sound level meters with the requirements of IEC 61672-1 verified at intervals not exceeding 2 years. Sound level meters and calibrator to be used are listed in the *Table 3.1*. The equipment calibration certificates are shown in *Annex P*. For the above-mentioned requirement, reference was made to the approved EM&A plan for other theme park (ie Section 5.3 of EM&A Plan (Revision H) prepared under EP-01/059/2000/C⁽¹⁾) and relevant ISO standard (ie ISO 3746-2010, Section 5.2, 3rd paragraph).

Table 3.1Noise Measurement Equipment

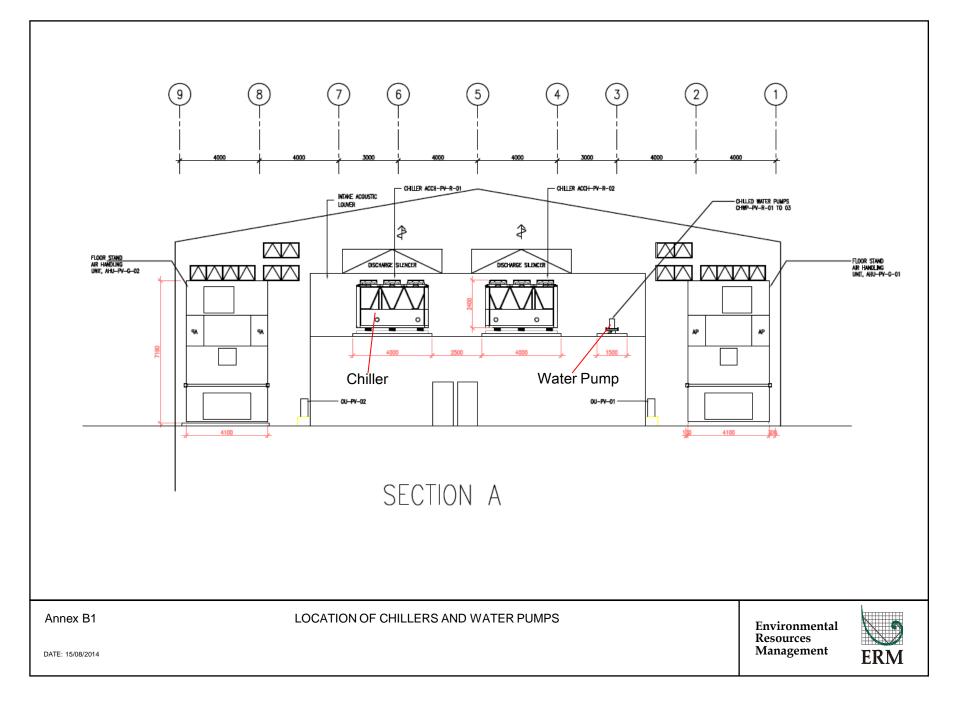

Equipment	Model	Serial Number
Sound Level Meter	01dB - Solo	65225
	01dB - Solo	65226
Calibrator	Svantek SV30A	No.7971
	01dB - CAL 21	No.34113609(2011)

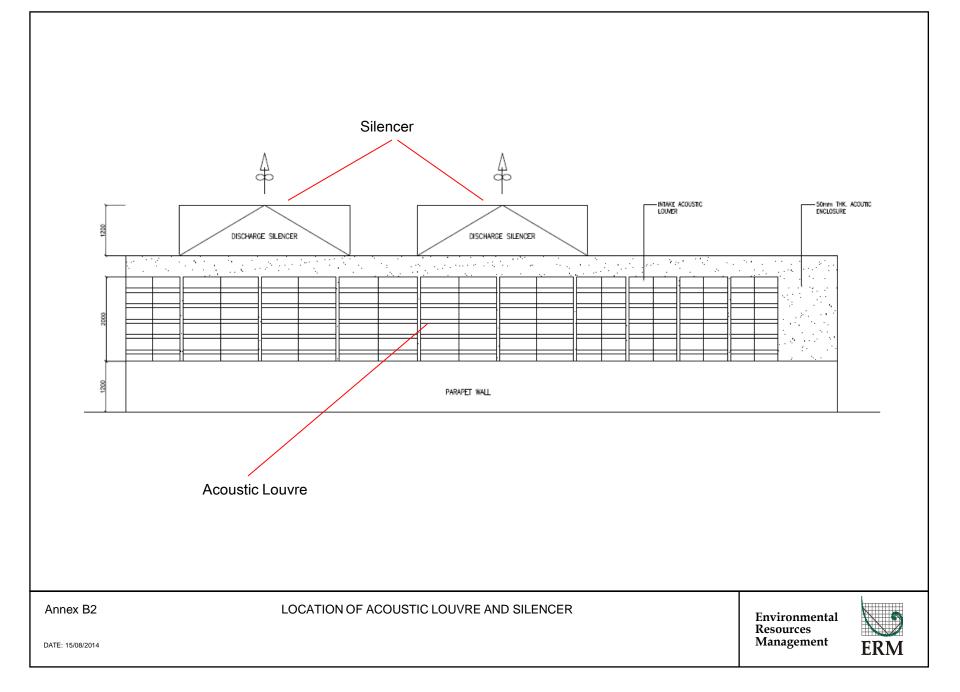

The measurement parameter will be set to A-weighted sound pressure level and the time weighting will be set in fast response.

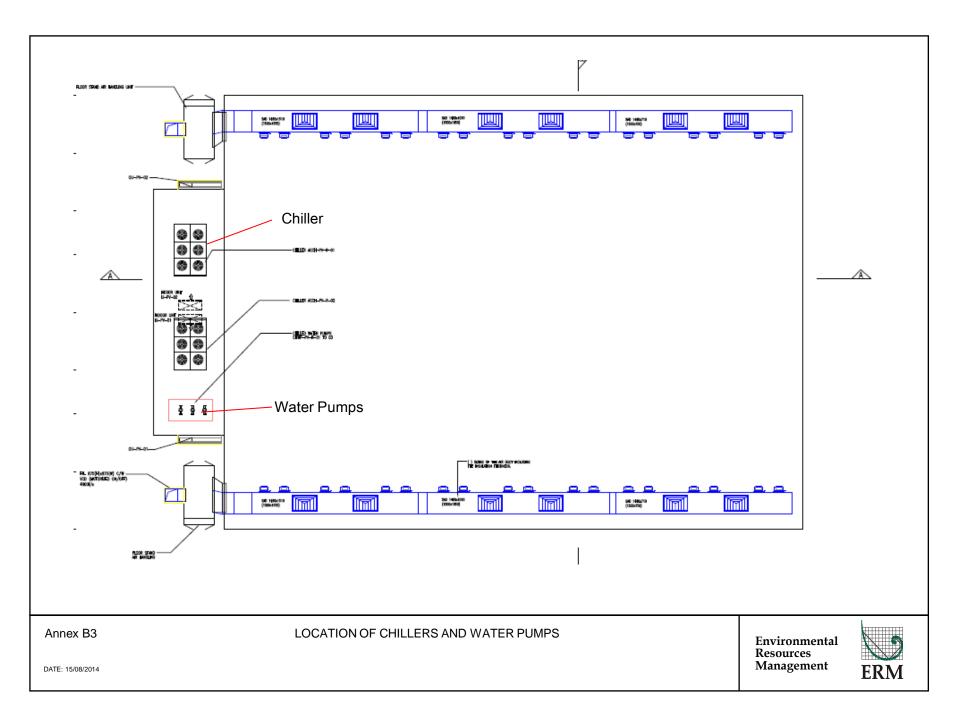
 $(^1) http://www.epd.gov.hk/eia/register/english/permit/vep3782012/documents/emarp/pdf/emarp.pdf$


Annex A

Locations of Main Entrance, Side Doors, Operable Walls and Windows

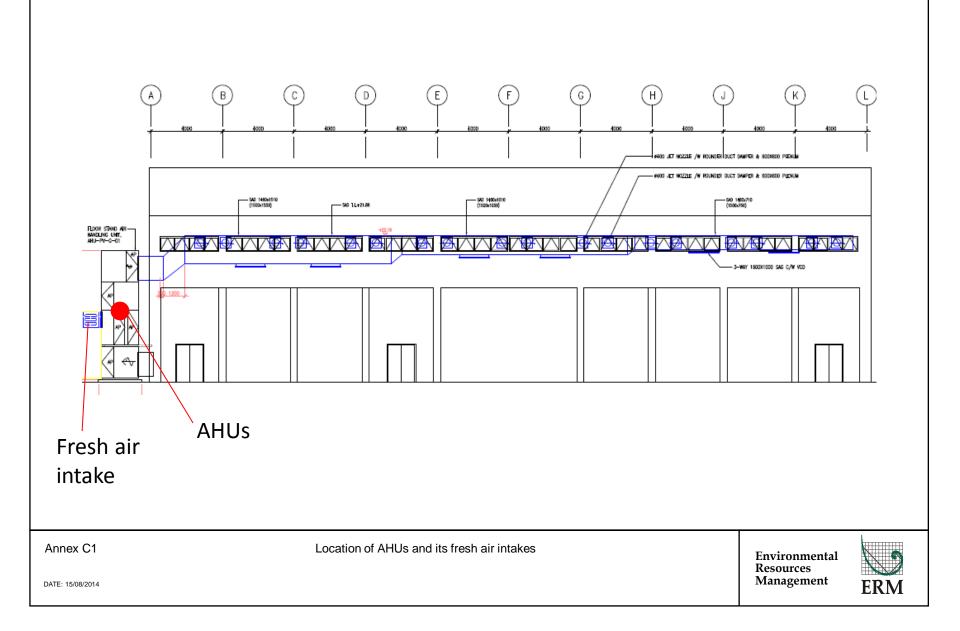


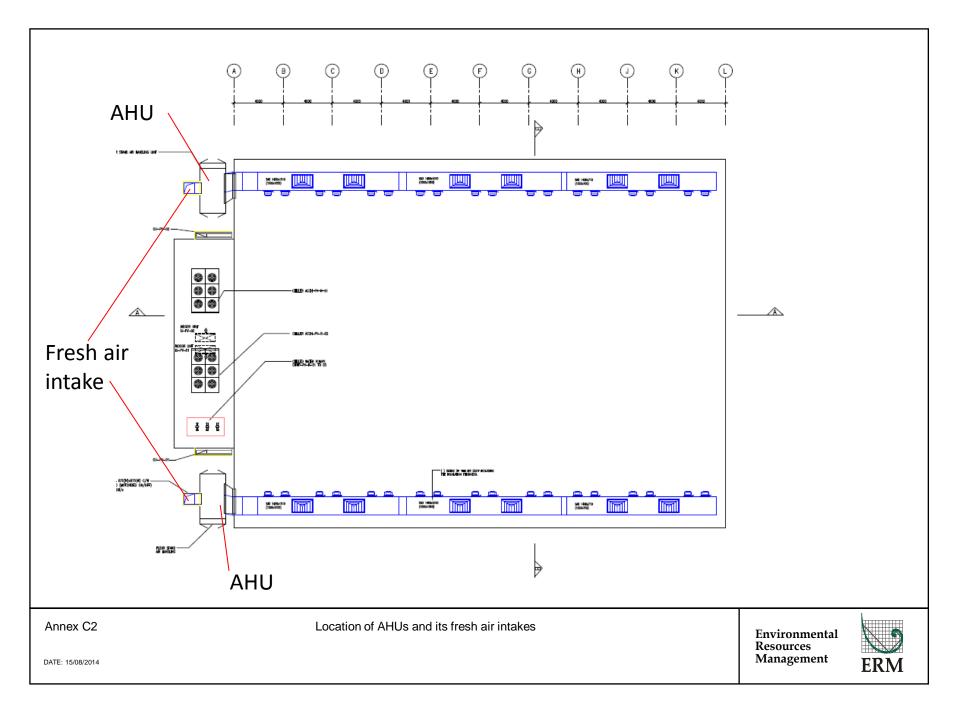




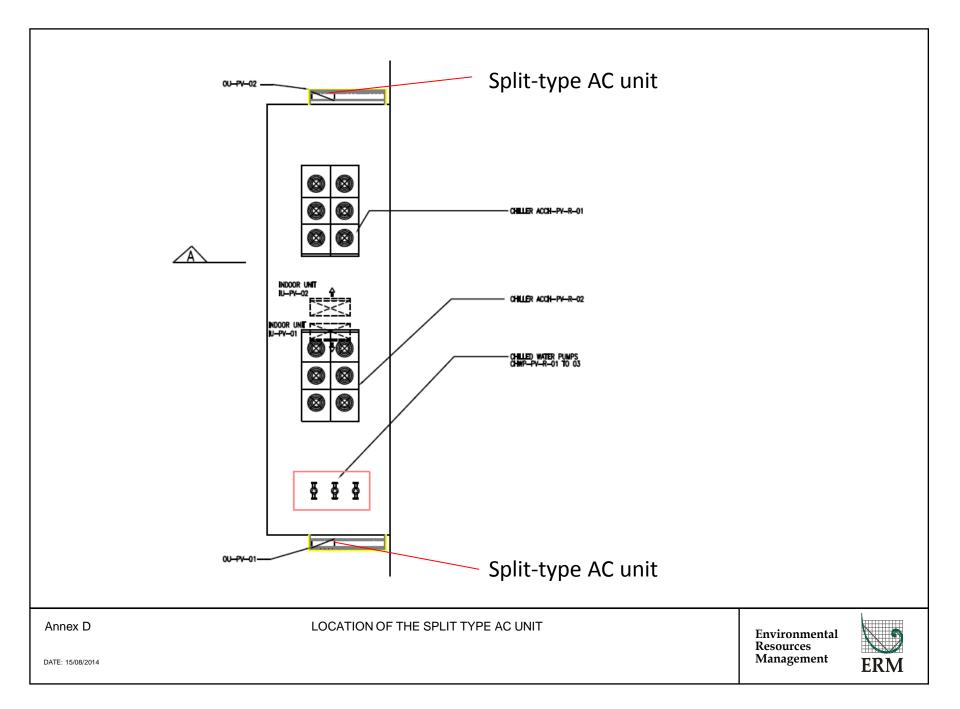
Annex B

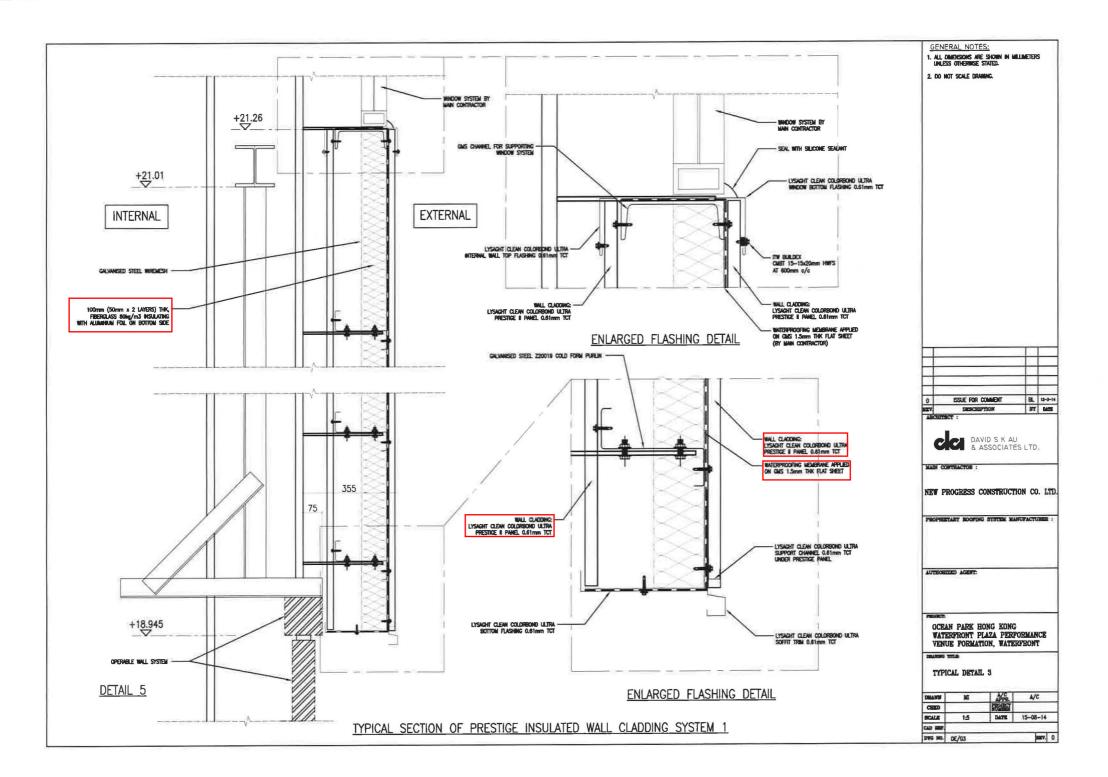
Location of Chillers and Water Pumps





Annex C


Location of AHUs and fresh air intakes


Annex D

Location of the Split type AC unit


Annex E

Wall Panel Drawing

Annex F

Roof Panel Drawing and Cement Board Specifcation

TEST REPORT

Report No.: ECO(13)-151-CPR

Type of Equipment:	FIBER CEMENT BOARD
Model No.:	3mm, 4mm, 5mm, 6mm, 8mm, 9mm, 10mm <mark>, 12mm,</mark> 15mm,18mm, 20mm, 22mm,24mm
Issued Date:	2013-04-26
Brand Name/Trade mark:	
Test standard(s):	EN 12467:2012

Prepared for: Xiamen Noya Manufacturing & Trading Co.,Ltd 2L,Xinghu Building,No.46,Huli Road Xiamen Fujian,P.R.China

Prepared by

Shanghai DEYI Investment Co., Ltd Room 2005, Building A, Global World Building, No.168 Yuyuan Road, Jing'an District, Shanghai, P.R.C Website: www.deyi-cert.com

TEST REPORT

EN 12467:2012

Fibre-cement flat sheets - Product specification and test methods

Report

Report reference No.:: No: ECO(13)-151-CPR

Tested by (+ signature)..... Downey Xue Reviewed by (+ signature)..... Groot grieg Date of issue: 2013-04-26 Number of pages (Report): 8

Testing laboratory	
Name.	:Shanghai Deyi Investment Co., Ltd.
Address	Room 2005, Building A, Global World Building, No.168
	Yuyuan Road, Jing'an District, Shanghai, P.R.C.
Testing location	:Room 2005, Building A, Global World Building, No.168
	Yuyuan Road, Jing'an District, Shanghai, P.R.C.

Client

Name	Xiamen Noya Manufacturing & Trading Co.,Ltd
Address:	2L,Xinghu Building,No.46,Huli Road,Xiamen
	Fujian, P.R.China
Test specification	

Standard : EN 12467:2012 Test procedure: CE-CPR Non-standard test method: N.A.

General description

Xiamen Noya Cement Board is made of using the revolutionary HPSC technology. This unique technology makes these boards' totally moisture resistant, termite and fire resistant. These boards are ideal for residential, commercial and industrial use. The board, in combination with different substrate framework like timber, steel and aluminum, offers unique advanced dry wall constructions, which leverage space utilization to the maximum along with substantial savings on time. It gives the architects major flexibility of changing designs with thermal & acoustic insulation besides being maintenance free and highly durable.

Shanghai Deyi Investment Co., Ltd.

Test Property	Test Method	Test Principle / Requirements	Test Result	
Composition	EN 12467:2012 Clause 5.1.1	Sheets shall consist essentially of cement or a calcium silicate formed by a chemical reaction of a siliceous and a calcareous material, reinforced by fibres. The cement shall comply with EN 197-1 or with technical specifications relevant in the country of use	Pass. Cement,Quartz Sand,Fiber	
Appearance and finish	EN 12467:2012 Clause 5.1.2	in the country of use. The exposed face of the sheets can be with or without texture. The sheets can be coloured or left in their natural colour. The sheets can also receive adherent coloured or uncoloured coatings on their surface. Variations of the surface appearance which do not impair the fitness for purpose of the sheets are permitted.	Pass. gray.	
Classification	EN 12467:2012 Clause 5.2	Category A Sheets which are intended for applications where they may be subjected to heat, high moisture and severe frost. Category B Sheets which are intended for applications where they may be subjected to heat, moisture and occasional frost, e.g. where they are either protected from or not subjected to severe weathering conditions. Category C Sheets which are intended for internal applications, where they may be subjected to heat and moisture, but not to frost. Category D Sheets for rigid underlayer applications.	Pass. Category A	
Groups of sizes	EN 12467:2012 Clause 5.2.6	Small size sheets Sheets for which the method of installation includes horizontal overlap. Their dimensions are generally such that their area is $< 0,4$ m ² and have a length/width relation = 3. Large size sheets Sheets which do not correspond to indicators for small size sheets. Large sheets may be declared as "small size sheets" provided tolerances for small size	Pass. Large size sheets	

Shanghai Deyi Investment Co., Ltd.

Test Property	Test Method	Test Principle / Requirements	Test Result
		sheets apply and are specified in the manufacturer's literature.	
Nominal length	EN 12467:2012	The manufacturer shall specify the	Pass.
and width	Clause 5.3.2	nominal length and width of the sheets.	900mm*1800mm 915mm*1815mm 1200mm*2400mm 1220mm*2440mm
Thickness	EN 12467:2012	The manufacturer shall specify the	Pass. 3mm, 4mm,
	Clause 5.3.3	nominal thickness of the sheets.	5mm, 6mm, 8mm, 9mm, 10mm, 12mm, 15mm, 18mm, 20mm, 22mm, 24mm
Tolerances on	EN 12467:2012	Tolerances on length and width shall be	Pass.
length and	Clause 5.3.4.1	in accordance with Table 1, for the	Level II.
width		appropriate level.	$\pm 5 \text{ mm}$
		Table 1 Tolerances on nominal demonstores in accordance with value and level	
		Nominal dimension e* Level i Level i Level i a 6 800 mm a 3 mm 2.4 mm 600 mm a 3 mm 2.4 mm 600 mm 4 3 mm 2.4 mm 1000 mm 4 3 mm 2.5 mm 1000 mm 4 5 mm 2.0 3% a 1000 mm 4 5 mm 2.0 mm a is the nominal width of length 4 mm	
Tolerances on	EN 12467:2012	For non-textured sheets, tolerances shall	Pass.
thickness	Clause 5.3.4.2	be in accordance with Table 2. Table 2 Tolerances on thickness for non-textured sheets $e \le 6 \text{ mm}$ $\pm 0.6 \text{ mm}$	The tolerance on thickness is \pm 0.3mm.
		6 mm < e ≤ 20 mm ± 10 % e e > 20 mm ± 2 mm	
Straightness of	EN 12467:2012	The tolerances on the straightness of	Pass.
edges	Clause 5.3.5.1	edges are defined as a percentage of the	Level I
ed Bes		length of the edge of the relevant	The tolerances of
		dimensions (length or width), and shall	the straightness
		be in accordance with Table 4 for the	of edges is 0.1%.
		appropriate level.	
		Table 4 — Tolerances on straightness of edges	
		Level I Level II	
		0,1% 0,3%	
Squareness of	EN 12467:2012	The tolerances on squareness of sheets	Pass.
edges	Clause 5.3.5.2	shall be in accordance with Table 5, for	Level I
-		the appropriate level.	The tolerances o
		Table 5 — Tolerances on squareness of edges	squareness of
		Level I Level II	sheets is 2mm/m
		2 mm/m 4 mm/m	
Apparent	EN 12467:2012	The manufacturer shall specify in his	Pass.
density	Clause 5.4.2&	literature the minimum apparent density	The density is at
	nvestment Co., Lto		www.deyi-cert.cor

Test Property	Test Method	Test Principle / Requirements	Test Result
Clause 7.3.1		for each category of sheet. Determine the volume V of the specimen by immersion in water or another method having an equivalent accuracy. In the case of immersion in water, the specimen shall be saturated in water beforehand. Determine the mass m of the specimen after drying it in a ventilated oven maintained at 100 °C to 105 °C for 24 h. The apparent density is given by the formula:	least 1.20g/cm ³ .
Markey		$d = \frac{m}{V}$ When tested in accordance with the method specified in 7.3.1 the density shall be not less than this value.	2
Mechanical characteristics – Bending strength	EN 12467:2012 Clause 5.4.3 & Clause 7.3.2	Arrange the test piece with the underside against the supports and load the test piece by means of the central loading bar. Load the specimen such that breakage occurs within 10 s and 30 s. A constant rate of deflection is preferred.	Pass. Bending Strength: Transverse= 11.0N/mm ² Vertical= 8.5N/mm ² Class 2.
		Where this facility is not available a constant rate of loading is acceptable. For non-textured specimens measure the thickness at two points, either before breaking along the loading line or after breaking along the broken edge as shown in Figure 4. The modulus of rupture MOR, in megapascals, for each breaking load direction is given by the formula:	

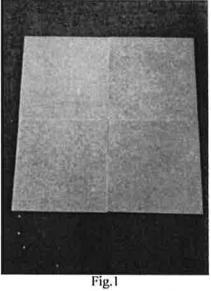
Shanghai Deyi Investment Co., Ltd.

Test Property	Test Method	Test Principle / Requirements	Test Result
		$MOR = \frac{3FI_s}{2be^2}$ The minimum modulus of rupture of the sheets in the weaker direction shall be not less than 70 % of the specified value in Table 6 for the average of the two directions. $Exp = -\frac{1}{2be^2}$ The transmission of the specified value in the sheet of the two directions.	
Water impermeability	EN 12467:2012 Clause 5.4.4 & Clause 7.3.3	Place and seal the frame on top of the face of the specimen and fill with water to a height of 20 mm above the face of the sheet. Place the specimens in a controlled environment at (23 ± 5) °C and (50 ± 10) % relative humidity so that the underside can be viewed without moving the specimen during the test. The duration of the test shall be 24 h. Examine the under face after 24 h, traces of moisture may appear on the under surface of the sheet, but in no instance shall there be any formation of drops of water.	Pass. There is no instance any formation of drops of water.
Freeze-thaw	EN 12467:2012 Clause 5.5.2 & Clause 7.4.1	specimens to the relevant number of freeze-thaw cycles as specified in Table 7: -cool (freeze) in the freezer which shall reach a temperature of (-20 ± 4) °C within 1 h to 2 h and hold at this temperature for a further 1 h, -heat (thaw) in the water bath which shall reach a temperature of (20 ± 4) °C within 1 h to 2 h and hold at this temperature for a further 1 h. During both the cooling and heating (freezing and thawing) cycles position the specimens to enable free circulation of the conducting medium (air in the freezer or water in the bath) around them.	Pass. No distortion after 100 repeated cycles of freezing and thawing. The ratio RL is 0.87.

Shanghai Deyi Investment Co., Ltd.

Test Property	Test Method	Test Principle / Requ	irements	Test Result	
Heat-rain EN 12467:2012 Clause 5.5.3 & Clause 7.4.2		The temperature indi temperature of the mi water. Each freeze/thaw between 4 h and 6 h h h maximum may be during which the spe stored in water at 20 When tested in accor after 100 freeze-thaw A and 25 cycles for 0 the ratio RL as define not less than 0,75. Fix the specimens to accordance with recommendations an -edge fixing distance -spacing between specified; -include all waterpro	icated refers to the edia, i.e. air or cycle shall take but an interval of 72 taken between cycles ecimens shall be °C. dance with 7.4.1, v cycles for Category Category B and D, ed in 7.4.1.4 shall be the test frame in the manufacturer's d the following: e-minimum specified; fixings-maximum	Pass. After 50 heat-rain cycles,any visible cracks, delamination, warping and bowing and other	
		attachments normally -include joints in bot Subject the assemble cycle in accordance	y specified; th directions. ed frame to the test	defects in the sheets are not to affect their performance in use.	
		Radiant hest Pause Total cycle Repeat all steps	2 h 50 min ± 5 min 10 min ± 1 min 6 h ± 12 min		
		cracks, delaminati bowing or other defe shall not be of such a their performance in	cles for Category A ttegory B, any visible ion, warping and ects in the sheets a degree as to affect use. s tested according to		
Warm water	EN 12467:2012 Clause 5.5.4 & Clause 7.3.5	Immerse the 10 spec lot in water at $(60 \pm$	cimens of the second 2) °C saturated with composition, for (56	Pass. The ratio Ratis not less than 0.75.	

Shanghai Deyi Investment Co., Ltd.


Test Property	Test Method	Test Principle / Requirements	Test Result
Soak-dry	EN 12467:2012 Clause 5.5.5& Clause 7.3.6	\pm 2) days. At the end of this period, condition the specimen in accordance with Table 10, then carry out the bending strength test in accordance with 7.3.2. After 56 days at 60 °C, the ratio RL as defined in 7.3.5.4 shall be not less than 0.75. the relevant number of soak-dry cycles as specified in Table 7 consisting of: -immersion in water at ambient temperature (more than 5 °C) for 18 h; -drying in a ventilated oven of (60 \pm 5) °C and relative humidity of less than 20% for 6 h. The 20% humidity shall be achieved for at least 3 h prior to the conclusion of the 6 hours drying. If necessary, an interval up to 72 h between cycles is allowed. During this interval, specimens shall be stored in immersed conditions.	Pass. After 50 cycles,t the ratio RL is not less than 0.75.
Reaction to fire	EN 12467:2012 Clause 5.6.1& Clause 7.5	not less than 0,75. Sheets shall be tested and classified in accordance with EN 13501-1. The sheets to be tested shall, where the test method requires, be installed, in addition to the general provisions given in the test method, in a manner representative of their intended use in accordance with the manufacturer's specifications.	Pass. It is Flame Resistant to Combustion at 800 and Remains Flameless at 1200. Class A
Release of dangerous substances	EN 12467:2012 Clause 5.6.2	For products containing substance(s) defined in Council Directive 76/769/EEC, the content shall be declared by the manufacturer. This applies to substances contained in the original formulation or created during the manufacturing process. In addition see Annex ZA.	Pass. It is manufactured from a unique blend of Mineral Components, and does NOT contain any Toxi ingredients, Asbe stoes,

Shanghai Deyi Investment Co., Ltd.

Test Property	Test Method	Test Principle / Requirements	Test Result
			Formaldehyde or Ammonia

Shanghai Deyi Investment Co., Ltd.

A.1 Photos

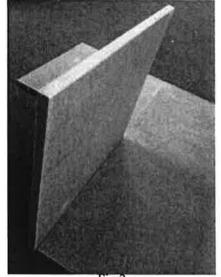


Fig.2

A.2 Differences

Instructions between he same series but different model:

The same material but different size and thickness ,such as : 3mm*1220mm*2440mm3mm*1220mm*2440mm; 3mm*900mm*1800mm, 3mm*915mm*1815mm;

4mm*1220mm*2440mm,4mm*1220mm*2440mm; 4mm*900mm*1800mm, 4mm*915mm*1815mm;

5mm*1220mm*2440mm,5mm*1220mm*2440mm; 5mm*900mm*1800mm,5mm*915mm*1815mm;

6mm*1220mm*2440mm,6mm*1220mm*2440mm; 6mm*900mm*1800mm, 6mm*915mm*1815mm;

8mm*1220mm*2440mm,8mm*1220mm*2440mm; 8mm*900mm*1800mm, 8mm*915mm*1815mm;

9mm*1220mm*2440mm,9mm*1220mm*2440mm; 9mm*900mm*1800mm, 9mm*915mm*1815mm;

10mm*1220mm*2440mm,10mm*1220mm*2440mm; 10mm*900mm*1800mm, 10mm*915mm*1815mm;

12mm*1220mm*2440mm,12mm*1220mm*2440mm; 12mm*900mm*1800mm, 12mm*915mm*1815mm;

15mm*1220mm*2440mm,15mm*1220mm*2440mm; 15mm*900mm*1800mm, 15mm*915mm*1815mm;

18mm*1220mm*2440mm,18mm*1220mm*2440mm; 18mm*900mm*1800mm, 18mm*915mm*1815mm;

19mm*1220mm*2440mm,19mm*1220mm*2440mm; 19mm*900mm*1800mm, 19mm*915mm*1815mm;

20mm*1220mm*2440mm,20mm*1220mm*2440mm; 20mm*900mm*1800mm, 20mm*915mm*1815mm;

22mm*1220mm*2440mm,22mm*1220mm*2440mm; 22mm*900mm*1800mm, 22mm*915mm*1815mm;

24mm*1220mm*2440mm,24mm*1220mm*2440mm; 24mm*900mm*1800mm, 24mm*915mm*1815mm;

Shanghai Deyi Investment Co., Ltd.

A.3 Technology Data

Raw Materials: Cement,Quartz Sand,Fiber Basic Color:Gray Density:=1.20g/cm3 Moisture Content: =10% Water Absorbing Capacity: =55% Thermal Conductivity: Average=0.20W/MK Bending Strength: Transverse=11.0N/mm3 Vertical=8.5N/mm3 Radioactivity: Conforming to GB6566-2001 A Class Fire Resistance: Incombustibility A Class(GB8624-A)

Packing: Wooden Pallet

Main characteristics Fire resistant: It is Flame Resistant to Combustion at 800 and Remains Flameless at 1200. Non-Flammability: Grade A

Weather resistant: Resistant to Deformation in Wet, Hot and Dry Conditions. Can be used at -40 degree.Out of Shape Rate in the Condition of Wet or Dry is 0.26%.

Water and Damp Proof:

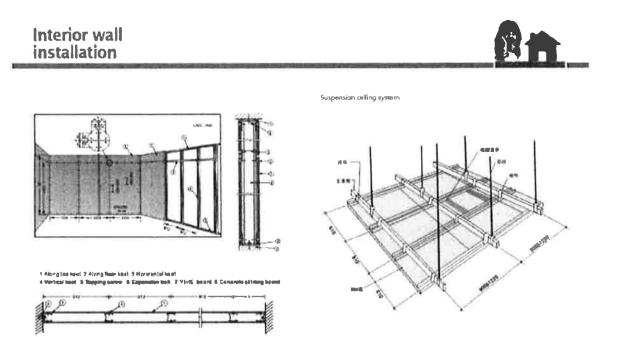
The board still keeps Intact after being Soaked in Water for One Month ,the Phenomenon of Swelling and Out of Shape will Not Happen.

It will NOT Disintegrate when Immersed in Water Or Exposed to Freeze/Thaw Cycles for Prolonged Periods of Time.

Bug & Mildew free: After tests under ASTM G-21, this board has been found to be Non-Nutrient to Mold ,Fungus Growth or Insect Life.

Insulation:

After Inspection by the National Center for Quality Supervision and Testing of Fire Building Materials (NFTC) it has been found that the Superior Sound Insulation Factor of a Wall built from the board ranges between 44dB and 47 Db.


In addition to being a great Sound insulator, This board benefits from having a Low Thermal Conductivity of 0.216 W/Mk which makes it a superior Heat Insulator.

Environmentally Friendly:

This Environmentally Friendly board is manufactured from a unique blend of Mineral Components, and does NOT contain any Toxic ingredients, Asbestoes, Formaldehyde or Ammonia

Shanghai Deyi Investment Co., Ltd.

A.4 Installation Instruction

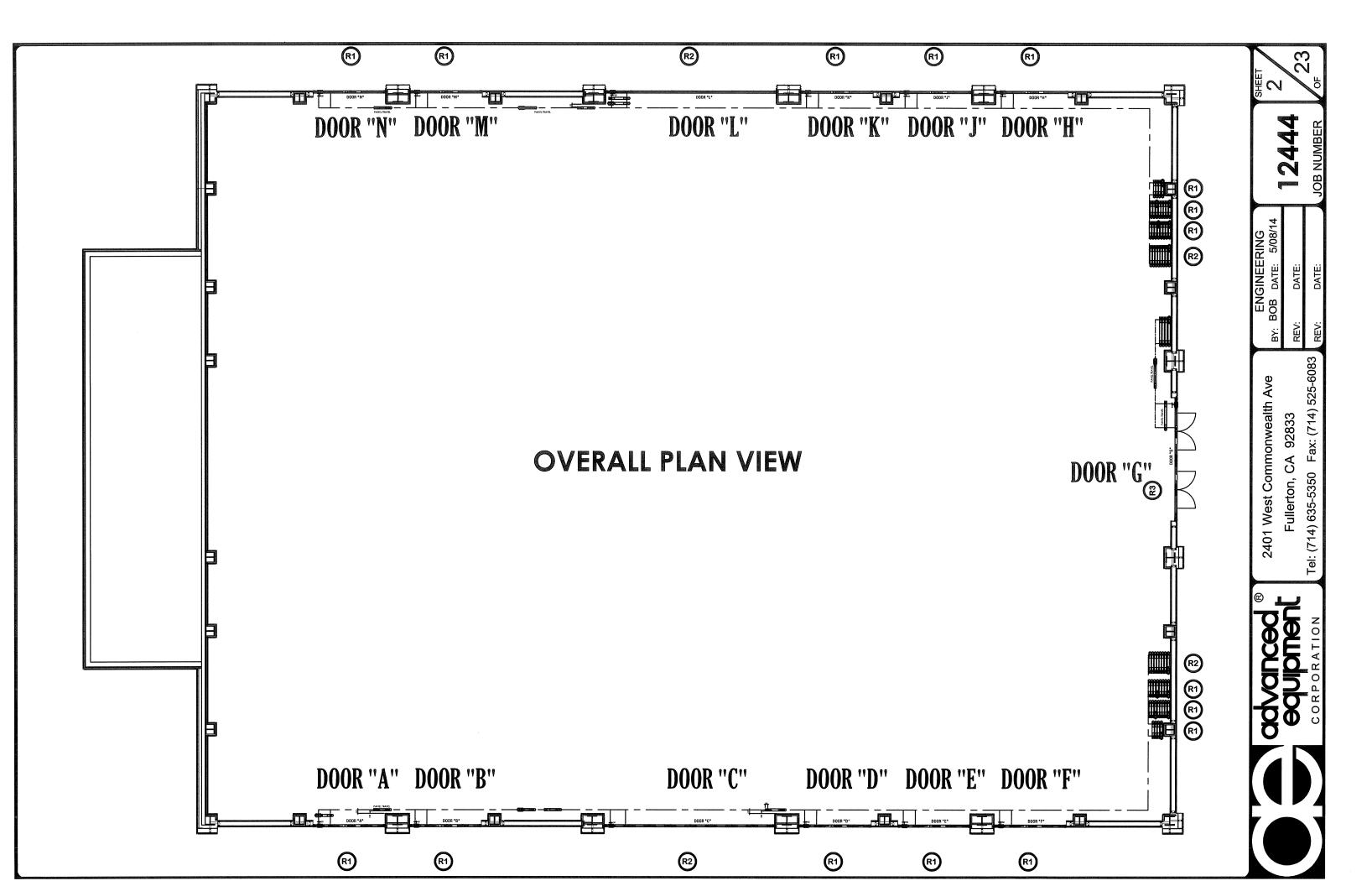
teres (en Prinsip Sanda, 2003

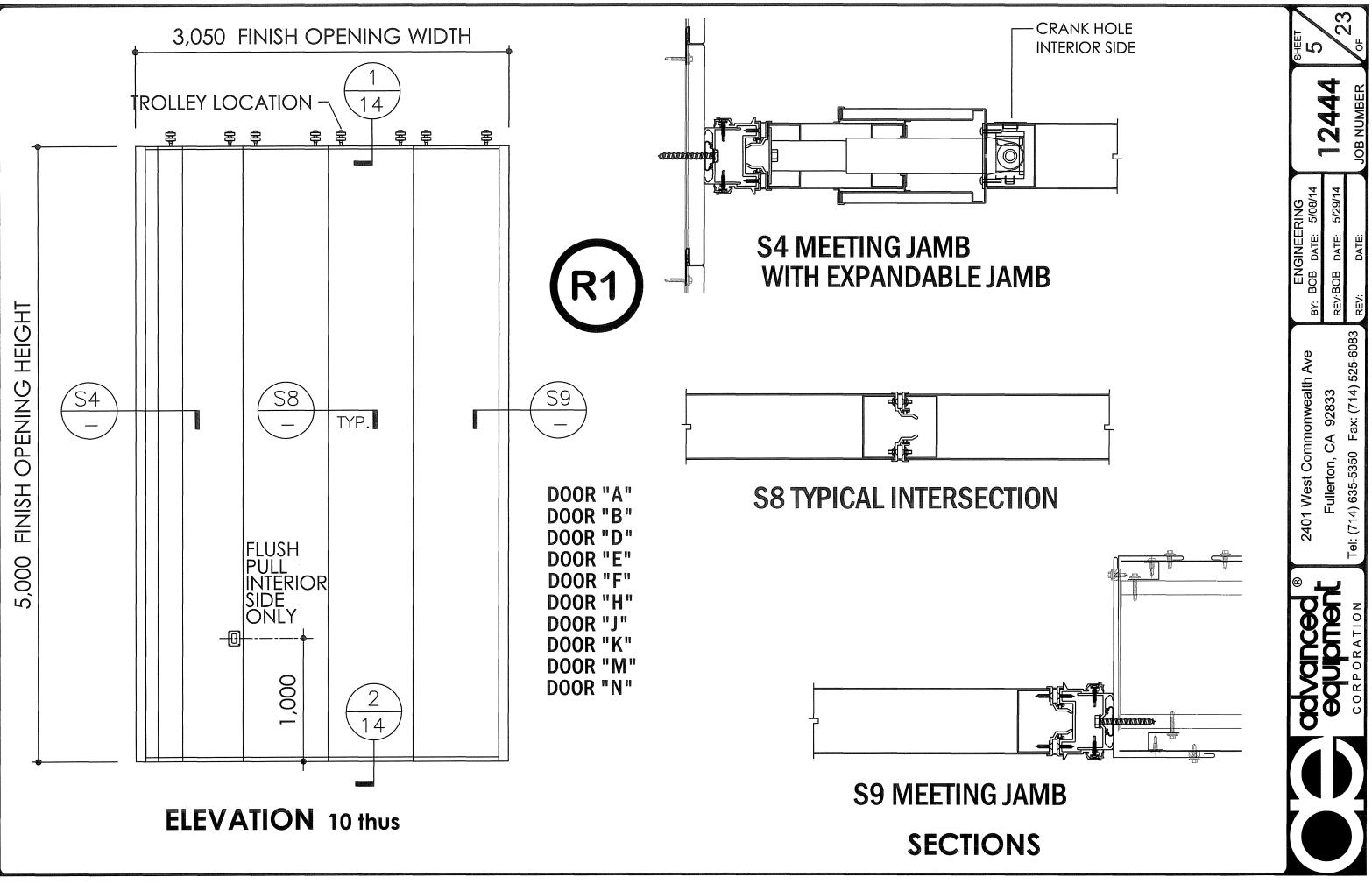
Shanghai Deyi Investment Co., Ltd.

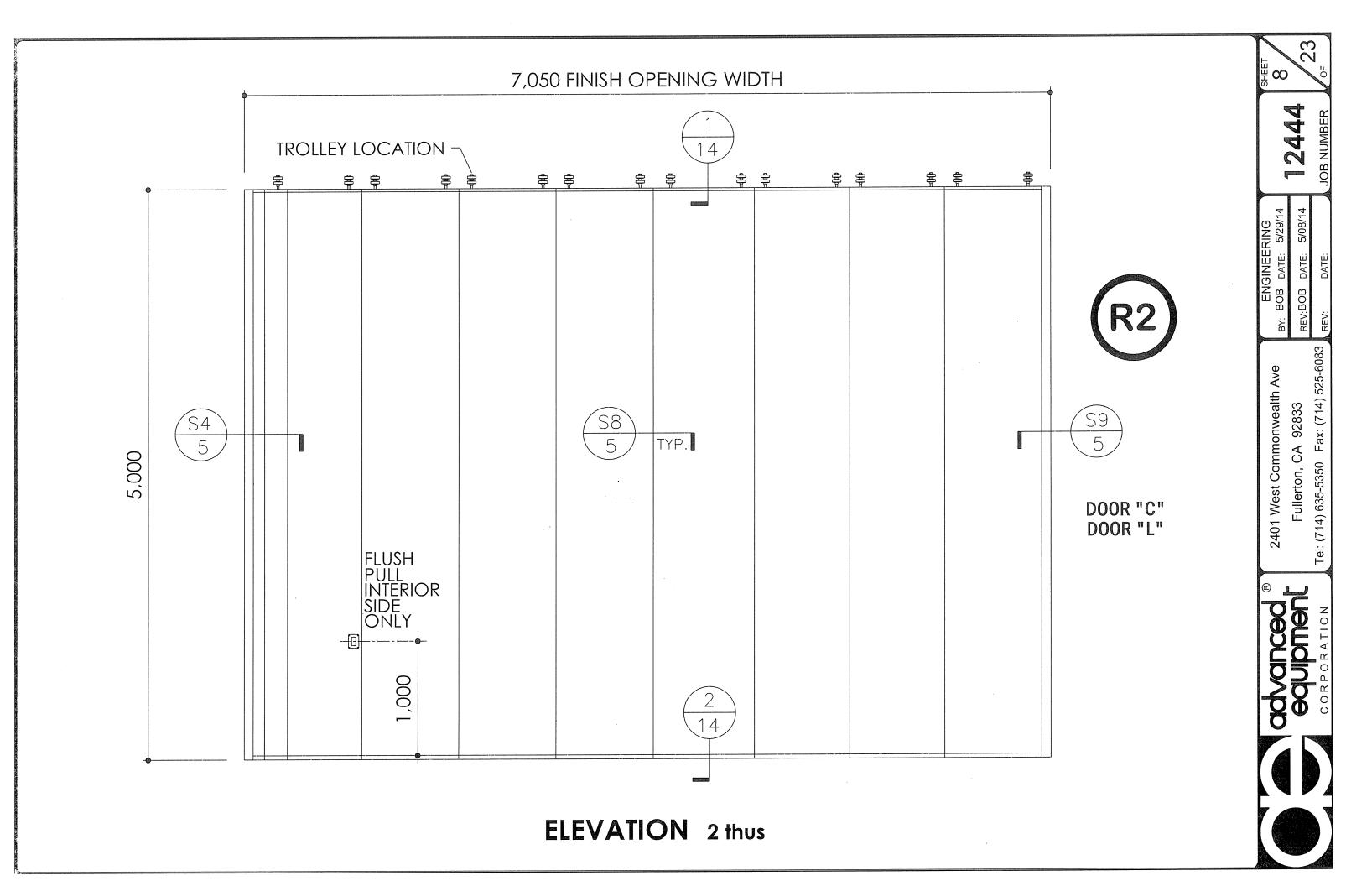
Annex G

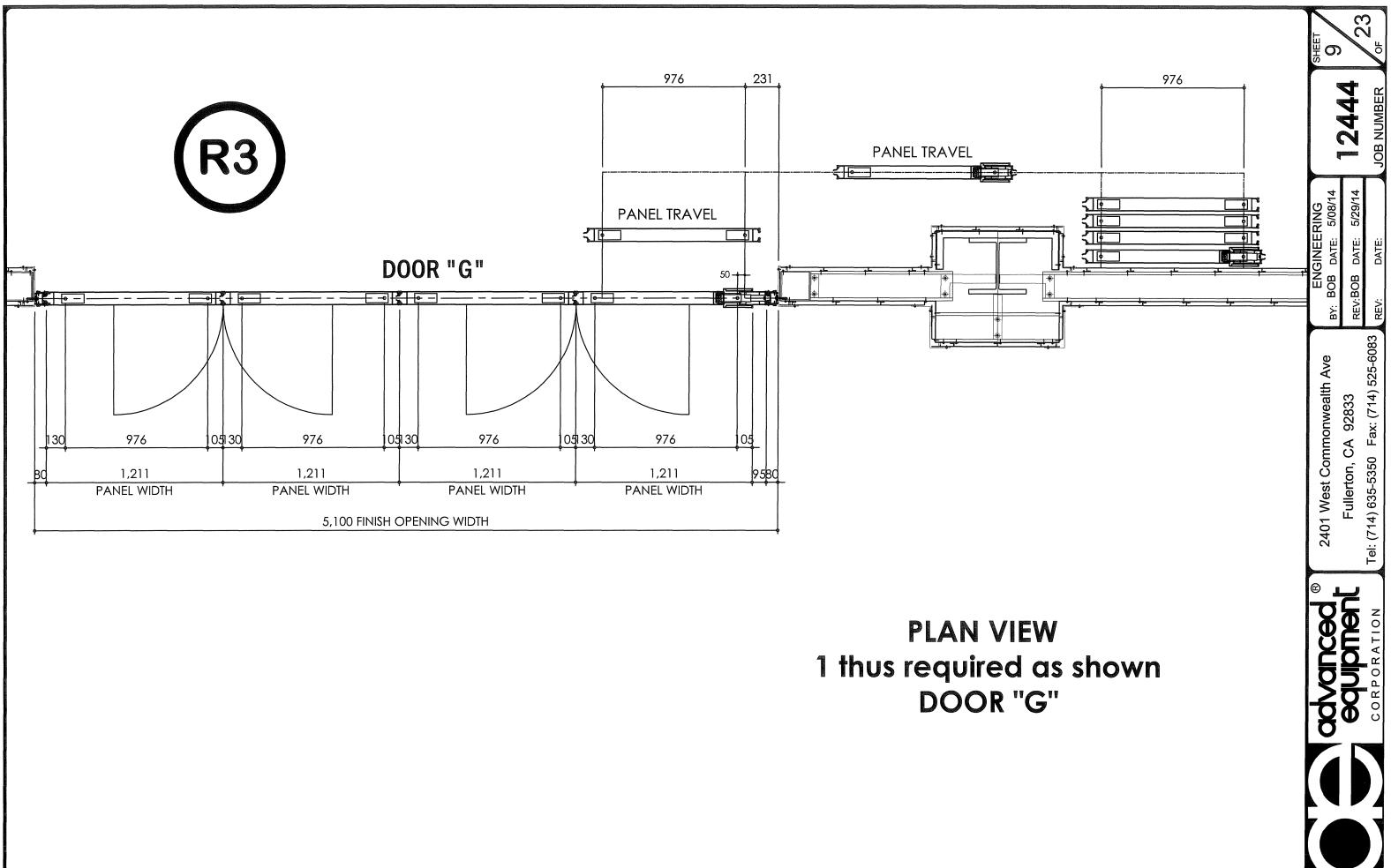
Specification of the Operable Wall

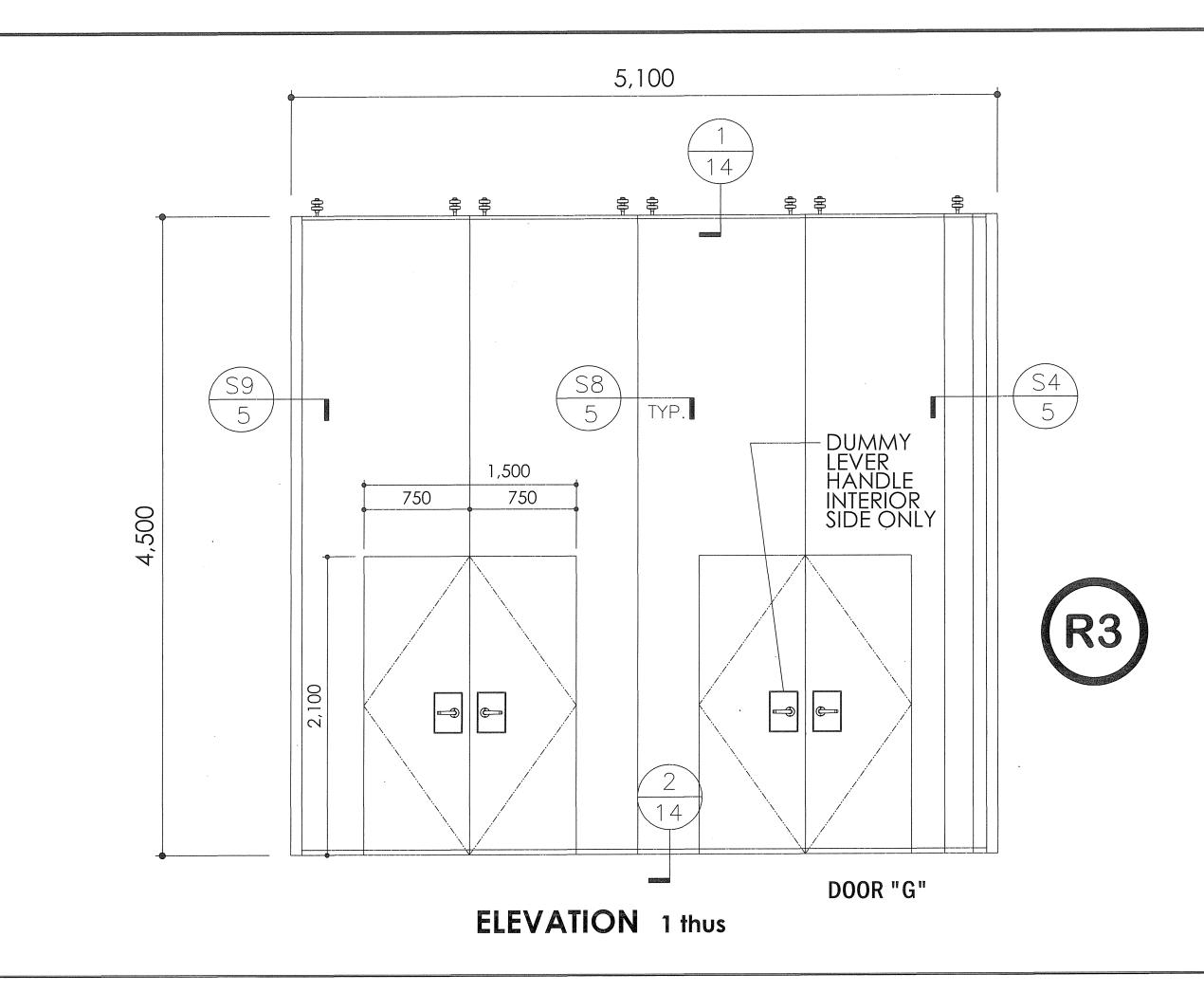
Operable Walls Section 10650

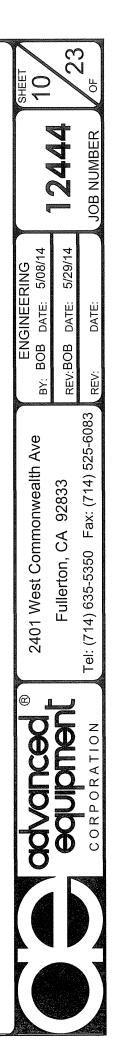

General Notes: Panel	 EXCLUSION: 1. Structural support & drilling or punch 2. Sound Barrier above ceiling or soffit. 3. Lateral bracing 4. Installation 5. Any inport duties, taxes or permits th 6. Cost of Letter of Credit or any bank of 7. Freight from Fullerton, CA U.S.A. to Here TERMS: Pre-Payment by Wire Transfer 10% with Order
 ** Prime Painted Panel Faces. (Grey metalized primer with rust inhibitors.) NOTE: If final finish is to be Paint, use only Satin or Flat finish paint. Do not use "Gloss" or "Semi-gloss" paints. 	40% before TRACK shipment 50% before PANEL shipment
Operable Wall Information: Architect: If the partition presented in the following sheets is supported by an overhead structure, please indicate the live load deflection anticipated at mid-span of beam due to partition weight. Approximate weight of panels is 28.9 kg/m2 per square meter. Approximate weight of track is per lineal meter. Anticipated deflection: Indicate: Contractor: Floor under partition in extended or stacked position to be level ±1/8". The "Hanger rod spacing templates" indicate location of track support required for operable wall. Beam drilling (by others) should conform to the templates and to related sections.	
Project Information: Job Name: Ocean Park - Water Front Plaza Location: Hong Kong Architect: David S K AU & Associates LTD Contractor: Indicate Distributor: Kinetics Noise Control Manufacturer: Advanced Equipment Corporation Operable wall type: 5 M R 3 2 A 1 9** P.O.#/Contract#: #KNC-A911-14	

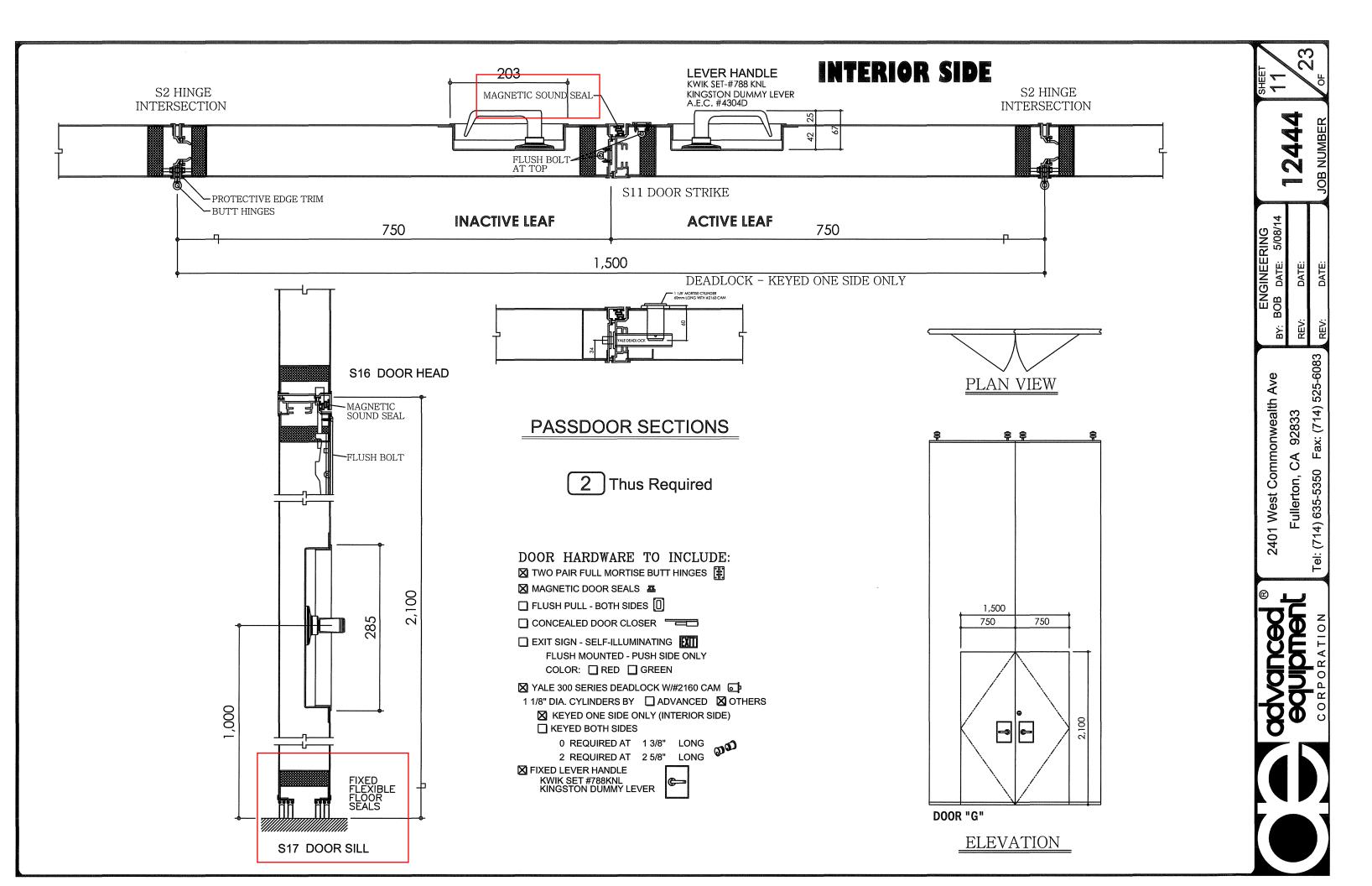

unching of same.

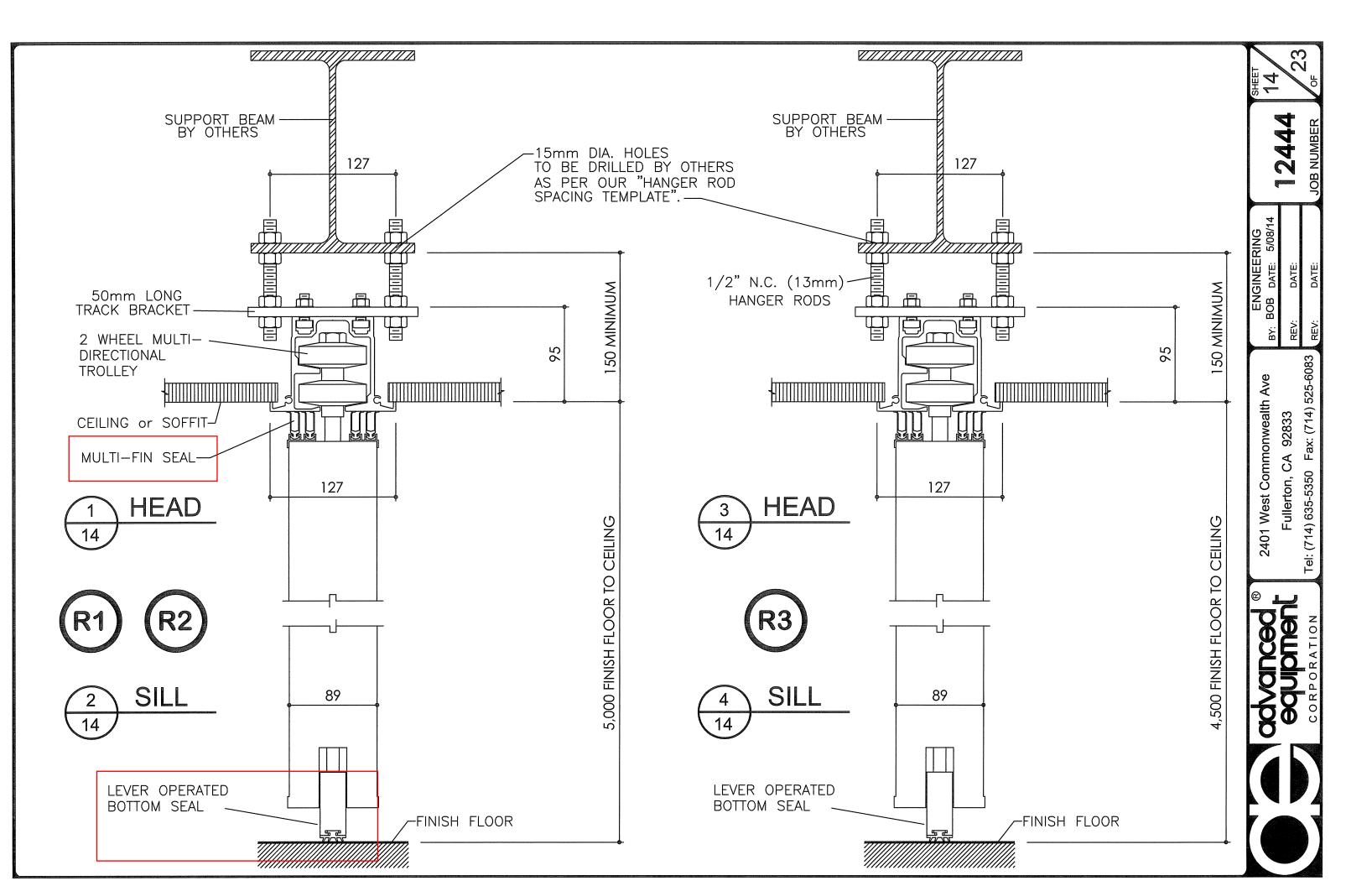

Special Notes:


nits that may be required. Dank charges. to Hong Kong









Annex H

Laboratory Testing Report of Acoustic Door

Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

Test Report for Laboratory Measurement of Sound Transmission Loss

TEST REPORT REFERENCE NUMBER: ATS13-101-RP001(R)

DATE OF REPORT:

TESTED FOR:

06 June 2013

Architectural Acoustics (Holdings) Ltd.

2/F., Po Cheong Comm. Bldg., 29 Prat Avenue, T.S.T., Hong Kong

ATTENTION:

UNIT UNDER TEST:

TEST STANDARD

TESTED AT:

Ms. Polly lp

NOISESTOP[®] 48dB Acoustic & Fire Door 声默[®] 48 分贝防火隔音门

ASTM E90 - 09

Jiangmen Laboratory of ATSL No. 1, 1st Industrial Area, Lile, Wusha, Jianghai District, Jiangmen City, Guangdong Province, PRC

Approved by:

Ir Dr. CHONG Fan / Managing Director CEng, RPE, MHKIE, MIMechE, MCIBSE, MASHRAE, MIOA, MHKIOA

This report ATS13-101-RP001(R) supersedes the report ATS13-101-RP001.

HKAS has accredited Acoustic Testing Services Limited (Reg. No.: 173 - TEST) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories.

This report shall not be reproduced except in full.

Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

1. METHOD OF TEST

The test was conducted in accordance with ASTM E90 – 09 "Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions" in the reverberation rooms of Acoustic Testing Services Limited. And the single number rating of airborne Sound Transmission Loss is given as Sound Transmission Class (STC) by evaluated in accordance with ASTM E413 – 10 "Classification for Rating Sound Insulation".

2. INSTRUMENTATION

Description:	Serial Number:
Bruel & Kjaer Type 2270 Real Time Frequency Analyzer	2679277
Ultragraph Pro Equalizer	N0292084088
Power Amplifier Bruel Kjaer Type 2716	2461258
Bruel & Kjaer Type 4292 OmniPower Sound Source	013004
Bruel & Kjaer Type 4189 ½" Microphone	2662851
(Source Room)	
Bruel & Kjaer Type 4189 1⁄2" Microphone	2676603
(Receiving Room)	
Bruel & Kjaer Type 4231 Sound Level Calibrator	2052566

The measuring equipment has been calibrated by an external HOKLAS laboratory, and is in current calibration.

3. PRINCIPLE OF TEST

The Sound Transmission Loss of a partition is usually measured in a laboratory by placing the element in an opening between two adjacent reverberant rooms designed for such tests. Noise is introduced into one of the rooms, referred to as the source room, and part of the sound energy is transmitted through the test element into the second room, referred to as the receiving room. The resulting mean space-average sound pressure levels in the source room and the receiving room is L_1 and L_2 , respectively.

The Sound Transmission Loss is given by

$$TL = L_1 - L_2 + 10\log(S/A)$$

where

- is the average sound pressure level in the source room, in dB;
- is the average sound pressure level in the receiving room, in dB;
- is the area of the test specimen, in m²;
- is the equivalent absorption area in the receiving room, in metres sabins.

$$A = (0.9210 V d / c)$$

 L_2

S

A

This report shall not be reproduced except in full.

Ling Service Ling

Acoustic Testing Services Limited Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

and where

- V is the receiving room volume, in m³;
- is the rate of decay of sound pressure level in receiving room, dB/s; d С
 - is the speed of sound in the medium , m/s,

The speed of sound changes with temperature and shall be calculated for the conditions existing at the time of test from the equation:

$$c = 20.047\sqrt{273.15 + t}$$

where

is the receiving room temperature, measured to nearest degree.

The Sound Transmission Class (STC) of test specimen is calculated by comparing the sixteen values of Sound Transmission Loss from 125 Hz to 4000 Hz with a defined reference curve which is incremented until the requirements of ASTM E413 - 10 are met.

This report shall not be reproduced except in full.

Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

4. **RESULTS APPLICATION**

The results obtained can be used to design building elements with appropriate acoustic properties, to compare the sound insulation properties of building elements and to classify such elements according to their sound insulation capabilities.

The test was performed in laboratory facilities in which transmission of sound on flanking paths is suppressed. Results of measurements shall not be applied directly in the field without accounting for other factors affecting sound insulation, especially flanking transmission and loss factor.

The test results obtained relate only to the Unit Under Test.

5. DETAILS OF TEST

Date of receipt of Unit Under Test:

Date of test:

29 April 2013

28 April 2013

Unit Under Test:

Sample I. D.:

ATS13-101-TS001

声默[®] 48分贝防火隔音门

mm (width)

Dimensions use for calculation:

Manufacturer:

Architectural Acoustics (Holdings) Ltd.

Architectural Acoustics (Holdings) Ltd.

NOISESTOP[®] 48dB Acoustic & Fire Door

X 2430

mm (height)

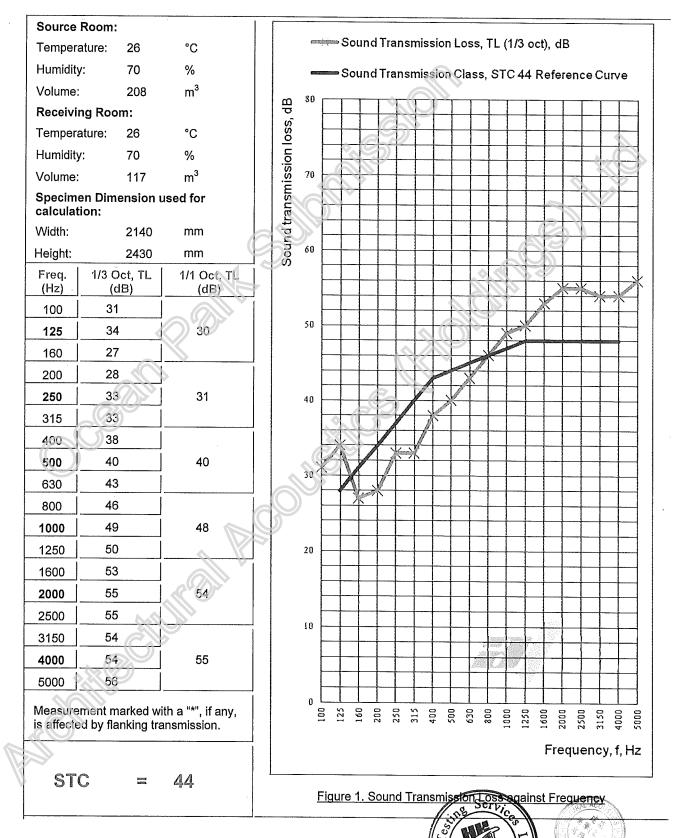
Installed by:

Additional Description:

The details of the Unit Under Test are referring to the drawings given in Appendix 1.

2140

The information shown on the drawing is not verified by the laboratory.


This report shall not be reproduced except in full.

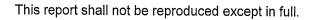
Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

6. <u>TEST RESULTS</u>

This report shall not be reproduced except in full.

聲學測試服務有限公司

SILLOS


Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

APPENDIX LIST

- **APPENDIX 1** Details of Unit Under Test
- **APPENDIX 2**

Photographic Records

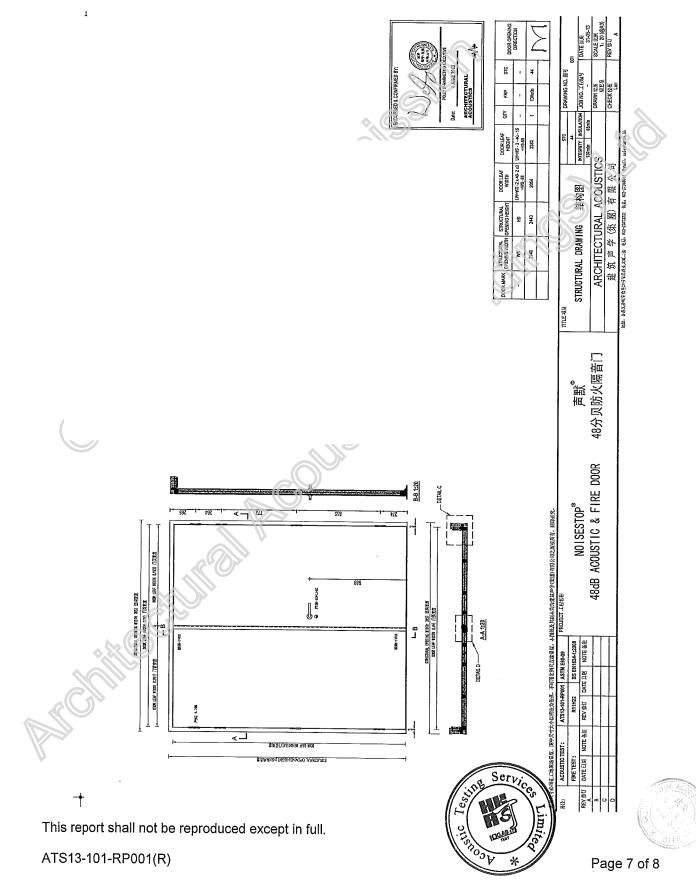
S

Alle Citument Acon

 $\sim \Lambda$

限公司

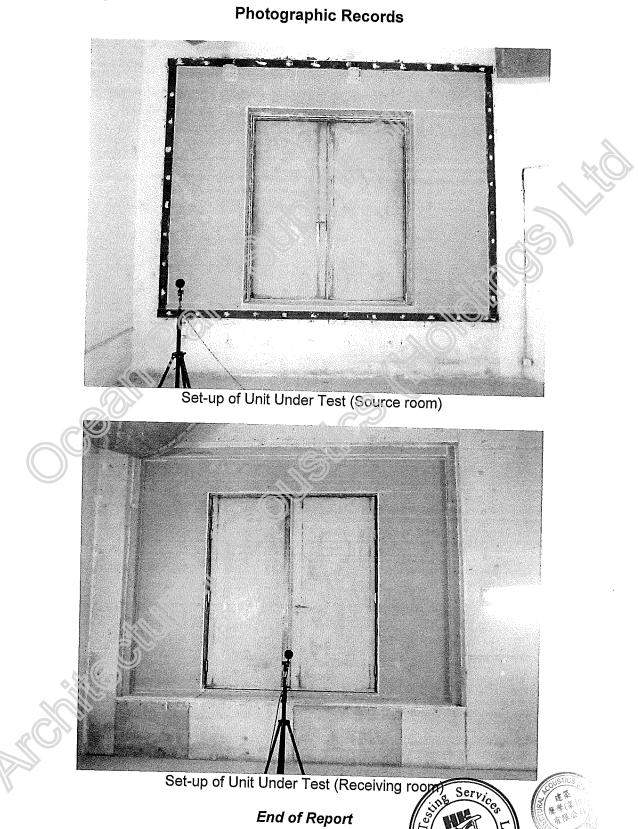
Acoustic Testing Services Limited Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

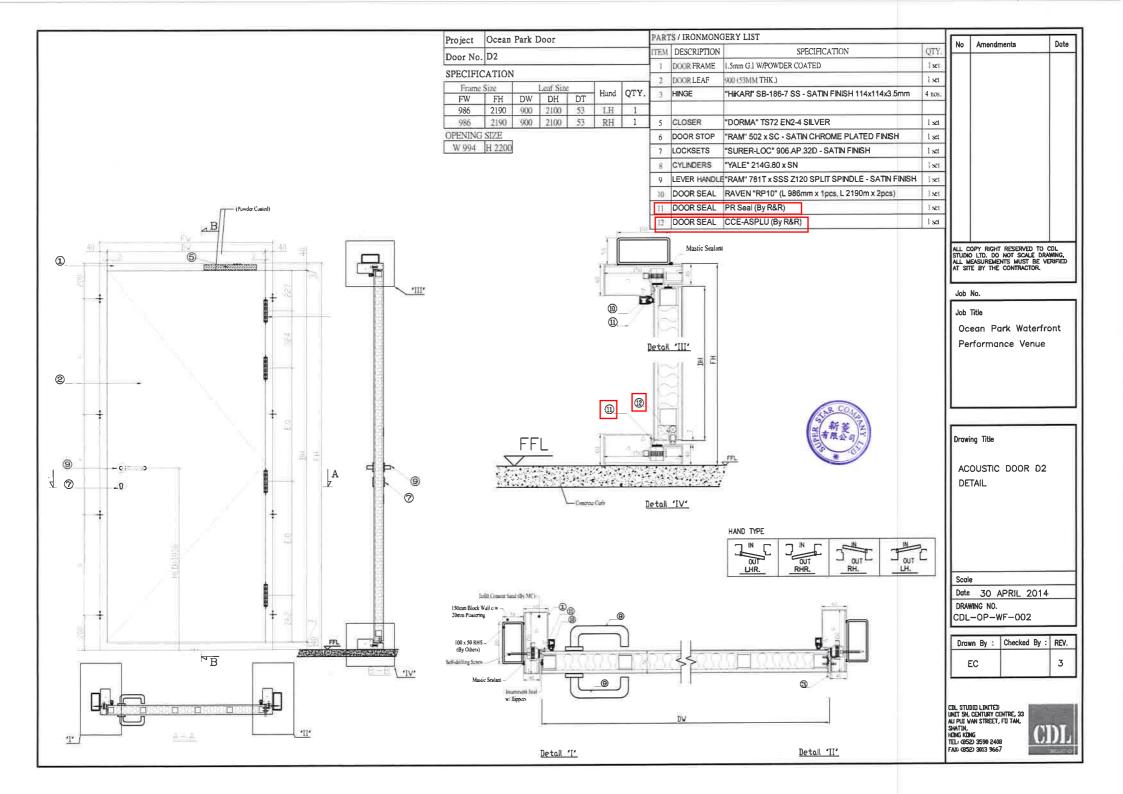

聲學測試服務

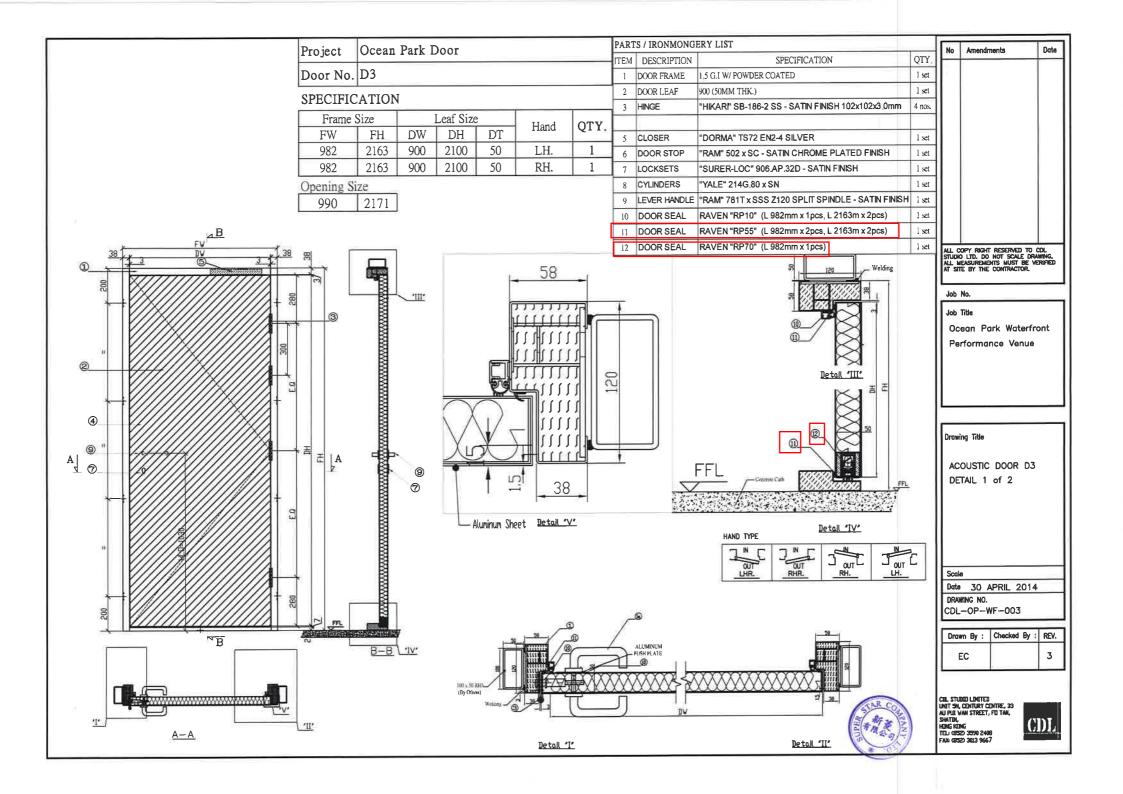

APPENDIX 1

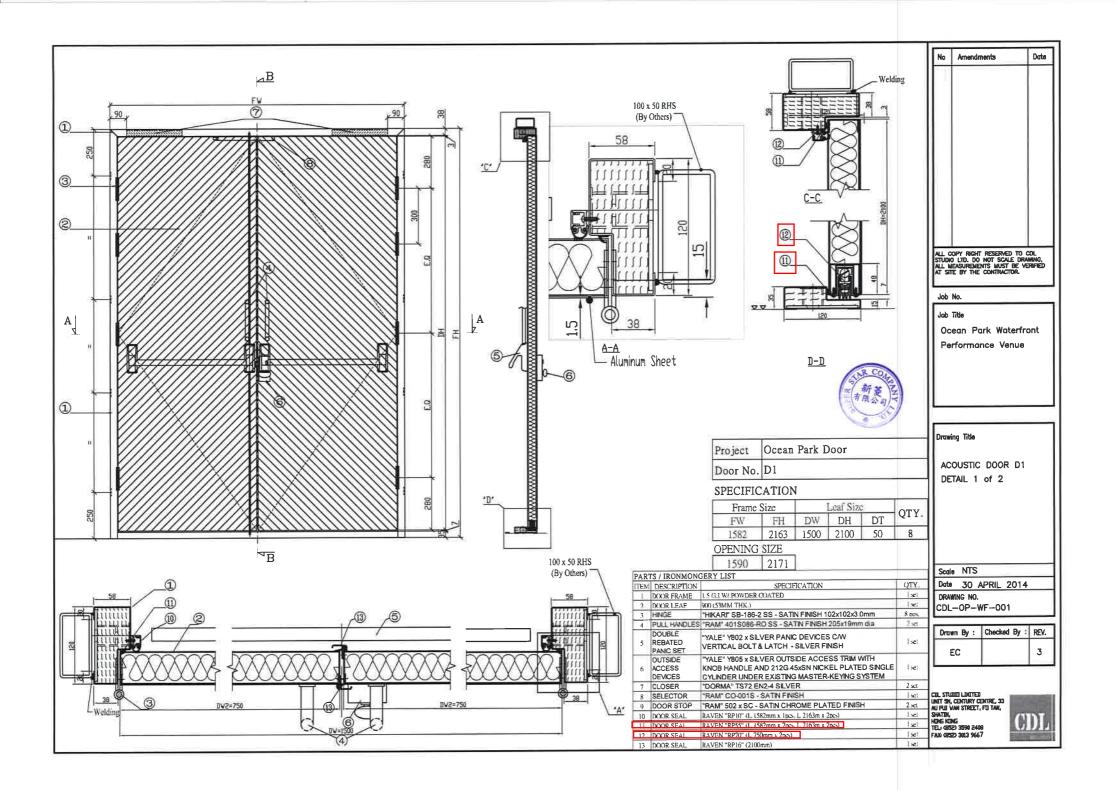
Tel: (852) 2690 9126

Details of Unit Under Test

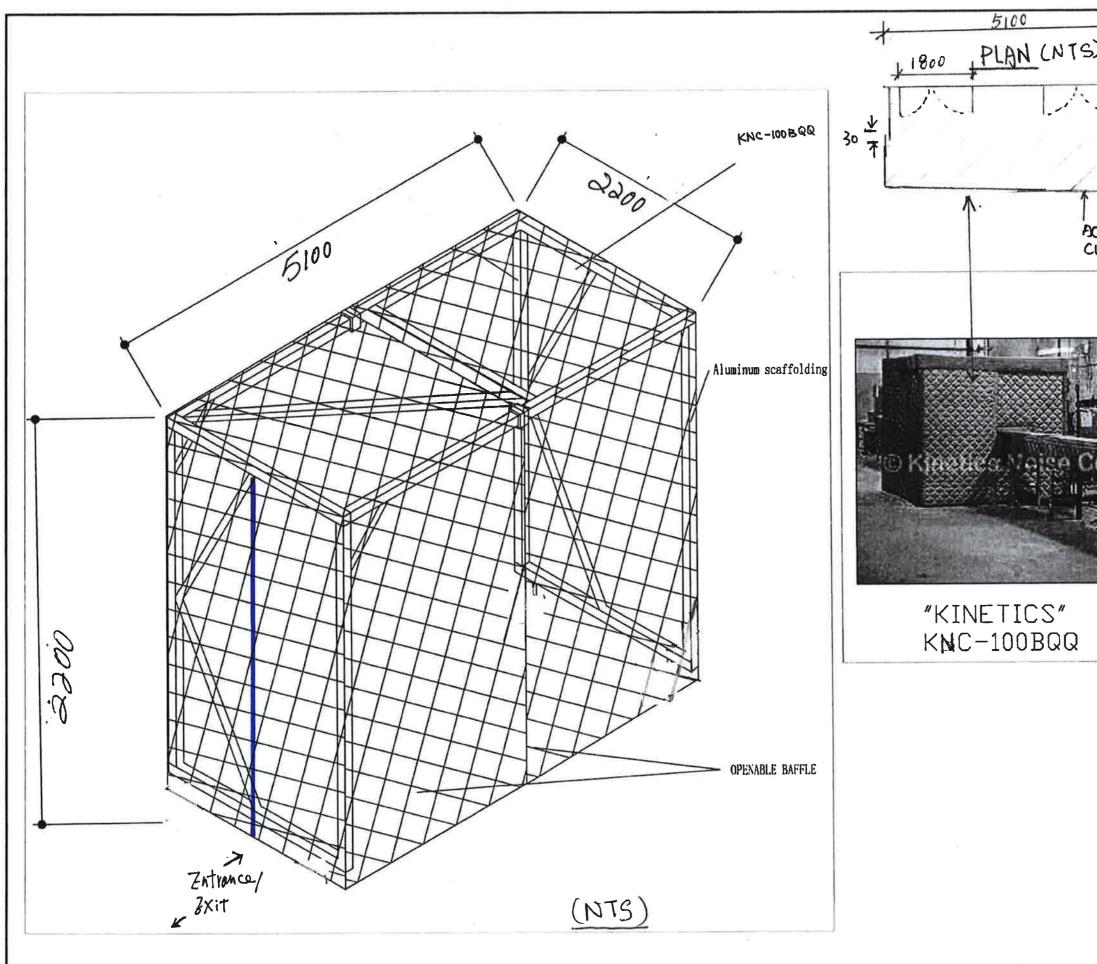

141 . 141




Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk


APPENDIX 2

This report shall not be reproduced except in full.



Annex I

Acoustic Performance of the Curtain Door

	_	_			
s) T	No	Amendme	nts	Date	
× 3200					
ocoustic Curtain					
201 F0010000000	10 ITR	opy inght rese of (ASIA) VTD. Ingenistaast Actor.	rved to konetics 80, not scale de Beliverbineds at s	NOISE Lainting, All. (TE by Thie	
	Job No.				
	Job	Job Title			
	OCEAN PARK – WATERFRONT PLAZA				
CALIFORNES					
ACIENTICAL CONTRACT	1				
	L				
	Drawing Title				
	DF	DETAILS OF REMOVABLE ACOUSTIC ENCLOSURE			
			_		
	Sc	Scale NTS (A3) Date 07 MAY 2014			
	Da				
	DR	awing NO. KNC-OME-	-02		
	F				
		awn By :	Checked By		
	IL	TKL		B	
	III I	W Noise Control			
	KINETICS NOISE CONTROL (ASIA) LTD. Unit E, 9/F., World Tech Centre,				
	95 H	low Ming St., ://www.kinet	Kwun Tong, H canoise.com	ong Kong.	
	Tel.	21912486 F	AX : 21912477		

Kinetics model KNC Noise Control Curtains are modular, reinforced limp-mass and quilted fiberglass composites designed to block noise or to act as a movable barrier between noisy and quiet areas. Kinetics Noise Control Curtain Systems incorporate a self-supporting track which allows the curtain to open for access at virtually any point along the barrier or enclosure.

Kinetics curtains are available from 0.50 to 2.50 PSF (2.5 to 12.5 kg/m²) surface weight. The systems are typically used for applications where accessibility, toughness, oil and chemical resistance, and an attractive appearance are required. A curtain system can yield noise reduction of 12-15 dBA.

Each curtain panel is furnished with Velcro[®], selfadhering, nylon closures along the entire length of each edge and heavy-duty grommets along the top.

Kinetics models KNC-50C and 100C Clearview Curtains or windows are available. Models KNC-50RB and 100RB are reinforced vinyl barriers. Models KNC-50RBQ and 100RBQ have an aluminum-faced, quilted fiberglass absorber towards the noise source to block sound from escaping and to absorb sound that is reflected. Models KNC-50BQQ and 100BQQ are vinyl barriers completely encased in quilted fiberglass absorberÈ

Channel support systems for curtains are standard 1.625" x 1.625" (41 mm x 41 mm), 12-gauge rolled channel that can be floormounted or suspended. Curtain panels can be attached to the support system by trolly assemblies for movable curtains or fixed to the support system by mechanical fasteners for non-movable curtains. Standard BQQ curtain panels are 48" (1219 mm) wide and standard RBQ curtain panels are 54" (1372 mm) wide. BQQ and RBQ are available in lengths of up to 20' (6096 mm). Kinetics model KSD strip doors and clear vinyl windows are easily incorporated into model KNC curtain systems for visual and personnel access. We are also able to design structured steal support frames when needed.

Application

Model KNC Curtain Systems can be used as a partial or complete enclosure around noise sources. Curtains are especially useful for enclosures around industrial equipment since the enclosure is more versatile and economical than a rigid enclosure. Typical applications include enclosures around punch presses, compressors, pumps, granulators, blowers, and generators, etc.

Absorption Characteristics

	Octave Band Frequency (Hz)									
Product	125	250	500	1000	2000	4000	NRC			
Q - 1" Quilt	0.12	0.47	0.85	0.84	0.64	0.62	0.70			
Q2 - 2" Quilt	0.08	0.33	0.79	1.02	1.04	1.02	0.80			
Q4 - 4" Quilt	0.30	0.83	1.16	1.18	1.10	1.07	1.10			

Sound Transmission Loss (dB)

	Weight	Frequency (Hz)							
Product	lbs./sq.ft. (kg/sq.m)	125	250	500	1000	2000	4000	STC	
KNC-50RB	0.5 (2.44)	12	13	16	21	27	32	21	
KNC-100RB	1.0 (4.89)	13	17	21	28	33	40	26	
KNC-50RBQ	0.7 (3.42)	6	12	17	27	38	46	23	
KNC-100RBQ	1.3 (6.36)	10	16	22	30	42	49	27	
KNC-50BQQ	1.0 (4.89)	7	12	18	31	46	50	24	
KNC-100BQQ	1.5 (7.34)	9	14	22	35	48	53	26	
KNC-200BQQ	2.5 (12.5)	16	20	30	40	51	55	33	
KNC-50C	0.5 (2.44)	8	13	17	22	27	31	20	
KNC-100C	1.0 (4.89)	4	19	23	28	33	37	26	

Specifications

Curtain systems shall consist of panels which meet the specifications and physical properties of the curtain material above. Each panel shall be furnished with Velcro[®] self-adhering nylon closures along the entire length of each edge. Support points at the top of each panel shall be reinforced at grommet locations not more than 12" (305 mm) apart. Support systems for curtains shall be 1.625" x 1.625" (41 mm x 41 mm) 12-gauge formed channel with associated hardware as designed by Kinetics Noise Control. Entire system shall be model KNC as manufactured by Kinetics Noise Control, Inc.

www.kineticsnoise.com/industrial/knc.html sales@kineticsnoise.com

Product Descriptions

KNC-50RB: Reinforced barrier

KNC-100RB: Reinforced barrier

KNC-50RBQ: Reinforced barrier with quilting on one (1) side

KNC-100RBQ: Reinforced barrier with quilting on one (1) side

KNC-50BQQ: Barrier quilting on both sides

KNC-100BQQ: Barrier quilting on both sides

KNC-200BQQ: Barrier quilting on both sides

KNC-50C: Clearview barrier

KNC-100C: Clearview barrier

KEY

RB (Reinforced Barrier); B (Non-Reinforced Barrier) ; Q (Quilt)

Silicone Faced Quilt is also available

United States 6300 Irelan Place P.O. Box 655 Dublin, Ohio 43017 Phone: 614-889-0480 Fax: 614-889-0540 Canada 3570 Nashua Drive Mississauga, Ontario L4V 1L2 Phone: 905-670-4922 Fax: 905-670-1698

Kinetics Noise Control, Inc. is continually upgrading the quality of our products. We reserve the right to make changes to this and all products without notice.

Unit E, 2/F., Century Industrial Centre, 33–35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

Test Report for Laboratory Measurement of Airborne Sound Reduction

TEST REPORT REFERENCE NUMBER: ATS12-045-RP001

DATE OF REPORT:

TESTED FOR:

Modern (Int'l) Access & Scaffolding Ltd.

Room 603, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Road, Kowloon, Hong Kong

ATTENTION:

UNIT UNDER TEST:

Mr. Steven Chan

29 October 2012

0.4mm thick Sound Proof Sheet (Code: SPS2030-04)

TEST STANDARD:

TESTED AT:

BS EN ISO 140-3: 1995

Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong.

Approved by:

Ir Dr. CHONG Fan / Managing Director CEng, RPE, HHKIE, MIMechE, MCIBSE, MASHRAE, MIOA, MHKIOA

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report (or certificate, where appropriate) were determined by this laboratory in accordance with its terms of accreditation.

This report shall not be reproduced except in full.

ATS12-045-RP001

Unit E, 2/F., Century Industrial Centre, 33–35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

1. METHOD OF TEST

The test was conducted in accordance with BS EN ISO 140-3:1995 (E) "Acoustics — Measurement of sound insulation in buildings and of building elements — Part 3: Laboratory measurements of airborne sound insulation of building elements" (equivalent to BS 2750 Part 3: 1995 and GB/T 19889.3-2005) in the reverberation chamber of Acoustic Testing Services Limited. The single-figure quantity for airborne sound insulation rating, Weighted Sound Reduction Index, was evaluated in accordance with BS EN ISO 717-1:1997 "Acoustics — Rating of sound insulation in buildings and of building elements — Part 1: Airborne sound insulation".

2. INSTRUMENTATION

Description:	Serial Number:
Bruel & Kjaer Type 3560-B Real Time Frequency Analyzer	2454296
Ultragraph Pro Equalizer	N0517513166
STK V-6 Amplifier	C04OM013
Bruel & Kjaer Type 4292 OmniPower Sound Source	021005
Bruel & Kjaer Type 4942 Random Incident ½" Microphone	2497997
(Source Room)	
Bruel & Kjaer Type 4942 Random Incident 1/2" Microphone	2497998
(Receiving Room)	
Bruel & Kjaer Type 4231 Sound Level Calibrator	2478237

The measuring equipment has been calibrated by an external HOKLAS laboratory, and is in current calibration.

3. PRINCIPLE OF TEST

The Sound Reduction Index of building element can be measured in a laboratory by placing the element in an opening between two adjacent reverberant rooms designed for such tests. Random noise is introduced into one of the rooms, referred to as the source room, and part of the sound energy is transmitted through the test element into the second room, referred to as the receiving room. In each one-third octave band of centre frequency 100 to 5000 Hz, the resulting space-average sound pressure levels in the source room and receiving room is L_1 and L_2 , respectively. The noise reduction index is given by

$$R = L_1 - L_2 + 10\log(S/A)$$

where

- *S* is the area of the test specimen, in square metres.
- A is the equivalent absorption area in the receiving room, in square metres

Unit E, 2/F., Century Industrial Centre, 33–35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

$$A = \frac{0.16V}{T}$$

Where,

- V is the receiving room volume, m³;
- T is reverberation time in the receiving room, s.

According to BS EN ISO 717-1: 1997, the Weighted Sound Reduction Index (R_w) in decibels (dB) is calculated by comparing the sixteen measured noise reduction index from 100 Hz to 3150 Hz with a defined reference curve by shifting the relevant reference curve in steps of 1 dB towards the measured curve until the sum of unfavourable deviations is as large as possible but not more than 32 dB. An unfavourable deviation at a particular frequency occurs when the result of measurements is less than the reference value. Only the unfavourable deviations shall be taken into account. The value, in decibels, of the reference curve at 500 Hz, after shifting it in accordance with this procedure, is R_w .

According to BS EN ISO 717-1: 1997, spectrum adaptation terms C, C_{tr} , $C_{100-5000}$ and $C_{tr,100-5000}$, which are to be added to the single-number rating to take account of the characteristics of particular sound spectra, are also calculated, in decibels. C is calculated with spectrum No. 1 (A-weighted pink noise); C_{tr} is calculated with spectrum No. 2 (A-weighted urban traffic noise). C and C_{tr} are calculated in frequency range 100 Hz – 3150 Hz. While $C_{100-5000}$ and $C_{tr,100-5000}$ are calculated in frequency range 100 Hz – 5000 Hz.

Unit E, 2/F., Century Industrial Centre, 33–35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

4. **RESULTS APPLICATION**

The results obtained can be used to design building elements with appropriate acoustic properties, to compare the sound insulation properties of building elements and to classify such elements according to their sound insulation capabilities.

The test was performed in laboratory facilities in which transmission of sound on flanking paths is suppressed. Results of measurements shall not be applied directly in the field without accounting for other factors affecting sound insulation, especially flanking transmission and loss factor.

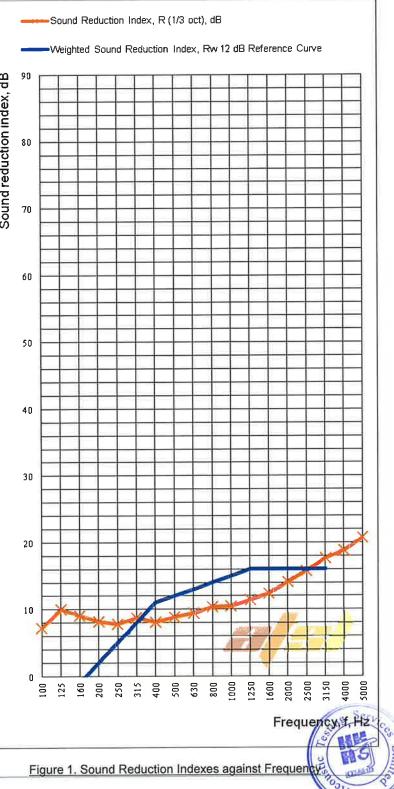
The test results obtained relate only to Unit Under Test.

5. <u>DETAILS OF TEST</u>

Date of receipt of Unit Under Test:	20 September 2012
Date of test:	25 September 2012
Unit Under Test:	0.4mm thick Sound Proof Sheet (Code: SPS2030-04)
Sample I. D.:	ATS12-045-TS001
Dimensions used to calculate SRI:	3500 mm (width) X 3000 mm (height)
Supplier:	Modern (Int'l) Access & Scaffolding Ltd.
Installed by:	Modern (Int'I) Access & Scaffolding Ltd.
Additional Description:	Unit Weight: 500g/m²

The details of the Unit Under Test are referring to the drawings given in Appendix 1.

The information shown in the additional description is not verified by the laboratory.



Unit E, 2/F., Century Industrial Centre, 33–35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

6. <u>TEST RESULTS</u>

Source Room:					
Temperature:	28	°C			-Sou
Humidity:	70	%			
Volume:	221	m³			
Receiving Roo	om:		ម្ព	90	
Temperature:	28	°C	ex,		
Humidity:	70	%	ind		
Volume:	80	m ³	ion	80	
Specimen Dirr calculation:	ension	used for	Sound reduction index, dB		
Width:	3500	mm	l pr		
Height:	3000	mm	our	70	
	Oct, R (dB)	1/1 Oct, R (dB)	S S		
100	7.2			60	
125	10.0	8.6		00	\vdash
160	9.0				
200	8.2				\vdash
250	7.8	8.2		50	\square
315	8.7				\square
400	8.1				
500	8.8	8.7		40	
630	9.4				\vdash
800	10.4				\square
1000	10.5	10.7		30	
1250	11.4				
1600	12.4				Ħ
2000	14.4	13.9		20	
2500	15.7				
3150	17.6				\vdash
4000	18.8	18.9		10	
5000	20.7			2	
The Weighted	Sound ccordar 97 and t			0	100
Rw (C;C _{tr})	=	12 (0;-2)dB			
$\begin{array}{c c} C_{100-5000} & = \\ C_{tr,100-5000} & = \end{array}$		0 dB -2 dB	I	E	gure

ac-MF

HOKA

TEST

173

Unit E, 2/F., Century Industrial Centre, 33–35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

APPENDIX LIST

APPENDIX 1	Details of Unit Under Test
APPENDIX 2	Photographic Records

1111

ac-M

"Inhahahaha

HIKLAS 173

TEST

Unit E, 2/F., Century Industrial Centre, 33–35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

APPENDIX 1

Details of Unit Under Test

(Not provided by the client)

Unit E, 2/F., Century Industrial Centre, 33–35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

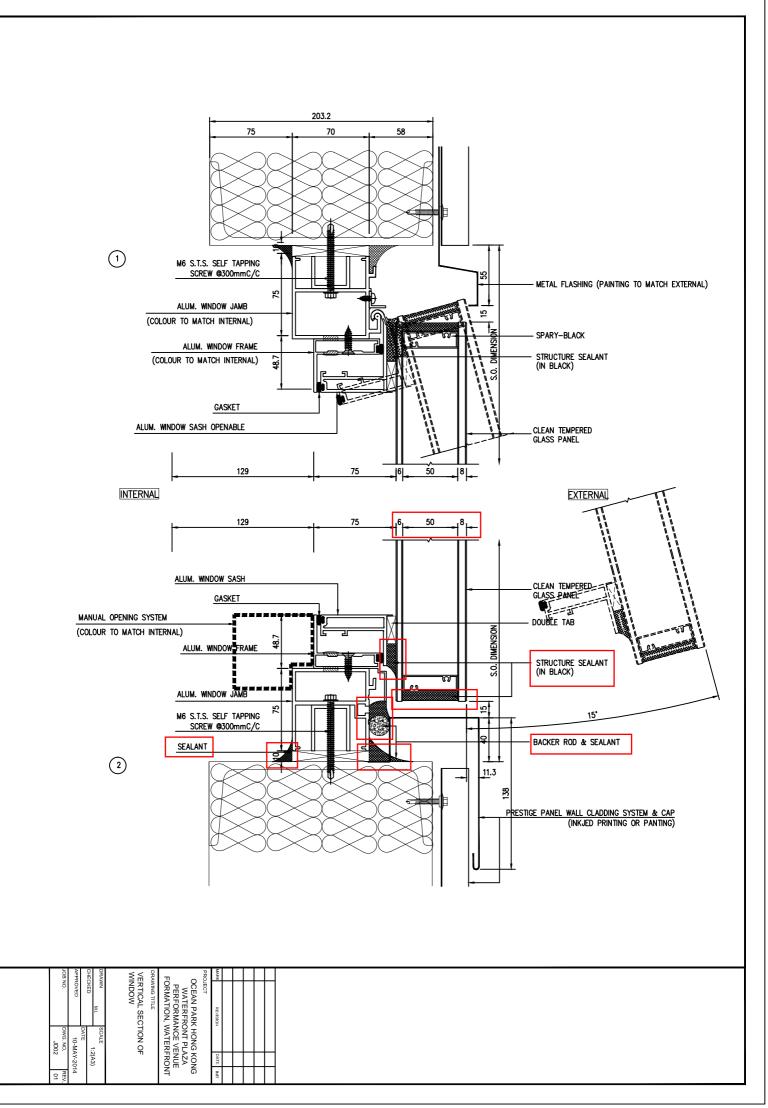
APPENDIX 2

Photographic Records

Set-up of Unit Under Test (Source room)

Set-up of Unit Under Test (Receiving room)

End of Report



This report shall not be reproduced except in full.

ATS12-045-RP001

Annex J

Drawing and Reference of the Window Panel

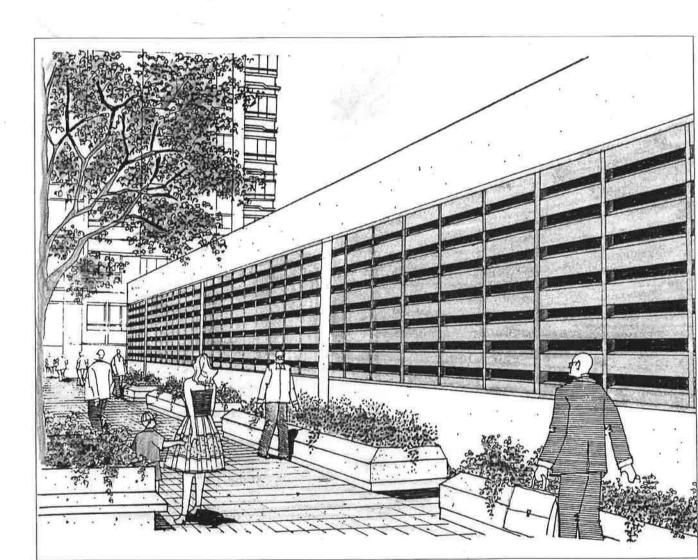

Table 8.2 (Continued)											
Panel	Thick- Superficial			Octave band centre frequency (Hz)							
construction	ness (mm)	weight (kg/m ²)	63	125	25 250	500	1000	2000	4000	8000	
mm and 5 mm glass, 100 mm cavity	112	34	_	27	37	45	56	56	60	_	
mm and 8 mm glass, 100 mm cavity	115	40	_	35	47	53	55	50	55	_	
Doors											
lush panel, hollow core, normal cracks as usually hung	43	9	1	12	13	14	16	18	24	26	
olid hardwood, normal cracks as usually hung	43	28	13	17	21	26	29	31	34	32	
ypical proprietary "acoustic" door, double heavy sheet stee	l										
skin, absorbent in air space, and seals in heavy steel frame	100	_	37	36	39	44	49	54	57	60	
-skin metal door	35	16	_	26	26	28	32	32	40	_	
lastic laminated flush wood door	44	20	_	14	18	17	23	18	19	_	
veneered surface, flush wood door	44	25	_	22	26	29	26	26	32	_	
Aetal door; damped skins, absorbent core, gasketing	100	94	_	43	47	51	54	52	50	_	
fetal door; damped skins, absorbent core, gasketing	180	140	_	46	51	59	62	65	62	_	
Aetal door; damped skins, absorbent core, gasketing	250	181	_	48	54	62	68	66	74	_	
wo 16g steel doors with 25 mm sound-absorbing											
material on each, and separated by 180 mm air gap	270	86	_	50	56	59	67	60	70	_	
lardwood door	54	20	_	20	25	22	27	31	35	_	
Iardwood door	66	44	_	24	26	33	38	41	46	_	

Table 8.2 (Continued)

Annex K

Specification of the Acoustic Louvre for Chillers

Acoustic Louvres

J.P. ENVIRONMENTAL PRODUCTS INC. the service you expect: The products you need

Acoustic Louvres * ALC Acoustic Louvres

Introduction

The J.P. Environmental ALC range of acoustic louvres have been developed to serve as both noise and weather barriers, while permitting the efficient transfer of air.

As aesthetics is an important aspect of any building design, the ALC louvres will, at the same time, provide an attractive facade compatible with the architect's design concept.

Aerodynamically designed for reduced pressure drop, this multi-purpose louvre will meet a wide range of performance requirements for commercial and industrial applications.

With six models to choose from, this ensures the most accurate selection possible with the minimum amount of interpolation and offers practical solutions within the constraints of the space permitted.

Applications

Buildings

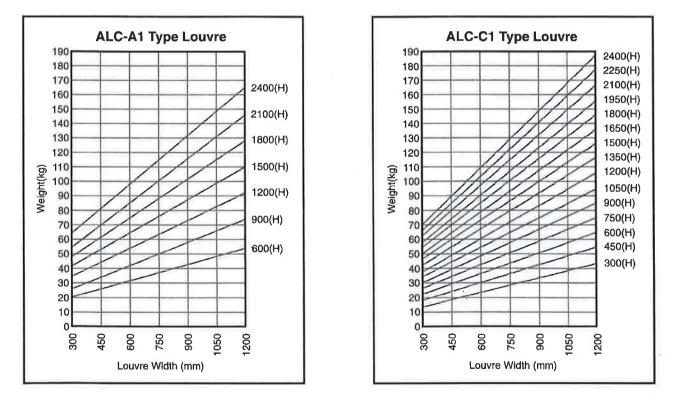
- Ventilation Systems Openings
- Air Conditioning Plants
- Standby Generator Rooms
- Carparks

Barriers

- Chiller Plants
- Cooling Towers
- Sewage Treatment Plants
- Substation Transformers
- Power Generating Plants

ALC Louvre Range

ALC Acoustic Louvres are available in six models.


MEDIUM SOUND TRANSMISSION LOSS / LOW AIRFLOW RESISTANCE

Model	Thickness	Louvre Blade Centres
ALC-C.5	150mm	150mm
ALC-C1	300mm	150mm
ALC-C2	600mm	150mm

HIGH SOUND TRANSMISSION LOSS / MEDIUM AIRFLOW RESISTANCE

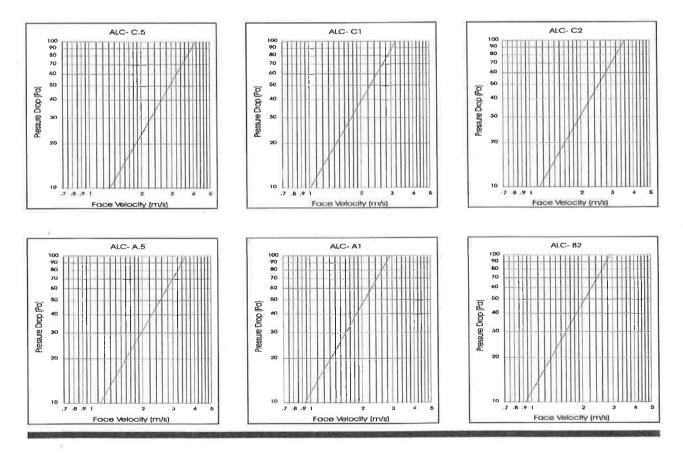
	Model	Thickness	Louvre Blade Centres
	ALC-A.5	150mm	300mm
	ALC-A1	300mm	300mm
\rightarrow	ALC-B2	600mm	300mm

Louvre Weights

For ALC-A.5 and ALC-B2 Models, take the weight from the ALC-A1 Chart and Multiply by 0.5 and 2 respectively For ALC-C.5 and ALC-C2 Models, take the weight from the ALC-C1 Chart and Multiply by 0.5 and 2 respectively

Acoustic Performance

The acoustic performance (Sound Transmission Loss) of J.P. Environmental ALC Acoustic Louvres has been tested and certified by independent test laboratories, carried out in accordance with the following standards:-


- ISO - 140 Measurement of Sound Insulation in Buildings and of Building Elements.
 - ASTM E - 90 Standard Method of Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions.

Madal	Thickness	Octave Band Centre Frequency in Hz							
Model	Thickness	125	250	500	1k	2k	4k	8k	
ALC-C.5	150mm	3	5	8	9	8	6	5	
ALC-C1	300mm	4	7	12	13	11	10	9	
ALC-C2	600mm	8	12	20	22	29	20	11	
ALC-A.5	150mm	5	8	13	15	13	10	8	
ALC-A1	300mm	7	11	20	22	19	16	15	
ALC-B2	600mm	12	17	24	28	34	26	14	

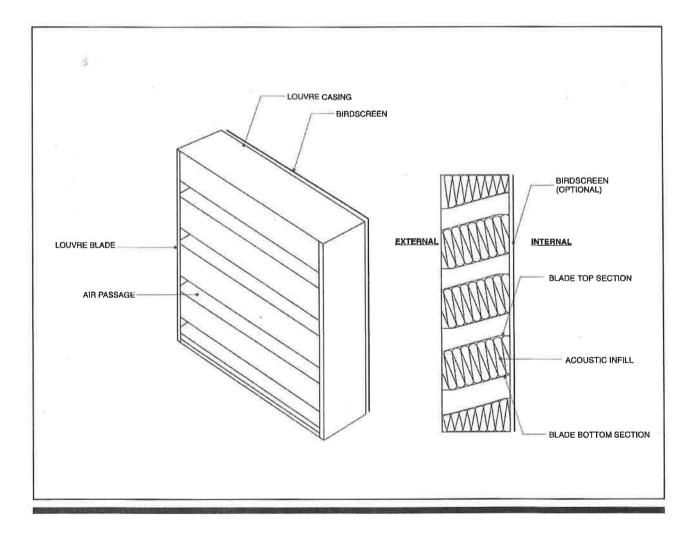
Sound Transmission Loss (dB)

The figures presented above are Transmission Loss (TL) data. To obtain Noise Reduction (NR) of louvres, add 6 dB to each octave band.

Aerodynamic Performance

Standard Construction

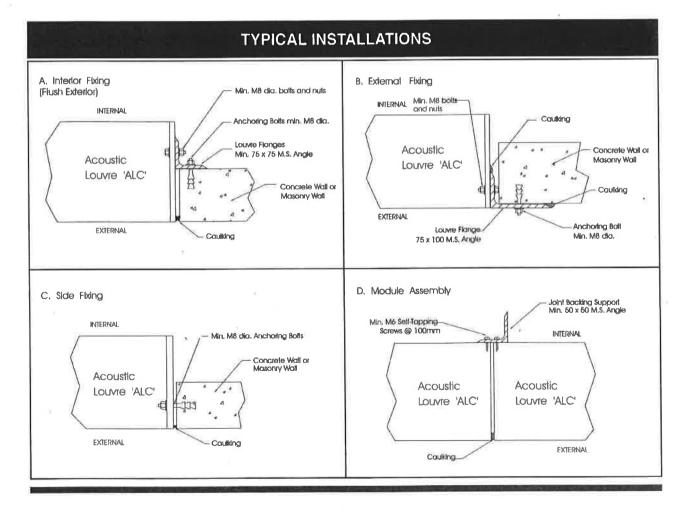
The four sided casing is fabricated from 1.5mm thick galvanized mild steel with a folded lip on the vertical sides. This provides added rigidity and is used for attaching the louvre blades.


The louvre blades are constructed with 0.8mm galvanized steel for the top (external) section and 0.5mm thick perforated galvanized steel sheet for the bottom (internal) section.

The top of the louvre blades have an integral lip at the rear edge to prevent water entry.

The louvre blades are packed with inert, non-combustible infill held secure under 5-10% compression to prevent settling or compacting.

The maximum module size is 1200mm (Width) x 2440mm (Height), to enable ease of handling and assembly. Larger opening sizes can be easily formed by using a combination of modules.


The full range of ALC Acoustic Louvres can also be manufactured from varying material thicknesses, and in aluminium or stainless steel, for use in extreme environmental conditions, or to meet with the specific acoustic design requirements of the project.

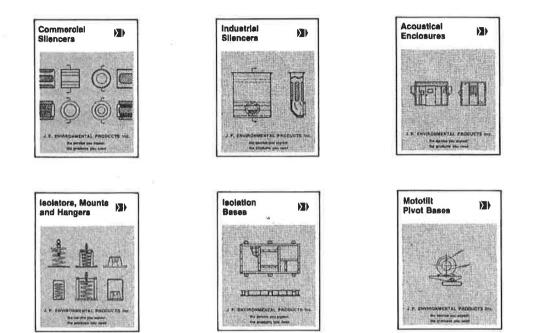
Options

Finishes	Galvanized steel louvres can be supplied etch prime coated, ready for paint finishing on site to any specific colour. Aluminium louvres can be supplied in natural or anodized finishes. Stainless steel louvres can be supplied in 304SS or 316SS grade, with satin or polished finish.
Louvre Doors	The door consists of a galvanized steel frame to which the louvre blades are fixed in alignment with the adjacent louvres. Louvre doors are available in either 150mm or 300mm thickness, supplied complete with standard hardware.
Infill Protection	A polyester film or fibreglass cloth can be applied between the acoustic infill and perforated steel section of the blade for added protection.
Birdscreen	Louvres can be fitted with a steel birdscreen if required. This is fixed to the rear face of the louvre by means of screw fixing to the casing.

Method of Installation

Suggested Specifications

Supply and install J.P. Environmental ALC Acoustic Louvres, (exclusive HK agent: Enviro-Tech Engineering Co., Ltd.) or approved equivalent.


The acoustic and aerodynamic performance of the louvres shall be tested and certified by an independent testing laboratory in accordance with ASTM E-90. Acoustic Louvres shall be selected to meet the specified Noise Criteria and shall have the following minimum acoustic performance.

	Octave Band Center Frequency, (Hz)									
	<u>63</u>	125	250	500	1k	2k	4k	8k_		
Min. Sound Transmission Loss. dB	122	Ξ		-			-	-		

The louvre casing shall be fabricated from min 1.5mm thick galvanized steel sheet (or aluminium or stainless steel.). Louvre blades shall be of aerodynamic design to give minimum pressure drop and resistance to air flow. Louvre blades shall be constructed from min. 0.8mm thick galvanized steel sheet (or aluminum or stainless steel) as top section and min. 0.5mm thick and 23% perforated galvanized steel sheet (or aluminium or stainless steel) as bottom section. Acoustic infill shall be packed with inert, non-combustible acoustic media held secure under 5-10% compression.

OTHER PRODUCTS

For specific applications and selection data contact your J.P. Environmental Products Inc. representative

J.P. ENVIRONMENTAL PRODUCTS INC.

P.O. Box 816, Sta. 'C' Kitchener, Ontario Canada N2G 4C5 Telephone: (519) 662-3220 Telefax: (519) 662-3223 P.O. Box 965 Dover, New Jersey U.S.A. 07801 Telephone: (201) 366-6103 Telefax: (201) 361-5382

\bigcirc

Exclusive Distributor for Hong Kong, Macau, China and S.E. Asia ENVIRO-TECH ENGINEERING CO., LTD.

Flat A, 8/F., 81 Hung To Road, Kwun Tong, Kowloon, H.K. Telephone:(852) 2827-0688 Telefax: (852) 2598-6203

Data is subject to change without notice due to our policy of continuous design improvement

(AL-96)

Annex L

Specification of the Exhaust Silencer for Chiller Enclosure

J. P. ENVIRONMENTAL PRODUCTS INC. "RECTANGUALR SILENCERS"

MODEL	MODULE SIZE (mm)	1	2	STATIC 3	INSER 4	TION L 5	0SS (d 6	1B) 7	8	PF 12.5	RESSUR 25	E DROP 50	(Pa) vs. 75	FACE VE 125	LOCITY 200	(m/s) 250	k-factor
									0	12.0	E.	00	10	120	200	250	1
CSR10-4A		7	12	26	40	50	50	46	35	1.4	1.9	2.7	3.3	4.3	5.4	6,0	6.8
CSR10-4B		6	10	22	35	44	49	47	28	20	2.9	4.1	5.0	6,4	8,1	9.1	3.03
CSR10-4C		5	8	18	29	43	43	42	23	2.7	3.9	5.4	6.7	8.6	10.9	12.2	1,69
CSR10-4D	250	5	8	∋17	28	43	42	38	21	3.3	4.7	6.6	8.1	10.4	13,1	14.7	1.15
CSR10-4E		4	7	15	27	42	40	33	19	4.0	5.8	7.9	9.7	12.4	15.7	17.6	0.8
CSR10-4F		4	6	13	24	40	33	29	17	5.1	7.3	10.3	12.5	16.2	20.5		
CSR10-4G		3	5	12	23	37	31	27	16	8.8	9.6	13.6	18,6	21.4		23.0	0.48
		Ť			20	57	01	21	10	0.0	3.0	15.0	10,0	21.4	27.1	30.3	0.27
CSR12-4A		7	11	23	37	45	48	43	20	1.4	2.0	2.8	3.5	4.5	5.6	6.3	6.28
CSR12-4B		6	10	20	33	43	43	36	20	2.1	3,0	4.2	5.1	6.7	8.4	9.4	2.83
CSR12-4C		4	7	15	29	40	37	31	17	2.8	4.0	5.6	6.9	8.9	11.2	12.6	1.58
CSR12-4D	300	4	1	14	28	37	34	27	107	3.4	4.8	6.8	8.3	10.8	13.6	15.2	1.08
CSR12-4E CSR12-4F	1- II	3	6 5	13 10	23	34	30	25	14	4.1	5.7	8.1	10.0	12.0	16.2	18.1	0.76
CSR12-4G		-			20	28	24	17	11	5.3	7.5	10.8	13.0	16.8	21.2	23.7	0.44
WK12-46		2	4	9	18	28	22	10	10	7.1	10.0	14.1	17.3	22.3	28.1	31.5	0.25
CSR14-4A		7	12	22	34	43	43	34	22	1.5	2.0	29	3.6	4.6	5.8	6.5	5.9
CSR14-4B		6	10	18	27	41	39	31	15	2.1	3.0	4.3	5.3	6,8	8.6	9.6	2.73
CSR14-4C		5	8	14	23	34	30	22	14	2.9	4.1	5.7	7.1	9,1	11.5	12.9	1.5
CSR14-4D	350	4	7	13	22	31	26	19	13	3.5	4.9	7.0	8,5	11.0	13,9		,
CSR14-4E		4	6	11	20	28	22	15	11	4.2	4.8 5.9	8.3	0.5 10.2	13.2	15.9	15.5	1.03
CSR14-4F		2	4	9	16	22	16	10	8	4.2 5.4	5.9 7.7	10.9	10.2			18.6	0.72
CSR14-4G		2	3	8	15	20	14	9	7	7.3	10.3	14.5	13.4	17.2 23.0	21.7 28.9	24.3 32.6	0.42
00040 (4		_													EV.V	V2V	V.24
CSR16-4A		8	13	20	32	42	39	29	19	1.5	21	2.9	3.6	4.7	5.9	6.6	5.73
CSR16-4B	1	6	10	15	25	35	31	26	15	2.2	3.1	4.4	5.4	6.9	8.7	9.8	2,6
CSR16-4C	0	5	8	12	21	29	24	18	12	2.9	4.1	5.8	7.2	9.2	11.7	13.1	1.47
CSR16-4D	400	4	7	11	19	27	21	15	- 11	3.6	5.0	7.1	8,6	11.2	14.1	15,8	1
CSR16-4E		- 4	6	10	17	24	18	12	9	4.2	6.0	8.5	10.4	13.4	16.9	16.9	0.7
CSR16-4F		2	4	8	14	19	12	9	7	5.5	7.9	11.1	13.6	17,6	22.2	24.8	0.41
CSR16-4G		2	3	7	13	17	11	8	6	7.4	10.5	14.6	18,1	23.4	29.6	33.1	0.41
CSR18-4A		8	13	19	29	20	07		47		•				10		
CSR18-4B		5				39	37	31	17	1.5	2.1	3,0	3.7	4.8	6.0	6.7	5.54
CSR18-4C			9 7	14	23	31	27	22	13	2.2	3.1	4.4	5.4	7.0	8.8	9.9	2.57
	450	4		11	10	25	20	17	10	2.9	4.2	5.9	7.3	9.4	11.6	13.3	1.43
CSR18-4D	450	4	6	10	18	23	17	14	9	3.6	5.1	7.2	8.8	11.3	14.3	16.1	0,97
CSR16-4E		3	5	9	16	21	14	10	8	4.3	6.1	8.6	10.5	13,6	17,1	19.2	0.68
CSR18-4F	1	2	4	7	13	17	10	8	6	5.6	8.0	11.3	13.8	17.8	22.5	25.2	0.39
CSR18-4G		2	3	6	12	18	9	7	5	7.5	10.6	15.0	18,4	23.8	30.0	33.6	0.22
CSR20-4A		8	13	17	26	36	29	26	14	1.5	2.1	3.0	3.7	4,8	6.1	6.8	5.5
CSR20-4B		5	9	14	22	28	22	17	12	2.2	3.1	4.5	5,5	4,0 7,1	8.9		
CSR20-4C		4	6	10	18	23	17	12	8	3.0	4.3	6,0	7.4	9.5	12.0	10.0	2.52
CSR20-4D	600	4	6	.9	17	21	15	10	8	3.6	4.5 5.1	7.3				13,4	1.38
CSR20-4E		3	5	ě	15	19	12	8	8	4.4	6.1	6.7	8.9	11.3	14.5	16.2	0.96
CSR20-4F		2	4	8	13	16	10	7	8				10.7	13.8	17.3	19.5	0.66
CSR20-4G		2	3	7	11	15	9	6	- 1	5.7	8.1	11.4	14.0	18.0	22.8	25.5	0.38
1		-	v	,		15	3	0	5	7.6	10,8	15.2	18.6	24.1	30,4	34.0	0.22
CSR22-4A		8	14	17	26	35	27	22	14	1.5	2.2	3.1	3.8	4,9	6.1	6.9	5.28
CSR22-4B		6	10	13	20	26	20	15	11	2.3	3.2	4.5	5.5	7.2	9.1	10.1	2.43
CSR22-4C		4	7	11	17	22	14	11	8	3.0	4.3	6.0	7.4	9.6	12.1	13.6	1.37
CSR22-4D	550	4	6	10	16	20	13	10	å	3.7	5,2	7.3	9.0	11.6	14.6	16.4	0.93
CSR22-4E		3	5	9	15	18	11	8	7	4.4	6,2	8.8	10.7	13.9	14.0 17.5		
CSR22-4F	0	3	5	8	14	16	8	7	- 7	5.7	8.1					19.6	0.65
CSR22-40		2	3	7	12	13	6	5	5	7.7	0.1 10.9	11.5 15.4	14.1 18.8	18.2 24.3	22.9 30.7	25.7 34.4	0.38 0.21
0000144		-												A 1.V		7.7	0.21
CSR24-4A		8	13	16	23	28	24	20	12	1.6	2.2	3.1	3.8	4.9	6.2	6.9	5.16
CSR24-4B		6	10	13	18	24	18	14	9	2.3	3,3	4.6	6.6	7.2	9.1	10.2	2.38
CSR24-4C		4	6	11	17	21	13	10	8	3.0	4,3	6.1	7.5	9.7	12.2	13.7	1.35
CSR24-4D	600	4	6	11	-16	20	12	9	8	3.7	5,2	7.4	9.0	11.7	14.7	16.5	0.92
CSR24-4E		3	5	10	15	19	10	8	8	4.4	6.2	8.8	10.8	14.0	17.6	19.7	0.64
CSR24-4F		2	4	θ	14	15	8	7	7	5.8	8.2	11.6	14.2	18.3	23.1	25.9	0.84
CSR24-4G		2	4	7	13	12	8	6	5	7.8	11.0	15.5	19.0				
				-		1.00	-	~	~ 1	1.0	11.0	10.0	17.0	24.5	31,0	34.7	0.21

CSR-48M

Annex M

Specification of the AHU Casing and Acoustic Plenum

(2) AIR HANDLING UNIT (Cont'd)

ł

(

Particular : AHU-PV-G-01 & AHU-PV-G-02 (Cont'd)

Description	Specified	Offered
- Octave Band SWL (dB) (in-duct)		
125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz	100 101 100 94 88 84 81	88 96 94 92 84 81 80
- Octave Band SWL (dB) (Break out)	(F.	
125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz	75 69 61 52 43 41 44	63 4 53 64 53 75 9 7 8 73 73
Casing		

.

- Overall Length (mm)	
- Width (mm)	
- Height (mm)	
- Frame Type	Aluminium Alloy
- Outer Skin Material	Pre-painted Galvanized Steel
- Outer Skin Thickness (mm)	1
- Inner Skin Material	Pre-painted Galvanized Steel
- Min. Inner Skin Thickness (mm)	1
- Insulation Materials	Injected PU Foam
 Insulation Thickness (mm) 	88
- Insulation Density (kg/m ³)	40

4100 7200 Yes

2053

٠

(2) AIR HANDLING UNIT (Cont'd)

Particular : AHU-PV-G-01 & AHU-PV-G-02 (Cont'd)

Description	Specified	Offered
Acoustic Intake Plenum		
- Panel and Frame	Same as Casing Construction	Yes
- Double Skin Material and Thickness	Same as Casing Construction	
- Insulation Material and Thickness	Same as Casing Construction	55
- Additonal Internal Acousitc Lining Material	100mm thick rockwool	
 Fresh air intake camber complete with louver, VCD (motorized) and bird screen build-in 	Required	
- Return air chamber complete with louver, build-in VCD (motorized)	Required	
Acoustic Discharge Plenum		
- Panel and Frame	Same as Casing Construction	
- Double Skin Material and Thickness	Same as Casing Construction	
- Insulation Material and Thickness	Same as Casing Construction	
- Additonal Internal Acousitc Lining Material	100mm thick rockwool	
Built-in Silencer in Return Section	Required	
Built-in Silencer in Supply Section	Required	\vee

- Remark:

(

i

Annex N

Specification of Silencer for AHU

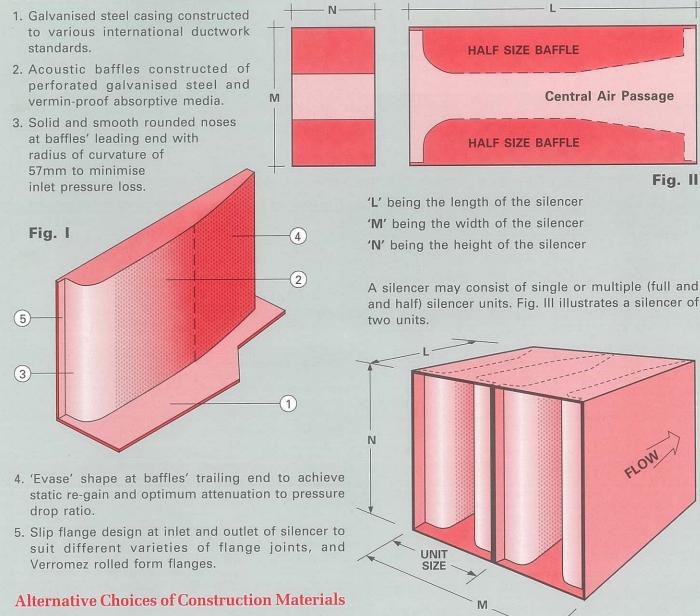
Rectangular Duct Silencers

Vibron Rectangular Silencers

Performance Versatility

Vibron rectangular silencers are available with hundreds of choices of standard insertion loss and pressure drop combinations. Most common airborne noise control requirements for ventilation ductworks and mechanical plant room openings are solved easily with VIBRON silencers at optimum performance and cost. And because of the abundance of choices, it is almost always possible to select a silencer matching the size of ductwork or openings. Hence, transition pieces are saved, and the noise breakin/breakout and extra pressure loss associated with such transitions are eliminated.

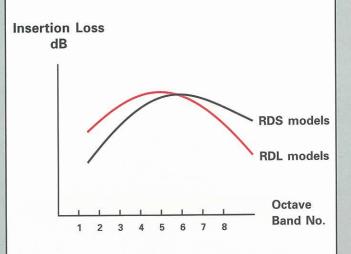
Features of Vibron Silencers


 "VIBRON VISCO" acoustic baffles can be used to prevent the ingress of dust, oil and water into the absorptive media for clean flow and kitchen extract application.

"VIBRON VISCO" acoustic baffles are tested to comply BS476: Part 7, Class 1.

Description of Silencers

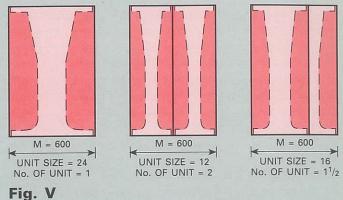
The building block of a silencer is the silencer unit. One full unit consists of two half-size acoustic baffles spaced deliberately to form a central air passage (see Fig II). A full size unit is virtually made up of two half size unit with the central plane of the air passage as axis of symmetry.


Fig. III

1. Stainless steel outer casing and/or stainless steel baffles.

STANDARD AND LOW FREQUENCY MODELS

Two versions of rectangular duct silencers are developed through extensive research by VIBRON. Standard models, RDS series, offer conventional insertion loss; Low frequency models, RDL series, gives higher insertion loss at the lower octave bands at the expense of sound absorption at higher octaves. Fig. IV shall illustrate the achievement.


Fig. IV

UNIT SIZE

Standard silencer units are sized from widths of 250mm to 600mm in 25mm increment. Table one lists all the unit sizes and actual widths of silencer units.

Unit	Size	Width of Silencer	Relative
RDS model	RDL model	unit, mm	Cost
10	-	250	HIGHEST
11	-	275	
12	-	300	
13	-	325	
14	-	350	
15	-	375	
16	16	400	
17	17	425	
18	18	450	
19	19	475	
20	20	500	
21	21	525	
22	22	550	
23	23	575	
24	24	600	LOWEST

The availability of different unit sizes enables a silencer to be built up of different configurations. For example a silencer dimension 'M' of 600mm can be made from three different configurations shown as Fig. V.

Each of the three configurations bears unique insertion loss and pressure drop performance. The final choice will rely on the actual noise control requirement and system layout.


TYPE NO.

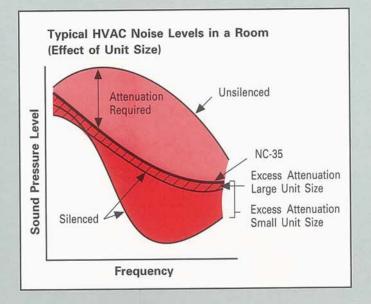
The width of the central air passage always occupies certain purposely-selected percentage of the unit size. Different percentages are denoted the type number of the silencer. It determines principally the silencer pressure drop.

Type No.	Relative % of Air Passage	Relative Pressure Drop
1	LOWEST	HIGHEST
1.5		
2		
2.5		
3		at a
3.5		
4		
4.5	(Based)	
5	HIGHEST	LOWEST

Table Two

Increment in length 'L' is available at 300mm. Standard lengths with certified performance data are as listed in Table Three.

Table Three


A proper designation of the silencer requires i) unit size, ii) model, iii) type no., iv) length; which means one can choose among numerous combination of these parameters to suit the noise control requirement.

Suggested Silencer Specification

- Contractor must submit full calculation and selection of silencers to match equipment selected, system requirements, and to achieve final noise criterion in designated areas.
- All silencers must be factory fabricated with a galvanised steel outer skin not less than 0.8mm. The acoustic filler must be non-combustible and odourless, covered with minimum 0.5mm galvanised perforated metal. The acoustic filler must be packed at 10% compression.
- Where used for kitchen extract and clean flow application, the acoustic filler must be protected and covered with a noise transparant mylar wrapping underneath the perforated metal, the acoustic baffles shall comply to BS476, Part 7, Class 1.
- 4. All silencers shall have a 40mm slip flange at each end.
- The air inlet side must have a solid, smooth and round radius nose. A cropped nose shall be rejected.
- The air outlet or tail end must have an evase exit to enable a smooth expansion.
- The air passage must be kept to the exact open area percentage and the two side walls in exact paralled by the use of double spacer/ retainer.
- The G.I. casing shall be locked formed. For systems having an excess of 1250 Pascals static, the seams shall be filled with mastic.
- All metal to metal joints shall be spot welded, no rivets allowed.
- 10. All silencers selected shall match exactly the system duct dimensions. Silencers selected cannot be compromised by tailoring side wall or splitter widths to suit duct size as deviations from published catalog data will be rejected.
- 11. Silencer performance data shall be in accordance to ASTM E-477 testing standards.
- Upon architect or engineer's request, independent laboratory test data to ASTM E-477 standards shall be submitted.
- Silencers of very large sizes are allowed to be made up of smaller modules to form a large bank modules.
- 14. Silencers shall be manufactured by VIBRON or approved equal.

How Vibron Silencers Optimise The HVAC Noise Control Scheme

Due to characteristic noise spectrum of air handlers, insertion loss required to achieve specified Noise Criteria is usually critical in the second and third octave bands. Typical characteristics are shown in the figure below.

- Vibron developed the large unit size RDL series of silencers which gives adequate insertion loss at the lower octave bands. This will eliminate overattenuation at higher octaves while at the same time significantly lower the pressure drop across the silencer, saving energy consumption of the air handler and reduce regenerated noise.
- If in case required insertion loss at middle and/or higher octaves are significant, the smaller unit size RDS series of silencers will do the job.
- 3. The RDL series of silencers are tuned to give extra attenuation at 2nd and 3rd octave bands at the expense of insertion loss at higher octaves. This range of silencers are also low in pressure drop and is ideal for air-borne noise control in HVAC ductwork.
- 4. Varying the actual unit width and the size of the central air passage affects the insertion loss of a silencer. VIRBON tested and tabulated the performance of silencers with 25mm increment in unit width to ensure accuracy and reliabilities of the selection.
- 5. The ability of VIBRON to match the silencer cross section with the HVAC ductwork will eliminate the pressure loss at inlet and outlet transition pieces and save the system from excess regenerated noise at such transition pieces.
- Published data is mean average laboratory data - 2dB from which selections can be made with confidence in regards to actual installed performance.

Rectangular Duct Silencer Selection Procedure

Selecting a Vibron Silencer

The information required to select the correct Vibron silencer consists of:

- 1. Minimum Insertion Loss (IL) at various octave bands to achieve the noise control target. If not known, please consult our acoustical engineers.
- Maximum Pressure Drop (PD) allowable across the silencer. Silencer PD will depend on by dividing the air flow through the silencer by the cross section area of the silencer.
- Duct size and available lengths to accommodate the silencer. With this information, simply follow the steps below to select the most economical silencer which will meet the required performance.

Preliminaries

- Let the cross section of the silencer be the same as that of the ductwork (or wall opening) to which the silencer will be mounted.
- Look up Table Three and decide on a standard silencer length that is close to but not exceeding the allowable length specified for the silencer; if length is not specified, go for 900mm silencer length.
- III) Calculate the face velocity of the silencer and look up the recommendation from Table Four. First go to the section of the table that correspond to the silencer length. Then from the lower portion of the section, which represents the larger end of unit sizes, find out the range of velocities containing the face velocity of the silencer determined earlier, and note the 'type no' that corresponds to the velocity range. The same procedure may be repeated by going to the upper portion of the body of Table Four to locate alternative 'type no' matching with the smaller end of the unit sizes.
- IV) Evaluate the I.L. requirement. If higher IL is needed at mid and high octave bands while low octave bands are not of material importance, try series RDS silencers.

If in case high IL is expected of the low octave bands while that of the high octave bands is not of material importance, try series RDL silencers.

STEP 1 — Unit Size

The unit size is determined from the cross sectional dimensions "M" and "N". Let the smaller duct dimension be "M". Find the unit size(s) in the body of Table One that represents actual unit widths which, when multiplied by integers, will make up exactly the dimension M. Note the unit size, or several unit sizes

in certain occasions, obtained through this method. The same can be repeated for dimension N to obtain an optional choice or in case no unit size matches dimension M. As explained earlier, half unit sizes are possible. Unit size having one-half of their actual unit width that gives integral portion of either dimensions M or N are also acceptable.

STEP 2 — Insertion Loss (IL)

Silencer insertion loss are tabulated in VIBRON data book.

- START with the table for silencer length determined earlier and locate the block whose unit size corresponds to that determined in Step 1. Always try the largest unit size if there are a few possibilites.
- ii) From the block, find the particular row with silencer 'type no'. Matching with the type no. determined earlier. Compare the insertion loss.
- iii) If the tabulated IL is close to but not less than the specified IL, the silencer may suit the requirement. The appropriateness has yet to be decided upon checking the Pressure Drop.
- iv) In case the IL for the silencer located in iii) far exceeds the required IL, go to the next shorter standard silencer length(s) and repeat ii) and iii) until the length with IL just meet or above the requirement is obtained.

STEP 3 — Pressure Drop

- Go to the Pressure drop factor table in the VIBRON data book that correspond to the length of the silencer finalised from step 2.
- ii) Look up the factor from the body of the table matches the unit size and type no. of the silencer finalised from step 2.
- iii) Work out the face velocity in Feet Per Minute FPM (1 mps equals 196.85 FPM).
- iv) Work out the square of the FPM obtained in iii) and divide it by the factor located in ii) to get the pressure drop in Pascal.
- v) Compare the pressure drop in iv) with the specified. If it is smaller than the specified value, the silencer is acceptable. If not, do either one of the following:
 - a) keep the same unit silencer, go for next larger type no., and next larger silencer length, repeat the exercise in step 2,
 - b) take next smaller unit size among the choices obtained earlier, but with next larger type no., and next longer silencer, repeat step 2.

STEP 4 — Specify the Silencer

Typical silencer	12	RDS/2 -	L x	M x N
model designation	Unit Size	Silencer Type	Length in. (mm)	Cross Section in. (mm)

Note: Performance specification is obtained by eliminating the cross section dimensions, eg. 12 RDS/2-900.

Example:

A 600mm x 900mm duct is handling 3.0m³/s air flow, select a silencer to meet the following specification.

	1	IL in	Octa	ive B	and	5		Pressure Drop	Length
1	2	3	4	5	6	7	8	(Pa)	mm
7	13	17	24	30	20	15	9	55	1500

Calculation of Face velocity

Face Velocity = $3.0/(0.6 \times 0.9) = 5.56$ m/s

From Table Four (i), recommended selection are:

Unit Size	Type no.
10 – 15	3
16 – 24	2

	Face Velocity for Silencer Length below 1500mm (m/s)								
Unit Size	1	2	3	4	5				
10	2.0	3.5	5.5	7.5					
THRU									
15	3.9	5.8	8.1	11.4					
16	2.0	4.0	6.5	8.5	12.0				
THRU									
24	4.5	6.6	9.3	13.2	16.5				

Table Four (i)

Step 1

Choose 600mm as dimension "M", from table 1, unit size is 24, other alternative unit sizes are 12 and 16.

Step 2

From VIBRON RDS data book, the following insertion loss can be located by the three parameter, ie. Length = 1500mm, unit size = 24 and type no. = 2.

Octave Band	1	2	3	4	5	6	7	8
Insertion Loss	8	14	17	26	31	23	16	11

The insertion loss selected meet the specification.

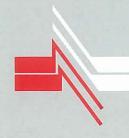
Step 3

From the data book, the pressure drop factor of the silencer finalised from step 2 is 23123.

Face velocity of silencer = 5.56m/s x 196.85 = 1094FPM.

Pressure Drop = 1094 x 1094 / 23123 = 52Pa.

The pressure drop is small than the specified value, the silencer is acceptable.


Step 4

Silencer model designation is:

24RDS/2 - 1500 x 600 x 900

		Face Velocity for Silencer Length above 1500mm (m/s)									
Unit Size	1	2	3	4	5						
10	2.0	3.0	4.0	6.5							
THRU											
15	3.0	4.0	6.5	9.0							
16	2.0	3.5	5.5	7.5	10.5						
THRU											
24	3.5	5.5	7.5	10.5	15.0						

Table Four (ii)

VIBRON LIMITED

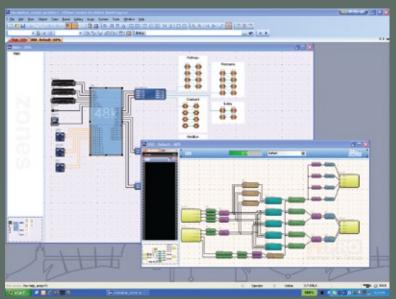
1720 MEYERSIDE DRIVE, MISSISSAUGA, ONTARIO, CANADA L5T 1A3 (416) 677-4922 TELEX: 06-968834

Annex O

Audio Control System

Configure complex systems elegantly with the power of HiQnet[®] London Architect

HiQr and i Lond devic HIQN ef wHARMAN


HiQnet London Architect is the configuration, control and monitoring application for the Soundweb London family. Representations of Soundweb London devices can be positioned and organized logically to represent connectivity, rack locations and the racks themselves.

DRAG-AND-DROP CONFIGURATION The open architecture of Soundweb London is configured using a simple drag-and-drop approach. Scalable audio 'Processing Objects' representing processors such as compressors, mixers, gains and crossovers can be positioned and connected as required within each DSP capable device. Since the configuration process does not require hardware, even the largest system can be designed from the comfort of a sofa.

With over 25 years of experience in audio signal processing,
BSS Audio modeled the DSP algorithms of Soundweb London
on its highly acclaimed analog signal processors.parameters when online to a configured system.Dedicated Processing Objects for common f
eliminate the complexity of providing solution:

SIMPLIFY THE COMPLEX

To assist in navigation through Soundweb London designs, 'Signal Name Following' allows the name of the signal to be displayed at any point within a design. The names of signals are maintained across networked audio connections so keeping track of signals as designs scale up is as simple as hovering a mouse pointer.

SCALABLE AUDIO PROCESSING

Each Processing Object has a 'Default Control Panel' which contains all of the controls one would expect to find for the given processor. These controls offer real-time control of parameters when online to a configured system.

Dedicated Processing Objects for common functions eliminate the complexity of providing solutions for those applications. One such example is the scalable Room Combine Processing Object which provides a comprehensively featured Default Control Panel and automates the linking and routing associated with the combining of rooms.

USER-SPECIFIC CONTROL

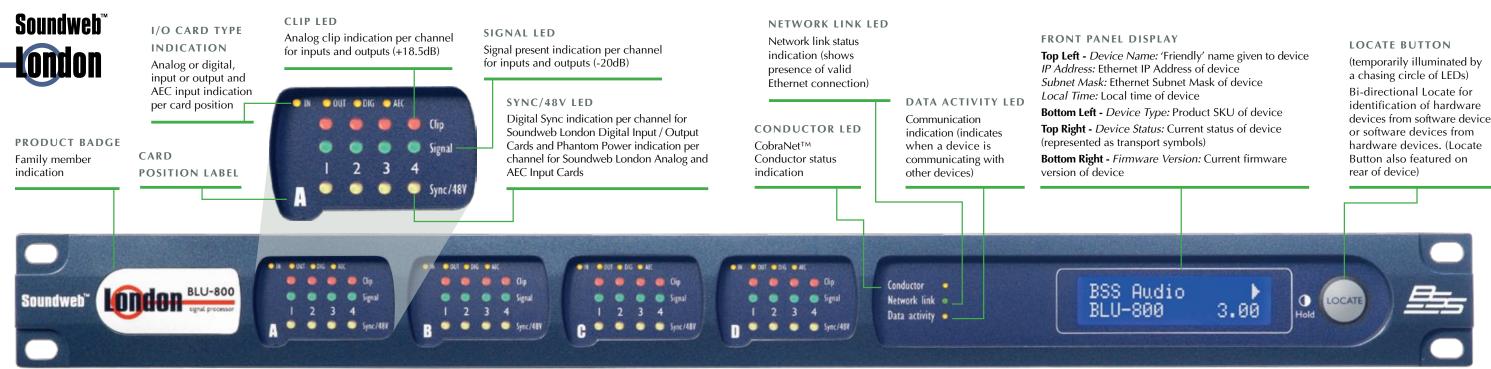
'Custom Control Panels' allow user-specific control interfaces to be designed. With complete control over navigation, functionality, look and feel; well-designed Custom Control Panels represent significant added value to technical and non-technical users alike.

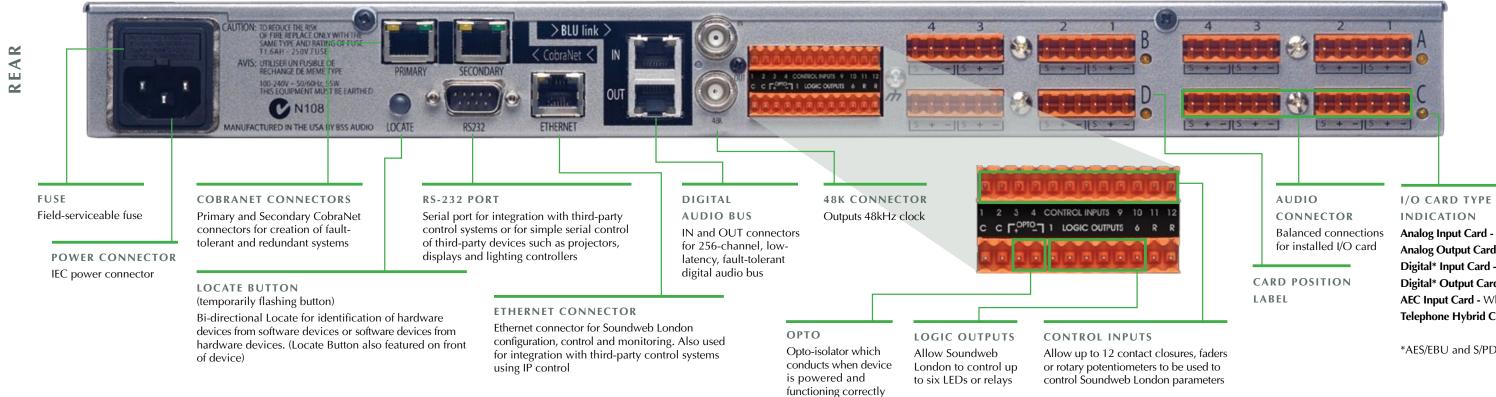
SCALABLE LOGIC PROCESSING

In addition to audio processing, Soundweb London is also able to process logic. Scalable logic 'Processing Objects' representing functions such as AND, OR and Truth Tables can be positioned and connected as required within each device. Used in conjunction with external control and input from the audio domain, logic processing opens the door to comprehensive automation and system integration.

ONE INTERFACE

HiQnet London Architect offers an 'Export to Clipboard' feature which allows individual parameters to be exported from HiQnet London Architect and imported into HiQnet System Architect.[~] This facilitates control and monitoring for Harman HiQnet systems from a single application, HiQnet System Architect.





BSS Audio

8760 South Sandy Parkway Sandy, Utah 84070 801.566.8800 *bssaudio.com*

Whether a solo or a full ensemble, Soundweb London delivers the perfect performance.

devices from software devices

INDICATION Analog Input Card - Green Analog Output Card - Orange Digital* Input Card - Blue Digital* Output Card - Red AEC Input Card - White Telephone Hybrid Card - Yellow

*AES/EBU and S/PDIF

The power, flexibility and reliability for any scale of installed sound system.

With a choice of eight configurable processors within the Soundweb London family and input / output card flexibility within each device, Soundweb London represents a truly flexible and scalable system. Whether you require the high bandwidth audio networking of a digital audio bus, CobraNet compatibility, DSP capability, input / output expansion or a specific mix of functionality, Soundweb London offers the building blocks of a tailor-made system.

		CHASSIS	CONFIG. I/O	INPUTS	OUTPUTS	CONFIG.	LCD DISPLAY	LOGIC	RS-232	GPIO	SIGNAL PROCESSING	COBRANET	DIGITAL AUDIO BUS	AEC COMPATIBLE
	BLU-800	19″	~	С	С	S	~	~	~	✓	4X	~	256	~
	BLU-80	19″	~	С	С	S	~	~	~	√	1X	~		
	BLU-320	19″	~	С	С	S	~	~	~	~		~	256	~
11	BLU-32	19″	~	С	С	S	~	~	~	~		~		
	BLU-160	19″	~	С	С	S	~	~	~	~	4X		256	~
	BLU-16	19″	~	С	С	S	~	~	~	~	1X			
	BLU-120	19″	~	С	С	S	~	~	~	~			256	~
	BLU-100	19″		12	8	S		~	~	~	2X		48	
	BLU-BIB	HALF-RACK		8		м							256	
	BLU-BOB1	HALF-RACK			8	М							256	
	BLU-BOB2	19″			8	м							256	
	2////	7//////////////////////////////////////												

Wall Controllers

BLU-10

BLU-BIB

h white and black

BLU-BOB1

H

Also available in 19″ chassis (BLU-BOB2

-BIB or BLU-BOB1 devices (11)

BLU-8

Input / Output Expanders

BLU-3

sw9015US

sw9012US

Accessories

BLU-HIF Telephone Heads Interface

BLU-MC1 Fiber Optic Media Converter

Annex P

Calibration Certificates

Certificate No.	404229		Page	1 of	2 Pages
Customer :	Environmental Resources Manag	gement			
Address :	16/F DCH Commercial Centre 25	Westlands Road C	Quarry Bay Hong	Kong	
Order No. :	Q41594		Date of receipt	:	20-Jun-14
Item Tested	-				
Manufacturer :	Sound Level Calibrator Svantek SV30A		Serial No.	: 7971	
Test Conditi	ons				
Date of Test :	23-Jun-14		Supply Voltage	• :	
Ambient Temp	erature: (23 ± 3)°C		Relative Humid	lity: (50 ±	25) %
Test Specifi	cations				
Calibration chec Ref. Document/	k. Procedure : F21, Z02.				
Test Results	1				
	within the IEC 942 Class 1 specifi shown in the attached page(s).	cation.			
Main Test equip	ment used:				
Equipment No.	Description	<u>Cert. No.</u>		Traceable	<u>e to</u>
S014	Spectrum Analyzer	35730		NIM-PRC	& SCL-HKSAR
S205	Ref. Sound Level Calibrator	PHCO40002		SCL-HKS	
S041	Universal Counter	34621		SCL-HKS	
S206	Sound Level Meter	36203		SCL-HKS	AR
<u>Equipment No.</u> S014 S205 S041	<u>Description</u> Spectrum Analyzer Ref. Sound Level Calibrator Universal Counter	35730 PHCO40002 34621		NIM-PRC SCL-HKS SCL-HKS	& SCL-HKSAR AR AR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

Dorothy Cheuk

Approved by :

Steve Kwan

Date: 23-Jun-14

This Certificate is issued by Hong Kong Calibration Ltd

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chung, NT,Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 404229

Page 2 of 2 Pages

Results :

1. Level Accuracy

UUT Nominal Value (dB)	Measured Value (dB)	IEC 942 Class 1 Spec.
94	94.15	± 0.3 dB
114	114.17	

Uncertainty : $\pm 0.2 \text{ dB}$

2. Frequency

UUT Nominal Value	Measured Value	IEC 942 Class 1 Spec.
1 kHz	1.000 kHz	± 2 %

Uncertainty : \pm 3.6 x 10⁻⁶

- 3. Level Stability : 0.0 dB IEC 942 Class 1 Spec. : ± 0.1 dB Uncertainty : ± 0.01 dB
- 4. Total Harmonic Distortion : < 0.8 % IEC 942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark : 1. UUT : Unit-Under-Test

- 2. The above measured values are the mean of 3 measurements.
- 3. The uncertainty claimed is for a confidence probability of not less than 95%.
- 4. Atmospheric Pressure : 991 hPa.

----- END ------

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

v

Certificate No. 404228	Page 1 of 2 Pages
Customer : Environmental Resources Management	
Address : 16/F DCH Commercial Centre 25 Westlands Road	Quarry Bay Hong Kong
Order No.: Q41594	Date of receipt : 20-Jun-14
Item Tested	
Description : Sound Level Calibrator Manufacturer : 01dB-Stell	
Model : CAL21	Serial No. : 34113609(2011)
Test Conditions	
Date of Test: 23-Jun-14	Supply Voltage :
Ambient Temperature : $(23 \pm 3)^{\circ}C$	Relative Humidity : (50 ± 25) %
Test Specifications	
Calibration check.	
Calibration procedure : Z02, IEC 942.	
Test Results	
All results were within the IEC 942 Class 2 specification. The results are shown in the attached page(s).	

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S205	Ref. Sound Level Calibrator	PHCO40002	SCL-HKSAR
S041	Universal Counter	34621	SCL-HKSAR
S206	Sound Level Meter	36203	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by : Dorothy Cheuk

Approved by : Steve Kwan Date: 23-Jun-14

This Certificate is issued by: Hong Kong Calibration Ltd. Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

0

Certificate No. 404228

Page 2 of 2 Pages

Results :

1. Level Accuracy

UUT Nominal Value (dB)	Measured Value (dB)	IEC 942 Class 1 Spec.
94	93.98	± 0.3 dB

Uncertainty : $\pm 0.2 \text{ dB}$

2. Frequency

UUT Nominal Value	Measured Value	IEC 942 Class 1 Spec.
1 kHz	1.008 kHz	± 2 %

Uncertainty : \pm 3.6 x 10⁻⁶

- Level Stability : 0.0 dB IEC 942 Class 1 Spec. : ± 0.1 dB Uncertainty : ± 0.1 dB
- 4. Total Harmonic Distortion : < 1.6 % IEC 942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark : 1. UUT : Unit-Under-Test

- 2. The above measured values are the mean of 3 measurement.
- 3. The uncertainty claimed is for a confidence probability of not less than 95%.
- 4. Atmospheric Pressure : 991 hPa.

----- END ------

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Certificate No. 32987		Page	1 of 3 Pages
Customer : Environmental I	Resources Management		
Address : 21/F, Lincoln He	ouse, 979 King's Road, Taikoo I	Place, Island East, Hor	ig Kong.
Order No.: Q31162		Date of receipt	: 3-May-13
Item Tested			
Description : Sound Level Me	ter		
Manufacturer : Solo			
Model : 01dB		Serial No.	: 65226
Test Conditions			
Date of Test: 21-May-13		Supply Voltage	·
Ambient Temperature : (23	± 3)°C	Relative Humid	ity: (50 ± 25) %
Test Specifications			
Calibration check.			
Calibration procedure : Z01			
Test Results			

All results were within the IEC 651 Type1, IEC 804 Type1 and IEC 1260 Class1 specification. The results are shown in the attached page(s).

Test equipmen	t used:		
Equipment No.	Description	Cert. No.	Traceable to
S017	Multi-Function Generator	C127181	SCL-HKSAR
S024	Sound Level Calibrator	30620	NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Liam Wong

Calibrated by :

Date:

Approved by : _

21-May-13

Dorothy Cheuk

This Certificate is issued by: D Hong Kong Calibration Ltd. Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chung, NT,Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 32987

Page 2 of 4 Pages

Results :

1. Accuracy Check

	UUT Setting				
Range (dB)	Response	Weighting	Applied Value (dB)	UUT Reading (dB)	
20 - 140	Fast	L _A	94.0	93.8	
	Slow			93.8	
	Fast	L _C		93.9	
	Slow			93.9	
	Fast	L _A	114.0	113.9	
	Slow			113.9	
1.1.1	Fast	L _C		113.9	
	Slow			113.9	

IEC 651 Type 1 Spec. : \pm 0.7 dB Uncertainty : \pm 0.1 dB

 Level Stability : 0.0 dB IEC 651 Type 1 Spec. : ± 0.3 dB Uncertainty : ± 0.1 dB

3. Linearity

Differential level linearity

UUT Range	Applied Value (dB)	UUT Reading (dB)	Variation (dB)	IEC 651 Type 1 Spec.
140	84.0	83.8	0.0	± 0.4 dB
	94.0	93.8 (Ref.)		
	95.0	94.8	0.0	± 0.2 dB

Uncertainty : $\pm 0.1 \text{ dB}$

Certificate No. 32987

Page 3 of 4 Pages

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-39.5	- 39.4 dB, ± 1.5 dB
63 Hz	-26.1	- 26.2 dB, ± 1.5 dB
125 Hz	-16.1	- 16.1 dB, ± 1 dB
250 Hz	-8.6	- $8.6 dB, \pm 1 dB$
500 Hz	-3.3	- $3.2 \text{ dB}, \pm 1 \text{ dB}$
1 kHz	0.0 (Ref.)	$0 \text{ dB}, \pm 1 \text{ dB}$
2 kHz	+1.2	$+ 1.2 \text{ dB}, \pm 1 \text{ dB}$
4 kHz	+0.8	+ 1.0 dB ,± 1 dB
8 kHz	-1.8	- 1.1 dB, + 1.5 dB ~ - 3 dB
16 kHz	-12.1	- 6.6 dB, + 3 dB ~- ∞

Uncertainty : $\pm 0.1 \text{ dB}$

5. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0		
1/10	40.0	40.0	± 0.5 dB
$1/10^{2}$	40.0	39.9	
$1/10^{3}$	40.0	39.9	± 1.0 dB
1/10 ⁴	40.0	39.9	

Uncertainty : $\pm 0.1 \text{ dB}$

Certificate No. 32987

Page 4 of 4 Pages

6. Filter Characteristics

6.1 1/1 -Octave Filter

Fre	equency	Attenuation (dB)	IEC 1260 Class 1 (dB)
125	Hz	-74.8	< - 61
250	Hz	-55.0	< - 42
500	Hz	-24.4	< - 17.5
707	Hz	-3.0	- 2 ~ - 5
1	kHz (Ref)		
1.41	4 kHz	-2.8	- 2 ~ - 5
2	kHz	-48.3	< - 17.5
4	kHz	-88.6	<- 42
8	kHz	-89.0	< - 61

Uncertainty : $\pm 0.25 \text{ dB}$

6.2 1/3 – Octave Filter

Frequ	uency	Attenuation (dB)	IEC 1260 Class 1 (dB)
326	Hz	-68.4	< - 61
530	Hz	-58.4	< - 42
772	Hz	-28.4	< - 17.5
891	Hz	-3.5	$+0.3 \sim -5.0$
1	kHz (Ref)		
1.122	kHz	-3.7	$+0.3 \sim -5.0$
1.296	kHz	-31.5	< - 17.5
1.887	kHz	-66.5	<- 42
3.070	kHz	-90.0	<- 61

Uncertainty : $\pm 0.25 \text{ dB}$

Remarks : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 996 hPa.

----- END -----

Certificate No. 34249	Page 1 of 3 Pages
Customer: Environmental Resources Management	
Address : 21/F, Lincoln House, 979 King's Road, Taikoo Plac	e, Island East, Hong Kong.
Order No.: Q31652	Date of receipt : 24-Jun-13
Item Tested	
Description : Sound Level Meter	
Manufacturer : Solo Model : 01dB	Serial No. : 65225
Test Conditions	
Date of Test: 5-Jul-13	Supply Voltage :
Ambient Temperature : (23 ± 3)°C	Relative Humidity: (50 ± 25) %
Test Specifications	
Calibration check.	
Calibration procedure : Z01.	
Test Results	
	1260 Classification

All results were within the IEC 651 Type1, IEC 804 Type1 and IEC 1260 Class1 specification. The results are shown in the attached page(s).

Test equipment	used:	×	
Equipment No.	Description	<u>Cert. No.</u>	Traceable to
S017	Multi-Function Generator	C127181	SCL-HKSAR
S024	Sound Level Calibrator	30620	NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Lian

Calibrated by

-	-	cu	
n	N	/ong	

Approved by :

5-Jul-13

Date:

Dorothy Cheuk

This Certificate is issued by: Hong Kong Calibration Ltd. Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 34249

Page 2 of 4 Pages

Results :

1. SPL Accuracy

	UUT Set	ting		Applied Value	
Level Range	Octave Filter	Weight	Time Const.	(dB)	UUT Reading (dB)
20 – 140 dB	OFF	A	Fast	94.0	93.7
			Slow		93.7
		С	Fast		93.7
	ON (1/1)		Fast		93.7
	ON (1/3)		Fast		93.7
	OFF	А	Fast	114.0	113.7
	Table (Sector)		Slow		113.7
	±	С	Fast		113.7
	ON (1/1)		Fast] [113.7
	ON (1/3)		Fast		113.7

IEC 651 Type 1 Spec. : \pm 0.7 dB Uncertainty : \pm 0.2 dB

 Level Stability : 0.0 dB IEC 651 Type 1 Spec. : ± 0.3 dB Uncertainty : ± 0.1 dB

3. Linearity

UUT Range (dB)	Applied Value (dB)	UUT Reading (dB)	Variation (dB)	IEC 651 Type 1 Spec.
20 – 140 dB	84.0	83.8	+0.1	± 0.4 dB
COLUMN THE FULL PROPERTY	94.0	93.7 (Ref.)		
	95.0	94.7	0.0	± 0.2 dB

Certificate No. 34249

Page 3 of 4 Pages

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-39.2	- 39.4 dB, ± 1.5 dB
63 Hz	-25.9	- 26.2 dB, ± 1.5 dB
125 Hz	-16.0	- 16.1 dB, ± 1 dB
250 Hz	-8.5	- 8.6 dB, ± 1 dB
500 Hz	-3.1	- $3.2 \text{ dB}, \pm 1 \text{ dB}$
1 kHz	0.0 (Ref.)	$0 \text{ dB}, \pm 1 \text{ dB}$
2 kHz	+1.2	$+ 1.2 \text{ dB}, \pm 1 \text{ dB}$
4 kHz	+0.9	+ 1.0 dB ,± 1 dB
8 kHz	-1.7	- 1.1 dB, + 1.5 dB ~ - 3 dB
16 kHz	-12.1	- 6.6 dB, $+3 \text{ dB} \sim -\infty$

Uncertainty : $\pm 0.1 \text{ dB}$

5. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0	40.0	
1/10	40.0	40.0	± 0.5 dB
$1/10^{2}$	40.0	40.0	
1/10 ³	40.0	40.0	± 1.0 dB
1/104	40.0	40.0	

Uncertainty : $\pm 0.1 \text{ dB}$

Certificate No. 34249

Page 4 of 4 Pages

6. Filter Characteristics

6.1 1/1 – Octave Filter

Fre	equency	Attenuation (dB)	IEC 1260 Class 1 (dB)
125	Hz	-74.4	< - 61
250	Hz	-55.0	< - 42
500	Hz	-24.4	< - 17.5
707	Hz	-3.0	- 2~- 5
1	kHz (Ref)		
1.41	4 kHz	-2.8	- 2~- 5
2	kHz	-18.3	< - 17.5
4	kHz	-83.6	< - 42
8	kHz	-84.5	< - 61

Uncertainty : $\pm 0.25 \text{ dB}$

6.2 1/3 – Octave Filter

Frequency		Attenuation (dB)	IEC 1260 Class 1 (dB)
326	Hz	-69.1	< - 61
530	Hz	-59.8	< - 42
772	Hz	-28.4	< - 17.5
891	Hz	-3.4	$+0.3 \sim -5.0$
1	kHz (Ref)		
1.122	kHz	-3.7	$+0.3 \sim -5.0$
1.296	kHz	-31.5	< - 17.5
1.887	kHz	-66.8	< - 42
3.070	kHz	-80.7	< - 61

Uncertainty : $\pm 0.25 \text{ dB}$

Remark : 1. UUT : Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure : 1001 hPa.

----- END ------