

AUES PROJECT NO. TCS/00704/14

# CONTRACT NO. MTRC6593-13C -WAN CHAI STATION LEE TUNG STREET SUBWAY

# 40<sup>th</sup> Environmental Monitoring and Audit (EM&A) MONTHLY REPORT – DECEMBER 2017

PREPARED FOR **BUILD KING CONSTRUCTION LIMITED** 

| Quality Index  |                         |                         |                           |
|----------------|-------------------------|-------------------------|---------------------------|
| Date           | Reference No.           | Prepared By             | Approved By               |
| 9 January 2018 | TCS00704/14/600/R0185v2 | Att                     | Phin                      |
|                |                         | Martin Li               |                           |
|                |                         | Assistant Environmental | T.W. Tam                  |
|                |                         | Consultant              | Environmental Team Leader |

| Version | Date           | Description                   |  |
|---------|----------------|-------------------------------|--|
| 1       | 9 January 2018 | First Submission              |  |
| 2       | 9 January 2018 | Amended against IEC's comment |  |
|         |                |                               |  |



AECOM 8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, Hong Kong 香港新界沙田鄉事會路 138 號新城 市中央廣場第 2 座 8 棲 www.aecom.com

+852 3922 9000 tel +852 3922 9797 fax

Your Ref: 60453136.40032976/2018000016E

#### By Email and Post

MTR Corporation Limited Fo Tan Railway House No. 9, Lok King Street, Fo Tan Shatin, N.T., Hong Kong

Attn.: Mr. Alfa Liu

10 January 2018

**Dear Sirs** 

# Consultancy Agreement A130-13 Independent Environmental Checker for CRS and LTS LTS - Verification for 40<sup>th</sup> Monthly Environmental Monitoring and Audit (EM&A) Report (December 2017) (Report No.: TCS00704/14/600/R0185v2)

We refer to the 40<sup>th</sup> Monthly EM&A Report (December 2017) received under cover of the email from the Environmental Team, AUES, dated on 9 January 2018.

Further to our comments provided on 9 January 2018 and subsequent revision of the Report by AUES on 9 January 2018, we have no further comment and have verified the captioned report (Report No: TCS00704/14/600/R0185v2).

Should you have any queries, please feel free to contact the undersigned at 3922 9366.

Yours faithfully AECOM Consulting Services Ltd

Y. W. Fung Independent Environmental Checker

LLMC/wwsc

cc Kaden Consturction Limited (Attn.: Mr. Ronald Fung) via email AUES (Attn.: Ms. Nicola Hon) via email



#### **EXECUTIVE SUMMARY**

ES01 This is the **40<sup>th</sup>** monthly EM&A Report presenting the monitoring results and inspection findings for the period from **1 to 31 December 2017** (hereinafter 'the Reporting Period').

## SUMMARY OF ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES02 The monitoring and audit activities during the Reporting Period are summarized in below:-

|                         |                                                              | <b>Reporting Period</b>                               |    |
|-------------------------|--------------------------------------------------------------|-------------------------------------------------------|----|
| Environmental<br>Aspect | Environmental Monitoring Parameters /<br>Inspection          | Number of<br>Monitoring<br>LocationTotal<br>Occasions |    |
| Air Quality             | 24-hour TSP                                                  | 1                                                     | 5  |
| Construction Noise      | L <sub>eq(30min)</sub> Daytime                               | 2                                                     | 10 |
| Site Inspection         | Weekly inspection with ET, the Contractor and RE             |                                                       | 5  |
| Audit                   | Monthly joint inspection with ET, the Contractor, RE and IEC |                                                       | 1  |

#### **BREACH OF ACTION AND LIMIT (A/L) LEVELS**

ES03 In the Reporting Period, no air quality and noise monitoring exceedances were registered. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

| Environmental      | Monitoring               | Action Limit |                | Event & Action |               |                       |
|--------------------|--------------------------|--------------|----------------|----------------|---------------|-----------------------|
| Aspect             | Monitoring<br>Parameters |              | Linnt<br>Level | NOE<br>Issued  | Investigation | Corrective<br>Actions |
| Air Quality        | 24-hour TSP              | 0            | 0              | 0              | 0             | 0                     |
| Construction Noise | Leq(30min) Daytime       | 0            | 0              | 0              | 0             | 0                     |

#### **ENVIRONMENTAL COMPLAINT**

ES04 No complaint was received in the Reporting Period.

#### NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES05 No environmental summons or successful prosecutions were recorded in the Reporting Period.

#### **REPORTING CHANGE**

ES06 No reporting changes were made in the Reporting Period.

#### SITE INSPECTION

- ES07 In the Reporting Period, weekly site inspection by the MTRC, ET and Contractor was carried out on **1**, **8**, **15**, **23 and 28 December 2017** and the IEC was joined the site inspection on **28 December 2017**. No non-compliance but one (1) observation and two (2) reminders were recorded during the site inspection.
- ES08 It is reported that the transplanted tree TR-02 for this project was collapsed due to typhoon signal No. 8 HAIMA on 22 October 2016 and the tree has been subsequently removed. Further follow-up action will be made after an agreement is reached with Leisure and Cultural Services Department (LCSD).

#### **FUTURE KEY ISSUES**

ES09 Construction noise is the key environmental issue during construction work of the Project as there are residential buildings nearby. Noise mitigation measures should be fully implemented in accordance with the EM&A requirement.



- ES010 Special attention should be paid on the potential construction dust impact as the construction site is located near the residential area. The Contractor should fully implement the construction dust mitigation measures properly.
- ES011 The Contractor should prevent muddy water and other water pollutants via site surface water runoff get into public areas and implement water quality mitigation measures properly. Any discharge water should be strictly complied with wastewater discharge license requirement.
- ES012 The Contractor should pay attention and implement sufficient protection to the transplanted tree for this project to avoid any damage done to the transplanted tree and prevent tree collapse in the future.



# TABLE OF CONTENTS

| 1                             | INTRODUCTION<br>Project Background<br>Report Structure                                                                                                                                                                                                                 | <b>1</b><br>1<br>1                     |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2                             | PROJECT ORGANIZATION AND SUBMISSION<br>Project Organization<br>Summary of Environmental Submissions                                                                                                                                                                    | <b>2</b><br>2<br>3                     |
| 3                             | ENVIRONMENTAL IMPACT MONITORING REQUIREMENT<br>Monitoring Parameters<br>Monitoring Locations<br>Monitoring Frequency and Period<br>Monitoring Equipment<br>Monitoring methodology<br>Derivation of Action/Limit (A/L) Levels<br>Data Management and Data QA/QC Control | <b>5</b><br>5<br>5<br>6<br>7<br>8<br>8 |
| 4                             | MONITORING RESULTS<br>24-Hour TSP Air Quality Monitoring Results<br>Noise Monitoring Results                                                                                                                                                                           | <b>9</b><br>9<br>9                     |
| 5                             | WASTE MANAGEMENT<br>General Waste Management<br>Records of Waste Quantities                                                                                                                                                                                            | <b>11</b><br>11<br>11                  |
| 6                             | SITE INSPECTION<br>Findings / Deficiencies During the Reporting Month                                                                                                                                                                                                  | <b>12</b><br>12                        |
| 7                             | ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE<br>Environmental Complaint, Summons and Prosecution                                                                                                                                                                         | <b>14</b><br>14                        |
| 8                             | IMPLEMENTATION STATUS OF MITIGATION MEASURES<br>General Requirements<br>Key Issues for the Coming Month                                                                                                                                                                | <b>15</b><br>15<br>16                  |
| 9                             | CONCLUSIONS AND RECOMMENDATIONS<br>Conclusion<br>Recommendations                                                                                                                                                                                                       | <b>17</b><br>17<br>17                  |
| LIST O                        | F TABLES                                                                                                                                                                                                                                                               |                                        |
| TABLE 2<br>TABLE 2<br>TABLE 3 | <ul> <li>SUBMISSION/SET-UP STATUS OF THE EP REQUIREMENTS</li> <li>STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACTS</li> <li>SUMMARY OF THE MONITORING PARAMETERS OF EM&amp;A REQUIREMENTS</li> </ul>                                                      |                                        |
| TABLE 3<br>TABLE 3<br>TABLE 3 | -3 AIR QUALITY MONITORING EQUIPMENT                                                                                                                                                                                                                                    |                                        |
| TABLE 3<br>TABLE 3<br>TABLE 4 | <ul> <li>-5 ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING</li> <li>-6 ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE</li> </ul>                                                                                                                                   |                                        |
| TABLE 4<br>TABLE 4            |                                                                                                                                                                                                                                                                        |                                        |

- TABLE 4-4ADJUSTMENT OF CONSTRUCTION NOISE LEVEL FOR N1, dB(A)
- TABLE 5-1SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
- TABLE 5-2SUMMARY OF QUANTITIES OF NON-INERT C&D WASTES



- TABLE 6-1SITE OBSERVATIONS
- TABLE 7-1
   STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
- TABLE 7-2
   STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
- TABLE 7-3
   STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
- TABLE 8-1
   ENVIRONMENTAL MITIGATION MEASURES

# LIST OF APPENDICES

- APPENDIX A PROJECT SITE LAYOUT PLAN
- APPENDIX B ORGANIZATION OF THE PROJECT AND MASTER CONSTRUCTION PROGRAMME
- APPENDIX C MONITORING LOCATIONS
- APPENDIX D CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT
- APPENDIX E HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
- APPENDIX F EVENT AND ACTION PLAN
- APPENDIX G MONITORING SCHEDULE
- APPENDIX H DATABASE OF MONITORING RESULTS
- APPENDIX I GRAPHICAL PLOTS
- APPENDIX J METEOROLOGICAL INFORMATION
- APPENDIX K MONTHLY SUMMARY WASTE FLOW TABLE
- APPENDIX L IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES (ISEMM)

# **1 INTRODUCTION**

#### **PROJECT BACKGROUND**

- 1.01 **BUILD KING CONSTRUCTION LIMITED** (hereinafter 'BKCL') has been awarded by the MTR Corporation Limited (MTRCL) the Contract No. *MTRC6593-13C Wan Chai Station Lee Tung Street Subway* (hereinafter "the Project'), which is a Designated Project to be implemented under Environmental Permit EP-444/2012 (hereinafter referred as "the EP-444/2012" or "the EP").
- 1.02 The Project includes redevelopment of the Lee Tung Street area to improve pedestrian networking by enhancing the accessibility, connectivity and circulation of human traffic north-south from Queen's Road East area to Wan Chai MTR Station, and providing a safe and attractive means for pedestrian crossing of Johnston Road. The Project site layout plan is shown in *Appendix A* and works under the Project comprise of:
  - (i) Construction of a pedestrian subway link between Urban Renewal Authority's Redevelopment at Site H15 (the Development) and Wan Chai Station (WAC);
  - (ii) Construction of two ventilation shafts; and
  - (iii) Modification works of some of the station concourse.
- 1.03 The Project is expected to be undertaken for 36 months. In order to effectively implement the environmental protection measures as stipulated in the Particular Specification (PS), an Environmental Monitoring and Audit Plan (EMAP) which enclosed in the Project Profile (PP) was prepared to guide the setup of the environmental monitoring and audit (EM&A) programme of the Project.
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by the KCL as the independent environmental team (ET) to implement the relevant EM&A programme for the Project.
- 1.05 The baseline monitoring program was carried out between 3 June 2014 and 19 June 2014 at the proposed monitoring locations by the ET according to the approved EMAP. The "Baseline Monitoring Report (R0010 Version 4)" has been verified by IEC submitted to the EPD on *15 July 2014* before commencement of major construction works. The construction of the Project was commenced on 28 August 2014 as notified by KCL. Accordingly, relevant EM&A programme was started on 28 August 2014.
- 1.06 This is **40<sup>th</sup>** monthly EM&A report presenting the monitoring results and inspection findings in the Reporting Period from **1 to 31 December 2017**.

#### **REPORT STRUCTURE**

1.07 This Report is structured into the following sections:-

| This Report is | s structured into the following sections:-   |
|----------------|----------------------------------------------|
| Section 1      | Introduction                                 |
| Section 2      | Project Organization                         |
| Section 3      | Environmental Impact Monitoring Requirement  |
| Section 4      | Monitoring Results                           |
| Section 5      | Waste Management                             |
| Section 6      | Site Inspections                             |
| Section 7      | Environmental Complaint and Non-Compliance   |
| Section 8      | Implementation Status of Mitigation Measures |
| Section 9      | Conclusions and Recommendations              |
|                |                                              |



# 2 PROJECT ORGANIZATION AND SUBMISSION

## **PROJECT ORGANIZATION**

2.01 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

## MTR Corporation Limited (MTRCL)

2.02 MTRCL is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. Also, an Independent Environmental Checker (IEC) should be employed by MTRCL to audit the results of the EM&A work conducted by Environmental Team.

# **Environmental Protection Department (EPD)**

2.03 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

# <u>Resident Engineer (RE)</u>

- 2.04 The RE is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
  - Monitor the Contractor's compliance with Contract Specifications, including the effective implementation and operation of the environmental mitigation measures;
  - Inform the Contractor when action is required to reduce impacts in accordance with the Event and Action Plans;
  - Participate in site inspections undertaken by the ET; and
  - Co-operate with the ET in providing all the necessary information and assistance for completion of the complaint investigation works.

# Independent Environmental Checker (IEC)

- 2.05 The IEC should advise the ET and RE on environmental issues related to the project. The IEC should audit from an independent viewpoint on the environmental performance during the construction of the project. The IEC should be a person who has relevant professional qualifications in environmental control and at least 7 years' experience in EM&A and environmental management. The duties and responsibilities of the IEC are:
  - Review and audit in an independent, objective and professional manner in all aspects of the EM&A programme;
  - Validate and confirm the accuracy of monitoring results, appropriateness of monitoring equipment, monitoring locations with reference to the locations of the nearby sensitive receivers, and monitoring procedures;
  - Carry out random sample check and audit on monitoring data and sampling procedures, etc;
  - Conduct random site inspection;
  - Review the effectiveness of environmental mitigation measures and project environmental performance;
  - On an as-need basis, verify and certify the environmental acceptability of the construction methodology (both temporary and permanent works), relevant design plans and submissions under the environmental permit. Where necessary, the IEC should agree in consultation with the ET and the Contractor least impact alternative;
  - Check complaint cases and the effectiveness of corrective measures;
  - Verify EM&A report certified by the ET Leader; and
  - Feedback audit results to RE/ET according to the Event/Action Plan.

# Environmental Team (ET)

- 2.06 The ET should conduct the EM&A programme and ensure the Contractor's compliance with the project's environmental performance requirements during construction. The ET should plan, organize and manage the implementation of the EM&A programme and ensure that the EM&A works are undertaken to the required standard.
- 2.07 The ET should be led and managed by the ET Leader. The ET Leader should have relevant



professional qualifications in environmental control and possess at least 7 years' experience in EM&A. The ET Leader should be responsible for the implementation of the EM&A programmes in accordance with the EM&A requirements. The duties and responsibilities of the ET include:

- Sampling, analysis and statistical evaluation of monitoring parameters;
- Environmental site surveillance;
- Inspection and audit of compliance with environmental protection, and pollution prevention and control regulations;
- Assess the effectiveness of the environmental mitigation measures implemented;
- Monitor compliance with the environmental protection clauses/specifications in the Contract;
- Review construction programme and comment as necessary;
- Review work methodologies which may affect the extent of environmental impact during the construction phase and comment as necessary;
- Complaint investigation, evaluation and identification of corrective measures;
- Liaison with the IEC on all environmental performance matters, and timely submission of all relevant EM&A proforma for IEC's approval; and
- Advice to Contractor on environmental improvement, awareness and enhancement matters etc.

#### **The Contractor**

- 2.08 The Contractor should report to the RE. The duties and responsibilities of the Contractor are:
  - Comply with the relevant contract conditions and specifications on environmental protection
  - Participate in the site inspections undertaken by the ET;
  - Provide assistance to ET to carry out monitoring;
  - Provide requested information to the ET in the event of any exceedance in the environmental criteria (Action/Limit levels);
  - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans; and
  - Cooperate with the ET in providing all the necessary information and assistance for completion of the complaint investigation works. If mitigation measures are required following the investigation, the Contractor should promptly carry out these measures.

#### SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.09 In accordance with the EP stipulation, the required documents and submission status to EPD are listed in Table 2-1.

| EP<br>Condition | Submission                                             | Status    |
|-----------------|--------------------------------------------------------|-----------|
| 2.3             | Management Organization of Main Construction Companies | Submitted |
| 2.7             | Landscape Plan                                         | Submitted |
| 2.9             | Fixed Plant Noise Audit Report                         | Submitted |
| 3.3             | Baseline Monitoring Report (TCS00704/14/600/R0010v4)   | Submitted |
| 4.2             | Internet website                                       | live      |

 Table 2-1
 Submission/Set-up Status of the EP Requirements

2.10 Summary of environmental permits, licenses, and relevant notifications on environmental protection for the Project are presented in *Table 2-2*.

 Table 2-2
 Status of Environmental Licenses and Permits of the Project

| Item | Description                                                      | License/Permit Status                                                         |  |
|------|------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| 1    | Air Pollution Control (Construction Dust)<br>Regulation          | Notified EPD.                                                                 |  |
| 2    | Chemical Waste Producer Registration - Waste<br>Producers Number | WPN:5213-131-K3099-01<br>Approved on 14/05/2014                               |  |
| 3    | Water Pollution Control Ordinance - Discharge<br>License         | License no.: WT00022835-2015<br>Approved on 6/11/2015<br>Valid to: 31/07/2018 |  |



| Item | Description                                                                       | License/Permit Status                          |  |  |
|------|-----------------------------------------------------------------------------------|------------------------------------------------|--|--|
| 4    | Waste Disposal Regulation - Billing Account<br>for Disposal of Construction Waste | Account no.: 7019837<br>Approved on 30/04/2014 |  |  |
|      |                                                                                   |                                                |  |  |
|      | Construction Noise Permit under Noise Control                                     |                                                |  |  |
|      | Ordinance                                                                         | August 2017                                    |  |  |
|      |                                                                                   | Valid from 8 September 2017 to 7               |  |  |
|      |                                                                                   | March 2018                                     |  |  |

# **CONSTRUCTION PROGRESS**

- 2.11 The construction activities conducted in the Reporting Period are listed in below. Moreover, the master construction program is shown in *Appendix B*.
  - BS and ABWF Work in Subway



# **3** ENVIRONMENTAL IMPACT MONITORING REQUIREMENT

3.01 The ET will implement the EM&A programme in accordance with the requirements in EMAP. Details of the EM&A programme are presented in the following sub-sections.

#### MONITORING PARAMETERS

- 3.02 The EM&A impact monitoring program covers the following environmental aspects:
  - Air quality; and
  - Construction noise
- 3.03 A summary of the monitoring parameters is presented in *Table 3-1*:

| Table 3-1Summa | ary of the monitoring pa | rameters of EM&A Requirements |
|----------------|--------------------------|-------------------------------|
|----------------|--------------------------|-------------------------------|

| Environmental<br>Issue | Parameters                                                                                                                             |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Air Quality            | <ul> <li>24-hour Total Suspended Particulate (hereinafter '24-hour TSP')</li> <li>1-hour TSP monitoring <sup>(*)</sup></li> </ul>      |  |  |  |  |
| Construction<br>Noise  | • A-weighted equivalent continuous sound pressure level (30min) (hereinafter 'L <sub>eq(30min</sub> )' during the normal working hours |  |  |  |  |

**Remarks:** 

# MONITORING LOCATIONS

- 3.04 According to Sections 2.3 and 3.4 of the EMAP which enclosed in the Project Profile (Register No. PP-472/2012), construction noise and air quality monitoring locations are required to be set up at Hennessy Building and Chiu Hin Mansion. In early May 2014, site visit was conducted to select suitable locations to carry out relevant noise and air monitoring for the EM&A Programme. It was noted that both Hennessy Building and Chiu Hin Mansion are residential buildings and only the 1/F to 2/F of the buildings could be accessed which are commercial premises. It is not possible to set up the monitoring station at upper floors inside the residential apartment which will cause nuisance to the residents. Finally, two locations at lower floor were selected which access were successfully granted by the premises occupiers.
- 3.05 However, dust monitoring station A1 and noise monitoring station N2 at Chiu Hin Mansion were removed on 8 March 2017 as per the apartment owner's request and are no longer available as dust and noise monitoring station, alternative locations A1a and N2a were proposed to EPD. Dust and noise monitoring originally at A1 and N2 were carried out at the proposed alternative locations A1a and N2a starting from 14 March 2017. The monitoring stations proposed for the Project are summarized in *Table 3-2* and illustrated in *Appendix C*.

| Aspect       | Monitoring<br>Location | Location<br>ID | Address                            | Description                    |
|--------------|------------------------|----------------|------------------------------------|--------------------------------|
| Air Quality  | Site area              | Ala            | Southern Playground works area     | Within the Project site        |
| Construction | Hennessey<br>Building  | N1             | 2/F floor of<br>Hennessey Building | NSR facing to the Project site |
| Noise        | Chiu Hin<br>Mansion    | N2a            | Rooftop of Chiu Hin<br>Mansion     | NSR facing to the Project site |

Table 3-2Air and Noise Monitoring Locations

#### MONITORING FREQUENCY AND PERIOD

3.06 The requirements of impact monitoring as stipulated in the EMAP are presented in following.

# <u>Air Quality</u>

- 3.07 Frequency of impact air quality monitoring:
  - 24-hour TSP Once every 6 days during course of works.

<sup>(\*)</sup> In case 24-hour TSP exceed the air quality criteria to be carried out



3.08 In case of non-compliance with the air quality criteria, a more frequent monitoring exercise adopting 1-hour TSP monitoring undertaken when the highest dust impact occurs, as specified in the Event and Action Plan, should be conducted within 24 hours after the result is obtained. This additional monitoring should be continued until excessive dust emission or the deterioration in air quality is rectified.

# **Construction Noise**

3.09 One set of  $L_{eq(30min)}$  as 6 consecutive  $L_{eq(5min)}$  between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), 3 consecutive  $L_{eq(5min)}$  measurement will be depended on CNP requirements to undertake. Supplementary information for data auditing, statistical results such as  $L_{10}$  and  $L_{90}$  shall also be obtained for reference.

# MONITORING EQUIPMENT

# Air Quality Monitoring

- 3.10 The 24-hour TSP shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B (USEPA).* A direct reading dust meter is used to measure 1-hour TSP air quality, in case of non-compliance of air quality criteria occurred in 24-hour TSP measurement.
- 3.11 The filter paper sample collected in 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory. All equipments to be used for air quality monitoring are listed in *Table 3-3*.

| Equipment Model         |                                                          |  |  |
|-------------------------|----------------------------------------------------------|--|--|
| 24-hour TSP             |                                                          |  |  |
| High Volume Air Sampler | TISCH High Volume Air Sampler, HVS Model TE-5170         |  |  |
| Calibration Kit         | TISCH Model TE-5025A                                     |  |  |
| 1- hour TSP             |                                                          |  |  |
|                         | TSI Model 8520 DustTrak Aerosol Monitor / Aerocet 531    |  |  |
| Portable Dust Meter     | Handheld Particle Mass Profiler & Counter / Sibata LD-3A |  |  |
|                         | Laser Dust Monitor                                       |  |  |

 Table 3-3
 Air Quality Monitoring Equipment

- 3.12 According to the EMAP, wind data monitoring equipment shall be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
  - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
  - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
  - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.
  - 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.13 Although ET was successful granted HVS installation premises, the owners rejected to install wind data monitoring equipment.
- 3.14 In this situation, the ET proposed to adopt the meteorological information from King's Park Weather Station from the Hong Kong Observatory as the representative wind data. King's Park Station provided all useful from information such as humidity, rainfall, and air pressure and temperature etc.
- 3.15 Although there are other closer weather stations, King's Park Station was selected as it is the nearest weather station that measures all the relevant parameters mentioned above. Moreover, the ET has compared the data among the stations, and concluded that there is minimal difference



between meteorological data collected at the King's Park station and other stations.

# **Construction Noise Monitoring**

- 3.16 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in ms<sup>-1</sup>. Furthermore, an acoustic calibrator and sound level meter shall be calibrated yearly.
- 3.17 Noise monitoring equipment to be used for monitoring is listed in *Table 3-4*.

| Table 3-4 | Construction Noise Monitoring Equipment |
|-----------|-----------------------------------------|
|-----------|-----------------------------------------|

| Equipment                     | Model                                 |
|-------------------------------|---------------------------------------|
| Integrating Sound Level Meter | B&K Type 2238 / Rion NL-31            |
| Calibrator                    | B&K Type 4231/ Rion NC-74/ Cesva CB-5 |
| Portable Wind Speed Indicator | Testo Anemometer                      |

# MONITORING METHODOLOGY

# 24-hour TSP

- 3.18 The equipment used for 24-hour TSP measurement is a Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with USEPA Code of Federal Regulation, Appendix B to Part 50. The High Volume Air Sampler (HVS) consists of the following:
  - a. An anodized aluminum shelter;
  - b. A 8"x10" stainless steel filter holder;
  - c. A blower motor assembly;
  - d. A continuous flow/pressure recorder;
  - e. A motor speed-voltage control/elapsed time indicator;
  - f. A 7-day mechanical timer, and
  - g. A power supply of 220v/50 hz
- 3.19 The HVS is calibrated in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The 24-hour TSP monitoring using the HVS is also processed in accordance with the manufacturer's Operations Manual. The valid calibration certificate of the calibration kit with the certificate of HVS calibrated is shown in *Appendix D*.
- 3.20 24-hour TSP is collected on filters of the HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET will keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal. HOKLAS-accreditation certificate of ALS Technichem (HK) Pty Ltd (ALS) is provided in *Appendix E*.

# Noise

- 3.21 Sound level meter complied with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications, as recommended in Technical Memorandum (TM) issued under the Noise Control Ordinance (NCO). The valid of calibration certificates including sound level meter and an acoustic were shown in *Appendix D*.
- 3.22 The noise measurement is performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level  $(L_{eq})$ .  $L_{eq(30min)}$  in six consecutive  $L_{eq(5min)}$  measurements were used as the monitoring parameter.
- 3.23 During monitoring, the sound level meter mounted at the monitoring locations and oriented such that the microphone pointed to the site with the microphone facing perpendicular to the line of sight. The windshield was fitted for the measurement. For the monitoring, N1 and N2a are conducted 1 m from the exterior of the building façade.



3.24 Prior construction noise measurement, the accuracy of the sound level meter checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The calibration level from before and after the noise measurement agrees to within 1.0dB.

#### DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.25 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to EMAP, the air quality and construction noise criteria were set up, namely Action and Limit levels are listed in *Tables 3-5* and *3-6*.

| Table 3-5 | Action and Limit Levels for Air Quality Monitoring |
|-----------|----------------------------------------------------|
|-----------|----------------------------------------------------|

| Monitoring Station | Action Lev | vel (µg /m <sup>3</sup> ) | Limit Level (µg/m <sup>3</sup> ) |             |  |
|--------------------|------------|---------------------------|----------------------------------|-------------|--|
| Womening Station   | 1-hour TSP | 24-hour TSP               | 1-hour TSP                       | 24-hour TSP |  |
| A1                 | 290        | 162                       | 500                              | 260         |  |

#### Table 3-6Action and Limit Levels for Construction Noise

| Monitoring Station | 0700-1900 hours on normal weekdays        |             |  |  |  |
|--------------------|-------------------------------------------|-------------|--|--|--|
| Monitoring Station | Action Level                              | Limit Level |  |  |  |
| N1 and N2          | When one documented complaint is received | 75 dB(A)    |  |  |  |

Note: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

3.26 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix F*.

#### DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.27 The all monitoring data were handled by the ET's in-house data recording and management system.
- 3.28 The monitoring data recorded in the equipment were downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data were input into a computerized database properly maintained by the ET. The laboratory results were input directly into the computerized database and checked by personnel other than those who input the data.
- 3.29 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

# 4 MONITORING RESULTS

4.01 The impact air quality and construction noise monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

#### 24-HOUR TSP AIR QUALITY MONITORING RESULTS

4.02 In the Reporting Period, **5** occasions of 24-hours TSP monitoring were carried out at the newly proposed location A1a. The monitoring results are summarized in *Table 4-1*. The detailed 24-hour TSP monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

| Date            | 24-hour TSP (μg/m <sup>3</sup> ) | Action Level | Limit Level |
|-----------------|----------------------------------|--------------|-------------|
| 6-Dec-17        | 97                               |              |             |
| 12-Dec-17       | 106                              |              |             |
| 18-Dec-17       | 160                              |              |             |
| 23-Dec-17       | 95                               | 162          | 260         |
| 29-Dec-17       | 123                              |              |             |
| Average (Range) | 116<br>(95-160)                  |              |             |

Table 4-1Summary of 24-hour TSP Monitoring Results – A1a

4.03 As shown in *Table 4-1*, 24-hour TSP monitoring results are fluctuated below Action/ Limit Levels.

#### NOISE MONITORING RESULTS

In the Reporting Period, **10** occasions noise measurement were conducted at N1, and N2a. The sound level meter was set in 1m from the exterior of the building façade at N1 and N2a. Therefore, no façade correction (+3dB(A)) is added according to acoustical principles and EPD guidelines. However, a correction of +5.1 dB(A) has been added to the noise monitoring result which carried out at the newly proposed location N2a as an adjustment to take into account the difference of slant distance between the construction site and newly proposed rooftop location and that between the construction site and the nearest NSR at N2.

4.04 The noise measurement results at N1 and N2a are listed in *Tables 4-2* and *4-3*. The relevant graphical plots are shown in *Appendix I*.

| Date                 | Start Time | 1st<br>Leq5 | 2nd<br>Leq5 | 3rd<br>Leq5 | 4th<br>Leq5 | 5th<br>Leq5 | 6th<br>Leq5 | L <sub>eq30min</sub> |
|----------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------|
| 2-Dec-17             | 9:31       | 71.4        | 72.6        | 73.9        | 69.4        | 70.8        | 71.6        | 72                   |
| 8-Dec-17             | 11:16      | 70.5        | 71.1        | 69.9        | 72.6        | 70.2        | 71.1        | 71                   |
| 14-Dec-17            | 14:08      | 71.8        | 70.3        | 72.4        | 70.8        | 71.7        | 70.6        | 71                   |
| 20-Dec-17            | 10:28      | 72.6        | 70.6        | 71.6        | 70.8        | 71.8        | 72.4        | 72                   |
| 30-Dec-17            | 10:27      | 70.4        | 70.5        | 69.7        | 70.5        | 71.6        | 70.0        | 70                   |
| Limit L<br>Construct |            | 75 dB(A)    |             |             |             |             |             |                      |

Table 4-2Noise Monitoring Results of N1 (2/F floor of Hennessey Building), dB(A)



| Date                 | Start Time | 1st<br>Leq5 | 2nd<br>Leq5 | 3rd<br>Leq5 | 4th<br>Leq5 | 5th<br>Leq5 | 6th<br>Leq5 | L <sub>eq30min</sub> | *Corrected<br>L <sub>eq30min</sub> |
|----------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------|------------------------------------|
| 2-Dec-17             | 10:21      | 67.3        | 65.2        | 66.9        | 67.4        | 68.8        | 68.3        | 67                   | 72                                 |
| 8-Dec-17             | 9:06       | 68.1        | 66.5        | 69.2        | 68.2        | 65.4        | 67.2        | 68                   | 73                                 |
| 14-Dec-17            | 10:30      | 66.9        | 65.9        | 64.8        | 66.2        | 67.6        | 67.8        | 67                   | 72                                 |
| 20-Dec-17            | 11:24      | 67.6        | 65.2        | 64.4        | 65.7        | 66.3        | 67.2        | 66                   | 71                                 |
| 30-Dec-17            | 10:45      | 68.4        | 66.4        | 67.1        | 65.3        | 68.1        | 66.3        | 67                   | 72                                 |
| Limit L<br>Construct |            | 75dB(A)     |             |             |             |             |             |                      |                                    |

Table 4-3Noise Monitoring Results N2a (rooftop of Chiu Hin Mansion), dB(A)

\* A correction of +5.1 dB(A) has been added to the noise monitoring result which carried out at the newly proposed location N2a as an adjustment to take into account the difference of slant distance between the construction site and newly proposed rooftop location and that between the construction site and the nearest NSR at N2.

4.05 As shown in Tables 4-2 and 4-3, no noise measurement exceedance was recorded at both N1 and N2a. Furthermore, there is no noise complaint within 0700 -1900 hours on normal weekdays (Action Level exceedance) received by the MTRCL and Contractor or EPD in the Reporting Period. The meteorological data during the impact monitoring days are shown in *Appendix J*.



#### 5 WASTE MANAGEMENT

#### GENERAL WASTE MANAGEMENT

5.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

#### **RECORDS OF WASTE QUANTITIES**

- 5.02 All types of waste arising from the construction work are classified into the following:
  - Construction & Demolition (C&D) Material;
  - Chemical Waste;
  - General Refuse; and
  - Excavated Soil.
- 5.03 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 5-1* and *5-2* and the Monthly Summary Waste Flow Table is shown in *Appendix K*.

#### Table 5-1 Summary of Quantities of Inert C&D Materials

| Type of Waste                                      | Quantity | <b>Disposal Location</b> |
|----------------------------------------------------|----------|--------------------------|
| Total C&D Materials (Inert) (m <sup>3</sup> )      | 0        | -                        |
| Reused in this Contract (Inert) (m <sup>3</sup> )  | 0        | -                        |
| Reused in other Projects (Inert) (m <sup>3</sup> ) | 0        | -                        |
| Disposal as Public Fill (Inert) (m <sup>3</sup> )  | 5        | TKO 137                  |

#### Table 5-2 Summary of Quantities of Non-Inert C&D Wastes

| Type of Waste                                        | Quantity | Disposal Location |
|------------------------------------------------------|----------|-------------------|
| Recycled Metal (m <sup>3</sup> )                     | 0        | -                 |
| Recycled Paper / Cardboard Packing (m <sup>3</sup> ) | 0        | -                 |
| Recycled Plastic (m <sup>3</sup> )                   | 0        | -                 |
| Chemical Wastes (m <sup>3</sup> /L)                  | 0        | -                 |
| General Refuses (m <sup>3</sup> )                    | 2.64     | SENT Landfill     |

- 5.04 In the Reporting Period, effluent generated from the Project was discharged in accordance with the Wastewater Discharge License.
- 5.05 Moreover, it is reminded that C&D materials would be reused on-site as far as practicable.

# 6 SITE INSPECTION

6.01 According to the EMAP, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

#### FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

- 6.02 During the Reporting Period, **five** (5) occasions of weekly site inspections to evaluate site environmental performance was carried out by the RE, ET and the Contractor on 1, 8, 15, 23 and 28 December 2017 and the IEC was joined the site inspection on 28 December 2017.
- 6.03 No non-compliance was noted. However, three observations were recorded by the ET. The findings / deficiencies observed during the weekly site inspections are listed in *Table 6-1*.

| Date             | Findings / Deficiencies                                                                                                                                                                                                                          | Follow-Up Status                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 24 November 2017 | • Open cement bags were observed on the site. The Contractor was advised to cover it with tarpaulin sheet to avoid dust emission.                                                                                                                | • Cement bags was removed from site.                                    |
|                  | • Stagnant water was observed on the site.<br>The Contractor was advised to clean it.                                                                                                                                                            | • The container with stagnant water was removed from site.              |
|                  | • The Contractor was reminded to spray water regularly to avoid dust emission.                                                                                                                                                                   | • Not required for reminder.                                            |
| 1 December 2017  | • The Contractor was reminded to provide<br>water spray on site regularly to reduce<br>dust generation.                                                                                                                                          | • Not required for reminder.                                            |
| 8 December 2017  | • No adverse environmental issue was observed during site inspection.                                                                                                                                                                            | • Nil                                                                   |
| 15 December 2017 | • No adverse environmental issue was observed during site inspection.                                                                                                                                                                            | • Nil                                                                   |
| 23 December 2017 | • No adverse environmental issue was observed during site inspection.                                                                                                                                                                            | • Nil                                                                   |
| 28 December 2017 | <ul> <li>Bags of materials hanging on trees were observed. The Contractor should ensure no materials were allowed hanging on tree.</li> <li>The Contractor was reminded to clean up the dirt at the pedestrian walkway near the site.</li> </ul> | <ul><li>To be followed up.</li><li>Not required for reminder.</li></ul> |

Table 6-1Site Observations



- 6.04 It is reported that the transplanted tree TR-02 for this project was collapsed due to typhoon signal No. 8 HAIMA on 22 October 2016 and the tree has been subsequently removed. Further follow-up action will be made after an agreement is reached with Leisure and Cultural Services Department (LCSD).
- 6.05 No site inspection was undertaken by external parties i.e. EPD in this Reporting Month.



# 7 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

#### **ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION**

- 7.01 For the Project, no environmental complaint, summons and prosecution was received in the Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 7-1, 7-2* and 7-3.
- 7.02 The environmental complaint about noise nuisance arising from the construction site of Wan Chai Station Lee Tung Street Subway near Hennessy Road on 13 March 2017 was received by ET on 26 May 2017 and the investigation report had been submitted.

#### Table 7-1 Statistical Summary of Environmental Complaints

| Environmental Complaint Statistics |           |            |                  |       |       |        |  |  |  |  |
|------------------------------------|-----------|------------|------------------|-------|-------|--------|--|--|--|--|
| <b>Reporting Period</b>            | Emaguanau | Cumulativa | Complaint Nature |       |       |        |  |  |  |  |
|                                    | Frequency | Cumulative | Air              | Noise | Water | Others |  |  |  |  |
| 28 Aug 2014 –<br>30 November 2017  | 1         | 1          | NA               | 1     | NA    | NA     |  |  |  |  |
| 1-31 December 2017                 | 0         | 0          | NA               | NA    | NA    | NA     |  |  |  |  |

#### Table 7-2 Statistical Summary of Environmental Summons

| Domonting Domind                  |           | Environme  | Environmental Summons Statistics |       |       |        |  |  |  |  |  |
|-----------------------------------|-----------|------------|----------------------------------|-------|-------|--------|--|--|--|--|--|
| Reporting Period                  | Frequency | Cumulative | Air                              | Noise | Water | Others |  |  |  |  |  |
| 28 Aug 2014 –<br>30 November 2017 | 0         | 0          | NA                               | NA    | NA    | NA     |  |  |  |  |  |
| 1-31 December 2017                | 0         | 0          | NA                               | NA    | NA    | NA     |  |  |  |  |  |

# Table 7-3 Statistical Summary of Environmental Prosecution

| Departing Daried        |           | Environme  | <b>Environmental Prosecution Statistics</b> |        |       |        |  |  |  |  |  |
|-------------------------|-----------|------------|---------------------------------------------|--------|-------|--------|--|--|--|--|--|
| <b>Reporting Period</b> | Frequency | Cumulative | Air                                         | Noise  | Water | Others |  |  |  |  |  |
| 28 Aug 2014 –           | 0         | 0          | NA                                          | NA     | NA    | NA     |  |  |  |  |  |
| 30 November 2017        | 0         | 0          | 1 11 1                                      | 1 11 1 | 1111  | 1111   |  |  |  |  |  |
| 1-31 December 2017      | 0         | 0          | NA                                          | NA     | NA    | NA     |  |  |  |  |  |



# 8 IMPLEMENTATION STATUS OF MITIGATION MEASURES

#### GENERAL REQUIREMENTS

- 8.01 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the EMAP covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix L*.
- 8.02 The Works under the Project shall be implementing the required environmental mitigation measures according to the EMAP as subject to the site condition. Environmental mitigation measures generally to be implemented by the Contractor is listed in *Table 8-1*.

|  | Table 8-1 | Environmental | Mitigation | Measures |
|--|-----------|---------------|------------|----------|
|--|-----------|---------------|------------|----------|

|                                     | Environmental mitigation measures                                                                                                                                                                     |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Issues                              | <b>Environmental Mitigation Measures</b>                                                                                                                                                              |
| Air Quality                         | • Regular watering to reduce dust emissions from all exposed site surface, particularly during dry weather;                                                                                           |
|                                     | • Frequent watering for particularly dusty construction areas and areas close to air sensitive receivers;                                                                                             |
|                                     | • Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet;                                                                 |
|                                     | • Public areas around the site entrance/exit had been kept clean and free from dust; and                                                                                                              |
|                                     | • Tarpaulin covering of any dusty materials on a vehicle leaving the site.                                                                                                                            |
| Noise                               | • Good site practices to limit noise emissions at the sources;                                                                                                                                        |
|                                     | • Use of quiet plant and working methods;                                                                                                                                                             |
|                                     | • Use of site hoarding or other mass materials as noise barrier to screen the working site;                                                                                                           |
|                                     | • Use of shrouds/temporary noise barriers to screen noise from relatively static PMEs; and                                                                                                            |
|                                     | • Limiting as use one construction plant within worksite, where practicable.                                                                                                                          |
| Water                               | • Wastewater were appropriately treated by treatment facilities;                                                                                                                                      |
| Quality                             | • Drainage channels were provided to convey run-off into the treatment facilities; and                                                                                                                |
|                                     | • Drainage systems were regularly and adequately maintained.                                                                                                                                          |
| Waste and<br>Chemical<br>Management | • Excavated material should be reused on site as far as possible to minimize off-site disposal. Scrap metals or abandoned equipment should be recycled if possible;                                   |
|                                     | • Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable manner;                                                                                         |
|                                     | • The Contractor should adopt a trip ticket system for the disposal of C&D materials to any designed public filling facility and/or landfill; and                                                     |
|                                     | • Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes.                                                                 |
| Landscape<br>and Visual             | <ul> <li>Clear demarcation of works area to prevent damages to existing trees in close<br/>proximity;</li> </ul>                                                                                      |
|                                     | • Protection of all trees planned to be retained onsite;                                                                                                                                              |
|                                     | • Preserving all affected trees by transplanting where practical. Tree transplanting application and tree removal application shall be submitted for approval in accordance with ETWB TCW 3/2006; and |
|                                     | • Screening of construction works by hoardings/noise barriers around Works area in visually unobtrusive colors.                                                                                       |
| General                             | • The site was generally kept tidy and clean.                                                                                                                                                         |
|                                     |                                                                                                                                                                                                       |



## **TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH**

- 8.03 Construction activities as undertaken in the coming month for the Project lists below:
  - BS and ABWF Work in Subway

#### KEY ISSUES FOR THE COMING MONTH

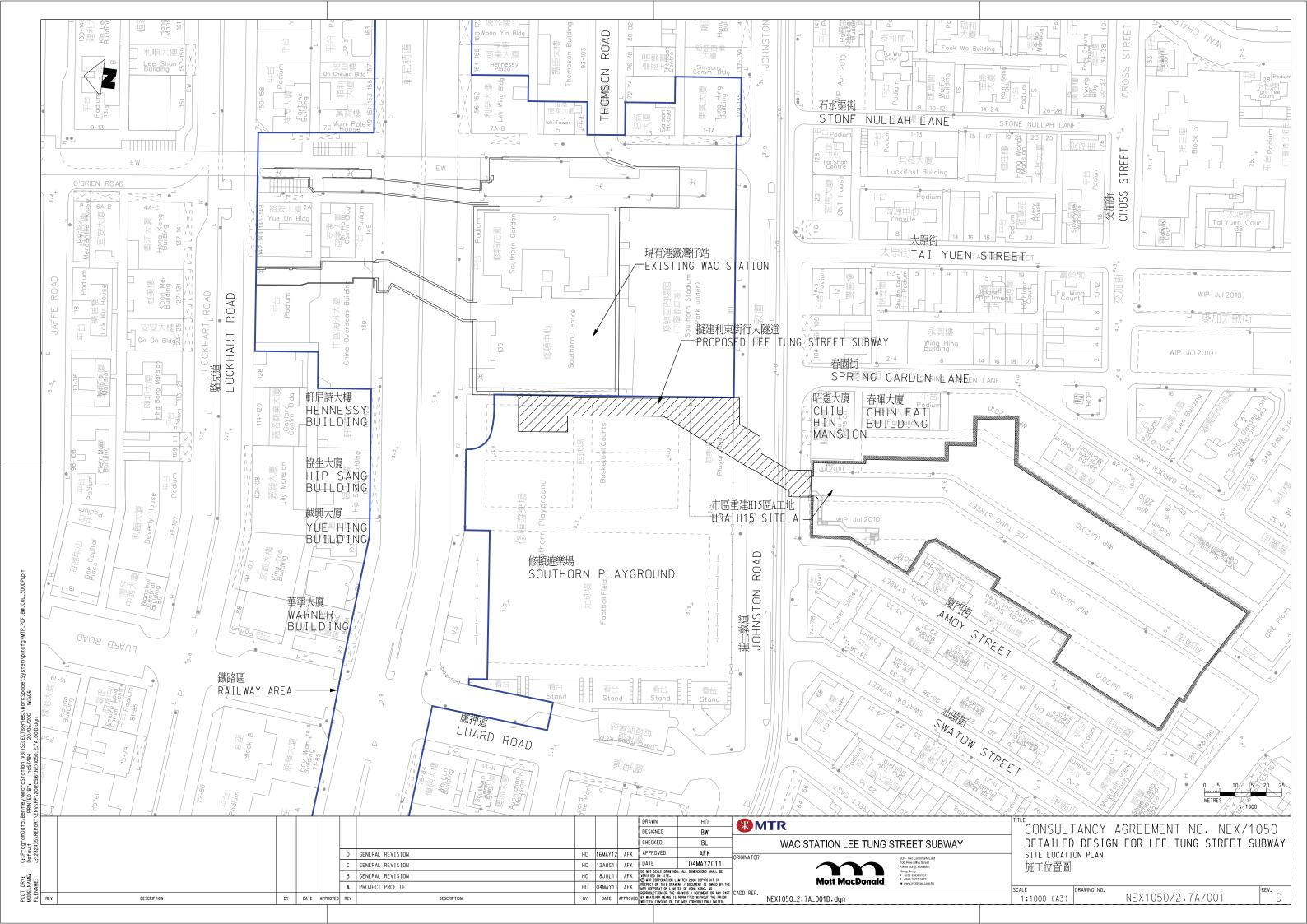
- 8.04 Key issues to be considered in the coming month of the Project include:
  - Implementation of dust suppression measures at all times;
  - Potential wastewater quality impact due to surface runoff;
  - Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
  - Disposal of empty engine oil containers within site area;
  - Ensure dust suppression measures are implemented properly;
  - Silt removal facilities should be regularly maintained;
  - Management of chemical wastes;
  - Discharge of site effluent and stockpiling or disposal of materials at this area are prohibited;
  - Follow-up of improvement on general waste management issues; and
  - Implementation of construction noise preventative control measures
- 8.05 In addition, mosquito control measures should be continued to prevent mosquito breeding on site.



# 9 CONCLUSIONS AND RECOMMENDATIONS

#### CONCLUSION

- 9.01 This is the **40<sup>th</sup>** monthly EM&A report presenting the monitoring results and inspection findings in the Reporting Period from **1** to **31 December 2017**.
- 9.02 In the Reporting Period, **five (5)** occasions of 24-hours TSP monitoring were conducted at A1a. The monitoring results are all below the Action/ Limit Level. No Notifications of Exceedances (NOEs) or the associated corrective actions were therefore issued.
- 9.03 In the Reporting Period, total of **ten** (10) occasions of noise measurement were conducted at N1 and N2a, and no exceedance were recorded.
- 9.04 No environmental complaint, notification of summons or successful prosecution was received in the Reporting Period.
- 9.05 **Five (5)** occasions of weekly site inspections to evaluate site environmental performance was carried out by the RE, ET and the Contractor on **1**, **8**, **15**, **23** and **28** December 2017 and the IEC was joined the site inspection on **28** December 2017. No non-compliance was noted but one (1) observation and two (2) reminders were recorded by the ET.
- 9.06 It is reported that the transplanted tree TR-02 for this project was collapsed due to typhoon signal No. 8 HAIMA on 22 October 2016 and the tree has been subsequently removed. Further follow-up action will be made after an agreement is reached with Leisure and Cultural Services Department (LCSD).
- 9.07 In the Reporting Period, no site inspection was undertaken by external parties i.e. EPD.

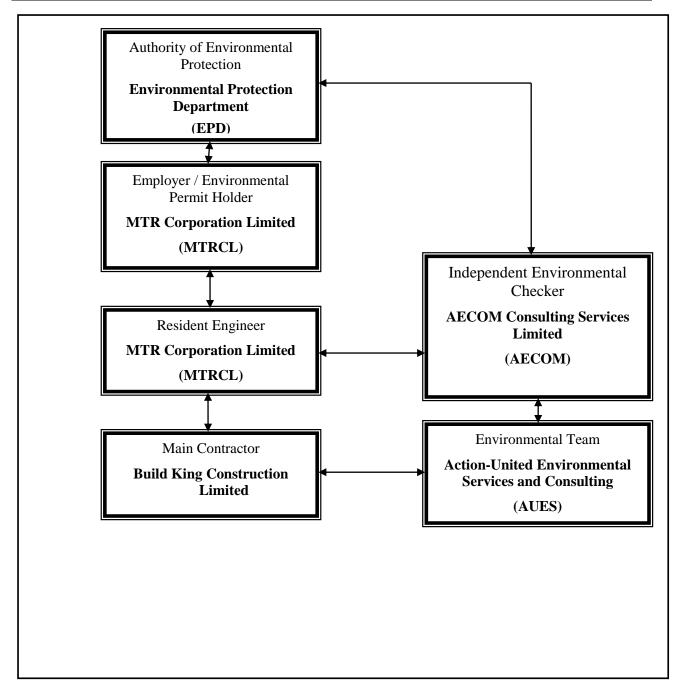

#### RECOMMENDATIONS

- 9.08 Construction noise is the key environmental issue during construction work of the Project as there are residential buildings nearby. Noise mitigation measures should be fully implemented in accordance with the EM&A requirement.
- 9.09 Also, special attention should be paid on the potential construction dust impact as the construction site is located near the residential area. The Contractor should fully implement the construction dust mitigation measures properly.
- 9.10 The Contractor should also prevent muddy water and other water pollutants via site surface water runoff get into public areas. Any discharge water should be strictly complied with wastewater discharge license requirement. As a reminder, water quality mitigation measures should be properly implemented in accordance with the EM&A requirement.
- 9.11 As a reminder, the Contractor should be regular checking and maintenance wastewater treatment facilities ensure compliance with the currently Discharge License stipulation. A warning sign should be provided all the retained trees as remind the workers prevent scratch the trees. In addition, mosquito control should be kept to prevent mosquito breeding on site.



Appendix A

**Project Site Layout Plan** 






# Appendix B

Organization of the Project and Master Construction Programme







| Organization | Project Role                          | Name of Key Staff             | Tel No.   | Fax No.   |  |
|--------------|---------------------------------------|-------------------------------|-----------|-----------|--|
| MTRCL        | Senior Construction Engineer          | Mr. Sky Yip                   | 3163 8630 | 3163 8699 |  |
| AECOM        | Independent Environmental<br>Checker  | Mr. Y. W. Fung                | 3922 9366 | 3922 9797 |  |
| KCL          | Project Manager                       | Mr. Vincent, Kwan<br>Chun Yin | 9833 1313 | 2770 4278 |  |
| KCL          | Site Agent                            | Mr. Chan Kam Chuen            | 6462 8910 | 2770 4278 |  |
| KCL          | Environmental Officer                 | Ms. Ricci Poon Wai Tin        | 9533 1115 | 2770 4278 |  |
| AUES         | Environmental Team Leader             | Mr. T. W. Tam                 | 2959 6059 | 2959 6079 |  |
| AUES         | Environmental Consultant              | Ms. Nicola Hon                | 2959 6059 | 2959 6079 |  |
| AUES         | Environmental Consultant              | Mr. Ben Tam                   | 2959 6059 | 2959 6079 |  |
| AUES         | Assistant Environmental<br>Consultant | Mr. Martin Li                 | 2959 6059 | 2959 6079 |  |

# **Contact Details of Key Personnel for the Project**

Legend:

MTRCL (Employer) – MTR Corporation Limited

MTRCL (Resident Engineer) – MTR Corporation Limited

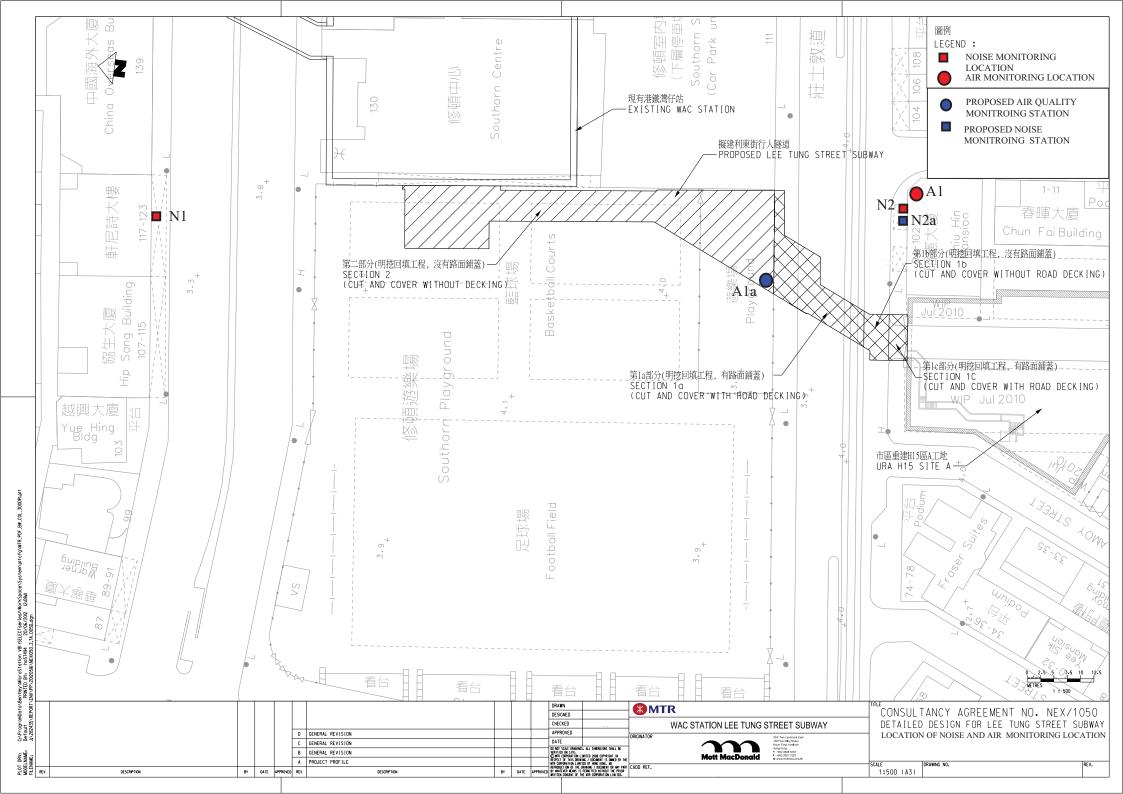
BKCL (Main Contractor) – Build King Construction Limited

AECOM (IEC) – AECOM Consulting Services Limited

AUES (ET) – Action-United Environmental Services & Consulting

#### Wan Chai Station Lee Tung Street Subway

ABWF Works Installation Programe Date : 28/2/2017 cription of Works 
 Week1
 Week3
 Week4
 Week5
 Week1
 Week3
 <th han Chu Kee Flood Door abrication in progress at mainland China ock-up test at mainland China hal fine tune cking for deliver ivery to site and installation orative door sub-frame Steel Door llow shop drawing approval ff site fabrication elivery to site and installation 3) Aluminum Louvre (Fresh and Exhaust) w shop drawing approval action very to site and installation 4) Stainless steel cover over MJ and U channel low shop drawing approval f site fabrication very to site and installation 5) Fixed Smoke Barrier llow shop drawing approval teel subframe and FRP board FRP glass 6) BOH stainless steel cat ladder with fall arrest system llow shop drawing approval ff site fabrication elivery to site and installation er- VE Panel low shop drawing approval bframe installation andard module installation surement of non-standard mo rication of non-sta very non-standard module install a Sign Advertising Paners vels ication livery to site and installation low shop drawing approval very to site and installation Security and FRP shutter at H15 ow shop drawing approval very to site and installation 2) Security and FRP shutter for Klosk 1 & 2 ow shop drawing approval very to site and installation ng Yip


| 1) Ceiling along subway               | 1    |   |  |  |   |   |   |   |  |  |          |  |  |
|---------------------------------------|------|---|--|--|---|---|---|---|--|--|----------|--|--|
| Allow shop drawing approval           |      | 1 |  |  |   |   |   |   |  |  |          |  |  |
| Ceiling panel fabrication             |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Celling subframe installation         |      |   |  |  | - |   |   |   |  |  |          |  |  |
| First batch delivery for installation |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Final batch delivery for installation |      |   |  |  |   |   |   |   |  |  |          |  |  |
|                                       |      |   |  |  |   |   |   |   |  |  |          |  |  |
| 2) Ceiling at WAC station             |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Ceiling panel fabrication             |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Celling subframe installation         |      |   |  |  |   |   |   |   |  |  |          |  |  |
| First batch delivery for installation |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Final batch delivery for installation |      |   |  |  |   |   |   |   |  |  | <b>—</b> |  |  |
|                                       |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Hang Yu                               |      |   |  |  |   |   |   |   |  |  |          |  |  |
| 1) Blockwork wall at H15              |      |   |  |  |   | I | 1 |   |  |  |          |  |  |
| 2) Blockwork wall at WAC station      |      |   |  |  |   |   |   |   |  |  |          |  |  |
| 3) Floor tiling work along subway     |      |   |  |  |   |   |   |   |  |  |          |  |  |
| 4) Vent shafts external wall tiles    |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Allow tile samples selected by MTR    | <br> |   |  |  |   |   |   |   |  |  |          |  |  |
| Order to Supplier - Maxframe          |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Production                            |      |   |  |  |   | 1 | 1 |   |  |  |          |  |  |
| Delivery to site and fixing           |      |   |  |  |   |   |   | _ |  |  |          |  |  |
|                                       |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Tin Ha                                |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Klosk 1 & 2 shopfront metal works     |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Allow shop drawing approval           |      |   |  |  |   |   |   |   |  |  |          |  |  |
| Fabrication                           |      |   |  |  |   | 1 |   | 1 |  |  |          |  |  |
| Delivery to site and installation     |      |   |  |  |   |   |   |   |  |  | <u> </u> |  |  |
|                                       |      |   |  |  |   |   |   |   |  |  |          |  |  |
|                                       |      |   |  |  |   |   |   |   |  |  |          |  |  |
|                                       |      |   |  |  |   |   |   |   |  |  |          |  |  |

Remark: Updated programme is being revised and will be supplemented when it is ready



# Appendix C

# **Monitoring Locations**





# Appendix D

Calibration Certificate of Monitoring Equipment

| Technician: Mr. Ip Ka Hing           CONDITIONS           Sea Level Pressure (hPa)         1014.3         Corrected Pressure (nm Hg)         760.725           CALIBRATION ORIFICE           CALIBRATION ORIFICE           Make-> TISCH         Qatd Slope ->         2.11965           Make-> TISCH         Qatd Slope ->         2.11965           Make-> TISCH         Qatd Intercept ->         2.11965           CALIBRATION ORIFICE           CALIBRATION ORIFICE           CALIBRATION           Plate         H20 (R         H20 (R         H20 (R         H20 (R         H20 (R         Make-> TISCH         Qatd Intercept ->         2.11965           Image: Make > TISCH         Qatd Intercept ->         CaLIBRATION           Image: Make > TISCH         Qatd Intercept ->         2.11965           Image: Make > TISCH         Qatd Intercept ->         CallBRATION           Image: Make > TISCH         Qatd Intercept <th <="" colspan="2" th=""><th>Location :<br/>Location I</th><th></th><th>1</th><th></th><th>Date of C<br/>t Calibra</th><th>ation I</th><th>Date:</th><th>2-Jan</th><th>-18</th><th>ling</th><th></th><th></th><th></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <th>Location :<br/>Location I</th> <th></th> <th>1</th> <th></th> <th>Date of C<br/>t Calibra</th> <th>ation I</th> <th>Date:</th> <th>2-Jan</th> <th>-18</th> <th>ling</th> <th></th> <th></th> <th></th> |           | Location :<br>Location I |          | 1             |      | Date of C<br>t Calibra | ation I | Date:   | 2-Jan | -18    | ling   |           |         |          |  |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|----------|---------------|------|------------------------|---------|---------|-------|--------|--------|-----------|---------|----------|--|---|
| Sea Level Pressure (hPa)<br>Temperature (°C)Corrected Pressure (mm Hg)<br>Temperature (%)760.725<br>297CALIBRATION ORIFICEMake>< TISCH<br>Model>Qstd Slope ><br>Qstd Intercept >2.11965<br>-0.02696PlateH20 (LH 20 (R<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |           |                          |          |               |      |                        |         |         |       |        |        |           |         |          |  |   |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |           |                          |          |               |      |                        |         |         | C     |        |        |           |         | Hg)      |  |   |
| $\frac{1}{100} = \frac{1}{100} = \frac{1}$ |                                                                                                                                                                                                            |           |                          |          | C             | ALIB | RATI                   | ON      | ORIFICI | E     |        |        |           |         |          |  |   |
| Plate       H20 (L)H2O (R)       H20       Qstd       I       IC       LINEAR         No.       (in)       (in)       (in)       (in)       (m3/min)       (chart)       corrected       REGRESSION         18       7.2       3.6       10.8       1.567       51       51.23       Slope = 34.1199         13       5.9       2.3       8.2       1.367       46       46.21       Intercept = -1.1830         10       4.9       1.4       6.3       1.200       40       40.18       Corr. coeff. = 0.9958         7       3.6       0.3       3.9       0.947       32       32.14       23         Store corrected chart respones       I       .0.74       2.4       0.745       23       23.10         FLOW RATE CHART         Qstd = standard flow rate       IC = corrected chart respones       I       actual chart respones       3.00       40.00       40.00       30.00       40.00       40.00       30.00       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model-> 50                                                                                                                                                                                                 |           |                          |          |               |      |                        | -       |         |       | -      |        | -         |         |          |  |   |
| No.         (in)         (in)         (m3/min)         (chart)         corrected         REGRESSION           18         7.2         3.6         10.8         1.567         51         51.23         Slope = 34.1199           13         5.9         2.3         8.2         1.367         46         46.21         Intercept = -1.1830           10         4.9         1.4         6.3         1.200         40         40.18         Corr. coeff. = 0.9958           7         3.6         0.3         3.9         0.947         32         32.14           5         3.1         -0.7         2.4         0.745         23         23.10 <b>Calculations :</b> Qstd = l/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]         IC = [[Sqrt(Pa/Pstd)(Tstd/Ta)] $60.00$ <b>FLOW RATE CHART</b> 02std = standard flow rate         IC = corrected chart response $40.00$ $30.00$ $30.00$ $30.00$ $30.00$ $30.00$ $30.00$ $30.00$ $30.00$ $10.00$ $10.00$ $10.00$ $10.00$ $10.00$ $10.00$ $10.00$ $10.00$ $10.00$ $10.00$ $10.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |           |                          |          |               | С    | ALIB                   | RAT     | ION     |       |        |        |           |         |          |  |   |
| 18       7.2       3.6       10.8       1.567       51       51.23       Slope = $34.1199$ 13       5.9       2.3       8.2       1.367       46       46.21       Intercept = $-1.1830$ 10       4.9       1.4       6.3       1.200       40       40.18       Corr. coeff. = $0.9958$ 7       3.6       0.3       3.9       0.947       32       32.14       23.10 <b>Calculations :</b> Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]       IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]       60.00 <b>FLOW RATE CHART</b> Qstd = standard flow rate       IC = corrected chart respones       60.00 <b>60.00 60.00 60.00</b> I = actual chart response       actual temperature during calibration ( deg K <b>76 subsequent calculation of sampler flow: 10.00 30.00 30.00</b> Wat = sampler slope       b = sampler slope <b>10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00</b> <td>Plate</td> <td>H20 (L)</td> <td>H2O (R)</td> <td>H20</td> <td>Qstd</td> <td></td> <td>I</td> <td></td> <td>IC</td> <td></td> <td></td> <td></td> <td>LINI</td> <td>EAR</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Plate                                                                                                                                                                                                      | H20 (L)   | H2O (R)                  | H20      | Qstd          |      | I                      |         | IC      |       |        |        | LINI      | EAR     |          |  |   |
| 13       5.9       2.3       8.2       1.367       46       46.21       Intercept = -1.1830         10       4.9       1.4       6.3       1.200       40       40.18       Corr. coeff. = 0.9958         7       3.6       0.3       3.9       0.947       32       32.14       Corr. coeff. = 0.9958         Calculations :       Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]       Cstd = 1/m[Sqrt(Pa/Pstd)(Tstd/Ta)]       Go.00       FLOW RATE CHART         Qstd = standard flow rate       IC = corrected chart response       60.00       60.00       60.00       60.00         I = actual chart response       m = calibrator Qstd intercept       30.00       30.00       30.00       30.00         Yet = actual pressure during calibration ( deg K       90.00       30.00       90.00       90.00       90.00         Yet = actual pressure during calibration ( mm Hg       20.00       0.00       0.00       0.00       0.00       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |           |                          |          |               |      |                        | со      | rrected |       |        |        |           |         |          |  |   |
| $\begin{array}{c ccccc} 10 & 4.9 & 1.4 & 6.3 & 1.200 & 40 & 40.18 & Corr. coeff. = 0.9958 \\ \hline 7 & 3.6 & 0.3 & 3.9 & 0.947 & 32 & 32.14 \\ \hline 5 & 3.1 & -0.7 & 2.4 & 0.745 & 23 & 23.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |           |                          |          |               |      |                        |         | 1       |       |        |        | -         |         |          |  |   |
| 73.60.33.90.9473232.1453.1-0.72.40.7452323.10 <b>Calculations :</b> Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta)])Qstd = standard flow rateIC = corrected chart responseI = actual chart responsem = calibrator Qstd slopeb = calibrator Qstd interceptTa = actual temperature during calibration ( mm Hg <b>For subsequent calculation of sampler flow:</b> 1/m((1)[Sqrt(298/Tav)(Pav/760)]-b)m = sampler slopeb = sampler interceptI = chart response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            |           |                          |          |               |      |                        |         |         |       |        |        | · ·       |         |          |  |   |
| 53.1-0.72.40.7452323.10Calculations :Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta)])-b]Qstd = standard flow rateIC = corrected chart responesI = actual chart responesI = actual chart responesm = calibrator Qstd slopeb = calibrator Qstd slopeb = calibrator Qstd slopeb = calibrator Qstd slopeb = calibrator Qstd interceptTa = actual temperature during calibration ( deg K<br>Pstd = actual pressure during calibration (mm Hg<br>$1/m((1)[Sqrt(298/Tav)(Pav/760)]-b))$ m = sampler slopeb = sampler interceptI = chart response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |           |                          |          |               |      |                        |         |         |       | С      | orr. c | oeff. =   | 0.      | .9958    |  |   |
| Calculations :       Std = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]         IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]       60.00         Qstd = standard flow rate       50.00         IC = corrected chart respones       50.00         I = actual chart respones       60.00         I = actual chart respones       50.00         I = actual chart respones       50.00         I = actual temperature during calibration ( deg K         Pstd = actual pressure during calibration ( mm Hg         For subsequent calculation of sampler flow:         1/m((I )[Sqrt(298/Tav)(Pav/760)]-b)         m = sampler slope         b = sampler intercept         I = chart response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |           |                          |          |               |      |                        |         |         |       |        |        |           |         |          |  |   |
| Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]<br>IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]<br>Qstd = standard flow rate<br>IC = corrected chart respones<br>I = actual chart response<br>m = calibrator Qstd intercept<br>Ta = actual temperature during calibration ( deg K<br>Pstd = actual pressure during calibration ( mm Hg<br>For subsequent calculation of sampler flow:<br>1/m((I ])[Sqrt(298/Tav)(Pav/760)]-b)<br>m = sampler slope<br>b = sampler intercept<br>I = chart response<br>M = chart response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                          | 5.1       | -0.7                     | 2.4      | 0.745         |      | 23                     |         | 23.10   |       |        |        |           |         |          |  |   |
| Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]<br>IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]<br>Qstd = standard flow rate<br>IC = corrected chart respones<br>I = actual chart response<br>m = calibrator Qstd slope<br>b = calibrator Qstd intercept<br>Ta = actual temperature during calibration ( deg K<br>Pstd = actual pressure during calibration ( mm Hg<br>For subsequent calculation of sampler flow:<br>1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)<br>m = sampler slope<br>b = sampler intercept<br>I = chart response<br>() 0.00<br>0.000<br>0.500<br>1.000<br>1.500<br>2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calculatio                                                                                                                                                                                                 | ons :     |                          |          |               |      | 60                     | 00      |         | F     | FLOW   | RAT    | E CHA     | RT      |          |  |   |
| Qstd = standard flow rate<br>IC = corrected chart response<br>II = actual chart response<br>m = calibrator Qstd slope<br>b = calibrator Qstd intercept<br>Ta = actual temperature during calibration ( deg K<br>Pstd = actual pressure during calibration ( mm Hg<br>For subsequent calculation of sampler flow:<br>1/m(( I )[Sqrt(298/Tav)(Pav/760)]-b)<br>m = sampler slope<br>b = sampler intercept<br>I = chart response<br>( ) 000<br>0.000<br>0.000<br>0.500<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                                                                                                                                                                                                 | Qstd = 1/r                                                                                                                                                                                                 | n[Sqrt(H  | 20(Pa/Pst                | td)(Tstd | /Ta))-b]      |      | 00.                    | 00 -    |         |       |        |        |           |         |          |  |   |
| Qstd = standard flow rate<br>IC = corrected chart respones<br>I = actual chart response<br>m = calibrator Qstd slope<br>b = calibrator Qstd intercept<br>Ta = actual temperature during calibration ( deg K<br>Pstd = actual pressure during calibration ( mm Hg<br>For subsequent calculation of sampler flow:<br>1/m(( I )[Sqrt(298/Tav)(Pav/760)]-b)<br>m = sampler slope<br>b = sampler intercept<br>I = chart response<br>( ) 0.00<br>0.000<br>0.000<br>0.500<br>1.000<br>1.500<br>2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IC = I[Sqr                                                                                                                                                                                                 | t(Pa/Pstd | l)(Tstd/Ta               | a)]      |               |      |                        |         |         |       |        |        |           |         |          |  |   |
| IC = corrected chart response<br>I = actual chart response<br>m = calibrator Qstd slope<br>b = calibrator Qstd intercept<br>Ta = actual temperature during calibration ( deg K<br>Pstd = actual pressure during calibration ( mm Hg<br>For subsequent calculation of sampler flow:<br>1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)<br>m = sampler slope<br>b = sampler intercept<br>I = chart response<br>I = chart response<br>0.00 0.000 0.500 1.000 1.500 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                          |           |                          |          |               |      | 50.                    | 00 -    |         |       |        |        |           | /       | <u>/</u> |  |   |
| I = actual chart response<br>m = calibrator Qstd slope<br>b = calibrator Qstd intercept<br>Ta = actual temperature during calibration ( deg K<br>Pstd = actual pressure during calibration ( mm Hg<br>For subsequent calculation of sampler flow:<br>1/m(( I )[Sqrt(298/Tav)(Pav/760)]-b)<br>m = sampler slope<br>b = sampler intercept<br>I = chart response<br>( ) 0 0 0.000 0.500 1.000 1.500 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                          |           |                          |          |               |      |                        |         |         |       |        |        |           | 1       |          |  |   |
| I = actual chart response         m = calibrator Qstd slope         b = calibrator Qstd intercept         Ta = actual temperature during calibration ( deg K         Pstd = actual pressure during calibration ( mm Hg         For subsequent calculation of sampler flow:         1/m(( I )[Sqrt(298/Tav)(Pav/760)]-b)         m = sampler slope         b = sampler intercept         I = chart response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            |           | -                        | es       |               |      | <del>ට</del> 40.       | .00 -   |         |       |        |        | <b>•</b>  | /       |          |  |   |
| For subsequent calculation of sampler flow:<br>$1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)$ 10.00m = sampler slope<br>b = sampler intercept<br>I = chart response0.000.000.5001.0001.5002.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            | -         | -                        |          |               |      | se (I                  |         |         |       |        |        |           |         |          |  |   |
| For subsequent calculation of sampler flow:<br>$1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)$ 10.00m = sampler slope<br>b = sampler intercept<br>I = chart response0.000.000.5001.0001.5002.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            | -         | -                        | ł        |               |      | spon                   |         |         |       |        |        |           |         |          |  |   |
| For subsequent calculation of sampler flow:<br>$1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)$ 10.00m = sampler slope<br>b = sampler intercept<br>I = chart response0.000.000.5001.0001.5002.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            | -         | -                        |          | oration ( des | K    | ≝ 30.<br>⊑             | 00 -    |         |       |        | -/     |           |         |          |  |   |
| For subsequent calculation of sampler flow:<br>$1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)$ 10.00m = sampler slope<br>b = sampler intercept<br>I = chart response0.000.000.5001.0001.5002.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            | -         |                          | -        |               |      | l cha                  |         |         |       |        | /      |           |         |          |  |   |
| For subsequent calculation of sampler flow:<br>$1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)$ 10.00m = sampler slope<br>b = sampler intercept<br>I = chart response0.000.000.5001.0001.5002.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            | -         |                          |          |               |      | 20.                    | .00 -   |         |       |        |        |           |         |          |  |   |
| m = sampler slope $b = sampler intercept$ $I = chart response$ $10.00$ $0.00$ $0.000$ $1.000$ $1.500$ $2.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            | -         |                          |          | -             |      | 4                      |         |         |       |        |        |           |         |          |  |   |
| m = sampler slope<br>b = sampler intercept<br>I = chart response $0.00$ $0.000$ $1.000$ $1.500$ $2.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/m((I)[S                                                                                                                                                                                                  | Sqrt(298/ | Tav)(Pav                 | /760)]-b | )             |      | 10                     | 00      |         |       |        |        |           |         |          |  |   |
| b = sampler intercept<br>I = chart response 0.00 0.500 1.000 1.500 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            | 11        |                          |          |               |      | 10.                    | - 00    |         |       |        |        |           |         |          |  |   |
| I = chart response $0.00 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                            |           | ant                      |          |               |      |                        |         |         |       |        |        |           |         |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                          |           | ept                      |          |               |      | 0.                     |         |         | 0.50  | 20     |        | 000       |         | F00      |  | ~ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            | -         | e temnor                 |          |               | 0.0  | 00                     |         |         |       |        |        | 500       | 2.0     | JU       |  |   |
| Pav = daily average pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                            |           |                          |          |               |      |                        |         |         | 31    | anuaru |        | nate (ill | 5/11/1) |          |  |   |



# Certificate of Calibration 校正證書

Certificate No. : C173479 證書編號

| ITEM TESTED / 送檢項目<br>Description / 儀器名稱 :<br>Manufacturer / 製造商 :<br>Model No. / 型號 :<br>Serial No. / 編號 :<br>Supplied By / 委託者 : | (Job No. / 序引編號: IC17-0924)<br>Sound Calibrator (EQ086)<br>Rion<br>NC-74<br>34657230<br>Action-United Environmental Services a<br>Unit A, 20/F., Gold King Industrial Buil<br>35-41 Tai Lin Pai Road, Kwai Chung, N | ding,                      | 20 June 2017 |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|
| TEST CONDITIONS / 測記<br>Temperature / 溫度 : (2:<br>Line Voltage / 電壓 :                                                              |                                                                                                                                                                                                                     | Relative Humidity / 相對濕度 : | (55 ± 20)%   |
| TEST SPECIFICATIONS<br>Calibration check                                                                                           | / 測試規範                                                                                                                                                                                                              |                            |              |

DATE OF TEST / 測試日期 : 28 June 2017

#### TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

| Tested By<br>測試    | :<br>H T Wong<br>Technical Officer |                       |              |
|--------------------|------------------------------------|-----------------------|--------------|
| Certified By<br>核證 | K d Lee<br>Engineer                | Date of Issue<br>簽發日期 | 30 June 2017 |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com



# Certificate of Calibration 校正證書

Certificate No. : C173479 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Ľ,

Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C163709 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

| UUT                           | Measured Value | Mfr's Spec. | Uncertainty of Measured Value |
|-------------------------------|----------------|-------------|-------------------------------|
| Naminal Valua                 | (dB)           | (dB)        | (dB)                          |
| Nominal Value<br>94 dB, 1 kHz | 94.1           | $\pm 0.3$   | ± 0.2                         |

#### 5.2 Frequency Accuracy

| UUT Nominal Value | Measured Value | Mfr's       | Uncertainty of Measured Value |
|-------------------|----------------|-------------|-------------------------------|
| (kHz)             | (kHz)          | Spec.       | (Hz)                          |
| 1                 | 1.002          | 1 kHz ± 1 % | ± 1                           |

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



# Certificate of Calibration 校正證書

Certificate No. : C172284 證書編號

| ITEM TESTED / 送檢項<br>Description / 儀器名稱 :<br>Manufacturer / 製造商 :<br>Model No. / 型號 :<br>Serial No. / 編號 :<br>Supplied By / 委託者 : | 目 (Job No. / 序引編號: IC17-0924)<br>Acoustical Calibrator (EQ082)<br>Brüel & Kjær<br>4231<br>2713428<br>Action-United Environmental Services<br>Unit A, 20/F., Gold King Industrial Bu<br>35-41 Tai Lin Pai Road, Kwai Chung, | ilding,                              | 24 April 2017 |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|
| <b>TEST CONDITIONS / 測</b><br>Temperature / 溫度 :<br>Line Voltage / 電壓 :                                                           |                                                                                                                                                                                                                            | Relative Humidity / 相對濕度 : (55 ± 20) | )%            |
| TEST SPECIFICATION<br>Calibration check                                                                                           | S / 測試規範                                                                                                                                                                                                                   |                                      | Ā             |
| DATE OF TEST / 測試日                                                                                                                | 期 : 28 April 2017                                                                                                                                                                                                          |                                      |               |
| TEST RESULTS / 測試約<br>The results apply to the pa                                                                                 | 结果<br>ticular unit-under-test only.                                                                                                                                                                                        |                                      |               |

The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

Κd

H T Wong Technical Officer

ee Project Engineer

Certified By 核證

Date of Issue 簽發日期

•

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com Tel/電話: 2927 2606



Certificate No. : C172284 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

| Equipment ID | Description                       | Certificate No. |
|--------------|-----------------------------------|-----------------|
| CL130        | Universal Counter                 | C163709         |
| CL281        | Multifunction Acoustic Calibrator | PA160023        |
| TST150A      | Measuring Amplifier               | C161175         |
|              |                                   |                 |

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

| UUT           | Measured Value | Mfr's Spec. | Uncertainty of Measured Value |
|---------------|----------------|-------------|-------------------------------|
| Nominal Value | (dB)           | (dB)        | (dB)                          |
| 94 dB, 1 kHz  | 94.0           | $\pm 0.2$   | ± 0.2                         |
| 114 dB, 1 kHz | 114.1          |             |                               |

#### 5.2 Frequency Accuracy

| UUT Nominal Value | Measured Value | Mfr's                      | Uncertainty of Measured Value |
|-------------------|----------------|----------------------------|-------------------------------|
| (kHz)             | (kHz)          | Spec.                      | (Hz)                          |
| 1                 | 1.000 0        | $1 \text{ kHz} \pm 0.1 \%$ | ± 0.1                         |

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Sun Creation Engineering Limited

Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

| Description / 儀器名稱 :<br>Manufacturer / 製造商 :                          | ( Job No. / 序引編號: IC17-0924 )<br>Sound Level Meter (EQ067)<br>Rion<br>NL-31<br>00410221<br>Action-United Environmental Services<br>Unit A, 20/F., Gold King Industrial Bui<br>35-41 Tai Lin Pai Road, Kwai Chung, I | uilding,                              |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| TEST CONDITIONS / 測試<br>Temperature / 溫度 : (23<br>Line Voltage / 電壓 : |                                                                                                                                                                                                                     | Relative Humidity / 相對濕度 : (55 ± 20)% |  |  |  |  |
| TEST SPECIFICATIONS / 測試規範<br>Calibration check                       |                                                                                                                                                                                                                     |                                       |  |  |  |  |
| DATE OF TEST / 測試日期 : 28 April 2017                                   |                                                                                                                                                                                                                     |                                       |  |  |  |  |

### TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

| Tested By<br>測試    | :H T Wong<br>Technical Officer |                         |            |
|--------------------|--------------------------------|-------------------------|------------|
| Certified By<br>核證 | :<br>KCLee<br>Project Engineer | Date of Issue :<br>簽發日期 | 2 May 2017 |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Sun Creation Engineering Limited

**Calibration and Testing Laboratory** 

# Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test. 2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C170048 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- Sound Pressure Level 6.1
- 6.1.1 Reference Sound Pressure Level

| UUT Setting |                |           | Applied Value |       | UUT   | IEC 61672 Class 1 |       |
|-------------|----------------|-----------|---------------|-------|-------|-------------------|-------|
| Range       | Mode           | Frequency | Time          | Level | Freq. | Reading           | Spec. |
| (dB)        |                | Weighting | Weighting     | (dB)  | (kHz) | (dB)              | (dB)  |
| 30 - 120    | L <sub>A</sub> | А         | Fast          | 94.00 | 1     | 93.1              | ± 1.1 |

#### 6.1.2 Linearity

| UUT Setting |                |           | Applied   | Value  | UUT   |             |  |  |
|-------------|----------------|-----------|-----------|--------|-------|-------------|--|--|
| Range       | Mode           | Frequency | Time      | Level  | Freq. | Reading     |  |  |
| (dB)        |                | Weighting | Weighting | (dB)   | (kHz) | (dB)        |  |  |
| 30 - 120    | L <sub>A</sub> | A         | Fast      | 94.00  | 1     | 93.1 (Ref.) |  |  |
|             |                |           |           | 104.00 |       | 103.1       |  |  |
|             |                |           |           | 114.00 |       | 113.2       |  |  |

IEC 61672 Class 1 Spec. :  $\pm$  0.6 dB per 10 dB step and  $\pm$  1.1 dB for overall different.

#### Time Weighting 6.2

|          | UU             | T Setting |           | Applied | Value | UUT     | IEC 61672 Class 1 |
|----------|----------------|-----------|-----------|---------|-------|---------|-------------------|
| Range    | Mode           | Frequency | Time      | Level   | Freq. | Reading | Spec.             |
| (dB)     |                | Weighting | Weighting | (dB)    | (kHz) | (dB)    | (dB)              |
| 30 - 120 | L <sub>A</sub> | А         | Fast      | 94.00   | 1     | 93.1    | Ref.              |
|          |                |           | Slow      |         |       | 93.1    | ± 0.3             |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory



Sun Creation Engineering Limited

Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

### 6.3 Frequency Weighting

### 6.3.1 A-Weighting

| Tr Holghung |                |           |           |               |          |         |                    |  |
|-------------|----------------|-----------|-----------|---------------|----------|---------|--------------------|--|
|             | UUT Setting    |           |           | Applied Value |          | UUT     | IEC 61672 Class 1  |  |
| Range       | Mode           | Frequency | Time      | Level         | Freq.    | Reading | Spec.              |  |
| (dB)        |                | Weighting | Weighting | (dB)          |          | (dB)    | (dB)               |  |
| 30 - 120    | L <sub>A</sub> | А         | Fast      | 94.00         | 63 Hz    | 66.8    | $-26.2 \pm 1.5$    |  |
|             |                |           |           |               | 125 Hz   | 76.9    | $-16.1 \pm 1.5$    |  |
|             |                |           |           |               | 250 Hz   | 84.4    | $-8.6 \pm 1.4$     |  |
|             |                |           |           |               | 500 Hz   | 89.8    | $-3.2 \pm 1.4$     |  |
|             |                |           |           |               | 1 kHz    | 93.1    | Ref.               |  |
|             |                |           |           |               | 2 kHz    | 94.4    | $+1.2 \pm 1.6$     |  |
|             |                |           |           |               | 4 kHz    | 94.2    | $+1.0 \pm 1.6$     |  |
|             |                |           |           |               | 8 kHz    | 92.0    | -1.1 (+2.1;-3.1)   |  |
|             |                |           |           |               | 12.5 kHz | 89.2    | -4.3 (+3.0 ; -6.0) |  |

### 6.3.2 C-Weighting

|          | UUT Setting    |           | Applied Value |       | UUT      | IEC 61672 Class 1 |                    |
|----------|----------------|-----------|---------------|-------|----------|-------------------|--------------------|
| Range    | Mode           | Frequency | Time          | Level | Freq.    | Reading           | Spec.              |
| (dB)     |                | Weighting | Weighting     | (dB)  |          | (dB)              | (dB)               |
| 30 - 120 | L <sub>C</sub> | С         | Fast          | 94.00 | 63 Hz    | 92.2              | $-0.8 \pm 1.5$     |
|          |                |           |               |       | 125 Hz   | 92.9              | $-0.2 \pm 1.5$     |
|          |                |           |               |       | 250 Hz   | 93.1              | $0.0 \pm 1.4$      |
|          |                |           |               |       | 500 Hz   | 93.1              | $0.0 \pm 1.4$      |
|          |                |           |               |       | 1 kHz    | 93.1              | Ref.               |
|          |                |           |               |       | 2 kHz    | 93.0              | $-0.2 \pm 1.6$     |
|          |                |           |               |       | 4 kHz    | 92.4              | $-0.8 \pm 1.6$     |
|          |                |           |               |       | 8 kHz    | 90.2              | -3.0 (+2.1 ; -3.1) |
|          |                |           |               |       | 12.5 kHz | 87.3              | -6.2 (+3.0 ; -6.0) |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 319734

- Mfr's Spec. : IEC 61672 Class 1

| - Uncertainties of Applied Value : | 94 dB  | : 63 Hz - 125 Hz     | :   | $\pm 0.35 \text{ dB}$  |
|------------------------------------|--------|----------------------|-----|------------------------|
|                                    |        | 250 Hz - 500 Hz      | : : | $\pm 0.30 \text{ dB}$  |
|                                    |        | 1 kHz                | :   | $\pm 0.20 \text{ dB}$  |
|                                    |        | 2 kHz <b>-</b> 4 kHz | :   | $\pm 0.35 \text{ dB}$  |
|                                    |        | 8 kHz                | :   | $\pm 0.45 \text{ dB}$  |
|                                    |        | 12.5 kHz             | :   | $\pm 0.70 \text{ dB}$  |
|                                    | 104 dB | : 1 kHz              | :   | ± 0.10 dB (Ref. 94 dB) |
|                                    | 114 dB | : 1 kHz              | :   | ± 0.10 dB (Ref. 94 dB) |
|                                    |        |                      |     |                        |

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Sun Creation Engineering Limited

**Calibration and Testing Laboratory** 

# Certificate of Calibration 校正證書

Certificate No. : C173482 證書編號

| ITEM TESTED / 送檢項目   | (Job No. / 序引編號:IC17-0924)                   | Date of Receipt / 收件日期: 20 June 2017 |
|----------------------|----------------------------------------------|--------------------------------------|
| Description / 儀器名稱 : | Integrating Sound Level Meter (EQ009)        |                                      |
| Manufacturer / 製造商 : | Brüel & Kjær                                 |                                      |
| Model No. / 型號 :     | 2238                                         |                                      |
| Serial No. / 編號 :    | 2285722                                      |                                      |
| Supplied By / 委託者 :  | Action-United Environmental Services and     | Consulting                           |
|                      | Unit A, 20/F., Gold King Industrial Building | g,                                   |
|                      | 35-41 Tai Lin Pai Road, Kwai Chung, N.T.     |                                      |
|                      |                                              |                                      |
|                      |                                              |                                      |

### TEST CONDITIONS / 測試條件

Temperature / 溫度 :  $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : (55 ± 20)%

### TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 28 June 2017

#### TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K 🖉 Lee Engineer

Certified By 核證

Date of Issue 簽發日期

:

29 June 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com



Certificate No. : C173482 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

| Equipment ID | Description                         | Certificate No. |
|--------------|-------------------------------------|-----------------|
| CL280        | 40 MHz Arbitrary Waveform Generator | C170048         |
| CL281        | Multifunction Acoustic Calibrator   | PA160023        |

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- Reference Sound Pressure Level 6.1.1

#### 6.1.1.1 Before Self-calibration

|          | UUT S            | Setting   | Applied   | Value | UUT   |         |
|----------|------------------|-----------|-----------|-------|-------|---------|
| Range    | Parameter        | Frequency | Time      | Level | Freq. | Reading |
| (dB)     |                  | Weighting | Weighting | (dB)  | (kHz) | (dB)    |
| 50 - 130 | L <sub>AFP</sub> | А         | F         | 94.00 | 1     | 94.2    |

### 6.1.1.2 After Self-calibration

| UUT Setting |                  |           | Applied Value |       | UUT   | IEC 60651 |              |
|-------------|------------------|-----------|---------------|-------|-------|-----------|--------------|
| Range       | Parameter        | Frequency | Time          | Level | Freq. | Reading   | Type 1 Spec. |
| (dB)        |                  | Weighting | Weighting     | (dB)  | (kHz) | (dB)      | (dB)         |
| 50 - 130    | L <sub>AFP</sub> | А         | F             | 94.00 | 1     | 94.0      | $\pm 0.7$    |

#### 6.1.2 Linearity

|          | UU               | Γ Setting | Applied   | d Value | UUT   |             |
|----------|------------------|-----------|-----------|---------|-------|-------------|
| Range    | Parameter        | Frequency | Time      | Level   | Freq. | Reading     |
| (dB)     |                  | Weighting | Weighting | (dB)    | (kHz) | (dB)        |
| 50 - 130 | L <sub>AFP</sub> | A         | F         | 94.00   | 1     | 94.0 (Ref.) |
|          |                  |           |           | 104.00  |       | 104.0       |
|          |                  |           |           | 114.00  |       | 114.0       |

IEC 60651 Type 1 Spec. :  $\pm$  0.4 dB per 10 dB step and  $\pm$  0.7 dB for overall different.

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Tel/電話: 2927 2606 Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。



Certificate No. : C173482 證書編號

#### 6.2 Time Weighting

#### 6.2.1 Continuous Signal

|          | UUT Setting      |           |           |       | Applied Value |         | IEC 60651    |
|----------|------------------|-----------|-----------|-------|---------------|---------|--------------|
| Range    | Parameter        | Frequency | Time      | Level | Freq.         | Reading | Type 1 Spec. |
| (dB)     |                  | Weighting | Weighting | (dB)  | (kHz)         | (dB)    | (dB)         |
| 50 - 130 | L <sub>AFP</sub> | А         | F         | 94.00 | 1             | 94.0    | Ref.         |
|          | L <sub>ASP</sub> |           | S         | 4     |               | 94.0    | $\pm 0.1$    |
|          | L <sub>AIP</sub> |           | Ι         |       |               | 94.1    | ± 0.1        |

### 6.2.2 Tone Burst Signal (2 kHz)

|          | UUT                | Setting   |           | Applied Value |            | UUT     | IEC 60651      |
|----------|--------------------|-----------|-----------|---------------|------------|---------|----------------|
| Range    | Parameter          | Frequency | Time      | Level Burst   |            | Reading | Type 1 Spec.   |
| (dB)     |                    | Weighting | Weighting | (dB)          | Duration   | (dB)    | (dB)           |
| 30 - 110 | L <sub>AFP</sub>   | А         | F         | 106.0         | Continuous | 106.0   | Ref.           |
|          | L <sub>AFMax</sub> |           |           |               | 200 ms     | 105.0   | $-1.0 \pm 1.0$ |
|          | L <sub>ASP</sub>   |           | S         |               | Continuous | 106.0   | Ref.           |
|          | L <sub>ASMax</sub> |           |           |               | 500 ms     | 102.0   | $-4.1 \pm 1.0$ |

#### 6.3 Frequency Weighting

### 6.3.1 A-Weighting

|          |                  | Setting   |           | Applied Value |          | UUT     | IEC 60651          |
|----------|------------------|-----------|-----------|---------------|----------|---------|--------------------|
| Range    | Parameter        | Frequency | Time      | Level         | Freq.    | Reading | Type 1 Spec.       |
| (dB)     |                  | Weighting | Weighting | (dB)          |          | (dB)    | (dB)               |
| 50 - 130 | L <sub>AFP</sub> | A         | F         | 94.00         | 31.5 Hz  | 54.5    | $-39.4 \pm 1.5$    |
|          |                  |           |           |               | 63 Hz    | 67.8    | $-26.2 \pm 1.5$    |
|          |                  |           |           |               | 125 Hz   | 77.8    | $-16.1 \pm 1.0$    |
|          |                  |           |           |               | 250 Hz   | 85.3    | $-8.6 \pm 1.0$     |
|          |                  |           |           |               | 500 Hz   | 90.7    | $-3.2 \pm 1.0$     |
|          |                  |           |           |               | 1 kHz    | 94.0    | Ref.               |
|          |                  |           |           |               | 2 kHz    | 95.2    | $+1.2 \pm 1.0$     |
|          |                  |           |           |               | 4 kHz    | 95.0    | $+1.0 \pm 1.0$     |
|          |                  |           |           |               | 8 kHz    | 92.8    | -1.1 (+1.5 ; -3.0) |
|          |                  |           |           |               | 12.5 kHz | 89.7    | -4.3 (+3.0 ; -6.0) |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Certificate No. : C173482 證書編號

### 6.3.2 C-Weighting

| C-weighting |                  |           |           |               |          |         |                    |  |  |
|-------------|------------------|-----------|-----------|---------------|----------|---------|--------------------|--|--|
|             | UUT              | Setting   |           | Applied Value |          | UUT     | IEC 60651          |  |  |
| Range       | Parameter        | Frequency | Time      | Level         | Freq.    | Reading | Type 1 Spec.       |  |  |
| (dB)        |                  | Weighting | Weighting | (dB)          |          | (dB)    | (dB)               |  |  |
| 50 - 130    | L <sub>CFP</sub> | С         | F         | 94.00         | 31.5 Hz  | 90.9    | $-3.0 \pm 1.5$     |  |  |
|             |                  |           |           |               | 63 Hz    | 93.1    | $-0.8 \pm 1.5$     |  |  |
|             |                  |           |           |               | 125 Hz   | 93.8    | $-0.2 \pm 1.0$     |  |  |
|             |                  |           |           |               | 250 Hz   | 93.9    | $0.0 \pm 1.0$      |  |  |
|             |                  |           |           |               | 500 Hz   | 94.0    | $0.0 \pm 1.0$      |  |  |
|             |                  |           |           |               | 1 kHz    | 94.0    | Ref.               |  |  |
|             |                  |           |           |               | 2 kHz    | 93.8    | $-0.2 \pm 1.0$     |  |  |
|             |                  |           |           |               | 4 kHz    | 93.1    | $-0.8 \pm 1.0$     |  |  |
|             |                  |           |           |               | 8 kHz    | 90.9    | -3.0 (+1.5 ; -3.0) |  |  |
|             |                  |           |           |               | 12.5 kHz | 87.7    | -6.2 (+3.0 ; -6.0) |  |  |

#### 6.4

#### Time Averaging

| UUT Setting   |                  |                        |                     | Applied Value      |                           |                         |                        |                             | UUT             | IEC 60804               |
|---------------|------------------|------------------------|---------------------|--------------------|---------------------------|-------------------------|------------------------|-----------------------------|-----------------|-------------------------|
| Range<br>(dB) | Parameter        | Frequency<br>Weighting | Integrating<br>Time | Frequency<br>(kHz) | Burst<br>Duration<br>(ms) | Burst<br>Duty<br>Factor | Burst<br>Level<br>(dB) | Equivalent<br>Level<br>(dB) | Reading<br>(dB) | Type 1<br>Spec.<br>(dB) |
| 30 - 110      | L <sub>Aeq</sub> | A                      | 10 sec.             | 4                  | 1                         | $\frac{1/10}{1/10^2}$   | 110.0                  | 100                         | 99.9<br>89.7    | $\pm 0.5 \pm 0.5$       |
|               |                  |                        | 60 sec.<br>5 min.   | -                  |                           | $\frac{1/10^3}{1/10^4}$ |                        | 80<br>70                    | 79.2<br>69.2    | ± 1.0<br>± 1.0          |

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812707

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

| - Uncertainties of Applied Value : | 94 dB : 31.5 Hz - 125 Hz<br>250 Hz - 500 Hz<br>1 kHz<br>2 kHz - 4 kHz<br>8 kHz<br>12.5 kHz<br>104 dB : 1 kHz<br>114 dB : 1 kHz<br>Burst equivalent level | : ± 0.30 dB<br>: ± 0.20 dB<br>: ± 0.35 dB<br>: ± 0.45 dB<br>: ± 0.70 dB<br>: ± 0.10 dB (Ref. 94 dB)<br>: ± 0.10 dB (Ref. 94 dB)<br>: ± 0.2 dB (Ref. 110 dB |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                                                                                                          | continuous sound level)                                                                                                                                    |

- The uncertainties are for a confidence probability of not less than 95 %.

#### Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



### Appendix E

### **HOKLAS-Accreditation Certificate of the Testing Laboratory**



Hong Kong Accreditation Service 香港認可處

### **Certificate of Accreditation**

認可證書

This is to certify that 特此證明

### ALS TECHNICHEM (HK) PTY LIMITED

# 11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

**HOKLAS Accredited Laboratory** 

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

### Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number : HCKLAS 066 註冊號碼 :



Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

## ∟ 000552



### Appendix F

### **Event and Action Plan**



### **Event and Action Plan for Construction Noise**

| Emera           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Action                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Event           | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IEC                                                                                                                                                                                                                                                                                                                             | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Action<br>Level | <ol> <li>Notify IEC and<br/>Contractor.</li> <li>Carry out investigation.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. Review the analyzed<br>result submitted by<br>ET.                                                                                                                                                                                                                                                                            | 1.Confirm receipt of<br>notification of<br>exceedance                                                                                                                                                                                                                                                                                                                                                                                                     | 1. Submit noise<br>mitigation<br>proposals to IEC                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | <ul> <li>3. Report the results of investigation to the IEC and Contractor.</li> <li>4. Discuss with the Contractor and formulate remedial measures</li> <li>5. Increase monitoring frequency to check mitigation effectiveness.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>Review the proposed<br/>remedial measures by<br/>the Contractor and<br/>advise the ER<br/>accordingly.</li> <li>Supervise the<br/>implementation of<br/>remedial measures.</li> </ol>                                                                                                                                  | <ol> <li>Notify Contractor</li> <li>Require Contractor<br/>to propose remedial<br/>measures for the<br/>analyzed noise<br/>problem</li> <li>Ensure remedial<br/>measures are<br/>properly<br/>implemented.</li> </ol>                                                                                                                                                                                                                                     | 2. Implement noise<br>mitigation<br>proposals                                                                                                                                                                                                                                                                                                                                                                                                           |
| Limit<br>Level  | <ol> <li>Notify IEC, ER, EPD and<br/>Contractor, and follow<br/>other actions</li> <li>Identify source</li> <li>Repeat measurement to<br/>confirm findings</li> <li>Increase monitoring<br/>frequency</li> <li>Check Contractor's<br/>working procedures to<br/>determine possible<br/>mitigation to be<br/>implemented</li> <li>Inform IEC, ER and EPD<br/>the causes and actions<br/>taken for the exceedances</li> <li>Assess effectiveness of<br/>Contractor's remedial<br/>actions and keep IEC,<br/>EPD, ER informed of the<br/>results</li> <li>If exceedance stops, cease<br/>additional monitoring</li> </ol> | <ol> <li>Discuss amongst ER,<br/>ET and Contractor on<br/>the potential remedial<br/>actions</li> <li>Review Contractor's<br/>remedial actions<br/>whenever necessary to<br/>assure their<br/>effectiveness and<br/>advise the ET<br/>accordingly</li> <li>Supervise the<br/>implementation of<br/>remedial measures</li> </ol> | <ol> <li>Confirm receipt of<br/>notification of<br/>exceedances</li> <li>Notify Contractor</li> <li>Require Contractor<br/>to propose remedial<br/>measures</li> <li>Ensure remedial<br/>measures are<br/>properly<br/>implemented</li> <li>If exceedance<br/>continues, consider<br/>what portion of the<br/>work is responsible<br/>and instruct the<br/>Contractor to stop<br/>that portion of work<br/>until the exceedance<br/>is abated.</li> </ol> | <ol> <li>Take immediate<br/>action to avoid<br/>further exceedance</li> <li>Submit proposals<br/>for remedial<br/>actions to IEC<br/>within 3 working<br/>days of<br/>notifications</li> <li>Implement the<br/>agreed proposals</li> <li>Revise and<br/>resubmit proposals<br/>if problem still not<br/>under control</li> <li>Stop the relevant<br/>portion of works as<br/>determined by the<br/>ER until the<br/>exceedance is<br/>abated</li> </ol> |



### **Event and Action Plan for Air Quality**

| Event                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Action                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IEC                                                                                                                                                                                                                                                                                                                                                              | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Action Level                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Exceedance<br>for one<br>sample                            | <ol> <li>Identify source;</li> <li>If valid, inform IEC and ER;</li> <li>Repeat measurement to<br/>confirm finding;</li> <li>Increase monitoring frequency<br/>to daily</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ol> <li>Check monitoring data<br/>submitted by ET;</li> <li>Check Contractor's<br/>working method.</li> </ol>                                                                                                                                                                                                                                                   | 1. Notify Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ol> <li>Rectify any<br/>unacceptable<br/>practice;</li> <li>Amend working<br/>methods if<br/>appropriate</li> </ol>                                                                                                                                                                                                                                                                                                                 |
| Exceedance<br>for two or<br>more<br>consecutive<br>samples | <ol> <li>Identify source;</li> <li>Inform IEC and EPD;</li> <li>Repeat measurements to         <ol> <li>confirm findings;</li> <li>Increase monitoring frequency to daily;</li> </ol> </li> <li>Discuss with IEC and Contractor on remedial action required;</li> <li>If exceedance continues, arrange meeting with IEC and ER;</li> <li>If exceedance stops, cease additional monitoring.</li> </ol>                                                                                                                                                                                                                        | <ol> <li>Check monitoring data<br/>submitted by ET;</li> <li>Check Contractor's<br/>working method;</li> <li>Discuss with ET and<br/>Contractor on possible<br/>remedial measures;</li> <li>Advise the ER on the<br/>effectiveness of the<br/>proposed remedial<br/>measures;</li> <li>Supervisor<br/>implementation of<br/>remedial measures.</li> </ol>        | <ol> <li>Confirm receipt of<br/>notification of failure<br/>in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial<br/>Measure properly<br/>implemented.</li> </ol>                                                                                                                                                                                                                                                                                                                                      | <ol> <li>Submit proposals for<br/>remedial action to<br/>IEC within 3<br/>working days of<br/>notification;</li> <li>Implement the<br/>agreed proposals;</li> <li>Amend proposal if<br/>appropriate.</li> </ol>                                                                                                                                                                                                                      |
| Limit Level                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Exceedance<br>for one<br>sample                            | <ol> <li>Identify source;</li> <li>Inform ER and EPD;</li> <li>Repeat measurement to<br/>confirm finding;</li> <li>Increase monitoring frequency<br/>to daily;</li> <li>Assess effectiveness of<br/>Contractor's remedial actions<br/>and keep IEC, EPD and ER<br/>informed of the results.</li> </ol>                                                                                                                                                                                                                                                                                                                       | <ol> <li>Check monitoring data<br/>submitted by ET;</li> <li>Check Contractor's<br/>working method;</li> <li>Discuss with ET and<br/>the Contractor on<br/>possible remedial<br/>measures;</li> <li>Advise the ER on the<br/>effectiveness of the<br/>proposed remedial<br/>measures;</li> <li>Supervise<br/>implementation of<br/>remedial measures.</li> </ol> | <ol> <li>Confirm receipt of<br/>notification of failure<br/>in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial<br/>measures properly<br/>implemented.</li> </ol>                                                                                                                                                                                                                                                                                                                                     | <ol> <li>Take immediate<br/>action to avoid<br/>further exceedance;</li> <li>Submit proposals for<br/>remedial actions to<br/>IEC within 3<br/>working days of<br/>notification;</li> <li>Implement the<br/>agreed proposals;</li> <li>Amend proposal if<br/>appropriate.</li> </ol>                                                                                                                                                 |
| Exceedance<br>for two or<br>more<br>consecutive<br>samples | <ol> <li>Notify IEC, ER, Contractor and<br/>EPD;</li> <li>Identify sources;</li> <li>Repeat measurement to<br/>confirm findings;</li> <li>Increase monitoring frequency<br/>to daily;</li> <li>Carry out analysis of<br/>Contractor's working<br/>procedures to determine<br/>possible mitigation to be<br/>implemented;</li> <li>Arrange meeting with IEC and<br/>ER to discuss the remedial<br/>actions to be taken;</li> <li>Assess effectiveness of<br/>Contractor's remedial actions<br/>and keep IEC, EPD and ER<br/>informed of the results;</li> <li>If exceedance stops cease<br/>additional monitoring.</li> </ol> | <ol> <li>Discuss amongst ER,<br/>ET and Contractor on<br/>the potential remedial<br/>actions;</li> <li>Review Contractor's<br/>remedial actions<br/>whenever necessary to<br/>assure their<br/>effectiveness and<br/>advise the ET<br/>accordingly.</li> <li>Supervise the<br/>implementation of<br/>remedial measures.</li> </ol>                               | <ol> <li>Confirm receipt of<br/>notification of failure<br/>in writing;</li> <li>Notify Contractor;</li> <li>In consultation with<br/>IEC, agree with the<br/>Contractor on the<br/>remedial measures to<br/>be implemented;</li> <li>Ensure remedial<br/>measures properly<br/>implemented;</li> <li>If exceedance<br/>continues, consider<br/>what portion of the<br/>work is responsible<br/>and instruct the<br/>Contractor to stop<br/>that portion of work<br/>until the exceedance<br/>is abated</li> </ol> | <ol> <li>Take immediate<br/>action to avoid<br/>further exceedance;</li> <li>Submit proposals for<br/>remedial actions to<br/>IEC within 3<br/>working days of<br/>notification;</li> <li>Implement the<br/>agreed proposals;</li> <li>Resubmit proposals<br/>if problem still not<br/>under control;</li> <li>Stop the relevant<br/>portion of works as<br/>determined by the<br/>ER until the<br/>exceedance is abated.</li> </ol> |



Appendix G

**Monitoring Schedule** 



### **Monitoring Schedule in the Reporting Period – December 2017**

|     | DATE      | AIR QUALITY  | NOISE                 |
|-----|-----------|--------------|-----------------------|
|     |           | 24-HOUR TSP  | L <sub>eq</sub> 30min |
| Fri | 1-DEC-17  |              |                       |
| SAT | 2-DEC-17  |              | $\checkmark$          |
| SUN | 3-DEC-17  |              |                       |
| Mon | 4-DEC-17  |              |                       |
| TUE | 5-DEC-17  |              |                       |
| WED | 6-DEC-17  | $\checkmark$ |                       |
| THU | 7-DEC-17  |              |                       |
| Fri | 8-DEC-17  |              | $\checkmark$          |
| SAT | 9-DEC-17  |              |                       |
| SUN | 10-DEC-17 |              |                       |
| Mon | 11-DEC-17 |              |                       |
| TUE | 12-DEC-17 | $\checkmark$ |                       |
| WED | 13-DEC-17 |              |                       |
| THU | 14-DEC-17 |              | $\checkmark$          |
| Fri | 15-DEC-17 |              |                       |
| SAT | 16-DEC-17 |              |                       |
| SUN | 17-DEC-17 |              |                       |
| Mon | 18-DEC-17 | ✓            |                       |
| TUE | 19-DEC-17 |              |                       |
| WED | 20-DEC-17 |              | $\checkmark$          |
| THU | 21-DEC-17 |              |                       |
| Fri | 22-DEC-17 |              |                       |
| SAT | 23-DEC-17 | ✓            |                       |
| SUN | 24-DEC-17 |              |                       |
| Mon | 25-DEC-17 |              |                       |
| TUE | 26-DEC-17 |              |                       |
| WED | 27-DEC-17 |              |                       |
| THU | 28-DEC-17 |              |                       |
| Fri | 29-DEC-17 | ✓            |                       |
| SAT | 30-DEC-17 |              | $\checkmark$          |
| SUN | 31-DEC-17 |              |                       |

| ✓ | Monitoring Day           |
|---|--------------------------|
|   | Sunday or Public Holiday |

### **Air Quality Monitoring Location**

A1a - Proposed monitoring station at Southern Playground works area

### **Construction Noise Monitoring Location:**

N1 - 2/F floor of Hennessey Building

N2a - Rooftop of Chiu Hin Mansion



|     | DATE      | AIR QUALITY  | NOISE                 |
|-----|-----------|--------------|-----------------------|
|     |           | 24-HOUR TSP  | L <sub>EQ</sub> 30MIN |
| Mon | 1-JAN-18  |              |                       |
| TUE | 2-JAN-18  |              |                       |
| WED | 3-JAN-18  |              |                       |
| THU | 4-JAN-18  | ✓            |                       |
| Fri | 5-JAN-18  |              | $\checkmark$          |
| SAT | 6-JAN-18  |              |                       |
| SUN | 7-JAN-18  |              |                       |
| Mon | 8-JAN-18  |              |                       |
| TUE | 9-JAN-18  |              |                       |
| WED | 10-JAN-18 | $\checkmark$ |                       |
| Thu | 11-JAN-18 |              | $\checkmark$          |
| Fri | 12-JAN-18 |              |                       |
| SAT | 13-JAN-18 |              |                       |
| SUN | 14-JAN-18 |              |                       |
| Mon | 15-JAN-18 |              |                       |
| TUE | 16-JAN-18 | $\checkmark$ |                       |
| WED | 17-JAN-18 |              | $\checkmark$          |
| Thu | 18-JAN-18 |              |                       |
| Fri | 19-JAN-18 |              |                       |
| SAT | 20-JAN-18 |              |                       |
| SUN | 21-JAN-18 |              |                       |
| Mon | 22-JAN-18 | $\checkmark$ |                       |
| TUE | 23-JAN-18 |              | ✓                     |
| WED | 24-Jan-18 |              |                       |
| Thu | 25-JAN-18 |              |                       |
| Fri | 26-JAN-18 |              |                       |
| SAT | 27-JAN-18 | $\checkmark$ |                       |
| SUN | 28-JAN-18 |              |                       |
| Mon | 29-JAN-18 |              | $\checkmark$          |
| TUE | 30-JAN-18 |              |                       |
| WED | 31-JAN-18 |              |                       |

### **Monitoring Schedule for the Coming Month – January 2018**

| $\checkmark$ | Monitoring Day           |
|--------------|--------------------------|
|              | Sunday or Public Holiday |

### Air Quality Monitoring Location

A1a - Proposed monitoring station at Southern Playground works area

### **Construction Noise Monitoring Location:**

N1 - 2/F floor of Hennessey Building

N2a - Rooftop of Chiu Hin Mansion



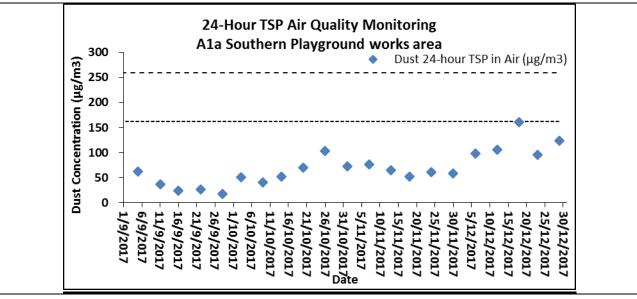
### Appendix H

### **Database of Monitoring Results**



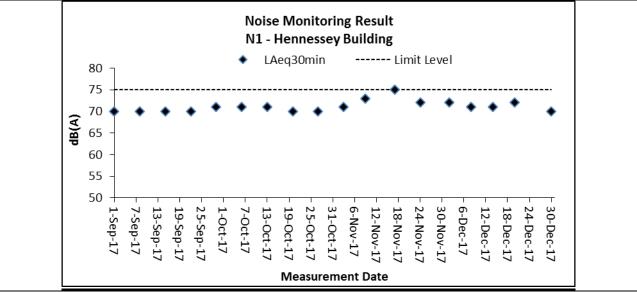
### **Result of 24-hour TSP Monitoring**

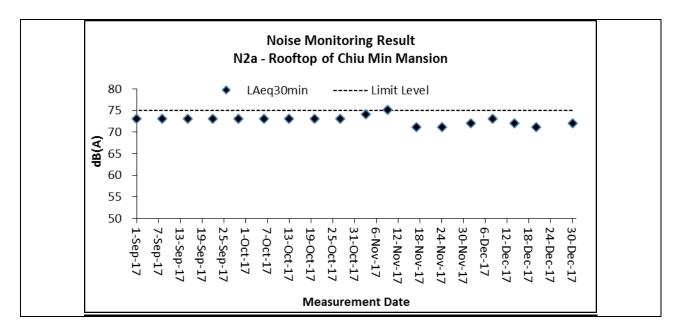
| Location: A | ocation: A1a (Proposed monitoring station at Southern Playground works area) |              |          |                 |     |               |      |                      |                         |                                    |                                        |                      |        |                  |                                       |
|-------------|------------------------------------------------------------------------------|--------------|----------|-----------------|-----|---------------|------|----------------------|-------------------------|------------------------------------|----------------------------------------|----------------------|--------|------------------|---------------------------------------|
| Date        | Sample<br>Number                                                             | Elapsed Time |          |                 |     | Chart Reading |      | Ave.                 | Standard                |                                    |                                        | Filter Weight<br>(g) |        | Weight<br>Dust   | Dust<br>24-hour                       |
|             |                                                                              | Initial      | Final    | Actual<br>(min) | Min | Max           | Ave  | <b>Тетр.</b><br>(°С) | Ave.<br>Press.<br>(hPa) | Flow Rate<br>(m <sup>3</sup> /min) | Air<br>Volume<br>(std m <sup>3</sup> ) | Initial              | Final  | Collected<br>(g) | TSP in<br>Air<br>(μg/m <sup>3</sup> ) |
| 6-Dec-17    | 21953                                                                        | 13547.36     | 13571.16 | 1428.00         | 40  | 42            | 41.0 | 18.9                 | 1020.4                  | 1.25                               | 1789                                   | 2.5732               | 2.7468 | 0.1736           | 97                                    |
| 12-Dec-17   | 21965                                                                        | 13571.16     | 13595.02 | 1431.60         | 36  | 41            | 38.5 | 18.5                 | 1020                    | 1.18                               | 1688                                   | 2.5504               | 2.7288 | 0.1784           | 106                                   |
| 18-Dec-17   | 22008                                                                        | 13595.02     | 13618.85 | 1429.80         | 45  | 48            | 46.5 | 17.5                 | 1021.1                  | 1.42                               | 2031                                   | 2.5719               | 2.8970 | 0.3251           | 160                                   |
| 23-Dec-17   | 22028                                                                        | 13617.85     | 13642.10 | 1455.00         | 38  | 41            | 39.5 | 17.2                 | 1020.8                  | 1.21                               | 1764                                   | 2.5363               | 2.7040 | 0.1677           | 95                                    |
| 29-Dec-17   | 21969                                                                        | 13642.10     | 13666.50 | 1464.00         | 38  | 40            | 39.0 | 16.8                 | 1020.2                  | 1.20                               | 1753                                   | 2.5770               | 2.7935 | 0.2165           | 123                                   |




Appendix I

**Graphical Plots** 





### <u>Air Quality</u>





### Construction Noise







### Appendix J

### **Meteorological Information**

|           |     | Meteorological Data downloaded from H                 | KO in the                 | Reporting                 | g Period                |                               |      |
|-----------|-----|-------------------------------------------------------|---------------------------|---------------------------|-------------------------|-------------------------------|------|
|           |     |                                                       |                           |                           |                         | Park Station                  |      |
| Date      | 2   | Weather                                               | Total<br>Rainfall<br>(mm) | Mean Air<br>Temp.<br>(°C) | Wind<br>Speed<br>(km/h) | Mean Relative<br>Humidity (%) |      |
| 1-Dec-17  | Fri | Fine and dry in the afternoon.                        | Trace                     | 21.6                      | 9                       | 70                            | NE   |
| 2-Dec-17  | Sat | Cloudy periods tonight.                               | 0                         | 20.5                      | 10                      | 71                            | W    |
| 3-Dec-17  | Sun | Moderate east to northeasterly winds                  | 0                         | 20.9                      | 5.1                     | 70.2                          | W    |
| 4-Dec-17  | Mon | Cloudy periods tonight.                               | 0                         | 20.7                      | 6.5                     | 69                            | E/NE |
| 5-Dec-17  | Tue | Moderate east to northeasterly winds                  | 0                         | 18.4                      | 7.6                     | 66                            | NE   |
| 6-Dec-17  | Wed | Cloudy periods tonight.                               | 0                         | 19.4                      | 8.2                     | 64.7                          | SE   |
| 7-Dec-17  | Thu | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 19                        | 15                      | 64.7                          | E/SE |
| 8-Dec-17  | Fri | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 17.3                      | 11.7                    | 39.7                          | N/NE |
| 9-Dec-17  | Sat | Moderate to fresh easterly winds.                     | 0                         | 15.4                      | 10.1                    | 40                            | NE   |
| 10-Dec-17 | Sun | Moderate to fresh easterly winds.                     | 0                         | 17.6                      | 6                       | 48                            | W/NW |
| 11-Dec-17 | Mon | Moderate east to northeasterly winds                  | 0                         | 19.3                      | 8.2                     | 41.5                          | E/SE |
| 12-Dec-17 | Tue | Fine and dry in the afternoon.                        | Trace                     | 19.1                      | 8.2                     | 57.5                          | E/SE |
| 13-Dec-17 | Wed | Cloudy periods tonight.                               | Trace                     | 18.4                      | 12                      | 72.5                          | E/SE |
| 14-Dec-17 | Thu | Moderate east to northeasterly winds                  | Trace                     | 19.6                      | 13.5                    | 71                            | SE   |
| 15-Dec-17 | Fri | Cloudy periods tonight.                               | 0                         | 20.3                      | 11.1                    | 74.2                          | E/SE |
| 16-Dec-17 | Sat | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 15.3                      | 12.0                    | 74.5                          | SE   |
| 17-Dec-17 | Sun | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 11.7                      | 8.2                     | 58.7                          | N/NE |
| 18-Dec-17 | Mon | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 12.6                      | 7.9                     | 49.8                          | N/NE |
| 19-Dec-17 | Tue | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 13.5                      | 9.5                     | 36.2                          | N/NE |
| 20-Dec-17 | Wed | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 15.4                      | 11.2                    | 26.5                          | N/NE |
| 21-Dec-17 | Thu | Fine and dry in the afternoon.                        | 0                         | 15.2                      | 10.5                    | 40                            | SE   |
| 22-Dec-17 | Fri | Cloudy periods tonight.                               | 0                         | 17.3                      | 8                       | 54.7                          | E/SE |
| 23-Dec-17 | Sat | Moderate east to northeasterly winds                  | 0                         | 19.3                      | 10                      | 61                            | SE   |
| 24-Dec-17 | Sun | Cloudy periods tonight.                               | 0                         | 20.7                      | 9                       | 62                            | Е    |
| 25-Dec-17 | Mon | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 18.3                      | 11                      | 50                            | SE   |
| 26-Dec-17 | Tue | Fine and very dry. Moderate to fresh northerly winds. | 0                         | 18.2                      | 10.3                    | 66.7                          | SE   |
| 27-Dec-17 | Wed | Moderate to fresh easterly winds.                     | 0                         | 18.5                      | 14.9                    | 64.7                          | E/SE |
| 28-Dec-17 | Thu | Moderate to fresh easterly winds.                     | Trace                     | 18.8                      | 10.5                    | 68.5                          | E/SE |
| 29-Dec-17 | Fri | Moderate to fresh easterly winds.                     | 0                         | 19.9                      | 8.3                     | 66.5                          | E/SE |
| 30-Dec-17 | Sat | Bright periods in the afternoon.                      | 0                         | 20.5                      | 7.9                     | 67.2                          | SE   |
| 31-Dec-17 | Sun | Mainly cloudy with one or two light rain patches.     | Trace                     | 19                        | 7.1                     | 68.0                          | Е    |



### Appendix K

### Monthly Summary Waste Flow Table

### Wan Chai Station Lee Tung Street Subway- C6593-13C

#### Monthly Summary Waste Flow Table for 2017

| Name of Emp | e of Employer: MTR Corporation Limited |                    |                    |                      |                      |                      |                      |         |         |                        | Contract No.: C65931-13C                                    |                                  |                      |                   |                                                             |          |                                  |          |                   |                                   |
|-------------|----------------------------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|---------|---------|------------------------|-------------------------------------------------------------|----------------------------------|----------------------|-------------------|-------------------------------------------------------------|----------|----------------------------------|----------|-------------------|-----------------------------------|
|             |                                        |                    |                    | Actual Quantitie     | s of Inert C&D       | Materials Ger        | nerated Monthl       | у       |         |                        | Actual Quantities of Non-Inert C&D Wastes Generated Monthly |                                  |                      |                   | Actual Quantities of Non-Inert C&D Wastes Generated Monthly |          |                                  |          |                   |                                   |
| Month       | Total<br>Quantity<br>Generated         | Broken<br>Concrete | Building<br>Debris | Mixed Rock<br>& Soil | Bentonite            | Rubbish              | Slurry               | Rock    | Soil    | Reused in this Project | Metals                                                      | Paper/<br>cardboard<br>packaging | Plastics             | Chemical<br>Waste | Others, e.g.<br>general<br>refuse                           | Metals   | Paper/<br>cardboard<br>packaging | Plastics | Chemical<br>Waste | Others, e.g.<br>general<br>refuse |
|             | (in m³)                                | (in m³)            | (in m³)            | (in m³)              | (in m <sup>3</sup> ) | (in m <sup>3</sup> ) | (in m <sup>3</sup> ) | (in m³) | (in m³) | (in m³)                | (in m³)                                                     | (in m³)                          | (in m <sup>3</sup> ) | (in m3/ Litre)    | (in m³)                                                     | (in ton) | (in ton)                         | (in ton) | (in Litre)        | (in ton)                          |
|             |                                        |                    |                    |                      |                      |                      |                      |         |         |                        |                                                             |                                  |                      |                   |                                                             |          |                                  |          |                   |                                   |
| Jan         | 463                                    | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0       | 463     | 0                      | 0                                                           | 0                                | 0                    | 0                 | 0                                                           | 0        | 0                                | 0        | 0                 | 0                                 |
| Feb         | 267                                    | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0       | 267     | 0                      | 0                                                           | 0                                | 0                    | 0                 | 0                                                           | 0        | 0                                | 0        | 0                 | 0                                 |
| Mar         | 19.15                                  | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0       | 12.6    | 0                      | 0                                                           | 0                                | 0                    | 0                 | 6.55                                                        | 0        | 0                                | 0        | 0                 | 0                                 |
| Apr         | 54.88                                  | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0       | 18.4    | 0                      | 0                                                           | 0                                | 0                    | 0                 | 36.48                                                       | 0        | 0                                | 0        | 0                 | 0                                 |
| May         | 47.49                                  | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0       | 17.35   | 0                      | 0                                                           | 0                                | 0                    | 0                 | 30.14                                                       | 0        | 0                                | 0        | 0                 | 0                                 |
| Jun         | 45.88                                  | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0       | 0       | 0                      | 0                                                           | 0                                | 0                    | 0                 | 45.88                                                       | 0        | 0                                | 0        | 0                 | 0                                 |
| Jul         | 22.5                                   | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0       | 0       | 0                      | 0                                                           | 0                                | 0                    | 0                 | 22.5                                                        | 0        | 0                                | 0        | 0                 | 0                                 |
| Aug         | 97.54                                  | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0       | 59.82   | 0                      | 0                                                           | 0                                | 0                    | 0                 | 37.72                                                       | 0        | 0                                | 0        | 0                 | 0                                 |
| Sep         | 139.81                                 | 0                  | 0                  | 129.3                | 0                    | 0                    | 0                    | 0       | 0       | 0                      | 0                                                           | 0                                | 0                    | 0                 | 10.51                                                       | 0        | 0                                | 0        | 0                 | 0                                 |
| Oct         | 59.67                                  | 0                  | 0                  | 55.32                | 0                    | 0                    | 0                    | 0       | 0       | 0                      | 0                                                           | 0                                | 0                    | 0                 | 4.35                                                        | 0        | 0                                | 0        | 0                 | 0                                 |
| Nov         | 21.29                                  | 0                  | 0                  | 16.31                | 0                    | 0                    | 0                    | 0       | 0       | 0                      | 0                                                           | 0                                | 0                    | 0                 | 4.98                                                        | 0        | 0                                | 0        | 0                 | 0                                 |
| Dec         | 7.64                                   | 0                  | 0                  | 5                    | 0                    | 0                    | 0                    | 0       | 0       | 0                      | 0                                                           | 0                                | 0                    | 0                 | 2.64                                                        | 0        | 0                                | 0        | 0                 | 0                                 |
| Total       | 1245.85                                | 0                  | 0                  | 205.93               | 0                    | 0                    | 0                    | 0       | 838.17  | 0                      | 0                                                           | 0                                | 0                    | 0                 | 201.75                                                      | 0        | 0                                | 0        | 0                 | 0                                 |



### Appendix L

### Implementation Schedule for Environmental Mitigation Measures (ISEMM)



| Project<br>Profile<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                 | Objectives of the<br>Recommended<br>Measures & Main<br>Concerns to address | Implementation<br>Parties | Location of the measure | When to<br>implement<br>the measure | Relevant<br>requirements or<br>standards for the<br>measure to achieve                |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|-------------------------|-------------------------------------|---------------------------------------------------------------------------------------|
| NOISE IM                   | PACT                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |                           |                         |                                     |                                                                                       |
| S.5.1.1                    | <u>Use of quieter plant</u>                                                                                                                                                                                                                                                                                                                                                                                     | To minimize<br>construction noise<br>emissions                             | Contractor                | Work site               | Construction<br>Stage               | ProPECC PN2/93<br>and Noise Control<br>Ordinance                                      |
| S.5.1.1                    | <ul> <li>Use of noise enclosure and movable barrier</li> <li>movable barrier can achieve a 5 dB(A) reduction for movable PME and 10 dB(A) reduction for stationary PME;</li> <li>noise enclosure can achieve 15dB(A) reduction for PME;</li> <li>noise enclosure is proposed to be built after open excavation in order to minimize the noise impact due to further excavation work and construction</li> </ul> | To minimize<br>construction noise<br>emissions                             | Contractor                | Work site               | Construction<br>Stage               | ProPECC PN2/93,<br>Noise Control<br>Ordinance and<br>EIAO Guidance<br>Note NO. 9/2010 |
|                            | of subway. The enclosure should either be provided with acoustic door for access purpose which should be kept closed during the construction works or should be designed with no direct line of sight from the open side to the NSRs;                                                                                                                                                                           |                                                                            |                           |                         |                                     |                                                                                       |
|                            | • A typical design barrier with a steel frame of vertical / cantilever type would be adopted and located close to the noise generating part of PME;                                                                                                                                                                                                                                                             |                                                                            |                           |                         |                                     |                                                                                       |
|                            | • Barrier material of surface mass in excess of 7kg/m <sup>2</sup> shall be required to achieve the maximum screening effect (and minimum 10kg/m <sup>2</sup> for noise enclosure);                                                                                                                                                                                                                             |                                                                            |                           |                         |                                     |                                                                                       |
|                            | • The length of barrier should generally be at least five times greater than its height and the minimum height of a barrier should be such that no part of the noise source will be visible from the noise sensitive receiver being protected.                                                                                                                                                                  |                                                                            |                           |                         |                                     |                                                                                       |
| S.5.1.1                    | General Construction Noise Control Measures                                                                                                                                                                                                                                                                                                                                                                     | To minimize                                                                | Contractor                | Work site               | Construction                        | ProPECC PN2/93                                                                        |
|                            | • The Code of Practice on Good Management Practice to Prevent Violation of the Noise Control Ordinance (Chapter 400) (for Construction Industry) published by EPD shall be adopted;                                                                                                                                                                                                                             | construction noise<br>emissions                                            |                           |                         | Stage                               | and Noise Control<br>Ordinance                                                        |
|                            | • The statutory and non-statutory requirements and guidelines shall be complied with;                                                                                                                                                                                                                                                                                                                           |                                                                            |                           |                         |                                     |                                                                                       |
|                            | • Approval for the method of working, equipment and noise mitigation measures intended to be used at the site shall be granted from the Project Engineer before commencing any work;                                                                                                                                                                                                                            |                                                                            |                           |                         |                                     |                                                                                       |



| Project<br>Profile<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                 | Objectives of the<br>Recommended<br>Measures & Main<br>Concerns to address | Implementation<br>Parties | Location of the measure | When to<br>implement<br>the measure | Relevant<br>requirements or<br>standards for the<br>measure to achieve |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|-------------------------|-------------------------------------|------------------------------------------------------------------------|
|                            | • Working methods to minimize the noise impact on the surrounding NSRs shall be formulated and executed, and the implementation of these methods shall be monitored by experienced personnel with suitable training;                                                                                                                            |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Noisy equipment and noisy activities shall be located as far away from the NSRs as is practical;                                                                                                                                                                                                                                              |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Unused equipment shall be turned off;                                                                                                                                                                                                                                                                                                         |                                                                            |                           |                         |                                     |                                                                        |
|                            | • PME should be kept to a minimum and the parallel use of noisy equipment / machinery should be avoided;                                                                                                                                                                                                                                        |                                                                            |                           |                         |                                     |                                                                        |
|                            | • All plant and equipment shall be maintained regularly; and                                                                                                                                                                                                                                                                                    |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Material stockpiles and other structures shall be effectively utilized as noise barriers, whenever practicable.                                                                                                                                                                                                                               |                                                                            |                           |                         |                                     |                                                                        |
| AIR QUAI                   | LITY IMPACT                                                                                                                                                                                                                                                                                                                                     |                                                                            |                           |                         |                                     |                                                                        |
| S.5.1.2                    | Construction Dust Control Measures                                                                                                                                                                                                                                                                                                              | To minimize the dust                                                       | Contractor                | Work site               | Construction                        | Air Pollution                                                          |
|                            | • Regular watering to reduce dust emissions from all exposed site surface, particularly during dry weather;                                                                                                                                                                                                                                     | impacts arising from<br>the construction<br>works                          |                           |                         | Stage                               | Control<br>(Construction Dust)<br>Regulation                           |
|                            | • Frequent watering for particularly dusty construction areas and areas close to air sensitive receivers;                                                                                                                                                                                                                                       |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Covering of stockpile of excavated dusty materials, if any, with impervious sheeting or spraying with water to maintain the entire surface wet;                                                                                                                                                                                               |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Provision of vehicle washing facilities at the entry and exit points of site;                                                                                                                                                                                                                                                                 |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Tarpaulin covering of any dusty materials being transported to and from site by vehicle;                                                                                                                                                                                                                                                      |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Positioning of construction plant at maximum practicable distance from air sensitive receivers; and                                                                                                                                                                                                                                           |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Due to the small size of the works sites and lack of space for stockpiling,<br>excavated materials should be hauled off-site almost immediately.<br>However, in the event of any stockpiled excavated materials, they should be<br>covered with tarpaulin and be removed offsite as soon as practicable to<br>avoid any dust nuisance arising |                                                                            |                           |                         |                                     |                                                                        |



| Project<br>Profile<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                           | Objectives of the<br>Recommended<br>Measures & Main<br>Concerns to address | Implementation<br>Parties | Location of the measure | When to<br>implement<br>the measure | Relevant<br>requirements or<br>standards for the<br>measure to achieve |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|-------------------------|-------------------------------------|------------------------------------------------------------------------|
| -                          | UALITY IMPACT                                                                                                                                                                                                                                                                             | Ι                                                                          | 1                         |                         | 1                                   | Γ                                                                      |
| S.5.1.3                    | <ul> <li><u>Construction Water Quality Impact Measures</u></li> <li>Collection of wastewater into a sedimentation tank for treatment before discharge into the public drainage system;</li> </ul>                                                                                         | To reduce water<br>quality impact<br>induced by the<br>construction work   | Contractor                | Work site               | Construction<br>Stage               | ProPECC PN1/94;<br>Water Pollution<br>Control Ordinance                |
|                            | • Provision of silt trap and oil interceptor to remove the oil, lubricants, grease, silt, grit and debris from the wastewater prior to discharge to the public stormwater system. The silt traps and oil interceptors should be cleaned and maintained regularly;                         |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Installation of wheel washing facilities to minimize muddy runoff;                                                                                                                                                                                                                      |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Regular maintenance and inspection of drainage systems and erosion control and silt removal facilities;                                                                                                                                                                                 |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Management and monitoring of sewage treatment facilities (if any);                                                                                                                                                                                                                      |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Any foul effluent should not be discharged into any public sewer and stormwater drain, unless an effluent discharge permit is obtained under the WPCO by the Contractor;                                                                                                                |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Coverage of stockpiles of C&D materials (if any) during rainstorms; and                                                                                                                                                                                                                 |                                                                            |                           |                         |                                     |                                                                        |
|                            | • Site toilet facilities, if needed, should be chemical toilets or should have the sewage discharge directed to a foul sewer.                                                                                                                                                             |                                                                            |                           |                         |                                     |                                                                        |
| WASTE M                    | IANAGEMENT                                                                                                                                                                                                                                                                                | I                                                                          |                           |                         | 1                                   |                                                                        |
| S.5.1.4                    | Construction Waste Management Measures                                                                                                                                                                                                                                                    | To adopt waste                                                             | Contractor                | Work site               | Construction                        | Waste Disposal                                                         |
|                            | • Scrap metals or abandoned equipment should be recycled if possible;                                                                                                                                                                                                                     | management<br>measures in the way                                          |                           |                         | Stage                               | Ordinance (Cap. 354); Waste                                            |
|                            | • Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable manner;                                                                                                                                                                             | of avoiding,<br>minimizing, reusing                                        |                           |                         |                                     | Disposal (Chemical<br>Waste) (General)                                 |
|                            | • The Contractor should adopt a trip ticket system for the disposal of C&D materials to any designated public filling facility and/or landfill. Independent audits of the Contractor and resident site staff will be undertaken to ensure that the correct procedures are being followed; | and recycling so as to<br>reduce waste<br>generation                       |                           |                         |                                     | Regulation; DEVB<br>TCW No. 6/2010;<br>ETWB TCW No.<br>19/2005.        |
|                            | • Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes; and                                                                                                                                                  |                                                                            |                           |                         |                                     |                                                                        |



| Project<br>Profile<br>Ref. | <b>Recommended Mitigation Measures</b>                                                                                                                                                                                                                               | Objectives of the<br>Recommended<br>Measures & Main<br>Concerns to address | Implementation<br>Parties | Location of the measure               | When to<br>implement<br>the measure | Relevant<br>requirements or<br>standards for the<br>measure to achieve |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|---------------------------------------|-------------------------------------|------------------------------------------------------------------------|
|                            | • All general refuse should be segregated and stored in enclosed bins or compaction units and waste separation facilities for paper, aluminum cans, plastic bottles etc. should be provided to facilitate reuse or recycling of materials and their proper disposal. |                                                                            |                           |                                       |                                     |                                                                        |
| LANDSCA                    | PE AND VISUAL IMPACT                                                                                                                                                                                                                                                 |                                                                            |                           |                                       |                                     |                                                                        |
| S.5.1.5                    | <ul> <li>Landscape and Visual Measures</li> <li>Clear demarcation of works area to prevent damages to existing trees in close proximity;</li> </ul>                                                                                                                  | To reduce landscape<br>and visual impact by<br>construction works.         | Contractor                | Work Site<br>and nearby<br>playground | Construction<br>Stage               | EIAO; ETWB<br>TCW No. 3/2006.                                          |
|                            | • Protection of all trees planned to be retained onsite;                                                                                                                                                                                                             |                                                                            |                           |                                       |                                     |                                                                        |
|                            | • Preserving all affected trees by transplanting where practical. Tree transplanting application and tree removal application shall be submitted for approval in accordance with ETWB TCW 3/2006; and                                                                |                                                                            |                           |                                       |                                     |                                                                        |
|                            | • Screening of construction works by hoardings/noise barriers around Works area in visually unobtrusive colors.                                                                                                                                                      |                                                                            |                           |                                       |                                     |                                                                        |