Civil Engineering and Development Department

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

Monthly Environmental Monitoring and Audit Report for December 2016

(version 1.0)

Approved By

(Dr Priscilla Choy,

Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

8.	LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	27
7.	MONITORING ON CULTURAL HERITAGE	26
	Post-Translocation Coral Monitoring	25
6.	ECOLOGY	25
	Laboratory Analytical Methods QA/QC Requirements Decontamination Procedures Sampling Management and Supervision Results and Observations	22 23 23
	Monitoring Requirements Monitoring Locations Monitoring Equipments Monitoring Parameters and Frequency Monitoring Methodology	18 19 21
5.	Monitoring Methodology and QA/QC Procedure Results and Observations WATER QUALITY	16 17
	Monitoring Requirements	15
4.	NOISE	15
	Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Results and Observations	11 11
	Monitoring Requirements	
3.	Status of Environmental Licences, Notification and Permits Summary of EM&A Requirements	9
	Background Project Organizations Construction Activities undertaken during the Reporting Month	6 7
2.	Purpose of the Report	4
1.	INTRODUCTION	
	Introduction Environmental Monitoring Works Key Information in the Reporting Month Future Key Issues	3
	EXECUTIVE SUMMARY	

9.	LAND	FILL GAS MONITORING	28
	Monito	ring Requirement	28
		ring Parameters, Locations and Frequency	
		and Observations	
10.	ENVIR	RONMENTAL AUDIT	29
	Site Au	dits	29
	Implem	entation Status of Environmental Mitigation Measures	29
11.	WAST	E MANAGEMENT	32
12.	ENVIR	RONMENTAL NON-CONFORMANCE	33
	Summa	ry of Exceedances	33
	Summa	ry of Environmental Non-Compliance	33
		ry of Environmental Complaint	
	Summa	ry of Environmental Summon and Successful Prosecution	33
13.	FUTUI	RE KEY ISSUES	34
	Key Iss	ues for the Coming Month	34
		ring Schedule for the Next Month	
14.	CONC	LUSIONS AND RECOMMENDATIONS	36
	Conclus	sions	36
	Recom	mendations	37
LIS	T OF T	ABLES	
Tab	le I	Non-compliance Recorded for the Project in the Reporting Month	
Tab	le II	Summary Table for Key Information in the Reporting Month	
Tab	le 2.1	Key Project Contacts	
	le 2.2	Summary Table for Major Site Activities in the Reporting Month	
Tab	le 2.3	Construction Programme Showing the Inter-Relationship with Environmenta	ıl
T 1	1 2 4	Protection/Mitigation Measures	
	le 2.4	Summary of the Status of Environmental Licences, Notification and Permits	
	le 3.1 le 3.2	Locations for Air Quality Monitoring Air Quality Monitoring Equipment	
	le 3.2	Impact Dust Monitoring Parameters, Frequency and Duration	
	le 3.4	Major Dust Source during Air Quality Monitoring	
	le 4.1	Noise Monitoring Stations	
	le 4.2	Noise Monitoring Equipment	
	le 4.3	Noise Monitoring Parameters, Frequency and Duration	
	le 4.4	Major Noise Source during Noise Monitoring	
	le 4.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations	
Tab	le 5.1	Groundwater Quality Monitoring Stations	
Tab	le 5.2	Marine Water Quality Monitoring Stations	
Tab	le 5.3	Water Quality Monitoring Equipment	
Tab	le 5.4	Water Quality Monitoring Parameters and Frequency	
Tab	le 5.5	Methods for Laboratory Analysis for Water Samples	
	le 5.6	Summary of Groundwater Quality Monitoring Results	
	le 9.1	Landfill Gas Monitoring Equipment	
	le 10.1	Observations and Recommendations of Site Audit	
Tab	le 13.1	Summary Table for Site Activities in the next Reporting Period	

LIST OF FIGURES

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	Site Layout Plan Locations of Air Quality Monitoring Stations Locations of Construction Noise Monitoring Stations Locations of Groundwater Quality Monitoring Stations Locations of Marine Water Quality Monitoring Stations Locations of Landfill Gas Monitoring
LIST OF AP	PPENDICES
Appendix A	Action and Limit Levels
Appendix B	Copies of Calibration Certificates
Appendix C	Weather Information
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results and Graphical Presentations
Appendix F	24-hour TSP Monitoring Results and Graphical Presentations
Appendix G	Noise Monitoring Results and Graphical Presentations
Appendix H	Groundwater Quality Monitoring Results, Graphical Presentations and Laboratory
. 1° т	Testing Reports
Appendix I	Marine Water Quality Monitoring Results and Graphical Presentations
Appendix J	Quality Control Reports for Laboratory Analysis
Appendix K	Summary of Exceedance
Appendix L	Site Audit Summary Event and Action Plans
Appendix M	
Appendix N Appendix O	Implementation Schedule And Recommended Mitigation Measures Summaries of Environmental Complaint, Warning, Summon and Notification of
Appendix O	Successful Prosecution
Appendix P	Waste Generation in the Reporting Month
Appendix Q	Tentative Construction Programme
Appendix R	Record of Landfill Gas Monitoring by Contractor
Teponom it	100010 01 Dallatili Sub Mollitoring of Constantion

EXECUTIVE SUMMARY

Introduction

- 1. This is the 2nd Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O Lam Tin Tunnel Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in December 2016.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works; and
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance in the reporting month for the Project is tabulated in Table I.

Table I Non-compliance Record for the Project in the Reporting Month

Environmental Monitoring	No. of Exceedance		No. of Exceedance due to Construction Activities of this Project		Action Taken
8	Action Level	Limit Level	Action Level	Limit Level	
Air Quality	0	0	0	0	N/A
Noise	8	0	8	0	N/A
Groundwater Quality	0	6	0	0	N/A (Refer to Part 8, Executive Summary)
Marine Water Quality	0	0	0	0	N/A
Groundwater Level Monitoring (Piezometer Monitoring)	N/A	N/A	N/A	N/A	N/A
Ecological	N/A	N/A	N/A	N/A	N/A
Cultural Heritage	N/A	N/A	N/A	N/A	N/A
Landfill Gas	0	0	0	0	N/A

Air Quality Monitoring

5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No

Action/Limit Level exceedance was recorded.

6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except at Station AM4(A) – Cha Kwo Ling Public Cargo Working Area Administrative Office on 30 December 2016 was cancelled due to power supply failure. The monitoring shall be rescheduled to early January 2017. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7. All noise monitoring was conducted as scheduled in the reporting month. Eight Action Level exceedance was recorded due to the documented complaints received from monitoring station in the reporting month. No Limit Level exceedance was recorded.

Water Quality Monitoring

- 8. Groundwater monitoring was conducted as scheduled in the reporting month. Ten Limit Level exceedance were recorded. The exceedances are considered to be non-Project related.
- 9. Marine Water Quality Monitoring commenced on 19 December 2016 as marine construction for Tsueng Kwan O Lam Tin Tunnel reclamation has commenced accordingly. All marine water monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 10. Construction phase daily piezometer monitoring was not carried out in this reporting period as there is no tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.

Ecological Monitoring

11. Post-translocation coral monitoring survey shall be conducted once every 3 months for a period of 12 months after completion of coral translocation. The survey is scheduled in February 2017 tentatively.

Monitoring on Cultural Heritage

12. Monitoring of vibration impacts at Cha Kwo Ling Tin Hau Temple has not commenced in the reporting period as there is no construction works less than 100m from the temple.

Landscape and Visual Monitoring and Audit

13. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 10.

Landfill Gas Monitoring

14. Monitoring of landfill gases commenced in the reporting month and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded. *Environmental Site Inspection*

15. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. The representative of the IEC joined the site inspection on 28 December 2016. Details of the audit findings and implementation status are presented in Section 10.

Waste Management

16. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Details of waste management data is presented in Section 11 and **Appendix P**.

Key Information in the Reporting Month

17. Summary of key information in the reporting month is tabulated in Table II.

Table II Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark	
Event	Number	Nature	ACTION TAKEN	Status	Kelliai K	
Complaint received	6	Air quality, construction noise and night-time lighting nuisance due to works near Ocean Shores	Under Investigation	In-progress		
Complaint referred by EPD	2	Construction noise and dust nuisance at Yau Lai Estate	Under Investigation	In-progress		
Reporting Changes	0		N/A	N/A		
Notifications of any summons & prosecutions received	0		N/A	N/A		

Future Key Issues

- 18. The future key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Design and Construction

1. INTRODUCTION

Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and 1.1 Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 2nd Monthly EM&A report summarizing the EM&A works for the Project in December 2016.

Purpose of the Report

This is the 2nd Monthly EM&A Report which summarises the impact monitoring results and 1.2 audit findings for the EM&A programme during the reporting period in December 2016. The commencement date of construction of this Project is 7 November 2016.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction** purpose and structure of the report.
 - Section 2: Contract Information summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: Air Quality Monitoring summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Noise Monitoring summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: Water Quality Monitoring summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: Ecological Monitoring summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 7: Monitoring on Cultural Heritage –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.
 - Section 8: Landscape and Visual Monitoring Requirements summarises the requirements of landscape and visual monitoring

4

Section 9: Landfill Gas Monitoring – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, monitoring results and Limit Levels and Action Plan

Section 10: **Environmental Site Inspection** - summarises the audit findings of the weekly site inspections undertaken within the reporting month.

Section 11: **Waste Management** – summarises the waste management data in the reporting month.

Section 12: **Environmental Non-conformance** - summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.

Section 13: **Future Key Issues** - summarises the impact forecast and monitoring schedule for the next three months.

Section 14: Conclusions and Recommendation

2. PROJECT INFORMATION

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). The "Environmental Review Report for Variations of Environmental Permit" (ERR) was submitted to EPD in December 2015 to demonstrate that no unacceptable impacts would be resulted from the proposed alternative design in seawall foundation for Road P2 reclamation. Subsequently, variation to the EP was applied and the latest EP (EP no.: EP-458/2013/B) was issued by the Director of Environmental Protection (DEP) in December 2015.

Project Organizations

- 2.4 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) ANewR Consulting Limited (ANewR)
- 2.5 The key contacts of the Project are shown in **Table 2.1**.

Table 2.1 Key Project Contacts

Party	Role	Contact Person	Phone No.	Fax No.
CEDD	Project Proponent	Mr. Chiang Nin Tat, Eric	2301 1384	2739 0076
AECOM	Engineer's Representative	Mr. KY Chan	3922 9000	2759 1698
Cinotech	Environmental	Dr. Priscilla Choy	2151 2089	3107 1388
Cinotech	Team	Ms. Ivy Tam	2151 2090	310/1300

ANewR	Independent Environmental Checker	Mr. Adi Lee	2618 2836	3007 8648
-------	---	-------------	-----------	-----------

Construction Activities undertaken during the Reporting Month

2.6 The major site activities undertaken in the reporting month included:

Table 2.2 Summary Table for Major Site Activities in the Reporting Month

Contract No.	Project Title	Site Activities (December 2016)			
NE/2015/01	Tseung Kwan O - Lam Tin	Lam Tin	1) Site Clearance		
	Tunnel - Main Tunnel and Associated Works	Interchange	2) Excavation for Tunnel Adit		
	Associated works		3) Haul Road Construction		
			4) Slope Feature no. 11NE-D/C119		
			(along Lei Yue Mun Road)		
			5) Dismantling of site workshops at		
			LCSD area		
		TKO	1) Haul Road Construction		
		Interchange	2) Temporary Barging Facilities		
NE/2015/02	Tseung Kwan O – Lam Tin	1) Predrilling	of Marine Borehole		
	Tunnel – Road P2 and	2) Piling work	s in Portion VIII		
	Associated Works	3) Installation of Silt Curtain			
		4) Construction of DSD Transformation Room			
		including RC, ABWF and E&M works			
		5) Backfilling and Pavement Works			
		6) Utilities De	tection and Trail Pit		

2.7 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge Use of quiet plant and well-maintained construction plant Provide movable noise barrier

Status of Environmental Licences, Notification and Permits

2.8 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Monthly EM&A Report for December 2016

Table 2.4 Summary of the Status of Environmental Licences, Notification and Permits

	immary of the Status of Envi	Valid Period					
Contract No.	Permit / License No.	From	To	Status			
Environmental	Permit (EP)		I	T			
N/A	EP-458/2013/B	31/12/2015	N/A	Valid			
Notification pursuant to Air Pollution Control (Construction Dust) Regulation							
NE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid			
1\L/2015/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid			
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid			
Billing Accoun	t for Construction Waste Dispo	sal	1				
NE/2015/01	Account No. 7025431	11/07/2016	N/A	Valid			
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid			
Registration of	Chemical Waste Producer						
317/2015/01	Waste Producer No. 5218-290-L2881-02	22/08/2016	N/A	Valid			
NE/2015/01	Waste Producer No. 5213- 833-L2532-03	22/08/2016	N/A	Valid			
NE/2015/02	Waste Producer No. 5213-838-C4094-01	19/08/2016	N/A	Valid			
Effluent Discha	arge License under Water Pollu	tion Control Or	dinance				
NE/2015/01	WT00025806-2016	22/11/2016	30/11/2021	Valid			
NE/2015/01	WT00026212-2016	25/11/2016	30/11/2021	Valid			
NE/2015/02	WT00026386-2016	15/12/2016	31/12/2021	Valid			
Construction N	loise Permit (CNP)						
	GW-RE0976-16	08/10/2016	20/03/2017	Valid			
	GW-RE1171-16	09/12/2016	25/05/2017	Superseded by CNP No. GW-RE1211-16			
NE/2015/01	GW-RE1183-16	16/12/2016	15/06/2017	Valid			
	GW-RE1211-16	24/12/2016	22/06/2017	Valid			
	GW-RE1216-16	23/12/2016	22/06/2017	Valid			
	GW-RE0988-16	11/10/2016	04/04/2017	Cancelled			
NE/2015/02	GW-RE1141-16	06/12/2016	17/05/2017	Valid			
	GW-RE1208-16	23/12/2016	22/06/2017	Valid			
Marine Dumpi	ng Permit						
NE/2015/02	EP/MD/17-118	1/12/2016	31/05/2017	Valid			

Summary of EM&A Requirements

- 2.9 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA Report.
- 2.10 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 10 of this report.
- 2.11 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project in December 2016.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. **Table 3.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 3.1 Locations for Air Quality Monitoring

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	Sai Tso Wan Recreation Ground	Ground Level
AM3	Yau Lai Estate Bik Lai House	Rooftop (41/F)
AM4 ⁽¹⁾	Sitting-out Area at Cha Kwo Ling Village	Ground Level
$AM4(A)^{(2)}(*)$	Cha Kwo Ling Public Cargo Working Area Administrative Office	Rooftop (3/F)
$AM5(A)^{(*)}$	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) (*)	Park Central, L1/F Open Space Area	1/F

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is recalibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.
- 3.5 **Table 3.2** summarizes the equipment to be used in the baseline air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

^(*) Air quality monitoring at designated station AM4(24-hr TSP), AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A) (24-hr TSP only), AM5(A) and AM6(A) respectively.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH Model: TE-5025A	1
1-hour TSP Dust Meter	Sibata Model No.: LD-3 / LD-3B	1
1-nour 1SP Dust Weter	Handheld Particle Counter Hal-HPC300	4
IIVC Complex	TISCH Model: TE-5170	1
HVS Sampler	GMW Model: GS2310	5
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of baseline air quality monitoring.

Table 3.3 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Period	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	0700 – 1900 hrs	3 times per day
AM1, AM2, AM3, AM4(A), AM5(A) and AM6(A)	24-hour TSP	24 hours	Daily

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(Equipment: Hal Technology; Model no. Hal-HPC300)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling

inlet has been released.

- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170) complete with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meter apart
 - the distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
 - a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
 - a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
 - no furnace or incinerator flue is nearby;
 - airflow around the sampler is unrestricted;
 - the sampler is more than 20 metres from the dripline;
 - any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
 - permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
 - a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

3.11 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the

manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.

- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminum strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters was equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 3.20 The following maintenance/calibration is required for the HVS:
 - The high volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.22 All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except at Station AM4(A) Cha Kwo Ling Public Cargo Working Area Administrative Office on 30 December 2016 was cancelled due to power supply failure. The monitoring shall be rescheduled to early January 2017. No Action/Limit Level exceedance was recorded.

- 3.23 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E** and **Appendix F** respectively.
- 3.25 The summary of exceedance record in reporting month is shown in **Appendix K**. No exceedance was recorded for the air quality monitoring.
- 3.26 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 3.4 Major Dust Source during Air Quality Monitoring

Station	Major Dust Source
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road
AM2 – Sai Tso Wan Recreation Ground	N/A
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road
AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office	Road Traffic at Cha Kwo Ling Road
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 8 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A)) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Table 4.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F

Remarks: * Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

Monitoring Equipments

4.3 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Level Meter	SVAN 955 / 957	8
Calibrator	SV30A	4
Calibrator	Brüel & Kjær 4231	2

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Stations	Parameter	Period	Frequency	Measurement
M1				Façade
M2	$L_{10}(30 \text{ min})$			Façade
M3	dB(A)			Façade
M4	$L_{90}(30 \text{ min})$	0700-1900 hrs on	Once per	Façade
M5	dB(A)	normal weekdays	week	Façade
M6(A)	$L_{eq}(30 \text{ min})$			Free Field
M7(A)	dB(A)			Free Field
M8(A)				Façade

Monitoring Methodology and QA/QC Procedure

- 4.5 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:

frequency weighting
time weighting
measurement time
A
Fast
30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement will be more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} was recorded. In addition, noise sources was recorded on a standard record sheet.
- Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.7 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels

from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.9 All noise monitoring was conducted as scheduled in the reporting month. Eight Action Level exceedance was recorded due to the documented complaints received from monitoring station in the reporting month. No Limit Level exceedance was recorded.
- 4.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 4.11 The summary of exceedance record in the reporting month is shown in **Appendix K**.
- 4.12 The major noise source identified at the designated noise monitoring stations are shown in **Table 4.4**.

Table 4.4 Major Noise Source during Noise Monitoring

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo Ling Road
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong Road
CM6(A)	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Road Traffic at O King Road near Ocean Shores
CM7(A)	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Road Traffic at Tong Yin Street
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4.13 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 4.5**.

Table 4.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)
CM1	65.5	
CM2	63.6	75
CM3	65.6	75
CM4	62.0	
CM5	68.2	70*
CM6(A)	61.9	
CM7(A)	58.3	75
CM8(A)	69.1	

(*) Noise Limit Level is 65 dB(A) during school examination periods.

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

5.1 Groundwater quality monitoring shall be conducted as identified in the EIA report (locations refer to Figure 4, Stream 1 to 3). Groundwater quality monitoring was not conducted at the other identified monitoring station in the EIA Report, Stream 4, as it was found to be not accessible due to safety reason. According to the EM&A Manual, dissolved oxygen (DO), pH, temperature, turbidity, suspended solids (SS), 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate are the parameters for the monitoring. **Appendix A** shows the established Action and Limit Levels.

Marine Water Quality

- Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- 5.3 Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.

Groundwater Level Monitoring (Piezometer Monitoring)

5.4 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring has not commenced in this reporting period.

Monitoring Locations

Groundwater Quality

5.5 Stream 1 – Stream 3 is designated for the groundwater quality monitoring according to EM&A Manual. The locations are also summarized in **Table 5.1** and shown on **Figure 4**.

Table 5.1 Groundwater Quality Monitoring Stations

Monitoring Streams	Descriptions	Sampling Location
Stream 1	Stream running between the Kwong Tin Estate and Lei Yue Mun Road	1 sampling
Stream 2	Stream on western coast of Chiu Keng Wan	location for each
Stream 3	Stream on western coast of Chiu Keng Wan	stream

Marine Water Quality

5.6 A total of twelve monitoring stations are designated for the baseline water quality monitoring program according to EM&A Manual. The locations are also summarized in **Table 5.2** and shown on **Figure 5**.

Table 5.2 Marine Water Quality Monitoring Stations

Monitoring	Descriptions	Coord	Coordinates	
Stations	Descriptions	Easting	Northing	
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565	
M2	Junk Bay Coral Site – Junk Bay	844076	817087	
M3	Junk Bay Coral Site – Junk Island	844491	817890	
M4	Junk Bay Coral Site - Chiu Keng Wan	843209	816416	
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769	
M6	Tseung Kwan O Salt Water Intake	845512	817442	
C1	Control Station – Southeast	844696	814773	
C2	Control Station – Northwest	842873	816014	
G1	Gradient Station	844418	817560	
G2	Gradient Station	844290	817384	
G3	Gradient Station	844488	817735	
G4	Gradient Station	844967	817551	

Monitoring Equipments

5.7 For in-situ monitoring, a multi-parameter meter (Aquaread AP-2000-D) was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.8 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.9 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.10 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.11 Salinity compensation was built-in in the DO equipment.

Turbidity

5.12 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

<u>рН</u>

5.13 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.14 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.15 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labeled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.16 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In Situ Instruments

- 5.17 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.
- 5.18 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.19 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of Aquaread AP-2000-D. The probe was then be calibrated with a solution of known NTU.
- 5.20 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 5.21 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 5.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi-parameter Water Quality	YSI 6820-C-M	1
System	Aquaread AP-2000-D	4
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Monitoring Parameters and Frequency

5.22 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

Table 5.4 Water Quality Monitoring Parameters and Frequency

	able 5.4 water Quanty Monitoring Larameters and Frequency			
Monitoring Stations	Parameters, unit	Depth	Frequency	
Groundwater	Quality			
Stream 1- Stream 3	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Turbidity, NTU SS, mg/L BOD₅, mg O₂/L TOC, mg-TOC/L Total Nitrogen, mg/L Ammonia-N, mg NH₃-N/L Total Phosphate, mg-P/L 	Mid-depth	Biweekly (When the tunnel construction works are found within 50m of the location, weekly.)	
Marine Water	r Quality			
M1 M2 M3 M4 M5 M6 C1 C2 G1 G2 G3 G4	In-situ: Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity Laboratory Testing: Suspended Solids (SS)	 M1-M5, C1-C2, G1-G4 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. M6 at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid-depth level) 	3 days per week / 2 per monitoring day (1 for mid-ebb and 1 for mid-flood)	

Monitoring Methodology

Groundwater Quality

- 5.23 At each monitoring location, two consecutive in-situ measurements for DO concentration, DO saturation, pH, temperature and turbidity were taken for water samples on site. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 5.24 For SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate, measurement and grab samples of surface water was collected. Water samples of about adequate volume was collected and stored in high density polythene bottles. Following collection, water samples

was stored in high density polythene bottles. Preservation H₂SO₄ was appropriately added for water samples for TOC, Total Nitrogen, Ammonia-N and Total Phosphate testing. Water samples was packed in ice and cooled to 4°C (without being frozen), delivered to the HOKLAS accredited laboratory, Wellab Limited and analyzed.

Marine Water Quality

- 5.25 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 5.26 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

5.27 The testing of all parameters were conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Table 5.5 Methods for Laboratory Analysis for Water Samples

Parameters (Unit)	Proposed Method	Reporting Limit	Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L ⁽¹⁾	0.5 mg/L
BOD ₅ (mg O ₂ /L)	APHA 19ed 5210B	2 mg O ₂ /L	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	
Total Nitrogen (mg/L)	In-house method SOP063 (FIA)	0.6 mg/L	
Ammonia-N (mg NH ₃ -N/L)	In-house method SOP057 (FIA)	0.05 mg NH ₃ - N/L	
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

Note:

- 1) Limit of Reporting is reported as Detection Limit for non-HOKLAS report.
- 2) Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

QA/QC Requirements

Decontamination Procedures

5.28 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.29 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.30 QA/QC procedures as attached in **Appendix J** are available for the parameters analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Results and Observations

Groundwater Quality Monitoring

5.31 All groundwater quality monitoring was conducted as scheduled in the reporting month. Summary of groundwater quality monitoring results and Action/Limit Level exceedance are shown in **Table 5.6**. Groundwater monitoring results, graphical presentations and laboratory testing reports are shown in **Appendix H**.

Table 5.6 Summary of Groundwater Quality Monitoring Results

	Tubic 3.0	Summary of Ground vater Quanty Montoring Results								
	Location	Parameters (unit)								
Date		pН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH3-N (mg NH3-N/L)	Total Phosphorus (mg-P/L)
1 Dec 2016	Stream 1	7.1	7.8	1.9	4.7	<2	<u>6</u>	<u>2.1</u>	< 0.05	< 0.05
	Stream 2	6.9	8.0	2.1	1.3	<2	<u>6</u>	<u>2.1</u>	< 0.05	< 0.05
	Stream 3	6.9	8.0	1.9	1.3	<2	<u>6</u>	<u>2.1</u>	0.05	< 0.05
14 Dec 2016	Stream 1	7.3	7.8	1.9	4.0	<2	3	1.0	<u>0.38</u>	<u>0.08</u>
	Stream 2	7.0	8.2	2.1	2.8	<2	4	1.6	< 0.05	< 0.05
	Stream 3	7.3	8.1	1.8	<u>6.5</u>	<2	3	1.5	< 0.05	< 0.05
30 Dec 2016	Stream 1	7.3	7.7	1.3	3.0	<2	3	< 0.6	<u>0.08</u>	< 0.05
	Stream 2	6.8	8.6	1.8	1.0	<2	4	1.4	< 0.05	< 0.05
	Stream 3	7.1	8.0	1.4	3.9	<2	2	1.3	< 0.05	< 0.05
No. of Exceedance	Action Level	0	0	0	0	0	0	0	0	0
	Limit Level	0	0	0	1	0	3	3	2	1

Note:

Bold Italic means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

5.32 According to the information provided by the Contractor, no tunnel boring or tunnel construction works were carried out in Tseung Kwan O side in December 2016. Therefore, it is considered that the exceedance is not project-related. The summary of exceedance

record in the reporting month is shown in **Appendix K**.

5.33 Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.

Marine Water Quality Monitoring

- All marine water quality monitoring was conducted as scheduled in the reporting month. Marine water monitoring results and graphical presentations are shown in **Appendix I**. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.35 Calculated Action and Limit Levels for Marine Water Quality is presented in **Appendix I**. No exceedance of Action and Limit Levels of marine water quality was recorded during the reporting period.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.36 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.37 Construction Phase Piezometer Monitoring has not commenced in this reporting period.

Monthly EM&A Report for December 2016

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months.
- 6.3 The first post-translocation coral monitoring is scheduled to be carried out in February 2017 tentatively.

Monthly EM&A Report for December 2016

7. MONITORING ON CULTURAL HERITAGE

- 7.1 According to the EM&A Manual, monitoring of vibration impacts should be conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple.
- 7.2 Based on the information provided by the Contractor, no construction works are within 100m of the Cha Kwo Ling Tin Hau temple in the reporting period. Therefore, monitoring of vibration impacts has not commenced in the reporting period.

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures. The summaries of site audits are attached in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor. **Appendix A** shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

Monitoring Parameters, Locations and Frequency

- 9.3 The proposed parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.4 The monitoring was carried out at least daily before starting the work of the day.

Monitoring Locations

9.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone. In this reporting month, the area required to be monitored for landfill gas are shown below and **Figure 6** shows the landfill gas monitoring locations.

Excavation Locations: Portion III
 Manholes and Chambers: N/A
 Relocation of monitoring wells: N/A
 Any other Confined Spaces: N/A

Monitoring Equipment

9.6 **Table 9.1** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

Table 9.1 Landfill Gas Monitoring Equipment

Equipment	Model and Make	Quantity
	Crowcon Tetra	
Intrinsically safe, portable gas detector	Portable Gas Detector	1
	(Serial No. 100378267/01-007)	

Results and Observations

9.7 In the reporting month, landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 25 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in **Appendix R**. Copies of calibration certificates are attached in **Appendix B**.

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01 : 6, 14, 21, 28 December 2016
 - Contract No. NE/2015/02: 2, 8, 13, 22 and 28 December 2016

Monthly joint site inspection with the representative of IEC was conducted on 28 December 2016.

Implementation Status of Environmental Mitigation Measures

- 10.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 10.1**.

Table 10.1 Observations and Recommendations of Site Audit

Parameters Date		Observations and Recommendations	Follow-up		
Contract No. N	E/2015/01				
Water Quality	30 Nov 2016	Reminder: To provide earth bund or sand bag to open stockpile to avoid muddy runoff from the Stockpile Storage Area in Cha Kwo Ling.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 14 December 2016.		
	30 Nov 2016	Reminder: Exposed slope should be properly covered by impervious materials in TKO after construction work each day.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 14 December 2016.		
	21, 28 Dec 2016 Reminder: The contractor is reminded to provide mitigation measures to intercept and direct muddy water generation to waste water treatment facilities at construction of haul road at Cha Kwo Ling.		Follow up action will be reported in next reporting month.		
	21 Dec 2016	Reminder: To remove general refuse in uchannel near the discharge point of CKL.	Follow up action will be reported in next reporting month.		
Noise					
Landscape and Visual	30 Nov 2016	Reminder: To set up proper tree protection zones in Cha Kwo Ling which should enclose the tree crowns.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 6 December 2016.		
Air Quality 30 Nov 2016 Observation: Dust generation observed in rock breaking works in Cha Kwo Ling. The contractor is reminded to provide water spray to minimize dust generation.		The deficiency was observed to be improved/rectified by the Contractor during the audit session on 6 December 2016.			

Monthly EM&A Report for December 2016

Parameters	Date	Observations and Recommendations	Follow-up		
	30 Nov 2016	Reminder: To provide earth bund or sand bag to open stockpile to avoid muddy runoff from the Stockpile Storage Area in Cha Kwo Ling.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 14 December 2016.		
6 Dec 2016		Observation: Exposed slope and dusty stockpile for storage in TKO and CKL should be covered after each construction work day to avoid dust generation.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 14 December 2016.		
	14 Dec 2016	Observation: Exposed area observed dry in Cha Kwo Ling. The Contractor is reminded to provide water spray to avoid dust generation.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 21 December 2016.		
	14, 21, 28 Dec 2016	Reminder: The Contractor is reminded to provide cover by impervious material to exposed slope in Cha Kwo Ling after works.	Follow up action will be reported in next reporting month.		
	28 Dec 2016	Reminder: To provide sufficient water spray for haul road in Cha Kwo Ling to avoid dust generation.	Follow up action will be reported in next reporting month.		
Waste / Chemical Management	14 Dec 2016	Reminder: To remove chemical oil from drip tray in TKO properly as "chemical waste".	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 21 December 2016.		
	21 Dec 2016	Reminder: To provide drip tray to chemical containers at both CKL and TKO side.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 28 December 2016.		
	21 Dec 2016	Reminder: To remove general refuse in uchannel near the discharge point of CKL.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 28 December 2016.		
	28 Dec 2016	Reminder: To remove the oil stain near drip tray of generator-set at Cha Kwo Ling.	Follow up action will be reported in next reporting month.		
Permits/ Licenses					
Contract No. N	NE/2015/02				
Water Quality	24 Nov 2016	Reminder: To provide bund for footing of hoarding at site A.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 8 December 2016.		
	2 Dec 2016	Reminder: To remove the sand accumulated in U-channel near site entrance.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 8 December 2016.		
	8 Dec 2016	Reminder: To remove the construction material/rubbish from the perimeter uchannel.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 13 December 2016.		
	28 Dec 2016	Reminder: To provide sand bag bunds to gullies at Portion 1 to avoid discharge of surface runoff.	Follow up action will be reported in next reporting month.		
Noise	24 Nov 2016	Reminder: Idling plants at site A should be switched off.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 2 December 2016.		
Landscape					

Monthly EM&A Report for December 2016

Parameters	Date Observations and Recommendations		Follow-up		
and Visual					
Air Quality	2 Dec 2016	Observation: Unpaved area in Area A is observed dry. The contractor is reminded to provide water spray to avoid dust generation.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 8 December 2016.		
	13 Dec 2016	Reminder: To properly display NRMM Label to Powered Mechanical Equipment on site in Portion A.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 22 December 2016.		
	22 Dec 2016	Observation: Grey smoke emission observed from excavator. The contractor is reminded to repair and maintain PME on site to avoid smoke emission.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 28 December 2016.		
	22 Dec 2016	Reminder: To properly cover the dusty stockpile by tarpaulin sheet.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 28 December 2016.		
Waste / Chemical Management	8 Dec 2016 Reminder: To remove the construction material from drip tray and properly stor the chemical container at drip tray.		The deficiency was observed to be improved/rectified by the Contractor during the audit session on 13 December 2016.		
	13 Dec 2016 Reminder: To provide a plug to drip tray of generator-set in Portion A.		The deficiency was observed to be improved/rectified by the Contractor during the audit session on 22 December 2016.		
	22 Dec 2016	Reminder: To provide drip tray to chemical container near site entrance.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 28 December 2016.		
	22 Dec 2016	Reminder: To remove chemical oil from drip tray of generator-set.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 28 December 2016.		
	28 Dec 2016	Reminder: To provide sufficient drip tray to chemical container, air compressor at Portion 8.	Follow up action will be reported in next reporting month.		
	28 Dec 2016	Reminder: To remove chemical container from near gullies at Portion 1.	Follow up action will be reported in next reporting month.		
Permits/ Licenses	2 Dec 2016	Reminder: To display the CNP in force near site entrance.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 8 December 2016.		

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- 11.2 With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summitted in **Appendix N**.

Monthly EM&A Report for December 2016

Design and Construction

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 No exceedance of Action and Limit Levels of air quality monitoring in the reporting period.
- 12.2 Eight Action Level exceedance in noise monitoring was recorded due to the documented complaints received from monitoring station in the reporting month
- 12.3 Ten Limit Level exceedances in ground water quality monitoring was recorded during the reporting period. The exceedance is considered to be non-Project related. The summary of exceedance is provided in **Appendix K**.
- 12.4 Should the monitoring results of the environmental monitoring parameters at any designated monitoring stations indicate that the Action / Limit Levels are exceeded, the actions in accordance with the Event and Action Plans in **Appendix M** be carried out.

Summary of Environmental Non-Compliance

12.5 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

12.6 6 environmental complaints were received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix O**. The investigation status and result is also reported in **Appendix O**.

Summary of Environmental Summon and Successful Prosecution

12.7 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table** 13.1:

Table 13.1 Summary Table for Site Activities in the next Reporting Period

Contract No.	Project Title	Site Activities	(January 2017)			
NE/2015/01	Tseung Kwan O - Lam Tin	Lam Tin	1) Excavation for Tunnel Adit			
	Tunnel - Main Tunnel and	Interchange	2) Haul Road Construction			
	Associated Works		3) Slope Feature no. 11NE-D/C119			
			(along LYM Road)			
			4) EHC2 U-Trough			
			5) Site Formation – Area 1G1			
			6) Temp Steel Bridge across Cha			
			Kwo Ling Road			
		Main Tunnel	1) Tunnel Team Mobilization			
			Works			
		TKO	1) Haul Road Construction			
		Interchange	2) Temporary Barging Facilities			
			3) BMCPC Bridge Temporary			
			Diversion			
NE/2015/02	Tseung Kwan O – Lam Tin	,	of Marine Borehole			
	Tunnel – Road P2 and	· /	of Silt Curtain and Marine Cofferdam			
	Associated Works	,	of Water Gate			
		*	n of Retaining Wall			
		5) Piling Work				
			Road for Tong Yin Street			
		/	r room construction works			
		1	a pipe at Portion IV			
		9) Construction	_			
		10) Site Establishment				
		,	emporary Road construction works at			
		Tong Yin St				
		12) Tree Transplantation Works				

Key Issues for the Coming Month

- 13.3 Key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;

Design and Construction

Monthly EM&A Report for December 2016

- Accumulation and storage of general and construction waste on site; and
- Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Monitoring Schedule for the Next Month

13.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 2nd Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in December 2016 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 14.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except at Station AM4(A) Cha Kwo Ling Public Cargo Working Area Administrative Office on 30 December 2016 was cancelled due to power supply failure. The monitoring shall be rescheduled to early January 2017. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

14.4 All noise monitoring was conducted as scheduled in the reporting month. Eight Action Level exceedance was recorded due to the documented complaints received from monitoring station in the reporting month. No Limit Level exceedance was recorded.

Water Quality Monitoring

- 14.5 All groundwater Quality monitoring was conducted as scheduled in the reporting month. Ten Limit Level exceedance were recorded. The exceedance is considered to be non-Project related.
- 14.6 All marine water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Ecological Monitoring

14.7 First post-translocation coral monitoring survey is scheduled in February 2017 tentatively.

Monitoring on Cultural Heritage

14.8 Monitoring of vibration impacts at Cha Kwo Ling Tin Hau Temple has not commenced in the reporting period as there is no construction works less than 100m from the temple.

Landscape and Visual Monitoring and Audit

14.9 No non-compliance of the landscape and visual impact was recorded in the reporting month.

Landfill Gas Monitoring

14.10 Monitoring of landfill gases commenced in the reporting month and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

14.11 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, no non-conformance was identified

Complaint, Prosecution and Notification of Summons

14.12 6 environmental complaints, no successful prosecution or notification of summons were received during the reporting period.

Recommendations

14.13 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month. According to environmental audits performed, the following recommendations were made:

Air Quality Impact

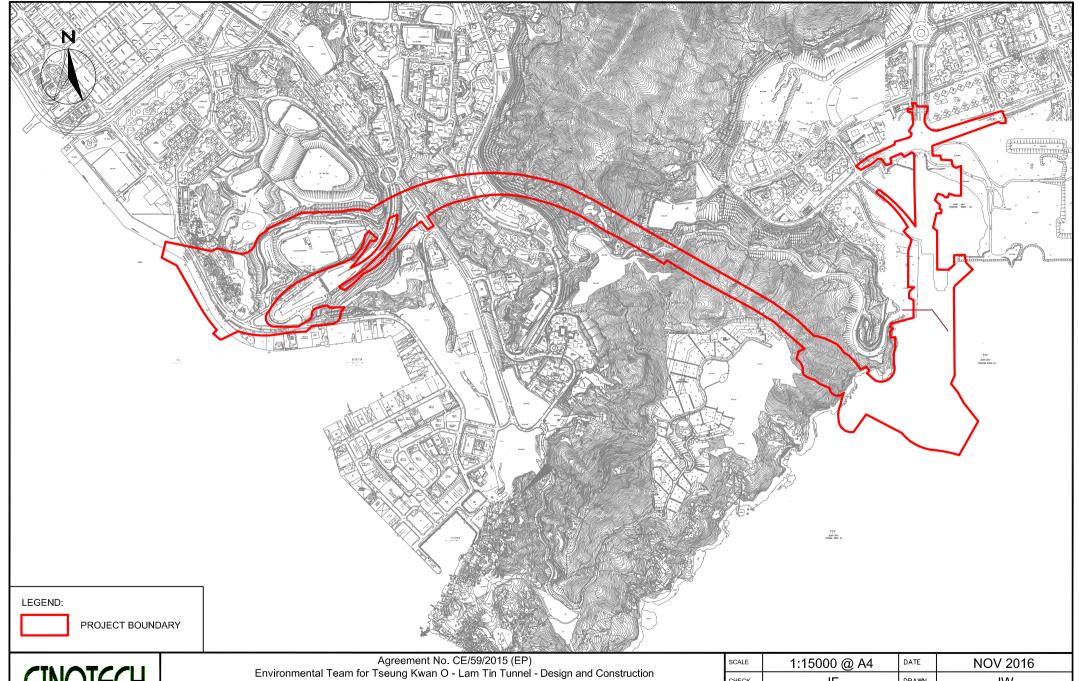
- To implement dust suppression measures such as water spray on all haul roads, stockpiles, dry surfaces, excavation and rock breaking works.
- To cover stockpile of dusty material by impervious material
- To properly display NRMM Label to Powered Mechanical Equipment on site
- To avoid smoke emission from Powered Mechanical Equipment on site

Construction Noise

N/A

Water Quality Impact

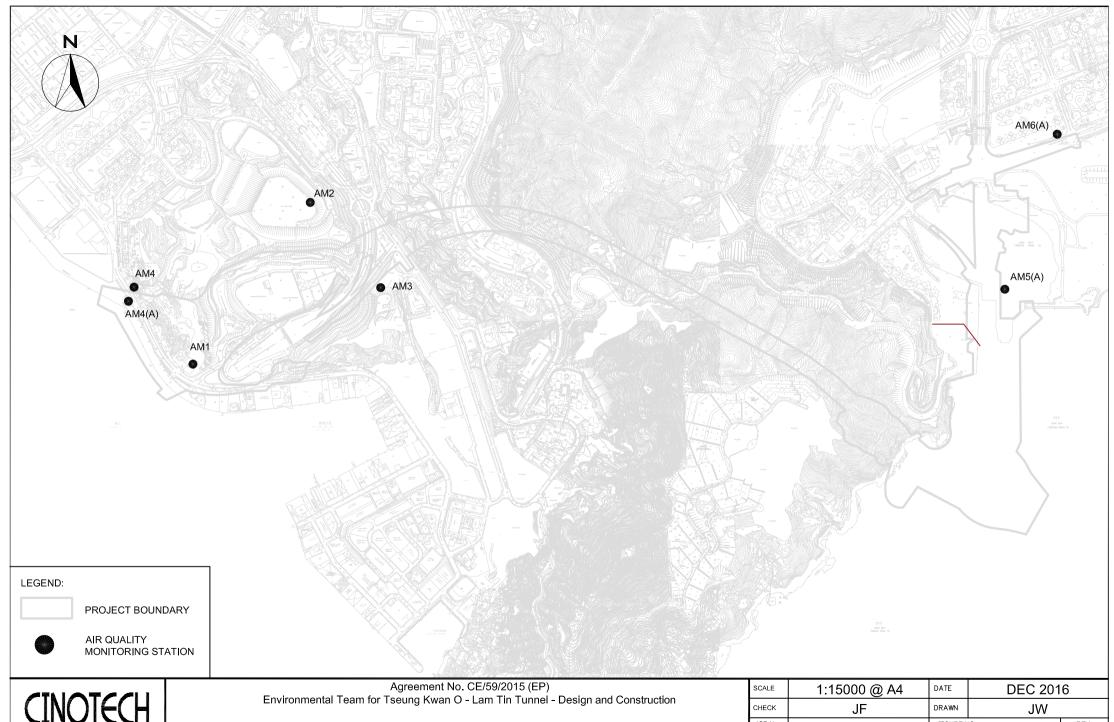
- To prevent any surface runoff discharge into any stream course or the waters in vicinity.
- To review and implement temporary drainage system.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks or those accumulated in drainage.
- To provide bund to gullies and stockpile storage area on site to avoid leakage of surface runoff.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.


Waste/Chemical Management

- To check for any accumulation of waste materials or rubbish on site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To avoid improper handling or storage of oil drum on site.
- To provide label to identify waste storage area within site.

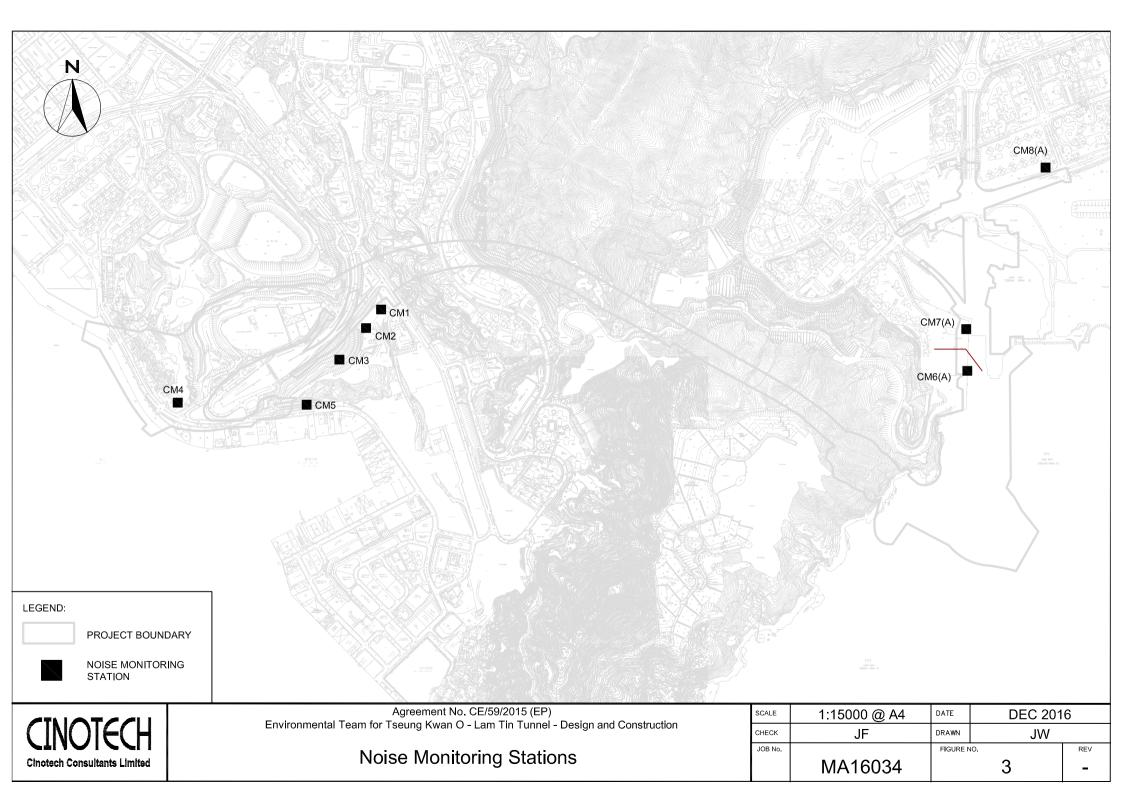
Landscape and Visual

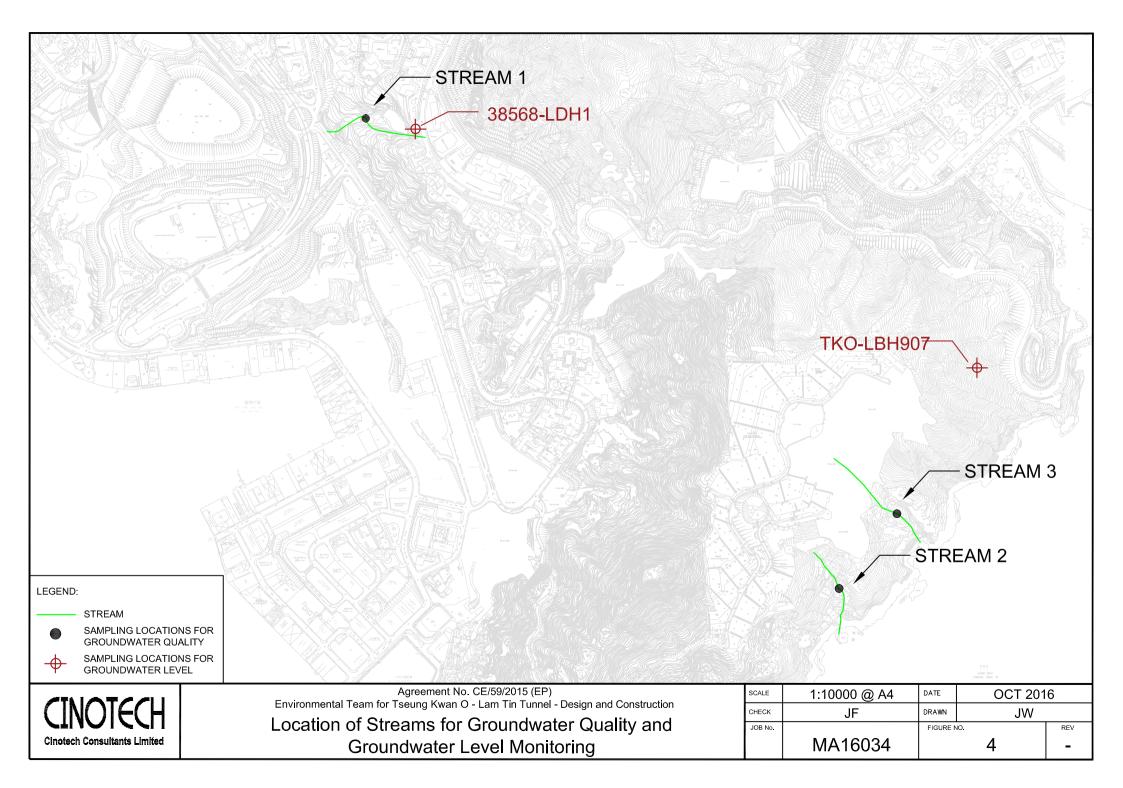
N/A

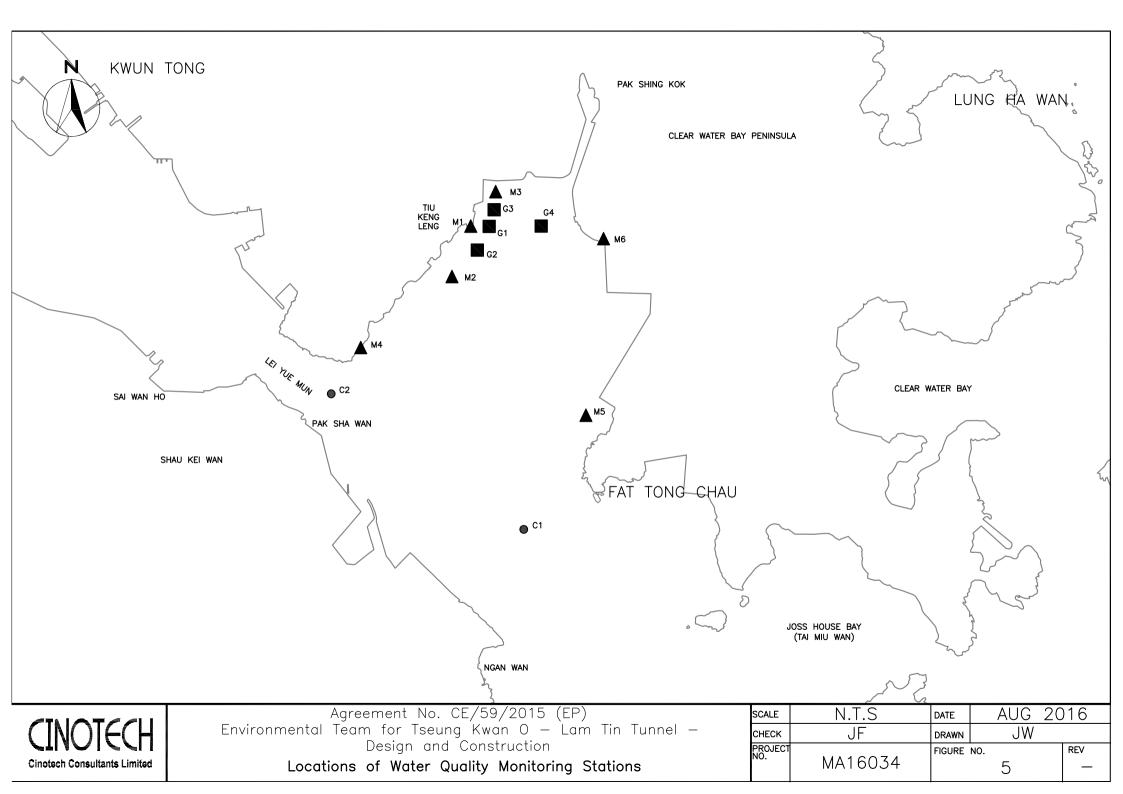

FIGURES

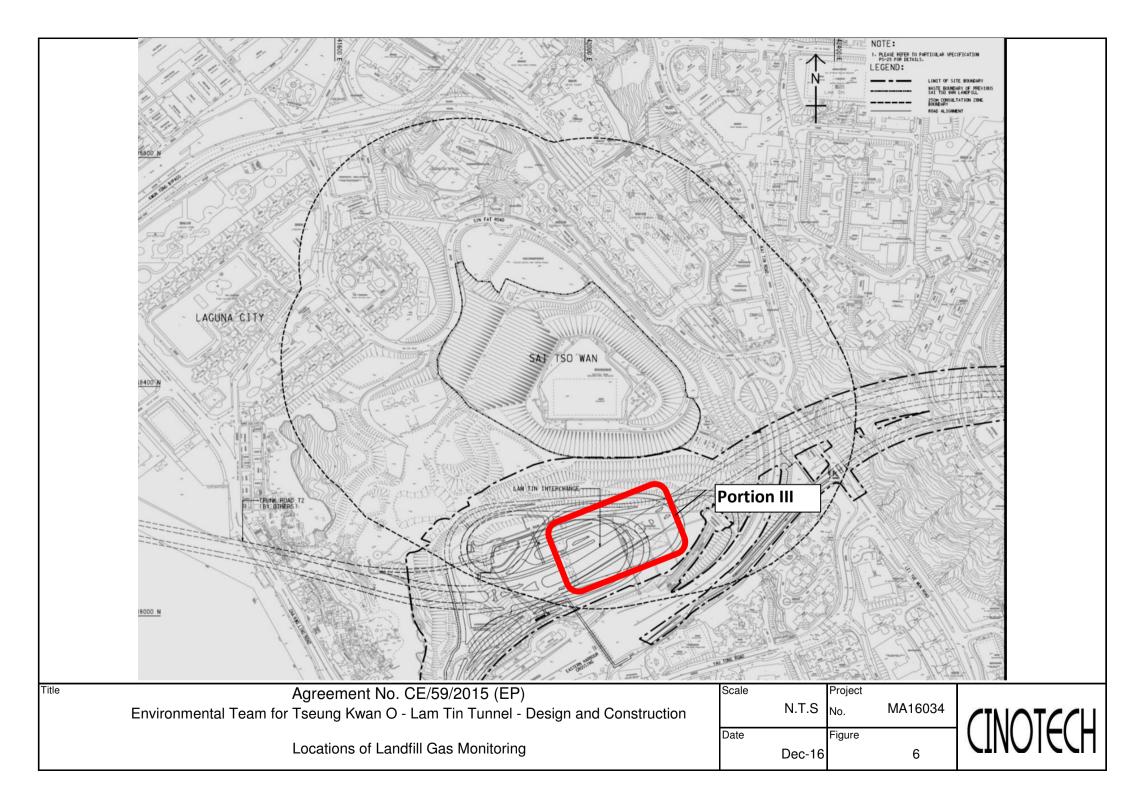
CINOTECH Cinotech Consultants Limited

Site Layout Plan


SCALE	1:15000 @ A4	DATE	NOV 2016	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	0.	REV
	MA16034		1	-




Cinotech Consultants Limited


Air Quality Monitoring Stations

SCALE	1:15000 @ A4	DATE	DEC 2016		
CHECK	JF	DRAWN	JW		
JOB No.		FIGURE N	10.	REV	
	MA16034	2		-	

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Air Quality

1-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	275	
AM2	Sai Tso Wan Recreation Ground	273	
AM3	Yau Lai Estate Bik Lai House	271	500
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	273	
AM6(A)	Park Central, L1/F Open Space Area	285	

24-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House	167	
AM4(A)	Cha Kwo Ling Public Cargo Working Area Administrative Office	210	500
AM5(A) Tseung Kwan O DSD Desilting Compound		175	
AM6(A)	Park Central, L1/F Open Space Area	165	

Noise

Time Period	Action Level	Limit Level	
0700-1900 hrs on normal weekdays	When one documented	75 dB(A) ⁽¹⁾	
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	complaint is received from any one of the	60/65/70 dB(A) ⁽²⁾⁽³⁾	
2300-0700 on all days	monitoring stations	45/50/55 dB(A) ⁽²⁾⁽³⁾	

¹70 dB(A) for schools and 65 dB(A) for schools during examination period.

² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C

³ If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Water Quality

Groundwater

Parameters	Action	Limit		
DO in mg L ⁻¹	7.6	7.5		
рН	6.0 – 8.9	6.0 – 9.0		
BOD ₅ in mg L ⁻¹	2.0	2.0		
TOC in mg L ⁻¹	4.3	4.9		
Total Nitrogen in mg L-1	1.7	1.7		
Ammonia-N in mg L-1	0.05	0.06		
Total Phosphate in mg L ⁻¹	0.05	0.05		
SS in mg L ⁻¹	5.5	6.2		
Turbidity in NTU	2.2	2.4		

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

Groundwater Level Monitoring

Drill Hole No.	38568-LDH1	TKO-LBH907		
Action Level (mPD)	+74.65	+17.59		

Marine Water Quality

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level		
	Stations G1-G4, M1-M5				
DO:	Depth Average	4.9 mg/L	4.6 mg/L		
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L		
	Station M6				
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>		
	Stations G1-G4	4, M1-M5			
Turbidity in NTU (See Note 2 and 4)	Bottom	19.3 NTU or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day		
	Station M6				
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>		
	Stations G1-G4	<u>[</u>			
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day		
	Stations M1-M5				
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day		
	Stations G1-G4	4, M1-M5	·		
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day		
	Station M6				
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>		

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

ent Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

Ecology

Post-translocation Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition	
Mortality	If during Impact Monitoring a 15% increase	If during the Impact Monitoring a 25%	
•	in the percentage of partial mortality on hard	increase in the percentage of partial	
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the	
	coral at any one Impact Monitoring Site that	tagged coral at any one Impact Monitoring	
	is not recorded at the Control Site, then the Site that is not recorded at the		
	Action Level is exceeded.	then the Limit Level is exceeded.	

Landfill Gas Monitoring

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. > 1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

File No. MA16034/08/0002

Station:	AM1 - Tin Hau	Temple		Operator:	WK		0. <u>MAT0034/06/0002</u>
Date:	24-Nov-16		Next Due Date:	- Next Due Date:			_
Equipment No.: A-01-05				Serial No.	Serial No. 10599		_
					••••		
			Ambient C	Condition			
Temperatu	re, Ta (K)	288.5	Pressure, Pa	ı (mmHg)		768.4	
			rifice Transfer Sta				
Serial		2896	Slope, mc (CFM)		Intercep		-0.05079
Last Calibra		4-Mar-16			$= \Delta H \times (Pa/766)$		
Next Calibra	ation Date:	3-Mar-17		$Qsta = \{ \Delta H x \}$	(Pa/760) x (298/	Ta)] -bc	/ me
			Caliburtanis	ron c			
	ie telligen mindfieldeligiet.	sglag, askiga ta direct	Calibration of	zor oampier		HVS	
Calibration Point	ΔH (orifice), in. of water		(60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in, of water		Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	13.3		3.73	63.18	7.2		2.74
2	10.1		3.25	55.17	5,4		2.37
3	8.7		3.01	51.26	4.9		2.26
4	5,4		2.37	40.57	3.1		1.80
5	3,2		1.83	31.42	1.9		1.41
Slope, mw =	ession of Y on X 0.0417			Intercept, bw :	0.104	2	
Correlation co	oefficient* =	0	9994	_			
'If Correlation C	Coefficient < 0.99	0, check and r	ecalibrate.				
			Set Point C	alculation			
From the TSP Fi	eld Calibration C	Curve, take Qst					
	sion Equation, th	· ·					
ŭ.	- ′		J		1/2		
		mw x	$Qstd + bw = [\Delta W \ x]$	(Pa/760) x (29	8/Ta)]" ²		
Therefore, Se	et Point; W = (m	w x Qstd + bw) ² x (760 / Pa) x (Га / 298)=	3.44		
				<u>,</u>			
Remarks:							
				à.			
Conducted I	14 70.0A	Cianatara	k.	. /		Deter	201.11
Conducted by:	WICKING	Signature:	/W	<u>~</u>		Date:	24 November o
Checked by:	VIV	Signature:		<u>/~</u> _		Date:	04 November o
				•			

File No. MA16034/08/0002

Station:	AM2 - Sai Tso Wan Recreation Ground		ı Ground	_ Operator:	WK		
Date:	15-Nov-16			Next Due Date:	14-Jan-17		<u> </u>
Equipment No.	: <u>A-01-08</u>		Serial No		1287	7	
			Ambient (
Temperati	ure, Ta (K)	297.4	Pressure, Pa	ı (mmHg)		766.6	;
		0	rifice Transfer Sta	ndard Informa	tion		
Seria	1 No.:	2896	Slope, mc (CFM)	1	Intercep	ot, bc	-0.05079
Last Calibration Date: 4-Mar-16		4-Mar-16		me x Qstd + be	= [ΔH x (Pa/76		
Next Calib	ration Date:	3-Mar-17		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \ \mathbf{x}] \}$	(Pa/760) x (298/	Ta)] ^{1/2} -bc	} / mc
		•	41.01		101.00		
			Calibration of	TSP Sampler			
Calibration		0	rfice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (I	Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	13.5		3.69	62.63	7.3		2.72
2	10.7		3.29	55.85	5.6		2.38
3	8.6		2.95	50.16	4.7		2.18
4	5.4	2.34		39.92	3.0		1.74
5	3.1		1.77	30.45	1.8		1.35
l							
By Linear Reg	ression of Y on X						
Slope, mw =	0.0420			Intercept, bw :	0.065	57	_
Correlation of		-	9993	-			
*If Correlation	Coefficient < 0.99	0, check and re	calibrate.				
			Set Point C	alculation			
From the TSP F	ield Calibration C	urve, take Osto					
	ssion Equation, the						
					. In		
		mw x ($Qstd + bw = [\Delta W x]$	(Pa/760) x (29	8/Ta)] ^{1/2}		
Therefore, So	et Point: W = (my	v x Ostd + hw) ² x (760 / Pa) x ('	Ta / 298) =	3.46		
,			,(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3.70		-
Remarks:							
	\		,)			
Conducted by:	Wk lang	Signature:	K	ivai /		Date:	15/11/16
Checked by:	_ là 0	Signature:		Ja-		Date:	15 Navember old
				· -			

INOTECH

File No. MA16034/03/0002 Station: AM3 - Yau Lai Estate, Bik Lai House Operator: WK Date: 12-Nov-16 Next Due Date: 11-Jan-17 Equipment No.: A-01-03 Serial No. 10379 Ambient Condition Temperature, Ta (K) 296 Pressure, Pa (mmHg) 767.4 Orifice Transfer Standard Information Serial No.: 2896 Slope, mc (CFM) 0.0598 Intercept, bc -0.05079 $mc \times Qstd + bc = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 4-Mar-16 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta) \}^{1/2} -bc \} / mc$ Next Calibration Date: 3-Mar-17 Calibration of TSP Sampler Orfice Calibration ΔH (orifice), Qstd (CFM) $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔW (HVS), Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis in. of water Y-axis 12.4 3.55 60.23 6.7 2.61 10.3 2 3.24 54.97 5.6 2.39 3 7.8 2.82 47.95 4.4 2.11 4 5.3 2.32 39.67 2.9 1.72 5 3.1 1.78 30.54 1.7 1.31 By Linear Regression of Y on X Slope, mw = ____ 0.0437 Intercept, bw: -0.0134 Correlation coefficient* = 0.9994 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: Wh Tang Signature: Signature:

Date:

File No. MA16034/54/0002 Station: Operator: WK AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office Next Due Date: 23-Jan-17 Date: 24-Nov-16 Equipment No.: A-01-54 Serial No. 1536 Ambient Condition Temperature, Ta (K) 289.8 Pressure, Pa (mmHg) 766.3 Orifice Transfer Standard Information 0.0598 Serial No.: 2896 Slope, mc (CFM) Intercept, bc -0.05079 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 4-Mar-16 Qstd = $\{[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc\} / mc$ Next Calibration Date: 3-Mar-17 Calibration of TSP Sampler Orfice HVS Calibration $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔH (orifice), Qstd (CFM) ΔW (HVS), Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis in. of water Y-axis 17.7 1 4.28 72.50 10.1 3.24 2 13.5 3.74 63.42 7.9 2.86 3 10.2 3.25 55.24 6.2 2,54 4 6.4 2.58 43.93 3.9 2.01 5 4.2 2.09 35.75 2.6 1.64 By Linear Regression of Y on X Slope, $mw = \underline{0.0435}$ Intercept, bw : 0.1017 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 3.75$ Remarks: Signature: Date: Date:

File No. MA16034/37/0002

Station:	on: AM5(A) - DSD Desilting Compound			Operator:		ζ.	
Date:	15-Nov-16			Next Due Date:		n-17	_
Equipment No.: A-01-37					1704		
			Ambient	Condition			
Temperatu	ire, Ta (K)	297.7	Pressure, P	a (mmHg)		763.4	
				ele anno anno anno anno anno anno anno ann	ego a stane da, filofolotado a para presenta		
			rifice Transfer St				
Serial		2896	Slope, mc (CFM	· · · · · · · · · · · · · · · · · · ·	Intercep		-0.05079
Last Calibra		4-Mar-16	-		$= [\Delta H \times (Pa/76)]$		
Next Calibr	ation Date:	3-Mar-17		$Qstd = \{ \Delta H x \}$	(Pa/760) x (298/	Ta)]*** -bc}	/ mc
	ta anaka Adada Aga (1986)		Calibration of	1SP Sampler	Not the second s		
Calibration	ΔH (orifice),		rfice	Qstd (CFM)	ΔW (HVS),	HVS	Pa/760) x (298/Ta)] ^{1/2}
Point	in. of water	[ΔH x (Pa/7	(60) x (298/Ta)] ^{1/2}	X - axis	in. of water	[AWX(r	Y-axis
1	17.3		4.17	70.61	9.4		3.07
2	13.9		3.74	63.38	7.5		2.75
3	10.4		3.23	54.93	5,6		2.37
4	6.3	2.52		42.94	3.5		1.88
5	4.1		2.03	34.81	2.3		1.52
By Linear Regr Slope , mw =	ession of Y on X			Intercept, bw:	0.015	59	
Correlation c	oefficient* =	0.	,9999				_
*If Correlation C	Coefficient < 0.99	0, check and re	ecalibrate.	_			
			Set Point C	Calculation			
From the TSP Fi	ield Calibration C	Curve, take Qsto	1 = 43 CFM				
From the Regres	sion Equation, th	e "Y" value ac	cording to				
		(7-44 / L [AXXI	(D-17(0) (20	o.m. >1/2		
		mw x c	$Qstd + bw = [\Delta W]$	x (Pa//60) x (29	8/1a)j		
Therefore, Se	et Point; W = (my	w x Qstd + bw) ² x (760 / Pa) x (Ta / 298)=	3.49	•	
				-			-
Remarks:							
	•						
	1,7.		L	,)			
Conducted by:	WK lang	Signature:	Kwa	2/2		Date:	15/11/16
Checked by:		Signature:		/		Date:	15 November 2016
				-			

File No. MA16034/07/0001

Station	AM6 - Park Central		_ Operator:	WK		
Date:	4-Oct-16		Next Due Date:	3-Dec-	16	
Equipment No.:	A-01-07		Serial No.		10592	
videla anta da vide a da para a vide	Source of the same of the constraints of the constr					
			Ambient C	Condition	T	
Temperatu	re, Ta (K)	300.7	Pressure, Pa	(mmHg)		756.2
		0.	ifice Transfer Sta	ndard Inform	Hon	
Serial	No.:	2896	Slope, mc (CFM)	T .	Intercept	t, be -0.05079
Last Calibration Date: 4-Mar-16					$c = [\Delta H \times (Pa/760]]$	
Next Calibra		3-Mar-17			(Pa/760) x (298/7	
		•				
			Calibration of	TSP Sampler		
Calibration		0	rfice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	11.8		3.41	57.90	6.7	2.57
2	9.9		3.12	53,11	5.6	2,35
3	7.4		2.70	46.03	4.3	2.06
4	5.3		2.29	39.09	3.3	1.80
5	3.4		1.83	31.47	2.1	1.44
By Linear Regro	0.0420			Intercept, bw	0.133	1
Correlation co	_		9991	<u>.</u>		
*If Correlation C	coefficient < 0.99	0, check and re	calibrate.			
			Set Point C	alculation		
From the TSP Fig	eld Calibration C	urve, take Qsto	= 43 CFM			
From the Regress	sion Equation, the	e "Y" value acc	ording to			
		mw x ($Qstd + bw = [\Delta W]x$	(Pa/760) x (29	98/Ta) ^{1/2}	
				, , ,	<i>/</i> 1	
Therefore, Se	t Point; W = (mv	v x Qstd + bw	² x (760 / Pa) x ('	Γa / 298) =	3.81	
Remarks:			. 1000			
-				1		
Conducted by: _Checked by: _	/	Signature: Signature:	ku	son		Date: 4/10/16 Date: 4 October della

CINOTECH

File No. MA16034/07/0002

Station	AM6 - Park Central		Operator:	WK		
Date:	5-Dec-16		Next Due Date:		4-Feb-	17
Equipment No.:	quipment No.: A-01-07		_ Serial No.		10592	
The second section is the second	. O residente de la compansión de la compa			**********************		
			Ambient C	Condition		
Temperatu	ıre, Ta (K)	294.6	Pressure, Pa	(mmHg)		766.2
				jakan yang papanggaran sa sa		
4584V8.2000A-6711			rifice Transfer Sta			
Serial No.: 2896 Last Calibration Date: 4-Mar-16		Slope, mc (CFM)	·	Intercept		
		4-Mar-16	-		$c = [\Delta H \times (Pa/760)]$	
Next Calibr	ation Date:	3-Mar-17		$Qsta = \{ [\Delta H x] \}$	(Pa/760) x (298/	[a)] bc} / mc
			Calibration of	TCD Compley		
The state of the s			rfice	ior sampler	the Walter Control of the	TOYO
Calibration Point	ΔH (orifice),			Qstd (CFM)	ΔW (HVS), in.	HVS [ΔW x (Pa/760) x (298/Ta)] ^{1/2}
FOIII	in, of water	[ΔH x (Pa/7	60) x (298/Ta)] ^{1/2}	X - axis	of water	Y-axis
1	11.8		3.47	58.87	7.5	2.77
2	9.7		3.15	53.45	5.7	2.41
3	7.2		2.71	46.17	4.5	2.14
4	5.0	2.26		38.62	3.1	1.78
5	3.4		1.86	31.99	2.0	1.43
By Linear Regr	ession of Y on X					
Slope, mw =	0.0481		1	ntercept, bw :	-0.098	3
Correlation c	oefficient* =	0.:	9974	•		
*If Correlation (Coefficient < 0.99	0, check and re	calibrate.			
			Set Point Ca	lculation		
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM	•		
From the Regres	sion Equation, th	e "Y" value acc	ording to			
			$Qstd + bw = [\Delta W x]$	(D-17(0) - (20	oo/T5. \11/2	
		mw x ($\sum_{x \in A} (\Delta x) = \sum_{x \in A} (\Delta x) \times \sum_{x \in A} $	(Fa//60) X (29	/8/1a)	,
Therefore, Se	et Point; W = (my	v x Qstd + bw)	² x (760 / Pa) x (7	Ta / 298)=	3.80	
				•		
Remarks:						, manual and a state of the sta
						, , , , , , , , , , , , , , , , , , ,
Conduct: 11	10k 70-2	G'	L	.]		
Conducted by: Checked by:	1 2 7/	Signature:	Nwa			Date: <u>5/12/16</u>
спескей ву:	G V	Signature:		/_		Date: <u>6 December 0640</u>

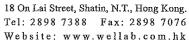
TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		Orifice I.I		438320 2896	Ta (K) - Pa (mm) ·	295 755.65
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4340 1.0250 0.9150 0.8770 0.7210	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0001 0.9959 0.9938 0.9928 0.9875	0.6974 0.9716 1.0861 1.1320 1.3696	1.4173 2.0044 2.2410 2.3503 2.8346		0.9957 0.9915 0.9894 0.9885 0.9831	0.6944 0.9674 1.0814 1.1271 1.3636	0.8836 1.2496 1.3971 1.4653 1.7672
Ostd slope (m) = 2.11176 intercept (b) = -0.05079 coefficient (r) = 0.99982 Qa slope (m) = 1.32235 intercept (b) = -0.03166 coefficient (r) = 0.99982						
y axis = SQRT[H2O(Pa/760)(298/Ta)]				y axis =	SQRT [H20 (T	'a/Pa)]


CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TEST REPORT

Test Report No.:	C/160820
Date of Issue:	2016-08-20
Date Received:	2016-08-20
Date Tested:	2016-08-20
Date Completed:	2016-08-20
Next Due Date:	2017-02-19

Page:

2 of 2

Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	Difference D (°)	
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.2	45	0.2
90.1	90	0.1
134.8	135	-0.2
180.3	180	0.3
225.1	225	0.1
270.2	270	0.2
315.1	315	0.1
360	360	0

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/161006A Date of Issue: 2016-10-06

Date Received: 2016-10-06 Date Tested: 2016-10-06

Date Completed: 2016-10-06 Next Due Date: 2017-01-05

ATTN: Mr. W.K. Tang

Page: 1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M

Serial No.

: 12B100804

Equipment No.

: W.03.13

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 60%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 12B100055

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 12A100930

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 12B100645

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B) Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (APHA 19th 4500-H+B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/161006A

Date of Issue: 2016-10-06

Date Received: 2016-10-06

Date Tested: 2016-10-06

Date Completed: 2016-10-06

Next Due Date: 2017-01-05

Page:

2 of 2

Results:

1. Conductivity performance check

Specific (Conductivity, µS/cm	Correction, µS/cm	Acceptable range
Salinity Meter (C1)	Theoretical Value (C2)	D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salir	ity, ppt	Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _j , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH_s , pH unit	0.01	Less than 0.02
Noise ΔpH_n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/161116
Date of Issue: 2016-11-16

Date Received: 2016-11-16 Date Tested: 2016-11-16

Date Completed: 2016-11-16 Next Due Date: 2017-02-15

ATTN: Miss Mei Ling Tang Page: 1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

: AP-2000-D

Serial No.

:122252120

Equipment No.

: W.18.02

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 58%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PAITRICK TSE
Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/161116

 Date of Issue:
 2016-11-16

 Date Received:
 2016-11-16

 Date Tested:
 2016-11-16

 Date Completed:
 2016-11-16

 Next Due Date:
 2017-02-15

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.02	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.82	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.17	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.4	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.43	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Sa	linity, ppt	Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.6	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2590	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
24.1	24.0	+0.1	N/A

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/161012C

Date of Issue: 2016-10-12

Date Received: 2016-10-12 Date Tested: 2016-10-12

Date Completed: 2016-10-12 2017-01-11

Next Due Date:

Page: 1 of 2

ATTN:

Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

: AP-2000-D : 122251620

Serial No. Equipment No.

: W.18.09

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/161012C

 Date of Issue:
 2016-10-12

 Date Received:
 2016-10-12

 Date Tested:
 2016-10-12

 Date Completed:
 2016-10-12

 Next Due Date:
 2017-01-11

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.06	4.01 + 0.10	Pass
pH QC buffer 6.86	6.88	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.17	9.18 + 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	229.3	229 <u>+</u> 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.44	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salinity, ppt		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2682	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.2	-0.1	N/A

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/161012D

Date of Issue:

2016-10-12

Date Received: Date Tested:

2016-10-12

Date Completed:

2016-10-12

Next Due Date:

2016-10-12

2017-01-11

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

: AP-2000-D

Serial No.

:122252320

Equipment No.

: W.18.10

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/161012D

 Date of Issue:
 2016-10-12

 Date Received:
 2016-10-12

 Date Tested:
 2016-10-12

 Date Completed:
 2016-10-12

 Next Due Date:
 2017-01-11

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.04	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.88	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.16	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	229.7	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.43	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Sa		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2667	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.3	-0.2	N/A

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/161012A
Date of Issue: 2016-10-12
Date Received: 2016-10-12
Date Tested: 2016-10-12

Date Completed: Next Due Date:

2016-10-12 2017-01-11

1 of 2

ATTN: Miss Mei Ling Tang Page:

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd :AP-2000-D

Model No. Serial No. Equipment No.

:122252020 : W.18.11

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/161012A
Date of Issue: 2016-10-12
Date Received: 2016-10-12
Date Tested: 2016-10-12
Date Completed: 2016-10-12
Next Due Date: 2017-01-11

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.01	4.05	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.15	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	228.1	229 <u>+</u> 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.43	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salinity, ppt		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.1	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2586	2442-2698	Pass
(2570 µs/cm)			

Temperature performance checking

	Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
l	E431 Readings (°C)			
	24.1	24.2	0.1	N/A

*************END OF REPORT*********************

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/161028C
Date of Issue: 2016-10-31
Date Received: 2016-10-28
Date Tested: 2016-10-28
Date Completed: 2016-10-31
Next Due Date: 2016-12-30

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095029

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 551 CPM

Equipment No. : A-02-10

Test Conditions:

Room Temperature : 21 degree Celsius

Relative Humidity : 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0038

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161216A
Date of Issue:	2016-12-19
Date Received:	2016-12-16
Date Tested:	2016-12-16
Date Completed:	2016-12-19

Page:

Next Due Date:

1 of 1

2017-02-18

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020408

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-01

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.043

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

2016-12-16

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/161014/A Date of Issue: 2016-10-17 Date Received: 2016-10-14 Date Tested: 2016-10-14 Date Completed: 2016-10-17 Next Due Date:

Page:

1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description : Handheld Particle Counter

Manufacturer : Hal Technology Model No. : Hal-HPC300 Serial No. : 3020408 Flow rate : 0.1 cfm

Zero Count Test : 0 count per 5 minutes

Equipment No. : A-26-01

Test Conditions:

: 24 degree Celsius Room Temperature

Relative Humidity : 62 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.082

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161216B
Date of Issue:	2016-12-19
Date Received:	2016-12-16
Date Tested:	2016-12-16
Date Completed:	2016-12-19
Next Due Date:	2017-02-18

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020409

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-02

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

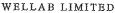
: 64 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:


Correlation Factor (CF)

1.103

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÅTRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161014/C
Date of Issue:	2016-10-17
Date Received:	2016-10-14
Date Tested:	2016-10-14
Date Completed:	2016-10-17
Next Due Date:	2016-12-16

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020410

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-03

Test Conditions:

Room Temperature

: 24 degree Celsius

Relative Humidity

: 62 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 1.077

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/161216C
Date of Issue: 2016-12-19
Date Received: 2016-12-16
Date Tested: 2016-12-16
Date Completed: 2016-12-19
Next Due Date: 2017-02-18

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020410

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-03

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.122
***********	**************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161007/A
Date of Issue:	2016-10-11
Date Received:	2016-10-07
Date Tested:	2016-10-07
Date Completed:	2016-10-11
Next Due Date:	2016-12-10

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No. Serial No.

: Hal-HPC300 : 3020411

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-04

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 67 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Completion Factor (CE)	1.040
Correlation Factor (CF)	1.049

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160917B Date of Issue: 2016-09-19 Date Received: 2016-09-17 Date Tested: 2016-09-17

Date Completed: 2016-09-19

Next Due Date:

2017-09-18

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

1

Manufacturer

: SVANTEK : SVAN 955

Model No.

Serial No.

: 12553

Microphone No. Equipment No.

: 35222

: N-08-02

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

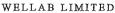
: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual


Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160917C
Date of Issue:	2016-09-19
Date Received:	2016-09-17
Date Tested:	2016-09-17
Date Completed:	2016-09-19
Next Due Date:	2017-09-18

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 955
Serial No. : 12563
Microphone No. : 34377
Equipment No. : N-08-03

Test conditions:

Room Temperatre : 24 degree Celsius

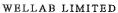
Relative Humidity : 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual


Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/151231
Date of Issue: 2016-01-04
Date Received: 2015-12-31
Date Tested: 2015-12-31
Date Completed: 2016-01-04
Next Due Date: 2017-01-03

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 955

Serial No.
Microphone No.

: 14303 : 35222

Equipment No.

: N-08-05

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 53%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

Remark:

1) This report supersedes the one dated 2012/01/21 with certificate number C/N/120120/1.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160826A
Date of Issue: 2016-08-29
Date Received: 2016-08-26
Date Tested: 2016-08-26
Date Completed: 2016-08-29
Next Due Date: 2017-08-28

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 957

Serial No.
Microphone No.

: 21455 : 43730

Microphone No. Equipment No.

: N-08-07

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819C
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21460 : 43679

Microphone No. Equipment No.

: N-08-09

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161128 Date of Issue: 2016-11-30 Date Received: 2016-11-28 Date Tested: 2016-11-28 Date Completed: 2016-11-30 Next Due Date: 2017-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

: 'SVANTEK' Integrating Sound Level Meter Description

Manufacturer : SVANTEK : SVAN 957 Model No. Serial No. : 23853 Microphone No. : 48530 Equipment No. : N-08-10

Test conditions:

Room Temperatre : 21 degree Celsius

Relative Humidity : 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/161128B

 Date of Issue:
 2016-11-30

 Date Received:
 2016-11-28

 Date Tested:
 2016-11-28

 Date Completed:
 2016-11-30

1 of 1

Next Due Date: 2017-11-29

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Page:

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 23851
Microphone No. : 48532
Equipment No. : N-08-12

Test conditions:

Room Temperatre : 21 degree Celsius

Relative Humidity : 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160919
Date of Issue:	2016-09-21
Date Received:	2016-09-19
Date Tested:	2016-09-19
Date Completed:	2016-09-21
Next Due Date:	2017-09-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK : SVAN 977

Model No. Serial No.

: 45482

Microphone No.

: 63626

Equipment No.

: N-08-14

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 56%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/161028/1
Date of Issue:	2016-10-31
Date Received:	2016-10-28
Date Tested:	2016-10-28
Date Completed:	2016-10-31
Next Due Date:	2017-10-30

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 10965

Equipment No.

: N-09-02

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 60 %

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930A
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930B
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24791

Equipment No.

: N-09-04

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

RATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930C
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No. Serial No.

: SV30A

: 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1 \mathrm{dB}$

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED
Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shain, N.T. Hong Kong,
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161104/1
Date of Issue: 2016-11-07
Date Received: 2016-11-04
Date Tested: 2016-11-04
Date Completed: 2016-11-07
Next Due Date: 2017-11-06

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2326353

Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 62 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB 匯 Testing & Research 力 Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819D
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 December 2016	17.2 – 22.4	67	0
2 December 2016	18.4 – 22.4	74	0
3 December 2016	19.9 – 22.8	77	0
4 December 2016	21.0 – 24.9	79	Trace
5 December 2016	21.8 – 25.9	79	0
6 December 2016	19.4 – 22.9	54	Trace
7 December 2016	18.2 – 22.2	61	Trace
8 December 2016	17.1 – 21.7	61	0
9 December 2016	16.5 – 21.9	65	0
10 December 2016	18.3 – 23.1	72	0
11 December 2016	19.3 – 21.5	76	Trace
12 December 2016	19.0 – 23.3	77	Trace
13 December 2016	20.7 – 25.7	75	Trace
14 December 2016	18.8 – 23.4	63	Trace
15 December 2016	15.6 – 20.4	62	0
16 December 2016	13.2 – 17.1	61	0
17 December 2016	13.7 – 18.6	68	0
18 December 2016	17.2 – 21.3	76	0
19 December 2016	18.5 – 22.5	73	0

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 December 2016	20.0 – 22.9	80	0
21 December 2016	21.0 – 22.6	90	2.8
22 December 2016	19.7 – 24.8	75	0.1
23 December 2016	19.1 – 21.9	73	Trace
24 December 2016	16.9 – 19.5	76	3.7
25 December 2016	18.4 – 20.3	82	Trace
26 December 2016	19.5 – 23.7	80	0
27 December 2016	12.8 – 21.8	61	0
28 December 2016	11.5 – 15.7	60	0
29 December 2016	13.9 – 17.9	54	0
30 December 2016	14.8 – 18.6	60	0
31 December 2016	15.6 – 20.7	74	0

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

II. Mean Wind Speed and Wind Direction				
Date	Time	Wind Speed m/s	Direction	
1-Dec-2016	0:00	2	NNE	
1-Dec-2016	1:00	1.8	NNE	
1-Dec-2016	2:00	1.8	NE	
1-Dec-2016	3:00	1.8	ENE	
1-Dec-2016	4:00	1.7	NNE	
1-Dec-2016	5:00	1.9	ENE	
1-Dec-2016	6:00	1.7	ENE	
1-Dec-2016	7:00	1.8	ENE	
1-Dec-2016	8:00	2.1	NE	
1-Dec-2016	9:00	2.6	ENE	
1-Dec-2016	10:00	2.7	ENE	
1-Dec-2016	11:00	3	ENE	
1-Dec-2016	12:00	3.2	ENE	
1-Dec-2016	13:00	3.6	SE	
1-Dec-2016	14:00	3.3	SE	
1-Dec-2016	15:00	2.9	ENE	
1-Dec-2016	16:00	3.1	ENE	
1-Dec-2016	17:00	3.2	ESE	
1-Dec-2016	18:00	2.5	ESE	
1-Dec-2016	19:00	2.1	ESE	
1-Dec-2016	20:00	2.1	ESE	
1-Dec-2016	21:00	1.9	S	
1-Dec-2016	22:00	1.6	Е	
1-Dec-2016	23:00	1.8	ENE	
2-Dec-2016	0:00	1.8	ENE	
2-Dec-2016	1:00	2	ENE	
2-Dec-2016	2:00	2.1	ENE	
2-Dec-2016	3:00	1.9	ENE	
2-Dec-2016	4:00	1.8	E	
2-Dec-2016	5:00	2.2	E	
2-Dec-2016	6:00	2	ESE	
2-Dec-2016	7:00	2.1	WSW	
2-Dec-2016	8:00	2	W	
2-Dec-2016	9:00	2.6	SW	
2-Dec-2016	10:00	2.7	W	
2-Dec-2016	11:00	3.3	W	
2-Dec-2016	12:00	3	S	

II. Mean wind	speed and wind Dif	CCHOII	
2-Dec-2016	13:00	2.8	NNE
2-Dec-2016	14:00	3.2	N
2-Dec-2016	15:00	3	NNE
2-Dec-2016	16:00	3	NNE
2-Dec-2016	17:00	2.6	NNE
2-Dec-2016	18:00	2.6	NE
2-Dec-2016	19:00	2.2	NNE
2-Dec-2016	20:00	2.3	N
2-Dec-2016	21:00	2.4	Ν
2-Dec-2016	22:00	2.6	NNE
2-Dec-2016	23:00	2.5	N
3-Dec-2016	0:00	2.4	N
3-Dec-2016	1:00	2.5	N
3-Dec-2016	2:00	2.2	N
3-Dec-2016	3:00	2.5	NNE
3-Dec-2016	4:00	2.3	NE
3-Dec-2016	5:00	2.2	Ν
3-Dec-2016	6:00	1.8	S
3-Dec-2016	7:00	1.8	SW
3-Dec-2016	8:00	2.2	SSW
3-Dec-2016	9:00	2.1	S
3-Dec-2016	10:00	2.4	SSW
3-Dec-2016	11:00	2.3	SW
3-Dec-2016	12:00	2.4	NE
3-Dec-2016	13:00	2.7	NNE
3-Dec-2016	14:00	2.7	NNE
3-Dec-2016	15:00	2.7	ENE
3-Dec-2016	16:00	2.6	ENE
3-Dec-2016	17:00	2.3	E
3-Dec-2016	18:00	2.3	ENE
3-Dec-2016	19:00	1.7	ESE
3-Dec-2016	20:00	1.8	NNE
3-Dec-2016	21:00	1.8	N
3-Dec-2016	22:00	1.9	NNE
3-Dec-2016	23:00	1.6	NE
4-Dec-2016	0:00	2	NNE
4-Dec-2016	1:00	2.1	N
4-Dec-2016	2:00	1.7	N
· · · · · · · · · · · · · · · · · · ·			·

11.	Mean wind S	peea ana wina Dir	ecuon	
	4-Dec-2016	3:00	1.5	NNE
	4-Dec-2016	4:00	1.3	N
	4-Dec-2016	5:00	1.6	N
	4-Dec-2016	6:00	1.2	NNE
	4-Dec-2016	7:00	1.4	N
	4-Dec-2016	8:00	1.9	N
	4-Dec-2016	9:00	2.5	NE
	4-Dec-2016	10:00	2.8	N
	4-Dec-2016	11:00	3.4	NE
	4-Dec-2016	12:00	3.7	NE
	4-Dec-2016	13:00	3.5	NNE
	4-Dec-2016	14:00	3	NE
	4-Dec-2016	15:00	3.4	N
	4-Dec-2016	16:00	2.7	N
	4-Dec-2016	17:00	2.1	NE
	4-Dec-2016	18:00	1.6	NE
	4-Dec-2016	19:00	1.2	ENE
	4-Dec-2016	20:00	1	NE
	4-Dec-2016	21:00	1.3	WSW
	4-Dec-2016	22:00	1.5	W
	4-Dec-2016	23:00	1.2	WSW
	5-Dec-2016	0:00	1.3	SSW
	5-Dec-2016	1:00	1.6	WSW
	5-Dec-2016	2:00	1.9	SW
	5-Dec-2016	3:00	2	SSW
	5-Dec-2016	4:00	2.2	WSW
	5-Dec-2016	5:00	2.2	WSW
	5-Dec-2016	6:00	2.1	WSW
	5-Dec-2016	7:00	2.3	W
	5-Dec-2016	8:00	2.3	W
	5-Dec-2016	9:00	2.9	ENE
	5-Dec-2016	10:00	3.1	NNW
	5-Dec-2016	11:00	2.9	NW
	5-Dec-2016	12:00	3.6	NW
	5-Dec-2016	13:00	3.4	W
	5-Dec-2016	14:00	3.4	NNE
	5-Dec-2016	15:00	3.4	N
	5-Dec-2016	16:00	3.3	N

11.	Mean wind S	peea ana wina Dir	ection	
	5-Dec-2016	17:00	3	N
	5-Dec-2016	18:00	2.8	N
	5-Dec-2016	19:00	2.5	N
	5-Dec-2016	20:00	2.9	ENE
	5-Dec-2016	21:00	2.7	NE
	5-Dec-2016	22:00	2.5	NE
	5-Dec-2016	23:00	2.6	NE
	6-Dec-2016	0:00	2.4	NE
	6-Dec-2016	1:00	2.6	NE
	6-Dec-2016	2:00	2.4	SE
	6-Dec-2016	3:00	2.6	ESE
	6-Dec-2016	4:00	2.8	NE
	6-Dec-2016	5:00	2.4	ENE
	6-Dec-2016	6:00	2.3	E
	6-Dec-2016	7:00	2.2	ENE
	6-Dec-2016	8:00	2.4	Е
	6-Dec-2016	9:00	2.5	ENE
	6-Dec-2016	10:00	2.4	ENE
	6-Dec-2016	11:00	3.1	SE
	6-Dec-2016	12:00	3.4	SE
	6-Dec-2016	13:00	3.4	SSE
	6-Dec-2016	14:00	2.9	SSE
	6-Dec-2016	15:00	3.2	SE
	6-Dec-2016	16:00	3.2	SSE
	6-Dec-2016	17:00	2.8	ENE
	6-Dec-2016	18:00	2.2	SE
	6-Dec-2016	19:00	2	NE
	6-Dec-2016	20:00	2.2	NE
	6-Dec-2016	21:00	1.9	ESE
	6-Dec-2016	22:00	2.1	NNE
	6-Dec-2016	23:00	2.4	W
	7-Dec-2016	0:00	2.6	ENE
	7-Dec-2016	1:00	2.5	ENE
	7-Dec-2016	2:00	2.5	ESE
	7-Dec-2016	3:00	2.1	W
	7-Dec-2016	4:00	1.8	N
	7-Dec-2016	5:00	1.7	NE
	7-Dec-2016	6:00	1.8	WNW

11.	Mean Wind S	peea ana wina Dir	ection	
	7-Dec-2016	7:00	1.4	NE
	7-Dec-2016	8:00	1.3	SSW
	7-Dec-2016	9:00	1.6	SW
	7-Dec-2016	10:00	1.9	W
	7-Dec-2016	11:00	2.2	NW
	7-Dec-2016	12:00	2.1	W
	7-Dec-2016	13:00	2	W
	7-Dec-2016	14:00	2	W
	7-Dec-2016	15:00	2.4	SW
	7-Dec-2016	16:00	2.6	WSW
	7-Dec-2016	17:00	2.4	W
	7-Dec-2016	18:00	2.3	WSW
	7-Dec-2016	19:00	1.9	W
	7-Dec-2016	20:00	1.5	WSW
	7-Dec-2016	21:00	1.6	WSW
	7-Dec-2016	22:00	2.2	WSW
	7-Dec-2016	23:00	2.2	W
	8-Dec-2016	0:00	1.9	W
	8-Dec-2016	1:00	1.7	W
	8-Dec-2016	2:00	1.7	W
	8-Dec-2016	3:00	1.7	W
	8-Dec-2016	4:00	1.8	SW
	8-Dec-2016	5:00	1.6	SW
	8-Dec-2016	6:00	1.8	SSW
	8-Dec-2016	7:00	2	SE
	8-Dec-2016	8:00	2.1	SSE
	8-Dec-2016	9:00	2.5	SW
	8-Dec-2016	10:00	2.7	SE
	8-Dec-2016	11:00	2.8	SE
	8-Dec-2016	12:00	2.6	SE
	8-Dec-2016	13:00	2.9	S
	8-Dec-2016	14:00	2.7	S
	8-Dec-2016	15:00	2.9	S
	8-Dec-2016	16:00	2.8	E
	8-Dec-2016	17:00	2.4	Е
	8-Dec-2016	18:00	2.1	SSE
	8-Dec-2016	19:00	1.7	SSE
	8-Dec-2016	20:00	1.5	ENE

11.	Mean wind S	peea ana wina Dir	ection	
	8-Dec-2016	21:00	1.7	SW
	8-Dec-2016	22:00	1.5	SSW
	8-Dec-2016	23:00	1.2	WNW
	9-Dec-2016	0:00	1.5	W
	9-Dec-2016	1:00	1.7	WNW
	9-Dec-2016	2:00	1.8	WSW
	9-Dec-2016	3:00	1.7	SSW
	9-Dec-2016	4:00	1.5	WSW
	9-Dec-2016	5:00	1.4	W
	9-Dec-2016	6:00	1.4	WSW
	9-Dec-2016	7:00	1.6	WSW
	9-Dec-2016	8:00	1.9	W
	9-Dec-2016	9:00	2.6	W
	9-Dec-2016	10:00	3.5	WSW
	9-Dec-2016	11:00	3.7	WSW
	9-Dec-2016	12:00	3.3	SSW
	9-Dec-2016	13:00	3.5	SSW
	9-Dec-2016	14:00	2.9	SSW
	9-Dec-2016	15:00	2.6	SSW
	9-Dec-2016	16:00	2.8	SSW
	9-Dec-2016	17:00	3	SSW
	9-Dec-2016	18:00	2.6	WSW
	9-Dec-2016	19:00	1.6	W
	9-Dec-2016	20:00	1.3	W
	9-Dec-2016	21:00	1	W
	9-Dec-2016	22:00	1.4	ENE
	9-Dec-2016	23:00	1.3	ESE
	10-Dec-2016	0:00	1.3	NE
	10-Dec-2016	1:00	1.4	ENE
	10-Dec-2016	2:00	1.7	NE
	10-Dec-2016	3:00	1.6	ESE
	10-Dec-2016	4:00	1.4	SE
	10-Dec-2016	5:00	1.3	SE
	10-Dec-2016	6:00	1.5	SE
	10-Dec-2016	7:00	1.3	SE
	10-Dec-2016	8:00	1.4	SE
	10-Dec-2016	9:00	2.2	Е
	10-Dec-2016	10:00	2.7	Е

11.	Mean wind S	peea ana wina Dir	ection	
	10-Dec-2016	11:00	2.7	SSE
	10-Dec-2016	12:00	2.9	SSE
	10-Dec-2016	13:00	3.2	SSE
	10-Dec-2016	14:00	3.6	Е
	10-Dec-2016	15:00	3.3	Е
	10-Dec-2016	16:00	3.1	ESE
	10-Dec-2016	17:00	3.5	ESE
	10-Dec-2016	18:00	2.5	ESE
	10-Dec-2016	19:00	1.7	ESE
	10-Dec-2016	20:00	1.7	ENE
	10-Dec-2016	21:00	1.2	SE
	10-Dec-2016	22:00	2.1	NE
	10-Dec-2016	23:00	1.4	ENE
	11-Dec-2016	0:00	1.3	ENE
	11-Dec-2016	1:00	1.1	N
	11-Dec-2016	2:00	1.4	NE
	11-Dec-2016	3:00	1.2	SE
	11-Dec-2016	4:00	1.1	ENE
	11-Dec-2016	5:00	1.2	ENE
	11-Dec-2016	6:00	1.4	ENE
	11-Dec-2016	7:00	1.3	NE
	11-Dec-2016	8:00	1.7	ENE
	11-Dec-2016	9:00	2.4	NE
	11-Dec-2016	10:00	2.7	ENE
	11-Dec-2016	11:00	3	ESE
	11-Dec-2016	12:00	3.3	ENE
	11-Dec-2016	13:00	3.5	SE
	11-Dec-2016	14:00	3.7	SE
	11-Dec-2016	15:00	3.6	N
	11-Dec-2016	16:00	3.1	ENE
	11-Dec-2016	17:00	2.6	ENE
	11-Dec-2016	18:00	1.8	SE
	11-Dec-2016	19:00	1.5	ESE
	11-Dec-2016	20:00	1.3	SSE
	11-Dec-2016	21:00	1.3	NE
	11-Dec-2016	22:00	1.2	SE
	11-Dec-2016	23:00	1	Е
	12-Dec-2016	0:00	0.8	SSE

II. Mean w	ina Speea ana wina Di	rection	
12-Dec-2016	1:00	1	SSE
12-Dec-2016	2:00	1.2	ENE
12-Dec-2016	3:00	0.9	NE
12-Dec-2016	4:00	0.9	E
12-Dec-2016	5:00	0.9	ENE
12-Dec-2016	6:00	1.1	ESE
12-Dec-2016	7:00	1.1	ESE
12-Dec-2016	8:00	1.4	ESE
12-Dec-2016	9:00	2	SE
12-Dec-2016	10:00	2	E
12-Dec-2016	11:00	2.6	NE
12-Dec-2016	12:00	2.9	N
12-Dec-2016	13:00	3	E
12-Dec-2016	14:00	3.3	E
12-Dec-2016	15:00	3.1	Е
12-Dec-2016	16:00	2.8	ENE
12-Dec-2016	17:00	2.3	NE
12-Dec-2016	18:00	2	ENE
12-Dec-2016	19:00	1.5	E
12-Dec-2016	20:00	1	NE
12-Dec-2016	3 21:00	0.7	NNE
12-Dec-2016	22:00	0.4	NE
12-Dec-2016	3 23:00	0.7	NE
13-Dec-2016	0:00	0.7	ENE
13-Dec-2016	1:00	0.9	NNE
13-Dec-2016	2:00	1	NNE
13-Dec-2016	3:00	1.1	ENE
13-Dec-2016	4:00	1.3	Е
13-Dec-2016	5:00	1	NNE
13-Dec-2016	6:00	1.2	SSE
13-Dec-2016	7:00	1.3	ENE
13-Dec-2016	8:00	1.7	ENE
13-Dec-2016	9:00	1.6	E
13-Dec-2016	10:00	2.4	NNE
13-Dec-2016	3 11:00	2.5	N
13-Dec-2016	12:00	3	N
13-Dec-2016	13:00	3.3	N
13-Dec-2016	14:00	3.1	N

<u>11.</u> I	viean vymu S	peea ana wina Dir	ection	
13-	Dec-2016	15:00	3.2	NNE
13-	Dec-2016	16:00	2.7	ENE
13-	Dec-2016	17:00	2.5	N
13-	Dec-2016	18:00	2	ENE
13-	Dec-2016	19:00	1.5	ENE
13-	Dec-2016	20:00	1.2	E
13-	Dec-2016	21:00	1.2	N
13-	Dec-2016	22:00	1.3	SSE
13-	Dec-2016	23:00	1.5	8
14-	Dec-2016	0:00	1.5	SSW
14-	Dec-2016	1:00	1.6	SSW
14-	Dec-2016	2:00	1.5	S
14-	Dec-2016	3:00	1.5	SSW
14-	Dec-2016	4:00	1.5	S
14-	Dec-2016	5:00	1.2	S
14-	Dec-2016	6:00	1.2	ENE
14-	Dec-2016	7:00	1.1	NE
14-	Dec-2016	8:00	1.4	ENE
14-	Dec-2016	9:00	1.9	SW
14-	Dec-2016	10:00	2.3	N
14-	Dec-2016	11:00	2.5	ENE
14-	Dec-2016	12:00	2.8	ENE
14-	Dec-2016	13:00	2.9	ENE
14-	Dec-2016	14:00	3.1	ENE
14-	Dec-2016	15:00	2.8	Е
14-	Dec-2016	16:00	2.9	E
14-	Dec-2016	17:00	2.4	Е
14-	Dec-2016	18:00	2.5	ENE
14-	Dec-2016	19:00	1.8	NNE
14-	Dec-2016	20:00	1.8	ENE
14-	Dec-2016	21:00	1.6	ENE
14-	Dec-2016	22:00	1.7	WNW
14-	Dec-2016	23:00	1.6	W
15-	Dec-2016	0:00	1.7	NNE
15-	Dec-2016	1:00	1.6	NE
15-	Dec-2016	2:00	1.4	ESE
15-	Dec-2016	3:00	1.2	NE
15-	Dec-2016	4:00	1.4	NE

II. Mean Wind Speed and Wind Direction						
5:00	1.5	ENE				
6:00	1.8	ENE				
7:00	1.9	ENE				
8:00	2.1	ENE				
9:00	2.7	ENE				
10:00	3	ENE				
11:00	3.2	ENE				
12:00	3.4	NE				
13:00	3.8	ENE				
14:00	3.4	SE				
15:00	4	SE				
16:00	3.7	SE				
17:00	3.3	ESE				
18:00	3.9	SSE				
19:00	3.3	ESE				
20:00	3.6	SSE				
21:00	3.6	SSE				
22:00	3.3	ENE				
23:00	3.2	ENE				
0:00	3.3	NE				
1:00	2.8	ENE				
2:00	3.1	ENE				
3:00	2.9	NNE				
4:00	3	N				
5:00	2.9	NE				
6:00	2.5	NE				
7:00	2.7	NE				
8:00	2.4	ENE				
9:00	2	NNE				
10:00	2.5	NE				
11:00	3	NE				
12:00	3.3	NE				
13:00	3.5	NE				
14:00	4	ENE				
15:00	3.9	NNE				
16:00	3.1	ESE				
17:00	2.7	ENE				
18:00	2.9	NE				
	5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 1:00 2:00 3:00 6:00 7:00 8:00 9:00 11:00 11:00 12:00 11:00	5:00 1.5 6:00 1.8 7:00 1.9 8:00 2.1 9:00 2.7 10:00 3 11:00 3.2 12:00 3.4 13:00 3.8 14:00 3.4 15:00 4 16:00 3.7 17:00 3.3 18:00 3.9 19:00 3.3 20:00 3.6 21:00 3.6 22:00 3.3 23:00 3.2 0:00 3.3 1:00 2.8 2:00 3.1 3:00 2.9 4:00 3 5:00 2.9 6:00 2.5 7:00 2.7 8:00 2.4 9:00 2 10:00 3.3 12:00 3.3 13:00 3.5 14:00 4 15:00 3.9 16:00 3.1				

ш.	Mean wind S	peea ana wina Dir	ection	
	16-Dec-2016	19:00	3	SE
	16-Dec-2016	20:00	2.7	SSE
	16-Dec-2016	21:00	3.1	N
	16-Dec-2016	22:00	2.9	NNE
	16-Dec-2016	23:00	2.7	ENE
	17-Dec-2016	0:00	3	SE
	17-Dec-2016	1:00	2.3	ESE
	17-Dec-2016	2:00	2.1	NE
	17-Dec-2016	3:00	2.6	NE
	17-Dec-2016	4:00	1.8	NNE
	17-Dec-2016	5:00	2.1	ENE
	17-Dec-2016	6:00	2.9	NE
	17-Dec-2016	7:00	2	NNE
	17-Dec-2016	8:00	1.9	ENE
	17-Dec-2016	9:00	2.3	NE
	17-Dec-2016	10:00	2.4	NE
	17-Dec-2016	11:00	2.6	ENE
	17-Dec-2016	12:00	2.7	ENE
	17-Dec-2016	13:00	2.6	NNE
	17-Dec-2016	14:00	2.5	NE
	17-Dec-2016	15:00	2.3	NE
	17-Dec-2016	16:00	2.7	NNE
	17-Dec-2016	17:00	1.9	NNE
	17-Dec-2016	18:00	2	ESE
	17-Dec-2016	19:00	1.4	ENE
	17-Dec-2016	20:00	0.6	ENE
	17-Dec-2016	21:00	0.6	E
	17-Dec-2016	22:00	0.5	ENE
	17-Dec-2016	23:00	0.8	NE
	18-Dec-2016	0:00	1.1	ENE
	18-Dec-2016	1:00	1.5	NNE
	18-Dec-2016	2:00	1.1	ENE
	18-Dec-2016	3:00	1	ENE
	18-Dec-2016	4:00	1.2	SSE
	18-Dec-2016	5:00	1.1	NNE
	18-Dec-2016	6:00	0.9	SE
	18-Dec-2016	7:00	0.8	SE
	18-Dec-2016	8:00	1.3	SE

11.	Wican Willu S	peea ana wina Dir	CCHOH	
18	8-Dec-2016	9:00	1.8	SE
18	8-Dec-2016	10:00	2.5	ESE
18	8-Dec-2016	11:00	2.5	ENE
18	8-Dec-2016	12:00	3.2	NE
18	8-Dec-2016	13:00	3.5	SE
18	8-Dec-2016	14:00	3.4	SSE
18	8-Dec-2016	15:00	3.7	SE
18	8-Dec-2016	16:00	3.3	ESE
18	8-Dec-2016	17:00	3.2	NE
18	8-Dec-2016	18:00	3.3	NNE
18	8-Dec-2016	19:00	3.5	NNE
18	8-Dec-2016	20:00	3.5	NE
18	8-Dec-2016	21:00	3.3	NE
18	8-Dec-2016	22:00	3.6	NE
18	8-Dec-2016	23:00	3.5	NE
19	9-Dec-2016	0:00	3.5	ENE
19	9-Dec-2016	1:00	3.1	NNE
19	9-Dec-2016	2:00	3.5	ENE
19	9-Dec-2016	3:00	3	ENE
19	9-Dec-2016	4:00	2.9	NE
19	9-Dec-2016	5:00	2.9	SE
19	9-Dec-2016	6:00	3.1	ESE
19	9-Dec-2016	7:00	2.8	SE
19	9-Dec-2016	8:00	3	N
19	9-Dec-2016	9:00	3.9	NNE
19	9-Dec-2016	10:00	3.1	SE
19	9-Dec-2016	11:00	3.5	NE
19	9-Dec-2016	12:00	3.7	ENE
19	9-Dec-2016	13:00	3.2	ENE
19	9-Dec-2016	14:00	3.1	ENE
19	9-Dec-2016	15:00	3.3	ENE
19	9-Dec-2016	16:00	3	ENE
19	9-Dec-2016	17:00	2.6	Е
19	9-Dec-2016	18:00	2.6	ENE
19	9-Dec-2016	19:00	2.2	NNE
19	9-Dec-2016	20:00	2.3	NE
19	9-Dec-2016	21:00	1.4	NNE
19	9-Dec-2016	22:00	2	NE

П.	Mean wind S	peea ana wina Dir	ection	
-	19-Dec-2016	23:00	2	NE
2	20-Dec-2016	0:00	2	NE
2	20-Dec-2016	1:00	1.9	NNE
2	20-Dec-2016	2:00	2.4	ESE
2	20-Dec-2016	3:00	2.6	ENE
2	20-Dec-2016	4:00	2.6	NNE
2	20-Dec-2016	5:00	2.7	NE
2	20-Dec-2016	6:00	2.9	NE
2	20-Dec-2016	7:00	2.3	NE
2	20-Dec-2016	8:00	2	NE
2	20-Dec-2016	9:00	2.8	ESE
2	20-Dec-2016	10:00	2.5	ENE
2	20-Dec-2016	11:00	2.6	ENE
2	20-Dec-2016	12:00	2.4	ENE
2	20-Dec-2016	13:00	2.9	ENE
2	20-Dec-2016	14:00	2.8	SW
2	20-Dec-2016	15:00	3.1	ENE
2	20-Dec-2016	16:00	3.1	Е
2	20-Dec-2016	17:00	3.1	ESE
2	20-Dec-2016	18:00	2.2	Е
2	20-Dec-2016	19:00	1.7	ENE
2	20-Dec-2016	20:00	1.8	ENE
2	20-Dec-2016	21:00	1.7	ENE
2	20-Dec-2016	22:00	2.1	NE
2	20-Dec-2016	23:00	2.6	NE
2	21-Dec-2016	0:00	1.9	ENE
2	21-Dec-2016	1:00	2	ENE
2	21-Dec-2016	2:00	2.2	ENE
2	21-Dec-2016	3:00	2.1	ENE
2	21-Dec-2016	4:00	1.6	NE
2	21-Dec-2016	5:00	2.2	NE
2	21-Dec-2016	6:00	2.4	NE
	21-Dec-2016	7:00	2.1	ENE
2	21-Dec-2016	8:00	1.9	ENE
2	21-Dec-2016	9:00	2.4	ENE
2	21-Dec-2016	10:00	3.5	NE
	21-Dec-2016	11:00	3.5	NNE
2	21-Dec-2016	12:00	3.8	SSE

11.	wiean wind S	peea ana wina Dir	ection	
	21-Dec-2016	13:00	3.4	ENE
	21-Dec-2016	14:00	3	ENE
	21-Dec-2016	15:00	2.4	ENE
	21-Dec-2016	16:00	2.6	SSE
	21-Dec-2016	17:00	2.8	Е
	21-Dec-2016	18:00	3.5	SE
	21-Dec-2016	19:00	3.5	SSE
	21-Dec-2016	20:00	3	ENE
	21-Dec-2016	21:00	3.3	ESE
	21-Dec-2016	22:00	3.1	NNE
	21-Dec-2016	23:00	3.5	ENE
	22-Dec-2016	0:00	3.2	ESE
	22-Dec-2016	1:00	3.2	NE
	22-Dec-2016	2:00	2.9	ENE
	22-Dec-2016	3:00	2.6	ENE
	22-Dec-2016	4:00	3	N
	22-Dec-2016	5:00	2.7	NE
	22-Dec-2016	6:00	2.8	WNW
	22-Dec-2016	7:00	3.5	WSW
	22-Dec-2016	8:00	3.7	W
	22-Dec-2016	9:00	3.6	WSW
	22-Dec-2016	10:00	4	ENE
	22-Dec-2016	11:00	3.7	NE
	22-Dec-2016	12:00	3.3	SSE
	22-Dec-2016	13:00	3.2	WSW
	22-Dec-2016	14:00	3.2	WSW
	22-Dec-2016	15:00	3.4	SSW
	22-Dec-2016	16:00	3.3	W
	22-Dec-2016	17:00	3.1	SW
	22-Dec-2016	18:00	3.1	W
	22-Dec-2016	19:00	3	W
	22-Dec-2016	20:00	2.5	WSW
	22-Dec-2016	21:00	2.7	W
	22-Dec-2016	22:00	2.2	SSE
	22-Dec-2016	23:00	2.1	S
	23-Dec-2016	0:00	2.1	NNE
	23-Dec-2016	1:00	1.9	NE
	23-Dec-2016	2:00	2	ENE

11.	Mean wind S	peea ana wina Dir	ection	
	23-Dec-2016	3:00	2.1	ENE
	23-Dec-2016	4:00	1.7	Е
	23-Dec-2016	5:00	1.3	ENE
	23-Dec-2016	6:00	1.4	N
	23-Dec-2016	7:00	1.7	Е
	23-Dec-2016	8:00	1.9	NNW
	23-Dec-2016	9:00	2.6	NNE
	23-Dec-2016	10:00	2.9	NE
	23-Dec-2016	11:00	3	ENE
	23-Dec-2016	12:00	3.2	NNE
	23-Dec-2016	13:00	2.9	ENE
	23-Dec-2016	14:00	3.1	N
	23-Dec-2016	15:00	2.9	NE
	23-Dec-2016	16:00	2.9	NE
	23-Dec-2016	17:00	2.5	SE
	23-Dec-2016	18:00	1.6	SSE
	23-Dec-2016	19:00	1.4	SE
	23-Dec-2016	20:00	1.1	NNE
	23-Dec-2016	21:00	1.2	ENE
	23-Dec-2016	22:00	1.9	NE
	23-Dec-2016	23:00	1.8	NE
	24-Dec-2016	0:00	1.4	NE
	24-Dec-2016	1:00	1.8	NE
	24-Dec-2016	2:00	1.8	NE
	24-Dec-2016	3:00	1.8	NNE
	24-Dec-2016	4:00	1.9	NE
	24-Dec-2016	5:00	2	ENE
	24-Dec-2016	6:00	2.1	ENE
	24-Dec-2016	7:00	1.5	ENE
	24-Dec-2016	8:00	2.3	SSE
	24-Dec-2016	9:00	3.1	SSE
	24-Dec-2016	10:00	3.4	SSE
	24-Dec-2016	11:00	3.3	NNE
	24-Dec-2016	12:00	3	SSE
	24-Dec-2016	13:00	2.9	ENE
	24-Dec-2016	14:00	3.2	SE
	24-Dec-2016	15:00	3.3	SSE
	24-Dec-2016	16:00	3.3	SSE

II. Mean Wind	Speed and Wind Dir	rection	
24-Dec-2016	17:00	2.7	SSE
24-Dec-2016	18:00	2.2	SSE
24-Dec-2016	19:00	1.7	SSE
24-Dec-2016	20:00	1.3	N
24-Dec-2016	21:00	1.2	Е
24-Dec-2016	22:00	1.6	ENE
24-Dec-2016	23:00	1.7	ENE
25-Dec-2016	0:00	1.5	SSE
25-Dec-2016	1:00	1.7	NE
25-Dec-2016	2:00	1.5	ESE
25-Dec-2016	3:00	1.2	ESE
25-Dec-2016	4:00	1.4	SSE
25-Dec-2016	5:00	1.3	W
25-Dec-2016	6:00	1.3	WNW
25-Dec-2016	7:00	1.3	W
25-Dec-2016	8:00	1.6	SSW
25-Dec-2016	9:00	2.5	SSE
25-Dec-2016	10:00	2.6	WSW
25-Dec-2016	11:00	2.9	WSW
25-Dec-2016	12:00	3.3	S
25-Dec-2016	13:00	3.6	ESE
25-Dec-2016	14:00	3.6	WSW
25-Dec-2016	15:00	3.4	W
25-Dec-2016	16:00	3.5	WNW
25-Dec-2016	17:00	2.7	NNE
25-Dec-2016	18:00	2.2	ENE
25-Dec-2016	19:00	1.9	Е
25-Dec-2016	20:00	1.9	NE
25-Dec-2016	21:00	1.5	SSE
25-Dec-2016	22:00	1.5	ENE
25-Dec-2016	23:00	1.9	ENE
26-Dec-2016	0:00	1.8	ENE
26-Dec-2016	1:00	1.9	NE
26-Dec-2016	2:00	2	W
26-Dec-2016	3:00	2	NNE
26-Dec-2016	4:00	1.3	NE
26-Dec-2016	5:00	1.3	NNE
26-Dec-2016	6:00	1.3	NNE

11.	Mean wind S	peea ana wina Dir	ection	
	26-Dec-2016	7:00	1.7	NNE
	26-Dec-2016	8:00	2.1	NE
	26-Dec-2016	9:00	2.4	NE
	26-Dec-2016	10:00	3.3	NE
	26-Dec-2016	11:00	3.4	ENE
	26-Dec-2016	12:00	3.6	NNE
	26-Dec-2016	13:00	3.5	NE
	26-Dec-2016	14:00	3.9	NE
	26-Dec-2016	15:00	3.4	ENE
	26-Dec-2016	16:00	3.2	ENE
	26-Dec-2016	17:00	2.2	ENE
	26-Dec-2016	18:00	1.9	NE
	26-Dec-2016	19:00	1.8	NNE
	26-Dec-2016	20:00	1.6	NNE
	26-Dec-2016	21:00	2	NNE
	26-Dec-2016	22:00	2.1	NE
	26-Dec-2016	23:00	2.2	ESE
	27-Dec-2016	0:00	2.3	SSW
	27-Dec-2016	1:00	1.9	ENE
	27-Dec-2016	2:00	1.8	ENE
	27-Dec-2016	3:00	1.6	NE
	27-Dec-2016	4:00	1.9	NE
	27-Dec-2016	5:00	1.4	NE
	27-Dec-2016	6:00	1.2	NNE
	27-Dec-2016	7:00	0.9	NNE
	27-Dec-2016	8:00	1.5	NNE
	27-Dec-2016	9:00	1.8	NNE
	27-Dec-2016	10:00	2.8	NNE
	27-Dec-2016	11:00	2.6	NNE
	27-Dec-2016	12:00	2.9	NE
	27-Dec-2016	13:00	2.6	NE
	27-Dec-2016	14:00	2.9	ENE
	27-Dec-2016	15:00	2.9	NNE
	27-Dec-2016	16:00	2.3	NNE
	27-Dec-2016	17:00	2.3	SSW
	27-Dec-2016	18:00	1.7	S
	27-Dec-2016	19:00	1.2	SSE
	27-Dec-2016	20:00	1.1	SSE

11.	Mean wind S	peea ana wina Dir	ection	
	27-Dec-2016	21:00	0.9	SSW
	27-Dec-2016	22:00	0.9	ENE
	27-Dec-2016	23:00	1.5	ENE
	28-Dec-2016	0:00	1.3	NNE
	28-Dec-2016	1:00	1.4	N
	28-Dec-2016	2:00	1.4	N
	28-Dec-2016	3:00	1.3	N
	28-Dec-2016	4:00	1.5	N
	28-Dec-2016	5:00	1.1	NNE
	28-Dec-2016	6:00	1	N
	28-Dec-2016	7:00	1	NNE
	28-Dec-2016	8:00	1.1	N
	28-Dec-2016	9:00	1.6	N
	28-Dec-2016	10:00	2.2	N
	28-Dec-2016	11:00	2	NNE
	28-Dec-2016	12:00	2.2	N
	28-Dec-2016	13:00	3.2	N
	28-Dec-2016	14:00	2.5	SSE
	28-Dec-2016	15:00	2	SSE
	28-Dec-2016	16:00	2.3	SW
	28-Dec-2016	17:00	2.7	WNW
	28-Dec-2016	18:00	2.3	W
	28-Dec-2016	19:00	1.6	WNW
	28-Dec-2016	20:00	1.6	ENE
	28-Dec-2016	21:00	1.8	ESE
	28-Dec-2016	22:00	2	NNE
	28-Dec-2016	23:00	1.8	ENE
	29-Dec-2016	0:00	1.3	ESE
	29-Dec-2016	1:00	1.4	ENE
	29-Dec-2016	2:00	1.6	E
	29-Dec-2016	3:00	1.4	SSW
	29-Dec-2016	4:00	1.5	SSW
	29-Dec-2016	5:00	1.6	SSW
	29-Dec-2016	6:00	1.5	WSW
	29-Dec-2016	7:00	0.9	WNW
	29-Dec-2016	8:00	1	W
	29-Dec-2016	9:00	1.5	W
	29-Dec-2016	10:00	2.2	WNW

n. Mean	wina Speea an	a willa Dire	ection	
29-Dec-2	016	11:00	2.6	W
29-Dec-2	016	12:00	2.3	WNW
29-Dec-2	016	13:00	2	W
29-Dec-2	016	14:00	1.8	W
29-Dec-2	016	15:00	2.2	WNW
29-Dec-2	016	16:00	2.2	W
29-Dec-2	016	17:00	1.7	W
29-Dec-2	016	18:00	1.1	W
29-Dec-2	016	19:00	0.9	S
29-Dec-2	016	20:00	0.9	W
29-Dec-2	016 2	21:00	1.1	W
29-Dec-2	016	22:00	1.7	W
29-Dec-2	016	23:00	1.2	W
30-Dec-2	016	0:00	1.4	W
30-Dec-2	016	1:00	1.3	W
30-Dec-2	016	2:00	0.8	W
30-Dec-2	016	3:00	0.7	SW
30-Dec-2	016	4:00	1.2	W
30-Dec-2	016	5:00	1.5	W
30-Dec-2	016	6:00	1.1	W
30-Dec-2	016	7:00	1.1	W
30-Dec-2	016	8:00	1.8	SW
30-Dec-2	016	9:00	2.6	ENE
30-Dec-2	016	10:00	3.6	ENE
30-Dec-2	016	11:00	3.3	W
30-Dec-2	016	12:00	3.3	W
30-Dec-2	016	13:00	2.8	S
30-Dec-2	016	14:00	2.3	SSW
30-Dec-2	016	15:00	2.2	SSW
30-Dec-2	016	16:00	2.2	SW
30-Dec-2	016	17:00	1.9	S
30-Dec-2	016	18:00	1.4	W
30-Dec-2	016	19:00	1.1	W
30-Dec-2	016 2	20:00	1.1	SSW
30-Dec-2	016	21:00	1	W
30-Dec-2	016	22:00	1.3	WNW
30-Dec-2	016	23:00	1	WNW
31-Dec-2	016	0:00	1.3	W

II. Mean wind Speed and wind Direction						
31-Dec-2016	1:00	1.2	NE			
31-Dec-2016	2:00	1.6	NNE			
31-Dec-2016	3:00	2.4	E			
31-Dec-2016	4:00	2.2	SSW			
31-Dec-2016	5:00	2	SE			
31-Dec-2016	6:00	2.1	N			
31-Dec-2016	7:00	2.4	N			
31-Dec-2016	8:00	2.6	N			
31-Dec-2016	9:00	2.6	WSW			
31-Dec-2016	10:00	3	SW			
31-Dec-2016	11:00	3.1	SW			
31-Dec-2016	12:00	2.5	SW			
31-Dec-2016	13:00	2.5	SW			
31-Dec-2016	14:00	2.5	SW			
31-Dec-2016	15:00	2.3	SW			
31-Dec-2016	16:00	2	SW			
31-Dec-2016	17:00	2	ENE			
31-Dec-2016	18:00	1.4	NE			
31-Dec-2016	19:00	1.1	NE			
31-Dec-2016	20:00	1	N			
31-Dec-2016	21:00	1.9	NNE			
31-Dec-2016	22:00	1.7	NNE			
31-Dec-2016	23:00	1.2	NNE			

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (December 2016)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
•	·	•	•	1-Dec	2-Dec	3-De
				Noise [CM1, CM3, CM5]	24 hr TSP	
4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-De
	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]	Noise [CM1, CM3, CM5]	24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)]	
11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-De
	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	24 hr TSP		1 hr TSP X3 [AM1, AM2, AM3, AM4, AM5(A) & AM6(A)] Noise [CM1, CM3, CM5]	
18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-De
		24 hr TSP		1 hr TSP X3 [AM1, AM2, AM3, AM4, AM5(A) & AM6(A)] Noise [CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A)]		24 hr TSP
25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-De
			1 hr TSP X3 [AM1, AM2, AM3, AM4, AM5(A) & AM6(A)] Noise [CM2, CM4, CM6(A), CM7(A), CM8(A)]		Noise [CM1, CM3, CM5] 24 hr TSP (*) [AM1, AM2, AM3, AM5(A) & AM6(A)]	

Note: (*) 24-hour TSP montioring at AM4(A) -Cha Kwo Ling Public Cargo Working Area Administrative Office is cancelled due to power supply failure

Air Quality Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)(2) - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

Note (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

 $CM6(A) \hbox{ - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores} \\$

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Groundwater Quality Monitoring Schedule (December 2016)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1 Dec	2-Dec	3-Dec
				Groundwater Quality Monitoring		
4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec
11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-Dec
			Groundwater Quality Monitoring			
18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec
25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec
					Groundwater Quality Monitoring	

Monitoring Location:

Stream 1, Stream 2, Stream 3

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule (December 2016)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Dec	2-Dec	3-Dec
4 D	5 D	(D	7 D	0 D	9-Dec	10 D-
4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec
11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-Dec
18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec
	Mid-Flood 11:10		Mid-Flood 12:56			Mid-Ebb 8:59
	Mid-Ebb 16:35		Mid-Ebb 18:47			Mid-Flood 15:06
25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec
				-		
			M: LELL 44.50		M: E 40.44	
			Mid-Ebb 11:58 Mid-Flood 17:08		Mid-Ebb 13:11 Mid-Flood 18:18	
			IVIIU-1 1000 17.00		10.10 10.10	

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Air Quality and Noise Monitoring Schedule (January 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jan	2-Jan	3-Jan	4-Jan	5-Jan	6-Jan	7-Jan
		1 hr TSP X3 [AM1, AM2, AM3, AM4, AM5(A) & AM6(A)] Noise [CM2, CM4, CM6(A), CM7(A), CM8(A)]	Noise [CM1, CM3, CM5]	24 hr TSP	24 hr TSP [AM4(A)]	
8-Jan	9-Jan	10-Jan	11-Jan	12-Jan	13-Jan	14-Jan
	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]		24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM1, CM3, CM5] [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4]	
15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan	21-Jan
		24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM1, CM3, CM5] [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]		
22-Jan	23-Jan	24-Jan	25-Jan	26-Jan	27-Jan	28-Jan
	Noise [CM1, CM3, CM5] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]	24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3, AM4, AM5(A) & AM6(A)]	
29-Jan	30-Jan	31-Jan				

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)(2) - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

Note (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Groundwater Quality Monitoring Schedule (January 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jan	2-Jan	3-Jan	4-Jan	5-Jan	6-Jan	7-Jan
			Groundwater Quality Monitoring			
8-Jan	9-Jan	10-Jan	11-Jan	12-Jan	13-Jan	14-Jan
15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan	21-Jan
				Groundwater Quality Monitoring		
22-Jan	23-Jan	24-Jan	25-Jan	26-Jan	27-Jan	28-Jan
29-Jan	30-Jan	31-Jan				

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Location:

Stream 1, Stream 2, Stream 3

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

Tentative Impact Water Quality Monitoring Schedule (December 2016)

Sunday	Monday		Tuesda		Wednes		Thursd		Frida	y	Saturd	
1-Jan		2-Jan		3-Jan		4-Jan		5-Jan		6-Jan		7-Jan
			Mid-Flood Mid-Ebb	10:26 16:06			Mid-Flood Mid-Ebb	11:59 18:04			Mid-Ebb Mid-Flood	6:57 13:37
8-Jan		9-Jan		10-Jan		11-Jan		12-Jan		13-Jan		14-Jan
	Mid-Ebb Mid-Flood	9:24 15:19			Mid-Ebb Mid-Flood	11:30 16:58			Mid-Flood Mid-Ebb	7:39 13:07		
15-Jan		16-Jan		17-Jan		18-Jan		19-Jan		20-Jan		21-Jan
	Mid-Flood Mid-Ebb	10:22 16:01			Mid-Flood Mid-Ebb	11:46 17:48			Mid-Ebb Mid-Flood	6:33 13:17		
22-Jan		23-Jan		24-Jan		25-Jan		26-Jan		27-Jan		28-Jan
	Mid-Ebb Mid-Flood	9:15 14:38			Mid-Ebb Mid-Flood	11:00 16:00			Mid-Ebb Mid-Flood	12:21 17:28		
29-Jan		30-Jan		31-Jan								

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

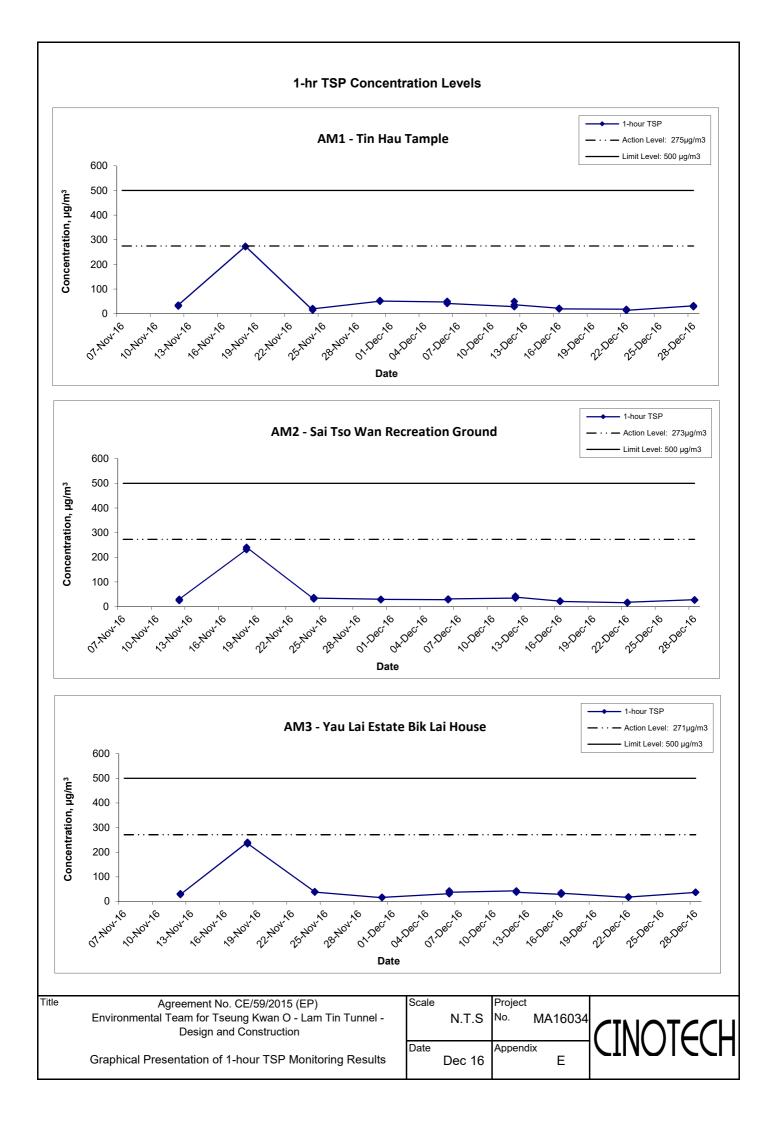
Appendix E - 1-hour TSP Monitoring Results

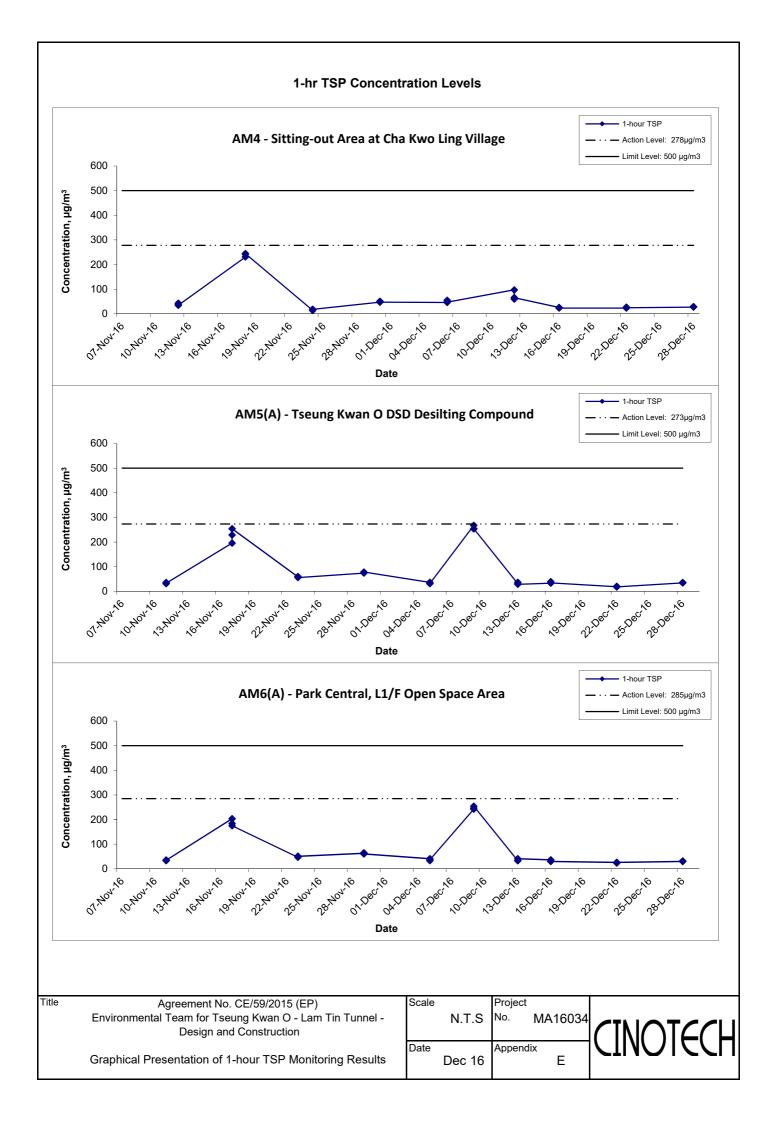
Location AM1 -	Tin Hau Tem	ple	
Date	Time	Weather	Particulate Concentration (μg/m³)
6-Dec-16	9:00	Sunny	47.4
6-Dec-16	10:00	Sunny	50.6
6-Dec-16	11:00	Sunny	42.0
12-Dec-16	13:00	Sunny	29.0
12-Dec-16	14:00	Sunny	50.3
12-Dec-16	15:00	Sunny	36.9
16-Dec-16	9:00	Sunny	22.6
16-Dec-16	10:00	Sunny	21.5
16-Dec-16	11:00	Sunny	19.4
22-Dec-16	9:00	Sunny	18.2
22-Dec-16	10:00	Sunny	15.9
22-Dec-16	11:00	Sunny	13.7
28-Dec-16	9:00	Cloudy	32.0
28-Dec-16	10:00	Cloudy	33.1
28-Dec-16	11:00	Cloudy	28.7
		Average	30.8
		Maximum	50.6
		Minimum	13.7

Date	Time	Weather	Particulate Concentration (μg/m ³)
6-Dec-16	13:00	Sunny	28.3
6-Dec-16	14:00	Sunny	29.4
6-Dec-16	15:00	Sunny	31.5
12-Dec-16	13:00	Sunny	34.5
12-Dec-16	14:00	Sunny	43.1
12-Dec-16	15:00	Sunny	38.8
16-Dec-16	9:00	Sunny	22.3
16-Dec-16	9:00	Sunny	23.5
16-Dec-16	9:00	Sunny	21.2
22-Dec-16	9:00	Sunny	15.7
22-Dec-16	10:00	Sunny	16.8
22-Dec-16	11:00	Sunny	18.0
28-Dec-16	13:05	Cloudy	28.2
28-Dec-16	14:05	Cloudy	27.1
28-Dec-16	15:05	Cloudy	27.1
		Average	27.0

ocation AM3 -	Yau Lai Esta	te Bik Lai House	
Date	Time	Weather	Particulate Concentration (μg/m³)
6-Dec-16	9:00	Sunny	31.5
6-Dec-16	10:00	Sunny	43.0
6-Dec-16	11:00	Sunny	37.8
12-Dec-16	9:00	Sunny	43.1
12-Dec-16	10:00	Sunny	39.8
12-Dec-16	11:00	Sunny	37.7
16-Dec-16	9:00	Sunny	29.2
16-Dec-16	10:00	Sunny	35.7
16-Dec-16	11:00	Sunny	33.5
22-Dec-16	9:00	Sunny	16.8
22-Dec-16	10:00	Sunny	19.0
22-Dec-16	11:00	Sunny	17.9
28-Dec-16	13:05	Cloudy	37.0
28-Dec-16	14:05	Cloudy	38.1
28-Dec-16	15:05	Cloudy	37.0
		Average	33.1
		Maximum	43.1
		Minimum	16.8

MA16034/App E - 1hr TSP Cinotech


Appendix E - 1-hour TSP Monitoring Results


Location AM4 -	Sitting-out A	rea at Cha Kwo Li	ing Village
Date	Time	Weather	Particulate Concentration (μg/m³)
6-Dec-16	13:00	Sunny	46.3
6-Dec-16	14:00	Sunny	54.9
6-Dec-16	15:00	Sunny	47.4
12-Dec-16	9:00	Sunny	97.2
12-Dec-16	10:00	Sunny	60.3
12-Dec-16	11:00	Sunny	65.9
16-Dec-16	13:00	Sunny	25.8
16-Dec-16	14:00	Sunny	24.8
16-Dec-16	15:00	Sunny	23.7
22-Dec-16	13:00	Sunny	23.5
22-Dec-16	14:00	Sunny	26.8
22-Dec-16	15:00	Sunny	24.6
28-Dec-16	13:00	Cloudy	27.6
28-Dec-16	14:00	Cloudy	28.7
28-Dec-16	15:00	Cloudy	28.7
		Average	40.4
		Maximum	97.2
		Minimum	23.5

ocation AM5(A	A) - Tseung Kı	wan O DSD Desilt	ng Compound
Date	Time	Weather	Particulate Concentration (μg/m ³)
5-Dec-16	13:00	Sunny	36.7
5-Dec-16	14:00	Sunny	32.5
5-Dec-16	15:00	Sunny	31.5
9-Dec-16	13:00	Sunny	267.7
9-Dec-16	14:00	Sunny	254.3
9-Dec-16	15:00	Sunny	253.8
13-Dec-16	13:00	Sunny	31.3
13-Dec-16	14:00	Sunny	36.9
13-Dec-16	15:00	Sunny	29.0
16-Dec-16	13:00	Sunny	33.5
16-Dec-16	14:00	Sunny	39.1
16-Dec-16	15:00	Sunny	34.6
22-Dec-16	13:00	Sunny	19.1
23-Dec-16	14:00	Sunny	20.2
23-Dec-16	15:00	Sunny	18.0
28-Dec-16	9:05	Cloudy	34.8
28-Dec-16	10:05	Cloudy	34.8
28-Dec-16	11:05	Cloudy	35.9
		Average	69.1
	[Maximum	267.7
		Minimum	18.0

Location AM6(A	A) - Park Cent	ral, L1/F Open Spa	ace Area
Date	Time	Weather	Particulate Concentration (μg/m³)
5-Dec-16	9:00	Sunny	40.9
5-Dec-16	10:00	Sunny	33.6
5-Dec-16	11:00	Sunny	36.7
9-Dec-16	8:30	Sunny	242.4
9-Dec-16	9:30	Sunny	246.3
9-Dec-16	10:30	Sunny	254.2
13-Dec-16	9:00	Sunny	33.5
13-Dec-16	10:00	Sunny	33.5
13-Dec-16	11:00	Sunny	41.3
16-Dec-16	13:00	Sunny	36.8
16-Dec-16	14:00	Sunny	31.4
16-Dec-16	15:00	Sunny	30.3
22-Dec-16	13:00	Sunny	26.2
22-Dec-16	14:00	Sunny	23.9
22-Dec-16	15:00	Sunny	26.2
28-Dec-16	9:00	Cloudy	30.2
28-Dec-16	10:00	Cloudy	31.3
28-Dec-16	11:00	Cloudy	31.3
		Average	68.3
		Maximum	254.2
		Minimum	23.9

MA16034/App E - 1hr TSP Cinotech

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - 24-hour TSP Monitoring Results

Location AM1 - Tin Hau Temple

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-Dec-16	Sunny	291.3	770.4	3.5356	3.7255	0.1899	1186.7	1210.7	24.0	1.20	1.20	1.20	1733.2	109.6
8-Dec-16	Sunny	289.7	766.2	3.2756	3.4656	0.1900	1210.7	1234.7	24.0	1.20	1.20	1.20	1733.2	109.6
14-Dec-16	Sunny	293.8	766.7	3.5971	3.7699	0.1728	1234.7	1258.7	24.0	1.20	1.19	1.20	1721.0	100.4
20-Dec-16	Sunny	294.3	767.3	3.5877	3.7526	0.1649	1258.7	1282.7	24.0	1.19	1.19	1.19	1720.1	95.9
24-Dec-16	Sunny	290.3	768.0	3.5559	3.7372	0.1813	1283.0	1307.0	24.0	1.20	1.20	1.20	1733.5	104.6
30-Dec-16	Sunny	286.8	772.1	3.6459	3.8307	0.1848	1307.0	1331.0	24.0	1.22	1.21	1.21	1749.6	105.6
													Min	95.9
													Max	109.6
													Average	104.3

Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Elapse Time		Sampling	Flow Rate (m³/min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-Dec-16	Sunny	292.1	770.0	3.6177	3.7273	0.1096	22026.9	22050.9	24.0	1.24	1.24	1.24	1781.8	61.5
8-Dec-16	Sunny	288.6	766.7	3.5656	3.7026	0.1370	22050.9	22074.9	24.0	1.24	1.24	1.24	1788.9	76.6
14-Dec-16	Sunny	293.4	766.3	3.5494	3.6458	0.0964	22074.9	22098.9	24.0	1.23	1.23	1.23	1773.2	54.4
20-Dec-16	Sunny	293.2	767.4	3.5545	3.6473	0.0928	22098.9	22122.9	24.0	1.23	1.23	1.23	1775.2	52.3
24-Dec-16	Sunny	291.1	768.7	3.5914	3.6759	0.0845	22122.9	22146.9	24.0	1.24	1.24	1.24	1783.4	47.4
30-Dec-16	Sunny	286.6	771.5	3.5951	3.6855	0.0904	22146.9	22170.9	24.0	1.25	1.25	1.25	1801.2	50.2
													Min	47.4
													Max	76.6
													Average	57.1

Location AM3 - Yau Lai Estate, Bik Lai House

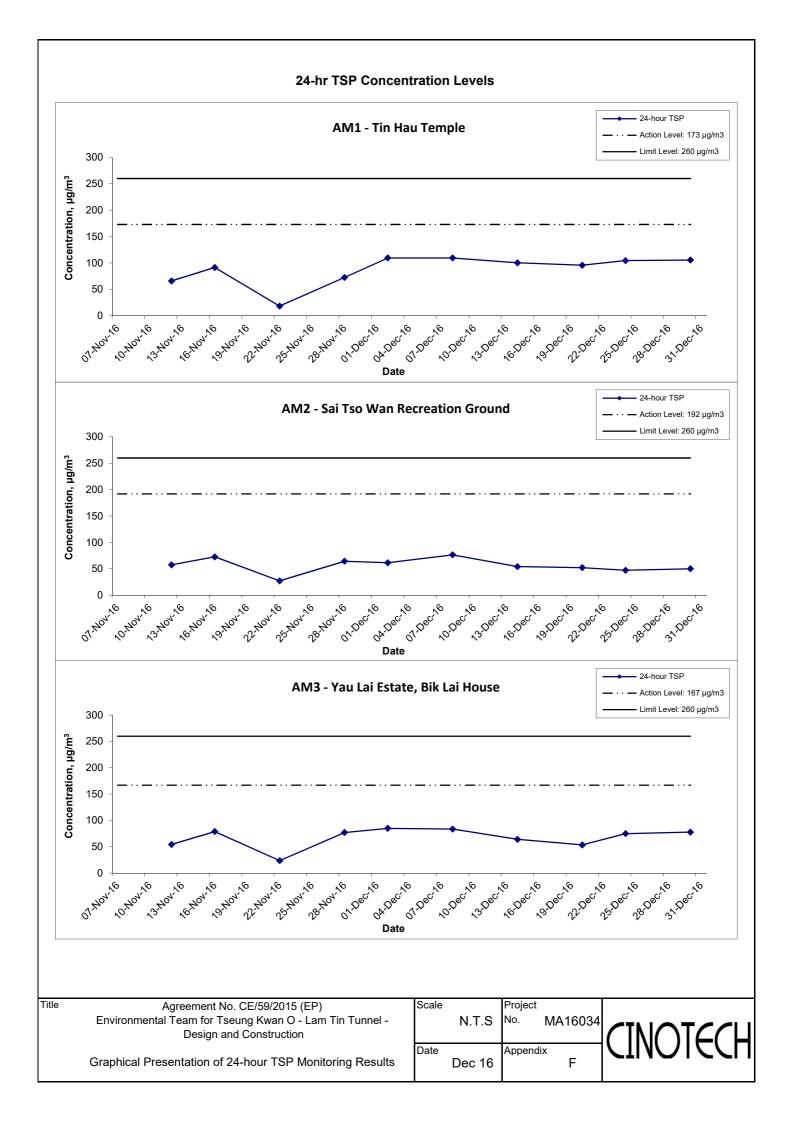
Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g) Pa		Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-Dec-16	Sunny	293.5	769.1	3.6093	3.7584	0.1491	10606.0	10630.0	24.0	1.22	1.22	1.22	1755.5	84.9
8-Dec-16	Sunny	288.7	766.2	3.5797	3.7273	0.1476	10630.0	10654.0	24.0	1.23	1.23	1.23	1766.6	83.6
14-Dec-16	Sunny	294.3	765.8	3.5857	3.6976	0.1119	10654.0	10678.0	24.0	1.22	1.21	1.21	1749.4	64.0
20-Dec-16	Sunny	293.1	768.2	3.5453	3.6389	0.0936	10678.0	10702.0	24.0	1.22	1.22	1.22	1755.7	53.3
24-Dec-16	Sunny	292.3	768.6	3.5811	3.7126	0.1315	10774.0	10798.0	24.0	1.22	1.22	1.22	1758.5	74.8
30-Dec-16	Cloudy	287.1	772.5	3.5624	3.7006	0.1382	10798.0	10822.0	24.0	1.24	1.23	1.24	1778.7	77.7
													Min	53.3
													Max	84.9
													Average	73.0

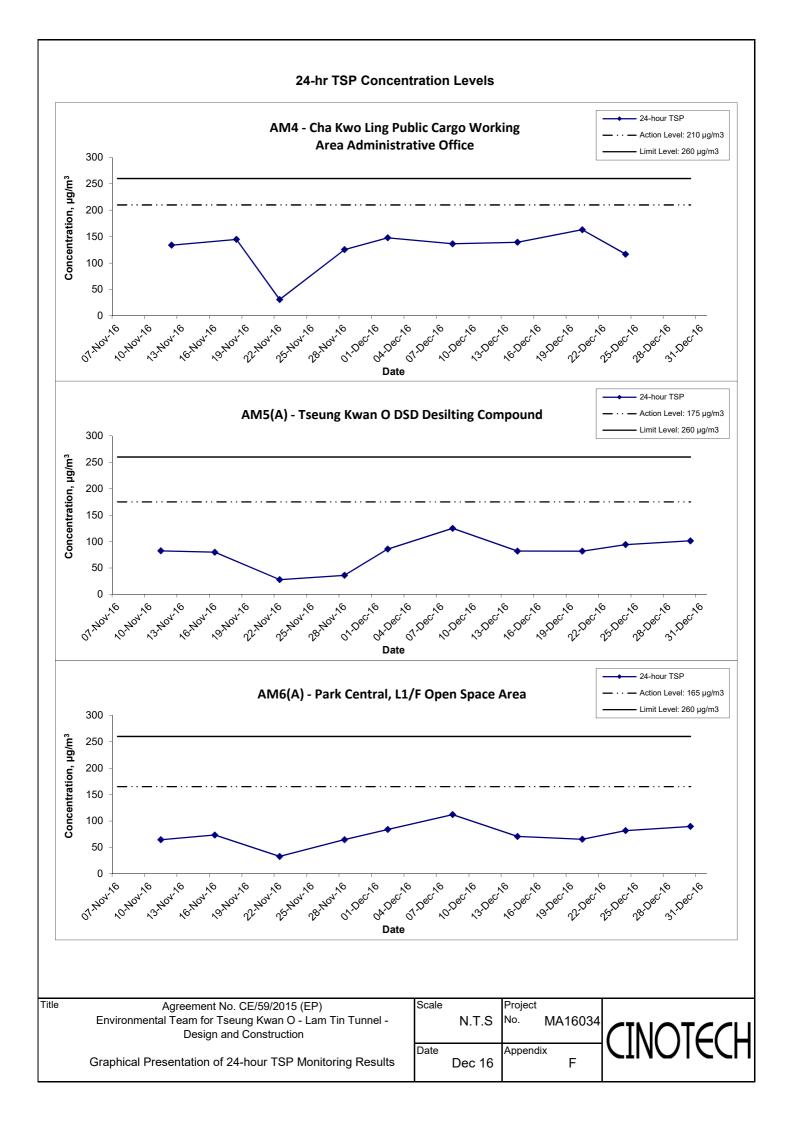
MA16034/App F - 24 hr TSP

Appendix F - 24-hour TSP Monitoring Results

Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
2-Dec-16	Sunny	293.6	770.3	3.5609	3.8207	0.2598	7705.2	7729.2	24.0	1.22	1.22	1.22	1757.0	147.9
8-Dec-16	Sunny	289.8	765.9	3.6236	3.8643	0.2407	7729.2	7753.2	24.0	1.23	1.22	1.22	1763.8	136.5
14-Dec-16	Sunny	295.5	765.0	3.6005	3.8435	0.2430	7753.2	7777.2	24.0	1.21	1.21	1.21	1744.7	139.3
20-Dec-16	Sunny	294.3	766.8	3.6238	3.9093	0.2855	7777.2	7801.2	24.0	1.22	1.22	1.22	1750.6	163.1
24-Dec-16	Sunny	291.9	768.4	3.5596	3.7652	0.2056	7801.2	7825.2	24.0	1.22	1.22	1.22	1760.1	116.8
													Min	116.8
													Max	163.1
													Average	140.7


Location AM5(A) - Tseung Kwan O DSD Desilting Compound


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-Dec-16	Sunny	293.4	770.8	3.5809	3.7330	0.1521	21447.5	21471.5	24.0	1.23	1.23	1.23	1776.2	85.6
8-Dec-16	Sunny	289.5	766.8	3.5863	3.8091	0.2228	21471.5	21495.5	24.0	1.24	1.24	1.24	1783.5	124.9
14-Dec-16	Sunny	294.9	765.2	3.5839	3.7285	0.1446	21495.5	21519.5	24.0	1.23	1.23	1.23	1765.1	81.9
20-Dec-16	Sunny	292.7	767.6	3.5608	3.7060	0.1452	21519.5	21543.5	24.0	1.23	1.24	1.23	1774.6	81.8
24-Dec-16	Sunny	292.6	767.2	3.5891	3.7562	0.1671	21543.5	21567.5	24.0	1.23	1.23	1.23	1774.4	94.2
30-Dec-16	Sunny	286.6	771.7	3.6275	3.8096	0.1821	21567.5	21591.5	24.0	1.25	1.25	1.25	1798.4	101.3
													Min	81.8
													Max	124.9
													Average	95.0

Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-Dec-16	Sunny	294.7	769.6	3.6061	3.7558	0.1497	14507.8	14531.8	24.0	1.24	1.24	1.24	1784.8	83.9
8-Dec-16	Sunny	298.6	765.2	3.6202	3.8149	0.1947	14531.8	14555.8	24.0	1.21	1.21	1.21	1738.8	112.0
14-Dec-16	Sunny	294.3	765.4	3.6030	3.7269	0.1239	14555.8	14579.8	24.0	1.22	1.22	1.22	1751.1	70.8
20-Dec-16	Sunny	293.8	766.5	3.5778	3.6927	0.1149	14579.8	14603.8	24.0	1.22	1.22	1.22	1753.7	65.5
24-Dec-16	Cloudy	291.7	767.4	3.5613	3.7054	0.1441	14603.8	14627.8	24.0	1.22	1.22	1.22	1760.7	81.8
30-Dec-16	Sunny	286.5	771.2	3.6152	3.7748	0.1596	14627.8	14651.8	24.0	1.24	1.24	1.24	1780.0	89.7
													Min	65.5
													Max	112.0
													Average	83.9

MA16034/App F - 24 hr TSP

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix G - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

Location CM1	Location CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level						
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
1-Dec-16	15:00	Sunny	65.4	67.1	63.6		65.4 Measured \leq Baseline						
7-Dec-16	16:55	Cloudy	65.9	67.0	64.8		55.3						
16-Dec-16	9:45	Sunny	66.7	68.9	62.5	65.5	60.5						
22-Dec-16	11:00	Sunny	69.2 71.6 60.2 66.8										
30-Dec-16	15:15	Cloudy	66.3										

Location CM2	Location CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong												
					Unit:	dB (A) (30-min)							
Date	Time	Weather Measured Noise Level Baseline Level Construction Noise Level											
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
6-Dec-16	9:15	Sunny	67.4	69.6	63.7		65.1						
12-Dec-16	9:20	Sunny	67.4	69.1	64.8	62.6	65.1						
22-Dec-16	10:00	Sunny	70.3 73.6 64.7 63.6 69.3										
28-Dec-16	13:10	Cloudy	70.8 71.9 65.3 69.9										

Location CM3	ocation CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level						
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
1-Dec-16	16:45	Sunny	64.9	65.8	63.2		64.9 Measured \leq Baseline						
7-Dec-16	16:45	Cloudy	67.0	68.4	65.3		61.4						
16-Dec-16	11:30	Sunny	67.4	69.3	62.9	65.6	62.7						
22-Dec-16	15:10	Sunny	68.7 70.2 66.0 65.8										
30-Dec-16	14:25	Cloudy	69.8										

Location CM4	- Tin Hau Te	emple, Cha Kv	vo Ling				
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
6-Dec-16	10:10	Sunny	63.8	66.3	56.4		59.1
12-Dec-16	10:30	Sunny	67.7	68.9	63.5	60.0	66.3
22-Dec-16	9:05	Sunny	61.1	64.0	57.6	62.0	61.1 Measured ≤ Baseline
28-Dec-16	13:00	Cloudy	66.5	69.5	59.4		59.6

Location CM5 -	ocation CM5 - CCC Kei Faat Primary School, Yau Tong											
					Unit	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise	Baseline Level	Construction Noise Level						
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
1-Dec-16	14:10	Sunny	68.2	70.8	64.3		$68.2 \text{ Measured} \leq \text{Baseline}$					
7-Dec-16	16:30	Sunny	70.9	72.8	67.2		67.6					
16-Dec-16	10:35	Sunny	68.2	70.1	63.8	68.2	$68.2 \text{ Measured} \leq \text{Baseline}$					
22-Dec-16	10:15	Sunny	67.1	68.3	65.5		67.1 Measured \leq Baseline					
30-Dec-16	16:10	Cloudy	69.0	71.4	65.2		66.4					

MA16034/App G - Noise

Appendix G - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)


(0700-1900 1113	0700-1900 III's Oil Noilliai Weekdays)													
Location CM6(A) - Site Boı	undary of Cor	ntract No. NE	E/2015/02 ne	ar Tower 1,	Ocean Shores								
					Unit:	dB (A) (30-min)								
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level							
			L_{eq}	L _{eq}										
5-Dec-16	14:45	Sunny	60.3	62.4	54.3		60.3 Measured ≤ Baseline							
13-Dec-16	14:30	Sunny	63.1	65.2	53.8	61.0	56.9							
22-Dec-16	14:15	Sunny	55.1	61.9										
28-Dec-16	9:30	Cloudy	73.3											

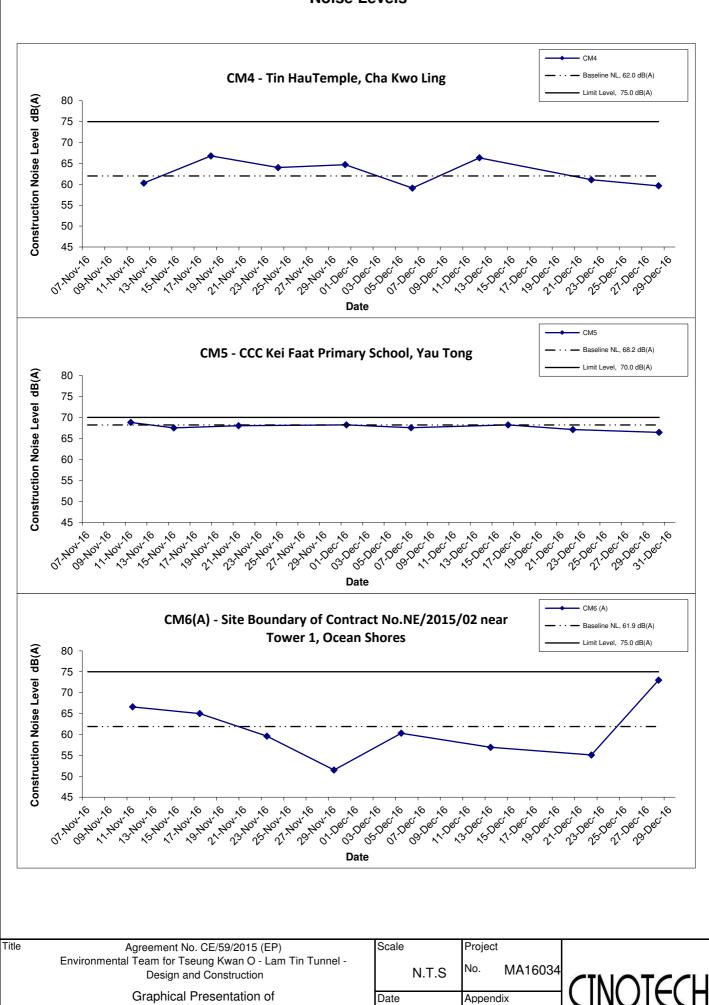
Location CM7(ocation CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Measured Noise Level Baseline Level Construction Noise										
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
5-Dec-16	14:00	Sunny	62.0	64.1	55.5		59.6						
13-Dec-16	13:40	Sunny	66.4	68.3	65.0	58.3	65.7						
22-Dec-16	13:20	Sunny	59.3	61.6	51.1	56.5	52.4						
28-Dec-16	10:05	Cloudy	72.8 74.9 66.3 72.6										

Location CM8(ocation CM8(A) - Park Central, L1/F Open Space Area												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level						
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
5-Dec-16	9:10	Sunny	68.6	70.2	60.3		$68.6 \text{ Measured} \leq \text{Baseline}$						
13-Dec-16	10:40	Sunny	68.3	70.6	62.4	69.1	68.3 Measured \leq Baseline						
22-Dec-16	13:05	Sunny	69.5	73.3	61.9	09.1	58.9						
28-Dec-16	11:00	Cloudy	70.2	72.3	62.1		63.7						

MA16034/App G - Noise

Noise Levels

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

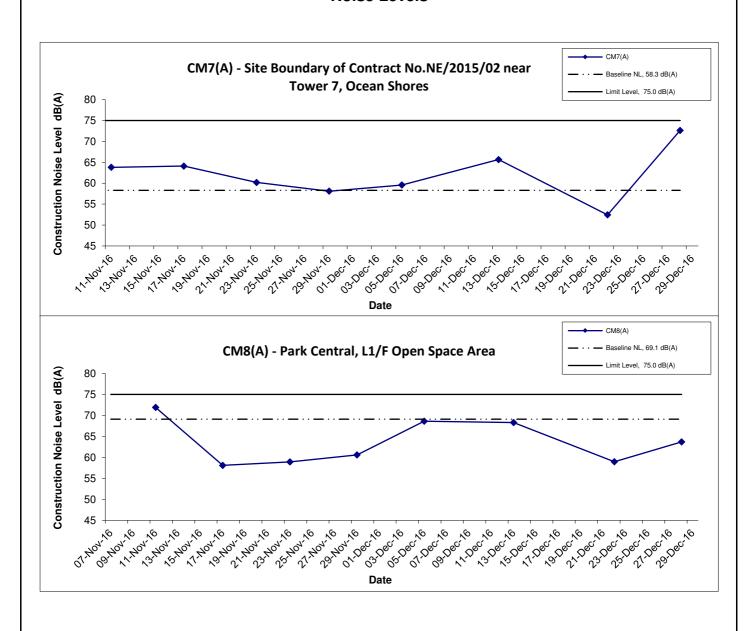

Graphical Presentation of
Construction Noise Monitoring Results

Scale Project

N.T.S No. MA16034

Date Dec 16 Appendix G

Noise Levels



Dec 16

G

Construction Noise Monitoring Results

Noise Levels

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of
Construction Noise Monitoring Results

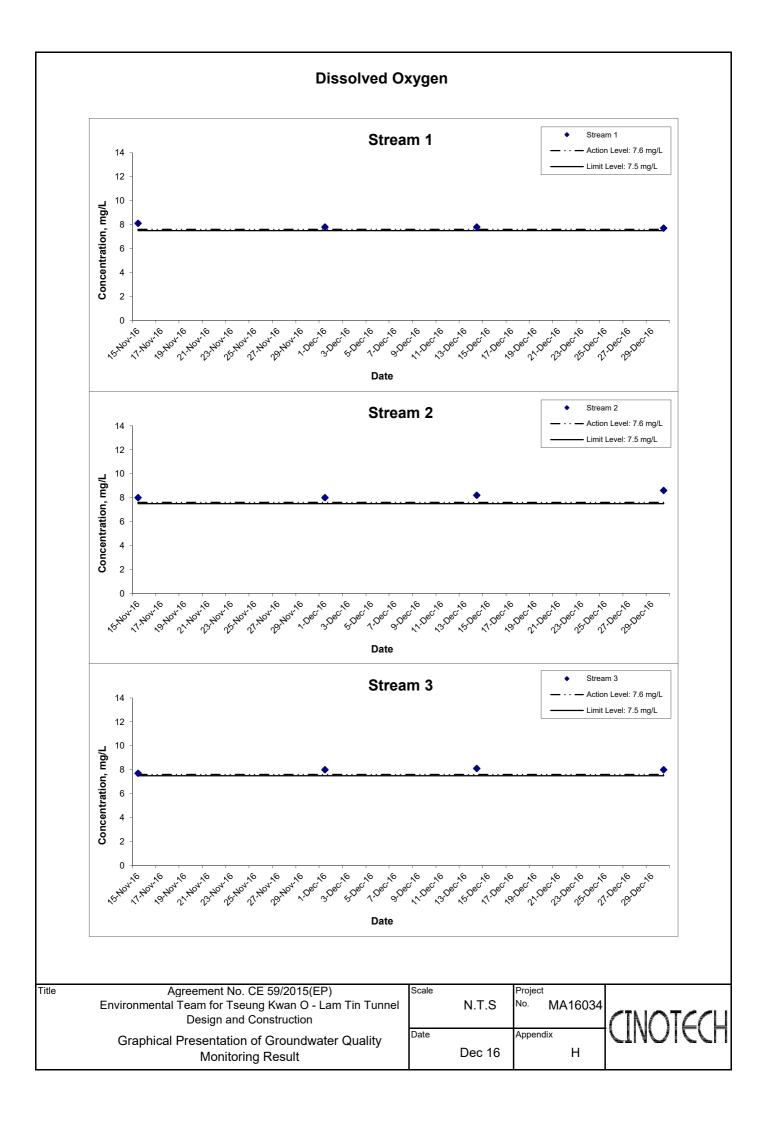
Scale Project
N.T.S No. MA16034

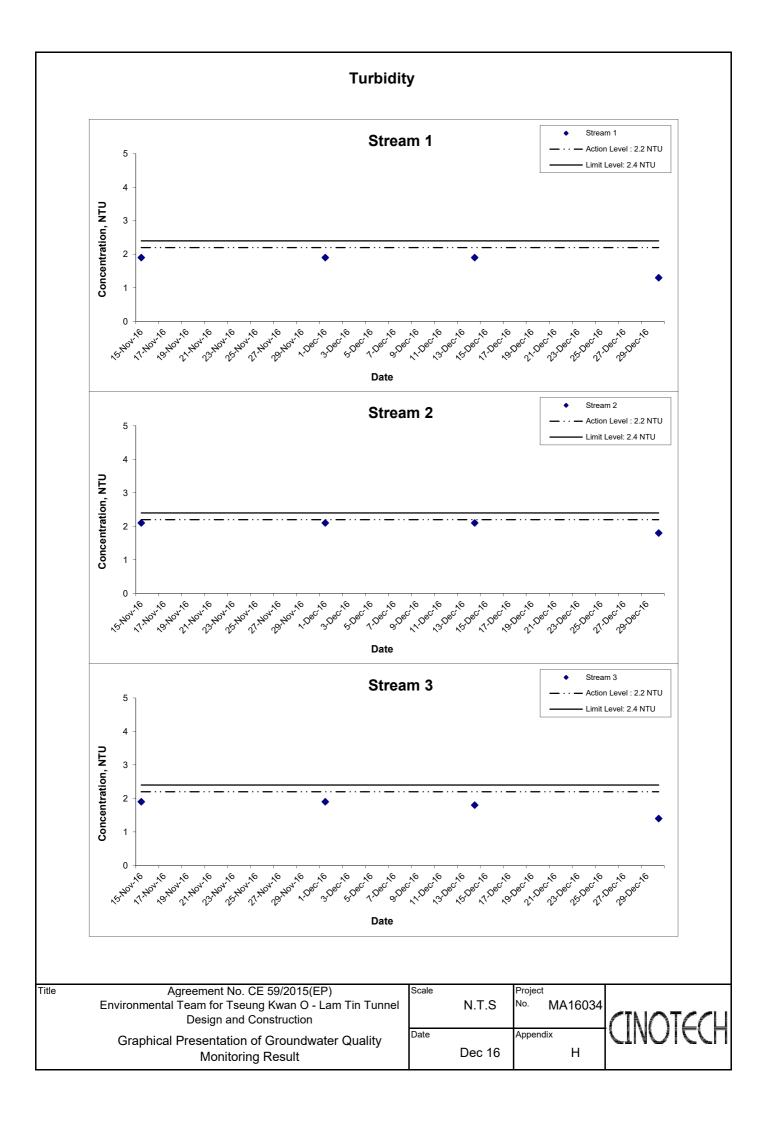
Date Appendix
Dec 16

APPENDIX H
GROUNDWATER QUALITY
MONITORING RESULTS, GRAPHICAL
PRESENTATIONS AND LABORATORY
TESTING REPORTS

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

Baseline Groundwater Quality Monitoring Results at Stream 1


Date	Weather	Sampling	Depth (m)	Tempera	iture (°C)	р	Н	Salin	ty ppt	DO Satu	ration (%)	Dissolved O:	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Dec-16	Cuppy	12:46	Middle	31.2	31.3	7.0	7.1	0.1	0.1	105.8	105.5	7.8	7.0	1.9	1.0
1-Dec-10	Sunny	12.40	Middle	31.4	31.3	7.1	7.1	0.1	0.1	105.2	105.5	7.8	7.0	1.9	1.9
14-Dec-16	Cloudy	09:55	Middle	18.3	18.3	7.3	7.2	0.3	0.3	83.3	83.1	7.8	7.0	1.8	1.0
14-Dec-16	Cloudy	09.55	Middle	18.3	10.3	7.3	7.3	0.3	0.3	82.8	03.1	7.8	7.0	1.9	1.9
30-Dec-16	Sunnv	13:56	Middle	17.6	17.7	7.2	7.2	0.6	0.6	80.9	80.9	7.7	7.7	1.3	1.2
30-Dec-10	Suring	13.30	Middle	17.7	17.7	7.3	1.3	0.6	0.6	80.8	60.9	7.7	7.7	1.2	1.3


Baseline Groundwater Quality Monitoring Results at Stream 2

Date	Weather	Sampling	Depth (m)	Temperature (°C)		pН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)	
	Condition	Time		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Dec-16	Sunny	12:20	Middle	31.4	31.4	6.9	6.9 6.9	0.1	0.1	108.2	108.0	8.0	8.0	2.1	2.1
				31.4	31.4	6.9		0.1	0.1	107.7		7.9	6.0	2.1	
14-Dec-16	Cloudy 09:	00.20	09:29 Middle	19.4	19.4	7.0	7.0	0.2	0.2	88.7	88.5	8.2	8.2	2.0	2.1
		09.29		19.4	15.4	7.0		0.2		88.3		8.1	0.2	2.1	
30-Dec-16	Sunny	13:29	Middle	18.6	18.6	6.8	6.8	0.1	0.1	92.8	91.8	8.7	8.6	1.9	1.8
30-Dec-10				18.6	10.0	6.7		0.1	0.1	90.8		8.5	0.0	1.6	

Baseline Groundwater Quality Monitoring Results at Stream 3

Date	Weather	Sampling	Depth (m)	Temperature (°C)		pН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)	
	Condition	Time	Depar (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Dec-16	Sunny	11:58	Middle	31.3	31.3	6.9	6.9	0.1	0.1	108.2	108.5	8.0	8.0	1.8	1.9
				31.3	31.3	6.9		0.1	0.1	108.7		8.0		1.9	
14-Dec-16	Cloudy	09:20	Middle	19.7	10.7	19.7 7.3 7.3	7.3	0.3	0.3	88.8	88.5	8.1	8.1	1.8 1.8	1.8
				19.6	19.7			0.3		88.1		8.1	0.1		
30-Dec-16	Sunny	13:19	Middle	20.5	20.5	7.1	7.1	0.2	0.2	89.0	88.3	8.0	8.0	1.3	1.4
30-Dec-10				20.5	20.5	7.1		0.2	0.2	87.5		7.9	0.0	1.5	

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

 Report No.:
 26146

 Date of Issue:
 2016-12-12

 Date Received:
 2016-12-01

 Date Tested:
 2016-12-01

 Date Completed:
 2016-12-12

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

Sample Description

3 liquid samples as received from client said to be groundwater

Laboratory No.

: 26146

Project No.

MA16034 (Groundwater)

Project Name

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel – Design and Construction

Custody No.

MA16034(Groundwater)/161201

Sampling Date

2016-12-01

Tests Requested & Methodology:

T COTO	requested & memodology.		
Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Total Nitrogen	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

ACBRICS.			
Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	26146-1	26146-2	26146-3
Total Suspended Solids (mg/L)	4.7	1.3	3.3
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	6	6	6
Total Nitrogen (mg N/L)	2.1	2.1	2.1
Ammonia (mg NH ₃ -N/L)	< 0.05	< 0.05	0.05
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05

Remarks:

- $1) \le less than$
- 2) S = Surface, M = Middle, B = Bottom
- 3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

 Report No.:
 26227

 Date of Issue:
 2016-12-30

 Date Received:
 2016-12-14

 Date Tested:
 2016-12-14

 Date Completed:
 2016-12-30

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

Sample Description :

3 liquid samples as received from client said to be groundwater

Laboratory No.

26227

Project No.

MA16034 (Groundwater)

Project Name :

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel – Design and Construction

Custody No.

MA16034(Groundwater)/161214

Sampling Date :

2016-12-14

Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Total Nitrogen	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

TANKTON .			
Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	26227-1	26227-2	26227-3
Total Suspended Solids (mg/L)	4.0	2.8	6.5
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	3	4	4
Total Nitrogen (mg N/L)	1.0	1.6	1.5
Ammonia (mg NH ₃ -N/L)	0.38	< 0.05	< 0.05
Total Phosphorus (mg-P/L)	0.08	< 0.05	< 0.05

Remarks:

- $1) \le less than$
- 2) S = Surface, M = Middle, B = Bottom
- 3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street,

Shatin, N.T.

Report No.: 26314 Date of Issue: 2017-01

Date of Issue: 2017-01-10 Date Received: 2016-12-31

Date Tested: 2016-12-31 Date Completed: 2017-01-10

1 of 1

ATTN: Ms. Mei Ling Tang Page:

Sample Description : 3 liquid samples as received from client said to be groundwater

Laboratory No. : 26314

Project No.: MA16034 (Groundwater)

Project Name : Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel – Design and Construction

Custody No. : MA16034(Groundwater)/161231

Sampling Date : 2016-12-31

Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Total Nitrogen	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	26314-1	26314-2	26314-3
Total Suspended Solids (mg/L)	3.0	1.0	3.9
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	3	4	2
Total Nitrogen (mg N/L)	< 0.6	1.4	1.3
Ammonia (mg NH ₃ -N/L)	0.08	< 0.05	< 0.05
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05

Remarks:

- 1) < = less than
- 2) S = Surface, M = Middle, B = Bottom
- 3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix I - Action and Limit Levels for Marine Water Quality on 19 December 2016 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level									
	Stations G1-G4	4, M1-M5										
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L									
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L									
	Station M6											
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4	Stations G1-G4, M1-M5										
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
Troubiditoria		or 120% of upstream control	or 130% of upstream control									
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide									
(See Note 2 and 4)		tide of the same day	of the same day									
(00000000000000000000000000000000000000		<u>C2: 7.6 NTU</u>	<u>C2: 8.2 NTU</u>									
	Station M6											
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>									
	Stations G1-G4											
		6.0 mg/L	<u>6.9mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Surface	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>									
	Stations M1-M	<u>5</u>										
		6.2 mg/L	<u>7.4 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the									
(See Note 2 and 4)		the same day	same day									
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>									
	Stations G1-G4	4, M1-M5										
		6.9 mg/L	<u>7.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Bottom	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C2: 4.2 mg/L</u>	<u>C2: 4.6 mg/L</u>									
	Station M6											
	Intake Level	8.3 mg/L	<u>8.6 mg/L</u>									

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 19 December 2016

(Mid-Ebb Tide)

Looption	Weather	Sea	Sampling	Dont	ile (me)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	7	Turbidity(NTL	J)	Suspe	nded Solids (mg/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.8 20.8	20.8	8.2 8.1	8.2	33.4 33.6	33.5	97.9 98.8	98.4	7.2 7.3	7.3	7.1	5.0 4.7	4.9		2.2 2.3	2.3	
C1	Sunny	Moderate	16:57	Middle	10	20.6 20.6	20.6	8.2 8.2	8.2	33.5 33.2	33.4	93.5 93.7	93.6	6.9 6.9	6.9	7.1	4.0 4.3	4.2	4.4	2.6 2.6	2.6	2.4
				Bottom	19	20.5 20.6	20.6	8.3 8.2	8.3	31.3 31.4	31.4	91.3 91.7	91.5	6.8 6.9	6.9	6.9	4.1 4.1	4.1		2.3 2.2	2.3	
				Surface	1	20.5 20.5	20.5	8.2 8.1	8.2	33.2 33.4	33.3	100.3 101.6	101.0	7.4 7.5	7.5		5.1 4.8	5.0		4.6 4.4	4.5	
C2	Sunny	Moderate	15:09	Middle	18	20.4 20.4	20.4	8.1 8.1	8.1	32.8 32.8	32.8	93.5 93.4	93.5	7.0 7.0	7.0	7.3	5.3 5.1	5.2	5.5	2.2	2.2	3.4
				Bottom	35	20.5 20.5	20.5	8.1 8.1	8.1	32.6 32.8	32.7	93.0 93.2	93.1	6.9 6.9	6.9	6.9	6.2 6.3	6.3		3.4 3.6	3.5	
				Surface	1	20.4 20.3	20.4	8.2 8.2	8.2	31.5 31.6	31.6	99.2 99.4	99.3	7.4 7.5	7.5		4.1 3.9	4.0		2.6 2.5	2.6	
G1	Sunny	Moderate	15:57	Middle	4	20.3 20.3	20.3	8.2 8.2	8.2	31.8 31.8	31.8	92.2 91.8	92.0	6.9 6.9	6.9	7.2	4.6 5.2	4.9	5.2	3.2 3.2	3.2	2.8
				Bottom	7	20.1 20.0	20.1	8.1 8.2	8.2	32.6 32.5	32.6	92.2 91.9	92.1	6.9 6.9	6.9	6.9	6.9 6.7	6.8		2.6 2.6	2.6	
				Surface	1	20.4 20.3	20.4	8.2 8.2	8.2	32.2 32.2	32.2	98.6 98.9	98.8	7.4 7.4	7.4		4.5 4.6	4.6		3.4 3.5	3.5	
G2	Sunny	Moderate	15:38	Middle	5	20.4 20.3	20.4	8.1 8.1	8.1	32.6 32.7	32.7	92.8 91.7	92.3	6.9 6.8	6.9	7.2	3.7 3.3	3.5	4.0	2.6 2.6	2.6	3.1
				Bottom	9	20.3 20.3	20.3	8.2 8.2	8.2	32.1 32.3	32.2	88.3 88.8	88.6	6.6 6.6	6.6	6.6	3.8 3.7	3.8		3.3 3.2	3.3	
				Surface	1	20.4 20.4	20.4	8.2 8.2	8.2	31.2 31.4	31.3	97.8 97.3	97.6	7.3 7.3	7.3		3.8 3.5	3.7		3.1 3.0	3.1	
G3	Sunny	Moderate	16:08	Middle	4	20.4 20.4 20.5	20.5	8.2 8.2	8.2	32.1 32.3	32.2	91.7 92.3	92.0	6.9 6.9	6.9	7.1	4.1 4.3	4.2	4.4	3.0 3.0	3.0	3.1
				Bottom	7	20.3 20.2	20.3	8.2 8.2	8.2	32.6 32.7	32.7	90.3 89.5	89.9	6.7 6.7	6.7	6.7	5.3 5.5	5.4		3.1 3.2	3.2	
				Surface	1	20.9	20.9	8.2	8.2	33.1	33.3	100.3	100.8	7.4	7.4		5.2	5.1		3.7	3.7	
G4	Sunny	Moderate	16:28	Middle	4	20.9 20.5 20.7	20.6	8.2 8.2 8.2	8.2	33.4 33.3 33.3	33.3	101.2 92.4 92.7	92.6	7.4 6.8 6.8	6.8	7.1	4.9 4.0 4.4	4.2	5.5	3.7 2.9 3.0	3.0	3.3
				Bottom	7	20.5	20.5	8.3 8.3	8.3	33.3 33.2	33.3	88.7	89.0	6.6	6.6	6.6	7.0 7.1	7.1		3.2 3.2	3.2	
				Surface	1	20.5	20.4	8.1	8.2	31.2	31.3	98.3	98.1	7.4 7.4	7.4		3.7	4.0		3.0	3.1	
M1	Sunny	Moderate	15:48	Middle	3	20.3	20.4	8.2 8.2	8.2	31.3 31.8	31.8	97.9 92.1	91.8	7.4 6.9	6.9	7.2	3.7	3.8	3.9	3.1 2.9	2.9	3.1
				Bottom	5	20.3	20.4	8.2 8.2 8.2	8.2	31.7 31.9 31.7	31.8	91.4 92.3 91.7	92.0	6.9 6.9	6.9	6.9	3.8 4.0	3.9		2.8 3.5	3.4	
				Surface	1	20.3	20.4	8.2	8.2	33.3	33.4	95.1	95.0	6.9 7.1	7.1		3.8	3.9		3.3	3.1	
M2	Sunny	Moderate	15:30	Middle	5.5	20.3	20.5	8.1 8.1	8.2	33.4 32.1	32.1	94.9 88.1	88.0	7.1 6.6	6.6	6.9	4.0	4.0	4.0	3.1 6.0	6.1	3.9
	-			Bottom	10	20.5	20.4	8.2 8.2	8.2	32.1 32.9	32.8	87.8 87.2	87.0	6.6 6.5	6.5	6.5	3.9 4.0	4.0		6.1 2.6	2.6	
				Surface	1	20.4	20.8	8.1	8.2	32.6 33.9	33.5	98.2	98.3	7.2	7.3		5.1	5.2		2.6	2.2	
M3	Sunny	Moderate	16:19	Middle	4.5	20.7	20.7	8.2 8.2	8.2	33.1 33.4	33.4	98.3 94.2	94.4	7.3 7.0	7.0	7.2	5.2 4.9	4.7	4.8	2.2	2.3	2.5
	,			Bottom	8	20.7	20.7	8.2 8.2	8.2	33.3 33.2	33.4	94.5 87.4	87.1	7.0 6.5	6.5	6.5	4.5 4.5	4.6		2.3 3.1	3.1	
				Surface	1	20.6	20.4	8.2 8.1	8.1	33.5 31.6	31.6	99.6	99.5	7.5	7.5		3.4	3.4		2.6	2.6	
M4	Sunny	Moderate	15:21	Middle	4	20.3	20.4	8.1 8.2	8.2	31.6 32.1	32.2	99.4 92.7	92.6	7.5 6.9	6.9	7.2	3.3	3.6	4.3	2.6 3.0	3.1	3.0
	,			Bottom	7	20.4 19.7	19.7	8.2 8.2	8.2	32.2 31.6	31.7	92.4 88.3	87.5	6.9 6.7	6.7	6.7	3.8 5.9	5.9		3.1	3.2	
				Surface	1	19.7	20.9	8.2	8.2	31.8 33.0	33.5	97.4	97.7	7.2	7.2		5.9 4.9	4.9		3.2 2.4	2.4	
M5	Sunny	Moderate	16:49	Middle	5.5	20.9	20.6	8.2 8.2	8.3	34.0 33.1	33.4	97.9 91.9	92.0	7.2 6.8	6.8	7.0	4.8	4.0	5.0	2.4	2.6	2.9
		2 2 2 3 4 6		Bottom	10	20.6	20.6	8.3 8.3	8.3	33.7 32.4	32.5	92.1 88.5	88.8	6.8	6.6	6.6	3.9 6.2	6.2		2.6 3.7	3.8	,
				Surface	-	20.7		8.3 -	-	32.6		89.1 -	-	6.6	_		6.2			3.8		
M6	Sunny	Moderate	16:36	Middle	2.1	20.8	20.8	8.1	8.2	33.2	33.6	100.7	100.9	7.4	7.4	7.4	5.4	5.1	5.1	3.3	3.2	3.2
	Janny	odorato	10.00	Bottom	-	20.8	-	8.2 -	-	33.9 -	-	101.1 -	-	7.4	-	-	4.8	-	J. 1	3.1		J
				סנונטווו		-	-	-	-	-		-		-	<u> </u>	_	-	<u> </u>		-	_	

Appendix I - Action and Limit Levels for Marine Water Quality on 19 December 2016 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level									
	Stations G1-G4	4, M1-M5										
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L									
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>									
	Station M6											
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4, M1-M5											
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
Turbidity in		or 120% of upstream control	or 130% of upstream control									
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide									
(See Note 2 and 4)		tide of the same day	of the same day									
		<u>C1: 10.2 NTU</u>	<u>C1: 11.1 NTU</u>									
	Station M6											
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>									
	Stations G1-G4											
		6.0 mg/L	<u>6.9mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Surface	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C1: 5.6 mg/L</u>	<u>C1: 6.1 mg/L</u>									
	Stations M1-M5											
		6.2 mg/L	<u>7.4 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the									
(See Note 2 and 4)		the same day	same day									
		C1: 5.6 mg/L	<u>C1: 6.1 mg/L</u>									
	Stations G1-G4	<u>1, M1-M5</u>										
		6.9 mg/L	<u>7.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Bottom	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C1: 3.7 mg/L</u>	<u>C1: 4.0 mg/L</u>									
	Station M6											
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L									

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 19 December 2016

(Mid-Flood Tide)

	Weather	Sea	Sampling			Tempera	ature (°C)	n	H	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ved Oxygen	(ma/L)	<u> </u>	Furbidity(NTl	J)	Suspe	nded Solids ((mg/L)
Location		Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.9 20.7	20.8	8.2 8.2	8.2	33.4 33.4	33.4	94.8 93.7	94.3	7.0 6.9	7.0		3.8 3.9	3.9		4.6 4.7	4.7	
C1	Sunny	Moderate	12:11	Middle	10.5	20.4 20.4	20.4	8.1 8.1	8.1	33.2 33.0	33.1	90.9 91.5	91.2	6.8 6.8	6.8	6.9	5.6 6.1	5.9	6.1	2.4 2.4	2.4	3.4
				Bottom	20	20.3 20.4	20.4	8.1 8.1	8.1	32.7 32.6	32.7	86.9 86.3	86.6	6.5 6.4	6.5	6.5	8.9 8.1	8.5		3.0 3.1	3.1	
				Surface	1	20.5 20.4	20.5	8.1 8.1	8.1	32.9 33.1	33.0	102.9 103.7	103.3	7.6 7.7	7.7	7.4	3.3 3.8	3.6		2.3 2.2	2.3	
C2	Sunny	Moderate	10:01	Middle	18	20.0 19.9	20.0	8.1 8.1	8.1	33.6 33.7	33.7	93.6 93.2	93.4	7.0 7.0	7.0	7.4	4.9 5.0	5.0	5.1	1.4 1.4	1.4	1.5
				Bottom	35	19.7 19.6	19.7	8.1 8.1	8.1	33.7 33.9	33.8	87.8 88.3	88.1	6.6 6.6	6.6	6.6	6.4 6.7	6.6		0.8 0.8	0.8	
				Surface	1	20.3	20.4	8.2 8.1	8.2	32.9 32.9	32.9	96.0 96.8	96.4	7.2 7.2	7.2	7.2	4.9 4.3	4.6		2.4	2.4	
G1	Sunny	Moderate	10:49	Middle	4	20.1	20.2	8.2 8.1	8.2	33.3 33.3	33.3	94.4 95.0	94.7	7.0 7.1	7.1		4.2 4.2	4.2	4.2	2.6 2.5	2.6	2.5
	1			Bottom	7	20.2	20.2	8.2 8.2	8.2	33.2 33.1	33.2	93.2 93.5	93.4	6.9 7.0	7.0	7.0	3.9 3.6	3.8	1	2.5 2.5	2.5	
				Surface	1	20.3	20.3	8.1 8.1	8.1	33.1 33.2 33.7	33.2	102.7 103.4	103.1	7.6 7.7	7.7	7.4	4.2	4.3		2.6 2.7	2.7	
G2	Sunny	Moderate	10:33	Middle	5	20.3 20.2 20.2	20.3	8.1 8.1 8.2	8.1	33.7 33.7 33.4	33.7	93.9 93.8 88.3	93.9	7.0 7.0 6.6	7.0		4.1 4.2 3.5	4.2	4.0	2.7 2.8 2.9	2.8	2.8
				Bottom	9	20.2	20.2	8.2 8.1	8.2	33.6 33.0	33.5	89.2 102.0	88.8	6.6 7.7	6.6	6.6	3.5 3.7	3.5		3.0	3.0	
00			44.00	Surface	1	19.8 19.9	19.9	8.1 8.1	8.1	33.1 33.6	33.1	102.3 101.5	102.2	7.7 7.6	7.7	7.7	3.3	3.5		2.5 3.7	2.5	0.0
G3	Sunny	Moderate	11:03	Middle	4	19.8 19.8	19.9	8.1 8.1	8.1	33.7 33.8	33.7	101.2 99.7	101.4	7.6 7.5	7.6	7.5	3.6 3.9	3.7	3.6	3.8	3.8	3.2
				Bottom	7	19.9 20.7	19.9	8.2 8.0	8.2	33.9 33.0	33.9	99.6 87.4	99.7	7.4 6.5	7.5	7.5	3.4 3.9	3.7		3.3 4.8	3.3	
C4	Cuppy	Madarata	11.07	Surface		20.8 20.2	20.8	8.0 8.1	8.0	33.1 33.8	33.1 33.7	87.2 85.0	87.3 85.4	6.4 6.3	6.5	6.5	3.5 4.5	3.7	4.0	4.6 3.1	4.7	2.4
G4	Sunny	Moderate	11:37	Middle Bottom	7	20.3 20.0	20.3	8.1 8.1	8.1 8.1	33.5 33.8	33.8	85.7 82.8	82.7	6.4 6.2	6.4	6.2	4.6 4.7	4.6	4.3	3.2 2.2	2.2	3.4
				Surface	1	20.1 19.9	20.1	8.1 8.1	8.1	33.7 32.6	32.6	82.5 95.9	96.3	6.1 7.2	7.3	0.2	4.7 3.3	3.4		2.2 4.0	4.1	
M1	Sunny	Moderate	10:40	Middle	3	20.0 20.0	19.9	8.1 8.1	8.1	32.6 32.7	33.0	96.6 96.0	95.5	7.3 7.2	7.2	7.3	3.5 4.0	4.1	3.9	4.1 5.6	5.7	4.4
		ouoraio		Bottom	5	19.8 19.8	19.8	8.1 8.1	8.1	33.3 33.4	33.4	94.9 95.7	95.5	7.1 7.2	7.2	7.2	4.1 3.9	4.1		5.8 3.4	3.4	
				Surface	1	19.8 20.5	20.6	8.1 8.1	8.2	33.4 32.7	32.8	95.3 96.5	96.9	7.1 7.2	7.2		3.3	3.6		3.4 2.1	2.2	
M2	Sunny	Moderate	10:24	Middle	5.5	20.6 19.9	19.9	8.2 8.1	8.1	32.9 32.7	32.7	97.3 94.8	94.8	7.2 7.1	7.1	7.2	3.8 4.9	5.0	5.1	4.7	4.8	3.3
				Bottom	10	19.8 19.8	19.8	8.1 8.1	8.1	32.7 33.4	33.5	94.7 87.9	87.5	7.1 6.6	6.6	6.6	5.0 6.6	6.7		3.0	3.0	
				Surface	1	19.7 20.8	20.8	8.1 8.1	8.1	33.5 32.8	32.9	94.8 04.2	94.6	7.0	7.0		6.8 3.1	3.2		2.3	2.4	
МЗ	Sunny	Moderate	11:23	Middle	4.5	20.7 20.3 20.4	20.4	8.1 8.1 8.1	8.1	33.0 33.6 33.5	33.6	94.3 85.8 86.3	86.1	7.0 6.4 6.4	6.4	6.7	3.2 3.6 3.8	3.7	3.6	2.4 4.6 4.6	4.6	3.2
				Bottom	8	20.4 20.2 20.3	20.3	8.1 8.1	8.1	33.6 33.8	33.7	85.2 85.6	85.4	6.3 6.3	6.3	6.3	4.0 4.0	4.0		2.7 2.6	2.7	
				Surface	1	19.9 19.9	19.9	8.1 8.1	8.1	33.0 33.3	33.2	102.4 102.5	102.5	7.7 7.7	7.7	7.5	3.5 3.5	3.5		2.7 2.8	2.8	
M4	Sunny	Moderate	10:16	Middle	4	19.8 19.8	19.8	8.1 8.1	8.1	33.5 33.7	33.6	96.9 97.3	97.1	7.3 7.3	7.3	7.5	4.0 3.9	4.0	4.2	2.6 2.7	2.7	2.9
				Bottom	7	19.3 19.2	19.3	8.1 8.1	8.1	33.8 33.7	33.8	93.9 93.7	93.8	7.1 7.1	7.1	7.1	4.9 5.1	5.0		3.1 3.1	3.1	
				Surface	1	20.7 20.7	20.7	8.1 8.1	8.1	33.4 33.3	33.4	92.1 91.4	91.8	6.8 6.7	6.8	6.6	4.0 3.5	3.8		1.8 1.9	1.9	
M5	Sunny	Moderate	12:02	Middle	5.5	20.5 20.3	20.4	8.1 8.1	8.1	33.4 33.3	33.4	87.0 86.3	86.7	6.4 6.4	6.4	6.6	6.4 5.4	5.9	5.9	2.5 2.4	2.5	2.4
				Bottom	10	20.3 20.2	20.3	8.2 8.1	8.2	33.5 33.7	33.6	83.2 84.2	83.7	6.2 6.3	6.3	6.3	7.7 8.3	8.0		2.7 2.6	2.7	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-		-	-	
M6	Sunny	Moderate	11:49	Middle	2	20.9 20.8	20.9	8.1 8.1	8.1	32.6 33.4	33.0	90.7 90.5	90.6	6.7 6.7	6.7	.	4.7 4.6	4.7	4.7	2.9 3.0	3.0	3.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 21 December 2016 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level								
	Stations G1-G4	4, M1-M5									
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L								
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L								
	Station M6										
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>								
	Stations G1-G4	4, M1-M5									
		<u>19.3 NTU</u>	<u>22.2 NTU</u>								
Turbidity in		or 120% of upstream control	or 130% of upstream control								
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide								
(See Note 2 and 4)		tide of the same day	of the same day								
, ,		<u>C2: 6.7 NTU</u>	<u>C2: 7.3 NTU</u>								
	Station M6										
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>								
	Stations G1-G4										
		6.0 mg/L	<u>6.9mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Surface	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C2: 4.4 mg/L</u>	<u>C2: 4.8 mg/L</u>								
	Stations M1-M5										
		6.2 mg/L	<u>7.4 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the								
(See Note 2 and 4)		the same day	same day								
		<u>C2: 4.4 mg/L</u>	<u>C2: 4.8 mg/L</u>								
	Stations G1-G4	4, M1-M5									
		6.9 mg/L	<u>7.9 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Bottom	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.1 mg/L</u>								
	Station M6										
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>								

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 21 December 2016

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth (m)		Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	7	Turbidity(NTL	J)	Suspe	nded Solids ((mg/L)
Location	Condition	Condition**	Time	Dept	in (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.7 24.7	24.7	8.2 8.2	8.2	33.6 32.8	33.2	98.8 99.8	99.3	6.8 6.9	6.9	6.7	4.9 4.4	4.7		2.9 2.9	2.9	
C1	Cloudy	Moderate	19:09	Middle	10	24.5 24.5	24.5	8.2 8.2	8.2	32.7 32.5	32.6	93.9 93.9	93.9	6.5 6.5	6.5	0.7	3.7 4.1	3.9	4.2	4.1 3.9	4.0	3.3
				Bottom	19	24.5 24.4	24.5	8.2 8.2	8.2	30.6 30.8	30.7	91.8 91.4	91.6	6.4 6.4	6.4	6.4	3.8 4.0	3.9		3.1 3.0	3.1	
				Surface	1	24.4 24.4	24.4	8.1 8.1	8.1	32.6 32.7	32.7	101.2 102.7	102.0	7.0 7.1	7.1	0.0	5.0 4.6	4.8		3.7 3.7	3.7	
C2	Cloudy	Moderate	17:21	Middle	18	24.3 24.4	24.4	8.1 8.1	8.1	31.8 31.9	31.9	93.7 94.2	94.0	6.5 6.6	6.6	6.9	5.0 4.9	5.0	5.1	3.7 3.7	3.7	4.0
				Bottom	35	24.4 24.4	24.4	8.1 8.1	8.1	31.9 31.9	31.9	94.0 93.6	93.8	6.6 6.5	6.6	6.6	5.5 5.7	5.6		4.7 4.7	4.7	
				Surface	1	24.4 24.4	24.4	8.2 8.2	8.2	30.7 30.9	30.8	100.4 100.9	100.7	7.0 7.1	7.1	6.8	3.9 3.7	3.8		3.3 3.2	3.3	
G1	Cloudy	Moderate	18:09	Middle	4	24.2 24.2	24.2	8.2 8.2	8.2	31.2 31.2	31.2	93.0 92.3	92.7	6.5 6.5	6.5	0.0	4.4 4.8	4.6	4.9	3.9 3.8	3.9	3.3
				Bottom	7	24.0 24.0	24.0	8.1 8.2	8.2	31.8 31.6	31.7	92.8 92.5	92.7	6.5 6.5	6.5	6.5	6.2 6.3	6.3		2.6 2.7	2.7	
				Surface	1	24.2 24.3	24.3	8.2 8.2	8.2	31.5 31.5	31.5	99.1 100.0	99.6	6.9 7.0	7.0	6.8	4.2 4.3	4.3		3.2 3.4	3.3	
G2	Cloudy	Moderate	17:50	Middle	5	24.3 24.2	24.3	8.1 8.2	8.2	31.8 32.0	31.9	93.1 92.0	92.6	6.5 6.4	6.5		3.5 3.2	3.4	3.8	2.9 3.0	3.0	3.6
				Bottom	9	24.1 24.2	24.2	8.2 8.2	8.2	31.4 31.5	31.5	88.9 89.2	89.1	6.2 6.3	6.3	6.3	3.6 3.6	3.6		4.6 4.5	4.6	
				Surface	1	24.3 24.2	24.3	8.2 8.2	8.2	30.5 30.4	30.5	98.8 98.0	98.4	7.0 6.9	7.0	6.8	3.5	3.5		3.9 3.9	3.9	
G3	Cloudy	Moderate	18:20	Middle	4	24.3 24.3	24.3	8.2 8.2	8.2	31.3 31.5	31.4	91.7 92.2	92.0	6.4 6.5	6.5		3.8 4.0	3.9	4.3	4.5 4.3	4.4	4.5
				Bottom	7	24.1	24.1	8.3 8.2	8.3	31.9 31.8	31.9	90.4 90.2	90.3	6.3 6.3	6.3	6.3	5.2 5.5	5.4		5.2 5.1	5.2	
				Surface	1	24.6 24.7	24.7	8.2 8.2	8.2	32.5 32.6	32.6	101.5 102.0	101.8	7.0 7.0	7.0	6.8	4.8 4.5	4.7		3.6 3.7	3.7	
G4	Cloudy	Moderate	18:40	Middle	4	24.6 24.5	24.6	8.2 8.2	8.2	32.6 32.6	32.6	93.0 93.1	93.1	6.4 6.5	6.5		3.9 4.1	4.0	5.0	3.9	3.9	3.5
				Bottom	7	24.5 24.6	24.6	8.3 8.3	8.3	32.4 32.5	32.5	89.0 89.6	89.3	6.2 6.2	6.2	6.2	6.2 6.3	6.3		2.8 2.8	2.8	
				Surface	1	24.3 24.3	24.3	8.1 8.2	8.2	30.4 30.6	30.5	98.7 99.1	98.9	7.0 7.0	7.0	6.8	3.6	3.8		2.2	2.3	
M1	Cloudy	Moderate	18:00	Middle	3	24.4 24.3	24.4	8.2 8.2	8.2	31.2 31.1	31.2	94.1 93.6 92.1	93.9	6.6 6.6	6.6		3.7 3.7	3.7	3.7	2.1	2.1	2.4
				Bottom	5	24.3 24.3 24.4	24.3	8.2 8.1	8.2	31.2 31.0 32.7	31.1	92.1 92.4 95.5	92.3	6.5 6.5	6.5	6.5	3.7 3.7 3.8	3.7		2.7 2.6	2.7	
				Surface	1	24.4 24.3 24.3	24.4	8.2 8.1 8.1	8.2	32.6 31.3	32.7	96.0 88.4	95.8	6.6 6.7 6.2	6.7	6.5	3.7	3.8		0.5 0.5 2.0	0.5	
M2	Cloudy	Moderate	17:42	Middle	5.5	24.3 24.2 24.4	24.3	8.2 8.2	8.2	31.2 32.0	31.3	87.8 86.9	88.1	6.2 6.1	6.2		3.9	3.9	3.8	2.0	2.0	1.6
				Bottom	10	24.3	24.4	8.1 8.2	8.2	31.9 33.1	32.0	87.0 98.8	87.0	6.1 6.8	6.1	6.1	3.8	3.8		2.1	2.2	
				Surface	1	24.6 24.5	24.6	8.2 8.2	8.2	33.4 33.7	33.3	99.4 95.2	99.1	6.8 6.6	6.8	6.7	4.9	4.9		3.2	3.3	
M3	Cloudy	Moderate	18:31	Middle	4.5	24.5 24.6	24.5	8.2 8.2	8.2	33.4 33.5	33.6	95.2 87.8	95.2	6.6 6.0	6.6		4.5 4.4	4.6	4.7	2.8	2.8	3.5
				Bottom	8	24.6	24.6	8.2 8.1	8.2	33.7 30.8	33.6	87.4 100.2	87.6	6.0 7.1	6.0	6.0	4.6	4.5		4.4 3.1	4.4	
	<u> </u>		,	Surface	1	24.3	24.3	8.2 8.2	8.2	30.9 31.4	30.9	100.6	100.4	7.1 6.5	7.1	6.8	3.0	3.1		3.2	3.2	
M4	Cloudy	Moderate	17:32	Middle	4	24.4	24.4	8.2 8.2	8.2	31.4 31.0	31.4	92.9 88.9	93.2	6.5 6.3	6.5		3.6 5.8	3.5	4.1	3.2	3.3	2.9
				Bottom	7	23.7	23.7	8.2 8.2	8.2	30.9 33.2	31.0	87.3 98.4	88.1	6.2 6.8	6.3	6.3	5.7	5.8		2.3	2.3	
			40.04	Surface	1	24.8 24.6	24.8	8.2 8.3	8.2	34.0 32.2	33.6	98.9 92.1	98.7	6.8 6.4	6.8	6.6	4.7	4.8		3.7 4.1	3.7	
M5	Cloudy	Moderate	19:01	Middle	5.5	24.5 24.6	24.6	8.2 8.2	8.3	33.1 31.7	32.7	92.7 89.2	92.4	6.4 6.2	6.4	6.0	3.7 6.0	3.8	4.9	4.1 3.5	4.1	3.8
				Bottom	10	24.4	24.5	8.3	8.3	31.7	31.7	88.6	88.9	6.2	6.2	6.2	6.2	6.1		3.4	3.5	
NAC	Classals	Moderate	10.40	Surface	- 0.1	- 24.5	- 04.0	- 8.2	-	- 32.3	20.7	- 93.3	- 07.4	- 6.5	-	6.8	4.7	- 4 7	A 7	- 4.4	-	4.4
M6	Cloudy	Moderate	18:49	Middle	2.1	24.7	24.6	8.2	8.2	33.1	32.7	101.4	97.4	7.0	6.8		4.7	4.7	4.7	4.3	4.4	4.4
				Bottom	-	-	-	-	-	-	_	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 21 December 2016 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>4, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 10.2 NTU</u>	<u>C1: 11.1 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.4 mg/L</u>	<u>C1: 8.1 mg/L</u>
	Stations M1-M	<u>[5</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 7.4 mg/L</u>	<u>C1: 8.1 mg/L</u>
	Stations G1-G4	4, M1-M5	
		6.9 mg/L	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.3 mg/L</u>	<u>C1: 5.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 21 December 2016

(Mid-Flood Tide)

	Weather	Sea	Sampling			Tempera	ture (°C)	n	H	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	<u> </u>	urbidity(NTU	<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Suspe	nded Solids	(mg/L)
Location		Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
		23.13111311		.		24.7		8.2		33.6	İ	95.6		6.6	Ī		3.6	i	<u> </u>	6.2		
				Surface	1	24.6	24.7	8.2	8.2	32.6	33.1	93.9	94.8	6.5	6.6	0.5	3.7	3.7		6.2	6.2	
0.4		, , , ,	10.51	N 4" 1 11	10.5	24.2	04.0	8.1	0.4	33.3	00.0	92.0	00.0	6.4	0.4	6.5	5.2			3.8	0.0	4.0
C1	Cloudy	Moderate	13:51	Middle	10.5	24.4	24.3	8.1	8.1	33.3	33.3	92.3	92.2	6.4	6.4		5.8	5.5	5.9	3.8	3.8	4.8
						24.2		8.1		31.8		87.1		6.1			8.8		†	4.3		,
				Bottom	20	24.2	24.2	8.2	8.2	31.9	31.9	86.0	86.6	6.0	6.1	6.1	8.2	8.5		4.4	4.4	
						24.4		8.1		32.3		104.3		7.3			3.0			2.5		
				Surface	1	24.4	24.4	8.1	8.1	32.3	32.3	104.9	104.6	7.3	7.3		3.5	3.3		2.6	2.6	
					†	23.8		8.1		32.9	†	94.2		6.6		7.0	4.9		†	2.5		
C2	Cloudy	Moderate	11:42	Middle	18	23.8	23.8	8.1	8.1	32.9	32.9	93.9	94.1	6.6	6.6		4.7	4.8	4.8	2.6	2.6	2.6
					+	23.6		8.1		33.1		88.1		6.2			6.2		 	2.7		,
				Bottom	35	23.6	23.6	8.2	8.2	33.0	33.1	88.9	88.5	6.2	6.2	6.2	6.4	6.3		2.7	2.7	
											<u> </u>											
				Surface	1	24.2	24.3	8.2	8.2	32.0 32.1	32.1	96.2 97.2	96.7	6.7	6.8		4.8	4.5		2.8 2.7	2.8	
						24.3		8.1						6.8		6.8	4.1		4			ı
G1	Cloudy	Moderate	12:30	Middle	4	24.1	24.1	8.1	8.1	32.5	32.7	96.1	95.9	6.7	6.7		4.2	4.1	4.1	6.0	6.0	4.4
						24.1		8.1		32.8		95.6		6.7			4.0		4	5.9		,
				Bottom	7	24.2	24.2	8.2	8.2	33.5	33.4	95.0	94.8	6.6	6.6	6.6	3.6	3.6		4.3	4.3	
						24.1		8.1		33.3		94.5		6.6			3.5			4.2		
				Surface	1 1	24.1	24.1	8.1	8.1	32.2	32.3	104.0	104.1	7.3	7.3		4.0	4.1		5.3	5.2	
						24.1		8.1		32.3		104.2		7.3		7.0	4.1		1	5.1		i
G2	Cloudy	Moderate	12:13	Middle	5	24.1	24.1	8.1	8.1	33.0	33.0	94.4	94.4	6.6	6.6	7.0	3.7	3.9	3.8	4.3	4.3	4.5
G.2	Cloddy	Moderate	12.10	Wildalo		24.1	2	8.1	0.1	32.9	00.0	94.4	0 1 1	6.6	0.0		4.1	0.0	0.0	4.3	1.0	1.0
				Bottom	9	24.1	24.1	8.2	8.2	32.9	32.8	88.8	89.1	6.2	6.2	6.2	3.2	3.3		4.0	4.0	
				Dottom		24.1	24.1	8.2	0.2	32.7	32.0	89.3	03.1	6.2	0.2	0.2	3.3	0.0		4.0	4.0	
				Surface	1	23.8	23.8	8.1	8.1	32.2	32.3	103.4	103.4	7.3	7.3		3.4	3.3		2.4	2.4	
				Surface	'	23.8	23.0	8.1	0.1	32.4	32.3	103.3	103.4	7.3	7.3	7.3	3.1	3.3		2.4	2.4	
Ga	Cloudy	Modorata	10:44	Middle	4	23.7	23.8	8.1	0.1	32.7	32.8	102.0	102.3	7.2	7.2	7.3	3.6	2.5	24	2.3	2.2	2.0
G3	Cloudy	Moderate	12:44	ivildale	4	23.8	23.0	8.1	8.1	32.9	32.0	102.6	102.3	7.2	7.2		3.4	3.5	3.4	2.3	2.3	2.9
				Dattana	7	23.7	00.7	8.1	0.4	33.1	00.4	100.1	100.0	7.0	7.0	7.0	3.6	0.4	1	4.0	4.4	•
				Bottom	7	23.6	23.7	8.1	8.1	33.1	33.1	100.2	100.2	7.0	7.0	7.0	3.2	3.4		4.2	4.1	
				0 (<u> </u>	24.7	0.4.7	8.0	0.4	32.1	00.4	87.3	07.0	6.0	0.0		3.8	0.0		4.9	4.0	
				Surface	1	24.7	24.7	8.1	8.1	32.6	32.4	87.1	87.2	6.0	6.0		3.3	3.6		4.8	4.9	
		l				24.1		8.1		32.9		84.7		5.9		6.0	4.3		1	3.8		
G4	Cloudy	Moderate	13:17	Middle	4	24.1	24.1	8.1	8.1	32.8	32.9	85.4	85.1	6.0	6.0		4.8	4.6	4.3	3.7	3.8	4.3
						23.9		8.1		33.2		82.9		5.8			4.5		†	4.1		
				Bottom	7	24.1	24.0	8.1	8.1	32.9	33.1	82.5	82.7	5.7	5.8	5.8	4.6	4.6		4.3	4.2	
	1	<u> </u>			<u> </u>	23.8		8.1	I	32.0	<u> </u>	97.2	I	6.8	<u> </u>	I	3.2	l	<u> </u>	2.7		
				Surface	1	23.7	23.8	8.1	8.1	32.0	32.0	97.2	97.4		6.9		3.4	3.3		2.7	2.7	
										32.9	+			6.9 6.6		6.8	3.8		1			,
M1	Cloudy	Moderate	12:22	Middle	3	23.7 23.7	23.7	8.1 8.1	8.1	32.9 32.6	32.8	93.6 93.1	93.4	6.5	6.6		3.6 4.4	4.1	3.8	4.5 4.6	4.6	3.9
											-								+			i.
				Bottom	5	23.8	23.8	8.1	8.1	32.6	32.6	96.3	96.1	6.8	6.8	6.8	3.8	4.1		4.4	4.3	
					<u> </u>	23.7		8.1		32.5	<u> </u>	95.9		6.7		1	4.4			4.2		
				Surface	1	24.4	24.5	8.1	8.1	32.0	32.1	97.4	97.8	6.8	6.8		3.1	3.4		3.7	3.7	
						24.5		8.1		32.1		98.2		6.8		6.8	3.6		_	3.6		,
M2	Cloudy	Moderate	12:05	Middle	5.5	23.8	23.8	8.1	8.1	32.0	31.9	95.1	95.6	6.7	6.8		4.8	4.8	4.9	6.1	6.1	4.4
""-	Cioday	Moderate	.2.00		0.0	23.8		8.1	0	31.8	01.0	96.1	00.0	6.8	0.0		4.8		1	6.1	0	
				Bottom	10	23.6	23.6	8.1	8.1	32.7	32.7	87.8	87.5	6.2	6.2	6.2	6.4	6.4		3.4	3.4	
					<u> </u>	23.5		8.1	<u> </u>	32.7		87.2	00	6.1	<u> </u>	<u> </u>	6.4	<u> </u>	<u> </u>	3.4	J. 1	
				Surface	1	24.7	24.7	8.2	8.2	32.1	32.3	95.2	95.0	6.6	6.6		3.0	3.1		3.5	3.6	
				Juliace		24.7	∟ ¬.1	8.2	0.2	32.4	02.0	94.8	55.0	6.6	0.0	6.3	3.1	0.1		3.6	0.0	r.
M3	Cloudy	Moderate	13:03	Middle	4.5	24.3	24.3	8.1	8.1	32.9	33.0	85.9	86.1	6.0	6.0	0.0	3.5	3.6	3.5	4.1	4.1	4.1
IVIO	Oloudy	iviouerale	10.00	ivildule	4.5	24.3	۷4.0	8.1	0.1	33.0	55.0	86.2	00.1	6.0	0.0		3.7	5.0] 3.5	4.0	4.1	4.1
				Bottom	8	24.0	24.1	8.1	8.1	32.8	32.9	85.1	85.3	5.9	5.9	5.9	3.8	3.8		4.8	4.7	
				סטונטווו	0	24.1	۷4.۱	8.1	0.1	33.0	52.3	85.4	00.0	5.9	5.8	5.5	3.7	5.0		4.6	4.7	
				Curtos	4	23.8	00.0	8.1	0.1	32.2	20.4	103.9	100.0	7.3	7.0		3.3	0.4		3.3	0.4	
				Surface	'	23.8	23.8	8.1	8.1	32.6	32.4	103.7	103.8	7.3	7.3	7 4	3.5	3.4		3.5	3.4	
N.4.4	011	Madell	44.50	N 41 - 11		23.7	00.7	8.1	0.1	32.9	00.0	97.9	00.1	6.9	0.0	7.1	3.8	0.0	1 , ,	3.4	0.4	0.4
M4	Cloudy	Moderate	11:56	Middle	4	23.7	23.7	8.1	8.1	32.9	32.9	98.3	98.1	6.9	6.9		3.7	3.8	4.0	3.3	3.4	3.4
				D - 11		23.3	00.0	8.1	0.0	33.2	00.0	95.4	05.0	6.7		o 7	4.7	4.0	1	3.3	0.0	•
				Bottom	7	23.2	23.3	8.2	8.2	33.1	33.2	95.0	95.2	6.7	6.7	6.7	4.9	4.8		3.3	3.3	
	<u>. </u>	<u>. </u>			<u>.</u>	24.6	<u> </u>	8.1		32.6		92.0		6.4			3.9		<u>. </u>	3.7		
				Surface	1	24.6	24.6	8.1	8.1	33.6	33.1	92.2	92.1	6.3	6.4	_	3.5	3.7		3.8	3.8	
					 	24.3		8.1		32.7	+	86.9		6.0		6.2	6.0		†	3.7		
M5	Cloudy	Moderate	13:42	Middle	5.5	24.3	24.3	8.1	8.1	33.4	33.1	87.0	87.0	6.0	6.0		5.3	5.7	5.7	3.7	3.7	4.0
					 						+								†			
				Bottom	10	24.1 24.1	24.1	8.2	8.2	32.8	32.9	83.3 83.8	83.6	5.8 5.8	5.8	5.8	7.5 7.9	7.7		4.6	4.6	
	<u> </u>	<u> </u>			<u> </u>	24.1		8.1		32.9	1	<u>ი</u> კ.გ		ე.გ	<u> </u>	<u> </u>	1.9	<u> </u>	<u> </u>	4.6		
				Surface	-	-	-	-	-	-	-	-	-	<u> </u>	-			-		-	-	
					<u> </u>			- 0.1		- 00.5	-	- 07.0		-		6.1	-		1	-		
M6	Cloudy	Moderate	13:29	Middle	2	24.3	24.3	8.1	8.1	32.5	32.2	87.6	87.5	6.1	6.1		3.4	3.5	3.5	2.2	2.3	2.3
]					24.2		8.1		31.9		87.3		6.1			3.6		+	2.3		
				Bottom	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
	I					-		-		-		-	Ī	-		Ī	_			-		

Appendix I - Action and Limit Levels for Marine Water Quality on 24 December 2016 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 9.1 NTU</u>	<u>C2: 9.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		6.0 mg/L	<u>6.9mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.0 mg/L</u>	<u>C2: 7.5 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C2: 7.0 mg/L	<u>C2: 7.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		6.9 mg/L	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.6 mg/L</u>	<u>C2: 7.2 mg/L</u>
	Station M6		<u> </u>
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 December 2016

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	th (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	7	urbidity(NTL	J)	Suspe	nded Solids (mg/L)
Location	Condition	Condition**	Time	Бері	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.0 22.0	22.0	7.9 8.0	8.0	30.1 30.2	30.2	95.3 95.1	95.2	7.0 7.0	7.0	6.9	2.7 2.7	2.7		2.1 2.0	2.1	
C1	Sunny	Moderate	09:31	Middle	10	22.0 22.0	22.0	8.0 8.0	8.0	30.3 30.3	30.3	91.9 89.6	90.8	6.7 6.6	6.7	0.5	6.6 6.6	6.6	5.7	3.3 3.2	3.3	3.6
				Bottom	19	21.9 21.9	21.9	8.1 8.1	8.1	30.7 30.8	30.8	88.1 88.4	88.3	6.5 6.5	6.5	6.5	7.6 7.7	7.7		5.4 5.2	5.3	
				Surface	1	22.0 22.0	22.0	8.1 8.1	8.1	31.1 31.1	31.1	93.5 93.8	93.7	6.8 6.8	6.8		4.2 3.7	4.0		5.8 5.8	5.8	
C2	Sunny	Moderate	07:52	Middle	18	22.0 22.0	22.0	8.1 8.1	8.1	31.2 31.2	31.2	92.0 94.8	93.4	6.7 6.9	6.8	6.8	6.3 6.8	6.6	6.1	3.6 3.5	3.6	5.0
				Bottom	35	22.0 22.0	22.0	8.1 8.1	8.1	31.2 31.2	31.2	90.9 90.7	90.8	6.6 6.6	6.6	6.6	7.7 7.5	7.6		5.6 5.4	5.5	
				Surface	1	22.1 22.1	22.1	8.1 8.1	8.1	29.9 29.9	29.9	93.5 91.9	92.7	6.9 6.7	6.8		3.0	3.1		4.5 4.6	4.6	
G1	Sunny	Moderate	08:39	Middle	4	21.9 21.9	21.9	8.0 8.0	8.0	30.5 30.5	30.5	95.0 96.1	95.6	7.0 7.1	7.1	7.0	4.2 4.1	4.2	4.8	9.0 8.8	8.9	6.6
				Bottom	7	21.9 21.9	21.9	8.0 8.0	8.0	30.8 30.8	30.8	86.7 85.3	86.0	6.4 6.3	6.4	6.4	7.0 7.3	7.2		6.1 6.5	6.3	
				Surface	1	22.1 22.1	22.1	8.0 7.9	8.0	30.0 30.0	30.0	96.8 95.3	96.1	7.1 7.0	7.1		2.2 2.3	2.3		3.5 3.8	3.7	
G2	Sunny	Moderate	08:24	Middle	5	21.9 21.9	21.9	8.0 8.0	8.0	30.6 30.6	30.6	88.1 87.5	87.8	6.5 6.4	6.5	6.8	4.9 4.9	4.9	4.4	5.7 5.4	5.6	4.5
			•	Bottom	9	21.8 21.8	21.8	8.1 8.1	8.1	31.3 31.4	31.4	88.8 89.3	89.1	6.5 6.5	6.5	6.5	6.1 5.9	6.0		4.2 4.1	4.2	
				Surface	1	22.4 22.4	22.4	7.9 8.0	8.0	30.4 30.4	30.4	96.2 97.3	96.8	7.0 7.1	7.1		4.3 4.3	4.3		3.9 3.6	3.8	
G3	Sunny	Moderate	08:47	Middle	4	22.4 22.1 22.1	22.1	8.0 8.0	8.0	30.8 30.8	30.8	93.7 92.1	92.9	6.8 6.7	6.8	7.0	5.0 5.2	5.1	4.8	6.0 6.2	6.1	5.0
				Bottom	7	22.0 22.0	22.0	8.1 8.1	8.1	31.1 31.1	31.1	92.7 93.8	93.3	6.8 6.8	6.8	6.8	4.9 4.9	4.9		5.0 5.2	5.1	
				Surface	1	22.3	22.3	7.9	8.0	31.0	31.1	98.6	98.7	7.2	7.2		2.7	2.7		4.9	5.0	
G4	Sunny	Moderate	09:02	Middle	4	22.3 22.2 22.2	22.2	8.0 8.1 8.1	8.1	31.1 31.5 31.5	31.5	98.8 96.3 96.6	96.5	7.2 7.0 7.0	7.0	7.1	2.6 4.7 4.7	4.7	4.5	5.0 6.5 6.4	6.5	5.0
				Bottom	7	22.0 22.0	22.0	8.1 8.1	8.1	31.9 31.9	31.9	95.4 85.3	90.4	6.9 6.2	6.6	6.6	6.2 6.0	6.1		3.6 3.4	3.5	
				Surface	1	22.0 22.0 22.0	22.0	8.0	8.0	31.2	31.2	91.9	92.5	6.7	6.8		4.7	4.7		2.8	2.9	
M1	Sunny	Moderate	08:32	Middle	3	22.1 22.1	22.1	8.0 8.1 8.1	8.1	31.2 31.3 31.3	31.3	93.0 95.0 89.0	92.0	6.8 6.9 6.5	6.7	6.8	4.6 4.9 5.1	5.0	5.1	2.9 2.0 2.0	2.0	2.7
			,	Bottom	5	22.0 22.0	22.0	8.1 8.1	8.1	31.4 31.4	31.4	92.5 93.4	93.0	6.7 6.8	6.8	6.8	5.6 5.6	5.6		3.1 3.1	3.1	
				Surface	1	22.2 22.1	22.2	8.0	8.0	30.0	30.1	96.5 94.7	95.6	7.1	7.0		2.7	2.8		4.0	4.1	
M2	Sunny	Moderate	08:15	Middle	5	22.0 22.0	22.0	8.0 8.0 8.0	8.0	30.1 30.3 30.4	30.4	87.3 87.6	87.5	6.9 6.4	6.4	6.7	2.8 4.0 4.2	4.1	4.5	4.1 3.0 3.2	3.1	3.7
				Bottom	9	21.9 21.9	21.9	8.1 8.1	8.1	31.3 31.3	31.3	89.2 90.6	89.9	6.4 6.5 6.6	6.6	6.6	6.4 6.9	6.7		3.9 4.0	4.0	
				Surface	1	22.3	22.3	7.8	7.8	29.9	29.9	94.1 94.6	94.4	6.9	6.9		3.1	3.1		3.9	3.9	
M3	Sunny	Moderate	08:54	Middle	4	22.3 21.8 21.8	21.8	7.8 8.0 8.0	8.0	29.9 31.2 31.3	31.3	94.6 91.0 90.6	90.8	6.9 6.7 6.6	6.7	6.8	3.0 5.8 5.4	5.6	5.2	3.9 6.2 6.4	6.3	4.8
				Bottom	7	21.8 21.9 21.9	21.9	8.0 8.0 8.1	8.1	31.5 31.5	31.5	85.3 86.7	86.0	6.2 6.3	6.3	6.3	6.6 7.0	6.8		4.3 4.2	4.3	
		<u> </u>		Surface	1	22.1	22.1	8.1	8.1	31.1	31.1	97.4	98.2	7.1	7.2		3.2	3.4		5.4	5.5	
M4	Sunny	Moderate	08:06	Middle	4	22.1 22.0 22.0	22.0	8.1 8.1 8.1	8.1	31.1 31.1 31.1	31.1	99.0 93.7 92.6	93.2	7.2 6.8 6.8	6.8	7.0	3.5 4.7 4.6	4.7	4.9	5.6 5.6 5.4	5.5	5.5
				Bottom	7	22.0 22.0 22.0	22.0	8.1	8.1	31.1 31.2 31.2	31.2	92.6 89.7 91.8	90.8	6.6 6.7	6.7	6.7	6.6 6.6	6.6		5.4 5.6 5.6	5.6	
				Surface	1	22.3	22.3	8.1 8.0	8.0	30.3	30.3	92.1	91.9	6.7	6.7		4.1	4.3		2.2	2.2	
M5	Sunny	Moderate	09:18	Middle	5.5	22.3	22.1	8.0	8.0	30.3	30.9	91.6 93.1	92.8	6.7 6.8	6.8	6.8	4.5 5.6	5.8	5.7	6.3	6.3	4.7
				Bottom	10	22.1	22.0	8.0 8.1	8.1	30.9 31.2	31.2	92.5 92.0	91.7	6.8 6.7	6.7	6.7	5.9 7.2	7.0		6.2 5.6	5.6	
				Surface	-	22.0	_	- 8.1	-	31.2	-	91.4	-	6.7	-		6.8	-		5.6	-	
M6	Sunny	Moderate	09:11	Middle	2.3	22.0	22.0	8.1	8.1	30.4	30.4	87.8	87.6	6.4	6.4	6.4	6.0	6.0	6.0	4.0	4.0	4.0
	,			Bottom	-	22.0	-	<u>8.1</u> -	-	30.3	-	87.3 -	-	6.4	-	-	6.0	-		3.9	-	
					<u> </u>	-		-		-		-		-			-			-		

Appendix I - Action and Limit Levels for Marine Water Quality on 24 December 2016 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 6.6 NTU</u>	<u>C1: 7.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		6.0 mg/L	<u>6.9mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Stations M1-M	<u>15</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		6.9 mg/L	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.6 mg/L</u>	<u>C1: 7.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 December 2016

(Mid-Flood Tide)

	Weather	Sea	Sampling			Tempera	ture (°C)	n	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т 7	Turbidity(NTL		Suspe	nded Solids	(ma/L)
Location		Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
	_ SCHOOL	Condition	1	0 -		21.7		8.0		30.2	i	92.1		6.8			3.2			5.9		<i>D</i> /\
				Surface	1	21.7	21.7	8.0	8.0	30.2	30.2	90.6	91.4	6.7	6.8		3.6	3.4		5.6	5.8	
						21.5		8.0		30.8		93.2		6.9		6.9	3.7		1	9.0		
C1	Sunny	Moderate	15:23	Middle	10	21.5	21.5	8.0	8.0	30.8	30.8	92.5	92.9	6.8	6.9		4.0	3.9	4.3	9.0	9.0	6.8
						21.5		8.1		31.2		92.0		6.8			5.3		1	5.3		,
				Bottom	19	21.5	21.5	8.1	8.1	31.2	31.2	91.4	91.7	6.7	6.8	6.8	5.6	5.5		5.6	5.5	
					1 .	21.8		8.0		30.3		96.7		7.1	<u>† </u>		2.4		Ì	5.2		
				Surface	1	21.8	21.8	8.0	8.0	30.3	30.3	96.1	96.4	7.1	7.1		2.2	2.3		5.2	5.2	
						21.4		8.0		30.8		85.7		6.3	<u> </u>	6.8	3.9		1	5.0		
C2	Sunny	Moderate	13:40	Middle	18	21.4	21.4	8.0	8.0	30.8	30.8	87.6	86.7	6.5	6.4		3.7	3.8	4.1	5.1	5.1	5.1
						21.4		8.0		30.8		84.2		6.2			6.2		1	5.0		•
				Bottom	35	21.4	21.4	8.0	8.0	30.8	30.8	84.9	84.6	6.3	6.3	6.3	6.3	6.3		5.0	5.0	
						21.9		8.0		29.7		98.4		7.3			3.9		1	5.7		
				Surface	1	21.9	21.9	8.0	8.0	29.7	29.7	97.9	98.2	7.2	7.3		3.7	3.8		5.6	5.7	
					_	21.7		8.1		30.3		94.1		6.9		7.1	4.3		1	6.6		
G1	Sunny	Moderate	14:29	Middle	4	21.7	21.7	8.1	8.1	30.3	30.3	93.6	93.9	6.9	6.9		4.1	4.2	4.2	6.3	6.5	5.5
				_		21.6		8.1		30.6		88.3		6.5			4.6		1	4.2		i.
				Bottom	7	21.6	21.6	8.1	8.1	30.6	30.6	88.2	88.3	6.5	6.5	6.5	4.4	4.5		4.1	4.2	
						21.9		7.9		30.2		93.2		6.9			2.6		1	3.9		
				Surface	1	22.1	22.0	7.9	7.9	30.1	30.2	93.0	93.1	6.8	6.9	_	2.1	2.4		3.8	3.9	
	_				+	21.8		8.0		30.3		95.6		7.0	 	7.0	2.2		1	4.6		
G2	Sunny	Moderate	14:10	Middle	5	21.8	21.8	8.0	8.0	30.3	30.3	95.3	95.5	7.0	7.0		2.2	2.3	3.1	4.5	4.6	4.6
					1	21.7		8.0		30.4		90.9		6.7			4.5		1	5.1		
				Bottom	9	21.7	21.7	8.0	8.0	30.4	30.4	91.6	91.3	6.8	6.8	6.8	4.4	4.5		5.4	5.3	
	1	<u> </u>			1	21.7		8.0		29.9	1	94.4	1	7.0	<u> </u>		3.4	1	Ì	3.5		
				Surface	1	21.7	21.7	8.0	8.0	29.9	29.9	94.4	94.5	7.0	7.0		3.5	3.5		3.5	3.5	
						21.7		8.0		30.5		92.0		6.8		6.9	5.8		1	6.7		i.
G3	Sunny	Moderate	14:37	Middle	4	21.5	21.5	8.0	8.0	30.5	30.5	92.0	92.0	6.8	6.8		5.7	5.8	5.2	6.8	6.8	5.2
						21.5		8.1		30.6		94.1		7.0			6.1		<u> </u>	5.1		ı
				Bottom	7	21.5	21.5	8.1	8.1	30.6	30.6	94.1	94.3	7.0	7.0	7.0	6.7	6.4		5.1	5.2	
					<u> </u>	•				•		95.5			1			<u> </u>	1	4.0		
				Surface	1	21.8 21.8	21.8	8.1 8.1	8.1	30.1 30.1	30.1	95.5 95.1	95.3	7.0 7.0	7.0		4.5 4.0	4.3		3.9	4.0	
						21.6		_		30.1		98.7		7.0	-	7.2	5.1		4	0.0		u.
G4	Sunny	Moderate	14:58	Middle	4	21.6	21.6	8.1 8.1	8.1	30.6	30.6	98.3	98.5	7.3	7.3		5.6	5.4	5.3	5.6 5.7	5.7	5.2
						21.5				30.9		93.2		1			+		<u> </u>	5.7		•
				Bottom	7	21.5	21.5	8.1 8.1	8.1	30.9	30.9	94.2	93.7	6.9 7.0	7.0	7.0	5.9 6.2	6.1		5.8	5.8	
						22.4		8.0		27.8		98.9		7.3	<u> </u>		2.6		1	4.1		
				Surface	1	22.4	22.4	8.0	8.0	28.0	27.9	96.9 97.3	98.1	7.3	7.3		3.1	2.9		4.1	4.2	
						21.7		8.0		29.2		90.3		6.7		7.0	3.9		1	4.2		•
M1	Sunny	Moderate	14:19	Middle	3	21.7	21.7	8.0	8.0	29.2	29.2	90.3	90.4	6.7	6.7		3.6	3.8	4.1	4.5	4.6	4.9
						21.7		8.0		29.3		88.8		6.6			5.7		1	5.8		i.
				Bottom	5	21.7	21.7	8.0	8.0	29.3	29.3	88.8	88.8	6.6	6.6	6.6	5.5	5.6		5.8	5.8	
	1	<u> </u>			 	21.7		8.0		30.6	1	96.1	1	7.1	<u> </u>	l	2.5	<u> </u>	1	3.8		
				Surface	1	21.7	21.7	8.0	8.0	30.6	30.6	95.4	95.8	7.1	7.1		2.3	2.4		3.9	3.9	
						21.7		8.0		30.7		95.0		7.0		7.1	5.3		1	7.9		1
M2	Sunny	Moderate	14:02	Middle	5	21.5	21.5	8.0	8.0	30.7	30.7	95.2	95.1	7.0	7.0		5.6	5.5	4.4	7.9	7.9	6.0
						21.5		8.0		30.8		92.2		6.8			5.1		†	6.2		,
				Bottom	9	21.5	21.5	8.0	8.0	30.8	30.8	92.6	92.4	6.8	6.8	6.8	5.6	5.4		6.1	6.2	
					<u> </u>	22.2		8.0		29.9		95.0		7.0	<u>. </u>		1.9		<u> </u>	5.7		
				Surface	1	22.2	22.2	8.0	8.0	29.9	29.9	95.4	95.2	7.0	7.0		1.9	1.9		5.7	5.7	
				_	+	21.7		8.0		30.4		94.3		7.0	 	7.0	3.2		1	6.0		
M3	Sunny	Moderate	14:47	Middle	4	21.7	21.7	8.0	8.0	30.4	30.4	94.9	94.6	7.0	7.0		3.5	3.4	3.8	5.8	5.9	5.3
				_		21.6		8.0	_	30.7		92.5	_	6.8		_	5.9	_	1	4.3	_	
				Bottom	7	21.6	21.6	8.0	8.0	30.7	30.7	92.1	92.3	6.8	6.8	6.8	6.1	6.0		4.4	4.4	
	<u>.</u>	<u>. </u>			<u>.</u>	22.2		8.0	_	31.0		95.1		6.9	<u>.</u> _	<u>. </u>	3.4	<u>.</u> I ₋	1	1.9		
				Surface	1	22.3	22.3	8.0	8.0	30.9	31.0	96.2	95.7	7.0	7.0		3.3	3.4		1.9	1.9	
	_					21.7		8.0	_	31.0	_	93.8	_	6.9		7.0	3.4	_	1 .	4.3	_	_
M4	Sunny	Moderate	13:52	Middle	4	21.7	21.7	8.0	8.0	31.0	31.0	94.1	94.0	6.9	6.9		3.6	3.5	3.9	4.4	4.4	3.7
						21.6	- · -	8.0		31.1		92.9		6.8			4.9		†	4.7		
				Bottom	7	21.6	21.6	8.0	8.0	31.1	31.1	93.0	93.0	6.8	6.8	6.8	4.9	4.9		4.8	4.8	
	<u>.</u>			o :	<u>.</u>	21.7	- · -	8.0		30.3		93.5		6.9			4.0		<u> </u>	3.7		
				Surface	1	21.8	21.8	8.0	8.0	30.3	30.3	91.8	92.7	6.8	6.9		4.2	4.1		3.8	3.8	
			. =		_	21.6		8.0	= -	30.9		85.0		6.3	_	6.7	6.2	_	1 _	6.6		=
M5	Sunny	Moderate	15:13	Middle	5.5	21.6	21.6	8.0	8.0	30.8	30.9	86.2	85.6	6.4	6.4		6.1	6.2	5.4	6.6	6.6	5.3
				_		21.5		8.0	_	31.2	_	86.6	_	6.4		_	5.9	_	†	5.6	_	
				Bottom	10	21.5	21.5	8.0	8.0	31.2	31.2	85.4	86.0	6.3	6.4	6.4	6.1	6.0		5.3	5.5	
				_	1			-		-		-			<u> </u>					-		
				Surface	-	_	-	-	-	_	-	_	-	_	-		_	-		_	-	
	_				+	21.6		8.1		30.4		90.4		6.7		6.7	5.3		1	5.5		
M6	Sunny	Moderate	15:06	Middle	2.4	21.6	21.6	8.1	8.1	30.4	30.4	90.1	90.3	6.7	6.7		5.6	5.5	5.5	5.4	5.5	5.5
				_		-		-		-		-		-			-		†	-		
				Bottom	-	_	-	_	-	_	-	_	-	_	-	-	_	-		_	-	
	1	ı				1							1	1	1	1				1		ļ.

Appendix I - Action and Limit Levels for Marine Water Quality on 28 December 2016 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 7.6 NTU</u>	<u>C2: 8.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		6.0 mg/L	<u>6.9mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 9.2 mg/L</u>	<u>C2: 10.0 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 9.2 mg/L</u>	<u>C2: 10.0 mg/L</u>
	Stations G1-G4	4, M1-M5	
		6.9 mg/L	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 9.8 mg/L</u>	<u>C2: 10.7 mg/L</u>
	Station M6		<u> </u>
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 28 December 2016

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	:h (m)	Tempera	ture (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids (mg/L)
Eocation	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.7 20.6	20.7	8.2 8.1	8.2	33.8 33.1	33.5	100.0 98.8	99.4	7.4 7.3	7.4	7.3	3.6 3.7	3.7		4.4 4.4	4.4	
C1	Cloudy	Moderate	12:52	Middle	10.5	20.5 20.4	20.5	8.1 8.2	8.2	33.9 33.9	33.9	97.2 97.1	97.2	7.2 7.2	7.2	,	5.3 5.8	5.6	4.7	8.8 8.7	8.8	6.2
				Bottom	20	20.3 20.3	20.3	8.1 8.1	8.1	32.4 32.3	32.4	92.1 91.2	91.7	6.9 6.8	6.9	6.9	4.7 4.8	4.8		5.4 5.3	5.4	
				Surface	1	20.5 20.5	20.5	8.1 8.1	8.1	32.8 32.8	32.8	108.5 108.4	108.5	8.1 8.1	8.1		3.2 3.6	3.4		7.7 7.6	7.7	
C2	Cloudy	Moderate	10:42	Middle	18	19.8 19.9	19.9	8.1 8.1	8.1	33.4 33.5	33.5	98.3 98.2	98.3	7.4 7.3	7.4	7.8	4.7 4.8	4.8	4.8	9.5 9.4	9.5	8.5
				Bottom	35	19.8 19.7	19.8	8.1 8.1	8.1	33.4 33.4	33.4	93.1 93.6	93.4	7.0 7.0	7.0	7.0	6.3 6.3	6.3		8.2 8.2	8.2	
				Surface	1	20.3	20.4	8.1	8.1	32.6	32.6	101.2	101.7	7.6	7.6		4.7	4.5		5.9	5.8	
G1	Cloudy	Moderate	11:30	Middle	4	20.5	20.1	8.1 8.1	8.1	32.6 33.1	33.1	102.1	99.9	7.6 7.5	7.5	7.6	4.3	4.1	4.1	5.6 7.5	7.5	6.5
	,			Bottom	7	20.1	20.2	8.1 8.2	8.2	33.1 33.8	33.9	99.8 98.7	99.1	7.5 7.3	7.4	7.4	3.7	3.6		7.5 6.3	6.3	
				Surface	1	20.2	20.3	8.1 8.1	8.1	33.9 32.8	32.8	99.5 107.7	108.1	7.4 8.0	8.1		3.4 4.1	4.2		6.2 5.2	5.3	
G2	Cloudy	Moderate	11:14	Middle	5	20.3 20.2	20.2	8.1 8.1	8.1	32.7 33.3	33.4	108.4 98.8	98.8	8.1 7.4	7.4	7.8	4.2 3.8	3.9	3.8	5.4 4.3	4.3	4.7
GZ.	Oloudy	Moderate	11.14			20.2 20.3	20.2	8.1 8.2		33.4 33.2	33.3	98.7 94.0	94.1	7.3 7.0	7.4	7.0	4.0 3.2	+	3.0	4.2 4.4		7.7
				Bottom	9	20.3 19.9		8.2 8.1	8.2	33.4 32.7		94.2 107.1		7.0 8.0	<u> </u>	7.0	3.3	3.3		4.3 5.7	4.4	
				Surface	1	19.9 19.9	19.9	8.1 8.1	8.1	32.7 33.3	32.7	107.2 106.2	107.2	8.1 8.0	8.1	8.1	3.1	3.3		5.8 5.1	5.8	
G3	Cloudy	Moderate	11:44	Middle	4	19.9 19.9	19.9	8.1 8.1	8.1	33.4 33.6	33.4	106.9	106.6	8.0 7.8	8.0		3.4	3.5	3.4	5.2 4.6	5.2	5.2
				Bottom	7	19.8	19.9	8.1 8.0	8.1	33.5 32.7	33.6	104.3	104.6	7.8 6.9	7.8	7.8	3.2	3.4		4.5	4.6	
				Surface	1	20.9	20.9	8.0	8.0	32.9	32.8	92.3	92.7	6.8	6.9	6.9	3.3	3.6		4.0	4.0	
G4	Cloudy	Moderate	12:17	Middle	4	20.2	20.2	8.1 8.1	8.1	33.3 33.4	33.4	90.0 91.0	90.5	6.7 6.8	6.8		4.1	4.4	4.2	5.1 5.1	5.1	4.1
				Bottom	7	20.1 20.2	20.2	8.1 8.1	8.1	33.6 33.4	33.5	88.5 87.8	88.2	6.6 6.5	6.6	6.6	4.6 4.7	4.7		3.2 3.3	3.3	
				Surface	1	20.3 20.4	20.4	8.1 8.2	8.2	31.0 31.0	31.0	102.9 103.7	103.3	7.8 7.8	7.8	7.7	3.5 3.9	3.7		3.2 3.4	3.3	
M1	Cloudy	Moderate	11:22	Middle	3	19.9 19.9	19.9	8.1 8.1	8.1	32.3 32.4	32.4	101.3 101.5	101.4	7.6 7.6	7.6	,	3.3 3.4	3.4	3.7	3.7 3.8	3.8	3.8
				Bottom	5	19.9 19.9	19.9	8.1 8.1	8.1	33.2 33.0	33.1	100.7 100.5	100.6	7.5 7.5	7.5	7.5	3.8 4.3	4.1		4.2 4.3	4.3	
				Surface	1	20.5 20.6	20.6	8.1 8.1	8.1	32.4 32.5	32.5	101.9 102.2	102.1	7.6 7.6	7.6	7.0	3.2 3.7	3.5		4.1 4.1	4.1	
M2	Cloudy	Moderate	11:05	Middle	5.5	19.9 19.9	19.9	8.1 8.1	8.1	32.4 32.4	32.4	99.7 99.9	99.8	7.5 7.5	7.5	7.6	4.9 4.7	4.8	4.9	3.4 3.3	3.4	3.7
				Bottom	10	19.7 19.7	19.7	8.1 8.1	8.1	33.2 33.1	33.2	93.1 92.7	92.9	7.0 7.0	7.0	7.0	6.4 6.3	6.4		3.5 3.4	3.5	
				Surface	1	20.8	20.8	8.1 8.1	8.1	32.4 32.7	32.6	99.6 99.7	99.7	7.4 7.4	7.4		3.0 3.2	3.1		4.6 4.7	4.7	
M3	Cloudy	Moderate	12:04	Middle	4.5	20.8 20.3 20.4	20.4	8.1 8.1	8.1	33.3 33.2	33.3	91.3 91.4	91.4	6.8 6.8	6.8	7.1	3.5 3.7	3.6	3.5	4.7 4.7 4.7	4.7	4.2
				Bottom	8	20.4 20.2 20.2	20.2	8.1 8.1	8.1	33.3 33.4	33.4	90.3 90.5	90.4	6.7 6.7	6.7	6.7	3.7 3.7 3.8	3.8		3.3 3.2	3.3	
		<u> </u>		Surface	1	19.9	19.9	8.1	8.1	32.7	32.9	107.5	107.8	8.1	8.1		3.3	3.3	1	3.8	3.7	
M4	Cloudy	Moderate	10:57	Middle	4	19.9 19.7	19.8	8.1	8.1	33.0	33.3	108.1	102.2	8.1 7.7	7.7	7.9	3.3	3.7	3.9	3.6 4.1	4.2	4.0
			-	Bottom	7	19.8 19.2	19.3	8.1 8.1	8.1	33.3 33.5	33.6	99.6	99.4	7.7 7.5	7.5	7.5	3.6 4.9	4.8		4.2	4.2	
				Surface	1	19.3 20.6	20.7	8.1 8.1	8.1	33.6 33.1	33.5	99.1 96.8	97.1	7.5 7.2	7.2		3.7	3.6		4.2 3.8	3.8	==
M5	Cloudy	Moderate	12:43	Middle	5.5	20.7 20.3	20.7	8.1 8.1	8.1	33.9 33.0	33.5	97.3 91.9	92.0	7.2 6.8	6.8	7.0	3.4 6.0	5.7	5.2	3.8 3.9	3.9	3.1
IVIO	Oloudy	iviouerale	14.40			20.4 20.3		8.1 8.2		33.9 33.1		92.1 88.6		6.8 6.6		67	5.4 6.2	+	J.Z	3.8 1.6		5.1
				Bottom	10	20.2	20.3	8.1 -	8.2	33.2	33.2	89.3	89.0	6.7	6.7	6.7	6.3	6.3		1.7	1.7	
_				Surface	-	20.3	-	- 8.1	-	33.0	-	- 92.5	-	- 6.9	-	6.9	3.6	-		- 3.9	-	
M6	Cloudy	Moderate	12:30	Middle	2.1	20.4	20.4	8.1	8.1	32.4	32.7	93.0	92.8	6.9	6.9		3.6	3.6	3.6	3.8	3.9	3.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 28 December 2016 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>4, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 8.3 NTU</u>	<u>C1: 9.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 8.6 mg/L</u>	<u>C1: 9.4 mg/L</u>
	Stations M1-M	5	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 8.6 mg/L</u>	<u>C1: 9.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		6.9 mg/L	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.8 mg/L</u>	<u>C1: 7.4 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 28 December 2016

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	р	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	7	Turbidity(NTL	J)	Suspe	nded Solids ((mg/L)
Location	Condition	Condition**	Time	Бері	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.8 20.8	20.8	8.2 8.2	8.2	34.1 33.2	33.7	103.3 104.4	103.9	7.6 7.7	7.7		4.8 4.4	4.6		7.2 7.1	7.2	
0.4	011	Madada	47.45	NAC -L-III -	40	20.6	00.7	8.2	0.0	33.1	00.4	98.1	00.7	7.7	7.0	7.5	3.9	4.0	5 0	8.2	0.0	7.0
C1	Cloudy	Moderate	17:45	Middle	10	20.7	20.7	8.2	8.2	33.1	33.1	99.2	98.7	7.3	7.3		4.1	4.0	5.2	8.2	8.2	7.0
				Bottom	19	20.5 20.5	20.5	8.2 8.2	8.2	31.2 31.3	31.3	96.4 96.8	96.6	7.2 7.3	7.3	7.3	6.8 6.9	6.9		5.7 5.7	5.7	
				0 (<u> </u>	20.5	00.5	8.2	0.4	33.0	00.0	105.7	400.0	7.8	7.0		4.9	4.7		4.1	4.4	
				Surface	1	20.5	20.5	8.0	8.1	33.0	33.0	106.6	106.2	7.9	7.9	7.6	4.5	4.7		4.0	4.1	
C2	Cloudy	Moderate	15:57	Middle	18	20.3 20.4	20.4	8.1 8.1	8.1	32.4 32.5	32.5	98.3 98.4	98.4	7.3 7.3	7.3		5.1 5.0	5.1	5.0	12.2 12.1	12.2	7.3
				Dattom	25	20.4	20.5	8.1	0.1	32.4	20.4	98.5	00.7	7.3	7.4	7.4	5.2	F 0	ı	5.5	F.C.	
				Bottom	35	20.5	20.5	8.1	8.1	32.4	32.4	98.8	98.7	7.4	7.4	7.4	5.2	5.2		5.6	5.6	
				Surface	1	20.4 20.4	20.4	8.2 8.2	8.2	31.2 31.2	31.2	104.2 104.7	104.5	7.8 7.9	7.9		3.9 3.7	3.8		4.6 4.4	4.5	
0.1	Olassaks	Madayata	10.45	M: al all a	4	20.4	00.0	8.2	0.0	31.5	04.0	97.5	07.4	7.3	7.0	7.6	4.5	4.7	4.0	3.6	0.0	4.0
G1	Cloudy	Moderate	16:45	Middle	4	20.2	20.3	8.2	8.2	31.6	31.6	96.6	97.1	7.3	7.3		4.9	4.7	4.9	3.5	3.6	4.3
				Bottom	7	20.0 20.1	20.1	8.2 8.2	8.2	32.4 32.3	32.4	97.2 97.2	97.2	7.3 7.3	7.3	7.3	6.0 6.1	6.1		4.7 4.6	4.7	
				0 (<u> </u>	20.1	00.4	8.2	0.0	32.0	00.0	103.1	100.0	7.7	7.0		4.2	4.0		5.5		
				Surface	1	20.5	20.4	8.2	8.2	31.9	32.0	104.1	103.6	7.8	7.8	7.6	4.3	4.3		5.4	5.5	
G2	Cloudy	Moderate	16:27	Middle	5	20.4 20.4	20.4	8.1 8.1	8.1	32.3 32.4	32.4	97.4 96.9	97.2	7.3 7.2	7.3	7.0	3.5 3.2	3.4	3.8	5.5 5.5	5.5	4.9
				D ::		20.4	00.4	8.2	0.0	31.8	04.0	94.1	04.4	7.2	7.0	7.0	3.6	0.7		3.6	0.7	
				Bottom	9	20.3	20.4	8.2	8.2	32.0	31.9	94.0	94.1	7.0	7.0	7.0	3.7	3.7		3.7	3.7	
				Surface	1	20.4	20.3	8.2	8.2	31.0	31.1	103.3	102.7	7.8	7.8		3.6	3.5		4.2	4.2	
			10.50	N 40 1 11		20.2 20.4	00.4	8.2 8.1	0.0	31.2 31.8	24.0	102.1 96.8	00.0	7.7 7.2	7.0	7.5	3.4	0.0	4.0	4.2 3.9	0.0	4.0
G3	Cloudy	Moderate	16:56	Middle	4	20.4	20.4	8.2	8.2	31.9	31.9	96.8	96.8	7.2	7.2		4.1	3.9	4.2	3.8	3.9	4.2
				Bottom	7	20.2 20.2	20.2	8.2 8.2	8.2	32.4 32.5	32.5	95.5	95.4	7.2	7.2	7.2	5.2	5.3		4.5 4.4	4.5	
				0 (20.2		8.2		32.5	00.4	95.3 105.5	105.0	7.1 7.8			5.4 5.0			3.2		
				Surface	1	20.9	20.9	8.1	8.2	33.2	33.1	106.2	105.9	7.8	7.8	7.6	4.8	4.9		3.2	3.2	
G4	Cloudy	Moderate	17:16	Middle	4	20.7	20.7	8.2	8.2	32.9	33.0	97.9 97.9	97.9	7.2	7.3	7.0	4.0	4.1	4.9	4.4	4.4	3.8
				5	_	20.6 20.5		8.2 8.3		33.0 32.8		93.9	24.2	7.3 7.0			4.1 5.6		·	4.3 3.8		
				Bottom	7	20.6	20.6	8.3	8.3	32.9	32.9	94.6	94.3	7.0	7.0	7.0	5.7	5.7		3.9	3.9	
				Surface	1	20.5	20.5	8.1	8.2	31.0	31.0	103.1	103.5	7.7	7.8		3.4	3.7		4.1	4.2	
	011	Madada	40.00	NAC -L-III -		20.4 20.4	00.4	8.2 8.1	0.4	31.0 33.2	00.0	103.9 101.8	404.0	7.8 7.6	7.0	7.7	3.9 3.9	4.4	0.0	4.2 6.1	0.0	4.0
M1	Cloudy	Moderate	16:36	Middle	3	20.3	20.4	8.1	8.1	33.2	33.2	101.4	101.6	7.5	7.6		4.3	4.1	3.9	6.2	6.2	4.8
				Bottom	5	19.9 19.7	19.8	8.2 8.2	8.2	31.6 31.4	31.5	95.9 95.6	95.8	7.3 7.3	7.3	7.3	3.8 3.8	3.8		3.9 3.8	3.9	
				0 (20.4	00.4	8.2	0.0	33.1	00.4	100.2	100.1	7.3	7.5		3.7	0.7		3.1	0.1	
				Surface	1	20.4	20.4	8.1	8.2	33.0	33.1	100.5	100.4	7.5	7.5	7.3	3.7	3.7		3.1	3.1	
M2	Cloudy	Moderate	16:18	Middle	5.5	20.3 20.4	20.4	8.1 8.2	8.2	32.0 31.7	31.9	93.5 93.2	93.4	7.0 7.0	7.0		3.8 3.7	3.8	3.8	4.9 5.0	5.0	4.0
				Dattana	40	20.4	00.5	8.2	0.0	32.6	00.5	92.7	00.0	6.9	0.0	0.0	3.8	0.0	ı	3.9	0.0	
				Bottom	10	20.4	20.5	8.1	8.2	32.3	32.5	91.9	92.3	6.9	6.9	6.9	3.9	3.9		3.8	3.9	
				Surface	1	20.6 20.7	20.7	8.2 8.2	8.2	33.5 33.7	33.6	103.2 103.8	103.5	7.6 7.6	7.6		4.8 5.1	5.0		4.2 4.4	4.3]
140	Classed	Madausti	17.07	- المامنية	4.5	20.7	00.7	8.2	0.0	33.7	04.0	100.1	100.1	7.6	7.4	7.5	5.1 4.6	4.5	4 7	4.4	4.0	4 7
M3	Cloudy	Moderate	17:07	Middle	4.5	20.7	20.7	8.2	8.2	34.0	34.0	100.7	100.4	7.4	7.4		4.3	4.5	4.7	4.6	4.6	4.7
				Bottom	8	20.6 20.5	20.6	8.1 8.2	8.2	33.9 34.2	34.1	93.3 92.6	93.0	6.9 6.8	6.9	6.9	4.5 4.5	4.5		5.1 5.0	5.1	
				Surface	4	20.4	20.5	8.1	8.2	31.3	31.4	104.6	104.7	7.9	7.9		3.1	2.1		4.0	4.0	
				Surface	'	20.5	∠∪.5	8.2	0.2	31.5	31.4	104.7	104./	7.8	7.9	7.6	3.0	3.1		3.9	4.0	
M4	Cloudy	Moderate	16:09	Middle	4	20.4 20.4	20.4	8.2 8.2	8.2	31.7 31.7	31.7	98.0 97.5	97.8	7.3 7.3	7.3		3.3 3.5	3.4	4.1	1.0 1.0	1.0	3.1
				Rottom	7	19.7	19.7	8.2	8.2	31.2	31.3	93.5	92.7	7.1	7.1	7.1	5.8	5.7		4.1	4.2	
				Bottom		19.7	18.7	8.2	0.2	31.3	31.3	91.8	9∠./	7.0	/.1	7.1	5.6	5.7		4.2	4.2	
				Surface	1	20.7 20.8	20.8	8.2 8.2	8.2	33.7 34.5	34.1	103.0 103.5	103.3	7.6 7.6	7.6		4.6 4.7	4.7		4.0 4.0	4.0	
M5	Cloudy	Modorata	17:26	Middle	5.5	20.7	20.7	8.2	8.2	32.7	22.1	97.3	97.6	7.0	7.2	7.4	3.8	2.0	10	4.0	4.2	4.6
CIVI	Cloudy	Moderate	17:36	Middle	5.5	20.6	∠U./	8.2	0.2	33.5	33.1	97.8	97.0	7.2	1.2		3.7	3.8	4.8	4.2	4.∠	4.6
				Bottom	10	20.6 20.6	20.6	8.3 8.3	8.3	32.2 32.4	32.3	94.0 93.8	93.9	7.0 7.0	7.0	7.0	5.7 5.9	5.8		5.7 5.6	5.7	
				Curtor-		-		-		-		-		-						-	1	
				Surface	_	-	-	-	-	-	-	-	-	-	-	7.4	-	_		-	-	
M6	Cloudy	Moderate	17:25	Middle	2.1	20.6 20.6	20.6	8.2 8.2	8.2	33.0 32.5	32.8	98.3 99.1	98.7	7.3 7.4	7.4		4.7 4.4	4.6	4.6	6.1 6.0	6.1	6.1
				Dottor		-		-		انے -	+ +	- -					-			-		
				Bottom	-	-	-	-	-	-	-	-	-	-	_	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 30 December 2016 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 6.8 NTU</u>	<u>C2: 7.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		6.0 mg/L	<u>6.9mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.8 mg/L</u>	<u>C2: 8.5 mg/L</u>
	Stations M1-M	<u>[5</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 7.8 mg/L</u>	<u>C2: 8.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		6.9 mg/L	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.6 mg/L</u>	<u>C2: 8.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

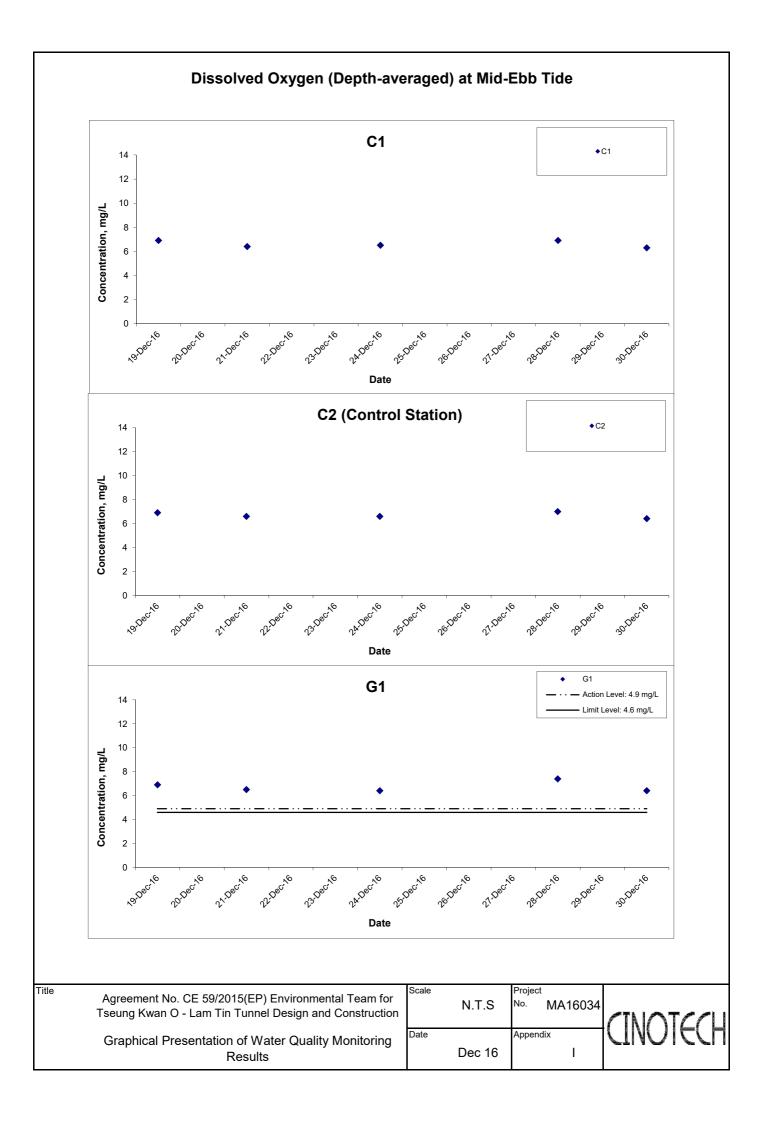
- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

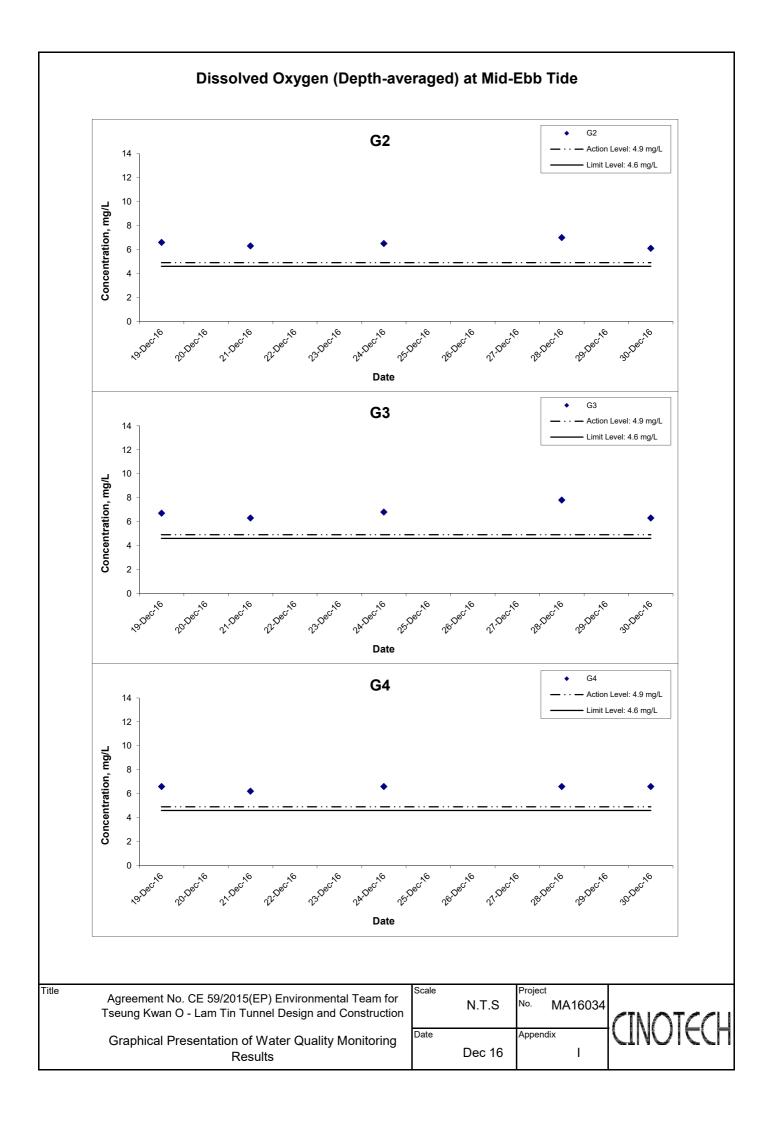
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 30 December 2016

(Mid-Ebb Tide)

	Weather	Sea	Sampling			Tempera	ature (°C)	n	ρΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(ma/L)	Γ	Turbidity(NTU)	Suspe	ended Solids ((ma/L)
Location		Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.6 24.2	24.4	8.1 8.1	8.1	31.8 31.8	31.8	103.3 105.3	104.3	7.2 7.4	7.3	0.0	4.2 4.4	4.3		4.3 4.1	4.2	
C1	Sunny	Moderate	13:57	Middle	10	24.5	24.3	8.2	8.2	32.0	32.0	92.0	91.9	6.4	6.4	6.9	4.3	4.4	4.6	5.2	5.2	5.3
				Bottom	19	24.0 24.2	24.2	8.2 8.2	8.2	31.9 32.0	32.1	91.8 90.7	90.7	6.4 6.3	6.3	6.3	4.4 5.3	5.1		5.2 6.3	6.4	I
		<u> </u>			1 4	24.1		8.2 8.1		32.1 32.1		90.6 99.6		6.3 6.9		0.0	4.9 5.3	1		6.4 6.5		
				Surface	1	23.7	24.0	8.1	8.1	32.1	32.1	99.8	99.7	7.0	7.0	6.8	5.0	5.2		6.4	6.5	I
C2	Sunny	Moderate	11:57	Middle	18	24.3 23.5	23.9	8.1 8.1	8.1	32.1 32.1	32.1	92.7 91.5	92.1	6.5 6.5	6.5		5.5 5.3	5.4	5.4	5.2 5.4	5.3	6.0
				Bottom	35	23.7 23.5	23.6	8.1 8.1	8.1	32.1 32.2	32.2	91.5 91.2	91.4	6.4 6.4	6.4	6.4	5.6 5.7	5.7		6.2 6.4	6.3	
				Surface	1	24.1 24.0	24.1	8.2 8.2	8.2	31.8 31.8	31.8	99.1 99.6	99.4	6.9 7.0	7.0		4.3 4.1	4.2		3.0 3.1	3.1	
G1	Sunny	Moderate	12:40	Middle	4	24.2	24.1	8.2	8.2	32.0	32.0	89.9	90.5	6.3 6.4	6.4	6.7	4.8	5.1	5.2	6.1	6.1	4.5
				Bottom	7	24.0 24.0	24.0	8.1 8.1	8.2	32.0 32.1	32.1	91.1 90.2	90.8	6.3	6.4	6.4	5.3 6.0	6.3		6.1 4.3	4.3	
				Surface		24.0	24.0	8.2 8.2	8.2	32.1 32.4	32.4	91.4 97.8	98.1	6.4 6.8	6.9		6.5 4.0			4.2 4.7	4.7	
					'	24.0 24.0		8.2 8.1	0.2	32.3 32.5		98.4 91.7		6.9 6.4		6.7	3.6 3.9	3.8		4.6 7.6		I
G2	Sunny	Moderate	12:24	Middle	5	24.0	24.0	8.1	8.1	32.5	32.5	90.6	91.2	6.3	6.4		4.0	4.0	4.1	7.4	7.5	5.5
				Bottom	9	24.0 24.0	24.0	8.2 8.2	8.2	32.8 32.8	32.8	87.8 86.7	87.3	6.1 6.1	6.1	6.1	4.5 4.6	4.6		4.1 4.2	4.2	
				Surface	1	23.7 23.7	23.7	8.2 8.2	8.2	31.8 31.8	31.8	99.1 99.6	99.4	7.0 7.0	7.0	0.7	4.0 3.8	3.9		2.6 2.5	2.6	
G3	Sunny	Moderate	12:53	Middle	4	23.7 23.6	23.7	8.2 8.2	8.2	32.1 32.1	32.1	90.4 90.4	90.4	6.4 6.4	6.4	6.7	4.2 4.5	4.4	4.7	8.7 8.6	8.7	5.2
				Bottom	7	23.7	23.7	8.2	8.2	32.4	32.4	88.8	88.6	6.3	6.3	6.3	5.6	5.7		4.2	4.2	
				Surface	1 1	23.6 24.6	24.3	8.2 8.1	8.1	32.4 31.9	31.9	88.4 99.6	99.3	6.2 6.9	6.9		5.7 4.3	4.4		4.1 3.5	3.5	
•					'	24.0 24.6		8.1 8.2		31.9 32.2		98.9 91.5		6.9 6.3		6.7	4.5 5.3	+		3.4 3.6		
G4	Sunny	Moderate	13:25	Middle	4	23.9	24.3	8.2	8.2	32.2	32.2	90.8	91.2	6.4	6.4		5.1	5.2	5.2	3.7	3.7	3.8
				Bottom	7	24.0 24.0	24.0	8.2 8.3	8.3	32.6 32.6	32.6	94.7 94.6	94.7	6.6 6.6	6.6	6.6	5.9 6.1	6.0		4.2 4.3	4.3	
				Surface	1	23.7 23.7	23.7	8.1 8.2	8.2	32.1 32.1	32.1	97.6 97.8	97.7	6.9 6.9	6.9	6.7	3.9 4.1	4.0		4.2 4.1	4.2	
M1	Sunny	Moderate	12:32	Middle	3	23.7 23.6	23.7	8.2 8.1	8.2	32.1 32.1	32.1	90.7 90.3	90.5	6.4 6.4	6.4	6.7	4.1 4.3	4.2	4.3	7.1 7.3	7.2	4.9
				Bottom	5	23.5	23.5	8.2	8.2	32.1	32.1	88.9	88.4	6.3	6.3	6.3	4.6	4.7		3.5	3.4	
				Surface	1 1	23.4	24.0	8.1 8.2	8.2	32.1 32.3	32.3	87.9 94.1	93.9	6.2 6.6	6.6		4.8	4.2		3.2 5.3	5.4	
			10.17		<u>'</u>	23.7 24.3		8.1 8.1		32.3 32.4		93.6 87.7		6.6 6.1		6.4	4.1		4.0	5.4 2.6		
M2	Sunny	Moderate	12:17	Middle	5.5	23.5	23.9	8.2 8.2	8.2	32.5 32.5	32.5	86.3 85.1	87.0	6.1 6.0	6.1		4.2 4.2	4.2	4.2	2.4	2.5	3.6
				Bottom	10	23.7 23.5	23.6	8.1	8.2	32.5	32.5	84.9	85.0	6.0	6.0	6.0	4.2	4.2		2.8	2.8	
				Surface	1	24.6 24.2	24.4	8.2 8.2	8.2	32.3 32.3	32.3	111.6 107.2	109.4	7.7 7.5	7.6	7.1	4.8 4.8	4.8		2.8 2.9	2.9	
МЗ	Sunny	Moderate	13:13	Middle	4.5	24.6 24.0	24.3	8.2 8.2	8.2	32.6 32.6	32.6	93.4 92.9	93.2	6.5 6.5	6.5	7.1	5.0 4.9	5.0	5.0	3.3 3.2	3.3	3.9
				Bottom	8	24.2 24.0	24.1	8.1 8.2	8.2	33.0 33.0	33.0	85.8 85.1	85.5	6.0 5.9	6.0	6.0	5.2 5.4	5.3		5.5 5.6	5.6	
		1		Surface	1	23.7	23.7	8.1	8.1	32.1	32.1	98.8	98.8	7.0	7.0		3.5	3.5		4.6	4.7	
N// /	Cuppe	Modoreta	10.10			23.6 23.7		8.1 8.2		32.1 32.1		98.7 91.4	90.7	7.0 6.4		6.7	3.4		A E	4.7 3.3		3.0
M4	Sunny	Moderate	12:10	Middle	4	23.1 23.6	23.4	8.2 8.2	8.2	32.1 32.3	32.1	90.0 88.0		6.4 6.2	6.4		4.0 6.2	3.9	4.5	3.2 3.5	3.3	3.9
				Bottom	7	23.1	23.4	8.2	8.2	32.3	32.3	85.8	86.9	6.1	6.2	6.2	6.0	6.1		3.6	3.6	
				Surface	1	24.5 24.2	24.4	8.2 8.2	8.2	32.1 32.1	32.1	99.1 98.7	98.9	6.9 6.9	6.9	6.6	5.1 5.1	5.1		3.7 3.4	3.6	
M5	Sunny	Moderate	13:49	Middle	5.5	24.5 24.0	24.3	8.2 8.2	8.2	32.2 32.2	32.2	90.5 90.5	90.5	6.3 6.3	6.3	0.0	4.3 4.2	4.3	5.3	4.2 4.1	4.2	4.1
				Bottom	10	24.2 24.0	24.1	8.3 8.2	8.3	32.2 32.2	32.2	87.4 86.8	87.1	6.1 6.1	6.1	6.1	6.2	6.4		4.5 4.4	4.5	
				Surface	-	- 24.0	-	- 8.2	_	- 32.2	_	- 86.8	_	6.1 -	_		6.5	_		- 4.4	_	
N40	C	Moderne	10-00			- 24.6		8.2	0.0	- 32.1	00.4	92.5	00.5	- 6.4	0.5	6.5	- 5.1	5.0	E O	3.8	0.7	0.7
M6	Sunny	Moderate	13:36	Middle	2	24.2	24.4	8.1	8.2	32.1	32.1	92.5	92.5	6.5	6.5		5.5	5.3	5.3	3.6	3.7	3.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	_	-		-	-	

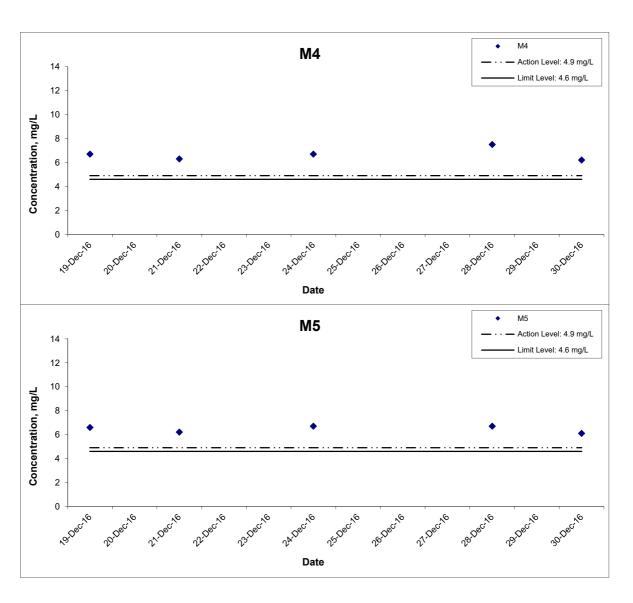
Appendix I - Action and Limit Levels for Marine Water Quality on 30 December 2016 (Mid-Flood Tide)

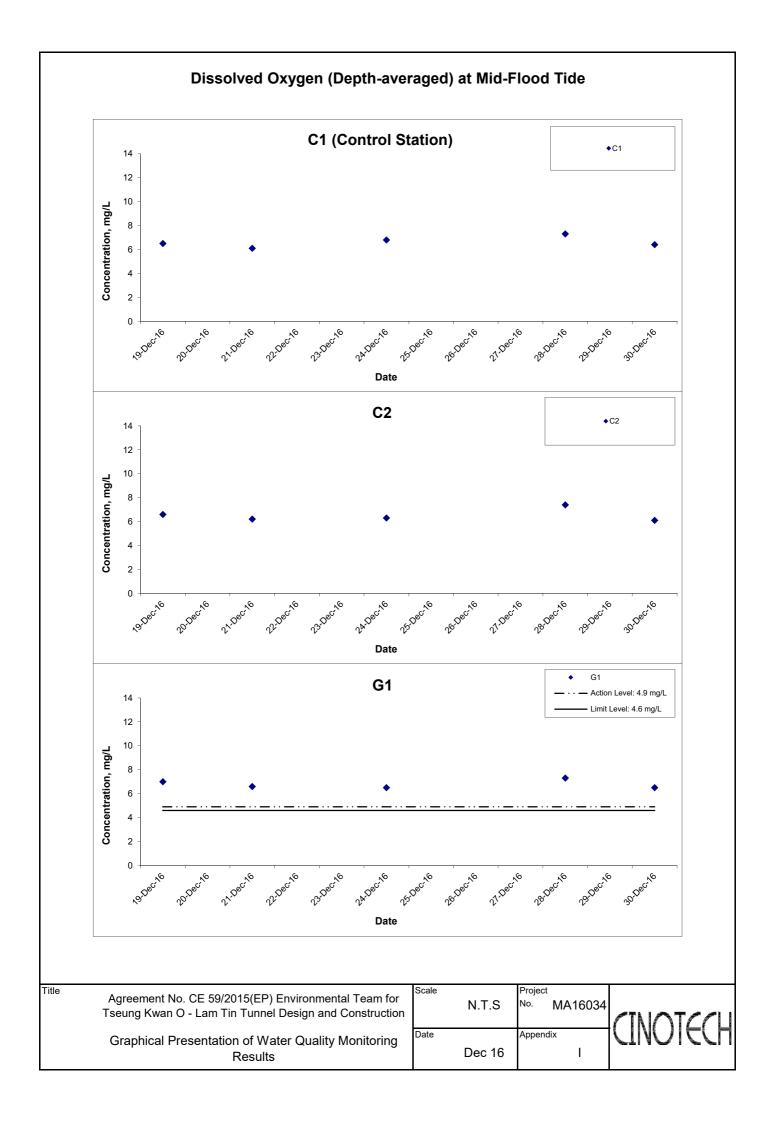

Parameter Depth		Action Level	Limit Level							
	Stations G1-G4, M1-M5									
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>							
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>							
	Station M6									
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>							
	Stations G1-G4, M1-M5									
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Turbidity in		or 120% of upstream control	or 130% of upstream control							
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide							
(See Note 2 and 4)		tide of the same day	of the same day							
		<u>C1: 10.7 NTU</u>	<u>C1: 11.6 NTU</u>							
	Station M6									
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>							
	Stations G1-G4									
	Surface	6.0 mg/L	<u>6.9mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
		station's SS at the same tide of	station's SS at the same tide of the							
		the same day	same day							
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>							
	Stations M1-M5									
		6.2 mg/L	<u>7.4 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the							
(See Note 2 and 4)		the same day	same day							
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>							
	Stations G1-G4, M1-M5									
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
	Bottom	station's SS at the same tide of	station's SS at the same tide of the							
		the same day	same day							
		C1: 8.6 mg/L	<u>C1: 9.4 mg/L</u>							
	Station M6		<u> </u>							
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>							

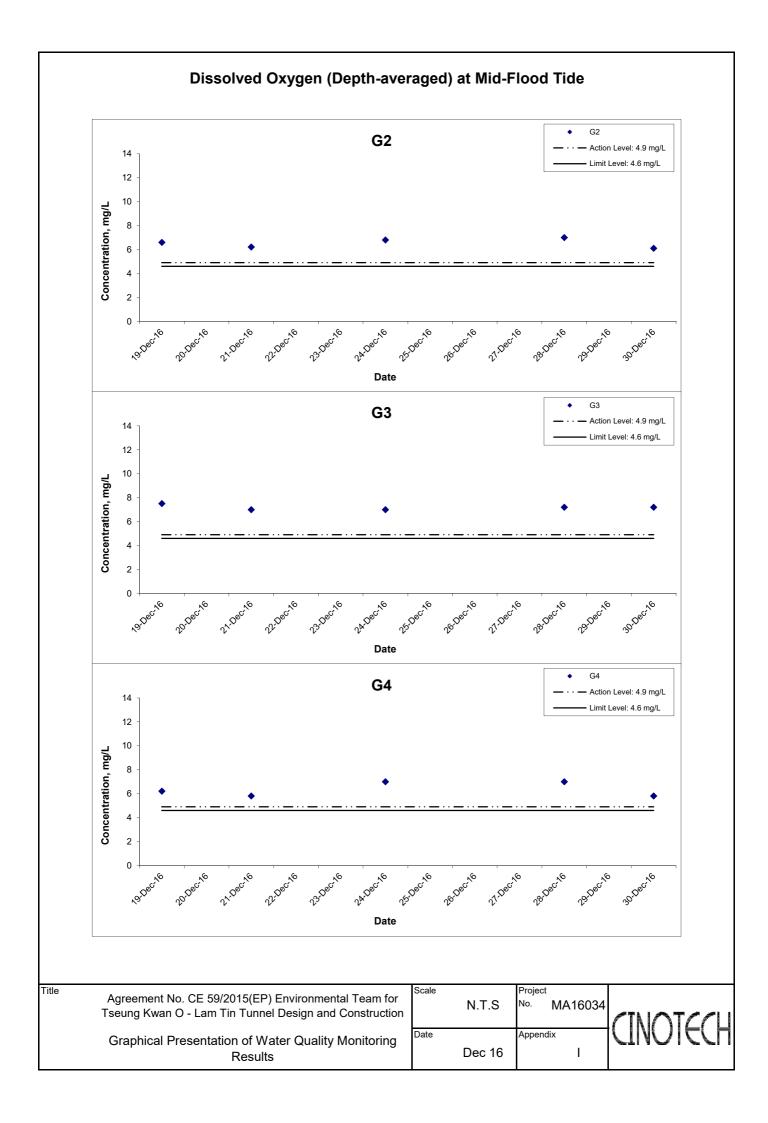

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

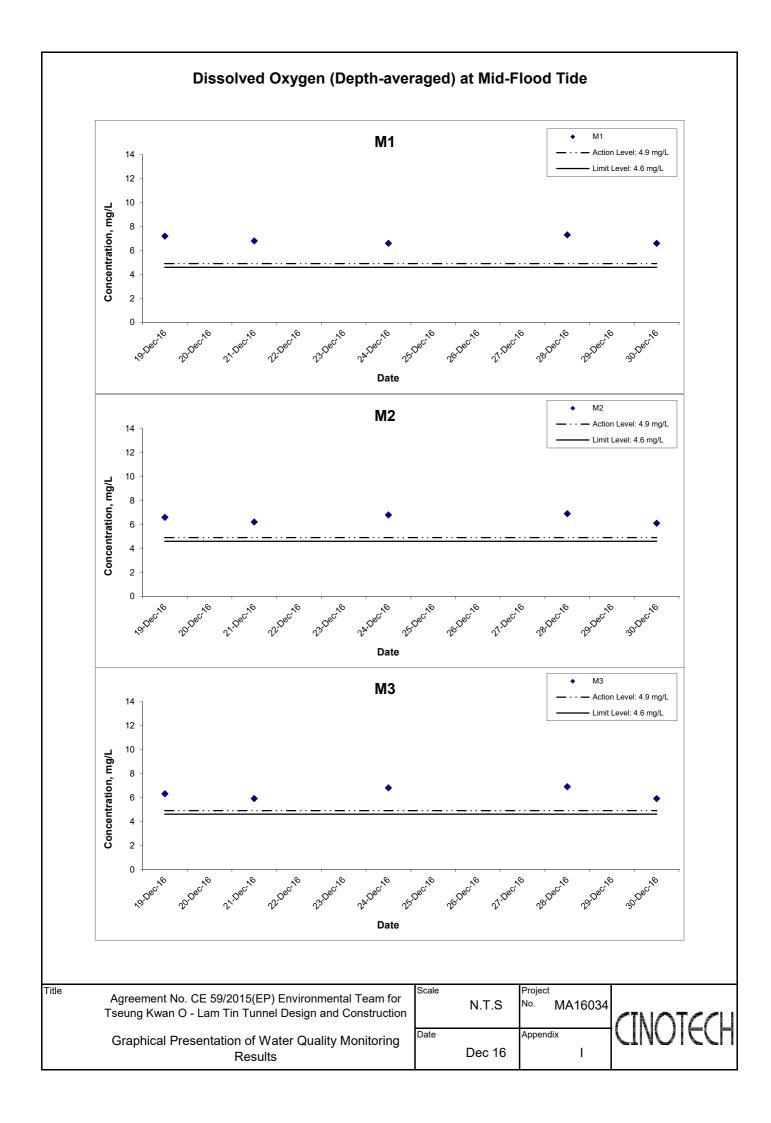
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 30 December 2016

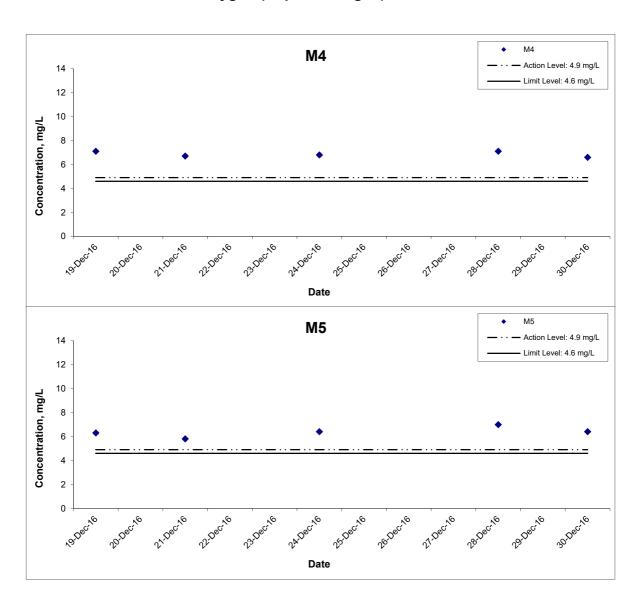
(Mid-Flood Tide)

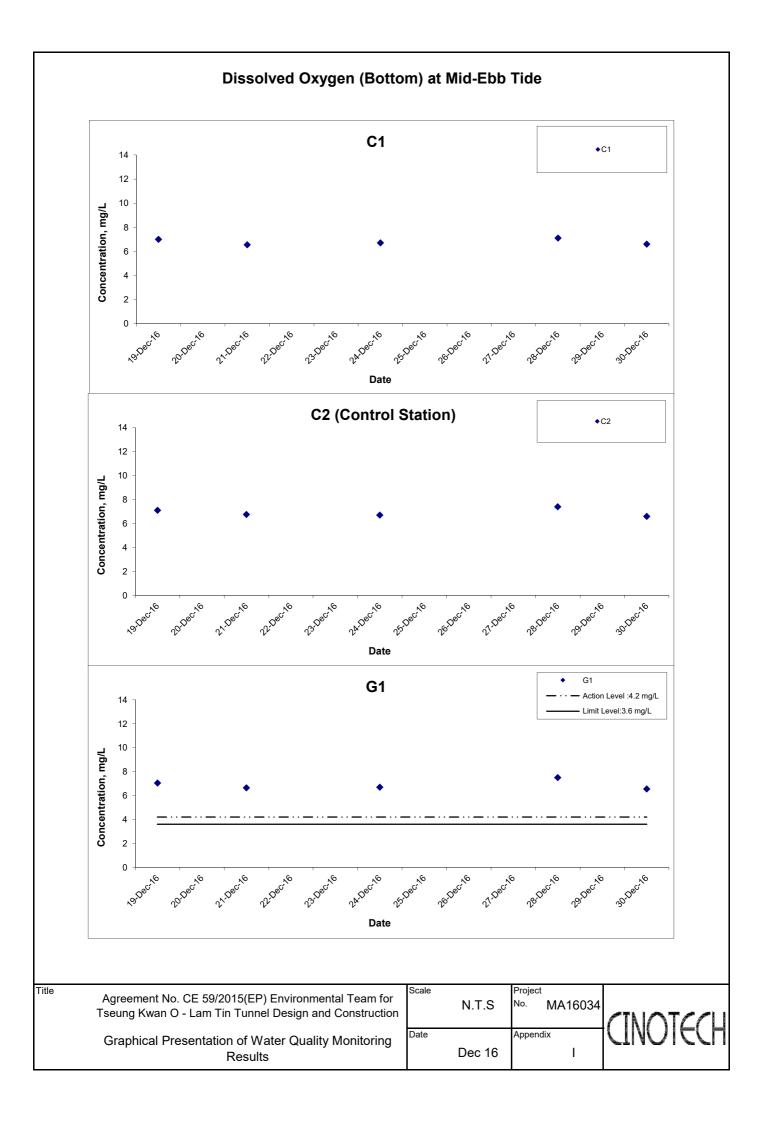

Martin M		Weather	Sea	Sampling	<u> </u>		Tompore	oturo (°C)	l r	oH	Salin	ity ppt	DO Satu	ıration (%)	l Dissol	ved Oxygen	(mg/L)	 	Turbidity(NTL	1)	Susne	nded Solids ((ma/L)	
Fig. Modes	Location				Dept	th (m)		T '-		1				` '							· ·		` • /	
Proc. Moderal Proc. Proc. Moderal Proc. Moderal Proc. Moderal Proc. Moderal Proc. Moderal Proc. Moderal Proc. Proc. Moderal Proc. Proc. Moderal Proc. Moderal Proc. Proc. Moderal Proc. Proc. Proc. Moderal Proc. Pr					Curtoso	1																		
Column C					Surface	1		24.3		0.1		31.2	105.7	106.9	7.4	7.5	7.1		4.1		5.8	5.6		
Marie Mari	C1	Fine	Moderate	18:37	Middle	10.5		24.3		8.1		32.3		93.7		6.6			5.9	6.3		5.9	6.3	
Color Colo																				1				
Part Marcele East					Bottom	20		24.2		8.1		32.9		91.5		6.4	6.4		8.9			7.2		
Fig. Moreove 1009 Mode 18 22 23 24 18 18 20 20 27 28 28 28 28 28 28 28					Surface	1	24.1	24.1	8.1	8.1	31.4	31 4	101.8	104.2		7.4		3.5	3.8		3.4	3.4		
Made Mate					Ouriacc	<u> </u>	-	۲ ۱		0.1		01.4		104.2		7.4	7.1		0.0			0.4		
Part	C2	Fine	Moderate	16:59	Middle	18		24.1		8.1		32.6		95.0		6.7			5.2	5.3		3.6	4.1	
Fig.					Dettern	0.5		04.4		0.4		00.0		07.7		0.4	0.4		0.0			Г.О.		
Second Process Proce					Bottom	35		24.1		8.1		32.9	88.1	87.7		6.1	6.1		6.8			5.2		
Fire Modernite 1741 Modes 2					Surface	1		24.0		8.1		32.8		97.4		6.8			4.9			4.4		
Fire Moderate 17-20 Mode																	6.8		1					
Fire Minterner 1726 Mint	G1	Fine	Moderate	17:41	Middle	4		23.9		8.1		33.1		95.5		6.7			4.5	4.5		5.6	4.3	
Free Medestee 1728 Middle 1729 Middle 5 260 240 3.5 3.1 3.1 3.2					Rottom	7		23.8	8.1	8 1		33.3		92.0		6.5	6.5		4.0			29		
Fire Monore 1738 Monor		1			Bottom	<u>'</u>		20.0		0.1		00.0		02.0		0.0	0.0	<u> </u>	1.0			2.0		
Proceedings					Surface	1		24.0		8.1		32.8		104.9		7.4			4.5			1.3		
Martin M	00	. □in a	Madausta	17.00	NA: al all a		+	04.0		0.4		00.4		05.4	+	0.7	7.1		4.0	4.0		0.0	0.0	
Fire Moderate Fire Fire Moderate Fire Moderate Fire Moderate Fire Moderate Fire Moderate Fire Moderate Fire Fire Moderate Fire Moderate Fire Fire Fire Moderate Fire Fire Fire Moderate Fire Fire Fire Fire Moderate Fire Fire Fire Fire Fire Fire Fire	G2	Fine	Moderate	17:23	Mildale	5	23.9	24.0		8.1	33.0	33.1	97.0	95.1		6.7			4.3	4.2	3.9	3.9	3.0	
Fire Microsite 17 18 18 18 18 18 18 18					Bottom	9		24.0		8.1		33.8		88.1		6.1	6.1		3.9			3.7		
Fire Maderale 1751 Malerale 1751 Mal		<u> </u>														<u> </u>								
Fire Modernite 17-51					Surface	1		24.0		8.0		33.2		100.0		7.0	7.0		3.7			5.7		
Section Fine Moderate 18:10 Section Fine Section Fine Moderate 18:10 Section Fine Section Fine Moderate 18:10 Section Fine Section Fi	G3	Fine	Moderate	17:51	Middle	4		23.9		8.0		33.2		99.9		7.0	7.0		3.9	3.8		5.0	4.9	
Fire Moderate 18-10 Mode	0.0																		1 0.0	5.5		0.0	•	
Surface 1					Bottom	7		23.9		8.0		33.2		101.8		7.2	7.2		3.8			4.0		
Price Moderate 18:10 Mod					Surface	1	-	24.3	•	8.0		21.2	•	84.6		6.0			4.0			5.1		
Fire Moderate 18-10 Mode					Juliace	'		24.0		0.0		01.2	_	04.0		0.0	6.0		4.0		<u> </u>	3.1		
Moderate Fine Moderate Moderate 17:16 M	G4	Fine	Moderate	18:10	Middle	4		24.3		8.0		32.2		84.0		5.9			4.8	4.6		3.5	3.6	
Fine Moderate Fine Fine Moderate Fine Fine Moderat					Б.,,			04.0		0.0		00.0	+	00.0		5.0	5 0		4.0	1		0.0		
M1 Fine Moderate 1732 Moderate 1 240 240 8.0 8.0 8.0 331 33. 95. 97.2 97.0 6.8 8.0					Bottom	/		24.2		8.0		32.8		82.3		5.8	5.8		4.9			2.3		
M1 Fine Moderate No. 4 N					Surface	1		24.0		8.0		33.1		97.0		6.8			3.8			2.8		
Main Moderate Mo				17:32	17:32													6.8						
Fine Moderate Fine Fine Moderate Fine Moderate Fine Fine Fine	M1	Fine	Moderate			17:32	Middle	3		24.0		8.0		33.4		95.7		6.7			4.5	4.4		2.8
M2 Fine Moderate 17:16					Bottom	5		23.9		8.0		33.2		94.5		6.6	6.6		4.8			6.3		
Main Moderate Fine Mod		1	1			1	•				-	1				1	1		1					
M2 Fine Moderate Fine Fine Fine Fine Fine Moderate Fine Fine Fine Fine Fine Fine Fine Fin					Surface	1		24.0		8.1		31.4		95.3		6.7			3.8			4.5		
Moderate 18.03 Bottom 10 24.0 24.0 8.1 8.1 32.8 32.9 37.2 87.0 6.1 6.1 6.1 6.1 6.7 6.8 3.3 3.4 3.4 3.5 3	MO	Fino	Moderate	17:16	Middle	5.5		24.0	8.0	0.0	32.6	22.6		05.0		6.7	6.7		5.0	5 2		6.0	4 7	
Maximum	IVI∠	Fille	Moderate	17.10	ivildale	5.5		24.0		0.0		32.0		95.0	1	0.7			5.2	5.5		0.2	4.7	
Hand Fine Moderate Robert Robe					Bottom	10		24.0		8.1		32.9		87.0		6.1	6.1		6.8			3.4		
M3 Fine Moderate 18:03 Middle 4.5 24.3 24.3 8.1 8.1 30.9 31.0 94.9 94.9 94.8 6.7 6.8 6.3 3.5 3.5 3.8 4.3			<u> </u>		0 (-	04.0		0.4		04.0	•	00.0			<u> </u>		0.5		•	0.0		
M3					Surface	1		24.3		8.1		31.0	94.9	93.8		6.6	6.3	3.5	3.5			2.8		
Hole Hole Hole Hole Hole Hole Hole Hole	МЗ	Fine	Moderate	18:03	Middle	4.5		24.3		8.1		31.6		85.5		6.0			3.9	3.9		4.3	3.9	
Math Fine Moderate 17:08 Surface 1 24.0 24.0 8.0 8.0 8.0 8.0 33.2 33.2 103.4 104.7 7.2 7.3 7.1 3.8																				ı				
M4 Fine Moderate Fine Fine Fine Moderate Fine Fine Fine Fine Fine Fine Fine Fin					Bottom	8		24.2		8.0		32.0		83.7		5.9	5.9		4.2			4.6		
M4 Fine Moderate Fine Fine Fine Fine Fine Fine Fine Fin					Surface	1		24.0		8.0		33.2		104.1		7.3			3.8			6.1		
Middle							_										7.1							
M5 Fine Moderate Rise Moderate Rise Moderate Rise Moderate Rise Rise Moderate Rise Rise Rise Rise Rise Rise Rise Ris	M4	Fine	Moderate	17:08	Middle	4		23.7		8.0		33.3		96.9		6.8			4.2	4.4		6.3	6.4	
M5 Fine Moderate 18:29					Bottom	7		23.7		8 1		34.2		94.9		6.6	6.6		5.2	ı		6.7		
M5 Fine Moderate Fine Fine Fine Moderate Fine Fine Fine Moderate Fine Fine Fine Moderate Fine Fine Fine Fine Fine Fine Fine Fin		1	1			<u> </u>						1	-	1		1	1	•	1 0		•	5		
M5 Fine Moderate 18:29 Middle 5.5 24.4 24.3 8.1 8.1 32.2 32.2 32.2 91.3 96.5 93.9 6.4 6.6 5.7 6.1 6.1 4.5 4.5 4.5 5.1 8.1 8.1 32.9 32.9 93.5 93.9 93.5 6.2 6.4 6.4 6.4 8.0 8.2 6.3 6.2 6.3 6.2 6.3 6.3 6.3 6.2 6.3 6.3 6.3 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.2 6.3 6.3 6.3 6.2 6.3 6.3 6.3 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3					Surface	1		24.3		8.1		31.2		92.7		6.5			4.0			4.5		
M6 Fine Moderate 18:18 Middle 2 24.4 24.3 8.1 8.1 8.1 31.8 32.9 10.2 10.4 7.0 7.0 7.0 7.0 80ttom	M5	Eino	Madaust	18:20	Middlo	5.5		24.3		Ω 1		32.2		03.0		6.6	6.6		6.1	6.1		15	5.1	
M6 Fine Moderate 18:18 Middle 2 24.4 24.3 8.1 8.1 8.1 31.8 31.8 100.6 100.2 100.4 7.0 7.0 7.0 3.9 4.0 4.0 7.1 7.1 7.1 7.1 80ttom	CIVI	Fille	iviouerale	10.29	ivildule	3.5	+	24.3		0.1		32.2		33.3 35.3		0.0			0.1	0.1		4.0	J. I	
M6 Fine Moderate 18:18 Surface -					Bottom	10		24.2		8.1		32.9		91.1		6.4	6.4		8.2			6.2		
M6 Fine Moderate 18:18 Surface - - - - - - - - -		<u> </u>	<u> </u>												0.∠	<u> </u>		Ì	<u> </u>					
M6 Fine Moderate 18:18 Middle 2 24.4 24.3 8.1 8.1 8.1 31.8 100.6 100.4 7.0 7.0 7.0 4.0 4.0 4.0 7.1 7.1 7.1 80ttom					Surface	-		-		-	-	-	-	-	-	-	7.0		-		-	-		
Bottom	M6	Fine	Moderate	18:18	Middle	2		24.3		8.1		31.8		100.4		7.0	7.0		4.0	4.0		7.1	7.1	
Bottom - - - - - - - - -					_		1									 			1					
					Bottom	-	-	-		-	-	-		-	-		-	-	-			-		

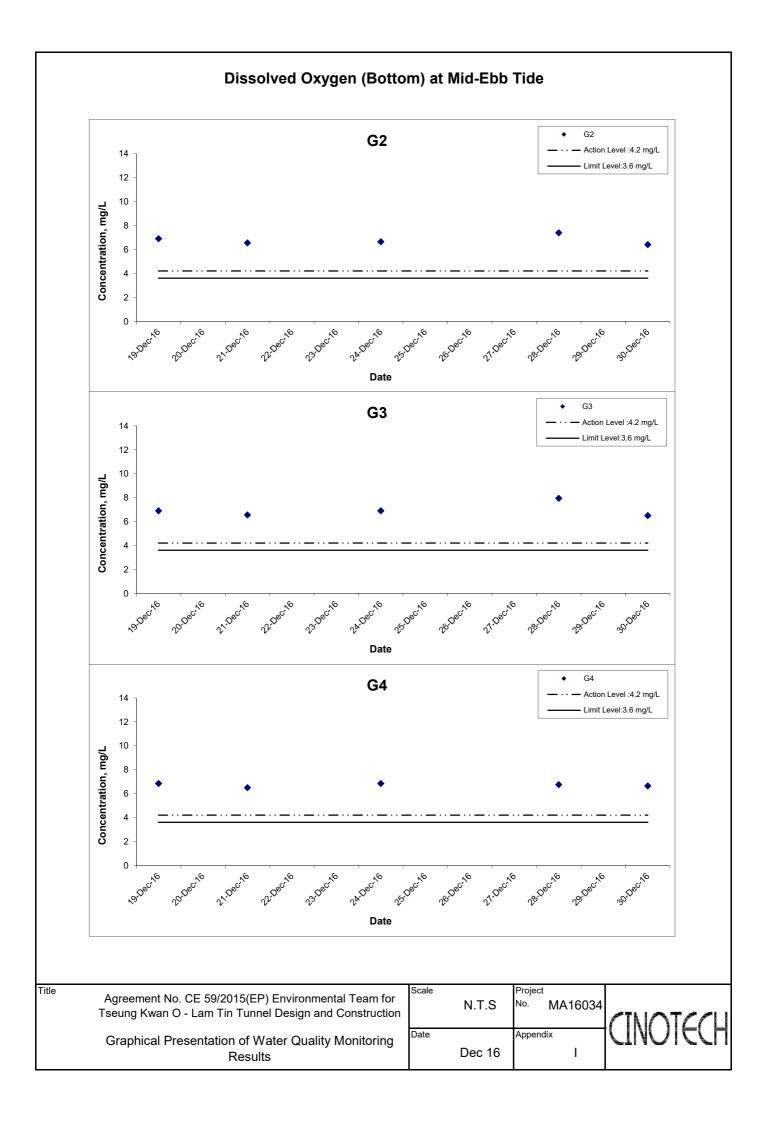


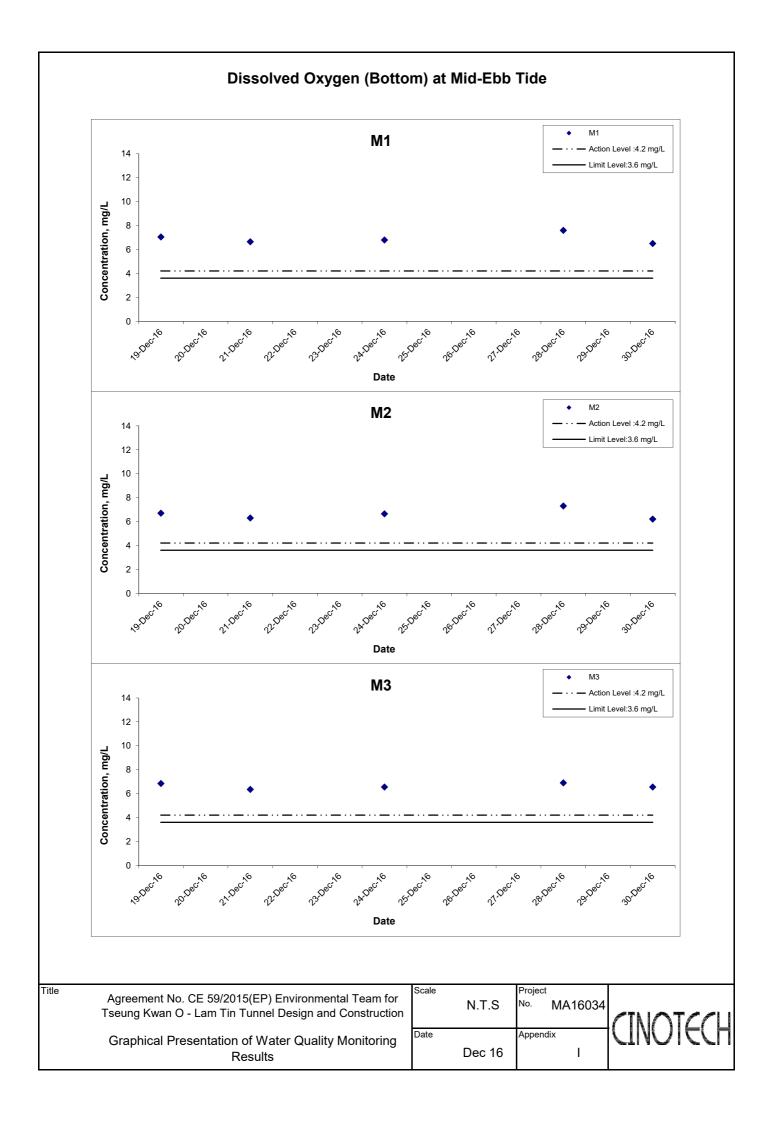

Dissolved Oxygen (Depth-averaged) at Mid-Ebb Tide **M**1 - Action Level: 4.9 mg/L 14 Limit Level: 4.6 mg/L 12 10 Concentration, mg/L 8 6 2 0 Date M2 **M2** Action Level: 4.9 mg/L 14 Limit Level: 4.6 mg/L 12 10 Concentration, mg/L 8 6 2 0 NorDect No Date МЗ **M3** Action Level: 4.9 mg/L 14 Limit Level: 4.6 mg/L 12 10 Concentration, mg/L 8 6 2 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for MA16034 No. N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Dec 16 I Results

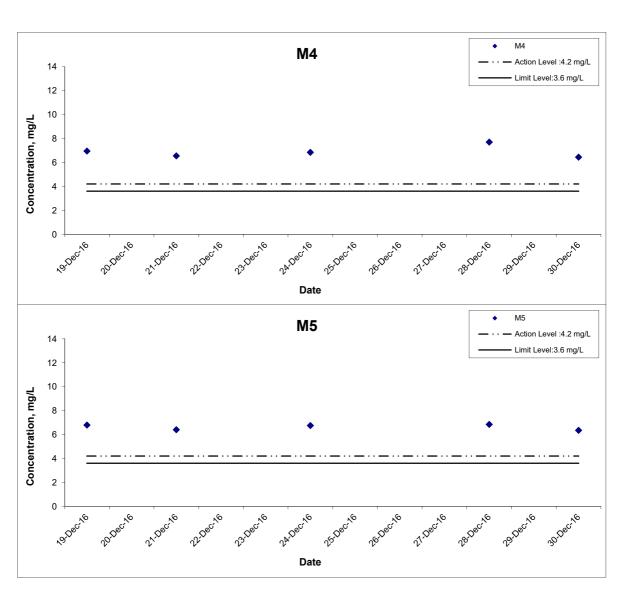

Dissolved Oxygen (Depth-averaged) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CTINOLECL






Dissolved Oxygen (Depth-averaged) at Mid-Flood Tide

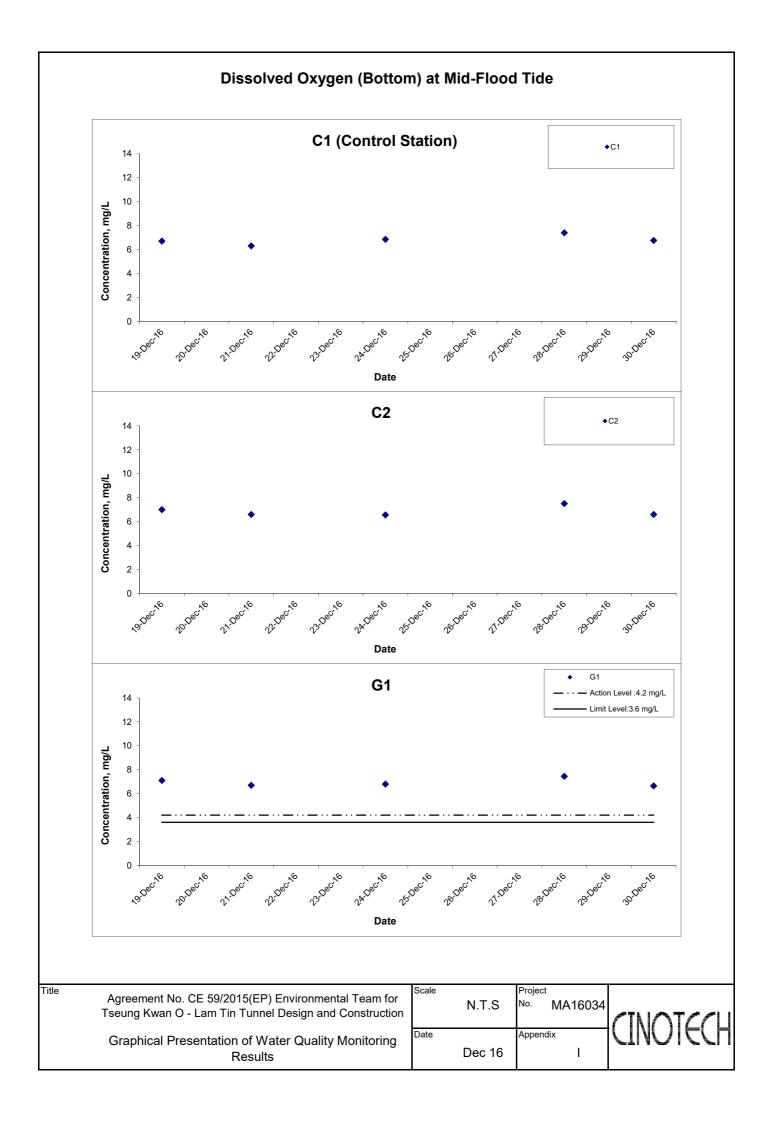

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICCU

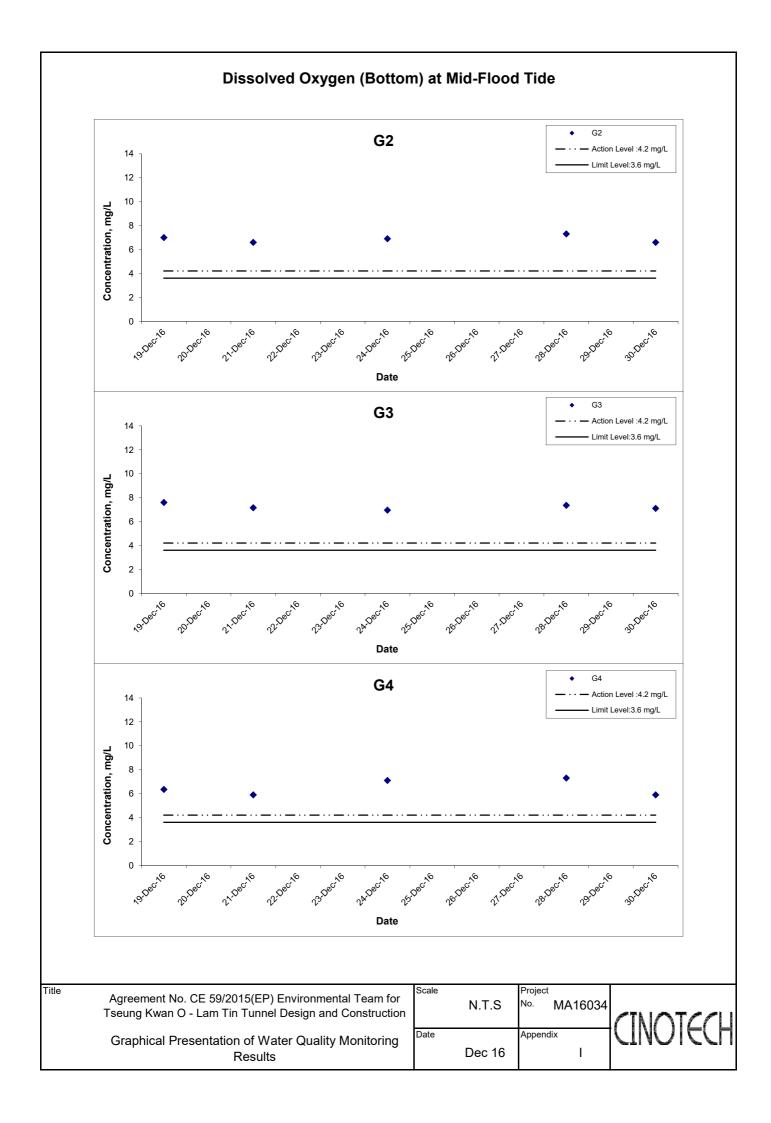
Dissolved Oxygen (Bottom) at Mid-Ebb Tide

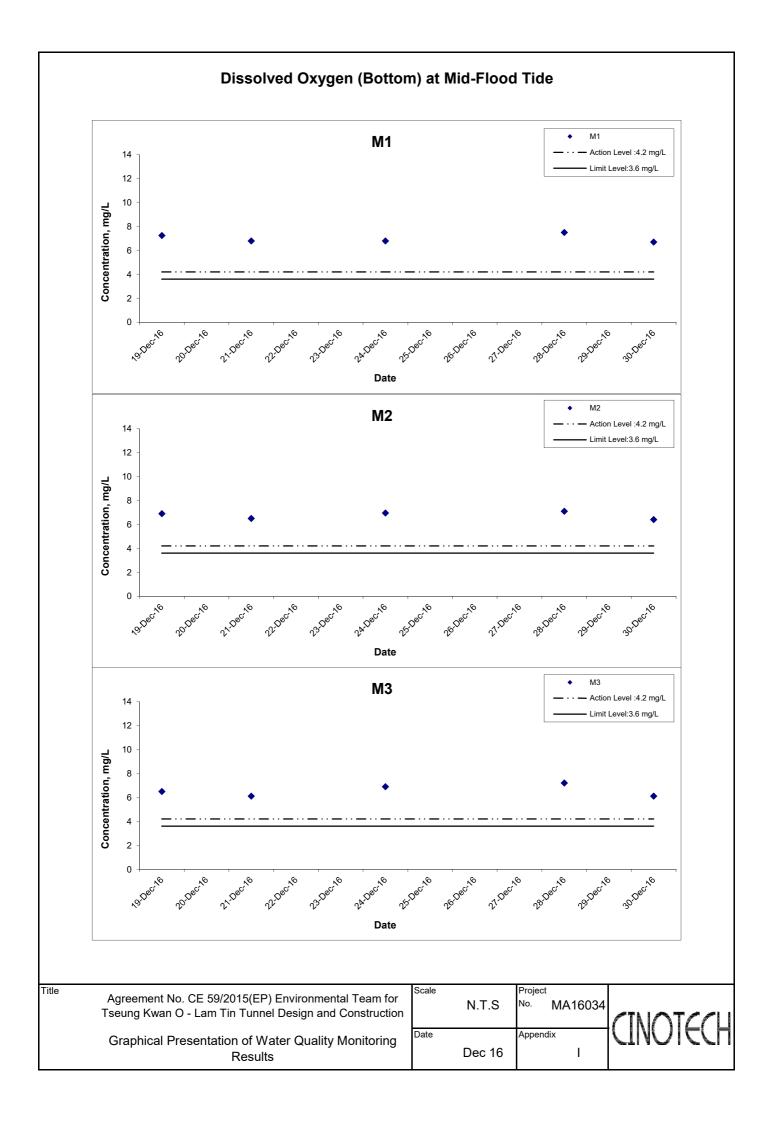
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

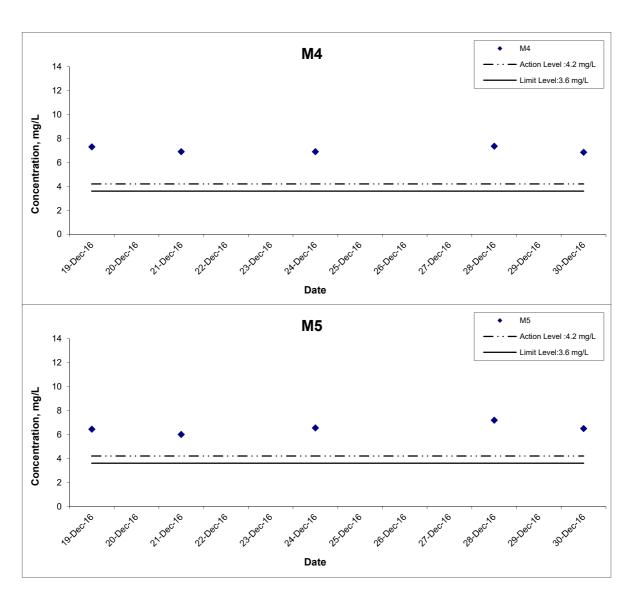
Scale

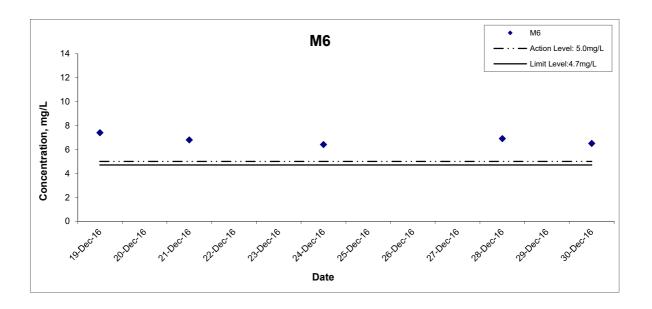

N.T.S


Project
No. MA16034


I

Oute
Date
Dec 16

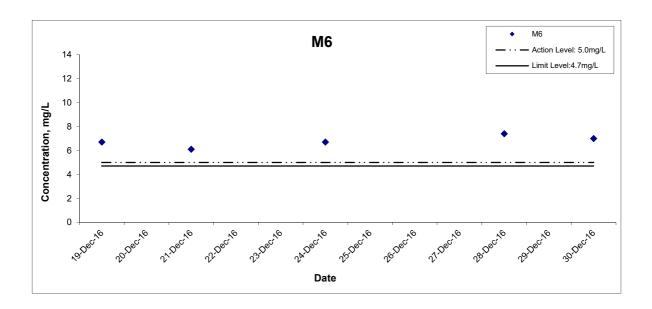

Dec 16



Dissolved Oxygen (Bottom) at Mid-Flood Tide

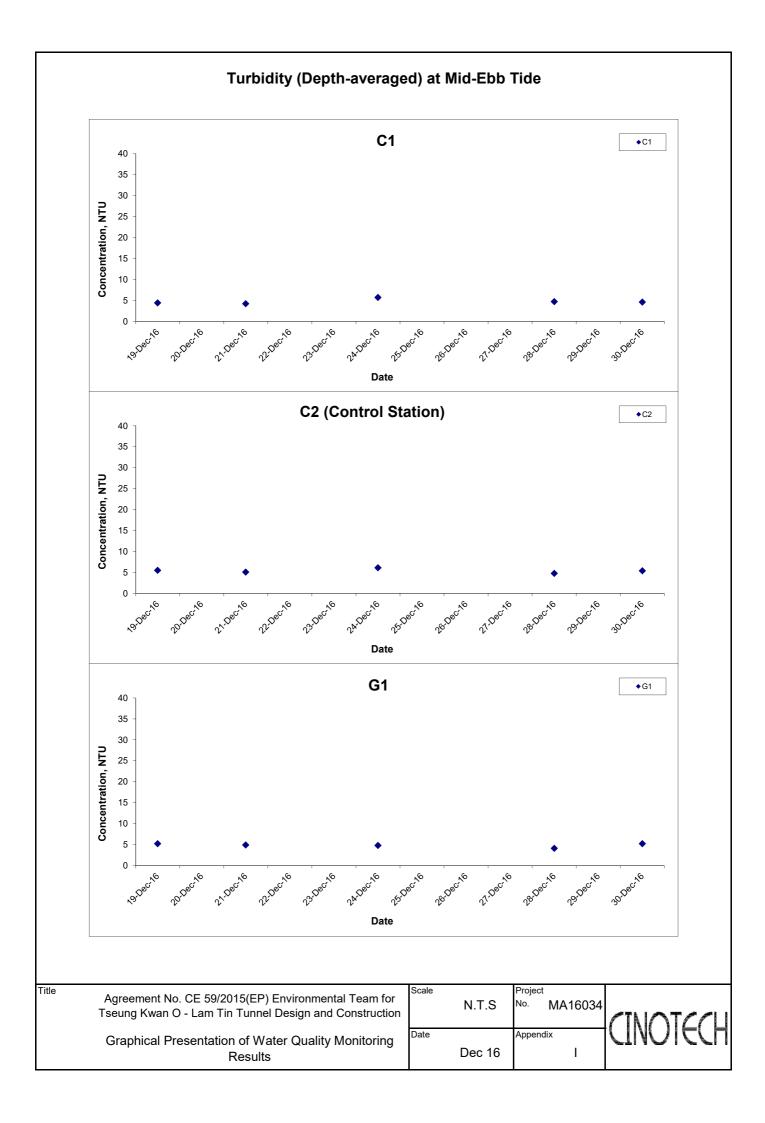
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICCU

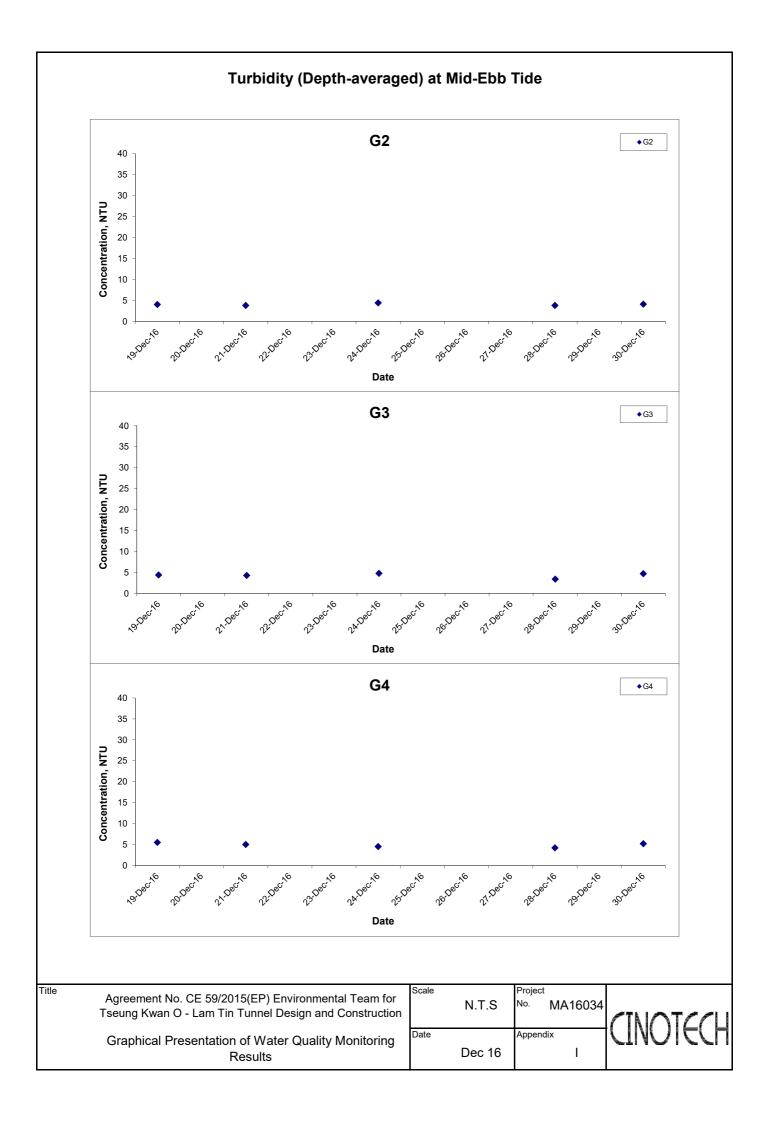
Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

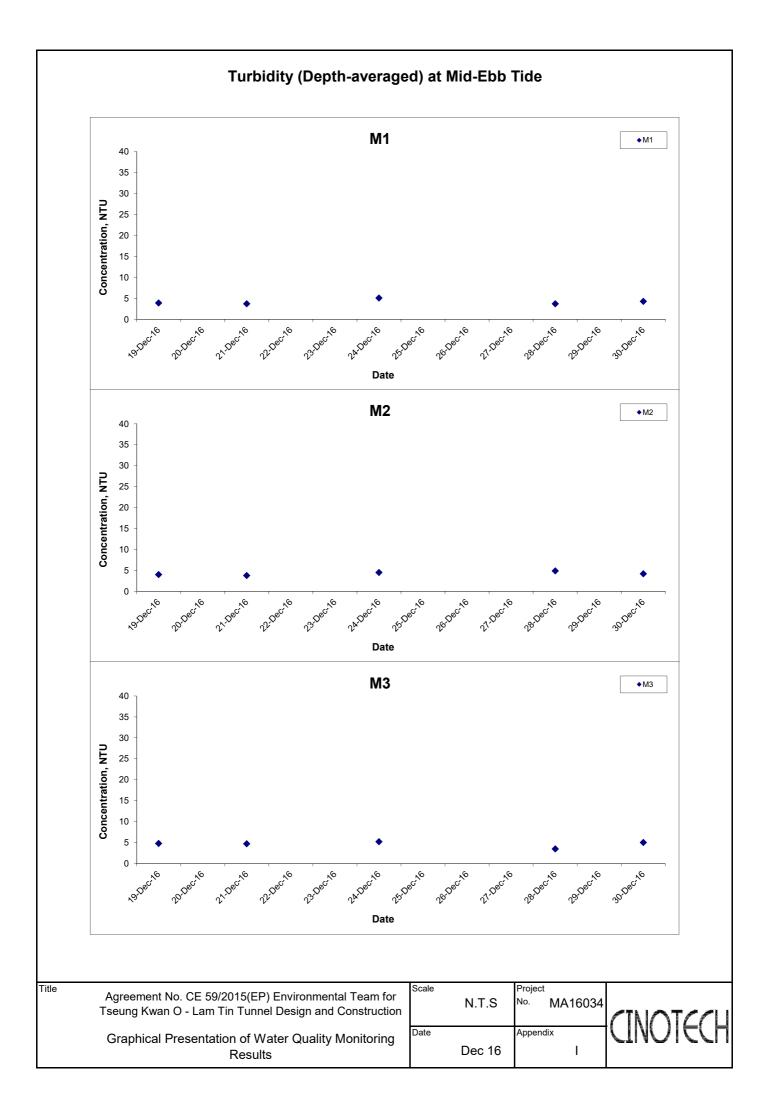


Title
Agreement No. CE 59/2015(EP) Environmental Team for
Tseung Kwan O - Lam Tin Tunnel Design and Construction

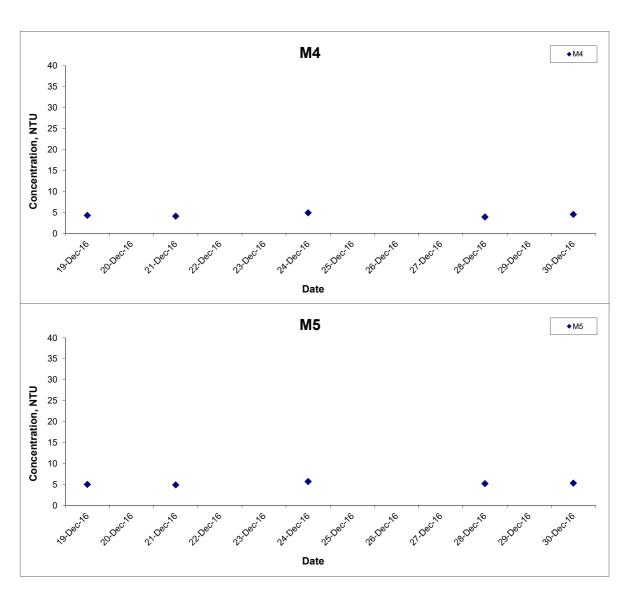
Graphical Presentation of Water Quality Monitoring Results

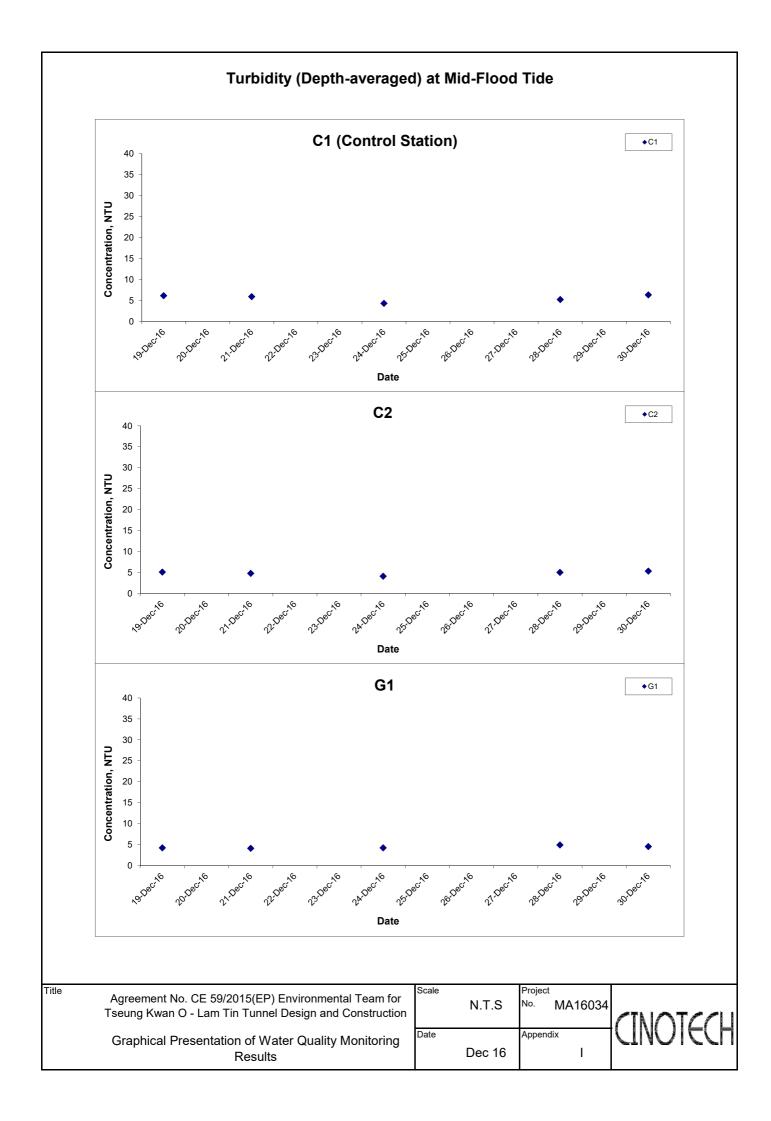

Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

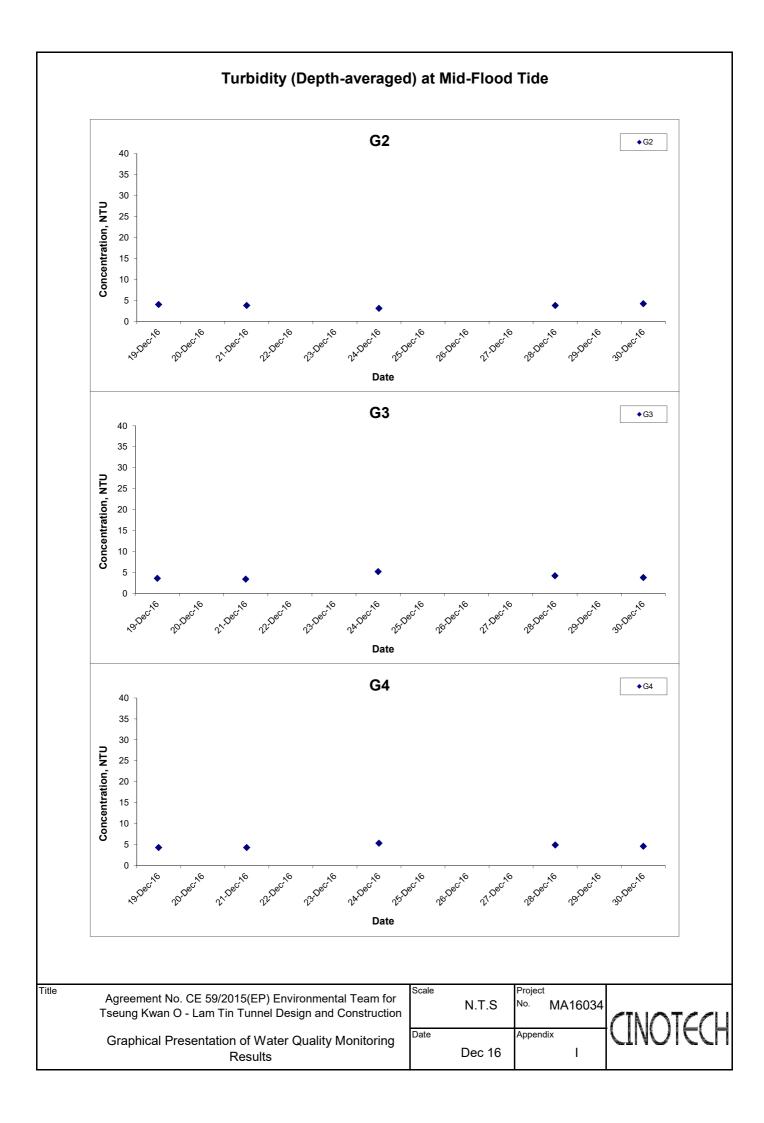


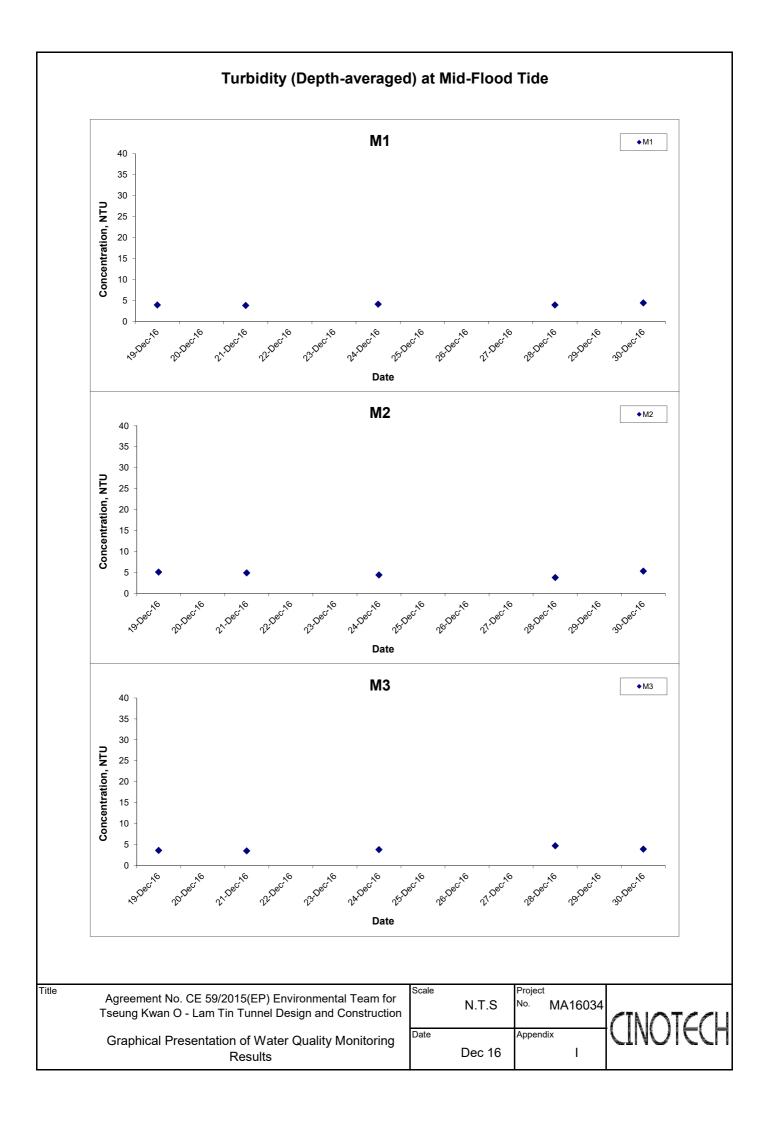

Title
Agreement No. CE 59/2015(EP) Environmental Team for
Tseung Kwan O - Lam Tin Tunnel Design and Construction

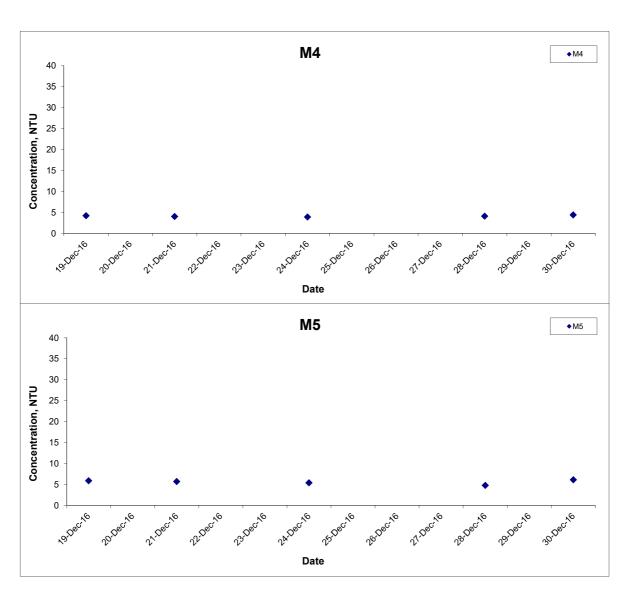
Graphical Presentation of Water Quality Monitoring Results

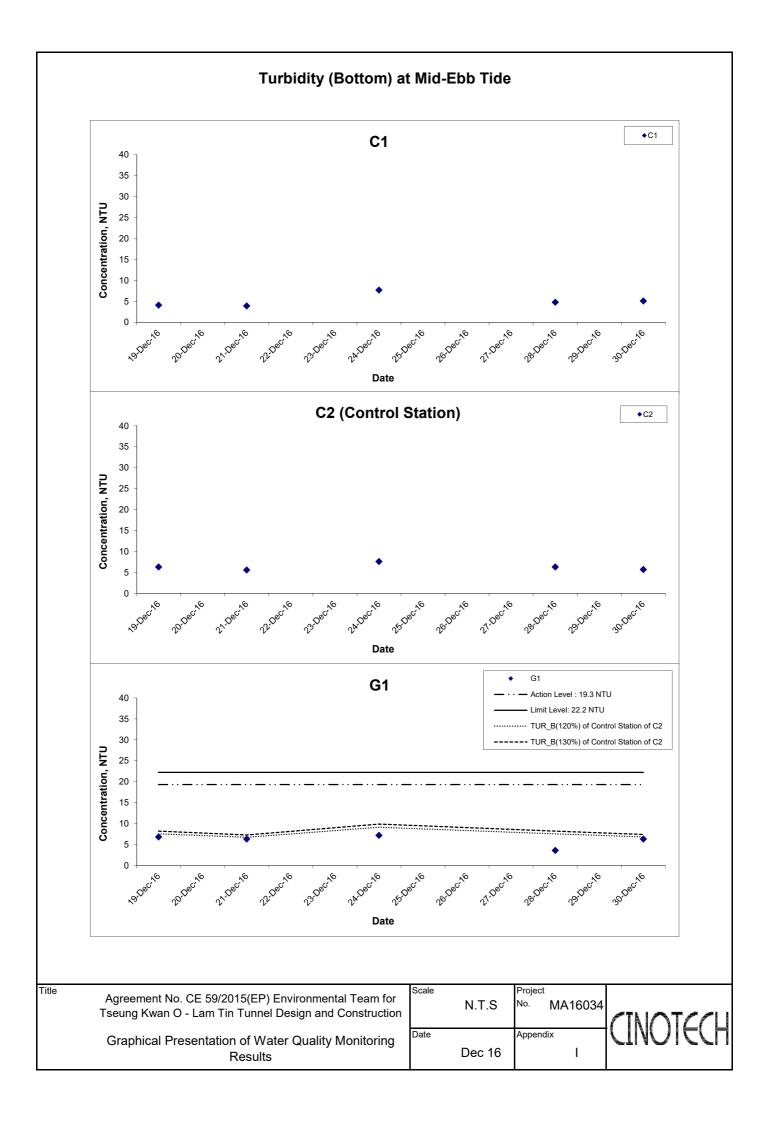




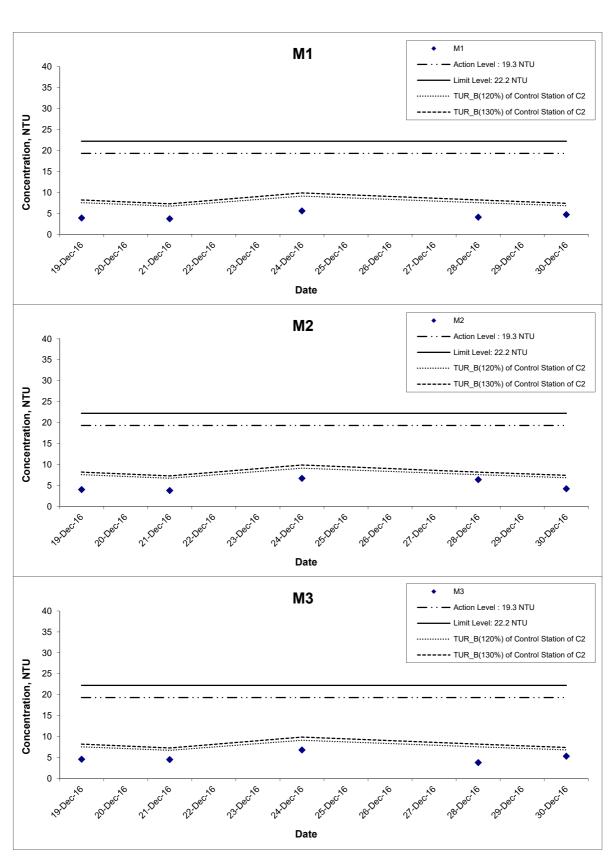



Turbidity (Depth-averaged) at Mid-Ebb Tide

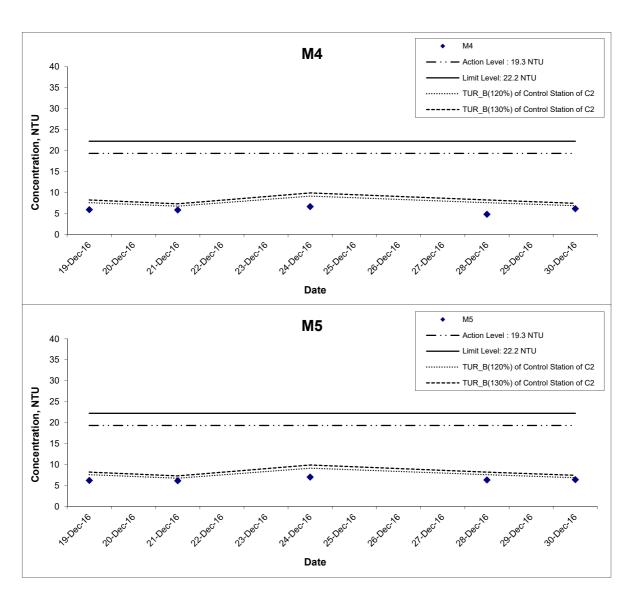

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	N.T.S	No. MA16034	CTA I
Graphical Presentation of Water Quality Monitoring	Date	Appendix	
Results	Dec 16	I	



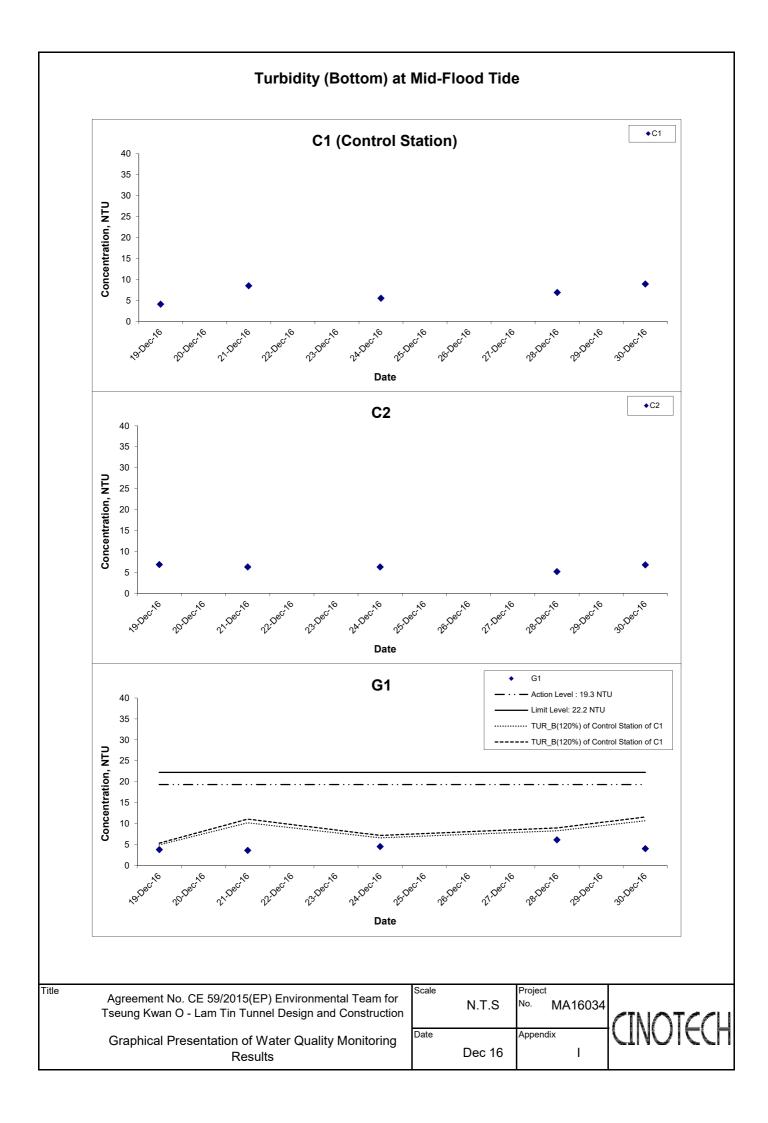
Turbidity (Depth-averaged) at Mid-Flood Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		No. MA16034	
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	


Turbidity (Bottom) at Mid-Ebb Tide G2 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ······ TUR_B(120%) of Control Station of C2 30 - TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date G3 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C2 30 TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date G4 40 Limit Level: 22.2 NTU 35 ···· TUR_B(120%) of Control Station of C2 30 ----- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix Date **Graphical Presentation of Water Quality Monitoring** Dec 16 I Results

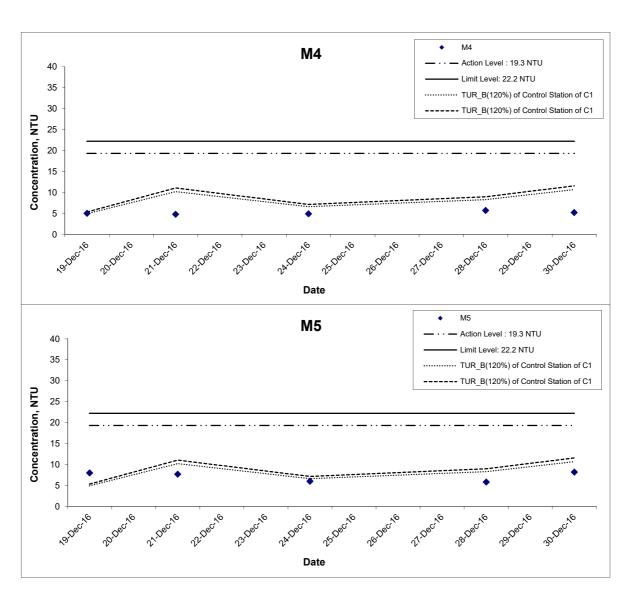
Turbidity (Bottom) at Mid-Ebb Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTCCL
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CTINOISCU

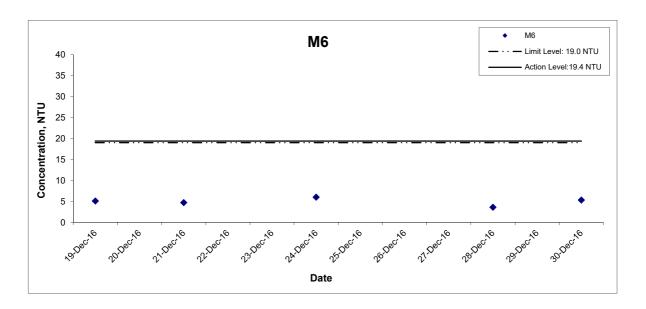
Turbidity (Bottom) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICCU



Turbidity (Bottom) at Mid-Flood Tide G2 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ······ TUR_B(120%) of Control Station of C1 30 - TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 10 5 Date G3 Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ···· TUR_B(120%) of Control Station of C1 30 - TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 5 0 Norther No Date G4 Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 30 --- TUR_B(120%) of Control Station of C1 Concentration, NTU 20 15 10 5 25:Dect 16 Date Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix Date **Graphical Presentation of Water Quality Monitoring** Dec 16 I Results

Turbidity (Bottom) at Mid-Flood Tide M1 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C1 30 ----- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 5 0 Vortbect vo Date **M2** Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 ----- TUR_B(120%) of Control Station of C1 30 Concentration, NTU 25 20 15 10 5 0 NorDect No Date **M3** Action Level : 19.3 NTU 40 35 TUR B(120%) of Control Station of C1 30 ----- TUR_B(120%) of Control Station of C1 Concentration, NTU 20 15 10 5 25 Dec. 16 Norther No Date

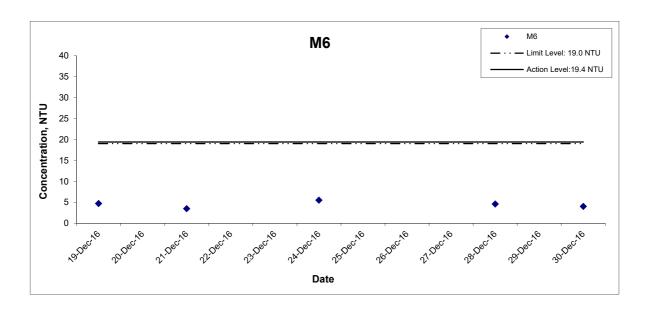

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CTINOLECL

Turbidity (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICCI

Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

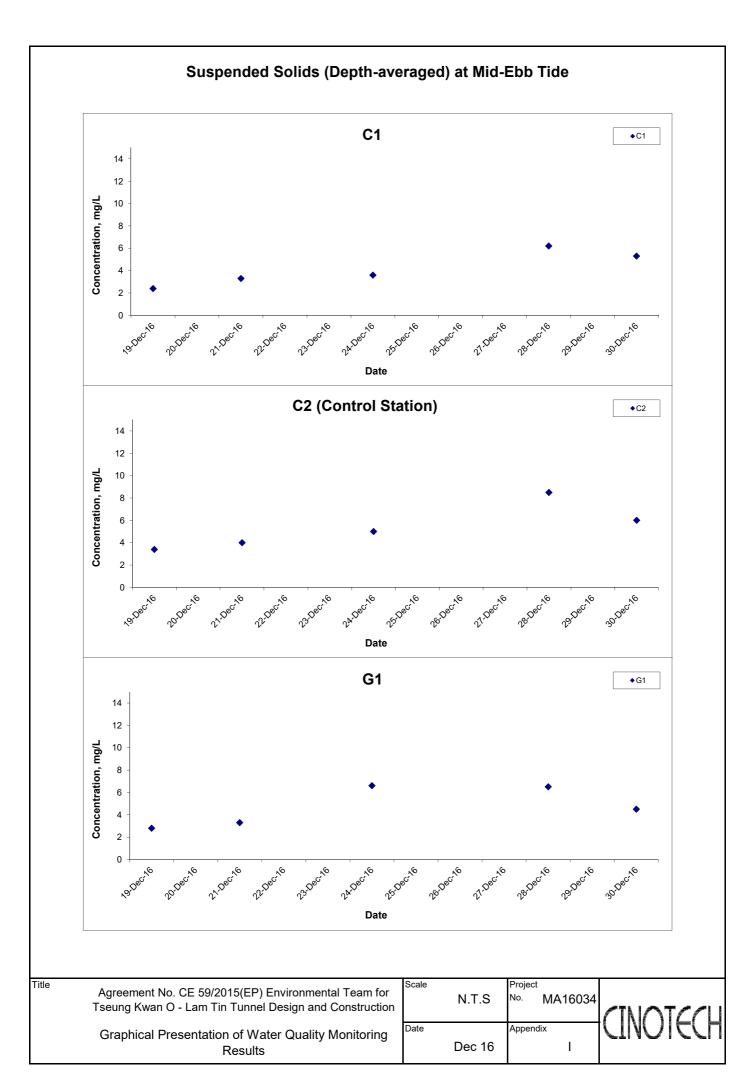
Title Agreement No. CE 59/2015(EP) I

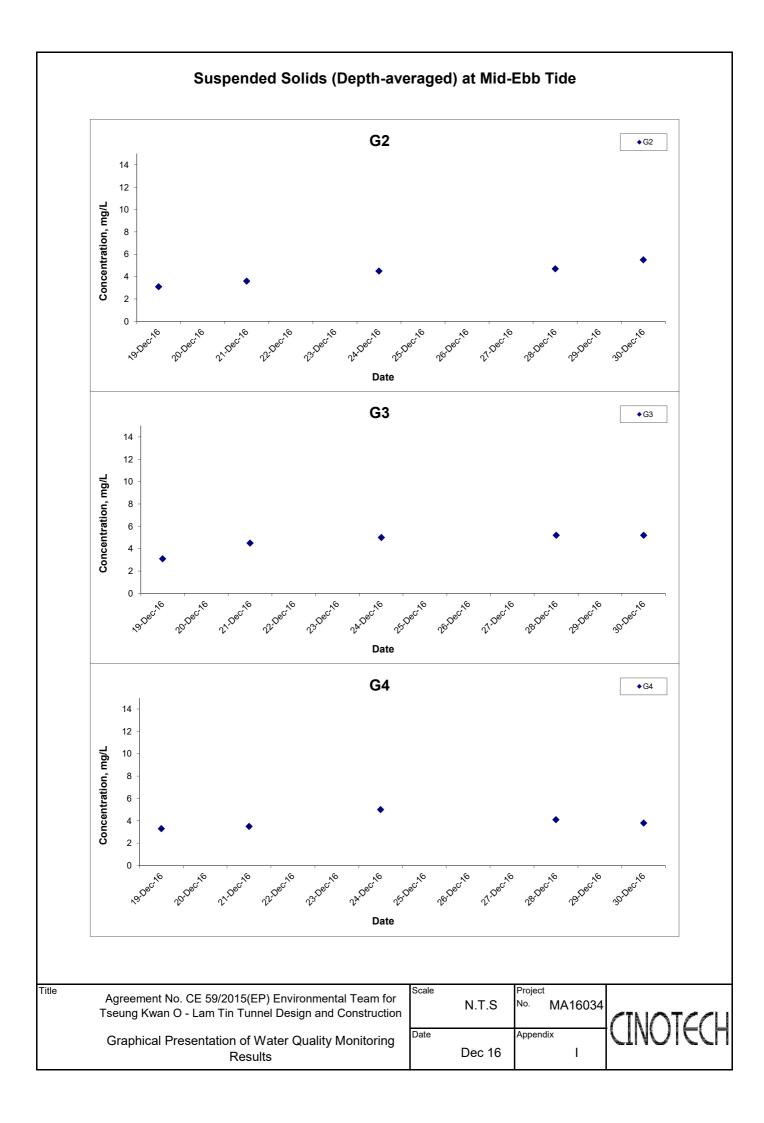

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

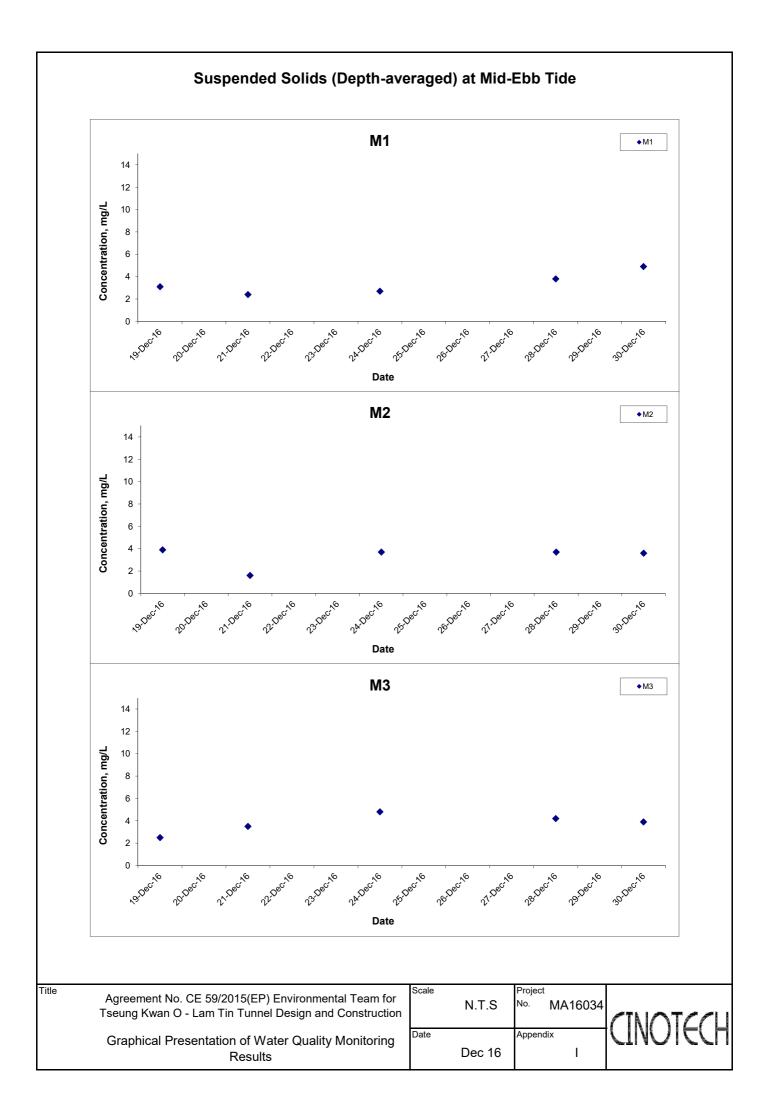
Graphical Presentation of Water Quality Monitoring Results

Scale		Projec	
	N.T.S	No.	MA16034
Date		Apper	ndix
	Dec 16		1

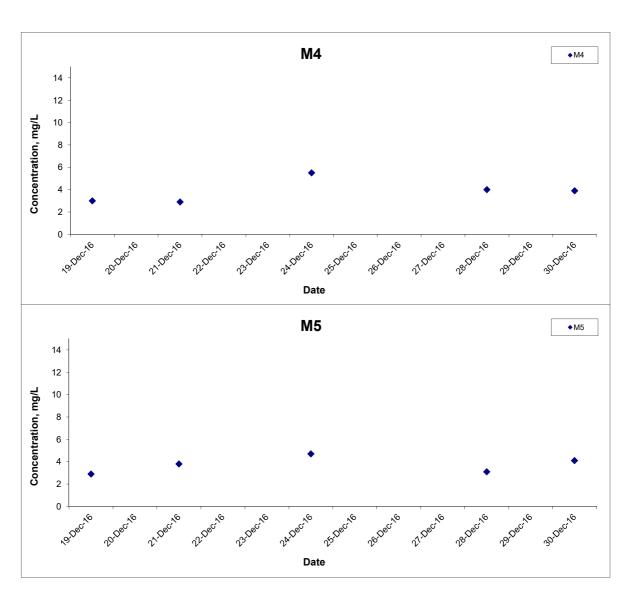
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

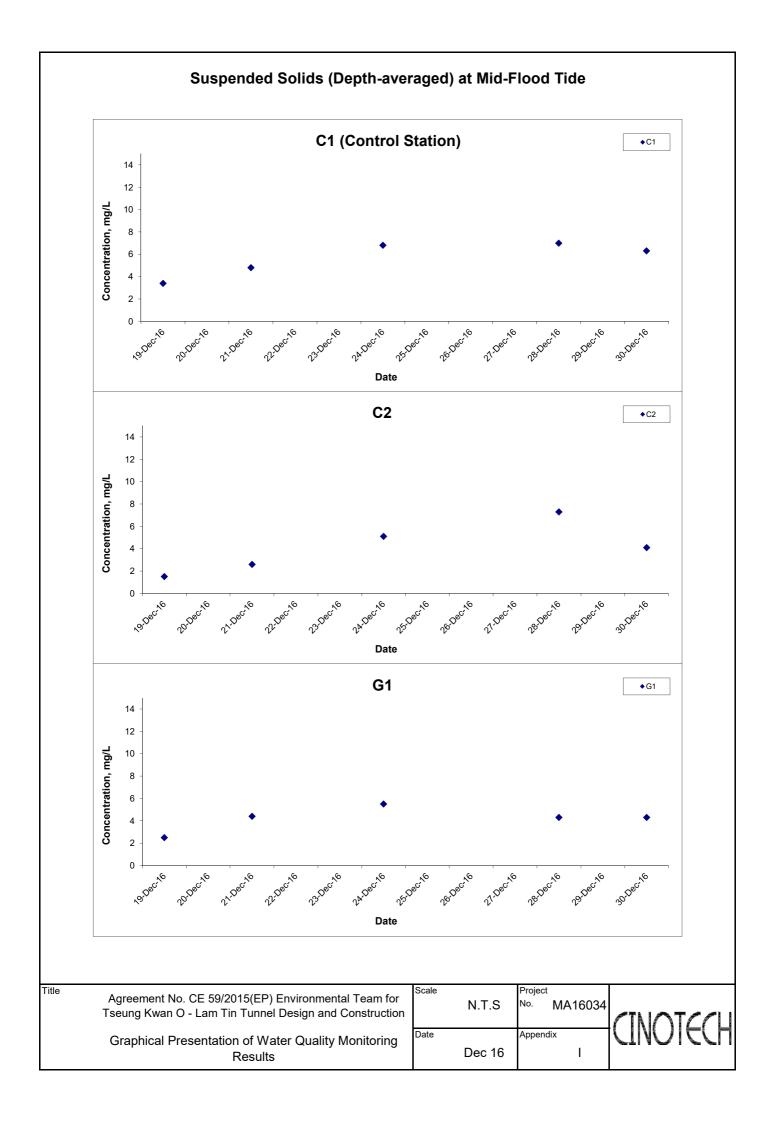

Title

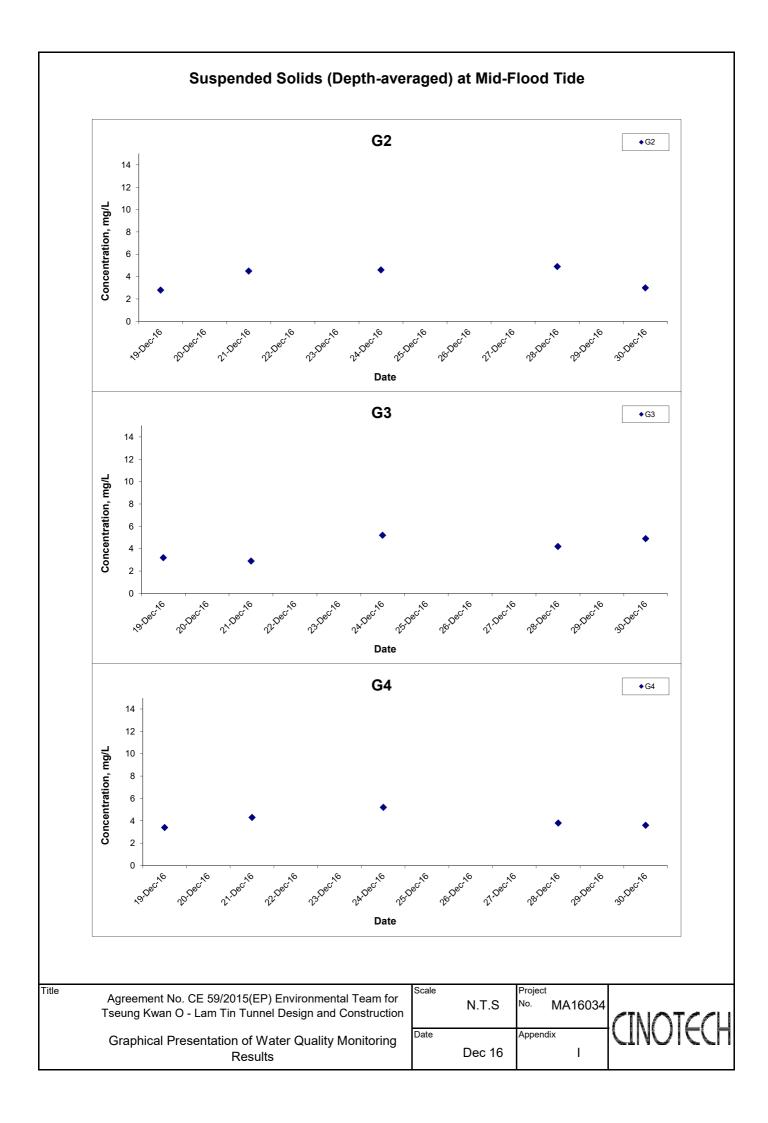

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

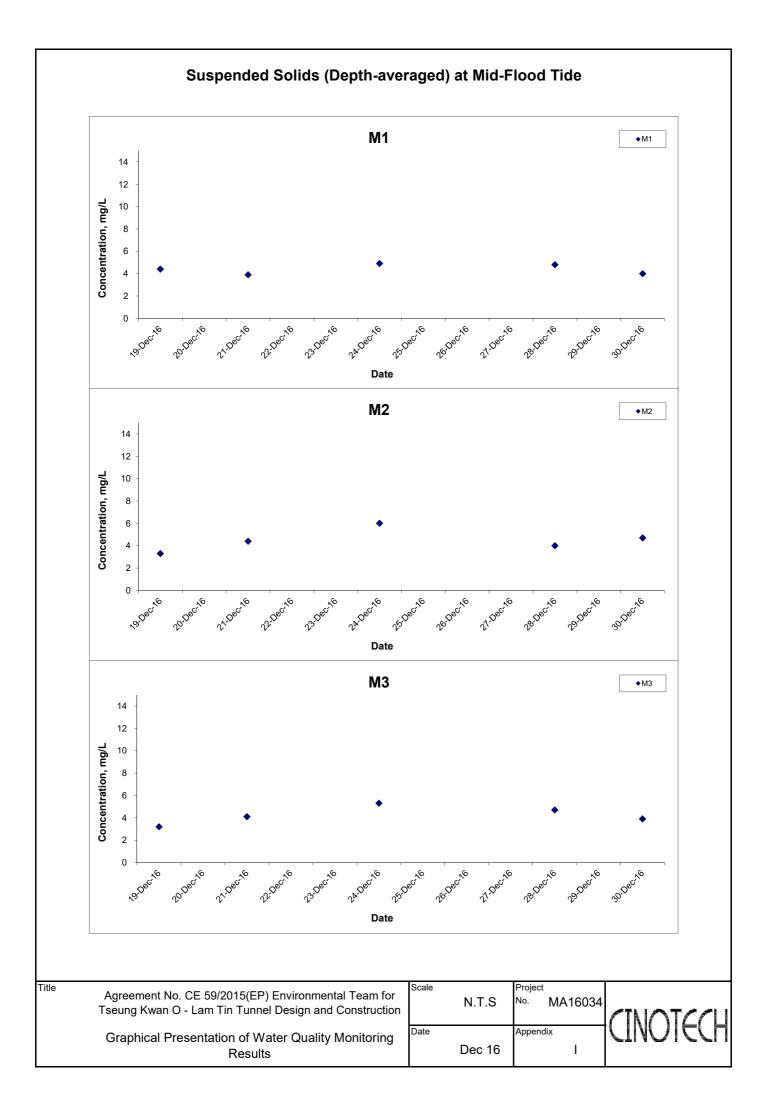

Graphical Presentation of Water Quality Monitoring Results

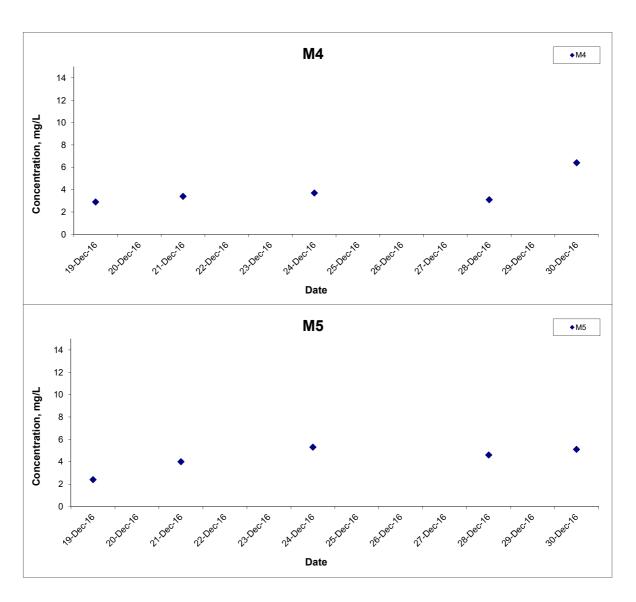
Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Appei	ndix
	Dec 16		1

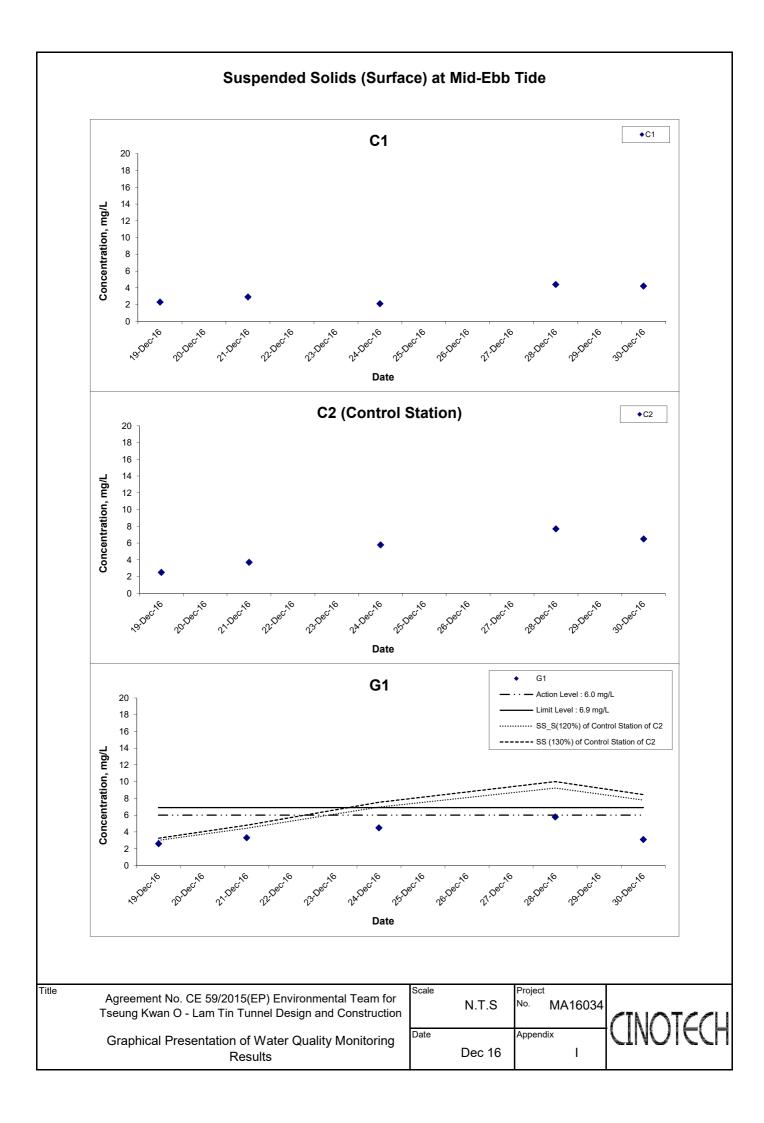


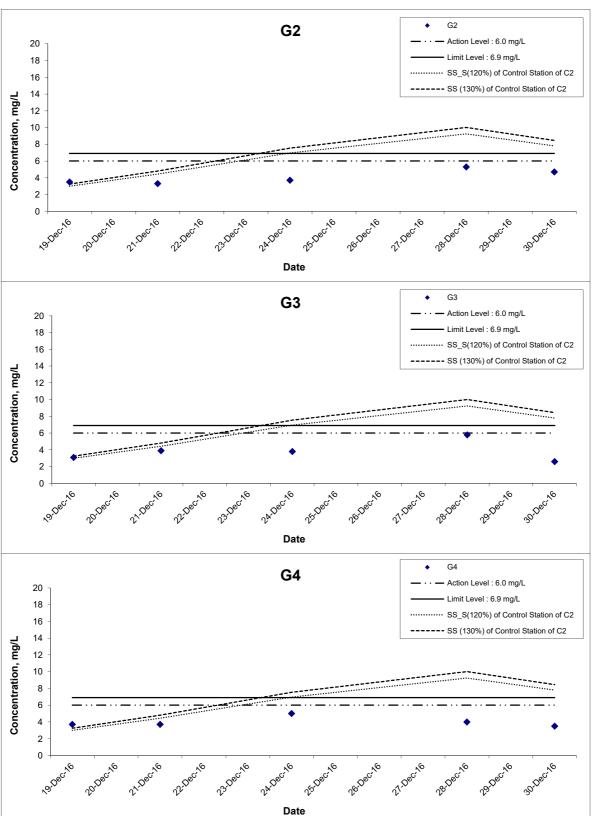


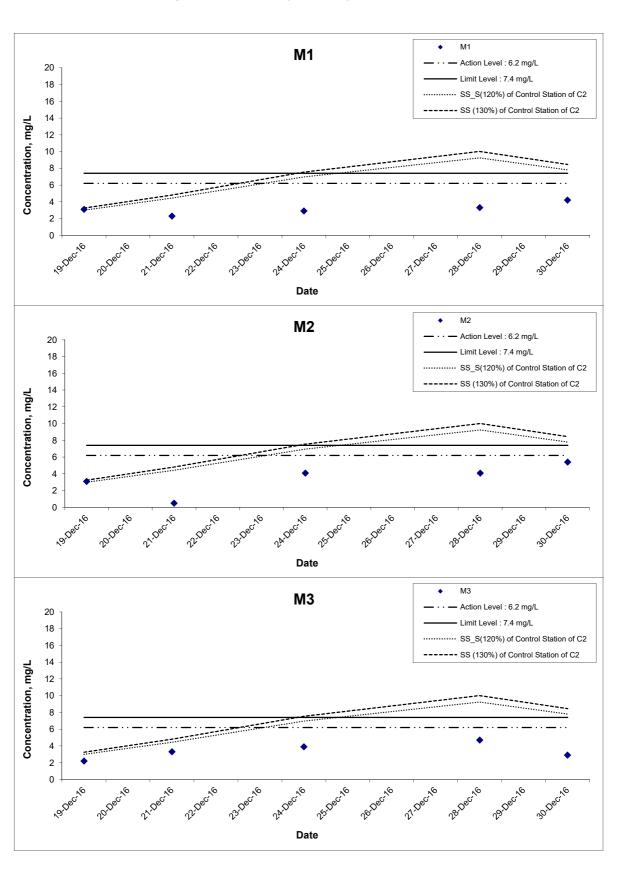



Suspended Solids (Depth-averaged) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTCCL
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CTINOISCU




Suspended Solids (Depth-averaged) at Mid-Flood Tide


Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICCU

Suspended Solids (Surface) at Mid-Ebb Tide

Suspended Solids (Surface) at Mid-Ebb Tide

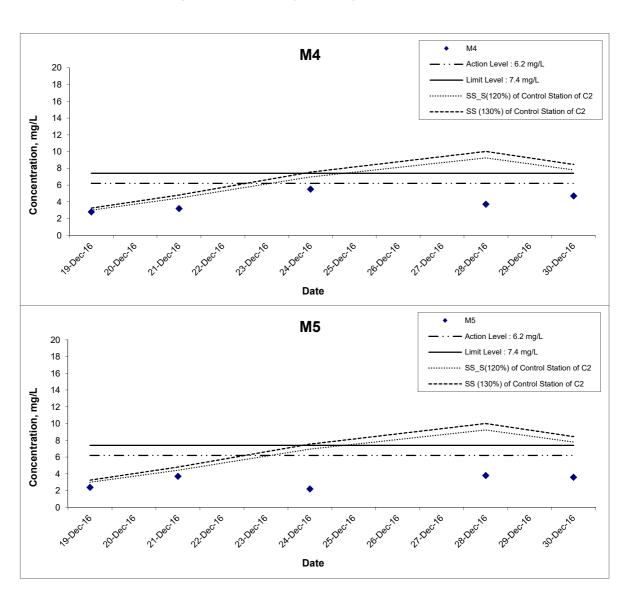
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S

Project
No. MA16034

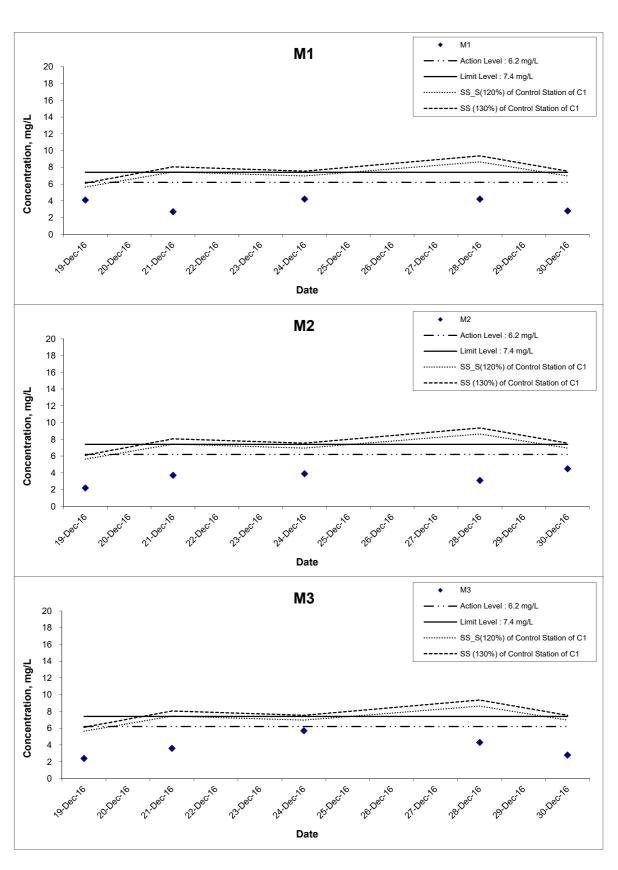

Date

Dec 16

Dec 16

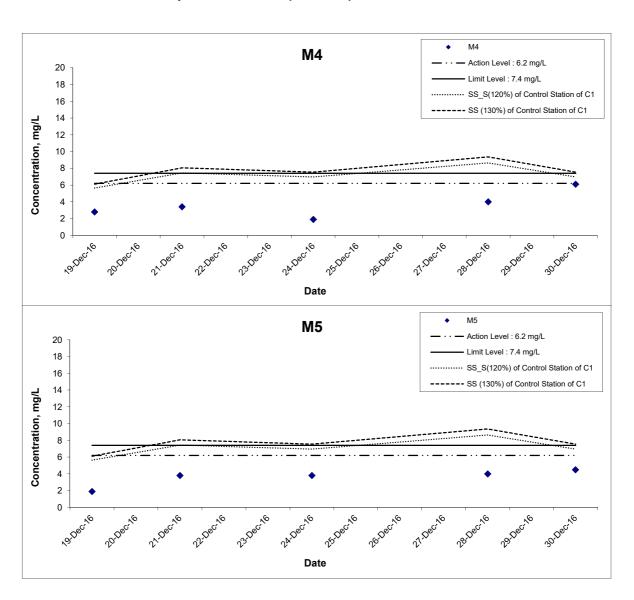
I

Suspended Solids (Surface) at Mid-Ebb Tide

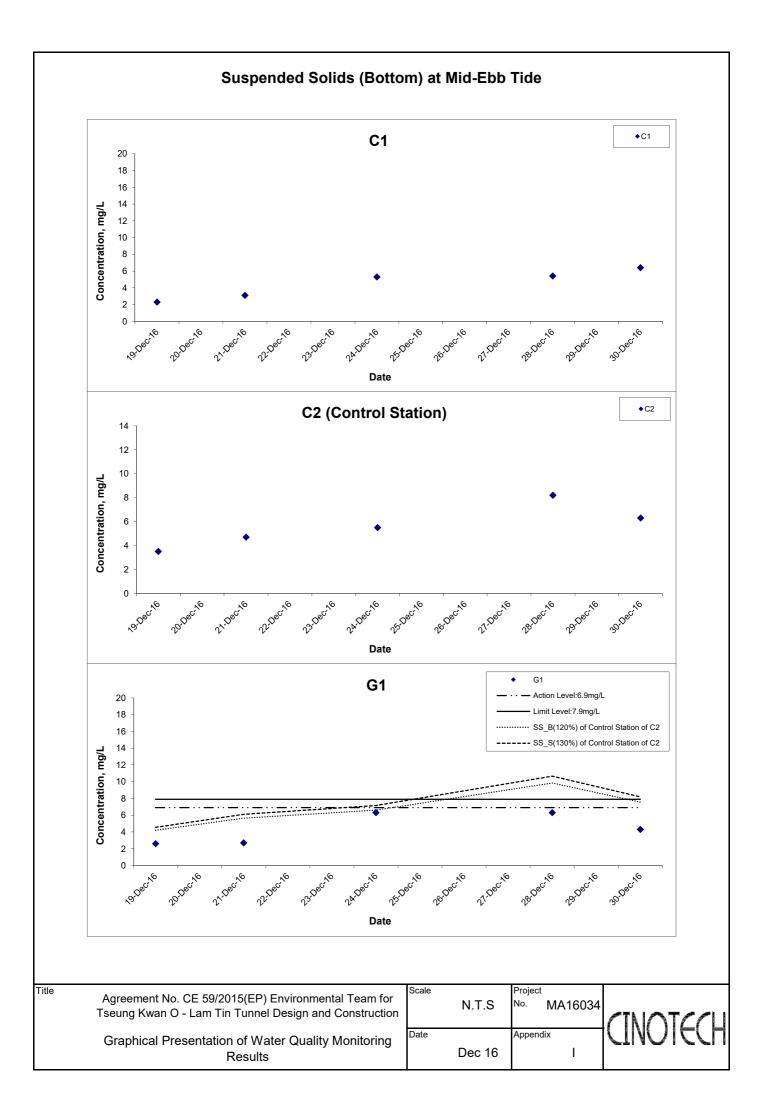

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTCCL
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CTINOISCU

Suspended Solids (Surface) at Mid-Flood Tide C1 (Control Station) **◆**C1 14 12 Concentration, mg/L 10 8 6 4 2 0 Date ◆C2 C2 14 12 Concentration, mg/L 10 8 6 4 2 Norther No Date G1 G1 · Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 SS_S(120%) of Control Station of C1 16 -- SS (130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 4 2 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. MA16034 N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Dec 16 I Results

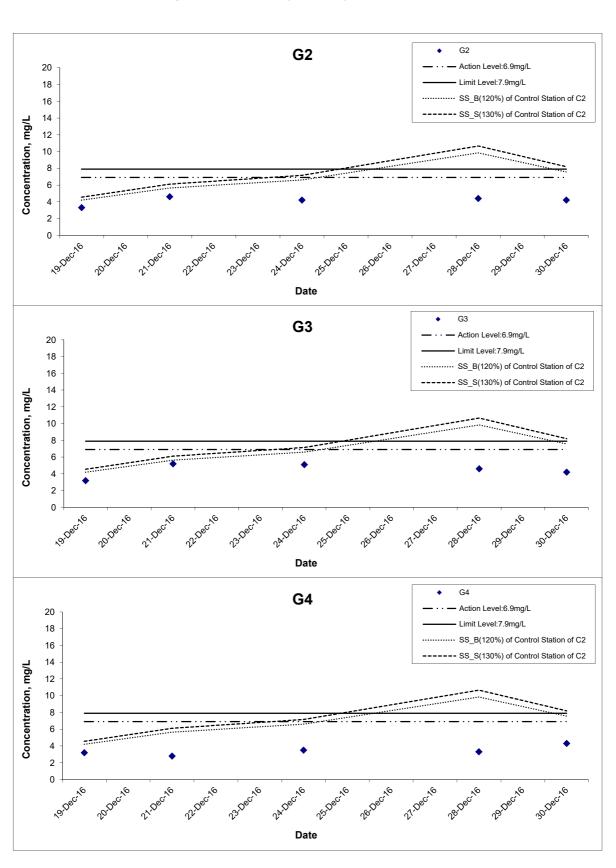
Suspended Solids (Surface) at Mid-Flood Tide G2 · · - Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 SS_S(120%) of Control Station of C1 16 ---- SS (130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 4 2 Date G3 G3 Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 ····· SS_S(120%) of Control Station of C1 16 --- SS (130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 4 2 /ordect/o Date G4 - Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 SS_S(120%) of Control Station of C1 16 --- SS (130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 4 2 Vortect vo Date


Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICCU

Suspended Solids (Surface) at Mid-Flood Tide



Title	Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTCCLI
	Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICU


Suspended Solids (Surface) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICCU

Suspended Solids (Bottom) at Mid-Ebb Tide

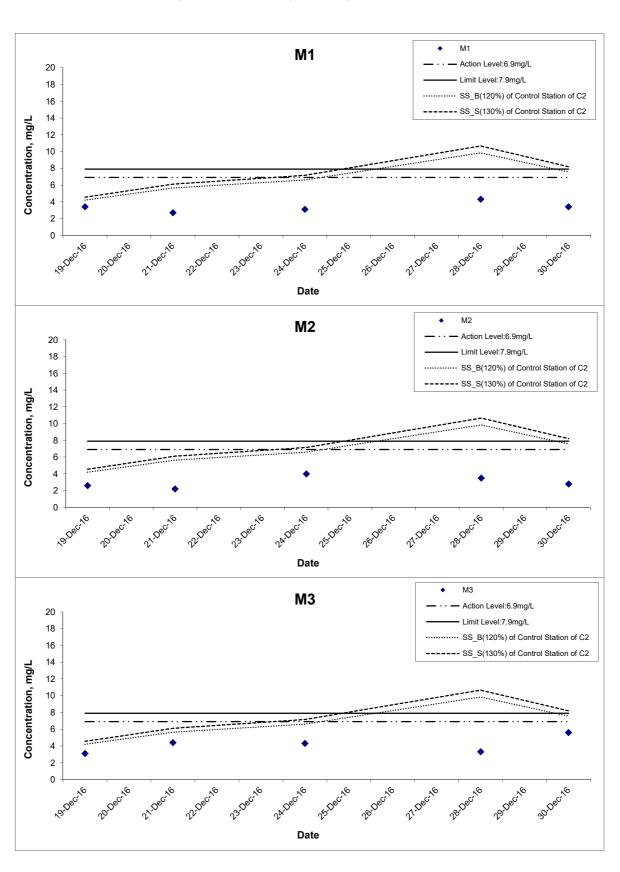
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S

No. MA16034


Date

Dec 16

Dec 16

I

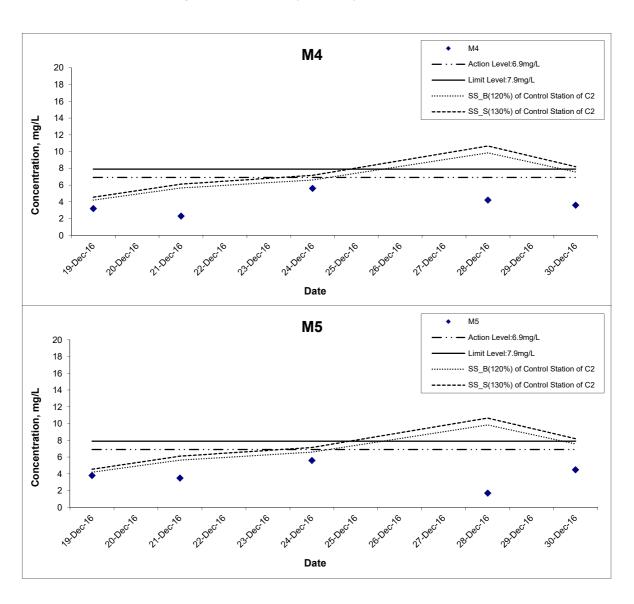
Suspended Solids (Bottom) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

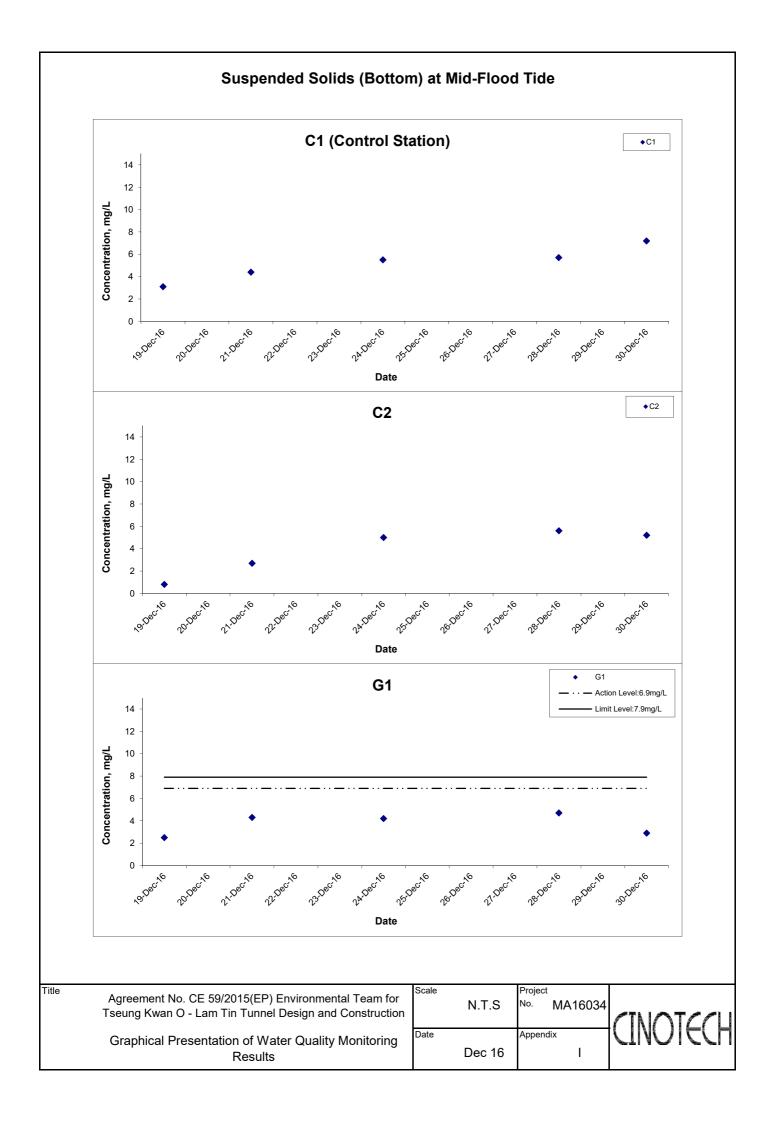
Graphical Presentation of Water Quality Monitoring Results

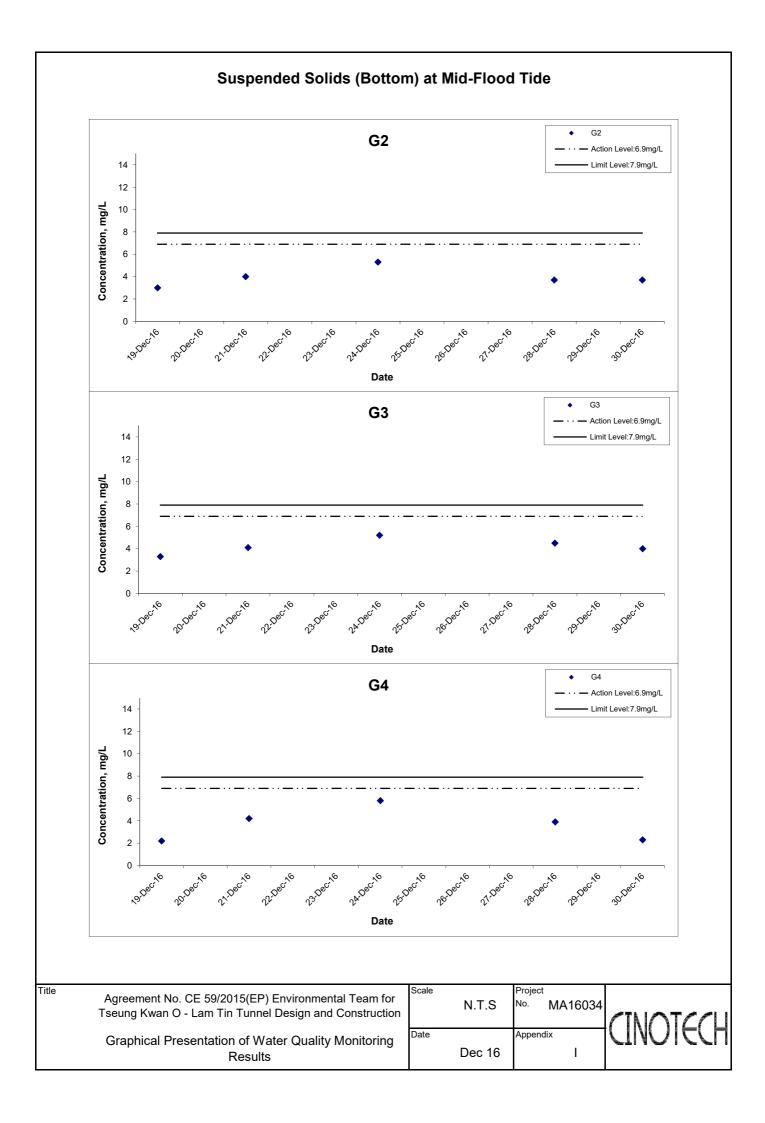
Scale

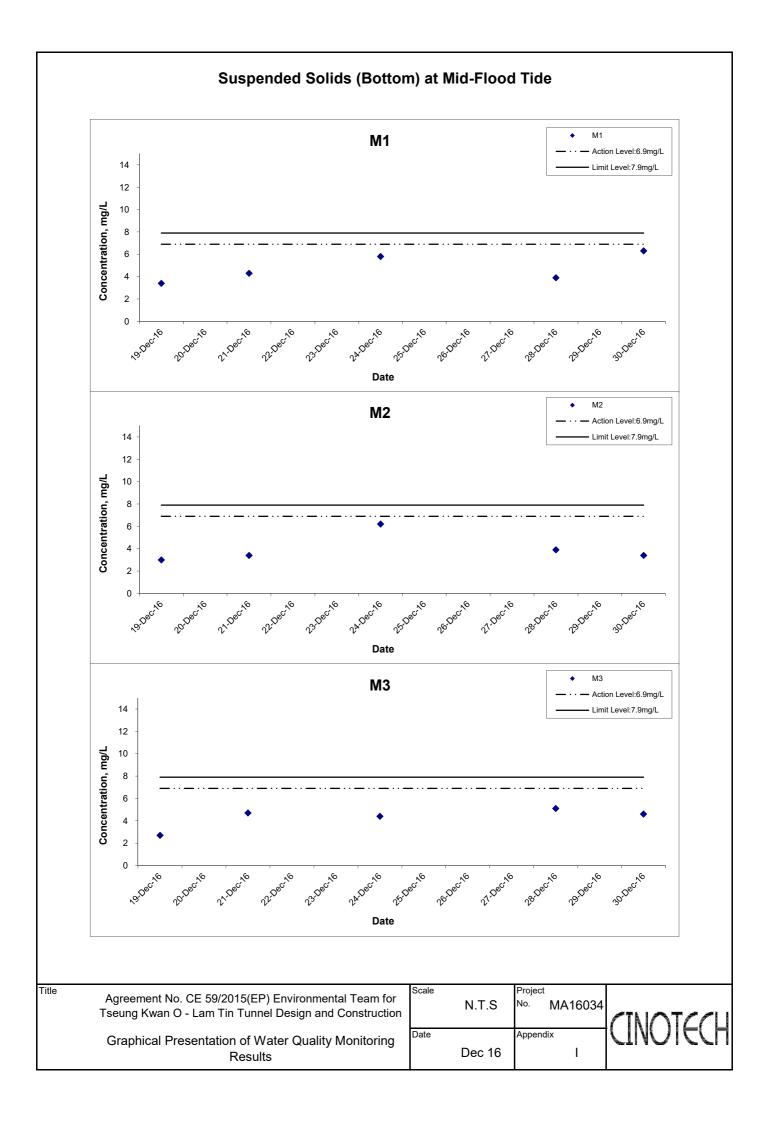
N.T.S

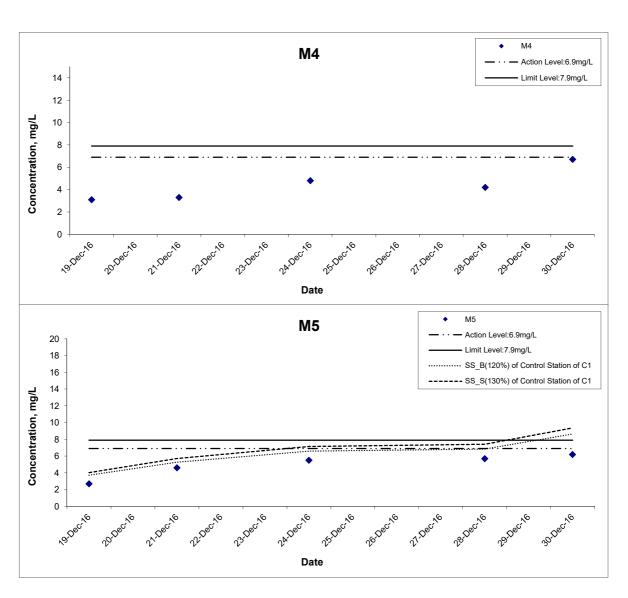

No. MA16034

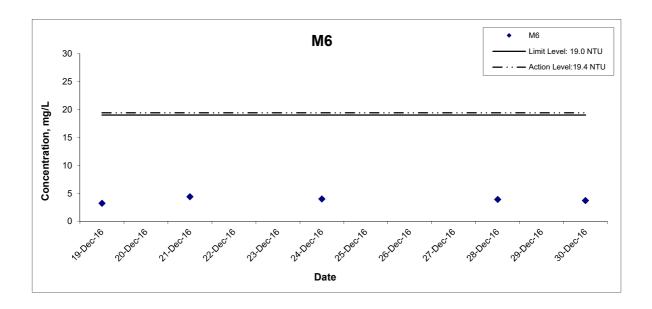
Date


Dec 16


I


Suspended Solids (Bottom) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTCCL
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CTINOISCU

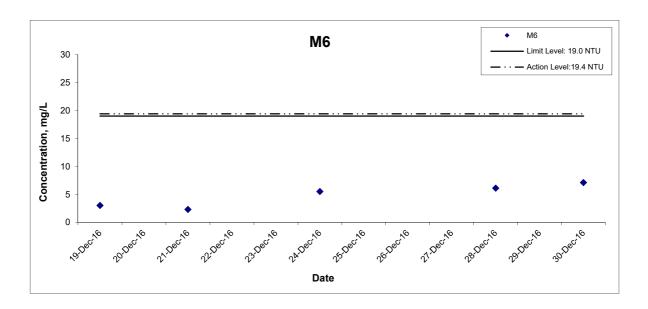


Suspended Solids (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Dec 16	Appendix	CINOICCU

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

Title


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale	N.T.S	Project No. MA16034
Date		Appendix
	Dec 16	I

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Dec 16	I

APPENDIX J QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Date Tested:

Report No.:

Date of Issue:

Date Received:

QC26146 2016-12-12

2016-12-01 2016-12-01

Date Completed:

2016-12-12

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Total Nitrogen	N/A	N/A
Ammonia (mg NH ₃ -N/L)	< 0.01	<0.01
Total Phosphorus (mg-P/L)	< 0.01	<0.01

Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	99	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	178	170-220
Total Organic Carbon (%)	102	80-120
Total Nitrogen	N/A	N/A
Ammonia (%)	100	80-120
Total Phosphorus (%)	98	80-120

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 26146.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 QC26146

 Date of Issue:
 2016-12-12

 Date Received:
 2016-12-01

 Date Tested:
 2016-12-01

 Date Completed:
 2016-12-12

Page:

2 of 2

QC report:

Sample Duplicate

Parameter	26146-3 chk	Acceptance
Suspended Solids (SS) (%)	2	RPD≤20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	1	RPD≤20%
Total Nitrogen	N/A	N/A
Ammonia (%)	2	RPD≤20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	26146-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	110	80-120
Total Nitrogen	N/A	N/A
Ammonia (%)	96	80-120
Total Phosphorus (%)	100	80-120

Remarks: 1) \leq = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 26146.

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Report No.: Date of Issue: QC26227

Date Received:

2016-12-30 2016-12-14

Date Tested: Date Completed: 2016-12-14

2016-12-30

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Total Nitrogen	N/A	N/A
Ammonia (mg NH ₃ -N/L)	<0.01	<0.01
Total Phosphorus (mg-P/L)	< 0.01	< 0.01

Method OC

2,22,22,2		·
Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	99	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	198	170-220
Total Organic Carbon (%)	99	80-120
Total Nitrogen	N/A	N/A
Ammonia (%)	103	80-120
Total Phosphorus (%)	100	80-120

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 26227.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 QC26227

 Date of Issue:
 2016-12-30

 Date Received:
 2016-12-14

 Date Tested:
 2016-12-14

 Date Completed:
 2016-12-30

Page:

2 of 2

QC report:

Sample Duplicate

24		
Parameter	26227-3 chk	Acceptance
Suspended Solids (SS) (%)	3	RPD≤20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	1	RPD≤20%
Total Nitrogen	N/A	N/A
Ammonia (%)	N/A	RPD≤20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	26227-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	106	80-120
Total Nitrogen	N/A	N/A
Ammonia (%)	98	80-120
Total Phosphorus (%)	94	80-120

Remarks: 1) \leq less than

²⁾ N/A = Not applicable

³⁾ This report is the summary of quality control data for report number 26227.

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Report No.: QC26314 Date of Issue: 2017-01-10 Date Received: 2016-12-31 Date Tested: 2016-12-31 Date Completed: 2017-01-10

1 of 2

Page:

ATTN: QC report: Ms. Mei Ling Tang

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Total Nitrogen	N/A	N/A
Ammonia (mg NH ₃ -N/L)	<0.01	<0.01
Total Phosphorus (mg-P/L)	<0.01	< 0.01

Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	98	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	193	170-220
Total Organic Carbon (%)	101	80-120
Total Nitrogen	N/A	N/A
Ammonia (%)	99	80-120
Total Phosphorus (%)	96	80-120

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 26314.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 QC26314

 Date of Issue:
 2017-01-10

 Date Received:
 2016-12-31

 Date Tested:
 2016-12-31

 Date Completed:
 2017-01-10

Page:

2 of 2

QC report:

Sample Duplicate

Parameter	26314-3 chk	Acceptance
Suspended Solids (SS) (%)	4	RPD≤20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	4	RPD≤20%
Total Nitrogen	N/A	N/A
Ammonia (%)	N/A	RPD≤20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	26314-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	109	80-120
Total Nitrogen	N/A	N/A
Ammonia (%)	84	80-120
Total Phosphorus (%)	94	80-120

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 26314.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website; www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26234

2016/12/20

Date Received: Date Tested:

2016/12/19

Date Completed:

Page:

Date of Issue:

2016/12/19 2016/12/20

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2016/12/19

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/161219

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	3	3	0	99

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.:

26248

Date of Issue:

2016/12/22

1 of 1

Date Received:

2016/12/21

Date Tested: Date Completed:

Page:

2016/12/21 2016/12/22

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2016/12/21

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/161221

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
M4se	3	3	0	107

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Page:

2016/12/28

26272

1 of 1

Date of Issue: Date Received:

Report No.:

2016/12/24

Date Tested:

2016/12/24

Date Completed:

2016/12/28

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2016/12/24

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/161224

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5	6	4	96

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Completed: Page:

Report No.:

Date of Issue:

Date Received:

Date Tested:

2016/12/29 1 of 1

26278

2016/12/29

2016/12/28

2016/12/28

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2016/12/28

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/161229

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	4	4	1	100

*********END OF REPORT*****

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

26298

2017/01/03

2016/12/30

2016/12/30

2017/01/03

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Completed: Page: 1 of 1

Report No.:

Date of Issue:

Date Received:

Date Tested:

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2016/12/30

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/161230

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
M4se	5	4	8	97

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX K SUMMARY OF EXCEEDANCE

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Appendix K – Summary of Exceedance

Reporting Period: December 2016

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (Eight Action Level exceedance was recorded due to the documented complaints received from monitoring station in the reporting month.)
- (C) Exceedance Report for Water Quality (Ten Limit Level exceedance in groundwater quality monitoring as followed:

Date	Monitoring	Monitoring Parameter	Monitoring	Action Level	Limit Level
	Location		Results		
	Stream 1	Total Organic Compound	6.0	4.3	4.9
	Stream 2	Total Organic Compound	6.0	4.3	4.9
1 Dec 2016	Stream 2	Total Organic Compound	6.0	4.3	4.9
1 Dec 2016	Stream 1	Total Nitrogen	2.2	1.7	1.7
	Stream 2	Total Nitrogen	2.2	1.7	1.7
	Stream 2	Total Nitrogen	2.2	1.7	1.7
	Stream 1	Ammonia-N	0.38	0.05	0.06
14 Dec 2016	Stream 1	Total Phosphorus	0.08	0.05	0.05
	Stream 3	Suspended Solids	6.5	5.5	6.2
30 Dec 2016	Stream 3	Ammonia-N	0.08	0.05	0.06

According to the information provided by the Contractor, no tunnel boring or tunnel construction works were carried out in Tseung Kwan O side in December 2016. Therefore, it is considered that the exceedance is not project-related.)

- (D) Exceedance Report for Ecology (NIL in the reporting month)
- (E) Exceedance Report for Cultural Heritage (NIL in the reporting month)
- (F) Exceedance Report for Landfill Gas (NIL in the reporting month)

APPENDIX L SITE AUDIT SUMMARY

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	161206
Date	6 December 2016 (Wednesday)
Time	14:30-17:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	mem No.
	No environmental deficiency was identified during site inspection.	
	C. Ecology	
	No environmental deficiency was identified during site inspection.	
•	D. Landscape & Visual	
	No environmental deficiency was identified during site inspection.	
	E. Air Quality	
161206-O01	Exposed slope and dusty stockpile for storage in TKO and CKL should be covered after each construction work day to avoid dust generation.	E6
	F. Construction Noise Impact	
	No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	H. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	 I. Others Follow-up on previous audit section (Ref. No.: 161130), item 161130-R02 and 161130-R03 are remarked as 161206-R01. Follow up action is needed to reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Victor Wong	WE	6 December 2016
Checked by	Dr. Priscilla Choy	NI	6 December 2016

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	161214
Date	14 December 2016 (Wednesday)
Time	9:00-10:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified ·	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality No environmental deficiency was identified during site inspection.	
	 C. Ecology No environmental deficiency was identified during site inspection. 	
	D. Landscape & Visual • No environmental deficiency was identified during site inspection.	
161214-001	 E. Air Quality Exposed area observed dry in Cha Kwo Ling. The Contractor is reminded to provide water spray to avoid dust generation. 	E5
161214 - R03	The Contractor is reminded to provide cover by impervious material to exposed slope in Cha Kwo Ling after works.	E6
	 F. Construction Noise Impact No environmental deficiency was identified during site inspection. 	
161214-R02	G. Waste / Chemical Management • To remove chemical oil from drip tray in TKO properly as "chemical waste".	G9&G10
	 H. Permits/Licences No environmental deficiency was identified during site inspection. 	
	 I. Impact on Cultural Heritage No environmental deficiency was identified during site inspection. 	
	 J. Others Follow-up on previous audit section (Ref. No.: 161206), all identified environmental deficiency was observed improved/rectified by the Contractor. 	

	Name	Signature	Date
Recorded by	Johnny Fung		14 December 2016
Checked by	Dr. Priscilla Choy	Wit	14 December 2016

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	161221
Date	21 December 2016 (Wednesday)
Time	9:00-11:15

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
161221-R01	B. Water Quality The contractor is reminded to provide mitigation measures to intercept and direct muddy water generation to waste water treatment facilities at construction of haul road **Color Variation** **Color Variation** **The Color Var	B9&B20
161221-R03	at Cha Kwo Ling. To remove general refuse in u-channel near the discharge point of CKL.	В7
	C. Ecology No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	-
161221-R04	E. Air Quality The contractor is reminded to provide cover by impervious material to exposed slope in Cha Kwo Ling after works.	E6
O A ANNA ANNA ANNA ANNA ANNA ANNA ANNA	F. Construction Noise Impact No environmental deficiency was identified during site inspection.	
161221-R02 161221-R03	 G. Waste / Chemical Management To provide drip tray to chemical containers at both CKL and TKO side. To remove general refuse in u-channel near the discharge point of CKL. 	G10 G7
	H. Permits/Licences No environmental deficiency was identified during site inspection.	
	 I. Impact on Cultural Heritage No environmental deficiency was identified during site inspection. 	
	 J. Others Follow-up on previous audit section (Ref. No.: 161214), item 161214-R03 is remarked as 161221-R04. Follow up action is needed to reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung	M	21 December 2016
Checked by	Dr. Priscilla Choy	NI	21 December 2016

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	161228	
Date	28 December 2016 (Wednesday)	
Time	9:00-10:30	

Ref. No.	Non-Compliance	Related Item No.
	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
161228-R01	B. Water Quality The contractor is reminded to provide mitigation measures to intercept and direct muddy water generation to waste water treatment facilities at construction of haul road at Cha Kwo Ling.	B9&B20
	C. Ecology • No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	***************************************
161228-R04	E. Air Quality The contractor is reminded to provide cover by impervious material to exposed slope in Cha Kwo Ling after works.	E6
161228-R03	To provide sufficient water spray for haul road in Cha Kwo Ling to avoid dust generation.	E5
	F. Construction Noise Impact No environmental deficiency was identified during site inspection.	
161228-R02	G. Waste / Chemical Management To remove the oil stain near drip tray of generator-set at Cha Kwo Ling.	G9
	H. Permits/Licences No environmental deficiency was identified during site inspection.	
į	I. Impact on Cultural Heritage No environmental deficiency was identified during site inspection.	
	 J. Others Follow-up on previous audit section (Ref. No.: 161221), item 161221-R01, 161221-R03 and 161221-R04 are remarked as 161228-R01 and 161228-R04. Follow up action is needed to reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung	M-	28 December 2016
Checked by	Dr. Priscilla Choy	With	28 December 2016

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	161202	
Date	2 December 2016 (Friday)	
Time	14:00 – 15:00	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	110111110.

Ref. No.	Remarks/Observations	Related Item No.
161202-R02 161202-R03	B. Water Quality To provide concrete bund for footing of hoarding. To remove the sand accumulated in U-channel near site entrance.	B20 B7
	C. Ecology • No environmental deficiency was identified during site inspection.	:
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	
161202-O01	 E. Air Quality Unpaved area in Area A is observed dry. The contractor is reminded to provide water spray to avoid dust generation. 	E5
	F. Construction Noise Impact Idling plants at site A should be switched off.	1.1
	G. Waste / Chemical Management No environmental deficiency was identified during site inspection.	
161202-R04	 H. Permits/Licences To display the CNP in force near site entrance. 	Н1
	 I. Others Follow-up on previous audit section (Ref. No.:161124), item 161124-R01 was found outstanding and remarked as 161202-R02. Review will be needed during next audit section. 	

	Name	Signature	Date
Recorded by	Johnny Fung		2 December 2016
Checked by	Dr. Priscilla Choy	The state of the s	2 December 2016

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	161208
Date	8 December 2016 (Thursday)
Time	13:15-14:15

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
161208-R02	B. Water Quality To remove the construction material/rubbish from the perimeter u-channel.	В7
	C. Ecology No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	
	E. Air Quality No environmental deficiency was identified during site inspection.	
	 F. Construction Noise Impact No environmental deficiency was identified during site inspection. 	
161208-R01	 G. Waste / Chemical Management To remove the construction material from drip tray and properly store the chemical container at drip tray. 	G10
	 H. Permits/Licences No environmental deficiency was identified during site inspection. 	
	I. Others Follow-up on previous audit section (Ref. No.: 161202), all identified environmental deficiency was observed improved/rectified by the Contractor.	00.00

	Name	Signature	Date
Recorded by	Johnny Fung	D	8 December 2016
Checked by	Dr. Priscilla Choy	WI	8 December 2016

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	161213
Date	13 December 2016 (Tuesday)
Time	9:00-9:45

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality No environmental deficiency was identified during site inspection.	
	 C. Ecology No environmental deficiency was identified during site inspection. 	
	 D. Landscape & Visual No environmental deficiency was identified during site inspection. 	
161213-R01	 E. Air Quality To properly display NRMM Label to Powered Mechanical Equipment on site in Portion A. 	E23
	 F. Construction Noise Impact No environmental deficiency was identified during site inspection. 	
161213-R02	 G. Waste / Chemical Management To provide a plug to drip tray of generator-set in Portion A. 	G10
	H. Permits/Licences No environmental deficiency was identified during site inspection.	
	I. Others Follow-up on previous audit section (Ref. No.: 161208), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung		13 December 2016
Checked by	Dr. Priscilla Choy	WI	13 December 2016

Agreement No. CE 59/2015 (EP)

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	161222
Date .	22 December 2016 (Thursday)
Time	14:00-14:45

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	Ttom 1 (o.
	No environmental deficiency was identified during site inspection.	
	C. Ecology	
	No environmental deficiency was identified during site inspection.	
4	D. Landscape & Visual	
	No environmental deficiency was identified during site inspection.	
	E. Air Quality	
161222-001	• Grey smoke emission observed from excavator. The extractor is reminded to repair and	E15
161222-R02	maintain PME on site to avoid smoke emission.	EC
101222-RU2	To properly cover the dusty stockpile by tarpaulin sheet.	E6
	F. Construction Noise Impact	
	No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management	
161222-R03	To provide drip tray to chemical container near site entrance.	G10
161222-R04	To remove chemical oil from drip tray of generator-set.	G9&G10
	H. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	I. Others	
	Follow-up on previous audit section (Ref. No.: 161213), all identified environmental	
	deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung	n	22 December 2016
Checked by	Dr. Priscilla Choy	NA	22 December 2016

Agreement No. CE 59/2015 (EP)

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

 Inspection Information

 Checklist Reference Number
 161228

 Date
 28 December 2016 (Wednesday)

 Time
 14:00-15:00

Ref. No.	Non-Compliance	Related Item No.	
-	None identified	-	

Ref. No.	Remarks/Observations	Related Item No.
161228-R02	 B. Water Quality To provide sand bag bunds to gullies at Portion 1 to avoid discharge of surface runoff. 	B20
	C. Ecology • No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	
	E. Air Quality No environmental deficiency was identified during site inspection.	
	 F. Construction Noise Impact No environmental deficiency was identified during site inspection. 	
161228-R01 161228-R03	 G. Waste / Chemical Management To provide sufficient drip tray to chemical container, air compressor at Portion 8. To remove chemical container from near gullies at Portion 1. 	G10 G10
	 H. Permits/Licences No environmental deficiency was identified during site inspection. 	
	I. Others Follow-up on previous audit section (Ref. No.: 161222), all identified environmental deficiency was observed improved/rectified by the Contractor.	4

	Name	Signature	Date
Recorded by	Johnny Fung	2	28 December 2016
Checked by	Dr. Priscilla Choy	NI	28 December 2016

APPENDIX M EVENT AND ACTION PLANS

Event and Action Plan for Air Quality (Dust)

DY/DN/D	ACTION							
EVENT	ET	IEC	ER	CONTRACTOR				
Action level being exceeded by one sampling	 Identify source, investigate the causes of complaint and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 				
Action level being exceeded by two or more consecutive sampling	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				

	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
	7. If exceedance continues, arrange meeting with IEC and ER;8. If exceedance stops, cease additional monitoring.								
Limit level being exceeded by one sampling	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Contractor ,IEC, ER, and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 					
Limit level being exceeded by two or more	 Notify IEC, ER, Contractor and EPD; Identify source; 	Discuss amongst ER, ET, and Contractor on the potential remedial actions;	 Confirm receipt of notification of exceedance in writing; Notify Contractor; 	Take immediate action to avoid further exceedance;					

	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
consecutive sampling	 Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions 	Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	 In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of 	 CONTRACTOR Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 					
	to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.		work until the exceedance is abated.						

Event and Action Plan for Construction Noise

EVENT	ACTION								
		ET	IEC		ER			CONTRACTOR	
Action	1.	Notify IEC and Contractor;	1.	Review the analysed results	1.	Confirm receipt of notification of	1.	Submit noise mitigation proposals to	
Level	2.	Carry out investigation;		submitted by the ET;		failure in writing;		IEC;	
	3.	Report the results of investigation to	2.	Review the proposed remedial	2.	Notify Contractor;	2.	Implement noise mitigation proposals.	
		the IEC, ER and Contractor;		measures by the Contractor and	3.	Require Contractor to propose			
	Discuss with the Contractor and formulate remedial measures;			advise the ER accordingly;		remedial measures for the analysed			
			3.	Supervise the implementation of		noise problem;			
	5.	Increase monitoring frequency to		remedial measures.	4.	Ensure remedial measures are			
		check mitigation effectiveness.				properly implemented.			
Limit	1.	Identify source;	1.	Discuss amongst ER, ET, and	1.	Confirm receipt of notification of	1.	Take immediate action to avoid	
Level	2.	Inform IEC, ER, EPD and		Contractor on the potential remedial		failure in writing;		further exceedance;	
		Contractor;		actions;	2.	Notify Contractor;	2.	Submit proposals for remedial	
	3.	Repeat measurements to confirm	2.	Review Contractors remedial actions	3.	Require Contractor to propose		actions to IEC within 3 working	
		findings;		whenever necessary to assure their		remedial measures for the analysed		days of notification;	
	4.	Increase monitoring frequency;		effectiveness and advise the ER		noise problem;	3.	Implement the agreed proposals;	
	5.	Carry out analysis of Contractor's		accordingly;	4.	Ensure remedial measures properly	4.	Resubmit proposals if problem still	
		working procedures to determine	3.	Supervise the implementation of		implemented;		not under control;	
		possible mitigation to be		remedial measures.	5.	If exceedance continues, consider	5.	Stop the relevant portion of works as	
		implemented;				what portion of the work is		determined by the ER until the	
						responsible and instruct the		exceedance is abated.	

6. Inform IEC, ER and EPD the causes	Contractor to stop that portion of	
and actions taken for the	work until the exceedance is abated.	
exceedances;		
7. Assess effectiveness of Contractor's		
remedial actions and keep IEC, EPD		
and ER informed of the results;		
8. If exceedance stops, cease additional		
monitoring.		

Event and Action Plan for Marine Water Quality

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
Action level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC on the proposed	Inform the ER and confirm
exceeded by one	comparing the results with those	the mitigation measures;	mitigation measures;	notification of the non-compliance in
sampling day at	collected at the control stations as	Review proposal on mitigation	Make agreement on the mitigation	writing;
water sensitive	appropriate;	measures submitted by Contractor	proposal.	Rectify unacceptable practice;
receiver(s)	If exceedance is found to be caused	and advise the ER accordingly;		Check all plant and equipment;
	by the reclamation activities,	Assess the effectiveness of the		Amend working methods if
	repeat in-situ measurement to	implemented mitigation measures.		appropriate;
	confirm findings;			Discuss with ET and IEC and
	Inform IEC and contractor;			propose mitigation measures to IEC
	Check monitoring data, all plant,			and ER;
	equipment and Contractor's working			Implement the agree mitigation
	methods;			measures.
	If exceedance occurs at WSD salt			
	water intake, inform WSD;			
	Discuss mitigation measures with			
	IEC and Contractor;			
	Repeat measurement on next day of			
	exceedance.			
Action level being	• Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC on the proposed	Inform the Engineer and confirm
exceeded by two	comparing the results with those	the mitigation measures;	mitigation measures;	notification of the non-compliance in
or				writing;

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
more consecutive	collected at the control stations as	Review proposal on mitigation	Make agreement on the mitigation	Rectify unacceptable practice;
sampling days at	appropriate;	measures submitted by Contractor	proposal;	Check all plant and equipment and
water sensitive	If exceedance is found to be caused	and advise the ER accordingly;	Assess the effectiveness of the	consider changes of working
receiver(s)	by the reclamation activities, repeat	Assess the effectiveness of the	implemented mitigation measures.	methods;
	in-situ measurement to confirm	implemented mitigation measures.		Discuss with ET, IEC and ER and
	findings;			propose mitigation measures to IEC
	Inform IEC and contractor;			and ER within 3 working days;
	Check monitoring data, all plant,			Implement the agreed mitigation
	equipment and Contractor's working			measures.
	methods;			
	Discuss mitigation measures with			
	IEC and Contractor;			
	Ensure mitigation measures are			
	implemented;			
	Prepare to increase the monitoring			
	frequency to daily;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD;			
	Repeat measurement on next day of			
	exceedance.			

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC, ET and	Inform the ER and confirm
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;
receiver(s)	If exceedance is found to be caused	and advise the ER accordingly;	review the working methods;	Check all plant and equipment and
	by the reclamation activities,	Assess the effectiveness of the	Make agreement on the mitigation	consider changes of working
	repeat in-situ measurement to	implemented mitigation measures.	measures to be implemented;	methods;
	confirm findings;		Assess the effectiveness of the	Discuss with ET, IEC and ER and
	Inform IEC, contractor, AFCD and		implemented mitigation measures.	submit proposal of mitigation
	EPD			measures to IEC and ER within 3
	Check monitoring data, all plant,			working days of notification;
	equipment and Contractor's working			Implement the agreed mitigation
	methods;			measures.
	Discuss mitigation measures with			
	IEC, ER and Contractor;			
	Ensure mitigation measures are			
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IC(E), ET and	Inform the ER and confirm
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;
consecutive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;
sampling days at	If exceedance is found to be caused	and advise the ER accordingly;	review the working methods;	Check all plant and equipment and
water sensitive	by the reclamation activities, repeat	Assess the effectiveness of the	Make agreement on the mitigation	consider changes of working
receiver(s)	in-situ measurement to confirm	implemented mitigation measures.	measures to be implemented;	methods;
	findings;		Assess the effectiveness of the	• Discuss with ET, IC(E) and ER and
	• Inform IC(E), AFCD, contractor		implemented mitigation measures;	submit proposal of mitigation
	and EPD;		Consider and instruct, if necessary,	measures to IC(E) and ER within 3
	Check monitoring data, all plant,		the Contractor to slow down or to	working days of notification;
	equipment and Contractor's working		stop all or part of the marine work	Implement the agreed mitigation
	methods;		until no exceedance of Limit level.	measures;
	Discuss mitigation measures with			As directed by the Engineer, to
	IC(E), ER and Contractor;			slow down or to stop all or part of
	Ensure mitigation measures are			the construction activities.
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level for two consecutive days;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			

Limit Levels and Action Plan for Landfill Gas

Parameter	Limit Level	Action
Oxygen	<19%	• Ventilate to restore oxygen to >19%
	<18%	Stop works
		Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	 Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	> 1% by	Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to <10%
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to < 0.5%
Dioxide	>1.5%	Stop works
		Evacuate personnel / prohibit entry
		 Increase ventilation to restore carbon dioxide to <
		0.5%

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
Air Qual	ity Impact						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the dust	Contractor	All Active Work	Construction	APCO	#
	roads	impact		Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top	To minimize the dust	Contractor	Barging Points	Construction	APCO	N/A
	tipping hall, provision of water spraying and flexible dust curtains	impact			phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction	To minimize the dust	Contractor	All	Construction	APCO and Air	
	Dust) Regulation and good site practices:	impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces			Work Sites		(Construction Dust)	*
	and unpaved roads, particularly during dry weather.					Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas						*
	close to ASRs.						
	- Side enclosure and covering of any aggregate or dusty material storage piles						#
	to reduce emissions. Where this is not practicable owing to frequent usage,						
	watering shall be applied to aggregate fines.						
	- Open stockpiles shall be avoided or covered. Where possible, prevent						*
	placing dusty material storage piles near ASRs.						
	- Tarpaulin covering of all dusty vehicle loads transported to, from and between						۸
	site locations.						
	- Establishment and use of vehicle wheel and body washing facilities at the exit						N/A
	points of the site.						
	- Provision of wind shield and dust extraction units or similar dust mitigation						N/A
	measures at the loading area of barging point, and use of water sprinklers at						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	the loading area where dust generation is likely during the loading process of						
	loose material, particularly in dry seasons/ periods.						
	- Provision of not less than 2.4m high hoarding from ground level along site						۸
	boundary where adjoins a road, streets or other accessible to the public						
	except for a site entrance or exit.						
	- Imposition of speed controls for vehicles on site haul roads.						٨
	- Where possible, routing of vehicles and positioning of construction plant						٨
	should be at the maximum possible distance from ASRs						
	- Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						N/A
	should be covered entirely by impervious sheeting or placed in an area						
	sheltered on the top and the 3 sides.						
	- Instigation of an environmental monitoring and auditing program to monitor						٨
	the construction process in order to enforce controls and modify method of						
	work if dusty conditions arise.						
/	Emission from Vehicles and Plants	Reduce air pollution	Contractor	All	Construction	•APCO	
	All vehicles shall be shut down in intermittent use.	emission from		construction	stage		٨
	Only well-maintained plant should be operated on-site and plant should be	construction vehicles		sites			*
	serviced regularly to avoid emission of black smoke.	and plants					
	All diesel fuelled construction plant within the works areas shall be powered						
	by ultra low sulphur diesel fuel (ULSD)						٨
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air pollution	Contractor	All	Construction	•APCO	*
	machines	emission from		construction	stage		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
		construction vehicles		sites			
		and plants					
Noise Im	pact (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	٨
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry	construction noise			phase		
	Mixer, Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt	impact arising from the					
	Paver, Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling	Project at the affected					
	(Vibration Hammer). Use of full enclosure for Air Compressor, Compressor,	NSRs					
	Bar Bender, Generator, Drilling Rig, Chisel, Large Diameter Bore Piling,						
	Grout Mixer & Pump and Concrete Pump.						
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction noise	Proponent		Period		۸
	serviced regularly during the construction program	impact arising from the					
	- Silencers or mufflers on construction equipment should be utilized and	Project at the affected					۸
	should be properly maintained during the construction program.	NSRs					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.						۸
	- Machines and plant (such as trucks) that may be in intermittent use should be						۸
	shut down between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever						٨
	possible, be orientated so that the noise is directed away from the nearby						
	NSRs.						
	- Material stockpiles and other structures should be effectively utilized,						۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	wherever practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site near	Construction	EIAO-TM, NCO	N/A
		construction noise		school	phase		
		impact arising from the					
		Project at the affected					
		NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	1,900kg/m³, with fine content of 25% or less	impacts from filling	Contractors		Phase		
		activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	column shall be adopted for construction of seawall foundation. During the stone	impacts from filling	Contractors		Phase		
	column installation (also including the installation of steel cellular caisson), silt	activities					
	curtain shall be employed around the active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	opening of about 50m for marine access) shall be completed prior to the filling	impacts from filling	Contractors		Phase		
	activities. The seawall opening of about 50m wide for marine access shall be	activities					
	selected at a location as indicatively shown in Appendix 5.10. No more than 3						
	filling barge trips per day shall be made with a maximum daily rate of 3,000m3 (i.e.						
	1,000 m ³ per trip) for the filling operation at the reclamation area for Road P2. All						
	filling works shall be carried out behind the seawall with the use of single silt						
	curtain at the marine access.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	- all marine works should adopt the environmental friendly construction	impacts from filling	Contractors		Phase	Waste Disposal	N/A
	methods as far as practically possible including the use of cofferdams to	activities and				Ordinance (WDO)	
	cover the construction area to separate the construction works from the sea;	marine-based					
	- floating single silt curtain shall be employed for all marine works;	construction					N/A
	- all vessels should be sized so that adequate clearance is maintained						N/A
	between vessels and the seabed in all tide conditions, to ensure that undue						
	turbidity is not generated by turbulence from vessel movement or propeller						
	wash;						
	- all hopper barges should be fitted with tight fitting seals to their bottom						N/A
	openings to prevent leakage of material;						
	- excess material shall be cleaned from the decks and exposed fittings of						N/A
	barges before the vessel is moved;						
	- adequate freeboard shall be maintained on barges to reduce the likelihood of						N/A
	decks being washed by wave action;						
	- loading of barges and hoppers should be controlled to prevent splashing of						N/A
	filling material into the surrounding water. Barges or hoppers should not be						
	filled to a level that will cause the overflow of materials or polluted water						
	during loading or transportation;						
	- any pipe leakages shall be repaired quickly. Plant should not be operated						N/A
	with leaking pipes;						
	- construction activities should not cause foam, oil, grease, scum, litter or other						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	objectionable matter to be present on the water within the site or dumping						
	grounds; and						
	- before commencement of the reclamation works, the holder of Environmental						٨
	Permit has to submit plans showing the phased construction of the						
	reclamation, design and operation of the silt curtain.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	be submitted for EPD agreement before commencement of construction phase	impacts from filling	Contractors		Phase	EIAOTM, WPCO	
	with due consideration of good site practices.	activities and					
		marinebased					
		construction					
S5.8.5	It is important that appropriate measures are implemented to control runoff and	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	drainage and prevent high loading of SS from entering the marine environment.	impacts from	Contractors		Phase	EIAOTM, WPCO	
	Proper site management is essential to minimise surface water runoff, soil erosion	construction site runoff					
	and sewage effluents.	and land-based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply	Control potential	CEDD's	Work site	Design Stage	ProPECC PN 1/94,	۸
	with both engineering and environmental requirements in order to ensure	impacts from	Contractors		and	EIAOTM, WPCO,	
	adequate hydraulic capacity of all drains.	construction site runoff			Construction	TM-DSS	
		and land-based			Phase		
		construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	#

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management practices, as detailed in below, should be implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents discharged into the corresponding WCZ under the TM-DSS.	impacts from construction site runoff and land-based construction	Contractors		Phase	EIAOTM, WPCO, TM-DSS	
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: - use of sediment traps; and - adequate maintenance of drainage systems to prevent flooding and overflow.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO	N/A #
S5.8.9	Construction site should be provided with adequately designed perimeter channel and pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO	#

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	based on the guidelines in Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	#
	works during the rainy season (April to September). All exposed earth areas	impacts from	Contractors		Phase	EIAOTM, WPCO	
	should be completed as soon as possible after earthworks have been completed,	construction site runoff					
	or alternatively, within 14 days of the cessation of earthworks where practicable.	and land-based					
	If excavation of soil cannot be avoided during the rainy season, or at any time of	construction					
	year when rainstorms are likely, exposed slope surfaces should be covered by						
	tarpaulin or other means.						
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	cells of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	EIAOTM, WPCO	
	measure which can be used for settling surface runoff prior to disposal. The	construction site runoff				S5	
	system capacity is flexible and able to handle multiple inputs from a variety of	and land-based					
	sources and particularly suited to applications where the influent is pumped.	construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	permanent work or surface protection should be carried out immediately after the	impacts from	Contractors		Phase	EIAOTM, WPCO	
	final surfaces are formed to prevent erosion caused by rainstorms. Appropriate	construction site runoff				S5	
	drainage like intercepting channels should be provided where necessary.	and land-based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	excavation of trenches in wet seasons is necessary, they should be dug and	impacts from	Contractors		Phase	EIAOTM, WPCO	
	backfilled in short sections. Rainwater pumped out from trenches or foundation	construction site runoff				S5	
	excavations should be discharged into storm drains via silt removal facilities.	and land-based					

EIA Ref.	Recommended Mitigation Measures	recomr Measure	es of the mended es & Main to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
		construction	n					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	*
	material) of more than 50m³ should be covered with tarpaulin or similar fabric	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	during rainstorms. Measures should be taken to prevent the washing away of	construction	n site runoff					
	construction materials, soil, silt or debris into any drainage system.	and	land-based					
		construction	n					
S5.8.15	Manholes (including newly constructed ones) should always be adequately	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	covered and temporarily sealed so as to prevent silt, construction materials or	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	debris being washed into the drainage system and storm runoff being directed into	construction	n site runoff					
	foul sewers. Discharge of surface run-off into foul sewers must always be	and	land-based					
	prevented in order not to unduly overload the foul sewerage system.	construction	n					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	be taken when a rainstorm is imminent or forecast, and actions to be taken during	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94.	construction	n site runoff					
	Particular attention should be paid to the control of silty surface runoff during storm	and	land-based					
	events, especially for areas located near steep slopes.	construction	n					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	to prevent the release of oils and grease into the storm water drainage system	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	after accidental spillages. The interceptor should have a bypass to prevent	construction	n site runoff					
	flushing during periods of heavy rain.	and	land-based					
		construction	n					

EIA Ref.	Recommended Mitigation Measures	Objecti	ves of the	Who to	Location of	When to	What requirements	Status
		recom	mended	implement the	the measures	Implement the	or standards for the	
		Measur	es & Main	measures?		measures?	measures to	
		Concerns	to address				achieve?	
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	ensure no earth, mud, debris and the like is deposited by them on roads. An	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	adequately designed and located wheel washing bay should be provided at every	construction	on site runoff					
	site exit, and washwater should have sand and silt settled out and removed at	and	land-based					
	least on a weekly basis to ensure the continued efficiency of the process. The	construction	on					
	section of access road leading to, and exiting from, the wheelwash bay to the							
	public road should be paved with sufficient backfall toward the wheel-wash bay to							
	prevent vehicle tracking of soil and silty water to public roads and drains.							
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	#
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction	on site runoff					
		and	land-based					
		construction	on					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	commencement of other construction activities. Sediment traps should be installed	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	in order to minimise the sediment loading of the effluent prior to discharge into foul	construction	on site runoff					
	sewers. There shall be no direct discharge of effluent from the site into the sea.	and	land-based					
		construction	on					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	runoff discharge should be adequately designed for the controlled release of storm	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	flows. All sediment control measures should be regularly inspected and	construction	on site runoff					
	maintained to ensure proper and efficient operation at all times and particularly	and	land-based					

EIA Ref.	Recommended Mitigation Measures	Objective recomm	nended	Who to implement the	Location of the measures	When to	What requirements or standards for the	Status
		Measures		measures?		measures?	measures to	
		Concerns t					achieve?	
	following rain storms. The temporarily diverted drainage should be reinstated to its	construction	1					
	original condition when the construction work has finished or the temporary							
	diversion is no longer required.							
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	sealed areas, within bunds of a capacity equal to 110% of the storage capacity of	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	the largest tank, to prevent spilled fuel oils from reaching the coastal waters.	construction	site runoff					
		and	land-based					
		construction	ı					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control	potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	۸
	stormwater discharges and the existing or planned seawater intakes during	impacts	from	Contractors		Phase	TMDSS	
	construction and operational phases	construction	site runoff					
		and	land-based					
		construction	1					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	lowering of ground water level in basement or foundation construction, and	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	groundwater seepage pumped out of tunnels or caverns under construction	construction	site runoff					
	should be discharged into storm drains after the removal of silt in silt removal	and	land-based					
	facilities.	construction	1					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel	impacts	from	Contractors		Phase	EIAOTM, WPCO,	
& Table	will be measured during the excavation. The groundwater levels above the	construction	site runoff				Buildings Ordinance	
5.18	tunnel will also be monitored by piezometers. If the inflow rate exceeds the	and	land-based					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended	Who to implement the	Location of the measures	When to	What requirements or standards for the	Status
		Measures & Main	measures?	tilo illououloo	measures?	measures to	
		Concerns to address				achieve?	
	pre-determined groundwater control criteria or the groundwater drawdown	construction					
	exceeds the required limit, pre-excavation grouting will be required to reduce the						
	groundwater inflow. No significant change of groundwater levels would therefore						
	be expected. Any chemicals/ foaming agents which would be entrained to the						
	groundwater should be biodegradable and non-toxic throughout the tunnel						
	construction. Potential groundwater quality impact would be minimal as the used						
	material is non-toxic and biodegradable. No adverse groundwater quality would						
	therefore be expected. Prescriptive measures in the form of an Action Plan with						
	pre-emptive and re-active to preserve the groundwater levels at all times during						
	the tunnel construction are set out in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil	Control potential	CEDD's	Work site	Design Stage	ProPECC PN 1/94,	N/A
	anchoring should as far as practicable be recirculated after sedimentation. When	impacts from	Contractors		and	EIAOTM, WPCO	
	there is a need for final disposal, the wastewater should be discharged into storm	construction site runoff			Construction		
	drains via silt removal facilities.	and land-based			Phas		
		construction					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
S5.8.31	and similar equipment should whenever practicable be recycled. The discharge	impacts from	Contractors		Phase	EIAOTM, WPCO	
	of wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site runoff					
	overflow, the pump sump of any water recycling system should be provided with	and land-based					
	an online standby pump of adequate capacity and with automatic alternating	construction					
	devices. Under normal circumstances, surplus wastewater may be discharged into						
	foul sewers after treatment in silt removal and pH adjustment facilities (to within						

EIA Ref.	Recommended Mitigation Measures		ves of the	Who to implement the	Location of the measures	When to	What requirements or standards for the	Status
			es & Main	measures?	the measures	measures?	measures to	
			to address	illeasures:		illeasures:	achieve?	
	the pH range of 6 to 10). Disposal of wastewater into storm drains will require							
	more elaborate treatment.							
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	washing bay should be provided at every site exit if practicable and wash-water	construction	on site runoff					
	should have sand and silt settled out or removed before discharging into storm	and	land-based					
	drains. The section of construction road between the wheel washing bay and the	construction	on					
	public road should be paved with backfall to reduce vehicle tracking of soil and to							
	prevent site run-off from entering public road drains.							
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	residual quantity cannot be avoided, the used slurry may be disposed of at the	construction	on site runoff					
	marine spoil grounds subject to obtaining a marine dumping licence from EPD on	and	land-based					
	a case-by-case basis.	construction	on					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	drainage system, it should be treated to the respective effluent standards	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	applicable to foul sewer, storm drains or the receiving waters as set out in the	construction	on site runoff					
	WPCO Technical Memorandum on Effluent Standards.	and	land-based					
		construction	on					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	reused for other purposes as far as practicable. Surplus unpolluted water could	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	be discharged into storm drains.	construction	on site runoff					

EIA Ref.	Recommended Mitigation Measures	recom	ves of the nmended res & Main	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to	Status
			s to address	ououroo i		mododi oo i	achieve?	
		and	land-based					
		construction	on					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from	Control	potential	CEDD's	Work site	Design Stage	ProPECC PN 1/94,	N/A
	EPD should be sought during the design stage of the works with regard to the	impacts	from	Contractors		and	EIAOTM, WPCO	
	disposal of the sterilizing water. The sterilizing water should be reused wherever	construction	on site runoff			Construction		
	practicable.	and	land-based			Phase		
		construction	on					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	should be sealed to prevent building debris, soil, sand etc. from entering public	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	sewers/drains.	construction	on site runoff					
		and	land-based					
		construction	on					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	plastering, internal decoration, cleaning of works and similar activities should not	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	be discharged into the stormwater drainage system. If the wastewater is to be	construction	on site runoff					
	discharged into foul sewers, it should undergo the removal of settleable solids in a	and	land-based					
	silt removal facility, and pH adjustment as necessary	construction	on					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	activities should be neutralized to within the pH range of 6 to 10 before	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	discharging into foul sewers. If there is no public foul sewer in the vicinity, the	construction	on site runoff					
	neutralized wastewater should be tinkered off site for disposal into foul sewers or	and	land-based					
	treated to a standard acceptable to storm drains and the receiving waters	construction	on					

EIA Ref.	Recommended Mitigation Measures	Objecti	ves of the	Who to	Location of	When to	What requirements	Status
		recom	mended	implement the	the measures	Implement the	or standards for the	
		Measur	es & Main	measures?		measures?	measures to	
		Concerns	to address				achieve?	
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	providing at least 20 minutes retention during peak flow.	construction	on site runoff					
		and	land-based					
		construction	on					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	petrol interceptor with peak storm bypass.	impacts	from	Contractors		Phase	EIAOTM, WPCO	
		construction	on site runoff					
		and	land-based					
		construction	on					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	as far as possible be located within roofed areas. The drainage in these covered	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	areas should be connected to foul sewers via a petrol interceptor. Oil leakage or	construction	on site runoff					
	spillage should be contained and cleaned up immediately. Waste oil should be	and	land-based					
	collected and stored for recycling or disposal in accordance with the Waste	construction	on					
	Disposal Ordinance.							
S5.8.43	Construction work force sewage discharges on site are expected to be connected	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	to the existing trunk sewer or sewage treatment facilities. The construction sewage	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	may need to be handled by portable chemical toilets prior to the commission of the	construction	on site runoff					
	on-site sewer system. Appropriate numbers of portable toilets shall be provided by	and	land-based					
	a licensed contractor to serve the large number of construction workers over the	construction	on					
	construction site. The Contractor shall also be responsible for waste disposal and							

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended	Who to implement the	Location of the measures	When to	What requirements or standards for the	Status
		Measures & Main	measures?		measures?	measures to	
		Concerns to addres	3			achieve?	
	maintenance practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would	Control potenti	d CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	be produced from the construction activities. The Waste Disposal Ordinance (Cap	impacts fro	Contractors		Phase	WDO	
	354) and its subsidiary regulations in particular the Waste Disposal (Chemical	accidental spillage	f				
	Waste) (General) Regulation should be observed and complied with for control of	chemicals					
	chemical wastes.						
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potenti	d CEDD's	Work site	Construction	EIAO-TM, WPCO	#
	within a bunded area, and sumps and oil interceptors should be provided.	impacts fro	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for	accidental spillage	ıf				
	leakage and spillage should only be undertaken within the areas appropriately	chemicals					
	equipped to control these discharges.						
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potenti	d CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and	impacts fro	n Contractors		Phase	WDO	
	Storage of Chemical Wastes" published under the Waste Disposal Ordinance	accidental spillage	ıf				
	details the requirements to deal with chemical wastes. General requirements are	chemicals					
	given as follows:						
	- suitable containers should be used to hold the chemical wastes to avoid						٨
	leakage or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						٨
	personnel who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate						#
	space should be allocated to the storage area.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	on a daily basis. The contractor should be responsible for keeping the water	impacts from floating	Contractors		Phase		
	within the site boundary and the neighbouring water free from rubbish.	refuse and debris					
Ecologic	eal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design Team /	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be	human and traffic	Contractor	works are	Phase		^
	adopted wherever possible.	disturbance to					
	- Hoarding or fencing should be erected around the works area boundaries	terrestrial habitat and					^
	during the construction phase. The hoarding would screen adjacent habitats	wildlife; and reduce					
	from construction phase activities, reduce noise disturbance to these habitats	dust generation					
	and also to restrict access to habitats adjacent to works areas by site						
	workers;						
	- Regular spraying of haul roads to minimize impacts of dust deposition on						۸
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce disturbance to	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	surrounding habitats		works are	Phase		^
	routes selected on existing disturbed land to minimise disturbance to natural						
	habitats.						
	- Construction activities should be restricted to works areas that should be						^
	clearly demarcated. The works areas should be reinstated after completion of						
	the works.						
	- Waste skips should be provided to collect general refuse and construction						*

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to	Status
		Concerns to address				achieve?	
	wastes. The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to						٨
	collect and control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						*
	- Measures should also be put into place so that litter, fuel and solvents do not						٨
	enter the nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize groundwater	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control	inflow			Phase		N/A
	measures would generally be adopted.						
	- During the tunnel excavation, pre-excavation grouting could be adopted to						N/A
	reduce the groundwater inflow and ensure that the tunnel would meet the long						
	term water tightness requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of coral	Design team,	Within	Prior	N/A	
	Coral translocation		contractor,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally		project operator	areas and pier			۸
	common Oulastrea crispata, within the reclamation area and bridge footprint to			footprint			
	the other suitable locations as far as practicable.						
	- The coral translocation should be conducted during the winter months						۸
	(November-March) in order to avoid disturbance during their spawning period						
	(i.e. July to October).						
	- A detailed coral translocation plan with a description on the methodology for						۸
	pretranslocation coral survey, translocation methodology,						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	identification/proposal of coral recipient site, monitoring methodology for						
	posttranslocation should be prepared during the detailed design stage.						
	- The coral translocation plan should be subject to approval by relevant						٨
	authorities (e.g. EPD and AFCD) before commencement of the coral						
	translocation. All the translocation exercises should be conducted by						
	experienced marine ecologist(s) who is/are approved by AFCD prior to						
	commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and						٨
	unacceptable impacts to the translocated coral communities						
	- Information gathered during each posttranslocation monitoring survey should						۸
	include observations on the presence, survival, health condition and growth of						
	the translocated coral colonies. These parameters should then be compared						
	with the baseline results collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water quality	Design Team,	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points,	impact, especially on	contractor	landbased	phase		N/A
	opening of newly installed seawall and marine works area.	suspended solid level;		works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm	minimize the					٨
	drain;	contamination of					
	- Proper waste and dumping management; and	wastewater discharge,					۸
	- Standard good-site practice for land-based construction.	accidental chemical					۸
		spillage and					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
		construction site runoff					
		to the receiving water					
		bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate for the	Design Team,	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or	vegetation loss	contractor	works area	phase		٨
	heavy standard trees within or in vicinity of the affected area as far as						
	practicable. Such compensatory planting for trees should be provided with						
	at least a 1:1 ratio. In addition, vegetation at the temporarily affected area						
	should be reinstated with species similar to the existing condition.						
Fishery	Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water quality	Design Team /	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation	impact, especially on	Contractor	area	phase		N/A
	points, opening of newly installed seawall and marine works area.	suspended solid level					
Waste M	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work sites	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be	management impacts			Phase	Ordinance (Cap.	۸
	responsible for good site practices, arrangements for collection and effective					354)	
	disposal to an appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land (Miscellaneous	٨
	chemical handling procedures;					Provisions)	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	- Provision of sufficient waste disposal points and regular collection of waste;					Ordinance (Cap. 28)	٨
	- Appropriate measures to minimize windblown litter and dust during						^
	transportation of waste by either covering trucks or by transporting wastes in						
	enclosed containers; and						
	- Regular cleaning and maintenance programme for drainage systems, sumps						#
	and oil interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers,	reduction			Phase	Ordinance (Cap.	۸
	skips or stockpiles to enhance reuse or recycling of materials and their proper					354)	
	disposal;						
	- Encourage collection of aluminium cans by providing separate labelled bins					Land (Miscellaneous	۸
	to enable this waste to be segregated from other general refuse generated by					Provisions)	
	the workforce;					Ordinance (Cap. 28)	
	- Proper storage and site practices to minimize the potential for damage or						^
	contamination of construction materials; and						
	- Plan and stock construction materials carefully to minimize amount of waste						^
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	reduction			Phase	19/2005	٨
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal						
	of different categories of waste to be generated from the construction activities.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	Such a management plan should incorporate site specific factors, such as the						
	designation of areas for segregation and temporary storage of reusable and						
	recyclable materials. The EMP should be submitted to the Engineer for approval.						
	The Contractor should implement the waste management practices in the EMP						
	throughout the construction stage of the Project. The EMP should be reviewed						
	regularly and updated by the Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent	reduction			Phase	19/2005	۸
	projects as far as possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize potential	Contractor	All work sites	Construction	-	
	Should any temporary storage or stockpilling of waste is required,	adverse environmental			Phase		
	recommendations to minimize the impacts include:	impacts arising from					
	- Waste, such as soil, should be handled and stored well to ensure secure	waste storage					۸
	containment, thus minimizing the potential of pollution;						
	- Maintain and clean storage areas routinely;						٨
	- Stockpiling area should be provided with covers and water spraying system						٨
	to prevent materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to						۸
	enhance reuse.						
S8.6.8	Storage, Collection and Transportation of Waste (con't)	To minimize potential	Contractor	All work sites	Construction		
	- Remove waste in timely manner;	adverse environmental			Phase		٨
	- Waste collectors should only collect wastes prescribed by their permits;	impacts arising from					٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	- Impacts during transportation, such as dust and odour, should be mitigated	waste collection and					٨
	by the use of covered trucks or in enclosed containers;	disposal					
	- Obtain relevant waste disposal permits from the appropriate authorities, in						٨
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal						
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the						
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities; and						٨
	- Maintain records of quantities of waste generated, recycled and disposed.						٨
S8.6.9	Storage, Collection and Transportation of Waste (con't)	To minimize potential	Contractor	All work sites	Construction	DEVB TCW No.	
	- Implementation of trip ticket system with reference to DEVB TC(W) No.	adverse environmental			Phase	6/2010	٨
	6/2010, Trip Ticket System for Disposal of Construction & Demolition	impacts arising from					
	Materials, to monitor disposal of waste and to control fly-tipping at PFRFs or	waste collection and					
	landfills. A recording system for the amount of waste generated, recycled	disposal					
	and disposed (including disposal sites) should be proposed.						
S8.6.11 -	Sorting of C&D Materials	To minimize potential	Contractor	All work sites	Construction	DEVB TCW No.	
S8.6.13	- Sorting to be performed to recover the inert materials, reusable and	adverse environmental			Phase	6/2010	٨
	recyclable materials before disposal off-site.						
	- Specific areas shall be provided by the Contractors for sorting and to provide					ETWB TCW No.	٨
	temporary storage areas for the sorted materials.					33/2002	
	- The C&D materials should at least be segregated into inert and non-inert						٨
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While					19/2005	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	opportunities for reusing the non-inert portion should be investigated before						
	disposal of at designated landfills						
S8.6.15 –	Sediments	To ensure the	contractor	All works	Construction	RBRG	
S8.6.16	- Sediment encountered may be reused as filling material on-site after cement	sediment to be		areas with	Phase		N/A
	stabilization. Cement-stabilization process is undertaken by mixing sediment	disposed of in an		sediments			
	and cement and will convert sediment to earth filling material. The treated	authorized and least		concern			
	sediment has to comply with Risk-Based Remediation Goals (RBRGs) before	impacted way					
	being reused in order not to raise any land contamination issue. The						
	adoption of RBRGs to assess stabilized sediment has been proposed in the						
	current C&DMMP. MFC has no adverse comment on the current C&DMMP.						
	The sediment quality indicates that all sediments comply with most stringent						
	RBRGs except for one sediment sample (TKO-EBH501 3-3.95m) with lead						
	exceeding the RBRG. Except for the sediment sample (TKO-EBH501						
	3-3.95m), the chemical screening results do not indicate sediment as						
	contaminated soil. It is anticipated that reuse of sediment except sediment						
	sample (TKO-EBH501 3-3.95m) will not lead to land contamination.						
	- Despite exceedance of RBRG, onsite reuse of sediment under sample						N/A
	(TKO-EBH501 33.95m) as filling material after cement stabilization is also a						
	suitable treatment. Sediment quality indicates the sediment sample						
	(TKO-EBH501 3-3.95m) exceed RBRG for lead. While cement stabilization						
	will immobilize metal contaminants, it is capable to treat the exceedance on						
	lead. The stabilized material should comply with UTS of Lead and UCS. If the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended	Who to implement the	Location of the measures	When to	What requirements or standards for the	Status
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	treated material do not comply with UTS or UCS, re-stabilization have to be						
	undertaken to meet compliance of UTS and UCS before reusing the treated						
	sediment as filling material. However, further agreement on final						
	disposal/treatment on sediment under sample (TKO-EBH501 3-3.95m) has						
	to be sought from DEP						
S8.6.17 –	Sediments (con't)	To determine the best	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation,	handling and		areas with	Phase		N/A
	where relevant, shall be adhered to during boring, excavation, transportation	treatment of sediment		sediments			
	and disposal of sediments or cement stabilization of sediment.			concern			
	- A treatment area should be confined for carrying out the cement stabilization						N/A
	mixing and temporary stockpile. The area should be designed to prevent						
	leachate from entering the ground. Leachate, if any, should be collected and						
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring,						N/A
	excavation and transportation of the sediment, the excavated sediments						
	should be kept wet during excavation/boring and should be properly covered						
	when placed on barges/trucks. Loading of the excavated sediment to the						
	barge should be controlled to avoid splashing and overflowing of the						
	sediment slurry to the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should,						N/A
	when necessary, wear appropriate personal protective equipments (PPE)						
	when handling contaminated sediments. Adequate washing and cleaning						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	facilities should also be provided on site.						
S8.6.21	Sediments (con't)	To ensure the	contractor	All works	Construction	ETWB TC(W) No.	
	- Alternatively, excavated sediment can be treated with marine disposal. The	sediment to be		areas with	Phase	34/2002 & Dumping	N/A
	basic requirements and procedures for excavated sediment disposal	disposed of in an		sediments		at Sea Ordinance	
	specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is	authorized and least		concern			
	responsible for the provision and management of disposal capacity and	impacted way					
	facilities for the excavated sediment, while the permit of marine dumping is						
	required under the Dumping at Sea Ordinance and is the responsibility of the						
	DEP.						
S8.6.23	Sediments (con't)	To determine the best	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping	handling and disposal		areas with	Phase	34/2002 & Dumping	N/A
	permit, separate SSTP has to be submitted to EPD for agreement under	option of sediment		sediments		at Sea Ordinance	
	DASO. Additional site investigation, based on the SSTP, maybe carried out			concern			
	in order to confirm the disposal arrangements for the proposed sediments						
	removal. A Sediment Quality Report (SQR) shall then be required for EPD						
	agreement under DASO prior to the tendering of the construction contract,						
	discussing in details the site investigation, testing results as well as the						
	delineation of each of the categories of excavated materials and the						
	corresponding types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure handling of	Contractor	All works	Construction	ETWB TC(W) No.	
S8.6.28	- The excavated sediments is expected to be loaded onto the barge and	sediments are in		areas with	Phase	34/2002 & Dumping	N/A
	transported to the designated disposal sites allocated by the MFC. The	accordance to		sediments		at Sea Ordinance	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	excaveted sediment would be disposed of according to its determined	statutory requirements		concern			
	disposal options and ETWB TC(W) No. 34/2002.						
	- Stockpiling of contaminated sediments should be avoided as far as possible.						N/A
	If temporary stockpiling of contaminated sediments is necessary, the						
	excavated sediment should be covered by tarpaulin and the area should be						
	placed within earth bunds or sand bags to prevent leachate from entering the						
	ground, nearby drains and surrounding water bodies. The stockpiling areas						
	should be completely paved or covered by linings in order to avoid						
	contamination to underlying soil or groundwater. Separate and clearly						
	defined areas should be provided for stockpiling of contaminated and						
	uncontaminated materials. Leachate, if any, should be collected and						
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring and						N/A
	transportation of the sediment, the excavated sediments should be kept wet						
	during excavation/boring and should be properly covered when placed on						
	barges. Loading of the excavated sediment to the barge should be						
	controlled to avoid splashing and overflowing of the sediment slurry to the						
	surrounding water.						
	- The barge transporting the sediments to the designated disposal sites should						N/A
	be equipped with tight fitting seals to prevent leakage and should not be filled						
	to a level that would cause overflow of materials or laden water during						
	loading or transportation. In addition, monitoring of the barge loading shall be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	conducted to ensure that loss of material does not take place during						
	transportation. Transport barges or vessels shall be equipped with automatic						
	self-monitoring devices as specified by the DEP.						
	- In order to minimise the exposure to contaminated materials, workers should,						N/A
	when necessary, wear appropriate personal protective equipments (PPE)						
	when handling contaminated sediments. Adequate washing and cleaning						
	facilities should also be provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic						N/A
	containment. A geosynthetic containment method is a method whereby the						
	sediments are sealed in geosynthetic containers and, at the disposal site, the						
	containers would be dropped into the designated contaminated mud pit						
	where they would be covered by further mud disposal and later by the mud						
	pit capping, thereby meeting the requirements for fully confined mud						
	disposal.						
S8.6.26	Chemical Wastes.	To ensure proper	Contractor	All works sites	Construction	Code of Practice on	
	- If chemical wastes are produced at the construction site, the Contractor	management of			Phase	the Packaging,	٨
	would be required to register with the EPD as a Chemical Waste Producer	chemical waste				Labelling and	
	and to follow the guidelines stated in the Code of Practice on the Packaging,					Storage of Chemical	
	Labelling and Storage of Chemical Wastes. Good quality containers					Wastes	
	compatible with the chemical wastes should be used, and incompatible						
	chemicals should be stored separately. Appropriate labels should be					Waste Disposal	
	securely attached on each chemical waste container indicating the					(Chemical Waste)	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	corresponding chemical characteristics of the chemical waste, such as					(General) Regulation	
	explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The						
	Contractor shall use a licensed collector to transport and dispose of the						
	chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi,						
	or other licensed facility, in accordance with the Waste Disposal (Chemical						
	Waste) (General) Regulation.						
S8.6.27	General Refuse	To ensure proper	Contractor	All works sites	Construction	Public Health and	
	- General refuse should be stored in enclosed bins or compaction units	management of			Phase	Municipal Services	^
	separate from C&D material. A reputable waste collector should be	general refuse				Ordinance (Cap.	
	employed by the contractor to remove general refuse from the site,					132)	
	separately from C&D material. Preferably an enclosed and covered area						
	should be provided to reduce the occurrence of 'wind blown' light material.						
Impact of	n Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust and	Contractors	Work areas	Construction	EIAO; GCHIA; AMO	
	- Temporarily fenced off buffer zone with allowance for public access	visual impacts			Phase		N/A
	(minimum 1 m) should be provided;						
	- The open yard in front of the temple should be kept as usual for annual Tin						N/A
	Hau festival;						
	- Monitoring of vibration impacts should be conducted when the construction						N/A
	works are less than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent indirect	Contractors	Work areas	Construction	Vibration Limits on	
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv)	vibration impact			Phase	Heritage Buildings by	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	limit of 5mm/s measured inside the historical buildings;					CEDD; GCHIA;	
	- Monitoring of vibration should be carried out during construction phase.					AMO.	N/A
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling						N/A
	Tin Hau Temple as well.						
	- A proposal with details for the mitigation measures and monitoring of impacts						N/A
	on built heritage shall be submitted to AMO for comments before						
	commencement of work.						
Landsca	pe and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised	Avoid impact on	CEDD (via	General	Construction	N/A	۸
10.8.1	to avoid impacts on adjacent landscape.	adjacent landscape	Contractor)		planning and		
		areas			during		
					construction		
					period		
Table	CM2 - Reduction of construction period to practical minimum.	Minimise duration of	CEDD (via	N/A	Construction	N/A	۸
10.8.1		impact	Contractor)		planning		
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where	To allow re-use of	CEDD (via	General	Site clearance	As per the Particular	۸
10.8.1	practical, to be stripped and stored for re-use in the construction of the soft	topsoil	Contractor)			Specification	
	landscape works. The Contract Specification shall include storage and reuse of						
	topsoil as appropriate.						
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to	To minimize tree loss	CEDD (via	As per	Site clearance	ETWB TC 3/2006	#
10.8.1	be carefully protected during construction. Detailed Tree Protection Specification		Contractor)	approved Tree	and throughout	and as per tree	
	shall be provided in the Contract Specification, under which the Contractor shall			Removal	construction	protection measures	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage).			Application(s)	period	in Particular Specification	
Table 10.8.1	CM5 - Trees unavoidably affected by the works shall be transplanted where practicable. Where possible, trees should be transplanted direct to permanent locations rather than temporary holding nurseries. A detailed tree transplanting specification shall be provided in the Contract Specification and sufficient time for preparation shall be allowed in the construction programme.	To maximize preservation of existing trees	CEDD (via Contractor)	As per approved Tree Removal Application(s)	Site clearance	ETWB TC 3/2006 and as per tree protection measures in Particular Specification	٨
Table 10.8.1	CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and hoardings. Trees shall be capable of reaching a height >10m within 10 years.	To maximize screening of the works	CEDD (via Contractor)	At Lam Tin Interchange and edge of Road P2 Iandscape deck, TKO	Beginning of construction period	N/A	٨
Table 10.8.1	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual intrusion	CEDD (via Contractor)	General	Throughout construction period	As per Particular Specification	N/A
Table 10.8.1 Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of night working periods. CM9 - Screening of works areas with hoardings with appropriate colours	To reduce visual intrusion	CEDD (via Contractor) CEDD (via	General Project site	Throughout construction period Excretion of site	N/A	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
10.8.1	compatible with the surrounding area	intrusion	Contractor)	Boundary	hoarding		
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of visual	CEDD (via	Built structures	Design and	N/A	^
10.8.1		intrusion and	Contractor)		construction		
		integration with			stage		
		environment					
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	٨
10.8.1		contamination of water	Contractor)	reclamation,	construction		
		courses and water		TKO tunnel	period		
		bodie		portal, Cha			
				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in	Minimise loss of Junk	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	with adjacent coastline characte	Bay and integration	Contractor)	reclamation for	planning and		
		with existing coastlin		barging points	reclamation		
				at TKO and	stages		
				Lam Tin and			
				permanent			
				reclamation for			
				TKO			
				Interchange			
				slip roads and			
				Road P2			

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
Landfill	Gas Hazard (Design and Construction Phase)						
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill Gas	۸
	gas-related hazards, should be present on site throughout the groundworks	from landfill gas		within the Sai	phase	Hazard Assessment	
	phase. The Safety Officer should be provided with an intrinsically safe portable	hazards		Tso Wan		Guidance Note	
	instrument, which is appropriately calibrated and able to measure the following			Landfill			
	gases in the ranges indicated below:			Consultation			
	Methane 0-100% LEL and 0100% v/v			Zone			
	Carbon dioxide 0-100%						
	Oxygen 0-21%						
S11.5.10	Safety Measures	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill Gas	
S11.5.25	- For staff who work in, or have responsibility for "at risk" area, such as all	from landfill gas		within the Sai	phase	Hazard Assessment	N/A
	excavation workers, supervisors and engineers working within the	hazards		Tso Wan		Guidance Note	
	Consultation Zone, should receive appropriate training on working in areas			Landfill		Labour Department's	
	susceptible to landfill gas, fire and explosion hazards.			Consultation		Code of Practice for	
	- An excavation procedure or code of practice to minimize landfill gas related			Zone		Safety and Health at	N/A
	risk should be devised and carried out.					Work in Confined	
	- No worker should be allowed to work alone at any time in or near to any					Space	N/A
	excavation. At least one other worker should be available to assist with a						
	rescue if needed.						
	- Smoking, naked flames and all other sources of ignition should be prohibited						N/A
	within 15m of any excavation or ground-level confined space. "No						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	smoking" and "No naked flame" notices should be posted prominently						
	on the construction site and, if necessary, special areas should be designed						
	for smoking.						
	- Welding, flame-cutting or other hot works should be confined to open areas						N/A
	at least 15m from any trench or excavation.						
	- Welding, flame-cutting or other hot works may only be carried out in trenches						N/A
	or confined spaces when controlled by a "permit to work" procedure,						
	properly authorized by the Safety Officer (or, in the case of small						
	developments, other appropriately qualified person).						
	- The permit to work procedure should set down clearly the requirements for						N/A
	continuous monitoring for methane, carbon dioxide and oxygen throughout						
	the period during which the hot works are in progress. The procedure						
	should also require the presence of an appropriately qualified person, in						
	attendance outside the 'confined area', who should be responsible for						
	reviewing the gas measurements as they are made, and who should have						
	executive responsibility for suspending the work in the event of unacceptable						
	or hazardous conditions. Only those workers who are appropriately trained						
	and fully aware of the potentially hazardous conditions which may arise						
	should be permitted to carry out hot works in confined areas.						
	- Where there are any temporary site offices, or any other buildings located						N/A
	within the Sai Tso Wan Landfill Consultation Zone which have enclosed						
	spaces with the capacity to accumulate landfill gas, then they should either						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	be located in an area which has been proven to be free of landfill gas (by						
	survey using portable gas detectors); or be raised clear of the ground by a						
	minimum of 500mm. This aims to create a clear void under the structure						
	which is ventilated by natural air movement such that emission of gas from						
	the ground are mixed and diluted by air.						
	- Any electrical equipment, such as motors and extension cords, should be						N/A
	intrinsically safe. During piping assembly or conduiting construction, all						
	valves/seals should be closed immediately after installation. As						
	construction progresses, all valves/seals should be closed to prevent the						
	migration of gases through the pipeline/conduit. All piping /conduiting						
	should be capped at the end of each working day.						
	- During construction, adequate fire extinguishing equipment, fire-resistant						N/A
	clothing and breathing apparatus (BA) sets should be made available on site.						
	- Fire drills should be organized at not less than six monthly intervals.						N/A
	- The contractor should formulate a health and safety policy, standards and						N/A
	instructions for site personnel to follow.						
	- All personnel who work on the site and all visitors to the site should be made						N/A
	aware of the possibility of ignition of gas in the vicinity of excavations.						
	Safety notices (in Chinese and English) should be posted at prominent						
	position around the site warning danger of the potential hazards.						
	- Service runs within the Consultation Zone should be designated as "special						N/A
	routes"; utilities companies should be informed of this and precautionary						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	measures should be implemented. Precautionary measures should include						
	ensuring that staff members are aware of the potential hazards of working in						
	confined spaces such as manholes and service chambers, and that						
	appropriate monitoring procedures are in place to prevent hazards due to						
	asphyxiating atmospheres in confined spaces. Detailed guidance on entry						
	into confined spaces is given in Code of Practice on Safety and Health at						
	Work in Confined Spaces (Labour Department, Hong Kong).						
	- Periodically during ground-works construction within the 250m Consultation						N/A
	Zone, the works area should be monitored for methane, carbon dioxide and						
	oxygen using appropriately calibrated portable gas detection equipment.						
	The monitoring frequency and areas to be monitored should be set down						
	prior to commencement of ground-works either by the Safety Officer or an						
	approved and appropriately qualified person.						
S11.5.26	Monitoring	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill Gas	
-	Routine monitoring should be carried out in all excavations, manholes,	from landfill gas		within the Sai	phase	Hazard Assessment	N/A
S11.5.31	chambers, relocation of monitoring wells and any other confined spaces	hazards		Tso Wan		Guidance Note	
	that may have been created. All measurements in excavations should be			Landfill			
	made with the extended monitoring tube located not more than 10 mm from			Consultation			
	the exposed ground surface. Monitoring should be performed properly to			Zone			
	make sure that the area is free of landfill gas before any man enters into the						
	area.						
	• For excavations deeper than 1m , measurements should be carried out:						N/A

EIA Ref.		Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
			recommended	implement the	the measures	Implement the	or standards for the	
			Measures & Main	measures?		measures?	measures to	
			Concerns to address				achieve?	
		- at the ground surface before excavation commences;-						
		- immediately before any worker enters the excavation;						
		- at the beginning of each working day for the entire period the excavation						
		remains open; and						
		- periodically throughout the working day whilst workers are in the						
		excavation.						
	•	For excavations between 300mm and 1m deep, measurements should be						N/A
		carried out:						
		- directly after the excavation has been completed; and						
		- periodically whilst the excavation remains open.						
	•	For excavations less than 300mm deep, monitoring may be omitted, at the						N/A
		discretion of the Safety Officer or other appropriately qualified person.						
	•	Depending on the results of the measurements, actions required will vary						N/A
		and should be set down by the Safety Officer or other appropriately						
		qualified person.						
	•	The exact frequency of monitoring should be determined prior to the						N/A
		commencement of works, but should be at least once per day, and be						
		carried out by a suitably qualified or qualified person before starting the						
		work of the day. Measurements shall be recorded and kept as a record of						
		safe working conditions with copies of the site diary and submitted to the						
		Engineer for approval. The Contractor may elect to carry out monitoring via						
		an automated monitoring system.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
S11.5.32	The hazards from landfill gas during the construction stage within the Sai Tso Wan	construction stage	Contractor	Project sites	Construction	EPD's Landfill Gas	N/A
	Landfill Consultation Zone should be minimized by suitable precautionary	within the Sai Tso Wan		within the Sai	phase	Hazard Assessment	
	measures recommended in Chapter 8 of the Landfill Gas Hazard Assessment	Protect the workers		Tso Wan		Guidance Note	
	Guidance Note.	from landfill gas		Landfill			
		hazards		Consultation			
				Zone			

Remarks:

- Compliance of mitigation measure
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log in the Reporting Period

Received Date	Date/Location	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
7 th December 2016	Not Specified / Work sites in Lam Tin			Under investigation	In progress
9 th December 2016	Not Specified / Work sites in Lam Tin	Public from Nga Lai House, YAU LAI ESTATE	Construction noise nuisance at Nga Lai House, YAU LAI ESTATE	Under investigation	In progress
9 th December 2016	Not Specified / Construction of Road P2		The complainant complained about the noise nuisance during transportation of construction materials on haul road and dust generation during construction activities.	Under investigation	In progress
20 th December 2016	Not Specified / Construction of Road P2	Resident of Ocean Shore	The complainant complained about the lighting and noise nuisance on construction vessels moored near Ocean Shores during night time.	Under investigation	In progress
22 nd December 2016	22 nd December 2016 / Construction of Ocean Shores by the construction		The complainant concerned the noise generated by the construction works at hillside near Block 3 of Ocean Shores in daytime.	Under investigation	In progress
22 nd December 2016	Not specified / Construction of TKO	Public	The complainant complained about the noise generated by the construction works at hillside in	Under investigation	In progress

	portal		daytime.		
22 nd December 2016	Not specified / Construction of Road P2	Resident from Ocean Shore	The complainant complained about the noise nuisance of broadcast on construction vessel near Ocean Shores at 7am and the noise generated by the construction works outside Tseung Kwan O Chinese Permanent Cemetery.	Under investigation	In progress
22 nd December 2016	Not specified / Construction of Road P2 and TKO portal	Resident from Ocean Shore	The complainant complained about the noise nuisance generated by construction works of Tseung Kwan O portal in daytime and noise nuisance of "loud speaker" on construction vessel near Ocean Shores.	Under investigation	In progress

Cumulative Log for Notifications of Summons

Contract No. NE/2015/01

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Agreement No. CE 59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report

Contract No. NE/2015/02

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Cumulative Log for Successful Prosecutions

Contract No. NE/2015/01

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

Contract No. NE/2015/02

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH

Contract No.: NE/2015/01 LEIGHTON ARK-中国制度 Leighton - China State Joint Venture

Monthly Summary Waste Flow Table for 2016

	Actu	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual (Quantities of	C&D Wastes	Generated I	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete (see Note 9)	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill (see Note 10)	f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January											
February											
March											
April											
Мау											
June											
Sub-total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
July	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
August	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010
September	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.039
October	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.026
November	21.423	0.000	18.636	0.000	2.787	0.000	39.410	0.000	0.000	0.000	0.099
December	52.535	0.000	39.092	0.000	13.443	0.000	TBC	0.285	0.000	0.000	0.055
Total	73.958	0.000	57.728	0.000	16.230	0.000	39.410	0.285	0.000	0.500	0.229

Total C&D waste generated = a+b+f+g+h+i+j+k

Total C&D waste generated (excluded excavated material) = g+h+i+j+k

Total C&D waste recycled = c+d+g+h+i

% of recycled C&D waste = (Total C&D waste generated - Total C&D waste recycled) / Total C&D waste generated

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract*											
a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete (see Note 9)	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill (see Note 10)	f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse		
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)		

Notes: (1) The performance target are given in PS Clause 6(14)

- (2) The waste flow table shall also include C&D materials that are not specified in the Contract to be imported for use at the Site
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (4) The Contractor shall also submit the latest forecast of the amount of C&D materials expected to be generated from the Works, together with a break down of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000m3.
- (5) All recyclable materials, including metals, paper / cardboard packaging, plastics, etc. will be collected by registered collector for recycling.
- (6) Conversion factors for reporting purpose:
 - in-situ: rock = 2.5 tonnes/m³; soil = 2.0 tonnes/m³ excavated: rock = 2.0 tonnes/m³; soil = 1.8 tonnes/m³; broken concrete and bitumen = 2.4 tonnes/m³, soil and rock = 1.9 tonnes/m³ C&D Waste = 0.9 tonnes/m³; bentonite slurry = 2.8 tonnes/m³ Diesel density: 0.8kg/l
- (7) Numbers are rounded off to the nearest three decimal places
- (8) The "Total Quantity Generated" equals to the sum of "Reuse in the Contract", "Reuse in Other Projects" and "Disposed as Public Fill"
- (9) The "Hard Rock and Large Broken Concrete" were disposed as public fill
- (10) The amount in "Disposed as Public Fill" included the "Hard Rock and Large Broken Concrete" disposed as public fill

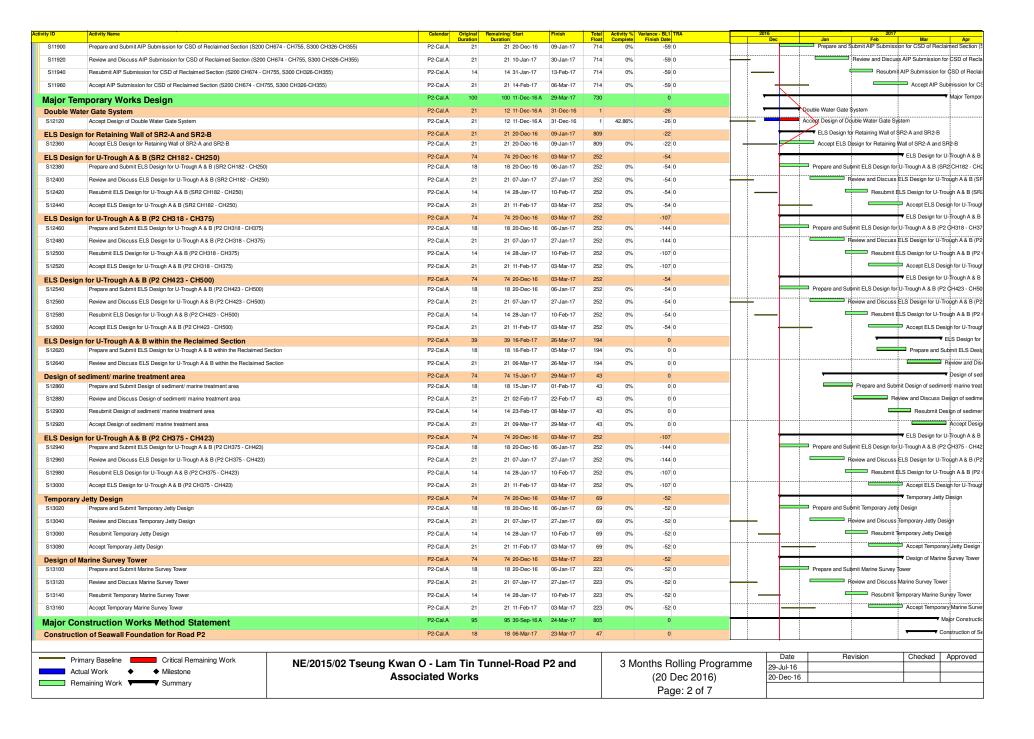
Monthly Summary Waste Flow Table for 2016 Year

Contract No. NE/2015/02

		A . (. 1 O	'.' CT	M.4. I.I. C.	4. 1 M (1.1			1.4.10	COODW		1
		Actual Quan	tities of Inert C&I) Materials Genera	tea Monthly			Actual Quantities	of C&D Wastes G	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Feb	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Mar	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Apr	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
May	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
June	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
SUB- TOTAL	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Jul	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Aug	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00394
Sep	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00154
Oct	0.01872	0.00000	0.00000	0.00000	0.01872	0.00000	0.00000	0.00000	0.00000	0.00000	0.97326
Nov	0.23214	0.00000	0.00000	0.0000	0.23214	0.00000	0.00000	0.00000	0.00000	0.00000	0.43900
Dec	8.20035	0.00000	0.00000	0.00000	8.20035	0.00000	0.00000	0.00000	0.00000	0.00000	0.03056
TOTAL	8.45121	0.00000	0.00000	0.00000	8.45121	0.00000	0.00000	0.00000	0.00000	0.00000	1.44830

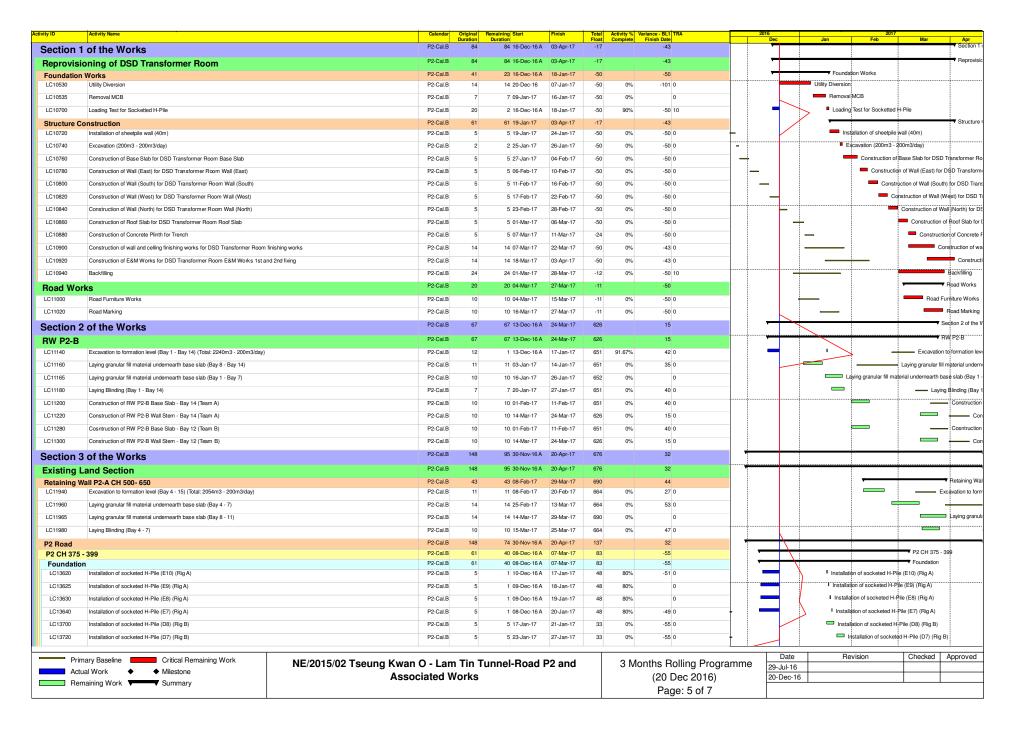
Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

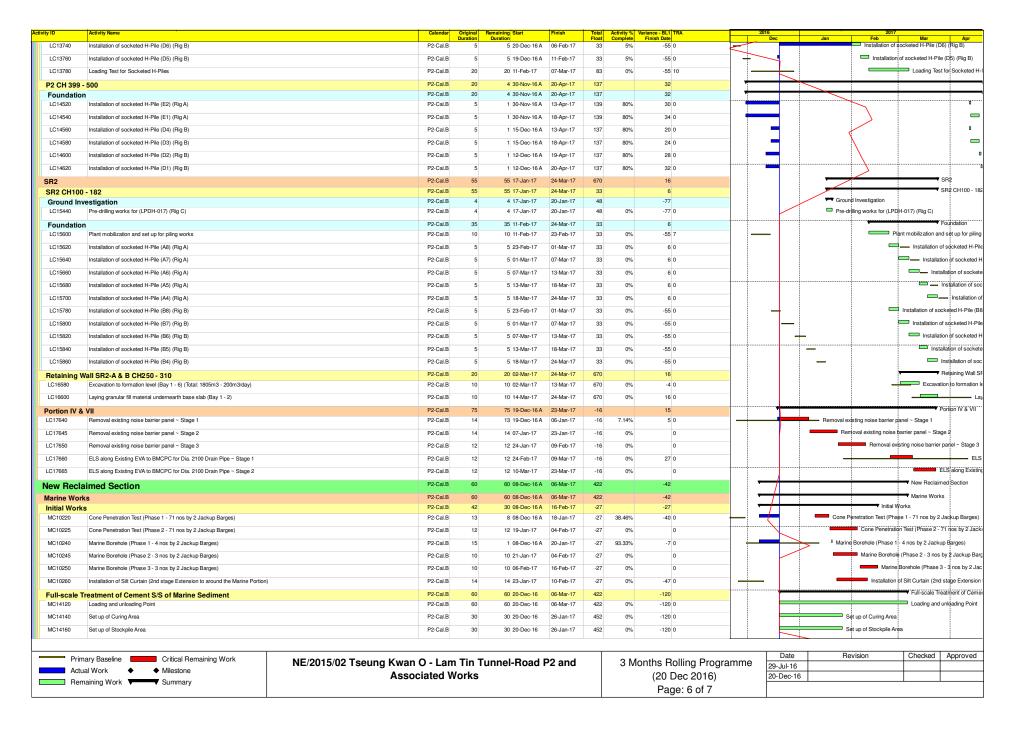
Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005
Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material


APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME

High Level 3 Months Look Ahead Programme

Activities	Jan-17	Feb-17	Mar-17
Lam Tin Interchange			
Excavation for Tunnel Adit			
Haul Road construction			
Slope Feature no. 11NE-D/C119 (along LYM Road)			
EHC2 U-Trough			
Site Formation - Area 1G1			
Temp Steel Bridge across CKL Road			
Pipe Pile Wall - Area 2A			
Main Tunnel			
Tunnel Team Mobilisation Works			
Construction Adit			
TKO Interchange			
Haul Road construction			
BMCPC Bridge Tempoary Diversion			
Temporary Barging Facilities			


NE/2015/01 04/01/2017


vity ID	Activity Name	Calendar	Original Duration	Remaining Start Duration 1371 17-Aug-16 A	Finish	Float	Activity % Variance Complete Finis	sh Date	Dec	Jan	Feb Feb	Mar	Арі
	2 Tseung Kwan O - Lam Tin Tunnel-Road P2 and Associated Works		1591		20-Sep-20			0					
Prelimina	ries, Submission, Contractor's Design Submission and Approval		1159	1015 17-Aug-16 A		220		0					
Prelimina	ies		81	80 22-Nov-16 A	09-Mar-17	503		29				Preliminarie	
	orary Noise Barrier	P2-Cal.B	12	12 10-Feb-17	23-Feb-17	-16		-21				Erect Temporary Nois	
LC10160	Erection of Temporary Noise Barrier at Portion IV	P2-Cal.B	12	12 10-Feb-17	23-Feb-17	-16	0%	-21 0				Erection of Temporary	
LC10220	Approve the Project Manager's and Contractor's Site Office and Physical Model Resubmit Project Manager's and Contractor's Site Office and Construction of Physical Model	P2-Cal.A P2-Cal.A	45 14	25 23-Nov-16 A 4 23-Nov-16 A	13-Jan-17 23-Dec-16	132	71.43%	-56 -56 0	B		1	's Site Office and Con	
LC10240	Aprove the Project Manager's and Contractor's Site Office and Construction of Physical Model	P2-Cal.A	21	21 24-Dec-16	13-Jan-17	132	0%	-56 0			T	and Contractor's Site	
		P2-Cal.B	32	29 22-Nov-16 A	09-Mar-17	106	076	24		Aprove ti	e i Toject Wariager a	Erect project	
Erect projec LC10280	t Manager's and Contractor's Site Office Erection of Post and Decking	P2-Cal.B	7	1 22-Nov-16 A	04-Feb-17	106	85.71%	10 0			- Erect	ion of Post and Deck	
LC10300	Construction of Envelope	P2-Cal.B	7	1 22-Nov-16 A	06-Feb-17	106	85.71%	16 0			·	Construction of Enve	elope
LC10320	Installtion of Door and Window Frame	P2-Cal.B	7	2 24-Nov-16 A	08-Feb-17	106	71.43%	21 0				Installtion of Do	oor and V
LC10340	Finishing works	P2-Cal.B	7	7 29-Nov-16 A	16-Feb-17	106	0%	21 0				Finishing	
LC10360	E&M Works 1 & 2nd fix	P2-Cal.B	7	7 09-Feb-17	16-Feb-17	106	0%	24 0				E&M W	1
LC10380	Fitting-out works	P2-Cal.B	10	10 17-Feb-17	28-Feb-17	106	0%	24 0					- Fitting-
LC10400	F&M Works 3rd fix	P2-Cal.B		6 25-Feb-17	03-Mar-17	106	0%	24 0			ļ		E&M
LC10400					08-Mar-17			24 0					
LC10420	Electricity and Fresh Water Connection	P2-Cal.B	5	4 04-Mar-17 5 04-Mar-17	08-Mar-17	107	0%	24 0					
	FF&E and Information System Setup		38			416	0%	24 0				Build Bun-in & out	
Build Run-ir	Ruild of Construction Site Run-in and out	P2-Cal.B	38	38 10-Jan-17	25-Feb-17 25-Feb-17	416	0%	0 0		·		Build of Construction	n Site Ru
		P2-Cal.A	230	86 17-Aug-16 A	15-Mar-17	167	0,0	0					Submis
ieneral S	ubmission		165		09-Jan-17	232	87.27%	0 45		Application	f Road Excavation I	Parmit (VP)	
S10020 S10040	Application of Road Excavation Permit (XP) Prepare/Submit the Temporary Drainage Management Plan to DSD (DSD)	P2-Cal.A P2-Cal.A	60	21 25-Aug-16 A 60 20-Dec-16	17-Feb-17	89	0%	-83 0		Application		are/Submit the Tempo	orani Dra
											1	are/Submit the rempt	Jiany Die
310060	Prepare/Submit the PR Plan	P2-Cal.A	21	21 20-Dec-16	09-Jan-17	89	0%	-144 0		.,	mit the PR Plan		
S10120	Produce Webpage for the acceptance of PM	P2-Cal.A	14	7 09-Sep-16 A	26-Dec-16	103	50%	-91 0		roduce Webpage for			
S10240	Prepare/Submit the Weather Protection Scheme	P2-Cal.A	30	5 17-Aug-16 A	24-Dec-16	105	83.33%	-112 0	P	epare/Submit the We			
S10280	Prepare/Submit the Risk Management Plan	P2-Cal.A	60	15 17-Aug-16 A	03-Jan-17	95	75%	-99 0			he Risk Manageme	nt Plan	
S10400	Submit the ICE PII Policy	P2-Cal.A	60	10 23-Sep-16 A	29-Dec-16	0	83.33%	-94 0		Submit the ICE PII I	olicy		
S10780	Submit source of sand fill	P2-Cal.A	30	30 14-Feb-17	15-Mar-17	71	0%	0 0	<u> </u>			Submit	source o
Contracto	r's Design Submission and Approval	P2-Cal.A	143	143 19-Nov-16 A	11-May-17	966		-26					
Foundation	Design	P2-Cal.A	143	143 20-Dec-16	11-May-17	231		-26					
AIP Submis	sion for Foundation of Road P2 Structure (Reclaimed Section) Prepare and Submit AIP Submission for Foundation of Road P2 Structure (Reclaimed Section)	P2-Cal.A P2-Cal.A	143	143 20-Dec-16 143 20-Dec-16	11-May-17 11-May-17	231	0%	-26 -26 0					
			143				0%						7 E&M D
E&M Design	n for E&M Works (Tunnel and associated)	P2-Cal.A P2-Cal.A	98	98 20-Dec-16 84 20-Dec-16	27-Mar-17 13-Mar-17	1011 774		-68				Detail De	- 1
S11580	Prepare and Submit Detail Design for E&M Works (Tunnel and associated)	P2-Cal.A	21	21 20-Dec-16	09-Jan-17	774	0%	-68 0		Prepare and	Submit Detail Design	gn for E&M Works (Tu	
S11600	Review and Discuss Detail Design for E&M Works (Tunnel and associated)	P2-Cal.A	21	21 10-Jan-17	30-Jan-17	774	0%	-68 0			1	us's Detail Design for I	- 1
S11620	Resubmit Detail Design for E&M Works (Tunnel and associated)	P2-Cal.A	21	21 31-Jan-17	20-Feb-17	774	0%	-68 0			Re	submit Detail Design	ı for E&M
S11640	Accept Detail Design for E&M Works (Tunnel and associated)	P2-Cal.A	21	21 21-Feb-17	13-Mar-17	774	0%	-68 0		<u> </u>	_	Accept D	
Decian of A	rchitectural Finishes for Internal Walls of U-Trough Structures	P2-Cal.A	56	56 31-Jan-17	27-Mar-17	1011		0					7 Design
S11660	Prepare and Submit Design of Architectural Finishes for Internal Walls of U-Trough Structures	P2-Cal.A	21	21 31-Jan-17	20-Feb-17	1011	0%	0 0		-	Pr	epare and Submit De	sign of A
S11680	Review and Discuss Design of Architectural Finishes for Internal Walls of U-Trough Structures	P2-Cal.A	21	21 21-Feb-17	13-Mar-17	1011	0%	0 0			_	Review a	and Discu
S11700	Resubmit Design of Architectural Finishes for Internal Walls of U-Trough Structures	P2-Cal.A	14	14 14-Mar-17	27-Mar-17	1011	0%	0 0					Resubn
Contractor (Cost Saving Design	P2-Cal.A	77	77 19-Nov-16 A	06-Mar-17	741		-59				Contractor Co	st Savin
	sion for CSD of Exisitng Land Section (P2 CH423 - CH500)	P2-Cal.A	35	51 19-Nov-16 A	08-Feb-17	767		-44			AIP Submi	ssion for CSD of Exis	itng Lan
S11840	Review and Discuss AIP Submission for CSD of Existing Land Section (P2 CH423 - CH500)	P2-Cal.A	21	16 19-Nov-16 A	04-Jan-17	767	23.81%	-44 0		Review and Dis	cuss AIP Submission	n for CSD of Exisitng	Land Se
S11860	Resubmit AIP Submission for CSD of Exisitng Land Section (P2 CH423 - CH500)	P2-Cal.A	14	14 05-Jan-17	18-Jan-17	767	0%	-44 0	+ -	Resul	mit AIP Submission	for CSD of Exisitng L	Land Sed
S11880	Accept AIP Submission for CSD of Existing Land Section (P2 CH423 - CH500)	P2-Cal.A	21	21 19-Jan-17	08-Feb-17	767	0%	-44 0	 	_	Accept AIF	Submission for CSD	o Exisi
AIP Submis	sion for CSD of Reclaimed Section (S200 CH674 - CH755, S300 CH326-CH355)	P2-Cal.A	77	77 20-Dec-16	06-Mar-17	714		-59				AIP Submission	on for C
Actu	ary Baseline Critical Remaining Work al Work	O - Laı ciated \		unnel-Road F	22 and			ns Rolling Programr (20 Dec 2016) Page: 1 of 7	Date 29-Jul-10 20-Dec-	5	evision	Checked	Appro

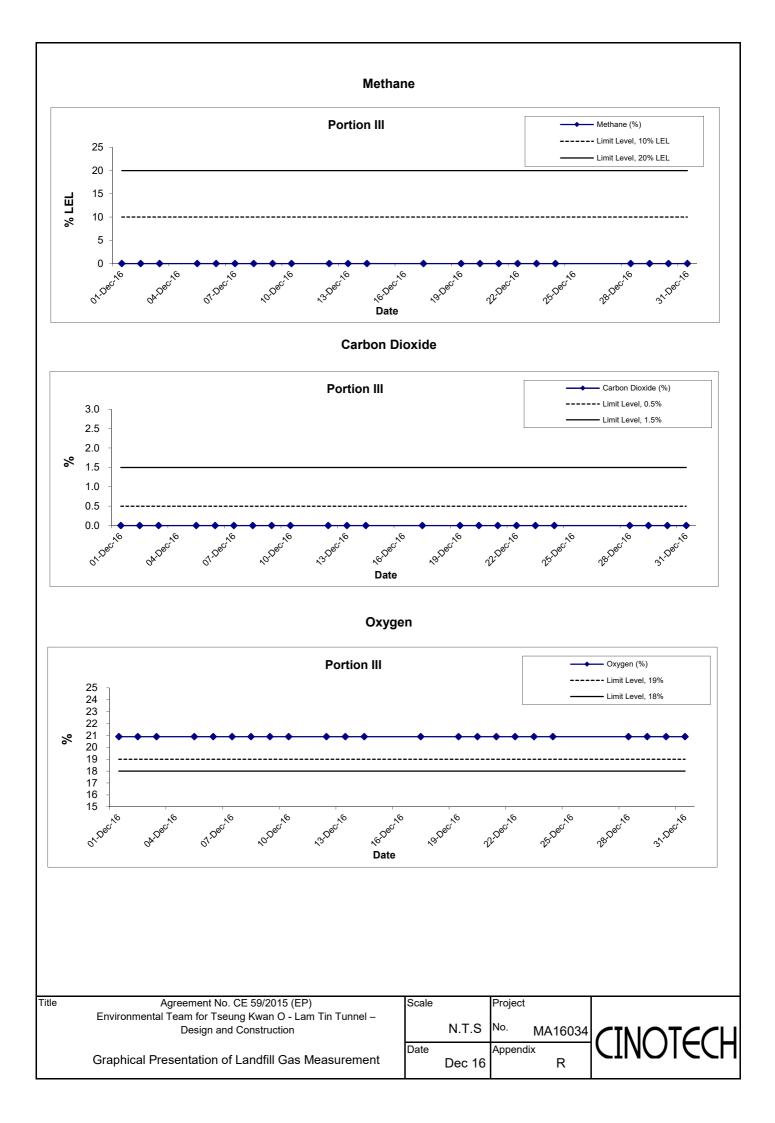
tivity ID	Activity Name		Calendar	Original Duration	Remaining Start	Finish	Total Float	Activity % V	ariance - BL1 TRA Finish Date		2016 Dec	2017	Mor	Apr
S13260	Prepare and Submit Method Statement for Construction of Seawall Foundat	ion for Road P2	P2-Cal.A	18	18 06-Mar-17	23-Mar-17	47	0%	0 0		Dec	Jan Teb	Prepa	are and Subn
Reclamation	Filing		P2-Cal.A	67	67 05-Jan-17	12-Mar-17	94		0			l -	Reclamation	Filing
S13340	Prepare and Submit Method Statement for Reclamation Filing		P2-Cal.A	18	18 05-Jan-17	22-Jan-17	94	0%	0 0			Prepare and Submit Metho	J Statement for Reck	lamation Filin
S13360	Review and Discuss Method Statement for Reclamation Filing		P2-Cal.A	21	21 23-Jan-17	12-Feb-17	94	0%	0 0			Review and	Discuss Method State	atement for R
S13380	Resubmit Method Statement for Reclamation Filing		P2-Cal A	7	7 13-Feb-17	19-Feb-17	94	0%	0.0			Results	nit Method Statement	nt for Beclam
S13400	Accept Method Statement for Reclamation Filing		P2-Cal.A	21	21 20-Feb-17	12-Mar-17	94	0%	0 0				Accept Metho	
	<u> </u>							0%	0 0					
	g/ Removing Existing Seawall		P2-Cal.A	67	67 15-Jan-17	22-Mar-17	50		0			<u> </u>		olishing/ Rem
S13580	Prepare and Submit Method Statement for Demolishing/ Removing Existing		P2-Cal.A	18	18 15-Jan-17	01-Feb-17	50	0%	0 0				Method Statement for	
S13600	Review and Discuss Method Statement for Demolishing/ Removing Existing	Seawall	P2-Cal.A	21	21 02-Feb-17	22-Feb-17	50	0%	0 0				w and Discuss Meth	
S13620	Resubmit Method Statement for Demolishing/ Removing Existing Seawall		P2-Cal.A	7	7 23-Feb-17	01-Mar-17	50	0%	0 0				Resubmit Method Sta	atement for E
S13640	Accept Method Statement for Demolishing/ Removing Existing Seawall		P2-Cal.A	21	21 02-Mar-17	22-Mar-17	50	0%	0 0				Accer	pt Method Sta
Installation	of Silt Curtain		P2-Cal.A	21	21 20-Dec-16 A	09-Jan-17	-35		-84			Installation of Silt Curtain		
S13720	Accept Method Statement for Installation of Silt Curtain		P2-Cal.A	21	21 20-Dec-16 A	09-Jan-17	-35	0%	-84 0			Accept Method Statement for Installa	tion of Silt Curtain	
Installation	Operation and Removal of Water Gate		P2-Cal.A	67	67 20-Dec-16	24-Feb-17	28		-54			Inst	allation, Operation an	nd Removal c
S13820	Prepare and Submit Method Statement for Installation, Operation and Remo	val of Water Gate	P2-Cal.A	18	18 20-Dec-16	06-Jan-17	28	0%	-54 0			Prepare and Submit Method Statemen	for Installation, Oper	eration and Re
S13840	Review and Discuss Method Statement for Installation, Operation and Remo	oval of Water Gate	P2-Cal.A	21	21 07-Jan-17	27-Jan-17	28	0%	-54 0			Review and Discuss M	thod Statement for	Installation, C
S13860	Resubmit Method Statement for Installation, Operation and Removal of Water		P2-Cal.A	7	7 28-Jan-17	03-Feb-17	28	0%	-54 0		_	Resubmit Method		
							1							
S13880	Accept Method Statement for Installation, Operation and Removal of Water	GATE	P2-Cal.A	21	21 04-Feb-17	24-Feb-17	28	0%	-54 0				ept Method Statemer	
	n of Retaining Wall Structure RW P2-A		P2-Cal.A	32	36 25-Oct-16 A	24-Jan-17	820					Construction of Retaining		
S14043	Resubmit Method Statement for Construction of Retaining Wall Structure		P2-Cal.A	7	15 25-Oct-16 A	03-Jan-17	820	0%	0			Resubmit Method Statement for Constru		
S14044	Accept Method Statement for Construction of Retaining Wall Structure		P2-Cal.A	21	21 04-Jan-17	24-Jan-17	820	0%	0			Accept Method Statemen	for Construction of F	Retaining Wa
Constructio	n of Retaining Wall Structure RW SR2-A & B		P2-Cal.A	51	51 25-Oct-16 A	01-Mar-17	828						Construction of Retail	
S14047	Resubmit Method Statement for Construction of Retaining Wall Structure		P2-Cal.A	7	30 25-Oct-16 A	08-Feb-17	828	0%	0			Resubmit Meth	od Statement for Cor	instruction of
S14048	Accept Method Statement for Construction of Retaining Wall Structure		P2-Cal.A	21	21 09-Feb-17	01-Mar-17	828	0%	0				Accept Method State	ement for Cor
Constructio	n of U-Troughs Structure		P2-Cal.A	39	39 14-Feb-17	24-Mar-17	417		0				Cons	struction of L
S14140	Prepare and Submit Method Statement for Construction of U-Troughs Struc	ture	P2-Cal.A	18	18 14-Feb-17	03-Mar-17	417	0%	0 0				Prepare and Submit	it Method Sta
S14160	Review and Discuss Method Statement for Construction of U-Troughs Structure	cture	P2-Cal.A	21	21 04-Mar-17	24-Mar-17	417	0%	0 0				Revi	iew and Disci
			P2-Cal A	39	39 14-Feb-17	24-Mar-17	13		0				Dree	dging Works
Dredging W S14220	Prepare and Submit Method Statement for Dredging Works		P2-Cal.A	18	18 14-Feb-17	03-Mar-17	13	0%	0 0				Prepare and Submit	
S14240			P2-Cal.A	21	21 04-Mar-17	24-Mar-17	13		0 0					iew and Disci
514240	Review and Discuss Method Statement for Dredging Works							0%	0 0					
	f Dredged Marine Sediment of Type 1		P2-Cal.A	18	18 06-Mar-17	23-Mar-17	424		0					tment of Dred
S14300	Prepare and Submit Method Statement for Treatment of Dredging Marine Se	ediment of Type 1	P2-Cal.A	18	18 06-Mar-17	23-Mar-17	424	0%	0 0				Prepa	
	n of Temporary Site Office and Design Calculation for S		P2-Cal.A	24	21 02-Dec-16 A	03-Feb-17	132		-3				nporary Site Office a	
S14420	Resubmit Method Statement for Temporary Site Office and Design Calculation	on for Site Office	P2-Cal.A	14	0 02-Dec-16 A	14-Jan-17	132	100%	-3 0			Resubmit Method Statement for	emporary Site Office	and Design
S14440	Accept Method Statement for Temporary Site Office and Design Calculation	for Site Office	P2-Cal.A	21	21 14-Jan-17	03-Feb-17	132	0%	-3 0			Accept Method \$ta	tement for Temporary	ry Site Office
Constructio	n of Transformer Room		P2-Cal.A	44	30 03-Nov-16 A	18-Jan-17	-54		-79			Construction of Transformer F	oom	
S14660	Resubmit Method Statement for Construction of Transformer Room		P2-Cal.A	14	9 03-Nov-16 A	28-Dec-16	-54	35.71%	-79 0			Resubmit Method Statement for Construction	of Transformer Roor	mc
S14680	Accept Method Statement for Construction of Transformer Room		P2-Cal.A	21	21 29-Dec-16	18-Jan-17	-54	0%	-79 0			Accept Method Statement for	Construction of Trans	sformer Roo
Tree Survey			P2-Cal.A	23	23 07-Oct-16 A	11-Jan-17	7		-111	-		▼ Tree Survey		
S14740	Resubmit Method Statement for Tree Survey		P2-Cal.A	7	2 07-Oct-16 A	21-Dec-16	7	71.43%	-111 0	-		Resubmit Method Statement for Tree Survey		
S14760	Accept Method Statement for Tree Survey		P2-Cal.A	21	21 22-Dec-16	11-Jan-17	7	0%	-111 0			Accept Method Statement for Tree	Survey	
Marine Worl	ke		P2-Cal.A	33	33 01-Dec-16 A	21-Jan-17	-34		-89			▼ Marine Works		
S14820	Resubmit Method Statement for Marine Works		P2-Cal.A	14	12 01-Dec-16 A	31-Dec-16	-34	14.29%	-89 0	_		Resubmit Method Statement for Marine W	ırks	
S14840	Accept Method Statement for Marine Works		P2-Cal.A	21	21 01-Jan-17	21-Jan-17	-34	0%	-89 0			Accept Method Statement for	or Marine Works	
			P2-Cal.A	28	28 30-Sep-16 A	16-Jan-17	42		-116			▼ Trial Pit and Trench Excavation		
S14900	Trench Excavation Resubmit Method Statement for Trial Pit and Trench Excavation		P2-Cal.A	28 7	28 30-Sep-16 A 7 30-Sep-16 A	16-Jan-17 26-Dec-16	42	0%	-116			Resubmit Method Statement for Trial Pit and T	rench Excavation	
S14920			P2-Cal.A	21		16-Jan-17	42					Accept Method Statement for T		vacuation
	Accept Method Statement for Trial Pit and Trench Excavation				21 27-Dec-16			0%	-116 0			Accept Method Statement for I	i	
	support for excavation of existing seawall		P2-Cal.A	74	74 05-Jan-17	19-Mar-17	11	201	0					ary support fo
S14940	Prepare and Submit Method Statement for Temporary support for excavation		P2-Cal.A	18	18 05-Jan-17	22-Jan-17	11	0%	0 0			Prepare and Submit Metho	ï	
S14960	Review and Discuss Method Statement for Temporary support for excavation	n of existing seawall	P2-Cal.A	21	21 23-Jan-17	12-Feb-17	11	0%	0 0			Review and	Discuss Method State	tement for Te
		1							<u> </u>					
												Date Revision	Checked Ap	pproved
—— Prim	nary Baseline Critical Remaining Work	NE/2015/02 Tooung Kuran	0 - 1	Tim '	Tunnal Dood F	مدو ((2 1/1-	onthe Rolling Dr	aramma			011001100 74	pprovou
	nary Baseline Critical Remaining Work	NE/2015/02 Tseung Kwan				2 and		3 Mc	onths Rolling Pro	-	29-	-Jul-16	7,1	фріотос
Actu	-	•	O - Lam iated W			2 and		3 Mc	onths Rolling Pro (20 Dec 2016	-	29-		Onodica 74	

vity ID	Activity Name	Calendar	Original Duration	Remaining Start	Finish	Total Float	Activity % Complete	Variance - BL1 TRA Finish Date		016 Dec	Jan	2017 Feb	Mar	Apr
S14980	Resubmit Method Statement for Temporary support for excavation of existing seawall	P2-Cal.A	14	14 13-Feb-17	26-Feb-17	11	0%	0 0			- Cui		Resubmit Method :	Statement for
S15000	Accept Method Statement for Temporary support for excavation of existing seawall	P2-Cal.A	21	21 27-Feb-17	19-Mar-17	11	0%	0 0					Acc	ept Method St
Procuren	nent of Major Material		1015	1015 07-Oct-16 A	30-Sep-19	19		0						_
S15020	Procurement and Delivery of Steel H-Pile	P2-Cal.A	800	715 07-Oct-16 A	04-Dec-18	70	10.63%	38 0			<u>:</u>	<u> </u>		
S15040	Procurement and Delivery of ELS Wailing & Struts Members	P2-Cal.A	1015	1015 07-Oct-16 A	30-Sep-19	19	0%	0 0	_					
S15060	Offsite Fabrication of Double Water Gate System	P2-Cal.A	100	100 01-Jan-17	10-Apr-17	1	0%	-26 0	_					or
S15100	Cast-in gantry for Road Works	P2-Cal.A	120	120 20-Dec-16	18-Apr-17	820	0%	-84 0	\perp					
S15120	Vehicle Gates	P2-Cal.A	15	15 20-Dec-16	03-Jan-17	70	0%	-4 0	+		Vehicle Gates	<u> </u>		
S15140	Temporary Steel Cofferdam	P2-Cal.A	21	21 20-Dec-16	09-Jan-17	3	0%	-34 0			Temporary St	el Cofferdam		
S15180	Fabrication of Marine Survey Tower	P2-Cal.B	120	120 04-Mar-17	31-Jul-17	181	0%	-42 0	-					
		P2-Cal.A	96	96 04-Nov-16 A	25-Mar-17	1139		0						Subletting Pa
Marine Wo	g Package	P2-Cal.A	32	10 04-Nov-16 A	29-Dec-16	133		-48			Marine Works			
S16920	Tender Interview and Recommendation to PM for Marine Works	P2-Cal.A	21	10 04-Nov-16 A	29-Dec-16	133	52.38%	-48 0			Tender Interview and	Recommendation to	PM for Marine Wo	rks
S16940	Marine Works Award	P2-Cal.A	0	0	29-Dec-16	133	0%	-48 0	-		Marine Works Award			
	ablization and Solidification	P2-Cal A	42	42 12-Feb-17	25-Mar-17	478		0						Cement Stab
S16960	Prepare Cement Stablization and Solidification Tender Document for PM Acceptance	P2-Cal.A	7	7 12-Feb-17	18-Feb-17	478	0%	0 0	-			Prepa	re Cement Stabliz	ation and Solic
S16980	Invitation, Submission and Opening of Tender for Cement Stablization and Solidification	P2-Cal.A	14	14 19-Feb-17	04-Mar-17	478	0%	0 0	-				Invitation, Sub	1
S17000	Tender Interview and Recommendation to PM for Cement Stablization and Solidification	P2-Cal.A	21	21 05-Mar-17	25-Mar-17	478	0%	0 0			-			Tender Intervi
	and Sewerage Works	P2-Cal.A	42	42 20-Dec-16	30-Jan-17	107	0,0	-56		- ↓	<u> </u>	Drainage and Sewe		
S17040	Prepare Drainage and Sewerage Works Tender Document for PM Acceptance	P2-Cal.A	7	7 20-Dec-16	26-Dec-16	107	0%	-56 0	-	— ,	Pepare Drainage and S			PM Acceptan
S17060	Submission and Opening of Tender for Drainage and Sewerage Works	P2-Cal.A	14	14 27-Dec-16	09-Jan-17	107	0%	-56 0	-	-	Submission a			
S17080	Tender Interview and Recommendation to PM for Drainage and Sewerage Works	P2-Cal.A	21	21 10-Jan-17	30-Jan-17	107	0%	-56 0				Tender Interview an		1
S17100	Drainage and Sewerage Works Award	P2-Cal.A	0	0	30-Jan-17	107	0%	-56 0	-		ļ	Drainage and Sewe		
		P2-Gal.A	42	42 26-Dec-16	05-Feb-17	134	076	0		_		Water Works		
Water Wor S17120	Prepare Water Works Tender Document for PMAcceptance	P2-Cal.A	7	7 26-Dec-16	01-Jan-17	134	0%	0 0		-	Prepare Water Wor		t for PM Acceptant	e
S17140	Submission and Opening of Tender for Water Works	P2-Cal.A	14	14 02-Jan-17	15-Jan-17	134	0%	0 0	-		1	n and Opening of To		
S17160	Tender Interview and Recommendation to PM for Water Works	P2-Cal.A	21	21 16-Jan-17	05-Feb-17	134	0%	0 0	-				w and Recommend	
S17180	Water Works Award	P2-Cal.A	0	0	05-Feb-17	134	0%	0 0				◆ Water Works A		Janor to 1 Will
		P2-Cal.A	42	42 20-Dec-16	30-Jan-17	20	0%	-69				Road Works	ward	
Road Worl	Prepare Road Works Tender Document for PM Acceptance	P2-Cal.A	7	7 20-Dec-16	26-Dec-16	20	0%	-69 0	-		repare Road Works To	:	PM Acceptance	
S17220	Submission and Opening of Tender for Road Works	P2-Cal.A	14	14 27-Dec-16	09-Jan-17	20	0%	-69 0	-			nd Opening of Tende		
S17240	Tender Interview and Recommendation to PM for Road Works	P2-Cal.A	21	21 10-Jan-17	30-Jan-17	20	0%	-69 0	-L		1	Tender Interview an		n to DM for Do
S17260	Road Works Award	P2-Cal.A	0	0	30-Jan-17	20	0%	-69 0	Ţ		1	Road Works Award		
		P2-Cal.A		42 25-Jan-17	07-Mar-17	1157	076				_	Tiodo Worker Marc	Irrigation Wo	wka
Irrigation V S17280	Vorks Prepare Irrigation Works Tender Document for PMAcceptance	P2-Cal.A P2-Cal.A	42	42 25-Jan-17 7 25-Jan-17	07-Mar-17 31-Jan-17	1157	0%	0 0	-			Prepare Irrigation	•	1
S17300	Submission and Opening of Tender for Irrigation Works	P2-Gal A	14	14 01-Feb-17	14-Feb-17	1157	0%	0.0	-				ion and Opening o	
S17300	· · ·	P2-Cal.A	21	21 15-Feb-17	07-Mar-17	1157	0%	0 0	-			Judinias	Tender Inten	
	Tender Interview and Recommendation to PM for Irrigation Works												■ Irrigation Wo	
S17340	Irrigation Works Award	P2-Cal.A	0	0	07-Mar-17	1157	0%	0 0						
Traffic and S17440	Directional Signs	P2-Cal.A	42	42 25-Jan-17	07-Mar-17	957	00/	0				Prepare Traffic and	Traffic and D	
	Prepare Traffic and Directional Signs Tender Document for PM Acceptance	P2-Cal.A	/	7 25-Jan-17	31-Jan-17	957	0%	0 0						
S17460	Submission and Opening of Tender for Traffic and Directional Signs	P2-Cal.A	14	14 01-Feb-17	14-Feb-17	957	0%	0 0				Submiss	ion and Opening o	
S17480	Tender Interview and Recommendation to PM for Traffic and Directional Signs	P2-Cal.A	21	21 15-Feb-17	07-Mar-17	957	0%	0 0					Tender Inten	- 1
S17500	Traffic and Directional Signs Award	P2-Cal.A	0	0	07-Mar-17	957	0%	0 0					◆ Traffic and D	
Tempora	ry Traffic Arrangement Schemes	P2-Cal.A	83	83 20-Dec-16	12-Mar-17	704		-14					Tempora	ry Traffic Arrar
S17800	TMLG Meeting & RMO	P2-Cal.A	7	7 20-Dec-16	26-Dec-16	116	0%	-37 0		<u> </u>	TMLG Meeting & RMO			
S17820	Submit and Approval of the TTA Scheme - Stage 2 (Temp Road)	P2-Cal.A	37	37 18-Jan-17	23-Feb-17	116	0%	-37 30		+	 	Si	bmit and Approval	of the TTA Sc
S17840	Distribute Drawings to TMLG members of the TTA Scheme-TTA Stage 3 (Reinstatement of Tong Yin St.)	P2-Cal.A	12	12 25-Dec-16	05-Jan-17	704	0%	-14 0		— •	Distribute Drawin		rs of the TTA Sche	me-TTA Stage
S17860	TMLG Meeting & RMO	P2-Cal.A	7	7 06-Jan-17	12-Jan-17	704	0%	-14 0	1		TMLG Mee	ing & RMO		
S17880	Submit and Approval of the TTA Scheme - TTA Stage 3 (Reinstatement of Tong Yin Street)	P2-Cal.A	37	37 04-Feb-17	12-Mar-17	704	0%	-14 30	1		l —		Submit a	nd Approval o
Ac	mary Baseline Critical Remaining Work ME/2015/02 Tseung Kwa NE/2015/02 Tseung Kwa Ass	an O - Lai		unnel-Road I	P2 and		3 M	onths Rolling Progra (20 Dec 2016)	amme	Date 29-Jul-16 20-Dec-1	5	vision	Checked	Approve
Re	maining Work Summary	Josialou						(20 000 2010)		20 200	· -			
						- 1		Page: 4 of 7						

Activity ID	Activity Name	Calendar	Original	Remaining Start	Finish	Total	Activity %	Variance - BL1 TRA	2016		2017		
			Duration	Duration		Float	Complete	Finish Date	Dec	Jan	Feb	Mar	Apr
Section 4	of the Works - Preservation and Protection of Existing Trees	P2-Cal.A	1424	1348 08-Oct-16 A	20-Sep-20	7		0					
LC25260	Preservation and Protection of Existing Trees	P2-Cal.A	1424	1348 08-Oct-16 A	20-Sep-20	7	5.34%	0 0				>	
Section 5	of the Works - Landscaping Works	P2-Cal.B	180	150 08-Dec-16 A		9		3	•				
LC25320	Tree Transplanting Preparation Works	P2-Cal.B	180	150 08-Dec-16 A	18-Jul-17	9	16.67%	3 0					$\overline{}$

 Primary Baseline			Critical Remaining Work
Actual Work	•	٠	Milestone
Remaining Work		•	Summary

NE/2015/02 Tseung Kwan O - Lam Tin Tunnel-Road P2 and Associated Works


3 Months Rolling Programme (20 Dec 2016) Page: 7 of 7

Date	Revision	Checked	Approved
29-Jul-16			
20-Dec-16			
		-	

APPENDIX R RECORD OF LANDFILL GAS MONITORING BY CONTRACTOR

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	1-Dec-16	8:30 AM	Sunny	24	0	0	20.9
	2-Dec-16	8:30 AM	Sunny	20	0	0	20.9
	3-Dec-16	8:30 AM	Sunny	26	0	0	20.9
	5-Dec-16	8:30 AM	Sunny	23	0	0	20.9
	6-Dec-16	8:30 AM	Sunny	23	0	0	20.9
	7-Dec-16	9:00 AM	Sunny	19	0	0	20.9
	8-Dec-16	8:30 AM	Sunny	21	0	0	20.9
	9-Dec-16	8:25 AM	Sunny	22	0	0	20.9
	10-Dec-16	8:30 AM	Cloudy	23	0	0	20.9
	12-Dec-16	8:30 AM	Sunny	22	0	0	20.9
	13-Dec-16	8:15 AM	Sunny	26	0	0	20.9
	14-Dec-16	8:30 AM	Sunny	24	0	0	20.9
Portion III	15-Dec-16	8:30 AM	Sunny	23	0	0	20.9
	16-Dec-16	8:30 AM	Sunny	23	0	0	20.9
	17-Dec-16	8:30 AM	Sunny	21	0	0	20.9
	19-Dec-16	8:28 AM	Sunny	24	0	0	20.9
	20-Dec-16	8:30 AM	Sunny	22	0	0	20.9
	21-Dec-16	8:28 AM	Sunny	21	0	0	20.9
	22-Dec-16	8:25 AM	Cloudy	20	0	0	20.9
	23-Dec-16	8:30 AM	Cloudy	18	0	0	20.9
	24-Dec-16	8:28 AM	Sunny	23	0	0	20.9
	28-Dec-16	8:29 AM	Sunny	12	0	0	20.9
	29-Dec-16	8:30 AM	Sunny	14	0	0	20.9
	30-Dec-16	8:28 AM	Cloudy	23	0	0	20.9
	31-Dec-16	8:30 AM	Sunny	24	0	0	20.9

