Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 26

[Period from 1 to 30 June 2016]

(July 2016)

Verified by:	Fredrick Leong

Position: Independent Environmental Checker

Date: 14 July 2016

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 26

[Period from 1 to 30 June 2016]

(July 2016)

	1
d Kwan	WAR
	d Kwan_

Position: Environmental Team Leader

Date: _____ 14 July 2016

AECOM

Consultancy Agreements No. C11033B

Shatin to Central Link - Hung Hom to Admiralty Section

Monthly EM&A Report No. 26

[Period from 1 to 30 June 2016]

	Name	Signature
Prepared & Checked:	Joanne Tsoi	1.4
Reviewed & Approved:	Josh Lam	Acar
		Close -
Version: A	Date:	14 July 2016
This Monthly EM&A Report is prepared for pursuant to Consultancy Agreement No. C other than MTR Corporation Limited withou into whose possession a copy of this repor Corporation Limited may not rely on it for a	11033B and may not be disclosed to, qu it our prior written consent. No person (t comes may rely on this plan without o	uoted to or relied upon by any person (other than MTR Corporation Limited) our express written consent and MTR

AECOM Asia Co. Ltd. 8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Contents

Page

1	INTR	ODUCTION	1
	1.1 1.2 1.3	Background Project Programme Purpose of the Report	1
2	ENVI	RONMENTAL MONITORING AND AUDIT	3
3		EMENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMEN	_

List of Tables

Table 1.1	Summary of Awarded Works Contracts
Table 2.1	Summary of Major Construction Activities in the Reporting Period
Table 2.2	Summary of 24-Hour TSP Monitoring Results in the Reporting Period
Table 2.3	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 2.4	Summary of Marine Water Quality Monitoring Results in the Reporting Period ⁽¹⁾
Table 2.5	Log for Environmental Complaints, Notification of Summons and Successful
	Prosecutions
Table 3.1	Summary of EP Submissions Status

List of Appendices

- Appendix A Monthly EM&A Report for June 2016 SCL Works Contract 1128 South Ventilation Building to Admiralty Tunnels
- Appendix B Monthly EM&A Report for June 2016 SCL Works Contract 1121 NSL Cross Harbour Tunnels
- Appendix C Monthly EM&A Report for June 2016 SCL Works Contract 1123 Exhibition Station and Western Approach Tunnel

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 Shatin to Central Link Hung Hom to Admiralty Section [SCL (HUH ADM)] (hereafter referred to as "the Project") is part of the SCL.
- 1.1.3 The Environmental Impact Assessment (EIA) Report for SCL (HUH-ADM) (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) (EP No.: EP-436/2012) was granted on 22 March 2012 for construction and operation. Variations of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012) was issued by Director of Environmental Protection (DEP) on 5 February 2016.

1.2 **Project Programme**

1.2.1 Six civil construction works contracts of the Project have been awarded since January 2014. The construction of the Project commenced in May 2014 and is expected to complete in 2021¹. The Project will have to interface with other infrastructure projects, including Wan Chai Development Phase II and Central-Wan Chai Bypass. **Table 1.1** summarises the information of the awarded Works Contracts.

Works Contract	Description	Construction Start Date	Contractor	Environmental Team
1121	NSL Cross Harbour Tunnels			Cinotech Consultants Ltd. (Cinotech)
1123	Exhibition Station and Western Approach Tunnels	June 2015	Leighton - China State JV	AECOM Asia Co. Ltd.
1126 ⁽¹⁾	Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool	ad Sports July 2014 Kaden Leader JV		Cinotech Consultants Ltd. (Cinotech)
1128	South Ventilation Building to Admiralty Tunnels	November 2014	Dragages Bouygues J.V.	AECOM Asia Co. Ltd.
1129 ⁽²⁾	SCL – Advance Works for NSL	May 2014	Hsin Chong May 2014 Construction Co. Ltd.	
11227 ⁽³⁾	Advance Works for NSL Cross Harbour Tunnels	August 2014	Concentric-Hong Kong River Joint Venture	Cinotech Consultants Ltd. (Cinotech)

 Table 1.1
 Summary of Awarded Works Contracts

Note:

⁽¹⁾ Construction works under Works Contract 1126 was completed on 17 May 2015.

⁽²⁾ Construction works under Works Contract 1129 was completed on 20 July 2015.

⁽³⁾ Construction works in Victoria Harbour and Shek O Casting Basin under Works Contract 11227 were completed on 15 and 20 December 2014 respectively.

¹ The commissioning date of SCL(HUH-ADM) will very likely be deferred to 2021 to allow flexibility for the topside development of the Exhibition Station, and to cater for the construction works under other infrastructure projects on Hong Kong Island.

1.3 Purpose of the Report

1.3.1 The Environmental Monitoring and Audit (EM&A) programme for the Project commenced in May 2014. This is the twenty-sixth EM&A Report for the Project which summarises the EM&A works undertaken by the respective Contractor's ETs during the period from 1 to 30 June 2016.

2 ENVIRONMENTAL MONITORING AND AUDIT

2.1 EM&A Results

- 2.1.1 The EM&A Report for Works Contracts 1128, 1121 and 1123 prepared by the respective Contractor's ETs are provided in **Appendices A** to **C** respectively. The EM&A Reports provide details of the project information, EM&A requirements, impact monitoring and audit results for the corresponding Contracts.
- 2.1.2 A summary of the major construction activities undertaken by the respective Contractors of various Works Contracts during the reporting period are presented in **Table 2.1**.

Table 2.1				
Works Contract	Site	Construction Activities		
	Shek O	 Construction of IMT Bottom Plate; Steel Formwork Erection; Base Slab Rebar Fixing Concreting; Wall and Roof Rebar Fixing; IMT Wall & Roof Concreting; Collar Plate Installation; Tunnel Lighting Installation; Ballast Tank Installation; and Waterproofing Work. 		
1121	Victoria Harbour	 Installation of Sheet Pile Wall for Cofferdam in Hung Hom; Grouting Curtain in Hung Hom; Excavation and Steel Truss Support Construction at Hung Hom; Marine Platform Construction at Hung Hom; Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom; Pump Well Construction at Hung Hom; Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom; Rock Breaking & Removal at seabed of Element E1 Location; Trench Dredging Works for IMT alignments at Victoria Harbour; Removal of Breakwater at CBTS; and Reprovisioning for Seawall of Finger Pier at Hung Hom. 		
	Exhibition Station (PTI Area)	 Utilities Diversion/ Protection; Provision of Temporary Footbridge; Prebored socket H-Piles (PBSH) & King Post; Diaphragm Wall Works. 		
1123	Exhibition Station (PTI Area) • Utilities Divers Exhibition Station (PTI Area) • Provision of Telepored sock Exhibition Station (Swimming Pool Area) • Diaphragm Water Exhibition Station (Tunnel • Diaphragm Water			
1123	at Tonnochy Road)	 Diaphragm Wall Works; Utilities Diversion/ Protection. 		
	Western Approach Tunnel WAT	Temporary Fire Escape Access for HKCEC;Diaphragm Wall Works.		
	Western Vent Shaft (WVS)	Diaphragm Wall Works		
	Area W1	TBM Up-track excavation & ring installation		
	Area W2	Pre-bored H-pile, pile removal and D-wall construction		
1128	Area W3	Demobilisation at Percival Street Footbridge		
	Area W3.5.2	Remaining lean mix column construction		
	AreaW4a	Island stage ELS & reinstatement works		
	Area W4b	Complete third tie beam construction		

Table 2.1	Summary of Major Construction Activities in the Reporting Period

Works Contract	Site	Construction Activities
	Area W6	Left-in sheetpile removal
	Alea Wo	Further G.I. at Marsh Road West-Footpath
	Area W8	Excavation
	Alea Wo	D-wall construction
	Area W10 - SVB	Cavern excavation in concrete treated ground
	Area W15 & W16	Pile investigation works

2.1.3 During the reporting month, impact monitoring for air quality, construction noise and water quality were conducted in accordance with the EM&A Manual. Continuous noise monitoring was not required in the reporting period according to the Continuous Noise Monitoring Plan (CNMP). No exceedances of the Action/Limit Levels of 24-hr TSP, construction noise and water quality parameters due to the Project construction were recorded. In the last Monthly EM&A Report, the suspended solid was found exceeding Action and Limit Levels at the impact monitoring stations. An thorough investigation was undertaken and no pollution discharge from construction activity was observed during water sampling. Moreover, the monitoring results at the impact monitoring stations were similar to the results at the Control Station or within the ranges of baseline monitoring results. Thus, there is no direct evidence that the exceedances were due to the Project. The exceedances are considered due to the other external factors rather than the construction works. Results of air quality, construction noise and water quality monitoring are summarised in Tables 2.2, 2.3 and 2.4 respectively. Details of the monitoring requirements, locations, equipment and methodology are presented in the EM&A Reports (Appendices A to C).

Monitoring Station ID	Location	TSP Concentration (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)	Exceedance due to the Project Construction (Yes/No)	
Works Contrac	ct 1121 ⁽¹⁾					
Works Contrac	ct 1123					
АМЗ	Existing Harbour Road Sports Centre ⁽²⁾	26.9 – 163.6	169	260	No	
Works Contrac	Works Contract 1123 and 1128					
AM2	Wan Chai Sports Ground ⁽³⁾⁽⁴⁾	13.9 – 27.0	160	260	No	
Works Contrac	Works Contract 1128					
AM4	Pedestrian Plaza	32.3– 85.8	198	260	No	

 Table 2.2
 Summary of 24-Hour TSP Monitoring Results in the Reporting Period

Note:

(1) The setup of the impact dust monitoring station at Harbourfront Horizon and the impact monitoring is currently carried out under Works Contract 1112. Upon termination of their EM&A programmes, the impact monitoring works would be taken up by Works Contract 1121.

(2) Dust monitoring at AM3 (Existing Harbour Road Sports Centre) was handed over from Works Contract 1126 to Works Contract 1123 in June 2015.

(3) The spectator stand at Wan Chai Sports Ground was not available for impact dust monitoring, therefore impact monitoring was conducted at the existing water pump room area at Wan Chai Sports Ground.

(4) Dust monitoring at AM2 (Wan Chai Sports Ground) was handed over to Works Contract 1123 from Works Contract 1128 on 28 October 2015.

Table 2.3	Summary of C	onstruction	Noise Monitoring	Results in	the Reporting
	Period				

		Monitoring	Location	Noise Level (L _{Aeq} ,30mins, dB(A))	Limit	Exceedance
--	--	------------	----------	---	-------	------------

Station ID		Measured	Baseline	Corrected ⁽¹⁾	Level (dB(A))	due to the Project Construction (Yes/No)
Works Cont	tract 1121 ⁽²⁾					
Works Cont	tract 1123					
NM2 ⁽³⁾⁽⁴⁾⁽⁵⁾	Harbour Centre	66.4 – 69.3	69.6	<baseline< td=""><td>75</td><td>No</td></baseline<>	75	No
Work Contro	Work Contract 1128 ⁽⁶⁾					
NM1	Hoi Kung Court	67.4 – 71.6	71	< Baseline – 62.7	75	No

Note:

(1) The measured noise levels are corrected against the corresponding baseline noise levels.

(2) No construction noise monitoring is required under Works Contract 1121.

(3) The impact monitoring at NM2 was handed over from Works Contract 1126 to Works Contract 1123 in June 2015.

(4) Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. Alternative noise monitoring location proposed at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014. Impact noise monitoring was carried out at Harbour Centre from 20 August 2014 onwards.

(5) Impact noise monitoring has been carrying out on 7/F of Habour Centre between 20 August and 15 December 2014, and on 8/F from 19 December 2014 onwards.

(6) Noise monitoring at NM1 (Hoi Kung Court) was handed over from Works Contract 1129 to Works Contract 1128 in August 2015.

Table 2.4 Summary of Marine Water Quality Monitoring Results in the Reporting Period ⁽¹⁾

			Parameters				
Locations		Depth-averaged Dissolved Oxygen (mg/L)	Depth-averaged Turbidity (NTU)	Depth-averaged Suspended Solids (mg/L)			
Shek O C	Shek O Casting Basin ⁽²⁾						
Victoria H	larbour (W	et Season) ⁽³⁾					
	Mean	6.2	4.7	4.6			
21	Range	5.2 – 7.1	3.2 – 6.7	2.7 – 6.8			
34	Mean	6.3	4.5	4.4			
34	Range	5.4 – 7.3	1.8 – 6.4	<2.5 - 6.5			
9	Mean	6.7	4.6	4.5			
9	Range	5.7 – 8.5	2.5 – 7.8	<2.5 - 6.5			
Action Level		2.8	11.3	6.9			
Limit	Level	2.7	17.2	9.1			
	dance /No)	No	No	No			
A	Mean	6.5	3.9	4.6			
A	Range	5.8 – 7.7	2.7 – 4.5	3.0 - 5.8			
WSD17	Mean	6.3	3.9	4.3			
WSD17	Range	4.9 – 7.7	2.4 - 4.5	<2.5 – 5.8			
WSD9	Mean	6.5	3.5	4.5			
00009	Range	5.3 – 7.7	2.1 – 4.4	2.7 – 5.8			
Action	Level	<2.1	4.7	6.0			
Limit	Level	<2	6.5	6.0			
Exceedance (Yes/No)		No	No	No			

			Parameters	
Locations		Depth-averaged Dissolved Oxygen (mg/L)	Depth-averaged Turbidity (NTU)	Depth-averaged Suspended Solids (mg/L)
01	Mean	6.4	3.9	4.5
C1	Range	5.6 – 7.5	2.0 - 4.6	3.0 - 5.8
C2	Mean	6.3	3.8	4.5
02	Range	5.1 – 7.7	2.1 – 4.6	3.0 - 5.8

Notes:

(1) Marine water quality monitoring was conducted in the reporting period under Works Contract 1121.

(2) Removal of earth bunds at Shek O Casting Basin under Works Contract 1121 has not yet commenced in the reporting month, and thus no water quality monitoring was conducted during the reporting period.

(3) Dredging / filling works within the Victoria Harbour commenced on 22 April 2015. Water Quality Monitoring at Station 8 and 14 is suspended as these water intakes are not in use.

2.1.4 One complaint was received under Works Contract 1121 on 3rd June, concerning the air and water quality impacts during unloading of spoil materials to the barge and no notification of summons and successful prosecutions were received in the reporting period. Log for environmental complaints, notification of summons and successful prosecutions is provided in **Table 2.5**.

Table 2.5	Log	for	Environmental	Complaints,	Notification	of	Summons	and
	Succ	essf	ul Prosecutions					

Works	Environmental Complaints	Notification of Summons	Successful Prosecutions
Contract	Reporting Month	Reporting Month	Reporting Month
1121	1	0	0
1123	0	0	0
1128	0	0	0

2.1.5 Regular site inspections were conducted by the Contractor's ET on a weekly basis to check the implementation of environmental pollution control and mitigation measures for the Project. No non-conformance was identified in the reporting period.

3 IMPLEMENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMENTS

3.1.1 The respective Contractors have implemented all mitigation measures and requirements as stated in the EIA Report, EM&A Manual and EP (EP-436/2012/D). The status of required submissions under the EP as of the reporting period are summarised in **Table 3.1**.

Table 3.1 Summary of EP Submissions Status			
EP Condition (EP-436/2012/D)	Submission	Submission date	
Condition 1.11	Notification of Commencement Date of Construction of the Project	19 Dec 2012	
Condition 2.3	Notification of Setup of Community Liaison Group	3 Feb 2015	
Condition 2.5	Management Organisation of Main Construction Companies	15 Apr 2015	
Condition 2.6	Construction Programme and EP Submission Schedule	15 Apr 2015	
Condition 2.7	Construction Noise Mitigation Measures Plan (CNMMP) Works Contract 1126: Construction Noise Mitigation Measures Plan (CNMMP) Works Contract 1123: Construction Noise Mitigation Measures Plan (CNMMP)	9 Jun 2014 (1 st Submission) 24 Apr 2015 (1 st Submission) 7 Jul 2015 (2 nd Submission) 2 Oct 2015 (3 rd Submission) 2 June 2016 (4 th Submission)	
Condition 2.8	Continuous Noise Monitoring Plan (CNMP) Works Contract 1126: Continuous Noise Monitoring Plan (CNMP) Works Contract 1123: Continuous Noise Monitoring Plan (CNMP)	9 Jun 2014 (1 st Submission) 24 Apr 2015 (1 st Submission) 7 Jul 2015 (2 nd Submission) 2 June 2016 (3 rd Submission)	
Condition 2.9	Construction and Demolition Materials Management Plan (C&DMMP)	6 Jul 2012 (1 st Submission) 12 Sep 2012 (2 nd Submission) 15 Oct 2012 (approved)	
Condition 2.10	Works Contract 11227: Silt Curtain Deployment Plan for Trial Trenching in Victoria Harbour Works Contract 1121: Silt Curtain Deployment Plan for Hung Hom Landfall and Trial Trench in Victoria Harbour	11 Jul 2014 17 Feb 2015 (1 st Submission) 2 Apr 2015 (2 nd Submission) 27 Oct 2015 (3 rd Submission) 29 March 2016 (4 th Submission)	
Condition 2.11	Works Contract 11227: Silt Screen Deployment Plan Works Contract 1121: Silt Screen Deployment Plan	11 Jul 2014 13 Feb 2015	
Condition 2.12	Sediment Management Plan	6 Jul 2012 (1 st Submission) 12 Sep 2012 (2 nd Submission) 5 Oct 2012 (3 rd Submission) 15 Oct 2012 (approved) 3 Jul 2014 (4 th Submission)	
Condition 2.14	Visual, Landscape, Tree Planting & Tree Protection Plan	14 Nov 2012 (1 st Submission) 3 Dec 2013 (2 nd Submission) 21 Aug 2014 (3 rd Submission)	

Table 3.1 Summary of EP Submissions Status

EP Condition (EP-436/2012/D)	Submission	Submission date
		9 Feb 2015 (4 th Submission) 27 May 2016 (5 th Submission)
	Works Contract 11227: Silt Curtain Deployment Plan for Shek O	23 Jul 2014 (1 st Submission) 31 Jul 2014 (approved)
Condition 2.23.1	Works Contract 1121: Silt Curtain Deployment Plan for Shek O	4 Feb 2015 (1 st Submission) 4 Mar 2015 (2 nd Submission) 9 Mar 2015 (approved)
Condition 2.24	Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR)Remedial Action Plan (RAP) for the above-ground diesel tanks for Wan Chai Swimming Pool	CAP: 25 Sep 2012 (1 st Submission) 12 Nov 2012 (2 nd Submission) 22 Nov 2012 (approved) CAR: 19 Mar 2013 (1 st Submission) 16 Apr 2013 (2 nd Submission) 21 May 2013 (3 rd Submission) 7 Jun 2013 (approved)
	Baseline Monitoring Report (for noise and air quality)	4 Dec 2013 (1 st Submission) 5 Feb 2014 (2 nd Submission)
Condition 3.3	Baseline Water Quality Monitoring Report	23 Sep 2014 (1 st Submission) 18 Dec 2014 (2 nd Submission)
	Baseline Water Quality Monitoring Report for Temporary Marine Works at Shek O Casting Basin	8 Jul 2014 (1 st Submission) 11 Aug 2014 (2 nd Submission)
	Monthly EM&A Reports No.1 - 24	Reported in previous Monthly EM&A Reports
Condition 3.4	Final EM&A Review Report for Works Contract 11227	12 Feb 2015
	Final EM&A Review Report for Works Contract 1126	25 Jun 2015 (1 st Submission) 4 Sep 2015 (2 nd Submission)
	Monthly EM&A Report No.25	14 June 2016

Appendix A

Monthly EM&A Report for June 2016 – SCL Works Contract 1128 South Ventilation Building to Admiralty Tunnels

AECOM

Dragages Bouygues J.V.

Shatin to Central Link -Hung Hom to Admiralty Section

Works Contract 1128 -South Ventilation Building (SOV) to Admiralty Tunnels

Monthly EM&A Report for June 2016

[July 2016]

	Name	Signature
Prepared & Checked:	Lemon Lam) grine
Reviewed, Approved & Certified:	Y T Tang (Contractor's Environmental Team Leader)	Tagytatis

Version: 0

Date: 13 July 2016

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Dragages Bouygues J.V. and is given for its sole benefit in relation to and pursuant to SCL1128 and may not be disclosed to, quoted to or relied upon by any person other than Dragages Bouygues J.V. without our prior written consent. No person (other than Dragages Bouygues J.V. into whose possession a copy of this Manual comes may rely on this plan without our express written consent and Dragages Bouygues J.V. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

EXECU	JTIVE S	UMMARY	1
1	INTRO	DUCTION	3
	1.1 1.2	Purpose of the Report Report Structure	
2	PROJE	ECT INFORMATION	4
	2.1 2.2 2.3 2.4 2.5	Background Site Description Construction Programme and Activities Project Organisation Status of Environmental Licences, Notification and Permits	4 5 5
3	ENVIR	ONMENTAL MONITORING REQUIREMENTS	9
	3.1 3.2	Construction Noise Monitoring Landscape and Visual	
4	IMPLE	MENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	.13
5	MONIT	ORING RESULTS	.14
	5.1 5.2 5.3	Construction Noise Monitoring Waste Management Landscape and Visual	.15
6	ENVIR	ONMENTAL SITE INSPECTION AND AUDIT	.16
7	ENVIR	ONMENTAL NON-CONFORMANCE	.18
	7.1 7.2 7.3 7.4	Summary of Monitoring Exceedances Summary of Environmental Non-Compliance Summary of Environmental Complaints Summary of Environmental Summon and Successful Prosecutions	. 18 . 18
8	FUTUF	RE KEY ISSUES	.19
	8.1 8.2 8.3	Construction Programme for the Next Two Month Key Issues for the Coming Month Monitoring Schedule for the Next Month	.19
9	CONC	LUSIONS AND RECOMMENDATIONS	.20
	9.1 9.2	Conclusions Recommendations	

List of Tables

- Table 2.1
 Contact Information of Key Personnel
- Table 2.2
 Status of Environmental Licenses, Notifications and Permits
- Table 3.1
 Air Quality Monitoring Equipment
- Table 3.2 Locations of Construction Dust Monitoring Station
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4
 Noise Monitoring Station during Construction Phase
- Table 4.1
 Status of Required Submission under Environmental Permit
- Table 5.1
 Summary of 24-hour TSP Monitoring Result in the Reporting Period
- Table 5.2
 Summary of Construction Noise Monitoring Results in the Reporting Period
- Table 6.1 Observations and Recommendations of Site Audit

List of Figures

Figure 1.1Site Layout Plan of SCL1128Figure 3.1Air Quality and Noise Monitoring Locations

List of Appendices

- Appendix A Construction Programme
- Appendix B Project Organisation Structure
- Appendix C Environmental Mitigation Implementation Schedule
- Appendix D Summary of Action and Limit Levels
- Appendix E Calibration Certificates of Equipment
- Appendix F EM&A Monitoring Schedules
- Appendix G Air Quality Monitoring Results and their Graphical Presentations
- Appendix H Noise Monitoring Results and their Graphical Presentations
- Appendix I Event and Action Plan
- Appendix J Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions
- Appendix K Monthly Summary Waste Flow Table

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1128 – South Ventilation Building (SOV) to Admiralty Tunnels (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL).

The Project comprises the Permanent Works and the associated temporary works necessary for TBM tunnels between SOV and Admiralty Tunnels, short sections of cut and cover tunnels near SOV and Fenwick Pier Emergency Egress Point (FPP), Re-provisioning, Remedial and Improvement Works (RRIW) for government and public bodies facilities.

The EM&A programme commenced on 17 November 2014. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 1 and 30 June 2016. As informed by the Contractor, major activities in the reporting period were:

Location	Site Activities	
Area W1	 TBM Up-track excavation & ring installation 	
Area W2	 Pre-bored H-pile, pile removal and D-wall construction 	
Area W3	 Demobilisation at Percival Street Footbridge 	
Area W3.5.2	 Remaining lean mix column construction 	
Area W4a	 Island stage ELS & reinstatement works 	
Area W4b	Complete third tie beam construction	
Area W6 • Left-in sheetpile removal		
	 Further G.I. at Marsh Road West-Footpath 	
Area W8	Excavation	
	D-wall construction	
Area W10 – SVB	Cavern excavation in concrete treated ground	
Area W15 & W16	Pile investigation works	

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action / Limit Level of air quality was recorded in the reporting month.

Breaches of Action and Limit Levels for Noise

Noise monitoring was handed-over from SCL Contract 1129 in August 2015.

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Location	Site Activities	
Area W1	Segment Delivery, TBM Muck Out	
Area W2	Construction for SOV	
Area W3	Post drilling	
Area W3.5.2	Lean Mix Column	
Area W4a	Reinstatement of Canal Road Culvert	
Area W4b	Construction of Tie beams under Canal Road Flyover	
Area W6	Removal of sheetpile along HEC cable	
	 Ground Treatment of West Tunnel Sewer and HEC Building 	
Area W8	Excavation, Cavern Excavation, D-wall Construction	
Area W14	Lung King Street Reinstatement	
Area W15 & W16	Pile Detection at Fenwick Pier Street, Road Construction for Traffic Diversion	

Key issues to be considered in the coming month included:-

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

1 INTRODUCTION

Dragages Bouygues J.V. (JV) was commissioned by MTR as the Civil Contractor for Works Contract 1128. AECOM Asia Company Limited (AECOM) was appointed by JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the twentieth monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period from 1 to 30 June 2016.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is orgainised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

2 **PROJECT INFORMATION**

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-436/2012/D) was issued by the Director of Environmental Protection (DEP) on 5 February 2016.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and the Project comprises the Permanent Works and the associated temporary works necessary for TBM tunnels between SOV and Admiralty Tunnels, short sections of cut and cover tunnels near SOV and Fenwick Pier Emergency Egress Point (FPP), Re-provisioning, Remedial and Improvement Works (RRIW) for government and public bodies facilities under the EP.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1128 include:
 - (a) Taking over the 160m section of the SCL tunnels (ME4 Tunnel) constructed under the Central Wan Chai Bypass (CWB) project and construction of walkways, sealing, connection and various finishing works inside the tunnels;
 - (b) Construction of cut and cover tunnels connecting from South Ventilation Building (SOV) to the ME4 Tunnel;
 - (c) Removal of temporary reclamation and reinstatement of seawall;
 - (d) Construction of SOV;
 - (e) Bored tunnels between SOV and Exhibition Station (EXH);
 - (f) Construction of cut and cover tunnels connecting from the SCL tunnels under Convention Avenue by Contract 1123 to the bored tunnels as stated in sub-clause
 - (g) Construction of Fenwick Pier Emergency Egress Point (FPP);
 - (h) Bored tunnels between Fenwick Pier Emergency Egress Point (FPP) and Admiralty Station (ADM);
 - (i) Pile/obstruction detections and removals for construction of SCL running tunnels and for future North Island Line (NIL) running tunnels;
 - (j) Demolition of existing Police Officer's Club (POC);
 - (k) Reprovisioning of new POC;
 - (I) Other RRIW;
 - (m) Essential piling works at future Government, Institution and Community (GIC) site
 - (n) Diversion and modification of utilities and services;
 - (o) Modification, re-provisioning or reinstatement of footpath, carriageway or road features;
 - (p) Provisions for Designated and Interfacing Contracts;
 - (q) Tree felling, tree compensation, transplanting works and landscaping works;
 - (r) Permanent reprovisioning works at the Fleet Arcade;
 - (s) Miscellaneous signage; and
 - (t) External works comprising new and reinstated roads, footpaths, drains, landscaping, staircase, street furniture and the like.

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Location	Site Activities
Area W1	TBM Up-track excavation & ring installation
Area W2	Pre-bored H-pile, pile removal and D-wall construction
Area W3	Demobilisation at Percival Street Footbridge
Area W3.5.2	Remaining lean mix column construction
Area W4a	Island stage ELS & reinstatement works
Area W4b	Complete third tie beam construction
Area W6	Left-in sheetpile removal
	 Further G.I. at Marsh Road West-Footpath
Area W8	Excavation
	D-wall construction
Area W10 – SVB	Cavern excavation in concrete treated ground
Area W15 & W16	Pile investigation works

2.3.2 The construction programme is presented in **Appendix A**.

2.4 **Project Organisation**

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

 Table 2.1
 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
	Residential	Construction Manager	Mr. Thomas Neil De Rye, BARRETT	2171 3610	2171 3609
MTR	Engineer (ER)	SCL Project Environmental Team Leader	Mr. Richard Kwan	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
11/	Contractor	Project Director	Mr. Alain Hervio	6112 9197	2171 3715
JV	Contractor	Environmental Manager	Mr. Marcus Cheung	6628 2685	2171 3713
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y T Tang	3922 9393	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.2**.

 Table 2.2
 Status of Environmental Licenses, Notifications and Permits

Permit / License	Valid	Period	0 1 1			
No. / Notification/ Reference No.	From	То	Status	Remarks		
Environmental Perm	Environmental Permit					
EP-436/2012/D	5-Feb-16	-	Valid	-		
Construction Noise	Permit					
GW-RS1440-15	1-Jan-16	29-Jun-16	Valid	An area of Tunnel Approach Rest Garden near Hung Hing Road Flyover (W3)		
GW-RS0029-16	14-Jan-16	12-Jul-16	Valid	An area at Gloucester Road near Marsh Road Station Building (W5)		
GW-RS0065-16	29-Jan-16	27-Jul-16	Valid	An area at Gloucester Road near Marsh Road Station Building (W5) - Individual PME group for grouting		
GW-RS0250-16	14-Mar-16	13-Sep-16	Valid	Lung King Street near DSD Screening Plant (W14)		
GW-RS0336-16	7-Apr-16	4-Oct-16	Valid	Construction site at Gloucester Road near Hung Hing Road (W4) – Jet Grouting		
GW-RS0392-16	22-Apr-16	21-Oct-16	Valid	Victoria Park Road near Police Officer Club (W1) – Rock Excavation + Noise Cover + TBM assembly		
GW-RS0414-16	28-Apr-16	31-Jul-16	Valid	Wan Chai Sport Ground		
GW-RS0443-16	6-May-16	4-Nov-16	Valid	Construction site near Gloucester Road, Wan Chai (W3.5.2)		
GW-RS0449-16	8-May-16	30-Jun-16	Valid until superseded by GW-RS0615-16 on 13-Jun-16	Construction site at Fenwick Pier Street near DSD Screening Plant		
GW-RS0469-16	13-May-16	10-Nov-16	Valid until superseded by GW-RS0562-16 on 5-Jun-16	An area near Lung King Street and Convention Avenue (W8) – D-Wall Modified		
GW-RS0489-16	18-May-16	16-Nov-16	Valid	Construction site on Wan Shing Street (W6)		
GW-RS0501-16	21-May-16	15-Jun-16	Valid	Construction site for Wan Shing Footbridge Pier Protection at Gloucester Road (W4/W5)		
GW-RS0562-16	5-Jun-16	2-Dec-16	Valid until superseded by GW-RS0653-16 on 25-Jun-16	Construction site near Lung King Street and Convention Avenue (W8)		

Permit / License	Valid	Period	Statua	Domorko
No. / Notification/ Reference No.	From	То	Status	Remarks
GW-RS0653-16	25-Jun-16	23-Dec-16	Valid	Construction site near Lung King Street and Convention Avenue (W8)
GW-RS0615-16	13-Jun-16	16-Jun-16	Valid	Construction Site at Fenwick Pier near Lung King Street
GW-RS0596-16	7-June-16	6-Dec-16	Valid	Construction site at Marsh Road near Wan Ying Street and an area in Wan Chai Sports Ground
Wastewater Discharg	ge License			
WT00020473-2014	09-Dec-14	31-Dec-19	Valid	Gloucester Road near Hung Hing Road (W4)
WT00021519-2015	04-May-15	31-May-20	Valid	Between Percival Street Footbridge and Hung Hing Road Flyover (W3)
WT00022596-2015	22-Sep-15	30-Sep-20	Valid	Gloucester Road near Marsh Road Station Building (W5)
WT00022781-2015	3-Nov-15	30-Nov-20	Valid	Works Area at Green Zone
WT00022907-2015	16-Nov-15	31-Dec-19	Valid until superseded by WT00024759-2 016 on 21-Jun-16	Works Area at POC(W1 + W2)
WT00023987-2016	10-Mar-16	31-Mar-20	Valid	Junction of Lung King Street and Convention Avenue (W8)
WT00023988-2016	10-Mar-16	31-Dec-19	Valid	Wang Shing Street (W6)
WT00023989-2016	10-Mar-16	31-Dec-19	Valid	Lung King Street near DSD Screening Plant (W14)
WT00024759-2016	21-Jun-16	31-Dec-19	Valid	Works Area at POC(W1 + W2)
Chemical Waste Pro	ducer Registra	ation		
5213-135-D2551-01	16-Dec-14	End of the Project	Valid	Gloucester Road near Hung Hing Road (W4)
5213-134-D2552-01	16-Dec-14	End of the Project	Valid	Lung King Street near DSD Screening Plant (W14)
5111-151-D2552-02	05-Jan-15	End of the Project	Valid	Victoria Park Road near POC (W1)
Billing Account for C	Construction V	Vaste Disposa	1	
7020686	15-Sep-14	End of Contract	Valid	For disposal of C&D waste to public fills and landfills
Notification Under A	ir Pollution Co	ontrol (Constru	uction Dust) Regu	lation
378806	02-Sep-14	End of Contract	Valid	For Wan Chai, Causeway Bay, Hong Kong Island
380227	07-Oct-14	End of Contract	Valid	For Gloucester Road near Cross Harbour Tunnel

Dragages Bouygues J.V.

Permit / License No. / Notification/	Valid	Period	Status	Remarks
Reference No.	From		Remarks	
380228	07-Oct-14	End of Contract	Valid	Near Convention Avenue and Fenwick Pier Street, HK Island

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring stations. The HVS meets all the requirements of the EM&A Manual. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:10273))
Calibration Kit	TISCH Environmental Orifice (Model TE-5025A (Orifice I.D.: 0988))

Monitoring Locations

3.1.3 Two monitoring station were set up at the proposed location in accordance with the approved EM&A Manuals for SCL(HUH-ADM) as well as the works areas of the Project. The location of the construction dust monitoring stations are summarised in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Locations of Construction Dust Monitoring Station

ID	Air Sensitive Receiver (ASR) ID in EIA Report	Dust Monitoring Station
AM2*	EXA6	Wanchai Sports Ground
AM4	EXA4	Pedestrian Plaza

* The monitoring station at AM2 was handed-over from Contract SCL1126 in April 2015 and handed-over to Contract SCL1123 on 28 October 2015.

Monitoring Methodology

3.1.4 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each others;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) The sampler was located more than 20 meters from any dripline.

- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.
- (b) Preparation of Filter Papers
 - (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
 - (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
 - (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.
- (c) Field Monitoring
 - (i) The power supply was checked to ensure the HVS works properly.
 - (ii) The filter holder and the area surrounding the filter were cleaned.
 - (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
 - (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
 - (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
 - (vi) Then the shelter lid was closed and was secured with the aluminium strip.
 - (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
 - (viii) A new flow rate record sheet was set into the flow recorder.
 - (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
 - (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
 - (xi) The initial elapsed time was recorded.
 - (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
 - (xiii) The final elapsed time was recorded.
 - (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
 - (xv) It was then placed in a clean envelope and sealed.
 - (xvi) All monitoring information was recorded on a standard data sheet.
 - (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.
- (d) Maintenance and Calibration
 - (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
 - (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
 - (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.5 The schedule for environmental monitoring in June 2016 is provided in **Appendix F**.

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.2**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. B&K2238 (S/N: 2800927), (S/N: 2800930))
Acoustic Calibrator	Rion (Model No. NC-73 (S/N: 10307223))

Monitoring Locations

3.2.3 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.4** and shown in **Figure 3.1**.

Table 3.5 Noise Monitoring Station during Construction Phase

Identification No.	Noise Sensitive Receiver (NSR) ID in EIA Report	Noise Monitoring Station
NM1*	CH2	Hoi Kung Court

The noise monitoring at NM1 was handed-over from SCL Contract 1129 in August 2015.

Monitoring Methodology

3.2.4 Monitoring Procedure

- (a) Façade measurement was made at NM1.
- (b) The battery condition was checked to ensure the correct functioning of the meter.
- (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.

- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (e) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.
- 3.2.5 Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
 - (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.2.6 The schedule for environmental monitoring in June 2016 is provided in **Appendix F**.

3.3 Landscape and Visual

3.3.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1**.

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 (EP-436/2012/D)	Monthly EM&A Report for May 2016	14 June 2016

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 The monitoring results for 24-hour TSP are summarised in **Table 5.1**. Detailed air quality monitoring results and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

ID	Average (µg/m ³)	Range (µg/m³)	Action Level (μg/m ³)	Limit Level (µg/m³)
AM2 [#]	22.9	13.9 – 27.0	160	260
AM4	57.4	32.3 - 85.8	198	260

 Table 5.1
 Summary of 24-hour TSP Monitoring Result in the Reporting Period

The monitoring station at AM2 was handed-over from Contract SCL1126 in April 2015 and handed-over to Contract SCL1123 on 28 October 2015.

- 5.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.3 The event and action plan is annexed in **Appendix H**.
- 5.1.4 Major dust sources during the monitoring included construction dust, nearby traffic emission and other nearby construction sites.

5.2 Construction Noise Monitoring

- 5.2.1 Noise monitoring at NM1 was handed over from SCL Contract 1129 in August 2015.
- 5.2.2 The monitoring results for noise are summarized in **Table 5.2** and the monitoring data is provided in **Appendix H**.

Table 5.2Summary of Construction Noise Monitoring Results in the Reporting
Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
NM1 ^(*)	<baseline 62.7<="" th="" –=""><th>75</th></baseline>	75

(*) Baseline correction will be made to the measured L_{eq} when the measured noise level exceeded the corresponding baseline noise level and presented in the table.

- 5.2.3 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 5.2.4 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.
- 5.2.5 The event and action plan is annexed in **Appendix I**.
- 5.2.6 Major noise sources during the monitoring included construction noise from the Project site, nearby traffic noise and the community.

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor 30,290.5m³ of inert C&D material was generated (4,768.4m³ was disposed of as fill bank at TKO137, 7.2m³ was disposed of fill bank at TM38, 11,516.9m³ was disposed of as public fill at CWPFBP, 232.0m³ was reused by WDII project and 13,766.1m³ was reused in mainland) in the reporting month. 43.7m³ of general refuse was generated in the reporting month. No metals, no paper/cardboard packaging material and no plastic was collected by recycling contractor in the reporting month. No inert C&D materials were reused on site. No chemical waste was collected by licensed contractor. 147.7m³ of Type 1 and 31.0m³ of Type 2 marine dumping were delivered to Hung Hom Barging Point in the reporting period.
- 5.3.3 SCL1128 has started to deliver the spoil to WDII and CWB for beneficial use since April 2016. If spoil could not be fully utilized by WDII in their site in the future, spoil will be transported to Mainland China for reuse. The waste flow table is annexed in **Appendix K**.
- 5.3.4 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.5 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.4 Landscape and Visual

5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 13 and 27 June 2016. A summary of the site inspection is provided in Appendix C. The observations and recommendations made during the site inspections are presented in Table 6.1.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 4 site inspections were carried out on 6, 13, 20 and 27 June 2016. Joint inspection with the IEC, ER, the Contractor and the ET was conducted on 13 June 2016. No non-compliance was recorded during the site inspections. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality	13 Jun 16	 Reminder: The Contractor was reminded to improve the wheel wash performance at W1 and ensure vehicle wheel was properly washed before leaving site. Reminder: The Contractor was reminded to spray water during the breaking works at W8 for dust suppression. 	The item was rectified by the Contractor on 13 Jun 16.
	20 Jun 16	 Reminder: Although water spraying was provided on site during the site inspection. The Contractor was reminded to water the exposed site area timely for dust suppression. 	The item was rectified by the Contractor on 20 Jun 16.
	27 Jun 16	 Reminder: Site areas were observed dry at W8 and W14 and water spraying was provided by Contractor immediately. However, the Contractor was reminded to water the exposed site areas timely for dust suppression. 	The item was rectified by the Contractor on 27 Jun 16.
Noise	6 Jun 16	 No noise mitigation measure was provided to the breaker at W8. The Contractor should cover the breaker tip with acoustic material to minimize noise impact. 	The item was rectified by the Contractor on 8 Jun 16.
	13 Jun 16	 No noise mitigation measure was provided for the breaking works at W8. The Contractor should wrap the breaker tip with acoustic material. 	The item was rectified by the Contractor on 15 Jun 16.
	27 Jun 16	 No noise mitigation measure was provided for the breaking works at W8. The Contractor should wrap the breaker tip with acoustic materials. 	The item was rectified by the Contractor on 30 Jun 16.
Water Quality	30 May 16	 No provision of preventive measures along the works and gullies was observed at W6 and Marsh Road. The Contractor should provide preventive measures/ protection on site to avoid potential runoff from site. 	The item was rectified by the Contractor on 1 Jun 16.
	6 Jun 16	 No provision of preventive measures for the gully was observed at W14. The Contractor should provide preventive measures on site to avoid potential runoff from site. 	The item was rectified by the Contractor on 7 Jun 16.
		 Reminder: The Contractor was reminded to keep monitor and provide sufficient preventive measures on site to prevent potential runoff from site during rainy. 	The item was rectified by the Contractor on 7 Jun 16.
	13 Jun 16	 Gully at W6 and Marsh Road works area were observed improperly covered. The Contractor should provide sandbag and remove the nearby accumulated sand to avoid potential runoff. 	The item was rectified by the Contractor on 16 Jun 16.
Waste/ Chemical Management	13 Jun 16	 Oil stain was observed at W4. The Contractor should remove the oil stain and dispose of as chemical waste. 	The item was rectified by the Contractor on 13 Jun 16.
	20 Jun 16	• Chemical container placed on ground was observed at W21. The Contractor should store the chemical container with drip tray to retain leakage, if any.	The item was rectified by the Contractor on 21 Jun 16.
	27 Jun 16	• Chemical container placed on ground was observed at W8. The Contractor should store the chemical container with drip tray to retain leakage, if any.	The item was rectified by the Contractor on 27 Jun 16.
Landscape & Visual	30 May 16	 Site materials placed next to the trees was observed at Marsh Road. The Contractor should remove the site materials and store it in the properly area. 	The item was rectified by the Contractor on 1 Jun 16.
	13 Jun 16	 Construction material was observed placed nearby the tree at Marsh Road. The Contractor should remove the construction material and provide proper protection to the tree. 	The item was rectified by the Contractor on 13 Jun 16.
Permits/ Licenses	Nil	Nil	Nil

 Table 6.1
 Observations and Recommendations of Site Audit

- 6.1.3 All the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed into the following weekly site inspection conducted during the reporting period.
- 6.1.4 The items of which their inspection for follow-up actions were outstanding as recorded in the last reporting month have already been rectified by the Contractor as confirmed by the ET during the reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit level at all monitoring locations in the reporting month.
- 7.1.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 7.1.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint was received in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix J**.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The major construction works in between July 2016 and September 2016 will be:

Location	Site Activities	
Area W1	Segment Delivery, TBM Muck Out	
Area W2	Construction for SOV	
Area W3	Post drilling	
Area W3.5.2	Lean Mix Column	
Area W4a	Reinstatement of Canal Road Culvert	
Area W4b	Construction of Tie beams under Canal Road Flyover	
Area W6	Removal of sheetpile along HEC cable	
	Ground Treatment of West Tunnel Sewer and HEC Building	
Area W8	Excavation, Cavern Excavation, D-wall Construction	
Area W14	Lung King Street Reinstatement	
Area W15 & W16	Pile Detection at Fenwick Pier Street, Road Construction for Traffic Diversion	

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

8.3 Monitoring Schedule for the Next Three Month

8.3.1 The tentative schedules for environmental monitoring in between July 2016 and September 2016 are provided in **Appendix F**.

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring result complied with the Action / Limit Level at in the reporting month.
- 9.1.3 No noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 9.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.5 4 nos. of environmental site inspections were carried out in June 2016. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.6 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

• Implement effective measures to avoid dust impact.

Construction Noise Impact

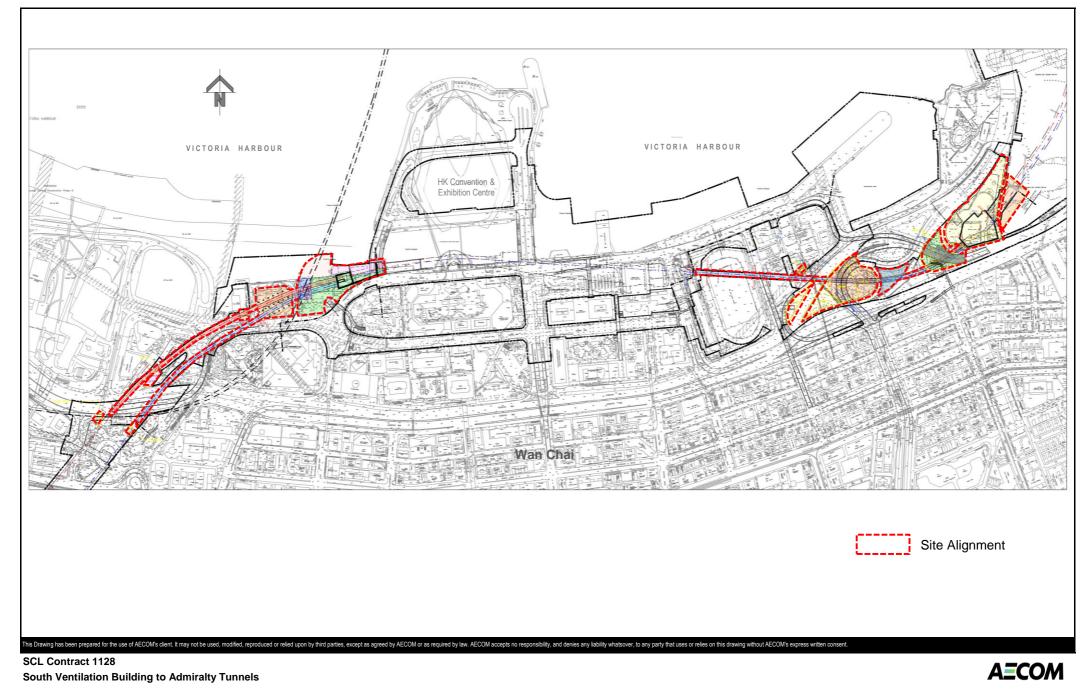
• Implement effective/ preventive measures to minimize noise impact.

Water Quality Impact

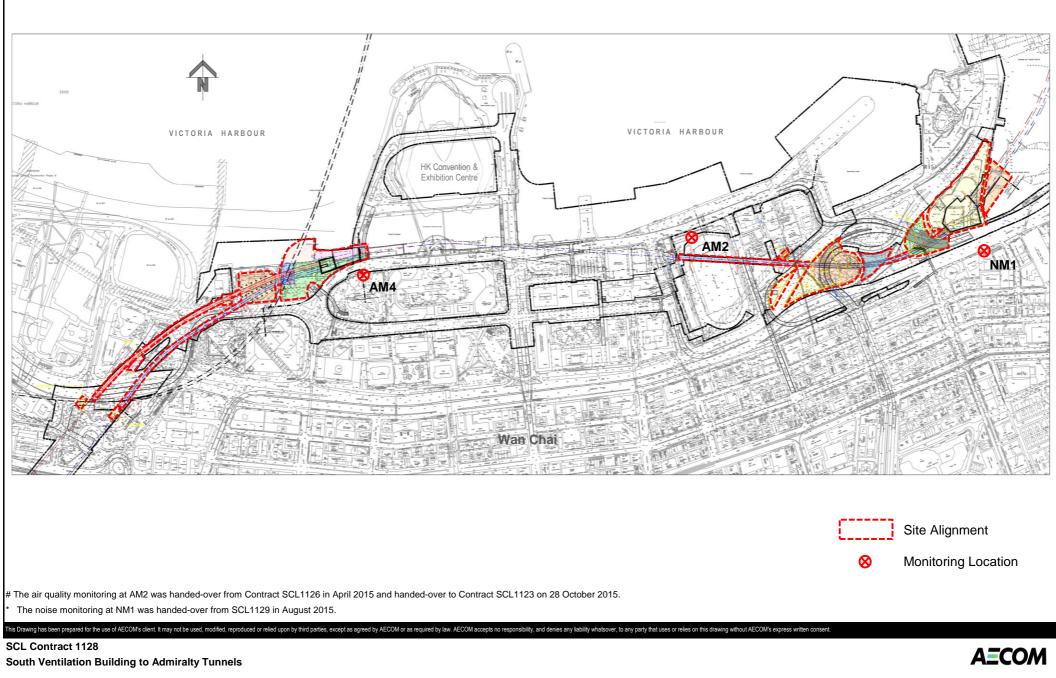
• Implement effective/preventive measures to avoid surface runoff from site.

Chemical and Waste Management

• Provide proper chemical and waste handling management.


Landscape & Visual Impact

• Provide proper protective measures to the trees.

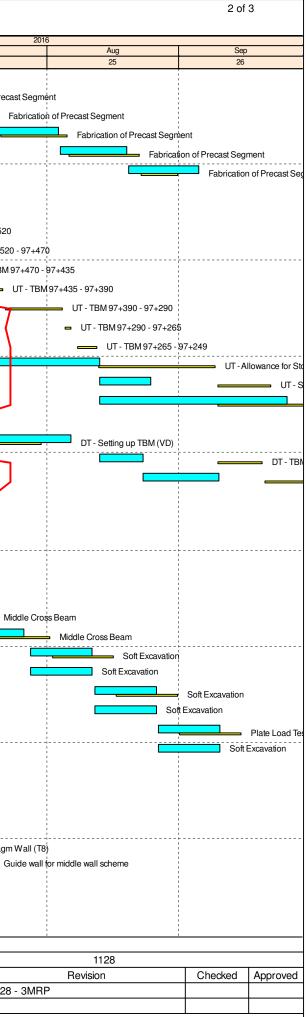

Permits/licenses

• No specific observation was identified in the reporting month.

FIGURES

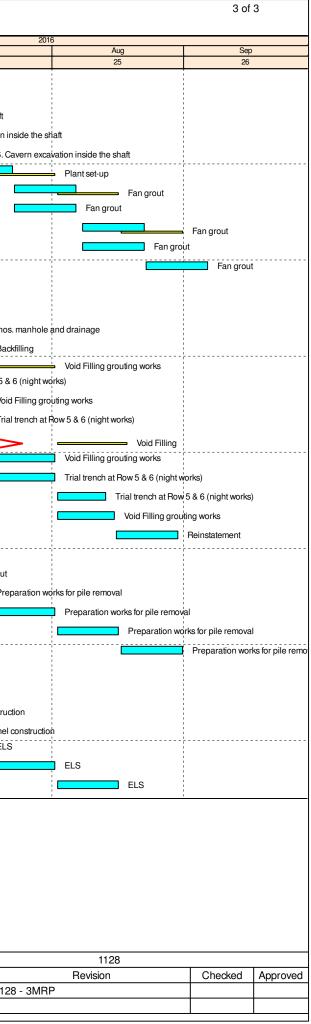
SITE LAYOUT PLAN of SCL1128

Air Quality and Noise Monitoring Loactions


APPENDIX A

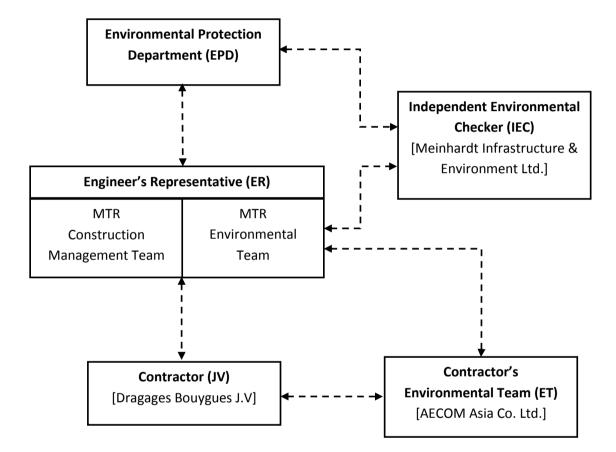
Construction Programme

D	Activity Name		Chart	Einich	A other it + 0/	Pomoinin		
ID	Activity Name	Original Duration	Start	Finish	Activity % Complete	Remaining Duration	Jun	Jul
CL 1128 - SOV	to Admiralty Tunnel_3 Month Rolling Programme (Jun-	-16)					23	24
		-10/						
Contract Dates	- Datas fau Washa Assas							
	ss Dates for Works Areas							
	Date/ Access Date			1				
01128.EAD330	1128.W17	0	04-Jul-16*		0%	0		\$ 1128.W17
	Cut & Cover Tunnel to SOV (Advance Shaft)							
Design Submissio	n							
C&C Tunnel in Ad	Ivance Launch Shaft at Area W1 (Alternative Scheme)							
01128.BDS00270	Stage 1 - Draft Detailed Design Submission Preparation & Submission with ICE	48	05-Jan-16A	02-Aug-16	90%	28		
01128.BDS00280	Stage 1 - DDDS Review & Comments by Engineer	14	03-Aug-16	16-Aug-16	0%	14		j
01128.BDS00290	Stage 2 - Detailed Design Submission Preparation & Submission with ICE	36	17-Aug-16	28-Sep-16	0%	36	4	
Vent. Duct		/////////						
01128.BDS00400	Stage 2 - Detailed Design Submission Preparation & Submission with ICE	33	07-Mar-16A	02-Aug-16	90%	28		
01128.BDS00410	Stage 2 - DDS Review & Approval by BD/RDO	28	03-Aug-16	30-Aug-16	0%	28		
ost Centre C - S	South Ventilation Building (SOV)							
Design Submissio		· · · · ·						+
_	Part 2 Struting Design							
01128.CDS00170	Stage 1 - DDDS Review & Comments by Engineer	14	07-May-16A	04-Jul-16	90%	5		
01128.CDS00230	Stage 2 - Detailed Design Submission Preparation & Submission with ICE	4	05-Jul-16	08-Jul-16	0%	4		Stage 1 - DDD
01128.CDS00240	Stage 2 - DDS Review & Approval by BD/RDO	28	09-Jul-16	10-Aug-16	0%	28		Stage 2 - I
				-				
01128.CDS00250	Stage 3 - Working Drawings Submission	6	11-Aug-16	17-Aug-16	0%	6		_
	vation & Structure							
Piling works for S								
01128.CCC000700	Pre-bored H-pile (HP40)	6	30-May-16A	10-Jun-16A	100%	0	Pre-bored H-pile	(H P40)
01128.CCC000710	Pre-bored H-pile (HP36)	6	01-Jun-16A	10-Jun-16A	100%	0	Pre-bored H-pi	e (HP36)
Cofferdam								
01128.CCC001390	Diaphragm wall (P05)	6	01-Jun-16A	03-Jun-16A	100%	0	Diaphragm wa	1 (P05)
01128.CCC001420	Diaphragm wall (P11)	6	01-Jun-16A	06-Jun-16A	100%	0	Diaphragm wall (P11)	
01128.CCC001430	Diaphragm wall (P15)	6	01-Jun-16A	08-Jun-16A	100%	0	Diaphragm wall (P15)	
01128.CCC001400	Diaphragm wall (P09)	6	01-Jun-16A	13-Jun-16A	100%	0	Diap	hragm wall (P09)
01128.CCC001410	Diaphragm wall (P10)	6	01-Jun-16A	17-Jun-16A	100%	0	Diaphragm	vall (P10)
01128.CCC001380	Diaphragm wall (P04)	6	01-Jun-16A	18-Jun-16A	100%	0	Diaphrag	n wall (P04)
Pile removal								
01128.CCC001110	Pile removal	12	04-Jul-16*	18-Jul-16	0%	12		
01128.CCC001120	Pile removal	5	19-Jul-16	23-Jul-16	0%	5		
act Contro D	SOV to EXH TBM Tunnels							+
		, ,						
Design Submissio								
	J TBM Tunnel Lining Design							
DDA				10.1.1.10	500/			
01128.DDS00790	Stage 2 - DDS Review & Approval by BD/RDO	28	07-Jun-16A	13-Jul-16	50%	14		· · · · · · · · · · · · · · · · · · ·
01128.DDS00800	Stage 3 - Working Drawings Submission	6	14-Jul-16	19-Jul-16	0%	6		
FBM (VD) Procure	ment, Manufacture & Delivery							
01128.CCD000450	TBM (VD S989) - 2nd Transport to HK & Delivery on Site	5	02-Jun-16A	07-Jun-16A	100%	0		rensport to HK & Deliver
01128.CCD000460	TBM (VD S989) - 3rd Tran sport to HK & Delivery on Site	5	08-Jun-16A	14-Jun-16A	100%	0	TBM (VD S989) - 3rd Transport to HK 8
Pre-cast Segment	Fabrication							
		SCI 1100	2 SOV to	Admirolty T.	innala			
Last month's plan		SCL 1128	$3 - 30 \times 10$	Admiralty Tu	inners		-	Date
Actual Work	 ♦ Baseline Milestone tv Milestone 	3 Month Rollin	ng Program	me (Data Da	te. 20 In	n_{-16}	-	30-Jun-16 1
Non Critical Activi	ty 🔶 🔶 Milestone	J WIOHUI KOIII	ng riogiaill	me (Data Da	ແຮ. ວບ-ງປ	ui-10)		


		1 of	3
2016	3		
	Aug	Sep	
	25	26	
	Stage 1 - Draft Detailed Design S	Submission Prepar	ration & Submis
	Stage 1 - DDD\$	Review & Comme	nts by Enginee
	Stage 2 - Detailed Design Subm	ssion Proparation	& Submission
	· ;		
		Stage 2 - DDS Re	view & Approva
	mmonto hu Engineer		
	mments by Engineer		
ailed Desig	n Submission Preparation & Submis	sion with ICE	
1	Stage 2 - DDS Review	& Approval by BD/	(RDO
	Stage 3 - Work	ing Drawings Sub	mission
ile removal			
Pile ren	noval		
	Stage 2 - DDS Review & Appro	val by BD/RDO	
		Stage 3 - Workin	ng Drawings Su
		0	0 0
on Site			
i			
elivery on S	ite		
	1128		A
0 0110-	Revision	Checked	Approved
8 - 3MRF	,		

ID	Activity Name	Original Duration	Start	Finish	Activity % Complete	Remaining Duration	Jun	Jul
01128.CCD000380	Fabrication of Precast Segment	14	01-Jun-16A	17-Jun-16A	100%		23	24
01128.CCD000390	Fabrication of Precast Segment	14	18-Jun-16A	30-Jun-16A	100 %			ion of Precast Segment
01128.CCD000410	Fabrication of Precast Segment	14	02-Jul-16	18-Jul-16	0%	14		Fabrication o
01128.CCD000420	Fabrication of Precast Segment	14	19-Jul-16	03-Aug-16	0%	14		
01128.CCD000430	Fabrication of Precast Segment	14	04-Aug-16	19-Aug-16	0%	14		
01128.CCD000440	Fabrication of Precast Segment	14	20-Aug-16	05-Sep-16	0%	14		
Stage 2 - SOV to EXH			207.0310		0,0		٢	
01128.CCD00111	UT - TBM 97+690 - 97+550	12	30-May-16A	16-Jun-16A	100%	0		3M 97+690 - 97+550
01128.CCD00112	UT - TBM 97+550 - 97+520	7	16-Jun-16A	17-Jun-16A	100%	0	01-1E	UT - TBM 97+550 - 9
01128.CCD00120	UT - TBM 97+520 - 97+470	7	17-Jun-16A	21-Jun-16A	100%	0		UT-TBM 97+350-8
01128.CCD00121	UT - TBM 97+470 - 97+435	5	21-Jun-16A	24-Jun-16A	100%	0		
01128.CCD00122	UT - TBM 97+435 - 97+390	7	24-Jun-16A	29-Jun-16A	100%	0	_	UT UT
01128.CCD00130	UT - TBM 97+390 - 97+290	8	29-Jun-16A	07-Jul-16	30%	6		
01128.CCD00140	UT - TBM 97+290 - 97+265	3	07-Jul-16	11-Jul-16	0%	3		
01128.CCD00150	UT - TBM 97+265 - 97+249	3	11-Jul-16	15-Jul-16	0%	3		
01128.CCD00160	UT - Allowance for Stoppages due to Obstruction (*12x2)	24	15-Jul-16	13-Aug-16	0%	24		
01128.CCD00170	UT - Sealing of Shield. Dismantle Tunnel Services & Pullback TBM Back Up for West Up Track Tunnel	10	13-Aug-16	25-Aug-16	0%	10		
01128.CCD00180	UT - Dismantle Thrust Cylinders & Main Drive for West Up Track Tunnel	36	13-Aug-16	26-Sep-16	0%	36		
Stage 2 - SOV to EXH			io nug io	20.000 10	0,0	00		
01128.CCD00240	DT - Setting up TBM (VD)	48	02-Jun-16A	06-Aug-16	35.42%	31		
01128.CCD00250	DT - TBM 97+911 - 97+895 (assumed: Starting point)	8	13-Aug-16	23-Aug-16	0%	8		
•••••••	- · · · · · · · · · · · · · · · · · · ·							
	DT - TBM 97+895 - 97+859 nel Boring Machine Launching Shaft (FPP)	16	23-Aug-16	10-Sep-16	0%	16		
		16	23-Aug-16	10-Sep-16	0%	16		
Cost Centre E - Tun Area 1		16	23-Aug-16	10-Sep-16	0%	16 0	Soft Exca	Ivation
Cost Centre E - Tun Area 1 Excavation	nel Boring Machine Launching Shaft (FPP)						Soft Exca	ivation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270	nel Boring Machine Launching Shaft (FPP) Soft Excavation	12	01-Jun-16A	16-Jun-16A	100%	0	Soft Exce	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280	Soft Excavation Soft Excavation	12 12	01-Jun-16A 17-Jun-16A	16-Jun-16A 30-Jun-16A	100%	0	Soft Exce	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE001770	Soft Excavation Soft Excavation Soft Excavation	12 12 12 2	01-Jun-16A 17-Jun-16A 02-Jul-16	16-Jun-16A 30-Jun-16A 04-Jul-16	100% 100% 0%	0 4	Soft Exce	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE001770 01128.CCE00290	Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam	12 12 12 2 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16	100% 100% 0%	0 0 2 12	Soft Exca	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE001770 01128.CCE00290 01128.CCE00300	Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam	12 12 12 2 12 12 6	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16	100% 100% 0% 0% 0%	0 0 2 12 6	Soft Exca	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE00300 01128.CCE001720	Soft Excavation Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation	12 12 2 12 12 12 6 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16	100% 100% 0% 0% 0%	0 0 2 12 6 12	Soft Exce	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE00300 01128.CCE001720 01128.CCE001780	Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Soft Excavation Middle Cross Beam Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Soft Excavation Soft Excavation	12 12 2 12 12 12 6 12 12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 28-Jul-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16	100% 100% 0% 0% 0% 0%	0 0 2 12 6 12 12 12	Soft Exc	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE001770 01128.CCE00290 01128.CCE00300 01128.CCE001720 01128.CCE001780 01128.CCE001780	nel Boring Machine Launching Shaft (FPP) Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation	12 12 2 12 12 12 6 12 12 12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 28-Jul-16 12-Aug-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16	100% 100% 0% 0% 0% 0% 0%	0 0 2 12 6 12 12 12 12 12	Soft Exca	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE001770 01128.CCE00290 01128.CCE001720 01128.CCE001720 01128.CCE001780 01128.CCE001780 01128.CCE001790	Image: Soft Excavation Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Soft Excavation	12 12 2 12 12 12 6 6 12 12 12 12 12 12	01-Jun-16A 01-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16	100% 100% 0% 0% 0% 0% 0% 0% 0%	0 0 2 12 6 12 12 12 12 12 12 12	Soft Exca	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE00300 01128.CCE001720 01128.CCE001780 01128.CCE001780 01128.CCE001780 01128.CCE001780 01128.CCE001790 01128.CCE001790	Image: Soft Excavation Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Plate Load Test	12 12 2 12 12 12 6 12 12 12 12 12 12 12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16	100% 100% 0% 0% 0% 0% 0% 0% 0%	0 0 2 12 6 12 12 12 12 12 12 12 12 12	Soft Exc	
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE001770 01128.CCE001770 01128.CCE001720 01128.CCE001720 01128.CCE001780 01128.CCE001790 01128.CCE001790 01128.CCE001790 01128.CCE001790 01128.CCE001300	Image: Soft Excavation Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Plate Load Test	12 12 2 12 12 12 6 12 12 12 12 12 12 12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16	100% 100% 0% 0% 0% 0% 0% 0% 0%	0 0 2 12 6 12 12 12 12 12 12 12 12 12	Soft Exc	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE001770 01128.CCE00170 01128.CCE00170 01128.CCE00170 01128.CCE001720 01128.CCE001780 01128.CCE001790 01128.CCE001790 01128.CCE001800 Area 2 & B Cofferdam Works Area W8	Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation	12 12 2 12 12 12 12 12 12 12 12 12 12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16 27-Aug-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16	100% 100% 0% 0% 0% 0% 0% 0% 0% 0%	0 0 2 12 6 12 12 12 12 12 12 12 12	Soft Exc	Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00300 01128.CCE001770 01128.CCE001720 01128.CCE001720 01128.CCE001780 01128.CCE001780 01128.CCE001790 01128.CCE001790 01128.CCE00430 01128.CCE00430 01128.CCE00430 01128.CCE00430 01128.CCE00430 01128.CCE00430	Image: Soft Excavation Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Plate Load Test	12 12 2 12 12 12 12 12 12 12 12 12 12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16	100% 100% 0% 0% 0% 0% 0% 0% 0%	0 0 2 12 6 12 12 12 12 12 12 12 12 12 12 12		Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00300 01128.CCE001720 01128.CCE001720 01128.CCE001720 01128.CCE001720 01128.CCE001780 01128.CCE001790 01128.CCE001790 01128.CCE001790 01128.CCE001800 Area 2 & B Cofferdam Works Area W8 01128.CCE001750 01128.CCE001760	Image: Soft Excavation Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Plate Load Test Soft Excavation Interpret Plate InterpretInterpret Plate Interpret Plate Interplate In	12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16 27-Aug-16 01-Jun-16A 22-Jun-16A	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16 10-Sep-16 10-Sep-16	100% 100% 0% <	0 0 2 12 6 12 12 12 12 12 12 12 12 12 12		Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE001770 01128.CCE00170 01128.CCE00170 01128.CCE001720 01128.CCE001780 01128.CCE001790 01128.CCE001790 01128.CCE001300 Area 2 & B Cofferdam Works Area W8 01128.CCE001750 01128.CCE001760 01128.CCE001750	Image: Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Plate Load Test Soft Excavation I 12. Diaphragm Wall (D7) 13. Diaphragm Wall (T8) Guide wall for middle wall scheme	12 12 2 12 12 12 12 12 12 12 12 12 12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16 27-Aug-16 27-Aug-16 01-Jun-16A	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16 10-Sep-16 10-Sep-16	100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0 0 2 12 6 12 12 12 12 12 12 12 12 12 12 12		Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00300 01128.CCE001770 01128.CCE00170 01128.CCE001720 01128.CCE001720 01128.CCE001780 01128.CCE001790 01128.CCE001790 01128.CCE001800 Area 2 & B Cofferdam Works Area W8 01128.CCE001750 01128.CCE001760 01128.CCE001810	Image: Soft Excavation Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Plate Load Test Soft Excavation Interpret Plate InterpretInterpret Plate Interpret Plate Interplate In	12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16 27-Aug-16 01-Jun-16A 22-Jun-16A	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16 10-Sep-16 10-Sep-16	100% 100% 0% <	0 0 2 12 6 12 12 12 12 12 12 12 12 12 12		Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE001770 01128.CCE00170 01128.CCE001720 01128.CCE001780 01128.CCE001790 01128.CCE001750 01128.CCE001760 01128.CCE001810	Particle Boring Machine Launching Shaft (FPP) Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Intervention Soft Excavation Intervention Soft Excavation Plate Load Test Soft Excavation Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Soft Excavation Intervention Intervention Intervention Intervention Intervention Intervention	12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16 27-Aug-16 01-Jun-16A 22-Jun-16A	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16 10-Sep-16 10-Sep-16	100% 100% 0% <	0 0 2 12 6 12 12 12 12 12 12 12 12 12 12		Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00300 01128.CCE001770 01128.CCE00170 01128.CCE001720 01128.CCE001720 01128.CCE001780 01128.CCE001790 01128.CCE001790 01128.CCE001800 Area 2 & B Cofferdam Works Area W8 01128.CCE001750 01128.CCE001760 01128.CCE001810	Particle Boring Machine Launching Shaft (FPP) Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Soft Excavation Intervention Soft Excavation Intervention Soft Excavation Plate Load Test Soft Excavation Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention Soft Excavation Intervention Intervention Intervention Intervention Intervention Intervention	12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 20-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16 27-Aug-16 01-Jun-16A 22-Jun-16A	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16 10-Sep-16 10-Sep-16	100% 100% 0% <	0 0 2 12 6 12 12 12 12 12 12 12 12 12 12		Soft Excavation
Cost Centre E - Tun Area 1 Excavation 01128.CCE00270 01128.CCE00280 01128.CCE00290 01128.CCE00290 01128.CCE001770 01128.CCE00170 01128.CCE001720 01128.CCE001780 01128.CCE001790 01128.CCE001750 01128.CCE001760 01128.CCE001810	Soft Excavation Soft Excavation Soft Excavation Middle Cross Beam Middle Cross Beam Middle Cross Beam Soft Excavation Interval Interval Soft Excavation Soft Excavation Soft Excavation Interval Interval Soft Excavation Interval Interval Soft Excavation Interval Interval Soft Excavation Interval	12 12	01-Jun-16A 17-Jun-16A 02-Jul-16 05-Jul-16 28-Jul-16 28-Jul-16 12-Aug-16 12-Aug-16 27-Aug-16 27-Aug-16 01-Jun-16A 22-Jun-16A 05-Jul-16*	16-Jun-16A 30-Jun-16A 04-Jul-16 19-Jul-16 26-Jul-16 11-Aug-16 11-Aug-16 26-Aug-16 26-Aug-16 10-Sep-16 10-Sep-16 10-Sep-16	 100% 100% 0% 	0 0 2 12 6 12 12 12 12 12 12 12 12 12 12		Soft Excavation

		DRAGAGES	S - BOUYC	GUES JOIN	T VEN	FURE		
vity ID	Activity Name	Original Duration	Start	Finish	Activity % Complete	Remaining Duration	Jun	Jul
Grouting - TWL C	crossing at SVB						23	24
Vertical Shaft								
01128.CCF001100	4. Cavern excavation inside the shaft	12	01-Jun-16A	16-Jun-16A	100%	0		rn excavation inside the shaft
01128.CCF001130	5. Cavern excavation inside the shaft	12	17-Jun-16A	30-Jun-16A	100%	0		5. Cavern excavation
01128.CCF001140	6. Cavern excavation inside the shaft	12	02-Jul-16	16-Jul-16	0%	12		6.0
01128.CCF001200	Plant set-up	5	18-Jul-16	22-Jul-16	0%	5		
01128.CCF001210	Fan grout	12	23-Jul-16	06-Aug-16	0%	12		
01128.CCF001230	Fan grout	12	23-Jul-16	06-Aug-16	0%	12		
01128.CCF001220	Fan grout	12	08-Aug-16	22-Aug-16	0%	12		
01128.CCF001240	Fan grout	12	08-Aug-16	22-Aug-16	0%	12		
01128.CCF001250	Fan grout	12	23-Aug-16	06-Sep-16	0%	12		····
Cost Centre H - C	Other RRIW Works							
Wan Shing Street								
01128.CCH04770	Reinstatement of 2 nos. manhole and drainage	12	14-Jun-16A	25-Jun-16A	100%	0		
01128.CCH04780	Backfilling	12	02-Jun-16A	28-Jun-16A	100%	0		— Ba
01128.CCH04790	Void Filling grouting works	2	29-Jun-16 A	30-Jun-16 A	100%	0		
01128.CCH04850	Trial trench at Row 5 & 6 (night works)	12	13-Jun-16A	30-Jun-16 A	100%	0		Trial trench at Row 5
01128.CCH04820	Void Filling grouting works	12	02-Jul-16	16-Jul-16	0%	12		Vo
01128.CCH04860	Trial trench at Row 5 & 6 (night works)	12	02-Jul-16*	16-Jul-16	0%	12		Tr
01128.CCH04800	Void Filling	14	30-Jun-16	18-Jul-16	0%	14		
01128.CCH04830	Void Filling grouting works	12	18-Jul-16	01-Aug-16	0%	12		
01128.CCH04870	Trial trench at Row 5 & 6 (night works)	12	18-Jul-16	01-Aug-16	0%	12		
01128.CCH04880	Trial trench at Row 5 & 6 (night works)	10	02-Aug-16	13-Aug-16	0%	10		
01128.CCH04840	Void Filling grouting works	11	02-Aug-16	15-Aug-16	0%	11		
01128.CCH04890	Reinstatement	12	16-Aug-16	30-Aug-16	0%	12		
Marsh Road								
01128.CCH04950	Backfill and TAM grout	12	11-Jun-16 A	30-Jun-16A	100%	0		Backfill and TAM grou
01128.CCH04960	Preparation works for pile removal	12	02-Jul-16*	16-Jul-16	0%	12		Pr
01128.CCH04970	Preparation works for pile removal	12	18-Jul-16	01-Aug-16	0%	12		
01128.CCH04980	Preparation works for pile removal	12	02-Aug-16	16-Aug-16	0%	12		
01128.CCH04990	Preparation works for pile removal	12	17-Aug-16	31-Aug-16	0%	12		
Canal Rd. Box Culv	vert & Pile Removal (D03) - Twin Channel Scheme							
01128.CCH04720	Precast panel construction	12	01-Jun-16A	16-Jun-16A	100%	0	Precast	panel construction
01128.CCH04730	Precast panel construction	12	17-Jun-16A	30-Jun-16A	100%	0		Precast panel constru
01128.CCH04740	Precast panel construction	5	02-Jul-16	07-Jul-16	0%	5	1 1 1	Precast pane
01128.CCH04920	ELS	12	02-Jul-16*	16-Jul-16	0%	12		EL
01128.CCH04930	ELS	12	18-Jul-16	01-Aug-16	0%	12		
01128.CCH04940	ELS	12	02-Aug-16	16-Aug-16	0%	12		


Last month's planned Critical Act	ivity 11283MRP160630	SCL 1128 - SOV to Admiralty Tunnels		
Actual Work \diamond \diamond Baseline N	,		Date	
Non Critical Activity ♦ ♦ Milestone		3 Month Rolling Programme (Data Date: 30-Jun-16)	30-Jun-16	11
		5 Wohth Ronnig Högrannik (Data Date: 50-Jul-10)		

APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural He	ritage Impact					
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	Construction Phase	V
Ecological	Impact					
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	Construction Phase	N/A
Landscape	and Visual Impact					
Constructio	on Phase					
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	Construction Phase	V
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	Construction Phase	V
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites	Construction Phase	N/A
/	All retained/exist trees shall be properly protected during construction period.	Tree protection	Contractor	Works areas	Construction phase	@
Air Quality						
/	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V V V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure
Constructio	on Dust Impact			
Table 8.5	 Barging facilities: (i) Transportation of spoils to the barging point – Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every working hours to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.0 L/m² once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.0L/m² to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual. (ii) Unloading of spoil materials – Undertake the unloading process within a 3-sided screen with top tipping hall. Provide water spraying and flexible dust curtains at the discharge point for dust suppression. (iii) Vehicles leaving the barging facilities – Pass vehicles through the wheel washing facilities provided at site exits. 	To minimize dust impacts	Contractor	All barging points
S8.63	For concrete batching plant, the requirements and mitigation measures stipulated in the <i>Guidance</i> Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant
Table 8.6	 During operation of concrete batching plant: (i) Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system. (ii) Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. (iii) Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. (iv) Weighing and batching of cementitious materials – Perform the whole process of weighing and mixing in a fully enclosed environment. Equip all the mixers with dust collectors. (v) Loading of concrete from mixer into transit mixer of a truck – Directly load the concrete from the mixer into the transit mixer of a truck in "wet form". (vi) Tipper trucks and cement tankers leaving the Concrete Batching Plant – Haul road within the site is unpaved. Install wheel washing pit at the gate of the concrete batching plant. (vii) Transportation of materials within the plant – Provide watering twice a day would be provided. 	To minimize dust impacts	Contractor	Concrete Batching Plant
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas

When to implement the measures?	Implementation Status
Construction phase	N/A
 Construction phase	N/A
Construction phase	N/A
Construction Phase	V

Appendix C -	Environmental	Mitigation	Implementation	Schedule

M&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
\$8.89	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall, provision of water spraying and flexible dust curtains to reduce dust emission	To minimize dust impact	Contractor	All barging points	Construction phase	N/A
\$8.90	 Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved reade, particularly during dry weather. 	To minimize dust impacts	Contractor	Works areas	Construction phase	V
	 roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to applied to a storage of the storage of t					V V
	 aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. 					V
	 Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the 					N/A V
	 site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ 					N/A
	 periods. Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. 					V
	 Imposition of speed controls for vehicles on site haul roads. Where possible, routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. 					V V
	 Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. 					V
	 Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise 					V
	 Dust suppression measures (con't) De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement 	To minimize dust impacts	Contractor	Works areas	Construction phase	V
Airborne No Constructio	oise Impact					
9.55	The following good site practices shall be implemented:	To minimize	Contractor	Works areas	Construction	
	 Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program 	construction noise impact			phase	V
	 Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program 					V
	 Mobile plant, if any, shall be sited as far from NSRs as possible Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum 					V V
	 Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs 					V
	Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities					N/A
	 Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during operation 	To minimize construction noise	Contractor	Works areas	Construction phase	@

S9.55	The following good site practices shall be implemented:	To minimize	Contractor	Works areas
	 Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program 	construction noise impact		
	Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program			
	 Mobile plant, if any, shall be sited as far from NSRs as possible 			
	 Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum 			
	• Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs			
	 Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities 			
/	Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during	To minimize	Contractor	Works areas
	operation	construction noise		
	 Air compressors shall be fitted with valid noise emission labels during operation 	impact		

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S9.56 & Table 9.16	The following quiet PME shall be used: Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill Lorry Wheel loader Roller vibratory	To minimize construction noise impact	Contractor	 Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A V N/A V N/A N/A N/A N/A V V V V V V V V V V V N/A N/A N/A
S9.58 – S9.59 & Table 9.17	Movable noise barrier shall be used for the following PME: Air compressor Asphalt paver Backhoe with hydraulic breaker Bar bender Bar bender and cutter (electric) Breaker, excavator mounted Concrete pump Concrete pump, stationary/lorry mounted Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
S9.60 & Table 9.17	 Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, carth auger, auger Rock drill, crawler mounted (pneumatic) 	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A N/A N/A N/A N/A N/A N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure
Water Qual	ity Impact			
Constructio	on Phase			
S11.216	 The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works. Stockpiling of construction and demolition materials and dusty materials shall be covered and 	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafron
	 located away from the seawater front and storm drainage. Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters. 			
S11.222 to 11.245	 The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. <u>Surface Run-off</u> Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be provided on site to properly direct sommwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels shall be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and re-alignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum distances of 100 m shall be programmed to minimize soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by tarpaulin, and temporary access roads shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements shall always be in place in such a way that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Earthworks final surfaces shall be well compac	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas

Shatin to Central Link 1128 South Ventilation Building to Admiralty Tunnels Monthly EM&A Report for June 2016

	When to implement the measures?	Implementation Status
t nt	Construction Phase	
		V
		V
		N/A
	Construction Phase	
		V
		N/
		V
		V
		N/A
		V
		V
		@
		V
		v

AECOM

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 Boring and Drilling Water Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities. Wheel Washing Water 					V
	 All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 					V
	 <u>Bentonite Slurries</u> Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the bentonite slurries shall either be dewatered or mixed with inert fill material for disposal to a public filling area. 					V
	 If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. Water for Testing & Sterilization of Water Retaining Structures and Water Pipes 					N/A
	• Water used in water testing to check leakage of structures and pipes shall be used for other purposes					N/A
	 as far as practicable. Surplus unpolluted water will be discharged into storm drains. Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. 					N/A
	 Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. 					N/A
	 Wastewater from Site Facilities Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage 					N/A
	tank on a regular basis.Drainage serving an open oil filling point shall be connected to storm drains via petrol interceptors					N/A
	 with peak storm bypass. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. 					N/A
611.246 & 1.247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	Works areas	Construction Phase	N/A
S11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	To control site run-off generated from any potential contaminated works areas.	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of groundwater at the proposed recharge location(s) as well as the pollutant levels of ambient groundwater at the proposed recharge location(s) as shall be removed as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.252	 The following good site practices shall be adopted for the proposed barging points: all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash all hopper barges shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site loading of barges and hoppers shall be controlled to prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation 	To minimize water quality impacts generated from the barging points.	Contractor	Barging points	Construction Phase	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V

IA Ref. / M&A Log ef.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
11.256	 Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage 	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
	 during storage, handling and transport. Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. 					V
	 Storage area shall be selected at a safe location on site and adequate space shall be allocated to the storage area. 					V
aste Mana	agement Implications					
onstructio	on Phase					
12.75	 Good Site Practices and Waste Reduction Measures Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; 	To reduce waste management impacts	Contractor	All Work Sites	Construction Phase	V
	 Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; Provision of sufficient waste disposal points and regular collection of waste; 					V V
	 Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; 					N/A
	 Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and Separation of chemical wastes for special handling and appropriate treatment. 					N/A V
2.76	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All Work Sites	Construction	
	 Sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); 	reduction			Phase	N/A V
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Encourage collection of aluminum cans by providing separate labeled bins to enable this 					N/A
	 waste to be segregated from other general refuse generated by the workforce; Proper storage and site practices to minimize the potential for damage or contamination of 					V
	 construction materials; Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; and 					V
	 Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle. 					V
2.77	Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V

Shatin to Central Link 1128 South Ventilation Building to Admiralty Tunnels Monthly EM&A Report for June 2016

AECOM

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.					
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V
\$12.79	Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include:	To minimize potential adverse environmental	Contractor	Work Sites	Construction Phase	
	 Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area shall be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and 	impacts arising from waste storage				N/A N/A N/A
	 Different locations shall be designated to stockpile each material to enhance reuse. 					N/A
S12.80	Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts:	To minimize potential adverse environmental impacts arising from waste	Contractor	Work Sites	Construction Phase	
	 Remove waste in timely manner Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers 	collection and disposal				N/A N/A N/A
	• Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28)					N/A N/A
	Waste shall be disposed of at licensed waste disposal facilities Maintain reported of quantities of waste generated, repugled and disposed					N/A N/A
12.81	Maintain records of quantities of waste generated, recycled and disposed Storage, Collection and Transportation of Waste (con't)	To minimize potential	Contractor	Work Sites	Construction	
	 Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	adverse environmental impacts arising from waste collection and disposal			Phase	V
12.83 – 2.86	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. 	To minimize potential adverse environmental impacts	Contractor	Work Sites	Construction Phase	V
	Specific areas shall be provided by the Contractors for sorting and to provide temporary	during the handling, transportation and				V
	 storage areas for the sorted materials. The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. 	disposal of C&D materials				V
	 Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north approach tunnels. 					V
312.88	 Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance. 	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure
S12.89	 Sediments (con't) The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works. 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern
S12.91 – 12.94	 Sediments (con't) Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites
/	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites

	When to implement the measures?	Implementation Status
h	Detailed Design Stage and Construction Phase	N/A
ent	Construction Phase	N/A
ent	Construction Phase	N/A
	Construction Phase	@ @ V
		N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.97	Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall:	To register with EPD as a Chemical waste producer and store chemical waste in	Contractor	Work Sites	Construction Phase	
	 Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; 	appropriate containers				V
	• Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and					N/A
	• Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation.					N/A
512.98	 Chemical Waste Storage Area Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the gravitation. 	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Work Sites	Construction Phase	V V V
	 the greatest; Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 					V V V
12.99	 Chemical Waste Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place. 	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	N/A
12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	V
12.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Land Conta	amination Impact					
S13.23– 13.24	 For construction works at sites under the current stage of site investigation (Stage 1 SI): Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process shall involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odours, which may also indicate soil and/or groundwater contamination. If soil materials suspected to be contaminated are encountered during excavation, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Shall concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the Contamination Assessment Report (CAR) and Remediation Action Plans (RAP). 	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Within Project Boundary where signs of contamination is identified	During excavation works for Cut-and- Cover	N/A
S13.30	For some sites with currently no SI proposed (i.e. sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28), to be conservative, visual inspection shall be conducted during demolition and excavation to detect any abnormal colour, smell or other characteristics of the soil, due to the nearby land use and/ or construction method. If abnormal colour, smell or other characteristics of contamination are identified for any of these sites, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Should the concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the CAR and RAP.	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Areas with no SI proposed (Sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28)	During excavation works for Cut-and- Cover	N/A
S13.36 – 13.38	 For areas inaccessible for proper site appraisal and investigation (Stage 2 SI) (i) Site 2-15 Upon site access being granted, visual inspection shall be carried out where intrusive works and soil excavation is encountered, for attention on any potential contamination due to its current operation A supplementary CAP shall then be submitted to EPD for endorsement. A CAR/RAP shall be prepared and submitted to EPD for endorsement on completion of the SI and analytical testing. Shall remediation be undertaken a Remediation Report (RR) shall be prepared and submitted to EPD for endorsement in accordance with the endorsed CAR and RAP. Information such as soil treatment/ disposal records (including trip tickets), confirmatory sampling results, and photographs shall be included in the aforesaid RR. No construction work shall be carried out prior to the endorsement of the RR by EPD. 	To identify areas with land contamination concern, report laboratory results and propose remediation measures if necessary. To ensure remediation works have been undertaken to before the commencement of any construction works of the Project.	Contractor	Areas unable to be accessed during Stage 1 SI (Site 2-15)	After land resumption and prior to the construction works commencement at the site	N/A
S13.39	 Potential Remediation of Contaminated Soil Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; Excavation shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Supply of suitable clean backfill material is needed after excavation; If remediation is required with chemical oxidation proposed as a contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and personal protective equipment (PPE). Vehicles containing any excavated materials shall be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates shall be sealed to prevent any discharge during transport or during wet conditions; Speed control for the trucks carrying contaminated materials shall be enforced; Vehicle wheel and body washing facilities at the site's exit points shall be established and used; and Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control shall be implemented and complied with relevant regulations and guidelines. 	To remediate contaminated soil	Contractor	Identified contaminated sites	Site remediation	N/A

Appendix C – Environmental Mitigation Implementation Schedule

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S13. 40	 In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures shall be implemented as far as possible: Set up a list of safety measures for site workers; Provide written information and training on safety for site workers; Keep a log-book and plan showing the contaminated zones and clean zones; Maintain a hygienic working environment; Avoid dust generation; Provide face and respiratory protection gear to site workers; Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and Provide first aid training and materials to site workers. 	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	Identified contaminated sites	Site remediation and prior to construction phase	N/A

Legend: V

: V = implemented; x = not implemented; @ = partially implemented; N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D – Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TS
--

ID	Location	Action Level	Limit Level
AM4	Pedestrian Plaza	198 μg/m³	260 μg/m³

Table 2Action and Limit Levels for Construction Noise(0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
NM1*	Hoi Kung Court	When one documented complaint is received	75 dB(A)

* The noise monitoring at NM1 was handed-over from SCL Contract 1129 in August 2015.

APPENDIX E

Calibration Certificates of Equipments

AECOM Asia Company Limited <u>TSP High Volume Sampler</u> <u>Field Calibration Report</u>

Station	Pedestrian Plaza		Operator:	Shum Kam Yuen	
Cal. Date:	17-May-16		Next Due Date:	17-Jul-16	_
Equipment No.:	A-001-70T		Serial No.	10273	_
		Section Section	Ambient Condition		
Temperat	ure, Ta (K)	297	Pressure, Pa (mmHg)	758.0	

	(Drifice Transfer Star	dard Information		
Serial No:	988	Slope, mc	1.97831	Intercept, bc	0.01264
Last Calibration Date:	29-May-15		$c \ge Qstd + bc = [H \ge (Pa/7)]$	(60) $x (209/T_{0}) 1^{1/2}$	
Next Calibration Date:	29-May-16	m	c x Qsta + bc = [H x (Fa/7)]	00) x (296/1a)]	

		Calibration o	of TSP Sampler		
		Orfice		HVS	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	7.6	2.76	1.39	44.0	44.02
13	6.1	2.47	1.24	40.0	40.01
10	4.6	2.15	1.08	32.0	32.01
7	3.4	1.84	0.93	26.0	26.01
5	2.1	1.45	0.73	20.0	20.01
Slope , mw = Correlation Coe		- 0.9921 check and recalibrate.	Intercept, bw =	-8.0	9809
Slope , mw = Correlation Coe	37.7682 fficient* =	check and recalibrate.	_	-8.0	0809
Slope , mw = Correlation Coe	37.7682 fficient* = 	check and recalibrate.	Intercept, bw = Calculation	-8.0	0809
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	37.7682 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point	_	-8.0	0809
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	37.7682 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point rve, take Qstd = 1.30m ³ /min "Y" value according to	Calculation		0809
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	37.7682 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	Calculation		0809
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi From the Regres	37.7682 fficient* = pefficient < 0.990, of eld Calibration Cur esion Equation, the	check and recalibrate. Set Point rve, take Qstd = 1.30m ³ /min "Y" value according to	Calculation x [(Pa/760) x (298/		41.00

QC Reviewer: _

WS

Signature: _

W.S

Date: 17/5/16

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		5 Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	- 297 - 755.65
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3980 0.9910 0.8790 0.8380 0.6890	3.2 6.3 7.8 8.6 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9934 0.9893 0.9872 0.9862 0.9809	0.7106 0.9983 1.1231 1.1769 1.4237	1.4125 1.9976 2.2334 2.3424 2.8251		0.9957 0.9917 0.9896 0.9886 0.9833	0.7123 1.0007 1.1258 1.1797 1.4271	0.8866 1.2539 1.4019 1.4703 1.7732
Qstd slop intercept coefficie	: (b) =	1.97831 0.01264 0.99985		Qa slope intercept coefficie	: (b) =	1.23878 0.00793 0.99985
y axis =	SQRT [H20 (F	Pa/760) (298/1	[a)]	y axis =	SQRT [H2O (1	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time
Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

Website: www.cigismec.com E-mail: smec@cigismec.com

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	15CA0703 02-02			Page	1	of	2
Item tested							
Description:	Sound Level Meter	r (Type 1)	,	Microphone			
Manufacturer:	B & K		,	B&K			
Type/Model No.:	2238		,	4188			
Serial/Equipment No.:	2800927		,	2791214			
Adaptors used:	-		,	-			
Item submitted by	N-009 01	0					
Customer Name:	AECOM ASIA CO.	, LTD.					
Address of Customer:	-						
Request No.:	-						
Date of receipt:	03-Jul-2015						
Date of test:	04-Jul-2015						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.		Expiry Date:		Traceat	ole to:
Multi function sound calibrator	B&K 4226	2288444		19-Jun-2016		CIGISME	C
Signal generator	DS 360	33873		16-Apr-2016		CEPREI	
Signal generator	DS 360	61227		16-Apr-2016		CEPREI	
Ambient conditions							
Temperature:	21 ± 1 °C						
Relative humidity:	60 ± 10 %						
Air pressure:	1000 ± 5 hPa						
Test specifications							

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997

- and the lab calibration procedure SMTP004-CA-152. 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and
- replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: 06-Jul-2015 Company Chop: Date: Huang Jian W Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

NGI

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

15CA0703 02-02

E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

2 Page 2 of

1. **Electrical Tests**

Certificate No.:

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
5	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Test.	Sublest	otatus	encontainty (ab)	1 40001
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	15CA0703 02-01			Page	1	of	2
Item tested							
Description:	Sound Level Mete	r (Type 1)	,	Microphone			
Manufacturer:	B & K		,	B&K			
Type/Model No.:	2238		,	4188			
Serial/Equipment No.:	2800930			2250455			
Adaptors used:	-		т. Т	-			
Item submitted by	\sim	.009.07					
Customer Name:	AECOM ASIA CO	., LTD.					
Address of Customer:	-						
Request No.:	-						
Date of receipt:	03-Jul-2015						
Date of test:	04-Jul-2015						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.		Expiry Date:		Traceab	le to:
Multi function sound calibrator	B&K 4226	2288444		19-Jun-2016		CIGISME	С
Signal generator	DS 360	33873		16-Apr-2016		CEPREI	
Signal generator	DS 360	61227		16-Apr-2016		CEPREI	
Ambient conditions							
Temperature:	21 ± 1 °C						
Relative humidity:	60 ± 10 %						
Air pressure:	1000 ± 5 hPa						
Test specifications							

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Huang Jian

Approved Signatory:

Date: +Feng Jun Qi

06-Jul-2015 Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and Comments: carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeer

G/F., 9/F., 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

Page

CERTIFICATE OF CALIBRATION

(Continuation Page)

15CA0703 02-01

2 of

2

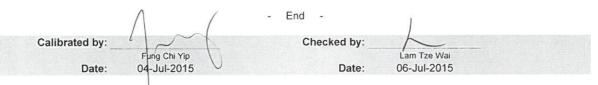
1, Electrical Tests

Certificate No.:

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

-	2.11.1	Chathana	Expanded Uncertanity (dB)	Coverage Factor
Test:	Subtest:	Status:	Uncertainty (ub)	1 actor
Self-generated noise	A	Pass	0.3	
3	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
, .	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests


The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipmentused in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Website: www.cigismec.com

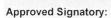
E-mail: smec@cigismec.com

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	15CA1203 03		Page:	1	of	2
Item tested						
Description:	Acoustical Calibra	tor (Class 1)				
Manufacturer:	Rion Co., Ltd.	994853 - C R HESSECONSULTER - 20 18 8				
Type/Model No.:	NC-73					
Serial/Equipment No.:	10307223	N 4 4 1				
Adaptors used:	-					
Item submitted by						
Curstomer:	AECOM ASIA CO	., LTD.				
Address of Customer:	-					
Request No.:	-					
Date of receipt:	03-Dec-2015					
Date of test:	03-Dec-2015					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial No.	Expiry Date:	т	raceab	le to:
Lab standard microphone	B&K 4180	2341427	15-Apr-2016	S	CL	
Preamplifier	B&K 2673	2239857	22-Apr-2016	C	EPREI	
Measuring amplifier	B&K 2610	2346941	22-Apr-2016	С	EPREI	
Signal generator	DS 360	61227	16-Apr-2016	С	EPREI	
Digital multi-meter	34401A	US36087050	17-Apr-2016	C	EPREI	
Audio analyzer	8903B	GB41300350	17-Apr-2016	С	EPREI	
Universal counter	53132A	MY40003662	16-Apr-2016	С	EPREI	
Ambient conditions						
Temperature:	22 ± 1 °C					
Relative humidity:	50 ± 10 %					
2.8						

Test specifications


Air pressure:

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

1010 ± 5 hPa

04-Dec-2015 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗有限公司 SOIL'S & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

6. 高浩 271, 151, 2271, 1242 October 197 Wold Shak hang Node Astrobert, 161g Kold, 香港黄竹坑道37號利達中心地下、9樓、12樓、13樓及20樓 E-mail: smcc@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA1203 03

Page: 2 of 2

of 2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.04	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.002 dB

Estimated expanded uncertainty

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 987.5 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.4 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	A	- End -	1	
Calibrated by:	INT	Checked by:	F	
Date:	Fung Chi Yip 03-Dec-2015	Date:	Lam Tze Wai 04-Dec-2015	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.	Form No CARP156-2/Issue 1/Rev.C/01/05/2005			
Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) und	er the Hong Kong Laboratory Accreditation Scheme			
(HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were				
determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditat	ion stipulate that the results shall be traceable to the			
International System of Units (S.I.) or recognised measurement standards. This certifi	icate shall not be reproduced except in full.			

APPENDIX F

EM&A Monitoring Schedules

Wednesday Thursday Friday Sunday Monday Tuesday Saturday 1-Jun 2-Jun 3-Jun 4-Jun Noise 5-Jun 6-Jun 7-Jun 8-Jun 9-Jun 10-Jun 11-Jun Air Quality Noise Air Quality 12-Jun 15-Jun 13-Jun 14-Jun 16-Jun 17-Jun 18-Jun Air Quality Noise 19-Jun 20-Jun 21-Jun 22-Jun 23-Jun 24-Jun 25-Jun Air Quality Noise 26-Jun 27-Jun 28-Jun 29-Jun 30-Jun Air Quality Noise

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Impact Monitoring Schedule for June 2016

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

AM4 Pedestrian Plaza

Noise Monitoring Station

Monitoring Frequency 24-hr TSP Once every 6 days Monitoring Frequency Once per week

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jul	2-Jul
						Air Quality
3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul	9-Jul
	Noise			Air Quality		
10-Jul	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul	16-Jul
			Air Quality	Noise		
17-Jul	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul	23-Jul
		Air Quality	Noise			
24-Jul	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul	30-Jul
	Air Quality	Noise				Air Quality
31-Jul						

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Tentative Impact Monitoring Schedule for July 2016

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring StationAM4Pedestrian Plaza

Noise Monitoring Station NM1

Monitoring Frequency24-hr TSPOnce every 6 days

Monitoring Frequency
Once per week

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Aug	2-Aug	3-Aug	4-Aug	5-Aug	6-Aug
	Noise				Air Quality	
7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug	13-Aug
				Air Quality	Noise	
14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug	20-Aug
			Air Quality	Noise		
21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug	27-Aug
		Air Quality	Noise			
28-Aug	29-Aug	30-Aug	31-Aug			
	Air Quality	Noise				

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Tentative Impact Monitoring Schedule for August 2016

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

AM4 Pedestrian Plaza

Noise Monitoring Station

Monitoring Frequency24-hr TSPOnce every 6 days

Monitoring Frequency
Once per week

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Sep	2-Sep	3-Sep
						Air Quality
4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep	10-Sep
	Noise				Air Quality	
11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep	17-Sep
				Air Quality		Noise
18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep	24-Sep
			Air Quality	Noise		
25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep	1-Oct
		Air Quality	Noise			

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Tentative Impact Monitoring Schedule for September 2016

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

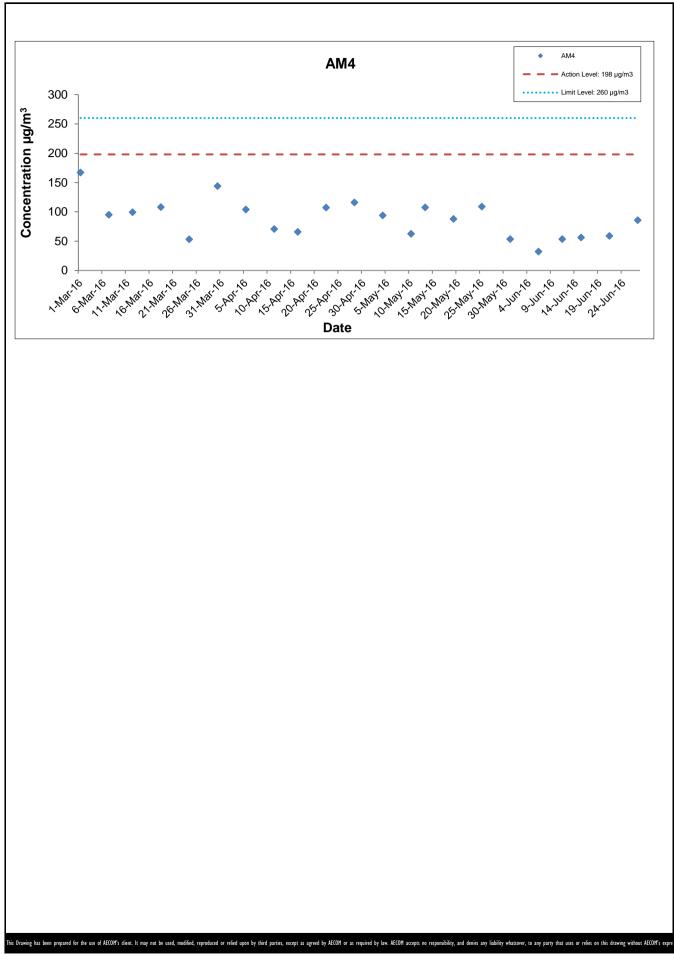
AM4 Pedestrian Plaza

Noise Monitoring Station

Monitoring Frequency24-hr TSPOnce every 6 days

Monitoring Frequency
Once per week

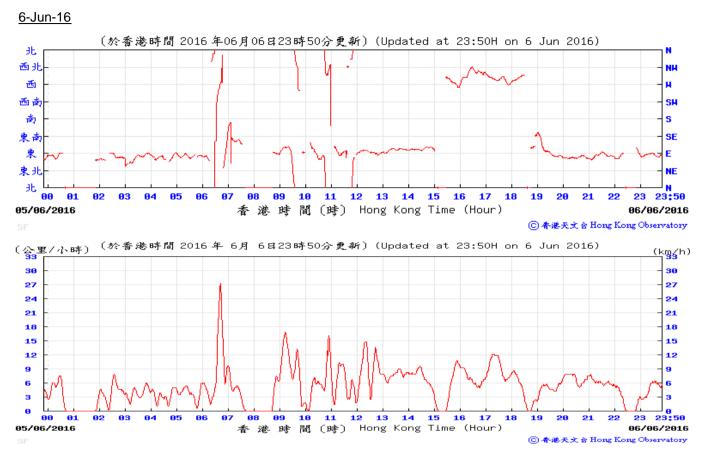
APPENDIX G


Air Quality Monitoring Results and their Graphical Presentations

Appendix G Air Quality Monitoring Results

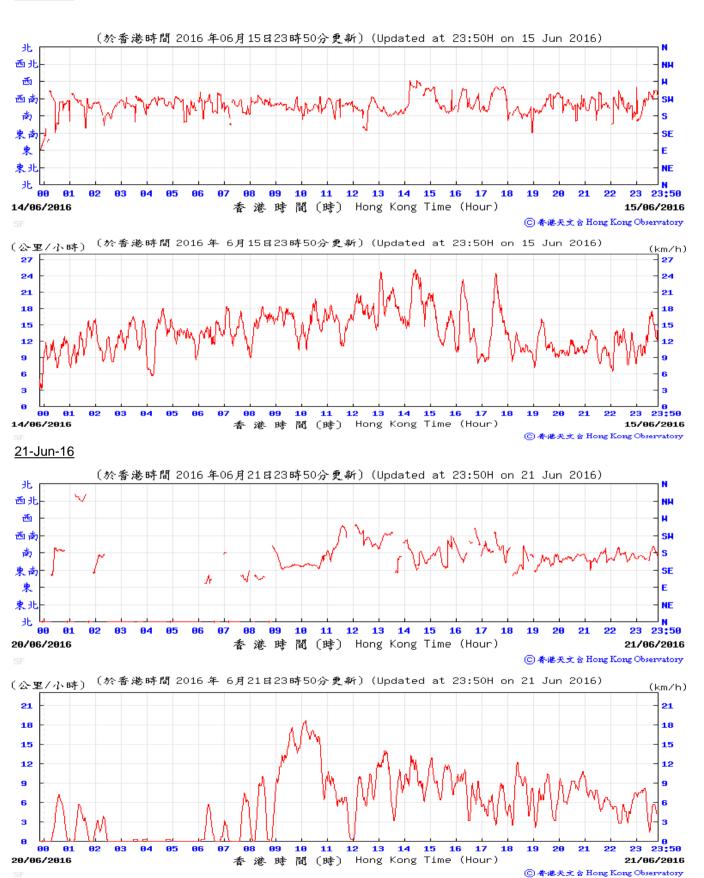
24-hour TSP Monitoring Results at Station AM4 (Pedestrian Plaza)

Star	t	End		Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
6-Jun-16	0:00	7-Jun-16	0:00	Fine	26.2	1008.8	1.27	1.27	1.27	1833.1	2.7940	2.8532	0.0592	19305.00	19329.00	24.00	32.3
11-Jun-16	0:00	12-Jun-16	0:00	Rainy	26.6	1005.9	1.27	1.27	1.27	1833.1	2.7799	2.8778	0.0979	19329.00	19353.00	24.00	53.4
15-Jun-16	0:00	16-Jun-16	0:00	Fine	30.3	1005.3	1.27	1.27	1.27	1833.1	2.8136	2.9167	0.1031	19353.00	19377.00	24.00	56.2
21-Jun-16	0:00	22-Jun-16	0:00	Sunny	30.6	1009.3	1.27	1.27	1.27	1833.1	2.8017	2.9099	0.1082	19377.00	19401.00	24.00	59.0
27-Jun-16	0:00	28-Jun-16	0:00	Fine	31.1	1007.5	1.27	1.27	1.27	1833.1	2.8633	3.0206	0.1573	19401.00	19425.00	24.00	85.8
																Average	57.4


Average57.4Minimum32.3Maximum85.8

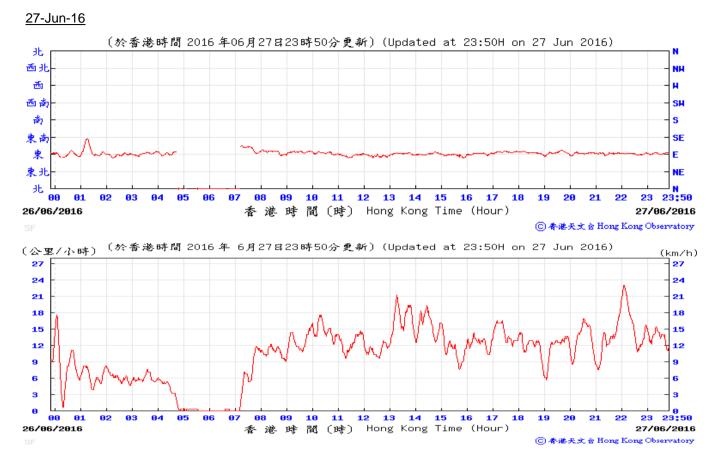
Shatin Central Link Contract No. 1128 South Ventilation Building to Admiralty Tunnels

Graphical Presentation of Impact 24-hr TSP Monitoring Results



Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

<u>11-Jun-16</u>

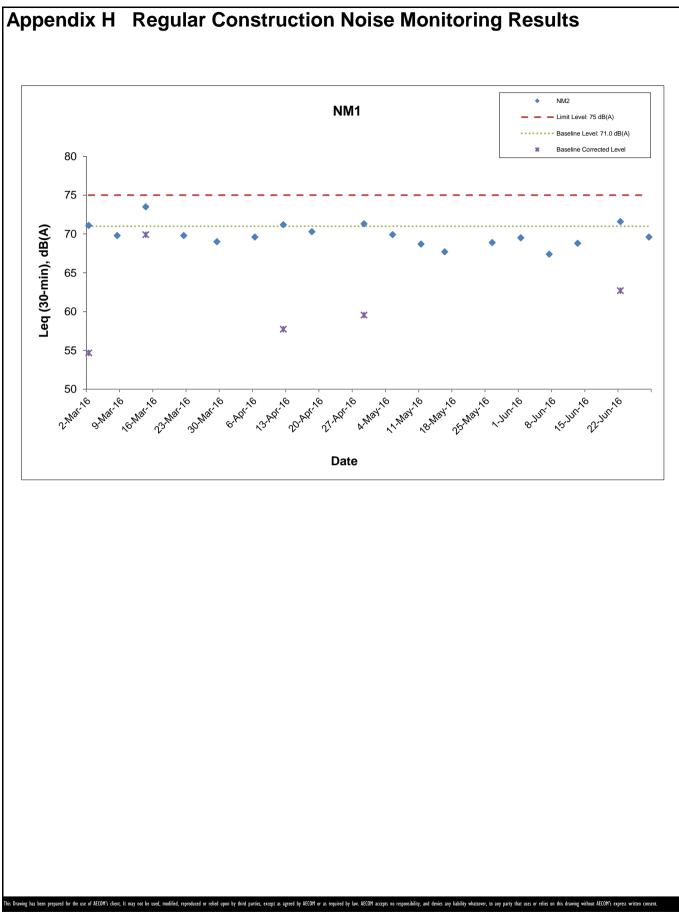

No Meteorological information available from the HKO.

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

15-Jun-16

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

APPENDIX H


Noise Monitoring Results and their Graphical Presentations

Appendix H Regular Construction Noise Monitoring Results

Date	Weather	Nois	e Level fo	r 30-min, c	lB(A)⁺	Baseline Corrected	Baseline Noise	Limit Level,	Exceedance	
Duito	Condition Time		L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)	
1-Jun-16	Fine	15:30	67.2	72.1	69.5	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N	
7-Jun-16	Fine	14:27	65.0	69.5	67.4	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N	
13-Jun-16	Cloudy	10:56	67.0	70.5	68.8	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N	
22-Jun-16	Sunny	13:56	69.8	73.2	71.6	62.7	71.0	75	N	
28-Jun-16	Fine	13:14	66.2	73.0	69.6	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N	

Daytime Noise Monitoring Results at Station NM1 (Hoi Kung Court)

+ - Façade measurement

Shatin Central Link Contract No. 1128 South Ventilation Building to Admiralty Tunnels **APPENDIX I**

Event Action Plan

Appendix I Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT		ACT	τιον	
EVENI	ET	IEC	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor and IEC on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing. 	 Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures. 	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate.

Dragages Bouygues J.V.

ER :

effectiveness.

4. Discuss with the ER, IEC and

contractor on the remedial

measures and assess the

1. Notify Contractor, IEC, EPD and

additional monitoring.

Appendix I

LIMIT LEVEL Exceedance for

one sample

Exceedance for

two or more

consecutive samples

EVENT

J.V. Event Action Plan		South Ven	Shatin to Central Link 1128 tilation Building to Admiralty Tunnels
	AC	ΓΙΟΝ	
ET	IEC	ER	Contractor
 Inform the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER_IEC and 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to ER with a copy to ET and IEC within three working

- 1	,			Juie and the second of
	2. Repeat measurement to confirm	Check the Contractor's working 2.	In consultation with the ET and	exceedance;
	findings;	method;	IEC, agree with the Contractor	2. Take immediate action to avoid
	3. Increase monitoring frequency to	Discuss with ET, ER, and	on the remedial measures to be	further exceedance;
	daily;	Contractor on the potential	implemented;	3. Submit proposals for remedial
	4. Carry out analysis of the	remedial measures; 3.	Supervise the implementation of	measures to the ER with a copy
	Contractor's working procedures	Review and advise the ER and	remedial measures;	to the IEC and ET within three
	with the ER to determine	ET on the effectiveness of 4.	If exceedance continues,	working days of notification;
	possible mitigation to be	Contractor's remedial measures.	consider what portion of the	4. Implement the agreed
	implemented;		work is responsible and instruct	proposals;
	5. Arrange meeting with the IEC		the Contractor to stop that	5. Revise and resubmit proposals if
	and ER to discuss the remedial		portion of work until the	problem still not under control;
	measures to be taken;		exceedance is abated.	6. Stop the relevant portion of
	6. Review the effectiveness of the			works as determined by the ER
	Contractor's remedial measures			until the exceedance is abated.
	and keep IEC, EPD and ER			
	informed of the results;			
	7. If exceedance stops, cease			
	a deliti a se luca a site vise e			

1. Confirm receipt of notification of

exceedance in writing;

days of notification;

1. Identify source(s) and

4. Implement the agreed proposals;

5. Amend proposal if appropriate.

investigate the causes of

4. Review and advise the ER and

ET on the effectiveness of

1. Check monitoring data

submitted by the ET;

Contractor's remedial measures.

Appendix I Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENT		ACT	ΓΙΟΝ	
EVENT	ET	IEC	ER	Contractor
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals.
Exceedance of Limit Level	 Notify the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated.

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	-	-	0	1
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

APPENDIX K

Waste Flow Table

SCL Contract 1128

Appendix K - Monthly Summary C&D Material Flow Table

		Q	uantity for off-si	te disposal of / re	esused Inert C&	D materials (m ³)			Quantity for off-site disposal of Non-inert C&D materials				aterials	Quantities of Marine Dumping (Sediment)	
Latest Programme for Generation & Import of Materials in each Reporting Period				Inert C&D m	Metals (kg)	Paper / Cardboard (kg)	Plastics (kg)	Chemical Waste (kg)	General Waste (m ³)		MD at Hung ging Point				
i chou		Reused in O	ther Projects	Reused in							Type 1	Type 2			
	TKO137FB(1)	TKO137SF(2)	TM38FB(3)	CWPFBP(4)	WDII(5)	CWB(6)	Mainland	Total (m ³)	Total	Total	Total	Total	Total	(m ³)	(m ³)
2016/01 (Actual)	2,621.5	0.0	18.0	1,105.5	0.0	0.0	0.0	3,745.0	0	0	0	0	40.6	0	0
2016/02 (Actual)	3,489.9	0.0	168.8	184.6	0.0	0.0	0.0	3,843.3	0	0	0	0	24.4	0	0
2016/03 (Actual)	4,937.3	0.0	16.3	257.8	0.0	0.0	0.0	5,211.4	0	0	0	0	29.6	0	0
2016/04 (Actual)	5,385.1	0.0	26.0	747.0	4,814.0	207.3	0.0	11,179.4	0	0	0	0	27.3	0	0
2016/05 (Actual)	7,126.9	0.0	7.4	3,863.9	1,525.8	764.5	0.0	13,288.5	0	0	0	0	31.3	0	0
2016/06 (Actual)	4,768.4	0.0	7.2	11,516.9	232.0	0.0	13,766.1	30,290.5	0	0	0	0	43.7	147.7	31.0
2016 Sub-total	28,329.1	0.0	243.6	17,675.7	6,571.8	971.8	13,766.1	67,558.0	0	0	0	0	196.9	147.7	31.0
2016/07	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/08	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/09	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/10	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/11	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/12	-	-	-	-	-	-		-	-	-	-	-	-		-
2016 Total	28,329.1	0.0	243.6	17,675.7	6,571.8	971.8	13,766.1	67,558.0	0	0	0	0	196.9	147.7	31.0

Remark: *Assume the density is 2 tonnes per cubic metre for inert C&D materials, general waste and marine sediment.

- 1 TKO137FB Fill Bank at Tseung Kwan O Area 137
- 2 TKO137SF Sorting Facilities at Tseung Kwan O Area 137
- 3 TM38FB Fill Bank at Tuen Mun
- 4 CWPFBP Chai Wan Public Fill Barging Point
- 5 WDII HK/2009/01 Wan Chai Development Phase II Central Wan Chai Bypass at Hong Kong Convention and Exhibition Centre
- 6 CWB HK/2009/15 Central Wan Chai Bypass Tunnel (Causeway Bay Typhoon Shelter Section)

Appendix B

Monthly EM&A Report for June 2016 – SCL Works Contract 1121 NSL Cross Harbour Tunnels MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 16

[Period from 1 to 30 June 2016]

Works Contract 1121 – NSL Cross Harbour Tunnels

(July 2016)

Certified by: _____Dr. Priscilla/Choy

Position: <u>Environmental Team Leader</u>

Date: _____ 14th July 2016_____

Penta Ocean – China State Joint Venture

Shatin to Central Link – Contract 1121 NSL Cross Harbour Tunnels

Monthly Environmental Monitoring and Audit Report For June 2016

(version 2.0)

Certified By	Chuph	
	Dr. Priscilla Choy (Environmental Team Leader)	

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

+TABLE OF CONTENTS

EXI	Pa ECUTIVE SUMMARY	-
	oduction	
	mary of Construction Works undertaken during Reporting Month	
	ironmental Monitoring and Audit Progress	
	ular Water Quality Monitoring	
	te Management	
	dscape and Visual	
	ironmental Site Inspection	
Env	ironmental Exceedance/Non-conformance/Complaint/Summons and Successful	
Pros	ecution	2
-	orting Changes	
	re Key Issues	
1	INTRODUCTION	4
	oose of the Report	
Stru	cture of the Report	4
2	PROJECT INFORMATION	5
Bac	دground	5
Gen	eral Site Description	5
	struction Programme and Activities	
	ect Organisation	
	us of Environmental Licences, Notification and Permits	
Sun	mary of EM&A Requirements	8
3	ENVIRONMENTAL MONITORING REQUIREMENTS	
	ular Construction Dust Monitoring	
	ular Water Quality Monitoring	
	itoring Parameter, Frequency and Programme1	
	itoring Equipment and Methodology1	
	pratory Measurement / Analysis for Marine Water 1	
	on and Limit Levels	
	nt and Action Plan	
	IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION	. 3
4 RE	INFLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION QUIREMENTS	4
5	MONITORING RESULTS 1	15
Wat	er Quality Monitoring1	5
	te Management	
Lan	dscape and Visual	6
6	ENVIRONMENTAL SITE INSPECTION 1	
Site	Audit	7
	lementation Status of Environmental Mitigation Measures	
7	ENVIRONMENTAL NON-CONFORMANCE 1	9
Sun	mary of Exceedances	9
	mary of Environmental Non-Compliance 1	
	mary of Environmental Complaint 1	

Summary of Environmental Summon and Successful Prosecution	
8 FUTURE KEY ISSUES	
Construction Programme for the Next Month	
Key Issues in the Next Month	
Monitoring Schedule in the Next Month	
9 CONCLUSIONS AND RECOMMENDATIONS	
Conclusions	
Recommendations	

LIST OF TABLES

Table 2.1	Status of Environmental Licences, Notification and Permits
Table 3.1	Water Quality Monitoring Location
Table 3.2	Water Quality Impact Monitoring Programme
Table 3.3	Water Quality Monitoring Equipment
Table 3.4	Analytical Methods to be applied to Marine Water Quality Samples
Table 4.1	Status of Required Submissions under EP
Table 6.1	Observations and Recommendations of Site Audit

LIST OF FIGURES

Figure 1a-1b	The Site Layout Plans for Works Contract 1121
Figure 2	Project Organisation for Environmental Works
Figure 3	Locations of Water Quality Monitoring Station in Victoria Harbour

LIST OF APPENDICES

- Appendix A Tentative Construction Programme
- Appendix B Action and Limit Levels
- Appendix C Water Quality Monitoring Schedule
- Appendix D Water Quality Monitoring Results and Graphical Presentations
- Appendix E Copies of Calibration Certificates
- Appendix F Quality Control Reports for SS Laboratory Analysis
- Appendix G Summary of Exceedance
- Appendix H Site Audit Summary
- Appendix I Event and Action Plans
- Appendix J Updated Environmental Mitigation Implementation Schedule
- Appendix K Waste Generation in the Reporting Month
- Appendix L Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

EXECUTIVE SUMMARY

Introduction

 This is the 16th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for MTR Shatin to Central Link (SCL) Works Contract 1121 – NSL Cross Harbour Tunnels. This report documents the findings of EM&A Works conducted from 1 to 30 June 2016.

Summary of Construction Works undertaken during Reporting Month

2. The major site activities undertaken in the reporting month include:

Shek O

- Construction of IMT Bottom Plate;
- Steel Formwork Erection;
- Base Slab Rebar Fixing Concreting;
- Wall and Roof Rebar Fixing;
- IMT Wall & Roof Concreting;
- Collar Plate Installation;
- Tunnel Lighting Installation;
- Ballast Tank Installation; and
- Waterproofing Work.

Victoria Harbour

- Installation of Sheet Pile Wall for Cofferdam in Hung Hom;
- Grouting Curtain in Hung Hom;
- Excavation and Steel Truss Support Construction at Hung Hom;
- Marine Platform Construction at Hung Hom;
- Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom;
- Pump Well Construction at Hung Hom;
- Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom;
- Rock Breaking & Removal at seabed of Element E1 Location;
- Trench Dredging Works for IMT alignments at Victoria Harbour;
- Removal of Breakwater at CBTS; and
- Reprovisioning for Seawall of Finger Pier at Hung Hom.

Environmental Monitoring and Audit Progress

3. A summary of the monitoring activities in this reporting period is listed below:

Regular Water Quality Monitoring

- Water Quality Monitoring at each monitoring station (Shek O Casting Basin)⁽¹⁾ 0 times
- Water Quality Monitoring at each monitoring station (Victoria Harbour) 13 times Remarks:
- (1) Removal of earth bunds at Shek O Casting Basin under this Project has not yet commenced in the reporting month.

Waste Management

4. Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Details of waste management data is presented in Section 5 and Appendix K.

Landscape and Visual

5. Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 13 and 27 June 2016. Most of the necessary mitigation measures have been implemented and recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

6. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 6, 13, 20 and 27 June 2016. The representative of the IEC joined the site inspection on 20 June 2016. Details of the audit findings and implementation status are presented in Section 6.

Environmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution

- 7. No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded during the reporting period.
- 8. No non-compliance event was recorded during the reporting period.
- 9. One environmental complaint and no notification of summons/successful prosecutions were received in this reporting period.

Reporting Changes

10. No reporting changes in this reporting period.

Future Key Issues

11. Major site activities for the coming reporting month will include:

Shek O

- Construction of IMT Bottom Plate;
- Steel Formwork Erection;
- Base Slab Rebar Fixing Concreting;
- Wall and Roof Rebar Fixing;
- IMT Wall & Roof Concreting;
- Collar Plate Installation;
- Tunnel Lighting Installation;
- Ballast Tank Installation; and
- Waterproofing Work.

Victoria Harbour

- Construction and Modification of Marine Platform in Hung Hom;
- Grouting curtain in Hung Hom;
- Excavation and Steel Truss Support Construction at Hung Hom;
- Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom;
- Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom;
- Rock Breaking & Removal at seabed of Element E1 Location;
- Trench Dredging Works for IMT alignment;
- Removal of Breakwater at CBTS; and

- Reprovisioning for Seawall of Finger Pier at Hung Hom.
- 12. Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, noise, water quality and waste management.

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Penta Ocean – China State Joint Venture (PCJV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL)Works Contract 1121 – NSL Cross Harbour Tunnels (hereafter referred to as the Project).

Purpose of the Report

1.2 This is the 16th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 1 to 30 June 2016. The major construction works for Contract 1121 commenced on 2 March 2015.

Structure of the Report

1.3 The structure of the report is as follows:

Section 1: Introduction - details the scope and structure of the report.

Section 2: **Project Information** - summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.

Section 3: Environmental Monitoring Requirement - summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.

Section 4: Implementation Status on Environmental Mitigation Measures summarises the implementation of environmental protection measures during the reporting period.

Section 5: **Monitoring Results** - summarises the monitoring results obtained in the reporting period.

Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.

Section 7: Environmental Non-conformance - summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.

Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Hung Hom to Admiralty Section (hereafter referred to as SCL (HUH-ADM)) is an approximately 6km extension of the East Rail Line including a rail harbor crossing from Hung Hom across the harbor to Admiralty on Hong Kong Island. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The Environmental Impact Assessment (EIA) Report for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, Environmental Permits (EP) (EP No: EP-436/2012) was granted on 22 March 2012 for their construction and operation.
- 2.3 The "Environmental Review Report Design Changes of North Ventilation Building and Shek O Casting Basin" (ERR) was submitted to the EPD in February 2014 to identify and assess the likely environmental issues pertinent to the proposed design changes at North Ventilation (NOV) Building and Shek O Casting Basin, and to identify any additional environmental mitigation measures that may be required for compliance with environmental standards.
- 2.4 The "Environmental Review Report Variation for IMT Extension" (ERR) was submitted to the EPD in February 2015 to identify and assess the likely environmental issues pertinent to the proposed alternative scheme of IMT extension. The "Supplementary Information Paper for Optimized Scheme for IMT Construction in CBTS" was submitted to the EPD in January 2016 to demonstrate that no unacceptable impacts would be resulted from the Optimized Scheme in CBTS. Variation of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/D) was issued by Director of Environmental Protection (DEP) on 5 February 2016.
- 2.5 The construction of the SCL (HUH-ADM) has been divided into a series of civil construction Works Contracts and this Works Contract 1121 comprises of the Permanent Works and the associated Temporary works required for the construction of the North Ventilation Building (NOV) at the Hung Hom Landfall, and construction of cut & cover tunnel and Immersed Tunnel (IMT) sections extending across the harbour from the NOV to the Causeway Bay Typhoon Shelter (CBTS). This construction contract was awarded to Penta Ocean China State Joint Venture (PCJV) in December 2014.

General Site Description

2.6 The site layout plans for the Works Contract 1121 are shown in **Figure 1a-1b**.

Construction Programme and Activities

2.7 A summary of the major construction activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix A**.

Shek O

- Construction of IMT Bottom Plate;
- Steel Formwork Erection;

- Base Slab Rebar Fixing Concreting;
- Wall and Roof Rebar Fixing;
- IMT Wall & Roof Concreting;
- Collar Plate Installation;
- Tunnel Lighting Installation;
- Ballast Tank Installation; and
- Waterproofing Work.

Victoria Harbour

- Installation of Sheet Pile Wall for Cofferdam in Hung Hom;
- Grouting Curtain in Hung Hom;
- Excavation and Steel Truss Support Construction at Hung Hom;
- Marine Platform Construction at Hung Hom;
- Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom;
- Pump Well Construction at Hung Hom;
- Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom;
- Rock Breaking & Removal at seabed of Element E1 Location;
- Trench Dredging Works for IMT alignments at Victoria Harbour;
- Removal of Breakwater at CBTS; and
- Reprovisioning for Seawall of Finger Pier at Hung Hom.

Project Organisation

2.8 The project organizational chart and contact details are shown in Figure 2.

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.1**.

Table 2.1 Summary of the Status of Environmental Licences, Notification and Permits

Doursit / Licongo No	Valid Period		<u>States</u>	
Permit / License No.	From	To	Status	
Environmental Permit (EP)		1		
EP-436/2012/D	05/02/2016	N/A	Valid	
SP License				
L-3-248(1)	10/09/2015	09/09/2017	Valid	
Notification pursuant to Air Pol	Notification pursuant to Air Pollution Control (Construction Dust) Regulation			
EPD Ref no.: 384777	28/01/2015	N/A	Valid	
EPD Ref no.: 384550	21/01/2015	N/A	Valid	
EPD Ref no.: 384281	14/01/2015	N/A	Valid	
Billing Account for Construction Waste Disposal				
Account No. 7021499	20/01/2015	N/A	Valid	
Registration of Chemical Waste Producer				
Waste Producer No. 5213-147- P3174-03	02/03/2015	N/A	Valid	

Dermit / Lieense Ne	Valid Period		<u>Ctature</u>	
Permit / License No.	From	То	Status	
Waste Producer No. 5213-213- P3172-01	09/02/2015	N/A	Valid	
Waste Producer No. 5111-197- P3174-01	27/02/2015	N/A	Valid	
Marine Dumping Permit				
EP/MD/16-144	25/04/2015	24/10/2016	Valid	
EP/MD/16-145	03/05/2016	02/06/2016	Expired on 02/06/2016	
EP/MD/16-199	13/04/2016	12/10/2016	Valid	
EP/MD/17-002	03/05/2016	02/06/2016	Expired on 02/06/2016	
EP/MD/17-018	29/05/2016	28/06/2016	Expired on 28/06/2016	
EP/MD/17-019	03/06/2016	02/07/2016	Valid	
EP/MD/17-020	03/06/2016	02/07/2016	Valid	
EP/MD/17-044	29/06/2016	28/07/2016	Valid	
Effluent Discharge License unde	r Water Pollution Co	ontrol Ordinance		
WT00021844-2015	25/06/2015	30/06/2020	Valid	
WT00021891-2015	18/08/2015	31/08/2020	Valid	
WT00022449-2015	29/09/2015	30/06/2020	Valid	
Construction Noise Permit (CNP	~)			
PP-RE0069-15	11/01/2016	10/10/2016	Valid	
PP-RS0010-16	01/04/2016	30/09/2016	Valid	
GW-RS0332-16	08/04/2016	07/10/2016	Superseded by GW-RS-0612-16 On 15/06/2016	
GW-RE0341-16	15/04/2016	14/10/2016	Valid	
GW-RS0395-16	29/04/2016	28/10/2016	Valid	
GW-RE0518-16	26/05/2016	25/11/2016	Valid	
GW-RS0612-16	15/06/2016	13/12/2016	Valid	

Summary of EM&A Requirements

- 2.10 The EM&A programme under Works Contract 1121 requires regular dust and water quality monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirements in contract documents.
- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely marine water quality monitoring as well as audit works for the Project in the reporting month.

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Regular Construction Dust Monitoring

3.1 In accordance with the EM&A Manual, the setup of the impact dust monitoring station at Harbourfront Horizon and the impact monitoring is currently carried out by the MTR Contract 1112. Upon termination of their EM&A programmes, the impact monitoring works would be taken up by this Project.

Regular Water Quality Monitoring

- 3.2 In accordance with the EM&A Manual and the ERR, marine water quality monitoring should be carried out during the dredging and filling operation, and IMT construction within CBTS (for Station 9 only); and throughout the construction period of removal of earth bunds at Northern and Southern gates.
- 3.3 Water Quality Monitoring at Station 8 and 14 is suspended as the water intakes are not in use. The statuses of the intakes will be kept in view such that once the water intakes are occupied, water quality monitoring will resume. In the presence of temporary reclamation in the Causeway Bay Typhoon Shelter (CBTS) under this Project, only Dissolved Oxygen (DO) level monitoring would be maintained at Station 8 for checking of potential odour concern.
- 3.4 The water quality monitoring stations and control stations of Project are shown in **Figure 3**. The co-ordinates of the monitoring stations are listed in **Table 3.1**. As shown in **Table 3.1**, the locations are classified as Impact Station and Control Station according to their functions.

Station	Description	Coord	linates	
		Easting	North	
Shek O Ca.	Shek O Casting Basin			
GB3	Turtle Cove Beach	841120	810280	
C3	Control Station for ebb tide	841200	806210	
C4	Control Station for flood tide	843330	807320	
Victoria H	arbour			
8	Cooling Water Intake for Excelsior Hotel and World Trade Centre / No. 27 – 63 Paterson Street	837036	816008	
9	Cooling Water Intake for Windsor House	837223	816150	
14	Flushing Water Intake for Kowloon Station	834477	817891	
21	Cooling Water Intake for East Rail Extension836484817642		817642	
34	Cooling Water Intake for Metropolis	836828	817844	
А	Wan Chai WSD Flushing Water Intake		816045	
WSD9	Tai Wan WSD Flushing Water Intake ⁽²⁾	837930	818357	
WSD17	7 Quarry Bay WSD Flushing Water Intake 839863 8170		817077	
C1	Control Station 1 833977 817442		817442	
C2	2 Control Station 2 841		817223	

 Table 3.1
 Water Quality Monitoring Stations

Note:

- (1) According to the Baseline Water Quality Monitoring Report for SCL (MKK-HUH & HUH-ADM), the original coordinates of monitoring location A (Easting: 836286, Northing: 816024) is the exact location taken from the design of reprovisioned Wan Chai Salt Water Pumping Station and Salt Water Intake Culvert. Based on actual site condition for taking water sampling, minor adjustment was made on monitoring location.
- (2) According to the Baseline Water Quality Monitoring Report for SCL (MKK-HUH & HUH-ADM), the original coordinates of monitoring location WSD9 (Easting: 838133, Northing: 817790) as proposed in WQMP were moved closer to sensitive receiver according to the actual site condition.

Monitoring Parameter, Frequency and Programme

3.5 Water quality monitoring was conducted in accordance with the requirements stipulated in the approved SCL(HUH-ADM) EM&A Manual and the ERR. **Table 3.2** summarized the monitoring frequency and water quality parameters for the impact monitoring. The monitoring schedule for this reporting period is shown in **Appendix C**.

	Impact Monitoring
	<u>Victoria Harbour</u> During the dredging and filling operation
Monitoring Period	<u>CBTS (Station 9 only)</u> During IMT construction within CBTS
	<u>Shek O Casting Basin</u> Throughout the construction period of removal of earth bunds at Northern and Southern gates.
Monitoring Frequency ⁽¹⁾	3 Days in a Week, at mid-flood and mid-ebb tides
Monitoring Locations ⁽³⁾	GB3, C3, C4, 8, 9, 14, 21, 34, A, WSD9, WSD17, C1 and C2
Monitoring Parameters ⁽²⁾	DO, temperature, turbidity, pH, salinity and SS
Intervals between 2 Sets of Monitoring	Not less than 36 hours
Tidal Range	Individual flood and ebb tides not less than 0.5m

Table 3.2 Water Quality Impact Monitoring Programme

Notes:

1. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5 m.

2. Turbidity, DO, pH, temperature and salinity should be measured in situ whereas SS should be determined by laboratory.

3. Water Quality Monitoring at Station 8 and 14 is suspended as the water intakes are not in use.

Monitoring Equipment and Methodology pH Measurement Instrument

3.6 The instrument should consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It should be readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 should be used for calibration of the instrument before and after use.

Dissolved Oxygen and Temperature Measuring Equipment

- 3.7 The Dissolved Oxygen (DO) measuring equipment should be portable and weatherproof. It should complete with cable and senor, and a DC power source. The equipment should be capable of measuring:
 - a DO level in the range of 0 20 mg·L⁻¹ and 0 200% saturation; and
 - a temperature of 0 45 degree Celsius (°C).
- 3.8 It should have a membrane electrode with automatic temperature compensation complete with a cable.
- 3.9 Should salinity compensation not be built-in to the DO equipment, in-situ salinity should be measured to calibrate the DO measuring equipment prior to each DO measurement.

Turbidity Measurement Instrument

3.10 The turbidity measuring instrument should be a portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU (for example, Hach model 2100P or an approved similar instrument).

Sampler

3.11 A water sampler is required for SS monitoring. It should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (for example, Kahlsico Water Sampler or an approved similar instrument).

Water Depth Detector

3.12 A portable, battery-operated echo sounder should be used for the determination of water depth at each monitoring station. This unit can either be hand-held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

Salinity

3.13 A portable salinometer capable of measuring salinity in the range of 0 - 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring station.

Sample Containers and Storage

3.14 Water samples for SS monitoring should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4 °C without being frozen) and delivered to the laboratory and analyzed as soon as possible after collection.

Monitoring Position Equipment

3.15 A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message "screen pop-up" facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic

Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel at the correct location before taking measurements.

Calibration of In-Situ Instruments

- 3.16 The pH meter, DO meter and turbidimeter shall be checked and calibrated before use. DO meter and turbidimeter shall be certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 3.17 **Table 3.3** summarizes the equipment used in the water quality monitoring program. The calibration certificates for the in-situ instruments are presented in **Appendix E**.

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi-parameter Water Quality System	Aquaread AP-2000-D	6
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS- 320	1
Water Depth Detector	Fishfinder 140	1

Table 3.3Water Quality Monitoring Equipment

3.18 Sufficient stocks of spare parts shall be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment are under maintenance, calibration, etc.

Laboratory Measurement / Analysis for Marine Water

3.19 Duplicate samples from each independent sampling event are required by EPD for all parameters. Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory SS determinations, with detection limit shown in **Table 3.4**. The SS determination work shall start within 24 hours after collection of the water samples. The analyses shall follow the standard methods according to **Table 3.4** and as described in "American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater", 19th edition, unless otherwise specified.

Table 3.4 Analytical Methods to be applied to Marine Water Quality Samples

Determinant	Standard Method	Detection Limit
Suspended Solids (mg/L)	APHA 2540 D	0.1 mg/L

3.20 Quality Control Reports as attached in **Appendix F** are available for the SS analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Action and Limit Levels

3.21 The action and limit levels for water quality monitoring are presented in Appendix B.

Event and Action Plan

3.22 Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan in **Appendix I** shall be carried out.

Landscape and Visual

3.23 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is summarised in Table 6.1 of Section 6.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit, EM&A Manual and the ERR. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix J**. Status of required submissions under the Environmental Permit (EP) of the reporting period is presented in **Table 4.1**.

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report (May 2016)	14 June 2016

Table 4.1 Status of Required Submissions under EP

5 MONITORING RESULTS

Water Quality Monitoring

- 5.1 13 sets of water quality monitoring were carried out at the designated monitoring stations in Victoria Harbour in this reporting period. All water quality monitoring was conducted as scheduled in the reporting month. The water quality impact monitoring schedule for this reporting period is shown in **Appendix C**.
- 5.2 Removal of earth bunds at Northern and Southern Gates has not yet commenced in Shek O Casting Basin. Therefore, no water quality monitoring in Shek O was carried out during this reporting period under this Project.
- 5.3 The monitoring results together with graphical presentations are shown in Appendix D.
- 5.4 Under consultancy agreement no. C11033B, Action and Limit Levels for water quality monitoring at the monitoring stations in **Table 3.2** were established in the baseline water quality monitoring conducted by AECOM during June and July 2014. Action and Limit Levels for water quality is summarised in **Appendix B**.
- 5.5 No exceedance of Action and Limit Levels of water quality was recorded during the reporting period. The investigation summary and findings for the exceedances Suspended Solids (SS) in May 2016 is presented in **Appendix G**.

Waste Management

- 5.6 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table 5.1**. Details of waste management data is presented in **Appendix K**.
- 5.7 1,150 m³ inert C&D materials were generated during the reporting month by this Project. 2,627 m³ and 2,381 m³ inert C&D materials were received from SCL Contract 1111 and 1112 respectively. 4,377 m³ of these inert C&D materials were reused in the other Projects. No chemical waste was collected by licensed collector during the reporting month. No metal, no plastics and paper/cardboard packaging were generated during the reporting month.
- 5.8 6,775 m³ Type 1 sediments (Category L) were generated from construction activities of this Project during this reporting period. 0 m³, 0 m³ and 148 m³ of Type 1 sediments (Category L) were received from SCL Contract 1111, 1112 and 1128 respectively. Such materials were collected and 6,775 m³ of it were disposed at Capping of the exhausted Confined Marine Disposal Facility at South Cheung Chau.
- 5.9 No contaminated materials Type 1 (dedicated sites) and 33,845 m³ Type 2 Confined Marine Disposal (Category M) sediments were generated from construction activities of this Project during this reporting period. No contaminated materials Type 1 (dedicated sites) were received from SCL Contract 1111, 1112 and 1128. 0 m³, 6,447 m³ and 31 m³ of contaminated materials Type 2 Confined Marine Disposal (Category M) sediments were received from SCL Contract 1111, 1112 and 1128 respectively. Such materials

were collected and 40,363 m³ of it were disposed at Capping of the exhausted Confined Marine Disposal Facility at South of The Brothers (or East of Sha Chau).

5.10 No contaminated materials - Type 3 (Special Treatment Disposal) sediments were generated or disposed from construction activities of this Project during this reporting period. No contaminated materials - Type 3 (Special Treatment Disposal) sediments were received from SCL Contract 1111 and 1112.

				Quantity										
Denerting				C&D Materials (non-inert) ^(b)										
Reporting Month	C&D	Sediments	~ .		Recyc	cled mate	rials							
Wionth	Materials (inert) ^(a)	(in bulk volume)	General Refuse	Chemical Waste	Paper/ cardboard	Plastics	Metals							
June 2016	$1,150 m^3$	40,620 m ³	204 tonne	0 <i>kg</i>	0 kg	0 kg	0 kg							

Table 5.1 Quantities of Waste Generated from the Project

Notes:

(a) Inert C&D materials include soft materials, rocks and artificial hard materials to be delivered to TKO 137 and TM 38 public fill reception sites or, alternatively, receptor sites to be identified for beneficial reuse as proposed by the Contractor.

(b) Non-inert C&D materials include C&D waste which cannot be reused or recycled and has to be disposed of at North East New Territories (NENT) Landfill. It also includes steel, paper/cardboard packaging waste, plastics. Steel materials generated from the project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.

Landscape and Visual

5.11 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 13 and 27 June 2016. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION

Site Audit

- 6.1 Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audit are attached in **Appendix H**.
- 6.2 Site audits were conducted on 6, 13, 20 and 27 June 2016 by ET. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 20 June 2016. No site inspection was conducted by the EPD during the reporting period. The details of observations during site audit can refer to **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix J**.
- 6.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

Parameters	Date	Observations and Recommendations	Follow-up
	23, 30 May 2016	<u>Observation:</u> Silt curtain at Hung Hom works area observed "opened" during the marine works. The Contractor is reminded to properly close the silt curtain during marine works.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
	23 May 2016	<u>Reminder:</u> Clear the silty water from the conveyor belt at the Shek O jetty.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
	23, 30 May 2016	<u>Reminder:</u> To clear the general refuse and construction waste from the U-channel and AquaSep in Shek O Casting Basin.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
Water Quality	6 Jun 2016	<u>Reminder:</u> To remove the silty water in the sand trap at Shek O jetty.	The observation was observed to be improved/rectified by the Contractor during the audit session on 13 June 2016.
	13 Jun 2016	<u>Reminder</u> : To remove the discharge tube away from the seafront of Hung Hom area to avoid discharge into the sea.	The observation was observed to be improved/rectified by the Contractor during the audit session on 20 June 2016.
	20 Jun 2016	Observation: "Opening" of silt curtain in Hung Hom works area should be closed during marine works in Hung Hom.	The observation was observed to be improved/rectified by the Contractor during the audit session on 27 June 2016.
	20, 27 Jun 2016	<u>Reminder:</u> To remove the construction waste from the drainage channel in Shek O Casting Basin.	Follow up action will be reported in next reporting month.
Noise			

Table 6.1Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Landscape and Visual			
	23, 30 May 2016	<u>Reminder:</u> Cover the stockpile of dusty material properly in Hung Hom.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
Air Quality	6 Jun 2016	<u>Observation:</u> Smoke generation observed from a marine barge at the Shek O jetty. The Contractor is reminded to check and repair the machinery to avoid black smoke generation.	The observation was observed to be improved/rectified by the Contractor during the audit session on 13 June 2016.
	20 Jun 2016	<u>Reminder:</u> To provide frequent water spray to haul road in Shek O Casting Basin to prevent dust generation.	The observation was observed to be improved/rectified by the Contractor during the audit session on 27 June 2016.
	27 Jun 2016	<u>Reminder</u> : To properly cover the stockpile of sand by impervious material at Hung Hom finger pier.	Follow up action will be reported in next reporting month.
	16 May 2016	<u>Reminder</u> : To remove the oily water in the drip tray and clear the minor chemical leakage at the edge of drip tray at Shek O Casting Basin.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
	23, 30 May 2016	<u>Observation:</u> Oily water observed inside the drip tray of Shek O Casting Basin. The Contractor is reminded to clear as "chemical waste" properly.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
Waste /	23, 30 May 2016	<u>Observation:</u> Chemical labels are not provided for chemical container in the chemical waste storage area. The Contractor is reminded to provide labels in compliance with the COP.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
Chemical Management	13 Jun 2016	<u>Reminder:</u> To provide drip tray to chemical container at the Hung Hom finger pier.	The observation was observed to be improved/rectified by the Contractor during the audit session on 20 June 2016.
	20 Jun 2016	<u>Reminder:</u> Stagnant rain water should be removed from drip tray in Shek O Casting Basin.	The observation was observed to be improved/rectified by the Contractor during the audit session on 27 June 2016.
	20, 27 Jun 2016	<u>Reminder:</u> To remove the construction waste from the drainage channel in Shek O Casting Basin.	Follow up action will be reported in next reporting month.
Permits/ Licenses			

7 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

7.1 No exceedance of Action and Limit Levels of water quality was recorded during the reporting period. The summary of exceedance is provided in **Appendix G**. The investigation summary and findings for the exceedances Suspended Solids (SS) in May 2016 is presented in **Appendix G**.

Summary of Environmental Non-Compliance

7.2 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

7.3 One environmental complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix L**. The investigation status and result is also reported in **Appendix L**.

Summary of Environmental Summon and Successful Prosecution

7.4 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix** L.

8 FUTURE KEY ISSUES

Construction Programme for the Next Month

8.1 A tentative construction programme is provided in **Appendix A**. The major construction activities in the coming month will include:

Shek O

- Construction of IMT Bottom Plate;
- Steel Formwork Erection;
- Base Slab Rebar Fixing Concreting;
- Wall and Roof Rebar Fixing;
- IMT Wall & Roof Concreting;
- Collar Plate Installation;
- Tunnel Lighting Installation;
- Ballast Tank Installation; and
- Waterproofing Work.

Victoria Harbour

- Construction and Modification of Marine Platform in Hung Hom;
- Grouting curtain in Hung Hom;
- Excavation and Steel Truss Support Construction at Hung Hom;
- Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom;
- Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom;
- Rock Breaking & Removal at seabed of Element E1 Location;
- Trench Dredging Works for IMT alignment;
- Removal of Breakwater at CBTS; and
- Reprovisioning for Seawall of Finger Pier at Hung Hom.

Key Issues in the Next Month

8.2 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, noise, water quality and waste management in both Shek O and Hung Hom.

Monitoring Schedule in the Next Month

8.3 The tentative schedule of regular water quality monitoring at all the monitoring locations in the next reporting period is presented in **Appendix C**. The regular construction water quality monitoring will be conducted at the same monitoring locations in the next reporting period.

9 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 to 30 June 2016 in accordance with EM&A Manual and the requirement under EP.
- 9.2 No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded at the designated monitoring stations during the reporting month.
- 9.3 4 times of joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET and 2 times of bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted during the reporting period.
- 9.4 One environmental complaint, no successful prosecution or notification of summons were received during the reporting month.
- 9.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

9.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

Water Quality

- To remove the construction material in the U-channel in Shek O Casting Basin.
- Silt curtain for Hung Hom works area should be "closed" during the marine works.
- To remove the silty water in the sand trap at Shek O jetty.
- To remove the discharge tube away from the seafront of Hung Hom area to avoid discharge into the sea.

Landscape and Visual

• N/A

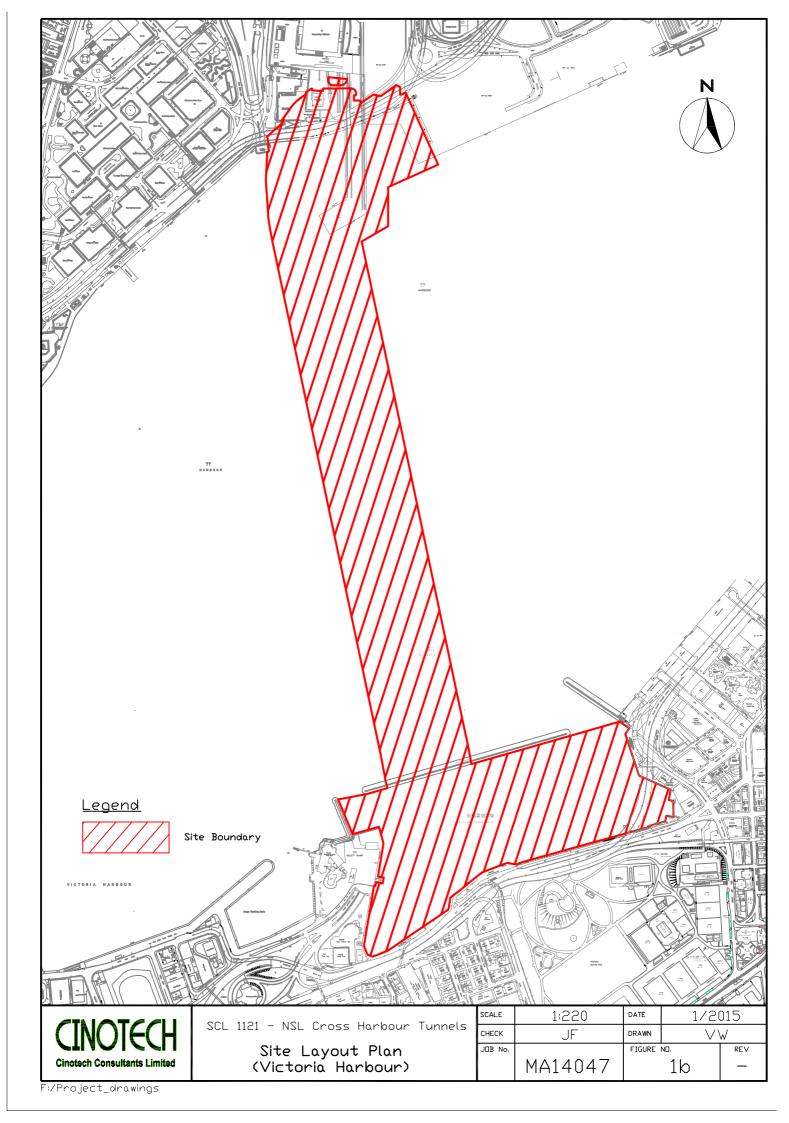
Noise

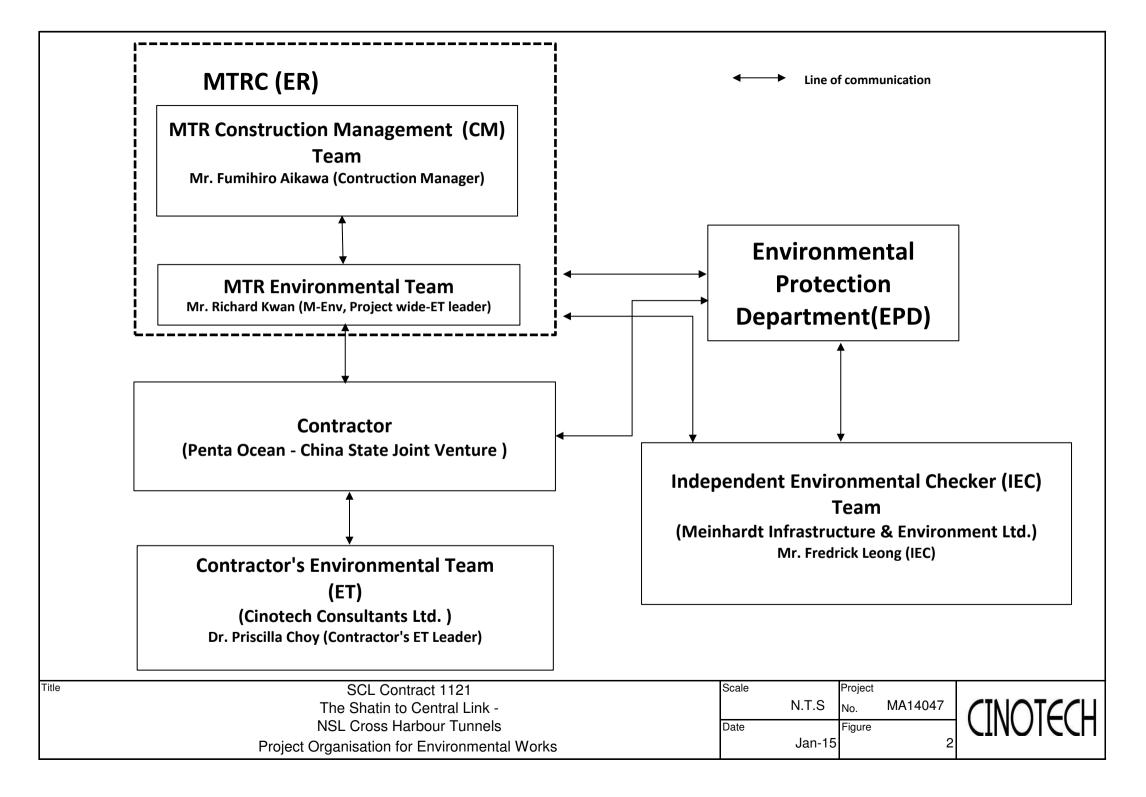
• N/A

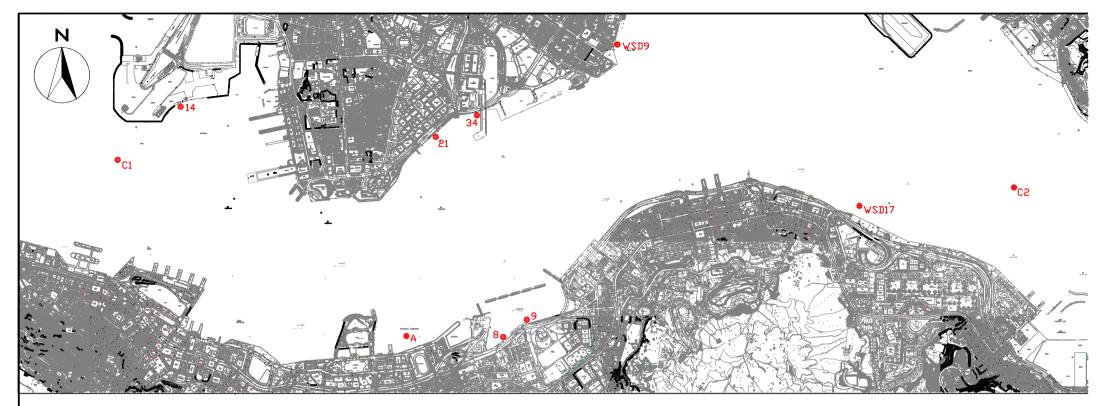
Air Quality

- To cover the stockpile of dusty material and cement bags by impervious material.
- To provide frequent water spray to haul road in Shek O Casting Basin to prevent dust generation.
- To check and repair the marine barge at Shek O jetty to avoid black smoke generation.

Waste/Chemical Management


- To remove the stagnant water / oily water in the drip tray in Shek O casting basin.
- To provide drip tray to chemical containers at Hung Hom finger pier.
- To remove the construction material in the U-channel in Shek O Casting Basin.


Permits/Licenses


• N/A

FIGURES

COORDINATE	EASTING	NORTHING
А	836268	816045
14	834477	817891
WSD9	837930	818357
WSD17	839863	817077
C1	833977	817442
C2	841088	817223
8	837036	816008
9	837223	816150
21	836484	817642
34	836828	817844

LEGEND

Water Quality Monitoring Station

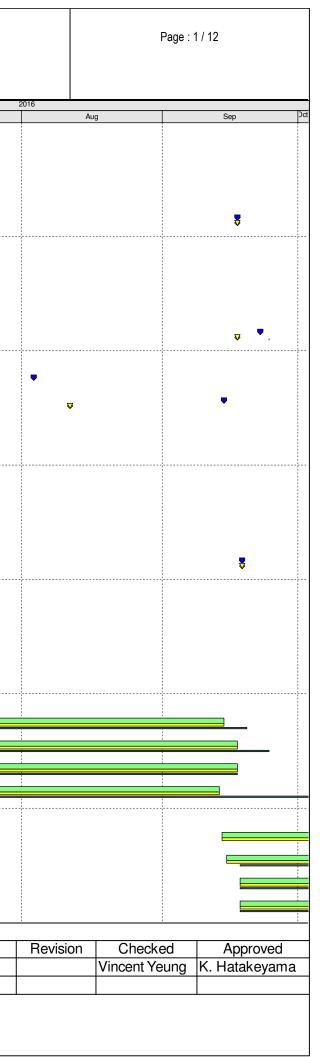
	SCL 1121 - NSL Cross Harbour Tunnels	SCALE	1:30	DATE	1/2015	5
CINOTECH		СНЕСК	JF	DRAWN	$\vee \forall$	
Cinotech Consultants Limited	Locations of Water Quality Monitoring	JOB No.	MA14047	FIGURE I	√⊔. 1	RE∨
	station in the Victoria Harbour				5	

APPENDIX A TENTATIVE CONSTRUCTION PROGRAMME

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

ivity ID	Activity Name Total	Qty Completed Qty	DLI Start	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete	Jun		Jul
1121 - 20 - 3M Ro	Iling Programme (7 - 9/2016) (Ref. to PMP Rev 1a) (Updates as of 25	5 Jun 2016)	23-Nov-15	16-Sep-17	539.0	367.0	08-Mar-15 A	16-Sep-17	1287.0			\Box	
SCHEDULE OF C	COMPLETION OBLIGATIONS AND MILESTONES SCHEDULE		15-Dec-15	15-Dec-16	366.0	90.0	25-Jun-16 A	22-Sep-16	1561.0				
Milestone Sche	dule		15-Dec-15	15-Dec-16	366.0	90.0	25-Jun-16 A	22-Sep-16	1561.0				
Cost Center A -	General Preliminaries		17-Sep-16	17-Sep-16	0.0	0.0	17-Sep-16	17-Sep-16	1566.0				
01121.MS10100	Milestone A6 - (Implementation of Plans/Systems + Dwgs and Manuals/Plans			17-Sep-16	0.0	0.0		17-Sep-16	1566.0	0%			
Cost Center AA	Approvals) (Finish On 25-Sep-16) - Design and ICE (Independant Checking Engineer) Cost		15-Dec-15	15-Dec-15	0.0	0.0	01-Jul-16	01-Jul-16	1644.0				
01121.MS10170	Milestone AA4 (Finish On or Before 6 Sep 15)			15-Dec-15	0.0	0.0		01-Jul-16	1644.0	0%			•
Cost Center B -	North Ventilation Building (NOV)		13-May-16	17-Sep-16	127.0	0.0	30-Jun-16 A	22-Sep-16	1561.0				
 01121.MS10200	Milestone B2 - Complete Pump Test for NOV, Ready for Bulk Excavation (Finish			13-May-16	0.0	0.0		30-Jun-16 A		100%		•	8
01121.MS10210	On or Before 29 May 16) Milestone B3 - Complete 60% of Total Excavation for NOV (Finish On or Before			17-Sep-16	0.0	0.0		22-Sep-16	1561.0	0%			
Cost Center C -	25 Sept 16) Hung Hom Landfall Tunnels		19-Apr-16	11-Aug-16	114.0	42.0	03-Aug-16	14-Sep-16	1569.0				
01121.MS10310	Milestone C3 - Complete Pump Test for Land Cofferdam - Complete Marine			19-Apr-16	0.0	0.0		03-Aug-16	1611.0	0%			
01121.MS10320	Cofferdam (Finish On or Before 24 Apr 16) Milestone C4 - 60% Excavation for Land Cofferdam - 40% Excavation for Marine			11-Aug-16	0.0	0.0		14-Sep-16	1569.0	0%			
Cost Center D -	Cofferdam (Finish On or Before 28 Aug 16)		23-Jun-16	15-Dec-16	175.0	0.0	25-Jun-16	25-Jun-16	1651.0		(
01121.MS10420	MIlestone D4.1 - Complete 30% of fabrication of IMT Units by Number (Finish			23-Jun-16	0.0	0.0		25-Jun-16	1651.0	0%	, T		
01121.MS10440	on 3-Jul-16) Milestone D5 - Complete All Fabrication of IMT Units (Excl out-fitting &			15-Dec-16	0.0	0.0		25-Jun-16	1651.0	0%		·	
	Inspection) (Finish on 29-Jan-17) CBTS Tunnels		18-Apr-16	18-Apr-16	0.0	0.0	12-Jul-16	12-Jul-16	1633.0	0.00			
_			10 / 0/ 10							001			
01121.MS10530	Milestone E3 - Complete removal of breakwater at Works Area 1121.VH3C (Finish on 31 Jul 16)			18-Apr-16	0.0	0.0		12-Jul-16	1633.0	0%			•
	Associated Works		18-Sep-16	18-Sep-16	0.0	0.0	18-Sep-16	18-Sep-16					
01121.MS10610	Milestone F3 - Management, M&O of Barging Point Facilities at Engineer's Satisfaction (Finish On 25-Sep-16)			18-Sep-16	0.0	0.0		18-Sep-16	1565.0	0%			
CONSTRUCTION			23-Nov-15	16-Sep-17	539.0	367.0	08-Mar-15 A	16-Sep-17	1287.0				
Cost Centre A -	General Preliminary		23-Nov-15	16-Sep-17	664.0	449.0	23-Nov-15 A	16-Sep-17	1202.0				
A5			23-Nov-15	17-Mar-16	116.0	0.0	23-Nov-15 A	25-Jun-16	1651.0				
01121.15210	A5 - Specified Plans - Implementation with Satisfactory from Engineer		23-Nov-15	17-Mar-16	116.0	0.0	23-Nov-15 A	25-Jun-16	100.0	30%		-	
01121.15220	A5 - Preliminary ABWF and BS Programme - Prepare, Submit and Approve		23-Nov-15	17-Mar-16	116.0	0.0	23-Nov-15 A	25-Jun-16	1651.0	30%		-	
A6			23-Nov-15	17-Sep-16	300.0	85.0	24-Nov-15 A	17-Sep-16	1202.0				
01121.15260	A6 - Programming Management System - Implementation with Satisfactory from Engineer		25-Nov-15	14-Sep-16	295.0	82.0	24-Nov-15 A	14-Sep-16	284.0	10%		_	
01121.15270	A6 - NOV ABWF Shop Drawing & Material Submission (AIP) - Prepare, Submit and Approve		23-Nov-15	17-Sep-16	300.0	85.0	30-Nov-15 A	17-Sep-16	1202.0	10%		_	
01121.15280	A6 - NOV BS Shop Drawing & Material Submission (AIP) - Prepare, Submit and		23-Nov-15	17-Sep-16	300.0	85.0	05-Dec-15 A	17-Sep-16	1202.0	10%		_	
01121.15240	Approve A6 - Specified Plans - Implementation with Satisfactory from Engineer		18-Mar-16	13-Sep-16	180.0	81.0	18-Mar-16 A	13-Sep-16	100.0	0%		=	
A7			14-Sep-16	17-Feb-17	157.0	157.0	14-Sep-16	17-Feb-17	1413.0				
01121.15290	A7 - Specified Plans - Implementation with Satisfactory from Engineer		14-Sep-16	15-Feb-17	155.0	155.0	14-Sep-16	15-Feb-17	100.0	0%			
01121.15300	A7 - Programming Management System - Implementation with Satisfactory from		15-Sep-16	16-Feb-17	155.0	155.0	15-Sep-16	16-Feb-17	284.0	0%			
01121.15310	Engineer A7 - CSD, SEM Drawings, Interface Spec., interface Test Plans (AIP) - Prepare,		18-Sep-16	17-Feb-17	153.0	153.0	18-Sep-16	17-Feb-17	1413.0	0%			
01121.15320	Submit and Approve A7 - NOV Material Samples, Mock-Ips and Prototypes of ABWF - Prepare,		18-Sep-16	17-Feb-17	153.0	153.0	18-Sep-16	17-Feb-17	1413.0	0%			
	Construct and Approve										L	<u> </u>	


- \diamond
- Data Date:
- 25-Jun-16
- \diamondsuit
 - ▼ Baseline Milestone (PMP Rev. 1a) _____ 3M Rolling Prog (last month) Actual Work

Current Milestone

Remaining Level of Effort

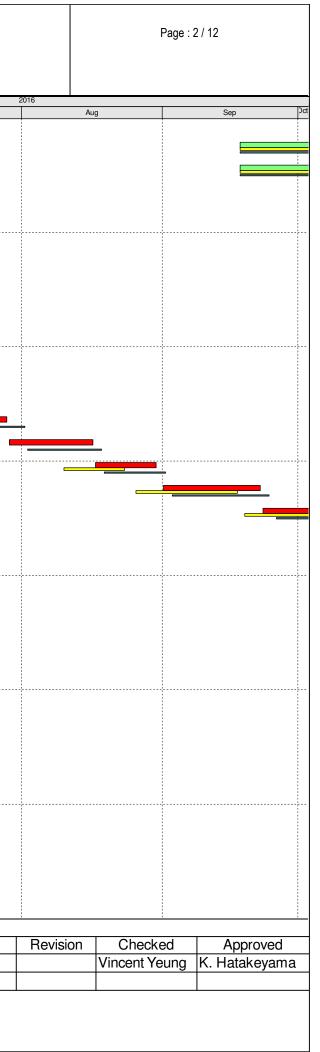
- Critical Remaining Work
- Remaining Work
- Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

ID	Activity Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete	Jun		Jul
A8				18-Sep-16	16-Sep-17	364.0	364.0	18-Sep-16	16-Sep-17	1202.0				
01121.15350	A8 - NOV ABWF Shop Drawing & Material Submission (DDA) - Prepare, Submit			18-Sep-16	16-Sep-17	364.0	364.0	18-Sep-16	16-Sep-17	1202.0	0%			
01121.15370	and Approve A8 - NOV BS Shop Drawing & Material Submission (DDA) - Prepare, Submit and			18-Sep-16	16-Sep-17	364.0	364.0	18-Sep-16	16-Sep-17	1202.0	0%			
ost Centre B - No	Approve orth Ventilation Building NOV			14-Jun-16	03-Oct-16	93.0	83.0	23-May-16	11-Oct-16	1565.0				
NOV Cofferdam C	Construction and ELS Installation			14-Jun-16	03-Oct-16	93.0	83.0	A 23-May-16	11-Oct-16	1565.0				
01121.13940-400	NOV - A4 Platform (Section 2)	100%	100%			0.0	0.0	A 23-May-16	06-Jun-16 A		100%			
01121.13900-1000	NOV - Design Review	100%	100%			0.0	0.0	A 30-May-16	03-Jun-16 A		100%			
01121.13900-1010	NOV - Re-grouting works	100%	100%			0.0	0.0	A 04-Jun-16 A	07-Jun-16 A		100%			
01121.13900-1020	NOV - Unblock dewatering and observation wells	100%	100%			0.0	0.0	08-Jun-16 A	11-Jun-16 A		100%	—	_	
01121.13900-1025	NOV - Initial monitoring	100%	100%			0.0	0.0	13-Jun-16 A	15-Jun-16 A		100%			
01121.13900-1030	NOV - Pumping Test (re-run)	100%	100%			0.0	0.0	16-Jun-16 A	23-Jun-16 A		100%			
01121.13900-1040	NOV - pumping test report - prepare test report and submit to BD	100%	100%			0.0	0.0	23-Jun-16 A	28-Jun-16 A		100%		• + ••	
01121.13960	NOV - Excavate to -0.5mPD (Zone B)	2900m3		14-Jun-16	15-Jun-16	2.0	10.0	04-Jul-16	14-Jul-16	-19.0	0%	_		
01121.13960-100	NOV - Install S2 at +0.5mPD and +1.3mPD					0.0	12.0	15-Jul-16	28-Jul-16	-19.0	0%			-
01121.13980-100	NOV- Excavate to S3 (-4.5mPD)	4600m3				0.0	16.0	29-Jul-16	16-Aug-16	-19.0	0%			
01121.14020	NOV - Install S3 (-3.5m) and remove bulk head wall (NOV/HUH)			10-Aug-16	23-Aug-16	12.0	12.0	17-Aug-16	30-Aug-16	-19.0	0%			
01121.14040	NOV - Excavate to -8.5m (Zone B)	5200m3		26-Aug-16	17-Sep-16	19.0	18.0	01-Sep-16	22-Sep-16	-19.0	0%			
01121.14050	NOV - Install S4 (-7m) and remove bulk head wall (NOV/HUH)			19-Sep-16	03-Oct-16	12.0	14.0	23-Sep-16	11-Oct-16	-19.0	0%			
ost Centre C - Hu	ung Hom Cut and Cover Tunnels			29-Feb-16	19-Sep-16	165.0	99.0	18-Apr-16 A	22-Oct-16	1228.0				
HUH Submerged	Tunnel (Area B)			19-Apr-16	19-Sep-16	126.0	84.0	18-Apr-16 A	04-Oct-16	5.0				
	H Temp Cofferdam			19-Apr-16	19-Sep-16	126.0	84.0	18-Apr-16 A	04-Oct-16	5.0				
	der Bypass Cofferdam - (by A3 Platform)					0.0		18-Apr-16 A		-19.0				
Sheetpile - By A						0.0	0.0	· · ·	16-Jun-16 A					
01121.22270-20	HUH Area B (A3 plaftorm) - additional pre-boring	12 nos.				0.0	0.0	A	11-Jun-16 A		100%			
01121.27910	HUH - Area B (A3 Platform) - re-drive sheet pile (BP117-CP36B)	100%	100%			0.0	0.0	A			100%			
TAM Grout - By						0.0		18-Apr-16 A		-19.0				
01121.26590	HUH Area B (under bypass) - East - TAM Grout (by A3 Platform)	100%	80%			0.0		18-Apr-16 A		-19.0	80%			-
01121.26580	HUH Area B (under bypass) - West - TAM Grout (BP93 to BP114)	100%	95%			0.0	5.0	24-May-16		-12.0	95%			
01121.27320	HUH Area B (under bypass) - West TAM Grout (BP114 to CP042)	100%	20%			0.0		A 17-Jun-16 A		-13.0	20%			—
	utside Bypass Cofferdam (By Ngai Shun)					0.0		26-Apr-16 A				_		
	utside Bypass Cofferdam - TAM Grout					0.0		26-Apr-16 A						
01121.26550	HUH Area B (outside bypass) - End Wall West - TAM grout (BP171-BP180)	100%	100%			0.0		26-Apr-16 A			100%			
01121.26550	HUH Area B (outside bypass) - End Wall • TAM grout (BP171-BP100) HUH Area B (outside bypass) - End Wall - TAM grout (EP001-EP023)	100%	100%				0.0	•	16-Jun-16 A		100%			
		100%	100%	10 Apr 10	10 Apr 16	0.0		A			100%			
	2) Piling Platform & Cofferdam			19-Apr-16	19-Abr-10	0.0	0.0	09-Jul-16	09-Jul-16	-19.0				
01121.10810	HUH Area B - cofferdam completed				19-Apr-16	0.0	0.0		09-Jul-16	-19.0	0%			-


Data Date:

- \diamondsuit \diamond
- Current Milestone ▼ Baseline Milestone (PMP Rev. 1a) _____ 3M Rolling Prog (last month)
- 25-Jun-16
- Actual Work

Remaining Level of Effort

- Critical Remaining Work
- Remaining Work
- Baseline (PMP Rev.1a)

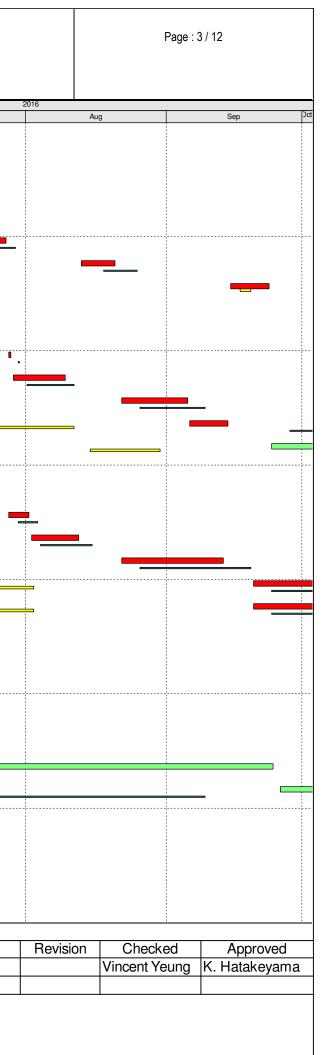
Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

A			T-4-1 0:	10-m 1 + 10			~		1 0		T-4 1 F	Dia: 1				
Activit	y ID	Activity Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete	Jun		Jul	
	HUH Area B - Bul	k Excavation (14745m3 + 2521m3 of rock) and ELS			20-Apr-16	19-Sep-16	126.0	84.0	25-May-16 A	04-Oct-16	5.0					
	HUH Area B - Pu	mping Test and Dewatering			20-Apr-16	19-Sep-16	126.0	72.0	25-Мау-16 А	23-Sep-16	-14.0					
	01121.17270	HUH Area B - Install Dewatering Well	14 nos.	10 nos.	20-Apr-16	27-Apr-16	7.0	9.0	25-May-16	11-Jul-16	-20.0	70%				
	01121.17271	HUH Area B - Baseline Reading					0.0	3.0	12-Jul-16	14-Jul-16	-20.0	0%			_	
	01121.17300	HUH Area B - Dewater to 1m below S2 level (-5.5mPD)			25-May-16	26-May-16	2.0	2.0	18-Jul-16	19-Jul-16	-22.0	0%				—
	01121.17300-10	HUH Area B - Initial Pump Test (target drawdown -5.5mPD)					0.0	7.0	20-Jul-16	27-Jul-16	-22.0	0%		-		
	01121.17330-10	HUH Area B - 1st Pumping Test (target drawdown -10.0mPD)					0.0	7.0	13-Aug-16	20-Aug-16	-22.0	0%				
	01121.17390	HUH Area B - 2nd Pumping Test (target drawdown to -17.0mPD)			17-Sep-16	19-Sep-16	2.0	7.0	15-Sep-16	23-Sep-16	-14.0	0%				
	HUH Area B1 (O	utside HUH Bypass)	,		27-May-16	30-Aug-16	80.0	84.0	25-Jun-16	04-Oct-16	5.0					
	01121.17309	HUH Area B1 (O/S HUH Bypass) - Install S1 strut at +1.6 (S1-1 to S1-3)					0.0	0.0	25-Jun-16	25-Jun-16	-22.0	0%				
	01121.17310	HUH Area B1 (O/S HUH Bypass) - Excavate to -4.5mPD (MD:trimming)			27-May-16	04-Jun-16	8.0	1.0	28-Jul-16	28-Jul-16	-19.0	0%				
	01121.17320	HUH Area B1 (O/S HUH Bypass) - Install struts S2 at -3.5mPD	3 nos.		14-Jun-16	27-Jun-16	12.0	10.0	29-Jul-16	09-Aug-16	-19.0	0%		┢		
	01121.17340	HUH Area B1 (O/S HUH Bypass) - Excavate to -9.0mPD (MD:941m3, CDG:2162m3)	3103m3		30-Jun-16	05-Jul-16	4.0	13.0	22-Aug-16	05-Sep-16	-14.0	0%	-			
	01121.17350	HUH Area B1 (O/S HUH Bypass) - Install Struts S3	3 nos.		22-Jul-16	11-Aug-16	18.0	8.0	06-Sep-16	14-Sep-16	-14.0	0%				
	01121.17370	HUH Area B1 (O/S HUH Bypass) - Excavate to -11.5mPD (CDG:1898m3)	1898m3		15-Aug-16	30-Aug-16	14.0	8.0	24-Sep-16	04-Oct-16	5.0	0%				
	HUH Area B2 (Ur	nder Hung Hom by-pass)			27-May-16	02-Aug-16	56.0	77.0	01-Jun-16 A	04-Oct-16	-22.0			-		
	01121.17420-100	HUH Area B2 (Under HUH Bypass) - Install S1 strut at +1.6mPD	7 nos.	5 nos.			0.0	3.0	01-Jun-16 A	07-Jul-16	-22.0	70%		-		
	01121.17420	HUH Area B2 (Under HUH Bypass) - Excavate to -4.5m (MD:934m3)	934m3		27-May-16	17-Jun-16	18.0	4.0	28-Jul-16	01-Aug-16	-22.0	0%				•
	01121.17430	HUH Area B2 (Under HUH Bypass) - Install struts S2 at -3.5			18-Jun-16	02-Jul-16	12.0	10.0	02-Aug-16	12-Aug-16	-22.0	0%		-	-	
	01121.17440	HUH Area B2 (Under HUH Bypass) - Excavate to -9.0m (MD:1060m3, CDG:2580m3, Corestone:280m3, Rock: 70m3)	3990m3		04-Jul-16	14-Jul-16	10.0	20.0	22-Aug-16	13-Sep-16	-22.0	0%				
	01121.17450	HUH Area B2 (Under HUH Bypass) - Install Struts S3			20-Jul-16	02-Aug-16	12.0	12.0	20-Sep-16	04-Oct-16	-22.0	0%				
	01121.17447	HUH Area B2 (Under HUH Bypass) - remove bulkhead wall to -9.5m			20-Jul-16	02-Aug-16	12.0	12.0	20-Sep-16	04-Oct-16	-22.0	0%				
	Hung Hom Finger	Pier	1				0.0	99.0	29-Apr-16 A	22-Oct-16	121.0					
	Utilities Diversion	n and Removal of Paving					0.0	22.0	29-Apr-16 A	16-Jul-16	146.0					
	01121.10780-194	HUH Finger Pier A&A works - BD review and approve design amendment					0.0	22.0	29-Apr-16 A	16-Jul-16	146.0	0%				
	A&A Works to Fir	nger Pier					0.0	99.0	24-May-16 A	22-Oct-16	121.0					
	01121.10790-1042	HUH Finger Pier A&A works - land excavation	7500m3	7500m3			0.0	0.0	24-May-16	11-Jun-16 A		100%				
	01121.10790-1050	HUH Finger Pier A&A works - marine excavation	10000 m3 @550m3/d	6738m3			0.0	18.0	13-Jun-16 A	16-Jul-16	121.0	67%		=		
	01121.10790-1060	HUH Finger Pier A&A works - remove old seawall block and backfill	9850 m3				0.0	59.0	18-Jul-16	24-Sep-16	121.0	0%		-		
	01121.10790-1070	HUH Finger Pier A&A works - construction seawall					0.0	22.0	26-Sep-16	22-Oct-16	121.0	0%				
	HUH Land base Tu	unnel (Area C)			29-Feb-16	06-Jun-16	78.0	89.0	23-May-16 A	11-Oct-16	1238.0					
	HUH Area C - Coff	ferdam (On Land)			29-Feb-16	29-Feb-16	0.0	0.0	25-Jun-16	25-Jun-16	1327.0					
ſ	01121.18860	HUH Area C - Cofferdam Area C Completed				29-Feb-16	0.0	0.0		25-Jun-16	1327.0	0%		•		
	HUH Area C - Exc	avation and ELS (Area C2)			31-Mar-16	06-Jun-16	55.0	88.0	23-May-16	11-Oct-16	-2.0					
	01121.12500-100	HUH Area C2 - A4 Platform (Section 3)	100%	100%			0.0	0.0	23-May-16	03-Jun-16 A		100%	•			
				1			1		A					1		

Data Date: 25-Jun-16


 \diamondsuit

 \diamond

Remaining Work Baseline (PMP Rev.1a)

Current Milestone Remaining Level of Effort ____ 3M Rolling Prog (last month) ▼ Baseline Milestone (PMP Rev. 1a) _ Actual Work Critical Remaining Work

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

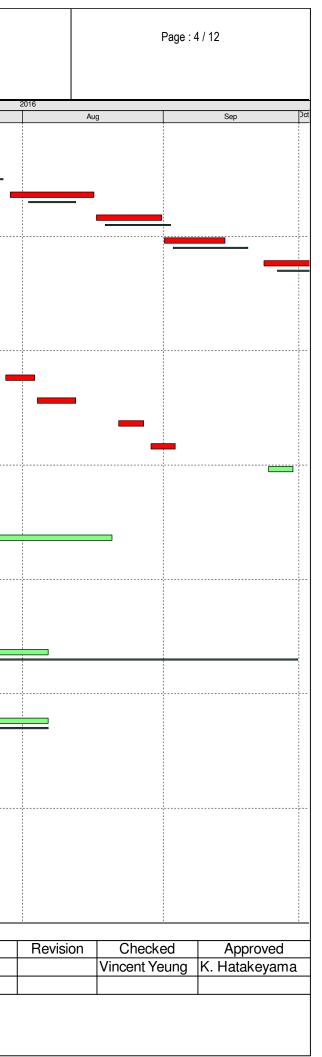
MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

Activity ID		Activity Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL	Rem.	Start	Finish	Total Float							
-				· _ ·			Duration	Dur.				Complete		Jun			Jul	
01121.125		HUH Area C2 - Install S1 at +3.5mPD (Zone A)	100%	50%	31-Mar-16	07-Apr-16	6.0	5.0	23-May-16 A		-14.0	50%						
01121.124		HUH Area C2 - Excavate to +2.5mPD (Remaining Zone A and haul road)	800m3	610m3			0.0	5.0	29-Jun-16 A		-19.0	100%	—			-		_
01121.125	520	HUH Area C2 - Excavate to -0.5mPD (Zone A)			08-Apr-16	13-Apr-16	5.0	8.0	15-Jul-16	23-Jul-16	-15.0	0%					_	<u> </u>
01121.125	530	HUH Area C2 - Install S2 at +0.5mPD and connection with S2 in Area C1			14-Apr-16	20-Apr-16	6.0	16.0	29-Jul-16	16-Aug-16	-19.0	0%						
01121.125	540	HUH Area C2 - Excavate to -5.5m (Fill material:3280m3)			21-Apr-16	05-May-16	12.0	13.0	17-Aug-16	31-Aug-16	-19.0	0%				1		
01121.125	550	HUH Area C2 - Install strut S3 (-4.5) and connection with S3 in Area C1			06-May-16	12-May-16	6.0	12.0	01-Sep-16	14-Sep-16	-19.0	0%						
01121.125	560	HUH Area C2 - Excavate to -8.5m (CDG:1760m3 + Core Stone 440m3)			13-May-16	06-Jun-16	20.0	14.0	23-Sep-16	11-Oct-16	-2.0	0%				1		
HUH Are	a C - Exca	avation and ELS (Area C1)					0.0	74.0	25-Jun-16 A	29-Sep-16	64.0							
01121.174	20-110	HUH Area C1 - Remove A3 Platform and counterweight	100%	50%			0.0	3.0	25-Jun-16 A	07-Jul-16	-22.0	50%						
01121.174	20-120	HUH Area C1 - Removal of Seawall (1m below S2)	100%				0.0	1.0	27-Jun-16 A	05-Jul-16	-22.0	0%						
01121.174	20-130	HUH Area C1 - Install S1 at +3.5mPD and S2 Strut at +1.6mPD	5 nos.				0.0	10.0	06-Jul-16	16-Jul-16	-22.0	0%				=		
01121.174	20-140	HUH Area C1 - Removal of Seawall (1m below S3)	100%				0.0	6.0	28-Jul-16	03-Aug-16	-22.0	0%				1		
01121.174	20-150	HUH Area C1 - Install S3 Strut at -3.5mPD	3 nos.				0.0	8.0	04-Aug-16	12-Aug-16	-22.0	0%				1		
01121.174	20-160	HUH Area C1 - Excavate to -9.0 mPD (1395m3)	1395m3				0.0	6.0	22-Aug-16	27-Aug-16	-5.0	0%						
01121.174	120-170	HUH Area C1 - Install S4 Strut at -8.0mPD	2 nos.				0.0	6.0	29-Aug-16	03-Sep-16	-5.0	0%				1		
01121.174	20-180	HUH Area C1 - Excavate to -11.5mPD (CDG: 644 m3) (Corestone 131 m3)	775 m3				0.0	5.0	24-Sep-16	29-Sep-16	64.0	0%						
Cost cent	re D - Imn	nersed Tunnels			10-Mar-16	11-Apr-17	323.0	160.0	08-Mar-15 A	05-Jan-17	1494.0							
IMT End	Frame &	Collar Plate					0.0	48.0	01-Dec-15 A	20-Aug-16	1606.0							
01121.2784	40-1010	IMT end frame and collar plate - off site fabrication (remainig batch)	100%	58%			0.0	48.0	01-Dec-15 A	20-Aug-16	1606.0	58%						
Cast-in It	ems						0.0	6.0	30-Nov-15 A	02-Jul-16	1648.0							
01121.2784	40-1110	IMT Cast-in items - off site fabrication (remaining units)	100%	95%			0.0	6.0	30-Nov-15 A	02-Jul-16	1648.0	95%						
Bulk Hea	d						0.0	36.0	30-Nov-15 A	06-Aug-16	1618.0					1		
01121.2784	40-1300	IMT steel bulkhead - off site fabrication for cast-in items	100%	95%			0.0	0.0	30-Nov-15 A	25-Jun-16	1618.0	95%			D			
01121.2784	40-1310	IMT steel bulkhead - off site fabrication for main bulk head	100%	20%			0.0	36.0	30-May-16	06-Aug-16	1618.0	20%						
Gina Gas	sket						0.0	36.0	A 09-May-16	06-Aug-16	1618.0							
01121.2784	40	IMT Gina Gasket - 2nd batch off site fabrication / delivery	100%	80%			0.0	6.0	A 09-May-16	02-Jul-16	1618.0	80%						
01121.2785	50	IMT Gina Gasket - 3rd batch off site fabrication / delivery					0.0	30.0	A 04-Jul-16	06-Aug-16	1618.0	0%						
Immerse	d Tunnel	Units Fabrication (DRP Rev.0a)					0.0	98.0	29-Apr-16 A	21-Oct-16	46.0							
A11115		Additional System Formwork Available 1 Jul 2016					0.0	0.0			0.0	0%				•		
IMT Fab	rication F	Recovery Programme					0.0	9 <u>8.0</u>	29-Apr-16 A	21-Oct-16	33.0					ł		
		Slab Construction					0.0		12-May-16		41.0							
		rmwork Set 1					0.0		A 01-Jun-16 A		98.0							
A10430		E5 - Base B3					0.0		01-Jun-16 A			100%				1		
A10440		E5 - Base B2					0.0		13-Jun-16 A		98.0	0%						
	Base For	rmwork Set 2					0.0	16.0			41.0					1		
iypical							0.0	10.0	A	00 000 10	11.0							

Data Date: 25-Jun-16

 \diamondsuit

 \diamond


Current Milestone Remaining Level of Effort ▼ Baseline Milestone (PMP Rev. 1a) _____ 3M Rolling Prog (last month) Actual Work

Critical Remaining Work

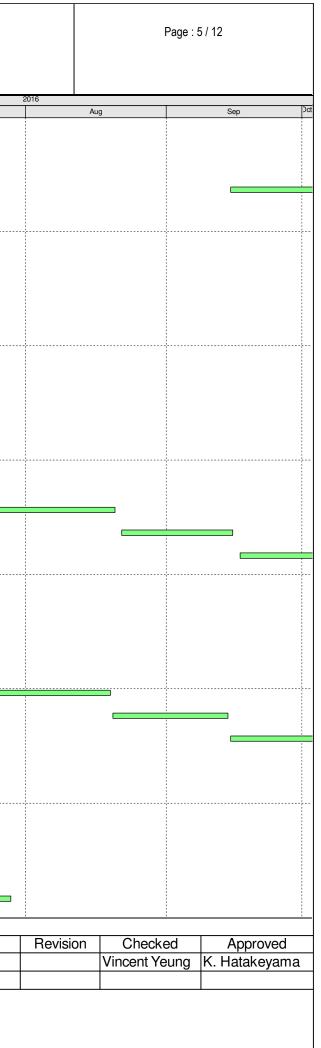
Remaining Work

Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**


Activit	v ID	Activity Name	Total Qty	Completed Qty BL1 Start	BL1 Finish	BL	Rem.	Start	Finish	Total Float	Physical %				
						Duration	Dur.				Complete	Jun			Jul
	A10650	E9 - Base B8				0.0	0.0	25-May-16 A	04-Jun-16 A		100%				
	A10655	Shift formwork from E9 to E7				0.0	0.0	05-Jun-16 A	07-Jun-16 A		100%				
	A10660	E7 - Base B2				0.0	0.0	08-Jun-16 A	16-Jun-16 A		100%				
	A10680	E9 - Base B5 (timber formwork)				0.0	16.0	15-Sep-16	05-Oct-16	41.0	0%				
	Typical Base For	rmwork Set 3				0.0	0.0	27-May-16 A	20-Jun-16 A						
	A10520	E1 - Base B7				0.0	0.0	27-May-16 A	06-Jun-16 A		100%				
	A10530	E1 - Base B8				0.0	0.0	07-Jun-16 A	20-Jun-16 A		100%				
	Typical Base Fo	rmwork Set 4				0.0	0.0	12-May-16 A	02-Jul-16 A						
	A10540	E1 - Base B4				0.0	0.0	12-May-16 A	04-Jun-16 A		100%				
	A10550	E1 - Base B3				0.0	0.0	06-Jun-16 A	18-Jun-16 A		100%				
	A10560	E1 - Base B2				0.0	0.0	18-Jun-16 A	02-Jul-16 A		100%				
	Typical Bay Wall	& Roof Construction				0.0	96.0	29-Apr-16 A	19-Oct-16	35.0					
	Typical Top Forr	nwork Set 1				0.0	90.0	18-May-16 A	12-Oct-16	25.0					
	IMT E6					0.0	90.0	18-May-16 A	12-Oct-16	25.0					
	A10810-1	E6 - top B7				0.0	0.0	18-May-16 A	03-Jun-16 A		100%				
	A10820-1	E6 - top B6				0.0	0.0	04-Jun-16 A	25-Jun-16 A		100%				
	A10830-1	E6 - top B5				0.0	24.0	26-Jun-16 A	23-Jul-16	25.0	0%				
	A10840-1	E6 - top B4				0.0	24.0	25-Jul-16	20-Aug-16	25.0	0%				
	A10850-1	E6 - top B3				0.0	22.0	22-Aug-16	15-Sep-16	25.0	0%				
	A10860-1	E6 - top B2				0.0	20.0	17-Sep-16	12-Oct-16	25.0	0%				
	Typical Top Forr	nwork Set 2				0.0	89.0	14-May-16 A	11-Oct-16	7.0					
	IMT E9					0.0	89.0	14-May-16 A	11-Oct-16	7.0					
	A11000-1	E9 - top B2				0.0	0.0	14-May-16 A	02-Jun-16 A		100%				
	A11010	E9 - top B3				0.0	0.0	03-Jun-16 A	22-Jun-16 A		100%				
	A11020	E9 - top B4				0.0	23.0	23-Jun-16 A	22-Jul-16	7.0	0%				
	A11030	E9 - top B6				0.0	24.0	23-Jul-16	19-Aug-16	7.0	0%				
	A11040	E9 - top B7				0.0	22.0	20-Aug-16	14-Sep-16	7.0	0%				
	A11050	E9 - top B8				0.0	20.0	15-Sep-16	11-Oct-16	7.0	0%				
	Typical Top Forr	nwork Set 3				0.0	86.0	29-Apr-16 A	06-Oct-16	33.0					
	IMT E3					0.0	62.0	29-Apr-16 A	06-Sep-16	33.0					
	A13100	E3 - top B2				0.0	0.0	29-Apr-16 A	07-Jun-16 A		100%				
	A13200	E3 - top B3				0.0	0.0	08-Jun-16 A	21-Jun-16 A		100%				
	A13300	E3 - top B4				0.0	0.0	22-Jun-16 A	05-Jul-16 A		100%			-	
	A13340	E3 - top B5				0.0	14.0	25-Jun-16	12-Jul-16	33.0	0%				
	A13350	E3 - top B6				0.0	14.0	13-Jul-16	28-Jul-16	33.0	0%				
				1				1					I		

- \diamondsuit Current Milestone \diamond
- Data Date:
- 25-Jun-16
- ▼ Baseline Milestone (PMP Rev. 1a) _____ 3M Rolling Prog (last month)
 - - Actual Work

Remaining Level of Effort

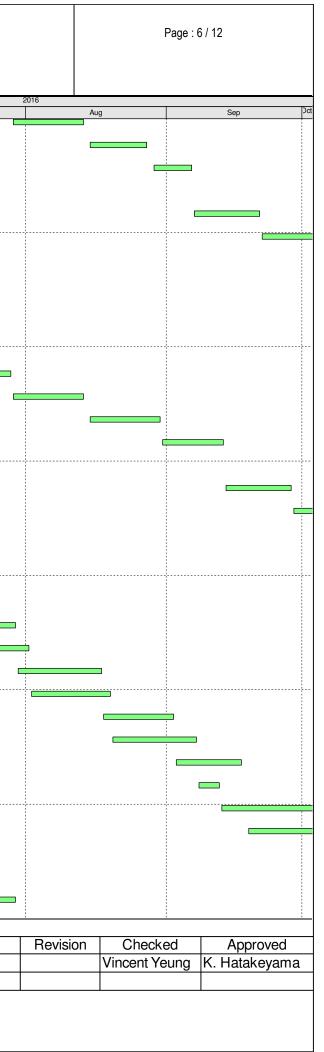
- Critical Remaining Work
- Remaining Work
- Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

Activit	y ID	Activity Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL	Rem. Dur.	Start	Finish	Total Floa	t Physical %			
							Duration					Complete	Jun		Jul
	A13360	E3 - top B7					0.0	14.0	29-Jul-16	13-Aug-16		0%			
	A13370	E3 - top B8					0.0	12.0		27-Aug-16		0%			
	A13390	E3 - top B8 curing and remove and shift steel formwork to E1					0.0	8.0	29-Aug-16	06-Sep-16	33.0	0%			
	IMT E1						0.0	24.0	07-Sep-16	06-Oct-16	33.0				
	A11420	E1 - top B8					0.0	12.0	07-Sep-16	21-Sep-16	33.0	0%			
	A11440	E1 - top B7					0.0	12.0	22-Sep-16	06-Oct-16	33.0	0%			
	Typical Top For	mwork Set 4					0.0	92.0	31-May-16 A	14-Oct-16	39.0				
	IMT E10						0.0	68.0	31-May-16 A	13-Sep-16	16.0				
	A10920	E10 - top B3					0.0	0.0	31-May-16 A	15-Jun-16 A		100%			
	A10940	E10 - top B4					0.0	0.0	16-Jun-16 A	30-Jun-16 A		100%			
	A10960	E10 - top B5					0.0	14.0	25-Jun-16	12-Jul-16	16.0	0%			
	A10980	E10 - top B6					0.0	14.0	13-Jul-16	28-Jul-16	16.0	0%			
	A11000	E10 - top B7					0.0	14.0	29-Jul-16	13-Aug-16	16.0	0%			
	A11200	E10 - top B8					0.0	14.0	15-Aug-16	30-Aug-16	16.0	0%			
	A11220	E10 - top B8 curing and remove and shift steel formwork to E1					0.0	12.0	31-Aug-16	13-Sep-16	16.0	0%			
	IMT E1						0.0	24.0	14-Sep-16	14-Oct-16	39.0				
	A11680	E1 - top B2					0.0	12.0	14-Sep-16	28-Sep-16	22.0	0%			
	A11710	E1 - top B3					0.0	12.0	29-Sep-16	14-Oct-16	39.0	0%			
	Typical Top Sys	tem Formwork For E5					0.0	78.0	02-Jul-16	03-Oct-16	2.0				
	IMT E5						0.0	78.0	02-Jul-16	03-Oct-16	2.0				
	A56760	E5 - wall system formwork assembling					0.0	12.0	02-Jul-16	15-Jul-16	2.0	0%			1
	A56740	E5 - system formwork available on site					0.0	0.0	02-Jul-16*		0.0	0%		•	
	A56780	E5 - wall B8					0.0	12.0	16-Jul-16	29-Jul-16	2.0	0%			
	A56920	E5 - Roof slab system formwork assembling					0.0	14.0	16-Jul-16	01-Aug-16	2.0	0%			
	A56800	E5 - wall B7					0.0	16.0	30-Jul-16	17-Aug-16	2.0	0%			
	A56940	E5 - roof slab B8					0.0	16.0	02-Aug-16	19-Aug-16	2.0	0%		 	
	A56820	E5 - wall B2					0.0	14.0	18-Aug-16	02-Sep-16	2.0	0%			
	A56960	E5 - roof slab B7					0.0	16.0	20-Aug-16	07-Sep-16	2.0	0%			
	A56840	E5 - wall B3					0.0	12.0	03-Sep-16	17-Sep-16	2.0	0%		1	
	A56965	E5 - relocate roof formwork from B7 to B2					0.0	4.0	08-Sep-16	12-Sep-16	2.0	0%			
	A56980	E5 - roof slab B2			_		0.0	16.0	13-Sep-16	03-Oct-16	2.0	0%			
	A56860	E5 - wall B4					0.0	12.0	19-Sep-16	03-Oct-16	2.0	0%			
	Typical Top Sys	tem Formwork for E7					0.0	79.0	16-Jul-16	19-Oct-16	1.0				
	IMT E7						0.0	79.0	16-Jul-16	19-Oct-16	1.0				
	A11060	E7 - wall system formwork assembling					0.0	12.0	16-Jul-16	29-Jul-16	1.0	0%			
													L	<u>.</u>	


Data Date: 25-Jun-16

 \diamondsuit

 \diamond

Current Milestone Remaining Level of Effort ____ 3M Rolling Prog (last month) ▼ Baseline Milestone (PMP Rev. 1a) _ Actual Work Critical Remaining Work Remaining Work Baseline (PMP Rev.1a)

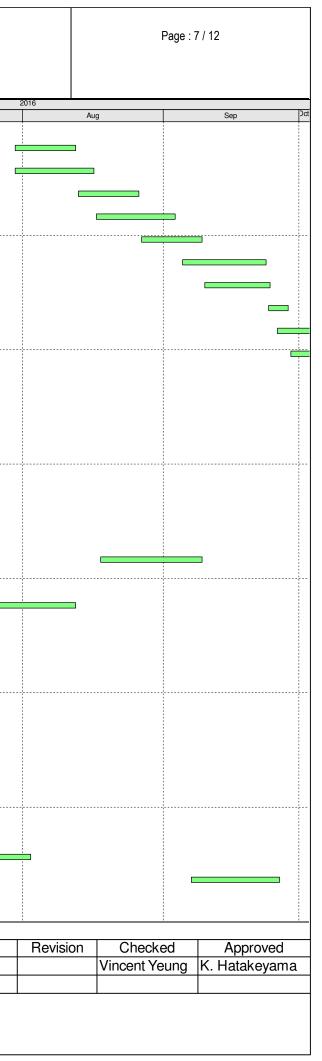
Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Activit	ity ID	Activity Name	Total Qty	Completed Qty BL1 Start	BL1 Finish	BL	Rem.	Start	Finish	Total Float	Physical %			
	A11059	E7 - system formwork available on site				Duration 0.0	Dur. 0.0	16-Jul-16*		0.0	Complete 0%	Jun		Jul
	A11059 A11062	E7 - system formwork available on site				0.0	12.0	30-Jul-16	12-Aug-16	4.0	0%			
	A11002 A11077	E7 - Wall Bo E7 - Roof slab system formwork assembling					12.0	30-Jul-16			0%			
						0.0			16-Aug-16	1.0				
	A11063	E7 - wall B7				0.0	12.0			4.0	0%			
	A11078	E7 - roof slab B8				0.0	16.0	_		1.0	0%			
	A11064	E7 - wall B6				0.0	12.0	27-Aug-16		4.0	0%			
	A11080	E7 - roof slab B7				0.0	16.0	05-Sep-16	23-Sep-16	1.0	0%			
	A11065	E7 - wall B2				0.0	12.0		24-Sep-16	4.0	0%			
	A11085	E7 - relocate formwork from B7 to B2				0.0	4.0			1.0	0%			
	A11066	E7 - wall B3				0.0	12.0	26-Sep-16	11-Oct-16	8.0	0%			
	A11090	E7 - roof slab B2				0.0	16.0		19-Oct-16	1.0	0%			
	End Bay Constru	letion				0.0	98.0	09-May-16 A	21-Oct-16	17.0				
	End Bay Base C	Constructon				0.0	86.0	13-May-16 A	06-Oct-16	29.0				
	Base Formwork Set 1					0.0	64.0	16-Jun-16 A	09-Sep-16	26.0				
	IMT E9 End Bay Base					0.0	64.0	16-Jun-16 A	09-Sep-16	26.0				
	A57782	E9 - B1 collar frame & plate delivery 16 Jun 2016				0.0	0.0		16-Jun-16 A		100%	•		
	A13720	E9 - end bay base B1 (1)				0.0	20.0	27-Jun-16	20-Jul-16	22.0	0%			
	A57802	E9 - B9 collar frame & plate delivery 26 Jun 2016				0.0	0.0		27-Jun-16*	0.0	0%		•	
	A57822	E9 - short bay collar frame & plate delivery 26 Jun 2016				0.0	0.0		27-Jun-16*	0.0	0%		•	
	A13730	E9 - short bay base B1.1				0.0	20.0	18-Aug-16	09-Sep-16	26.0	0%			
	IMT E6 End Bay Base					0.0	20.0	21-Jul-16	12-Aug-16	22.0				
	A13620	E6 - end bay base B9 (1)				0.0	20.0	21-Jul-16	12-Aug-16	22.0	0%			
	Base Formwork Set 2		<u> </u>			0.0	6.0	15-Jun-16 A	02-Jul-16	45.0				
	IMT E4 End Bay Base					0.0	6.0	15-Jun-16 A	02-Jul-16	45.0				
		E4 - end bay base B9 (2)				0.0	6.0	15-Jun-16 A	02-Jul-16	45.0	0%			I
	Base Formwork Set 3					0.0	78.0	13-May-16	26-Sep-16	37.0				
	IMT E2 End Bay Base					0.0	12.0	A 13-May-16	09-Jul-16	18.0				
		E2 - end bay base B9 (1)				0.0	0.0	A 13-May-16	06-Jun-16 A		100%			
	A13440	E2 - end bay base B1 (2)				0.0	12.0	A 15-Jun-16 A	09-Jul-16	18.0	0%			
	IMT E3 End Bay Base					0.0	71.0	06-Jun-16 A	26-Sep-16	37.0				
	A57962	E3 - B1 collar frame & plate delivery 6 Jun 2016				0.0	0.0		06-Jun-16 A		100%	•		
	A57982	E3 - B9 collar frame & plate delivery 4 Jul 2016				0.0	0.0		04-Jul-16*	0.0	0%			•
	A13480	E3 - end bay base B1 (1)				0.0	20.0	11-Jul-16	02-Aug-16	28.0	0%			
	A13500	E3 - end bay base B9 (2)				0.0	16.0		26-Sep-16	37.0	0%			
	Base Formwork Set 4					0.0		07-Jun-16 A		16.0				
	_													

Data Date: 25-Jun-16


- ♦ Current Milestone
 ♥ Baseline Milestone (PMP Rev. 1a)
- Actual Work
- Critical Remaining Work

Remaining Level of Effort

_____ 3M Rolling Prog (last month)

- Remaining Work
- Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

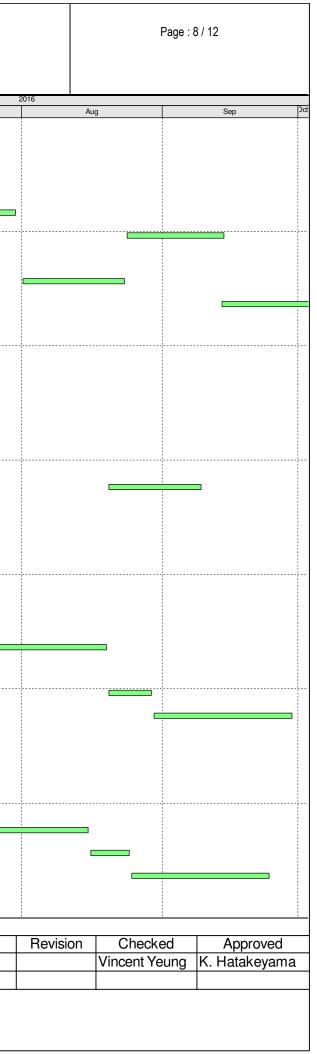
	Activity Name	Total Qty	Completed Qty E	BL1 Start	BL1 Finish BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete		Jun		Jul
IMT E11 End Bay Ba	ase				0.0	69.0	07-Jun-16 A	14-Sep-16	6.0					
A58002	E11 - B1 collar frame & plate delivery 7 Jun 2016				0.0	0.0		07-Jun-16 A		100%	•			
A13800	E11 - end bay base B1 (1)				0.0	10.0	15-Jun-16 A	07-Jul-16	5.0	0%				
A58042	E11 - short bay collar frame & plate delivery 16 Jun 2016				0.0	0.0		16-Jun-16 A		100%		•		
A13820	E11 - end bay base B7 (2)				0.0	20.0	08-Jul-16	30-Jul-16	6.0	0%				
A13840	E11 - short bay base B1.1				0.0	19.0	24-Aug-16	14-Sep-16	6.0	0%				
IMT E10 End Bay B	ase				0.0	56.0	01-Aug-16	06-Oct-16	16.0					
A13760	E10 - end bay base B1 (1)				0.0	20.0	01-Aug-16	23-Aug-16	6.0	0%				
A13780	E10 - end bay base B9 (2)				0.0	18.0	14-Sep-16	06-Oct-16	16.0	0%				
MT E1 End Bay Ba	Se				0.0	0.0	16-Jun-16 A	27-Jun-16	101.0					
A58082	E1 - B1 collar frame & plate delivery 10 Jul 2016				0.0	0.0		16-Jun-16 A		100%		•		
A58102	E1 - B9 collar frame & plate delivery 4 Jul 2016				0.0	0.0		27-Jun-16*	0.0	0%			•	
aditional End Bay	Base Formwork for E5				0.0	60.0	30-Jun-16	09-Sep-16	2.0					
MT E5 End Bay Ba	Se				0.0	60.0	30-Jun-16	09-Sep-16	2.0					
A58122	E5 - B1 collar frame & plate delivery 30 Jun 2016				0.0	0.0		30-Jun-16*	0.0	0%				ı
A58142	E5 - B9 collar frame & plate delivery 8 Jul 2016				0.0	0.0		08-Jul-16*	0.0	0%				
A13580	E5 - end bay base B9 (2)				0.0	18.0	20-Aug-16		2.0	0%				
d Bay Wall	& Roof Construction				0.0	98.0	09-May-16		17.0					
all Formwork Set 1					0.0	81.0	A		16.0					
19060	End bay Wall & Roof formwork (set 1) available				0.0		A 30-Jun-16*	25 000 10	0.0	0%			•	
IMT E8 Wall & Roof					0.0		09-May-16	19-Aug-16	16.0	0 /0				
A14160	E8 - end bay top B1 (1)				0.0	8.0	A 09-May-16		16.0	80%				
A14165	E8 - erect collar plate at E8B9				0.0	8.0	A 06-Jul-16	14-Jul-16	17.0	0%				
A14180	E8 - end bay top B9 (2)					30.0	16-Jul-16	19-Aug-16	17.0	0%				
MT E6 Wall & Roof					0.0			_		0%				
					0.0		20-Aug-16		16.0	00/				
A14095	E6 - erect collar plate at E6B9				0.0	8.0		29-Aug-16	16.0	0%				
A14100	E6 - end bay top B9 (1)				0.0		30-Aug-16		16.0	0%				
/all Formwork Set 2					0.0	78.0	02-Jul-16	03-Oct-16	8.0	A (1)				-
A19080	Wall & Roof formwork (set 2) available				0.0	0.0	02-Jul-16*		0.0	0%				•
MT E4 Wall & Roof					0.0	72.0			8.0					<u></u>
A13995	E4 - erect collar plate at E4B1				0.0	8.0	02-Jul-16	11-Jul-16	8.0	0%				
A14000	E4 - end bay top B1 (1)				0.0	30.0	12-Jul-16	15-Aug-16	8.0	0%				
A14005	E4 - erect collar plate at E4B9				0.0	8.0	16-Aug-16	24-Aug-16	8.0	0%				
A14020	E4 - end bay top B9 (2)				0.0	26.0	25-Aug-16	24-Sep-16	8.0	0%				
IMT E9 Wall & Roof		I	,		0.0	6.0	26-Sep-16	03-Oct-16	8.0					

Data Date: 25-Jun-16

 \diamondsuit

 \diamond

Current Milestone


Remaining Level of Effort ▼ Baseline Milestone (PMP Rev. 1a) _____ 3M Rolling Prog (last month)

Actual Work

Critical Remaining Work

Remaining Work Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

HereNotion	ctivity ID		Activity Name	Total Qty Completed Qty	BI 1 Start	BL1 Finish	BL	Rem.	Start	Finish	Total Float	Physical %		
Inderwansent Inderwansent <th< th=""><th>Survity IL</th><th></th><th></th><th>Completed Qty</th><th></th><th></th><th>Duration</th><th>Dur.</th><th>Giari</th><th>1 milon</th><th></th><th>Complete</th><th>Jun</th><th>Jul</th></th<>	Survity IL			Completed Qty			Duration	Dur.	Giari	1 milon		Complete	Jun	Jul
A-001 Moli A for dimension (et i) scalable A <td></td> <td>A14195</td> <td>E9 - erect collar plate at E9B1</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>6.0</td> <td>26-Sep-16</td> <td>03-Oct-16</td> <td>8.0</td> <td>0%</td> <td></td> <td></td>		A14195	E9 - erect collar plate at E9B1				0.0	6.0	26-Sep-16	03-Oct-16	8.0	0%		
File Control Contro Contro <thcontro< th=""> <thcontro< th=""> Cont</thcontro<></thcontro<>	ľ	Wall Formwork Set 3					0.0	93.0	02-Jul-16	21-Oct-16	17.0			
110%P - order skip verse 2 PR1II<		A19120	Wall & Roof formwork (set 3) available				0.0	0.0	02-Jul-16*		0.0	0%		•
AL395E - enclose jake at 223Image: set 230Image:		IMT E2 Wall & Roof					0.0	85.0	12-Jul-16	21-Oct-16	17.0			
ALS20E2-ed sky up 81 (1)III <t< td=""><td></td><td>Δ13915</td><td>F2 - erect collar plate at F2B1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td></td><td></td></t<>		Δ13915	F2 - erect collar plate at F2B1									0%		
Altiginiiover call pain at x108iii </td <td></td> <td></td> <td>·</td> <td></td>			·											
A13940E-ext law taysE-ext law tays														
NT B word larged at D20			·						-					
A12023 B - ent Color plate at EN1 0			E2 - end bay top B9 (2)									0%		
A13-00 B2-edt shy sgift (1) In In 0.0 0.		IMT E3 Wall & Roof					0.0	30.0	16-Aug-16	20-Sep-16	17.0			
bit forman 6 albit forman 6 (er 4) availablebit forman 6 (er 4) available<		A13925	E3 - erect collar plate at E3B1				0.0	8.0	16-Aug-16	24-Aug-16	17.0	0%		
At1940 Well & Roof Fornwork (gerl) vanishine No. N		A13960	E3 - end bay top B1 (1)				0.0	22.0	25-Aug-16	20-Sep-16	17.0	0%		
Int Find 1 AbdInterest color plate at E1181Interest color plate at E118181Interest color plate at E1181		Wall Formwork Set 4					0.0	90.0	02-Jul-16	18-Oct-16	5.0			
A14275 E11-eret collar plate at E1181 0		A19140	Wall & Roof Formwork (set 4) available				0.0	0.0	02-Jul-16*		0.0	0%		•
A1280 E11 - end bay top B1 (1) Image: Constraint of the set S1197 Image: Constand of the set S1197 Image:		IMT E11 Wall & Roof					0.0	85.0	08-Jul-16	18-Oct-16	5.0			
A14285 E1 - erect colar plate at E1187 Image: colar plate at E587		A14275	E11 -erect collar plate at E11B1				0.0	8.0	08-Jul-16	16-Jul-16	5.0	0%		
A14285 E1 - erect colar plate at E1187 Image: colar plate at E587		A14280	E11 - end bay top B1 (1)				0.0	22.0	18-Jul-16	11-Aug-16	5.0	0%		
A14300 E11 - ond bay top B7 (2) G <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>8.0</td><td>12-Aug-16</td><td></td><td></td><td>0%</td><td></td><td></td></t<>							0.0	8.0	12-Aug-16			0%		
A14335 E11 erect collar plate at E11 short hay I		A14300	•									0%		
A 14340 E 11 - short kay top 0														
Traditional End Bay Wall and Root Formwork for E5 0.0 8.0 24-Sep-16 04-Oct.16 11.0 0/0 MUT E3 Wall & Root E5 - erect collar plate at E5B9 0.0 8.0 24-Sep-16 04-Oct.16 11.0 0/0 IMT Fitting Works E5 - erect collar plate at E5B9 0.0 8.0 24-Sep-16 04-Oct.16 11.0 0/0 IMT Fitting Works 0.0 8.0 24-Sep-16 04-Oct.16 11.0 0/0 IMT Fitting Works 0.0 8.0 24-Sep-16 04-Oct.16 11.0 0/0 IMT Fitting Works 0.0 8.0 24-Sep-16 04-Oct.16 11.0 0/0 IMT Fitting Works 0.0 8.0 24-Sep-16 04-Oct.16 11.0 0/0 IMT Fitting Works 0.0 8.0 25-Sep-16 35.0 16.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
MIT E3Weilk Book Example												070		
A 14060 E5 - erect collar plate at E5B9 O	Ш.													
IMT Fitting Works No. 830. 95-Jul-6 13-Oct-16 530. Image: Constraint of the constraint of							0.0	8.0	24-Sep-16	04-Oct-16	11.0			
IMT E2 0.0 39.0 15 Aug-16 30.6 p-16 8.0 100 Works Start after 1st End Bay Completed 5.0 <td></td> <td>A14060</td> <td>E5 - erect collar plate at E5B9</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>8.0</td> <td>24-Sep-16</td> <td>04-Oct-16</td> <td>11.0</td> <td>0%</td> <td></td> <td></td>		A14060	E5 - erect collar plate at E5B9				0.0	8.0	24-Sep-16	04-Oct-16	11.0	0%		
Works Start after 1st End Bay CompletedSecond Participant Part Part Part Part Part Part Part Par	1	MT Fitting Works		,			0.0	83.0	05-Jul-16	13-Oct-16	53.0			
repairing		IMT E2					0.0	39.0	15-Aug-16	30-Sep-16	8.0			
repairing		Works Start after	1st End Bay Completed				0.0	39.0	15-Aug-16	30-Sep-16	8.0			
repairing		A50400	E2 - 1st end bays completed (B1)				0.0	0.0		15-Aug-16	23.0	0%		
repairing		A50410	E2 - curing and remove formwork (1st end bay)				0.0	8.0	16-Aug-16	24-Aug-16	39.0	0%		
IMT E3Image: Second		A50440					0.0	24.0	02-Sep-16	30-Sep-16	8.0	0%		
Works Start after 1st End Bay CompletedSecond ParticipantNoticipant <t< td=""><td></td><td>IMT E3</td><td>repairing</td><td></td><td></td><td></td><td>0.0</td><td>18.0</td><td>20-Sep-16</td><td>13-Oct-16</td><td>48.0</td><td></td><td></td><td></td></t<>		IMT E3	repairing				0.0	18.0	20-Sep-16	13-Oct-16	48.0			
A50840E3 - 1st end bays completed (B1)Image: Base of the complete concrete of the compl			1st End Bay Completed				0.0	18.0	20-Sep-16	13-Oct-16	48.0			
A50860E3 - uring and remove formwork (1st end bay)Image: Complete concreteImage: Complete												0%		
repairing repairing Image: Constraint of the second s									21-Sen-16					
			repairing						-					
IMI E4 0.0 48.0 15-Aug-16 13-Oct-16 29.0												0%		
		IMI E4					0.0	48.0	15-Aug-16	13-Oct-16	29.0			

Data Date: 25-Jun-16


- \diamondsuit
- \diamond
- Current Milestone ▼ Baseline Milestone (PMP Rev. 1a)

Remaining Level of Effort

____ 3M Rolling Prog (last month)

- Actual Work
- Critical Remaining Work
- Remaining Work
- Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean – China State Joint Venture

MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Activit	/ ID	Activity Name	Total Qty Completed Qty	BL1 Start	BL1 Finish BL	Rem.	Start	Finish	Total Float	Physical %		
					Duration	Dur.				Complete	Jun	 Jul
	Works Start after	1st End Bay Completed			0.0	48.0	15-Aug-16	13-Oct-16	29.0			
	A52020	E4 - 1st end bays completed (B1)			0.0	0.0		15-Aug-16	8.0	0%	l	
	A52060	E4 - install temporary lighting & support for temp vent duct & complete concrete repairing			0.0	24.0	16-Aug-16	12-Sep-16	8.0	0%	l	
	A52030	E4 - curing and remove formwork (1st end bay)			0.0	8.0	16-Aug-16	24-Aug-16	45.0	0%	l	
	A52080	E4 - install ballast tank at VD			0.0	12.0	13-Sep-16	27-Sep-16	29.0	0%	l	
	A52100	E4 - construct ballast concrete at DT			0.0	12.0	13-Sep-16	27-Sep-16	29.0	0%		
	A52180	E4 - apply waterproofing (1st bay to 8th bay)			0.0	20.0	13-Sep-16	07-Oct-16	8.0	0%	l	
	A52120	E4 - install ballast tank at DT			0.0	12.0	28-Sep-16	13-Oct-16	29.0	0%	l	
	A52140	E4 - construct ballast concrete at UT			0.0	12.0	28-Sep-16	13-Oct-16	29.0	0%	1	
	Works Start after	2nd End Bay Completed			0.0	8.0	24-Sep-16	05-Oct-16	28.0		1	
	A52500	E4 - 2nd end bays completed (B9)			0.0	0.0		24-Sep-16	28.0	0%		
	A52520	E4 - curing and remove formwork (2nd end bay)			0.0	8.0	26-Sep-16	05-Oct-16	28.0	0%	l	
	IMT E6				0.0	0.0	29-Sep-16	29-Sep-16	42.0		l	
	Works Start after	1st End Bay Completed			0.0	0.0	29-Sep-16	29-Sep-16	42.0		l	
	A53180	E6 - 1st end bays completed (B9)			0.0	0.0		29-Sep-16	42.0	0%	l	
	IMT E8				0.0	79.0	05-Jul-16	07-Oct-16	57.0			
	Works Start after	1st End Bay Completed			0.0	60.0	05-Jul-16	13-Sep-16	64.0		l	
	A54260	E8 - 1st end bays completed (B1)			0.0	0.0		05-Jul-16	52.0	0%	l	•
	A54300	E8 - install temporary lighting & support for temp vent duct & complete concrete repairing			0.0	24.0	06-Jul-16	02-Aug-16	52.0	0%	1	
	A54270	E8 - curing and remove formwork (1st end bay)			0.0	8.0	06-Jul-16	14-Jul-16	68.0	0%	1	
	A54320	E8 - install ballast tank at VD			0.0	12.0	03-Aug-16	16-Aug-16	52.0	0%		
	A54340	E8 - construct ballast concrete at DT			0.0	12.0	03-Aug-16	16-Aug-16	52.0	0%	l	
	A54510	E8 - apply waterproofing (1st bay to 8th bay)			0.0	24.0	03-Aug-16	30-Aug-16	66.0	0%	l	
	A54360	E8 - install ballast tank at DT			0.0	12.0	17-Aug-16	30-Aug-16	52.0	0%	l	
	A54380	E8 - construct ballast concrete at UT			0.0	12.0	17-Aug-16	30-Aug-16	52.0	0%	l	
	A54530	E8 - install corner fender (1st bay to 8th bay)			0.0	10.0	31-Aug-16	10-Sep-16	66.0	0%		
	A54390	E8 - install Gina plate and grouting (1st end bay)			0.0	6.0	31-Aug-16	06-Sep-16	52.0	0%	l	
	A54480	E8 - install bulkhead (1st end bay)			0.0	6.0	07-Sep-16	13-Sep-16	52.0	0%	l	
	Works Start after	2nd End Bay Completed			0.0	40.0	19-Aug-16	07-Oct-16	57.0		l	
	A54700	E8 - 2nd end bays completed (B9)			0.0	0.0		19-Aug-16	55.0	0%	l	
	A54720	E8 - curing and remove formwork (2nd end bay)			0.0	8.0	20-Aug-16	29-Aug-16	55.0	0%		
	A54740	E8 - erect temp working platform, stressing and grout			0.0	20.0	30-Aug-16	22-Sep-16	55.0	0%	l	
	A54800	E8 - pour protective screeding (1st bay to 8th bay)			0.0	12.0	23-Sep-16	07-Oct-16	57.0	0%	l	
	A54760	E8 - install Gina plate and grout (2nd end bay)			0.0	8.0	23-Sep-16	03-Oct-16	55.0	0%	l	
	IMT E11				0.0	48.0	11-Aug-16	08-Oct-16	45.0		L	_

Data Date:

Current Milestone

25-Jun-16

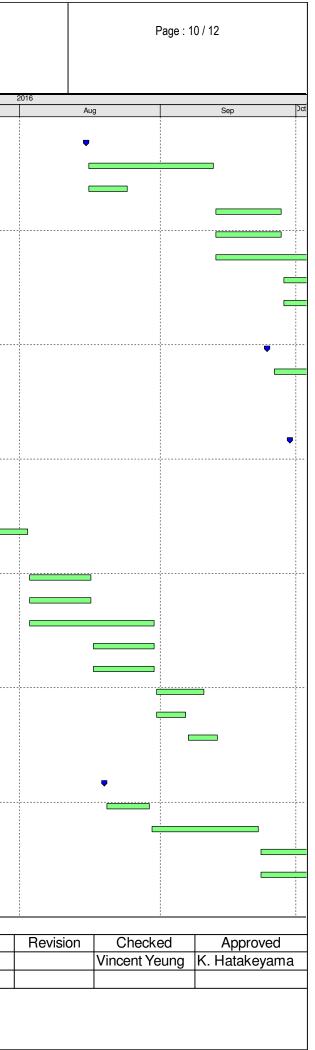
 \diamondsuit

 \diamond

▼ Baseline Milestone (PMP Rev. 1a)

Remaining Level of Effort

_


3M Rolling Prog (last month)

Actual Work

Critical Remaining Work

- Remaining Work
- Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

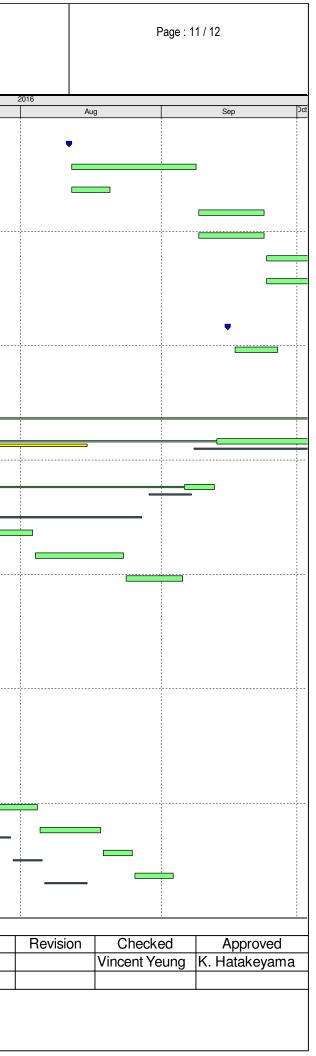
Activit	v ID	Activity Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL	Rem.	Start	Finish	Total Float	Physical %				
	y		. otal orly		DE. Olari		Duration	Dur.	Oturt		- order rode	Complete	Jun		,	Jul
	Works Start after	r 1st End Bay Completed					0.0	48.0	11-Aug-16	08-Oct-16	26.0					
	A56080	E11 - 1st end bays completed (B1)					0.0	0.0		11-Aug-16	26.0	0%				
	A56120	E11 - install temporary lighting & support for temp vent duct & complete concrete repairing					0.0	24.0	12-Aug-16	08-Sep-16	26.0	0%				
	A56090	E11 - curing and remove formwork (1st end bay)					0.0	8.0	12-Aug-16	20-Aug-16	42.0	0%				
	A56140	E11 - install ballast tank at VD					0.0	12.0	09-Sep-16	23-Sep-16	26.0	0%				
	A56160	E11 - construct ballast concrete at DT					0.0	12.0	09-Sep-16	23-Sep-16	26.0	0%				
	A56180	E11 - install ballast tank at DT					0.0	12.0	24-Sep-16	08-Oct-16	26.0	0%				
	A56200	E11 - construct ballast concrete at UT					0.0	12.0	24-Sep-16	08-Oct-16	26.0	0%				
	Works Start after	r 2nd End Bay Completed					0.0	8.0	15-Sep-16	26-Sep-16	55.0					
	A56500	E11 - 2nd end bays completed (B9)					0.0	0.0		15-Sep-16	55.0	0%				
	A56520	E11 - curing and remove formwork (2nd end bay)					0.0	8.0	17-Sep-16	26-Sep-16	55.0	0%				
	IMT Marine Works	in Victoria Harbour			10-Mar-16	06-Dec-16	222.0	160.0	08-Mar-15 A	05-Jan-17	78.0					
	IMT Bulk Dredgin	g			10-Mar-16	06-Dec-16	222.0	160.0	08-Mar-15 A	05-Jan-17	78.0					
	01121.22840	IMT1 - bulk dredging (remaining)	38,539 m3	71%	02-Nov-16	06-Dec-16	30.0	11.0	08-Mar-15 A	05-Jan-17	78.0	71%		-		
	01121.23430	IMT7 - bulk dredging	71,479 m3	93%	09-Jul-16	15-Aug-16	32.0	23.0	21-Mar-16 A	12-Oct-16	78.0	93%		-		
	01121.22900	IMT3 - bulk dredging	55,036 m3	15%	10-Mar-16	09-Apr-16	23.0	9.0	29-Mar-16 A	06-Jul-16	90.0	15%				
	01121.23410-110	IMT6 - bulk dredging (North)	3,254 m3	86%			0.0	6.0	22-Apr-16 A	12-Sep-16	78.0	86%		-		
	01121.23400	IMT5 - bulk dredging	49,834 m3	13%	11-May-16	10-Jun-16	25.0	21.0	28-Jun-16 A	20-Jul-16	78.0	13%		_		
	01121.22900-100	IMT3 - replacement fill after dredging	5,007 m3				0.0	12.0	21-Jul-16	03-Aug-16	78.0	0%				
	01121.23360	IMT4 - bulk dredging	46,990 m3		11-Apr-16	10-May-16	25.0	17.0	04-Aug-16	23-Aug-16	78.0	0%	_	<u> </u>		
	01121.23360-100	IMT4 - replacement fill after dredging	4,858 m3				0.0	11.0	24-Aug-16	05-Sep-16	78.0	0%				
	IMT - Immersed Tu	Innel Installation			11-Apr-17	11-Apr-17	1.0	1.0	25-Jun-16	25-Jun-16	237.0					
	IMT Units Sailway	/		_	11-Apr-17	11-Apr-17	1.0	1.0	25-Jun-16	25-Jun-16	237.0					
	01121.22880	IMT10 - Evacuate IMT10 to Temp. Mooring Outside the Basin (for Towers and			11-Apr-17	11-Apr-17	1.0	1.0	25-Jun-16	25-Jun-16	237.0	0%		D		
	Cost Centre E - CB	Pontoon Set Up) TS Tunnels			26-Nov-15	11-Feb-16	60.0	90.0	24-May-16	12-Oct-16	19.0					
	VH3C & VH3D				26-Nov-15	11-Feb-16	60.0	90.0	24-May-16	12-Oct-16	19.0					
	Temp Mooring / A	nchorage Arrangement		_	26-Nov-15	06-Feb-16	60.0	0.0	A 28-May-16	02-Jun-16 A						
	01121.12720	CBTS (VH3C & VH3D) - Temp Mooring (Phase 4) to relocate RHKYC vessels	100%	30%	26-Nov-15	06-Feb-16	60.0	0.0		02-Jun-16 A		100%				
	Pipe pile cofferda	m and Seawall Blocks across Breakwater			11-Feb-16	11-Feb-16	0.0	60.0	A 25-Jun-16	03-Sep-16	49.0					
	01121.12160	CBTS (VH3C & VH3D) - Possession of VH3C and VH3D			11-Feb-16		0.0	0.0	25-Jun-16		23.0	0%		•		
	01121.12360-1010	CBTS stage 3A (breakwater east) - install pipe piles across breakwater	48 nos.				0.0	8.0	27-Jul-16	04-Aug-16	49.0	0%				
	01121.12360-1012	[P262-P215, 48 nos.] CBTS stage 3A (breakwater east) - waling & lagging plate for [P262-P215]					0.0	12.0	05-Aug-16	18-Aug-16	49.0	0%				
	01121.12360-1015	CBTS stage 3A (breakwater west) - install pipe piles across breakwater	32 nos.				0.0	6.0	19-Aug-16	25-Aug-16	49.0	0%				
	01121.12360-1017	[P18-P49, 32 nos.] CBTS stage 3A (breakwater west) - waling & lagging plate for [P18-P49]					0.0	8.0	26-Aug-16	03-Sep-16	49.0	0%				
	Remove Breakwat	ter & E10 Bulk Dredging inside CBTS					0.0	85.0	24-May-16	12-Oct-16	18.0					
									A				L		<u> </u>	

Data Date: 25-Jun-16

- ♥ Current Milestone
 ♥ Baseline Milestone (PMP Rev. 1a)

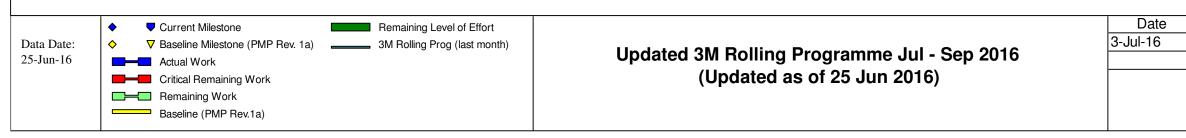
Remaining Level of Effort

____ 3M Rolling Prog (last month)


Actual Work

Critical Remaining Work

Remaining Work


Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Jul - Sep 2016 (Updated as of 25 Jun 2016)

	五洋建設-中國建築聯營 Penta-Ocean - China State Joint Venture								- Cross		-	Contract 1121 Innel			e : 12 / 12
ID Activity	/ Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete		201	6	
						ļ ļ						Jun	Jul	Aug	Sep
01121.12160-1030 CBTS	(breakwater) - remove breakwater from 0.0 to -6.0mPD	20000m3	6000m3			0.0	9.0	24-May-16 A	12-Jul-16	18.0	50%				
01121.12160-1035 CBTS	(VH3C & VH3D) - plant mobilisation for IMT 10 bulk dredging					0.0	2.0	13-Jul-16	14-Jul-16	18.0	0%	_]		
01121.12160-1040 CBTS deposi	(VH3C & VH3D) - IMT10 advance dredging inside CBTS to remove marine sit	20000m3				0.0	10.0	15-Jul-16	26-Jul-16	18.0	0%				
	(VH3C & VH3D) - IMT10 advance dredging inside CBTS to remove ining material	70000m3				0.0	64.0	27-Jul-16	12-Oct-16	18.0	0%				
Cost Centre F - Associat	ted Works			20-Mar-16	17-Mar-17	363.0	266.0	20-Mar-16 A	17-Mar-17	461.0					
D1121.15520 F3 - M	Management, Maintenance and Operation of Barging Point Facility			20-Mar-16	18-Sep-16	183.0	86.0	20-Mar-16 A	18-Sep-16	461.0	0%				
01121.15530 F4 - M	Management, Maintenance and Operation of Barging Point Facility			19-Sep-16	17-Mar-17	180.0	180.0	19-Sep-16	17-Mar-17	461.0	0%				

Revision	Checked	Approved
	Vincent Yeung	K. Hatakeyama

APPENDIX B ACTION AND LIMIT LEVELS

APPENDIX B – Action and Limit Levels

Parameters	Action Level	Limit Level
WSD Salt Water Intak	e (Station 14, A, WSD9, WSD1	7)
DO in mg/L	<2.1	<2
SS in mg/L	6.0	6.0
Turbidity in NTU	4.7	6.5
Cooling Water Intake	(Station 8, 9, 21 & 34)	
DO in mg/L	2.8	2.7
SS in mg/L	6.9	9.1
Turbidity in NTU	11.3	17.2
GB3		
DO in mg/L	5.5	5.3
SS in mg/L	4.5	4.5
Turbidity in NTU	2.1	2.4

Derived Action and Limit Levels for Water Quality (Wet Season)

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Parameters	Action Level	Limit Level
WSD Salt Water Intak	e (Station 14, A, WSD9, WSD1	7)
DO in mg/L	<2.1	<2
SS in mg/L	6.9	6.9
Turbidity in NTU	5.0	7.0
Cooling Water Intake	(Station 8, 9, 21 & 34)	
DO in mg/L	3.3	3.2
SS in mg/L	8.0	10.4
Turbidity in NTU	12.2	18.5
GB3		
DO in mg/L	6.8	6.5
SS in mg/L	9.3	9.3
Turbidity in NTU	5.0	5.6

Derived Action and Limit Levels for Water Quality (Dry Season)

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

APPENDIX C WATER QUALITY MONITORING SCHEDULE

Shatin to Central Link - Contract No. 1121 **NSL Cross Harbour Tunnels** Water Quality Monitoring Schedule (June 2016)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1	un 2-J	un 3-Jui	ı 4-Jun
			Mid-Ebb 9 Mid-Flood 15	21 16	Mid-Ebb 10:56 Mid-Flood 17:2 ⁻	
5-Ju	n 6	-Jun 7-Jur	n 8	un 9-J	un 10-Jui	n 11-Jun
		3:13):07	Mid-Flood 7 Mid-Ebb 14	51 47	Mid-Flood 9:18 Mid-Ebb 16:2 ⁻	
12-Jui	n 13	-Jun 14-Jun	n 15	un 16-J	un 17-Jui	n 18-Jun
		2:25 9:02	Mid-Ebb 9 Mid-Flood 15	40 47	Mid-Ebb 10:47 Mid-Flood 17:26	
19-Jui	1 20	-Jun 21-Jur	ı 22	un 23-J	un 24-Jui	ı 25-Jun
		2:17):21		Mid-Flood 7: Mid-Ebb 14:		Mid-Flood 8:53 Mid-Ebb 15:37
26-Ju	1 27	-Jun 28-Jui	ı 29	un 30-J	un	
):46 7:17		Mid-Ebb 8: Mid-Flood 15:		

Water Quality Monitoring Stations C1, C2, 9, 21, 34, A, WSD9, WSD17

* indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

Shatin to Central Link - Contract No. 1121 **NSL Cross Harbour Tunnels Tentative Water Quality Monitoring Schedule (July 2016)**

Sunday	Monday	y	Tuesday	Wednesday	Thursday	Friday	Saturday		
						1-Jul	2-Jul		
							Mid-Ebb 10:42 Mid-Flood 17:23		
3-Jul		4-Jul	5-Jul	6-Ju	1 7-Jul	8-Jul	9-Jul		
	Mid-Ebb Mid-Flood	12:16 19:13		Mid-Flood 6:52 Mid-Ebb 13:48		Mid-Flood 8:18 Mid-Ebb 15:07			
10-Jul		11-Jul	12-Jul	13-Ju	l 14-Ju	15-Jul	16-Jul		
	Mid-Flood * Mid-Ebb	10:33 17:05		Mid-Ebb 7:38 Mid-Flood * 13:24		Mid-Ebb 9:40 Mid-Flood * 16:32			
17-Jul		18-Jul	19-Jul	20-Ju	1 21-Ju	22-Jul	23-Jul		
	Mid-Ebb Mid-Flood	11:22 18:36		Mid-Ebb 12:36 Mid-Flood 19:42		Mid-Flood 7:17 Mid-Ebb 13:58			
24-Jul		25-Jul	26-Jul	27-Ju	1 28-Jul	29-Jul	30-Jul		
	Mid-Flood Mid-Ebb	9:44 16:06		Mid-Flood 12:12 Mid-Ebb 18:07		Mid-Ebb 8:40 Mid-Flood 15:11			
31-Jul									

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Water Quality Monitoring Stations

C1, C2, 9, 21, 34, A, WSD9, WSD17

* indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

- 2) The reasons for choosing the monitoring day (i.e 11, 13 and 15 July 2016) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

APPENDIX D WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Water Quality Monitoring Results at 21 - Mid-Ebb Tide

Data	Weather	Sea Condition**	Sampling Time	Death (m)		Temperature (°C)			pН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
Date	Condition			Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*		
1-Jun-16 Sunny				Surface	1	25.4 25.5	25.5	7.4 7.5	7.5	32.3 33.0	32.7	85.9 87.3	86.6	5.9 5.9	5.9		3.8 3.8	3.8		5 5	5.0		
	Calm	09:58	Middle	3.5	24.8 25.3	25.1	7.5 7.5	7.5	31.8 33.5	32.7	85.7 86.6	86.2	5.9 5.9	5.9	5.9	3.7 3.8	3.8	3.7	8 9	8.5	6.7		
				Bottom	6	24.9 25.4	25.2	7.5 7.4	7.5	32.4 31.5	32.0	84.6 84.4	84.5	5.8 5.8	5.8		3.6 3.6	3.6		7	6.5		
		Moderate	11:31	Surface	1	29.4 29.3	29.4	8.2 8.2	8.2	31.9	31.9	106.9 107.2	107.1	6.9 6.9	6.9		3.6	3.6	5.2	6	6.0	6.5	
3-Jun-16	Fine			Middle	3.5	28.7	28.7	8.3	8.3	31.9 31.9	31.9	100.0	99.5	6.5	6.5	6.4	3.6 5.0	5.2		7	7.5		
				Bottom	6	28.7 27.8	27.8	8.3 8.2	8.2	31.9 32.3	32.4	98.9 88.7	88.6	6.4 5.8	5.8		5.3 6.9	6.9		8 6	6.0		
				Surface	1	27.7 25.8	26.2	8.2 8.1	8.2	32.4 28.6	29.3	88.5 92.8	93.8	5.8 6.4	6.4		6.8 3.8	3.8	<u> </u>	6 4	4.0	1	
0 km 10 Olausku	Cloudy	Moderate	14:03	Middle	3.5	26.5 26.9	27.0	8.2 8.2	8.2	29.9 29.0	30.7	94.7 94.0	94.8	6.4 6.4	6.4	6.4	3.7 4.1	4.0	4.0	4	3.5	4.0	
6-Jun-16	Cloudy					27.0 27.2	-	8.2 8.2	-	32.3 29.4		95.5 94.7	94.0	6.4 6.4			3.9 3.9	4.0		4	4.5		
				Bottom	6	26.6 25.4	26.9	8.2 8.2	8.2	32.8 30.9	31.1	94.7 104.4	-	6.3 7.2	6.4		4.6			5			
				Surface	1	25.4 25.2	25.4	8.2	8.2	<u>30.9</u> 31.8	30.9	104.7	104.6	7.2	7.2		4.0	4.0	-	3 <2.5	3.0		
8-Jun-16 Cloudy	Moderate	15:04	Middle	3.5	24.8	25.0	8.2	8.2	31.5	31.7	103.1	104.2	7.2	7.2	7.1	4.8	4.8	4.9	<2.5	<2.5	3.3		
				Bottom	6	25.0 25.0	25.0	8.1 8.2	8.2	32.1 32.2	32.2	98.5 98.2	98.4	6.8 6.8	6.8		5.8 5.7	5.8		5 4	4.5	<u> </u>	
		Calm	15:33	Surface	1	26.3 27.2	26.8	8.1 7.9	8.0	33.8 32.2	33.0	83.3 84.7	84.0	5.6 5.6	5.6	5.8	5.3 5.9	5.6	5.3	3	3.0	3.0	
10-Jun-16 Fine	Fine			Middle	3.5	26.7 27.0	26.9	8.0 7.9	8.0	31.9 33.5	32.7	85.9 91.0	88.5	5.8 6.0	5.9		5.3 4.9	5.1		<2.5 <2.5	<2.5		
				Bottom	6	27.2 27.0	27.1	8.0 8.1	8.1	31.9 33.6	32.8	91.7 89.9	90.8	6.1 5.9	6.0		5.1 5.1	5.1		4 3	3.5		
			13:11	Surface	1	27.7 27.6	27.7	7.9 8.0	8.0	30.3 30.3	30.3	95.7 95.3	95.5	6.4 6.3	6.4	6.3	3.1 3.4	3.3	4.2	<2.5 <2.5	<2.5	3.5	
13-Jun-16	Cloudy	Moderate		Middle	3.5	27.3 27.3	27.3	8.0 8.0	8.0	30.4 30.4	30.4	93.3 93.3	93.3	6.2 6.2	6.2		4.7 4.6	4.7		3 4	3.5		
				Bottom	6	27.2 27.2	27.2	8.1 8.1	8.1	30.4 30.4	30.4	92.8 92.8	92.8	6.2 6.2	6.2		4.5 4.4	4.5		4 5	4.5		
15-Jun-16 Cloudy			10:02	Surface	1	27.1 27.1	27.1	8.2 8.2	8.2	30.4 30.4	30.4	88.1 87.9	88.0	5.9 5.9	5.9	5.3	2.9 2.8	2.9	3.2	4	4.5		
	Cloudy	Moderate		Middle	3.5	26.7 26.7	26.7	8.2 8.2	8.2	30.9 30.9	30.9	87.0 87.1	87.1	5.9 5.9	5.9		2.8	2.9		4	4.0	4.2	
		-	Bottom	6	25.0	25.0	8.2	8.2	31.9	32.0	60.9	60.7	4.2	4.2		3.9	3.9	1	4	4.0			
17-Jun-16 Sunny			I	Surface	1	24.9 28.5	28.5	8.2 7.9	7.9	32.1 31.6	31.7	60.4 85.5	85.6	4.2 5.6	5.6	5.2	3.9 2.4	2.3	4.1	3	3.0	3.2	
	Sunnv	Moderate	11:27	Middle	3.5	28.4 27.8	27.8	7.9	8.0	31.7 32.4	32.5	85.6 82.5	82.4	5.6 5.4	5.4		2.2 3.8	3.7		3 <2.5	<2.5		
	carry			Bottom	6	27.8 26.8	26.7	8.0 7.9	7.9	32.5 33.7	33.8	82.2 71.5	71.1	5.4 4.7	4.7		3.6 6.1	6.2		<2.5 4	4.0		
			Dottoin	v	26.6	20.7	7.9	7.0	33.8	00.0	70.7	,	4.7	-1.7		6.3	0.2		4	-1.0	<u> </u>		

Water Quality Monitoring Results at 21 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	:h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids ((mg/L)
Date	Condition	Condition**	Time	Вері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.8	23.9	8.1 8.1	8.1	33.2 33.2	33.2	92.6 92.3	92.5	6.5 6.5	6.5		3.6 3.6	3.6		5 5	5.0	
20-Jun-16	Sunny	Rough	12:37	Middle	3.5	23.9 23.8	23.9	8.4 8.3	8.4	33.3 33.3	33.3	92.1 92.3	92.2	6.4 6.4	6.4	6.4	3.7 3.7	3.7	3.9	4 4	4.0	4.3
				Bottom	6	23.8 23.8	23.8	8.2 8.2	8.2	33.3 33.3	33.3	91.2 91.4	91.3	6.4 6.4	6.4		4.5 4.5	4.5		4 4	4.0	
				Surface	1	25.9 25.9	25.9	8.1 8.1	8.1	28.7 28.7	28.7	95.0 95.9	95.5	6.4 6.5	6.5		4.7 5.1	4.9		6 6	6.0	
23-Jun-16	Sunny	Moderate	13:30	Middle	3.5	25.3 25.3	25.3	8.2 8.2	8.2	29.2 29.2	29.2	92.1 91.8	92.0	6.3 6.3	6.3	6.2	6.8 6.8	6.8	6.4	6 6	6.0	6.0
				Bottom	6	24.9 24.9	24.9	8.3 8.3	8.3	30.5 30.5	30.5	84.1 84.4	84.3	5.7 5.7	5.7		7.3 7.4	7.4		6 6	6.0	
				Surface	1	29.0 29.1	29.1	8.2 8.2	8.2	31.1 31.1	31.1	110.6 111.2	110.9	7.2 7.2	7.2		3.2 3.2	3.2		4 4	4.0	
25-Jun-16	Sunny	Rough	16:03	Middle	3.5	28.5 28.4	28.5	8.2 8.2	8.2	31.8 31.9	31.9	110.4 110.4	110.4	7.2 7.2	7.2	7.1	5.2 5.4	5.3	4.7	6 6	6.0	4.7
				Bottom	6	28.3 28.4	28.4	8.2 8.1	8.2	32.6 32.7	32.7	104.5 104.4	104.5	6.8 6.8	6.8		5.5 5.8	5.7		4 4	4.0	
				Surface	1	29.1 29.1	29.1	8.2 8.2	8.2	30.9 30.8	30.9	111.3 111.2	111.3	7.2 7.2	7.2		2.3 2.3	2.3		5 5	5.0	
27-Jun-16	Sunny	Moderate	17:43	Middle	3.5	28.7 28.6	28.7	8.2 8.2	8.2	31.7 31.6	31.7	111.0 110.6	110.8	7.2 7.2	7.2	7.1	4.5 4.7	4.6	4.7	5 4	4.5	5.8
				Bottom	6	28.4 28.5	28.5	8.1 8.2	8.2	32.2 32.3	32.3	104.6 104.5	104.6	6.8 6.8	6.8		7.1 7.0	7.1		8 8	8.0	
				Surface	1	28.7 28.7	28.7	7.9 8.0	8.0	30.0 29.8	29.9	88.9 90.4	89.7	5.8 5.9	5.9		3.9 4.0	4.0		5 5	5.0	
30-Jun-16	Cloudy	Moderate	09:42	Middle	3.5	28.4 28.4	28.4	8.1 8.2	8.2	30.2 30.1	30.2	84.0 82.2	83.1	5.5 5.4	5.5	5.6	3.8 4.0	3.9	4.4	5 5	5.0	6.5
				Bottom	6	28.4 28.4	28.4	8.1 8.1	8.1	31.0 31.0	31.0	83.1 81.8	82.5	5.4 5.4	5.4		5.1 5.2	5.2		9 10	9.5	

Water Quality Monitoring Results at 21 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salir	ity ppt	DO Satu	iration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Depi	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.1 24.9	25.0	7.5 7.4	7.5	32.3 32.5	32.4	87.2 84.9	86.1	6.0 5.8	5.9		3.5 4.0	3.8		5 5	5.0	
1-Jun-16	Sunny	Calm	14:34	Middle	3.5	25.2 25.0	25.1	7.5 7.6	7.6	32.0 31.8	31.9	86.5 85.4	86.0	5.9 5.9	5.9	5.9	3.5 3.0	3.3	3.5	4 4	4.0	4.3
				Bottom	6	24.9 25.4	25.2	7.5 7.4	7.5	32.6 33.6	33.1	84.2 86.5	85.4	5.8 5.9	5.9		3.2 3.3	3.3		4	4.0	
				Surface	1	28.6 28.5	28.6	8.3 8.3	8.3	31.6 31.7	31.7	110.2 110.2	110.2	7.2 7.2	7.2		5.7 6.0	5.9		6 7	6.5	
3-Jun-16	Cloudy	Moderate	17:27	Middle	3.5	28.3 28.3	28.3	8.3 8.3	8.3	31.8 31.8	31.8	107.7 107.1	107.4	7.0 7.0	7.0	6.6	6.4 6.5	6.5	5.9	7 7	7.0	6.0
				Bottom	6	27.6 27.6	27.6	8.3 8.3	8.3	31.9 32.0	32.0	85.8 86.3	86.1	5.7 5.7	5.7		5.2 5.3	5.3		4 5	4.5	
				Surface	1	24.0 25.5	24.8	8.2 8.1	8.2	32.2 32.2	32.2	97.7 100.0	98.9	6.8 6.8	6.8		3.8 4.5	4.2		4 5	4.5	
6-Jun-16	Cloudy	Moderate	20:33	Middle	3.5	24.0 25.1	24.6	8.2 8.1	8.2	31.5 30.8	31.2	93.2 94.2	93.7	6.6 6.5	6.6	6.6	5.0 4.9	5.0	4.2	3 4	3.5	3.7
				Bottom	6	26.1 24.9	25.5	8.1 8.1	8.1	32.9 31.0	32.0	94.9 91.8	93.4	6.4 6.4	6.4		3.2 3.8	3.5		3 3	3.0	
				Surface	1	25.4 25.4	25.4	8.2 8.2	8.2	31.0 31.0	31.0	105.1 104.6	104.9	7.2 7.2	7.2		3.9 3.8	3.9		3 3	3.0	
8-Jun-16	Cloudy	Moderate	08:30	Middle	3.5	24.9 24.8	24.9	8.2 8.2	8.2	31.5 31.6	31.6	104.7 104.5	104.6	7.3 7.2	7.3	7.1	7.4 6.5	7.0	6.3	<2.5 <2.5	<2.5	2.7
				Bottom	6	24.7 24.8	24.8	8.1 8.1	8.1	32.5 32.4	32.5	99.0 98.6	98.8	6.8 6.8	6.8		8.3 7.8	8.1		<2.5 <2.5	<2.5	
				Surface	1	26.6 26.5	26.6	8.0 8.2	8.1	32.5 33.3	32.9	85.0 87.5	86.3	5.7 5.8	5.8		4.9 4.8	4.9		<2.5 <2.5	<2.5	
10-Jun-16	Fine	Calm	09:48	Middle	3.5	26.8 26.6	26.7	7.9 8.2	8.1	33.7 32.0	32.9	88.4 89.5	89.0	5.9 6.0	6.0	5.8	4.9 4.9	4.9	4.8	3 4	3.5	3.0
				Bottom	6	26.9 26.8	26.9	8.2 7.9	8.1	32.9 33.7	33.3	83.9 86.7	85.3	5.6 5.7	5.7		4.6 4.7	4.7		3 3	3.0	
				Surface	1	27.7 27.7	27.7	8.1 8.1	8.1	30.1 30.1	30.1	94.4 94.1	94.3	6.3 6.3	6.3		4.4 4.0	4.2		<2.5 <2.5	<2.5	
13-Jun-16	Cloudy	Moderate	18:07	Middle	3.5	27.3 27.3	27.3	8.1 8.1	8.1	30.2 30.2	30.2	93.5 93.4	93.5	6.3 6.3	6.3	6.3	4.2 4.1	4.2	4.3	3 4	3.5	3.7
				Bottom	6	27.2 27.2	27.2	8.1 8.1	8.1	30.4 30.4	30.4	92.8 92.8	92.8	6.2 6.2	6.2		4.5 4.4	4.5		5 5	5.0	<u> </u>
				Surface	1	26.3 26.3	26.3	8.3 8.3	8.3	30.9 30.8	30.9	88.2 88.3	88.3	6.0 6.0	6.0		3.1 3.0	3.1		4 4	4.0	
15-Jun-16	Cloudy	Moderate	16:10	Middle	3.5	25.9 25.8	25.9	8.3 8.3	8.3	31.3 31.4	31.4	85.6 85.2	85.4	5.8 5.8	5.8	5.3	3.0 3.1	3.1	3.3	5 6	5.5	4.8
				Bottom	6	24.8 24.9	24.9	8.2 8.2	8.2	32.2 32.1	32.2	59.8 60.2	60.0	4.1 4.2	4.2		3.8 3.7	3.8		5 5	5.0	
				Surface	1	28.2 28.2	28.2	8.1 8.1	8.1	31.1 31.0	31.1	86.1 86.7	86.4	5.7 5.7	5.7		3.4 3.4	3.4		4 5	4.5	
17-Jun-16	Cloudy	Moderate	16:31	Middle	3.5	27.7 27.7	27.7	8.2 8.2	8.2	32.1 32.1	32.1	82.7 82.5	82.6	5.4 5.4	5.4	5.2	3.8 3.9	3.9	4.9	4 4	4.0	3.8
				Bottom	6	26.4 26.3	26.4	8.0 8.1	8.1	33.4 33.6	33.5	68.9 66.8	67.9	4.6 4.5	4.6		7.2 7.6	7.4		3 3	3.0	

Water Quality Monitoring Results at 21 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dopt	h (m)	Tempera	ature (°C)	ķ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Furbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Depi		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.8	23.9	8.0 8.1	8.1	33.1 33.1	33.1	93.3 94.0	93.7	6.5 6.6	6.6		3.5 3.6	3.6		6 6	6.0	
20-Jun-16	Fine	Calm	19:52	Middle	3.5	23.8 23.8	23.8	8.0 7.9	8.0	33.2 33.2	33.2	92.5 92.6	92.6	6.5 6.5	6.5	6.5	3.8 3.8	3.8	3.7	6 6	6.0	5.5
				Bottom	6	23.7 23.6	23.7	8.1 8.1	8.1	33.2 33.2	33.2	91.9 91.7	91.8	6.4 6.4	6.4		3.6 3.6	3.6		4 5	4.5	
				Surface	1	25.8 25.7	25.8	8.3 8.3	8.3	30.9 31.0	31.0	98.1 98.0	98.1	6.6 6.6	6.6		2.4 2.7	2.6		3 3	3.0	
23-Jun-16	Sunny	Moderate	08:08	Middle	3.5	25.1 25.1	25.1	8.3 8.3	8.3	31.8 31.7	31.8	96.3 96.4	96.4	6.5 6.5	6.5	6.4	4.4 4.2	4.3	4.2	6 6	6.0	4.7
				Bottom	6	24.6 24.6	24.6	8.2 8.2	8.2	32.6 32.8	32.7	88.9 88.7	88.8	6.0 6.0	6.0		5.7 5.5	5.6		5 5	5.0	
				Surface	1	29.3 29.3	29.3	8.2 8.2	8.2	31.3 31.3	31.3	112.2 112.3	112.3	7.2 7.2	7.2		4.4 3.7	4.1		3 3	3.0	
25-Jun-16	Sunny	Rough	09:20	Middle	3.5	28.9 29.0	29.0	8.2 8.2	8.2	31.7 31.8	31.8	112.0 111.9	112.0	7.2 7.2	7.2	7.1	8.2 7.5	7.9	6.7	5 5	5.0	3.7
				Bottom	6	28.6 28.6	28.6	8.2 8.1	8.2	32.8 32.6	32.7	105.9 104.9	105.4	6.8 6.8	6.8		8.1 7.8	8.0		3 3	3.0	
				Surface	1	29.2 29.2	29.2	8.2 8.2	8.2	31.1 31.2	31.2	111.7 111.7	111.7	7.2 7.2	7.2		4.4 4.1	4.3		4 3	3.5	
27-Jun-16	Sunny	Moderate	11:09	Middle	3.5	28.7 28.8	28.8	8.2 8.2	8.2	31.5 31.7	31.6	111.4 112.1	111.8	7.2 7.3	7.3	7.1	7.6 6.4	7.0	6.4	6 7	6.5	4.7
				Bottom	6	28.5 28.4	28.5	8.1 8.1	8.1	32.4 32.3	32.4	106.1 104.5	105.3	6.9 6.8	6.9		8.0 7.9	8.0		4 4	4.0	
				Surface	1	28.8 28.8	28.8	7.9 7.9	7.9	29.8 29.8	29.8	89.1 88.3	88.7	5.8 5.8	5.8		4.8 4.7	4.8		6 7	6.5	
30-Jun-16	Cloudy	Moderate	15:52	Middle	3.5	28.5 28.5	28.5	8.0 8.0	8.0	30.3 30.5	30.4	84.0 83.3	83.7	5.5 5.5	5.5	5.6	5.3 5.4	5.4	5.2	6 5	5.5	6.8
				Bottom	6	28.4 28.4	28.4	8.0 8.0	8.0	31.1 31.0	31.1	83.0 83.9	83.5	5.4 5.5	5.5		5.5 5.4	5.5		9 8	8.5	

Water Quality Monitoring Results at 34 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Depi	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 25.4	25.1	7.5 7.4	7.5	32.7 32.7	32.7	85.0 87.3	86.2	5.9 6.0	6.0		3.0 3.0	3.0		5 5	5.0	
1-Jun-16	Sunny	Calm	10:20	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	3.3	-	-	6.0
				Bottom	3	25.2 25.3	25.3	7.4 7.5	7.5	31.3 31.0	31.2	84.3 84.1	84.2	5.8 5.8	5.8		3.8 3.3	3.6		7 7	7.0	
				Surface	1	28.6 28.6	28.6	8.1 8.2	8.2	30.3 30.4	30.4	95.6 95.2	95.4	6.3 6.2	6.3		5.2 4.9	5.1		5	5.0	
3-Jun-16	Fine	Moderate	11:51	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	- 4.9	-	5.3	-	-	6.5
				Bottom	3	28.4	28.4	8.2	8.2	30.8	30.9	95.0	94.9	6.2	6.2		5.5	5.4		8	8.0	1
				Surface	1	28.4 26.9	27.2	8.2 8.1	8.2	30.9 31.0	32.1	94.8 99.1	100.4	6.2 6.7	6.7		5.3 4.3	4.3		8	3.0	<u> </u>
6-Jun-16	Cloudy	Moderate	14:18	Middle	-	- 27.4		- 8.2	-	33.1	02	- 101.6		6.7 -	-	6.2	4.3		4.8	3	-	3.3
0-3011-10	Cloudy	Moderale	14.10		2.8	- 27.2	27.1	- 8.0	8.1	- 31.2	32.8	- 82.2	83.3	- 5.5	5.6	0.2	- 5.2	5.2	4.0	- 3	3.5	0.0
				Bottom		26.9 25.5		8.2 8.1		34.3 31.1		84.4 104.7		5.6 7.2			5.2 2.9	-		4		<u> </u>
				Surface	1	25.4	25.5	8.1	8.1	30.8	31.0	103.8	104.3	7.2	7.2		2.7	2.8		4	4.0	-
8-Jun-16	Cloudy	Moderate	15:20	Middle	-	- 25.2	-	- 8.2	-	- 31.6	-	- 104.8	-	- 7.2	-	7.2	- 5.0	-	4.1	- 4	-	4.0
				Bottom	2.7	25.3	25.3	8.2	8.2	31.5	31.6	104.8	104.8	7.2	7.2		5.8	5.4		4	4.0	<u> </u>
				Surface	1	26.9 26.8	26.9	8.2 7.9	8.1	32.0 33.0	32.5	85.0 86.2	85.6	5.7 5.7	5.7		3.4 3.1	3.3		<2.5 <2.5	<2.5	
10-Jun-16	Fine	Calm	15:18	Middle	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-	4.5	-	-	2.8
				Bottom	2.7	26.3 26.9	26.6	8.0 8.2	8.1	33.1 32.7	32.9	92.1 84.3	88.2	6.2 5.6	5.9		5.6 5.7	5.7		3 3	3.0	
				Surface	1	28.6 28.6	28.6	7.7 7.7	7.7	30.2 30.3	30.3	94.5 94.4	94.5	6.2 6.2	6.2		3.7 3.6	3.7		<2.5 <2.5	<2.5	
13-Jun-16	Cloudy	Moderate	13:29	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	3.9	-	-	3.3
				Bottom	3	28.5 28.5	28.5	7.7 7.7	7.7	30.2 30.3	30.3	93.1 91.8	92.5	6.1 6.0	6.1		3.9 4.0	4.0		4	4.0	
				Surface	1	27.6 27.5	27.6	8.4 8.4	8.4	29.7 29.7	29.7	83.7 83.7	83.7	5.6 5.6	5.6		2.9 3.0	3.0		3 3	3.0	
15-Jun-16	Cloudy	Moderate	10:19	Middle	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	3.0	-	-	3.5
				Bottom	2.8	27.6 27.5	27.6	8.4 8.4	8.4	29.8 29.8	29.8	83.6 83.4	83.5	5.6 5.6	5.6		2.9 3.0	3.0		4	4.0	1
				Surface	1	28.1 28.1	28.1	7.9 7.9 7.9	7.9	31.9 31.9	31.9	85.6 85.6	85.6	5.6 5.6	5.6		5.6 5.6	5.6		<2.5 <2.5	<2.5	
17-Jun-16	Sunny	Moderate	11:45	Middle	-	∠ð.1 -	-	-	-	- 31.9	-	0.CO -	-	0.0 -	-	5.5	-	-	5.7	-	-	<2.5
-				Bottom	3	27.7	27.7	8.0	8.0	32.8	32.9	81.3	81.0	5.3	5.3		5.7	5.7		<2.5	<2.5	1
					-	27.7		8.0		32.9		80.7		5.3			5.7	÷		<2.5		<u>i </u>

Water Quality Monitoring Results at 34 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	٦	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Dehr		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	8.1 8.1	8.1	32.7 32.7	32.7	90.5 90.4	90.5	6.3 6.3	6.3		5.4 5.5	5.5		4 3	3.5	
20-Jun-16	Sunny	Rough	12:56	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	6.4	-	-	3.8
				Bottom	2.7	23.8 23.8	23.8	8.1 8.1	8.1	32.8 32.8	32.8	89.7 89.8	89.8	6.3 6.3	6.3		7.1 7.2	7.2		4	4.0	
				Surface	1	24.8 24.8	24.8	8.3 8.3	8.3	29.1 29.1	29.1	92.7 92.7	92.7	6.4 6.4	6.4		6.4 5.8	6.1		5 5	5.0	
23-Jun-16	Sunny	Moderate	13:12	Middle	-		-	-	-	-	-	-	-		-	6.4	-	-	6.2	-	-	5.0
				Bottom	3	24.5 24.5	24.5	8.3 8.3	8.3	29.2 29.2	29.2	92.0 92.0	92.0	6.4 6.4	6.4		6.3 6.3	6.3		5 5	5.0	
				Surface	1	28.8 28.9	28.9	8.1 8.1	8.1	31.3 31.1	31.2	110.9 110.5	110.7	7.2 7.2	7.2		3.0 2.9	3.0		4	4.0	
25-Jun-16	Sunny	Rough	16:19	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	4.4	-	-	3.5
				Bottom	2.8	28.6 28.5	28.6	8.2 8.3	8.3	31.9 32.0	32.0	111.1 110.8	111.0	7.2 7.2	7.2		5.7 5.6	5.7		3 3	3.0	
				Surface	1	29.0 29.1	29.1	8.1 8.1	8.1	31.0 30.8	30.9	111.2 110.7	111.0	7.2 7.2	7.2		2.6 2.5	2.6		5 5	5.0	
27-Jun-16	Sunny	Moderate	17:59	Middle	-	-	-	-	-	-	-	-	-		-	7.2	-	-	4.0	-	-	4.8
				Bottom	2.7	28.6 28.8	28.7	8.2 8.3	8.3	31.6 31.5	31.6	111.1 110.4	110.8	7.2 7.2	7.2		5.4 5.4	5.4		4 5	4.5	
				Surface	1	28.7 28.7	28.7	8.0 8.0	8.0	29.7 29.9	29.8	93.0 91.4	92.2	6.1 6.0	6.1		5.7 5.6	5.7		3 3	3.0	
30-Jun-16	Cloudy	Moderate	10:01	Middle	-	-	-	-	-	-	-	-	-		-	5.9	-	-	6.1	-	-	4.3
				Bottom	2.8	28.5 28.5	28.5	8.1 8.1	8.1	30.8 31.0	30.9	87.4 86.2	86.8	5.7 5.6	5.7		6.4 6.3	6.4		5 6	5.5	

Water Quality Monitoring Results at 34 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dopt	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.1 25.5	25.3	7.4 7.5	7.5	32.2 31.2	31.7	87.0 84.2	85.6	6.0 5.8	5.9		1.4 1.4	1.4		7 6	6.5	
1-Jun-16	Sunny	Calm	14:19	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	2.6	-	-	5.8
				Bottom	3	24.9 24.9	24.9	7.5 7.4	7.5	32.6 32.4	32.5	86.2 85.3	85.8	5.9 5.9	5.9		3.7 3.8	3.8		5 5	5.0	
				Surface	1	28.9 28.9	28.9	8.1 8.1	8.1	30.9 30.9	30.9	105.8 105.3	105.6	6.9 6.8	6.9		3.8 3.1	3.5		3	3.5	
3-Jun-16	Cloudy	Moderate	17:48	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	3.9	-	-	6.0
				Bottom	3	28.8 28.7	28.8	8.1 8.2	8.2	30.9	31.0	103.9	104.0	6.8	6.8		4.0	4.2		8	8.5	
				Surface	1	24.5	24.4	8.1	8.2	31.0 32.1	32.1	<u>104.1</u> 95.5	95.2	6.8 6.6	6.6		4.4	3.8		9	3.0	
6-Jun-16	Cloudy	Moderate	20:52	Middle	-	- 24.3	_	- 8.2	_	32.0	-	94.9	-	6.6 -	-	6.6	3.5	-	4.3	- 3	-	3.5
	,			Bottom	2.9	- 24.3	24.3	- 8.1	8.2	- 32.2	32.0	- 94.5	94.5	- 6.6	6.6		4.5	4.7		- 4	4.0	
				Surface	1	24.3 25.4	25.4	8.2 8.1	8.1	31.7 30.9	30.9	94.5 104.9	104.8	6.6 7.2	7.2		4.8 3.1	3.2		4 <2.5	<2.5	
0 km 10	Claudu	Madarata	08:48	Middle	-	25.3	20.4	8.1	0.1	30.8	-	104.6	104.0	7.2	-	7.2	3.2	0.2	4.0	<2.5	-	2.8
8-Jun-16	Cloudy	Moderate	00.40			- 24.8	-	- 8.2	-	- 31.7		- 104.5	-	- 7.2		1.2	- 4.6	-	4.0	- 3		2.0
				Bottom	2.8	24.9 26.8	24.9	8.3 8.0	8.3	31.7 33.8	31.7	104.4 89.2	104.5	7.2 5.9	7.2		4.7 4.1	4.7		3	3.0	
				Surface	1	26.3	26.6	8.1	8.1	33.9	33.9	86.3	87.8	5.8	5.9		4.0	4.1		3	3.0	
10-Jun-16	Fine	Calm	10:10	Middle	-	- 27.0	-	- 7.9	-	- 33.3	-	- 90.5	-	- 6.0	-	6.0	- 4.9	-	4.4	- 4	-	3.8
				Bottom	3	26.4 29.0	26.7	8.0	8.0	31.9 32.1	32.6	90.3 95.1	90.4	6.1 6.1	6.1		4.3	4.6		5 <2.5	4.5	
				Surface	1	29.0 29.0	29.0	7.8	7.8	32.0	32.1	95.4	95.3	6.2	6.2		3.9	3.9		<2.5	<2.5	
13-Jun-16	Cloudy	Moderate	17:53	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	4.1	-	-	<2.5
				Bottom	3	28.9 28.9	28.9	7.8 7.8	7.8	32.0 32.0	32.0	93.6 91.7	92.7	6.0 5.9	6.0		4.3 4.2	4.3		<2.5 <2.5	<2.5	
				Surface	1	27.4 27.4	27.4	8.4 8.4	8.4	29.8 29.9	29.9	87.2 87.2	87.2	5.8 5.8	5.8		2.9 2.9	2.9		6 6	6.0	
15-Jun-16	Cloudy	Moderate	16:28	Middle	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-	2.9	-	-	6.0
				Bottom	2.9	27.4 27.4	27.4	8.4 8.4	8.4	30.0 30.1	30.1	86.8 86.9	86.9	5.8 5.8	5.8		2.9 2.8	2.9		6 6	6.0	
				Surface	1	28.4 28.4	28.4	7.9 7.9	7.9	31.0 30.9	31.0	84.0 84.9	84.5	5.5 5.6	5.6		4.2 4.2	4.2		5 5	5.0	
17-Jun-16	Cloudy	Moderate	16:17	Middle	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	4.6	-	-	5.5
				Bottom	3	27.9 27.9	27.9	8.0 8.0	8.0	32.0 32.1	32.1	78.3 78.1	78.2	5.1 5.1	5.1		5.1 4.9	5.0		6	6.0	

Water Quality Monitoring Results at 34 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dopt	h (m)	Tempera	ature (°C)	ķ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Furbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Depi		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.1 24.0	24.1	8.1 8.1	8.1	32.7 32.7	32.7	90.3 90.0	90.2	6.3 6.3	6.3		4.4 4.6	4.5		3 4	3.5	
20-Jun-16	Fine	Calm	20:11	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	4.8	-	-	4.0
				Bottom	2.8	23.9 23.8	23.9	8.1 8.1	8.1	32.8 32.8	32.8	89.6 89.6	89.6	6.3 6.3	6.3		5.1 4.9	5.0		5 4	4.5	
				Surface	1	24.6 24.6	24.6	8.2 8.2	8.2	29.6 29.6	29.6	88.9 89.2	89.1	6.1 6.1	6.1		1.7 1.7	1.7		4 4	4.0	
23-Jun-16	Sunny	Moderate	08:27	Middle	-	-	-	-	-	-	-	-	-		-	6.2	-	-	1.8	-	-	4.5
				Bottom	3	24.5 24.5	24.5	8.2 8.2	8.2	29.8 29.8	29.8	89.4 89.6	89.5	6.2 6.2	6.2		1.9 1.9	1.9		5 5	5.0	
				Surface	1	29.4 29.2	29.3	8.1 8.2	8.2	31.1 31.3	31.2	112.1 111.6	111.9	7.2 7.2	7.2		5.0 5.6	5.3		4 4	4.0	
25-Jun-16	Sunny	Rough	09:38	Middle	-	-	-	-	-	-	-	-	-		-	7.2	-	-	6.1	-	-	4.5
				Bottom	2.9	28.9 28.8	28.9	8.2 8.2	8.2	32.2 31.9	32.1	112.1 111.6	111.9	7.2 7.2	7.2		6.8 6.9	6.9		5 5	5.0	
				Surface	1	29.3 29.1	29.2	8.1 8.2	8.2	30.9 30.9	30.9	112.1 111.6	111.9	7.2 7.2	7.2		4.6 5.6	5.1		5 5	5.0	
27-Jun-16	Sunny	Moderate	11:27	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	6.1	-	-	5.5
				Bottom	2.8	28.8 28.8	28.8	8.2 8.2	8.2	31.7 31.5	31.6	111.9 111.2	111.6	7.3 7.2	7.3		6.6 7.5	7.1		6 6	6.0	
				Surface	1	28.6 28.6	28.6	8.0 7.9	8.0	29.6 29.5	29.6	94.0 93.9	94.0	6.2 6.2	6.2		5.7 6.0	5.9		4	4.0	
30-Jun-16	Cloudy	Moderate	16:11	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	6.4	-	-	5.5
				Bottom	2.8	28.3 28.3	28.3	8.1 8.1	8.1	30.4 30.4	30.4	85.6 86.1	85.9	5.6 5.7	5.7		6.7 6.9	6.8		7 7	7.0	

Water Quality Monitoring Results at 9 - Mid-Ebb Tide

Data	Weather	Sea	Sampling	Deat	h (m)	Tempera	ature (°C)	p	Η	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
	_			Surface	-	- 25.5	-	- 7.4	-	33.0	-	- 86.9	-	- - 5.9	-		5.3	-		6	-	
1-Jun-16	Sunny	Calm	08:52	Middle Bottom	1.5	25.5	25.5	7.4	7.4	31.0	32.0	84.9	85.9	5.8	5.9	5.9	5.2	5.3	5.3	5	5.5	5.5
					-	-	-	-	-	-		-	-	-			-	-		-	-	
3-Jun-16	Fine	Moderate	10:26	Surface Middle	- 1.5	- 29.5	- 29.4	- 8.2	8.3	- 29.4	- 29.4	- 104.4	- 104.1	- 6.8	- 6.8	6.8	- 6.6	6.8	6.8	- 6	- 6.5	6.5
3-JUII-10	FILIE	Moderale	10.20	Bottom	-	29.3	29.4	8.3	-	29.4	- 29.4	103.8	104.1	6.8	0.0	0.0	6.9	0.0	0.0	7		0.5
						-		-		-		-		-			-			-		
6-Jun-16	Cloudy	Moderate	12:49	Surface Middle	- 1.5	- 25.6	- 25.6	- 8.2	8.2	- 29.5	- 29.4	- 93.7	93.7	- 6.5	- 6.5	6.5	- 3.5	3.3	3.3	- 5	- 5.0	5.0
0-JUII-10	Cloudy	Moderale	12.49	Bottom	-	25.6	25.0	8.1 -	0.2	29.3	- 29.4	93.6	93.7	6.5 -		0.5	3.1	5.5	5.5	5	5.0	5.0
				Surface	-	-		-		-		-		-			-			-		
8-Jun-16	Cloudy	Moderate	14:08	Middle	- 1.5	- 25.4	25.3	- 8.3	8.3	- 30.3	30.3	- 122.7	122.6	- 8.5	8.5	8.5	- 2.7	2.8	2.8	- 3	3.0	3.0
o-Juli-10	Cloudy	Moderale	14.06	Bottom	-	25.2	25.3	8.3	0.3	30.2		122.4	122.0	8.5	6.5	0.0	2.9	2.0	2.0	3	3.0	3.0
				Surface	-	-		-		-		-		-			-			-		
10-Jun-16	Fine	Calm	16:42	Middle	1.5	26.6	26.8	- 8.0	8.1	32.3	32.7	90.7	87.8	- 6.1	5.9	5.9	- 4.8	4.6	4.6	- <2.5	<2.5	<2.5
i o ouri i o	1 110	ouin		Bottom	-	- 26.9	-	8.1	-	33.0	-	- 84.9	-	5.6 -	-	0.0	4.4	-		<2.5	-	
				Surface	-	-		-	_	-	_	-	_	-	_		-	_		-	_	
13-Jun-16	Cloudy	Moderate	12:08	Middle	1	27.7	27.7	7.3	7.4	29.2	29.3	86.9	86.6	- 5.8	5.8	5.8	- 7.6	7.8	7.8	- 5	5.0	5.0
	,			Bottom	-	27.6	-	7.4	-	29.3	-	86.2	-	5.8	-		7.9	-		- 5	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
15-Jun-16	Cloudy	Moderate	09:02	Middle	1.5	- 27.3 27.3	27.3	- 7.6 7.7	7.7	29.9 29.9	29.9	- 89.9 89.5	89.7	- 6.0 6.0	6.0	6.0	- 2.4 2.5	2.5	2.5	- 4 5	4.5	4.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
17-Jun-16	Sunny	Moderate	10:28	Middle	1.5	28.5 28.5	28.5	8.2 8.2	8.2	28.5 28.5	28.5	91.5 90.9	91.2	6.1 6.0	6.1	6.1	6.1 6.1	6.1	6.1	5	5.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	

Water Quality Monitoring Results at 9 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	1	Furbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	un (nn)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-	-	-	-	-		-		-	-		-	-	
20-Jun-16	Sunny	Rough	11:29	Middle	1.5	24.1 24.1	24.1	8.0 8.0	8.0	32.1 32.2	32.2	85.2 85.4	85.3	6.0 6.0	6.0	6.0	7.7 7.5	7.6	7.6	4 4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
23-Jun-16	Sunny	Moderate	14:37	Middle	1.5	25.6 25.6	25.6	8.3 8.3	8.3	27.9 27.5	27.7	95.4 95.5	95.5	6.5 6.5	6.5	6.5	6.5 6.6	6.6	6.6	7 6	6.5	6.5
				Bottom	-	-	-	-	-	-	-	-	-		-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
25-Jun-16	Sunny	Rough	15:06	Middle	1.5	28.7 28.6	28.7	8.3 8.3	8.3	30.8 30.6	30.7	130.0 129.7	129.9	8.5 8.5	8.5	8.5	3.0 2.9	3.0	3.0	4 4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
27-Jun-16	Sunny	Moderate	16:47	Middle	1.5	28.9 28.7	28.8	8.3 8.3	8.3	30.2 30.5	30.4	129.9 129.7	129.8	8.5 8.5	8.5	8.5	2.8 2.8	2.8	2.8	3 3	3.0	3.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
30-Jun-16	Cloudy	Moderate	08:37	Middle	1.5	28.9 28.9	28.9	7.9 7.9	7.9	31.8 31.9	31.9	105.9 106.4	106.2	6.8 6.9	6.9	6.9	4.0 3.8	3.9	3.9	5 6	5.5	5.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	

Water Quality Monitoring Results at 9 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Depi	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Calm	15:43	Surface Middle	-	- 25.1	- 25.1	- - 7.5	- 7.6	33.2	- 33.1	- - 85.2	- 85.7	- - 5.8	- 5.9	5.9	- 	- 2.8	2.8	- - 5	- 5.0	5.0
				Bottom	-	25.1 - -	-	7.6	-	33.0	-	86.1 -	-	5.9 - -	-		2.5	-		5	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
3-Jun-16	Cloudy	Moderate	16:37	Middle	1.5	29.3 29.2	29.3	8.3 8.3	8.3	29.4 29.5	29.5	107.9 108.2	108.1	7.0 7.1	7.1	7.1	6.4 6.5	6.5	6.5	6 5	5.5	5.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
6-Jun-16	Cloudy	Moderate	19:37	Middle	1.5	24.0 23.9	24.0	8.2 8.2	8.2	30.5 30.6	30.6	95.0 92.4	93.7	6.7 6.5	6.6	6.6	3.8 3.8	3.8	3.8	3 3	3.0	3.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	<u> </u>
				Surface	-		-	-	-	-	-	-	-	-	-		-	-		-	-	
8-Jun-16	Cloudy	Moderate	07:31	Middle	1.5	25.3 25.2	25.3	8.3 8.3	8.3	30.3 30.7	30.5	113.0 112.9	113.0	7.8 7.8	7.8	7.8	2.8 2.9	2.9	2.9	3 4	3.5	3.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
10-Jun-16	Fine	Calm	08:42	Middle	1.5	27.2 27.2	27.2	8.0 8.0	8.0	32.0 33.3	32.7	90.4 89.7	90.1	6.0 5.9	6.0	6.0	6.3 6.3	6.3	6.3	3	3.0	3.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	- - 27.5	-	- - 7.6	-	29.3	-		-	5.7	-		- - 6.9	-		-	-	
13-Jun-16	Cloudy	Moderate	19:15	Middle	1	27.5	27.5	7.6	7.6	29.3	29.3	84.2	84.3	5.7	5.7	5.7	6.9	6.9	6.9	4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-		-		-	-		-	-	
				Surface	-	27.2	-	7.7	-	29.0	-	88.7	-	6.0	-		2.7	-		5	-	
15-Jun-16	Cloudy	Moderate	15:08	Middle	1.5	27.2	27.2	7.8	7.8	29.0	29.0	88.6	88.7	6.0	6.0	6.0	2.7	2.8	2.8	5	5.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		_	-		-	-	
47 1. 46		Mark	17.00	Surface	-	- 28.1	-	- 8.0	-	- 29.0	-	- 89.9	-	6.0	-	0.0	- 5.9	-	5.0	- 4	-	4.0
17-Jun-16	Cloudy	Moderate	17:36	Middle Bottom	1.5 -	28.1	28.1	8.0	8.0	29.0	29.0	89.8	89.9	6.0	6.0	6.0	5.8	5.9	5.9	4	4.0	4.0
				BOLLOIN	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	<u>. </u>

Water Quality Monitoring Results at 9 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	þ	H	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Depi		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
20-Jun-16	Fine	Calm	18:39	Middle	1.5	23.9 23.9	23.9	8.1 8.1	8.1	32.0 32.0	32.0	86.6 86.6	86.6	6.1 6.1	6.1	6.1	5.2 5.2	5.2	5.2	4 4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
23-Jun-16	Sunny	Moderate	07:06	Middle	1.5	25.2 25.2	25.2	8.1 8.1	8.1	27.8 27.7	27.8	93.8 93.9	93.9	6.5 6.5	6.5	6.5	3.1 3.2	3.2	3.2	4 4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-		-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
25-Jun-16	Sunny	Rough	08:21	Middle	1.5	29.3 29.1	29.2	8.3 8.3	8.3	30.7 30.8	30.8	121.1 119.8	120.5	7.8 7.8	7.8	7.8	3.3 3.0	3.2	3.2	4 4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-		-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
27-Jun-16	Sunny	Moderate	10:09	Middle	1.5	29.1 29.0	29.1	8.3 8.3	8.3	30.4 30.6	30.5	119.9 119.8	119.9	7.8 7.8	7.8	7.8	3.5 2.9	3.2	3.2	6 7	6.5	6.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
30-Jun-16	Cloudy	Moderate	14:47	Middle	1.5	29.0 29.0	29.0	7.8 7.8	7.8	31.7 31.7	31.7	104.7 105.9	105.3	6.8 6.8	6.8	6.8	3.5 3.6	3.6	3.6	6 6	6.0	6.0
				Bottom	-	-	-	-	-	-	-	-	-		-		-	-		-	-	

Water Quality Monitoring Results at A - Mid-Ebb Tide

$\begin{array}{c ccccc} & 31.6 \\ 31.9 \\ \hline 32.8 \\ \hline 33.2 \\ \hline 33.0 \\ \hline 100 \\ $	Average 31.8 31.9 32.6 29.2 29.4 29.5 31.0 30.9 31.0 30.9 31.0 30.8 31.6 31.8 32.9 32.4	Value 84.1 86.8 85.3 85.8 85.9 120.0 120.1 116.3 116.0 115.9 115.7 93.8 93.9 93.5 92.4 93.6 92.6 92.6 92.6 104.8 104.3 104.1 104.3 98.2 98.1 89.8 83.6	Average 85.5 85.8 86.4 120.1 116.2 115.8 93.9 93.0 93.1 104.6 104.2 98.2 86.7	Value 5.8 6.0 6.0 5.8 5.9 6.0 7.8 7.9 7.6 7.6 7.6 7.6 7.6 6.4 6.4 6.3 6.4 6.3 6.4 6.3 7.2 7.2 7.2 6.8 6.8 6.0	Average 5.9 5.9 6.0 7.9 7.6 7.6 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	DA* 5.9 7.7 6.4 7.1	Value 3.0 4.4 4.8 5.2 4.8 5.2 4.8 5.2 4.8 5.2 4.8 5.2 4.3 4.3 4.3 4.3 4.3 4.5 3.1 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.7 2.2 3.9 4.7 7.4 6.6	Average 3.0 4.6 5.0 4.0 4.3 4.5 3.4 3.9 5.7 2.2 4.3 7.0	4.2 4.3 4.3 4.5	Value 4 4 6 7 7 7 7 4 4 4 5 5 3 3 4 4 4 3 3 3 5 5 5 5 6	Average 4.0 6.5 7.0 7.0 4.0 5.0 3.0 4.0 3.0 5.0 5.0 5.0	DA* 5.8 5.3 3.3 4.5
$\begin{array}{c ccccc} 7.5 & 31.9 \\ \hline 31.0 & 32.8 \\ \hline 32.8 & 32.8 \\ \hline 7.5 & 31.9 \\ \hline 8.3 & 29.2 \\ 29.2 \\ \hline 8.4 & 29.3 \\ 29.4 & 29.3 \\ 29.4 & 29.5 \\ \hline 8.4 & 29.5 \\ \hline 8.4 & 29.5 \\ \hline 8.2 & 30.9 \\ \hline 31.1 & 30.9 \\ \hline 8.2 & 30.8 \\ \hline 8.1 & 31.1 \\ 30.9 \\ \hline 8.2 & 30.7 \\ \hline 30.8 \\ \hline 8.1 & 31.1 \\ \hline 30.9 \\ \hline 8.2 & 31.4 \\ \hline 31.7 \\ \hline 8.2 & 31.8 \\ \hline 8.1 & 31.8 \\ \hline 31.8 \\ \hline 8.1 & 32.0 \\ \hline 33.8 \\ \hline 8.0 & 33.0 \\ \hline 33.0 \\ \hline 31.7 \\ \hline \end{array}$	31.9 32.6 29.2 29.4 29.5 31.0 30.9 31.0 30.8 31.6 32.9	86.8 86.3 85.3 85.8 86.9 120.0 120.1 116.3 115.7 93.8 93.9 93.5 92.4 93.6 92.6 104.3 104.1 104.3 98.1 89.8	85.8 86.4 120.1 116.2 115.8 93.9 93.0 93.1 104.6 104.2 98.2	6.0 6.0 5.8 5.9 6.0 7.8 7.9 7.6 7.6 7.6 7.6 6.4 6.3 6.4 6.3 7.2 7.2 7.2 7.2 6.8 6.8	5.9 6.0 7.9 7.6 7.6 6.4 6.4 6.4 6.4 7.2 7.2	6.4	$\begin{array}{c} 3.0 \\ \hline 3.0 \\ \hline 4.4 \\ 4.8 \\ \hline 5.2 \\ 4.8 \\ \hline 4.1 \\ 3.9 \\ \hline 4.3 \\ 4.3 \\ 4.3 \\ \hline 4.3 \\ 4.4 \\ 4.5 \\ \hline 3.1 \\ 3.6 \\ \hline 3.6 \\ 4.1 \\ \hline 5.2 \\ 6.1 \\ \hline 2.2 \\ 2.2 \\ \hline 3.9 \\ 4.7 \\ \hline 7.4 \\ 6.6 \\ \end{array}$	4.6 5.0 4.0 4.3 4.5 3.4 3.9 5.7 2.2 4.3	4.3	4 6 7 7 7 7 7 4 4 4 5 5 5 3 3 3 4 4 4 3 3 3 5 5 5 5	6.5 7.0 7.0 4.0 5.0 3.0 4.0 3.0 3.0 3.0 5.0	5.3
$\begin{array}{c cccc} 7.3 & 32.8 \\ \hline 7.5 & 33.2 \\ 31.9 \\ \hline 8.3 & 29.2 \\ 29.2 \\ 29.2 \\ \hline 8.4 & 29.3 \\ 29.4 \\ 29.5 \\ \hline 8.4 & 29.5 \\ 30.9 \\ 31.1 \\ \hline 8.2 & 30.9 \\ 31.1 \\ \hline 8.2 & 30.8 \\ \hline 8.1 & 31.1 \\ 30.9 \\ \hline 8.2 & 30.7 \\ 30.9 \\ \hline 8.2 & 30.7 \\ 30.9 \\ \hline 8.2 & 31.4 \\ 31.7 \\ \hline 8.2 & 31.8 \\ \hline 8.1 & 31.8 \\ \hline 8.1 & 31.8 \\ \hline 8.1 & 32.0 \\ \hline 3.8 \\ \hline 8.0 & 33.0 \\ \hline 3.0 \\ \hline 10 \\ \hline 1$	32.6 29.2 29.4 29.5 31.0 30.9 31.0 30.8 31.6 31.8 32.9	85.3 85.8 86.9 120.0 120.1 116.3 115.7 93.8 93.9 93.5 92.4 93.6 92.6 104.8 104.3 98.1 89.8	86.4 120.1 116.2 115.8 93.9 93.0 93.1 104.6 104.2 98.2	5.8 5.9 6.0 7.8 7.6 7.6 7.6 7.6 6.4 6.4 6.4 6.3 6.4 6.3 6.4 6.3 7.2 7.2 7.2 7.2 7.2 6.8 6.8 6.8	6.0 7.9 7.6 7.6 6.4 6.4 6.4 7.2 7.2	6.4	$\begin{array}{c} 4.8\\ 5.2\\ 4.8\\ 5.2\\ 4.8\\ 4.1\\ 3.9\\ 4.3\\ 4.3\\ 4.3\\ 4.4\\ 4.5\\ 3.1\\ 3.6\\ 3.6\\ 4.1\\ 5.2\\ 6.1\\ 2.2\\ 2.2\\ 3.9\\ 4.7\\ 7.4\\ 6.6\end{array}$	5.0 4.0 4.3 4.5 3.4 3.9 5.7 2.2 4.3	4.3	7 7 7 4 4 5 5 3 3 3 4 4 4 3 3 3 3 5 5 5 5	7.0 7.0 4.0 5.0 3.0 4.0 3.0 3.0 5.0	5.3
$\begin{array}{c cccc} 7.5 & 31.9 \\ \hline & 31.9 \\ \hline & 29.2 \\ 29.2 \\ \hline & 29.2 \\ 29.2 \\ \hline & 29.4 \\ 29.5 \\ 29.5 \\ 29.5 \\ 29.5 \\ \hline & 29.5 \\ $	29.2 29.4 29.5 31.0 30.9 31.0 30.8 31.6 31.8 32.9	86.9 120.0 120.1 116.3 115.9 115.7 93.8 93.9 93.5 92.4 93.6 92.6 104.3 104.1 104.3 98.2 98.1 89.8	120.1 116.2 115.8 93.9 93.0 93.1 104.6 104.2 98.2	6.0 7.8 7.9 7.6 7.6 7.6 7.6 6.4 6.3 6.4 6.3 7.2 7.2 7.2 7.2 6.8 6.8	7.9 7.6 7.6 6.4 6.4 6.4 7.2 7.2	6.4	4.8 4.1 3.9 4.3 4.4 4.5 3.1 3.6 4.1 5.2 6.1 2.2 3.9 4.7 7.4 6.6	4.0 4.3 4.5 3.4 3.9 5.7 2.2 4.3	4.3	7 7 4 5 5 5 3 3 4 4 3 3 3 3 5 5 5 5	7.0 4.0 5.0 3.0 4.0 3.0 3.0 3.0 5.0	3.3
$\begin{array}{c ccccc} 8.3 & 29.2 \\ \hline & & 29.3 \\ 29.4 & 29.5 \\ \hline & & 29.5 \\ \hline & & 29.5 \\ \hline & & & 30.9 \\ \hline & & & 31.1 \\ \hline & & & 31.0 \\ \hline & & & 31.0 \\ \hline & & & & & 31.1 \\ \hline & & & & & 31.0 \\ \hline & & & & & 31.0 \\ \hline & & & & & 31.0 \\ \hline & & & & & & 31.1 \\ \hline & & & & & & 31.1 \\ \hline & & & & & & & 30.9 \\ \hline & & & & & & & & 30.7 \\ \hline & & & & & & & & 31.1 \\ \hline & & & & & & & & & & \\ \hline & & & & & &$	29.4 29.5 31.0 30.9 31.0 30.8 31.6 31.8 32.9	120.1 116.3 116.0 115.9 115.7 93.8 93.9 93.5 92.4 93.6 92.6 104.8 104.3 104.1 104.3 104.1 104.3 98.2 98.1 89.8	116.2 115.8 93.9 93.0 93.1 104.6 104.2 98.2	7.9 7.6 7.6 7.6 6.4 6.4 6.4 6.3 6.4 6.3 6.4 6.3 7.2 7.2 7.2 7.2 7.2 6.8 6.8 6.8	7.6 7.6 6.4 6.4 6.4 7.2 7.2	6.4	3.9 4.3 4.4 4.5 3.1 3.6 3.6 4.1 5.2 6.1 2.2 2.2 3.9 4.7 7.4 6.6	4.3 4.5 3.4 3.9 5.7 2.2 4.3	4.3	7 4 5 3 3 4 4 4 3 3 3 3 5 5 5 5	4.0 5.0 3.0 4.0 3.0 3.0 5.0	3.3
$\begin{array}{c ccccc} 8.4 & 29.3 \\ 29.4 \\ 29.5 \\ 29.5 \\ 30.9 \\ 31.1 \\ 8.2 \\ 30.8 \\ 8.1 \\ 31.1 \\ 30.9 \\ 8.2 \\ 31.1 \\ 30.9 \\ 8.2 \\ 31.1 \\ 30.9 \\ 8.2 \\ 31.1 \\ 30.9 \\ 8.2 \\ 31.1 \\ 30.9 \\ 8.2 \\ 31.4 \\ 31.7 \\ 8.2 \\ 31.8 \\ 31.8 \\ 31.8 \\ 8.1 \\ 32.0 \\ 33.8 \\ 8.0 \\ 33.0 \\ 31.7 \\ \end{array}$	29.5 31.0 30.9 31.0 30.8 31.6 31.8 32.9	116.3 116.0 115.9 115.7 93.8 93.9 93.5 92.4 93.6 92.6 104.8 104.3 104.1 104.3 104.1 104.3 98.2 98.1 89.8	115.8 93.9 93.0 93.1 104.6 104.2 98.2	7.6 7.6 7.6 6.4 6.4 6.4 6.3 6.4 6.3 6.4 6.3 7.2 7.2 7.2 7.2 6.8 6.8 6.8	7.6 6.4 6.4 6.4 7.2 7.2	6.4	4.3 4.4 4.5 3.1 3.6 3.6 4.1 5.2 6.1 2.2 2.2 3.9 4.7 7.4 6.6	4.5 3.4 3.9 5.7 2.2 4.3	4.3	4 4 5 5 3 3 4 4 4 3 3 3 5 5 5 5 5	5.0 3.0 4.0 3.0 3.0 5.0	3.3
$\begin{array}{c ccccc} 8.4 & 29.5 \\ 29.5 \\ 29.5 \\ 30.9 \\ 31.1 \\ 8.2 \\ 31.0 \\ 30.8 \\ 8.1 \\ 31.1 \\ 30.9 \\ 8.2 \\ 30.7 \\ 30.9 \\ 8.2 \\ 31.4 \\ 31.7 \\ 8.2 \\ 31.8 \\ 8.1 \\ 31.8 \\ 8.1 \\ 33.8 \\ 8.1 \\ 33.0 \\ 33.0 \\ 33.0 \\ 31.7 \\ \end{array}$	31.0 30.9 31.0 30.8 31.6 31.8 32.9	115.9 115.7 93.8 93.9 93.5 92.4 93.6 92.6 104.8 104.3 104.1 104.3 104.1 104.3 98.2 98.1 89.8	93.9 93.0 93.1 104.6 104.2 98.2	7.6 7.6 6.4 6.4 6.3 6.4 6.3 7.2 7.2 7.2 7.2 7.2 6.8 6.8	6.4 6.4 6.4 7.2 7.2		4.4 4.5 3.1 3.6 4.1 5.2 6.1 2.2 2.2 3.9 4.7 7.4 6.6	3.4 3.9 5.7 2.2 4.3		5 5 3 4 4 3 3 3 3 5 5 5 5	3.0 4.0 3.0 3.0 5.0	
$\begin{array}{c ccccc} & 30.9 \\ & 31.1 \\ \hline & 31.0 \\ & 30.8 \\ \hline & 31.1 \\ \hline & 30.9 \\ \hline & 31.1 \\ \hline & 30.9 \\ \hline & 31.1 \\ \hline & 30.9 \\ \hline & 30.7 \\ \hline & 30.9 \\ \hline & 31.4 \\ \hline & 31.7 \\ \hline & 8.2 \\ \hline & 31.8 \\ \hline & 31.7 \\ \hline & 33.8 \\ \hline & 33.0 \\ \hline & 33.0 \\ \hline & 31.7 \\ \hline \end{array}$	30.9 31.0 30.8 31.6 31.8 32.9	93.8 93.9 93.5 92.4 93.6 92.6 104.8 104.3 104.1 104.3 98.2 98.1 89.8	93.0 93.1 104.6 104.2 98.2	6.4 6.4 6.3 6.4 6.3 7.2 7.2 7.2 7.2 7.2 6.8 6.8	6.4 6.4 7.2 7.2		3.1 3.6 3.6 4.1 5.2 6.1 2.2 2.2 3.9 4.7 7.4 6.6	3.9 5.7 2.2 4.3		3 3 4 4 3 3 3 5 5 5 5 5	4.0 3.0 3.0 5.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30.9 31.0 30.8 31.6 31.8 32.9	93.5 92.4 93.6 92.6 104.8 104.3 104.1 104.3 98.2 98.1 89.8	93.1 104.6 104.2 98.2	6.4 6.3 6.4 6.3 7.2 7.2 7.2 7.2 7.2 6.8 6.8	6.4 6.4 7.2 7.2		3.6 4.1 5.2 6.1 2.2 2.2 3.9 4.7 7.4 6.6	5.7 2.2 4.3		4 4 3 3 3 3 5 5 5 5 5	4.0 3.0 3.0 5.0	
30.8 31.1 30.9 8.2 30.7 30.9 8.2 31.4 31.7 31.8 8.2 31.8 31.8 31.8 31.8 31.8 8.1 32.0 33.8 33.0 8.0 33.0 31.7 31.7	31.0 30.8 31.6 31.8 32.9	93.6 92.6 104.8 104.3 104.1 104.3 98.2 98.1 89.8	93.1 104.6 104.2 98.2	6.4 6.3 7.2 7.2 7.2 7.2 6.8 6.8	6.4 7.2 7.2		5.2 6.1 2.2 2.2 3.9 4.7 7.4 6.6	5.7 2.2 4.3		3 3 3 5 5 5 5	3.0 3.0 5.0	
30.9 8.2 30.7 30.9 31.4 31.7 31.7 8.2 31.8 31.8 31.8 31.8 31.8 8.1 32.0 33.8 33.8 8.0 33.0 31.7 31.7	30.8 31.6 31.8 32.9	104.8 104.3 104.1 104.3 98.2 98.1 89.8	104.6 104.2 98.2	7.2 7.2 7.2 7.2 6.8 6.8	7.2 7.2	7.1	2.2 2.2 3.9 4.7 7.4 6.6	2.2 4.3	4.5	3 3 5 5 5 5	3.0 5.0	4.5
30.9 31.4 31.7 31.8 8.2 31.8 31.8 31.8 8.1 32.0 33.8 33.8 8.0 33.0 31.7 31.7	31.6 31.8 32.9	104.1 104.3 98.2 98.1 89.8	104.2 98.2	7.2 7.2 6.8 6.8	7.2	7.1	3.9 4.7 7.4 6.6	4.3	4.5	5 5 5	5.0	4.5
8.2 31.7 8.2 31.8 31.8 31.8 8.1 32.0 33.8 33.0 8.0 31.7	31.8	104.3 98.2 98.1 89.8	98.2	7.2 6.8 6.8		7.1	4.7 7.4 6.6		4.5	5 5		4.5
8.2 31.8 8.1 32.0 33.8 33.0 8.0 31.7	32.9	98.1 89.8		6.8	6.8		6.6	7.0			5.5	
8.1 33.8 8.0 31.7			86 7		1	1	3.7	1		<2.5		
8.0 31.7	32 /	87.9	00.7	5.5 5.9	5.8		3.5 3.7	3.6		<2.5 <2.5 4	<2.5	
	J2.4	88.4	88.2	5.9	5.9	5.9	3.8	3.8	3.7	4	4.0	3.0
8.2 32.1	32.9	89.3 91.8	90.6	6.0 6.2	6.1		3.8 3.8	3.8		<2.5 <2.5	<2.5	
29.2	29.3	97.1 96.9	97.0	6.5 6.5	6.5		4.6 4.6	4.6		3 3	3.0	
8.0 29.3 29.4	29.4	94.9 94.4	94.7	6.4 6.4	6.4	6.1	3.2 3.0	3.1	3.8	4 5	4.5	4.2
8.0 32.8 32.8	32.8	82.5 82.1	82.3	5.5 5.5	5.5		3.9 3.6	3.8		5 5	5.0	
7.9 30.1 30.1	30.1	92.4 92.3	92.4	6.2 6.2	6.2		2.7 2.7	2.7		5 5	5.0	
8.1 30.2 30.2	30.2	88.9 88.7	88.8	6.0 6.0	6.0	6.1	2.9 2.9	2.9	2.9	5 5	5.0	4.8
8.1 30.3 30.3	30.3	90.4 90.7	90.6	6.1 6.1	6.1		2.9 3.0	3.0		4	4.5	
8.0 28.3	28.3	94.8	94.9	6.2	6.2		2.0	2.1		<2.5	<2.5	
20.6				6.0	6.0	6.0	4.5	4.5	3.9	3	3.5	3.0
	29.7		90.2	50	0.0			4.5			1 1	
	8.0 32.8 7.9 30.1 8.1 30.2 8.1 30.3 30.3 30.3	8.0 32.8 32.8 32.8 32.8 7.9 30.1 30.1 30.1 30.2 8.1 30.2 30.3 30.3 8.1 30.3 30.3 30.3 8.0 28.3 28.3 28.3	8.0 32.8 32.8 32.8 32.8 32.8 82.1 7.9 30.1 30.1 30.1 92.3 92.4 92.3 8.1 30.2 30.2 30.2 88.7 88.9 88.7 8.1 30.3 30.3 30.3 90.7 90.4 94.8 8.0 28.3 28.3 28.3 94.9 94.8 94.9	8.0 32.8 32.8 32.8 32.8 32.8 82.1 82.5 82.1 82.3 7.9 30.1 30.1 30.1 92.3 92.4 92.3 92.4 92.4 8.1 30.2 30.2 30.2 30.3 30.4 90.4 90.4 90.6 8.1 30.3 30.3 30.3 90.7 90.4 94.9 94.9 94.9 8.0 28.3 28.6 28.3 94.9 94.9 94.9 94.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0 32.8 32.7 22.7 22.7 22.7 22.7 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 30.0 8.0 28.3 28.3 94.8 94.9 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0 32.8 55 5.0 55 5.0 55 50.0 22.9 2.9 2.9 55 5.0 50.0 55 50.0 55 50.0 55 50.0 55 50.0 55 50.0 55 50.0 55 50.0 55 50.0 55 50.0 55 50.0 5

Water Quality Monitoring Results at A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dop	th (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids ((mg/L)
Dale	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.0 24.0	24.0	8.1 8.1	8.1	32.3 32.3	32.3	91.8 92.0	91.9	6.4 6.4	6.4		3.3 3.5	3.4		4 3	3.5	
20-Jun-16	Sunny	Rough	11:42	Middle	3	23.9 23.9	23.9	8.0 8.0	8.0	32.9 32.9	32.9	90.5 90.3	90.4	6.3 6.3	6.3	6.3	4.8 4.8	4.8	4.5	5 6	5.5	5.0
				Bottom	5	23.9 23.9	23.9	8.0 8.0	8.0	33.0 33.0	33.0	90.4 90.2	90.3	6.3 6.3	6.3		5.3 5.2	5.3		6 6	6.0	
				Surface	1	26.6 26.5	26.6	8.2 8.2	8.2	26.4 26.4	26.4	92.4 92.5	92.5	6.3 6.3	6.3		2.8 3.2	3.0		6 6	6.0	
23-Jun-16	Sunny	Moderate	14:10	Middle	3	25.7 25.6	25.7	8.3 8.3	8.3	29.7 30.1	29.9	91.5 91.6	91.6	6.2 6.2	6.2	6.2	3.2 2.8	3.0	3.1	6 6	6.0	5.7
				Bottom	5	25.1 25.1	25.1	8.3 8.3	8.3	30.7 30.6	30.7	90.0 89.9	90.0	6.1 6.1	6.1		3.3 3.3	3.3		5 5	5.0	
				Surface	1	29.1 28.9	29.0	8.2 8.2	8.2	31.2 31.2	31.2	111.4 110.4	110.9	7.2 7.2	7.2		2.1 2.3	2.2		4	4.0	
25-Jun-16	Sunny	Rough	15:17	Middle	3.5	28.4 28.6	28.5	8.2 8.2	8.2	31.7 31.9	31.8	110.9 111.2	111.1	7.2 7.2	7.2	7.1	4.3 4.2	4.3	4.3	4 4	4.0	3.7
				Bottom	6	28.2 28.4	28.3	8.2 8.2	8.2	32.1 31.9	32.0	104.2 104.7	104.5	6.8 6.8	6.8		6.4 6.3	6.4		3 3	3.0	
				Surface	1	29.1 28.9	29.0	8.2 8.2	8.2	30.9 30.9	30.9	111.4 110.3	110.9	7.2 7.2	7.2		2.5 2.5	2.5		6 7	6.5	
27-Jun-16	Sunny	Moderate	16:58	Middle	3	28.6 28.8	28.7	8.2 8.2	8.2	31.5 31.6	31.6	110.8 111.1	111.0	7.2 7.2	7.2	7.1	3.3 3.5	3.4	4.1	3 3	3.0	5.2
				Bottom	5	28.3 28.5	28.4	8.2 8.2	8.2	31.7 31.6	31.7	104.0 104.1	104.1	6.8 6.8	6.8		6.2 6.4	6.3		6 6	6.0	
				Surface	1	28.9 28.9	28.9	7.8 7.8	7.8	29.0 29.0	29.0	90.2 91.3	90.8	5.9 6.0	6.0		2.6 2.4	2.5		4	4.0	
30-Jun-16	Cloudy	Moderate	08:53	Middle	3	28.6 28.6	28.6	7.8 7.9	7.9	29.8 29.4	29.6	85.9 86.2	86.1	5.6 5.7	5.7	5.8	3.6 3.9	3.8	3.4	6 7	6.5	5.5
				Bottom	5	28.5 28.5	28.5	8.0 8.0	8.0	31.7 31.7	31.7	86.5 86.1	86.3	5.6 5.6	5.6		3.8 4.1	4.0		6 6	6.0	

Water Quality Monitoring Results at A - Mid-Flood Tide

Data	Weather	Sea	Sampling	Deat	h (m)	Tempera	ature (°C)	p	ЪН	Salin	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 25.6	25.2	7.4 7.5	7.5	32.8 32.0	32.4	86.5 86.5	86.5	6.0 5.9	6.0		3.5 3.3	3.4		6 7	6.5	
1-Jun-16	Sunny	Calm	15:30	Middle	3.5	25.2 25.0	25.1	7.4 7.5	7.5	31.1 30.8	31.0	84.0 85.9	85.0	5.8 6.0	5.9	5.9	3.5 3.6	3.6	3.5	3 4	3.5	5.0
				Bottom	6	25.3 25.2	25.3	7.4 7.5	7.5	33.0 32.5	32.8	87.9 85.2	86.6	6.0 5.8	5.9		3.3 3.4	3.4		5 5	5.0	
				Surface	1	29.0 29.1	29.1	8.3 8.3	8.3	28.1 29.4	28.8	118.3 119.5	118.9	7.8 7.8	7.8		4.0 3.8	3.9		5	5.0	
3-Jun-16	Cloudy	Moderate	16:39	Middle	3.5	28.7 28.7	28.7	8.3 8.3	8.3	29.4 29.5	29.5	116.0 116.6	116.3	7.6	7.7	7.7	3.5 3.7	3.6	3.5	5	5.5	5.5
				Bottom	6	28.7 28.7 28.7	28.7	8.2	8.3	29.5 29.5 29.5	29.5	115.3 115.7	115.5	7.6 7.6 7.6	7.6		2.8 2.9	2.9		6	6.0	
				Surface	1	23.9	24.1	8.3 8.2	8.2	30.7	30.6	95.0	95.0	6.7	6.7		3.2	3.3		5	5.0	<u> </u>
6-Jun-16	Cloudy	Moderate	19:54	Middle	3.5	24.3 23.9	24.5	8.2 8.2	8.2	30.4 30.5	30.2	94.9 91.9	92.7	6.7 6.5	6.5	6.6	3.3 4.2	4.2	3.8	5	3.0	4.0
	,			Bottom	6	25.0 24.6	25.2	8.2 8.2	8.2	29.9 33.2	30.9	93.5 94.7	94.1	6.5 6.5	6.5		4.1 3.7	3.8		3 4	4.0	
				Surface	1	25.8 25.6	25.5	8.1 8.2	8.3	28.5 31.1	31.1	93.5 110.0	110.0	6.5 7.5	7.6		3.8 2.6	2.7		4	4.0	<u> </u>
8-Jun-16	Cloudy	Moderate	07:41	Middle	3	25.4 24.8	24.8	8.3 8.2	8.2	31.0 30.8	30.8	109.9 108.8	108.6	7.6 7.6	7.6	7.5	2.8 3.9	4.4	4.3	4 5	5.0	5.2
0-5011-10	Cioudy	Woderale	07.41	Bottom	5	24.7 24.7	24.0	8.2 8.1	8.1	30.8 31.8	31.7	108.4 103.1	103.4	7.6 7.2	7.2	7.5	4.8 6.3	5.9	4.0	5 6	6.5	
						24.8 27.2	24.0	8.1 8.0		31.5 33.8		103.6 87.5	87.4	7.2 5.8			5.5 2.4			7		<u> </u>
10 km 10	Circ -	Option	00.50	Surface	1	27.1 26.4		8.2 8.1	8.1	33.4 31.7	33.6	87.3 83.8	-	5.8 5.7	5.8	5.0	2.4 3.9	2.4	0.0	5 <2.5	5.0	0.7
10-Jun-16	Fine	Calm	08:53	Middle	3.5	27.2 26.8	26.8	8.0 8.0	8.1	32.9 33.9	32.3	88.6 91.8	86.2	5.9 6.1	5.8	5.8	4.3 4.6	4.1	3.6	<2.5 3	<2.5	3.7
				Bottom	6	26.6 27.6	26.7	8.1 8.1	8.1	32.8 29.1	33.4	83.7 92.8	87.8	5.6 6.2	5.9		4.2	4.4		4	3.5	<u> </u>
				Surface	1	27.6	27.6	8.1 8.1	8.1	29.0	29.1	93.2 89.1	93.0	6.3 6.0	6.3		3.5 3.8	3.4		3	3.0	-
13-Jun-16	Cloudy	Moderate	18:52	Middle	3.5	27.1 27.1 26.6	27.1	8.1 8.1	8.1	<u>30.1</u> 32.9	30.1	88.4 80.6	88.8	5.9 5.4	6.0	5.9	3.7 4.8	3.8	4.0	4 6	4.0	4.3
				Bottom	6	26.6	26.6	8.1	8.1	32.9	32.9	79.9	80.3	5.3	5.4		4.9	4.9		6	6.0	<u> </u>
				Surface	1	26.8 26.8	26.8	8.1 8.1	8.1	30.3 30.3	30.3	88.9 88.8	88.9	6.0 6.0	6.0		2.8 2.8	2.8		5	5.5	-
15-Jun-16	Cloudy	Moderate	15:22	Middle	3	26.7 26.7	26.7	8.2 8.2	8.2	30.3 30.3	30.3	90.5 90.8	90.7	6.1 6.1	6.1	6.1	2.9 2.8	2.9	2.9	5 4	4.5	5.0
				Bottom	5	26.6 26.6	26.6	8.2 8.2	8.2	30.4 30.5	30.5	91.0 90.6	90.8	6.2 6.1	6.2		2.9 3.0	3.0		5 5	5.0	
				Surface	1	29.0 28.9	29.0	8.1 8.1	8.1	28.4 28.5	28.5	96.0 96.2	96.1	6.3 6.3	6.3		3.1 3.0	3.1		4 4	4.0	
17-Jun-16	Cloudy	Moderate	17:13	Middle	3.5	28.2 28.2	28.2	8.1 8.1	8.1	29.9 30.0	30.0	91.6 91.2	91.4	6.1 6.0	6.1	6.0	4.7 4.9	4.8	4.4	3 3	3.0	3.5
				Bottom	6	27.9 27.9	27.9	8.3 8.3	8.3	31.4 31.6	31.5	84.2 83.0	83.6	5.5 5.5	5.5		5.3 5.5	5.4		4 3	3.5	

Water Quality Monitoring Results at A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	þ	Н	Salir	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	٦	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Depi		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	8.0 7.9	8.0	33.1 33.1	33.1	94.5 94.3	94.4	6.6 6.6	6.6		2.8 2.6	2.7		3 3	3.0	
20-Jun-16	Fine	Calm	18:54	Middle	3	23.7 23.7	23.7	8.1 8.1	8.1	33.3 33.3	33.3	93.4 93.2	93.3	6.5 6.5	6.5	6.5	2.1 1.9	2.0	2.7	5 5	5.0	5.5
				Bottom	5	23.6 23.6	23.6	8.1 8.1	8.1	33.4 33.4	33.4	92.9 93.0	93.0	6.5 6.5	6.5		3.5 3.3	3.4		8 9	8.5	
				Surface	1	26.8 26.8	26.8	8.1 8.1	8.1	24.5 24.6	24.6	92.5 92.9	92.7	6.3 6.3	6.3		2.4 2.6	2.5		5 5	5.0	
23-Jun-16	Sunny	Moderate	07:22	Middle	3.5	25.7 25.7	25.7	8.2 8.2	8.2	29.8 29.8	29.8	92.7 92.4	92.6	6.3 6.2	6.3	6.2	2.9 3.1	3.0	3.6	4 5	4.5	4.8
				Bottom	6	25.3 25.1	25.2	8.2 8.2	8.2	30.9 31.1	31.0	90.5 90.3	90.4	6.1 6.1	6.1		5.1 5.2	5.2		5 5	5.0	
				Surface	1	29.4 29.3	29.4	8.2 8.2	8.2	31.2 31.4	31.3	117.7 117.5	117.6	7.6 7.6	7.6		2.8 2.7	2.8		3 3	3.0	
25-Jun-16	Sunny	Rough	08:31	Middle	3.5	28.7 28.7	28.7	8.2 8.2	8.2	31.3 31.1	31.2	116.6 115.7	116.2	7.6 7.5	7.6	7.5	3.7 3.8	3.8	4.4	3 3	3.0	3.0
				Bottom	6	28.4 28.6	28.5	8.1 8.1	8.1	32.1 31.9	32.0	110.1 110.8	110.5	7.2 7.2	7.2		6.3 6.9	6.6		3 3	3.0	
				Surface	1	29.4 29.1	29.3	8.3 8.2	8.3	30.9 31.0	31.0	117.3 116.7	117.0	7.6 7.6	7.6		3.2 3.2	3.2		4 4	4.0	
27-Jun-16	Sunny	Moderate	10:19	Middle	3	28.5 28.6	28.6	8.2 8.2	8.2	30.9 30.8	30.9	115.8 115.8	115.8	7.6 7.6	7.6	7.5	3.7 4.3	4.0	4.5	5 6	5.5	5.5
				Bottom	5	28.4 28.4	28.4	8.1 8.1	8.1	31.6 31.6	31.6	109.5 110.4	110.0	7.1 7.2	7.2		6.1 6.4	6.3		7 7	7.0	
				Surface	1	29.0 28.9	29.0	7.9 7.9	7.9	29.5 29.5	29.5	89.5 89.4	89.5	5.9 5.9	5.9		2.6 2.5	2.6		6 6	6.0	
30-Jun-16	Cloudy	Moderate	15:03	Middle	3.5	28.6 28.6	28.6	8.0 8.0	8.0	29.7 29.8	29.8	87.2 87.9	87.6	5.7 5.8	5.8	5.8	3.4 3.5	3.5	3.9	4	4.0	5.2
				Bottom	6	28.4 28.4	28.4	8.0 8.0	8.0	31.4 31.6	31.5	87.5 86.9	87.2	5.7 5.7	5.7		5.4 5.5	5.5		6 5	5.5	

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Data	Weather	Sea	Sampling	Deat	h. (Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 24.9	25.2	7.5 7.5	7.5	32.5 33.6	33.1	85.2 86.0	85.6	5.8 5.9	5.9		2.9 3.5	3.2		3 4	3.5	
1-Jun-16	Sunny	Calm	09:31	Middle	7.5	25.2 25.1	25.2	7.4 7.5	7.5	32.9 31.7	32.3	86.4 83.9	85.2	5.9 5.8	5.9	5.9	4.5 4.5	4.5	4.4	4 5	4.5	5.8
				Bottom	14	25.3 25.5	25.4	7.5	7.5	33.3 33.0	33.2	86.0 85.2	85.6	5.9 5.8	5.9		5.9 5.1	5.5		10	9.5	
				Surface	1	28.9	28.9	8.3	8.3	28.1	28.1	119.6	119.6	7.9	7.9		1.9	1.9		5	5.0	
3-Jun-16	Fine	Moderate	11:02	Middle	7	28.9 28.4	28.4	8.3 8.3	8.3	28.1 29.8	29.9	119.6 108.7	108.4	7.9 7.2	7.2	7.2	1.9 1.4	1.5	2.0	5 6	5.5	5.7
				Bottom	13	28.4 28.1	28.1	8.3 8.3	8.3	29.9 31.4	31.6	108.1 100.0	99.3	7.1 6.6	6.6		1.5 2.7	2.6		5 6	6.5	
				Surface	10	28.0 25.7	25.7	8.3 8.1	8.1	31.8 31.0	31.1	98.6 95.1	95.2	6.5 6.5	6.5		2.4 4.0	4.2		7	3.0	<u> </u>
0 1 10	0		10.04			25.6 25.6	-	8.1 8.1	-	31.2 31.2	-	95.3 94.6		6.5 6.5			4.3 3.6			3 5		
6-Jun-16	Cloudy	Moderate	13:34	Middle	7	25.6 25.6	25.6	8.1 8.2	8.1	31.1 31.2	31.2	94.1 93.0	94.4	6.5 6.4	6.5	6.5	3.6 4.4	3.6	4.1	5 4	5.0	4.2
				Bottom	13	25.6 25.1	25.6	8.2	8.2	<u>31.1</u> 31.8	31.2	93.1 112.4	93.1	6.4 7.7	6.4		4.6	4.5		5	4.5	<u> </u>
				Surface	1	25.4	25.3	8.2	8.2	31.9	31.9	112.2	112.3	7.7	7.7		3.6	3.7		3	3.0	-
8-Jun-16	Cloudy	Moderate	14:42	Middle	7	25.0 24.7	24.9	8.3 8.2	8.3	32.5 32.5	32.5	107.7 107.2	107.5	7.4 7.4	7.4	7.5	5.3 5.1	5.2	4.5	3	3.0	4.0
				Bottom	13	24.7 24.8	24.8	8.3 8.3	8.3	32.6 32.3	32.5	106.1 107.1	106.6	7.3 7.4	7.4		4.6 4.6	4.6		6 6	6.0	
				Surface	1	26.8 26.7	26.8	8.0 7.9	8.0	33.4 32.7	33.1	87.6 86.2	86.9	5.8 5.8	5.8		4.0 4.2	4.1		<2.5 <2.5	<2.5	
10-Jun-16	Fine	Calm	16:04	Middle	7	27.0 26.3	26.7	7.9 8.1	8.0	31.7 32.7	32.2	85.0 92.7	88.9	5.7 6.2	6.0	5.9	4.7 4.6	4.7	4.5	<2.5 <2.5	<2.5	<2.5
				Bottom	13	26.5 26.7	26.6	8.0 8.0	8.0	32.2 32.5	32.4	91.1 87.2	89.2	6.1 5.8	6.0		4.7 4.9	4.8		<2.5 <2.5	<2.5	
				Surface	1	27.5 27.4	27.5	8.0 8.0	8.0	29.4 29.5	29.5	98.5 98.2	98.4	6.6 6.6	6.6		3.2 3.3	3.3		4 3	3.5	
13-Jun-16	Cloudy	Moderate	12:53	Middle	7	27.0 27.0	27.0	8.1 8.1	8.1	30.7 30.7	30.7	90.2 90.0	90.1	6.1 6.0	6.1	5.9	4.8 4.8	4.8	4.5	3 3	3.0	3.3
				Bottom	13	26.6 26.5	26.6	8.1 8.1	8.1	33.9 34.4	34.2	76.9 75.4	76.2	5.1 5.0	5.1		5.2 5.3	5.3		4 3	3.5	
				Surface	1	27.1 27.0	27.1	8.2 8.2	8.2	29.8 29.5	29.7	99.4 99.5	99.5	6.7 6.7	6.7		3.3 3.3	3.3		4	4.0	
15-Jun-16	Cloudy	Moderate	09:45	Middle	7	26.2 26.2	26.2	8.2 8.2	8.2	32.4 32.4	32.4	82.9 82.1	82.5	5.6 5.5	5.6	5.6	3.0 3.1	3.1	3.6	5	5.0	4.7
				Bottom	13	24.9	24.9	8.2 8.2 8.2	8.2	33.3	33.4	67.4	67.1	4.6 4.6	4.6		4.3	4.4		5	5.0	
				Surface	1	24.8 28.7	28.7	7.9	7.9	<u>33.5</u> 29.3	29.3	<u>66.8</u> 96.4	96.5	6.3	6.4		2.9	3.0		3	3.0	
17-Jun-16	Sunny	Moderate	11:10	Middle	7.5	28.6 27.2	27.2	7.9	8.0	29.3 31.3	31.4	96.5 87.7	87.5	6.4 5.8	5.8	5.6	3.1 4.0	4.0	4.3	3	3.0	3.0
	carry	lineastato		Bottom	14	27.2 25.0	25.0	8.0 8.0	8.0	31.4 33.9	33.9	87.2 65.7	65.6	5.8 4.5	4.5	0.0	3.9 5.9	6.0		3	3.0	
				Dottom	14	25.0	20.0	8.0	0.0	33.9	00.9	65.5	00.0	4.5	т.Ј		6.0	0.0		3	0.0	

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Don	th (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	8.4 8.4	8.4	32.0 32.0	32.0	94.3 93.7	94.0	6.6 6.6	6.6		4.0 3.7	3.9		6 6	6.0	
20-Jun-16	Sunny	Rough	12:08	Middle	7	23.9 23.8	23.9	8.2 8.2	8.2	32.6 32.7	32.7	93.6 93.2	93.4	6.6 6.5	6.6	6.5	4.6 4.5	4.6	4.6	4	4.0	5.3
				Bottom	13	23.6 23.6	23.6	8.2 8.2	8.2	33.1 33.2	33.2	91.0 90.6	90.8	6.4 6.4	6.4		5.1 5.2	5.2		6 6	6.0	
				Surface	1	26.2 26.2	26.2	8.3 8.3	8.3	29.7 29.7	29.7	96.0 96.3	96.2	6.4 6.4	6.4		1.7 1.9	1.8		3 3	3.0	
23-Jun-16	Sunny	Moderate	13:47	Middle	7	25.4 25.4	25.4	8.3 8.3	8.3	31.1 31.1	31.1	89.5 89.5	89.5	6.0 6.0	6.0	5.9	3.5 3.7	3.6	3.9	4 4	4.0	3.7
				Bottom	13	24.0 24.0	24.0	8.4 8.4	8.4	33.8 33.8	33.8	76.4 74.6	75.5	5.2 5.1	5.2		6.0 6.4	6.2		4 4	4.0	
				Surface	1	28.6 28.6	28.6	8.1 8.2	8.2	32.0 32.0	32.0	119.5 118.1	118.8	7.8 7.7	7.8		3.2 3.1	3.2		5 5	5.0	
25-Jun-16	Sunny	Rough	15:40	Middle	7	28.4 28.1	28.3	8.3 8.3	8.3	32.6 32.9	32.8	114.1 114.0	114.1	7.4 7.4	7.4	7.5	3.8 4.1	4.0	4.1	4 4	4.0	4.7
				Bottom	13	28.2 28.1	28.2	8.3 8.3	8.3	32.8 32.7	32.8	113.2 113.3	113.3	7.4 7.4	7.4		4.7 5.5	5.1		5 5	5.0	
				Surface	1	28.9 28.8	28.9	8.2 8.2	8.2	31.7 31.9	31.8	119.9 119.0	119.5	7.8 7.7	7.8		3.1 3.3	3.2		4 5	4.5	
27-Jun-16	Sunny	Moderate	17:21	Middle	7	28.5 28.3	28.4	8.3 8.2	8.3	32.6 32.6	32.6	114.1 114.2	114.2	7.4 7.4	7.4	7.5	4.4 4.8	4.6	4.4	4 4	4.0	4.7
				Bottom	13	28.3 28.4	28.4	8.3 8.3	8.3	32.4 32.5	32.5	112.9 113.9	113.4	7.3 7.4	7.4		5.2 5.3	5.3		5 6	5.5	
				Surface	1	28.9 28.8	28.9	7.9 7.9	7.9	29.9 29.9	29.9	95.1 94.2	94.7	6.2 6.2	6.2		2.7 2.9	2.8		5 5	5.0	
30-Jun-16	Cloudy	Moderate	09:20	Middle	7	28.4 28.3	28.4	8.1 8.1	8.1	30.3 30.1	30.2	83.7 83.1	83.4	5.5 5.5	5.5	5.7	3.5 3.7	3.6	4.3	5 6	5.5	5.5
				Bottom	13	28.2 28.2	28.2	8.1 8.0	8.1	31.5 31.2	31.4	82.8 83.4	83.1	5.4 5.5	5.5		6.3 6.5	6.4		6 6	6.0	

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Dete	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.9 25.0	25.0	7.5 7.4	7.5	33.2 32.1	32.7	85.8 86.7	86.3	5.9 6.0	6.0		3.7 3.9	3.8		4 4	4.0	
1-Jun-16	Sunny	Calm	15:05	Middle	7.5	25.6 24.9	25.3	7.5 7.5	7.5	30.9 31.4	31.2	85.6 85.9	85.8	5.9 6.0	6.0	6.0	4.5 4.3	4.4	4.3	5 5	5.0	4.3
				Bottom	14	25.2 25.2	25.2	7.5 7.4	7.5	31.9 31.0	31.5	84.7 86.6	85.7	5.8 6.0	5.9		4.5 4.7	4.6		4 4	4.0	
				Surface	1	28.5 28.5	28.5	8.4 8.4	8.4	27.8 27.8	27.8	113.7 114.0	113.9	7.6 7.6	7.6		3.1 2.9	3.0		7 8	7.5	
3-Jun-16	Cloudy	Moderate	17:02	Middle	7	27.9 28.0	28.0	8.4 8.4	8.4	30.2 29.9	30.1	107.7 108.8	108.3	7.1 7.2	7.2	7.0	2.9 2.6	2.8	2.5	6 6	6.0	5.8
				Bottom	13	27.9 27.9	27.9	8.3 8.3	8.3	32.6 32.7	32.7	96.2 95.9	96.1	6.3 6.3	6.3		1.8 1.8	1.8		4	4.0	
				Surface	1	24.5 24.4	24.5	8.1 8.1	8.1	30.3 31.2	30.8	92.8 93.5	93.2	6.5 6.5	6.5		4.3 4.3	4.3		3	3.0	
6-Jun-16	Cloudy	Moderate	20:10	Middle	7	24.4 24.1	24.3	8.1 8.1	8.1	30.5 30.3	30.4	92.6 92.2	92.4	6.5 6.5	6.5	6.4	3.2 3.7	3.5	3.7	3	3.0	3.3
				Bottom	13	24.4 24.0	24.2	8.2 8.2	8.2	30.5 31.2	30.9	90.0 90.0	90.0	6.3 6.3	6.3		3.5 3.0	3.3		4 4	4.0	
				Surface	1	24.8 24.9	24.9	8.2 8.2	8.2	31.2 31.3	31.3	105.4 105.2	105.3	7.3 7.3	7.3		2.9 3.0	3.0		3	3.0	
8-Jun-16	Cloudy	Moderate	08:05	Middle	7	24.7 24.7	24.7	8.2 8.2	8.2	31.9 31.8	31.9	104.6 105.0	104.8	7.3 7.3	7.3	7.3	3.4 3.4	3.4	3.8	3	3.0	3.3
				Bottom	13	24.6 24.5	24.6	8.3 8.3	8.3	31.8 31.7	31.8	104.1 103.3	103.7	7.2 7.2	7.2		4.9 4.9	4.9		4 4	4.0	
				Surface	1	26.3 26.3	26.3	8.1 8.1	8.1	33.1 33.3	33.2	87.4 91.7	89.6	5.9 6.1	6.0		2.7 2.7	2.7		4	4.0	
10-Jun-16	Fine	Calm	09:21	Middle	7	27.0 26.7	26.9	8.1 8.1	8.1	32.3 33.4	32.9	86.2 92.0	89.1	5.7 6.1	5.9	5.9	3.9 4.0	4.0	3.9	5 5	5.0	4.2
				Bottom	13	27.2 27.3	27.3	8.0 8.0	8.0	32.2 33.2	32.7	90.5 83.6	87.1	6.0 5.5	5.8		5.4 4.6	5.0		3 4	3.5	
				Surface	1	27.0 27.0	27.0	8.1 8.1	8.1	28.8 28.8	28.8	97.6 98.4	98.0	6.6 6.7	6.7		3.8 3.5	3.7		5 4	4.5	
13-Jun-16	Cloudy	Moderate	18:26	Middle	7	26.7 26.6	26.7	8.1 8.1	8.1	30.6 30.6	30.6	86.5 86.3	86.4	5.8 5.8	5.8	5.7	3.7 3.6	3.7	4.1	4 4	4.0	5.3
				Bottom	13	26.2 26.3	26.3	8.1 8.1	8.1	35.2 35.1	35.2	69.1 70.5	69.8	4.6 4.7	4.7		4.8 4.7	4.8		7 8	7.5	
				Surface	1	26.5 26.5	26.5	8.3 8.3	8.3	28.2 28.2	28.2	96.2 97.2	96.7	6.6 6.7	6.7		2.9 2.8	2.9		5 4	4.5	
15-Jun-16	Cloudy	Moderate	15:49	Middle	7	25.8 25.7	25.8	8.3 8.3	8.3	29.4 29.4	29.4	80.7 80.5	80.6	5.6 5.6	5.6	5.6	3.2 3.2	3.2	3.4	4 5	4.5	4.7
				Bottom	13	24.8 24.8	24.8	8.2 8.2	8.2	30.5 30.7	30.6	64.8 65.7	65.3	4.5 4.6	4.6		4.1 3.9	4.0		5 5	5.0	
				Surface	1	28.5 28.5	28.5	7.9 7.9	7.9	29.0 29.1	29.1	97.7 98.1	97.9	6.5 6.5	6.5		2.3 2.8	2.6		4 4	4.0	
17-Jun-16	Cloudy	Moderate	16:48	Middle	7.5	27.4 27.4	27.4	7.9 7.9	7.9	31.4 31.4	31.4	86.5 86.5	86.5	5.7 5.7	5.7	5.6	3.4 3.2	3.3	3.5	3 3	3.0	3.3
				Bottom	14	24.9 24.9	24.9	8.0 8.0	8.0	33.0 33.1	33.1	66.2 64.7	65.5	4.5 4.4	4.5		4.7 4.7	4.7		3 3	3.0	

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dop	th (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids ((mg/L)
Dale	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.6	23.7	8.3 8.3	8.3	32.6 32.6	32.6	95.6 95.4	95.5	6.7 6.7	6.7		4.2 4.1	4.2		6 6	6.0	
20-Jun-16	Fine	Calm	19:19	Middle	7	23.7 23.5	23.6	8.3 8.4	8.4	33.2 33.3	33.3	93.5 93.0	93.3	6.5 6.5	6.5	6.5	2.7 2.5	2.6	3.9	4	4.0	5.0
				Bottom	13	23.5 23.5	23.5	8.3 8.3	8.3	33.6 33.5	33.6	91.9 91.7	91.8	6.4 6.4	6.4		4.9 5.0	5.0		5 5	5.0	
				Surface	1	26.0 26.0	26.0	8.1 8.2	8.2	27.6 28.0	27.8	101.4 101.3	101.4	6.9 6.9	6.9		1.2 1.2	1.2		4 4	4.0	
23-Jun-16	Sunny	Moderate	07:50	Middle	7.5	25.2 25.2	25.2	8.2 8.2	8.2	30.7 30.6	30.7	94.4 94.2	94.3	6.4 6.4	6.4	6.2	2.2 2.3	2.3	3.8	5 5	5.0	4.7
				Bottom	14	24.0 23.9	24.0	8.2 8.2	8.2	32.1 32.2	32.2	78.9 78.6	78.8	5.4 5.4	5.4		7.8 8.0	7.9		5 5	5.0	
				Surface	1	28.8 28.8	28.8	8.2 8.2	8.2	31.5 31.5	31.5	113.1 112.6	112.9	7.3 7.3	7.3		2.4 2.7	2.6		3 3	3.0	
25-Jun-16	Sunny	Rough	08:55	Middle	7	28.7 28.6	28.7	8.2 8.3	8.3	32.1 32.1	32.1	112.3 112.0	112.2	7.3 7.3	7.3	7.3	2.8 2.5	2.7	3.2	6 6	6.0	4.7
				Bottom	13	28.4 28.6	28.5	8.2 8.3	8.3	32.0 32.1	32.1	110.9 111.2	111.1	7.2 7.2	7.2		4.2 4.1	4.2		5 5	5.0	
				Surface	1	28.7 28.7	28.7	8.2 8.2	8.2	31.3 31.3	31.3	112.6 112.1	112.4	7.3 7.3	7.3		2.3 2.0	2.2		4 4	4.0	
27-Jun-16	Sunny	Moderate	10:44	Middle	7	28.6 28.5	28.6	8.2 8.2	8.2	31.9 31.9	31.9	111.9 111.5	111.7	7.3 7.3	7.3	7.3	2.9 2.8	2.9	3.0	3 3	3.0	4.8
				Bottom	13	28.3 28.4	28.4	8.3 8.3	8.3	31.7 31.8	31.8	110.6 110.5	110.6	7.2 7.2	7.2		3.7 4.1	3.9		8 7	7.5	
				Surface	1	28.9 28.9	28.9	7.9 7.9	7.9	29.8 29.9	29.9	93.7 94.8	94.3	6.1 6.2	6.2		3.3 3.3	3.3		3 3	3.0	
30-Jun-16	Cloudy	Moderate	15:30	Middle	7	28.3 28.3	28.3	7.9 7.8	7.9	30.2 30.2	30.2	84.9 84.3	84.6	5.6 5.6	5.6	5.7	4.7 4.8	4.8	4.4	4 5	4.5	5.2
				Bottom	13	28.2 28.2	28.2	7.9 7.9	7.9	31.2 31.1	31.2	82.9 82.9	82.9	5.4 5.4	5.4		5.1 5.1	5.1		8 8	8.0	

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Data	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	ЪН	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.1 25.0	25.1	7.4 7.4	7.4	32.2 32.1	32.2	86.8 85.7	86.3	6.0 5.9	6.0		2.0 1.9	2.0		3 3	3.0	
1-Jun-16	Sunny	Calm	08:16	Middle	9.5	25.0 25.5	25.3	7.5 7.5	7.5	32.6 31.9	32.3	85.6 84.5	85.1	5.9 5.8	5.9	5.9	4.1 3.3	3.7	3.3	4 5	4.5	5.8
				Bottom	18	25.6 25.0	25.3	7.5 7.4	7.5	32.3 31.3	31.8	85.8 84.6	85.2	5.8 5.9	5.9		4.0 4.1	4.1		10 10	10.0	
				Surface	1	28.5 28.5	28.5	8.3	8.3	29.7	29.7	110.0	110.1	7.2	7.3		1.2	1.2		5	5.0	
3-Jun-16	Fine	Moderate	09:40	Middle	9.5	27.6	27.6	8.3 8.3	8.3	29.6 31.4	31.5	<u>110.1</u> 95.1	95.1	6.3	6.3	6.5	1.2 2.5	2.5	2.4	6	6.5	5.7
				Bottom	18	27.6 27.4	27.4	8.3 8.3	8.3	31.5 32.3	32.4	95.1 90.1	90.0	6.3 6.0	6.0		2.5 3.6	3.6		5	5.5	
				Surface	1	27.4 26.1	26.0	8.3 8.1	8.2	32.4 31.6	31.4	89.8 94.9	94.2	5.9 6.4	6.4		3.6 4.1	4.2		6 3	3.0	<u> </u>
6-Jun-16	Cloudy	Moderate	12:04	Middle	10.5	25.8 26.0	25.9	8.2 8.1	8.2	31.1 31.2	31.1	93.5 91.3	91.0	6.4 6.2	6.2	6.3	4.2 4.4	4.1	4.6	3 5	5.0	3.7
0-5011-10	Cioudy	Woderate	12.04			25.7 26.0		8.2 8.2		31.0 31.2		90.7 90.8		6.2 6.2		0.5	3.7 5.5		4.0	<u>5</u> 3		5.7
				Bottom	20	25.7 25.2	25.9	8.1 8.1	8.2	30.9 31.0	31.1	90.7 112.1	90.8	6.2 7.7	6.2		5.4 3.2	5.5		3	3.0	<u> </u>
				Surface	1	25.2 24.8	25.2	8.2	8.2	31.3 31.9	31.2	111.8	112.0	7.7	7.7		3.6 4.2	3.4		5	5.0	
8-Jun-16	Cloudy	Moderate	13:23	Middle	9	24.9	24.9	8.3	8.3	31.7	31.8	107.5	107.2	7.4	7.4	7.5	4.2	4.2	4.3	4	4.5	4.5
				Bottom	17	24.7 24.8	24.8	8.3 <u>8.3</u>	8.3	31.9 <u>32.1</u>	32.0	105.9 107.0	106.5	7.3 7.4	7.4		4.8 5.7	5.3		4	4.0	<u> </u>
				Surface	1	26.3 27.2	26.8	8.0 7.9	8.0	33.3 34.0	33.7	91.9 88.7	90.3	6.2 5.8	6.0		4.9 4.9	4.9		3	3.0	
10-Jun-16	Fine	Calm	17:14	Middle	10	26.2 27.2	26.7	7.9 8.0	8.0	33.9 33.5	33.7	92.6 88.1	90.4	6.2 5.8	6.0	6.0	4.8 4.9	4.9	4.5	3 3	3.0	3.0
				Bottom	19	27.3 26.8	27.1	8.1 8.2	8.2	32.9 31.8	32.4	89.0 90.6	89.8	5.9 6.1	6.0		4.0 3.3	3.7		3 3	3.0	
				Surface	1	27.0 27.0	27.0	8.1 8.1	8.1	31.1 31.1	31.1	96.1 96.1	96.1	6.4 6.4	6.4		3.6 3.5	3.6		4 4	4.0	
13-Jun-16	Cloudy	Moderate	11:08	Middle	11.5	26.6 26.6	26.6	8.1 8.1	8.1	33.8 33.8	33.8	85.3 85.2	85.3	5.7 5.7	5.7	5.7	4.2 4.0	4.1	4.0	5 6	5.5	4.2
				Bottom	22	26.2 26.2	26.2	8.1 8.1	8.1	35.6 35.4	35.5	76.8 76.7	76.8	5.1 5.1	5.1		4.2 4.2	4.2		3 3	3.0	
				Surface	1	26.7 26.6	26.7	8.2 8.2	8.2	30.9 30.9	30.9	92.0 91.8	91.9	6.2 6.2	6.2		2.4 2.3	2.4		6	6.0	
15-Jun-16	Cloudy	Moderate	08:14	Middle	9.5	24.4 24.4	24.4	8.3 8.3	8.3	33.2 33.1	33.2	74.6	74.7	5.2 5.2	5.2	5.3	2.4	2.5	2.7	5	5.5	5.5
				Bottom	18	23.8 23.7	23.8	8.3 8.3	8.3	36.0 36.3	36.2	67.4 66.8	67.1	4.6 4.6	4.6		3.1 3.4	3.3		5	5.0	
				Surface	1	27.7	27.7	7.9	7.9	29.5	29.6	93.8	93.6	6.3	6.3		1.7	1.8		3	3.0	
17-Jun-16	Sunny	Moderate	09:30	Middle	10	27.7 25.9	25.9	7.9	8.0	29.7 31.6	31.8	93.3 79.6	79.8	6.2 5.4	5.4	5.4	1.8 3.8	3.9	4.3	3	3.5	3.2
	,			Bottom	19	25.9 24.6	24.6	8.0 8.0	8.0	31.9 32.9	33.0	80.0 65.1	64.9	5.4 4.5	4.5		3.9 7.3	7.2		3	3.0	
				Dottom	13	24.6	27.0	8.0	0.0	33.1	00.0	64.7	04.3	4.5	т.Ј		7.1	1.2		3	0.0	<u> </u>

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids ((mg/L)
Date	Condition	Condition**	Time	Вері		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.0 23.9	24.0	8.2 8.2	8.2	33.3 33.3	33.3	97.3 97.0	97.2	6.8 6.8	6.8		3.7 3.7	3.7		3 4	3.5	
20-Jun-16	Sunny	Rough	10:48	Middle	9.5	23.7 23.7	23.7	8.2 8.2	8.2	33.4 33.6	33.5	95.7 95.4	95.6	6.7 6.7	6.7	6.6	4.5 4.2	4.4	4.5	6 7	6.5	5.3
				Bottom	18	23.7 23.7	23.7	8.3 8.3	8.3	33.9 33.9	33.9	90.9 91.1	91.0	6.3 6.4	6.4		5.4 5.2	5.3		6 6	6.0	
				Surface	1	27.0 27.0	27.0	8.1 8.1	8.1	28.8 28.8	28.8	102.7 103.3	103.0	6.8 6.9	6.9		3.3 3.5	3.4		4 4	4.0	
23-Jun-16	Sunny	Moderate	15:18	Middle	9.5	24.7 24.6	24.7	8.1 8.1	8.1	30.8 31.2	31.0	84.1 84.4	84.3	5.7 5.8	5.8	5.9	4.0 4.2	4.1	4.0	5 5	5.0	4.3
				Bottom	18	23.2 23.2	23.2	8.4 8.4	8.4	33.0 33.0	33.0	70.4 71.1	70.8	4.9 4.9	4.9		4.5 4.5	4.5		4 4	4.0	
				Surface	1	28.5 28.7	28.6	8.2 8.2	8.2	31.4 31.4	31.4	118.9 118.0	118.5	7.8 7.7	7.8		2.2 2.3	2.3		3 3	3.0	
25-Jun-16	Sunny	Rough	14:21	Middle	10	28.1 28.3	28.2	8.3 8.3	8.3	32.2 32.0	32.1	112.9 113.5	113.2	7.4 7.4	7.4	7.5	3.2 3.8	3.5	3.2	5 4	4.5	3.8
				Bottom	19	28.0 28.3	28.2	8.3 8.3	8.3	32.3 32.3	32.3	112.5 113.5	113.0	7.4 7.4	7.4		3.6 3.9	3.8		4 4	4.0	
				Surface	1	28.8 29.0	28.9	8.2 8.2	8.2	30.9 31.3	31.1	119.3 119.2	119.3	7.8 7.7	7.8		3.2 3.2	3.2		3 3	3.0	
27-Jun-16	Sunny	Moderate	16:01	Middle	9	28.3 28.4	28.4	8.2 8.3	8.3	31.8 31.8	31.8	113.1 113.4	113.3	7.4 7.4	7.4	7.5	3.6 3.6	3.6	4.1	5 5	5.0	4.7
				Bottom	17	28.3 28.3	28.3	8.3 8.3	8.3	31.9 32.1	32.0	112.7 113.3	113.0	7.4 7.4	7.4		5.3 5.7	5.5		6 6	6.0	
				Surface	1	29.0 28.9	29.0	8.1 8.0	8.1	29.7 29.5	29.6	100.8 93.2	97.0	6.6 6.1	6.4		2.6 2.3	2.5		6 6	6.0	
30-Jun-16	Cloudy	Moderate	07:31	Middle	9.5	28.2 28.2	28.2	8.1 8.1	8.1	31.8 31.7	31.8	88.0 87.3	87.7	5.8 5.7	5.8	6.0	4.0 4.1	4.1	3.4	4 4	4.0	5.3
				Bottom	18	28.1 28.1	28.1	8.1 8.1	8.1	32.5 31.9	32.2	86.8 85.1	86.0	5.7 5.6	5.7		3.5 3.5	3.5		6 6	6.0	

Water Quality Monitoring Results at C2 - Mid-Flood Tide

Data	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 25.5	25.5	7.5 7.4	7.5	33.2 32.0	32.6	88.0 86.7	87.4	6.0 5.9	6.0		4.7 4.6	4.7		6 5	5.5	
1-Jun-16	Sunny	Calm	16:15	Middle	9.5	25.4 25.2	25.3	7.5 7.5	7.5	30.9 32.9	31.9	85.1 87.4	86.3	5.9 6.0	6.0	5.9	3.5 3.4	3.5	3.9	4 3	3.5	4.0
				Bottom	18	25.6 25.3	25.5	7.4 7.4	7.4	31.4 33.6	32.5	85.2 85.1	85.2	5.8 5.8	5.8		3.8 3.1	3.5		3 3	3.0	
				Surface	1	27.9 27.9	27.9	8.4 8.4	8.4	28.8 28.9	28.9	103.3 103.3	103.3	6.9 6.9	6.9		1.6 1.5	1.6		6	6.0	
3-Jun-16	Cloudy	Moderate	15:55	Middle	9	27.6	27.6	8.3	8.3	30.3	30.3	93.4	93.3	6.2	6.2	6.3	2.0	2.1	2.1	4	4.0	5.2
				Bottom	17	27.6 27.1	27.1	8.3 8.3	8.3	30.3 32.7	32.7	93.1 85.6	85.5	6.2 5.7	5.7		2.2 2.6	2.6		5	5.5	
				Surface	1	27.1 24.3	24.3	8.3 8.1	8.2	<u>32.6</u> 29.4	29.8	85.4 92.0	92.3	5.7 6.5	6.5		2.5 3.1	3.1		6	6.0	
6-Jun-16	Cloudy	Moderate	18:42	Middle	10.5	24.3 24.3	25.1	8.2 8.1	8.2	30.2 29.8	30.2	92.5 88.1	89.9	6.5 6.2	6.3	6.3	3.1 3.6	3.6	3.5	6 3	3.0	4.3
	,		-	Bottom	20	25.9 24.3	24.9	8.2 8.2	8.2	30.6 29.4	29.8	91.7 85.1	86.6	6.3 6.0	6.1		3.5 3.7	3.8		3	4.0	
				Surface	1	25.4 25.1	25.2	8.2 8.2	8.2	30.1 31.2	31.3	88.1 112.6	113.0	6.1 7.8	7.8		3.8 3.3	3.6		4	4.5	
0 1 40			00.45			25.2 24.8		8.2 8.3		31.3 31.9		113.3 109.7		7.8 7.6			3.9 4.3		4.0	5		4.5
8-Jun-16	Cloudy	Moderate	06:45	Middle	9	24.7 24.5	24.8	8.2 8.3	8.3	31.9 32.2	31.9	110.3 109.3	110.0	7.6 7.6	7.6	7.7	4.5 4.8	4.4	4.3	3	3.0	4.5
				Bottom	17	24.7 26.7	24.6	<u>8.2</u> 8.0	8.3	<u>32.1</u> 33.3	32.2	110.1 88.2	109.7	7.6 5.9	7.6		5.0 3.0	4.9		6	6.0	
				Surface	1	26.5 26.5	26.6	8.0 8.1	8.0	32.1 33.7	32.7	88.0 89.3	88.1	5.9 5.9	5.9		3.0 5.1	3.0		4	4.0	
10-Jun-16	Fine	Calm	08:06	Middle	10.5	26.5 27.2	26.5	8.2	8.2	32.9 33.5	33.3	88.7 85.7	89.0	5.9 5.6	5.9	5.9	4.3	4.7	4.3	3	3.0	3.5
				Bottom	20	27.2	27.2	8.0	8.0	33.5	33.5	89.8	87.8	5.9	5.8		4.6	5.1		4	3.5	
				Surface	1	27.2 27.2	27.2	8.2 8.2	8.2	30.7 30.7	30.7	94.1 94.2	94.2	6.3 6.3	6.3		3.9 3.6	3.8		4	4.0	
13-Jun-16	Cloudy	Moderate	20:01	Middle	11	26.7 26.7	26.7	8.1 8.1	8.1	32.8 32.8	32.8	86.7 86.7	86.7	5.8 5.8	5.8	5.7	4.5 4.3	4.4	4.2	4	4.0	5.2
				Bottom	21	26.1 26.0	26.1	8.1 8.1	8.1	36.0 36.0	36.0	73.5 73.1	73.3	4.9 4.8	4.9		4.2 4.5	4.4		7 8	7.5	
				Surface	1	25.6 25.6	25.6	8.3 8.3	8.3	31.4 31.4	31.4	88.8 89.0	88.9	6.1 6.1	6.1		3.1 3.0	3.1		4	4.0	
15-Jun-16	Cloudy	Moderate	14:20	Middle	9.5	24.4 24.3	24.4	8.3 8.3	8.3	34.8 35.0	34.9	69.0 68.7	68.9	4.7 4.7	4.7	5.1	4.7 4.7	4.7	4.6	5 4	4.5	4.8
				Bottom	18	23.2 23.2	23.2	8.3 8.3	8.3	37.1 37.3	37.2	64.3 64.1	64.2	4.4 4.4	4.4		6.0 6.2	6.1		6 6	6.0	
				Surface	1	27.6 27.6	27.6	8.2 8.2	8.2	29.3 29.3	29.3	95.5 94.6	95.1	6.4 6.3	6.4		2.7 2.8	2.8		3 4	3.5	
17-Jun-16	Cloudy	Moderate	18:19	Middle	10	24.5 24.6	24.6	8.1 8.1	8.1	32.9 32.7	32.8	71.9	71.8	5.0 5.0	5.0	5.2	4.2	4.3	4.1	4	4.0	3.8
				Bottom	19	23.7 23.6	23.7	8.1 8.1	8.1	33.4 33.6	33.5	61.2 61.5	61.4	4.3 4.3	4.3		5.4 5.2	5.3		4	4.0	

Water Quality Monitoring Results at C2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids ((mg/L)
Duio	Condition	Condition**	Time	Вор		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.1 24.0	24.1	8.1 8.1	8.1	33.1 33.2	33.2	96.6 96.4	96.5	6.7 6.7	6.7		3.3 3.4	3.4		3 4	3.5	
20-Jun-16	Fine	Calm	17:59	Middle	9.5	23.9 23.8	23.9	8.2 8.2	8.2	33.7 33.7	33.7	94.2 94.3	94.3	6.6 6.6	6.6	6.5	3.1 3.2	3.2	3.5	4 4	4.0	5.3
				Bottom	18	23.7 23.7	23.7	8.0 8.1	8.1	34.0 34.3	34.2	90.2 90.2	90.2	6.3 6.3	6.3		3.7 3.8	3.8		8 9	8.5	
				Surface	1	27.4 27.1	27.3	8.3 8.3	8.3	27.3 26.9	27.1	100.1 99.8	100.0	6.7 6.7	6.7		2.3 2.8	2.6		3 3	3.0	
23-Jun-16	Sunny	Moderate	06:05	Middle	9.5	24.9 24.9	24.9	8.4 8.4	8.4	30.3 30.9	30.6	87.7 88.2	88.0	6.0 6.0	6.0	5.8	4.0 4.2	4.1	4.3	4 4	4.0	4.7
				Bottom	18	23.3 23.3	23.3	8.3 8.3	8.3	33.5 33.7	33.6	65.6 66.8	66.2	4.5 4.6	4.6		6.2 6.3	6.3		7 7	7.0	
				Surface	1	29.1 29.2	29.2	8.2 8.2	8.2	31.5 31.6	31.6	120.3 121.3	120.8	7.8 7.8	7.8		2.8 2.7	2.8		4 4	4.0	
25-Jun-16	Sunny	Rough	07:35	Middle	10	28.8 28.7	28.8	8.2 8.3	8.3	32.2 32.1	32.2	117.5 117.4	117.5	7.6 7.6	7.6	7.7	4.3 3.9	4.1	3.7	4 4	4.0	4.7
				Bottom	19	28.4 28.6	28.5	8.3 8.2	8.3	32.3 32.3	32.3	117.0 118.4	117.7	7.6 7.7	7.7		4.6 4.0	4.3		6 6	6.0	
				Surface	1	28.9 28.9	28.9	8.2 8.2	8.2	31.1 31.4	31.3	120.3 120.7	120.5	7.8 7.8	7.8		2.7 3.2	3.0		3 3	3.0	
27-Jun-16	Sunny	Moderate	09:22	Middle	9	28.5 28.7	28.6	8.2 8.3	8.3	31.9 31.9	31.9	116.6 117.7	117.2	7.6 7.6	7.6	7.7	4.0 3.8	3.9	3.7	7 7	7.0	4.7
				Bottom	17	28.4 28.4	28.4	8.3 8.3	8.3	32.0 32.1	32.1	117.0 117.5	117.3	7.6 7.6	7.6		4.3 4.1	4.2		4 4	4.0	
				Surface	1	29.0 29.0	29.0	7.9 8.0	8.0	29.4 29.6	29.5	95.3 97.8	96.6	6.2 6.4	6.3		3.3 3.6	3.5		3 4	3.5	
30-Jun-16	Cloudy	Moderate	13:41	Middle	9.5	28.1 28.0	28.1	8.0 8.0	8.0	31.3 31.4	31.4	86.9 86.9	86.9	5.7 5.7	5.7	5.9	3.0 3.1	3.1	3.6	6 6	6.0	4.5
				Bottom	18	28.0 27.9	28.0	8.1 8.1	8.1	32.1 32.1	32.1	86.3 85.1	85.7	5.7 5.6	5.7		4.2 4.3	4.3	<u> </u>	4 4	4.0	

Water Quality Monitoring Results at WSD17 - Mid-Ebb Tide

Data	Weather	Sea	Sampling	Devel	h. ()	Tempera	ature (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 24.8	25.2	7.5 7.5	7.5	30.9 31.1	31.0	85.5 84.5	85.0	5.9 5.9	5.9		1.2 1.2	1.2		7 7	7.0	
1-Jun-16	Sunny	Calm	08:27	Middle	7	25.3 24.9	25.1	7.5 7.5	7.5	31.5 33.3	32.4	86.9 85.0	86.0	6.0 5.8	5.9	5.9	2.7 2.8	2.8	2.4	4	4.0	5.0
				Bottom	13	25.2 25.2	25.2	7.4	7.5	32.8 31.6	32.2	84.7 84.6	84.7	5.8 5.8	5.8		3.1 3.2	3.2		4	4.0	
				Surface	1	28.3	28.3	8.3	8.3	31.3	31.3	102.8	102.8	6.7	6.7		3.2	3.3		5	5.0	
3-Jun-16	Fine	Moderate	09:59	Middle	7	28.2 26.7	26.7	8.3 8.2	8.2	31.3 32.5	32.6	102.7 82.1	81.8	6.7 5.5	5.5	5.8	3.3 2.7	2.7	2.9	5 8	8.0	5.8
				Bottom	13	26.6 26.5	26.5	8.2 8.2	8.2	32.6 32.6	32.7	81.5 79.3	79.2	5.5 5.3	5.3		2.6 2.5	2.6		8	4.5	
				Surface	1	26.4 25.6	25.6	8.2 8.1	8.2	32.7 29.4	29.5	79.1 93.2	93.1	5.3 6.5	6.5		2.7 3.2	3.3		5 4	4.0	
6-Jun-16	Cloudy	Moderate	12:17	Middle	7	25.6 25.6	25.6	8.2 8.2	8.2	29.5 29.3	29.4	93.0 93.2	93.4	6.4 6.5	6.5	6.4	3.3 2.7	2.9	3.8	4	3.0	3.7
0-3011-10	Cloudy	WOUErale	12.17		13	25.6 25.6	25.6	8.2 8.2	8.2	29.5 29.4	29.4	93.6 91.6	91.7	6.5 6.3	6.3	0.4	3.0 5.1	5.2	3.0	3	4.0	3.7
				Bottom		25.6 24.9		8.2 8.3		29.5 31.2		91.7 111.4		6.3 7.7			5.3 2.2			4	-	
				Surface	1	25.2 24.6	25.1	8.3 8.3	8.3	31.6 31.9	31.4	112.2 110.6	111.8	7.7 7.7	7.7		2.5 5.3	2.4		4 <2.5	4.0	-
8-Jun-16	Cloudy	Moderate	13:40	Middle	6.5	24.7 24.7	24.7	8.3 8.3	8.3	31.9 32.2	31.9	110.7	110.7	7.7	7.7	7.7	5.9 4.8	5.6	4.3	<2.5	<2.5	3.2
				Bottom	12	24.6	24.7	8.3	8.3	32.0	32.1	110.1	110.2	7.6	7.6		4.9	4.9		3	3.0	
				Surface	1	26.4 26.9	26.7	8.2 8.0	8.1	32.3 33.7	33.0	91.1 88.7	89.9	6.1 5.9	6.0		4.5 4.6	4.6		3	3.0	-
10-Jun-16	Fine	Calm	17:02	Middle	6.5	26.4 26.4	26.4	8.2 8.0	8.1	32.8 32.8	32.8	86.4 87.5	87.0	5.8 5.9	5.9	5.9	4.2 4.3	4.3	4.1	4	4.0	3.7
				Bottom	12	27.2 26.3	26.8	8.0 8.1	8.1	32.7 32.1	32.4	86.1 84.9	85.5	5.7 5.7	5.7		3.1 3.5	3.3		4 4	4.0	
				Surface	1	27.2 27.2	27.2	8.0 8.0	8.0	30.9 30.8	30.9	95.9 95.9	95.9	6.4 6.4	6.4		2.7 2.8	2.8		4	4.0	
13-Jun-16	Cloudy	Moderate	11:38	Middle	7	27.0 27.0	27.0	8.1 8.1	8.1	30.9 30.9	30.9	96.6 96.7	96.7	6.5 6.5	6.5	6.1	3.4 3.6	3.5	3.4	4	4.0	3.7
				Bottom	13	26.4 26.4	26.4	8.1 8.1	8.1	34.6 34.6	34.6	80.4 79.9	80.2	5.3 5.3	5.3		4.0 3.9	4.0		3 3	3.0	
				Surface	1	26.3 26.2	26.3	8.1 8.1	8.1	31.5 31.5	31.5	84.5 84.4	84.5	5.7 5.7	5.7		3.4 3.4	3.4		5 5	5.0	
15-Jun-16	Cloudy	Moderate	08:34	Middle	6.5	24.8 24.8	24.8	8.2 8.2	8.2	32.2 32.3	32.3	68.5 68.4	68.5	4.7 4.7	4.7	4.9	4.0 3.9	4.0	4.0	5 5	5.0	5.3
				Bottom	12	23.8 23.7	23.8	8.3 8.3	8.3	35.6 35.7	35.7	60.4 59.9	60.2	4.2 4.1	4.2		4.4 4.6	4.5		6 6	6.0	
				Surface	1	27.6 27.6	27.6	8.0 8.0	8.0	29.7 29.8	29.8	82.7 83.7	83.2	5.5 5.6	5.6		2.3	2.6		3	3.5	
17-Jun-16	Sunny	Moderate	09:59	Middle	7	26.1 26.0	26.1	8.0 8.0	8.0	31.0 31.1	31.1	70.4	70.3	4.8 4.8	4.8	5.0	4.5	4.6	4.1	4	4.5	3.8
				Bottom	13	25.5 25.5 25.5	25.5	8.0 8.0 8.0	8.0	32.2 32.4	32.3	67.4 66.8	67.1	4.6 4.6 4.6	4.6		4.6 5.1 5.2	5.2		3	3.5	1

Water Quality Monitoring Results at WSD17 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dop	th (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.9	23.9	8.2 8.2	8.2	32.9 32.8	32.9	93.4 93.8	93.6	6.5 6.6	6.6		3.3 3.6	3.5		3 3	3.0	
20-Jun-16	Sunny	Rough	11:05	Middle	6.5	23.8 23.8	23.8	8.3 8.3	8.3	33.5 33.5	33.5	93.9 94.2	94.1	6.6 6.6	6.6	6.6	3.1 3.0	3.1	3.6	7 7	7.0	5.8
				Bottom	12	23.7 23.8	23.8	8.1 8.1	8.1	33.6 33.6	33.6	93.2 93.3	93.3	6.5 6.5	6.5		4.3 4.2	4.3		8 7	7.5	
				Surface	1	26.9 26.9	26.9	8.1 8.1	8.1	28.5 28.6	28.6	103.3 102.7	103.0	6.9 6.8	6.9		3.8 3.7	3.8		6 7	6.5	
23-Jun-16	Sunny	Moderate	14:59	Middle	7	25.8 25.8	25.8	8.2 8.2	8.2	31.0 33.2	32.1	94.1 83.8	89.0	6.3 5.5	5.9	6.2	3.3 3.4	3.4	4.5	5 4	4.5	5.0
				Bottom	13	24.1 24.1	24.1	8.2 8.2	8.2	32.0 32.0	32.0	81.3 85.7	83.5	5.6 5.9	5.8		6.2 6.1	6.2		4 4	4.0	
				Surface	1	28.3 28.6	28.5	8.3 8.3	8.3	31.4 31.7	31.6	117.7 118.8	118.3	7.7 7.7	7.7		2.2 2.1	2.2		4	4.0	
25-Jun-16	Sunny	Rough	14:37	Middle	6.5	28.0 28.0	28.0	8.3 8.3	8.3	32.0 32.2	32.1	117.6 117.2	117.4	7.7 7.7	7.7	7.7	4.9 5.9	5.4	4.5	4 4	4.0	4.0
				Bottom	12	28.2 27.9	28.1	8.3 8.3	8.3	32.6 32.3	32.5	118.0 116.8	117.4	7.7 7.7	7.7		5.4 6.6	6.0		4 4	4.0	
				Surface	1	28.5 28.8	28.7	8.3 8.3	8.3	31.1 31.3	31.2	118.1 118.6	118.4	7.7 7.7	7.7		3.4 3.7	3.6		3 4	3.5	
27-Jun-16	Sunny	Moderate	16:18	Middle	6.5	28.2 28.3	28.3	8.2 8.3	8.3	31.9 31.9	31.9	117.4 117.0	117.2	7.7 7.6	7.7	7.7	6.6 6.4	6.5	4.5	7 7	7.0	4.8
				Bottom	12	28.2 28.1	28.2	8.3 8.3	8.3	32.2 31.9	32.1	117.3 116.9	117.1	7.7 7.7	7.7		3.2 3.3	3.3		4 4	4.0	
				Surface	1	28.7 28.7	28.7	8.0 8.0	8.0	29.1 29.1	29.1	88.6 89.0	88.8	5.8 5.9	5.9		3.2 3.0	3.1		4 5	4.5	
30-Jun-16	Cloudy	Moderate	08:03	Middle	6.5	28.4 28.4	28.4	7.9 7.9	7.9	31.3 31.0	31.2	86.9 85.3	86.1	5.7 5.6	5.7	5.7	4.0 4.2	4.1	4.2	4 4	4.0	5.5
				Bottom	12	28.2 28.2	28.2	8.1 8.1	8.1	32.1 32.0	32.1	84.6 85.0	84.8	5.5 5.6	5.6		5.6 5.3	5.5		8 8	8.0	

Water Quality Monitoring Results at WSD17 - Mid-Flood Tide

Data	Weather	Sea	Sampling	David	h. ()	Tempera	ature (°C)	p	ЪН	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Furbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.4 24.9	25.2	7.5 7.5	7.5	31.4 32.4	31.9	86.8 86.4	86.6	6.0 6.0	6.0		5.1 5.1	5.1		3 4	3.5	
1-Jun-16	Sunny	Calm	16:03	Middle	7	24.9 25.3	25.1	7.4 7.5	7.5	31.6 32.6	32.1	85.2 87.4	86.3	5.9 6.0	6.0	6.0	4.6 4.5	4.6	4.5	5 5	5.0	3.8
				Bottom	13	25.2 25.3	25.3	7.4 7.4	7.4	31.0 32.1	31.6	86.3 87.3	86.8	6.0 6.0	6.0		3.7 4.1	3.9		3 3	3.0	
				Surface	1	27.1 27.1	27.1	8.3 8.3	8.3	31.9 32.0	32.0	95.6 95.9	95.8	6.4 6.4	6.4		2.1 2.1	2.1		6 6	6.0	
3-Jun-16	Cloudy	Moderate	16:12	Middle	7	26.7 26.6	26.7	8.3 8.3	8.3	32.1 32.3	32.2	80.7 80.1	80.4	5.4 5.4	5.4	5.7	3.0 3.3	3.2	2.9	5	5.0	5.3
				Bottom	13	26.4 26.4	26.4	8.3 8.3	8.3	32.4 32.4	32.4	78.4	78.3	5.3 5.3	5.3		3.2 3.3	3.3		5	5.0	
				Surface	1	25.8 24.2	25.0	8.2 8.2	8.2	28.5 30.0	29.3	100.2 98.4	99.3	7.0	7.0		4.0	4.1		4	4.0	
6-Jun-16	Cloudy	Moderate	18:59	Middle	7	25.3 24.2	24.8	8.2 8.2	8.2	28.9 30.1	29.5	94.9 96.4	95.7	6.6 6.8	6.7	6.6	4.5	4.4	4.1	3	3.0	3.7
				Bottom	13	24.2	24.2	8.2 8.2	8.2	30.0 30.1	30.1	84.5 85.7	85.1	6.0 6.1	6.1		3.7	3.8		4	4.0	
				Surface	1	25.1 25.0	25.1	8.3 8.3	8.3	31.3 31.5	31.4	107.7 107.1	107.4	7.4	7.4		2.4 3.0	2.7		<2.5 <2.5	<2.5	
8-Jun-16	Cloudy	Moderate	07:01	Middle	6.5	25.1 24.8	25.0	8.3 8.3	8.3	31.7 32.0	31.9	107.3 106.8	107.1	7.4	7.4	7.4	4.8 5.9	5.4	4.5	<2.5 <2.5	<2.5	<2.5
				Bottom	12	24.9 24.9	24.9	8.3 8.3	8.3	32.1 32.2	32.2	107.0 106.2	106.6	7.4 7.3	7.4		6.0 4.8	5.4		<2.5	<2.5	
				Surface	1	26.8 27.2	27.0	8.0 8.1	8.1	32.7 32.9	32.8	82.8 89.2	86.0	5.5 5.9	5.7		1.9 2.2	2.1		5	5.5	
10-Jun-16	Fine	Calm	08:17	Middle	7	26.9 27.0	27.0	8.2 8.0	8.1	31.6 33.3	32.5	86.6 88.5	87.6	5.8 5.9	5.9	5.8	3.8 3.9	3.9	3.4	3	3.0	3.8
				Bottom	13	26.9 27.3	27.1	8.1 8.0	8.1	33.2 33.2	33.2	90.5 86.9	88.7	6.0 5.7	5.9		4.1	4.2		3	3.0	
				Surface	1	27.3 27.3	27.3	8.1 8.1	8.1	30.5 30.5	30.5	94.1 94.2	94.2	6.3 6.3	6.3		2.6 2.4	2.5		3	3.0	
13-Jun-16	Cloudy	Moderate	19:40	Middle	7	26.8 26.8	26.8	8.1 8.1	8.1	31.1 31.1	31.1	91.9 91.7	91.8	6.2 6.2	6.2	5.9	4.7	4.7	3.7	<2.5 <2.5	<2.5	2.8
				Bottom	13	26.4 26.3	26.4	8.1 8.1	8.1	34.6 34.7	34.7	80.3 79.6	80.0	5.3 5.3	5.3		4.1	4.0		3	3.0	
				Surface	1	25.6 25.5	25.6	8.3 8.3	8.3	31.5 31.5	31.5	85.2 85.3	85.3	5.8 5.8	5.8		2.9 2.9	2.9		4	4.0	
15-Jun-16	Cloudy	Moderate	14:38	Middle	7	24.3 24.2	24.3	8.3 8.3	8.3	32.4 32.3	32.4	67.0 67.1	67.1	4.7 4.7	4.7	4.9	3.3	3.3	3.9	5	5.0	4.7
				Bottom	13	23.3 23.3	23.3	8.3 8.3	8.3	36.6 36.5	36.6	58.7 58.7	58.7	4.1	4.1		5.6 5.5	5.6		5	5.0	
				Surface	1	27.4 27.4	27.4	8.2 8.2	8.2	30.3 30.3	30.3	87.9 87.9	87.9	5.9 5.9	5.9		3.4 3.4	3.4		4	4.0	
17-Jun-16	Cloudy	Moderate	17:59	Middle	7.5	25.0 25.1	25.1	8.1 8.1	8.1	32.6 32.7	32.7	72.2	72.1	5.0 4.9	5.0	5.2	4.6 5.4	5.0	4.4	4 4 4	4.0	3.7
				Bottom	14	24.6 24.5	24.6	8.1 8.1	8.1	33.8 33.7	33.8	66.7 65.8	66.3	4.9 4.6 4.5	4.6		5.2 4.4	4.8		3	3.0	

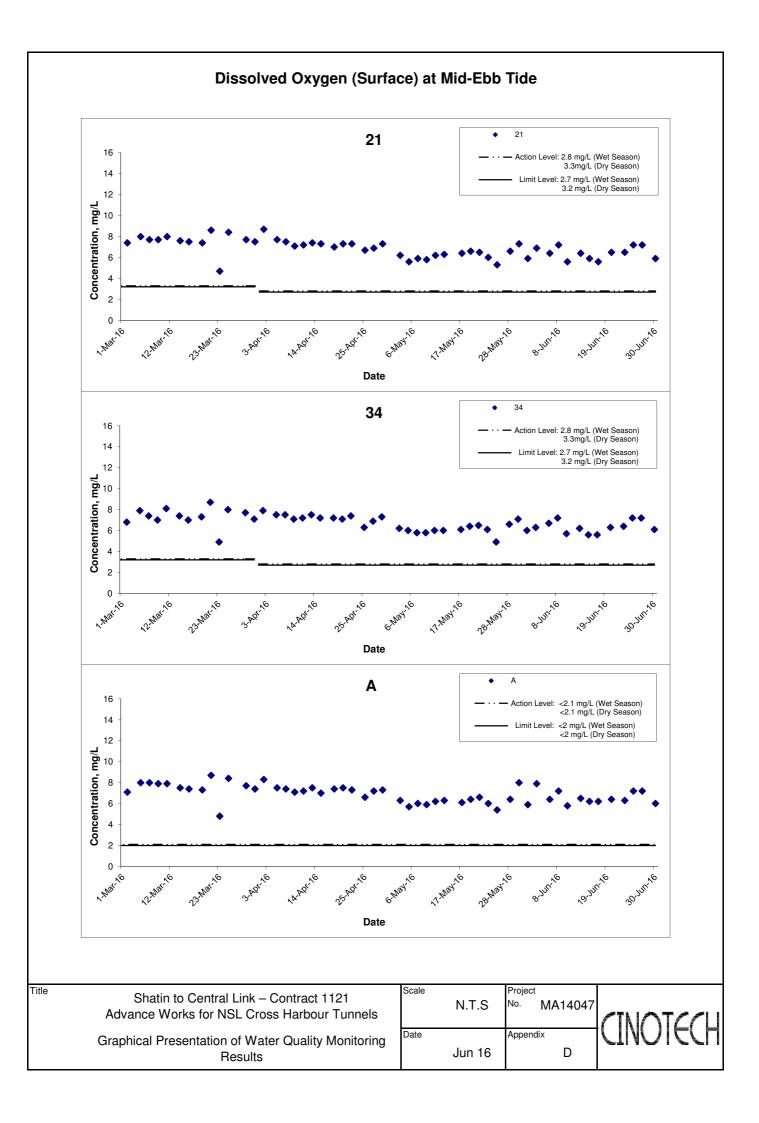
Water Quality Monitoring Results at WSD17 - Mid-Flood Tide

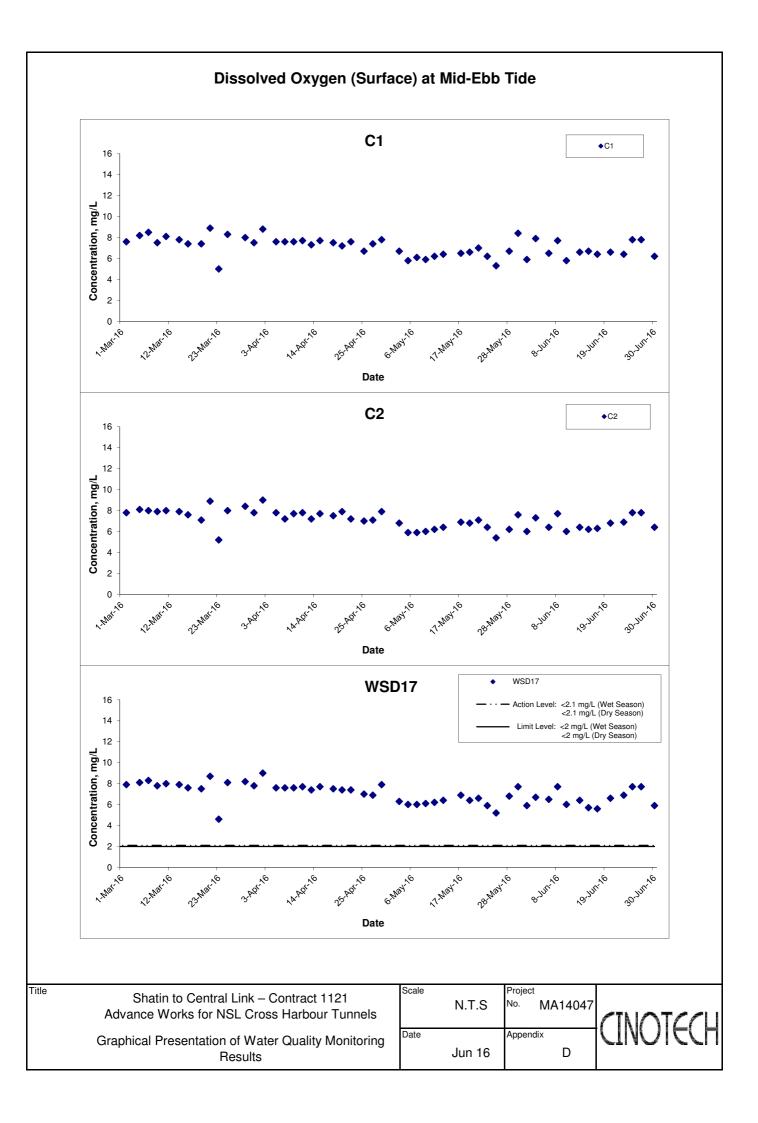
Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Dale	Condition	Condition**	Time	Dept		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.8	23.9	8.1 8.1	8.1	33.9 33.9	33.9	97.2 96.7	97.0	6.8 6.7	6.8		4.3 4.3	4.3		4 4	4.0	
20-Jun-16	Fine	Calm	18:16	Middle	7	23.8 23.8	23.8	8.2 8.2	8.2	33.4 33.3	33.4	95.5 95.6	95.6	6.7 6.7	6.7	6.7	4.4 4.5	4.5	4.3	6 5	5.5	4.5
				Bottom	13	23.8 23.8	23.8	8.2 8.2	8.2	33.9 33.9	33.9	94.7 95.4	95.1	6.6 6.6	6.6		4.2 4.2	4.2		4 4	4.0	
				Surface	1	26.6 26.5	26.6	8.3 8.3	8.3	27.9 27.9	27.9	100.7 100.7	100.7	6.8 6.8	6.8		2.8 3.2	3.0		4	4.0	
23-Jun-16	Sunny	Moderate	06:36	Middle	7	25.0 24.9	25.0	8.4 8.4	8.4	31.0 31.1	31.1	89.6 88.8	89.2	6.1 6.0	6.1	6.2	4.4 4.3	4.4	4.4	3 3	3.0	3.7
				Bottom	13	23.7 23.7	23.7	8.3 8.3	8.3	31.8 31.9	31.9	84.1 84.0	84.1	5.8 5.8	5.8		5.7 5.8	5.8		4 4	4.0	
				Surface	1	28.9 28.9	28.9	8.3 8.2	8.3	31.6 31.7	31.7	115.3 114.6	115.0	7.5 7.4	7.5		2.2 2.3	2.3		4 4	4.0	
25-Jun-16	Sunny	Rough	07:51	Middle	6.5	29.0 28.7	28.9	8.3 8.3	8.3	32.2 32.2	32.2	114.2 114.1	114.2	7.4 7.4	7.4	7.4	4.8 4.9	4.9	3.9	3 3	3.0	3.5
				Bottom	12	28.9 28.9	28.9	8.2 8.2	8.2	32.5 32.4	32.5	115.0 114.1	114.6	7.4 7.4	7.4		4.4 4.4	4.4		3 4	3.5	
				Surface	1	28.9 28.8	28.9	8.3 8.3	8.3	31.2 31.4	31.3	114.7 114.6	114.7	7.4 7.4	7.4		2.0 2.2	2.1		4 3	3.5	
27-Jun-16	Sunny	Moderate	09:38	Middle	6.5	28.8 28.6	28.7	8.3 8.3	8.3	31.8 31.9	31.9	114.0 113.2	113.6	7.4 7.4	7.4	7.4	4.2 4.6	4.4	3.8	5 5	5.0	5.3
				Bottom	12	28.8 28.8	28.8	8.3 8.3	8.3	32.0 32.1	32.1	114.2 113.6	113.9	7.4 7.3	7.4		4.7 4.9	4.8		8 7	7.5	
				Surface	1	28.6 28.6	28.6	8.0 8.0	8.0	29.1 29.1	29.1	91.2 90.4	90.8	6.0 6.0	6.0		3.5 3.1	3.3		5 5	5.0	
30-Jun-16	Cloudy	Moderate	14:13	Middle	7	28.4 28.4	28.4	7.9 7.8	7.9	31.0 31.1	31.1	87.4 89.3	88.4	5.7 5.8	5.8	5.8	4.9 5.0	5.0	4.3	6 7	6.5	5.2
				Bottom	13	28.3 28.3	28.3	8.0 8.0	8.0	32.1 32.1	32.1	85.6 84.9	85.3	5.6 5.5	5.6		4.6 4.8	4.7		4	4.0	

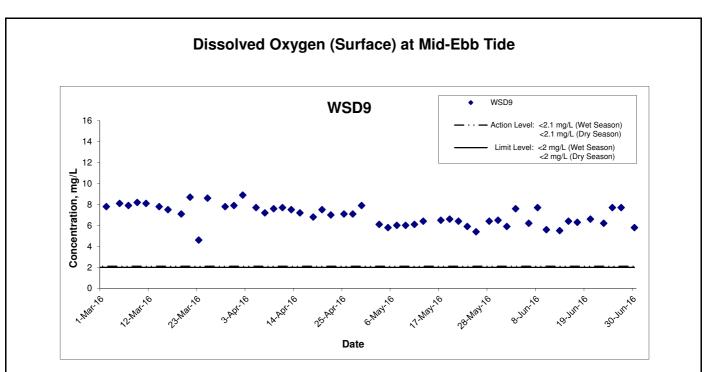
Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

Dete	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salir	iity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 25.5	25.5	7.5 7.5	7.5	32.0 31.6	31.8	84.7 86.3	85.5	5.8 5.9	5.9		3.8 3.9	3.9		3 3	3.0	
1-Jun-16	Sunny	Calm	10:43	Middle	3.5	25.5 25.0	25.3	7.5 7.4	7.5	31.5 33.0	32.3	86.4 85.0	85.7	5.9 5.8	5.9	5.9	3.5 3.7	3.6	4.0	8 8	8.0	5.8
				Bottom	6	25.1 25.1	25.1	7.5 7.5	7.5	33.1 31.0	32.1	84.7 86.0	85.4	5.8 6.0	5.9		4.2 4.8	4.5		6 7	6.5	
				Surface	1	29.3 29.2	29.3	8.3 8.3	8.3	30.8 30.8	30.8	117.1 117.4	117.3	7.6 7.6	7.6		3.1 3.3	3.2		8 7	7.5	
3-Jun-16	Fine	Moderate	12:15	Middle	3.5	28.8 28.8	28.8	8.4 8.4	8.4	31.2 31.3	31.3	114.9 114.2	114.6	7.5 7.4	7.5	7.4	3.4 3.8	3.6	2.9	6 6	6.0	5.7
				Bottom	6	28.5 28.5	28.5	8.4 8.4	8.4	31.9 31.9	31.9	109.5 109.2	109.4	7.1 7.1	7.1		1.9 2.0	2.0		3 4	3.5	
				Surface	1	27.3 26.3	26.8	8.2 8.2	8.2	33.9 32.3	33.1	93.5 91.9	92.7	6.1 6.2	6.2		2.7 3.0	2.9		3 3	3.0	
6-Jun-16	Cloudy	Moderate	14:32	Middle	3.5	27.0 26.2	26.6	8.2 8.2	8.2	33.8 32.6	33.2	89.3 87.4	88.4	5.9 5.9	5.9	6.0	3.7 3.9	3.8	3.8	5 5	5.0	4.3
				Bottom	6	26.3 26.2	26.3	8.2 8.2	8.2	33.2 32.6	32.9	86.4 86.4	86.4	5.8 5.8	5.8		4.7 4.8	4.8		5 5	5.0	<u> </u>
				Surface	1	25.1 24.9	25.0	8.3 8.3	8.3	31.0 31.0	31.0	111.6 110.5	111.1	7.7	7.7		2.8 2.6	2.7		7 7	7.0	
8-Jun-16	Cloudy	Moderate	15:42	Middle	3.5	24.8 24.7	24.8	8.3 8.3	8.3	31.6 31.5	31.6	110.1 110.3	110.2	7.6 7.7	7.7	7.7	4.8 4.9	4.9	4.4	3	3.0	4.3
				Bottom	6	24.8 24.8	24.8	8.3 8.3	8.3	31.6 31.8	31.7	110.1 110.7	110.4	7.6 7.7	7.7		5.9 5.3	5.6		3	3.0	<u> </u>
				Surface	1	27.2 26.6	26.9	8.0 8.0	8.0	33.7 <u>33.5</u>	33.6	84.4 84.5	84.5	5.6 5.6	5.6		2.7 2.8	2.8		3 3	3.0	
10-Jun-16	Fine	Calm	14:55	Middle	3.5	27.2 27.3 26.6	27.3	8.0 8.2 8.2	8.1	32.8 32.7 32.2	32.8	87.2 84.7 90.5	86.0	5.8 5.6	5.7	5.8	2.2 2.0 3.2	2.1	2.7	<2.5 <2.5 <2.5	<2.5	2.7
				Bottom	6	26.4	26.5	8.1	8.2	32.0	32.1	92.3	91.4	6.1 6.2	6.2		3.2	3.2		<2.5	<2.5	<u> </u>
				Surface	1	27.4 27.3 26.8	27.4	7.8 7.8 8.0	7.8	32.0 32.0 32.6	32.0	83.1 82.5 81.4	82.8	5.5 5.5 5.4	5.5		3.5 3.5 4.3	3.5		6 6 4	6.0	
13-Jun-16	Cloudy	Moderate	13:47	Middle	4	26.8 26.6	26.8	8.0 8.0 8.0	8.0	32.6 33.0	32.6	81.4 81.4 79.5	81.4	5.4 5.4 5.3	5.4	5.4	4.3 4.5 4.4	4.4	4.1	4 5 4	4.5	4.8
				Bottom	7	26.6 26.9	26.6	8.0 8.1	8.0	<u>33.1</u> 30.1	33.1	79.1 94.2	79.3	5.3 6.4	5.3		4.4	4.5		4	4.0	<u> </u>
				Surface	1	26.9 26.7	26.9	8.1 8.2	8.1	<u>30.1</u> 30.3	30.1	94.0 93.1	94.1	6.3 6.3	6.4		3.6 3.5	3.6		5	5.0	
15-Jun-16	Cloudy	Moderate	10:36	Middle	3.5	26.7 26.7 26.4	26.7	8.2 8.2 8.2	8.2	30.3 30.3 31.5	30.3	93.1 92.9 85.8	93.0	6.3 6.3 5.8	6.3	6.2	3.5 3.5 3.6	3.5	3.6	5	5.0	4.8
				Bottom	6	26.4 29.2	26.4	8.2 7.8	8.2	<u>31.7</u> 28.1	31.6	85.0 95.5	85.4	5.8 5.7 6.3	5.8		3.0 3.7 2.6	3.7		4	4.5	
	_			Surface	1	29.0 27.5	29.1	7.9	7.9	28.1	28.1	95.8 88.2	95.7	6.3 5.9	6.3	_	2.5 4.4	2.6		3	3.0	
17-Jun-16	Sunny	Moderate	12:02	Middle	4	27.5 27.1	27.5	7.9	7.9	<u>30.3</u> 31.4	30.3	88.0 80.3	88.1	5.9 5.4	5.9	5.9	4.5	4.5	4.4	3	3.0	3.0
				Bottom	7	27.1	27.1	7.9	7.9	31.4	31.5	79.8	80.1	5.3	5.4		6.1	6.1		3	3.0	<u> </u>

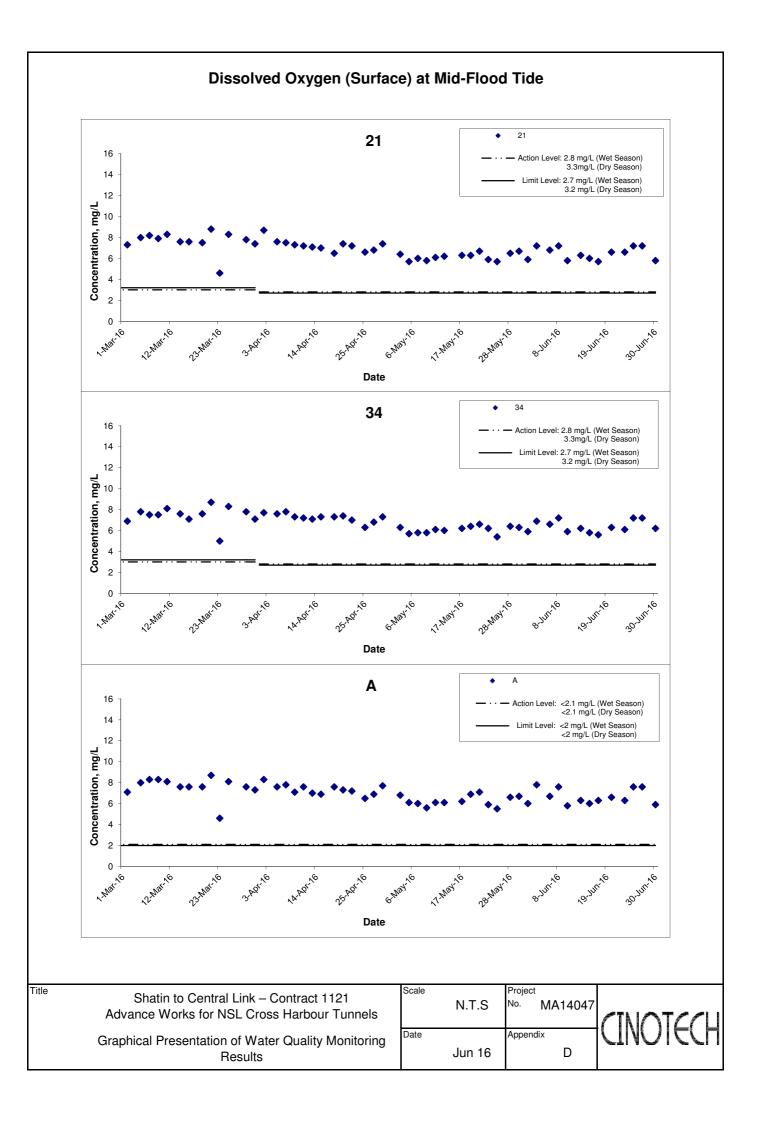
Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

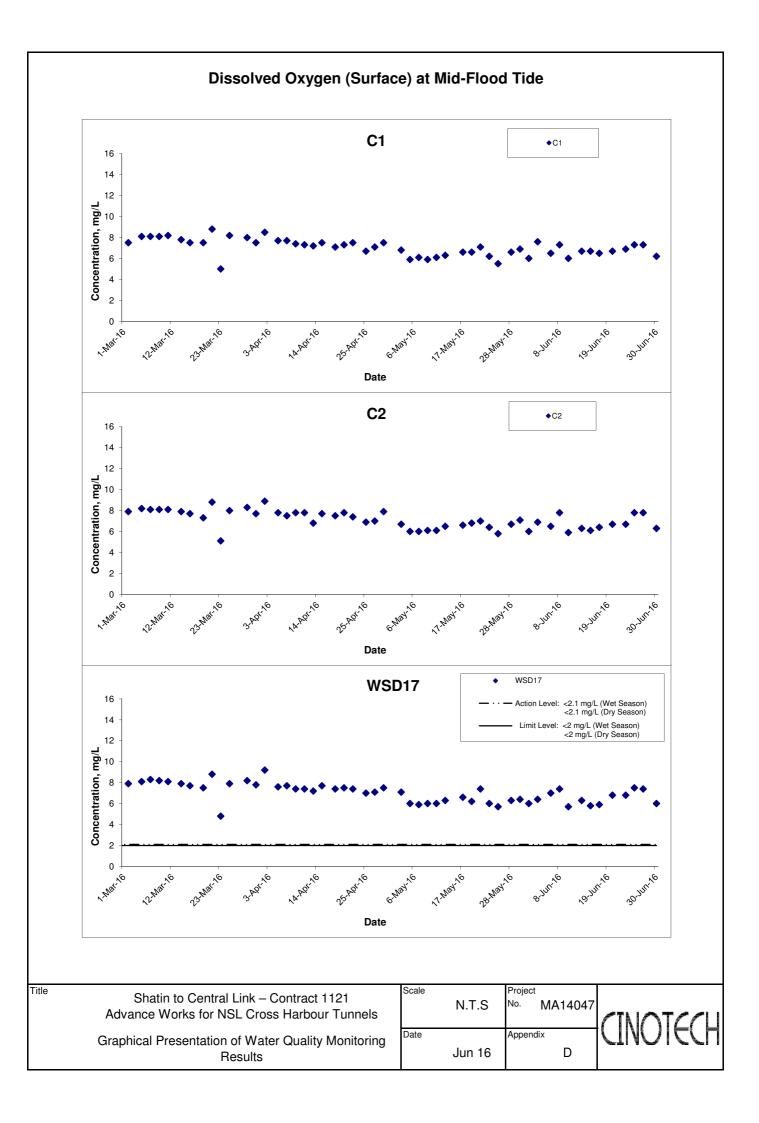

Date	Weather	Sea	Sampling	Dep	th (m)	Tempera	ature (°C)	p	Н	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.7	23.7	8.0 8.0	8.0	32.7 32.8	32.8	93.6 93.4	93.5	6.6 6.6	6.6		1.6 1.6	1.6		8 8	8.0	
20-Jun-16	Sunny	Rough	13:18	Middle	3.5	23.6 23.6	23.6	8.1 8.1	8.1	32.8 32.8	32.8	94.5 94.5	94.5	6.6 6.6	6.6	6.6	2.5 2.4	2.5	2.5	3 3	3.0	5.0
				Bottom	6	23.6 23.6	23.6	8.0 8.0	8.0	32.7 32.7	32.7	93.8 94.2	94.0	6.6 6.6	6.6		3.5 3.2	3.4		4 4	4.0	
				Surface	1	26.1 26.1	26.1	8.1 8.1	8.1	27.3 27.4	27.4	94.0 87.4	90.7	6.4 5.9	6.2		2.2 2.2	2.2		7 7	7.0	
23-Jun-16	Sunny	Moderate	12:56	Middle	3.5	24.7 24.7	24.7	8.1 8.1	8.1	29.1 29.2	29.2	86.6 87.8	87.2	6.0 6.0	6.0	6.0	2.0 2.1	2.1	2.5	4 5	4.5	5.8
				Bottom	6	24.0 24.0	24.0	8.2 8.2	8.2	29.9 29.9	29.9	83.5 83.2	83.4	5.8 5.8	5.8		2.9 3.3	3.1		6 6	6.0	
				Surface	1	28.5 28.4	28.5	8.3 8.3	8.3	31.4 31.4	31.4	118.8 118.4	118.6	7.7 7.7	7.7		2.5 2.9	2.7		4 4	4.0	
25-Jun-16	Sunny	Rough	16:42	Middle	3.5	28.3 28.2	28.3	8.3 8.3	8.3	31.9 32.0	32.0	117.3 116.9	117.1	7.7 7.6	7.7	7.7	4.7 4.8	4.8	4.4	4 4	4.0	4.0
				Bottom	6	28.2 28.3	28.3	8.3 8.3	8.3	32.1 32.2	32.2	117.4 117.3	117.4	7.7 7.6	7.7		5.7 5.9	5.8		4 4	4.0	
				Surface	1	28.8 28.6	28.7	8.3 8.3	8.3	31.2 31.1	31.2	118.6 118.1	118.4	7.7 7.7	7.7		2.4 2.4	2.4		6 6	6.0	
27-Jun-16	Sunny	Moderate	18:22	Middle	3.5	28.3 28.4	28.4	8.3 8.3	8.3	31.5 31.7	31.6	116.9 117.1	117.0	7.6 7.6	7.6	7.7	2.7 2.7	2.7	4.0	7 7	7.0	5.5
				Bottom	6	28.4 28.4	28.4	8.3 8.3	8.3	31.8 31.9	31.9	117.4 117.5	117.5	7.7 7.7	7.7		6.8 6.7	6.8		4 3	3.5	
				Surface	1	28.8 28.8	28.8	8.0 8.0	8.0	29.3 29.4	29.4	88.7 88.9	88.8	5.8 5.8	5.8		3.4 3.2	3.3		6 5	5.5	
30-Jun-16	Cloudy	Moderate	10:19	Middle	3.5	28.5 28.5	28.5	8.0 8.0	8.0	30.7 30.4	30.6	87.8 87.6	87.7	5.8 5.7	5.8	5.8	4.0 4.1	4.1	4.2	7 7	7.0	5.8
				Bottom	6	28.4 28.4	28.4	7.9 7.9	7.9	31.1 31.1	31.1	89.6 89.4	89.5	5.9 5.9	5.9		5.3 5.1	5.2		5 5	5.0	

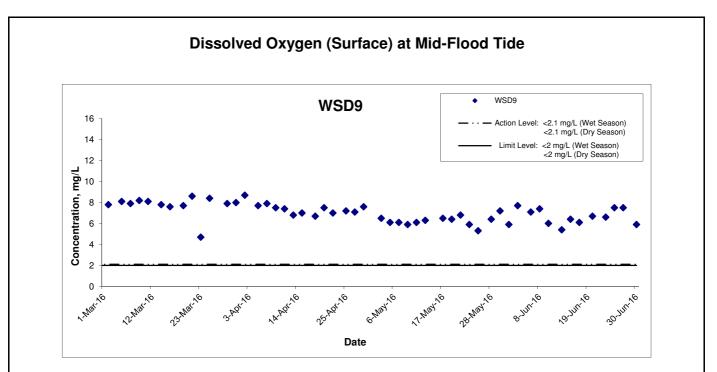

Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

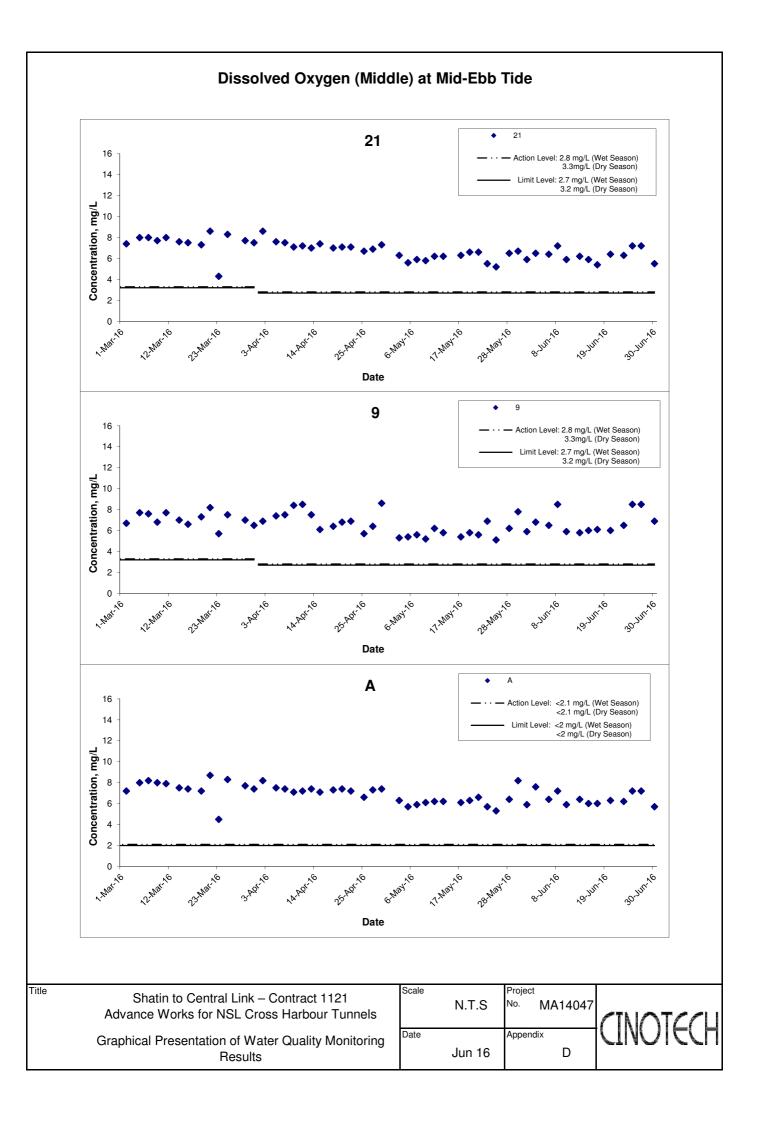

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 25.0	25.3	7.5 7.5	7.5	31.9 32.5	32.2	86.0 85.3	85.7	5.9 5.9	5.9		1.2 1.2	1.2		4 4	4.0	
1-Jun-16	Sunny	Calm	13:56	Middle	3.5	25.5 25.6	25.6	7.5 7.4	7.5	32.0 32.6	32.3	85.6 86.9	86.3	5.9 5.9	5.9	5.9	1.4 1.4	1.4	2.1	4 4	4.0	3.8
				Bottom	6	25.1 24.9	25.0	7.4 7.5	7.5	33.6 31.3	32.5	86.7 84.1	85.4	5.9 5.8	5.9		3.8 3.8	3.8		3 4	3.5	
				Surface	1	29.2 29.1	29.2	8.4 8.4	8.4	29.9 29.9	29.9	117.9 117.1	117.5	7.7 7.6	7.7		3.0 2.8	2.9		5 5	5.0	
3-Jun-16	Cloudy	Moderate	18:10	Middle	3.5	28.7 28.7	28.7	8.3 8.3	8.3	31.7 31.7	31.7	111.0 111.8	111.4	7.2 7.3	7.3	7.3	2.7	2.7	3.0	7 7	7.0	5.8
				Bottom	6	28.5 28.5	28.5	8.3 8.3	8.3	32.0 31.9	32.0	105.9	105.2	6.9 6.8	6.9		3.3 3.5	3.4		5	5.5	
				Surface	1	25.4	25.0	8.2 8.2	8.2	31.1	31.6	104.4 102.1 101.8	102.0	7.0	7.1		3.2 3.3	3.3		3	3.0	
6-Jun-16	Cloudy	Moderate	21:06	Middle	3.5	24.5 25.0 24.3	24.7	8.2 8.2 8.2	8.2	32.1 31.5 32.9	32.2	95.7	95.6	6.6 6.6	6.6	6.8	4.0	4.1	3.8	4	4.0	3.5
				Bottom	6	24.7	24.5	8.2	8.2	31.4	32.2	95.5 94.6	94.4	6.6	6.6		4.1	4.0		4	3.5	
				Surface	1	24.3 24.9	24.9	<u>8.2</u> 8.3	8.3	32.9 31.3	31.3	94.2	107.2	<u>6.5</u> 7.4	7.4		4.1 2.2	2.2		3	4.0	
8-Jun-16	Cloudy	Moderate	09:10	Middle	3.5	24.9 24.9	24.9	8.3 8.3	8.3	31.3 31.8	31.9	107.2	107.7	7.4	7.5	7.4	2.2 3.4	3.4	4.3	4	4.0	3.5
	-			Bottom	6	24.8 24.8	24.8	8.2	8.2	31.9 32.3	32.3	107.5	107.0	7.4	7.4		3.3 7.1	7.2		4 <2.5	<2.5	
				Surface	1	24.7 26.8	26.6	8.2 8.1	8.2	32.2 33.6	33.5	<u>106.7</u> 91.2	89.5	7.4 6.0	6.0		7.2 4.1	4.1		<2.5 3	3.0	<u> </u>
10-Jun-16	Fine	Calm	10:33	Middle	3.5	26.4 26.6	26.6	8.2 8.0	8.1	33.4 32.2	32.4	87.8 82.7	86.6	5.9 5.5	5.8	5.9	4.1 3.8	3.9	4.2	3	3.5	3.3
				Bottom	6	26.6 26.4	26.4	8.1 7.9	7.9	32.5 31.9	32.5	90.5 82.6	87.3	6.1 5.6	5.9		3.9 4.4	4.7		4	3.5	
				Surface	1	26.3 26.9	26.9	7.9 8.1	8.1	33.0 32.1	32.1	91.9 81.3	81.4	6.2 5.4	5.4		5.0 3.8	3.7		3	3.5	<u> </u>
13-Jun-16	Cloudy	Moderate	17:35	Middle	3.5	26.9 26.7	26.7	8.1 8.1	8.1	32.0 32.7	32.8	81.5 80.2	80.2	5.4 5.4	5.4	5.3	3.6 4.3	4.6	4.1	3 4	4.0	3.8
13-3un-10	Cloudy	Moderale	17.55			26.7 26.5	26.5	8.1 8.0		32.9 33.7		80.2 78.2	78.2	5.3 5.2		5.5	4.9 3.9		4.1	4		5.6
				Bottom	6	26.5 26.4		8.0 8.3	8.0	33.7 29.3	33.7	78.1 93.0	-	5.2 6.4	5.2		4.1 3.6	4.0		4	4.0	<u> </u>
				Surface	1	26.4 26.1	26.4	8.3 8.2	8.3	29.3 30.3	29.3	93.0 87.0	93.0	6.4 5.9	6.4		3.6 3.9	3.6		5	5.0	1
15-Jun-16	Cloudy	Moderate	16:42	Middle	3.5	26.0 26.2	26.1	8.2	8.2	30.5 31.4	30.4	86.0 82.2	86.5	5.9 5.6	5.9	6.0	3.8 3.8	3.9	3.8	6	6.0	5.0
				Bottom	6	26.2 28.9	26.2	8.2 8.1	8.2	<u>31.4</u> 29.2	31.4	82.8 93.6	82.5	5.6 6.1	5.6		3.8 2.0	3.8		4	4.0	<u> </u>
				Surface	1	28.8 27.7	28.9	8.1 8.1	8.1	29.2 29.2 30.1	29.2	93.2 86.9	93.4	6.1 5.8	6.1		1.9 2.5	2.0		3 4	3.0	4
17-Jun-16	Cloudy	Moderate	16:00	Middle	4	27.6	27.7	8.1	8.1	30.3	30.2	87.1	87.0	5.8 5.2	5.8	5.7	2.3	2.4	2.9	4 4 3	4.0	3.5
				Bottom	7	27.0 27.0	27.0	8.1 8.1	8.1	31.7 31.9	31.8	78.1 79.1	78.6	5.2 5.3	5.3		4.3 4.5	4.4		3 4	3.5	<u> </u>

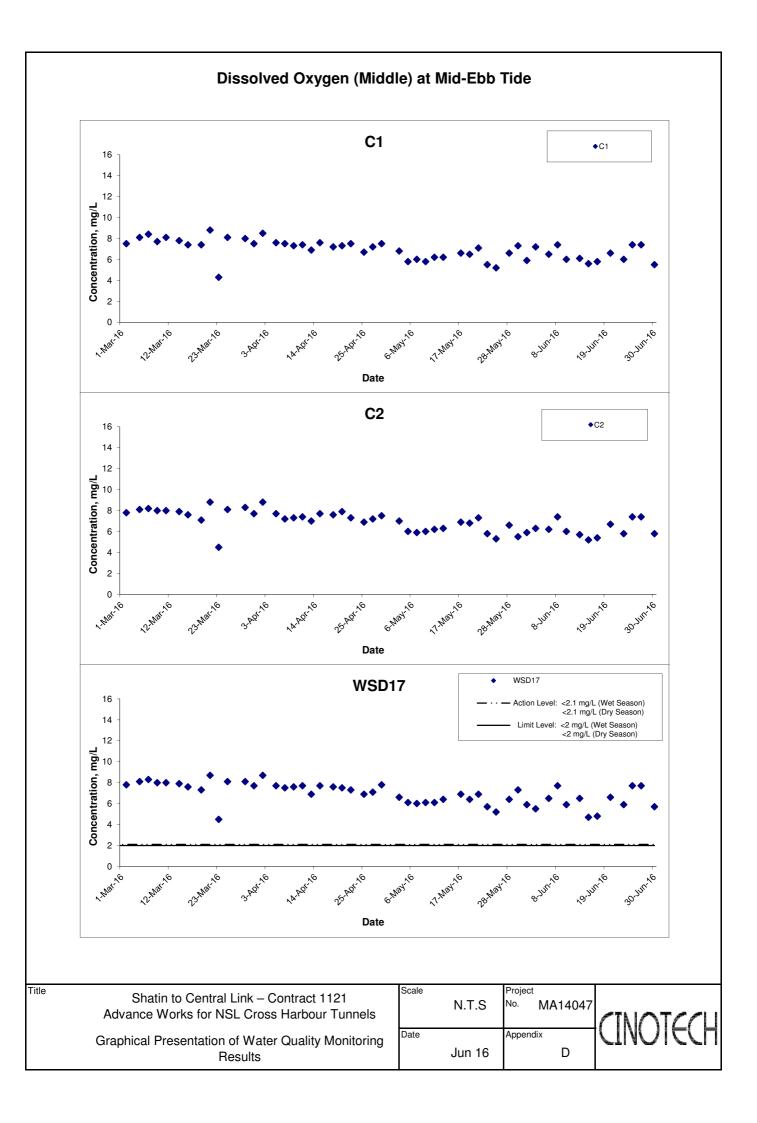
Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

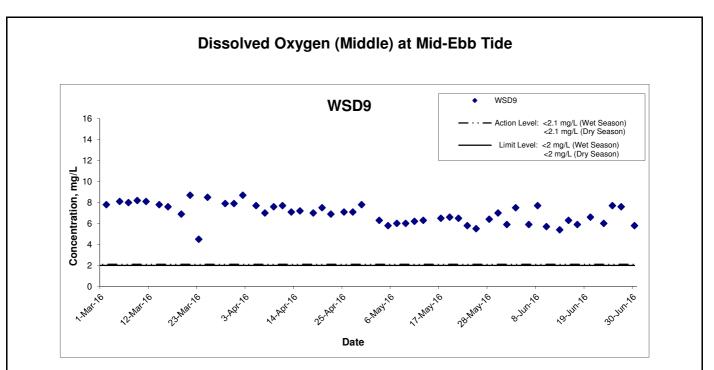

Date	Weather	Sea	Sampling	Dop	th (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids ((mg/L)
Dale	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.8	23.8	8.1 8.1	8.1	33.1 33.1	33.1	95.7 95.7	95.7	6.7 6.7	6.7		3.2 3.1	3.2		3 3	3.0	
20-Jun-16	Fine	Calm	20:30	Middle	3.5	23.8 23.8	23.8	8.2 8.2	8.2	33.2 33.2	33.2	94.5 94.9	94.7	6.6 6.6	6.6	6.6	3.5 3.6	3.6	3.3	3 3	3.0	3.3
				Bottom	6	23.7 23.6	23.7	8.1 8.1	8.1	33.3 33.3	33.3	94.1 94.0	94.1	6.6 6.6	6.6		3.0 3.2	3.1		4 4	4.0	
				Surface	1	25.7 25.6	25.7	8.2 8.2	8.2	28.0 28.1	28.1	96.5 96.4	96.5	6.6 6.6	6.6		2.7 2.4	2.6		5 5	5.0	
23-Jun-16	Sunny	Moderate	08:44	Middle	3.5	24.5 24.4	24.5	8.2 8.2	8.2	28.9 28.9	28.9	87.3 86.9	87.1	6.0 6.0	6.0	6.1	2.0 1.9	2.0	2.9	4 4	4.0	4.3
				Bottom	6	23.9 23.8	23.9	8.2 8.2	8.2	30.3 30.4	30.4	84.1 83.7	83.9	5.8 5.8	5.8		4.1 4.2	4.2		4 4	4.0	
				Surface	1	28.9 29.0	29.0	8.2 8.3	8.3	31.5 31.6	31.6	115.1 114.7	114.9	7.5 7.4	7.5		2.0 2.2	2.1		5 5	5.0	
25-Jun-16	Sunny	Rough	09:59	Middle	3.5	28.6 28.8	28.7	8.3 8.3	8.3	32.1 32.1	32.1	114.4 115.0	114.7	7.4 7.4	7.4	7.4	3.6 3.6	3.6	3.3	4 4	4.0	4.0
				Bottom	6	28.7 28.6	28.7	8.3 8.2	8.3	32.4 32.3	32.4	115.0 114.1	114.6	7.4 7.4	7.4		4.3 4.1	4.2		3 3	3.0	
				Surface	1	28.8 28.8	28.8	8.2 8.3	8.3	31.3 31.2	31.3	114.6 114.9	114.8	7.4 7.5	7.5		2.2 1.9	2.1		4 5	4.5	
27-Jun-16	Sunny	Moderate	11:49	Middle	3.5	28.6 28.6	28.6	8.3 8.3	8.3	31.7 32.0	31.9	114.2 114.4	114.3	7.4 7.4	7.4	7.4	3.0 3.3	3.2	3.2	7 7	7.0	5.3
				Bottom	6	28.5 28.7	28.6	8.3 8.2	8.3	32.1 32.1	32.1	114.1 114.2	114.2	7.4 7.4	7.4		4.1 4.4	4.3		4 5	4.5	
				Surface	1	28.8 28.7	28.8	7.9 8.0	8.0	29.2 29.3	29.3	89.6 89.7	89.7	5.9 5.9	5.9		3.3 3.4	3.4		6 6	6.0	
30-Jun-16	Cloudy	Moderate	16:29	Middle	3.5	28.6 28.6	28.6	7.9 7.9	7.9	30.8 30.6	30.7	90.5 90.8	90.7	5.9 5.9	5.9	5.9	3.1 3.3	3.2	3.6	5 5	5.0	5.7
				Bottom	6	28.5 28.5	28.5	8.0 8.0	8.0	31.1 31.0	31.1	89.1 88.6	88.9	5.8 5.8	5.8		4.3 4.2	4.3		6 6	6.0	

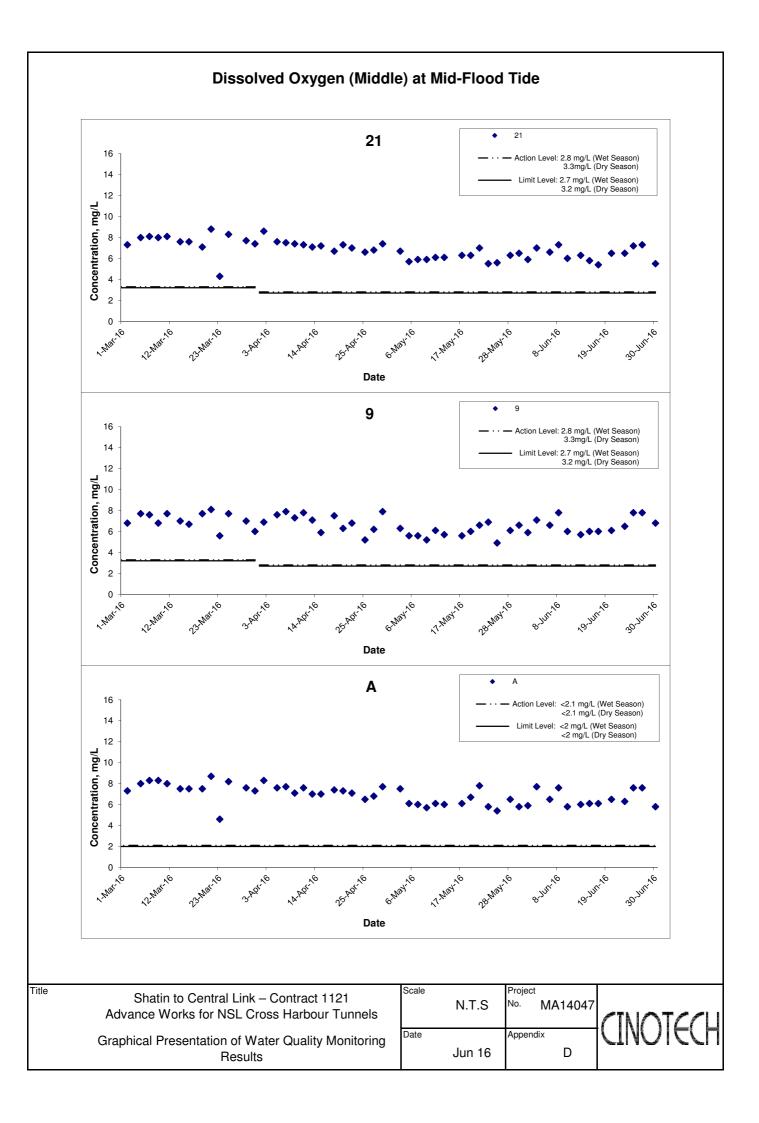


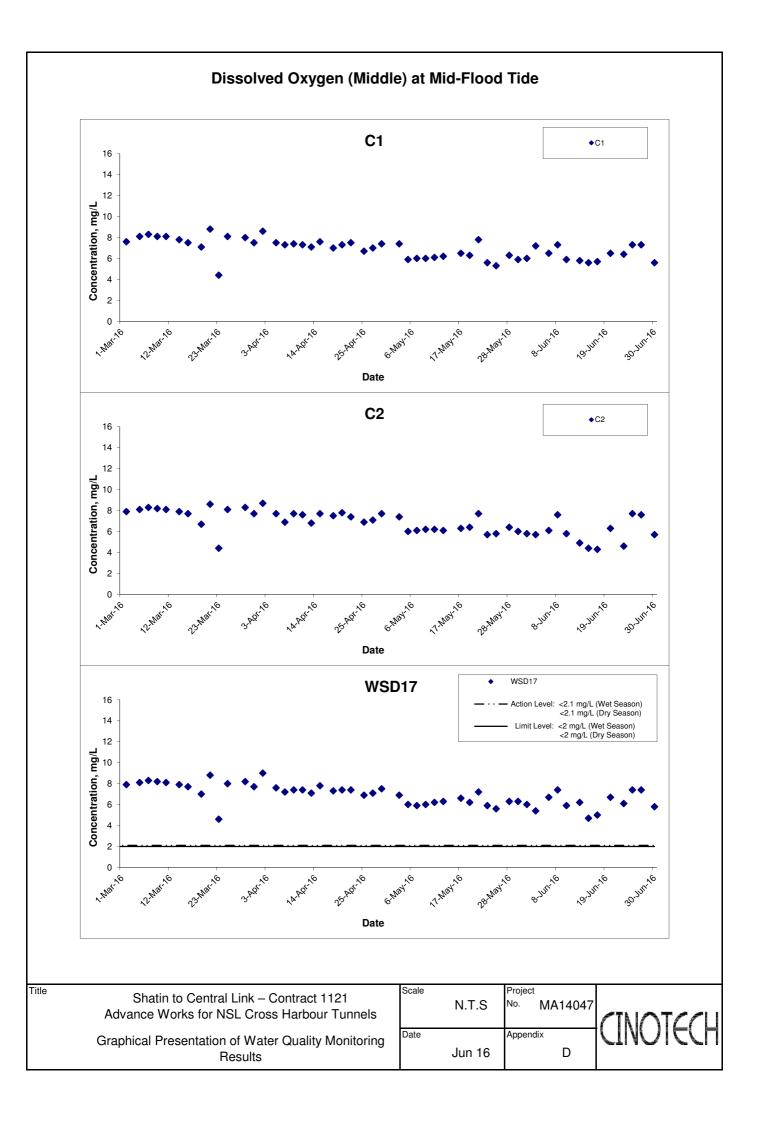


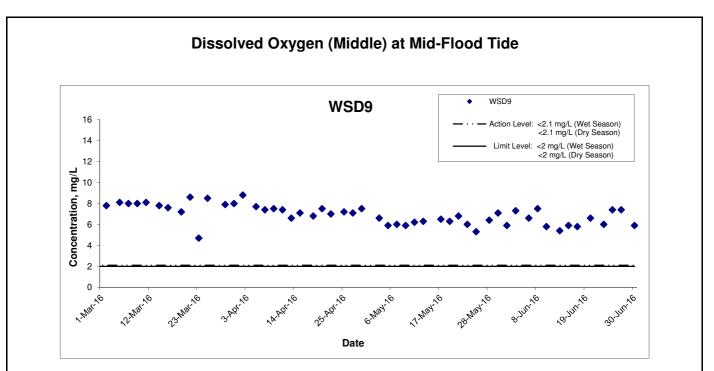

	ink – Contract 1121 . Cross Harbour Tunnels	Scale	N.T.S		MA14047	
•	f Water Quality Monitoring sults	Date	Jun 16	Append	D	

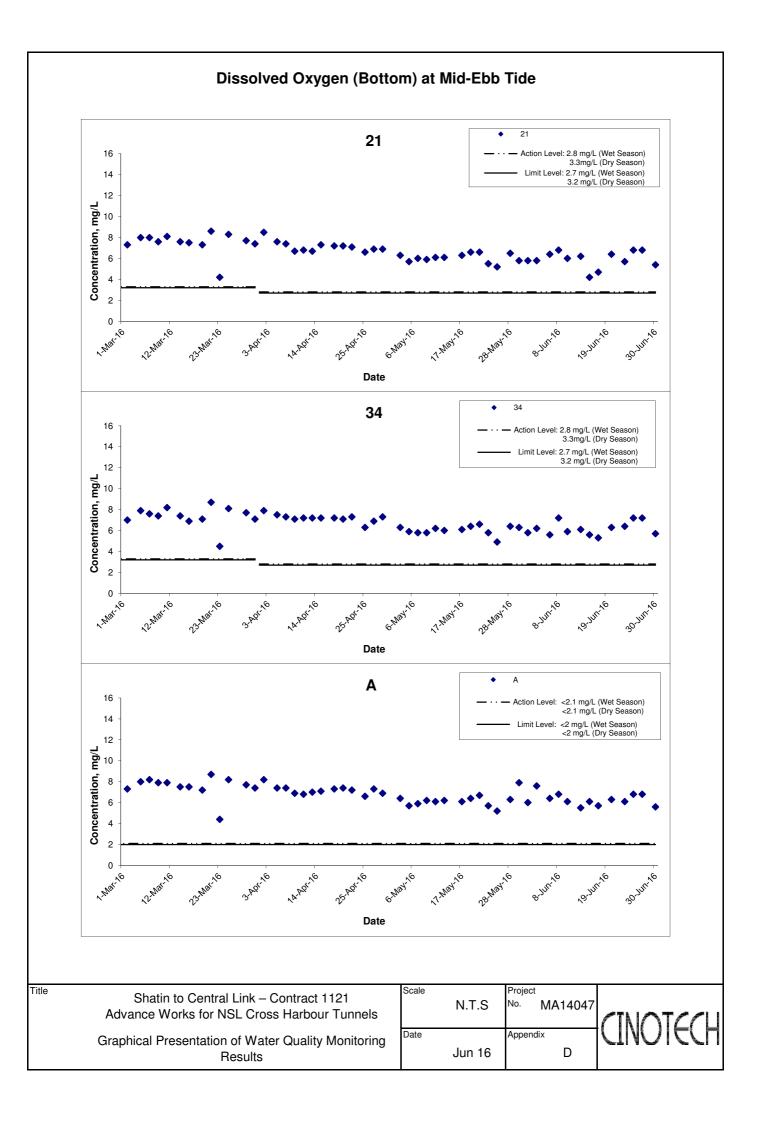


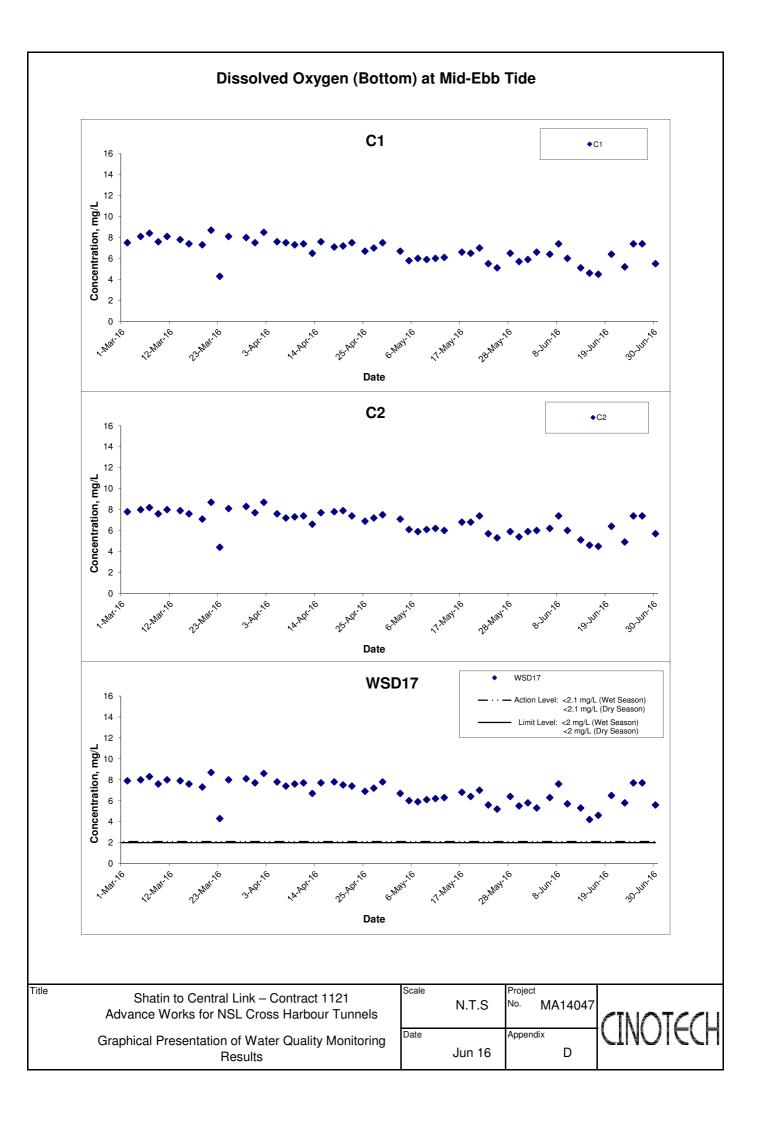


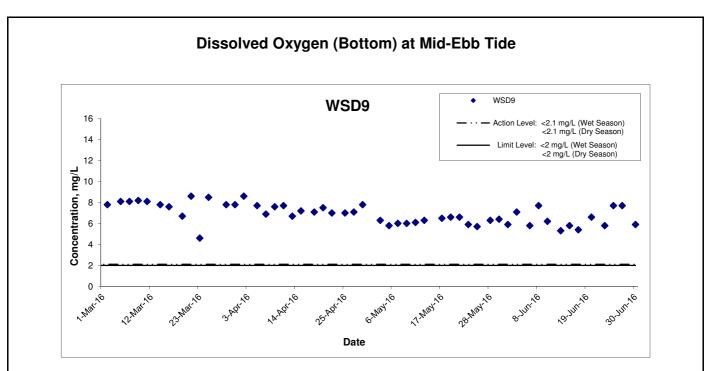

Title	Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	Scale		Project No.	MA14047	
	Graphical Presentation of Water Quality Monitoring Results	Date	Jun 16	Appenc	lix D	

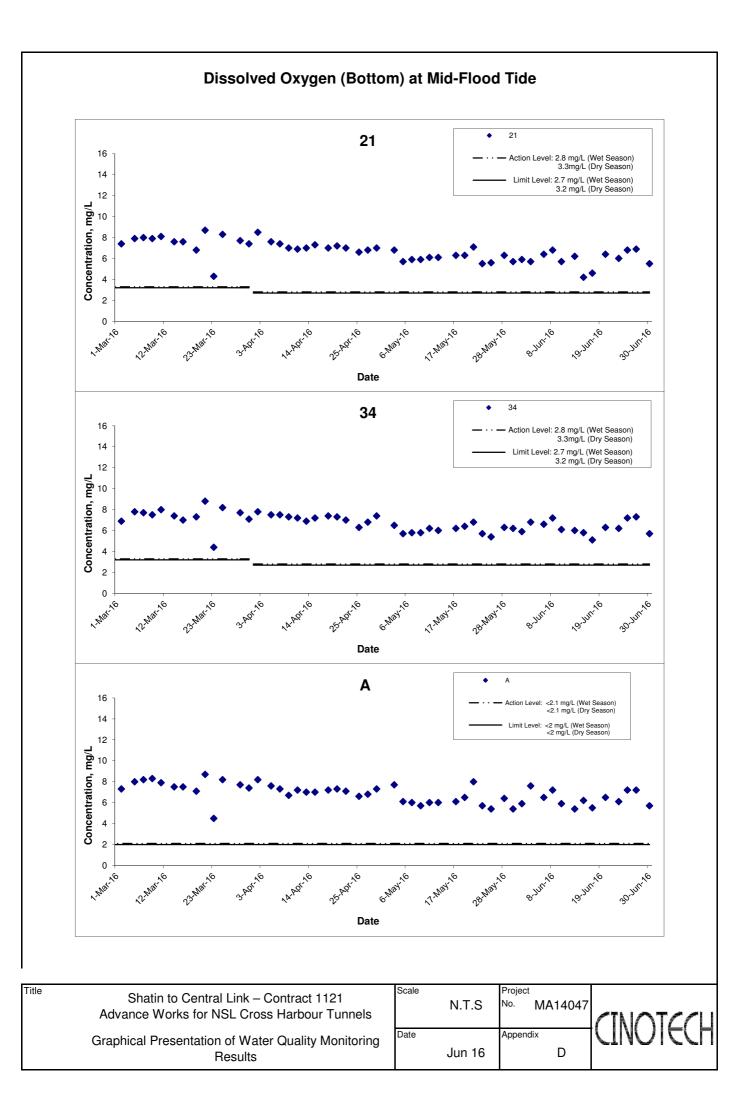


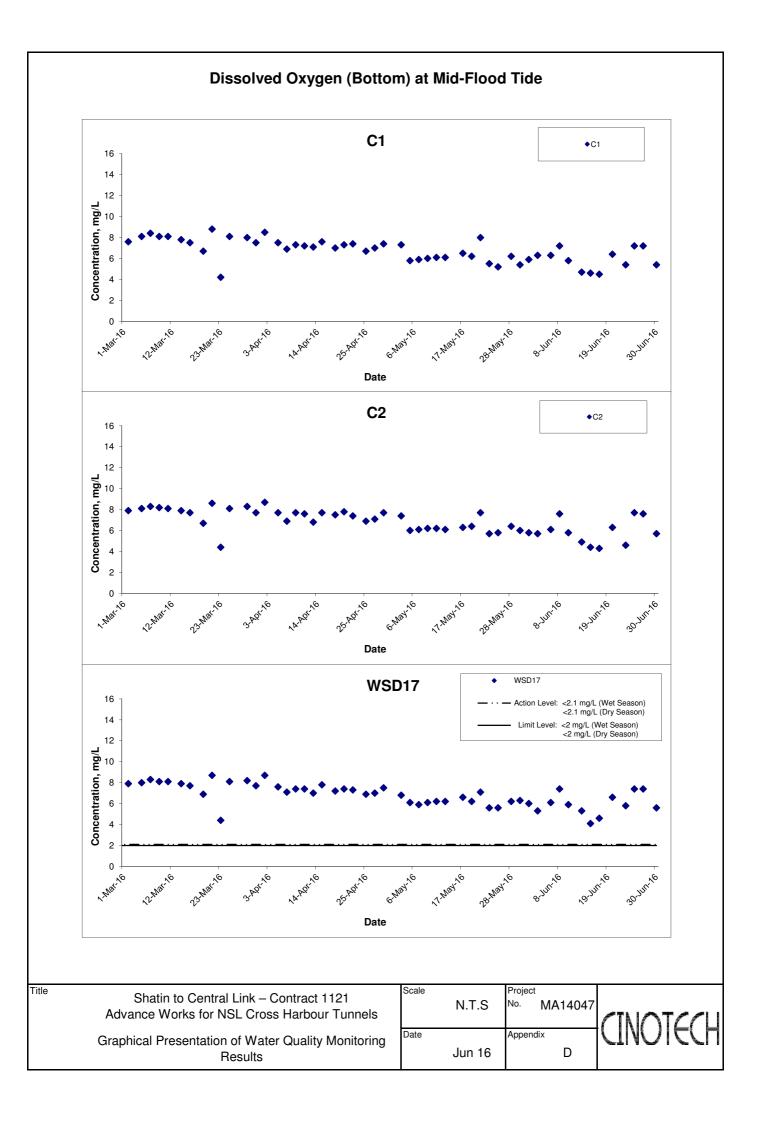


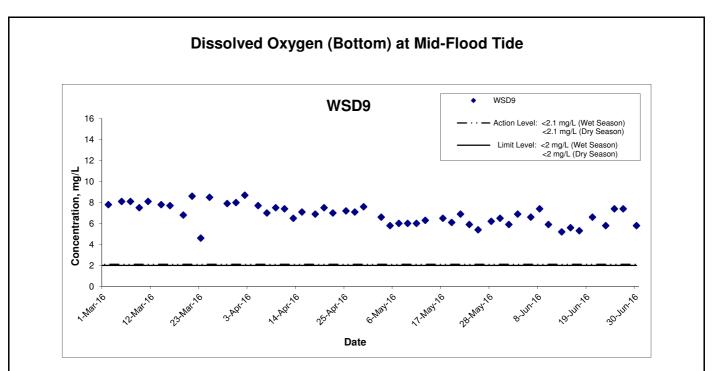

		I	
Title Shatin to Central Link – Contract 1121	Scale	Project	
Advance Works for NSL Cross Harbour Tunnels	N.T.S	No. MA14047	
Graphical Presentation of Water Quality Monitoring	Date	Appendix	
Results	Jun 16	D	

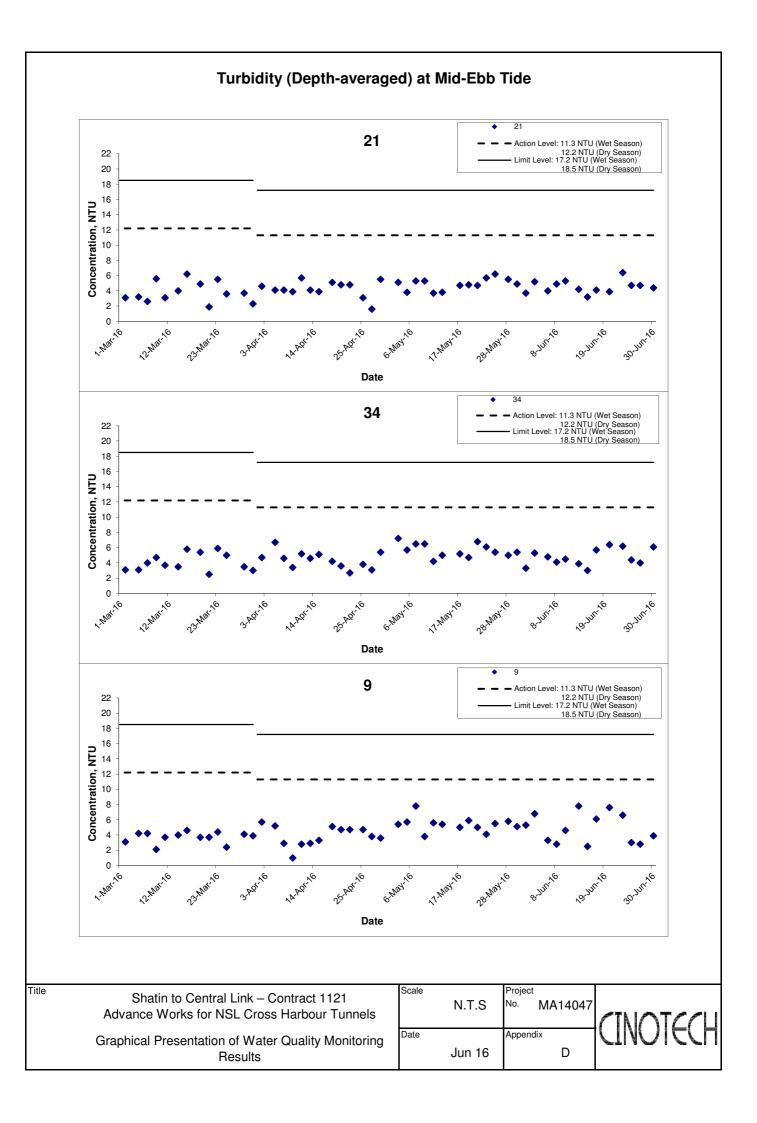


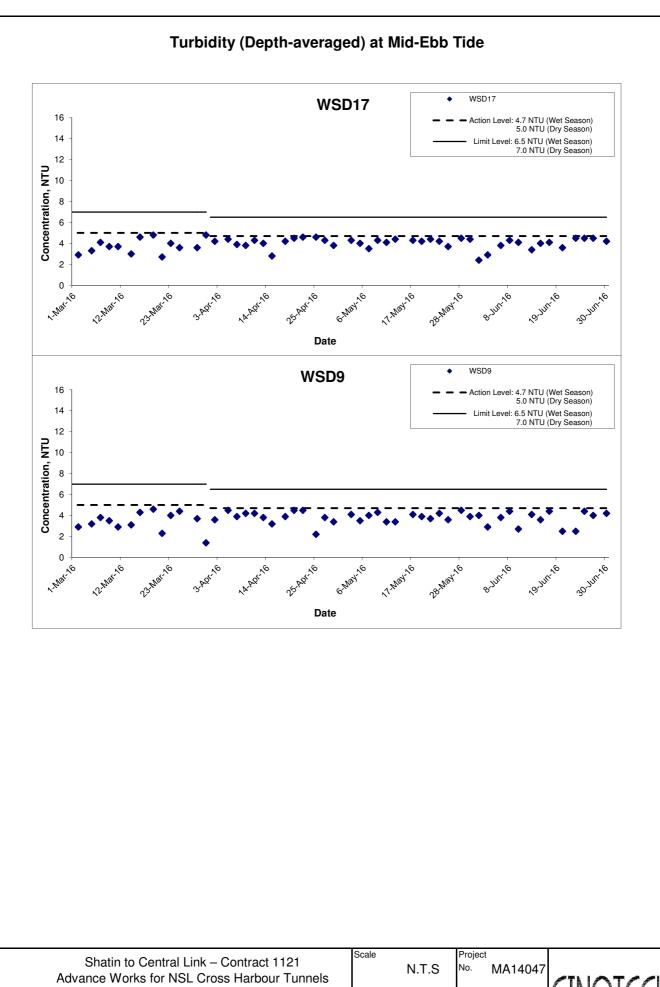



Title	Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	Scale		Project No.	MA14047	
	Graphical Presentation of Water Quality Monitoring Results	Date	Jun 16	Append	ix D	

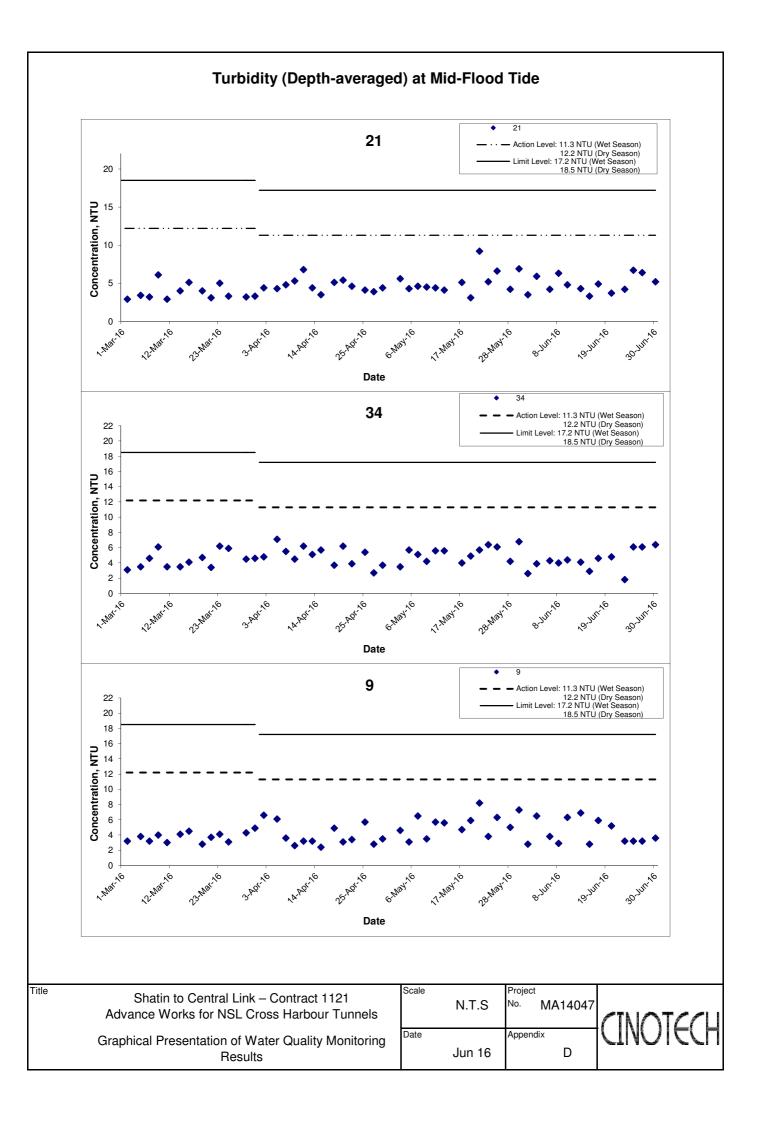


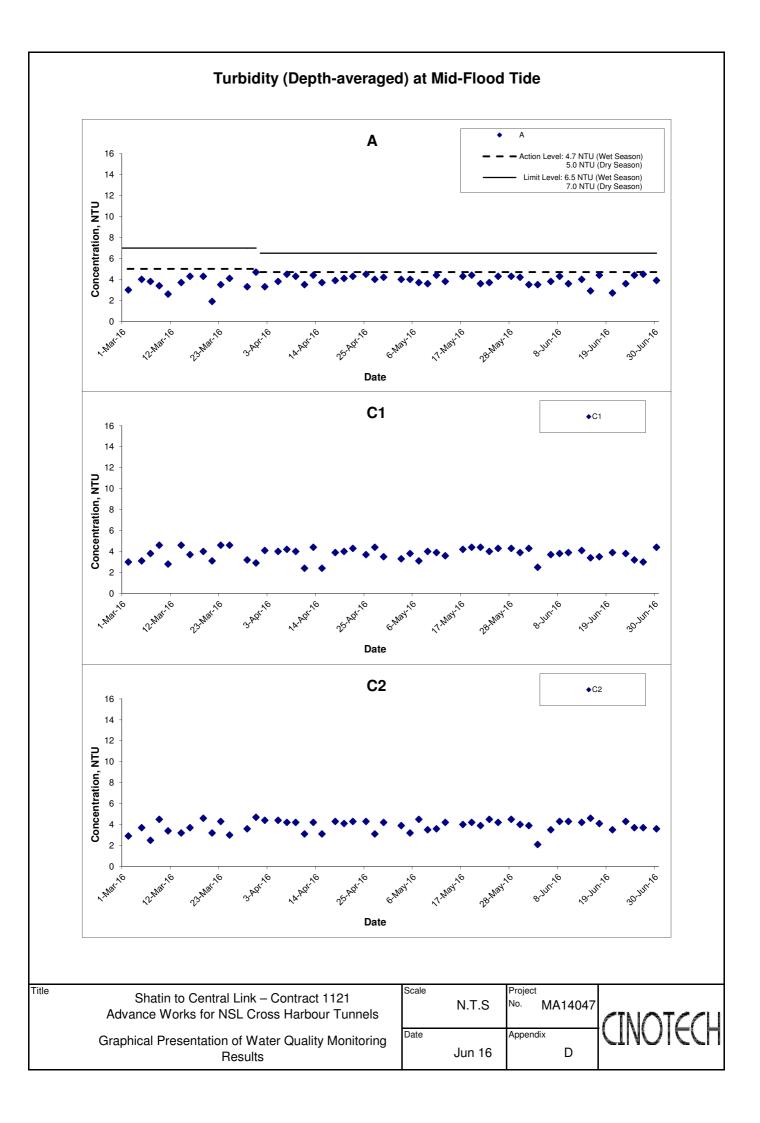


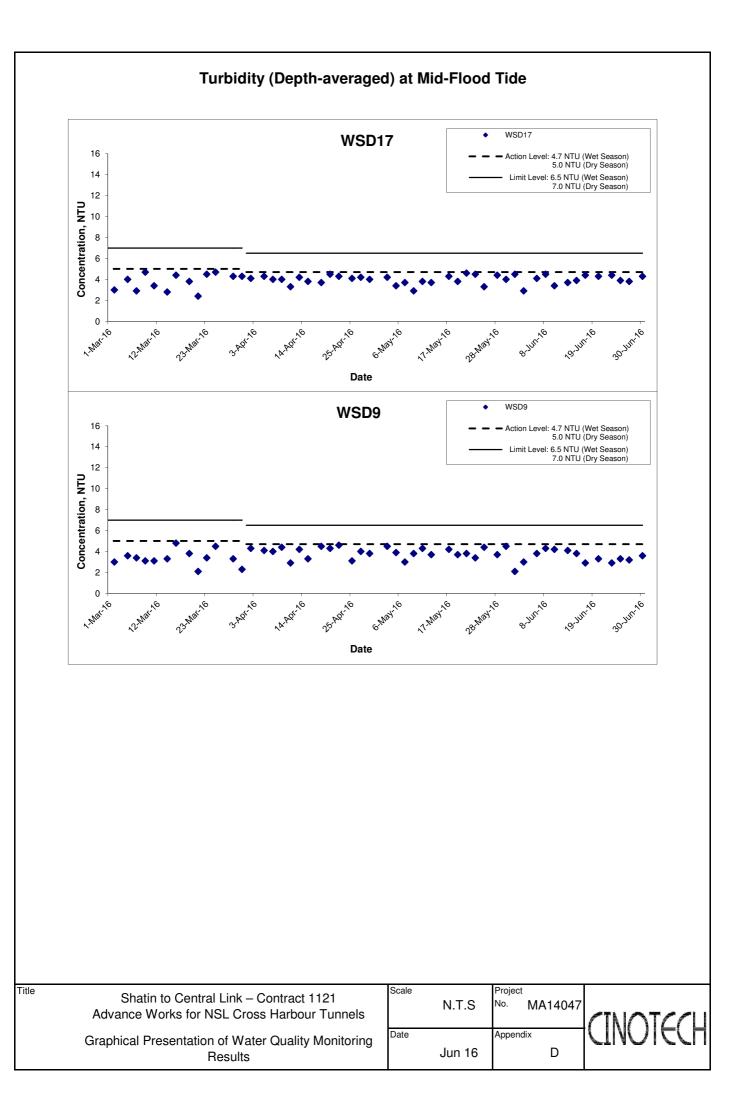

Title Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels		Project No. MA14047	
Graphical Presentation of Water Quality Monitoring	Date	Appendix	
Results	Jun 16	D	

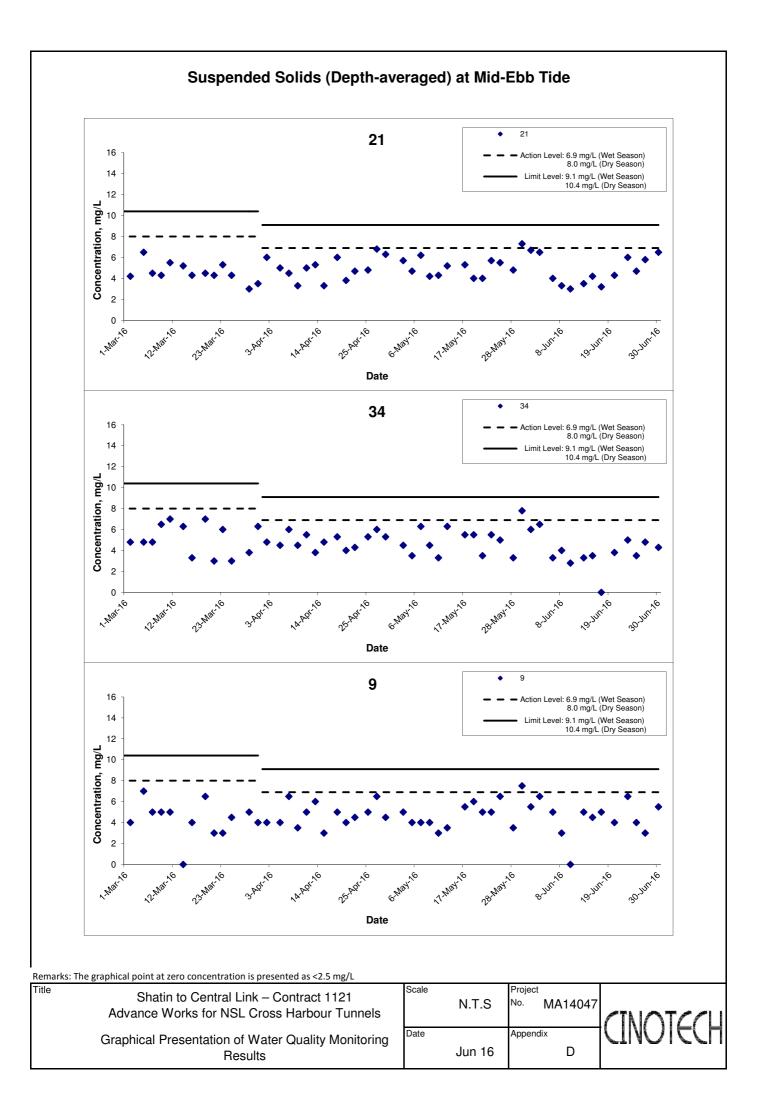


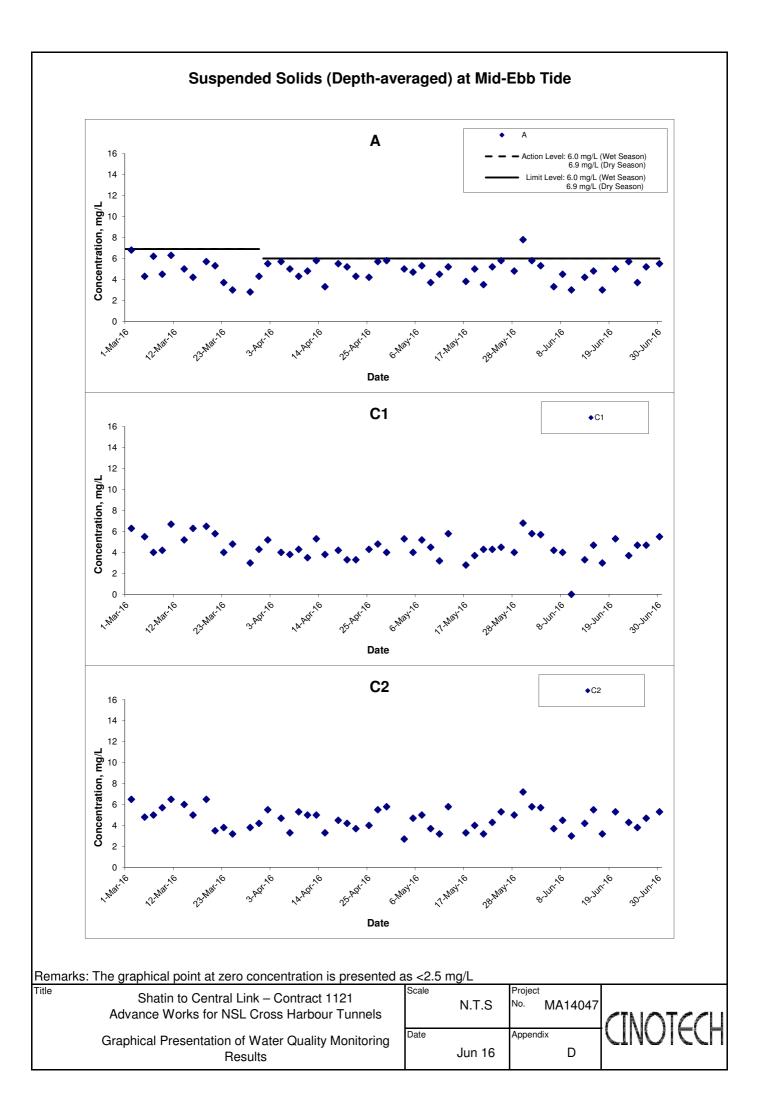
Title	Shatin to Central Link – Contract 1121	Scale		Project No.	MA14047	
	Advance Works for NSL Cross Harbour Tunnels Graphical Presentation of Water Quality Monitoring Results	Date	Jun 16	Append	dix D	CINOTECH

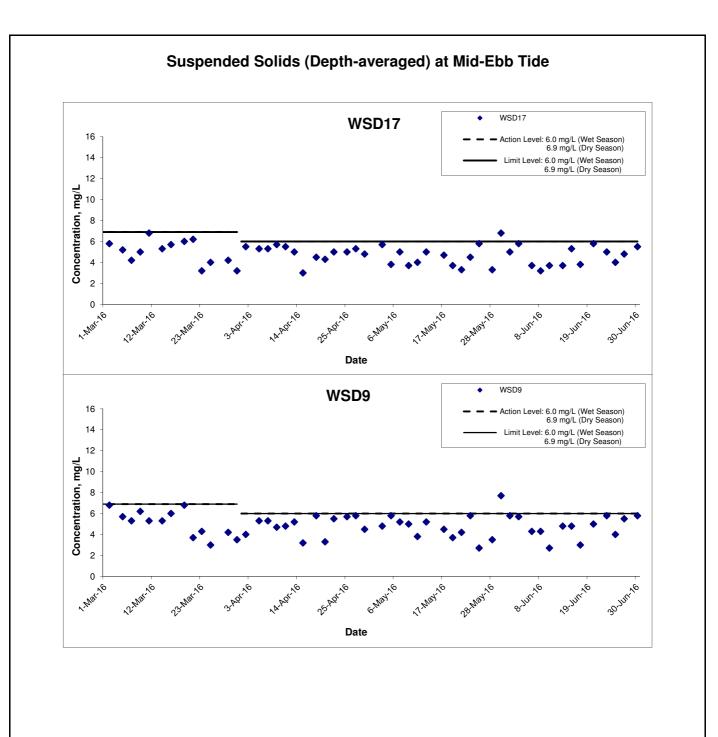


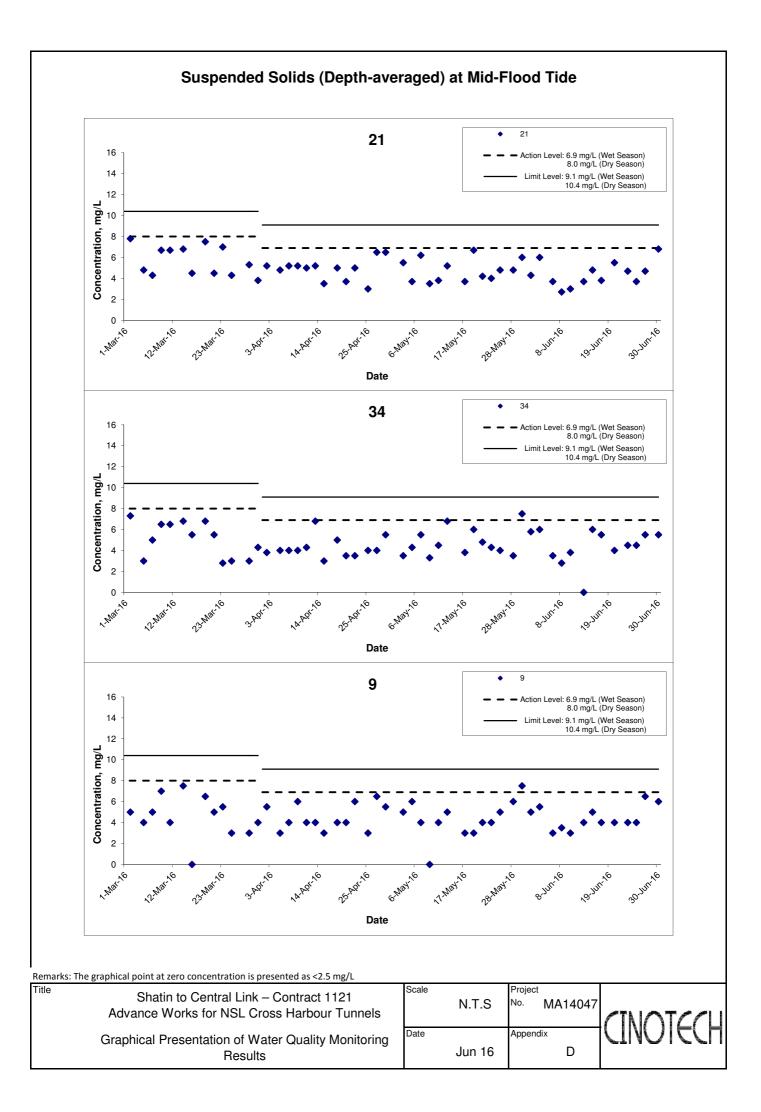

Graphical Presentation of Water Quality Monitoring Results

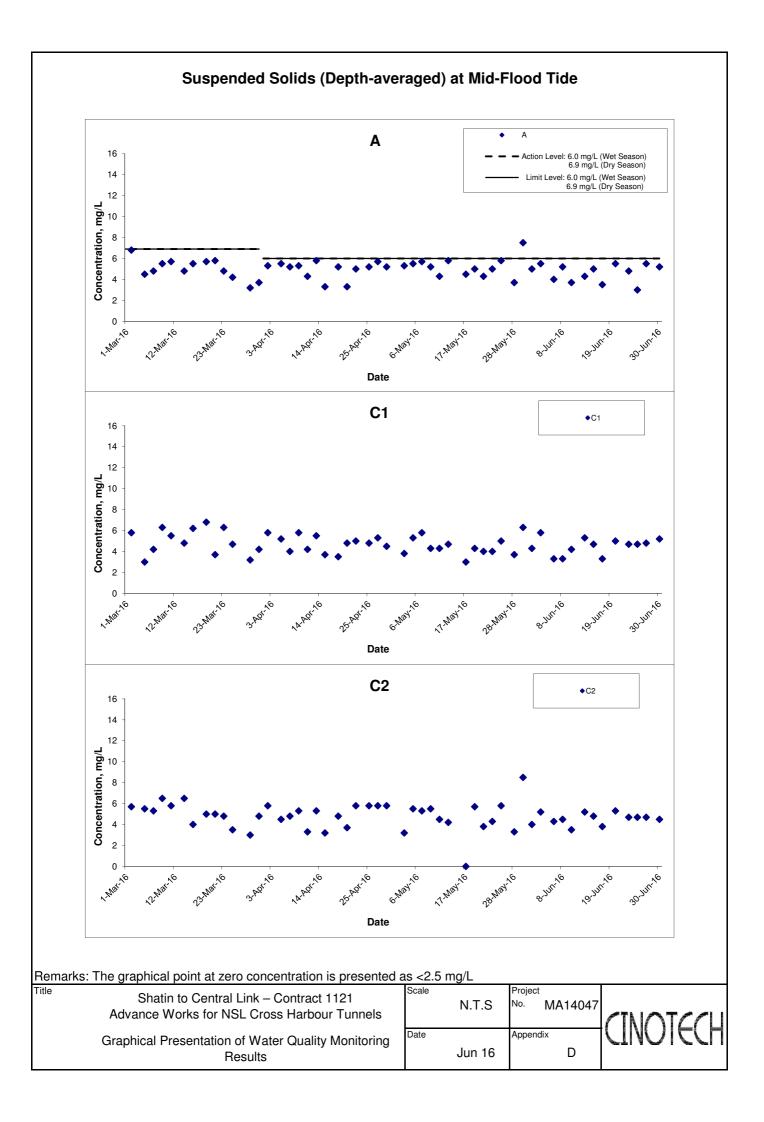

Title

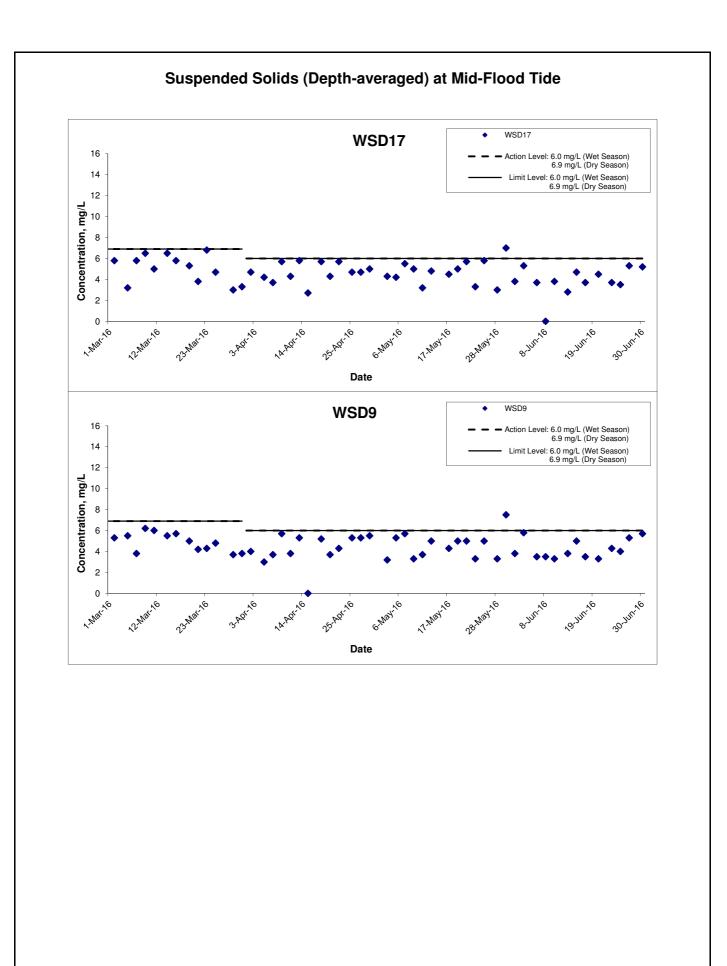

	N.1.3	NO. IV
Date		Appendix
	Jun 16	


D









Title Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels		Project No. MA14047	
Graphical Presentation of Water Quality Monitoring Results	Date Jun 16	Appendix D	

Remarks: The graphical point at zero concentration is presented as <2.5 mg/L

Title Shatin to Central Link – Advance Works for NSL Cros			Project No. MA14047	
Graphical Presentation of Wate Results	er Quality Monitoring	Jun 16	Appendix D	

APPENDIX E COPIES OF CALIBRATION CERTIFICATES

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report No.:
	RM 1710, Technology Park,	Test Report No.: Date of Issue:
	18 On Lai Street,	Date Received:
	Shatin, N.T., Hong Kong	Date Tested:
		Data Convelated.

Test Report No.:	C/W/160521
Date of Issue:	2016-05-21
Date Received:	2016-05-21
Date Tested:	2016-05-21
Date Completed:	2016-05-21
Next Due Date:	2016-08-20
Page:	1 of 2

ATTN: Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No.

Test conditions:

Room Temperatre **Relative Humidity** : 23 degree Celsius : 57%

: Aquaread Ltd

: AP-2000-D

:122252120

: W.18.02

: Multiparameter Water Quality Probe

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C ********** PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No .:	C/W/160521
Date of Issue:	2016-05-21
Date Received:	2016-05-21
Date Tested:	2016-05-21
Date Completed:	2016-05-21
Next Due Date:	2016-08-20
Page:	2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.08	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.89	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.17	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.0	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.41	Difference between Titration value and instrument reading <0,2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salir	nity, ppt	Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0±3	Pass
30.0	30.0		

Conductivity performance checking

all and the second s	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution (2570 µs/cm)	2587	2442-2698	Pass

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	23.9	+0.2	N/A

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report N
0	RM 1710, Technology Park,	Date of Issue:
	18 On Lai Street,	Date Received
	Shatin, N.T., Hong Kong	Date Tested:
		Date Complete

Test Report No.:	C/W/160415G
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	1 of 2

ATTN:

Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No. : Multiparameter Water Quality Probe : Aquaread Ltd : AP-2000-D :122251920 : W.18.06

Test conditions:

Room Temperatre Relative Humidity : 22 degree Celsius : 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No .:	C/W/160415G
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	2 of 2

Certificate of Calibration

Results:

pH performance checking

ſ	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.08	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.14	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.3	229 <u>+</u> 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.47	Difference between Titration value and instrument reading	Pass
		<0.2mg/L	

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Sal	inity, ppt	Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2599	2442-2698	Pass
(2570 µs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.3	-0.2	N/A

TEST REPORT

APPLICANT:	Cinotech Consultants Limited
	RM 1710, Technology Park,
	18 On Lai Street,
	Shatin, N.T., Hong Kong

Test Report No.:	C/W/160415H
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	1 of 2

ATTN:

Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No. : Multiparameter Water Quality Probe : Aquaread Ltd : AP-2000-D :122251420 : W.18.07

Test conditions:

Room Temperatre Relative Humidity : 22 degree Celsius : 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.:	C/W/160415H
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.03	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.82	6.86 <u>+</u> 0.10	Pass
pH QC buffer 9.18	9.15	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	228.0	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.45	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Sa	inity, ppt	Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2574	2442-2698	Pass
(2570 µs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.2	-0.1	N/A

TEST REPORT

APPLICANT:	Cinotech Consultants Limited
	RM 1710, Technology Park,
	18 On Lai Street,
	Shatin, N.T., Hong Kong

Test Report No.:	C/W/160415F
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	1 of 2

ATTN:

Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No. : Multiparameter Water Quality Probe : Aquaread Ltd : AP-2000-D : 122251620 : W.18.09

Test conditions:

Room Temperatre Relative Humidity : 22 degree Celsius : 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No .:	C/W/160415F
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.06	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.82	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.17	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.3	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.44	Difference between Titration value and instrument reading	Pass
		<0.2mg/L	

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salin		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0	7	

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2612	2442-2698	Pass
(2570 µs/cm)			1

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.3	-0.2	N/A

TEST REPORT

APPLICANT:	Cinotech Consultants Limited
	RM 1710, Technology Park,
	18 On Lai Street,
	Shatin, N.T., Hong Kong

Test Report No .:	C/W/160415B
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	1 of 2

ATTN:

Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No. : Multiparameter Water Quality Probe : Aquaread Ltd :AP-2000-D :122252020 : W.18.11

Test conditions:

Room Temperatre Relative Humidity : 22 degree Celsius : 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No .:	C/W/160415B
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.03	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 <u>+</u> 0.10	Pass
pH QC buffer 9.18	9.11	9.18 <u>+</u> 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.7	229 <u>+</u> 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.42	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Sali	nity, ppt	Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0±3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2596	2442-2698	Pass
(2570 µs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.2	-0,1	N/A

TEST REPORT

APPLICANT: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong

Test Report No .:	C/W/160415J
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	1 of 2

ATTN:

Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No.

: AP-2000-D :122251520 : W.18.12

: Multiparameter Water Quality Probe

Test conditions:

Room Temperatre Relative Humidity : 22 degree Celsius : 54%

: Aquaread Ltd

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.:	C/W/160415J
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
Page:	2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.06	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.83	6.86 + 0.10	Pass
pH QC buffer 9.18	9.15	9.18 + 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	229.6	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.42	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Sali	nity, ppt	Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0±3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2577	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.4	-0.3	N/A

APPENDIX F QUALITY CONTROL REPORTS FOR SS LABORATORY ANALYSIS

TEST REPORT

QC REPORT

PPLICANT: Cinotech Co	nsultants Limited	Report No.:	24993
RM 1710, Te	chnology Park,	Date of Issue:	2016/06/02
18 On Lai Street, Shatin, N.T., Hong Kong		Date Received:	2016/06/01
		Date Tested:	2016/06/01
		Date Completed:	2016/06/02
TTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Cont	ract No.1121	
	- NSL Cross Harbour Tunnel	S	
Sampling Date:	2016/06/01		
Number of Sample:	84		
Custody No.:	MA14047/160601		

Total Suspended Solids	Duplicate Analysis		QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C1be	10	10	2	95

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Pathlese

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited		Report No.:	25011
RM 1710, Technology Park,		Date of Issue:	2016/06/06
18 On Lai Street,		Date Received:	2016/06/03
Shatin, N.T., Hong Kong		Date Tested:	2016/06/03
		Date Completed:	2016/06/06
ATTN: Ms. Mei Ling Tang Pag		Page:	1 of 1
Project Name:	Shatin to Central Link - Contract No	.1121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/03		
Number of Sample:	84		
Custody No.:	MA14047/160603		
*******	***********************	************	******

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	8	8	1	96

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patrickle

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	25018
RM 1710, Te	echnology Park,	Date of Issue:	2016/06/07
18 On Lai St	reet,	Date Received:	2016/06/06
Shatin, N.T., Hong Kong		Date Tested:	2016/06/06
		Date Completed:	2016/06/07
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contract N	Jo.1121	
	- NSL Cross Harbour Tunnels		i.
Sampling Date:	2016/06/06		
Number of Sample:	84		
Custody No.:	MA14047/160606		
*******	************	*******	*************

Total Suspended Solids	Du	plicate Analy	/sis	QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	3	3	2	102

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

ELLAB) 匯 Testing & Research 力

Etizak Te

PATRICK TSE Laboratory Manager

TEST REPORT

<u>QC REPORT</u>

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	25030
RM 1710, Te	echnology Park,	Date of Issue:	2016/06/10
18 On Lai St	reet,	Date Received:	2016/06/08
Shatin, N.T.,	Hong Kong	Date Tested:	2016/06/08
		Date Completed:	2016/06/10
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contract No.	121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/08		
Number of Sample:	84		
Custody No.:	MA14047/160608		
*********	*****	********	*********

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	7	7	2	101

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

fatulta

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	25038
RM 1710, Te	chnology Park,	Date of Issue:	2016/06/13
18 On Lai St	reet,	Date Received:	2016/06/10
Shatin, N.T.,	Hong Kong	Date Tested:	2016/06/10
		Date Completed:	2016/06/13
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contract No	0.1121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/10		
Number of Sample:	84		
Custody No.:	MA14047/160610		

Total Suspended Solids	Du	plicate Anal	ysis	QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	3	3	1	90

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patrahlse

PATRICK TSE Laboratory Manager

TEST REPORT

<u>QC REPORT</u>

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	25051
RM 1710, Te	echnology Park,	Date of Issue:	2016/06/14
18 On Lai St	reet,	Date Received:	2016/06/13
Shatin, N.T.,	Hong Kong	Date Tested:	2016/06/13
		Date Completed:	2016/06/14
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contract No.	1121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/13		
Number of Sample:	84		
Custody No.:	MA14047/160613		
********	***************************************	*********	*****

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	6	6	5	95

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patulelse

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

PPLICANT: Cinotech Co	nsultants Limited	Report No.:	25067
RM 1710, Te	echnology Park,	Date of Issue:	2016/06/16
18 On Lai St	18 On Lai Street,		2016/06/15
Shatin, N.T.	Shatin, N.T., Hong Kong		2016/06/15
		Date Completed:	2016/06/16
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contr - NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/15		
Number of Sample:	84		
Custody No.:	MA14047/160615		

Total Suspended Solids	U	plicate Anal	ysis	QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	5	5	1	103

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

fatick/Se

PATRICK TSE Laboratory Manager

TEST REPORT

<u>QC REPORT</u>

E

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	25088
RM 1710, Te	echnology Park,	Date of Issue:	2016/06/20
18 On Lai St	reet,	Date Received:	2016/06/17
Shatin, N.T.,	Hong Kong	Date Tested:	2016/06/17
		Date Completed:	2016/06/20
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contra	act No.1121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/17		
Number of Sample:	84		
Custody No.:	MA14047/160617		

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	3	3	4	97

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patrickle

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	25098
RM 1710, Te	echnology Park,	Date of Issue:	2016/06/21
18 On Lai St	reet,	Date Received:	2016/06/20
Shatin, N.T.	Shatin, N.T., Hong Kong		2016/06/20
		Date Completed:	2016/06/21
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Cont - NSL Cross Harbour Tunnel		
Sampling Date:	2016/06/20		
Number of Sample:	84		
	MA14047/160620		

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	8	8	4	97

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patrak Te

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	25119
RM 1710, Te	RM 1710, Technology Park,		2016/06/24
18 On Lai Street,		Date Received:	2016/06/23
Shatin, N.T., Hong Kong		Date Tested:	2016/06/23
		Date Completed:	2016/06/24
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contract No	.1121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/23		
Number of Sample:	84		
Custody No.:	MA14047/160623		
******	***************************************	***********	******

Total Suspended Solids	Duplicate Analysis		QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	7	7	1	96

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patakle

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	25134
RM 1710, Te	chnology Park,	Date of Issue:	2016/06/27
18 On Lai St	reet,	Date Received:	2016/06/25
Shatin, N.T., Hong Kong		Date Tested:	2016/06/25
		Date Completed:	2016/06/27
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contrac	xt No.1121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/25		
Number of Sample:	84		
Custody No.:	MA14047/160625		
****	*********	******	******

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	4	4	3	103

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

fatil/se

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

APPLICANT: Cinotech Con	nsultants Limited	Report No.:	25139
RM 1710, Te	chnology Park,	Date of Issue:	2016/06/28
18 On Lai St	reet,	Date Received:	2016/06/27
Shatin, N.T., Hong Kong		Date Tested:	2016/06/27
		Date Completed:	2016/06/28
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contra	ct No.1121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/27		
Number of Sample:	84		
Custody No.:	MA14047/160627		
*********************	***********	*********************	*******

Total Suspended Solids	Duplicate Analysis		QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	6	6	5	100
******	****	END OF RI	EPORT****	*****

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patrilla

PATRICK TSE Laboratory Manager

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited		Report No.:	25165
RM 1710, Te	RM 1710, Technology Park,		2016/07/04
18 On Lai Street,		Date Received:	2016/06/30
Shatin, N.T., Hong Kong		Date Tested:	2016/06/30
		Date Completed:	2016/07/04
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Shatin to Central Link - Contract No	.1121	
	- NSL Cross Harbour Tunnels		
Sampling Date:	2016/06/30		,
Number of Sample:	84		
Custody No.:	MA14047/160630		
*******	************************************	******	******

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	· · ·
	mg/L	mg/L	%	
WSD9se	6	6	3	106

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

fatil/Se

PATRICK TSE Laboratory Manager

APPENDIX G SUMMARY OF EXCEEDANCE

APPENIDX G – SUMMARY OF EXCEEDANCE

Reporting Month: June 2016

- a) Exceedance Report for Dust Monitoring (NIL)
- b) Exceedance Report for Water Quality Monitoring (NIL)

SCL1121 NSL Cross Harbour Tunnels - Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 30 May 2016

Part A – Exceedance Summary Tables

Station(a)	Tide	Baseline Action	Baseline Limit	Depth-average Measured Value	Justification*	Validity
Station(s)	Tide	Level (mg/L)	Level (mg/L)	(mg/L)	Justification	(Yes/No)
21				7.3	(2), (5) & (6)	No
34		6.9	9.1	7.8	(2), (4) & (6)	No
9	Mid-ebb			7.5	(2), (4) & (6)	No
А	wild-coo			<u>7.8</u>	(2), (5) & (6)	No
WSD17		6.0	6.0	<u>6.8</u>	(2), (3) & (6)	No
WSD9				7.7	(2) & (6)	No
34		6.9	9.1	7.5	(2), (3) & (6)	No
9		0.9	9.1	7.5	(2), (3), (4), (5) & (6)	No
А	Mid-flood			7.5	(2), (3) & (6)	No
WSD17		6.0	6.0	7.0	(2), (3), (5) & (6)	No
WSD9				7.5	(2), (3), (5) & (6)	No

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Bold Italic means Action Level exceedance **Bold Italic with underline** means Limit Level exceedance

*Remarks (1) – No major marine construction activity was conducted.

- (2) No pollution discharge from construction activity was observed. (Please refer to Table V)
- (3) -The exceeded results were similar or within the ranges of monitoring results at the Control Station. (Please refer to Table II)
- (4) The exceeded results were similar or within the ranges of baseline monitoring results. (Please refer to Table III & Table IV)
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify Major rainfall events in May 2016 led to increased surface runoff and hence adverse marine water quality.

Note:

SCL1121 NSL Cross Harbour Tunnels - Notification of Environmental Quality Limit Exceedances

Table II: Results at Control Stations for Reference (30 May 2016) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

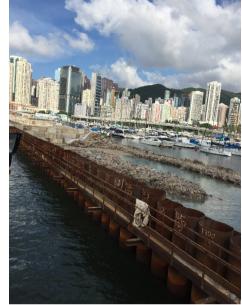
Station(s)	Tide	Depth-average Measured Value (mg/L)	Remarks (based on tidal current information)
C1	Mid-ebb	6.8	Control Station for Mid-ebb tide
C2	Mid-flood	8.5	Control Station for Mid-flood tide

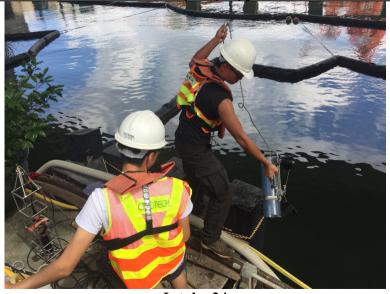
Table III – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Suspended	Solids (mg/L)
	Min	Max
21	< 2.0	7.0
34	< 2.0	8.0
9	< 2.0	9.0
А	< 2.0	6.0
WSD17	< 2.0	6.0
WSD9	< 2.0	7.0

Table IV - Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide

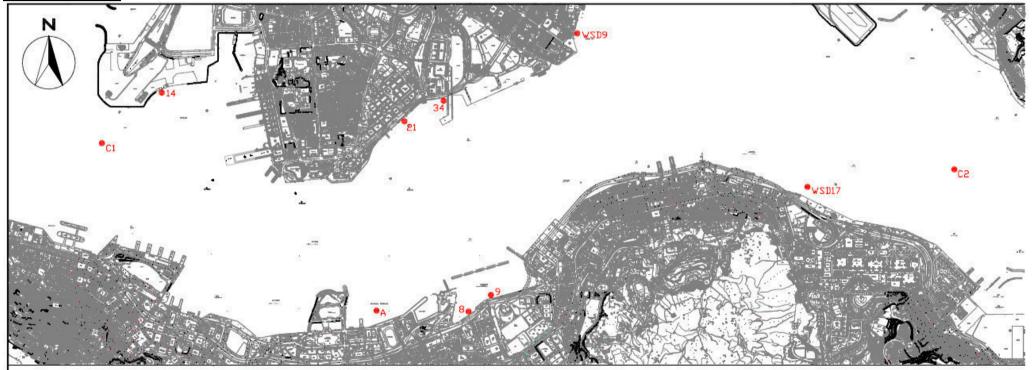
Station(s)	Suspended	Solids (mg/L)
	Min	Max
21	< 2.0	10.0
34	< 2.0	6.0
9	< 2.0	11.0
A	< 2.0	6.0
WSD17	< 2.0	6.0
WSD9	< 2.0	6.0


SCL1121 NSL Cross Harbour Tunnels - Notification of Environmental Quality Limit Exceedances Table V – Photo record on 30 May 2016


Area near Hung Hom works area

Area near bulk dredging in Victoria Harbour

Area near Causeway Bay Typhoon Shelter


Intake 34

SCL1121 NSL Cross Harbour Tunnels - Notification of Environmental Quality Limit Exceedances

Part B – Conclusion: No direct evidence that the exceedances were due to this Project, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C - Recommendation / Proposal of Remedial Actions: As the exceedances were not related to this Project, no further action are required.

Location Plan:

Reviewed by: Dr. Priscilla	Choy
Signature: Char	

Title: Environmental Team Leader

Date: 3 June 2016

APPENDIX H SITE AUDIT SUMMARY

Inspection Information

Checklist Reference Number	160606	
Date	6 June 2016 (Monday)	
Time	14:00 - 17:00	

Ref. No.	Non-Compliance	Related Item
-	None identified	<u>No.</u>

Ref. No.	Remarks/Observations	Related Item No.
		Hem no.
	Part B – Water Quality	D CIT
160606-R02	• To remove the silty water in the sand trap at Shek O jetty.	B 6iii
	Part C – Ecology / Others	
	• No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	• No environmental deficiency was identified during the site inspection.	
	Part E – Air Quality	
160606001	• Smoke generation observed from a marine barge at the Shek O jetty. The Contractor is reminded to check and repair the machinery to avoid black smoke generation.	E 15
	Part F - Construction Noise Impact	
	• No environmental deficiency was identified during the site inspection.	
	Part G – Waste/Chemical Management	
	• No environmental deficiency was identified during the site inspection.	
	Part H Permits/Licenses	
	• No environmental deficiency was identified during the site inspection.	
	Part I - Others	
	• Follow-up on previous audit section (Ref. No.: 160530), all environmental	
	deficiencies were observed improved/rectified by the Contractor	

	Name	Signature	Date
Recorded by	Johnny Fung	V	6 June 2016
Checked by	Dr. Priscilla Choy	NTA	6 June 2016

Inspection Information

Checklist Reference Number	160613
Date	13 June 2016 (Monday)
Time	14:00 - 17:00

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
160613-R01	 Part B – Water Quality To remove the discharge tube away from the seafront of Hung Hom area to avoid discharge into the sea. 	В 3
	Part C – Ecology / Others	
	• No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	• No environmental deficiency was identified during the site inspection.	
	Part E – Air Quality	
	• No environmental deficiency was identified during the site inspection.	
	Part F - Construction Noise Impact	
	• No environmental deficiency was identified during the site inspection.	
	Part G – Waste/Chemical Management	
160613-R02	• To provide drip tray to chemical container at the Hung Hom finger pier.	G 10
	Part H – Permits/Licenses	
	• No environmental deficiency was identified during the site inspection.	
	 Part I - Others Follow-up on previous audit section (Ref. No.:160606), all environmental deficiencies were observed improved/rectified by the Contractor 	

	Name	Şignature	Date
Recorded by	Johnny Fung	$\gamma \gamma$	13 June 2016
Checked by	Dr. Priscilla Choy	NIA	13 June 2016

.

t.,

Inspection Information

Checklist Reference Number	160620	
Date	20 June 2016 (Monday)	
Time	14:00 - 16:30	

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
160620-001	 Part B – Water Quality "Opening" of silt curtain in Hung Hom works area should be closed during marine works in Hung Hom. 	B 36
160620-R03	• To remove the construction waste from the drainage channel in Shek O Casting Basin.	В7
	 <i>Part C – Ecology / Others</i> No environmental deficiency was identified during the site inspection. 	
	 <i>Part D – Landscape & Visual</i> No environmental deficiency was identified during the site inspection. 	
160620-R04	 Part E – Air Quality To provide frequent water spray to haul road in Shek O Casting Basin to prevent dust generation. 	Е 5
	<i>Part F - Construction Noise Impact</i>No environmental deficiency was identified during the site inspection.	•
160620-R02 160620-R03	 Part G – Waste/Chemical Management Stagnant rain water should be removed from drip tray in Shek O Casting Basin. To remove the construction waste from the drainage channel in Shek O Casting Basin. 	G 10 G 4ii
	 <i>Part H – Permits/Licenses</i> No environmental deficiency was identified during the site inspection. 	
	 Part I - Others Follow-up on previous audit section (Ref. No.:160613), all environmental deficiencies were observed improved/rectified by the Contractor 	

	Name	Şignature	Date
Recorded by	Johnny Fung		20 June 2016
Checked by	Dr. Priscilla Choy	NIA	20 June 2016

÷

Inspection Information

Checklist Reference Number	160627	
Date	27 June 2016 (Monday)	
Time	14:00 - 16:30	

Ref. No.	Non-Compliance	Related Item
		No.
_	None identified	_

Ref. No.	Remarks/Observations	Related
	Part B – Water Quality	Item No.
160627-R01	 To remove the construction waste from the drainage channel in Shek O Casting Basin. 	В7
	Part C – Ecology / Others	
	• No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	• No environmental deficiency was identified during the site inspection.	
	Part E – Air Quality	
160627-R02	• To properly cover the stockpile of sand by impervious material at Hung Hom finger pier.	E 6
	Part F - Construction Noise Impact	
	• No environmental deficiency was identified during the site inspection.	
160627-R01	 Part G – Waste/Chemical Management To remove the construction waste from the drainage channel in Shek O Casting Basin. 	G 4ii
	 <i>Part H – Permits/Licenses</i> No environmental deficiency was identified during the site inspection. 	
	 Part I - Others Follow-up on previous audit section (Ref. No.:160620), the item 160620-R03 was remarked as 160627-R01. 	

	Name	Signature	Date
Recorded by	Johnny Fung		27 June 2016
Checked by	Dr. Priscilla Choy	'NIA	27 June 2016

APPENDIX I EVENT AND ACTION PLANS Event and Action Plan for Marine Water Quality Monitoring

		Α	CTION	
EVENT	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
Action level being exceeded by one sampling day	 Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; and Discuss remedial measures with the IEC and Contractor. 	 Discuss with the ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and Review and advise the ET and ER the effectiveness of the implemented mitigation measures. 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; and Supervise the implementation of agreed remedial measures. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER; and Implement the agreed remedial measures.
Action level being exceeded by more than one consecutive sampling days	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss remedial measures with the IEC and Contractor; and Ensure remedial measures are implemented. 	 Discuss with the ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and Review and advise the ET and ER the effectiveness of the implemented remedial measures. 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; and Discuss with the ET and IEC on the effectiveness of the implemented remedial measures. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and Implement the agreed remedial measures.

		Α	CTION	
EVENT	ET	IEC	ER	CONTRACTOR
1. Limit level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC, EPD and ER; Rectify unacceptable practice; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss with the ET and IEC and propose remedial measures to the IEC, EPD and ER; and Ensure the agreed remedial measures are implemented. 	 Discuss with the ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER the effectiveness of the implemented remedial measures. 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Request the Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; and Assess the effectiveness of the implemented remedial measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET , IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and Implement the agreed remedial measures.
2. Limit level being exceeded by more than one consecutive sampling days	 Inform the Contractor, IEC, EPD and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss remedial measures with the IEC, EPD, ER and Contractor; Ensure remedial measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit level 	 Discuss with the ET, ER and Contractor on the implemented measures; Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and Review and advise the ET and ER the effectiveness of the implemented remedial measures. 	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Request the Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; Discuss with the the ET, IEC and Contractor on the effectiveness of the implemented remedial measures; and Consider and instruct, if necessary, 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; Implement the agreed remedial measures; and

	ACTION			
EVENT	ET	IEC	ER	CONTRACTOR
	for two consecutive days.		the Contractor to slow down or to stop	8. As directed by the ER, to slow down or to
			all or part of the marine work until	stop all or part of the marine works or
			no exceedance of Limit level.	construction activities.

APPENDIX J UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Cultural Herita	ge Impact (Construction Phase)	1	1			1	1
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along	To mitigate the temporary	Contractor	Works Areas in	Construction	EIAO	N/A
	the boundary of the works area	visual impact due to		Causeway Bay	phase		
		surface works.		and Wan Chai			
Ecology (Cons	truction Phase)						
S 5.133	The following mitigation measures in controlling water quality	To minimize changes in	Contractor	All reclamation	Construction	• EIAO-TM	
	change shall be implemented:	water quality impact on		and dredging	phase		
	- Installation of silt curtains around the dredgers, where	marine flora and fauna		works areas			N/A
	appropriate, during dredging activities;						
	- Use of closed grab dredger during dredging; and						N/A
	- Reduction of dredging rate						N/A
S5.134	Accidental chemical spillage and construction site run-off to	Minimise the contamination	Contractor	All land based	Construction	• EIAO-TM	٨
	the receiving water bodies, mitigation measures such as	of wastewater discharge		works areas	phase		
	removing the pollutants before discharge into storm drain and						
	paving the section of construction road between the wheel						
	washing bay and the public road as suggested in Sections						
	11.216 and 11.219 to 11.256 of the EIA Report shall be						
	adopted						
ERR S3.6.3	Installation of floating type silt curtains around the area of	Minimize indirect impact to	Contractor	Shek O Casting	Construction	• EIAO-TM	٨
	construction and removal of earth bund	the nearby subtidal and		Basin	phase		
		intertidal flora and fauna					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Fisheries Impa	act			1		I	1
S5.132	The size of the dredging and underwater blasting areas shall be minimized as much as possible	To minimize loss of fishing ground and fisheries resources	Contractor/ MTR	All dredging and underwater blasting works	Construction phase	• EIAO-TM	N/A
				areas			
S5.133 S6.59	Mitigation measures recommended in Sections 11.200 to 11.207, 11.209 to 11.211 and 11.213 to 11.256 of the EIA Report to control water quality, i.e. use of effective site drainage in land-based construction site and installation of silt curtain surrounding the dredging point, use of closed grab dredger and reduction of dredging rate shall be implemented. After completion of armour rock filling, the final surfaces of	To minimize change in water quality impact on fisheries resources and operation To minimize the IMT	Contractor	Works Areas Along IMT laying	Construction phase Construction	 • EIAO-TM • EIAO-TM 	N/A N/A
Landacana 8	the protective armour tock layer shall be checked by ultrasonic sounding survey. Measures such as removing the rock or breaking the rock into pieces shall be implemented in case of non-compliance	protrusion above the seabed		works areas	phase		
-	Visual (Construction Phase)			A 11 1 11			
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	All works sites	Construction phase	• EIAO-TM	^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs.	Control of height and deposition/arrangement of temporary facilities in works areas	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Construction EP 2.25	Dust Impact All diesel fuelled construction plant used by the contractors within the works areas of the Project shall be powered by ultra-low sulphur diesel fuel.	Mitigating Aerial Emissions from Construction Plant	Contractor	All works areas	Construction phase	• EIAO-TM	٨
Table 8.5	 Barging facilities: (i) Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every 	To minimize dust impacts	Contractor	Barging facility at Shek O Casting Basin	Construction phase	APCO	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	working hours to reduce dust emission by 91.7%. This						
	dust suppression efficiency is derived based on the						
	average haul road traffic, average evaporation rate and						
	an assumed application intensity of 1.0 L/m ² once every						
	working hour. Any potential dust impact and watering						
	mitigation would be subject to the actual site condition.						
	For example, a construction activity that produces						
	inherently wet conditions or in cases under rainy						
	weather, the above water application intensity may not						
	be unreservedly applied. While the above watering						
	frequency is to be followed, the extent of watering may						
	vary depending on actual site conditions but should be						
	sufficient to maintain an equivalent intensity of no less						
	than 1.0L/m 2 to achieve the removal efficiency. The dust						
	levels would be monitored and managed under an						
	EM&A programme as specified in the EM&A Manual						
	(ii) Vehicles leaving the barging facilities – Pass vehicles						٨
	through the wheel washing facilities provided at site						
	exits.						
S8.63	For concrete batching plant, the requirements and mitigation	To minimize dust impact	Contractor	Concrete	Construction	APCO	٨
	measures stipulated in the Guidance Note on the Best			Batching Plant	phase		

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Practicable Means for Cement Works (Concrete Batching						
	Plant) BPM 3/2(93) shall be followed and implemented.						
Table 8.6	During operation of concrete batching plant:	To minimize dust impact	Contractor	Concrete	Construction	APCO	
	(i) Unloading of aggregates from the tipper trucks to receiving			Batching Plant	phase		٨
	hopper – unload the aggregates from the tipper trucks to the						
	receiving hopper equipped with enclosures on 3 sides and						
	top cover, and water spraying system.						
	(ii) Unloading of cement and PFA from tankers into the silo -						٨
	Directly load the cement and PFA into the silo via a flexible						
	duct. Install dust collectors at cement/PFA silos.						
	(iii) Storage of aggregates in overhead storage bins - Store						٨
	the aggregates in fully enclosed overhead storage bins.						
	Cover the top of overhead storage bins with cladding. Install						
	water spraying system at the top of storage bins for watering						
	the aggregates, and fully enclose aggregates storage bins.						
	(iv) Weighing and batching of cementitious materials -						٨
	Perform the whole process of weighing and mixing in a fully						
	enclosed environment. Equip all the mixers with dust						
	collectors.						
	(v) Loading of concrete from mixer into transit mixer of a						٨
	truck - Directly load the concrete from the mixer into the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	transit mixer of a truck in "wet form".						
	(vi) Tipper trucks and cement tankers leaving the Concrete						٨
	Batching Plant – Haul road within the site is unpaved. Install						
	wheel washing pit at the gate of the concrete batching plant.						
	(vii) Transportation of materials within the plant – Provide						٨
	watering twice a day would be provided.						
S8.89	Watering once every working hour on active works areas,	To minimize dust impact	Contractor	Works areas at:	Construction	APCO	٨
	exposed areas and paved haul roads to reduce dust			Hung Hom	phase		
	emission by 91.7%. This dust suppression efficiency is			Cross Harbour			
	derived based on the average haul road traffic, average			section up to			
	evaporation rate and an assumed application intensity of 1.7			Breakwater of			
	L/m2 for Kowloon side and 1.0 $\rm L/m^2$ for Hong Kong side once			CBTS			
	every working hour. Any potential dust impact and watering			Breakwater of			
	mitigation would be subject to the actual site condition. For			CBTS to SOV			
	example, a construction activity that produces inherently wet			• Shek O			
	conditions or in cases under rainy weather, the above water			Casting Basin			
	application intensity may not be unreservedly applied. While						
	the above watering frequency is to be followed, the extent of						
	watering may vary depending on actual site conditions but						
	should be sufficient to maintain an equivalent intensity of no						
	less than 1.7 L/m^2 for Kowloon side and 1.0 L/m^2 for Hong						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Kong side to achieve the removal efficiency. The dust levels						
	would be monitored and managed under an EM&A						
	programme as specified in the EM&A Manual.						
S8.90	Dust suppression measures stipulated in the Air Pollution	To minimize dust impact	Contractor	Works areas at:	Construction	APCO and Air	
	Control (Construction Dust) Regulation and good site			Hung Hom	phase	Pollution Control	
	practices:			Cross Harbour		(Construction	
	- Use of regular watering to reduce dust emissions from			section up to		Dust) Regulation	*
	exposed site surfaces and unpaved roads, particularly			Breakwater of			
	during dry weather.			CBTS			
	- Use of frequent watering for particularly dusty			 Breakwater of 			٨
	construction areas and areas close to ASRs.			CBTS to SOV			
	- Side enclosure and covering of any aggregate or dusty						٨
	material storage piles to reduce emissions. Where this						
	is not practicable owing to frequent usage, watering						
	shall be applied to aggregate fines.						
	- Open stockpiles shall be avoided or covered. Where						#
	possible, prevent placing dusty material storage piles						
	near ASRs.						
	- Tarpaulin covering of all dusty vehicle loads transported						٨
	to, from and between site locations.						
	- Establishment and use of vehicle wheel and body						N/A

EIA Ref.		Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	-	washing facilities at the exit points of the site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading						٨
	-	process of loose material, particularly in dry seasons/ periods. Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site						N/A
	-	entrance or exit. Imposition of speed controls for vehicles on site haul roads. Where possible, routing of vehicles and positioning of						^
	-	construction plant shall be at the maximum possible distance from ASRs. Every stock of more than 20 bags of cement or dry						٨
	-	pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. Instigation of an environmental monitoring and auditing						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	program to monitor the construction process in order to						
	enforce controls and modify method of work if dusty						
	conditions arise.						
Air Quality (Co	nstruction Phase)		1	1			1
/	Emission from Vehicles and Plants	Reduce air pollution	Contractor	All construction	Construction stage	• APCO	
	• All vehicles shall be shut down in intermittent use.	emission from construction		sites			٨
	Only well-maintained plant should be operated on-site	vehicles and plants					*
	and plant should be serviced regularly to avoid						
	emission of black smoke.						
	All diesel fuelled construction plant within the works						٨
	areas shall be powered by ultra low sulphur diesel fuel						
	(ULSD)						
1	Valid No-road Mobile Machinery (NRMM) labels should be	Reduce air pollution	Contractor	All construction	Construction stage	• APCO	٨
	provided to regulated machines	emission from construction		sites			
		vehicles and plants					
Construction N	Noise (Airborne)						
S9.55	Implement the following good site practices:	Control construction	Contractor	Works areas	Construction	• EIAO-TM	
	only well-maintained plant should be operated on-site	airborne noise			phase		٨
	and plant should be serviced regularly during the						
	construction programme;						
	• machines and plant (such as trucks, cranes) that may						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	 be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is 						۸
	 directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; 						^
	 mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction 						۸
S9.56 & Table	activities. The following quiet PME shall be used:	To minimize construction	Contractor	Works areas at:	Construction stage	• EIAO-TM	N/A
9.16	 Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) 	noise impact		 Hung Hom Cross Harbour section up to Breakwater of CBTS 			

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to implement	Location of the measures	When to Implement the	What requirements or	Status
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	Hydraulic breaker			Breakwater of			
	Concrete lorry mixer			CBTS to SOV			
	Poker, vibrator, hand-held						
	Concrete pump						
	Crawler crane, mobile						
	Mobile crane						
	Dump truck						
	Excavator						
	• Truck						
	Rock drill						
	• Lorry						
	Wheel loader						
	Roller vibratory						
S9.58 –	Movable noise barrier shall be used for the following PME:	To minimize construction	Contractor	Works areas at:	Construction	• EIAO-TM	N/A
S9.59 &	Air compressor	noise impact		Cross Harbour	stage		
Table	Asphalt paver			section up to			
9.17	Backhoe with hydraulic breaker			Breakwater of			
	Bar bender			CBTS			
	• Bar bender and cutter (electric)			Breakwater of			
	Breaker, excavator mounted			CBTS to SOV			
	Concrete pump						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	 Concrete pump, stationary/lorry mounted Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete 						
S9.60 & Table 9.17	 Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic) 	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV 	Construction stage	• EIAO-TM	N/A
Water Quality S11.200 & 201	(Construction Phase) All excavation and tunnel construction works will be undertaken within the cofferdam and there will be no open dredging. Removal of fender piles of Hung Hom Bypass and minor	To minimize release of sediment and contaminants during temporary reclamation.	Contractor	Marine works at Hung Hom Landfall	Construction phase	EIAO-TM WPCO	N/A *

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	marine piling works will be carried out prior to the construction of the elevated platform adjacent to the cofferdam at Hung Hom Landfall. Reinstatement of the fender piles will be carried out upon completion of tunnel section. Potential release of sediment due to abovementioned works could be minimized by installation of silt curtains surrounding the works area as appropriate. All excavation and tunnel construction works will be undertaken within the cofferdam.						
S11.202	No open dredging shall be allowed. All temporary reclamation works will adopt an approach where temporary seawalls will first be formed to enclose each phase of the temporary reclamation. Installation of diaphragm wall on temporary reclamation as well as any bulk filling will proceed behind the completed seawall. Any gaps that may need to be provided for marine access will be shielded by silt curtains to control sediment plume dispersion away from the site. Demolition of temporary reclamation including the demolition	To minimize loss of fines and contaminants during temporary reclamations	Contractor	All temporary reclamation works areas	Construction phase	EIAO-TM WPCO	n/A
	of the diaphragm wall and dredging to the existing seabed levels will also be carried out behind the temporary seawall.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Temporary seawall will be removed after completion of all excavation and dredging works for demolition of the temporary reclamation.						N/A
S11. 202	During construction of the temporary reclamation, temporary seawall will be partially constructed to protect the nearby seawater intakes from further dredging activities. For example, the seawalls along the southeast and northeast boundaries of PW1.1 shall be constructed first (above high water mark) so that the seawater intake at the inner water would be protected from the impacts from the remaining dredging activities along the northwest boundary.	To minimize water quality impact upon the cooling water intakes in CBTS from temporary reclamation works	Contractor	Temporary reclamation works areas in CBTS	Construction phase	 EIAO-TM WPCO 	N/A
S11. 202	Dredging will be carried out by closed grab dredger to minimize release of sediment and other contaminants during dredging.	To minimize loss of fines and contaminants during dredging in CBTS	Contractor	All temporary reclamation and dredging works areas within CBTS	Construction phase	 EIAO-TM WPCO 	N/A
S11. 202 & Table 11.25	Silt curtains will be deployed to fully enclose the closed grab dredger and shall be extended from water surface to the seabed, as far as practicable, during any dredging operation.	To minimize loss of fines and contaminants during dredging in CBTS	Contractor	All temporary reclamation and dredging works areas within CBTS	Construction phase	EIAO-TMWPCO	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
S11. 202 & Table	Silt screens will be installed at the cooling water intakes within the CBTS during the temporary reclamation period.	To minimize water quality impact upon the cooling water intakes in CBTS from marine construction activities	Contractor	Cooling water intakes inside CBTS	Construction phase	 EIAO-TM WPCO 	N/A
S11. 203 & Table 11.24	No more than two dredgers (of about 8 m ³ capacity each) shall be operated for dredging within the typhoon shelter at any time for the tunnel construction works. Moreover, the combined dredging rate for all concurrent dredging works (include dredging works for concurrent projects such as WDII and CWB) to be undertaken within the CBTS shall not exceed 4,500 m ³ per day (and 281 m ³ per hour with a maximum working period of 16 hours per day) throughout the entire construction period.	To minimize loss of fines and contaminants during dredging in CBTS	Contractor	All dredging works areas within CBTS	Construction phase	 EIAO-TM WPCO 	N/A
ERR 6.7.1	Closed grab dredger shall be used for any dredging operations, except at for removal of fill material at the gap at the IMT/ME4 interface, which will be carried out by air lift or sand pump method	To minimize water quality impact in CBTS from marine construction activities	Contractor	All marine works areas within CBTS	Construction phase	• EIAO-TM • WPCO	N/A
ERR 6.7.1	Fill materials removed by air lift or sand pumping method shall be stored inside impermeable compartment of the barge	To minimize water quality impact in CBTS from marine construction	Contractor	All marine works areas within CBTS	Construction phase	• EIAO-TM • WPCO	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
		activities					
ERR 6.7.1	Bulk filling operation within CBTS shall be carried out by	To minimize water quality	Contractor	All marine works	Construction	• EIAO-TM	N/A
	closed grab dredger and/or by feeding the fill material into a	impact in CBTS from		areas within	phase	• WPCO	
	down pipe for placing of fill materials	marine construction		CBTS			
		activities					
EP 2.18.1a	Pipe piles shall be used to form temporary seawalls for IMT	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	N/A
	construction within CBTS.	impact in CBTS from IMT		works within	phase	• WPCO	
		construction		CBTS			
EP 2.18.1b	The temporary seawalls shall not be removed before	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	N/A
	completion of all dredging or filling works for IMT	impact in CBTS from IMT		works within	phase	• WPCO	
	construction, except for a small section of pipe piles adjoining	construction		CBTS			
	IMT11 to facilitate the necessary dredging works for						
	placing the IMT11.						
EP 2.18.1j	Water quality monitoring shall be conducted at cooling water	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	٨
	intake 9 for Windsor House during IMT construction within	impact in CBTS from IMT		works within	phase	• WPCO	
	CBTS. The monitoring frequency, parameters, equipment	construction		CBTS			
	and methodology shall follow those for dredging and filling as						
	stipulated in the EM&A Manual.						
S11. 204	Bulk filling along the IMT tunnel alignment for SCL shall be	To minimize loss of fines	Contractor	Marine works	Construction	・ EIAO-TM	N/A
	carried out after the bulk dredging works along the IMT	and contaminants during		areas in Victoria	phase	• WPCO	
	alignment are completed. Hence, bulk dredging and bulk	IMT construction		Harbour			

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	filling along the IMT alignment shall not be undertaken at the same time.						
S11. 204	Dredging for IMT and SCL2 construction shall be carried out by closed grab dredger to minimize release of sediment and other contaminants during dredging.	To minimize loss of fines and contaminants during dredging in the Victoria Harbour	Contractor	Marine works areas in Victoria Harbour	Construction phase	EIAO-TMWPCO	N/A
S11.204	No more than one closed grab dredger shall be operated outside the CBTS in the open harbor for SCL construction.	To minimize loss of fines and contaminants from dredging in the Victoria Harbour	Contractor	Marine works areas in Victoria Harbour	Construction phase	EIAO-TM WPCO	N/A
S11. 204	Dredging for temporary reclamation outside the CBTS (at SCL2) shall not be carried out concurrently with the dredging / filling works for IMT construction.	To minimize loss of fines and contaminants from dredging / filling in the Victoria Harbour	Contractor	Marine works areas in Victoria Harbour	Construction phase	EIAO-TMWPCO	N/A
S11. 205	Floating type or frame type silt curtains shall be deployed around the dredging operations within 200m from the Hung Hom landfall.	To minimize loss of fines and contaminants from dredging in the Victoria Harbour	Contractor	Construction of northern IMT segment in the near shore region within 200 m from the Hung Hom landfall	Construction phase	EIAO-TM WPCO	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
EP 2.19e	Frame type silt curtains shall be deployed around the dredging operations for the remaining IMT segments outside 200 m from the Hung Hom landfall.	To minimize water quality impacts in Victoria Harbour from IMT construction	Contractor	Construction of northern IMT segment in Victoria Harbour outside 200m from the Hung Hom landfall	Construction phase	 EIAO-TM WPCO 	٨
S11. 205 & Table	Silt screens shall be installed at the cooling water intakes for East Rail Extension, Metropolis and Hong Kong Coliseum (namely 21, 34 and 35 respectively) which are in close vicinity of the northern IMT segment.	To protect the beneficial use of water intakes along the Kowloon waterfront from dredging / filling activities	Contractor	Construction of northern IMT segment in the near shore region within 200 m from the Hung Hom landfall	Construction phase	 EIAO-TM WPCO 	۸
S11.207	 If underwater blasting is required for SCL construction, the following precautionary / mitigation measures shall be adopted: Charge shall be placed in cores within the rock in order that there will be no blast directly into the water. In terms of the construction sequence, sediment dredging (within the planned IMT works area) shall be 	To protect the water quality in Victoria Harbour from any possible underwater blasting	Contractor	Marine works areas in Victoria Harbour	Construction phase	EIAO-TMWPCO	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	conducted prior to any underwater blasting.						
Table 11.23	Silt screens shall be installed at the WSD Flushing Water	To protect the beneficial	Contractor	Flushing water	Construction	• EIAO-TM	N/A
	Intakes at Kowloon Station, Tai Wan, Quarry Bay and Wan	use of flushing water		intake points in	phase	• WPCO	
	Chai (namely Intakes 14, WSD9, WSD17 and A respectively)	intakes in Victoria Harbour		Victoria Harbour			
	during any dredging / filling works outside the CBTS for	from dredging / filling					
	temporary reclamation at SCL2 or for IMT construction	activities					
S11.210 - S11.211	If the marine works for SCL are to be carried out concurrently	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	N/A
& Table 11.24	with other dredging / filling activities in the Victoria Harbour,	and contaminants from		areas in Victoria	phase	• WPCO	
ERR S6.7.1	the production rates of any dredging / filling work to be	dredging / filling in the		Harbour			
	undertaken outside the CBTS for SCL construction in the	Victoria Harbour					
	open harbour (including temporary reclamation at SCL2 and						
	IMT construction, except for the area within 60m from the						
	southern boundary of the temporary reclamation at Hung						
	Hom Landfall) shall not exceed 2,500 m ³ per day at any time						
	throughout the entire construction period. The hourly						
	production rate for dredging or bulk filling within the open						
	Victoria Harbour (outside the breakwater of CBTS, except for						
	the area within 60m from the southern boundary of the						
	temporary reclamation at Hung Hom Landfall) shall not						
	exceed 156 m ³ per hour (if there are other concurrent marine						
	works in Victoria Harbour) and the maximum working hour for						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	the dredging / bulk filling works shall be 16 hours per day. Silt						
	screen shall be deployed at the Kowloon Station Intake to						
	minimize the water quality impact. If the marine works for						
	SCL are to be carried out with no other concurrent dredging /						
	filling activities in the Victoria Harbour, the production rates of						
	any dredging / filling work to be undertaken outside the CBTS						
	for SCL construction in the open harbour (including						
	temporary reclamation at SCL2 and IMT construction except						
	for the area within 60m from the southern boundary of the						
	temporary reclamation at Hung Hom Landfall) shall not						
	exceed 4,500 $\rm m^3$ per day at any time throughout the entire						
	construction period. The hourly production rate for dredging						
	or bulk filling within the open Victoria Harbour (outside the						
	breakwater of CBTS except for the area within 60m from the						
	southern boundary of the temporary reclamation at Hung						
	Hom Landfall) shall not exceed 281 $\rm m^3per$ hour (if there is no						
	other concurrent marine works in Victoria Harbour) and the						
	maximum working hour for the dredging / bulk filling works						
	shall be 16 hours per day. Silt screen shall be deployed at the						
	Kowloon Station Intake to minimize the water quality impact.						
	Only one chiseling machine or hydraulic breaker shall be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	adopted for rock breaking.						
	For any dredging / filling work for IMT construction within 60m						
	from the southern boundary of the temporary reclamation at						
	Hung Hom Landfall:						
	• The daily production rate shall not exceed 1,500m ³ per						N/A
	day						
	• the hourly production rate shall not exceed 93m ³						N/A
S11.215	The following good site practices shall be undertaken during	To minimize loss of	Contractor	Marine works	Construction	• EIAO-TM	
	filling and dredging:	fines and contaminants		areas	phase	• WPCO	
	• mechanical grabs, if used, shall be designed and	from dredging / filling					٨
	maintained to avoid spillage and sealed tightly while						
	being lifted;						
	• all vessels shall be sized so that adequate clearance is						٨
	maintained between vessels and the seabed in all tide						
	conditions, to ensure that undue turbidity is not						
	generated by turbulence from vessel movement or						
	propeller wash;						
	• all hopper barges and dredgers shall be fitted with tight						^
	fitting seals to their bottom openings to prevent						
	leakage of material;						
	• construction activities shall not cause foam, oil,						*

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	 grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; loading of barges and hoppers shall be controlled to prevent splashing of dredged material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation; before commencement of the temporary reclamation works, the holder of the Environmental Permit shall submit plans showing the phased construction of the reclamation, design and operation of the silt curtain. 						^
S11.216	 The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works. Stockpiling of construction and demolition materials and 	minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction phase	• EIAO-TM • WPCO	Λ

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to implement	Location of the measures	When to Implement the	What requirements or	Status
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	dusty materials shall be covered and located away from the						
	seawater front and storm drainage.						
	Construction debris and spoil shall be covered up and/or						٨
	disposed of as soon as possible to avoid being washed into						
	the nearby receiving waters.						
S11.217	The following mitigation measures are proposed to minimize	To minimize release of	Contractor	Marine piling	Construction	• EIAO-TM	
	the potential water quality impacts from any marine piling	sediment and pollutants		works areas	phase	• WPCO	
	works:	from marine piling activities					
	• The potential release of sediment or excavated materials						٨
	could be controlled through the installation of silt curtains						
	surrounding the working area as necessary.						
	Spoil shall be collected by sealed hopper barges for						٨
	proper disposal.						
S11.218	Silt screens are recommended to be deployed at the	To avoid the pollutant and	Contractor	Proposed silt	Construction	• EIAO-TM	٨
	seawater intakes during the construction works period.	refuse entrapment		screens at water	phase	• WPCO	
	Regular maintenance of the silt screens and refuse collection	problems at the silt screens		intakes			
	shall be performed at the silt screens at regular intervals on a	to be installed at the water					
	daily basis. The Contractor shall be responsible for keeping	intakes.					
	the water behind the silt screen free from floating rubbish and						
	debris during the impact monitoring period.						
S11.219	It is recommended that collection and removal of floating	To minimize water	Contractor	Marine works	Construction	• EIAO-TM	#

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	refuse shall be performed within the marine construction	quality impacts from		area	phase	• WPCO	
	areas at regular intervals on a daily basis. The Contractor	illegal dumping and				• WDO	
	shall be responsible for keeping the water within the site	littering from marine					
	boundary and the neighbouring water free from rubbish	vessels and runoff from					
	during the dredging works.	the coastal area					
S11.220 &	Any wastewater including washdown waters and any	To minimize water	Contractor	Shek O Casting	Construction	• EIAO-TM	٨
221	concrete curing waters generated from the casting basin shall	quality impacts from		Basin	phase	• WPCO	
	be drained to the wastewater treatment unit. Appropriate	the washdown, flooding					
	treatment process such as sedimentation and oil removal	and draining operation					
	shall be employed for the wastewater treatment units so that	at Shek O Casting					
	any discharge from the casting basin will comply with	Basin					
	standards stipulated in the TM-DSS. Recovered oil from any						
	oil interceptor shall be properly contained, labeled and stored						
	on site prior to collection by licensed collectors for disposal.						
	During the flooding of the basin with seawater (accomplished						
	by pumps) no escape of water could occur as the cofferdam						
	will still be in place. Prior to opening a channel through the						
	cofferdam, water inside the basin will be skimmed of floating						
	debris. A period of settling of 24 hours before opening the						
	basin to the sea would allow much of the suspended material						
	to settle out. The channel through the cofferdam will only be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	opened with the approval of the Site Engineer to the effect						
	that all reasonable steps had been taken to remove contaminants.						
S11.222	The site practices outlined in ProPECC PN 1/94	To minimize water quality	Contractor	Works areas	Construction	• EIAO-TM	#
to 11.245	"Construction Site Drainage" shall be followed where	impacts from construction			phase	• WPCO	
	practicable.	site runoff and general				• TMDSS,	
		construction activities				• WDO,	
						ProPECC PN	
						1/94	
S11.246 & 11.247	Construction work force sewage discharges on site are	minimize water quality	Contractor	All works areas	Construction	• EIAO-TM	٨
	expected to be discharged to the nearby existing trunk sewer	impacts due to sewage			phase	• WPCO	
	or sewage treatment facilities. If disposal of sewage to public	generated from				• TM-DSS	
	sewerage system is not feasible, appropriate numbers of	construction				• WDO	
	portable toilets shall be provided by a licensed contractor to	workforce					
	serve the construction workers over the construction site to						
	prevent direct disposal of sewage into the water environment.						
	The Contractor shall also be responsible for waste disposal						
	and maintenance practices.						
	Notices shall be posted at conspicuous locations to remind						٨
	the workers not to discharge any sewage or wastewater into						
	the nearby environment.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to implement	Location of the measures	When to Implement the	What requirements or	Status
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
S11.248	In case seepage of uncontaminated groundwater occurs,	To minimize impact from	Contractor	Works areas	Construction	• EIAO-TM	٨
	groundwater shall be pumped out from the works areas and	discharge of			phase	• WPCO	
	discharged into the storm system via silt removal facilities.	uncontaminated				• TM-DSS	
	Uncontaminated groundwater from dewatering process shall	groundwater				• WDO	
	also be discharged into the storm system via silt traps.						
S11.252	The following good site practices shall be adopted for the	To minimize water quality	Contractor	Barging Points	Construction	• EIAO-TM	
	proposed barging points:	impacts generated from the			phase	• WPCO	
	- all vessels shall be sized so that adequate clearance is	barging points.					N/A
	between vessels and the seabed in all tide conditions, to						
	ensure that undue turbidity is not generated by turbulence						
	from vessel movement or propeller wash						
	- all hopper barges shall be fitted with tight fitting seals to						N/A
	their bottom openings to prevent leakage of material						
	- construction activities shall not cause foam, oil, grease,						N/A
	scum, litter or other objectionable matter to be present on the						
	water within the site						
	- loading of barges and hoppers shall be controlled to						N/A
	prevent splashing of material into the surrounding water.						
	Barges or hoppers shall not be filled to a level that will cause						
	the overflow of materials or polluted water during loading or						
	transportation						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
S11.253	There is a need to apply to EPD for a discharge licence for	To minimize water quality	Contractor	All construction	Construction	• EIAO-TM	*
	discharge of effluent from the construction site under the	impact from effluent		works areas	phase	• WPCO	
	WPCO. The discharge quality must meet the requirements	discharges from				• TM-DSS	
	specified in the discharge licence. All the runoff and	construction sites					
	wastewater generated from the works areas shall be treated						
	so that it satisfies all the standards listed in the TM-DSS.						
	Minimum distances of 100 m shall be maintained between						
	the discharge points of construction site effluent and the						
	existing seawater intakes. The beneficial uses of the treated						
	effluent for other on-site activities such as dust suppression,						
	wheel washing and general cleaning etc., can minimize water						
	consumption and reduce the effluent discharge volume. If						
	monitoring of the treated effluent quality from the works areas						
	is required during the construction phase of the Project, the						
	monitoring shall be carried out in accordance with the WPCO						
	license which is under the ambit of Regional Office (RO) of						
	EPD.						
S11.254	Contractor must register as a chemical waste producer if	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	٨
	chemical wastes would be produced from the construction	impact from accidental		works areas	phase	• WPCO	
	activities. The Waste Disposal Ordinance (Cap 354) and its	spillage of chemical				• TM-DSS	
	subsidiary regulations in particular the Waste Disposal					• WDO	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	(Chemical Waste) (General) Regulation shall be observed						
	and complied with for control of chemical wastes.						
S11.255	Any service shop and maintenance facilities shall be located	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	*
	on hard standings within a bunded area, and sumps and oil	impact from accidental		works areas	phase	• WPCO	
	interceptors shall be provided. Maintenance of vehicles and	spillage of chemical				• TM-DSS	
	equipment involving activities with potential for leakage and					• WDO	
	spillage shall only be undertaken within the areas						
	appropriately equipped to control these discharges.						
S11.256	Disposal of chemical wastes shall be carried out in	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	
	compliance with the Waste Disposal Ordinance. The "Code of	impact from accidental		works areas	phase	• WPCO	
	Practice on the Packaging, Labelling and Storage of	spillage of chemical				• TM-DSS	
	Chemical Wastes" published under the Waste Disposal					• WDO	
	Ordinance details the requirements to deal with chemical						
	wastes. General requirements are given as follows:						
	Suitable containers shall be used to hold the chemical						٨
	wastes to avoid leakage or spillage during storage, handling						
	and transport.						
	Chemical waste containers shall be suitably labelled, to						٨
	notify and warn the personnel who are handling the wastes,						
	to avoid accidents.						
	Storage area shall be selected at a safe location on site and						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	adequate space shall be allocated to the storage area.						
ERR S 8.5.1	Floating type silt curtains would be installed around the area	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	٨
	of construction and removal of earth bund during the	impact at Shek O Casting		Basin	phase		
	respective works.	Basin					
Waste Manage	ement (Construction Waste)						
S12.75	Good Site Practices and Waste Reduction Measures	reduce waste management	Contractor	All works sites	Construction	Waste Disposal	
	- Prepare a Waste Management Plan	impacts			phase	Ordinance (Cap.	٨
	(WMP) approved by the Engineer/Supervising Officer of the					354)	
	Project based on current practices on construction sites;					• Land	
	- Training of site personnel in, site cleanliness, proper waste					(Miscellaneous	٨
	management and chemical handling procedures;					Provisions)	
	- Provision of sufficient waste disposal points and regular					Ordinance (Cap.	٨
	collection of waste;					28)	
	- Appropriate measures to minimize windblown litter and					• DEVB TCW	٨
	dust during transportation of waste by either covering trucks					No. 6/2010	
	or by transporting wastes in enclosed containers;						
	- Regular cleaning and maintenance programme for						#
	drainage systems, sumps and oil interceptors; and						
	- Separation of chemical wastes for special handling and						٨
	appropriate treatment.						
S12.76	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	• Waste Disposal	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	(Con't)	reduction			phase	Ordinance (Cap.	
	- Sorting of demolition debris and excavated materials from					354)	٨
	demolition works to recover reusable/ recyclable portions (i.e.					• Land	
	soil, broken concrete, metal etc.);					(Miscellaneous	
	- Segregation and storage of different types of waste in					Provisions)	٨
	different containers, skips or stockpiles to enhance reuse or					Ordinance (Cap.	
	recycling of materials and their proper disposal;					28)	
	- Encourage collection of aluminum cans by providing						٨
	separate labeled bins to enable this waste to be segregated						
	from other general refuse generated by the workforce;						
	- Proper storage and site practices to minimize the potential						٨
	for damage or contamination of construction materials;						
	- Plan and stock construction materials carefully to						٨
	minimize amount of waste generated and avoid unnecessary						
	generation of waste; and						
	- Training shall be provided to workers about the concepts						٨
	of site cleanliness and appropriate waste management						
	procedures, including waste reduction, reuse and recycle.						
S12.77	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	
	(Con't)	reduction			phase	No. 19/2005	
	- The Contractor shall prepare and implement a WMP as						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	part of the EMP in accordance with ETWBTCW No. 19/2005						
	which describes the arrangements for avoidance, reuse,						
	recovery, recycling, storage, collection, treatment and						
	disposal of different categories of waste to be generated from						
	the construction activities. Such a management plan shall						
	incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and						
	recyclable materials. The EMP shall be submitted to the						
	Engineer for approval. The Contractor shall implement the						
	waste management practices in the EMP throughout the						
	construction stage of the Project. The EMP shall be reviewed						
	regularly and updated by the Contractor, preferably in a						
	monthly basis.						
S12.78	C&D materials would be reused in other local concurrent	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	٨
	projects as far as possible. If all reuse outlets are exhausted	reduction			phase	No. 19/2005	
	during the construction phase, the C&D materials would be						
	disposed of at Taishan, China as a last resort.						
S12.79	Storage, Collection and Transportation of Waste	minimize potential	Contractor	All works sites	Construction	-	
	Should any temporary storage or stockpiling of waste is	adverse environmental			phase		
	required,	impacts arising from waste					
	recommendations to minimize the impacts include:	storage					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to	Status
						achieve?	
	- Waste, such as soil, shall be handled and stored well to						٨
	ensure secure containment, thus minimizing the potential of						
	pollution;						
	- Maintain and clean storage areas routinely;						٨
	- Stockpiling area shall be provided with covers and water						٨
	spraying system to prevent materials from wind-blown or						
	being washed away; and						
	- Different locations shall be designated to stockpile each						٨
	material to enhance reuse						
S12.80	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	-	
	Waste haulier with appropriate permits shall be employed by	environmental impacts			phase		N/A
	the Contractor for the collection and transportation of waste	arising from waste					
	from works areas to respective disposal outlets. The following	collection and disposal					
	suggestions shall be enforced to minimize the potential						
	adverse impacts:						
	- Remove waste in timely manner						٨
	- Waste collectors shall only collect wastes prescribed by						٨
	their permits						
	- Impacts during transportation, such as dust and odour,						N/A
	shall be mitigated by the use of covered trucks or in enclosed						
	containers						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	- Obtain relevant waste disposal permits from the						^
	appropriate authorities, in accordance with the Waste						
	Disposal Ordinance (Cap. 354), Waste Disposal (Charges for						
	Disposal of Construction Waste) Regulation (Cap. 345) and						
	the Land (Miscellaneous Provisions) Ordinance (Cap. 28)						
	- Waste shall be disposed of at licensed waste disposal						٨
	facilities						
	- Maintain records of quantities of waste generated,						٨
	recycled and disposed						
S12.81	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	DEVB TCW	
	- Implementation of trip ticket system with reference to	environmental impacts			phase	No. 6/2010	٨
	DevB TC(W) No.6/2010 to monitor disposal of waste and to	arising from waste					
	control fly-tipping at PFRFs or landfills. A recording system	collection and disposal					
	for the amount of waste generated, recycled and disposed						
	(including disposal sites) shall be proposed						
S12.83 – 12.86	Sorting of C&D Materials	minimize potential adverse	Contractor	All works sites	Construction	DEVB TCW	
	- Sorting to be performed to recover the inert materials,	environmental impacts			phase	No. 6/2010	٨
	reusable and recyclable materials before disposal off-site.	during the handling,				• ETWB TCW No.	
	- Specific areas shall be provided by the Contractors for	transportation and disposal				33/2002	^
	sorting and to provide temporary storage areas for the sorted	of C&D materials				• ETWB TCW	
	materials.					No. 19/2005	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	 The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north 						^
	approach						
S12.88	Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authorityof issuing marine dumping permit under the Dumping at Sea Ordinance	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea Ordinance	Λ
S12.89	Sediments The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on	To determine the best handling and disposal option of the sediments	Contractor	All works areas with sediments concern	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works.					Ordinance	
S12.91-12.94	 Sediments Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea Ordinance	^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	if any, shall be collected and discharged according to the						
	Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions						٨
	during excavation and transportation of the sediment, the						
	excavated sediments shall be wetted during excavation /						
	material handling and shall be properly covered when						
	placed on trucks or barges. Loading of the excavated						
	sediment to the barge shall be controlled to avoid						
	splashing and overflowing of the sediment slurry to the						
	surrounding water.						
	- The barge transporting the sediments to the designated						٨
	disposal sites shall be equipped with tight fitting seals to						
	prevent leakage and shall not be filled to a level that						
	would cause overflow of materials or laden water during						
	loading or transportation. In addition, monitoring of the						
	barge loading shall be conducted to ensure that loss of						
	material does not take place during transportation.						
	Transport barges or vessels shall be equipped with						
	automatic selfmonitoring devices as specified by the DEP.						
	- In order to minimise the exposure to contaminated						٨
	materials, workers shall, when necessary, wear						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	appropriate personal protective equipments (PPE) when						
	handling contaminated sediments. Adequate washing and						
	cleaning facilities shall also be provided on site.						
S12.95	Sediments	To ensure handling of	Contractor	Work Sites,	Construction	ETWB TC(W) No.	
	A possible arrangement for Type 3 disposal is by	sediments are in		Sediment	Phase	34/2002 &	N/A
	geosynthetic containment. A geosynthetic containment	accordance to statutory		disposal sites		Dumping at Sea	
	method is a method whereby the sediments are sealed in	requirements				Ordinance	
	geosynthetic containers and, at the disposal site, the						
	containers would be dropped into the designated						
	contaminated mud pit where they would be covered by						
	further mud disposal and later by the mud pit capping,						
	thereby meeting the requirements for fully confined mud						
	disposal. The technology is readily available for the						
	manufacture of the geosynthetic containers to the						
	project-specific requirements. Similar disposal methods have						
	been used for projects in Europe, the USA and Japan and the						
	issues of fill retention by the geosynthetic fabrics, possible						
	rupture of the containers and sediment loss due to impact of						
	thecontainer on the seabed have been addressed.						
S12.97	Containers for Storage of Chemical Waste	register with EPD	Contractor	All works sites	Construction	Code of	
	The Contractor shall register with EPD as a chemical waste	as a Chemical waste			phase	Practice on the	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	producer and to follow the guidelines stated in the Code of	producer and store				Packaging,	
	Practice on the Packaging, Labelling and Storage of	chemical waste in				Labelling and	
	Chemical Wastes. Containers used for storage of chemical	appropriate containers				Storage of	
	waste shall:					Chemical Wastes	٨
	- Be compatible with the chemical wastes being stored,						
	maintained in good condition and securely sealed;						٨
	- Have a capacity of less than 450 litters unless the						
	specifications have been approved by EPD; and						٨
	- Display a label in English and Chinese in accordance with						
	instructions prescribed in Schedule 2 of the Waste Disposal						
	(Chemical Waste) (General) Regulation						
S12.98	Chemical Waste Storage Area	prepare appropriate	Contractor	All works sites	Construction	Code of	
	- Be clearly labeled to indicate corresponding chemical	storage areas for chemical			phase	Practice on the	٨
	characteristics of the chemical waste and used for storage of	waste at works areas				Packaging,	
	chemical waste only;					Labelling and	
	- Be enclosed on at least 3 sides;					Storage of	٨
	- Have an impermeable floor and bunding, of capacity to					Chemical Wastes	٨
	accommodate 110% of the volume of the largest container or						
	20% by volume of the chemical waste stored in that area,						
	whichever is the greatest;						
	- Have adequate ventilation;						۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to implement	Location of the measures	When to Implement the	What requirements or	Status
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	- Be covered to prevent rainfall from entering; and						٨
	- Be properly arranged so that incompatible materials are						٨
	adequately separated.						
S12.99	Chemical Waste	clearly label the chemical	Contractor	All works sites	Construction	Code of	
	- Lubricants, waste oils and other chemical wastes would	waste at works areas			phase	Practice on the	٨
	be generated during the maintenance of vehicles and					Packaging,	
	mechanical equipments. Used lubricants shall be collected					Labelling and	
	and stored in individual containers which are fully labelled in					Storage of	
	English and Chinese and stored in a designated secure					Chemical Wastes	
	place.						
S12.100	Collection and Disposal of Chemical Waste	To monitor the generation,	Contractor	All works sites	Construction	Waste Disposal	
	A trip-ticket system shall be operated in accordance with the	reuse and disposal of			phase	(Chemical Waste)	٨
	Waste Disposal (Chemical Waste) (General) Regulation to	chemical waste				(General)	
	monitor all movements of chemical waste. The Contractor					Regulation	
	shall employ a licensed collector to transport and dispose of						
	the chemical wastes, to either the approved CWTC at Tsing						
	Yi, or another licensed facility, in accordance with the Waste						
	Disposal (Chemical Waste) (General) Regulation						
S12.101	General Refuse	properly store and	Contractor	All works sites	Construction	-	
	General refuse shall be stored in enclosed bins or	separate from other C&D			phase		#
	compaction units separate from C&D materials and chemical	materials for					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	waste. A reputable waste collector shall be employed by the	subsequent collection and					
	contractor to remove general refuse from the site, separately	disposal					
	from C&D materials and chemical wastes. Preferably, an						
	enclosed and covered area shall be provided to reduce the						
	occurrence of wind-blown light material.						
S12.102	General Refuse (Con't)	facilitate recycling of	Contractor	All works sites	Construction	-	
	The recyclable component of general refuse, such as	recyclable portions of			phase		٨
	aluminum cans, paper and cleansed plastic containers shall	refuse					
	be separated from other waste. Provision and collection of						
	recycling bins for different types of recyclable waste shall be						
	set up by the Contractor. The Contractor shall also be						
	responsible for arranging recycling companies to collect						
	these materials.						
S12.103	General Refuse (Con't)	raise workers' awareness	Contractor	All works sites	Construction	-	
	The Contractor shall carry out an education programme for	on recycling issue			phase		٨
	workers in avoiding, reducing, reusing and recycling of						
	materials generation. Posters and leaflets advising on the						
	use of the bins shall also be provided in the sites as						
	reminders						

Remarks: ^

Compliance of mitigation measure

Non-compliance of mitigation measure

Х

• Non-compliance but rectified by the contractor

SCL Works Contract 1121 - Environmental Mitigation Implementation Schedule

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- N/A Not Applicable

APPENDIX K WASTE GENERATION IN THE REPORTING MONTH

Monthly Summary Waste Flow Table for <u>2016</u> (year)

Contract No:SCL1121Date Reported:June 2016

			Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete (See Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill from 1111	Imported Fill from 1112	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in'000kg)	(in '000tonne)
Jan	0.531	0.000	0.000	19.544	0.000	7.242	13.218	0.000	0.000	0.000	0.000	0.111
Feb	0.308	0.000	0.000	8.572	0.000	3.812	4.306	0.000	0.000	0.000	0.000	0.081
Mar	0.2	0.000	0.000	8.095	0.000	4.132	3.478	0.000	0.462	0.000	0.000	0.123
Apr	0.66	0.000	0.000	16.374	0.000	3.691	11.359	0.000	0.377	0.000	0.000	0.171
May	5.795	0.000	0.000	1.47	0.124	1.728	2.080	0.000	0.000	0.000	0.000	0.185
June	1.15	0.000	0.000	4.377	0.000	2.627	2.381	0.000	0.000	0.000	0.000	0.204
July												
Aug												
Sept												
Oct												
Nov												
Dec												
Total	8.644	0.000	0.000	58.432	0.124	23.232	36.822	0.000	0.839	0.000	0.000	0.875

Notes:

(2)

_

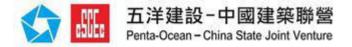
(1) The performance targets are given below:

- All excavated materials to be sorted for recovering the inert portion of C&D materials, e.g. hard rocks, soil and broken concrete, for reuse on the Site or disposal to designated outlets;

- All metallic waste to be recovered for collection by recycling contractors;

- All cardboard and paper packaging (for plant, equipment and materials) to be recovered, properly stockpiled in dry and covered condition to prevent cross contamination;

All chemical wastes to be collected and properly disposed of by specialist contractors; and


- All demolition debris to be stored to recover broken concrete, reinforcement bars, mechanical and electrical fittings, hardware as well as other fitting / materials that have established recycling outlets.

Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(3) Broken concrete for recycling into aggregates.

(4) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(5) "*" The inert C&D was delivered to the Hong Hum Barging Point and disposed by 1112.

Monthly Summary of Marine Sediment Flow for <u>2016</u> (year)

Contract No:SCL1121Date Reported:June 2016

		Volume of Sediments Generated Monthly Bulk Volume)															
Month	Type 1 – Open Sea Disposal				Туре 1	Type 1 – Open Sea Disposal (Dedicated Site)			Type 2 – Confined Marine Disposal					Type 3 – Special Treatment Disposal			
	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1121	Disposed
Unit	Unit (in '000m ³)					. (in '000m ³)				(in '000m ³)				(in '00	00m ³)	
Jan	0.013	16.584	5.342		21.801	0	0	0		0	0	0.019	21.339		21.339	0	0
Feb	0.003	1.253	10.172		11.566	0	0	0		0	0	4.041	11.611		15.152	0	0
Mar	0	3.850	10.842	N/A	14.694	0	0	0	N/A	0	0	2.298	29.771	N/A	32.087	0	0
Apr	0	0	6.253		6.253	0	0	6.825		6.825	0	0.358	31.814		31.814	0.557	0.557
May	0	0	12.046		12.046	0	0	1.675		1.675	0	4.057	31.508		35.838	0.441	0.441
June	0	0	6.775	0.148	6.775	0	0	0	0	0	0	6.447	33.845	0.031	40.363	0	0
Sub- Total	0.016	21.687	51.43	0.148	73.135	0	0	8.5	0	8.5	0	17.220	159.888	0.031	176.593	0.998	0.998
July																	
Aug																	
Sept																	
Oct																	
Nov																	
Dec																	
Total	0.016	21.687	51.43	0.148	73.135	0	0	8.5	0	8.5	0	17.220	159.888	0.031	176.593	0.998	0.998

APPENDIX L CUMULATIVE LOG FOR COMPLAINT LOGS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log

Log Ref.	Date/Location	Complainant/ Date of Contact	Details of Complaint	Investigation/ Mitigation Action	File Closed
EPD Ref.: K01/RE/00013547- 16	Not Specified / Hung Hom Finger Pier	Public / 3 June 2016	XXX 投訴近香港體育館 對出高鐵地盤(承辦商好 似是五洋建築),地盤泥 頭車在碼頭岸邊,將沙 泥運送至躉船時(沒有圍 封好),引致大量泥塵及 沙泥隨處飄,沙泥更掉 至海面上,要求環保署 跟進及回覆。	 As per the findings of the inspection for complaint received, the Contractor has implemented various mitigation measures to reduce possible construction dust and other environmental impacts including: Watering once every working hour to keep active works areas, exposed areas and paved haul roads wet Enclosing the unloading process at any barging point tipping hall by a 3-sided screen with top, and operating water spraying and flexible dust curtains at the discharge point Water spray is provided to stockpile of dusty material, which is then covered by tarpaulin sheets Dusty materials transported on trucks are covered by side boards before unloading to the barge Height of the barrier on the hopper barge was increased to further prevent splash of spoil material into the sea during delivery of spoil material from 	Closed

 barging facility; and ➤ Dump truck drivers were reminded to slow down the speed of vehicles and the unloading process.
The Contractor was recommended to continue to properly implement construction dust mitigation measures based on the recommendations in the Environmental Monitoring & Audit Manual to minimize environmental impact

Cumulative Log for Notifications of Summons

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Cumulative Log for Successful Prosecutions

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecution

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
March 2015	0	0	0
April 2015	0	0	0
May 2015	0	0	0
June 2015	0	0	0
July 2015	0	0	0
August 2015	1	0	0
September 2015	1	0	0
October 2015	1	0	0
November 2015	1	0	0
December 2015	0	0	0
January 2016	0	0	0
February 2016	0	0	0
March 2016	1	0	0
April 2016	0	0	0
May 2016	1	0	0
June 2016	1	0	0
Total	7	0	0

Appendix C

Monthly EM&A Report for June 2016 – SCL Works Contract 1123 Exhibition Station and Western Approach Tunnel

AECOM

Leighton – China State J.V.

Shatin to Central Link -Hung Hom to Admiralty Section

Works Contract 1123 -Exhibition Station and Western Approach Tunnel

Monthly EM&A Report for June 2016

[July 2016]

1-

	Name	Signature
Prepared & Checked:	Lemon Lam	Jame
Reviewed, Approved & Certified:	Y W Fung (Contractor's Environmental Team Leader)	ý,
		0

Version: 0

Date: 7 July 2016

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Leighton – China State J.V. and is given for its sole benefit in relation to and pursuant to SCL1123 and may not be disclosed to, quoted to or relied upon by any person other than Leighton – China State J.V. without our prior written consent. No person (other than Leighton – China State J.V. into whose possession a copy of this Manual comes may rely on this plan without our express written consent and Leighton – China State J.V. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

EXECU		UMMARY	1
1	INTRO	DUCTION	3
	1.1 1.2	Purpose of the Report Report Structure	
2	PROJE	CT INFORMATION	4
	2.1 2.2 2.3 2.4 2.5	Background Site Description Construction Programme and Activities Project Organisation Status of Environmental Licences, Notification and Permits	4 4 5
3	ENVIR	ONMENTAL MONITORING REQUIREMENTS	8
	3.1 3.2 3.3 3.4	Construction Dust Monitoring Construction Noise Monitoring Continuous noise monitoring Landscape and Visual.	10 11
4	IMPLE	MENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	12
5	MONIT	ORING RESULTS	13
	5.1 5.2 5.3 5.4	Construction Dust Monitoring Regular Construction Noise Monitoring Waste Management Landscape and Visual	13 14
6	ENVIR	ONMENTAL SITE INSPECTION AND AUDIT	15
7	ENVIR	ONMENTAL NON-CONFORMANCE	16
	7.1 7.2 7.3 7.4	Summary of Monitoring Exceedances Summary of Environmental Non-Compliance Summary of Environmental Complaints Summary of Environmental Summon and Successful Prosecutions	16 16
8	FUTUR	RE KEY ISSUES	17
	8.1 8.2 8.3	Construction Programme for the Next Three Month Key Issues for the Coming Month Monitoring Schedule for the Next Three Month	17
9	CONCI	LUSIONS AND RECOMMENDATIONS	18
	9.1 9.2	Conclusions Recommendations	

List of Tables

- Table 2.1
 Contact Information of Key Personnel
- Table 2.2
 Status of Environmental Licenses, Notifications and Permits
- Table 3.1Air Quality Monitoring Equipment
- Table 3.2 Locations of Construction Dust Monitoring Station
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4
 Noise Monitoring Equipment for Regular Noise Monitoring
- Table 3.5Noise Monitoring Station during Construction Phase
- Table 4.1
 Status of Required Submission under Environmental Permit
- Table 5.1
 Summary of 24-hour TSP Monitoring Result in the Reporting Period
- Table 5.2
 Summary of Construction Noise Monitoring Results in the Reporting Period
- Table 6.1 Observations and Recommendations of Site Audit

List of Figures

- Figure 1.1 Site Layout Plan of SCL1123
- Figure 3.1Air Quality and Noise Monitoring Locations

List of Appendices

- Appendix A Construction Programme
- Appendix B Project Organisation Structure
- Appendix C Implementation Schedule of Environmental Mitigation Measures
- Appendix D Summary of Action and Limit Levels
- Appendix E Calibration Certificates of Equipment
- Appendix F EM&A Monitoring Schedules
- Appendix G Air Quality Monitoring Results and their Graphical Presentations
- Appendix H Noise Monitoring Results and their Graphical Presentations
- Appendix I Event and Action Plan
- Appendix J Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions
- Appendix K Monthly Summary Waste Flow Table

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1123 – Exhibition Station and Western Approach Tunnel (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL).

The Project comprises the construction of an underground station (Exhibition Station) and 300 m of cut and cover tunnel (Western Approach Tunnel) along Convention Avenue.

The EM&A programme commenced on 1 June 2015. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 1 and 30 June 2016. As informed by the Contractor, major activities in the reporting period were:

Location	Site Activities			
Exhibition Station (PTI	Utilities Diversion/ Protection			
Area)	Provision of Temporary Footbridge			
	 Prebored socket H-Piles (PBSH) & King Post 			
	Diaphragm Wall Works			
Exhibition Station	Diaphragm Wall Works			
(Swimming Pool Area)				
Exhibition Station (Tunnel	Diaphragm Wall Works			
at Tonnochy Road)	Utilities Diversion/ Protection			
Western Approach	 Temporary Fire Escape Access for HKCEC 			
Tunnel WAT	Diaphragm Wall Works			
Western Vent Shaft	Diaphragm Wall Works			
(WVS)				

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action / Limit Level of air quality was recorded in the reporting month.

Breaches of Action and Limit Levels for Noise

Regular Noise Monitoring

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Location	Site Activities
Exhibition Station (PTI	Utilities Diversion/ Protection
Area)	Pile/obstruction Removal
	 Provision of Temporary Footbridge
	Demolition Ferry Pier Footbridge
	 Prebored socket H-Piles (PBSH) & King Post
	Diaphragm Wall Works
	 Remove Temporary PTI and Reinstatement
Exhibition Station	Diaphragm Wall Works
(Swimming Pool Area)	
Exhibition Station	Diaphragm Wall Works
(Tunnel at Tonnochy	Utilities Diversion/ Protection
Road)	
Western Approach	 Temporary Fire Escape Access for HKCEC
Tunnel WAT	Diaphragm Wall Works
Western Vent Shaft	Diaphragm Wall Works
(WVS)	

Key issues to be considered in the coming month included:-

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

1 INTRODUCTION

Leighton – China State Joint Venture (JV) was commissioned by MTR as the Civil Contractor for Works Contract 1123. AECOM Asia Company Limited (AECOM) was appointed by JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the thirteenth monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period from 1 to 30 June 2016.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is orgainised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

2 **PROJECT INFORMATION**

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-436/2012/D) was issued by the Director of Environmental Protection (DEP) on 5 February 2016.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and Works Contract 1123 – Exhibition Station and Western Approach involves the construction of an underground station (Exhibition Station) and 300m of cut and cover tunnel (Western Approach Tunnel) along Convention Avenue.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1123 include:
 - (a) Site preparation;
 - (b) Demolition works;
 - (c) Utilities works;
 - (d) Box Culvert works;
 - (e) Diaphragm wall construction and piling works;
 - (f) Pile Removal works;
 - (g) Excavation & Lateral Support (ELS) works; and
 - (h) Reprovisioning/ Reinstatement works.

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Location	Site Activities
Exhibition Station (PTI	Utilities Diversion/ Protection
Area)	Provision of Temporary Footbridge
	 Prebored socket H-Piles (PBSH) & King Post
	Diaphragm Wall Works
Exhibition Station	Diaphragm Wall Works
(Swimming Pool Area)	
Exhibition Station (Tunnel	Diaphragm Wall Works
at Tonnochy Road)	Utilities Diversion/ Protection
Western Approach	Temporary Fire Escape Access for HKCEC
Tunnel WAT	Diaphragm Wall Works
Western Vent Shaft (WVS)	Diaphragm Wall Works

2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1**.

Table 2.1	Contact Information of Key Personnel
Table 2.1	Contact information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
	Residential	Construction Manager	Mr. Walter Lam	3959 2128	3959 2200
MTR	Engineer (ER)	SCL Project Environmental Team Leader	Mr. Richard Kwan	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
JV	Contractor	Project Director	Mr. Jan Torka	3973 0846	31051126
JV Contractor		Environmental Manager	Mr. Chris Chan	6463 2318	31031120
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y W Fung	3922 9366	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.2**.

 Table 2.2
 Status of Environmental Licenses, Notifications and Permits

Permit / License No.	Valid Period				
/ Notification/ Reference No.	From	То	Status	Remarks	
Environmental Permit					
EP-436/2012/D	5-Feb-16	-	Valid	-	
Construction Noise Pe	ermit				
GW-RS1366-15	16-Dec-15	13-Jun-16	Valid	An Area at Wan Chai Sports Ground (W1a, W1b)	
GW-RS0070-16	30-Jan-16	29-Jul-16	Valid until superseded by GW-RS0548-16 on 2-Jun-16	An area near Harbour Road Sports Centre (W9a9b)	
GW-RS0270-16	18-Mar-16	30-Jun-16	Valid	An area near Hong Kong Convention and Exhibition Centre (Area A & C)	
GW-RS0329-16	5-Apr-16	4-Oct-16	Valid until superseded by GW-RS0603-16 on 12-Jun-16	An area near the junction of Convention Avenue and Fleming Road (Zone 1)	
GW-RS0339-16	9-Apr-16	6-Oct-16	Valid	An area near the junction of Convention Avenue and Fleming Road (W12T)	
GW-RS0394-16	25-Apr-16	21-Oct-16	Valid	An area near Harbour Road Sports Centre (Zone 3)	
GW-RS0396-16	25-Apr-16	21-Oct-16	Valid	An Area at Wan Chai Sports Ground (Zone 4)	
GW-RS0472-16	15-May-16	12-Nov-16	Valid	An area near Hong Kong Convention and Exhibition Centre (Area A & C, including open areas)	
GW-RS0528-16	28-May-16	16-Jul-16	Valid	An section of Convention Avenue near Tonnochy Road (W6T 1 lane TTM)	
GW-RS0548-16	02-Jun-16	30-Nov-16	Valid	An area near Harbour Road Sports Centre (Zone 3)	
GW-RS0603-16	12-Jun-16	07-Dec-16	Valid	An area near the junction of Convention Avenue and Fleming Road (PTI Zone 1)	
GW-RS0625-16	17-Jun-16	20-Aug-16	Valid	A section of Convention Avenue near Expo Drive East	
GW-RS0628-16	20-Jun-16	30-Sep-16	Valid	A junction of Convention Avenue and Tonnochy Road (TTM Stage 2B2 advance civil works)	
GW-RS0617-16	20-Jun-16	30-Sep-16	Valid	A section of Expo Drive East and Convention Avenue (TTM Stage 2B2 advance civil works)	
GW-RS0601-16	15-Jun-16	13-Sep-16	Valid	An area at Wan Chai Sports Ground (Zone 4)	
GW-RS0632-16	23-Jun-16	12-Jul-16	Valid	A section of Fleming Road near Convention Avenue and a section of Convention Avenue near Fleming Road	

Permit / License No.	Valid	alid Period				
/ Notification/ Reference No.	From	То	Status	Remarks		
Wastewater Discharge	e License					
WT00021388-2015	14-Apr-15	30-Apr-20	Valid	For Site Portions W16, W17, W18a		
WT00021864-2015	15-Jun-15	30-Jun-20	Valid	For Site Portion W12T (PTI)		
WT00022480-2015	4-Sep-15	30-Sep-20	Valid	For site portion W1a, W1b		
WT00022482-2015	4-Sep-15	30-Sep-20	Valid	For site portion W9a, W9b		
WT00023006-2015	26-Nov-15	30-Nov-20	Valid	For site portion W6T		
Chemical Waste Prod	Chemical Waste Producer Registration					
5213-135-L2881-01	02-Apr-15	End of the Project	Valid	For Whole Site		
Billing Account for Co	onstruction W	aste Disposal				
7021736	16-Feb-15	End of Contract	Valid	For Disposal of C&D Waste		
Notification Under Air	Notification Under Air Pollution Control (Construction Dust) Regulation					
385128	04-Feb-15	End of Contract	Valid	For Whole Site		

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring stations. The HVS meets all the requirements of the EM&A Manual. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:10380 and S/N:809))
Calibration Kit	TISCH Environmental Orifice (Model TE-5025A (Orifice I.D.: 0988))

Monitoring Locations

3.1.3 The monitoring station for construction dust monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. The location of the construction dust monitoring stations are summarised in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Locations of Construction Dust Monitoring Station

ID	Air Sensitive Receiver (ASR) ID in EIA Report	Dust Monitoring Station
AM2 ^[1]	EXA6	Wanchai Sports Ground
AM3 ^[2]	EXA5	Existing Harbour Road Sports Centre

Note:

[1] The impact monitoring at AM2 was handed over from Contract SCL1128 on 28 October 2015.

[2] The impact monitoring at AM3 was handed over from Contract SCL1126 in June 2015.

Monitoring Methodology

- 3.1.4 24-hour TSP Monitoring
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each others;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) The sampler was located more than 20 meters from any dripline.

- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.
- (b) Preparation of Filter Papers
 - (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
 - (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
 - (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.
- (c) Field Monitoring
 - (i) The power supply was checked to ensure the HVS works properly.
 - (ii) The filter holder and the area surrounding the filter were cleaned.
 - (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
 - (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
 - (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
 - (vi) Then the shelter lid was closed and was secured with the aluminium strip.
 - (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
 - (viii) A new flow rate record sheet was set into the flow recorder.
 - (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
 - (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
 - (xi) The initial elapsed time was recorded.
 - (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
 - (xiii) The final elapsed time was recorded.
 - (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
 - (xv) It was then placed in a clean envelope and sealed.
 - (xvi) All monitoring information was recorded on a standard data sheet.
 - (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.
- (d) Maintenance and Calibration
 - (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
 - (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
 - (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.5 The schedule for environmental monitoring in June 2016 is provided in **Appendix F**.

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.4**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. 2238 (S/N: 2800927), (S/N: 2800930))
Acoustic Calibrator	Rion (Model No. NC-73 (S/N: 10307223))

Monitoring Locations

3.2.3 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.5** and shown in **Figure 3.1**.

Table 3.5	Noise Monitoring Station during Construction Phase
-----------	--

Identification No.	Noise Sensitive Receiver (NSR) ID in EIA Report	Noise Monitoring Station	Alternative Noise Monitoring Location
NM2 ^[1]	EX1	Causeway Centre, Block A	Harbour Centre ^[2]

Note:

[1] The impact monitoring at NM2 was handed over from Works Contract SCL1126 in June 2015.

[2] The Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. An alternative monitoring location at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014.

Monitoring Methodology

- 3.2.4 Monitoring Procedure
 - (a) Façade measurements were made at NM2.
 - (b) The battery condition was checked to ensure the correct functioning of the meter.
 - (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

- (i) frequency weighting: A
- (ii) time weighting: Fast
- (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.
- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (e) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.
- 3.2.5 Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
 - (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.2.6 The schedule for environmental monitoring in June 2016 is provided in **Appendix F**.

3.3 Continuous noise monitoring

3.3.1 According to EP conditions under EP-436/2012/D (Condition 2.7 and 2.8), the latest Construction Noise Mitigation Measures Plan (CNMMP) and Continuous Noise Monitoring Plan (CNMP) were submitted to EPD in June 2016, it is predicted that no residual air-borne construction noise impact exceeding the relevant noise criteria is anticipated. No continuous noise monitoring is required under this Contract.

3.4 Landscape and Visual

3.4.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C**. Status of required submissions under the EP during the reporting period is summarised in **Table 4.1**.

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 2.7 (EP-436/2012/D)	Construction Noise Mitigation Measures Plan (CNMMP) - Revision D	2 June 2016
Condition 2.8 (EP-436/2012/D)	Continuous Noise Monitoring Plan (CNMP) - Revision B	2 June 2016
Condition 3.4 (EP-436/2012/D)	Monthly EM&A Report for May 2016	14 June 2016

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

- 5.1.1 The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.
- 5.1.2 The monitoring results for 24-hour TSP are summarised in **Table 5.1**. Detailed air quality monitoring results and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

 Table 5.1
 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (µg/m ³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
AM2 [#]	22.9	13.9 – 27.0	160	260
AM3	63.8	26.9 – 163.6	169	260

The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.

- 5.1.3 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring locations in the reporting month.
- 5.1.4 The event and action plan is annexed in **Appendix I**.
- 5.1.5 Major dust sources during the monitoring included construction dust, nearby traffic emission and other nearby construction sites.

5.2 Regular Construction Noise Monitoring

5.2.1 The monitoring results for noise are summarized in **Table 5.2** and the monitoring data is provided in **Appendix H**.

Table 5.2 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
NM2 ^(*)	<baseline< th=""><th>75</th></baseline<>	75

(*) Baseline correction will be made to the measured Leq when the measured noise level exceeded the corresponding baseline noise level and presented in the table.

- 5.2.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 5.2.3 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.
- 5.2.4 The event and action plan is annexed in **Appendix I**.
- 5.2.5 Major noise sources during the monitoring included construction noise from the Project site, nearby traffic noise and the community.

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor, 8,416m³ of inert C&D material was generated (7,029m³ was disposed of as public fill) in the reporting month. 1,386m³ of imported fill from other project. No inert C&D materials were reused on site. 41m³ general refuse was generated in the reporting month. 4,425kg of metals, 400kg of paper/cardboard packaging material and 798kg of plastic was collected by recycling contractor in the reporting month. No chemical waste was collected by licensed contractor in the reporting period. The waste flow table is annexed in **Appendix K**.
- 5.3.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.4 Landscape and Visual

5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 10 and 24 June 2016. A summary of the site inspection is provided in Appendix C. The observations and recommendations made during the site inspections are presented in Table 6.1.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 5 site inspections were carried out on 3, 10, 17, 24 and 30 June 2016. Joint inspection with the IEC, ER, the Contractor and the ET was conducted on 17 June 2016. No non-compliance was recorded during the site inspection. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Parameters	Date	Observations and Recommendations	Follow-up
	3 Jun	• Site area at Zone 1 and WAT was observed dry. The Contractor should water the exposed site areas timely for dust suppression.	The item was rectified by the Contractor on 6 Jun 16.
	10 Jun	• Reminder: Site area in general site was observed a bit dry. The Contractor was reminded to water the exposed area to suppress dust generation.	The item was rectified by the Contractor on 13 Jun 16.
Air Quality		 Reminder: Dusty stockpile was observed at Zone 1 and WAT. The Contractor was reminded to cover the stockpile with tarpaulin sheet or water the stockpile for dust suppression. 	The item was rectified by the Contractor on 14 Jun 16.
	24 Jun	 Reminder: Some site areas were observed a bit dry at Zone 1 and Zone 4. The Contractor was reminded to water the exposed site area timely. 	The item was rectified by the Contractor on 24 Jun 16.
Noise	24 Jun	 Reminder: Noise acoustic mat wrapped on the breaker tips were observed loosen at Zone 4. The Contractor was reminded to replace the acoustic mat properly. 	The item was rectified by the Contractor on 27 Jun 16.
	30 Jun	 Reminder: The Contractor was reminded to replace the acoustic mat wrapped on the breaker tips frequently at Zone 4. 	The item to be followed up in Jul 16.
Water	24 Jun	• No preventive measures for the gully was provided at WAT. The Contractor should provide preventive measure for the gully to prevent potential site runoff.	The item was rectified by the Contractor on 27 Jun 16.
Quality	30 Jun	• No preventive measures for the u-channel and gullies was provided at Zone 4. The Contractor should provide preventive measure for the gully to prevent potential site runoff.	The item to be followed up in Jul 16.
	3 Jun	• Oil stains were observed at Zone 1 and WAT. The Contractor should remove the oil stains and dispose of as chemical waste properly.	The item was rectified by the Contractor on 7 Jun 16.
Waste/ Chemical	10 Jun	• General waste was found accumulated at WAT. The Contractor should remove the waste regularly to prevent over accumulation.	The item was rectified by the Contractor on 14 Jun 16.
Management	17 Jun	• Chemical containers placed on ground was observed at Zone 1. The Contractor should store the chemical containers with drip tray to retain leakage, if any.	The item was rectified by the Contractor on 21 Jun 16.
	30 Jun	• Chemical containers placed on ground was observed at WAT. The Contractor should store the chemical containers with drip tray to retain leakage, if any.	The item to be followed up in Jul 16
Landscape & Visual	Nil	Nil	Nil
Permits/ Licenses	Nil	Nil	Nil

6.1.3 Most of the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed into the following weekly site inspection conducted during the reporting period. Some outstanding follow-up actions will be reported in the next reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit level at all monitoring locations in the reporting month.
- 7.1.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 7.1.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint was received in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix J**.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The major construction works in between July 2016 and September 2016 will be:

Location	Site Activities
Exhibition Station	Utilities Diversion/ Protection
(PTI Area)	Pile/obstruction Removal
	 Provision of Temporary Footbridge
	Demolition Ferry Pier Footbridge
	 Prebored socket H-Piles (PBSH) & King Post
	Diaphragm Wall Works
	Remove Temporary PTI and Reinstatement
Exhibition Station	Diaphragm Wall Works
(Swimming Pool	
Area)	
Exhibition Station	Diaphragm Wall Works
(Tunnel at Tonnochy	Utilities Diversion/ Protection
Road)	
Western Approach	Temporary Fire Escape Access for HKCEC
Tunnel WAT	Diaphragm Wall Works
Western Vent Shaft (WVS)	Diaphragm Wall Works

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

8.3 Monitoring Schedule for the Next Three Month

8.3.1 The tentative schedules for environmental monitoring in between July 2016 and September 2016 are provided in **Appendix F**.

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring results complied with the Action / Limit Level at in the reporting month.
- 9.1.3 No noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 9.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.5 5 nos. of environmental site inspections were carried out in June 2016. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.6 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

• Implement effective/preventive measures to avoid dust impact.

Construction Noise Impact

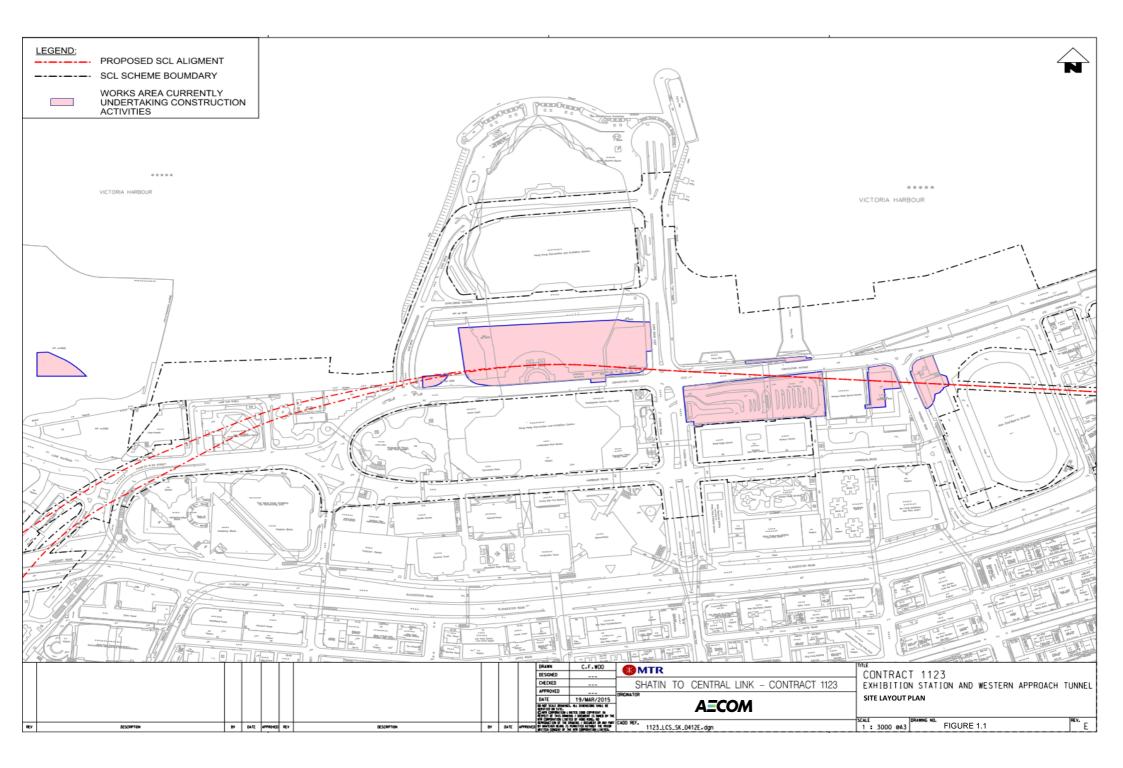
• Implement effective/preventive measures to minimize noise impact.

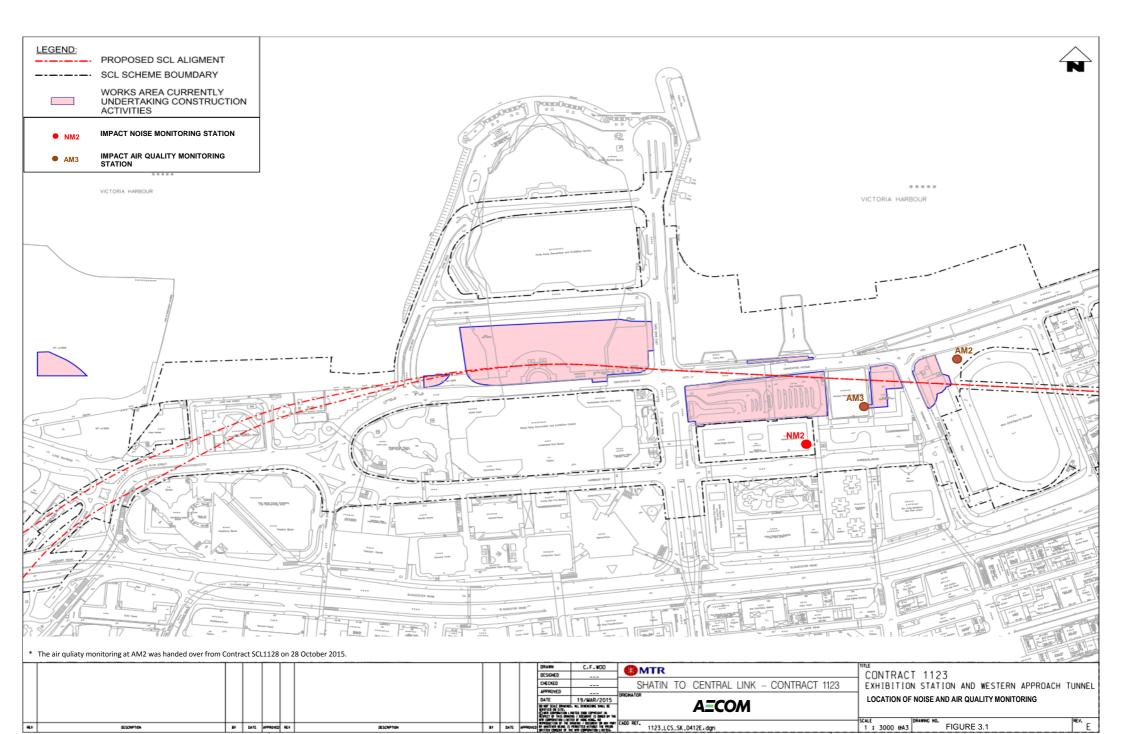
Water Quality Impact

• Implement effective/preventive measures to avoid water quality impact.

Chemical and Waste Management

• Provide proper chemical and waste handling management.


Landscape & Visual Impact


• No specific observation was identified in the reporting month.

Permits/licenses

• No specific observation was identified in the reporting month.

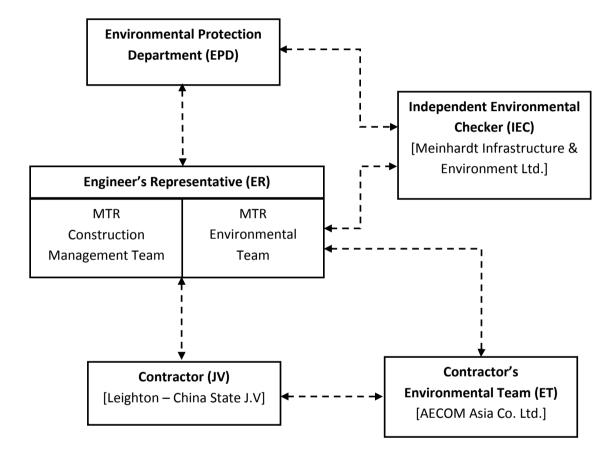
FIGURES


APPENDIX A

Construction Programme

MTR SCL 1123 - Exhibition Station and Western Approach Tunnel

High Level Programme



APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure
Cultural He	eritage Impact			
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Chai, and Works Sh in Admiralty
Ecological	Impact			
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas
Landscape	and Visual Impact			
Constructio	on Phase			
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites
Construction	on Dust Impact			
Table 8.5	 Barging facilities: (i) Transportation of spoils to the barging point – Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every working hours to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.0 L/m² once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.0L/m² to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual. (ii) Unloading of spoil materials – Undertake the unloading process within a 3-sided screen with top 	To minimize dust impacts	Contractor	All barging points

	When to implement the measures?	Implementation Status
id Wan Shaft	Construction Phase	V
	Construction Phase	N/A
	Construction Phase	V
	Construction Phase	N/A
	0	
	Construction phase	N/A

	Appendix C – E	Environmental Mitigation	Implementation Schedule
--	----------------	--------------------------	-------------------------

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 tipping hall. Provide water spraying and flexible dust curtains at the discharge point for dust suppression. (iii) Vehicles leaving the barging facilities – Pass vehicles through the wheel washing facilities provided at site exits. 					
S8.63	For concrete batching plant, the requirements and mitigation measures stipulated in the <i>Guidance</i> Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	N/A
Table 8.6	 During operation of concrete batching plant: (i) Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system. (ii) Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. (iii) Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. (iv) Weighing and batching of cementitious materials – Perform the whole process of weighing and mixing in a fully enclosed environment. Equip all the mixers with dust collectors. (v) Loading of concrete from mixer into transit mixer of a truck – Directly load the concrete from the mixer into the transit mixer of a truck in "wet form". (vi) Tipper trucks and cement tankers leaving the Concrete Batching Plant – Haul road within the site is unpaved. Install wheel washing pit at the gate of the concrete batching plant. (vii) Transportation of materials within the plant – Provide watering twice a day would be provided. 	To minimize dust impacts	Contractor	Concrete Batching Plant	Construction phase	N/A
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	Construction Phase	@
S8.89	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall, provision of water spraying and flexible dust curtains to reduce dust emission	To minimize dust impact	Contractor	All barging points	Construction phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S8.90	 Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. Imposition of speed controls for vehicles on site haul roads. Where possible routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. Instigation of an environmental monitoring and auditing program to monitor the construction 	To minimize dust impacts	Contractor	Works areas	Construction phase	V V V V N/A V N/A V N/A V V V
/	 process in order to enforce controls and modify method of work if dusty conditions arise Dust suppression measures (con't) De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement The portion of any road where along the site boundary should be kept clear of dusty materials. Use of frequent watering for any dusty construction process (e.g. breaking works) to reduce dust emissions. 	To minimize dust impacts	Contractor	Works areas	Construction phase	V V V V
/	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V V V
Airborne No	pise Impact					
Constructio	on Phase					
S9.55	 The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program Mobile plant, if any, shall be sited as far from NSRs as possible Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V N/A V V N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities 					N/A
/	 Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during operation Air compressors shall be fitted with valid noise emission labels during operation 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V V
S9.56 & Table 9.16	The following quiet PME shall be used: Crane lorry, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill Lorry Wheel loader Roller vibratory	To minimize construction noise impact	Contractor	 Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	V V N/A V N/A N/A N/A V V V V V V V V V V V V V V V V V V V
S9.58 – S9.59 & Table 9.17	Movable noise barrier shall be used for the following PME: Air compressor Asphalt paver Backhoe with hydraulic breaker Bar bender Bar bender and cutter (electric) Breaker, excavator mounted Concrete pump Concrete pump, stationary/lorry mounted Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
S9.60 & Table 9.17	 Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic) 	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A N/A N/A N/A N/A N/A N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Qual	ity Impact					
Constructio	on Phase					
S11.216	 The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works. 	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction Phase	V
	Stockpiling of construction and demolition materials and dusty materials shall be covered and located away from the seawater front and storm drainage.					V N/A
	 Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters. 					
S11.222 to 11.245	 The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. <u>Surface Run-off</u> Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels shall be constructed in advance of site formation works and earthworks. 	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction Phase	@
	• Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and re-alignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum distances of 100 m shall be maintained between the discharge points of construction site runoff and the existing saltwater intakes.					V
	 Construction works shall be programmed to minimize soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by tarpaulin, and temporary access roads shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements shall always be in place in such a way that adequate surface protection measures can be safely carried out 					V
	 well before the arrival of a rainstorm. Earthworks final surfaces shall be well compacted and the subsequent permanent work or surface protection shall be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels shall be provided where necessary. Measures shall be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in 					N/A
	 Weasures shall be taken to minimize the ingress of rainwater into trenches. In excavation of trenches in excavation of trenches in excavation of trenches in trenches in excavation of trenches in trenches or foundation excavations shall be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites shall be covered with tarpaulin or similar fabric during rainstorms. 					N/A
	 Manholes (including newly constructed ones) shall always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and 					V
	 to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. Good site practices shall be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the 					@
	 brevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis. <u>Boring and Drilling Water</u> Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as 					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities. Wheel Washing Water					V
	 All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 					V
	 Bentonite Slurries Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the bentonite slurries shall either be dewatered or mixed with inert fill material for disposal to a public filling area. 					N/A
	 If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. Water for Testing & Sterilization of Water Retaining Structures and Water Pipes 					N/A
	 Water used in water testing to check leakage of structures and pipes shall be used for other purposes as far as practicable. Surplus unpolluted water will be discharged into storm drains. Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought 					N/A
	during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. Acid Cleaning, Etching and Pickling Wastewater					N/A
	 Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. Wastewater from Site Facilities 					N/A
	 Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage tank on a regular basis. Drainage serving an open oil filling point shall be connected to storm drains via petrol interceptors with 					N/A
	 Plainage serving an open of mining point shall be connected to storm drains via petrol interceptors with peak storm bypass. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be 					N/A
	located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance.					N/A
1.246 & .247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	Works areas	Construction Phase	N/A
11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	To control site run-off generated from any potential contaminated works areas.	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater quality will not be affected by the recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.252	 The following good site practices shall be adopted for the proposed barging points: all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash all hopper barges shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site loading of barges and hoppers shall be controlled to prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation 	To minimize water quality impacts generated from the barging points.	Contractor	Barging points	Construction Phase	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
511.256	 Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage during 	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
	 Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. 					N/A
	 Storage area shall be selected at a safe location on site and adequate space shall be allocated to the storage area. 					N/A
Vaste Man	agement Implications					
onstructio	on Phase					
12.75	 Good Site Practices and Waste Reduction Measures Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; 	To reduce waste management impacts	Contractor	All Work Sites	Construction Phase	V
	 Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; 					V
	 Provision of sufficient waste disposal points and regular collection of waste; Appropriate measures to minimize windblown litter and dust during transportation of waste by either equation trucks or by transporting waster in analoged containers; 					@ N/A
	 either covering trucks or by transporting wastes in enclosed containers; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and 					N/A
	Separation of chemical wastes for special handling and appropriate treatment.	_				N/A
12.76	 Good Site Practices and Waste Reduction Measures (con't) Sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); 	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	N/A
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; 					N/A N/A
	 Encourage collection of aluminum cans by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; Proper storage and site practices to minimize the potential for damage or contamination of 					V N/A
	 construction materials; Plan and stock construction materials carefully to minimize amount of waste generated and 					V
	 avoid unnecessary generation of waste; and Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle. 					V
S12.77	Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.					
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	N/A
S12.79	 Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include: Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area shall be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and 	To minimize potential adverse environmental impacts arising from waste storage	Contractor	Work Sites	Construction Phase	N/A N/A N/A N/A
S12.80	 Different locations shall be designated to stockpile each material to enhance reuse. Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts: Remove waste in timely manner Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) Waste shall be disposed of at licensed waste disposal facilities Maintain records of quantities of waste generated, recycled and disposed 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V V N/A V V
S12.81	 Storage, Collection and Transportation of Waste (con't) Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.83 – 12.86	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials. The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the 	To minimize potential adverse environmental impacts during the handling, transportation and disposal of C&D materials	Contractor	Work Sites	Construction Phase	V N/A V N/A
S12.88	 design and construction stages, it includes backhing to cut and cover construction works for the Hung Hom south and north approach tunnels. Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance. 	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.89	 Sediments (con't) The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works. 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Detailed Design Stage and Construction Phase	N/A
S12.91 – 12.94	 Sediments (con't) Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment slurry to the surrounding water. The barge transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.97	 Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall: Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation. 	To register with EPD as a Chemical waste producer and store chemical waste in appropriate containers	Contractor	Work Sites	Construction Phase	V V V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.98	 Chemical Waste Storage Area Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Work Sites	Construction Phase	
S12.99	 Chemical Waste Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place. 	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
S12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	N/A
S12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	V
S12.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V
/	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites	Construction Phase	@ @ V N/A
Land Conta	amination Impact		•	·		
S13.23– 13.24	 For construction works at sites under the current stage of site investigation (Stage 1 SI): Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process shall involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odours, which may also indicate soil and/or groundwater contamination. If soil materials suspected to be contaminated are encountered during excavation, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during 	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Within Project Boundary where signs of contamination is identified	During excavation works for Cut-and- Cover	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	demolition, excavation and cut & cover construction shall be temporary stockpiled. Shall concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the Contamination Assessment Report (CAR) and Remediation Action Plans (RAP).					
S13.30	For some sites with currently no SI proposed (i.e. sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28), to be conservative, visual inspection shall be conducted during demolition and excavation to detect any abnormal colour, smell or other characteristics of the soil, due to the nearby land use and/ or construction method. If abnormal colour, smell or other characteristics of contamination are identified for any of these sites, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Should the concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the CAR and RAP.	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Areas with no SI proposed (Sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2- 28)	During excavation works for Cut-and- Cover	N/A
S13.36 – 13.38	 For areas inaccessible for proper site appraisal and investigation (Stage 2 SI) (i) Site 2-15 Upon site access being granted, visual inspection shall be carried out where intrusive works and soil excavation is encountered, for attention on any potential contamination due to its current operation A supplementary CAP shall then be submitted to EPD for endorsement. A CAR/RAP shall be prepared and submitted to EPD for endorsement on completion of the SI and analytical testing. Shall remediation be undertaken a Remediation Report (RR) shall be prepared and submitted to EPD for endorsement to demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP. Information such as soil treatment/ disposal records (including trip tickets), confirmatory sampling results, and photographs shall be included in the aforesaid RR. No construction work shall be carried out prior to the endorsement of the RR by EPD. 	To identify areas with land contamination concern, report laboratory results and propose remediation measures if necessary. To ensure remediation works have been undertaken to before the commencement of any construction works of the Project.	Contractor	Areas unable to be accessed during Stage 1 SI (Site 2-15)	After land resumption and prior to the construction works commencement at the site	N/A
S13.39	 Potential Remediation of Contaminated Soil Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; Excavation shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Supply of suitable clean backfill material is needed after excavation; If remediation is required with chemical oxidation proposed as a contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and personal protective equipment (PPE). Vehicles containing any excavated materials shall be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates shall be sealed to prevent any discharge during transport or during wet conditions; Speed control for the trucks carrying contaminated materials shall be established and used; and Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control shall be implemented and complied with relevant regulations and guidelines. 	To remediate contaminated soil	Contractor	Identified contaminated sites	Site remediation	N/A
S13. 40	In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures shall be implemented as far as possible: Set up a list of safety measures for site workers; Provide written information and training on safety for site workers; Keep a log-book and plan showing the contaminated zones and clean zones; Maintain a hygienic working environment; Avoid dust generation; Provide face and respiratory protection gear to site workers; 	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	Identified contaminated sites	Site remediation and prior to construction phase	N/A

EIA Ref. / EM&A Log Ref.		Recommended	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and Provide first aid training and materials to site workers. 					

Legend: V

implemented;not implemented;partially implemented; x @

N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D – Summary of Action and Limit Levels

ID	Location	Action Level	Limit Level
AM2*	Wan Chai Sports Ground	160 μg/m³	260 μg/m ³
AM3	Existing Harbour Road Sports Centre	169 μg/m³	260 μg/m ³

Action and Limit Levels for 24-hour TSP Table 1

The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.

Table 2 **Action and Limit Levels for Construction Noise** (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
NM2*	Harbour Centre	When one documented complaint is received	75 dB(A)

The Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. An alternative monitoring location at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014.

APPENDIX E

Calibration Certificates of Equipments

AECOM Asia Company Limited <u>TSP High Volume Sampler</u> <u>Field Calibration Report</u>

Station	Wanchai Sports G	round	Operator:	Leung Yiu Ting	_
Cal. Date:	17-May-16		Next Due Date:	17-Jul-16	-
Equipment No.:	A-001-72T		Serial No.	809	-
			Ambient Condition		
Temperat	ure, Ta (K)	297	Pressure, Pa (mmHg)	758.0	

	(Drifice Transfer Sta	andard Information		
Serial No:	988	Slope, mc	1.97831	Intercept, bc	0.01264
Last Calibration Date:	29-May-15		mc x Qstd + bc = $[H x (Pa/7)]$	$(0) = (209/T_{c})1^{1/2}$	
Next Calibration Date:	29-May-16	1	mc x Qstd + bc = [H x (Pa)]	00) x (298/1a)]	

		Calibration C	of TSP Sampler		
		Orfice		HV	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	6.8	in 2.61	1.31	44.0	44.02
13	5.9	2.43	1.22	40.0	40.01
10	4.6	2.15	1.08	32.0	32.01
7	3.1	1.76	0.88	26.0	26.01
5	2.3	1.52	0.76	20.0	20.01
Slope , mw = Correlation Coe		0.9916 heck and recalibrate.	Intercept, bw =	-12.	5066
Slope , mw = Correlation Coe	42.7252 fficient* =	heck and recalibrate.	-	-12.	5066
Slope , mw = Correlation Coe	42.7252 fficient* = 	heck and recalibrate.	Intercept, bw = Calculation	-12.	5066
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	42.7252 fficient* = pefficient < 0.990, c eld Calibration Cur	heck and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	-	-12.	5066
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	42.7252 fficient* = pefficient < 0.990, c eld Calibration Cur	heck and recalibrate.	-	-12.	5066
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	42.7252 fficient* = pefficient < 0.990, c eld Calibration Cur	heck and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	Calculation		5066

QC Reviewer:	
--------------	--

KY Shin

K

Date: 17/5/16

AECOM Asia Company Limited <u>TSP High Volume Sampler</u> <u>Field Calibration Report</u>

Station	Exiting Harbour R	oad Sports Centre	(AM3) Operator:	Suen Hon Yeung	
Cal. Date:	17-May-16		Next Due Date:	17-Jul-16	
Equipment No.:	A-001-15T		Serial No.	10380	_
			Ambient Condition		
Temperat	ure, Ta (K)	297	Pressure, Pa (mmHg)	758.0	

	(Drifice Transfer Stand	dard Information		
Serial No:	988	Slope, mc	1.97831	Intercept, bc	0.01264
Last Calibration Date:	29-May-15		x Qstd + bc = [H x (Pa/7)]	$(209/T_{\odot})^{1/2}$	
Next Calibration Date:	29-May-16	mc	x Qsta + bc = [H x (Pa)]	00) X (298/12)]	

			of TSP Sampler		
		Orfice		HV	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	7.4	× 2.72	1.37	44.0	44.02
13	5.9	2.43	1.22	36.0	36.01
10	4.7	2.17	1.09	30.0	30.01
7	3.7	1.92	0.97	26.0	26.01
5	2.8	1.67	0.84	20.0	20.01
Slope , mw = Correlation Coe		0.9934 check and recalibrate.	Intercept, bw = _	-17.3	3537
Slope , mw = Correlation Coe	44.2551 fficient* =	sheck and recalibrate.	Intercept, bw = Calculation	-17.5	3537
Slope , mw = Correlation Coe *If Correlation Co	44.2551 fficient* = 	sheck and recalibrate.	_	-17.:	3537
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	44.2551 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point	_	-17.:	3537
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	44.2551 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	Calculation		3537

QC Reviewer: KY Sham

Signature:

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		5 Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	- 297 - 755.65
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3980 0.9910 0.8790 0.8380 0.6890	3.2 6.3 7.8 8.6 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9934 0.9893 0.9872 0.9862 0.9809	0.7106 0.9983 1.1231 1.1769 1.4237	1.4125 1.9976 2.2334 2.3424 2.8251		0.9957 0.9917 0.9896 0.9886 0.9833	0.7123 1.0007 1.1258 1.1797 1.4271	0.8866 1.2539 1.4019 1.4703 1.7732
Qstd slop intercept coefficie	: (b) =	1.97831 0.01264 0.99985		Qa slope intercept coefficie	: (b) =	1.23878 0.00793 0.99985
y axis =	SQRT [H20 (F	Pa/760) (298/1	[a)]	y axis =	SQRT [H2O (1	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time
Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

Website: www.cigismec.com E-mail: smec@cigismec.com

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	15CA0703 02-02			Page	1	of	2
Item tested							
Description:	Sound Level Meter	r (Type 1)	,	Microphone			
Manufacturer:	B & K		,	B&K			
Type/Model No.:	2238		,	4188			
Serial/Equipment No.:	2800927		,	2791214			
Adaptors used:	-		,	-			
Item submitted by	N-009 01	0					
Customer Name:	AECOM ASIA CO.	, LTD.					
Address of Customer:	-						
Request No.:	-						
Date of receipt:	03-Jul-2015						
Date of test:	04-Jul-2015						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.		Expiry Date:		Traceat	ole to:
Multi function sound calibrator	B&K 4226	2288444		19-Jun-2016		CIGISME	C
Signal generator	DS 360	33873		16-Apr-2016		CEPREI	
Signal generator	DS 360	61227		16-Apr-2016		CEPREI	
Ambient conditions							
Temperature:	21 ± 1 °C						
Relative humidity:	60 ± 10 %						
Air pressure:	1000 ± 5 hPa						
Test specifications							

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997

- and the lab calibration procedure SMTP004-CA-152. 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and
- replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: 06-Jul-2015 Company Chop: Date: Huang Jian W Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

NGI

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

15CA0703 02-02

E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

2 Page 2 of

1. **Electrical Tests**

Certificate No.:

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
5	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Test.	Sublest	otatus	encontainty (ab)	1 40001
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	15CA0703 02-01			Page	1	of	2
Item tested							
Description:	Sound Level Mete	r (Type 1)	,	Microphone			
Manufacturer:	B & K		,	B&K			
Type/Model No.:	2238		,	4188			
Serial/Equipment No.:	2800930			2250455			
Adaptors used:	-		т. Т	-			
Item submitted by	\sim	.009.07					
Customer Name:	AECOM ASIA CO	., LTD.					
Address of Customer:	-						
Request No.:	-						
Date of receipt:	03-Jul-2015						
Date of test:	04-Jul-2015						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.		Expiry Date:		Traceab	le to:
Multi function sound calibrator	B&K 4226	2288444		19-Jun-2016		CIGISME	С
Signal generator	DS 360	33873		16-Apr-2016		CEPREI	
Signal generator	DS 360	61227		16-Apr-2016		CEPREI	
Ambient conditions							
Temperature:	21 ± 1 °C						
Relative humidity:	60 ± 10 %						
Air pressure:	1000 ± 5 hPa						
Test specifications							

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Huang Jian

Approved Signatory:

Date: +Feng Jun Qi

06-Jul-2015 Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and Comments: carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeer

15CA0703 02-01

G/F., 9/F., 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Page

2 of

2

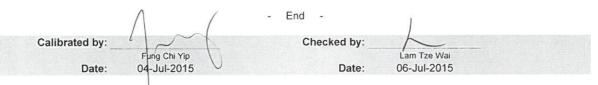
1, Electrical Tests

Certificate No.:

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

_		0 1.1	Expanded Uncertanity (dB)	Coverage Factor
Test:	Subtest:	Status:	Uncertainty (ub)	Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
0.0	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests


The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipmentused in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Website: www.cigismec.com

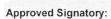
E-mail: smec@cigismec.com

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	15CA1203 03		Page:	1	of	2
Item tested						
Description:	Acoustical Calibrat	tor (Class 1)				
Manufacturer:	Rion Co., Ltd.					
Type/Model No.:	NC-73					
Serial/Equipment No.:	10307223	March and March				
Adaptors used:						
Item submitted by						
Curstomer:	AECOM ASIA CO.	, LTD.				
Address of Customer:						
Request No.:	-					
Date of receipt:	03-Dec-2015					
Date of test:	, 03-Dec-2015					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial No.	Expiry Date:	т	raceab	le to:
Lab standard microphone	B&K 4180	2341427	15-Apr-2016	S	SCL	
Preamplifier	B&K 2673	2239857	22-Apr-2016	C	EPREI	
Measuring amplifier	B&K 2610	2346941	22-Apr-2016	C	EPREI	
Signal generator	DS 360	61227	16-Apr-2016	C	EPREI	
Digital multi-meter	34401A	US36087050	17-Apr-2016		EPREI	
Audio analyzer	8903B	GB41300350	17-Apr-2016		EPREI	
Universal counter	53132A	MY40003662	16-Apr-2016	C	EPREI	
Ambient conditions						
Temperature:	22 ± 1 °C					
Relative humidity:	50 ± 10 %					
* * *						

Test specifications


Air pressure:

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

1010 ± 5 hPa

04-Dec-2015 Company Chop:

Comments: The results reported in bis certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗有限公司 SOIL'S & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

6. 高浩 [27]、15. g 201; Leader Gente, 57 Wong Guitt Hang Node, New Gente, 151; g 201; g 201;

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA1203 03

Page: 2 of 2

of 2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.04	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.002 dB

Estimated expanded uncertainty

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 987.5 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.4 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	A	- End -	1	
Calibrated by:	INT	Checked by:	F	
	Fung Chi Yip		Lam Tze Wai	
Date:	03-Dec-2015	Date:	04-Dec-2015	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

(td.			Form No.CARP156-2/Issue 1/Rev.C/01/05/2005													
Hong Kong A	ccreditatio	on Se	rvice	(HKAS)) ha	s accredited	this laboratory	(Reg. No. 0)	28 - CAL) under the	Hong	Kong	g Lat	poratory Accr	editation	Sch	eme
(HOKLAS) fo	r specific	calib	ration	activitie	es a	s listed in th	ne HOKLAS Di	rectory of Ac	credited	Laboratorie	s. Th	e res	ults	shown in thi	s certific	ate	were
determined by	this labo	oratory	in ac	cordan	ce v	vith its terms	of accreditation	. Such term	is of acci	reditation sti	pulate	that t	he re	esults shall b	e traceat	ole to	the
International	System	of l	Jnits	(S.I.)	or	recognised	measurement	standards.	This	certificate	shall	not	be	reproduced	except	in	full.

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel Impact Monitoring Schedule for June 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Jun	2-Jun	3-Jun	4-Jun
			Noise			
5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun	11-Jun
	Air Quality	Noise				Air Quality
12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun
	Noise		Air Quality			
19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun	25-Jun
		Air Quality	Noise			
26-Jun	27-Jun	28-Jun	29-Jun	30-Jun		
	Air Quality	Noise				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Wan Chai Sports Ground AM2 Existing Harbour Road Sports Centre AM3

Monitoring Frequency24-hr TSPOnce every 6 days

Noise Monitoring Station

NM2 Harbour Centre

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jul	2-Jul
						Air Quality
3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul	9-Jul
	Noise			Air Quality		
10-Jul	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul	16-Jul
			Air Quality	Noise		
17-Jul	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul	23-Jul
		Air Quality	Noise			
24-Jul	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul	30-Jul
	Air Quality	Noise				Air Quality
31-Jul						

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel Tentative Impact Monitoring Schedule for July 2016

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

NM2 Harbour Centre

AM2Wan Chai Sports GroundAM3Existing Harbour Road Sports Centre

Monitoring Frequency

24-hr TSP Once every 6 days

Friday Sunday Monday Tuesday Wednesday Thursday Saturday 1-Aug 2-Aug 3-Aug 4-Aug 5-Aug 6-Aug Air Quality Noise 11-Aug 12-Aug 13-Aug 7-Aug 8-Aug 9-Aug 10-Aug Air Quality Noise 15-Aug 16-Aug 17-Aug 14-Aug 18-Aug 19-Aug 20-Aug Air Quality Noise 24-Aug 21-Aug 22-Aug 23-Aug 25-Aug 26-Aug 27-Aug Air Quality Noise 28-Aug 29-Aug 30-Aug 31-Aug Air Quality Noise

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel Tentative Impact Monitoring Schedule for August 2016

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

AM2 Wan Chai Sports Ground AM3 Existing Harbour Road Sports Centre

Monitoring Frequency

24-hr TSP Once every 6 days

Noise Monitoring Station

NM2 Harbour Centre

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Sep	2-Sep	3-Sep
						Air Quality
4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep	10-Sep
	Noise				Air Quality	
11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep	17-Sep
				Air Quality		Noise
18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep	24-Sep
			Air Quality	Noise		
25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep	1-Oct
		Air Quality	Noise			

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel **Tentative Impact Monitoring Schedule for September 2016**

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Wan Chai Sports Ground AM2 Existing Harbour Road Sports Centre AM3

Monitoring Frequency24-hr TSPOnce every 6 days

Noise Monitoring Station

NM2 Harbour Centre

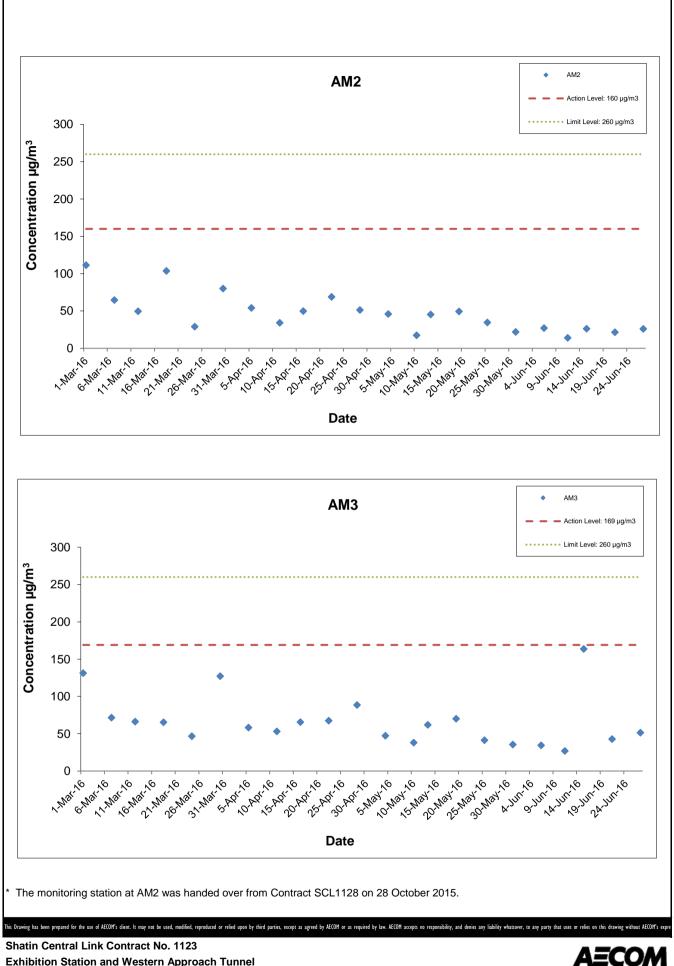
APPENDIX G

Air Quality Monitoring Results and their Graphical Presentations

Appendix G Air Quality Monitoring Results

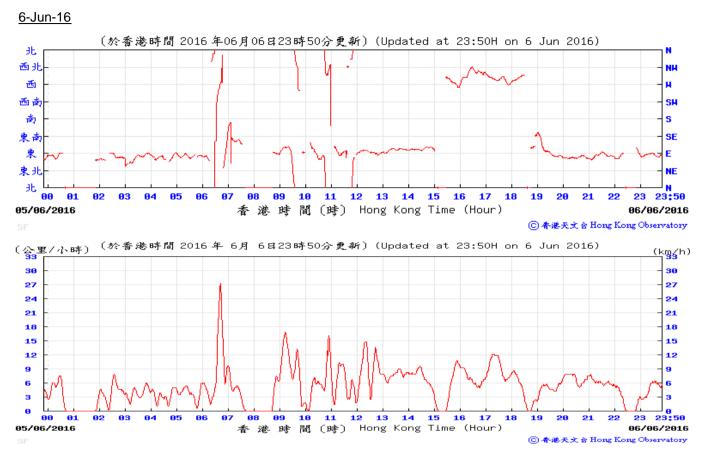
Star	t	End		Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
6-Jun-16	0:00	7-Jun-16	0:00	Fine	26.2	1008.8	1.31	1.31	1.31	1890.7	2.8206	2.8716	0.0510	18666.06	18690.06	24.00	27.0
11-Jun-16	0:00	12-Jun-16	0:00	Rainy	26.6	1005.9	1.31	1.31	1.31	1890.7	2.7852	2.8115	0.0263	18690.06	18714.06	24.00	13.9
15-Jun-16	0:00	16-Jun-16	0:00	Fine	30.3	1005.3	1.31	1.31	1.31	1890.7	2.8050	2.8545	0.0495	18714.06	18738.06	24.00	26.2
21-Jun-16	0:00	22-Jun-16	0:00	Sunny	30.6	1009.3	1.31	1.31	1.31	1890.7	2.7832	2.8239	0.0407	18738.06	18762.06	24.00	21.5
27-Jun-16	0:00	28-Jun-16	0:00	Fine	31.1	1007.5	1.31	1.31	1.31	1890.7	2.8786	2.9279	0.0493	18762.06	18786.06	24.00	26.1
																Average	22.9
																Minimum	13.9

24-hour TSP Monitoring Results at Station AM2 (Wan Chai Sports Ground)


24-hour TSP Monitoring Results at Station AM3 (Existing Harbour Road Sports Centre)

Star	ť	End		Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter W	/eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
6-Jun-16	0:00	7-Jun-16	0:00	Fine	26.2	1008.8	1.30	1.30	1.30	1876.3	2.7994	2.8640	0.0646	5011.82	5035.82	24.00	34.4
11-Jun-16	0:00	12-Jun-16	0:00	Rainy	26.6	1005.9	1.30	1.30	1.30	1876.3	2.7945	2.8449	0.0504	5035.82	5059.82	24.00	26.9
15-Jun-16	0:00	16-Jun-16	0:00	Fine	30.3	1005.3	1.30	1.30	1.30	1876.3	2.7915	3.0984	0.3069	5059.82	5083.82	24.00	163.6
21-Jun-16	0:00	22-Jun-16	0:00	Sunny	30.6	1009.3	1.30	1.30	1.30	1876.3	2.8033	2.8838	0.0805	5083.82	5107.82	24.00	42.9
27-Jun-16	0:00	28-Jun-16	0:00	Fine	31.1	1007.5	1.30	1.30	1.30	1876.3	2.8879	2.9842	0.0963	5107.82	5131.82	24.00	51.3
																Average	63.8

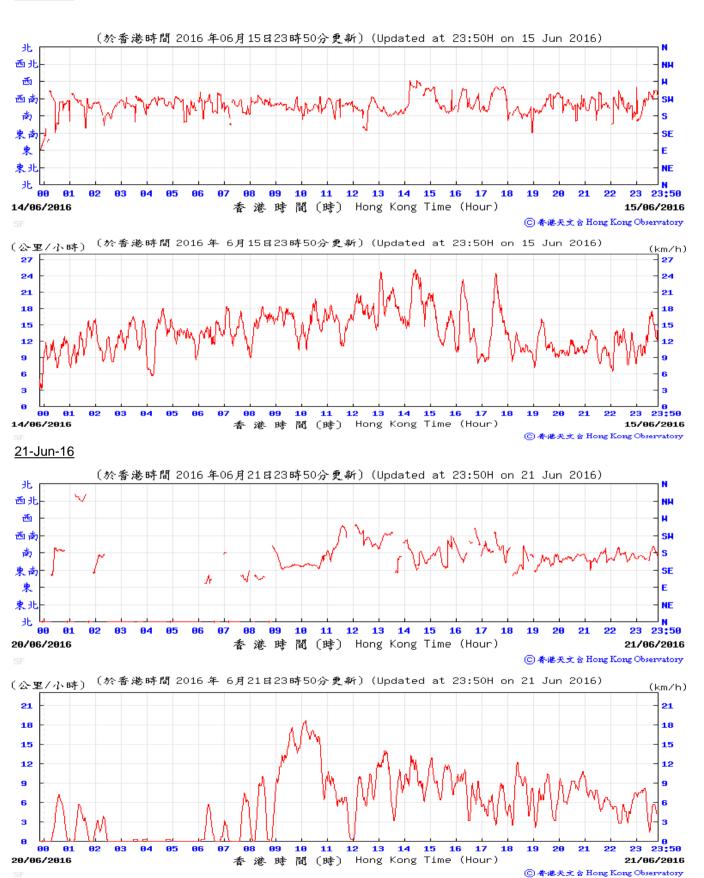
Maximum	163.6
Minimum	26.9
Average	63.8
24.00	51.5


Maximum

27.0

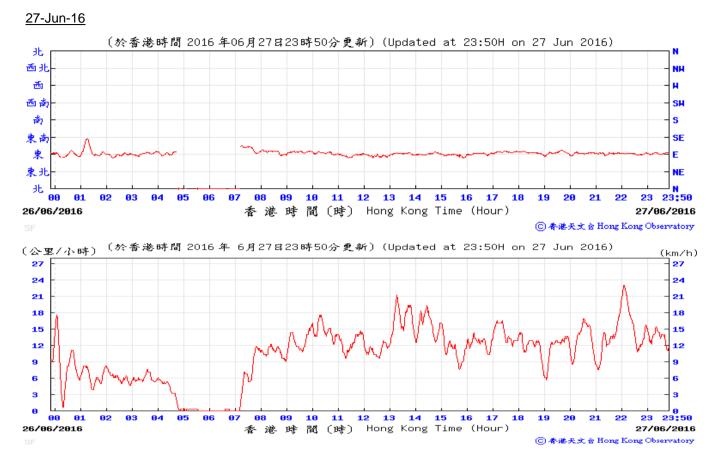
Exhibition Station and Western Approach Tunnel

Graphical Presentation of Impact 24-hr TSP Monitoring Results



Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

<u>11-Jun-16</u>

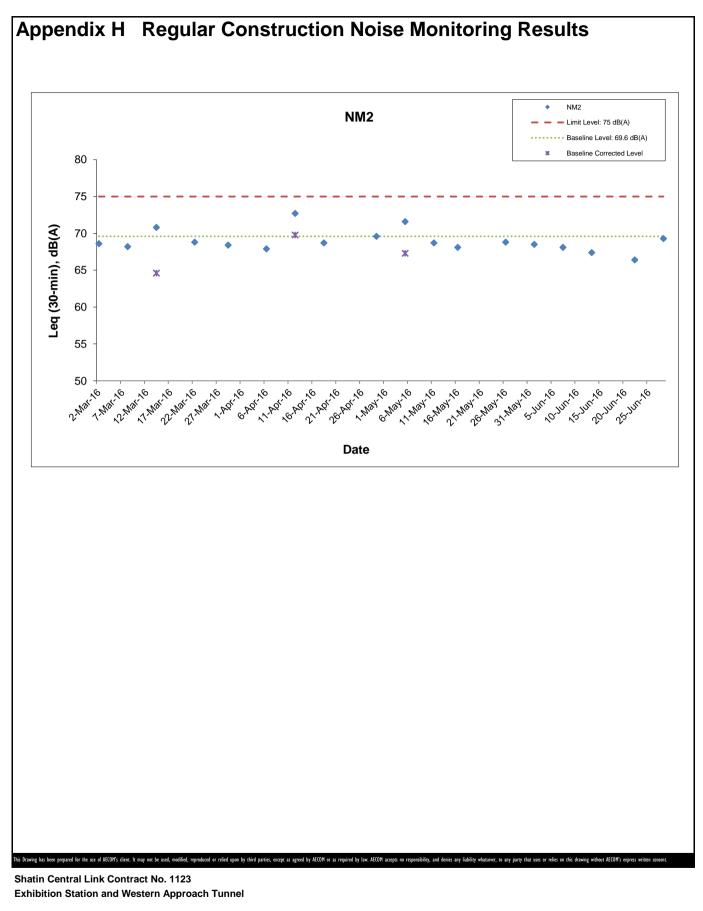

No Meteorological information available from the HKO.

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

15-Jun-16

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

APPENDIX H


Noise Monitoring Results and their Graphical Presentations

Appendix H Regular Construction Noise Monitoring Results

Date	Weather	Nois	e Level fo	(101 30-11111, uB(A)		Baseline Corrected	Baseline Noise	Limit Level,	Exceedance
Duio	Condition	Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
1-Jun-16	Fine	14:15	66.2	70.9	68.5	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N
7-Jun-16	Fine	13:35	66.5	70.0	68.1	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N
13-Jun-16	Cloudy	10:05	66.0	68.5	67.4	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N
22-Jun-16	Sunny	13:07	65.2	67.9	66.4	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N
28-Jun-16	Fine	10:10	67.0	70.5	69.3	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N

Daytime Noise Monitoring Results at Station NM2 (Harbour Centre)

+ - Façade measurement

Graphical Presentation of Impact Noise Monitoring Results **APPENDIX I**

Event Action Plan

Appendix I Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT	ACTION							
EVENT	ET	IEC ER		Contractor				
ACTION LEVEL								
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor and IEC on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing. 	 Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate. 				
Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures. 	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate. 				

Appendix I	Event Action Plan

Leighton – China State J.V.

Appendix I	Event Action Plan								
EVENT	ACTION								
EVENI	ET	IEC	ER	Contractor					
LIMIT LEVEL			-						
Exceedance for one sample	 Inform the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 					
Exceedance for two or more consecutive samples	 Notify Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 					

Appendix I Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENT	ACTION								
EVENT	ET	IEC	ER	Contractor					
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals. 					
Exceedance of Limit Level	 Notify the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 					

Appendix I Event Action Plan

Event and Action Plan for Continuous Noise Monitoring

EVENT	ACTION							
EVENT	ET	IEC	ER	CONTRACTOR				
Action/Limit Level	 Identify source ; Repeat measurement. If two consecutive measurements exceed Action/Limit Level, the exceedance is then confirmed; If exceedance is confirmed, notify IEC, ER and Contractor; Investigate the cause of exceedance and ckeck Contractor's working procedures to determine possible mitigation to be implemented; Discuss jointly with the IEC, ER and Contractor and formulate remedial measures; and Assess effectiveness of Contractor's remedial actions and keep IEC and ER informed of the results. 	 Check monitoring data submitted by the Works Contract 1123 ET; Check the Contractor's working method; Discuss with the ER, Works Contract 1123 ET and Contractor on the potential remedial measures; and Review and advise the Works Contract 1123 ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the Works Contract 1123 ET and IEC, agree with the Contractor on the remedial measures to be implemented; Ensure the proper implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source with the Works Contract 1123 ET; If exceedance is confirmed, investigation the cause of exceedance and take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET of notification; Implement the agreed proposals; Liaise with ER to optimize the effectiveness of the agreed mitigation; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 				

APPENDIX J

Cumulative Statistics of Complaints, Notification of Summons and Successful Prosecutions

Appendix J

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	_	-	0	4
Notification of summons	-	_	-	0	0
Successful Prosecutions	-	-	-	0	0

APPENDIX K

Waste Flow Table

Appendix K MONTHLY SUMMARY WASTE FLOW TABLE

Contract No.: MTR SCL 1123 - Exhibition Station and Western Approach Tunnel

	Actu	Actual Quantities of Inert C&D Materials Generated Monthly							Actual Quantities of C&D Wastes Generated Monthly			
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics	Chemical Waste	Others, e.g. general refuse	
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)	
Jan	4.845	0.000	0.000	0.000	4.659	0.186	16.083	0.755	0.010	0.000	0.031	
Feb	4.795	0.000	0.000	0.000	4.795	0.000	2.620	0.000	0.990	0.000	0.020	
Mar	5.456	0.000	0.000	0.055	5.401	0.000	19.242	0.480	0.018	0.000	0.033	
Apr	4.944	0.000	0.000	0.012	4.514	0.418	13.115	0.350	0.010	0.400	0.064	
Мау	4.232	0.000	0.000	0.000	3.845	0.388	16.340	0.500	0.020	0.000	0.099	
Jun	8.416	0.000	0.000	0.000	7.029	1.386	4.425	0.400	0.798	0.000	0.041	
Sub-total	32.688	0.000	0.000	0.067	30.243	2.378	71.825	2.485	1.846	0.400	0.288	
July												
August												
September												
October												
November												
December												
Total	32.688	0.000	0.000	0.067	30.243	2.378	71.825	2.485	1.846	0.400	0.288	

Monthly Summary Waste Flow Table for 2016

Comments:

1) Assumption: The densities of Rock, Soil, Mixed Rock and Soil, and Regular Spoil are 2.0 ton/m³; the density of general refuse is 1.0 ton/m³; the density of waste oil is 1.0 kg/L.

2) The cut-off date of waste amount in June is 30/6/2016 for Public Fill facilities and Landfill.

3) The amounts of waste in June are 41.27 tons for Landfill and 14058.8 tons for Public Fill.

4) The amount of C&D materials reused in other project in June is 0 tons, for cut-off date as 30/6/2016.

5) The amount of import fill in June is 2772.84 tons, for cut-off date as 30/6/2016.

6) The amount of metal waste generated in June is 4425 kg, for cut-off date as 30/6/2016.

7) The amount of paper waste generated in June is 400 kg, for cut-off date as 30/6/2016.

8) The amount of plastic waste generated in June is 798 kg, for cut-off date as 30/6/2016.