

Ref.: HYDHZMBEEM00 0 8102L.20

14 July 2020

By Fax (3748 8900) and By Post

AECOM Asia Co. Ltd. The PRE's Office 550 Cheung Tung Road, Lantau, Hong Kong

Attention: Mr. Jason Yu

Dear Sir,

Re:

Agreement No. CE 48/2011 (EP) Environmental Project Office for the

HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2019/01 HZMB HKBCF - Phase 2 and Other Works Monthly EM&A Report for June 2020

Reference is made to the Environmental Team's submission of Monthly EM&A Report for June 2020 certified by the ET Leader (ET's ref.: "MCL/ED/0364/2020/C" dated 14 July 2020) and provided to us via e-mail on 14 July 2020.

We are pleased to inform you that we have no further comments on the captioned submission. We write to verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-353/2009/K (the EP).

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully, For and on behalf of Ramboll Hong Kong Limited

Manson Yeung

Independent Environmental Checker

HZMB HKBCF

C.C.

HyD

Attn.: Mr. Andy Ho

(By Fax: 3188 6614)

HyD

Attn.: Mr. Harry Louie

(By Fax: 3188 6614)

Fugro

Attn.: Mr. Calvin Leung

(By Fax: 2450 6138)

CHEC

Attn.: Mr. Johnason Ko

(By Fax: 2887 3104)

Internal: DY, YH, ENPO Site

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Date

14 July 2020

Our Ref. MCL/ED/0364/2020/C

Ramboll Hong Kong Limited 21/F, BEA Harbour View Centre, 56 Gloucester Road, Wan Chai, Hong Kong

BY EMAIL

Attn.: Mr. Manson Yeung, Independent Environmental Checker

Dear Sir,

EP Condition 5.4 – Monthly EM&A Report for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities - Phase 2 and Other Works (Contract No. HY/2019/01)

Pursuant to Condition 5.4 of the Environmental Permit (EP-353/2009K) for the captioned project, we hereby submit the certified Monthly EM&A Report for June 2020 for your verification.

Thank you for your attention, should there be any comments or queries, please contact our Mr. Cyrus Lai at 3565-4442 or the undersigned at 3565-4441.

Yours faithfully, for and on behalf of FUGRO TECHNICAL SERVICES LIMITED

Environmental Team Leader

C.C.

AECOM

Attn: Mr. Jason Yu, Mr. Gordon Kok Attn: Mr. Y. H. Hui, Mr. K. C. Chan

Ramboll CHEC

Attn: Mr. Marko Chan, Mr. Matthew Wu

Monthly EM&A Report (June 2020)

0002/20/ED/0111 01 | 30 June 2020

Contact No. HY/2019/01 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Document Control

Document Information

Project Title	Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works (Contract No. HY/2019/01)
Document Title Monthly EM&A Report (June 2020)	
Fugro Project No.	0002/20
Fugro Document No.	0002/20/ED/0111
Issue Number	01

Client Information

Client	China Harbour Engineering Co., Ltd Contract No. HY/2019/01	
Client Address	China Harbour Building, 370-4 King's Road, North Point Hong Kong	
Client Contact	Matthew Wu	

Revision History

01	10 July 2020	No adverse comment from IEC	KH	CY	MP	
Issue	Date	Comments on Content	checked By	Review By	Certified By	
			Prepared and			

Environmental Team

Initials	Name	Role	Signature
MP	Calvin M.P. Leung	Environmental Team Leader	Cabin Leung
СҮ	Cyrus C.Y. Lai	Senior Environmental Consultant	
КН	Toby K.H. Wan	Assistant Environmental Consultant	- Cory

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. HY/2019/01 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works" (hereafter referred to as "the Contract") for the Highways Department of Hong Kong Special Administrative Region (HKSAR). Contract No. HY/2019/01 was awarded to China Harbour Engineering Co. Limited and Fugro Technical Services Limited (FTS) was appointed as the Environmental Team (ET) by the Contractor.

Contract No. HY/2019/01 is part of the "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities" (HZMB HKBCF) Project which is a "Designated Project" under Schedule 2 of the Environmental Impact Assessment (EIA) Ordinance (Cap. 499) and for which an EIA Report (Register No. AEIAR-145/2009) was prepared and approved. The current Environmental Permit (EP) for HKBCF, namely No. EP-353/2009/K, was issued on 11 April 2016. These documents are available through the EIA Ordinance Register. Commencement of the Contract took place on 4 December 2019 and the construction site preparation works commenced in early February 2020.

Fugro Technical Services Limited (FTS) has been appointed by the Contractor to implement the Environmental Monitoring & Audit (EM&A) programme for the Contract in accordance with the Updated EM&A Manual for HKBCF (Version 1.0) and is providing environmental team services for the Contract.

This is the 5th Monthly EM&A Report for the Contract which summaries findings of the EM&A programme during the reporting period from 1 June 2020 to 30 June 2020.

Environmental Monitoring and Audit Progress

The monthly EM&A programme was undertaken in accordance with the Updated EM&A Manual for HKBCF (Version 1.0). It should be noted that the air quality, noise and the post-construction dolphin monitoring works for the Contract are covered by Contract No. HY/2019/01 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works". The ET of the Contract or another ET of the HZMB project is required to conduct impact air quality monitoring at AMS6 as part of EM&A programme if the impact air quality monitoring work is no longer covered by Contract No. HY/2011/03 respectively. However, this is subject to ENPO's final decision on which ET should carry out the monitoring work at these stations.

Breaches of Action and Limit Levels

No Action and Limit Level exceedance was recorded for air quality monitoring in the reporting month. Also, no Action and Limit Level exceedance was recorded for construction noise monitoring in the reporting month.

Complaint Log

No complaints were received in the reporting period.

Notifications of any Summons and Successful Prosecutions

No notifications of summons and prosecutions were received in the reporting period.

Reporting Change

There were no reporting changes during the reporting month.

Future Key Issues

The main works will be anticipated in the next reporting period are as follow:

- Security measure at existing gate at South Public Transport Interchanges (SPTI) (land-based);
- Recessed Cover at South Public Transport Interchanges (SPTI) and North Public Transport Interchanges (NPTI) (land-based);
- UPS room near building 062 (land-based);
- Minor Works at Passenger Clearance Building (PCB) (land-based);
- Excavation at Vehicle Clearance Plaza (VCP) and WA3 (land-based);
- Road & Drain works at South Public Transport Interchanges (SPTI) and North Public Transport Interchanges (NPTI) (land-based);
- Vertical access at Passenger Clearance Building (PCB) (land-based);
- Covered Walkway at South Public Transport Interchanges (SPTI) and North Public Transport Interchanges (NPTI) (land-based);
- Site office demolition at WA3 (land-based);
- Refuse collection point at North Public Transport Interchanges (NPTI) (land-based);
- Public Toilet at North Public Transport Interchanges (NPTI) (land-based);
- Kiosks Construction at Vehicle Clearance Plaza (VCP) (land-based).
- Landscape Works at G5.

Contents

EXE	EXECUTIVE SUMMARY		
1.	INTRODUCTION	6	
1.1	Background	6	
1.2	Project Description	6	
1.3	Project Organization	7	
1.4	Construction Programme and Activities	7	
1.5	Works undertaken during the month	7	
1.6	Status of Environmental Licences, Notification and Permits	8	
2.	AIR QUALITY	9	
2.1	Monitoring Requirement	9	
2.2	Monitoring Equipment	9	
2.3	Monitoring Methodology for HVS	10	
2.4	Maintenance and Calibration for HVS	11	
2.5	Monitoring Methodology for Direct Reading Dust Meter	11	
2.6	Maintenance and Calibration for Direct Reading Dust Meter	12	
2.7	Monitoring Locations	12	
2.8	Monitoring Results	13	
3.	NOISE	14	
3.1	Monitoring Requirement	14	
3.2	Monitoring Equipment	14	
3.3	Monitoring Parameters and Frequency	14	
3.4	Monitoring Methodology	15	
3.5	Maintenance and Calibration	15	
3.6	Monitoring Locations	16	
3.7	Monitoring Results	16	
4.	ECOLOGY MONITORING	18	
4.1	Monitoring Requirements	18	
4.2	Monitoring Locations	18	
4.3	Monitoring Results	18	
5.	SITE INSPECTION AND AUDIT	20	
5.1	Site Inspection	20	
5.2	Advice on the Solid and Liquid Waste Management Status	20	
6.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	21	
6.1	Environmental Exceedance	21	
6.2	Complaints, Notification of Summons and Prosecution	21	

7.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURE	22
7.1	Implementation Status	22
8.	FUTURE KEY ISSUES	23
8.1	Construction Programme for the Next Month	23
8.2	Key Issues for the Coming Month	23
8.3	Monitoring Schedules for the Next Month	23
9.	CONCLUSION AND RECOMMENDATION	24
9.1	Conclusions	24
9.2	Comment and Recommendations	24

Tables

- Table 1.1 Contact Information of Key Personnel
- Table 1.2 Environmental Licenses, Notification and Permits Summary
- **Table 2.1 Air Quality Monitoring Equipment**
- **Table 2.2 Air Quality Monitoring Location**
- Table 2.3 Summary of Air Quality Monitoring Results
- Table 3.1 Construction Noise Monitoring Equipment
- Table 3.2 Monitoring Parameters and Frequencies of Noise Monitoring
- **Table 3.3 Construction Noise Monitoring Location**
- Table 3.4 Summary of Construction Noise Monitoring Results
- <u>Table 4.1 Dolphin encounter rates deduced from the two sets of TMCLKL surveys (two surveys in each set)</u> during the reporting month in Northeast (NEL) and Northwest Lantau (NWL)
- Table 4.2 Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four TMCLKL surveys conducted in the reporting month on primary lines only as well as both primary lines and secondary lines in NEL and NWL

Figures

Figure 1	The Site Layout Plan of the Contract	
Figure 2	The Location of the Air Quality Monitoring Station	
Figure 3	re 3 The Location of the Noise Monitoring Station	
Figure 4	Post-Construction Dolphin Monitoring Line Transect Layout Map	

Appendices

Appendix A Construction Programme
Appendix B Project Organization Chart
Appendix C Action and Limit Levels
Appendix D Calibration Certificate of Monitoring Equipment
Appendix E Environmental Monitoring Schedule
Appendix F Air Quality Monitoring Results and Construction Noise Monitoring Results
Appendix G Wind Data
Appendix H Event and Action Plan
Appendix I Waste Flow Table
Appendix J Implementation Status of Environment Mitigation Measures (Construction Phase)
Appendix K Weather and Meteorological Conditions during Reporting Month
Appendix L Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions
Appendix M Summary of Site Audit in the Reporting Month
Appendix N Outstanding Issues and Deficiencies
Appendix O Dolphin Monitoring Results

1. INTRODUCTION

1.1 Background

- 1.1.1 Fugro Technical Services Limited was commissioned by China Harbour Engineering Co. Limited (also referred to as "the Contractor") to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for Contract No. HY/2019/01 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Phase 2 and Other Works".
- 1.1.2 Contract No. HY/2019/01 is part of the "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities" (HZMB HKBCF) Project which is a "Designated Project" under Schedule 2 of the Environmental Impact Assessment (EIA) Ordinance (Cap. 499) and for which an EIA Report (Register No. AEIAR-145/2009) was prepared and approved. The current Environmental Permit (EP) for HKBCF, namely No. EP-353/2009/K, was issued on 11 April 2016. These documents are available through the EIA Ordinance Register. The general layout of the Project area is shown in **Figure 1**. Commencement of the Contract took place on 4 December 2019 and the construction site preparation works commenced in early February 2020.
- 1.1.3 This is the 4th Monthly EM&A report to document the findings of site inspection activities and EM&A programme carried out by the Contractor of Contract No. HY/2019/01 from 1 June 2020 to 30 June 2020 (reporting period) and is submitted to fulfil Condition 5.4 of the EP.

1.2 Project Description

- 1.2.1 The works to be executed under Contract No. HY/2019/01 include the following major items:
 - Landscaping and establishment works;
 - Irrigation system and associated drainage pumping system and facilities;
 - Erection and installation in the Passenger Clearance Building;
 - Public transport interchange (PTI) public toilet, satellite refuse collection point (RCP) and observation guard booths;
 - PTI cross boundary shuttle (CBS) / cross boundary coach (CBC) lanes and covered walkway;
 - Vehicle clearance plazas (VCP) vehicle kiosks and associate automatic vehicle clearance supporting system (AVCSS).

1.3 Project Organization

1.3.1 The Project Organization structure is shown in **Appendix B**. The key personnel contact names and numbers are summarized in **Table 1.1**.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone
Engineer or Engineer's	Senior Resident Engineer	Mr. Jason Yu	3748 8903
Representative	Resident Engineer	Mr. Winston Wong	3748 8918
(AECOM Asia Co. Ltd.)	Resident Engineer	Mr. Gordon Kok	3748 8967
Environmental Project Office /	Environmental Project Office Leader	Mr. Y. H. Hui	3465 2888
Independent Environmental Checker	Independent Environmental Checker (IEC)	Mr. Manson Yeung	9700 6767
(Ramboll Hong Kong Limited)	Environmental Site Supervisor	Mr. K. C. Chan	3465 2882
Contractor	Environmental Manager	Mr. Marko Chan	9427 2879
(China Harbour Engineering Co. Ltd)	Environmental Officer	Mr. Matthew Wu	6076 2675
Environmental Team (Fugro Technical Services Limited)	Environmental Team Leader (ETL)	Mr. Calvin Leung	3565 4441

1.4 Construction Programme and Activities

- 1.4.1 The site layout plan of the Contract is shown in **Figure 1**.
- 1.4.2 The construction programme of this Contract is shown in **Appendix A**.

1.5 Works undertaken during the month

- 1.5.1 The main construction works carried out in the reporting period were as follow:
 - Security measure at existing gate at SPTI (land-based);
 - Recessed Cover at SPTI and NPTI (land-based);
 - UPS room near building 062 (land-based);
 - Minor Works at PCB (land-based);
 - Excavation at VCP and WA3 (land-based);
 - Road & Drain works at SPTI and NPTI (land-based);
 - Vertical access at PCB (land-based);
 - Covered Walkway at SPTI and NPTI (land-based);
 - Site office demolition at WA3 (land-based);
 - Refuse collection point at NPTI (land-based);
 - Public Toilet at NPTI (land-based);
 - Kiosks Construction at VCP (land-based).
 - Landscape Works at G5.

1.6 Status of Environmental Licences, Notification and Permits

1.6.1 A summary of the relevant permits, licenses and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Table 1.2 Environmental Licenses, Notification and Permits Summary

Permit/ Notification/ License	Reference No	Valid From	Valid Till
Environmental Permit	EP-353/2009/K	11-Apr-16	Not Applicable
Notification pursuant to Air Pollution (Construction Dust) Regulation	451380	28-Nov-19	Not Applicable
Billing Account for Disposal of C&D waste	A/C No. 7036097	18-Dec-19	Not Applicable
Chemical Waste Producer Registration	5296-951-C1186-32	6-Feb-20	Not Applicable
Water Discharge License	WT00035721-2020	28-Apr-20	30-Apr-25
Construction Noise Permit	GW-RS0204-20	1-April-20	31-July-20

2. AIR QUALITY

2.1 Monitoring Requirement

2.1.1 In accordance with the Contract Specific EM&A Manual, 1-hour and 24-hour Total Suspended Particulates (TSP) levels should be measured at the designated air quality monitoring stations to indicate the impacts of construction dust on air quality. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days.

2.2 Monitoring Equipment

- 2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) deployed at the designated monitoring stations. The HVS shall meet all the requirements of the EM&A Manual.
- 2.2.2 A portable direct reading dust meter was used to carry out the 1-hour TSP monitoring.
- 2.2.3 The model of the air quality monitoring equipment used is summarized in **Table 2.1**.

Table 2.1 Air Quality Monitoring Equipment

Item	Location	Brand	Model	Equipment	Serial No.
			TE-5170 (TSP)	High Volume Sampler	HVS-01
			TE-300-310X	-Mass Flow Controller	3002
1	AMS2	Tisch	TE-5005X	-Blower Motor Assembly	4607
			TE-5007X	-Mechanical Timer	5596
			TE-5009X	-Continuous Flow Recorder	5752
			TE-5170 (TSP)	High Volume Sampler	HVS-02
			TE-300-310X	-Mass Flow Controller	3000
2	AMS3C	Tisch	TE-5005X	-Blower Motor Assembly	4610
			TE-5007X	-Mechanical Timer	5597
			TE-5009X	-Continuous Flow Recorder	5756
			TE-5170 (TSP)	High Volume Sampler	HVS-03
			TE-300-310X	-Mass Flow Controller	2792
3	AMS7B	Tisch	TE-5005X	-Blower Motor Assembly	3802
			TE-5007X	-Mechanical Timer	5781
			TE-5009X	-Continuous Flow Recorder	5483
4		Tisch	TE-5025A	HVS Sampler Calibrator	438320/2456
5			Model LD-5R		761101
6		Sibata	Model LD-5R	Sibata Portable TSP Monitors	761104
7			Model LD-5R	882147	

2.3 Monitoring Methodology for HVS

- 2.3.1 The following guidelines were adopted during the installation of HVS:
 - Sufficient support is provided to secure the samplers against gusty wind.
 - No two samplers are placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, is at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - No furnaces or incineration flues are nearby.
 - Airflow around the samplers is unrestricted.
 - The samplers are more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
 - Permission must be obtained to set up the samplers and to obtain access to the monitoring stations.
 - A secured supply of electricity is needed to operate the samplers.
- 2.3.2 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler shall be properly set. The power supply should be checked to ensure the proper functioning of the sampler. The sampler is recommended to be operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.3.3 The filter holding frame should be removed by loosening the four nuts and placing carefully a weighted and conditioned filter at the centre with the stamped number upwards on a supporting screen.
- 2.3.4 The filter should be aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. The filter holding frame should be tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.3.5 A programmed timer should be used to control the duration of operation. Information should be recorded on the record sheet, which included the starting time, the weather condition and the filter number.
- 2.3.6 After sampling process is finished, the filter should be removed and sent to the laboratory for weighting. The elapsed time should also be recorded.
- 2.3.7 All filters should be equilibrated in a conditioning environment for 24 hours before weighting. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be <50% and not vary by more than ± 5 %. A convenient working RH is 40%.

2.4 Maintenance and Calibration for HVS

- 2.4.1 The high volume motors and their accessories should be properly maintained, including routine motor brushes replacement and electrical wiring checking, to ensure that the equipment and a continuous power supply were in good working condition.
- 2.4.2 Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at fortnightly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually. The calibration certificate for the HVS is provided in **Appendix D**.

2.5 Monitoring Methodology for Direct Reading Dust Meter

- 2.5.1 Portable Laser Particle Photometer Monitors should be operated in accordance with the Manufacturer's instruction Manual as below:
 - a) Pulling up the air sampling inlet cover
 - b) Changing the Mode 0 to BG
 - c) Pressing Start/Stop switch
 - d) Turning the knob to SENSI.ADJ and press it
 - e) Pressing Start/Stop switch again
 - f) Returning the knob to the position MEASURE slowly
 - g) Pressing the timer set switch to set measuring time
 - h) Removing the cap and start the measurement

2.6 Maintenance and Calibration for Direct Reading Dust Meter

2.6.1 ET shall submit sufficient information to the IEC to prove that the instrument is capable of achieving comparable results to the HVS. The instrument should also be calibrated regularly, and the 1-hour sampling shall be determined periodically by the HVS to check the validity and accuracy of the results measured by direct reading method. The calibration certificate for the direct reading dust meter is provided in **Appendix D**.

2.7 Monitoring Locations

- 2.7.1 In accordance with the Contract Specific EM&A Manual, four air quality monitoring locations, namely AMS2, AMS3C, AMS6 and AMS7B were set up at the proposed locations. AMS2, AMS3C and AMS7B are covered by Contract No. HY/2019/01 "Hong Kong-Zhuhai- Macao Bridge Hong Kong Boundary Crossing Facilities Phase 2 and Other Works"
- 2.7.2 AMS6 is covered by Contract No. HY/2011/03 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road (HZMB HKLR) Section between Scenic Hill and HKBCF". The ET of the Contract or another ET of the HZMB project is required to conduct impact air quality monitoring at AMS6 as part of EM&A programme if this air quality monitoring station is no longer covered by Contract No. HY/2011/03.
- 2.7.3 The most updated locations are summarized in **Table 2.2** and the locations of the air monitoring stations shown in **Figure 2**.

Table 2.2 Air Quality Monitoring Location

Monitoring Station	Location		
AMS2	Tung Chung Development Pier		
AMS3C	Ying Tung Estate Market Rooftop		
AMS6	Dragonair / CNAC (Group) Building (HKIA)		
AMS7B	Third Runway Site Office		

Remarks: The ET of this Contract should conduct impact air quality monitoring at station AMS6 listed in the table as part of EM&A programme according to latest notification from ENPO when the monitoring station is no longer covered by another ET of the HZMB project.

2.8 Monitoring Results

- 2.8.1 The schedule of air quality monitoring in reporting month is provided in **Appendix E**.
- 2.8.2 No Action / Limit Level exceedance was recorded for 1-hr and 24-hr TSP at AMS2, AMS3C and AMS7B.
- 2.8.3 The monitoring results for AMS6 are reported in the monthly EM&A Reports prepared for Contract No. HY/2011/03.
- 2.8.4 The weather conditions during the monitoring are provided in **Appendix K**.
- 2.8.5 The monitoring data of 1-hr TSP and 24-hr TSP are summarized in **Table 2.3**. Detailed monitoring data are presented in **Appendix F**.

Table 2.3 Summary of Air Quality Monitoring Results

Monitoring Station	Average (μg/m³)	Range (μg/ m³)	Action Level (μg/ m³)	Limit Level (μg/ m³)	
		1-hour TSP			
AMS2	57	28-94	374		
AMS3C	48	28-64	368	500	
AMS7B	62	20-92	370		
24-hour TSP					
AMS2	28	20-36	176		
AMS3C	22	18-27	167	260	
AMS7B	22	10-34	183		

- 2.8.6 The Event and Action Plan for air quality is given in **Appendix H**.
- 2.8.7 The wind data obtained from the on-site wind station during the reporting period is provided in **Appendix G**.

3. NOISE

3.1 Monitoring Requirement

3.1.1 In accordance with the Contract Specific EM&A Manuals, L_{eq} (30min) monitoring is conducted for at least once a week during the construction phase between 0700 and 1900 on normal weekdays at the designated monitoring locations.

3.2 Monitoring Equipment

- 3.2.1 The sound level meter used in noise monitoring shall comply with the International Electrotechnical Commission Publication (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum issued under the Noise Control Ordinance (NCO).
- 3.2.2 Sound level calibrator shall be used for the on-site calibration of the meter. This calibrator complies with the IEC Publication 942 (1988) Class 1 and ANSI S1.40 1984. Noise measurements were only accepted to be valid if the calibration levels from before and after the measurement agree to within 1.0 dB(A).
- 3.2.3 Measurements shall be recorded to the nearest 0.1dB(A). Sound level meters are programmed to measure A-weighted equivalent continuous sound pressure level at 30-minute intervals between 0700 and 1900 on normal weekdays at least once a week when construction activities are underway.
- 3.2.4 The model of the noise monitoring equipment used is summarized in **Table 3.1**.

Table 3.1 Construction Noise Monitoring Equipment

ltem	Brand	Model	Equipment	Serial No.
1	Casella	CEL-63X Series	Integrating Sound Level Meter	1488272
2	Casella	CEL-63X Series	Integrating Sound Level Meter	2451048
3	Casella	CEL-120/1	Calibrator	2383852
4	Casella	CEL-120/1	Calibrator	4358250
5	Benetech	GM816	Wind Speed Anemometer	N/A

3.3 Monitoring Parameters and Frequency

3.3.1 The parameters and frequencies of impact noise monitoring is summarized in **Table 3.2**.

Table 3.2 Monitoring Parameters and Frequencies of Noise Monitoring

Parameter	Frequency
L _{eq} (30min) L ₁₀ and L ₉₀ will be recorded for reference	At each station at 0700-1900 hours on normal weekdays at a frequency of once a week

3.4 Monitoring Methodology

- 3.4.1 Noise measurement should be conducted as the following procedures:
 - Free field measurements was made at monitoring location M-N3. A correction of +3 dB(A) shall be made to the free field measurements.
 - The battery condition should be checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time should set as follow:
 - (i) Frequency weighting: A
 - (ii) Time weighting: Fast
 - (iii) Measurement time: continuous 5 minutes interval
 - Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB(A), the measurement will be considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
 - The wind speed at the monitoring station shall be checked with the portable wind meter. Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
 - Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
 - At the end of the monitoring period, the L_{eq}, L₁₀ and L₉₀ should be recorded. In addition, site conditions and noise sources should also be recorded on a standard record sheet.

3.5 Maintenance and Calibration

- 3.5.1 Maintenance and calibration procedures should also be carried out, including:
 - The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory or the manufacturer.
 - The calibration certificates for noise monitoring equipment are provided in **Appendix D**.

3.6 Monitoring Locations

- 3.6.1 In accordance with the Contract Specific EM&A Manual, two noise monitoring locations, namely NMS2 and NMS3C are covered under Contract No. HY/2019/01 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Phase 2 and Other Works.
- 3.6.2 Due to rejection from Ho Yu College (NMS3) for setting up a noise monitoring station at their school, an alternative location at site boundary of the site office area at Works Area WA2 (NMS3B) is proposed. Impact noise monitoring has been relocated from NMS3B to Ying Tung Estate Market Rooftop (NMS3C) on 20 August 2018 under Contract No. HY/2013/04. The same baseline and Action and Limit levels for noise, as derived from the baseline monitoring data recorded at Ho Yu College, are adopted for this alternative noise monitoring location.
- 3.6.3 The most updated locations are summarized in **Table 3.3** and the locations of the noise monitoring stations shown in **Figure 3**.

Table 3.3 Construction Noise Monitoring Location

Monitoring Station	Location		
NMS2	Seaview Crescent		
NMS3C	Ying Tung Estate Refuse Collection Point		

Remark: The Limit Levels for schools will be applied for this alternative monitoring location at NMS3C.

3.7 Monitoring Results

- 3.7.1 The schedule of noise monitoring in reporting month is provided in **Appendix E**.
- 3.7.2 No raining and wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation. The weather conditions during the monitoring month are provided in **Appendix K**.
- 3.7.3 The noise monitoring data are summarized in **Table 3.4**. Detailed monitoring data are presented in **Appendix F**.

Table 3.4 Summary of Construction Noise Monitoring Results

Time Period	Noise Monitoring Stations	L _{eq} (30min) dB(A) (Range)	Action Level	Limit Level dB(A)
0700-1900 hrs on normal weekdays	NMS2	59-66	When one documented	75
	NMS3C	64-66	complaint is received	70/65

Remark:

NMS2: Façade Measurement

NMS3C: Free-field measurement (+3 dB(A) correction has been applied), reduction to 65dB(A) during school examination periods will be applied.

- 3.7.4 School calendar of Ho Yu College was checked against noise monitoring days at NMS3C.
- 3.7.5 No Action / Limit Level exceedance of location NMS2 was recorded for construction noise in the reporting month.
- 3.7.6 During the monitoring month, at NMS3C, road traffic along the Ying Tung Road and non-project related construction activities at the nearby construction site was observed.
- 3.7.7 The Action and Limit Levels for noise impact monitoring have been set and are presented in **Appendix C**.
- 3.7.8 The Event and Action Plan for noise is given in **Appendix H**.

4. ECOLOGY MONITORING

4.1 Monitoring Requirements

- 4.1.1 All marine-based construction activities for the HKBCF project were completed in January 2019. No marine-based construction activities will be undertaken under this Contract. However, the ET of this Contract or another ET of the HZMB is required to conduct post-construction dolphin monitoring in accordance with Section 10.7 of the updated EM&A Manual.
- 4.1.2 Currently, the role of dolphin monitoring and data collection are still under Contract No. HY/2012/08 "Tuen Mun-Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section". To avoid redundancy in the monitoring effort, the findings of Contract No. HY/2012/08 were used for this reporting month. The relevant sections of dolphin monitoring report of Contract No. HY/2012/08 for this reporting month is extracted and given in **Appendix O**.
- 4.1.3 The CV of the proposed dolphin specialist for this Contract has been submitted to IEC for review prior to submission to AFCD for approval.

4.2 Monitoring Locations and Methodology

- 4.2.1 In accordance with the requirements of the updated EM&A manual, the dolphin monitoring programme have adopted the standard line-transect method (Buckland et al. 2001) to survey the pre-set and fixed transect lines defined by AFCD in the Northeast Lantau (NEL) and Northwest Lantau (NWL) survey areas.
- 4.2.2 The coordinates of the transect lines are shown in **Table 1** of **Appendix O.** The map of the transect lines provided by AFCD is presented in **Figure 4**.
- 4.2.3 The details of the line-transect method (Buckland et al. 2001) adopted in the survey and the photo-identification work when Chinese White Dolphins (CWD) are sighted are presented in **Section 2** of **Appendix O**.

4.3 Monitoring Results

- 4.3.1 Vessel-based Line-Transect Survey
- 4.3.1.1 Two sets of vessel-based line transect surveys were conducted in NWL and NEL survey areas on 4, 9, 11 and 16 June 2020. The survey routes are presented in **Figures 2 to 5** of **Appendix O**.
- 4.3.1.2 During the 4 and 11 June 2020 surveys, several boats and barges involved in construction works near the southern end of Transect Line No. 8 were observed. Due to safety considerations, the survey vessel did not traverse these areas. Therefore, only a partial survey of Transect Line No. 8 was conducted as shown in Figures 2 & 4 of Appendix O.

- 4.3.1.3 A total of 258.90 km of survey effort was collected, with 100% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) (Annex I of Appendix O).
- 4.3.1.4 A total of 92.90 km and 166.00 km of survey effort were collected from NEL and NWL survey areas, respectively while the total survey effort conducted on primary and secondary lines were 190.66 km and 68.24 km, respectively (Annex I of Appendix O).
- 4.3.1.5 During the reporting period, no CWD was sighted at all.
- 4.3.1.6 Encounter rates of Chinese White Dolphin deduced from the survey effort and on-effort dolphin sighting data made under favourable conditions (Beaufort 3 or below) in June 2020 are presented in **Table 4.1** & **Table 4.2**.

Table 4.1 Dolphin encounter rates deduced from the two sets of TMCLKL surveys (two surveys in each set) during the reporting month in Northeast (NEL) and Northwest Lantau (NWL)

		Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)	Encounter rate (ANI) (no. of dolphin from all on- effort sightings per 100 km of survey effort)	
		Primary Lines Only	Primary Lines Only	
NEL	Set 1: June 4 th / 9 th	0.0	0.0	
	Set 2: June 11 th / 16 th	0.0	0.0	
NWL	Set 1: June 4 th / 9 th	0.0	0.0	
	Set 2: June 11 th / 16 th	0.0	0.0	

Table 4.2 Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four TMCLKL surveys conducted in the reporting month on primary lines only as well as both primary lines and secondary lines in NEL and NWL

	Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)		Encounter rate (ANI) (no. of dolphin from all on-effort sightings per 100 km of survey effort)	
	Primary Lines Only	Both Primary and Secondary Line	Primary Lines Only	Both Primary and Secondary Line
NEL	0.0	0.0	0.0	0.0
NWL	0.0	0.0	0.0	0.0

5. SITE INSPECTION AND AUDIT

5.1 Site Inspection

- 5.1.1 Site audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project site.
- 5.1.2 In the reporting month, four site inspections were carried out on 4, 10, 18 and 24 June 2020.
- 5.1.3 No monitoring and audit of landscape and visual mitigation measures were implemented as no landscape works were conducted during the reporting month.
- 5.1.4 No outstanding issues were reported during the reporting month. Details of observations recorded during the site inspections are summarized in **Appendix M**.

5.2 Advice on the Solid and Liquid Waste Management Status

- 5.2.1 The Contractor registered as a chemical waste producer for the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.
- 5.2.2 The monthly summary of waste flow table is detailed in **Appendix I**.
- 5.2.3 If off-site disposal is required, the excavated marine mud from the land-based works shall be disposed of at the designated disposal sites within Hong Kong as allocated by the Marine Fill Committee or other locations as agreed by the Director. The Contractor shall ensure no spilling and overflowing of materials during loading / unloading / transportation is allowed.
- 5.2.4 The Contractor was reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packing, Labelling and Storage of Chemical Waste.

6. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

6.1 Environmental Exceedance

- 6.1.1 No Action and Limit Level exceedance of 1-hr TSP level and 24-hr TSP level recorded at station AMS2, AMS3C and AMS7B in the reporting period.
- 6.1.2 Summary of Action and Limit Level exceedance of 1-hour TSP level and 24-hour TSP level at AMS6 shall be referred to the monthly EM&A report prepared by Contract No. HY/2011/03.

6.2 Complaints, Notification of Summons and Prosecution

- 6.2.1 No environmental complaint, notification of summons and successful prosecution were received in the reporting month.
- 6.2.2 Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Appendix L**.

7. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURE

7.1 Implementation Status

The Contractor had implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix J.**

8. FUTURE KEY ISSUES

8.1 Construction Programme for the Next Month

- Security measure at existing gate at SPTI (land-based);
- Recessed Cover at SPTI and NPTI (land-based);
- UPS room near building 062 (land-based);
- Minor Works at PCB (land-based);
- Excavation at VCP and WA3 (land-based);
- Road & Drain works at SPTI and NPTI (land-based);
- Vertical access at PCB (land-based);
- Covered Walkway at SPTI and NPTI (land-based);
- Site office demolition at WA3 (land-based);
- Refuse collection point at NPTI (land-based);
- Public Toilet at NPTI (land-based);
- Kiosks Construction at VCP (land-based).
- Landscape Works at G5.

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, waste management and landscape and visual impact issues.

8.3 Monitoring Schedules for the Next Month

8.3.1 The tentative schedule for environmental monitoring in the coming month is provided in **Appendix E**.

9. CONCLUSION AND RECOMMENDATION

9.1 Conclusions

- 9.1.1 1-hour TSP and 24-hour TSP impact monitoring at AMS2, AMS3C and AMS7B were carried out in the reporting month, no Action / Limit Level exceedance was recorded during the period.
- 9.1.2 Summary of Action and Limit Level exceedance of 1-hour TSP level and 24-hour TSP level at AMS6 shall be referred to the monthly EM&A report prepared by Contract No. HY/2011/03.
- 9.1.3 Construction noise monitoring were carried out in the reporting month, no Action / Limit Level exceedance was recorded during the period.
- 9.1.4 Based on previous dolphin surveys conducted for the HZMB project, monthly variation in dolphin occurrence within the survey areas was observed. Hence, it is more suitable to assess whether post-construction activities of the HKBCF have adverse impacts on dolphin occurrence every quarter where monthly comparison of distribution, group size, and encounter rates will be conducted.
- 9.1.5 Four environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures for water quality impact and chemical and waste management were given to the Contractor for remediating the deficiencies identified during the site inspections.
- 9.1.6 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Comment and Recommendations

- 9.2.1 The recommended environmental mitigation measures, as proposed in the EIA reports and EM&A Manuals shall be effectively implemented to minimize the potential environmental impacts from the Project. The EM&A programme would effectively monitor the environmental impacts generated from the construction activities and ensure the proper implementation of mitigation measures.
- 9.2.2 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

• No specific observation was identified in the reporting month.

Construction Noise Impact

• No specific observation was identified in the reporting month.

Water Quality Impact

• The contractor was reminded the stagnant water should be removed.

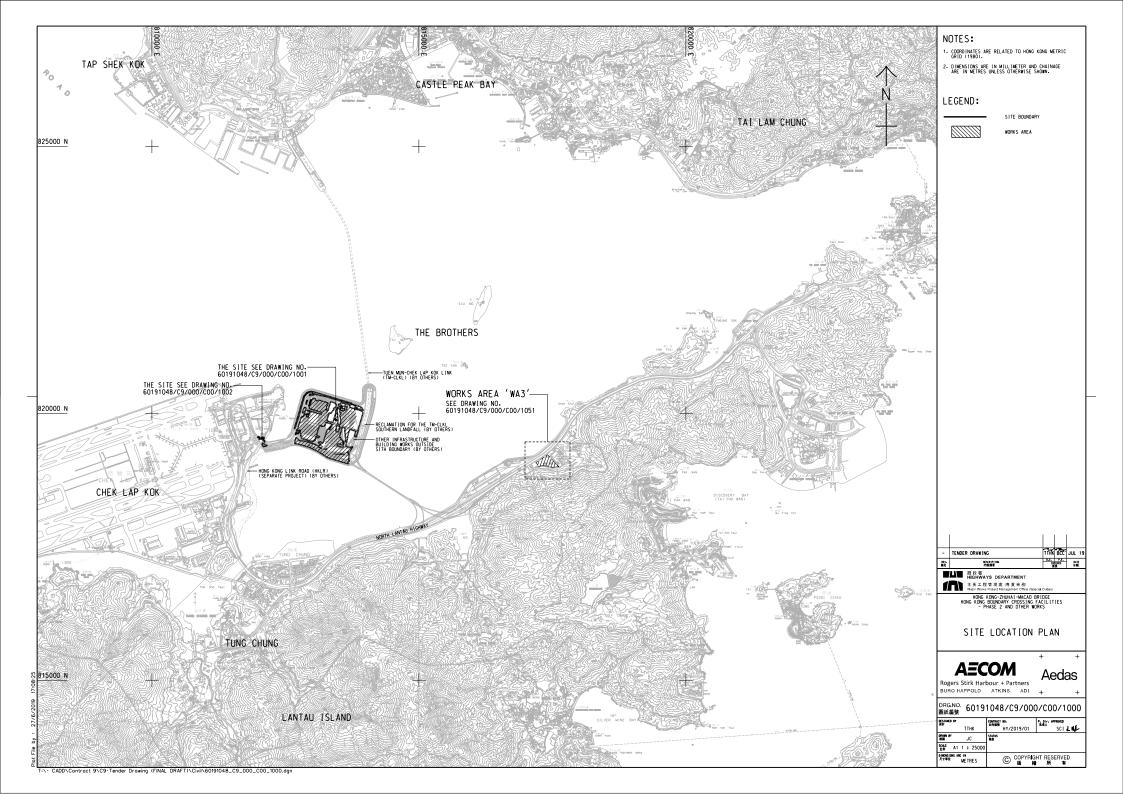
Chemical and Waste Management

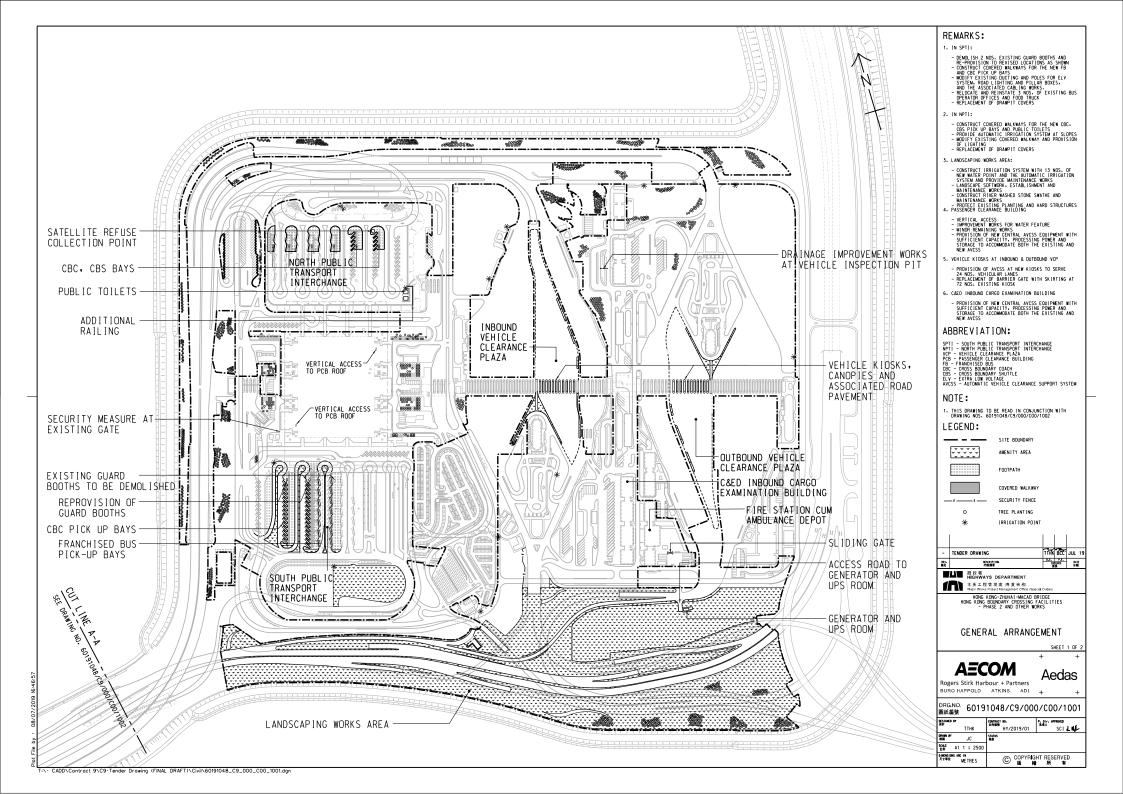
- The contractor was reminded to maintain housekeeping.
- The contractor was reminded the stain should be cleaned up immediately.

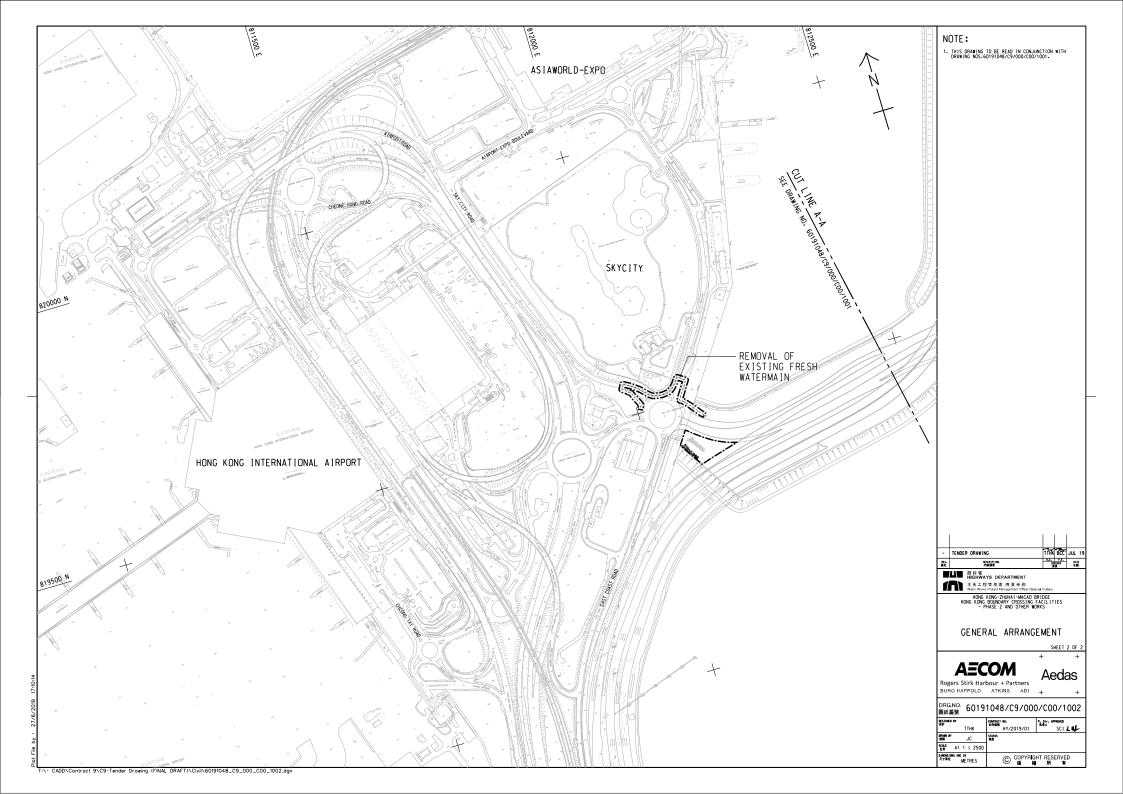
Landscape and Visual Impact

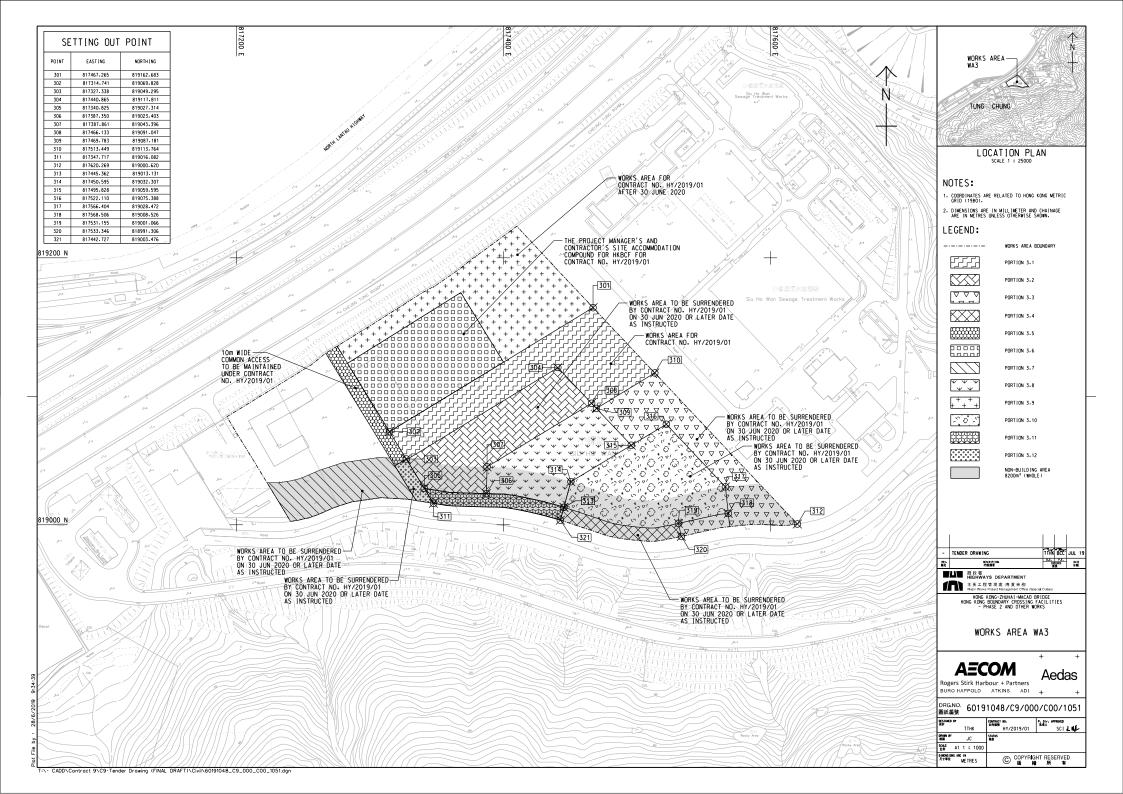
• No specific observation was identified in the reporting month.

Permit/ Licenses


• No specific observation was identified in the reporting month.




Figure 1


The Site Layout Plan of the Contract

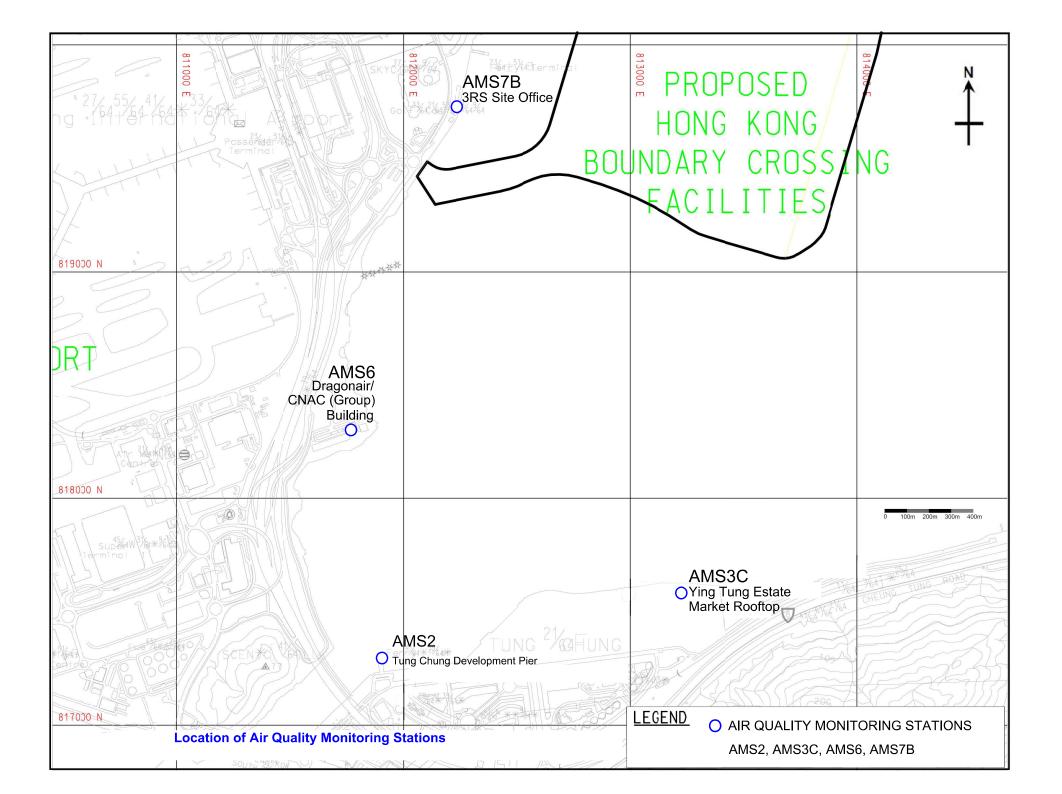
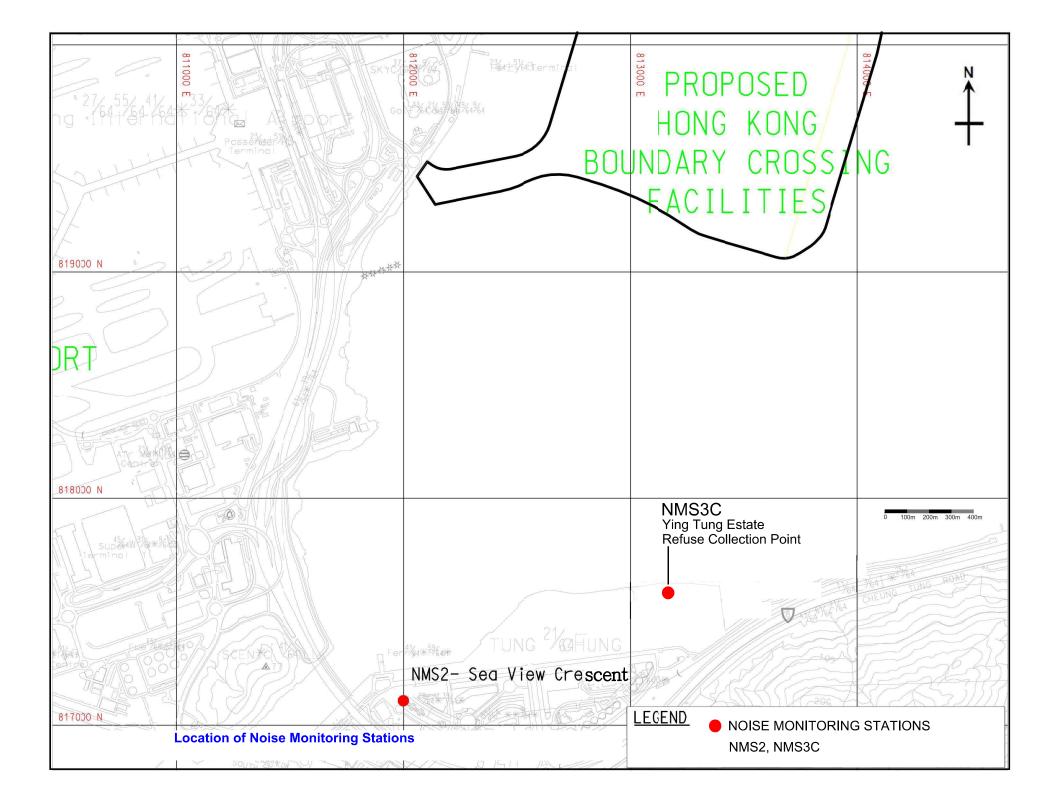
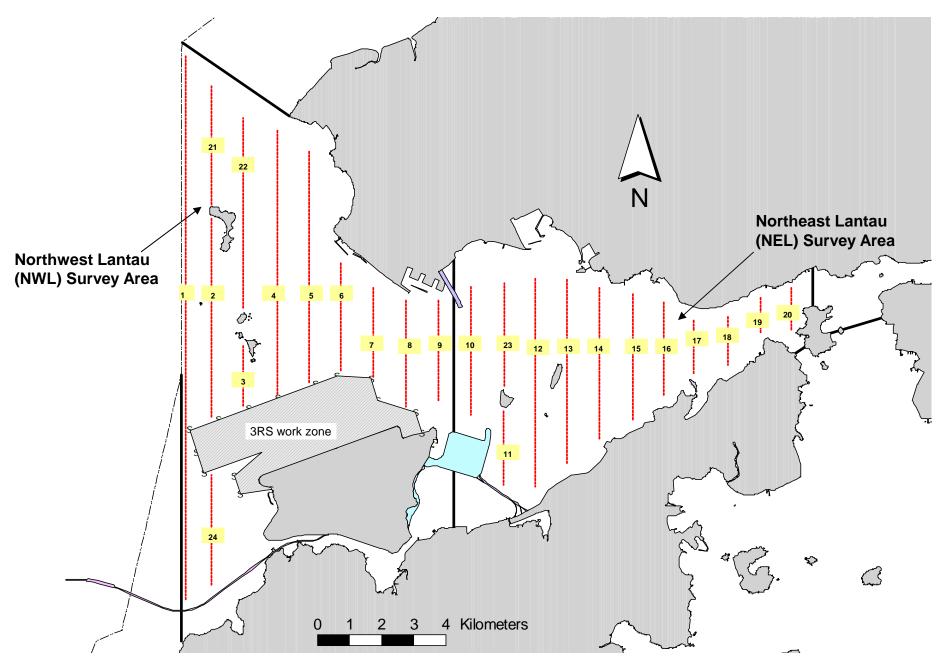


Figure 2

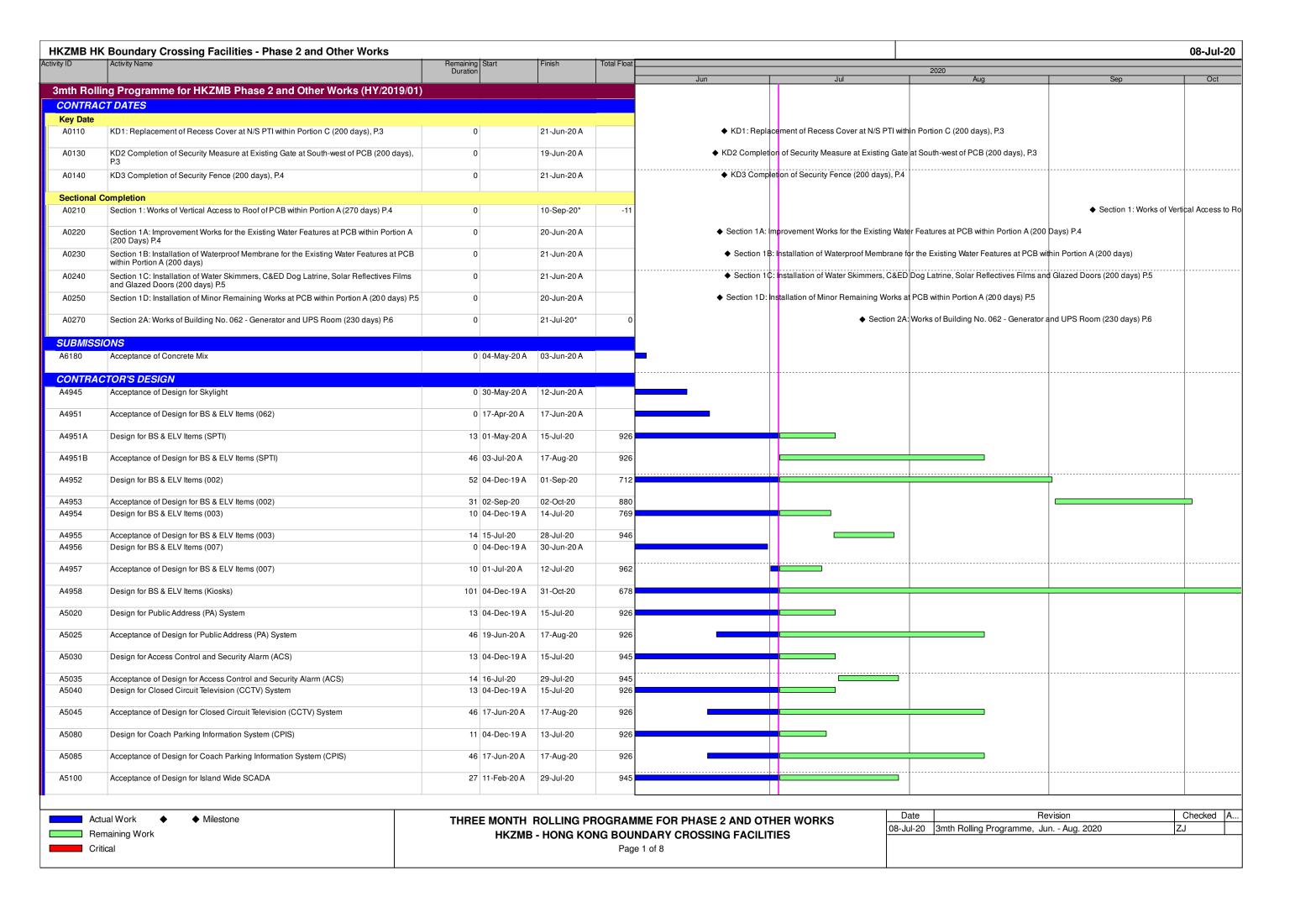

The Location of the Air Quality Monitoring Station

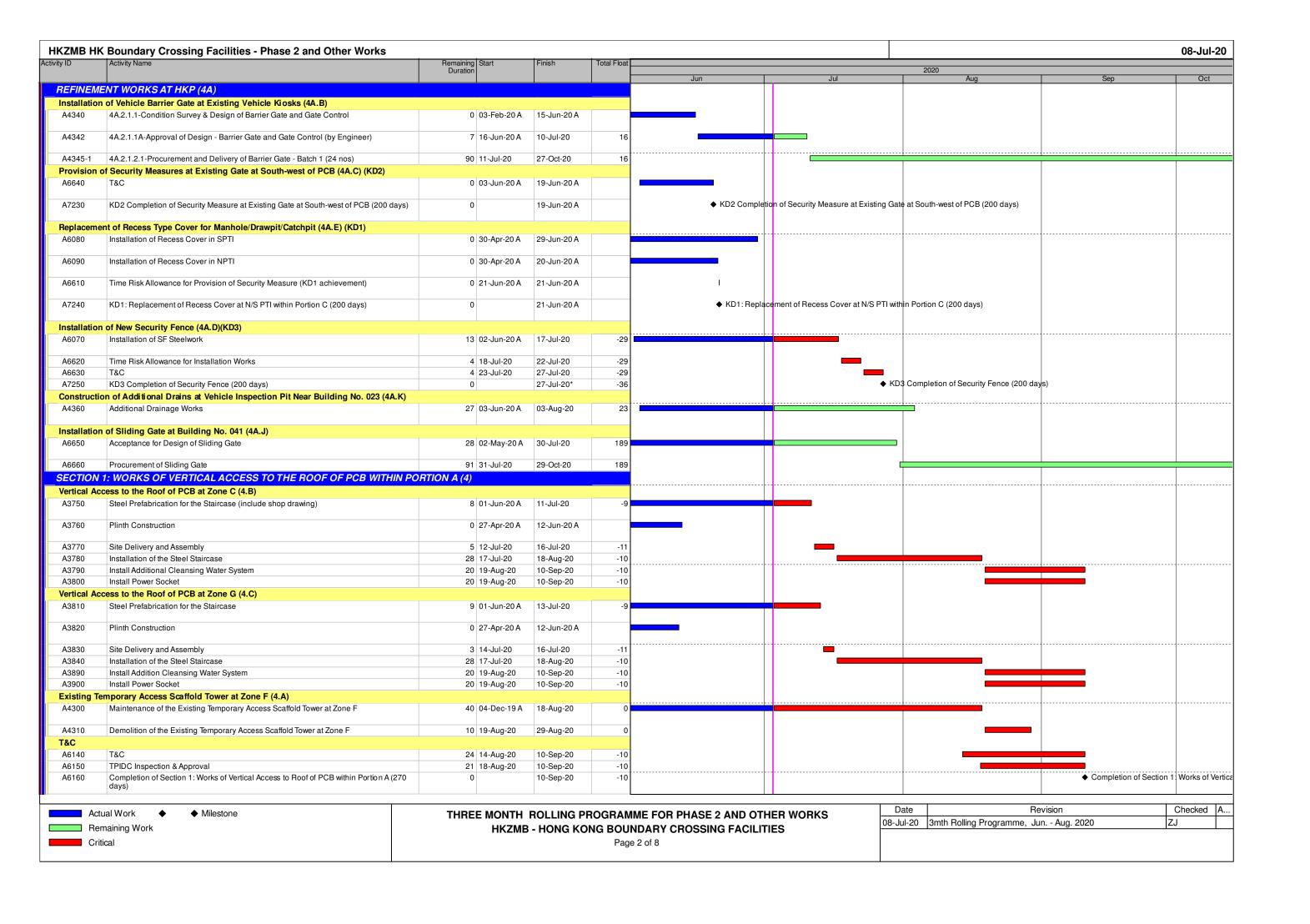

Figure 3

The Location of the Noise Monitoring Station

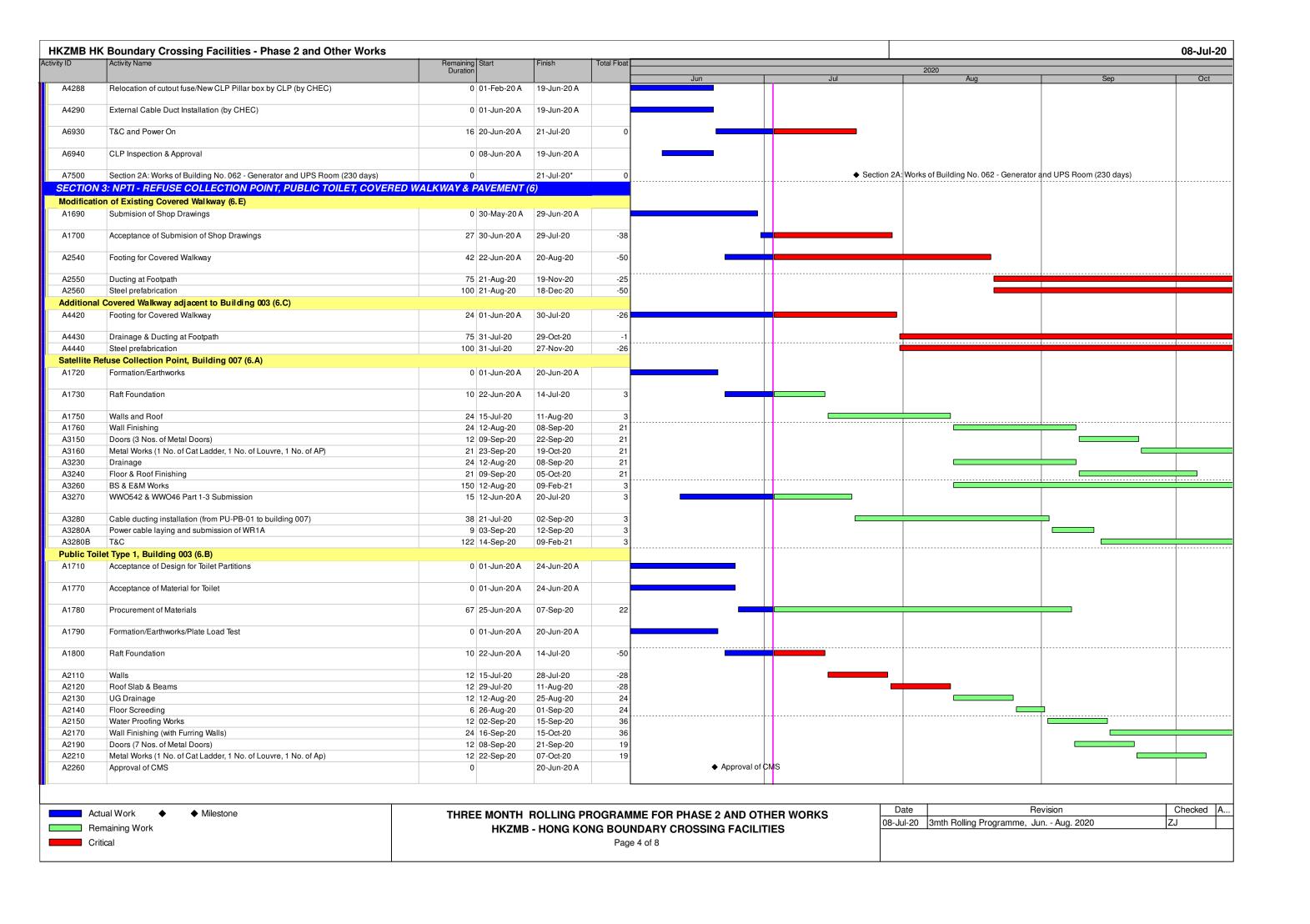
Figure 4

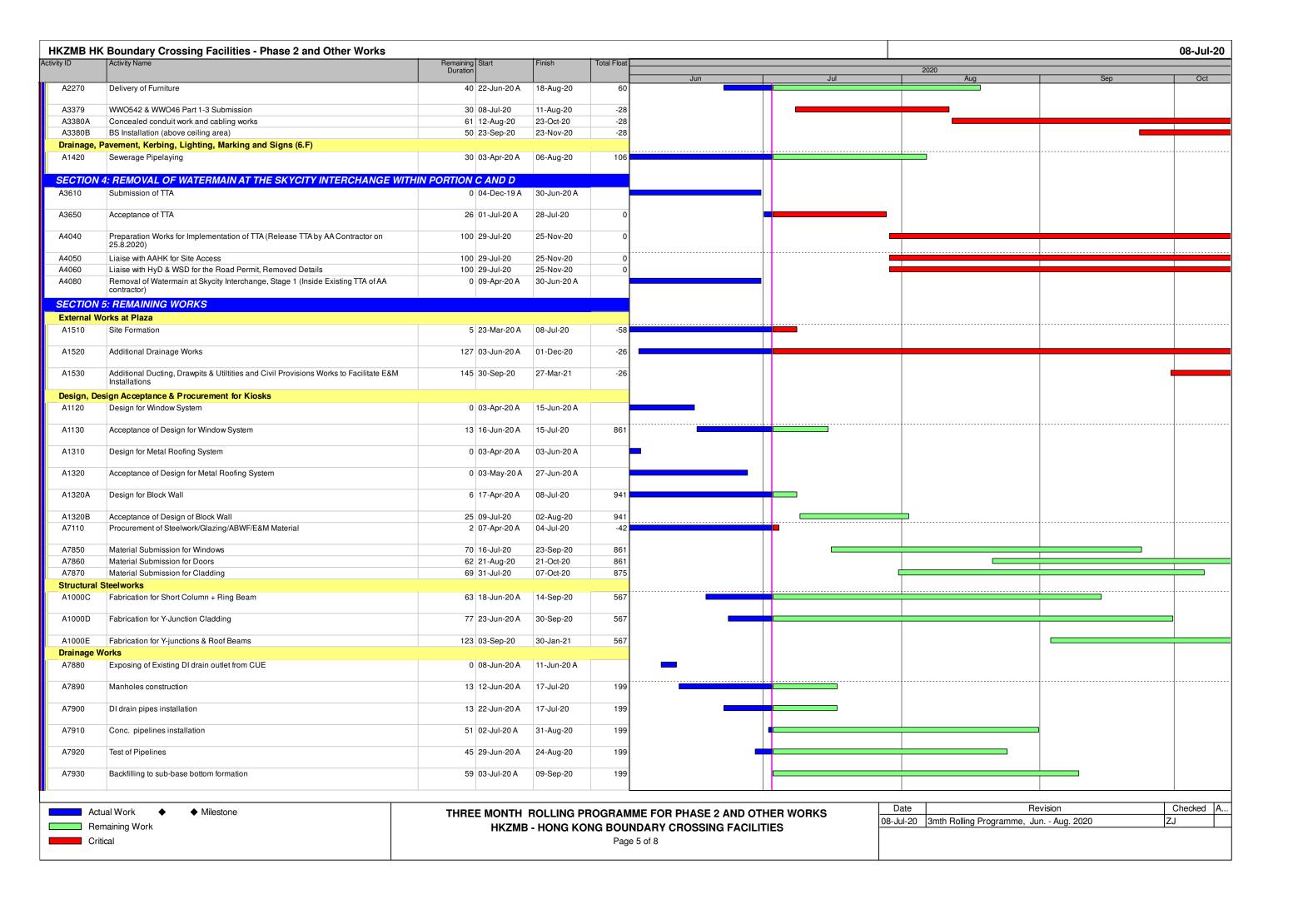
Post-Construction Dolphin Monitoring Line Transect Layout Map

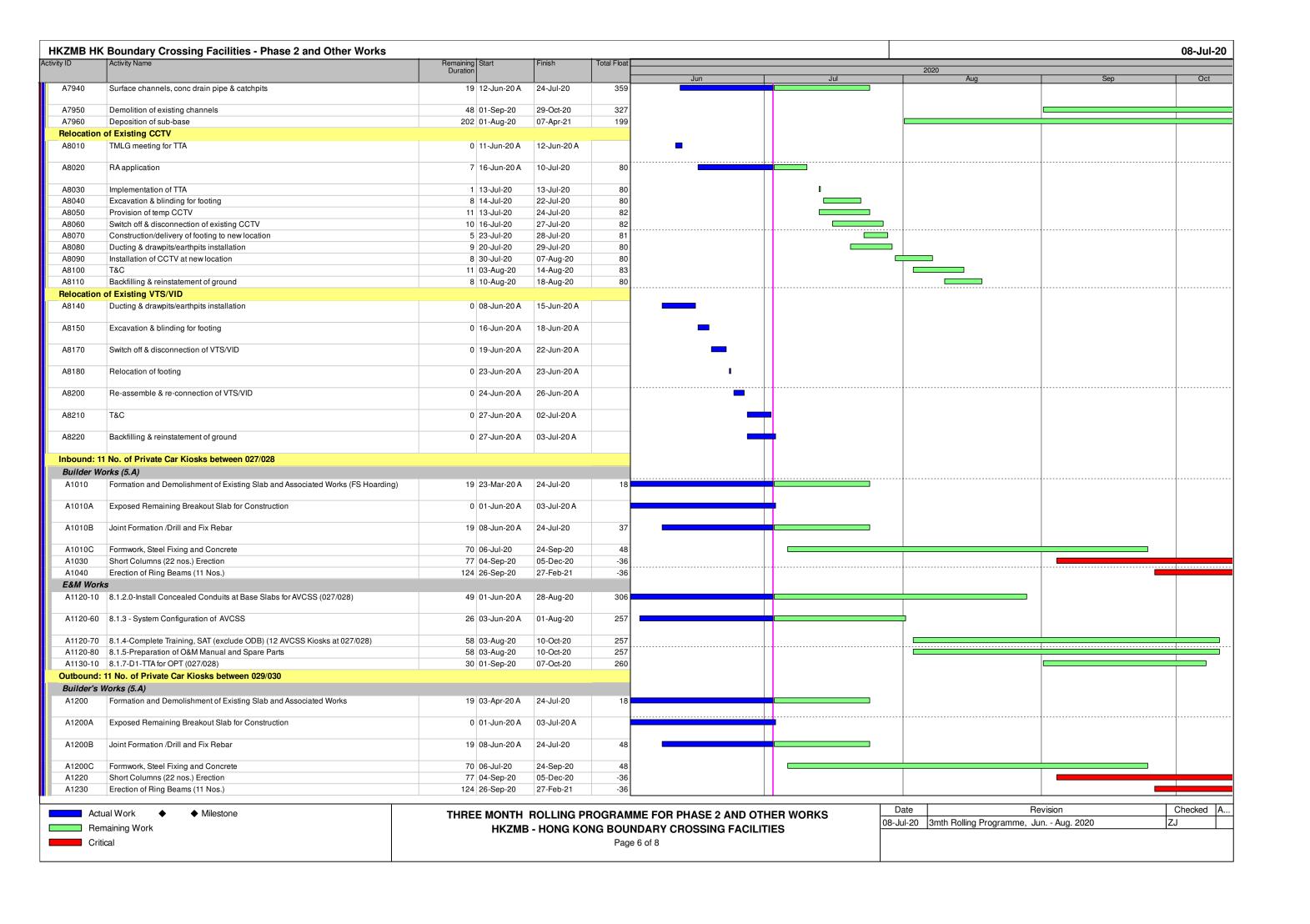


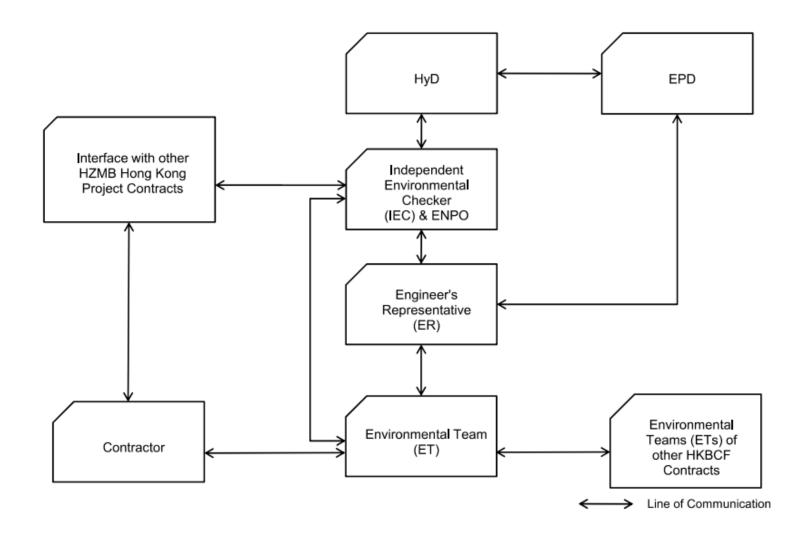

Transect Line Layout in Northwest and Northeast Lantau Survey Areas

Appendix A


Construction Programme






Boundary Crossing Facilities - Phase 2 and Other Works								08-Jul-20
Activity Name	Remaining Start	Finish	Total Float					
	Duration					2020		
				Jun	Jul	Aug	Sep	Oct
Purchasing & Delivery of Water Pump & Associated Equipment	156 01-Sep-20	03-Feb-21	756					
Works (2)								
Import CDG for Soilmix & Stockpile (G1 Access Landscaping Area)	126 02-Jul-20 A	30-Nov-20	0					
Mix & Place Soilmix - G1 Access Tree Planting Area	92 01-Sep-20	19-Dec-20	54					
Mix & place Soilmix (G1 Access Landscaping Area)	118 01-Aug-20	19-Dec-20	54					
ystem (3)			,					
Design for Irrigation System	29 04-Dec-19 A	31-Jul-20	4					
Acceptance of the Design for Irrigation System	46 01-Aug-20	15-Sep-20	4					
Liaison with WSD for Obtaining Statutory Approval	118 01-Aug-20	26-Nov-20	4					
	Mix & Place Soilmix - G1 Access Tree Planting Area Mix & place Soilmix (G1 Access Landscaping Area) ystem (3) Design for Irrigation System Acceptance of the Design for Irrigation System	Activity Name Remaining Duration Purchasing & Delivery of Water Pump & Associated Equipment 156 01-Sep-20 Works (2) Import CDG for Soilmix & Stockpile (G1 Access Landscaping Area) Mix & Place Soilmix - G1 Access Tree Planting Area Mix & place Soilmix (G1 Access Landscaping Area) 126 02-Jul-20 A Mix & place Soilmix (G1 Access Landscaping Area) 127 01-Sep-20 Mix & place Soilmix (G1 Access Landscaping Area) 128 01-Sep-20 Mix & place Soilmix (G1 Access Landscaping Area) 129 04-Dec-19 A Acceptance of the Design for Irrigation System 46 01-Aug-20	Activity Name Remaining Duration Purchasing & Delivery of Water Pump & Associated Equipment Purchasing & Delivery of Water Pump & Associated Equipment Works (2) Import CDG for Soilmix & Stockpile (G1 Access Landscaping Area) Mix & Place Soilmix - G1 Access Tree Planting Area Mix & place Soilmix (G1 Access Landscaping Area) Mix & place Soilmix (G1 Access Landscaping Area) Design for Irrigation System 29 04-Dec-19 A 31-Jul-20 Acceptance of the Design for Irrigation System 46 01-Aug-20 15-Sep-20	Activity Name Remaining Duration Purchasing & Delivery of Water Pump & Associated Equipment Purchasing & Delivery of Water Pump & Associated Equipment 156 01-Sep-20 03-Feb-21 756 Works (2) Import CDG for Soilmix & Stockpile (G1 Access Landscaping Area) 126 02-Jul-20 A 30-Nov-20 0 Mix & Place Soilmix - G1 Access Tree Planting Area 92 01-Sep-20 19-Dec-20 54 Mix & place Soilmix (G1 Access Landscaping Area) 118 01-Aug-20 19-Dec-20 54 ystem (3) Design for Irrigation System 29 04-Dec-19 A 31-Jul-20 4 Acceptance of the Design for Irrigation System 46 01-Aug-20 15-Sep-20 4	Remaining Duration	Remaining Duration Start Duration	Activity Name	Activity Name Remaining Duration Durati

Actual Work	♦	◆ Mileston	e		
Remaining Work					
Critical					

Appendix B

Project Organization Chart

Appendix C

Action and Limit Levels

Action / Limit Levels for Air Quality

Parameters	Action Level	Limit Level
24-hour TSP Level in μg/m³	¹ For baseline level ≤ 200 μg/m³, Action level = (baseline level * 1.3 + Limit level)/2; For baseline level > 200 μg/m³ Action level = Limit level	260 μg/m³
1-hour TSP Level in μg/m³	² For baseline level ≤ 384 μg/m³, Action level = (baseline level * 1.3 + Limit level)/2; For baseline level > 384 μg/m³, Action level = Limit level	500 μg/m³

Notes:

- 1. The Action Level for 24-hour TSP Level:
- <u>a) AMS 2 = $(71.1*1.3 + 260) / 2 = 176 \ \mu g/m^3$; b) AMS 3C = $(56.9*1.3 + 260) / 2 = 167 \ \mu g/m^3$;</u>
- <u>c) AMS 6 = (66.4*1.3 + 260) / 2 = 173 μ g/m³; d) AMS 7B = (82.3*1.3 + 260) / 2 = 183 μ g/m³;</u>
- $\underline{\text{2. The Action Level for 1-hour TSP Level:}}\\$
- <u>a) AMS 2 = (191.5*1.3 + 500) / 2 = 374 μ g/m³; b) AMS 3C = (18.2.2*1.3 + 500) / 2 = 368 μ g/m³;</u>
- <u>c) AMS 6 = $(169.2*1.3 + 500) / 2 = 360 \ \mu g/m^3$; d) AMS 7B = $(184.2*1.3 + 500) / 2 = 370 \ \mu g/m^3$; d) AMS 7B = $(184.2*1.3 + 500) / 2 = 370 \ \mu g/m^3$;</u>

Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700 - 1900 hours on normal weekdays	When one documented complaint is received	75 dB(A) *

Note: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

 $^{^{*}}$ Reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Appendix D

Calibration Certificate of Monitoring Equipment

RECALIBRATION DUE DATE:

October 21, 2020

Certificate of Calibration

Calibration Certification Information

Cal. Date: October 21, 2019

Rootsmeter S/N: 438320

Ta: 295

Pa: 744.2

°K

Operator: Jim Tisch Calibration Model #:

HISCH

TE-5025A

Calibrator S/N: 2456

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4200	3.2	2.00
2	3	4	1	1.0180	6.3	4.00
3	5	6	1	0.9030	7.9	5.00
4	7	8	1	0.8620	8.8	5.50
5	9	10	1	0.7120	12.6	8.00

	Data Tabulation									
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)					
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)					
0.9849	0.6936	1.4066	0.9957	0.7012	0.8904					
0.9808	0.9635	1.9892	0.9915	0.9740	1.2592					
0.9787	1.0838	2.2240	0.9894	1.0957	1.4078					
0.9775	1.1340	2.3325	0.9882	1.1464	1.4765					
0.9724	1.3658	2.8131	0.9831	1.3807	1.7808					
	m=	2.08799		m=	1.30746					
QSTD[b=	-0.03545	QA	b=	-0.02244					
	r=	0.99989		r=	0.99989					

	Calculation	ons	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
	For subsequent flow ra	ate calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slone	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

FAX: (513)467-9009

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Date of Calibration: 28-Apr-20

Location: AMS2

Next Calibration Date: 27-Jul-20

Brand: Tisch Technician: Ting Chan

Model: TE-5170 S/N:

CONDITIONS

Sea Level Pressure (hPa): 1017.5 Corrected Pressure (mm Hg): 763

HVS-01

Temperature (°C): 24.3 Temperature (K): 297

CALIBRATION ORIFICE

Tisch Make:

Qstd Slope: 2.08799

Model: TE-5025A Calibration Date: 21-Oct-19 **Qstd Intercept:** -0.03545 **Expiry Date:** 21-Oct-20

S/N: 2456

CALIBRATION

	CALIBRATION								
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	I	IC		LINEAR	
Flate No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	R	REGRESSION	
18	4.50	-8.50	13.000	1.749	56.00	56.18	Slope =	31.9482	
13	3.10	-7.20	10.300	1.559	50.00	50.16	Intercept =	0.0870	
10	1.80	-5.80	7.600	1.342	42.00	42.14	Corr. coeff.=	0.9993	
7	0.50	-4.50	5.000	1.091	35.00	35.11			
5	-0.20	-2.70	2.500	0.777	25.00	25.08			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

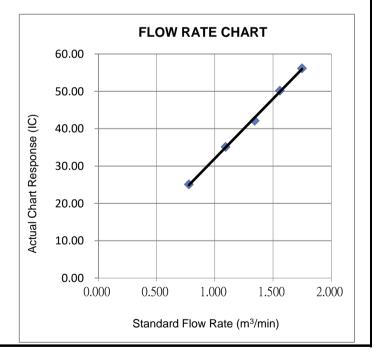
Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

JoB 7

Wan Ka Ho

Project Consultant

Report Date: 2/5/2020

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project : Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Date of Calibration: 28-Apr-20

Location : AMS7B Next Calibration Date: 27-Jul-20

Brand: Tisch Technician: Ting Chan

Model: TE-5170 S/N: HVS-03

CONDITIONS

Sea Level Pressure (hPa): 1017.5 Corrected Pressure (mm Hg): 763

Temperature (°C): 24.3 Temperature (K): 297

CALIBRATION ORIFICE

Make: Tisch Qstd Slope: 2.08799

Model: TE-5025A Qstd Intercept: -0.03545

Calibration Date: 21-Oct-19 Expiry Date: 21-Oct-20

S/N: 2456

CALIBRATION

	V. (2151.7.11.011								
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	I	IC		LINEAR	
Flate No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	R	REGRESSION	
18	7.00	-4.80	11.800	1.668	58.00	58.19	Slope =	33.7189	
13	6.00	-3.80	9.800	1.521	53.00	53.17	Intercept =	1.4285	
10	5.00	-2.80	7.800	1.359	46.00	46.15	Corr. coeff.=	0.9959	
7	3.40	-1.30	4.700	1.059	36.00	36.12			
5	2.60	-0.60	3.200	0.877	32.00	32.10			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

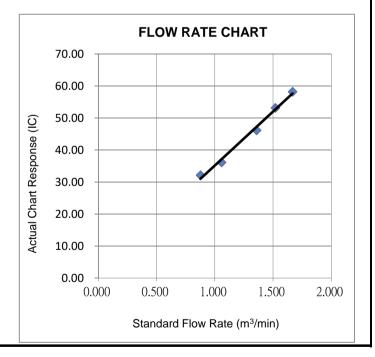
Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Wan Ka Ho

Project Consultant

Report Date: 2/5/2020

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project : Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Date of Calibration: 28-Apr-20

Location : AMS3C Next Calibration Date: 27-Jul-20

Brand: Tisch Technician: Ting Chan

Model: TE-5170 S/N: HVS-02

CONDITIONS

Sea Level Pressure (hPa): 1017.5 Corrected Pressure (mm Hg): 763

Temperature (°C): 24.3 Temperature (K): 297

CALIBRATION ORIFICE

Make: Tisch Qstd Slope: 2.08799

Model: TE-5025A Qstd Intercept: -0.03545
Calibration Date: 21-Oct-19 Expiry Date: 21-Oct-20

S/N: 2456

CALIBRATION

	V/CIDIO/11011								
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	I	IC		LINEAR	
riale No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION	
18	6.80	-5.40	12.200	1.695	60.00	60.20	Slope =	29.9170	
13	5.60	-4.40	10.000	1.536	54.00	54.18	Intercept =	9.2460	
10	4.80	-2.80	7.600	1.342	50.00	50.16	Corr. coeff.=	0.9972	
7	3.30	-1.60	4.900	1.081	42.00	42.14			
5	2.40	-0.60	3.000	0.849	34.00	34.11			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

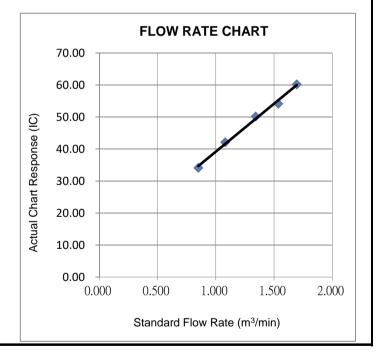
Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

- Tory

Wan Ka Ho

Project Consultant

Report Date: 2/5/2020

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun. NT Hong Kong

Report no.: 940891CA200109(2)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 761101

Specification Limit

: NA

Next Calibration Date : 09-Oct-2020

Laboratory Information

Description

: TSP high volume air sampler

Serial No.

: 4350

Date of Calibration

: 10-Oct-2019

Ambient Temperature : 28 °C

Calibration Location: Ma Wan A1 Site Boundary

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.1047	2110	35.17
0.0623	1948	32.47
0.0587	1908	31.80

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation: Concentration $(mg/m^3) = K \times [UUT reading (CPM)], where K = 0.002270$

3. Correlation coefficient (r):

0.9931

Checked by: CA-R-297 (22/07/2009)

Date: 10-2-2020 Certified by: K. T. Telling Date: 10-2-2020

Leung Kwok Tai (Assistant Manager)

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun. NT Hong Kong

Report no.: 940891CA200109(5)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project: Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No

: LD-5R

Serial No.

: 761104

Specification Limit

: NA

Next Calibration Date : 21-Oct-2020

Laboratory Information

Description

: TSP high volume air sampler

Serial No.

: 4350

Date of Calibration

: 22-Oct-2019

Ambient Temperature : 25 °C

Calibration Location: Ma Wan A1 Site Boundary

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high

volume sampler (TSP method) for a certain period, with the reading of the UUT. They should be placed at the same location and powered on and off at the same time.

Calibration Results:

Outibration Robatto 1		
Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.1287	3564	59.40
0.0888	2877	47.95
0.1141	3267	54.45

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation: Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.002049

3. Correlation coefficient (r):

0.9971

CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager)

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 940891CA200109

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 882147

Specification Limit

: NA

Next Calibration Date : 09-Oct-2020

Laboratory Information

Description

: TSP high volume air sampler

Serial No.

: 4350

Date of Calibration : 10-Oct-2019

Ambient Temperature : 28 °C

Calibration Location: Ma Wan A1 Site Boundary

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.1047	2477	41.28
0.0623	2121	35.35
0.0587	2073	34.55

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation: Concentration (mg/m³) = K x [UUT reading (CPM)], where K = 0.002030

3. Correlation coefficient (r):

0.9993

Date: 10-2-2020 Certified by: 2 Truma Date: 10-2-2020 Checked by: CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager)

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

CALIBRATION REPORT OF WIND METER

Project: Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge

Location: AMS3C

Date of Calibration: 5-Feb-2020 Next Calibration Date: 4-Jul-2020

Technician: Sam Fong

Global Water Brand:

GL500-7-2 Model:

S/N: 1847003409

Anemometer

Brand: Benetech Model:

GM816

Equipment ID: 08

Procedures:

1. Wind Still Test: The wind speed sensor was held by hand until stabilized.

2. Wind Speed Test: The wind meter was calibrated in-situ and compared with the Anemometer.

3. Wind Direction Test: The wind meter was calibrated in-situ and compared with a marine compass from

four directions.

Wind Still Test:

Wind Speed (m/s)	
0.00	

Wind Speed Test:

Global Water (m/s)	Anemometer (m/s)
2.3	2.6
3.0	2.8
3.4	3.0

Wind Direction Test:

	Marine Compass (o)
252	250
72	70
0	357
340	341

JOB Y

Wan Ka Ho

Project Consultant

Report Date: 14/2/2020

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 183057CA200894(3)

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client: Fugro Technical Services Ltd.

Project: Calibration Services

Details of Unit Under Test, UUT

Description

Anemometer

Manufacturer:

Benetech

Model No.

GM816

Serial No.

N/A

Equipment ID.:

WS-08

Next Calibration Date :

14-Jun-2021

Laboratory Information

Details of Reference Equipment -

Description

Reference Anemometer

Equipment ID.:

R-101-4

Date of Calibration

15-Jun-2020

Ambient Temperature

22 °C

Calibration Location :

Calibration Laboratory of FTS

Method Used: R-C-279

Calibration Results:

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
2.02	2.0	0.0
4.15	4.1	-0.1
6.27	6.0	-0.3
8.43	8.0	-0.4
10.75	10.1	-0.7

Remark:

- 1. The equipment being used in this calibration is traceable to recognized National Standards.
- 2. The reported readings in this calibration are an average from 10 trials.

Checked by: Killiam	Date: 20-6-2016	Certified by :	& Th Toung	_ Date :	20-6-202
CA-R-297 (22/07/2009)		Le	ung Kwok Tai (Ass	istant Mar	nager)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 : +852 2450 6138 Fax E-mail: matlab@fugro.com Website: www.fugro.com

Report No.: 183057CA195782(1)

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client: Fugro Technical Services Ltd.

Calibration Services Project:

Details of Unit Under Test, UUT

Description

Anemometer

Manufacturer:

Benetech

Model No

GM816

Serial No.

N/A

Equipment ID.:

WS-08

Next Calibration Date:

17-Jun-2020

Laboratory Information

Details of Reference Equipment -

Description

Reference Anemometer

Equipment ID.:

R-101-4

Date of Calibration

18-Jun-2019

Ambient Temperature

22 °C

Calibration Location :

Calibration Laboratory of FTS

Method Used: R-C-279

Calibration Results:

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
2.05	1.0	-1.1
4.08	3.1	-1.0
6.07	4.8	-1.3
8.03	6.7	-1.3
10.14	8.8	-1.3

Remark:

1. The equipment being used in this calibration is traceable to recognized National Standards.

Checked by: Nilliam Date: 20-6-2019 Certified by: Kill Lung Date: 24-6-2019 CA-R-297 (22/07/2009)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com

E-mail : matlab@fugro.com
Website : www.fugro.com

Report no.:

183057CA196181

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description

Sound Level Meter

Manufacturer

Casella

Model No.

-

Serial No.

: [

Serial No.

Next Calibration Date

01-Oct-2020

Specification Limit

EN 61672: 2003 Type 1

Meter

CEL-63X

1488272

Laboratory Information

Details of Reference Equipment -

Description

B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)

Microphone

CE-251

02552

Equipment ID.

R-108-1

Date of Calibration

02-Oct-2019

Ambient Temperature: 22

°C

Preamplifier

CEL-495

003942

Calibration Location

Calibration Laboratory of FTS

Method Used

By direct comparison

Calibration Results:

Parame	ters	Mean Value (dB)	Specific	ation	Limit(dB)
	4000Hz	2.0	2.6	to	-0.6
	2000Hz	1.4	2.8	to	-0.4
	1000Hz	0.0	1.1	to	-1.1
A-weighting	500Hz	-3.4	-1.8	to	-4.6
frequency response	250Hz	-8.8	-7.2	to	-10.0
	125Hz	-16.3	-14.6	to	-17.6
	63Hz	-26.3	-24.7	to	-27.7
	31.5Hz	-39.3	-37.4	to	-41.4
Differential level linearity	94dB-104dB	0.0	± 0.6		3
	104dB-114dB	0.0	± 0.6		3

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.
- 5. The values given in this Calibration Certificate only relate to the unit-under-test and the values measured at the time of the test. Uncertainties will not include allowances for the environmental changes, variation and shock during transportation, or the capability of any other laboratory to repeat the measurement.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 1 of 1

Report no.: 183057CA196458

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: Fugro Technical Services Ltd.

Project: Calibration Services Details of Unit Under Test, UUT

Description

Sound Level Meter

Manufacturer

Casella

Model No.

Serial No.

:

Equipment ID

N/A

Next Calibration Date

21-Nov-2020

Specification Limit

EN 61672: 2003 Type 1

Meter

CEL-63X

2451048

Laboratory Information

Details of Reference Equipment -

Description

B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)

Microphone

CE-251

02789

Equipment ID. :

R-108-1

Date of Calibration:

22-Nov-2019

Ambient Temperature: 22 °C

Preamplifier

CEL-495

004065

Calibration Location: Calibration Laboratory of FTS

Method Used

By direct comparison

Calibration Results:

Parame	ters	Mean Value (dB)	Specific	ation	Limit(dB)
	4000Hz	1.9	2.6	to	-0.6
	2000Hz	1.5	2.8	to	-0.4
	1000Hz	0.0	1.1	to	-1.1
A-weigthing	500Hz	-3.4	-1.8	to	-4.6
frequency response	250Hz	-8.8	-7.2	to	-10.0
Георопос	125Hz	-16.2	-14.6	to	-17.6
	63Hz	-26.2	-24.7	to	-27.7
	31.5Hz	-38.9	-37.4	to	-41.4
Differential level linearity	94dB-104dB	0.0		± 0.6)
	104dB-114dB	0.0		± 0.6	3

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.

Millian Date: 37-11-2019 Certified by: CA-R-297 (22/07/2009)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kona.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail: matlab@fugro.com Website : www.fugro.com

Report no.: 183057CA196275

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client: Fugro Technical Services Ltd.

Project: Calibration Services Details of Unit Under Test, UUT

Description

Sound Calibrator

Manufacturer

Casella (Model CEL-120/1)

Serial No.

2383852

Equipment ID

N/A

Next Calibration Date

15-Oct-2020

Specification Limit

EN 60942: 2003 Type 1

Laboratory Information

Details of Reference Equipment -

Description

Reference Sound level meter

Equipment ID.

R-119-1

Date of Calibration:

16-Oct-2019

Ambient Temperature: 22

°C

Calibration Location: Calibration Laboratory of FTS

Method Used

By direct comparison

Calibration Results:

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)		
94dB	0.0 dB	±0.4dB		
114dB	0.0 dB	10.440		

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by :	Date: >2-(0-2019	_Certified by :_	i The Toung	_Date :_	>2-10-2016
CA-R-297 (22/07/2009)		Leung	Kwok Tai (Assist	ant Manag	ger)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 183057CA195873(2)

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client: Fugro Technical Services Ltd.

Project: Calibration Services Details of Unit Under Test, UUT

Description

Sound Calibrator

Manufacturer

Casella (Model CEL-120/1)

Serial No.

4358250

Equipment ID

N-33

Next Calibration Date

25-Jul-2020

Specification Limit

EN 60942: 2003 Type 1

Laboratory Information

Description

Reference Sound level meter

Equipment ID. :

R-119-1

Date of Calibration:

26-Jul-2019

Ambient Temperature: 22

Calibration Location: Calibration Laboratory of FTS

Method Used

By direct comparison

Calibration Results:

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)	
94dB	0.0 dB	10.4dP	
114dB	0.0 dB	±0.4dB	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

William Date: 26-7-2019 Certified by: F. Leyur Date: 76-7-2019

CA-R-297 (22/07/2009)

Leung Kwok Tai (Assistant Manager)

Appendix E

Environmental Monitoring Schedule

Project: Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities - Phase 2 and Other Works

Impact Monitoring Schedule (June 2020)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1 June Dust Monitoring Noise Monitoring	2 Dolphin Monitoring	3	4	5	6 Dust Monitoring
7	8	9 Dolphin Monitoring	10	11	12 Dust Monitoring Noise Monitoring	13
14	15	16 Dolphin Monitoring	17	18 Dust Monitoring Noise Monitoring	19	20
21	22	23 Dolphin Monitoring	24 Dust Monitoring Noise Monitoring	25	26	27
28	29	30 Dust Monitoring Noise Monitoring				

Remarks

- 1. Dust Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days
- 2. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours
- 3. Dolphin Monitoring: Chinese White Dolphin (post-construction phase, monthly); monitoring conducted and data collected by TM-CLKL Contract No. HY/2012/08
- 4. Dust Monitoring Location: AMS2 (Tung Chung New Development Pier), AMS3C (Ying Tung Estate Market Rooftop) and AMS7B (3RS Site Offices)
- 5. Noise Monitoring Location: NMS2 (Seaview Crescent), NMS3C (Ying Tung Estate Refuse Collection Point)

Project: Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities - Phase 2 and Other Works

Impact Monitoring Schedule (July 2020)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1	2 Dolphin Monitoring	3	4
5	6 Dust Monitoring Noise Monitoring	7	8	9 Dolphin Monitoring	10	11 Dust Monitoring
12	13	14	15	16	17 Dust Monitoring Noise Monitoring	18
19	20	21 Dolphin Monitoring	22	23 Dust Monitoring Noise Monitoring Dolphin Monitoring	24	25
26	27	28	29 Dust Monitoring Noise Monitoring	30	31	

Remarks

- 1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition
- 2. Dust Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days
- 3. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours
- 4. Dolphin Monitoring: Chinese White Dolphin (post-construction phase, monthly); monitoring conducted and data collected by TM-CLKL Contract No. HY/2012/08
- 5. Dust Monitoring Location: AMS2 (Tung Chung New Development Pier), AMS3C (Ying Tung Estate Market Rooftop) and AMS7B (3RS Site Offices)
- 6. Noise Monitoring Location: NMS2 (Seaview Crescent), NMS3C (Ying Tung Estate Refuse Collection Point)

Appendix F

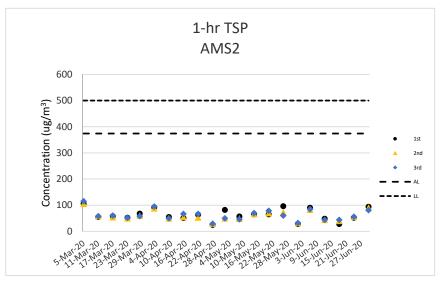
Air Quality Monitoring Results and Construction Noise Monitoring Results

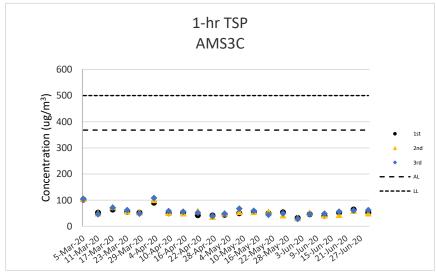
1-hour TSP Monitoring Result for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

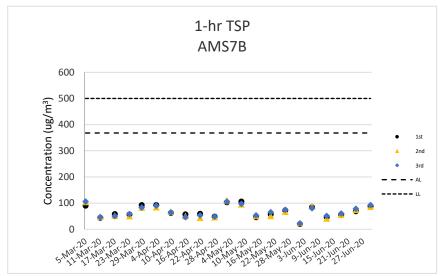
AMS2 - Tung Chung Development Pier

			1	-hour TSP (μg/m	3)		
Date	Weather	Start	1st	2nd	3rd	Action Level	Limit Level
	Condition	Time	Measurement	Measurement	Measurement	(ug/m³)	(ug/m³)
1-Jun-20	Fine	11:35	28	32	32		
6-Jun-20	Fine	09:40	90	83	85		
12-Jun-20	Fine	11:13	48	44	44	374	500
18-Jun-20	Fine	09:22	28	40	44	3/4	500
24-Jun-20	Cloudy	11:44	52	56	56		
30-Jun-20	Fine	09:40	94	90	81		
		Min		28			
		Max		94			
		Average		57			

AMS3C - Ying Tung Estate Market Rooftop


			1	1-hour TSP (μg/m³)					
Date	Weather	Start	1st	2nd	3rd	Action Level	Limit Level		
	Condition	Time	Measurement	Measurement	Measurement	(ug/m ³)	(ug/m³)		
1-Jun-20	Fine	12:00	32	32	28				
6-Jun-20	Fine	09:11	46	52	46				
12-Jun-20	Fine	11:20	40	42	48	368	500		
18-Jun-20	Fine	09:43	52	44	56	300	300		
24-Jun-20	Cloudy	12:01	64	60	60				
30-Jun-20	Fine	09:31	52	50	62				
		Min		28					
		Max		64					
	•	Average		48					


AMS7B - 3RS Site Offices


ior b onto onto	0111000					-	
			1				
Date	Weather	Start	1st	2nd	3rd	Action Level	Limit Level
	Condition	Time	Measurement	Measurement	Measurement	(ug/m ³)	(ug/m ³)
1-Jun-20	Fine	11:15	20	24	22		
6-Jun-20	Fine	08:39	84	88	80		
12-Jun-20	Fine	10:59	46	41	51	370	500
18-Jun-20	Fine	09:02	55	55	60	370	500
24-Jun-20	Cloudy	11:26	69	74	78		
30-Jun-20	Fine	09:09	88	86	92		
		Min		20	•		•
		Max		92			
				00		1	

Note:

<u>Underline</u>: Exceedance of Action Level <u>Underline and Bold</u>: Exceedance of Limit Level

24-hour TSP Monitoring Result for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

AMS2 - Tung Chung Development Pier

Start Date	Weather Condition	Air Temperature (K)	Pressure, Pa	Filter W	eight (g)		Sampling Time(hrs)	(m ³ /	Rate min.)	Average flow	Total volume (m ³⁾	Conc. (ug/m ³)	Action Level	Limit Level
	Condition	(14)	(mmHg)	Initial	Final	weight (g)	11116(1113)	Initial	Final	(m³/min.)	(111 '	(ug/III)	(ug/m^3)	(ug/m ³)
1-Jun-20	Fine	302.9	757.7	2.7095	2.7451	0.0356	24	1.24	1.25	1.24	1790.3	20		
6-Jun-20	Fine	299.8	755.5	2.7538	2.7998	0.0460	24	1.55	1.56	1.56	2243.0	21		
12-Jun-20	Fine	303.4	754.1	2.7452	2.8006	0.0554	24	1.23	1.25	1.24	1787.5	31	176	260
18-Jun-20	Fine	302.5	756.4	2.6952	2.7595	0.0643	24	1.24	1.25	1.24	1790.2	36	170	200
24-Jun-20	Cloudy	303.4	754.9	2.7099	2.7729	0.0630	24	1.54	1.56	1.55	2235.9	28		
30-Jun-20	Fine	303.7	753.5	2.7227	2.7828	0.0601	24	1.23	1.25	1.24	1786.7	34		
-											Min	20		
											Max	36		
											Average	28		

AMS3C - Ying Tung Estate Market Rooftop

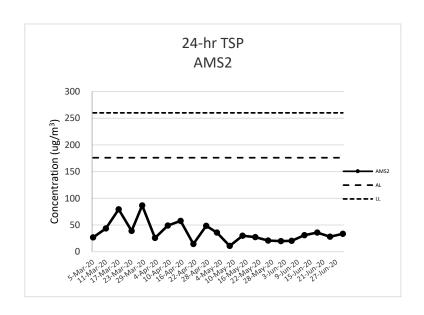
AWISSC - YI	ing rung E	state Market Ro	οπορ											
Start Date	Weather Condition	Air Temperature	Atmospheric Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)	(m ³ /	Rate min.)	flow	Total volume (m ³⁾	Conc. (ug/m³)	Action Level	Limit Level
	Condition	(14)	(mmHg)	Initial	Final	weight (g)	Time(III3)	Initial	Final	(m³/min.)	(111 -	(ug/III)	(ug/m^3)	(ug/m ³)
1-Jun-20	Fine	302.9	757.7	2.7088	2.7389	0.0301	24	1.08	1.09	1.09	1566.8	19		
6-Jun-20	Fine	299.8	755.5	2.7424	2.7775	0.0351	24	1.09	1.09	1.09	1570.5	22		l
12-Jun-20	Fine	303.4	754.1	2.7359	2.7706	0.0347	24	1.01	1.03	1.02	1468.0	24	167	260
18-Jun-20	Fine	302.5	756.4	2.6808	2.7071	0.0263	24	1.01	1.03	1.02	1470.9	18	107	200
24-Jun-20	Cloudy	303.4	754.9	2.7396	2.7798	0.0402	24	1.01	1.03	1.02	1468.5	27		l
30-Jun-20	Fine	303.7	753.5	2.6989	2.7319	0.0330	24	1.08	1.09	1.09	1562.7	21		
		•				•				•	Min	18		
											Max	27		

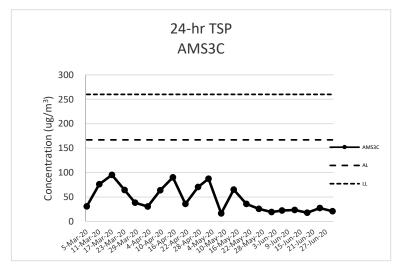
AMS7B - 3RS Site Offices

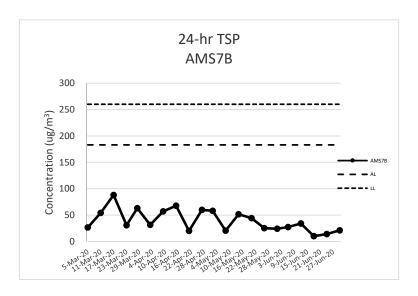
AIVIOI D - SI	KS SILE OII	lices												
Start Date	Weather Condition	Air Temperature (K)	Atmospheric Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)		Rate min.)	Average flow	Total volume	Conc.	Action Level	Limit Level
	Condition	(14)	(mmHg)	Initial	Final	weight (g)	11116(1113)	Initial	Final	(m³/min.)	(111	(ug/m ³)	(ug/m ³)	(ug/m ³)
1-Jun-20	Fine	302.9	757.7	2.7185	2.7683	0.0498	24	1.43	1.44	1.43	2064.0	24		
6-Jun-20	Fine	299.8	755.5	2.7534	2.8096	0.0562	24	1.43	1.44	1.44	2067.9	27		
12-Jun-20	Fine	303.4	754.1	2.7802	2.8502	0.0700	24	1.42	1.44	1.43	2060.6	34	183	260
18-Jun-20	Fine	302.5	756.4	2.6833	2.7040	0.0207	24	1.43	1.44	1.43	2063.8	10	103	200
24-Jun-20	Cloudy	303.4	754.9	2.7285	2.7573	0.0288	24	1.42	1.44	1.43	2061.2	14		
30-Jun-20	Fine	303.7	753.5	2.7086	2.7519	0.0433	24	1.42	1.44	1.43	2059.7	21		
<u> </u>	·				·						Min	10		

 Min
 10

 Max
 34


 Average
 22


Average


22

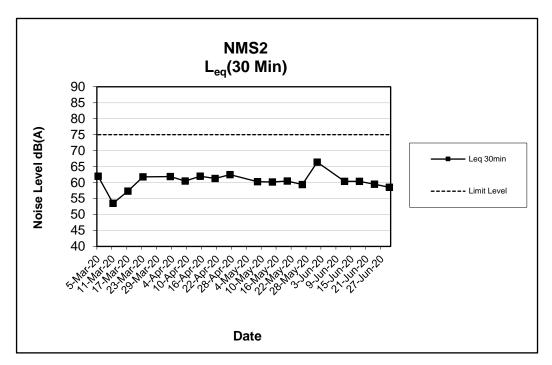
Note:

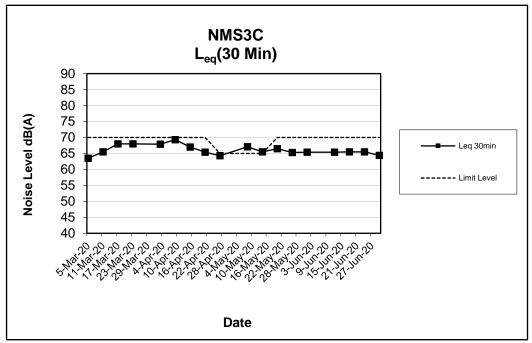
<u>Underline</u>: Exceedance of Action Level <u>Underline and Bold</u>: Exceedance of Limit Level

Noise Impact Monitoring Result for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

NMS2 - Seaview Crescent

Date	Start Time	L _{eq} 30min dB(A)	L ₁₀ dB(A)	L ₉₀ dB(A)	Wind Speed (m/s)	Weather	Limit Level dB(A)
1-Jun-20	10:28	66	69	62	2.4	Fine	75
12-Jun-20	14:15	60	63	58	0.3	Fine	75
18-Jun-20	10:52	60	63	53	2.6	Fine	75
24-Jun-20	13:45	60	64	54	2.0	Cloudy	75
30-Jun-20	10:40	59	60	56	0.5	Fine	75
	Max	66					
	Min	59					


NMS3C - Ying Tung Estate Refuse Collection Point


Date	Start Time	L _{eq} 30min dB(A)	L ₁₀ dB(A)	L ₉₀ dB(A)	Wind Speed (m/s)	Weather	Limit Level dB(A)
1-Jun-20	12:10	65	69	62	0.8	Fine	70
12-Jun-20	11:20	65	67	62	0.4	Fine	70
18-Jun-20	09:46	66	69	57	0.2	Fine	70
24-Jun-20	12:05	66	72	59	0.4	Cloudy	70
30-Jun-20	09:55	64	66	63	0.0	Fine	70
	Max	66					

Note:

NMS2: Façade Measurement

NMS3C: Free-field measurement (+3dB(A) correction has been applied), reduction to 65dB(A) during school examination periods will be applied. No raining or wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation.

Appendix G

Wind Data

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
01/06/2020 00:00	0.0	S
01/06/2020 01:00	0.0	SW
01/06/2020 02:00	0.5	S
01/06/2020 03:00	0.2	N
01/06/2020 04:00	1.0	S
01/06/2020 05:00	0.0	N
01/06/2020 06:00	0.0	N
01/06/2020 07:00	0.0	NW
01/06/2020 08:00	0.2	SE
01/06/2020 09:00	0.0	S
01/06/2020 10:00	0.0	NE
01/06/2020 11:00	0.0	N
01/06/2020 12:00	0.2	S
01/06/2020 13:00	0.0	SE
01/06/2020 14:00	0.0	NE
01/06/2020 15:00	0.0	SW
01/06/2020 16:00	0.0	E
01/06/2020 17:00	0.0	NE
01/06/2020 18:00	0.0	S
01/06/2020 19:00	0.0	W
01/06/2020 20:00	0.0	S
01/06/2020 21:00	0.0	N
01/06/2020 22:00	0.7	N
01/06/2020 23:00	0.0	S
02/06/2020 00:00	0.1	S
02/06/2020 01:00	0.0	W
02/06/2020 02:00	0.2	N
02/06/2020 03:00	0.0	SW
02/06/2020 04:00	0.0	S
02/06/2020 05:00	0.0	SW
02/06/2020 06:00	0.0	NW
02/06/2020 07:00	0.0	NW
02/06/2020 08:00	0.0	S
02/06/2020 09:00	0.0	SW
02/06/2020 10:00	0.1	N
02/06/2020 11:00	0.7	N
02/06/2020 12:00	1.8	S
02/06/2020 13:00	0.0	E
02/06/2020 14:00	0.1	S
02/06/2020 15:00	0.1	N

Date	Wind Speed	Wind Direction
02/06/2020 16:00	0.3	NW
02/06/2020 17:00	0.3	N
02/06/2020 18:00	2.5	N
02/06/2020 19:00	0.7	N
02/06/2020 20:00	0.0	N
02/06/2020 21:00	0.5	NE
02/06/2020 22:00	0.2	SW
02/06/2020 23:00	0.2	SW
03/06/2020 00:00	0.4	NW
03/06/2020 01:00	0.9	N
03/06/2020 02:00	1.4	NE
03/06/2020 03:00	0.4	S
03/06/2020 04:00	0.0	S
03/06/2020 05:00	0.1	NW
03/06/2020 06:00	0.5	SW
03/06/2020 07:00	0.1	SE
03/06/2020 08:00	0.3	N
03/06/2020 09:00	0.1	N
03/06/2020 10:00	0.0	W
03/06/2020 11:00	0.0	SE
03/06/2020 12:00	0.4	NE
03/06/2020 13:00	0.0	N
03/06/2020 14:00	0.0	N
03/06/2020 15:00	0.4	N
03/06/2020 16:00	0.5	S
03/06/2020 17:00	0.1	NE
03/06/2020 18:00	0.0	S
03/06/2020 19:00	0.3	N
03/06/2020 20:00	0.0	E
03/06/2020 21:00	0.0	NE
03/06/2020 22:00	0.0	N
03/06/2020 23:00	0.6	NW
04/06/2020 00:00	0.6	NW
04/06/2020 01:00	0.0	W
04/06/2020 02:00	0.2	S
04/06/2020 03:00	1.8	N
04/06/2020 04:00	1.5	NE
04/06/2020 05:00	0.4	N
04/06/2020 06:00	1.5	N
04/06/2020 07:00	1.7	N
04/06/2020 08:00	0.5	S

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
04/06/2020 09:00	0.8	NE
04/06/2020 10:00	1.2	N
04/06/2020 11:00	0.2	NW
04/06/2020 12:00	0.1	NE
04/06/2020 13:00	0.0	W
04/06/2020 14:00	0.5	N
04/06/2020 15:00	0.1	N
04/06/2020 16:00	0.0	N
04/06/2020 17:00	0.1	S
04/06/2020 18:00	0.1	N
04/06/2020 19:00	0.1	N
04/06/2020 20:00	0.4	NE
04/06/2020 21:00	0.2	NW
04/06/2020 22:00	1.0	N
04/06/2020 23:00	0.0	SE
05/06/2020 00:00	0.6	E
05/06/2020 01:00	0.2	N
05/06/2020 02:00	1.3	W
05/06/2020 03:00	0.4	NW
05/06/2020 04:00	0.1	N
05/06/2020 05:00	1.8	N
05/06/2020 06:00	1.2	SE
05/06/2020 07:00	0.0	NW
05/06/2020 08:00	1.0	NW
05/06/2020 09:00	0.0	SE
05/06/2020 10:00	0.2	S
05/06/2020 11:00	0.0	NW
05/06/2020 12:00	0.0	NE
05/06/2020 13:00	1.1	SE
05/06/2020 14:00	0.2	S
05/06/2020 15:00	0.0	NW
05/06/2020 16:00	0.0	N
05/06/2020 17:00	0.7	SW
05/06/2020 18:00	0.0	S
05/06/2020 19:00	0.0	NW
05/06/2020 20:00	0.0	SW
05/06/2020 21:00	0.0	W
05/06/2020 22:00	0.0	S
05/06/2020 23:00	0.0	NW
06/06/2020 00:00	0.0	SW
06/06/2020 01:00	0.0	SW

Date	Wind Speed	Wind Direction
06/06/2020 02:00	0.0	S
06/06/2020 03:00	0.0	N
06/06/2020 04:00	0.0	S
06/06/2020 05:00	0.0	SW
06/06/2020 06:00	0.4	NE
06/06/2020 07:00	0.4	S
06/06/2020 08:00	0.0	SE
06/06/2020 09:00	0.0	N
06/06/2020 10:00	0.7	W
06/06/2020 11:00	0.0	SW
06/06/2020 12:00	0.0	SE
06/06/2020 13:00	0.0	W
06/06/2020 14:00	0.2	N
06/06/2020 15:00	0.0	N
06/06/2020 16:00	0.0	N
06/06/2020 17:00	0.0	SE
06/06/2020 18:00	0.0	NE
06/06/2020 19:00	0.1	SW
06/06/2020 20:00	0.4	S
06/06/2020 21:00	0.1	N
06/06/2020 22:00	0.0	S
06/06/2020 23:00	0.0	NE
07/06/2020 00:00	1.4	S
07/06/2020 01:00	1.2	S
07/06/2020 02:00	0.0	W
07/06/2020 03:00	0.0	SE
07/06/2020 04:00	0.0	W
07/06/2020 05:00	0.0	W
07/06/2020 06:00	0.2	SW
07/06/2020 07:00	0.0	W
07/06/2020 08:00	0.0	S
07/06/2020 09:00	0.0	W
07/06/2020 10:00	0.0	NE
07/06/2020 11:00	0.0	N
07/06/2020 12:00	0.2	N
07/06/2020 13:00	0.0	S
07/06/2020 14:00	0.0	W
07/06/2020 15:00	0.0	NW
07/06/2020 16:00	0.2	SE
07/06/2020 17:00	0.0	S
07/06/2020 18:00	0.0	W

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
07/06/2020 19:00	0.7	S
07/06/2020 20:00	0.2	NW
07/06/2020 21:00	0.0	N
07/06/2020 22:00	0.8	SE
07/06/2020 23:00	0.2	NW
08/06/2020 00:00	0.5	NW
08/06/2020 01:00	0.0	NE
08/06/2020 02:00	0.3	SW
08/06/2020 03:00	0.0	W
08/06/2020 04:00	0.0	SW
08/06/2020 05:00	2.0	SE
08/06/2020 06:00	1.7	NE
08/06/2020 07:00	0.0	SE
08/06/2020 08:00	0.2	W
08/06/2020 09:00	0.0	SW
08/06/2020 10:00	0.0	NW
08/06/2020 11:00	0.0	N
08/06/2020 12:00	0.5	SE
08/06/2020 13:00	0.1	S
08/06/2020 14:00	0.3	S
08/06/2020 15:00	0.4	SE
08/06/2020 16:00	0.0	SE
08/06/2020 17:00	0.0	SW
08/06/2020 18:00	0.0	S
08/06/2020 19:00	0.5	NW
08/06/2020 20:00	0.0	W
08/06/2020 21:00	0.1	N
08/06/2020 22:00	1.4	SE
08/06/2020 23:00	0.4	NW
09/06/2020 00:00	0.0	N
09/06/2020 01:00	0.9	NW
09/06/2020 02:00	0.2	N
09/06/2020 03:00	1.0	NE
09/06/2020 04:00	0.0	NW
09/06/2020 05:00	0.8	NE
09/06/2020 06:00	0.0	S
09/06/2020 07:00	0.9	W
09/06/2020 08:00	0.0	W
09/06/2020 09:00	1.4	S
09/06/2020 10:00	0.8	E
09/06/2020 11:00	0.5	SE

Date	Wind Speed	Wind Direction
09/06/2020 12:00	0.2	SE
09/06/2020 13:00	0.2	NW
09/06/2020 14:00	0.0	N
09/06/2020 15:00	0.1	E
09/06/2020 16:00	0.9	SE
09/06/2020 17:00	0.0	NW
09/06/2020 18:00	0.0	S
09/06/2020 19:00	0.0	SE
09/06/2020 20:00	0.0	W
09/06/2020 21:00	0.0	E
09/06/2020 22:00	0.2	NW
09/06/2020 23:00	0.2	E
10/06/2020 00:00	0.9	SE
10/06/2020 01:00	0.1	SE
10/06/2020 02:00	0.3	N
10/06/2020 03:00	3.0	N
10/06/2020 04:00	0.3	SE
10/06/2020 05:00	0.5	NW
10/06/2020 06:00	0.3	NW
10/06/2020 07:00	0.2	NW
10/06/2020 08:00	0.0	W
10/06/2020 09:00	0.3	S
10/06/2020 10:00	0.3	S
10/06/2020 11:00	0.0	SE
10/06/2020 12:00	0.0	S
10/06/2020 13:00	0.3	SW
10/06/2020 14:00	0.1	NE
10/06/2020 15:00	0.0	N
10/06/2020 16:00	1.3	NW
10/06/2020 17:00	0.0	NE
10/06/2020 18:00	0.0	SE
10/06/2020 19:00	0.0	SE
10/06/2020 20:00	0.0	N
10/06/2020 21:00	0.0	S
10/06/2020 22:00	0.2	SW
10/06/2020 23:00	0.0	SE
11/06/2020 00:00	0.0	N
11/06/2020 01:00	0.0	N
11/06/2020 02:00	0.5	N
11/06/2020 03:00	0.1	S
11/06/2020 04:00	0.0	SW

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
11/06/2020 05:00	0.0	SW
11/06/2020 06:00	0.8	W
11/06/2020 07:00	0.2	W
11/06/2020 08:00	1.0	W
11/06/2020 09:00	0.3	W
11/06/2020 10:00	1.1	S
11/06/2020 11:00	0.5	SW
11/06/2020 12:00	0.0	S
11/06/2020 13:00	0.6	N
11/06/2020 14:00	0.0	W
11/06/2020 15:00	0.1	S
11/06/2020 16:00	0.8	N
11/06/2020 17:00	0.0	SW
11/06/2020 18:00	0.2	SW
11/06/2020 19:00	0.0	SW
11/06/2020 20:00	0.0	N
11/06/2020 21:00	0.0	E
11/06/2020 22:00	0.0	SE
11/06/2020 23:00	0.0	SW
12/06/2020 00:00	0.0	S
12/06/2020 01:00	0.0	S
12/06/2020 02:00	0.0	S
12/06/2020 03:00	0.0	NW
12/06/2020 04:00	0.0	SE
12/06/2020 05:00	0.0	SE
12/06/2020 06:00	0.2	SE
12/06/2020 07:00	0.1	SE
12/06/2020 08:00	0.4	SW
12/06/2020 09:00	0.4	SE
12/06/2020 10:00	0.4	W
12/06/2020 11:00	0.4	SE
12/06/2020 12:00	0.0	SE
12/06/2020 13:00	2.6	W
12/06/2020 14:00	0.4	SW
12/06/2020 15:00	0.1	SW
12/06/2020 16:00	0.0	S
12/06/2020 17:00	0.0	S
12/06/2020 18:00	0.2	SE
12/06/2020 19:00	1.0	SW
12/06/2020 20:00	0.1	SE
12/06/2020 21:00	0.1	SW

Date	Wind Speed	Wind Direction
12/06/2020 22:00	0.1	W
12/06/2020 23:00	0.9	S
13/06/2020 00:00	0.0	SW
13/06/2020 01:00	0.0	SW
13/06/2020 02:00	0.0	SW
13/06/2020 03:00	0.0	N
13/06/2020 04:00	0.0	N
13/06/2020 05:00	0.0	N
13/06/2020 06:00	0.0	SE
13/06/2020 07:00	0.0	SW
13/06/2020 08:00	0.0	SW
13/06/2020 09:00	0.4	W
13/06/2020 10:00	0.1	W
13/06/2020 11:00	0.2	SW
13/06/2020 12:00	0.0	SW
13/06/2020 13:00	0.5	SE
13/06/2020 14:00	0.7	W
13/06/2020 15:00	0.3	S
13/06/2020 16:00	0.0	NW
13/06/2020 17:00	0.2	W
13/06/2020 18:00	1.3	NE
13/06/2020 19:00	0.0	SW
13/06/2020 20:00	0.0	W
13/06/2020 21:00	0.4	S
13/06/2020 22:00	0.0	SW
13/06/2020 23:00	0.1	SW
14/06/2020 00:00	0.4	SE
14/06/2020 01:00	2.0	S
14/06/2020 02:00	0.7	SE
14/06/2020 03:00	0.0	W
14/06/2020 04:00	0.0	E
14/06/2020 05:00	0.0	NE
14/06/2020 06:00	0.4	S
14/06/2020 07:00	0.0	W
14/06/2020 08:00	0.0	SE
14/06/2020 09:00	0.2	W
14/06/2020 10:00	0.2	W
14/06/2020 11:00	0.4	SE
14/06/2020 12:00	0.8	S
14/06/2020 13:00	2.9	S
14/06/2020 14:00	0.2	NE

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
14/06/2020 15:00	1.4	SE
14/06/2020 16:00	3.9	S
14/06/2020 17:00	0.0	W
14/06/2020 18:00	1.2	NE
14/06/2020 19:00	0.7	SE
14/06/2020 20:00	0.0	NW
14/06/2020 21:00	2.3	NW
14/06/2020 22:00	0.4	SE
14/06/2020 23:00	0.0	SW
15/06/2020 00:00	0.0	W
15/06/2020 01:00	0.1	SE
15/06/2020 02:00	0.0	NW
15/06/2020 03:00	0.2	SE
15/06/2020 04:00	0.5	SW
15/06/2020 05:00	3.1	NW
15/06/2020 06:00	0.2	N
15/06/2020 07:00	0.0	SW
15/06/2020 08:00	0.0	N
15/06/2020 09:00	0.0	SE
15/06/2020 10:00	2.0	NW
15/06/2020 11:00	0.0	SE
15/06/2020 12:00	0.1	N
15/06/2020 13:00	0.5	N
15/06/2020 14:00	0.0	SE
15/06/2020 15:00	0.0	N
15/06/2020 16:00	0.5	SE
15/06/2020 17:00	0.0	SE
15/06/2020 18:00	0.0	NW
15/06/2020 19:00	0.0	N
15/06/2020 20:00	0.2	SW
15/06/2020 21:00	0.0	S
15/06/2020 22:00	0.5	S
15/06/2020 23:00	0.0	SW
16/06/2020 00:00	0.0	NW
16/06/2020 01:00	0.0	W
16/06/2020 02:00	0.0	S
16/06/2020 03:00	0.1	W
16/06/2020 04:00	0.0	S
16/06/2020 05:00	0.0	N
16/06/2020 06:00	0.0	SE
16/06/2020 07:00	0.0	SE

Date	Wind Speed	Wind Direction
16/06/2020 08:00	0.1	S
16/06/2020 09:00	0.0	S
16/06/2020 10:00	0.0	SW
16/06/2020 11:00	0.0	N
16/06/2020 12:00	0.0	E
16/06/2020 13:00	1.0	NW
16/06/2020 14:00	0.4	NW
16/06/2020 15:00	0.1	SE
16/06/2020 16:00	0.0	W
16/06/2020 17:00	1.1	N
16/06/2020 18:00	0.4	NW
16/06/2020 19:00	0.4	SE
16/06/2020 20:00	0.0	SW
16/06/2020 21:00	0.0	W
16/06/2020 22:00	0.0	S
16/06/2020 23:00	0.0	N
17/06/2020 00:00	0.0	S
17/06/2020 01:00	0.0	NE
17/06/2020 02:00	0.0	N
17/06/2020 03:00	0.3	S
17/06/2020 04:00	0.0	S
17/06/2020 05:00	0.4	NE
17/06/2020 06:00	0.0	N
17/06/2020 07:00	0.5	S
17/06/2020 08:00	0.0	NW
17/06/2020 09:00	0.5	S
17/06/2020 10:00	0.0	W
17/06/2020 11:00	0.2	NE
17/06/2020 12:00	0.3	NW
17/06/2020 13:00	0.2	SE
17/06/2020 14:00	0.3	NW
17/06/2020 15:00	1.5	NW
17/06/2020 16:00	1.8	NW
17/06/2020 17:00	0.0	SW
17/06/2020 18:00	0.0	N
17/06/2020 19:00	0.2	S
17/06/2020 20:00	0.0	S
17/06/2020 21:00	0.5	NE
17/06/2020 22:00	0.0	N
17/06/2020 23:00	0.0	S
18/06/2020 00:00	0.0	NW

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
18/06/2020 01:00	0.2	N
18/06/2020 02:00	0.0	S
18/06/2020 03:00	0.0	SW
18/06/2020 04:00	0.0	W
18/06/2020 05:00	0.0	SE
18/06/2020 06:00	0.3	S
18/06/2020 07:00	0.0	E
18/06/2020 08:00	0.1	S
18/06/2020 09:00	0.0	NW
18/06/2020 10:00	0.1	N
18/06/2020 11:00	0.0	W
18/06/2020 12:00	1.7	SE
18/06/2020 13:00	2.2	N
18/06/2020 14:00	0.2	S
18/06/2020 15:00	0.2	SE
18/06/2020 16:00	0.9	N
18/06/2020 17:00	0.6	S
18/06/2020 18:00	2.9	NW
18/06/2020 19:00	1.5	NW
18/06/2020 20:00	0.3	S
18/06/2020 21:00	0.4	NE
18/06/2020 22:00	0.0	W
18/06/2020 23:00	0.5	NW
19/06/2020 00:00	0.0	W
19/06/2020 01:00	0.2	NW
19/06/2020 02:00	0.2	NW
19/06/2020 03:00	0.0	NW
19/06/2020 04:00	0.0	S
19/06/2020 05:00	0.0	NW
19/06/2020 06:00	0.0	S
19/06/2020 07:00	0.0	N
19/06/2020 08:00	0.1	SW
19/06/2020 09:00	0.0	SE
19/06/2020 10:00	0.0	SW
19/06/2020 11:00	0.0	SE
19/06/2020 12:00	0.0	NW
19/06/2020 13:00	0.1	SE
19/06/2020 14:00	0.2	NW
19/06/2020 15:00	1.3	N
19/06/2020 16:00	0.3	N
19/06/2020 17:00	0.4	S

Date	Wind Speed	Wind Direction
19/06/2020 18:00	0.8	NW
19/06/2020 19:00	0.4	SW
19/06/2020 20:00	0.0	W
19/06/2020 21:00	0.0	N
19/06/2020 22:00	1.3	NW
19/06/2020 23:00	0.0	SE
20/06/2020 00:00	0.0	NW
20/06/2020 01:00	0.0	E
20/06/2020 02:00	0.0	SW
20/06/2020 03:00	0.0	NW
20/06/2020 04:00	0.0	W
20/06/2020 05:00	0.0	SE
20/06/2020 06:00	0.0	S
20/06/2020 07:00	0.0	S
20/06/2020 08:00	0.0	NW
20/06/2020 09:00	0.0	NE
20/06/2020 10:00	0.0	NW
20/06/2020 11:00	0.0	NW
20/06/2020 12:00	0.0	SW
20/06/2020 13:00	0.0	SW
20/06/2020 14:00	0.1	W
20/06/2020 15:00	0.5	W
20/06/2020 16:00	0.0	SE
20/06/2020 17:00	0.2	W
20/06/2020 18:00	0.4	SE
20/06/2020 19:00	0.1	SE
20/06/2020 20:00	0.3	NW
20/06/2020 21:00	0.1	NW
20/06/2020 22:00	1.6	NW
20/06/2020 23:00	1.2	NW
21/06/2020 00:00	0.1	NW
21/06/2020 01:00	2.1	NW
21/06/2020 02:00	0.0	NE
21/06/2020 03:00	0.1	N
21/06/2020 04:00	0.0	S
21/06/2020 05:00	0.0	N
21/06/2020 06:00	0.3	S
21/06/2020 07:00	1.4	S
21/06/2020 08:00	0.0	S
21/06/2020 09:00	0.1	NW
21/06/2020 10:00	0.0	S

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
21/06/2020 11:00	0.0	N
21/06/2020 12:00	0.5	SE
21/06/2020 13:00	0.0	S
21/06/2020 14:00	0.0	N
21/06/2020 15:00	0.0	NW
21/06/2020 16:00	0.0	S
21/06/2020 17:00	0.0	SE
21/06/2020 18:00	0.4	NE
21/06/2020 19:00	0.5	NW
21/06/2020 20:00	0.0	S
21/06/2020 21:00	0.1	N
21/06/2020 22:00	0.5	NE
21/06/2020 23:00	0.0	S
22/06/2020 00:00	0.0	NW
22/06/2020 01:00	0.1	NW
22/06/2020 02:00	0.3	N
22/06/2020 03:00	0.0	SW
22/06/2020 04:00	0.1	W
22/06/2020 05:00	0.0	S
22/06/2020 06:00	0.0	E
22/06/2020 07:00	0.0	S
22/06/2020 08:00	0.6	S
22/06/2020 09:00	0.1	S
22/06/2020 10:00	0.1	SE
22/06/2020 11:00	0.1	NE
22/06/2020 12:00	1.2	SE
22/06/2020 13:00	0.0	NW
22/06/2020 14:00	0.0	NW
22/06/2020 15:00	0.0	NW
22/06/2020 16:00	0.0	N
22/06/2020 17:00	0.9	SE
22/06/2020 18:00	1.0	N
22/06/2020 19:00	0.3	NW
22/06/2020 20:00	0.0	NW
22/06/2020 21:00	0.0	S
22/06/2020 22:00	0.0	SE
22/06/2020 23:00	0.5	SW
23/06/2020 00:00	0.8	N
23/06/2020 01:00	0.2	NW
23/06/2020 02:00	0.1	NW
23/06/2020 03:00	0.0	SW

Date	Wind Speed	Wind Direction
23/06/2020 04:00	1.8	W
23/06/2020 05:00	0.8	NW
23/06/2020 06:00	0.2	SW
23/06/2020 07:00	0.0	SW
23/06/2020 08:00	0.4	NW
23/06/2020 09:00	0.1	SE
23/06/2020 10:00	0.0	W
23/06/2020 11:00	0.0	E
23/06/2020 12:00	0.1	N
23/06/2020 13:00	0.0	S
23/06/2020 14:00	0.0	W
23/06/2020 15:00	0.0	W
23/06/2020 16:00	0.4	S
23/06/2020 17:00	0.0	S
23/06/2020 18:00	0.0	S
23/06/2020 19:00	0.1	NW
23/06/2020 20:00	0.3	N
23/06/2020 21:00	0.0	SE
23/06/2020 22:00	0.0	W
23/06/2020 23:00	0.0	N
24/06/2020 00:00	0.0	S
24/06/2020 01:00	0.0	SE
24/06/2020 02:00	0.2	NW
24/06/2020 03:00	0.0	NE
24/06/2020 04:00	0.0	NE
24/06/2020 05:00	0.0	NW
24/06/2020 06:00	1.3	NW
24/06/2020 07:00	0.1	SW
24/06/2020 08:00	0.0	NW
24/06/2020 09:00	0.0	NE
24/06/2020 10:00	0.5	NW
24/06/2020 11:00	1.9	SE
24/06/2020 12:00	0.0	N
24/06/2020 13:00	0.0	SE
24/06/2020 14:00	0.0	S
24/06/2020 15:00	0.0	S
24/06/2020 16:00	0.0	N
24/06/2020 17:00	0.2	N
24/06/2020 18:00	0.0	NE
24/06/2020 19:00	0.0	S
24/06/2020 20:00	0.2	N

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
24/06/2020 21:00	0.5	NW
24/06/2020 22:00	0.0	SE
24/06/2020 23:00	0.0	Е
25/06/2020 00:00	0.0	SE
25/06/2020 01:00	0.0	W
25/06/2020 02:00	0.3	W
25/06/2020 03:00	2.9	NE
25/06/2020 04:00	0.2	SW
25/06/2020 05:00	0.4	N
25/06/2020 06:00	0.4	N
25/06/2020 07:00	0.8	S
25/06/2020 08:00	0.3	S
25/06/2020 09:00	2.0	NW
25/06/2020 10:00	0.2	N
25/06/2020 11:00	1.0	S
25/06/2020 12:00	0.0	S
25/06/2020 13:00	0.6	NW
25/06/2020 14:00	0.0	E
25/06/2020 15:00	1.1	S
25/06/2020 16:00	0.5	E
25/06/2020 17:00	0.0	NW
25/06/2020 18:00	0.0	NW
25/06/2020 19:00	0.5	W
25/06/2020 20:00	1.2	NW
25/06/2020 21:00	0.2	SE
25/06/2020 22:00	1.0	NW
25/06/2020 23:00	0.5	W
26/06/2020 00:00	0.0	SW
26/06/2020 01:00	0.7	N
26/06/2020 02:00	1.2	NE
26/06/2020 03:00	1.8	N
26/06/2020 04:00	0.2	SE
26/06/2020 05:00	0.0	NE
26/06/2020 06:00	0.2	N
26/06/2020 07:00	0.0	E
26/06/2020 08:00	0.3	S
26/06/2020 09:00	0.6	NW
26/06/2020 10:00	0.0	N
26/06/2020 11:00	1.0	W
26/06/2020 12:00	0.0	NW

Date	Wind Speed	Wind Direction
26/06/2020 13:00	0.2	N
26/06/2020 14:00	0.1	S
26/06/2020 15:00	0.2	NW
26/06/2020 16:00	2.4	N
26/06/2020 17:00	1.4	W
26/06/2020 18:00	1.6	SE
26/06/2020 19:00	0.5	NE
26/06/2020 20:00	0.2	NW
26/06/2020 21:00	0.4	S
26/06/2020 22:00	0.0	N
26/06/2020 23:00	0.0	W
27/06/2020 00:00	0.3	NW
27/06/2020 01:00	0.4	NW
27/06/2020 02:00	0.3	N
27/06/2020 03:00	0.1	SE
27/06/2020 04:00	0.1	NE
27/06/2020 05:00	0.1	W
27/06/2020 06:00	2.7	NW
27/06/2020 07:00	0.0	SE
27/06/2020 08:00	0.0	W
27/06/2020 09:00	0.2	S
27/06/2020 10:00	0.0	E
27/06/2020 11:00	0.0	NW
27/06/2020 12:00	0.4	SW
27/06/2020 13:00	0.9	SE
27/06/2020 14:00	0.1	W
27/06/2020 15:00	4.8	N
27/06/2020 16:00	0.0	N
27/06/2020 17:00	0.0	W
27/06/2020 18:00	0.0	N
27/06/2020 19:00	0.6	NW
27/06/2020 20:00	1.6	N
27/06/2020 21:00	0.0	W
27/06/2020 22:00	0.9	N
27/06/2020 23:00	0.1	N
28/06/2020 00:00	0.1	S
28/06/2020 01:00	0.0	SE
28/06/2020 02:00	0.1	SE
28/06/2020 03:00	0.0	N
28/06/2020 04:00	0.8	SW
28/06/2020 05:00	0.0	S

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
28/06/2020 06:00	0.4	NW
28/06/2020 07:00	0.4	W
28/06/2020 08:00	0.0	S
28/06/2020 09:00	0.0	S
28/06/2020 10:00	0.4	SE
28/06/2020 11:00	0.0	SE
28/06/2020 12:00	0.1	S
28/06/2020 13:00	0.3	S
28/06/2020 14:00	0.0	N
28/06/2020 15:00	0.1	S
28/06/2020 16:00	0.0	N
28/06/2020 17:00	0.0	SE
28/06/2020 18:00	0.0	SW
28/06/2020 19:00	0.2	N
28/06/2020 20:00	0.2	SE
28/06/2020 21:00	0.2	W
28/06/2020 22:00	0.0	SW
28/06/2020 23:00	0.1	E
29/06/2020 00:00	0.2	NW
29/06/2020 01:00	0.0	E
29/06/2020 02:00	0.2	N
29/06/2020 03:00	0.0	SE
29/06/2020 04:00	0.3	NW
29/06/2020 05:00	0.0	SW
29/06/2020 06:00	0.1	W
29/06/2020 07:00	0.4	E
29/06/2020 08:00	1.2	SE
29/06/2020 09:00	0.5	NW
29/06/2020 10:00	0.0	N
29/06/2020 11:00	0.0	SE
29/06/2020 12:00	0.0	S
29/06/2020 13:00	0.0	N
29/06/2020 14:00	0.0	N
29/06/2020 15:00	0.0	N
29/06/2020 16:00	0.0	SW
29/06/2020 17:00	0.0	SW
29/06/2020 18:00	0.0	S
29/06/2020 19:00	0.0	N
29/06/2020 20:00	0.0	NW
29/06/2020 21:00	0.0	S
29/06/2020 22:00	0.0	SW

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

		1
Date	Wind Speed	Wind Direction
29/06/2020 23:00	0.0	S
30/06/2020 00:00	0.0	S
30/06/2020 01:00	0.0	SW
30/06/2020 02:00	0.1	W
30/06/2020 03:00	0.5	SW
30/06/2020 04:00	0.2	SE
30/06/2020 05:00	0.4	S
30/06/2020 06:00	0.0	E
30/06/2020 07:00	0.0	SE
30/06/2020 08:00	0.0	SE
30/06/2020 09:00	0.0	SE
30/06/2020 10:00	0.8	S
30/06/2020 11:00	0.1	SE
30/06/2020 12:00	0.3	SE
30/06/2020 13:00	0.0	E
30/06/2020 14:00	2.0	SE
30/06/2020 15:00	0.0	S
30/06/2020 16:00	0.0	S
30/06/2020 17:00	0.0	SW
30/06/2020 18:00	0.0	NE
30/06/2020 19:00	0.1	W
30/06/2020 20:00	0.0	SW
30/06/2020 21:00	0.0	NW
30/06/2020 22:00	0.0	N
30/06/2020 23:00	0.0	SW
01/07/2020 00:00	0.2	S

Appendix H

Event and Action Plan

Event / Action Plan for Air Quality

		АСТ	ION			
EVENT	ET	IEC	ER	CONTRACTOR		
	ACTION LEVEL					
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.		
2. Exceedance for two or more consecutive samples	1. Identify source;	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Supervise Implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor;	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		

EVENT		ACT	ION		
	ET	IEC	ER	CONTRACTOR	
	LIMIT LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	
2. Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 	

Event / Action Plan for Construction Noise

	ACTION						
EVENT	ET	IEC	ER	CONTRACTOR			
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.			
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.			

Appendix I

Waste Flow Table

Waste Flow Table for Year 2020										
	Actual Quantities of Inert C&D Materials Generated Monthly				Actual	Quantities of No	n-inert C&D Wa	stes Generated	Monthly	
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)
2020 Jan	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
2020 Feb	720.34	Nil	720.34	Nil	Nil	Nil	0.335	Nil	Nil	2.23
2020 Mar	11344.57	Nil	10218.92	Nil	1125.65	Nil	0.669	Nil	Nil	8.05
2020 Apr	19649.37	Nil	18670.3	Nil	979.07	Nil	Nil	Nil	Nil	21.64
2020 May	26767.55	Nil	26692.04	Nil	75.51	Nil	2.42	Nil	Nil	196.64
2020 Jun	4628.13	Nil	4198.52	Nil	429.61	Nil	Nil	Nil	Nil	117.19
2020 Jul										
2020 Aug										
2020 Sep										
2020 Oct										
2020 Nov										
2020 Dec										
Total	63109.96	0	60500.120	0	2609.84	0	3.424	0	0	345.750

Note:

¹⁾ The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

³⁾ Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill 4) Updated figure is presented in this monthly report.

Appendix J

Implementation Status of

Environment mitigation Measures (Construction Phase)

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Location of the measures	Implementation Status						
Air Quali	Air Quality									
S5.5.6.1	A1	1) The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	All construction sites	Implemented						
S5.5.6.2	A2	 2) Proper watering of exposed spoil should be undertaken throughout the construction phase: Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones. The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; 	All construction sites	Implemented						
S5.5.6.2	A2	•When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; •The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials, •Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; •Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; •Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; •Any skip hoist for material transport should be totally enclosed by impervious sheeting; •Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top	All construction sites	Implemented						

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Location of the measures	Implementation Status
S5.5.6.2	A2	 Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site r part of the construction site where the exposed earth lies 	All construction sites	N/A
S5.5.6.3	A3	3) The Contractor should undertake proper watering on all exposed spoil (with at least 8 times per day) throughout the construction phase.	All construction sites	Implemented
S5.5.6.4	A4	4) Project Manager to incorporate the controlled measures into the Particular Specification (PS) for the civil work. The PS should also draw the contractor's attention to the relevant latest Practice Notes issued by EPD.	All construction sites	Implemented
S5.5.6.4	A5	5) Implement regular dust monitoring under EM&A programme during the construction stage.	Selected representative dust monitoring station	Implemented
S5.5.7.1	A6	The following mitigation measures should be adopted to prevent fugitive dust emissions for concrete batching plant; •Loading, unloading, handling, transfer or storage of any dusty materials should be carried out in totally enclosed system; •All dust-laden air or waste gas generated by the process operations should be properly extracted and vented to fabric filtering system to meet the emission limits for TSP; •Vents for all silos and cement/pulverised fuel ash (PFA) weighing scale should be fitted with fabric filtering system; •The materials which may generate airborne dusty emissions should be wetted by water spray system;	Selected representative dust monitoring station	Implemented
		 •All receiving hoppers should be enclosed on three sides up to 3m above unloading point; •All conveyor transfer points should be totally enclosed; •All access and route roads within the premises should be paved and wetted; and •Vehicle cleaning facilities should be provided and used by all concrete trucks before leaving the premises to wash off any dust on the wheels and/or body. 		
\$5.5.2.7	A7	The following mitigation measures should be adopted to prevent fugitive dust emissions at barging point: All road surface within the barging facilities will be paved; Dust enclosures will be provided for the loading ramp; Vehicles will be required to pass through designated wheels wash facilities; and Continuous water spray at the loading points. 	All construction sites	Implemented
Constr	uction Noise	(Air borne)		
S6.4.10	N1	 1) Use of good site practices to limit noise emissions by considering the following: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; 	All construction sites	Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Location of the measures	Implementation Status
EIA Kei.	Rei.	•mobile plant should be sited as far away from NSRs as possible and practicable;	Location of the measures	Status
		•material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen		
		noise from on-site construction activities.		
S6.4.11	N2	2) Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of	All construction sites	Implemented
	NO	the hoardings shall be properly maintained throughout the construction period.	For plant itams listed	NI /A
	N3	3) Install movable noise barriers (typically density@14kg/m acoustic mat or full enclosure close to noisy plants including compressor, generators, saw.	For plant items listed in Appendix 6D of the	N/A
S6.4.12		compressor, generators, saw.	EIA report at all	
			construction sites	
	N4	4) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed in	Implemented
S6.4.13			Appendix 6D of the EIA	
30.1.13			report at all construction	
	N5	5) Sequencing operation of construction plants where practicable	sites All construction sites where	Implemented
S6.4.14	IND	3) sequencing operation of construction plants where practicable	practicable	implemented
S5.1	N6	6) Implement a noise monitoring under EM&A programme.	Selected representative	Implemented
35.1			noise monitoring station	
Waste	Managemen	t (Construction Noise)		
	WM1	Construction and Demolition Material	All construction sites	N/A
		The following mitigation measures should be implemented in handling the waste:		
		•Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement;		
		Carry out on-site sorting;Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate;		
		•Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented		
S8.3.8		and verified; and		
		•Implement an enhanced Waste Management Plan similar to E7WBTC (Works) No. 19/2005 - "Environmental Management on		
		Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of		
		construction.		
		•In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation.		
	WM2	C&D Waste	All construction sites	Implemented
		•Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The		procuted
		use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings		
S8.3.9-		should not be used, as in other projects. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of		
S8.3.11		construction materials will be carefully planned in order to avoid over ordering and wastage.		
		•The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable,		
		concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of		
		the sites should be considered for such segregation and storage.		
		and ottoring to	1	

EIA Ref.	EM&A Log Ref. WM3	Recommended Mitigation Measures Chemical Waste	Location of the measures All construction sites	Implementation Status Implemented
S8.2.12- S8.3.15	www	 Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD. 		mpemented
S8.3.16	WM4	Sewage •Adequate numbers of portable toilets should be provided for the workers. The portable toilets should be maintained in a state which will not deter the workers from utilizing these portable toilets. Night soil should be collected by licensed collectors regularly.	All construction sites	Implemented
S8.3.17– S8.3.19	WM5	•General Refuse •General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. •A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. •Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. •Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor. •Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes.	All construction sites	Partially Implemented

	EM&A Log			Implementation
A Ref.	Ref.	Recommended Mitigation Measures	Location of the measures	Status
Water	Quality (Cons	struction Phase)		
	W2	Land Works	All land-based construction	Partially
		General construction activities on land should also be governed by standard good working practice. Specific measures to be	sites	Implemented
		written into the works contracts should include:		·
		•wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters;		
		•sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the		
		requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided;		
		•storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps		
		and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such		
		silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks;		
		•silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly,		
		including specifically at the onset of and after each rainstorm;		
		•temporary access roads should be surfaced with crushed stone or gravel;		
		•rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities;		
		•measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system;		
		•open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric		
		during rainstorms;		
		•manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent		
		silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul		
.11.1.7		sewers;		
		•discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage		
		system;		
		•all vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is		
		deposited by them on roads. A wheel washing bay should be provided at every site exit;		
		 •wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain; •the section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or 		
		coarse gravel;		
		•wastewater generated from concreting, plastering, Internal decoration, cleaning work and other similar activities, shall be		
		screened to remove large objects;		
		•vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in		
		these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO		
		or collected for off site disposal;		
		•the contractors shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up		
		immediately;		
		•waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance;		
		•all fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should		
		be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank; and		
		•surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.		

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Location of the measures	Implementation Status
	y (Construction			
	E4	•Watering to reduce dust generation; prevention of siltation of freshwater habitats; Site runoff should be desilted, to reduce the potential for suspended sediments, organics and other contaminants to enter streams and standing freshwater	Seawall, reclamation area	N/A
S10.7	E9	•Dolphin vessel monitoring	North Lantau and West Lantau	Implemented (Post-construction dolphin monitoring, covered by Contract No. HY/2012/08)
Landsc	ape & Visual	(Construction Phase)		
S14.3.3.3	LV2	Mitigate both Landscape and Visual Impacts G1. Grass-hydroseed bare soil surface and stock pile areas; G2. Add planting strip and automatic irrigation system if appropriate at some portions of bridge or footbridge to screen bridge and traffic. G3. Providing aesthetic architectural design on related buildings (e.g. similar materials for PCB building facade to Airport buildings, roof planting and subtle materials for other facilities buildings and so on), and the related infrastructure (e.g. parapet planting and transparent cover for elevated footbridges) to provide harmonic atmosphere of the HKBCF. G4. Vegetation reinstatement and upgrading to disturbed areas; G5. Maximizing new tree, shrub and other vegetation planting to compensate tree felled and vegetation removed; G6. Providing planting area around peripheral of HKBCF for tree planting screening effect; G7. Providing salt-tolerant native trees along the planter strip at affected seawall and newly reclaimed coastline; and G8. Reserve of loose natural granite rocks for re-use. Provide new coastline to adopt "natural-look" by means of using armour rocks in the form of natural rock materials and planting strip area accommodating screen buffer to enhance "natural-look" of the new coastline.	All construction site areas	N/A
S14.3.3.3	LV3	Mitigate Visual Impacts V1. Minimize time for construction activities during construction period. V2. Provide screen hoarding at the portion of the project site/ works areas / storage areas near VSRs who have close low- level views to the Project during HKBCF construction.	All construction site areas	N/A
S15.2.2	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	All construction sites	Implemented
S15.5 –	EM2	1) An Environmental Team needs to be employed as per the EM&A Manual.	All construction sites	Implemented

Ela Def	EM&A Log	December and all Misingsian Management	Lastin of the many was	Implementation
EIA Ref.	Ref.	Recommended Mitigation Measures	Location of the measures	Status
S15.6		2) Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures.		
		3) An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements		
		given in the EM&A Manual are fully complied with.		

Appendix K

Weather and Meteorological Conditions during Reporting Month

Station: Hong Kong Observatory

	Mean Pressure (hPa)	Air Temperature			Mean Relative	Total
Date		Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Humidity (%)	Rainfall (mm)
June 2020						
1	1010.2	32.2	29.9	28.7	85	Trace
2	1009.5	30.5	29.0	27.4	87	6.4
3	1008.6	32.1	29.8	28.7	82	Trace
4	1008.0	32.7	30.1	28.7	83	Trace
5	1007.3	32.3	30.0	27.5	88	2.6
6	1007.2	29.9	26.8	24.1	94	183.8
7	1005.6	29.4	27.7	24.6	92	107.4
8	1006.2	29.3	28.6	25.2	92	40.9
9	1008.2	31.4	29.4	28.1	87	1.3
10	1008.8	31.7	29.8	28.3	81	0.2
11	1007.4	33.9	30.2	28.1	55	Trace
12	1005.4	35.0	30.4	27.8	32	0.0
13	1004.0	33.7	29.8	27.6	84	11.7
14	1008.3	31.5	28.0	26.0	82	29.3
15	1011.1	32.6	29.3	26.3	64	0.2
16	1009.7	31.1	28.6	26.8	70	9.4
17	1008.3	31.7	29.1	27.5	54	0.9
18	1008.5	31.8	29.5	27.7	56	0.1
19	1009.2	32.4	29.9	28.2	52	Trace
20	1008.5	32.7	30.0	28.3	54	0.0
21	1006.3	32.6	30.2	28.7	77	Trace
22	1006.4	32.6	30.4	29.2	79	Trace
23	1007.1	32.6	30.3	29.1	73	0.0
24	1006.5	32.9	30.4	29.0	86	0.0
25	1006.4	32.4	30.2	29.1	87	0.1
26	1007.9	32.0	30.3	29.4	86	1.3
27	1008.4	32.5	30.2	28.5	83	1.2
28	1007.8	33.0	30.4	28.5	81	Trace
29	1006.1	34.2	30.5	28.2	78	0.4
30	1004.6	34.9	30.7	28.7	72	Trace

Remark: The corresponding weather station at Hong Kong International Airport were unavailable at the time of preparation of this report. Source: Hong Kong Observatory

Appendix L

Cumulative Statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions

Environmental Complaints Log

Reference No.	Date of Complaint Received	Received From	Received By	Nature of Complaint	Date of Investigation	Outcome	Date of Reply

Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project-to- Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project-to- Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Appendix M

Summary of Site Audit in the Reporting Month

Summary of Site Audit in the Reporting Month

Parameters	Date	Observations and Recommendations	Follow-up		
Air Quality	NA				
Noise	NA				
Water Quality	10 June 2020	Observation: The contractor was reminded the stagnant water should be removed. (SPTI)	12 June 2020		
	4 June 2020	Observation: The contractor was reminded to maintain housekeeping. (NPTI)	8 June 2020		
Chemical and Waste Management	18 June 2020	Observation: The contractor was reminded the stain should be cleaned up immediately. (NPTI)	22 June 2020		
	24 June 2020	Observation: The contractor was reminded to maintain housekeeping. (NPTI)	26 June 2020		
Land Contamination	NA				
Landscape and Visual Impact	NA				
Permit / Licenses	NA				
Others	NA				

Appendix N

Outstanding Issues and Deficiencies

Summary of Outstanding Issues and Deficiencies in the Reporting Month

Parameters	Outstanding Issues	Deficiencies
Air Quality	NA	
Noise	NA	
Water Quality	NA	
Chemical and Waste Management	NA	Any items of deficiencies can be referred to Appendix M .
Land Contamination	NA	
Landscape and Visual Impact	NA	
Permit / Licenses	NA	
Others	NA	

Appendix O

Dolphin Monitoring Results

Remarks:

- 1. The relevant sections of dolphin monitoring report of Contract No. HY/2012/08 is extracted.
- 2. Introduction (Section 1) and Conclusion (Section 4) are not shown in this report.
- 3. The introduction part is introducing Contract No. HY/2012/08, it is not applicable for our contract.
- 4. Conclusions have been provided in this monthly report, so the conclusions from Contract No. HY/2012/08 was not applicable.

香港鯨豚研究計劃

HKBCF project to avoid any redundancy in monitoring effort. Such exemption for the dolphin monitoring has ended in September 2019 as the dolphin monitoring works carried out by HKLR03 and HKBCF contract have been completed. Starting in October 2019, TMCLKL08 contract takes over the dolphin monitoring works by conducting the regular vessel-based line-transect surveys during the construction phase. And as the construction works for the TMCLKL08 contract has also been completed in May 2020, the post-construction dolphin monitoring works have subsequently commenced in June 2020.

- 1.3. Since November 2013, the Director of Hong Kong Cetacean Research Project (HKCRP), Dr. Samuel Hung, has been appointed by ERM Hong Kong Limited as the dolphin specialist for the TMCLKL Northern Connection Sub-sea Tunnel Section EM&A project. He is responsible for the dolphin monitoring study, including the data collection on Chinese White Dolphins during the construction phase (i.e. impact period) as well as the post-construction phase of the TMCLKL project in Northwest Lantau (NWL) and Northeast Lantau (NEL) survey areas. During both phases, the dolphin specialist is responsible to utilize the collected monitoring data in order to examine any potential impacts on the dolphins during and after the TMCLKL construction works.
- 1.4. This report is the first monthly progress report under the TMCLKL post-construction phase dolphin monitoring programme submitted to the Contractor, summarizing the results of the survey findings during the month of June 2020.

2. Monitoring Methodology

- 2.1. Vessel-based Line-transect Survey
- 2.1.1. According to the requirement of the updated EM&A manual, dolphin monitoring programme should cover all transect lines in NEL and NWL survey areas (see Figure 1) twice per month throughout the entire construction and post-construction period. The co-ordinates of all transect lines are shown in Table 1.

Table 1 Co-ordinates of transect lines

	Line No.	Easting	Northing	Line No.		Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859

香港鯨豚研究計劃

		1				,	•
2	Start Point	805476	820800	14	Start Point	817537	820220
2	End Point	805476	826654	14	End Point	817537	824613
3	Start Point	806464	821150	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	821500	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	821850	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	822150	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	822000	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	821176	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807	24	Start Point	805476	815900
12	End Point	815542	824882	24	End Point	805476	819100

2.1.2. The survey team used standard line-transect methods (Buckland et al. 2001) to conduct the systematic vessel surveys, and followed the same technique of data collection that has been adopted over the last 22 years of marine mammal monitoring surveys in Hong Kong developed by HKCRP (see Hung 2019). For each monitoring vessel survey, a 15-m inboard vessel with an open upper deck (about 4.5 m above water surface) was used to make observations from the flying bridge area.

香港鯨豚研究計劃

- 2.1.3. Two experienced observers (a data recorder and a primary observer) made up the on-effort survey team, and the survey vessel transited different transect lines at a constant speed of 13-15 km per hour. The data recorder searched with unaided eyes and filled out the datasheets, while the primary observer searched for dolphins and porpoises continuously through 7 x 50 *Fuijnon* marine binoculars. Both observers searched the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0°). One to two additional experienced observers were available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers were experienced in small cetacean survey techniques and identifying local cetacean species.
- 2.1.4. During on-effort survey periods, the survey team recorded effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance traveled in each series (a continuous period of search effort) with the assistance of a handheld GPS (*Garmin eTrex Legend*).
- 2.1.5. Data including time, position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.
- 2.1.6. When dolphins were sighted, the survey team would end the survey effort, and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel was diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, and behavioural observations. The perpendicular distance (PSD) of the dolphin group to the transect line was later calculated from the initial sighting distance and angle.
- 2.1.7. Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines (as indicated in Figure 1) was labeled as "primary" survey effort, while the survey effort conducted along the connecting lines between parallel lines was labeled as "secondary" survey effort. According to HKCRP long-term dolphin monitoring data, encounter rates of Chinese White Dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in NEL and NWL survey areas. Therefore, both primary and secondary survey effort were presented as on-effort survey effort in this report.
- 2.1.8. Encounter rates of Chinese White Dolphins (number of on-effort sightings per 100 km of survey effort and number of dolphins from all on-effort sightings per 100 km of survey effort) were calculated in NEL and NWL survey areas in relation to the amount of survey

香港鯨豚研究計劃

effort conducted during each month of monitoring survey. Only data collected under Beaufort 3 or below condition would be used for encounter rate analysis. Dolphin encounter rates were calculated using primary survey effort alone, as well as the combined survey effort from both primary and secondary lines.

2.2. Photo-identification Work

- 2.2.1. When a group of Chinese White Dolphins were sighted during the line-transect survey, the survey team would end effort and approach the group slowly from the side and behind to take photographs of them. Every attempt was made to photograph every dolphin in the group, and even photograph both sides of the dolphins, since the colouration and markings on both sides may not be symmetrical.
- 2.2.2. A professional digital camera (*Canon* EOS 7D model), equipped with long telephoto lenses (100-400 mm zoom), were available on board for researchers to take sharp, close-up photographs of dolphins as they surfaced. The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer.
- 2.2.3. All digital images taken in the field were first examined, and those containing potentially identifiable individuals were sorted out. These photographs would then be examined in greater detail, and were carefully compared to the existing Chinese White Dolphin photo-identification catalogue maintained by HKCRP since 1995.
- 2.2.4. Chinese White Dolphins can be identified by their natural markings, such as nicks, cuts, scars and deformities on their dorsal fin and body, and their unique spotting patterns were also used as secondary identifying features (Jefferson 2000).
- 2.2.5. All photographs of each individual were then compiled and arranged in chronological order, with data including the date and location first identified (initial sighting), re-sightings, associated dolphins, distinctive features, and age classes entered into a computer database.

3. Monitoring Results

- 3.1. Vessel-based Line-transect Survey
- 3.1.1. During the first month of post-construction dolphin monitoring programme, two sets of systematic line-transect vessel surveys were conducted on the 4th, 9th, 11th and 16th of June 2020, to cover all transect lines in NWL and NEL survey areas twice. The survey routes

香港鯨豚研究計劃

of each survey day are shown in Figures 2-5.

- 3.1.2. A total of 258.90 km of survey effort was collected, with 100% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) during the June's surveys (Appendix I).
- 3.1.3. Among the two areas, 92.90 km and 166.00 km of survey effort were collected from NEL and NWL survey areas respectively. The total survey effort conducted on primary and secondary lines were 190.66 km and 68.24 km respectively (Appendix I).
- 3.1.4. During the two sets of monitoring surveys in June 2020, no Chinese White Dolphin was sighted at all.
- 3.1.5. During the June's surveys, encounter rates of Chinese White Dolphins deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) are shown in Tables 2 & 3.

Table 2. Dolphin encounter rates deduced from the two sets of surveys (two surveys in each set) in June 2020 in Northeast (NEL) and Northwest Lantau (NWL)

		Encounter rate (STG)	Encounter rate (ANI)		
		(no. of on-effort dolphin sightings	(no. of dolphins from all on-effort		
		per 100 km of survey effort)	sightings per 100 km of survey effort)		
		Primary Lines Only	Primary Lines Only		
NEL	Set 1: June 4 th / 9 th	0.0	0.0		
	Set 2: June 11 th / 16 th	0.0	0.0		
NWL	Set 1: June 4 th / 9 th	0.0	0.0		
	Set 2: June 11 th / 16 th	0.0	0.0		

香港鯨豚研究計劃

Table 3. Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys conducted in June 2020 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau

	Encou	nter rate (STG)	Encounter rate (ANI)			
	(no. of on-effo	ort dolphin sightings per	(no. of dolphins from all on-effort			
	100 km	of survey effort)	sightings per 100 km of survey effort)			
	Primary	Both Primary and	Primary	Both Primary and		
	Lines Only	ines Only Secondary Lines		Secondary Lines		
Northeast Lantau	0.0	0.0	0.0	0.0		
Northwest Lantau	0.0	0.0	0.0	0.0		

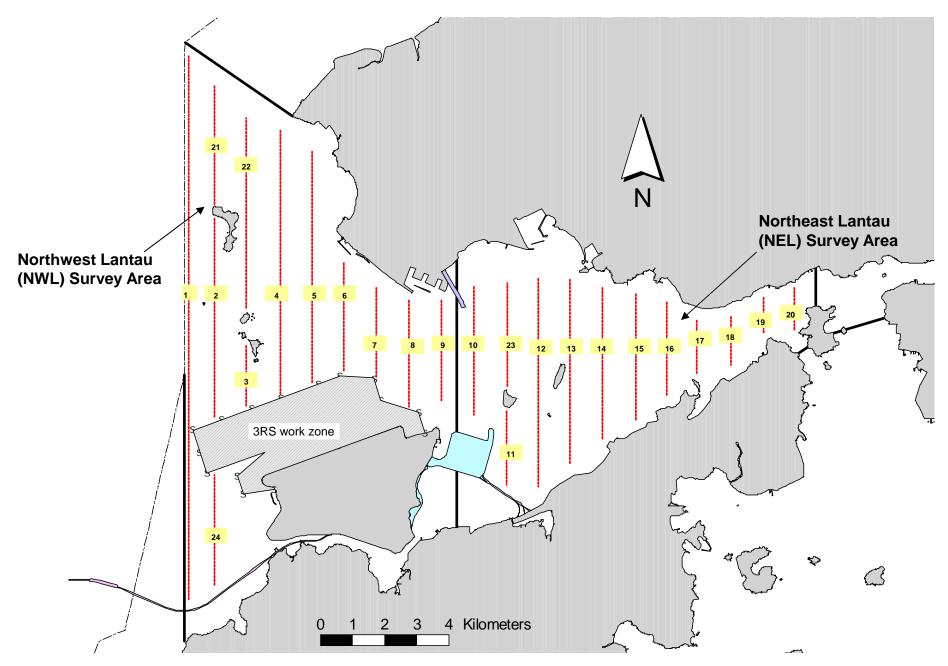


Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

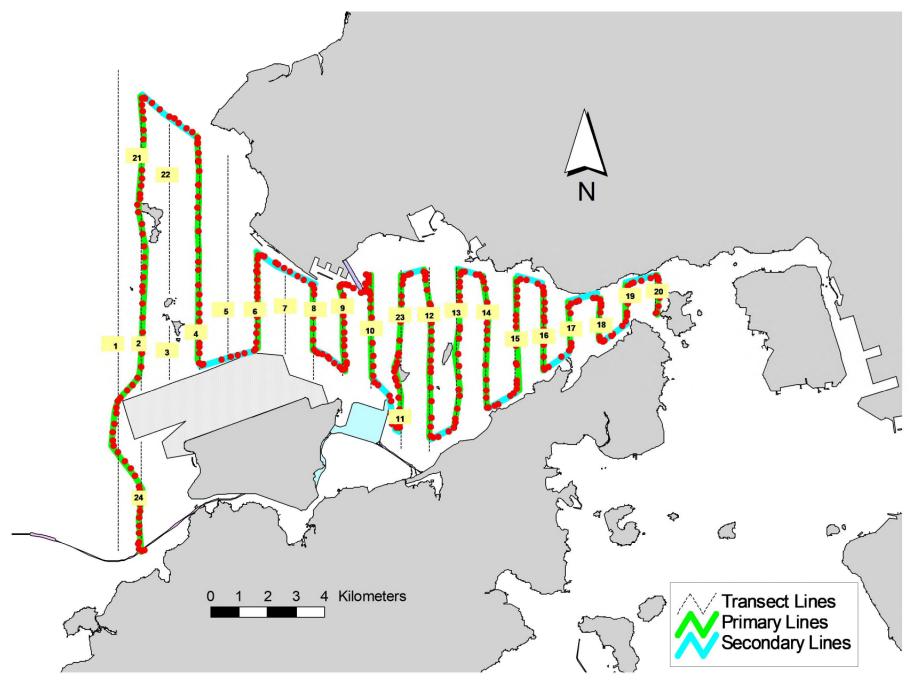


Figure 2. Survey Route on June 4th, 2020

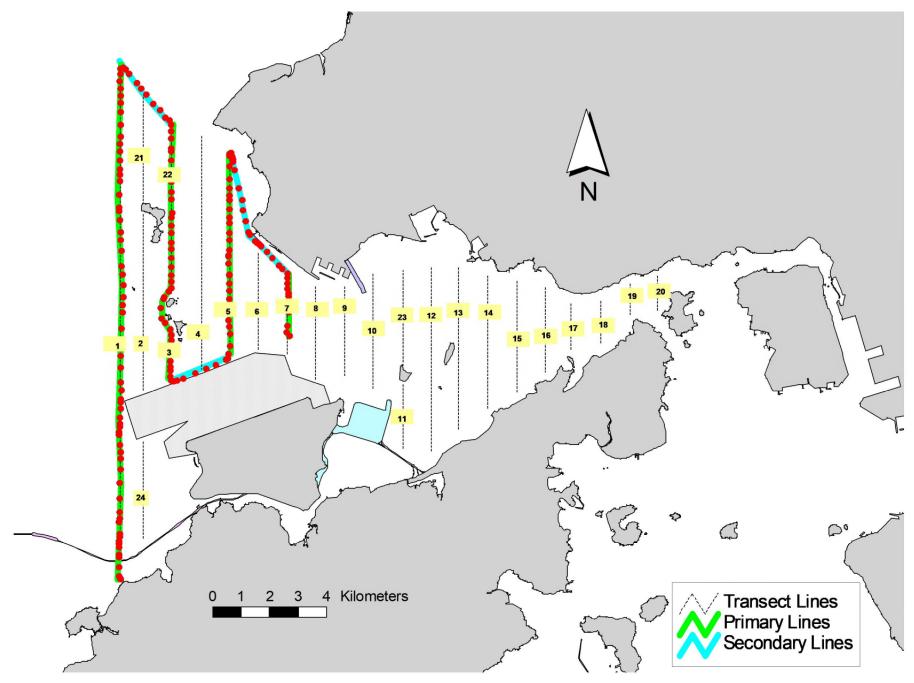


Figure 3. Survey Route on June 9th, 2020

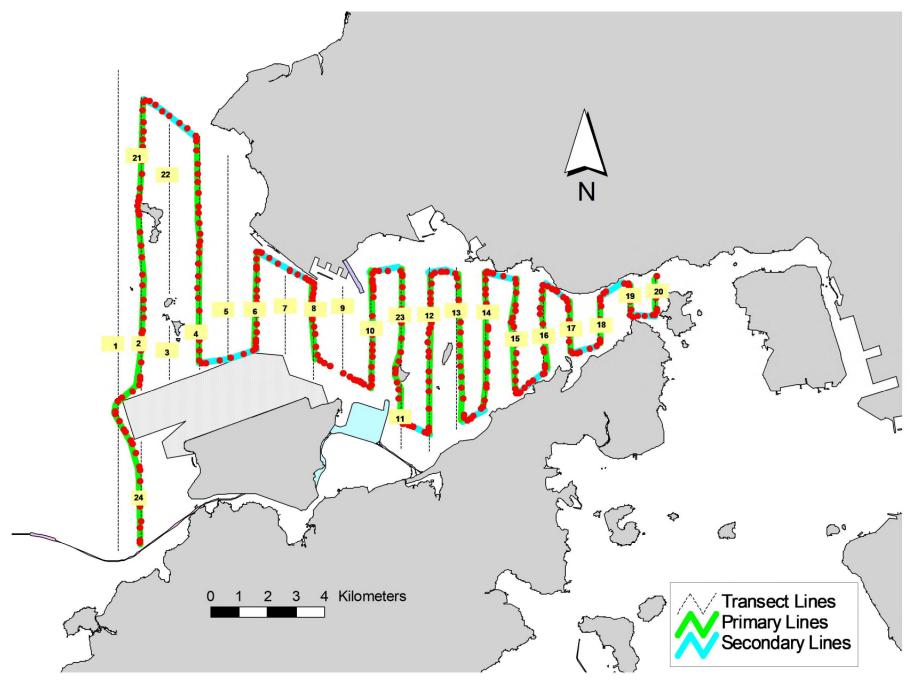


Figure 4. Survey Route on June 11th, 2020

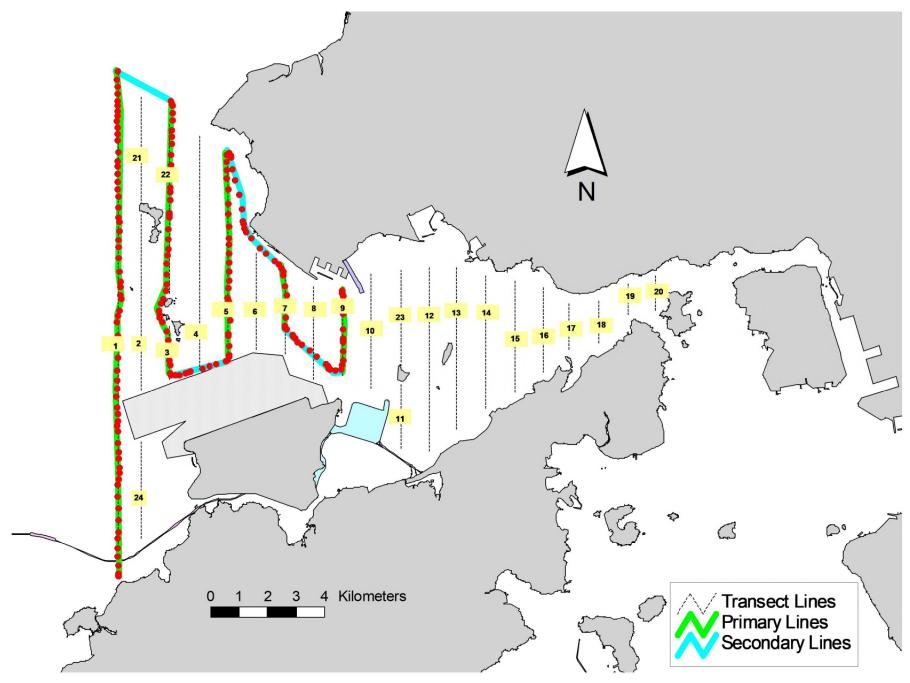


Figure 5. Survey Route on June 16th, 2020

Appendix I. TMCLKL Survey Effort Database (June 2020)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
4-Jun-20	NW LANTAU	2	8.70	SUMMER	STANDARD36826	TMCLKL	Р
4-Jun-20	NW LANTAU	3	17.62	SUMMER	STANDARD36826	TMCLKL	Р
4-Jun-20	NW LANTAU	2	3.50	SUMMER	STANDARD36826	TMCLKL	S
4-Jun-20	NW LANTAU	3	9.58	SUMMER	STANDARD36826	TMCLKL	S
4-Jun-20	NE LANTAU	2	25.33	SUMMER	STANDARD36826	TMCLKL	Р
4-Jun-20	NE LANTAU	3	8.60	SUMMER	STANDARD36826	TMCLKL	Р
4-Jun-20	NE LANTAU	2	11.57	SUMMER	STANDARD36826	TMCLKL	S
4-Jun-20	NE LANTAU	3	1.10	SUMMER	STANDARD36826	TMCLKL	S
9-Jun-20	NW LANTAU	2	27.60	SUMMER	STANDARD36826	TMCLKL	Р
9-Jun-20	NW LANTAU	3	5.50	SUMMER	STANDARD36826	TMCLKL	Р
9-Jun-20	NW LANTAU	2	9.10	SUMMER	STANDARD36826	TMCLKL	S
9-Jun-20	NW LANTAU	3	2.10	SUMMER	STANDARD36826	TMCLKL	S
11-Jun-20	NW LANTAU	2	20.23	SUMMER	STANDARD36826	TMCLKL	Р
11-Jun-20	NW LANTAU	3	5.70	SUMMER	STANDARD36826	TMCLKL	Р
11-Jun-20	NW LANTAU	2	9.87	SUMMER	STANDARD36826	TMCLKL	S
11-Jun-20	NE LANTAU	2	27.09	SUMMER	STANDARD36826	TMCLKL	Р
11-Jun-20	NE LANTAU	3	8.40	SUMMER	STANDARD36826	TMCLKL	Р
11-Jun-20	NE LANTAU	2	8.71	SUMMER	STANDARD36826	TMCLKL	S
11-Jun-20	NE LANTAU	3	2.10	SUMMER	STANDARD36826	TMCLKL	S
16-Jun-20	NW LANTAU	2	23.10	SUMMER	STANDARD36826	TMCLKL	Р
16-Jun-20	NW LANTAU	3	12.79	SUMMER	STANDARD36826	TMCLKL	Р
16-Jun-20	NW LANTAU	2	10.11	SUMMER	STANDARD36826	TMCLKL	S
16-Jun-20	NW LANTAU	3	0.50	SUMMER	STANDARD36826	TMCLKL	S