

Ref.: HYDHZMBEEM00_0_8683L.22

14 March 2022

By Fax (3748 8900) and By Post

AECOM Asia Co. Ltd. The PRE's Office 550 Cheung Tung Road, Lantau, Hong Kong

Attention: Mr. Jason Yu

Dear Sir,

Re: Agreement No. CE 48/2011 (EP) Environmental Project Office for the HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2019/01 HZMB HKBCF – Phase 2 and Other Works Monthly EM&A Report for February 2022

Reference is made to the Environmental Team's submission of Monthly EM&A Report for February 2022 certified by the ET Leader (ET's ref.: "MCL/ED/0094/2022/C" dated 14 March 2022) and provided to us via e-mail on 14 March 2022.

We are pleased to inform you that we have no further comments on the captioned submission. We write to verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-353/2009/K (the EP).

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully, For and on behalf of Ramboll Hong Kong Limited

Brian Tam Independent Environmental Checker HZMB HKBCF

c.c.

HyD HyD Fugro CHEC Attn.: Mr. Patrick Ng Attn.: Mr. Alan Ip Attn.: Mr. Calvin Leung Attn.: Mr. Johnason Ko (By Fax: 3188 6614) (By Fax: 3188 6614) (By Fax: 2450 6138) (By Fax: 2887 3104)

Internal: DY, YH

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_8683L.22

Date 14 March 2022 Our Ref. MCL/ED/0094/2022/C

Ramboll Hong Kong Limited 21/F, BEA Harbour View Centre, 56 Gloucester Road, Wan Chai, Hong Kong

BY EMAIL

Attn.: Mr. Brian Tam, Independent Environmental Checker

Dear Sir,

<u>EP Condition 5.4 – Monthly EM&A Report for</u> <u>Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and</u> <u>Other Works (Contract No. HY/2019/01)</u>

Pursuant to Condition 5.4 of the Environmental Permit (EP-353/2009K) for the captioned project, we hereby submit the certified Monthly EM&A Report for February 2022 for your verification.

Thank you for your attention, should there be any comments or queries, please contact our Mr. Cyrus Lai at 3565-4442 or the undersigned at 3565-4441.

Yours faithfully, for and on behalf of FUGRO TECHNICAL SERVICES LIMITED

Calvin Leung **J** Environmental Team Leader

c.c. AECOM Attn: Mr. Jason Yu, Mr. Gordon Kok Ramboll Attn: Mr. Y. H. Hui, Mr. K. C. Chan CHEC Attn: Mr. Marko Chan, Mr. Matthew Wu

With operating companies throughout the world.

China Harbour Engineering Co., Ltd. - Contract No. HY/2019/01

Monthly EM&A Report (February 2022)

0002/20/ED/0449 01 |

Contact No. HY/2019/01 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Document Control

Document Information

Project Title	Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Oth Works (Contract No. HY/2019/01)	
Document Title	Monthly EM&A Report (February 2022)	
Fugro Project No.	0002/20	
Fugro Document No.	0002/20/ED/0449	
Issue Number	01	

Client Information

Client	China Harbour Engineering Co., Ltd Contract No. HY/2019/01	
Client Address China Harbour Building, 370-4 King's Road, North Point Hong Kong		
Client Contact Matthew Wu		

Environmental Team

Initials	Name	Role	Signature
MP	Calvin M.P. Leung	Environmental Team Leader	Calvin Leung
СҮ	Cyrus C.Y. Lai	Senior Environmental Consultant	
КН	Toby K.H. Wan	Assistant Environmental Consultant	- Coky

UGRO

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. HY/2019/01 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works" (hereafter referred to as "the Contract") for the Highways Department of Hong Kong Special Administrative Region (HKSAR). Contract No. HY/2019/01 was awarded to China Harbour Engineering Co. Limited and Fugro Technical Services Limited (FTS) was appointed as the Environmental Team (ET) by the Contractor.

Contract No. HY/2019/01 is part of the "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities" (HZMB HKBCF) Project which is a "Designated Project" under Schedule 2 of the Environmental Impact Assessment (EIA) Ordinance (Cap. 499) and for which an EIA Report (Register No. AEIAR-145/2009) was prepared and approved. The current Environmental Permit (EP) for HKBCF, namely No. EP-353/2009/K, was issued on 11 April 2016. These documents are available through the EIA Ordinance Register. Commencement of the Contract took place on 4 December 2019 and the construction site preparation works commenced in early February 2020.

Fugro Technical Services Limited (FTS) has been appointed by the Contractor to implement the Environmental Monitoring & Audit (EM&A) programme for the Contract in accordance with the Updated EM&A Manual for HKBCF (Version 1.0) and is providing environmental team services for the Contract.

This is the 25th Monthly EM&A Report for the Contract which summaries findings of the EM&A programme during the reporting period from 1 February 2022 to 28 February 2022.

Environmental Monitoring and Audit Progress

The monthly EM&A programme was undertaken in accordance with the Updated EM&A Manual for HKBCF (Version 1.0). It should be noted that the air quality, noise and the post-construction dolphin monitoring works for the Contract are covered by Contract No. HY/2019/01 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works". The ET of the Contract or another ET of the HZMB project is required to conduct impact air quality monitoring at AMS6 as part of EM&A programme if the impact air quality monitoring work is no longer covered by Contract No. HY/2011/03 respectively. However, this is subject to ENPO's final decision on which ET should carry out the monitoring work at these stations.

Breaches of Action and Limit Levels

No Action and Limit Level exceedance was recorded for air quality monitoring in the reporting month. Also, no Action and Limit Level exceedance was recorded for construction noise monitoring in the reporting month.

Complaint Log

No complaints were received in the reporting period.

Notifications of any Summons and Successful Prosecutions

No notifications of summons and prosecutions were received in the reporting period.

Reporting Change

No reporting change in the reporting period.

Future Key Issues

The main works will be anticipated in the next reporting period are as follow:

- Excavation at Vehicle Clearance Plaza (VCP) (land-based);
- Road & Drain works at South Public Transport Interchanges (SPTI), North Public Transport Interchanges (NPTI) and Vehicle Clearance Plaza (VCP) (Iand-based);
- Covered Walkway at South Public Transport Interchanges (SPTI) and North Public Transport Interchanges (NPTI) (land-based);
- Kiosks Construction at Vehicle Clearance Plaza (VCP) (land-based);
- Landscape Works at G1 and G5 (land-based);
- Conceal Conduits Works at Vehicle Clearance Plaza (VCP) (land-based);
- E&M Works at South Public Transport Interchanges (SPTI) (land-based);
- Irrigation System at G1 and G5 (land-based).

Contents

EXE	CUTIVE SUMMARY	1
1.	INTRODUCTION	6
1.1	Background	6
1.2	Project Description	6
1.3	Project Organization	7
1.4	Construction Programme and Activities	7
1.5	Works undertaken during the month	7
1.6	Status of Environmental Licences, Notification and Permits	8
2.	AIR QUALITY	9
2.1	Monitoring Requirement	9
2.2	Monitoring Equipment	9
2.3	Monitoring Methodology for HVS	10
2.4	Maintenance and Calibration for HVS	11
2.5	Monitoring Methodology for Direct Reading Dust Meter	11
2.6	Maintenance and Calibration for Direct Reading Dust Meter	12
2.7	Monitoring Locations	12
2.8	Monitoring Results	13
3.	NOISE	14
3.1	Monitoring Requirement	14
3.2	Monitoring Equipment	14
3.3	Monitoring Parameters and Frequency	14
3.4	Monitoring Methodology	15
3.5	Maintenance and Calibration	15
3.6	Monitoring Locations	16
3.7	Monitoring Results	16
4.	ECOLOGY MONITORING	18
4.1	Monitoring Requirements	18
4.2	Monitoring Locations and Methodology	18
5.	SITE INSPECTION AND AUDIT	19
5.1	Site Inspection	19
5.2	Advice on the Solid and Liquid Waste Management Status	19
6.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	20
6.1	Environmental Exceedance	20
6.2	Complaints, Notification of Summons and Prosecution	20
7.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURE	21

21

22

22 22 22

23

23 23

7.1	Implementation Status
8.	FUTURE KEY ISSUES
8.1	Construction Programme for the Next Month
8.2	Key Issues for the Coming Month
8.3	Monitoring Schedules for the Next Month
9.	CONCLUSION AND RECOMMENDATION
9.1	Conclusions
9.2	Comment and Recommendations

Tables

Table 1.1 Contact Information of Key Personnel

Table 1.2 Environmental Licenses, Notification and Permits Summary

- Table 2.1 Air Quality Monitoring Equipment
- Table 2.2 Air Quality Monitoring Location

Table 2.3 Summary of Air Quality Monitoring Results

Table 3.1 Construction Noise Monitoring Equipment

Table 3.2 Monitoring Parameters and Frequencies of Noise Monitoring

Table 3.3 Construction Noise Monitoring Location

Table 3.4 Summary of Construction Noise Monitoring Results

Figures

Figure 1	The Site Layout Plan of the Contract
Figure 2	The Location of the Air Quality Monitoring Station
Figure 3	The Location of the Noise Monitoring Station
Figure 4	Post-Construction Dolphin Monitoring Line Transect Layout Map

Appendices

Appendix A Construction Programme

Appendix B Project Organization Chart

Appendix C Action and Limit Levels

Appendix D Calibration Certificate of Monitoring Equipment

Appendix E Environmental Monitoring Schedule

Appendix F Air Quality Monitoring Results and Construction Noise Monitoring Results

Appendix G Wind Data

Appendix H Event and Action Plan

Appendix I Waste Flow Table

Appendix J Implementation Status of Environment Mitigation Measures (Construction Phase)

Appendix K Weather and Meteorological Conditions during Reporting Month

Appendix L Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions

Appendix M Summary of Site Audit in the Reporting Month

Appendix N Outstanding Issues and Deficiencies

Appendix O Bi-Monthly Landscape and Visual Audit Checklist

1. INTRODUCTION

1.1 Background

- 1.1.1 Fugro Technical Services Limited was commissioned by China Harbour Engineering Co. Limited (also referred to as "the Contractor") to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for Contract No. HY/2019/01 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works".
- 1.1.2 Contract No. HY/2019/01 is part of the "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities" (HZMB HKBCF) Project which is a "Designated Project" under Schedule 2 of the Environmental Impact Assessment (EIA) Ordinance (Cap. 499) and for which an EIA Report (Register No. AEIAR-145/2009) was prepared and approved. The current Environmental Permit (EP) for HKBCF, namely No. EP-353/2009/K, was issued on 11 April 2016. These documents are available through the EIA Ordinance Register. The general layout of the Project area is shown in Figure 1. Commencement of the Contract took place on 4 December 2019 and the construction site preparation works commenced in early February 2020.
- 1.1.3 This is the 25th Monthly EM&A report to document the findings of site inspection activities and EM&A programme carried out by the Contractor of Contract No. HY/2019/01 from 1 February 2022 to 28 February 2022 (reporting period) and is submitted to fulfil Condition 5.4 of the EP.

1.2 Project Description

- 1.2.1 The works to be executed under Contract No. HY/2019/01 include the following major items:
 - Landscaping and establishment works;
 - Irrigation system and associated drainage pumping system and facilities;
 - Erection and installation in the Passenger Clearance Building;
 - Public transport interchange (PTI) public toilet, satellite refuse collection point (RCP) and observation guard booths;
 - PTI cross boundary shuttle (CBS) / cross boundary coach (CBC) lanes and covered walkway;
 - Vehicle clearance plazas (VCP) vehicle kiosks and associate automatic vehicle clearance supporting system (AVCSS).

1.3 Project Organization

1.3.1 The Project Organization structure is shown in **Appendix B**. The key personnel contact names and numbers are summarized in **Table 1.1**.

Party	Position	Name	Telephone
Engineer or Engineer's	Senior Resident Engineer	Mr. Jason Yu	3748 8903
Representative (AECOM Asia Co. Ltd.)	Resident Engineer	Mr. Gordon Kok	3748 8967
Environmental Project Office /	Environmental Project Office Leader	Mr. Y. H. Hui	3465 2888
Independent Environmental Checker	Independent Environmental Checker (IEC)	Mr. Brian Tam	9700 6767
(Ramboll Hong Kong Limited)	Environmental Site Supervisor	Mr. K. C. Chan	3465 2882
Contractor	Environmental Manager	Mr. Marko Chan	9427 2879
(China Harbour Engineering Co. Ltd)	Environmental Officer	Mr. Matthew Wu	6076 2675
Environmental Team (Fugro Technical Services Limited)	Environmental Team Leader (ETL)	Mr. Calvin Leung	3565 4441

Table 1.1 Contact Information of Key Personnel

1.4 Construction Programme and Activities

- 1.4.1 The site layout plan of the Contract is shown in **Figure 1**.
- 1.4.2 The construction programme of this Contract is shown in **Appendix A**.

1.5 Works undertaken during the month

- 1.5.1 The main construction works carried out in the reporting period were as follow:
 - Excavation at VCP (land-based);
 - Road & Drain works at SPTI, NPTI and VCP (land-based);
 - Covered Walkway at SPTI and NPTI (land-based);
 - Kiosks Construction at VCP (land-based);
 - Landscape Works at G1 and G5 (land-based);
 - Conceal Conduits Works at VCP (land-based);
 - E&M Works at SPTI (land-based);
 - Irrigation System at G1 and G5 (land-based).

1.6 Status of Environmental Licences, Notification and Permits

1.6.1 A summary of the relevant permits, licenses and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Permit/ Notification/ License	Reference No	Valid From	Valid Till
Environmental Permit	EP-353/2009/K	11-Apr-16	Not Applicable
Notification pursuant to Air Pollution (Construction Dust) Regulation	451380	28-Nov-19	Not Applicable
Billing Account for Disposal of C&D waste	A/C No. 7036097	18-Dec-19	Not Applicable
Chemical Waste Producer Registration	5296-951-C1186-32	6-Feb-20	Not Applicable
Construction Noise Permit	GW-RS0955-21	13-Dec-21	11-Jun-22
Water Discharge License	WT00035721-2020	8-Jun-21	30-Apr 25

Table 1.2 Environmental Licenses, Notification and Permits Summary

2. AIR QUALITY

2.1 Monitoring Requirement

2.1.1 In accordance with the Contract Specific EM&A Manual, 1-hour and 24-hour Total Suspended Particulates (TSP) levels should be measured at the designated air quality monitoring stations to indicate the impacts of construction dust on air quality. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days.

2.2 Monitoring Equipment

- 2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) deployed at the designated monitoring stations. The HVS shall meet all the requirements of the EM&A Manual.
- 2.2.2 A portable direct reading dust meter was used to carry out the 1-hour TSP monitoring.
- 2.2.3 The model of the air quality monitoring equipment used is summarized in **Table 2.1**.

ltem	Location	Brand	Model	Equipment	Serial No.
			TE-5170 (TSP)	High Volume Sampler	HVS-01
			TE-300-310X	-Mass Flow Controller	3002
1	AMS2	Tisch	TE-5005X	-Blower Motor Assembly	4607
			TE-5007X	-Mechanical Timer	5596
			TE-5009X	-Continuous Flow Recorder	5752
			TE-5170 (TSP)	High Volume Sampler	HVS-02
			TE-300-310X	-Mass Flow Controller	3000
2	AMS3C	Tisch	TE-5005X	-Blower Motor Assembly	4610
			TE-5007X	-Mechanical Timer	5597
			TE-5009X	-Continuous Flow Recorder	5756
			TE-5170 (TSP)	High Volume Sampler	HVS-03
			TE-300-310X	-Mass Flow Controller	2037
3	AMS7C	Tisch	TE-5005X	-Blower Motor Assembly 3477 -Mechanical Timer 2697	
			TE-5007X		
			TE-5009X	-Continuous Flow Recorder	4371
4		Tisch	TE-5025A	HVS Sampler Calibrator	438320/2456
5			Model LD-5R		892186
6		Sibata	Model LD-5R	Sibata Portable TSP Monitors	892187
7			Model LD-5R	89218	

Table 2.1Air Quality Monitoring Equipment

2.3 Monitoring Methodology for HVS

- 2.3.1 The following guidelines were adopted during the installation of HVS:
 - Sufficient support is provided to secure the samplers against gusty wind.
 - No two samplers are placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, is at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - No furnaces or incineration flues are nearby.
 - Airflow around the samplers is unrestricted.
 - The samplers are more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
 - Permission must be obtained to set up the samplers and to obtain access to the monitoring stations.
 - A secured supply of electricity is needed to operate the samplers.
- 2.3.2 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler shall be properly set. The power supply should be checked to ensure the proper functioning of the sampler. The sampler is recommended to be operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.3.3 The filter holding frame should be removed by loosening the four nuts and placing carefully a weighted and conditioned filter at the centre with the stamped number upwards on a supporting screen.
- 2.3.4 The filter should be aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. The filter holding frame should be tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.3.5 A programmed timer should be used to control the duration of operation. Information should be recorded on the record sheet, which included the starting time, the weather condition and the filter number.
- 2.3.6 After sampling process is finished, the filter should be removed and sent to the laboratory for weighting. The elapsed time should also be recorded.
- 2.3.7 All filters should be equilibrated in a conditioning environment for 24 hours before weighting. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than \pm 3°C; the relative humidity (RH) should be <50% and not vary by more than \pm 5%. A convenient working RH is 40%.

2.4 Maintenance and Calibration for HVS

- 2.4.1 The high volume motors and their accessories should be properly maintained, including routine motor brushes replacement and electrical wiring checking, to ensure that the equipment and a continuous power supply were in good working condition.
- 2.4.2 Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at fortnightly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually. The calibration certificate for the HVS is provided in **Appendix D**.

2.5 Monitoring Methodology for Direct Reading Dust Meter

- 2.5.1 Portable Laser Particle Photometer Monitors should be operated in accordance with the Manufacturer's instruction Manual as below:
 - a) Pulling up the air sampling inlet cover
 - b) Changing the Mode 0 to BG
 - c) Pressing Start/Stop switch
 - d) Turning the knob to SENSI.ADJ and press it
 - e) Pressing Start/Stop switch again
 - f) Returning the knob to the position MEASURE slowly
 - g) Pressing the timer set switch to set measuring time
 - h) Removing the cap and start the measurement

2.6 Maintenance and Calibration for Direct Reading Dust Meter

2.6.1 ET shall submit sufficient information to the IEC to prove that the instrument is capable of achieving comparable results to the HVS. The instrument should also be calibrated regularly, and the 1-hour sampling shall be determined periodically by the HVS to check the validity and accuracy of the results measured by direct reading method. The calibration certificate for the direct reading dust meter is provided in **Appendix D**.

2.7 Monitoring Locations

- 2.7.1 In accordance with the Contract Specific EM&A Manual, four air quality monitoring locations, namely AMS2, AMS3C, AMS6 and AMS7B were set up at the proposed locations. AMS2, AMS3C and AMS7B are covered by Contract No. HY/2019/01 "Hong Kong-Zhuhai- Macao Bridge Hong Kong Boundary Crossing Facilities Phase 2 and Other Works"
- 2.7.2 AMS6 is covered by Contract No. HY/2011/03 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road (HZMB HKLR) – Section between Scenic Hill and HKBCF". The ET of the Contract or another ET of the HZMB project is required to conduct impact air quality monitoring at AMS6 as part of EM&A programme if this air quality monitoring station is no longer covered by Contract No. HY/2011/03.
- 2.7.3 Due to the existing air quality monitoring location AMS7B would be hand over back to Airport Authority for their construction works. A new alternative air quality monitoring location is still under processing. Air quality monitoring location AMS7B was temporary suspended, effective from 10 December 2020.
- 2.7.4 According to the email date 11 August 2021, EPD have no comment on the Proposal for Relocation of Monitoring Location AMS 7B, the monitoring location AMS 7B are proposed to be relocated by alternative monitoring location AMS 7C for air quality monitoring. The monitoring location AMS 7C has resumed air quality monitoring on 5 October 2021.
- 2.7.5 The most updated locations of air quality monitoring are summarized in **Table 2.2** and they are shown in **Figure 2**.

	An Quant	i Monitoring Eocation
Monitoring Station		Location
AMS2		Tung Chung Development Pier
AMS3C		Ying Tung Estate Market Rooftop
AMS6		Dragonair / CNAC (Group) Building (HKIA)
AMS7C		East Sea Rescue Berth – Airport Fire ContingentThird Runway Site Office

Table 2.2	Air Quality Monitoring Location
1 able 2.2	All Quality Monitoring Location

Remarks: The ET of this Contract should conduct impact air quality monitoring at station AMS6 listed in the table as part of EM&A programme according to latest notification from ENPO when the monitoring station is no longer covered by another ET of the HZMB project.

2.8 Monitoring Results

- 2.8.1 The schedule of air quality monitoring in reporting month is provided in **Appendix E**.
- 2.8.2 No Action / Limit Level exceedance was recorded for 1-hr and 24-hr TSP at AMS2, AMS3C and AMS7C.
- 2.8.3 The monitoring results for AMS6 are reported in the monthly EM&A Reports prepared for Contract No. HY/2011/03.
- 2.8.4 The weather conditions during the monitoring are provided in **Appendix K**.
- 2.8.5 The monitoring data of 1-hr TSP and 24-hr TSP are summarized in **Table 2.3**. Detailed monitoring data are presented in **Appendix F**.

Monitoring Station	Average (μg/m³)	Range (µg/ m³)	Action Level (μg/ m³)	Limit Level (µg/ m³)		
		1-hour TSP				
AMS2	54	38 – 68	374			
AMS3C	82	53 – 98	368	500		
AMS7C	53	29 – 74	370			
	24-hour TSP					
AMS2	38	22 – 76	176			
AMS3C	53	32 – 84	167	260		
AMS7C	41	23 – 63	183			

 Table 2.3
 Summary of Air Quality Monitoring Results

- 2.8.6 The Event and Action Plan for air quality is given in **Appendix H**.
- 2.8.7 The wind data obtained from the on-site wind station during the reporting period is provided in **Appendix G**.

3. NOISE

3.1 Monitoring Requirement

3.1.1 In accordance with the Contract Specific EM&A Manuals, L_{eq} (30min) monitoring is conducted for at least once a week during the construction phase between 0700 and 1900 on normal weekdays at the designated monitoring locations.

3.2 Monitoring Equipment

- 3.2.1 The sound level meter used in noise monitoring shall comply with the International Electrotechnical Commission Publication (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum issued under the Noise Control Ordinance (NCO).
- 3.2.2 Sound level calibrator shall be used for the on-site calibration of the meter. This calibrator complies with the IEC Publication 942 (1988) Class 1 and ANSI S1.40 1984. Noise measurements were only accepted to be valid if the calibration levels from before and after the measurement agree to within 1.0 dB(A).
- 3.2.3 Measurements shall be recorded to the nearest 0.1dB(A). Sound level meters are programmed to measure A-weighted equivalent continuous sound pressure level at 30-minute intervals between 0700 and 1900 on normal weekdays at least once a week when construction activities are underway.
- 3.2.4 The model of the noise monitoring equipment used is summarized in Table 3.1.

	construction N	Construction Noise Monitoring Equipment				
Item Brand		Model Equipment		Serial No.		
1	Casella CEL-63X Series In:		Integrating Sound Level Meter	1488302		
2	Casella	CEL-63X Series	Integrating Sound Level Meter	1488303		
3			Calibrator	5230758		
4			Calibrator	5230950		
5	Smart Sensor	AR816	Wind Speed Anemometer	H0423689		

Table 3.1 Construction Noise Monitoring Equipment

3.3 Monitoring Parameters and Frequency

3.3.1 The parameters and frequencies of impact noise monitoring is summarized in **Table 3.2**.

 Table 3.2
 Monitoring Parameters and Frequencies of Noise Monitoring

Parameter	Frequency
L_{eq} (30min) L_{10} and L_{90} will be recorded for reference	At each station at 0700-1900 hours on normal weekdays at a frequency of once a week

3.4 Monitoring Methodology

- 3.4.1 Noise measurement should be conducted as the following procedures:
 - Free field measurements was made at monitoring location M-N3. A correction of +3 dB(A) shall be made to the free field measurements.
 - The battery condition should be checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time should set as follow:
 - (i) Frequency weighting: A
 - (ii) Time weighting: Fast
 - (iii) Measurement time: continuous 5 minutes interval
 - Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB(A), the measurement will be considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
 - The wind speed at the monitoring station shall be checked with the portable wind meter. Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
 - Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
 - At the end of the monitoring period, the L_{eq}, L₁₀ and L₉₀ should be recorded. In addition, site conditions and noise sources should also be recorded on a standard record sheet.

3.5 Maintenance and Calibration

- 3.5.1 Maintenance and calibration procedures should also be carried out, including:
 - The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory or the manufacturer.
 - The calibration certificates for noise monitoring equipment are provided in Appendix D.

3.6 Monitoring Locations

- 3.6.1 In accordance with the Contract Specific EM&A Manual, two noise monitoring locations, namely NMS2 and NMS3C are covered under Contract No. HY/2019/01 "Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Phase 2 and Other Works.
- 3.6.2 Due to rejection from Ho Yu College (NMS3) for setting up a noise monitoring station at their school, an alternative location at site boundary of the site office area at Works Area WA2 (NMS3B) is proposed. Impact noise monitoring has been relocated from NMS3B to Ying Tung Estate Market Rooftop (NMS3C) on 20 August 2018 under Contract No. HY/2013/04. The same baseline and Action and Limit levels for noise, as derived from the baseline monitoring data recorded at Ho Yu College, are adopted for this alternative noise monitoring location.
- 3.6.3 The most updated locations are summarized in **Table 3.3** and the locations of the noise monitoring stations shown in **Figure 3**.

Tabl	e 3.3	Construction	Noise	Monitoring	Location

Monitoring Station	Location	
NMS2 Seaview Crescent		
NMS3C	Ying Tung Estate Refuse Collection Point	

Remark: The Limit Levels for schools will be applied for this alternative monitoring location at NMS3C.

3.7 Monitoring Results

- 3.7.1 The schedule of noise monitoring in reporting month is provided in **Appendix E**.
- 3.7.2 No raining and wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation. The weather conditions during the monitoring month are provided in **Appendix K**.
- 3.7.3 The noise monitoring data are summarized in **Table 3.4**. Detailed monitoring data are presented in **Appendix F**.

Table 3.4	Summary of C	Construction Noise	Monitoring Results
	Sammary or C		interning results

Time Period	Noise Monitoring Stations	L _{eq} (30min) dB(A) (Range)	Action Level	Limit Level dB(A)
0700-1900 hrs on normal weekdays	NMS2	57 – 66	When one documented complaint is received	75
	NMS3C	64 – 67		70/65

Remark:

NMS2: Façade Measurement

NMS3C: Free-field measurement (+3 dB(A) correction has been applied), reduction to 65dB(A) during school examination periods will be applied.

- 3.7.4 School calendar of Ho Yu College was checked against noise monitoring days at NMS3C. The examination periods of Ho Yu College were 14 January 2022 to 25 February 2022. Therefore, the limit level for NMS3C was 65 dB (A) on 17 and 23 February 2022.
- 3.7.5 No Action / Limit Level exceedance of location NMS2 was recorded for construction noise in the reporting month.
- 3.7.6 The measured noise level recorded at NMS3C on 17 February 2022 was 67.3 dB (A), which exceeded the limit level 65 dB (A). The noise level were higher than the baseline level of 66.3 dB (A). Therefore, baseline correction was carried out and the corrected noise levels which solely represent the noise level of construction works was 60.4 dB (A), therefore there was no exceedance after correction. As such the Event and Action Plan was not triggered.
- 3.7.7 During the monitoring month, at NMS3C, road traffic along the Ying Tung Road and nonproject related construction activities at the nearby construction site was observed.
- 3.7.8 The Action and Limit Levels for noise impact monitoring have been set and are presented in **Appendix C**.
- 3.7.9 The Event and Action Plan for noise is given in **Appendix H**.

4. ECOLOGY MONITORING

4.1 Monitoring Requirements

- 4.1.1 All marine-based construction activities for the HKBCF project were completed in January 2019. No marine-based construction activities will be undertaken under this Contract. However, the ET of this Contract or another ET of the HZMB is required to conduct post-construction dolphin monitoring in accordance with Section 10.7 of the updated EM&A Manual.
- 4.1.2 The CV of the proposed dolphin specialist for this Contract has been submitted to IEC for review prior to submission to AFCD for approval.
- 4.1.3 According to the Proposal on Post-construction Dolphin Monitoring (PCDM) prepared by Contract No. HY/2013/04 which has been verified by ENPO and approved by EPD on 8 March 2019 (EPD ref. () in Ax(5) to E771/E1/100) , the completion date of the PCDM is in February 2021. Therefore, the reporting of Chinese White Dolphins monitoring works under this contract was completed on 1 March 2021.

4.2 Monitoring Locations and Methodology

4.2.1 In accordance with the requirements of the updated EM&A manual, the dolphin monitoring programme have adopted the standard line-transect method (Buckland et al. 2001) to survey the pre-set and fixed transect lines defined by AFCD in the Northeast Lantau (NEL) and Northwest Lantau (NWL) survey areas. The layout map of the transect lines provided by AFCD is presented in **Figure 4**.

5. SITE INSPECTION AND AUDIT

5.1 Site Inspection

- 5.1.1 Site audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project site.
- 5.1.2 In the reporting month, three site inspections were carried out on 10, 16 and 24 February 2022.
- 5.1.3 No outstanding issues were reported during the reporting month. Details of observations recorded during the site inspections are summarized in **Appendix M**.

5.2 Landscape and Visual Site Audit (Establishment Period)

- 5.2.1 As informed by AECOM, the commencement date of the 12-month establishment period for the landscape monitoring under this contract is 5 January 2022. Bi-monthly landscape and visual site audits will be conducted from 5 Jan 2022 to 4 Jan 2023.
- 5.2.2 A bi-monthly landscape and visual site audit was carried out on 24 February 2022 by a Registered Landscape Architect. The bi-monthly landscape and visual site audit checklist was counter-signed by IEC and presented in **Appendix O**.

5.3 Advice on the Solid and Liquid Waste Management Status

- 5.3.1 The Contractor registered as a chemical waste producer for the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.
- 5.3.2 The monthly summary of waste flow table is detailed in **Appendix I**.
- 5.3.3 If off-site disposal is required, the excavated marine mud from the land-based works shall be disposed of at the designated disposal sites within Hong Kong as allocated by the Marine Fill Committee or other locations as agreed by the Director. The Contractor shall ensure no spilling and overflowing of materials during loading / unloading / transportation is allowed.
- 5.3.4 The Contractor was reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packing, Labelling and Storage of Chemical Waste.

6. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

6.1 Environmental Exceedance

- 6.1.1 No Action and Limit Level exceedance of 1-hr TSP level and 24-hr TSP level recorded at station AMS2, AMS3C and AMS7C in the reporting period.
- 6.1.2 No Action and Limit Level exceedance was recorded for construction noise monitoring at station NMS2 and NMS3C in the reporting period.
- 6.1.3 Summary of Action and Limit Level exceedance of 1-hour TSP level and 24-hour TSP level at AMS6 shall be referred to the monthly EM&A report prepared by Contract No. HY/2011/03.

6.2 Complaints, Notification of Summons and Prosecution

- 6.2.1 No environmental complaint, notification of summons and successful prosecution were received in the reporting month.
- 6.2.2 Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Appendix L**.

7. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURE

7.1 Implementation Status

The Contractor had implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix J**.

8. FUTURE KEY ISSUES

8.1 Construction Programme for the Next Month

- Excavation at VCP (land-based);
- Road & Drain works at SPTI, NPTI and VCP (land-based);
- Covered Walkway at SPTI and NPTI (land-based);
- Kiosks Construction at VCP (land-based);
- Landscape Works at G1 and G5 (land-based);
- Conceal Conduits Works at VCP (land-based);
- E&M Works at SPTI (land-based);
- Irrigation System at G1 and G5 (land-based).

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, waste management and landscape and visual impact issues.

8.3 Monitoring Schedules for the Next Month

8.3.1 The tentative schedule for environmental monitoring in the coming month is provided in **Appendix E**.

9. CONCLUSION AND RECOMMENDATION

9.1 Conclusions

- 9.1.1 1-hour TSP and 24-hour TSP impact monitoring at AMS2, AMS3C and AMS7C were carried out in the reporting month, no Action / Limit Level exceedance was recorded during the period.
- 9.1.2 Summary of Action and Limit Level exceedance of 1-hour TSP level and 24-hour TSP level at AMS6 shall be referred to the monthly EM&A report prepared by Contract No. HY/2011/03.
- 9.1.3 Construction noise monitoring were carried out in the reporting month, no Action / Limit Level exceedance was recorded during the period.
- 9.1.4 Three environmental site inspections were carried out in the reporting month. No recommendations on mitigation measures was given to the Contractor for remediating the deficiencies identified during the site inspections.
- 9.1.5 A bi-monthly landscape and visual site audit was carried out on 24 February 2022 by a Registered Landscape Architect.
- 9.1.6 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Comment and Recommendations

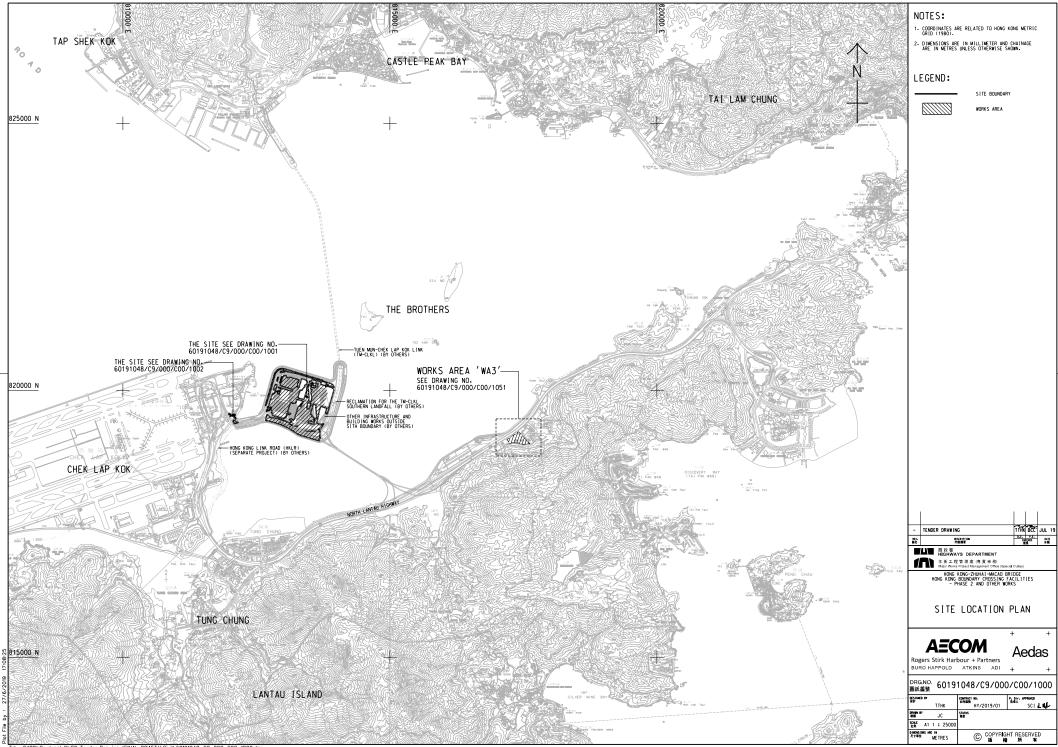
- 9.2.1 The recommended environmental mitigation measures, as proposed in the EIA reports and EM&A Manuals shall be effectively implemented to minimize the potential environmental impacts from the Project. The EM&A programme would effectively monitor the environmental impacts generated from the construction activities and ensure the proper implementation of mitigation measures.
- 9.2.2 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

- No specific observation was identified in the reporting month.
- Construction Noise Impact
- No specific observation was identified in the reporting month.
- Water Quality Impact
- No specific observation was identified in the reporting month.

Chemical and Waste Management

• No specific observation was identified in the reporting month.


Permit/ Licenses

• No specific observation was identified in the reporting month.

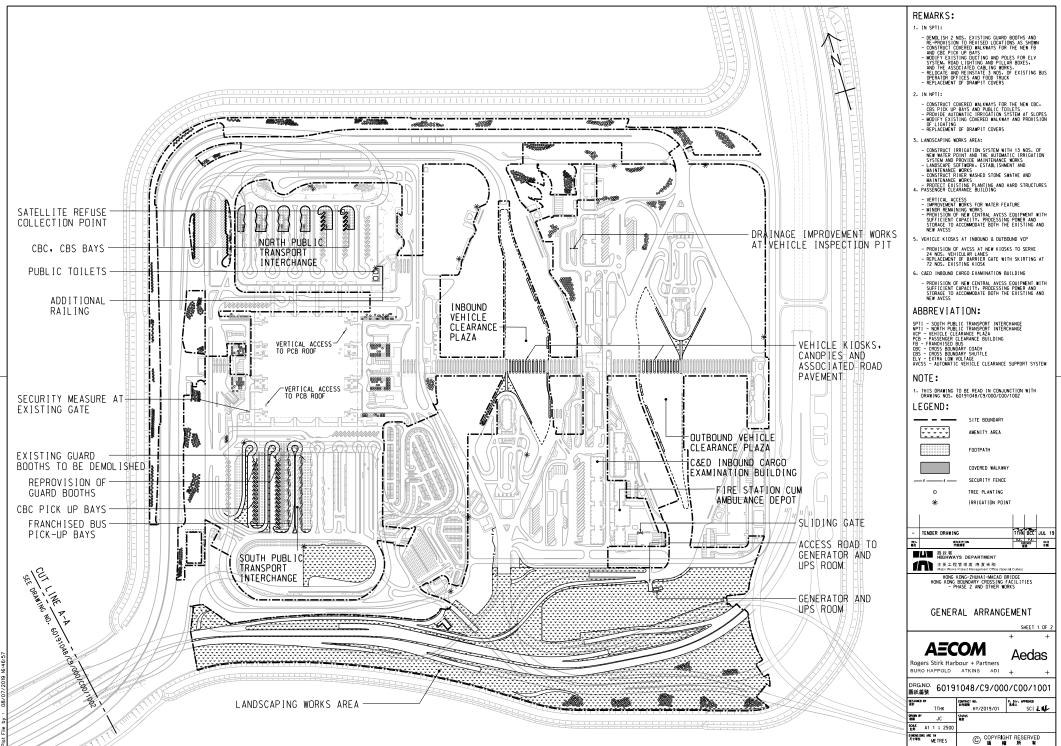
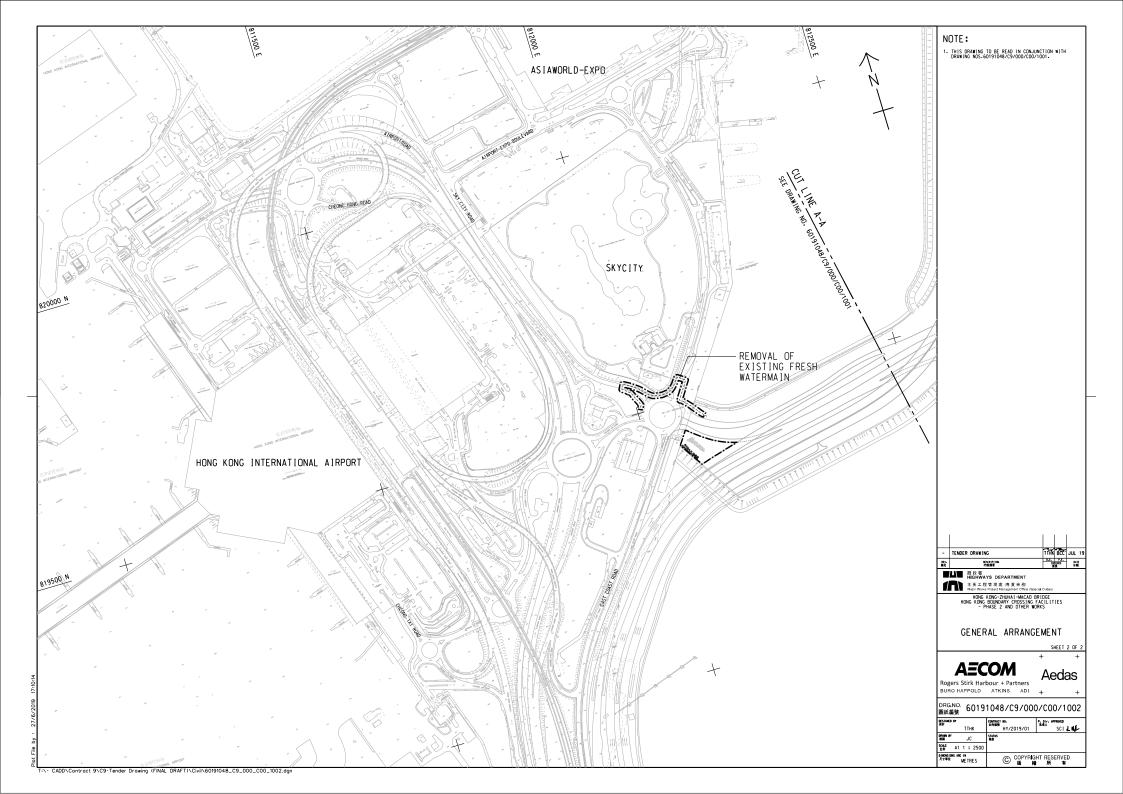
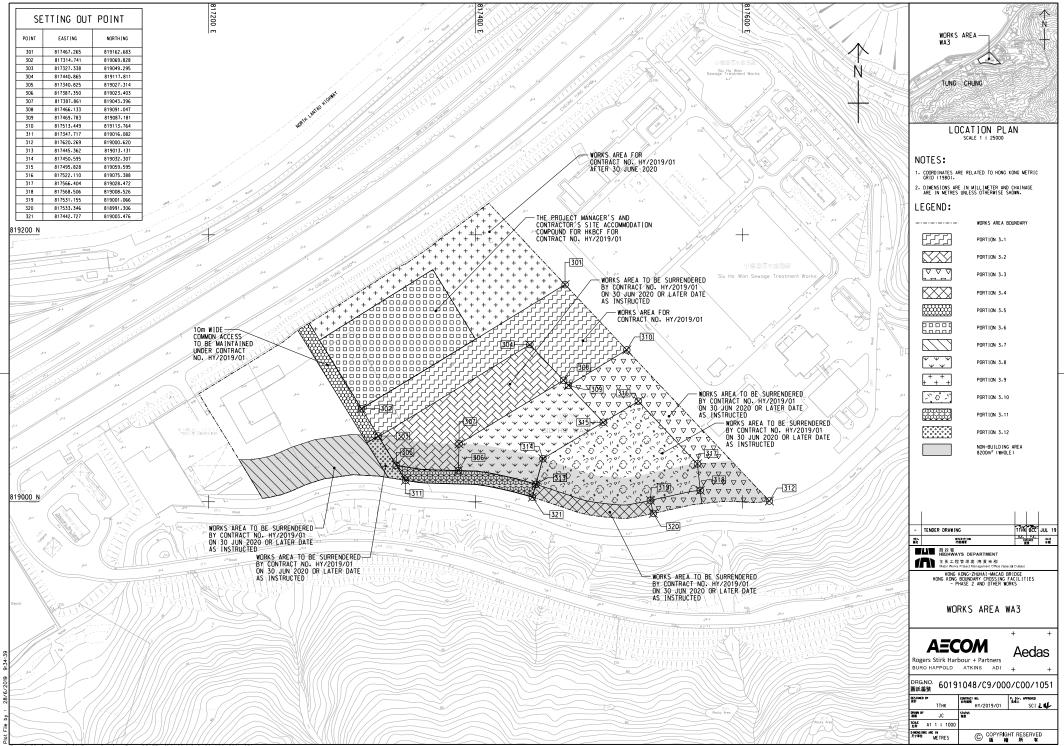


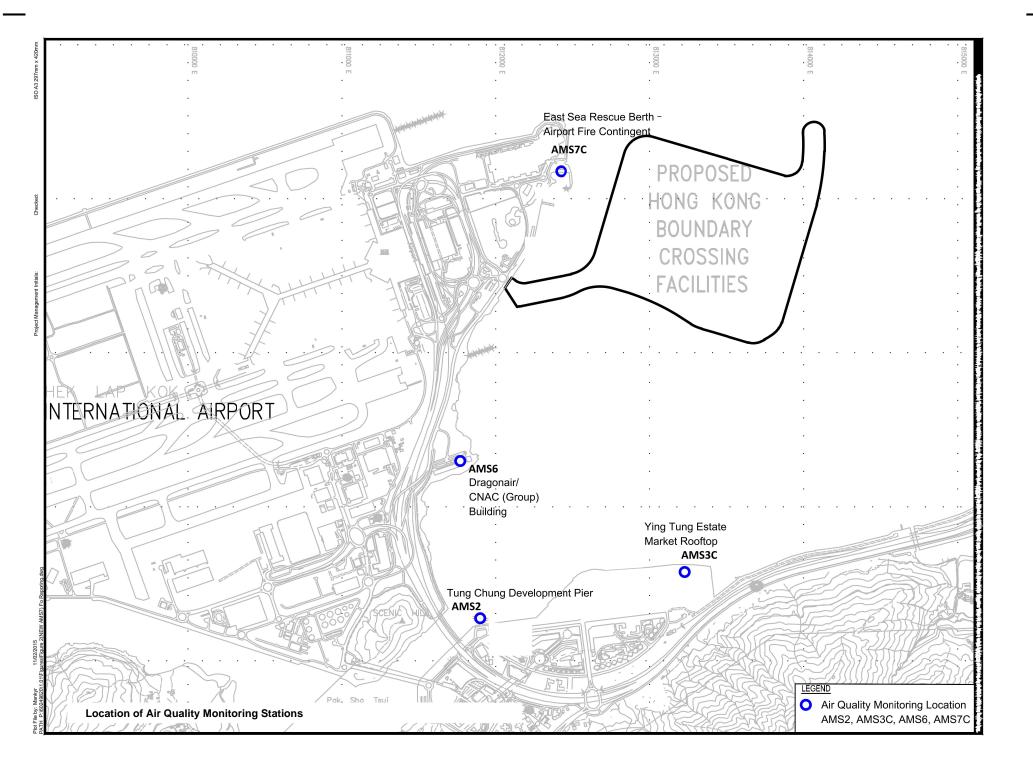
Figure 1


The Site Layout Plan of the Contract

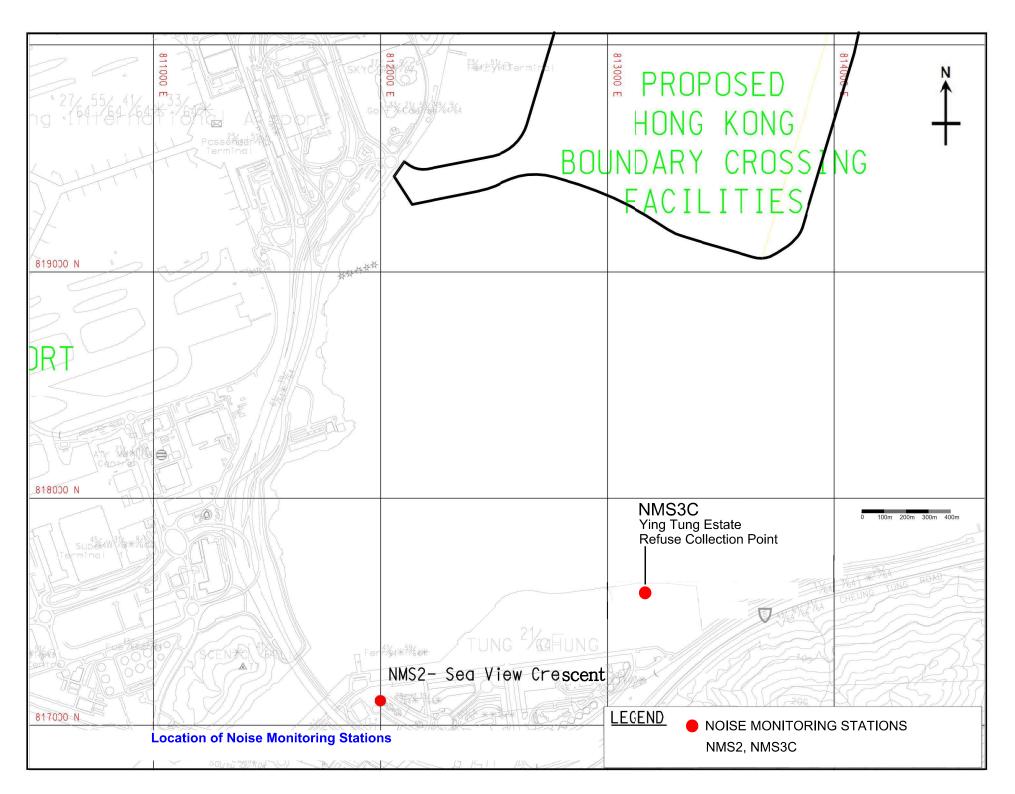


T:\- CADD\Contract 9\C9-Tender Drawing (FINAL DRAFT)\Civil\60191048_C9_000_C00_1000.dgn

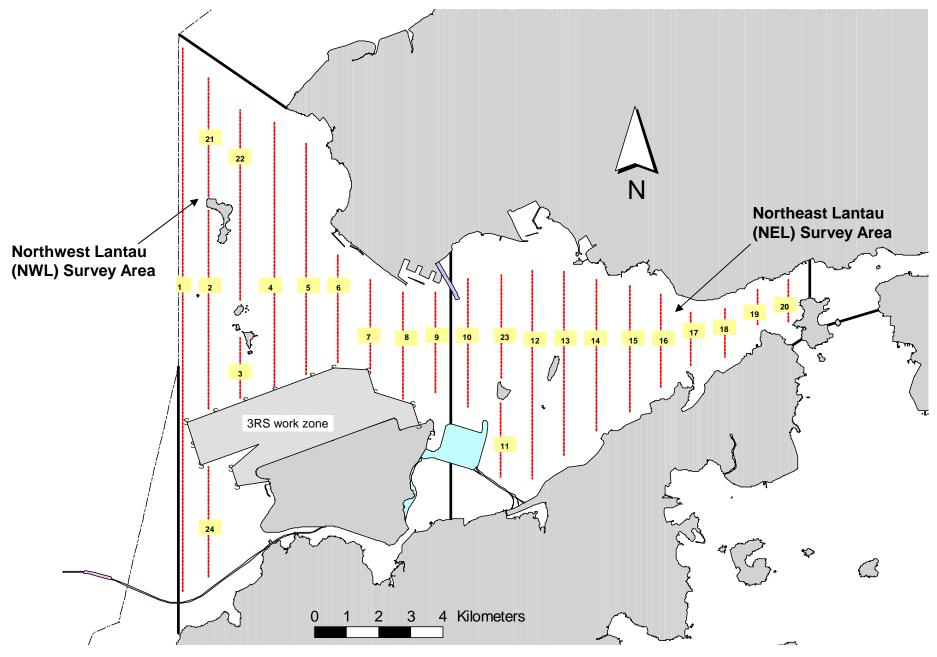
T:\- CADD\Contract 9\C9-Tender Drawing (FINAL DRAFT)\Civil\60191048_C9_000_C00_1001.dgn



T:\- CADD\Contract 9\C9-Tender Drawing (FINAL DRAFT)\Civil\60191048_C9_000_C00_1051.dgn


Figure 2

The Location of the Air Quality Monitoring Station


Figure 3

The Location of the Noise Monitoring Station

Figure 4

Post-Construction Dolphin Monitoring Line Transect Layout Map

Transect Line Layout in Northwest and Northeast Lantau Survey Areas

Appendix A

Construction Programme

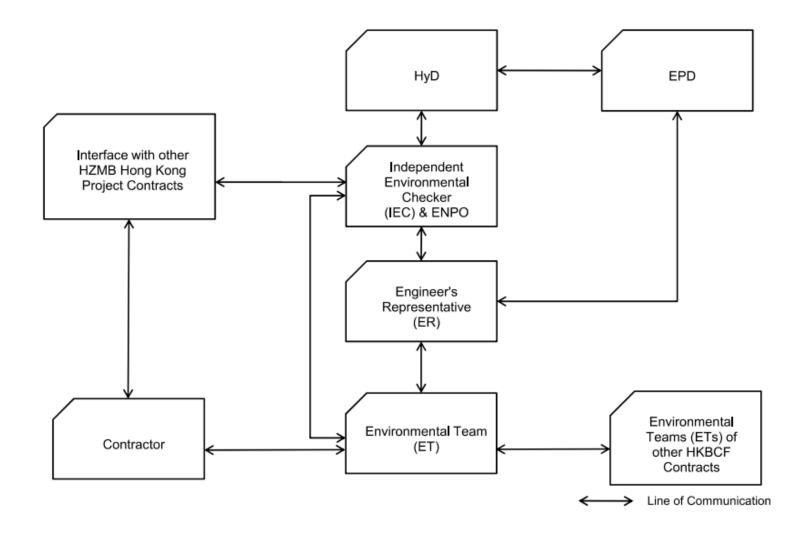
evised Worl CONTRACT I Starting Date A0090 C Sectional Com A0310 S A0320 S CUBMISSION A0460 A CONTRACTO	Completion Date (730 +19 days) npletion	Remaining Duration 019/01)	Start	Finish	2021 Dec	Jan	2022 Feb
CONTRACT I Starting Date A0090 C Sectional Com A0310 S A0320 S SUBMISSION A0460 A CONTRACTOR	DATES Completion Date (730 +19 days) npletion	019/01)				Jäll	Feb
CONTRACT I Starting Date A0090 C Sectional Com A0310 S A0320 S SUBMISSION A0460 A CONTRACTOR	DATES Completion Date (730 +19 days) npletion	013/01)					
Starting Date A0090 C A0090 C Sectional Com A0310 S A0320 S CONTRACTO	Completion Date (730 +19 days) npletion						
A0090CSectional ComA0310SA0320SUBMISSIONA0460ACONTRACTOR	Completion Date (730 +19 days) npletion						
Sectional ComA0310SA0320SSUBMISSIONA0460ACONTRACTOR	npletion	0		13-Jan-22*		Completion Date (730 +	
A0310 S A0320 S SUBMISSION A0460 A CONTRACTO		U		13-Jaii-22	♦	Completion Date (730 +	19 days)
A0320 S SUBMISSION A0460 A CONTRACTO	Section 5: Remaining Works (730 +19 days) P.8 - P.12	0		13-Jan-22*		Section 5: Remaining W	orks (730 +19 days) P.8 - P.12
SUBMISSIONA0460ACONTRACTO	Section 6: Establishment Works (1095 + 19 days)	0		07-Dec-22*	◆	Section 5. Hernaming W	018 (750 +15 days) 1.0 -1.12
A0460 A		-					
	Acceptance of TTA	1	01-Jan-20 A	03-Jan-22		0	
۹7980 A	OR'S DESIGN						
	Acceptance of the Design for Pump House	5	16-Aug-20 A	07-Jan-22			
	IFORMATION MODELING						
A7580 C	Completion of BIM 3D Model	28	17-Feb-20 A	30-Jan-22			
A7590 A	As-built BIM Model	41	08-Jan-21 A	12-Feb-22			
17330 F		41	00-0a11-21 A	12-160-22			
REFINEMENT	T WORKS AT HKP (4A)		: 	, 			
	f Sliding Gate at Building No. 041 (4A.J)						-
	Installation of Security Fence and Sliding Gate (Fire Station cum Ambulance	22	06-Dec-21 A	27-Jan-22			
C	Depot 041)						
	T&C	3	28-Jan-22	31-Jan-22			■
	/olleyball Court						
	Pavement rectification	24	03-Jan-22*	29-Jan-22			
	Painting for Volleyball Ground, Part 2	6	31-Jan-22*	09-Feb-22			
	NPTI - PUBLIC TOILET, COVERED WALKWAY & PAVEMENT (6)						
	d Modification to Existing Covered Walkway, Area 1 - 6 (6.E)						
A6980 Ir	Installation of aluminum honey comb panels to the existing covered walkways	6	29-Dec-20 A	08-Jan-22			
A6990 T	T&C	6	07-Jul-21 A	08-Jan-22			
A0990 I	Tao	0	07-JUI-21 A	00-5411-22			
Additional & N	Modification of Covered Walkway adjacent to Building 003, Area 7 (6.C)						
	T&C	6	16-Aug-21 A	08-Jan-22			
	Type 1, Building 003 (6.B)						
A3390 T	TPIDC Authority Inspection & Approval	12	30-Aug-21 A	15-Jan-22			
A6100 A	ASD Approval, WWO Part V submission & Approval	12	30-Aug-21 A	15-Jan-22			
		12	oo nug 21 n	10 0411 22			
ECTION 5: I	REMAINING WORKS						
External Works	ks at Plaza						
A1540B P	Pavement Works (Roadbase and Base Course) at Outbound North	12	10-May-21 A	15-Jan-22			
A1540C F	Pavement Works (Roadbase and Base Course) at Inbound South	11	08-Jun-21 A	14-Jan-22			
A8770 F	Pavement Works (Wearing Course) at Outbound	22	08-Nov-21 A	27-Jan-22			
	a volicita monto (moaning oodise) at outbound	~~	00 NUV-21 A	21-0a11-22			
A8780 F	Pavement Works (Wearing Course) at Inbound	24	08-Nov-21 A	29-Jan-22			-
	Road Marking & Signs	73	03-Jan-22	31-Mar-22			
	lo. of Private Car Kiosks between 027/028						
Builder Works		-		10 1			
A1080C A	ABWF Works at 4th Group Kiosks (3 nos.)	9	27-Jul-21 A	12-Jan-22			
A1080D A	ABWF Works at Kiosks at Inbound VCP (miscellanous external railing, cladding	58	17-Aug-21 A	14-Mar-22			
	etc.)	00		i r wiai-22			
A1180A N	MJ, Fall Arrest System, Maintenance Access	25	01-Sep-21 A	31-Jan-22			
	Removal of all hoarding after OPT	12	14-Mar-22*	26-Mar-22			
	Removal of TTA	4	28-Mar-22	31-Mar-22			
E&M Works		07	00 1 00				
A1120-46.2 8	8.1.2.2-Termination & Installation Test of all ODB (027/028)	37	29-Jan-22	16-Mar-22		<u> </u>	
Baselin	ne Critical			UPD	ATED WORKS PROGRAMME		Date Revision
Actual \	Work \diamond Baseline Milestone				SE 2 AND OTHER WORKS, HKZM		-Nov-21 Revised Works Programme for Ph
	ining Work Milestone				Page 1 of 3	06	6-Jan-22 Revised Works Programme for Ph

	As of 03-Jan-22						
2022 Feb	1	Mar		Apr			
100		IVIGI					
9 days)							
rks (730 +19 days) P.8 - P.12							
			—				
Date Revision	<u> </u>	Checked	Approv	ved			
Nov-21 Revised Works Programme Jan-22 Revised Works Programme	for Phase 2	ZJ ZJ					

tivity ID	Boundary Crossing Facilities - Phase 2 and Other Works	Remaining	Start	Finish			
vity i D		Duration	Otart	1 111011	2021	-	2022
A1120-46.4	8.1.2.2-Integrate all ODBs into Existing ODB network(027/028) (IB & OB together 24 kiosks)	28	17-Mar-22	22-Apr-22	Dec Ja	n	Feb
A1120-54	8.1.2A-Relocation of Inbound VID and VTS Equipment	11	04-Oct-21 A	14-Jan-22			
A1120-60	8.1.3 - System Configuration of AVCSS	27	15-Jan-22	18-Feb-22			
A1120-70	8.1.4-Complete Training, SAT (exclude ODB) (12 AVCSS Kiosks at 027/028)	53	19-Feb-22	26-Apr-22			
A1120-80	8.1.5-Preparation of O&M Manual and Spare Parts	60	19-Feb-22	05-May-22			
A1130-10	8.1.7-D1-TTA for OPT (027/028)	27	03-Jan-22	05-Feb-22			
A1130-20	8.1.7-OPT (027/028)	30	19-Feb-22	20-Mar-22			
A1130-30	8.1.7A - Migration/Integration with existing AVCSS (Existing 72 Kiosks + 24 Phase 2 Kiosks)	12	21-Mar-22	02-Apr-22			
A1130-40 A1190	8.1.6-T&C maintenance Services E&M Works at Roof	225 23	04-Apr-22 24-Jul-21 A	06-Jan-23 28-Jan-22			
A8370	Update and modification of District Cooling System (DCS) (incl. water balancing for new kiosks and calibration works)	63	01-Nov-21 A	19-Mar-22			
Outbound: 1	1 No. of Private Car Kiosks between 029/030						
Builder's Wo							
A1270D	ABWF Works at Kiosks at Outbound VCP (miscellanous external railing, cladding etc.)	51	25-May-21 A	05-Mar-22			
A1380A	MJ, Fall Arrest System, Maintenance Access	25	25-Aug-21 A	31-Jan-22			
A4670	Removal of all hoarding after OPT	12	14-Mar-22*	26-Mar-22			
A8810	Removal of TTA	4	28-Mar-22	31-Mar-22			
E&M Works							
	8.1.2.2-Termination & Installation Test of all ODB (029/030)	37	03-Jan-22	17-Feb-22			
	8.1.2.2-Integrate all ODBs into Existing ODB network(027/028) (IB & OB together 24 kiosks)	28	18-Feb-22	22-Mar-22			
A1310-54	8.1.2A-Relocation of Outbound VID and VTS Equipment	11	04-Oct-21 A	14-Jan-22			
A1310-60	8.1.3 - System Configuration of AVCSS	38	24-Dec-21 A	18-Feb-22			
A1310-70	8.1.4-Complete Training, SAT (exclude ODB) (12 AVCSS Kiosks at 029/030)	53	19-Feb-22	26-Apr-22			_
A1310-80	8.1.5-Preparation of O&M Manual and Spare Parts	60	19-Feb-22	05-May-22			
	8.1.7-D1-TTA for OPT (029/030) 8.1.7-OPT (029/030)	27	03-Jan-22 19-Feb-22	05-Feb-22 20-Mar-22			
A1320-20	8.1.17A - Migration/Integration with existing AVCSS (Existing 72 Kiosks+24 Phase 2 Kiosks)	12	21-Mar-22	02-Apr-22			
A1320-40	8.1.6-T&C maintenance Services	225	04-Apr-22	06-Jan-23			
A1390	E&M Works at Roof	17	03-Aug-21 A	21-Jan-22			
A8380	Update and modification of District Cooling System (DCS) (incl. water balancing for new kiosks and calibration works)	63	01-Nov-21 A	19-Mar-22			
SPTI Stage 3	3B						
A8660	Rigid Pavement Type A	12	17-Aug-21 A	15-Jan-22			
A8670	Kerb & Planter Barrier	12	18-Aug-21 A	15-Jan-22			
A8690	Flexible Pavement Type C (incl. SOL353)	12	18-Sep-21 A	15-Jan-22			
A8710	Footpath Paving Block	12	21-Sep-21 A	15-Jan-22			
A8720	Canopy Lighting and E&M Works	12	03-Nov-21 A	15-Jan-22			
Pump House	e for Landscape (2)						
A2910	Acceptance of the Design for Pump House	5	16-Aug-20 A	07-Jan-22			
A2990	Final Connection and T&C	12	01-Nov-21 A	15-Jan-22			
A6440	WSD Inspection & Approval, Final Connection	16	03-Jan-22	18-Jan-22			
Substation F	Paving Unit						
A8820	Substation: Modification of existing MH/drawpit covers, construct U-channel and catch pit and conncection	24	13-Nov-21 A	29-Jan-22			
Base	line Critical				DATED WORKS PROGRAMME	Date	F
	al Work \diamond \diamond Baseline Milestone					09-Nov-21	Revised Works Pro
				FUR PHA	ASE 2 AND OTHER WORKS, HKZMB		Revised Works Pro
Rem	aining Work Milestone				Page 2 of 3		•

As of 03-Jan-22									
		Mar		Apr					
				, ().					
		_							
Revision		Checked	Approv	ved					
ogramme I	for Phase 2	ZJ ZJ							
ogramme f	for Phase 2	ZJ							

tivity ID	Activity Name	Remaining Duration	Start	Finish	2021		202
		Duration			Dec	Jan	Feb
A8830	Substation: Site formation for Pavement Works	24	20-Dec-21 A	29-Jan-22			
A8840	Substation: Pavement Works (KP1 & K1) (Paving Unit)	25	28-Dec-21 A	31-Jan-22			
Irrigation	System (Southern Portion)					 	
Irrigation	System at Southern Portion						
A7910	Irrigaton Pipe Laying (incl. install sprinklers and QCV)	10	02-Jan-21 A	13-Jan-22			
A7930	T&C	14	14-Jan-22	29-Jan-22			
Irrigation	System (Water Point)						
A7160	T&C	24	04-Oct-21 A	29-Jan-22			
Completio	on of Section 5						
A7490	Section 5: Remaining Works (730 + 12 days)	0		31-Mar-22*	♦		
SECTION	I 6: ESTABLISHMENT WORKS						
A3550	Establishment Works	339	08-Dec-21 A	07-Dec-22			1


Baseline Critical		UPDATED WORKS PROGRAMME	Date	Revision	Checked	Approved
Actual Work \diamond \diamond Baseline Mile	astana		09-Nov-21	Revised Works Programme for Phase 2	ZJ	
	estone	FOR PHASE 2 AND OTHER WORKS, HKZMB	06-Jan-22	Revised Works Programme for Phase 2	ZJ	
Remaining Work Milestone		Page 3 of 3		-		

As of 03-J	an-22
Mar	Apr
•	Section

Appendix B

Project Organization Chart

Appendix C

Action and Limit Levels

Action / Limit Levels for Air Quality

Parameters	Action Level	Limit Level
24-hour TSP Level in μg/m³	¹ For baseline level ≤ 200 μg/m ³ , Action level = (baseline level * 1.3 + Limit level)/2; For baseline level > 200 μg/m ³ Action level = Limit level	260 μg/m³
1-hour TSP Level in μg/m ³	² For baseline level \leq 384 µg/m ³ , Action level = (baseline level * 1.3 + Limit level)/2; For baseline level > 384 µg/m ³ , Action level = Limit level	500 μg/m³

Notes:

1. The Action Level for 24-hour TSP Level:

<u>a) AMS 2 = (71.1*1.3 + 260) / 2 = 176 μ g/m³; b) AMS 3C = (56.9*1.3 + 260) / 2 = 167 μ g/m³;</u>

<u>c)</u> AMS 6 = (66.4*1.3 + 260) / 2 = 173 μ g/m³; d) AMS 7B = (82.3*1.3 + 260) / 2 = 183 μ g/m³;

2. The Action Level for 1-hour TSP Level:

<u>a) AMS 2 = (191.5*1.3 + 500) / 2 = 374 μ g/m³; b) AMS 3C = (18.2.2*1.3 + 500) / 2 = 368 μ g/m³;</u>

<u>c)</u> AMS 6 = (169.2*1.3 + 500) / 2 = 360 μ g/m³; d) AMS 7B = (184.2*1.3 + 500) / 2 = 370 μ g/m³;

Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level	
0700 - 1900 hours on normal weekdays	When one documented complaint is received	75 dB(A) *	

Note : If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

* Reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Appendix D

Calibration Certificate of Monitoring Equipment

RECALIBRATION DUE DATE:

June 4, 2022

Certificate of Calibration

			Calibration	Certificati	on Informat	ion		
Cal. Date:	June 4, 202	1	Roots	meter S/N:	438320	Ta:	294	°K
Operator:	Jim Tisch					750.3	mm Hg	
Calibration	Model #:	TE-5025A	Calil	brator S/N:	2456			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run (m3) (m3) 1 1 2 2 3 4			(m3)	(min)	(mm Hg)	(in H2O)	
				1	1.4450	3.2	2.00	
				1	1.0220	6.4	4.00	
	3	5	6	1	0.9070	8.0	5.00	
	4	7	8	1	0.8650	8.8	5.50	
	5 9 10			1	0.7130	12.8	8.00	
			C	Data Tabula				
	Vstd Qstd $\sqrt{\Delta H \left(\frac{Pa}{Pst}\right)}$					Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3) (x-axis) (y-a			is)	Va	(x-axis)	(y-axis)	
	0.9964	0.6896	1.414	47	0.9957	0.6891	0.8853	
	0.9922	0.9708	2.000	chind bon control on the province of the	0.9915	0.9701	1.2519	
	0.9900	1.0915	2.230	58	0.9893	1.0908	1.3997	3
	0.9890 1.1433 2.3460				0.9883	1.1425	1.4680	
	0.9836	1.3795	2.829	and and a subscription of the subscription of	0.9829	1.3786	1.7705	
			2.047			m=	1.28199	
	QSTD	b=	0.005		QA	b=	0.00358	8
		r=	0.999	96		۲= ۲=	0.99996	
				Calculatio				
			/Pstd)(Tstd/Ta	a)	Contraction in the International Contraction of the International Contractional Contractionan Contractional Contract	ΔVol((Pa-Δl	P)/Pa)	
	Qstd=	Vstd/∆Time			wannessan and a second second second	Va/∆Time		
			For subsequ	ent flow ra	te calculation	ns:		
	Qstd=	$1/m\left(\sqrt{\Delta H}\right)$	Pa Pstd / Tstd Ta))-b)	Qa=	1/m ((√∆⊦	I(Та/Ра))-b)	
*******	Standard	Conditions	1					
Tstd:	1				April 1995 And Anna Anna Anna Anna Anna Anna Anna	RECA	LIBRATION	talah mang bertanak kampung bertahat kempung s
Pstd:	And the second s	mm Hg				mana and a		n nor 1000
Ally calibrat		ey or roading (in	n H2O)				nnual recalibrations Part 5	-
	or manomete ter manome						+	
	osolute temp		(IIIII IIg)				Reference Meth	
	arometric pro		Hg)				ended Particulate	
b: intercept	and the second se				the	e atmosphe	re, 9.2.17, page 3	50
o. micricept			1					

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

	· · · · · · · · · · · · · · · · · · ·				D : 1				0 D 04	
Project : Con		//2019/01 - H	ong Kong-Z	huhai-Macac	Bridge			Calibration:		
Location : AN		.						ration Date:		
Brand:		Tisch						Technician:	Ting Chan	
Model:		TE-5170		S/N:	HVS-01					
				COND	ITIONS					
	Se	ea Level Pres	sure (hPa):	1022.3	Cori	rected Pressu	re (mm Hg):	767		
	Temperature (°C):		20.2		Tem	perature (K):	293			
				CALIBRATI	ON ORIFIC	E				
		Make:		Tisch		Qstd Slope:		2.04731		
		Model:		TE-5025A	G	std Intercept:		0.00573		
	Calib	ration Date:		4-Jun-21		Expiry Date:		4-Jun-22		
		S/N:		2456						
				CALIB	RATION					
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	I	IC		LINEAR		
Thate He.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSIC	N	
18	6.80	-8.00	14.800	1.900	50.00	50.62	Slope =	29.7591		
13	6.00	-6.80	12.800	1.766	44.00	44.54	Intercept =	-7.0140		
10	4.90	-5.80	10.700	1.615	40.00	40.50	Corr. coeff.:	0.9954		
7	3.70	-4.60	8.300	1.422	35.00	35.43				
5	1.90	-3.80	5.700	1.178	28.00	28.35				
Calculations										
Qstd = $1/m[S]$	• • •		a))-b]			FLO	OW RATE CH	IART		
IC = I[Sqrt(Pa					60.00					
Qstd = stand										
IC = correcte		onse			50.00					
I = actual cha	•	_								
m = calibrato	•				<u></u> <u>€</u> 40.00					
b = calibrato		-	tion (door K)		e se					
Ta = actual te Pa = actual p	•	•	,		()) 40.00 subouse 30.00					
Tstd = 298 de		ing calibration	r (mm Hy)							
Pstd = 760 m	-				20.00					
For subsequ	0	tion of sam	nler flow:		Actual Chart R Actual Chart R 00.01 Ctart R Actual Chart R Actual					
1/m((I)[Sqrt(2		-			ນ 10.00					
m = sample		.,			<					
b = sampler	-				0.00					
I = chart res						0.000 0.5	00 1.000	1.500	2.000	
	sponse								1	
Tav = daily a	•	erature				01-	dard Flow Rate	(

(By

Wan Ka Ho **Project Consultant**

Report Date: 10/12/2021

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project : Con	tract No. HY	//2019/01 - H	ona Kona-Z	huhai-Macac	Bridge			Date of	Calibration:	9-Dec-21
Location : AN		/2013/01 - 11	ong Kong-z		Dhuge				oration Date:	
Brand:		Tisch							Technician:	
Model:		TE-5170		S/N:	HVS-0	r			rechnician.	Ting Chan
Model.				3/N.	1103-0	2				
				COND	ITIONS	;				
	Se	ea Level Pres	sure (hPa):	1022.3			ected Pressu	re (mm Hg):	767	
	Temperature (°C):			20.2				perature (K):	293	
							·	()		
				CALIBRATI	ON OR	IFICE				
		Make:		Tisch			Qstd Slope:		2.04731	
		Model:		TE-5025A		Qs	td Intercept:		0.00573	
	Calib	ration Date:		4-Jun-21			Expiry Date:		4-Jun-22	
		S/N:		2456						
				CALIB	RATIO	N .				
Plate No.	H2O (L)	H2O (R)	H2O	Qstd			IC		LINEAR	
Thate Her	(in)	(in)	(in)	(m³/min)	(ch	art)	(corrected)		REGRESSIC	ON
18	6.20	-8.00	14.200	1.861	5	0.00	50.62	Slope =	37.4548	
13	5.80	-6.50	12.300	1.731	4	6.00	46.57	Intercept =	-18.1567	
10	4.50	-5.60	10.100	1.569		2.00	42.52	Corr. coeff.=	0.9947	
7	3.60	-4.00	7.600	1.360	3	2.00	32.40			
5	2.20	-3.20	5.400	1.146	2	4.00	24.30			
Calculations										
-	• • •	/Pstd)(Tstd/T	a))-b]				FLC	OW RATE CI	HART	
IC = I[Sqrt(Pa					60.00					
Qstd = stand										
IC = correcte	-					50.00				
I = actual cha	-								1	
m = calibrate	•				jê ,	10.00			/	
b = calibrato		-	tion (dog K)		esponse (IC)					
Pa = actual p	•	during calibra			bor	30.00				
		ing calibration	n (mm ¤g)							
Tstd = 298 d Pstd = 760 m	-				Actual Chart R	20.00				
Pstd = 760 mm Hg For subsequent calculation of sampler flow:										
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						LO.00				
m = sample		,,,oo)]-o)			∣◄					
· ·	r intercept					0.00				
I = chart res	-						.000 0.50	00 1.000	1.500	2.000
Tav = daily a	•	erature					•			
Pav = daily a							Stand	dard Flow Rate	(m³/min)	

Tory

Wan Ka Ho **Project Consultant**

Report Date: 13/9/2021

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project : Cor	ntract No. HY	//2019/01 - H	ong Kong-Z	huhai-Macad	Brid	dge		Date of	Calibration:	9-Dec-21
Location : Al			5 5			0-			ration Date:	
Brand:	Tisch								Technician:	
Model:		TE-5170		S/N:	HVS	S-03				5
				COND		MC				
	Se	ea Level Pres	sure (hPa):	1022.3			cted Pressu	re (mm Hg):	767	
	00		erature (°C):	20.2		Conc		perature (K):	293	
		rompt		20.2			i oniț		200	
				CALIBRATI	ON	ORIFICE				
		Make:		Tisch			Qstd Slope:		2.04731	
		Model:		TE-5025A			td Intercept:		0.00573	
		ration Date:		4-Jun-21			Expiry Date:		4-Jun-22	
		S/N:		2456 CALIB						
	H2O (L)	H2O (R)	H2O	Qstd	RAI		IC		LINEAR	
Plate No.	(in)	(in)	(in)	(m ³ /min)		chart)	(corrected)		REGRESSI	
18	6.80	-7.90	14.700	1.894		50.00	50.63	Slope =	29.9386	511
13	5.80	-5.80	11.600	1.682		46.00	46.58	Intercept =	-5.1209	
10	4.80	-4.80	9.600	1.530		40.00	40.51	Corr. coeff.=	0.9954	
7	3.20	-3.50	6.700	1.277		33.00	33.42			
5	2.50	-2.80	5.300	1.136		28.00	28.35			
Calculation	s:									
_	Sqrt(H2O(Pa		a))-b]				FLO	OW RATE CI	HART	
	Pa/Pstd)(Tstd					60.00				
	dard flow rate					00.00				
	ed chart resp					50.00				
	art response					50.00				
	tor Qstd slope				<u>(</u>)	40.00				
	or Qstd interc	•	tion (dog K)		esponse (IC)	10.00				
	temperature opressure duri	•	· • • /		spor	30.00				
		ing calibratio	n (mm ¤g)					•		
Tstd = 298 deg K Pstd = 760 mm Hg				art	20.00					
For subsequent calculation of sampler flow:										
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)				Actual Chart R	10.00					
m = sampler slope				∣◄						
b = sampler intercept					0.00					
I = chart response						.000 0.50	00 1.000	1.500	2.000	
Tav = daily average temperature						040-0	dord Elou Dota	(m3/m:-)		
Pav = daily average pressure						Stand	dard Flow Rate	(mymn)		

Tory

Wan Ka Ho **Project Consultant**

Report Date: 6/10/2020

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

CALIBRATION REPORT OF WIND METER

Project: Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Date of Calibration: 28-Dec-2021 Location: AMS3C Next Calibration Date: 27-Jun-2022 Technician: Ting Chan **Global Water** Brand: GL500-7-2 Model: Anemometer Brand: Smart Sensor Serial No: H0423689 Model: AR816 Procedures: 1. Wind Still Test: The wind speed sensor was held by hand until stabilized. 2. Wind Speed Test: The wind meter was calibrated in-situ and compared with the Anemometer. 3. Wind Direction Test: The wind meter was calibrated in-situ and compared with a marine compass from four directions.

Wind Still Test:

Wind Speed (m/s)
0.00

Wind Speed Test:

Global Water (m/s)	Anemometer (m/s)
1.8	1.8
2.6	2.5
4.2	4.3

Wind Direction Test:

	Marine Compass (o)
0	0
113	112
254	254
286	285

TORY

Report Date: 29/12/2021

Wan Ka Ho Project Consultant

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 940891CA211483

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description	: Laser dust monitor
Manufacturer	: SIBATA
Model No.	: LD-5R
Serial No.	: 892186
Specification Limit	: NA
Next Calibration Date	: 02-Jun-2022

Laboratory Information

Description	: 1. Balance	2. TSP high volume air sampler
Equipment ID. / Seri	al no. : 1. C-065-9	2. 4350
Date of Calibration	: 03-Jun-2021	Ambient Temperature : 25 ± 10 °C
Calibration Location	: General Chemical La	boratory of FTS and Ma Wan A1 Site Boundary
Method Used	: By direct comparison	the weight of dust particle trapped in a filter paper using high
	volume sampler (TSF	P method) for a certain period, with the reading of the UUT. They
	should be placed at t	he same location and powered on and off at the same time.

Calibration Results :

Reference concentration (mg/m ³)	Total count for 1 hour	CPM (Count per minute)
0.0569	2147	35.78
0.0675	2299	38.32
0.1122	2675	44.58

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

- 2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.001994
- 3. Correlation coefficient (r): 0.9948

Checked by :	Date : 23-6-2021 Certified by : 07 Jun Date : 30-6-2021
CA-R-297 (22/07/2009)	Leung Kwok Tai (Assistant Manager)

** End of Report **

Report no.: 940891CA211924(2)A

Page 1 of 1

Hong Kong

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description	: Laser dust monitor
Manufacturer	: SIBATA
Model No.	: LD-5R
Serial No.	: 892187
Specification Limit	: NA
Next Calibration Date	: 11-Jul-2022

Laboratory Information

Description	: 1. Balance	2. TSP high volume air sampler
Equipment ID. / Seri	al no.: 1. C-065-9	2. 4350
Date of Calibration	: 12-Jul-2021	Ambient Temperature : 25 ± 10 °C
Calibration Location	: General Chemical La	aboratory of FTS and Ma Wan A1 Site Boundary
Method Used	: By direct comparisor	n the weight of dust particle trapped in a filter paper using high
	volume sampler (TS	P method) for a certain period, with the reading of the UUT. They
	should be placed at	the same location and powered on and off at the same time.

Calibration Results :

Reference concentration (mg/m ³)	Total count for 1 hour	CPM (Count per minute)
0.0424	1512	25.20
0.0194	1041	17.35
0.0230	1090	18.17

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

- 2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.001398
- 3. Correlation coefficient (r): 0.9987
- 4. This is to supersede the previous report no. 940891CA211924(2).

Checked by :	_Date :	<u>3-9-2021</u> Certified by: <u>k J. Journal</u> Date: <u>6-9-7071</u>
CA-R-297 (22/07/2009)		Leung Kwok Tai (Assistant Manager)
		** End of Report **

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 940891CA211924(3)A

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description	: Laser dust monitor
Manufacturer	: SIBATA
Model No.	: LD-5R
Serial No.	: 892189
Specification Limit	: NA
Next Calibration Date	: 11-Jul-2022

Laboratory Information

Description : 1. Balance	2. TSP high volume air sampler
Equipment ID. / Serial no. : 1. C-065-9	2. 4350
Date of Calibration : 12-Jul-2021	Ambient Temperature : 25 ± 10 °C
Calibration Location : General Chemical La	aboratory of FTS and Ma Wan A1 Site Boundary
Method Used : By direct comparisor	n the weight of dust particle trapped in a filter paper using high
volume sampler (TS	P method) for a certain period, with the reading of the UUT. They
should be placed at	the same location and powered on and off at the same time.

Calibration Results :

Reference concentration (mg/m ³)	Total count for 1 hour	CPM (Count per minute)
0.0424	1498	24.97
0.0194	1052	17.53
0.0230	1088	18.13

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.001400

3. Correlation coefficient (r): 0.9973

4. This is to supersede the previous report no. 940891CA211924(3).

Checked by :	_ Date :_	3-9-2021	_ Certified by :_	KJ. Jourie	_ Date : <u>6-9-</u> 2	M
CA-R-297 (22/07/2009)			Leung	g Kwok Tai (Assist	ant Manager)	4.19

** End of Report **

20±2 °C

<80% R.H.

:

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 1 of 1

Report no.: 212769CA211755(1)

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Address : Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. **Project : Calibration Services**

Details of Unit Under Test, UUT

Description

: Sound Level Meter

Manufacturer	•	Casella		
		Meter	Microphone	Preamplifier
Model No.		CEL-63X	CE-251	CEL-495
Serial No.		1488302	02795	003538
Equipment ID	0	N-30		
Next Calibration Date	:	25-Jul-2022		
Specification Limit	:	EN 61672-1: 2003 Class	; 1	

Laboratory Information

Details of Reference Equipment -

Description	:	B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)
Equipment ID.	:	R-108-1

Date of Calibration	:	26-Jul-2021		
Calibration Location	:	Calibration Laboratory of FTS	Ambient Temperature	:
Method Used	:	By direct comparison	Relative Humidity	:

Calibration Results :

Parameters		Mean Value (dB)	Specification Limit(Limit(dB)
	4000Hz	1.2	2.6	to	-0.6
	2000Hz	1.3	2.8	to	-0.4
A woigthing	1000Hz	0.0	1.1	to	-1.1
A-weigthing frequency response	500Hz	-3.3	-1.8	to	-4.6
	250Hz	-8.7	-7.2	to	-10.0
	125Hz	-16.1	-14.6	to	-17.6
	63Hz	-26.2	-24.7	to	-27.7
	31.5Hz	-39.2	-37.4	to	-41.4
Differential level	94dB-104dB	0.3		± 0.6	5
linearity	104dB-114dB	-0.3		± 0.6	6

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The expanded uncertainty is 0.3 dB with a coverage factor of 2 at a confidence level of 95%.
- 4. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast
- 5. The UUT does comply with EN 61672-1: 2003 Class 1 sound level meter for the above measurement.
- 6. The values given in this Calibration Certificate only relate to unit under test and the values measured at the time of the test. Any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by : Date	: <u>30-7-202</u> Certified by :	Kili Tenne Date: 30-7-2021
CA-R-297 (22/07/2009)	Leung	y Kwok Tai (Assistant Manager)
	** End of Report *	**

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

20±2 °C <80% R.H.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 1 of 1

Report no.: 212769CA212069

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Address : Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. Project : Calibration Services

Details of Unit Under Test, UUT

Description

: Sound Level Meter

cardo and the state of the state states and				
Manufacturer	:	Casella		
		Meter	Microphone	Preamplifier
Model No.	:	CEL-63X	CE-251	CEL-495
Serial No.	:	1488303	02849	0043415
Equipment ID	:	N/A		
Next Calibration Date	:	25-Aug-2022		
Specification Limit	:	EN 61672-1: 2003 Class	; 1	

Laboratory Information

Details of Reference Equipment -

Description	:	B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)
Equipment ID.	;	R-108-1

Date of Calibration	:	26-Aug-2021		
Calibration Location	:	Calibration Laboratory of FTS	Ambient Temperature	į
Method Used	:	By direct comparison	Relative Humidity	:

Calibration Results :

Parameters		Mean Value (dB)	Specific	ation	Limit(dB)
	4000Hz	1.4	2.6	to	-0.6
	2000Hz	1.3	2.8	to	-0.4
A weigthing	1000Hz	0.0	1.1	to	-1.1
A-weigthing frequency response	500Hz	-3.4	-1.8	to	-4.6
	250Hz	-8.8	-7.2	to	-10.0
	125Hz	-16.2	-14.6	to	-17.6
	63Hz	-26.3	-24.7	to	-27.7
	31.5Hz	-39.0	-37.4	to	-41.4
Differential level	94dB-104dB	0.3		± 0.6	3
linearity	104dB-114dB	-0.3	± 0.6		6

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The expanded uncertainty is 0.3 dB with a coverage factor of 2 at a confidence level of 95%.
- 4. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast
- 5. The UUT does comply with EN 61672-1: 2003 Class 1 sound level meter for the above measurement.
- 6. The values given in this Calibration Certificate only relate to unit under test and the values measured at the time of the test. Any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by :	Date : <u>27 - 8 - 2021</u> Certified by : <u>KT. Jeune</u> Date : <u>27 - 8 - 20</u>	21
CA-R-297 (22/07/2009)	Leung Kwok Tai (Assistant Manager)	
	** End of Report **	

Page 1 of 1

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 212769CA211664

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client : Fugro Technical Services Ltd. Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description		: Sound Calibrator
Manufacturer		: Casella (Model CEL-120/1)
Serial No.		: 5230758
Equipment ID		: N/A
Next Calibration Date	:	15-Jul-2022
Specification Limit	:	EN 60942: 2003 Class 1
Equipment ID Next Calibration Date	:	: N/A 15-Jul-2022

Laboratory Information

Details of Calibration Equipment

Description :	Reference Sound level meter	eference Sound level meter				
Equipment ID. :	R-119-2					
Date of Calibration : 16-Jul-2021						
Calibration Location :	Calibration Laboratory of FTS	Ambient Temperature : 20±2 °C				
Method Used :	By direct comparison	Relative Humidity : <80% R.H.				

Calibration Results :

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)	
94dB	-0.2 dB	±0.4dB	
114dB	-0.2 dB	±0.40D	

Remarks :

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The expanded uncertainty is 0.3 dB with a coverage factor of 2 at a confidence level of 95%.
- 4. The unit under test complies with the specification limit.
- 5. The values given in this Calibration Certificate only relate to the unit-under-test and the values measured at the time of the test. Any uncertainties quoted will not include allowances for the environmental changes, variation and shock during transportation, or the capability of any other laboratory to repeat the measurement.

Checked by :	Com	_ Date :_	20-7-202	Certified by :	K.T. Lung	Date : 20-7-20-71
CA-R-297 (22/07/20	009)		, ,	Leung	g Kwok Tai (Assist	tant Manager)

** End of Report **

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 212769CA211553(1)

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Page 1 of 1

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description		: Sound Calibrator	
Manufacturer		: Casella (Model CEL-12)	C/1)
Serial No.		: 5230950	
Equipment ID		: N/A	
Next Calibration Date	:	05-Jul-2022	
Specification Limit	:	EN 60942: 2003 Class 1	

Laboratory Information

Details of Calibration Equipment

Description	:	Reference Sound level meter		
Equipment ID.	:	R-119-2		
Date of Calibration :		06-Jul-2021		
Calibration Location :		Calibration Laboratory of FTS		
Method Used	:	By direct comparison		

Ambient Temperature : 20±2 °C Relative Humidity : <80% R.H.

Calibration Results :

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)
94dB	-0.4 dB	±0.4dB
114dB	-0.3 dB	±0.40D

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The unit under test complies with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the unit-under-test and the values measured at the time of the test. Any uncertainties quoted will not include allowances for the environmental changes, variation and shock during transportation, or the capability of any other laboratory to repeat the measurement.

Checked by :	Lillion Date: 7-7-2021 Certified by: KJ. Joung Date: 7-7-2071	
CA-R-297 (22/07/2009)	Leung Kwok Tai (Assistant Manager)	
	** End of Report **	

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 212769CA211337

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	:	Anemometer
Manufacturer	:	Smart Sensor
Model No.	:	AR816
Serial No.	:	H0423689
Equipment ID.	:	WS-03
Next Calibration Date	:	15-Jun-2022

Laboratory Information

Details of Reference Equipment –							
Description :	Reference Anemometer						
Equipment ID.:	R-101-4						
Date of Calibration :	16-Jun-2021	Ambient Temperature	:	22 °C			
Calibration Location. : Calibration Laboratory of FTS							
Method Used : R-C-279							

Calibration Results :

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
1.99	2.0	0.0
4.00	4.0	0.0
6.00	5.9	-0.1
8.00	7.5	-0.5
10.01	9.0	-1.0

Remark :

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The reported readings in this calibration are an average from 10 trials.

Checked by :	Killiam	Date :	22-6-2021		& J. Loung Date : 22-6-2021
CA-R-297 (22/07/200	9)			Leui	ng Kwok Tai (Assistant Manager)

** End of Report **

Appendix E

Environmental Monitoring Schedule

Project: <u>Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing</u> <u>Facilities – Phase 2 and Other Works</u>

Impact Monitoring Schedule (February 2022)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
		1	2	3	4	5 Dust Monitoring
6	7	8	9	10	11 Dust Monitoring Noise Monitoring	12
13	14	15	16	17 Dust Monitoring Noise Monitoring	18	19
20	21	22	23 Dust Monitoring Noise Monitoring	24	25	26
27	28					

Remarks

1. Dust Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days

2. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours

3. Dust Monitoring Location: AMS2 (Tung Chung New Development Pier), AMS3C (Ying Tung Estate Market Rooftop) and AMS7C (East Sea Rescue Berth – Airport Fire ContingentThird Runway Site Office)

TUGRO

4. Noise Monitoring Location: NMS2 (Seaview Crescent), NMS3C (Ying Tung Estate Refuse Collection Point)

Project: <u>Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing</u> <u>Facilities – Phase 2 and Other Works</u>

Impact Monitoring Schedule (March 2022)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
		1 Dust Monitoring Noise Monitoring	2	3	4	5
6	7 Dust Monitoring Noise Monitoring	8	9	10.	11	12 Dust Monitoring
13	14	15	16	17	18 Dust Monitoring Noise Monitoring	19
20	21	22	23	24 Dust Monitoring Noise Monitoring	25	26
27	28					

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Dust Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days

3. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours

4. Dust Monitoring Location: AMS2 (Tung Chung New Development Pier), AMS3C (Ying Tung Estate Market Rooftop) and AMS7C (East Sea Rescue Berth – Airport Fire ContingentThird Runway Site Office)

TUGRO

5. Noise Monitoring Location: NMS2 (Seaview Crescent), NMS3C (Ying Tung Estate Refuse Collection Point)

Appendix F

Air Quality Monitoring Results and Construction Noise Monitoring Results

UGRO

1-hour TSP Monitoring Result for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

			1	-hour TSP (µg/m	3)		
Date	Weather	Start	1st	2nd	3rd	Action Level	Limit Level
	Condition	Time	Measurement	Measurement	Measurement	(ug/m ³)	(ug/m ³)
5-Feb-22	Fine	13:49	48	54	47		
11-Feb-22	Fine	13:24	56	65	59	374	500
17-Feb-22	Fine	13:57	68	63	65	574	500
23-Feb-22	Fine	13:50	42	38	38		
		Min		38			
		Max		68			
		Average		54			

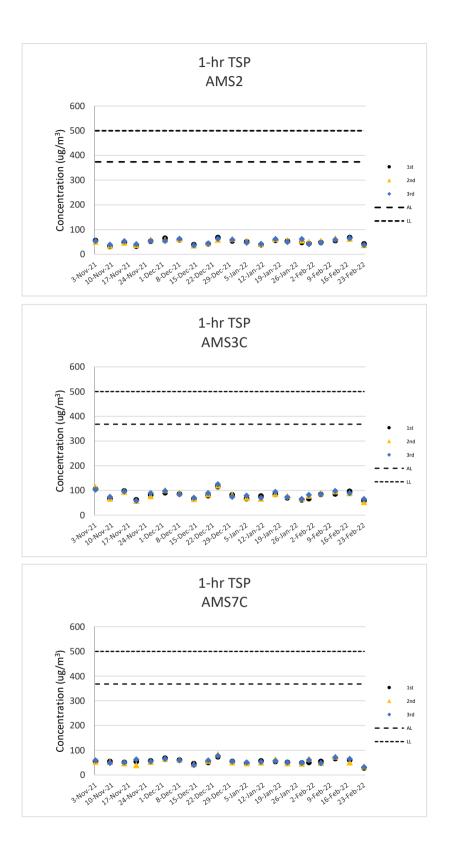
AMS2 - Tung Chung Development Pier

AMS3C - Ying Tung Estate Market Rooftop

			1	-hour TSP (µg/m	3)		
Date	Weather	Start	1st	2nd	3rd	Action Level	Limit Level
	Condition	Time	Measurement	Measurement	Measurement	(ug/m ³)	(ug/m ³)
5-Feb-22	Fine	13:58	84	89	84		
11-Feb-22	Fine	13:06	86	96	98	368	500
17-Feb-22	Fine	13:05	96	89	89	300	500
23-Feb-22	Fine	14:05	58	53	65		
		Min		53			
		Max		98			
		Average		82			

AMS7C - East Sea Rescue Berth – Airport Fire ContingentThird Runway Site Office

			1	-hour TSP (µg/m	3)		
Date	Weather	Start	1st	2nd	3rd	Action Level	Limit Level
	Condition	Time	Measurement	Measurement	Measurement	(ug/m ³)	(ug/m ³)
5-Feb-22	Fine	13:30	55	49	48		
11-Feb-22	Fine	13:49	67	74	72	370	500
17-Feb-22	Fine	13:28	61	51	65	370	500
23-Feb-22	Fine	13:31	29	34	32		
		Min		29			
		Max		74			
		Average		53			


Note:

Underline: Exceedance of Action Level

Underline and Bold: Exceedance of Limit Level

1. Air quality monitoring location AMS7B was temporary suspended, effective from 10 December 2020.

An quality information glocation AMO/D was temporary suspended, enective norm to becember 20.
 According to the email date 11 August 2021, EPD have no comment on the Proposal for Relocation of Monitoring Location AMS 7B, the monitoring location AMS 7B are proposed to be relocated by alternative monitoring location AMS 7C for air quality monitoring.

24-hour TSP Monitoring Result for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

AMS2 - Tung Chung Development Pier

	ng onung i	bevelopinent i												
	Weather	Air	Atmospheric	Filter W	eiaht (a)	Particulate	Sampling		Rate	Average	Total	Conc.	Action	Limit
Start Date		Temperature	Pressure, Pa	T III.CT W	eigin (g)	weight (g)		(m ³ /i	min.)	flow	volume	(ug/m ³)	Level	Level
	Condition	(K)	(mmHg)	Initial	Final	weight (g)	11116(1113)	Initial	Final	(m ³ /min.)	(m ³⁾	(ug/III)	(ug/m ³)	(ug/m^3)
5-Feb-22	Fine	288.4	767.6	2.7652	2.8189	0.0537	24	1.61	1.58	1.59	2295.9	23		
11-Feb-22	Fine	291.8	762.9	2.7528	2.8258	0.0730	24	1.60	1.58	1.59	2287.1	32	176	260
17-Feb-22	Fine	288.8	761.2	2.6743	2.9312	0.1751	24	1.60	1.58	1.59	2291.1	76	170	200
23-Feb-22	Fine	285.3	768.3	2.6846	2.7355	0.0509	24	1.62	1.58	1.60	2301.7	22		
											Min	22		
											Max	76		
											Average	38		

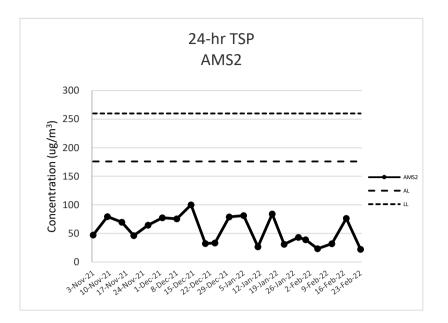
AMS3C - Ying Tung Estate Market Rooftop

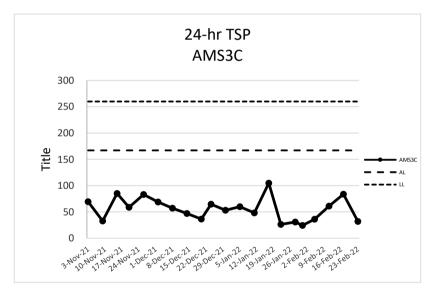
Start Date	Weather	Air Temperature	Atmospheric Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)	Flow (m ³ /r	Rate min.)	Average flow	Total volume	Conc.	Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	weight (g)	11116(1113)	Initial	Final	(m ³ /min.)	(m ³⁾	(ug/m³)	(ug/m^3)	(ug/m^3)
5-Feb-22	Fine	288.4	767.6	2.7700	2.8513	0.0813	24	1.58	1.55	1.56	2252.6	36		
11-Feb-22	Fine	291.8	762.9	2.7632	2.8998	0.1366	24	1.57	1.55	1.56	2245.6	61	167	260
17-Feb-22	Fine	288.8	761.2	2.6707	2.8587	0.1880	24	1.57	1.55	1.56	2248.8	84	107	200
23-Feb-22	Fine	285.3	768.3	2.7002	2.7723	0.0721	24	1.58	1.55	1.57	2257.2	32		
											Min	32		

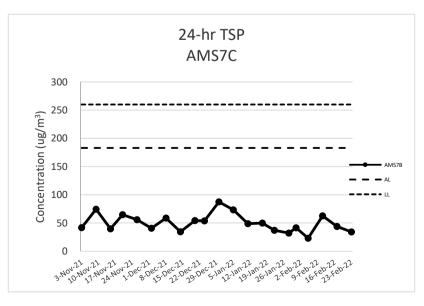
Max Average 84

53

AMS7C - East Sea Rescue Berth – Airport Fire ContingentThird Runway Site Office


Start Date	Weather	Air Temperature	Atmospheric Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)	(m^{2})		Average flow	Total volume	Conc. (ug/m ³)	Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	weigin (g)	Time(Tits)	Initial	Final	(m ³ /min.)	(m ³⁾	(ug/III)	(ug/m ³)	(ug/m ³)
5-Feb-22	Fine	288.4	767.6	2.7639	2.8143	0.0504	24	1.54	1.51	1.52	2191.1	23		
11-Feb-22	Fine	291.8	762.9	2.7561	2.8929	0.1368	24	1.52	1.51	1.52	2182.3	63	183	260
17-Feb-22	Fine	288.8	761.2	2.6743	2.7704	0.0961	24	1.53	1.51	1.52	2186.3	44	105	200
23-Feb-22	Fine	285.3	768.3	2.6816	2.7565	0.0749	24	1.54	1.51	1.53	2196.9	34		
											Min	23		
											Max	63		
											Average	41		

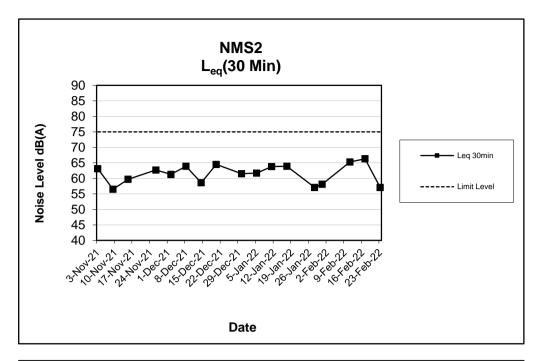

Note:

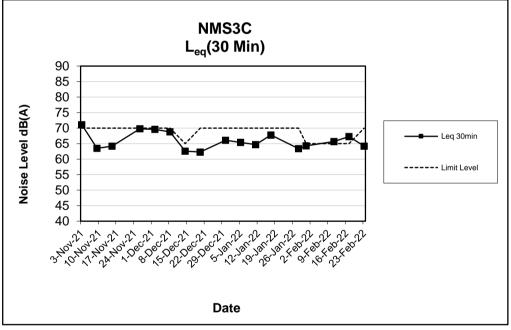

Underline: Exceedance of Action Level

Underline and Bold: Exceedance of Limit Level

 Air quality monitoring location AMS7B was temporary suspended, effective from 10 December 2020.
 According to the email date 11 August 2021, EPD have no comment on the Proposal for Relocation of Monitoring Location AMS 7B, the monitoring location AMS 7B are proposed to be relocated by alternative monitoring location AMS 7C for air quality monitoring.

Noise Impact Monitoring Result for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works


NMS2 - Seaview Crescer	nt
------------------------	----


		L _{eq} 30min	L ₁₀	L ₉₀	Wind Speed		Limit Level
Date	Start Time	dB(A)	dB(A)	dB(A)	(m/s)	Weather	dB(A)
11-Feb-22	14:06	65	68	62	0.7	Fine	75
17-Feb-22	14:14	66	69	63	0.9	Fine	75
23-Feb-22	15:05	57	60	55	1.4	Fine	75
	Max	66					
	Min	57					

NMS3C - Ying Tung Estate Refuse Collection Point

			L ₁₀	L ₉₀	Wind Speed		Limit Level	Corrected
Date	Start Time	L _{ea} 30min dB(A)	dB(A)	dB(A)	(m/s)	Weather	dB(A)	Noise Level*
11-Feb-22	13:03	66	67	63	1.0	Fine	70	
17-Feb-22	13:08	67	71	59	1.3	Fine	65	60.4
23-Feb-22	14:10	64	68	61	1.6	Fine	65	
-	Max	67						
	Min	64						

Note: NMS2: Façade Measurement NMS3C: Free-field measurement (+3dB(A) correction has been applied), reduction to 65dB(A) during school examination periods will be applied. No raining or wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation. *Corrected Noise Level =LOG(10^(Impact Noise Level/10) - 10^(Baseline Noise Level/10)) x 10 Baseline Noise Level = 66.3 dB(A)

Appendix G

Wind Data

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
01/02/2022 00:00	0.4	SWS
01/02/2022 01:00	0.1	NWN
01/02/2022 02:00	0.2	NEE
01/02/2022 03:00	0.0	NEN
01/02/2022 04:00	0.1	NEN
01/02/2022 05:00	0.3	NEE
01/02/2022 06:00	0.6	NEN
01/02/2022 07:00	1.2	N
01/02/2022 08:00	0.3	NEN
01/02/2022 09:00	3.8	NEN
01/02/2022 10:00	2.8	N
01/02/2022 11:00	0.1	N
01/02/2022 12:00	0.0	N
01/02/2022 13:00	3.7	NEN
01/02/2022 14:00	0.1	NEN
01/02/2022 15:00	1.3	NEN
01/02/2022 16:00	0.7	NEN
01/02/2022 17:00	1.2	N
01/02/2022 18:00	1.0	NE
01/02/2022 19:00	0.0	NEN
01/02/2022 20:00	0.6	NEN
01/02/2022 21:00	1.8	NE
01/02/2022 22:00	0.3	NEN
01/02/2022 23:00	1.1	NE
02/02/2022 00:00	2.4	NEN
02/02/2022 01:00	0.0	NEN
02/02/2022 02:00	0.1	NE
02/02/2022 03:00	0.0	NEN
02/02/2022 04:00	0.2	NEN
02/02/2022 05:00	1.5	NE
02/02/2022 06:00	0.1	NE
02/02/2022 07:00	0.0	N
02/02/2022 08:00	0.0	NEN
02/02/2022 09:00	1.1	N
02/02/2022 10:00	0.6	NE
02/02/2022 11:00	0.3	NEN
02/02/2022 12:00	0.6	N
02/02/2022 13:00	1.2	NEN
02/02/2022 14:00	0.9	NE
02/02/2022 15:00	2.3	NE

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
02/02/2022 16:00	1.7	NE
02/02/2022 17:00	0.1	NE
02/02/2022 18:00	0.4	NE
02/02/2022 19:00	0.5	NEE
02/02/2022 20:00	0.6	N
02/02/2022 21:00	0.4	N
02/02/2022 22:00	3.7	N
02/02/2022 23:00	0.5	NEN
03/02/2022 00:00	0.1	NE
03/02/2022 01:00	0.7	NEN
03/02/2022 02:00	1.4	NEN
03/02/2022 03:00	0.2	NE
03/02/2022 04:00	1.7	N
03/02/2022 05:00	0.0	N
03/02/2022 06:00	0.0	NE
03/02/2022 07:00	1.1	NWN
03/02/2022 08:00	3.1	N
03/02/2022 09:00	4.3	NE
03/02/2022 10:00	2.8	NEN
03/02/2022 11:00	2.9	NEN
03/02/2022 12:00	1.0	NEN
03/02/2022 13:00	0.0	NEN
03/02/2022 14:00	0.1	NEN
03/02/2022 15:00	0.0	N
03/02/2022 16:00	0.5	N
03/02/2022 17:00	0.8	N
03/02/2022 18:00	0.0	NEN
03/02/2022 19:00	0.2	N
03/02/2022 20:00	2.2	N
03/02/2022 21:00	2.8	NEN
03/02/2022 22:00	1.5	N
03/02/2022 23:00	2.4	N
04/02/2022 00:00	0.4	NEN
04/02/2022 01:00	2.4	NEN
04/02/2022 02:00	1.0	NEN
04/02/2022 03:00	0.3	NE
04/02/2022 04:00	1.5	N
04/02/2022 05:00	0.2	N
04/02/2022 06:00	0.0	NEN
04/02/2022 07:00	0.7	NE
04/02/2022 08:00	2.3	N

Date	Wind Speed	Wind Direction
04/02/2022 09:00	0.9	NWN
04/02/2022 10:00	2.4	N
04/02/2022 11:00	3.3	NE
04/02/2022 12:00	1.9	NEN
04/02/2022 13:00	6.8	N
04/02/2022 14:00	2.5	NE
04/02/2022 15:00	7.6	NEN
04/02/2022 16:00	4.1	NEN
04/02/2022 17:00	2.0	N
04/02/2022 18:00	0.8	NWN
04/02/2022 19:00	2.8	NEN
04/02/2022 20:00	7.2	N
04/02/2022 21:00	6.5	NEN
04/02/2022 22:00	2.7	NE
04/02/2022 23:00	10.2	NEN
05/02/2022 00:00	7.6	NE
05/02/2022 01:00	0.2	N
05/02/2022 02:00	0.5	NEN
05/02/2022 03:00	3.1	NEN
05/02/2022 04:00	1.3	NEN
05/02/2022 05:00	3.1	N
05/02/2022 06:00	0.0	NEN
05/02/2022 07:00	1.5	N
05/02/2022 08:00	0.6	NEN
05/02/2022 09:00	3.1	NEN
05/02/2022 10:00	7.6	N
05/02/2022 11:00	2.7	NEN
05/02/2022 12:00	5.7	N
05/02/2022 13:00	4.7	N
05/02/2022 14:00	7.9	NE
05/02/2022 15:00	1.1	N
05/02/2022 16:00	1.2	N
05/02/2022 17:00	1.5	N
05/02/2022 18:00	1.4	NE
05/02/2022 19:00	2.4	NEN
05/02/2022 20:00	0.8	N
05/02/2022 21:00	0.2	NEE
05/02/2022 22:00	1.9	NEN
05/02/2022 23:00	0.1	NEN
06/02/2022 00:00	0.3	NE
06/02/2022 01:00	0.2	E

Date	Wind Speed	Wind Direction
06/02/2022 02:00	1.8	NEN
06/02/2022 03:00	0.7	N
06/02/2022 04:00	2.1	N
06/02/2022 05:00	0.0	NE
06/02/2022 06:00	0.4	N
06/02/2022 07:00	1.4	NEN
06/02/2022 08:00	0.6	NEE
06/02/2022 09:00	2.4	NEN
06/02/2022 10:00	4.0	N
06/02/2022 11:00	1.6	NE
06/02/2022 12:00	4.2	NEN
06/02/2022 13:00	3.4	NEE
06/02/2022 14:00	3.1	NE
06/02/2022 15:00	7.2	NE
06/02/2022 16:00	2.1	NEE
06/02/2022 17:00	0.1	NEN
06/02/2022 18:00	0.3	NE
06/02/2022 19:00	9.1	NE
06/02/2022 20:00	0.7	NE
06/02/2022 21:00	0.3	NE
06/02/2022 22:00	0.0	NEE
06/02/2022 23:00	1.8	N
07/02/2022 00:00	0.2	NE
07/02/2022 01:00	4.0	NE
07/02/2022 02:00	0.0	NEN
07/02/2022 03:00	9.3	NEN
07/02/2022 04:00	0.2	NE
07/02/2022 05:00	4.8	NE
07/02/2022 06:00	0.0	SE
07/02/2022 07:00	0.2	E
07/02/2022 08:00	0.4	NE
07/02/2022 09:00	0.7	NEN
07/02/2022 10:00	1.3	NEN
07/02/2022 11:00	6.9	NE
07/02/2022 12:00	5.1	N
07/02/2022 13:00	3.5	NE
07/02/2022 14:00	0.0	NE
07/02/2022 15:00	0.2	N
07/02/2022 16:00	2.6	N
07/02/2022 17:00	1.6	NEN
07/02/2022 18:00	0.0	N

Date	Wind Speed	Wind Direction
07/02/2022 19:00	0.7	N
07/02/2022 20:00	0.6	NEN
07/02/2022 21:00	0.0	NEN
07/02/2022 22:00	0.8	N
07/02/2022 23:00	0.1	NEN
08/02/2022 00:00	0.2	NEN
08/02/2022 01:00	1.7	N
08/02/2022 02:00	0.1	NWN
08/02/2022 03:00	1.1	N
08/02/2022 04:00	0.0	NE
08/02/2022 05:00	0.2	N
08/02/2022 06:00	0.0	N
08/02/2022 07:00	10.9	NE
08/02/2022 08:00	1.4	N
08/02/2022 09:00	4.0	NEN
08/02/2022 10:00	5.1	N
08/02/2022 11:00	3.5	NE
08/02/2022 12:00	2.1	N
08/02/2022 13:00	7.3	N
08/02/2022 14:00	4.1	NEN
08/02/2022 15:00	2.6	N
08/02/2022 16:00	0.0	N
08/02/2022 17:00	0.1	NEN
08/02/2022 18:00	0.0	NE
08/02/2022 19:00	0.2	NE
08/02/2022 20:00	0.1	NE
08/02/2022 21:00	0.5	NE
08/02/2022 22:00	0.9	NEN
08/02/2022 23:00	2.5	N
09/02/2022 00:00	0.2	NEN
09/02/2022 01:00	0.0	NEN
09/02/2022 02:00	2.9	N
09/02/2022 03:00	0.1	NEN
09/02/2022 04:00	4.0	N
09/02/2022 05:00	1.1	NE
09/02/2022 06:00	3.0	NEN
09/02/2022 07:00	0.1	NWN
09/02/2022 08:00	2.5	N
09/02/2022 09:00	0.1	N
09/02/2022 10:00	0.0	NE
09/02/2022 11:00	0.0	NWN

Date	Wind Speed	Wind Direction
09/02/2022 12:00	0.1	NW
09/02/2022 13:00	0.1	NWW
09/02/2022 14:00	0.2	NWN
09/02/2022 15:00	0.1	NW
09/02/2022 16:00	0.1	NW
09/02/2022 17:00	0.1	NWN
09/02/2022 18:00	0.1	W
09/02/2022 19:00	0.0	SW
09/02/2022 20:00	0.0	SW
09/02/2022 21:00	0.1	W
09/02/2022 22:00	0.1	N
09/02/2022 23:00	0.1	N
10/02/2022 00:00	0.0	NEN
10/02/2022 01:00	0.0	NWN
10/02/2022 02:00	0.8	N
10/02/2022 03:00	0.5	NEE
10/02/2022 04:00	2.4	NE
10/02/2022 05:00	0.0	NEN
10/02/2022 06:00	0.0	NWN
10/02/2022 07:00	0.2	N
10/02/2022 08:00	0.9	N
10/02/2022 09:00	0.6	NE
10/02/2022 10:00	4.5	NEN
10/02/2022 11:00	3.3	NE
10/02/2022 12:00	2.0	NWN
10/02/2022 13:00	0.2	N
10/02/2022 14:00	2.6	NE
10/02/2022 15:00	3.9	NE
10/02/2022 16:00	0.1	NEE
10/02/2022 17:00	0.0	SWW
10/02/2022 18:00	0.1	N
10/02/2022 19:00	1.0	NEN
10/02/2022 20:00	1.8	NE
10/02/2022 21:00	0.0	NE
10/02/2022 22:00	0.0	NEE
10/02/2022 23:00	0.4	NEN
11/02/2022 00:00	2.1	NEN
11/02/2022 01:00	5.2	NE
11/02/2022 02:00	3.4	N
11/02/2022 03:00	6.8	NE
11/02/2022 04:00	0.1	NEN

Wind Speed	Wind Direction
0.0	NWW
0.0	W
0.1	N
0.1	NEN
0.2	NW
0.3	NWW
0.3	NWN
4.3	NWN
0.2	SWS
1.1	SW
0.2	W
0.9	SWW
1.2	NW
0.1	NEE
	NEN
	N
	N
	NEN
	NEN
	NEN
	NE
	NEN
	NEN
	NEN
	N
	NEN
	NEN
	N
	NWW
	NW
	SW
	SWW
	S
	SW
	SWW
	NW
	SWW
	0.0 0.0 0.1 0.1 0.2 0.3 0.3 4.3 0.2 1.1 0.2 1.1 0.2 0.9 1.2

Date	Wind Speed	Wind Direction
12/02/2022 22:00	0.1	SW
12/02/2022 23:00	0.0	W
13/02/2022 00:00	0.1	SES
13/02/2022 01:00	0.1	NE
13/02/2022 02:00	0.0	N
13/02/2022 03:00	0.0	N
13/02/2022 04:00	0.0	NEN
13/02/2022 05:00	1.1	SW
13/02/2022 06:00	0.1	SWS
13/02/2022 07:00	0.1	NWW
13/02/2022 08:00	0.1	W
13/02/2022 09:00	0.1	W
13/02/2022 10:00	0.0	SWW
13/02/2022 11:00	0.0	NWW
13/02/2022 12:00	1.8	NEN
13/02/2022 13:00	0.0	N
13/02/2022 14:00	0.0	NEN
13/02/2022 15:00	0.2	NE
13/02/2022 16:00	1.6	NWN
13/02/2022 17:00	0.2	NEN
13/02/2022 18:00	0.8	NE
13/02/2022 19:00	0.6	NEN
13/02/2022 20:00	0.1	NEE
13/02/2022 21:00	0.9	N
13/02/2022 22:00	1.0	NE
13/02/2022 23:00	0.1	NE
14/02/2022 00:00	0.2	NEN
14/02/2022 01:00	0.0	NE
14/02/2022 02:00	0.1	NEN
14/02/2022 03:00	0.1	N
14/02/2022 04:00	0.0	NEN
14/02/2022 05:00	4.4	NEN
14/02/2022 06:00	2.8	N
14/02/2022 07:00	0.2	NE
14/02/2022 08:00	4.4	NEN
14/02/2022 09:00	1.4	NEN
14/02/2022 10:00	4.1	NEN
14/02/2022 11:00	7.8	NEN
14/02/2022 12:00	3.3	N
14/02/2022 13:00	0.1	SWW
14/02/2022 14:00	6.0	W

Date	Wind Speed	Wind Direction
14/02/2022 15:00	0.1	SW
14/02/2022 16:00	4.2	SWW
14/02/2022 17:00	0.1	W
14/02/2022 18:00	2.8	SES
14/02/2022 19:00	0.1	SES
14/02/2022 20:00	0.1	NEE
14/02/2022 21:00	0.0	NEE
14/02/2022 22:00	0.1	NE
14/02/2022 23:00	0.0	NE
15/02/2022 00:00	0.1	NE
15/02/2022 01:00	0.1	NEE
15/02/2022 02:00	0.0	N
15/02/2022 03:00	1.1	NE
15/02/2022 04:00	0.0	NEE
15/02/2022 05:00	0.0	NEN
15/02/2022 06:00	0.2	NE
15/02/2022 07:00	2.9	NE
15/02/2022 08:00	1.7	NE
15/02/2022 09:00	0.2	N
15/02/2022 10:00	0.9	NEN
15/02/2022 11:00	0.2	NEN
15/02/2022 12:00	0.6	NWW
15/02/2022 13:00	0.0	NW
15/02/2022 14:00	0.2	NWW
15/02/2022 15:00	1.4	SW
15/02/2022 16:00	0.5	SWW
15/02/2022 17:00	0.1	W
15/02/2022 18:00	1.4	SES
15/02/2022 19:00	0.1	S
15/02/2022 20:00	0.1	NEN
15/02/2022 21:00	0.1	NE
15/02/2022 22:00	0.0	NEE
15/02/2022 23:00	0.0	NW
16/02/2022 00:00	0.2	NEE
16/02/2022 01:00	0.0	NE
16/02/2022 02:00	0.0	NE
16/02/2022 03:00	0.0	N
16/02/2022 04:00	0.2	NE
16/02/2022 05:00	0.0	NWN
16/02/2022 06:00	0.0	NE
16/02/2022 07:00	0.1	NW

Date	Wind Speed	Wind Direction
16/02/2022 08:00	0.0	N
16/02/2022 09:00	0.5	SES
16/02/2022 10:00	0.3	NE
16/02/2022 11:00	4.1	NEE
16/02/2022 12:00	0.0	NE
16/02/2022 13:00	0.1	S
16/02/2022 14:00	1.5	NEE
16/02/2022 15:00	0.0	SES
16/02/2022 16:00	1.3	SE
16/02/2022 17:00	0.1	NEE
16/02/2022 18:00	0.1	NE
16/02/2022 19:00	0.0	NE
16/02/2022 20:00	0.8	NE
16/02/2022 21:00	2.4	NEE
16/02/2022 22:00	1.5	NEN
16/02/2022 23:00	13.3	NEN
17/02/2022 00:00	0.1	E
17/02/2022 01:00	6.5	NEE
17/02/2022 02:00	2.0	NEN
17/02/2022 03:00	2.6	NEN
17/02/2022 04:00	0.1	NEN
17/02/2022 05:00	0.1	NE
17/02/2022 06:00	3.4	NE
17/02/2022 07:00	0.9	NE
17/02/2022 08:00	6.1	NE
17/02/2022 09:00	0.0	E
17/02/2022 10:00	1.3	NE
17/02/2022 11:00	3.1	NE
17/02/2022 12:00	3.3	NE
17/02/2022 13:00	8.8	NE
17/02/2022 14:00	0.5	NE
17/02/2022 15:00	3.5	NEN
17/02/2022 16:00	0.1	NEE
17/02/2022 17:00	0.3	NE
17/02/2022 18:00	0.1	NE
17/02/2022 19:00	2.4	NEE
17/02/2022 20:00	0.8	NEN
17/02/2022 21:00	1.8	NE
17/02/2022 22:00	9.4	NEN
17/02/2022 23:00	6.1	NE
18/02/2022 00:00	1.0	N

Date	Wind Speed	Wind Direction
18/02/2022 01:00	0.0	N
18/02/2022 02:00	0.1	NE
18/02/2022 03:00	0.0	NE
18/02/2022 04:00	0.0	NEN
18/02/2022 05:00	0.0	NEE
18/02/2022 06:00	0.0	NE
18/02/2022 07:00	0.1	E
18/02/2022 08:00	0.0	NE
18/02/2022 09:00	1.7	NEE
18/02/2022 10:00	0.0	SE
18/02/2022 11:00	2.3	NE
18/02/2022 12:00	3.3	NE
18/02/2022 13:00	1.3	N
18/02/2022 14:00	5.1	NE
18/02/2022 15:00	6.4	NEE
18/02/2022 16:00	0.4	NE
18/02/2022 17:00	4.5	NE
18/02/2022 18:00	0.9	NEE
18/02/2022 19:00	0.8	NE
18/02/2022 20:00	1.8	NE
18/02/2022 21:00	0.9	NE
18/02/2022 22:00	0.5	NE
18/02/2022 23:00	0.3	NEN
19/02/2022 00:00	0.2	NEE
19/02/2022 01:00	0.8	E
19/02/2022 02:00	0.7	NE
19/02/2022 03:00	1.0	NE
19/02/2022 04:00	0.5	NE
19/02/2022 05:00	4.9	NE
19/02/2022 06:00	0.3	NE
19/02/2022 07:00	1.6	NEN
19/02/2022 08:00	5.7	NEN
19/02/2022 09:00	4.8	N
19/02/2022 10:00	3.4	N
19/02/2022 11:00	8.2	NEN
19/02/2022 12:00	1.9	NEN
19/02/2022 13:00	0.3	NEN
19/02/2022 14:00	5.1	N
19/02/2022 15:00	3.4	NEN
19/02/2022 16:00	0.0	NEN
19/02/2022 17:00	5.3	NEN

Date	Wind Speed	Wind Direction
19/02/2022 18:00	4.3	NEN
19/02/2022 19:00	1.8	NEN
19/02/2022 20:00	0.9	Ν
19/02/2022 21:00	9.1	NEN
19/02/2022 22:00	1.8	NEN
19/02/2022 23:00	3.8	NEN
20/02/2022 00:00	2.9	NEN
20/02/2022 01:00	10.1	NEN
20/02/2022 02:00	2.2	NEN
20/02/2022 03:00	0.0	NEN
20/02/2022 04:00	8.2	NEN
20/02/2022 05:00	9.0	N
20/02/2022 06:00	4.0	NEN
20/02/2022 07:00	5.4	NEN
20/02/2022 08:00	7.0	N
20/02/2022 09:00	5.2	NEN
20/02/2022 10:00	3.6	NEN
20/02/2022 11:00	5.0	N
20/02/2022 12:00	4.5	NEN
20/02/2022 13:00	3.2	N
20/02/2022 14:00	0.0	N
20/02/2022 15:00	3.4	N
20/02/2022 16:00	0.8	NEN
20/02/2022 17:00	1.4	N
20/02/2022 18:00	1.9	NEN
20/02/2022 19:00	0.2	N
20/02/2022 20:00	9.6	NE
20/02/2022 21:00	0.0	NEN
20/02/2022 22:00	1.4	NEN
20/02/2022 23:00	8.1	NEE
21/02/2022 00:00	3.8	NEN
21/02/2022 01:00	3.3	NE
21/02/2022 02:00	1.2	N
21/02/2022 03:00	0.3	NEN
21/02/2022 04:00	6.0	N
21/02/2022 05:00	0.1	N
21/02/2022 06:00	0.1	N
21/02/2022 07:00	0.0	NEN
21/02/2022 08:00	3.1	N
21/02/2022 09:00	4.3	NEN
21/02/2022 10:00	2.4	NE

Date	Wind Speed	Wind Direction
21/02/2022 11:00	2.2	NEN
21/02/2022 12:00	0.2	NEN
21/02/2022 13:00	2.1	NEN
21/02/2022 14:00	0.3	Ν
21/02/2022 15:00	1.1	Ν
21/02/2022 16:00	0.8	Ν
21/02/2022 17:00	0.6	NEN
21/02/2022 18:00	0.4	NEN
21/02/2022 19:00	5.1	NEN
21/02/2022 20:00	6.0	NEN
21/02/2022 21:00	1.0	Ν
21/02/2022 22:00	2.9	N
21/02/2022 23:00	1.9	N
22/02/2022 00:00	1.1	N
22/02/2022 01:00	1.7	N
22/02/2022 02:00	1.6	NEN
22/02/2022 03:00	0.7	NEN
22/02/2022 04:00	1.0	NEE
22/02/2022 05:00	1.5	NEN
22/02/2022 06:00	0.5	NEE
22/02/2022 07:00	0.0	NEN
22/02/2022 08:00	0.0	NEE
22/02/2022 09:00	1.1	NE
22/02/2022 10:00	2.6	NEE
22/02/2022 11:00	2.0	NE
22/02/2022 12:00	0.6	N
22/02/2022 13:00	0.8	NE
22/02/2022 14:00	0.1	NEN
22/02/2022 15:00	0.1	NE
22/02/2022 16:00	0.0	NEN
22/02/2022 17:00	0.6	NEN
22/02/2022 18:00	0.0	N
22/02/2022 19:00	0.4	NEN
22/02/2022 20:00	0.1	N
22/02/2022 21:00	0.5	NEN
22/02/2022 22:00	1.0	N
22/02/2022 23:00	0.6	NEN
23/02/2022 00:00	0.0	NWN
23/02/2022 01:00	1.2	NEN
23/02/2022 02:00	0.7	NW
23/02/2022 03:00	1.7	N

Date	Wind Speed	Wind Direction
23/02/2022 04:00	1.2	Ν
23/02/2022 05:00	0.1	Ν
23/02/2022 06:00	9.8	NEN
23/02/2022 07:00	0.1	NEN
23/02/2022 08:00	1.1	NE
23/02/2022 09:00	3.0	N
23/02/2022 10:00	3.9	N
23/02/2022 11:00	2.7	NEN
23/02/2022 12:00	0.1	NEN
23/02/2022 13:00	1.4	N
23/02/2022 14:00	3.8	NWN
23/02/2022 15:00	2.1	NEN
23/02/2022 16:00	6.1	N
23/02/2022 17:00	0.3	N
23/02/2022 18:00	0.8	NWN
23/02/2022 19:00	2.4	NEN
23/02/2022 20:00	1.2	N
23/02/2022 21:00	3.1	N
23/02/2022 22:00	7.2	NEN
23/02/2022 23:00	1.7	N
24/02/2022 00:00	7.0	N
24/02/2022 01:00	4.6	N
24/02/2022 02:00	4.9	N
24/02/2022 03:00	0.0	NE
24/02/2022 04:00	0.0	NEN
24/02/2022 05:00	0.0	NE
24/02/2022 06:00	0.0	NEN
24/02/2022 07:00	0.3	N
24/02/2022 08:00	0.4	NEN
24/02/2022 09:00	0.2	NE
24/02/2022 10:00	0.5	NE
24/02/2022 11:00	0.1	N
24/02/2022 12:00	0.5	NWN
24/02/2022 13:00	0.3	NWW
24/02/2022 14:00	2.1	NWW
24/02/2022 15:00	6.2	W
24/02/2022 16:00	0.3	SWW
24/02/2022 17:00	0.1	NWN
24/02/2022 18:00	0.2	NW
24/02/2022 19:00	0.1	NEN
24/02/2022 20:00	0.0	NEN

Date	Wind Speed	Wind Direction
24/02/2022 21:00	0.1	SES
24/02/2022 22:00	0.0	SES
24/02/2022 23:00	0.1	SES
25/02/2022 00:00	0.0	SES
25/02/2022 01:00	0.0	SES
25/02/2022 02:00	0.0	SES
25/02/2022 03:00	0.0	SES
25/02/2022 04:00	0.0	E
25/02/2022 05:00	0.0	NE
25/02/2022 06:00	0.1	NE
25/02/2022 07:00	0.0	N
25/02/2022 08:00	0.6	N
25/02/2022 09:00	1.1	N
25/02/2022 10:00	2.0	NE
25/02/2022 11:00	0.8	NE
25/02/2022 12:00	0.2	NEN
25/02/2022 13:00	0.9	SWW
25/02/2022 14:00	1.1	NWW
25/02/2022 15:00	1.0	W
25/02/2022 16:00	1.9	W
25/02/2022 17:00	0.5	W
25/02/2022 18:00	0.0	SW
25/02/2022 19:00	0.1	S
25/02/2022 20:00	0.1	S
25/02/2022 21:00	0.0	S
25/02/2022 22:00	0.0	S
25/02/2022 23:00	0.0	S
26/02/2022 00:00	0.0	S
26/02/2022 01:00	0.0	NE
26/02/2022 02:00	0.1	NE
26/02/2022 03:00	0.0	NE
26/02/2022 04:00	0.0	NE
26/02/2022 05:00	0.0	NE
26/02/2022 06:00	0.1	NE
26/02/2022 07:00	0.0	N
26/02/2022 08:00	0.1	NEN
26/02/2022 09:00	1.2	NEN
26/02/2022 10:00	1.1	NEE
26/02/2022 11:00	0.0	NW
26/02/2022 12:00	0.1	SWW

Date	Wind Speed	Wind Direction
26/02/2022 13:00	1.2	SW
26/02/2022 14:00	1.7	W
26/02/2022 15:00	0.0	SES
26/02/2022 16:00	5.8	SWW
26/02/2022 17:00	1.2	W
26/02/2022 18:00	0.1	SES
26/02/2022 19:00	0.0	SES
26/02/2022 20:00	0.1	SES
26/02/2022 21:00	0.0	SES
26/02/2022 22:00	0.1	SES
26/02/2022 23:00	0.1	SES
27/02/2022 00:00	0.1	SES
27/02/2022 01:00	0.1	SES
27/02/2022 02:00	0.1	SES
27/02/2022 03:00	0.0	SES
27/02/2022 04:00	0.1	SES
27/02/2022 05:00	0.1	SES
27/02/2022 06:00	0.0	SES
27/02/2022 07:00	0.0	SES
27/02/2022 08:00	0.1	NEN
27/02/2022 09:00	0.1	NEN
27/02/2022 10:00	0.0	NWN
27/02/2022 11:00	3.3	W
27/02/2022 12:00	0.5	NW
27/02/2022 13:00	0.3	NWW
27/02/2022 14:00	2.7	NE
27/02/2022 15:00	5.4	NE
27/02/2022 16:00	0.8	SEE
27/02/2022 17:00	0.0	NEE
27/02/2022 18:00	0.0	NEE
27/02/2022 19:00	0.0	NEE
27/02/2022 20:00	0.9	NEN
27/02/2022 21:00	0.1	NE
27/02/2022 22:00	0.1	NE
27/02/2022 23:00	0.0	SEE
28/02/2022 00:00	0.0	NWN
28/02/2022 01:00	0.0	NW
28/02/2022 02:00	1.8	NE
28/02/2022 03:00	0.0	NE
28/02/2022 04:00	1.4	N
28/02/2022 05:00	0.1	NEN

Wind Data for Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works

Date	Wind Speed	Wind Direction
28/02/2022 06:00	0.0	NEN
28/02/2022 07:00	0.0	NEE
28/02/2022 08:00	0.1	NWN
28/02/2022 09:00	0.1	NE
28/02/2022 10:00	0.1	NEE
28/02/2022 11:00	7.1	NE
28/02/2022 12:00	4.8	N
28/02/2022 13:00	0.2	NE
28/02/2022 14:00	0.1	SE
28/02/2022 15:00	0.1	SES
28/02/2022 16:00	0.1	E
28/02/2022 17:00	1.3	NE
28/02/2022 18:00	0.0	SES
28/02/2022 19:00	0.1	NE
28/02/2022 20:00	0.1	NE
28/02/2022 21:00	0.1	NEN
28/02/2022 22:00	0.1	NWN
28/02/2022 23:00	0.0	N
01/03/2022 00:00	0.2	NE

Appendix H

Event and Action Plan

Event / Action Plan for Air Quality

		ACT	ION	
EVENT	ET	IEC	ER	CONTRACTOR
		ACTION	LEVEL	
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	1. Identify source;	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

EVENT		ACT	ION	
	ET	IEC	ER	CONTRACTOR
		LIMIT I	_EVEL	
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event / Action Plan for Construction Noise

		ACTI	ON	
EVENT	ET	IEC	ER	CONTRACTOR
Action Level	 <u>Notify IEC and Contractor;</u> <u>Identify source, investigate</u> <u>the causes of exceedance</u> <u>and propose remedial</u> <u>measures;</u> Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Inform IEC, ER, EPD and <u>Contractor;</u> Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Appendix I

Waste Flow Table

Waste Flov	v Table for Yea	r 2020								
	Actual Quantities of Inert C&D Materials Generated Monthly					Actual	Actual Quantities of Non-inert C&D Wastes Generated Monthly			
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)
2020 Jan	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
2020 Feb	720.34	Nil	720.34	Nil	Nil	Nil	0.335	Nil	Nil	2.23
2020 Mar	11344.57	Nil	10218.92	Nil	1125.65	Nil	0.669	Nil	Nil	8.05
2020 Apr	19649.37	Nil	18670.3	Nil	979.07	Nil	Nil	Nil	Nil	21.64
2020 May	26767.55	Nil	26692.04	Nil	75.51	Nil	2.42	Nil	Nil	196.64
2020 Jun	4628.13	Nil	4198.52	Nil	429.61	Nil	Nil	Nil	Nil	117.19
2020 Jul	4895.66	Nil	3398.41	Nil	1497.25	Nil	Nil	Nil	Nil	30.33
2020 Aug	4971.00	Nil	4774.49	Nil	196.51	Nil	0.418	Nil	Nil	36.91
2020 Sep	1175.26	Nil	736.1	Nil	439.16	Nil	Nil	Nil	Nil	36.16
2020 Oct	3433.83	Nil	Nil	2262.7	1171.13	Nil	Nil	Nil	Nil	32.25
2020 Nov	26481.72	Nil	Nil	24393.64	2088.08	Nil	Nil	Nil	Nil	40.09
2020 Dec	14361.90	Nil	Nil	13468.00	893.90	Nil	Nil	Nil	Nil	39.56
Total	118429.33	0	69409.12	40124.34	8895.87	0	3.842	0	0	561.05

Note:

The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.
 Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Waste Flov	w Table for Yea	r 2021								
	Actual Quantities of Inert C&D Materials Generated Monthly					Actual	Quantities of No	n-inert C&D Was	stes Generated	Monthly
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)
2021 Jan	787.6	0	0	0	787.6	0	0	0	0	18.19
2021 Feb	254.95	0	0	0	254.95	0	0	0	0	154.94
2021 Mar	1899.61	0	0	1720.5	179.11	0	0	0	0	371.73
2021 Apr	4056.27	0	0	0	4056.27	2.13	8.17	0	0	144.08
2021 May	2738.81	0	0	0	2738.81	0.495	0	0	0	31.63
2021 Jun	1009.53	0	0	0	1009.53	0	0	0	0	90.91
2021 Jul	1384.29	0	0	0	1384.29	0	0	0	0	51.69
2021 Aug	340.46	0	0	0	340.46	5.85	0	0	0	42.99
2021 Sep	732.9	0	0	0	732.9	0	0	0	0	70.11
2021 Oct	1023.81	0	0	0	1023.81	0	0	0	0	74.68
2021 Nov	1155.56	0	0	0	1155.56	3.195	0	0	0	121.99
2021 Dec	271.67	0	0	0.00	271.67	0	0	0	0	70.97
Total	15655.46	0	0	1720.5	13934.96	11.665	8.17	0	0	1243.91

Note:

The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.
 Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Waste Flov	w Table for Yea	r 2022								
	Actual Quantities of Inert C&D Materials Generated Monthly					Actual	Quantities of No	n-inert C&D Was	stes Generated	Monthly
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)
2022 Jan	167.72	0	0	0	167.72	0	0	0	0	58.92
2022 Feb	50.85	0	0	0	50.85	0	0	0	0	20.48
2022 Mar										
2022 Apr										
2022 May										
2022 Jun										
2022 Jul										
2022 Aug										
2022 Sep										
2022 Oct										
2022 Nov										
2022 Dec										
Total	218.57	0	0	0	218.57	0	0	0	0	79.40

Note:

The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.
 Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Appendix J

Implementation Status of Environment mitigation Measures (Construction Phase)

UGRO

	EM&A Log Ref.	Recommended Mitigation Measures	Location of the measures	Implementation Status
Air Quali				
S5.5.6.1	A1	1) The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	All construction sites	Implemented
S5.5.6.2	A2	 2) Proper watering of exposed spoil should be undertaken throughout the construction phase: Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones. The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; 	All construction sites	Implemented
S5.5.6.2	A2	 When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials, Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting; Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top. 	All construction sites	Implemented

A Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Location of the measures	Implementation Status
5.6.2	A2	 Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site r part of the construction site where the exposed earth lies 	All construction sites	N/A
.5.6.3	A3	3) The Contractor should undertake proper watering on all exposed spoil (with at least 8 times per day) throughout the construction phase.	All construction sites	Implemented
5.6.4	A4	4) Project Manager to incorporate the controlled measures into the Particular Specification (PS) for the civil work. The PS should also draw the contractor's attention to the relevant latest Practice Notes issued by EPD.	All construction sites	Implemented
.5.6.4	A5	5) Implement regular dust monitoring under EM&A programme during the construction stage.	Selected representative dust monitoring station	Implemented
5.7.1	A6	The following mitigation measures should be adopted to prevent fugitive dust emissions for concrete batching plant; •Loading, unloading, handling, transfer or storage of any dusty materials should be carried out in totally enclosed system; •All dust-laden air or waste gas generated by the process operations should be properly extracted and vented to fabric filtering system to meet the emission limits for TSP; •Vents for all silos and cement/pulverised fuel ash (PFA) weighing scale should be fitted with fabric filtering system; •The materials which may generate airborne dusty emissions should be wetted by water spray system; •All receiving hoppers should be enclosed on three sides up to 3m above unloading point; •All conveyor transfer points should be totally enclosed; •All access and route roads within the premises should be paved and wetted; and •Vehicle cleaning facilities should be provided and used by all concrete trucks before leaving the premises to wash off any dust on the wheels and/or body.	Selected representative dust monitoring station	Implemented
5.2.7	Α7	 The following mitigation measures should be adopted to prevent fugitive dust emissions at barging point: All road surface within the barging facilities will be paved; Dust enclosures will be provided for the loading ramp; Vehicles will be required to pass through designated wheels wash facilities; and Continuous water spray at the loading points. 	All construction sites	Implemented
Constru	iction Noise	(Air borne)		
4.10	N1	 1) Use of good site practices to limit noise emissions by considering the following: •only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; •machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; •plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; •silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; 	All construction sites	Implemented

IA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Location of the measures	Implementation Status
		 mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 		
.4.11	N2	 Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period. 	All construction sites	Implemented
.4.12	N3	3) Install movable noise barriers (typically density@14kg/m acoustic mat or full enclosure close to noisy plants including compressor, generators, saw.	For plant items listed in Appendix 6D of the EIA report at all construction sites	N/A
4.13	N4	4) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed in Appendix 6D of the EIA report at all construction sites	Implemented
4.14	N5	5) Sequencing operation of construction plants where practicable	All construction sites where practicable	Implemented
1	N6	6) Implement a noise monitoring under EM&A programme.	Selected representative noise monitoring station	Implemented
Naste	Managemen	t (Construction Noise)		
	WM1	Construction and Demolition Material The following mitigation measures should be implemented in handling the waste: •Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; •Carry out on-site sorting;	All construction sites	N/A
3.8	WM2	 •Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; •Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; and •Implement an enhanced Waste Management Plan similar to E7WBTC (Works) No. 19/2005 - "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction. •In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation. C&D Waste 	All construction sites	Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Location of the measures	Implementation Status
\$8.2.12- \$8.3.15	WM3	 Chemical Waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD. 	All construction sites	Implemented
S8.3.16	WM4	Sewage •Adequate numbers of portable toilets should be provided for the workers. The portable toilets should be maintained in a state which will not deter the workers from utilizing these portable toilets. Night soil should be collected by licensed collectors regularly.	All construction sites	Implemented
58.3.17– 58.3.19	WM5	 General Refuse General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. 	All construction sites	Partially Implemented

	EM&A Log			Implementation
IA Ref.	Ref.	Recommended Mitigation Measures	Location of the measures	Status
Water	Quality (Cons	struction Phase)		
	W2	Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include: •wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters; •sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided; •storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks; •silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm; •temporary access roads should be surfaced with crushed stone or gravel; •rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities; •measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system; •open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric	All land-based construction sites	Implemented
9.11.1.7		 during rainstorms; •manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers; •discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system; •all vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit; •wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain; •the section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel; •wastewater generated from concreting, plastering, Internal decoration, cleaning work and other similar activities, shall be screened to remove large objects; •vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal; •the contractors shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately; 		
		 waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance; all fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank; and surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system. 		

	EM&A Log			Implementation
EIA Ref.		Recommended Mitigation Measures	Location of the measures	Status
	y (Construction			
	E4	•Watering to reduce dust generation; prevention of siltation of freshwater habitats; Site runoff should be desilted, to reduce the	Seawall, reclamation area	N/A
	LT	potential for suspended sediments, organics and other contaminants to enter streams and standing freshwater		
510.7	E9	•Dolphin vessel monitoring	North Lantau and West	N/A
	Ly		Lantau	Completed on 1 March 2021
Landso	ape & Visual	(Construction Phase)		
14.3.3.3	LV2	 Mitigate both Landscape and Visual Impacts G1. Grass-hydroseed bare soil surface and stock pile areas; G2. Add planting strip and automatic irrigation system if appropriate at some portions of bridge or footbridge to screen bridge and traffic. G3. Providing aesthetic architectural design on related buildings (e.g. similar materials for PCB building facade to Airport buildings, roof planting and subtle materials for other facilities buildings and so on), and the related infrastructure (e.g. parapet planting and transparent cover for elevated footbridges) to provide harmonic atmosphere of the HKBCF. G4. Vegetation reinstatement and upgrading to disturbed areas; G5. Maximizing new tree, shrub and other vegetation planting to compensate tree felled and vegetation removed; G6. Providing planting area around peripheral of HKBCF for tree planting screening effect; G7. Providing salt-tolerant native trees along the planter strip at affected seawall and newly reclaimed coastline; and G8. Reserve of loose natural granite rocks for re-use. Provide new coastline to adopt "natural-look" by means of using armour rocks in the form of natural rock materials and planting strip area accommodating screen buffer to enhance "natural-look" of the new coastline. 	All construction site areas	G6, G8, G9 and V1 were Implemented
514.3.3.3	LV3	Mitigate Visual Impacts V1. Minimize time for construction activities during construction period.	All construction site areas	Implemented
515.2.2	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	All construction sites	Implemented
515.5 –	EM2	1) An Environmental Team needs to be employed as per the EM&A Manual.	All construction sites	Implemented

	EM&A Log			Implementation
EIA Ref.	Ref.	Recommended Mitigation Measures	Location of the measures	Status
S15.6		 Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 		

Appendix K

Weather and Meteorological Conditions during Reporting Month

UGRO

Station: Hong Kong Observatory

	Mean		Air Temperatur	9	Mean Relative	Total
Date	Pressure (hPa)	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Humidity (%)	Rainfall (mm)
	<u>.</u>	*	February 2022	<u>.</u>		•
1	1018.7	15.7	14.3	12.9	84	1.2
2	1018.7	17.0	15.6	14.5	88	1.0
3	1018.7	14.5	13.4	11.7	85	1.0
4	1021.4	18.5	14.4	11.9	69	0.0
5	1023.4	17.7	15.2	13.2	69	0.0
6	1022.0	18.2	16.0	14.6	75	0.0
7	1016.8	17.7	16.4	15.1	85	Trace
8	1018.6	18.1	17.1	15.8	78	Trace
9	1019.1	17.4	16.1	15.3	77	0.0
10	1017.7	18.1	17.0	15.4	81	0.0
11	1017.1	22.0	18.6	16.3	81	0.0
12	1016.0	21.3	18.7	17.0	83	0.0
13	1014.9	18.7	17.2	15.1	86	1.2
14	1017.3	21.3	17.0	14.1	75	1.2
15	1017.8	21.8	17.6	15.8	77	0.0
16	1016.0	18.5	16.9	15.6	77	0.0
17	1014.9	16.9	15.6	15.0	86	4.0
18	1015.4	16.7	15.9	15.2	84	Trace
19	1017.0	15.9	12.4	9.7	92	21.3
20	1020.8	9.8	8.5	8.0	94	43.4
21	1022.1	10.1	8.8	7.5	95	43.3
22	1022.0	12.2	10.7	9.2	96	39.9
23	1024.3	16.2	12.1	9.4	77	11.0
24	1026.2	14.9	12.6	10.7	72	0.0
25	1024.5	20.1	15.3	12.2	70	0.0
26	1021.9	21.4	16.8	13.6	76	0.0
27	1019.6	21.7	17.6	14.8	79	0.0
28	1018.6	22.5	18.9	16.4	70	0.0

Remark: The corresponding weather station at Hong Kong International Airport were unavailable at the time of preparation of this report. Source: Hong Kong Observatory

Appendix L

Cumulative Statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions

UGRO

Environmental Complaints Log

Reference No.	Date of Complaint Received	Received From	Received By	Nature of Complaint	Date of Investigation	Outcome	Date of Reply	

Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project-to- Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project-to- Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Appendix M

Summary of Site Audit in the Reporting Month

Summary of Site Audit in the Reporting Month

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality		NA	
Noise		NA	
Water Quality		NA	
Chemical and Waste		NA	
Management		NA	
Land Contamination		NA	
Permit / Licenses		NA	
Others		NA	

Appendix N

Outstanding Issues and Deficiencies

Summary of Outstanding Issues and Deficiencies in the Reporting Month							
Parameters	Outstanding Issues	Deficiencies					
Air Quality	NA						
Noise	NA						
Water Quality	NA						
Chemical and Waste Management	NA	Any items of deficiencies can be referred to Appendix M .					
Land Contamination	NA						
Landscape and Visual Impact	NA						
Permit / Licenses	NA						
Others	NA						

immary of Outstan a Issues and Deficiencies in the Reporting Month -l : ...

Appendix O

Bi-Monthly Landscape and Visual Audit Checklist

Contract No. HY/2019/01 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works Establishment Inspection Checklist

Date of Site Audit:	2022-02-24	Time of Site Audit:	9:15-15:30
Site Auditor:	Aloysius Wong	Humidity:	65%
Weather Condition:	Fine	Temperature:	9.5°C

		N.A.			
ltem	Description	or	Yes	No	Remarks
		N.O.			
1	Portion A-1				
1.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		
1.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
1.3	Are litter and debris removed?		✓		
1.4	Are planting areas matched with the approved landscape plan?		√		
1.5	Is planting pattern matched with the approved landscape plan?		✓		
1.6	Are planting locations and spacing matched with the approved landscape plan?		✓		
1.7	Are the planting species on site matched with the approved landscape plan?		~		See Observations for TG48
1.8	Are the plants in satisfied condition?		~		See Observations for TG46, TG47 & TG49
1.9	Are tree stakes, guys and ties provided properly for safety and avoid chaffing of bark?		~		
1.10	Are trees or limb overhanging branches pruned?	N.O.			
_					
2	Portion A-2				
2.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		
2.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
2.3	Are litter and debris removed?		✓		
2.4	Are planting areas matched with the approved landscape plan?		~		
2.5	Is planting pattern matched with the approved landscape plan?		~		

Contract No. HY/2019/01 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works Establishment Inspection Checklist

ltem	Description	N.A. or N.O.	Yes	No	Remarks
2.6	Are planting locations and spacing matched with the approved landscape plan?		✓		
2.7	Are the planting species on site matched with the approved landscape plan?		✓		
2.8	Are the plants in satisfied condition?		✓		
3	Portion A-3				
3 .1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		
3.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
3.3	Are litter and debris removed?		✓		
3.4	Are planting areas matched with the approved landscape plan?		✓		
3.5	Is planting pattern matched with the approved landscape plan?		✓		
3.6	Are planting locations and spacing matched with the approved landscape plan?		✓		
3.7	Are the planting species on site matched with the approved landscape plan?		~		
3.8	Are the plants in satisfied condition?		~		
4	Portion B				
4.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		
4.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
4.3	Are litter and debris removed?		✓		
4.4	Are planting areas matched with the approved landscape plan?		✓		
4.5	Is planting pattern matched with the approved landscape plan?		~		
4.6	Are planting locations and spacing matched with the approved landscape plan?		~		
4.7	Are the planting species on site matched with the approved landscape plan?		✓		

Contract No. HY/2019/01 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works Establishment Inspection Checklist

ltem	Description	N.A. or N.O.	Yes	No	Remarks
4.8	Are the plants in satisfied condition?		✓		
4.9	Are tree stakes, guys and ties provided properly for safety and avoid chaffing of bark?		✓		
4.10	Are trees or limb overhanging branches pruned?	N.O.			
5	Portion C				
5.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		~		
5.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
5.3	Are litter and debris removed?		✓		
5.4	Are planting areas matched with the approved landscape plan?		✓		
5.5	Is planting pattern matched with the approved landscape plan?		~		
5.6	Are planting locations and spacing matched with the approved landscape plan?		✓		
5.7	Are the planting species on site matched with the approved landscape plan?		✓		
5.8	Are the plants in satisfied condition?		~		See Observations for TG20 & TG22
5.9	Are tree stakes, guys and ties provided properly for safety and avoid chaffing of bark?		✓		
5.10	Are trees or limb overhanging branches pruned?	N.O.			
6	Portion D				
6.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		
6.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
6.3	Are litter and debris removed?		✓		
6.4	Are planting areas matched with the approved landscape plan?		~		
6.5	Is planting pattern matched with the approved landscape plan?		✓		

Contract No. HY/2019/01 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works Establishment Inspection Checklist

ltem	Description	N.A. or N.O.	Yes	Νο	Remarks
6.6	Are planting locations and spacing matched with the approved landscape plan?		✓		
6.7	Are the planting species on site matched with the approved landscape plan?		✓		
6.8	Are the plants in satisfied condition?		V		See Observations for TG02, TG03, TG05, TG06, TG07, TG12, TG13, TG15, TG16.
6.9	Are tree stakes, guys and ties provided properly for safety and avoid chaffing of bark?		✓		
6.10	Are trees or limb overhanging branches pruned?	N.O.			
7	Portion E				
7.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		
7.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
7.3	Are litter and debris removed?		✓		
7.4	Are planting areas matched with the approved landscape plan?		✓		
7.5	Is planting pattern matched with the approved landscape plan?		√		
7.6	Are planting locations and spacing matched with the approved landscape plan?		~		
7.7	Are the planting species on site matched with the approved landscape plan?		~		
7.8	Are the plants in satisfied condition?		~		See Observations for TG42
7.9	Are tree stakes, guys and ties provided properly for safety and avoid chaffing of bark?		✓		See Observations for TG11
7.10	Are trees or limb overhanging branches pruned?	N.O.			
8	Portion F				
8.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		
8.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			ficen

Contract No. HY/2019/01 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works Establishment Inspection Checklist

ltem	Description	N.A. or N.O.	Yes	No	Remarks
8.3	Are litter and debris removed?		✓		
8.4	Are planting areas matched with the approved landscape plan?		✓		
8.5	Is planting pattern matched with the approved landscape plan?		✓		
8.6	Are planting locations and spacing matched with the approved landscape plan?		✓		
8.7	Are the planting species on site matched with the approved landscape plan?		✓		
8.8	Are the plants in satisfied condition?		✓		
8.9	Are tree stakes, guys and ties provided properly for safety and avoid chaffing of bark?		~		
8.10	Are trees or limb overhanging branches pruned?	N.O.			
9	Portion G				
9.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		
9.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
9.3	Are litter and debris removed?		✓		
9.4	Are planting areas matched with the approved landscape plan?		~		
9.5	Is planting pattern matched with the approved landscape plan?		~		
9.6	Are planting locations and spacing matched with the approved landscape plan?		~		
9.7	Are the planting species on site matched with the approved landscape plan?		✓		
9.8	Are the plants in satisfied condition?		✓		
9.9	Are tree stakes, guys and ties provided properly for safety and avoid chaffing of bark?		✓		
9.10	Are trees or limb overhanging branches pruned?	N.O.			
10	Portion H				
10.1	Is watering provided to all plants to ensure satisfactory growth and health (manual and automatic irrigation)?		✓		

Contract No. HY/2019/01 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Phase 2 and Other Works Establishment Inspection Checklist

ltem	Description	N.A. or N.O.	Yes	No	Remarks
10.2	After exceptional weather conditions, are proper action implemented to replace dead plants, repair damaged plants, bed in all plants that have blown over, firm up all other plants and immediately thereafter, remove dead plants and plant debris from the site?	N.O.			
10.3	Are litter and debris removed?		✓		
10.4	Are planting areas matched with the approved landscape plan?		~		
10.5	Is planting pattern matched with the approved landscape plan?		✓		
10.6	Are planting locations and spacing matched with the approved landscape plan?		✓		
10.7	Are the planting species on site matched with the approved landscape plan?		~		
10.8	Are the plants in satisfied condition?		✓		
10.9	Are tree stakes, guys and ties provided properly for safety and avoid chaffing of bark?		✓		
10.10	Are trees or limb overhanging branches pruned?	N.O.			

Remarks / Recommendations for Contractor Observation and/or Recommended Measures: Portion A-1

- No Particular findings.

Portion A-2

- Area C33 is currently undergoing construction of disease control facilities. Other areas have no particular findings. Portion A-3

- TG46: 2 Grevillea banksii (GB) and 4 Bauhinia variegata (BV) are found dead, replacement is necessary.
- TG47: 20 Grevillea robusta (GR) are found dead/poor conditions, replacement is necessary.
- TG48: 18 Grevillea banksii (GB) are found on site. To be replaced by 18 Plumeria rubra (PR).
- TG49: 1 Grevillea robusta (GR) is found dead, replacement is necessary.

Portion B

- No particular findings.

Portion C

- TG20: 1 Heteropanax fragrans (HF) is found missing.
- TG22: 2 Cassia siamea (GS) is found missing.

Portion D

- TG02: 2 Heteropanax fragrans (HF) are found dead, replacement is necessary.
- TG03: 1 Heteropanax fragrans (HF) is found missing; 8 Heteropanax fragrans are dead/poor conditions, replacement is necessary.
- TG05: 3 Bauhinia variegata (BV) are found dead, replacement is necessary.
- TG06: 1 Bauhinia variegata (BV) and 1 Cassia siamea (CS) are found dead, replacement is necessary.
- TG07: 2 Cassia siamea (CS) are found dead, replacement is necessary.
- TG12: 14 Heteropanax fragrans (HF) are found dead, replacement is necessary.
- TG13: 1 Bauhinia variegata (BV) is found dead, replacement is necessary.
- TG15: 10 Heteropanax fragrans (HF) are found dead, replacement is necessary.
- TG16: 3 Bauhinia variegata (HF) are found dead, replacement is necessary.

Portion E

- TG11: loose guy wire is observed. Rectifying is recommended.
- TG42: 1 Bauhinia variegata (HF) is found dead, replacement is necessary.

Portion F

- No particular findings.

Portion G

- No particular findings.

Portion H

No particular findings.

Signatures:

	Name	Signature	Date
ET's Representative	ALOYGINS World	Llefer	24/2/20n
Contractor's Representative			
PM's/Supervisor's Representative			
IEC's Representative			

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Phase 2 and Other Works

Establishment Inspection Checklist

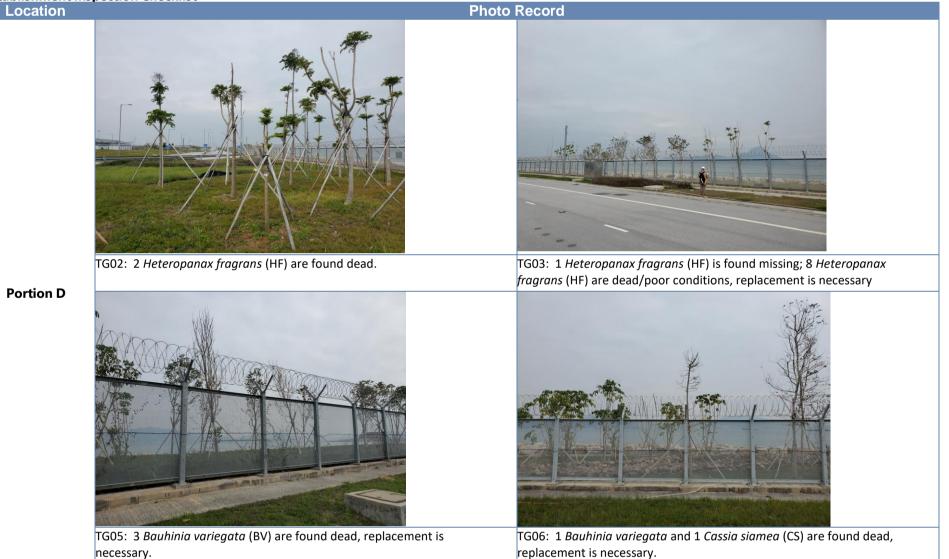
TG48: 18 *Grevillea banksii* (GB) are found on site. To be replaced by 18 *Plumeria rubra* (PR).

TG49: 1 *Grevillea robusta* is found dead, replacement is necessary.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Phase 2 and Other Works

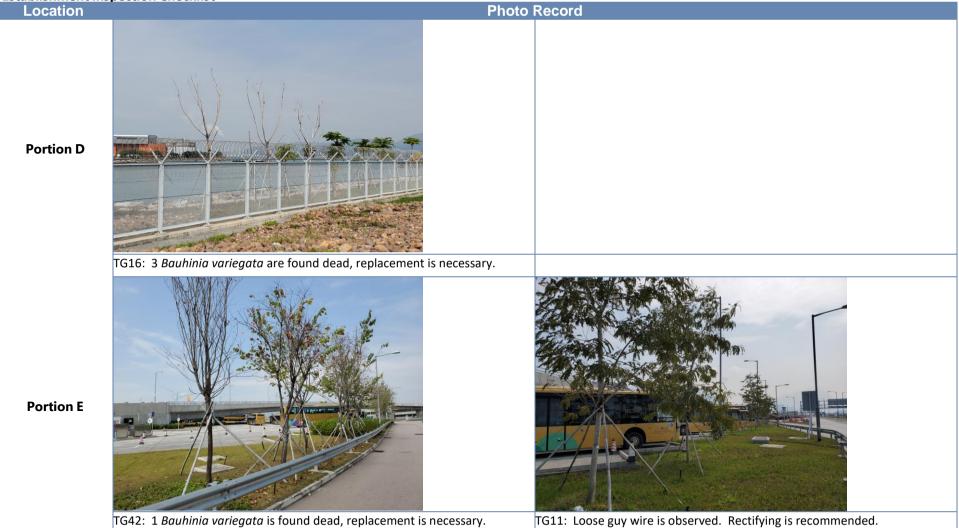
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –


Phase 2 and Other Works

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –


Phase 2 and Other Works

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

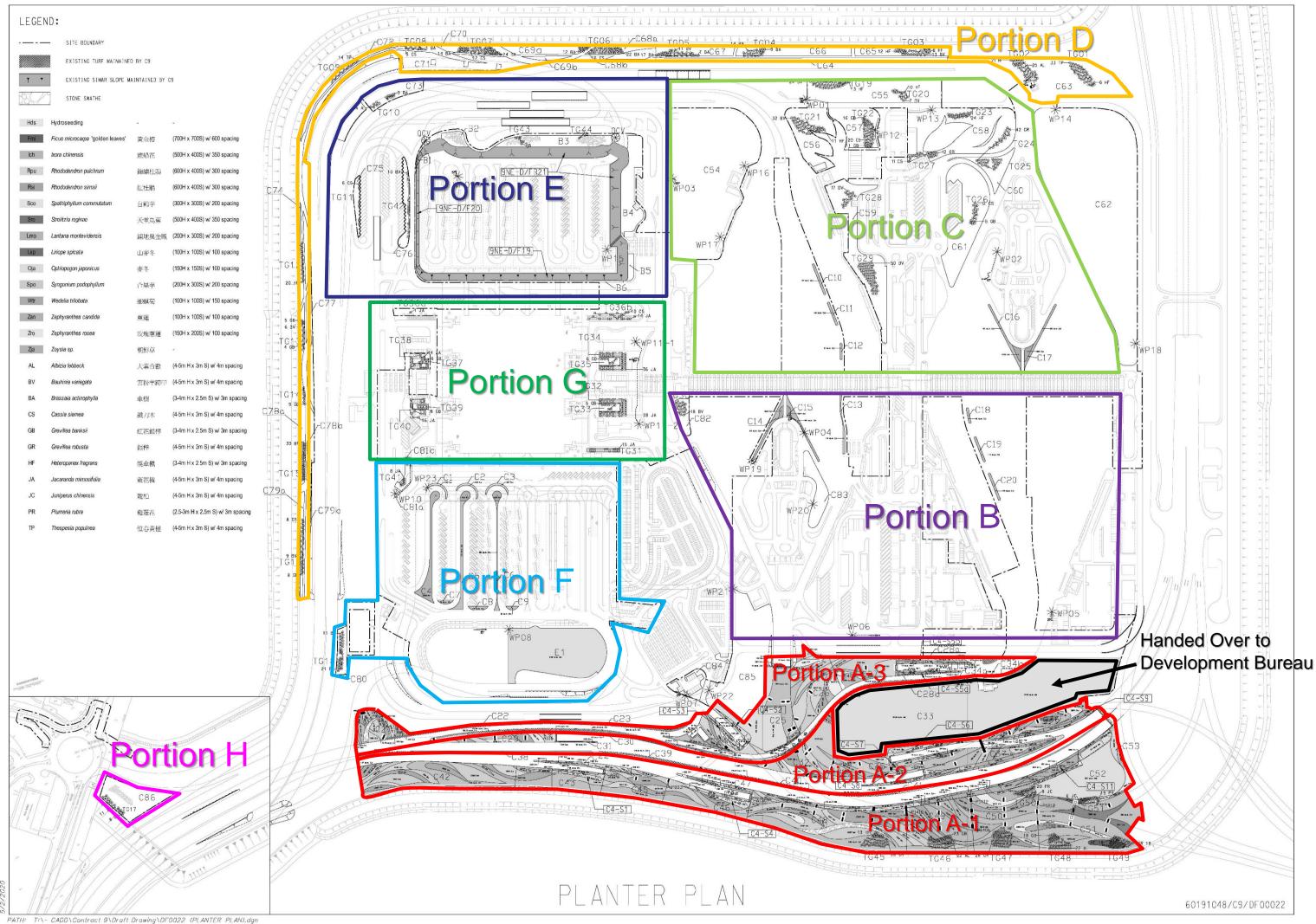

Phase 2 and Other Works

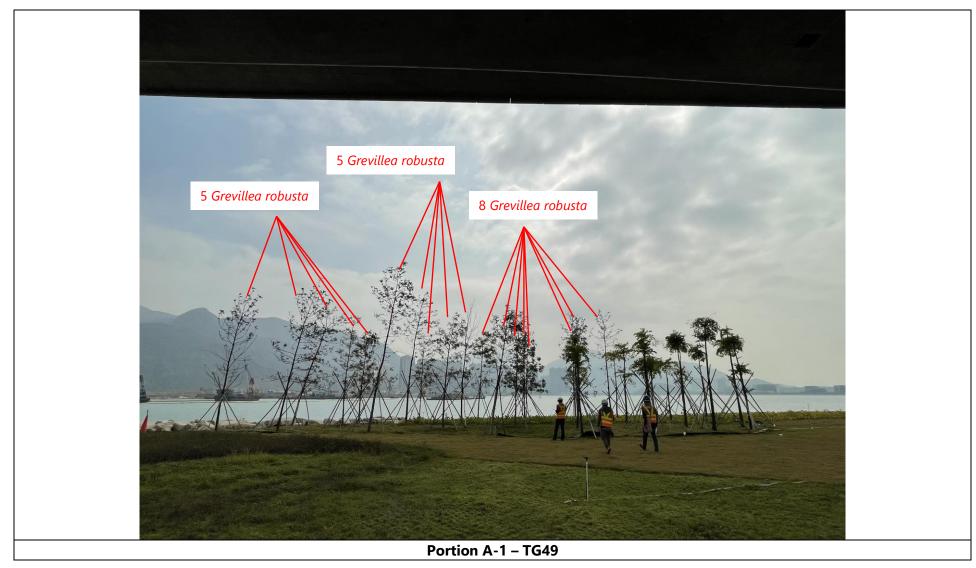
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Phase 2 and Other Works

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

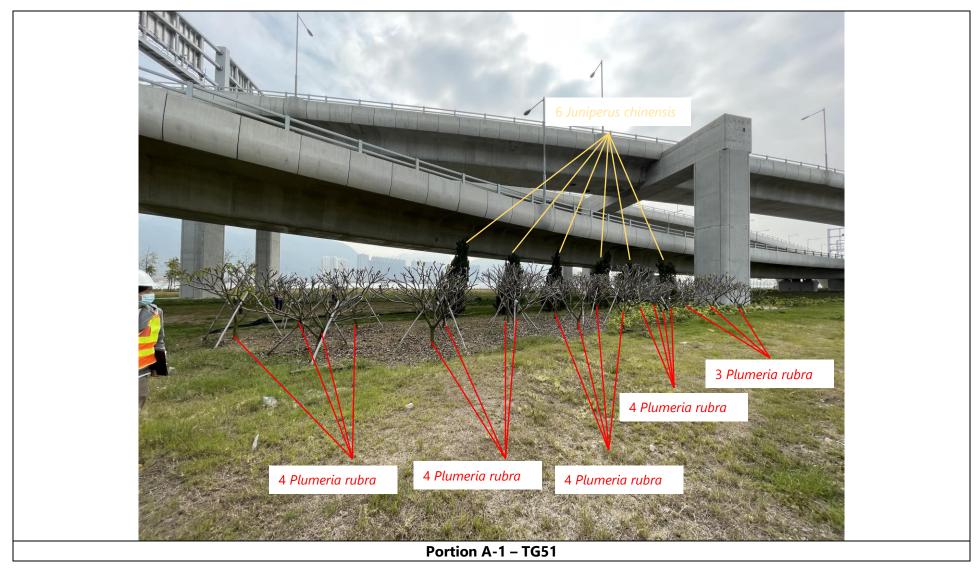
Phase 2 and Other Works


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

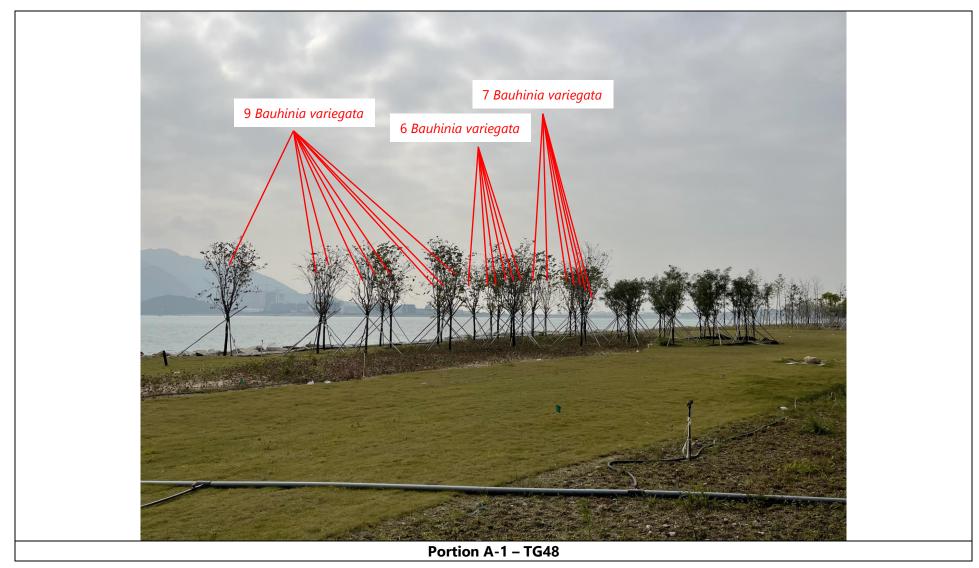


Tree Counting for Contract No. HY/2019/01

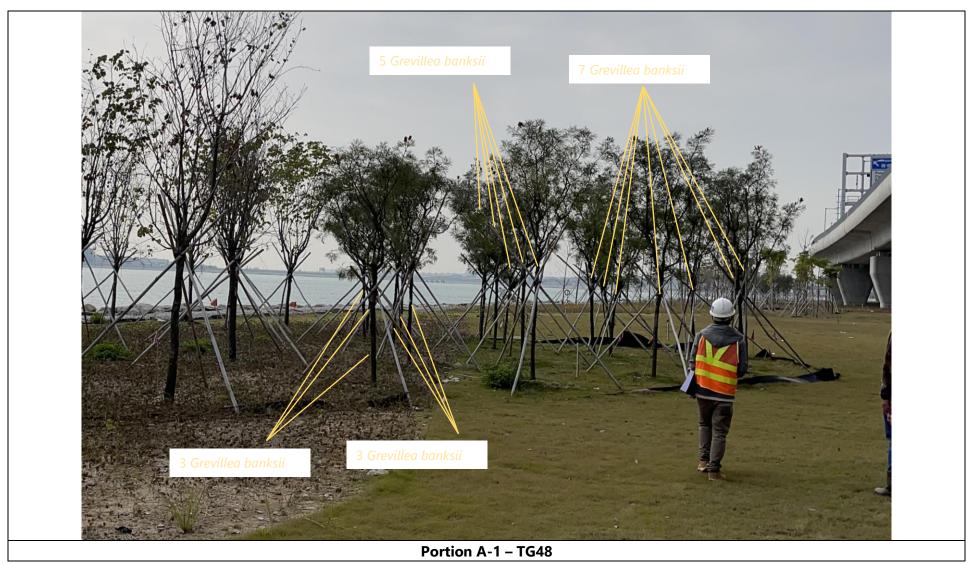
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



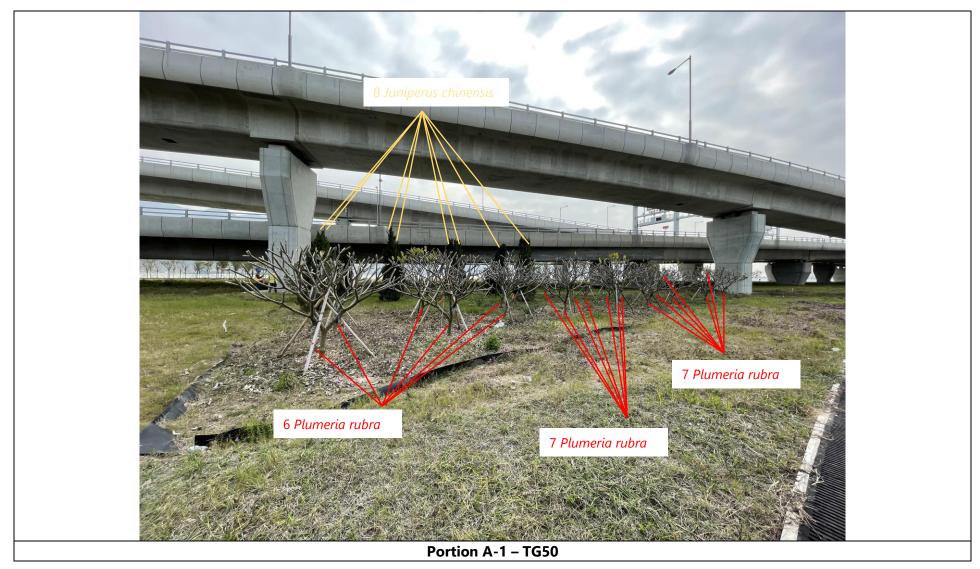
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



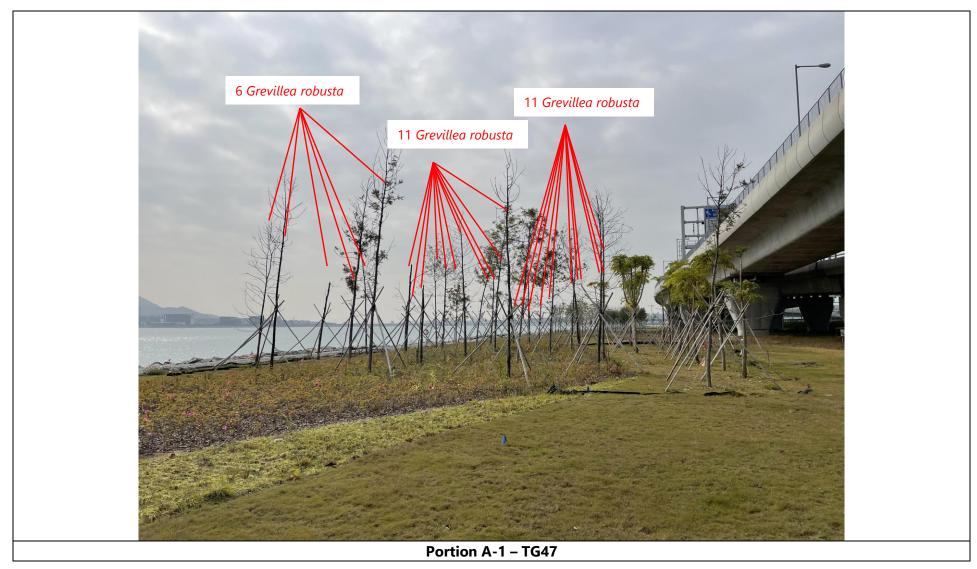
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



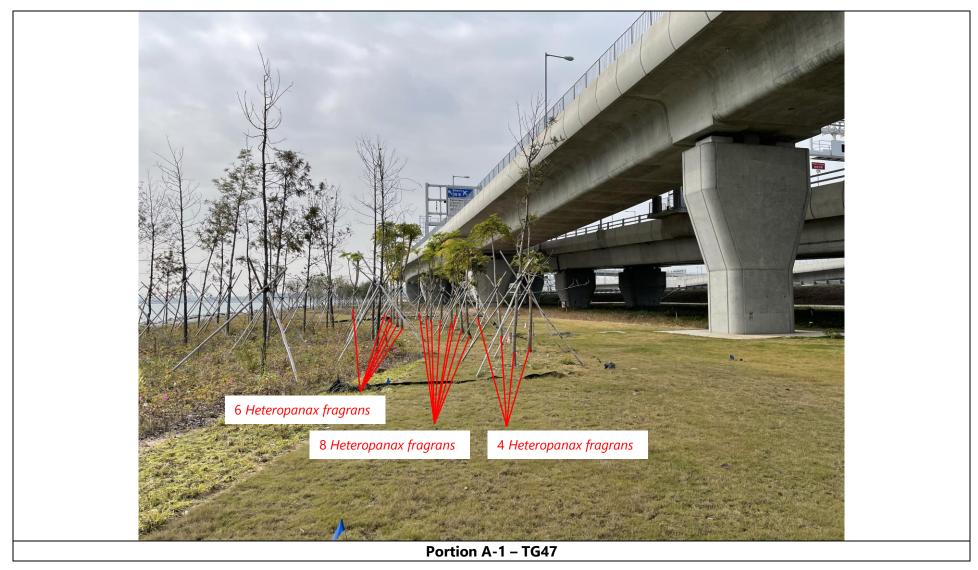
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



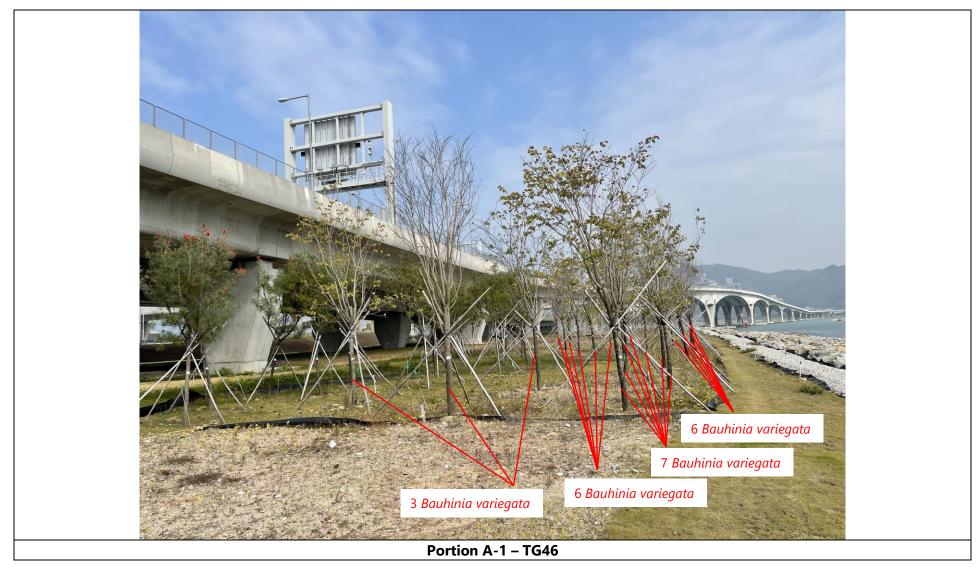
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

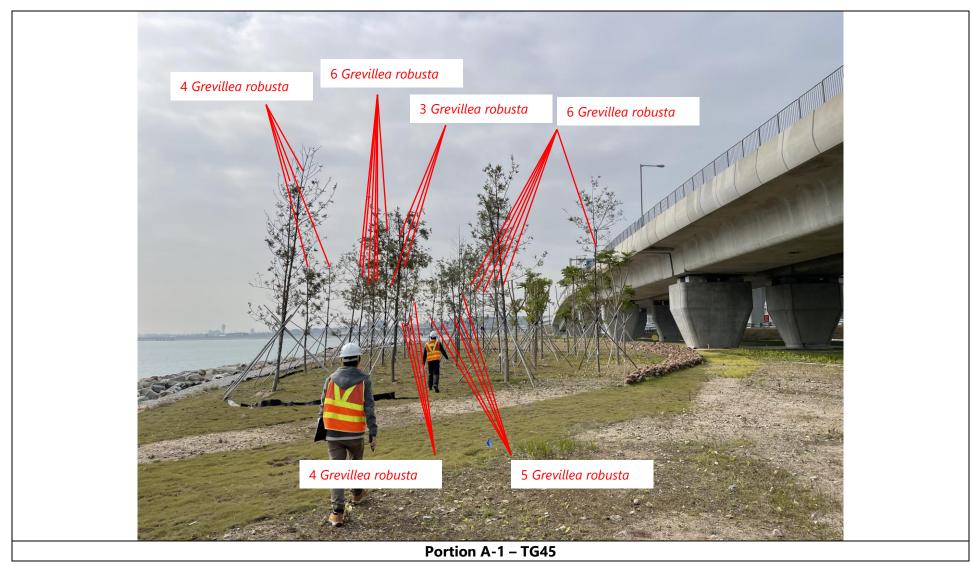


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

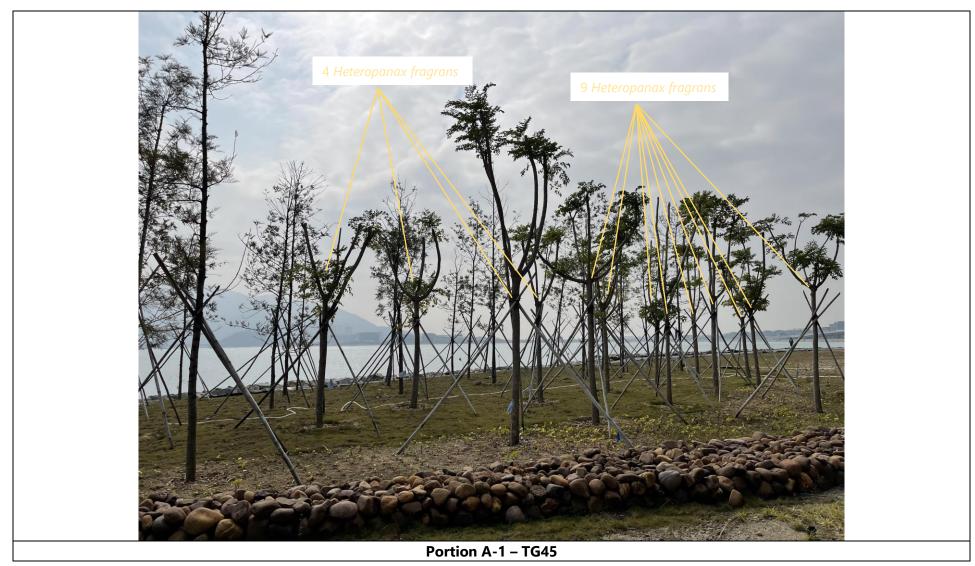


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

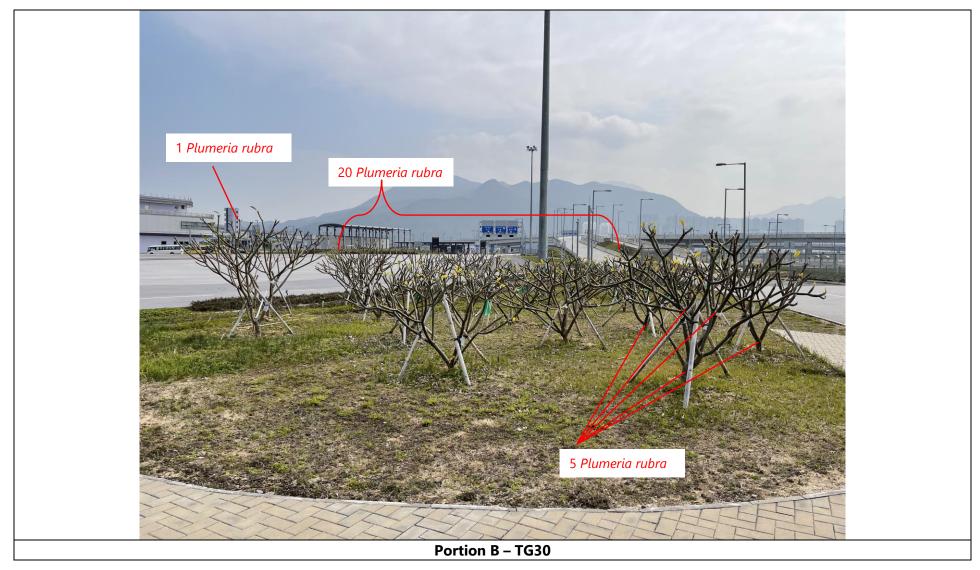
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



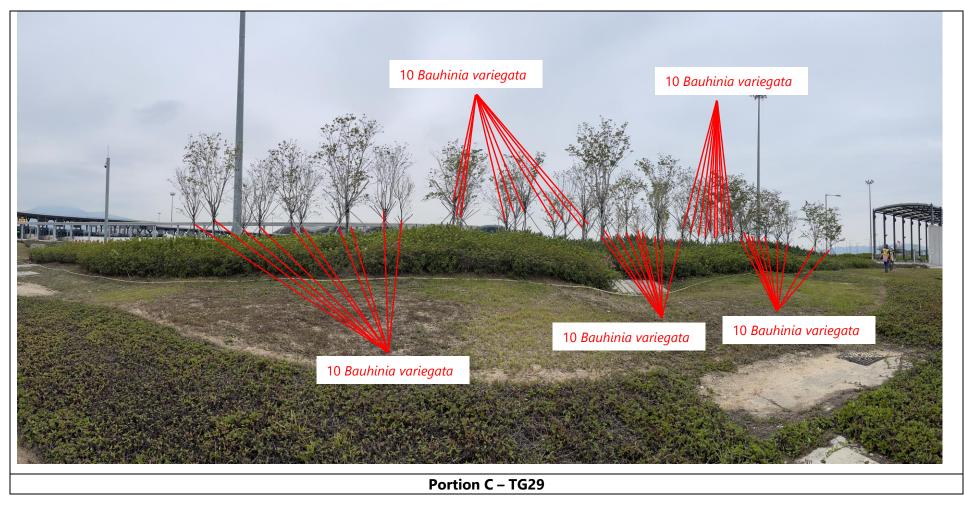
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



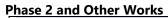
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

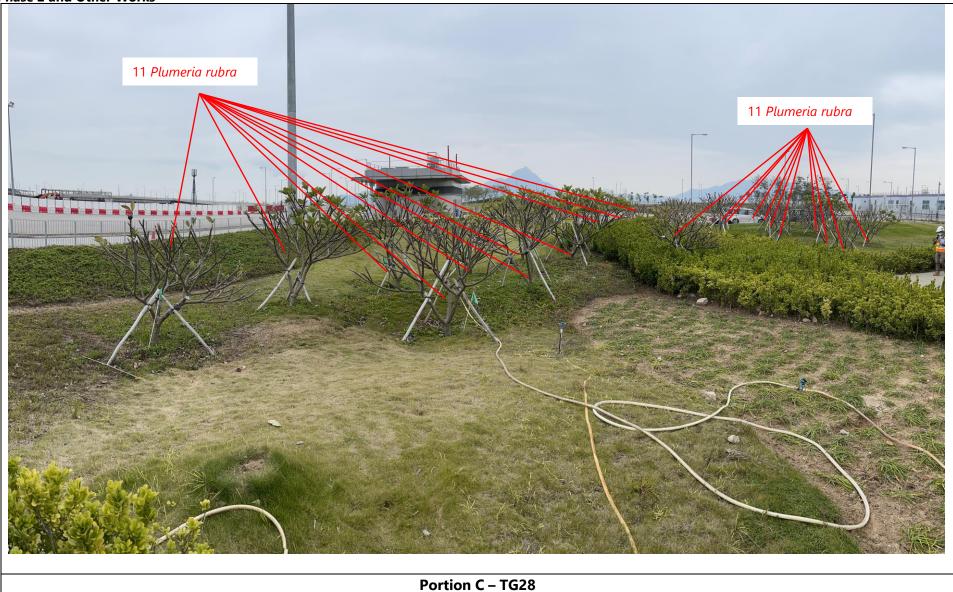


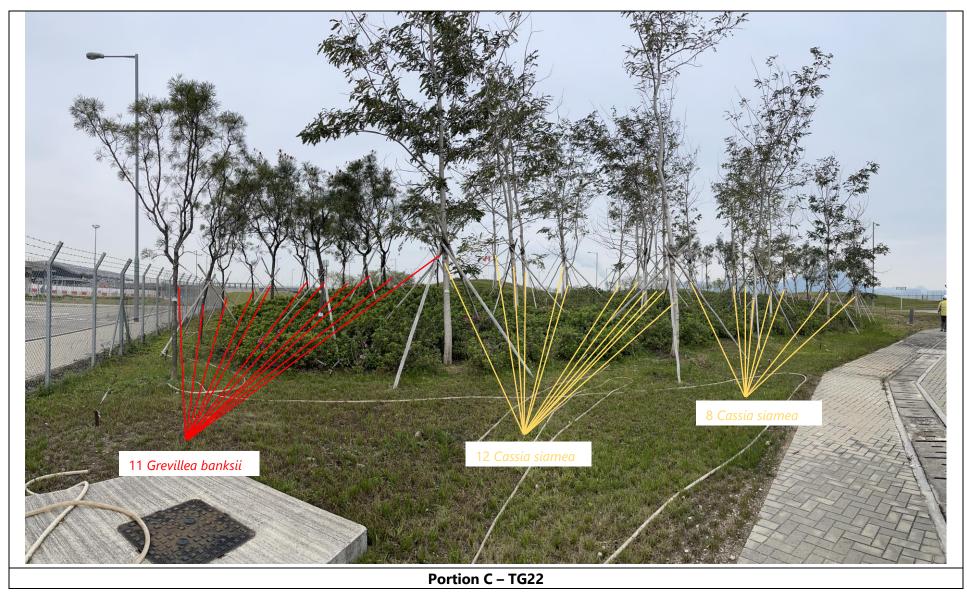
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

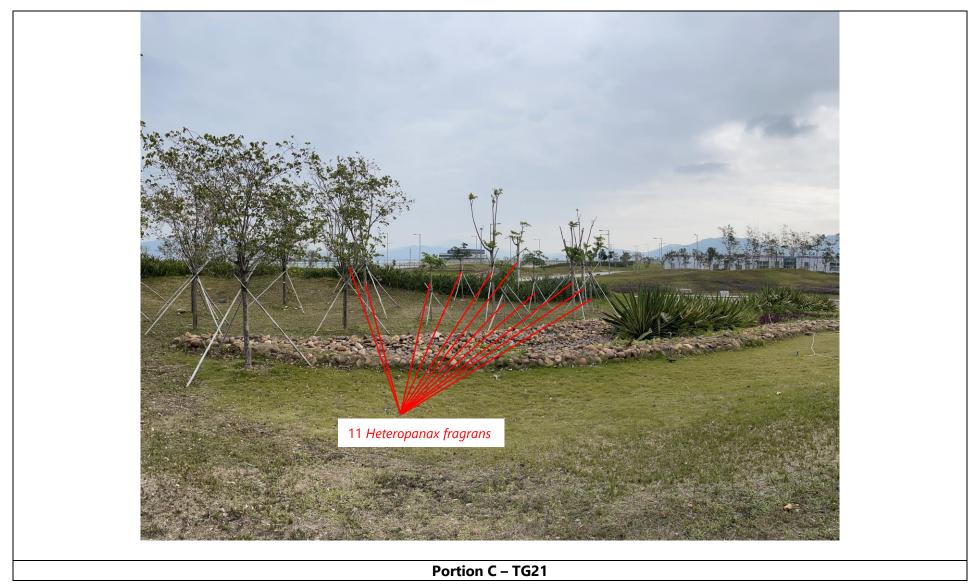



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

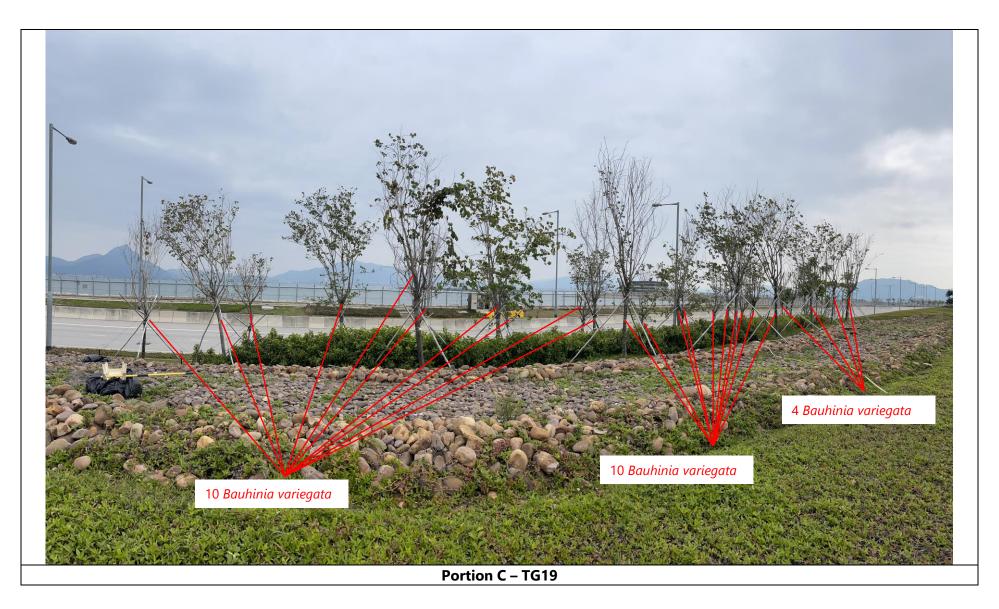

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

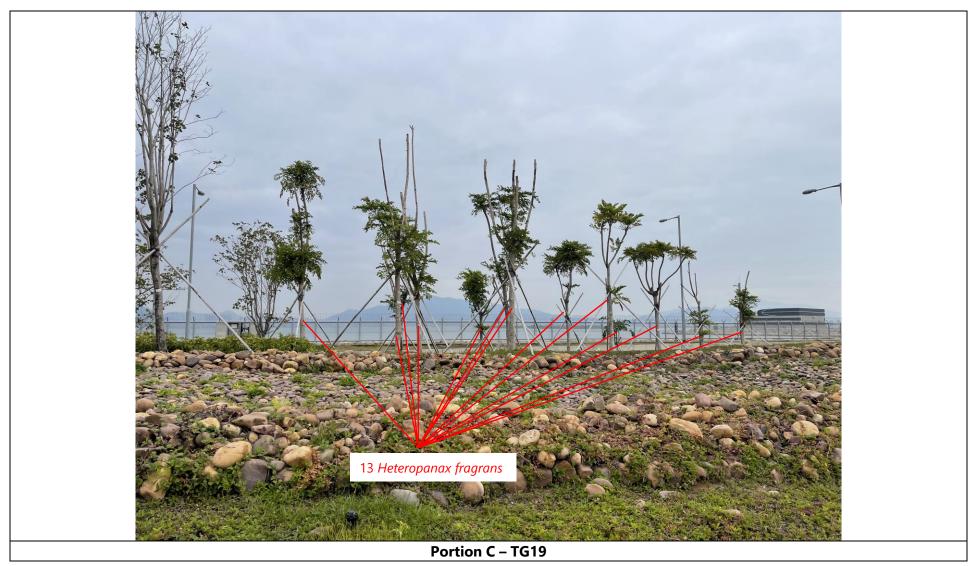
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



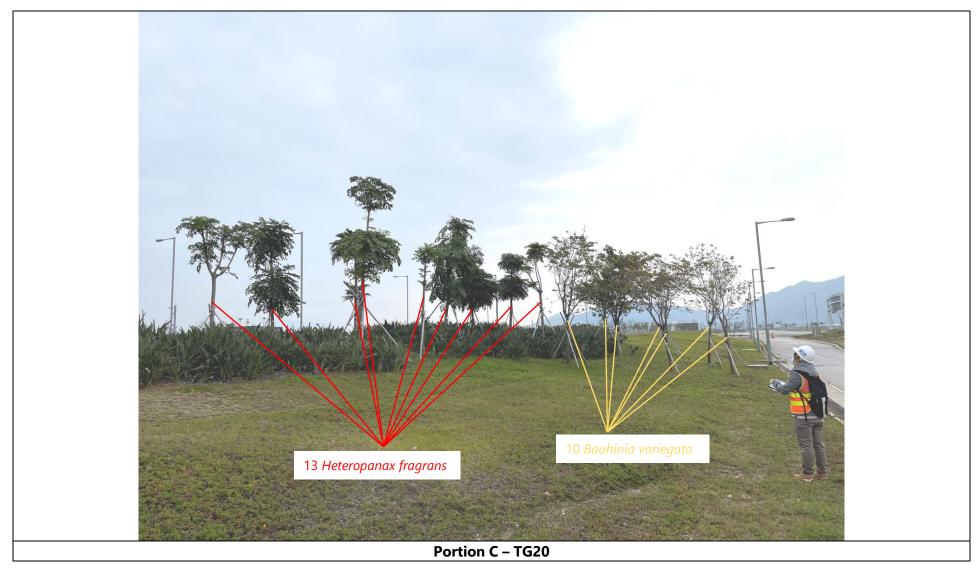
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



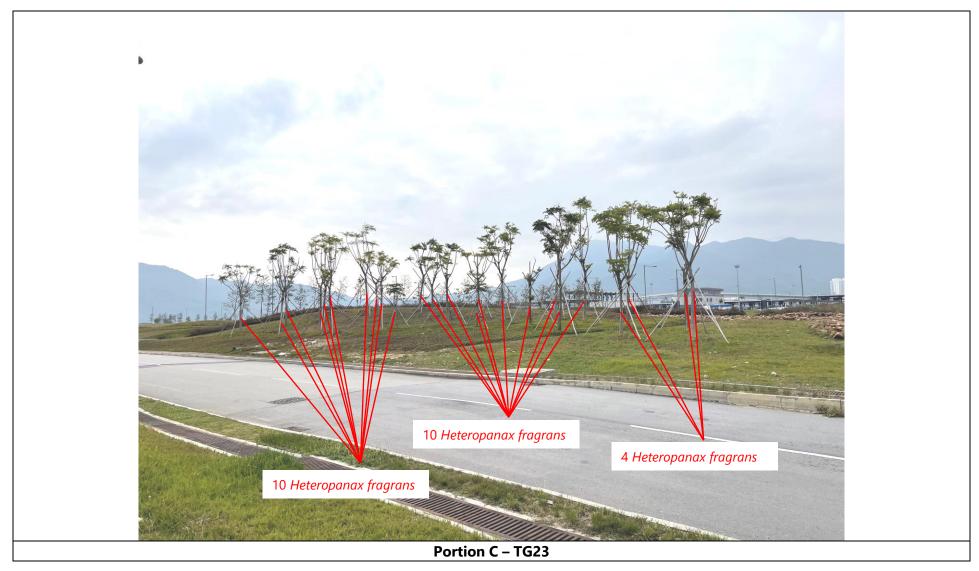
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



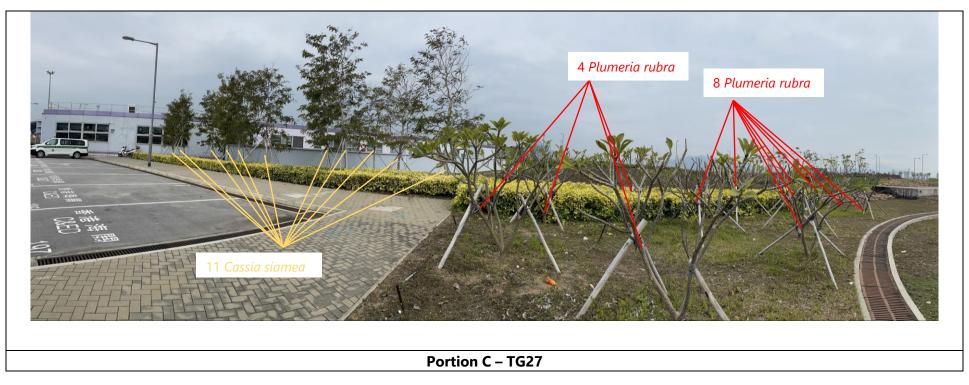
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



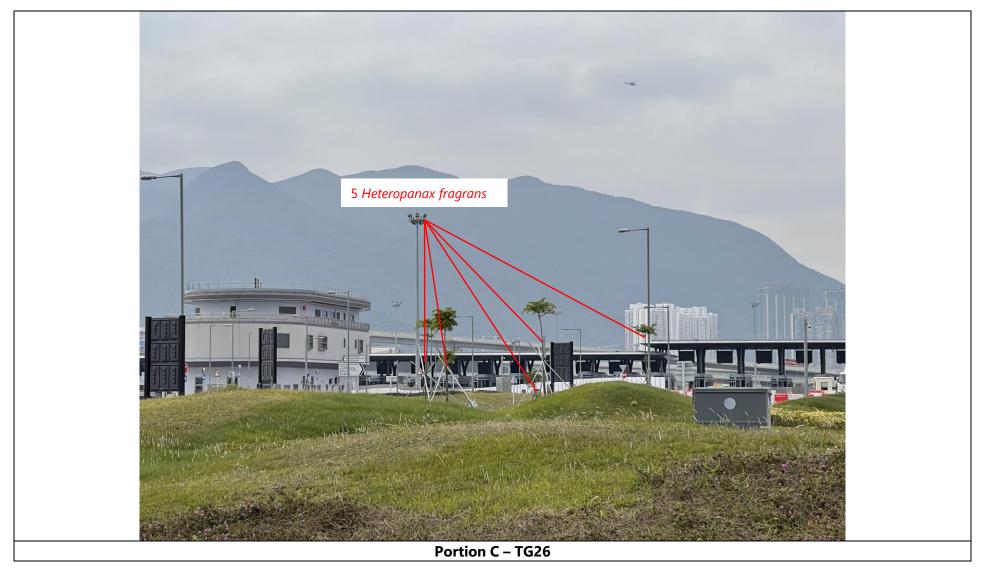
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



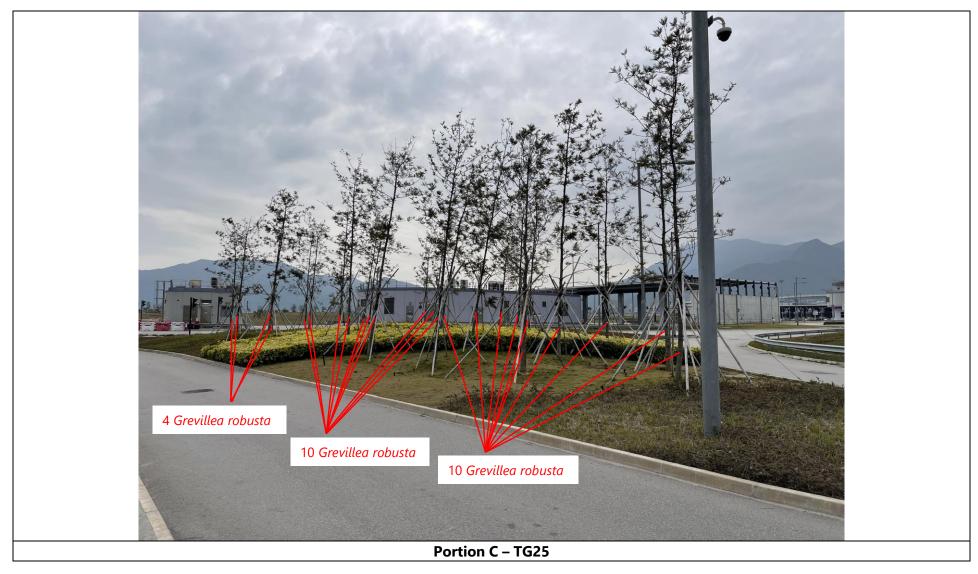
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

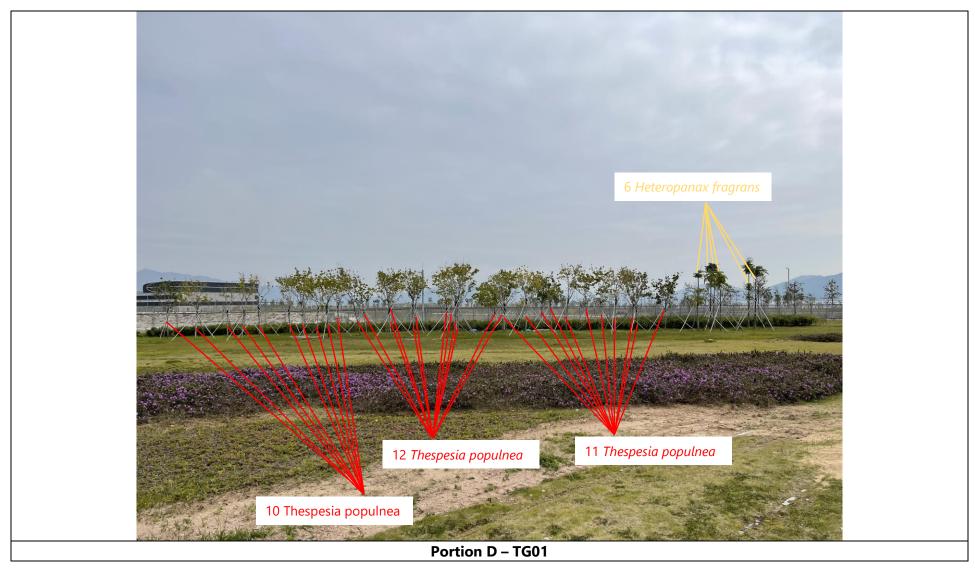


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

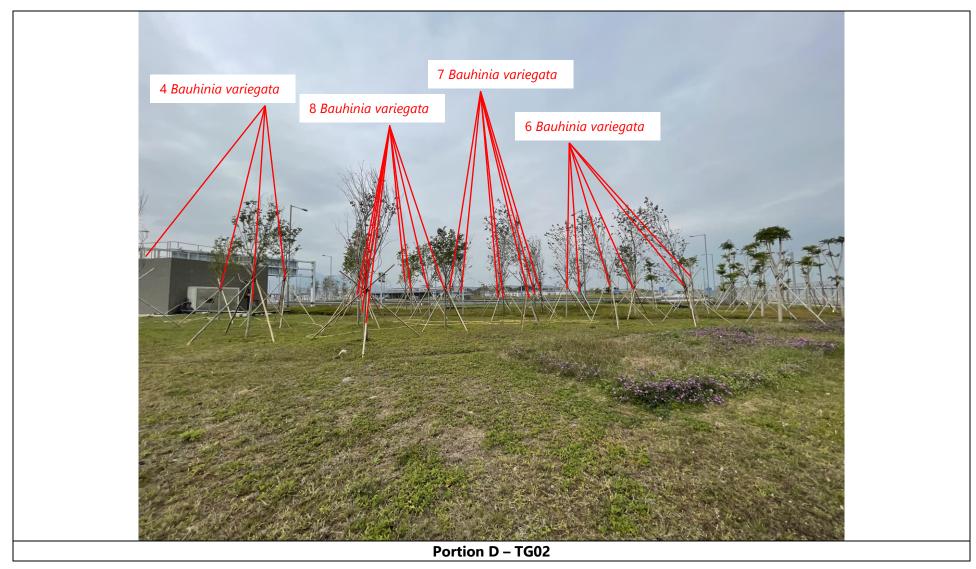


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

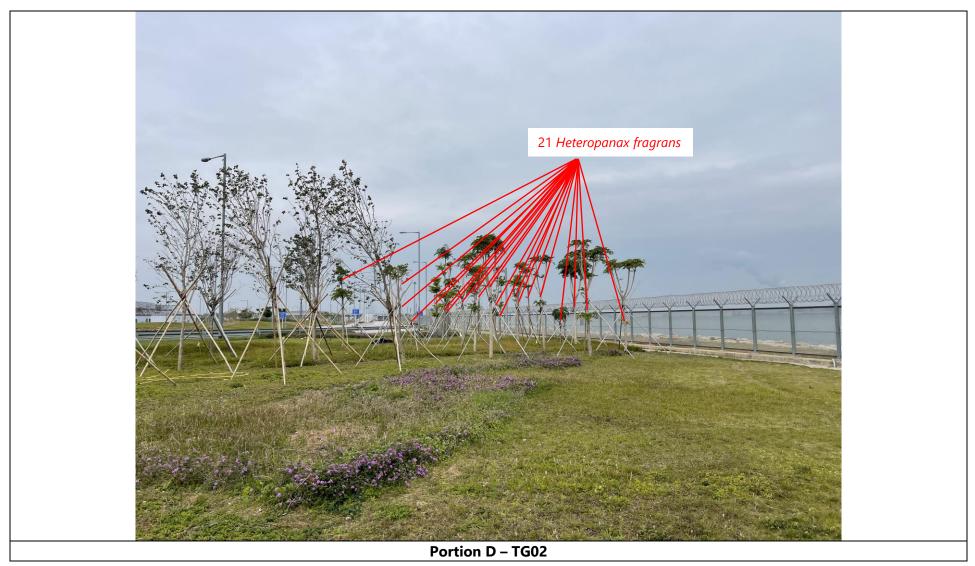
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



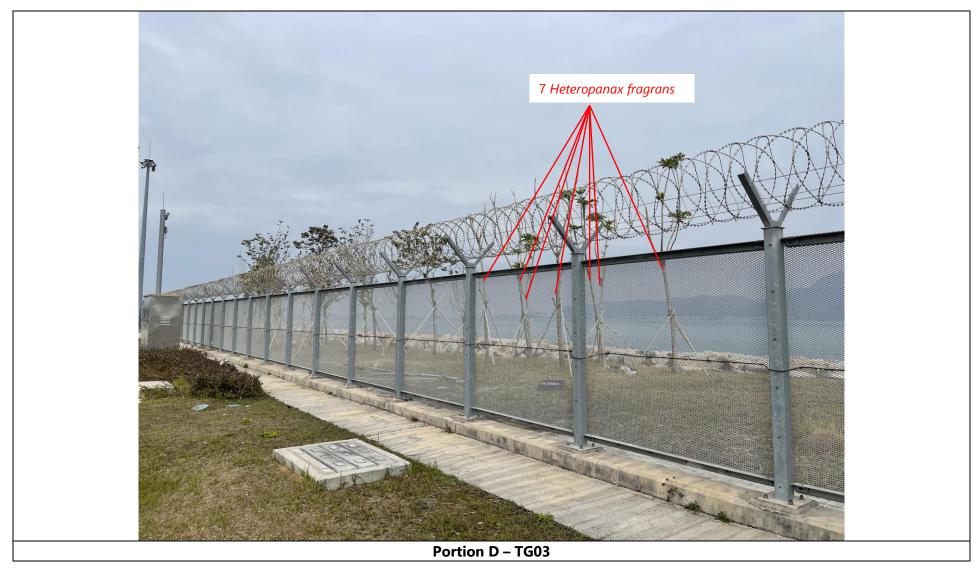
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



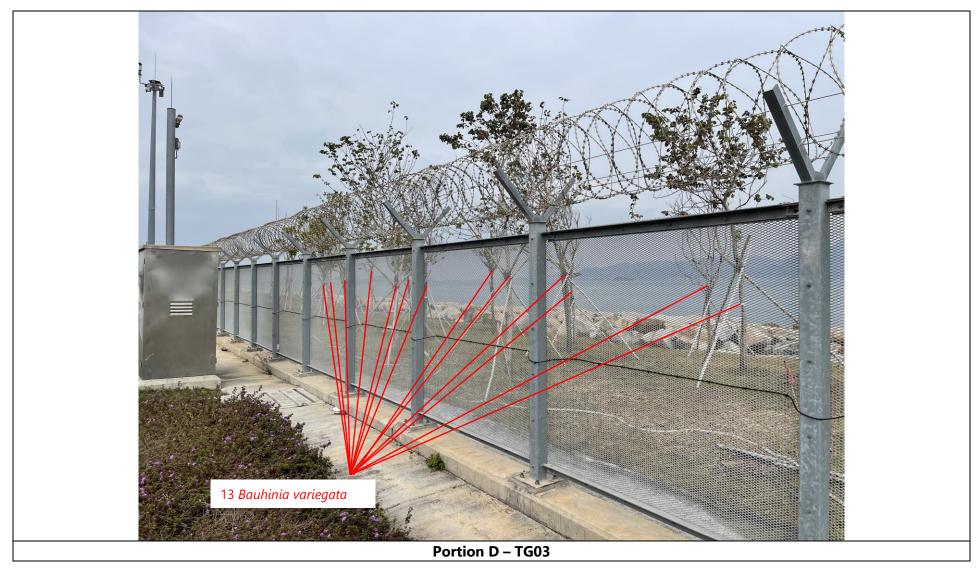
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



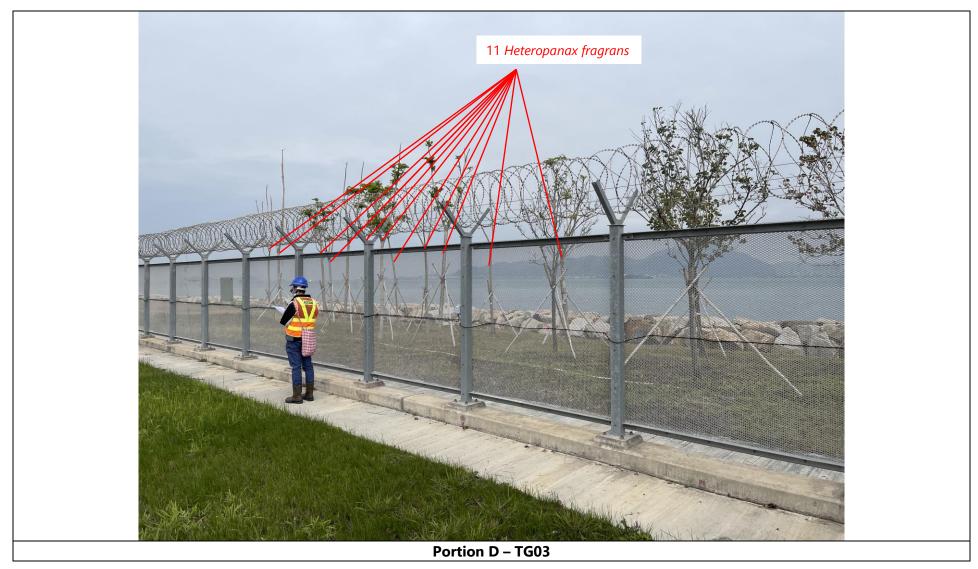
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



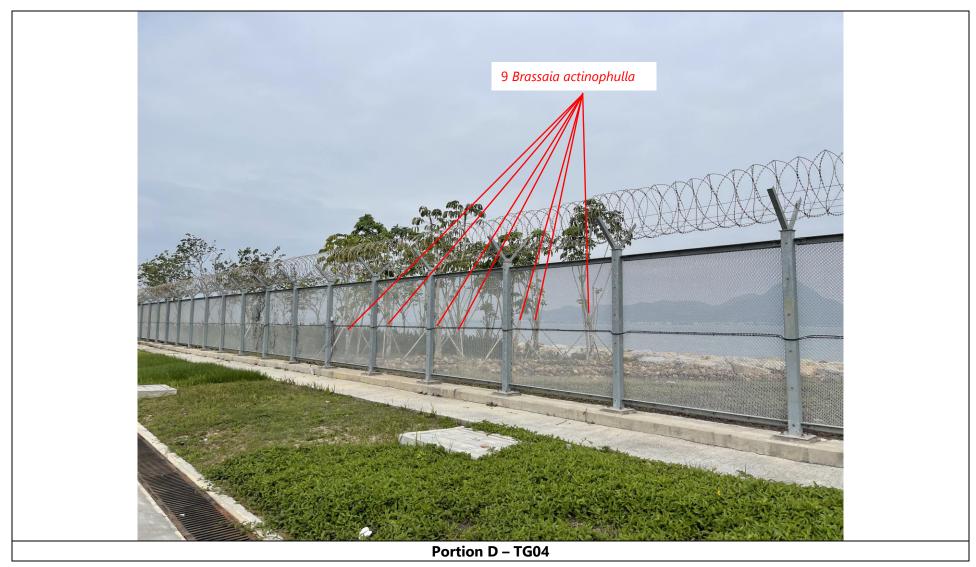
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

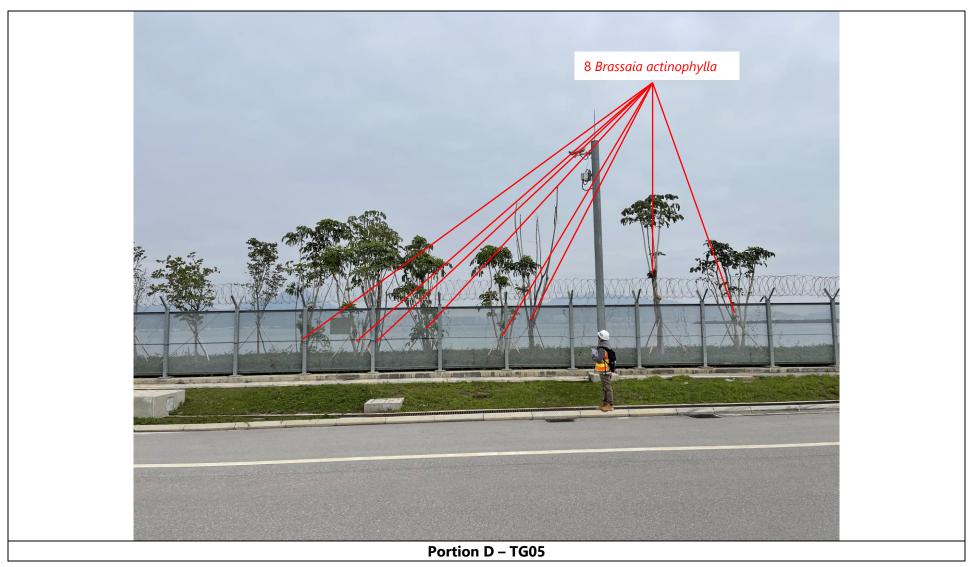


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

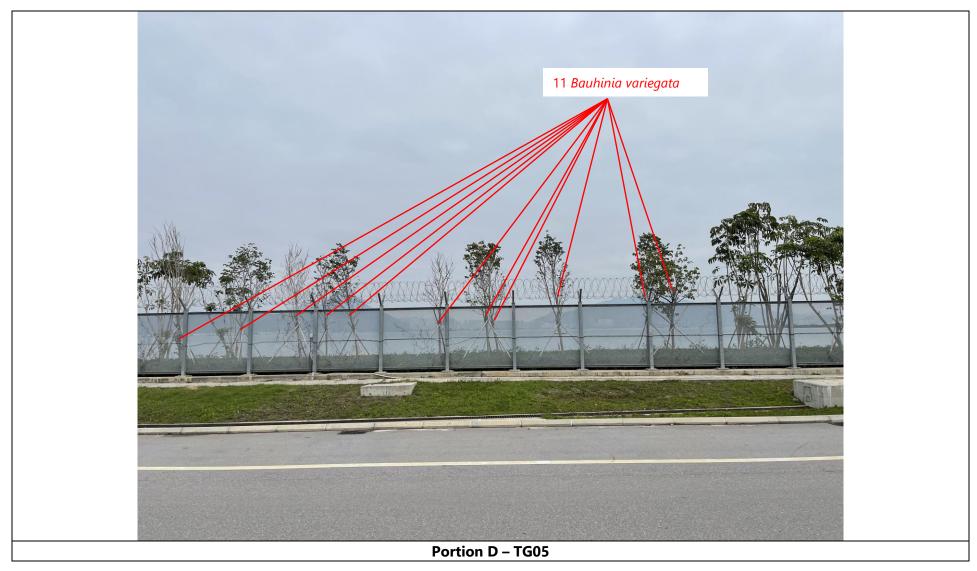


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

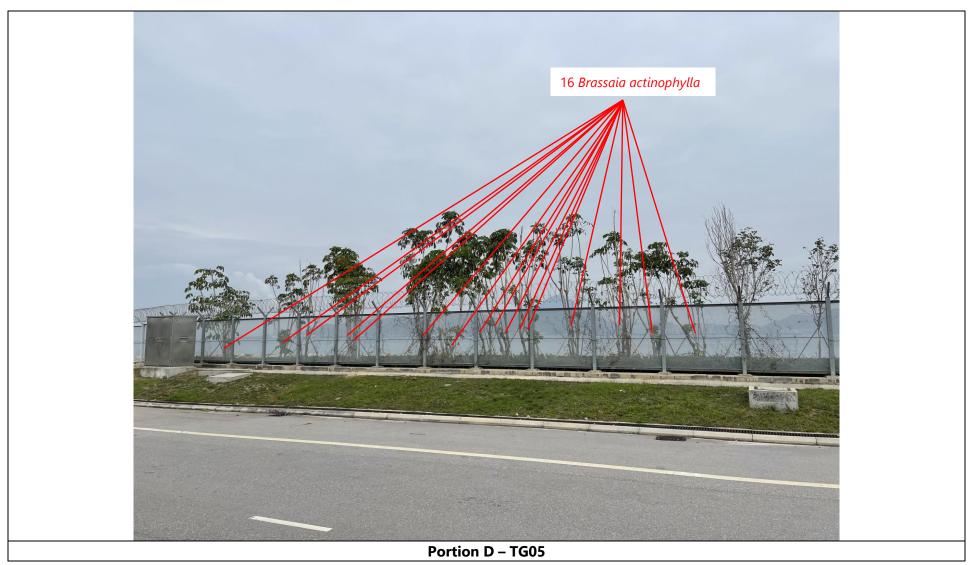
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



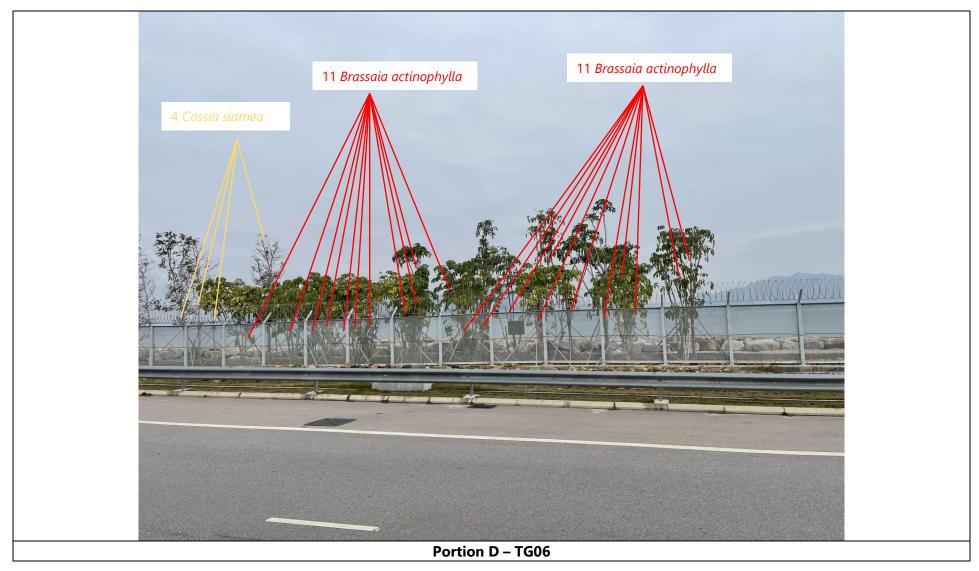
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

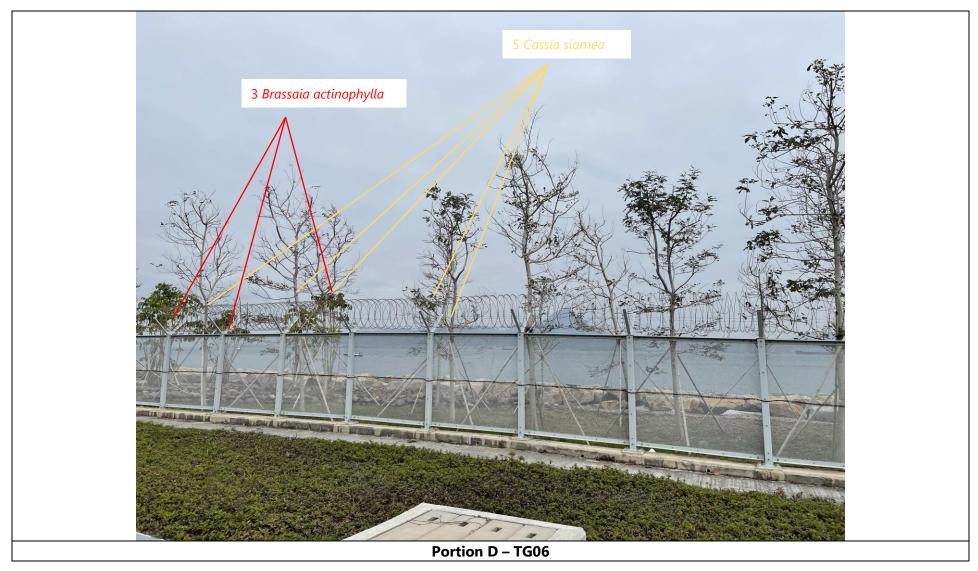


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

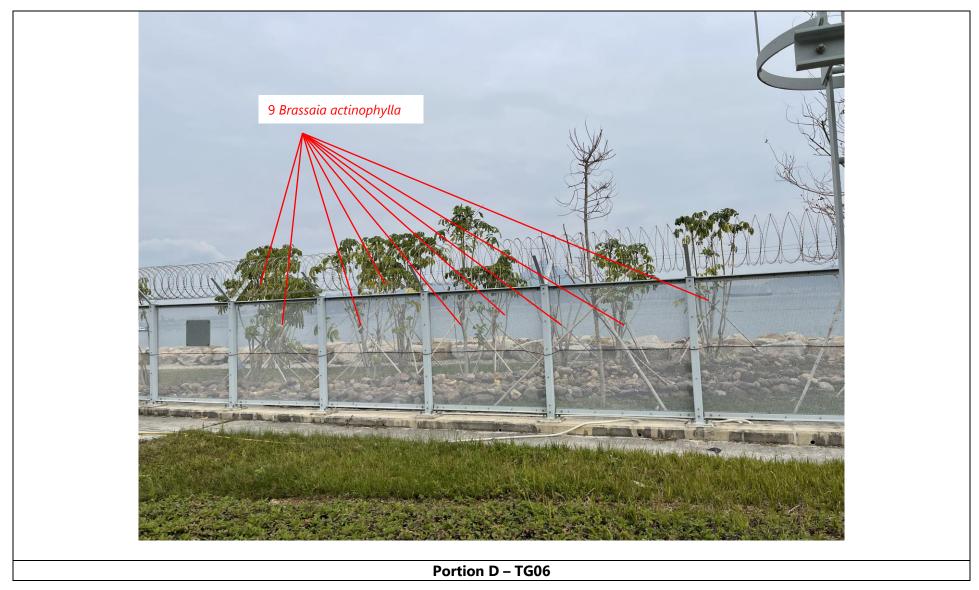


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

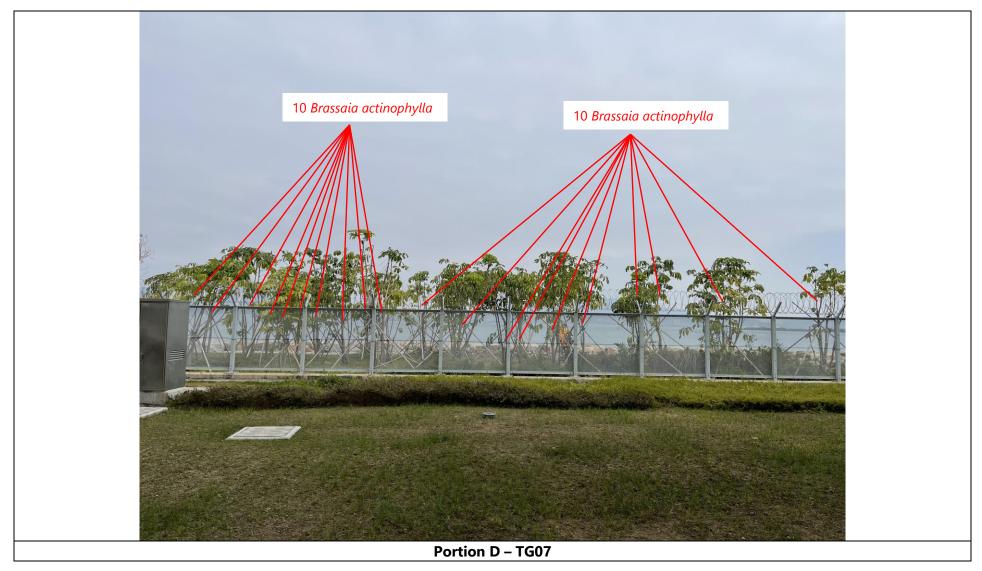
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



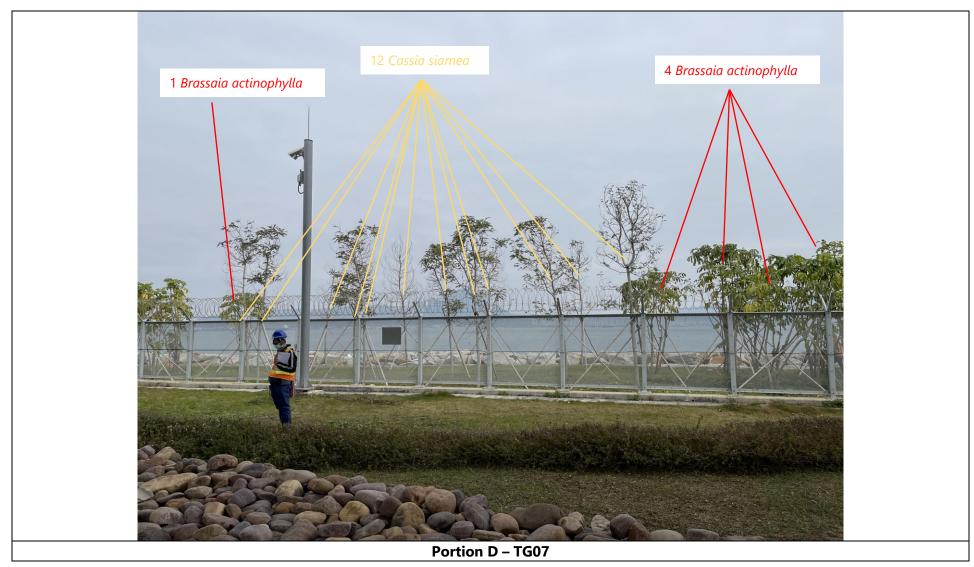
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



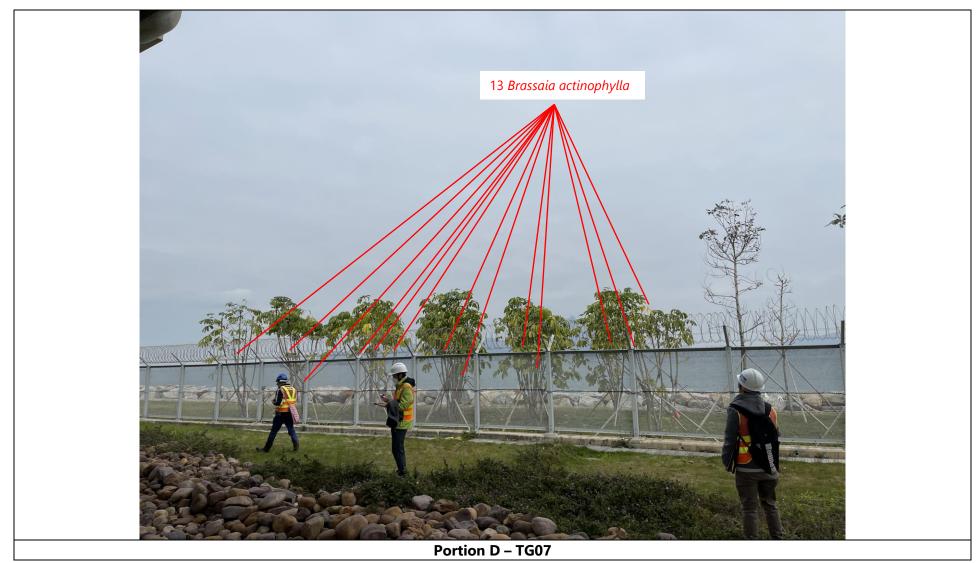
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



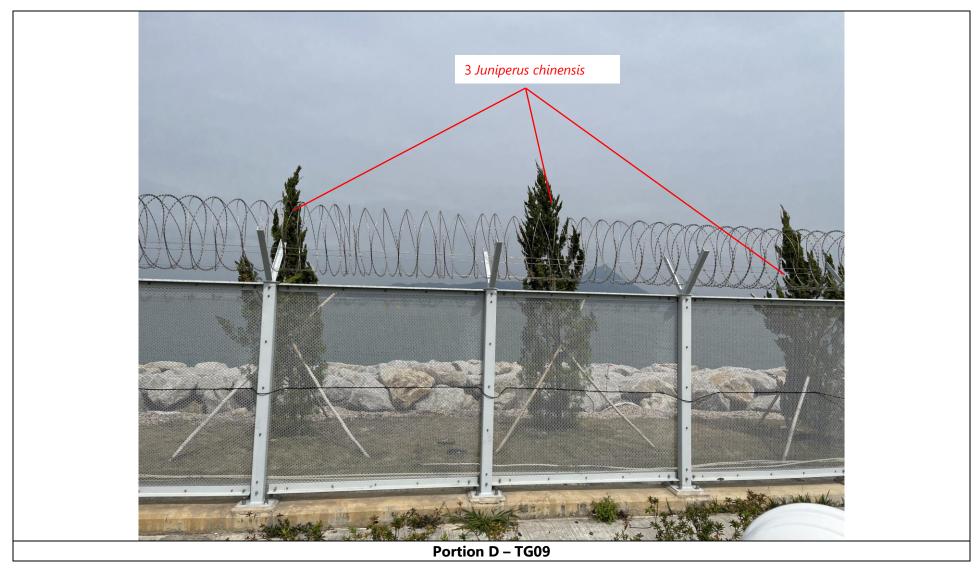
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



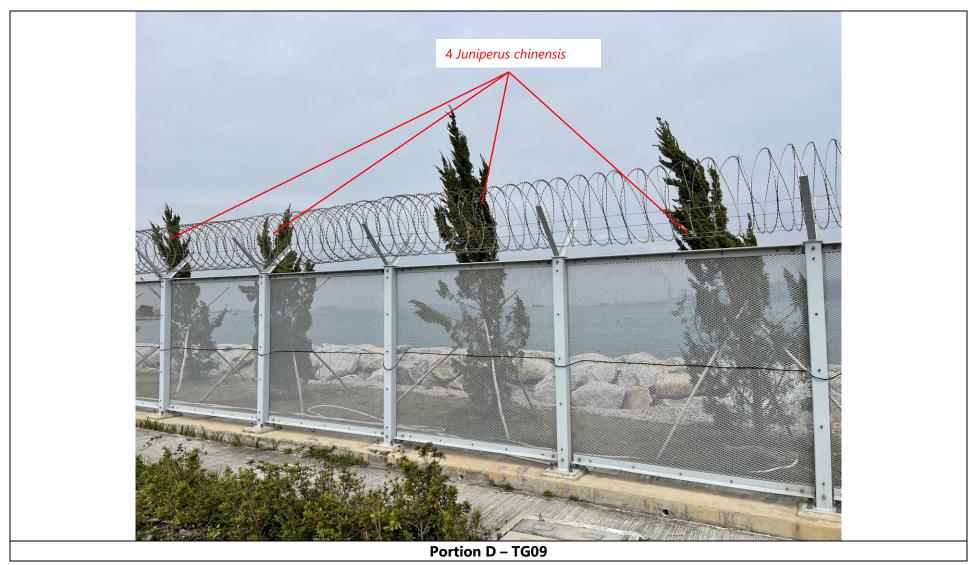
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

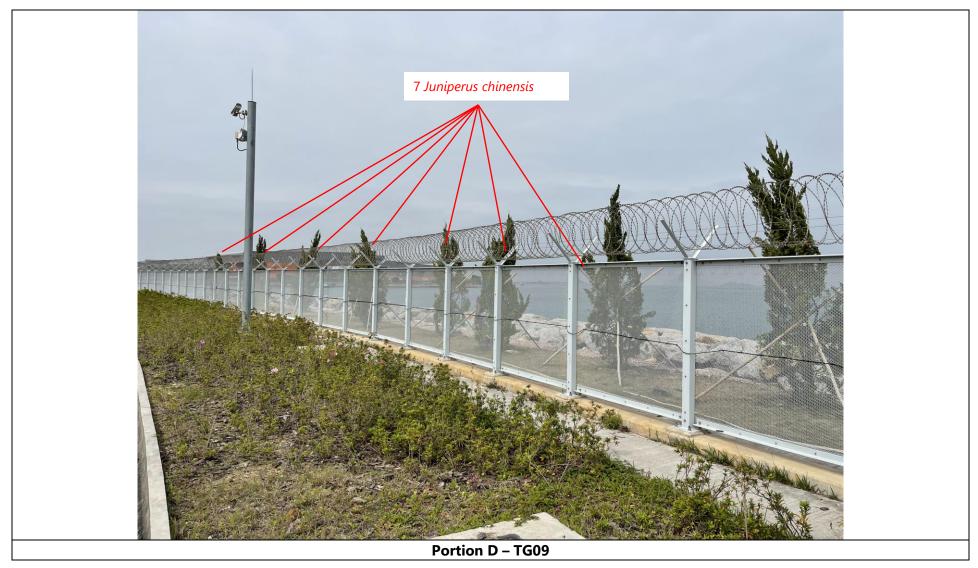
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



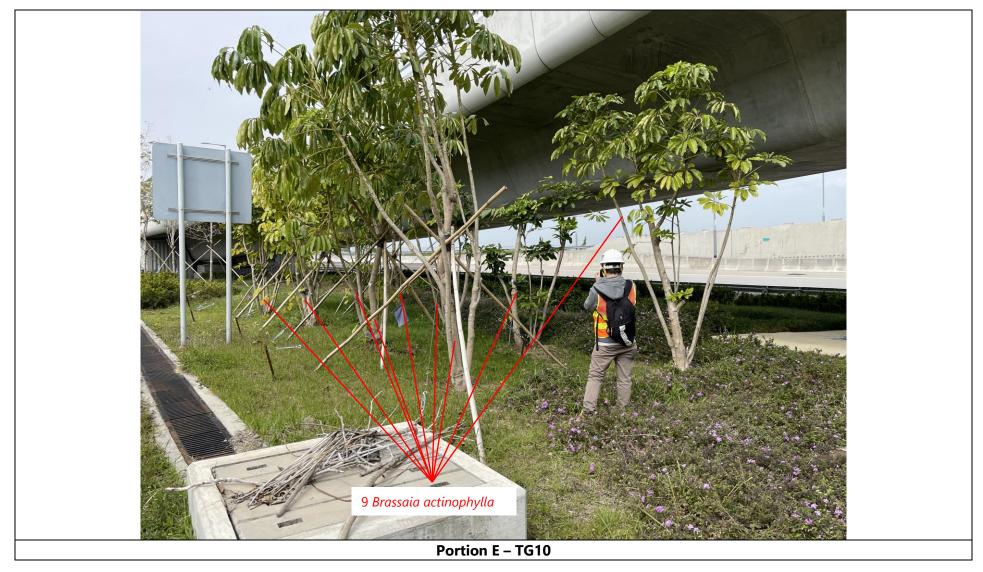
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

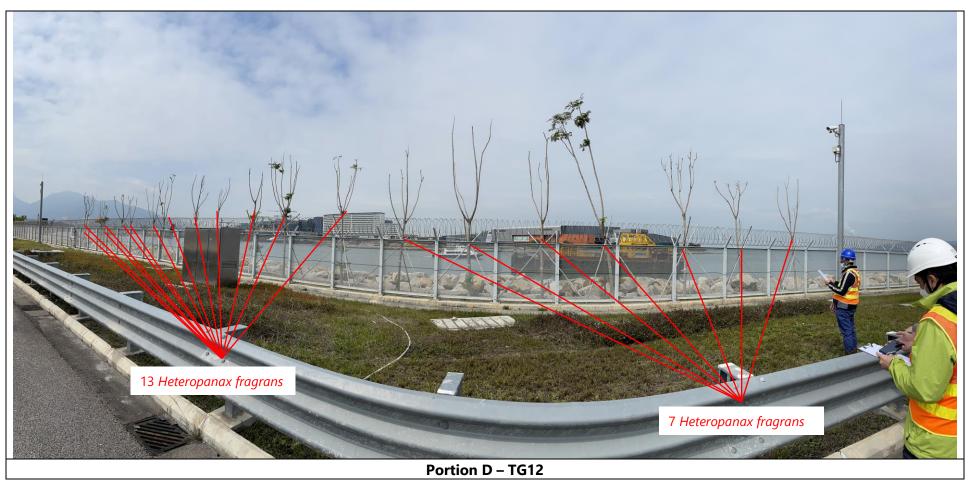


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

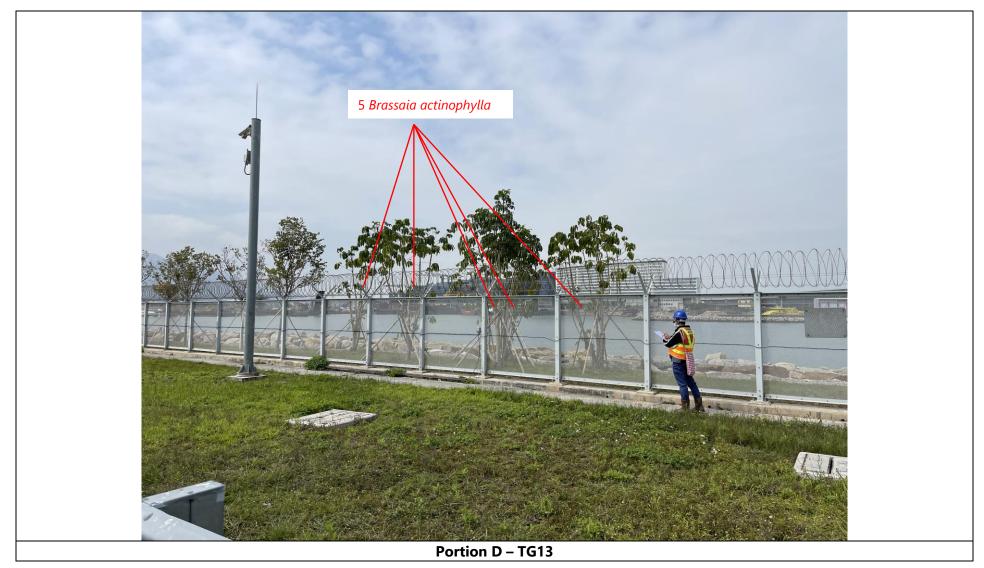


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

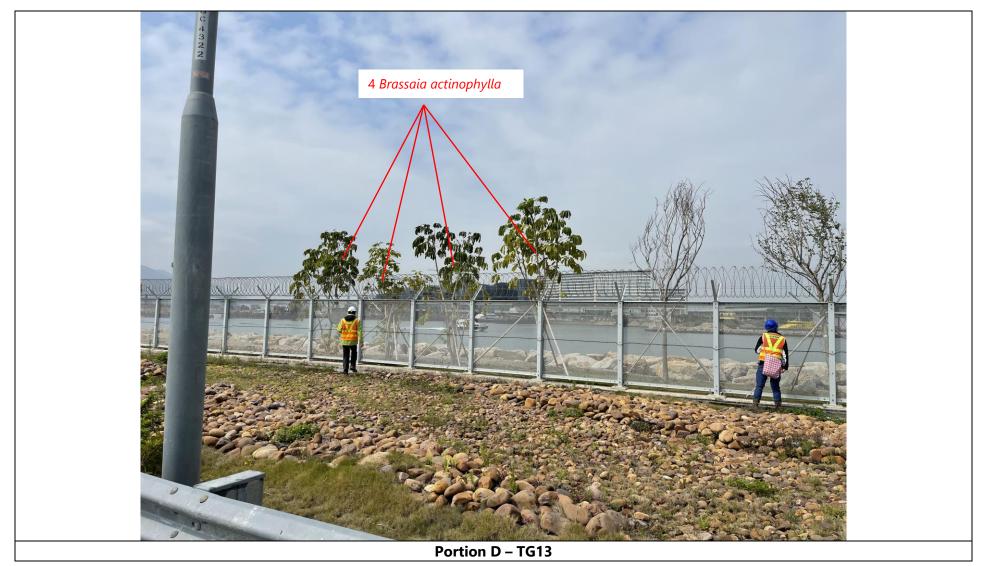


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

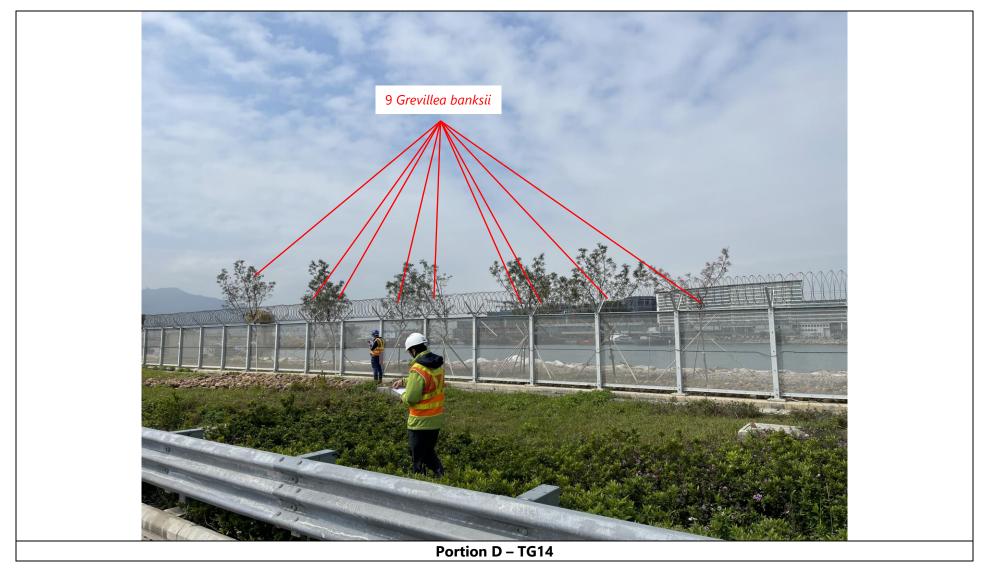


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

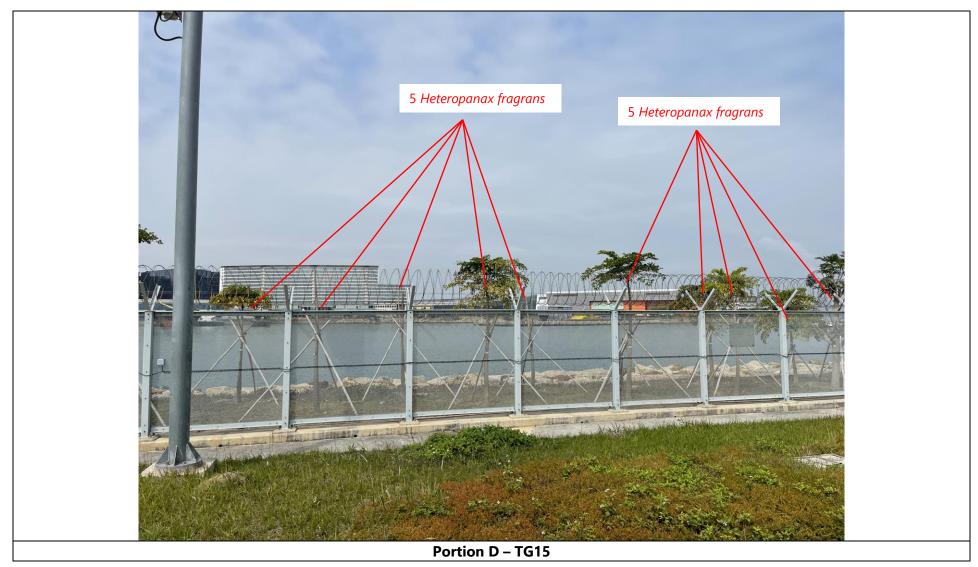


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

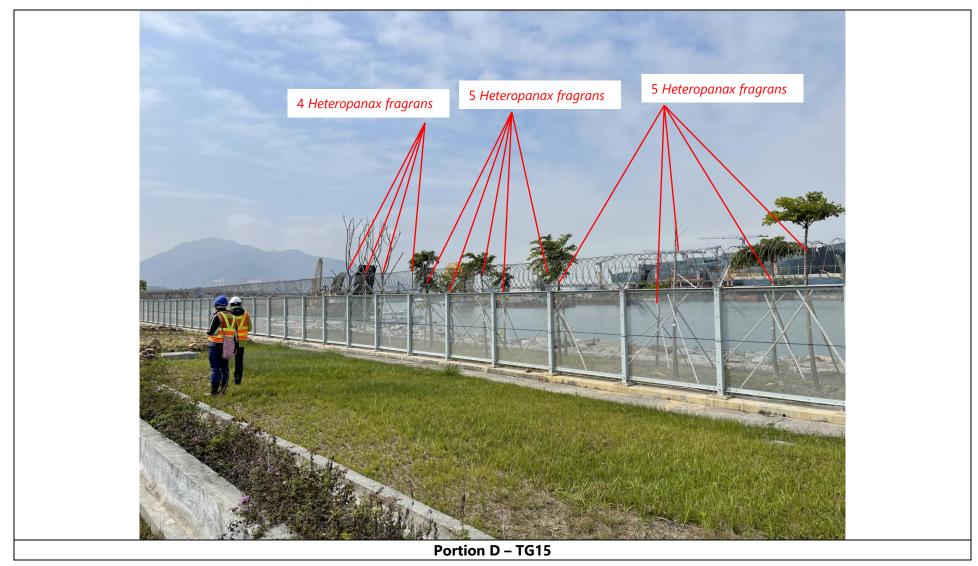


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

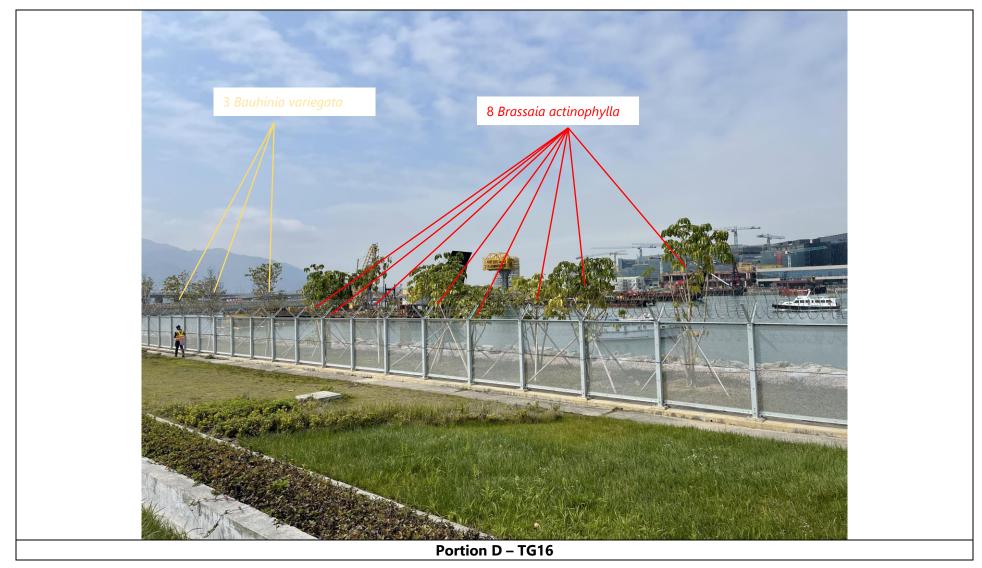
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



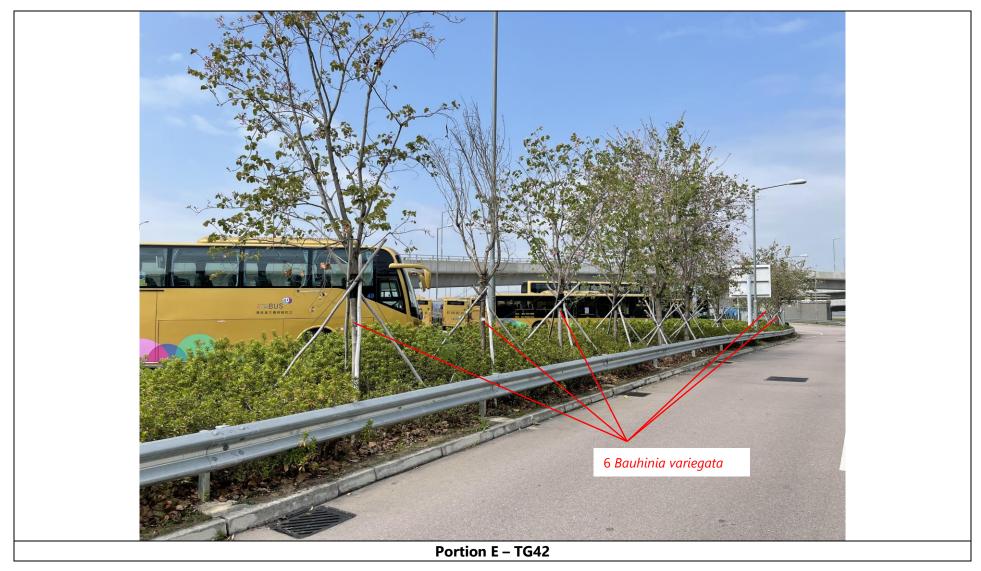
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

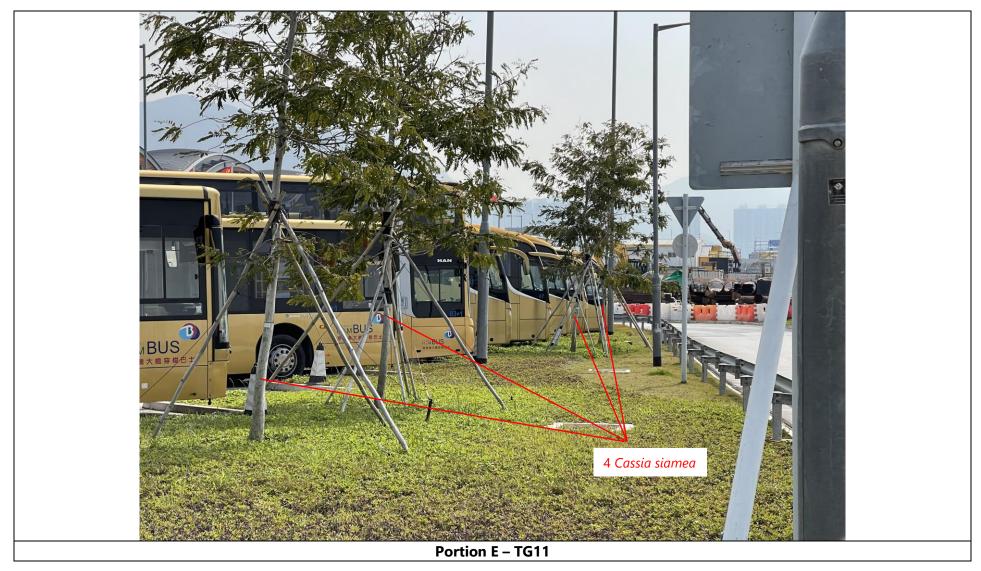
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

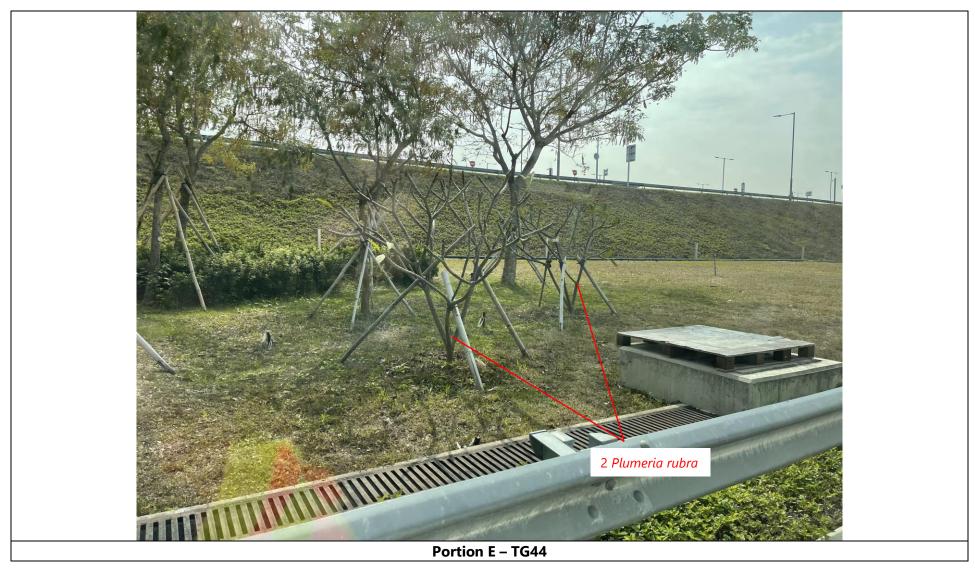


Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

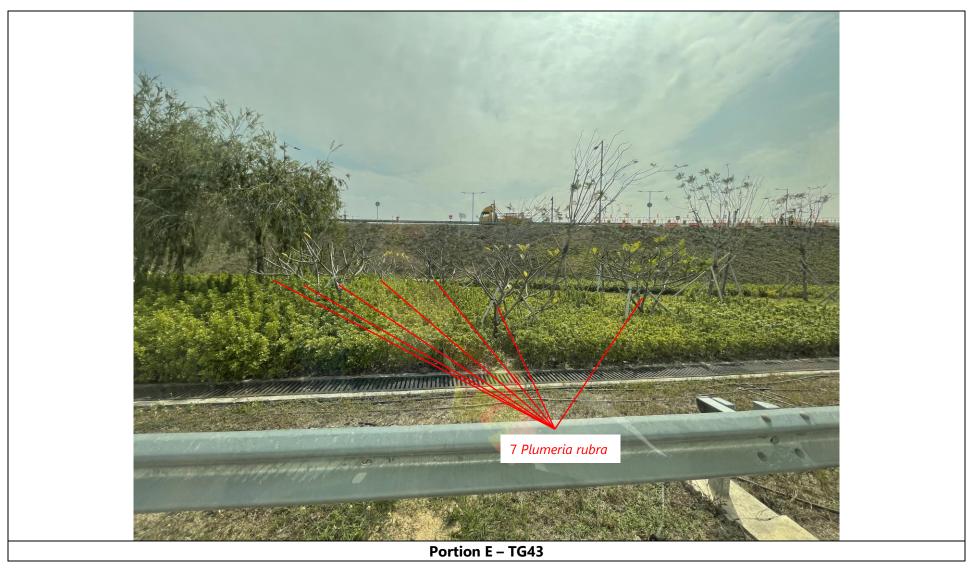
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



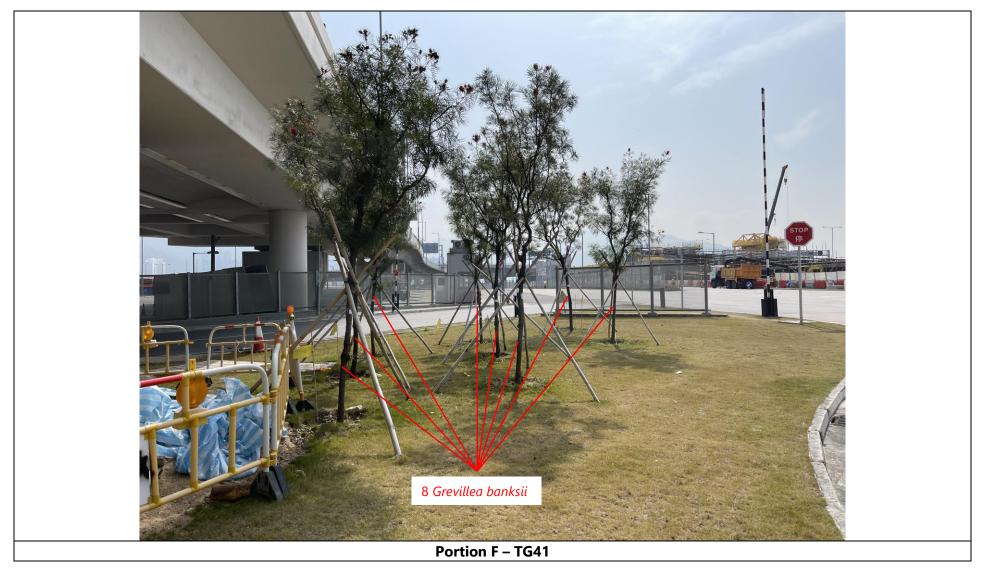
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



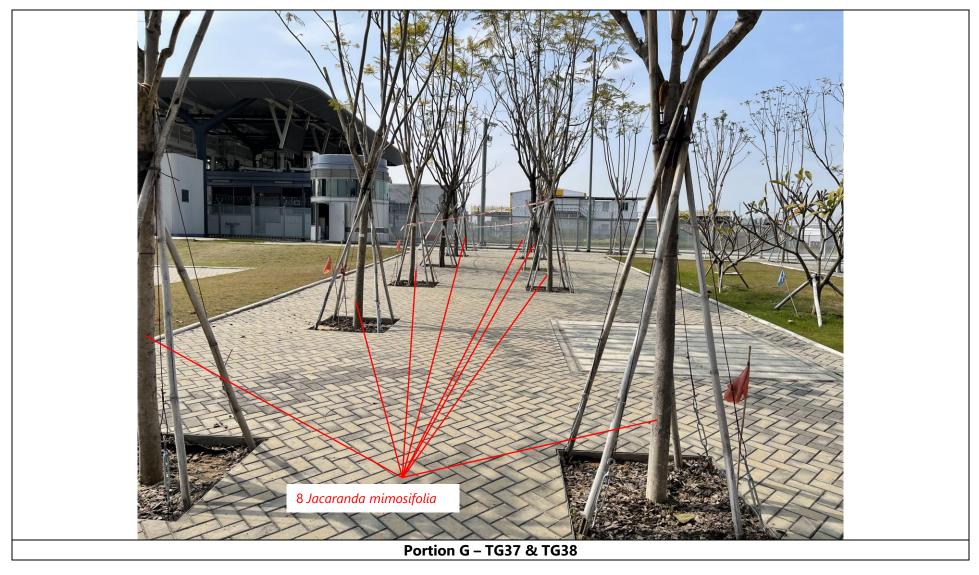
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



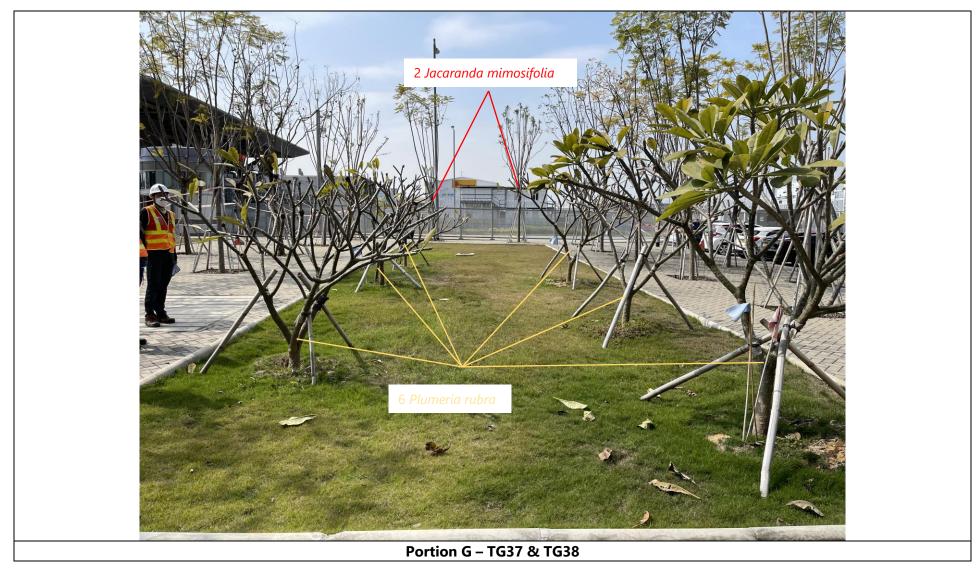
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



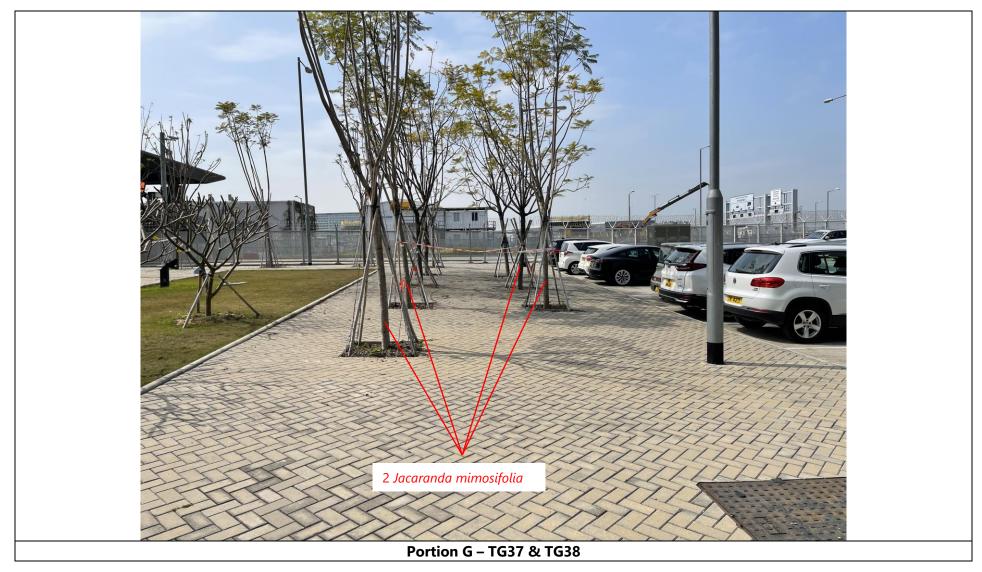
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



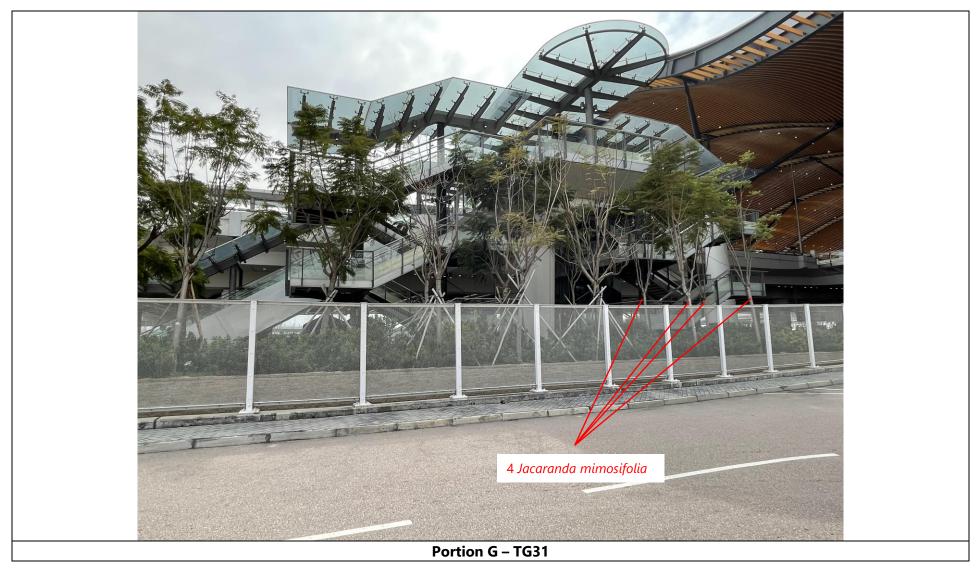
Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –



Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities –

