Development at West Kowloon Cultural District

Monthly Environmental Monitoring and Audit (EM&A) Report

for July 2021

09 August 2021

In accordance with the Environmental Permit, Condition 3.4, this Monthly EM&A Report has been certified by the Environmental Team Leader (ETL) and verified by the Independent Environmental Checker (IEC) as complying with the requirements as set out in Sections 1, 10, 11, 12 and 13 of the EM&A Manual.

Certified by:

m

CK Wu Environmental Team Leader (ETL) West Kowloon Cultural District Authority

Date

12 August 2021

Verified by:

Claudine Lee Independent Environmental Checker (IEC) Meinhardt Infrastructure & Environment Ltd

13 Ang 2021

Date

This Report Consists of :

Part-1: EM&A at Lyric Theatre Complex

and

Part-2: EM&A for Foundation, Excavation and Lateral Works for Integrated Basement and Underground Road in Zone 2A

Part-1: EM&A at Lyric Theatre Complex

Lyric Theatre Complex

Mott MacDonald 3/F International Trade Tower 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 mottmac.hk

Contents

Exe	ecutive	summar	у	1	
1	Intro	duction		3	
	1.1	Backgrou	und	3	
	1.2	-	Drganisation	3	
	1.3	-	f Construction Works in the Reporting Period	4	
	1.4		y of EM&A Requirements and Alternative Monitoring Locations	4	
		1.4.1	EM&A Requirements	4	
		1.4.2	Alternative Monitoring Locations	5	
2	Impa	act Monito	oring Methodology	7	
	2.1	Introduct	tion	7	
	2.2	Air Quali	ity	7	
		2.2.1	Monitoring Parameters, Frequency and Duration	7	
		2.2.2	Monitoring Locations	7	
		2.2.3	Monitoring Equipment	7	
		2.2.4	Monitoring Methodology	8	
	2.3	Noise		11	
		2.3.1	Monitoring Parameters, Frequency and Duration	11	
		2.3.2	Monitoring Location	11	
		2.3.3	Monitoring Equipment	11	
		2.3.4	Monitoring Methodology	11	
	2.4	Landsca	pe and Visual	12	
		2.4.1	Monitoring Program	12	
3	Mon	itoring Re	esults	13	
	3.1	Impact M	Ionitoring	13	
	3.2	•	ity Monitoring	13	
		3.2.1	1-hour TSP	13	
		3.2.2	24-hour TSP	13	
	3.3	Noise Mo	onitoring	14	
	3.4		pe and Visual Impact	14	
4	Site Environmental Management				
	4.1				
	4.2	•	n the Solid and Liquid Waste Management Status	15 16	
	4.3		f Environmental Licenses and Permits	16	
	4.4		nended Mitigation Measures	16	
			v		

5	Compliance with Environmental Permit						
6	Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions						
	6.1	Record on Non-compliance of Action and Limit Levels	19				
	6.2 6.3	Record on Environmental Complaints Received Record on Notifications of Summons and Successful Prosecution	19 19				
7	Futur	re Key Issues	20				
	7.1 7.2	Construction Works for the Coming Month(s) Key Issues for the Coming Month	20 20				
	7.3	Monitoring Schedule for the Coming Month	20				
8	Conc	lusions and Recommendations	22				
	8.1 8.2	Conclusions Recommendations	22 22				
Figu	re 1	Site Layout Plan and Monitoring Stations	23				
App	endice	S	24				
A.	Proje	ct Organisation	25				
B.	Tenta	ative Construction Programme	26				
C.	Actio	n and Limit Levels for Construction Phase	27				
D.	Even Impa	t and Action Plan for Air Quality, Noise, Landscape and Visual	28				
_							
E.	Moni	toring Schedule	29				
F.	Calib	ration Certifications	30				
G.	Grap	hical Plots of the Monitoring Results	31				
H.	Mete	orological Data Extracted from Hong Kong Observatory	32				
I.	Waste Flow table						
J.	Environmental Mitigation Measures – Implementation Status						

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

35

Executive summary

Mott MacDonald Hong Kong Limited (MMHK) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction of M+ Museum Main Works (Contract No.: CC/2015/3A/022) and Lyric Theatre Complex including the Foundation Works (Contract No.: CC/2015/3A/014), L1 Contract (Contract No. CC/2017/3A/030) and L2 Contract (Contract No. CC/2017/3A/031) at West Kowloon Cultural District (WKCD) (The Project) as part of the WKCD development. The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) was commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO.

This Monthly EM&A Report presents the monitoring works at Lyric Theatre Complex (L2 Contract) from 1 July to 31 July 2021.

Exceedance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Noise in this reporting month.

Implementation of Mitigation Measures

Construction phase weekly site inspections were carried out on 7, 14, 21 and 28 July 2021 for Lyric Theatre Complex (L2 Contract) to confirm the implementation measures undertaken by the Contractors in the reporting month. The outcomes are presented in Section 4 and the status of implementation of mitigation measures in the site is shown in **Appendix J**.

Landscape and visual impact inspections were conducted as part of the abovementioned weekly site inspections during the reporting month. No adverse comment on landscape and visual aspects was made during these inspections.

Record of Complaints

One noise-related environmental complaint was recorded in the reporting month. However, it was not attributable to Lyric Complex construction activities.

Record of Notifications of Summons and Successful Prosecutions

No notifications of summons and successful prosecutions were recorded in the reporting month.

1

Future Key Issues

The major site works for L2 to be commissioned in the coming month include:

- LTC construction
 - Structure (Slab, wall, columns and beam)
 - Falsework and formwork erection
 - Reinforcement work
 - Concrete work

ABWF & MEP work

- ASDA and Lyric Theatre Promenade
 - Structure and BS works
- DSC cofferdam (Cofferdam A)
 - Install DCS pipes/ valve/ fittings (DN500/ DN1400) outside chamber Construction of Valve Chamber
 - Construction of valve chamber (upper and middle portion)
- Modification to existing pump cell
 - ABWF works
- Extended basement
 - ABWF & MEP work
 - RC Water Tank
 - RC Duct Slab (Forms/Rebar/Concrete)
- Underpass and Associated Area
 - RC Structure (Waffle Ceiling)
- M+ Day 2 Works
 - Hoarding Work
- P32 Interim Development
 - Structure works (Scaffold/forms/rebar concrete)

Potential environmental impacts due to the construction activities, including air, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

1 Introduction

1.1 Background

Mott MacDonald Hong Kong Limited (MMHK) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction of M+ Museum Main Works (Contract No.: CC/2015/3A/022) and Lyric Theatre Complex including the Foundation Works (Contract No.: CC/2015/3A/014), L1 Contract (Contract No. CC/2017/3A/030) and L2 Contract (Contract No. CC/2017/3A/031) at West Kowloon Cultural District (WKCD) (The Project) as part of the WKCD development. The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) were commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO. The captioned projects include part of the abovementioned underpass road located within the site boundary also falls under this same category.

The M+ Museum development aims to provide an iconic presence for the M+ Museum, semitransparent vertical plane, housing education facilities, a public restaurant and museum offices. At ground and lower levels, generous access will be provided to the park and other West Kowloon Cultural District facilities, alongside a public resource centre, theatres, retail and dining, and backof-house functions.

The 1,200-seat Lyric Theatre Complex will be Hong Kong's first world-class facility for dance performances, including ballet, contemporary and Chinese dance forms. In the run up to the opening of further major performing arts venues in the WKCD, it will also be used for a wide variety of performing arts events including drama, opera and musical performances. The Lyric Theatre Complex will act as a platform for Hong Kong's leading arts organisations and be a new major venue to show programmes from Asia and worldwide.

The Monthly EM&A Report is prepared in accordance with the Condition 3.4 of the Environmental Permit No. EP-453/2013/B. This Monthly EM&A Report presents the monitoring works at Lyric Theatre Complex (L2 Contract) from 1 July to 31 July 2021. The purpose of this report is to summarise the findings in the EM&A of the project over the reporting period.

1.2 **Project Organisation**

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Status of Construction Works in the Reporting Period

During the reporting period, construction works at L2 undertaken include:

- LTC construction
 - Structure (Slab, wall, columns and beam)
 - Falsework and formwork erection
 - Reinforcement work
 - Concrete work

ABWF & MEP work

- ASDA and Lyric Theatre Promenade
 - Structure and BS works
- DSC cofferdam (Cofferdam A)
 - Install DCS pipes/ valve/ fittings (DN500/ DN1400) outside chamber Construction of Valve Chamber

4

- Construction of valve chamber (middle portion)
- Modification to existing pump cell
 - ABWF works
- Extended basement

- ABWF & MEP work
- Underpass and Associated Area
 - RC Structure (Waffle Ceiling)
- M+ Day 2 Works
 - Hoarding Work
 - Modification Works at M+Day 2 PN2
- P32 Interim Development
 - Structure works (Scaffold/forms/rebar concrete)

The Construction Works Programme of Lyric Theatre Complex (L2 Contract) is provided in **Appendix B**. A layout plan of the Project is provided in **Figure 1**. Please refer to and **Table 4.4** on the status of the environmental licenses.

1.4 Summary of EM&A Requirements and Alternative Monitoring Locations

The EM&A programme requires environmental monitoring of air quality, noise, landscape and visual as specified in the approved EM&A Manual.

1.4.1 EM&A Requirements

A summary of impact EM&A requirements is presented in Table 1.1.

Parameters	Descriptions	Locations	Frequencies	
Air Quality	24-Hour TSP	AM1 - International Commerce Centre	At least once every 6 days	
	1-Hour TSP	AM1 - International Commerce Centre	At least 3 times every 6 days	
	24-Hour TSP	AM2 - The Harbourside Tower 1	At least once every 6 days	
	1-Hour TSP	AM2 - The Harbourside Tower 1	At least 3 times every 6 days	
Noise	Leq, 30 minutes	NM1- The Harbourside Tower 1	Weekly	
Landscape & Visual	Monitor implementation of proposed mitigation measures during the construction stage	As described in Table 9.1 and 9.2 of the EM&A Manual	Bi-weekly	

Table 1.1: Summary of Impact EM&A Requirements

1.4.2 Alternative Monitoring Locations

In the context of the monitoring activities at M+ Museum and the Lyric Complex, three monitoring stations had been considered, including AM1 (International Commerce Centre), AM2 (The Harbourside Tower 1) for air monitoring, and NM1 (The Harbourside Tower 1) for noise monitoring. Other monitoring locations (i.e. AM3 to AM5 and NM2 to NM5) were so far away from M+ Museum and the Lyric Complex and could not be representative for impact monitoring.

The Harbourside management office formally rejected our proposal of setting up air quality and noise monitoring equipment on its premises at the podium level of Tower 1 (AM2/NM1) on 10 November 2015. Nevertheless, a suitable air quality monitoring location at AM2 was identified on the ground floor in front of The Harbourside Tower 1, which is at the same location as that of baseline monitoring for consistency. No management approval is required on the ground floor for conducting the air monitoring. However, the electricity supply at AM2 was suspended from 31 August 2016. In order to have a more secure electricity supply, an alternative air monitoring location (AM2A) was identified at Austin Road West opposite to The Harbourside Tower 1, which is close to Lyric Theatre Complex site entrance. This alternative air monitoring location was approved by EPD on 28 September 2016. Due to the works programme, the air monitoring location AM2A has been relocated to the alternative monitoring location AM2B at the 1st floor of Gammon's site office, which was approved by EPD on 21 February 2019. In view of the upcoming construction works to be undertaken at the air monitoring station AM2B. Thus, AM2B was no longer available for conducting the impact air quality monitoring. Hence, an alternative air monitoring location was identified on the ground floor in front of The Harbourside Tower 1 (AM2) which is at the same location as the baseline monitoring and this previously approved monitoring location had also been used for the EM&A Programme from November 2015 to August 2016, the relocation was approved by EPD on 27 May 2021.

Alternative noise monitoring location was identified at The Arch (NM2); however, The Arch management office formally rejected our proposal of setting up noise monitoring equipment on its premises on 23 November 2015. On the other hand, noise monitoring at G/F of Harbourside could not be representative. However, approval from the management office of the International Commerce Centre has been granted on 29 February 2016 for conducting noise monitoring at the alternative noise monitoring location identified at the podium floor (NM1A) which is free from screening to the construction activities.

In short, 2 air quality monitoring stations and 1 noise impact monitoring station were confirmed for the impact monitoring.

The Environmental Quality Performance Limits for air quality and noise are shown in **Appendix C**.

The Event and Action Plan for air quality, construction noise, and landscape and visual are shown in **Appendix D**.

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**.

2 Impact Monitoring Methodology

2.1 Introduction

For air quality and noise, the monitoring methodology, including the monitoring locations, monitoring equipment used, monitoring parameters, and frequency and duration etc., for air quality and noise are detailed in this Section. The environmental monitoring schedules for the reporting period and the tentative monitoring Schedule for the coming month are provided in **Appendix E**.

For landscape and visual impact, the relevant EM&A monitoring requirements and details are also presented in this Section.

2.2 Air Quality

2.2.1 Monitoring Parameters, Frequency and Duration

Table 2.1 summarizes the monitoring parameters, frequency and duration of the TSP monitoring.

	, in Quality memoring ratametere, riequency and Daratien				
Parameter	Frequency	Duration			
24-hour TSP	At least once in every six-days	24 hours			
1-hour TSP	At least 3 times every six-days	60 minutes			

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration

2.2.2 Monitoring Locations

Currently, the works under the captioned project are confined in the western part of the WKCD site. Therefore, only the monitoring stations AM1 and AM2 were set up at the proposed locations in accordance with updated EM&A Manual. Location of the monitoring station is given in **Table 2.2** and shown in **Figure 1**.

Table 2.2: Air Quality Monitoring Station

Monitoring Station	Location		
AM1	International Commerce Centre (ICC)		
AM2	The Harbourside Tower 1 – Ground Floor		

2.2.3 Monitoring Equipment

For 24-hour TSP air quality monitoring, High Volume Sampler (HVS) was used at air monitoring station AM1 and portable direct reading dust meter was used at air monitoring station AM2 due to the unavailability of power supply for HVS at / in the vicinity of the AM2. The portable direct reading dust meter is capable of producing comparable results as that by the HVS method. For 1-hour TSP monitoring, portable direct reading dust meter was used for the measurement.

Table 2.3 summarizes the equipment used in the impact air quality monitoring. Copies of the calibration certificates for the calibration kit and portable dust meters are attached in Appendix F.

Table 2.3: TSP Monitoring Equipment

Model
TE-5170 (Serial No: 0767)
TE-5025A (Orifice I.D.: 2454)
Sibata LD-5R (Serial No.: 620401)
Sibata LD-3B (Serial No.: 245833 and 276015)

Calibration of the HVS (five point calibration) using Calibration Kit was carried out every two months. The HVS calibration orifice will be calibrated annually. Calibration certificate of the TE-5025A Calibration Kit and the HVS are provided in **Appendix F**.

The portable direct reading dust meter should be determined periodically (e.g. annually) by the HVS to check the validity and accuracy of the results measured by direct reading method.

2.2.4 Monitoring Methodology

24-hour TSP Monitoring (HVS)

Installation

The HVS was installed at the site boundary. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of 2 metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of 2 metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the sampler and to obtain access to the monitoring station.
- A secured supply of electricity is needed to operate the sampler.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- The filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP) particles.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5 %. A convenient working RH was 40%. All preparation of filters was done by Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory.

Field Monitoring Procedures

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.3 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated upon installation and thereafter at bi-monthly intervals. The calibration kits were calibrated annually.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

24-hour TSP Monitoring (Portable direct reading dust meter)

Field Monitoring

The measuring procedures of the portable direct reading dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.

- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 24 hours for the 24-hour TSP measurement.
- Push "START/STOP" to start the 24-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 24 hours.

Maintenance and Calibration

- The portable direct reading dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

2.3 Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Table 2.4 summarizes the monitoring parameters, frequency and duration of noise monitoring. The noise in A-weighted levels L_{eq} , L_{10} and L_{90} are recorded in a 30-minute interval between 0700 and 1900 hours.

Table 2.4: Noise Monitoring Parameters, Period and Frequency

Time Period	Parameters	Frequency
Daytime on normal weekdays (0700-1900 hours)	L _{eq} (30 min), L ₉₀ (30 min) & L ₁₀ (30 min)	Once every week

2.3.2 Monitoring Location

Currently, the works under the captioned project are confined in the western part of the WKCD site. Therefore, only the monitoring station NM1A was set up at the proposed location in accordance with updated EM&A Manual. Location of the monitoring station is given in **Table 2.5** and shown in **Figure 1**.

Table 2.5: Noise Monitoring Station

Monitoring Station	Location		
NM1A	International Commerce Centre (ICC)		

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{Aeq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

Monitoring Station	Equipment Model			
	Integrating Sound Level Meter	Calibrator		
NM1A	Rion NL-52 (Serial No. 00131627)	LARSON DAVIS CAL200 (Serial No.11334)		

2.3.4 Monitoring Methodology

Field Monitoring

- The microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- Free Field measurement was made at the monitoring locations.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast
 - time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement

was more than 1 dB, the measurement would be considered invalid and has to be repeated after re-calibration or repair of the equipment.

- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- A correction of +3dB(A) was made to the free field measurements.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

2.4 Landscape and Visual

2.4.1 Monitoring Program

Table 2.7 details the monitoring program (as proposed in the WKCD EIA report) for landscape and visual impact during the construction phase.

Table 2.7:Monitoring Program for Landscape and Visual Impact during ConstructionPhase

Stage	Monitoring Task	Frequency	Report	Approval	
Construction	Monitor implementation of proposed mitigation measures during the construction stage.	Bi-weekly	ET to report on Contractor's compliance	Counter- signed by IEC	

During the landscape and visual impact monitoring, any changes in relation to the landscape and visual amenity should be monitored with reference to the baseline conditions of the site. In addition, mitigation measures were proposed in the WKCD EIA report to minimise the landscape and visual impacts during the construction phase. The proposed mitigation measures as shown in Table 9.1 and Table 9.2 of the EM&A Manual should be checked for proper implementation.

3 Monitoring Results

3.1 Impact Monitoring

Construction impact monitoring for air quality, noise and landscape and visual impact was undertaken in compliance with the EM&A Manual during the reporting month.

3.2 Air Quality Monitoring

3.2.1 1-hour TSP

Results of 1-hour TSP at the monitoring location AM1 and AM2 are summarised in **Table 3.1**. Graphical plots of the monitoring results are shown in **Appendix G**.

				0				
Monitoring	Monitoring	1-hour TSP (µg/m3)			Range	Action	Limit	
Station	Date	Time	1st Result	2nd Result	3rd Result	(µg/m3)	Level (µg/m3)	Level (µg/m3)
	05-Jul-21	8:32	40	39	33		273.7	500
	09-Jul-21	8:32	24	31	26	17-51		
AM1	15-Jul-21	8:23	17	19	21			
	21-Jul-21	8:32	24	21	29			
	27-Jul-21	8:27	39	51	46			
	05-Jul-21	8:43	41	38	49	21-82 274.2		500
	09-Jul-21	8:43	61	51	42			
AM2	15-Jul-21	8:33	24	21	26		274.2	
	21-Jul-21	8:47	38	41	50			
	27-Jul-21	8:37	75	82	70	-		

 Table 3.1:
 Summary of 1-hour TSP monitoring results

3.2.2 24-hour TSP

Results of 24-hour TSP at the monitoring location AM1 and AM2 are summarised in **Table 3.2**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.2:	Summary of 24-hour TSP monitoring results						
Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)	
	05-Jul-21	08:30	25				
	09-Jul-21	08:30	14	8-25 143.6			
AM1	15-Jul-21	08:21	8		143.6	260	
	21-Jul-21	08:30	9				
	27-Jul-21	08:25	11				
	05-Jul-21	08:52	14				
4140	09-Jul-21	08:47	54	0.01	151 1	260	
AM2	15-Jul-21	08:38	8	8-81 151.1	260		
	21-Jul-21	08:44	39				

|--|

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.3 Noise Monitoring

The construction noise monitoring results at the monitoring location NM1A are summarized in **Table 3.3**. Graphical plots of the monitoring data and the station set-up of a free-field measurement are shown in **Appendix G**.

		• •	-	
Start Time	End Time	L _{eq} (30 mins)*, dB(A)	Limit Level for L _{eq} (dB(A))	
09:35	10:05	68		
09:16	09:46	69	76	
09:30	10:00	69	- 75	
09:20	09:50	68		
	Start Time 09:35 09:16 09:30	Time Time 09:35 10:05 09:16 09:46 09:30 10:00	Start Time End Time Leq (30 mins)*, dB(A) 09:35 10:05 68 09:16 09:46 69 09:30 10:00 69	

 Table 3.3:
 Summary of noise monitoring results during normal weekdays

Remarks:

* +3dB (A) correction was applied to free-field measurement.

No exceedance (Action/Limit Level) of construction noise was recorded in the reporting month.

3.4 Landscape and Visual Impact

Landscape and visual impact inspections were conducted as part of the weekly site inspections on 14 and 28 July 2021 for Lyric Theatre Complex (L2 Contract) during the reporting month. As reviewed by the registered Landscape Architect, no adverse comment on landscape and visual aspects was made during these inspections.

The landscape and visual mitigation measures were implemented during the reporting period. The summary of implementation status of the environmental mitigation measures is provided in **Appendix J**.

4 Site Environmental Management

4.1 Site Inspection

Construction phase weekly site inspections were carried out on 7, 14, 21 and 28 July 2021 at Lyric Theatre Complex (L2 Contract). The joint site inspection with IEC, ET, ER and Contractor was held on 21 July 2021. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.1**: Summary of Site Inspections and Recommendations for L2.

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close- out (Date)
07-Jul-21	Water Quality	Improper drip tray was observed for holding the chemicals. The contractor was reminded to provide a suitable drip tray for the chemicals.	The contractor has provided a suitable drip tray.	13-Jul-21
07-Jul-21	Waste Management	Waste was observed on site, the contractor was reminded to remove the waste regularly.	The contractor has removed the waste regularly.	09-Jul-21
07-Jul-21	Waste Management	Chemical containers should be properly covered.	The contractor has properly covered the chemical containers.	13-Jul-21
14-Jul-21	Air Quality	The contractor should increase water spraying frequency to avoid dust impact.	The contractor has increased water spraying frequency.	15-Jul-21
14-Jul-21	Air Quality	Cement bags were observed without cover. The contractor was reminded to properly cover the cement bags when not in use.	The contractor has properly covered the cement bags when not in use.	15-Jul-21
14-Jul-21	Waste Management	The contractor should remove the waste regularly.	The contractor has removed the waste.	19-Jul-21
21-Jul-21	Water Quality	Stagnant water in drip tray and chemical containers without drip tray were observed. The contractor was reminded to remove the stagnant water to prevent leakage of chemical and provide drip tray for the chemical containers	The contractor has cleared the stagnant water and provided a suitable drip tray for the chemical containers.	27-Jul-21
28-Jul-21	Air Quality	Dusty materials were observed without cover, the contractor was reminded to properly cover the dusty materials when not in use.	The contractor has removed the opened packaging cement.	30-Jul-21
28-Jul-21	Water Quality	Oil stain was observed near the generators, the contractor was reminded to clear the oil stain.	The contractor has cleared the oil stain.	29-Jul-21

Table 4.1: Summary of Site Inspections and Recommendations for L2

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close- out (Date)
28-Jul-21	Waste Management			28-Jul-21

4.2 Advice on the Solid and Liquid Waste Management Status

The Contractor has been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting will be carried out on site. A sufficient number of receptacles were available for general refuse collection.

As advised by the Lyric Theatre Complex (L2 Contract) Contractor, 0.0 tonne and 0.0 tonne of inert C&D materials was disposed of as public fill to Tseung Kwan O Area 137 Public Fill and Tuen Mun Area 38 Public Fill respectively in the reporting month, while 287.1 tonnes of general refuse were disposed of at SENT and WENT landfill. 18.1 tonnes of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber were collected by recycling contractors in the reporting month. 0.0 tonne of inert C&D material was reused on site. 0.0 tonne of inert C&D material was reused in other projects and 0.0 tonne of inert C&D material was imported for reuse at site. 8.9 tonnes of inert C&D material were disposed to sorting facility and 0.0 tonne of chemical waste were collected by licensed contractors in the reporting period.

The actual amounts of different types of waste generated by the activities of construction works at Lyric Theatre Complex in the reporting month are shown in **Appendix I**.

4.3 Status of Environmental Licenses and Permits

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.2**.

Permit / License	Valid Period		Status	Remarks	
No. / Notification / Reference No.	From	То	_		
Chemical Waste Produ	cer Registration				
WPN5213-217- G2347-39	17-Feb-16		Valid		
Billing Account Constru	uction Waste Dispos	al			
7032787	02-Jan-19		Account Active		
Construction Noise Per	mit				
GW-RE0520-21	1-Jun-21	30-Nov-21	Valid		
Wastewater Discharge	License				
WT-00030694-2018	11-Apr-18	30-Apr-23	Valid		
Notification under Air Pollution Control (Construction Dust) Regulation					
448474	27-Aug-19		Notified		

Table 4.2: Status of Environmental Submissions, Licenses and Permits for L2

4.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental

mitigation measures are provided in **Appendix J**. In particular, the following mitigation measures were brought to attention during the site inspections:

Air Quality

- Water spraying should be adopted for active construction areas
- High standard of housekeeping shall be maintained

Water Quality

- Oils and fuels should be stored in designated areas which have pollution prevention facilities
- Containers used for storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed

Waste Management

 All wastes generated at site shall be collected and disposed to an appropriate facility regularly

5 Compliance with Environmental Permit

The status of the required submission under the EP during the reporting period is summarized in **Table 5.1**.

Table 5.1: Status of Submissions under the Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report for June 2021	14 July 2021

6 Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions

6.1 Record on Non-compliance of Action and Limit Levels

There was no breach of Action or Limit Levels for Air Quality and Noise monitoring in the reporting month.

6.2 Record on Environmental Complaints Received

One environmental complaint was received in the reporting month.

On 7 July 2021, EPD has received a complaint from a staff of Standard Chartered Elements Priority Banking Centre regarding construction noise from WKCD construction site (Artist Square Bridge (ASB) construction site). On 5 July 2021, WKCD staff has informed the complainant that the construction works of ASB project were scheduled to be carried out until noon every day. However, noise nuisance caused by ASB works lasted till 14:00 to 15:00 for consecutive 3 days. As the work place of the complainant is in close proximity of ASB project, daily noise exposure has become excessive, affecting daily duty performance and well-being of the complainant. Based on above description, the complaint was not attributable to the Lyric Theatre Complex construction activities. Noise measurement and monitoring were also carried out with no exceedance. However, noise mitigation measures will continue to be strictly implemented on site to reduce impacts to nearby residents.

The cumulative statistics on complaints were provided in Appendix K.

6.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecutions were received this month. The cumulative statistics on notifications of summons and successful prosecutions were provided in **Appendix K**.

7 Future Key Issues

7.1 Construction Works for the Coming Month(s)

The major site works for L2 to be commissioned in the coming month include:

LTC construction

Structure (Slab, wall, columns and beam)

- Falsework and formwork erection
- Reinforcement work
- Concrete work

ABWF & MEP work

- ASDA and Lyric Theatre Promenade
 - Structure and BS works
- DSC cofferdam (Cofferdam A)
 - Install DCS pipes/ valve/ fittings (DN500/ DN1400) outside chamber Construction of Valve Chamber
 - Construction of valve chamber (upper and middle portion)
- Modification to existing pump cell
 - ABWF works
- Extended basement
 - ABWF & MEP work
 - RC Water Tank
 - RC Duct Slab (Forms/Rebar/Concrete)
- Underpass and Associated Area
 - RC Structure (Waffle Ceiling)
- M+ Day 2 Works
 - Hoarding Work
- P32 Interim Development
 - Structure works (Scaffold/forms/rebar concrete)

7.2 Key Issues for the Coming Month

Key issues to be considered at Lyric Theatre Complex in the coming month include:

- Generation of dust from construction works;
- Noise impact from operating equipment and machinery on-site;
- Generation of site surface runoffs and wastewater from activities on-site;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site; and
- Operating conditions of drainage facilities.

7.3 Monitoring Schedule for the Coming Month

The environmental site inspection and environmental monitoring will be continued in the coming month. The tentative monitoring schedule for the coming month is shown in the **Appendix E**.

8 Conclusions and Recommendations

8.1 Conclusions

The EM&A programme as recommended in the EM&A Manual has been undertaken. The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) was commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

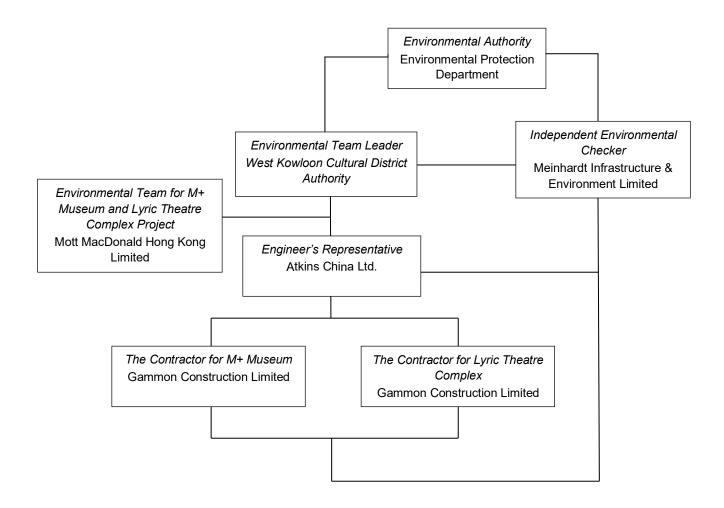
Monitoring of air quality and noise with respect to the Projects is underway. In particular, the 1-hour TSP, 24-hour TSP, noise level (as L_{eq}, 30 minutes) under monitoring have been checked against established Action and Limit levels. There was no breach of Action and Limit Levels for 1-hour TSP, 24-hour TSP and noise in the reporting month.

One noise-related environmental complaint was recorded in the reporting month. However, it was not attributable to Lyric Complex construction sites. No notifications of summons or successful prosecutions were received during the reporting month.

Weekly construction phase site inspections and bi-weekly landscape and visual impact inspections were conducted during the reporting month as required. It was observed that the Contractors had implemented all possible and feasible mitigation measures to mitigate the potential environmental impacts during construction phase works.

8.2 **Recommendations**

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.


Figure 1 Site Layout Plan and Monitoring Stations

Appendices

- A. Project Organisation
- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow table
- J. Environmental Mitigation Measures Implementation Status
- K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

A. Project Organisation

Table A-1: Contact information

Company Name	Role	Name	Telephone	Email
Atkins China Ltd.	Resident Engineer	Ms. Gloria Lui	5506 6361	gloria.lui@atkinsglobal.com
Meinhardt Infrastructure & Environment Limited	Independent Environmental Checker	Ms. Claudine Lee	2859 5409	claudinelee@meinhardt.com.hk
Gammon Construction Limited (M+ Museum)	Environmental Manager	Mr. Andy Leung	9489 0035	andy.leung@gammonconstruction.com
Gammon Construction Limited (L1)	Environmental Manager	Ms. Sammie Chan	9864 4296	sammie.chan@gammonconstruction.com
Gammon Construction Limited (L2)	Environmental Manager	Mr. Ivan Chiu	9416 1664	ivan.chiu@gammonconstruction.com
Mott MacDonald Hong Kong Ltd.	Contractor's Environmental Team Leader	Mr. Thomas Chan	2828 5757	thomas.chan@mottmac.com
West Kowloon Cultural District Authority	Senior Project Manager (Safety, Health and Environment)	Mr. C.K. Wu	5506 9178	ck.wu@wkcda.hk

B. Tentative Construction Programme

	Activity	RD	Start	Finish	202)21					202					2023				2
						Qtr 3				Qtr 2									4 Qtr		2 Qt			Qtr 1	
M/P R01	10 Approved 29Sep 20 - 10th Update DD=30Jun21				MJ	JAS		ID J	FM	AMJ	JA	ISIO	ND.	JIFIN		N J J			DJF			180	ND	JIFII	M
	PRELIMINARIES						+-+					{ <u></u> {}{				+-+-	++-	+++		<u>⊦-</u> +					;
																		÷							i
ntract Sig	gnificant Dates																								
	ont & Completion Dates						<u></u>					<u></u>				11	1.1.	1.1.1		LLL					L.İ
ection Keydal	tes																								
	PC for HO of Landscape Area at Avenue & Pedestrian level between P31 & P34 [if instructed]	0		31-Dec-21*			<u>.</u>						Y-	·	. 6			4.4.4		ļ	4.4.4.				i
	Complete Required Pedestrian Access Corridor & associated top slab at Avenue Level [if instructed]	0		28-Jan-22*			++		-		·	Ø		···	e	2		÷.+.+							+ -
	PC for HO of the Remaining Works for M+ Promenade South Complete Required Pedestrian Access Corridor and Floor Finishes at AURW	0		05-Mar-22* 07-May-22*			+					S		··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	<mark>v</mark>	<u>.</u>		+-+-+							; ; .
	PC for HO Loc ICT/Risers Rms to APC for ICT Sys Instn Wrks	0		23-Mar-24*			+-+	÷								4-÷-	++-	++++				€	5		-
	PC for HO of ASDA, Lyric Theatre Promenade South to Authority	0		23-Mar-24*			+															e			
-	PC for HO of RDE areas for Tenancy Fit-out Wrks	0		23-Mar-24*			+															ē			7
	PC for HO of Extended Basement for HO to Authority & HO of Carriageway to Relevant Govt Authority	0		29-May-24*			1-1	111				111				11	11				1-1-1-		⊘	,-tt-	(<u>†</u> -
KD07	PRACTICAL COMPLETION for C'Way 3A (M+ Day 2 Works)	0		26-Jun-24*			Ť.	111		111	1	1			1.1	11	111	111			1111	1-1-1		Ø	;÷-
KD13	PRACTICAL COMPLETION for Lyric Theatre, Extended Basement & CWay 3B	0		26-Jun-24*]									1			Ø	
Stage Keydate	3						1.1.									1.1.	1.1.	1.1.1			1.1.1.				
	Compl Dsgn Coor/Subm and obtn NNO for L1 Contr Bsmt constn wrks	0		20-Jul-19 A			<u> -</u>										Ļ								;
	PC for Fountain Related Plantroom(s)	0		24-May-22*											Ø	V.									
	OBTAIN OP for Lyric Theatre & Extended Basement	0		23-Mar-24*							· · · · · ·									÷	÷	€	Ø		V
	Complete U/G road and the associated plantrooms at Zone 3A&3B Integrated Basement Obtain BA14 Acknowledge from BD for M+ Day2 A&A Works	0		12-Apr-24* 25-May-24*	•			{															Ø		;+`
		0		25-May-24			+-+									÷-+-	++-	÷.+.+							; ·
	rogram - Level 1																								
	[LoE] CC_B Lyric Theatre - Substructure RC Structural Concrete	81	06-May-20 A												<u>i i</u>	<u>. i</u>		<u></u>		<u></u>	<u>ii.</u>				i.
	[LoE] CC_B Lyric Theatre - ABWF Work Including Theatres (Excl. Punch List Works)	805 391	28-May-21 A 23-Jul-21	26-Mar-24 24-Dec-22				<u></u>						-	al al a										<u> </u> .
-	[LoE] CC_B Lyric Theatre - Superstructure RC Structural Concrete [LoE] CC B Lyric Theatre - MEP 1st to Final Fix (Excl. TH SYS, TH Non-FSD in Walls, etc.)	656	25-Jui-21 25-Aug-21	16-Nov-23	•		÷-+	÷																·	; <u>+</u> ·
	[LOE] CC_B Lyric Theatre - Structural Steel by CSD	419	04-Oct-21	11-Apr-23	****		+-+	÷				i i j essi			*****	*****	*****								(†·
	[LoE] CC B Lyric Theatre - EWS Weather Tight Type	277	21-Feb-22	25-Feb-23			1 1														1-1-1-	111			(† -
SUM17	[LoE] CC_B Lyric Theatre - Theatre Specialist Systems Incl. T&C, Precom. & Commissioning	617	21-May-22	25-Jun-24																				<u></u>	
UM13	[LoE] CC_B Lyric Theatre - EWS Non-Weather Tight Type 4.1 & 4.3	300	01-Sep-22	11-Oct-23			I.I.										- F			<u> </u>					111
	[LoE] CC_B Lyric Theatre - T&C (Excluding Non-FSD ELV & Electrical)	139	06-Jun-23	20-Nov-23			<u> -</u>										Ļ	<u></u>							
	[LoE] CC_B Lyric Theatre, EB, C'Way 3B - Stat. Insp. & Approval (from Form 314/501 to BD OP)	98	21-Nov-23	23-Mar-24							<u></u>	<u> </u>								<u> </u>					<u>.</u>
	[LoE] CC_C-LT EVA1 & EVA2	727	12-Apr-21 A	02-Mar-24																					; <u></u> ;
	[LoE] CC_C - Artist SQ. Bridge (ASB_1/2/3; ASB_3; P31_2; P34_2; AS_1/2; ASB-6/P31 EVA) [LoE] CC C - HoR Development (P32-1, P29-1, P31-EVA)	685 592	21-Jun-21 A 31-Aug-21	06-Jan-24 06-Nov-23			+						*****		ai an instantion	*****	****	*****					.		¦¦·
	[LoE] CC_C - LT Promenade & Pocket Square Bridge	657	25-Oct-21	15-Mar-24	****		+-+-	÷					addad a	ujuj o	dada	dada	-	÷	***				hadrade	adaad i	jar†.
	[LoE] CC D - Remaining Works for M+ Promenade South	186	18-Feb-21 A		****		+		-				*****			111									(† -
	[LoE] CC E - DCS Cofferdam A Works & Obtain BA14	344	23-Jun-20 A	12-Oct-22					<u></u>			1		atasta	ataata	*****	diante	***			1 1 1	1 1			/**†
SUM42	[LoE] CC_E - DCS Outside of Cofferdam A Works (Connect DIA1,600 & Remove Temp O'fall)	466	01-Sep-21	16-May-23														+]				
	[LoE] CC_F - Mods to Existing Pump Cell Civil & MEP Works (Excl. Options 2 Add. Pumps)	229	17-Jul-21	18-May-22																					¦
	[LoE] CC_G Extended Basement - ABWF Works (Incl. Deferred Areas Under Deck)	617	15-May-21 A				4.4.4														<u></u>				÷÷
	[LoE] CC_G Extended Basement - MEP 1st Fix to Final Fix (Incl. Deferred Areas Under Deck)	599	17-May-21 A				+														dandarda				; ;
	[LoE] CC_G Extended Basement - T&C [LoE] CC H - Vibration Isolation Spring System Remaining as of 30Apr2020 (AS=30Sep19)	258 0	17-Sep-22 09-May-20 A	05-Aug-23 10-Feb-21 A	-				-						- <u>-</u>										+-
	[LOE] CC_1 Carriageway 3B - ABWF Works	421	12-Aug-21	13-Jan-23				· · · · · ·			- ie	<u>ii</u>	<u>i</u> i	<u>ii.</u>	<u>.ii</u> .	<u>.ii.</u>	<u></u>	<u></u>		<u> </u>					; <u>+</u> ·
	[LoE] CC_I Carriageway 3B - MEP Works (1st Fix to Final Fix)	314	29-Oct-21	21-Nov-22	\uparrow		****					i∵i∵ė								in in in	1-1-1-	1-1-1			(+
	[LoE] CC Underpass 3B & Associated Area - T&C	108	08-Nov-22	23-Mar-23			†-†	:				1			111					pirir:	1-1-1-	1-1-1	ii -		; † -
UM35	[LoE] CC_J - M+ Day 2 Works (excl. connections to M+ and SZ_1 FS Changeover)	750	03-Jun-21 A	15-Jan-24											-	-	-						<u></u>	•	1
JM38	[LoE] CC_J - M+ Day 2 FS Changeover in 3A SZ_1, Connections to M+, Integrated T&C	99	05-Dec-23	12-Apr-24												11							-		
	[LoE] CC_J Carriageway 3A - Stat. Insp. & Approvals (from Form 314A to BA14)	56	15-Mar-24	25-May-24			ļ									1.1.									· 🟧
SUM39	[LoE] CC_K - Water Main at Promenade	244	14-Oct-22	01-Sep-23			÷-+					ļļļ			<u>.</u>										i
	[LoE] CC N Lifts & Escalators	460	13-Jan-22	10-Aug-23			1 1	: :	: : :	1 1													: :	1 1	. 1

C. Action and Limit Levels for Construction Phase

Air Quality

The Action and Limit Levels for 1-hour and 24-hour TSP for the monitoring station are presented in following tables:

Table C-1: Action and Limit Levels for 1-hour TSP						
Monitoring	J Station	Action Level (mg/m ³)	Limit Level (mg/m ³)			
AM	1	273.7	500			
AM	2	274.2	500			

Table C-2: Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (µg/m³)	Limit Level (µg/m³)
AM1	143.6	260
AM2	151.1	260

<u>Noise</u>

The Action and Limit Levels for Noise for the monitoring stations are presented in following table:

Table C-3: Action and Limit Levels for Construction Noise

Time Period & Monitoring Locations	Action Level	Limit Level
NM1A		
0700-1900 hours on normal weekdays	When one valid documented complaint is received.	75 dB(A)

D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact

Air Quality

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-1:	Event and	Action	Plan for	Air Quality
------------	-----------	--------	----------	-------------

Event	Action							
	ET	IEC	WKCDA	Contractor				
Action Level								
1. Exceedance for one sample		1. Check monitoring data submitted by ET;	1. Notify Contractor	1. Rectify any unacceptable practice;				
	exceedance and propose remedial measures;	2. Check Contractor's working method.		2. Amend working methods if appropriate.				
	2. Inform IEC and WKCDA;							
	3. Repeat measurement to confirm finding;)						
	4. Increase monitoring frequency to daily.							
	1. Identify source;	1. Check monitoring data						
two or more consecutive samples	2. Inform IEC and WKCDA;	submitted by ET; 2. Check Contractor's	in writing;	remedial to WKCDA within three working days of notification;				
samples	3. Advise the WKCDA on the effectiveness of the	working method; 3. Discuss with ET and	 Notify Contractor; Ensure remedial 	 2. Implement the agreed 				
	proposed remedial measures;	Contractor on possible remedial measures;	measures properly implemented.	proposals; 3. Amend proposal if				
	4. Repeat measurements to confirm findings;	4. Advise the ET on the effectiveness of the	·	appropriate.				
	5. Increase monitoring frequency to daily;	proposed remedial measures;						
	6. Discuss with IEC and Contractor on remedial actions required;	5. Monitor the implementation of remedial measures.						
	7. If exceedance continues, arrange meeting with IEC and WKCDA;							
	8. If exceedance stops, cease additional monitoring.							
Limit Level								
1. Exceedance for one sample	remedial measures;	 Check monitoring data submitted by ET; Check Contractor's working method; 	notification of failure in writing;	 Take immediate action to avoid further exceedance; Submit proposals for 				
	2. Inform WKCDA, Contractor and EPD;	3. Discuss with ET and Contractor on possible	3. Ensure remedial measures properly	remedial actions to IEC within three working				
	3. Repeat measurement to confirm finding;		implemented.	days of notification;3. Implement the agreed				
	4. Increase monitoring frequency to daily;	the effectiveness of the proposed remedial		proposals; 4. Amend proposal if				
	5. Assess effectiveness of Contractor's remedial	measures; 5. Monitor the implementation of		appropriate.				

implementation of

remedial measures.

actions and keep IEC,

informed of the results.

EPD and WKCDA

Event

Action

2. Exceedance for two or more consecutive	 Notify IEC, WKCDA, Contractor and EPD; Identify source; 	 Check monitoring data submitted by ET; Check Contractor's 		¹ 1. Take immediate action to avoid further exceedance;		
samples	 Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and WKCDA to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst WKCDA, ET, and Contractor on the potentia remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly; Monitor the implementation of 	 In consolidation with the IEC, agree liwith the Contractor on the remedial measures to be implemented; Ensure remedial 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the WKCDA until the exceedance is abated. 		

Construction Noise

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Event	Action						
_	ET	IEC	WKCDA	Contractor			
Action Level	 Notify WKCDA, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, WKCDA and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the WKCDA accordingly; Advise the WKCDA on the effectiveness of the proposed remedial measures. 	in writing; 2. Notify Contractor; 3. In consolidation	mitigation proposals to IEC and WKCDA;			
Limit Level	 Inform IEC, WKCDA, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and WKCDA on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst WKCDA, ET, and Contractor on the potentia remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly. 	 lin writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to 	 action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC and WKCDA within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the WKCDA until the exceedance is abated. 			

 Table D-2:
 Event and Action Plan for Construction Noise

Landscape and Visual Impact

In case of non-compliance of landscape and visual impacts, procedures in accordance with the Event and Action Plan should be followed:

Event		Action	n	
	ET	IEC	WKCDA	Contractor
Design Check	 Design check to make sure the design complies with all the proposed mitigation measures in the EIA report; Prepare and submit report. 	 Check report submitted by ET; Recommend remedial design if necessary. 	1. Undertake remedial design if necessary.	-
Non-conformity on one occasion	 Identify source of non- conformity; Report to IEC and WKCDA; Discuss remedial actions with IEC, WKCDA and Contractor; Monitor remedial actions until rectification has been completed. 	 Check and verify source of non-conformity; Discuss remedial actions with ET and Contractor; Advise WKCDA on effectiveness of proposed remedial actions; Check implementation of remedial actions. 	 Notify Contractor; Ensure remedial actions are properly implemented. 	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions.
Repeated non conformity	 -1. Identify source of non- conformity; 2. Report to IEC and WKCDA; 3. Increase monitoring frequency; 4. Discuss remedial actions with IEC, WKCDA and Contractor; 5. Monitor remedial actions until rectification has been completed; 6. If non-conformity rectified, reduce monitoring frequency back to normal. 	effectiveness of proposed remedial actions; 5. Supervise implementation of remedial actions.	 Notify Contractor; Ensure remedial actions are properly implemented. 	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions.

Table D-3: Event and Action Plan for L	andscape and Visual Impact
Event	Action

E. Monitoring Schedule

July 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
27	28	29	30	1	2	3
4	5 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	6	7	8	9 AM1, AM2 - 24hrTSP, 1hr TSP x3	10
11	12	13	14 Lyric Landscape & Visual Inspection	15 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	16	17
18	19	20	21 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	22	23	24
25	26	27 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	28 Lyric Landscape & Visual Inspection	29	30	31
1	2	Notes: AM1 - International Com AM2 - The Harbourside T NM1A - International Cor	ower 1 - Ground Floor			

August 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	2 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	3	4	5	6 AM1, AM2 - 24hrTSP, 1hr TSP x3	7
8	9	10	11	12 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	13	14
15	16	17	18 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	19	20	21
22	23	24 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	25	26	27	28
29	30 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	31	1	2	3	4
5	0	Notes: AM1 - International Comr AM2 - The Harbourside T NM1A - International Cor	ower 1 - Ground Floor			

F. Calibration Certifications

	-	olume TSP Sampler Calibration Record
Location Calibrated by	:	AM1(ICC) K.T.Ho
Date	:	18/05/2021
<u>Sampler</u>		
Model	:	TE-5170
Serial Number	:	S/N 0767
Calibration Orifice and Standard C Serial Number Service Date Slope (m) Intercept (b) Correlation Coefficient(r)	Calibration : : : :	n Relationship 2454 28 Jan 2021 2.06072 -0.01465 0.99993
<u>Standard Condition</u> Pstd (hpa) Tstd (K)	:	1013 298.18
<u>Calibration Condition</u> Pa (hpa) Ta(K)	:	1010 305

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	10.2	3.152	1.537	58	57.2
2	13 holes	7.4	2.685	1.310	50	49.3
3	10 holes	5.6	2.336	1.141	42	41.5
4	7 holes	3.6	1.873	0.916	32	31.6
5	5 holes	2.4	1.529	0.749	22	21.7

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):<u>44.946</u>

Intercept(b): -10.540

Correlation Coefficient(r): 0.9961

Date: 21/05/2021

an

High-Volume TSP Sampler 5-Point Calibration Record Location : AM1(ICC) Calibrated by : K.T.Ho Date : 16/07/2021 Sampler Model TE-5170 : Serial Number S/N 0767 :

Calibration Orifice and Stan	dard Calibratio	n Relationship
Serial Number	:	2454
Service Date	:	28 Jan 2021
Slope (m)	:	2.06072
Intercept (b)	:	-0.01465
Correlation Coefficient(r)	:	0.99993

Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1008
Ta(K)	:	303

Resi	stance Plate	dH [green liquid]	Ζ	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.4	3.340	1.628	60	59.36
2	13 holes	8.8	2.935	1.431	50	49.46
3	10 holes	6.6	2.541	1.240	42	41.55
4	7 holes	4.6	2.122	1.037	30	29.68
5	5 holes	2.8	1.655	0.810	20	19.79

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):<u>48.741</u>

Intercept(b):-19.953

Correlation Coefficient(r): 0.9990

0 Checked by: Magnum Fan

Date: 19/07/2021

				J)		D	ALIBRATION UE DATE: ary 28, 2022
	Ce	rtifa	cate				ntion	
			Calibration (ion		
Cal. Date:	January 28,	, 2021	Rootsr	meter S/N:	438320	Та:	294	°K
Operator:	Jim Tisch					Pa:	763.5	mm Hg
Calibration I	Model #:	TE-5025A	Calib	orator S/N:	2454			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4540	3.2	2.00	
	2	3	4	1	1.0210	6.4	4.00	
	3	5	6	1	0.9110	8.0 8.8	5.00 5.50	
	4	7	8	1	0.8730	8.8	8.00	
	S	9	10	1	0.7200	12.9	8.00	
			D	Data Tabulation				
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)}$			Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axi	is)	Va	(x-axis)	(y-axis)	
	1.0140	0.6974	1.427	The second se	0.9958	0.6849	0.8776	
	1.0098	0.9890	2.018	32	0.9916	0.9712	1.2411	
	1.0076	1.1061	2.256	54	0.9895	1.0862	1.3875	
	1.0066	1.1530	2.366	56	0.9885	1.1323	1.4553	
	1.0011	1.3904	2.854		0.9831	1.3654	1.7551	
		m=	2.060			m=	1.29039	
	QSTD	b=	-0.014		QA	b=		
		r=	0.999	93		r=	0.99995	
				Calculation				
	and the second	the second s)/Pstd)(Tstd/Ta	a)	and a second	∆Vol((Pa-∆	P)/Pa)	
	Qstd=	Vstd/∆Time			and the second	Va/∆Time		
			For subsequ	ent flow ra	te calculation	ns:		
	Qstd=	1/m ((1/0H)	Pa <u>Tstd</u> Ta	-))-b)	Qa=	1/m ((√∆ł	H(Ta/Pa)-b	
	Standard	Conditions						
Tstd:	298.15			[RECA	LIBRATION	
Pstd:		mm Hg			LIS EDA roce	ommonde o	nnual recalibratio	on ner 1009
Alle coliberation		Key	n H2O)				Regulations Part	
ΔH: calibrato ΔP: rootsme							, Reference Meth	
		perature (°K						
		-						
Pa: actual barometric pressure (mm Hg) the Atmosphere, 9.2.17, page 30								
b: intercept m: slope	726							

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT					
CONTACT	: MR K.W. FAN	WORK ORDER HK2035838			
CLIENT	ENVIROTECH SERVICES CO.				
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH : 1 DATE RECEIVED : 18-SEP-2020 DATE OF ISSUE : 28-SEP-2020			
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER :			

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Kulaul Jung	Position	
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER : H SUB-BATCH : 1

: HK2035838

CLIENT PROJECT

¹ ENVIROTECH SERVICES CO.

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2035838-001	S/N: 620401		18-Sep-2020	S/N: 620401

5

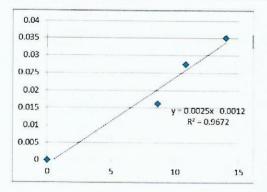
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-5R
Serial No.	620401
Equipment Ref:	Nil
Job Order	HK2035838

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	30 June 2020


Equipment Verification Results:

Verification Date:

22 September 2020

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:15 ~ 11:16	28.6	1010.4	0.035	1690	14.0
2hr01min	11:20 ~ 13:21	28.6	1010.4	0.027	1306	10.8
2hr01min	13:25 ~ 15:26	28.6	1010.4	0.016	1043	8.6

Linear Regression of Y or)	(
Slope (K-factor):	0.0025
Correlation Coefficient	0.9835
Date of Issue	25 September 2020

.

Remarks:

4

1. Strong Correlation (R>0.8)

2. Factor 0.0025 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Jav	Date :	25 September 2020
QC Reviewer :	Ben Tam	Signature :	36	Date :	25 September 2020

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

				Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room						
				С	ONDIT	IONS				
	Sea Leve Ten	Pressure	a series and the series of the		004.6 30.7		Corrected Pressure (mm Hg) 753.45 Temperature (K) 304			
				CALIB	RATIO		E			
		Calibra	Make-> Model-> tion Date->	TISC 5025 7-Feb	5A		Qstd Slope ->2.03014Qstd Intercept ->-0.04616Expiry Date->7-Feb-21			
				C	ALIBRA					
	0 (L)H2O (I in) (in)	R) H20 (in)	Qstd (m3/min)	I (cha		IC orrected	LINEAR REGRESSION			
18 6 13 4 10 3 8 2	(11) (11) 5.4 6.4 4.9 4.9 3.7 3.7 2.4 2.4 1.5 1.5	12.8 9.8 7.4 4.8 3.0	1.761 1.544 1.344 1.087 0.864	56 49 43 32 21		55.23 48.33 42.41 31.56 20.71	Slope = 38.2549 Intercept = -10.8486 Corr. coeff. = 0.9947			
alculations : alculations : alculations : alculations : alculations : alculated = standa $alculated = standa alculated = actual cha (I)[Sqrttheorem chancelocation chan$	qrt(H20(Pa/ a/Pstd)(Tstd) rd flow rate d chart response r Qstd slope Qstd interce pressure dur ent calculati (298/Tav)(P slope intercept	(Ta)] ones ept uring cal ing calib: on of san	ibration (de ration (mm	-	00.06 50.00 (C) 50.00 (C)		FLOW RATE CHART			

RECALIBRATION DUE DATE: February 7, 2021

Certificate of Calibration

			Calibration	Certificatio	on Informat	ion		
Cal. Date:	February 7	, 2020	Roots	meter S/N:	438320	Ta:	295	°К
Operator:	Jim Tisch					Pa:	745.5	mm Hg
Calibration	Model #:	TE-5025A	Cali	brator S/N: 1612				
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	1
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.3730	3.2	2.00	
	2	3	4	1	0.9820	6.4	4.00	
	3	5	6	1	0.8780	8.0	5.00	
	4	7	8	1	0.8340	8.8	5.50	
	5	9	10	1	0.6900	12.8	and a second sec	
			E	ata Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9866	0.7186	1.4078 1.9909		0.9957	0.7252	0.8896	
	0.9824	1.0004			0.9914	1.0096	1.2581	
	0.9802	1.1165	2.225	1	0.9893	1.1267	1.4066	
	0.9792	1.1741	2.334	1	0.9882	1.1849	1.4753	
	0.9739	1.4114	2.8155		0.9828	1.4244	1.7792	
	OCTO	m=	2.030				1.27124	
	QSTD	b= r=	-0.046		QA	b=	-0.02917	
	LL		0.555			r=	0.99995	
	Vstd=		/Pstd)(Tstd/Ta	Calculation	-	ΔVol((Pa-ΔI		
		Vstd/ATime	(FStu)(IStu) Ia	1)				
		vota/Linne	For subsequ	ent flow rat	e calculation	Va/ATime		
	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$			1/1	$Qa = 1/m \left(\left(\sqrt{\Delta H (Ta/Pa)} \right) - b \right)$			
	Standard	Conditions		<u> </u>				
Tstd:				Г		RECA	LIBRATION	
Pstd:	760	mm Hg		F				
Li caliburt		ley					nnual recalibratio	
P: rootemo	ter manomet	er reading (in eter reading (n H2O)				Regulations Part 5	
		perature (°K)	mm Hg)		Appendix B	to Part 50,	Reference Meth	od for the
		essure (mm l	-lø)				ended Particulate	
: intercept		(mint)	10/		the	Atmosphe	re, 9.2.17, page 3	30
n: slope				L				

Tisch Environmental, Inc.

4 %

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.cc TOLL FREE: (877)263-76: FAX: (513)467-90

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR K.W. FAN	WORK ORDER HK2045301
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH:1DATE RECEIVED:24-NOV-2020DATE OF ISSUE:30-NOV-2020
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Ki hard Fromy		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH CLIENT

PROJECT

: HK2045301

[:] 1 : ENVIROTECH SERVICES CO. : ----

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2045301-001	S/N: 245833	Equipments	24-Nov-2020	S/N: 245833

Equipment Verification Report (TSP)

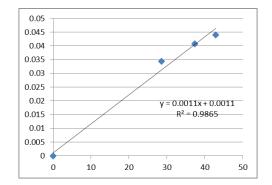
Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	245833
Equipment Ref:	Nil
Job Order	HK2045301

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	8 October 2020

Equipment Verification Results:


Verification Date:

26 November 2020

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:18 ~ 11:19	24.0	1019.3	0.041	4525	37.3
2hr	11:22 ~ 13:22	24.0	1019.3	0.034	3430	28.6
2hr01min	13:25 ~ 15:26	24.0	1019.3	0.044	5196	42.9

Linear Regression of Y or X

Slope (K-factor):	0.0011
Correlation Coefficient	0.9932
Date of Issue	30 November 2020

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0011 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	30 November 2020
			N		
QC Reviewer :	Ben Tam	Signature :		Date :	30 November 2020
			A C		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR K.W. FAN	WORK ORDER HK2045304
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH:1DATE RECEIVED:24-NOV-2020DATE OF ISSUE:30-NOV-2020
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Ki dand Formy .		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

: HK2045304

SUB-BATCH: 1CLIENT: ENVIROTECH SERVICES CO.PROJECT: ----

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2045304-001	S/N: 276015	Equipments	24-Nov-2020	S/N: 276015

Equipment Verification Report (TSP)

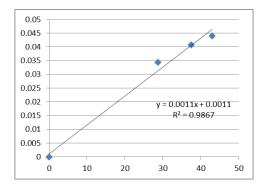
Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	276015
Equipment Ref:	Nil
Job Order	HK2045304

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	8 October 2020

Equipment Verification Results:


Verification Date:

26 November 2020

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:18 ~ 11:19	24.0	1019.3	0.041	4541	37.5
2hr	11:22 ~ 13:22	24.0	1019.3	0.034	3443	28.7
2hr01min	13:25 ~ 15:26	24.0	1019.3	0.044	5211	43.0

Linear Regression of Y or X				
0.0011				
0.9933				

30 November 2020

Remarks:

Date of Issue

1. Strong Correlation (R>0.8)

2. Factor 0.0011 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	30 November 2020
QC Reviewer :	Ben Tam	Signature :		Date :	30 November 2020
			×		

15

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C213255 證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC21-101 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 : Envirotech Services Co. Room 113, 1/F, My Loft, 9 Hoi W New Territories, Hong Kong	
TEST CONDITIONS / 測試條件 Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :	Relative Humidity / 相對濕度 : (50 ± 25)%
TEST SPECIFICATIONS / 測試規範 , Calibration check	
DATE OF TEST / 測試日期 : 4 June 2021	
, TEST RESULTS / 測試結果	
The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).	
The test equipment used for calibration are traceable to National - The Government of The Hong Kong Special Administrative R - Agilent Technologies / Keysight Technologies - Fluke Everett Service Center, USA	Standards via : egion Standard & Calibration Laboratory
Tested By : <u>Chenk</u> 測試 K P Cheuk Project Engineer	· · · · ·
Certified By : 核證 KC Lee Engineer	Date of Issue : 9 June 2021 簽發日期
The test equipment used for calibration is traceable to the National Standards as specified in this constituent approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面	

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C213255 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
 - 2. Self-calibration was performed before the test.
 - 3. The results presented are the mean of 3 measurements at each calibration point.
 - 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C210084
CL281	Multifunction Acoustic Calibrator	AV210017

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applied Value		UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	- 1	94.2	± 1.1

6.1.2 Linearity

	UU	T Setting	Applied Value		UUT	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L _A	A	Fast	94.00	1	94.2 (Ref.)
				104.00		104.2
				114.00		114.2

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UUI	[Setting		Applie	d Value	UUT	IEC 61672	
Range (dB)	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.	
30 - 130	L _A	Weighting A	Weighting Fast	(dB) 94.00	(kHz) 1	(dB) • 94.2	(dB) Ref.	
			Slow			94.2	± 0.3	

مر ،

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C213255 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	68.0	-26.2 ± 1.5
					125 Hz	78.0	-16.1 ± 1.5
		3			250 Hz	85.5	-8.6 ± 1.4
					500 Hz	91.0	$-8.6 \pm 1.4 \\ -3.2 \pm 1.4 \\ Ref.$
					1 kHz	94.2	Ref.
			*		2 kHz	95.4	$+1.2 \pm 1.6$
					4 kHz	95.2	$+1.0 \pm 1.6$
					8 kHz	93.2	-1.1 (+2.1 ; -3.1)
					16 kHz	86.2	-6.6 (+3.5 ; -17.0)

6.3.2 C-Weighting

	UUT Setting			Appli	ed Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	С	Fast	94.00	63 Hz	93.3	-0.8 ± 1.5
					125 Hz	94.0	-0.2 ± 1.5
					250 Hz	94.2	0.0 ± 1.4
					500 Hz	94.2	0.0 ± 1.4
					1 kHz	94.2	Ref.
					2 kHz	94.0	-0.2 ± 1.6
		8			4 kHz	93.4	-0.8 ± 1.6
					8 kHz	91.3	-3.0 (+2.1 ; -3.1)
					16 kHz	84.3	-8.5 (+3.5 ; -17.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C213255 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 10446

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB : 63 Hz - 125 Hz	: ± 0.35 dB
	250 Hz - 500 Hz	: ± 0.30 dB
	1 kHz	: ± 0.20 dB
	2 kHz - 4 kHz	: ± 0.35 dB
5	8 kHz	: ± 0.45 dB
	16 kHz	$\pm 0.70 \text{ dB}$
	104 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB : 1 kHz	: \pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C210001 證書編號

ı	ITEM TESTED / 送檢L	頁目	(Job No. / 序引編號: IC20-2688)	Date of Receipt / 收件日期: 18 December 2020
	Description / 儀器名稱	:	Precision Acoustic Calibrator	
	Manufacturer / 製造商	:	LARSON DAVIS	
	Model No. / 型號	:	CAL200	
	Serial No. / 編號	:	11334	
	Supplied By / 委託者	:	Envirotech Services Co.	/
			Room 113, 1/F, My Loft, 9 Hoi Wing	Road, Tuen Mun,
			New Territories, Hong Kong	
_	•			
	TEST CONDITIONS /	SHII 7-1	- htt //-	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50±25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 2 January 2021

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification & user's specified acceptance criteria. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試	: _	H T Wong Assistant Engineer	-			
Certified By 核證	:	K ¢ Lee Engineer	-	Date of Issue 簽發日期	:	4 January 2021

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C210001 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC203952CL281Multifunction Acoustic CalibratorCDK1806821TST150AMeasuring AmplifierC201309

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	User's Spec. (dB)	Uncertainty of Measured Value (dB)	
94 dB, 1 kHz	93.7	± 0.5	± 0.2	
114 dB, 1 kHz	113.7		- 0.2	

.5.2 Frequency Accuracy

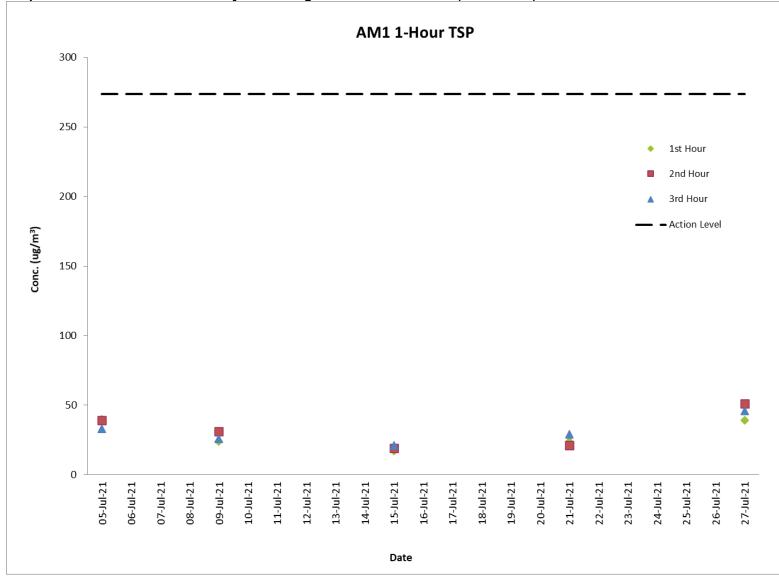
0

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000	1 kHz ± 1 %	± 1

Remarks : - The user's specified acceptance criteria (user's spec.) is a customer pre-defined operating tolerance of the UUT, suitable for one's own intended use.

- The uncertainties are for a confidence probability of not less than 95 %.

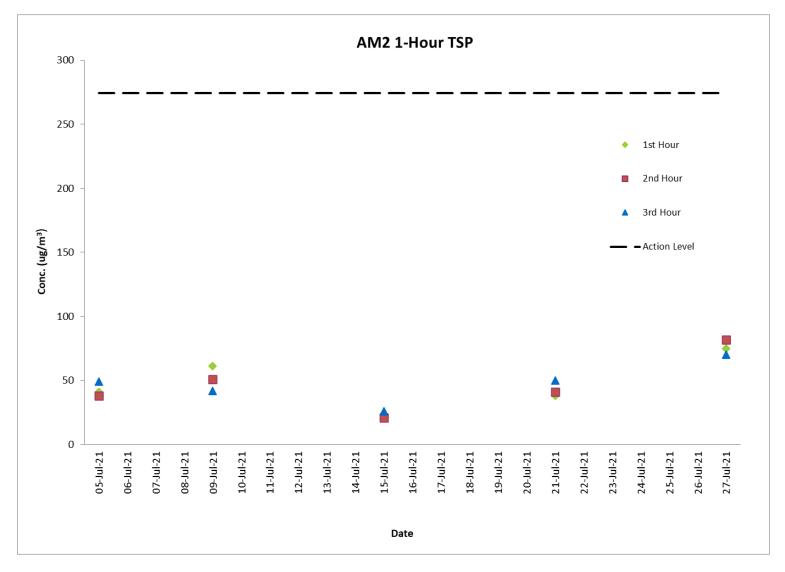
Note :


Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

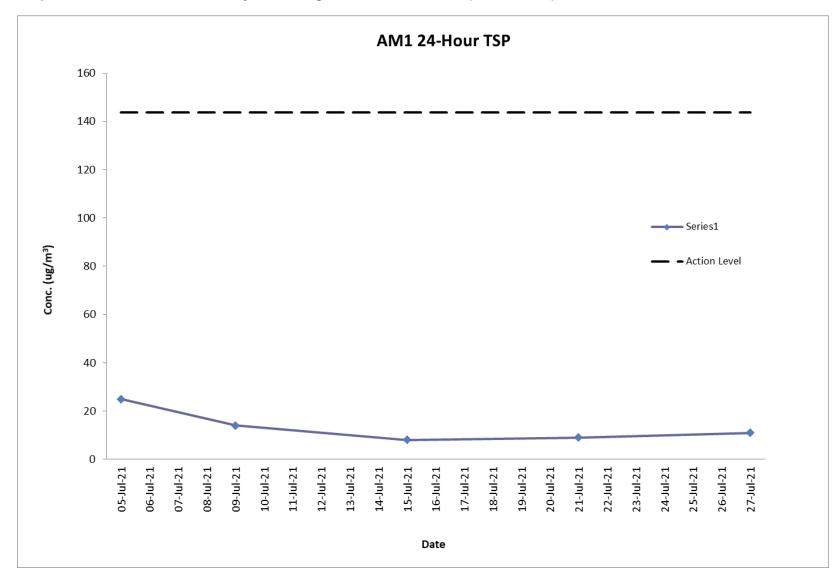
The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載枝正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

G. Graphical Plots of the Monitoring Results


	Weather			Conc. (µg/m ³)	Action Level	Limit Level
Date	Condition	Time	1 st Hour	2 nd Hour	3 rd Hour	(µg/m³)	(µg/m³)
05-Jul-21	Cloudy	8:32 - 11:32	40	39	33	273.7	500
09-Jul-21	Sunny	8:32 - 11:32	24	31	26	273.7	500
15-Jul-21	Sunny	8:23 - 11:23	17	19	21	273.7	500
21-Jul-21	Cloudy	8:32 - 11:32	24	21	29	273.7	500
27-Jul-21	Sunny	8:27 - 11:27	39	51	46	273.7	500

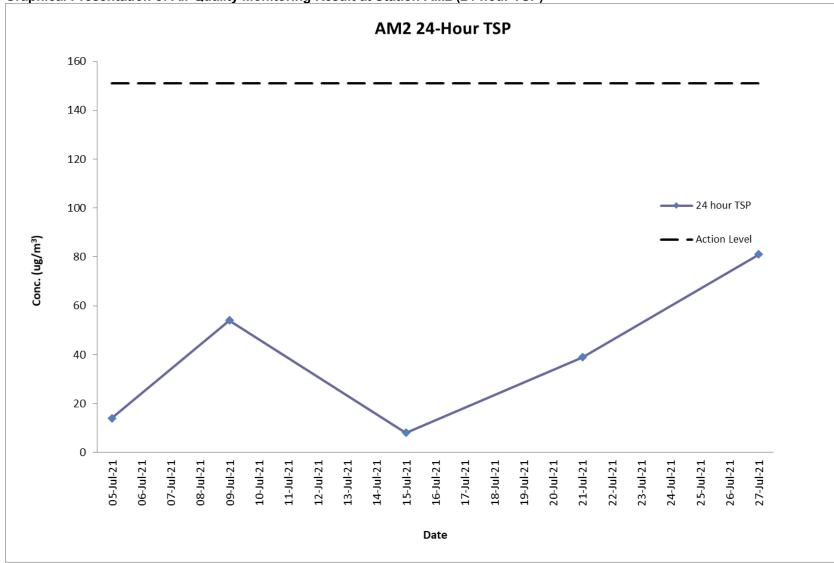
Graphical Presentation of Air Quality Monitoring Result at Station AM1 (1-hour TSP)

	Weather			Conc. (µg/m ³)	Action Level	Limit Level
Date	Condition	Time	1 st Hour	2 nd Hour	3 rd Hour	(µg/m³)	(µg/m³)
05-Jul-21	Cloudy	8:43 - 11:43	41	38	49	274.2	500
09-Jul-21	Sunny	8:43 - 11:43	61	51	42	274.2	500
15-Jul-21	Sunny	8:33 - 11:33	24	21	26	274.2	500
21-Jul-21	Cloudy	8:47 - 11:47	38	41	50	274.2	500
27-Jul-21	Sunny	8:37 - 11:37	75	82	70	274.2	500


Air Quality Monitoring Result at Station AM2 (1-hour TSP)

Graphical Presentation of Air Quality Monitoring Result at Station AM2 (1-hour TSP)

Start Finish		Filter W	eight (g)	•	d Time ding	Sampling	Flow	Rate (m ³ /mir	ו)	Conc.	Weather	Action	Limit		
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m ³)	Condition	Level	Level
05-Jul-21	08:30	06-Jul-21	08:30	2.7443	2.7860	23576.38	23600.38	24	1.17	1.17	1.17	25	Cloudy	143.6	260
09-Jul-21	08:30	10-Jul-21	08:30	2.7500	2.7744	23600.38	23624.38	24	1.17	1.17	1.17	14	Sunny	143.6	260
15-Jul-21	08:21	16-Jul-21	08:21	2.7348	2.7483	23624.38	23648.38	24	1.17	1.17	1.17	8	Sunny	143.6	260
21-Jul-21	08:30	22-Jul-21	08:30	2.7469	2.7635	23648.38	23672.38	24	1.27	1.27	1.27	9	Cloudy	143.6	260
27-Jul-21	08:25	28-Jul-21	08:25	2.7526	2.7728	23672.38	23696.38	24	1.27	1.27	1.27	11	Sunny	143.6	260


Air Quality Monitoring Result at Station AM1 (24-hour TSP)

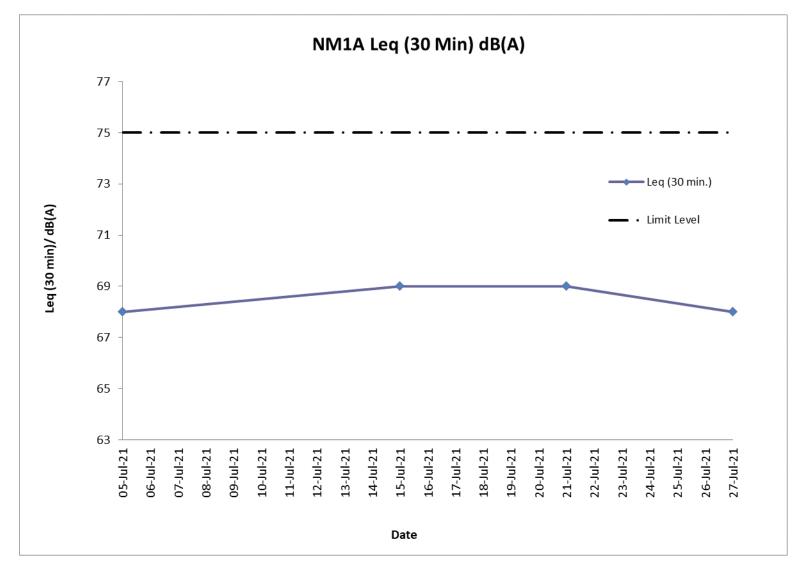
Graphical Presentation of Air Quality Monitoring Result at Station AM1 (24-hour TSP)

Sta	Start		sh	Sampling	Conc.	Weather	Action	
Date	Time	Date	Time	Time (hrs)	(µg/m ³)	Condition	Level	Limit Level
05-Jul-21	08:52	06-Jul-21	08:52	24	14	Cloudy	151.1	260
09-Jul-21	08:47	10-Jul-21	08:47	24	54	Sunny	151.1	260
15-Jul-21	08:38	16-Jul-21	08:38	24	8	Sunny	151.1	260
21-Jul-21	08:44	22-Jul-21	08:44	24	39	Cloudy	151.1	260
27-Jul-21	08:44	28-Jul-21	08:44	24	81	Sunny	151.1	260

Air Quality Monitoring Result at Station AM2 (24-hour TSP)

Graphical Presentation of Air Quality Monitoring Result at Station AM2 (24-hour TSP)

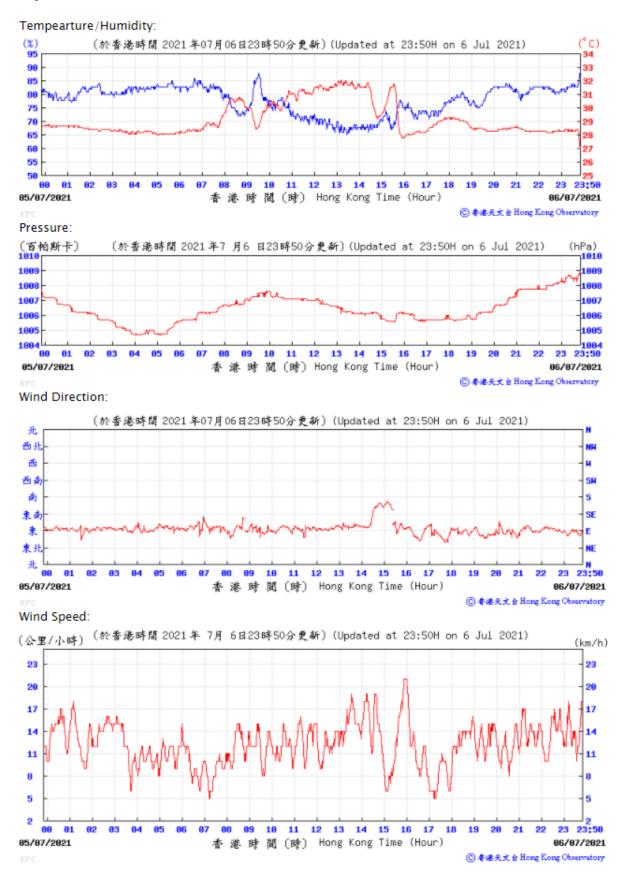
Date	Time	Measured L ₁₀ , dB(A)	Measured L ₉₀ , dB(A)	L _{eq} (30 min.)* <i>,</i> dB(A)
05-Jul-21	09:35	65.7	61.9	
05-Jul-21	09:40	66.1	62.8	
05-Jul-21	09:45	66.3	62.4	68
05-Jul-21	09:50	67.4	63.5	00
05-Jul-21	09:55	67.6	63.4	
05-Jul-21	10:00	68.2	64.4	
15-Jul-21	09:16	66.0	62.8	
15-Jul-21	09:21	67.2	63.3	
15-Jul-21	09:26	68.3	64.1	69
15-Jul-21	09:31	66.6	62.7	09
15-Jul-21	09:36	67.5	63.8	
15-Jul-21	09:41	68.7	64.6	
21-Jul-21	09:30	68.0	64.6	
21-Jul-21	09:35	66.2	62.3	
21-Jul-21	09:40	67.3	63.2	69
21-Jul-21	09:45	67.5	63.4	09
21-Jul-21	09:50	68.9	64.8	
21-Jul-21	09:55	68.7	64.9	
27-Jul-21	09:20	66.3	62.3	
27-Jul-21	09:25	67.2	63.4	
27-Jul-21	09:30	66.0	62.5	68
27-Jul-21	09:35	65.6	61.0	UO
27-Jul-21	09:40	66.8	62.6	
27-Jul-21	09:45	66.9	62.4	

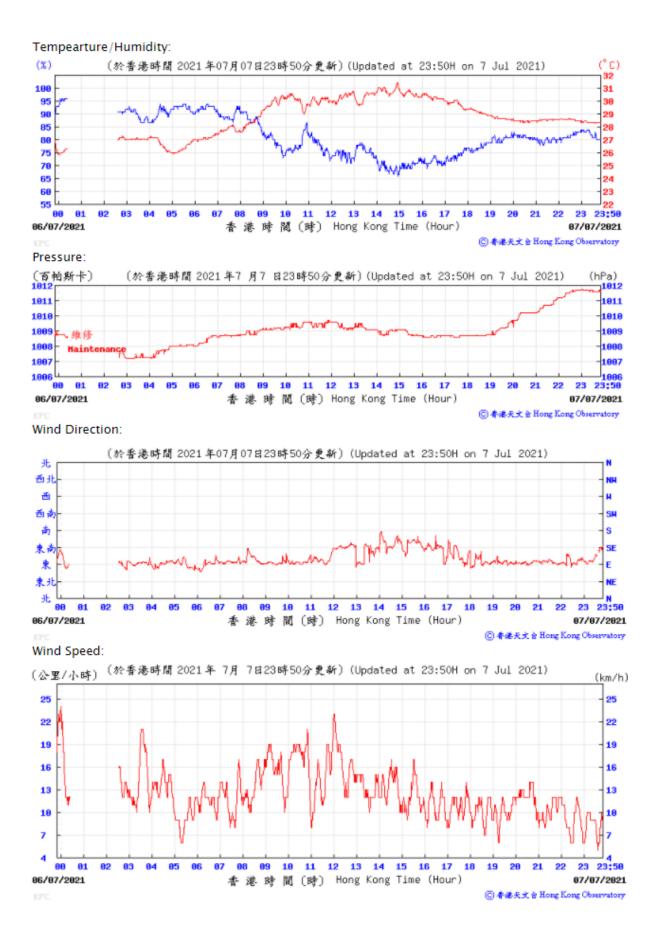

Noise Monitoring Result at Station NM1A

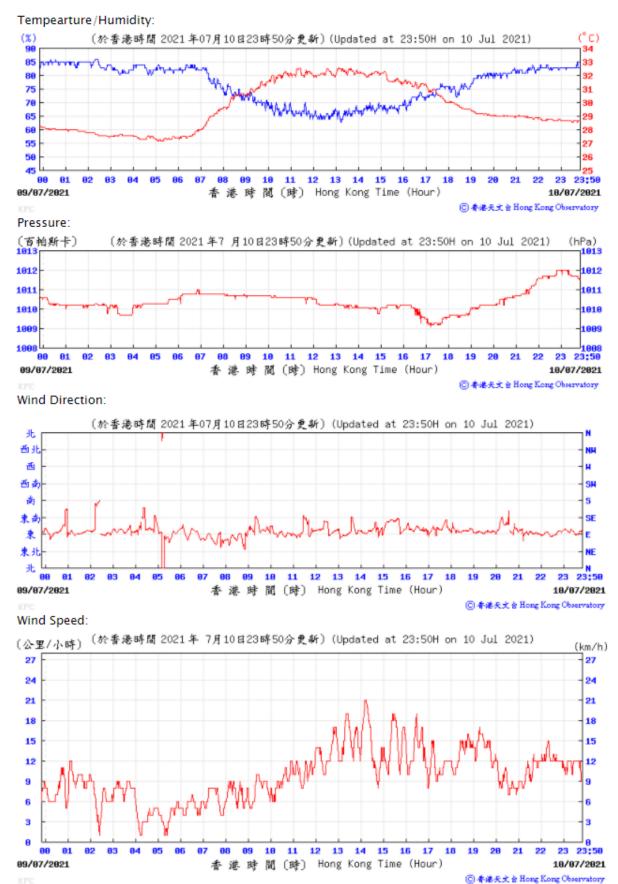
Remarks:

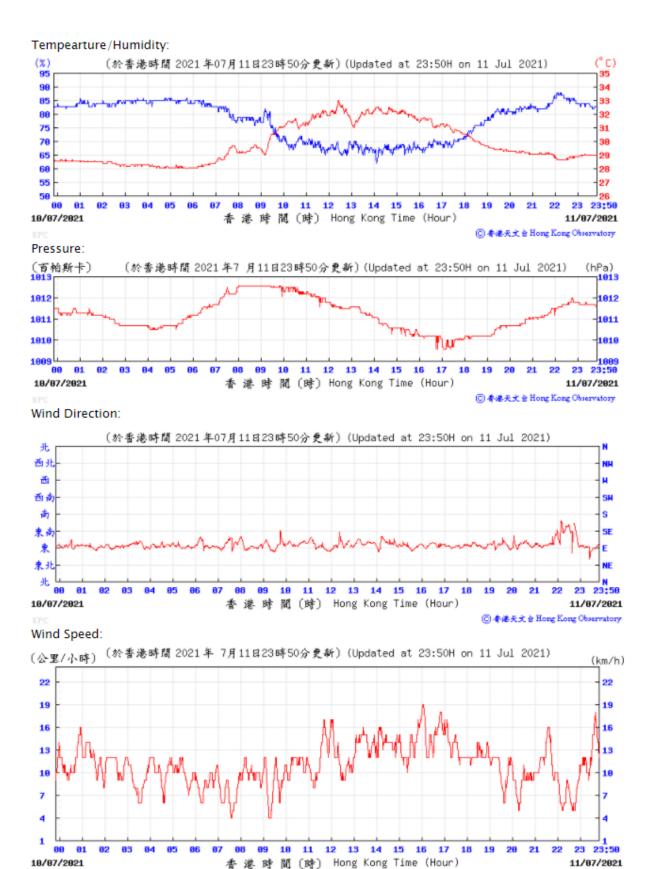
* +3dB (A) correction was applied to free-field measurement.

The station set-up of a free-field measurement at Station NM1A.

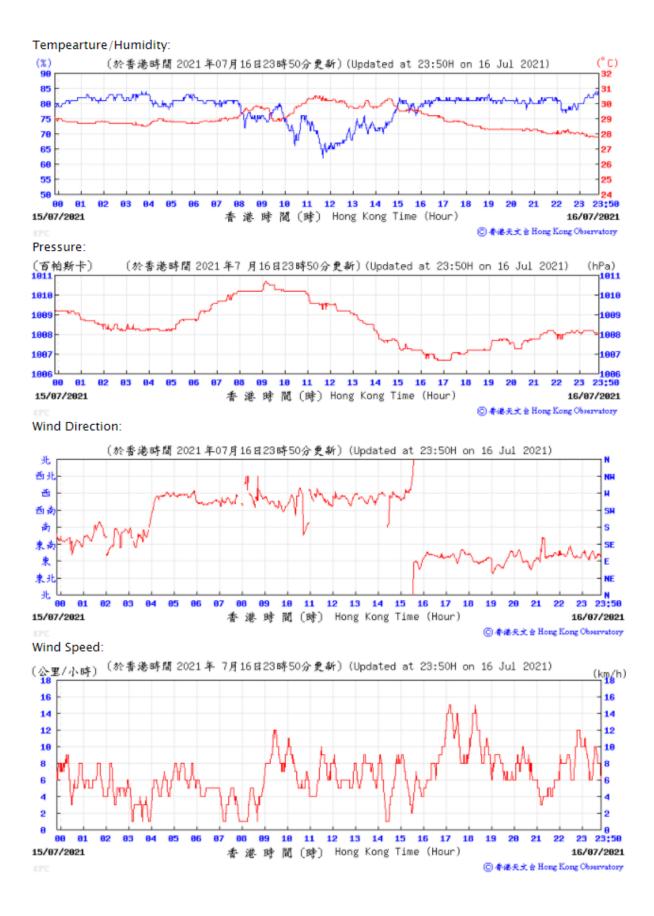


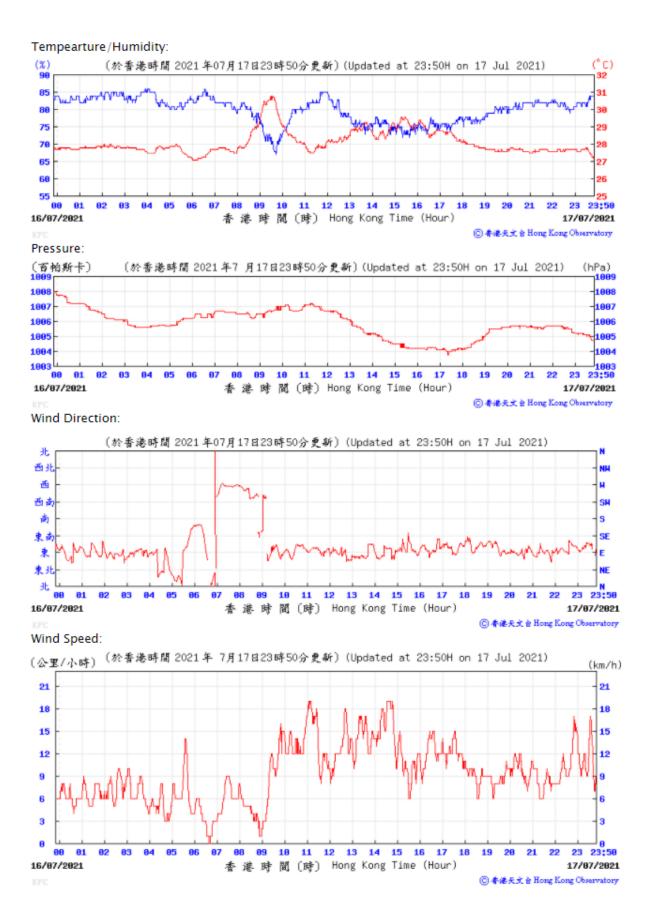

Graphical Presentation Noise Monitoring Result at Station NM1A

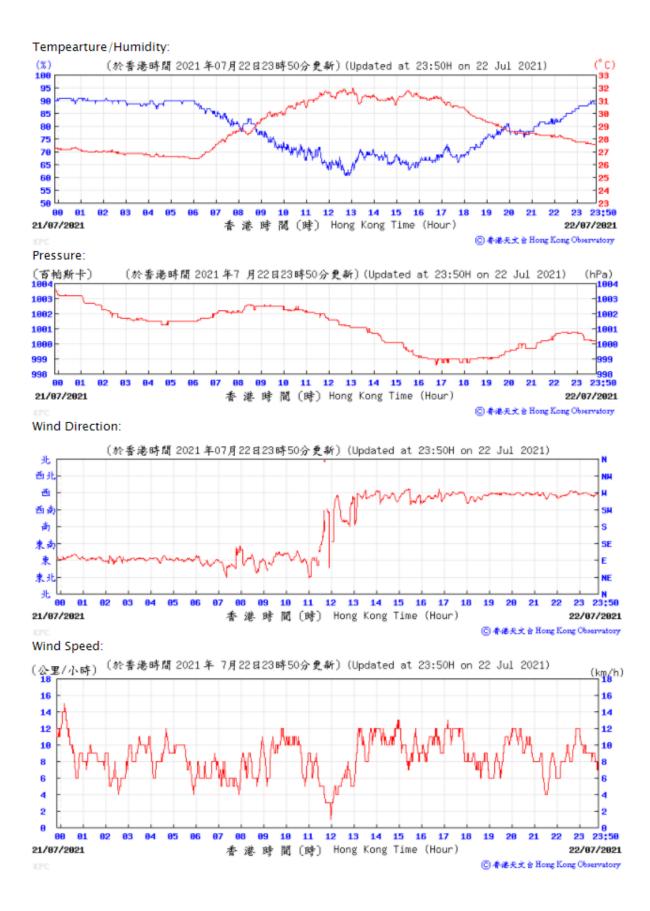

H. Meteorological Data Extracted from Hong Kong Observatory

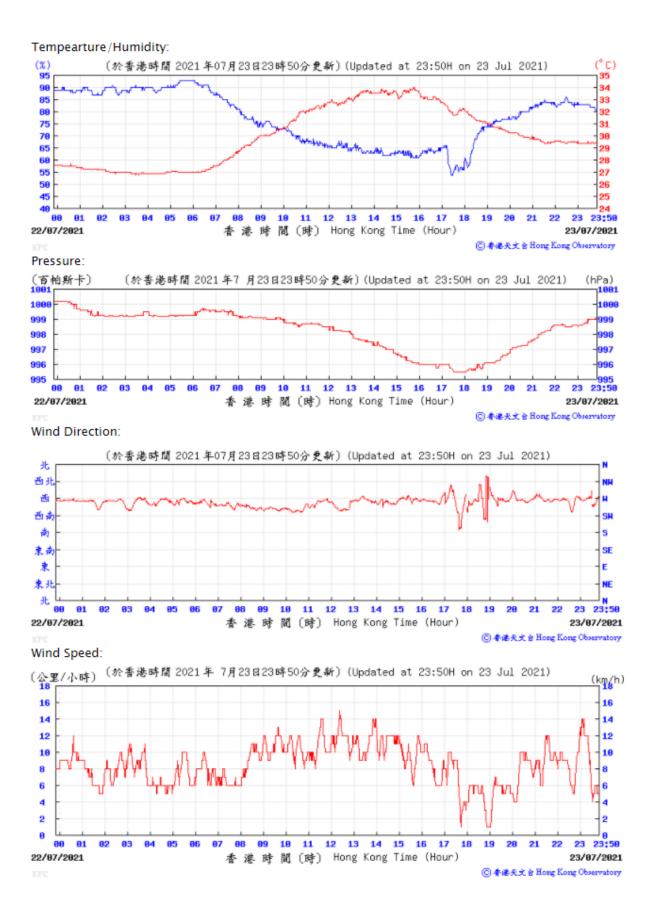

Extract of Meteorological Observations for King's Park Automatic Weather Station,

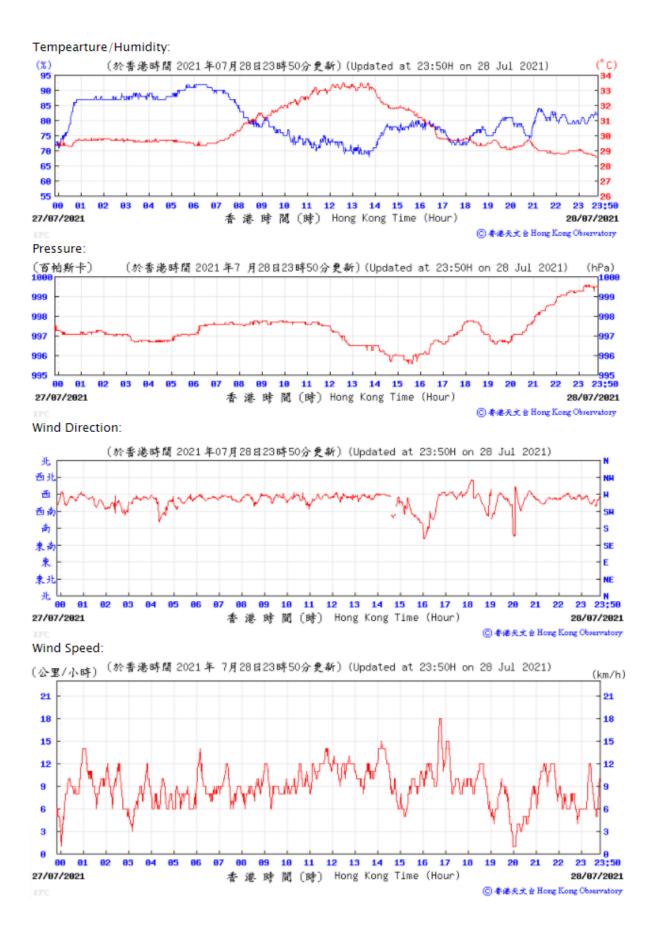
July 2021

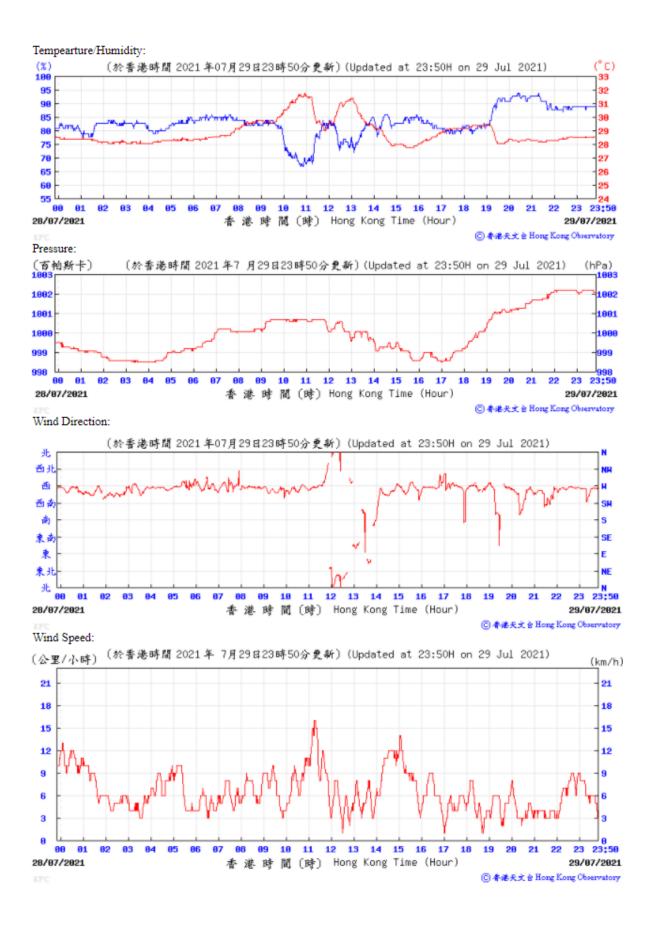









◎ 春递天文 含 Hong Kong Observatory



Development at West Kowloon Cultural District Monthly Environmental Monitoring and Audit (EM&A) Report for July 2021

I. Waste Flow table

Table I-1: Monthly Waste Flow Table for Lyric Theatre Complex

		Actual Qu	uantities of Ine	ert C&D Mater	ials Generate	d Monthly			Actual Quant	Actual Quantities of C&D Wastes Generated Monthly						
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse			
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)			
2016																
Mar	2702.1	0.0	0.0	0.0	2702.1	0.0	0.0	4.5	0.1	0.0	0.0	0.0	30.6			
Apr	8631.5	0.0	0.0	0.0	8631.5	0.0	0.0	16.0	0.0	0.0	0.0	0.0	19.2			
May	12487.8	0.0	0.0	0.0	12487.8	0.0	0.0	34.0	0.0	0.0	0.0	0.7	60.5			
Jun	8600.8	0.0	0.0	0.0	8600.8	0.0	0.0	31.4	0.2	0.0	0.0	0.5	13.5			
Jul	12624.2	0.0	0.0	0.0	12624.2	0.0	0.0	19.6	0.0	0.0	0.0	2.0	9.9			
Aug	14419.9	0.0	0.0	0.0	14419.9	0.0	0.0	43.9	0.0	0.0	0.0	0.0	11.1			
Sep	13671.3	0.0	0.0	0.0	13671.3	0.0	0.0	59.8	0.0	0.0	0.0	1.6	12.4			
Oct	13088.9	0.0	0.0	0.0	13088.9	0.0	0.0	36.9	0.2	1.5	0.0	0.0	15.2			
Nov	12424.7	0.0	0.0	0.0	12424.7	0.0	0.0	74.7	0.0	0.0	0.0	1.4	10.2			
Dec	12487.6	0.0	0.0	0.0	12487.6	0.0	0.0	13.9	0.0	0.0	0.0	1.3	9.0			
Sub-total (2016)	111138.8	0.0	0.0	0.0	111138.8	0.0	0.0	334.5	0.4	1.5	0.0	7.6	191.6			
2017		•			•							•				
Jan	9607.8	0.0	0.0	0.0	9607.8	0.0	0.0	29.5	0.0	0.0	0.0	0.0	7.3			
Feb	9108.2	0.0	0.0	0.0	9108.2	0.0	0.0	50.2	0.2	0.0	0.0	0.7	9.8			
Mar	11361.7	0.0	0.0	0.0	11361.7	0.0	0.0	16.1	0.0	0.0	0.0	1.4	8.5			
Apr	2591.5	0.0	0.0	0.0	2591.5	0.0	0.0	35.7	0.0	0.0	0.0	0.0	4.7			
May	2579.3	0.0	0.0	99.0	2480.3	0.0	0.0	20.9	0.1	0.0	0.0	0.5	10.0			
Jun	476.0	0.0	0.0	341.0	129.7	5.3	0.0	0.0	0.0	0.0	0.0	0.0	7.6			
Jul	3419.0	0.0	0.0	804.0	2615.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.8			
Aug	3730.9	0.0	0.0	1377.5	2353.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.4			
Sep	2108.2	0.0	0.0	1133.5	974.7	0.0	0.0	34.6	0.2	0.0	0.0	0.0	10.8			
Oct	9159.0	0.0	0.0	7868.0	1291.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	9.3			
Nov	5095.4	0.0	0.0	4352.0	725.2	18.1	0.0	0.0	0.0	0.0	0.0	0.0	38.8			
Dec	3856.2	0.0	0.0	3076.0	780.2	0.0	0.0	0.0	0.2	0.0	0.0	0.4	8.4			
Sub-total (2017)	63093.1	0.0	0.0	19051.0	44018.7	23.4	0.0	187.1	0.7	0.0	0.0	3.8	137.3			

Table I-1: Monthly Waste Flow Table for Lyric Theatre Complex

		Actual Qu	uantities of Ine	ert C&D Mater	ials Generate	d Monthly			Actual Quan	tities of C&D \	Nastes Gener	ated Monthly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2018													
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5
Mar	6120.2	0.0	0.0	5782.0	338.2	0.0	0.0	0.0	0.0	1.0	0.0	0.5	17.6
Apr	14460.3	0.0	0.0	12484.1	1976.3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	7.6
May	59783.7	0.0	0.0	46989.0	12794.7	0.0	0.0	59.6	0.0	0.0	0.0	0.0	9.4
Jun	53117.5	0.0	0.0	37642.8	15474.7	0.0	0.0	51.5	0.2	0.0	0.0	0.0	12.8
Jul	89901.5	0.0	0.0	85317.1	4584.4	0.0	165.1	114.6	0.0	0.0	0.0	0.0	41.3
Aug	35137.3	0.0	0.0	33731.6	1405.7	0.0	214.3	148.1	0.0	0.0	0.0	0.0	48.5
Sep	4924.3	0.0	0.0	4641.2	196.1	87.0	174.6	40.0	0.0	0.0	0.0	0.0	179.2
Oct	19099.9	0.0	0.0	11301.0	7642.8	156.1	0.0	106.3	0.4	0.0	0.0	0.0	528.5
Nov	104168.0	0.0	0.0	79811.6	24351.0	5.3	0.0	54.5	0.0	0.6	0.0	0.0	31.5
Dec	62989.9	0.0	0.0	51284.4	11699.9	5.6	0.0	95.1	0.0	0.6	0.0	0.0	65.9
Sub-total (2018)	449702.6	0.0	0.0	368984.8	80463.7	254.0	553.9	669.7	0.5	2.4	0.0	0.5	943.7
2019	•												
Jan	74479.1	0.0	0.0	69249.5	5229.7	0.0	318.0	326.7	0.2	0.0	0.0	0.0	76.3
Feb	21969.9	0.0	0.0	17723.9	4246.0	0.0	16.5	55.2	0.0	0.0	0.0	0.0	26.7
Mar	19311.9	0.0	0.0	8569.9	10742.0	0.0	337.8	61.5	0.0	0.0	0.0	0.0	36.3
Apr	28559.9	0.0	0.0	21280.3	7279.6	0.0	0.0	32.6	0.0	0.8	0.0	0.0	24.9
May	45418.0	0.0	0.0	11200.6	34217.4	0.0	0.0	27.4	0.2	0.5	0.0	0.0	33.7
Jun	66633.4	0.0	0.0	23874.5	42748.0	10.9	59.2	11.9	0.0	0.9	0.0	0.0	35.3
Jul	36619.6	0.0	0.0	1632.7	34960.9	26.0	64.4	120.7	0.0	0.0	0.0	0.0	57.9
Aug	2526.8	0.0	0.0	0.0	2499.0	27.8	31.9	40.2	0.0	0.8	0.0	0.0	66.3
Sep	4117.6	0.0	0.0	0.0	4088.7	28.9	95.2	19.0	0.0	0.6	0.0	0.0	127.4
Oct	6974.2	0.0	0.0	0.0	6948.1	26.1	15.9	11.4	0.2	1.0	0.0	0.6	223.6
Nov	5334.4	0.0	0.0	0.0	5304.1	30.3	0.0	8.9	0.0	0.0	0.0	0.0	151.6
Dec	6236.8	0.0	0.0	0.0	6236.8	0.0	0.0	70.6	0.0	0.0	0.0	0.0	98.9
Sub-total (2019)	318181.6	0.0	0.0	153531.3	164500.1	150.1	938.9	785.8	0.6	4.6	0.0	0.6	959.0

Table I-1: Monthly Waste Flow Table for Lyric Theatre Complex

		Actual Qu	uantities of Ine	ert C&D Mater	ials Generate	d Monthly			Actual Quan	tities of C&D \	Nastes Gener	ated Monthly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2020													
Jan	7089.9	0.0	0.0	0.0	7089.9	0.0	0.0	10.6	0.2	0.0	0.0	0.0	65.7
Feb	16822.3	0.0	0.0	0.0	16822.3	0.0	0.0	232.2	0.1	0.0	0.0	0.0	66.3
Mar	6559.0	0.0	0.0	0.0	6559.0	0.0	110.4	63.1	0.0	0.9	0.0	0.0	138.3
Apr	4997.9	0.0	0.0	1615.7	3382.2	0.0	159.2	1123.9	1.9	0.0	0.0	0.0	113.2
May	2236.0	0.0	0.0	452.3	1783.6	0.0	0.0	406.5	0.0	0.0	0.0	0.0	188.8
Jun	1134.3	0.0	0.0	0.0	1134.3	0.0	31.5	262.6	0.2	0.6	0.0	0.0	210.6
Jul	148.8	0.0	0.0	0.0	148.8	0.0	31.5	458.5	0.5	0.0	0.0	0.0	220.0
Aug	540.7	0.0	0.0	0.0	540.7	0.0	0.0	340.8	0.0	0.0	0.0	0.0	238.3
Sep	1432.3	0.0	0.0	0.0	1432.3	0.0	0.0	750.7	0.2	0.0	0.0	0.0	291.9
Oct	1381.5	0.0	0.0	0.0	1381.5	0.0	0.0	717.9	0.2	0.0	0.0	0.0	400.2
Nov	1444.1	0.0	0.0	0.0	1437.4	6.7	475.8	473.6	0.2	0.5	0.0	0.0	377.8
Dec	793.8	0.0	0.0	0.0	793.8	0.0	0.0	478.3	0.2	0.0	0.0	0.0	435.8
Sub-total (2020)	44580.6	0.0	0.0	2068.1	42505.8	6.7	808.3	5318.7	3.7	2.0	0.0	0.0	2746.8
2021													
Jan	881.4	0.0	0.0	0.0	881.4	0.0	0.0	835.1	0.4	0.0	0.0	0.0	497.0
Feb	544.7	0.0	0.0	0.0	544.7	0.0	0.0	100.5	0.3	0.0	0.0	0.0	504.7
Mar	406.1	0.0	0.0	0.0	406.1	0.0	0.0	455.8	0.3	0.0	0.0	0.0	881.8
Apr	633.0	0.0	0.0	0.0	633.0	0.0	0.0	429.9	0.7	0.0	0.0	0.0	613.0
May	1125.8	0.0	0.0	0.0	1125.8	0.0	0.0	355.1	0.2	0.1	0.0	0.0	355.3
Jun	877.3	0.0	0.0	0.0	877.3	0.0	0.0	98.4	0.2	0.0	0.0	0.4	420.3
Jul	8.9	0.0	0.0	0.0	0.0	8.9	0.0	18.1	0.0	0.0	0.0	0.0	287.1
Aug	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sub-total (2021)	4477.1	0.0	0.0	0.0	4468.2	8.9	0.0	2292.8	2.0	0.1	0.0	0.4	3559.1
Total	991173.7	0.0	0.0	543635.2	447095.3	443.2	2301.1	9588.4	7.9	10.5	0.0	12.9	8537.4

Note:

- 0 tonne and 0 tonne of inert C&D materials were disposed of as public fill to Tseung Kwan O Area 137 Public Fill and Tuen Mun Area 38 Public Fill respectively in the reporting month.

J. Environmental Mitigation Measures – Implementation Status

Table J-1: Environmental Mitigation Measures Implementation Status (July 2021)

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
Air Quality	Impact (Construction)	
2.1 &	General Dust Control Measures	
10.3.1	Frequent water spraying for active construction areas (12 times a day or once every one hour), including Heavy construction activities such as construction of buildings or roads, drilling, ground excavation, cut and fill operations (i.e., earth moving)	Obs
2.1 &	Best Practice For Dust Control	
10.3.1	The relevant best practices for dust control as stipulated in the Air Pollution Control (construction Dust) Regulation should be adopted to further reduce the construction dust impacts from the Project. These best practices include:	
	Good Site Management	
	 Good site management is important to help reducing potential air quality impact down to an acceptable level. As a general guide, the Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimise the release of visible dust emission. Any piles of materials accumulated on or around the work areas should be cleaned up regularly. Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimising generation of fugitive dust emissions. The material should be handled properly to prevent fugitive dust emission before cleaning. 	Obs
	Disturbed Parts of the Roads	
	 Each and every main temporary access should be paved with concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or 	\checkmark
	 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 	\checkmark
	Exposed Earth	
	 Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies. 	N/A No exposed earth in this project.
	Loading, Unloading or Transfer of Dusty Materials	
	 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 	\checkmark
	Debris Handling	
	 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 	\checkmark
	Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped.	\checkmark

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	Transport of Dusty Materials	
	 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 	\checkmark
	Wheel washing	
	 Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. Use of vehicles 	\checkmark
	 The speed of the trucks within the site should be controlled to about 10km/hour in order to reduce adverse dust impacts and secure the safe movement around the site. 	\checkmark
	 Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	\checkmark
	 Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle. 	\checkmark
	Site hoarding	
	 Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit. 	\checkmark
2.1 &	Best Practicable Means for Cement Works (Concrete Batching Plant)	
10.3.1	The relevant best practices for dust control as stipulated in the Guidance Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) should be followed and implemented to further reduce the construction dust impacts of the Project. These best practices include:	
	Exhaust from Dust Arrestment Plant	
	 Wherever possible the final discharge point from particulate matter arrestment plant, where is not necessary to achieve dispersion from residual pollutants, should be at low level to minimise the effect on the local community in the case of abnormal emissions and to facilitate maintenance and inspection 	N/A No concrete batching plant in this project.
	Emission Limits	
	• All emissions to air, other than steam or water vapour, shall be colourless and free from persistent mist or smoke	N/A No concrete batching plant in this project.
	Engineering Design/Technical Requirements	
	• As a general guidance, the loading, unloading, handling and storage of fuel, raw materials, products, wastes or by-products should be carried out in a manner so as to prevent the release of visible dust and/or other noxious or offensive emissions	N/A No concrete batching plant in this project.

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	Non-Road Mobile Machinery (NRMM):	
	All NRMMs operating on-site which are subject to emission control of Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation are approved/exempted (as the case may be) and affixed with the reguisite approval/exemption labels.	\checkmark
Noise Impa	act (Construction)	
3.1 &	Good Site Practice	
10.4.1	Good site practice and noise management can significantly reduce the impact of construction site activities on nearby NSRs. The following package of measures should be followed during each phase of construction:	
	 only well-maintained plant to be operated on-site and plant should be serviced regularly during the construction works; 	\checkmark
	• machines and plant that may be in intermittent use to be shut down between work periods or should be throttled down to a minimum	\checkmark
	• plant known to emit noise strongly in one direction, should, where possible, be orientated to direct noise away from the NSRs;	\checkmark
	 mobile plant should be sited as far away from NSRs as possible; and 	\checkmark
	 material stockpiles and other structures to be effectively utilised, where practicable, to screen noise from on-site construction activities. 	\checkmark
3.1 &	Adoption of Quieter PME	
10.4.1	The recommended quieter PME adopted in the assessment were taken from the EPD's QPME Inventory and "Sound Power Levels of Other Commonly Used PME" are presented in Table 4.26 in the EIA report. It should be noted that the silenced PME selected for assessment can be found in Hong Kong.	\checkmark
3.1 &	Use of Movable Noise Barriers	
10.4.1	Movable noise barriers can be very effective in screening noise from particular items of plant when constructing the Project. Noise barriers located along the active works area close to the noise generating component of a PME could produce at least 10 dB(A) screening for stationary plant and 5 dB(A) for mobile plant provided the direct line of sight between the PME and the NSRs is blocked.	\checkmark
3.1 &	Use of Noise Enclosure/ Acoustic Shed	
10.4.1	The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the EIAO Guidance Note No. 9/2010.	\checkmark
3.1 &	Use of Noise Insulating Fabric	
10.4.1	Noise insulating fabric can also be adopted for certain PME (e.g. drill rig, pilling machine etc). The fabric should be lapped such that there are no openings or gaps on the joints. According to the approved Tsim Sha Tsui Station Northern Subway EIA report (AEIA R-127/2008), a noise reduction of 10 dB(A) can be achieved for the PME lapped with the noise insulating fabric.	\checkmark
	Scheduling of Construction Works outside School Examination Periods	

Scheduling of Construction Works outside School Examination Periods

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
3.1 & 10.4.1	During construction phase, the contractor should liaise with the educational institutions (including NSRs LCS and CRGPS) to obtain the examination schedule and avoid the noisy construction activities during school examination periods.	N/A No educational institutions nearby the site.
Water Qua	lity Impact (Construction)	
4.1 &	Construction site runoff and drainage	
10.5.1	The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface run off and the chance of erosion. The following measures are recommended to protect water quality and sensitive uses of the coastal area, and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts:	
	• At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the WKCDA's Contractor prior to the commencement of construction;	\checkmark
	• Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the WKCDA's Contractor prior to the commencement of construction.	~
	• All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.	\checkmark
	• Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.	\checkmark
	 All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. 	\checkmark
	• Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	\checkmark
	• Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.	\checkmark

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	 Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes. 	\checkmark
	 Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	N/A No bentonite slurries are used in this project.
	Barging facilities and activities	
	Recommendations for good site practices during operation of the proposed barging point include:	
	• All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;	N/A No barging facilities in this project.
	• Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation;	N/A No barging facilities in this project.
	All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and	N/A No barging facilities in this project.
	 Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site. 	N/A No barging facilities in this project.
4.1 &	Sewage effluent from construction workforce	
10.5.1	Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	4
4.1 &	General construction activities	
10.5.1	 Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby storm water drain. Stockpiles of cement and other construction materials should be kept covered when not being used. 	\checkmark
	 Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby storm water drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event. 	Obs

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
Waste Man	agement Implications (Construction)	
5.1 &	Good Site Practices	
10.7.1	Recommendations for good site practices during the construction activities include:	
	 Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site 	Obs
	 Training of site personnel in proper waste management and chemical handling procedures 	\checkmark
	 Provision of sufficient waste disposal points and regular collection of waste 	\checkmark
	 Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by either covering trucks or by transporting wastes in enclosed containers 	1
	Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction to public roads	\checkmark
	 Well planned delivery programme for offsite disposal such that adverse environmental impact from transporting the inert or non- inert C&D materials is not anticipated 	√
.1 &	Waste Reduction Measures	
0.7.1	Recommendations to achieve waste reduction include:	
	 Sort inert C&D material to recover any recyclable portions such as metals 	\checkmark
	 Segregation and storage of different types of waste in different containers or skips to enhance reuse or recycling of materials and their proper disposal 	\checkmark
	 Encourage collection of recyclable waste such as waste paper and aluminium cans by providing separate labelled bins to enable such waste to be segregated from other general refuse generated by the work force 	\checkmark
	 Proper site practices to minimise the potential for damage or contamination of inert C&D materials 	\checkmark
	• Plan the use of construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of wastes	\checkmark
.1 &	Inert and Non-inert C&D Materials	
10.7.1	In order to minimise impacts resulting from collection and transportation of inert C&D material for off-site disposal, the excavated materials should be reused on-site as fill material as far as practicable. In addition, inert C&D material generated from excavation works could be reused as fill materials in local projects that require public fill for reclamation.	\checkmark
	• The surplus inert C&D material will be disposed of at the Government's PFRFs for beneficial use by other projects in Hong Kong.	\checkmark
	 Liaison with the CEDD Public Fill Committee (PFC) on the allocation of space for disposal of the inert C&D materials at PFRF is underway. No construction work is allowed to proceed until all issues on management of inert C&D materials have been resolved and all relevant arrangements have been endorsed by the relevant authorities including PFC and EPD. 	4
	 The C&D materials generated from general site clearance should be sorted on site to segregate any inert materials for reuse or disposal of at PFRFs whereas the non-inert materials will be disposed of at the designated landfill site. 	\checkmark

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	 In order to monitor the disposal of inert and non-inert C&D materials at respectively PFRFs and the designated landfill site, and to control fly-tipping, it is recommended that the Contractor should follow the Technical Circular (Works) No. 6/2010 for Trip Ticket System for Disposal of Construction & Demolition Materials issued by Development Bureau. In addition, it is also recommended that the Contractor should prepare and implement a Waste Management Plan detailing their various waste arising and waste management practices in accordance with the relevant requirements of the Technical Circular (Works) No. 19/2005 Environmental Management on Construction Site. 	~
6.1 &	Chemical Waste	
10.7.1	 If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the "Code of Practice on the Packaging Labelling and Storage of Chemical Wastes". Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor should use a licensed collector to transport and dispose of the chemical wastes at the approved Chemical Waste Treatment Centre or other licensed recycling facilities, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. 	Obs
	• Potential environmental impacts arising from the handling activities (including storage, collection, transportation and disposal of chemical waste) are expected to be minimal with the implementation of appropriate mitigation measures as recommended.	\checkmark
6.1 &	General Refuse	
10.7.1	General refuse should be stored in enclosed bins or compaction units separated from inert C&D materials. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from inert C&D materials. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	\checkmark
Land Conta	amination (Construction)	
7.1 & 10.8.1	The potential for land contamination issues at the TST Fire Station due to its future relocation will be confirmed by site investigation after land acquisition. Where necessary, mitigation measures for minimising potential exposure to contaminated materials (if any) or remediation measures will be identified. If contaminated land is identified (e.g., during decommissioning of fuel oil storage tanks) after the commencement of works, mitigation measures are proposed in order to minimise the potentially adverse effects on the health and safety of construction workers and impacts arising from the disposal of potentially contaminated materials. The following measures are proposed for excavation and transportation of contaminated material:	
	• To minimize the chance for construction workers to come into contact with any contaminated materials, bulk earth-moving excavation equipment should be employed;	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.

Implementation Stage

EM&A Ref.	Recommendation Measures	L2
	 Contact with contaminated materials can be minimised by wearing appropriate clothing and personal protective equipment such as gloves and masks (especially when interacting directly with contaminated material), provision of washing facilities and prohibition of smoking and eating on site; 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	Stockpiling of contaminated excavated materials on site should be avoided as far as possible;	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	The use of contaminated soil for landscaping purpose should be avoided unless pre-treatment was carried out;	, N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	 Vehicles containing any contaminated excavated materials should be suitably covered to reduce dust emissions and/or release of contaminated wastewater; 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	Truck bodies and tailgates should be sealed to stop any discharge;	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	 Only licensed waste haulers should be used to collect and transport contaminated material to treatment/disposal site and should be equipped with tracking system to avoid fly tipping; 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	Speed control for trucks carrying contaminated materials should be exercised;	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	 Observe all relevant regulations in relation to waste handling, such as Waste Disposal Ordinance (Cap. 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354) and obtain all necessary permits where required; and 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.

Implementation Stage

EM&A Ref.	Recommendation Measures	L2
	Maintain records of waste generation and disposal quantities and disposal arrangements.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
Ecological	Impact (Construction)	
	No mitigation measure is required.	
Landscape	and Visual Impact (Construction)	
Table 9.1 & 10.8 (CM1)	Trees should be retained in situ on site as far as possible. Should tree removal be unavoidable due to construction impacts, trees will be transplanted or felled with reference to the stated criteria in the Tree Removal Applications to be submitted to relevant government departments for approval in accordance to ETWB TCW No. 29/2004 and 3/2006.	✓
Table 9.1 & 10.8 (CM2)	Compensatory tree planting shall be incorporated to the proposed project and maximize the new tree, shrubs and other vegetation planting to compensate tree felled and vegetation removed. Also, implementation of compensatory planting should be of a ratio not less than 1:1 in terms of quality and quantity within the site.	N/A Compensatory tree planting is being reviewed.
Table 9.1 & 10.8 (CM3)	Buffer trees for screening purposes to soften the hard architectural and engineering structures and facilities.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 & 10.8 (CM4)	Softscape treatments such as vertical green wall panel /planting of climbing and/or weeping plants, etc, to maximize the green coverage and soften the hard architectural and engineering structures and facilities.	N/A Climbing or weeping plants are designed to be planted, but proposal is being reviewed for the planting location.
Table 9.1 & 10.8 (CM5)	Roof greening by means of intensive and extensive green roof to maximize the green coverage and improve aesthetic appeal and visual quality of the building/structure.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 & 10.8 (CM6)	Sensitive streetscape design should be incorporated along all new roads and streets.	N/A Greening along the seafront is proposed, but it has not been completed yet.
Table 9.1 & 10.8 (CM7)	Structure, ornamental planting shall be provided along amenity strips to enhance the landscape quality.	N/A Gardens are designed to be built, but it has not been completed yet.

Implementation Stage

EM&A Ref.	Recommendation Measures	L2
Table 9.1 & 10.8 (CM8)	Landscape design shall be incorporated to architectural and engineering structures in order to provide aesthetically pleasing designs.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 (CM9)	Minimize the structure of marine facilities to be built on the seabed and foreshore in order to minimize the affected extent to the waterbody	N/A No marine facilities for this project.
Table 9.2 & 10.9 (MCP1)	Use of decorative screen hoarding/boards	✓
Table 9.2 & 10.9 (MCP2)	Early introduction of landscape treatments	N/A No landscape treatments during this stage.
Table 9.2 & 10.9 (MCP3)	Adoption of light colour for the temporary ventilation shafts for the basement during the transition period.	N/A No ventilation shafts for this project.
Table 9.2 & 10.9 (MCP4)	Control of night time lighting	✓
Table 9.2 & 10.9 (MCP5)	Use of greenery such as grass cover for the temporary open areas will help achieve the visual balance and soften the hard edges of the structures.	N/A No temporary open areas for this project.

N/A - Not Applicable

 \checkmark - Implemented

Obs - Observed

Rem - Reminder

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction works to the end of the reporting month are summarised in the **Table K-1** below respectively.

Table K-1: Statistics for complaints, notifications of summons and successful prosecutions for Lyric Theatre Complex

Reporting Period	Cumulative Statistics		
	Complaints	Notifications of summons	Successful prosecutions
This reporting month	1	0	0
From 1 March 2016 to end of the reporting month (Jul 2021)	24	0	0

END OF PART-1

Part-2: EM&A for Foundation, Excavation and Lateral Works for Integrated Basement and Underground Road in Zone 2A

Foundation, Excavation and Lateral Works for Integrated Basement and Underground Road in Zone 2A

APEX TESTING & CERTIFICATION LIMITED Unit D6A, 10/F, TML Plaza, 3 Hoi Shing Road, Tsuen Wan, N.T. Hong Kong Tel: (852) 39733585 Fax: (852) 30079385 Email: info@apextestcert.com

The information supplied and contained within this report is, to the best of our knowledge, correct at time of printing

Contents

Exe	ecutive	summar	у	1
1	Intro	duction		3
	1.1	Backgro	und	3
	1.2	Project C	Organisation	3
	1.3	Construc	ction Works Status in the Reporting Period	3
	1.4	Summar	ry of EM&A Requirements and Alternative Monitoring Locations	4
		1.4.1	EM&A Requirements	4
		1.4.2	Alternative Monitoring Locations	5
2	Impa	act Monit	oring Methodology	7
	2.1	Introduct	tion	7
	2.2	Air Quali	ity	7
		2.2.1	Monitoring Parameters, Frequency and Duration	7
		2.2.2	Monitoring Locations	7
		2.2.3	Monitoring Equipment	7
		2.2.4	Monitoring Methodology	8
	2.3	Noise		10
		2.3.1	Monitoring Parameters, Frequency and Duration	10
		2.3.2	Monitoring Location	10
		2.3.3	Monitoring Equipment	10
		2.3.4	Monitoring Methodology	10
	2.4	Landsca	pe and Visual	11
		2.4.1	Monitoring Program	11
3	Mon	itoring Re	esults	12
	3.1	Impact N	Aonitoring	12
	3.2	•	ity Monitoring	12
		3.2.1	1-hour TSP	12
		3.2.2	24-hour TSP	12
	3.3	Noise M	onitoring	13
	3.4		pe and Visual Impact	14
4	Site	Environn	nental Management	15
	4.1	Site Insp	pection	15
	4.2	•	on the Solid and Liquid Waste Management Status	16
	4.3		f Environmental Licenses and Permits	16
	4.4	Recomm	nended Mitigation Measures	17

5	Comp	pliance with Environmental Permit	18
6		rt in Non-compliance, Complaints, Notification of Summons and essful Prosecutions	19
	6.1	Record on Non-compliance of Action and Limit Levels	19
	6.2	Record on Environmental Complaints Received	19
	6.3	Record on Notifications of Summons and Successful Prosecution	19
7	Futur	e Key Issues	20
	7.1	Construction Works for the Coming Month(s)	20
	7.2	Key Issues for the Coming Month	20
	7.3	Monitoring Schedule for the Coming Month	20
8	Conc	lusions and Recommendations	21
	8.1	Conclusions	21
	8.2	Recommendations	21
Figu	re 1	Site Layout Plan and Monitoring Stations	22
Appe	endice	S	23
A.	Proje	ct Organisation	24
B.	Tenta	ative Construction Programme	25
C.	Actio	n and Limit Levels for Construction Phase	26
D.	Even Impa	t and Action Plan for Air Quality, Noise, Landscape and Visual	27
	mpa		21
E.	Monit	toring Schedule	28
F.	Calib	ration Certifications	29
G.	Grap	hical Plots of the Monitoring Results	30
H.	Mete	orological Data Extracted from Hong Kong Observatory	31
I.	Wast	e Flow table	32
J.	Envir	onmental Mitigation Measures – Implementation Status	33

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

34

Executive summary

Apex Testing & Certification Limited (Apex) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction activities in Zone 2A at WKCD, consisting of Foundation, Excavation and Lateral Support Works for Integrated Basement and Underground Road (Contract No.: GW/2020/05/073). The construction works and EM&A programme for Zone 2A commenced on 3 October 2020.

The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO.

This Monthly EM&A Report presents the monitoring works at Zone 2A from 1 to 31 July 2021.

Exceedance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise monitoring in this reporting month.

Implementation of Mitigation Measures

Construction phase weekly site inspections were carried out on 02, 08, 15, 22 and 29 July 2021 for Foundation, Excavation and Lateral Support Works in Zone 2A to confirm the implementation measures undertaken by the Contractors in the reporting month. The outcomes are presented in Section 4 and the status of implementation of mitigation measures in the site is shown in **Appendix J**.

Landscape and visual impact inspections were conducted as part of the abovementioned weekly site inspections during the reporting month. No adverse comment on landscape and visual aspects was made during these inspections.

FEHD inspection was conducted at Zone 2A on 14, 21 and 26 July 2021.

EPD inspection was conducted at Zone 2A on 30 July 2021.

Record of Complaints

One noise-related environmental complaint was recorded in the reporting month. However, it was not attributable to Zone 2A construction activities.

Record of Notifications of Summons and Successful Prosecutions

No notifications of summons and successful prosecutions were recorded in the reporting month.

Future Key Issues

The major site works for Zone 2A scheduled to be commissioned in the coming month include: Zone 2A-1

- Grouting Works (Trial 1)
 - Install Pump Wells
 - Pumping Test
- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post & Erection of Steel Column for Working Platform
- Socketed H-Pile Works
 - Remaining Socket H-Pile Works
- Bored Pile Works
 - Bored Pile Construction

Zone 2A-2

- Bored Pile Works
 - Additional Bored Pile Construction
- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post
 - Stage 1a & 1b Grouting
 - Pipe Pile Construction

Potential environmental impacts due to the construction activities, including air, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

1 Introduction

1.1 Background

Apex Testing & Certification Limited (Apex) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction activities in Zone 2A at WKCD, consisting of Foundation, Excavation and Lateral Support Works for Integrated Basement and Underground Road (Contract No.: GW/2020/05/073). The purpose of the development in Zone 2A is to reserve for Integrated Basement (IB) and Underground Road (UR). The Zone 2A construction activities involve the foundation, excavation and lateral support (ELS) works, road works, drainage diversion works, and temporary car parking. The construction works and EM&A programme for Zone 2A commenced on 3 October 2020.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO. The captioned projects include part of the abovementioned underpass road located within the site boundary falls under this same category.

The Monthly EM&A Report is prepared in accordance with the Condition 3.4 of the Environmental Permit No. EP-453/2013/B. This Monthly EM&A Report presents the monitoring works at Zone 2A from 1 to 31 July 2021. The purpose of this report is to summarise the findings in the EM&A of the project over the reporting period.

1.2 **Project Organisation**

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Construction Works Status in the Reporting Period

During the reporting period, construction works at Zone 2A undertaken include:

Zone 2A-1

- Grouting Works (Trial 1)
 - Install Pump Wells
 - Pumping Test
 - ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post & Erection of Steel Column for Working Platform
- Socketed H-Pile Works
 - Remaining Socketed H-Pile Works
- Bored Pile Works

Bored Pile Construction

Zone 2A-2

- Bored Pile Works
 - Additional Bored Pile Construction
- ELS (Stage 1) Grouting / Pipe Pile Works
 - Stage 1a & 1b Grouting
 - Pipe Pile Construction

The Construction Works Programme of Zone 2A is provided in **Appendix B**. A layout plan of the Project is provided in **Figure 1**. Please refer to **Table 4.2** on the status of the environmental licenses.

1.4 Summary of EM&A Requirements and Alternative Monitoring Locations

1.4.1 EM&A Requirements

The EM&A programme requires environmental monitoring of air quality, noise, landscape and visual as specified in the approved EM&A Manual.

A summary of impact EM&A requirements is presented in **Table 1.1**.

Parameters	Descriptions	Locations	Frequencies
	24-Hours TSP	AM3-The Victoria Towers Tower 1	At least once every 6 days
	1-Hour TSP	AM3-The Victoria Towers Tower 1	At least 3 times every 6 days
Air Quality	24-Hours TSP	AM4-Canton Road Government Primary School	At least once every 6 days
All Quality	1-Hour TSP	AM4-Canton Road Government Primary School	At least 3 times every 6 days
	24-Hours TSP	AM5-Topside Developments at West Kowloon Terminus Site	At least once every 6 days
	1-Hour TSP	AM5-Topside Developments at West Kowloon Terminus Site	At least 3 times every 6 days
	Leq, 30 minutes	NM2-The Arch, Sun Tower	Weekly
	Leq, 30 minutes	NM3-The Victoria Towers Tower 1	Weekly
Noise	Leq, 30 minutes	NM4-Canton Road Government Primary School	Weekly
	Leq, 30 minutes	NM5-Development next to Austin Station	Weekly
Landscape & Visual	Monitor implementation of proposed mitigation measures during the construction stage	As described in Table 9.1 and 9.2 of the EM&A Manual	Bi-Weekly

 Table 1.1:
 Summary of Impact EM&A Requirements

1.4.2 Alternative Monitoring Locations

The EM&A programme for the Project should require 5 noise monitoring station and 5 air quality monitoring stations located closest to the Project area. With regard to the monitoring activities at M+ Museum and the Lyric Complex, three monitoring stations had been considered, including AM1 (International Commerce Centre), AM2 (The Harbourside Tower 1) for air monitoring, and NM1 (The Harbourside Tower 1) for noise monitoring.

In the context of the construction activities in Zone 2A, all other monitoring locations including AM3 (The Victoria Towers Tower 1), AM4 (Canton Road Government Primary School), and AM5 (Topside Developments at West Kowloon Terminus Site) for air monitoring; and NM2 (The Arch, Sun Tower), NM3 (The Victoria Towers Tower 1), NM4 (Canton Road Government Primary School) and NM5 (Development next to Austin Station) for noise monitoring, have been taken into account. However, access to all these originally designated monitoring stations was declined as described below point-by-point.

The Arch management office and owners' committee have formally declined the proposal of setting up noise monitoring instrument on its premises at the podium level of Sun Tower (NM2) on 24 July 2014. Thus, alternative noise monitoring location was identified at the ground floor in front of The Arch – Sun Tower (NM2A), which is at the same location as stated in the EM&A Manual for consistency. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

The Victoria Towers management office formally declined the proposal of setting up air quality and noise monitoring instruments on its premises at the podium area of Tower 1 (AM3/NM3) on 16 June 2020. Alternative air monitoring location was identified at ground floor at the Northeast corner of West Kowloon Station's station box (AM3A), in the same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was identified at the ground floor in front of the Xiqu Centre (NM3A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

Canton Road Government Primary School formally declined the proposal of setting up air quality and noise monitoring instruments on its premise at the podium level (AM4/NM4) on 16 June 2020. Alternative air monitoring location was identified at ground floor at the Southeast corner of West Kowloon Station's station box (AM4A), in same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020. An alternative noise monitoring location was identified at the ground floor next to Tsim Sha Tsui Fire Station (NM4A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29

MTR also formally declined the access to the designated AM5 location (topside developments at West Kowloon Terminus Site) on 15 July 2020. Alternative air monitoring location was identified at ground floor at the North of West Kowloon Station's station box (AM5A), in same direction to

the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020.

Grand Austin property management office formally declined our proposal of setting up noise monitoring instrument on its premises at the podium level (NM5) on 10 July 2020. Alternative noise monitoring location was identified at the Pedestrian road (ground floor) outside West Kowloon Station (NM5A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

The Environmental Quality Performance Limits for air quality and noise are shown in **Appendix C**.

The Event and Action Plan for air quality, construction noise, and landscape and visual are shown in **Appendix D**.

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**.

2 Impact Monitoring Methodology

2.1 Introduction

Air quality and noise monitoring methodology, including the monitoring locations, equipment used, parameters, frequency and duration etc., are described in this Section. The environmental monitoring schedules for the reporting period and the tentative monitoring Schedule for the coming month are provided in Appendix E.

The relevant EM&A monitoring requirements and details for landscape and audit impact, are also presented in this Section.

2.2 **Air Quality**

2.2.1 **Monitoring Parameters, Frequency and Duration**

Table 2.1 summarizes the monitoring parameters, frequency and duration of the TSP monitoring.

Table 2.1:	Air Quality Monitoring Parameters, Frequency and Duration				
Parameter	Frequency	Duration			
24-hour TSP	At least once in every six-days	24 hours			
1-hour TSP	At least 3 times every six-days	60 minutes			

Monitoring Locations 2.2.2

Monitoring stations and locations are given in Table 2.2 and shown in Figure 1.

Table 2.2: **Air Quality Monitoring Station**

Monitoring Station	Location Description
АМЗА	Northeast corner of West Kowloon Station's station box (G/F)
AM4A	Southeast corner of West Kowloon Station's station box (G/F)
AM5A	North of West Kowloon Station's station box (G/F)

2.2.3 **Monitoring Equipment**

Continuous 24-hour TSP air quality monitoring was conducted using High Volume Sampler (HVS) (Model: TE-5170) located at the designated monitoring station. The HVS meets all the requirements stated in of the EM&A Manual. Portable direct reading dust meter was used to carry out the 1-hour TSP monitoring. Table 2.3 summarizes the equipment used in the impact air quality monitoring. Copies of the calibration certificates for the HVS, calibration kit and portable dust meters are attached in Appendix F.

Table 2.3: **TSP Monitoring Equipment**

Equipment	Model		
24-hour TSP monitoring			
High Volume Sampler	TE-5170 (Serial No.: 4340; 3998; 4344)		
Calibrator	TE-5025A (Orifice I.D.: 3543)		

Equipment	Model
1-hour TSP monitoring	
Portable direct reading dust meter	Sibata LD-3B (Serial No.: 235811, 336338, 567188)

Calibration of the HVS (five-point calibration) using Calibration Kit was carried out every two months. The HVS calibration orifice will be calibrated annually. Calibration certificate of the TE-5025A Calibration Kit and the HVS are provided in **Appendix F**.

The 1-hour TSP monitoring should be determined periodically (e.g. annually) by the HVS to check the validity and accuracy of the results measured by direct reading method.

2.2.4 Monitoring Methodology

24-hour TSP Monitoring

Installation

The HVS was installed at the site boundary. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of 2 metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of 2 metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the sampler and to obtain access to the monitoring station.
- A secured supply of electricity is needed to operate the sampler.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- The filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP) particles.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5 %. A convenient working RH was 40%. All preparation of filters was done by Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory.

Field Monitoring Procedures

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.

- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.3 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated upon installation and thereafter at bi-monthly intervals. The calibration kits were calibrated annually.
- Calibration records for HVS and calibration kit are shown in Appendix F.

1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.3 Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Table 2.4 summarizes the monitoring parameters, frequency and duration of noise monitoring. The noise in A-weighted levels L_{eq} , L_{10} and L_{90} are recorded in a 30-minute interval between 0700 and 1900 hours.

Table 2.4: Noise Monitoring Parameters, Period and Frequency

Time Period	Parameters	Frequency
Daytime on normal weekdays (0700-1900 hours)	$L_{eq}(30 min), L_{90}(30 min) \& L_{10}(30 min)$	Once every week

Note: *70 dB(A) for schools and 65 dB(A) during school examination periods.

If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

2.3.2 Monitoring Location

Noise monitoring stations and locations are given in Table 2.5 and shown in Figure 1.

Table 2.5: Noise Monitoring Station

Monitoring Station	Location
NM2A	The Arch – Sun Tower (G/F)
NM3A	Xiqu Centre (G/F)
NM4A	Next to Tsim Sha Tsui Fire Station (G/F)
NM5A	Pedestrian road (G/F) outside West Kowloon Station

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{Aeq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

Equipment Model	
Integrating Sound Level Meter	Calibrator
AWA5661 (Serial No.: 301135)	Pulsar 100B (Serial No.: 039507)

2.3.4 Monitoring Methodology

Field Monitoring

- The microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- Free Field measurement was made at NM5A monitoring location.
- The battery condition was checked to ensure the correct functioning of the meter.

- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast
- time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
 Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and has to be repeated after re-calibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- A correction of +3dB(A) was made to the free field measurements.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in **Appendix F**.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.4 Landscape and Visual

2.4.1 Monitoring Program

Table 2.7 details the monitoring program (as proposed in the WKCD EIA report) for landscape and visual impact during the construction phase.

Table 2.7:Monitoring Program for Landscape and Visual Impact during ConstructionPhase

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Monitor implementation of proposed mitigation measures during the construction stage.	Bi-weekly	ET to report on Contractor's compliance	Counter- signed by IEC

During the landscape and visual impact monitoring, any changes in relation to the landscape and visual amenity should be monitored with reference to the baseline conditions of the site. In addition, mitigation measures were proposed in the WKCD EIA report to minimise the landscape and visual impacts during the construction phase. The proposed mitigation measures as shown in Table 9.1 and Table 9.2 of the EM&A Manual should be checked for proper implementation.

3 **Monitoring Results**

3.1 **Impact Monitoring**

Air quality, noise and landscape and visual impact monitoring was undertaken in compliance with the EM&A Manual during the reporting month.

3.2 **Air Quality Monitoring**

3.2.1 1-hour TSP

Results of 1-hour TSP are summarised in Table 3.1. Graphical plots of the monitoring results are shown in Appendix G.

Monitoring	Monitoring	Start				Range	Action	Limit
Station	Date Tin	Time	1st Result	2nd Result	3rd Result	(µg/m3)	Level (µg/m3)	Level (µg/m3)
	02-Jul-21	8:02	57	50	50			
	08-Jul-21	14:07	46	45	43			
АМЗА	14-Jul-21	8:10	33	40	37	24 57	200.4	500
AM3A	20-Jul-21	14:15	31	31	35	31-57	280.4	500
	26-Jul-21	8:12	31	34	32			
	31-Jul-21	14:09	41	39	47			
	02-Jul-21	8:10	48	57	53	31-57 278.5		500
	08-Jul-21	14:15	39	47	42		278.5	
	14-Jul-21	8:18	31	34	35			
AM4A	20-Jul-21	14:23	35	36	38			
	26-Jul-21	8:20	37	40	40			
	31-Jul-21	14:17	46	45	46			
	02-Jul-21	8:25	53	48	57			500
	08-Jul-21	14:32	42	44	46	- - 33-57 275.4 -		
	14-Jul-21	8:33	38	36	34			
AM5A	20-Jul-21	14:40	40	40	36		275.4	
	26-Jul-21	8:35	33	39	34			
	31-Jul-21	14:25	40	42	41			

Table 3.1: Summary of 1-hour TSP monitoring results

3.2.2 24-hour TSP

Results of 24-hour TSP are summarised in Table 3.2. Graphical plots of the monitoring results are shown in Appendix G.

	see 3.2: Summary of 24-hour TSP monitoring results									
Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)				
AM3A	02-Jul-21	10:00	49.0	32.2-49.0	152.4	260				

Table 3 2. Summary of 24-hour TSP monitoring results

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (μg/m ³)	Limit Level (µg/m³)
	08-Jul-21	10:00	41.6			
	14-Jul-21	10:00	32.5			
	20-Jul-21	10:00	32.4			
	26-Jul-21	10:00	32.2			
	31-Jul-21	10:00	39.3			
	02-Jul-21	10:00	46.3			
	08-Jul-21	10:00	39.0			
A N 4 A A	14-Jul-21	10:00	31.7	24 7 46 0	152.6	260
AM4A	Date Time Results (µg/m 08-Jul-21 10:00 41.6 14-Jul-21 10:00 32.5 20-Jul-21 10:00 32.4 26-Jul-21 10:00 32.2 31-Jul-21 10:00 39.3 02-Jul-21 10:00 39.3 02-Jul-21 10:00 39.0 14-Jul-21 10:00 31.7 20-Jul-21 10:00 31.7 20-Jul-21 10:00 35.0 31-Jul-21 10:00 46.9 02-Jul-21 10:00 42.6 14-Jul-21 10:00 42.6 14-Jul-21 10:00 35.9	33.5	31.7-46.9	260		
	26-Jul-21	10:00	35.0			
	AM4A $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	02-Jul-21	10:00	49.6			
	A A A A A A A A A A A A A A A A A A A	42.6				
	14-Jul-21	10:00	35.9	24.2.40.0		200
AM5A	20-Jul-21	10:00	36.1	31.3-49.6	141.1	260
	26-Jul-21	10:00	31.3			
	31-Jul-21	10:00	37.8			

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.3 Noise Monitoring

The construction noise monitoring results are summarized in **Table 3.3**. Graphical plots of the monitoring data and the station set-up as façade and free-field measurements are shown in **Appendix G**.

Monitoring Stations	Monitoring Date	Start Time	End Time	L _{eq} (30 mins) dB(A)	Limit Level for L _{eq} (dB(A))
	02-Jul-21	08:32	09:02	58.7	
-	08-Jul-21	14:37	15:07	59.3	
	14-Jul-21	08:40	09:10	58.6	75
NM2A –	20-Jul-21	14:45	15:15	58.2	75
	26-Jul-21 08:42 09:12 58.9	58.9			
	31-Jul-21	14:09	14:39	58.4	
_	02-Jul-21	10:02	10:32	69.5	
	08-Jul-21	16:10	16:40	70.5	
NM3A -	14-Jul-21	10:10	10:40	69.9	75
INIVI3A -	20-Jul-21	16:18	16:18 16:48 69.8		75
	26-Jul-21	10:12	10:42	70.0	
	31-Jul-21	15:51	16:21	69.6	
_	02-Jul-21	10:37	11:07	67.4	
NM4A -	08-Jul-21	16:45	17:15	68.1	70/65^#
INIVI4A	14-Jul-21	10:45	11:15	67.6	10/00/1
	20-Jul-21	16:53	17:23	68.2	

Table 3.3:	Summary of noise monitoring results during normal weekdays
------------	--

Monitoring Stations	Monitoring Date	Start Time	End Time	L _{eq} (30 mins) dB(A)	Limit Level for L _{eq} (dB(A))
	26-Jul-21	10:47	11:17	68.2	
	31-Jul-21	16:26	16:56	68.0	
	02-Jul-21	09:22	09:52	65.6	
	08-Jul-21	15:29	15:59	65.3	
NM5A* -	14-Jul-21	09:30	10:00	65.3	75
ACIVIN	20-Jul-21	15:37	16:07	65.3	75
	26-Jul-21	09:32	10:02	65.9	
_	31-Jul-21	15:10	15:40	65.9	

Remarks:

* +3dB (A) correction was applied to free-field measurement.

^ 70 dB(A) for schools and 65 dB(A) during school examination periods.

[#] No School examination was conducted during the reporting period.

No exceedance (Action or Limit Level) of construction noise was recorded in the reporting period.

Construction works were extended to 1900-2300 hours on 02 to 03, 05 to 10, and 19 to 24 July 2021; and 2300-0700 hours on 19 to 24 July 2021. In accordance with the EM&A Manual, additional monitoring was carried out during the restricted hours on 02, 08, and 20 July 2021. The L_{eq} (5 mins) is in the range of 51.0-67.0 dB(A). Construction Noise Permits for the works carried out during restricted hours were obtained and listed in **Table 4.2**.

3.4 Landscape and Visual Impact

Landscape and visual impact inspections were conducted as part of the weekly site inspections on 08 and 22 July 2021 for Zone 2A during the reporting month. As reviewed by the registered Landscape Architect, no adverse comment on landscape and visual aspects was made during these inspections.

The landscape and visual mitigation measures were implemented during the reporting period. The summary of implementation status of the environmental mitigation measures is provided in **Appendix J**.

4 Site Environmental Management

4.1 Site Inspection

Construction phase weekly site inspections were carried out on 02, 08, 15, 22 and 29 July 2021. The joint site inspection with IEC, ET, ER and Contractor was held on 15 July 2021. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

FEHD inspection was conducted at Zone 2A on 14 July 2021. No prosecution or warning was given. The FEHD inspector mainly focused on mosquito prevention measures. FEHD inspector reminded that water barriers shall checked regularly to avoid stagnant water caused by cracking/damage of water barrier and recommend mosquito fogging shall conducted at least twice per month.

FEHD inspection was conducted at Zone 2A on 21 July 2021. No prosecution or warning was given. The FEHD officer have left the following comments for improvement: (1) Openings on water fill barriers should be sealed / closed to prevent stagnant water accumulation; (2) Damaged water fill barriers should be replaced; (3) Regular mosquito breeding prevention measures such as larvicide oil spray, mosquito fogging and sprinkle mosquito larvicide sand granules should be conducted; (4) Rubbish should be cleared regularly from skips to prevent mosquito breeding (5) Mosquito breeding grounds such as water ponding should be eliminated. Follow-up action for mosquito prevention has been taken by contractors.

FEHD inspection was conducted at Zone 2A on 26 July 2021. The FEHD inspector visited B1 and G/F, and mainly focus on hygiene issue (such as, rubbish handling). No adverse comment from FEHD inspector during the inspection.

EPD inspection was conducted at Zone 2A on 30 July 2021. No adverse comments or prosecution was given. EPD inspector verbally reminded that back-up sand bags to be provided at concrete bump near dangerous goods store and ensure no untreated water discharged into the sea.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.1**.

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close-out (Date)
02-Jul-21	Water Quality	The contractor was reminded to clean the u-channel regularly to maintain proper function.	The contractor has provided cleaning for the U-channel regularly.	03-Jul-21
02-Jul-21	Noise	The contractor was suggested to provide more movable noise barrier to screen noise effectively	The contractor has provided more movable noise barrier to minimise noise impact to the nearby resident.	03-Jul-21
08-Jul-21	Water Quality	The contractor was reminded to clean the water treatment plant regularly to maintain water quality in good condition.	The contractor has provided cleaning for the water treatment plant and the water quality has been improved.	09-Jul-21

 Table 4.1:
 Summary of Site Inspections and Recommendations for Zone 2A

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close-out (Date)
08-Jul-21	ul-21Water QualityThe contractor was reminded to clean the water treatment plant regularly to maintain water quality in good condition.ul-21Water Qualityul-21Water Qualityul-21Water Qualityul-21Water Qualityul-21Water Qualityul-21Water Qualityul-21Water Qualityul-21Water Quality		The contractor has provided more noise barrier to minimise noise impact to the resident during piling works.	10-Jul-21
15-Jul-21	Qualityclean the water treatment plant regularly to maintain water quality in good condition.cleaning for the water plant and the water been improved.Jul-21Water QualityThe contractor was reminded to clean the u-channel regularly to maintain proper function.The contractor had cleaning for the regularly.		The contractor has provided cleaning for the water treatment plant and the water quality has been improved.	16-Jul-21
22-Jul-21		clean the u-channel regularly to	The contractor has provided cleaning for the U-channel regularly.	24-Jul-21
22-Jul-21	Noise	The contractor was reminded to minimise gap between noise screens as much as possible to screen noise effectively.	The contractor has minimized the gap between noise screen as much as possible to screen noise effectively.	23-Jul-21
29-Jul-21	Water Quality	The contractor was reminded to clean the water treatment plant regularly to maintain water quality in good condition.	The contractor has provided cleaning for the water treatment plant and the water quality has been improved.	31-Jul-21
29-Jul-21	Air Quality	The contractor was reminded that the idle debris shall be covered.	The contractor has covered the debris after construction works.	29-Jul-21

4.2 Advice on the Solid and Liquid Waste Management Status

The Contractors have been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting will be carried out on site. A sufficient number of receptacles were available for general refuse collection.

As advised by the Contractor, 71.14 tonnes, 602.69 tonnes and 6104.26 tonnes of inert C&D material were disposed of as public fill to Chai Wan Public Fill Barging Point, Tseung Kwan O Area 137 Public Fill, and Tuen Mun Area 38 Public Fill respectively, while 14.00 tonnes and 133.95 tonnes of general refuse were disposed of at NENT and SENT landfill respectively. 4.11 tonnes of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber was collected by recycling contractors in the reporting month. 0.0 tonne of inert C&D material was reused on site. 1289.08 tonnes of inert C&D material were reused in other projects and 0.0 tonne of inert C&D material was disposed to sorting facility and 0.20 tonne of chemical waste was collected by licensed contractors in the reporting period.

The cumulative waste generation records for Zone 2A are shown in Appendix I.

4.3 Status of Environmental Licenses and Permits

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.2**.

Permit / License	Valid	Period	Status	Remarks		
No. / Notification / Reference No.	From	То	_			
Chemical Waste Produ	cer Registration					
WPN5113-256- B2597-01	10-Sep-20		Valid			
Billing Account Constr	ruction Waste Dispos	al				
7037500	09-Jun-20		Account Active			
Construction Noise Pe	rmit					
GW-RE-0159-21	11-Mar-21	10-Jul-21	Valid in the reporting period	Piling Works		
GW-RE-0627-21	11-Jul-21	10-Nov-21	Valid	Piling Works		
Wastewater Discharge	License					
WT00037344-2021	01-Feb-21	28-Feb-26	Valid			
Notification under Air	Pollution Control (Co	nstruction Dust) Reg	ulation			
456376	21-May-20		Notified			
Permit to Dump Materi	al at sea under Dump	ing at Sea Ordinance				
461895			Under EPD Approval			

Table 4.2: Status of Environmental Submissions, Licenses and Permits for Zone 2A

4.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**. In particular, the following mitigation measures were brought to attention during the site inspections:

Air Quality

- Idle stockpile should be fully covered when not in use or removed from the site.

Noise Control

- Provide more noise barrier to minimise construction noise impact to the nearby noise sensitive receiver.
- Gap between noise barrier should minimize as much as possible to screen noise effectively.

Temporary Water Drainage System & Water Quality

- The temporary drainage system should be well managed and updated with the site condition.
- U-channel should be cleaned regularly.
- The water treatment facilities should be cleaned regularly to maintain proper function.

5 Compliance with Environmental Permit

The status of the required submission under the EP during the reporting period is summarized in **Table 5.1**.

	Table 5.1:	Status of Submissions under the Environmental Permit
--	------------	--

EP Condition	Submission	Submission Date				
Condition 3.4	Monthly EM&A Report for June 2021	15 July 2021				

6 Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions

6.1 Record on Non-compliance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise in this reporting month.

6.2 Record on Environmental Complaints Received

One environmental complaint was recorded in the reporting month.

On 7 July 2021, EPD has received a complaint from a staff of Standard Chartered Elements Priority Banking Centre regarding construction noise from WKCD construction site (Artist Square Bridge (ASB) construction site). On 5 July 2021, WKCD staff has informed the complainant that the construction works of ASB project were scheduled to be carried out until noon every day. However, noise nuisance caused by ASB works usually lasts till 14:00 to 15:00 for consecutive 3 days. As the work place of the complainant is in close proximity of ASB project, daily noise exposure has become excessive, affecting daily duty performance and well-being of the complainant. Based on the description provided by the complainant, the noise source was not from WKCD Zone 2A site. Also, noise mitigation measures for construction works have been implemented and maintained on site. In addition, noise measurement and monitoring were carried out with no exceedance. Thereby, the complaint might not be attributable to the Zone 2A site. However, the Contractor is recommended to maintain good practice on site, and strengthen the implementation of noise mitigation measures to reduce impacts to the nearby neighbours.

The cumulative statistics on complaints were provided in Appendix K.

6.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecutions were received this month. The cumulative statistics on notifications of summons and successful prosecutions were provided in **Appendix** K.

7 Future Key Issues

7.1 Construction Works for the Coming Month(s)

Zone 2A-1

- Grouting Works (Trial 1)
 - Install Pump Wells
 - Pumping Test
- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post & Erection of Steel Column for Working Platform
- Socketed H-Pile Works
 - Remaining Socket H-Pile Works
- Bored Pile Works
 - Bored Pile Construction

Zone 2A-2

- Bored Pile Works
 - Additional Bored Pile Construction
- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post
 - Stage 1a & 1b Grouting
 - Pipe Pile Construction

7.2 Key Issues for the Coming Month

Key issues to be considered in the coming month include:

- Generation of dust from construction works;
- Noise impact from piling works;
- Generation of site surface runoffs and wastewater from activities on-site;
- The temporary drainage system should be well managed and updated with the site condition, particularly on rainy days;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste; and
- Management of chemicals and avoidance of oil spillage on-site.

7.3 Monitoring Schedule for the Coming Month

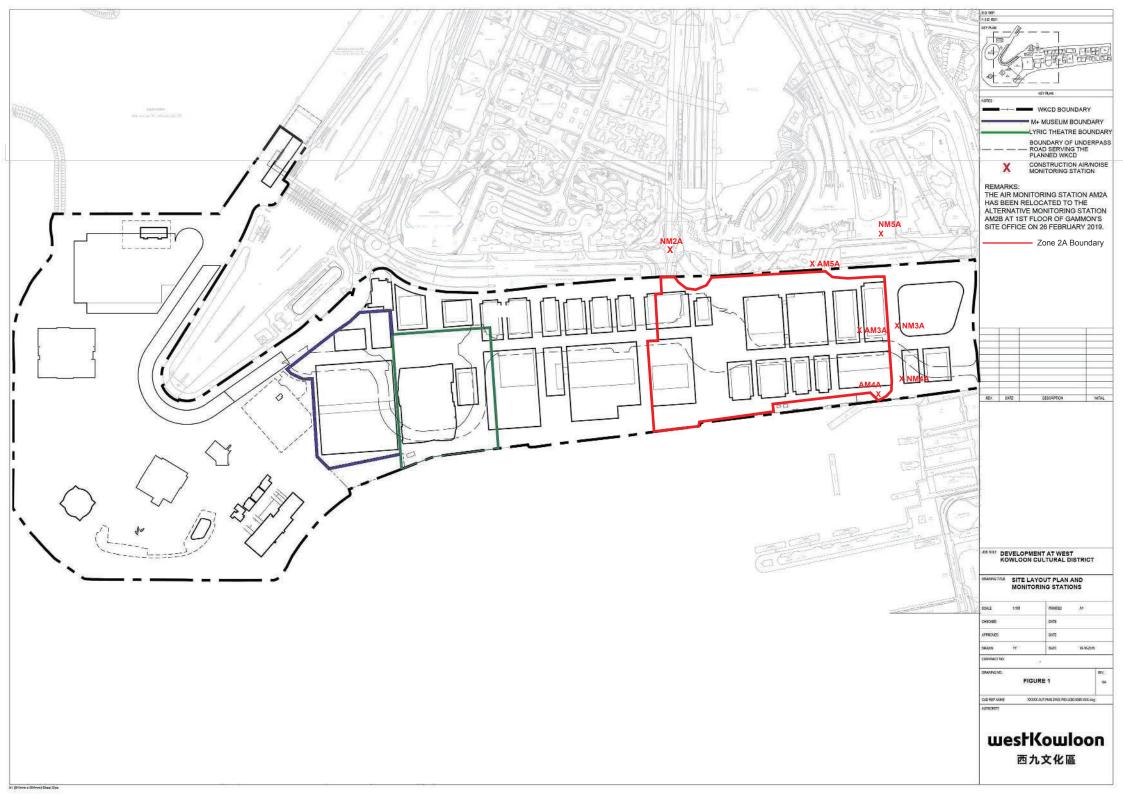
The environmental site inspection and environmental monitoring will be continued in the coming month. Impact monitoring for air quality and noise in accordance with the approved EM&A Manual has commenced since 3 October 2020 for Zone 2A. The tentative monitoring schedule for the coming month is shown in the **Appendix E**.

8 Conclusions and Recommendations

8.1 Conclusions

The EM&A programme as recommended in the EM&A Manual has been undertaken with the commencement of the construction activities at Zone 2A on 3 October 2020.

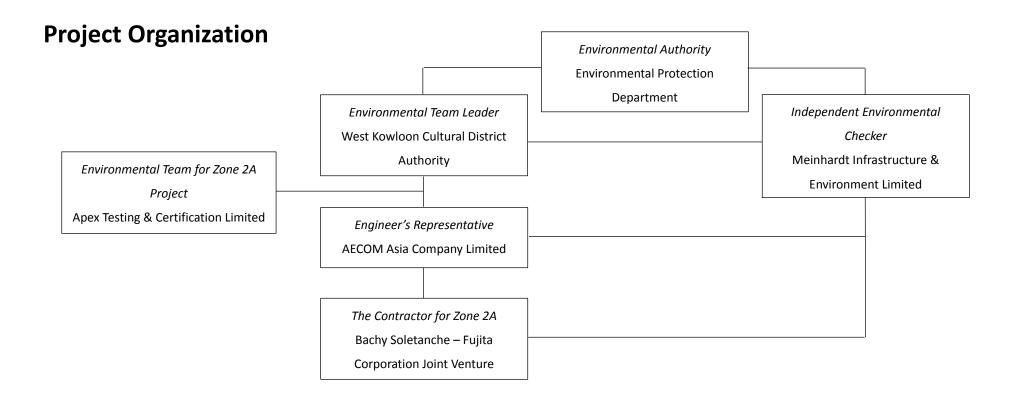
Monitoring of air quality and noise with respect to the Projects is underway. In particular, the 1-hour TSP, 24-hour TSP, noise level (as L_{eq}, 30 minutes) under monitoring have been checked against established Action and Limit levels. There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise monitoring in this reporting month.


One environmental complaint was recorded in the reporting month. No notifications of summons or successful prosecutions were received during the reporting month.

Weekly construction phase site inspections and bi-weekly landscape and visual impact inspections were conducted during the reporting month as required. It was observed that the Contractors had implemented all possible and feasible mitigation measures to mitigate the potential environmental impacts during construction phase works.

8.2 Recommendations

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.


Figure 1 Site Layout Plan and Monitoring Stations

Appendices

- A. Project Organisation
- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow table
- J. Environmental Mitigation Measures Implementation Status
- K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

A. Project Organisation

Table A-1: Contract Information

Company Name	Role	Name	Telephone	Email
West Kowloon Cultural District Authority	WKCDA Representative & Project ETL	Mr. C.K. WU	5506 9178	ck.wu@wkcda.hk
Meinhardt Infrastructure & Environment Limited	Independent Environmental Checker	Ms. Claudine LEE	2859 5409	caludinelee@meinhardt.com.hk
AECOM Asia Company Limited	Resident Engineer	Mr. Alex GBAGUIDI	3619 6287	alex.gbaguidi@aecom.com
Bachy Soletanche – Fujita Corporation Joint	Quality, Safety, Health &	Mr. Vincent CHAN	9733 7310	Chuen.Kwok.CHAN@soletanche-
Venture	Environmental Manager			bachy.com
Bachy Soletanche – Fujita Corporation Joint	Environmental Engineer	Mr. William CHAN	54083045	william-hou.chan@soletanche-
Venture				bachy.com
Apex Testing & Certification Limited	Contractor's Environmental Team Leader	Mr. Calvin LUI	9629 9718	calvinlui@apextestcert.com

B. Tentative Construction Programme

Project Name: Foundation and ELS Works for Integrated Basement and Underground Road in Zone 2A of the West Kowloon Cultural District

3-Month Rolling Programme

									2021						
Activity Description	Duration	Start Date	Finish Date	July			August					Septe			
	(Cal. Day)			9 W61	16 W62	23 W63	30 W64	6 W65	13 W66	20 W67	27 W68	3 W69			24 W72
Zone 2A-1 Foundation, ELS Works and Blinding to Formation (KD01)					1		1							L	
Grouting Works (Trial 1)															
Install Pump Wells	8	26-Jun-21	2-Aug-21												
Pumping Test	7	14-Aug-21	20-Aug-21												
ELS (Stage 1) - Grouting / Pipe Pile Works															
King Post (7/64 Nos Completed) & Erection of Steel Column for Working Platform (8/41 Nos completed)	186	15-May-21	16-Nov-21												
Socketed H-Pile Works															
Remaining Socketed H-Pile Works (0/53 Nos completed, 1/53 Nos in progress)	150	16-Jun-21	12-Nov-21								1				
Bored Pile Works															
Bored Pile Construction (Total 32 Nos. 2~4 Workfront)															
BP31L, BP33L, BP34I1, BP34G, BP31P, BP36F1, BP31R, BP33G, BP31M, BP36E1, BP31Q, BP33J, BP33M, BP32P, BP34F, BP35F1, BP33P, BP34K, BP34P, BP33F, BP35I1, BP34D, BP32D, BP36J1, BP35E1, BP35J1, BP35K1, BP33D, BP32E, BP34E (25 Nos. Cast; 1 Nos. completed RCD; 2 Nos. RCD in progress)	313	9-Nov-20	17-Sep-21												
Zone 2A-2 Foundation, ELS Works and Blinding to Formation (KD02)		·	·		•								•		
Bored Pile Works															
Additional Bored Pile Construction (Total 16 Nos.) BP15Y, BP16TA, BP13U, BP14Y, BP12M, BP12T, BP20XA, BP12Y, BP13Y, BP16WA. BP12K, BP13W, BP12P (11 Nos. Cast; 0 Nos. completed RCD; 1 Nos. RCD in progress)	208	23-Mar-21	16-Oct-21												
ELS (Stage 1) - Grouting / Pipe Pile Works															
King Post (0/86 Nos Completed) & Erection of Steel Column for Working Platform (0/65 Nos Completed)	183	2-Aug-21	31-Jan-22												
Stage 1a & 1b grouting (812/1058 Nos Completed)	442	22-Oct-20	6-Jan-22												
Pipe Pile Construction (239/523 Nos Completed)	427	17-Nov-20	17-Jan-22								i				

- Actual

- Remaining Works

- Critical Remaining Works

C. Action and Limit Levels for Construction Phase

Air Quality

The Action and Limit Levels for 1-hour and 24-hour TSP for the monitoring stations are presented in following tables:

Table C-1: Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level (µg/m3)	Limit Level (µg/m3)
АМЗА	280.4	500
AM4A	278.5	500
AM5A	275.4	500

Table C-2: Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (µg/m3)	Limit Level (μg/m3)
AM3A	152.4	260
AM4A	152.6	260
AM5A	141.1	260

<u>Noise</u>

The Action and Limit Levels for Noise for the monitoring stations are presented in following table:

Table C-3: Action and Limit Levels for Construction Noise

Time Period & Monitoring Locations	Action Level	Limit Level
NM2A, NM3A, NM4A and NM5A		
0700-1900 hours on normal weekdays	When one valid documented complaint is	75
	received from any one of the sensitive receiver	

Note:

*Reduce to 70dB(A) for school and 65 dB(A) during school examination period.

D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact

Air Quality

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Front	Action			
Event	ET	IEC	WKCDA	Contractor
Action Level				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and WKCDA; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and WKCDA; Advise the WKCDA on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and WKCDA; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to WKCDA within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

Table D-1: Typical Event and Action Plan for Air Quality

Frend	Action						
Event	ET	IEC	WKCDA	Contractor			
Limit Level							
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform WKCDA, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the WKCDA on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			
2. Exceedance for two or more consecutive samples	 Notify IEC, WKCDA, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and WKCDA to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the WKCDA until the exceedance is abated. 			

Construction Noise

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-2: Event and Action Plan for Construction Noise

Event	Action							
Event	ET	IEC	WKCDA	Contractor				
Action Level	 Notify WKCDA, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, WKCDA and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the WKCDA accordingly; Advise the WKCDA on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. 	 Submit noise mitigation proposals to IEC and WKCDA; Implement noise mitigation proposals 				
Limit Level	 Inform IEC, WKCDA, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and WKCDA on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional 	 Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and WKCDA within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the WKCDA until the exceedance is abated. 				

Landscape and Visual Impact

In case of non-compliance of landscape and visual impacts, procedures in accordance with the Event and Action Plan should be followed:

Front	Action							
Event	Action	Event	Action	Event				
Design Check	 Design check to make sure the design complies with all the proposed mitigation measures in the EIA report; Prepare and submit report. 	 Check report submitted by ET; Recommend remedial design if necessary. 	1. Undertake remedial design if necessary.	-				
Non-conformity on one occasion	 Identify source of non-conformity; Report to IEC and WKCDA; Discuss remedial actions with IEC, WKCDA and Contractor; Monitor remedial actions until rectification has been completed. 	 Check and verify source of non- conformity; Discuss remedial actions with ET and Contractor; Advise WKCDA on effectiveness of proposed remedial actions; Check implementation of remedial actions. 	 Notify Contractor; Ensure remedial actions are properly implemented. 	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions. 				
Repeated non- conformity	 Identify source of non-conformity; Report to IEC and WKCDA; Increase monitoring frequency; Discuss remedial actions with IEC, WKCDA and Contractor; Monitor remedial actions until rectification has been completed; If non-conformity rectified, reduce monitoring frequency back to normal. 	 Check and verify source of non- conformity; Check Contractor's working method; Discuss remedial actions with ET and Contractor; Advise WKCDA on effectiveness of proposed remedial actions; Supervise implementation of remedial actions. 	 Notify Contractor; Ensure remedial actions are properly implemented. 	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions. 				

Table D-3: Event and Action Plan for Landscape and Visual Impact

E. Monitoring Schedule

Notes:

AM3A - Northeast corner of West Kowloon Station's station box (G/F)

AM4A - Southeast corner of West Kowloon Station's station box (G/F)

AM5A - North of West Kowloon Station's station box (G/F)

NM2A - The Arch – Sun Tower (G/F)

NM3A - Xiqu Centre (G/F)

NM4A - Next to Tsim Sha Tsui Fire Station (G/F)

NM5A - Pedestrian road (G/F) outside West Kowloon Station

July 2021 (Hong Kong)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
27	28	29	30	1 • Hong Kong Special Administrative Region Establishment Day	2 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	3
4	5	6	7	8 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring Landscape & Visual Inspection	9	10
11	12	13	14 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	15	16	17
18	19	20 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	21	22 Landscape & Visual Inspection	23	24
25	26 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	27	28	29	30	31 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring

Notes:

AM3A - Northeast corner of West Kowloon Station's station box (G/F)

AM4A - Southeast corner of West Kowloon Station's station box (G/F)

AM5A - North of West Kowloon Station's station box (G/F)

NM2A - The Arch – Sun Tower (G/F)

NM3A - Xiqu Centre (G/F)

NM4A - Next to Tsim Sha Tsui Fire Station (G/F)

NM5A - Pedestrian road (G/F) outside West Kowloon Station

August 2021 (Hong Kong)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2	3	4	5 Landscape & Visual Inspection	6 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	7
8	9	10	11	12 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	13	14
15	16	17	18 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	19 Landscape & Visual Inspection	20	21 Hungry Ghost Festival
22	23	24 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	25	26	27	28
29 • Federal Holidays • Loca	30 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	31	1	2	3	4

F. Calibration Certifications

RECALIBRATION

DUE DATE:

November 2, 2021

Certificate of Calibration

			Calibration	Certificati	on Informat	tion	•••••••••••••••••••••••••••••••••••••••	
Cal. Date:	November	2, 2020	Roots	meter S/N:	438320	Ta:	294	°К
Operator:	Jim Tisch					Pa:	756.7	mm Hg
Calibration	Model #:	TE-5025A	Calil	orator S/N:	3543			-
			Mal Plant				···	1
	Run	Vol. Init (m3)	Vol. Final	ΔVol. (m2)	ΔTime (min)			
	<u></u> 1	1	(m3) 2	(m3) 1	(min) 1.4310	(mm Hg) 3.2	(in H2O) 2.00	
	2	3	4	1	1.0110	6.4	4.00	
	3	5	6	1	0.9000	8.0	5.00	
	4	7	8	1	0.8560	8.9	5.50	
	5	9	10	1	0.7100	12.9	8.00	
				Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>) Ta)		0.5	√∆Н(Та/Ра)	
	(m3)	(x-axis)	y (Yeta (y-ax)		Va	Qa (x-axis)	• • •	
	1.0049	0.7022	1.420		0.9958	0.6959	(y-axis) 0.8815	
	1.0006	0.9897	2,009		0.9915	0.9808	1.2467	
	0.9985	1.1094	2,246	53	0.9894	1.0994	1.3938	
	0.9973	1.1651	2.355	59	0.9882	1.1545	1.4619	
	0.9920	1.3971	2.841	.4	0.9830	1.3844	1.7631	
		m=	2.039		_	m=	1.27701	
	QSTD	b=	-0.012		QA	b≃	-0.00805	
		r=	0.999	95		r=	0.99995	
				Calculatio	ns			
			/Pstd)(Tstd/Ta	}	Va= ΔVol((Pa-ΔP)/Pa)			
	Qstd=	Vstd/∆Time				Va/∆Time		
		·····	For subsequ	ent flow rat	te calculation	ns:		
	Qstd=	1/m((√∆H(·	Pa <u>Tstd</u> Pstd Ta)-b)	Qa=	1/m ((√∆H	(Та/Ра))-ь)	
		Conditions						
Tstd:	298.15			[RECA	IBRATION	
Pstd:		mm Hg			LIS EPA reco	mmends ar	nual recalibratio	n ner 1000
H: calibrate		er reading (ir	H20)				legulations Part 5	
		eter reading (i					Reference Meth	
		perature (°K)					ended Particulate	
Pa: actual ba		essure (mm l	⊣g)				re, 9.2.17, page 3	
o: intercept				L				
n: slope								

Tisch Environmental, Inc.

145 South Miami Avenue Village of Cleves, OH 45002 <u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

			Site Ir	nformation		
Location: AM3 Sampler: TE-				Zones 2A a Kowloon Cu 4340		Date: 30-Jun-21 Tech: CS Tang
			Site C	Conditions		
Barometric Pressure (in Hg): 29.71 Temperature (deg F): 86 Average Press. (in Hg): 29.71 Average Temp. (deg F): 86					Tempe Corrected Ave	ssure (mm Hg): 755 erature (deg K): 303 erage (mm Hg): 755 Temp. (deg K): ³⁰³
			Calibra	tion Orifice		
	Make: Tisch Model: TE-5025A Serial#: 3543				Qstd Slope: 2 Qstd Intercept: - Date Certified: 2	-0.01298
			Calibratic	n Informatic	n	
Plate or Test # 2 3 4 5	H2O (in) 12.40 10.60 7.10 4.50 2.60	Qstd (m3/min) 1.712 1.584 1.297 1.034 0.788	I (chart) 53.0 48.0 41.0 33.0 23.0	IC (corrected) 52.37 47.43 40.51 32.61 22.73	# o:	Linear Regression Slope: 30.8186 Intercept: -0.4148 Corr. Coeff: 0.9960
Qstd = 1/m[Sqrt(H2C IC = I[Sqrt(Pa/Pstd)(' Qstd = standard flow IC = corrected chart r I = actual chart respo	Tstd/Ta)] rate response	td/Ta))-b]	Ca	lculations	m = sampler slop b = sampler inter I = chart respons Tav = daily averag Pav = daily averag	rcept se ge temperature
1 = actual chart respo m = calibrator Qstd is b = calibrator Qstd in Ta = actual temperatu Pa = actual pressure of Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calcu 1/m((I)[Sqrt(298/Tav	slope ntercept ure during cal during calibra lation of sam	tion (mm Hg) pler flow:			Averag Averag Samı	verage I (chart): 40 e Flow Calculation m3/min 1.283036231 e Flow Calculation in CFM 45.30400931 ple Time (Hrs): 1.0 Total Flow in m3/min 76.98217384 Total Flow in CFM 2718.240558

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 ● 877.263.7610 ● sales@tisch-env.com ● www.tisch-env.com

			Site li	nformation	
Location: J	AM4A TE-5170		Site ID: Serial No:	Zones 2A a Kowloon Cu 3998	
			Site (Conditions	
	Barometric Pre	essure (in Hg): 2		Jonardione	Corrected Pressure (mm Hg): 755
		erature (deg F): 8			Temperature (deg K): 303
	Average	Press. (in Hg): 2	9.71		Corrected Average (mm Hg): 755
	Average	Temp. (deg F): ⁸	6		Average Temp. (deg K): 303
			Calibra	tion Orifice	
	Make: 5	Tisch			Qstd Slope: 2.03936
		TE-5025A			Qstd Intercept: -0.01298
	Serial#:	3543			Date Certified: 2-Nov-20
			Calibratio	on Informatic	n
Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.30	1.706	53.0	52.37	Slope: 30.5487
2 3	10.50	1.576	48.0	47.43	Intercept: 0.0717 Corr. Coeff: 0.9970
3	7.30	1.315	41.0	40.51	
	4 4 0	1 0 2 2	33 0	22 61	
4	4.40 2.50	1.023 0.772	33.0 23.0	32.61 22.73	
4	4.40 2.50	1.023 0.772	23.0	22.73	# of Observations: 5
4 5	2.50	0.772	23.0		# of Observations: 5
4 5 td = 1/m[Sqrt(2.50 (H2O(Pa/Pstd)(Ts	0.772	23.0	22.73	# of Observations: 5 m = sampler slope
4 5 d = 1/m[Sqrt(2.50 (H2O(Pa/Pstd)(Ts	0.772	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept</pre>
4 5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps	2.50 H2O(Pa/Pstd)(Ts std)(Tstd/Ta)]	0.772	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response</pre>
4 5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps d = standard f	2.50 H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate	0.772	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature</pre>
4 5 td = 1/m[Sqrt(= I[Sqrt(Pa/Ps td = standard f = corrected ch	2.50 H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate nart response	0.772	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response</pre>
4 5 td = 1/m[Sqrt(= I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse	0.772	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature</pre>
4 5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse lstd slope	0.772	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure</pre>
4 5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse lstd slope	0.772 std/Ta))-b]	23.0	22.73	# of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40
4 5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual tempe = actual presse	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse ostd slope std slope std intercept erature during calibra	0.772 std/Ta))-b] libration (deg K)	23.0	22.73	# of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min
4 5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual tempe = actual press	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse ostd slope std slope std intercept erature during calibra	0.772 std/Ta))-b] libration (deg K)	23.0	22.73	# of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.278446367
4 5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual tempo = actual pressi d = 298 deg K d = 760 mm H	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse 0std slope std slope std intercept erature during calibra K Ig	0.772 atd/Ta))-b] libration (deg K) ation (mm Hg)	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.278446367 Average Flow Calculation in CFM 45.14194122 Sample Time (Hrs): 1.0</pre>
4 5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual temp = actual press d = 298 deg K d = 760 mm H	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse std slope std slope std intercept erature during calibra G Ig alculation of sam	0.772 atd/Ta))-b] libration (deg K) ation (mm Hg) pler flow:	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.278446367 Average Flow Calculation in CFM 45.14194122 Sample Time (Hrs): 1.0 Total Flow in m3/min</pre>
4 5 td = 1/m[Sqrt(= I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual temp = actual press td = 298 deg K d = 760 mm H r subsequent ca	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse 0std slope std slope std intercept erature during calibra K Ig	0.772 atd/Ta))-b] libration (deg K) ation (mm Hg) pler flow:	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min</pre>
4 5 td = 1/m[Sqrt(= I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual temp = actual press td = 298 deg K cd = 760 mm H r subsequent ca	2.50 (H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse std slope std slope std intercept erature during calibra G Ig alculation of sam	0.772 atd/Ta))-b] libration (deg K) ation (mm Hg) pler flow:	23.0	22.73	<pre># of Observations: 5 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.278446367 Average Flow Calculation in CFM 45.14194122 Sample Time (Hrs): 1.0 Total Flow in m3/min</pre>

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 ● 877.263.7610 ● sales@tisch-env.com ● www.tisch-env.com

			Site Ir	nformation		
Location: 2 Sampler: 5	AM5A TE-5170			Zones 2A a Kowloon Cu 4344		Date: 30-Jun-21 Tech: CS Tang
			Site (Conditions		
	Barometric Pre	essure (in Hg): 2			Corrected Pressu	re (mm Hg): 755
	Tempe	rature (deg F): 8	6		Temperat	ure (deg K): 303
	Average	Press. (in Hg): 2	9.71		Corrected Average	ge (mm Hg): 755
	Average	Femp. (deg F): 8	6		Average Ter	mp. (deg K): ³⁰³
			Calibra	tion Orifice		
	Make: 5				Qstd Slope: 2.	
		FE-5025A			Qstd Intercept: -0	
	Serial#:	3543			Date Certified: 2-	11-2020
			Calibratic	n Informatic	n	
Plate or	H2O	Qstd	I	IC		
Test #	(in)	(m3/min)	(chart)	(corrected)		Linear Regression
1	12.20	1.699	53.0	52.37		Slope: 32.8579
2	10.30	1.561	48.0	47.43		Intercept: -3.3912 Corr. Coeff: 0.9961
3	7.50	1.333	41.0	40.51		Con. Coell: 0.9961
4	4.60	1.045	33.0	32.61		
5	2.90	0.831	23.0	22.73	# of C	bservations: 5
	2.90	0.831	23.0		# of C	Observations: 5
5				alculations		Observations: 5
5 td = 1/m[Sqrt(2	H2O(Pa/Pstd)(Ts				m = sampler slope	
5 td = 1/m[Sqrt(2	H2O(Pa/Pstd)(Ts				m = sampler slope b = sampler interce	
5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)]				m = sampler slope b = sampler interce I = chart response	pt
5 d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate				m = sampler slope b = sampler interce	pt temperature
5 td = 1/m[Sqrt() = I[Sqrt(Pa/Ps td = standard f = corrected ch	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate nart response				 m = sampler slope b = sampler interce I = chart response Tav = daily average 	pt temperature
5 td = 1/m[Sqrt() = I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate nart response esponse				 m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average 	pt temperature
5 id = 1/m[Sqrt() = I[Sqrt(Pa/Ps id = standard f = corrected ch actual chart re = calibrator Q	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate nart response esponse lstd slope				m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average Avera	pt temperature pressure
5 td = 1/m[Sqrt() = I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate nart response esponse lstd slope	td/Ta))-b]			m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average Avera	pt temperature pressure age I (chart): 40
5 td = 1/m[Sqrt() = I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual tempo = actual presso	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse std slope std slope std intercept erature during calibra	td/Ta))-b] ibration (deg K)			m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average Average F	pt temperature pressure age I (chart): 40 Tow Calculation m3/min
5 d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual tempo = actual presso	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse std slope std slope std intercept erature during calibra	td/Ta))-b] ibration (deg K)			m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average Average H Average H	pt temperature pressure age I (chart): 40 Plow Calculation m3/min 1.293989693
5 d = 1/m[Sqrt(= I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual tempo = actual presso d = 298 deg K d = 760 mm H	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse std slope std slope std intercept erature during calibra t g	td/Ta))-b] ibration (deg K) ition (mm Hg)			m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average Average F Average F	pt temperature pressure age I (chart): 40 Flow Calculation m3/min 1.293989693 Flow Calculation in CFM
5 id = 1/m[Sqrt() = I[Sqrt(Pa/Ps id = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs = actual tempe = actual presses d = 298 deg K d = 760 mm H	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate aart response esponse estd slope std slope std intercept erature during calibra G Ig alculation of sam	td/Ta))-b] ibration (deg K) ition (mm Hg) pler flow:			m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average Average F Average F Average F Sample	ept temperature pressure age I (chart): 40 Flow Calculation m3/min 1.293989693 Flow Calculation in CFM 45.69077607 Time (Hrs): 1.0 al Flow in m3/min
5 td = 1/m[Sqrt() = I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual tempo = actual press td = 298 deg K d = 760 mm H r subsequent ca	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate hart response esponse std slope std slope std intercept erature during calibra t g	td/Ta))-b] ibration (deg K) ition (mm Hg) pler flow:			m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average Average Average F Average F Sample Tot	temperature pressure age I (chart): 40 Flow Calculation m3/min 1.293989693 Flow Calculation in CFM 45.69077607 Time (Hrs): 1.0 al Flow in m3/min 77.6393816
5 td = 1/m[Sqrt() = I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Q = calibrator Q = actual tempo = actual press td = 298 deg K d = 760 mm H r subsequent ca	H2O(Pa/Pstd)(Ts std)(Tstd/Ta)] flow rate aart response esponse estd slope std slope std intercept erature during calibra G Ig alculation of sam	td/Ta))-b] ibration (deg K) ition (mm Hg) pler flow:			m = sampler slope b = sampler interce I = chart response Tav = daily average Pav = daily average Average Average F Average F Sample Tot	ept temperature pressure age I (chart): 40 Flow Calculation m3/min 1.293989693 Flow Calculation in CFM 45.69077607 Time (Hrs): 1.0 al Flow in m3/min

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 ● 877.263.7610 ● sales@tisch-env.com ● www.tisch-env.com

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALITY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date October 19, 2020

Expiration Date December 1, 2021

President

Visit www.iasonline.org for current accreditation information.

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

AQUALILTY TESTCONSULT LIMITED

www.aqtlgroup.com

Contact Name Lee Mei Yee Julia

Contact Phone + 852-6309-2280

Accredited to ISO/IEC 17025:2017

Effective Date October 19, 2020

MEASURED QUANTITY or DEVICE	RANGE	UNCERTAINTY ^{1,2} (±)	· /					
TYPE CALIBRATED		(-)	EQUIPMENT USED					
Dimensional								
Caliper -Vernier, Dial & Electronic ³	0 mm to 300 mm	30 µm	Checker by comparison method (BS 887:1982)					
Steel Ruler ³	1 mm to 1000 mm	280 µm	Reference Steel Rule by comparison method (BS 4372:1968)					
Dial Indicator / Gauge (Plunger) ³	0 mm to 50 mm	8 µm	Reference micrometer head by comparison method (BS 907:2008)					
Feeler Gauge ³	0.01 mm to 1 mm	8 µm	Reference Dial Gauge by comparison method (BS BS957-2008)					
Measuring tape ³	0 m to 1.5 m	1200 µm	Reference steel ruler by comparison method (BS 4035:1966)					
Engineering Square ³	Length 0 mm to 160 mm	20 µm	Reference engineering square and Feeler Gauge (BS 939:2007)					
Slump cone ³	Diameter = 0 mm to 200 mm Thickness = 1.5 mm Height = 0 mm to 300 mm	560 μm 100 μm 560 μm	Reference Caliper & Reference Steel ruler by direct measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A4; CS1: 2010 Vol. 1, A5)					
Tamping rod ³	Diameter = 0 mm to 16 mm Length = 600 mm	600 μm 950 μm	Reference steel ruler & Reference Caliper by direct measurement (Verification in accordance with in-house method for the dimensional					

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*

* If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply.

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
			requirements as specified CS1:1990 Vol.1 A5;CS1: 2010 Vol. 1, A6)
Cube mould ³	(Max dimensions 150 mm per side) Dimension Flatness Perpendicularity Parallelism	50 μm 10 μm 10 μm 50 μm	Reference Caliper, straight edge & feeler gauge by direct measurement. (Verification in accordance with in-house method for the dimensional requirements as specified in BS1881: Part 108:1983; CS1:1990 Vol1, A21; CS1:2010 Vol 1, A25; BS EN 12390-2:2000)
Compacting Bar ³	Ramming Face = 25 mm Length = 380 mm Weight = 1.8 kg	100 μm 560 μm 1 g	Reference Caliper & Steel ruler by direct measurement. (Verification in accordance with in-house method for the dimensional & mass requirements as specified in BS1881: Part 105:1984 Cl 3.3; CS1:1990 Vol 2, E3 CS1:2010 Vol 1, A15.3; BS EN 12350 -5:2000 Cl 4.3.)
Covermeter	20 mm to 103 mm	2.9 mm	Reference concrete block (Verification in accordance with in-house method for the dimensional requirements as specified in BS 1881:Part 204:1988 CI.6.4- Method C)
Flow table ³	15 kg to 17 kg 1 mm to 71 mm	12 g 600 μm	Weighing Balance, Reference caliper & Reference steel ruler by direct measurement
Test Sieve ³	4 mm to 50 mm	50 µm	Reference Caliper bydirect measurement
	Mechanic	cal	
Force Measuring Machine ³ (Compression Mode)	1 kN to 3000 kN	0.4 %	Ref. Load cell by direct measurement BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390-4:2000 Annex B; BS EN ISO 7500-1:2004
Laser Dust Meter ³	Dust particles 0.001 mg/m ³ to 10.00 mg/m ³	0.9 mg/m ³	By comparison method by using reference laser dust meter

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method. BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN 12504-2:2012
Mass (F2 class and coarser)	1 g to 200 g 200 g to 5 kg 5 kg to 10 kg 10 kg to 50 kg	1.3 mg 0.5 g 1 g 7 g	Standard Weight E2/ F1 Class & Weighing Balances by comparison method (OIMLR111)
Weighing Scale & Balance ³	1 g to 200 g 200 g to 5 kg 5 kg to 50 kg	1 mg 1 g 15 g	Standard weight of E2/F1 Grade by direct measurement
Volumetric Glassware	1 mL to 100 mL 100 mL to 1000 mL	0.004 mL 0.09 mL	Standard weight E2 Class, Weighing Balances & Distilled water by gravimetric method
	Therma	1	
Digital/Liquid in Glass Thermometers & <i>RTD/</i> Thermocouples with or without Indicators	15 °C to 55°C 55°C to 95°C	0.4 °C 0.9 °C	Water Baths, Reference Sensor and Indictor by Comparison Method (OIML R133)
Curing Tank ³	(Calibration at 20 °C & 27 °C @ 30 min) 20 °C Temperature distribution 27 °C Temperature distribution Efficiency of circulation	0.4 °C 0.8 °C 5 s	Reference Temperature datalogger by Mapping Method & Reference Stop Watch (Verification in accordance with in-house method for the Temp & Time requirements as specified in BS1881-111:1983 CS1:1990 Vol 1 App A24 CS1:2010 Vol 1 App A28 BE EN 12390-2:2000
Oven ³	40.0 °C to 180.0 °C	1.5 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)
Furnace ³	200 °C to 1300 °C	6 °C	Reference Thermocouple with Indicator By single point Calibration (AS 2853:1986)
Water bath ³	15 °C to 95 °C	0.2 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)
	Time and Free		
Stop Watch/ Timer ³	10 s to 3600 s	0.2 s	Reference stop watch

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED		(±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Grout Flow Cone ³	7 s to 9 s		Reference stop watch by direct method (ASTM C939-10 Cl.9)

¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration.

²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated.

³Also available as site calibration. Note that actual measurement uncertainties achievable at a customer's site can normally be expected to be larger than the uncertainties listed on this Scope of Accreditation.

FAQ / Information

Mutual Recognition Arrangements (MRA) / Multilateral Recognition Arrangements (MLA)

Mutual Recognition Arrangement (MRA) Partners for HOKLAS 🔨

Every effort is made to promote acceptance of test data from accredited laboratories, both internationally and locally. HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the <u>International Laboratory Accreditation</u> <u>Cooperation Mutual Recognition Arrangement (ILAC MRA)</u> and the <u>Asia Pacific Accreditation Cooperation</u> <u>Mutual Recognition Arrangement (APAC MRA)</u> for testing, calibration, medical testing, Proficiency Testing Providers (PTP) and Reference Material Producers (RMP). Click <u>here</u> to view the up-to-date signatories of ILAC and <u>here</u> to access the up-to-date signatories of APAC.

Visitors checking the names, logos and accreditation symbols shown on an endorsed certificate or report should note that some of our MRA partners may have their names, logos or accreditation symbols changed recently and test reports or certificates endorsed by displaying their old accreditation symbols may still be valid during the change-over period. For details, please visit their websites or contact them directly.

» Mutual Recognition Arrangement (MRA) Partners for HOKLAS

HKAS MRA partners will recognise HOKLAS endorsed test certificates as having the same technical validity as certificates endorsed by their respective schemes.

Multilateral Recognition Arrangements (MLA) for HKCAS 🔨

HKAS has been a signatory of <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement</u> (<u>APAC MRA</u>) for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

HKAS has also been a signatory of the <u>International Accreditation Forum Multilateral Recognition</u> <u>Arrangement (IAF MLA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

Click <u>here</u> to view the up-to-date signatories of IAF and <u>here</u> to access the up-to-date signatories of APAC.

» Mutual / Multilateral Recognition Arrangements (MRA / MLA) Partners for HKCAS

Mutual Recognition Arrangement (MRA) Partners for HKIAS <

HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA) for inspection. Click here to view the up-to-date signatories of ILAC and here to access the up-to-date signatories of APAC.

HKAS MRA partners will recognise HKIAS endorsed inspection reports or certificates having the same technical validity as reports or certificates endorsed by their respective schemes.

» Mutual Recognition Arrangement (MRA) Partners for HKIAS

🕤 back

Economy	Logo	Name of Partner	URL	Test Area
United Kingdom of Great Britain and Northern Ireland	UKAS SANTO SANTO SERVES	United Kingdom Accreditation Service (UKAS)	http://www.ukas.com	Calibration, Medical Testing, Proficiency Testing Provider, Reference Material Producer, Non-medical Testing
United States of America		AIHA Laboratory Accreditation Programs, LLC (AIHA-LAP, LLC)	http://www.aihaaccredite dlabs.org/	Non-medical Testing
United States of America	2	American Association for Laboratory Accreditation (A2LA)	http://www.a2la.org/	Calibration, Medical Testing, Proficiency Testing Provider, Reference Material Producer, Non-medical Testing
United States of America		ANSI-ASQ National Accreditation Board (ANAB)	https://www.ansi <u>.org/accr</u> editation/Default	Calibration, Medical Testing, Proficiency Testing Provider, Reference Material Producer, Non-medical Testing
United States of America	MILLION AND AND AND AND AND AND AND AND AND AN	International Accreditation Service Inc. (IAS)	http://www.iasonline.org/	Calibration, Non-medical Testing
United States of America	qalvn	National Voluntary Laboratory Accreditation Program (NVLAP)	http://www.nist.gov/nvlap	Calibration, Non-medical Testing

Hong Kong Laboratory Accreditation Scheme (HOKLAS) - Mutual Recognition Arrangement (MRA) Partners

AQuality 東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 201108MCA-126F
Date of Report	: 12-Nov-20
Page Number	: 1 of 2
Customer *	: Apex Testing & Certification Ltd.
Customer Address*	: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK
Customers Ref. *	: A005
Item Under Calibration (IUC)	*
Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
	: LD-3B
Serial No.	: 235811
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
Date Item Received	: 8-Nov-20
Date Calibrated	: 8-Nov-20
Calibration Location	: AQuality Calibration Lab.
Date of Next Calibration	: 7-Nov-21
Calibrated By	: Jessica Liu
Test Environment	

I est Environment					
Ambient Temperature	:	27.5	°C to	23.9	°C
Relative Humidity	:	51	% to	83	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	5.1%	0.020	2.0
5.164	5.647	-0.484	8.5%	0.463	2.0
10.100	11.141	-1.041	9.3%	0.904	2.0

<u>Remarks</u>

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number	: 201108MCA-126F
Date of Report	: 12-Nov-20
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

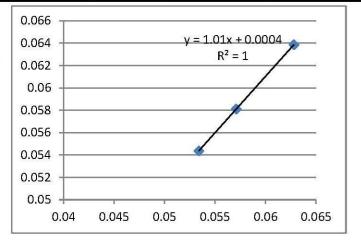
TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

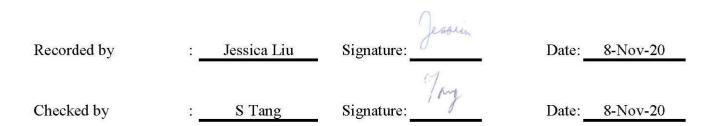
No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	201108MCA-126F
Unit DCA 10/E TML Towar 2 Hoi Shing	Date of Issue	12-Nov-20
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Testing	8-Nov-20
Road, Isuen wan, N.I., HK	Page	1 of 1

Item for Calibration


Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 235811


Standard Equipment

Volume Sampler / Calibration Orifice
n Environmental, Inc.
170 / TE-5025A
/ 3543
v-20 / 2-Nov-20

	Time	Mean Temp	Mean	Concentration	Concentration
Date				Standard	Calibrated
Date	1 mie		Pressure	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Nov-20	20:15	25.7	1017.2	0.0628	0.0639
8-Nov-20	21:20	25.7	1017.2	0.0534	0.0544
8-Nov-20	22:25	25.7	1017.2	0.0571	0.0581

By Linear Regression of	fΥ	or X
Slope (K-factor)	:	1.0100
Correlation Coefficient	•	1.0000
Validity of Calibration	:	7-Nov-21

AQuality 東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 201108MCA-123F
Date of Report	: 12-Nov-20
Page Number	: 1 of 2
Customer *	: Apex Testing & Certification Ltd.
Customer Address*	: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK
Customers Ref. *	: A005
Item Under Calibration (IUC)	*
Equipment No.	
	: Sibata Scientific Technology Ltd
Model No.	
Serial No.	
Scale Division	
Range	: 0.001 to 1 mg/m3
Condition of Item	
Date Item Received	: 8-Nov-20
Date Calibrated	: 8-Nov-20
Calibration Location	: AQuality Calibration Lab.
Date of Next Calibration	: 7-Nov-21
Calibrated By	: Jessica Liu

Test Environment					
Ambient Temperature		27.5	°C to	23.9	°C
Relative Humidity	:	51	% to	83	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.168	-0.010	5.7%	0.026	2.0
5.164	5.562	-0.398	7.1%	0.462	2.0
10.100	10.936	-0.837	7.6%	0.905	2.0

<u>Remarks</u>

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

20

Approved by:

LEE Mei Yee, Julia Managing Director

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number	: 201108MCA-123F
Date of Report	: 12-Nov-20
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

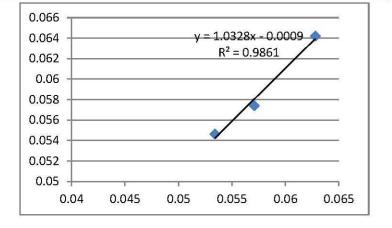
No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	201108MCA-123F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Issue	12-Nov-20
	Date of Testing	8-Nov-20
	Page	1 of 1

Item for Calibration

Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 336338


Standard Equipment

: High Volume Sampler / Calibration Orifice
: Tisch Environmental, Inc.
: TE-5170 / TE-5025A
4344 / 3543
: 8-Nov-20 / 2-Nov-20

	Time		Mean Pressure	Concentration	Concentration
Date		Mean Temp		Standard	Calibrated
				Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Nov-20	20:15	25.7	1017.2	0.0628	0.0642
8-Nov-20	21:20	25.7	1017.2	0.0534	0.0546
8-Nov-20	22:25	25.7	1017.2	0.0571	0.0574

Y or X
1.0328
0.9861
7-Nov-21

:

Jessin Recorded by Signature: Jessica Liu Date: 8-Nov-20 •

Checked by

S Tang

Signature:

Date: 8-Nov-20

東恒測試顧問有限公司 **AQuality AQUALITY TESTCONSULT LIMITED**

香港新界粉嶺坪鲞路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 201108MCA-125F
Date of Report	: 12-Nov-20
Page Number	: 1 of 2
Customer *	: Apex Testing & Certification Ltd.
Customer Address*	: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK
Customers Ref. *	: A005

Item Under Calibration (IUC)*

Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 567188
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
n Received	: 8-Nov-20

Date Item Received	: 8- N	ov-20			
Date Calibrated	: 8- N	ov-20			
Calibration Location	: AQ	uality Cali	bration Lab.		
Date of Next Calibration	: 7-N	ov-21			
Calibrated By	: Jess	ica Liu			
Test Environment					
Ambient Temperature	:	27.5	°C to	23.9	°C
Relative Humidity	:	51	% to	83	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	4.9%	0.023	2.0
5.164	5.693	-0.530	9.3%	0.463	2.0
10.100	11.045	-0.945	8.6%	0.905	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

20

Approved by:

LEE Mei Yee, Julia Managing Director

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輩路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number	: 201108MCA-125F
Date of Report	: 12-Nov-20
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

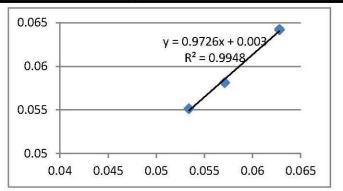
東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

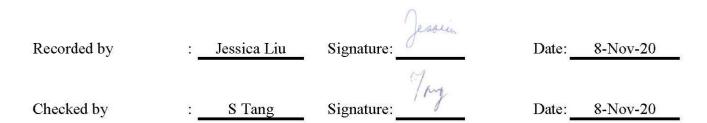
No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	201108MCA-125F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Issue	12-Nov-20
	Date of Testing	8-Nov-20
	Page	1 of 1

Item for Calibration


Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 567188


<u>Standard Equipment</u>

Description :	High Volume Sampler / Calibration Orifice
Manufacturer :	Tisch Environmental, Inc.
Model No.	TE-5170 / TE-5025A
Serial No.	4344 / 3543
Last Calibration :	8-Nov-20 / 2-Nov-20

			Mean	Concentration	Concentration
Date Time	Time	Mean Temp	Pressure	Standard	Calibrated
	1 mile		riessure	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Nov-20	20:15	25.7	1017.2	0.0628	0.0642
8-Nov-20	21:20	25.7	1017.2	0.0534	0.0552
8-Nov-20	22:25	25.7	1017.2	0.0571	0.0581

By Linear Regression of Y or X				
Slope (K-factor)	:_	0.9726		
Correlation Coefficient	:	0.9948		
Validity of Calibration	:	7-Nov-21		

综合試驗 有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界葵涌永基路 2 2 - 2 4 號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hoi

Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	20CA1005 01-05		Page	1	of	2
Item tested						
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter Hangzhou Aihua Ir AWA5661 301135 -	· (Class 1) , nstruments Co., Ltd , ,	Microphone - AWA14425 15338 -			
Item submitted by						
Customer Name: Address of Customer: Request No.: Date of receipt:	Apex Testing & Ce Unit D6A, 10/F, TM - 05-Oct-2020	rtification Ltd. 1L Tower, 3 Hoi Shing F	Road, Tsuen Wan, N.T.			
Date of test:	09-Oct-2020					
Reference equipment	used in the calib	ration				
Description: Multi function sound calibrator Signal generator	Model: B&K 4226 DS 360	Serial No. 2288444 61227	Expiry Date: 23-Aug-2021 24-Dec-2020		Traceal CIGISME CEPREI	
Ambient conditions						
Temperature: Relative humidity: Air pressure:	22 ± 1 °C 55 ± 10 % 1005 ± 5 hPa					
Test specifications						

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Date: 10-Oct-2020 **Company Chop:** Feng Junqi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

 Certificate No.:
 20CA1005 01-05
 Page
 2
 of
 2

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	А	Pass	0.3	
Gen-generated holse	C	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	0.3	2.2
Emeanly range for Leq	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
requeries weightings	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
Time weightings	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
Time weighting I	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Weighting A at 125 Hz	Pass	0.3	
Weighting A at 8000 Hz	Pass	0.5	
	Weighting A at 125 Hz	Weighting A at 125 Hz Pass	Subtest Status Uncertanity (dB) Weighting A at 125 Hz Pass 0.3

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End Calibrated by: Checked by: Fung Chi Yip Feng ingi Date: 09-Oct-2020 Date: 10-Oct 2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for So	und Level Me	eter				Page 1 of 5
Sound level me		AWA5661	Serial No.	301135	Date	09-Oct-2020
Microphone	type:	AWA14425	Serial No.	15338	Report	: 20CA1005 01-05

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting	12.3	dB
Noise level in C weighting	13.6	dB
Noise level in Lin	18.2	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	al level	Tolerance	Devia	Deviation		
	non-integrated	integrated		non-integrated	integrated		
dB	dB	dB	+/- dB	dB	dB		
94.0	94.0	94.0	0.7	0.0	0.0		
99.0	98.9	98.9	0.7	-0.1	-0.1		
104.0	103.9	103.9	0.7	-0.1	-0.1		
109.0	108.9	108.9	0.7	-0.1	-0.1		
114.0	113.9	113.9	0.7	-0.1	-0.1		
115.0	114.9	114.9	0.7	-0.1	-0.1		
116.0	115.9	115.9	0.7	-0.1	-0.1		
117.0	116.9	116.9	0.7	-0.1	-0.1		
118.0	117.9	117.9	0.7	-0.1	-0.1		
119.0	118.9	118.9	0.7	-0.1	-0.1		
120.0	119.9	119.9	0.7	-0.1	-0.1		
89.0	89.0	89.0	0.7	0.0	0.0		
84.0	84.0	84.0	0.7	0.0	0.0		
79.0	79.0	79.0	0.7	0.0	0.0		
74.0	74.0	74.0	0.7	0.0	0.0		
69.0	69.0	69.0	0.7	0.0	0.0		
64.0	64.0	64.0	0.7	0.0	0.0		
59.0	59.0	59.0	0.7	0.0	0.0		
54.0	54.1	54.1	0.7	0.1	0.1		
49.0	49.0	49.0	0.7	0.0	0.0		
44.0	44.0	44.0	0.7	0.0	0.0		
39.0	39.0	39.0	0.7	0.0	0.0		
34.0	34.0	34.0	0.7	0.0	0.0		
29.0	29.0	29.0	0.7	0.0	0.0		
28.0	28.0	28.0	0.7	0.0	0.0		

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sou	nd Level N	leter					Р	age 2 of 5
Sound level me Microphone	ter type: type:	AWA5661 AWA14425		rial No. rial No.	301135 15338	Date		
						кер	ort: 20CA10	05 01-05
27.0		27.1	27.1	0.7		0.1	0.1	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
27-120	94.0	94.0	0.7	0.0
45-140	94.0	93.9	0.7	-0.1

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
27-120	29.0	29.0	0.7	0.0
27-120	118.0	117.9	0.7	-0.1
45-140	47.0	47.1	0.7	0.1
45-140	138.0	137.8	0.7	-0.2

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.4	1.5	1.5	-0.2
63.1	94.0	67.8	67.7	1.5	1.5	-0.1
125.9	94.0	77.9	77.8	1.0	1.0	-0.1
251.2	94.0	85.4	85.3	1.0	1.0	-0.1
501.2	94.0	90.8	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	95.3	1.0	1.0	0.1
3981.0	94.0	95.0	95.3	1.0	1.0	0.3
7943.0	94.0	92.9	93.6	1.5	3.0	0.7
12590.0	94.0	89.7	89.4	3.0	6.0	-0.3

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	90.9	1.5	1.5	-0.1
63.1	94.0	93.2	93.1	1.5	1.5	-0.1
125.9	94.0	93.8	93.8	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com **SMECLab**

Page 3 of 5

Test Data for Sound Level Meter

er type: A	WA5661	Serial No.	301	135	Date 09	-Oct-2020
type: A	WA14425	Serial No.	153	38		
					Report: 20	CA1005 01-05
94.0	93.8	93.9	1.0	1.0	0.1	
94.0	93.2	93.5	1.0	1.0	0.3	
94.0	91.0	91.7	1.5	3.0	0.7	
94.0	87.8	87.5	3.0	6.0	-0.3	
ting Lin:						
Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation	
dB	dB	dB	+	-	dB	
94.0	94.0	94.0	0.0	0.0	0.0	
94.0	94.0	93.9	1.5	1.5	-0.1	
94.0	94.0	93.9	1.5	1.5	-0.1	
94.0	94.0	94.0	1.0	1.0	0.0	
94.0	94.0	94.0	1.0	1.0	0.0	
94.0	94.0	94.0	1.0	1.0	0.0	
94.0	94.0	94.0	1.0	1.0	0.0	
94.0	94.0	94.0	1.0	1.0	0.0	
94.0	94.0	94.0	1.5	3.0	0.0	
94.0	94.0	93.9	3.0	6.0	-0.1	
	type: A 94.0 94.0 94.0 94.0 10 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.	type: AWA14425 94.0 93.8 94.0 93.2 94.0 91.0 94.0 87.8 ting Lin: Expected level dB dB 94.0 94.0	type: AWA14425 Serial No. 94.0 93.8 93.9 94.0 93.2 93.5 94.0 91.0 91.7 94.0 87.8 87.5 ting Lin: Expected level Actual level dB dB dB 94.0 94.0 93.9 94.0 87.8 87.5 ting Lin: Expected level Actual level dB dB dB 94.0 94.0 93.9 94.0 94.0 93.9 94.0 94.0 93.9 94.0 94.0 93.9 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 9	type: AWA14425 Serial No. 153 94.0 93.8 93.9 1.0 94.0 93.2 93.5 1.0 94.0 91.0 91.7 1.5 94.0 87.8 87.5 3.0 ting Lin: Expected level Actual level Tolerar dB dB dB + 94.0 94.0 93.9 1.5 94.0 94.0 94.0 0.0 ting Lin: Expected level Actual level Tolerar dB dB dB + 94.0 94.0 93.9 1.5 94.0 94.0 94.0 0.0 94.0 94.0 94.0 1.0 94.0 94.0 94.0 1.0 94.0 94.0 94.0 1.0 94.0 94.0 94.0 1.0 94.0 94.0 94.0 1.0 94.0 94.0 94.0	type:AWA14425Serial No.1533894.093.893.91.01.094.093.293.51.01.094.091.091.71.53.094.087.887.53.06.094.087.887.53.06.01111Expected levelActual levelToleract (dB)dBdBdB+-94.094.094.00.00.094.094.093.91.51.594.094.093.91.51.594.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.094.094.01.01.094.0 <td>type: AWA14425 Serial No. 15338 Report: 200 94.0 93.8 93.9 1.0 1.0 0.1 94.0 93.2 93.5 1.0 1.0 0.3 94.0 91.0 91.7 1.5 3.0 0.7 94.0 87.8 87.5 3.0 6.0 -0.3 ting Lin: Toleration Ref. level Expected level Actual level Toleration 0 94.0 94.0 94.0 94.0 0.0 0.0 94.0 94.0 94.0 0.0 0.0 0.0 100 94.0 94.0 94.0 0.0 0.0 94.0 94.0 94.0 94.0 0.0 0.0 94.0 94.0 94.0 94.0 0.0 0.0 94.0 94.0 94.0 1.0 1.0 0.0 94.0 94.0 94.0 1.0 1.0 0.0 </td>	type: AWA14425 Serial No. 15338 Report: 200 94.0 93.8 93.9 1.0 1.0 0.1 94.0 93.2 93.5 1.0 1.0 0.3 94.0 91.0 91.7 1.5 3.0 0.7 94.0 87.8 87.5 3.0 6.0 -0.3 ting Lin: Toleration Ref. level Expected level Actual level Toleration 0 94.0 94.0 94.0 94.0 0.0 0.0 94.0 94.0 94.0 0.0 0.0 0.0 100 94.0 94.0 94.0 0.0 0.0 94.0 94.0 94.0 94.0 0.0 0.0 94.0 94.0 94.0 94.0 0.0 0.0 94.0 94.0 94.0 1.0 1.0 0.0 94.0 94.0 94.0 1.0 1.0 0.0

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous (Weight A Maximum hold)

intent alle ergital le contaitadae.	(Weight A, Maximum field)						
Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation		
dB	dB	dB	+	-	dB		
116.0	115.0	114.9	1.0	1.0	-0.1		

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A. Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.5	2.0	0.5

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

The copyright of this report is owned by the Soils & Materials Engineering Co., Ltd. It shall not be reproduced except in full without approval of the laboratory.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sou	nd Level Me	eter				Page 4 of 5
Sound level me Microphone	ter type: type:	AWA5661 AWA14425	Serial No. Serial No.	301135 15338	Date	09-Oct-2020
	21				Report	t: 20CA1005 01-05
Negative polarit	ties:					

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.5	2.0	0.5

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

The Trivio detector	accuracy is tested	on the reference ru	inge for a creat facto	1010.	
Test frequenc	y:	2000 Hz			
Amplitude:		2 dB below the up	per limit of the prima	ary indicator range.	
Burst repetitio	n frequency:	40 Hz			
Tone burst sig	inal:	11 cycles of a sine	wave of frequency	2000 Hz. (Set	to INT)
	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	117.0+6.6	117.0	116.6	0.5	-0.4
Slow	117.0+6.6	117.0	116.6	0.5	-0.4

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency: Amplitude: 2000 Hz The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	t indication	Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated bu	irst indication	Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.1	1.0	-0.2

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst: 4000 Hz

Duration of tone burst:	1 ms					
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	90.0	90.0	89.9	1.0	-0.1	60s integ.
10000	80.0	80.0	79.9	1.0	-0.1	6min. integ

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

4000 Hz

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

- Test frequency:
- Integration time: 10 sec

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路 2 2 - 2 4 號好 爸 爸 創 科 大 廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Me	eter				Page 5 of 5
Sound level meter type:	AWA5661	Serial No.	301135	Date	09-Oct-2020
Microphone type:	AWA14425	Serial No.	15338	Report	:: 20CA1005 01-05

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	90.0	60.0	60.0	1.7	0.0

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	90.0	70.0	70.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

		9			
Test frequen	icy:	2000 Hz			
Amplitude:		2 dB below the up	pper limit of the p	primary indicator r	ange.
Burst repetiti	ion frequency:	40 Hz			
Tone burst s	ignal:	11 cycles of a sin	e wave of freque	ency 2000 Hz.	
Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
115.7	114.7	111.7	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

1 dB

121.0

 For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following:

 The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

 Test frequency:
 4000 Hz

 Integration time:
 10 sec

 Single burst duration:
 1 msec

 Rms level
 Level reduced by
 Expected level
 Actual level
 Tolerance
 Deviation

dB

81.0

dB

2.2

dB

0.0

dB

81.0

ACOUSTIC TEST

at overload (dB)

122.0

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.2	1.0	1.0	0.3
8000	92.9	93.6	1.5	3.0	0.7

-----END------

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

综合試驗 有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界葵涌永基路22-24號好爸爸創科大廈

香港新界葵涌永基路 2 2 - 2 4 號好爸爸 創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	21CA0616 01-02		Page:	1	of	2
Item tested						
Description:	Acoustical Calibra	tor (Class 1)				
Manufacturer:	Pulsar					
Type/Model No.:	100B					
Serial/Equipment No.:	039507					
Adaptors used:	Yes					
Item submitted by						
Customer:	Apex Testing & Ce	ertification Ltd.				
Address of Customer:		AL Tower, 3 Hoi Shing F	Road, Tsuen Wan, N.T.			
Request No .:	-					
Date of receipt:	16-Jun-2021					
Date of test:	18-Jun-2021					
		ration				
Reference equipment		ration Serial No.	Expiry Date:		Traceab	le to:
Reference equipment	used in the calib		04-May-2022		SCL	le to:
Reference equipment Description: Lab standard microphone	used in the calib Model:	Serial No.	04-May-2022 31-May-2022		SCL CEPREI	le to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier	used in the calib Model: B&K 4180 B&K 2673 B&K 2610	Serial No. 2341427 2239857 2346941	04-May-2022 31-May-2022 01-Jun-2022		SCL CEPREI CEPREI	le to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360	Serial No. 2341427 2239857 2346941 33873	04-May-2022 31-May-2022 01-Jun-2022 27-May-2022		SCL CEPREI CEPREI CEPREI	le to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	Serial No. 2341427 2239857 2346941 33873 US36087050	04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022		SCL CEPREI CEPREI CEPREI CEPREI	le to:
Date of test: Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2239857 2346941 33873 US36087050 GB41300350	04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022 28-May-2022		SCL CEPREI CEPREI CEPREI CEPREI CEPREI	le to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	Serial No. 2341427 2239857 2346941 33873 US36087050	04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022		SCL CEPREI CEPREI CEPREI CEPREI	le to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2239857 2346941 33873 US36087050 GB41300350	04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022 28-May-2022		SCL CEPREI CEPREI CEPREI CEPREI CEPREI	le to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2239857 2346941 33873 US36087050 GB41300350	04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022 28-May-2022		SCL CEPREI CEPREI CEPREI CEPREI CEPREI	le to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter Ambient conditions	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2341427 2239857 2346941 33873 US36087050 GB41300350	04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022 28-May-2022		SCL CEPREI CEPREI CEPREI CEPREI CEPREI	le to:

Test specifications

 The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.

3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Feng Ju nqi

19-Jun-2021 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument. The results apply to the item as received.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0616 01-02

Page: 2 of 2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	94.15	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.019 dB

Estimated expanded uncertainty

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 999.86 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

4, Total Noise and Distortion

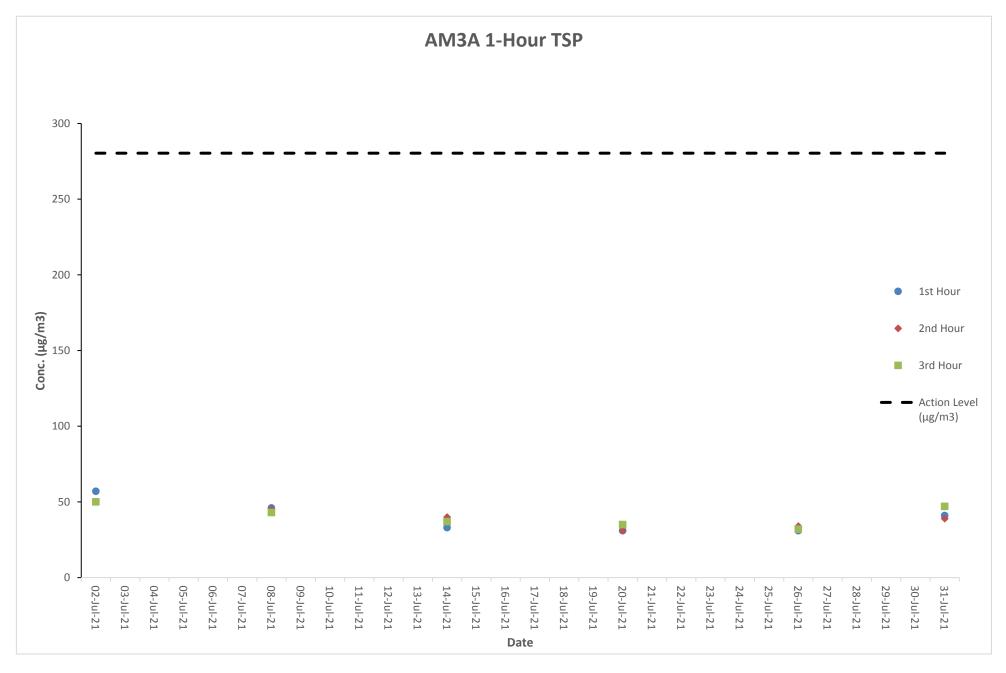
For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.9 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

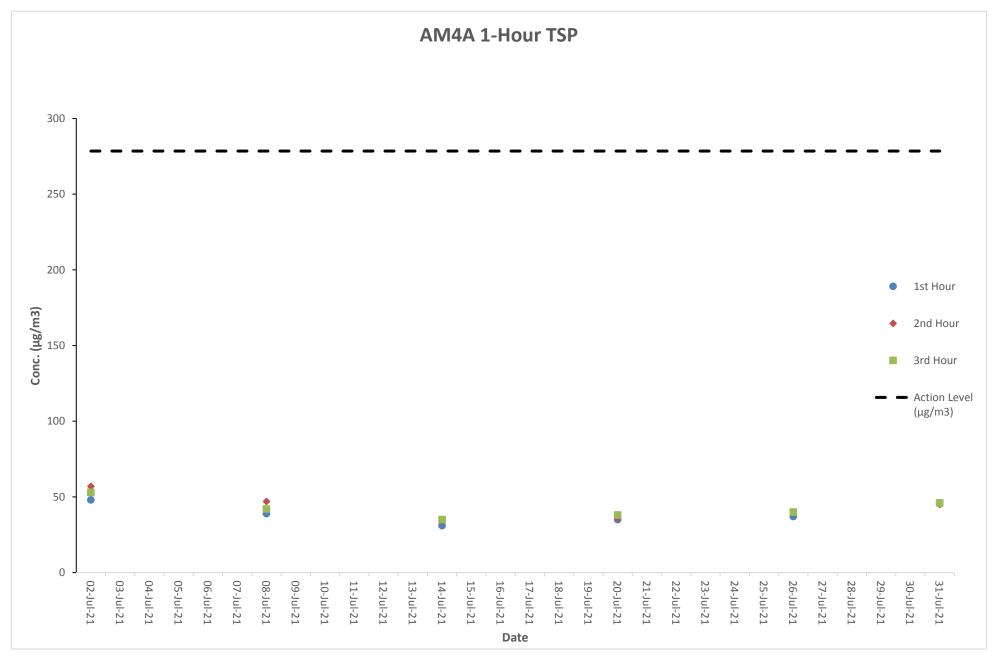
The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

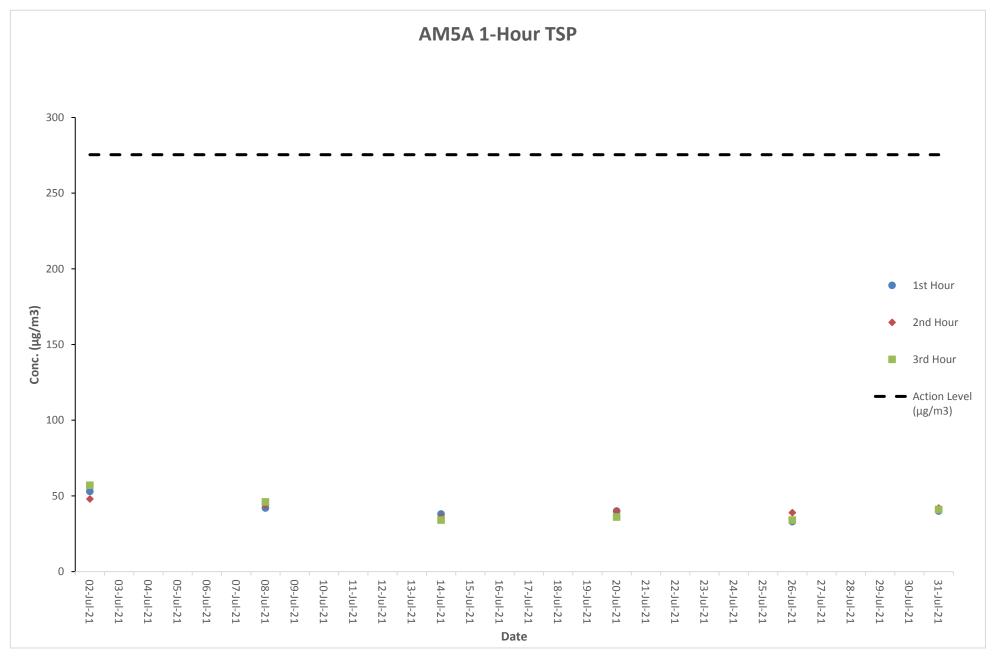

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

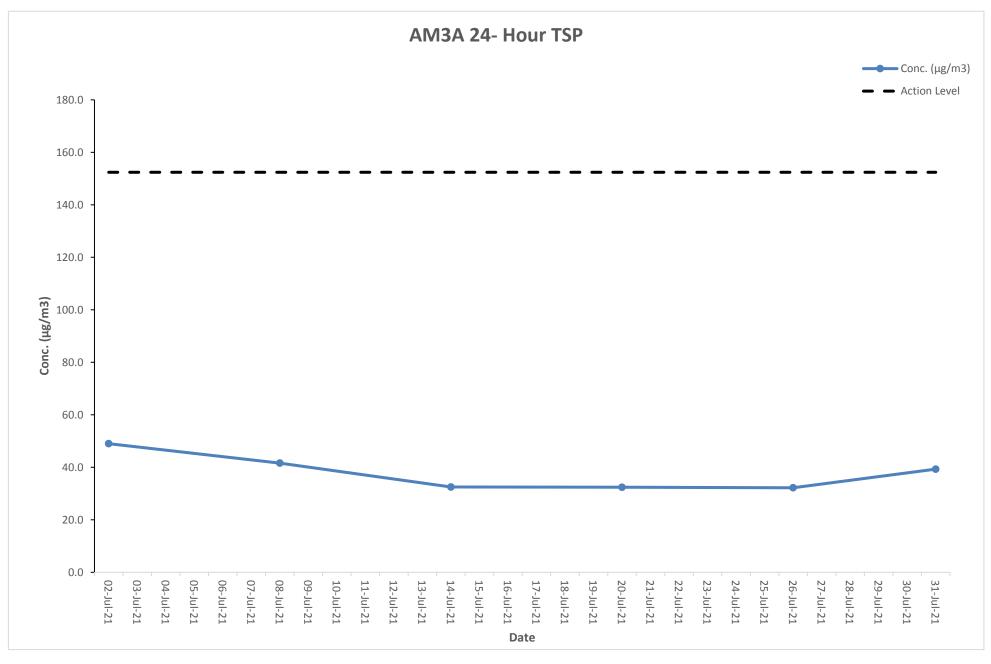
G. Graphical Plots of the Monitoring Results


Air Quality Monitoring Result at Station AM3A (1-hour TSP)

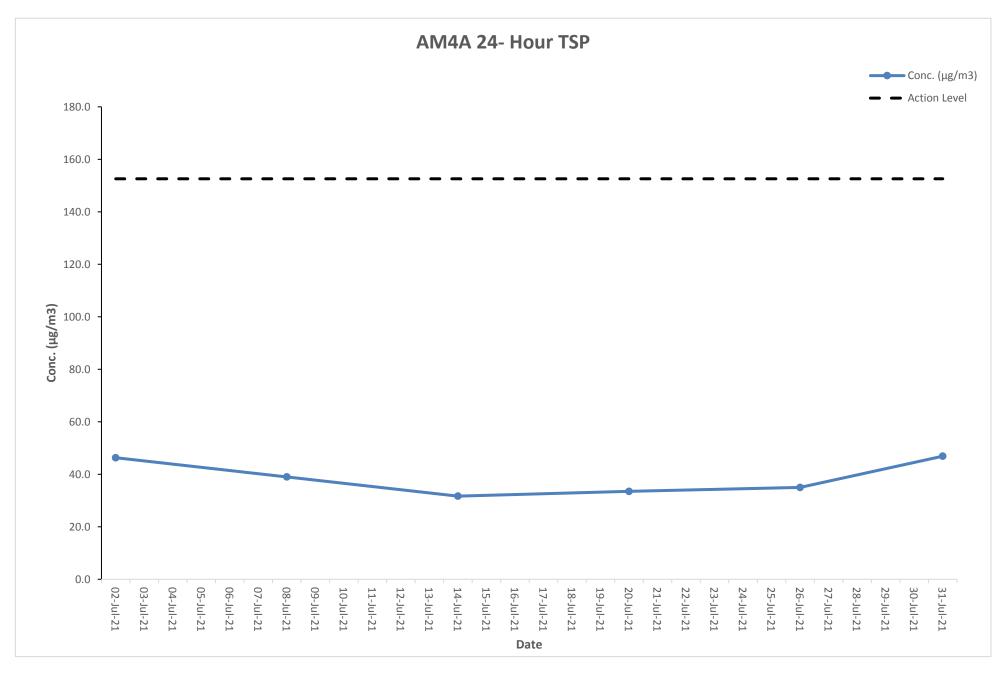
Date	Weather	Tir	ne	C	onc. (µg/m3	3)	Action	Limit
Date	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
02-Jul-21	Fine	8:02	11:02	57	50	50	280.4	500
08-Jul-21	Cloudy	14:07	17:07	46	45	43	280.4	500
14-Jul-21	Cloudy	8:10	11:10	33	40	37	280.4	500
20-Jul-21	Cloudy	14:15	17:15	31	31	35	280.4	500
26-Jul-21	Fine	8:12	11:12	31	34	32	280.4	500
31-Jul-21	Cloudy	14:09	17:09	41	39	47	280.4	500


Air Quality Monitoring Result at Station AM4A (1-hour TSP)

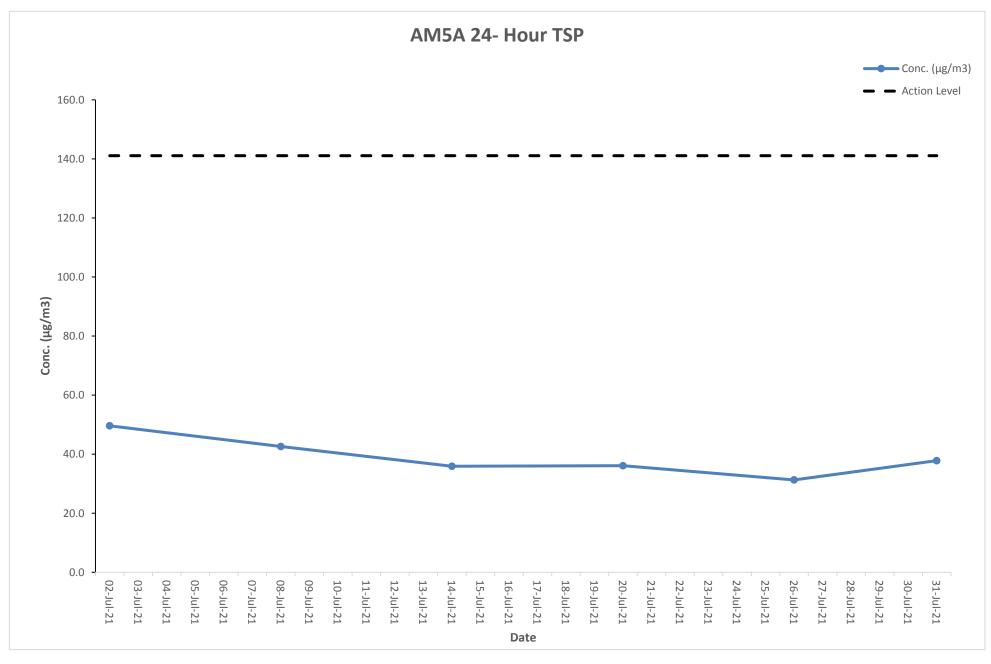
Date	Weather	Tir	ne	C	onc. (µg/m3	3)	Action	Limit
Date	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
02-Jul-21	Fine	8:10	11:10	48	57	53	278.5	500
08-Jul-21	Cloudy	14:15	17:15	39	47	42	278.5	500
14-Jul-21	Cloudy	8:18	11:18	31	34	35	278.5	500
20-Jul-21	Cloudy	14:23	17:23	35	36	38	278.5	500
26-Jul-21	Fine	8:20	11:20	37	40	40	278.5	500
31-Jul-21	Cloudy	14:17	17:17	46	45	46	278.5	500


Air Quality Monitoring Result at Station AM5A (1-hour TSP)

Date	Weather	Tir	ne	C	onc. (µg/m3	3)	Action	Limit
Date	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
02-Jul-21	Fine	8:25	11:25	53	48	57	275.4	500
08-Jul-21	Cloudy	14:32	17:32	42	44	46	275.4	500
14-Jul-21	Cloudy	8:33	11:33	38	36	34	275.4	500
20-Jul-21	Cloudy	14:40	17:40	40	40	36	275.4	500
26-Jul-21	Fine	8:35	11:35	33	39	34	275.4	500
31-Jul-21	Cloudy	14:25	17:25	40	42	41	275.4	500


Air Quality Monitoring Result at Station AM3A (24-hour TSP)

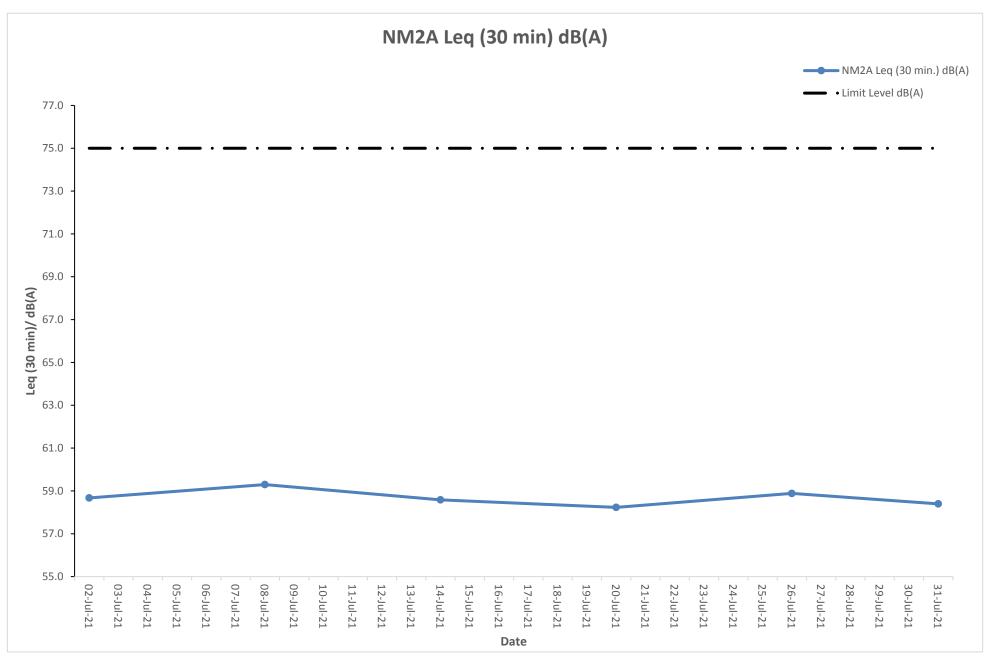
Sta	ırt	Fini	sh	Filter W	eight (g)	Elapsed Tir	ne Reading	Sampling	Flov	w Rate (n	ո³/min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
02-Jul-21	10:00AM	03-Jul-21	10:00AM	2.8056	2.8845	2180.8	2204.8	24	1.12	1.12	1.12	49.0	Sunny	152.4	260
08-Jul-21	10:00AM	09-Jul-21	10:00AM	2.8042	2.8712	2204.8	2228.8	24	1.12	1.12	1.12	41.6	Cloudy	152.4	260
14-Jul-21	10:00AM	15-Jul-21	10:00AM	2.8023	2.8546	2228.8	2252.8	24	1.12	1.12	1.12	32.5	Cloudy	152.4	260
20-Jul-21	10:00AM	21-Jul-21	10:00AM	2.8061	2.8583	2252.8	2276.8	24	1.12	1.12	1.12	32.4	Rainy	152.4	260
26-Jul-21	10:00AM	27-Jul-21	10:00AM	2.8048	2.8566	2276.8	2300.8	24	1.12	1.12	1.12	32.2	Fine	152.4	260
31-Jul-21	10:00AM	01-Aug-21	10:00AM	2.8065	2.8698	2300.8	2324.8	24	1.12	1.12	1.12	39.3	Rainy	152.4	260


Air Quality Monitoring Result at Station AM4A (24-hour TSP)

Sta	art	Fini	sh	Filter W	eight (g)	Elapsed Tir	me Reading	Sampling	Flov	v Rate (m	ո³/min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
02-Jul-21	10:00AM	03-Jul-21	10:00AM	2.8050	2.8794	2600.4	2624.4	24	1.12	1.12	1.12	46.3	Sunny	152.6	260
08-Jul-21	10:00AM	09-Jul-21	10:00AM	2.8071	2.8699	2624.4	2648.4	24	1.12	1.12	1.12	39.0	Cloudy	152.6	260
14-Jul-21	10:00AM	15-Jul-21	10:00AM	2.8058	2.8568	2648.4	2672.4	24	1.12	1.12	1.12	31.7	Cloudy	152.6	260
20-Jul-21	10:00AM	21-Jul-21	10:00AM	2.8065	2.8605	2672.4	2696.4	24	1.12	1.12	1.12	33.5	Rainy	152.6	260
26-Jul-21	10:00AM	27-Jul-21	10:00AM	2.8040	2.8603	2696.4	2720.4	24	1.12	1.12	1.12	35.0	Fine	152.6	260
31-Jul-21	10:00AM	01-Aug-21	10:00AM	2.8068	2.8823	2720.4	2744.4	24	1.12	1.12	1.12	46.9	Rainy	152.6	260

Air Quality Monitoring Result at Station AM5A (24-hour TSP)

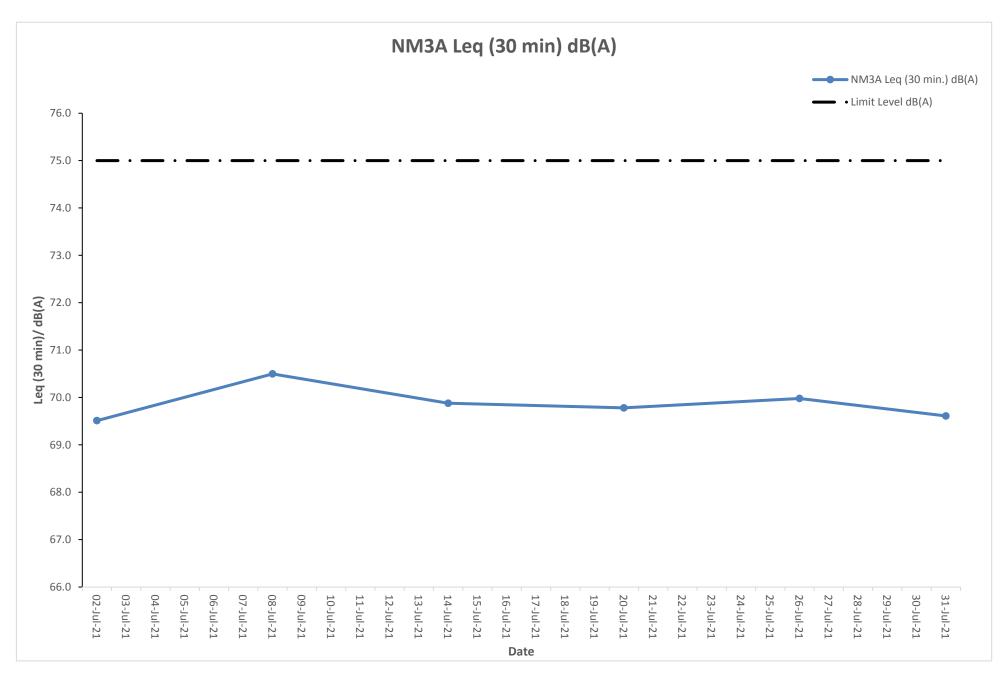
Sta	art	Fini	sh	Filter W	eight (g)	Elapsed Tir	me Reading	Sampling	Flov	v Rate (n	ո³/min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
02-Jul-21	10:00AM	03-Jul-21	10:00AM	2.8049	2.8847	2740.6	2764.6	24	1.12	1.12	1.12	49.6	Sunny	141.1	260
08-Jul-21	10:00AM	09-Jul-21	10:00AM	2.8014	2.8699	2764.6	2788.6	24	1.12	1.12	1.12	42.6	Cloudy	141.1	260
14-Jul-21	10:00AM	15-Jul-21	10:00AM	2.8041	2.8619	2788.6	2812.6	24	1.12	1.12	1.12	35.9	Cloudy	141.1	260
20-Jul-21	10:00AM	21-Jul-21	10:00AM	2.8040	2.8621	2812.6	2836.6	24	1.12	1.12	1.12	36.1	Rainy	141.1	260
26-Jul-21	10:00AM	27-Jul-21	10:00AM	2.8013	2.8516	2836.6	2860.6	24	1.12	1.12	1.12	31.3	Fine	141.1	260
31-Jul-21	10:00AM	01-Aug-21	10:00AM	2.8021	2.8630	2860.6	2884.6	24	1.12	1.12	1.12	37.8	Rainy	141.1	260



Noise Monitoring Result at Station NM2A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
02-Jul-21	8:32	62.3	54.7	
02-Jul-21	8:37	64.8	55.0	
02-Jul-21	8:42	63.1	56.7	58.7
02-Jul-21	8:47	62.8	54.5	30.7
02-Jul-21	8:52	62.6	54.1	
02-Jul-21	8:57	63.4	56.7	
08-Jul-21	14:37	63.3	54.4	
08-Jul-21	14:42	63.8	55.6	
08-Jul-21	14:47	64.8	54.3	59.3
08-Jul-21	14:52	62.6	56.6	59.5
08-Jul-21	14:57	62.2	55.6	
08-Jul-21	15:02	62.1	54.8	
14-Jul-21	8:40	64.9	54.9	
14-Jul-21	8:45	62.9	54.7	
14-Jul-21	8:50	63.1	56.5	58.6
14-Jul-21	8:55	64.7	55.1	30.0
14-Jul-21	9:00	64.2	55.6	
14-Jul-21	9:05	63.6	55.8	
20-Jul-21	14:45	63.9	55.7	
20-Jul-21	14:50	64.6	55.6	
20-Jul-21	14:55	63.0	56.8	58.2
20-Jul-21	15:00	64.5	55.0	30.2
20-Jul-21	15:05	63.0	56.1	
20-Jul-21	15:10	62.5	54.4	
26-Jul-21	8:42	64.8	55.0	
26-Jul-21	8:47	62.1	54.1	
26-Jul-21	8:52	63.5	56.5	58.9
26-Jul-21	8:57	64.1	54.9	56.9
26-Jul-21	9:02	62.9	55.4	
26-Jul-21	9:07	64.3	55.4	
31-Jul-21	14:09	63.6	55.8	
31-Jul-21	14:14	62.2	56.6	
31-Jul-21	14:19	63.3	55.4	58.4
31-Jul-21	14:24	62.8	56.5	50.7
31-Jul-21	14:29	63.3	54.9	
31-Jul-21	14:34	64.9	54.3	

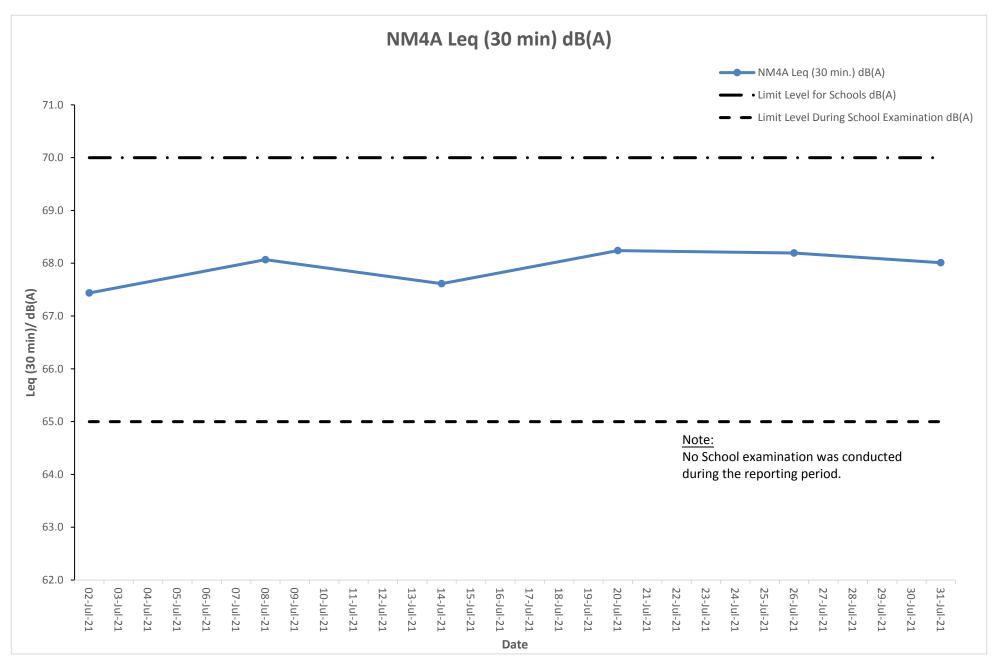
The station set-up of a façade measurement at station NM2A.



Noise Monitoring Result at Station NM3A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
02-Jul-21	10:02	72.1	66.0	
02-Jul-21	10:07	72.2	66.9	
02-Jul-21	10:12	75.0	67.8	69.5
02-Jul-21	10:17	74.2	65.5	09.5
02-Jul-21	10:22	74.0	66.5	
02-Jul-21	10:27	73.7	66.1	
08-Jul-21	16:10	72.3	67.4	
08-Jul-21	16:15	74.7	66.3	
08-Jul-21	16:20	74.6	66.3	70.5
08-Jul-21	16:25	74.0	65.2	70.5
08-Jul-21	16:30	74.1	67.5	
08-Jul-21	16:35	72.5	67.9	
14-Jul-21	10:10	72.2	67.1	
14-Jul-21	10:15	72.9	65.8	
14-Jul-21	10:20	73.7	65.7	69.9
14-Jul-21	10:25	73.8	67.2	09.9
14-Jul-21	10:30	73.9	67.2	
14-Jul-21	10:35	74.0	67.1	
20-Jul-21	16:18	73.2	68.0	
20-Jul-21	16:23	74.7	67.3	
20-Jul-21	16:28	74.3	68.0	69.8
20-Jul-21	16:33	73.6	65.1	09.0
20-Jul-21	16:38	74.0	66.9	
20-Jul-21	16:43	73.9	67.9	
26-Jul-21	10:12	74.8	66.7	
26-Jul-21	10:17	74.5	65.6	
26-Jul-21	10:22	72.4	67.6	70.0
26-Jul-21	10:27	72.8	67.2	70.0
26-Jul-21	10:32	73.1	66.9	
26-Jul-21	10:37	73.0	66.1	
31-Jul-21	15:51	72.6	65.8	
31-Jul-21	15:56	73.4	65.5	
31-Jul-21	16:01	72.7	67.9	69.6
31-Jul-21	16:06	73.3	65.6	03.0
31-Jul-21	16:11	72.7	67.0	
31-Jul-21	16:16	74.7	67.5	

The station set-up of a façade measurement at station NM3A.

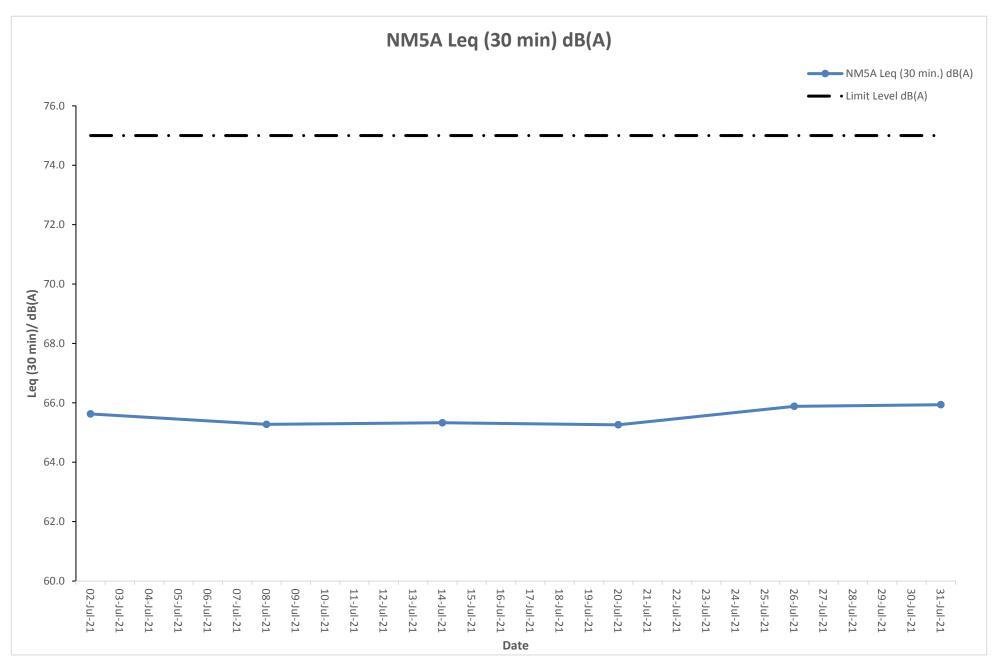


Noise Monitoring Result at Station NM4A

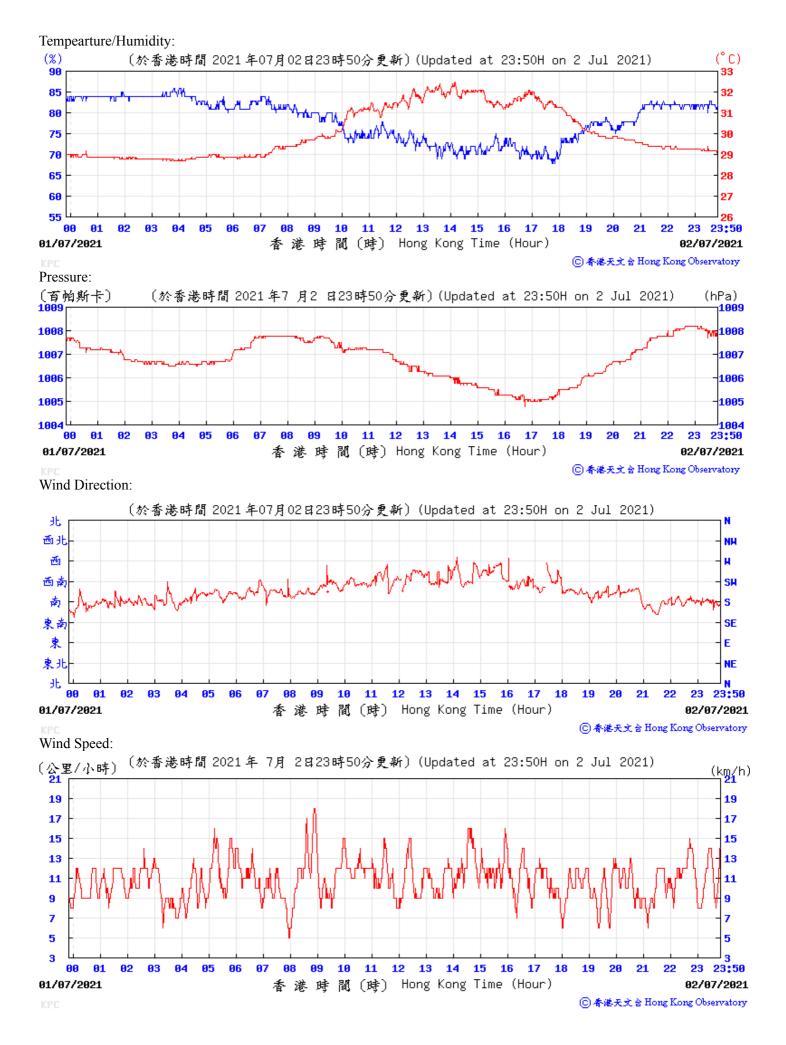
Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
02-Jul-21	10:37	71.4	65.8	67.4
02-Jul-21	10:42	69.4	65.4	
02-Jul-21	10:47	70.2	66.4	
02-Jul-21	10:52	70.8	65.2	
02-Jul-21	10:57	71.8	64.8	
02-Jul-21	11:02	70.9	66.2	
08-Jul-21	16:45	71.8	66.1	
08-Jul-21	16:50	70.3	66.8	68.1
08-Jul-21	16:55	69.2	65.9	
08-Jul-21	17:00	71.1	64.5	
08-Jul-21	17:05	70.3	66.8	
08-Jul-21	17:10	70.4	64.9	
14-Jul-21	10:45	70.2	64.8	67.6
14-Jul-21	10:50	72.0	65.9	
14-Jul-21	10:55	69.6	64.5	
14-Jul-21	11:00	71.9	65.1	
14-Jul-21	11:05	70.7	63.4	
14-Jul-21	11:10	70.6	65.2	
20-Jul-21	16:53	71.8	63.7	68.2
20-Jul-21	16:58	69.9	63.7	
20-Jul-21	17:03	70.6	65.3	
20-Jul-21	17:08	70.5	64.6	
20-Jul-21	17:13	72.0	64.4	
20-Jul-21	17:18	70.5	64.9	
26-Jul-21	10:47	69.4	64.8	
26-Jul-21	10:52	70.0	65.9	68.2
26-Jul-21	10:57	69.5	63.5	
26-Jul-21	11:02	72.1	65.4	
26-Jul-21	11:07	71.5	65.1	
26-Jul-21	11:12	70.3	65.5	
31-Jul-21	16:26	70.3	65.4	68.0
31-Jul-21	16:31	71.2	65.4	
31-Jul-21	16:36	69.9	65.0	
31-Jul-21	16:41	69.5	65.0	
31-Jul-21	16:46	69.6	63.4	
31-Jul-21	16:51	70.6	65.1	

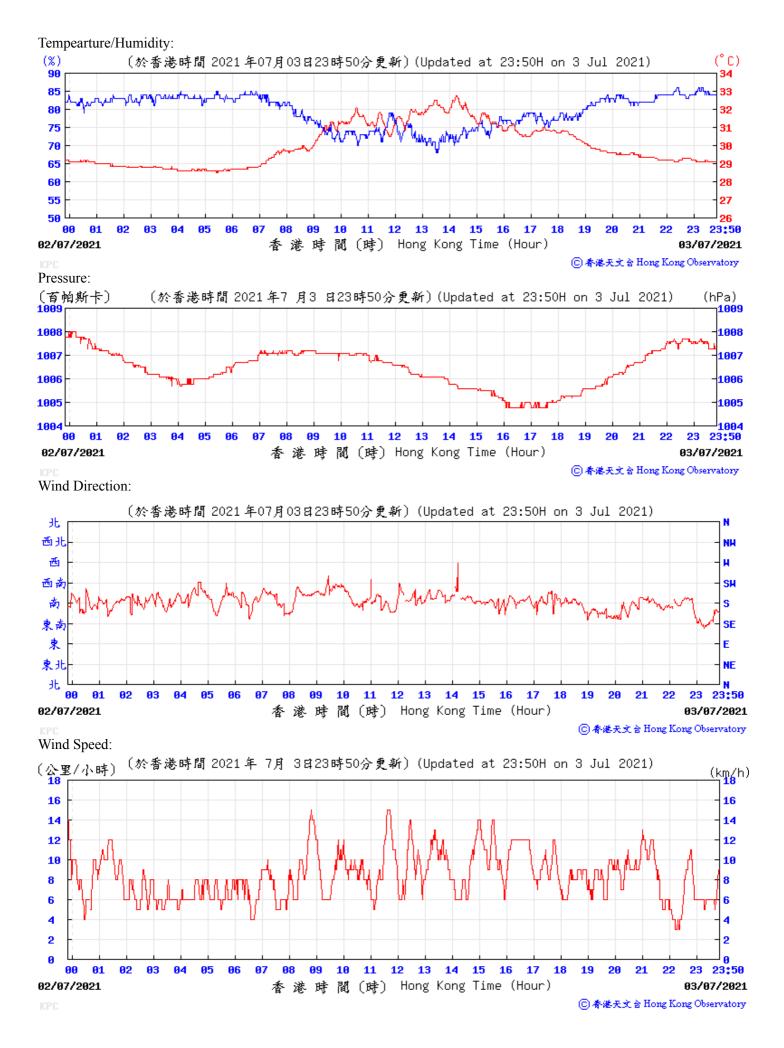
The station set-up of a façade measurement at station NM4A.

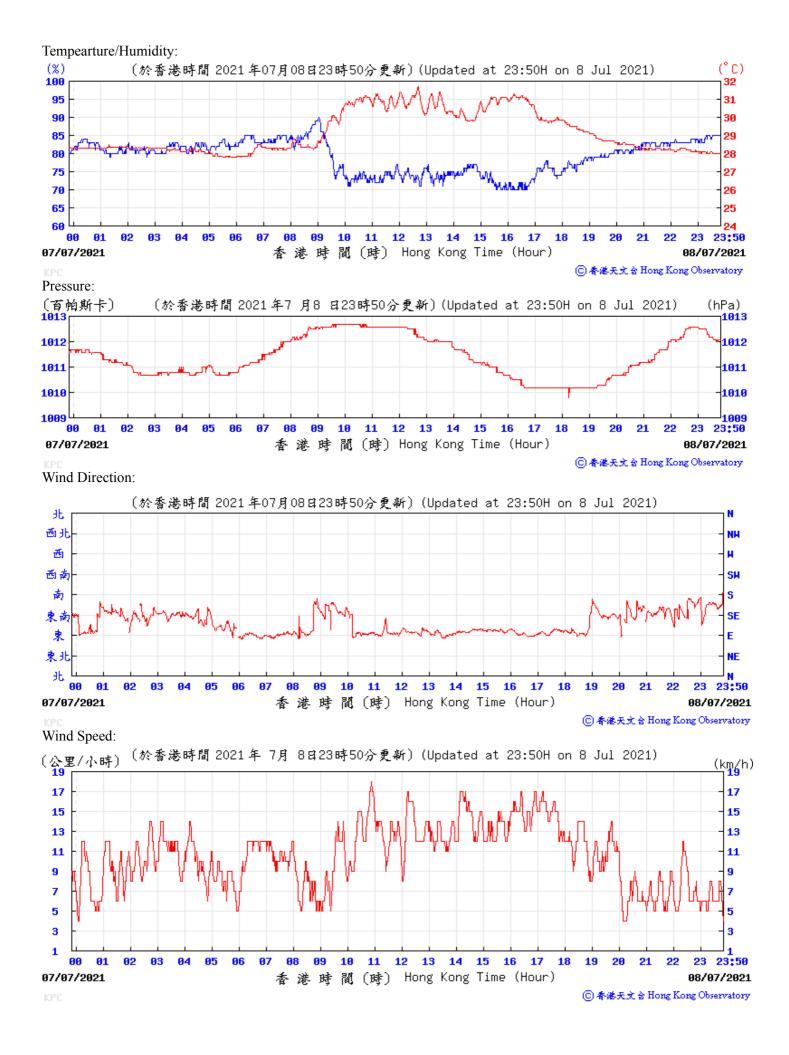
Noise Monitoring Result at Station NM5A

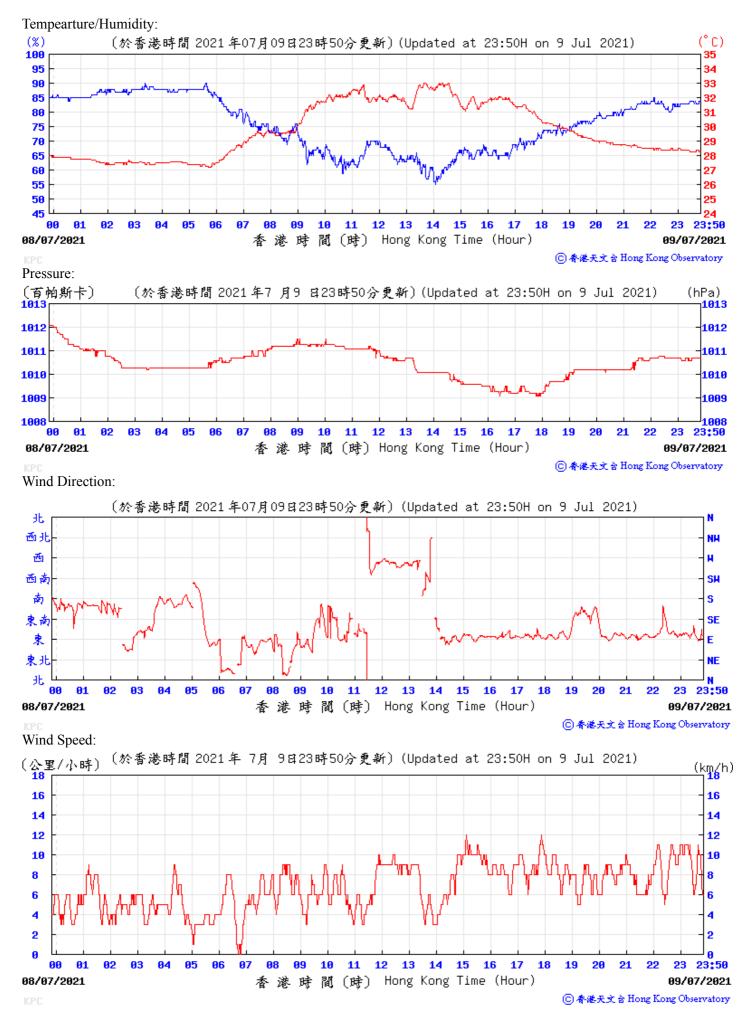

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)	Leq (30 min.) +3 dB(A)
02-Jul-21	9:22	64.5	60.8		
02-Jul-21	9:27	65.8	59.1		
02-Jul-21	9:32	65.7	59.1	62.6	65.6
02-Jul-21	9:37	64.1	60.8	02.0	03.0
02-Jul-21	9:42	65.7	60.9		
02-Jul-21	9:47	64.7	58.7		
08-Jul-21	15:29	66.4	60.3		
08-Jul-21	15:34	64.9	59.4		
08-Jul-21	15:39	64.4	60.9	62.3	65.3
08-Jul-21	15:44	64.2	58.3		
08-Jul-21	15:49	66.5	58.4		
08-Jul-21	15:54	64.2	60.0		
14-Jul-21	9:30	66.0	59.3	62.3	65.3
14-Jul-21	9:35	65.6	59.7		
14-Jul-21	9:40	65.9	59.0		
14-Jul-21	9:45	66.3	59.1		
14-Jul-21	9:50	64.5	58.8		
14-Jul-21	9:55	66.5	60.5		
20-Jul-21	15:37	65.7	60.6		
20-Jul-21	15:42	66.8	58.3		
20-Jul-21	15:47	66.8	59.7	62.3	65.3
20-Jul-21	15:52	65.9	60.3	02.5	05.5
20-Jul-21	15:57	66.2	59.0		
20-Jul-21	16:02	67.1	58.3		
26-Jul-21	9:32	66.7	60.1		
26-Jul-21	9:37	66.8	58.1		
26-Jul-21	9:42	67.1	58.5	62.9	65.9
26-Jul-21	9:47	66.5	60.7	02.9	05.9
26-Jul-21	9:52	65.3	58.2		
26-Jul-21	9:57	66.5	58.5		
31-Jul-21	15:10	65.2	59.9		
31-Jul-21	15:15	65.5	60.0		
31-Jul-21	15:20	65.0	58.5	62.9	65.9
31-Jul-21	15:25	64.8	59.7	02.3	00.9
31-Jul-21	15:30	66.9	59.6		
31-Jul-21	15:35	66.7	59.1		

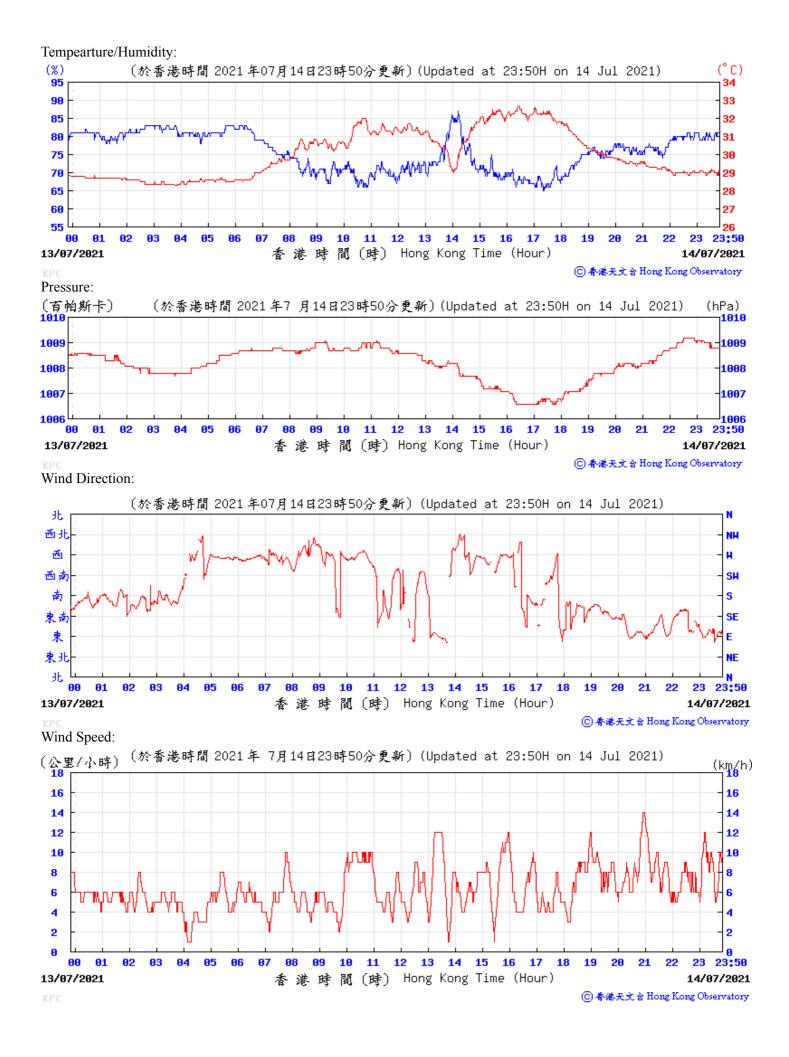
Remarks:

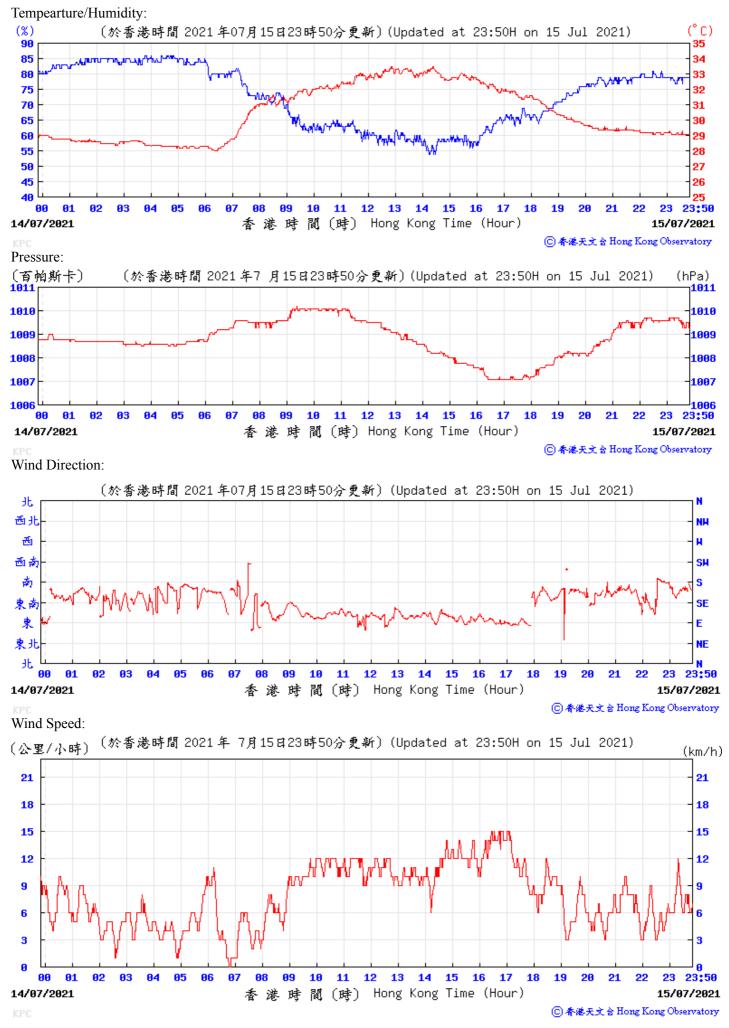

+3dB(A) correction was applied to free-field measurement.

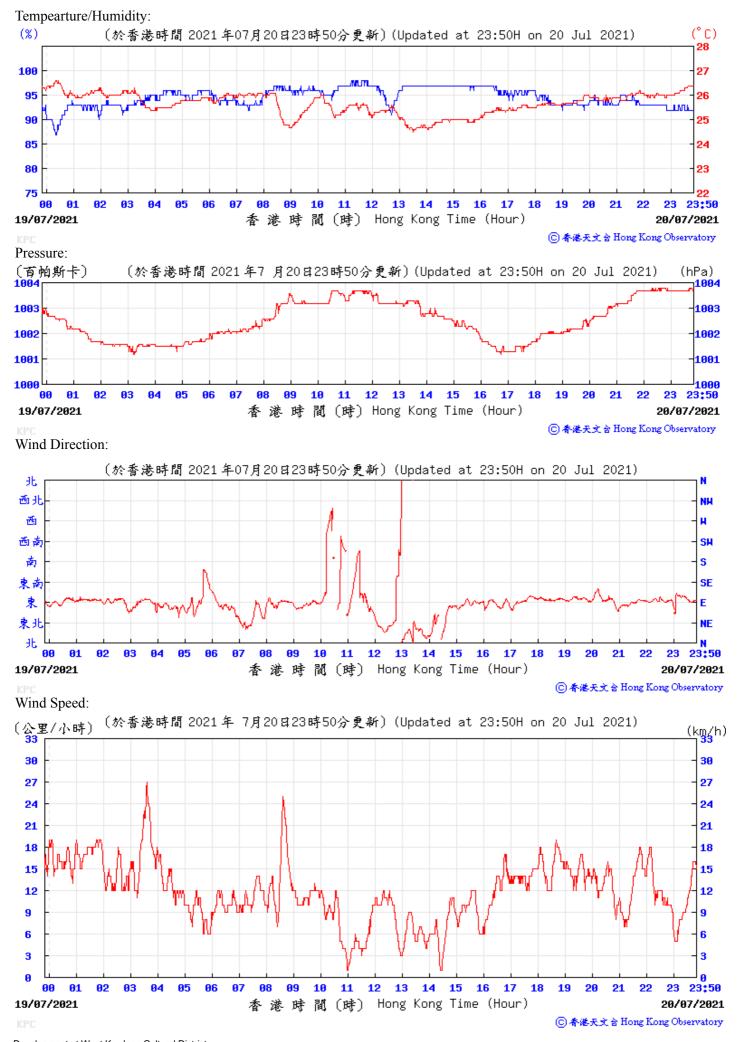


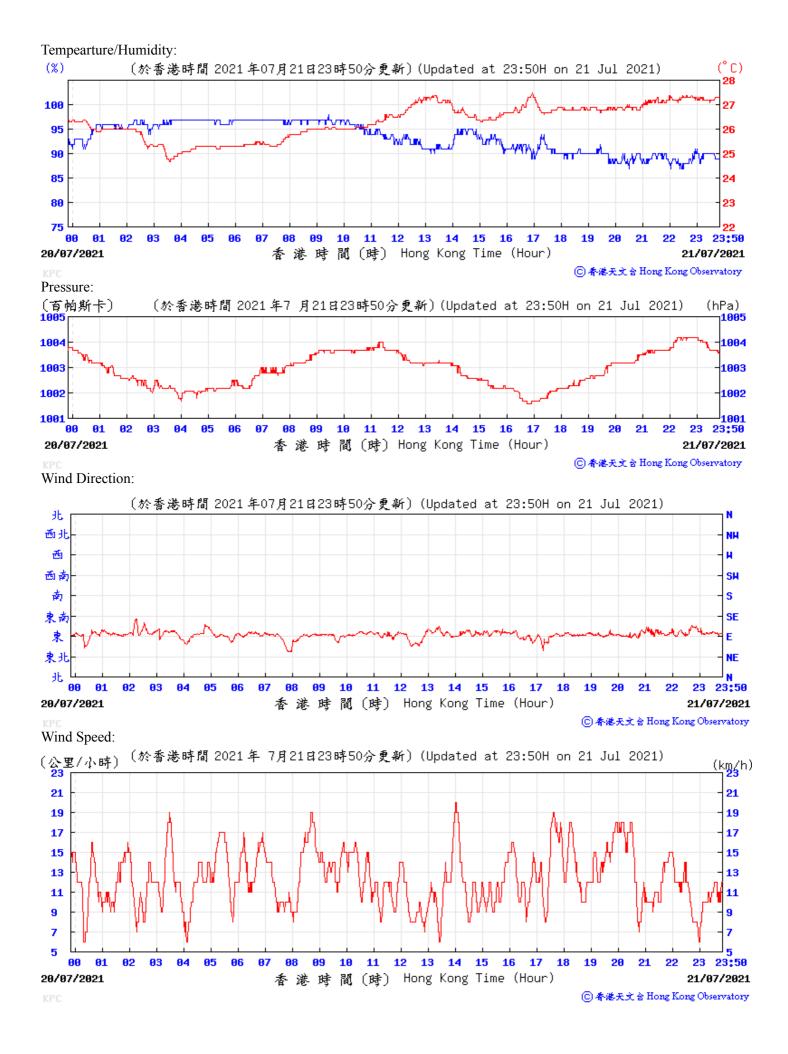

The station set-up of a free-field measurement at station NM5A.

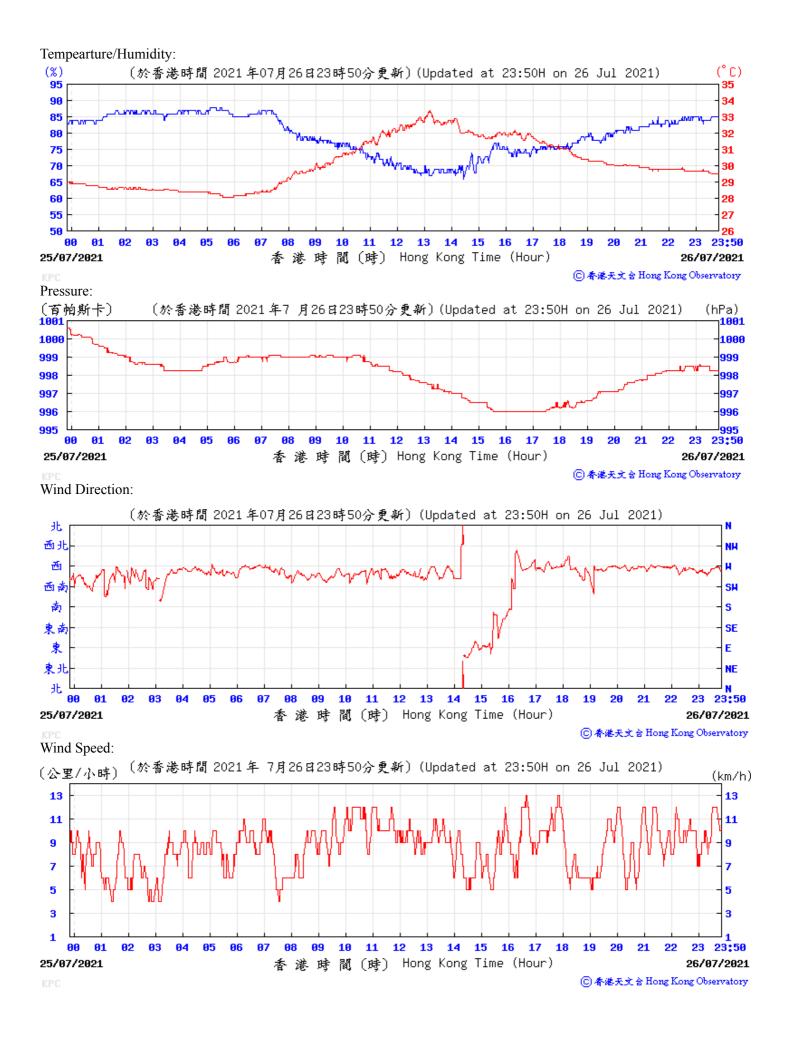


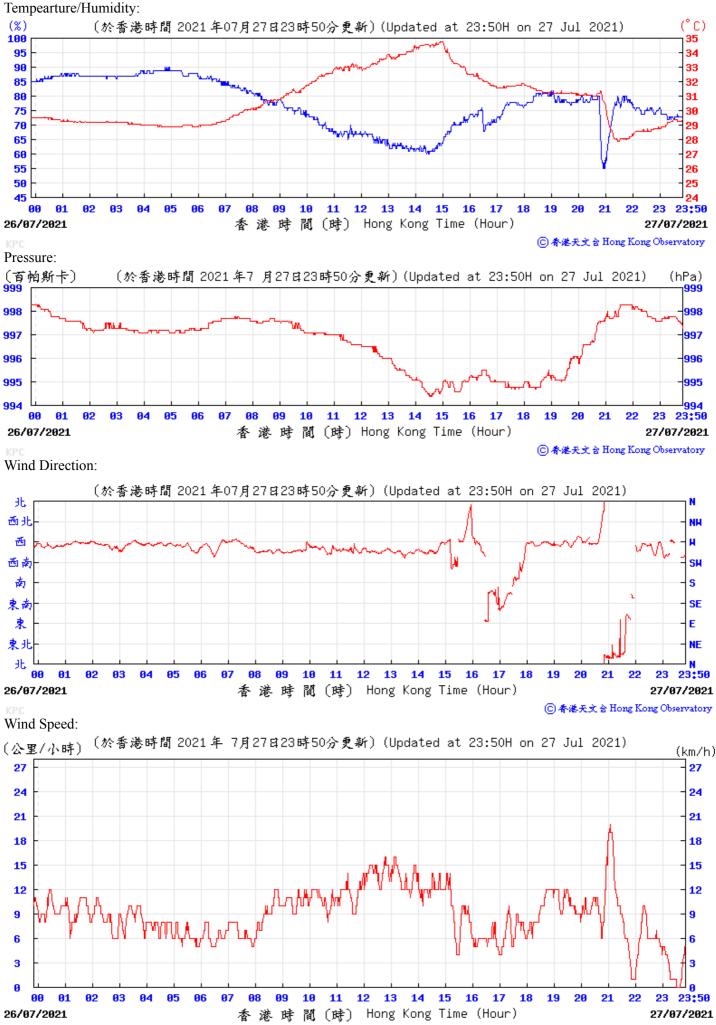

H. Meteorological Data Extracted from Hong Kong Observatory

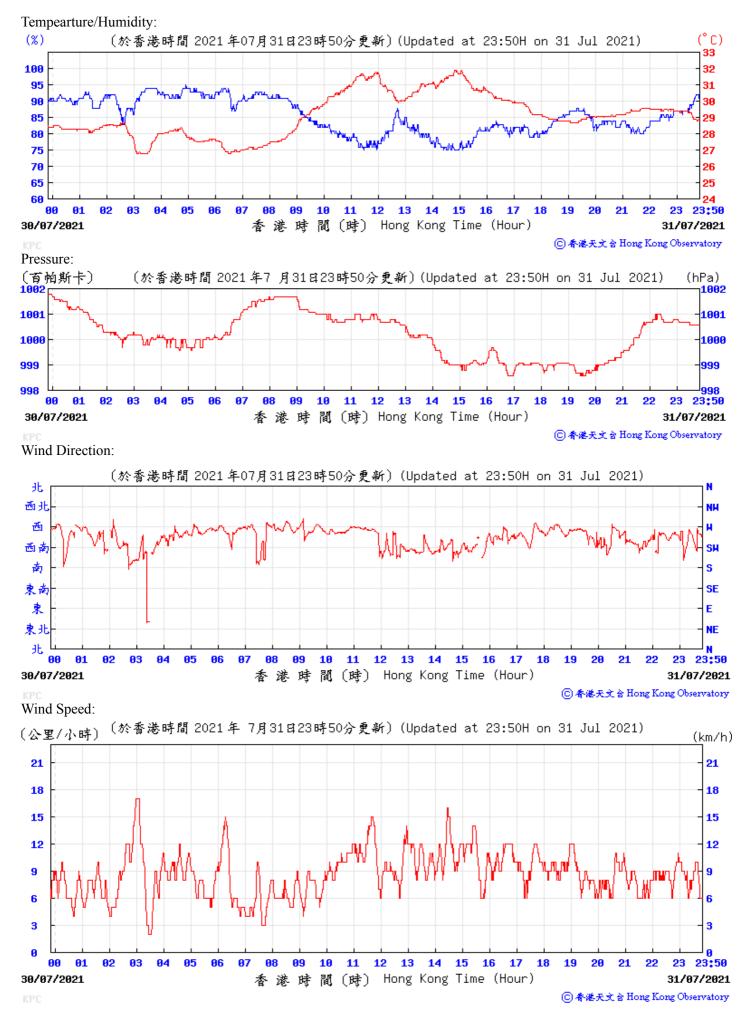


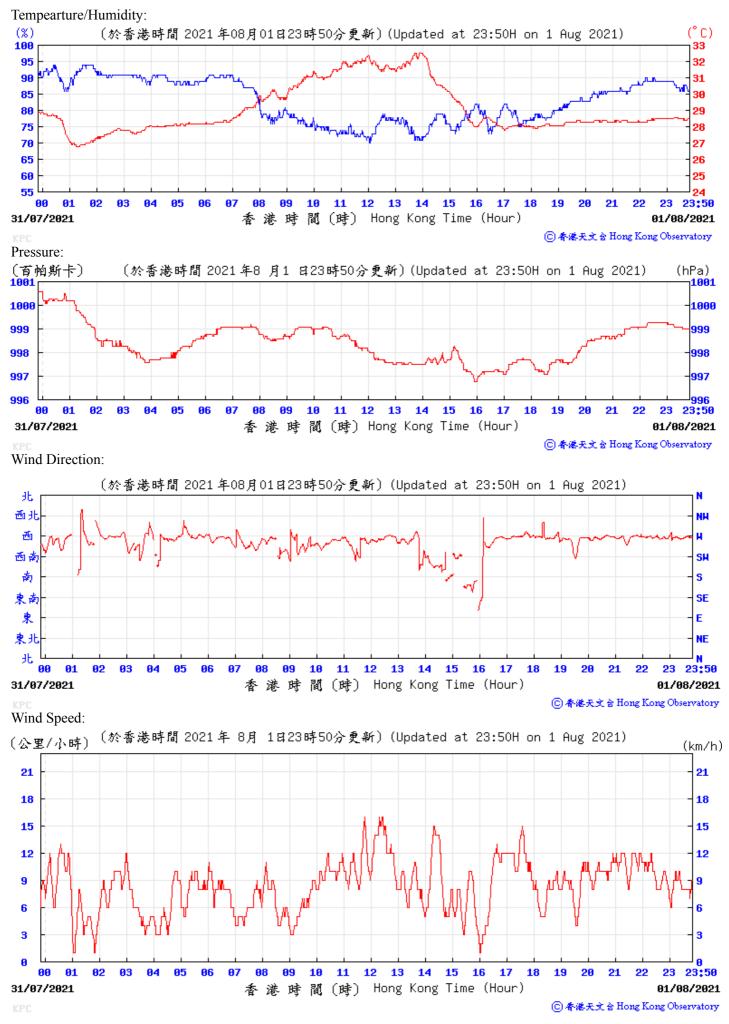











Development at West Kowloon Cultural District

Monthly Environmental Monitoring and Audit (EM&A) Report for July 2021

[◎] 香港天文 含 Hong Kong Observatory

Monthly Environmental Monitoring and Audit (EM&A) Report for July 2021

I. Waste Flow table

Table I-1: Monthly Waste Flow Table for Zone 2A

	A	ctual Quan	tities of Iner	t C&D Mate	rials Gener	ated Monthl	у	Actu	al Quantitie	s of C&D N	laterials Ge	nerated Mo	nthly
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete		Reused in other Projects	Disposed as Public Fill	Disposed to Sroting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)		(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2020	•										• • • •		
Oct	2623.48	0.00	0.00	0.00	2623.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	21.94
Nov	8838.69	0.00	685.23	1198.56	6954.90	0.00	1194.93	0.00	0.00	0.00	0.00	0.00	17.49
Dec	8890.70	0.00	510.59	1675.21	6704.90	0.00	51.51	0.00	0.00	0.00	0.00	0.00	11.75
Sub-total (2020)	20352.87	0.00	1195.82	2873.77	16283.28	0.00	1246.44	0.00	0.00	0.00	0.00	0.00	51.18
2021													
Jan	6849.66	0.00	52.90	0.00	6796.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.94
Feb	4591.95	0.00	0.00	0.00	4591.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.11
Mar	7318.44	0.00	0.00	339.94	6978.50	0.00	0.00	75.57	0.00	0.00	0.00	0.20	15.79
Apr	7208.22	0.00	0.00	1109.51	6098.71	0.00	0.00	0.00	0.00	0.00	0.00	0.40	19.29
May	7976.23	0.00	0.00	1853.51	6122.72	0.00	0.00	125.49	0.00	0.00	0.00	0.20	18.43
Jun	7741.45	0.00	0.00	1989.41	5752.04	0.00	0.00	4.53	0.00	0.00	0.00	0.00	18.65
Jul	8067.17	0.00	0.00	1289.08	6778.09	0.00	0.00	4.11	0.00	0.00	0.00	0.20	147.95
Aug													
Sep													
Oct													
Nov													
Dec													
Sub-total (2021)	49753.12	0.00	52.90	6581.45	43118.77	0.00	0.00	209.70	0.00	0.00	0.00	1.00	256.16
Total	71352.43	0.00	1248.72	9455.22	59402.05	0.00	1246.44	209.70	0.00	0.00	0.00	1.00	307.34

Note:

- 71.14 tonnes, 602.69 tonnes, 6104.26 tonnes of inert C&D material were disposed of as public fill to Chai Wan Public Fill Barging Point, Tseung Kwan O Area 137 Public Fill, and Tuen Mun Area 38 respectively in the reporting month.

- For inert C&D materials reused in other projects, the projects refer to (1) EcoPark at Tuen Mun, (2) Green Valley and (3) DD41 at Sha Tau Kok.

J. Environmental Mitigation Measures – Implementation Status

Table J-1: Environmental Mitigation Measures Implementation Status (July 2021)

EM&A	Recommendation Measures	Implementation Stage
Ref.		
Air Quality	Impact (Construction)	
2.1	General Dust Control Measures Frequent water spraying for active construction areas (12 times a day or once every one hour), including Heavy construction activities such as construction of buildings or roads, drilling, ground excavation, cut and fill operations (i.e., earth moving)	✓
2.1	 Best Practice For Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (construction Dust) Regulation should be adopted to further reduce the construction dust impacts from the Project. These best practices include: <i>Good Site Management</i> Good site management is important to help reducing potential air quality impact down to an acceptable level. As a general guide, the Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimise the release of visible dust emission. Any piles of materials accumulated on or around the work areas should be carried out in a manner minimising generation of fugitive dust emissions. The material should be handled properly to prevent fugitive dust emission before cleaning. 	/
	 Disturbed Parts of the Roads Each and every main temporary access should be paved with concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or 	\checkmark
	• Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet.	\checkmark
	 Exposed Earth Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies. 	N/A No exposed earth in this project.

Implementation Stage

Loading, Unloading or Transfer of Dusty Materials	1
 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 	
Debris Handling	Obs
 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 	
• Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped.	N/A
	No debris chute on-site
Transport of Dusty Materials	1
• Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards.	
Wheel washing	1
• Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving	
the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.	
Use of vehicles	1
• The speed of the trucks within the site should be controlled to about 10km/hour in order to reduce adverse dust impacts and secure the safe movement around the site.	
 Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	1
 Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle. 	\checkmark
Site hoarding	1
• Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.	·

The relevant best practices for dust control as stipulated in the Guidance Note on the Best Practicable Means for

Implementation Stage

1

Ref.		
	Cement Works (Concrete Batching Plant) BPM 3/2(93) should be followed and implemented to further reduce the	
	construction dust impacts of the Project. These best practices include:	
	Exhaust from Dust Arrestment Plant	N/A
	• Wherever possible the final discharge point from particulate matter arrestment plant, where is not necessary	No concrete batching plant in
	to achieve dispersion from residual pollutants, should be at low level to minimise the effect on the local	this project.
	community in the case of abnormal emissions and to facilitate maintenance and inspection	
	Emission Limits	N/A
	• All emissions to air, other than steam or water vapour, shall be colourless and free from persistent mist or	No concrete batching plant in
	smoke	this project.
	Engineering Design/Technical Requirements	N/A
	• As a general guidance, the loading, unloading, handling and storage of fuel, raw materials, products, wastes	No concrete batching plant in
	or by-products should be carried out in a manner so as to prevent the release of visible dust and/or other	this project.
	noxious or offensive emissions	
	Non-Road Mobile Machinery (NRMM):	✓
	All NRMMs operating on-site which are subject to emission control of Air Pollution Control (Non-road Mobile	
	Machinery) (Emission) Regulation are approved/exempted (as the case may be) and affixed with the requisite	
	approval/exemption labels.	
Noise Im	pact (Construction)	
3.1	Good Site Practice	
	Good site practice and noise management can significantly reduce the impact of construction site activities on	
	nearby NSRs. The following package of measures should be followed during each phase of construction:	

only well-maintained plant to be operated on-site and plant should be serviced regularly during the ٠

Ref.				
	construction works;			
	 machines and plant that may be in intermittent use to be shut down between work periods or should be 	1		
	throttled down to a minimum			
	• plant known to emit noise strongly in one direction, should, where possible, be orientated to direct noise	1		
	away from the NSRs;			
	 mobile plant should be sited as far away from NSRs as possible; and 	1		
	• material stockpiles and other structures to be effectively utilised, where practicable, to screen noise from on-	1		
	site construction activities.			
.1	Adoption of Quieter PME	1		
	The recommended quieter PME adopted in the assessment were taken from the EPD's QPME Inventory and			
	"Sound Power Levels of Other Commonly Used PME" are presented in Table 4.26 in the EIA report. It should be			
	noted that the silenced PME selected for assessment can be found in Hong Kong.			
8.1	Use of Movable Noise Barriers	Rem		
	Movable noise barriers can be very effective in screening noise from particular items of plant when constructing			
	the Project. Noise barriers located along the active works area close to the noise generating component of a PME			
	could produce at least 10 dB(A) screening for stationary plant and 5 dB(A) for mobile plant provided the direct line			
	of sight between the PME and the NSRs is blocked.			
.1	Use of Noise Enclosure/ Acoustic Shed	1		
	The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump.			
	With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A)			
	can be achieved according to the EIAO Guidance Note No. 9/2010.			
3.1	Use of Noise Insulating Fabric	1		

Ref.		
	Noise insulating fabric can also be adopted for certain PME (e.g. drill rig, pilling machine etc). The fabric should be	
	lapped such that there are no openings or gaps on the joints. According to the approved Tsim Sha Tsui Station	
	Northern Subway EIA report (AEIAR-127/2008), a noise reduction of 10 dB(A) can be achieved for the PME lapped	
	with the noise insulating fabric.	
3.1	Scheduling of Construction Works outside School Examination Periods	✓
	During construction phase, the contractor should liaise with the educational institutions (including NSRs LCS and	
	CRGPS) to obtain the examination schedule and avoid the noisy construction activities during school examination	
	periods.	
Water Q	uality Impact (Construction)	
4.1	Construction site runoff and drainage	
	The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise	
	surface runoff and the chance of erosion. The following measures are recommended to protect water quality and	
	sensitive uses of the coastal area, and when properly implemented should be sufficient to adequately control site	
	discharges so as to avoid water quality impacts:	
	• At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be	\checkmark
	constructed with internal drainage works and erosion and sedimentation control facilities implemented.	
	Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal	
	facilities. The design of the temporary on-site drainage system should be undertaken by the WKCDA's	
	Contractor prior to the commencement of construction;	
	 Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove 	Obs
	sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of	
	efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94.	

Ref.	
Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken	
by the WKCDA's Contractor prior to the commencement of construction.	
All drainage facilities and erosion and sediment control structures should be regularly inspected and	Obs
maintained to ensure proper and efficient operation at all times and particularly during rainstorms.	
Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that	
these facilities are functioning properly at all times.	
• Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches	\checkmark
in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water	
pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.	
• All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris	\checkmark
and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should	
be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and	
removed regularly to ensure the continued efficiency of the process. The section of access road leading to,	
and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the	
wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	
• Open stockpiles of construction materials or construction wastes onsite should be covered with tarpaulin or	1
similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction	
materials, soil, silt or debris into any drainage system.	
 Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to 	1
prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff	
being directed into foul sewers.	
• Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken	Obs

1

Ref.		
	when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are	<i>.</i>
	summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control o	t
	silty surface runoff during storm events, especially for areas located near steep slopes.	
	Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable	e. N/A
	Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to	be No bentonite slurries are used
	transported away after all the related construction activities are completed. The requirements in ProPECC	in this project.
	Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.	
4.1	Barging facilities and activities	
	Recommendations for good site practices during operation of the proposed barging point include:	
	• All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in al	I N/A
	tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or	No barging facilities in this
	propeller wash;	project at this stage.
	• Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding	N/A
	water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or pollute	d No barging facilities in this
	water during loading or transportation;	project at this stage.
	• All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of	N/A
	material; and	No barging facilities in this
		project at this stage.
	• Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be	N/A
	present on the water within the site.	No barging facilities in this
		project at this stage.

4.1 Sewage effluent from construction workforce

Ref.		
	Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to	
	handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and	
	adequate portable toilets and be responsible for appropriate disposal and maintenance.	
4.1	General construction activities	
	• Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of	✓
	properly to avoid entering any nearby storm water drain. Stockpiles of cement and other construction	
	materials should be kept covered when not being used.	
	• Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent	\checkmark
	spillage of fuels and solvents to any nearby storm water drain, all fuel tanks and storage areas should be	
	provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage	
	capacity of the largest tank. The bund should be drained of rainwater after a rain event.	
Waste Man	agement Implications (Construction)	
6.1	Good Site Practices	
	Recommendations for good site practices during the construction activities include:	
	• Nomination of an approved person, such as a site manager, to be responsible for good site practices,	✓
	arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the	
	site	
	Training of site personnel in proper waste management and chemical handling procedures	✓
	 Provision of sufficient waste disposal points and regular collection of waste 	✓
	Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by either	\checkmark
	covering trucks or by transporting wastes in enclosed containers	
	 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust 	1

EM&A Ref.	Recommendation Measures	Implementation Stage
	introduction to public roads	
	• Well planned delivery programme for offsite disposal such that adverse environmental impact from	\checkmark
	transporting the inert or non-inert C&D materials is not anticipated	
5.1	Waste Reduction Measures	
	Recommendations to achieve waste reduction include:	
	 Sort inert C&D material to recover any recyclable portions such as metals 	1
	• Segregation and storage of different types of waste in different containers or skips to enhance reuse or	1
	recycling of materials and their proper disposal	
	• Encourage collection of recyclable waste such as waste paper and aluminium cans by providing separate	\checkmark
	labelled bins to enable such waste to be segregated from other general refuse generated by the work force	
	• Proper site practices to minimise the potential for damage or contamination of inert C&D materials	\checkmark
	• Plan the use of construction materials carefully to minimise amount of waste generated and avoid	\checkmark
	unnecessary generation of wastes	
5.1	Inert and Non-inert C&D Materials	
	In order to minimise impacts resulting from collection and transportation of inert C&D material for off-site	
	disposal, the excavated materials should be reused on-site as fill material as far as practicable. In addition, inert	
	C&D material generated from excavation works could be reused as fill materials in local projects that require public	
	fill for reclamation.	
	• The surplus inert C&D material will be disposed of at the Government's PFRFs for beneficial use by other	\checkmark
	projects in Hong Kong.	
	• Liaison with the CEDD Public Fill Committee (PFC) on the allocation of space for disposal of the inert C&D	\checkmark
	materials at PFRF is underway. No construction work is allowed to proceed until all issues on management of	

Implementation Stage

Ref.			
	inert C&D materials have been resolved and all relevant arrangements have been endorsed by the relevant		
	authorities including PFC and EPD.		
	• The C&D materials generated from general site clearance should be sorted on site to segregate any inert	\checkmark	
	materials for reuse or disposal of at PFRFs whereas the non-inert materials will be disposed of at the		
	designated landfill site.		
	 In order to monitor the disposal of inert and non-inert C&D materials at respectively PFRFs and the 	1	
	designated landfill site, and to control fly-tipping, it is recommended that the Contractor should follow the		
	Technical Circular (Works) No. 6/2010 for Trip Ticket System for Disposal of Construction & Demolition		
	Materials issued by Development Bureau. In addition, it is also recommended that the Contractor should		
	prepare and implement a Waste Management Plan detailing their various waste arising and waste		
	management practices in accordance with the relevant requirements of the Technical Circular (Works) No.		
	19/2005 Environmental Management on Construction Site.		
6.1	Chemical Waste		
	• If chemical wastes are produced at the construction site, the Contractor will be required to register with the	\checkmark	
	FRD as a chamical waste producer and to follow the guidelines stated in the "Code of Practice on the		

EPD as a chemical waste producer and to follow the guidelines stated in the "Code of Practice on the Packaging Labelling and Storage of Chemical Wastes". Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor should use a licensed collector to transport and dispose of the chemical wastes at the approved Chemical Waste Treatment Centre or other licensed recycling facilities, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.

Ref.		
	• Potential environmental impacts arising from the handling activities (including storage, collection,	1
	transportation and disposal of chemical waste) are expected to be minimal with the implementation of	
	appropriate mitigation measures as recommended.	
6.1	General Refuse	1
	General refuse should be stored in enclosed bins or compaction units separated from inert C&D materials. A	
	reputable waste collector should be employed by the Contractor to remove general refuse from the site,	
	separately from inert C&D materials. Preferably an enclosed and covered area should be provided to reduce the	
	occurrence of 'wind blown' light material.	
Land Con	tamination (Construction)	
7.1	The potential for land contamination issues at the TST Fire Station due to its future relocation will be confirmed by	
	site investigation after land acquisition. Where necessary, mitigation measures for minimising potential exposure	
	to contaminated materials (if any) or remediation measures will be identified. If contaminated land is identified	
	(e.g., during decommissioning of fuel oil storage tanks) after the commencement of works, mitigation measures	
	are proposed in order to minimise the potentially adverse effects on the health and safety of construction workers	
	and impacts arising from the disposal of potentially contaminated materials. The following measures are proposed	
	for excavation and transportation of contaminated material:	
	• To minimize the chance for construction workers to come into contact with any contaminated materials, bulk	N/A
	earth-moving excavation equipment should be employed;	TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
	Contact with contaminated materials can be minimised by wearing appropriate clothing and personal	N/A
	protective equipment such as gloves and masks (especially when interacting directly with contaminated	TST Fire Station is out of this

Ref.

material), pr	ovision of washing facilities and prohibition of smoking and eating on site;	project boundary, no mitigatior
		measure is required.
Stockpiling c	f contaminated excavated materials on site should be avoided as far as possible;	N/A
		TST Fire Station is out of this
		project boundary, no mitigatior
		measure is required.
• The use of c	ontaminated soil for landscaping purpose should be avoided unless pre-treatment was carried	N/A
out;		TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
• Vehicles con	taining any contaminated excavated materials should be suitably covered to reduce dust	N/A
emissions ar	d/or release of contaminated wastewater;	TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
Truck bodies	and tailgates should be sealed to stop any discharge;	N/A
		TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
Only license	d waste haulers should be used to collect and transport contaminated material to	N/A
treatment/d	isposal site and should be equipped with tracking system to avoid fly tipping;	TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.

Ref.

NGI.		
	Speed control for trucks carrying contaminated materials should be exercised;	N/A TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
	• Observe all relevant regulations in relation to waste handling, such as Waste Disposal Ordinance (Cap. 354),	N/A
	Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354) and obtain all necessary permits where	TST Fire Station is out of this
	required; and	project boundary, no mitigatior
		measure is required.
	 Maintain records of waste generation and disposal quantities and disposal arrangements. 	N/A
		TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
Ecological	mpact (Construction)	
	No mitigation measure is required.	
Landscape	and Visual Impact (Construction)	
Table 9.1	Trees should be retained in situ on site as far as possible. Should tree removal be unavoidable due to construction	\checkmark
(CM1)	impacts, trees will be transplanted or felled with reference to the stated criteria in the Tree Removal Applications	
	to be submitted to relevant government departments for approval in accordance to ETWB TCW No. 29/2004 and	
	3/2006.	
Table 9.1	Compensatory tree planting shall be incorporated to the proposed project and maximize the new tree, shrubs and	N/A
(CM2)	other vegetation planting to compensate tree felled and vegetation removed. Also, implementation of	Compensatory tree planting is
	compensatory planting should be of a ratio not less than 1:1 in terms of quality and quantity within the site.	being reviewed.

Ref.		
Table 9.1	Buffer trees for screening purposes to soften the hard architectural and engineering structures and facilities.	N/A
(CM3)		Roof garden is designed to be
		built, but it has not been
		completed yet.
Table 9.1	Softscape treatments such as vertical green wall panel /planting of climbing and/or weeping plants, etc, to	N/A
(CM4)	maximize the green coverage and soften the hard architectural and engineering structures and facilities.	Climbing or weeping plants are
		designed to be planted, but
		proposal is being reviewed for
		the planting location.
Table 9.1	Roof greening by means of intensive and extensive green roof to maximize the green coverage and improve	N/A
(CM5)	aesthetic appeal and visual quality of the building/structure.	Roof garden is designed to be
		built, but it has not been
		completed yet.
Table 9.1	Sensitive streetscape design should be incorporated along all new roads and streets.	N/A
(CM6)		Greening along the seafront is
		proposed, and under review.
Table 9.1	Structure, ornamental planting shall be provided along amenity strips to enhance the landscape quality.	N/A
(CM7)		Gardens are designed to be
		built, and under review.
Table 9.1	Landscape design shall be incorporated to architectural and engineering structures in order to provide	N/A
(CM8)	aesthetically pleasing designs.	Roof garden is designed to be
		built, and under review.

Ref.		
Table 9.1	Minimize the structure of marine facilities to be built on the seabed and foreshore in order to minimize the	N/A
(CM9)	affected extent to the waterbody	No marine facilities for this
		project.
Table 9.2	Use of decorative screen hoarding/boards	1
(MCP1)		
Table 9.2	Early introduction of landscape treatments	N/A
(MCP2)		No landscape treatments during
		this stage.
Table 9.2	Adoption of light colour for the temporary ventilation shafts for the basement during the transition period.	N/A
(MCP3)		No ventilation shafts for this
		project.
Table 9.2	Control of night time lighting	1
(MCP4)		
Table 9.2	Use of greenery such as grass cover for the temporary open areas will help achieve the visual balance and soften	N/A
(MCP5)	the hard edges of the structures.	No temporary open areas for
		this project.

- N/A Not Applicable
- Implemented
- Obs Observed
- Rem Reminder

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction works (i.e. 3 October 2020 for Zone 2A Foundation, Excavation and Lateral Support Works) to the end of the reporting month and are summarised in the Table K-1 below respectively.

Table K-1: Statistics for complaints, notifications of summons and successful prosecutions for Zone2A Foundation, Excavation and Lateral Support Works

Reporting Period		Cumulative Statistics		
	Complaints	Notifications of summons	Successful prosecutions	
This reporting month	1	0	0	
From 03 October 2020 to	11	0	0	
end of the reporting month	11	0	U	

END OF THE REPORT