Development at West Kowloon Cultural District

Monthly Environmental Monitoring and Audit (EM&A) Report for December 2021

12 January 2022

In accordance with the Environmental Permit, Condition 3.4, this Monthly EM&A Report has been certified by the Environmental Team Leader (ETL) and verified by the Independent Environmental Checker (IEC) as complying with the requirements as set out in Sections 1, 10, 11, 12 and 13 of the EM&A Manual.

serumed by:	Am			
	CK WU			
	Environmental Team Leader (ETL)			
	West Kowloon Cultural District Authority			
Date	12 January 2022			
Verified by:	/n			
	Claudine LEE			
	Independent Environmental Checker (IEC)			
	Meinhardt Infrastructure and Environment Ltd			
Date	12 January 2022			

Certified by:

This Report Consists of:

Part-1: EM&A at Lyric Theatre Complex

and

Part-2: EM&A for Foundation Works in Zones 2A, 2B & 2C

Part-1: EM&A at Lyric Theatre Complex

Lyric Theatre Complex

Mott MacDonald 3/F International Trade Tower 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 mottmac.hk

Contents

Exe	ecutive	summa	ry	1
1	Intro	duction		3
	1.1	Backgro	bund	3
	1.2	•	Organisation	3
	1.3	-	of Construction Works in the Reporting Period	4
	1.4		ry of EM&A Requirements and Alternative Monitoring Locations	4
		1.4.1	EM&A Requirements	4
		1.4.2	Alternative Monitoring Locations	5
2	Impa	act Monit	toring Methodology	7
	2.1	Introduc	etion	7
	2.2	Air Qua	lity	7
		2.2.1	Monitoring Parameters, Frequency and Duration	7
		2.2.2	Monitoring Locations	7
		2.2.3	Monitoring Equipment	7
		2.2.4	Monitoring Methodology	8
	2.3	Noise		11
		2.3.1	Monitoring Parameters, Frequency and Duration	11
		2.3.2	Monitoring Location	11
		2.3.3	Monitoring Equipment	11
		2.3.4	Monitoring Methodology	11
	2.4	Landsca	ape and Visual	12
		2.4.1	Monitoring Program	12
3	Mon	itoring R	esults	13
	3.1	Impact I	Monitoring	13
	3.2	Air Qua	lity Monitoring	13
		3.2.1	1-hour TSP	13
		3.2.2	24-hour TSP	13
	3.3	Noise M	l onitoring	14
	3.4	Landsca	ape and Visual Impact	14
4	Site	Environr	mental Management	15
	4.1	Site Ins	pection	15
	4.2		on the Solid and Liquid Waste Management Status	15
	4.3		of Environmental Licenses and Permits	16
	4.4	Recomr	mended Mitigation Measures	16

5	Com	pliance with Environmental Permit	18
6		ort in Non-compliance, Complaints, Notification of Summons and essful Prosecutions	19
	6.1 6.2 6.3	Record on Non-compliance of Action and Limit Levels Record on Environmental Complaints Received Record on Notifications of Summons and Successful Prosecution	19 19 19
7	Futur	re Key Issues	20
	7.1 7.2 7.3	Construction Works for the Coming Month(s) Key Issues for the Coming Month Monitoring Schedule for the Coming Month	20 20 21
8	Conc	clusions and Recommendations	22
	8.1 8.2	Conclusions Recommendations	22 22
Figu	re 1	Site Layout Plan and Monitoring Stations	23
App	endice	es es	24
A.	Proje	ect Organisation	25
B.	Tenta	ative Construction Programme	26
C.	Actio	n and Limit Levels for Construction Phase	27
D.	Even Impa	t and Action Plan for Air Quality, Noise, Landscape and Visual ct	28
E.	Moni	toring Schedule	29
F.	Calib	ration Certifications	30
G.	Grap	hical Plots of the Monitoring Results	31
Н.	Mete	orological Data Extracted from Hong Kong Observatory	32
l.	Wast	e Flow table	33
J.	Envir	conmental Mitigation Measures – Implementation Status	34

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

35

K.

Executive summary

Mott MacDonald Hong Kong Limited (MMHK) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction of M+ Museum Main Works (Contract No.: CC/2015/3A/022) and Lyric Theatre Complex including the Foundation Works (Contract No.: CC/2015/3A/014), L1 Contract (Contract No. CC/2017/3A/030) and L2 Contract (Contract No. CC/2017/3A/031) at West Kowloon Cultural District (WKCD) (The Project) as part of the WKCD development. The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) was commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO.

This Monthly EM&A Report presents the monitoring works at Lyric Theatre Complex (L2 Contract) from 1 December to 31 December 2021.

Exceedance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Noise in this reporting month.

Implementation of Mitigation Measures

Construction phase weekly site inspections were carried out on 1, 9, 15, 22 and 29 December 2021 for Lyric Theatre Complex (L2 Contract) to confirm the implementation measures undertaken by the Contractor in the reporting month. The outcomes are presented in Section 4 and the status of implementation of mitigation measures in the site is shown in **Appendix J**.

Landscape and visual impact inspections were conducted as part of the abovementioned weekly site inspections during the reporting month. No adverse comment on landscape and visual aspects was made during these inspections.

Record of Complaints

No environmental complaint was recorded in the reporting month.

Record of Notifications of Summons and Successful Prosecutions

No notifications of summons and successful prosecutions were recorded in the reporting month.

Future Key Issues

The major site works for L2 to be commissioned in the coming month include:

LTC construction

Structure (Slab, wall, columns and beam)

- Falsework and formwork erection
- Reinforcement work
- Concrete work

ABWF & MEP work

- ASDA and Lyric Theatre Promenade
 - Structure and BS works
- DSC cofferdam (Cofferdam A)
 - Backfilling
- Extended basement
 - ABWF & MEP work
 - RC water tank
 - RC duct slab (Forms/Rebar/Concrete)
 - Carpark area plaster and paint
- Underpass and Associated Area
 - RC Structure
 - ABWF & MEP work
- M+ Day 2 Works
 - Remove Plenum Block Wall & make good opening for Louvre
- P32 Interim Development
 - Structure works (Scaffold/forms/rebar concrete)

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

1 Introduction

1.1 Background

Mott MacDonald Hong Kong Limited (MMHK) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction of M+ Museum Main Works (Contract No.: CC/2015/3A/022) and Lyric Theatre Complex including the Foundation Works (Contract No.: CC/2015/3A/014), L1 Contract (Contract No. CC/2017/3A/030) and L2 Contract (Contract No. CC/2017/3A/031) at West Kowloon Cultural District (WKCD) (The Project) as part of the WKCD development. The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) were commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO. The captioned projects include part of the abovementioned underpass road located within the site boundary also falls under this same category.

The M+ Museum development aims to provide an iconic presence for the M+ Museum, semi-transparent vertical plane, housing education facilities, a public restaurant and museum offices. At ground and lower levels, generous access will be provided to the park and other West Kowloon Cultural District facilities, alongside a public resource centre, theatres, retail and dining, and back-of-house functions.

The 1,200-seat Lyric Theatre Complex will be Hong Kong's first world-class facility for dance performances, including ballet, contemporary and Chinese dance forms. In the run up to the opening of further major performing arts venues in the WKCD, it will also be used for a wide variety of performing arts events including drama, opera and musical performances. The Lyric Theatre Complex will act as a platform for Hong Kong's leading arts organisations and be a new major venue to show programmes from Asia and worldwide.

The Monthly EM&A Report is prepared in accordance with the Condition 3.4 of the Environmental Permit No. EP-453/2013/B. This Monthly EM&A Report presents the monitoring works at Lyric Theatre Complex (L2 Contract) from 1 December to 31 December 2021. The purpose of this report is to summarise the findings in the EM&A of the project over the reporting period.

1.2 Project Organisation

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Status of Construction Works in the Reporting Period

During the reporting period, construction works at L2 undertaken include:

LTC construction

Structure (Slab, wall, columns and beam)

- Falsework and formwork erection
- Reinforcement work
- Concrete work

ABWF & MEP work

- ASDA and Lyric Theatre Promenade
 - Structure and BS works
- DSC cofferdam (Cofferdam A)
 - DCS related works
 - DI pipe leakage tests
- Extended basement
 - ABWF & MEP work
 - RC water tank
 - RC duct slab (Forms/Rebar/Concrete)
 - Carpark area plaster and paint
- Underpass and Associated Area
 - RC Structure (Waffle Ceiling)
 - ABWF & MEP work
- M+ Day 2 Works
 - Demolish existing RC Wall
 - Breaking existing slab
- P32 Interim Development
 - Structure works (Scaffold/forms/rebar concrete)

The Construction Works Programme of Lyric Theatre Complex (L2 Contract) is provided in **Appendix B**. A layout plan of the Project is provided in **Figure 1**. Please refer to **Table 4.1** on the status of the environmental licenses.

1.4 Summary of EM&A Requirements and Alternative Monitoring Locations

The EM&A programme requires environmental monitoring of air quality, noise, landscape and visual as specified in the approved EM&A Manual.

1.4.1 EM&A Requirements

A summary of impact EM&A requirements is presented in **Table 1.1**.

Table 1.1: Summary of Impact EM&A Requirements

Parameters	Descriptions	Locations	Frequencies
Air Quality	24-Hour TSP	AM1 - International Commerce Centre	At least once every 6 days
	1-Hour TSP	AM1 - International Commerce Centre	At least 3 times every 6 days
	24-Hour TSP	AM2 - The Harbourside Tower 1	At least once every 6 days
	1-Hour TSP	AM2 - The Harbourside Tower 1	At least 3 times every 6 days
Noise	Leq, 30 minutes	NM1- The Harbourside Tower 1	Weekly
Landscape & Visual	Monitor implementation of proposed mitigation measures during the construction stage	As described in Table 9.1 and 9.2 of the EM&A Manual	Bi-weekly

1.4.2 Alternative Monitoring Locations

In the context of the monitoring activities at M+ Museum and the Lyric Theatre Complex, three monitoring stations had been considered, including AM1 (International Commerce Centre), AM2 (The Harbourside Tower 1) for air monitoring, and NM1 (The Harbourside Tower 1) for noise monitoring. Other monitoring locations (i.e. AM3 to AM5 and NM2 to NM5) were so far away from M+ Museum and the Lyric Complex and could not be representative for impact monitoring.

The Harbourside management office formally rejected our proposal of setting up air quality and noise monitoring equipment on its premises at the podium level of Tower 1 (AM2/NM1) on 10 November 2015. Nevertheless, a suitable air quality monitoring location at AM2 was identified on the ground floor in front of The Harbourside Tower 1, which is at the same location as that of baseline monitoring for consistency. No management approval is required on the ground floor for conducting the air monitoring. However, the electricity supply at AM2 was suspended from 31 August 2016. In order to have a more secure electricity supply, an alternative air monitoring location (AM2A) was identified at Austin Road West opposite to The Harbourside Tower 1, which is close to Lyric Theatre Complex site entrance. This alternative air monitoring location was approved by EPD on 28 September 2016. Due to the works programme, the air monitoring location AM2A has been relocated to the alternative monitoring location AM2B at the 1st floor of Gammon's site office, which was approved by EPD on 21 February 2019. In view of the upcoming construction works to be undertaken at the air monitoring station AM2B, AM2B was no longer available for conducting the impact air quality monitoring. Hence, an alternative air monitoring location was identified on the ground floor in front of The Harbourside Tower 1 (AM2) which is at the same location as the baseline monitoring and this previously approved monitoring location had also been used for the EM&A Programme from November 2015 to August 2016, the relocation was approved by EPD on 27 May 2021.

Alternative noise monitoring location was identified at The Arch (NM2); however, The Arch management office formally rejected our proposal of setting up noise monitoring equipment on its premises on 23 November 2015. On the other hand, noise monitoring at G/F of Harbourside could not be representative. However, approval from the management office of the International Commerce Centre has been granted on 29 February 2016 for conducting noise monitoring at the alternative noise monitoring location identified at the podium floor (NM1A) which is free from screening to the construction activities.

In short, 2 air quality monitoring stations and 1 noise impact monitoring station were confirmed for the impact monitoring.

The Environmental Quality Performance Limits for air quality and noise are shown in **Appendix** C

The Event and Action Plan for air quality, construction noise, and landscape and visual are shown in **Appendix D**.

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**.

2 Impact Monitoring Methodology

2.1 Introduction

For air quality and noise, the monitoring methodology, including the monitoring locations, monitoring equipment used, monitoring parameters, and frequency and duration etc., for air quality and noise are detailed in this Section. The environmental monitoring schedules for the reporting period and the tentative monitoring schedule for the coming month are provided in **Appendix E**.

For landscape and visual impact, the relevant EM&A monitoring requirements and details are also presented in this Section.

2.2 Air Quality

2.2.1 Monitoring Parameters, Frequency and Duration

Table 2.1 summarizes the monitoring parameters, frequency and duration of the TSP monitoring.

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency	Duration
24-hour TSP	At least once in every six-days	24 hours
1-hour TSP	At least 3 times every six-days	60 minutes

2.2.2 Monitoring Locations

Currently, the works under the captioned project are confined in the western part of the WKCD site. Therefore, only the monitoring stations AM1 and AM2 were set up at the proposed locations in accordance with updated EM&A Manual. Location of the monitoring station is given in **Table 2.2** and shown in **Figure 1**.

Table 2.2: Air Quality Monitoring Station

Monitoring Station	Location
AM1	International Commerce Centre (ICC)
AM2	The Harbourside Tower 1 – Ground Floor

2.2.3 Monitoring Equipment

For 24-hour TSP air quality monitoring, High Volume Sampler (HVS) was used at air monitoring station AM1 and portable direct reading dust meter was used at air monitoring station AM2 due to the unavailability of power supply for HVS at / in the vicinity of the AM2. The portable direct reading dust meter is capable of producing comparable results as that by the HVS method. For 1-hour TSP monitoring, portable direct reading dust meter was used for the measurement.

Table 2.3 summarizes the equipment used in the impact air quality monitoring. Copies of the calibration certificates for the calibration kit and portable dust meters are attached in **Appendix F**.

Table 2.3: TSP Monitoring Equipment

Equipment	Model
24-hour TSP monitoring	
High Volume Sampler	TE-5170 (Serial No: 0767)
Calibrator	TE-5025A (Orifice I.D.: 2454)
Portable direct reading dust meter	Sibata LD-5R (Serial No.: 781281)
1-hour TSP monitoring	
Portable direct reading dust meter	Sibata LD-3B (Serial No.: 276017 and 2Z6239)

Calibration of the HVS (five point calibration) using Calibration Kit was carried out every two months. The HVS calibration orifice will be calibrated annually. Calibration certificate of the TE-5025A Calibration Kit and the HVS are provided in **Appendix F**.

The portable direct reading dust meter should be determined periodically (e.g. annually) by the HVS to check the validity and accuracy of the results measured by direct reading method.

2.2.4 Monitoring Methodology

24-hour TSP Monitoring (HVS)

Installation

The HVS was installed at the site boundary. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of 2 metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of 2 metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the sampler and to obtain access to the monitoring station.
- A secured supply of electricity is needed to operate the sampler.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- The filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 μm (DOP) particles.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5 %. A convenient working RH was 40%. All preparation of filters was done by Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory.</p>

Field Monitoring Procedures

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.3 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated upon installation and thereafter at bi-monthly intervals. The calibration kits were calibrated annually.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

24-hour TSP Monitoring (Portable direct reading dust meter)

Field Monitoring

The measuring procedures of the portable direct reading dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.

- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 24 hours for the 24-hour TSP measurement.
- Push "START/STOP" to start the 24-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 24 hours.

Maintenance and Calibration

- The portable direct reading dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

2.3 Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Table 2.4 summarizes the monitoring parameters, frequency and duration of noise monitoring. The noise in A-weighted levels L_{eq} , L_{10} and L_{90} are recorded in a 30-minute interval between 0700 and 1900 hours.

Table 2.4: Noise Monitoring Parameters, Period and Frequency

Time Period	Parameters	Frequency
Daytime on normal weekdays (0700-1900 hours)	$L_{eq}(30 \text{ min}), L_{90}(30 \text{ min}) \; \& \; L_{10} \; (30 \text{ min})$	Once every week

2.3.2 Monitoring Location

Currently, the works under the captioned project are confined in the western part of the WKCD site. Therefore, only the monitoring station NM1A was set up. Location of the monitoring station is given in **Table 2.5** and shown in **Figure 1**.

Table 2.5: Noise Monitoring Station

Monitoring Station	Location
NM1A	International Commerce Centre (ICC)

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{Aeq}) and percentile sound pressure level (L_{x}). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

Monitoring Station	Equipment Model		
	Integrating Sound Level Meter	Calibrator	
NM1A	Rion NL-52 (Serial No. 00131627)	LARSON DAVIS CAL200 (Serial No.11334)	

2.3.4 Monitoring Methodology

Field Monitoring

- The microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- Free Field measurement was made at the monitoring locations.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast
 - time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement

- was more than 1 dB, the measurement would be considered invalid and has to be repeated after re-calibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- A correction of +3dB(A) was made to the free field measurements.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

2.4 Landscape and Visual

2.4.1 Monitoring Program

Table 2.7 details the monitoring program (as proposed in the WKCD EIA report) for landscape and visual impact during the construction phase.

Table 2.7: Monitoring Program for Landscape and Visual Impact during Construction Phase

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Monitor implementation of proposed mitigation measures during the construction stage.	Bi-weekly	ET to report on Contractor's compliance	Counter- signed by IEC

During the landscape and visual impact monitoring, any changes in relation to the landscape and visual amenity should be monitored with reference to the baseline conditions of the site. In addition, mitigation measures were proposed in the WKCD EIA report to minimise the landscape and visual impacts during the construction phase. The proposed mitigation measures as shown in Table 9.1 and Table 9.2 of the EM&A Manual should be checked for proper implementation.

3 Monitoring Results

3.1 Impact Monitoring

Construction impact monitoring for air quality, noise and landscape and visual impact was undertaken in compliance with the EM&A Manual during the reporting month.

3.2 Air Quality Monitoring

3.2.1 1-hour TSP

Results of 1-hour TSP at the monitoring location AM1 and AM2 are summarised in **Table 3.1**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.1: Summary of 1-hour TSP monitoring results

Monitoring Station	3		Start 1-hour TSP (µg/m3)			Range	Action	Limit
	Date	Time	1st Result	2nd Result	3rd Result	(µg/m3)	Level (µg/m3)	Level (µg/m3)
	02-Dec-21	8:23	30	28	24		070.7	500
	08-Dec-21	8:23	21	32	34	- - - 21-82 -		
0.044	14-Dec-21	8:23	51	48	44			
AM1	20-Dec-21	8:25	68	75	82		273.7	
	24-Dec-21	8:23	64	70	76			
	30-Dec-21	8:25	64	71	78			
	02-Dec-21	8:38	39	35	30	- - - 30-86 274.2 -	0740	500
	08-Dec-21	8:37	40	36	45			
4140	14-Dec-21	8:39	60	49	47			
AM2	20-Dec-21	8:39	70	78	86		500	
	24-Dec-21	8:38	66	73	79			
	30-Dec-21	8:40	66	72	79			

3.2.2 24-hour TSP

Results of 24-hour TSP at the monitoring location AM1 and AM2 are summarised in **Table 3.2**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.2: Summary of 24-hour TSP monitoring results

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
	02-Dec-21	08:20	21		44.05	260
	08-Dec-21	08:20	29	_		
AM1	14-Dec-21	08:20	11	11-35 143.6		
AIVII	20-Dec-21	08:22	19		200	
	24-Dec-21	08:20	35			
	30-Dec-21	08:22	12			
AM2	02-Dec-21	08:35	25	00.44	00.44	
	08-Dec-21	08:34	32	20-41	151.1	260

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
	14-Dec-21	08:35	20			
	20-Dec-21	08:36	27			
	24-Dec-21	08:35	41	-		
	30-Dec-21	08:37	30	-		

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.3 Noise Monitoring

The construction noise monitoring results at the monitoring location NM1A are summarized in **Table 3.3**. Graphical plots of the monitoring data and the station set-up of a free-field measurement are shown in **Appendix G**.

Table 3.3: Summary of noise monitoring results during normal weekdays

Monitoring Date	Start Time	End Time	L _{eq} (30 mins)*, dB(A)	Limit Level for L _{eq} (dB(A))
02-Dec-21	09:21	09:51	68	
08-Dec-21	09:22	09:52	68	-
14-Dec-21	09:23	09:53	68	75
20-Dec-21	09:23	09:53	68	-
30-Dec-21	09:25	09:55	68	-

Remarks:

No exceedance (Action/Limit Level) of construction noise was recorded in the reporting month.

3.4 Landscape and Visual Impact

Landscape and visual impact inspections were conducted as part of the weekly site inspections on 1, 15 and 29 December 2021 for Lyric Theatre Complex (L2 Contract) during the reporting month. As reviewed by the registered Landscape Architect, no adverse comment on landscape and visual aspects was made during these inspections.

The landscape and visual mitigation measures were implemented during the reporting period. The summary of implementation status of the environmental mitigation measures is provided in **Appendix J**.

^{* +3}dB (A) correction was applied to free-field measurement.

4 Site Environmental Management

4.1 Site Inspection

Construction phase weekly site inspections were carried out on 1, 9, 15, 22 and 29 December 2021 at Lyric Theatre Complex (L2 Contract). The joint site inspection with IEC, ET, ER and Contractor was held on 15 December 2021. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.1.**

Table 4.1: Summary of Site Inspections and Recommendations for L2

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close- out (Date)
01-Dec-21	Air Quality	Dry haul road was observed. The contractor has contractor was reminded to increase water spraying frequency to avoid dust impact. The contractor has increased water spraying frequency to avoid dust impact.		03-Dec-21
09-Dec-21	Air Quality	The contractor should increase water spraying frequency to avoid dust impact. The contractor increased water spraying frequency to avoid impact.		09-Dec-21
09-Dec-21	Water Quality	Chemical containers were observed on ground, the contractor was reminded to provide suitable drip trays for the chemical containers. The contractor has provided suitable drip trays for the chemical containers.		10-Dec-21
09-Dec-21	Waste Management	The contractor should remove the waste regularly.	The contractor has removed the waste regularly.	14-Dec-21
15-Dec-21	Water Quality	The contractor should ensure the wastewater treatment facility is in good condition and working properly.	The contractor has ensured the wastewater treatment facility is in good condition and working properly.	16-Dec-21
15-Dec-21	Noise	The contractor should provide suitable noise insulating fabric for the breaker.	The contractor has provided suitable noise insulating fabric for the breaker.	16-Dec-21
15-Dec-21	Waste Management	The contractor was reminded to remove the waste regularly.	The contractor has removed the waste regularly.	16-Dec-21
29-Dec-21	Water Quality	The contractor should properly cover the chemical containers to avoid chemical spillage.	-	On-going
29-Dec-21	Waste Management	The contractor should clean up the waste in the works area regularly.	-	On-going

4.2 Advice on the Solid and Liquid Waste Management Status

The Contractor has been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting will be carried out on site. A sufficient number of receptacles were available for general refuse collection.

As advised by the Lyric Theatre Complex (L2 Contract) Contractor, 537.0 tonnes, 0.0 tonne and 39.6 tonnes of inert C&D materials were disposed of as public fill to Tseung Kwan O Area 137 Public Fill, Tuen Mun Area 38 Public Fill and Chai Wan Public Fill Barging Point respectively in the reporting month, while 590.6 tonnes of general refuse were disposed of at SENT and WENT landfill. 13.4 tonnes of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber were collected by recycling contractors in the reporting month. 0.0 tonne of inert C&D material was reused in other projects and 0.0 tonne of inert C&D material was imported for reuse at site. 0.0 tonne of inert C&D material was disposed to sorting facility and 0.0 tonne of chemical waste was collected by licensed contractors in the reporting period.

The actual amounts of different types of waste generated by the activities of construction works at Lyric Theatre Complex in the reporting month are shown in **Appendix I**.

4.3 Status of Environmental Licenses and Permits

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.2**.

Table 4.2: Status of Environmental Submissions, Licenses and Permits for L2

Permit / License No. /	Valid Period		Status	Remarks		
Notification / Reference No.	From	From To				
Chemical Waste Producer Re	egistration					
WPN:5213-217-G2347-39	13-Sep-21	-	Valid			
Billing Account Construction	Billing Account Construction Waste Disposal					
7032787	02-Jan-19	-	Account Active			
Construction Noise Permit						
GW-RE1065-21	29-Oct-21	24-Apr-22	Valid			
Wastewater Discharge Licen	Wastewater Discharge License					
WT-00030694-2018	11-Apr-18	30-Apr-23	Valid			
Notification under Air Pollution Control (Construction Dust) Regulation						
448474	27-Aug-19	-	Notified			

4.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**. In particular, the following mitigation measures were brought to attention during the site inspections:

Air Quality

- Water spraying shall be maintained for active construction areas
- High standard of housekeeping shall be maintained to prevent emission of fugitive dust

Noise

Noise insulating fabric shall be adopted for certain PME

Water Quality

- Oils and fuels shall be stored in designated areas which have pollution prevention facilities
- All drainage facilities and erosion and sediment control structures shall be maintained to ensure proper and efficient operation at all times and particularly during rainstorms

Waste Management

 All waste generated at site shall be collected and disposed to an appropriate facility regularly

5 Compliance with Environmental Permit

The status of the required submission under the EP during the reporting period is summarized in **Table 5.1**.

Table 5.1: Status of Submissions under the Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report for November 2021	14 December 2021

6 Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions

6.1 Record on Non-compliance of Action and Limit Levels

There was no breach of Action or Limit Levels for Air Quality and Noise monitoring in the reporting month.

6.2 Record on Environmental Complaints Received

No environmental complaint was received in the reporting month.

The cumulative statistics on complaints were provided in **Appendix K**.

6.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecutions were received this month. The cumulative statistics on notifications of summons and successful prosecutions were provided in **Appendix K**.

7 Future Key Issues

7.1 Construction Works for the Coming Month(s)

The major site works for L2 to be commissioned in the coming month include:

LTC construction

Structure (Slab, wall, columns and beam)

- Falsework and formwork erection
- Reinforcement work
- Concrete work

ABWF & MEP work

- ASDA and Lyric Theatre Promenade
 - Structure and BS works
- DSC cofferdam (Cofferdam A)
 - Backfilling
- Extended basement
 - ABWF & MEP work
 - RC water tank
 - RC duct slab (Forms/Rebar/Concrete)
 - Carpark area plaster and paint
- Underpass and Associated Area
 - RC Structure
 - ABWF & MEP work
- M+ Day 2 Works
 - Remove Plenum Block Wall & make good opening for Louvre
- P32 Interim Development
 - Structure works (Scaffold/forms/rebar concrete)

7.2 Key Issues for the Coming Month

Key issues to be considered at Lyric Theatre Complex in the coming month include:

- Generation of dust from construction works;
- Noise impact from operating equipment and machinery on-site;
- Generation of site surface runoffs and wastewater from activities on-site;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site; and
- Operating conditions of drainage facilities.

7.3 Monitoring Schedule for the Coming Month

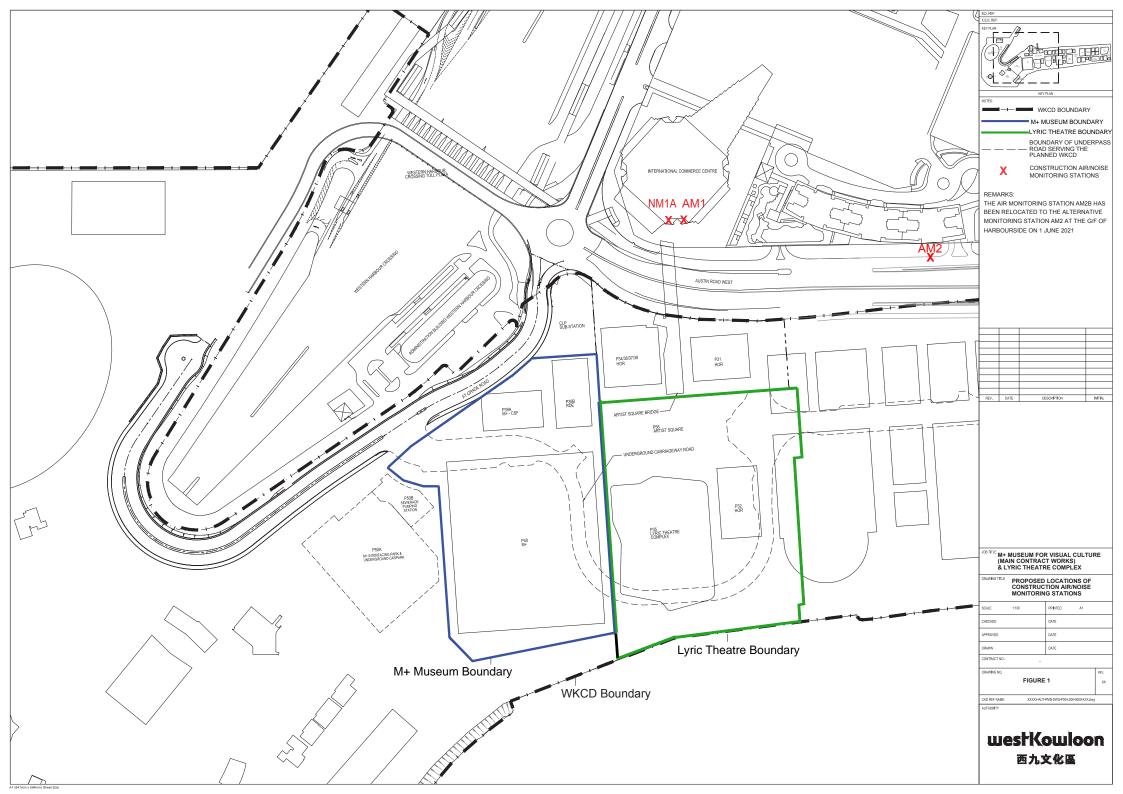
The environmental site inspection and environmental monitoring will be continued in the coming month. The tentative monitoring schedule for the coming month is shown in the **Appendix E**.

8 Conclusions and Recommendations

8.1 Conclusions

The EM&A programme as recommended in the EM&A Manual has been undertaken. The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) was commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

Monitoring of air quality and noise with respect to the Project is underway. In particular, the 1-hour TSP, 24-hour TSP, noise level (as L_{eq} , 30 minutes) under monitoring have been checked against established Action and Limit levels. There was no breach of Action and Limit Levels for 1-hour TSP, 24-hour TSP and noise in the reporting month.


No environmental complaint was recorded in the reporting month. No notifications of summons or successful prosecutions were received during the reporting month.

Weekly construction phase site inspections and bi-weekly landscape and visual impact inspections were conducted during the reporting month as required. It was observed that the Contractors had implemented all possible and feasible mitigation measures to mitigate the potential environmental impacts during construction phase works.

8.2 Recommendations

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

Figure 1 Site Layout Plan and Monitoring Stations

Appendices

- A. Project Organisation
- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow table
- J. Environmental Mitigation Measures Implementation Status
- K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

A. Project Organisation

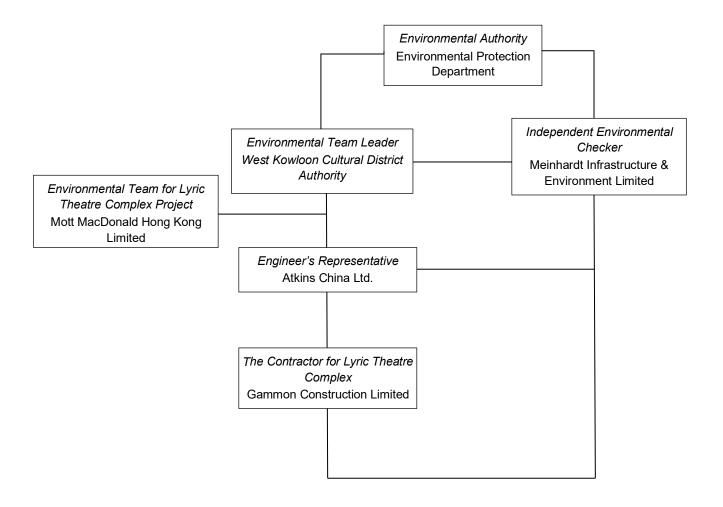
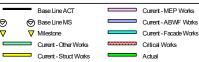


Table A-1: Contact information


Company Name	Role	Name	Telephone	Email
Atkins China Ltd.	Resident Engineer	Ms. Gloria Lui	5506 6361	gloria.lui@atkinsglobal.com
Meinhardt Infrastructure & Environment Limited	Independent Environmental Checker	Ms. Claudine Lee	2859 5409	claudinelee@meinhardt.com.hk
Gammon Construction Limited (L2)	Environmental Manager	Mr. Ivan Chiu	9416 1664	ivan.chiu@gammonconstruction.com
Mott MacDonald Hong Kong Ltd.	Contractor's Environmental Team Leader	Mr. Thomas Chan	2828 5757	thomas.chan@mottmac.com
West Kowloon Cultural District Authority	Senior Project Manager (Safety, Health and Environment)	Mr. C.K. Wu	5506 9178	ck.wu@wkcda.hk

B. Tentative Construction Programme

[LoE] CC N Lifts & Escalators

SUM40

L2 CMWP_R01_15 Approved 29Sep20 - 15th Update DD=30 Nov 2021

19-Feb-24

15-Dec-21

23-Aug-21

28-Apr-23

0

Date	Revision	Checked	Approved
06-Dec-21	CMWP Rev_1_15 - 15th Update DD 30Nov21	NS	IH

C. Action and Limit Levels for Construction Phase

Air Quality

The Action and Limit Levels for 1-hour and 24-hour TSP for the monitoring station are presented in following tables:

Table C-1: Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level (mg/m³)	Limit Level (mg/m³)
AM1	273.7	500
AM2	274.2	500

Table C-2: Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (μg/m³)	Limit Level (µg/m³)
AM1	143.6	260
AM2	151.1	260

<u>Noise</u>

The Action and Limit Levels for Noise for the monitoring stations are presented in following table:

Table C-3: Action and Limit Levels for Construction Noise

Time Period & Monitoring Locations	Action Level	Limit Level
NM1A		
0700-1900 hours on normal weekdays	When one valid documented complaint is received.	75 dB(A)

D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact

Air Quality

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-1: Event and Action Plan for Air Quality

informed of the results.

Event	Action									
	ET	IEC	WKCDA	Contractor						
Action Level										
1. Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and WKCDA;	Check monitoring data submitted by ET; Check Contractor's working method.	1. Notify Contractor	Rectify any unacceptable practice; Amend working methods if appropriate.						
	Repeat measurement to confirm finding;	0								
	4. Increase monitoring frequency to daily.									
2. Exceedance for two or more consecutive samples	Identify source; Inform IEC and WKCDA;	 Check monitoring data submitted by ET; Check Contractor's 		1. Submit proposals for remedial to WKCDA within three working						
	3. Advise the WKCDA on the effectiveness of the proposed remedial measures;	working method; 3. Discuss with ET and Contractor on possible remedial measures;	 Notify Contractor; Ensure remedial measures properly implemented. 	days of notification; 2. Implement the agree proposals; 3. Amend proposal if						
	4. Repeat measurements to confirm findings;	4. Advise the ET on the effectiveness of the		appropriate.						
	5. Increase monitoring frequency to daily;	proposed remedial measures;								
	6. Discuss with IEC and Contractor on remedial actions required;	5. Monitor the implementation of remedial measures.								
	7. If exceedance continues, arrange meeting with IEC and WKCDA;									
	8. If exceedance stops, cease additional monitoring.									
Limit Level										
Exceedance for one sample	1. Identify source, investigate the causes of exceedance and propose	 Check monitoring data submitted by ET; Check Contractor's 		1. Take immediate action to avoid further exceedance;						
	remedial measures; 2. Inform WKCDA,	working method;	· · · · · · · · · · · · · · · · · · ·	2. Submit proposals for remedial actions to IEC						
	Contractor and EPD;	3. Discuss with ET and Contractor on possible	3. Ensure remedial measures properly	within three working						
	3. Repeat measurement to confirm finding;		implemented.	days of notification;3. Implement the agree						
	4. Increase monitoring frequency to daily;	the effectiveness of the proposed remedial		proposals; 4. Amend proposal if						
	5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA	measures; 5. Monitor the implementation of remedial measures.		appropriate.						

Event Action

- two or more consecutive samples
- 2. Exceedance for 1. Notify IEC, WKCDA, Contractor and EPD;
 - 2. Identify source;
 - 3. Repeat measurement to working method; confirm findings;
 - 4. Increase monitoring frequency to daily;
 - 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented;
 - 6. Arrange meeting with IEC and WKCDA to discuss the remedial actions to be taken;
 - 7. Assess effectiveness of Contractor's remedial actions and keep IEC. EPD and WKCDA informed of the results;
 - 8. If exceedance stops, cease additional monitoring.

- 1. Check monitoring data 1. Confirm receipt of 1. Take immediate submitted by ET;
- 2. Check Contractor's
- 3. Discuss amongst WKCDA, ET, and Contractor on the potential with the Contractor remedial actions;
- 4. Review Contractor's remedial actions whenever necessary to assure their effectiveness measures properly and advise the WKCDA accordingly;
- 5. Monitor the implementation of remedial measures.

- in writing;
- 2. Notify Contractor; 2. Submit proposals for
- 3. In consolidation with the IEC, agree on the remedial measures to be implemented;
- 4. Ensure remedial implemented;
- 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.

- notification of failure action to avoid further exceedance;
 - remedial actions to IEC within three working days of notification;
 - 3. Implement the agreed proposals;
 - 4. Resubmit proposals if problem still not under control;
 - 5. Stop the relevant portion of works as determined by the WKCDA until the exceedance is abated.

Construction Noise

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-2: Event and Action Plan for Construction Noise

Event	Action								
	ET	IEC	WKCDA	Contractor					
Action Level	 Notify WKCDA, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, WKCDA and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	11. Review the investigation results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the WKCDA accordingly; 3. Advise the WKCDA on the effectiveness of the proposed remedial measures.	in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor	mitigation proposals to IEC and WKCDA;					
Limit Level	1. Inform IEC, WKCDA, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and WKCDA on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; 8. If exceedance stops, cease additional monitoring.	Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly.	lin writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures; 5. If exceedance continues, consider stopping the Contractor to	action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC and WKCDA within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the WKCDA until the exceedance is abated.					

Landscape and Visual Impact

In case of non-compliance of landscape and visual impacts, procedures in accordance with the Event and Action Plan should be followed:

Table D-3: Event and Action Plan for Landscape and Visual Impact

Event	Action									
	ET	IEC	WKCDA	Contractor						
Design Check	Design check to make sure the design complies with all the proposed mitigation measures in the EIA report; Prepare and submit	Check report submitted by ET; Recommend remedial design if necessary.	Undertake remedial design if necessary.	-						
	report.									
Non-conformity on one occasion	1. Identify source of non-conformity;	1. Check and verify source of non-conformity;	 Notify Contractor; Ensure remedial 	1. Amend working method as necessary;						
	2. Report to IEC and WKCDA;	2. Discuss remedial actions with ET and	actions are properly implemented.	2. Rectify damage and undertake necessary						
	3. Discuss remedial actions with IEC, WKCDA and Contractor;	Contractor; 3. Advise WKCDA on effectiveness of proposed		replacement and remedial actions.						
	4. Monitor remedial actions until rectification has been completed.	remedial actions; 4. Check implementation of remedial actions.								
Repeated non conformity	-1. Identify source of non- conformity;	1. Check and verify source of non-conformity;	 Notify Contractor; Ensure remedial 	Amend working method as necessary;						
	2. Report to IEC and WKCDA;	2. Check Contractor's working method;	actions are properly implemented.	undertake necessary						
	3. Increase monitoring frequency;	3. Discuss remedial actions with ET and		replacement and remedial actions.						
	4. Discuss remedial actions with IEC, WKCDA and Contractor;	Contractor; 4. Advise WKCDA on effectiveness of proposed								
	5. Monitor remedial actions until rectification has been completed;	remedial actions; 5. Supervise implementation of								
	6. If non-conformity rectified, reduce monitoring frequency back to normal.	remedial actions.								

E. Monitoring Schedule

December 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
28	29	30	Lyric Landscape & Visual Inspection	2 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	3	4
5	6	7	8 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	9	10	11
12	13	14 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	Lyric Landscape & Visual Inspection	16	17	18
19	20 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	21	22	23	24 AM1, AM2 - 24hrTSP, 1hr TSP x3	25
26	27	28	Lyric Landscape & Visual Inspection	30 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	31	1
2	3	Notes: AM1 - International Com AM2 - The Harbourside T NM1A - International Cor	ower 1 - Ground Floor			

January 2022

	December '21					February '22 March '22					2										
S	M	Т	W	Т	F	S	S		M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
			1	2	3	4				1	2	3	4	5			1	2	3	4	5
5	6	7	8	9	10	11	6		7	8	9	10	11	12	6	7	8	9	10	11	12
12	13	14	15	16	17	18	13	3 1	14	15	16	17	18	19	13	14	15	16	17	18	19
19	20	21	22	23	24	25	20) 2	21	22	23	24	25	26	20	21	22	23	24	25	26
26	27	28	29	30	31		2	7 2	28						27	28	29	30	31		

				20 21 20 29 30 31	21 20	27 20 29 30 31			
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday			
						1			
2	3	4	5 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	6	7	8			
9	10	11 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	12	13	14	15			
16	17 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	18	19	20	21 AM1, AM2 - 24hrTSP, 1hr TSP x3	22			
23	24	25	26	27 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	28	29			
30	31 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	Notes AM1 - International Commerce Centre (ICC) AM2 - The Harbourside Tower 1 - Ground Floor NM1A - International Commerce Centre (ICC)							

F. Calibration Certifications

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

0.99993

Location : AM1(ICC)
Calibrated by : K.T.Ho
Date : 16/11/2021

Sampler

Model : TE-5170 Serial Number : S/N 0767

Calibration Orifice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 28 Jan 2021

 Slope (m)
 : 2.06072

 Intercept (b)
 : -0.01465

Correlation Coefficient(r)

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1017 Ta(K) : 297

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.6	3.418	1.666	62	62.23
2	13 holes	9.0	3.011	1.468	52	52.19
3	10 holes	6.8	2.617	1.277	44	44.16
4	7 holes	4.8	2.199	1.074	32	32.12
5	5 holes	3.0	1.738	0.851	20	20.07

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):51.618 Intercept(b):-23.258 Correlation Coefficient(r): 0.9987

Checked by: Date: 20/11/2021

Magnum Fan

RECALIBRATION DUE DATE:

January 28, 2022

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 28, 2021

Rootsmeter S/N: 438320

Ta: 294
Pa: 763.5

°K

Operator: Jim Tisch
Calibration Model #:

IIIII IISCII

TE-5025A

Calibrator S/N: 2454

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)	
1	1	2	1	1.4540	3.2	2.00	
2	3	4	1	1.0210	6.4	4.00	
3	5	6	1	0.9110	8.0	5.00	
4	7	8	1	0.8730	8.8	5.50	
5	9	10	1	0.7200	12.9	8.00	

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H(Ta/Pa)}$				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
1.0140	0.6974	1.4271	0.9958	0.6849	0.8776				
1.0098	0.9890	2.0182	0.9916	0.9712	1.2411				
1.0076	1.1061	2.2564	0.9895	1.0862	1.3875				
1.0066	1.1530	2.3666	0.9885	1.1323	1.4553				
1.0011	1.3904	2.8542	0.9831	1.3654	1.7551				
	m=	2.06072		m=	1.29039				
QSTD	b=	-0.01465	QA	b=	-0.00901				
	r=	0.99993		r=	0.99993				

Calculation	ıs		
Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd= Vstd/ΔTime	Qa=	Qa= Va/ΔTime	
For subsequent flow rat	e calculatio	ns:	
Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$	

Standard Conditions									
Tstd:	Tstd: 298.15 °K								
Pstd:	760 mm Hg								
	Key								
	or manometer reading (in H2O)								
ΔP: rootsme	ter manometer reading (mm Hg)								
	solute temperature (°K)								
	rometric pressure (mm Hg)								
b: intercept									
m: slope	m: slope								

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

: MR K.W. FAN CONTACT

WORK ORDER

HK2108193

CLIENT

: ENVIROTECH SERVICES CO.

SUB-BATCH

: 1

ADDRESS

: RM113, 1/F, MY LOFT, 9 HOI WING ROAD,

DATE RECEIVED : 2-MAR-2021

TUEN MUN, N.T. HONG KONG

DATE OF ISSUE : 15-MAR-2021

PROJECT

NO. OF SAMPLES: 1

CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Redail Fory

Richard Fung

Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH

: HK2108193

CLIENT PROJECT : 1 : ENVIROTECH SERVICES CO.

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2108193-001	S/N: 781281	Equipments	01-Mar-2021	S/N: 781281	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD-5R

Serial No.

781281

Equipment Ref:

Nil

Job Order

HK2108193

Standard Equipment:

Standard Equipment:

Higher Volume Sampler (TSP)

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

13 January 2021

Equipment Verification Results:

Verification Date:

12 March 2021

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:30 ~ 11:31	22.0	1018.6	0.023	3201	26.4
2hr01min	11:35 ~ 11:36	22.0	1018.6	0.044	4833	39.9
2hr	11:40 ~ 13:40	22.0	1018.6	0.039	4046	33.7

Linear Regression of Y or X

Slope (K-factor):

0.0011

Correlation Coefficient

0.9836

Date of Issue

15 March 2021

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0011 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.05 0.045 0.04 0.035 0.03 0.025 0.02 y = 0.0011x - 0.0013 0.015 $R^2 = 0.9674$ 0.01 0.005 0 4 10 0 20 30 40 50

Operator

Fai So

Signature:

Date:

15 March 2021

QC Reviewer: _

Ben Tam

Signature:

D-4-

15 March 2021

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Location ID: Gold King Industrial Building, Kwai Chung

Calibration Room

Date of Calibration: 13-Jan-21

Next Calibration Date: 13-Apr-21

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1019.8 13.4

Corrected Pressure (mm Hg) Temperature (K)

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Calibration Date-> 7-Feb-20

Qstd Slope -> Qstd Intercept -> Expiry Date->

2.03014 -0.04616 7-Feb-21

CALIBRATION

P	late	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
]	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	6.3	6.3	12.6	1.812	55	56.28	Slope = 39.9777
	13	5.1	5.1	10.2	1.633	49	50.14	Intercept = -15.3902
	10	4	4	8.0	1.448	42	42.98	Corr. coeff. $=$ 0.9972
	8	2.6	2.6	5.2	1.172	32	32.75	
	5	1.8	1.8	3.6	0.979	22	22.51	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

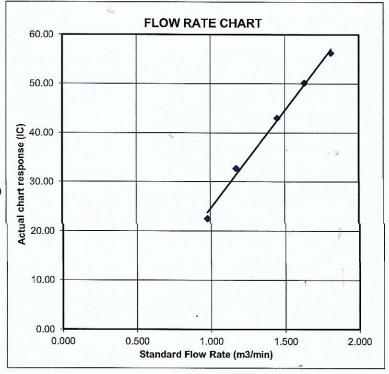
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pay = daily average pressure

RECALIBRATION
DUE DATE:

February 7, 2021

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 7, 2020

Rootsmeter S/N: 438320

Ta: 295

°K

Operator: Jim Tisch

Pa: 745.5

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3730	3.2	2.00
2	3	4	1	0.9820	6.4	4.00
3	5	6	1	0.8780	8.0	5.00
4	7	.8	1	0.8340	8.8	5.50
5	9	10	1	0.6900	12.8	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
0.9866	0.7186	1.4078	0.9957	·0.7252	0.8896				
0.9824	1.0004	1.9909	0.9914	1.0096	1.2581				
0.9802	1.1165	2.2259	0.9893	1.1267	1.4066				
0.9792	1.1741	2.3345	0.9882	1.1849	1.4753				
0.9739	1.4114	2.8155	0.9828	1.4244	1.7792				
	m=	2.03014		m=	1.27124				
QSTD	b=	-0.04616	QA	b=	-0.02917				
	r=	0.99995		r=	0.99995				

	Calculation	IS		
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime	Qa= Va/∆Time		
	For subsequent flow rat	e calculatio	ns:	
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$	

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.co

TOLL FREE: (877)263-761

FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT

: MR K.W. FAN

WORK ORDER

HK2117310

CLIENT

: ENVIROTECH SERVICES CO.

ADDRESS

SUB-BATCH

: 1

: RM113, 1/F, MY LOFT, 9 HOI WING ROAD,

DATE RECEIVED : 29-APR-2021

TUEN MUN, N.T. HONG KONG

DATE OF ISSUE : 11-MAY-2021

PROJECT

NO. OF SAMPLES: 1

CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

K. Sand Jones

Richard Fung

Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH

: HK2117310

: 1

CLIENT PROJECT : ENVIROTECH SERVICES CO.

: ----

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2117310-001	S/N: 276017	Equipments	29-Apr-2021	S/N: 276017	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD-3B

Serial No.

276017

Equipment Ref:

Nil

Job Order

HK2117310

Standard Equipment:

Standard Equipment:

Higher Volume Sampler (TSP)

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

26 April 2021

Equipment Verification Results:

Verification Date:

7 May 2021

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr	09:30 ~ 11:30	26.6	1013.2	0.046	3951	32.9
2hr01min	11:32 ~ 13:33	26.6	1013.2	0.035	3293	27.3
2hr10min	13:35 ~ 15:45	26.6	1013.2	0.036	3519	27.2

0.05

0.045

0.035

0.03 0.025

0.02

0.015

0.01

0

10

20

y = 0.0014x - 0.0004

 $R^2 = 0.9927$

30

40

Linear Regression of Y or X

Slope (K-factor):

0.0014

Correlation Coefficient

0.9963

Date of Issue

10 May 2021

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0014 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

perator : _____ Fai So____ Signature : _____ Date : ____ 10 May 2021

QC Reviewer : _____ Ben Tam ___ Signature : _____ Date : ____ Date : ____ 10 May 2021

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT

: MR K.W. FAN

WORK ORDER

. HK2117311

CLIENT

: ENVIROTECH SERVICES CO.

SUB-BATCH : 1

ADDRESS

PROJECT

: RM113, 1/F, MY LOFT, 9 HOI WING ROAD,

DATE RECEIVED : 29-APR-2021

TUEN MUN, N.T. HONG KONG

DATE OF ISSUE : 11-MAY-2021

NO. OF SAMPLES: 1

CLIENT ORDER

General Comments

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Ridard Jung

Richard Fung

Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER

: HK2117311

SUB-BATCH

: 1

CLIENT PROJECT : ENVIROTECH SERVICES CO.

: ____

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2117311-001	S/N: 2Z6239	Equipments	29-Apr-2021	S/N: 2Z6239	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD-3B

Serial No.

2Z6239

Equipment Ref:

Nil

Job Order

HK2117311

Standard Equipment:

Standard Equipment:

Higher Volume Sampler (TSP)

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

26 April 2021

Equipment Verification Results:

Verification Date:

7 May 2021

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr	09:30 ~ 11:30	26.6	1013.2	0.046	3830	31.9
2hr01min	11:32 ~ 13:33	26.6	1013.2	0.035	3245	26.9
2hr10min	13:35 ~ 15:45	26.6	1013.2	0.036	3369	26.0

Linear Regression of Y or X

Slope (K-factor):

0.0014

Correlation Coefficient

0.9954

Date of Issue

10 May 2021

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0014 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.05 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 10 20 30 40

Operator : ____

Fai So

Signature:

10 May 2021

QC Reviewer:

Ben Tam

Signature:

Data

Date:

10 May 2021

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Location ID: Calibration Room

Next Calibration Date: 26-Jul-21

Date of Calibration: 26-Apr-21

2.10574

-0.00985

18-Jan-22

CONDITIONS

Sea Level Pressure (hPa) 1013.7 Corrected Pressure (mm Hg) 760.275 Temperature (°C) 23.4 Temperature (K)

CALIBRATION ORIFICE

Make-> TISCH Qstd Slope -> Model-> 5025A Qstd Intercept -> Calibration Date-> 19-Jan-21 Expiry Date->

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.9	6.9	13.8	1.774	56	56.16	Slope = 39.9922
13	5.5	5.5	11.0	1.584	50	50.14	Intercept = -13.7742
10	4.2	4.2	8.4	1.385	42	42.12	Corr. coeff. = 0.9961
8	2.7	2.7	5.4	1.111	32	32.09	
5	1.9	1.9	3.8	0.933	22	22.06	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

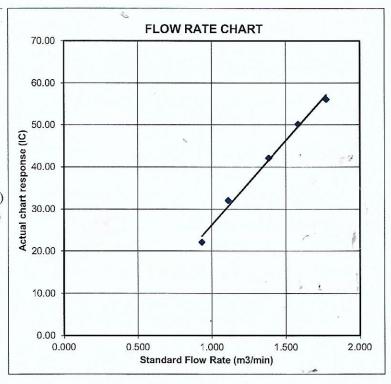
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

RECALIBRATION **DUE DATE:**

January 19, 2022

ertificate of

Calibration Certification Information

Cal. Date: January 19, 2021

Rootsmeter S/N: 438320

Ta: 294 Pa: 755.1 °K

Jim Tisch Operator:

mm Hg

Calibration Model #: TE-5025A Calibrator S/N: 1941

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4830	3.2	2.00
2	3	4	1	1.0420	6.4	4.00
3	5	6	1	0.9290	8.0	5.00
4	7	8	1	0.8840	8.8	5.50
5	9	10	1	0.7340	12.9	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
1.0029	0.6762	1.4192	0.9958	0.6715	0.8824				
0.9986	0.9583	2.0071	0.9915	0.9516	1.2479				
0.9965	1.0726	2.2440	0.9894	1.0650	1.3952				
0.9954	1.1260	2.3535	0.9883	1.1180	1.4633				
0.9899	1.3487	2.8385	0.9829	1.3391	1.7648				
	m=	2.10574		m=	1.31858				
QSTD	b=	-0.00985	QA	b=	-0.00612				
	r=	0.99992		r=	0.99992				

	Calculation	s	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
7.	For subsequent flow rate	e calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

- 1	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: (

C213255

證書編號

· ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC21-1016)

Date of Receipt / 收件日期: 24 May 2021

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Rion NL-52

Model No. / 型號 Serial No. / 編號

00131627

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

4 June 2021

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By

測試

K P Cheuk

Project Engineer

Certified By

核證

K C Lee Engineer Date of Issue

9 June 2021

簽發日期

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

Website/網址: www.suncreation.com

written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 松元率書

Certificate No.:

C213255

證書編號

校正證書

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
 - 2. Self-calibration was performed before the test.
 - 3. The results presented are the mean of 3 measurements at each calibration point.
 - 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator

C210084

Multifunction Acoustic Calibrator

AV210017

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UUT Setting				d Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	1	94.2	± 1.1

6.1.2 Linearity

	UUT Setting			Applie	d Value	UUT	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 130	L_A	A	Fast	94.00	1	94.2 (Ref.)	
				104.00		104.2	
				114.00		114.2	

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

70,000	UUT Setting			Applie	d Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L_{A}	A	Fast	94.00	1	• 94.2	Ref.
			Slow			94.2	± 0.3

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C213255

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	68.0	-26.2 ± 1.5
					125 Hz	78.0	-16.1 ± 1.5
					250 Hz	85.5	-8.6 ± 1.4
					500 Hz	91.0	-3.2 ± 1.4
					1 kHz	94.2	Ref.
					2 kHz	95.4	$+1.2 \pm 1.6$
					4 kHz	95.2	$+1.0 \pm 1.6$
	Jan La				8 kHz	93.2	-1.1 (+2.1; -3.1)
					16 kHz	86.2	-6.6 (+3.5 ; -17.0)

6.3.2 C-Weighting

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L_{C}	С	Fast	94.00	63 Hz	93.3	-0.8 ± 1.5
			Ell Majiell		125 Hz	94.0	-0.2 ± 1.5
					250 Hz	94.2	0.0 ± 1.4
					500 Hz	94.2	0.0 ± 1.4
					1 kHz	94.2	Ref.
					2 kHz	94.0	-0.2 ± 1.6
					4 kHz	93.4	-0.8 ± 1.6
. 6. 2. 6. 2. 4					8 kHz	91.3	-3.0 (+2.1; -3.1)
					16 kHz	84.3	-8.5 (+3.5; -17.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C2

C213255

證書編號

Remarks: - UUT Microphone Model No.: UC-59 & S/N: 10446

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz: ± 0.35 dB

250 Hz - 500 Hz : \pm 0.30 dB 1 kHz : \pm 0.20 dB 2 kHz - 4 kHz : \pm 0.35 dB 8 kHz : \pm 0.45 dB

16 kHz : $\pm 0.70 \text{ dB}$

 $\begin{array}{ll} 104 \; dB: 1 \; kHz & : \pm 0.10 \; dB \; (Ref. \; 94 \; dB) \\ 114 \; dB: 1 \; kHz & : \pm 0.10 \; dB \; (Ref. \; 94 \; dB) \\ \end{array}$

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

⁻ The uncertainties are for a confidence probability of not less than 95 %.

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration

Certificate No.:

C210001

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC20-2688) Date of Receipt / 收件日期: 18 December 2020

Description / 儀器名稱

Precision Acoustic Calibrator

Manufacturer / 製造商

LARSON DAVIS

Model No. / 型號

CAL200

Serial No. / 編號

11334

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST/測試日期

2 January 2021

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification & user's specified acceptance criteria.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

Assistant Engineer

Certified By 核證

K C Lee Engineer Date of Issue 簽發日期

4 January 2021

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

E-mail/電郵: callab@suncreation.com

Page 1 of 2 Website/網址: www.suncreation.com

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C210001

Certificate No.

CDK1806821

C203952

C201309

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A Description
Universal Counter
Multifunction Acoustic Calibrator
Measuring Amplifier

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	User's Spec.	Uncertainty of Measured Value		
Nominal Value	(dB)	(dB)	(dB)		
94 dB, 1 kHz	93.7	± 0.5	± 0.2		
114 dB, 1 kHz	113.7				

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value (Hz)		
(kHz)	(kHz)	Spec.			
1	1.000	1 kHz ± 1 %	(11Z) ± 1		

Remarks: - The user's specified acceptance criteria (user's spec.) is a customer pre-defined operating tolerance of the UUT, suitable for one's own intended use.

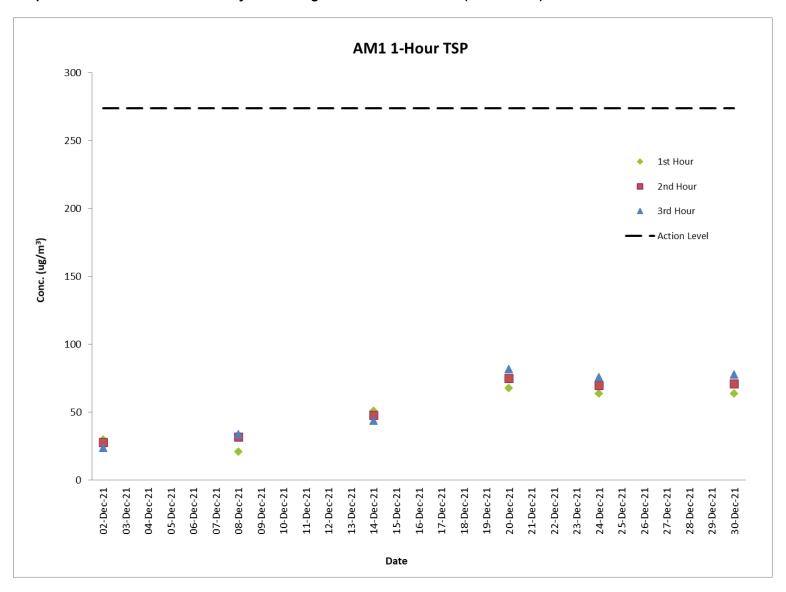
- The uncertainties are for a confidence probability of not less than 95 %.

Note

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

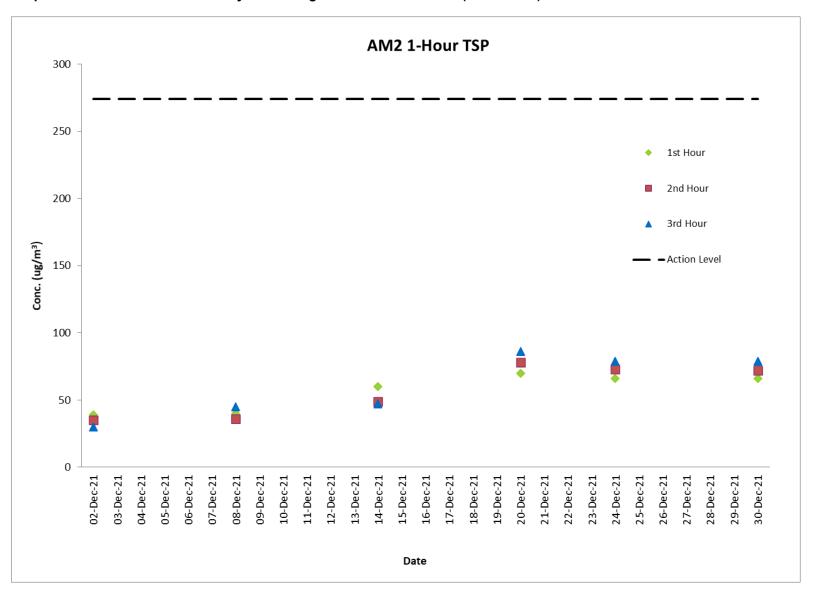
The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.


本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

G. Graphical Plots of the Monitoring Results

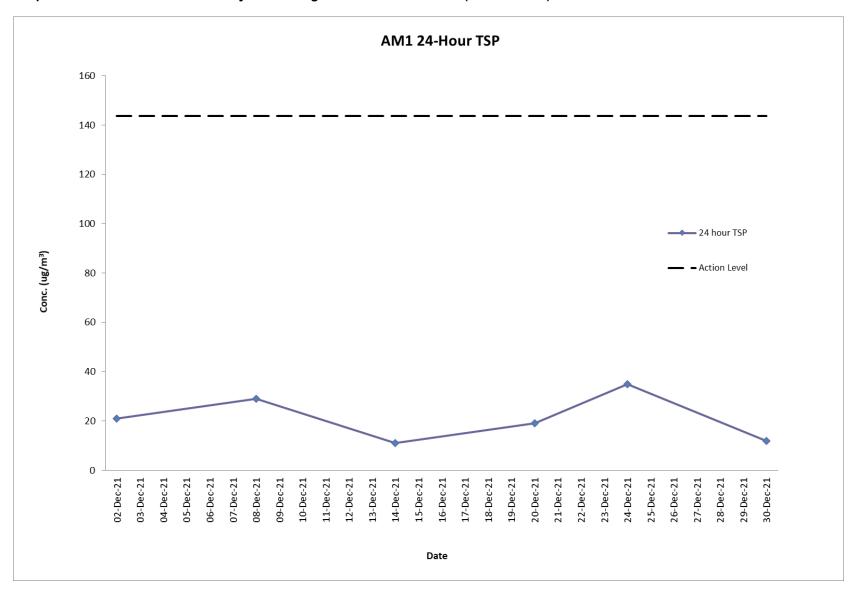
Air Quality Monitoring Result at Station AM1 (1-hour TSP)

	Weather		Conc. (µg/m³)			Action Level	Limit Level
Date	Condition	Time	1 st Hour	2 nd Hour	3 rd Hour	(μg/m³)	(μg/m³)
02-Dec-21	Sunny	8:23 - 11:23	30	28	24	273.7	500
08-Dec-21	Sunny	8:23 - 11:23	21	32	34	273.7	500
14-Dec-21	Cloudy	8:23 - 11:23	51	48	44	273.7	500
20-Dec-21	Cloudy	8:25 - 11:25	68	75	82	273.7	500
24-Dec-21	Cloudy	8:23 - 11:23	64	70	76	273.7	500
30-Dec-21	Sunny	8:25 - 11:25	64	71	78	273.7	500


Graphical Presentation of Air Quality Monitoring Result at Station AM1 (1-hour TSP)

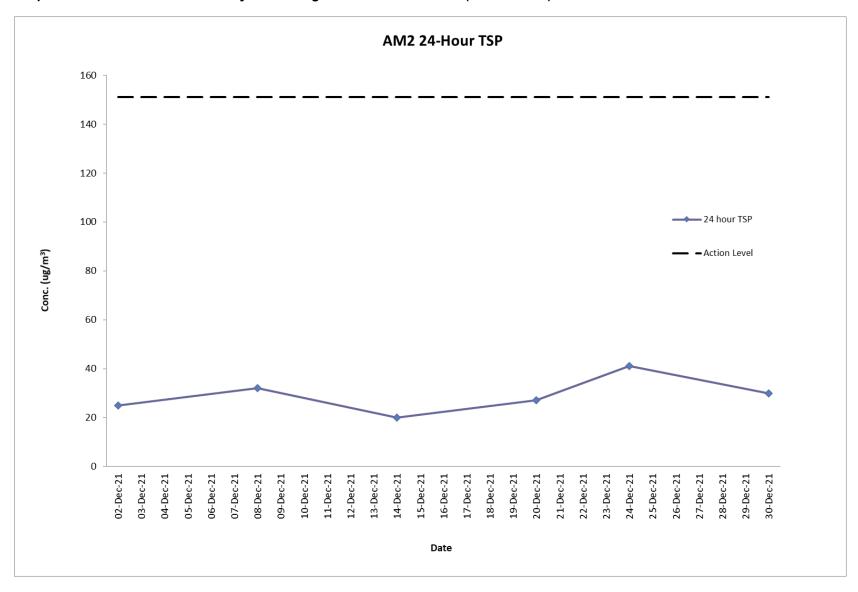
Air Quality Monitoring Result at Station AM2 (1-hour TSP)

	Weather			Conc. (μg/m³	Action Level	Limit Level	
Date	Condition	Time	1 st Hour	2 nd Hour	3 rd Hour	(μg/m³)	(μg/m³)
02-Dec-21	Sunny	8:38 - 11:38	39	35	30	274.2	500
08-Dec-21	Sunny	8:37 - 11:37	40	36	45	274.2	500
14-Dec-21	Cloudy	8:39 - 11:39	60	49	47	274.2	500
20-Dec-21	Cloudy	8:39 - 11:39	70	78	86	274.2	500
24-Dec-21	Cloudy	8:38 - 11:38	66	73	79	274.2	500
30-Dec-21	Sunny	8:40 - 11:40	66	72	79	274.2	500


Graphical Presentation of Air Quality Monitoring Result at Station AM2 (1-hour TSP)

Air Quality Monitoring Result at Station AM1 (24-hour TSP)

Sta	rt	Finis	sh	Filter W	eight (g)		d Time ding	Sampling	Flow Rate (m ³ /min)		Conc.	Weather	Action	Limit	
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m ³)	Condition	Level	Level
02-Dec-21	08:20	03-Dec-21	08:20	2.7347	2.7726	24224.38	24248.38	24	1.26	1.26	1.26	21	Sunny	143.6	260
08-Dec-21	08:20	09-Dec-21	08:20	2.7220	2.7755	24248.38	24272.38	24	1.26	1.26	1.26	29	Sunny	143.6	260
14-Dec-21	08:20	15-Dec-21	08:20	2.7354	2.7556	24272.38	24296.38	24	1.26	1.26	1.26	11	Cloudy	143.6	260
20-Dec-21	08:22	21-Dec-21	08:22	2.7742	2.8079	24296.38	24320.38	24	1.26	1.26	1.26	19	Cloudy	143.6	260
24-Dec-21	08:20	25-Dec-21	08:20	2.8172	2.8806	24320.38	24344.38	24	1.26	1.26	1.26	35	Cloudy	143.6	260
30-Dec-21	08:22	31-Dec-21	08:22	2.8188	2.8410	24344.38	24368.38	24	1.26	1.26	1.26	12	Sunny	143.6	260

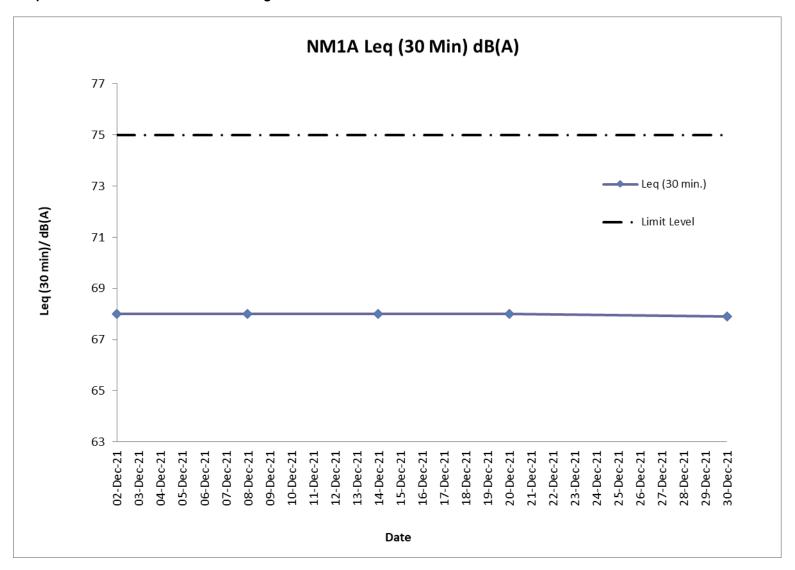

Graphical Presentation of Air Quality Monitoring Result at Station AM1 (24-hour TSP)

Air Quality Monitoring Result at Station AM2 (24-hour TSP)

Sta	rt	Finis	sh	Sampling	Conc.	Weather	Action	
Date	Time	Date	Time	Time (hrs)	(µg/m³)	Condition	Level	Limit Level
02-Dec-21	08:35	03-Dec-21	08:35	24	25	Sunny	151.1	260
08-Dec-21	08:34	09-Dec-21	08:34	24	32	Sunny	151.1	260
14-Dec-21	08:35	15-Dec-21	08:35	24	20	Cloudy	151.1	260
20-Dec-21	08:36	21-Dec-21	08:36	24	27	Cloudy	151.1	260
24-Dec-21	08:35	25-Dec-21	08:35	24	41	Cloudy	151.1	260
30-Dec-21	08:37	31-Dec-21	08:37	24	30	Sunny	151.1	260

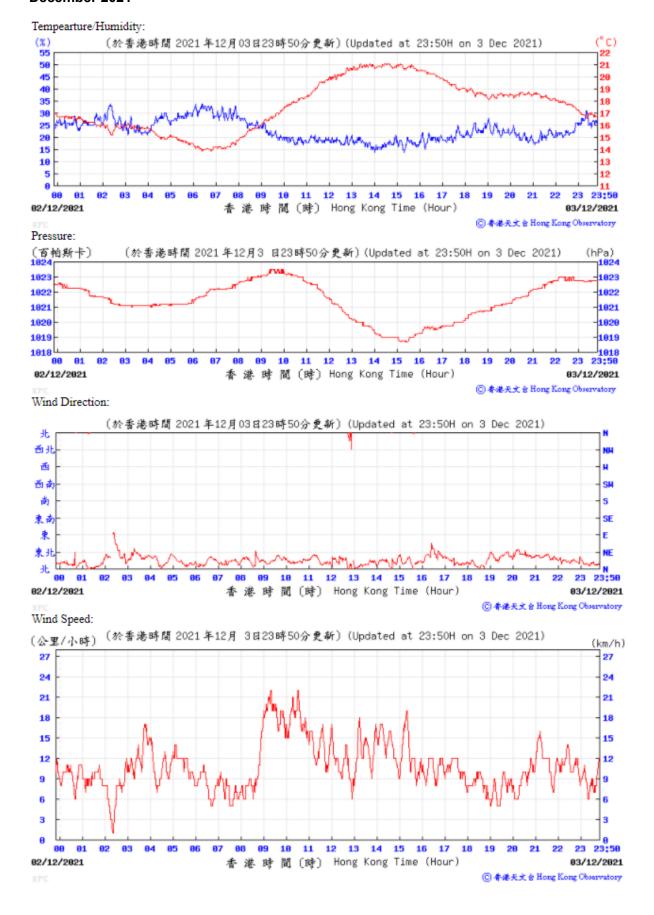
Graphical Presentation of Air Quality Monitoring Result at Station AM2 (24-hour TSP)

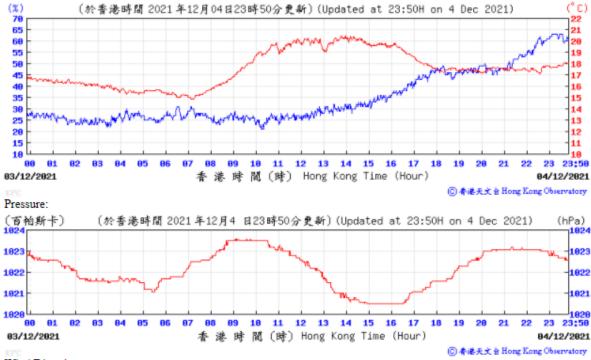
Noise Monitoring Result at Station NM1A


Date	Time	Measured L ₁₀ , dB(A)	Measured L ₉₀ , dB(A)	L _{eq} (30 min.)*, dB(A)
02-Dec-21	09:21	66.0	62.8	
02-Dec-21	09:26	67.2	63.4	
02-Dec-21	09:31	68.6	64.5	68
02-Dec-21	09:36	66.3	62.5	00
02-Dec-21	09:41	66.1	62.8	
02-Dec-21	09:46	67.6	63.3	
08-Dec-21	09:22	66.0	62.1	
08-Dec-21	09:27	67.8	63.9	
08-Dec-21	09:32	66.2	62.4	68
08-Dec-21	09:37	67.7	63.6	00
08-Dec-21	09:42	68.4	64.2	
08-Dec-21	09:47	67.0	63.3	
14-Dec-21	09:23	66.7	62.0	
14-Dec-21	09:28	67.1	63.3	
14-Dec-21	09:33	67.6	63.5	CO
14-Dec-21	09:38	66.3	62.1	68
14-Dec-21	09:43	68.7	64.8	
14-Dec-21	09:48	67.6	63.5	
20-Dec-21	09:23	67.0	63.4	
20-Dec-21	09:28	66.8	62.1	
20-Dec-21	09:33	66.2	62.6	68
20-Dec-21	09:38	68.7	64.1	08
20-Dec-21	09:43	66.4	62.5	
20-Dec-21	09:48	67.6	63.4	
30-Dec-21	09:25	66.4	62.0	
30-Dec-21	09:30	67.1	63.5	
30-Dec-21	09:35	66.3	62.4	60
30-Dec-21	09:40	66.5	62.4	68
30-Dec-21	09:45	67.7	63.8	
30-Dec-21	09:50	67.6	63.9	

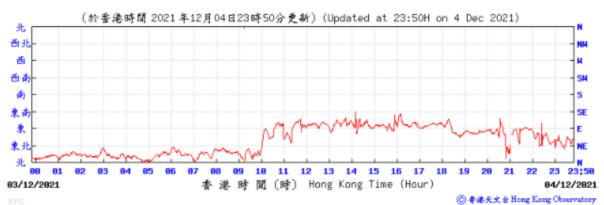
Remarks:

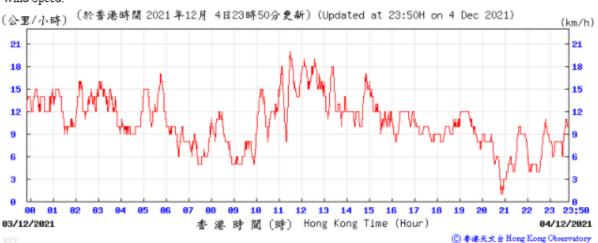
^{* +3}dB (A) correction was applied to free-field measurement.

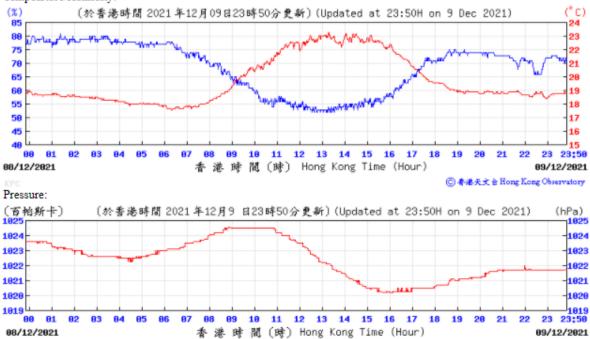

The station set-up of a free-field measurement at Station NM1A.


H. Meteorological Data Extracted from Hong Kong Observatory

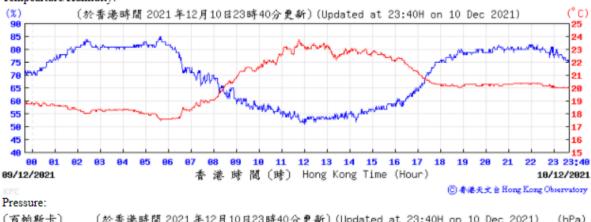
Extract of Meteorological Observations for King's Park Automatic Weather Station,


December 2021

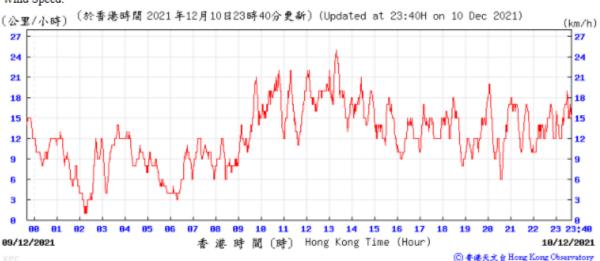


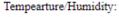


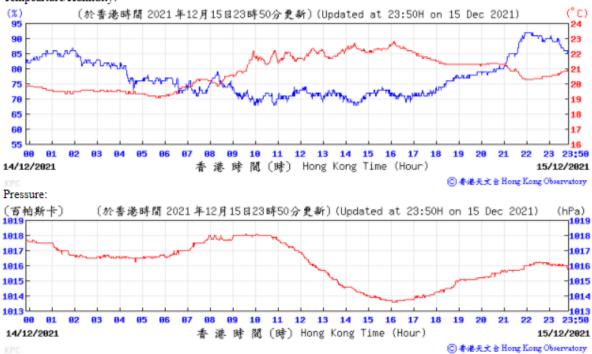
Wind Direction:


Wind Direction:

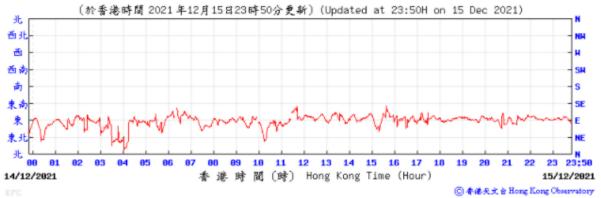
◎ 春港天文 à Hong Kong Observatory

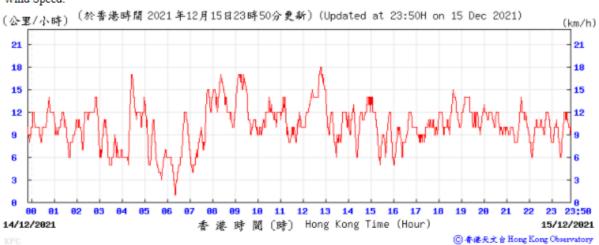


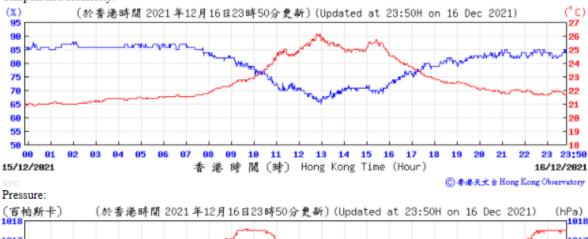

(百帕斯卡) 1823 (於香港時間 2021 年12月10日23時40分更新) (Updated at 23:40H on 10 Dec 2021) (hPa) 23 23:40 14 15 16 09/12/2021 香 港 時 闐 (時) Hong Kong Time (Hour) 10/12/2021


⑥ 香港天文台 Hong Kong Observatory

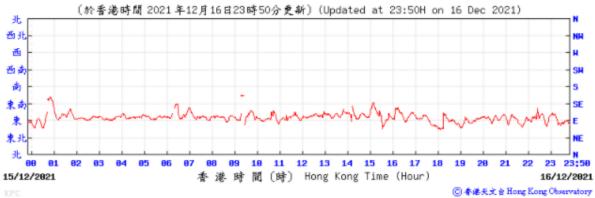
Wind Direction:

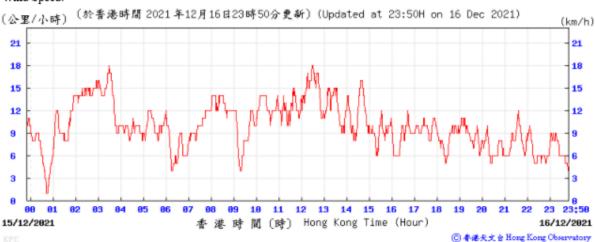


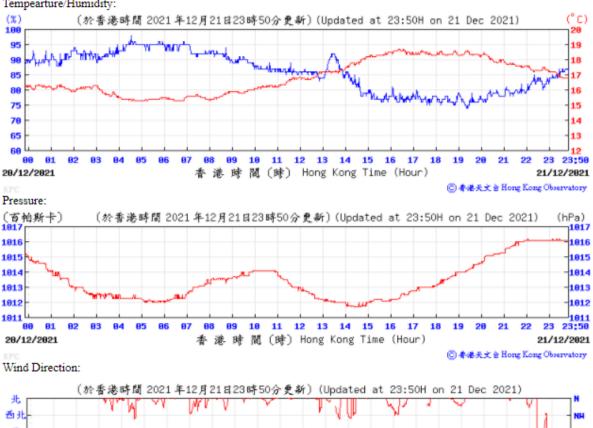


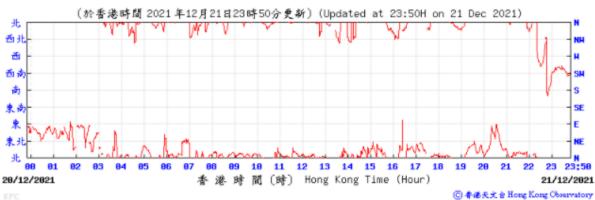


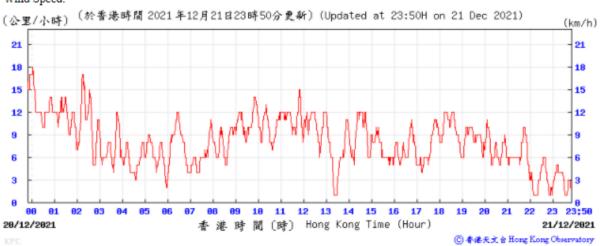
Wind Direction:

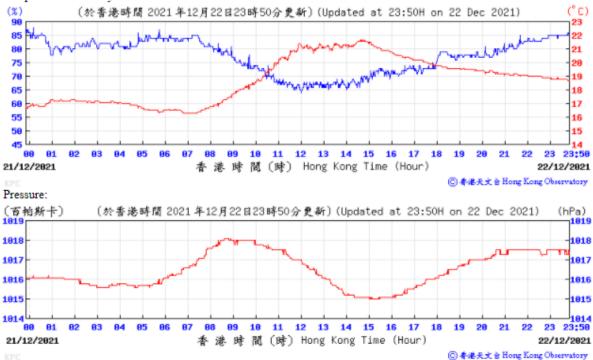


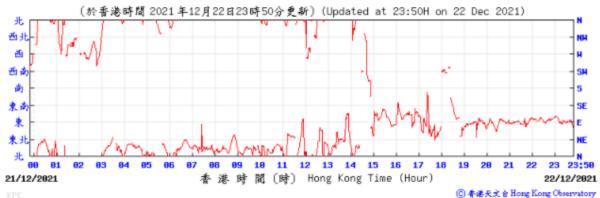


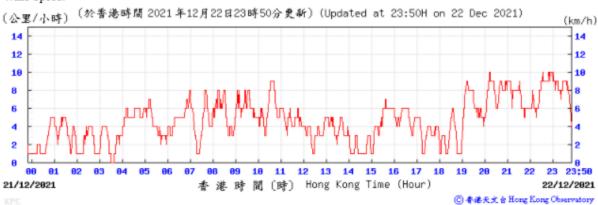


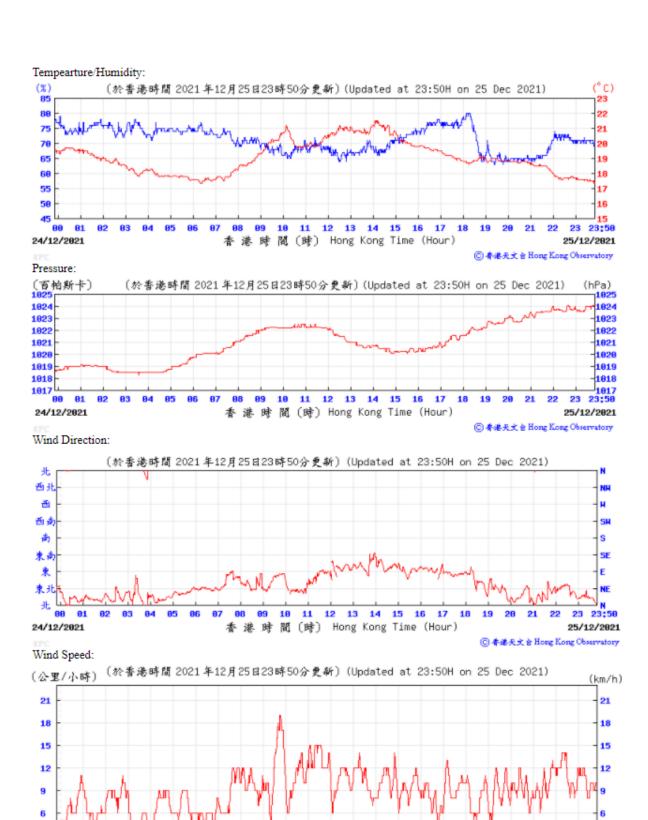

Wind Direction:











Wind Direction:

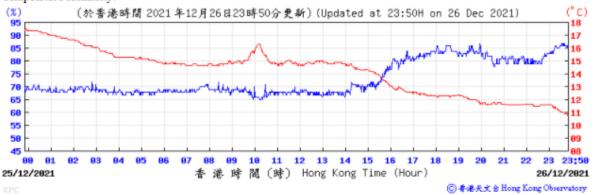
10 11 12 13 14 15

香港時間(時) Hong Kong Time (Hour)

01

24/12/2821

23 23:50


25/12/2021

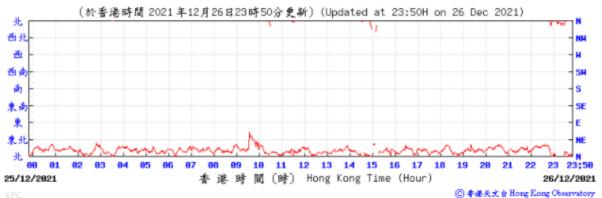
⑥ 春港天文台 Hong Kong Observatory

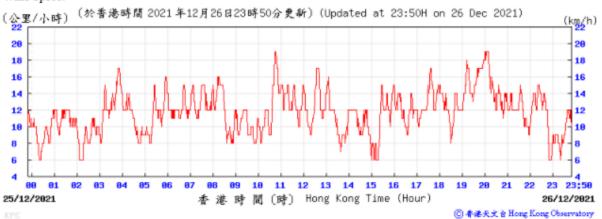
16 17

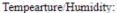
18 19

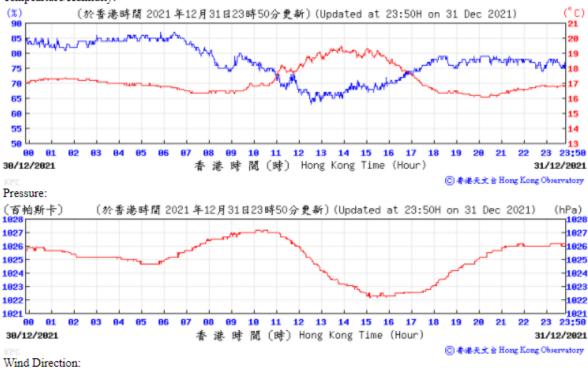
Tempearture/Humidity:

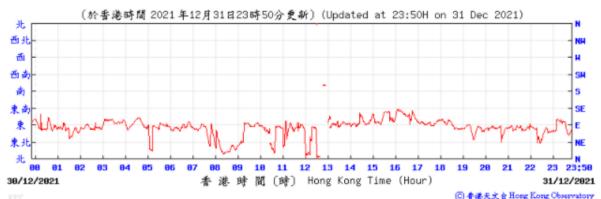
Pressure: (百帕斯卡) 1828 (於香港時間 2021 年12月26日23時50分更新) (Updated at 23:50H on 26 Dec 2021) (hPa) 1027 1827 1026 1026 1025 1025 1024 1824 1023 1823 1022 23;50 91 12 13

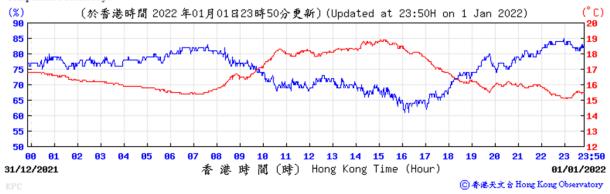

香港時間(時) Hong Kong Time (Hour)

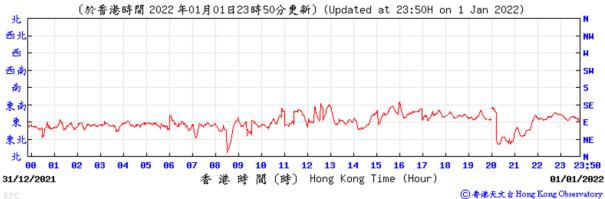

26/12/2021


◎ 香港天文 à Hong Kong Observatory


Wind Direction:


25/12/2021





Pressure: (百帕斯卡) 1827 (於香港時間 2022 年1 月1 日23時50分更新)(Updated at 23:50H on 1 Jan 2022) (hPa) 1026 1025 1025 1024 1024 1023 1023 1022 1822 **01 09** 10 11 12 13 14 15 16 17 18 23 23:50 31/12/2021 香港時間(時) Hong Kong Time (Hour) 01/01/2022 ⑥ 香港天文 含 Hong Kong Observatory

Wind Direction:

I. Waste Flow table

Table I-1: Monthly Waste Flow Table for Lyric Theatre Complex

		Actual Qu	uantities of Ine	rt C&D Mater	ials Generate	d Monthly		Actual Quantities of C&D Wastes Generated Monthly						
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse	
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	
2016														
Mar	2702.1	0.0	0.0	0.0	2702.1	0.0	0.0	4.5	0.1	0.0	0.0	0.0	30.6	
Apr	8631.5	0.0	0.0	0.0	8631.5	0.0	0.0	16.0	0.0	0.0	0.0	0.0	19.2	
May	12487.8	0.0	0.0	0.0	12487.8	0.0	0.0	34.0	0.0	0.0	0.0	0.7	60.5	
Jun	8600.8	0.0	0.0	0.0	8600.8	0.0	0.0	31.4	0.2	0.0	0.0	0.5	13.5	
Jul	12624.2	0.0	0.0	0.0	12624.2	0.0	0.0	19.6	0.0	0.0	0.0	2.0	9.9	
Aug	14419.9	0.0	0.0	0.0	14419.9	0.0	0.0	43.9	0.0	0.0	0.0	0.0	11.1	
Sep	13671.3	0.0	0.0	0.0	13671.3	0.0	0.0	59.8	0.0	0.0	0.0	1.6	12.4	
Oct	13088.9	0.0	0.0	0.0	13088.9	0.0	0.0	36.9	0.2	1.5	0.0	0.0	15.2	
Nov	12424.7	0.0	0.0	0.0	12424.7	0.0	0.0	74.7	0.0	0.0	0.0	1.4	10.2	
Dec	12487.6	0.0	0.0	0.0	12487.6	0.0	0.0	13.9	0.0	0.0	0.0	1.3	9.0	
Sub-total (2016)	111138.8	0.0	0.0	0.0	111138.8	0.0	0.0	334.5	0.4	1.5	0.0	7.6	191.6	
2017	•	•												
Jan	9607.8	0.0	0.0	0.0	9607.8	0.0	0.0	29.5	0.0	0.0	0.0	0.0	7.3	
Feb	9108.2	0.0	0.0	0.0	9108.2	0.0	0.0	50.2	0.2	0.0	0.0	0.7	9.8	
Mar	11361.7	0.0	0.0	0.0	11361.7	0.0	0.0	16.1	0.0	0.0	0.0	1.4	8.5	
Apr	2591.5	0.0	0.0	0.0	2591.5	0.0	0.0	35.7	0.0	0.0	0.0	0.0	4.7	
May	2579.3	0.0	0.0	99.0	2480.3	0.0	0.0	20.9	0.1	0.0	0.0	0.5	10.0	
Jun	476.0	0.0	0.0	341.0	129.7	5.3	0.0	0.0	0.0	0.0	0.0	0.0	7.6	
Jul	3419.0	0.0	0.0	804.0	2615.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.8	
Aug	3730.9	0.0	0.0	1377.5	2353.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.4	
Sep	2108.2	0.0	0.0	1133.5	974.7	0.0	0.0	34.6	0.2	0.0	0.0	0.0	10.8	
Oct	9159.0	0.0	0.0	7868.0	1291.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	9.3	
Nov	5095.4	0.0	0.0	4352.0	725.2	18.1	0.0	0.0	0.0	0.0	0.0	0.0	38.8	
Dec	3856.2	0.0	0.0	3076.0	780.2	0.0	0.0	0.0	0.2	0.0	0.0	0.4	8.4	
Sub-total (2017)	63093.1	0.0	0.0	19051.0	44018.7	23.4	0.0	187.1	0.7	0.0	0.0	3.8	137.3	

Table I-1: Monthly Waste Flow Table for Lyric Theatre Complex

	Actual Quantities of Inert C&D Materials Generated Monthly								Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse	
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	
2018														
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	
Mar	6120.2	0.0	0.0	5782.0	338.2	0.0	0.0	0.0	0.0	1.0	0.0	0.5	17.6	
Apr	14460.3	0.0	0.0	12484.1	1976.3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	7.6	
May	59783.7	0.0	0.0	46989.0	12794.7	0.0	0.0	59.6	0.0	0.0	0.0	0.0	9.4	
Jun	53117.5	0.0	0.0	37642.8	15474.7	0.0	0.0	51.5	0.2	0.0	0.0	0.0	12.8	
Jul	89901.5	0.0	0.0	85317.1	4584.4	0.0	165.1	114.6	0.0	0.0	0.0	0.0	41.3	
Aug	35137.3	0.0	0.0	33731.6	1405.7	0.0	214.3	148.1	0.0	0.0	0.0	0.0	48.5	
Sep	4924.3	0.0	0.0	4641.2	196.1	87.0	174.6	40.0	0.0	0.0	0.0	0.0	179.2	
Oct	19099.9	0.0	0.0	11301.0	7642.8	156.1	0.0	106.3	0.4	0.0	0.0	0.0	528.5	
Nov	104168.0	0.0	0.0	79811.6	24351.0	5.3	0.0	54.5	0.0	0.6	0.0	0.0	31.5	
Dec	62989.9	0.0	0.0	51284.4	11699.9	5.6	0.0	95.1	0.0	0.6	0.0	0.0	65.9	
Sub-total (2018)	449702.6	0.0	0.0	368984.8	80463.7	254.0	553.9	669.7	0.5	2.4	0.0	0.5	943.7	
2019	•	•			•					•	•	•		
Jan	74479.1	0.0	0.0	69249.5	5229.7	0.0	318.0	326.7	0.2	0.0	0.0	0.0	76.3	
Feb	21969.9	0.0	0.0	17723.9	4246.0	0.0	16.5	55.2	0.0	0.0	0.0	0.0	26.7	
Mar	19311.9	0.0	0.0	8569.9	10742.0	0.0	337.8	61.5	0.0	0.0	0.0	0.0	36.3	
Apr	28559.9	0.0	0.0	21280.3	7279.6	0.0	0.0	32.6	0.0	0.8	0.0	0.0	24.9	
May	45418.0	0.0	0.0	11200.6	34217.4	0.0	0.0	27.4	0.2	0.5	0.0	0.0	33.7	
Jun	66633.4	0.0	0.0	23874.5	42748.0	10.9	59.2	11.9	0.0	0.9	0.0	0.0	35.3	
Jul	36619.6	0.0	0.0	1632.7	34960.9	26.0	64.4	120.7	0.0	0.0	0.0	0.0	57.9	
Aug	2526.8	0.0	0.0	0.0	2499.0	27.8	31.9	40.2	0.0	0.8	0.0	0.0	66.3	
Sep	4117.6	0.0	0.0	0.0	4088.7	28.9	95.2	19.0	0.0	0.6	0.0	0.0	127.4	
Oct	6974.2	0.0	0.0	0.0	6948.1	26.1	15.9	11.4	0.2	1.0	0.0	0.6	223.6	
Nov	5334.4	0.0	0.0	0.0	5304.1	30.3	0.0	8.9	0.0	0.0	0.0	0.0	151.6	
Dec	6236.8	0.0	0.0	0.0	6236.8	0.0	0.0	70.6	0.0	0.0	0.0	0.0	98.9	
Sub-total (2019)	318181.6	0.0	0.0	153531.3	164500.1	150.1	938.9	785.8	0.6	4.6	0.0	0.6	959.0	

Table I-1: Monthly Waste Flow Table for Lyric Theatre Complex

		Actual Qu	uantities of Ine	rt C&D Mater	ials Generate	d Monthly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2020													
Jan	7089.9	0.0	0.0	0.0	7089.9	0.0	0.0	10.6	0.2	0.0	0.0	0.0	65.7
Feb	16822.3	0.0	0.0	0.0	16822.3	0.0	0.0	232.2	0.1	0.0	0.0	0.0	66.3
Mar	6559.0	0.0	0.0	0.0	6559.0	0.0	110.4	63.1	0.0	0.9	0.0	0.0	138.3
Apr	4997.9	0.0	0.0	1615.7	3382.2	0.0	159.2	1123.9	1.9	0.0	0.0	0.0	113.2
May	2236.0	0.0	0.0	452.3	1783.6	0.0	0.0	406.5	0.0	0.0	0.0	0.0	188.8
Jun	1134.3	0.0	0.0	0.0	1134.3	0.0	31.5	262.6	0.2	0.6	0.0	0.0	210.6
Jul	148.8	0.0	0.0	0.0	148.8	0.0	31.5	458.5	0.5	0.0	0.0	0.0	220.0
Aug	540.7	0.0	0.0	0.0	540.7	0.0	0.0	340.8	0.0	0.0	0.0	0.0	238.3
Sep	1432.3	0.0	0.0	0.0	1432.3	0.0	0.0	750.7	0.2	0.0	0.0	0.0	291.9
Oct	1381.5	0.0	0.0	0.0	1381.5	0.0	0.0	717.9	0.2	0.0	0.0	0.0	400.2
Nov	1444.1	0.0	0.0	0.0	1437.4	6.7	475.8	473.6	0.2	0.5	0.0	0.0	377.8
Dec	793.8	0.0	0.0	0.0	793.8	0.0	0.0	478.3	0.2	0.0	0.0	0.0	435.8
Sub-total (2020)	44580.6	0.0	0.0	2068.1	42505.8	6.7	808.3	5318.7	3.7	2.0	0.0	0.0	2746.8
2021													
Jan	881.4	0.0	0.0	0.0	881.4	0.0	0.0	835.1	0.4	0.0	0.0	0.0	497.0
Feb	544.7	0.0	0.0	0.0	544.7	0.0	0.0	100.5	0.3	0.0	0.0	0.0	504.7
Mar	406.1	0.0	0.0	0.0	406.1	0.0	0.0	455.8	0.3	0.0	0.0	0.0	881.7
Apr	633.0	0.0	0.0	0.0	633.0	0.0	0.0	429.9	0.7	0.0	0.0	0.0	613.0
May	1125.8	0.0	0.0	0.0	1125.8	0.0	0.0	355.1	0.2	0.1	0.0	0.0	355.2
Jun	877.3	0.0	0.0	0.0	877.3	0.0	0.0	98.4	0.2	0.0	0.0	0.4	420.3
Jul	8.9	0.0	0.0	0.0	0.0	8.9	0.0	43.9	2.0	0.0	0.0	0.0	278.2
Aug	1296.2	0.0	0.0	0.0	1296.2	0.0	0.0	161.5	0.0	0.0	0.0	0.0	459.1
Sep	1040.5	0.0	0.0	0.0	490.9	549.6	0.0	62.9	0.0	0.0	0.0	0.0	620.8
Oct	311.0	0.0	0.0	0.0	311.0	0.0	0.0	85.9	0.3	0.0	0.0	0.0	485.6
Nov	203.9	0.0	0.0	0.0	203.9	0.0	0.0	65.9	0.0	0.0	0.0	0.0	609.6
Dec	576.6	0.0	0.0	0.0	576.6	0.0	0.0	13.4	0.0	0.0	0.0	0.0	590.6
Sub-total (2021)	7905.3	0.0	0.0	0.0	7346.9	558.5	0.0	2708.2	4.4	0.1	0.0	0.4	6315.9
Total	994601.9	0.0	0.0	543635.2	449973.9	992.7	2301.1	10003.8	10.2	10.5	0.0	12.9	11294.3

Note:

^{- 537.0} tonnes, 0.0 tonne and 39.6 tonnes of inert C&D materials were disposed of as public fill to Tseung Kwan O Area 137 Public Fill, Tuen Mun Area 38 Public Fill and Chai Wan Public Fill Barging Point respectively in the reporting month.

J. Environmental Mitigation Measures – Implementation Status

Table J-1: Environmental Mitigation Measures Implementation Status (December 2021)

EM&A Ref. Recommendation Measures

Implementation Stage

L2

	1000mmonation motions	
Air Qualit	y Impact (Construction)	
.1 &	General Dust Control Measures	
10.3.1	Frequent water spraying for active construction areas (12 times a day or once every one hour), including Heavy construction activities such as construction of buildings or roads, drilling, ground excavation, cut and fill operations (i.e., earth moving)	Obs
.1 &	Best Practice For Dust Control	
0.3.1	The relevant best practices for dust control as stipulated in the Air Pollution Control (construction Dust) Regulation should be adopted to further reduce the construction dust impacts from the Project. These best practices include: Good Site Management	
	 Good site management is important to help reducing potential air quality impact down to an acceptable level. As a general guide, the Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimise the release of visible dust emission. Any piles of materials accumulated on or around the work areas should be cleaned up regularly. Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimising generation of fugitive dust emissions. The material should be handled properly to prevent fugitive dust emission before cleaning. 	Obs
	Disturbed Parts of the Roads	
	 Each and every main temporary access should be paved with concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or 	✓
	 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 	✓
	Exposed Earth	
	 Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies. 	N/A No exposed earth in this projec
	Loading, Unloading or Transfer of Dusty Materials	
	 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 	✓
	Debris Handling	
	 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 	✓
	 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 	✓

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	Transport of Dusty Materials	
	 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 	✓
	Wheel washing	
	 Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	✓
	Use of vehicles	
	 The speed of the trucks within the site should be controlled to about 10km/hour in order to reduce adverse dust impacts and secure the safe movement around the site. 	✓
	 Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	✓
	 Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle. 	✓
	Site hoarding	
	 Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit. 	✓
2.1 &	Best Practicable Means for Cement Works (Concrete Batching Plant)	
10.3.1	The relevant best practices for dust control as stipulated in the Guidance Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) should be followed and implemented to further reduce the construction dust impacts of the Project. These best practices include: Exhaust from Dust Arrestment Plant	
	Wherever possible the final discharge point from particulate matter arrestment plant, where is not necessary to achieve dispersion from residual pollutants, should be at low level to minimise the effect on the local community in the case of abnormal emissions and to facilitate maintenance and inspection	N/A No concrete batching plant in this project.
	Emission Limits	
	All emissions to air, other than steam or water vapour, shall be colourless and free from persistent mist or smoke	N/A No concrete batching plant in this project.
	Engineering Design/Technical Requirements	p. 0,000
	As a general guidance, the loading, unloading, handling and storage of fuel, raw materials, products, wastes or by-products should be carried out in a manner so as to prevent the release of visible dust and/or other noxious or offensive emissions	N/A No concrete batching plant in this

No concrete batching plant in this project.

Implementation Stage
L2

EM&A Ref.	Recommendation Measures	L2
	Non-Road Mobile Machinery (NRMM):	
	All NRMMs operating on-site which are subject to emission control of Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation are approved/exempted (as the case may be) and affixed with the requisite approval/exemption labels.	✓
Noise Impa	act (Construction)	
3.1 &	Good Site Practice	
10.4.1	Good site practice and noise management can significantly reduce the impact of construction site activities on nearby NSRs. The following package of measures should be followed during each phase of construction:	
	 only well-maintained plant to be operated on-site and plant should be serviced regularly during the construction works; 	✓
	machines and plant that may be in intermittent use to be shut down between work periods or should be throttled down to a minimum	✓
	 plant known to emit noise strongly in one direction, should, where possible, be orientated to direct noise away from the NSRs; 	✓
	mobile plant should be sited as far away from NSRs as possible; and	✓
	 material stockpiles and other structures to be effectively utilised, where practicable, to screen noise from on-site construction activities. 	✓
3.1 &	Adoption of Quieter PME	
10.4.1	The recommended quieter PME adopted in the assessment were taken from the EPD's QPME Inventory and "Sound Power Levels of Other Commonly Used PME" are presented in Table 4.26 in the EIA report. It should be noted that the silenced PME selected for assessment can be found in Hong Kong.	✓
3.1 &	Use of Movable Noise Barriers	
10.4.1	Movable noise barriers can be very effective in screening noise from particular items of plant when constructing the Project. Noise barriers located along the active works area close to the noise generating component of a PME could produce at least 10 dB(A) screening for stationary plant and 5 dB(A) for mobile plant provided the direct line of sight between the PME and the NSRs is blocked.	✓
3.1 &	Use of Noise Enclosure/ Acoustic Shed	
10.4.1	The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the EIAO Guidance Note No. 9/2010.	✓
3.1 &	Use of Noise Insulating Fabric	
10.4.1	Noise insulating fabric can also be adopted for certain PME (e.g. drill rig, pilling machine etc). The fabric should be lapped such that there are no openings or gaps on the joints. According to the approved Tsim Sha Tsui Station Northern Subway EIA report (AEIAR-127/2008), a noise reduction of 10 dB(A) can be achieved for the PME lapped with the noise insulating fabric.	Obs
	Scheduling of Construction Works outside School Examination Periods	

EM&A Ref.	Recommendation Measures	L2
3.1 & 10.4.1	During construction phase, the contractor should liaise with the educational institutions (including NSRs LCS and CRGPS) to obtain the examination schedule and avoid the noisy construction activities during school examination periods.	N/A No educational institutions nearby the site.
Water Qua	lity Impact (Construction)	
4.1 & 10.5.1	Construction site runoff and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and sensitive uses of the coastal area, and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts:	
	 At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the WKCDA's Contractor prior to the commencement of construction; 	✓
	 Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the WKCDA's Contractor prior to the commencement of construction. 	✓
	 All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	Obs
	 Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities. 	✓
	 All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. 	✓
	• Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	✓
	 Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers. 	✓

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	 Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes. 	✓
	 Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	N/A No bentonite slurries are used in this project.
	Barging facilities and activities	
	Recommendations for good site practices during operation of the proposed barging point include:	
	 All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; 	N/A No barging facilities in this project.
	• Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation;	N/A No barging facilities in this project.
	All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and	N/A
		No barging facilities in this project.
	 Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site. 	N/A No barging facilities in this project.
4.1 &	Sewage effluent from construction workforce	
10.5.1	Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	✓
4.1 & 10.5.1	General construction activities	
	 Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby storm water drain. Stockpiles of cement and other construction materials should be kept covered when not being used. 	✓

Obs

Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby storm water drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater

after a rain event.

EM&A Ref.	Recommendation Measures	L2
Waste Mar	nagement Implications (Construction)	
6.1 &	Good Site Practices	
10.7.1	Recommendations for good site practices during the construction activities include:	
	 Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site 	✓
	Training of site personnel in proper waste management and chemical handling procedures	✓
	Provision of sufficient waste disposal points and regular collection of waste	Rem, Obs
	 Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by either covering trucks or by transporting wastes in enclosed containers 	✓
	Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction to public roads	✓
	 Well planned delivery programme for offsite disposal such that adverse environmental impact from transporting the inert or non- inert C&D materials is not anticipated 	✓
6.1 &	Waste Reduction Measures	
10.7.1	Recommendations to achieve waste reduction include:	
	Sort inert C&D material to recover any recyclable portions such as metals	✓
	 Segregation and storage of different types of waste in different containers or skips to enhance reuse or recycling of materials and their proper disposal 	✓
	 Encourage collection of recyclable waste such as waste paper and aluminium cans by providing separate labelled bins to enable such waste to be segregated from other general refuse generated by the work force 	✓
	 Proper site practices to minimise the potential for damage or contamination of inert C&D materials 	✓
	Plan the use of construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of wastes	✓
6.1 &	Inert and Non-inert C&D Materials	
10.7.1	In order to minimise impacts resulting from collection and transportation of inert C&D material for off-site disposal, the excavated materials should be reused on-site as fill material as far as practicable. In addition, inert C&D material generated from excavation works could be reused as fill materials in local projects that require public fill for reclamation.	✓
	The surplus inert C&D material will be disposed of at the Government's PFRFs for beneficial use by other projects in Hong Kong.	✓
	 Liaison with the CEDD Public Fill Committee (PFC) on the allocation of space for disposal of the inert C&D materials at PFRF is underway. No construction work is allowed to proceed until all issues on management of inert C&D materials have been resolved and all relevant arrangements have been endorsed by the relevant authorities including PFC and EPD. 	✓
	 The C&D materials generated from general site clearance should be sorted on site to segregate any inert materials for reuse or disposal of at PFRFs whereas the non-inert materials will be disposed of at the designated landfill site. 	✓

EM&A Ref.	Recommendation Measures	L2
	• In order to monitor the disposal of inert and non-inert C&D materials at respectively PFRFs and the designated landfill site, and to control fly-tipping, it is recommended that the Contractor should follow the Technical Circular (Works) No. 6/2010 for Trip Ticket System for Disposal of Construction & Demolition Materials issued by Development Bureau. In addition, it is also recommended that the Contractor should prepare and implement a Waste Management Plan detailing their various waste arising and waste management practices in accordance with the relevant requirements of the Technical Circular (Works) No. 19/2005 Environmental Management on Construction Site.	✓
6.1 &	Chemical Waste	
10.7.1	• If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the "Code of Practice on the Packaging Labelling and Storage of Chemical Wastes". Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor should use a licensed collector to transport and dispose of the chemical wastes at the approved Chemical Waste Treatment Centre or other licensed recycling facilities, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	✓
	 Potential environmental impacts arising from the handling activities (including storage, collection, transportation and disposal of chemical waste) are expected to be minimal with the implementation of appropriate mitigation measures as recommended. 	✓
6.1 &	General Refuse	
10.7.1	General refuse should be stored in enclosed bins or compaction units separated from inert C&D materials. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from inert C&D materials. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	✓
Land Cont	amination (Construction)	
7.1 & 10.8.1	The potential for land contamination issues at the TST Fire Station due to its future relocation will be confirmed by site investigation after land acquisition. Where necessary, mitigation measures for minimising potential exposure to contaminated materials (if any) or remediation measures will be identified. If contaminated land is identified (e.g., during decommissioning of fuel oil storage tanks) after the commencement of works, mitigation measures are proposed in order to minimise the potentially adverse effects on the health and safety of construction workers and impacts arising from the disposal of potentially contaminated materials. The following measures are proposed for excavation and transportation of contaminated material:	
	To minimize the chance for construction workers to come into contact with any contaminated materials, bulk earth-moving excavation equipment should be employed;	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.

EM&A Ref. Recommendation Measures

- Contact with contaminated materials can be minimised by wearing appropriate clothing and personal protective equipment such as
 gloves and masks (especially when interacting directly with contaminated material), provision of washing facilities and prohibition
 of smoking and eating on site;
- Stockpiling of contaminated excavated materials on site should be avoided as far as possible;
- The use of contaminated soil for landscaping purpose should be avoided unless pre-treatment was carried out;
- Vehicles containing any contaminated excavated materials should be suitably covered to reduce dust emissions and/or release of contaminated wastewater:
- Truck bodies and tailgates should be sealed to stop any discharge;
- Only licensed waste haulers should be used to collect and transport contaminated material to treatment/disposal site and should be equipped with tracking system to avoid fly tipping;
- Speed control for trucks carrying contaminated materials should be exercised;
- Observe all relevant regulations in relation to waste handling, such as Waste Disposal Ordinance (Cap. 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354) and obtain all necessary permits where required; and

L2 N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

EM&A Ref.	Recommendation Measures	L2
	Maintain records of waste generation and disposal quantities and disposal arrangements.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
Ecological	Impact (Construction)	
	No mitigation measure is required.	
Landscape	e and Visual Impact (Construction)	
Table 9.1 & 10.8 (CM1)	Trees should be retained in situ on site as far as possible. Should tree removal be unavoidable due to construction impacts, trees will be transplanted or felled with reference to the stated criteria in the Tree Removal Applications to be submitted to relevant government departments for approval in accordance to ETWB TCW No. 29/2004 and 3/2006.	✓
Table 9.1 & 10.8 (CM2)	Compensatory tree planting shall be incorporated to the proposed project and maximize the new tree, shrubs and other vegetation planting to compensate tree felled and vegetation removed. Also, implementation of compensatory planting should be of a ratio not less than 1:1 in terms of quality and quantity within the site.	N/A Compensatory tree planting is being reviewed.
Table 9.1 & 10.8 (CM3)	Buffer trees for screening purposes to soften the hard architectural and engineering structures and facilities.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 & 10.8 (CM4)	Softscape treatments such as vertical green wall panel /planting of climbing and/or weeping plants, etc, to maximize the green coverage and soften the hard architectural and engineering structures and facilities.	N/A Climbing or weeping plants are designed to be planted, but proposal is being reviewed for the planting location.
Table 9.1 & 10.8 (CM5)	Roof greening by means of intensive and extensive green roof to maximize the green coverage and improve aesthetic appeal and visual quality of the building/structure.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 & 10.8 (CM6)	Sensitive streetscape design should be incorporated along all new roads and streets.	N/A Greening along the seafront is proposed, but it has not been completed yet.
Table 9.1 & 10.8 (CM7)	Structure, ornamental planting shall be provided along amenity strips to enhance the landscape quality.	N/A Gardens are designed to be built, but it has not been completed yet.

EM&A Ref.	Recommendation Measures	L2
Table 9.1 & 10.8 (CM8)	Landscape design shall be incorporated to architectural and engineering structures in order to provide aesthetically pleasing designs.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 (CM9)	Minimize the structure of marine facilities to be built on the seabed and foreshore in order to minimize the affected extent to the waterbody	N/A No marine facilities for this project.
Table 9.2 & 10.9 (MCP1)	Use of decorative screen hoarding/boards	√
Table 9.2 & 10.9 (MCP2)	Early introduction of landscape treatments	N/A No landscape treatments during this stage.
Table 9.2 & 10.9 (MCP3)	Adoption of light colour for the temporary ventilation shafts for the basement during the transition period.	N/A No ventilation shafts for this project.
Table 9.2 & 10.9 (MCP4)	Control of night time lighting	✓
Table 9.2 & 10.9 (MCP5)	Use of greenery such as grass cover for the temporary open areas will help achieve the visual balance and soften the hard edges of the structures.	N/A No temporary open areas for this project.

N/A - Not Applicable

✓ - Implemented

Obs - Observed

Rem - Reminder

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction works to the end of the reporting month are summarised in the **Table K-1** below respectively.

Table K-1: Statistics for complaints, notifications of summons and successful prosecutions for Lyric Theatre Complex

Reporting Period Cumulative Statistics

	Complaints	Notifications of summons	Successful prosecutions
This reporting month	0	0	0
From 1 March 2016 to end of the reporting month (Dec 2021)	30	0	0

END OF PART-1

Part-2: EM&A for Foundation Works in Zones 2A, 2B & 2C

Foundation Works in Zones 2A, 2B & 2C

APEX TESTING & CERTIFICATION LIMITED Unit D6A, 10/F, TML Plaza, 3 Hoi Shing Road, Tsuen Wan, N.T.

Hong Kong Tel: (852) 39733585 Fax: (852) 30079385 Email: info@apextestcert.com

The information supplied and contained within this report is, to the best of our knowledge, correct at time of printing

Contents

Exe	ecutive	summa	ry	1	
1	Intro	duction		3	
	1.1	Backgro	ound	3	
	1.2	•	Organisation	3	
	1.3	-	uction Works Status in the Reporting Period	3	
	1.4		ary of EM&A Requirements and Alternative Monitoring Locations	4	
		1.4.1	EM&A Requirements	4	
		1.4.2	Alternative Monitoring Locations	5	
2	Impact Monitoring Methodology				
	2.1	Introduc	ction	7	
	2.2	Air Qua	ility	7	
		2.2.1	Monitoring Parameters, Frequency and Duration	7	
		2.2.2	Monitoring Locations	7	
		2.2.3	Monitoring Equipment	7	
		2.2.4	Monitoring Methodology	8	
	2.3	Noise		10	
		2.3.1	Monitoring Parameters, Frequency and Duration	10	
		2.3.2	Monitoring Location	10	
		2.3.3	Monitoring Equipment	10	
		2.3.4	Monitoring Methodology	11	
	2.4	Landsc	ape and Visual	11	
		2.4.1	Monitoring Program	11	
3	Monitoring Results			12	
	3.1	Impact	Monitoring	12	
	3.2	Air Qua	lity Monitoring	12	
		3.2.1	1-hour TSP	12	
		3.2.2	24-hour TSP	12	
	3.3	Noise N	Monitoring	13	
	3.4	Landsc	ape and Visual Impact	14	
4	Site	Environ	mental Management	15	
	4.1	Site Ins	pection	15	
		4.1.1	Zone 2A	15	
		4.1.2	Zone 2B & 2C	15	
	4.2	Advice	on the Solid and Liquid Waste Management Status	16	
		4.2.1	Zone 2A	16	
		4.2.2	Zone 2B & 2C	16	

	4.3	Status	of Environmental Licenses and Permits	17
		4.3.1	Zone 2A	17
		4.3.2	Zone 2B & 2C	17
	4.4	Recom	mended Mitigation Measures	18
		4.4.1	Zone 2A	18
		4.4.2	Zone 2B & 2C	18
5	Com	npliance	with Environmental Permit	19
6			on-compliance, Complaints, Notification of Summons and Prosecutions	20
	6.1	Record	on Non-compliance of Action and Limit Levels	20
	6.2	Record	on Environmental Complaints Received	20
	6.3	Record	on Notifications of Summons and Successful Prosecution	20
7	Futu	ıre Key I	ssues	21
	7.1	Constru	uction Works for the Coming Month(s)	21
	7.2	Key Iss	ues for the Coming Month	21
		7.2.1	Zone 2A	21
		7.2.2	Zone 2B & 2C	22
	7.3	Monitor	ring Schedule for the Coming Month	22
8	Con	clusions	and Recommendations	23
	8.1	Conclus	sions	23
	8.2	Recom	mendations	23
Figu	ıre 1	Site La	ayout Plan and Monitoring Stations	24
App	endic	es		25
Α.	Proj	ect Orga	anisation	26
B.	Tent	tative Co	onstruction Programme	27
C.	Actio	on and L	imit Levels for Construction Phase	28
D.	Evei Impa		ction Plan for Air Quality, Noise, Landscape and Visual	29
	шро	401		23
E.	Monitoring Schedule 3		30	
F.	Calibration Certifications 3		31	

G.	Graphical Plots of the Monitoring Results	32
H.	Meteorological Data Extracted from Hong Kong Observatory	33
l.	Waste Flow table	34
J.	Environmental Mitigation Measures – Implementation Status	35
K.	Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions	36

Executive summary

Apex Testing & Certification Limited (Apex) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction activities in Zone 2A, consisting of Foundation, Excavation and Lateral Support Works for Integrated Basement and Underground Road (Contract No.: GW/2020/05/073); and Zone 2B & 2C consisting of Piling Works for Integrated Basement and Underground Road (Contract No.: CC/2020/2B/088) at WKCD. The major construction works and EM&A programme for Zone 2A and Zone 2B & 2C commenced on 3 October 2020 and 30 September 2021 respectively.

The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO.

This Monthly EM&A Report presents the monitoring works at Zone 2A and Zone 2B & 2C from 1 to 31 December 2021.

Exceedance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise in this reporting month.

Implementation of Mitigation Measures

Construction phase weekly site inspections were carried out on 02, 09, 16, 23 and 30 December 2021 for Foundation, Excavation and Lateral Support Works in Zone 2A and on 07, 14, 20 and 28 December 2021 for Piling Works in Zone 2B & 2C to confirm the implementation measures undertaken by the Contractors in the reporting month. The outcomes are presented in Section 4 and the status of implementation of mitigation measures in the site is shown in **Appendix J**.

Landscape and visual impact inspections were conducted as part of the abovementioned weekly site inspections during the reporting month. No adverse comment on landscape and visual aspects was made during these inspections.

Record of Complaints

No environmental complaint was recorded in the reporting month.

Record of Notifications of Summons and Successful Prosecutions

No notifications of summons and successful prosecutions were recorded in the reporting month.

Future Key Issues

The major site works for Zone 2A scheduled to be commissioned in the coming month include: Zone 2A-1

- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post & Erection of Steel Column for Working Platform
- Socketed H-Pile Works
 - Remaining Socketed H-Pile Works

Zone 2A-2

- Bored Pile Works
 - Additional Bored Pile Construction
- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post
 - Stage 1a & 1b Grouting
 - Pipe Pile Construction

The major site works for Zone 2B & 2C scheduled to be commissioned in the coming month include:

KD01 (Stage 1-1), KD02 (Stage 5-1), KD03 (Stage 3-1), KD05 (Section 1), KD06 (Section 2), KD07 (Section 3), KD08 (Section 4)

- Bored Pile Works
 - Predrilling, Bored Piling, RCD Drilling, Airlifting, Cage Installation & Concreting and Excavation

KD09 (Section 5)

- Bored Pile Works
 - Predrilling, Bored Piling, RCD Drilling, Airlifting, Cage Installation & Concreting and Excavation
- Socket Steel H Pile Works
 - Socket Steel H Piling

Potential environmental impacts due to the construction activities, including air, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

1 Introduction

1.1 Background

Apex Testing & Certification Limited (Apex) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction activities in Zone 2A, consisting of Foundation, Excavation and Lateral Support Works for Integrated Basement and Underground Road (Contract No.: GW/2020/05/073); and Zone 2B & 2C consisting of Piling Works for Integrated Basement and Underground Road (Contract No.: CC/2020/2B/088) at WKCD. The purpose of the development in Zone 2A and Zone 2B & 2C is to reserve for Integrated Basement (IB) and Underground Road (UR). The Zone 2A construction activities involve the foundation, excavation and lateral support (ELS) works, road works, drainage diversion works, and temporary car parking. The Zone 2B & 2C construction activities involve the piling works. The major construction works and EM&A programme for Zone 2A and Zone 2B & 2C commenced on 3 October 2020 and 30 September 2021 respectively.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO. The captioned projects include part of the abovementioned underpass road located within the site boundary falls under this same category.

The Monthly EM&A Report is prepared in accordance with the Condition 3.4 of the Environmental Permit No. EP-453/2013/B. This Monthly EM&A Report presents the monitoring works at Zone 2A and Zone 2B & 2C from 1 to 31 December 2021. The purpose of this report is to summarise the findings in the EM&A of the project over the reporting period.

1.2 Project Organisation

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Construction Works Status in the Reporting Period

During the reporting period, construction works at Zone 2A undertaken include:

Zone 2A-1

- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post & Erection of Steel Column for Working Platform
- Socketed H-Pile Works
 - Remaining Socketed H-Pile Works

Zone 2A-2

Bored Pile Works

- Additional Bored Pile Construction
- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post
 - Stage 1a & 1b Grouting
 - Pipe Pile Construction

During the reporting period, construction works at Zone 2B & 2C undertaken include: KD01 (Stage 1-1), KD02 (Stage 5-1), KD03 (Stage 3-1), KD05 (Section 1), KD06 (Section 2), KD07 (Section 3), KD08 (Section 4)

- Bored Pile Works
 - Predrilling, Bored Piling, RCD Drilling, Airlifting, Cage Installation & Concreting and Excavation

KD09 (Section 5)

- Bored Pile Works
 - Predrilling, RCD Drilling and Excavation
- Socket Steel H Pile Works
 - Predrilling

The Construction Works Programme of Zone 2A and Zone 2B & 2C is provided in **Appendix B**. A layout plan of the Project is provided in **Figure 1**. Please refer to **Table 4.3** and **Table 4.4** on the status of the environmental licenses.

1.4 Summary of EM&A Requirements and Alternative Monitoring Locations

1.4.1 EM&A Requirements

The EM&A programme requires environmental monitoring of air quality, noise, landscape and visual as specified in the approved EM&A Manual.

A summary of impact EM&A requirements is presented in **Table 1.1**.

Table 1.1: Summary of Impact EM&A Requirements

Parameters	Descriptions	Locations	Frequencies
	24-Hours TSP	AM3-The Victoria Towers Tower 1	At least once every 6 days
	1-Hour TSP	AM3-The Victoria Towers Tower 1	At least 3 times every 6 days
Air Quality	24-Hours TSP	AM4-Canton Road Government Primary School	At least once every 6 days
All Quality	1-Hour TSP	AM4-Canton Road Government Primary School	At least 3 times every 6 days
	24-Hours TSP	AM5-Topside Developments at West Kowloon Terminus Site	At least once every 6 days
	1-Hour TSP	AM5-Topside Developments at West Kowloon Terminus Site	At least 3 times every 6 days
Noise	Leq, 30 minutes	NM2-The Arch, Sun Tower	Weekly
NOISE	Leq, 30 minutes	NM3-The Victoria Towers Tower 1	Weekly

	Leq, 30 minutes	NM4-Canton Road Government Primary School	Weekly
	Leq, 30 minutes	NM5-Development next to Austin Station	Weekly
Landscape & Visual	Monitor implementation of proposed mitigation measures during the construction stage	As described in Table 9.1 and 9.2 of the EM&A Manual	Bi-Weekly

1.4.2 Alternative Monitoring Locations

The EM&A programme for the Project should require 5 noise monitoring station and 5 air quality monitoring stations located closest to the Project area. With regard to the monitoring activities at M+ Museum and the Lyric Complex, three monitoring stations had been considered, including AM1 (International Commerce Centre), AM2 (The Harbourside Tower 1) for air monitoring, and NM1 (The Harbourside Tower 1) for noise monitoring.

In the context of the construction activities in Zone 2A and Zone 2B & 2C, all other monitoring locations including AM3 (The Victoria Towers Tower 1), AM4 (Canton Road Government Primary School), and AM5 (Topside Developments at West Kowloon Terminus Site) for air monitoring; and NM2 (The Arch, Sun Tower), NM3 (The Victoria Towers Tower 1), NM4 (Canton Road Government Primary School) and NM5 (Development next to Austin Station) for noise monitoring, have been taken into account. However, access to all these originally designated monitoring stations was declined as described below point-by-point.

The Arch management office and owners' committee have formally declined the proposal of setting up noise monitoring instrument on its premises at the podium level of Sun Tower (NM2) on 24 July 2014. Thus, alternative noise monitoring location was identified at the ground floor in front of The Arch – Sun Tower (NM2A), which is at the same location as stated in the EM&A Manual for consistency. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

The Victoria Towers management office formally declined the proposal of setting up air quality and noise monitoring instruments on its premises at the podium area of Tower 1 (AM3/NM3) on 16 June 2020. Alternative air monitoring location was identified at ground floor at the Northeast corner of West Kowloon Station's station box (AM3A), in the same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020. An alternative noise monitoring location was identified at the ground floor in front of the Xiqu Centre (NM3A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

Canton Road Government Primary School formally declined the proposal of setting up air quality and noise monitoring instruments on its premise at the podium level (AM4/NM4) on 16 June 2020. Alternative air monitoring location was identified at ground floor at the Southeast corner of West Kowloon Station's station box (AM4A), in same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020. An alternative noise monitoring location was identified at the ground floor next to Tsim Sha Tsui Fire Station (NM4A), which is set closer to the construction site boundary with

more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

MTR also formally declined the access to the designated AM5 location (topside developments at West Kowloon Terminus Site) on 15 July 2020. Alternative air monitoring location was identified at ground floor at the North of West Kowloon Station's station box (AM5A), in same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020.

Grand Austin property management office formally declined our proposal of setting up noise monitoring instrument on its premises at the podium level (NM5) on 10 July 2020. Alternative noise monitoring location was identified at the Pedestrian road (ground floor) outside West Kowloon Station (NM5A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

The Environmental Quality Performance Limits for air quality and noise are shown in **Appendix C**.

The Event and Action Plan for air quality, construction noise, and landscape and visual are shown in **Appendix D**.

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**.

2 Impact Monitoring Methodology

2.1 Introduction

Air quality and noise monitoring methodology, including the monitoring locations, equipment used, parameters, frequency and duration etc., are described in this Section. The environmental monitoring schedules for the reporting period and the tentative monitoring Schedule for the coming month are provided in **Appendix E**.

The relevant EM&A monitoring requirements and details for landscape and audit impact, are also presented in this Section.

2.2 Air Quality

2.2.1 Monitoring Parameters, Frequency and Duration

Table 2.1 summarizes the monitoring parameters, frequency and duration of the TSP monitoring.

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency	Duration
24-hour TSP	At least once in every six-days	24 hours
1-hour TSP	At least 3 times every six-days	60 minutes

2.2.2 Monitoring Locations

Monitoring stations and locations are given in Table 2.2 and shown in Figure 1.

Table 2.2: Air Quality Monitoring Station

Monitoring Station	Location Description
AM3A	Northeast corner of West Kowloon Station's station box (G/F)
AM4A	Southeast corner of West Kowloon Station's station box (G/F)
AM5A	North of West Kowloon Station's station box (G/F)

2.2.3 Monitoring Equipment

Continuous 24-hour TSP air quality monitoring was conducted using High Volume Sampler (HVS) (Model: TE-5170) located at the designated monitoring station. The HVS meets all the requirements stated in of the EM&A Manual. Portable direct reading dust meter was used to carry out the 1-hour TSP monitoring. **Table 2.3** summarizes the equipment used in the impact air quality monitoring. Copies of the calibration certificates for the HVS, calibration kit and portable dust meters are attached in **Appendix F**.

Table 2.3: TSP Monitoring Equipment

Equipment Model	
24-hour TSP monitoring	
High Volume Sampler	TE-5170 (Serial No.: 4340; 3998; 4344)

Equipment	Model
Calibrator TE-5025A (Orifice I.D.: 3543)	
1-hour TSP monitoring	
Portable direct reading dust meter	Sibata LD-3B (Serial No.: 235811, 336338, 567188)

Calibration of the HVS (five-point calibration) using Calibration Kit was carried out every two months. The HVS calibration orifice will be calibrated annually. Calibration certificate of the TE-5025A Calibration Kit and the HVS are provided in **Appendix F**.

The 1-hour TSP monitoring should be determined periodically (e.g. annually) by the HVS to check the validity and accuracy of the results measured by direct reading method.

2.2.4 Monitoring Methodology

24-hour TSP Monitoring

Installation

The HVS was installed at the site boundary. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of 2 metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of 2 metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the sampler and to obtain access to the monitoring station.
- A secured supply of electricity is needed to operate the sampler.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- The filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 μm (DOP) particles.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5 %. A convenient working RH was 40%. All preparation of filters was done by Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory.</p>

Field Monitoring Procedures

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.

- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.3 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated upon installation and thereafter at bi-monthly intervals. The calibration kits were calibrated annually.
- Calibration records for HVS and calibration kit are shown in Appendix F.

1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

2.3 Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Table 2.4 summarizes the monitoring parameters, frequency and duration of noise monitoring. The noise in A-weighted levels L_{eq} , L_{10} and L_{90} are recorded in a 30-minute interval between 0700 and 1900 hours.

Table 2.4: Noise Monitoring Parameters, Period and Frequency

Time Period	Parameters	Frequency
Daytime on normal weekdays (0700-1900 hours)	$L_{eq}(30 \text{ min}), L_{90}(30 \text{ min}) \& L_{10}(30 \text{ min})$	Once every week

Note: *70 dB(A) for schools and 65 dB(A) during school examination periods.

If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

2.3.2 Monitoring Location

Noise monitoring stations and locations are given in Table 2.5 and shown in Figure 1.

Table 2.5: Noise Monitoring Station

Monitoring Station	Location
NM2A	The Arch – Sun Tower (G/F)
NM3A	Xiqu Centre (G/F)
NM4A	Next to Tsim Sha Tsui Fire Station (G/F)
NM5A	Pedestrian road (G/F) outside West Kowloon Station

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{Aeq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

_						
$-\alpha$	uun	me	nt	ΝЛ	വ	ΔI
_4	чір	1116	116	IVI	Ju	C.

Integrating Sound Level Meter	Calibrator
AWA5661 (Serial No.: 301135)	Pulsar 100B (Serial No.: 039507)

2.3.4 Monitoring Methodology

Field Monitoring

- The microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- Free Field measurement was made at NM5A monitoring location.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: Atime weighting: Fast
 - time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and has to be repeated after re-calibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- A correction of +3dB(A) was made to the free field measurements.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

2.4 Landscape and Visual

2.4.1 Monitoring Program

Table 2.7 details the monitoring program (as proposed in the WKCD EIA report) for landscape and visual impact during the construction phase.

Table 2.7: Monitoring Program for Landscape and Visual Impact during Construction Phase

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Monitor implementation of proposed mitigation measures during the construction stage.	Bi-weekly	ET to report on Contractor's compliance	Counter- signed by IEC

During the landscape and visual impact monitoring, any changes in relation to the landscape and visual amenity should be monitored with reference to the baseline conditions of the site. In addition, mitigation measures were proposed in the WKCD EIA report to minimise the landscape and visual impacts during the construction phase. The proposed mitigation measures as shown in Table 9.1 and Table 9.2 of the EM&A Manual should be checked for proper implementation.

3 Monitoring Results

3.1 Impact Monitoring

Air quality, noise and landscape and visual impact monitoring was undertaken in compliance with the EM&A Manual during the reporting month.

3.2 Air Quality Monitoring

3.2.1 1-hour TSP

Results of 1-hour TSP are summarised in **Table 3.1**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.1: Summary of 1-hour TSP monitoring results

Monitoring	Monitoring	Start	1-ho	ur TSP (µց	g/m3)	Range	Action	Limit
Station	Date	Time	1st Result	2nd Result	3rd Result	(µg/m3)	Level (µg/m3)	Level (µg/m3)
	01-Dec-21	8:03	63	57	63			
	07-Dec-21	14:06	46	49	44			
A	13-Dec-21	8:01	102	96	98	44.400	000.4	F00
AM3A	18-Dec-21	14:11	69	68	77	44-102	280.4	500
	24-Dec-21	8:16	91	87	87			
	30-Dec-21	14:09	61	66	60			
	01-Dec-21	8:11	58	57	58		278.5	500
	07-Dec-21	14:14	49	43	52	43-103		
0.044.0	13-Dec-21	8:09	103	95	103			
AM4A	18-Dec-21	14:19	72	68	71			
	24-Dec-21	8:24	93	87	90			
	30-Dec-21	14:17	61	64	61			
	01-Dec-21	8:26	65	62	63			
	07-Dec-21	14:31	45	43	52			
0.N.4.F. 0	13-Dec-21	8:24	98	101	94	40 404	075.4	F00
AM5A	18-Dec-21	14:36	69	72	72	43-101	275.4	500
	24-Dec-21	8:39	91	92	90			
	30-Dec-21	14:25	59	65	64	-		

3.2.2 24-hour TSP

Results of 24-hour TSP are summarised in **Table 3.2**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.2: Summary of 24-hour TSP monitoring results

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
AM3A	01-Dec-21	10:00	55.0	42.6-95.8	152.4	260

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (μg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
	07-Dec-21	10:00	42.6			
	13-Dec-21	10:00	95.8			
	18-Dec-21	10:00	66.3			
	24-Dec-21	10:00	91.1			
	30-Dec-21	10:00	58.1			
	01-Dec-21	10:00	57.2			
	07-Dec-21	10:00	41.6			
AM4A	13-Dec-21	10:00	94.9	44 6 04 0	152.6	260
AIVI4A	18-Dec-21	10:00	66.5	41.6-94.9	132.0	200
	24-Dec-21	10:00	85.8			
	30-Dec-21	10:00	60.3			
	01-Dec-21	10:00	63.8			
	07-Dec-21	10:00	40.6			
A N 4 E A	13-Dec-21	10:00	97.2	40 6 07 0	1111	260
AM5A	18-Dec-21	10:00	67.3	40.6-97.2	141.1	260
	24-Dec-21	10:00	85.7			
	30-Dec-21	10:00	59.4	•		

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.3 Noise Monitoring

The construction noise monitoring results are summarized in **Table 3.3**. Graphical plots of the monitoring data and the station set-up as façade and free-field measurements are shown in **Appendix G**.

Table 3.3: Summary of noise monitoring results during normal weekdays

Monitoring Stations	Monitoring Date	Start Time	End Time	L _{eq} (30 mins) dB(A)	Limit Level for Leq (dB(A))
	01-Dec-21	08:33	09:03	57.9	
	07-Dec-21	14:36	15:06	57.7	
NIMACA	13-Dec-21	08:31	09:01	57.9	75
NM2A	18-Dec-21	14:41	15:11	58.0	75
	24-Dec-21	08:46	09:16	58.5	
_	30-Dec-21	14:09	14:39	58.4	
	01-Dec-21	10:03	10:33	69.6	
	07-Dec-21	16:09	16:39	69.6	
NIMOA	13-Dec-21	10:01	10:31	69.4	75
NM3A -	18-Dec-21	16:14	16:44	70.0	75
	24-Dec-21	10:16	10:46	69.7	
	30-Dec-21	15:51	16:21	70.0	
	01-Dec-21	10:38	11:08	68.4	
NIN44A -	07-Dec-21	16:44	17:14	64.8	70/65^#
NM4A	13-Dec-21	10:36	11:06	64.9	10/05/**
	18-Dec-21	16:49	17:19	68.1	

Monitoring Stations	Monitoring Date	Start Time	End Time	L _{eq} (30 mins) dB(A)	Limit Level for L _{eq} (dB(A))
	24-Dec-21	10:51	11:21	67.9	
_	30-Dec-21	16:26	16:56	68.0	
	01-Dec-21	09:23	09:53	65.7	
_	07-Dec-21	15:28	15:58	65.7	
NM5A*	13-Dec-21	09:21	09:51	66.0	75
ACIVINI	18-Dec-21	15:33	16:03	65.8	75
	24-Dec-21	09:36	10:06	65.4	
_	30-Dec-21	15:10	15:40	65.7	

Remarks:

No exceedance (Action or Limit Level) of construction noise was recorded in the reporting month.

School examination was conducted on 07 to 10 and 13 to 16 December during the reporting period. Additional monitoring was carried out at NM4A on the examination date on 08 to 10 and 14 to 16 December and the L_{eq} (30 mins) is in the range of 63.6 to 64.3 dB(A).

3.4 Landscape and Visual Impact

Landscape and visual impact inspections were conducted as part of the weekly site inspections on 09 and 23 December 2021 for Zone 2A and 14 and 28 December 2021 for Zone 2B & 2C during the reporting month. As reviewed by the registered Landscape Architect, no adverse comment on landscape and visual aspects was made during these inspections.

The landscape and visual mitigation measures were implemented during the reporting period. The summary of implementation status of the environmental mitigation measures is provided in **Appendix J**.

^{* +3}dB (A) correction was applied to free-field measurement.

^{^ 70} dB(A) for schools and 65 dB(A) during school examination periods.

^{*} School examination was conducted on 07 to 10 and 13 to 16 December in the reporting period.

4 Site Environmental Management

4.1 Site Inspection

4.1.1 Zone 2A

Construction phase weekly site inspections were carried out on 02, 09, 16, 23 and 30 December 2021 at Zone 2A. The joint site inspection with IEC, ET, ER and Contractor for Zone 2A was held on 16 December 2021. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.1**.

Table 4.1: Summary of Site Inspections and Recommendations for Zone 2A

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close-out (Date)
02-Dec-21	Air Quality	The contractor was reminded that the idle stockpile shall be fully covered/ removed from site.	The contractor has fully covered the idle stockpile.	03-Dec-21
23-Dec-21	Water Quality	The contractor was reminded to provide cleaning for the uchannel regularly.	The contractor has cleaned the u-channel.	24-Dec-21
23-Dec-21	Air Quality	The contractor was reminded that the idle stockpile shall be fully covered/ removed from site.	The contractor has fully covered the idle stockpile.	23-Dec-21
30-Dec-21	Air Quality	The contractor was reminded that the idle stockpile shall be fully covered/ removed from site.	The contractor has fully covered the idle stockpile.	23-Dec-21
30-Dec-21	Water Quality	The contractor was reminded to provide higher soil bund to prevent wastewater flow out from construction area.	The contractor has provided higher soil bund around the construction area.	31-Dec-21

4.1.2 Zone 2B & 2C

Construction phase weekly site inspections were carried out on 07, 14, 20 and 28 December 2021 at Zone2B & 2C. The joint site inspection with IEC, ET, ER and Contractor for Zone 2B & 2C was held on 14 December 2021. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.2**.

Summary of Site Inspections and Recommendations for Zone 2B & 2C							
Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close-out (Date)				
Waste Management	The contractor was reminded to properly place the chemicals with drip trays to prevent chemical spillage.	The contractor has removed the chemicals to prevent chemical spillage.	07-Dec-21				
Waste Management	The contractor was reminded to properly place the chemicals with drip trays to prevent chemical spillage.	The contractor has removed the chemicals to prevent chemical spillage.	14-Dec-21				
Water Quality	The contractor was reminded that working area should be confined and provided with higher soil bund with water pump to prevent construction surface runoff from over-spilling to haul road.	The contractor has confined the working area and provided higher soil bund with water pump.	15-Dec-21				
Water Quality	The contractor was reminded to take precautional actions such as adding water pumps and sandbags when rainstorms are likely.	The Contractor has taken precautional actions such as adding sandbags and sealing the bottom of the water barriers.	21-Dec-21				
Waste Management	The contractor was reminded to properly place the chemicals with drip trays to prevent chemical spillage.	The contractor has removed the chemicals to prevent chemical spillage.	28-Dec-21				
Air Quality	The contractor was reminded that open stockpile shall be covered with impervious sheets.	The Contractor has properly covered the open stockpile.	28-Dec-21				
	Waste Management Waste Management Water Quality Water Quality Water Quality	Parameter Observation / Recommendation Waste Management The contractor was reminded to properly place the chemicals with drip trays to prevent chemical spillage. Waste Management The contractor was reminded to properly place the chemicals with drip trays to prevent chemical spillage. Water Quality The contractor was reminded that working area should be confined and provided with higher soil bund with water pump to prevent construction surface runoff from over-spilling to haul road. Water Quality The contractor was reminded to take precautional actions such as adding water pumps and sandbags when rainstorms are likely. Waste Management The contractor was reminded to properly place the chemicals with drip trays to prevent chemical spillage. Air Quality The contractor was reminded that open stockpile shall be covered	Parameter Observation / Recommendation Waste The contractor was reminded to properly place the chemicals with drip trays to prevent chemical spillage. Waste Management Officer of Management Management Officer of Management Officer offic				

4.2 Advice on the Solid and Liquid Waste Management Status

The Contractors have been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting will be carried out on site. A sufficient number of receptacles were available for general refuse collection.

4.2.1 Zone 2A

As advised by the Zone 2A Contractor, 29.95 tonnes, 24.89 tonnes and 2355.47 tonnes of inert C&D material were disposed of as public fill to Chai Wan Public Fill Barging Point, Tseung Kwan O Area 137 Public Fill and Tuen Mun Area 38 Public Fill respectively, while 12.35 tonnes of general refuse were disposed of at SENT landfill respectively. 0.0 tonne of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber was collected by recycling contractors in the reporting month. 24.00 tonnes of inert C&D material was reused on site. 0.0 tonne of inert C&D material were reused in other projects and 0.0 tonne of inert C&D material was imported for reuse at site in the reporting month. 0.0 tonne of inert C&D material was disposed to sorting facility and 0.40 tonnes of chemical waste was collected by licensed contractors in the reporting period.

4.2.2 Zone 2B & 2C

As advised by the Zone 2B & 2C Contractor, 1963.96 tonnes and 10457.17 tonnes of inert C&D material were disposed of as public fill to Tseung Kwan O Area 137 Public Fill and Tuen Mun Area 38 Public Fill respectively, while 13.62 tonnes of general refuse were disposed of at SENT

landfill. 00.00 tonne of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber was collected by recycling contractors in the reporting month. 1041.17 tonnes of inert C&D material were reused on site. 0.0 tonnes of inert C&D material were reused in other projects and 0.0 tonne of inert C&D material was imported for reuse at site in the reporting month. 0.0 tonne of inert C&D material was disposed to sorting facility and 0.0 tonne of chemical waste was collected by licensed contractors in the reporting period.

The cumulative waste generation records for Zone 2A and Zone 2B & 2C are shown in **Appendix** I

4.3 Status of Environmental Licenses and Permits

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.3**.

4.3.1 Zone 2A

Table 4.3: Status of Environmental Submissions, Licenses and Permits for Zone 2A

Permit / License	Valid	Period	Status	Remarks	
No. / Notification / Reference No.	From	То	_		
Chemical Waste Produ	cer Registration				
WPN5113-256- B2597-01	10-Sep-20		Valid		
Billing Account Constr	uction Waste Dispos	al			
7037500	09-Jun-20		Account Active		
Construction Noise Pe	rmit				
GW-RE-1064-21	11-Nov-21	10-Feb-22	Valid	Piling Works	
Wastewater Discharge	License				
WT00037344-2021	01-Feb-21	28-Feb-26	Valid		
Notification under Air I	Pollution Control (Co	nstruction Dust) Regu	ulation		
456376	21-May-20		Notified		

4.3.2 Zone 2B & 2C

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.4**.

Table 4.4: Status of Environmental Submissions, Licenses and Permits for Zone 2B & 2C

Permit / License	Valid Pe	eriod	Status	Remarks	
No. / Notification / Reference No.	From	То			
Chemical Waste Produ	cer Registration				
WPN5113-256- V2302-01	17-Aug-21		Valid		
Billing Account Constr	uction Waste Disposal				
7041264	11-Aug-21		Account Active		
Construction Noise Pe	rmit				

Permit / License No. / Notification / Reference No.	Valid Period		Status	Remarks			
	From	То					
GW-RE1288-21	22-Dec-21	21-Feb-22	Valid				
Wastewater Discharge License							
WT00039734-2021	25-Nov-21	30-Nov-26	Valid				
Notification under Air Pollution Control (Construction Dust) Regulation							
470022	29-Jul-21	-	Notified				

4.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**. In particular, the following mitigation measures were brought to attention during the site inspections:

4.4.1 Zone 2A

Air Quality

Idle stockpile should be fully covered when not in use or removed from the site.

Temporary Water Drainage System & Water Quality

- The temporary drainage system should be well managed and updated with the site condition.
- Higher soil bund around the construction area should provide to prevent wastewater flow out.

4.4.2 Zone 2B & 2C

Water Quality

- Woking area should be confined and provided with higher soil bunds with water pumps to prevent construction surface runoff from over-spilling to the haul road.
- Precautional actions such as adding water pumps and sandbags should be taken when rainstorms are likely.

Air Quality

Idle stockpile should be fully covered when not in use.

Waste management

 Chemical wastes should be properly placed with drip trays to prevent chemical spillage.

5 Compliance with Environmental Permit

The status of the required submission under the EP during the reporting period is summarized in **Table 5.1**.

Table 5.1: Status of Submissions under the Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report for November 2021	14 December 2021

6 Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions

6.1 Record on Non-compliance of Action and Limit Levels

There was no breach of Action or Limit Levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise in the reporting month.

6.2 Record on Environmental Complaints Received

No environmental complaint was received in the reporting month.

The cumulative statistics on complaints were provided in **Appendix K**.

6.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecutions were received this month. The cumulative statistics on notifications of summons and successful prosecutions were provided in **Appendix K**.

7 Future Key Issues

7.1 Construction Works for the Coming Month(s)

The major site works for Zone 2A scheduled to be commissioned in the coming month include: Zone 2A-1

- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post & Erection of Steel Column for Working Platform
- Socketed H-Pile Works
 - Remaining Socketed H-Pile Works

Zone 2A-2

- Bored Pile Works
 - Additional Bored Pile Construction
- ELS (Stage 1) Grouting / Pipe Pile Works
 - King Post
 - Stage 1a & 1b Grouting
 - Pipe Pile Construction

The major site works for Zone 2B & 2C scheduled to be commissioned in the coming month include:

KD01 (Stage 1-1), KD02 (Stage 5-1), KD03 (Stage 3-1), KD05 (Section 1), KD06 (Section 2), KD07 (Section 3), KD08 (Section 4)

- Bored Pile Works
 - Predrilling, Bored Piling, RCD Drilling, Airlifting, Cage Installation & Concreting and Excavation

KD09 (Section 5)

- Bored Pile Works
 - Predrilling, Bored Piling, RCD Drilling, Airlifting, Cage Installation & Concreting and Excavation
- Socket Steel H Pile Works
 - Socket Steel H Piling

7.2 Key Issues for the Coming Month

7.2.1 Zone 2A

Key issues to be considered in the coming month include:

- Generation of dust from construction works;
- Noise impact from piling works;
- Generation of site surface runoffs and wastewater from activities on-site;
- The temporary drainage system should be well managed and updated with the site condition, particularly on rainy days;
- Management of stockpiles and slopes, particularly on rainy days;
- Management of chemicals and avoidance of oil spillage on-site.

Sorting, recycling, storage and disposal of general refuse and construction waste; and

7.2.2 Zone 2B & 2C

Key issues to be considered in the coming month include:

- Generation of dust from construction works;
- Noise impact from piling works;
- Generation of site surface runoffs and wastewater from activities on-site;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste; and
- Management of chemicals and avoidance of oil spillage on-site.

7.3 Monitoring Schedule for the Coming Month

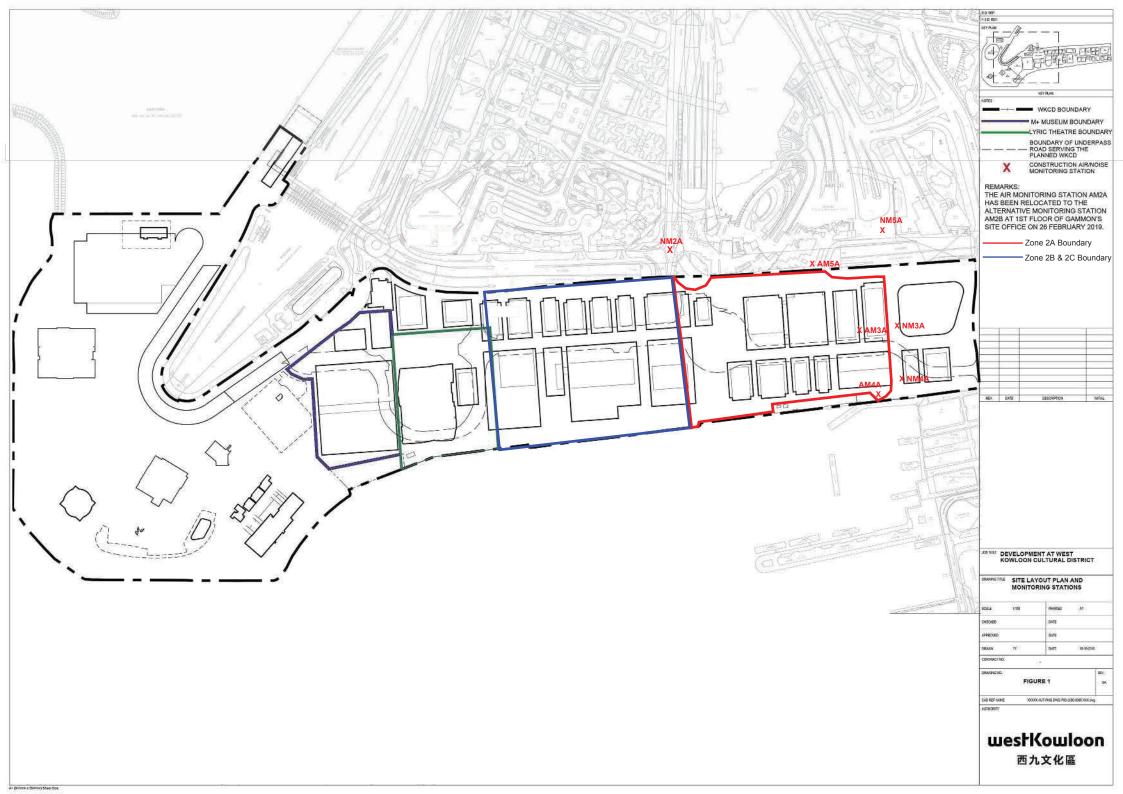
The environmental site inspection and environmental monitoring will be continued in the coming month. Impact monitoring for air quality and noise for Zone 2A and Zone 2B & 2C in accordance with the approved EM&A Manual has commenced since 3 October 2020 and 30 September 2021 respectively. The tentative monitoring schedule for the coming month is shown in the **Appendix E**.

8 Conclusions and Recommendations

8.1 Conclusions

The EM&A programme as recommended in the EM&A Manual has been undertaken with the commencement of the construction activities at Zone 2A on 3 October 2020, and the major construction works of Zone 2B & 2C commenced on 30 September 2021.

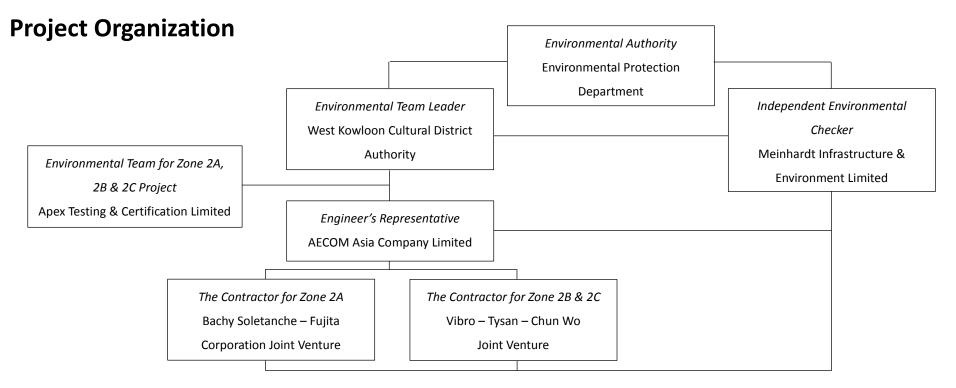
Monitoring of air quality and noise with respect to the Projects is underway. In particular, the 1-hour TSP, 24-hour TSP, noise level (as L_{eq} , 30 minutes) under monitoring have been checked against established Action and Limit levels. There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise monitoring in this reporting month.


No environmental complaint was recorded in the reporting month. No notifications of summons or successful prosecutions were received during the reporting month.

Weekly construction phase site inspections and bi-weekly landscape and visual impact inspections were conducted during the reporting month as required. It was observed that the Contractors had implemented all possible and feasible mitigation measures to mitigate the potential environmental impacts during construction phase works.

8.2 Recommendations

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.


Figure 1 Site Layout Plan and Monitoring Stations

Appendices

- A. Project Organisation
- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow table
- J. Environmental Mitigation Measures Implementation Status
- K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

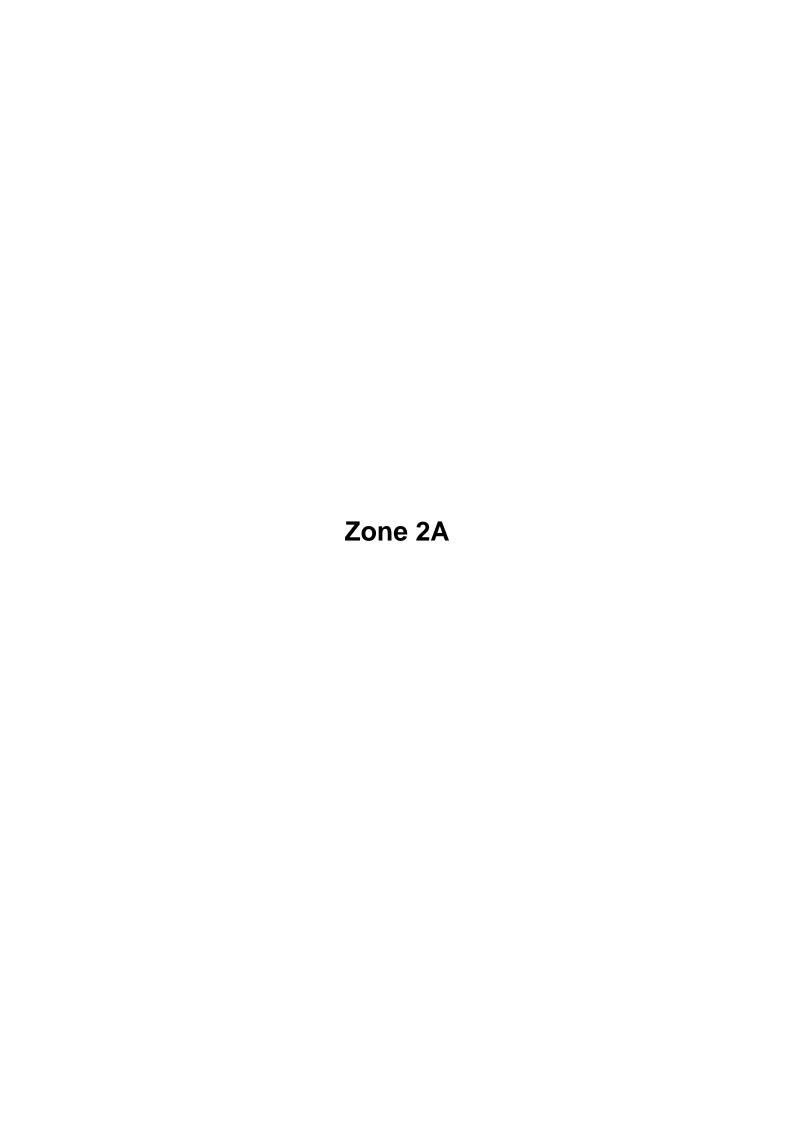
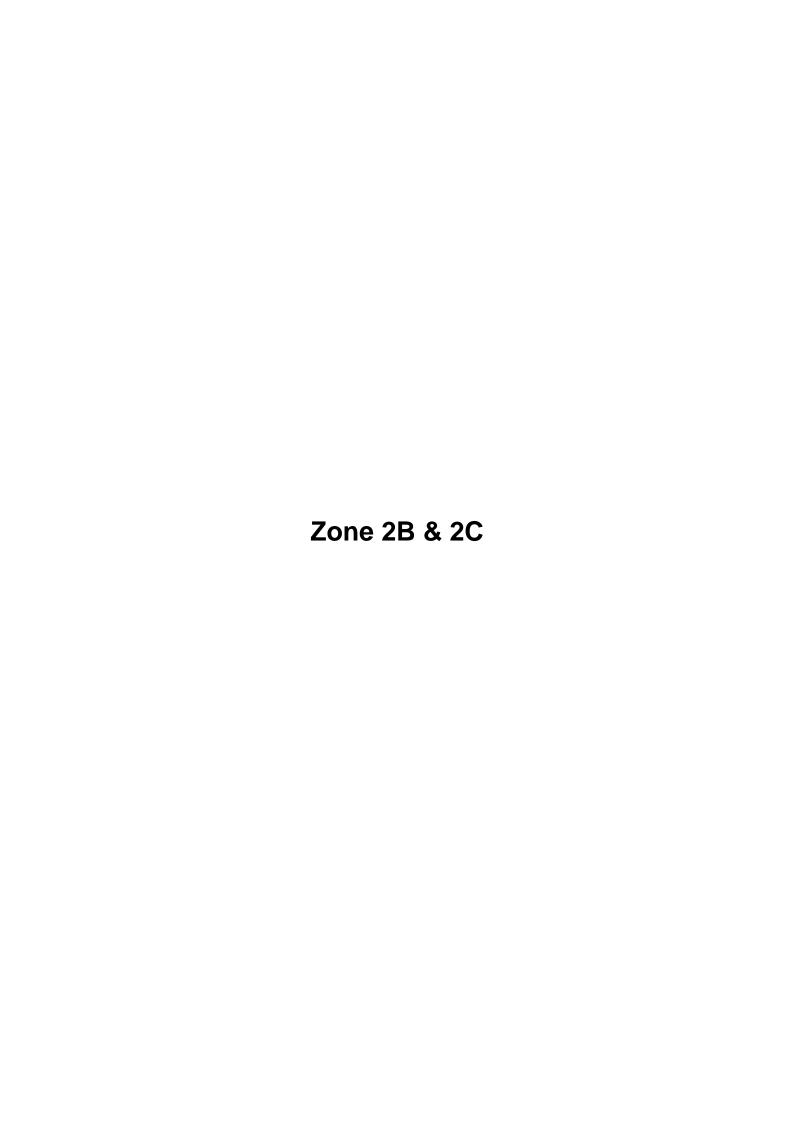

A. Project Organisation

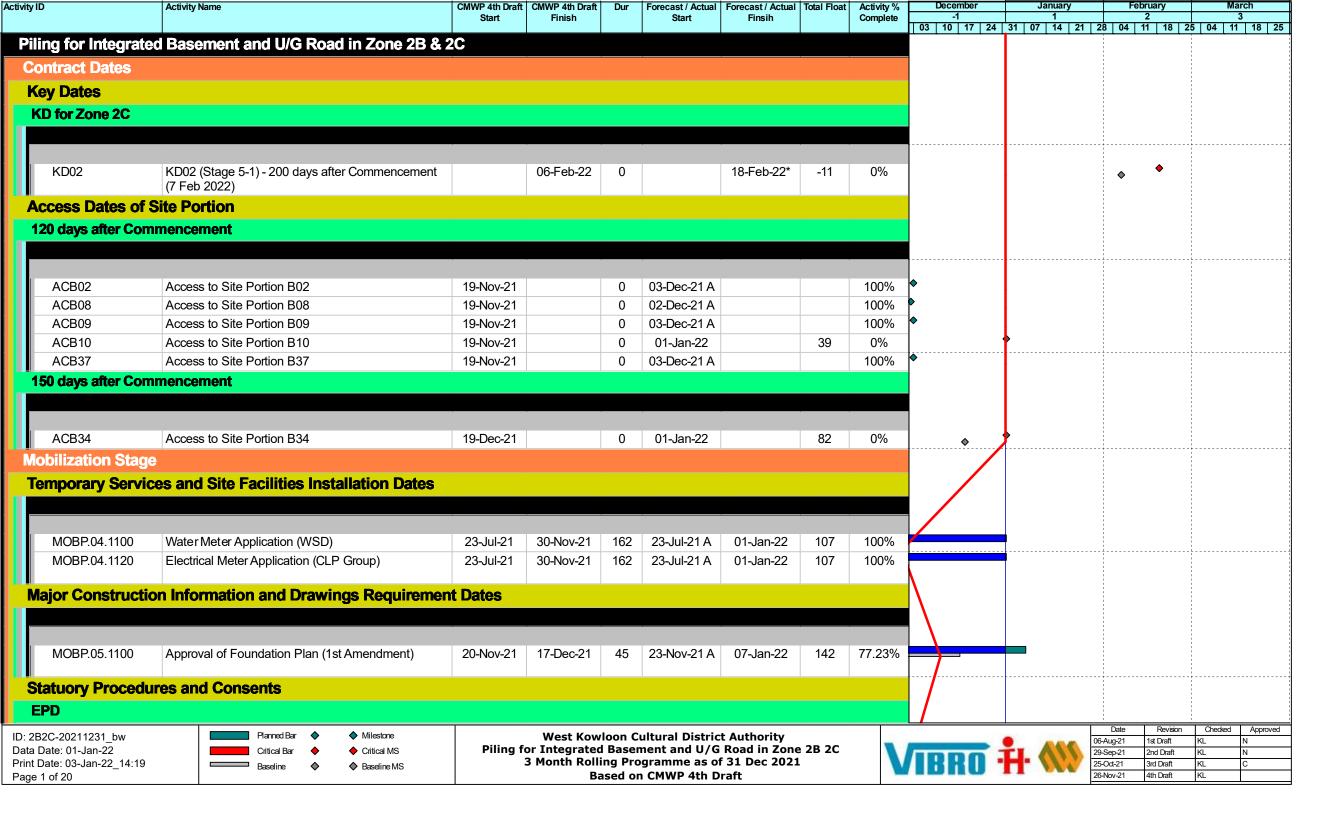
Table A-1: Contract Information

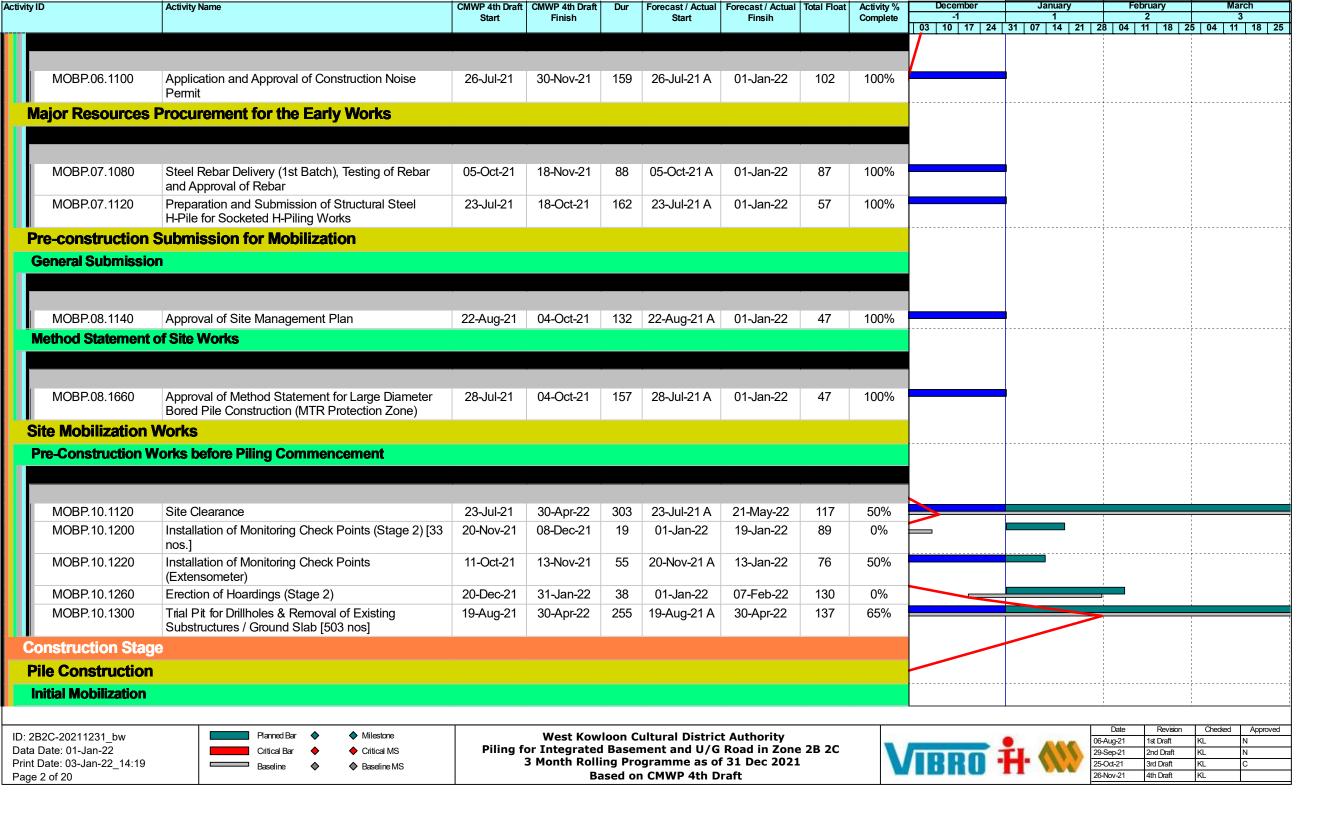
Company Name	Role	Name	Telephone	Email
West Kowloon Cultural District Authority	WKCDA Representative & Project ETL	Mr. C.K. WU	5506 9178	ck.wu@wkcda.hk
Meinhardt Infrastructure & Environment Limited	Independent Environmental Checker	Ms. Claudine LEE	2859 5409	caludinelee@meinhardt.com.hk
AECOM Asia Company Limited	Resident Engineer	Mr. Alex GBAGUIDI	3619 6287	alex.gbaguidi@aecom.com
Bachy Soletanche – Fujita Corporation Joint	Interface & Environmental Manager	Mr. Philip CHAN	9668 8403	philip.chan@soletanche-bachy.com
Venture				
Bachy Soletanche – Fujita Corporation Joint	Environmental Engineer	Mr. William CHAN	54083045	william-hou.chan@soletanche-
Venture				bachy.com
Vibro – Tysan – Chun Wo Joint Venture	Environmental Sustainability Manager	Mr. Tony YAM	2137 5586	tony_yam@vibro.com.hk
Apex Testing & Certification Limited	Contractor's Environmental Team	Mr. Calvin LUI	9629 9718	calvinlui@apextestcert.com
	Leader			

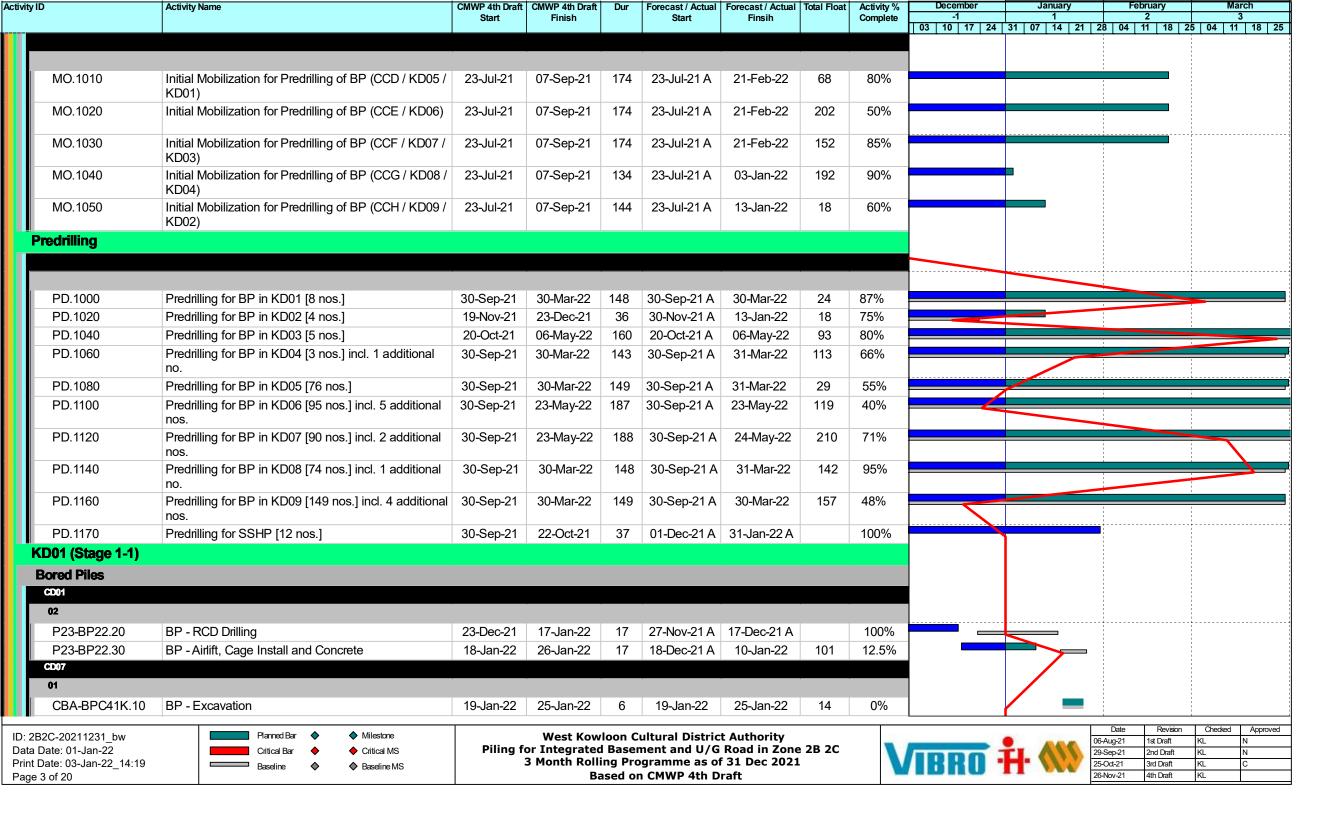
B. Tentative Construction Programme

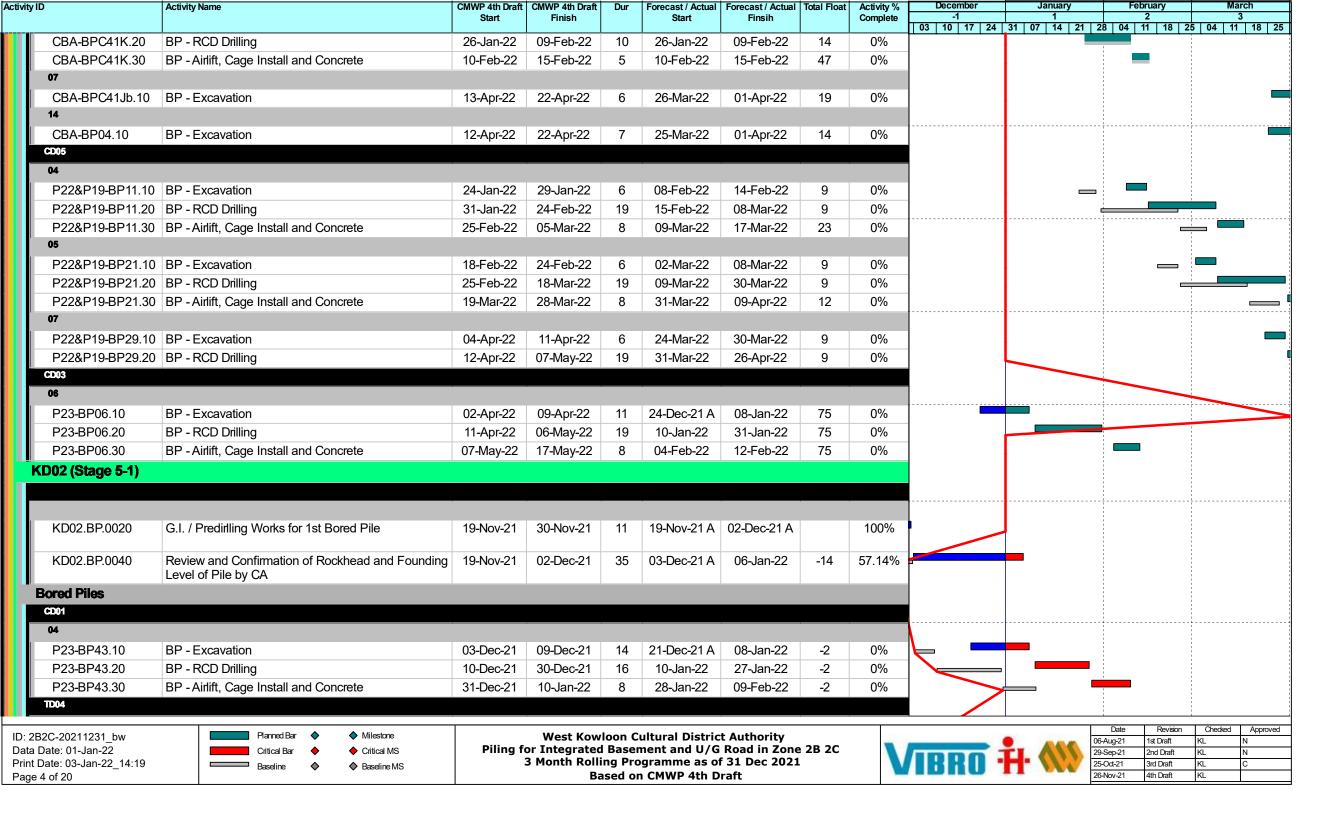
Project Name: Foundation and ELS Works for Integrated Basement and Underground Road in Zone 2A of the West Kowloon Cultural District

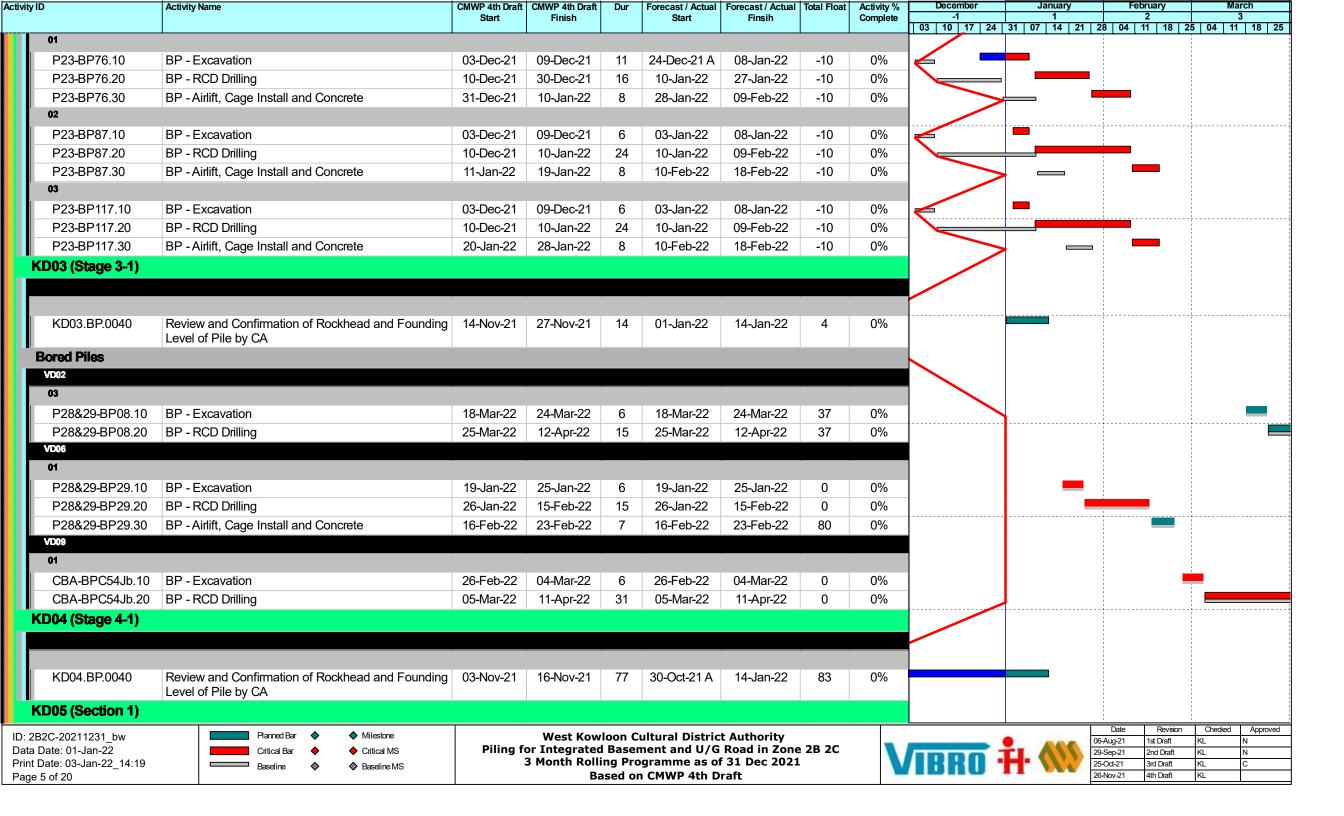

3-Month Rolling Programme

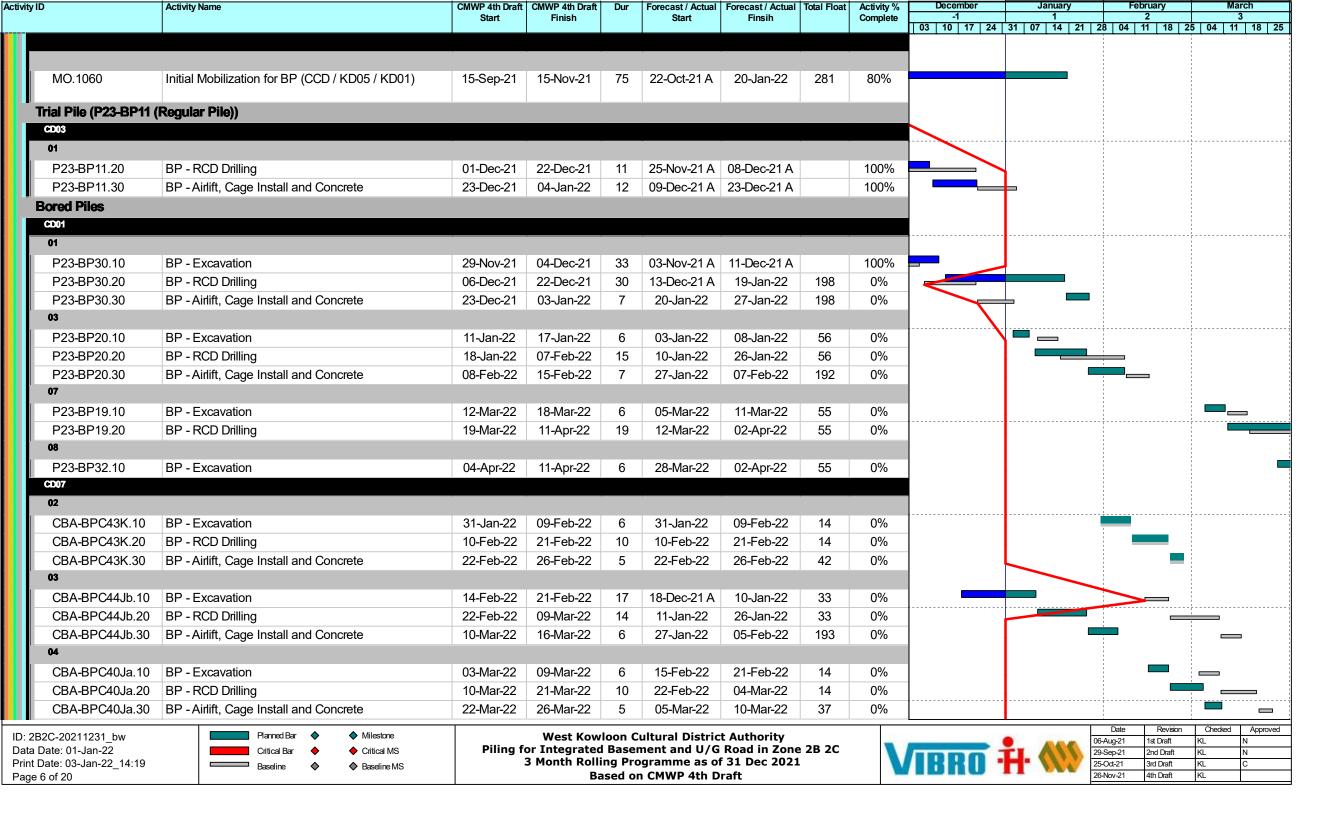

					20	021		2022							
Activity Description	Duration	Start Date	Finish Date	December				January			Febru				
(Cal. Day)			10 W83	17	24 W85	31	7	14	21	28	4	11	18 W93 V	25	
Zone 2A-1 Foundation, ELS Works and Blinding to Formation (KD01)				VV03	W04	WOS	- WOO	VVO	VVOO	VV09	VV 30	WSI	VV32	W93 V	V34
ELS (Stage 1) - Grouting / Pipe Pile Works															
King Post (8/64 Nos Completed) & Erection of Steel Column for Working Platform (13/41 Nos completed)	342	15-May-21	21-Apr-22												
Socketed H-Pile Works															
Remaining Socketed H-Pile Works (27/53 Nos completed)	218	16-Jun-21	19-Jan-22												
Zone 2A-2 Foundation, ELS Works and Blinding to Formation (KD02)							1								
Bored Pile Works															
Additional Bored Pile Construction (Total 16 Nos.) BP15Y, BP16TA, BP13U, BP14Y, BP12M, BP12T, BP20XA, BP12Y, BP13Y, BP16WA. BP12K, BP13W, BP12P, BP12JA, BP12E, BP17Y (14 Nos. Cast; 1 Nos. completed RCD)	290	23-Mar-21	6-Jan-22												
ELS (Stage 1) - Grouting / Pipe Pile Works															
King Post (0/86 Nos Completed) & Erection of Steel Column for Working Platform (0/65 Nos Completed)	208	18-Dec-21	13-Jul-22												
Stage 1a & 1b grouting (915/940 Nos Completed)	478	22-Oct-20	11-Feb-22												
Pipe Pile Construction (411/457 Nos Completed)	591	17-Nov-20	30-Jun-22												

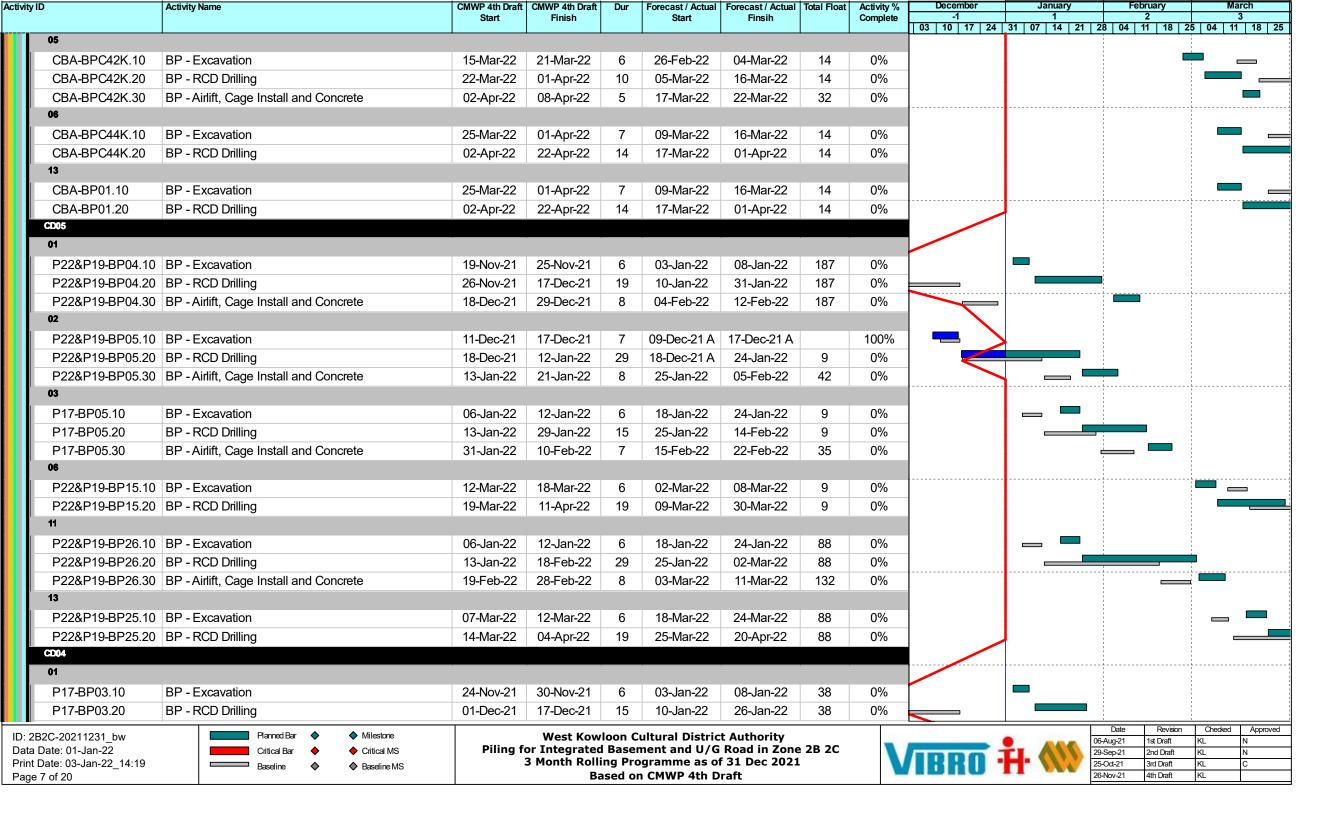

- Actual

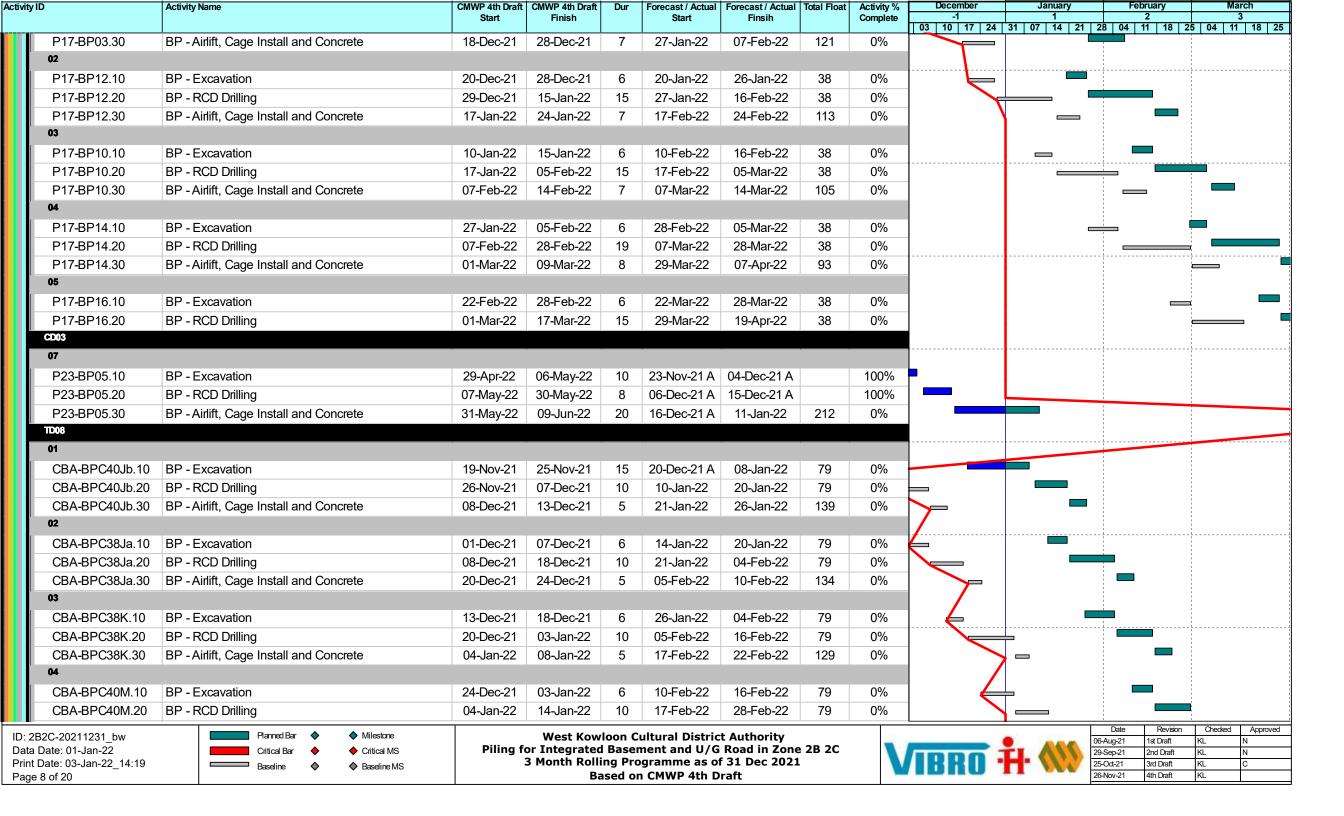

- Remaining Works

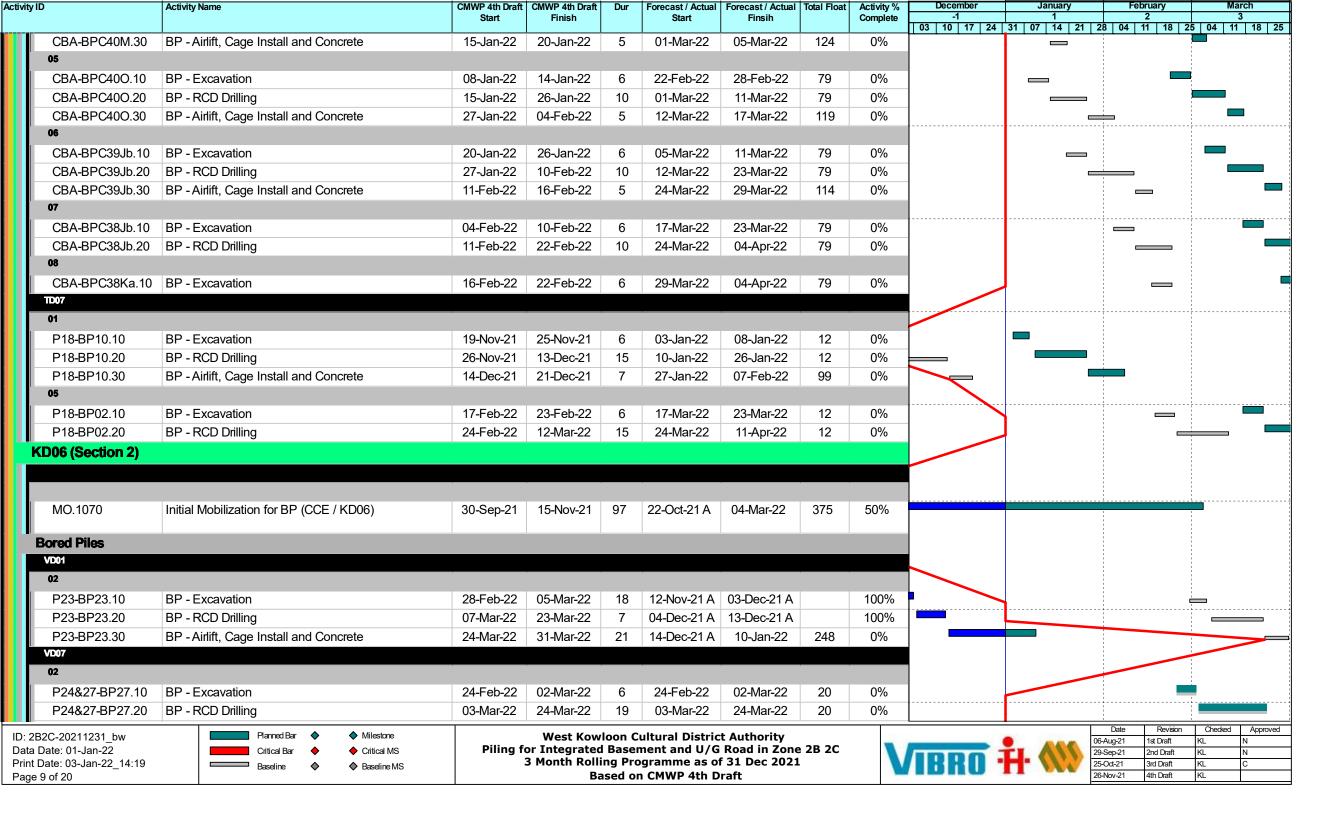

- Critical Remaining Works

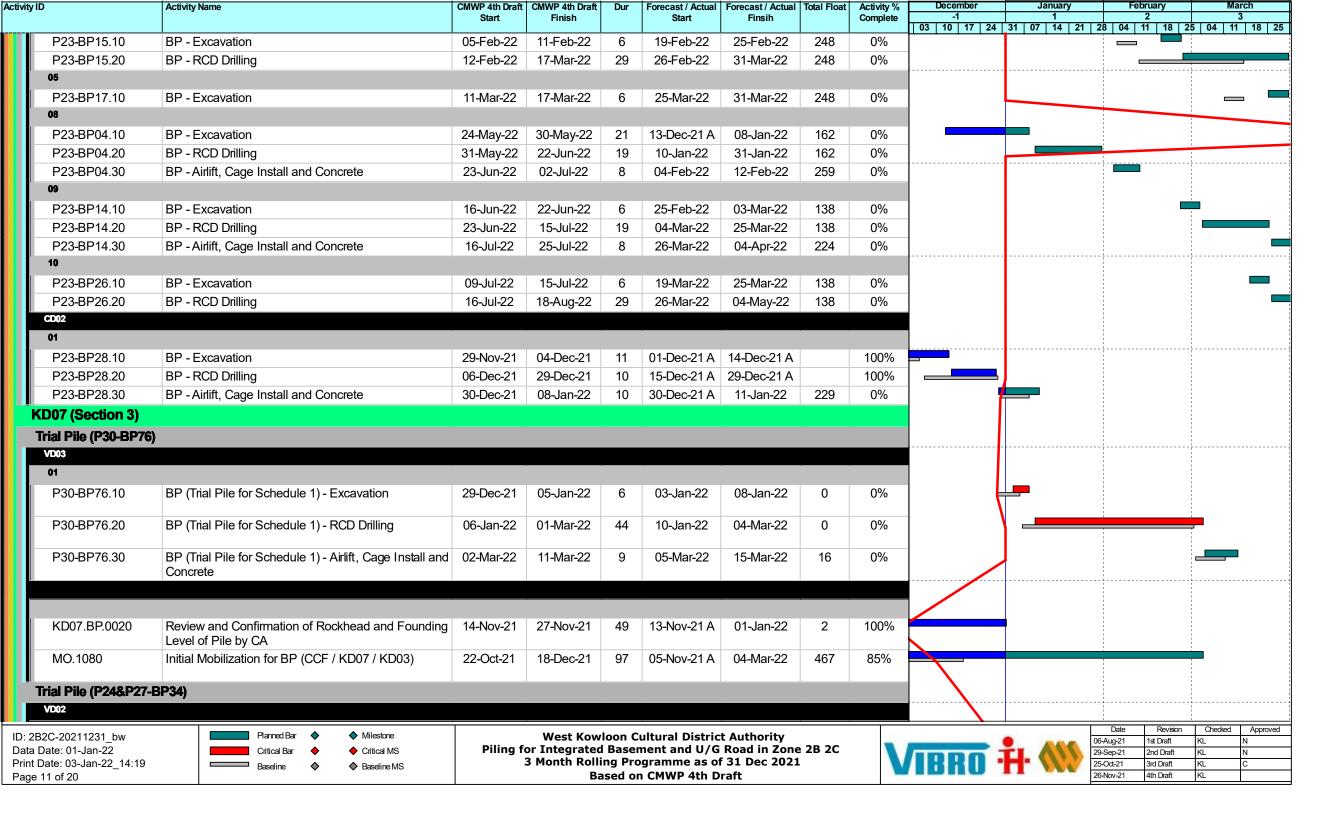


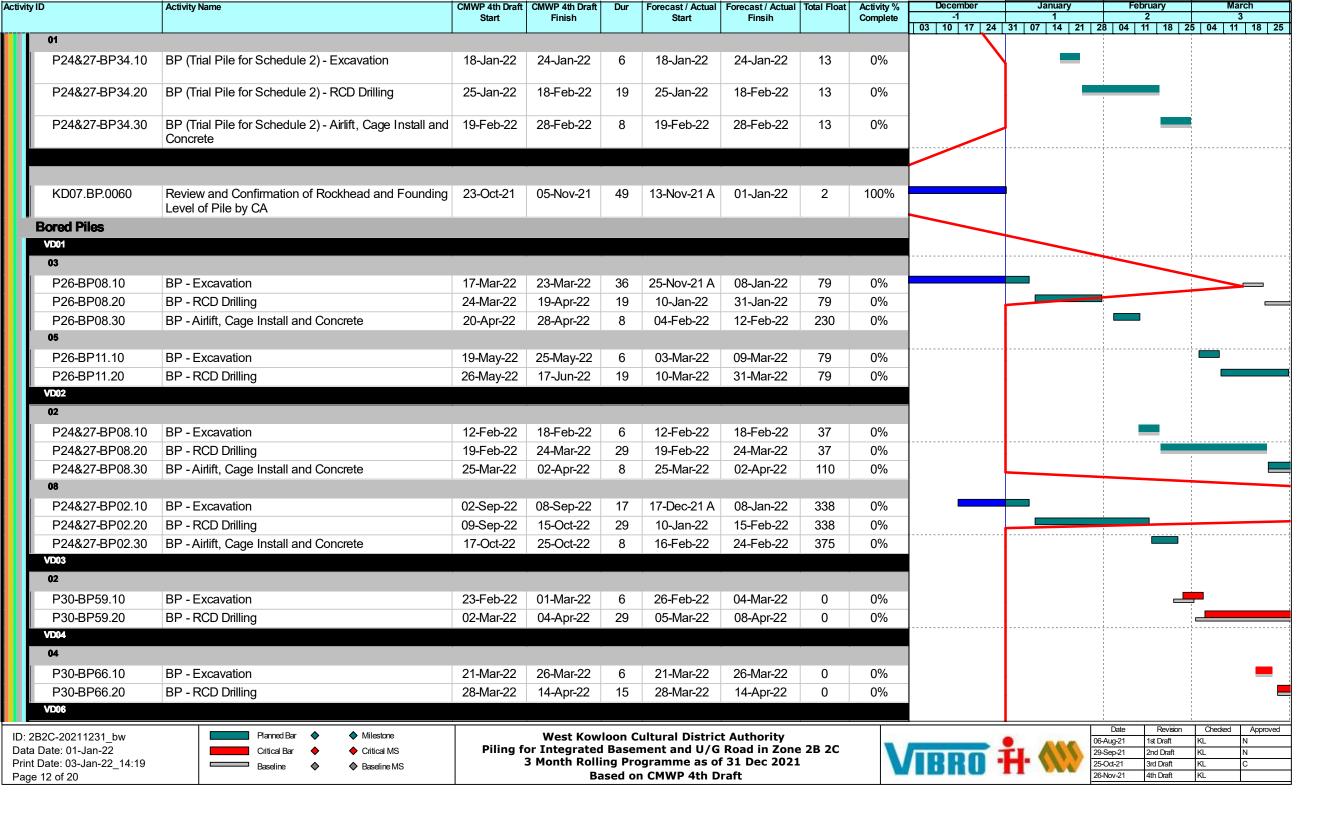


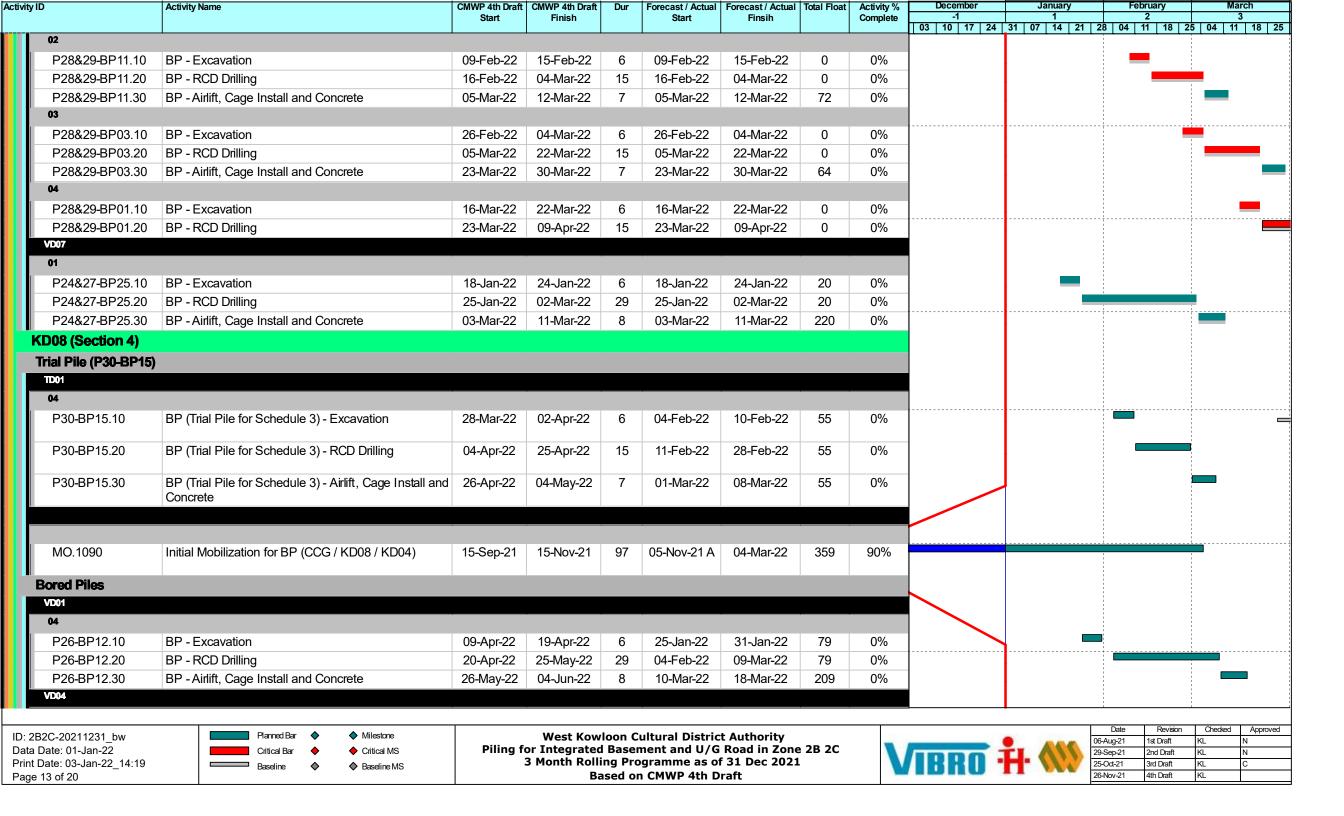


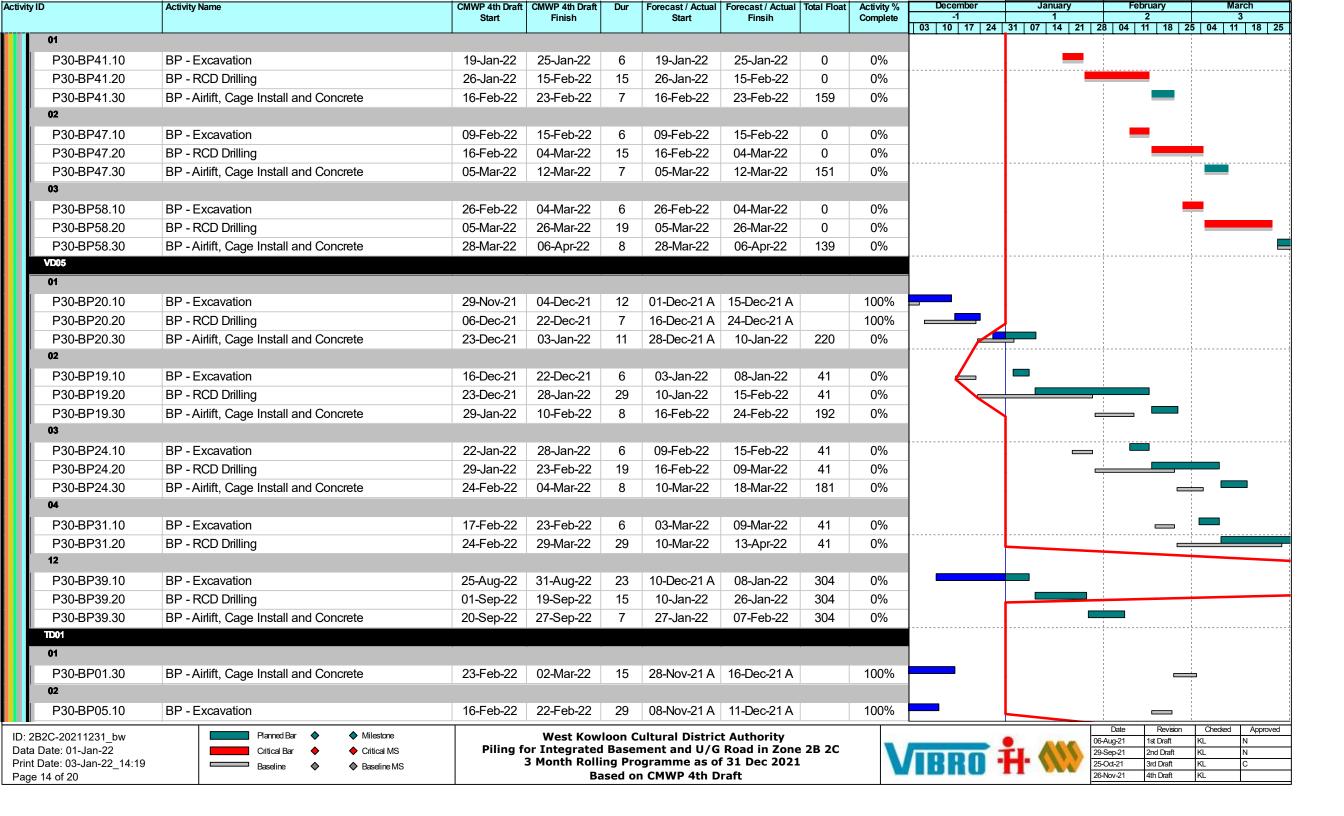


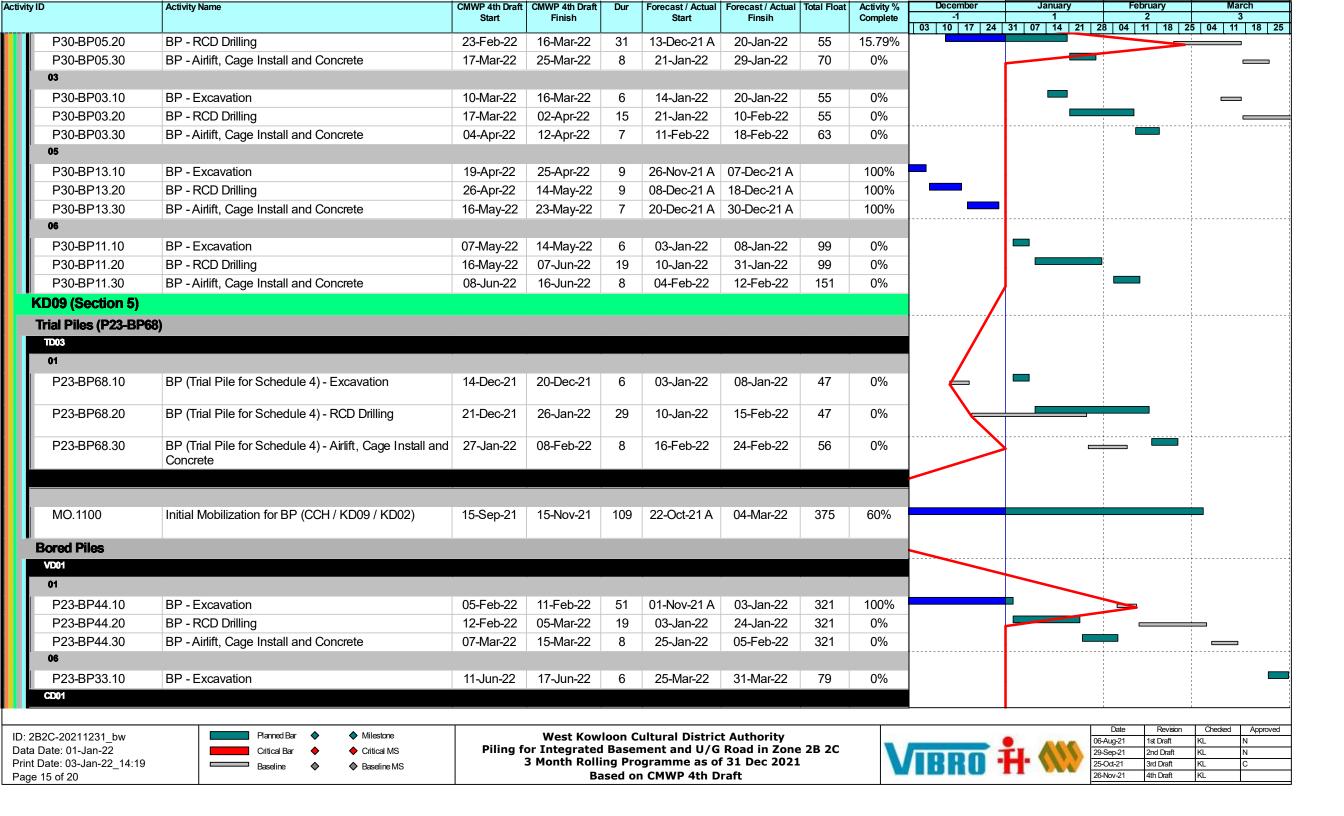


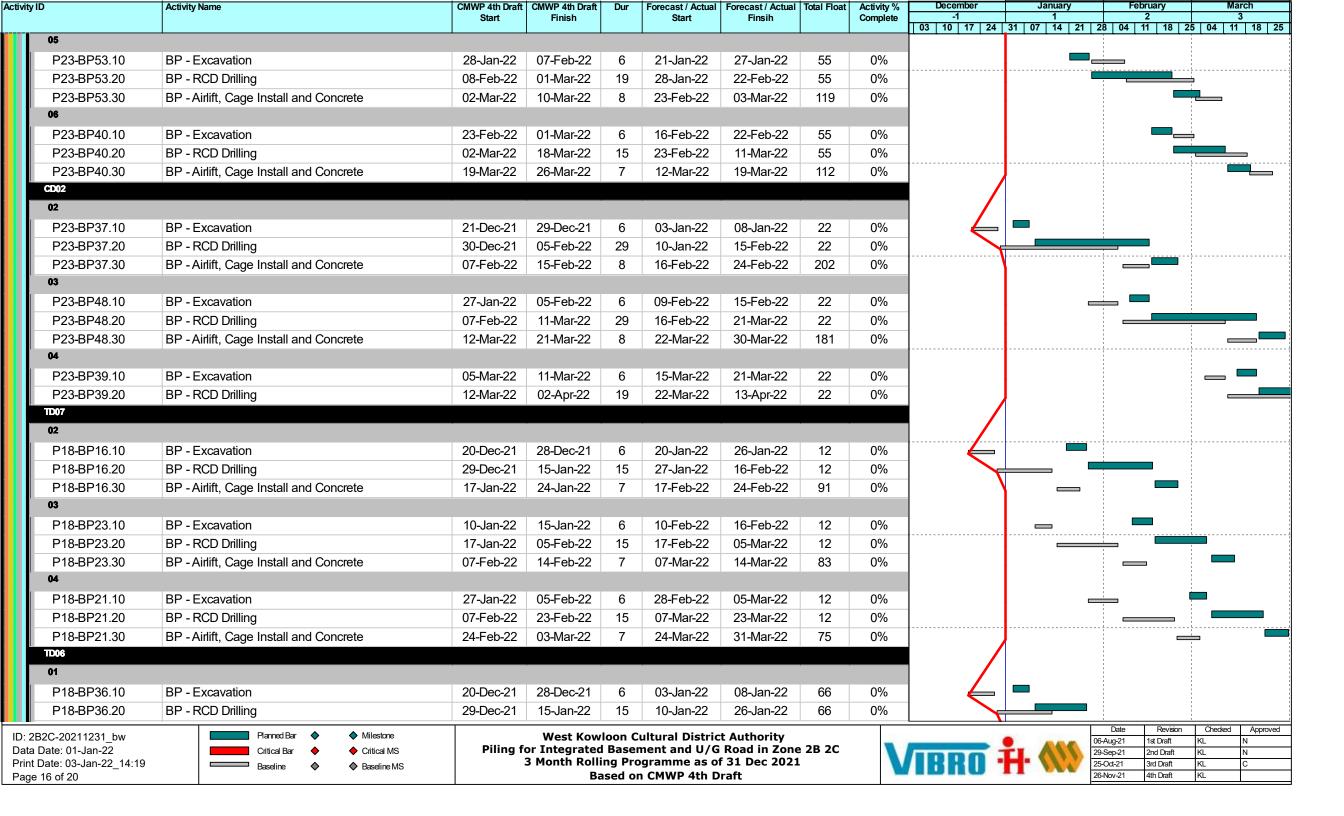


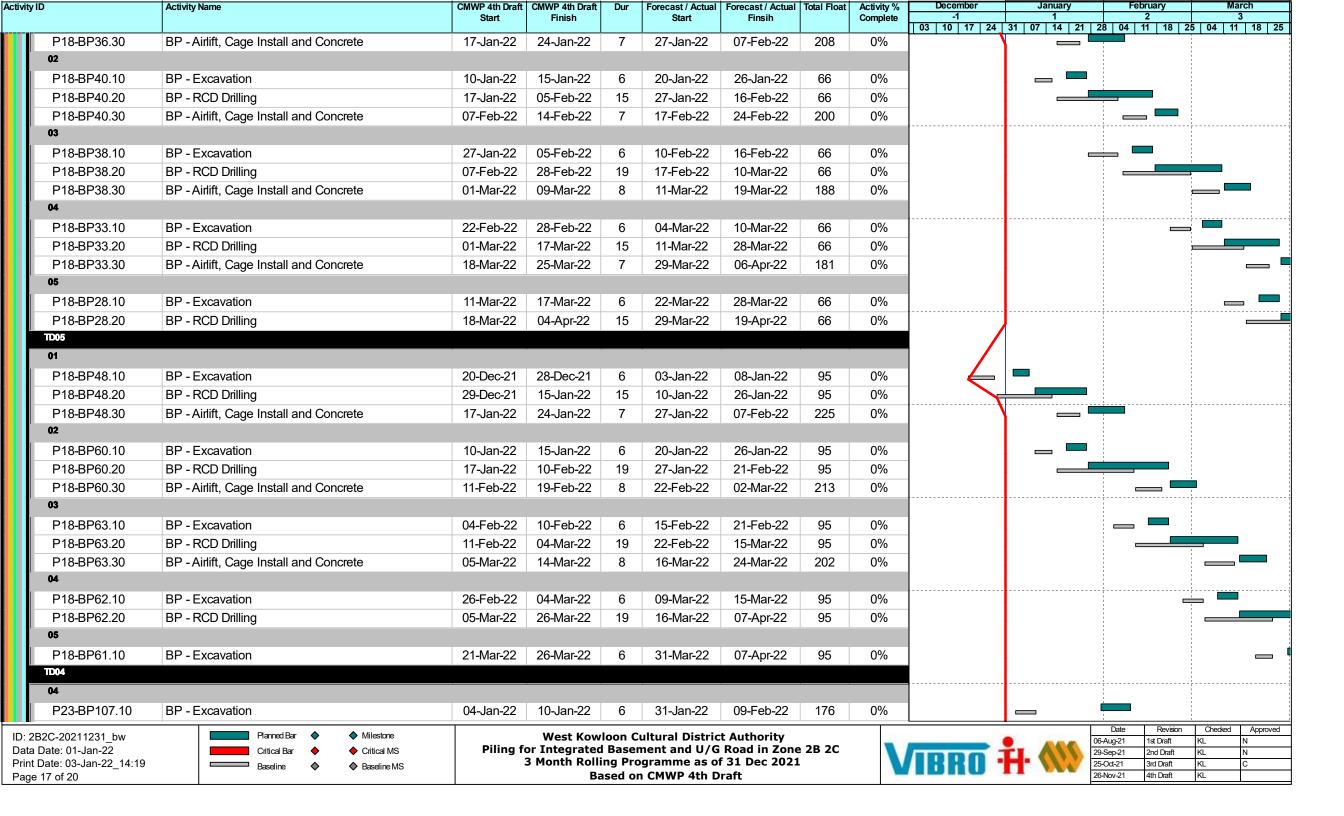


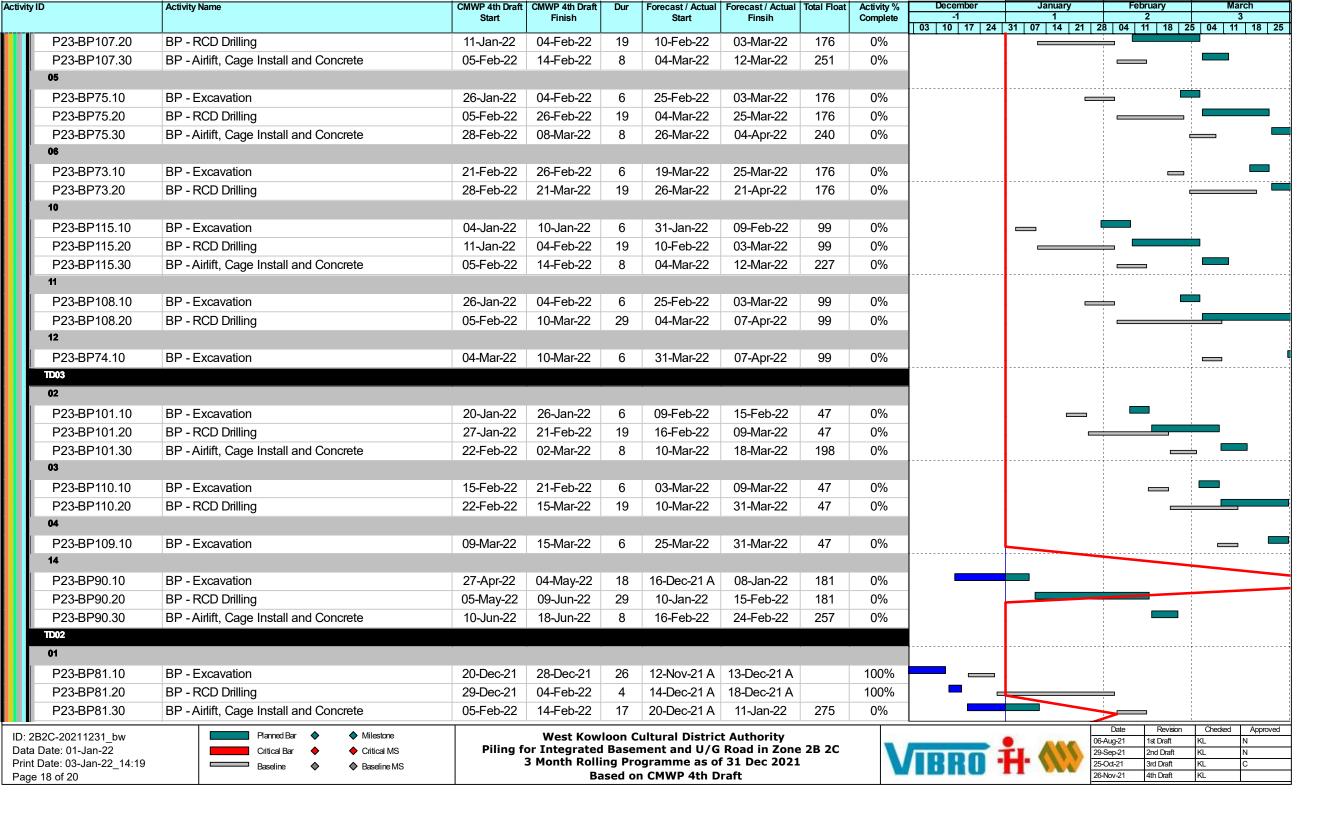


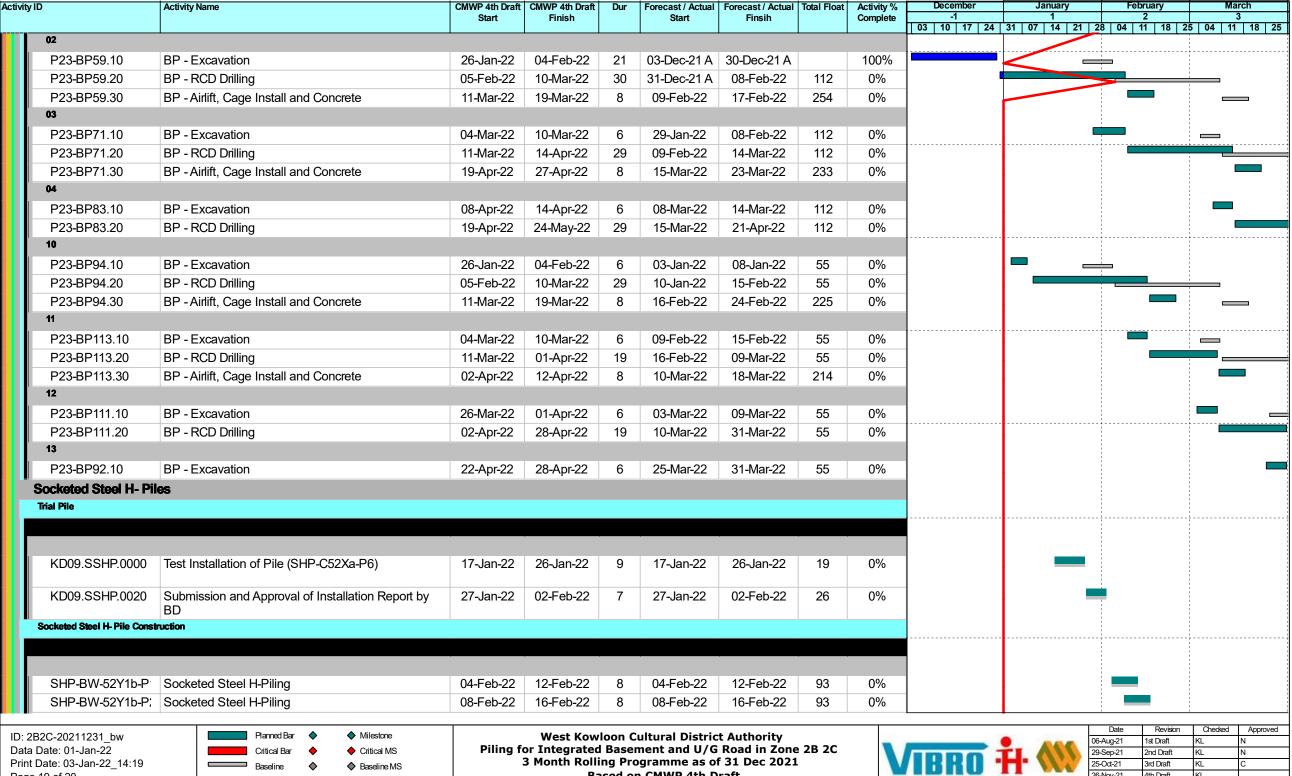












CMWP 4th Draft | CMWP 4th Draft

Forecast / Actual | Forecast / Actual | Total Float

Data Date: 01-Jan-22 Page 19 of 20

Activity Name

Based on CMWP 4th Draft

December

January

February

March

Activity %

	Date	Revision	Checked	Approved
	06-Aug-21	1st Draft	KL	N
	29-Sep-21	2nd Draft	KL	N
37	25-Oct-21	3rd Draft	KL	С
	26-Nov-21	4th Draft	KL	

Activit	yID	Activity Name	CMWP 4th Draft	CMWP 4th Draft	Dur	Forecast / Actual	Forecast / Actual	Total Float	Activity %	December	January	February	March
	-		Start	Finish		Start	Finsih		Complete	-1 03 10 17 24	1 31 07 14 21 2	2 8 04 11 18 25	3
	SHP-C52W-P1	Socketed Steel H-Piling	11-Feb-22	19-Feb-22	8	11-Feb-22	19-Feb-22	93	0%	100 10 11 21	0. 0. 1. 2. 2		
Ш	SHP-C52W-P2	Socketed Steel H-Piling	15-Feb-22	23-Feb-22	8	15-Feb-22	23-Feb-22	93	0%				
Ш	SHP-C52W-P3	Socketed Steel H-Piling	18-Feb-22	26-Feb-22	8	18-Feb-22	26-Feb-22	93	0%				
Ш	SHP-C52W-P4	Socketed Steel H-Piling	22-Feb-22	02-Mar-22	8	22-Feb-22	02-Mar-22	93	0%				
Ш	SHP-C52W-P5	Socketed Steel H-Piling	25-Feb-22	05-Mar-22	8	25-Feb-22	05-Mar-22	93	0%				_
Ш	SHP-C52W-P6	Socketed Steel H-Piling	01-Mar-22	09-Mar-22	8	01-Mar-22	09-Mar-22	93	0%				
Ш	SHP-C52X-P1	Socketed Steel H-Piling	04-Mar-22	12-Mar-22	8	04-Mar-22	12-Mar-22	93	0%				
Ш	SHP-C52X-P2	Socketed Steel H-Piling	08-Mar-22	16-Mar-22	8	08-Mar-22	16-Mar-22	93	0%				
Ш	SHP-C52X-P3	Socketed Steel H-Piling	11-Mar-22	19-Mar-22	8	11-Mar-22	19-Mar-22	93	0%				
Ш	SHP-C52X-P4	Socketed Steel H-Piling	15-Mar-22	23-Mar-22	8	15-Mar-22	23-Mar-22	93	0%				
Ш	SHP-C52X-P5	Socketed Steel H-Piling	18-Mar-22	26-Mar-22	8	18-Mar-22	26-Mar-22	93	0%				
	SHP-C52X-P6	Socketed Steel H-Piling	22-Mar-22	30-Mar-22	8	22-Mar-22	30-Mar-22	93	0%				
	SHP-C52Xa-P1	Socketed Steel H-Piling	25-Mar-22	02-Apr-22	8	25-Mar-22	02-Apr-22	93	0%				
	SHP-C52Xa-P2	Socketed Steel H-Piling	29-Mar-22	07-Apr-22	8	29-Mar-22	07-Apr-22	93	0%				

ID: 2B2C-20211231_bw Data Date: 01-Jan-22 Print Date: 03-Jan-22_14:19 Page 20 of 20

West Kowloon Cultural District Authority
Piling for Integrated Basement and U/G Road in Zone 2B 2C
3 Month Rolling Programme as of 31 Dec 2021
Based on CMWP 4th Draft

	Date	Revision	Checked	Approved
FA.	06-Aug-21	1st Draft	KL	N
	29-Sep-21	2nd Draft	KL	N
37	25-Oct-21	3rd Draft	KL	С
	26-Nov-21	4th Draft	KL	

C. Action and Limit Levels for Construction Phase

Air Quality

The Action and Limit Levels for 1-hour and 24-hour TSP for the monitoring stations are presented in following tables:

Table C-1: Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level (µg/m3)	Limit Level (µg/m3)
АМЗА	280.4	500
AM4A	278.5	500
AM5A	275.4	500

Table C-2: Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (µg/m3)	Limit Level (µg/m3)
AM3A	152.4	260
AM4A	152.6	260
AM5A	141.1	260

<u>Noise</u>

The Action and Limit Levels for Noise for the monitoring stations are presented in following table:

Table C-3: Action and Limit Levels for Construction Noise

Time Period & Monitoring Locations	Action Level	Limit Level
NM2A, NM3A, NM4A and NM5A		
0700-1900 hours on normal weekdays	When one valid documented complaint is	75
	received from any one of the sensitive receiver	

Note:

^{*}Reduce to 70dB(A) for school and 65 dB(A) during school examination period.

D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact

Air Quality

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-1: Typical Event and Action Plan for Air Quality

Front	Action						
Event	ET	IEC	WKCDA	Contractor			
Action Level							
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and WKCDA; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor	 Rectify any unacceptable practice; Amend working methods if appropriate. 			
2. Exceedance for two or more consecutive samples	1. Identify source; 2. Inform IEC and WKCDA; 3. Advise the WKCDA on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC and Contractor on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and WKCDA; 8. If exceedance stops, cease additional	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Monitor the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	1. Submit proposals for remedial to WKCDA within three working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.			

Event

	ET	IEC	WKCDA	Contractor
Limit Level				
1. Exceedance for one sample	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Inform WKCDA, Contractor and EPD; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the WKCDA on the effectiveness of the proposed remedial measures; 5. Monitor the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within three working days of notification; 3. Implement the agreed proposals; 4. Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	1. Notify IEC, WKCDA, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and WKCDA to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly; 5. Monitor the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within three working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the WKCDA until the exceedance is abated.

Construction Noise

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-2: Event and Action Plan for Construction Noise

Front		Action					
Event	ET	IEC	WKCDA	Contractor			
Action Level	1. Notify WKCDA, IEC and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, WKCDA and Contractor; 4. Discuss with the IEC and Contractor on remedial measures required; 5. Increase monitoring frequency to check mitigation effectiveness.	1. Review the investigation results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the WKCDA accordingly; 3. Advise the WKCDA on the effectiveness of the proposed remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures.	Submit noise mitigation proposals to IEC and WKCDA; Implement noise mitigation proposals.			
Limit	1. Inform IEC, WKCDA, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and WKCDA on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures; 5. If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC and WKCDA within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the WKCDA until the exceedance is abated.			

Landscape and Visual Impact

In case of non-compliance of landscape and visual impacts, procedures in accordance with the Event and Action Plan should be followed:

Table D-3: Event and Action Plan for Landscape and Visual Impact

Frant	Action							
Event	Action	Event	Action	Event				
Design Check	1. Design check to make sure the design complies with all the proposed mitigation measures in the EIA report; 2. Prepare and submit report.	 Check report submitted by ET; Recommend remedial design if necessary. 	1. Undertake remedial design if necessary.	-				
Non-conformity on one occasion	 Identify source of non-conformity; Report to IEC and WKCDA; Discuss remedial actions with IEC, WKCDA and Contractor; Monitor remedial actions until rectification has been completed. 	1. Check and verify source of non-conformity; 2. Discuss remedial actions with ET and Contractor; 3. Advise WKCDA on effectiveness of proposed remedial actions; 4. Check implementation of remedial actions.	Notify Contractor; Ensure remedial actions are properly implemented.	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions. 				
Repeated non-conformity	1. Identify source of non-conformity; 2. Report to IEC and WKCDA; 3. Increase monitoring frequency; 4. Discuss remedial actions with IEC, WKCDA and Contractor; 5. Monitor remedial actions until rectification has been completed; 6. If non-conformity rectified, reduce monitoring frequency back to normal.	1. Check and verify source of non-conformity; 2. Check Contractor's working method; 3. Discuss remedial actions with ET and Contractor; 4. Advise WKCDA on effectiveness of proposed remedial actions; 5. Supervise implementation of remedial actions.	Notify Contractor; Ensure remedial actions are properly implemented.	1. Amend working method as necessary; 2. Rectify damage and undertake necessary replacement and remedial actions.				

E. Monitoring Schedule

Notes:

AM3A - Northeast corner of West Kowloon Station's station box (G/F)

AM4A - Southeast corner of West Kowloon Station's station box (G/F)

AM5A - North of West Kowloon Station's station box (G/F)

December 2021 (Hong Kong)

NM2A - The Arch – Sun Tower (G/F)

NM3A - Xiqu Centre (G/F)

NM4A - Next to Tsim Sha Tsui Fire Station (G/F)

NM5A - Pedestrian road (G/F) outside West Kowloon Station

Sun	Mon	Tue	Wed	Thu	Fri	Sat
28	29	30	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	2	3	4
5	6	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	8	9 Landscape & Visual Inspection Zone 2A	10	11
12	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	14 Landscape & Visual Inspection Zone 2B & 2C	15	16	17	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring
19	20	21	22	23 Landscape & Visual Inspection Zone 2A	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	25 • Christmas Day
26	27 • Boxing Day	28 Landscape & Visual Inspection Zone 2B & 2C	29	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	31 New Year's Eve	New Year's Day

Notes:

AM3A - Northeast corner of West Kowloon Station's station box (G/F)

AM4A - Southeast corner of West Kowloon Station's station box (G/F)

AM5A - North of West Kowloon Station's station box (G/F)

NM2A - The Arch - Sun Tower (G/F)

NM3A - Xiqu Centre (G/F)

NM4A - Next to Tsim Sha Tsui Fire Station (G/F)

NM5A - Pedestrian road (G/F) outside West Kowloon Station

January 2022 (Hong Kong)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
26	• First Weekday After Christmas Day	28	29	30	31 New Year's Eve	New Year's Day
2	3	4	5 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	6 Landscape & Visual Inspection Zone 2A	7	8
9	10	11 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring Landscape & Visual Inspection Zone 2B & 2C	12	13	14	15
16	17 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	18	19	20 Landscape & Visual Inspection Zone 2A	21	22 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring
23	24	25 Landscape & Visual Inspection Zone 2B & 2C	26	27	28 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	29
30	31 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	Chinese Lunar New Year's Day	Second day of Chinese Lunar New Year	Third day of Chinese Lunar New Year	4	5

F. Calibration Certifications

RECALIBRATION **DUE DATE:**

October 20, 2022

alibration rtificate o

Calibration Certification Information

Cal. Date: October 20, 2021 Rootsmeter S/N: 438320

Ta: 295

Pa: 753.9

°K mm Hg

Operator: Jim Tisch

Calibration Model #: TE-5025A

Calibrator S/N: 3543

Run	Vol. Init (m3)				ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4300	3.2	2.00
2	3	4	1	1.0060	6.4	4.00
3	5	6	1	0.8990	7.9	5.00
4	7	8	1	0.8550	8.8	5.50
5	9	10	1	0.7050	12.8	8.00

	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
0.9978	0.6977	1.4156	0.9958	0.6963	0.8847		
0.9935	0.9876	2.0020	0.9915	0.9856	1,2511		
0.9915	1.1029	2.2383	0.9895	1.1007	1.3988		
0.9903	1.1583	2.3476	0.9883	1.1559	1.4670		
0.9850	1.3972	2.8313	0.9830	1.3944	1.7693		
	m=	2.02434		m=	1.26761		
QSTD[b≃	0.00347	QA	b=	0.00217		
	r=	1.00000		r=	1.00000		

	Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va = ΔVol((Pa-ΔP)/Pa)				
Qstd=	Vstd/ΔTime	Qa= Va/ΔTime				
	For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	$\mathbf{Qa=} 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) \cdot b \right)$				

Standard Conditions						
Tstd: 298.15 °K						
Pstd: 760 mm Hg						
Key						
ΔH: calibrator manometer reading (in H2O)						
ΔP: rootsmeter manometer reading (mm Hg)						
Ta: actual absolute temperature (°K)						
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope						

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the **Determination of Suspended Particulate Matter in** the Atmosphere, 9.2.17, page 30

Site Information

Zones 2A at West
Location: AM3A Site ID: Kowloon Cultural Date: 26-Oct-21
Sampler: TE-5170 Serial No: 4340 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 29.99

Temperature (deg F): 77

Average Press. (in Hg): 29.99

Average Temp. (deg F): 77

Corrected Pressure (mm Hg): 762

Temperature (deg K): 298

Corrected Average (mm Hg): 762

Average Temp. (deg K): 298

Calibration Orifice

 Make: Tisch
 Qstd Slope: 2.02434

 Model: TE-5025A
 Qstd Intercept: 0.00347

 Serial#: 3543
 Date Certified: 20-0ct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.60	1.753	53.0	53.05	Slope: 31.8515
2	10.50	1.601	48.0	48.05	Intercept: -2.3984
3	7.30	1.334	41.0	41.04	Corr. Coeff: 0.9957
4	4.70	1.070	33.0	33.03	
5	2.90	0.840	23.0	23.02	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.319788485

Average Flow Calculation in CFM

46.60173141

Sample Time (Hrs): 1.0

Total Flow in m3/min

79.18730911

Total Flow in CFM

2796.103885

NOTE: Ensure calibration orifice has been certified within 12 months of use

Zones 2A at West

Location: AM3A Site ID: Kowloon Cultural Date: 23-Dec-21

Sampler: TE-5170 Serial No: 4340 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg):	30.02 Corrected Pressure (mm Hg):	763
Temperature (deg F):	: 68 Temperature (deg K):	293
Average Press. (in Hg):	Corrected Average (mm Hg):	763
Average Temp. (deg F):	: 68 Average Temp. (deg K):	293

Calibration Orifice

Make: Tisch	Qstd Slope: 2.02434
Model: TE-5025A	Qstd Intercept: 0.00347
Serial#: 3543	Date Certified: 20-Oct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.80	1.784	53.0	53.54	Slope: 31.2016
2	10.60	1.623	48.0	48.49	Intercept: -1.7843
3	7.50	1.365	41.0	41.42	Corr. Coeff: 0.9977
4	4.80	1.092	33.0	33.34	
5	2.80	0.833	23.0	23.23	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.339245876

Average Flow Calculation in CFM

47.28877189

Sample Time (Hrs): 1.0

Total Flow in m3/min

80.35475258

Total Flow in CFM

2837.326314

Zones 2A at West
Location: AM4A Site ID: Kowloon Cultural Date: 26-Oct-21
Sampler: TE-5170 Serial No: 3998 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 29.99

Temperature (deg F): 77

Average Press. (in Hg): 29.99

Average Temp. (deg F): 77

Corrected Pressure (mm Hg): 762

Temperature (deg K): 298

Corrected Average (mm Hg): 762

Average Temp. (deg K): 298

Calibration Orifice

 Make: Tisch
 Qstd Slope: 2.02434

 Model: TE-5025A
 Qstd Intercept: 0.00347

 Serial#: 3543
 Date Certified: 2-Nov-20

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.50	1.747	53.0	53.05	Slope: 31.9605
2	10.40	1.593	48.0	48.05	Intercept: -2.4277
3	7.30	1.334	41.0	41.04	Corr. Coeff: 0.9977
4	4.80	1.082	33.0	33.03	
5	2.80	0.826	23.0	23.02	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.316202779

Average Flow Calculation in CFM

46.47512013

Sample Time (Hrs): 1.0

Total Flow in m3/min

78.97216674

Total Flow in CFM

2788.507208

Zones 2A at West

Location: AM4A Site ID: Kowloon Cultural Date: 23-Dec-21

Sampler: TE-5170 Serial No: 3998 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 30.02	Corrected Pressure (mm Hg): 763
Temperature (deg F): 68	Temperature (deg K): 293
Average Press. (in Hg): 30.02	Corrected Average (mm Hg): 763
Average Temp. (deg F): 68	Average Temp. (deg K): 293

Calibration Orifice

Make: Tisch	Qstd Slope: 2.02434
Model: TE-5025A	Qstd Intercept: 0.00347
Serial#: 3543	Date Certified: 20-Oct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.40	1.755	53.0	53.54	Slope: 31.2295
2	10.50	1.615	48.0	48.49	Intercept: -1.4171
3	7.60	1.374	41.0	41.42	Corr. Coeff: 0.9974
4	4.60	1.069	33.0	33.34	
5	2.70	0.818	23.0	23.23	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.326289295

Average Flow Calculation in CFM

46.83127501

Sample Time (Hrs): 1.0

Total Flow in m3/min

79.57735771

Total Flow in CFM

2809.876501

Zones 2A at West
Location: AM5A Site ID: Kowloon Cultural Date: 26-Oct-21
Sampler: TE-5170 Serial No: 4344 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 29.99

Temperature (deg F): 77

Average Press. (in Hg): 29.99

Average Temp. (deg F): 77

Corrected Pressure (mm Hg): 762

Temperature (deg K): 298

Corrected Average (mm Hg): 762

Average Temp. (deg F): 77

Average Temp. (deg K): 298

Calibration Orifice

 Make: Tisch
 Qstd Slope: 2.02434

 Model: TE-5025A
 Qstd Intercept: 0.00347

 Serial#: 3543
 Date Certified: 2-11-2020

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.40	1.740	53.0	53.05	Slope: 30.6557
2	10.50	1.601	48.0	48.05	Intercept: -0.3652
3	7.30	1.334	41.0	41.04	Corr. Coeff: 0.9989
4	4.70	1.070	33.0	33.03	
5	2.50	0.780	23.0	23.02	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.304945979

Average Flow Calculation in CFM

46.0776425

Sample Time (Hrs): 1.0

Total Flow in m3/min

78.29675871

Total Flow in CFM 2764.65855

Zones 2A at West

Location: AM5A
Site ID: Kowloon Cultural
Date: 23-Dec-21

Sampler: TE-5170
Serial No: 4344
Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 30	0.02 Corrected Pressure (mm Hg):	763
Temperature (deg F): 68	8 Temperature (deg K):	293
Average Press. (in Hg): 30	0.02 Corrected Average (mm Hg):	763
Average Temp. (deg F): 68	8 Average Temp. (deg K):	293

Calibration Orifice

Make: Tisch	Qstd Slope: 2.02434
Model: TE-5025A	Qstd Intercept: 0.00347
Serial#: 3543	Date Certified: 20-Oct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.50	1.763	53.0	53.54	Slope: 29.1985
2	10.70	1.631	48.0	48.49	Intercept: 1.6894
3	7.40	1.356	41.0	41.42	Corr. Coeff: 0.9985
4	4.50	1.057	33.0	33.34	
5	2.30	0.755	23.0	23.23	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.31215111

Average Flow Calculation in CFM

46.33205569

Sample Time (Hrs): 1.0

Total Flow in m3/min

78.72906659

Total Flow in CFM

2779.923341

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALITY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date October 19, 2020

Expiration Date December 1, 2021

President

International Accreditation Service, Inc.
3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

AQUALITY TESTCONSULT LIMITED

www.aqtlgroup.com

Contact Name Lee Mei Yee Julia

Contact Phone + 852-6309-2280

Accredited to ISO/IEC 17025:2017

Effective Date October 19, 2020

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
	Dimensio	nal	
Caliper -Vernier, Dial & Electronic ³	0 mm to 300 mm	30 µm	Checker by comparison method (BS 887:1982)
Steel Ruler ³	1 mm to 1000 mm	280 μm	Reference Steel Rule by comparison method (BS 4372:1968)
Dial Indicator / Gauge (Plunger) ³	0 mm to 50 mm	8 μm	Reference micrometer head by comparison method (BS 907:2008)
Feeler Gauge ³	0.01 mm to 1 mm	8 μm	Reference Dial Gauge by comparison method (BS BS957-2008)
Measuring tape ³	0 m to 1.5 m	1200 µm	Reference steel ruler by comparison method (BS 4035:1966)
Engineering Square ³	Length 0 mm to 160 mm	20 μm	Reference engineering square and Feeler Gauge (BS 939:2007)
Slump cone ³	Diameter = 0 mm to 200 mm Thickness = 1.5 mm Height = 0 mm to 300 mm	560 μm 100 μm 560 μm	Reference Caliper & Reference Steel ruler by direct measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A4; CS1: 2010 Vol. 1, A5)
Tamping rod ³	Diameter = 0 mm to 16 mm Length = 600 mm	600 μm 950 μm	Reference steel ruler & Reference Caliper by direct measurement (Verification in accordance with in-house method for the dimensional

^{*} If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply.

International Accreditation Service, Inc.

MEASURED RANGE QUANTITY or DEVICE TYPE CALIBRATED		UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
			requirements as specified CS1:1990 Vol.1 A5;CS1: 2010 Vol. 1, A6)
Cube mould ³	(Max dimensions 150 mm per side) Dimension Flatness Perpendicularity Parallelism	50 μm 10 μm 10 μm 50 μm	Reference Caliper, straight edge & feeler gauge by direct measurement. (Verification in accordance with in-house method for the dimensional requirements as specified in BS1881: Part 108:1983; CS1:1990 Vol1, A21; CS1:2010 Vol 1, A25; BS EN 12390-2:2000)
Compacting Bar ³	Ramming Face = 25 mm Length = 380 mm Weight = 1.8 kg	100 μm 560 μm 1 g	Reference Caliper & Steel ruler by direct measurement. (Verification in accordance with in-house method for the dimensional & mass requirements as specified in BS1881: Part 105:1984 Cl 3.3; CS1:1990 Vol 2, E3 CS1:2010 Vol 1, A15.3; BS EN 12350 -5:2000 Cl 4.3.)
Covermeter	20 mm to 103 mm	2.9 mm	Reference concrete block (Verification in accordance with in-house method for the dimensional requirements as specified in BS 1881:Part 204:1988 Cl.6.4- Method C)
Flow table ³	15 kg to 17 kg 1 mm to 71 mm	12 g 600 μm	Weighing Balance, Reference caliper & Reference steel ruler by direct measurement
Test Sieve ³	4 mm to 50 mm	50 μm	Reference Caliper bydirect measurement
	Mechanic	eal	
Force Measuring Machine ³ (Compression Mode)	1 kN to 3000 kN	0.4 %	Ref. Load cell by direct measurement BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390-4:2000 Annex B; BS EN ISO 7500-1:2004
Laser Dust Meter ³	Dust particles 0.001 mg/m³ to 10.00 mg/m³	0.9 mg/m ³	By comparison method by using reference laser dust meter

International Accreditation Service, Inc.

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED		
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method. BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN 12504-2:2012		
Mass (F2 class and coarser)	1 g to 200 g 200 g to 5 kg 5 kg to 10 kg 10 kg to 50 kg	1.3 mg 0.5 g 1 g 7 g	Standard Weight E2/ F1 Class & Weighing Balances by comparison method (OIMLR111)		
Weighing Scale & Balance ³	1 g to 200 g 200 g to 5 kg 5 kg to 50 kg	1 mg 1 g 15 g	Standard weight of E2/F1 Grade by direct measurement		
Volumetric Glassware	1 mL to 100 mL 100 mL to 1000 mL	0.004 mL 0.09 mL	Standard weight E2 Class, Weighing Balances & Distilled water by gravimetric method		
	Therma	I			
Digital/Liquid in Glass Thermometers & <i>RTD/</i> Thermocouples with or without Indicators	15 °C to 55°C 55°C to 95°C	0.4 °C 0.9 °C	Water Baths, Reference Sensor and Indictor by Comparison Method (OIML R133)		
Curing Tank ³	(Calibration at 20 °C & 27 °C @ 30 min) 20 °C Temperature distribution 27 °C Temperature distribution Efficiency of circulation	0.4 °C 0.8 °C 5 s	Reference Temperature datalogger by Mapping Method & Reference Stop Watch (Verification in accordance with in-house method for the Temp & Time requirements as specified in BS1881-111:1983 CS1:1990 Vol 1 App A24 CS1:2010 Vol 1 App A28 BE EN 12390-2:2000		
Oven ³	40.0 °C to 180.0 °C	1.5 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)		
Furnace ³	200 °C to 1300 °C	6 °C	Reference Thermocouple with Indicator By single point Calibration (AS 2853:1986)		
Water bath ³	15 °C to 95 °C	0.2 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)		
Time and Frequency					
Stop Watch/ Timer ³	10 s to 3600 s	0.2 s	Reference stop watch		

International Accreditation Service, Inc.

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	(±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Grout Flow Cone ³	7 s to 9 s		Reference stop watch by direct method (ASTM C939-10 Cl.9)

¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration.

²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated.

³Also available as site calibration. Note that actual measurement uncertainties achievable at a customer's site can normally be expected to be larger than the uncertainties listed on this Scope of Accreditation.

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALITY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date December 17, 2021

Expiration Date December 1, 2022

President

International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

AQUALITY TESTCONSULT LIMITED

Contact Name Lee Mei Yee

Contact Phone + 852-6309-2280

Accredited to ISO/IEC 17025:2017

Effective Date December 17, 2021

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
	Dimensio	onal	
Caliper -Vernier, Dial & Electronic ³	0 mm to 300 mm	30 μm	Checker by comparison method (BS 887:1982)
Steel Ruler ³	1 mm to 1000 mm	280 μm	Reference Steel Rule by comparison method (BS 4372:1968)
Dial Indicator/Gauge (Plunger) ³	0 mm to 50 mm	8 µm	Reference micrometer head by comparison method (BS 907:2008)
Feeler Gauge ³	0.01 mm to 1 mm	8 μm	Reference Dial Gauge by comparison method (BS 957: 2008)
Measuring tape ³	0 m to 5 m	1200 µm	Reference steel ruler by comparison method (BS 4035:1966)
Engineering Square ³	Length: 0 mm to 160 mm	20 μm	Reference engineering square and Feeler Gauge (BS 939:2007)
Slump cone ³	Diameter: 0 mm to 200 mm	560 µm	Reference Caliper & Reference Steel ruler by direct measurement
	Thickness: 1.5 mm	100 μm	(Verification in accordance with in-house method for the
	Height: 0 mm to 300 mm	560 μm	dimensional requirements as specified CS1:1990 Vol.1 A4; CS1: 2010 Vol. 1, A5)

^{*} If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply.

International Accreditation Service, Inc.

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	UANTITY or DEVICE		CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Tamping rod ³	Diameter: 0 mm to 16 mm	600 µm	Reference steel ruler & Reference Caliper by direct
	Length: 600 mm	950 μm	measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A5; CS1: 2010 Vol. 1, A6)
Cube mould ³	(Max dimensions 150 mm per side)		Reference Caliper, straight edge & feeler gauge by
	Dimension	50 μm	direct measurement. (Verification in accordance with in-house method for the
	Flatness	10 μm	dimensional requirements as specified in BS1881: Part
	Perpendicularity	10 μm	108:1983; CS1:1990 Vol1, A21; CS1:2010 Vol 1, A25;
	Parallelism	50 μm	BS EN 12390-2:2000)
Compacting Bar ³	Ramming Face: 25 mm	100 μm	Reference Caliper & Steel ruler by direct measurement.
	Length: 380 mm	560 μm	(Verification in accordance with in-house method for the
	Weight: 1.8 kg	1 g	dimensional & mass requirements as specified in BS 1881: Part 105:1984 CI 3.3; CS1:1990 Vol 2, E3 CS1:2010 Vol 1, A15.3; BS EN 12350 -5:2000 CI 4.3.)
Covermeter	20 mm to 103 mm	2.9 mm	Reference concrete block (Verification in accordance with in-house method for the dimensional requirements as specified in BS 1881- 204:1988 Cl.6.4- Method C)
Flow table ³	15 kg to 17 kg 1 mm up to 71 mm	12 g 600 μm	Weighing Balance, Reference caliper & Reference steel ruler by direct measurement
Test Sieve ³	4 mm to 50 mm	50 μm	Reference Caliper by direct measurement
	Mechan	nical	
Force Measuring Machine ³ (Compression Mode)	1 kN to 3000 kN	0.4 %	Reference Load cell by direct measurement BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390-4:2000 Annex B; BS EN ISO 7500-1:2004

International Accreditation Service, Inc.

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Laser Dust Meter ³	Dust particles 0.001 mg/m³ to 10.00 mg/m³	0.9 mg/m ³	By comparison method by using reference laser dust meter
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method. BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN 12504-2:2012
Mass (F2 class and coarser)	0 g to 200 g 200 g to 5 kg 5 kg to 10 kg 10 kg to 50 kg	1.3 mg 0.5 g 0.88 g 3 g	Standard Weight E2/ F1 Class & Weighing Balances by comparison method (OIML-R-111)
Weighing Scale & Balance ³	0 g to 200 g 0 kg to 5 kg 0 kg to 50 kg	0.8 mg 0.13 g 7.7 g	Standard weight of E2/F1 Grade by direct measurement (OIML-R-111)
Volumetric Glassware	1 mL to 100 mL 100 mL to 1000 mL	0.004 mL 0.09 mL	Standard weight E2 Class, Weighing Balances & Distilled water by gravimetric method
	Ther	mal	
Digital/Liquid in Glass Thermometers & RTD/ Thermocouples with or without Indicators	15 °C to 55 °C 55 °C to 95 °C	0.4 °C 0.9 °C	Water Baths, Reference Sensor and Indictor by Comparison Method (OIML R133)
Curing Tank ³	(Calibration at 20 °C & 27 °C @ 30 min) 20 °C Temperature distribution	0.4 °C	Reference Temperature datalogger by Mapping Method & Reference Stop Watch (Verification in accordance with in-house method for the Temp & Time
	27 °C Temperature distribution Efficiency of circulation	0.8 °C 5 s	requirements as specified in BS1881-111:1983 CS1:1990 Vol 1 App A24 CS1:2010 Vol 1 App A28 BE EN 12390-2:2000
Oven ³	40.0 °C to 180.0 °C	1.5 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)
Furnace ³	200 °C to 1300 °C	6 °C	Reference Thermocouple with Indicator By single point Calibration (AS 2853:1986)
Water bath ³	15 °C to 95 °C	0.2 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)

International Accreditation Service, Inc.

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
	Time and Fre	quency	
Stop Watch / Timer ³	0 s to 3600 s 0 s to 21600 s (6 hours) 0 s to 86400 s (24 hours)	0.2 s 0.6 s 0.61 s	Reference stop watch
Grout Flow Cone ³	7 s to 9 s	0.2 s	Reference stop watch by direct method (ASTM C939-10 Cl.9)

¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration.

²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated.

³Also available as site calibration. Note that actual measurement uncertainties achievable at a customer's site can normally be expected to be larger than the uncertainties listed on this Scope of Accreditation

FAQ / Information

Mutual Recognition Arrangements (MRA) / Multilateral Recognition Arrangements (MLA)

Mutual Recognition Arrangement (MRA) Partners for HOKLAS ^

Every effort is made to promote acceptance of test data from accredited laboratories, both internationally and locally. HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and the Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA) for testing, calibration, medical testing, Proficiency Testing Providers (PTP) and Reference Material Producers (RMP). Click here to view the up-to-date signatories of ILAC and here to access the up-to-date signatories of APAC.

Visitors checking the names, logos and accreditation symbols shown on an endorsed certificate or report should note that some of our MRA partners may have their names, logos or accreditation symbols changed recently and test reports or certificates endorsed by displaying their old accreditation symbols may still be valid during the change-over period. For details, please visit their websites or contact them directly.

» Mutual Recognition Arrangement (MRA) Partners for HOKLAS

HKAS MRA partners will recognise HOKLAS endorsed test certificates as having the same technical validity as certificates endorsed by their respective schemes.

Multilateral Recognition Arrangements (MLA) for HKCAS ^

HKAS has been a signatory of <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

HKAS has also been a signatory of the <u>International Accreditation Forum Multilateral Recognition Arrangement (IAF MLA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

Click <u>here</u> to view the up-to-date signatories of IAF and <u>here</u> to access the up-to-date signatories of APAC.

» Mutual / Multilateral Recognition Arrangements (MRA / MLA) Partners for HKCAS

HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the <u>International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA)</u> and <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA)</u> for inspection. Click <u>here</u> to view the up-to-date signatories of ILAC and <u>here</u> to access the up-to-date signatories of APAC.

HKAS MRA partners will recognise HKIAS endorsed inspection reports or certificates having the same technical validity as reports or certificates endorsed by their respective schemes.

» Mutual Recognition Arrangement (MRA) Partners for HKIAS

Hong Kong Laboratory Accreditation Scheme (HOKLAS) - Mutual Recognition Arrangement (MRA) Partners

Economy	Logo	Name of Partner	URL	Test Area
United States of America	IAS INTERNATIONAL ACCREDITATION SERVICE*	International Accreditation Service Inc. (IAS)	www.iasonline.org	Calibration, Non-medical Testing
United States of America	rvlap*	National Voluntary Laboratory Accreditation Program (NVLAP)	www.nist.gov/nvlap	Calibration, Non-medical Testing
United States of America	FJIA	Perry Johnson Laboratory Accreditation, Inc. (PJLA)	www.pjlabs.com	Calibration, Medical Testing, Reference Material Producer, Non-medical Testing
Uruguay	ORGANISMO URUGUAYO DE ACREDITACION	Organismo Uruguayo de Acreditación (OUA)	www.organismouruguayo deacreditacion.org	Calibration, Non-medical Testing
Viet Nam		Accreditation Office for Standards Conformity Assessment Capacity (AOSC)	aosc.vn/	Calibration, Medical Testing, Non-medical Testing
Viet Nam		Bureau of Accreditation (BoA)	www.boa.gov.vn	Calibration, Medical Testing, Non-medical Testing

15 Nov 2021 15 / 15

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-126F

Date of Report : 21-Sep-21 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 235811

Scale Division : 0.001 mg/m3 Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 18-Sep-21 Date Calibrated : 18-Sep-21

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 17-Sep-22 Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 28.3 °C to 33.2 °C Relative Humidity : 55 % to 79 %

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	5.1%	0.020	2.0
5.164	5.647	-0.484	8.5%	0.463	2.0
10.100	11.141	-1.041	9.3%	0.904	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director 香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-126F

Date of Report : 21-Sep-21 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589

FAX: 852-2674-1177

EMAIL: cal.aqtl@gmail.com

WEBSITE: www.aqtlgroup.com

210918MCA-126F 21-Sep-21 18-Sep-21 1 of 1

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.
Unit D6A 10/E TMI Towar 2 Hai Shina	Date of Issue
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Testing
Road, Tsuell Wall, N.T., HK	Page

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : <u>LD-3B</u> Serial No. : <u>235811</u>

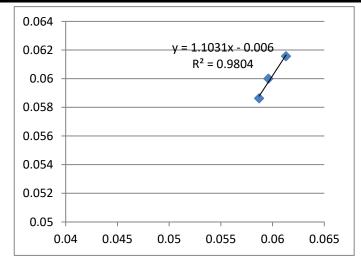
Standard Equipment

Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.
Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 17-SEP-21 / 2-Nov-20


Date Time	Time	Mean Temp	Mean Pressure	Concentration	Concentration
				Standard	Calibrated
	Time			Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
18-Sep-21	19:00	30.8	1011.1	0.0613	0.0616
18-Sep-21	20:05	30.8	1011.1	0.0587	0.0586
18-Sep-21	21:10	30.8	1011.1	0.0596	0.0600

By Linear Regression of Y or X

Slope (K-factor) : 1.1031

Correlation Coefficient: 0.9804

Validity of Calibration: 17-Sep-22

Recorded by : Jessica Liu Signature: Date: 18-Sep-21

Checked by : S Tang Signature: Date: 18-Sep-21

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-123F

Date of Report : 21-Sep-21 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 336338 Scale Division : 0.001 mg/m3

Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 18-Sep-21 Date Calibrated : 18-Sep-21

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 17-Sep-22 Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 28.3 °C to 33.2 °C Relative Humidity : 55 % to 79 %

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.168	-0.010	5.7%	0.026	2.0
5.164	5.562	-0.398	7.1%	0.462	2.0
10.100	10.936	-0.837	7.6%	0.905	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director 香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-123F

Date of Report : 21-Sep-21 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589
FAX: 852-2674-1177
FMAIL: cal anti@gma

EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	210918MCA-123F
Unit D6A 10/E TMI Toyyon 2 Hoi China	Date of Issue	21-Sep-21
Unit D6A, 10/F, TML Tower, 3 Hoi Shing	Date of Testing	18-Sep-21
Road, Tsuen Wan, N.T., HK	Page	1 of 1

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 336338

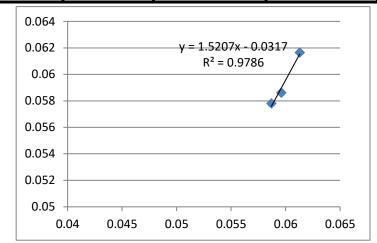
Standard Equipment

Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.
Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 17-SEP-21 / 2-Nov-20


Date Time			Mean	Concentration	Concentration
	Timo	Mean Temp	Pressure	Standard	Calibrated
Date	Date		Fiessure	Equipment	Equipment
	(°C)	(hPa)	(mg/m3)	(mg/m3)	
18-Sep-21	19:00	30.8	1011.1	0.0613	0.0617
18-Sep-21	20:05	30.8	1011.1	0.0587	0.0578
18-Sep-21	21:10	30.8	1011.1	0.0596	0.0586

By Linear Regression of Y or X

Slope (K-factor) : 1.5207

Correlation Coefficient: 0.9786

Validity of Calibration : 17-Sep-22

Recorded by : Jessica Liu Signature: Date: 18-Sep-21

Checked by : S Tang Signature: Date: 18-Sep-21

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-125F

Date of Report : 21-Sep-21 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B
Serial No. : 567188
Scale Division : 0.001 mg/m3
Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 18-Sep-21 Date Calibrated : 18-Sep-21

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 17-Sep-22 Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 28.3 °C to 33.2 °C Relative Humidity : 55 % to 79 %

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	4.9%	0.023	2.0
5.164	5.693	-0.530	9.3%	0.463	2.0
10.100	11.045	-0.945	8.6%	0.905	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards.

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-125F

Date of Report : 21-Sep-21 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589
FAX: 852-2674-1177
EMAIL: cal.aqtl@gmail.com
WEBSITE: www.aqtlgroup.com

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	210918MCA-125F
Unit DCA 10/E TMI Towns 2 Hai	Date of Issue	21-Sep-21
Unit D6A, 10/F, TML Tower, 3 Hoi	Date of Testing	18-Sep-21
Shing Road, Tsuen Wan, N.T., HK	Page	1 of 1

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : <u>LD-3B</u> Serial No. : <u>567188</u>

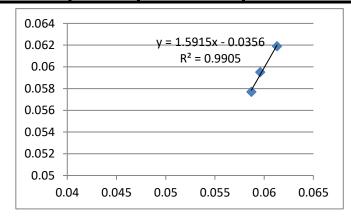
Standard Equipment

Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.
Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 17-SEP-21 / 2-Nov-20


Date	Date Time		Mean Pressure	Concentration Standard Equipment	Concentration Calibrated Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
18-Sep-21	19:00	30.8	1011.1	0.0613	0.0619
18-Sep-21	20:05	30.8	1011.1	0.0587	0.0577
18-Sep-21	21:10	30.8	1011.1	0.0596	0.0595

By Linear Regression of Y or X

Slope (K-factor) : 1.5915

Correlation Coefficient: 0.9905

Validity of Calibration : 17-Sep-22

Recorded by : Jessica Liu Signature: Date: 18-Sep-21

Checked by : S Tang Signature: Date: 18-Sep-21

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0928 03-05

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Class 1) Hangzhou Aihua Instruments Co., Ltd Microphone

Type/Model No.: Serial/Equipment No.: AWA5661

AWA14425 15338

Adaptors used:

301135

153

Item submitted by

Customer Name:

Apex Testing & Certification Ltd.

Address of Customer:

Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T.

Request No.:

Date of receipt:

28-Sep-2021

Date of test:

04-Oct-2021

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator B&K 4226 DS 360 2288444 61227 23-Aug-2022 31-Dec-2021 CIGISMEC CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 55 ± 10 %

Relative humidity: Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Feng Junqi

Approved Signatory:

Date:

06-Oct-2021

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0928 03-05

Page

2

of

2

1. Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	8.0	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip
Date: 04-Oct-202

Chacked

Checked by:

Date:

Chan Yuk Yiu 06-Oct-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

End

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

AWA14425

港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Page 1 of 5 Test Data for Sound Level Meter

04-Oct-2021 Sound level meter type: AWA5661 Serial No. 301135 Date

Microphone type: Report: 21CA0928 03-05

Serial No.

15338

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

dΒ Noise level in A weighting 11.7 dB Noise level in C weighting 12.5 Noise level in Lin 16.7 dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actual level		Tolerance	Deviation		
Neierence/Expected level	non-integrated	integrated		non-integrated	integrated	
dB	dB	dB	+/- dB	dB	dB	
94.0	94.0	94.0	0.7	0.0	0.0	
99.0	99.0	99.0	0.7	0.0	0.0	
104.0	104.0	104.0	0.7	0.0	0.0	
109.0	109.0	109.0	0.7	0.0	0.0	
114.0	114.0	114.0	0.7	0.0	0.0	
115.0	115.0	115.0	0.7	0.0	0.0	
116.0	116.0	116.0	0.7	0.0	0.0	
117.0	117.0	117.0	0.7	0.0	0.0	
118.0	118.0	118.0	0.7	0.0	0.0	
119.0	119.0	119.0	0.7	0.0	0.0	
120.0	120.0	120.0	0.7	0.0	0.0	
89.0	89.1	89.1	0.7	0.1	0.1	
84.0	84.1	84.1	0.7	0.1	0.1	
79.0	79.1	79.1	0.7	0.1	0.1	
74.0	74.1	74.1	0.7	0.1	0.1	
69.0	69.1	69.1	0.7	0.1	0.1	
64.0	64.1	64.1	0.7	0.1	0.1	
59.0	59.1	59.1	0.7	0.1	0.1	
54.0	54.1	54.1	0.7	0.1	0.1	
49.0	49.1	49.1	0.7	0.1	0.1	
44.0	44.0	44.0	0.7	0.0	0.0	
39.0	39.0	39.0	0.7	0.0	0.0	
34.0	34.0	34.0	0.7	0.0	0.0	
29.0	29.1	29.1	0.7	0.1	0.1	
28.0	28.1	28.1	0.7	0.1	0.1	

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007 (c)Soils Materials Eng. Co., Ltd.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

SMECLab

Test Data for Sound Level Meter

Page 2 of 5

Sound level meter type. Microphone type:	AWA5661 AWA14425		ial No. ial No.	301135 15338	Date Rep	e 04-Oct-2	
27.0	27.1	27.1	0.7		0.1	0.1	
26.0	26.2	26.2	0.7		0.2	0.2	
25.0	25.3	25.3	0.7		0.3	0.3	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation		
dB	dB	dB	+/- dB	dB		
25-120	94.0	94.0	0.7	0.0		
45-140	94.0	93.9	0.7	-0.1		

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
25 120	27.0	27.1	0.7	0.1
25-120	118.0	118.0	0.7	0.0
45 440	47.0	47.0	0.7	0.0
45-140	138.0	137.7	0.7	-0.3

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	:-:	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.3	1.5	1.5	-0.3
63.1	94.0	67.8	67.7	1.5	1.5	-0.1
125.9	94.0	77.9	77.8	1.0	1.0	-0.1
251.2	94.0	85.4	85.3	1.0	1.0	-0.1
501.2	94.0	90.8	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.2	1.0	1.0	0.2
7943.0	94.0	92.9	93.5	1.5	3.0	0.6
12590.0	94.0	89.7	89.4	3.0	6.0	-0.3

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	90.8	1.5	1.5	-0.2
63.1	94.0	93.2	93.1	1.5	1.5	-0.1
125.9	94.0	93.8	93.8	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com **SMECLab**

Test Data for Sound Level Meter

Page 3 of 5

Sound level met Microphone		AWA5661 AWA14425	Serial No. Serial No.	301 153		Date 04-0 Report: 21C	Oct-2021 A0928 03-05
251.2	94.0	94.0	93.9	1.0	1.0	-0.1	
501.2	94.0	94.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	93.1	1.0	1.0	-0.7	
3981.0	94.0	93.2	93.4	1.0	1.0	0.2	
7943.0	94.0	91.0	91.6	1.5	3.0	0.6	
12590.0	94.0	87.8	87.5	3.0	6.0	-0.3	

Frequency weighting Lin:

1 requericy weigi	requericy weighting ciri.								
Frequency	Frequency Ref. level		Actual level	Tolerar	nce(dB)	Deviation			
Hz	dB	dB	dB	+	-	dB			
1000.0	94.0	94.0	94.0	0.0	0.0	0.0			
31.6	94.0	94.0	93.9	1.5	1.5	-0.1			
63.1	94.0	94.0	94.0	1.5	1.5	0.0			
125.9	94.0	94.0	94.0	1.0	1.0	0.0			
251.2	94.0	94.0	94.0	1.0	1.0	0.0			
501.2	94.0	94.0	94.0	1.0	1.0	0.0			
1995.0	94.0	94.0	94.0	1.0	1.0	0.0			
3981.0	94.0	94.0	94.0	1.0	1.0	0.0			
7943.0	94.0	94.0	94.0	1.5	3.0	0.0			
12590.0	94.0	94.0	93.9	3.0	6.0	-0.1			

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
------------	-------------------	--------------------	-----------	-----------

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

綜 合 試 驗 有 限 公 司 S & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com SMECLab

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type: Microphone

type:

AWA5661 AWA14425 Serial No. Serial No. 301135 15338

+/- dB

2.0

Date 04-Oct-2021

Report: 21CA0928 03-05

dB dB dB 119.0 119.0 119.3

dB 0.3

Negative polarities:

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.3	2.0	0.3

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

(Set to INT)

Burst repetition frequency:

40 Hz

Tone burst signal:		11 cycles of a sine	wave of frequency	2000 Hz. (Set	to INT)	
Ref. Level		Expected level	Tone burst signal	Tolerance	Deviation	
Time wighting	dB	dB	indication(dB)	+/- dB	dB	
Slow	116.0+6.6	116.0	115.8	0.5	-0.2	

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.1	1.0	-0.2

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	90.0	90.0	89.8	1.0	-0.2	60s integ.
10000	80.0	80.0	79.8	1.0	-0.2	6min. integ

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

type: AWA5661

Serial No.

301135

Date 04-Oct-2021

Microphone

type:

AWA14425 S

Serial No. 15338

Report: 21CA0928 03-05

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Leq:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	90.0	60.0	59.8	1.7	-0.2

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	90.0	70.0	70.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
115.6	114.6	111.6	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency: 4000 Hz Integration time: 10 sec Single burst duration: 1 msec

	3				
Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
121.9	120.9	80.9	80.7	2.2	-0.2

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.2	1.0	1.0	0.3
8000	92.9	93.6	1.5	3.0	0.7

-----END-----

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0616 01-02

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Pulsar 100B

Serial/Equipment No.: Adaptors used: 039507 Yes

Item submitted by

Customer:

Apex Testing & Certification Ltd.

Address of Customer:

Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T.

Request No.: Date of receipt:

16-Jun-2021

Date of test:

18-Jun-2021

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2341427 2239857 2346941 33873 US36087050 GB41300350 MY40003662	Expiry Date: 04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022 28-May-2022 02-Jun-2022	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
---	--	--	---	--

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1010 ± 5 hPa

.

1010 ± 5 N

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Approved Signatory:

Date:

19-Jun-2021

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0616 01-02

Page:

of

2

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 µPa)

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.15	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.019 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 999.86 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.9 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

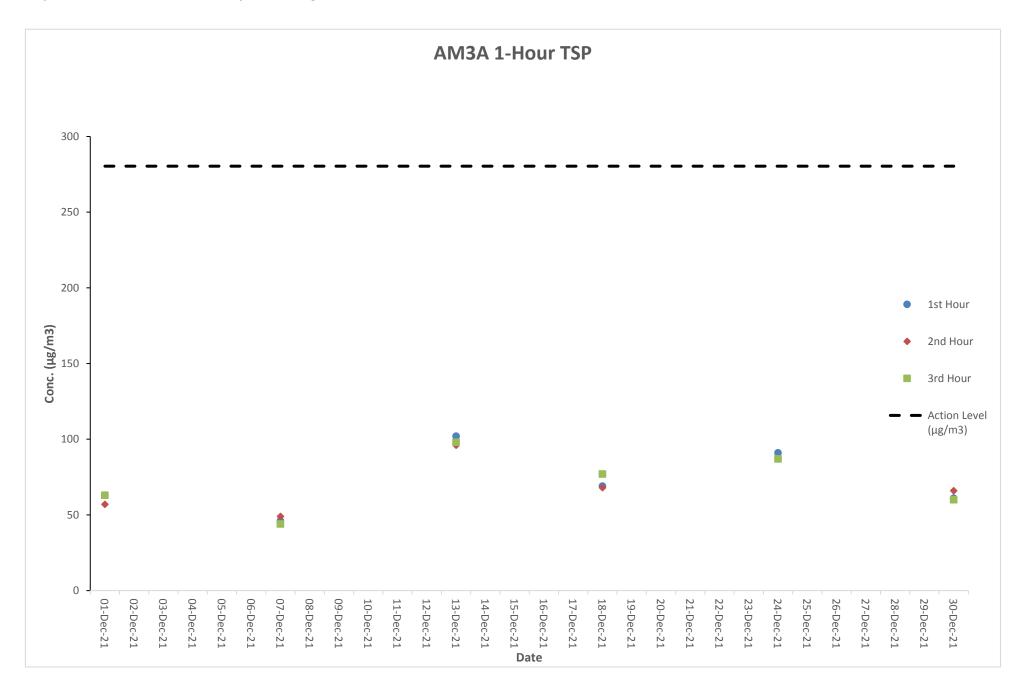
Checked by:

Fung Chi Yip 18-Jun-2021

Chan Yuk Yiu 19-Jun-2021

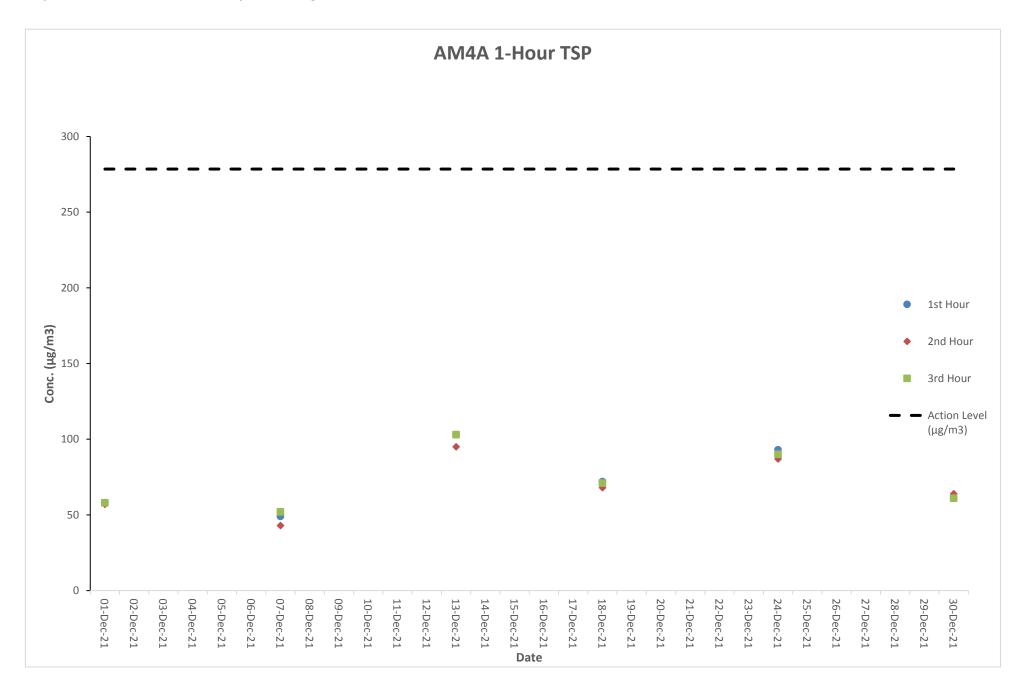
Date: 19-Jun-2021 Date: 19-Jun-202

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

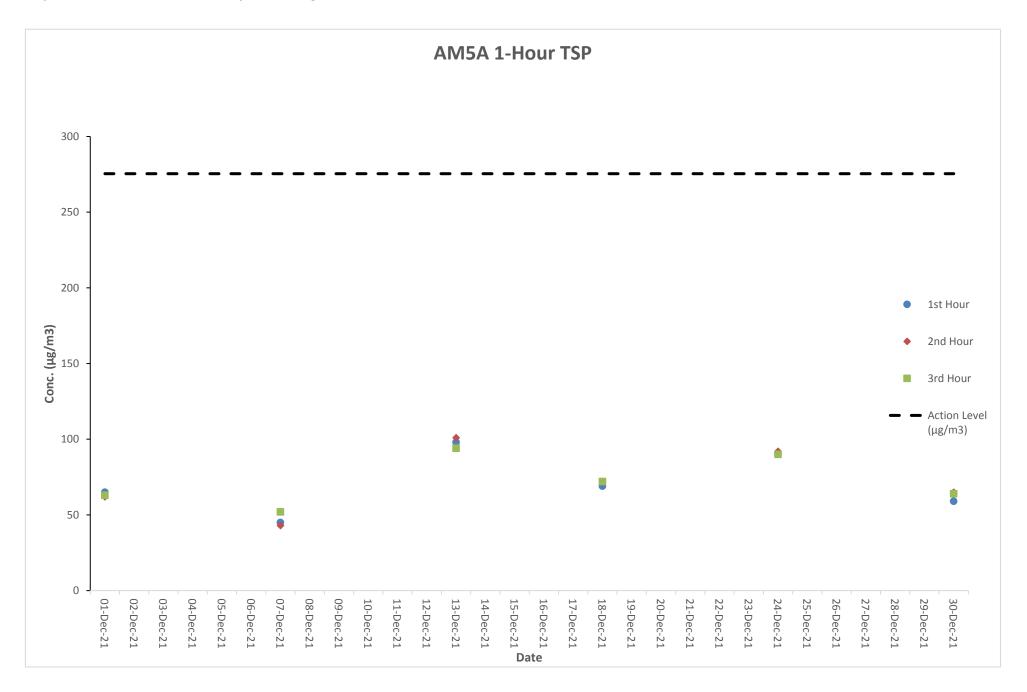

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

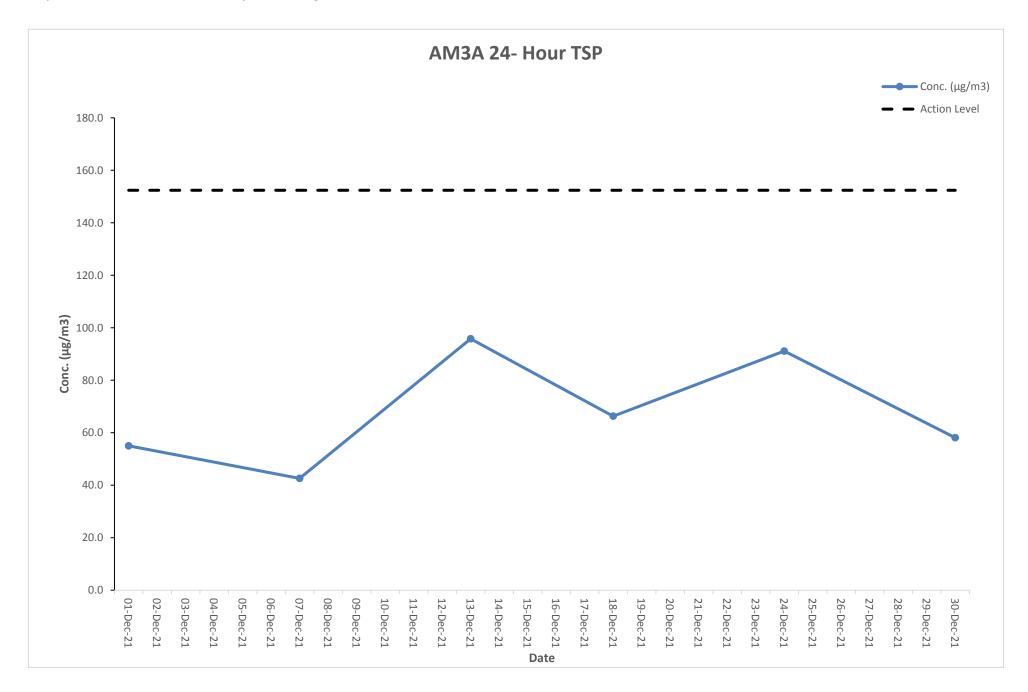
G. Graphical Plots of the Monitoring Results


Air Quality Monitoring Result at Station AM3A (1-hour TSP)

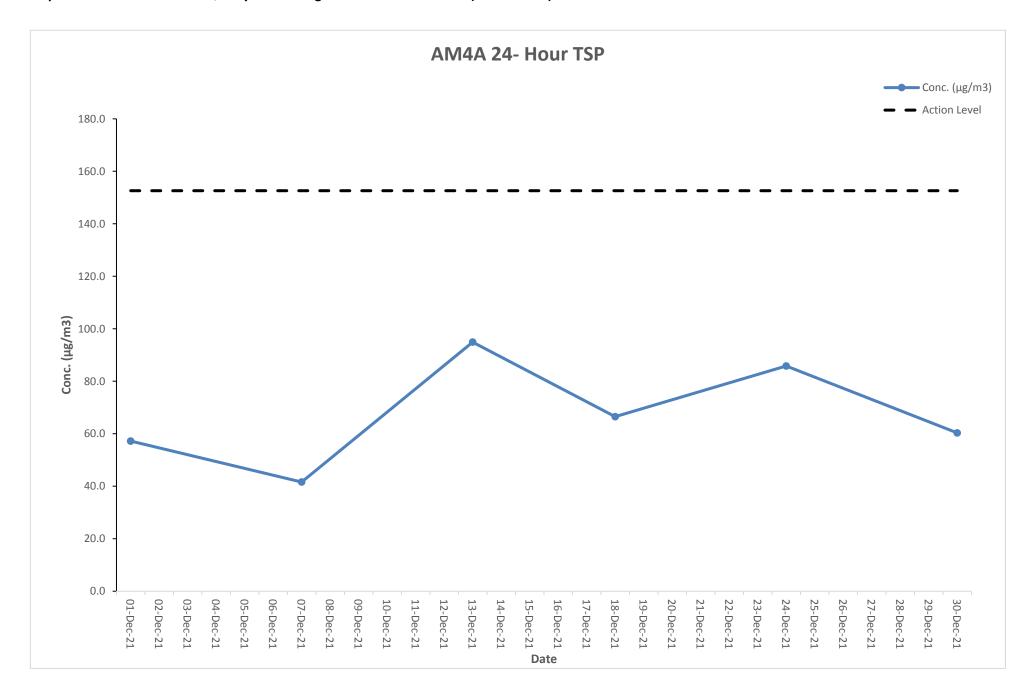
Date	Weather	Time		C	onc. (µg/m3	3)	Action	Limit
Date	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
01-Dec-21	Fine	8:03	11:03	63	57	63	280.4	500
07-Dec-21	Fine	14:06	17:06	46	49	44	280.4	500
13-Dec-21	Fine	8:01	11:01	102	96	98	280.4	500
18-Dec-21	Fine	14:11	17:11	69	68	77	280.4	500
24-Dec-21	Cloudy	8:16	11:16	91	87	87	280.4	500
30-Dec-21	Fine	14:09	17:09	61	66	60	280.4	500


Air Quality Monitoring Result at Station AM4A (1-hour TSP)

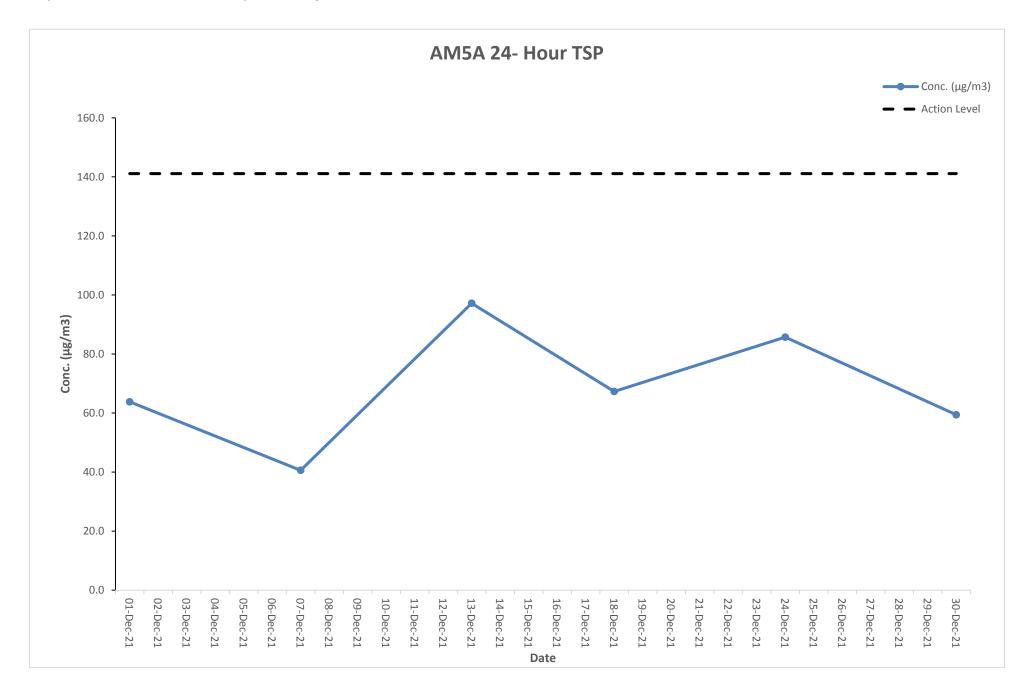
Date	Weather	Time		C	onc. (µg/m3	3)	Action	Limit
Date	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
01-Dec-21	Fine	8:11	11:11	58	57	58	278.5	500
07-Dec-21	Fine	14:14	17:14	49	43	52	278.5	500
13-Dec-21	Fine	8:09	11:09	103	95	103	278.5	500
18-Dec-21	Fine	14:19	17:19	72	68	71	278.5	500
24-Dec-21	Cloudy	8:24	11:24	93	87	90	278.5	500
30-Dec-21	Fine	14:17	17:17	61	64	61	278.5	500


Air Quality Monitoring Result at Station AM5A (1-hour TSP)

Date	Weather	Time		C	onc. (µg/m3	3)	Action	Limit
Date	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
01-Dec-21	Fine	8:26	11:26	65	62	63	275.4	500
07-Dec-21	Fine	14:31	17:31	45	43	52	275.4	500
13-Dec-21	Fine	8:24	11:24	98	101	94	275.4	500
18-Dec-21	Fine	14:36	17:36	69	72	72	275.4	500
24-Dec-21	Cloudy	8:39	11:39	91	92	90	275.4	500
30-Dec-21	Fine	14:25	17:25	59	65	64	275.4	500


Air Quality Monitoring Result at Station AM3A (24-hour TSP)

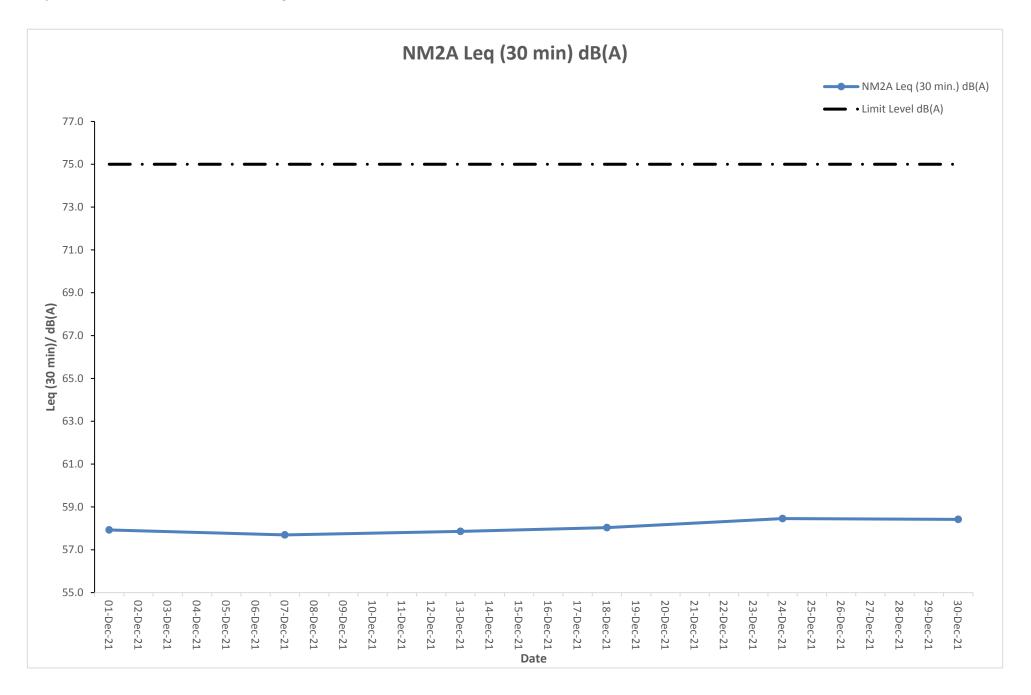
Sta	rt	Fini	sh	Filter We	eight (g)	Elapsed Tir	me Reading	Sampling	Flov	v Rate (m	n³/min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
01-Dec-21	10:00AM	02-Dec-21	10:00AM	2.8015	2.8901	2854.8	2878.8	24	1.12	1.12	1.12	55.0	Fine	152.4	260
07-Dec-21	10:00AM	08-Dec-21	10:00AM	2.8083	2.8768	2878.8	2902.8	24	1.12	1.12	1.12	42.6	Fine	152.4	260
13-Dec-21	10:00AM	14-Dec-21	10:00AM	2.8019	2.9561	2902.8	2926.8	24	1.12	1.12	1.12	95.8	Sunny	152.4	260
18-Dec-21	10:00AM	19-Dec-21	10:00AM	2.8079	2.9146	2926.8	2950.8	24	1.12	1.12	1.12	66.3	Sunny	152.4	260
24-Dec-21	10:00AM	25-Dec-21	10:00AM	2.8060	2.9527	2950.8	2974.8	24	1.12	1.12	1.12	91.1	Cloudy	152.4	260
30-Dec-21	10:00AM	31-Dec-21	10:00AM	2.8041	2.8976	2974.8	2998.8	24	1.12	1.12	1.12	58.1	Fine	152.4	260


Air Quality Monitoring Result at Station AM4A (24-hour TSP)

Sta	ırt	Fini	sh	Filter W	eight (g)	Elapsed Tir	ne Reading	Sampling	Flov	w Rate (m	n³/min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
01-Dec-21	10:00AM	02-Dec-21	10:00AM	2.8073	2.8993	3274.4	3298.4	24	1.12	1.12	1.12	57.2	Fine	152.6	260
07-Dec-21	10:00AM	08-Dec-21	10:00AM	2.8049	2.8718	3298.4	3322.4	24	1.12	1.12	1.12	41.6	Fine	152.6	260
13-Dec-21	10:00AM	14-Dec-21	10:00AM	2.8073	2.9601	3322.4	3346.4	24	1.12	1.12	1.12	94.9	Sunny	152.6	260
18-Dec-21	10:00AM	19-Dec-21	10:00AM	2.8033	2.9104	3346.4	3370.4	24	1.12	1.12	1.12	66.5	Sunny	152.6	260
24-Dec-21	10:00AM	25-Dec-21	10:00AM	2.8089	2.9469	3370.4	3394.4	24	1.12	1.12	1.12	85.8	Cloudy	152.6	260
30-Dec-21	10:00AM	31-Dec-21	10:00AM	2.8080	2.9050	3394.4	3418.4	24	1.12	1.12	1.12	60.3	Fine	152.6	260

Air Quality Monitoring Result at Station AM5A (24-hour TSP)

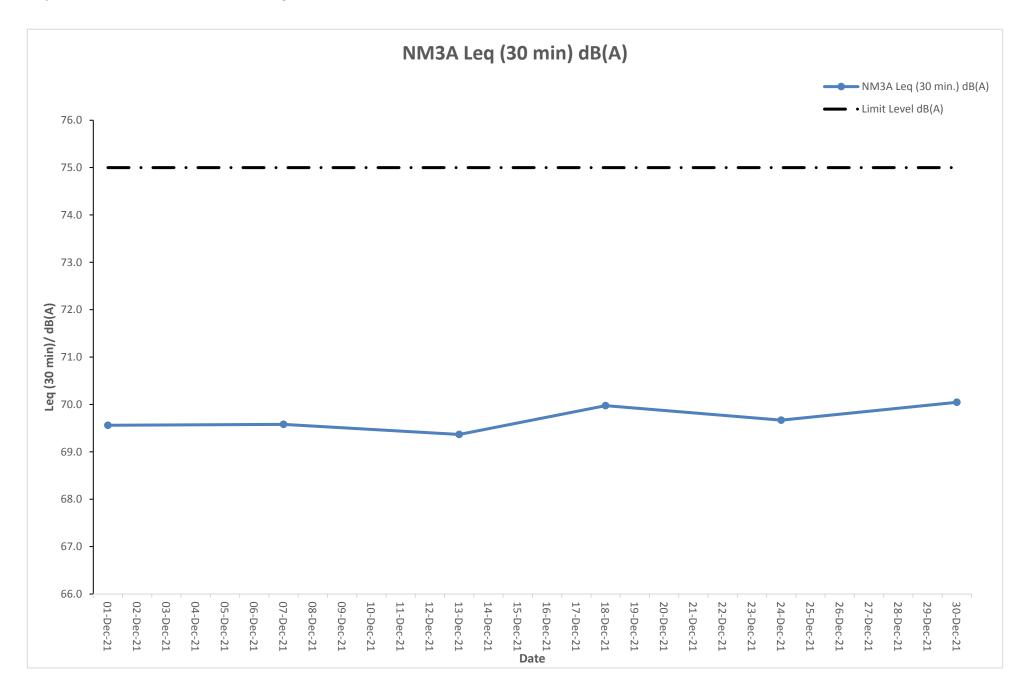
Sta	ırt	Fini	sh	Filter We	eight (g)	Elapsed Tir	ne Reading	Sampling	Flov	v Rate (m	n³/min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
01-Dec-21	10:00AM	02-Dec-21	10:00AM	2.8068	2.9096	3414.6	3438.6	24	1.12	1.12	1.12	63.8	Fine	141.1	260
07-Dec-21	10:00AM	08-Dec-21	10:00AM	2.8042	2.8697	3438.6	3462.6	24	1.12	1.12	1.12	40.6	Fine	141.1	260
13-Dec-21	10:00AM	14-Dec-21	10:00AM	2.8011	2.9576	3462.6	3486.6	24	1.12	1.12	1.12	97.2	Sunny	141.1	260
18-Dec-21	10:00AM	19-Dec-21	10:00AM	2.8042	2.9126	3486.6	3510.6	24	1.12	1.12	1.12	67.3	Sunny	141.1	260
24-Dec-21	10:00AM	25-Dec-21	10:00AM	2.8089	2.9468	3510.6	3534.6	24	1.12	1.12	1.12	85.7	Cloudy	141.1	260
30-Dec-21	10:00AM	31-Dec-21	10:00AM	2.8042	2.8999	3534.6	3558.6	24	1.12	1.12	1.12	59.4	Fine	141.1	260



Noise Monitoring Result at Station NM2A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
01-Dec-21	8:33	64.4	55.5	
01-Dec-21	8:38	63.7	55.7	
01-Dec-21	8:43	63.1	54.1	57.9
01-Dec-21	8:48	65.0	55.9	57.9
01-Dec-21	8:53	65.9	54.3	
01-Dec-21	8:58	64.9	55.1	
07-Dec-21	14:36	64.3	55.1	
07-Dec-21	14:41	65.6	54.4	
07-Dec-21	14:46	65.8	54.6	57.7
07-Dec-21	14:51	63.1	55.2	57.7
07-Dec-21	14:56	64.3	54.6	
07-Dec-21	15:01	64.0	55.1	
13-Dec-21	8:31	65.6	54.1	
13-Dec-21	8:36	64.3	55.2	
13-Dec-21	8:41	65.5	55.2	E7 0
13-Dec-21	8:46	63.1	54.1	57.9
13-Dec-21	8:51	64.5	54.4	
13-Dec-21	8:56	65.2	55.3	
18-Dec-21	14:41	65.9	56.0	
18-Dec-21	14:46	63.9	54.3	
18-Dec-21	14:51	64.6	54.3	50.0
18-Dec-21	14:56	64.9	55.4	58.0
18-Dec-21	15:01	64.3	54.9	
18-Dec-21	15:06	63.4	54.2	
24-Dec-21	8:46	63.4	54.3	
24-Dec-21	8:51	63.2	56.0	
24-Dec-21	8:56	64.8	55.9	F0 F
24-Dec-21	9:01	63.1	55.5	58.5
24-Dec-21	9:06	64.0	54.7	
24-Dec-21	9:11	64.6	55.2	
30-Dec-21	14:09	64.7	55.9	
30-Dec-21	14:14	64.8	55.5	
30-Dec-21	14:19	63.1	54.6	50.4
30-Dec-21	14:24	65.9	55.8	58.4
30-Dec-21	14:29	64.7	54.4	
30-Dec-21	14:34	64.6	55.7	

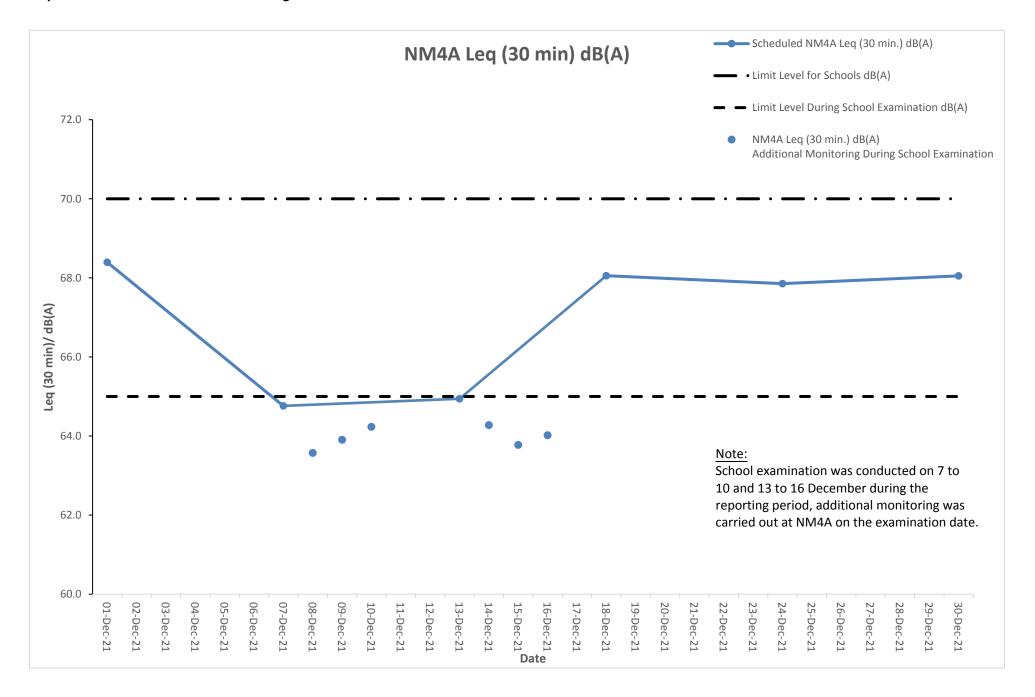
The station set-up of a façade measurement at station NM2A.



Noise Monitoring Result at Station NM3A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
01-Dec-21	10:03	73.6	64.6	
01-Dec-21	10:08	73.9	66.0	
01-Dec-21	10:13	73.1	66.1	69.6
01-Dec-21	10:18	73.1	65.9	09.0
01-Dec-21	10:23	73.0	65.1	
01-Dec-21	10:28	74.5	66.4	
07-Dec-21	16:09	72.8	66.8	
07-Dec-21	16:14	73.2	65.8	
07-Dec-21	16:19	74.3	64.5	69.6
07-Dec-21	16:24	73.1	65.2	09.0
07-Dec-21	16:29	74.2	64.5	
07-Dec-21	16:34	73.2	66.1	
13-Dec-21	10:01	73.0	64.3	
13-Dec-21	10:06	73.8	66.8	
13-Dec-21	10:11	74.5	64.4	69.4
13-Dec-21	10:16	73.2	64.9	69.4
13-Dec-21	10:21	73.6	65.0	
13-Dec-21	10:26	73.6	64.7	
18-Dec-21	16:14	74.2	64.5	
18-Dec-21	16:19	74.0	64.8	
18-Dec-21	16:24	72.8	65.7	70.0
18-Dec-21	16:29	73.6	66.0	70.0
18-Dec-21	16:34	73.5	65.5	
18-Dec-21	16:39	74.5	66.7	
24-Dec-21	10:16	73.7	66.1	
24-Dec-21	10:21	73.5	64.2	
24-Dec-21	10:26	74.3	65.4	69.7
24-Dec-21	10:31	73.8	65.9	09.7
24-Dec-21	10:36	72.9	64.7	
24-Dec-21	10:41	73.5	66.4	
30-Dec-21	15:51	74.5	64.7	
30-Dec-21	15:56	73.5	64.3	
30-Dec-21	16:01	74.2	64.2	70.0
30-Dec-21	16:06	74.5	64.8	70.0
30-Dec-21	16:11	73.1	66.4	
30-Dec-21	16:16	74.2	65.8	

The station set-up of a façade measurement at station NM3A.

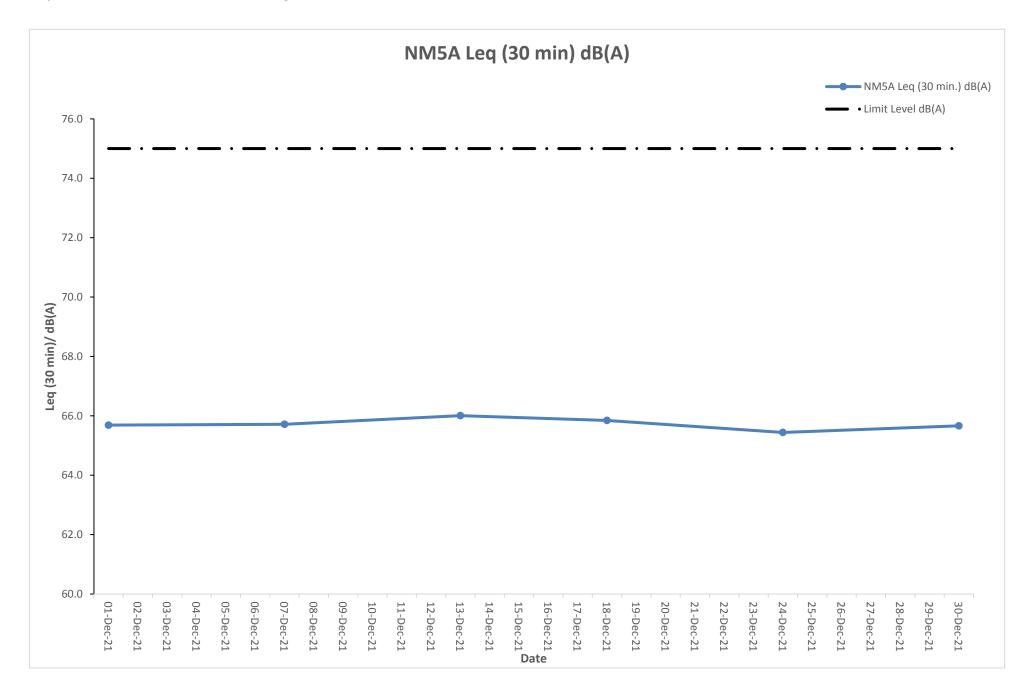


Noise Monitoring Result at Station NM4A

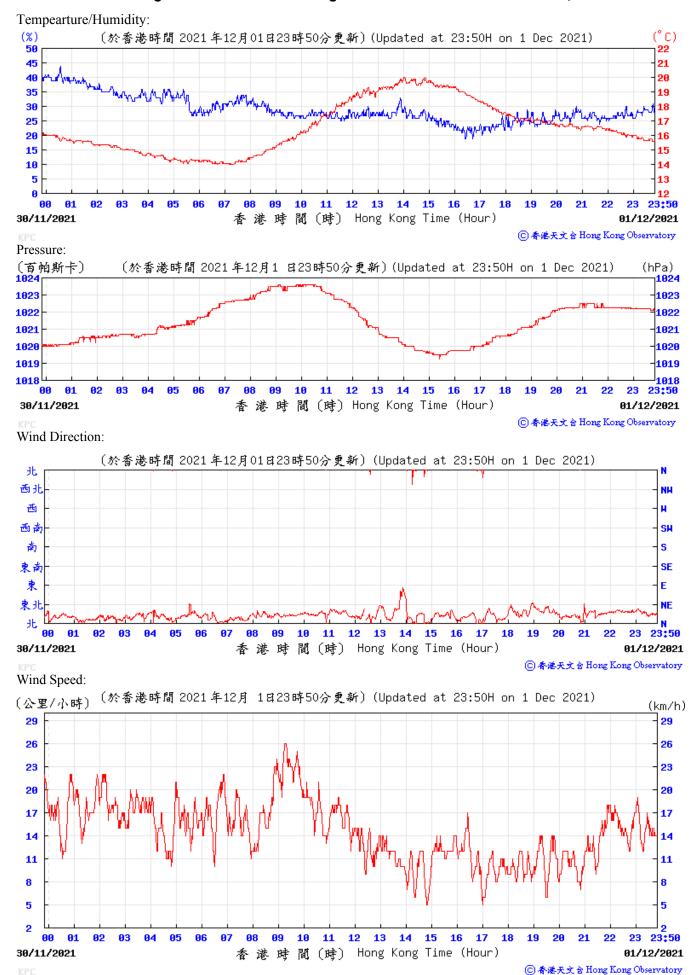
Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
01-Dec-21	10:38	69.5	65.2	
01-Dec-21	10:43	71.0	63.2	
01-Dec-21	10:48	70.5	63.9	68.4
01-Dec-21	10:53	70.8	64.9	08.4
01-Dec-21	10:58	69.1	64.7	
01-Dec-21	11:03	70.7	64.5	
07-Dec-21	16:44	67.8	62.6	
07-Dec-21	16:49	69.0	62.9	
07-Dec-21	16:54	68.4	60.3	64.8
07-Dec-21	16:59	66.1	60.1	04.0
07-Dec-21	17:04	68.9	61.9	
07-Dec-21	17:09	68.9	61.0	
13-Dec-21	10:36	67.7	62.3	
13-Dec-21	10:41	66.5	62.3	
13-Dec-21	10:46	66.7	62.7	64.9
13-Dec-21	10:51	68.0	61.9	04.9
13-Dec-21	10:56	67.1	60.6	
13-Dec-21	11:01	68.8	61.0	
18-Dec-21	16:49	69.6	64.6	
18-Dec-21	16:54	70.1	65.3	
18-Dec-21	16:59	70.2	65.4	68.1
18-Dec-21	17:04	70.3	63.8	00.1
18-Dec-21	17:09	70.2	65.2	
18-Dec-21	17:14	71.9	63.6	
24-Dec-21	10:51	69.2	65.0	
24-Dec-21	10:56	69.4	65.8	
24-Dec-21	11:01	71.0	65.3	67.9
24-Dec-21	11:06	71.9	63.8	07.9
24-Dec-21	11:11	69.3	64.3	
24-Dec-21	11:16	71.8	65.5	
30-Dec-21	16:26	71.8	63.6	
30-Dec-21	16:31	70.0	65.6	
30-Dec-21	16:36	69.2	64.6	60.0
30-Dec-21	16:41	71.6	64.1	68.0
30-Dec-21	16:46	69.4	65.5	
30-Dec-21	16:51	70.2	65.7	

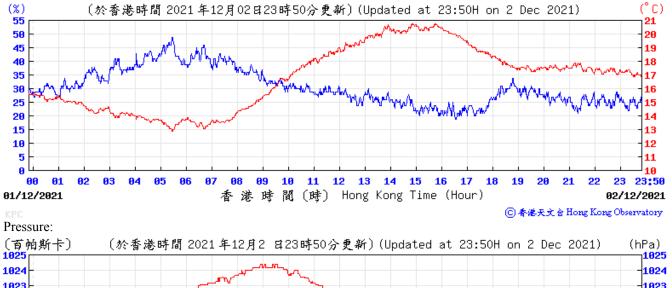
The station set-up of a façade measurement at station NM4A.

Noise Monitoring Result at Station NM5A

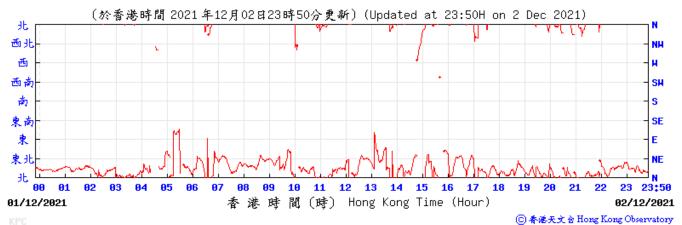

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)	Leq (30 min.) +3 dB(A)	
01-Dec-21	9:23	66.2	58.6	, , ,	, , , ,	
01-Dec-21	9:28	65.2	57.0			
01-Dec-21	9:33	65.3	56.1	62.7	65.7	
01-Dec-21	9:38	66.4	58.6	62.7	65.7	
01-Dec-21	9:43	65.9	58.9			
01-Dec-21	9:48	65.2	57.8			
07-Dec-21	15:28	65.1	57.0			
07-Dec-21	15:33	66.4	56.6			
07-Dec-21	15:38	64.4	57.0	62.7	65.7	
07-Dec-21	15:43	66.6	57.2	02.7	05.7	
07-Dec-21	15:48	66.1	56.2			
07-Dec-21	15:53	65.6	56.9			
13-Dec-21	9:21	64.3	57.2			
13-Dec-21	9:26	67.0	58.1			
13-Dec-21	9:31	64.5	58.3	63.0	66.0	
13-Dec-21	9:36	64.9	56.5	03.0	66.0	
13-Dec-21	9:41	66.5	56.3			
13-Dec-21	9:46	65.8	58.4			
18-Dec-21	15:33	66.6	56.7			
18-Dec-21	15:38	65.5	57.7			
18-Dec-21	15:43	65.7	56.6	62.8	65.8	
18-Dec-21	15:48	65.2	56.2	02.8	05.6	
18-Dec-21	15:53	64.5	56.3			
18-Dec-21	15:58	66.8	57.1			
24-Dec-21	9:36	66.4	58.2			
24-Dec-21	9:41	65.6	57.3			
24-Dec-21	9:46	64.4	57.2	62.4	65.4	
24-Dec-21	9:51	64.4	57.2	02.4	05.4	
24-Dec-21	9:56	66.5	57.1			
24-Dec-21	10:01	66.0	56.8			
30-Dec-21	15:10	65.9	59.0			
30-Dec-21	15:15	64.2	57.7			
30-Dec-21	15:20	65.5	56.2	62.7	65.7	
30-Dec-21	15:25	66.0	58.2	02.1	00.7	
30-Dec-21	15:30	66.8	56.2			
30-Dec-21	15:35	66.0	56.7			

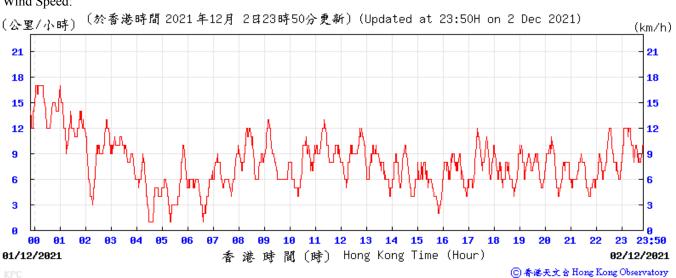
Remarks:


+3dB(A) correction was applied to free-field measurement.


The station set-up of a free-field measurement at station NM5A.

H. Meteorological Data Extracted from Hong Kong Observatory





⑥ 香港天文台 Hong Kong Observatory

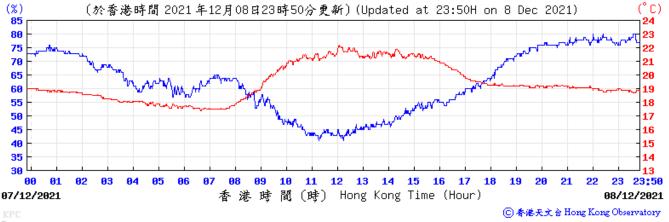
Wind Direction:

88 81 82 83 84 85 86 87 88 89 18 11 12 13 14 15 16 17 18 19 28 86/12/2821 香港時間(時) Hong Kong Time (Hour)

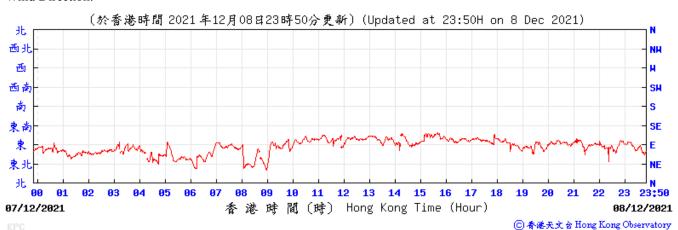
⑥ 香港天文台 Hong Kong Observatory

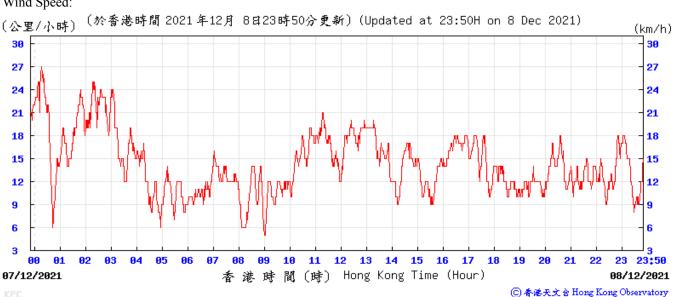
23 23:50

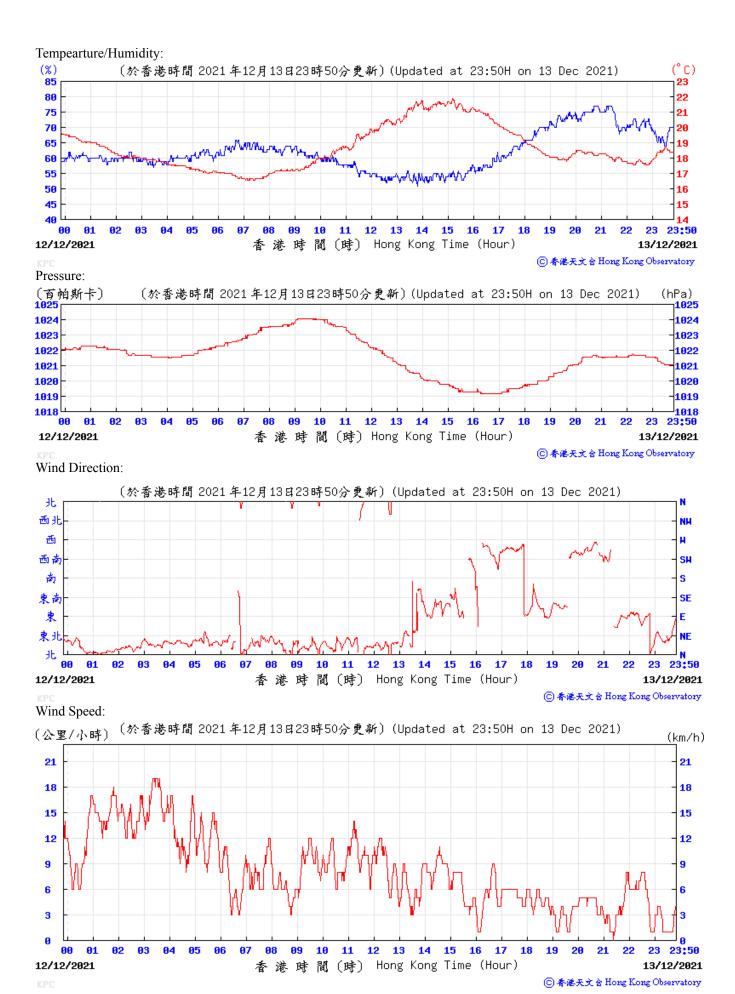
07/12/2021


Wind Direction:

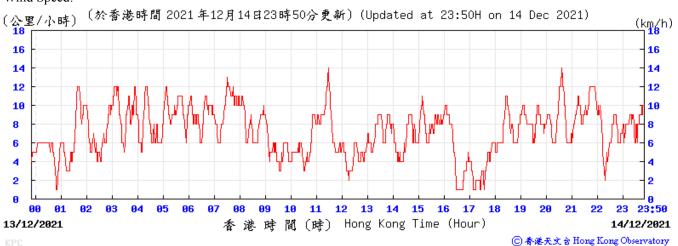
Wind Speed:

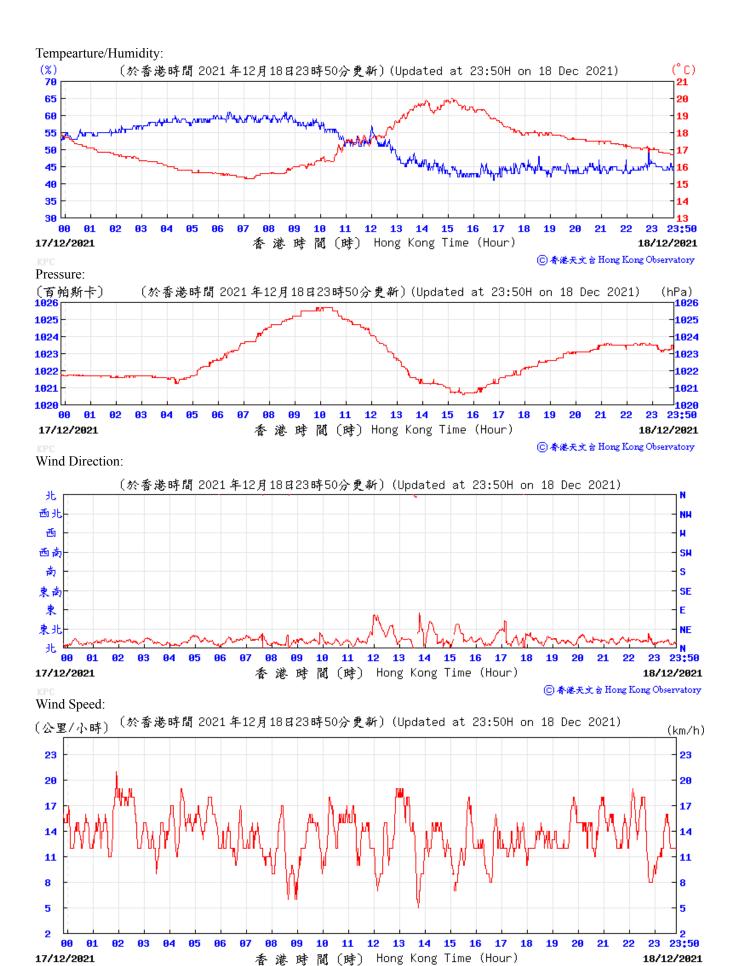

(於香港時間 2021 年12月 7日23時50分更新) (Updated at 23:50H on 7 Dec 2021) (公里/小時) (km/h) 0 12 13 23 23:50 06/12/2021 香港時間(時) Hong Kong Time (Hour) 07/12/2021 ⑥香港天文含 Hong Kong Observatory



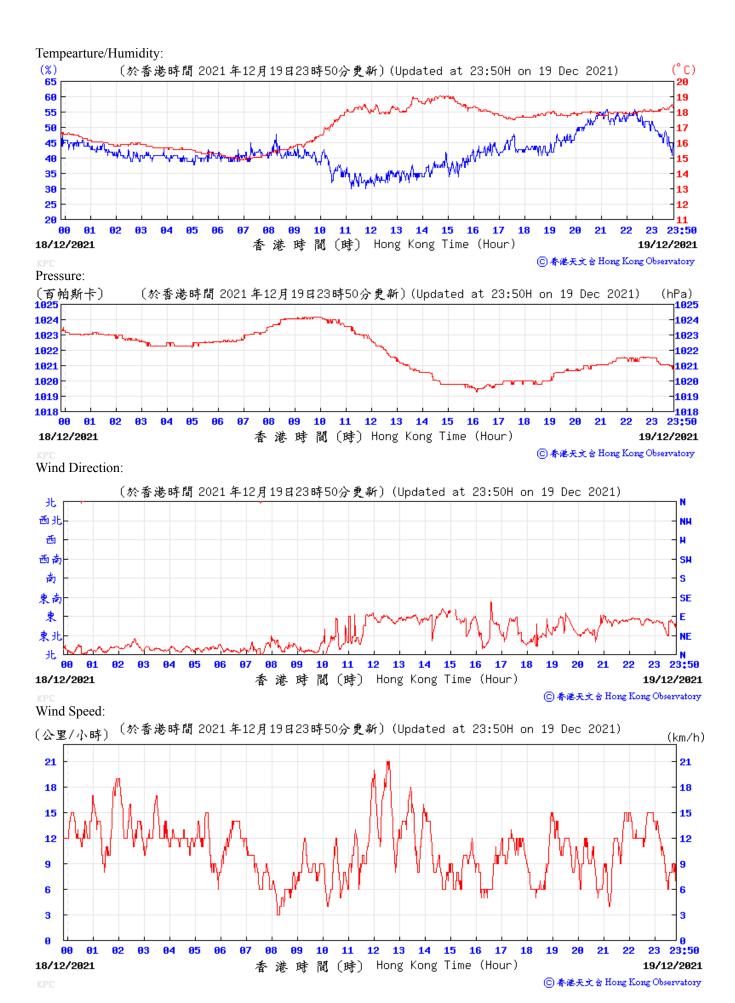


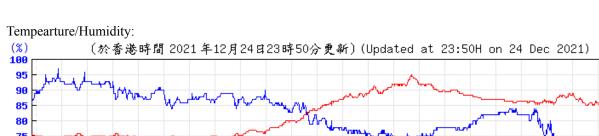
Wind Direction:



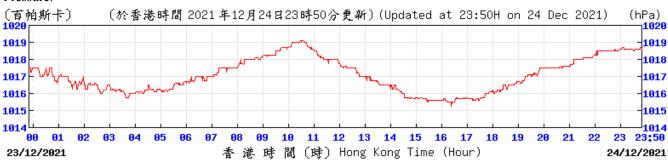

Pressure: (百帕斯卡) (於香港時間 2021 年12月14日23時50分更新) (Updated at 23:50H on 14 Dec 2021) (hPa) 23:50 香港時間(時) Hong Kong Time (Hour) 13/12/2021 14/12/2021

⑥ 香港天文台 Hong Kong Observatory

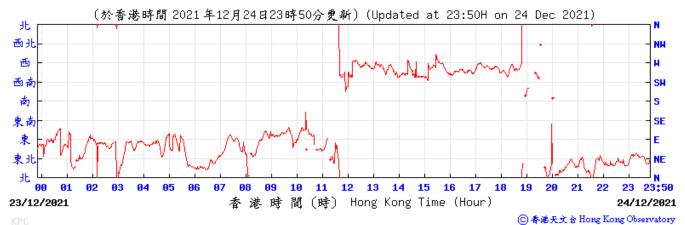

Wind Direction:

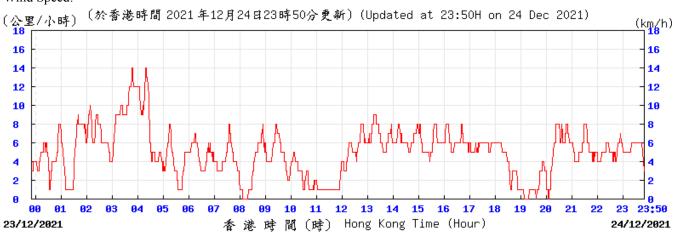


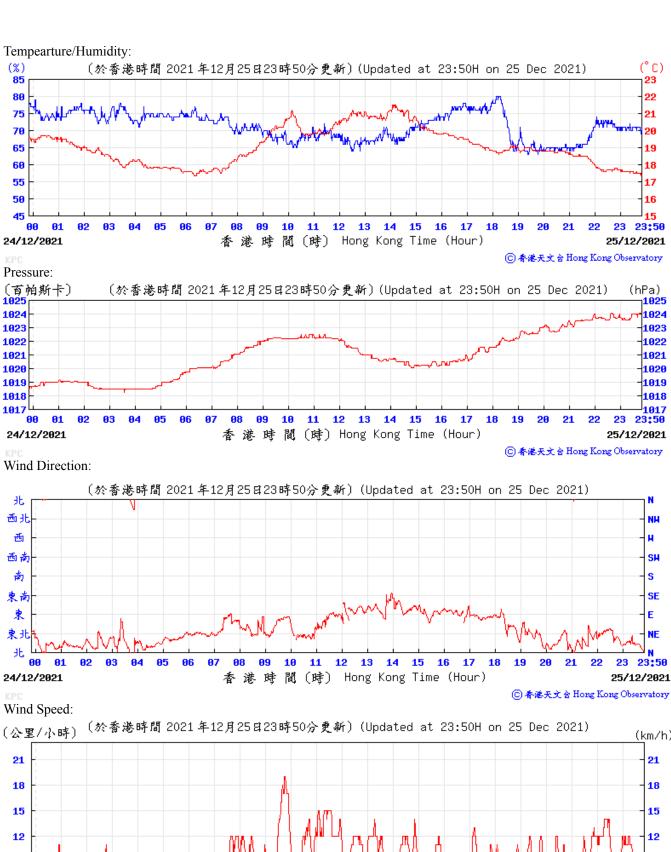
⑥ 香港天文台 Hong Kong Observatory

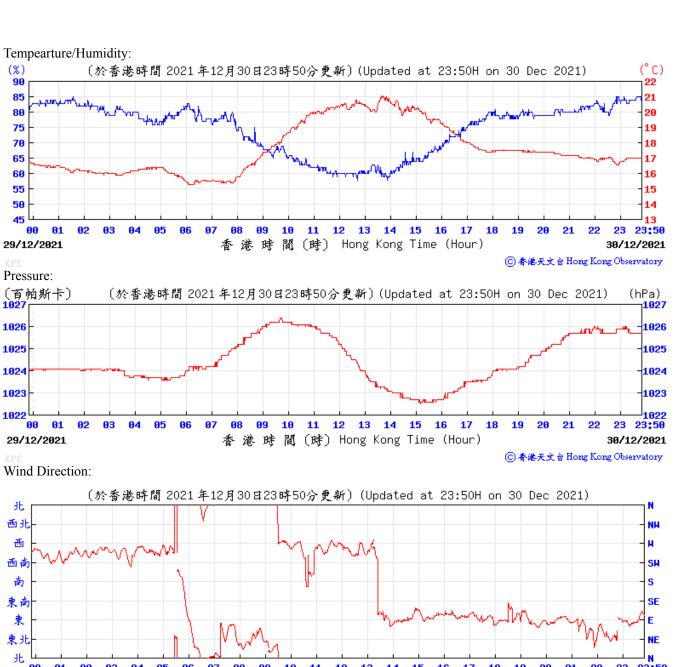

15 16 23:50 12 13 14 港時間(時) Hong Kong Time (Hour) 23/12/2021 24/12/2021 ⑥ 香港天文 含 Hong Kong Observatory

(°C)

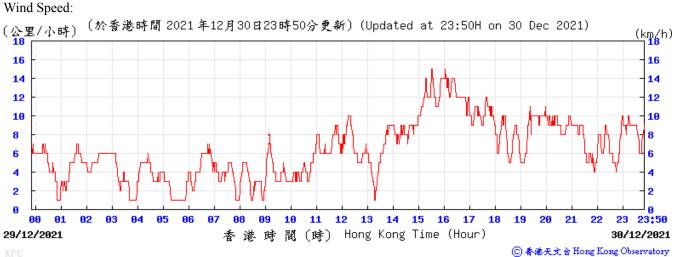

⑥ 香港天文 含 Hong Kong Observatory

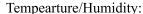

⑥香港天文含 Hong Kong Observatory


Pressure:

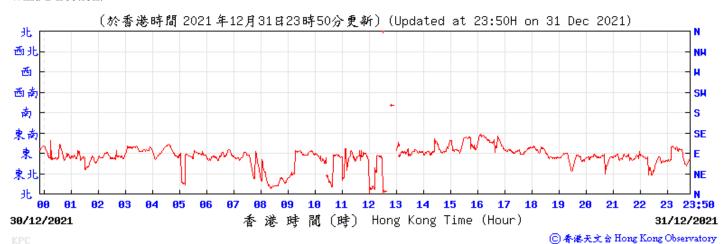

Wind Direction:

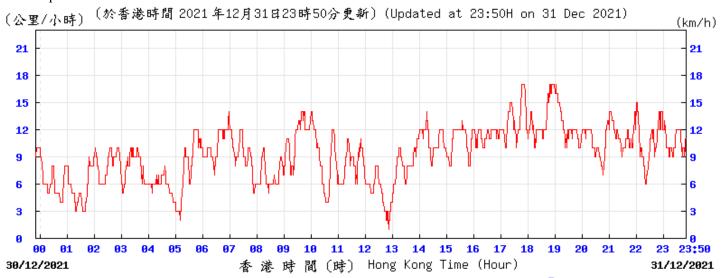






(km/h) 9 6 3 00 **91** 96 11 12 13 14 15 16 17 18 23 23:50 香港時間(時) Hong Kong Time (Hour) 24/12/2021 25/12/2021 ⑥ 香港天文台 Hong Kong Observatory





Pressure:

Wind Direction:

I. Waste Flow table

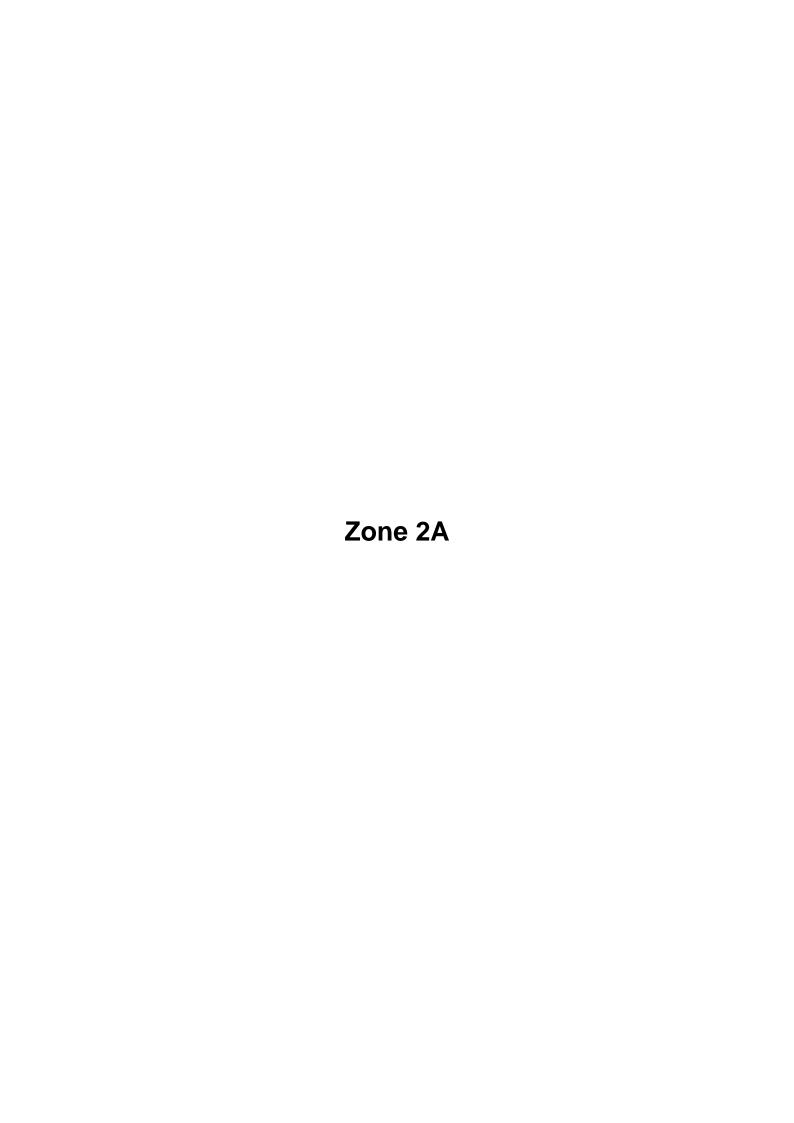


Table I-1: Monthly Waste Flow Table for Zone 2A

	Actual Quantities of Inert C&D Materials Generated Monthly				Actual Quantities of C&D Materials Generated Monthly								
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete		Reused in other Projects	Disposed as Public Fill	Disposed to Sroting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)		(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2020	1((((((((1((
Oct	2623.48	0.00	0.00	0.00	2623.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	21.94
Nov	8838.69	0.00	685.23	1198.56	6954.90	0.00	1194.93	0.00	0.00	0.00	0.00	0.00	17.49
Dec	8890.70	0.00	510.59	1675.21	6704.90	0.00	51.51	0.00	0.00	0.00	0.00	0.00	11.75
Sub-total (2020)	20352.87	0.00	1195.82	2873.77	16283.28	0.00	1246.44	0.00	0.00	0.00	0.00	0.00	51.18
2021													
Jan	6849.66	0.00	52.90	0.00	6796.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.94
Feb	4591.95	0.00	0.00	0.00	4591.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.11
Mar	7318.44	0.00	0.00	339.94	6978.50	0.00	0.00	75.57	0.00	0.00	0.00	0.20	15.79
Apr	7208.22	0.00	0.00	1109.51	6098.71	0.00	0.00	0.00	0.00	0.00	0.00	0.40	19.29
May	7976.23	0.00	0.00	1853.51	6122.72	0.00	0.00	125.49	0.00	0.00	0.00	0.20	18.43
Jun	7741.45	0.00	0.00	1989.41	5752.04	0.00	0.00	4.53	0.00	0.00	0.00	0.00	18.65
Jul	8067.17	0.00	0.00	1289.08	6778.09	0.00	0.00	4.11	0.00	0.00	0.00	0.20	147.95
Aug	6530.27	0.00	0.00	1082.63	5447.64	0.00	0.00	10.70	0.00	0.00	0.00	0.40	18.85
Sep	3645.12	0.00	0.00	192.81	3452.31	0.00	0.00	0.00	0.00	0.00	0.00	0.40	16.81
Oct	2158.48	0.00	0.00	0.32	2158.16	0.00	0.00	0.00	0.00	0.00	0.00	0.20	13.30
Nov	3682.03	0.00	0.00	0.00	3682.03	0.00	0.00	0.00	0.00	0.00	0.00	0.20	20.87
Dec	2434.31	0.00	24.00	0.00	2410.31	0.00	0.00	0.00	0.00	0.00	0.00	0.40	12.35
Sub-total (2021)	68203.33	0.00	76.90	7857.21	60269.22	0.00	0.00	220.40	0.00	0.00	0.00	2.60	338.34
Total	89802.64	0.00	1272.72	10730.98	76552.50	0.00	1246.44	220.40	0.00	0.00	0.00	2.60	389.52

Note:

- 29.95 tonnes, 24.89 tonnes and 2355.47 tonnes of inert C&D material were disposed of as public fill to Chai Wan Public Fill Barging Point, Tseung Kwan O Area 137 Public Fill, and Tuen Mun Area 38 respectively in the reporting month.

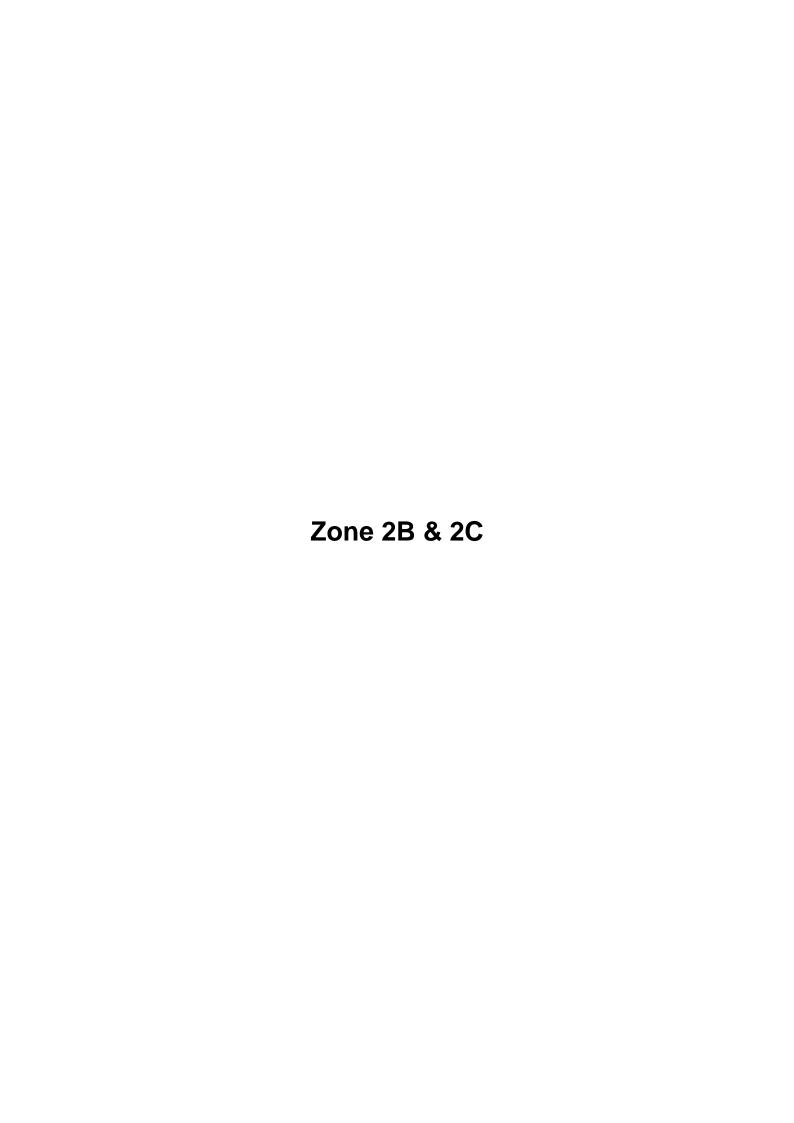


Table I-2: Monthly Waste Flow Table for Zone 2B & 2C

	Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Materials Generated Monthly				nthly			
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sroting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2021													
Sep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oct	60.33	0.00	37.75	0.00	22.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.19
Nov	9265.04	0.00	125.93	0.00	9139.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.12
Dec	13462.30	0.00	1041.17	0.00	12421.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.62
Total	22787.67	0.00	1204.85	0.00	21582.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	43.93

Note:

- 10457.17 tonnes and 1963.96 tonnes of inert C&D material were disposed of as public fill to Tuen Mun Area 38 and Tseung Kwan O Area 137 Public Fill respectively in the reporting month.

J. Environmental Mitigation Measures – Implementation Status

Table J-1: Environmental Mitigation Measures Implementation Status (December 2021)

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C
Air Quality In	npact (Construction)		
2.1	General Dust Control Measures Frequent water spraying for active construction areas (12 times a day or once every one hour), including Heavy construction activities such as construction of buildings or roads, drilling, ground excavation, cut and fill operations (i.e., earth moving)	/	√
2.1	Best Practice For Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (construction Dust) Regulation should be adopted to further reduce the construction dust impacts from the Project. These best practices include:		
	 Good Site Management Good site management is important to help reducing potential air quality impact down to an acceptable level. As a general guide, the Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimise the release of visible dust emission. Any piles of materials accumulated on or around the work areas should be cleaned up regularly. Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimising generation of fugitive dust emissions. The material should be handled properly to prevent fugitive dust emission before cleaning. 	Obs	Rem
	 Disturbed Parts of the Roads Each and every main temporary access should be paved with concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or 	✓	✓
	 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 	✓	✓
	Exposed Earth	N/A	N/A
	• Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction	No exposed earth in this	No exposed earth in this
		project.	project.

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C				
3.1	Good Site Practice						
	Good site practice and noise management can significantly reduce the impact of construction						
	site activities on nearby NSRs. The following package of measures should be followed during						
	each phase of construction:						
	• only well-maintained plant to be operated on-site and plant should be serviced regularly	✓	✓				
	during the construction works;						
	• machines and plant that may be in intermittent use to be shut down between work	✓	✓				
	periods or should be throttled down to a minimum						
	• plant known to emit noise strongly in one direction, should, where possible, be orientated	✓	✓				
	to direct noise away from the NSRs;						
	 mobile plant should be sited as far away from NSRs as possible; and 	✓	✓				
	• material stockpiles and other structures to be effectively utilised, where practicable, to	✓	✓				
	screen noise from on-site construction activities.						
3.1	Adoption of Quieter PME	✓	✓				
	The recommended quieter PME adopted in the assessment were taken from the EPD's QPME						
	Inventory and "Sound Power Levels of Other Commonly Used PME" are presented in Table 4.26						
	in the EIA report. It should be noted that the silenced PME selected for assessment can be found						
	in Hong Kong.						
3.1	Use of Movable Noise Barriers	✓	✓				
	Movable noise barriers can be very effective in screening noise from particular items of plant						
	when constructing the Project. Noise barriers located along the active works area close to the						
	noise generating component of a PME could produce at least 10 dB(A) screening for stationary						

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C
	plant and 5 dB(A) for mobile plant provided the direct line of sight between the PME and the		
	NSRs is blocked.		
3.1	Use of Noise Enclosure/ Acoustic Shed	✓	✓
	The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor		
	and concrete pump. With the adoption of the noise enclosure, the PME could be completely		
	screened, and noise reduction of 15 dB(A) can be achieved according to the EIAO Guidance Note		
	No. 9/2010.		
3.1	Use of Noise Insulating Fabric	✓	✓
	Noise insulating fabric can also be adopted for certain PME (e.g. drill rig, pilling machine etc).		
	The fabric should be lapped such that there are no openings or gaps on the joints. According to		
	the approved Tsim Sha Tsui Station Northern Subway EIA report (AEIAR-127/2008), a noise		
	reduction of 10 dB(A) can be achieved for the PME lapped with the noise insulating fabric.		
3.1	Scheduling of Construction Works outside School Examination Periods	✓	✓
	During construction phase, the contractor should liaise with the educational institutions		
	(including NSRs LCS and CRGPS) to obtain the examination schedule and avoid the noisy		
	construction activities during school examination periods.		
Water Quality	y Impact (Construction)		
4.1	Construction site runoff and drainage		
	The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in		
	order to minimise surface runoff and the chance of erosion. The following measures are		

recommended to protect water quality and sensitive uses of the coastal area, and when properly implemented should be sufficient to adequately control site discharges so as to avoid water

Zone 2A Zone 2B & 2C

quality impacts:

- At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the WKCDA's Contractor prior to the commencement of construction;
- Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided
 to remove sand/silt particles from runoff to meet the requirements of the TM standards
 under the WPCO. The design of efficient silt removal facilities should be based on the
 guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the
 flow rate. The detailed design of the sand/silt traps should be undertaken by the WKCDA's
 Contractor prior to the commencement of construction.
- All drainage facilities and erosion and sediment control structures should be regularly
 inspected and maintained to ensure proper and efficient operation at all times and
 particularly during rainstorms. Deposited silt and grit should be regularly removed, at the
 onset of and after each rainstorm to ensure that these facilities are functioning properly
 at all times.
- Measures should be taken to minimize the ingress of site drainage into excavations. If
 excavation of trenches in wet periods is necessary, they should be dug and backfilled in
 short sections wherever practicable. Water pumped out from foundation excavations
 should be discharged into storm drains via silt removal facilities.
- All vehicles and plant should be cleaned before leaving a construction site to ensure no

✓

Obs

/

earth, mud, debris and the like is deposited by them on roads. An adequately designed
and sited wheel washing facility should be provided at construction site exit where
practicable. Wash-water should have sand and silt settled out and removed regularly to
ensure the continued efficiency of the process. The section of access road leading to, and
exiting from, the wheel-wash bay to the public road should be paved with sufficient
backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to
public roads and drains.

- Open stockpiles of construction materials or construction wastes onsite should be covered
 with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent
 the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused
 wherever practicable. Temporary enclosed storage locations should be provided on-site
 for any unused bentonite that needs to be transported away after all the related
 construction activities are completed. The requirements in ProPECC Note PN 1/94 should
 be adhered to in the handling and disposal of bentonite slurries.

/ Rem

.

r Rem

N/A N/A
No bentonite slurries are used
in this project. N/A
No bentonite slurries are used
in this project.

Obs

Construction solid waste, debris and refuse generated on-site should be collected,

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C				
	handled and disposed of properly to avoid entering any nearby storm water drain.						
	Stockpiles of cement and other construction materials should be kept covered when not						
	being used.						
	Oils and fuels should only be stored in designated areas which have pollution prevention	✓	✓				
	facilities. To prevent spillage of fuels and solvents to any nearby storm water drain, all fuel						
	tanks and storage areas should be provided with locks and be sited on sealed areas, within						
	bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund						
	should be drained of rainwater after a rain event.						
Waste Mana	gement Implications (Construction)						
6.1	Good Site Practices						
	Recommendations for good site practices during the construction activities include:						
	Nomination of an approved person, such as a site manager, to be responsible for good site	✓	✓				
	practices, arrangements for collection and effective disposal to an appropriate facility, of						
	all wastes generated at the site						
	Training of site personnel in proper waste management and chemical handling procedures	✓	✓				
	 Provision of sufficient waste disposal points and regular collection of waste 	✓	✓				
	Appropriate measures to minimise windblown litter and dust/odour during transportation	✓	✓				
	of waste by either covering trucks or by transporting wastes in enclosed containers						
	• Provision of wheel washing facilities before the trucks leaving the works area so as to	✓	✓				
	minimise dust introduction to public roads						
	Well planned delivery programme for offsite disposal such that adverse environmental	✓	✓				
	impact from transporting the inert or non-inert C&D materials is not anticipated						

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C				
6.1	Waste Reduction Measures						
	Recommendations to achieve waste reduction include:						
	 Sort inert C&D material to recover any recyclable portions such as metals 	✓	✓				
	Segregation and storage of different types of waste in different containers or skips to	✓	✓				
	enhance reuse or recycling of materials and their proper disposal						
	Encourage collection of recyclable waste such as waste paper and aluminium cans by	✓	✓				
	providing separate labelled bins to enable such waste to be segregated from other general						
	refuse generated by the work force						
	Proper site practices to minimise the potential for damage or contamination of inert C&D	✓	✓				
	materials						
	Plan the use of construction materials carefully to minimise amount of waste generated	✓	✓				
	and avoid unnecessary generation of wastes						
6.1	Inert and Non-inert C&D Materials						
	In order to minimise impacts resulting from collection and transportation of inert C&D material						
	for off-site disposal, the excavated materials should be reused on-site as fill material as far as						
	practicable. In addition, inert C&D material generated from excavation works could be reused						
	as fill materials in local projects that require public fill for reclamation.						
	The surplus inert C&D material will be disposed of at the Government's PFRFs for	✓	✓				
	beneficial use by other projects in Hong Kong.						
	Liaison with the CEDD Public Fill Committee (PFC) on the allocation of space for disposal	✓	✓				
	of the inert C&D materials at PFRF is underway. No construction work is allowed to						
	proceed until all issues on management of inert C&D materials have been resolved and all						
	relevant arrangements have been endorsed by the relevant authorities including PFC and						

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C
	EPD.		
	The C&D materials generated from general site clearance should be sorted on site to	✓	✓
	segregate any inert materials for reuse or disposal of at PFRFs whereas the non-inert		
	materials will be disposed of at the designated landfill site.		
	• In order to monitor the disposal of inert and non-inert C&D materials at respectively PFRFs	✓	✓
	and the designated landfill site, and to control fly-tipping, it is recommended that the		
	Contractor should follow the Technical Circular (Works) No. 6/2010 for Trip Ticket System		
	for Disposal of Construction & Demolition Materials issued by Development Bureau. In		
	addition, it is also recommended that the Contractor should prepare and implement a		
	Waste Management Plan detailing their various waste arising and waste management		
	practices in accordance with the relevant requirements of the Technical Circular (Works)		
	No. 19/2005 Environmental Management on Construction Site.		
6.1	Chemical Waste		
	If chemical wastes are produced at the construction site, the Contractor will be required	✓	Obs
	to register with the EPD as a chemical waste producer and to follow the guidelines stated		
	in the "Code of Practice on the Packaging Labelling and Storage of Chemical Wastes". Good		
	quality containers compatible with the chemical wastes should be used, and incompatible		
	chemicals should be stored separately. Appropriate labels should be securely attached on		
	each chemical waste container indicating the corresponding chemical characteristics of		
	the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,		
	corrosive, etc. The Contractor should use a licensed collector to transport and dispose of		
	the chemical wastes at the approved Chemical Waste Treatment Centre or other licensed		
	recycling facilities, in accordance with the Waste Disposal (Chemical Waste) (General)		

1	mplementation	Stage

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C
	Regulation.		
	• Potential environmental impacts arising from the handling activities (including storage,	✓	✓
	collection, transportation and disposal of chemical waste) are expected to be minimal		
	with the implementation of appropriate mitigation measures as recommended.		
6.1	General Refuse	✓	✓
	General refuse should be stored in enclosed bins or compaction units separated from inert C&D		
	materials. A reputable waste collector should be employed by the Contractor to remove general		
	refuse from the site, separately from inert C&D materials. Preferably an enclosed and covered		
	area should be provided to reduce the occurrence of 'wind blown' light material.		
Land Contam	ination (Construction)		
7.1	The potential for land contamination issues at the TST Fire Station due to its future relocation		
	will be confirmed by site investigation after land acquisition. Where necessary, mitigation		
	measures for minimising potential exposure to contaminated materials (if any) or remediation		
	measures will be identified. If contaminated land is identified (e.g., during decommissioning of		
	fuel oil storage tanks) after the commencement of works, mitigation measures are proposed in		
	order to minimise the potentially adverse effects on the health and safety of construction		
	workers and impacts arising from the disposal of potentially contaminated materials. The		
	following measures are proposed for excavation and transportation of contaminated material:		
	• To minimize the chance for construction workers to come into contact with any	N/A	N/A
	contaminated materials, bulk earth-moving excavation equipment should be employed;	TST Fire Station is out of this	TST Fire Station is out of this
		project boundary, no mitigation	project boundary, no mitigation
		measure is required.	measure is required.

Zone 2A N/A

Zone 2B & 2C

- Contact with contaminated materials can be minimised by wearing appropriate clothing and personal protective equipment such as gloves and masks (especially when interacting directly with contaminated material), provision of washing facilities and prohibition of smoking and eating on site;
- Stockpiling of contaminated excavated materials on site should be avoided as far as possible;
- The use of contaminated soil for landscaping purpose should be avoided unless pretreatment was carried out;
- Vehicles containing any contaminated excavated materials should be suitably covered to reduce dust emissions and/or release of contaminated wastewater;
- Truck bodies and tailgates should be sealed to stop any discharge;

 Only licensed waste haulers should be used to collect and transport contaminated material to treatment/disposal site and should be equipped with tracking system to avoid fly tipping; TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation measure is required.

N/A

TST Fire Station is out of this project boundary, no mitigation

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C
		measure is required.	measure is required.
	 Speed control for trucks carrying contaminated materials should be exercised; 	N/A	N/A
		TST Fire Station is out of this	TST Fire Station is out of this
		project boundary, no mitigation	project boundary, no mitigation
		measure is required.	measure is required.
	Observe all relevant regulations in relation to waste handling, such as Waste Disposal	N/A	N/A
	Ordinance (Cap. 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354)	TST Fire Station is out of this	TST Fire Station is out of this
	and obtain all necessary permits where required; and	project boundary, no mitigation	project boundary, no mitigation
		measure is required.	measure is required.
	Maintain records of waste generation and disposal quantities and disposal arrangements.	N/A	N/A
		TST Fire Station is out of this	TST Fire Station is out of this
		project boundary, no mitigation	project boundary, no mitigation
		measure is required.	measure is required.
Ecological Im	npact (Construction)		
	No mitigation measure is required.		
Landscape a	nd Visual Impact (Construction)		
Table 9.1	Trees should be retained in situ on site as far as possible. Should tree removal be unavoidable	✓	✓
(CM1)	due to construction impacts, trees will be transplanted or felled with reference to the stated		
	criteria in the Tree Removal Applications to be submitted to relevant government departments		
	for approval in accordance to ETWB TCW No. 29/2004 and 3/2006.		
Table 9.1	Compensatory tree planting shall be incorporated to the proposed project and maximize the	N/A	N/A
(CM2)	new tree, shrubs and other vegetation planting to compensate tree felled and vegetation	Compensatory tree planting is	Compensatory tree planting is

	removed. Also, implementation of compensatory planting should be of a ratio not less than 1:1 in terms of quality and quantity within the site.	being reviewed.	being reviewed.
ir	in terms of quality and quantity within the site.		Demo reviewed.
	in terms of quality and quarter, memorial		
Table 9.1 B	Buffer trees for screening purposes to soften the hard architectural and engineering structures	N/A	N/A
(CM3) a	and facilities.	Roof garden is designed to be	Roof garden is designed to be
		built, but it has not been	built, but it has not been
		completed yet.	completed yet.
Table 9.1	Softscape treatments such as vertical green wall panel /planting of climbing and/or weeping	N/A	N/A
(CM4) p	plants, etc, to maximize the green coverage and soften the hard architectural and engineering	Climbing or weeping plants are	Climbing or weeping plants are
st	structures and facilities.	designed to be planted, but	designed to be planted, but
		proposal is being reviewed for	proposal is being reviewed for
		the planting location.	the planting location.
Table 9.1 R	Roof greening by means of intensive and extensive green roof to maximize the green coverage	N/A	N/A
(CM5) a	and improve aesthetic appeal and visual quality of the building/structure.	Roof garden is designed to be	Roof garden is designed to be
		built, but it has not been	built, but it has not been
		completed yet.	completed yet.
Table 9.1	Sensitive streetscape design should be incorporated along all new roads and streets.	N/A	N/A
(CM6)		Greening along the seafront is	Greening along the seafront is
		proposed, and under review.	proposed, and under review.
Table 9.1 S	Structure, ornamental planting shall be provided along amenity strips to enhance the landscape	N/A	N/A
(CM7) q	quality.	Gardens are designed to be	Gardens are designed to be
		built, and under review.	built, and under review.
Table 9.1 La	Landscape design shall be incorporated to architectural and engineering structures in order to	N/A	N/A

this project.

this project.

EM&A Ref.	Recommendation Measures	Zone 2A	Zone 2B & 2C
(CM8)	provide aesthetically pleasing designs.	Roof garden is designed to be	Roof garden is designed to be
		built, and under review.	built, and under review.
Table 9.1	Minimize the structure of marine facilities to be built on the seabed and foreshore in order to	N/A	N/A
(CM9)	minimize the affected extent to the waterbody	No marine facilities for this	No marine facilities for this
		project.	project.
Table 9.2	Use of decorative screen hoarding/boards	✓	✓
(MCP1)			
Table 9.2	Early introduction of landscape treatments	N/A	N/A
(MCP2)		No landscape treatments during	No landscape treatments during
		this stage.	this stage.
Table 9.2	Adoption of light colour for the temporary ventilation shafts for the basement during the	N/A	N/A
(MCP3)	transition period.	No ventilation shafts for this	No ventilation shafts for this
		project.	project.
Table 9.2	Control of night time lighting	✓	✓
(MCP4)			
Table 9.2	Use of greenery such as grass cover for the temporary open areas will help achieve the visual	N/A	N/A
(MCP5)			

N/A - Not Applicable

✓ - Implemented

Obs - Observed

Rem - Reminder

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction works (i.e. 3 October 2020 for Zone 2A Foundation, Excavation and Lateral Support Works; 30 September 2021 for Zone 2B & 2C Piling Works) to the end of the reporting month and are summarised in the Table K-1 and Table K-2 below respectively.

Table K-1: Statistics for complaints, notifications of summons and successful prosecutions for Zone 2A Foundation, Excavation and Lateral Support Works

Reporting Period C	umulative Statistics
--------------------	----------------------

2

Reporting Period

From 30 September 2021 to

end of the reporting month

	Complaints	Notifications of summons	Successful prosecutions
This reporting month	0	0	0
From 03 October 2020 to	17	0	0
end of the reporting month			

Table K-2: Statistics for complaints, notifications of summons and successful prosecutions for Zone 2B & 2C Piling Works

	Complaints	Notifications of summons	Successful prosecutions
This reporting month	0	0	0

Cumulative Statistics

0

END OF THE REPORT