MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Monthly EM&A Report No. 91

[Period from 1 to 31 March 2020]

Works Contract 1109 - Stations and Tunnels of Kowloon City Section

(9 April 2020)

	A. Annalyto.		
Certified by:	/////	Mandy To	

Position: Environmental Team Leader

Date: <u>9 April 2020</u>

MONTHLY EM&A REPORT

Samsung-Hsin Chong JV

Shatin to Central Link (SCL) - Tai Wai to Hung Hom Section: Works Contract 1109 – Stations and Tunnels of Kowloon City Section *Monthly EM&A Report No.91*

March 2020

Environmental Resources Management 16/F Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

MONTHLY EM&A REPORT

Samsung-Hsin Chong JV

Shatin to Central Link (SCL) - Tai Wai to Hung Hom Section: Works Contract 1109 – Stations and Tunnels of Kowloon City Section *Monthly EM&A Report No.91*

March 2020

Reference 0171181

For and on behalf of ERM-Hong Kong, Limited		
Approved by:	Frank Wan	
Signed:	Warchink T.	
Position:	Partner	
Date:	9 April 2020	

1	INTRODUCTION	1
1.1	Purpose of the Report	1
1.2	STRUCTURE OF THE REPORT	1
2	PROJECT INFORMATION	3
2.1	BACKGROUND	3
2.2	GENERAL SITE DESCRIPTION	3
2.3	CONSTRUCTION PROGRAMME AND ACTIVITIES	3
2.4	PROJECT ORGANISATION	4
2.5	STATUS OF ENVIRONMENTAL LICENCES, NOTIFICATION AND PERMITS	4
3	ENVIRONMENTAL MONITORING REQUIREMENT	5
3.1	REGULAR CONSTRUCTION NOISE MONITORING	5
3.1.1	Monitoring Location	5
3.1.2	Monitoring Parameter and Frequency	5
3.1.3	Monitoring Equipment and Methodology	6
3.1.4	Action and Limit Levels	6
3.2	Continuous Noise Monitoring	7
3.2.1	Monitoring Locations	7
3.2.2	Monitoring Parameter and Frequency	8
3.2.3	Monitoring Equipment and Methodology	8
3.2.4	Action and Limit Levels	8
3.3	CONSTRUCTION DUST MONITORING	9
3.3.1	Monitoring Location	9
3.3.2	Monitoring Parameter and Frequency	10
3.3.3	Monitoring Equipment	10
3.3.4	Monitoring Methodology	11
3.3.5	Action and Limit Levels	13
3.4	Cultural Heritage	13
3.5	LANDSCAPE AND VISUAL MITIGATION MEASURES	14
4	IMPLEMENTATION STATUS OF THE ENVIRONMENTAL PROTEC	TION
	REQUIREMENTS	15
5	MONITORING RESULTS	16
5.1	REGULAR CONSTRUCTION NOISE MONITORING	16
5.2	Continuous Noise Monitoring	16
5.3	CONSTRUCTION DUST MONITORING	16
5.4	Cultural Heritage	17
5.5	WASTE MANAGEMENT	17
5.6	LANDSCAPE AND VISUAL MITIGATION MEASURES	18
6	ENVIRONMENTAL SITE INSPECTION	19

7	ENVIRONMENTAL NON-CONFORMANCE	20
7.1	SUMMARY OF MONITORING EXCEEDANCE	20
7.2	SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE	20
7.3	SUMMARY OF ENVIRONMENTAL COMPLAINT	20
7.4	SUMMARY OF ENVIRONMENTAL SUMMON AND SUCCESSFUL PROSECUTION	20
8	FUTURE KEY ISSUES	21
8.1	Key Issues for the Coming Month	21
8.2	MONITORING SCHEDULE FOR THE NEXT MONTH	21
8.3	CONSTRUCTION PROGRAMME FOR THE NEXT MONTH	21
9	CONCLUSIONS	22

LIST OF ANNEXES

Annex A	The Alignment and	l Works Area	for Works	Contract
			,	

- Annex B Construction Programme for the Reporting Month and Coming Month
- Annex C Project Organisation Chart and Contact Detail
- Annex D Locations of Monitoring Stations for Noise and Dust Monitoring
- Annex E Monitoring Schedule of the Reporting Period and the Next Month
- Annex F Calibration Reports
- Annex G Summary of Event /Action Plans
- Annex H Summary of Implementation Status of Environmental Mitigation
- Annex I Regular Noise Monitoring Results
- Annex J Construction Dust Monitoring Results
- Annex K Waste Flow Table
- Annex L (Not Used)
- Annex M Environmental Complaint, Environmental Summon and Prosecution Log

EXECUTIVE SUMMARY

The construction works of **MTR Shatin to Central Link Works Contract 1109 – Stations and Tunnels of Kowloon City Section** commenced on 1 September 2012. This is the ninety-first monthly Environmental Monitoring and Audit (EM&A) report presenting the EM&A works carried out during the period from 1 March 2020 to 31 March 2020 in accordance with the EM&A Manual.

Summary of the Construction Works undertaken during the Reporting Month

The major construction works undertaken during the reporting month include:

Construction Activities undertaken
Works in To Kwa Wan (TKW) (formerly named as Ma Tau Wai (MTW))
To Kwa Wan Station – ABWF works;
• Ma Tau Wai Road - Removal of D-wall, construction of carriageway panel near Chi
Kiang Street, and footpath reinstatement works at northbound footpath between Kiang
Su Street and Chi Kiang Street;
• Ventilation Shaft and Entrance A - Reinstatement of Lok Shan Road Playground and To
Kwa Wan Complex Playground;
• Junction of Ma Tau Wai Road and Chi Kiang Street - Construction of small garden;
• Entrance D - Reinstatement of Ma Tau Wai Road / To Kwa Wan Road Garden;
• All Works Areas – Maintenance, repairing, rectification and protection improvement
works for the structure within 1109 Contract Boundary due to social activities.
Works in Sung Wong Toi (SUW) (formerly named as To Kwa Wan (TKW))
Sung Wong Toi Station – ABWF works; and
• All Works Areas – Maintenance, repairing, rectification and protection improvement
works for the structure within 1109 Contract Boundary due to social activities.
Regular Construction Noise and Construction Dust Monitoring
A summary of the monitoring activities in this reporting period is listed
below:
Regular construction noise monitoring during normal working hours
• NMS-CA-6 5 times

		0 1111100
•	NMS-CA-7	5 times
•	NMS-CA-8	5 times
•	NMS-CA-9	5 times
•	NMS-CA-10	5 times
С	onstruction dust (24-hour TSP) monitoring	
•	DMS-6	6 times
•	DMS-7	6 times
•	DMS-8	6 times
•	DMS-9	6 times
•	DMS-10	6 times

Continuous Noise Monitoring

•

No continuous noise monitoring was required during this reporting month, according to the schedule presented in the latest approved CNMP.

Cultural Heritage

A License to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance has been obtained from Antiquities and Monuments Office (AMO) on 29 October 2012. The archaeological survey-cumexcavation and additional investigation at the Sacred Hill (North) commenced on 1 November 2012 and was conducted in accordance with the License and the approved Archaeological Action Plan (AAP). An updated AAP was submitted to AMO for renewal of the 1 year archaeological license. The license was renewed and granted by AMO on 24 October 2013. The updated AAP was submitted to EPD for approval on 11 October 2013 and it was approved on 1 November 2013. The fieldworks of the archaeological surveycum-excavation and additional investigation were completed on 27 December 2013. The Interim Archaeological Report was provided to AMO in April 2014. The Final Archaeological Report was accepted by AMO in June 2017. Artefacts handover to AMO was completed on 27 April 2018.

No vibration monitoring was conducted during the reporting period as relevant tunnelling work for this Works Contract had been completed in vicinity of the historical structures listed in EM&A Manual.

Waste Management

Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. 563 m³ of inert C&D material was generated from the Project during the reporting month. No plastics was generated and sent to recyclers for recycling during the reporting period. About 200 m³ of non-recyclable non-inert C&D materials, such as general refuse, were disposed of at NENT Landfill. 166 kg of metal waste was generated during this reporting month. No paper/ cardboard packaging was generated and sent to recyclers for recycling during the reporting period. No chemical waste was generated during this reporting this reporting month.

Landscape and Visual

Bi-weekly inspections of the implementation of landscape and visual mitigation measures were conducted on 2, 16 and 30 March 2020. No audit findings were observed during the reporting month. The implementation status is presented in *Section 5*.

Environmental Site Inspection

Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 2, 9, 16, 23 and 30 March 2020. The representative of the IEC joined the site inspection on 9 March 2020. Details of the audit findings and implementation status are presented in *Section 6*.

Environmental Exceedance/Non-conformance/Complaint/Summons and Prosecution

No exceedance of the Action and Limit Levels of regular construction noise monitoring was recorded during the reporting period.

No exceedance of the Action and Limit Levels of 24-hour TSP monitoring was recorded during the reporting period.

No complaint was received during the reporting month.

No summon or prosecution was received in this reporting period.

Future Key Issues

The major construction works to be undertaken in the next reporting month include:

Con	struction Activities to be undertaken
Wor	ks in To Kwa Wan (TKW) (formerly named as Ma Tau Wai (MTW))
•	To Kwa Wan Station – ABWF works;
•	Ma Tau Wai Road – Removal of D-wall and construction of carriageway panel near Chi

- Ma Tau Wai Road Removal of D-wall and construction of carriageway panel near Chi Kiang Street;
- Ventilation Shaft and Entrance A Reinstatement of Lok Shan Road Playground and To Kwa Wan Complex Playground;
- Junction of Ma Tau Wai Road and Chi Kiang Street Construction of small garden;
- Construction of central barriers; and
- All Works Areas Maintenance, repairing, rectification and protection improvement works for the structure within 1109 Contract Boundary due to social activities.

Works in Sung Wong Toi (SUW) (formerly named as To Kwa Wan (TKW))

- Sung Wong Toi Station ABWF works; and
- All Works Areas Maintenance, repairing, rectification and protection improvement works for the structure within 1109 Contract Boundary due to social activities.

1 INTRODUCTION

ERM-Hong Kong, Limited (ERM) was appointed by Samsung-Hsin Chong JV (SSHCJV) as the Environmental Team (Contractor's ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during the construction phase of the **MTR Shatin to Central Link (SCL) Works Contract 1109 – Stations and Tunnels of Kowloon City Section** (the Project).

1.1 PURPOSE OF THE REPORT

This is the ninety-first EM&A report which summarises the monitoring results and audit findings during the reporting period from 1 March to 31 March 2020.

1.2 STRUCTURE OF THE REPORT

Section 1: Introduction

It details the purpose and structure of the report.

Section 2: Project Information

It summarises the background and scope of the project, site description, project organisation and contact details, construction programme, construction works undertaken and status of the Environmental Permits/Licenses during the reporting period.

Section 3 : Environmental Monitoring Requirement

It summarises the monitoring parameters, programmes, methodologies, frequency, locations, Action and Limit Levels, Event / Action Plans.

Section 4 : Implementation Status of the Environmental Protection Requirements

It summarises the implementation of environmental protection measures during the reporting period.

Section 5 : **Monitoring Results** It summarises the monitoring results obtained in the reporting period.

Section 6 : **Environmental Site Inspection** It summarises the audit findings of the weekly site inspections undertaken within the reporting period.

Section 7 : Environmental Non-conformance

It summarises any monitoring exceedance, environmental complaints and summons within the reporting period.

Section 8 : Future Key Issues

It summarises the forecast of environmental impact and monitoring schedule for the next three months.

Section 9: Conclusions

2.1 BACKGROUND

The Shatin to Central Link – Tai Wai to Hung Hom Section (hereafter referred to as SCL (TAW-HUH)) is an extension of the Ma On Shan Line and is approximately 11 km long. It links up with the West Rail Line at Hung Hom forming a strategic east-west rail corridor. It is a Designated Project under the *Environmental Impact Assessment Ordinance* (Cap. 499) (EIAO).

The construction of the SCL (TAW-HUH) has been divided into a series of civil construction Works Contracts and this Works Contract 1109 covers the construction of stations in Sung Wong Toi (SUW) (formerly named as To Kwa Wan (TKW)) and To Kwa Wan (TKW) (formerly named as Ma Tau Wai (MTW)), and the tunnels between the SUW station and Ho Man Tin station (HOM).

2.2 GENERAL SITE DESCRIPTION

For the Works Contract 1109, the alignment runs from SUW station below Ma Tau Chung Road/Ma Tau Wai Road towards the west, reaching the TKW station. After leaving TKW station, the alignment passes Ko Shan Road and joins the HOM station at the intersection of Fat Kwong Street and Shun Yung Street. The underground sections of the alignment between SUW and HOM stations will be constructed by bored tunneling. Both the SUW and TKW stations will be constructed by cut-and-cover method.

The alignment and works area for the Works Contract 1109 are shown in *Annex A*.

2.3 CONSTRUCTION PROGRAMME AND ACTIVITIES

A summary of the major construction activities undertaken in this reporting period is shown in *Table 2.1*. The construction programme is presented in *Annex B*.

Table 2.1Summary of the Construction Activities Undertaken during the Reporting
Month

Construction Activities undertaken		
Works in To Kwa Wan (TKW) (formerly named as Ma Tau Wai (MTW))		
• To Kwa Wan Station – ABWF works;		
Ma Tau Wai Road – Removal of D-wall, construction of carriageway panel near Chi		
Kiang Street, and footpath reinstatement works at northbound footpath between Kiang		
Su Street and Chi Kiang Street;		
• Ventilation Shaft and Entrance A - Reinstatement of Lok Shan Road Playground and To		
Kwa Wan Complex Playground;		
 Junction of Ma Tau Wai Road and Chi Kiang Street – Construction of small garden; 		
 Entrance D - Reinstatement of Ma Tau Wai Road / To Kwa Wan Road Garden: 		

Construction Activities undertaken

• All Works Areas – Maintenance, repairing, rectification and protection improvement works for the structure within 1109 Contract Boundary due to social activities.

Works in Sung Wong Toi (SUW) (formerly named as To Kwa Wan (TKW))

- Sung Wong Toi Station ABWF works; and
- All Works Areas Maintenance, repairing, rectification and protection improvement works for the structure within 1109 Contract Boundary due to social activities.

2.4 **PROJECT ORGANISATION**

-

The project organisational chart and contact details are shown in *Annex C*.

2.5 STATUS OF ENVIRONMENTAL LICENCES, NOTIFICATION AND PERMITS

A summary of the valid permits, licences, and/or notifications on environmental protection for this Project is presented in *Table 2.2*.

Table 2.2Summary of the Status of Valid Environmental Licence, Notification, Permit
and Documentations

Permit/ Licences/	Reference	Validity Period	Remarks
Notification			
Environmental Permit	EP-438/2012/K	Throughout the	Permit granted on 4
		Contract	October 2016
Notification of	348516	13 August 2012 -	-
Construction Works		30 April 2017	
under the Air Pollution			
Control (Construction			
Dust) Regulation (Form			
NA)			
Notification of	351125	16 October 2012 -	-
Construction Works		30 April 2017	
under Air Pollution			
Control (Construction			
Dust) Regulation (Form			
NB)			
Wastewater Discharge Lice	ence		
Site at Sung Wong Toi	WT00028970-2017	11-September-2017	-
Site at To Kwa Wan	WT00029103-2017	18-September-2017	-
Chemical Waste Producer	Registration		
Site at Sung Wong Toi	5213-286-S3682-01	Throughout the	-
		Contract	
Site at To Kwa Wan	5213-242-S3682-02	Throughout the	-
		Contract	
Construction Noise Permit			
- PME at TKW Road	GW-RE0008-20	31 January 2020 –	-
TTMS		19 July 2020	
SP-Licence for TBM	L-3-249(1)	19 May 2015 – 18	Notification for the
operation		May 2018	cancellation of the
			Specified Process
			Licence has been given
			to EPD in Nov 2016
Billing Account for	7015758	Throughout the	-
Disposal of Construction		Contract	
Waste			

ENVIRONMENTAL MONITORING REQUIREMENT

3.1 REGULAR CONSTRUCTION NOISE MONITORING

3.1.1 Monitoring Location

In accordance with the EM&A Manual, monitoring of construction noise impact should be conducted at designated monitoring stations. Since access to some of the proposed monitoring locations stated in the EM&A Manual was either rejected or unavailable; alternative locations were proposed and agreed by the ER (Engineer's Representative), IEC (Independent Environmental Checker) and EPD (Environmental Protection Department). The construction noise monitoring locations are listed in *Table 3.1* and shown in *Annex D*. The noise sensitive receivers (NSRs) related to this Works Contract are also shown in *Annex D*.

Table 3.1Regular Construction Noise Monitoring Location

Proposed Regular Construction Noise Monitoring Location	Description	Type of Measurement
NMS-CA-6 ^(a)	No.16-23 Nam Kok Road	Façade
NMS-CA-7	Skytower Tower 2	Façade
NMS-CA-8	SKH Good Shepherd Primary School	Façade
NMS-CA-9 ^(b)	Kong Yiu Mansion	Façade
NMS-CA-10	Chat Ma Mansion	Façade

Notes:

(a) Access to the monitoring location at Prosperity House (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. Furthermore, the alternative location, No. 420 Prince Edward Road West, used in the baseline monitoring was also not available as access permission was rejected by the owner of the building. An alternative location (No.16-23 Nam Kok Road) was proposed and approved by the ER and agreed by the IEC and EPD.

(b) As the Incorporated Owners Association of the monitoring location at Lucky Building (originally proposed in the approved EM&A Manual) did not reply to our request for access to their premise, an alternative location, Kong Yiu Mansion, was proposed and approved by the ER and agreed by the IEC and EPD.

3.1.2 Monitoring Parameter and Frequency

Weekly construction noise monitoring was conducted in accordance with the requirements stipulated in the EM&A Manual. If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed. The monitoring schedule for this reporting period is shown in *Annex E*.

The construction noise levels were measured in terms of the A-weighted equivalent continuous sound pressure level (L_{Aeq}) in decibels dB(A). L_{Aeq} (30min) was used as the monitoring metric for the time period between 0700 – 1900 hours on normal weekdays. The measured noise levels were logged every 5 minutes throughout the monitoring period.

3.1.3 Monitoring Equipment and Methodology

Construction noise measurements were conducted in accordance with the calibration and measurement procedures as stated in *Annex – General Calibration and Measurement Procedures* of *Technical Memorandum on Noise from Construction Work other than Percussive Piling (GW-TM)* issued under the *Noise Control Ordinance (NCO)* (Cap 400).

The sound level meters and calibrator used for the noise measurement, as listed in *Table 3.2*, compile with the IEC 651: 1979 and 804:1985 (Type 1) specification. The calibration certificates of the sound level meters are included in *Annex F*.

Table 3.2Noise Monitoring Equipment

Monitoring Stations	Monitoring Equipment (Sound Level Meter and Calibrator)
NMS-CA-6, NMS-CA-7,	Calibrator: CAL 200 (Serial No. 11333)
NMS-CA-8, NMS-CA-9 and NMS-CA-10	Sound Level Meter: NL 18 (Serial No. 00360030)

Immediately prior to and following the noise measurements, the accuracy of the measurement equipment was checked using an acoustic calibrator generating a known sound pressure level at a known frequency.

Measurements were accepted when the calibration level from before and after the noise measurement agreed to be within 1.0 dB(A).

3.1.4 Action and Limit Levels

The Action and Limit Levels are presented in *Table 3.3* and the Event / Action Plan (EAP) for noise monitoring is presented in *Annex G*.

Table 3.3Action and Limit Levels for Noise Monitoring

Time Period	Regular Noise Monitoring Location	Action Level	Limit Level
0700 - 1900 hours on normal weekdays	NMS- CA-6	When one documented valid complaint is received	75 dB(A)
	NMS- CA-7	When one documented valid complaint is received	75 dB(A)
	NMS- CA-8	When one documented valid complaint is received	70 dB(A)
			65 dB(A) during examination periods
			79 dB(A) ^(b) during the period of conducting the continuous noise monitoring
	NMS- CA-9	When one documented valid complaint is received	75 dB(A)
	NMS- CA-10	When one documented valid complaint is received	75 dB(A)

Notes:

- (a) If works are to be carried out during restricted hours (ie, outside 0700 1900 from Monday to Saturday), the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.
- (b) The Limit Level of 79 dB(A) was updated on 22 August 2013 as per the latest Construction Noise Mitigation Measures Plan (CNMMP) and Continuous Noise Monitoring Plan (CNMP), which were approved by EPD.

3.2 CONTINUOUS NOISE MONITORING

3.2.1 Monitoring Locations

With reference to the Continuous Noise Monitoring Plan (CNMP) and EP Condition 2.10, continuous noise monitoring should be conducted during the construction of the SCL (TAW-HUH) under Works Contract 1109 at eight noise sensitive receivers (NSRs), where the predicted residual air-borne construction noise impacts exceed the relevant noise criteria. The proposed continuous noise monitoring locations are presented in *Table 3.4* and shown in *Annex D*.

Continuous Noise Monitoring Location ^(a)	Description
TKW-3-2(B)	Hing Fu Building
MTW-12-3(A)	SKH Good Shepherd Primary School
MTW-12-4(A)	Kong Yiu Mansion
MTW-12-4-1(A)	59 Maidstone Road
MTW-12-10	Lucky Building (South Façade)
MTW-12-10-1	Lucky Building (East Façade)
MTW-12-11(A)	SKH Good Shepherd Primary School
MTW-16-1	SKH Good Shepherd Primary School

Table 3.4Proposed Continuous Noise Monitoring Locations

 Continuous Noise Monitoring Location^(a)
 Description

 review in March 2015.
 Continuous Noise Monitoring Location^(a)

3.2.2 Monitoring Parameter and Frequency

Continuous monitoring of $L_{Aeq(30min)}$ noise levels are required to be carried out at the eight proposed continuous noise monitoring locations identified in *Table 3.4* during the normal construction working hours (0700 – 1900 Monday to Saturday) in the period that presented in the CNMP. The recommended measurement period for the continuous noise monitoring programme in the CNMP are presented in *Table 3.6*. If works are to be carried out during restricted hours (ie, outside 0700 – 1900 from Monday to Saturday), the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

3.2.3 Monitoring Equipment and Methodology

In accordance to the Technical Memorandum (TM) issued under the *Noise Control Ordinance* (NCO), sound level meters in compliance with the *International Electrotechnical Commission Publications* 651:1979 (*Type 1*) and *804:1985 (Type 1*) specifications will be used for carrying out the noise monitoring. Immediately prior to the noise measurement, the accuracy of the sound level meter will be checked using an acoustic calibrator, which generated a known sound pressure level at a known frequency. The accuracy of the sound level meter will also be checked on an annual-basis. Measurements will be accepted as valid only if the calibration level before and after the noise measurement agrees to be within 1.0 dB(A). Noise measurements will be made in accordance with standard acoustical principles and practices in relation to weather conditions.

3.2.4 Action and Limit Levels

The Action/Limit Levels for the continuous noise monitoring programme recommended in the latest CNMP are presented in *Table 3.6.*

Proposed Continuous Noise Monitoring Stations	Description	Action / Limit Level (a)	Measurement Period ^(a)
TKW-3-2(B)	Hing Fu Building	80	September 2014 – December 2014 ^(b)
MTW-12-3(A)	SKH Good Shepherd Primary School	80	August 2014 – January 2015 ^(b) , March 2015 – June 2015
MTW-12-4(A)	Kong Yiu Mansion	80	August 2014 – June 2015 ^(b)
MTW-12-4-1(A)	59 Maidstone Road	82	October 2014, December 2014 – June 2015
MTW-12-10	Lucky Building (South Façade)	84	March 2015 - April 2015, September 2015 - January 2016
MTW-12-10-1	Lucky Building (East Façade)	80	December 2014 – May 2015, September 2015 – January 2016
MTW-12-11(A)	SKH Good Shepherd Primary School	81	September 2014 – June 2015 ^(b)
MTW-16-1	SKH Good Shepherd Primary School	78	December 2012 - January 2013; April 2013 - 21 August 2013,
		79 (c)	22 August 2013 – December 2013, August 2014 – March 2016

Table 3.6Action/Limit Levels for Continuous Noise Monitoring (a)

Notes:

(a) The A/L Levels and Measurement Periods will be subject to the latest Construction Noise Mitigation Measures Plan (CNMP) and Continuous Noise Monitoring Plan (CNMP).

(b) The latest CNMP was approved by EPD in October 2014. Continuous noise monitoring at TKW-3-2 (B), MTW-12-3(A), MTW-12-4(A) and MTW-12-11(A) commenced in October 2014.

(c) The A/L Level of 79 dB(A) was updated on 22 August 2013 as per the latest Construction Noise Mitigation Measures Plan (CNMMP) and Continuous Noise Monitoring Plan (CNMP) which were approved by EPD.

The Event/Action Plan (EAP) of the latest CNMP for continuous noise monitoring is presented in *Annex G*.

3.3 CONSTRUCTION DUST MONITORING

3.3.1 Monitoring Location

The proposed dust monitoring stations for the construction phase of the Project, as recommended in the approved EM&A Manual, are listed in *Table* **3.7** and shown in *Annex D*. The proposed locations have been agreed with the ER, EPD and IEC.

Table 3.7Construction Dust Monitoring Location

Proposed Construction Dust Monitoring Location	Description
DMS-6 ^(a)	Katherine Building
DMS-7	Parc 22
DMS-8	SKH Good Shepherd Primary School
DMS-9 (b)	No. 12 Pau Chung Street
DMS-10	Chat Ma Mansion

Notes:

(a) Access to the monitoring location at Prosperity House (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. Furthermore, the alternative location at No. 420 Prince Edward Road West, which was used in the baseline monitoring, was also not available as access permission was not granted by the owner of the building. An alternative location, Katherine Building, was proposed and had been approved by the ER and agreed by the IEC and EPD.

(b) As the Incorporated Owners Association of the originally proposed monitoring location at Lucky Building did not reply to our request for access to their premise, an alternative location, No. 26 Kowloon City Road, was proposed and had been approved by the ER and agreed by the IEC and EPD. However, 24-hour averaged dust monitoring had been suspended at DMS-9 No. 26 Kowloon City Road since March 2014 due to denied access by the occupant of the premise. No. 12 Pau Chung Street, as an alternative monitoring location, was formally approved by EPD on 19 May 2014. Impact dust monitoring at No. 12 Pau Chung Street commenced on 12 June 2014.

3.3.2 Monitoring Parameter and Frequency

The construction dust monitoring (in terms of Total Suspended Particulates (TSP)) was conducted at the designated monitoring stations in accordance with the requirements stipulated in the EM&A Manual. The 24-hour TSP levels were monitored at the frequency and duration stated in *Table 3.8*. The TSP monitoring was conducted as per the schedule presented in *Annex E*.

Table 3.8Construction Dust Monitoring Parameters and Frequency

Monitoring Period	Duration	Parameter	Frequency
Dust Monitoring	Throughout the construction period of the Project	24-hour TSP	Once per 6 days

3.3.3 Monitoring Equipment

24-hour averaged TSP monitoring was performed at designated monitoring stations using High Volume Samplers (HVS) with the appropriate sampling inlets installed. The performance specification of HVS complied with the standard method "*Determination of Suspended Particulate Matter in the Atmosphere (High Volume Method)*" as stipulated in *US EPA Standard Title* 40, *Code of Federation Regulations Chapter 1 (Part 50 Appendix B)*. **Table 3.9** summarises the equipment that was deployed for the 24-hour averaged monitoring.

Table 3.9Construction Dust Monitoring Equipment

Monitoring Location	Monitoring Equipment (HVS and Calibrator)
DMS-6	TE-5170 (Serial No. 0107), CM-AIR-43 (Orifice ID 2454)
DMS-7	TE-5170 (Serial No. 3574), CM-AIR-43 (Orifice ID 2454)
DMS-8	TE-5170 (Serial No. 3572), CM-AIR-43 (Orifice ID 2454)
DMS-9 (a)	TE-5170 (Serial No. 0814), CM-AIR-43 (Orifice ID 2454)
DMS-10	TE-5170 (Serial No. 3573), CM-AIR-43 (Orifice ID 2454)

Note:

(a) 24-hour averaged dust monitoring at DMS-9 No. 26 Kowloon City Road had been suspended since March 2014 due to denied access by the occupant of the premise. However, No. 12 Pau Chung Street, as an alternative monitoring location, was formally approved by EPD on 19 May 2014. Impact dust monitoring at No. 12 Pau Chung Street commenced on 12 June 2014.

3.3.4 Monitoring Methodology

All HVSs were free-standing with no obstruction.

The following criteria were considered in the installation of the HVSs:

- appropriate support to secure the samplers against gusty wind needed to be provided at the monitoring stations;
- a minimum of 2m separation from walls, parapets and penthouses was required for rooftop samplers;
- no furnace or incinerator flues was nearby;
- airflow around the sampler was unrestricted; and
- permission could be obtained to set up the samplers and gain access to the monitoring stations.

Preparation of Filter Papers

- glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected;
- all filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25°C and not varied by more than ± 3°C; the relative humidity (RH) was 40%; and
- SGS Hong Kong Ltd, a HOKLAS accredited laboratory, implemented comprehensive quality assurance and quality control programmes on the filters.

Field Monitoring

• the power supply was checked to ensure that the HVSs were working properly;

- the filter holder and area surrounding the filter were cleaned;
- the filter holder was removed by loosening the foul bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully;
- the filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
- the swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
- the shelter lid was closed and secured with an aluminium strip;
- the HVS was warmed-up for about 5 minutes to establish runtemperature conditions;
- a new flow rate record sheet was inserted into the flow recorder;
- the flow rates of the HVSs were checked and adjusted to between 1.22 1.37 m³min⁻¹, which was within the range specified in the EM&A Manual (i.e. 0.6 1.7 m³min⁻¹);
- the programmable timer was set for a sampling period of 24 hours ± 1 hour, and the starting time, weather condition and filter number were recorded;
- the initial elapsed time was recorded;
- at the end of sampling, the sampled filter was removed carefully and folded in half so that only surfaces with collected particulate matter were in contact;
- the filter paper was placed in a clean plastic envelope and sealed;
- all monitoring information was recorded on a standard data sheet; and
- the filters were sent to SGS Hong Kong Ltd for analysis.

Maintenance and Calibration

- the HVSs and their accessories were maintained in a good working condition. For example, motor brushes were replaced routinely and electrical wiring was checked to ensure a continuous power supply; and
- the flow rate of each HVS with mass flow controller was calibrated using an orifice calibrator. Initial calibrations of the dust monitoring equipment were conducted upon installation and prior to commissioning. Five-point calibration was carried out for HVSs using CM-AIR-43 Calibration Kit. HVSs are calibrated every six-month. The calibration records for the HVSs are given in *Annex F*.

Wind Data Monitoring

• Average wind data (wind speed and direction) at the Kai Tak meteorological station during the monitoring period were obtained from the Hong Kong Observatory (HKO) and presented in *Annex J*.

3.3.5 Action and Limit Levels

The Action and Limit levels have been established and are presented in *Table* **3.10**.

Parameters	Dust Monitoring Station	Action Level (µg m ⁻³) ^(a)	Limit Level (µg m-3) (a)
24-hour TSP	DMS-6	156.8	260
	DMS-7	166.7	260
	DMS-8	152.2	260
	DMS-9 (c)	160.9	260
_	DMS-10	170.4	260
1-hour TSP ^(b)	DMS-6	288.8	500
	DMS-7	289.7	500
	DMS-8	300.0	500
	DMS-9 (c)	303.0	500
_	DMS-10	294.7	500

Table 3.10Action and Limit Levels for Dust Monitoring

Notes:

(a) Reference to the Baseline Monitoring Report submitted in July 2012.

(b) Action and Limit Levels for 1-hour TSP will only be used when 1-hour TSP is required to be monitored when a valid complaint is received.

(c) 24-hour averaged dust monitoring at DMS-9 No. 26 Kowloon City Road had been suspended since March 2014 due to denied access by the occupant of the premise. However, No. 12 Pau Chung Street, as an alternative monitoring location, was formally approved by EPD on 19 May 2014. Impact dust monitoring at No. 12 Pau Chung Street commenced on 12 June 2014.

The Event/Action Plan (EAP) for dust monitoring is presented in *Annex G*.

3.4 CULTURAL HERITAGE

A License to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance was obtained from the Antiquities and Monuments Office (AMO) on 29 October 2012. The archaeological survey-cumexcavation and additional investigation at the Sacred Hill (North) commenced on 1 November 2012 and was conducted in accordance with the Licence and the approved Archaeological Action Plan (AAP). An updated AAP was submitted to AMO for renewal of the 1 year archaeological license. The license was renewed and granted by AMO on 24 October 2013. The updated AAP was submitted to EPD for approval on 11 October 2013 and it was approved on 1 November 2013. The fieldworks of the archaeological surveycum-excavation and additional investigation were completed on 27 December 2013. The Interim Archaeological Report was provided to AMO in April 2014. The Final Archaeological Report was accepted by AMO in June 2017. Artefacts handover to AMO was completed on 27 April 2018.

In accordance with the EM&A Manual, appropriate vibration monitoring on the identified built heritage will be agreed with the Building Department (BD)/Geotechnical Engineering Office (GEO) under the requirement of Buildings Ordinance and/or Blasting Permit as appropriate. Vibration levels will be controlled to appropriate levels. Vibration monitoring will be carried out by the Contractor. The structures requiring vibration monitoring during the relevant tunneling work for this Works Contract include S.K.H. Holy Trinity Church and Old Fast East Flying Training School.

3.5 LANDSCAPE AND VISUAL MITIGATION MEASURES

In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is given in *Annex H*.

IMPLEMENTATION STATUS OF THE ENVIRONMENTAL PROTECTION REQUIREMENTS

The Contractor has implemented all the environmental mitigation measures and requirements as stated in the EIA Report, Environmental Permit and EM&A Manual. The implementation status of the environmental mitigation measures for this Works Contract during the reporting period is summarised in *Annex H*. The status of the required submissions under the EP for this Works Contract during this reporting month is presented in *Table 4.1*.

Table 4.1Status of Required Submission under Works Contract 1109

4

EP Condition	Submission	Submission Date
Condition 3.4	Ninetieth Monthly EM&A Report	13 March 2020

5 MONITORING RESULTS

5.1 **REGULAR CONSTRUCTION NOISE MONITORING**

A total of 25 sets of 30-minute construction noise measurements were carried out at the monitoring stations during normal weekdays of the reporting period. The noise level recorded at all five monitoring locations during the whole reporting period are below baseline level or below limit level after baseline-level correction.

The monitoring results together with their graphical presentations are presented in *Annex I-1*.

No exceedance of the Action and Limit Levels of construction noise was recorded during the reporting period.

5.2 CONTINUOUS NOISE MONITORING

No continuous noise monitoring was required during the reporting period in accordance with the schedule presented in the latest approved CNMP.

5.3 CONSTRUCTION DUST MONITORING

A total of 30 sets of 24-hr TSP monitoring were carried out at the designated monitoring stations during normal weekdays of the reporting period. The monitoring results together with their graphical presentations are presented in *Annex J* and a summary of the dust monitoring results in this reporting month is given in *Table 5.1*.

Table 5.1Summary of the Dust Monitoring Results in this Reporting Month

Monitoring Station	24-hour TSP Monitoring Results measured, μgm ^{-3 (a)}		Action Level, µgm ⁻³	Limit Level, µgm ⁻³
	Average	Range		
DMS-6	47	36 - 65	156.8	260
DMS-7	39	28 - 56	166.7	260
DMS-8	44	32 - 68	152.2	260
DMS-9 (a)	60	46 - 93	160.9	260
DMS-10	52	37 - 88	170.4	260
37.4				

Note:

(a) 24-hour averaged dust monitoring at DMS-9 No. 26 Kowloon City Road has been suspended since March 2014 due to denied access by the occupant of the premise.
 However, No. 12 Pau Chung Street, as an alternative monitoring location, was approved by EPD. 24-hour averged dust monitoring commenced on 12 June 2014.

No exceedance of the Action and Limit Levels of the 24-hr TSP monitoring was recorded during the reporting period.

5.4 CULTURAL HERITAGE

A License to Excavate and Search for Antiquities under Antiquities and Monuments Ordinance was obtained from Antiquities and Monuments Office (AMO) on 29 October 2012. The archaeological survey-cum-excavation and additional investigation at the Sacred Hill (North) commenced on 1 November 2012 and was conducted in accordance with the License and the approved Archaeological Action Plan (AAP). An updated AAP was submitted to AMO for renewal of the 1 year archaeological license. The license was renewed and granted by AMO on 24 October 2013. The updated AAP was submitted to EPD for approval on 11 October 2013 and it was approved on 1 November 2013. The fieldworks of the archaeological survey-cumexcavation and additional investigation were completed on 27 December 2013. The Interim Archaeological Report was provided to AMO in April 2014. The Final Archaeological Report was accepted by AMO in June 2017. Artefacts handover to AMO was completed on 27 April 2018.

No vibration monitoring was conducted during the reporting period as relevant tunnelling work for this Works Contract had been completed in vicinity of the historical structures listed in EM&A Manual.

5.5 WASTE MANAGEMENT

The waste generated from this Project includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in *Table 5.2*. Details of waste management data are presented in *Annex K*.

Table 5.2Quantities of Waste Generated from the Project

Reporting	5		Quantity			
Month	Inert C&D	Chemical	Non-	Non-inert C&D Materials		
Materials (a) Waste (c) General Re		Recy	cycled materials			
	(b)		Refuse/Vegetative	Paper/card	Plastics	Metals
			Waste	board		
March 202	.0 563 m ³	0 kg	200 m ³	0 kg	0 kg	166 kg
Notes:						
(a) Iner	t C&D materials ir	nclude bricks	s, concrete, building d	lebris, rubble	and excava	ited spoil.
(b) 563 a) 563 m ³ of inert C&D materials was generated from the Project during the reporting month.					
(c) Che	nemical waste includes waste oil. It is assumed density of waste oil to be 0.8 kg/L .					

5.6 LANDSCAPE AND VISUAL MITIGATION MEASURES

Bi-weekly inspections of the implementation of landscape and visual mitigation measures were conducted on 2, 16 and 30 March 2020. Most of the mitigation measures given in *Annex H* have been implemented. Required Actions that were found are listed below:

2 March 2020

• There was no major observation during the site inspection.

16 March 2020

• There was no major observation during the site inspection.

<u>30 March 2020</u>

• There was no major observation during the site inspection.

Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 2, 9, 16, 23 and 30 March 2020. The representative of the IEC joined the site inspection on 9 March 2020. No non-compliance was recorded during the site inspections.

Findings and recommendations for the site inspection in this reporting month are summarised as follows:

2 March 2020

- The Contractor was reminded to cover all stockpiles with impervious sheeting at SUW works area; and
- The Contractor was reminded to provide sufficient drip trays for chemical containers stored at works area of SUW site office.

9 March 2020

• There was no major observation during the site inspection.

16 March 2020

• There was no major observation during the site inspection.

23 March 2020

• There was no major observation during the site inspection.

30 March 2020

• There was no major observation during the site inspection.

All follow-up actions requested by Contractor's ET and IEC during the site inspections were undertaken as reported by the Contractor. The abovementioned environmental issues had been addressed and mitigated during the reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

No exceedance of the Action and Limit Levels of the construction noise was recorded during the reporting period.

No exceedance of the Action and Limit Levels of 24-hour TSP monitoring was recorded during the reporting month.

7.2 SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE

No non-compliance event was recorded during the reporting month.

7.3 SUMMARY OF ENVIRONMENTAL COMPLAINT

No complaint was received during the reporting month. The cumulative environmental complaint log is shown in *Annex M*.

7.4 SUMMARY OF ENVIRONMENTAL SUMMON AND SUCCESSFUL PROSECUTION

No summon was received during the reporting month. The cumulative summon/prosecution log is shown in *Annex M*.

8 FUTURE KEY ISSUES

8.1 KEY ISSUES FOR THE COMING MONTH

Works to be undertaken in the next reporting month are summarised in *Table 8.1*.

Table 8.1Construction Works to be undertaken in the Next Reporting Month

Cor	Construction Activities to be undertaken				
Wor	rks in To Kwa Wan (TKW) (formerly named as Ma Tau Wai (MTW))				
•	To Kwa Wan Station – ABWF works;				
•	Ma Tau Wai Road - Removal of D-wall and construction of carriageway papel pear				

- Ma Tau Wai Road Removal of D-wall and construction of carriageway panel near Chi Kiang Street;
- Ventilation Shaft and Entrance A Reinstatement of Lok Shan Road Playground and To Kwa Wan Complex Playground;
- Junction of Ma Tau Wai Road and Chi Kiang Street Construction of small garden;
- Construction of central barriers; and
- All Works Areas Maintenance, repairing, rectification and protection improvement works for the structure within 1109 Contract Boundary due to social activities.

Works in Sung Wong Toi (SUW) (formerly named as To Kwa Wan (TKW))

- Sung Wong Toi Station ABWF works; and
- All Works Areas Maintenance, repairing, rectification and protection improvement works for the structure within 1109 Contract Boundary due to social activities.

Potential environmental impacts arising from the above construction activities are mainly associated with dust, construction noise and waste management.

8.2 MONITORING SCHEDULE FOR THE NEXT MONTH

The tentative schedule of regular construction noise monitoring and 24-hour TSP monitoring in the next reporting period is presented in *Annex E*. The regular construction noise monitoring and 24-hour TSP monitoring will be conducted at the same monitoring locations in the next reporting period.

8.3 CONSTRUCTION PROGRAMME FOR THE NEXT MONTH

The construction programme for the Project for the next reporting month is presented in *Annex B*.

CONCLUSIONS

This 91st monthly Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 March 2020 to 31 March 2020 in accordance with the EM&A Manual and the requirement under EP-438/2012/K.

No exceedance of the Action and Limit Levels of the construction noise was recorded during the reporting period.

No exceedance of the Action and Limit Levels of 24-hour TSP monitoring was recorded at the designated monitoring stations during the reporting period.

No complaint was received during the reporting month.

No summon or prosecution was received during the reporting period.

The Contractor has implemented possible and feasible mitigation measures to mitigate the potential environmental impacts during construction. The Contractor's ET will continue to keep track of the EM&A programme to ensure compliance of environmental requirements and the effectiveness and efficiency of the mitigation measures implemented. If necessary, the Contractor will provide more mitigation measures to further alleviate the impacts.

Annex A

The Alignment and Works Area for Works Contract

Annex B

Construction Programme for the Reporting Month and the Coming Month

Data	Date:	11-Mar-20
Duiu	Duito.	

SAMSUNG - HSIN CHONG JOINT VENTURE

THREE MONTH ROLLING PROGRAMME - Mar 2020

Activity ID	Activity Name		Remaining	Physical % Planned /	Planned /	Update Status		
			Duration	Complete Actual Start	Actual Finish		Feb	Mar
1109 - SUW & TKV	V Stations and Tunnels	s Feb 2020 (MPR2)	· ·					
								
PROJECT DATES								
Specified Milestone Da	ates (Revised)							
CC-B Milestones							4	
01109.MSB24i-P	B24(i) - All Operations & Mair	ntenance manuals & As Built dwgs submitted. (DRM: 29 Apr 2	0	0%	07-Jun-20*			
CC-C Milestones							4	
01109.MSC23i-P	C23(i) - All Operations & Mair	ntenance manuals & As Built dwgs submitted (DRM: 29 Apr 2	0	0%	07-Jun-20*			
CC-E Milestones				,				
01109.MSE07iii-P10	E07(iii)(a) - 80% of civil and s	structural works at Ma Tau Wai/TKW Rd Garden complete	0	0%	11-Mar-20*			7
01109.MSE08i-P10	E08(i) - All ABWF & E&M wks	s for reprovisioned LCSD toilet at Ma Tau Wai Rd/TKW Rd G	0	0%	19-Mar-20*			
	E08(iii) - All works complete,	Inspected and accepted by Governments and relevant autho	0	0%	11-Mar-20*			A A
01109.MSE08W-P	E08(iv) - All O&M manuals an	As Built drawings submitted (DRM: 25 Feb 2018) superse	0	0%	17-Iviay-20*			
01109.IMSE08IV-P10		ia AS Built drawings submitted (DRM. 25 Feb 2016)	0	0%	11-Iviar-20			O
CC-F Milestones				201			4	
01109.MSF03-P	F03(i) - All Operations & Mair	ntenance manuals & As Built dwgs submitted. (DRM: 29 Apr 2	0	0%	17-May-20*			
01109.MSF03i-P10	F03(iii) - All Operations & Mai	intenance manuals & As Built dwgs submitted.	0	0%	11-Mar-20*			ŏ
CC-J Milestones							4	
01109.MSJ06I	J6i-All Operations and Mainte	enance Manuals and as-built drawings submitted (29 Apr 201	0	0%	11-Mar-20*			δ.
01109.MSJ06II	J6ii-All works complete and s	statutory inspections successfully undertaken tot the satisfac	0	0%	11-Mar-20*			<mark>8</mark>
Works Areas								
Return Dates								
01109.RDA1	Vacation date for Works Area	a 1109.A1 (Wk15/19;14Apr19)	0	0%	11-Mar-20*			8
Specified Milestone Da	ates (AMP)							
CC-B Milestones								
01109.MSB21i	B21(i)-All Operations & Maint	enance manuals & As Built dwgs submitted.(Wk7/18;18Feb1	0	0%	07-Jun-20			
CC-C Milestones								
01109.MSC21i	C21(i)-All Operations & Maint	tenance manuals & As Built dwgs submitted.(Wk07/18;18Fet	0	0%	07-Jun-20			
CC-E Milestones								
01109.MSE08ii	E08(ii) - All O&M manuals and	d As Built drawings submitted (50/17;17Dec17)	0	0%	17-May-20			
CC-F Milestones			J					
01109.MSF04i	F04(i) - All Operations & Mair	ntenance manuals & As Built dwgs submitted.(Wk7/18:18Feb	0	0%	17-Mav-20		+	
01109.MSF04ii	F04(ii)- All works complete &	stat inspections successfully undertaken to the satisfaction	0	0%	11-Mar-20			•
CC-A - PRELIMINA	RIES AND GENERAL R	EQUIREMENTS						
Management Systems								
Other Specified Peruir	omonte. Submission							
	Propose and submit Operatio	no 8 Maintananao manualo 8 Ao Duilt durgo for Olympia Can	0	40% 10 Mar 18 A	11 Mar 20	ak	4	
01100 PDA3380	Prepare and submit Operatio	Ins & Maintenance manuals & As Built dwgs for Olympic Guil	210	40% 19-Mai-16A	21 Mar 20	OK		1
01109.PDA3410	Propare and submit Operatio	ns & Maintenance manuals & As Built dwgs for 1 KV	210	40% 18-Feb-18A	31-Mar-20	ok		
01109 PDA3440	Prepare and submit Operatio	ins & Maintenance manuals & As Built dwgs for 5000	0	40% 19-Mar-18A	11-Mar-20	ok		
01109 PDA3441	Prepare and submit Operatio	ans & Maintenance manuals & As Built dwgs for TKA FEP an	0	40% 19-Mar-18 A	11-Mar-20	ok		
01109 PDA3450	Prepare and submit Operatio	ns & Maintenance manuals & As Built dwgs for remaining	0	40% 19-Mar-18 A	11-Mar-20	ok		
Other Specified Require	ements - Approval		Ū		11 Mai 20			
01109 PDA3470	Review & Approve - Operatio	ns & Maintenance manuals & AsBuilt dwos for Olympic Gdn	680	35% 06-Jul-19 A	17-May-20	ok	·	
01109.PDA3500	Review & Approve - Operatio	ns & Maintenance manuals & As Built dwas for TKW (DRM	680	35% 06-Jul-19 A	07-Jun-20	ok		
01109.PDA3520	Review & Approve - Operatio	ns & Maintenance manuals & As Built dwgs for SUW(DRM: 2	680	35% 06-Jul-19 A	07-Jun-20	ok		
01109.PDA3530	Review & Approve - Operatio	ns & Maintenance manuals & As Built dwgs for HOM (DRM:	680	35% 06-Jul-19 A	17-May-20	ok		
01109.PDA3580	Completion of All Key Dates		0	0%	11-Mar-20	ok		k
CC-B - SUW STATI	ON ENTRANCES AND	אדוחא						
	tion Works	ADIIS						
SUV Station Construc	Downer C							1 1 1
Station - ABWF Works -	- Degree 3							
GL 1 - 5 - Works to De	gree 3, Platform Level		·				l	
01109.PDB17160B	Rectify and Complete all ABW	/F Detect and outstanding work (FoH)	120	97% 01-Dec-18A	24-Mar-20	OK		
GL 5 - 23 - Works to De	egree 3, Platform Level						L	
01109.PDB18120B	Rectify and Complete all ABW	/F Defect and outstanding work (FoH)	120	97% 01-Dec-18 A	24-Mar-20	OK		-
		MTR Corporation Lin	nited	1109-	MPR2-2S02, Page	e 1 of 2		
			nteu		,			
SAMSIL		Chatin to Constant Link Con-	me at 1100	Mar 2	020 TASK filters:	3MRP Dates, MTRC 1109 - 3MRP.	=	Remaining Wor
		Snatin to Central Link Cont	1act 1109				=	Master Program
SAMSUNG-HSIN CH	ONG JOINT VENTURE			Printe	d:11-Mar-20		🕶	Last Month Upd
er une offer fort of				1			1	

Acti	ivity ID	Activity Name	Remaining	Physical %	Planned /	Planned /	Update Status			
			Duration	Complete A	Actual Start	Actual Finish		Feb		Mar
	GL 1 - 5 - Works to Degree	3, Concourse Level							; · · ·	
	01109.PDB18340B	Rectify and Complete all ABWF Defect and outstanding work (BoH)	120	97% (01-Dec-18A	24-Mar-20	ok			
	01109.PDB18440B	Rectify and Complete all ABWF Defect and outstanding work (FoH)	120	97% (01-Dec-18A	24-Mar-20	ok		ļ ieta	
	GL 5 - 23 - Works to Degre	e 3, Concourse Level								
	01109.PDB18660B	Rectify and Complete all ABWF Defect and outstanding work (BoH)	120	97% 0	01-Dec-18A	24-Mar-20	ok		Ļ	
	01109.PDB18760B	Rectify and Complete all ABWF Defect and outstanding work (FoH)	120	97% (01-Dec-18A	24-Mar-20	ok		<u>.</u>	
	CC-C - TKW STATION	, ENTRANCES AND ADITS								
	TKW Station									
	Station - ABWF Works (Con	course Level and Above)								
	Major Works to Degree 3									
	01109.PDC27000B	Rectify and Complete all ABWF Defect and outstanding work (BoH)	120	98% (01-Dec-18A	24-Mar-20	ok			
	01109.PDC27930B	Rectify and Complete all ABWF Defect and outstanding work (FoH)	120	98% (01-Dec-18A	24-Mar-20	ok			
	TKW Station External Land	scaping Works								
	RRIW (TKW)									
	01109.PDC1440	TKW - Re-construct new LCSD Public Toilet	80	99% 2	20-Nov-17 A	19-Mar-20	ok			
	01109.PDE1100	ABWF & E&M wks for reprovisioned LCSD toilet at Ma Tau Wai Rd/TKW Rd Gdn	80	80% 1	13-May-19 A	28-Mar-20	ok			
	TKW Road Garden, D-Wa	II and TTMS (TKW Entrance D)								
	01109.PDC1470A	TKW Road Garden Stage 2	150	55% 0	07-Oct-19A	25-Mar-20	ok			
	Sheung Heung Road Gar	den, D-Wall next to SKH Good Shepherd Primary School and TTMS								
	01109.PDE1130A11	D-Wall & Drainage at West (Bay 13)	70	63% 0	01-Nov-19 A	17-Apr-20	ok		. <u> </u>	
	01109.PDE1130A20	D-Wall & Drainage at East (next to SKH Good Shepherd Primary School)	300	0% 1	18-Apr-20	22-May-20				
	01109.PDE1130A30	RRIW at Sheung Heung Road Garden	200	0% 2	23-May-20	15-Jun-20				
	Other D-Wall & Drainage									
	01109.PDE1130A92	D-Wall & Drainage at Center (Bay 8-13)	260	40% (06-May-19 A	09-Apr-20	ok			[
	Watermain Reinstatement									
ľ	01109.PDC29365	Phase 1 - Watermains along MTW Rd (GL3-GL20)	0	100% 1	14-Sep-17 A	28-Feb-20 A	ok			
	01109.PDC29385	Phase 1 - Watermains along MTW Rd (GL20-GL28)	200	95% 1	13-Nov-17 A	02-Apr-20	ok	_		
	01109.PDC29525	Phase 3 - Implement TTMS S3P8	0	0% 1	11-Mar-20*		ok			5
	01109.PDC29535	Phase 2 - SW at North bound side (GL8-24)	200	95% 1	14-Sep-17 A	02-Apr-20	ok	_		
	01109.PDC29545	Phase 2 - FW at North bound side (GL8-24)	200	95% 1	14-Sep-17 A	02-Apr-20	ok	-		
	01109.PDC30110	Implement TTMS S3P8 - Central divider	1320	0% 1	11-Mar-20*	11-Aug-20	ok			
	01109.PDC30120	Implement Permanent TTMs	10	0% 1	11-Mar-20*	11-Mar-20	ok			0 <u>n.</u>
	Entrance A & Vent Shaft A									
	01109.PDC27510B	Rectify and Complete all ABWF Defect and outstanding work (Vent Shaft)	200	94% (01-Dec-18A	02-Apr-20	ok			
	Entrance D & Vent Shaft									
	01109.3MT10060B	Rectify and Complete all ABWF Defect and outstanding work (Entrance D)	200	96% (01-Dec-18A	02-Apr-20	ok			
	CC-E - REPROVISION	IING, REMEDIAL AND IMPROVEMENT WORKS (RRIW)							1	
	Goverment Statutory Acce	eptance Inspections								
	01109.PDE1150	Finalize all O&M manuals and As Built drawings	600	0% 0	08-May-20	16-Jul-20	ok			
	TESTING & COMMISS	IONING								
	01109.PDT1210	Dynamic Testing (TBC by MTRC)	300	0% 0	01-Feb-19A	09-Apr-20	ok		<u> </u>	
	01109.PDT1220	Test Running (TBC by MTRC)	1060	0% 1	10-Apr-20	24-Jul-20	ok	1	[

	MTR Corporation Limited	1109-MPR2-2S02, Page 2 of 2	Actual Work
SAMSUNG	Chasting to Compare Link Compare to 1100	Mar 2020 TASK filters: 3MRP Dates, MTRC 1109 - 3MRP.	Remaining Work
	Shatin to Central Link Contract 1109	Printed:11-Mar-20	Master Programm
SAMSUNG-HSIN CHONG JOINT VENTURE			Last Month Upda

Annex C

Project Organization Chart and Contact Detail
Annex C Project Organization of SCL Works Contract 1109

Annex D

Locations of Noise and Dust Monitoring Stations

Annex E

Monitoring Schedule of the Reporting Period and the Next Month

Shatin to Central Link Works Contract 1109 Stations and Tunnels of Kowloon City Section Regular Noise Monitoring Schedule

Noise Monitoring Stations: NMS-CA-6, NMS-CA-7, NMS-CA-8, NMS-CA-9 and NMS-CA-10 Monitoring Month : March 2020

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Mar	2-Mar	3-Mar	4-Mar	5-Mar	6-Mar	7-Mar
	Noise Monitoring					
8-Mar	9-Mar	10-Mar	11-Mar	12-Mar	13-Mar	14-Mar
				Noise Monitoring		
15-Mar	16-Mar	17-Mar	18-Mar	19-Mar	20-Mar	21-Mar
			Noise Monitoring			
22-Mar	23-Mar	24-Mar	25-Mar	26-Mar	27-Mar	28-Mar
		Noise Monitoring				
29-Mar	30-Mar	31-Mar				
	Noise Monitoring					

Shatin to Central Link Works Contract 1109 Stations and Tunnels of Kowloon City Section Regular Noise Monitoring Schedule

Noise Monitoring Stations: NMS-CA-6, NMS-CA-7, NMS-CA-8, NMS-CA-9 and NMS-CA-10 Monitoring Month : April 2020

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Apr	2-Apr	3-Apr	4-Apr
5-Apr	6-Apr	7-Apr	8-Apr	9-Apr	10-Apr	11-Apr
	· · · · · ·					
				Noise Monitoring		
12-Apr	13-Apr	14-Apr	15-Apr	16-Apr	17-Apr	18-Apr
			Noise Monitoring			
10-Apr	20-Apr	21_Apr	22-Apr	23-Apr	24-Apr	25-Apr
13-Api	20-Αρί	21-701	22-Api	20-Api	24-70	23-Api
	Noise Monitoring					
26-Apr	27-Apr	28-Apr	29-Apr	30-Apr		
			Noise Monitoring			
			g			

Shatin to Central Link Works Contract 1109 Stations and Tunnels of Kowloon City Section Regular Dust Monitoring Schedule

24-hr TSP Monitoring Stations: DMS-6, DMS-7, DMS-8, DMS-9 and DMS-10 Monitoring Month: March 2020

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Mar	2-Mar	3-Mar	4-Mar	5-Mar	6-Mar	7-Mar
	24 - hr TSP Monitoring				24 - hr TSP Monitoring	
8-Mar	9-Mar	10-Mar	11-Mar	12-Mar	13-Mar	14-Mar
				24 - hr TSP Monitoring		
15-Mar	16-Mar	17-Mar	18-Mar	19-Mar	20-Mar	21-Mar
			24 - hr TSP Monitoring			
22-Mar	23-Mar	24-Mar	25-Mar	26-Mar	27-Mar	28-Mar
		24 - hr TSP Monitoring				
29-Mar	30-Mar	31-Mar				
	24 - hr TSP Monitoring					

Shatin to Central Link Works Contract 1109 Stations and Tunnels of Kowloon City Section Regular Dust Monitoring Schedule

24-hr TSP Monitoring Stations: DMS-6, DMS-7, DMS-8, DMS-9 and DMS-10 Monitoring Month: April 2020

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Apr	2-Apr	3-Apr	4-Apr
					24 - hr TSP Monitoring	
5-Apr	6-Apr	7-Apr	8-Apr	9-Apr	10-Apr	11-Apr
				24 - hr TSP Monitoring		
12-Apr	13-Apr	14-Apr	15-Apr	16-Apr	17-Apr	18-Apr
			24 - hr TSP Monitoring			
19-Apr	20-Apr	21-Apr	22-Apr	23-Apr	24-Apr	25-Apr
	24 - hr TSP Monitoring					24 - hr TSP Monitoring
26-Apr	27-Apr	28-Apr	29-Apr	30-Apr		
			24 - hr TSP Monitoring			

Annex F

Calibration Reports

Annex F Calibration Reports

Dust Monitoring Equipment

Monitoring Station ID	Location	Monitoring Equipment		Last Calibration Date	Next Calibration Date
24-hr TSP		HVS	Calibrator		
DMS-6	Katherine Building	TE-5170 (S/N 0107)	CM-AIR-43 (Orifice I.D. 2454)	5 March 2020	5 September 2020
DMS-7	Parc 22	TE-5170 (S/N 3574)	CM-AIR-43 (Orifice I.D. 2454)	5 March 2020	5 September 2020
DMS-8	SKH Good Shepherd Primary School	TE-5170 (S/N 3572)	CM-AIR-43 (Orifice I.D. 2454)	5 March 2020	5 September 2020
DMS-9	No. 12 Pau Chung Street	TE-5170 (S/N 0814)	CM-AIR-43 (Orifice I.D. 2454)	5 March 2020	5 September 2020
DMS-10	Chat Ma Mansion	TE-5170 (S/N 3573)	CM-AIR-43 (Orifice I.D. 2454)	5 March 2020	5 September 2020

Noise Monitoring Equipment

Monitoring Station ID	Monitoring Equipment	Model & Serial No.	Last Calibration Date	Next Calibration Date
NMS-CA-6, NMS-CA-7, NMS-	Calibrator	LARSON DAVIS CAL 200 (S/N 11333)	26 May 2019	26 May 2020
CA-8, NMS-CA-9 and NMS-CA-10	Sound Level Meter	Rion NL-18 (S/N 00360030)	9 March 2020	9 March 2021

ENVIROTECH SERVICES CO.

	High-Volume TSP Sampler 5-Point Calibration Record			
Location Calibrated by	:	DMS-6(Katherine Building) K.T.Ho		
Date	:	05/11/2019		
Sampler				
Model	:	TE-5170		
Serial Number	:	S/N 0107		
Calibration Orifice and Standar	rd Calibrat	ion Relationship		
Serial Number	:	2454		
Service Date	:	25 February 2019		
Slope (m)	:	2.07076		
Intercept (b)	:	-0.02917		
Correlation Coefficient(r)	:	1.00000		
Standard Condition				
Pstd (hpa)	:	1013		
Tstd (K)	:	298.18		
Calibration Condition				
Pa (hpa)	:	1016		
Ta(K)	:	297		
Desistance Dista di Green	liquid	Z V-Ostd		

Resi	istance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.561	1.734	55	55.17
2	13 holes	9.0	3.009	1.467	44	44.14
3	10 holes	6.6	2.577	1.259	36	36.11
4	7 holes	4.2	2.056	1.007	28	28.09
5	5 holes	2.8	1.679	0.825	16	16.05

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>41.188</u> Intercept(b): <u>-15.913</u>

Correlation Coefficient(r): 0.9940

Checked by: Magnum Fan

Date: 09/11/2019

ENVIROTECH SERVICES CO.

	<u>High-Volume TSP Sampler</u>				
	<u>5-Po</u>	5-Point Calibration Record			
Location	:	DMS-6(Katherine Building)			
Calibrated by	:	K.T.Ho			
Date	:	05/03/2020			
Sampler					
Model	:	TE-5170			
Serial Number	:	S/N 0107			
Calibration Orifice and Standa	rd Calibra	tion Relationship			
Serial Number	:	2454			
Service Date	:	18 Feb 2020			
Slope (m)	:	2.07134			
Intercept (b)	:	-0.040910			
Correlation Coefficient(r)	:	0.99999			
Standard Condition					
Pstd (hpa)	:	1013			
Tstd (K)	:	298.18			
Calibration Condition					
Pa (hpa)	:	1017			
Ta(K)	:	293			
Desire Distanti III famora	1 11				

Resi	istance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.587	1.751	52	52.55
2	13 holes	8.6	2.963	1.450	44	44.46
3	10 holes	6.4	2.556	1.254	38	38.40
4	7 holes	4.0	2.021	0.995	26	26.27
5	5 holes	2.6	1.629	0.806	20	20.21

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>35.213</u> Intercept(b): <u>-7.692</u>

Correlation Coefficient(r): 0.9939

Checked by: Magnum Fan

Date: 08/03/2020

Location Calibrated by Date	: : :	DMS-7(Parc 22) K.T.Ho 05/11/2019
Sampler Model		TE-5170
Serial Number	:	S/N 3574
Calibration Orifice and Standard C	Calibration	Relationship
Serial Number	:	2454
Service Date	:	25 February 2019
Slope (m)	:	2.07076
Intercept (b)	:	-0.02917
Correlation Coefficient(r)	:	1.00000
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1016
Ta(K)	:	297

Resi	istance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.2	3.504	1.706	64	64.20
2	13 holes	8.4	2.907	1.418	50	50.16
3	10 holes	6.2	2.498	1.220	40	40.13
4	7 holes	4.0	2.006	0.983	30	30.09
5	5 holes	2.6	1.619	0.795	20	20.06

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>47.985</u>

Intercept(b):-17.832

Correlation Coefficient(r): 0.9996

Checked by: Magnum Fan

Date: 09/11/2019

Location Calibrated by Date	: : :	DMS-7(Parc 22) K.T.Ho 05/03/2020
Sampler Madal		TE 5170
Serial Number	:	S/N 3574
Calibration Orifice and Standard	Calibra	tion Relationship
Serial Number	:	2454
Service Date	:	18 Feb 2020
Slope (m)	:	2.07134
Intercept (b)	:	-0.040910
Correlation Coefficient(r)	:	0.99999
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1017
Ta(K)	:	293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.4	3.558	1.738	60	60.63
2	13 holes	8.8	2.998	1.467	52	52.55
3	10 holes	6.2	2.516	1.234	44	44.46
4	7 holes	4.0	2.021	0.995	36	36.38
5	5 holes	2.8	1.691	0.836	26	26.27

Sampler Calibration Relationship (Linear Regression)

Slope(m):36.905

Intercept(b):-2.226

Correlation Coefficient(r): 0.9914

Checked by: Magnum Fan

Date: 08/03/2020

Location	:	DMS-8(SHK Good Shepherd Primary School)
Calibrated by	:	K.T.Ho
Date	:	05/11/2019
<u>Sampler</u>		
Model	:	TE-5170
Serial Number	:	S/N 3572
Calibration Orifice and Standard C	Calibration	n Relationship
Serial Number	:	2454
Service Date	:	25 February 2019
Slope (m)	:	2.07076
Intercept (b)	:	-0.02917
Correlation Coefficient(r)	:	1.00000
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1016
Ta(K)	:	297

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.2	3.504	1.706	60	60.19
2	13 holes	8.6	2.942	1.435	52	52.16
3	10 holes	6.4	2.538	1.240	40	40.13
4	7 holes	4.2	2.056	1.007	30	30.09
5	5 holes	2.8	1.679	0.825	20	20.06

Sampler Calibration Relationship (Linear Regression)

Slope(m):46.395

Intercept(b):-17.115

Correlation Coefficient(r): 0.9941

Checked by: Magnum Fan

Date: 09/11/2019

Location	:	DMS-8(SHK Good Shepherd Primary School)
Calibrated by	:	K.T.Ho
Date	:	05/03/2020
<u>Sampler</u>		
Model	:	TE-5170
Serial Number	:	S/N 3572
Calibration Orifice and Standard	Calibratio	n Relationship
Serial Number	:	2454
Service Date	:	18 Feb 2020
Slope (m)	:	2.07134
Intercept (b)	:	-0.040910
Correlation Coefficient(r)	:	0.99999
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1017
Ta(K)	:	293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.4	3.558	1.738	62	62.65
2	13 holes	8.4	2.929	1.434	54	54.57
3	10 holes	6.2	2.516	1.234	46	46.48
4	7 holes	4.2	2.071	1.020	36	36.38
5	5 holes	3.0	1.750	0.865	28	28.29

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>39.615</u>

Intercept(b):-4.162

Correlation Coefficient(r): 0.9906

Checked by: <u>Magnum Fan</u>

Date: 08/03/2020

Location	:	DMS-9(No. 12 Pau Chung Street)
Calibrated by	:	K.T.Ho
Date	:	05/11/2019
<u>Sampler</u>		
Model	:	TE-5170
Serial Number	:	S/N 0814
Calibration Orifice and Standard	Calibratio	on Relationship
Serial Number	:	2454
Service Date	:	25 February 2019
Slope (m)	:	2.07076
Intercept (b)	:	-0.02917
Correlation Coefficient(r)	:	1.00000
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1016
Ta(K)	:	297

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.5	3.547	1.727	64	64.20
2	13 holes	8.8	2.976	1.451	52	52.16
3	10 holes	6.4	2.538	1.240	40	40.13
4	7 holes	4.2	2.056	1.007	30	30.09
5	5 holes	2.6	1.618	0.795	18	18.06

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>49.470</u>

Intercept(b): <u>-20.609</u>

Correlation Coefficient(r): 0.9989

Checked by: Magnum Fan

Date: 09/11/2019

Location	:	DMS-9(No. 12 Pau Chung Street)
Calibrated by	:	K.T.Ho
Date	:	05/03/2020
<u>Sampler</u>		
Model	:	TE-5170
Serial Number	:	S/N 0814
Calibration Orifice and Standard G	Calibratio	n Relationship
Serial Number	:	2454
Service Date	:	18 Feb 2020
Slope (m)	:	2.07134
Intercept (b)	:	-0.040910
Correlation Coefficient(r)	:	0.99999
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1017
Ta(K)	:	293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.587	1.751	66	66.69
2	13 holes	8.8	2.998	1.467	56	56.59
3	10 holes	6.6	2.596	1.273	50	50.52
4	7 holes	4.2	2.071	1.020	40	40.42
5	5 holes	2.8	1.691	0.836	28	28.29

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>40.547</u>

Intercept(b): <u>-2.967</u>

Correlation Coefficient(r): 0.9991

Checked by: Magnum Fan

Date: 08/03/2020

Location	:	DMS-10(Chat Ma Mansion)
Calibrated by	:	K.T.Ho
Date	:	05/11/2019
Sampler		
Model	:	TE-5170
Serial Number	:	S/N 3573
Calibration Orifice and Standard	Calibration	<u>n Relationship</u>
Serial Number	:	2454
Service Date	:	25 February 2019
Slope (m)	:	2.07076
Intercept (b)	:	-0.02917
Correlation Coefficient(r)	:	1.00000
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1016
Ta(K)	:	297

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.6	3.417	1.664	60	60.19
2	13 holes	8.0	2.837	1.384	52	52.16
3	10 holes	5.6	2.374	1.160	46	46.15
4	7 holes	3.4	1.850	0.907	36	36.11
5	5 holes	2.0	1.419	0.699	28	28.09

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>33.263</u>

Intercept(b): 5.853

Correlation Coefficient(r): 0.9961

Checked by: Magnum Fan

Date: 09/11/2019

Location	:	DMS-10(Chat Ma Mansion)
Calibrated by	:	K.T.Ho
Date	:	05/03/2020
Sampler		
Model	:	TE-5170
Serial Number	:	S/N 3573
Calibration Orifice and Standard	Calibration	n Relationship
Serial Number	:	2454
Service Date	:	18 Feb 2020
Slope (m)	:	2.07134
Intercept (b)	:	-0.040910
Correlation Coefficient(r)	:	0.99999
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1017
Ta(K)	:	293

Resi	istance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.471	1.696	62	62.65
2	13 holes	8.2	2.894	1.417	54	54.57
3	10 holes	6.0	2.475	1.215	46	46.48
4	7 holes	3.6	1.917	0.945	38	38.40
5	5 holes	2.0	1.429	0.710	26	26.27

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>36.319</u>

Intercept(b): -2.221

Correlation Coefficient(r): 0.9946

Checked by: <u>Magnum Fan</u>

Date: 08/03/2020

IC							RE	CALIBRATIO
)		Febr	uary 25, 2
IVIIO		ent	0	a	0	00		
	Get	tifu	cate	of	Gal	ibri	rtion	
		-	Calibration	Certificatio	on Informat	ion		
Cal. Date: F	ebruary 25	, 2019	Roots	meter S/N:	438320	Ta:	294	°К
Operator: J	im Tisch					Pa:	762.0	mm Hg
Calibration N	lodel #:	TE-5025A	Cali	brator S/N:	2454			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
-	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	-
	2	3	4	1	1.4400	6.4	4.00	1
	3	5	6	1	0.9120	7.9	5.00	1
	4	7	8	1	0.8700	8.8	5.50	
Ļ	5	9	10	1	0.7180	12.8	8.00	
				Data Tabula	tion			
	Vstd	Qstd	√∆H(<u>Pa</u> Psto	Tstd)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-a:	xis)	Va	(x-axis)	(y-axis)	
	1.0120	0.7028	1.42	.57	0.9958	0.6915	0.8784	
	1.0077	1.1028	2.03	642	0.9896	1.0851	1.2425	
	1.0045	1.1546	2.36	542	0.9885	1.1362	1.4567	
	0.9992	1.3916	2.85	513	0.9832	1.3694	1.7569	
	OCTO	m=	2.07	076	0.4	m=	1.29667	
	QSID	D=	-0.02	000	QA	r=	-0.01/9/	
L			2100	Calculatio			2100000	1
	Vstd=	AVol((Pa-AP)	/Pstd)(Tstd/T	a)	Va=	AVol((Pa-A	P)/Pa)	
	Qstd=	Vstd/ATime			Qa=	Va/∆Time		
			For subseq	uent flow ra	te calculation	ns:		
	Qstd=	1/m ((_AH	Pa Tstd	-))-b)	Qa=	1/m ((√∆H	l(Ta/Pa))-b)	
	Standard	Conditions]				
Tstd:	298.15	°K				RECA	LIBRATION	
Pstd:	760	ley			US EPA reco	ommends a	nnual recalibrati	on per 1998
∆H: calibrato	r manomet	er reading (i	n H2O)		40 Code	of Federal I	Regulations Part	50 to 51,
ΔP: rootsmet	er manom	eter reading	(mm Hg)		Appendix I	B to Part 50	, Reference Met	hod for the
Ta: actual ab	rometric p	ressure (mm	Hg)		Determinat	e Atmosphe	ended Particulat	and the second s
Pe, duluation	the second se	the second se			in the	CALIFIC SUITE	Les diest/, Dage	30

nmental Certificate of Calibration

			calloration	Certificati	Cal Informat	lion		
Cal. Date:	February 1	8, 2020	Rootsi	meter S/N:	438320	Ta:	294	°K
Operator:	Jim Tisch					Pa:	753.1	mm Hg
Calibration I	Viodel #:	TE-5025A	Calik	librator S/N: 2454			-	
I		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4190	3.2	2.00	
	2	3	4	1	1.0100	6.4	4.00	
	3	5	6	1	0.9020	7.9	5.00	
	4	7	8	1	0.8600	8.8	5.50	
	5	9	10	1	0.7110	12.7	8.00	
[E	Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	1.0001	0.7048	1.4173		0.9958	0.7017	0.8836	
	0.9959	0.9860	2.0044		0.9915	0.9817	1.2496	
	0.9939	1.1019	2.241	10	0.9895	1.0970	1.3971	
	0.9927	1.1543	2.3504		0.9883	1.1492	1.4653	
1. ¹	0.9875	1.3889	2.834	17	0.9831	1.3828	1.7672	
		m=	2.071	.34		m=	1.29704	
1 (P - 12 P	QSTD	b=	-0.040)91	QA	b=	-0.02551	
		r=	0.999	99		r=	0.99999	
				Calculation	ns			
	Vstd=	$\Delta Vol((Pa-\Delta P))$	/Pstd)(Tstd/Ta	a)	Va=	ΔVol((Pa-ΔP)/Pa)		
	Qstd=	Vstd/∆Time	******					
			For subsequ	ent flow ra	te calculation	ns:		
	Qstd=	1/m ((√∆н(-	Pa <u>(Tstd</u> Pstd Ta))-b)	Qa= $1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$			
	Standard	Conditions]					
Tstd:	298.15	°K		[RECA	LIBRATION	
Pstd:	760 (mm Hg						
ALL	K	ey			US EPA reco	mmends ar	nnual recalibratio	n per 1998
AP: calibrato	r manomet	er reading (in	n H2O)		40 Code	ot Federal F	Regulations Part 5	50 to 51,
Tay actual at	er manome	eter reading (mm Hg)		Appendix E	8 to Part 50,	, Reference Meth	od for the
Pat actual bo	solute temp	ossuro ("K)			Determinat	ion of Susp	ended Particulate	e Matter in
a. actual Da	iometric pr	essure (min i	ng)		the	e Atmosphe	ere, 9.2.17, page 3	30
n: slope				1				

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C192695 證書編號

ITEM TESTED / 送檢]	項目	(Job No. / 序引編號: IC19-0995)	Date of Receipt / 收件日期: 17 May 2019
Description / 儀器名稱	:	Precision Acoustic Calibrator	
Manufacturer / 製造商	:	LARSON DAVIS	a.
Model No. / 型號	4	CAL200	
Serial No. / 編號	:	11333	
Supplied By / 委託者	:	Envirotech Services Co.	
		Room 113, 1/F, My Loft, 9 Hoi Wing Road	d, Tuen Mun,
		New Territories, Hong Kong	
TEST CONDITIONS /	測記	、條件	이 아이는 것은 것을 다 같은 것을 하는 것을 하는 것을 수 있다.

Temperature / 溫度 $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : $(50 \pm 25)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 26 May 2019 :

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試	:	H T Wong Technical Officer	-		
Certified By 核證		K CLee Engineer	Date of Issue 簽發日期	:	29 May 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C192695 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC183775CL281Multifunction Acoustic CalibratorCDK1806821TST150AMeasuring AmplifierC181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)		
94 dB, 1 kHz 93.8		± 0.2	± 0.2		
114 dB, 1 kHz	113.8				

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C191409 證書編號

TTEM TESTED / 送檢項目	(Job No. / 序引編號: IC19-0396) Date of Receipt / 收件日期: 26 February 2019
Description / 儀器名稱 :	Precision Integrating Sound Level Meter
Manufacturer / 製造商 :	Rion
Model No. / 型號 :	NL-18
Serial No. / 編號 :	00360030
Supplied By / 委託者 :	Envirotech Services Co.
	Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,
	New Territories, Hong Kong

TEST CONDITIONS / 測試條件

NAME AND A DESCRIPTION OF A DESCRIPTION

Temperature / 溫度 : $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓

Relative Humidity / 相對濕度 : $(50 \pm 25)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 . 17 March 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試	-	K C Lee Engineer	
Certified By 核證	:	them Um CA H C Chan Engineer	Date of Iss 簽發日期

21

ue

:

18 March 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C191409 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipmen	t ID
CL280	
CL281	

<u>Description</u> 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator <u>Certificate No.</u> C190176 CDK1806821

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting			Applie	d Value	UUT	IEC 60651 Type 1	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 110	LA	А	Fast	94.00	1	93.8	± 0.7

6.1.2 Linearity

	UU	JT Setting	Applied	Value	UUT	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
60 - 120	LA	A	Fast	94.00	1	93.9 (Ref.)
				104.00		103.9
				114.00		113.9

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

6.2 Time Weighting

6.2.1 Continuous Signal

	Г Setting		Applied Value		UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
50 - 110	LA	A	Fast	94.00	1	93.8	Ref. + 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C191409 證書編號

6.2.2 <u>Tone Burst Signal (2 kHz)</u>

	UUT Setting				Applied Value		IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Level Burst (dB) Duration		Spec. (dB)
50 -110	LA	A	Fast	106.00	Continuous	106.0	Ref.
	LAmx				200 ms	105.1	-1.0 ± 1.0
	LA		Slow		Continuous	106.0	Ref.
	LAmx				500 ms	102.5	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UU	T Setting		Appl	ied Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
50 - 110	LA	A	Fast	94.00	31.5 Hz	54.2	-39.4 ± 1.5
					63 Hz	67.5	-26.2 ± 1.5
					125 Hz	77.5	-16.1 ± 1.0
					250 Hz	85.1	-8.6 ± 1.0
					500 Hz	90.5	-3.2 ± 1.0
					1 kHz	93.8	Ref.
					2 kHz	95.1	$+1.2 \pm 1.0$
					4 kHz	94.9	$+1.0 \pm 1.0$
					8 kHz	92.8	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.6	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UU	T Setting		Appl	ied Value	UUT	IEC 60651 Type 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 110	LC	С	Fast	94.00	31.5 Hz	90.9	-3.0 ± 1.5
					63 Hz	93.0	-0.8 ± 1.5
					125 Hz	93.6	-0.2 ± 1.0
		V 16 H			250 Hz	93.8	0.0 ± 1.0
					500 Hz	93.9	0.0 ± 1.0
					1 kHz	93.8	Ref.
					2 kHz	93.7	-0.2 ± 1.0
					4 kHz	93.1	-0.8 ± 1.0
					8 kHz	90.8	-3.0 (+1.5 ; -3.0)
					12.5 kHz	87.6	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Time Averaging

Certificate No. : C191409 證書編號

UUT

IEC 60804

6.4

UUT Setting
Range Mode Frequency Integrating

Range (dB)	Mode	Frequency Weighting	Integrating Time	Freq. (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
50 - 110	LAeq	A	10 sec.	4	1	1/10	110	100	100.1	± 0.5
					_	1/10 ²		90	90.0	± 0.5
			60 sec.			1/10 ³		80	79.6	± 1.0
			5 min.			1/104		70	69.8	± 1.0

Applied Value

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 307435

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

Uncertainties of Applied Value :	94 dB	: 31.5 Hz - 125 Hz	: ± 0.35 dB
		250 Hz - 500 Hz	: ± 0.30 dB
		1 kHz	: ± 0.20 dB
		2 kHz - 4 kHz	: ± 0.35 dB
		8 kHz	$:\pm 0.45 \text{ dB}$
		12.5 kHz	: ± 0.70 dB
	104 dB	: 1 kHz	: ± 0.10 dB (Ref. 94 dB)
	114 dB	: 1 kHz	: ± 0.10 dB (Ref. 94 dB)
	Burst ec	uivalent level	$\pm 0.2 \text{ dB}$ (Ref. 110 dB
			continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Certificate of Calibration

for

Description:	Sound Level Meter
Manufacturer:	RION
Type No.:	NL-18 (Serial No.: 00360030)
Microphone:	UC-53A (Serial No.:307435)
Preamplifier:	NH-19 (Serial No.:23946)
	Submitted by

Customer: Envirotech Services Co. Address: Rm. 113, 1/F., My Loft, 9 Hoi Wing Road, Tuen Mun, N.T., Hong Kong

Upon receipt for calibration, the instrument was found to be:

✓ Within□ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 5 March 2020

Date of calibration: 9 March 2020

Calibrated by:__

Date of issue: 9 March 2020

Certified by: Mr. Ng Yan Wa Laboratory Manager

Page 1 of 4

Certificate No.: APJ19-173-CC001

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inguiry@aa-lab.com

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

24.7°C
1008 hPa
63.4 %

3. Calibration Equipment:

	Туре	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV180064	HOKLAS

6

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)			Appl	ied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Range, dB Freq. Weighting Time Weighting		Level, dB	Frequency, Hz	dB	Specification, dB	
40-100	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)			App	lied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
60-120	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
40.100	4D A	CDI	Fast	04	1000	94.0	Ref
40-100 dBA	SPL	Slow	94	1000	94.0	±0.3	

Certificate No.: APJ19-173-CC001

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com Page 2 of 4

(A+A) *L

Frequency Response

Linear Response

Sett	ing of Unit	-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. We	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.1	±2.0
	×.				63	94.1	±1.5
				4	125	94.0	±1.5
				E	250	93.9	±1.4
40-100	dB SI	SPL	Fast	94	500	93.9	±1.4
					1000	94.0	Ref
					2000	93.7	±1.6
					4000	93.4	±1.6
					8000	91.6	+2.1; -3.1

A-weighting

Sett	ing of Uni	it-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.5	-39.4 ±2.0
					63	67.6	-26.2±1.5
					125	77.6	-16.1±1.5
					250	85.0	-8.6±1.4
40-100	dBA	SPL	Fast	94	500	90.6	-3.2 ± 1.4
					1000	94.0	Ref
					2000	94.9	+1.2±1.6
					4000	94.4	$+1.0\pm1.6$
					8000	90.6	-1.1+2.1; -3.1

C-weighting

Sett	ing of Uni	it-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	91.2	-3.0±2.0
				1.2.2	63	93.3	-0.8±1.5
					125	93.8	-0.2±1.5
					250	93.9	-0.0±1.4
40-100	dBC	SPL	Fast	94	500	93.9	-0.0 ± 1.4
					1000	94.0	Ref
					2000	93.5	-0.2±1.6
					4000	92.6	-0.8±1.6
					8000	88.7	-3.0+2.1; -3.1

Certificate No.: APJ19-173-CC001

(A+A)Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	\pm 0.10
	63 Hz	± 0.15
	125 Hz	\pm 0.10
	250 Hz	± 0.10
	500 Hz	± 0.05
	1000 Hz	\pm 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.10
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: APJ19-173-CC001

Page 4 of 4

Annex G

Summary of Event/ Action Plans
EVENT	Action			
	Contractor's Environmental Team (Contractor's ET)	Independent Environmental Checker (IEC)	Engineer Representative (ER)	The Contractor
Exceeding Action Level	 Notify the IEC, Contractor and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Increase the monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing ; Notify the Contractor, IEC and ET; Review and agree on the remedial measures proposed by the Contractor; Supervise the implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; Implement noise mitigation proposals.
Exceeding Limit Level	 Notify the IEC, Contractor and EPD; Repeat measurement to confirm findings; Increase the monitoring frequency; Carry out analysis of the Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with the IEC, Contractor and ER to discuss the remedial measures to be taken; Inform the IEC, ER and EPD the causes and actions taken for the exceedances Assess the effectiveness of the Contractor's remedial measures and keep the IEC, ER and EPD 	 Check the monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER, and Contractor on the potential remedial measures; Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor 	 Confirm receipt of notification of exceedance in writing; Notify the Contractor, IEC and ET; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify reason(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem is still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Annex G1 Event and Action Plan for Regular Construction Noise Monitoring

Event	Ac	tion						
	Wo	orks Contract 1109 ET	IE	C	ER		Co	ntractor
Exceeding Action/Limit	1. 2.	Identify source Repeat measurement. If two	1.	Check monitoring data submitted by the Works Contract 1109 ET	1.	Confirm receipt of notification of exceedance in writing	1.	Identify source with Works Contract 1109 ET
Level	3.	consecutive measurements exceed Action/Limit Level, the exceedance is then confirmed If exceedance is confirmed, potify IEC.	2. 3.	Check the Contractor's working 2 method 3 Discuss with the ER, Works Contract 1109 ET and Contractor on	2. 3.	Notify the Contractor and IEC In consultation with the Works Contract 1109 ET and IEC, agree with the Contractor on the remedial	2.	If exceedance is confirmed, investigate the cause of exceedance and take immediate action to avoid further exceedance
	0.	ER and Contractor	the potential remedial measures		measures to be implemented	3.	Submit proposals for remedial	
	4.	Investigate the cause of exceedance and check Contractor's working	4.	Review and advise the Works Contract 1109 ET and ER on the	4.	Ensure the proper implementation of remedial measures		measures to the ER with copy to the IEC and ET of notification
		procedures to determine possible mitigation to be implemented	effectiveness of the remedial measures proposed by the	5.	If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	4. 5.	Implement the agreed proposals Liaise with ER to optimize the	
	5.	Discuss jointly with the IEC, ER and Contractor and formulate remedial	Contractor					effectiveness of the agreed mitigation
	6.	measures Assess effectiveness of Contractor's				6.	Revise and resubmit proposals if problem still not under control	
	remedial actions and keep IEC a informed of the results	remedial actions and keep IEC and ER informed of the results					7.	Stop the relevant portion of works as determined by the ER until the exceedance is abated

Annex G2 Event and Action Plan for Continuous Noise Monitoring

Event	Action	l						
	Contra	actor's Environmental Team	In	dependent Environmental Checker	En	gineer Representative (ER)	Tł	ne Contractor
	(Contr	actor's ET)	(IE	C)				
Action Level								
Exceedance for one sample	1. Info ER;	orm the IEC, Contractor and ;	1.	Check the monitoring data submitted by the ET;	1.	Confirm receipt of notifications of exceedance in writing;	1.	Identify reason(s), investigate the causes of exceedance and
	2. Dis	scuss with the Contractor,	2.	Check the Contractor's working				propose remedial measures;
	IEC	C and ER on the remedial		method;			2.	Implement remedial measures;
	me	asures required;	3.	Review and advise the ET and ER on			3.	Amend working methods and
	3. Rep find	peat measurement to confirm dings;		the effectiveness of the proposed remedial measures.				agree them with the ER as appropriate.
	4. Inc	rease the monitoring						
	free	quency						
Exceedance for two or more	1. Info	orm the IEC, Contractor and	1.	Check the monitoring data submitted	1.	Confirm receipt of notification of	1.	Identify reasons and investigate
consecutive samples	ER;	;		by the ET;		exceedance in writing;		the causes of exceedance;
	2. Dis	scuss with the ER, IEC and	2.	Check the Contractor's working	2.	Notify the Contractor, IEC and ET;	2.	Submit proposals of remedial
	Cor	ntractor on the remedial		method;	3.	Review and agree on the remedial		measures to the ER with a copy
	me	asures required;	3.	Review and advise the ET and ER on		measures proposed by the		to the ET and IEC within three
	3. Rep	peat measurements to		the effectiveness of the proposed		Contractor;		working days of notification;
	con	nfirm findings;		remedial measures.	4.	Supervise the Implementation of	3.	Implement the agreed proposals;
	4. Inc	rease the monitoring				remedial measures.	4.	Amend the proposal as
	free	quency to daily;						appropriate.
	5. If e	exceedance continues,						
	arra	ange meeting with the IEC,						
	ER	and Contractor;						
	6. If e	exceedance stops, the						
	mo	nitoring frequency will						
	res	ume normal.						

Annex G3 Event and Action Plan for Construction Dust Monitoring

Event	Action			
	Contractor's Environmental Team	Independent Environmental Checker	Engineer Representative (ER)	The Contractor
	(Contractor's ET)	(IEC)		
Limit Level				
Exceedance for one sample	 Inform the IEC, Contractor and ER; Repeat measurement to confirm findings; Increase the monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check the monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify the Contractor, IEC and ET; Review and agree on the remedial measures proposed by the Contractor; Supervise the implementation of remedial measures. 	 Identify reason(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals of remedial measures to ER with a copy to the ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify the IEC, Contractor and EPD; Repeat measurement to confirm findings; Increase the monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC, Contractor and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep the IEC, EPD and ER informed of the results; If exceedance stops, the monitoring frequency will return to normal. 	 Check the monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify the Contractor, IEC and ET; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify reason(s) and investigate the causes of exceedance; Take immediate actions to avoid further exceedance; Submit proposals of remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event	Action			
	Contractor's Environmental Team	Independent Environmental Checker	Engineer Representative (ER)	The Contractor
	(Contractor's ET)	(IEC)		
Non-conformity on one occasion	 Inform the Contractor, the IEC and the ER. Discuss remedial actions with the IEC, ER and Contractor. Monitor remedial actions until rectification has been completed. 	 Check the inspection report. Check the Contractor's working method. Discuss with the ET, ER and Contractor on possible remedial measures. Advise the ER on the effectiveness of proposed remedial measures. 	 Confirm receipt of notifications of nonconformity in writing. Review and agree on the remedial measures proposed by the Contractor. Supervise the implementation of remedial measures. 	 Identify reasons and investigate the non-conformity. Implement remedial measures Amend working methods and agree them with the ER as appropriate. Rectify the damage and undertake any necessary
		1 1		replacement.
Repeated Nonconformity	 Identify Reasons. Inform the Contractor, IEC and ER. Increase the inspection frequency. Discuss remedial actions with the IEC, ER and Contractor. Monitor remedial actions until rectification has been completed. If non-conformity stops, the inspection frequency return to normal (ie,. Once every two weeks) 	 Check the inspection report. Check the Contractor's working method. Discuss with the ET and Contractor on possible remedial measures. Advise the ER on the effectiveness of proposed remedial measures. 	 Notify the Contractor. In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented. Supervise the implementation of remedial measures. 	 Identify Reasons and investigate the non-conformity. Implement remedial measures. Amend working methods and agree them with the ER as appropriate. Rectify the damage and undertake any necessary replacement. Stop relevant works as determined by the ER until the non-conformity is abated.

Annex G4 Event and Action Plan for Landscape and Visual Impacts during the Construction Phase

Annex H

Summary of Implementation Status of Environmental Mitigation

Annex H Environmental Mitigation Implementation Status – SCL Works Contract 1109 (Stations and Tunnels of Kowloon City Section)

Note:

- * Reference has been made to the approved SCL (TAW-HUH) EM&A Manual.
- \checkmark Compliance of Mitigation Measures
- <> Compliance of Mitigation but need improvement
- x Non-compliance of Mitigation Measures
- ▲ Non-compliance of Mitigation Measures but rectified by Samsung-Hsin Chong JV
- Δ Deficiency of Mitigation Measures but rectified by Samsung-Hsin Chong JV
- N/A Not Applicable in Reporting Period

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
Cultural I	Heritage Imp	pact					
S4.9	CH3	Submit an Archaeological Action Plan Conduct survey-cum-excavation and additional boreholes/trenches investigation at the Sacred Hill (North) Study Area prior to construction.	Salvage cultural remains at the Sacred Hill (North) Study Area	Contractor	Sacred Hill (North) Area	Prior to the Construction Phase of TKW and associated tunnels	\checkmark
Ecology (Construction	n Phase)					
S5.7	E5	<u>Good Site Practices</u> Impact on any habitats or local fauna should be avoided by implementing good site practices, including the containment of silt runoff within the site boundary, containment of contaminated soils for removal from the site, appropriate storage of chemicals and chemical waste away from sites of ecological value and the provision of sanitary facilities for on-site workers. Adoption of such measures should permit waste to be suitably contained within the site for subsequent removal and appropriate disposal.	Minimise ecological impacts	Contractor	All construction sites	Construction Stage	V

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		The following good site practices should also be implemented:					
		 Erection of temporary geotextile silt or sediment fences/oil traps around earthmoving works to trap sediments and prevent them from entering watercourses; Avoidance of soil storage against trees or close to water bodies; Delineation of works site by erecting hoardings to prevent encroachment onto adjacent habitats and fence off areas which have some ecological value e.g. tunnel on hill at top of slope stabilisation works; No on-site burning of waste; Store waste and refuse in appropriate receptacles. 					
Landscap	e & Visual (Construction Phase)					
S6.9.3	LV1	 The following good site practices and measures for minimisation and avoidance of potential impacts are recommended: <u>Re-use of Existing Soil</u> For soil conservation, existing topsoil shall be re-used where possible for new planting areas within the project. The construction program shall consider using the soil removed from one phase for 	Minimize visual & landscape impact	Contractor	Within Project Site	Construction Stage	V
		backfilling another. Suitable storage ground, gathering ground and mixing					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement	Location of the implementation of	When to implement the measures?	Implementation Status
			Main Concerns to address	measures?	measures		
				measures.			

ground may be set up on-site as necessary.

No-intrusion Zone

• To maximize protection to existing trees, ground vegetation and associated under storey habitats, construction contracts may designate "No-intrusion Zone" to various areas within the site boundary with rigid and durable fencing. The contractor should closely monitor and restrict the site working staff from entering the "nointrusion zone", even for indirect construction activities and storage of equipment.

Protection of Retained Trees

- All retained trees including trees in contractor's works sites should be recorded and photographed at the commencement of the Contract, and carefully protected during the construction period. Detailed tree protection specification shall be allowed and included in the Contract Specification, which specifies the tree protection requirement, submission and approval system, and the tree monitoring system.
- The Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		trees in Contractor's works sites.					
S6.12	LV2	Decorative Hoarding	Minimize visual &	Contractor	Within Project Site	Construction Stage	\checkmark
		• Erection of decorative screen in visual and landscape sensitive areas during the construction stage to screen off undesirable views of the construction site . Hoarding should be designed to be compatible with the existing urban context.	landscape impact				
		 Management of facilities on work sites To provide proper management of the on-site facilities, control the height and disposition/ arrangement of all facilities on the works site to minimize visual impact to adjacent Visual Sensitive Receivers (VSRs). 					
		Tree Transplanting					
		Trees of high to medium survival rates					
		that would be affected by the works shall					
		be transplanted where possible and					
		practicable. Tree transplanting proposal					
		including the final locations for the					
		transplanted trees shall be submitted					
		separately to seek relevant government department's approval, in accordance with ETWB TCW No 3/2006.					
Construct	tion Dust						
S7.6.5	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	1

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
S7.6.5	D2	Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul roads in the Kowloon area should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.8 l/m ² to achieve the dust removal efficiency	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	√
S7.6.5	D3	 Proper watering of exposed spoil should be undertaken throughout the construction phase; Any excavated or stockpile of dusty material should be covered entirely by an impervious sheeting or sprayed with water to maintain an entirely wet surface and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile has been removed should be wetted with water and cleared from the surface of roads; A stockpile of dusty materials should not be extended beyond the pedestrian barriers, fencing or traffic cones. The load of dusty materials on a vehicle leaving a construction site should be covered entirely by an impervious 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; The portion of any road which leads only to construction site and is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or powerdriven drilling, cutting, polishing or other mechanical breaking operations take place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition 					
		activities should be sprayed with water or					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain an entirely wet surface Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building upward, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by an impervious sheeting; Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by an impervious sheeting or placed in an area sheltered on the top and 3 sides; Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; 					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 and Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					
S7.6.5	D6	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Selected representative dust monitoring station	Construction stage	\checkmark
EP Conditio n 2.18(a)	D7	Watering once every working hour for active works areas, exposed areas and paved haul roads shall be provided in Kowloon area to keep these active works areas, exposed areas and paved haul roads wet.	Minimize construction dust impact	Contractor	All construction sites	Construction stage	\checkmark
EP Conditio n 2.19	D8	All diesel fuelled construction plant, including marine vessels if possible, used by the contractors within the works areas of the Project shall be powered by ultra low sulphur diesel fuel.	Minimize aerial emissions of sulphur dioxide from construction plant	Contractor	All construction sites	Construction stage	\checkmark
Construct	ion Noise (A	Airborne)					
58.3.6	N1	 Implement the following good site practices: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work 	Control construction airborne noise	Contractor	All construction sites	Construction stage	\checkmark

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, should be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the period of construction works; mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to acrean poing from on site construction 		incasures:			
58.3.6	N2	activities. Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained	Reduce the construction noise levels at low-level zone of NSRs through partial screening.	Contractor	All construction sites	Construction stage	\checkmark
S8.3.6	N3	Install movable noise barriers (typical design is wooden framed barrier with a small- cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure, screen the noisy plants including air compressor, generators and saw.	Screen the noisy plant items to be used at all construction sites	Contractor	All construction sites where practicable	Construction stage	\checkmark
S8.3.6	N4	Use "Quiet plants"	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	\checkmark
S8.3.6	N5	Sequencing operation of construction plants	Operate sequentially within	Contractor	Contractor All	Construction stage	\checkmark

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		where practicable.	the same work site to reduce the construction airborne noise		construction sites where practicable		
S8.3.6	N6	Implement noise monitoring under EM&A programme.	Monitor the construction noise levels at the selected representative locations	Contractor	Selected representative noise monitoring station	Construction stage	\checkmark
Water Qu	ality						
S10.7.1	W1	 In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), construction phase mitigation measures shall include the following: <u>Construction Runoffs and Site Drainage</u> At the start of the site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system will be undertaken by the Contractor prior to the commencement of construction. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to 	To minimise water quality impact from construction site runoffs and general construction activities	Contractor	All construction sites where practicable	Construction stage	

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1 m³/s, a sedimentation basin of 30m³ would be required and for a flow rate of 0.5 m³/s the basin would be 150 m³. The detailed design of the sand/silt traps shall be undertaken by the Contractor prior to the commencement of construction. All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, and definitely, within 14 days of the cessation of earthworks where practicable. Exposed slope surfaces should be covered by tarpaulin or other means. The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by 					
		areas and access rouds protected by					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		coarse stone ballast. An additional					
		advantage from the use of crushed stone is					
		the positive traction gained during					
		prolonged periods of inclement weather					
		and the reduction of surface sheet flows.					
		• All drainage facilities and erosion and					
		sediment control structures should be					
		regularly inspected and maintained to					
		ensure proper and efficient operations at					
		all times and particularly following					
		rainstorms. Deposited silts and grits					
		should be removed regularly and					
		disposed of by spreading them evenly					
		over stable, vegetated areas.					
		• Measures should be taken to minimise the					
		ingress of site drainage into excavations.					
		If the excavation of trenches in wet periods					
		is necessary, trenches should be dug and					
		backfilled in short sections wherever					
		practicable. Water pumped out from					
		trenches or foundation excavations should					
		be discharged into storm drains via silt					
		removal facilities.					
		Open stockpiles of construction materials					
		(for example, aggregates, sand and fill					
		material) of more than 50m ³ should be					
		covered with tarpaulin or similar fabric					
		during rainstorms. Measures should be					
		taken to prevent the washing away of					
		construction materials, soil, silt or debris					
		into any drainage system.					
		 Manholes (including newly constructed 					

 ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul severs. Precautions should be taken at any time of year when rainstorms are likely. Actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProFECC PN 1/94. Particular attention should be paid to the control of silty surface runoffs during storm events, especially for areas located near steep slopes. All vehicles and plant should be cleaned before leaving a construction site to ensure that to earth, mud, debris and the like is deepoately designed and sited wheel washing facilities should be provided at every construction site out where practicable. Wash-water should have stand and sill settified out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access read leading to, and exiting from, the wheel-wash by to the public ad should be paid and be to reverse twich tacking to of and 	EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
buy to prevent venter indentify of soil and			 ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. Precautions should be taken at any time of year when rainstorms are likely. Actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoffs during storm events, especially for areas located near steep slopes. All vehicles and plant should be cleaned before leaving a construction site to ensure that no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and 					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 silty water to public roads and drains. Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited in sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching nearby water sensitive receivers. All the earth works should be conducted sequentially to limit the amount of construction runoffs generated from exposed areas during the wet season (April to September) as far as practicase. 					
S10.7.1	W2	 Tunnelling Works Uncontaminated discharge should pass through sedimentation tanks prior to off- site discharge. The wastewater with a high concentration 	To minimize construction water quality impact from tunnelling works	Contractor	All tunnelling portion	Construction stage	N/A

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 of suspended solids should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove oil, lubricants and grease from the wastewater. Direct discharge of the bentonite slurry (as a result of D-wall and bored tunnelling construction) is not allowed. The slurry should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related construction activities have been completed. The requirements in ProPECC PN 1/94 should be adhered to in the handling and disposal of bentonite 					
S10.7.1	W3	slurries. <u>Sewage Effluent</u> Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for their appropriate disposal and maintenance.	To minimize water quality from sewage effluent	Contractor	All construction sites where practicable	Construction stage	~
S10.7.1	W4	<u>Groundwater from Contaminated Area in</u> <u>case contamination is found:</u> • No direct discharge of groundwater from	To minimize groundwater quality impact from contaminated area	Contractor	Excavation areas where contamination is found.	Construction stage	N/A

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		contaminated areas is allowed. Prior to the					
		excavation works within potentially					
		contaminated areas, the groundwater					
		quality should be reviewed with reference					
		to the site investigation data in the EIA					
		report for compliance and the Technical					
		Memorandum on Standards for Effluents					
		Discharged into Drainage on Sewerage					
		Systems, Inland and Coastal Waters (TM-					
		Water). The existence of prohibited					
		substance should be confirmed. The					
		review results should be submitted to EPD					
		for examination if the review results					
		indicate that the groundwater to be					
		generated from the excavation works					
		would be contaminated. The contaminated					
		groundwater should be either properly					
		treated in compliance with the					
		requirements of the TM-Water or properly					
		recharged into the ground.					
		• If wastewater treatment is deployed, the					
		wastewater treatment unit shall deploy					
		suitable treatment process (e.g. oil					
		interceptor / activated carbon) to reduce					
		the pollution level to an acceptable					
		standard and remove any prohibited					
		substances (e.g. total petroleum					
		hydrocarbon (TPH)) to undetectable					
		range. All treated effluent from the					
		wastewater treatment plant shall meet the					
		requirements as stated in TM Water and					
		should be discharged into the foul sewers.					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		If groundwater recharging wells are					
		deployed, recharging wells should be					
		installed as appropriate for recharging the					
		contaminated groundwater back into the					
		ground. The recharging wells should be					
		selected at places where the groundwater					
		quality will not be affected by the recharge					
		operation as indicated in the Section 2.3 of					
		TM-Water. The baseline groundwater					
		guality shall be determined prior to the					
		selection of the recharge wells. It is					
		necessary to submit a working plan					
		(including the laboratory analytical results					
		showing the quality of groundwater at the					
		proposed recharge location(s) as well as					
		the pollutant levels of groundwater to be					
		recharged) to EPD for agreement.					
		Pollution levels of groundwater to be					
		recharged shall not be higher than the					
		pollutant levels of ambient groundwater at					
		the recharge well. Prior to recharge, any					
		prohibited substances such as TPH					
		products should be removed as necessary					
		by installing the petrol interceptor. The					
		Contractor should apply for a discharge					
		licence under the Water Pollution Control					
		Ordinance (WPCO) through the Regional					
		Office of EPD for groundwater recharge					
		operation or discharge of treated groundwater.					
S10.7.1	W7	In order to prevent accidental spillage of chemicals, the following is recommended:	To minimize water quality impact from accidental	Contractor	All construction sites where practicable	Construction stage	\checkmark

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		 All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains. The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical wastes should be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	spillage				
Waste Ma	nagement (Construction Waste)					
S11.4.1.1	WM1	 <u>On-site sorting of C&D (Construction and</u> <u>Demolition) material</u> Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock should be separated at the source sites as far as practicable and stored in the designated stockpile areas avoiding delivering them to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from 	Separation of unsuitable rock from ending up at Concrete batching plants and be turned into concrete for structural use	Contractor	All construction sites	Construction stage	~

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		being ended up at concrete batching plants and turned into concrete for structural use. Details regarding control measures at source sites and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated. The traceability of delivery will be ensured via the implementation of Trip Ticket System and enforcement by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc should also be explored.					
S11.5.1	WM2	 <u>Construction and Demolition (C&D)</u> <u>Material</u> Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Adopt 'Selective Demolition' technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible; 	Good site practice to minimize waste generation and recycle C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	√

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
S11.5.1	WM3	 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Implement an enhanced Waste management Plan similar to ETWBTC (Works) No. 19/2005 - "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and minimize waste generation during the course of construction. Disposal of the C&D materials to any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get his approval before implementation C&D Waste Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used. Metal hoarding should be used to enhance the possibility of recycling. The purchase of construction materials will be carefully planned in order to avoid over ordering and wastage. 	Good site practice to minimize waste generation and recycle C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	1
		the C&D materials as possible on-site.					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
		Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage.					
S11.5.1	WM4	 General Refuse General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme 	Minimize the production of general refuse and minimise odour, pest and litter impacts	Contractor	All construction sites	Construction stage	~

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the implementation of measures	When to implement the measures?	Implementation Status
S11.5.1	WM7	 should be considered by the Contractor. Chemical Waste Chemical waste as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, that is produced should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed. They should have a capacity of less than 450 litres unless the specification has been approved by the EPD. A label in English and Chinese should be displayed in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides. It should also have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest. It 	Control the chemical waste and ensure proper storage, handling and disposal.	measures? Contractor	All construction sites	Construction stage	
		should have adequate ventilation and be covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated					

EIA Ref.	EM&A Log Ref*	Recommended Mitigation Measures	Objectives of the Recommended Measures &	Who to implement	Location of the	When to implement the measures?	Implementation Status
	205 1101		Main Concerns to address	the	measures	the measures.	otutub
				measures?			
		• Disposal of chemical waste should be via a					
		licensed waste collector; to a facility					
		licensed to receive chemical waste, such as					
		the Chemical Waste Treatment Centre					
		(which also offers a chemical waste					
		collection service and can supply the					
		necessary storage containers); or to a					
		reuser of the waste, under the approval					
		from the EPD.					

Annex I

Regular Noise Monitoring Results

Annex I Regular Noise Monitoring Results

No. 16-23 Nam Kok Road Station NMS-CA-6

Date	Start Time	End Time	Weather	Measured Noise level (dB(A)), L _{Aeq} (30 min)	Baseline (dB(A)), L _{Aeq} (30 min)	Corrected LAeq(dBA) ^(a)	Major Construction Noise Source(s) Observed	Other Noise Source(s) Observed	Temp. (°C)	Wind Speed (m/s)	Noise Meter Model / ID	Calibrator Model / ID
2-Mar-20	11:17	11:47	Cloudy	62.0	76.1	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333
12-Mar-20	11:15	11:45	Cloudy	61.9	76.1	-(b)	-	Traffic noise	22	0.5	NL-18 00360030	CAL200 11333
18-Mar-20	11:18	11:48	Cloudy	62.3	76.1	-(b)	-	Traffic noise	22	0.5	NL-18 00360030	CAL200 11333
24-Mar-20	11:14	11:44	Cloudy	61.9	76.1	-(b)	-	Traffic noise	24	0.5	NL-18 00360030	CAL200 11333
30-Mar-20	11:16	11:46	Cloudy	61.9	76.1	-(b)	-	Traffic noise	21	0.5	NL-18 00360030	CAL200 11333

NMS-CA-7 Skytower Tower 2 Station

				Measured Noise level	Baseline (dB(A)), L _{Aeq} (30	Corrected	Major Construction Noise	Other Noise Source(s)			Noise Meter Model /	
Date	Start Time	End Time	Weather	(dB(A)), L _{Aeq} (30 min)	min)	LAeq(dBA) ^(a)	Source(s) Observed	Observed	Temp. (°C)	Wind Speed (m/s)	ID	Calibrator Model / ID
2-Mar-20	10:20	10:50	Cloudy	66.4	70.0	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333
12-Mar-20	10:19	10:49	Cloudy	66.6	70.0	-(b)	-	Traffic noise	21	0.5	NL-18 00360030	CAL200 11333
18-Mar-20	10:22	10:52	Cloudy	66.9	70.0	-(b)	-	Traffic noise	21	0.5	NL-18 00360030	CAL200 11333
24-Mar-20	10:20	10:50	Cloudy	65.6	70.0	-(b)	-	Traffic noise	23	0.5	NL-18 00360030	CAL200 11333
30-Mar-20	10:20	10:50	Cloudy	66.2	70.0	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333

Station	NMS-CA-8		SKH Good Sh	hepherd Primary School								
				Measured Noise level	Baseline (dB(A)), L _{Aeq} (30	Corrected	Major Construction Noise	Other Noise Source(s)			Noise Meter Model /	
Date	Start Time	End Time	Weather	(dB(A)), L _{Aeq} (30 min) ^(c)	min)	LAeq(dBA) ^(a)	Source(s) Observed	Observed	Temp. (°C)	Wind Speed (m/s)	ID	Calibrator Model / ID
2-Mar-20	8:01	8:31	Cloudy	73.2	75.4	-(b)	-	Traffic noise	19	0.5	NL-18 00360030	CAL200 11333
12-Mar-20	8:00	8:30	Cloudy	73.4	75.4	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333
18-Mar-20	8:00	8:30	Cloudy	72.9	75.4	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333
24-Mar-20	8:00	8:30	Cloudy	72.9	75.4	-(b)	-	Traffic noise	22	0.5	NL-18 00360030	CAL200 11333
30-Mar-20	8:00	8:30	Cloudy	72.4	75.4	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333

NMS-CA-9 Kong Yiu Mansion Station

				Measured Noise level	Baseline (dB(A)), L _{Aeq} (30	Corrected	Major Construction Noise	Other Noise Source(s)			Noise Meter Model /	
Date	Start Time	End Time	Weather	(dB(A)), L _{Aeq} (30 min)	min)	LAeq(dBA) ^(a)	Source(s) Observed	Observed	Temp. (°C)	Wind Speed (m/s)	ID	Calibrator Model / ID
2-Mar-20	9:25	9:55	Cloudy	69.6	69.2	59.0	-	Traffic noise	19	0.5	NL-18 00360030	CAL200 11333
12-Mar-20	9:25	9:55	Cloudy	69.2	69.2	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333
18-Mar-20	9:27	9:57	Cloudy	70.2	69.2	63.3	Backhoe	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333
24-Mar-20	9:25	9:55	Cloudy	69.7	69.2	60.1	-	Traffic noise	22	0.5	NL-18 00360030	CAL200 11333
30-Mar-20	9:27	9:57	Cloudy	70.1	69.2	62.8	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333

Station NMS-CA-10 Chat Ma Mansion

				Measured Noise level	Baseline (dB(A)), LAeq(30	Corrected	Major Construction Noise	Other Noise Source(s)			Noise Meter Model /	
Date	Start Time	End Time	Weather	(dB(A)), L _{Aeq} (30 min) ^(c)	min)	LAeq(dBA) ^(a)	Source(s) Observed	Observed	Temp. (°C)	Wind Speed (m/s)	ID	Calibrator Model / ID
2-Mar-20	8:43	9:13	Cloudy	75.7	76.6	-(b)	-	Traffic noise	19	0.5	NL-18 00360030	CAL200 11333
12-Mar-20	8:42	9:12	Cloudy	76.0	76.6	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333
18-Mar-20	8:45	9:15	Cloudy	75.9	76.6	-(b)	Backhoe	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333
24-Mar-20	8:43	9:13	Cloudy	76.1	76.6	-(b)		Traffic noise	22	0.5	NL-18 00360030	CAL200 11333
30-Mar-20	8:45	9:15	Cloudy	75.8	76.6	-(b)	-	Traffic noise	20	0.5	NL-18 00360030	CAL200 11333

Remarks:

(a) The Measured LAeq is corrected against the corresponding Baseline Level.

(a) The weaster of Level's considered against the consequencing baseline level.
 (b) No correction was made as the measured noise levels were equal to or below the baseline noise levels.
 (c) The noise monitoring results carried out at NMS-CA-8 and NMS-CA-10 on 2, 12, 18, 24 and 30 March 2020 are higher than the daytime construction noise criterion. However, those results are not considered as exceedances as they are below the limit level after deducting the baseline noise level.

Regular Noise Monitoring Results at NMS-CA-6 (No. 16-23 Nam Kok Road) (LAeq, 30min) for the Past 4 Months

Limit Level — Baseline Level — Corrected Leq(dBA)

Remarks:

Regular Noise Monitoring Results at NMS-CA- 8 (SKH Good Shepherd Primary School) (LAeq, 30min) for the Past 4 Months

Remarks:

- For those corrected noise levels that are not shown in this graph, the measured noise level s are equal to or below baseline level.

- The limit level was updated from 78dB(A) to 79 dB(A) on 22 Aug 2013 as per the latest CNMP and CNMMP.

- The limit level was updated from 79dB(A) to 70dB(A)/65dB(A) (during normal/examination period) from April 2016, as the continuous noise monitoring was completed in March 2016 according to the latest CNMP

Regular Noise Monitoring Results at NMS-CA-9 (Kong Yiu Mansion) (LAeq, 30min)) for the Past 4 Months

Regular Noise Monitoring Results at NMS-CA-10 (Chat Ma Mansion) (LAeq, 30min) for the Past 4 Months
Annex J

Construction Dust Monitoring Results and Wind Data Monitoring Results

Annex J Construction Dust Monitoring Results

Station DMS-6 Katherine Building

									Sampling					Action	Limit	Observations /		
Start		Finish		Weather	Filter Weight (g	a)	Elapsed Time	e Reading	Time	Flow Rate	(m³/min)		TSP Conc.	Level	Level	Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(µg/m³)	(µg/m³)	(µg/m ³)		ID	ID
2-Mar-20	11:05	3-Mar-20	11:05	Cloudy	2.6811	2.7533	21656.38	21680.38	24.00	1.41	1.41	1.41	36	156.8	260	-	0107	051176
6-Mar-20	8:50	7-Mar-20	8:50	Cloudy	2.6734	2.7773	21680.38	21704.38	24.00	1.41	1.41	1.41	51	156.8	260	-	0107	051183
12-Mar-20	11:02	13-Mar-20	11:02	Cloudy	2.6774	2.7639	21704.38	21728.38	24.00	1.41	1.41	1.41	43	156.8	260	-	0107	051190
18-Mar-20	11:05	19-Mar-20	11:05	Cloudy	2.6717	2.7644	21728.38	21752.38	24.00	1.41	1.41	1.41	46	156.8	260	-	0107	051197
24-Mar-20	11:02	25-Mar-20	11:02	Cloudy	2.8004	2.9333	21752.38	21776.38	24.00	1.41	1.41	1.41	65	156.8	260	-	0107	051505
30-Mar-20	11:04	31-Mar-20	11:04	Cloudy	2.8119	2.8959	21776.38	21800.38	24.00	1.41	1.41	1.41	41	156.8	260	-	0107	051511
												Minimum	36					
												Average	47					
												Maximum	65					

Station	DMS-7	Parc 22																
									Sampling					Action	Limit	Observations /		
Start		Finish		Weather	Filter Weight ((g)	Elapsed Tim	ne Reading	Time	Flow Rate	(m ³ /min)		TSP Conc.	Level	Level	Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(µg/m ³)	(µg/m ³)	(µg/m ³)		ID	ID
2-Mar-20	10:10	3-Mar-20	10:10	Cloudy	2.6744	2.7266	10904.11	10928.11	24.00	1.17	1.17	1.17	31	166.7	260	-	3574	051175
6-Mar-20	8:35	7-Mar-20	8:35	Cloudy	2.6690	2.7460	10928.11	10952.11	24.00	1.20	1.20	1.20	45	166.7	260	-	3574	051182
12-Mar-20	10:08	13-Mar-20	10:08	Cloudy	2.6892	2.7511	10952.11	10976.11	24.00	1.20	1.20	1.20	36	166.7	260	-	3574	051189
18-Mar-20	10:10	19-Mar-20	10:10	Cloudy	2.6703	2.7397	10976.11	11000.11	24.00	1.20	1.20	1.20	40	166.7	260	-	3574	051196
24-Mar-20	10:10	25-Mar-20	10:10	Cloudy	2.7705	2.8669	11000.11	11024.11	24.00	1.20	1.20	1.20	56	166.7	260	-	3574	051504
30-Mar-20	10:10	31-Mar-20	10:10	Cloudy	2.7936	2.8427	11024.11	11048.11	24.00	1.20	1.20	1.20	28	166.7	260	-	3574	051510
						•					-	Minimum	28					

 Minimum
 26

 Average
 39

 Maximum
 56

Station	DMS-8	SKH Good S	Shepherd P	rimary School														
									Sampling					Action	Limit	Observations /		
Start		Finish		Weather	Filter Weight ((g)	Elapsed Tim	e Reading	Time	Flow Rate	e (m³/min)		TSP Conc.	Level	Level	Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(µg/m ³)	(µg/m ³)	(µg/m ³)		ID	ID
2-Mar-20	8:06	3-Mar-20	8:06	Cloudy	2.6810	2.7340	11863.11	11887.11	24.00	1.14	1.14	1.14	32	152.2	260	-	3572	051174
6-Mar-20	8:20	7-Mar-20	8:20	Cloudy	2.6688	2.7439	11887.11	11911.11	24.00	1.17	1.17	1.17	45	152.2	260	-	3572	051181
12-Mar-20	8:05	13-Mar-20	8:05	Cloudy	2.6904	2.7611	11911.11	11935.11	24.00	1.17	1.17	1.17	42	152.2	260	-	3572	051188
18-Mar-20	8:05	19-Mar-20	8:05	Cloudy	2.6983	2.7695	11935.11	11959.11	24.00	1.17	1.17	1.17	42	152.2	260	-	3572	051195
24-Mar-20	8:05	25-Mar-20	8:05	Cloudy	2.7897	2.9047	11959.11	11983.11	24.00	1.17	1.17	1.17	68	152.2	260	-	3572	051503
30-Mar-20	8:05	31-Mar-20	8:05	Cloudy	2.8068	2.8635	11983.11	12007.11	24.00	1.17	1.17	1.17	34	152.2	260	-	3572	051509
												Minimum	32					
												Average	44					
												Maximum	68					

Station	DMS-9	No. 12 Pau C	hung Stree	ət														
									Sampling					Action	Limit	Observations /		
Start		Finish		Weather	Filter Weight (g)	Elapsed Tim	e Reading	Time	Flow Rate	(m ³ /min)		TSP Conc.	Level	Level	Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(µg/m ³)	(µg/m ³)	(µg/m ³)		ID	ID
2-Mar-20	8:16	3-Mar-20	8:16	Cloudy	2.6777	2.7513	21828.40	21852.40	24.00	1.10	1.10	1.10	46	160.9	260	-	0814	051173
6-Mar-20	8:14	7-Mar-20	8:14	Cloudy	2.6775	2.7670	21852.40	21876.40	24.00	1.11	1.11	1.11	56	160.9	260	-	0814	051180
12-Mar-20	8:15	13-Mar-20	8:15	Cloudy	2.6960	2.7909	21876.40	21900.40	24.00	1.11	1.11	1.11	59	160.9	260	-	0814	051187
18-Mar-20	8:15	19-Mar-20	8:15	Cloudy	2.6936	2.7886	21900.40	21924.40	24.00	1.11	1.11	1.11	59	160.9	260	-	0814	051194
24-Mar-20	8:15	25-Mar-20	8:15	Cloudy	2.7824	2.9316	21924.40	21948.40	24.00	1.11	1.11	1.11	93	160.9	260	-	0814	051502
30-Mar-20	8:15	31-Mar-20	8:15	Cloudy	2.8053	2.8799	21948.40	21972.40	24.00	1.11	1.11	1.11	47	160.9	260	-	0814	051508
												Minimum	46					
												Average	60]				
												Maximum	93					

Station	DMS-10	Chat Ma Ma	nsion															
									Sampling					Action	Limit	Observations /		
Start		Finish		Weather	Filter Weight	(g)	Elapsed Tim	e Reading	Time	Flow Rate	e (m³/min)		TSP Conc.	Level	Level	Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(µg/m ³)	(µg/m ³)	(µg/m ³)		ID	ID
2-Mar-20	8:45	3-Mar-20	8:45	Cloudy	2.6644	2.7352	21377.40	21401.40	24.00	1.06	1.06	1.06	46	170.4	260	-	3573	051172
6-Mar-20	8:02	7-Mar-20	8:02	Cloudy	2.6790	2.7588	21401.40	21425.40	24.00	1.22	1.22	1.22	45	170.4	260	-	3573	051179
12-Mar-20	8:44	13-Mar-20	8:44	Cloudy	2.6729	2.7463	21425.40	21449.40	24.00	1.22	1.22	1.22	42	170.4	260	-	3573	051186
18-Mar-20	8:47	19-Mar-20	8:47	Cloudy	2.6908	2.7810	21449.40	21473.40	24.00	1.22	1.22	1.22	51	170.4	260	-	3573	051193
24-Mar-20	8:45	25-Mar-20	8:45	Cloudy	2.7995	2.9535	21473.40	21497.40	24.00	1.22	1.22	1.22	88	170.4	260	-	3573	051501
30-Mar-20	8:47	31-Mar-20	8:47	Cloudy	2.8023	2.8672	21497.40	21521.40	24.00	1.22	1.22	1.22	37	170.4	260	-	3573	051507
												Minimum	37					

WIIIIIIIII	51
Average	52
Maximum	88

Construction Dust Monitoring Results for the Past 4 Months DMS-6 (Katherine Building)

Action Level

Limit Level

Construction Dust Monitoring Results for the Past 4 Months DMS- 7 (Parc 22)

24-hr TSP Level, μgm⁻³

Construction Dust Monitoring Results for the Past 4 Months DMS-8 (SKH Good Shepherd Primary School)

Construction Dust Monitoring Results for the Past 4 Months DMS-9 (No.12 Pau Chung Street)

Construction Dust Monitoring Results for the Past 4 Months DMS-10 (Chat Ma Mansion)

Average wind speed obtained from the meteorological station at Kai Tak from the Hong Kong Observatory (HKO)

2-3 March 2020

12-13 March 2020

Wind Speed:

18-19 March 2020

24-25 March 2020

Wind Speed:

Average wind direction obtained from the meteorological station at Kai Tak from the Hong Kong Observatory (HKO)

2-3 March 2020

Wind Direction:

6-7 March 2020

Wind Direction: (於香港時間 2020 年03月06日23時50分更新) (Updated at 23:50H on 6 Mar 2020) 北 西北 NH 西 н 西南 SH 南 s 東南 SE 東 F. 東非 NE 北 23 23:50 00 01 02 03 84 05 86 07 80 09 10 11 12 13 14 15 16 17 18 19 20 21 22 香港時間(時) Hong Kong Time (Hour) 05/03/2020 06/03/2020 ⓒ 春港天文 含 Hong Kong Observatory

12-13 March 2020

Wind Direction:

Wind Direction:

18-19 March 2020

Wind Direction:

24-25 March 2020

Wind Direction:

Wind Direction:

30-31 March 2020

Wind Direction:

Annex K

Waste Flow Table

Annex K – Waste Flow Table

Monthly Summary Waste Flow Table for the year 2012-2018

	Ac	tual Quantities of Ir	nert C&D Material	Generated Monthly	r					Actual Quantities of N	on-inert C&D Was	tes Generated Mont	hly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete (See Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill (See Note 5)	Inert C&D Materials Delivered to 1108A Kai Tai Barging Facilities (See Note 6)	Inert C&D Materials Delivered to 1123 Kai Tai Barging Facilities (See Note 12)	Inert C&D Materials Delivered to Receptor Site of Green Valley Landfill Ltd. (See Note 13)	Metals	Paper/ cardboard packaging	Plastics (See Note 2)	Chemical Waste (See Note 10)	Others, e.g. general refuse (See Note 5)	Imported Fill
	(in '000m')	(in '000m')	(in '000m')	(in '000m3)	(in '000m')	(in '000m')	(in '000m')	(in '000m')	(in '000kg)	(in '000kg)	(in '000kg)	(in'000kg)	(in '000m3)	(in '000m')
Sep 2012	0.004	0.000	0.000	0.000	0.004				0.000	0.000	5.300	0.000	0.144	0.000
Oct 2012	0.000	0.000	0.000	0.000	0.000				12.800	0.242	0.013	0.000	0.514	0.000
Nov 2012	0.624	0.000	0.605	0.000	0.019				0.000	0.154	0.002	0.000	0.172	6.804
Dec 2012	16.844	0.000	0.000	0.000	0.005	16.839			0.000	0.000	0.000	0.000	0.057	0.000
Sub-total	17.472	0.000	0.605	0.000	0.028	16.839	0.000	0.000	12.800	0.396	5.315	0.000	0.887	6.804
Jan 2013	19.828	0.000	0.000	0.000	0.006	19.822			0.000	0.036 (See Note 7)	0.416	0.000	0.081 (See Note 8)	0.000
Feb 2013	8.372	0.000	0.000	0.000	0.005	8.366			0.000	0.036	0.443	0.000	0.021	0.000
Mar 2013	14.673	0.000	0.000	0.000	0.000	14.673			0.000	0.036	0.463	0.000	0.064 (See Note 9)	0.000
Apr 2013	13.557	0.000	0.000	0.000	0.025	13.533			0.000	0.036	0.148	0.000	0.086	0.000
May 2013	9.969	0.000	0.000	0.000	0.000	9.969			0.000	0.000	0.481	0.000	0.065	0.000
Jun 2013	5.538	0.000	0.000	0.000	0.000	5.538			0.000	0.045	0.784	0.32 (See Note 11)	0.065	0.000
Jul 2013	6.116	0.000	0.000	0.000	0.000	6.116			0.000	0.063	0.868	0.400	0.058	0.000
Aug 2013	11.537	0.000	0.000	0.000	0.000	11.537			0.000	0.068	0.464	0.000	0.071	0.000
Sep 2013	4.641	0.000	0.000	0.000	0.000	4.641			0.000	0.027	0.522	0.000	0.110	0.000
Oct 2013	9.708	0.000	0.000	0.000	0.000	9.708			0.000	0.036	0.348	0.000	0.086	0.000
Nov 2013	7.199	0.000	0.000	0.000	0.000	7.199			0.000	0.068	0.506	0.000	0.678	0.000
Dec 2013	6.973	0.000	0.000	0.000	0.000	6.973			0.000	0.090	0.383	0.000	1.344	0.000
Sub-total	118.111	0.000	0.000	0.000	0.036	118.075	0.000	0.000	0.000	0.541	5.826	0.720	2.729	0.000
Jan 2014	11.870	0.000	0.000	0.000	0.000	11.870			0.000	0.121	0.270	0.400	0.100	0.000
Feb 2014	15.316	0.000	0.000	0.000	0.000	15.316			0.000	0.067	0.396	0.000	0.095	0.000
Mar 2014	18.734	0.000	0.000	0.000	0.000	18.734			0.000	0.067	0.320	0.200	0.107	0.000
Apr 2014	23.539	0.000	0.000	0.000	0.000	23.539			0.000	0.000	0.344	0.415	0.064	0.000
May 2014	11.327	0.000	0.000	0.000	0.000	11.327			0.000	0.000	0.371	0.000	0.130	0.000
Jun 2014	10.440	0.000	0.000	0.000	0.000	10.440			0.000	0.090	0.332	0.000	0.164	0.000
Jul 2014	2.103	0.000	0.000	0.000	0.000	2.103			0.000	0.099	0.544	0.200	0.131	0.000
Aug 2014	1.446	0.000	0.000	0.000	0.000	1.446			0.000	0.189	0.584	0.000	0.129	0.000
Sep 2014	1.980	0.000	0.000	0.000	0.000	1.980			0.000	0.225	0.284	0.000	0.099	0.000
Oct 2014	16.902	0.000	0.000	0.000	0.000	16.902	-	-	0.000	0.050	0.492	1.120	0.109	0.000
Nov 2014	27.687	0.000	0.000	0.000	0.000	27.687	-	-	0.000	0.140	0.352	0.000	0.083	0.000
Dec 2014	44.771	0.000	0.000	0.000	0.000	44.771	-	-	0.000	0.090	0.284	0.400	0.103	0.000
Sub-total	186.115	0.000	0.000	0.000	0.000	186.115	0.000	0.000	0.000	1.048	4.573	2.335	1.314	0.000

	Ac	ctual Quantities of Ir	ert C&D Materials	Generated Monthly	r					Actual Quantities of No	on-inert C&D Was	tes Generated Montl	ıly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete (See Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill (See Note 5)	Inert C&D Materials Delivered to 1108A Kai Tai Barging Facilities (See Note 6)	Inert C&D Materials Delivered to 1123 Kai Tai Barging Facilities (See Note 12)	Inert C&D Materials Delivered to Receptor Site of Green Valley Landfill Ltd. (See Note 13)	Metals	Paper/ cardboard packaging	Plastics (See Note 2)	Chemical Waste (See Note 10)	Others, e.g. general refuse (See Note 5)	Imported Fill
	(in '000m')	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m')	(in '000m')	(in '000m')	(in '000m')	(in '000kg)	(in '000kg)	(in '000kg)	(in'000kg)	(in '000m ³)	(in '000m')
Jan 2015	64.165	0.000	0.000	0.266	0.000	63.899	-		0.000	0.077	0.328	0.180	0.150	0.000
Feb 2015	46.884	0.000	0.000	2.599	0.000	44.285	-		0.000	0.090	3.102	0.000	0.106	0.000
Mar 2015	41.498	0.000	0.000	0.000	0.000	41.498			0.000	0.072	2.321	0.600	0.126	0.000
Apr 2015	13.049	0.000	0.000	0.000	0.000	13.049			0.000	0.081	1.598	0.000	0.119	0.000
May 2015	54.559	0.000	0.000	0.000	0.000	54.559		-	0.000	0.063	0.548	0.000	0.099	0.000
Jun 2015	48.857	0.000	0.000	0.000	0.000	48.857			0.000	0.041	0.880	0.000	0.144	0.000
Jul 2015	34.471	0.000	0.000	0.000	0.000	34.471			0.000	0.090	4.972	0.720	0.218	0.000
Aug 2015	28.330	0.000	0.000	0.000	0.000	28.330			0.000	0.077	1.027	1.240	0.244	0.000
Sep 2015	25.376	0.000	0.000	0.000	0.000	25.376			0.000	0.068	0.845	2.080	0.224	0.000
Oct 2015	45.061	0.000	0.000	0.000	0.000	45.061			0.000	0.072	0.743	0.000	0.336	0.000
Nov 2015	45.607	0.000	0.000	0.000	0.000	45.607			0.000	0.085	4.719	1.760	0.344	0.000
Dec 2015	43.527	0.000	0.000	0.000	0.000	43.527			0.000	0.090	0.669	0.048	0.286	0.000
Sub-total	491.384	0.000	0.000	2.865	0.000	488.519	0.000	0.000	0.000	0.906	21.752	6.628	2.396	0.000
Jan 2016	28.064	0.000	0.000	0.000	0.000	28.064			0.000	0.855	0.494	0.000	0.276	0.000
Feb 2016	4.768	0.000	0.000	0.000	0.000	4.768			0.000	0.230	0.327	0.000	0.280	0.000
Mar 2016	13.662	0.000	0.000	0.000	0.000	13.662			0.000	0.000	0.316	0.000	0.232	0.000
Apr 2016	21.282	0.000	0.000	0.000	0.000	21.282			0.000	0.167	0.674	4.000	0.378	0.000
May 2016	28.466	0.000	0.000	0.000	0.000	28.466			0.000	0.072	0.580	0.000	0.315	0.000
Jun 2016	29.018	0.000	0.000	0.000	0.000	29.018			0.000	0.045	1.480	3.360	0.292	0.000
Jul 2016	3.727	0.000	0.000	0.000	0.000	3.727			0.000	0.045	0.860	0.000	0.347	0.000
Aug 2016	0.197	0.000	0.000	0.000	0.000	0.197			0.000	0.140	1.648	0.000	0.382	0.000
Sep 2016	0.000	0.000	0.000	0.000	0.000	0.000		-	0.000	0.122	0.680	0.000	0.443	0.000
Oct 2016	0.000	0.000	0.000	0.000	0.000	0.000	-	-	0.000	0.144	0.575	0.000	0.435	0.000
Nov 2016	0.000	0.000	0.000	0.000	0.000	0.000	-	-	0.000	0.133	0.900	9.600	0.589	0.000
Dec 2016	0.000	0.000	0.000	0.000	0.000	0.000	-		0.000	0.063	0.562	0.000	0.696	0.000
Sub-total	129.184	0.000	0.000	0.000	0.000	129.184	0.000	0.000	0.000	2.016	9.096	16.960	4.665	0.000

	Ac	tual Quantities of Ir	ert C&D Materials	Generated Monthly	r					Actual Quantities of Ne	on-inert C&D Wast	es Generated Montl	ıly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Inert C&D Materials Delivered to 1108A Kai Tai Barging Facilities (See Note 6)	Inert C&D Materials Delivered to 1123 Kai Tai Barging Facilities (See Note 12)	Inert C&D Materials Delivered to Receptor Site of Green Valley Landfill Ltd. (See Note 13)	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse	Imported Fill
		(See Note 3)			(See Note 5)						(See Note 2)	(See Note 10)	(See Note 5)	
	(in '000m')	(in '000m')	(in '000m')	(in '000m')	(in '000m')	(in '000m')	(in '000m')	(in '000m')	(in '000kg)	(in '000kg)	(in '000kg)	(in'000kg)	(in '000m')	(in '000m')
Jan 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.126	0.276	0.000	0.769	0.000
Feb 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.059	0.417	0.000	0.745	0.000
Mar 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.077	0.448	0.000	0.618	0.000
Apr 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.108	0.504	0.000	0.618	0.000
May 2017	10.676	0.000	0.000	0.000	0.000	0.000	10.676	•	0.000	0.158	0.296	0.000	0.619	0.000
Jun 2017	13.390	0.000	0.000	0.000	0.000	0.000	13.390		0.000	0.090	0.308	0.000	1.072	0.000
Jul 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.135	0.740	0.000	1.147	0.000
Aug 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.045	0.780	0.000	0.959	0.000
Sep 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	•	0.000	0.234	0.460	0.000	0.621	0.000
Oct 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.095	0.427	0.000	0.599	0.000
Nov 2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.121	0.607	0.000	0.866	0.000
Dec 2017	3.964	0.000	0.000	0.000	3.964	0.000	0.000	•	0.000	0.099	0.450	0.000	0.692	0.000
Sub-total	28.030	0.000	0.000	0.000	3.964	0.000	24.066	0.000	0.000	1.347	5.713	0.000	9.325	0.000
Jan 2018	2.938	0.000	0.000	0.000	2.938	0.000	0.000		0.000	0.095	0.617	4.480	0.846	0.000
Feb 2018	5.529	0.000	0.000	0.000	5.529	0.000	0.000	•	0.000	0.117	0.227	0.000	0.374	0.000
Mar 2018	3.746	0.000	0.000	0.000	3.746	0.000	0.000	•	0.000	0.000	0.450	0.000	0.468	0.000
Apr 2018	11.039	0.000	0.000	0.628	8.235	0.000	0.000	2.176	0.000	0.104	1.430	0.000	0.473	0.000
May 2018	6.787	0.000	0.000	0.150	6.145	0.000	0.000	0.492	0.000	0.068	0.735	0.000	0.595	0.000
Jun 2018	6.956	0.000	0.000	1.777	5.179	0.000	0.000	0.000	0.000	0.314	1.696	0.000	0.461	0.000
Jul 2018	4.751	0.000	0.000	0.494	4.257	0.000	0.000	0.000	0.000	0.131	0.568	0.000	0.490	0.000
Aug 2018	2.416	0.000	0.000	0.401	2.015	0.000	0.000	0.000	0.000	0.198	0.827	0.000	0.560	0.000
Sep 2018	1.533	0.000	0.000	0.409	1.124	0.000	0.000	0.000	0.000	0.054	0.316	0.000	0.403	0.000
Oct 2018	1.537	0.000	0.000	0.298	1.239	0.000	0.000	0.000	0.000	0.050	0.216	0.000	0.450	0.000
Nov 2018	1.569	0.000	0.000	0.743	0.826	0.000	0.000	0.000	0.000	0.108	0.589	0.000	0.395	0.000
Dec 2018	0.713	0.000	0.000	0.326	0.387	0.000	0.000	0.000	0.000	0.099	0.146	0.000	0.389	0.000
Sub-total	49.514	0.000	0.000	5.226	41.620	0.000	0.000	2.668	0.000	1.338	7.817	4.480	5.904	0.000
Jan 2019	1.075	0.000	0.000	0.738	0.337	0.000	0.000	0.000	0.000	0.027	0.131	0.000	0.196	0.000
Feb 2019	0.392	0.000	0.000	0.047	0.345	0.000	0.000	0.000	0.000	0.077	0.084	0.000	0.264	0.000
Mar 2019	0.620	0.000	0.000	0.075	0.545	0.000	0.000	0.000	0.000	0.000	0.136	0.000	0.200	0.000
Apr 2019	1.744	0.000	0.000	0.186	1.558	0.000	0.000	0.000	0.000	0.000	0.092	0.000	0.202	0.000
May 2019	0.823	0.000	0.000	0.000	0.823	0.000	0.000	0.000	0.000	0.000	0.401	0.000	0.244	0.000
Jun 2019	0.919	0.000	0.000	0.022	0.897	0.000	0.000	0.000	12.410	0.000	0.168	0.000	0.262	0.000
Jul 2019	5.703	0.000	0.000	3.761	1.942	0.000	0.000	0.000	0.065	0.000	0.386	0.000	0.422	0.000
Aug 2019	3.210	0.000	0.000	0.595	2.615	0.000	0.000	0.000	117.170	0.000	0.264	3.840	0.331	0.000
Sep 2019	2.221	0.000	0.000	0.074	2.147	0.000	0.000	0.000	16.620	0.000	0.248	0.000	0.356	0.000
Oct 2019	2.600	0.000	0.000	0.067	2.533	0.000	0.000	0.000	0.000	0.000	0.168	0.000	0.201	0.000
Nov 2019	1.371	0.000	0.000	0.224	1.147	0.000	0.000	0.000	9.680	0.338	0.123	0.000	0.123	0.000
Dec 2019	0.713	0.000	0.000	0.077	0.636	0.000	0.000	0.000	0.000	0.000	0.400	0.000	0.017	0.000
Sub-total	21.391	0.000	0.000	5.866	15.525	0.000	0.000	0.000	155.945	0.442	2.601	3.840	2.818	0.000
Jan 2020	0.323	0.000	0.000	0.000	0.323	0.000	0.000	0.000	7.740	0.124	0.131	0.000	0.010	0.000
Feb 2020	0.280	0.000	0.000	0.000	0.280	0.000	0.000	0.000	3.910	0.000	4.300	0.000	0.001	0.000
Mar 2020	0.563	0.000	0.000	0.000	0.563	0.000	0.000	0.000	0.166	0.000	0.000	0.000	0.200	0.000
Sub-total	1.100	0.000	0.000	12.057	1.100	0.000	0.000	0.000	11.810	0.124	4.451	0.000	0.211	0.000
Total	1042.368	0.000	0.605	13.957	62.339	938.732	24.066	2.668	180.561	8.158	67.124	34.963	30.249	6.804

Notes:

-1 The performance targets are given below:

- All excavated materials to be sorted for recovering the inert portion of C&D materials, e.g. hard rocks, soil and broken concrete, for reuse on the Site or disposal to designated outlets;

- All metallic waste to be recovered for collection by recycling contractors;
- All cardboard and paper packaging (for plant, equipment and materials to be recovered, properly stockpiled in dry and covered condition to prevent cross contamination;
 All chemical wastes to be collected and properly disposed of by specialist contractors; and
- An inclumina water to be concerned and preferse improves on projectumic contrastors, and All demindion which is no based to express based contrastors, and Plants include the plants based on the plants include the plants and the plant plant plant plant plant plants and plants and Plants include the plants based on the plants described and plant plants.
- -2 -3
- The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site. -4
- -5 Density Assumption: 1.6(kg/l) for Public Fill and 0.9(kg/l) for General Refuse
- Inert C&D Material was delivered to contract 1108A from 10-Dec-2012.
- -6 -7 The quantity of paper/ cardboard packaging generated in January 2013 was updated by the Contractor in March 2013.
- -8 The quantity of general refuse generated in January 2013 was updated by the Contractor in March 2013.
- The quantity of general refuse generated in Manuary 2010 was updated by the Contractor in April 2013. Chemical waste includes waste oil. It is assumed density of waste oil to be 0.8 kg/L. -9
- -10
- -11 The quantity of chemical waste generated in June 2013 was updated by the Contractor in August 2013.
- -12 Inert C&D Material was delivered to contract SCL1123 from 20-May-2017.
- -13 Inert C&D Material was delivered to Receptor Site of Green Valley Landfill Ltd. from April 2018.

Annex L

(Not Used)

Annex M

Environmental Complaint, Environmental Summon and Prosecution Log

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
September 2012	0	0
October 2012	0	0
November 2012	0	0
December 2012	0	0
January 2013	0	0
February 2013	0	0
March 2013	0	0
April 2013	0	0
May 2013	0	0
June 2013	0	0
July 2013	0	0
August 2013	0	0
September 2013	0	0
October 2013	0	0
November 2013	0	0
December 2013	0	0
January 2014	0	0
February 2014	0	0
March 2014	0	0
April 2014	0	0
May 2014	0	0
June 2014	0	0

Annex M Environmental Complaint, Environmental Summon and Prosecution Log

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
July 2014	0	0
August 2014	0	0
September 2014	1	0
October 2014	0	0
November 2014	0	0
December 2014	0	0
January 2015	3	0
February 2015	0	0
March 2015	0	0
April 2015	3	0
May 2015	2	0
June 2015	7	0
July 2015	0	0
August 2015	1	0
September 2015	2	0
October 2015	2	0
November 2015	0	0
December 2015	0	0
January 2016	2	0
February 2016	0	0
March 2016	1	0
April 2016	2	0
May 2016	1	0
June 2016	2	0

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
July 2016	0	0
August 2016	0	0
September 2016	0	0
October 2016	1	0
November 2016	0	0
December 2016	2	0
January 2017	0	0
February 2017	0	0
March 2017	1	0
April 2017	0	0
May 2017	0	0
June 2017	0	0
July 2017	1	0
August 2017	1	0
September 2017	2	0
October 2017	3	0
November 2017	1	0
December 2017	0	0
January 2018	0	0
February 2018	0	0
March 2018	0	0
April 2018	2	0
May 2018	0	0
June 2018	0	0

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
July 2018	0	0
August 2018	0	0
September 2018	1	0
October 2018	0	0
November 2018	0	0
December 2018	0	0
January 2019	0	0
February 2019	0	0
March 2019	0	0
April 2019	1	0
May 2019	0	0
June 2019	0	0
July 2019	3	0
August 2019	0	0
September 2019	0	0
October 2019	0	0
November 2019	0	0
December 2019	0	0
January 2020	0	0
February 2020	1	0
March 2020	0	0
Overall Total	49	0