Shatin to Central Link – Tai Wai to Hung Hom Section

Final Operational Ground-borne Noise Mitigation Measures Plan

	(June 2017)	1
Verified by:	Fredrick Leong	when
		1

Position: Independent Environmental Checker

Date: _____7 June 2017_____

Shatin to Central Link – Tai Wai to Hung Hom Section

Final Operational Ground-borne Noise Mitigation Measures Plan

(June 2017)

Certified by:	Felice Wong	
	V	

Position: _____Environmental Team Leader____

Date: _____ 7 June 2017

AECOM

MTR Corporation Limited

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Final Operational Ground-borne Noise Mitigation Measures Plan

June 2017

	Name	Signature
Prepared & Checked:	Angela Tong	Angel
Reviewed & Approved:	Josh Lam	Ande
	(I	
Version:	A Dat	e: 6 Jun 2017
This Report is prepared for MTR Corp	oration Limited and is given for its so	ble benefit in relation to and pursuant to

Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

Page

1	INTR	ODUCTION	2
	1.1 1.2 1.3	Background Purpose of This OGNMMP Report Structure	2 3 3
2	IMPA	ACT TESTING AND LSR RESULTS	4
	2.1 2.2	Testing Locations Prediction of Line Source Response	4 4
3	REVI	EW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION	5
	3.1 3.2 3.3	Summary of Review of LSR Values Operational Ground-borne Noise Prediction Review of Other Assumptions	5 5 5
4	CON	CLUSION	11

List of Tables

Table 2.1	Measurement and Testing Locations
Table 3.1	Comparison between Measurement Data and WIL Data
Table 3.2	Ground-borne Noise Prediction Results

List of Figures

C11033/C/SCL/ACM/M53/004	Locations of Measurement Points at NSR KAT-P1-5
C11033/C/SCL/ACM/M53/005	Locations of Measurement Points at NSR KAT-P1-7
C11033/C/SCL/ACM/M53/006	Locations of Measurement Points at NSR DIH-P1-1
C11033/C/SCL/ACM/M53/007	Locations of Measurement Points at NSR HOM-2-2
C11033/C/SCL/ACM/M53/013 - 018	Locations of Representative Operational Ground-Borne Noise
	Sensitive Receivers

Appendices

Annex A	Operational Ground-Borne Noise Mitigation Measures Plan - Testing and Review
	Methodology Plan (Revision D)
Annex B1	Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 1 – Kai
	Ching Estate, Mun Ching House) (June 2016)
Annex B2	Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 2 - Kai
	Tak Planned Development) (June 2016)
Annex B3	Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 3 -
	Upper Wong Tai Sin Estate) (September 2016)
Annex B4	Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 4 – Lee
	Wing Building) (March 2017)
Annex C	Summary of Updated Operational Ground-borne Noise Assessment Results
Annex D	Detailed Operational Ground-borne Noise Calculations
Annov E	Cumulative Operational Cround horne Noise Results

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/K) was issued by Director of Environmental Protection (DEP) on 4 October 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd was commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (**Annex A**). The LSR test results conducted at the four measurement locations as recommended in T&RMP were presented in the following OGNMMPs:
 - OGNMMP (Batch 1 Kai Ching Estate, Mung Ching House) (Jun 2016);
 - OGNMMP (Batch 2 Kai Tak Planned Development) (Jun 2016);
 - OGNMMP (Batch 3 Upper Wong Tai Sin Estate) (Sept 2016); and
 - OGNMMP (Batch 4 Lee Wing Building) (Mar 2017).
- 1.1.7 These OGNMMPs were submitted to EPD and the measurement results were accepted by EPD. Excerpt of these OGNMMP are presented in Annexes B1 to B4.

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment ", 2006

1.2 Purpose of This OGNMMP

1.2.1 This Final OGNMMP presents a summary of LSR analysis based on the results of the impact test at the four designated measurement locations and the updated operational ground-borne noise prediction results based on measurement results and the latest available information.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 presents the summary of impact test and the measured LSR results.
 - Section 3 presents the operational ground-borne noise prediction results.
 - Section 4 presents the conclusion.

2 IMPACT TESTING AND LSR RESULTS

2.1 Testing Locations

2.1.1 A summary of the information of testing locations are presented in **Table 2.1** with their locations shown in **Figure C11033/C/SCL/ACM/M53/004** to **007**. Details of testing and measurement procedures at the testing locations are provided in **Annexes B1** to **B4**.

		Predicted	Measurem	ent Location ⁽¹⁾		Location of	
NSR		Ground- borne Approx. Noise Hori.		Approx. Slant Distance (From	Ground Type	Hammer Impact Test	Testing Date
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)	
KAT-P1-5 ⁽¹⁾	Kai Ching Estate – Mun Ching House	40	13 (down track)	19 (down track)	Soil	Down Track Tunnel (-8.1mPD)	1 & 2 Feb 2016
KAT-P1-7 ⁽²⁾	Residential premises near Kai Tak Station	45	0 (up track) 0 (down track)	18	Mixed rock	Down Track Tunnel (-13mPD)	15 April 2016
DIH-P1-1 ⁽³⁾	Upper Wong Tai Sin Estate – Wing Sin House	32	7 (down track)	31 (down track)	Mixed rock	Down Track Tunnel (-2.2mPD)	11 & 12 Aug 2016
HOM-2-2	Lee Wing Building	41	8 (up track)	24 (up track)	Rock	Up Track Tunnel (-11mPD)	10 Feb 2017

 Table 2.1
 Measurement and Testing Locations

Notes:

(1) KAT-P1-5 is a planned NSR during EIA stage. Assumptions were made on the horizontal building setback distance from tunnels (i.e. 10m from up track and 20m from down track) and noise levels were predicted based on this assumption.

(2) KAT-P1-7 is a planned NSR during EIA stage. Assumptions were made on the vertical distance from tunnels (i.e. 15m from up track and 17m from down track) and noise levels were predicted based on this assumption.

(3) DIH-P1-1 is a planned NSR during EIA stage. Assumptions were made on the horizontal distance from tunnels (i.e. 0m from up track and 5m from down track) and noise levels were predicted based on this assumption.

2.2 Prediction of Line Source Response

2.2.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at the testing locations. The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact source and the receivers. The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽²⁾. The determined LSRs at the testing locations are presented in **Annexes B1 to B4**.

⁽²⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 Summary of Review of LSR Values

- 3.1.1 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.
- 3.1.2 The LSR values determined at testing locations (**Table 2.1** refers) were compared with those used in the SCL EIA study for the same area and the same ground conditions with summary of findings presented in **Table 3.1**. Details of comparison are provided in **Annexes B1** to **B4**.

ID	Location	LSR data adopted in EIA Study	Observation
KAT-P1-5	Kai Ching Estate – Mun Ching House	WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=18m & 26m	Measured LSR values at 18m are about at least 10dB lower than the EIA LSR values in all frequency bands. Measured LSR values at 26m are also lower than the EIA LSR values in all frequency bands.
KAT-P1-7	Planned Residential Premises near KAT	WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=15m & 17m	Measured LSR values at both 15m and 17m are at least 8dB lower than the EIA LSR values in all frequency bands.
DIH-P1-1	Upper Wong Tai Sin Estate – Wing Sin House	WIL D002 Rockhead Depth=24m Hole Depth=34m & 20m Slant Distance=37m & 28m	Measured LSR values at both 37m & 28m are in general lower than the EIA LSR values at most frequency bands and are of similar magnitude at 63Hz and 160Hz.
HOM-2-2	Lee Wing Building	Up track: WIL D012 Rockhead Depth=34m Hole Depth=18m Slant Distance=19m Down track: WIL D002 Rockhead Depth=24m Hole Depth=20m Slant Distance=30m	Measured LSR values at both 19m & 30m are lower than the EIA LSR values at low frequency bands below 63Hz and are of similar magnitude at 100Hz to 200Hz. At high frequency band 315Hz, the measured LSR are slightly higher than the EIA LSR.

Table 3.1 Comparison between Measurement Data and WIL Data

3.2 Operational Ground-borne Noise Prediction

3.3 Review of Other Assumptions

- 3.3.1 The following assumptions adopted in the EIA Reports have been reviewed for updating the ground-borne noise prediction for SCL(TAW-HUH) and SCL(HHS):
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) updated information on whether the tunnel and building (or building piles) are in rock or soft ground;
 - Geological Profile updated geological profile along the alignment;

- Speed no update and therefore follows those adopted in the approval of EIA Reports;
- Turnout Adjustment updated information on the type of turnouts to be used and the adjustment of position corresponding to the type of turnouts; and
- Building information updated information including building name, position and layout in Kai Tak and Diamond Hill areas.
- 3.3.2 Ground-borne noise assessment at the representative operational ground-borne noise sensitive receivers (OGBNSRs) (Figures C11033/C/SCL/ACM/M53/013 to 018 refer) has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in Table 3.2 and Annex C, with detailed sample calculation provided in Annex D. Cumulative operational ground-borne noise levels have also been updated with results indicate compliance with the stipulated noise limits (Annex E refers).
- 3.3.3 Results indicate that the updated operational ground-borne noise levels are all below the noise criteria. As such, no mitigation measures such as trackform upgrade is required for SCL(TAW-HUH) and SCL(HHS), and EIA conclusion remains unchanged.

		Lmax	Day and Evening Period (0700 - 2300 hours)			Night-time Period (2300 - 0700 hours)		
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)
SCL (TAW -	HUH)							
DIH-1-1	Tsui Chuk Garden Block 5	45	55	34	Y	45	31	Y
DIH-2-1	Pak Yuen House	39	55	29	Y	45	26	Y
DIH-3-1	Wah Yuen House	42	55	32	Y	45	29	Y
DIH-3-2	Nga Yuen House	40	55	31	Y	45	28	Y
DIH-3-3	Kwai Yuen House	44	55	35	Y	45	32	Y
DIH-3-4	Chui Yuen House	42	55	33	Y	45	30	Y
DIH-4-1	Pang Ching Court	40	55	30	Y	45	27	Y
DIH-4-2	Carbo Anglo-Chines e Kindergarden	43	55	36	Y	-	-	Y
DIH-5-1	Rainbow Home	47	55	37	Y	45	34	Y
DIH-5-2	Residential premises	45	55	36	Y	45	33	Y
DIH-5-5	Our Lady's Kindergarden	43	55	36	Y	-	-	Y
DIH 6-1	WTS Fire Station and Quarters Block A	48	55	38	Y	45	35	Y
DIH-7-1	Tropicana Gardens Block 2	39	55	29	Y	45	26	Y
DIH-7-2	Tropicana Gardens Block 3	40	55	30	Y	45	27	Y
DIH-8-1	Redemption Lutheran Church	43	55	33	Y	45	30	Y

 Table 3.2
 Ground-borne Noise Prediction Results

		Lmax	Day (0	and Evening P 700 - 2300 hou	Period Irs)	Night-time Period (2300 - 0700 hours)			
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	
DIH-9-1	Shek On Building	43	55	36	Y	-	-	Y	
DIH-10-1	Hong Kong Sheung Keung Hui Nursing Home	39	55	30	Y	45	27	Y	
DIH-11-1	Lung Wan House	35	55	29	Y	45	26	Y	
DIH-12-1	Galaxia Tower B	23	55	<20	Y	45	<20	Y	
DIH-12-2	Galaxia Tower E	21	55	<20	Y	45	<20	Y	
DIH-13-1	Canossa Primary School	42	55	35	Y	-	-	Y	
DIH-14-1	Rhythm Garden Block 2	41	55	33	Y	45	30	Y	
DIH-14-2	Rhythm Garden Block 5	32	55	24	Y	45	21	Y	
DIH-14-3	Rhythm Garden Block 8	13	55	<20	Y	45	<20	Y	
DIH-14-4	Canossa Primary School (San Po Kong)	37	55	32	Y	-	-	Y	
DIH-14-5	Rhythm Garden Block 1	41	55	33	Y	45	30	Y	
DIH-14-6	Rhythm Garden Block 3	41	55	32	Y	45	29	Y	
DIH-15-1	Kam Wan House	41	55	32	Y	45	29	Y	
DIH-15-2	Pik Hoi House	41	55	33	Y	45	30	Y	
DIH-16-1	Wong Tai Sin Temple	46	55	36	Y	45	33	Y	
DIH-17-1	Chuk Yuen United Village	46	55	36	Y	45	33	Y	
DIH-18-1	Upper Wong Tai Sin Estate Po Sin House	45	55	36	Y	45	33	Y	
DIH-18-2	Upper Wong Tai Sin Estate Tat Sin House	45	55	35	Y	45	32	Y	
DIH-19-1	Lung Cheung Gov. Secondary School	46	55	39	Y	-	-	Y	
DIH-20-1	Baptist Rainbow Primary School	45	55	38	Y	-	-	Y	
DIH-21-1	Tin Wang Court Wang King House	46	55	36	Y	45	33	Y	
DIH-22-1	Price Memorial Catholic Primary School	45	55	38	Y	-	-	Y	
DIH-23-1	Tin Ma Court Chun On House	42	55	32	Y	45	29	Y	
DIH-24-1	Shing Wong Temple	46	55	37	Y	45	34	Y	

		Lmax	Day (0	and Evening P 700 - 2300 hou	Period Irs)	Night-time Period (2300 - 0700 hours)		
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)
DIH-P1-1	Upper Wong Tai Sin Estate Phase 3	44	55	34	Y	45	31	Y
DIH-P3-1A	Planned receivers in the CDA site ⁽²⁾	35	55	27	Y	45	24	Y
DIH-P3-2A	Planned receivers in the CDA site ⁽²⁾	38	55	30	Y	45	27	Y
DIH-P3-4	Planned receivers in the CDA site ⁽²⁾⁽³⁾	45	55	34	Y	-	-	Y
KAT-P1-1	Residential premises near Kai Tak Station	15	55	<20	Y	45	<20	Y
KAT-P1-2	One Kai Tak	8	55	<20	Y	45	<20	Y
KAT-P1-3	Residential premises near Kai Tak Station	21	55	<20	Y	45	<20	Y
KAT-P1-4	Residential premises near Kai Tak Station	16	55	<20	Y	45	<20	Y
KAT-P1-5	Mun Ching House, Kai Ching Estate	42	55	34	Y	45	31	Y
KAT-P1-6	Tower H3, De Novo	26	55	<20	Y	45	<20	Y
KAT-P1-7	Residential premises near Kai Tak Station	48	55	39	Y	45	36	Y
TKW-1-1	Parc 22	37	55	28	Y	45	25	Y
TKW-1-2	Sanford Mansion	37	55	28	Y	45	25	Y
TKW-2-1	Skytower Tower 1	28	55	<20	Y	45	<20	Y
TKW-2-2	Skytower Tower 2	28	55	<20	Y	45	<20	Y
TKW-2-3	Skytower Tower 7	24	55	<20	Y	45	<20	Y
TKW-3-1	Prince Ritz	13	55	<20	Y	45	<20	Y
TKW-3-2	Prosperity House	26	55	<20	Y	45	<20	Y
TKW-P1-1	Residential premises near To Kwa Wan Station	35	55	28	Y	45	25	Y
MTW-6-1	Fok On Building	42	55	34	Y	45	31	Y
MTW-6-2	HK Society for the Protection of Children	47	55	41	Y	-	-	Y
MTW-6-3	Chung Nam Mansion	42	55	33	Y	45	30	Y
MTW-6-4	Pok Oi Lau	46	55	38	Y	45	35	Y
MTW-7-1	Geranium House	46	55	37	Y	45	34	Y
MTW-8-1	Horae Palace	43	55	35	Y	45	32	Y
MTW-9-1	Majestic Park	40	55	32	Y	45	29	Y
MTW-10-1	18 Farm Road	43	55	35	Y	45	32	Y

		Lmax	Day (0	and Evening P 700 - 2300 hou	Period Irs)	Night-time Period (2300 - 0700 hours)			
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	
MTW-11-1	Farm Road Government Primary School	44	55	38	Y	-	-	Y	
MTW-12-1	Yuet Fai Mansion	47	55	38	Y	45	35	Y	
MTW-12-2	Delight Court	41	55	32	Y	45	29	Y	
MTW-12-3	Lucky Mansion	35	55	27	Y	45	24	Y	
MTW-12-4	352-354 Ma Tau Wai Road	34	55	27	Y	45	24	Y	
MTW-12-5	Seng Cheong Building	39	55	32	Y	45	29	Y	
MTW-12-6	Great Wall Building	41	55	33	Y	45	30	Y	
MTW-12-7	197-199 Ma Tau Wai Road	45	55	37	Y	45	34	Y	
MTW-12-8	Pak Tai Mansion	47	55	39	Y	45	36	Y	
MTW-12-9	Residential premises along Hung Kwong Street	43	55	35	Y	45	32	Y	
MTW-12-1 0	Lucky Building	35	55	28	Y	45	25	Y	
MTW-12-1 1	Jing Ming Building	34	55	26	Y	45	23	Y	
MTW-12-1 2	One Elegance	43	55	35	Y	45	32	Y	
MTW-13-1	Cheung Chuk Shan Memorial School	43	55	37	Y	-	-	Y	
MTW-14-1	PLK Lam Man Chan English Primary School	37	55	32	Y	-	-	Y	
MTW-15-1	Hung Hom Lutheran Primary School	40	55	36	Y	-	-	Y	
MTW-16-1	SKH Good Shepherd Primary School	38	55	34	Y	-	-	Y	
MTW-17-1	Loyal Mansion	38	55	30	Y	45	27	Y	
MTW-18-1	Residential premises along Chi Kiang St	32	55	25	Y	45	22	Y	
MTW-18-2	No. 2 Kowloon City Road	33	55	26	Y	45	23	Y	
MTW-19-1	Holy Trinity Church	38	55	30	Y	45	27	Y	
HOM-1-1	Ko Shan Theartre	43	55	35	Y	45	32	Y	
HOM-2-1	Faerie Court	41	55	34	Y	45	31	Y	
HOM-2-2	Lee Wing Building	43	55	35	Y	45	32	Y	
HOM-2-3	Wing Lam Mansion	43	55	36	Y	45	33	Y	
HOM-2-4	Tak Lee Court	42	55	34	Y	45	31	Y	
HOM-2-5	Mansion	42	55	34	Y	45	31	Y	

		Lmax	Day (0	and Evening P 700 - 2300 hou	Period Irs)) (2	light-time Peri 300 - 0700 hou	od ırs)
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)
HOM-2-6	Chatham Mansion	45	55	37	Y	45	34	Y
HOM-3-1	Fook Sing Mansion	39	55	31	Y	45	28	Y
HOM-3-2	Marigold Mansion, Block A	39	55	31	Y	45	28	Y
HOM-4-1	Yee Fu Building	36	55	28	Y	45	25	Y
HOM-5-1	271 Chatham Road North	28	55	22	Y	45	<20	Y
HOM-P2	HKPU Student Halls of Residence	35	55	28	Y	45	25	Y
HOM-P3-1	Residential Building, HOM Station Development	37	55	30	Y	45	27	Y
HUH-1-1	Cartas Branchi College of Careers	34	55	30	Y	-	-	Y
HUH-1-2	Lok Ka House	37	55	30	Y	45	27	Y
HUH-1-3	Wing Fung Building	37	55	29	Y	45	26	
SCL (HHS)								
HUH-1-3	Wing Fung Building	16	55	<20	Y	45	<20	Y

Notes:

(1) The operational groundborne noise results are taken from either those presented in SCL(TAW-HUH) EIA Report or SCL(HHS) EIA Report KAT-P1-5 or Supporting Document for Application of VEP (Application No. VEP-370/2012) (June 2012) where applicable.

Information based on the Environmental Review Report (ERR) for Update of Fixed Plant Noise Sources at (2) Diamond Hill Station (DIH) and Hin Keng Station (HIK), and Minor Update of HIK Footprint (August 2016) for supporting the Application of Variation of Environmental Permit (Application No.: VEP-506/2016). There would be no night-time operation at DIH-P3-4 according to the information in ERR.

(3)

4 CONCLUSION

- 4.1.1 The measurement of LSR values were conducted at the recommended testing locations as stated in the agreed T&RMP. The assumptions adopted in the EIA Reports have been further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) and SCL(HHS) have been updated based on all measured LSR results in the Final OGNMMP and the latest available information.
- 4.1.2 The updated ground-borne noise levels are all below the noise criteria, and thus the conclusion in the EIA Reports remains unchanged, and no mitigation measures are required

		HOM-2-2 HOM-2-3
--	--	--------------------

008968 HOM -HOM-P3-1 819200 HOM-5-1 HOM-4-1 НОМ-3-2 HOM-3-1 ÍÐ 副歌 121 1 8.1 Min Hager 1 3 0091Eb 8800 3009128 LEGEND: SCL ALIGNMENT (DOWN TRACK) SCL ALIGNMENT (UP TRACK) HHS TRACKS NSRS FOR OPERATIONAL GROUNDBORNE NOISE ASSESSMENT 004818 HUNG HOM STABLING SIDINGS C11033 SCL (TAW - HUH) LOCATIONS OF NOISE SENSITIVE RECEIVERS (GROUNDBORNE) (SHEET 6 OF 6) SCALE 1: 4000 (A3) FIGURE NO. C11033/C/SCL/ACM/M53/018 έν. Α

Annex A

Operational Ground-Borne Noise Mitigation Measures Plan – Testing and Review Methodology Plan (Revision D)

AECOM

MTR Corporation Limited

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and **Stabling Sidings at Hung Hom Freight** Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan -**Testing and Review Methodology Plan**

January 2016

	Name	Signature
Prepared & Checked:	Jackel Law	fine
Reviewed & Approved:	Josh Lam	p.p. Anul

Version: D Date: 11 January 2016 This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose

possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

Page

1	INTRO	DUCTION	1
	1.1 1.2 1.3	Background Purpose of This T&RMP Report Structure	1 2 2
2	TESTIN	IG AND MEASUREMENT LOCATIONS	3
	2.1	Selection of Impact Testing Locations	3
3	TESTIN	IG METHODOLOGY	5
	3.1 3.2	Instrumentations Testing and Measurement Procedures	5 5
4	METHO	DD OF LINE SOURCE RESPONSE PREDICTION	6
	4.1 4.2	Introduction Prediction Method of Line Source Response	6 6
5	REVIE	N OF OPERATIONAL GROUND-BORNE NOISE METHODOLOGY	7
	5.1 5.2	Review of Other Assumptions Update of Ground-borne Noise Assessment	7 7

List of Tables

Table 2.1	Justifications for NSR selection for LSR measurement
Table 2.2	Proposed Measurement and Testing Locations
Table 3.1	Instruments to be Used in the Hammer Impact Test

List of Figures

C11033/C/SCL/ACM/M53/001 Locations of Noise Sensitive Receivers (Groundborne) (Sheet 1 of 3) C11033/C/SCL/ACM/M53/002 Locations of Noise Sensitive Receivers (Groundborne) (Sheet 2 of 3) C11033/C/SCL/ACM/M53/003 Locations of Noise Sensitive Receivers (Groundborne) (Sheet 3 of 3)

Appendices

Appendix A	Selection of Measurement Locations from the NSRs in the SCL EIA Reports
Appendix B	Photo records of Proposed Measurement Points at selected NSRs

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012) was issued by Director of Environmental Protection (DEP) on 14 October 2015.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4). No ground-borne noise will be assessed for at grade section around TAW, HIK and HUH as airborne noise will be the dominant noise source that vibration generated by the tunnel is much larger than the slab track at grade. Ground-borne noise issue for NSRs around HUH will be discussed in relevant submission under EP-437/2012.
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to prepare this Testing and Review Methodology Plan (T&RMP) and to conduct the LSR test according to the approved T&RMP. The testing results and calculation, together with the approved T&RMP, will be included in the OGNMMP which will be submitted under EP Condition 2.27.

AECOM Asia Co. Ltd. C11033 LSR Test Plan_v12b

¹ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment ", 2006

1.2 Purpose of This T&RMP

1.2.1 This T&RMP is prepared to seek the DEP's agreement on the testing locations and methodology prior to the commencement of LSR test.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the tunnel excavation programme and proposed testing locations.
 - Section 3 presents the testing methodology.
 - Section 4 presents the method of LSR prediction.
 - Section 5 presents the review methodology of the operational ground-borne noise.

2 TESTING AND MEASUREMENT LOCATIONS

2.1 Selection of Impact Testing Locations

- 2.1.1 The selection of testing location is based on the following considerations:
 - Ground Type LSR values at different ground types (soil, rock and mixed rock) is proposed to be obtained for review in OGNMMP.
 - Accessibility The testing receiver location should be accessible for conducting the test on building structure or foundation.
 - Ambient vibration The measurement results will be affected by the ambient vibration from existing traffic. As such the measurement location should be located away from roads with heavy traffic.
 - Building Pile Type and depth of building foundation and building pile arrangement are considered. High rise building with pile down to rock head would give high noise level from tunnel and will have higher priority for selection.
 - Predicted Ground-borne Noise Levels LSR test is proposed to be conducted at the more sensitive locations in close proximity to the SCL tunnel, i.e. the ground-borne noise sensitive receivers (NSRs) predicted with relatively higher operational ground borne noise levels. The NSRs identified in the EIA Reports will be reviewed for selection of appropriate testing location(s).
 - Tunnel Depth The measurement signal would be weak if the tunnel is too deep in vertical depth and too far in horizontal distance. The slant distance between ground level of the testing location and the track level of the tunnel is preferable to be within 20m and should not be greater than 40m.
- 2.1.2 There are three different types of geological characteristics which are soil, mixed rock and rock along the alignment. Representative LSR values of these three geological characteristics will be obtained and applied in the upcoming OGNMMP.
- 2.1.3 It is important to obtain a measureable vibration impact at the NSR with minimal influences from the existing surrounding environment. Existing ambient vibration environment at the NSRs is considered as an important factor because the vibration impact source for the testing is relatively low and would be easily affected by the vibration induced from surrounding road traffic. The tunnel of this project is running under the urban area with busy roads, and most NSRs are subject to high ambient vibration environment; thus they are considered not suitable for the test. Slant distance to the tunnel is also a key factor for consideration as the larger the separation distance between tunnel and NSR, the weaker the vibration signal to be recorded at the NSR. There are many NSRs being too far away, more than 40m slant distance from the tunnel, which the vibration signal would be insignificant to measure and therefore not suitable for the test. NSRs with predicted L_{eq 30min(dB(A))} lower than 30 dB(A) in the EIA ground-borne noise prediction results would not be considered as a representative location for testing and measurement as the vibration signal is predicted to be insignificant to measure.
- 2.1.4 All NSRs in the EIA Reports were considered according to the criteria in Section 2.1.1 and reviewed in Appendix A. Based on the considerations discussed in Section 2.1.2 and 2.1.3, four out of ten NSRs were selected to be the most suitable and most representative for each geological type for the LSR measurement (Table 2.1 refers). The corresponding measurement locations at the selected NSRs are summarised in Table 2.2 and the testing locations are shown in Figure C11033/C/SCL/ACM/M53/001 003. MTR will notify the relevant representative such as management office of selected NSRs prior to the testing and measurement, and a contact would be made available for them during the test in case there is nuisance lodged by residents.

2.1.5

Ground Type	NSRs	Justification(s)	Selected LSR Measurement Location (Y/N)
Mixed Rock	DIH-18-1	Farther distance to the tunnel compared with DIH-P1-1.	Ν
	DIH-18-2	Farther distance to the tunnel compared with DIH-P1-1.	Ν
	DIH-P1-1 ^[1]	An existing structure close to the tunnel.	Y
	DIH-P3-1	Farther distance to the tunnel and lower predicted level compared with KAT-P1-7.	N
	DIH-P3-2	Farther distance to the tunnel and lower predicted level compared with KAT-P1-7.	Ν
	HOM-2-1	Situated at the margin of mixed rock and rock that actual effect of hammer impact test is unknown and hence not suitable to apply to all NSRs of mixed rock type.	Ν
	KAT-P1-7 ^[1]	Short slant distance among relevant NSRs together with high predicted level.	Y
Soil	KAT-P1-5	The only NSR fulfils all criterions after screening.	Y
Rock	HOM-2-2	Located directly above the tunnel.	Y
	HOM-2-3	Farther distance to the tunnel compared with HOM-2-2.	N

Table 2.1 Justifications for NSR selection for LSR measurement

Note:

(1) The more conservative result measured from DIH-P1-1 and KAT-P1-7 will be applied for updating LSR value of NSRs at mixed rock type.

Table 2.2	Proposed Measurement and Testing Locations
-----------	--

1	ISR	Predicted		Slant		Location of	
ID	Description	Ground- borne Noise Levels in the EIA Report, dB(A)	Latest Approx. Hori. Distance from the Tunnel, m	Distance (From Ground Level to Track Level), m	Ground Type	Hammer Impact Test (Approx. Tunnel Depth)	Anticipated Testing Schedule
DIH-P1-1 ⁽¹⁾	Upper Wong Tai Sin Estate - Wing Sin House	32	20 (up track) 10 (down track)	32	Mixed Rock	Down Track Tunnel (-2.2mPD)	Mid 2016
KAT-P1-5 ⁽²⁾	Kai Ching Estate – Mun Ching House	40	25 (up track) 13 (down track)	19	Soil	Down Track Tunnel (-8.1mPD)	Early 2016
KAT-P1-7	Residential Premises near KAT	45	0 (up track) 0 (down track)	20	Mixed Rock	Down Track Tunnel (-14mPD)	Early 2016
HOM-2-2	Lee Wing Bldg	41	0 (up track) 0 (down track)	24	Rock	Up track Tunnel (-11mPD)	End 2016

Note:

(1) DIH-P1-1 is a planned NSR during EIA stage. Assumptions were made on the horizontal building setback distance from tunnels (i.e. 0m from up track and 5m from down track) and noise levels were predicted based on this assumption.

(2) KAT-P1-5 is a planned NSR during EIA stage. Assumptions were made on the horizontal building setback distance from tunnels (i.e. 10m from up track and 20m from down track) and noise levels were predicted based on this assumption.

measure impact force

3 TESTING METHODOLOGY

3.1 Instrumentations

3.1.1 The impact force levels applied within the tunnel would be measured using a SINUS Harmonie connected to a laptop computer and vibration levels would be measured using a Bruel & Kjaer PULSE also connected to a laptop computer. Bruel & Kjaer and Wilcoxon accelerometers would be used on the surface. Details of the instruments are provided in **Table 3.1**.

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model S	Connection to 4-hp air compressor to induce force (impact) at about 400kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Bruel & Kjaer PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Bruel & Kjaer type 4370V; Wilcoxon Research 731-207	Vibration transducers to measure vibration
Force transducer	PCB 207C	Fitted to pneumatic hammer to

 Table 3.1
 Instruments to be Used in the Hammer Impact Test

3.2 Testing and Measurement Procedures

- 3.2.1 The testing would be carried out after the completion of tunnel excavation. The testing and measurement procedures are summarised below:
 - The test will be carried out during night time when background vibration levels are at their lowest. All construction works inside tunnel and the adjacent tunnel shall be suspended during the testing.
 - The impact hammer will hit on the centreline of tunnel invert. The hammer will apply measured impact forces within the tunnel at 7 impact points in each testing location to represent the length of at least half a train (i.e. about 100m). The measured impact forces will be logged by the spectrum analyzer. Each impact points will have 10 hits at 400kN on the tunnel invert. The locations of impact points for selected NSRs are illustrated in Figure C11033/C/SCL/ACM/M53/001 003.
 - Accelerometers adhere on the ground and on the building foundation of the selected NSRs. Site photos showing the position of accelerometer are shown in **Appendix B**.
 - By communication of staff between ground and tunnel, the pneumatic hammer will be activated to apply an impact on the tunnel invert.
 - The impact force in tunnel and the vibration levels on the ground will be recorded by the two separated spectrum analyzers. Measurement will be conducted in narrow frequency bands from 6.3Hz to 500Hz.
 - Impact force and vibration measurements will be repeated for all impact location points along the tunnel at minimum distance of half train length (i.e. about 100m). Due to symmetry of the train, the point source response of transfer mobility for the another half train length can be obtained by calculation by multiplying two to the measured results. At each impact point, 10 hits will be sufficient for prediction of LSR.

4 METHOD OF LINE SOURCE RESPONSE PREDICTION

4.1 Introduction

4.1.1 The vibration response caused by a unit point source impact can be obtained from the hammer impact test and the best fit curves can be calculated to determine the LSR at the selected NSRs along the SCL alignment. The prediction of LSR is presented in this section.

4.2 Prediction Method of Line Source Response

4.2.1 The measurement data will be processed so that the specific geological conditions at selected receivers along the alignment, namely, the setback of the receiver from the alignment, the depth of the tunnel, and the depth of the receiver-building basement can be input. For the given input conditions, the best fit curves of PSR are determined from the impact database with respect to the setback, and source and receiver depth. The LSR (TM_{*line*}, dB re 1e⁻⁹ (m/s)/(N/m^{0.5})) will then be determined by numerical integration with the formula² as shown below, of the Point Source Response (PSR, TM_{*pi*}) along the length of the train centred on the receiver, while PSR will be determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log 10 \left[h \times \left(\frac{10^{\frac{TMpi}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where

h = Impact interval (m) (interval varying from 5m to 40m) TMpi = Point source transfer mobility for ith impact location (dB re 1e-9 (m/s)/N) n = Last impact location

- 4.2.2 The calculation of LSR will follow the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual³.
- 4.2.3 The measured LSR will be compared with those adopted in the EIA Reports for equivalent ground types to allow verification of the ground-borne noise calculation in the EIA Report.

² Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

³ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment ", 2006

5 REVIEW OF OPERATIONAL GROUND-BORNE NOISE METHODOLOGY

5.1 Review of Other Assumptions

- 5.1.1 Other assumptions adopted in the EIA Reports will be reviewed and updated based on the latest available information, where necessary, in the upcoming Operational Ground-borne Noise Mitigation Measures Plan.
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

5.2 Update of Ground-borne Noise Assessment

5.2.1 Ground-borne noise assessment at the selected NSRs will be updated according to the review findings of the assumptions as discussed in **Section 5.1** and the measurement results of LSR. Assessment methodology will follow the prediction methodology recommended by the FTA Manual, which was adopted in the EIA Reports.

ZHILZ V:/US DRV: NAME

Appendix A

Selection of Measurement Locations from NSRs in the SCL EIA Reports

			A	[7]	B ^[10]	C ^[11]	D ^[12]	E ^[13]	
		Ground	Worst case	e Scenario ^[6]	Building	The Nearest Slant	Ambient		Justification of not
INSK ID	NSR Description	Type ^[8]	Predicted	Criterion	(Y/N/NA)	Distance to	(High	Accessibility	measurement
			L _{eq,30min}	L _{eq,30min}	[4]	Tunnel	/Low) ^[9]	(1/10)	mousuromont
			(dB(A))	(dB(A))		(m) ^(a)	,		
DIH-1-1	Tsui Chuk Garden Block 5	Rock	40	45	Y	80	Low	Y	(C)
DIH 2-1	Pak Yuen House	Mixed rock	39	45	Y	297	Low	Y	(C)
DIH-3-1	Wah Yuen House	Mixed rock	39	45	Y	112	Low	Y	(C)
DIH-3-2	Nga Yuen House	Mixed rock	39	45	Y	128	Low	Y	(C)
DIH-3-3	Kwai Yuen House	Mixed rock	42	45	Y	44	Low	Y	(C)
DIH-3-4	Chui Yuen House	Mixed rock	39	45	Y	67	Low	Y	(C)
DIH-4-1	Pang Ching Court	Mixed rock	39	45	Y	207	Low	Y	(C)
DIH-4-2	Carbo Anglo-Chinese Kindergarten ^[2]	Mixed rock	44	55	Ν	137	Low	Υ	(B), (C)
DIH-5-1	Rainbow Home	Rock	34	45	Ν	48	Low	Y	(B), (C)
DIH-5-2	Residential premises	Rock	35	45	Ν	41	Low	Y	(B), (C)
DIH-5-5	Our Lady's Kindergarten ^[2]	Mixed rock	34	55	Ν	94	Low	Y	(B), (C)
DIH 6-1	WTS Fire Station and Quarters Block A	Rock	39	45	N	35	Low	Y	(B)
DIH-7-1	Tropicana Gardens Block 2	Rock	35	45	Y	49	High	Y	(C), (D)
DIH-7-2	Tropicana Gardens Block 3	Rock	37	45	Y	45	Low	Y	(C)
DIH-8-1	Redemption Lutheran Church	Rock	25	45	N	118	Low	Y	(A), (B), (C)
DIH-9-1	Shek On Building ^[2]	Rock	27	55	Ν	121	High	Y	(A), (B), (C), (D)
DIH-10-1	Hong Kong Sheung Keung Hui Nursing Home	Rock	22	45	Ν	170	High	Confirm upon request	(A), (B), (C), (D)
DIH-11-1	Lung Wan House	Mixed rock	<20	45	Y	65	High	Y	(A), (C), (D)
DIH-12-1	Galaxia Tower B	Mixed rock	<20	45	Y	182	Low	Y	(A), (C)
DIH-12-2	Galaxia Tower E	Mixed rock	<20	45	Y	163	Low	Y	(A), (C)
DIH-13-1	Canossa Primary School ^[2]	Rock	28	55	Ν	162	Low	Confirm upon request	(A), (B), (C)
DIH-14-1	Rhythm Garden Block 2	Mixed rock	28	45	Ν	43	Low	Y	(A), (B), (C)
DIH-14-2	Rhythm Garden Block 5	Soil	30	45	Ν	35	High	Y	(A), (B), (D)
DIH-14-3	Rhythm Garden Block 8	Soil	24	45	Ν	176	High	Y	(A), (B), (C), (D)
DIH-14-4	Canossa Primary School ^[2] (San PoKong)	Mixed rock	<20	55	Ν	146	Low	Confirm upon request	(A), (B), (C)
DIH-14-5	Rhythm Garden Block 1	Mixed rock	29	45	Ν	36	Low	Y	(A), (B)
DIH-14-6	Rhythm Garden Block 3	Mixed rock	28	45	Ν	49	Low	Y	(A), (B), (C)
DIH-15-1	Kam Wan House	Mixed rock	26	45	Y	89	High	Y	(A), (C), (D)
DIH-15-2	Kam Pik House	Mixed rock	26	45	Y	70	High	Y	(A), (C), (D)
DIH-16-1	Wong Tai Sin Temple	Mixed rock	36	45	Ν	42	Low	Confirm upon request	(B), (C)
DIH-17-1	Chuk Yuen United Village	Mixed rock	36	45	Ν	37	High	Y	(B), (D)
DIH-18-1	Upper Wong Tai Sin Estate Po Sin House	Mixed rock	38	45	Y	34	Low	Y	_ [14]
DIH-18-2	Upper Wong Tai Sin Estate Tat Sin House	Mixed rock	41	45	Y	40	Low	Y	_ [14]
DIH-19-1	Lung Cheung Gov.Secondary School ^[2]	Mixed rock	45	55	Ν	45	Low	Confirm upon request	(B), (C)
DIH-20-1	Baptist Rainbow Primary School ^[2]	Mixed rock	44	55	Ν	92	Low	Confirm upon request	(B), (C)

			A	[7]	B ^[10]	C ^[11]	D ^[12]	E ^[13]	
		Ground	Worst case	e Scenario ^[6]	Building	The Nearest	Ambient		Justification of not
NSR ID	NSR Description	Type ^[8]	Predicted	Criterion	Piles	Distance to	Vibration	Accessibility	selected for LSR
		5.	L _{eq,30min}	L _{eq,30min}	(Y/N/NA) [4]	Tunnel	(nigi) /Low) ^[9]	(Y/N)	measurement
			(dB(A))	(dB(A))		(m) ^[5]	/2011/		
DIH-21-1	Tin Wang Court Wang King House	Rock	33	45	Y	51	Low	Y	(C)
DIH-22-1	Price Memorial Catholic Primary School ^[2]	Mixed rock	34	55	Ν	89	Low	Confirm upon request	(B), (C)
DIH-23-1	Tin Ma Court Chun On House	Mixed rock	29	45	Y	108	Low	Y	(A), (C)
DIH-24-1	Shing Wong Temple	Mixed rock	44	45	Ν	28	Low	Y	(B)
DIH-P1-1	Upper Wong Tai Sin Estate Phase 3 ^[3]	Mixed rock	32	45	Y	32	Low	Y	_ [14]
DIH-P2-1	TBA ^[1]	Mixed rock	<20	45	NA	78	High	Confirm upon request	(A), (C), (D)
DIH-P2-2	TBA ^[1]	Mixed rock	43	45	NA	20	High	Confirm upon request	(D)
DIH-P2-3	TBA ^[1]	Mixed rock	45	45	NA	20	High	Confirm upon request	(D)
DIH-P2-4	TBA ^[1]	Mixed rock	25	45	NA	36	Low	Confirm upon request	(A)
DIH-P3-1	TBA ^[1]	Mixed rock	36	45	NA	28	Low	Confirm upon request	_[14]
DIH-P3-2	TBA ^[1]	Mixed rock	36	45	NA	30	Low	Confirm upon request	_[14]
KAT-P1-1	Residential premises near Kai Tak Station ^[1]	Soil	23	45	NA	76	Low	Y	(A), (C)
KAT-P1-2	Residential premises near Kai Tak Station ^[1]	Soil	25	45	NA	76	Low	Y	(A), (C)
KAT-P1-3	Residential premises near Kai Tak Station ^[1]	Soil	31	45	NA	57	Low	Y	(C)
KAT-P1-4	Residential premises near Kai Tak Station ^[1]	Soil	<20	45	NA	67	Low	Y	(A), (C)
KAT-P1-5	Residential premises near Kai Tak Station Site 1A ^[3]	Soil	40	45	Y	19	Low	Y	_ [14]
KAT-P1-6	Residential premises near Kai Tak Station Site 1B	Soil	25	45	NA	166	Low	Y	(A), (C)
KAT-P1-7	Residential premises near Kai Tak Station ^[1]	Mixed rock	45	45	NA	20	Low	Y	_[14]
TKW-1-1	Parc 22	Soil	25	45	Ν	86	Low	Y	(A), (B), (C)
TKW-1-2	Sanford Mansion	Mixed rock	25	45	N	96	Low	Y	(A), (B), (C)
TKW-2-1	Skytower Tower 1	Soil	<20	45	Y	141	Low	Y	(A), (C)
TKW-2-2	Skytower Tower 2	Soil	<20	45	Y	141	Low	Y	(A), (C)
IKW-2-3	Skytower Lower 7	Mixed rock	<20	45	Y	235	Low	Y	(A), (C)
TK/M 2 2		Mixed rock	<20	40 //5	ř N	230 251	High	ľ V	
11/00-9-2	Residential premises pear To		<20	40	IN	201	niyii	Confirm upon	(r, (b), (c), (D)
TKW-P1-1	Kwa Wan Station ^[1]	Mixed rock	30	45	NA	27	Low	request	(A)
MTW-6-1	Fok On Building	Mixed rock	37	45	N	23	High	Y	(B), (D)
MTW-6-2	HK Society for the Protection of Children ^[2]	Mixed rock	50	55	Ν	18	High	Y	(B), (D)

			A	[7]	B ^[10]	C ^[11]	D ^[12]	E ^[13]	
		Ground	Worst case	Scenario ^[6]	Building	The Nearest	Ambient		Justification of not
NSR ID	NSR Description	Type ^[8]	Predicted	Criterion	Piles	Distance to	Vibration	Accessibility	selected for LSR
		51	L _{eq,30min}	L _{eq,30min}	(Y/N/NA) [4]	Tunnel	(High /Low) ^[9]	(Y/N)	measurement
			(dB(A))	(dB(A))		(m) ^[5]	72010)		
MTW-6-3	Chung Nam Mansion	Mixed rock	35	45	N	25	High	Y	(B), (D)
MTW-6-4	Pok Oi Lau	Mixed rock	45	45	Ν	19	High	Y	(B), (D)
MTW-7-1	Geranium House	Rock	40	45	Ν	21	High	Y	(B), (D)
MTW-8-1	Horae Palace	Rock	35	45	Y	23	High	Y	(D)
MTW-9-1	Majestic Park	Rock	28	45	Y	39	High	Confirm upon request	(A), (D)
MTW-10-1	18 Farm Road	Rock	35	45	Y	23	High	Y	(D)
MTW-11-1	Farm Road Government Primary School ^[2]	Rock	32	55	N	67	High	Confirm upon request	(B), (C), (D)
MTW-12-1	Yuet Fai Mansion	Rock	38	45	Ν	25	High	Y	(B), (D)
MTW-12-2	Delight Court	Mixed rock	33	45	Y	27	High	Y	(D)
MTW-12-3	Lucky Mansion	Mixed rock	29	45	Ν	25	High	Y	(A), (B), (D)
MTW-12-4	352-354 Ma Tau Wai Rd	Mixed rock	29	45	Ν	25	High	Y	(A), (B), (D)
MTW-12-5	Seng Cheong Building	Mixed rock	32	45	Ν	25	High	Y	(B), (D)
MTW-12-6	Great Wall Building	Rock	30	45	N	35	High	Y	(A), (B), (D)
MTW-12-7	197-199 Ma Tau Wai Rd	Rock	37	45	N	23	High	Y	(B), (D)
MTW-12-8	Pak Tai Mansion	Rock	40	45	Ν	22	High	Y	(B), (D)
MTW-12-9	Residential premises along Hung Kwong Street	Mixed rock	38	45	Ν	22	High	Υ	(B), (D)
MTW-12-10	Lucky Building	Mixed rock	31	45	Ν	23	High	Y	(B), (D)
MTW-12-11	Jing Ming Building	Mixed rock	29	45	Ν	28	High	Y	(A), (B), (D)
MTW-12-12	One Elegance	Rock	36	45	Y	22	High	Y	(D)
MTW-13-1	Cheung Chuk Shan Memorial School ^[2]	Mixed rock	44	55	N	22	High	Y	(B), (D)
MTW-14-1	PLK Lam Man Chan English Primary School ^[2]	Mixed rock	29	55	Ν	40	High	Y	(A), (B), (D)
MTW-15-1	Hung Hom Lutheran Primary School ^[2]	Mixed rock	43	55	Ν	22	High	Confirm upon request	(B), (D)
MTW-16-1	SKH Good Shepherd Primary School ^[2]	Mixed rock	42	55	Ν	22	High	Confirm upon request	(B), (D)
MTW-17-1	Loyal Mansion	Mixed rock	32	45	Ν	26	High	Y	(B), (D)
MTW-18-1	Residential premises along Chi Kiang St	Mixed rock	21	45	Ν	48	Low	N (Dismantled)	(A), (B), (C), (E)
MTW-18-2	No. 2 Kowloon City Road	Mixed rock	24	45	Ν	33	Low	N (Dismantled)	(A), (B), (E)
MTW-19-1	Holy Trinity Church	Soil	29	45	Ν	58	High	Confirm upon request	(A), (B), (C), (D)
HOM-1-1	Ko Shan Theatre ^[2]	Rock	30	45	Y	61	Low	Y	(A), (C)
HOM-2-1	Faerie Court	Mixed rock	35	45	Y	27	Low	Y	_ [14]
HOM-2-2	Lee Wing Bldg	Rock	41	45	Y	24	Low	Y	_ [14]
HOM-2-3	Wing Lam Mansion	Rock	36	45	Y	25	Low	Y	_ [14]
HOM-2-4	Tak Lee Court	Rock	35	45	Y	61	Low	Y	(C)
HOM-2-5	Chat Ma Mansion	Rock	28	45	Ν	49	High	Y	(A), (B), (C), (D)
HOM-2-6	Chatham Mansion	Mixed rock	43	45	N	19	High	Y	(B), (D)

			A	[7]	B ^[10]	C [11]	D ^[12]	E ^[13]	
	NSR Description	Crowned	Worst case	Scenario ^[6]	Building	The Nearest Slant Distance to Tunnel (m) ^[5]	Ambient Vibration (High /Low) ^[9]	Accessibility (Y/N)	Justification of not selected for LSR measurement
NSR ID		Type ^[8]	Predicted L _{eq,30min} (dB(A))	Criterion L _{eq,30min} (dB(A))	Piles (Y/N/NA) ^[4]				
HOM-3-1	Fook Sing Mansion	Rock	25	45	Y	92	Low	Confirm upon request	(A), (C)
HOM-3-2	Marigold Mansion, Blk A	Rock	37	45	Y	96	Low	Confirm upon request	(C)
HOM-4-1	Yee Fu Building	Rock	33	45	Y	60	Low	Y	(C)
HOM-5-1	271 Chatham Road North	Rock	28	45	Ν	87	High	Y	(A), (B), (C), (D)
HOM-P2	HKPU Phase 3 ^[2]	Rock	36	55	Y	57	High	Confirm upon request	(C), (D)
HOM-P3-1	Residential Building, HOM Development ^[1]	Rock	41	45	NA	45	Low	Confirm upon request	(C)
HUH-1-1	Cartas Branchi College of Careers ^[2]	Rock	<20	55	Ν	100	High	Y	(A), (B), (C), (D)
HUH-1-2	Lok Ka House	Rock	24	45	Ν	58	High	Y	(A), (B), (C), (D)
HUH-1-3	Wing Fung Bldg	Soil	38	45	Ν	21	High	Y	(D)

Notes:

[1] The information of unconstructed NSRs is to be confirmed. For DIH area, compared with DIH-P3-1 and DIH-P3-2, DIH-P2-4 are farther away from the tunnel; DIH-P2-2 and DIH-P2-3 are situated with higher ambient noise. In addition, the DIH scheme should refer to the approved SCL(HHS) EIA such that DHS will not be built. Therefore, DIH-P2-1 to DIH-P2-4 are not selected for testing locations. Nevertheless, ground-borne noise assessment will be updated according to the review findings and the measurement results.
[2] Daytime noise criteria and operation conditions are used for the assessment of school.

[3] The up-to-date names for DIH-P1-1 and KAT-P1-5 are Upper Wong Tai Sin Estate – Wing Sin House and Kai Ching Estate – Mun Ching House respectively.

[4] Y: Building pile of the NSR founded on rock head; N: Building pile of the NSR not founded on rock head; NA: No existing piles and information of future piles is not available yet.

[5] The nearest distance to tunnel is determined between the boundary of respective NSR and tunnel (i.e. the slant distance from ground level to track level.)

[6] Worst case Scenario represents either Nighttime noise criteria or Daytime noise criteria adopted in EIA reports for NSRs depending on its land use.

[7] NSRs which predicted Leq, 30min(dB(A)) is lower than 30 are not considered as a representative location for testing and measurement.

[8] The Ground Type is categorized into 3 groups which are Rock, Mixed rock and Soil. Tunnel on or under rockhead is defined as Rock; Tunnel above rockhead and below soil is defined as Mixed rock, and Tunnel in the soil is defined as Soil. For the SCL (TAW-HUH) tunnel, the condition of tunnel below rockhead and above soil does not exist.

[9] Low: For the nearest road(s) with traffic flow AADT less than 30,000, relative low ambient vibration anticipated at NSRs; High: For the nearest road(s) with traffic flow AADT equal or higher than 30,000, relative high ambient vibration anticipated at NSRs.

[10] NSRs with no building piles founded on rock head or no available information of building piles are less preferrable to be selected as a representative location for testing and measurement.

[11] NSRs which have slant distance greater than 40m to the tunnel are not considered as a representative location for testing and measurement.

[12] NSRs which have high ambient vibration are not considered as a representative location for testing and measurement.

[13] NSRs which are inaccessible are not considered as a representative location for testing and measurement.

[14] 4 out of 10 NSRs are selected as measurement locations and each geological characteristic is represented by at least one selected NSR. Compared with the selected NSR DIH-P1-1, DIH-18-1 and DIH-18-2 are farther away from the tunnel, and HOM-2-1 is situated at the margin of mixed rock and rock that LSR value is not suitable to apply to all NSRs at mixed rock type. Comparing 3 planned NSRs at mixed rock, KAT-P1-7 is considered more respresentative than DIH-P3-1 and DIH-P3-2 due to its shorter slant distance together with higher predicted level and hence is selected as another NSR at mixed rock. KAT-P1-5 is selected as it is the only NSR at soil type. HOM-2-2 is selected as NSR at rock type since it is located directly above tunnel and is closer to it compared with HOM-2-3.

Appendix B

Photo records of Proposed Measurement Points at selected NSRs

Appendix B - Photo records of Proposed Measurement Points at selected NSRs

Appendix B - Photo records of Proposed Measurement Points at selected NSRs

Appendix B - Photo records of Proposed Measurement Points at selected NSRs

Note:

The proposed indoor measurement points are subject to minor change depending on the condition on testing day. In the case where indoor measurement points are under disturbance or considered unsuitable for obtaining vibration signal, outdoor measurement points would be adopted as an alternative.

Annex B1

Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 1 – Kai Ching Estate, Mun Ching House) (June 2016) MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 1 (Version D)

Position: Independent Environmental Checker

Date:	23	Jun, 2	2016	

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 1 (Version D)

(June 2016)

		Ω
Certified by:	Richard Kwan	Julisan

Position: ____Environmental Team Leader

Date: 23 Jun 2016

MTR Corporation Limited

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan (Batch 1 – Kai Ching Estate, Mun Ching House)

June 2016

	Name	Signature
Prepared & Checked:	Angela Tong	Ayen
Reviewed & Approved:	Josh Lam	Ane
	N	
Version:	D D	ate: 22 Jun 2016
This Report is prepared for MTR Corp Consultancy Agreement No. C11033 a MTR Corporation Limited without our pri possession a copy of this Report cor Corporation Limited may not rely on it fo	oration Limited and is given for its nd may not be disclosed to, quoted or written consent. No person (oth nes may rely on this Report with or any purpose other than as descri	s sole benefit in relation to and pursuant to to or relied upon by any person other than er than MTR Corporation Limited) into whose out our express written consent and MTR bed above.

AECOM Asia Co. Ltd. 8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

Page

1	INTR	ODUCTION	1
	1.1 1.2 1.3	Background Purpose of This OGNMMP Report Structure	1 2 2
2	IMPA	ACT TESTING AND PREDICTION OF LSR	3
	2.1	Testing Location	3
	2.2	Testing Instrumentations	3
	2.3	Testing and Measurement Procedures	3
	2.4	Prediction of Line Source Response	4
3	REVI	EW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION	6
	3.1	LSR Adopted in the Approved EIA Report	6
	3.2	Review of LSR Values	6
	3.3	Operational Ground-borne Noise Prediction	6
	3.4	Review of Other Assumptions	7
4	CON	CLUSION	8

List of Tables

Table 2.1	Measurement and Testing Location
Table 2.2	Instrumentation of the Hammer Impact Test
Table 3.1	Comparison between Measurement Data and WIL Data
Table 3.2	Ground-borne Noise Prediction Results

List of Figures

C11033/C/SCL/ACM/M53/004 Locations of Measurement Points at NSR KAT-P1-5

Appendices

- Appendix A Operational Ground-Borne Noise Mitigation Measures Plan Testing and Review Methodology Plan (Revision D)
- Appendix B Calibration Records of Measurement Equipment
- Appendix C Photo records of Measurement at KAT-P1-5
- Appendix D Measured Point Source Responses at KAT-P1-5
- Appendix E Determined Line Source Responses at KAT-P1-5
- Appendix F Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report
- Appendix G Comparison of Measured and EIA Line Source Responses
- Appendix H Updated Calculations of Ground-borne Noise Prediction

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012) was issued by Director of Environmental Protection (DEP) on 29 February 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (**Appendix A**). According to the T&RMP, the LSR test will be conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1), Kai Ching Estate Mun Ching House (KAT-P1-5), Residential Premises near KAT (KAT-P1-7) and Lee Wing Bldg (HOM-2-2). With respect to the construction programme, the first impact test was conducted at Mun Ching House on 1 and 2 February 2016.

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment ", 2006

1.2 Purpose of This OGNMMP

1.2.1 This OGNMMP (Batch 1) presents the LSR analysis based on the results of the impact test conducted at Mun Ching House (KAT-P1-5) and the operational ground-borne noise prediction at KAT-P1-5 based on measurement results.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the details of impact test and the prediction of LSR based on the measurement results.
 - Section 3 presents the LSR analysis and operational ground-borne noise prediction results.
 - Section 4 presents the conclusion.

2 IMPACT TESTING AND PREDICTION OF LSR

2.1 Testing Location

2.1.1 The first impact test was conducted at Kai Ching Estate – Mun Ching House (KAT-P1-5) on 1 and 2 Feb 2016. The information of the measurement location at the selected NSR are summarised in **Table 2.1** and the testing locations are shown in **Figure C11033/C/SCL/ACM/M53/004**.

Table 2.1 Measurement and Testing Loca
--

		Predicted	Measurem	ent Location ⁽²⁾				
r	NSR	Ground- borne Noise	Approx. Hori.	Approx. Slant Distance (From	Ground Type	Location of Hammer Impact Test (Approx.	Testing Date	
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)		
KAT-P1-5 ⁽¹⁾	Kai Ching Estate – Mun Ching House	40	13 (down track)	19 (down track)	Soil	Down Track Tunnel (-8.1mPD)	1 & 2 Feb 2016	

Note:

(1) KAT-P1-5 is a planned NSR during EIA stage. Assumptions were made on the horizontal building setback distance from tunnels (i.e. 10m from up track and 20m from down track) and noise levels were predicted based on this assumption.

(2) Measurement location at the selected NSR is shown in Figure C11033/C/SCL/ACM/M53/004.

2.2 Testing Instrumentations

2.2.1 The impact force levels applied within the tunnel were measured using a SINUS Harmonie connected to a laptop computer and vibration velocity levels were measured using a Bruel & Kjaer PULSE connected to a laptop computer. Wilcoxon seismic accelerometers were used on the surface. Details of the instruments used are provided in **Table 2.2** and the calibration records of the instruments are provided in **Appendix B**.

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model S	Connection to 3-hp air compressor to induce force (impact) at about 300kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Bruel & Kjaer PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Wilcoxon Research 731-207 and 731A-P31	Vibration transducers to measure vibration
Force transducer	PCB 207C	Fitted to pneumatic hammer to measure impact force

Table 2.2Instrumentation of the Hammer Impact Test

2.3 Testing and Measurement Procedures

- 2.3.1 The testing and measurement procedures are summarised below:
 - The test was carried out during night time when background vibration levels are low. All construction works inside tunnel and the adjacent tunnel were suspended during the testing.

- The impact hammer hit on the centreline of tunnel invert and it applied measured impact forces within the tunnel at six impact points. The measured impact forces were logged by the FFT spectrum analyzer. Each impact points were applied minimum 10 hits at around 300kN⁽²⁾ on the concrete invert along the tunnel.
- Meanwhile, accelerometers adhered on the ground and on the building structure of Mun Ching House. Site photos showing the positions of accelerometers are shown in Appendix C.
- The impact force in tunnel and the vibration levels on the ground were recorded by the two separated spectrum analyzers. Measurement signals were recorded in narrow band frequencies from 6.3Hz to 500Hz.
- The test was repeated at each hitting points in turn. The furthest hitting point done was up to 60m from the first hitting point in the tunnel. Testing on the proposed hitting point at 100m was not executed due to limitation of on-site condition. Results indicate that the response signals beyond 40m hitting point are weak and cannot be identified. Thus the response signals at 100m hitting point would be much weaker and would not affect the overall result.

2.4 **Prediction of Line Source Response**

- 2.4.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at Mun Ching House (soil type ground property referring to the geological profile) along the SCL alignment.
- 2.4.2 The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact sources and the receiver. The LSR [TM_{line}, dB re 1e⁻⁹ (m/s)/(N/m^{0.5})] is then determined by numerical integration with the formula⁽³⁾ as shown below, of the Point Source Response (PSR, TM_o) along the length of the train centred on the receiver, while PSR is determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log_{10} \left[h \times \left(\frac{10^{\frac{TMp1}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where

Impact interval (m) (interval varying from 5m to 40m) h

Last impact location =

- 2.4.3 The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽⁴⁾. The measured PSR and the determined LSR are presented in Appendices D and E respectively.
- 2.4.4 A total of three measurement points including Point A (outdoor ground), Point B (outdoor building structure) and Point C (indoor building structure) were set up. However, only Point A is adopted to determine the LSR as the vibration response of Point B and Point C were weak and cannot be identified. The spectra of the PSR at Point B and Point C as shown in Appendix D indicate no significant difference between distances at all frequencies. Thus it is

⁽²⁾ As mentioned in T&RMP, 400kN is only the design force of the impact machine and the actual output force in fact depends on the machine status and on-site condition.

⁽³⁾ Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

⁽⁴⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment ", 2006

considered that the estimated LSRs at Point B and Point C as shown in **Appendix E** are not appropriate to be used in the ground-borne noise calculation.

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 LSR Adopted in the Approved EIA Report

- 3.1.1 The LSR determines the vibration levels or attenuation in the ground as a function of distance caused by an incoherent line source of unit force point impacts.
- 3.1.2 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.

3.2 Review of LSR Values

- 3.2.1 The test carried out at Mun Ching House (KAT-P1-5) was specifically aimed at determining the LSR values for vibration propagating through soft ground.
- 3.2.2 The LSR values determined at Mun Ching House (KAT-P1-5) are compared with those used in the SCL EIA study for the same area and the same ground conditions (i.e. WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=18m & 26m). The EIA LSR values are now shown in **Appendix F**. To allow a better comparison, **Appendix G** shows the LSR value determined at measurement locations at a distance similar to EIA study. A summary of observation is presented in **Table 3.1**.

Table 3.1	Comparison between Measurement Data and WIL Data
-----------	--

ID	Location	LSR data adopted in EIA Study	Observation
KAT-P1-5	Kai Ching Estate – Mun Ching House	WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=18m & 26m	Measured LSR values ⁽¹⁾ at 18m are about at least 10dB lower than the EIA LSR values in all frequency bands. Measured LSR values at 26m are also lower than the EIA LSR values in all frequency bands.

Note:

(1) The LSR results obtained from the proposed method in the Plan and the actual testing method would have been the same, even given the different number of impact points and impact force. As presented in the Point A graph of **Appendix D**, the maximum difference of the measured PSR value at the nearest point (i.e. 15m slant distance) and the furthest point (i.e. 62m slant distance) is about 30dB. Since the LSR results are obtained based on integration of all the measured PSR values at different distances, the PSR values at nearest distance, which are at least 10dB higher, would dominates the LSR results while the lower PSR values at the further distance would be insignificant to the LSR results. Thus the PSR values further away than 60m horizontal distance do not affect the overall LSR results.

3.2.3 It should be noted that the WIL EIA LSR was measured in the borehole while the current test was measured inside the tunnel. The decoupling effect of vibration propagation between the media of tunnel structure and the ground soil, i.e. the tunnel coupling loss (TCL), would be different to that between the media of borehole casing and the ground soil. Thus the LSR result measured in the impact test should comprise the loss due to decoupling of the actual tunnel structure. The factor of tunnel coupling loss applied in the EIA prediction in NSR KAT-P1-5 was 3dB. Therefore, apart from different testing method and geological profile at WIL D018 and KAT-P1-5, such 3dB tunnel coupling loss also accounts for difference between the EIA LSR and measured LSR.

3.3 Operational Ground-borne Noise Prediction

3.3.1 Ground-borne noise assessment at KAT-P1-5 has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology

recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in **Table 3.2**. Sample calculation is given in **Appendix H**.

Location	GBNSR	Description	EIA Predic (unmitigat scenario dB(A)	tion ted),	New Predia (unmitiga scenario, b on measu LSR data), d	ction ited based ired dB(A)	Criterion, dB(A)		Difference Between EIA and New Prediction
Mun	KAT-P1	Kai Ching	Lmax	51	Lmax	40	Lmax	-	-11
Ching	-5	Estate – Mun Ching House	Daytime	43	Daytime	31	Daytime	55	-12
nouse			L _{eq,30min}		L _{eq,30min}		Leq,30min		
			Night-time	40	Night-time	28	Night-time	45	-12
			Leq,30min		Leq,30min		Leq,30min		

Table 3.2 Ground-borne Noise Prediction Results

- 3.3.2 As mentioned in **Section 3.2.3**, the measured LSR comprises of tunnel couple loss which is about 3dB as adopted in the EIA prediction. The updated calculation therefore excluded the tunnel coupling loss in the calculation to avoid double count of the effect.
- 3.3.3 Results indicate that the measured LSR values at actual soil would give lower ground-borne noise levels than EIA prediction which also below the noise criteria.
- 3.3.4 The preliminary update of prediction calculation shows no further mitigation measures such as trackform upgrade is required around the NSR KAT-P1-5.

3.4 Review of Other Assumptions

- 3.4.1 The following assumptions adopted in the EIA Reports will be reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information:
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

4 CONCLUSION

- 4.1.1 The measurement of ground LSR values has been conducted at Kai Ching Estate, Mun Ching House (KAT-P1-5) to check the suitability of the LSR assumptions adopted in the EIA stage for soil ground type.
- 4.1.2 The measured LSR values result in ground-borne noise levels which are lower than the EIA values in soil at KAT-P1-5.
- 4.1.3 The assumptions adopted in the EIA Reports will be further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information.

Appendix C

Photo records of Measurement at KAT-P1-5

Kai Ching Estate – Mun Ching House (KAT-P1-5)

Measurement Date: 1-2 Feb 2016 Measurement Time: 23:00-06:00 (Overnight)

Appendix D

Measured Point Source Responses at KAT-P1-5

KAT-P1-5 Point A

KAT-P1-5 Point B

KAT-P1-5 Point C

Appendix E

Determined Line Source Responses at KAT-P1-5

KAT-P1-5 Point A

KAT-P1-5 Point B

KAT-P1-5 Point C

Appendix F

Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report

Appendix 9.5: Line Source Response Values Obtained from West Island Line EIA Study Figure A LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 20m)

Figure B LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 34m)

Figure C LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 18m)

Figure D LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 41m)

Figure F LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 40m)

Appendix G

Comparison of Measured and EIA Line Source Responses

Comparison between the LSR adopted in the EIA and Measured LSR at KAT-P1-5

Appendix H

Updated Calculations of Ground-borne Noise Prediction

Project:	Shatin Central Link Rail Operational GBN Asses	sment	1	Train Spee	ed: 60 kph
NSR Ref.:	KAT-P1-5		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises near Kai Tak Station Site	Up Track	10	15	18
Assessed Floor	2	Down Track	20	17	26
Item:	49		· · · · · · · · · · · · · · · · · · ·		

KAT-P1-5 Updated EIA Calculation by Measured LSR

				Frequency (Hz)													
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	59 		10	283	423	9	9 23 24	S	9	80. W	\$ S	\$	24	967 - 72	232		189
FDL	dB re 1 lb/	in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB	Y/N I	N														
TIL	dB	Туре (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре (0														
LSR	dB re 10 ⁻⁶	in/s*in ^{0.5} /lb	3.9	11.6	7.8	3.1	2.7	5.8	0.8	-3.5	-7.8	-15.1	-20.5	-28.9	-28.4	-36.4	-37.5
Up Track Vib. Level	dB re 10 ⁻⁶	n/sec	37.9	49.6	44.8	38.1	36.7	43.8	41.8	38.5	34.2	22.9	16.5	7.1	4.6	-2.4	-6.5
Down Track Calculation	on																
FDL	dB re 1 lb/	in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB	Y/N I	N														
TIL	dB	Туре (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре (0														
LSR	dB re 10 ⁻⁶	in/s*in ^{0.5} /lb	-2.6	8.1	4.3	-1.2	-3.1	-0.5	-5.9	-10.7	-14.9	-20.6	-24.2	-31.7	-29.4	-37.1	-38.5
Down Track Vib. Level	dB re 10 ⁻⁶	in/sec	31.4	46.1	41.3	33.8	30.9	37.5	35.1	31.3	27.1	17.4	12.8	4.3	3.6	-3.1	-7.5
Total of Up and Down	Tracks Cal	culation	27														
Total Vibration Level Ou	tside Buildi	ng	38.8	51.2	46.4	39.5	37.7	44.7	42.6	39.3	34.9	24.0	18.1	8.9	7.2	0.3	-4.0
BCF	dB	Y/N (0														
BVR-up	dB	Floor 2	2 -4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Dradicted Noise Level		1/3 Oct	dB 52.8	65.2	60.4	53 F	51.5	58.4	65.8	523	47.7	36.0	20.4	18.0	16.2	0.0	47
Dredicted Noise Level		Oct	dB	03.2	66.7	55.5	51.5	60.7	33.0	32.3	53.7	30.0	23.1	29.7	10.2	5.0	10.7
I		dB	(A) 30 (5	00.1			00.1			55.1			20.1			10.1
-max		dD	(A) 20														
Leq.30mins		dB	(A) 28.	2													
Noise Criteria		dB	(A) 45														

Compliance Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the same or the next available smaller borehole depth. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [5] Leq.30mins = Leq(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB
- $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

Yes

[6] Leg 30mins is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

The following abbreviations are used in the above calculation:

- Ground borne noise level within the structure L:
- FDL : Force density level for the KCR SP1900 EMU
- LSR : Unit force incoherent line source response for the ground
- TIL : Trackform attenuation or insertion loss, relative level
- TCF : Vibration coupling between the tunnel and the ground for soil based tunnels, relative level
- BCF : Vibration coupling loss factor between the soil and the foundation, relative level
- BVR : Building vibration reduction or amplification within a structure from the foundation to the occupied areas, relative level Conversion from floor and wall vibration to noise CTN :
- TOC : Turnout and Crossover Factor
- SAF : Safety margin to account for wheel/rail condition and projection uncertainties

Remark:

(1) The slant distance in Table 2.1 of this Plan is the measured distance in the testing, while the horizontal and slant distances in this calculation are adopted from the previous EIA calculation for a like-to-like comparison in order to facilitate the comparison of the results between adoption of WIL LSR and the measured LSR. The distance values presented here are independent in Table 2.1.

Annex B2

Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 2 – Kai Tak Planned Development) (June 2016) MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 2 (Version C)

Position: Independent Environmental Checker

Date: 23	Jun. 2016

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 2 (Version C)

(June 2016)

Certified by:	Richard Kwan	Y	luit

Position: _____Environmental Team Leader____

Date: 23 Jun 2016

MTR Corporation Limited

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan (Batch 2 – Kai Tak Planned Development)

June 2016

	Name	Signature
Prepared & Checked:	Angela Tong	Angela
Reviewed & Approved:	m ^J osh Lam	Anere

Version: C Date: 22 Jun 2016

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

Page

1	INTR	ODUCTION	1
	1.1 1.2 1.3	Background Purpose of This OGNMMP Report Structure	1 2 2
2	IMPA	ACT TESTING AND PREDICTION OF LSR	3
	2.1	Testing Location	
	2.2	Testing Instrumentations	
	2.3	Testing and Measurement Procedures	
	2.4	Prediction of Line Source Response	4
3	REVI	IEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION	5
	3.1	LSR Adopted in the Approved EIA Report	5
	3.2	Review of LSR Values	5
	3.3	Operational Ground-borne Noise Prediction	5
	3.4	Review of Other Assumptions	6
4	CON	CLUSION	7

List of Tables

Table 2.1	Measurement and Testing Location
Table 2.2	Instrumentation of the Hammer Impact Test
Table 3.1	Comparison between Measurement Data and WIL Data
Table 3.2	Ground-borne Noise Prediction Results

List of Figures

C11033/C/SCL/ACM/M53/005 Locations of Measurement Points at NSR KAT-P1-7

Appendices

- Appendix A Operational Ground-Borne Noise Mitigation Measures Plan Testing and Review Methodology Plan (Revision D)
- Appendix B Calibration Records of Measurement Equipment
- Appendix C Photo records of Measurement at KAT-P1-7
- Appendix D Measured Point Source Responses at KAT-P1-7
- Appendix E Determined Line Source Responses at KAT-P1-7
- Appendix F Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report
- Appendix G Comparison of Measured and EIA Line Source Responses
- Appendix H Updated Calculations of Ground-borne Noise Prediction

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012) was issued by Director of Environmental Protection (DEP) on 29 February 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (Appendix A). According to the T&RMP, the LSR test will be conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1), Kai Ching Estate Mun Ching House (KAT-P1-5), Residential Premises near KAT (KAT-P1-7) and Lee Wing Bldg (HOM-2-2). The first impact test was conducted at Mun Ching House on 1 and 2 February 2016, and the second impact test was conducted at the planned residential development near KAT on 15 April 2016.

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

1.2 Purpose of This OGNMMP

1.2.1 This OGNMMP (Batch 2) presents the LSR analysis based on the results of the impact test conducted at Residential Premises near KAT (KAT-P1-7) and the operational ground-borne noise prediction at KAT-P1-7 based on measurement results.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the details of impact test and the prediction of LSR based on the measurement results.
 - Section 3 presents the LSR analysis and operational ground-borne noise prediction results.
 - Section 4 presents the conclusion.

2 IMPACT TESTING AND PREDICTION OF LSR

2.1 Testing Location

2.1.1 The second impact test was conducted at Residential Premises near KAT (KAT-P1-7) on 15 April 2016. The information of the measurement location at the selected NSR are summarised in **Table 2.1** and the testing locations are shown in **Figure C11033/C/SCL/ACM/M53/005**.

Table 2.1	Measurement and Test	ing Location
	incasurement and rest	

		Predicted	Measurem	ent Location ⁽²⁾		Location of		
M	ISR	Ground- borne Noise	Approx. Hori.	Approx. Slant Distance (From	Ground Type	Hammer Impact Test	Testing Date	
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)		
KAT-P1-7 ⁽¹⁾	Residential premises near Kai Tak Station	45	0 (up track) 0 (down track)	18	Mixed rock	Down Track Tunnel (-13mPD)	15 April 2016	

Note:

(1) KAT-P1-7 is a planned NSR during EIA stage. Assumptions were made on the vertical distance from tunnels (i.e. 15m from up track and 17m from down track) and noise levels were predicted based on this assumption.

(2) Measurement location at the selected NSR is shown in Figure C11033/C/SCL/ACM/M53/005.

2.2 Testing Instrumentations

2.2.1 The impact force levels applied within the tunnel were measured using a SINUS Harmonie connected to a laptop computer and vibration velocity levels on the ground were measured using a Brüel & Kjær PULSE connected to a laptop computer. Wilcoxon seismic accelerometers were used on the ground surface. Details of the instruments used are provided in **Table 2.2** and the calibration records of the instruments are provided in **Appendix B**.

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model 3.5	Connection to 2-hp air compressor to induce force (impact) at about 100kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Brüel & Kjær PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Wilcoxon Research 731-207 and 731A-P31	Vibration transducers to measure vibration
Force transducer	PCB 200M200	Fitted to pneumatic hammer to measure impact force

Table 2.2Instrumentation of the Hammer Impact Test

2.3 Testing and Measurement Procedures

- 2.3.1 The testing and measurement procedures are summarised below:
 - The test was carried out during night time when background vibration levels are low. All construction works inside tunnel and the adjacent tunnel were suspended during the testing.

- The impact hammer hit on the tunnel invert and it applied measured impact forces within the tunnel. The measured impact forces were logged by the FFT spectrum analyzer. For each location of accelerometer, impact point was applied minimum 10 hits at around 100kN⁽²⁾ on the concrete invert.
- Meanwhile, accelerometers fixed on the spikes inserted onto the soil of the ground at different horizontal distances (0m, 5m, 10m, 15m, 20m, 25m, 30m and 35m) from the impact point. Site photos taken during the measurement are shown in **Appendix C**.
- The impact force in tunnel and the vibration levels on the ground were recorded by the two separated spectrum analyzers. Measurement signals were recorded in narrow band frequencies from 6.3Hz to 500Hz.
- The furthest measurement point on the ground was made up to 35m horizontal distance from the impact point. Reading also indicated that the responses of impact signals at 30m horizontal distance were weak and cannot be identified. Hence the impact signals at further distances over 30m would be much lower which are insignificant to the overall result, and testing on the measurement point over 35m from the impact point were not executed.

2.4 Prediction of Line Source Response

- 2.4.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at NSR KAT-P1-7 Residential Premises near KAT (mixed rock type ground property referring to the geological profile) along the SCL alignment.
- 2.4.2 The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact source and the receivers. The LSR $[TM_{line}, dB \text{ re } 1e^{.9} \text{ (m/s)/(N/m^{0.5})}]$ is then determined by numerical integration with the formula⁽³⁾ as shown below, of the Point Source Response (PSR, $TM_{\rho i}$) along the length of the train centred on the receiver, while PSR is determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log 10 \left[h \times \left(\frac{10^{\frac{TMpi}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where

H = Reciver interval (m) (interval varying from 5m to 40m) TMpi = Point source transfer mobility for ith receiver location (dB

$$I_{\text{pi}}$$
 = Point source transfer mobility for ith receiver location (dB re 1e-9 (m/s)/N)

n = Last receiver location

2.4.3 The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽⁴⁾. The measured PSR and the determined LSR are presented in **Appendices D** and **E** respectively.

⁽²⁾ As mentioned in T&RMP, 400kN is only the design force of the impact machine and the actual output force in fact depends on the machine status and on-site condition.

⁽³⁾ Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

⁽⁴⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 LSR Adopted in the Approved EIA Report

- 3.1.1 The LSR determines the vibration levels or attenuation in the ground as a function of distance caused by an incoherent line source of unit force point impacts.
- 3.1.2 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.

3.2 Review of LSR Values

- 3.2.1 The test carried out at the planned Residential Premises near KAT (KAT-P1-7) was specifically aimed at determining the LSR values for vibration propagating through the ground of mixed rock type.
- 3.2.2 The LSR values determined at planned Residential Premises near KAT (KAT-P1-7) are compared with those used in the SCL EIA study for the same area and the same ground conditions (i.e. WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=15m & 17m). The EIA LSR values are now shown in Appendix F. To allow a better comparison, Appendix G shows the LSR value determined at measurement locations at a distance similar to EIA study. A summary of observation is presented in Table 3.1.

Table 3.1	Comparison between Measurement Data and WIL Data
-----------	--

ID	Location	LSR data adopted in EIA Study	Observation
KAT-P1-7	Planned Residential Premises near KAT	WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=15m & 17m	Measured LSR values ⁽¹⁾ at both 15m and 17m are at least 8dB lower than the EIA LSR values in all frequency bands.

Note:

(1) The maximum difference of the measured PSR value at the nearest point (i.e. 18m slant distance) and the furthest point (i.e. 39m slant distance) is about 15dB as presented in **Appendix D**. Since the LSR results are obtained based on integration of all the measured PSR values at different distances, the PSR values at nearest distance, which are at least 10dB higher, would dominates the LSR results while the lower PSR at the further distance would be insignificant to the LSR results. Thus the PSR values further away than 35m horizontal distance do not affect the overall LSR results.

3.2.3 It should be noted that the WIL EIA LSR was measured in the borehole while the current test was measured inside the tunnel. The decoupling effect of vibration propagation between the media of tunnel structure and the ground soil, i.e. the tunnel coupling loss (TCL), would be different to that between the media of borehole casing and the ground soil. Thus the LSR result measured in the impact test should comprise the loss due to decoupling of the actual tunnel structure. The factor of tunnel coupling loss applied in the EIA prediction for station structure in NSR KAT-P1-7 was 5dB. Therefore, apart from different testing method and geological profile at WIL D018 and KAT-P1-7, such 5dB tunnel coupling loss also accounts for difference between the EIA LSR and measured LSR.

3.3 Operational Ground-borne Noise Prediction

3.3.1 Ground-borne noise assessment at KAT-P1-7 has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology

recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in **Table 3.2**. Sample calculation is given in **Appendix H**.

Location	GBNSR	Description	EIA Prediction (unmitigated scenario), dB(A)		New Prediction (unmitigated scenario, based on measured LSR data), dB(A)		Criterion, dB(A)		Difference Between EIA and New Prediction, dB(A)
Kai Tak	KAT-P1	Residential	Lmax	57	Lmax	52	Lmax	-	-
	-7	Premises near KAT	Daytime L _{eq,30min}	48	Daytime L _{eg,30min}	42	Daytime L _{eq,30min}	55	-6
			Night-time L _{eq,30min}	45	Night-tim e L _{eq,30min}	39	Night-time L _{eq,30min}	45	-6

 Table 3.2
 Ground-borne Noise Prediction Results

- 3.3.2 As mentioned in **Section 3.2.3**, the measured LSR comprises of tunnel couple loss which is about 5dB as adopted in the EIA prediction. The updated calculation therefore excluded the tunnel coupling loss in the calculation to avoid double count of the effect.
- 3.3.3 Results indicate that the measured LSR values at actual soil would give lower ground-borne noise levels than EIA prediction which also below the noise criteria.
- 3.3.4 The preliminary update of prediction calculation shows no further mitigation measures such as trackform upgrade is required around the NSR KAT-P1-7.

3.4 Review of Other Assumptions

- 3.4.1 The following assumptions adopted in the EIA Reports will be reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information:
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

4 CONCLUSION

- 4.1.1 The measurement of ground LSR values has been conducted at Residential Premises near KAT (KAT-P1-7) to check the suitability of the LSR assumptions adopted in the EIA stage for mixed rock ground type.
- 4.1.2 The measured LSR values result in ground-borne noise levels which are lower than the EIA values in soil at KAT-P1-7.
- 4.1.3 The assumptions adopted in the EIA Reports will be further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information.

Appendix C

Photo records of Measurement at KAT-P1-7

Residential Premises near KAT (KAT-P1-7)

Measurement Date: 15 April 2016 Measurement Time: 19:00-24:00

Appendix D

Measured Point Source Responses at KAT-P1-7

Appendix E

Determined Line Source Responses at KAT-P1-7

Appendix F

Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report

Appendix 9.5: Line Source Response Values Obtained from West Island Line EIA Study Figure A LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 20m)

Figure B LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 34m)

Figure C LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 18m)

Figure D LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 41m)

Figure F LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 40m)

Appendix G

Comparison of Measured and EIA Line Source Responses

Comparison between the LSR adopted in the EIA and Measured LSR at KAT-P1-7

Up Track Calculation

Down Track Calculation

Appendix H

Updated Calculations of Ground-borne Noise Prediction

KAT-P1-7 Updated EIA Calculation by Measured LSR

Project:	Shatin Central Link Rail Operational GBN Asse		Train Spee	ed: 75 kph	
NSR Ref.:	KAT-P1-7	_	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises near Kai Tak Station	Up Track	0	15	15
Assessed Floor	2	Down Track	0	17	17
Item:	51				

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	35.9	39.9	38.9	36.9	35.9	39.9	42.9	43.9	43.9	39.9	38.9	37.9	34.9	35.9	32.9
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	14.4	15.9	13.7	11.8	8.9	8.2	8.6	6.5	2.9	0.3	-7.1	-11.0	-19.7	-29.3	-37.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	50.3	55.8	52.7	48.7	44.8	48.1	51.5	50.4	46.8	40.2	31.9	27.0	15.3	6.6	-4.1
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	35.9	39.9	38.9	36.9	35.9	39.9	42.9	43.9	43.9	39.9	38.9	37.9	34.9	35.9	32.9
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	12.2	14.5	11.4	9.3	7.1	5.8	6.8	3.7	0.1	-3.0	-10.3	-14.2	-22.5	-30.2	-37.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	48.2	54.4	50.4	46.2	43.0	45.8	49.7	47.7	44.0	36.9	28.6	23.8	12.5	5.7	-4.6
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	tside Building	52.4	58.2	54.7	50.7	47.0	50.1	53.7	52.3	48.6	41.9	33.5	28.7	17.1	9.2	-1.3
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	66.4	72.2	68.7	64.7	60.8	63.5	66.9	65.3	61.4	53.9	44.5	38.7	26.1	17.9	7.4
Predicted Noise Level	Oct, dB			74.3			69.2			67.0			45.6			18.3
Lmay	dB(A)	51.5														

dB(A) Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

dB(A)

39.4

45

Yes

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the same or the next available smaller borehole depth. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dE $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] L_{eq,30mins} is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

The following abbreviations are used in the above calculation:

- Ground borne noise level within the structure L :
- FDL : Force density level for the KCR SP1900 EMU
- LSR : Unit force incoherent line source response for the ground
- TIL : Trackform attenuation or insertion loss, relative level
- Vibration coupling between the tunnel and the ground for soil based tunnels, relative level TCF :
- BCF: Vibration coupling loss factor between the soil and the foundation, relative level
- BVR : Building vibration reduction or amplification within a structure from the foundation to the occupied areas, relative level
- CTN: Conversion from floor and wall vibration to noise
- TOC : Turnout and Crossover Factor
- SAF : Safety margin to account for wheel/rail condition and projection uncertainties

Remark:

-eq.30mins Noise Criteria

Compliance

(1) The slant distance in Table 2.1 of this Plan is the measured distance in the testing, while the horizontal and slant distances in this calculation are adopted from the previous EIA calculation for a like-to-like comparison in order to facilitate the comparison of the results between adoption of WIL LSR and the measured LSR. The distance values presented here are independent in Table 2.1.

Annex B3

Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 3 – Upper Wong Tai Sin Estate) (September 2016)

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 3

Date: 14 September 2016

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 3

(September 2016)

Certified by: <u><u><u>P</u></u><u>Richard Kwan</u></u>

Position: Environmental Team Leader

Date: 14/9/2016

AECOM

MTR Corporation Limited

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan (Batch 3 – Upper Wong Tai Sin Estate)

September 2016

		Name	Signature
Prepared & Checked:		Angela Tong	Anoch
Reviewed & Approved:		Josh Lam	Aug -
		<u></u>	
Version:	Α	Date:	14 September 2016

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

OF001 - Submission Checking Record

Table of Content

Page

1	INTR	ODUCTION	.1
	1.1 1.2 1.3	Background Purpose of This OGNMMP Report Structure	. 1 . 2 . 2
2	IMPA	CT TESTING AND PREDICTION OF LSR	. 3
	2.1 2.2 2.3 2.4	Testing Location Testing Instrumentations Testing and Measurement Procedures Prediction of Line Source Response	.3 .3 .3 .4
3	REVI	EW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION	. 5
	3.1 3.2 3.3 3.4	LSR Adopted in the Approved EIA Report. Review of LSR Values Operational Ground-borne Noise Prediction Review of Other Assumptions	.5 .5 .5 .6
4	CON	CLUSION	.7

List of Tables

Table 2.1	Measurement and Testing Location
Table 2.2	Instrumentation of the Hammer Impact Test
Table 3.1	Comparison between Measurement Data and WIL Data
Table 3.2	Ground-borne Noise Prediction Results

List of Figures

C11033/C/SCL/ACM/M53/006 Locations of Measurement Points at NSR DIH-P1-1

Appendices

- Appendix A Operational Ground-Borne Noise Mitigation Measures Plan Testing and Review Methodology Plan (Revision D)
- Appendix B Calibration Records of Measurement Equipment
- Appendix C Photo records of Measurement at DIH-P1-1
- Appendix D Measured Point Source Responses at DIH-P1-1
- Appendix E Determined Line Source Responses at DIH-P1-1
- Appendix F Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report
- Appendix G Comparison of Measured and EIA Line Source Responses
- Appendix H Updated Calculations of Ground-borne Noise Prediction

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012) was issued by Director of Environmental Protection (DEP) on 29 February 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (**Appendix A**). According to the T&RMP, the LSR test will be conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1), Kai Ching Estate Mun Ching House (KAT-P1-5), Residential Premises near KAT (KAT-P1-7) and Lee Wing Bldg (HOM-2-2). The first impact test was conducted at Mun Ching House on 1 and 2 February 2016, and the second impact test was conducted at the planned residential development near KAT on 15 April 2016. The third impact test was conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) on 11 and 12 August 2016.

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

1.2 Purpose of This OGNMMP

1.2.1 This OGNMMP (Batch 3) presents the LSR analysis based on the results of the third impact test conducted at Upper Wong Tai Sin Estate – Wing Sin House (DIH-P1-1) and the operational ground-borne noise prediction at DIH-P1-1 based on measurement results.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the details of impact test and the prediction of LSR based on the measurement results.
 - Section 3 presents the LSR analysis and operational ground-borne noise prediction results.
 - Section 4 presents the conclusion.

2 IMPACT TESTING AND PREDICTION OF LSR

2.1 Testing Location

2.1.1 The third impact test was conducted at Upper Wong Tai Sin Estate – Wing Sin House (DIH-P1-1) on 11 and 12 August 2016. The information of the measurement location at the selected NSR are summarised in **Table 2.1** and the testing locations are shown in **Figure C11033/C/SCL/ACM/M53/006**.

Table 2.1 Measurement and Testing Location	Table 2.1	Measurement and	Testing Location
--	-----------	-----------------	-------------------------

		Predicted	Measurem	ent Location ⁽²⁾		Location of		
٢	NSR		Approx. Hori.	Approx. Slant Distance (From	Ground Type	Hammer Impact Test	Testing Date	
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)		
DIH-P1-1 ⁽¹⁾	Upper Wong Tai Sin Estate – Wing Sin House	32	7 (down track)	31 (down track)	Mixed rock	Down Track Tunnel (-2.2mPD)	11 & 12 Aug 2016	

Notes:

 DIH-P1-1 is a planned NSR during EIA stage. Assumptions were made on the horizontal distance from tunnels (i.e. Om from up track and 5m from down track) and noise levels were predicted based on this assumption.

(2) Measurement location at the selected NSR is shown in Figure C11033/C/SCL/ACM/M53/006.

2.2 Testing Instrumentations

2.2.1 The impact force levels applied within the tunnel were measured using a SINUS Harmonie connected to a laptop computer and vibration velocity levels on the ground were measured using a Brüel & Kjær PULSE connected to a laptop computer. Wilcoxon seismic accelerometers were used on the ground surface. Details of the instruments used are provided in **Table 2.2** and the calibration records of the instruments are provided in **Appendix B**.

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model 3.5	Connection to 2-hp air compressor to induce force (impact) at about 130kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Brüel & Kjær PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Wilcoxon Research 731-207 and 731A-P31	Vibration transducers to measure vibration
Force transducer	PCB 200M200	Fitted to pneumatic hammer to measure impact force

Table 2.2Instrumentation of the Hammer Impact Test

2.3 Testing and Measurement Procedures

- 2.3.1 The testing and measurement procedures are summarised below:
 - The test was carried out during night time when background vibration levels are medium due to the nearby traffic. All construction works inside tunnel and the adjacent tunnel were suspended during the testing.

- The impact hammer hit on the tunnel invert and it applied measured impact forces within the tunnel. The measured impact forces were logged by the FFT spectrum analyzer. For each location of accelerometer, impact point was applied minimum 10 hits at around 130kN⁽²⁾ on the concrete invert.
- Meanwhile, accelerometers were mounted on the ground and inside the building of Wing Sin House. The impact hammer in the tunnel hit on the tunnel invert at different horizontal distances (5m, 10m, 20m, 30m, 40m and 60m) from the first impact point (i.e. 0m). Site photos taken during the measurement are shown in **Appendix C**.
- The impact force in tunnel and the vibration levels on the ground were recorded by the two separated spectrum analyzers. Measurement signals were recorded in narrow band frequencies from 6.3Hz to 500Hz.
- The furthest impact point in the tunnel was made up to 60m horizontal distance from the zero meter impact point. Reading also indicated that the responses of impact signals at 10m horizontal distance were weak and cannot be identified. Hence the impact signals at further distances over 10m would be much lower which are insignificant to the overall result, and testing on the measurement point over 60m from the impact point were not executed.

2.4 **Prediction of Line Source Response**

- 2.4.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at NSR DIH-P1-1 Upper Wong Tai Sin Estate Wing Sin House (mixed rock type ground property referring to the geological profile) along the SCL alignment.
- 2.4.2 The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact source and the receivers. The LSR $[TM_{line_i} dB \text{ re } 1e^{-9} (m/s)/(N/m^{0.5})]$ is then determined by numerical integration with the formula⁽³⁾ as shown below, of the Point Source Response (PSR, TM_{pi}) along the length of the train centred on the receiver, while PSR is determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log_{10} \left[h \times \left(\frac{10^{\frac{TMp1}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where

H = Receiver interval (m) (interval varying from 5m to 40m) TMpi = Point source transfer mobility for ith receiver location (dB re 1e-9 (m/s)/N) n = Last receiver location

- 2.4.3 The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽⁴⁾. The measured PSR and the determined LSR are presented in **Appendices D** and **E** respectively.
- 2.4.4 A total of two measurement points including Point A (outdoor) and Point B (indoor building structure) were set up. However, only Point A is adopted to determine the LSR as the vibration response of Point B was weak and cannot be identified. It is considered that the measurement results at Point B are not appropriate to be used in the ground-borne noise calculation.

⁽²⁾ As mentioned in T&RMP, 400kN is only the design force of the impact machine and the actual output force in fact depends on the machine status and on-site condition.

⁽³⁾ Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

⁽⁴⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment ", 2006

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 LSR Adopted in the Approved EIA Report

- 3.1.1 The LSR determines the vibration levels or attenuation in the ground as a function of distance caused by an incoherent line source of unit force point impacts.
- 3.1.2 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.

3.2 Review of LSR Values

- 3.2.1 The test carried out at the Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) was specifically aimed at determining the LSR values for vibration propagating through the ground of mixed rock type.
- 3.2.2 The LSR values determined at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) are compared with those used in the SCL EIA study for the same area and the same ground conditions (i.e. WIL D002 Rockhead Depth = 24m, Hole Depth = 34m & 20m, Slant Distance = 37m & 28m). The EIA LSR values are shown in Appendix F. To allow a better comparison, Appendix G shows the LSR value determined at measurement locations at a distance similar to EIA study. A summary of observation is presented in Table 3.1.

Table 3.1	Comparison between Measurement Data and WIL Data
-----------	--

ID	Location	LSR data adopted in EIA Study	Observation
DIH-P1-1	Upper Wong Tai Sin Estate – Wing Sin House	WIL D002 Rockhead Depth=24m Hole Depth=34m & 20m Slant Distance=37m & 28m	Measured LSR values at both 37m & 28m are in general lower than the EIA LSR values at most frequency bands and are of similar magnitude at 63Hz and 160Hz.

3.2.3 It should be noted that the WIL EIA LSR was measured in the borehole while the current test was measured inside the tunnel. The decoupling effect of vibration propagation between the media of tunnel structure and the ground soil, i.e. the tunnel coupling loss (TCL), would be different to that between the media of borehole casing and the ground soil. Thus the LSR result measured in the impact test should comprise the loss due to decoupling of the actual tunnel structure. The factor of tunnel coupling loss applied in the EIA prediction for the structure at NSR DIH-P1-1 was 5dB. Therefore, apart from different testing method and geological profile at WIL D002 and DIH-P1-1, such 5dB tunnel coupling loss also accounts for difference between the EIA LSR and measured LSR.

3.3 Operational Ground-borne Noise Prediction

3.3.1 Ground-borne noise assessment at DIH-P1-1 has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in **Table 3.2**. Sample calculation is given in **Appendix H**.

Location	GBNSR	Description	EIA Prediction (unmitigated scenario), dB(A)		New Prediction (unmitigated scenario, based on measured LSR data), dB(A)		Criterion, dB(A)		Difference Between EIA and New Prediction, dB(A)	
Wong Tai	DIH-P1-	Upper Wong	Lmax	45	Lmax	42	Lmax	-	-	
Sin	1	Tai Sin Estate –	Daytime L _{eq,30min}	35	Daytime L _{eq,30min}	32	Daytime L _{eq,30min}	55	-3	
	Wing Sin House	Night-time Leg.30min	32	Night-time L _{eg.30min}	29	Night-time L _{eg.30min}	45	-3		

Table 3.2 Ground-borne Noise Prediction Results

- 3.3.2 As mentioned in **Section 3.2.3**, the measured LSR comprises of tunnel couple loss which is about 5dB as adopted in the EIA prediction. The updated calculation therefore excluded the tunnel coupling loss in the calculation to avoid double count of the effect.
- 3.3.3 Results indicate that the measured LSR values at actual ground condition would give lower ground-borne noise levels than EIA predictions which are also below the noise criteria.
- 3.3.4 The preliminary update of prediction calculation shows no further mitigation measures such as trackform upgrade is required around the NSR DIH-P1-1.

3.4 Review of Other Assumptions

- 3.4.1 The following assumptions adopted in the EIA Reports will be reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information:
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

4 CONCLUSION

- 4.1.1 The measurement of ground LSR values has been conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) to check the suitability of the LSR assumptions adopted in the EIA stage for mixed rock ground type.
- 4.1.2 The measured LSR values result in ground-borne noise levels which are lower than the EIA predictions at DIH-P1-1.
- 4.1.3 The assumptions adopted in the EIA Reports will be further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information.

Appendix C

Photo records of Measurement at DIH-P1-1

Appendix C - Photo records of Tunnel Impact test at DIH-P1-1

Appendix D

Measured Point Source Responses at DIH-P1-1

Appendix E

Determined Line Source Responses at DIH-P1-1

Appendix F

Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report

Appendix 9.5: Line Source Response Values Obtained from West Island Line EIA Study Figure A LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 20m)

Figure B LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 34m)

Figure C LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 18m)

Figure D LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 41m)

Figure F LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 40m)

Appendix G

Comparison of Measured and EIA Line Source Responses

Comparison between the LSR adopted in the EIA and Measured LSR at DIH-P1-1

Up Track Calculation

Down Track Calculation

Appendix H

Updated Calculations of Ground-borne Noise Prediction

DIH-P1-1 Updated EIA Calculation by Measured LSR

Appendix 9.3: Detailed Operational Groundborne Noise Calculations

Project:	Shatin Central Link Rail Operational GBN As		Train Spee	ed: 90 kph	
NSR Ref.:	DIH-P1-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Upper Wong Tai Sin Estate Phase 3	Up Track	0	37	37
Assessed Floor	2	Down Track	5	28	28
Item:	40				

										Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	N															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0															
LSR	dB re	10 ⁻⁶ in/s*in ⁰	⁵ /lb	4.2	6.5	-3.9	-7.0	0.7	4.4	-4.2	-9.3	-12.0	-10.2	-18.7	-27.2	-27.7	-31.9	-33.6
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		41.7	48.0	36.6	31.5	38.2	45.9	40.3	36.2	33.5	31.3	21.8	12.3	8.8	5.6	0.9
Down Track Calculation	n																	
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	N															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0															
LSR	dB re	10 ⁻⁶ in/s*in ⁰	⁵ /lb	7.4	7.0	-2.8	-5.6	1.4	5.1	-3.7	-7.2	-10.6	-9.3	-17.8	-25.1	-26.9	-30.4	-33.2
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		45.0	48.5	37.7	32.9	38.9	46.6	40.8	38.3	34.9	32.2	22.7	14.4	9.6	7.2	1.3
Total of Up and Down 1	Fracks	Calculatio	n															
Total Vibration Level Out	tside B	uilding		46.6	51.3	40.2	35.3	41.6	49.3	43.6	40.4	37.3	34.8	25.3	16.5	12.2	9.4	4.1
BCF	dB	Y/N	0															
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

Predicted Noise Level	1/3 Oct, dB	60.6	65.3	54.2	49.3	55.4	62.7	56.8	53.4	50.1	46.8	36.3	26.5	21.2	18.1	12.8
Predicted Noise Level	Oct, dB			65.7			64.3			55.7			36.8			19.3
L _{max}	dB(A)	42.4														
Leq,30mins	dB(A)	29.4														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the same or the next available smaller borehole depth. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] Leg 30mins is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

The following abbreviations are used in the above calculation:

L: Ground borne noise level within the structure

- FDL: Force density level for the KCR SP1900 EMU
- LSR : Unit force incoherent line source response for the ground

TIL : Trackform attenuation or insertion loss, relative level

TCF: Vibration coupling between the tunnel and the ground for soil based tunnels, relative level

BCF: Vibration coupling loss factor between the soil and the foundation, relative level

BVR: Building vibration reduction or amplification within a structure from the foundation to the occupied areas, relative level

CTN: Conversion from floor and wall vibration to noise

TOC: Turnout and Crossover Factor

SAF : Safety margin to account for wheel/rail condition and projection uncertainties

Remark:

(1) The slant distance in Table 2.1 of this Plan is the measured distance in the testing, while the horizontal and slant distances in this calculation are adopted from the previous EIA calculation for a like-to-like comparison in order to facilitate the comparison of the results between adoption of WIL LSR and the measured LSR. The distance values presented here are independent in Table 2.1.

Appendix B4

Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 4 – Lee Wing Building) (March 2017)

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 4

	(March 2017)	,
Verified by:	Fredrick Leong	Am
Position: <u>Ind</u>	<u>ependent Environme</u>	<u>ntal Checker</u>

Date:	7 Mar.	2017	

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation

Measures Plan – Batch 4

(March 2017)

	Y	
Certified by:	Felice Wong	

Position: Environmental Team Leader

Date: _____ 7 March 2017

AECOM

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan (Batch 4 – Lee Wing Building)

March 2017

	Name	Signature		
Prepared & Checked:	Angela Tong	Anda		
Reviewed & Approved:	Josh Lam	Anel		

Version:

Date: 6 March 2017

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

A

AECOM Asia Co. Ltd. 8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

Page

1	INTR	ODUCTION	1
	1.1 1.2 1.3	Background Purpose of This OGNMMP Report Structure	1 2 2
2	IMPA	CT TESTING AND PREDICTION OF LSR	3
	2.1	Testing Location	3
	2.2 2.3	Testing Instrumentations Testing and Measurement Procedures	3
	2.4	Prediction of Line Source Response	4
3	REVI	EW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION	5
	3.1	LSR Adopted in the Approved EIA Report	5
	3.2	Review of LSR Values	5
	3.3	Operational Ground-borne Noise Prediction	5
	3.4	Review of Other Assumptions	6
4	CON	CLUSION	7

List of Tables

Table 2.1	Measurement and Testing Location
Table 2.2	Instrumentation of the Hammer Impact Test
Table 3.1	Comparison between Measurement Data and WIL Data
Table 3.2	Ground-borne Noise Prediction Results

List of Figures

C11033/C/SCL/ACM/M53/007 Locations of Measurement Points at NSR HOM-2-2

Appendices

- Appendix A Operational Ground-Borne Noise Mitigation Measures Plan Testing and Review Methodology Plan (Revision D)
- Appendix B Calibration Records of Measurement Equipment
- Appendix C Photo records of Measurement at HOM-2-2
- Appendix D Measured Point Source Responses at HOM-2-2
- Appendix E Determined Line Source Responses at HOM-2-2
- Appendix F Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report
- Appendix G Comparison of Measured and EIA Line Source Responses
- Appendix H Updated Calculations of Ground-borne Noise Prediction
1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/K) was issued by Director of Environmental Protection (DEP) on 4 October 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (Appendix A). According to the T&RMP, the LSR test will be conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1), Kai Ching Estate Mun Ching House (KAT-P1-5), Residential Premises near KAT (KAT-P1-7) and Lee Wing Bldg (HOM-2-2). The impact test at Mun Ching House (KAT-P1-5), planned residential development near KAT (KAT-P1-7), Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) in February, April and August 2016 respectively. The last impact test was conducted at Lee Wing Building (HOM-2-2) on 10 February 2017.

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment ", 2006

1.2 Purpose of This OGNMMP

1.2.1 This OGNMMP (Batch 4) presents the LSR analysis based on the results of the impact test conducted at Lee Wing Building (HOM-2-2) and the operational ground-borne noise prediction at HOM-2-2 based on measurement results.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the details of impact test and the prediction of LSR based on the measurement results.
 - Section 3 presents the LSR analysis and operational ground-borne noise prediction results.
 - Section 4 presents the conclusion.

2 IMPACT TESTING AND PREDICTION OF LSR

2.1 Testing Location

2.1.1 The forth impact test was conducted at Lee Wing Building (HOM-2-2) on 10 February 2017. The information of the measurement location at the selected NSR are summarised in Table 2.1 and the testing locations are shown in Figure C11033/C/SCL/ACM/M53/007.

Table 2.1Measurement and Testing Location

		Predicted	Measurem	ent Location ⁽¹⁾		Location of	
Ν	ISR	Ground- borne Noise	Approx. Hori. Distance	Approx. Slant Distance (From	Ground Type	Hammer Impact Test (Approx	Testing Date
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)	
HOM-2-2	Lee Wing Building	41	8 (up track)	24 (up track)	Rock	Up Track Tunnel (-11mPD)	10 Feb 2017

Notes:

(1) Measurement location at the selected NSR is shown in Figure C11033/C/SCL/ACM/M53/007.

2.2 Testing Instrumentations

2.2.1 The impact force levels applied within the tunnel were measured using a SINUS Harmonie connected to a laptop computer and vibration velocity levels on the ground were measured using a Brüel & Kjær PULSE connected to a laptop computer. Wilcoxon seismic accelerometers were used on the ground surface. Details of the instruments used are provided in **Table 2.2** and the calibration records of the instruments are provided in **Appendix B**.

Table 2.2Instrumentation of the Hammer Impact Test

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model S	Connection to compressed air to induce force (impact) at about 250kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Brüel & Kjær PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Wilcoxon Research 731-207 and 731A-P31	Vibration transducers to measure vibration
Force transducer	Lorenz K-18	Fitted to pneumatic hammer to measure impact force

2.3 Testing and Measurement Procedures

- 2.3.1 The testing and measurement procedures are summarised below:
 - The test was carried out during night time when background vibration levels are medium due to the nearby traffic. All construction works inside tunnel and the adjacent tunnel were suspended during the testing.
 - The impact hammer hit on the tunnel invert and it applied measured impact forces within the tunnel. The measured impact forces were logged by the FFT spectrum analyzer. For each

location of accelerometer, impact point was applied minimum 10 hits at around $250 k N^{(2)}$ on the concrete invert.

- Meanwhile, accelerometers were mounted on the ground and inside the building of Lee Wing Building. The impact hammer in the tunnel hit on the tunnel invert at different horizontal distances (5m, 10m, 20m, 30m, 40m and 60m) from the first impact point (i.e. 0m). Site photos taken during the measurement are shown in **Appendix C**.
- The impact force in tunnel and the vibration levels on the ground were recorded by the two separated spectrum analyzers. Measurement signals were recorded in narrow band frequencies from 6.3Hz to 500Hz.
- The furthest impact point in the tunnel was made up to 60m horizontal distance from the zero meter impact point. Reading also indicated that the responses of impact signals at 60m horizontal distance were weak and cannot be identified. Hence the impact signals at further distances over 60m would be much lower which are insignificant to the overall result, and testing on the measurement point over 60m from the impact point were not executed.

2.4 Prediction of Line Source Response

- 2.4.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at NSR HOM-2-2 Lee Wing Building (rock type ground property referring to the geological profile) along the SCL alignment.
- 2.4.2 The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact source and the receivers. The LSR [TM_{*line*}, dB] is then determined by numerical integration with the formula⁽³⁾ as shown below, of the Point Source Response (PSR, TM_{*pi*}) along the length of the train centred on the receiver, while PSR is determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log_{10} \left[h \times \left(\frac{10^{\frac{TMp1}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where

H = Impact interval (m) (interval varying from 5m to 20m) TMpi = Point source transfer mobility for ith impact location (dB)

n = Last impact location

- 2.4.3 The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽⁴⁾. The measured PSR and the determined LSR are presented in **Appendices D** and **E** respectively.
- 2.4.4 A total of three measurement points including Point A (indoor), Point B (indoor) and Point C (outdoor) were set up. However, only Point A is adopted to determine the LSR as Point B was influenced by electro-magnetic wave induced by elevator at the lobby while the vibration response of Point C was weak and cannot be identified. It is considered that the measurement results at Point B and C are not appropriate to be used in the ground-borne noise calculation.

⁽²⁾ As mentioned in T&RMP, 400kN is only the design force of the impact machine and the actual output force in fact depends on the machine status and on-site condition.

⁽³⁾ Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

⁽⁴⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 LSR Adopted in the Approved EIA Report

- 3.1.1 The LSR determines the vibration levels or attenuation in the ground as a function of distance caused by an incoherent line source of unit force point impacts.
- 3.1.2 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.

3.2 Review of LSR Values

- 3.2.1 The test carried out at the Lee Wing Building (HOM-2-2) was specifically aimed at determining the LSR values for vibration propagating through the ground of rock type.
- 3.2.2 The LSR values determined at Lee Wing Building (HOM-2-2) are compared with those used in the SCL EIA study for the same area and the same ground conditions (**Table 3.1** refers). The EIA LSR values are shown in **Appendix F**. To allow a better comparison, **Appendix G** shows the LSR value determined at measurement locations at a distance similar to EIA study. A summary of observation is presented in **Table 3.1**.

ID	Location	LSR data adopted in EIA Study	Observation
HOM-2-2	Lee Wing Building	Up track: WIL D012 Rockhead Depth=34m Hole Depth=18m Slant Distance=19m Down track: WIL D002 Rockhead Depth=24m Hole Depth=20m Slant Distance=30m	Measured LSR values at both 19m & 30m are lower than the EIA LSR values at low frequency bands below 63Hz and are of similar magnitude at 100Hz to 200Hz. At high frequency band 315Hz, the measured LSR are slightly higher than the EIA LSR.

 Table 3.1
 Comparison between Measurement Data and WIL Data

3.3 Operational Ground-borne Noise Prediction

3.3.1 Ground-borne noise assessment at HOM-2-2 has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in **Table 3.2**. Sample calculation is given in **Appendix H**.

Table 3.2	Ground-borne Noise Prediction Results

Location	GBNSR	Description	EIA Predic (unmitiga scenario), c	ction ited dB(A)	New Pred (unmitig scenario, on meas LSR data)	liction jated based sured , dB(A)	Criterion, d	B(A)	Difference Between EIA and New Prediction, dB(A)
Ho Man	HOM-2-	Lee Wing	Lmax	52	Lmax	45	Lmax	-	-
Tin	2	Building	Daytime L _{eq,30min}	44	Daytime L _{eq,30min}	37	Daytime L _{eq,30min}	55	-7
			Night-time L _{eq,30min}	41	Night-time L _{eq,30min}	34	Night-time L _{eq,30min}	45	-7

- 3.3.2 Results indicate that the measured LSR values at actual ground condition would give lower ground-borne noise levels than EIA predictions which are also below the noise criteria.
- 3.3.3 The preliminary update of prediction calculation shows no further mitigation measures such as trackform upgrade is required around the NSR HOM-2-2.

3.4 Review of Other Assumptions

- 3.4.1 The following assumptions adopted in the EIA Reports will be reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information:
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

4 CONCLUSION

- 4.1.1 The measurement of ground LSR values has been conducted at Lee Wing Building (HOM-2-2) to check the suitability of the LSR assumptions adopted in the EIA stage for rock ground type.
- 4.1.2 The measured LSR values result in ground-borne noise levels which are lower than the EIA predictions at HOM-2-2.
- 4.1.3 The assumptions adopted in the EIA Reports will be further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information.

Appendix C

Photo records of Measurement at HOM-2-2

Appendix C - Photo records of Tunnel Impact test at HOM-2-2

Appendix D

Measured Point Source Responses at HOM-2-2

Appendix E

Determined Line Source Responses at HOM-2-2

Appendix F

Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report

Appendix 9.5: Line Source Response Values Obtained from West Island Line EIA Study Figure A LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 20m)

Figure B LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 34m)

Figure C LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 18m)

Figure D LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 41m)

Figure F LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 40m)

Appendix G

Comparison of Measured and EIA Line Source Responses

Comparison between the LSR adopted in the EIA and Measured LSR at HOM-2-2

Up Track Calculation

Down Track Calculation

Appendix H

Updated Calculations of Ground-borne Noise Prediction

HOM-2-2 Updated EIA Calculation by Measured LSR

Project	:	Shatin Central Link Rail	Operat	ional	GBN /	Asses	sment						Train	Spe	ed:	55	i koh
NSR Re	ef.:	HOM-2-2							Horizo	ontal D)ist, m	Verti	cal Di	st, m	Sla	nt Dist	, m
Locatio	on:	Lee Wing Building					Up 1	Frack		0			19			19	
Assess	ed Floor	2					Down	Track		0			30			30	
Item:		91															
			Select	ted Bo	reho	e Det	ails:										
					Bor	ehole	Ref.	Roc	khead	Depth	n, m	Hole	Dept	h, m	Sla	int Dist	, m
			Up T	rack		D012			3	4			18		L	19[1]	
			Down	Track		D002			24	4			20			30[1]	
		1							Free		(1.1-)						
Descrip	tion	Unit	20	25	22	40	50	62	Fiequ	100	125	160	200	250	215	400	600
Up Tra	ck Calculation	Onit	20	25	32	40	50	03	00	100	125	100	200	200	515	400	500
EDI	ck calculation	dD ro 1 lb/in0.5	22.2	37.2	36.2	34.2	33.3	37.2	40.2	41.2	41.2	37.2	36.2	25.2	33.3	33.3	30.2
CCE		dB V/N N	33.2	51.2	30.2	34.2	33.2	51.2	40.2	41.2	41.2	51.2	30.2	33.2	32.2	33.2	30.2
TI		dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF		dB	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ŏ
TOC		dB Type 0	1														-
LSR		dB re 10 ⁻⁵ in/s*in ^{0.5} /lb	9.3	6.9	0.7	-4.3	-5.5	-7.7	-6.7	-1.3	-2.0	-7.1	-5.4	-4.8	2.0	-3.7	-11.5
Up Trac	k Vib Level	dB re 10 ⁻⁶ in/sec	42.5	44.1	36.9	30.0	27.8	29.6	33.6	39.9	39.3	30.2	30.9	30.4	34.3	29.6	18.7
Down T	Frack Calculation	n															
FDI		dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	412	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCE		dB Y/N N	00.2	01.2	00.2	04.2	00.2	01.2	10.2	41.2	11.2	01.2	00.2	00.2	02.2	00.2	00.2
TIL		dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF		dB	ō	ō	ō	õ	ō	ō	õ	ō	ō	ō	ō	õ	ō	ō	ō
TOC		dB Type 0	1														
LSR		dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.4	-6.1	-7.5	-8.9	-11.3	-7.0	-4.2	-8.2	-6.8	-7.9	-1.5	-6.1	-13.1
Down T	rack Vib. Level	dB re 10 ⁻⁶ in/sec	42.1	43.8	35.8	28.2	25.8	28.4	29.0	34.2	37.1	29.0	29.4	27.3	30.8	27.2	17.2
Total o	f Up and Down	Tracks Calculation															
Total Vi	ibration Level Out	tside Building	45.3	47.0	39.4	32.2	29.9	32.0	34.8	40.9	41.3	32.6	33.2	32.2	35.9	31.6	21.0
BCF		dB Y/N 0	1														
BVR-up)	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - F	Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CIN		dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF		αB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Dradict	love Level	1/3 Oct. dB	50.2	64.0	52 A	46.2	42.7	AE A	49.0	52.0	54.4	44.6	44.2	42.2	44.0	40.2	20.7
Dredict	ed Noise Level	Oct dB	55.5	01.0	61.8	40.2	43.1	50.9	40.0	55.5	57.3	44.0	44.2	48.7	44.5	40.5	40.6
I		dB(A)	44.0		0110			0010			0110			1011			1010
⊂max		dD(A)	34.0														
Leq,30min	ne Critoria	dD(A)	34.0														
Compli	ianco	UD(A)	40 Voc														
Notoe:	Millinger interne	lation has been applied	Tes to clont	dictor	neo wi	0000.0	pppop	riata									
NOLES.	[1] Ellear interpo	n 60knh data and adjust	ed by th		rection	facto	ppiop	nate. Ivlog/\	//\/rof\	in lin	o with	FTA r	manu	al			
	[3] I SR based o	n the same or the next a	vailable	smal	ler bo	rehole	dept	LSE	? data	are int	ernola	ated a	dainst	t slant	tdistar	ice	
	[4] Lmax has inc	corporated a +0.5dB(A) c	orrectio	n to p	assby	Lega	as per	measu	Iremer	nt at P	at He	una D	epot.				
	[5] Leg 30mins = Le	(double passbys) + 10*	og(Pas	sby du	ration	in se	c) + 3	dB(A) ·	+ 10*lo	g(no.	of eve	ents in	30mi	ins pe	r direc	tion) - 3	32.6dB
	(3dB(A) corre	ection is added to Leason	for le	ading	and tr	ailing	effect	for cor	iserva	tive a	oproad	ches)				-	
	[6] L	ased on train frequency of	of 6 train	ne nor	30mi	ne in e	ach d	iractio	n								
	[0] Leq,30mins IS Do	sed on train frequency of - Direct Eivetien 4 - At	10 uai	is per	Juni	2 - 5			n. Anlata	Turne	2 - 4	2 511-	гот				
	[/] Hack Type u	= Direct Fixation, T = Au	TBase	epiate	, туре	2 = 6	gg typ	be bas	epiale,	Type	3 = 1.	2.982	F31.				
The follo	owing abbreviat	ions are used in the a	bove c	alcula	ation:												
L :	Ground borne	noise level within the	structu	ire													
FDL :	Force density	level for the KCR SP1	900 E	MU													
LSR :	Unit force inco	herent line source res	ponse	for th	ne gro	ound											
TIL :	Trackform atte	nuation or insertion lo	ss, rel	ative	level												

TCF : BCF : Vibration coupling between the tunnel and the ground for soil based tunnels, relative level

Vibration coupling loss factor between the soil and the foundation, relative level

BVR : Building vibration reduction or amplification within a structure from the foundation to the occupied areas, relative level

CTN: Conversion from floor and wall vibration to noise

TOC : Turnout and Crossover Factor

SAF : Safety margin to account for wheel/rail condition and projection uncertainties

Remark:

(1) The slant distance in Table 2.1 of this Plan is the measured distance in the testing, while the horizontal and slant distances in this calculation are adopted from the previous EIA calculation for a like-to-like comparison in order to facilitate the comparison of the results between adoption of WIL LSR and the measured LSR. The distance values presented here are independent in Table 2.1.

Annex C

Summary of Updated Operational Ground-borne Noise Assessment Results

Project: SCL (TAW-HUH) SCL (HHS)

				Horizonta	I Distance	Vertical	Distance					a [5]		(6)				(8)	Passby	SEL ^[9]	Train		Predicted Leq	30min (dB(A))		Cumulative		
ltem	NSR	Location	Floor	Up Track	Down Track	Up Track	Down Track	Referenc	e LSR ⁻⁷	TCF ^[4]	10	Down	Track Typ	, co	CF	BCF	L _{max} ^[7]	Speed	Duration	1UP&DN	Freqency	SCL (TAW-	SCL (HHS)	SCL (MKK-	KTE	Noise Level (dB(A))	NCO Criteria (Nighttime)	Criteria Achieved?
1	DIH-1-1	Tsui Chuk Garden Block 5	1	0	0	80	80	HOM-2-2	HOM-2-2	в	0	0	0 0	N	N	N	45	95	(sec) 7	(UB(A)) 56	6	31				31	45	Yes
2	DIH-2-1	Pak Yuen House	1	295	290	65	65	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	N	39	90	8	51	6	26				26	45	Yes
3	DIH-3-1	Wah Yuen House	1	102	100	50	50	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	N	42	90	8	53	6	29				29	45	Yes
4	DIH-3-2	Nga Yuen House	1	135	120	45	45	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	40	80	9	52	6	28				28	45	Yes
5	DIH-3-3	Kwai Yuen House	1	24	5	44	44	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	44	90	8	56	6	32				32	45	Yes
6	DIH-3-4	Chui Yuen House	1	55	50	45	45	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	42	80	9	54	6	30				30	45	Yes
7	DIH-4-1	Pang Ching Court	1	210	195	70	70	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	40	90	8	52	6	27				27	45	Yes
8	DIH-4-2	Carbo Anglo-Chinese Kindergarden	0	130	115	75	75	DIH-P1-1	DIH-P1-1	в	0	0	0 0	Ν	N	Ν	43	90	8	55	6	36[1]			-	36	55[3]	Yes
9	DIH-5-1	Rainbow Home	0	68	25	42	41	HOM-2-2	HOM-2-2	В	0	0	0 0	Ν	N	Ν	47	80	9	59	6	34				34	45	Yes
10	DIH-5-2	Residential premises	1	50	8	41	40	HOM-2-2	HOM-2-2	В	0	0	0 0	N	N	Ν	45	80	9	58	6	33				33	45	Yes
11	DIH-5-5	Our Lady's Kindergarden	0	121	85	40	40	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	43	80	9	55	6	36[1]				36	55[3]	Yes
12	DIH 6-1	WTS Fire Station and Quarters Block A	1	4	5	35	35	HOM-2-2	HOM-2-2	в	0	0	0 0	N	N	Ν	48	85	8	60	6	35				35	45	Yes
13	DIH-7-1	Tropicana Gardens Block 2	4	29	63	40	40	HOM-2-2	HOM-2-2	В	0	0	0 0	N	N	Ν	39	85	8	51	6	26				26	45	Yes
14	DIH-7-2	Tropicana Gardens Block 3	4	21	54	40	40	HOM-2-2	HOM-2-2	В	0	0	0 0	N	N	Ν	40	85	8	52	6	27				27	45	Yes
15	DIH-8-1	Redemption Lutheran Church	0	116	163	20	20	HOM-2-2	HOM-2-2	в	0	0	0 0	N	N	Ν	43	85	8	55	6	30				30	45	Yes
16	DIH-9-1	Shek On Building	0	118	156	25	25	HOM-2-2	HOM-2-2	В	0	0	0 0	N	N	Ν	43	80	9	55	6	36[1]				36	55[3]	Yes
17	DIH-10-1	Hong Kong Sheung Keung Hui Nursing Home	1	168	188	25	25	HOM-2-2	HOM-2-2	в	0	0	0 0	Ν	N	N	39	80	9	52	6	27				27	45	Yes
18	DIH-11-1	Lung Wan House	1	75	60	25	25	DIH-P1-1	DIH-P1-1	В	0	0	0 0	Ν	N	Ν	35	35	20	51	6	26				26	45	Yes
19	DIH-12-1	Galaxia Tower B	5	195	180	30	30	DIH-P1-1	DIH-P1-1	S	0	0	0 0	N	N	Ν	23	55	12	37	6	<20				<20	45	Yes
20	DIH-12-2	Galaxia Tower E	5	180	160	30	30	DIH-P1-1	DIH-P1-1	S	0	0	0 0	N	N	Ν	21	45	15	36	6	<20				<20	45	Yes
21	DIH-13-1	Canossa Primary School	0	160	200	25	25	HOM-2-2	HOM-2-2	В	0	0	0 0	N	N	Ν	42	85	8	54	6	35[1]				35	55[3]	Yes
22	DIH-14-1	Rhythm Garden Block 2	1	38	50	20	20	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	41	60	11	55	6	30				30	45	Yes
23	DIH-14-2	Rhythm Garden Block 5	1	30	43	18	18	KAT-P1-5	KAT-P1-5	В	0	0	0 0	N	N	Ν	32	60	11	45	6	21				21	45	Yes
24	DIH-14-3	Rhythm Garden Block 8	1	175	185	17	17	KAT-P1-5	KAT-P1-5	в	0	0	0 0	N	N	N	13	60	11	27	6	<20				<20	45	Yes
25	DIH-14-4	Canossa Primary School (San Po Kong)	1	145	160	20	20	DIH-P1-1	DIH-P1-1	в	0	0	0 0	N	N	N	37	60	11	51	6	32[1]				32	55[3]	Yes
26	DIH-14-5	Rhythm Garden Block 1	1	30	43	20	20	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	N	41	55	12	55	6	30				30	45	Yes
27	DIH-14-6	Rhythm Garden Block 3	1	45	56	19	19	DIH-P1-1	DIH-P1-1	в	0	0	0 0		N	N	41	60	11	54	6	29				29	45	Yes
28	DIH-15-1	Ram wan House	0	100	65	25	25	DIH-P1-1	DIH-P1-1	в	0	0	0 0	N		N	41	60	11	54	6	29				29	45	Yes
29	DIH-15-2	Mong Toj Sin Tomplo	0	75	25	25	25			D	0	0	0 0	P		IN N	41	95	12	50	6	30				30	45	Yes
31	DIH-17-1	Chuk Yuen United Village	0	21	63	30	30	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	N	46	85	8	58	6	33				33	45	Yes
32	DIH-18-1	Upper Wong Tai Sin Estate	1	15	30	30	30	DIH-P1-1	DIH-P1-1	в	0	0	0 0	N	N	N	45	85	8	57	6	33				33	45	Yes
33	DIH-18-2	Upper Wong Tai Sin Estate Tat Sin House	1	26	37	31	31	DIH-P1-1	DIH-P1-1	в	0	0	0 0	N	N	N	45	90	8	57	6	32				32	45	Yes
34	DIH-19-1	Lung Cheung Gov. Secondary School	0	38	55	24	24	DIH-P1-1	DIH-P1-1	в	0	0	0 0	Ν	N	Ν	46	90	8	58	6	39[1]				39	55[3]	Yes
35	DIH-20-1	Baptist Rainbow Primary School	0	95	80	45	45	HOM-2-2	HOM-2-2	в	0	0	0 0	Ν	N	Ν	45	90	8	57	6	38[1]				38	55[3]	Yes
36	DIH-21-1	Tin Wang Court Wang King House	1	25	45	45	45	HOM-2-2	HOM-2-2	в	0	0	0 0	N	N	Ν	46	90	8	58	6	33				33	45	Yes
37	DIH-22-1	Price Memorial Catholic Primary School	0	80	95	40	40	HOM-2-2	HOM-2-2	в	0	0	0 0	N	N	Ν	45	90	8	57	6	38[1]				38	55[3]	Yes
38	DIH-23-1	Tin Ma Court Chun On House	1	100	115	40	40	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	42	90	8	53	6	29				29	45	Yes
39	DIH-24-1	Shing Wong Temple	1	0	5	28	28	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	46	90	8	58	6	34				34	45	Yes
40	DIH-P1-1	Upper Wong Tai Sin Estate Phase 3	2	19	10	34	30	DIH-P1-1	DIH-P1-1	В	0	0	0 0	N	N	Ν	44	90	8	55	6	31				31	45	Yes
41	DIH-P3-1A	rianned receivers in the CDA site	2	30	10	26	26	DIH-P1-1	DIH-P1-1	S	0	0	0 0	N	N	Ν	35	60	11	49	6	24				24	45	Yes
42	DIH-P3-2A	Planned receivers in the CDA site	2	30	10	28	28	HOM-2-2	HOM-2-2	s	0	0	0 0	N	N	Ν	38	60	11	52	6	27				27	45	Yes
-	DIH-P3-4	Planned receivers in the CDA site	1	0	0	18	18	DIH-P1-1	DIH-P1-1	в	0	0	0 0	N	N	Ν	45	60	11	58	6	34				34	-	-
43	KAT-P1-1	Tak Station	2	75	90	15	15	KAT-P1-5	KAT-P1-5	S	0	1	0 0	Ν	N	Ν	15	35	20	31	6	<20				<20	45	Yes

Annex C - Operational Groundborne Noise Assessment Results

Project: SCL (TAW-HUH) SCL (HHS)

					Horizonta	I Distance	Vertical I	Distance		1.00[2]		TO	o ^[5]		-				0	Passby	SEL ^[9]	Train		Predicted L	_{q 30min} (dB(A))		Cumulative		
	Item	NSR	Location	Floor	Up Track	Down Track	Up Track	Down Track	Reference	e LSR ⁴⁷	TCF ^[4]	10	C.,	Track	Type	CCF	BCF	L[7]	Speed.	Duration	1UP&DN	Freqency	SCL (TAW-		SCL (MKK-	KTE	Noise Level	NCO Criteria (Nighttime)	Criteria Achieved?
					(m)	(m)	(m)	(m)	Up	Down		Up	Down	Up	Down				kph	(sec)	(dB(A))	no./30m/dir	HÙH)	SCL (HHS)	HÙH)	KIE	(dB(A))	(Ngrittine)	Achieveu
9 9 9 9 9	44	KAT-P1-2	One Kai Tak	4	75	90	15	15	KAT-P1-5	KAT-P1-5	s	0	0	0	0	N	Ν	8	50	14	22	6	<20				<20	45	Yes
1 1 1 1 1 <td>45</td> <td>KAT-P1-3</td> <td>Residential premises near Kai Tak Station</td> <td>2</td> <td>55</td> <td>70</td> <td>15</td> <td>15</td> <td>KAT-P1-5</td> <td>KAT-P1-5</td> <td>с</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N</td> <td>Ν</td> <td>21</td> <td>70</td> <td>10</td> <td>34</td> <td>6</td> <td><20</td> <td>-</td> <td></td> <td></td> <td><20</td> <td>45</td> <td>Yes</td>	45	KAT-P1-3	Residential premises near Kai Tak Station	2	55	70	15	15	KAT-P1-5	KAT-P1-5	с	0	0	0	0	N	Ν	21	70	10	34	6	<20	-			<20	45	Yes
11 11 12 12 13 13 14 14 14 14 15 15 15 15 15 16 15 16 <td>46</td> <td>KAT-P1-4</td> <td>Residential premises near Kai Tak Station</td> <td>2</td> <td>80</td> <td>65</td> <td>15</td> <td>15</td> <td>KAT-P1-5</td> <td>KAT-P1-5</td> <td>s</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Ν</td> <td>Ν</td> <td>16</td> <td>65</td> <td>11</td> <td>29</td> <td>6</td> <td><20</td> <td>-</td> <td></td> <td></td> <td><20</td> <td>45</td> <td>Yes</td>	46	KAT-P1-4	Residential premises near Kai Tak Station	2	80	65	15	15	KAT-P1-5	KAT-P1-5	s	0	0	0	0	Ν	Ν	16	65	11	29	6	<20	-			<20	45	Yes
M <th< td=""><td>47</td><td>KAT-P1-5</td><td>Mun Ching House, Kai Ching Estate</td><td>1</td><td>13</td><td>25</td><td>14</td><td>14</td><td>KAT-P1-5</td><td>KAT-P1-5</td><td>в</td><td>0</td><td>0</td><td>0</td><td>0</td><td>Ν</td><td>Ν</td><td>42</td><td>60</td><td>11</td><td>56</td><td>6</td><td>31</td><td></td><td></td><td></td><td>31</td><td>45</td><td>Yes</td></th<>	47	KAT-P1-5	Mun Ching House, Kai Ching Estate	1	13	25	14	14	KAT-P1-5	KAT-P1-5	в	0	0	0	0	Ν	Ν	42	60	11	56	6	31				31	45	Yes
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	48	KAT-P1-6	Tower H3, De Novo	1	93	80	15	15	KAT-P1-5	KAT-P1-5	С	1	1	0	0	Ν	Ν	26	55	12	40	6	<20				<20	45	Yes
10 <td>49</td> <td>KAT-P1-7</td> <td>Residential premises near Kai Tak Station</td> <td>2</td> <td>0</td> <td>0</td> <td>20</td> <td>20</td> <td>KAT-P1-7</td> <td>KAT-P1-7</td> <td>с</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Ν</td> <td>Ν</td> <td>48</td> <td>75</td> <td>9</td> <td>61</td> <td>6</td> <td>36</td> <td></td> <td></td> <td></td> <td>36</td> <td>45</td> <td>Yes</td>	49	KAT-P1-7	Residential premises near Kai Tak Station	2	0	0	20	20	KAT-P1-7	KAT-P1-7	с	0	0	0	0	Ν	Ν	48	75	9	61	6	36				36	45	Yes
10 <td>50</td> <td>TKW-1-1</td> <td>Parc 22</td> <td>1</td> <td>85</td> <td>90</td> <td>13</td> <td>20</td> <td>KAT-P1-5</td> <td>DIH-P1-1</td> <td>В</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Ν</td> <td>Ν</td> <td>37</td> <td>70</td> <td>10</td> <td>50</td> <td>6</td> <td>25</td> <td></td> <td></td> <td></td> <td>25</td> <td>45</td> <td>Yes</td>	50	TKW-1-1	Parc 22	1	85	90	13	20	KAT-P1-5	DIH-P1-1	В	0	0	0	0	Ν	Ν	37	70	10	50	6	25				25	45	Yes
	51	TKW-1-2	Sanford Mansion	1	95	95	12	23	KAT-P1-5	DIH-P1-1	В	0	0	0	0	Ν	Ν	37	70	10	50	6	25				25	45	Yes
	52	TKW-2-1	Skytower Tower 1	5	140	140	13	20	KAT-P1-5	DIH-P1-1	в	0	0	0	0	Ν	Ν	28	70	10	41	6	<20				<20	45	Yes
1000 10000 1000 10	53	TKW-2-2	Skytower Tower 2	5	140	140	12	23	KAT-P1-5	DIH-P1-1	В	0	0	0	0	Ν	Ν	28	70	10	41	6	<20				<20	45	Yes
Image State State <th< td=""><td>54</td><td>TKW-2-3</td><td>Skytower Tower 7</td><td>5</td><td>235</td><td>260</td><td>15</td><td>27</td><td>DIH-P1-1</td><td>DIH-P1-1</td><td>S</td><td>0</td><td>0</td><td>0</td><td>0</td><td>Ν</td><td>Ν</td><td>24</td><td>70</td><td>10</td><td>37</td><td>6</td><td><20</td><td></td><td></td><td></td><td><20</td><td>45</td><td>Yes</td></th<>	54	TKW-2-3	Skytower Tower 7	5	235	260	15	27	DIH-P1-1	DIH-P1-1	S	0	0	0	0	Ν	Ν	24	70	10	37	6	<20				<20	45	Yes
1 <td< td=""><td>55</td><td>TKW-3-1</td><td>Prince Ritz</td><td>5</td><td>235</td><td>255</td><td>23</td><td>23</td><td>DIH-P1-1</td><td>DIH-P1-1</td><td>s</td><td>0</td><td>0</td><td>0</td><td>0</td><td>Ν</td><td>Ν</td><td>13</td><td>20</td><td>34</td><td>32</td><td>6</td><td><20</td><td></td><td></td><td></td><td><20</td><td>45</td><td>Yes</td></td<>	55	TKW-3-1	Prince Ritz	5	235	255	23	23	DIH-P1-1	DIH-P1-1	s	0	0	0	0	Ν	Ν	13	20	34	32	6	<20				<20	45	Yes
Display Based Magnetone Toring 1 3 3 3 3 5 5 5 5 </td <td>56</td> <td>TKW-3-2</td> <td>Prosperity House</td> <td>2</td> <td>250</td> <td>270</td> <td>23</td> <td>23</td> <td>DIH-P1-1</td> <td>DIH-P1-1</td> <td>S</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Ν</td> <td>Ν</td> <td>26</td> <td>45</td> <td>15</td> <td>41</td> <td>6</td> <td><20</td> <td></td> <td></td> <td></td> <td><20</td> <td>45</td> <td>Yes</td>	56	TKW-3-2	Prosperity House	2	250	270	23	23	DIH-P1-1	DIH-P1-1	S	0	0	0	0	Ν	Ν	26	45	15	41	6	<20				<20	45	Yes
1 1	57	TKW-P1-1	Residential premises near To Kwa Wan Station	1	35	15	22	22	DIH-P1-1	DIH-P1-1	s	0	0	0	0	Ν	Ν	35	45	15	50	6	25				25	45	Yes
	58	MTW-6-1	Fok On Building	2	17.5	12	15	24	DIH-P1-1	DIH-P1-1	В	0	0	0	0	Ν	Ν	42	65	11	55	6	31				31	45	Yes
10104 10104 104 10 <td< td=""><td>59</td><td>MTW-6-2</td><td>HK Society for the Protection of Children</td><td>0</td><td>10</td><td>17</td><td>15</td><td>24</td><td>KAT-P1-5</td><td>DIH-P1-1</td><td>в</td><td>0</td><td>0</td><td>0</td><td>0</td><td>N</td><td>Ν</td><td>47</td><td>65</td><td>11</td><td>60</td><td>6</td><td>41[1]</td><td></td><td></td><td></td><td>41</td><td>55[3]</td><td>Yes</td></td<>	59	MTW-6-2	HK Society for the Protection of Children	0	10	17	15	24	KAT-P1-5	DIH-P1-1	в	0	0	0	0	N	Ν	47	65	11	60	6	41[1]				41	55[3]	Yes
Image Symbol 2 Symbol 2 <t< td=""><td>60</td><td>MTW-6-3</td><td>Chung Nam Mansion</td><td>2</td><td>20</td><td>20</td><td>15</td><td>27</td><td>DIH-P1-1</td><td>DIH-P1-1</td><td>В</td><td>0</td><td>0</td><td>0</td><td>0</td><td>Ν</td><td>Ν</td><td>42</td><td>65</td><td>11</td><td>55</td><td>6</td><td>30</td><td></td><td></td><td></td><td>30</td><td>45</td><td>Yes</td></t<>	60	MTW-6-3	Chung Nam Mansion	2	20	20	15	27	DIH-P1-1	DIH-P1-1	В	0	0	0	0	Ν	Ν	42	65	11	55	6	30				30	45	Yes
Image Image <th< td=""><td>61</td><td>MTW-6-4</td><td>Pok Oi Lau</td><td>0</td><td>12</td><td>12</td><td>15</td><td>27</td><td>DIH-P1-1</td><td>DIH-P1-1</td><td>В</td><td>0</td><td>0</td><td>0</td><td>0</td><td>N</td><td>Ν</td><td>46</td><td>65</td><td>11</td><td>60</td><td>6</td><td>35</td><td></td><td></td><td></td><td>35</td><td>45</td><td>Yes</td></th<>	61	MTW-6-4	Pok Oi Lau	0	12	12	15	27	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	Ν	46	65	11	60	6	35				35	45	Yes
1000000000000000000000000000000000000	62	MTW-7-1	Geranium House	1	12.5	12.5	17	28	DIH-P1-1	HOM-2-2	В	0	0	0	0	N	N	46	65	11	59	6	34				34	45	Yes
Image Market Market </td <td>63</td> <td>MTW-8-1</td> <td>Horae Palace</td> <td>3</td> <td>15</td> <td>15</td> <td>17</td> <td>28</td> <td>HOM-2-2</td> <td>HOM-2-2</td> <td>В</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N</td> <td>N</td> <td>43</td> <td>65</td> <td>11</td> <td>57</td> <td>6</td> <td>32</td> <td></td> <td></td> <td></td> <td>32</td> <td>45</td> <td>Yes</td>	63	MTW-8-1	Horae Palace	3	15	15	17	28	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	65	11	57	6	32				32	45	Yes
New b New b <th< td=""><td>64</td><td>MTW-9-1</td><td>Majestic Park</td><td>3</td><td>35</td><td>35</td><td>18</td><td>30</td><td>HOM-2-2</td><td>HOM-2-2</td><td>в</td><td>0</td><td>0</td><td>0</td><td>0</td><td>N</td><td>N</td><td>40</td><td>65</td><td>11</td><td>53</td><td>6</td><td>29</td><td></td><td></td><td></td><td>29</td><td>45</td><td>Yes</td></th<>	64	MTW-9-1	Majestic Park	3	35	35	18	30	HOM-2-2	HOM-2-2	в	0	0	0	0	N	N	40	65	11	53	6	29				29	45	Yes
No. 10. 100 monome No. 100	65	MTW-10-1	18 Farm Road	3	15	15	18	30	HOM-2-2	HOM-2-2	в	0	0	0	0	N	N	43	65	11	56	6	32				32	45	Yes
M M			Farm Road Government								_		-																
Image is a strange is strange is strange is a strange is a strange is a strange is a s	66	MIW-11-1	Primary School	0	65	65	18	30	HOM-2-2	HOM-2-2	в	0	0	0	0	N	N	44	65	11	57	6	38[1]				38	55[3]	Yes
Minus Minus <th< td=""><td>67</td><td>MTW-12-1</td><td>Yuet Fai Mansion</td><td>1</td><td>11</td><td>11</td><td>22</td><td>33</td><td>HOM-2-2</td><td>HOM-2-2</td><td>В</td><td>0</td><td>0</td><td>0</td><td>0</td><td>Ν</td><td>Ν</td><td>47</td><td>65</td><td>11</td><td>60</td><td>6</td><td>35</td><td></td><td></td><td></td><td>35</td><td>45</td><td>Yes</td></th<>	67	MTW-12-1	Yuet Fai Mansion	1	11	11	22	33	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	47	65	11	60	6	35				35	45	Yes
9 1000000000000000000000000000000000000	68	MTW-12-2	Delight Court	3	17.5	17.5	20	30	DIH-P1-1	HOM-2-2	В	0	0	0	0	N	Ν	41	65	11	54	6	29				29	45	Yes
10 100 10 100 100 100 <	69	MTW-12-3	Lucky Mansion	3	15	15	20	30	DIH-P1-1	HOM-2-2	S	0	0	0	0	Ν	Ν	35	55	12	49	6	24				24	45	Yes
11 MTW-12 Sergeomplanding 1 17.0	70	MTW-12-4	352-354 Ma Tau Wai Road	2	15	15	20	30	DIH-P1-1	HOM-2-2	S	0	0	0	0	Ν	Ν	34	40	17	49	6	24				24	45	Yes
1 1 1 1 1 1 0	71	MTW-12-5	Seng Cheong Building	1	17.5	17.5	18	29	KAT-P1-5	DIH-P1-1	В	0	0	0	0	Ν	Ν	39	50	14	54	6	29				29	45	Yes
1 1	72	MTW-12-6	Great Wall Building	3	30	30	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	41	65	11	54	6	30				30	45	Yes
1 1	73	MTW-12-7	197-199 Ma Tau Wai Road	2	15	15	18	30	HOM-2-2	HOM-2-2	в	0	0	0	0	Ν	Ν	45	65	11	58	6	34				34	45	Yes
MTM-0 Relaminal premised with a second pressional pressinal pressinal pressional pressinal pressional pressional pressio	74	MTW-12-8	Pak Tai Mansion	1	12	12	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	47	65	11	61	6	36				36	45	Yes
NTM-120 MMM-240 MMM Baking 2 15 16 28 0.0 0.0 0.0 <th< td=""><td>75</td><td>MTW-12-9</td><td>Residential premises along Hung Kwong Street</td><td>2</td><td>12</td><td>12</td><td>19</td><td>32</td><td>DIH-P1-1</td><td>HOM-2-2</td><td>в</td><td>0</td><td>0</td><td>0</td><td>0</td><td>Ν</td><td>Ν</td><td>43</td><td>65</td><td>11</td><td>57</td><td>6</td><td>32</td><td></td><td></td><td></td><td>32</td><td>45</td><td>Yes</td></th<>	75	MTW-12-9	Residential premises along Hung Kwong Street	2	12	12	19	32	DIH-P1-1	HOM-2-2	в	0	0	0	0	Ν	Ν	43	65	11	57	6	32				32	45	Yes
MTV-121 Jugang Buding I	76	MTW-12-10	Lucky Building	2	15	15	18	28	DIH-P1-1	DIH-P1-1	S	0	0	0	0	Ν	Ν	35	55	12	49	6	25				25	45	Yes
MTW-1212 Ome Engance A I I I Mode	77	MTW-12-11	Jing Ming Building	2	19	19	20	30	DIH-P1-1	DIH-P1-1	S	0	0	0	0	Ν	Ν	34	50	14	48	6	23				23	45	Yes
nmmon nmmon n nmmon nmm	78	MTW-12-12	One Elegance	3	12	12	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	43	65	11	57	6	32				32	45	Yes
Image: Norman price Norman prima Norman price <th< td=""><td>79</td><td>MTW-13-1</td><td>Cheung Chuk Shan Memorial School</td><td>0</td><td>10</td><td>10</td><td>20</td><td>30</td><td>DIH-P1-1</td><td>HOM-2-2</td><td>s</td><td>0</td><td>0</td><td>0</td><td>0</td><td>N</td><td>Ν</td><td>43</td><td>65</td><td>11</td><td>56</td><td>6</td><td>37[1]</td><td></td><td></td><td></td><td>37</td><td>55[3]</td><td>Yes</td></th<>	79	MTW-13-1	Cheung Chuk Shan Memorial School	0	10	10	20	30	DIH-P1-1	HOM-2-2	s	0	0	0	0	N	Ν	43	65	11	56	6	37[1]				37	55[3]	Yes
Image for the stress of the	80	MTW-14-1	PLK Lam Man Chan English Primary School	1	35	35	20	30	DIH-P1-1	HOM-2-2	s	0	0	0	0	Ν	Ν	37	55	12	51	6	32[1]				32	55[3]	Yes
Mathe Macheman No	81	MTW-15-1	Hung Hom Lutheran Primary School	0	10	10	20	30	DIH-P1-1	HOM-2-2	s	0	0	0	0	Ν	Ν	40	50	14	55	6	36[1]				36	55[3]	Yes
New 10 Logad Massion 3 20 20 17 28 NHP10 NHP10 N <t< td=""><td>82</td><td>MTW-16-1</td><td>SKH Good Shepherd Primary School</td><td>0</td><td>10</td><td>10</td><td>20</td><td>30</td><td>DIH-P1-1</td><td>DIH-P1-1</td><td>s</td><td>0</td><td>0</td><td>0</td><td>0</td><td>Ν</td><td>Ν</td><td>38</td><td>45</td><td>15</td><td>53</td><td>6</td><td>34[1]</td><td></td><td></td><td></td><td>34</td><td>55[3]</td><td>Yes</td></t<>	82	MTW-16-1	SKH Good Shepherd Primary School	0	10	10	20	30	DIH-P1-1	DIH-P1-1	s	0	0	0	0	Ν	Ν	38	45	15	53	6	34[1]				34	55[3]	Yes
Additional methods Additional method A	83	MTW-17-1	Loyal Mansion	3	20	20	17	28	DIH-P1-1	DIH-P1-1	В	0	0	0	0	Ν	Ν	38	55	12	52	6	27				27	45	Yes
NMW 12 No.2 Kowon City Read 2 28 28 17 27 DH-P1 DH-P1 S 0 0 N N 33 50 14 48 66 23 23 45 Prescription 86 MW 14 Hyrinity Church 0 55 66 18 25 K1-P1 DH-P1 B 0 0 N N 33 50 14 48 66 23 23 45 96 96 97 <th< td=""><td>84</td><td>MTW-18-1</td><td>Residential premises along Chi Kiang St</td><td>2</td><td>45</td><td>45</td><td>17</td><td>27</td><td>DIH-P1-1</td><td>DIH-P1-1</td><td>s</td><td>0</td><td>0</td><td>0</td><td>0</td><td>N</td><td>N</td><td>32</td><td>50</td><td>14</td><td>47</td><td>6</td><td>22</td><td></td><td></td><td></td><td>22</td><td>45</td><td>Yes</td></th<>	84	MTW-18-1	Residential premises along Chi Kiang St	2	45	45	17	27	DIH-P1-1	DIH-P1-1	s	0	0	0	0	N	N	32	50	14	47	6	22				22	45	Yes
NMW 19 Holy Trink Octooch 0 55 66 18 25 KAT-P5 DHP-1 B 0 0 N	85	MTW-18-2	No. 2 Kowloon City Road	2	28	28	17	27	DIH-P1-1	DIH-P1-1	S	0	0	0	0	Ν	Ν	33	50	14	48	6	23				23	45	Yes
8 90M-1 Ko Shan Theatree 0 50 50 35 40 HOM-22 HOM-22 B 0	86	MTW-19-1	Holy Trinity Church	0	55	65	18	25	KAT-P1-5	DIH-P1-1	В	0	0	0	0	Ν	Ν	38	55	12	52	6	27				27	45	Yes
88 HOM-21 Fereic Court 2 20 20 18 29 DH-P1 HOM-22 B 0 0 0 0 N N A1 55 12 55 66 31 A A1 A45 Yee 89 HOM-22 Lewing Building 2 0 0 2 0 0 2 0 0 0 0 N N N A1 55 12 55 66 31 A A1 A45 Yee 80 HOM-22 Lewing Building 2 0 0 0 0 0 0 N N N A3 55 12 55 66 31 A A1 A5 Yee 90 HOM-24 Wing Lam Marsion 2 15 0 0 N N N A3 55 12 57 66 31	87	HOM-1-1	Ko Shan Theartre	0	50	50	35	40	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	43	55	12	57	6	32				32	45	Yes
89 HOM-2: Lee Wing Building 2 0 0 24 34 HOM-2: B 0 0 0 N N A3 55 12 57 66 32 32 45 Yees 90 HOM-2: Wing Lam Mansion 2 15 15 20 A4 HOM-2: B 0 0 0 N N A3 55 12 57 66 32 A A32 A45 Yee 90 HOM-2: Wing Lam Mansion 2 15 15 0 0 0 0 0 N N A3 55 12 57 66 33 33 45 Yee 91 HOM-2: Tak Lee Court 1 50 55 35 45 HOM-2: B 0 0 0 N N A3 55 12 57 66 <th< td=""><td>88</td><td>HOM-2-1</td><td>Faerie Court</td><td>2</td><td>20</td><td>20</td><td>18</td><td>29</td><td>DIH-P1-1</td><td>HOM-2-2</td><td>В</td><td>0</td><td>0</td><td>0</td><td>0</td><td>Ν</td><td>Ν</td><td>41</td><td>55</td><td>12</td><td>55</td><td>6</td><td>31</td><td></td><td></td><td></td><td>31</td><td>45</td><td>Yes</td></th<>	88	HOM-2-1	Faerie Court	2	20	20	18	29	DIH-P1-1	HOM-2-2	В	0	0	0	0	Ν	Ν	41	55	12	55	6	31				31	45	Yes
90 HOM-23 Wing Lam Mansion 2 15 15 20 30 HOM-22 B 0 0 0 N N A3 55 12 57 66 33 33 45 Yes 91 HOM-24 Tak Lee Court 1 50 55 35 45 N N N 42 60 11 56 6 31 31 45 Yes	89	HOM-2-2	Lee Wing Building	2	0	0	24	34	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	43	55	12	57	6	32				32	45	Yes
91 HOM-24 Tak Lee Court 1 50 55 35 45 HOM-22 HOM-22 B 0 0 0 0 N N N 42 60 11 56 6 31 31 45 Yes	90	HOM-2-3	Wing Lam Mansion	2	15	15	20	30	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	43	55	12	57	6	33				33	45	Yes
	91	HOM-2-4	Tak Lee Court	1	50	55	35	45	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	42	60	11	56	6	31				31	45	Yes

Annex C - Operational Groundborne Noise Assessment Results

Project: SCL (TAW-HUH) SCL (HHS)

				Horizonta	al Distance	Vertical Di	istance	Poforon	00 I SP ^[2]		т	oc ^[5]	Trook T	(6)				Spood ^[8]	Passby	SEL ^[9]	Train		Predicted Le	_{q 30min} (dB(A))		Cumulative	N00 0-11-11	0.11.11
ltem	NSR	Location	Floor	Up Track	Down Track	Up Track D	own Track	Keleren	Le Lok	TCF ^[4]	, it		Hacking	ype	CCF	BCF	L[7]	Speed	Duration	1UP&DN	Freqency	SCL (TAW-	SCL (HHS)	SCL (MKK-	KTE	Noise Level	(Nighttime)	Achieved?
				(m)	(m)	(m)	(m)	Up	Down		Up	Down	Up D	Down				kph	(sec)	(dB(A))	no./30m/dir	HUH)	002 (0)	HUH)		(dB(A))	,	
92	HOM-2-5	Chat Ma Mansion	1	45	45	20	30	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	42	55	12	56	6	31				31	45	Yes
93	HOM-2-6	Chatham Mansion	1	3	3	19	30	DIH-P1-1	HOM-2-2	В	0	0	0	0	Ν	Ν	45	55	12	58	6	34				34	45	Yes
94	HOM-3-1	Fook Sing Mansion	1	85	100	35	40	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	39	55	12	53	6	28				28	45	Yes
95	HOM-3-2	Marigold Mansion, Block A	1	85	110	45	45	HOM-2-2	HOM-2-2	В	0	0	0	0	Ν	Ν	39	55	12	53	6	28				28	45	Yes
96	HOM-4-1	Yee Fu Building	1	40	70	45	45	HOM-2-2	HOM-2-2	S	0	0	0	0	Ν	Ν	36	55	12	50	6	25		20 ^[10]	<20	27	45	Yes
97	HOM-5-1	271 Chatham Road North	2	75	75	45	45	HOM-2-2	HOM-2-2	S	0	0	0	0	Ν	Ν	28	35	20	44	6	<20		20 ^[10]	23	26	45	Yes
98	HOM-P2	HKPU Student Halls of Residence	1	35	65	45	45	HOM-2-2	HOM-2-2	s	0	0	0	0	Ν	Ν	35	50	14	50	6	25		<20	<20	27	45	Yes
99	HOM-P3-1	Residential Building, HOM Station Development	1	0	0	45	45	HOM-2-2	HOM-2-2	s	0	0	0	0	Ν	Ν	37	50	14	51	6	27		20 ^[10]	36	37	45	Yes
100	HUH-1-1	Cartas Branchi College of Careers	0	95	125	30	30	HOM-2-2	HOM-2-2	s	0	0	0	0	Ν	Ν	34	45	15	49	6	30[1]		20 ^[10]	26	32	55[3]	Yes
101	HUH-1-2	Lok Ka House	1	55	80	18	18	HOM-2-2	HOM-2-2	С	0	0	0	0	Ν	Ν	37	50	14	52	6	27		20 ^[10]	<20	28	45	Yes
102	HUH-1-3	Wing Fung Building	1	10	25	18	18	KAT-P1-5	KAT-P1-5	С	0	0	0	0	N	N	37	60	11	51	6	26	<20	<20 ^[11]	<20	29	45	Yes

Notes:

[1] A 3dB(A) upward adjustment is made to account for the daytime headway of 12 EMU trains within a 30 minutes period per direction.

[2] Reference LSR are measurement result taken at representative NSR.

[3] Daytime criteria are used for educational buildings, church and temple.

[4] TCF types : B - Bored tunnel, C - Cut and cover tunnel, S - Station

[5] TOC types : 0 - No turnouts, 1 - turnout, 2 - inclined turnout

[5] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate, Type 2 = Egg Type Baseplate, Type 3 = 12.5Hz FST.

[6] L_{max} has incorporated a +0.5dB(A) correction to passby L_{eq} based on previous study.

[7] FDL based on 60kph data and adjusted by the correction factor of $20xlog(V/V_{ref})$, in line with FTA manual.

[8] Calculation based on 8-car train with 23.75m legth for each car.

[9] SEL calculations have incorporated a 3 dB correction factor for the leading and trailling effect.

[10] Noise levels are estimated from predicted noise level of adjacent NSR.

[11] Noise levels predicted in OGNMMP for SCL(MKK-HUH) under EP Condition 2.16 of EP-437/2012.

Annex C - Operational Groundborne Noise Assessment Results

Project: SCL (TAW-HUH) SCL (HHS)

ltem	NSR	Location	Floor	Horizonta	I Distance	Vertical	Distance	Reference	ce LSR ^[1]	TCF ^[2]	тс	DC ^[3]	TI TV	rack /pe ^[4]	CCF	BCF	L ^[5]	Speed ^[6]	Passby Duration	SEL ^[7] 1UP&DN	Train Fregency	Predicted L _{eq 30min} (dB(A))	NCO Criteria	Criteria
	-			Up Track	Down	Up Track	Down						,	•			max					SCL	(Nighttime)	Achieved?
				(m)	Track (m)	(m)	Track (m)	Up	Down		Up	Down	Up	Down				kph	(sec)	(dB(A))	no./30m/dir	(HHS)		
102	HUH-1-3	Wing Fung Building	1	45	-	0	-	KAT-P1-5		С	0	0	0	0	N	Ν	16	25	27	33	6	<20	45	Yes

Notes:

[1] Reference LSR are measurement result taken at representative NSR.

[2] TCF types : B - Bored tunnel, C - Cut and cover tunnel, S - Station

[3] TOC types : 0 - No turnouts, 1 - turnout, 2 - inclined turnout

[4] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate, Type 2 = Egg Type Baseplate, Type 3 = 12.5Hz FST.

[5] L_{max} has incorporated a +0.5dB(A) correction to passby L_{eq} based on previous study.

[5] FDL based on 60kph data and adjusted by the correction factor of $20xlog(V/V_{ref})$, in line with FTA manual.

[6] Calculation based on 8-car train with 23.75m legth for each car.

[7] Nighttime train frequency is presented. For HHS, 6 trains per 30 minutes is assumed at the tunnel section under Chatham Road North for tuning around.

Annex D

Detailed Operational Ground-borne Noise Calculations

Project:	SCL(TAW - HUH)			Train Spe	ed: 95 kph
NSR Ref.:	DIH-1-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Tsui Chuk Garden Block 5	Up Track	0	80	80
Assessed Floor	1	Down Trac	k 0	80	80
Item:	1				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frog	IODOV	(니구)						
Description	l locit	20	25	22	40	50	62	FIE4		(TZ)	460	200	250	245	400	500
Description	Unit	20	20	ა∠	40	50	63	00	100	120	100	200	200	310	400	500
	·- · · · · 05		10.0		22.0	<u> </u>	12.0	15.0	10.0	10.0	10.0	11.0	10.0	07.0	<u> </u>	05.0
FDL	dB re 1 lb/in ^{o.o}	38.0	42.0	41.0	39.0	38.0	42.0	45.0	46.0	46.0	42.0	41.0	40.0	37.0	38.0	35.0
CCF	dB Y/N N	1			_								_			
	dB Type U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB lype u	1														
LSR	dB re 10 ^{-⁵} in/s*in ^{∪.∋} /lb	7.8	5.7	-2.9	-9.9	-11.7	-11.5	-21.2	-19.2	-8.8	-10.7	-9.9	-14.7	-9.0	-11.2	-16.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.8	47.7	38.1	29.1	26.3	30.5	23.8	26.8	37.2	31.3	31.1	25.3	28.0	26.7	18.6
Down Track Calculatio	un															
FDL	dB re 1 lb/in ^{0.5}	38.0	42.0	41.0	39.0	38.0	42.0	45.0	46.0	46.0	42.0	41.0	40.0	37.0	38.0	35.0
CCF	dB Y/N N	1														ļ
TIL	dB <u>Type</u> 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.8	5.7	-2.9	-9.9	-11.7	-11.5	-21.2	-19.2	-8.8	-10.7	-9.9	-14.7	-9.0	-11.2	-16.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.8	47.7	38.1	29.1	26.3	30.5	23.8	26.8	37.2	31.3	31.1	25.3	28.0	26.7	18.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	utside Building	48.8	50.7	41.1	32.1	29.3	33.5	26.8	29.8	40.2	34.3	34.1	28.3	31.0	29.8	21.6
BCF	dB Y/N 0	1														ļ
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	64.8	66.7	57.1	48.1	45.1	48.9	42.0	44.8	55.0	48.3	47.1	40.3	42.0	40.5	32.3
Predicted Noise Level	Oct, dB	1		67.2			51.0			56.1			48.9			41.1
L _{max}	dB(A)	44.6														
L _{eq,30mins}	dB(A)	31.4														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 90 kph
NSR Ref.:	DIH-2-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Pak Yuen House	Up Track	295	65	302
Assessed Floor	1	Down Trac	< 290	65	297
Item:	2				

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	Т	—						Frea	uencv	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	<u></u>	·	·	<u> </u>	·				<u> </u>						-	
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-18.3	4.0	-10.6	-15.5	-2.6	1.8	-7.7	-23.4	-23.3	-17.2	-27.3	-41.4	-32.2	-46.2	-35.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	19.2	45.5	29.9	23.0	34.9	43.4	36.8	22.1	22.2	24.3	13.2	-1.9	4.4	-8.7	-0.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N	1														ŀ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															1
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-18.1	4.1	-10.5	-15.4	-2.6	1.9	-7.7	-23.3	-23.2	-17.1	-27.2	-41.3	-32.1	-46.1	-35.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	19.4	45.6	30.0	23.1	35.0	43.4	36.8	22.3	22.3	24.4	13.3	-1.8	4.4	-8.6	-0.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	utside Building	22.3	48.6	33.0	26.1	38.0	46.4	39.8	25.2	25.3	27.4	16.3	1.2	7.4	-5.6	2.4
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
······																
Predicted Noise Level	1/3 Oct, dB	38.3	64.6	49.0	42.1	53.8	61.8	55.0	40.2	40.1	41.4	29.3	13.2	18.4	5.1	13.1
Predicted Noise Level	Oct, dB	4		64.7			63.1			45.4			29.7			13.9
L _{max}	dB(A)	38.9														
L _{eq,30mins}	dB(A)	25.9														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 90 kph
NSR Ref.:	DIH-3-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Wah Yuen House	Up Track	102	50	114
Assessed Floor	1	Down Trac	k 100	50	112
Item:	3				

Selected	LSR	Details:	

	LOK KEI.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	1								Freq	uency	(Hz)						
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1	lb/in ^{0.5}	37.5	41.5 ز	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N I	N														1
TIL	dB	Туре	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре (0														
LSR	dB re 10	0 ⁻⁶ in/s*in ^{0.5} /lb	-7.1	5.9	-6.7	-10.8	-0.3	4.0	-5.6	-16.1	-17.6	-13.4	-23.0	-34.0	-29.3	-39.2	-33.7
Up Track Vib. Level	dB re 1/	0 ⁻⁶ in/sec	30.4	47.5	33.8	27.8	37.2	45.5	38.9	29.4	27.9	28.1	17.5	5.5	7.2	-1.7	0.8
Down Track Calculatio	'n																
FDL	dB re 1	lb/in ^{0.5}	37.5	41.5 ز	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N I	N														ļ
TIL	dB	Туре	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type (0														l
LSR	dB re 10	0 ⁻⁶ in/s*in ^{0.5} /lb	-6.9	6.0	-6.6	-10.7	-0.2	4.1	-5.6	-15.9	-17.5	-13.4	-23.0	-33.9	-29.3	-39.1	-33.6
Down Track Vib. Level	dB re 1/	0 ⁻⁶ in/sec	30.f	<u>47.5</u>	33.9	27.8	37.3	45.6	39.0	29.6	28.0	28.1	17.6	5.6	7.2	-1.6	0.9
Total of Up and Down	Tracks (Calculation															
Total Vibration Level Ou	tside Bui	Iding	33.F	50.5 ز	36.9	30.8	40.3	48.6	42.0	32.5	31.0	31.1	20.5	8.6	10.2	1.4	3.9
BCF	dB	<u> </u>	0														I
BVR-up	dB	Floor	1 -2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
			10 10													<u> </u>	
Predicted Noise Level		1/3 UCt, e	dB 49.0	66.5	52.9	46.8	56.1	64.0	57.2	47.5	45.8	45.1	33.5	20.6	21.2	12.1	14.6
Predicted Noise Level		UCI, e	dB	-	66.7			65.3			51.0			34.0			16.6
L _{max}		dBr	(A) 41.e	ز.													
L _{eq,30mins}		dB/	(A) 28.6	ز													
Noise Criteria		dB/	(A) 45														
Compliance			Yes	ذ													

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 80 kph
NSR Ref.:	DIH-3-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Nga Yuen House	Up Track	135	45	142
Assessed Floor	1	Down Trac	k 120	45	128
Item:	4				

Selected	LSR	Details:

	LON NEL.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

				Frequency (Hz)														
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re 1	lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB	Y/N	Ν	i														1
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	I														1
LSR	dB re 1	<u>0⁻⁶in/s*in^{0.5}/l</u> t	a	-9.6	5.5	-7.6	-11.8	-0.8	3.5	-6.1	-17.7	-18.9	-14.3	-24.0	-35.7	-30.0	-40.8	-34.0
Up Track Vib. Level	dB re 1	0 ⁻⁶ in/sec		26.9	46.0	31.9	25.7	35.7	44.0	37.4	26.8	25.6	26.2	15.5	2.8	5.5	-4.3	-0.5
Down Track Calculatio	'n																	
FDL	dB re 1	Ib/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB	Y/N	Ν	I														1
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	I														l
LSR	dB re 1	0 ⁻⁶ in/s*in ^{0.5} /lt	D	-8.4	5.7	-7.2	-11.3	-0.6	3.8	-5.8	-16.9	-18.3	-13.9	-23.5	-34.9	-29.7	-40.0	-33.9
Down Track Vib. Level	dB re 1	0 ⁻⁶ in/sec		28.1	46.2	32.3	26.2	35.9	44.3	37.7	27.6	26.2	26.6	16.0	3.6	5.8	-3.5	-0.4
Total of Up and Down	Tracks (Calculation																
Total Vibration Level Ou	tside Bu	lilding		30.5	49.1	35.2	28.9	38.8	47.2	40.6	30.2	28.9	29.4	18.7	6.2	8.7	-0.9	2.6
BCF	dB	Y/N	0	I														I
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B. Marta I Malaa Laval		1/2 0 - +																
Predicted Noise Level		1/3 Uct,	, ав	46.5	65.1	51.2	44.9	54.0	62.6	55.8	45.2	43.7	43.4	31.7	18.2	19.7	9.8	13.3
Predicted Noise Level		000,	, ав			65.3			63.9			49.0			32.2			15.0
L _{max}		ar	3(A)	40.0														
L _{eq,30mins}		dF	3(A)	27.6														
Noise Criteria		dF	B(A)	45														
Compliance				Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[1] Enter interpolation has been applied to start distance where appropriate.
[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 90 kph
NSR Ref.:	DIH-3-3		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Kwai Yuen House	Up Track	24	44	50
Assessed Floor	1	Down Track	< 5	44	44
Item:	5	·			

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

				Frequency (Hz)														
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	lb	2.4	7.5	-3.4	-6.8	1.7	5.9	-3.8	-9.9	-12.8	-10.3	-19.4	-27.8	-26.9	-33.3	-32.4
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		39.9	49.1	37.1	31.8	39.2	47.4	40.7	35.6	32.7	31.2	21.1	11.7	9.6	4.2	2.1
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	lb	3.9	7.8	-2.9	-6.1	2.0	6.2	-3.5	-8.9	-12.0	-9.8	-18.8	-26.8	-26.5	-32.4	-32.2
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		41.4	49.3	37.6	32.4	39.5	47.7	41.0	36.6	33.5	31.7	21.7	12.7	10.0	5.1	2.3
Total of Up and Down	Tracks	Calculation																
Total Vibration Level Ou	tside B	uilding		43.8	52.2	40.4	35.1	42.4	50.6	43.9	39.1	36.1	34.5	24.4	15.3	12.8	7.7	5.2
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
																		
Predicted Noise Level		1/3 Oct	t, dB	59.8	68.2	56.4	51.1	58.2	66.0	59.1	54.1	50.9	48.5	37.4	27.3	23.8	18.4	15.9
Predicted Noise Level		Oct	t, dB	1		68.6			67.3			56.6			38.0			20.4
L _{max}		d	B(A)	44.5														
L _{eq,30mins}		d	IB(A)	31.5														
Noise Criteria		d	IB(A)	45														
Compliance			1	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 80 kph
NSR Ref.:	DIH-3-4			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Chui Yuen House	Γ	Up Track	55	45	71
Assessed Floor	1	D	Down Track	50	45	67
Item:	6					

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	1		Frequency (Hz)													
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N]														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.6	6.9	-4.8	-8.5	0.8	5.1	-4.6	-12.5	-14.8	-11.6	-20.9	-30.4	-27.9	-35.8	-33.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.9	47.4	34.7	29.0	37.3	45.6	38.9	32.0	29.7	28.9	18.6	8.1	7.6	0.7	0.5
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.0	7.0	-4.6	-8.2	1.0	5.2	-4.4	-12.1	-14.5	-11.4	-20.7	-30.0	-27.8	-35.4	-32.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.5	47.5	34.9	29.3	37.5	45.7	39.1	32.4	30.0	29.1	18.8	8.5	7.7	1.1	0.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	38.2	50.4	37.8	32.2	40.4	48.7	42.0	35.2	32.8	32.0	21.7	11.3	10.7	3.9	3.6
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
De la Parte d'Malaga Lavral	1/2 Oct. dB			52.0		50.0			52.0	-= -			~~ ~			
Predicted Noise Level	1/3 Oct, dB	54.2	66.4	53.8	48.2	56.2	64.1	57.2	50.2	47.6	46.0	34.7	23.3	21.7	14.6	14.3
Predicted Noise Level	Uct, dB	1		66.7			65.4			53.1			35.2			17.5
L _{max}	dB(A)	42.1														1
L _{eq,30mins}	dB(A)	29.7														1
Noise Criteria	dB(A)	45														
Commiliance		Vee														

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 201-b date and edjusted by the correction factor of 20xlog

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
Project:	SCL(TAW - HUH)			Train Spe	ed: 90 kph
NSR Ref.:	DIH-4-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Pang Ching Court	Up Track	210	70	221
Assessed Floor	1	Down Trac	k 195	70	207
Item:	7				

Selected	LSR	Details:
		I SR Ref

	LON NEL
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		· · · · ·						-	Freq	uency	(Hz)	-	-	-			
Description	U <u>nit</u>	'	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/in ^{0.5}	'	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/	N N															ļ
TIL	dB Typ	л <u>е</u> 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Typ	je 0	1														ļ
LSR	dB re 10 ⁻⁶ in/s*ir	1 ^{0.5} /lb	-14.7	4.6	-9.3	-14.0	-1.9	2.5	-7.0	-21.0	-21.5	-16.0	-25.9	-39.0	-31.3	-44.0	-34.7
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	<u></u> '	22.8	46.2	31.2	24.5	35.7	44.1	37.5	24.5	24.0	25.5	14.6	0.5	5.3	-6.4	-0.2
Down Track Calculatic	vn																
FDL	dB re 1 lb/in ^{0.5}	'	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/	N N	1														l
TIL	dB Typ	e 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Typ	Je O	1														
LSR	dB re 10 ⁻⁶ in/s*ir	n ^{0.5} /lb	-14.0	4.8	-9.1	-13.7	-1.7	2.7	-6.9	-20.6	-21.1	-15.7	-25.7	-38.5	-31.1	-43.5	-34.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	<u> </u>	23.6	46.3	31.5	24.9	35.8	44.2	37.6	25.0	24.4	25.8	14.9	1.0	5.5	-6.0	-0.1
Total of Up and Down	Tracks Calculat	lion															
Total Vibration Level Ou	tside Building	<u> </u>	26.2	49.2	34.3	27.7	38.8	47.1	40.6	27.7	27.2	28.7	17.7	3.7	8.4	-3.2	2.9
BCF	dB Y/	N 0	1														
BVR-up	dB Floc	vr 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	′	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	'	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	'	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
De la Parte d'Malaga Lavral	4/2																10.0
Predicted Noise Level	1/3	Oct, ab	42.2	65.2	50.3	43.7	54.6	62.5	55.8	42.7	42.0	42.7	30.7	15.7	19.4	7.5	13.6
Predicted Noise Level		Oct, ab	1		65.4			63.9			47.3			31.2			14.7
L _{max}		dB(A)	39.8														
L _{eq,30mins}		dB(A)	26.8														
Noise Criteria		dB(A)	45														
Compliance		,	Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[1] Enter interpolation has been applied to start distance where appropriate.
[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 90 kph
NSR Ref.:	DIH-4-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Carbo Anglo-Chinese Kindergarden	Up Track	130	75	150
Assessed Floor	0	Down Track	115	75	137
Item:	8				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	Τ									Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0															ļ
LSR	dB re 2	10 ⁻⁶ in/s*in ^{0.5}	/lb	-10.2	5.4	-7.8	-12.1	-0.9	3.4	-6.2	-18.1	-19.2	-14.5	-24.2	-36.1	-30.1	-41.2	-34.1
Up Track Vib. Level	dB re ²	10 ⁻⁶ in/sec		27.3	46.9	32.7	26.4	36.6	44.9	38.3	27.4	26.3	27.0	16.3	3.4	6.4	-3.7	0.4
Down Track Calculatio	'n																	
FDL	dB re '	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0															I
LSR	dB re 2	10 ⁻⁶ in/s*in ^{0.5}	/lb	-9.2	5.6	-7.4	-11.7	-0.7	3.6	-6.0	-17.5	-18.7	-14.1	-23.8	-35.4	-29.9	-40.5	-34.0
Down Track Vib. Level	dB re 1	10 ⁻⁶ in/sec		28.3	47.1	33.1	26.9	36.8	45.1	38.5	28.1	26.8	27.4	16.7	4.1	6.7	-3.0	0.6
Total of Up and Down	Tracks	Calculation	n															
Total Vibration Level Out	tside Bi	uilding		30.8	50.0	35.9	29.7	39.7	48.0	41.4	30.8	29.6	30.2	19.5	6.8	9.5	-0.3	3.5
BCF	dB	Y/N	0															
BVR-up	dB	Floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Description Nation Lawal		1/2 0	-A dB	1 40 0	<u> </u>	52.0	47.7	57 E	CE 4	50.0	47.0	46.4	40.0	24.5	20.0	20 F	40.4	40.0
Predicted Noise Level		1/3 00	t, аь	48.8	68.0	53.9	41.1	57.5	65.4 66.9	58.0	47.8	40.4	46.2	34.5	20.8	22.5	12.4	10.2
Predicted Noise Level		0		40.0		08.∠			00.0			51.0			34.9			17.0
L _{max}		(JB(A)	42.9														
L _{eq,30mins}		(dB(A)	33[8]														
Noise Criteria			dB(A)	55[9]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)				Train Spee	ed: 80 kph
NSR Ref.:	DIH-5-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Rainbow Home	Up	Track	68	42	80
Assessed Floor	0	Dowr	n Track	25	41	48
Item:	9					

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	1									Freq	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		!	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	/lb	7.8	5.7	-2.9	-9.9	-11.7	-11.5	-21.2	-19.2	-8.8	-10.7	-9.9	-14.7	-9.0	-11.2	-16.4
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		44.3	46.2	36.6	27.6	24.8	29.0	22.3	25.3	35.7	29.8	29.6	23.8	26.5	25.3	17.1
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	/lb	8.3	6.1	-1.6	-7.9	-9.5	-10.1	-16.0	-12.9	-6.4	-9.4	-8.3	-11.2	-5.1	-8.5	-14.7
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec	!	44.8	46.6	37.9	29.6	27.0	30.4	27.5	31.6	38.1	31.1	31.2	27.3	30.4	28.0	18.8
Total of Up and Down	Tracks	s Calculation	<u> </u>															
Total Vibration Level Out	tside E	Juilding		47.6	49.4	40.3	31.7	29.1	32.8	28.6	32.5	40.1	33.5	33.5	28.9	31.9	29.8	21.0
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Deadlated Nation Laural		4/2.0	-4 -1D	05.0	07.4	50.0	40.7	40.0	50.0	45.0	40.5	50.0	40.5	40.5	40.0	44.0	40.5	00.7
Predicted Noise Level		1/3 00	.t, ав	65.0	67.4	58.3	49.7	46.9	50.2	45.8	49.5	56.9	49.5	48.5	42.9	44.9	42.5	33.7
Predicted Noise Level		00	л, ав			68.0			52.8			58.2			50.8			43.1
L _{max}		C	JB(A)	46.6														
L _{eq,30mins}		c	JB(A)	34.2														
Noise Criteria		ſ	JB(A)	45														
Compliance			,	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot. $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$

 $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 80 kph
NSR Ref.:	DIH-5-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises	Up Track	50	41	65
Assessed Floor	1	Down Track	8	40	41
Item:	10				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

				\square						Freq	uency	(Hz)		Frequency (Hz)								
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500				
Up Track Calculation																						
FDL	dB re	1 lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5				
CCF	dB	Y/N	Ν	1														ŗ				
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TOC	dB	Туре	0	1																		
LSR	dB re '	10 ⁻⁶ in/s*in ^{0.5} /I	b	8.0	5.9	-2.4	-9.1	-10.8	-10.9	-19.1	-16.6	-7.9	-10.2	-9.3	-13.2	-7.4	-10.1	-15.7				
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		44.5	46.4	37.1	28.4	25.7	29.6	24.4	27.9	36.6	30.3	30.2	25.2	28.1	26.4	17.8				
Down Track Calculatio	'n																					
FDL	dB re	1 lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5				
CCF	dB	Y/N	Ν	l I														ļ				
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TOC	dB	Туре	0	1														I				
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /I	b	8.5	6.2	-1.3	-7.4	-8.9	-9.8	-14.7	-11.2	-5.8	-9.1	-7.9	-10.3	-4.1	-7.8	-14.2				
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		45.0	46.7	38.2	30.1	27.6	30.7	28.8	33.3	38.7	31.4	31.6	28.2	31.4	28.7	19.3				
Total of Up and Down	Tracks	Calculation																				
Total Vibration Level Ou	tside Br	uilding		47.8	49.6	40.7	32.3	29.8	33.2	30.2	34.4	40.8	33.9	34.0	30.0	33.1	30.7	21.6				
BCF	dB	Y/N	0	1														I				
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2				
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7				
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2				
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
B Para d Malaa Laval		1/2.0-1																				
Predicted Noise Level		1/3 000	, ав	63.8	65.0	56.7	48.3	45.6	48.6	45.4	49.4	55.0	47.9	47.0	42.0	44.1	41.4	32.3				
Predicted Noise Level		UCT	, ав			66.2			51.6			57.1			49.6			41.9				
L _{max}		di	3(A)	45.5																		
L _{eq,30mins}		df	B(A)	33.0																		
Noise Criteria		d	B(A)	45																		
Compliance			1	Yes																		

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 80 kph
NSR Ref.:	DIH-5-5		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Our Lady's Kindergarden	Up Track	121	40	127
Assessed Floor	0	Down Track	85	40	94
Item:	11				

Selected	LSR	Details:

	LOIN INCI.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

										Freq	uency	(Hz)			Frequency (Hz)								
Description	Unit		'	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500					
Up Track Calculation																							
FDL	dB re	1 lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5					
CCF	dB	Y/N	Ν	1														, ,					
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TCF	dB		'	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TOC	dB	Туре	0	1														I					
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	-8.3	5.7	-7.1	-11.3	-0.5	3.8	-5.8	-16.9	-18.2	-13.9	-23.5	-34.8	-29.6	-40.0	-33.8					
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		28.2	46.2	32.4	26.2	36.0	44.3	37.7	27.6	26.3	26.6	16.0	3.7	5.9	-3.5	-0.3					
Down Track Calculatio	'n																						
FDL	dB re	1 lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5					
CCF	dB	Y/N	Ν	1														ľ					
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TOC	dB	Туре	0	1														I					
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	-4.9	6.3	-5.9	-9.8	0.2	4.5	-5.2	-14.6	-16.5	-12.7	-22.2	-32.6	-28.8	-37.8	-33.4					
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec	'	31.6	46.8	33.6	27.7	36.7	45.0	38.3	29.9	28.0	27.8	17.3	5.9	6.7	-1.3	0.1					
Total of Up and Down	Tracks	S Calculatior	<u> </u>																				
Total Vibration Level Out	tside B	Juilding		33.3	49.5	36.0	30.0	39.3	47.6	41.0	31.9	30.2	30.3	19.7	8.0	9.3	0.7	2.9					
BCF	dB	Y/N	0	1																			
BVR-up	dB	Floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
BVR - Resonance	dB		'	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7					
CTN	dB		'	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2					
SAF	dB		'	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10					
De la Parte d'Maise Laural		1/2 01	<u></u>																				
Predicted Noise Level		1/3 UC	t, αΒ	51.3	67.5	54.0	48.0	57.1	65.0	58.2	48.9	47.0	46.3	34.7	22.0	22.3	13.4	15.6					
Predicted Noise Level		UC	t, аы	1		67.8			66.4			52.3			35.2			17.7					
L _{max}		ď	IB(A)	42.7																			
L _{eq,30mins}		c'	IB(A)	33[8]																			
Noise Criteria		ť	IB(A)	55[9]																			
Compliance			,	Yes																			

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Annex D - Detailed Operational Groundborne Noise Calculations

Project:	SCL(TAW - HUH)			Train Spee	ed: 85 kph
NSR Ref.:	DIH 6-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	WTS Fire Station and Quarters Block A	Up Track	4	35	35
Assessed Floor	1	Down Track	5	35	35
Item:	12				

Selected LSR Details: LSR Ref.

Up Track HOM-2-2 . Down Track HOM-2-2

										Freq	Jency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB	Y/1	N N															
TIL	dB	Тур	ə 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Тур	e 0															
LSR	dB re	10 ⁻⁶ in/s*in	^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		45.7	47.4	39.2	31.4	28.9	31.8	31.2	36.1	40.1	32.4	32.7	30.0	33.4	30.1	20.4
Down Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB	Y/N	N N															
TIL	dB	Тур	e 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Тур	ə 0															
LSR	dB re	10 ⁻⁶ in/s*in	^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		45.7	47.4	39.2	31.4	28.9	31.8	31.2	36.1	40.1	32.4	32.7	30.0	33.4	30.1	20.4
Total of Up and Down	Tracks	Calculat	ion															
Total Vibration Level Out	tside B	uilding		48.7	50.4	42.2	34.4	31.9	34.8	34.2	39.1	43.1	35.4	35.7	33.0	36.4	33.2	23.4
BCF	dB	Y/I	0 1															
BVR-up	dB	Floo	r 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Description of Nucleon 1	1	4 /2	0							40.1				10 5			10.0	
Predicted Noise Level		1/3	Oct, dB	64.7	66.4	58.2	50.4	47.7	50.2	49.4	54.1	57.9	49.4	48.7	45.0	47.4	43.9	34.1
Predicted Noise Level			Uct, dB			67.1			54.0			59.9			52.1			44.3
L _{max}			dB(A)	48.0														
L _{eq,30mins}			dB(A)	35.3														
Noise Criteria			dB(A)	45														
Compliance				Yes														

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30 \text{mins}}$ for leading and trailing effect for conservative approaches.)

[6] $L_{\mbox{\scriptsize eq},30\mbox{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 85 kph
NSR Ref.:	DIH-7-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Tropicana Gardens Block 2	Up Trac	k 29	40	49
Assessed Floor	4	Down Tra	ick 63	40	75
Item:	13				

Selected	LSR	Details:

LSR Ref. Up Track HOM-2-2 Down Track HOM-2-2

	Т							Freg	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		4	·	<u> </u>	·				<u> </u>							- <u>-</u>
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														ŀ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.3	6.1	-1.7	-8.0	-9.6	-10.2	-16.2	-13.1	-6.5	-9.5	-8.4	-11.3	-5.3	-8.7	-14.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.3	47.1	38.4	30.0	27.5	30.9	27.8	31.9	38.5	31.5	31.7	27.7	30.8	28.4	19.3
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														1
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.9	5.8	-2.7	-9.7	-11.4	-11.3	-20.5	-18.4	-8.5	-10.6	-9.7	-14.2	-8.5	-10.9	-16.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.9	46.8	37.3	28.4	25.6	29.7	23.5	26.6	36.5	30.5	30.3	24.8	27.5	26.1	17.8
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	utside Building	48.1	50.0	40.9	32.3	29.6	33.3	29.2	33.0	40.6	34.0	34.0	29.5	32.4	30.4	21.6
BCF	dB Y/N 0															
BVR-up	dB Floor 4	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
		1 70 1														
Predicted Noise Level	1/3 Oct, dB	58.1	60.0	50.9	42.3	39.4	42.7	38.4	42.0	49.4	42.0	41.0	35.5	37.4	35.1	26.3
Predicted Noise Level	Oct, dB	4		60.5			45.4			50.8			43.4			35.6
L _{max}	dB(A)	, 39.2														
L _{eq,30mins}	dB(A)) 26.5														
Noise Criteria	dB(A)) 45														
Compliance		Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 85 kph
NSR Ref.:	DIH-7-2			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Tropicana Gardens Block 3	U	p Track	21	40	45
Assessed Floor	4	Do	wn Track	54	40	67
Item:	14					

Selected	LSR	Details:

LSR Ref. Up Track HOM-2-2 Down Track HOM-2-2

	1	<u> </u>	Frequency (Hz)													
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	10				<u> </u>				<u></u>		<u></u>					1
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	1														1
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															1
LSR	dB <u>re 10⁻⁶in/s*in^{0.5}/lb</u>	8.4	6.2	-1.4	-7.7	-9.2	-9.9	-15.4	-12.1	-6.1	-9.3	-8.1	-10.7	-4.6	-8.2	-14.5
Up Track Vib. Level	dB <u>re 10⁻⁶in/sec</u>	45.4	47.2	38.6	30.4	27.8	31.1	28.6	33.0	38.9	31.8	31.9	28.3	31.4	28.8	19.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	1														1
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.4	-9.2	-10.9	-11.0	-19.4	-17.0	-8.0	-10.3	-9.4	-13.5	-7.7	-10.3	-15.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.0	46.9	37.6	28.8	26.1	30.0	24.6	28.0	37.0	30.7	30.7	25.6	28.4	26.7	18.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	48.2	50.1	41.1	32.7	30.1	33.6	30.1	34.2	41.1	34.3	34.3	30.2	33.2	30.9	21.9
BCF	dB Y/N 0	1														I
BVR-up	dB Floor 4	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	1/2 Q - (- 15											<u></u>				
Predicted Noise Level	1/3 Oct, dB	58.2	60.1	51.1	42.7	39.9	43.0	39.3	43.2	49.9	42.3	41.3	36.2	38.2	35.6	26.6
Predicted Noise Level	Oct, dB	1		60.6			45.8			51.3			43.9			36.1
L _{max}	dB(A)	39.7														
L _{eq,30mins}	dB(A)	27.0														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 85 kph
NSR Ref.:	DIH-8-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Redemption Lutheran Church	Up Track	116	20	118
Assessed Floor	0	Down Trac	k 163	20	164
Item:	15				

Selected	LSR	Details:	

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	Τ	Frequency (Hz)														
Description	l Init	20	25	32	10	50	63		100	125	160	200	250	215	400	500
Description	Unit	20	25	3 <u>∠</u>	40	50	05	00	100	120	100	200	200	315	400	500
	UP A IL / _0.5	07.0	41.0	40.0	22.0	27.0	41.0	41.0	45.0	45.0	41.0	40.0	20.0	20.0	27.0	21.0
FDL	dB re 1 lb/in-	31.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
	dB Y/IN IN		~	0	0	2	0	0	2	2	0	0	~	2	2	0
	dB Type U	U	U	0	0	0	U	0	0	0	U	0	0	0	0	0
		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
100	dB iype u	4	- 1	20	44.4	10 1	40 E	05.4	24.0	40.7	44 7	44.0	47.0	40.0	12.2	470
LSR	dB re 10 ĭn/s^in/lb	/.4	5.4	-3.8	-11.4	-13.4	-12.5	-25.1	-24.0	-10.7	-11.7	-11.2	-11.3	-12.0	-13.3	-17.0
Up Track Vib. Level	dB re 10 ⁻ °in/sec	44.4	46.4	36.2	26.6	23.7	28.5	18.9	21.0	34.3	29.3	28.9	21.7	24.0	23.7	16.3
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.1	5.1	-4.6	-12.7	-14.8	-13.4	-28.4	-28.1	-12.3	-12.6	-12.2	-19.6	-14.5	-15.0	-18.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.1	46.1	35.4	25.3	22.2	27.7	15.6	16.9	32.8	28.4	27.8	19.4	21.5	22.0	15.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	47.3	49.3	38.8	29.0	26.0	31.1	20.6	22.4	36.6	31.9	31.4	23.7	25.9	26.0	18.7
BCF	dB Y/N 0															ļ
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	65.3	67.3	56.8	47.0	43.8	48.5	37.8	39.4	53.4	47.9	46.4	37.7	38.9	38.7	31.4
Predicted Noise Level	Oct, dB	1		67.7			50.1			54.6			47.6			39.4
L _{max}	dB(A)	43.1														
L _{ea,30mins}	dB(A)	30.4														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot. $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$

 $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 80 kph
NSR Ref.:	DIH-9-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Shek On Building		Up Track	118	25	121
Assessed Floor	0	Ī	Down Track	156	25	158
Item:	16	-				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

			Frequency (Hz)													
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		-														
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.4	5.4	-3.9	-11.5	-13.5	-12.5	-25.3	-24.3	-10.8	-11.8	-11.2	-17.5	-12.2	-13.4	-17.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.9	45.9	35.6	26.0	23.0	27.9	18.2	20.2	33.7	28.7	28.3	21.0	23.3	23.1	15.7
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.1	5.1	-4.5	-12.6	-14.6	-13.3	-28.0	-27.7	-12.1	-12.5	-12.1	-19.3	-14.3	-14.8	-18.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.6	45.6	35.0	24.9	21.9	27.2	15.5	16.8	32.4	28.0	27.4	19.2	21.2	21.7	14.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.7	48.8	38.3	28.5	25.5	30.6	20.0	21.8	36.1	31.4	30.9	23.2	25.4	25.4	18.2
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, d	B 64.7	66.8	56.3	46.5	43.3	48.0	37.2	38.8	52.9	47.4	45.9	37.2	38.4	38.1	30.9
Predicted Noise Level	Oct, d	в		67.2			49.5			54.1			47.0			38.9
L _{max}	dB(/	42.6														
L _{eq,30mins}	dB(A) 33[8]														
Noise Criteria	dB(A) 55[9]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)			Train Spe	ed: 80 kph
NSR Ref.:	DIH-10-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Hong Kong Sheung Keung Hui Nursing Home	Up Track	168	25	170
Assessed Floor	1	Down Track	188	25	190
Item:	17				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	1		- I							Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	7.0	5.1	-4.7	-12.9	-14.9	-13.4	-28.8	-28.6	-12.4	-12.7	-12.3	-19.9	-14.8	-15.2	-19.0
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		43.5	45.6	34.8	24.6	21.6	27.1	14.7	15.9	32.1	27.8	27.2	18.6	20.7	21.3	14.5
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	6.9	5.0	-5.0	-13.3	-15.4	-13.7	-29.9	-30.0	-13.0	-13.0	-12.7	-20.6	-15.7	-15.8	-19.4
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		43.4	45.5	34.5	24.2	21.1	26.8	13.6	14.5	31.5	27.5	26.8	17.9	19.8	20.7	14.1
Total of Up and Down	Tracks	s Calculation	1															
Total Vibration Level Out	tside B	Juilding		46.5	48.5	37.7	27.4	24.3	29.9	17.2	18.3	34.8	30.7	30.0	21.3	23.3	24.0	17.3
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Deadlated Nation Laural		4/2.01		00.5	04.5	50.7	40.4	40.4	45.0	00.4		40.0	447	40.0			047	
Predicted Noise Level		1/3 00	л, ав	62.5	64.5	53.7	43.4	40.1	45.3	32.4	33.3	49.6	44.7	43.0	33.3	34.3	34.7	28.0
Predicted Noise Level		00	л, ав			64.9			46.0			50.9			43.9			35.5
L _{max}		c	IB(A)	39.4														ļ
L _{eq,30mins}		c	JB(A)	27.0														
Noise Criteria		c	JB(A)	45														
Compliance				Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 35 kph
NSR Ref.:	DIH-11-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Lung Wan House		Up Track	75	25	79
Assessed Floor	1	D	own Track	60	25	65
Item:	18					

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	T							Freq	uency	(Hz)				Frequency (Hz)							
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500					
Up Track Calculation																					
FDL	dB re 1 lb/in ^{0.5}	29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3					
CCF	dB Y/N N	1														I					
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TOC	dB Type 0	1																			
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-2.9	6.7	-5.2	-9.0	0.6	4.8	-4.8	-13.3	-15.5	-12.0	-21.4	-31.2	-28.3	-36.6	-33.1					
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	26.5	40.0	27.1	21.3	29.9	38.2	31.5	24.0	21.9	21.3	10.9	0.1	0.1	-7.3	-6.8					
Down Track Calculation																					
FDL	dB re 1 lb/in ^{0.5}	29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3					
CCF	dB Y/N N	1														ŀ					
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TOC	dB Type 0	1														ŀ					
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-0.6	7.0	-4.5	-8.0	1.1	5.3	-4.4	-11.9	-14.3	-11.3	-20.6	-29.8	-27.7	-35.2	-32.8					
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	28.7	40.4	27.9	22.3	30.4	38.6	32.0	25.5	23.0	22.0	11.8	1.5	0.6	-5.9	-6.5					
Total of Up and Down	Tracks Calculation																				
Total Vibration Level Ou	utside Building	30.7	43.2	30.5	24.8	33.2	41.4	34.8	27.8	25.5	24.7	14.4	3.9	3.4	-3.5	-3.6					
BCF	dB Y/N 0	1														I					
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2					
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7					
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2					
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10					
	4/0.0-1																				
Predicted Noise Level	1/3 Oct, aB	46.7	59.2	46.5	40.8	49.0	56.8	50.0	42.8	40.3	38.7	27.4	15.9	14.4	7.2	7.1					
Predicted Noise Level	UCT, ab	1		59.5			58.2			45.7			27.9			10.5					
L _{max}	dB(A)	34.8																			
L _{eq,30mins}	dB(A)	26.0																			
Noise Criteria	dB(A)	45																			
Compliance		Yes																			

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	DIH-12-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Galaxia Tower B	Up Trac	k 195	30	197
Assessed Floor	5	Down Tra	ck 180	30	182
Item:	19				

Selected	LSR	Details:
		LSR Ref.

Up Track	DIH-P1-1
Down Track	DIH-P1-1

										Freq	uency	(Hz)						
Description	Unit		/	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														ŗ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	ib	-13.4	4.9	-8.9	-13.4	-1.6	2.8	-6.8	-20.2	-20.8	-15.5	-25.4	-38.2	-30.9	-43.1	-34.5
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		14.9	37.1	22.4	15.8	26.7	35.0	28.5	16.1	15.4	16.7	5.8	-7.9	-3.7	-14.9	-9.3
Down Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														l
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	ib	-12.5	5.0	-8.6	-13.0	-1.4	3.0	-6.6	-19.6	-20.4	-15.2	-25.1	-37.6	-30.7	-42.6	-34.4
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		15.8	37.3	22.7	16.2	26.9	35.2	28.6	16.7	15.9	17.0	6.2	-7.3	-3.4	-14.3	-9.1
Total of Up and Down	Tracks	S Calculation																
Total Vibration Level Out	tside B	Juilding		18.3	40.2	25.5	19.0	29.8	38.1	31.6	19.4	18.7	19.9	9.0	-4.6	-0.5	-11.6	-6.2
BCF	dB	Y/N	0	1														I
BVR-up	dB	Floor	5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		/	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
D		4/2.02	<u></u>															
Predicted Noise Level		1/3 Oct	., аы	26.3	48.2	33.5	27.0	37.6	45.5	38.8	26.4	25.5	25.9	14.0	-0.6	2.5	-8.9	-3.5
Predicted Noise Level		Oct	., dB	1		48.4			46.9			30.7			14.4			2.0
L _{max}		ď	B(A)	22.8														
L _{eq,30mins}		ď	B(A)	<20														
Noise Criteria		d	B(A)	45														
Compliance			,	Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 45 kph
NSR Ref.:	DIH-12-2			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Galaxia Tower E		Up Track	180	30	182
Assessed Floor	5	C	Down Track	160	30	163
Item:	20	_				

Selected	LSR	Details:	

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Т						Freq	uency	(Hz)					Frequency (Hz)							
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500						
Up Track Calculation																						
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5						
CCF	dB <u>Y/N</u> N	1																				
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5						
TOC	dB Type 0																					
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-12.5	5.0	-8.6	-13.0	-1.4	3.0	-6.6	-19.6	-20.4	-15.2	-25.1	-37.6	-30.7	-42.6	-34.4						
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	14.0	35.5	20.9	14.5	25.1	33.5	26.9	14.9	14.1	15.3	4.4	-9.1	-5.2	-16.1	-10.9						
Down Track Calculation																						
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5						
CCF	dB Y/N N	1														ļ						
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5						
TOC	dB Type 0																					
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-11.2	5.2	-8.1	-12.5	-1.1	3.2	-6.4	-18.8	-19.7	-14.8	-24.6	-36.7	-30.4	-41.8	-34.2						
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	15.3	35.7	21.4	15.0	25.4	33.7	27.1	15.7	14.8	15.7	4.9	-8.2	-4.9	-15.3	-10.7						
Total of Up and Down	Tracks Calculation																					
Total Vibration Level Ou	itside Building	17.7	38.6	24.2	17.7	28.3	36.6	30.0	18.4	17.5	18.5	7.7	-5.6	-2.0	-12.7	-7.8						
BCF	dB Y/N 0															I						
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10						
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7						
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2						
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10						
	4/0.0-1-15													<u> </u>								
Predicted Noise Level	1/3 Oct, al	25.7	46.6	32.2	25.7	36.1	44.0	37.2	25.4	24.3	24.5	12.7	-1.6	1.0	-10.0	-5.1						
Predicted Noise Level	UCt, all	1		46.8			45.4			29.5			13.1			1.5						
L _{max}	dB(A)	21.3																				
L _{eq,30mins}	dB(A)	/ <20																				
Noise Criteria	dB(A)	45																				
Compliance		Yes																				

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[1] Enter interpolation has been applied to start distance where appropriate.
[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 85 kph
NSR Ref.:	DIH-13-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Canossa Primary School	Up Track	160	25	162
Assessed Floor	0	Down Track	200	25	202
Item:	21				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	T	ſ – – –						Frea	Jency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation				-												
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB <u>re 10⁻⁶in/s*in^{0.5}/lb</u>	7.1	5.1	-4.6	-12.7	-14.7	-13.3	-28.3	-28.0	-12.2	-12.5	-12.2	-19.5	-14.4	-15.0	-18.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.1	46.1	35.4	25.3	22.3	27.7	15.7	17.1	32.8	28.5	27.8	19.5	21.6	22.1	15.2
Down Track Calculatio	'n															
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	6.8	4.9	-5.1	-13.6	-15.7	-13.9	-30.5	-30.7	-13.3	-13.1	-12.9	-21.0	-16.1	-16.1	-19.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.9	46.0	34.9	24.5	2 <u>1.3</u>	27.1	13.5	14.3	3 <u>1.8</u>	27.9	27.1	18.0	19.9	20.9	14.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	47.0	49.1	38.2	27.9	24.9	30.4	17.8	18.9	35.3	31.2	30.5	21.8	23.8	24.5	17.8
BCF	dB Y/N 0															ļ
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	4/0.0-1							- 7 4	- 7 0							
Predicted Noise Level	1/3 Oct, dB	65.0	67.1	56.2	45.9	42.7	47.8	35.0	35.9	52.1	47.2	45.5	35.8	36.8	37.2	30.5
Predicted Noise Level	Oct, dB			67.4			49.2			53.4			46.5			38.1
L _{max}	dB(A)	41.9														
L _{eq,30mins}	dB(A)	32[8]														
Noise Criteria	dB(A)	55[9]														
Compliance		Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)			Train Spee	ed: 60 kph
NSR Ref.:	DIH-14-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Rhythm Garden Block 2	Up Track	38	20	43
Assessed Floor	1	Down Track	50	20	54
Item:	22				

Selected	LSR	Details:	
			,

	LOK KEI.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

								Freq	uency	(Hz)						
Description	Un <u>it</u>	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															ŗ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														, I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	4.4	7.9	-2.7	-5.9	2.1	6.3	-3.4	-8.6	-11.8	-9.6	-18.6	-26.5	-26.4	-32.0	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.4	45.9	34.3	29.1	36.1	44.3	37.6	33.4	30.2	28.4	18.4	9.5	6.6	2.0	-1.1
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N	1														1
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	1.8	7.4	-3.6	-7.0	1.5	5.7	-3.9	-10.3	-13.1	-10.5	-19.7	-28.2	-27.1	-33.7	-32.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.8	45.4	33.4	28.0	35.5	43.7	37.1	31.7	28.9	27.5	17.3	7.8	5.9	0.3	-1.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	itside Building	40.3	48.7	36.9	31.6	38.8	47.0	40.4	35.6	32.6	31.0	20.9	11.8	9.3	4.2	1.7
BCF	dB Y/N 0	1														I
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
De la Parte d'Malaga Lavral	1/2 Oct. dD															
Predicted Noise Level	1/3 UCt, ab	56.3	64.7	52.9	47.6	54.6	62.4	55.6	50.6	47.4	45.0	33.9	23.8	20.3	14.9	12.4
Predicted Noise Level	Uct, ub	1		65.0			63.8			53.1			34.5			16.9
L _{max}	dB(A)	41.0														
L _{eq,30mins}	dB(A)	29.8														
Noise Criteria	dB(A)	45														
A		Vee														

 Compliance
 res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [2] FDL based on the ground type
 L SR data are interpolated against slant distance.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 60 kph
NSR Ref.:	DIH-14-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Rhythm Garden Block 5	Up Track	30	18	35
Assessed Floor	1	Down Track	x 43	18	47
Item:	23				

LSR Ref. Up Track KAT-P1-5 Down Track KAT-P1-5

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
тос	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-6.1	6.9	3.2	-3.1	-6.1	-3.9	-9.7	-15.0	-19.0	-23.5	-25.6	-32.3	-28.5	-36.0	-37.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	27.9	44.9	40.2	31.9	27.9	34.1	31.3	27.0	23.0	14.5	11.4	3.7	4.5	-2.0	-6.6
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ТОС	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-11.3	4.1	0.5	-6.6	-10.7	-9.0	-15.1	-20.8	-24.6	-28.0	-28.6	-34.5	-29.3	-36.6	-38.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	22.7	42.1	37.5	28.4	23.3	29.0	25.9	21.2	17.4	10.0	8.4	1.5	3.7	-2.6	-7.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	29.0	46.8	42.1	33.5	29.2	35.3	32.4	28.1	24.1	15.8	13.2	5.8	7.1	0.7	-4.0
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	45.0	62.8	58.1	49.5	45.0	50.7	47.6	43.1	38.9	29.8	26.2	17.8	18.1	11.4	6.7
Predicted Noise Level	Oct, dB			64.2			53.1			44.6			27.3			12.9
L _{max}	dB(A)	31.8														
L _{eq,30mins}	dB(A)	20.6														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 60 kph
NSR Ref.:	DIH-14-3			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Rhythm Garden Block 8	Up T	rack	175	17	176
Assessed Floor	1	Down	Track	185	17	186
Item:	24					

Selected LSR Details: LSR Ref.

Up Track KAT-P1-5 Down Track KAT-P1-5

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-34.6	-8.4	-12.0	-22.2	-31.4	-31.6	-39.2	-47.0	-50.1	-48.0	-42.0	-44.4	-32.9	-39.1	-41.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	-0.6	29.6	25.0	12.8	2.6	6.4	1.8	-5.0	-8.1	-10.0	-5.0	-8.4	0.1	-5.1	-10.9
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-35.6	-8.9	-12.5	-22.8	-32.2	-32.5	-40.2	-48.1	-51.1	-48.8	-42.6	-44.9	-33.1	-39.2	-42.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	-1.6	29.1	24.5	12.2	1.8	5.5	0.8	-6.1	-9.1	-10.8	-5.6	-8.9	-0.1	-5.2	-11.0
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	2.0	32.4	27.8	15.5	5.2	9.0	4.3	-2.5	-5.6	-7.4	-2.3	-5.6	3.0	-2.2	-8.0
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	18.0	48.4	43.8	31.5	21.0	24.4	19.5	12.5	9.2	6.6	10.7	6.4	14.0	8.5	2.7
Predicted Noise Level	Oct, dB			49.7			26.9			14.9			16.2			10.0
L _{max}	dB(A)	13.1														
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 60 kph
NSR Ref.:	DIH-14-4		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Canossa Primary School (San Po Kong)	Up Track	145	20	146
Assessed Floor	1	Down Track	160	20	161
Item:	25				

	LOK KEI.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

			Т					,	Freq	uency	(Hz)						
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb	/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB	Y/N N															,
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0															,
LSR	dB re 10 ⁻⁶	'in/s*in ^{0.5} /lb	-9.9	5.4	-7.7	-12.0	-0.9	3.5	-6.1	-17.9	-19.1	-14.4	-24.1	-35.9	-30.0	-41.0	-34.1
Up Track Vib. Level	dB re 10 ⁻⁶	'in/sec	24.1	43.4	29.3	23.0	33.1	41.5	34.9	24.1	22.9	23.6	12.9	0.1	3.0	-7.0	-3.1
Down Track Calculatio	n																
FDL	dB re 1 lb	/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB	Y/N N]														I
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0															I
LSR	dB re 10 ⁻⁶	'in/s*in ^{0.5} /lb	-11.1	5.3	-8.1	-12.4	-1.1	3.2	-6.3	-18.7	-19.6	-14.8	-24.5	-36.6	-30.3	-41.7	-34.2
Down Track Vib. Level	dB re 10 ⁻⁶	'in/sec	22.9	43.3	28.9	22.6	32.9	41.2	34.7	23.3	22.4	23.2	12.5	-0.6	2.7	-7.7	-3.2
Total of Up and Down	Tracks Ca	lculation															
Total Vibration Level Out	tside Buildi	ing	26.5	46.4	32.1	25.8	36.0	44.4	37.8	26.7	25.7	26.4	15.7	2.8	5.8	-4.3	-0.1
BCF	dB	Y/N 0															
BVR-up	dB	Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Deadlated Noise Level		1/2 Oct. d	DI 40.5	<u> </u>	49.4	41.0	51.0	50.0	52.0	44.7	40 E	40.4	00.7	44.0	40.0	<u> </u>	40.6
Predicted Noise Level		1/3 Uct, u	B 42.5	62.4	40.1	41.8	51.0	59.8 61.1	53.0	41.7	40.5	40.4	28.7	14.8 20.4	16.8	6.4	10.0
Predicted Noise Level		dD()			02.U			01.1			43.7			29.1			12.2
L _{max}			() 31.Z														
L _{eq,30mins}		dB(A	 29[8] 														
Noise Criteria		dB(/	A) 55[9]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{\text{eq},30\text{mins}}$ for leading and trailing effect for conservative approaches.)

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)			Train Spee	ed: 55 kph
NSR Ref.:	DIH-14-5		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Rhythm Garden Block 1	Up Track	30	20	36
Assessed Floor	1	Down Track	43	20	47
Item:	26				

Selected	LSR	Details:	
			-

LSR Ref. Up Track DIH-P1-1 . Down Track DIH-P1-1

		1						Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.6	8.1	-2.3	-5.4	2.3	6.5	-3.2	-7.8	-11.2	-9.2	-18.2	-25.7	-26.1	-31.3	-32.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.8	45.3	33.9	28.8	35.6	43.7	37.1	33.4	30.1	28.0	18.0	9.5	6.1	1.9	-1.7
Down Track Calculation	on															
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	3.1	7.7	-3.2	-6.5	1.8	6.0	-3.7	-9.4	-12.4	-10.0	-19.1	-27.3	-26.7	-32.8	-32.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.4	44.9	33.1	27.8	35.1	43.3	36.6	31.8	28.8	27.2	17.1	7.9	5.5	0.4	-2.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	itside Building	40.8	48.1	36.5	31.3	38.3	46.5	39.8	35.7	32.5	30.6	20.6	11.8	8.8	4.2	1.1
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	1															
Predicted Noise Level	1/3 Oct, dE	56.8	64.1	52.5	47.3	54.1	61.9	55.0	50.7	47.3	44.6	33.6	23.8	19.8	14.9	11.8
Predicted Noise Level	Oct, dE	3		64.5			63.3			53.0			34.2			16.7
L _{max}	dB(A) 40.6														
L _{eq,30mins}	dB(A	29.8														
Noise Criteria	dB(A) 45														
Compliance		Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 60 kph
NSR Ref.:	DIH-14-6		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Rhythm Garden Block 3	Up Track	45	19	49
Assessed Floor	1	Down Track	56	19	59
Item:	27				

LSR Ref. Up Track DIH-P1-1 Down Track DIH-P1-1

										Freq	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB	Y/N	Ν	1														ŗ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														
LSR	dB re '	10 ⁻⁶ in/s*in ^{0.5} /	íb	3.1	7.7	-3.2	-6.5	1.8	6.0	-3.7	-9.4	-12.4	-10.0	-19.1	-27.3	-26.7	-32.8	-32.3
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		37.1	45.7	33.8	28.5	35.8	44.0	37.3	32.6	29.6	28.0	17.9	8.7	6.3	1.2	-1.3
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	íb	0.5	7.2	-4.1	-7.6	1.3	5.5	-4.1	-11.1	-13.8	-10.9	-20.1	-29.0	-27.4	-34.5	-32.7
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec	'	34.5	45.2	32.9	27.4	35.3	43.5	36.9	30.9	28.2	27.1	16.9	7.0	5.6	-0.5	-1.7
Total of Up and Down	Tracks	Calculation																
Total Vibration Level Out	tside Br	uilding		39.0	48.5	36.4	31.0	38.6	46.8	40.1	34.8	32.0	30.6	20.4	10.9	8.9	3.4	1.5
BCF	dB	Y/N	0	1														I
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		'	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		'	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		'	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Desiliate d National avail		1/2.00	· JD	55.0	24 E	50.4	17.0	54.4		55.0	10.0	10.0	14.0			10.0	111	10.0
Predicted Noise Level		1/3 00	ί, αοι • ΗΡ	55.0	64.5	52.4	47.0	54.4	62.2	55.3	49.0	40.0	44.0	33.4	22.9	19.9	14.1	12.2
Predicted Noise Level		00	(, QD)	1		64.0			63.0			52.4			34.0			10.4
L _{max}		a	B(A)	40.6														
L _{eq,30mins}		d	B(A)	29.4														
Noise Criteria		d	B(A)	45														
Compliance			,	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot. $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$

 $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 60 kph
NSR Ref.:	DIH-15-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Kam Wan House	U	p Track	100	25	103
Assessed Floor	0	Do	wn Track	85	25	89
Item:	28					

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

								Freq	uency	(Hz)	Frequency (Hz)											
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500						
Up Track Calculation																						
FDL	dB re 1 lb/in ^{0.5}	34.(38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0						
CCF	dB Y/N	N														1						
TIL	dB Type	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
TOC	dB Type	0														, I						
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	, -5.8	6.2	-6.3	-10.2	0.0	4.3	-5.3	-15.2	-17.0	-13.0	-22.5	-33.2	-29.0	-38.4	-33.5						
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	28.2	2 44.2	30.7	24.8	34.0	42.3	35.7	26.8	25.0	25.0	14.5	2.8	4.0	-4.4	-2.5						
Down Track Calculatio	un																					
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0						
CCF	dB Y/N	Ν														1						
TIL	dB Type	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
TOC	dB Type	0														l						
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	, -4.0) 6.5	-5.6	-9.5	0.4	4.6	-5.0	-14.0	-16.0	-12.4	-21.8	-32.0	-28.5	-37.3	-33.3						
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	30.0) 44.5	31.4	25.5	34.4	42.6	36.0	28.0	26.0	25.6	15.2	4.0	4.5	-3.3	-2.3						
Total of Up and Down	Tracks Calculation																					
Total Vibration Level Ou	tside Building	32.2	2 47.3	34.1	28.2	37.2	45.5	38.8	30.4	28.5	28.3	17.8	6.5	7.2	-0.8	0.6						
BCF	dB Y/N	0														I						
BVR-up	dB Floor	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7						
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2						
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10						
- W. A. J. Mada and J. Start	1/0.0-1				<u> </u>						<u></u>											
Predicted Noise Level	1/3 Uct,	dB 50.2	65.3	52.1	46.2	55.0	62.9	56.0	47.4	45.3	44.3	32.8	20.5	20.2	11.9	13.3						
Predicted Noise Level	Uct,	dB (a)	-	65.6			64.2			50.7			33.3			15.8						
L _{max}	dB	(A) 40.	ذ																			
L _{eq,30mins}	dB	J(A) 29./	4																			
Noise Criteria	dB	i(A) 45																				
A		V -	-																			

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.
 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	DIH-15-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Pik Hoi House	Up Track	75	25	79
Assessed Floor	0	Down Trac	k 65	25	70
Item:	29				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

										Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re '	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														
LSR	dB re 2	10 ⁻⁶ in/s*in ^{0.5} /	ĺb	-2.6	6.7	-5.1	-8.9	0.7	4.9	-4.7	-13.1	-15.3	-11.9	-21.3	-31.1	-28.2	-36.4	-33.1
Up Track Vib. Level	dB re 1	10 ⁻⁶ in/sec		30.7	43.9	31.1	25.4	33.9	42.2	35.5	28.1	25.9	25.3	14.9	4.2	4.1	-3.2	-2.8
Down Track Calculatio	'n																	
FDL	dB re '	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re 1	10 ⁻⁶ in/s*in ^{0.5} /	lb	-1.0	7.0	-4.6	-8.2	1.0	5.2	-4.4	-12.1	-14.5	-11.4	-20.7	-30.0	-27.8	-35.4	-32.9
Down Track Vib. Level	dB re 1	10 ⁻⁶ in/sec		32.3	44.2	31.7	26.1	34.2	42.5	35.8	29.2	26.7	25.8	15.6	5.2	4.5	-2.2	-2.6
Total of Up and Down	Tracks	Calculation	1															
Total Vibration Level Ou	tside Bı	uilding		34.6	47.1	34.4	28.7	37.1	45.3	38.7	31.7	29.4	28.6	18.3	7.8	7.3	0.4	0.3
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Desident and Nation Lawal		1/2.04	s JD	50.0	CE 4	50.4	40.7	510	<u>~~</u> 7	55.0	40.7	40.0	41.0	~~ ~	01.0		10.4	12.0
Predicted Noise Level		1/3 00	t, ao	52.0	65.1	52.4	46.7	54.9	62.7	55.9	48.7	46.2	44.0	33.3	21.8	20.5	13.1	13.0
Predicted Noise Level		00	t, ab	1		65.4			64.1			51.0			33.0			16.∠
L _{max}		o	IB(A)	40.7														
L _{eq,30mins}		d	IB(A)	29.9														I
Noise Criteria		ď	IB(A)	45														
Compliance				Yes														1

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 85 kph
NSR Ref.:	DIH-16-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Wong Tai Sin Temple	Up Track	22	36	42
Assessed Floor	0	Down Track	35	36	50
Item:	30				

Selected	LSR	Details:	
			ĉ

LSR Ref. Up Track DIH-P1-1 . Down Track DIH-P1-1

		1						Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	4.4	7.9	-2.7	-5.9	2.1	6.3	-3.4	-8.6	-11.8	-9.6	-18.6	-26.5	-26.4	-32.0	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.5	48.9	37.3	32.1	39.1	47.3	40.6	36.4	33.3	31.4	21.4	12.6	9.6	5.0	1.9
Down Track Calculation	on															
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	2.4	7.5	-3.4	-6.8	1.7	5.9	-3.8	-9.9	-12.8	-10.3	-19.4	-27.8	-26.9	-33.3	-32.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	39.4	48.6	36.6	31.3	38.7	46.9	40.2	35.1	32.2	30.7	20.6	11.2	9.1	3.7	1.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	itside Building	43.6	51.8	40.0	34.7	41.9	50.1	43.4	38.8	35.8	34.1	24.0	15.0	12.4	7.4	4.8
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dE	61.6	69.8	58.0	52.7	59.7	67.5	60.6	55.8	52.6	50.1	39.0	29.0	25.4	20.1	17.5
Predicted Noise Level	Oct, dE	5		70.1			68.9			58.3			39.6			22.0
L _{max}	dB(A)	46.1														
L _{eq,30mins}	dB(A)	33.4														
Noise Criteria	dB(A)	45														
Compliance	1	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 85 kph
NSR Ref.:	DIH-17-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Chuk Yuen United Village	Up Track	21	30	37
Assessed Floor	0	Down Track	K 63	30	70
Item:	31				

Selected	LSR	Details:	

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	T							Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation			·						·							
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB <u>Y/N</u> N	1														1
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														ŀ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.9	8.1	-2.2	-5.3	2.4	6.6	-3.1	-7.6	-11.0	-9.1	-18.1	-25.5	-26.0	-31.1	-32.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.9	49.2	37.8	32.7	39.4	47.6	40.9	37.4	34.0	31.9	21.9	13.5	10.0	5.9	2.1
Down Track Calculatic	on															
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.5	6.9	-4.8	-8.4	0.9	5.1	-4.5	-12.4	-14.8	-11.6	-20.9	-30.3	-27.9	-35.7	-32.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.6	47.9	35.3	29.6	37.9	46.1	39.5	32.6	30.3	29.5	19.1	8.7	8.1	1.3	1.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	utside Building	43.7	51.6	39.7	34.5	41.7	49.9	43.3	38.6	35.5	33.9	23.8	14.8	12.2	7.2	4.6
BCF	dB Y/N 0	1														
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	61.7	69.6	57.7	52.5	59.5	67.3	60.5	55.6	52.3	49.9	38.8	28.8	25.2	19.9	17.3
Predicted Noise Level	Oct, dB	1		69.9			68.7			58.0			39.4			21.8
L _{max}	dB(A)	45.9														
L _{eq,30mins}	dB(A)	33.2														
Noise Criteria	dB(A)	45														
Compliance		Yes														

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 85 kph
NSR Ref.:	DIH-18-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Upper Wong Tai Sin Estate Po Sin House	Up Track	15	30	34
Assessed Floor	1	Down Track	30	30	42
Item:	32				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

										Freq	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	lb	8.7	8.6	-1.2	-4.1	3.0	7.1	-2.6	-5.8	-9.6	-8.2	-17.0	-23.7	-25.3	-29.4	-31.6
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		45.7	49.6	38.8	33.9	40.0	48.1	41.4	39.2	35.4	32.8	23.0	15.4	10.7	7.6	2.4
Down Track Calculatic	'n																	
FDL	dB re	1 lb/in ^{0.5}		37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	lb	5.6	8.1	-2.3	-5.4	2.3	6.5	-3.2	-7.8	-11.2	-9.2	-18.2	-25.7	-26.1	-31.3	-32.0
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		42.6	49.1	37.7	32.6	39.4	47.5	40.8	37.2	33.9	31.8	21.8	13.3	9.9	5.7	2.0
Total of Up and Down	Tracks	3 Calculation																
Total Vibration Level Ou	itside B	Juilding		47.5	52.4	41.3	36.3	42.7	50.8	44.2	41.3	37.7	35.4	25.5	17.5	13.3	9.8	5.3
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		′	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		′	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B Para d Malaa Laval		1/2.0-	<u></u>					50.5										10.0
Predicted Noise Level		1/3 00	t, Q D	63.5	68.4	57.3	52.3	58.5	66.2	59.4	56.3	52.5	49.4	38.5	29.5	24.3	20.5	16.0
Predicted Noise Level		00	t, QD	1		68.8			67.6			58.4			39.1			21.8
L _{max}		a	B(A)	45.3														
L _{eq,30mins}		d	IB(A)	32.6														
Noise Criteria		ď	IB(A)	45														
Compliance			,	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 90 kph
NSR Ref.:	DIH-18-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Upper Wong Tai Sin Estate Tat Sin House	Up Track	26	31	40
Assessed Floor	1	Down Track	37	31	48
Item:	33				

	LOIN INCI.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

										Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	I N															
TIL	dB	Туре	e 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	e 0															
LSR	dB re	10 ^{⁻6} in/s*in	^{0.5} /lb	5.6	8.1	-2.3	-5.4	2.3	6.5	-3.2	-7.8	-11.2	-9.2	-18.2	-25.7	-26.1	-31.3	-32.0
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		43.1	49.6	38.2	33.1	39.9	48.0	41.3	37.7	34.3	32.3	22.3	13.8	10.4	6.2	2.5
Down Track Calculatio	n																	
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	I N															
TIL	dB	Туре	e 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	e 0															
LSR	dB re	10 ⁻⁶ in/s*in	^{0.5} /lb	3.4	7.7	-3.1	-6.4	1.9	6.1	-3.6	-9.3	-12.3	-10.0	-19.0	-27.2	-26.7	-32.7	-32.3
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		40.9	49.2	37.4	32.2	39.4	47.6	40.9	36.3	33.2	31.6	21.5	12.4	9.8	4.8	2.2
Total of Up and Down	Tracks	Calculati	on															
Total Vibration Level Ou	tside B	uilding		45.2	52.4	40.8	35.7	42.6	50.8	44.1	40.0	36.8	35.0	24.9	16.2	13.1	8.6	5.4
BCF	dB	Y/N	1 0															
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Deadlated Nation Laural	1	4/2			00.4	50.0	54 7	50.4		50.0		54.0	40.0	07.0			40.0	40.4
Predicted Noise Level		1/3	Oct, dB	61.2	68.4	56.8	51.7	58.4	66.2	59.3	55.0	51.6	49.0	37.9	28.2	24.1	19.3	16.1
Predicted Noise Level			υςτ, αΒ			68.8			67.6			57.4		~-	38.5			21.0
				10.66	23.7	17.4	17.1	28.2	40.02	36.8	35.9	35.5	35.6	27	19.6	17.5	15.078	12.9
] ,				11.63	236	55.6	50.9	800	10044	4833	3930	32/8	3597	505	90.4	30.8	32.195	19.5
∟max	1		ав(A)	44.9														
L _{eq,30mins}	1		dB(A)	32.0														
Noise Criteria	1		dB(A)	45														
Compliance	1			Voc														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 90 kph
NSR Ref.:	DIH-19-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Lung Cheung Gov. Secondary School	Up Track	38	24	45
Assessed Floor	0	Down Track	55	24	60
Item:	34				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	1									Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν															l
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	/lb	4.2	7.8	-2.8	-6.0	2.0	6.2	-3.5	-8.8	-11.9	-9.7	-18.7	-26.6	-26.5	-32.2	-32.2
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		41.7	49.4	37.7	32.5	39.6	47.7	41.1	36.8	33.6	31.8	21.8	12.9	10.0	5.3	2.3
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	/lb	0.3	7.2	-4.1	-7.6	1.3	5.5	-4.2	-11.3	-13.8	-11.0	-20.2	-29.2	-27.5	-34.6	-32.7
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		37.8	48.7	36.4	30.9	38.8	47.0	40.3	34.3	31.7	30.5	20.3	10.4	9.1	2.9	1.8
Total of Up and Down	Tracks	Calculation	n															
Total Vibration Level Ou	tside B	uilding		43.2	52.1	40.1	34.8	42.2	50.4	43.7	38.7	35.8	34.2	24.1	14.8	12.6	7.3	5.1
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
			<u> </u>															
Predicted Noise Level		1/3 00	t, dB	61.2	70.1	58.1	52.8	60.0	67.8	60.9	55.7	52.6	50.2	39.1	28.8	25.6	20.0	17.8
Predicted Noise Level		00	st, dB	1		70.4			69.2			58.2			39.7			22.1
L _{max}		(dB(A)	46.3														
L _{eq,30mins}		(dB(A)	36[8]														
Noise Criteria		,	dB(A)	55[9]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)			Train Spe	ed: 90 kph
NSR Ref.:	DIH-20-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Baptist Rainbow Primary School	Up Track	95	45	105
Assessed Floor	0	Down Trac	k 80	45	92
Item:	35				

	LSR Ref.
Up Track	HOM-2-2
Jown Track	HOM-2-2

400 37.5 0 0	500 34.5 0 0
37.5 0 0	34.5 0 0
37.5 0 0	34.5 0 0
0 0	34.5 0 0
0 0	0 0
0 0	0 0
0	0
	1
-12.7	-17.4
24.8	17.2
37.5	34.5
	1
0	0
0	0
	1
-12.0	-16.9
25.5	17.6
28.2	20.4
	1
0	0
0.7	0.7
2	2
10	10
40.9	33.1
	41.6
	I
	I
	I
	-12.7 24.8 37.5 0 0 -12.0 25.5 28.2 0 0.7 2 10 40.9

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.

[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)			Train Spee	ed: 90 kph
NSR Ref.:	DIH-21-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Tin Wang Court Wang King House	Up Track	25	45	51
Assessed Floor	1	Down Track	45	45	64
Item:	36				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

										Frequ	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re 1	I lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														
LSR	dB re 1	10 ⁻⁶ in/s*in ^{0.5} /	lb	8.2	6.0	-1.8	-8.3	-9.9	-10.4	-17.0	-14.1	-6.9	-9.7	-8.6	-11.8	-5.9	-9.1	-15.0
Up Track Vib. Level	dB re 1	10 ⁻⁶ in/sec		45.8	47.6	38.7	30.2	27.6	31.2	27.5	31.4	38.6	31.8	31.9	27.7	30.7	28.5	19.5
Down Track Calculatio	'n																	
FDL	dB re 1	I lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re 1	10 ⁻⁶ in/s*in ^{0.5} /	lb	8.0	5.9	-2.3	-9.0	-10.7	-10.9	-18.9	-16.4	-7.8	-10.2	-9.2	-13.1	-7.3	-10.1	-15.7
Down Track Vib. Level	dB re 1	10 ⁻⁶ in/sec		45.6	47.4	38.2	29.5	26.8	30.7	25.6	29.1	37.7	31.4	31.3	26.4	29.2	27.5	18.9
Total of Up and Down	Tracks	Calculation																
Total Vibration Level Out	tside Bu	uilding		48.7	50.5	41.5	32.9	30.2	33.9	29.7	33.4	41.2	34.6	34.6	30.1	33.0	31.0	22.2
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Des Bated Males Lavel		4/2.0-	<u></u>			<u></u>	40.0	40.0	40.0	44.0	40.4	50.0	40.0	47.0	40.4	14.0	44 7	00.0
Predicted Noise Level		1/3 00	ί, αΒ	64.7	66.5	57.5	48.9	46.0	49.3	44.9	48.4	56.0	48.6	47.6	42.1	44.0	41.7	32.9
Predicted Noise Level		00	ί, αΒ	1		67.1			51.9			57.3			50.0			42.2
L _{max}		đ	B(A)	45.8														ļ
L _{eq,30mins}		d	B(A)	32.8														ļ
Noise Criteria		ď	B(A)	45														
Compliance			,	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 90 kph
NSR Ref.:	DIH-22-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Price Memorial Catholic Primary School	Up Track	80	40	89
Assessed Floor	0	Down Track	95	40	103
Item:	37				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Jown Track	HOM-2-2

	1	—						Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	1					<u> </u>	-					<u></u>		<u> </u>		
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.7	5.6	-3.1	-10.3	-12.1	-11.7	-22.3	-20.5	-9.3	-11.0	-10.3	-15.4	-9.8	-11.8	-16.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.2	47.1	37.4	28.2	25.4	29.8	22.3	25.0	36.2	30.5	30.3	24.1	26.7	25.7	17.7
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	<u> </u>														ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.5	5.5	-3.5	-10.9	-12.8	-12.1	-23.7	-22.3	-10.0	-11.4	-10.7	-16.4	-11.0	-12.6	-17.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.1	47.0	37.0	27.6	24.7	29.4	20.8	23.2	35.5	30.1	29.8	23.1	25.6	24.9	17.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	48.1	50.1	40.2	30.9	28.1	32.6	24.6	27.2	38.8	33.3	33.0	26.7	29.2	28.4	20.5
BCF	dB Y/N 0	<u> </u>														
BVR-up	dB Floor U		0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance		- 6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
		$-\frac{2}{10}$	2 10	2	2	2	2	2	2	2	2	2	2	2	2 40	2
SAF	aB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Prodicted Noise Level	1/3 Oct. (IR 66 1	68.1	58.2	48.9	45.9	50.0	41.8	11 2	55.6	10.3	48.0	40.7	122	41.1	23.2
Predicted Noise Level	Oct o	IB	00.1	68.6	40.5	40.0	51.9	41.0	44.2	56.8	45.5	40.0	49.6	42.2	41.1	41 7
	dB(A) 45 3		00.0			01.0			00.0			40.0			4
⊢max	dB(A) 25[9]	1													
Leico Critorio		A) 55[0]														
Noise Criteria	ab(A) 20[A]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)				Train Spee	ed: 90 kph
NSR Ref.:	DIH-23-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Tin Ma Court Chun On House	Up Tra	ıck	100	40	108
Assessed Floor	1	Down T	rack	115	40	122
Item:	38					

Up Track	DIH-P1-1
Down Track	DIH-P1-1

	, , , , , , , , , , , , , , , , , , ,							Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation					·					· · · · · · · · · · · · · · · · · · ·						
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB <u>Y/N</u> N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-6.5	6.0	-6.5	-10.5	-0.1	4.1	-5.5	-15.7	-17.3	-13.2	-22.8	-33.6	-29.2	-38.8	-33.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.1	47.6	34.0	28.0	37.4	45.7	39.0	29.9	28.2	28.3	17.7	5.9	7.4	-1.3	0.9
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-7.9	5.8	-7.0	-11.1	-0.4	3.9	-5.7	-16.6	-18.0	-13.7	-23.3	-34.5	-29.5	-39.7	-33.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	29.7	47.3	33.6	27.4	37.1	45.4	38.8	28.9	27.5	27.8	17.2	5.0	7.0	-2.2	0.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	33.4	50.5	36.8	30.7	40.2	48.5	41.9	32.4	30.9	31.1	20.5	8.5	10.2	1.3	3.8
BCF	dB Y/N 0	1														
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
		<u> </u>														
Predicted Noise Level	1/3 Oct, dB	49.4	66.5	52.8	46.7	56.0	63.9	57.1	47.4	45.7	45.1	33.5	20.5	21.2	12.0	14.5
Predicted Noise Level	Oct, dB			66.7			65.3			51.0			33.9			16.6
L _{max}	dB(A)	41.5														
L _{eq,30mins}	dB(A)	28.6														
Noise Criteria	dB(A)	45														
Commiliance		Vaa														

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot. $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$

 $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 90 kph
NSR Ref.:	DIH-24-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Shing Wong Temple		Up Track	0	28	28
Assessed Floor	1	D	Down Track	5	28	28
Item:	39					

Selected	LSR	Details:	
			5

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	1								Freq	uency	(Hz)						
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/in ^{0.5}	ذ	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y	Y/N N	1														l
TIL	dB Ty	ype 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Ty	/pe 0	1														
LSR	dB re 10 ⁻⁶ in/s*	*in ^{0.5} /lb	9.1	8.7	-1.1	-3.9	3.1	7.2	-2.5	-5.5	-9.4	-8.0	-16.9	-23.4	-25.2	-29.1	-31.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/se	ec	46.6	50.2	39.4	34.6	40.6	48.7	42.0	40.0	36.1	33.5	23.7	16.1	11.3	8.4	3.0
Down Track Calculatio	n																
FDL	dB re 1 lb/in ^{0.5}	ذ	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y	Y/N N	1														I
TIL	dB Ty	ype 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Ty	/pe 0	1														I
LSR	dB re 10 ⁻⁶ in/s*	*in ^{0.5} /lb	9.1	8.7	-1.1	-3.9	3.1	7.2	-2.5	-5.5	-9.4	-8.0	-16.9	-23.4	-25.2	-29.1	-31.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/se	ec	46.6	50.2	39.4	34.6	40.6	48.7	42.0	40.0	36.1	33.5	23.7	16.1	11.3	8.4	3.0
Total of Up and Down	Tracks Calcul	ation															
Total Vibration Level Out	tside Building		49.6	53.2	42.4	37.6	43.6	51.7	45.0	43.0	39.2	36.5	26.7	19.1	14.3	11.4	6.0
BCF	dB Y	r/N 0	1														
BVR-up	dB Flo	or 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
De la Parte d'Maise Laural		(2. Q. A. J.D.				53.0											- 10 7
Predicted Noise Level	1/-	3 UCt, ab	65.0	69.2	58.4	53.0	59.4	67.1	60.2	58.0	54.0	50.5	39.7	31.1	25.3	22.1	16.7
Predicted Noise Level		UCt, ab	1		69.7			68.5			60.0			40.4			23.2
L _{max}		dB(A)	46.5														
L _{eq,30mins}		dB(A)	33.5														
Noise Criteria		dB(A)	45														
Compliance		,	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 90 kph
NSR Ref.:	DIH-P1-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Upper Wong Tai Sin Estate Phase 3	Up Track	19	34	39
Assessed Floor	2	Down Track	10	30	32
Item:	40				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

										Freq	uency	(Hz)						
Description	Unit		'	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		'	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ŀ
LSR	dB re	<u>, 10⁻⁶in/s*in^{0.5}</u>	/lb	5.3	8.0	-2.4	-5.6	2.3	6.4	-3.2	-8.0	-11.3	-9.3	-18.3	-25.9	-26.2	-31.5	-32.0
Up Track Vib. Level	dB re	. 1 <u>0⁻⁶in/sec</u>	'	42.8	49.6	38.1	33.0	39.8	48.0	41.3	37.5	34.2	32.2	22.2	13.6	10.3	6.0	2.5
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	/lb	7.6	8.4	-1.6	-4.6	2.7	6.9	-2.8	-6.5	-10.2	-8.6	-17.4	-24.4	-25.6	-30.1	-31.7
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		45.1	49.9	38.9	33.9	40.3	48.4	41.7	39.0	35.4	33.0	23.1	15.1	10.9	7.4	2.8
Total of Up and Down	Track	s Calculation	n															
Total Vibration Level Ou	tside P	3uilding		47.1	52.8	41.5	36.5	43.0	51.2	44.5	41.3	37.8	35.6	25.7	17.4	13.6	9.8	5.7
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB		'	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		'	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		'	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
			<u> </u>															<u></u>
Predicted Noise Level		1/3 00	t, dB	61.1	66.8	55.5	50.5	56.8	64.6	57.7	54.3	50.6	47.6	36.7	27.4	22.6	18.5	14.4
Predicted Noise Level		Uc	эt, ав,	1		67.2			66.0			56.5			37.3			20.0
L _{max}		ſ	dB(A)	43.6														
L _{eq,30mins}		r	dB(A)	30.6														
Noise Criteria		(dB(A)	45														
Compliance			,	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 60 kph
NSR Ref.:	DIH-P3-1A		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Planned receivers in the CDA site	Up Track	30	26	40
Assessed Floor	2	Down Track	10	26	28
Item:	41				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0	1														I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.0	8.0	-2.5	-5.7	2.2	6.4	-3.3	-8.2	-11.5	-9.4	-18.4	-26.1	-26.3	-31.7	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.0	41.0	29.5	24.3	31.2	39.4	32.7	28.8	25.5	23.6	13.6	4.9	1.7	-2.7	-6.1
Down Track Calculatio	on															
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	8.7	-1.1	-3.9	3.1	7.2	-2.5	-5.5	-9.4	-8.0	-16.9	-23.4	-25.2	-29.1	-31.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.1	41.7	30.9	26.1	32.1	40.2	33.5	31.5	27.6	25.0	15.1	7.6	2.8	-0.1	-5.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	utside Building	39.5	44.4	33.3	28.3	34.7	42.8	36.1	33.3	29.7	27.3	17.4	9.5	5.3	1.8	-2.8
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	53.5	58.4	47.3	42.3	48.5	56.2	49.3	46.3	42.5	39.3	28.4	19.5	14.3	10.5	5.9
Predicted Noise Level	Oct, dB	1		58.8			57.6			48.4			29.1			12.1
L _{max}	dB(A)	35.3														
L _{eq,30mins}	dB(A)	24.1														
Noise Criteria	dB(A)	45														
A		Vee														

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 60 kph
NSR Ref.:	DIH-P3-2A		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Planned receivers in the CDA site	Up Track	30	28	41
Assessed Floor	2	Down Track	10	28	30
Item:	42				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		—						Frequ	Jency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		·	·													
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB <u>Y/N</u> N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0	1														ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.5	6.3	-1.2	-7.3	-8.8	-9.7	-14.4	-10.9	-5.7	-9.0	-7.8	-10.1	-3.9	-7.7	-14.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.5	39.3	30.8	22.7	20.2	23.3	21.6	26.1	31.3	24.0	24.2	20.9	24.1	21.3	11.9
Down Track Calculatio	'n															
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0	1														ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.4	-6.1	-7.5	-8.9	-11.3	-7.0	-4.2	-8.2	-6.8	-7.9	-1.5	-6.1	-13.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.8	39.5	31.6	23.9	21.5	24.1	24.7	30.0	32.8	24.8	25.2	23.1	26.5	22.9	12.9
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	40.7	42.4	34.2	26.4	23.9	26.8	26.4	31.5	35.2	27.4	27.7	25.1	28.5	25.2	15.4
BCF	dB Y/N 0	1														
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	54.7	56.4	48.2	40.4	37.7	40.2	39.6	44.5	48.0	39.4	38.7	35.1	37.5	33.9	24.1
Predicted Noise Level	Oct, dB	1		57.1			44.1			50.0			42.1			34.3
L _{max}	dB(A)	38.1														
L _{eq,30mins}	dB(A)	26.9														
Noise Criteria	dB(A)	45														
Compliance		Yes														

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
Project:	SCL(TAW - HUH)			Train Spee	ed: 60 kph
NSR Ref.:	DIH-P3-4		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Planned receivers in the CDA site	Up Track	0	18	18
Assessed Floor	1	Down Track	0	18	18
Item:	1		·		

LSR Ref. Up Track DIH-P1-1 . Down Track DIH-P1-1

									Freq	uency	(Hz)						
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/i	n ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB	Y/N N															
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0															
LSR	dB re 10 ⁻⁶ iı	n/s*in ^{0.5} /lb	14.2	9.5	0.7	-1.8	4.1	8.2	-1.5	-2.2	-6.8	-6.3	-14.9	-20.1	-23.9	-26.0	-30.9
Up Track Vib. Level	dB re 10 ⁻⁶ ii	n/sec	48.2	47.5	37.7	33.2	38.1	46.2	39.5	39.8	35.2	31.7	22.1	15.9	9.1	8.0	0.1
Down Track Calculatio	n																
FDL	dB re 1 lb/i	n ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB	Y/N N															
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0	_														
LSR	dB re 10⁻ ⁶ iı	n/s*in ^{0.5} /lb	14.2	9.5	0.7	-1.8	4.1	8.2	-1.5	-2.2	-6.8	-6.3	-14.9	-20.1	-23.9	-26.0	-30.9
Down Track Vib. Level	dB re 10 ⁻⁶ iı	n/sec	48.2	47.5	37.7	33.2	38.1	46.2	39.5	39.8	35.2	31.7	22.1	15.9	9.1	8.0	0.1
Total of Up and Down	Tracks Cale	culation															
Total Vibration Level Out	tside Buildir	ig	51.2	50.6	40.7	36.2	41.1	49.2	42.5	42.8	38.2	34.7	25.1	19.0	12.1	11.1	3.2
BCF	dB	Y/N 0	_														
BVR-up	dB	Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Beer Parts of Market Barriel	1	4/0.0.4			50 -	50.0											10.0
Predicted Noise Level		1/3 Oct, d	67.2	66.6	56.7	52.2	56.9	64.6	57.7	57.8	53.0	48.7	38.1	31.0	23.1	21.8	13.9
Predicted Noise Level		Uct, d	5		67.1			66.0			59.4			39.0			22.4
L _{max}		dB(A) 44.9														
L _{eq,30mins}		dB(A) 33.7														
Noise Criteria		dB(A) 45														
Compliance	1		Yes														

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 35 kph
NSR Ref.:	KAT-P1-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises near Kai Tak Station	Up Track	75	15	76
Assessed Floor	2	Down Track	90	15	91
Item:	43				

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

	1			Frequency (Hz)														
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re 1	lb/in ^{0.5}		29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re 10) ⁻⁶ in/s*in ^{0.5} /	lb	-19.8	-0.4	-4.1	-12.3	-18.2	-17.2	-23.9	-30.3	-33.9	-35.2	-33.5	-38.1	-30.6	-37.5	-39.7
Up Track Vib. Level	dB re 10) ⁻⁶ in/sec		4.5	27.9	23.2	13.1	6.1	11.1	7.5	2.0	-1.6	-6.9	-6.2	-11.8	-7.3	-13.2	-18.3
Down Track Calculatio	n																	
FDL	dB re 1	lb/in ^{0.5}		29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
LSR	dB re 10) ⁻⁶ i <u>n/s*in^{0.5}/</u>	ĺb	-23.0	-2.1	-5.8	-14.4	-21.0	-20.3	-27.2	-33.9	-37.4	-38.0	-35.3	-39.5	-31.1	-37.8	-40.1
Down Track Vib. Level	dB re 10) ⁻⁶ in/sec		11.4	36.2	31.5	20.9	13.3	18.0	14.2	8.4	5.0	0.3	2.0	-3.1	2.2	-3.5	-8.8
Total of Up and Down	Tracks C	alculation	1															
Total Vibration Level Out	tside Bui	lding		12.2	36.8	32.1	21.6	14.0	18.8	15.0	9.3	5.8	1.1	2.6	-2.6	2.7	-3.1	-8.4
BCF	dB	Y/N	0															
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
		1/2 0																
Predicted Noise Level		1/3 Oc	t, dB	26.2	50.8	46.1	35.6	27.8	32.2	28.2	22.3	18.6	13.1	13.6	7.4	11.7	5.6	0.3
Predicted Noise Level		Uc	t, dB			52.2			34.7			24.2			16.4			7.6
L _{max}		d	IB(A)	15.4														l
L _{eq,30mins}		d	IB(A)	<20														l
Noise Criteria		d	IB(A)	45														
Complianco			,	Vas														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)		Train Speed:					
NSR Ref.:	KAT-P1-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m			
Location:	One Kai Tak	Up Track	75	15	76			
Assessed Floor	4	Down Track	s 90	15	91			
Item:	44							

Selected	LSR	Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

	T									Freg	uency	(Hz)						
Description	Unit		ļ	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation														·				
FDL	dB re	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν	1														1
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	-19.8	-0.4	-4.1	-12.3	-18.2	-17.2	-23.9	-30.3	-33.9	-35.2	-33.5	-38.1	-30.6	-37.5	-39.7
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec	'	7.6	31.0	26.3	16.2	9.2	14.2	10.6	5.1	1.5	-3.8	-3.1	-8.7	-4.2	-10.1	-15.2
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														l
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	lb	-23.0	-2.1	-5.8	-14.4	-21.0	-20.3	-27.2	-33.9	-37.4	-38.0	-35.3	-39.5	-31.1	-37.8	-40.1
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		4.4	29.3	24.6	14.0	6.4	11.1	7.3	1.5	-2.0	-6.6	-4.9	-10.1	-4.7	-10.4	-15.7
Total of Up and Down	Tracks	Calculatior	·															
Total Vibration Level Ou	itside B	uilding		9.3	33.2	28.6	18.2	11.0	16.0	12.2	6.7	3.1	-2.0	-0.9	-6.3	-1.4	-7.2	-12.5
BCF	dB	Y/N	0	1														I
BVR-up	dB	Floor	4	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
BVR - Resonance	dB		′	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		′	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B. Weterd Makes Laval		4/2.01	<u></u>															
Predicted Noise Level		1/3 00	t, ab	19.3	43.2	38.0	28.2	20.8	25.4	21.4	15.7	11.9	6.0	6.1	-0.3	3.6	-2.5	-/.ŏ
Predicted Noise Level		00	t, ab			44.0			27.8			17.5			8.6			2.4
L _{max}		σ	IB(A)	8.1														
L _{eq,30mins}		ď	IB(A)	<20														
Noise Criteria		ď	IB(A)	45														
Compliance			,	Vos														

 Compliance
 I
 res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.
 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type.
 LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Linear interpolation passby (duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 70 kph
NSR Ref.:	KAT-P1-3		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises near Kai Tak Station	Up Track	55	15	57
Assessed Floor	2	Down Track	70	15	72
Item:	45				

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

										Freq	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB	Y/N	Ν	1														1
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB	Туре	0	1														
LSR	dB re	<u>, 10⁻⁶in/s*in^{0.5}/</u>	/lb	-14.7	2.3	-1.4	-8.9	-13.7	-12.3	-18.6	-24.6	-28.4	-30.9	-30.5	-35.9	-29.8	-36.9	-38.9
Up Track Vib. Level	dB re	. 10 ⁻⁶ in/sec		17.6	38.7	34.0	24.5	18.6	24.1	20.7	15.7	12.0	5.5	4.8	-1.6	1.5	-4.6	-9.6
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB	Туре	0	1														ļ
LSR	dB re	<u>10⁻⁶in/s*in^{0.5}/</u>	/lb	-18.8	0.1	-3.6	-11.6	-17.4	-16.3	-22.9	-29.2	-32.9	-34.4	-32.9	-37.7	-30.5	-37.4	-39.5
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		13.5	36.4	31.8	21.7	15.0	20.1	16.5	11.1	7.5	1.9	2.4	-3.4	0.9	-5.1	-10.2
Total of Up and Down	Track	s Calculation	1															
Total Vibration Level Ou	itside F	Juilding		19.0	40.7	36.0	26.3	20.2	25.5	22.1	17.0	13.3	7.1	6.8	0.6	4.2	-1.8	-6.8
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		′	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Desident Maina Laval		1/2.04	• 		547	50.0	10.0	21.0		05.0			10.4	17.0	10.0	10.0		10
Predicted Noise Level		1/3 00	t, ab	33.0	54.7	50.0	40.3	34.0	38.9	35.3	30.0	26.1	19.1	17.8	10.6	13.2	6.9	1.9
Predicted Noise Level		00	t, аы			56.1			41.4			31.7			19.7			8.7
L _{max}		σ	IB(A)	20.7														
L _{eq,30mins}		ď	IB(A)	<20														
Noise Criteria		ď	IB(A)	45														
Compliance			,	Yes														

 Compliance
 Yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 65 kph
NSR Ref.:	KAT-P1-4		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises near Kai Tak Station	Up Track	80	15	81
Assessed Floor	2	Down Track	65	15	67
Item:	46				

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

		Γ						Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-20.9	-1.0	-4.7	-13.0	-19.2	-18.3	-25.0	-31.6	-35.1	-36.2	-34.1	-38.6	-30.8	-37.6	-39.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	8.8	32.7	28.0	17.7	10.5	15.4	11.7	6.1	2.6	-2.5	-1.4	-6.9	-2.1	-7.9	-13.1
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-17.6	0.8	-2.9	-10.8	-16.2	-15.0	-21.6	-27.8	-31.5	-33.3	-32.2	-37.2	-30.3	-37.3	-39.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	12.1	34.5	29.8	19.9	13.4	18.7	15.1	9.9	6.2	0.4	0.5	-5.5	-1.6	-7.6	-12.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	13.8	36.7	32.0	22.0	15.2	20.3	16.8	11.4	7.8	2.2	2.7	-3.1	1.2	-4.7	-9.9
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	27.8	50.7	46.0	36.0	29.0	33.7	30.0	24.4	20.6	14.2	13.7	6.9	10.2	4.0	-1.2
Predicted Noise Level	Oct, ab			52.1			36.2			26.2			15.9			6.3
L _{max}	dB(A)	16.0														ļ
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														I
Complianco		Vos														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 60 kph
NSR Ref.:	KAT-P1-5		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Mun Ching House, Kai Ching Estate	Up Track	13	14	19
Assessed Floor	1	Down Track	25	14	29
Item:	47				

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	4.6	12.8	9.0	4.1	3.5	6.5	1.5	-2.8	-7.2	-14.2	-19.3	-27.7	-26.9	-34.8	-36.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.6	50.8	46.0	39.1	37.5	44.5	42.5	39.2	34.8	23.8	17.7	8.3	6.1	-0.8	-5.0
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-2.8	8.7	5.0	-0.9	-3.1	-0.7	-6.3	-11.2	-15.3	-20.6	-23.7	-30.9	-28.0	-35.6	-37.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.2	46.7	42.0	34.1	30.9	37.3	34.7	30.8	26.7	17.4	13.3	5.1	5.0	-1.6	-6.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	39.3	52.2	47.4	40.3	38.4	45.3	43.1	39.7	35.4	24.7	19.0	10.0	8.6	1.8	-2.5
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	55.3	68.2	63.4	56.3	54.2	60.7	58.3	54.7	50.2	38.7	32.0	22.0	19.6	12.5	8.2
Predicted Noise Level	Oct, dB			69.7			63.3			56.1			32.7			14.1
L _{max}	dB(A)	42.1														
L _{eq,30mins}	dB(A)	30.9														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	KAT-P1-6		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Tower H3, De Novo	Up Trac	k 93	15	94
Assessed Floor	1	Down Tra	ck 80	15	81
Item:	48				

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

										Freq	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re 1 ll	b/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB	Туре	1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
LSR	dB re 10	⁶ in/s*in ^{0.5} /	lb	-23.5	-2.4	-6.1	-14.8	-21.6	-20.8	-27.7	-34.5	-38.0	-38.5	-35.6	-39.7	-31.2	-37.9	-40.2
Up Track Vib. Level	dB re 10	⁶ in/sec	!	16.7	41.8	37.2	26.5	18.7	23.4	19.5	13.7	10.3	5.8	7.6	2.5	8.0	2.3	-3.0
Down Track Calculatio	n																	
FDL	dB re 1 ll	b/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB	Туре	1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
LSR	dB re 10	⁶ in/s*in ^{0.5} /	lb	-20.9	-1.0	-4.7	-13.0	-19.2	-18.3	-25.0	-31.6	-35.1	-36.2	-34.1	-38.6	-30.8	-37.6	-39.8
Down Track Vib. Level	dB re 10	⁶ in/sec		19.3	43.2	38.6	28.2	21.0	26.0	22.2	16.7	13.1	8.0	9.1	3.7	8.4	2.6	-2.6
Total of Up and Down	Tracks Ca	alculation																
Total Vibration Level Out	tside Build	ding		21.2	45.6	40.9	30.5	23.0	27.9	24.1	18.4	14.9	10.1	11.4	6.1	11.3	5.5	0.2
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Des Parts de Nacional Instal		4/0.0															10.0	- 10.0
Predicted Noise Level		1/3 00	ι, αы	37.2	61.6	56.9	46.5	38.8	43.3	39.3	33.4	29.7	24.1	24.4	18.1	22.3	16.2	10.9
Prédicted Noise Levei		UC	ι, αы			63.0			45.7			35.3			27.1			17.4
L _{max}		d	B(A)	26.3														
L _{eq,30mins}		d	B(A)	<20														
Noise Criteria		d	B(A)	45														
Complianco				Voc														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 75 kph
NSR Ref.:	KAT-P1-7		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises near Kai Tak Station	Up Track	0	20	20
Assessed Floor	2	Down Track	0	20	20
Item:	49	-			

	LSR Ref.
Up Track	KAT-P1-7
Down Track	KAT-P1-7

								Freq	uency	(Hz)						
Description	Un <u>it</u>	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	35.9	39.9	38.9	36.9	35.9	39.9	42.9	43.9	43.9	39.9	38.9	37.9	34.9	35.9	32.9
CCF	dB <u>Y/N</u> N	1														1
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.2	14.3	10.2	7.7	6.4	4.5	6.1	1.9	-1.9	-5.6	-12.8	-16.6	-24.5	-29.7	-36.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	47.1	54.2	49.1	44.7	42.3	44.4	49.0	45.8	42.1	34.3	26.1	21.3	10.5	6.2	-3.5
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	35.9	39.9	38.9	36.9	35.9	39.9	42.9	43.9	43.9	39.9	38.9	37.9	34.9	35.9	32.9
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.2	14.3	10.2	7.7	6.4	4.5	6.1	1.9	-1.9	-5.6	-12.8	-16.6	-24.5	-29.7	-36.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	47.1	54.2	49.1	44.7	42.3	44.4	49.0	45.8	42.1	34.3	26.1	21.3	10.5	6.2	-3.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	50.1	57.2	52.1	47.7	45.3	47.4	52.1	48.8	45.1	37.4	29.1	24.3	13.5	9.2	-0.5
BCF	dB Y/N 0	1														
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Des Bated Males Lavel	1/2 Oct10		74.0		04.7	50.4		05.0		57.0	40.4	- 10.1	24.0	20.5	47.0	
Predicted Noise Level	1/3 UCt, aB	64.1	71.2	66.1	61./	59.1	60.8	65.3	61.8	57.9	49.4	40.1	34.3	22.5	17.9	8.2
Prédicted Noise Levei	UCT, UD	1		72.7			67.3			63.4			41.2			18.4
L _{max}	dB(A)	48.5														ļ
L _{eq,30mins}	dB(A)	36.3														
Noise Criteria	dB(A)	45														
Complianco		Voc														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[1] Enter interpolation has been applied to start distance where appropriate.
[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 70 kph
NSR Ref.:	TKW-1-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Parc 22	Up Track	85	13	86
Assessed Floor	1	Down Trac	k 90	20	92
Item:	50				

	LSR Ref.
Up Track	KAT-P1-5
Jown Track	DIH-P1-1

	Ι									Freq	uency	(Hz)				-		· · · · ·
Description	Unit		'	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re 1	I lb/in ^{0.5}		35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB	Y/N	Ν															ŀ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														
LSR	dB re 1	10 ⁻⁶ in/s*in ^{0.5} /	lb	-22.0	-1.6	-5.2	-13.7	-20.2	-19.3	-26.1	-32.8	-36.3	-37.1	-34.7	-39.0	-31.0	-37.7	-40.0
Up Track Vib. Level	dB re 1	10 ⁻⁶ in/sec		13.4	37.7	33.1	22.6	15.2	20.0	16.2	10.6	7.1	2.2	3.6	-1.7	3.4	-2.4	-7.6
Down Track Calculatio	'n																	
FDL	dB re 1	I lb/in ^{0.5}		35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re 1	10 <u>⁻⁶in/s*in^{0.5}/</u>	/lb	-4.6	6.4	-5.8	-9.7	0.2	4.5	-5.1	-14.5	-16.4	-12.6	-22.1	-32.4	-28.7	-37.7	-33.3
Down Track Vib. Level	dB re 1	10 ⁻⁶ in/sec		30.7	45.7	32.5	26.6	35.6	43.8	37.2	28.9	27.0	26.7	16.3	4.9	5.6	-2.3	-1.0
Total of Up and Down	Tracks	Calculation	·															
Total Vibration Level Ou	tside Bu	uilding		30.8	46.3	35.8	28.1	35.6	43.9	37.3	28.9	27.0	26.7	16.5	5.8	7.7	0.6	-0.2
BCF	dB	Y/N	0															
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		/	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
							<u></u>											
Predicted Noise Level		1/3 UC	t, ab	46.8	62.3	51.8	44.1	51.4	59.3	52.5	43.9	41.8	40.7	29.5	17.8	18.7	11.3	10.5
Predicted Noise Level		Uc	t, dB	1		62.8			60.6			47.1			30.1			14.1
L _{max}		d	IB(A)	37.1														
L _{eq,30mins}		ď	IB(A)	25.2														
Noise Criteria		Ċ	IB(A)	45														
0 · · · · · · · · · ·			· •															

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 201-b date and edjusted by the correction factor of 20xlog
 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 70 kph
NSR Ref.:	TKW-1-2			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Sanford Mansion	Up	Track	95	12	96
Assessed Floor	1	Dowr	n Track	95	23	98
Item:	51					

	LSR Ref.
Up Track	KAT-P1-5
own Track	DIH-P1-1

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															l
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															1
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-23.9	-2.6	-6.3	-15.0	-21.9	-21.2	-28.1	-34.9	-38.4	-38.8	-35.9	-39.9	-31.3	-38.0	-40.3
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	11.4	36.7	32.1	21.3	13.5	18.1	14.2	8.4	4.9	0.6	2.5	-2.5	3.1	-2.6	-7.9
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N]														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-5.3	6.2	-6.1	-10.0	0.1	4.4	-5.3	-14.9	-16.7	-12.9	-22.4	-32.9	-28.9	-38.1	-33.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	30.0	45.6	32.2	26.3	35.4	43.7	37.1	28.4	26.6	26.5	16.0	4.5	5.5	-2.8	-1.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	itside Building	30.1	46.1	35.2	27.5	35.4	43.7	37.1	28.4	26.6	26.5	16.2	5.2	7.4	0.3	-0.3
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
-																
Predicted Noise Level	1/3 Oct, d	B 46.1	62.1	51.2	43.5	51.2	59.1	52.3	43.4	41.4	40.5	29.2	17.2	18.4	11.0	10.4
Predicted Noise Level	Oct, d	в		62.5			60.5			46.7			29.8			13.9
L _{max}	dB(/	4) 36.9														
L _{eq,30mins}	dB(/	4) 25.0														
Noise Criteria	dB(/	A) 45														
0 · · · · · · · · ·		·														

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 201-b date and edjusted by the correction factor of 20xlog
 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 70 kph
NSR Ref.:	TKW-2-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Skytower Tower 1	Up	Track	140	13	141
Assessed Floor	5	Dowr	n Track	140	20	141
Item:	52					

Selected	LSR	Details:	
			7

	LOK KEI.
Up Track	KAT-P1-5
Jown Track	DIH-D1-1

		Г						Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0]														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-30.7	-6.3	-9.9	-19.6	-27.9	-27.8	-35.2	-42.6	-45.8	-44.6	-39.8	-42.8	-32.3	-38.7	-41.3
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	4.7	33.0	28.4	16.8	7.4	11.6	7.2	0.8	-2.5	-5.3	-1.4	-5.4	2.0	-3.4	-9.0
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-9.5	5.5	-7.5	-11.8	-0.8	3.5	-6.1	-17.7	-18.9	-14.3	-24.0	-35.6	-29.9	-40.7	-34.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	25.8	44.9	30.8	24.5	34.6	42.9	36.3	25.7	24.5	25.1	14.4	1.7	4.4	-5.4	-1.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	25.8	45.1	32.8	25.2	34.6	42.9	36.3	25.7	24.5	25.1	14.5	2.5	6.4	-1.3	-0.9
BCF	dB Y/N 0]														
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	1/2 0 / 10															
Predicted Noise Level	1/3 Oct, dB	33.8	53.1	40.8	33.2	42.4	50.3	43.5	32.7	31.3	31.1	19.5	6.5	9.4	1.4	1.8
Predicted Noise Level	Oct, dB			53.4			51.7			36.5			20.1			5.9
L _{max}	dB(A)	27.8														
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														I
Compliance		Vac														

 Compliance
 res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [2] FDL based on the ground type
 L SR data are interpolated against slant distance.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 70 kph
NSR Ref.:	TKW-2-2			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Skytower Tower 2	l	Jp Track	140	12	141
Assessed Floor	5	Do	own Track	140	23	142
Item:	53					

	LSR Ref.
Up Track	KAT-P1-5
Down Track	DIH-P1-1

		I	Frequency (Hz)														
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/in ^{0.5}		35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	d <u>B</u> Y	′/N N	i i														ļ
TIL	dB Ty	pe 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Ty	pe 0	i i														ļ
LSR	dB re 10 ⁻⁶ in/s*i	in ^{0.5} /lb	-30.7	-6.3	-9.9	-19.6	-27.9	-27.8	-35.2	-42.6	-45.8	-44.6	-39.8	-42.8	-32.3	-38.7	-41.3
Up Track Vib. Level	dB re 10 ⁻⁶ in/se	÷C	4.7	33.0	28.4	16.8	7.4	11.6	7.2	0.8	-2.5	-5.3	-1.4	-5.4	2.0	-3.4	-9.0
Down Track Calculatio	'n																
FDL	dB re 1 lb/in ^{0.5}		35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y	′/N N	i i														I
TIL	d <u>B</u> Ty	pe 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Ty	pe 0	i i														ļ
LSR	dB re 10 ⁻⁶ in/s*i	in ^{0.5} /lb	-9.6	5.5	-7.6	-11.8	-0.8	3.5	-6.1	-17.7	-18.9	-14.3	-24.0	-35.7	-30.0	-40.8	-34.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/se	÷C	25.7	44.8	30.8	24.5	34.5	42.9	36.3	25.6	24.4	25.1	14.3	1.6	4.4	-5.5	-1.7
Total of Up and Down	Tracks Calcula	ation															
Total Vibration Level Out	tside Building		25.8	45.1	32.8	25.2	34.5	42.9	36.3	25.6	24.4	25.1	14.5	2.4	6.4	-1.3	-0.9
BCF	dB Y	′/N 0	i i														ļ
BVR-up	dB Flor	or 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Desident and Nation Lawal	- 4/		~~ ~	52.4	40.0	~~ ~	40.0	50.0	10.5	~~ ~	<u>04 0</u>	04.4	40 E	~ 4	~ 4	4.4	10
Predicted Noise Level	1/3	3 UCt, аь	33.8	53.1	40.8	33.Z	42.3	50.3	43.5	32.6	31.2	31.1	19.5	6.4	9.4	1.4	1.ð
Predicted Noise Level		UCT, UD			53.4			51.0			36.5			20.1			5.9
L _{max}		dB(A)	27.7]
L _{eq,30mins}		dB(A)	<20														I
Noise Criteria		dB(A)	45														
Comultance		,	Vee														

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 201-b date and edjusted by the correction factor of 20xlog

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 70 kph
NSR Ref.:	TKW-2-3			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Skytower Tower 7	Γ	Up Track	235	15	235
Assessed Floor	5	Do	own Track	260	27	261
Item:	54					

Selected LSR Details: LSR Ref.

Up Track DIH-P1-1 Down Track DIH-P1-1

								Freq	uency	(Hz)				Frequency (Hz)							
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500					
Up Track Calculation																					
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3					
CCF	dB Y/N N																				
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5					
TOC	dB Type 0																				
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-15.4	4.5	-9.6	-14.3	-2.0	2.4	-7.2	-21.5	-21.9	-16.2	-26.2	-39.5	-31.4	-44.4	-34.8					
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	14.9	38.9	23.8	17.1	28.3	36.7	30.2	16.8	16.5	18.1	7.1	-7.2	-2.1	-14.1	-7.4					
Down Track Calculatio	n																				
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3					
CCF	dB Y/N N																				
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5					
TOC	dB Type 0																				
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-16.6	4.3	-10.0	-14.8	-2.2	2.2	-7.4	-22.3	-22.5	-16.6	-26.7	-40.3	-31.7	-45.2	-34.9					
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	13.7	38.6	23.3	16.5	28.1	36.5	29.9	16.0	15.9	17.7	6.7	-8.0	-2.4	-14.8	-7.6					
Total of Up and Down	Tracks Calculation																				
Total Vibration Level Out	tside Building	17.4	41.8	26.6	19.8	31.2	39.6	33.1	19.5	19.2	20.9	9.9	-4.5	0.8	-11.4	-4.5					
BCF	dB Y/N 0																				
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10					
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7					
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2					
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10					
Beer Parts of Market Barriel	4/0.0.4	65 4																			
Predicted Noise Level	1/3 Oct, dB	25.4	49.8	34.6	27.8	39.0	47.0	40.3	26.5	26.0	26.9	14.9	-0.5	3.8	-8.7	-1.8					
redicted Noise Level	UCT, dB			49.9			48.4			31.3			15.3			2.5					
L _{max}	dB(A)	24.2																			
L _{eq,30mins}	dB(A)	<20																			
Noise Criteria	dB(A)	45																			
Compliance		Yes																			

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 20 kph
NSR Ref.:	TKW-3-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Prince Ritz	Up Trac	k 235	23	236
Assessed Floor	5	Down Tra	ck 255	23	256
Item:	55				

LSR Ref. Up Track DIH-P1-1 Down Track DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	24.5	28.5	27.5	25.5	24.5	28.5	31.5	32.5	32.5	28.5	27.5	26.5	23.5	24.5	21.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-15.5	4.5	-9.6	-14.3	-2.0	2.4	-7.2	-21.5	-21.9	-16.2	-26.2	-39.5	-31.4	-44.4	-34.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	4.0	28.0	12.9	6.2	17.5	25.8	19.3	5.9	5.6	7.2	-3.8	-18.1	-13.0	-25.0	-18.3
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	24.5	28.5	27.5	25.5	24.5	28.5	31.5	32.5	32.5	28.5	27.5	26.5	23.5	24.5	21.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-16.4	4.3	-9.9	-14.7	-2.2	2.2	-7.4	-22.1	-22.4	-16.6	-26.6	-40.2	-31.7	-45.0	-34.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	3.0	27.8	12.5	5.8	17.3	25.7	19.1	5.3	5.1	6.9	-4.1	-18.7	-13.2	-25.6	-18.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	6.5	30.9	15.7	9.0	20.4	28.8	22.2	8.6	8.4	10.1	-0.9	-15.4	-10.1	-22.3	-15.4
BCF	dB Y/N 0															
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	14.5	38.9	23.7	17.0	28.2	36.2	29.4	15.6	15.2	16.1	4.1	-11.4	-7.1	-19.6	-12.7
Predicted Noise Level	Oct, dB			39.1			37.5			20.4			4.5			0.3
L _{max}	dB(A)	13.3														
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 45 kph
NSR Ref.:	TKW-3-2			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Prosperity House		Up Track	250	23	251
Assessed Floor	2	[Down Track	270	23	271
Item:	56	_				

LSR Ref. Up Track DIH-P1-1 Down Track DIH-P1-1

			Frequency (Hz)													
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															1
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															1
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-16.2	4.4	-9.8	-14.6	-2.2	2.2	-7.3	-22.0	-22.2	-16.5	-26.5	-40.0	-31.6	-44.9	-34.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	10.3	34.9	19.7	12.9	24.3	32.7	26.2	12.5	12.3	14.0	3.0	-11.5	-6.1	-18.4	-11.4
Down Track Calculatio	'n															
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															1
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-17.1	4.2	-10.1	-15.0	-2.3	2.1	-7.5	-22.6	-22.7	-16.8	-26.8	-40.6	-31.8	-45.4	-35.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	9.4	34.7	19.4	12.5	24.2	32.6	26.0	11.9	11.8	13.7	2.7	-12.1	-6.3	-18.9	-11.5
Total of Up and Down	Tracks Calculation													_		
Total Vibration Level Ou	itside Building	12.9	37.8	22.5	15.7	27.3	35.7	29.1	15.2	15.1	16.9	5.8	-8.8	-3.2	-15.6	-8.4
BCF	dB Y/N 0	_														
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Des l'are della terrett	4/0.0.1															
Predicted Noise Level	1/3 Uct, d	B 26.9	51.8	36.5	29.7	41.1	49.1	42.3	28.2	27.9	28.9	16.8	1.2	5.8	-6.9	0.3
Predicted Noise Level	Uct, a	в		52.0			50.4			33.1			17.3			3.6
L _{max}	dB(A	4) 26.2														
L _{eq,30mins}	dB(A	A) <20														
Noise Criteria	dB(#	A) 45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to stant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 45 kph
NSR Ref.:	TKW-P1-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises near To Kwa Wan Station	Up Track	35	22	41
Assessed Floor	1	Down Track	15	22	27
Item:	57				

Selected LSR Details: LSR Ref.

Up Track	DIH-P1-1
Down Track	DIH-P1-1

				Frequency (Hz)													
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/i	n ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB	Y/N N	1														
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Type 0															- 1
LSR	dB re 10 ⁻⁶ ir	n/s*in ^{0.5} /lb	4.7	7.9	-2.6	-5.8	2.2	6.3	-3.4	-8.4	-11.6	-9.5	-18.5	-26.3	-26.3	-31.9	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ ir	n/sec	31.2	38.4	26.9	21.7	28.7	36.8	30.1	26.1	22.9	21.0	11.0	2.2	-0.8	-5.4	-8.6
Down Track Calculatio	n																
FDL	dB re 1 lb/i	n ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB	Y/N N	1														
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Type 0															ļ
LSR	dB re 10 ⁻⁶ ir	n/s*in ^{0.5} /lb	9.5	8.8	-1.0	-3.8	3.1	7.3	-2.4	-5.3	-9.2	-7.9	-16.7	-23.1	-25.1	-28.9	-31.5
Down Track Vib. Level	dB re 10 ⁻⁶ ir	n/sec	36.0	39.3	28.5	23.7	29.7	37.8	31.1	29.2	25.3	22.6	12.8	5.4	0.4	-2.4	-8.0
Total of Up and Down	Tracks Calc	culation															
Total Vibration Level Out	tside Buildin	Ig	37.3	41.9	30.8	25.8	32.2	40.3	33.6	31.0	27.3	24.9	15.0	7.1	2.8	-0.6	-5.3
BCF	dB	Y/N 0															I
BVR-up	dB	Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Deadlated Nation Laws		4/2 0 + + - + [50.0		40.0		40.0		40.0	40.0	40.4			40.4	40.0	- 10.1	
Predicted Noise Level			53.3	57.9	46.8	41.8	48.0	55.7	48.8	46.0	42.1	38.9	28.0	19.1	13.8	10.1	5.4
Predicted Noise Level		Oct, al	1		58.3			57.1			48.0			28.7			11.7
L _{max}		dB(A) 34.9														
L _{eq,30mins}		dB(A) 24.9														
Noise Criteria		dB(A) 45														
Compliance			Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 65 kph
NSR Ref.:	MTW-6-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Fok On Building	Up	o Track	18	15	23
Assessed Floor	2	Dov	vn Track	12	24	27
Item:	58					

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	1		Frequency (Hz)															
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	11.4	9.1	-0.3	-3.0	3.5	7.6	-2.1	-4.1	-8.2	-7.3	-16.0	-21.9	-24.7	-27.7	-31.2
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		46.1	47.8	37.4	32.7	38.2	46.3	39.6	38.6	34.5	31.4	21.7	14.8	9.0	7.0	0.5
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	9.5	8.8	-1.0	-3.8	3.1	7.3	-2.4	-5.3	-9.2	-7.9	-16.7	-23.1	-25.1	-28.9	-31.5
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		44.2	47.5	36.7	31.9	37.8	46.0	39.3	37.4	33.5	30.8	21.0	13.6	8.6	5.8	0.2
Total of Up and Down	Tracks	s Calculation	1															
Total Vibration Level Out	tside B	Juilding		48.3	50.6	40.1	35.3	41.0	49.2	42.4	41.1	37.0	34.1	24.4	17.2	11.8	9.5	3.4
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Desident and Nation Lawal		1/2 0/	· dD			54.4	40.0	51.0	~~~~	55.0	544	40.0	40.4	05.4	07.0		10.0	10.4
Predicted Noise Level		1/3 00	:t, аы	62.3	64.0	54.1	49.3	54.8	62.0	55.0	54.1	49.8	46.1	35.4	21.2	20.8	18.2	12.1
Predicted Noise Level		00	:t, аы			65.1			63.9			55.9			36.1			19.2
L _{max}		c	JB(A)	42.2														
L _{eq,30mins}		c	JB(A)	30.6														
Noise Criteria		c	JB(A)	45														
Compliance				Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$

 $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 65 kph
NSR Ref.:	MTW-6-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	HK Society for the Protection of Children	Up Track	10	15	18
Assessed Floor	0	Down Track	17	24	29
Item:	59				

	LSR Ref.
Up Track	KAT-P1-5
Jown Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0]														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.6	13.3	9.5	4.8	4.3	7.5	2.5	-1.8	-6.2	-13.4	-18.8	-27.3	-26.7	-34.7	-35.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	40.3	52.0	47.2	40.5	39.0	46.2	44.2	40.9	36.5	25.3	18.9	9.4	7.0	0.0	-4.1
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	8.6	-1.2	-4.1	3.0	7.1	-2.6	-5.8	-9.6	-8.2	-17.0	-23.7	-25.3	-29.4	-31.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	47.3	36.5	31.6	37.7	45.8	39.1	36.9	33.1	30.5	20.7	13.0	8.4	5.3	0.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	45.1	53.2	47.5	41.0	41.4	49.0	45.3	42.4	38.2	31.7	22.9	14.6	10.7	6.4	1.5
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	1/2 Q (17															<u></u>
Predicted Noise Level	1/3 Oct, dB	63.1	71.2	65.5	59.0	59.2	66.4	62.5	59.4	55.0	47.7	37.9	28.6	23.7	19.1	14.2
Predicted Noise Level	Oct, dB			72.5			68.4			60.9			38.5			20.4
L _{max}	dB(A)	47.0														
L _{eq,30mins}	dB(A)	38[8]														
Noise Criteria	dB(A)	55[9]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)				Train Spee	ed: 65 kph
NSR Ref.:	MTW-6-3			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Chung Nam Mansion	Up	Track	20	15	25
Assessed Floor	2	Dov	vn Track	20	27	34
Item:	60					

	LON NEL
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB <u>Y/N</u> N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	10.4	8.9	-0.7	-3.4	3.3	7.4	-2.3	-4.7	-8.7	-7.6	-16.4	-22.5	-24.9	-28.3	-31.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.1	47.6	37.0	32.3	38.0	46.1	39.4	38.0	34.0	31.1	21.3	14.2	8.8	6.4	0.3
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	6.9	8.3	-1.9	-4.9	2.6	6.7	-2.9	-7.0	-10.5	-8.8	-17.7	-24.9	-25.8	-30.5	-31.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.6	47.0	35.8	30.8	37.3	45.4	38.8	35.7	32.2	29.9	20.0	11.8	7.9	4.2	-0.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.7	50.3	39.5	34.6	40.7	48.8	42.1	40.0	36.2	33.5	23.7	16.2	11.4	8.4	3.1
BCF	dB Y/N 0															ļ
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	-															
Predicted Noise Level	1/3 Oct, dB	60.7	64.3	53.5	48.6	54.5	62.2	55.3	53.0	49.0	45.5	34.7	26.2	20.4	17.1	11.8
Predicted Noise Level	Oct, dB			64.8			63.6			55.0			35.4			18.3
L _{max}	dB(A)	41.5														
L _{eq,30mins}	dB(A)	30.0														
Noise Criteria	dB(A)	45														
Complianco		Voc														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{\rm eq,30mins}$ for leading and trailing effect for conservative approaches.)

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spe	ed: 65 kph
NSR Ref.:	MTW-6-4			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Pok Oi Lau	Up Tra	ck	12	15	19
Assessed Floor	0	Down Tr	ack	12	27	30
Item:	61					

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	1	Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														,
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	13.6	9.4	0.4	-2.1	4.0	8.1	-1.7	-2.6	-7.1	-6.6	-15.1	-20.5	-24.1	-26.3	-30.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	48.3	48.1	38.1	33.6	38.7	46.8	40.0	40.1	35.6	32.1	22.5	16.2	9.6	8.4	0.8
Down Track Calculatio	un															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														1
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.3	8.5	-1.4	-4.3	2.9	7.0	-2.7	-6.1	-9.8	-8.3	-17.2	-23.9	-25.4	-29.6	-31.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.0	47.2	36.3	31.4	37.6	45.7	39.0	36.6	32.9	30.4	20.5	12.8	8.3	5.1	0.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	49.4	50.7	40.3	35.7	41.2	49.3	42.6	41.7	37.5	34.4	24.7	17.9	12.0	10.0	3.4
BCF	dB Y/N 0	1														
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	4/0.0-1.15															
Predicted Noise Level	1/3 UCt, aB	67.4	68.7	58.3	53.7	59.0	66.7	59.8	58.7	54.3	50.4	39.7	31.9	25.0	22.7	16.1
Predicted Noise Level	Uct, ab	1		69.2			68.1			60.5			40.5			23.6
L _{max}	dB(A)	46.5														
L _{eq,30mins}	dB(A)	34.9														
Noise Criteria	dB(A)	45														
A		Vee														

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 201-b date and edjusted by the correction factor of 20xlog

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 65 kph
NSR Ref.:	MTW-7-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Geranium House	Up Trac	: 13	17	21
Assessed Floor	1	Down Tra	ck 13	28	31
Item:	62				

LSR Ref. Up Track DIH-P1-1 Down Track HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N M	N														
TIL	dB Type (<u>ა</u> ი	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type (J														ŀ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	12.4	9.2	0.0	-2.5	3.7	7.8	-1.9	-3.4	-7.7	-6.9	-15.6	-21.2	-24.4	-27.1	-31.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	47.1	47.9	37.7	33.2	38.4	46.5	39.8	39.3	35.0	31.8	22.1	15.5	9.3	7.6	0.6
Down Track Calculatic	vn															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N M	N														1
TIL	dB Type (<u>ა</u> ი	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type (J														1
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.5	-6.2	-7.6	-9.0	-11.6	-7.4	-4.3	-8.3	-6.9	-8.2	-1.7	-6.2	-13.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.2	37.2	29.5	27.1	29.7	30.1	35.3	38.4	30.4	30.8	28.5	32.0	28.5	18.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	Itside Building	48.7	49.8	40.5	34.7	38.8	46.6	40.2	40.8	40.0	34.1	31.3	28.7	32.0	28.5	18.6
BCF	dB Y/N (J														
BVR-up	dB Floor 1	1 -2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Developed Nation Lawal	1/2 Oct	D 64.7	05.0	50 F	50.7	54.0		55.4	55.0	54.0	10.4	- 14.2	10.7	12.0		
Predicted Noise Level	1/3 Uci, 0	JB 04./	65.8	56.5	50.7	54.0	62.0	55.4	55.8	54.0	48.1	44.3	40.7	43.0	39.2	29.5
Predicted Noise Level		1B		66.4			63.5			58.7			41.1			39.0
L _{max}	abi	A) 45.7														
L _{eq,30mins}	dB((A) 34.1														
Noise Criteria	dB((A) 45														
Compliance		Yes														

 Compliance
 Yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 65 kph
NSR Ref.:	MTW-8-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Horae Palace	Up	Track	15	17	23
Assessed Floor	3	Dow	n Track	15	28	32
Item:	63					

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Jown Track	HOM-2-2

	1	1						Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		·	·													
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB <u>Y/N</u> N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.7	0.2	-5.0	-6.3	-8.2	-8.6	-3.7	-2.9	-7.6	-6.0	-6.1	0.6	-4.7	-12.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.8	45.4	37.9	30.7	28.4	30.5	33.1	39.0	39.8	31.1	31.7	30.6	34.3	30.0	19.5
Down Track Calculatio	'n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB <u>re 10⁻⁶in/s*in^{0.5}/lb</u>	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.2	37.1	29.4	27.0	29.7	29.8	34.9	38.2	30.3	30.7	28.3	31.7	28.3	18.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.6	48.3	40.5	33.1	30.7	33.1	34.7	40.4	42.1	33.8	34.2	32.6	36.2	32.3	22.0
BCF	dB Y/N 0															
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B. Para I Malan I and	4/0.0-1			70 5		10.5				70.0						
Predicted Noise Level	1/3 Uct, dB	58.6	60.3	52.5	45.1	42.5	44.5	45.9	51.4	52.9	43.8	43.2	40.6	43.2	39.0	28.7
Prédicted Noise Levei	Uct, ab			61.1			49.3			55.5			47.3			39.4
L _{max}	dB(A)	43.3														
L _{eq,30mins}	dB(A)	31.8														ļ
Noise Criteria	dB(A)	45														
Compliance	· · · · · · · · · · · · · · · · · · ·	Yes														

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 65 kph
NSR Ref.:	MTW-9-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Majestic Park	Up Track	35	18	39
Assessed Floor	3	Down Track	35	30	46
Item:	64				

|--|

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	1	—						Frequ	Jency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		·	·		·			·	·				·			
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB <u>Y/N</u> N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.5	6.2	-1.3	-7.4	-8.9	-9.8	-14.7	-11.2	-5.8	-9.1	-7.9	-10.3	-4.1	-7.8	-14.2
Up Track Vib. Level	dB <u>re 10⁻⁶in/sec</u>	43.2	44.9	36.4	28.3	25.8	28.9	27.0	31.5	36.9	29.6	29.8	26.4	29.6	26.9	17.5
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB <u>re 10⁻⁶in/s*in^{0.5}/lb</u>	8.3	6.1	-1.7	-8.0	-9.6	-10.2	-16.2	-13.1	-6.5	-9.5	-8.4	-11.3	-5.3	-8.7	-14.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.0	44.8	36.0	27.7	25.1	28.5	25.5	29.6	36.2	29.2	29.3	25.4	28.4	26.0	16.9
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.1	47.9	39.2	31.0	28.5	31.8	29.3	33.7	39.6	32.4	32.6	29.0	32.1	29.5	20.2
BCF	dB Y/N 0	1														
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
				- 1 -												
Predicted Noise Level	1/3 Oct, dB	58.1	59.9	51.2	43.0	40.3	43.2	40.5	44.7	50.4	42.4	41.6	37.0	39.1	36.2	26.9
Predicted Noise Level	Uct, aB	1		60.5			46.3			51.9			44.4			36.7
L _{max}	dB(A)	40.3														I
L _{eq,30mins}	dB(A)	28.7														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[1] Enter interpolation has been applied to start distance where appropriate.
[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 65 kph
NSR Ref.:	MTW-10-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	18 Farm Road	Up Track	15	18	23
Assessed Floor	3	Down Trac	.k 15	30	34
Item:	65				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		1						Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		·														
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.7	0.2	-5.0	-6.3	-8.2	-8.6	-3.7	-2.9	-7.6	-6.0	-6.1	0.6	-4.7	-12.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.8	45.4	37.9	30.7	28.4	30.5	33.1	39.0	39.8	31.1	31.7	30.6	34.3	30.0	19.5
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.1	36.9	29.1	26.7	29.5	29.1	34.1	37.9	30.1	30.5	27.9	31.2	28.0	18.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.6	48.3	40.5	33.0	30.6	33.1	34.6	40.2	42.0	33.7	34.2	32.5	36.0	32.1	21.9
BCF	dB Y/N 0	l														
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	58.6	60.3	52.5	45.0	42.4	44.5	45.8	51.2	52.8	43.7	43.2	40.5	43.0	38.8	28.6
Predicted Noise Level	Oct, dB			61.1			49.2			55.4			47.1			39.2
L _{max}	dB(A)	43.2														
L _{eq,30mins}	dB(A)	31.6														I
Noise Criteria	dB(A)	45														
Compliance		Yes														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins
 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 65 kph
NSR Ref.:	MTW-11-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Farm Road Government Primary School	Up Track	65	18	67
Assessed Floor	0	Down Track	65	30	72
Item:	66				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		T						Frequ	Jency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		·	·		·				· · · · · · · · · · · · · · · · · · ·		·					
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB <u>Y/N</u> N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.5	-9.3	-11.0	-11.1	-19.7	-17.4	-8.1	-10.4	-9.5	-13.7	-7.9	-10.5	-15.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.7	44.5	35.2	26.4	23.6	27.6	22.0	25.3	34.6	28.3	28.2	23.0	25.8	24.2	15.8
Down Track Calculatio	'n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB <u>Y/N</u> N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.9	5.8	-2.7	-9.6	-11.3	-11.3	-20.4	-18.2	-8.5	-10.5	-9.7	-14.1	-8.4	-10.8	-16.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.6	44.5	35.0	26.1	23.3	27.4	21.3	24.5	34.2	28.2	28.0	22.6	25.3	23.9	15.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	45.6	47.5	38.1	29.2	26.5	30.5	24.7	27.9	37.4	31.3	31.1	25.8	28.6	27.1	18.7
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Bradicted Noise Level	1/3 Oct. dB	63.6	65.5	56 1	47.2	44.3	47.0	41.0	44.0	512	47.3	46.1	20.8	41.6	20.8	21.4
Predicted Noise Level	Oct dB	03.0	65.5	56.0	41.2	44.5	47.9 50.2	41.5	44.5	55 A	47.5	40.1	39.0 48.1	41.0	39.0	31.4 40.4
		42.0		00.0			50.2			55.4			40.1			40.4
L _{max}		43.9														
Leq,30mins	db(A)	35[8]														
Noise Criteria	dB(A)	55[9]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
[8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
[9] Daytime criteria are used for educational buildings, church and temple.

Project:	SCL(TAW - HUH)			ed: 65 kph	
NSR Ref.:	MTW-12-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Yuet Fai Mansion	Up Track	11	22	25
Assessed Floor	1	Down Trac	k 11	33	35
Item:	67				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	 							Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															ľ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														ľ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.0	6.7	0.0	-5.3	-6.7	-8.4	-9.5	-4.8	-3.3	-7.8	-6.2	-6.7	-0.1	-5.1	-12.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.7	45.4	37.7	30.4	28.0	30.3	32.2	37.9	39.4	30.9	31.5	30.0	33.6	29.6	19.2
Down Track Calculatio	un															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.1	36.9	29.0	26.6	29.4	28.8	33.8	37.8	30.1	30.4	27.7	31.0	27.8	18.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	46.5	48.2	40.3	32.7	30.4	32.9	33.9	39.3	41.7	33.5	34.0	32.0	35.5	31.8	21.7
BCF	dB Y/N 0	1														
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Build and Malage Level	1/2 Oct. dB		21.0		10.7	10.0			- 4 0	E	17 E	17.0	11.0	10.5	10.5	22.4
Predicted Noise Level	1/3 UCt, ab	62.5	64.2	56.3	48.7	46.2	48.3	49.1	54.3	56.5	47.5	47.0	44.0	46.5	42.5	32.4
Predicted Noise Level	Uct, ub	1		65.0			52.8			58.9			50.8			42.9
L _{max}	dB(A)	46.8														
L _{eq,30mins}	dB(A)	35.2														
Noise Criteria	dB(A)	45														
Compliance	· ·	Vac														

 Compliance
 res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [2] FDL based on the ground type
 L SR data are interpolated against slant distance.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 65 kph
NSR Ref.:	MTW-12-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Delight Court	Up Track	18	20	27
Assessed Floor	3	Down Track	18	30	35
Item:	68	<u> </u>			

Selected	LSR	Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

								Freau	uencv	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	<u></u>				·			<u> </u>				<u></u>	<u></u>			
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														ļ
LSR	dB <u>re 10⁻⁶in/s*in^{0.5}/lb</u>	9.5	8.8	-1.0	-3.8	3.1	7.3	-2.4	-5.3	-9.2	-7.9	-16.7	-23.1	-25.1	-28.9	-31.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.2	47.5	36.7	31.9	37.8	46.0	39.3	37.4	33.5	30.8	21.0	13.6	8.6	5.8	0.2
Down Track Calculatio	vn	·														
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														I
TIL	dB <u>Type</u> 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Down Track Vib. Level	dB <u>re 10⁻⁶in/sec</u>	43.4	45.1	36.9	29.0	26.6	29.4	28.8	33.8	37.8	30.1	30.4	27.7	31.0	27.8	18.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	46.8	49.4	39.8	33.7	38.2	46.1	39.6	39.0	39.2	33.5	30.9	27.9	31.1	27.8	18.2
BCF	dB Y/N 0															ļ
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
- P. C. Material and	4/0.0-1												- 7 0			- 1 0
Predicted Noise Level	1/3 Oct, ab	58.8	61.4	51.8	45.7	50.0	57.5	50.8	50.0	50.0	43.5	39.9	35.9	38.1	34.5	24.9
Predicted Noise Level	UCt, ab			62.0			58.9			53.4			43.0			35.0
L _{max}	dB(A)	40.8														ļ
L _{eq,30mins}	dB(A)	29.3														
Noise Criteria	dB(A)	45														
Compliance	,	Yes														

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	MTW-12-3		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Lucky Mansion	Up Track	15	20	25
Assessed Floor	3	Down Track	i 15	30	34
Item:	69	·			

Selected	LSR	Details:	

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

			<u> </u>							Frequ	Jency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re '	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														ļ
LSR	dB re ′	10 ⁻⁶ in/s*in ^{0.5} /	lb	10.4	8.9	-0.7	-3.4	3.3	7.4	-2.3	-4.7	-8.7	-7.6	-16.4	-22.5	-24.9	-28.3	-31.4
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		38.7	41.2	30.6	25.9	31.6	39.7	33.0	31.6	27.5	24.6	14.9	7.7	2.3	-0.1	-6.1
Down Track Calculatio	'n																	
FDL	dB re '	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														
LSR	dB re 1	10 ⁻⁶ in/s*in ^{0.5} /	lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re '	10 ⁻⁶ in/sec		36.9	38.7	30.5	22.7	20.3	23.0	22.7	27.7	31.5	23.7	24.0	21.4	24.8	21.5	11.7
Total of Up and Down	Tracks	Calculation	<u> </u>															
Total Vibration Level Ou	tside Bi	uilding		40.9	43.1	33.6	27.6	31.9	39.8	33.4	33.0	33.0	27.2	24.5	21.6	24.8	21.5	11.8
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Des l'arte d'Ale tes d'annel		1/2.0										10.0						10.5
Predicted Noise Level		1/3 00	t, ab	52.9	55.1	45.6	39.6	43.7	51.2	44.6	44.0	43.8	37.2	33.5	29.6	31.8	28.2	18.5
Predicted Noise Level		UC	t, ab			55.7			52.6			47.4			36.7			28.7
L _{max}		C	IB(A)	34.6														l
L _{eq,30mins}		c	IB(A)	23.8														
Noise Criteria		ć	IB(A)	45														
Compliance				Yes														1

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[1] Enter interpolation has been applied to start distance where appropriate.
[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 40 kph
NSR Ref.:	MTW-12-4		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	352-354 Ma Tau Wai Road	Up Trac	K 15	20	25
Assessed Floor	2	Down Tra	ck 15	30	34
Item:	70				

Selected	LSR	Details:	

LSR Ref. Up Track DIH-P1-1 . Down Track HOM-2-2

										Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		30.5	34.5	33.5	31.5	30.5	34.5	37.5	38.5	38.5	34.5	33.5	32.5	29.5	30.5	27.5
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re	<u>10⁻⁶in/s*in^{0.5}</u>	/lb	10.4	8.9	-0.7	-3.4	3.3	7.4	-2.3	-4.7	-8.7	-7.6	-16.4	-22.5	-24.9	-28.3	-31.4
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		35.9	38.4	27.8	23.1	28.8	36.9	30.2	28.8	24.8	21.9	12.1	4.9	-0.4	-2.8	-8.9
Down Track Calculatio	n																	
FDL	dB re	1 lb/in ^{0.5}		30.5	34.5	33.5	31.5	30.5	34.5	37.5	38.5	38.5	34.5	33.5	32.5	29.5	30.5	27.5
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	/lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		34.2	35.9	27.7	19.9	17.5	20.3	19.9	24.9	28.7	20.9	21.3	18.7	22.0	18.8	9.0
Total of Up and Down	Tracks	Calculation	n															
Total Vibration Level Ou	itside B	uilding		38.1	40.3	30.8	24.8	29.1	37.0	30.6	30.3	30.2	24.4	21.8	18.9	22.1	18.8	9.0
BCF	dB	Y/N	0															
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
																		
Predicted Noise Level		1/3 00	ct, dB	52.1	54.3	44.8	38.8	42.9	50.4	43.8	43.3	43.0	36.4	32.8	28.9	31.1	27.5	17.7
Predicted Noise Level		00	ct, dB			54.9			51.9			46.6			36.0			27.9
L _{max}			dB(A)	33.9														
L _{eq,30mins}			dB(A)	24.4														
Noise Criteria		•	dB(A)	45														
Compliance				Vas														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 50 kph
NSR Ref.:	MTW-12-5			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Seng Cheong Building		Up Track	18	18	25
Assessed Floor	1	D	Down Track	18	29	34
Item:	71					

Selected	LSR	Detai	ls:
		I SR	Ref

	LON NEL
Up Track	KAT-P1-5
Down Track	DIH-P1-1

	T			(-					Freq	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re '	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ľ
LSR	dB re '	10 ⁻⁶ in/s*in ^{0.5} /	lb	-0.2	10.1	6.4	0.9	-0.8	1.8	-3.5	-8.3	-12.5	-18.4	-22.1	-29.7	-27.6	-35.4	-36.7
Up Track Vib. Level	dB re ′	10 ⁻⁶ in/sec		32.2	46.6	41.8	34.3	31.6	38.3	35.9	32.1	27.9	18.0	13.3	4.7	3.8	-2.9	-7.3
Down Track Calculatio	'n																	
FDL	dB re '	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν	1														ľ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re '	10 ⁻⁶ in/s*in ^{0.5} /	lb	6.9	8.3	-1.9	-4.9	2.6	6.7	-2.9	-7.0	-10.5	-8.8	-17.7	-24.9	-25.8	-30.5	-31.8
Down Track Vib. Level	dB re ´	10 ⁻⁶ in/sec		39.3	44.7	33.5	28.5	35.0	43.2	36.5	33.4	29.9	27.6	17.7	9.5	5.6	1.9	-2.4
Total of Up and Down	Tracks	Calculation																
Total Vibration Level Ou	itside Bi	uilding		40.1	48.7	42.4	35.3	36.7	44.4	39.2	35.8	32.0	28.1	19.0	10.8	7.8	3.1	-1.2
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Built of Malaa Laval		1/2.00	· -10	50.4	217		-1 0					10.0	10.4		20.0	10.0	10.0	~
Predicted Noise Level		1/3 00	t, 06	56.1	64.7	58.4	51.3	52.5	59.8	54.4	50.8	46.8	42.1	32.0	22.8	18.8	13.8	9.5
Predicted Noise Level		UCI	ί, α Β	1 1		65.8			61.5			52.7			32.7			15.3
L _{max}		a	B(A)	39.4														
L _{eq,30mins}		d	.B(А)	29.0														
Noise Criteria		d	ıB(A)	45														
Compliance				Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 65 kph
NSR Ref.:	MTW-12-6		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Great Wall Building	Up Trac	30	18	35
Assessed Floor	3	Down Tra	ck 30	30	42
Item:	72				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	1			Frequency (Hz)													
Description	LInit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation				20	02	υ	00	00	00	100	120	100	200	200	010	400	000
FDL	dB re 1 lł	b/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB	Y/N M	1														
TIL	dB	Туре С) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0)														
LSR	dB re 10	⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Up Track Vib. Level	dB re 10	⁶ in/sec	43.4	45.1	36.9	29.0	26.6	29.4	28.8	33.8	37.8	30.1	30.4	27.7	31.0	27.8	18.1
Down Track Calculatio	'n			·													
FDL	dB re 1 lł	b/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB	Y/N N	1														
TIL	dB	Туре С) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре С)														
LSR	dB re 10	⁶ in/s*in ^{0.5} /lb	8.5	6.2	-1.3	-7.4	-8.9	-9.8	-14.7	-11.2	-5.8	-9.1	-7.9	-10.3	-4.1	-7.8	-14.2
Down Track Vib. Level	dB re 10	⁶ in/sec	43.2	. 44.9	36.4	28.3	25.8	28.9	27.0	31.5	36.9	29.6	29.8	26.4	29.6	26.9	17.5
Total of Up and Down	Tracks Ca	alculation															
Total Vibration Level Ou	tside Build	Jing	46.3	48.0	39.7	31.7	29.2	32.2	31.0	35.8	40.4	32.9	33.1	30.1	33.4	30.4	20.8
BCF	dB	Y/N C)														
BVR-up	dB	Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
			10														
Predicted Noise Level		1/3 Uct, c	JB 58.3	60.0	51.7	43.7	41.0	43.6	42.2	46.8	51.2	42.9	42.1	38.1	40.4	37.1	27.5
Predicted Noise Level		Uct, c	JB		60.7			47.2			53.0			45.3			37.5
L _{max}		dB(A) 41.2	•													
L _{eq,30mins}		dB(A) 29.7														
Noise Criteria		dB(A) 45														I
Compliance			Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 65 kph
NSR Ref.:	MTW-12-7		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	197-199 Ma Tau Wai Road	Up Trac	(15	18	23
Assessed Floor	2	Down Tra	ck 15	30	34
Item:	73				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		[Frequ	Jency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		·														
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.7	0.2	-5.0	-6.3	-8.2	-8.6	-3.7	-2.9	-7.6	-6.0	-6.1	0.6	-4.7	-12.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.8	45.4	37.9	30.7	28.4	30.5	33.1	39.0	39.8	31.1	31.7	30.6	34.3	30.0	19.5
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.1	36.9	29.1	26.7	29.5	29.1	34.1	37.9	30.1	30.5	27.9	31.2	28.0	18.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.6	48.3	40.5	33.0	30.6	33.1	34.6	40.2	42.0	33.7	34.2	32.5	36.0	32.1	21.9
BCF	dB Y/N 0	1														
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B. Joseph Malaa Laval	1/2 Oct ID						10 5	-7.0	50.0	51.0			10.5			
Predicted Noise Level	1/3 UCt, aB	60.6	62.3	54.5	47.0	44.4	46.5	47.8	53.2	54.8	45.7	45.2	42.5	45.0	40.8	30.6
Predicted Noise Level	Uct, ab	15.0		63.1			51.Z			57.4			49.1			41.2
L _{max}	dB(A)	45.2														
L _{eq,30mins}	dB(A)	33.6														
Noise Criteria	dB(A)	45														
A																

 Compliance
 Yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 65 kph
NSR Ref.:	MTW-12-8		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Pak Tai Mansion	Up Track	12	18	22
Assessed Floor	1	Down Track	12	30	32
Item:	74				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Un <u>it</u>	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation								_								
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB <u>Y/N N</u>	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.8	0.3	-4.8	-6.1	-8.0	-8.2	-3.2	-2.7	-7.4	-5.8	-5.8	0.9	-4.4	-12.0
Up Track Vib. Level	dB <u>re 10⁻⁶in/sec</u>	43.8	45.5	38.0	30.9	28.6	30.6	33.5	39.5	40.0	31.3	31.9	30.9	34.6	30.3	19.7
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.2	37.1	29.4	27.0	29.7	29.8	34.9	38.2	30.3	30.7	28.3	31.7	28.3	18.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	itside Building	46.7	48.3	40.6	33.2	30.9	33.2	35.0	40.8	42.2	33.8	34.3	32.8	36.4	32.4	22.1
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	62.7	64.3	56.6	49.2	46.7	48.6	50.2	55.8	57.0	47.8	47.3	44.8	47.4	43.1	32.8
Predicted Noise Level	Oct, ab			65.1			53.5			59.8			51.4			43.5
L _{max}	dB(A)	47.5														
L _{eq,30mins}	dB(A)	35.9														
Noise Criteria	dB(A)	45														
Complianco		Voc														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins
 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 65 kph
NSR Ref.:	MTW-12-9		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises along Hung Kwong Street	Up Track	12	19	22
Assessed Floor	2	Down Track	12	32	34
Item:	75		•		

Selected LSR Details: LSR Ref.

Up Track	DIH-P1-1
Down Track	HOM-2-2

										Freq	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	'/lb	11.9	9.2	-0.1	-2.8	3.6	7.7	-2.0	-3.7	-8.0	-7.1	-15.8	-21.6	-24.5	-27.4	-31.2
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		46.6	47.9	37.6	32.9	38.3	46.4	39.7	39.0	34.7	31.6	21.9	15.1	9.2	7.3	0.5
Down Track Calculatio	n																	
FDL	dB re	1 lb/in ^{0.5}		34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0															
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	[;] /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		43.4	45.1	36.9	29.1	26.7	29.5	29.1	34.1	37.9	30.1	30.5	27.9	31.2	28.0	18.2
Total of Up and Down	Tracks	Calculatio	n															
Total Vibration Level Out	tside B	uilding		48.3	49.7	40.3	34.4	38.6	46.5	40.1	40.2	39.6	33.9	31.1	28.1	31.3	28.0	18.3
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
																		
Predicted Noise Level		1/3 00	ct, dB	62.3	63.7	54.3	48.4	52.4	59.9	53.3	53.2	52.4	45.9	42.1	38.1	40.3	36.7	27.0
Predicted Noise Level		00	ct, dB			64.3			61.4			56.3			45.2			37.1
L _{max}		(dB(A)	43.3														
L _{eq,30mins}		(dB(A)	31.8														
Noise Criteria		(dB(A)	45														1
Compliance			,	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	MTW-12-10		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Lucky Building	Up Track	15	18	23
Assessed Floor	2	Down Track	15	28	32
Item:	76				

Selected	LSR	Details:	

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	T			Frequency (Hz)														
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														
LSR	dB re '	10 ⁻⁶ in/s*in ^{0.5} /	lb	11.4	9.1	-0.3	-3.0	3.5	7.6	-2.1	-4.1	-8.2	-7.3	-16.0	-21.9	-24.7	-27.7	-31.2
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		39.6	41.3	30.9	26.3	31.8	39.9	33.2	32.2	28.0	25.0	15.3	8.3	2.6	0.5	-6.0
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}	<u> </u>	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	7.6	8.4	-1.6	-4.6	2.7	6.9	-2.8	-6.5	-10.2	-8.6	-17.4	-24.4	-25.6	-30.1	-31.7
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		35.8	40.7	29.6	24.7	31.0	39.1	32.4	29.7	26.1	23.7	13.8	5.8	1.6	-1.8	-6.5
Total of Up and Down	Tracks	Calculation	·															
Total Vibration Level Ou	tside Br	uilding		41.1	44.0	33.3	28.5	34.4	42.5	35.8	34.1	30.2	27.4	17.6	10.3	5.1	2.5	-3.2
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
		4/2.0	<u></u>					<u> </u>		<u></u>						<u></u>		
Predicted Noise Level		1/3 UC	t, ab	55.1	58.0	47.3	42.5	48.2	55.9	49.0	47.1	43.0	39.4	28.6	20.3	14.1	11.2	5.5
Predicted Noise Level		UC	t, ав	1		58.5			57.3			49.0			29.3			12.5
L _{max}		ď	IB(A)	35.4														
L _{eq,30mins}		c	IB(A)	24.6														
Noise Criteria		ć	IB(A)	45														
Compliance				Yes														

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 50 kph
NSR Ref.:	MTW-12-11		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Jing Ming Building	Up Track	19	20	28
Assessed Floor	2	Down Track	i 19	30	36
Item:	77				

Selected	LSR	D	etai	ls:	
				-	

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	1	Γ					Frequency (Hz)									
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															ľ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0	1														I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	8.7	-1.1	-3.9	3.1	7.2	-2.5	-5.5	-9.4	-8.0	-16.9	-23.4	-25.2	-29.1	-31.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.5	40.1	29.3	24.5	30.5	38.6	31.9	29.9	26.0	23.4	13.6	6.0	1.2	-1.7	-7.1
Down Track Calculatio	un															
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N	1														ľ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0	1														I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	6.2	8.2	-2.1	-5.2	2.5	6.6	-3.1	-7.4	-10.9	-9.0	-18.0	-25.3	-26.0	-30.9	-31.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	33.6	39.6	28.3	23.3	29.9	38.0	31.3	28.0	24.6	22.4	12.5	4.1	0.5	-3.5	-7.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	38.3	42.9	31.9	26.9	33.2	41.3	34.6	32.0	28.4	25.9	16.1	8.2	3.8	0.5	-4.3
BCF	dB Y/N 0	1														
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	4/0.0-1				<u></u>								<u></u>			
Predicted Noise Level	1/3 Oct, aB	52.3	56.9	45.9	40.9	47.0	54.7	47.8	45.0	41.2	37.9	27.1	18.2	12.8	9.2	4.4
Predicted Noise Level	Oct, ab	1		57.3			56.1			47.1			27.7			10.8
L _{max}	dB(A)	33.9														
L _{eq,30mins}	dB(A)	23.5														
Noise Criteria	dB(A)	45														
Compliance		Voc														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(1) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
Project:	SCL(TAW - HUH)			Train Spe	ed: 65 kph
NSR Ref.:	MTW-12-12		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	One Elegance	Up Track	12	18	22
Assessed Floor	3	Down Track	12	30	32
Item:	78				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	1							Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB <u>Y/N</u> N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.8	0.3	-4.8	-6.1	-8.0	-8.2	-3.2	-2.7	-7.4	-5.8	-5.8	0.9	-4.4	-12.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.8	45.5	38.0	30.9	28.6	30.6	33.5	39.5	40.0	31.3	31.9	30.9	34.6	30.3	19.7
Down Track Calculatio	un															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														I
TIL	dB <u>Type</u> 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.2	37.1	29.4	27.0	29.7	29.8	34.9	38.2	30.3	30.7	28.3	31.7	28.3	18.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	utside Building	46.7	48.3	40.6	33.2	30.9	33.2	35.0	40.8	42.2	33.8	34.3	32.8	36.4	32.4	22.1
BCF	dB Y/N 0	1														ļ
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	58.7	60.3	52.6	45.2	42.7	44.6	46.2	51.8	53.0	43.8	43.3	40.8	43.4	39.1	28.8
Predicted Noise Level	Oct, dB	1		61.1			49.5			55.8			47.4			39.5
L _{max}	dB(A)	43.5														
L _{eq,30mins}	dB(A)	31.9														
Noise Criteria	dB(A)	45														
Complianco		Vos														

 Compliance
 I
 res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.
 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type.
 LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Linear interpolation passby (duration in sec) + 3dB(A) + 10*log(no. of events in 30mins
 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 65 kph
NSR Ref.:	MTW-13-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Cheung Chuk Shan Memorial School	Up Track	10	20	22
Assessed Floor	0	Down Track	10	30	32
Item:	79				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N M	1														
TIL	dB Type C) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type C)														ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.9	9.2	-0.1	-2.8	3.6	7.7	-2.0	-3.7	-8.0	-7.1	-15.8	-21.6	-24.5	-27.4	-31.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.6	42.9	32.6	27.9	33.3	41.4	34.7	34.0	29.7	26.6	16.9	10.1	4.2	2.3	-4.5
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N M	1														
TIL	dB Type () 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type C)														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.5	40.2	32.1	24.4	22.0	24.7	24.8	29.9	33.2	25.3	25.7	23.3	26.7	23.3	13.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	43.3	44.7	35.3	29.5	33.6	41.5	35.1	35.4	34.8	29.0	26.2	23.5	26.7	23.3	13.5
BCF	dB Y/N C)														
BVR-up	dB Floor C) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Dradiated Naisa Laval	1/2 Oct -		<u> </u>	50.0	47.5	54.4	50.0	50.0	EQ 4	E4.0	45.0	44.0	07 E	20.7	20.0	00.0
Predicted Noise Level	1/3 Uct, t	JB 01.3	62.7	53.3	47.5	51.4	58.9	52.3	52.4	51.0	45.0	41.2	31.5	39.7	36.0	26.2
Predicieu Noise Lever				63.5			60.4			55.5			44.5			30.5
∟ _{max}		A) 42.5														
L _{eq,30mins}	an(Α) 34[8]														
Noise Criteria	dB(A) 55[9]	i i													

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{\rm eq,30mins}$ for leading and trailing effect for conservative approaches.)

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	MTW-14-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	PLK Lam Man Chan English Primary School	Up Track	35	20	40
Assessed Floor	1	Down Track	35	30	46
Item:	80				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

			(Frequency (Hz)													
Description	U <u>nit</u>		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/in ^{0.5}	, <u> </u>	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	d <u>B</u> Y	(/ <u>N</u> N	1														ľ
TIL	dB Ty	/pe 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Ty	/pe 0	1														ľ
LSR	dB re 10 ⁻⁶ in/s*	ʻin ^{0.5} /lb	5.0	8.0	-2.5	-5.7	2.2	6.4	-3.3	-8.2	-11.5	-9.4	-18.4	-26.1	-26.3	-31.7	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/se	эс	33.2	40.2	28.7	23.6	30.5	38.6	31.9	28.0	24.8	22.8	12.8	4.1	1.0	-3.4	-6.8
Down Track Calculatio	n																
FDL	dB re 1 lb/in ^{0.5}	,)	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y	(/N N	1														I
TIL	dB Ty	/pe 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Ty	/pe 0	1														I
LSR	dB re 10 ⁻⁶ in/s*	in ^{0.5} /lb	8.4	6.2	-1.5	-7.7	-9.3	-10.0	-15.6	-12.3	-6.2	-9.3	-8.2	-10.9	-4.8	-8.3	-14.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/se	эс	36.6	38.4	29.7	21.5	18.9	22.3	19.6	23.9	30.0	22.9	23.1	19.4	22.5	19.9	10.7
Total of Up and Down	Tracks Calcula	ation															
Total Vibration Level Out	tside Building		38.3	42.4	32.3	25.7	30.8	38.7	32.2	29.5	31.2	25.9	23.5	19.5	22.5	19.9	10.8
BCF	dB Y	//N 0	1														
BVR-up	dB Flo	or 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB]	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Desident and Nation Lawal		2 O-1 dP	54.2	50.4	40.0	44 7	10.0	54.4	47.4	14.5	10.0		00 E	24.5	00 F		24 E
Predicted Noise Level	1/3	3 UCt, ab	54.3	58.4	48.3	41.7	46.0	54.1	47.4	44.5	46.0	39.9	36.5	31.5	33.5	30.6	21.5
Predicted Noise Level		UCT, UD	1 ~~~~		58.9			55.5			48.9			39.1			31.1
L _{max}		dB(A)	36.9														
L _{eq,30mins}		dB(A)	29[8]														
Noise Criteria		dB(A)	55[9]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 50 kph
NSR Ref.:	MTW-15-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Hung Hom Lutheran Primary School	Up Track	10	20	22
Assessed Floor	0	Down Track	10	30	32
Item:	81				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

	1		- I							Frequency (Hz)									
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500	
Up Track Calculation																			
FDL	dB re	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4	
CCF	dB	Y/N	Ν	1														I	
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	
TOC	dB	Туре	0	1															
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	/lb	11.9	9.2	-0.1	-2.8	3.6	7.7	-2.0	-3.7	-8.0	-7.1	-15.8	-21.6	-24.5	-27.4	-31.2	
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		39.3	40.6	30.3	25.6	31.1	39.1	32.4	31.7	27.4	24.3	14.6	7.8	1.9	0.0	-6.7	
Down Track Calculatio	'n																		
FDL	dB re	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4	
CCF	dB	Y/N	Ν	1														ļ	
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	
TOC	dB	Туре	0	1														ļ	
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5}	/lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3	
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		36.2	37.9	29.8	22.1	19.7	22.4	22.5	27.6	30.9	23.0	23.4	21.0	24.4	21.0	11.1	
Total of Up and Down	Tracks	s Calculation	<u>1</u>																
Total Vibration Level Out	tside B	Juilding		41.0	42.4	33.1	27.2	31.4	39.2	32.8	33.1	32.6	26.7	23.9	21.2	24.5	21.0	11.2	
BCF	dB	Y/N	0	1															
BVR-up	dB	Floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7	
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	
De la Parte d'Mada a Lavral		4/2.0	<u></u>							52.0	52.4					AT 5	~~ 7	<u></u>	
Predicted Noise Level		1/3 00	t, аы	59.0	60.4	51.1	45.2	49.2	56.0	50.0	50.1	49.4	42.7	38.9	35.2	37.5	33.7	23.9	
Predicted Noise Level		00	t, аы	1		61.0			58.1			53.2			42.Z			34.2	
L _{max}		c	JB(A)	40.2															
L _{eq,30mins}		c	JB(A)	33[8]														I	
Noise Criteria		ſ	dB(A)	55[9]															
Compliance				Yes															

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 45 kph
NSR Ref.:	MTW-16-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	SKH Good Shepherd Primary School	Up Track	10	20	22
Assessed Floor	0	Down Track	10	30	32
Item:	82				

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	1		Frequency (Hz)														
Description	U <u>nit</u>	′	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/in ^{0.5}		31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	d <u>B</u> Y/	<u>N N</u>	1														ŗ
TIL	dB Typ	<u>ре 0</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	<u> </u>	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Typ	<i>р</i> е 0	1														1
LSR	dB re 10 ⁻⁶ in/s*ir	n ^{0.5} /lb	11.9	9.2	-0.1	-2.8	3.6	7.7	-2.0	-3.7	-8.0	-7.1	-15.8	-21.6	-24.5	-27.4	-31.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	<u> </u>	38.4	39.7	29.4	24.7	30.1	38.2	31.5	30.8	26.5	23.4	13.7	6.9	1.0	-0.9	-7.7
Down Track Calculatio	n																
FDL	dB re 1 lb/in ^{0.5}	!	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/	N N	1														1
TIL	dB Typ	be 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	<u> </u>	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Typ)e 0	1														I
LSR	dB re 10 ⁻⁶ in/s*ir	n ^{0.5} /lb	7.6	8.4	-1.6	-4.6	2.7	6.9	-2.8	-6.5	-10.2	-8.6	-17.4	-24.4	-25.6	-30.1	-31.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	<u> </u>	34.1	38.9	27.9	22.9	29.2	37.4	30.7	28.0	24.3	21.9	12.1	4.1	-0.1	-3.6	-8.2
Total of Up and Down	Tracks Calculat	tion															
Total Vibration Level Ou	tside Building	<u> </u>	39.8	42.3	31.7	26.9	32.7	40.8	34.1	32.6	28.6	25.7	16.0	8.7	3.5	1.0	-4.9
BCF	dB Y/	N 0	1														
BVR-up	dB Floo	or O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	′	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	/	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	/	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Developed Nation Laval	1/2		57.0		40.7	14.0	50.5	50.0	54.0	10.0	45.4	44 7	21.0	<u> </u>	10.5	10.7	7.0
Predicted Noise Level	1/3	OCt, ab	57.8	60.3	49.7	44.9	50.5	58.2	51.3	49.6	45.4	41./	31.0	22.7	16.5	13.7	/.ö
Predicted Noise Level		UCT, UD	1		60.8			59.0			51.5			31.7			14.0
L _{max}		dB(A)	37.8														
L _{eq,30mins}		dB(A)	31[8]														
Noise Criteria		dB(A)	55[9]														
Compliance		,	Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	MTW-17-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Loyal Mansion	Up Track	20	17	26
Assessed Floor	3	Down Tra	ck 20	28	34
Item:	83				

Selected	LSR	Details:	

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

[1							Freq	Frequency (Hz)											
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500				
Up Track Calculation																'				
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2				
CCF	dB Y/N N															,				
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TOC	dB Type 0	1														,				
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	10.0	8.8	-0.8	-3.6	3.2	7.4	-2.4	-5.0	-8.9	-7.8	-16.5	-22.8	-25.0	-28.6	-31.4				
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.2	46.1	35.4	30.7	36.5	44.6	37.9	36.3	32.3	29.5	19.7	12.4	7.2	4.6	-1.2				
Down Track Calculatic	un																			
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2				
CCF	dB Y/N N	1														I				
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TOC	dB Type 0	1														I				
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	6.9	8.3	-1.9	-4.9	2.6	6.7	-2.9	-7.0	-10.5	-8.8	-17.7	-24.9	-25.8	-30.5	-31.8				
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	40.1	45.5	34.4	29.4	35.8	44.0	37.3	34.2	30.7	28.5	18.5	10.4	6.4	2.7	-1.6				
Total of Up and Down	Tracks Calculation																			
Total Vibration Level Ou	tside Building	44.9	48.8	37.9	33.1	39.2	47.3	40.6	38.4	34.6	32.0	22.2	14.5	9.9	6.8	1.6				
BCF	dB Y/N 0	1																		
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6				
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7				
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2				
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10				
	4/0.0-1			<u> </u>																
Predicted Noise Level	1/3 UCt, ab	56.9	60.8	49.9	45.1	51.0	58.7	51.8	49.4	45.4	42.0	31.2	22.5	16.9	13.5	8.3				
Predicted Noise Level	UCt, ab	1		61.3			60.1			51.4			31.9			14.8				
L _{max}	dB(A)	38.0																		
L _{eq,30mins}	dB(A)	27.2																		
Noise Criteria	dB(A)	45																		
Compliance		Voc																		

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 50 kph
NSR Ref.:	MTW-18-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential premises along Chi Kiang St	Up Track	45	17	48
Assessed Floor	2	Down Track	45	27	52
Item:	84				

LSR Ref. Up Track DIH-P1-1 Down Track DIH-P1-1

										Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re 1 lb	/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re 10 ^{-€}	³ in/s*in ^{0.5} /	ľb	2.9	7.6	-3.2	-6.6	1.8	6.0	-3.7	-9.6	-12.5	-10.1	-19.2	-27.5	-26.8	-33.0	-32.4
Up Track Vib. Level	dB re 10 ⁻⁶	³ in/sec		30.3	39.0	27.2	21.9	29.2	37.4	30.7	25.8	22.9	21.3	11.2	1.9	-0.4	-5.6	-7.9
Down Track Calculatio	n																	
FDL	dB re 1 lb	/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re 10 ⁻⁶	³ in/s*in ^{0.5} /	lb	2.0	7.5	-3.6	-7.0	1.6	5.8	-3.9	-10.2	-13.0	-10.4	-19.6	-28.1	-27.0	-33.6	-32.5
Down Track Vib. Level	dB re 10 ⁻⁶	³in/sec		29.4	38.9	26.8	21.5	29.0	37.2	30.5	25.2	22.4	21.0	10.8	1.3	-0.6	-6.2	-8.1
Total of Up and Down	Tracks Ca	lculation																
Total Vibration Level Ou	tside Build	ing		32.9	42.0	30.0	24.7	32.1	40.3	33.6	28.6	25.7	24.2	14.0	4.7	2.5	-2.9	-5.0
BCF	dB	Y/N	0															
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level		1/3 Oc	t, dB	46.9	56.0	44.0	38.7	45.9	53.7	46.8	41.6	38.5	36.2	25.0	14.7	11.5	5.8	3.7
Predicted Noise Level		Oc	t, dB			56.3			55.1			44.1			25.6			8.6
L _{max}		d	IB(A)	32.2														
L _{eq,30mins}		d	iB(A)	21.7														
Noise Criteria		ď	IB(A)	45														
Compliance				Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 50 kph
NSR Ref.:	MTW-18-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	No. 2 Kowloon City Road	Up Track	28	17	33
Assessed Floor	2	Down Track	c 28	27	39
Item:	85				

Selected LSR Details: LSR Ref.

Up Track DIH-P1-1 Down Track DIH-P1-1

										Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	1																	
FDL	dB re	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	N															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re	<u>10⁻⁶in/s*in^{0.8}</u>	⁵ /lb	7.2	8.4	-1.8	-4.7	2.7	6.8	-2.9	-6.8	-10.3	-8.7	-17.6	-24.6	-25.7	-30.3	-31.8
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		34.6	39.8	28.7	23.7	30.1	38.2	31.5	28.6	25.1	22.7	12.8	4.8	0.7	-2.9	-7.4
Down Track Calculat	ion																	
FDL	dB re	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	N															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re	10 ⁻⁶ in/s*in ^{0.4}	⁵/lb	5.3	8.0	-2.4	-5.6	2.3	6.4	-3.2	-8.0	-11.3	-9.3	-18.3	-25.9	-26.2	-31.5	-32.0
Down Track Vib. Leve	dB re	10 ⁻⁶ in/sec		32.7	39.5	28.0	22.9	29.7	37.9	31.2	27.4	24.1	22.1	12.1	3.5	0.2	-4.1	-7.6
Total of Up and Dow	n Track	s Calculatio	n															
Total Vibration Level C	Dutside E	Building		36.8	42.6	31.4	26.3	32.9	41.1	34.4	31.1	27.6	25.4	15.5	7.2	3.5	-0.4	-4.5
BCF	dB	Y/N	0															
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Leve	el	1/3 O	ct, dB	50.8	56.6	45.4	40.3	46.7	54.5	47.6	44.1	40.4	37.4	26.5	17.2	12.5	8.3	4.2
Predicted Noise Leve	el	0	ct, dB			57.0			55.8			46.2			27.1			10.1
L _{max}			dB(A)	33.4														
L _{eq,30mins}			dB(A)	23.0														
Noise Criteria			dB(A)	45														
Compliance			• •	Vos														

Notes: [1] Linear interpolation has been applied to stand distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 55 kph
NSR Ref.:	MTW-19-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Holy Trinity Church		Up Track	55	18	58
Assessed Floor	0		Down Track	65	25	70
Item:	86	_				

Selected	LSR	Details:

LSR Ref. Up Track KAT-P1-5 . Down Track DIH-P1-1

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														ŀ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-15.0	2.1	-1.5	-9.1	-14.0	-12.6	-18.9	-25.0	-28.7	-31.1	-30.7	-36.1	-29.9	-37.0	-38.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	18.2	39.4	34.7	25.2	19.3	24.7	21.3	16.3	12.5	6.1	5.5	-0.8	2.3	-3.7	-8.7
Down Track Calculatic	on															
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														1
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.5	6.9	-4.8	-8.4	0.9	5.1	-4.5	-12.4	-14.8	-11.6	-20.9	-30.3	-27.9	-35.7	-32.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.8	44.1	31.5	25.8	34.1	42.4	35.7	28.8	26.5	25.7	15.4	4.9	4.3	-2.5	-2.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	utside Building	32.0	45.4	36.4	28.5	34.3	42.4	35.9	29.1	26.7	25.7	15.8	5.9	6.5	0.0	-1.7
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	50.0	63.4	54.4	46.5	52.1	59.8	53.1	46.1	43.5	41.7	30.8	19.9	19.5	12.7	11.0
Predicted Noise Level	Oct, dB	,		64.0			61.2			48.9			31.4			15.0
L _{max}	dB(A)	38.0														
L _{eq,30mins}	dB(A)	27.2														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[1] Enter interpolation has been applied to start distance where appropriate.
[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	HOM-1-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Ko Shan Theartre	Up Trac	k 50	35	61
Assessed Floor	0	Down Tra	ck 50	40	64
Item:	87				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	T							Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.1	5.9	-2.3	-9.0	-10.7	-10.8	-18.8	-16.2	-7.7	-10.1	-9.2	-13.0	-7.2	-10.0	-15.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.3	43.1	34.0	25.3	22.6	26.4	21.5	25.0	33.5	27.1	27.1	22.2	25.1	23.3	14.6
Down Track Calculatio	'n															
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.9	-2.4	-9.2	-10.9	-10.9	-19.2	-16.8	-7.9	-10.2	-9.3	-13.4	-7.5	-10.2	-15.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.2	43.1	33.9	25.1	22.4	26.3	21.0	24.4	33.3	27.0	26.9	21.9	24.7	23.0	14.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	44.3	46.1	36.9	28.2	25.5	29.4	24.3	27.7	36.4	30.1	30.0	25.1	27.9	26.2	17.6
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
-																
Predicted Noise Level	1/3 Oct, dB	62.3	64.1	54.9	46.2	43.3	46.8	41.5	44.7	53.2	46.1	45.0	39.1	40.9	38.9	30.3
Predicted Noise Level	Oct, dB			64.7			49.2			54.5			47.2			39.4
L _{max}	dB(A)	42.9]
L _{eq,30mins}	dB(A)	32.1														
Noise Criteria	dB(A)	45														
Compliance		Yes														

 Compliance
 I
 res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.
 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type.
 LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Linear interpolation passby (duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	HOM-2-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Faerie Court	Up Track	20	18	27
Assessed Floor	2	Down Trac	< 20	29	35
Item:	88				

Selected	LSR	Details:	

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

	1									Frequ	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		!	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	9.5	8.8	-1.0	-3.8	3.1	7.3	-2.4	-5.3	-9.2	-7.9	-16.7	-23.1	-25.1	-28.9	-31.5
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		42.8	46.0	35.3	30.5	36.4	44.5	37.8	36.0	32.1	29.3	19.6	12.1	7.1	4.4	-1.2
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec	!	41.9	43.6	35.4	27.6	25.1	28.0	27.4	32.3	36.3	28.6	28.9	26.2	29.6	26.4	16.6
Total of Up and Down	Tracks	Calculatior	1															
Total Vibration Level Out	tside B	Juilding		45.4	48.0	38.4	32.3	36.7	44.6	38.2	37.5	37.7	32.0	29.4	26.4	29.6	26.4	16.7
BCF	dB	Y/N	0	1														ļ
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
De la Parte d'Mada a Lavral		4/2.01	<u></u>					50.5	52.0		50.5	50.5						
Predicted Noise Level		1/3 00	.t, аы	59.4	62.0	52.4	46.3	50.5	58.0	51.4	50.5	50.5	44.0	40.4	36.4	38.6	35.1	25.4
Predicted Noise Level		00	,t, аы	1		62.5			59.5			54.0			43.5			35.5
L _{max}		c	IB(A)	41.4														
L _{eq,30mins}		ſ	JB(A)	30.6														I
Noise Criteria		c	JB(A)	45														
Compliance				Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 55 kph
NSR Ref.:	HOM-2-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Lee Wing Building	Up Track	0	24	24
Assessed Floor	2	Down Track	0	34	34
Item:	89				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		1						Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB <u>Y/NN</u>	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.2	5.9	-0.7	-6.0	-7.3	-9.1	-9.9	-5.1	-3.9	-8.5	-6.9	-7.2	-0.6	-5.7	-13.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.5	43.1	35.5	28.2	25.9	28.1	30.4	36.2	37.3	28.7	29.3	28.0	31.6	27.5	17.1
Down Track Calculatio	on					_										
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.9	43.7	35.5	27.7	25.3	28.0	27.7	32.7	36.5	28.7	29.0	26.4	29.8	26.5	16.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	utside Building	44.7	46.4	38.5	31.0	28.6	31.1	32.2	37.8	39.9	31.7	32.2	30.3	33.8	30.1	19.9
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	58.7	60.4	52.5	45.0	42.4	44.5	45.4	50.8	52.7	43.7	43.2	40.3	42.8	38.8	28.6
Predicted Noise Level	Oct, dB	,		61.2			49.1			55.2			47.0			39.2
L _{max}	dB(A)	43.1														l
L _{eq,30mins}	dB(A)	32.2														
Noise Criteria	dB(A)	45														
Complianco		Voc														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 55 kph
NSR Ref.:	HOM-2-3			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Wing Lam Mansion	Up	Track	15	20	25
Assessed Floor	2	Dow	n Track	15	30	34
Item:	90					

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Т						Frequ	Jency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB <u>Y/NN</u>	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.0	6.7	0.0	-5.3	-6.7	-8.4	-9.5	-4.8	-3.3	-7.8	-6.2	-6.7	-0.1	-5.1	-12.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.3	43.9	36.2	28.9	26.6	28.9	30.8	36.5	38.0	29.5	30.0	28.6	32.2	28.1	17.8
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.9	43.7	35.5	27.7	25.3	28.0	27.7	32.7	36.5	28.7	29.0	26.4	29.8	26.5	16.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	45.1	46.8	38.9	31.3	29.0	31.5	32.5	38.0	40.3	32.1	32.6	30.6	34.1	30.4	20.3
BCF	dB Y/N 0															ļ
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B. Jacob Malaa Laval	1/2 Oct. d			52.0		10.0			51.0	50.4		12.0	12.0			
Predicted Noise Level	1/3 UCt, ar	3 59.1	60.8	52.9	45.3	42.8	44.9	45.7	51.0	53.1	44.1	43.6	40.6	43.1	39.1	29.0
Predicted Noise Level	UCT, ar	3		61.6			49.4			55.5			47.4			39.5
L _{max}	QR(V) 43.4														
L _{eq,30mins}	dB(A	·) 32.6														
Noise Criteria	dB(A	s) 45														
Compliance		Vos														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 60 kph
NSR Ref.:	HOM-2-4		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Tak Lee Court	Up Track	50	35	61
Assessed Floor	1	Down Track	c 55	45	71
Item:	91				

LSR Ref. Up Track HOM-2-2 Down Track HOM-2-2

								Frequency (Hz)								
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB <u>re 1 lb/in^{0.5}</u>	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														ľ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.2	6.0	-2.0	-8.5	-10.1	-10.5	-17.6	-14.8	-7.1	-9.8	-8.8	-12.2	-6.3	-9.4	-15.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.2	44.0	35.0	26.5	23.9	27.5	23.4	27.2	34.9	28.2	28.2	23.8	26.7	24.6	15.8
Down Track Calculatio	n															
FDL	dB <u>re 1 lb/in^{0.5}</u>	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															ľ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	1														I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.5	-9.3	-11.0	-11.0	-19.5	-17.2	-8.1	-10.3	-9.4	-13.6	-7.8	-10.4	-15.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.0	43.8	34.5	25.7	23.0	27.0	21.5	24.8	33.9	27.7	27.6	22.4	25.2	23.6	15.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	45.1	46.9	37.8	29.1	26.5	30.2	25.6	29.2	37.4	30.9	30.9	26.2	29.0	27.2	18.5
BCF	dB Y/N 0	1														
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Desident and Nation Lawal	1/2 Oct. dE			50.0	45.4	40.0	45.0	10.0	14.0	50.0	14.0	42.0		10.0	07.0	
Predicted Noise Level		61.1	62.9	53.8	45.1	42.3	45.6	40.8	44.2	52.2	44.9	43.9	38.2	40.0	37.9	29.2
Prédicted Noise Levei				63.5			48.2			53.5			46.2			38.4
L _{max}	dB(A)	42.0														
L _{eq,30mins}	dB(A)	30.8														
Noise Criteria	dB(A)	45														
Commiliance	,	Vee														

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	HOM-2-5		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Chat Ma Mansion	Up Track	45	20	49
Assessed Floor	1	Down Trac	k 45	30	54
Item:	92				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Т						Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.3	6.1	-1.7	-8.0	-9.6	-10.2	-16.2	-13.1	-6.5	-9.5	-8.4	-11.3	-5.3	-8.7	-14.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.6	43.4	34.6	26.3	23.7	27.1	24.0	28.1	34.7	27.8	27.9	23.9	27.0	24.6	15.5
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.2	6.0	-1.9	-8.4	-10.0	-10.4	-17.2	-14.3	-7.0	-9.7	-8.7	-12.0	-6.0	-9.2	-15.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.5	43.3	34.3	25.9	23.3	26.8	23.0	26.9	34.3	27.5	27.6	23.3	26.2	24.1	15.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	44.5	46.3	37.5	29.1	26.5	30.0	26.6	30.6	37.5	30.6	30.7	26.6	29.6	27.4	18.3
BCF	dB Y/N 0															ļ
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B. Para I Materia	1/2 0-1															
Predicted Noise Level	1/3 Uct, di	3 60.5	62.3	53.5	45.1	42.3	45.4	41.8	45.6	52.3	44.6	43.7	38.6	40.6	38.1	29.0
Prédicted Noise Levei	Uct, ar	3		62.9			48.2			53.7			46.3			38.6
L _{max}	dB(A	() 42.1														
L _{eq,30mins}	dB(A	31.3														l
Noise Criteria	dB(A	45														
Compliance		Vos														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 55 kph
NSR Ref.:	HOM-2-6		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Chatham Mansion	Up Track	: 3	19	19
Assessed Floor	1	Down Tra	ck 3	30	30
Item:	93				

	LSR Ref.
Up Track	DIH-P1-1
Jown Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	13.6	9.4	0.4	-2.1	4.0	8.1	-1.7	-2.6	-7.1	-6.6	-15.1	-20.5	-24.1	-26.3	-30.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	46.8	46.7	36.7	32.2	37.2	45.3	38.6	38.6	34.1	30.7	21.1	14.8	8.1	6.9	-0.7
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.4	-6.1	-7.5	-8.9	-11.3	-7.0	-4.2	-8.2	-6.8	-7.9	-1.5	-6.1	-13.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.1	43.8	35.8	28.2	25.8	28.4	29.0	34.2	37.1	29.0	29.4	27.3	30.8	27.2	17.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	48.1	48.5	39.3	33.6	37.5	45.4	39.0	40.0	38.9	32.9	30.0	27.5	30.8	27.2	17.2
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Dradiated Naiss Loval	1/2 Oct. dB	64.4	64 E	FF 0	40.0	50.0	<u> </u>	54.0	FF 0	F0 7	40.0	42.0	20 E	44.0	27.0	07.0
Predicted Noise Level	1/3 Oct, dB	64.1	64.5	55.3	49.0	53.3	60.8	54.Z	55.0	53.1	46.9	43.0	39.5	41.8	37.9	21.9
Fredicted Noise Lever		44 E		65.1			02.2			57.7			40.4			30.3
⊑max	dB(A)	44.5														
Leq,30mins	dB(A)	33.7														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 55 kph
NSR Ref.:	HOM-3-1			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Fook Sing Mansion		Up Track	85	35	92
Assessed Floor	1	Γ	Down Track	100	40	108
Item:	94	-				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	1									Frequ	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														I
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														I
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	7.7	5.6	-3.1	-10.3	-12.1	-11.7	-22.3	-20.5	-9.3	-11.0	-10.3	-15.4	-9.8	-11.8	-16.8
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		40.9	42.9	33.1	23.9	21.1	25.5	18.0	20.7	31.9	26.2	26.0	19.8	22.4	21.4	13.4
Down Track Calculatio	'n																	
FDL	dB re	1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Туре	0	1														ļ
LSR	dB re	10 ⁻⁶ in/s*in ^{0.5} /	/lb	7.5	5.5	-3.6	-11.0	-12.9	-12.2	-24.0	-22.7	-10.2	-11.5	-10.8	-16.6	-11.2	-12.7	-17.4
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		40.8	42.7	32.7	23.2	20.3	25.0	16.2	18.5	31.1	25.8	25.4	18.6	21.1	20.5	12.9
Total of Up and Down	Tracks	S Calculation	1															
Total Vibration Level Out	tside P	Juilding		43.9	45.8	35.9	26.6	23.7	28.3	20.2	22.8	34.5	29.0	28.7	22.3	24.8	24.0	16.2
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		!	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		!	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
De la Parte d'Maise a Lavial		1/2.01	<u></u>						10.7									
Predicted Noise Level		1/3 00	.t, аы	59.9	61.8	51.9	42.6	39.5	43.7	35.4	37.8	49.3	43.0	41.7	34.3	35.8	34.7	26.9
Predicted Noise Level		00	.t, аы	1		62.3			45.5			50.5			43.3			35.4
L _{max}		C	IB(A)	39.0														
L _{eq,30mins}		c	IB(A)	28.1														I
Noise Criteria		c	JB(A)	45														
Compliance				Yes														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate. [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot. $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$

 $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 55 kph
NSR Ref.:	HOM-3-2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Marigold Mansion, Block A	Up Track	85	45	96
Assessed Floor	1	Down Track	c 110	45	119
Item:	95				

Selected	LSR	Details:	

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

									Frequ	uency	(Hz)						
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N	Ν															1
TIL	dB Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type	0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb)	7.7	5.6	-3.2	-10.5	-12.3	-11.8	-22.6	-20.9	-9.5	-11.1	-10.4	-15.6	-10.1	-12.0	-16.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec		40.9	42.8	33.0	23.8	21.0	25.4	17.7	20.3	31.7	26.1	25.9	19.6	22.1	21.3	13.3
Down Track Calculatio	n																
FDL	dB re 1 lb/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N	Ν															ļ
TIL	dB Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type	0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	ງ	7.4	5.4	-3.8	-11.3	-13.3	-12.4	-24.8	-23.7	-10.6	-11.7	-11.1	-17.2	-11.8	-13.2	-17.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec		40.7	42.6	32.5	22.9	20.0	24.8	15.4	17.5	30.7	25.6	25.2	18.1	20.4	20.1	12.6
Total of Up and Down	Tracks Calculation																
Total Vibration Level Out	tside Building		43.8	45.7	35.8	26.4	23.5	28.1	19.7	22.1	34.2	28.9	28.5	21.9	24.4	23.7	16.0
BCF	dB Y/N	0															
BVR-up	dB Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	┸	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B. Jacob Malaa Laval	1/2 0 - +							10.5	- 1 0		12.0		- 1 E				
Predicted Noise Level	1/3 Uct,	, dB	59.8	61.7	51.8	42.4	39.3	43.5	34.9	37.1	49.0	42.9	41.5	33.9	35.4	34.4	26.7
Predicted Noise Level	Uct,	, dB			62.2			45.3			50.2			43.0			35.1
L _{max}	qB	3(A)	38.7														
L _{eq,30mins}	dB	3(A) (27.9														
Noise Criteria	dB	3(A)	45														
Commiliance			Vee														

 Compliance
 I res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.
 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 55 kph
NSR Ref.:	HOM-4-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Yee Fu Building	Up Track	40	45	60
Assessed Floor	1	Down Track	70	45	83
Item:	96				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		T	Frequency (Hz)													
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB <u>Y/N N</u>	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.1	5.9	-2.2	-8.8	-10.4	-10.7	-18.3	-15.6	-7.5	-10.0	-9.0	-12.7	-6.8	-9.7	-15.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.3	38.2	29.1	20.5	17.8	21.5	17.0	20.6	28.8	22.2	22.2	17.5	20.4	18.5	9.8
Down Track Calculatio	on															
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.8	5.7	-3.0	-10.1	-11.8	-11.6	-21.5	-19.7	-9.0	-10.8	-10.0	-14.9	-9.3	-11.4	-16.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.0	37.9	28.3	19.2	16.4	20.7	13.7	16.6	27.2	21.4	21.2	15.3	17.9	16.8	8.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	utside Building	39.2	41.1	31.7	22.9	20.2	24.2	18.6	22.1	31.1	24.9	24.8	19.6	22.4	20.8	12.3
BCF	dB Y/N 0															ļ
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	1/2 0 - 1												- 1 0			
Predicted Noise Level	1/3 UCt, ar	3 55.2	57.1	47./	38.9	36.0	39.6	33.8	37.1	45.9	38.9	37.8	31.6	33.4	31.5	23.0
Predicted Noise Level	UCT, ar	3		57.6			41.9			47.1			39.8			32.0
L _{max}	dB(A	·) 35.6														
L _{eq,30mins}	dB(A	v) 24.8														
Noise Criteria	dB(A	45														
Compliance		Voc														

 Compliance
 I yes

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20klog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 [7] Low passby(0) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spe	ed: 35 kph
NSR Ref.:	HOM-5-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	271 Chatham Road North	Up Track	75	45	87
Assessed Floor	2	Down Track	75	45	87
Item:	97				

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

				\square						Freq	uency	(Hz)		Frequency (Hz)									
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500					
Up Track Calculation																							
FDL	dB re 1 l	b/in ^{0.5}		29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3					
CCF	dB	Y/N	Ν	1																			
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5					
TOC	dB	Туре	0	1														ŀ					
LSR	dB re 10	⁶ in/s*in ^{0.5} /	lb	7.8	5.7	-3.0	-10.1	-11.8	-11.6	-21.5	-19.7	-9.0	-10.8	-10.0	-14.9	-9.3	-11.4	-16.6					
Up Track Vib. Level	dB re 10	⁶ in/sec		32.1	34.0	24.4	15.3	12.5	16.8	9.8	12.7	23.3	17.5	17.3	11.4	14.0	12.9	4.8					
Down Track Calculatio	n																						
FDL	dB re 1 l	b/in ^{0.5}		29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3					
CCF	dB	Y/N	Ν	1														ŀ					
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5					
TOC	dB	Туре	0	1														I					
LSR	dB re 10	⁶ in/s*in ^{0.5} /	lb	7.5	5.5	-3.5	-10.9	-12.7	-12.1	-23.6	-22.2	-10.0	-11.4	-10.7	-16.3	-10.9	-12.5	-17.3					
Down Track Vib. Level	dB re 10	⁻⁶ in/sec		31.9	33.8	23.9	14.4	11.6	16.2	7.7	10.1	22.3	17.0	16.6	10.0	12.4	11.8	4.1					
Total of Up and Down	Tracks C:	alculation																					
Total Vibration Level Out	tside Build	ding		35.0	36.9	27.1	17.9	15.1	19.5	11.9	14.6	25.8	20.2	20.0	13.8	16.3	15.4	7.4					
BCF	dB	Y/N	0	1																			
BVR-up	dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4					
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7					
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2					
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10					
Deadlated Noise Level		1/2.00	4 dD	40.0	50.0	44.4	21.0		22.0	<u> </u>	07.6	20.6		21.0		05.2	- 24.4	46.4					
Predicted Noise Level		1/3 00	t, 06	49.0	50.9	41.1	31.9	28.9	32.9	25.1	27.6	38.0	32.2	31.0	23.8	25.3	24.1	16.1					
Predicted Noise Level		00				51.4			34.0			39.0			32.0			24.1					
L _{max}		u	B(A)	28.3																			
L _{eq,30mins}		d	B(A)	<20																			
Noise Criteria		ď	(A)	45																			

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 50 kph
NSR Ref.:	HOM-P2		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	HKPU Student Halls of Residence	Up Track	35	45	57
Assessed Floor	1	Down Track	65	45	79
Item:	98				

Selected	LSR	Details:

	LSR Ref.
Up Track	HOM-2-2
Jown Track	HOM-2-2

	1									Freq	uency	(Hz)						
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re 1 l	lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν	1														1
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														ļ
LSR	dB re 10) ⁻⁶ in/s*in ^{0.5} /l	ib	8.2	6.0	-1.9	-8.4	-10.1	-10.5	-17.4	-14.5	-7.1	-9.8	-8.7	-12.1	-6.1	-9.3	-15.1
Up Track Vib. Level	dB re 10) ⁻⁶ in/sec		35.6	37.4	28.5	20.0	17.3	21.0	17.0	20.9	28.4	21.6	21.7	17.3	20.3	18.2	9.3
Down Track Calculatio	n																	
FDL	dB re 1 l	lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν	1														ļ
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0	1														ļ
LSR	dB re 10) ⁻⁶ in/s*in ^{0.5} /l	ib	8.0	5.8	-2.5	-9.3	-11.0	-11.1	-19.7	-17.4	-8.1	-10.4	-9.5	-13.7	-7.9	-10.5	-15.9
Down Track Vib. Level	dB re 10) ⁻⁶ in/sec		35.4	37.2	27.9	19.1	16.4	20.4	14.7	18.0	27.3	21.1	21.0	15.8	18.5	17.0	8.5
Total of Up and Down	Tracks C	alculation																
Total Vibration Level Out	tside Buil	ding		38.5	40.3	31.2	22.6	19.9	23.7	19.0	22.7	30.9	24.4	24.3	19.6	22.5	20.6	11.9
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Desident and Nation Lawal	, 	1/2 00	· JD	54.5	50.0	47.0		<u> </u>	20.4	24.0	~7.7	45.7	20.4	07.0	21.0	00 F		
Predicted Noise Level		1/3 00	, авр	54.5	56.3	47.2	38.0	35.7	39.1	34.2	31.1	45.7	38.4	37.3	31.6	33.5	31.3	22.0
Predicted Noise Level		Uci	<i>1</i> , авр			56.9			41.6			47.0			39.6			31.9
L _{max}		a	B(A)	35.4														
L _{eq,30mins}		d	B(A)	25.0														
Noise Criteria		d	B(A)	45														
Compliance				Vac														

 Compliance
 res

 Notes:
 [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [2] FDL based on the ground type
 L SR data are interpolated against slant distance.

[3] LSR based on the ground type. LSR data are interpolated against slant distance. [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 50 kph
NSR Ref.:	HOM-P3-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Residential Building, HOM Station Development	Up Track	0	45	45
Assessed Floor	1	Down Track	0	45	45
Item:	99				

Selected LSR Details: LSR Ref.

Up Track	HOM-2-2
Down Track	HOM-2-2

										Freq	uency	(Hz)						
Description	Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re	10 ⁻⁶ in/s*in ⁰	^{.5} /lb	8.4	6.2	-1.4	-7.7	-9.2	-9.9	-15.4	-12.1	-6.1	-9.3	-8.1	-10.7	-4.6	-8.2	-14.5
Up Track Vib. Level	dB re	10 ⁻⁶ in/sec		35.8	37.6	29.0	20.8	18.2	21.5	19.0	23.4	29.3	22.1	22.3	18.7	21.8	19.2	10.0
Down Track Calculation	on																	
FDL	dB re	1 lb/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB	Туре	0															
LSR	dB re	10 ⁻⁶ in/s*in ⁰	^{.5} /lb	8.4	6.2	-1.4	-7.7	-9.2	-9.9	-15.4	-12.1	-6.1	-9.3	-8.1	-10.7	-4.6	-8.2	-14.5
Down Track Vib. Level	dB re	10 ⁻⁶ in/sec		35.8	37.6	29.0	20.8	18.2	21.5	19.0	23.4	29.3	22.1	22.3	18.7	21.8	19.2	10.0
Total of Up and Down	Tracks	s Calculatio	on															
Total Vibration Level Ou	utside E	Building		38.8	40.6	32.0	23.8	21.2	24.5	22.0	26.4	32.3	25.2	25.3	21.7	24.8	22.2	13.0
BCF	dB	Y/N	0															
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level		1/3 C	oct, dB	54.8	56.6	48.0	39.8	37.0	39.9	37.2	41.4	47.1	39.2	38.3	33.7	35.8	32.9	23.7
Predicted Noise Level		C	oct, dB			57.2			43.0			48.7			41.1			33.4
L _{max}			dB(A)	37.0														
L _{eq,30mins}			dB(A)	26.6														
Noise Criteria			dB(A)	45														
Compliance				Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)$

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)			Train Spee	ed: 45 kph
NSR Ref.:	HUH-1-1		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Cartas Branchi College of Careers	Up Track	95	30	100
Assessed Floor	0	Down Track	125	30	129
Item:	100				

Selected	LSR	Details:	
			-

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						· · · · ·
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0	1														ŀ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.6	5.5	-3.4	-10.8	-12.6	-12.0	-23.3	-21.9	-9.9	-11.3	-10.6	-16.1	-10.7	-12.4	-17.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.1	36.0	26.1	16.7	13.9	18.5	10.2	12.6	24.6	19.2	18.9	12.4	14.8	14.1	6.3
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N	1														I
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															I
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.4	5.4	-3.8	-11.4	-13.4	-12.5	-25.1	-24.0	-10.7	-11.7	-11.2	-17.3	-12.0	-13.3	-17.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	33.9	35.9	25.7	16.1	13.1	18.0	8.4	10.5	23.8	18.8	18.3	11.2	13.5	13.2	5.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	37.0	39.0	28.9	19.4	16.5	21.3	12.4	14.7	27.3	22.0	21.6	14.8	17.2	16.7	9.1
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	55.0	57.0	46.9	37.4	34.3	38.7	29.6	31.7	44.1	38.0	36.6	28.8	30.2	29.4	21.8
Predicted Noise Level	Oct, dB	·		57.4			40.4			45.2			38.1			30.1
L _{max}	dB(A)	33.7														
L _{eq,30mins}	dB(A)	27[8]														
Noise Criteria	dB(A)	55[9]														

Compliance

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

Yes

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 50 kph
NSR Ref.:	HUH-1-2			Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Lok Ka House		Up Track	55	18	58
Assessed Floor	1	D	own Track	80	18	82
Item:	101					

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		T						Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB <u>Y/N</u> N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 0															ļ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.1	6.0	-2.1	-8.7	-10.4	-10.7	-18.1	-15.4	-7.4	-10.0	-9.0	-12.6	-6.7	-9.6	-15.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.5	39.4	30.3	21.7	19.0	22.8	18.3	22.0	30.0	23.5	23.5	18.8	21.7	19.8	11.0
Down Track Calculatio	on															
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N	1														ļ
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 0]														
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.5	-9.3	-11.0	-11.0	-19.5	-17.2	-8.1	-10.3	-9.4	-13.6	-7.8	-10.4	-15.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.4	39.3	30.0	21.1	18.4	22.4	16.9	20.2	29.4	23.1	23.0	17.9	20.6	19.0	10.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	utside Building	40.5	42.3	33.1	24.4	21.8	25.6	20.7	24.2	32.7	26.3	26.2	21.4	24.2	22.4	13.8
BCF	dB Y/N 0]														
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	56.5	58.3	49.1	40.4	37.6	41.0	35.9	39.2	47.5	40.3	39.2	33.4	35.2	33.1	24.5
Predicted Noise Level	Oct, all	<i>i</i>		58.9			43.4			48.8			41.4			33.7
L _{max}	dB(A)	37.2														
L _{eq,30mins}	dB(A)	26.8														
Noise Criteria	dB(A)) 45														
Compliance		Voc														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[1] Enter interpolation has been applied to start distance where appropriate.
[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ $(3dB(A) \text{ correction is added to } L_{eq,30mins} \text{ for leading and trailing effect for conservative approaches.})$

[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(TAW - HUH)				Train Spee	ed: 60 kph
NSR Ref.:	HUH-1-3	_		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Wing Fung Building		Up Track	10	18	21
Assessed Floor	1	Π	Down Track	25	18	31
Item:	102	_				

LSR Ref. Up Track KAT-P1-5 Down Track KAT-P1-5

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
ТОС	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	2.9	11.8	8.0	3.0	1.9	4.8	-0.4	-4.8	-9.1	-15.7	-20.4	-28.4	-27.1	-35.0	-36.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	33.9	46.8	42.0	35.0	32.9	39.8	37.6	34.2	29.9	19.3	13.6	4.6	2.9	-4.0	-8.2
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
ТОС	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-4.0	8.1	4.4	-1.6	-4.2	-1.8	-7.5	-12.5	-16.6	-21.6	-24.3	-31.4	-28.2	-35.8	-37.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	27.0	43.1	38.4	30.4	26.8	33.2	30.5	26.5	22.4	13.4	9.7	1.6	1.8	-4.8	-9.3
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	34.7	48.3	43.6	36.2	33.9	40.7	38.4	34.9	30.6	20.3	15.1	6.4	5.4	-1.4	-5.7
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	50.7	64.3	59.6	52.2	49.7	56.1	53.6	49.9	45.4	34.3	28.1	18.4	16.4	9.3	5.0
Predicted Noise Level	Oct, dB			65.8			58.6			51.3			28.8			11.1
L _{max}	dB(A)	37.4														
L _{eq,30mins}	dB(A)	26.1														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)

[6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.

Project:	SCL(HHS)			Train Spe	ed: 25 kph
NSR Ref.:	HUH-1-3		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Location:	Wing Fung Building	Up Trac	k 45	0	45
Assessed Floor	1				

Item:

102

Selected L	SR Details:
	LSR Ref.

Up Track KAT-P1-5

				Frequency (Hz)														
Description	Unit		!	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																		
FDL	dB re 1 lb/	/in ^{0.5}	_	26.4	30.4	29.4	27.4	26.4	30.4	33.4	34.4	34.4	30.4	29.4	28.4	25.4	26.4	23.4
CCF	dB	Y/N	Ν															
TIL	dB	Туре	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB			-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB	Туре	0	1														
LSR	dB re 10 ⁻⁶	in/s*in ^{0.5} /	lb	-10.6	4.6	0.9	-6.1	-10.0	-8.2	-14.3	-19.9	-23.8	-27.3	-28.1	-34.2	-29.2	-36.5	-38.3
Up Track Vib. Level	dB re 10 ^{-6;}	in/sec		12.8	32.0	27.3	18.3	13.4	19.2	16.1	11.5	7.6	0.1	-1.7	-8.8	-6.8	-13.1	-17.9
Total of Up and Down	Tracks Cal	culation																
Total Vibration Level Out	tside Buildir	ng		12.8	32.0	27.3	18.3	13.4	19.2	16.1	11.5	7.6	0.1	-1.7	-8.8	-6.8	-13.1	-17.9
BCF	dB	Y/N	0	1														
BVR-up	dB	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level		1/3 Oc	t, dB	28.8	48.0	43.3	34.3	29.2	34.6	31.3	26.5	22.4	14.1	11.3	3.2	4.2	-2.4	-7.2
Predicted Noise Level		Oc	t, dB			49.4			37.0			28.1			12.6			2.5

Predicted Noise Level	Oct, dB	49.4	37.0	28.1	12.6	2.5
L _{max}	dB(A)	15.8				
L _{eq,30mins}	dB(A)	<20				
Noise Criteria	dB(A)	45				
Compliance		Yes				

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $[5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{\rm eq,30mins}$ for leading and trailing effect for conservative approaches.)

[6] L_{eq,30mins} is based on train frequency of 6 trains per 30mins at tunnel section under Chatham Road North for turning around.

Annex E

Cumulative Operational Ground-borne Noise Results

Annex E - Updated Cumulative Operational Ground-borne Noise Levels

ltem	NSR	Location	Predicted L _{eq 30min} (dB(A))				Cumulativo
			SCL (TAW- HUH)	SCL (HHS)	SCL (MKK- HUH)	KTE ^[4]	Noise Level (dB(A))
96	HOM-4-1	Yee Fu Building	25		20 ^[2]	<20	27
97	HOM-5-1	271 Chatham Road North	<20		20 ^[2]	23	26
98	HOM-P2	HKPU Student Halls of Residence	25		<20	<20	27
99	HOM-P3-1	Residential Building, HOM Station Development	27		20 ^[2]	36	37
100	HUH-1-1	Cartas Branchi College of Careers	30 ^[1]		20 ^[2]	26	32
101	HUH-1-2	Lok Ka House	27		20 ^[2]	<20	28
102	HUH-1-3	Wing Fung Building	26	<20	<20 ^[3]	<20	29

Notes:

[1] A 3dB(A) upward adjustment is made to account for the daytime headway of 12 EMU trains within a 30 minutes period per direction.

[2] Noise levels are estimated from predicted noise level of adjacent NSR. [3] Noise levels presented in OGNMMP for SCL(MKK-HUH).

[4] According to Groundborne Noise Review Report for Kwun Tong Line Extension, there are no updated results for the NSRs presented above. Noise levels are thus reference from KTE EIA Report (Register No.: AEIAR-154/2010).