MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 39

[Period from 1 to 31 July 2017]

(August 2017)

Verified by	Fredrick Leong	
Position: <u>Ir</u>	dependent Environmental Checker	
Date:	14 Aug 2017	

MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 39

[Period from 1 to 31 July 2017]

(August 2017)

Certified by:	Felice Wong
Position:	Environmental Team Leader
Date:	14 August 2017

MTR Corporation Limited

Consultancy Agreements No. C11033B

Shatin to Central Link - Hung Hom to Admiralty Section

Monthly EM&A Report No. 39

[Period from 1 to 31 July 2017]

	Name	Signature
Prepared & Checked:	Joanne Tsoi	1.50-
Reviewed & Approved:	Josh Lam	(Mur

Version: A	Date:	14 August 2017
------------	-------	----------------

This Monthly EM&A Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033B and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this report comes may rely on this plan without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Contents

		Pag	е
1	INTRO	DUCTION	1
	1.1 1.2 1.3	Background Project Programme Purpose of the Report	1
2	ENVIR	ONMENTAL MONITORING AND AUDIT	3
3	IMPLE	MENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMENTS	
List of	Tables		
Table 1 Table 2 Table 2 Table 2 Table 2 Table 2 Table 3	.1 .2 .3 .4 .5	Summary of Awarded Works Contracts Summary of Major Construction Activities in the Reporting Period Summary of 24-Hour TSP Monitoring Results in the Reporting Period Summary of Construction Noise Monitoring Results in the Reporting Period Summary of Marine Water Quality Monitoring Results in the Reporting Period (1) Log for Environmental Complaints, Notification of Summons and Successful Prosecutions for the Reporting Month Summary of EP Submissions Status	اړ
List of	Append	lices	
Append	lix A	Monthly EM&A Report for July 2017 – SCL Works Contract 1128 South Ventilatio Building to Admiralty Tunnels	n
Append	lix B	Monthly EM&A Report for July 2017 – SCL Works Contract 1121 NSL Cross Harbou Tunnels	ır
Append	lix C	Monthly EM&A Report for July 2017 – SCL Works Contract 1123 Exhibition Statio and Western Approach Tunnel	n
Append	lix D	Monthly EM&A Report for July 2017 - SCL Works Contract 1122 Admiralty Sout Overrun Tunnel	h
Append	lix E	Monthly EM&A Report for July 2017 – SCL Works Contract 1124 Admiralty SC Related Works	L

AECOM Asia Co. Ltd. i August 2017

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 Shatin to Central Link Hung Hom to Admiralty Section [SCL (HUH ADM)] (hereafter referred to as "the Project") is part of the SCL.
- 1.1.3 The Environmental Impact Assessment (EIA) Report for SCL (HUH-ADM) (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) (EP No.: EP-436/2012) was granted on 22 March 2012 for construction and operation. Variations of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/E) was issued by Director of Environmental Protection (DEP) on 23 November 2016.

1.2 Project Programme

1.2.1 Eight civil construction works contracts of the Project have been awarded since January 2014. The construction of the Project commenced in May 2014 and is expected to complete in 2021¹. The Project will have to interface with other infrastructure projects, including Wan Chai Development Phase II and Central-Wan Chai Bypass. **Table 1.1** summarises the information of the awarded Works Contracts.

Table 1.1 Summary of Awarded Works Contracts

Table 1:1 Cultillary of Awarded Works Contracts						
Works Contract	Description	Construction Start Date	Contractor	Environmental Team		
1121	NSL Cross Harbour Tunnels	March 2015	Penta-Ocean – China State JV	Cinotech Consultants Ltd. (Cinotech)		
1122	Admiralty South Overrun Tunnel	August 2016	Vinci Construction Grands Projects	AECOM Asia Co. Ltd.		
1123	Exhibition Station and Western Approach Tunnels	June 2015	Leighton – China State JV	AECOM Asia Co. Ltd.		
1124	Admiralty SCL Related Works	February 2017	Build King SCL 1124 JV	Action-United Environmental Services and Consulting (AUES)		
1126 ⁽¹⁾	Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool	July 2014	Kaden Leader JV	Cinotech Consultants Ltd. (Cinotech)		
1128	South Ventilation Building to Admiralty Tunnels	November 2014	Dragages Bouygues J.V.	AECOM Asia Co. Ltd.		
1129 ⁽²⁾	SCL – Advance Works for NSL	May 2014	Hsin Chong Construction Co. Ltd.	AECOM Asia Co. Ltd.		

AECOM Asia Co. Ltd. 1 August 2017

¹ The commissioning date of SCL(HUH-ADM) will very likely be deferred to 2021 to allow flexibility for the topside development of the Exhibition Station, and to cater for the construction works under other infrastructure projects on Hong Kong Island.

Works Contract	Description	Construction Start Date	Contractor	Environmental Team
11227 ⁽³⁾	Advance Works for NSL Cross Harbour Tunnels	August 2014	Concentric-Hong Kong River Joint Venture	Cinotech Consultants Ltd. (Cinotech)

Note:

- (1) Construction works under Works Contract 1126 was completed on 17 May 2015.
- (2) Construction works under Works Contract 1129 was completed on 20 July 2015.
- (3) Construction works in Victoria Harbour and Shek O Casting Basin under Works Contract 11227 were completed on 15 and 20 December 2014 respectively.

1.3 Purpose of the Report

1.3.1 The Environmental Monitoring and Audit (EM&A) programme for the Project commenced in May 2014. This is the thirty-ninth EM&A Report for the Project which summarises the EM&A works undertaken by the respective Contractor's ETs during the period from 1 to 31 July 2017.

2 **ENVIRONMENTAL MONITORING AND AUDIT**

2.1 **EM&A Results**

- 2.1.1 The EM&A Report for Works Contracts 1128, 1121, 1123, 1122 and 1124 prepared by the respective Contractor's ETs are provided in Appendices A to E respectively. The EM&A Reports provide details of the project information, EM&A requirements, impact monitoring and audit results for the corresponding Contracts.
- 2.1.2 A summary of the major construction activities undertaken by the respective Contractors of various Works Contracts during the reporting period are presented in Table 2.1.

Table 2.1	Summary of Major Construction Activities in the Reporting Period				
Works Contract	Site	Construction Activities			
	Shek O	Removal of Concrete Paving; and Removal of Concrete Batching Plant.			
1121	Victoria Harbour	 Strut Removal & Backfilling of NOV at Hung Hom. Reinforcement Concrete Works Construction of NOV at Hung Hom; Reinforcement Concrete Works Construction of Cut & Cover Tunnel at Hung Hom; Cathodic Protection of NOV at Hung Hom; Water Proofing at Hung Hom; Advanced Work for 1112 D-Wall Demolition; Trench Dredging Works for IMT Alignments at Victoria Harbour & CBTS; Gravel Bedding Laying at CBTS and Victoria Harbour; Partially Reinstatement of Breakwater at CBTS; Erection of Working Platform for ME4 D-Wall Cutting; IMT Sinking at CBTS. 			
1122	Shaft L10	Concreting for Tunnel.			
	Zone 1 – PTI Area	Pipe Pile Wall; Excavation and Lateral Support; Prebored Socket H-Piles (PBSH) and King Post.			
	Zone 2	Demolition of Harbour Road Sport Centre; Prebored socket H-Piles (PBSH) and King Post.			
	Zone 3 – Swimming Pool Area (including W4, W5, W6 (partial), W7a, W7b)	Excavation and Lateral Support.			
4400	Zone 4 – Tunnel at Tonnochy Road	Excavation and Lateral Support.			
1123	Fleming Road Junction - Area E	Cofferdam;Pipe Pile Wall;Utilities Diversion and Protection.			
	Western Vent Shaft and WAT - Area C	Diaphragm Wall Works;Road Works;Excavation and Lateral Support			
	WAT - Area B	Excavation and Lateral Support;Utilities Diversion and Protection			
	WAT - Area A	Excavation and Lateral Support.			
	Kai Tak Barging Point ⁽¹⁾	Storage and Barging of Fill Materials.			
1124	New Admiralty Station	 Ground Level /TDS - Concrete Works and Doors Installation for Energization in Area 1; Concourse Level - Installation of Fire Rated Hoarding and Wet Trade Works; Upper Platform & Lower Platform - Concreting Works Related to Phase 1 works and Wet Trade Works; 			

Works Contract	Site	Construction Activities			
		 Mezzanine Level - Plenum Slab Casting in Area 2 and ECS Walls Casting; SCL OTE Works in Up Track up to South of GL 12. and Removal of Scaffold for Plenum slab in Mezzanine Level; SCL Platform Slab - Area 1 & 2 Platform Slab Casting; Mass Concrete for Walkway in Track Slab. Steel Columns Installation; GL 12 Wall : Roof Beam Construction. 			
	Area W1	 Walkway Installation; Ground Treatment and Excavation for Ventilation Tunnel; SP5 Sump Pit – Excavation. 			
	Area W2	Soft and Rock Excavation;POC Piling.			
1128	Area W3	 Causeway-Hung Hing Flyover – Backfilling; Percival Footbridge – Excavation for footing. 			
	Area W4a	Canel Road Box Culvert Reinstatement.			
	Area W8 & W10	 West Up Track - S988.1 TBM Dismantling; West DT - S988.2 TBM Assembly; Area 2- ELS Works. 			
	Area W14	STP Operation.			

Notes:

- (1) The Kai Tak Barging Point will be for storage and barging of fill materials over the whole contract period.
- 2.1.3 During the reporting month, impact monitoring for air quality, construction noise and water quality were conducted in accordance with the EM&A Manual. Continuous noise monitoring was not required in the reporting period according to the Continuous Noise Monitoring Plan (CNMP). No exceedances of the Action/Limit Levels of 24-hr TSP, construction noise and water quality parameters due to the Project construction were recorded. Results of air quality, construction noise and water quality monitoring are summarised in **Tables 2.2**, **2.3** and **2.4** respectively. Details of the monitoring requirements, locations, equipment and methodology are presented in the EM&A Reports (**Appendices A** to **E**).

Table 2.2 Summary of 24-Hour TSP Monitoring Results in the Reporting Period

Monitoring Station ID	Location	TSP Concentration (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)	Exceedance due to the Project Construction (Yes/No)
Works Contrac	ct 1121 ⁽¹⁾				
Works Contrac	ct 1122 ⁽²⁾				
Works Contrac	ct 1123 ⁽³⁾				
Works Contrac	ct 1124 ⁽²⁾				
Works Contrac	ct 1123 and 1128				
AM2	Wan Chai Sports Ground ⁽⁴⁾⁽⁵⁾	20.5 – 28.9	160	260	No
Works Contract 1128					
AM4	Pedestrian Plaza	49.9–88.7	198	260	No

Note:

(2) No TSP monitoring is required under this works contract.

AECOM Asia Co. Ltd. 4 August 2017

⁽¹⁾ The setup of the impact dust monitoring station at Harbourfront Horizon and the impact monitoring is currently carried out under Works Contract 1112. Upon termination of their EM&A programmes, the impact monitoring works would be taken up by Works Contract 1121.

- (3) Dust monitoring at AM3 (Existing Harbour Road Sports Centre) was handed over from Works Contract 1126 to Works Contract 1123 in June 2015 and terminated on 6 May 2017 as demolition of Existing Harbour Road Sports Centre commenced on 8 May 2017.
- (4) The spectator stand at Wan Chai Sports Ground was not available for impact dust monitoring, therefore impact monitoring was conducted at the existing water pump room area at Wan Chai Sports Ground.
- (5) Dust monitoring at AM2 (Wan Chai Sports Ground) was handed over to Works Contract 1123 from Works Contract 1128 on 28 October 2015.

Table 2.3 Summary of Construction Noise Monitoring Results in the Reporting Period

Monitoring Station ID		Noise Level (LAeq,30mins, dB(A))			Limit	Exceedance
	Location	Measured	Baseline	Corrected ⁽¹⁾	Limit Level (dB(A))	due to the Project Construction (Yes/No)
Works Cont	ract 1121 ⁽²⁾					
Works Cont	ract 1122 ⁽²⁾					
Works Cont	ract 1123					
NM2 ⁽³⁾⁽⁴⁾⁽⁵⁾	Harbour Centre	68.4 – 70.4	69.6	< Baseline – 62.7	75	No
Works Cont	ract 1124 ⁽²⁾		l			I
Work Contra	Work Contract 1128 ⁽⁶⁾					
NM1	Hoi Kung Court	68.8 – 74.7	71	< Baseline – 72.3	75	No

Note:

- (1) The measured noise levels are corrected against the corresponding baseline noise levels.
- (2) No construction noise monitoring is required under this works contract.
- (3) The impact monitoring at NM2 was handed over from Works Contract 1126 to Works Contract 1123 in June 2015
- (4) Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. Alternative noise monitoring location proposed at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014. Impact noise monitoring was carried out at Harbour Centre from 20 August 2014 onwards.
- (5) Impact noise monitoring has been carrying out on 7/F of Harbour Centre between 20 August and 15 December 2014, and on 8/F from 19 December 2014 onwards.
- (6) Noise monitoring at NM1 (Hoi Kung Court) was handed over from Works Contract 1129 to Works Contract 1128 in August 2015.

Table 2.4 Summary of Marine Water Quality Monitoring Results in the Reporting Period (1)

			Parameters				
Locations		Depth-averaged Dissolved Oxygen (mg/L) Depth-averaged Turbidity (NTU)		Depth-averaged Suspended Solids (mg/L)			
Shek O C	asting Bas	sin (Wet Season) ⁽²⁾					
Victoria I	Harbour (W	et Season) (3)					
21	Mean	6.0	3.3	5.4			
21	Range	4.4 – 9.4	1.2 – 7.5	3.5 – 6.7			
34	Mean	6.2	3.2	5.1			
34	Range	4.0 – 9.0	1.9 – 7.9	3.0 – 6.5			
9	Mean	6.4	2.7	5.0			
Range		3.8 – 10.7	0.7 – 7.7	3.0 – 6.5			
Action Level		2.8	11.3	6.9			
Limit	Level	2.7	17.2	9.1			
	edance s/No)	No	No	No			

Locations		Parameters		
		Depth-averaged Dissolved Oxygen (mg/L)	Depth-averaged Turbidity (NTU)	Depth-averaged Suspended Solids (mg/L)
Α	Mean	6.3	2.5	4.9
A	Range	4.2 – 9.7	0.9 – 4.4	3.5 – 5.8
WSD17	Mean	5.5	2.8	4.9
WSDI7	Range	3.8 – 7.6	1.3 – 4.2	3.0 – 5.8
WSD9	Mean	6.6	2.3	4.7
พงอบิ	Range	4.9 – 10.5	0.9 – 4.5	2.7 – 5.8
Action Level		<2.1	4.7	6.0
Limit Level		<2	6.5	6.0
Exceedance (Yes/No)		No	No	No
C1	Mean	5.8	2.7	4.9
	Range	4.2 – 7.6	1.4 – 5.5	3.0 – 7.0
C2	Mean	5.3	2.8	4.9
02	Range	3.9 – 6.9	1.6 – 4.7	3.7 – 5.8

Notes:

- (1) Marine water quality monitoring was conducted in the reporting period under Works Contract 1121.
- (2) Removal of earth bunds at Shek O Casting Basin under Works Contract 1121 commenced on 17 March 2017 and the removal of dock gate at Shek O Casting Basin was completed on 30 April 2017. Thus, no water quality monitoring was conducted during the reporting period.
- (3) Dredging / filling works within the Victoria Harbour commenced on 22 April 2015. Water Quality Monitoring at Station 8 and 14 is suspended as these water intakes are not in use.
- 2.1.4 One complaint was referred by EPD under Works Contract 1128 on 7th July 2017, regarding noise issue. Investigation was conducted and reported in the respective EM&A Report. No notification of summons and successful prosecutions were received in the reporting period. Log for environmental complaints, notification of summons and successful prosecutions is provided in **Table 2.5**.

Table 2.5 Log for Environmental Complaints, Notification of Summons and Successful Prosecutions for the Reporting Month

Works Contract	Environmental Complaints	Notification of Summons	Successful Prosecutions
1121	0	0	0
1122	0	0	0
1123	0	0	0
1124	0	0	0
1128	1	0	0

2.1.5 Regular site inspections were conducted by the Contractor's ET on a weekly basis to check the implementation of environmental pollution control and mitigation measures for the Project. No non-conformance was identified in the reporting period.

3 IMPLEMENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMENTS

3.1.1 The respective Contractors have implemented all mitigation measures and requirements as stated in the EIA Report, EM&A Manual and EP (EP-436/2012/E). The status of required submissions under the EP as of the reporting period are summarised in **Table 3.1**.

Table 3.1 Summary of EP Submissions Status

EP Condition (EP-436/2012/E)	Submission	Submission date
Condition 1.11	Notification of Commencement Date of Construction of the Project	19 Dec 2012
Condition 2.3	Notification of Setup of Community Liaison Group	22 Jun 2016
Condition 2.5	Management Organisation of Main Construction Companies	5 Jan 2017
Condition 2.6	Construction Programme and EP Submission Schedule	5 Jan 2017
	Construction Noise Mitigation Measures Plan (CNMMP) Works Contract 1126:	9 Jun 2014 (1 st Submission)
Condition 2.7	Construction Noise Mitigation Measures Plan (CNMMP)	
	Works Contract 1123: Construction Noise Mitigation Measures Plan (CNMMP)	24 Apr 2015 (1st Submission) 7 Jul 2015 (2nd Submission) 2 Oct 2015 (3rd Submission) 2 June 2016 (4th Submission)
	Continuous Noise Monitoring Plan (CNMP)	
Condition 2.8	Works Contract 1126: Continuous Noise Monitoring Plan (CNMP)	9 Jun 2014 (1 st Submission)
	Works Contract 1123: Continuous Noise Monitoring Plan (CNMP)	24 Apr 2015 (1 st Submission) 7 Jul 2015 (2 nd Submission) 2 June 2016 (3 rd Submission)
Condition 2.9	Construction and Demolition Materials Management Plan (C&DMMP)	6 Jul 2012 (1 st Submission) 12 Sep 2012 (2 nd Submission) 15 Oct 2012 (approved)
	Works Contract 11227: Silt Curtain Deployment Plan for Trial Trenching in Victoria Harbour	11 Jul 2014
Condition 2.10	Works Contract 1121: Silt Curtain Deployment Plan for Hung Hom Landfall and Trial Trench in Victoria Harbour	17 Feb 2015 (1 st Submission) 2 Apr 2015 (2 nd Submission) 27 Oct 2015 (3 rd Submission) 29 March 2016 (4 th Submission)
Condition 2.11	Works Contract 11227: Silt Screen Deployment Plan	11 Jul 2014
	Works Contract 1121: Silt Screen Deployment Plan	13 Feb 2015
Condition 2.12	Sediment Management Plan	6 Jul 2012 (1st Submission) 12 Sep 2012 (2nd Submission) 5 Oct 2012 (3rd Submission) 15 Oct 2012 (approved) 3 Jul 2014 (4th Submission)
Condition 2.14	Visual, Landscape, Tree Planting & Tree Protection Plan	14 Nov 2012 (1st Submission) 3 Dec 2013 (2nd Submission) 21 Aug 2014 (3rd Submission) 9 Feb 2015 (4th Submission) 27 May 2016 (5th Submission) 29 Nov 2016 (6th Submission)

EP Condition (EP-436/2012/E)	Submission	Submission date
		19 Jan 2017 (7 th Submission) 11 Apr 2017 (8 th Submission) 20 Apr 2017 (approved)
	Works Contract 11227: Silt Curtain Deployment Plan for Shek O	23 Jul 2014 (1st Submission) 31 Jul 2014 (approved)
Condition 2.23.1	Works Contract 1121: Silt Curtain Deployment Plan for Shek O	4 Feb 2015 (1 st Submission) 4 Mar 2015 (2 nd Submission) 9 Mar 2015 (approved)
Condition 2.24	Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR)Remedial Action Plan (RAP) for the above-ground diesel tanks for Wan Chai Swimming Pool	CAP: 25 Sep 2012 (1 st Submission) 12 Nov 2012 (2 nd Submission) 22 Nov 2012 (approved)
Condition 2.24		CAR: 19 Mar 2013 (1 st Submission) 16 Apr 2013 (2 nd Submission) 21 May 2013 (3 rd Submission) 7 Jun 2013 (approved)
	Baseline Monitoring Report (for noise and air quality)	4 Dec 2013 (1 st Submission) 5 Feb 2014 (2 nd Submission)
Condition 3.3	Baseline Water Quality Monitoring Report	23 Sep 2014 (1st Submission) 18 Dec 2014 (2nd Submission)
	Baseline Water Quality Monitoring Report for Temporary Marine Works at Shek O Casting Basin	8 Jul 2014 (1 st Submission) 11 Aug 2014 (2 nd Submission)
	Monthly EM&A Reports No.1 - 37	Reported in previous Monthly EM&A Reports
Condition 3.4	Final EM&A Review Report for Works Contract 11227	12 Feb 2015
Solidition 0.4	Final EM&A Review Report for Works Contract 1126	25 Jun 2015 (1 st Submission) 4 Sep 2015 (2 nd Submission)
	Monthly EM&A Report No.38	14 July 2017

Appendix A

Monthly EM&A Report for July 2017 – SCL Works Contract 1128 South Ventilation Building to Admiralty Tunnels

Dragages Bouygues J.V.

Shatin to Central Link - Hung Hom to Admiralty Section

Works Contract 1128 - South Ventilation Building (SOV) to Admiralty Tunnels

Monthly EM&A Report for July 2017

[August 2017]

	Name	Signature
Prepared & Checked:	Ray Chow	網B
Reviewed, Approved & Certified:	Y T Tang (Contractor's Environmental Team Leader)	Contain

Version: 0	Date: 8 August 2017

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Dragages Bouygues J.V. and is given for its sole benefit in relation to and pursuant to SCL1128 and may not be disclosed to, quoted to or relied upon by any person other than Dragages Bouygues J.V. without our prior written consent. No person (other than Dragages Bouygues J.V. into whose possession a copy of this Manual comes may rely on this plan without our express written consent and Dragages Bouygues J.V. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Page

Table of Contents

EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	3
	1.1 1.2	Purpose of the ReportReport Structure	
2	PRO	JECT INFORMATION	4
	2.1	Background	4
	2.2	Site Description	
	2.3	Construction Programme and Activities	
	2.4 2.5	Project Organisation Status of Environmental Licences, Notification and Permits	
3	ENVI	RONMENTAL MONITORING REQUIREMENTS	9
	3.1	Construction Dust Monitoring	
	3.2	Construction Noise Monitoring	
	3.3	Landscape and Visual	
4	IMPL	EMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	13
5	MON	ITORING RESULTS	14
	5.1	Construction Dust Monitoring	14
	5.2	Construction Noise Monitoring	
	5.3 5.4	Waste ManagementLandscape and Visual	
6	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	16
7	ENVI	RONMENTAL NON-CONFORMANCE	17
	7.1	Summary of Monitoring Exceedances	17
	7.2	Summary of Environmental Non-Compliance	
	7.3	Summary of Environmental Complaints	
	7.4	Summary of Environmental Summon and Successful Prosecutions	17
8	FUTU	JRE KEY ISSUES	18
	8.1	Construction Programme for the Next Three Month	18
	8.2	Key Issues for the Coming Month	
	8.3	Monitoring Schedule for the Next Three Month	18
9	CON	CLUSIONS AND RECOMMENDATIONS	19
	9.1	Conclusions	
	9.2	Recommendations	19

List of Tables

Table 2.1	Contact Information of Key Personnel
Table 2.2	Status of Environmental Licenses, Notifications and Permits
Table 3.1	Air Quality Monitoring Equipment
Table 3.2	Locations of Construction Dust Monitoring Station
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Noise Monitoring Equipment for Regular Noise Monitoring
Table 3.5	Noise Monitoring Station during Construction Phase
Table 4.1	Status of Required Submission under Environmental Permit
Table 5.1	Summary of 24-hour TSP Monitoring Result in the Reporting Period
Table 5.2	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 6.1	Observations and Recommendations of Site Audit

List of Figures

Figure 3.1 Air Quality and Noise Monitoring Locations

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organisation Structure
Appendix C	Environmental Mitigation Implementation Schedule
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Air Quality Monitoring Results and their Graphical Presentations
Appendix H	Noise Monitoring Results and their Graphical Presentations
Appendix I	Event and Action Plan
Appendix J	Cumulative Statistics on Complaints, Notification of Summons and Successful
	Prosecutions
Appendix K	Monthly Summary Waste Flow Table

AECOM Asia Co. Ltd. ii August 2017

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1128 – South Ventilation Building (SOV) to Admiralty Tunnels (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL).

The Project comprises the Permanent Works and the associated temporary works necessary for TBM tunnels between SOV and Admiralty Tunnels, short sections of cut and cover tunnels near SOV and Fenwick Pier Emergency Egress Point (FPP), Re-provisioning, Remedial and Improvement Works (RRIW) for government and public bodies facilities.

The EM&A programme commenced on 17 November 2014. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 1 and 31 July 2017. As informed by the Contractor, major activities in the reporting period were:

Location	Site Activities
Area W1	Walkway Installation
	Ground treatment and excavation for ventilation tunnel
	SP5 Sump Pit - Excavation
Area W2	Soft and Rock Excavation
	POC Piling
Area W3	Causeway-Hung Hing Flyover – backfilling
	Percival Footbridge - Excavation for footing
Area W4a	Canel Road Box Culvert Reinstatement
FPP (W8 & W10)	West Up Track - S988.1 TBM Dismantling
	West DT - S988.2 TBM Assembly
	Area 2- ELS works
Area W14	STP Operation

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action / Limit Level of air quality was recorded in the reporting month.

Breaches of Action and Limit Levels for Noise

Noise monitoring was handed-over from SCL Contract 1129 in August 2015.

One noise related complaint was received in the reporting month. The concerned period (i.e. from day time to 23:30 on 28 June 2017; from day time to 22:15 on 29 June 2017; from daytime to 23:00 on 30 June 2017; from daytime to 20:45 on 1 July 2017; and from daytime to 18:00 on 2 July 2017) of the complaint was within 0700 – 1900 hrs of normal weekdays. Therefore, one (1) exceedance of action level of noise was recorded in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

An environmental noise complaint was received by EPD on 4 July 2017. The complaint was about construction work was being carried out from day time to 23:30 on 28 June 2017; from day time to 22:15 on 29 June 2017; from daytime to 23:00 on 30 June 2017; from daytime to 20:45 on 1 July 2017; and from daytime to 18:00 on 2 July 2017, at the site near Ex-Police Officers' Club that caused noise nuisance. The investigation report was submitted to EPD on 18 July 2017.

No notification of summons and successful prosecution were received in the reporting month. The summary and cumulative statistics on environmental complaints is provided in **Appendix J**.

AECOM Asia Co. Ltd. 1 August 2017

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

Location	Site Activities
Area W1	Invert Walkway Remedial Work
	Construction of Ventilation Adit
	SP5 Excavation
	C&C Tunnel
Area W2	Shaft Excavation and Struts Bracing Installation
	In-situ Linging Concrete Pouring
Area W3	Reinstatement of Causeway Flyover
	Reinstatement of Pervical Footbridge
Area W4a	Reinstatement of Canal Road Culvert (Drainage work)
FPP (W8 & W10)	Dismantling of TBM
	WDT TBM Excavation
	Upstand Wall Construction
	Soft excavation, installation of ELS, grouting works
Area W14	STP Maintenance & Operation

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

AECOM Asia Co. Ltd. 2 August 2017

1 INTRODUCTION

Dragages Bouygues J.V. (JV) was commissioned by MTR as the Civil Contractor for Works Contract 1128. AECOM Asia Company Limited (AECOM) was appointed by JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the thirty-third monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period between 1 and 31 July 2017.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is orgainised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

AECOM Asia Co. Ltd. 3 August 2017

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-436/2012/E) was issued by the Director of Environmental Protection (DEP) on 23 November 2016.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and the Project comprises the Permanent Works and the associated temporary works necessary for TBM tunnels between SOV and Admiralty Tunnels, short sections of cut and cover tunnels near SOV and Fenwick Pier Emergency Egress Point (FPP), Re-provisioning, Remedial and Improvement Works (RRIW) for government and public bodies facilities under the EP.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1128 include:
 - (a) Taking over the 160m section of the SCL tunnels (ME4 Tunnel) constructed under the Central Wan Chai Bypass (CWB) project and construction of walkways, sealing, connection and various finishing works inside the tunnels;
 - (b) Construction of cut and cover tunnels connecting from South Ventilation Building (SOV) to the ME4 Tunnel;
 - (c) Removal of temporary reclamation and reinstatement of seawall;
 - (d) Construction of SOV;
 - (e) Bored tunnels between SOV and Exhibition Station (EXH):
 - (f) Construction of cut and cover tunnels connecting from the SCL tunnels under Convention Avenue by Contract 1123 to the bored tunnels as stated in sub-clause
 - (g) Construction of Fenwick Pier Emergency Egress Point (FPP);
 - (h) Bored tunnels between Fenwick Pier Emergency Egress Point (FPP) and Admiralty Station (ADM);
 - (i) Pile/obstruction detections and removals for construction of SCL running tunnels and for future North Island Line (NIL) running tunnels;
 - (j) Demolition of existing Police Officer's Club (POC);
 - (k) Reprovisioning of new POC;
 - (I) Other RRIW;
 - (m) Essential piling works at future Government, Institution and Community (GIC) site
 - (n) Diversion and modification of utilities and services;
 - (o) Modification, re-provisioning or reinstatement of footpath, carriageway or road features;
 - (p) Provisions for Designated and Interfacing Contracts;
 - (g) Tree felling, tree compensation, transplanting works and landscaping works;
 - (r) Permanent reprovisioning works at the Fleet Arcade;
 - (s) Miscellaneous signage; and
 - (t) External works comprising new and reinstated roads, footpaths, drains, landscaping, staircase, street furniture and the like.

AECOM Asia Co. Ltd. 4 August 2017

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Location	Site Activities
Area W1	Walkway Installation Ground treatment and excavation for ventilation tunnel SP5 Sump Pit - Excavation
Area W2	Soft and Rock Excavation POC Piling
Area W3	Causeway-Hung Hing Flyover – backfilling Percival Footbridge - Excavation for footing
Area W4a	Canel Road Box Culvert Reinstatement
FPP (W8 & W10)	 West Up Track - S988.1 TBM Dismantling West DT - S988.2 TBM Assembly Area 2- ELS works
Area W14	STP Operation

2.3.2 The construction programme is presented in **Appendix A**.

AECOM Asia Co. Ltd. 5 August 2017

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

Table 2.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
	Residential	Construction Manager	Mr. Thomas Neil De Rye, BARRETT	2171 3610	2171 3609
MTR	Engineer (ER)	SCL Project Environmental Team Leader	Ms. Felice Wong	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
JV	Contractor	Project Director	Mr. Lee Ka-Leung	9745 5533	2171 3715
3 V	Contractor	Environmental Manager	Mr. Marcus Cheung	6628 2685	21/13/13
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y T Tang	3922 9393	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.2**.

Table 2.2 Status of Environmental Licenses, Notifications and Permits

Permit / License	Valid	Period	2	Remarks		
No. / Notification/ Reference No.	From	То	Status			
Environmental Perm	Environmental Permit					
EP-436/2012/E	23 Nov 2016	End of the Project	Valid	The whole SCL		
Construction Noise I	Permit	,				
GW-RS0063-17	25 Jan 2017	22 Jul 2017	Valid until 22 July 2017	Construction site near Gloucester Road, Wan Chai (W3.5.2)		
GW-RS0116-17	11 Feb 2017	9 Aug 2017	Valid	Marsh Road near Marsh Road Station		
GW-RS0257-17	31 Mar 2017	26 Sep 2017	Valid	Construction Site near Ex-Police Officer Club, Wan Chai (W1 + W2) SOV Rock Excavation		
GW-RS0164-17	4 Mar 2017	2 Sep 2017	Valid	Construction site at Gloucester Road near Hung Hing Road (W4) – Jet Grouting – Renewal (supersede CNP GW-RS1031-16)		
GW-RS0318-17	13 Apr 2017	10 Oct 2017	Valid	Construction site near Lung King Street and Convention Avenue (W8 TBM Operation + WAT Pile Removal)		
GW-RS0539-17	23 Jun 2017	30 Aug 2017	Valid	Construction site at Gloucester Road near Wan Shing Street (Reinstatement at Gloucester Road)		
GW-RS0595-17	13 July 2017	9 Jan 2018	Valid	Construction site between Percival Street Footbridge and Causeway / Hung Hing Road Flyover (W3)		
Wastewater Discharg	ge License					
WT00020473-2014	9 Dec 2014	31 Dec 2019	Valid	Gloucester Road near Hung Hing Road (W4)		
WT00021519-2015	4 May 2015	31 May 2020	Valid	Between Percival Street Footbridge and Hung Hing Road Flyover (W3)		
WT00022596-2015	22 Sep 2015	30 Sep 2020	Valid	Gloucester Road near Marsh Road Station Building (W5)		
WT00022781-2015	3 Nov 2015	30 Nov 2020	Valid	Works Area at Green Zone		
WT00023987-2016	10 Mar 2016	31 Mar 2020	Valid	Junction of Lung King Street and Convention Avenue (W8)		

AECOM Asia Co. Ltd. 7 August 2017

Permit / License	-				
No. / Notification/ Reference No.	From	То	Status	Remarks	
WT00023988-2016	10 Mar 2016	31 Dec 2019	Valid	Wang Shing Street (W6)	
WT00023989-2016	10 Mar 2016	31 Dec 2019	Valid	Lung King Street near DSD Screening Plant (W14)	
WT00024759-2016	21 Jun 2016	31 Dec 2019	Valid	Works Area at POC (W1 + W2)	
WT00025076-2016	29 Jul 2016	31 Jul 2021	Valid	Works Area on Marsh Road near Wan Chai Sports Centre	
Chemical Waste Prod	ducer Registrati	on			
5213-135-D2551-01	16 Dec 2014	End of the Project	Valid	Gloucester Road near Hung Hing Road (W4)	
5213-134-D2552-01	16 Dec 2014	End of the Project	Valid	Lung King Street near DSD Screening Plant (W14)	
5111-151-D2552-02	05 Jan 2015	End of the Project	Valid	Victoria Park Road near POC (W1)	
Billing Account for C	Construction Wa	ste Disposal	ı		
7020686	15 Sep 2014	End of Contract	Valid	For disposal of C&D waste to public fills and landfills	
Marine Dumping Per	mit				
EP/MD/18-017*	4 Jul 2017	22 Sep 2017	Valid	Type 1 – Open Sea Disposal	
EP/MD/18-020*	4 Jul 2017	3 Aug 2017	Valid	Type 2 – Confined Marine Disposal	
Notification Under A	ir Pollution Con	trol (Constructio	n Dust) Regulati	on	
378806	2 Sep 2014	End of Contract	Valid	For Wan Chai, Causeway Bay, Hong Kong Island	
380227	7 Oct 2014	End of Contract	Valid	For Gloucester Road near Cross Harbour Tunnel	
380228	7 Oct 2014	End of Contract	Valid	Near Convention Avenue and Fenwick Pier Street, HK Island	

^{*} The marine dumping permit EP/MD/18-017 and EP/MD/18-020 was issued to Contract 1121: Shatin to Central Link – NSL Cross Harbour Tunnels for disposal of marine sediment excavated from this Contract.

AECOM Asia Co. Ltd. 8 August 2017

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring stations. The HVS meets all the requirements of the EM&A Manual. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:10273))
Calibration Kit	TISCH Environmental Orifice (Model TE-5025A (Orifice I.D.: 0988))

Monitoring Locations

3.1.3 Two monitoring station were set up at the proposed location in accordance with the approved EM&A Manuals for SCL(HUH-ADM) as well as the works areas of the Project. The location of the construction dust monitoring stations are summarised in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Locations of Construction Dust Monitoring Station

ID	Air Sensitive Receiver (ASR) ID in EIA Report	Dust Monitoring Station
AM2*	EXA6	Wanchai Sports Ground
AM4	EXA4	Pedestrian Plaza

The monitoring station at AM2 was handed-over from Contract SCL1126 in April 2015 and handed-over to Contract SCL1123 on 28 October 2015.

Monitoring Methodology

3.1.4 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each others;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) The sampler was located more than 20 meters from any dripline.

AECOM Asia Co. Ltd. 9 August 2017

- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.5 The schedule for environmental monitoring in July 2017 is provided in **Appendix F**.

AECOM Asia Co. Ltd. 10 August 2017

Construction Noise Monitoring

Monitoring Requirements

3.1.6 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Equipment

3.1.7 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.4**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	Model No. B&K2270 (S/N: 2644597), Model No. B&K2250-L (S/N: 2681366))
Acoustic Calibrator	Rion (Model No. NC-73 (S/N: 10307223)), B&K (Model No. 4231 (S/N: 3006428))

Monitoring Locations

3.1.8 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.5** and shown in **Figure 3.1**.

Table 3.5 Noise Monitoring Station during Construction Phase

Identification No.	Noise Sensitive Receiver (NSR) ID in EIA Report	Noise Monitoring Station
NM1*	CH2	Hoi Kung Court

The noise monitoring at NM1 was handed-over from SCL Contract 1129 in August 2015.

Monitoring Methodology

- 3.1.9 Monitoring Procedure
 - (a) Façade measurement was made at NM1.
 - (b) The battery condition was checked to ensure the correct functioning of the meter.
 - (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.

AECOM Asia Co. Ltd. 11 August 2017

- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (e) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.1.10 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.11 The schedule for environmental monitoring in July 2017 is provided in **Appendix F**.

3.2 Landscape and Visual

3.2.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

AECOM Asia Co. Ltd. 12 August 2017

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1**.

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 (EP-436/2012/E)	Monthly EM&A Report for June 2017	14 July 2017

AECOM Asia Co. Ltd. 13 August 2017

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 The monitoring results for 24-hour TSP are summarised in **Table 5.1**. Detailed air quality monitoring results and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AM2 [#]	24.5	20.5 – 28.9	160	260
AM4	66.7	49.9 – 88.7	198	260

[#] The monitoring station at AM2 was handed-over from Contract SCL1126 in April 2015 and handed-over to Contract SCL1123 on 28 October 2015.

- 5.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.3 The event and action plan is annexed in **Appendix I**.
- 5.1.4 Major dust sources during the monitoring included construction dust, nearby traffic emission and other nearby construction sites.

5.2 Construction Noise Monitoring

- 5.2.1 Noise monitoring at NM1 was handed over from SCL Contract 1129 in August 2015.
- 5.2.2 The monitoring results for noise are summarized in **Table 5.2** and the monitoring data is provided in **Appendix H**.

Table 5.2 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
NM1 ^(*)	<baseline 72.3<="" th="" –=""><th>75</th></baseline>	75

^(*) Baseline correction will be made to the measured Leq when the measured noise level exceeded the corresponding baseline noise level and presented in the table.

- 5.2.3 One noise related complaint was received in the reporting month. The concerned period (i.e. from day time to 23:30 on 28 June 2017; from day time to 22:15 on 29 June 2017; from daytime to 23:00 on 30 June 2017; from daytime to 20:45 on 1 July 2017; and from daytime to 18:00 on 2 July 2017) of the complaint was within 0700 1900 hrs of normal weekdays. Therefore, one (1) exceedance of action level of noise was recorded in the reporting month.
- 5.2.4 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.
- 5.2.5 The event and action plan is annexed in **Appendix I**.
- 5.2.6 Major noise sources during the monitoring included construction noise from the Project site, nearby traffic noise and the community.

AECOM Asia Co. Ltd. 14 August 2017

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor, 8,271.8 m³ of inert C&D material was generated (3,206.1 m³ was disposed of as fill bank at TKO137 and 1,256.1 m³ was reused in mainland) in the reporting month. 61.6 m³ of general refuse was generated in the reporting month. No metals, no paper/cardboard packaging material and plastic was collected by recycling contractor in the reporting month. 736.0 m³, 2,396.7 m³, 54.8 m³ and 622.2 m³ of inert C&D materials were reused in SCL1121, WDII C2, 8217 and SCL 1112 respectively. 0.4 kg of chemical waste was collected by licensed contractor. No marine dumping was undertaken in the reporting period.
- 5.3.3 SCL1128 has started to deliver the spoil to WDII C1, CWB, SCL 1121, SCL 1103, WDII C3, WDII C2, 8217, HY/2010/08 and SCL1112 for beneficial use. If spoil could not be fully utilized in these sites, spoil will be transported to Mainland China for reuse. The waste flow table is annexed in **Appendix K**.
- 5.3.4 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.5 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.4 Landscape and Visual

5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 10 and 24 July 2017. A summary of the site inspection is provided in **Appendix** C. The observations and recommendations made during the site inspections are presented in **Table 6.1**.

AECOM Asia Co. Ltd. 15 August 2017

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 5 site inspections were carried out on 3, 10, 17, 24 and 31 July 2017. Joint inspection with the IEC, ER, the Contractor and the ET was conducted on 10 July 2017. No non-compliance was recorded during the site inspections. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality	26 June 2017	Reminder: A stockpile of dusty material was not covered by impervious sheeting at W14. The Contractor was advised to provide dust mitigation measures to the stockpile to prevent fugitive dust generation	The item was rectified by the Contractor on 3 July 2017.
	3 July 2017	NRMM labels for a pipepile drill rig at W1 and an excavator at W3 were found missing. The Contractor was advised to display the corresponding NRMM label on the machines. When have him facility and the machines.	The item was rectified by the Contractor on 5 July 2017. The item was rectified
		Wheel washing facility was observed insufficient at W1. The Contractor was advised to enhance wheel washing facility at W1 and ensure vehicle are properly wasted before leaving the site.	by the Contractor on 5 July 2017.
	10 July 2017	 Exposed surface at W8 was observed dry, The Contractor was advised to provide watering more frequently as dust suppression measures. 	The item was rectified by the Contractor on 11 July 2017.
	17 July 2017	The NRMM label of a telehandler was found missing at the bottom of peanut shaft at W8. The Contractor was advised to display the corresponding NRMM label on the telehandler.	The item was rectified by the Contractor on 19 July 2017.
	31 July 2017	 Exposed surface and stockpile of fill material were observed dry at W1. The Contractor was advised to provide regular watering for dust suppression. Dusty material was observed on the haul road before site exit at W1. 	The item will be followed-up in the next reporting month The item will be
		The Contractor was advised to enhance wheel washing facility.	followed-up in the next reporting month
Noise	31 July 2017	Reminder: The Contractor was reminded to wrap the breaker tip with noise dampening material at W1 and W2.	The item will be followed-up in the next reporting month
Water Quality	3 July 2017	Water treatment facility at W1 was not well-maintained. The Contractor was advised to properly maintain the facility and ensure discharge quality comply with discharge licence requirement.	The item was rectified by the Contractor on 7 July 2017.
	10 July 2017	Reminder: The water treatment facility at W8 was not well-maintained. The Contractor was reminded to properly maintain the facility and ensure water discharge comply with discharge licence requirement.	The item was rectified by the Contractor on 12 July 2017.
	31 July 2017	Reminder: The pumping system of wastewater treatment facility at W1 was malfunction. The Contractor was reminded to maintain the waste water treatment facility regularly.	The item will be followed-up in the next reporting month
Waste/ Chemical Management	3 July 2017	A drain hole of the drip tray of an air compressor was unplugged at W1. The contractor was advised to plug up the drain hole to prevent spillage of oil	The item was rectified by the Contractor on 6 July 2017.
	10 July 2017	Reminder: The drain hole of a drip tray was opened at W4. The Contractor was reminded to plug up the drain hole to prevent chemical spillage.	The item was rectified by the Contractor on 10 July 2017.
Landscape & Visual	Nil	Nil	Nil
Permits/ Licenses	Nil	Nil	Nil

6.1.1 Most of the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting period. Some outstanding follow-up actions will be reported in the next reporting period.

AECOM Asia Co. Ltd. 16 August 2017

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit level at all monitoring locations in the reporting month.
- 7.1.2 One noise related complaint was received in the reporting month. The concerned period (i.e. from day time to 23:30 on 28 June 2017; from day time to 22:15 on 29 June 2017; from daytime to 23:00 on 30 June 2017; from daytime to 20:45 on 1 July 2017; and from daytime to 18:00 on 2 July 2017) of the complaint was within 0700 1900 hrs of normal weekdays. Therefore, one (1) exceedance of action level of noise was recorded in the reporting month.
- 7.1.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

- 7.3.1 An environmental noise complaint was received by EPD on 4 July 2017. The complaint was about construction work was being carried out from day time to 23:30 on 28 June 2017; from day time to 22:15 on 29 June 2017; from daytime to 23:00 on 30 June 2017; from daytime to 20:45 on 1 July 2017; and from daytime to 18:00 on 2 July 2017, at the site near Ex-Police Officers' Club that caused noise nuisance. The investigation report was submitted to EPD on 18 July 2017.
- 7.3.2 According to the investigation, the following works was undertaken during the concerned period at Works Areas W1, W2 and W3:

During non-restricted hours

Location	Site Activities
W1 and W2	Rock breaking inside SOV shaft
W3	Reinstatement of Causeway Flyover

During restricted hours

Location	Site Activities
W1 and W2	Mucking out spoil from SOV shaft to surface.
W3	No Activity

The construction works carried at Works Areas W1 and W2 during restricted hours within the concerned period was considered to be in compliance with the CNP.

7.3.3 The summary and cumulative statistics on environmental complaints is provided in **Appendix** .I

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

AECOM Asia Co. Ltd. 17 August 2017

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The major construction works in between August and October 2017 will be:

Location	Site Activities
Area W1	Invert Walkway Remedial Work
	Construction of Ventilation Adit
	SP5 Excavation
	C&C Tunnel
Area W2	Shaft Excavation and Struts Bracing Installation
	In-situ Linging Concrete Pouring
Area W3	Reinstatement of Causeway Flyover
	Reinstatement of Pervical Footbridge
Area W4a	Reinstatement of Canal Road Culvert (Drainage work)
FPP (W8 & W10)	Dismantling of TBM
	WDT TBM Excavation
	Upstand Wall Construction
	Soft excavation, installation of ELS, grouting works
Area W14	STP Maintenance & Operation

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

8.3 Monitoring Schedule for the Next Three Month

8.3.1 The tentative schedules for environmental monitoring between August and October 2017 are provided in **Appendix F**.

AECOM Asia Co. Ltd. 18 August 2017

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring result complied with the Action / Limit Level at in the reporting month.
- 9.1.3 One noise related complaint was received in the reporting month. The concerned period (i.e. from day time to 23:30 on 28 June 2017; from day time to 22:15 on 29 June 2017; from daytime to 23:00 on 30 June 2017; from daytime to 20:45 on 1 July 2017; and from daytime to 18:00 on 2 July 2017) of the complaint was within 0700 1900 hrs of normal weekdays. Therefore, one (1) exceedance of action level of noise was recorded in the reporting month.
- 9.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.5 5 nos. of environmental site inspections were carried out in July 2017. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.6 Referring to the Contractor's information, no notification of summons and successful prosecution was received in the reporting month. An environmental noise complaint was received by EPD on 4 July 2017. The complaint was about construction work was being carried out from day time to 23:30 on 28 June 2017; from day time to 22:15 on 29 June 2017; from daytime to 23:00 on 30 June 2017; from daytime to 20:45 on 1 July 2017; and from daytime to 18:00 on 2 July 2017, at the site near Ex-Police Officers' Club that caused noise nuisance. The investigation report was submitted to EPD on 18 July 2017.
- 9.1.7 According to the investigation, the following works was undertaken during the concerned period at Works Areas W1, W2 and W3:

During non-restricted hours

Location	Site Activities
W1 and W2	Rock breaking inside SOV shaft
W3	Reinstatement of Causeway Flyover

During restricted hours

Location	Site Activities
W1 and W2	 Mucking out spoil from SOV shaft to surface.
W3	No Activity

The construction works carried at Works Areas W1 and W2 during restricted hours within the concerned period was considered to be in compliance with the CNP.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

- Implement effective measures such as provision of wheel washing facilities and coverage of dusty material to avoid dust impact;
- Provide dust mitigation measure to exposed site surface and stockpiles of dusty material;
 and
- · Display NRMM label on machine.

AECOM Asia Co. Ltd. 19 August 2017

Construction Noise Impact

• Provide noise mitigation measure during operation of breaker.

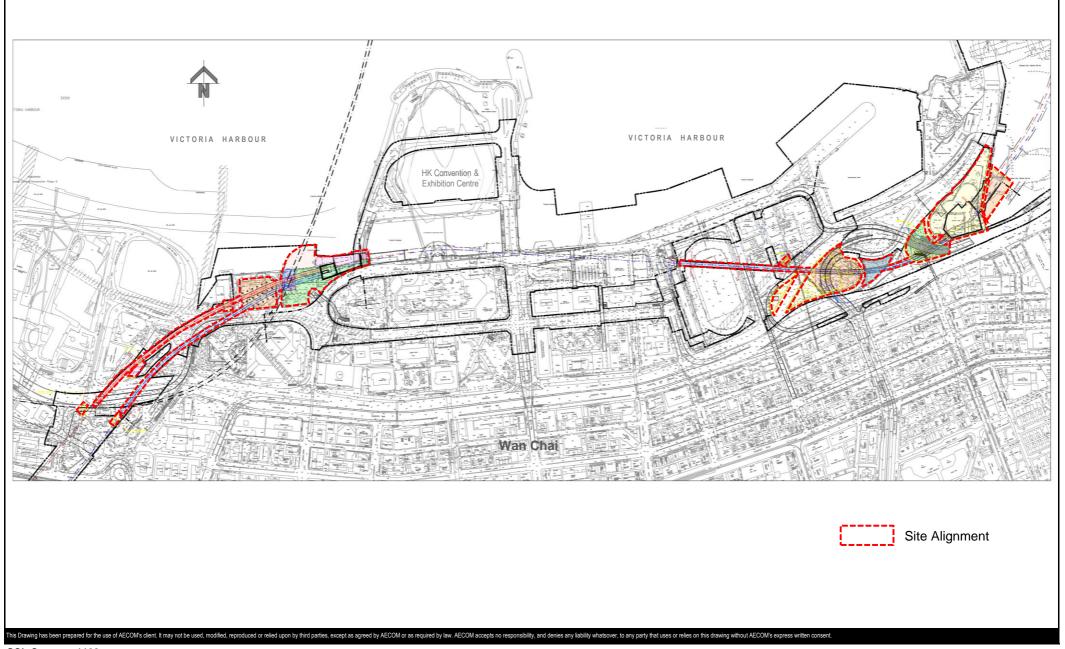
Water Quality Impact

• Maintain waste water treatment facilities properly and treat wastewater before discharge.

Chemical and Waste Management

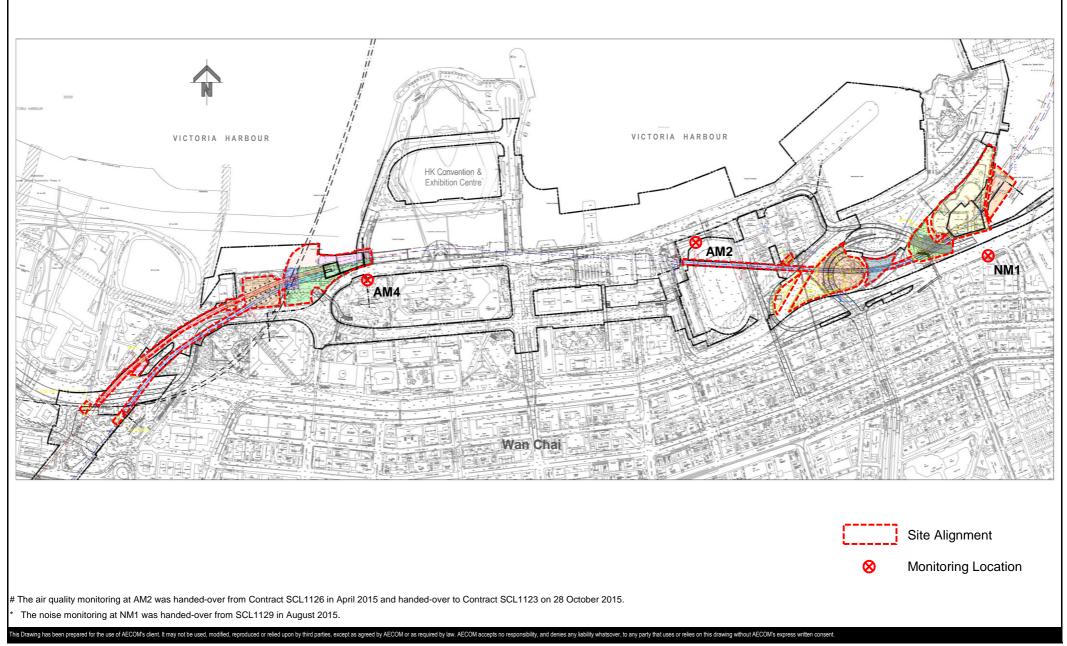
• Provide proper chemical and waste handling management.

Landscape & Visual Impact


• No specific observation was identified in the reporting month.

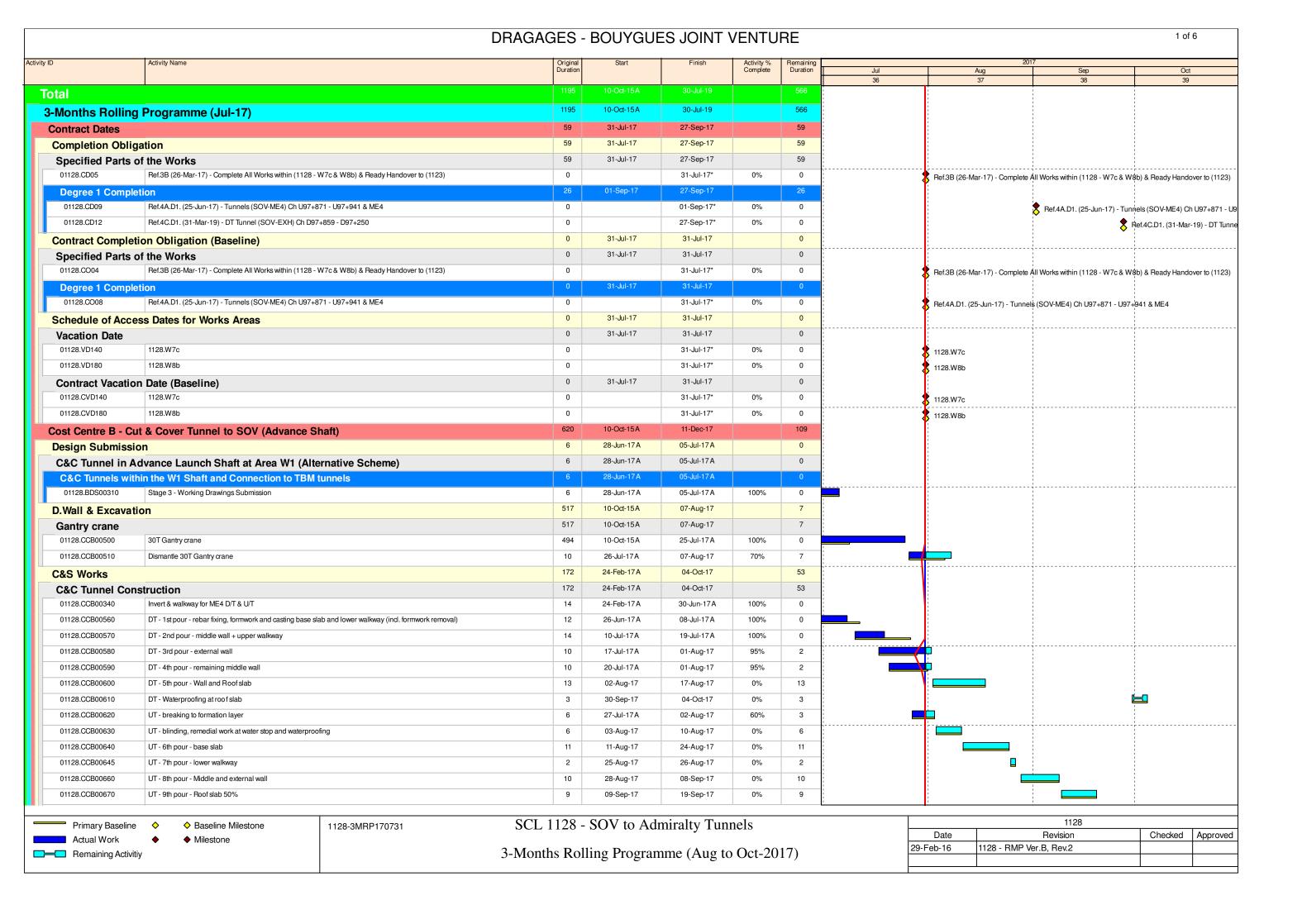
Permits/licenses

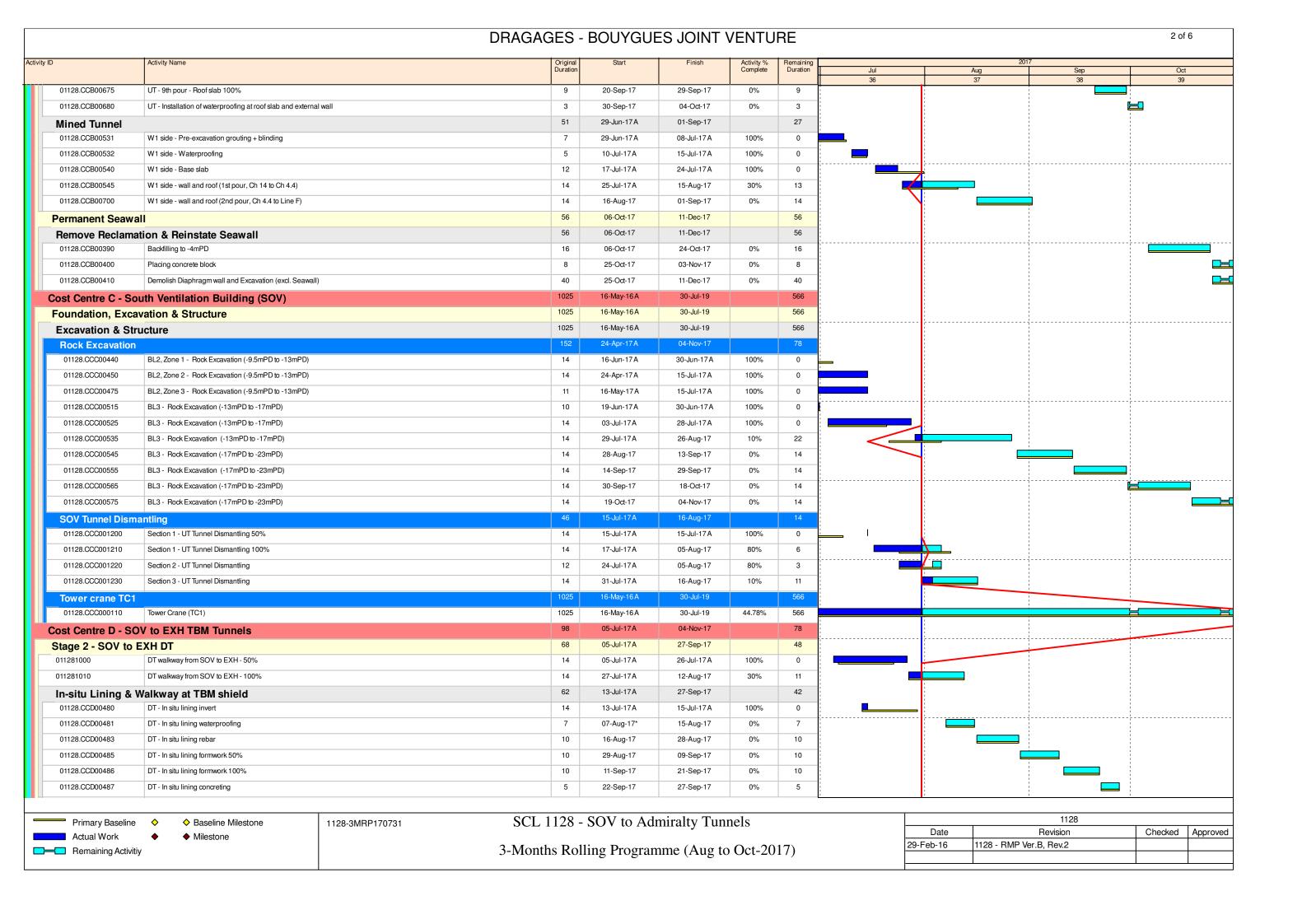
• No specific observation was identified in the reporting month.

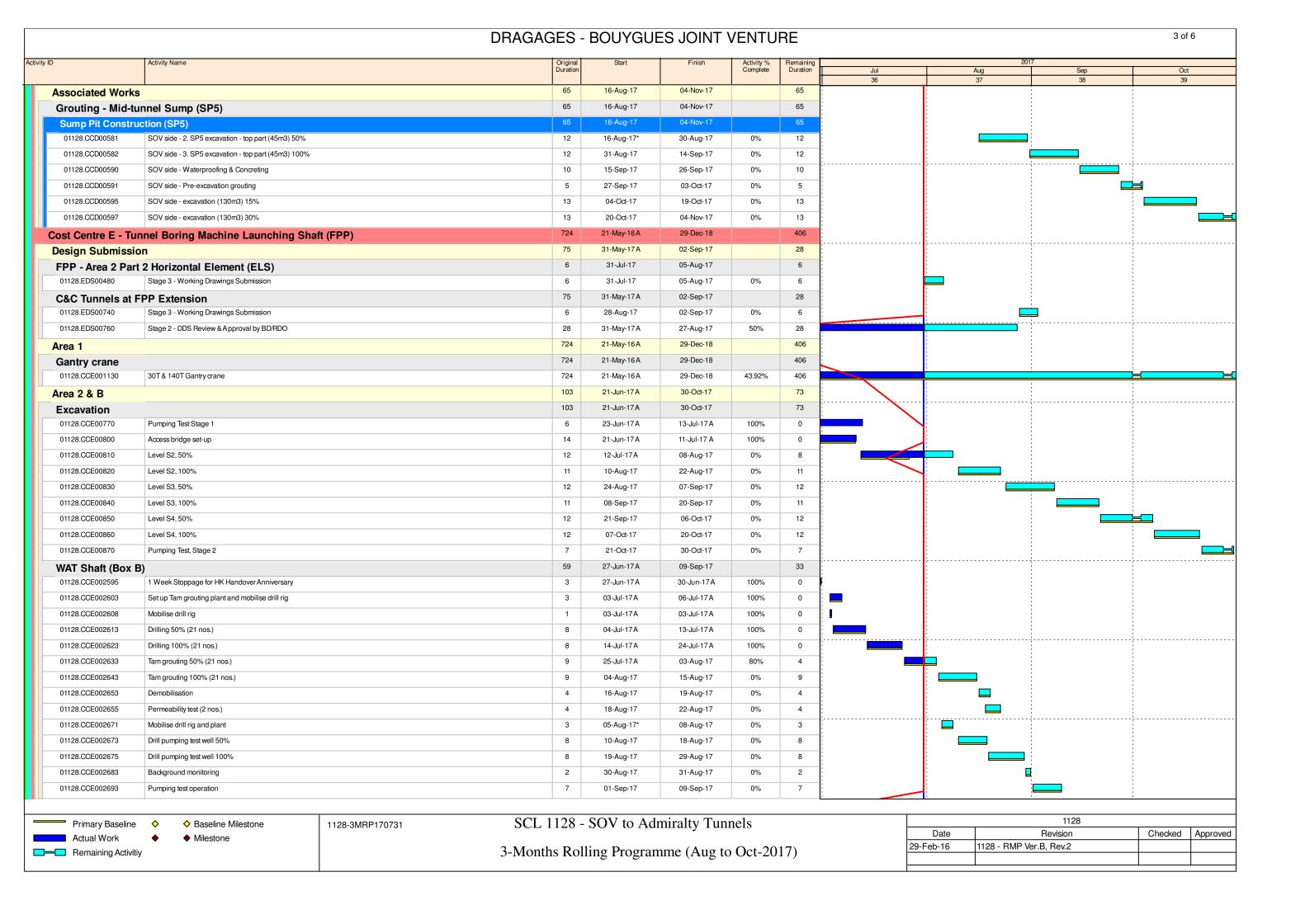

AECOM Asia Co. Ltd. 20 August 2017

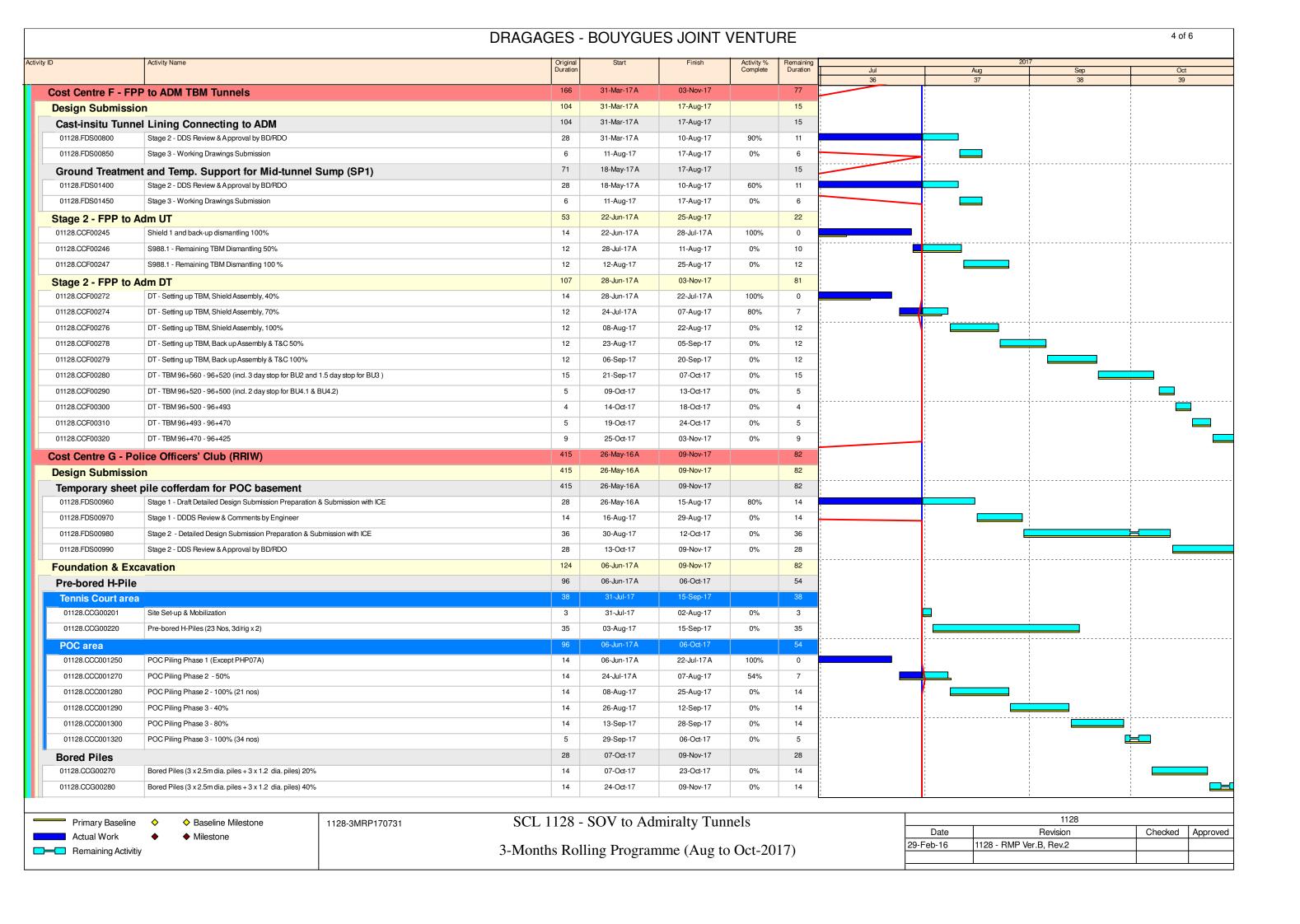
SCL Contract 1128
South Ventilation Building to Admiralty Tunnels

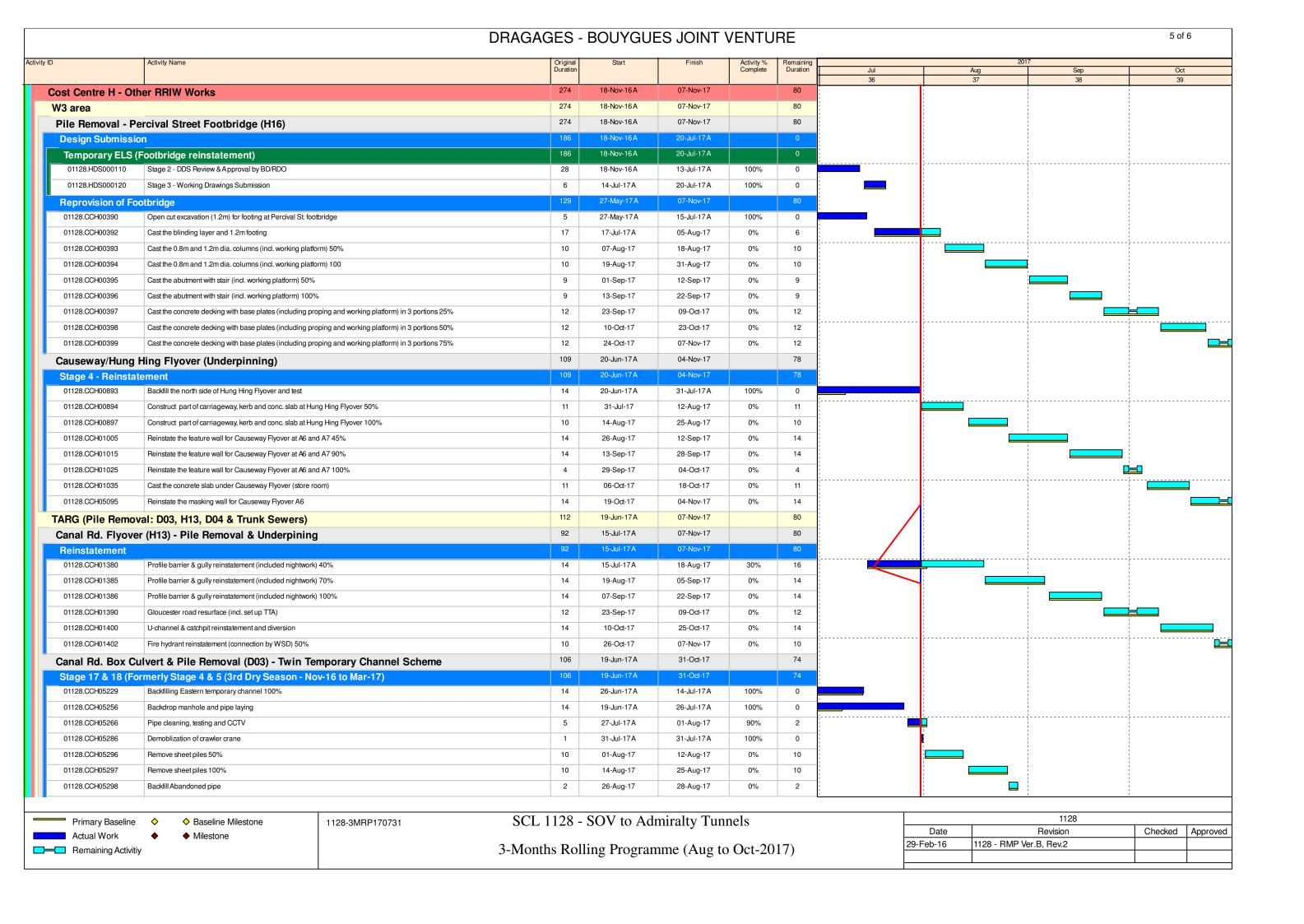
SCL Contract 1128


South Ventilation Building to Admiralty Tunnels


AECOM


Project No.: 60331173 Date: February 2016 Figure 3.1


APPENDIX A


Construction Programme

		DRAGAGES - BOUYGUES JOINT VENTURE								6 of 6	
Activity	Activity ID Activity Name		Origi	nal Start	Finish	Activity %	Remaining		20	017	
ĺ			Durat	ion		Complete	Duration	Jul	Aug	Sep	Oct
								36	37	38	39
	01128.CCH05316	Crawler crane assembly	2	27-Sep-17	* 28-Sep-17	0%	2	1			
	01128.CCH05326	Bulkhead wall move in from W3.5.2	3	29-Sep-17	03-Oct-17	0%	3	1	 		#
	01128.CCH05336	Bulkhead wall repair work 50%	11	04-Oct-17	17-Oct-17	0%	11	1	 		
	01128.CCH05346	Bulkhead wall repair work 100%	11	18-Oct-17	31-Oct-17	0%	11		!		

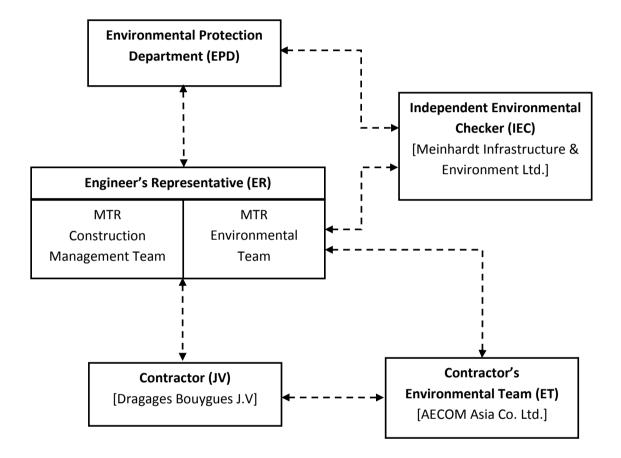
Primary Baseline ♦
Actual Work ♦
Remaining Activitiy

Baseline Milestone

Milestone

1128-3MRP170731

SCL 1128 - SOV to Admiralty Tunnels


3-Months Rolling Programme (Aug to Oct-2017)

	1128		
Date	Revision	Checked	Approved
29-Feb-16	1128 - RMP Ver.B, Rev.2		

APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

Appendix B AECOM

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural He	ritage Impact					
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	Construction Phase	V
Ecological I	Impact					
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	Construction Phase	N/A
Landscape	and Visual Impact					
Construction	on Phase					
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	Construction Phase	V
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	Construction Phase	V
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites	Construction Phase	N/A
/	All retained/exist trees shall be properly protected during construction period.	Tree protection	Contractor	Works areas	Construction phase	V
Air Quality						
1	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V @ V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Construction	on Dust Impact					
Table 8.5	Barging facilities: (i) Transportation of spoils to the barging point – Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every working hours to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.0 L/m² once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.0L/m² to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impacts	Contractor	All barging points	Construction phase	N/A
	 (ii) Unloading of spoil materials – Undertake the unloading process within a 3-sided screen with top tipping hall. Provide water spraying and flexible dust curtains at the discharge point for dust suppression. (iii) Vehicles leaving the barging facilities – Pass vehicles through the wheel washing facilities 					N/A N/A
	provided at site exits.					IN/A
S8.63	For concrete batching plant, the requirements and mitigation measures stipulated in the <i>Guidance</i> Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	N/A
Table 8.6	 During operation of concrete batching plant: Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system. Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. Weighing and batching of cementitious materials – Perform the whole process of weighing and mixing in a fully enclosed environment. Equip all the mixers with dust collectors. Loading of concrete from mixer into transit mixer of a truck – Directly load the concrete from the mixer into the transit mixer of a truck in "wet form". Tipper trucks and cement tankers leaving the Concrete Batching Plant – Haul road within the site is unpaved. Install wheel washing pit at the gate of the concrete batching plant. Transportation of materials within the plant – Provide watering twice a day would be provided. 	To minimize dust impacts	Contractor	Concrete Batching Plant	Construction phase	N/A
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S8.89	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall, provision of water spraying and flexible dust curtains to reduce dust emission	To minimize dust impact	Contractor	All barging points	Construction phase	N/A
S8.90	 Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to 	To minimize dust impacts	Contractor	Works areas	Construction phase	@ V V
	 aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. 					@ V
	 Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. 					@ V
	 Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ 					V
	 periods. Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. Imposition of speed controls for vehicles on site haul roads. 					V
	 Where possible, routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. 					V
	 Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. Instigation of an environmental monitoring and auditing program to monitor the construction 					V
	 process in order to enforce controls and modify method of work if dusty conditions arise Dust suppression measures (con't) De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement 	To minimize dust impacts	Contractor	Works areas	Construction phase	V
Airborne No	on Phase					
9.55	The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program	To minimize construction noise impact	Contractor	Works areas	Construction phase	V
	 Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program 					@
	 Mobile plant, if any, shall be sited as far from NSRs as possible Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum 					V
	 Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs 					V N/A
	 Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during 	To minimize	Contractor	Works areas	Construction	V
	 operation Air compressors shall be fitted with valid noise emission labels during operation 	construction noise impact	Johnado	Tronto aroas	phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S9.56 & Table 9.16	The following quiet PME shall be used: Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill Lorry Wheel loader Roller vibratory	To minimize construction noise impact	Contractor	Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction	N/A V/A N/A N/A N/A N/A N/A N/A N/A N
S9.58 – S9.59 & Table 9.17	Movable noise barrier shall be used for the following PME: Air compressor Asphalt paver Backhoe with hydraulic breaker Bar bender Bar bender and cutter (electric) Breaker, excavator mounted Concrete pump Concrete pump, stationary/lorry mounted Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete	To minimize construction noise impact	Contractor	Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction phase	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
S9.60 & Table 9.17	Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic)	To minimize construction noise impact	Contractor	Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction phase	N/A N/A N/A N/A N/A N/A N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Qual	ity Impact					
Construction	on Phase					
S11.216	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works.	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction Phase	V
	Stockpiling of construction and demolition materials and dusty materials shall be covered and located away from the seawater front and storm drainage.					V
	Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters.					N/A
S11.222 to 11.245	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. Surface Run-off Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction Phase	V
	 shall be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and re-alignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum distances of 100 m shall be maintained between the discharge points of construction site runoff and 					@
	 the existing saltwater intakes. Construction works shall be programmed to minimize soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by tarpaulin, and temporary access roads shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements shall always be in place in such a way that adequate surface protection measures can 					V
	 be safely carried out well before the arrival of a rainstorm. Earthworks final surfaces shall be well compacted and the subsequent permanent work or surface protection shall be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels shall be provided where 					N/A
	 necessary. Measures shall be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they shall be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations shall be discharged into storm drains via silt removal facilities. 					V
	 Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites shall be covered with tarpaulin or similar fabric during rainstorms. 					V
	 Manholes (including newly constructed ones) shall always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. 					V
	 Good site practices shall be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis. 					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 Boring and Drilling Water Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities. 					V
	 Wheel Washing Water All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 					V
	Bentonite Slurries Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the bentonite slurries shall either be dewatered or mixed with inert fill material for disposal to a public filling area.					V
	 If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. 					V
	 Water for Testing & Sterilization of Water Retaining Structures and Water Pipes Water used in water testing to check leakage of structures and pipes shall be used for other purposes 					N/A
	 as far as practicable. Surplus unpolluted water will be discharged into storm drains. Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. 					N/A
	 Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. 					N/A
	 Wastewater from Site Facilities Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage 					N/A
	tank on a regular basis. • Drainage serving an open oil filling point shall be connected to storm drains via petrol interceptors					N/A
	 with peak storm bypass. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. 					N/A
S11.246 & 11.247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	Works areas	Construction Phase	N/A
S11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	To control site run-off generated from any potential contaminated works areas.	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells shall be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substance such as TPH products shall be removed as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.252	 The following good site practices shall be adopted for the proposed barging points: all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash all hopper barges shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site loading of barges and hoppers shall be controlled to prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation 	To minimize water quality impacts generated from the barging points.	Contractor	Barging points	Construction Phase	V V V
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
S11.256	Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
	 during storage, handling and transport. Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area shall be selected at a safe location on site and adequate space shall be 					V
Masta Man	allocated to the storage area.					
	agement Implications					
Construction		Γ= .		T		1
S12.75	 Good Site Practices and Waste Reduction Measures Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; 	To reduce waste management impacts	Contractor	All Work Sites	Construction Phase	V
	 Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; 					V
	 Provision of sufficient waste disposal points and regular collection of waste; Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; 					V N/A
	 Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and 					N/A V
S12.76	 Separation of chemical wastes for special handling and appropriate treatment. Good Site Practices and Waste Reduction Measures (con't) 	To achieve waste	Contractor	All Work Sites	Construction	v
312.70	 Sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); 	reduction	Contractor	All Work Sites	Phase	N/A
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;					V N/A
	 Encourage collection of aluminum cans by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; Proper storage and site practices to minimize the potential for damage or contamination of 					V
	 Proper storage and site practices to minimize the potential for damage or contamination of construction materials; Plan and stock construction materials carefully to minimize amount of waste generated and 					V
	 avoid unnecessary generation of waste; and Training shall be provided to workers about the concepts of site cleanliness and appropriate 					V
S12.77	waste management procedures, including waste reduction, reuse and recycle. Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.					
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V
S12.79	 Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include: Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area shall be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and Different locations shall be designated to stockpile each material to enhance reuse. 	To minimize potential adverse environmental impacts arising from waste storage	Contractor	Work Sites	Construction Phase	V V V
S12.80	 Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts: Remove waste in timely manner Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) Waste shall be disposed of at licensed waste disposal facilities Maintain records of quantities of waste generated, recycled and disposed 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V V V
S12.81	 Storage, Collection and Transportation of Waste (con't) Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V
\$12.83 – 12.86	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials. The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for 	To minimize potential adverse environmental impacts during the handling, transportation and disposal of C&D materials	Contractor	Work Sites	Construction Phase	V V V
S12.88	the Hung Hom south and north approach tunnels. Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance.	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.89	 Sediments (con't) The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works. 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Detailed Design Stage and Construction Phase	N/A
S12.91 – 12.94	 Sediments (con't) Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. The barge transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites	Construction Phase	@ @ V N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.97	Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall:	To register with EPD as a Chemical waste producer and store chemical waste in	Contractor	Work Sites	Construction Phase	
	Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed;	appropriate containers				V
	 Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and 					N/A
	 Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation. 					N/A
S12.98	 Chemical Waste Storage Area Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; 	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Work Sites	Construction Phase	V V V
	 Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 					V V V
12.99	Chemical Waste Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place.	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	N/A
12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	V
512.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Land Conta	amination Impact					
S13.23– 13.24	 For construction works at sites under the current stage of site investigation (Stage 1 SI): Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process shall involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odours, which may also indicate soil and/or groundwater contamination. If soil materials suspected to be contaminated are encountered during excavation, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Shall concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the Contamination Assessment Report (CAR) and Remediation Action Plans (RAP). 	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Within Project Boundary where signs of contamination is identified	During excavation works for Cut-and- Cover	N/A
S13.30	For some sites with currently no SI proposed (i.e. sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28), to be conservative, visual inspection shall be conducted during demolition and excavation to detect any abnormal colour, smell or other characteristics of the soil, due to the nearby land use and/ or construction method. If abnormal colour, smell or other characteristics of contamination are identified for any of these sites, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Should the concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the CAR and RAP.	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Areas with no SI proposed (Sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28)	During excavation works for Cut-and- Cover	N/A
S13.36 – 13.38	 For areas inaccessible for proper site appraisal and investigation (Stage 2 SI) (i) Site 2-15 Upon site access being granted, visual inspection shall be carried out where intrusive works and soil excavation is encountered, for attention on any potential contamination due to its current operation A supplementary CAP shall then be submitted to EPD for endorsement. A CAR/RAP shall be prepared and submitted to EPD for endorsement on completion of the SI and analytical testing. Shall remediation be undertaken a Remediation Report (RR) shall be prepared and submitted to EPD for endorsement to demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP. Information such as soil treatment/ disposal records (including trip tickets), confirmatory sampling results, and photographs shall be included in the aforesaid RR. No construction work shall be carried out prior to the endorsement of the RR by EPD. 	To identify areas with land contamination concern, report laboratory results and propose remediation measures if necessary. To ensure remediation works have been undertaken to before the commencement of any construction works of the Project.	Contractor	Areas unable to be accessed during Stage 1 SI (Site 2-15)	After land resumption and prior to the construction works commencement at the site	N/A
S13.39	 Potential Remediation of Contaminated Soil Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; Excavation shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Supply of suitable clean backfill material is needed after excavation; If remediation is required with chemical oxidation proposed as a contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and personal protective equipment (PPE). Vehicles containing any excavated materials shall be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates shall be sealed to prevent any discharge during transport or during wet conditions; Speed control for the trucks carrying contaminated materials shall be enforced; Vehicle wheel and body washing facilities at the site's exit points shall be established and used; and Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control shall be implemented and complied with relevant regulations and guidelines. 	To remediate contaminated soil	Contractor	Identified contaminated sites	Site remediation	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S13. 40	In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures shall be implemented as far as possible: • Set up a list of safety measures for site workers; • Provide written information and training on safety for site workers; • Keep a log-book and plan showing the contaminated zones and clean zones; • Maintain a hygienic working environment; • Avoid dust generation; • Provide face and respiratory protection gear to site workers; • Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and • Provide first aid training and materials to site workers.	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	Identified contaminated sites	Site remediation and prior to construction phase	N/A

Legend: V

= implemented; = not implemented;

@ = partially implemented;N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location	Action Level	Limit Level
AM4	Pedestrian Plaza	198 μg/m³	260 μg/m³

Table 2 Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
NM1*	Hoi Kung Court	When one documented complaint is received	75 dB(A)

^{*} The noise monitoring at NM1 was handed-over from SCL Contract 1129 in August 2015.

Appendix D AECOM

APPENDIX E

Calibration Certificates of Equipments

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Pedestrian Plaza	<u>a</u>		_ Operator:	Choi W	Ving Ho	_
Cal. Date:	al. Date: 13-May-17		Next Due Date:	13-J	13-Jul-17		
Equipment No.:	A-001-70T		Se		102	273	-
			Ambient	Condition			
Temperatu	re, Ta (K)	300.2	Pressure,	Pa (mmHg)		763.2	
-							
		(Orifice Transfer S	tandard Informatio	on		
Serial	No:	988	Slope, mc	1.99	9349	Intercept, bc	-0.0273
Last Calibra	ation Date:	31-May-16		O-41 + 1-	III - (D. /5(A)	(200/5)1/2	
Next Calibra	ation Date:	31-May-17		me x Qsta + be =	= [H x (Pa/760) x	(298/1a)]	
				of TSP Sampler			
		0	rfice		HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF	
18	7.4	1	2.72	1.38	46.0	45.93	3
13	6.2		2.49	1.26	42.0	41.93	3
10	4.4		2.09	1.06	33.0	32.95)
7	3.0		1.73	0.88	26.0	25.96	3
5	2.1		1.45	0.74	20.0	19.97	7
By Linear Regre Slope , mw = Correlation Coef	41.1397 fficient* =		9989 Proto	Intercept, bw =	-10.4	4419	-
ii Correlation Co	enicient < 0.990,	check and recall.	orate.				
				Calculation			
From the TSP Fie	eld Calibration Cu	urve, take Qstd = 1	1.30m ³ /min				
From the Regress	sion Equation, th	e "Y" value accord	ling to				
					1/2		
		mw :	x Qstd + bw = IC	x [(Pa/760) x (298/1	「a)]"²		
			SO / Pa \ v / Ta / 20	98 \1 ^{1/2} =		43.11	
Therefore Set Po	oint: IC = (mw x	Ostd + bw) x [(76		,0)]		43.11	-
Therefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(76	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Therefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(76					
Therefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(76					
	oint; IC = (mw x	Qstd + bw) x [(76					
	oint; IC = (mw x	Qstd + bw) x [(76		-			
Therefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(76					

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Last Calibration Date: 22-May-17 Next Calibration Date: 22-May-18 mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]^{1/2}	Station -	Pedestrian Plaz	a		Operator:	Choi W	ing Ho	
Ambient Condition Temperature, Ta (K) 302.5 Pressure, Pa (mmHg) 757.7	Cal. Date:	11-Jul-17			Next Due Date:	11-Se	ep-17	•
Temperature, Ta (K) 302.5 Pressure, Pa (mmHg) 757.7	Equipment No.:	A-001-70T	_	Serial No. 10273			•	
Orifice Transfer Standard Information Serial No: 988 Slope, mc 1.98425 Intercept, bc -0				Ambient	Condition			
Serial No: 988 Slope, mc 1.98425 Intercept, bc -0	Temperatu	re, Ta (K)	302.5	Pressure, I	Pa (mmHg)	,	757.7	
Serial No: 988 Slope, mc 1.98425 Intercept, bc -0		, , ,	L				2111	
Last Calibration Date: 22-May-17			(Prifice Transfer S	tandard Informatio	on		
Next Calibration Date: 22-May-18 mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]^{1/2}	Seria	l No:	988	Slope, mc	1.98	8425	Intercept, bc	-0.0093
Calibration of TSP Sampler	Last Calibra	ation Date:	22-May-17		ma v Ostd + ha -	- III v (Do/760) v	(209/Ta)11/2	
Note	Next Calibra	ation Date:	22-May-18		me x Qstu + be -	- [H X (Fa//00) X	(290/1a)j	
Notice								
Resistance Plate No. DH (orifice), in. of water IDH x (Pa/760) x (298/Ta)] IV2 Qstd (m³/min) X Reading (CFM) Reading IC (CFM) Y				Calibration of	of TSP Sampler			
Plate No. DH (orifice), in. of water IDH x (Pa/760) x (298/Ta)] IDH x			0	rfice		HV	S Flow Recorder	
13			[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	6 6	The state of the s		
10	18	7.0		2.62	1.33	42.0	41.62)
7 3.0 1.72 0.87 26.0 25.77 5 2.2 1.47 0.75 20.0 19.82 By Linear Regression of Y on X Slope , mw =	13	5.8		2.39	1.21	38.0	37.66)
By Linear Regression of Y on X Slope , mw = 36.9667	10	4.4		2.08	1.05	32.0	31.71	
By Linear Regression of Y on X Slope , mw = 36.9667	7	3.0		1.72	0.87	26.0	25.77	,
By Linear Regression of Y on X Slope , mw = 36.9667	5	2.2		1.47	0.75	20.0	19.82	>
Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.30m³/min From the Regression Equation, the "Y" value according to mw x Qstd + bw = IC x [(Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 41.29 Remarks:	Slope , mw = Correlation Coe	36.9667 fficient* =	0.9		Intercept, bw =	-7.1	377	-
From the TSP Field Calibration Curve, take Qstd = 1.30m³/min From the Regression Equation, the "Y" value according to mw x Qstd + bw = IC x [(Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 41.29 Remarks:			,		,			
From the Regression Equation, the "Y" value according to $mw \times Qstd + bw = IC \times [(Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)]^{1/2} = 41.29 Remarks:					Calculation			
mw x Qstd + bw = IC x [(Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 41.29 Remarks:					6-			
Therefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 41.29 Remarks:	From the Regres	sion Equation, th	ne "Y" value accord	ling to				
Therefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 41.29 Remarks:						- >=1/2		
Remarks:			mw	x Usta + bw = IC	x [(Pa//60) x (298/	i a)]		
Remarks:	Therefore Set Po	oint: IC = (mw x	Ostd + bw) x [(76	60 / Pa) x / Ta / 29	98)1 ^{1/2} =		41 29	
	morororo, com	omit, io (iiii x	dota bu j x [() c	7071 a) X(1a/2	, o	The state of the s	71120	-
	Remarks:		b.					
CL K Y								
Ch k X								
OC Reviewer: 2/1/m Non- 1/2/c Signature:	OC Reviewer	hun Kon Yu	P1.	Signature:	K		Date: // Ja /	17

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - May 22, 2017 Rootsmeter S/N 0438320 Ta (K) - 295 Operator Tisch Orifice I.D 0988 Pa (mm) - 754.38									
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)			
2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00	1.3910 0.9810 0.8750 0.8330 0.6890	3.2 6.4 7.9 8.8 12.7	2.00 4.00 5.00 5.50 8.00			

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9984 0.9942 0.9921 0.9910 0.9858	0.7178 1.0135 1.1338 1.1897 1.4307	1.4161 2.0027 2.2391 2.3484 2.8322	0.9957 0.9915 0.9894 0.9883 0.9831	0.7158 1.0107 1.1308 1.1865 1.4269	0.8844 1.2507 1.3983 1.4666 1.7687
Qstd slo	t (b) = ent (r) =	1.98425 -0.00930 0.99998	 Qa slope intercept coefficie	(b) =	1.24250 -0.00581 0.99998

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)

Qstd = Vstd/Time


Va = Diff Vol [(Pa-Diff Hq)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$

 $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0303 01-02

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) **B&K**

Microphone **B&K** 4189

Pream **B&K** ZC0032

Type/Model No.: Serial/Equipment No.: Adaptors used:

2270 N.012.01 2644597

2846461

17965

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.:

Date of receipt:

03-Mar-2017

Date of test:

07-Mar-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model:

DS 360

B&K 4226 DS 360

Serial No. 2288444 33873 61227

18-Jun-2017 18-Apr-2017 18-Apr-2017

Expiry Date:

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

Relative humidity:

21 ± 1 °C 60 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

08-Mar-2017 Date:

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0303 01-02

Page

2

1, **Electrical Tests**

> The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Coverage Facto	
Self-generated noise	Α	Pass	0.3	
× 100 mm m m m m m m m m m m m m m m m m	С	Pass	1.0 2.1	
	Lin	Pass	2.0 2.2	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3, Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

5

End

una Chi Yin

Checked by:

Lam Tze Wai

Date:

07-Mar-2017

08-Mar-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0303 01-01

Page

of

Item tested

Description: Manufacturer:

Adaptors used:

Sound Level Meter (Type 1) **B&K**

11.011.01

Microphone **B&K**

Preamp **B&K** ZC0032

Type/Model No.: Serial/Equipment No.:

2250-L 2681366 4950 2665582

17190

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.

Date of receipt:

03-Mar-2017

Date of test:

07-Mar-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model: B&K 4226

DS 360 DS 360

Serial No. 2288444

33873 61227 **Expiry Date:**

18-Jun-2017 18-Apr-2017 18-Apr-2017

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature: Air pressure:

Relative humidity:

21 ± 1 °C 60 ± 10 % 1010 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Approved Signatory:

Min/Feng Jun Qi

Date: 08-Mar-2017

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev C/01/02/2007

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0303 01-01

Page

0

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	A	Pass	0.3	
	С	Pass .	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
*	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 07-Mar-2017 End

Checked by:

Date:

Lam Tze Wai 08-Mar-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港黃竹坑道3⁹7 號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA1201 01

Page:

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd. NC-73

Type/Model No.: Serial/Equipment No.: NC-73 10307223

CN.004.08)

Adaptors used:

.

Item submitted by

Curstomer:

AECOM ASIA CO. LTD.

Address of Customer:

.

Request No.:

-01-Dec-2016

Date of receipt:

Date of test:

05-Dec-2016

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	14-Apr-2017	SCL
Preamplifier	B&K 2673	2239857	28-Apr-2017	CEPREI
Measuring amplifier	B&K 2610	2346941	26-Apr-2017	CEPREI
Signal generator	DS 360	61227	18-Apr-2017	CEPREI
Digital multi-meter	34401A	US36087050	18-Apr-2017	CEPREI
Audio analyzer	8903B	GB41300350	19-Apr-2017	CEPREI
Universal counter	53132A	MY40003662	19-Apr-2017	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements, are presented on page 2 of this certificate.

Min/Peng Jun Qi

Huang Jia

Approved Signatory:

Date:

08-Dec-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港 黄竹坑 道 3 7 號 利 達中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

16CA1201 01

Page:

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

			(Output level in dB re 20 μPa
Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	Estimated Expanded Uncertainty dB
1000	94.00	94.22	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 986.6 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by

End

Calibrated by:

Date:

Fung Chi Yip

05-Dec-2016

Checked by:

Lam Tze Wai

Date:

08-Dec-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0309 01

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B&K

Type/Model No.:

4231

Serial/Equipment No.:

3006428 / N004.03

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer: Request No.:

-

Date of receipt:

09-Mar-2017

Date of test:

13-Mar-2017

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	14-Apr-2017	SCL
Preamplifier	B&K 2673	2743150	28-Apr-2017	CEPREI
Measuring amplifier	B&K 2610	2346941	26-Apr-2017	CEPREI
Signal generator	DS 360	61227	18-Apr-2017	CEPREI
Digital multi-meter	34401A	US36087050	18-Apr-2017	CEPREI
Audio analyzer	8903B	GB41300350	19-Apr-2017	CEPREI
Universal counter	53132A	MY40003662	19-Apr-2017	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

rMin/Feng Jun Qi

Huang Jian

Approved Signatory:

Date:

15-Mar-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0309 01

Page:

2

2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 µPa) Frequency Output Sound Pressure Measured Output Estimated Expanded Shown Level Setting Sound Pressure Level Uncertainty Hz dB dB dB 1000 94.00 94.27 0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by:

Lai Sheng Jie

Checked by:

Fung Chi Yip

Date:

13-Mar-2017

Date:

5-Mar-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Impact Monitoring Schedule for July 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Jul
2-Jul	3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul
		Air Quality	Noise			
9-Jul	10-Jul	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul
	Air Quality	Noise			Noise*	Air Quality
16-Jul	17-Jul	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul
	Mata				A ! O ! ! (
	Noise				Air Quality	
23-Jul	24-Jul	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul
				Air Quality	Noise	
				All Quality	140156	
30-Jul	31-Jul					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Noise Monitoring Station

AM4 Pedestrian Plaza

NM1

Monitoring Frequency

Monitoring Frequency

24-hr TSP Once every 6 days

^{*} Noise complaint was received by EPD on 4 July 2017. The complaint was referred to the Contractor on 7 July 2017. Additional noise monitoring was carried on 14 July 2017 as a result of complaint.

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Tentative Impact Monitoring Schedule for August 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-Aug	2-Aug	3-Aug	4-Aug	5-Aug
			Air Quality	Noise		
6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug
		Air Quality	Noise			
13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug
	Air Quality	Noise				Air Quality
20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug
	Noise				Air Quality	
27-Aug	28-Aug	29-Aug	30-Aug	31-Aug		
				Air Quality		

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Pedestrian Plaza AM4

Noise Monitoring Station

NM1

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels **Tentative Impact Monitoring Schedule for September 2017**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Sep	2-Sep
					Noise	
3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep
			Air Quality	Noise		
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
		Air Quality	Noise			
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
	Air Quality	Noise				Air Quality
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
	Noise				Air Quality	

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Pedestrian Plaza AM4

Noise Monitoring Station

NM1

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels **Tentative Impact Monitoring Schedule for October 2017**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Oct	2-Oct	3-Oct	4-Oct	5-Oct	6-Oct	7-Oct
			Air Quality		Noise	
8-Oct	9-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
		Air Quality	Noise			
15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct
	Air Quality	Noise				Air Quality
22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct	28-Oct
	Noise				Air Quality	
29-Oct	30-Oct	31-Oct				
	Noise					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

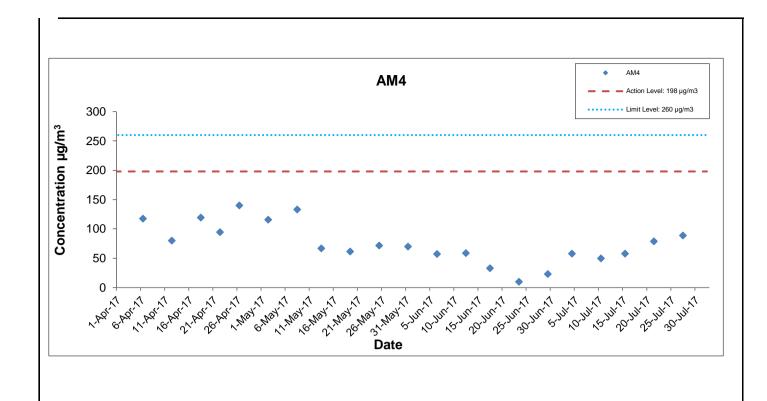
Pedestrian Plaza AM4

Noise Monitoring Station

NM1

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

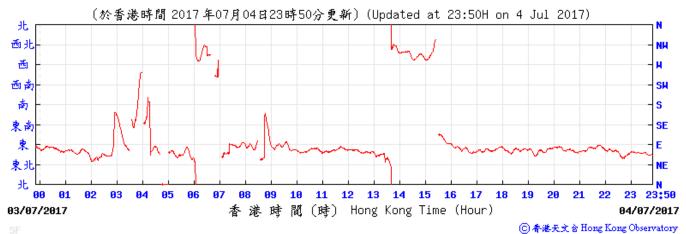

APPENDIX G

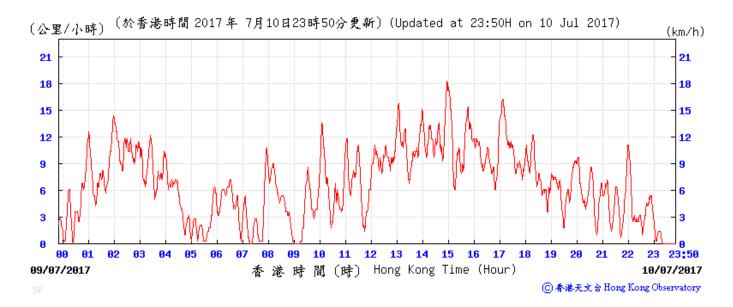
Air Quality Monitoring Results and their Graphical Presentations

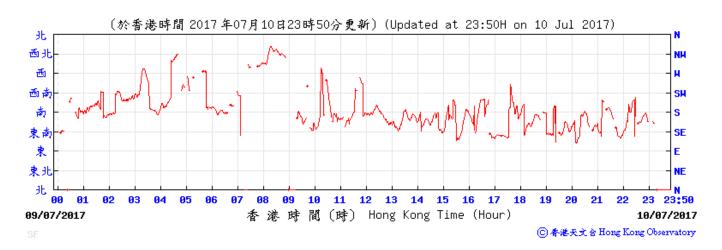
Appendix G Air Quality Monitoring Results

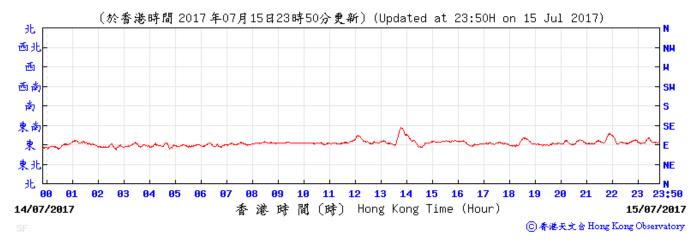
24-hour TSP Monitoring Results at Station AM4 (Pedestrian Plaza)

Start		End		Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Jul-2017	0:00	5-Jul-2017	0:00	Cloudy	26.5	1008.4	1.32	1.32	1.32	1902.2	2.8203	2.9305	0.1102	20961.00	20985.00	24.00	57.9
10-Jul-2017	0:00	11-Jul-2017	0:00	Sunny	29.4	1008.5	1.32	1.32	1.32	1902.2	2.8340	2.9289	0.0949	20985.00	21009.00	24.00	49.9
15-Jul-2017	0:00	16-Jul-2017	0:00	Cloudy	28.7	1007.4	1.32	1.32	1.32	1902.2	2.8112	2.9215	0.1103	21009.00	21033.00	24.00	58.0
21-Jul-2017	0:00	22-Jul-2017	0:00	Cloudy	29.3	1009.4	1.32	1.32	1.32	1902.2	2.7424	2.8925	0.1501	21033.00	21057.00	24.00	78.9
27-Jul-2017	0:00	28-Jul-2017	0:00	Sunny	29.0	1003.4	1.32	1.32	1.32	1902.2	2.7822	2.9509	0.1687	21057.00	21081.00	24.00	88.7
																Average	66.7
																Minimum	49.9
																Maximum	88.7

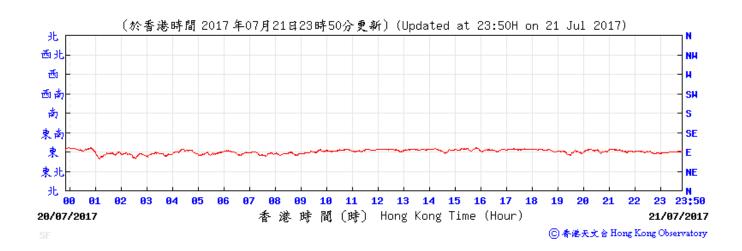

is Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECOM's express written

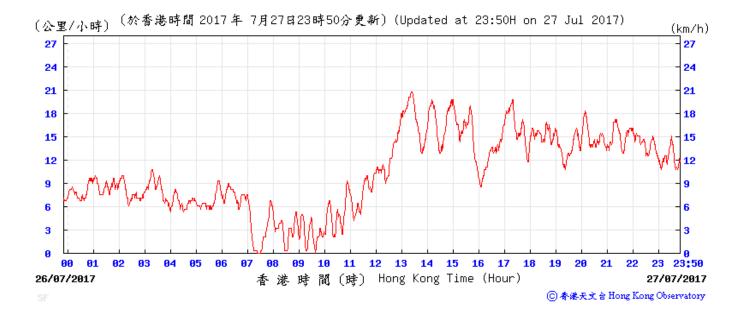

Shatin Central Link Contract No. 1128 South Ventilation Building to Admiralty Tunnels


Date: August 2017

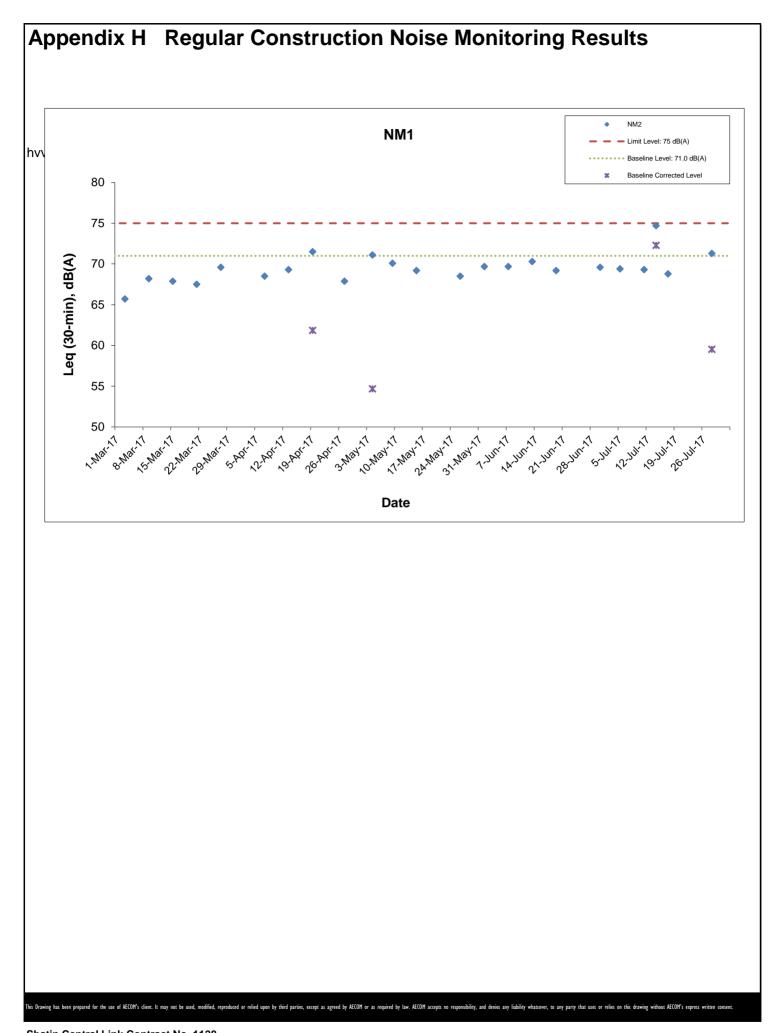








APPENDIX H


Noise Monitoring Results and their Graphical Presentations

Appendix H Regular Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station NM1 (Hoi Kung Court)

Date Weather		Nois	e Level foi	· 30-min, c	IB(A) ⁺	Baseline Corrected	Baseline Noise	Limit Level,	Exceedance
Date	Condition	Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
05-Jul-2017	Sunny	15:17	66.5	70.5	69.4	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N
11-Jul-2017	Sunny	13:32	63.6	72.6	69.3	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N
14-Jul-2017	Sunny	13:00	71.6	76.9	74.7	72.3	71.0	75	N
17-Jul-2017	Cloudy	13:15	64.5	70.5	68.8	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N
28-Jul-2017	Sunny	11:26	65.5	73.5	71.3	59.5	71.0	75	N

⁺ - Façade measurement

Shatin Central Link Contract No. 1128 South Ventilation Building to Admiralty Tunnels

APPENDIX I

Event Action Plan

Appendix I Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT		AC	TION		
EVENT	ET	IEC	ER	Contractor	
ACTION LEVEL					
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor and IEC on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing.	Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.	
Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures.	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate. 	

Appendix I Event Action Plan

Appendix I	Event Action Plan									
EVENT	ACTION									
EVENT	ET	IEC	ER	Contractor						
LIMIT LEVEL										
Exceedance for one sample	 Inform the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 						
Exceedance for two or more consecutive samples	 Notify Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 						

Appendix I Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENT		ACTION									
EVENT	ET	IEC	ER	Contractor							
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals. 							
Exceedance of Limit Level	1. Notify the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency; 4. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Inform IEC, ER and EPD the causes and actions taken for the exceedances; 7. Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and 8. If exceedance stops, cease additional monitoring.	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 							

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date	Subject	Status	Total no.	Total no.
	Received			received	received since
				in this	project
				month	commencement
Environmental complaints	4 July 2017 (referred by EPD on 7 July 2017)	Details of Complaint: It was reported that construction work was being carried out from day time to 23:30 on 28 June 2017; from day time to 22:15 on 29 June 2017; from daytime to 23:00 on 30 June 2017; from daytime to 20:45 on 1 July 2017; and from daytime to 18:00 on 2 July 2017, at the MTR Dragages Bouygues Joint Venture site near Ex- Police Officers' Club that caused noise nuisance. Finding: Construction works during restricted hours have been undertaken in compliance with construction noise permit (CNP) requirement.	Closed	1	5
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

Appendix J AECOM

APPENDIX K

Waste Flow Table

SCL Contract 1128 Appendix K - Monthly Summary C&D Material Flow Table

						Qua	ntity for off-site di	sposal of / resuse	ed Inert C&D ma	aterials (m³)						Quant	tity for off-site o	lisposal of Nor	n-inert C&D m	aterials	Quantities Dumping (\$	s of Marine Sediment)
Latest Programme for Generation & Import of Materials in each Reporting Period							1	nert C&D materia	ıl (m³)							Metals (kg)	Paper / Cardboard (kg)	Plastics (kg)	Chemical Waste (kg)	General Waste (m³)	Disposed as Hom Barg	
								R	eused in Other	Projects				Reused in							Type 1	Type 2
	TKO137FB(1)	TKO137SF(2)	TM38FB(3)	CWPFBP(4)	WDII C1 (5)	CWB(6)	SCL1121 (7)	SCL 1103(8)	WDII C3(9)	WDII C2(10)	8217 (11)	HY/2010/08 (12)	SCL 1112 (13)	Mainland	Total (m ³)	Total	Total	Total	Total	Total	(m ³)	(m ³)
2017/01	1,126.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	613.0	46.0				0.0	1,785.0	0	0	0	0	64.0	0	0
2017/02	1,646.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	274.8	0.0	467.7			5,924.4	8,313.5	0	0	0	0	63.6	0	0
2017/03	1,242.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	592.2	3,370.0		5,204.5	10,409.0	0	0	0	0	58.3	0	0
2017/04	578.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	93.1	291.8	0.0		12,538.0	13,500.9	0	0	0	0	60.0	0	0
2017/05	3,392.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,150.2	0.0	1,419.7	0.0		16,186.3	22,148.8	0	0	0	0	35.4	0	0
2017/06	3,421.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	91.5	0.0	0.0		2,635.7	6,148.1	0	0	0	0	40.8	0.0	0.0
2017 Sub-total	11,406.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2,038.0	230.6	2,771.3	3,370.0		42,488.9	62,305.3	0	0	0	0	322.1	0.0	0.0
2017/07	3,206.1	0.0	0.0	0.0	0.0	0.0	736.0	0.0	0.0	2,396.7	54.8	0.0	622.2	1,256.1	8,271.8	0	0	0	0.4	61.6	0.0	0.0
2017/08																						
2017/09																						
2017/10																						
2017/11																						
2017/12																						
2017 Total	14,612.7	0.0	0.0	0.0	0.0	0.0	736.0	0.0	2,038.0	2,627.2	2,826.1	3,370.0	622.2	43,744.9	70,577.1	0	0	0	0.4	383.7	0.0	0.0

Remark. Assume the density is 2 tornes per cubic metre for mert C&D materials, general waste and marine sediment.	Remark:	*Assume the densit	s 2 tonnes per cubic metre for i	inert C&D materials, general waste and marine sediment.
---	---------	--------------------	----------------------------------	---

TKO137FB Fill Bank at Tseung Kwan O Area 137 TKO137SF Sorting Facilities at Tseung Kwan O Area 137 TM38FB Fill Bank at Tuen Mun Chai Wan Public Fill Barging Point CWPFBP

WDII C1 HK/2009/01 Wan Chai Development Phase II - Central - Wan Chai Bypass at Hong Kong Convention and Exhibition Centre

HK/2009/15 Central – Wan Chai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section) CWB

SCL1121 **Cross Harbour Tunnels**

Hin Keng to Diamond Hill tunnels and Fung Tak Public Transport Interchange SCL1103 Wan Chai development Phase II - Central-Wan Chai Bypass at Wan Chai West WDII C3 10 WDII C2 HK/2009/02 Wan Chai Development Phase 2, Central - WanChai Bypass at Wan Chai East 11 8217 **Backfilling of the Shek Yam Construction Adit**

CWB-

HY/2010/08 Wan Chai Bypass — Tunnel (Slip Road 8 Section)

13 SCL 1112 **Hung Hom Station & Stabling Sidings**

Appendix B

Monthly EM&A Report for July 2017 – SCL Works Contract 1121 NSL Cross Harbour Tunnels

MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 29

[Period from 1 to 31 July 2017]

Works Contract 1121 - NSL Cross Harbour Tunnels

(August 2017)

Certified by: Dr. Priscilla Choy

Position: Environmental Team Leader

Date: 10th August 2017

Penta Ocean – China State Joint Venture

Shatin to Central Link – Contract 1121 NSL Cross Harbour Tunnels

Monthly Environmental Monitoring and Audit Report for July 2017

(version 1.0)

Certified By

Dr. Priscilla Choy (Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

FV I	ECUTIVE SUMMARY	Page
	oductionoduction Works undertaken during Reporting Month	
	rironmental Monitoring and Audit Progress	
Reg	rular Water Quality Monitoring	1
	ste Management	
	dscape and Visual	
	rironmental Site Inspection	2
	rironmental Exceedance/Non-conformance/Complaint/Summons and Successful secution	2
	orting Changes	
-	are Key Issues	
1	INTRODUCTION	
Pur	pose of the Report	3
	icture of the Report	
2	PROJECT INFORMATION	4
Bac	kground	4
	neral Site Description	
	astruction Programme and Activities	
	ject Organisation	
	us of Environmental Licences, Notification and Permits	
	nmary of EM&A Requirements	
3	ENVIRONMENTAL MONITORING REQUIREMENTS	
	ular Construction Dust Monitoring	
_	ular Water Quality Monitoring	
	nitoring Parameter, Frequency and Programme	
	nitoring Equipment and Methodologyoratory Measurement / Analysis for Marine Water	
	ion and Limit Levels	
	nt and Action Plan	
	dscape and Visual	
4	IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION	10
	QUIREMENTS MONITORING RESULTS	
5		
	ter Quality Monitoring	
	ste Management	
	dscape and Visual	
6	ENVIRONMENTAL SITE INSPECTION	
	Audit	
-	elementation Status of Environmental Mitigation Measures	
7	ENVIRONMENTAL NON-CONFORMANCE	
Sun	nmary of Exceedances	. 18
	nmary of Environmental Non-Compliance	
Sun	nmary of Environmental Complaint	. 18

i

Summary of	Environmental Summon and Successful Prosecution						
8 FUTU	FUTURE KEY ISSUES						
Key Issues i	n Programme for the Next Month						
9 CONC	LUSIONS AND RECOMMENDATIONS20						
LIST OF T	ABLES						
Table 2.1 Table 2.2 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 4.1 Table 6.1	Environmental Review Reports/Supplementary Information Paper for this Project Status of Environmental Licences, Notification and Permits Water Quality Monitoring Location Water Quality Impact Monitoring Programme Water Quality Monitoring Equipment Analytical Methods to be applied to Marine Water Quality Samples Status of Required Submissions under EP Observations and Recommendations of Site Audit						
LIST OF F	IGURES						
Figure 1a-1b Figure 2 Figure 3	The Site Layout Plans for Works Contract 1121 Project Organisation for Environmental Works Locations of Water Quality Monitoring Station in Victoria Harbour						
LIST OF A	PPENDICES						
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H Appendix I Appendix J Appendix K Appendix L	Action and Limit Levels Water Quality Monitoring Schedule Water Quality Monitoring Results and Graphical Presentations Copies of Calibration Certificates Quality Control Reports for SS Laboratory Analysis Summary of Exceedance Site Audit Summary Event and Action Plans Updated Environmental Mitigation Implementation Schedule						

EXECUTIVE SUMMARY

Introduction

1. This is the 29th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for **MTR Shatin to Central Link (SCL) Works Contract 1121 – NSL Cross Harbour Tunnels.** This report documents the findings of EM&A Works conducted from 1 to 31 July 2017.

Summary of Construction Works undertaken during Reporting Month

2. The major site activities undertaken in the reporting month include:

Shek O

- Removal of Concrete Paving; and
- Removal of Concrete Batching Plant.

Victoria Harbour

- Strut Removal & Backfilling of Nov at Hung Hom;
- Reinforcement Concrete Works Construction of NOV at Hung Hom;
- Reinforcement Concrete Works Construction of Cut & Cover Tunnel at Hung Hom;
- Cathodic Protection of NOV at Hung Hom;
- Water Proofing at Hung Hom;
- Advance Work for 1112 D-Wall Demolition;
- Trench Dredging Works for IMT alignments at Victoria Harbour & CBTS;
- Gravel Bedding Laying at CBTS & Victoria Harbour;
- Partially Reinstatement of Breakwater at CBTS:
- Erection of Working Platform for ME4 D-Wall Cutting;
- IMT Sinking at CBTS.

Environmental Monitoring and Audit Progress

3. A summary of the monitoring activities in this reporting period is listed below:

Regular Water Quality Monitoring

- Water Quality Monitoring at each monitoring station (Shek O Casting Basin)⁽¹⁾
- 0 times
- Water Quality Monitoring at each monitoring station (Victoria Harbour)

13 times

 Water Quality Monitoring at Shek O Casting Basin was only required during the dock gate removal. Removal of dock gate at Shek O Casting Basin under this Project was completed on 30th April 2017.

Waste Management

4. Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Details of waste management data is presented in Section 5 and **Appendix K**.

Landscape and Visual

5. Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 3 and 17 July 2017. Most of the necessary mitigation measures have been implemented and recommended follow-up actions have been

discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

6. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 3, 10, 17 and 24 July 2017. The representative of the IEC joined the site inspection on 24 July 2017. Details of the audit findings and implementation status are presented in Section 6.

Environmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution

- 7. No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded during the reporting period.
- 8. No non-compliance event was recorded during the reporting period.
- 9. No environmental complaint and no notification of summon/successful prosecutions were received in this reporting period.

Reporting Changes

10. No reporting changes in this reporting period.

Future Key Issues

11. Major site activities for the coming reporting month will include:

Shek O

• Removal of Concrete Paving;

Victoria Harbour

- Strut Removal & Backfilling of Nov at Hung Hom;
- Reinforcement Concrete Works Construction of NOV at Hung Hom;
- Reinforcement Concrete Works Construction of Cut & Cover Tunnel at Hung Hom;
- Cathodic Protection of NOV at Hung Hom;
- Water Proofing at Hung Hom;
- Advance Work and Coring Work for 1112 D-Wall Demolition at Hung Hom;
- Trench Dredging Works for IMT alignments at Victoria Harbour & CBTS;
- Gravel Bedding Laying at Victoria Harbour;
- Partially Reinstatement of Breakwater at CBTS;
- Erection of Working Platform for ME4 D-Wall Cutting.
- IMT Sinking at CBTS; and
- Demolition of Site Office
- 12. Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, noise, water quality and waste management.

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Penta Ocean – China State Joint Venture (PCJV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL)Works Contract 1121 – NSL Cross Harbour Tunnels (hereafter referred to as the Project).

Purpose of the Report

1.2 This is the 29th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 1 to 31 July 2017. The major construction works for Contract 1121 commenced on 2 March 2015.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** details the scope and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: **Environmental Monitoring Requirement -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.
 - Section 4: **Implementation Status on Environmental Mitigation Measures -** summarises the implementation of environmental protection measures during the reporting period.
 - Section 5: **Monitoring Results** summarises the monitoring results obtained in the reporting period.
 - Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.
 - Section 7: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.
 - Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Hung Hom to Admiralty Section (hereafter referred to as SCL (HUH-ADM)) is an approximately 6km extension of the East Rail Line including a rail harbor crossing from Hung Hom across the harbor to Admiralty on Hong Kong Island. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The Environmental Impact Assessment (EIA) Report for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, Environmental Permits (EP) (EP No: EP-436/2012) was granted on 22 March 2012 for their construction and operation.
- 2.3 Various Environmental Review Reports (ERR) / Supplementary Information Paper had been submitted for the following purposes:

Table 2.1 Environmental Review Reports/Supplementary Information Paper for this Project

Environmental Review Reports / Supplementary Information Paper	Date of Submission to EPD	Purpose(s)
Environmental Review Report – Design Changes of North Ventilation Building and Shek O Casting Basin	February 2014	To identify and assess the likely environmental issues pertinent to the proposed design changes at North Ventilation (NOV) Building and Shek O Casting Basin, and to identify any additional environmental mitigation measures that may be required for compliance with environmental standards.
Environmental Review Report – Variation for IMT Extension	February 2015	To identify and assess the likely environmental issues pertinent to the proposed alternative scheme of IMT extension.
Supplementary Information Paper for Optimized Scheme for IMT Construction in CBTS	January 2016	To demonstrate that no unacceptable impacts would be resulted from the Optimized Scheme in CBTS.
Environmental Review Report of Dredging Scenarios	November 2016	To demonstrate that unacceptable water quality impact is not anticipated from an alternative dredging option (including (i) using two smaller closed grab dredgers instead of one large closed grab dredger; and (ii) proposed daily production rate) within the open Victoria Harbour outside Causeway Bay Typhoon Shelter (CBTS)

- 2.4 Variation of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/E) was issued by Director of Environmental Protection (DEP) on 23 November 2016.
- 2.5 The construction of the SCL (HUH-ADM) has been divided into a series of civil construction Works Contracts and this Works Contract 1121 comprises of the Permanent Works and the associated Temporary works required for the construction of the North Ventilation Building (NOV) at the Hung Hom Landfall, and construction of cut & cover tunnel and Immersed Tunnel (IMT) sections extending across the harbour from the NOV to the Causeway Bay Typhoon Shelter (CBTS). This construction contract was awarded to Penta Ocean China State Joint Venture (PCJV) in December 2014.

General Site Description

2.6 The site layout plans for the Works Contract 1121 are shown in **Figure 1a-1b**.

Construction Programme and Activities

2.7 A summary of the major construction activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix A**.

Shek O

- Removal of Concrete Paving; and
- Removal of Concrete Batching Plant.

Victoria Harbour

- Strut Removal & Backfilling of Nov at Hung Hom;
- Reinforcement Concrete Works Construction of NOV at Hung Hom;
- Reinforcement Concrete Works Construction of Cut & Cover Tunnel at Hung Hom;
- Cathodic Protection of NOV at Hung Hom;
- Water Proofing at Hung Hom;
- Advance Work for 1112 D-Wall Demolition;
- Trench Dredging Works for IMT alignments at Victoria Harbour & CBTS;
- Gravel Bedding Laying at CBTS & Victoria Harbour;
- Partially Reinstatement of Breakwater at CBTS:
- Erection of Working Platform for ME4 D-Wall Cutting;
- IMT Sinking at CBTS.

Project Organisation

2.8 The project organizational chart and contact details are shown in **Figure 2.**

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.2**.

Table 2.2 Summary of the Status of Environmental Licences, Notification and Permits

Downit / Linanga No	Valid Period		Chahaa	
Permit / License No.	From	То	Status	
Environmental Permit (EP)				

D	Valid	Status					
Permit / License No.	From	То	Status				
EP-436/2012/E	24/11/2016	N/A	Valid				
SP License							
L-3-248(1)	10/09/2015	09/09/2017	Valid				
Notification pursuant to Air Pollution Control (Construction Dust) Regulation							
EPD Ref no.: 384777	28/01/2015	N/A	Valid				
EPD Ref no.: 384550	21/01/2015	N/A	Valid				
EPD Ref no.: 384281	14/01/2015	N/A	Valid				
Billing Account for Constructio	n Waste Disposal						
Account No. 7021499	20/01/2015	N/A	Valid				
Registration of Chemical Waste	Producer						
Waste Producer No. 5213-147- P3174-03	02/03/2015	N/A	Valid				
Waste Producer No. 5213-213- P3172-01	09/02/2015	N/A	Valid				
Waste Producer No. 5111-197- P3174-01	27/02/2015	N/A	Valid				
Marine Dumping Permit							
EP/MD/17-179	23/03/2017	22/10/2017	Valid				
EP/MD/18-033	04/07/2017	22/09/2017	Valid				
EP/MD/18-032	04/07/2017	03/08/2017	Valid				
EP/MD/18-017	04/07/2017	22/09/2017	Valid				
EP/MD/18-020	04/07/2017	03/08/2017	Valid				
Effluent Discharge License und	er Water Pollution C	ontrol Ordinance					
WT00021844-2015	25/06/2015	30/06/2020	Valid				
WT00021891-2015	19/08/2015	31/08/2020	Valid				
WT00022449-2015	29/09/2015	30/06/2020	Valid				
Construction Noise Permit (CNP)							
GW-RS-0058-17	26/01/2017	25/07/2017	Expired on 25/07/2017				
GW-RS-0622-17	26/07/2017	25/01/2018	Valid				
GW-RE-0072-17	09/02/2017	08/08/2017	Valid				
GW-RE-0075-17	03/02/2017	02/08/2017	Valid				

Downit / License No.	Valid	Status	
Permit / License No.	From	То	Status
GW-RE-0402-17	26/05/2017	25/11/2017	Valid
GW-RE-0468-17	02/06/2017	25/11/2017	Superseded by the GW-RS-0606-17
GW-RS-0606-17	16/07/2017	13/01/2018	Valid

Summary of EM&A Requirements

- 2.10 The EM&A programme under Works Contract 1121 requires regular dust and water quality monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirements in contract documents.
- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely marine water quality monitoring as well as audit works for the Project in the reporting month.

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Regular Construction Dust Monitoring

3.1 In accordance with the EM&A Manual, the setup of the impact dust monitoring station at Harbourfront Horizon and the impact monitoring is currently carried out by the MTR Contract 1112. Upon termination of their EM&A programmes, the impact monitoring works would be taken up by this Project.

Regular Water Quality Monitoring

- 3.2 In accordance with the EM&A Manual and the ERRs, marine water quality monitoring should be carried out during the dredging and filling operation, and IMT construction within CBTS (for Station 9 only); and throughout the construction period of removal of earth bunds at Northern and Southern gates.
- 3.3 Water Quality Monitoring at Station 8 and 14 is suspended as the water intakes are not in use. The statuses of the intakes will be kept in view such that once the water intakes are occupied, water quality monitoring will resume. In the presence of temporary reclamation in the Causeway Bay Typhoon Shelter (CBTS) under this Project, only Dissolved Oxygen (DO) level monitoring would be maintained at Station 8 for checking of potential odour concern.
- 3.4 The water quality monitoring stations and control stations of Project are shown in **Figure 3**. The co-ordinates of the monitoring stations are listed in **Table 3.1**. As shown in **Table 3.1**, the locations are classified as Impact Station and Control Station according to their functions.

Table 3.1 Water Quality Monitoring Stations

Station	Description	Coord	dinates				
		Easting	North				
Shek O Ca	Shek O Casting Basin						
GB3	Turtle Cove Beach	841120	810280				
C3	Control Station for ebb tide	841200	806210				
C4	Control Station for flood tide	843330	807320				
Victoria H	arbour						
8	Cooling Water Intake for Excelsior Hotel and World Trade Centre / No. 27 – 63 Paterson Street	837036	816008				
9	Cooling Water Intake for Windsor House	837223	816150				
14	Flushing Water Intake for Kowloon Station	834477	817891				
21	Cooling Water Intake for East Rail Extension	836484	817642				
34	Cooling Water Intake for Metropolis	836828	817844				
A	Wan Chai WSD Flushing Water Intake		816045				
WSD9	Tai Wan WSD Flushing Water Intake ⁽²⁾ 83793		818357				
WSD17			817077				
C1	Control Station 1	833977 817442					
C2	Control Station 2	841088	817223				

Note:

- (1) According to the Baseline Water Quality Monitoring Report for SCL (MKK-HUH & HUH-ADM), the original coordinates of monitoring location A (Easting: 836286, Northing: 816024) is the exact location taken from the design of reprovisioned Wan Chai Salt Water Pumping Station and Salt Water Intake Culvert. Based on actual site condition for taking water sampling, minor adjustment was made on monitoring location.
- (2) According to the Baseline Water Quality Monitoring Report for SCL (MKK-HUH & HUH-ADM), the original coordinates of monitoring location WSD9 (Easting: 838133, Northing: 817790) as proposed in WQMP were moved closer to sensitive receiver according to the actual site condition.

Monitoring Parameter, Frequency and Programme

3.5 Water quality monitoring was conducted in accordance with the requirements stipulated in the approved SCL(HUH-ADM) EM&A Manual and the ERRs. **Table 3.2** summarized the monitoring frequency and water quality parameters for the impact monitoring. The monitoring schedule for this reporting period is shown in **Appendix C**.

 Table 3.2
 Water Quality Impact Monitoring Programme

	Impact Monitoring	
	Victoria Harbour During the dredging and filling operation	
Monitoring Period	CBTS (Station 9 only) During IMT construction within CBTS	
	Shek O Casting Basin Throughout the construction period of removal of earth bunds at Northern and Southern gates.	
Monitoring Frequency ⁽¹⁾	3 Days in a Week, at mid-flood and mid-ebb tides	
Monitoring Locations ⁽³⁾	GB3, C3, C4, 8, 9, 14, 21, 34, A, WSD9, WSD17, C1 and C2	
Monitoring Parameters ⁽²⁾	DO, temperature, turbidity, pH, salinity and SS	
Intervals between 2 Sets of Monitoring	Not less than 36 hours	
Tidal Range	Individual flood and ebb tides not less than 0.5m	

Notes:

Monitoring Equipment and Methodology

pH Measurement Instrument

3.6 The instrument consisted of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It is readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 is used for calibration of the instrument before and after use.

^{1.} For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than $0.5\ m.$

^{2.} Turbidity, DO, pH, temperature and salinity should be measured in situ whereas SS should be determined by laboratory.

^{3.} Water Quality Monitoring at Station 8 and 14 is suspended as the water intakes are not in use.

Dissolved Oxygen and Temperature Measuring Equipment

- 3.7 The Dissolved Oxygen (DO) measuring equipment is portable and weatherproof. It is completed with cable and senor, and a DC power source. The equipment is capable of measuring:
 - a DO level in the range of $0 20 \text{ mg} \cdot \text{L}^{-1}$ and 0 200% saturation; and
 - a temperature of 0 45 degree Celsius (°C).
- 3.8 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 3.9 Should salinity compensation not be built-in to the DO equipment, in-situ salinity should be measured to calibrate the DO measuring equipment prior to each DO measurement.

Turbidity Measurement Instrument

3.10 The turbidity measuring instrument is a portable and weatherproof using a DC power source. It has a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU (for example, Hach model 2100P or an approved similar instrument).

Sampler

3.11 A water sampler was required for SS monitoring. It comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (for example, Kahlsico Water Sampler or an approved similar instrument).

Water Depth Detector

3.12 A portable, battery-operated echo sounder is used for the determination of water depth at each monitoring station. This unit can either be hand-held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

Salinity

3.13 A portable salinometer capable of measuring salinity in the range of 0 - 40 parts per thousand (ppt) is provided for measuring salinity of the water at each monitoring station.

Sample Containers and Storage

3.14 Water samples for SS monitoring were stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4 °C without being frozen) and delivered to the laboratory and analyzed as soon as possible after collection.

Monitoring Position Equipment

3.15 A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message "screen pop-up" facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, was provided and used during marine water monitoring to ensure the monitoring vessel at the correct location before taking measurements.

Calibration of In-Situ Instruments

- 3.16 The pH meter, DO meter and turbidimeter was checked and calibrated before use. DO meter and turbidimeter was certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring location.
- 3.17 **Table 3.3** summarizes the equipment used in the water quality monitoring program. The calibration certificates for the in-situ instruments are presented in **Appendix E**.

Table 3.3 Water Quality Moni	toring Equipment
------------------------------	------------------

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	2
YSI EXO1 Multiparameter Sondes	SW-08-05	1
YSI EXO1 Multiparameter Sondes	SW-08-09	1
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS- 320	2
Water Depth Detector	Fishfinder 140	2

3.18 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment were made available so that monitoring can proceed uninterrupted even when some equipment are under maintenance, calibration, etc.

Laboratory Measurement / Analysis for Marine Water

3.19 Duplicate samples from each independent sampling event are required by EPD for all parameters. Analysis of suspended solids was carried out in a HOKLAS or other international accredited laboratory. Sufficient water samples were collected at the monitoring stations for carrying out the laboratory SS determinations, with detection limit shown in **Table 3.4**. The SS determination work was started within 24 hours after collection of the water samples. The analyses followed the standard methods according to **Table 3.4** and as described in "American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater", 19th edition, unless otherwise specified.

Table 3.4 Analytical Methods to be applied to Marine Water Quality Samples

Determinant	Standard Method	Detection Limit
Suspended Solids (mg/L)	APHA 2540 D	0.1 mg/L

3.20 Quality Control Reports as attached in **Appendix F** are available for the SS analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

11

Action and Limit Levels

3.21 The action and limit levels for water quality monitoring are presented in **Appendix B**.

Event and Action Plan

3.22 Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan in **Appendix I** shall be carried out.

Landscape and Visual

3.23 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is summarised in **Table 6.1** of Section 6.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit, EM&A Manual and the ERR. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix J**. Status of required submissions under the Environmental Permit (EP) of the reporting period is presented in **Table 4.1**.

Table 4.1 Status of Required Submissions under EP

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report (June 2017)	14 July 2017

5 MONITORING RESULTS

Water Quality Monitoring

- 5.1 13 sets of water quality monitoring was carried out at the designated monitoring stations in Victoria Harbour respectively in this reporting period. All water quality monitoring was conducted as scheduled in the reporting month. Water quality monitoring at Shek O Casting Basin was only required during dock gate removal. Removal of dock gate at Shek O Casting Basin was completed on 30th April 2017. The water quality impact monitoring schedule for this reporting period is shown in **Appendix C**.
- 5.2 The monitoring results together with graphical presentations are shown in **Appendix D**.
- 5.3 Under consultancy agreement no. C11033B, Action and Limit Levels for water quality monitoring at the monitoring stations in **Table 3.2** were established in the baseline water quality monitoring conducted by AECOM during June and July 2014. Action and Limit Levels for water quality is summarised in **Appendix B**.
- 5.4 No exceedance of Action and Limit Levels of water quality was recorded during the reporting period.

Waste Management

- 5.5 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table 5.1**. Details of waste management data is presented in **Appendix K**.
- 5.6 28 m³ inert C&D materials were generated during the reporting month by this Project. 296 m³, 985 m³ and 735 m³ inert C&D materials were received from SCL Contract 1111, 1112 and 1128 respectively. No inert C&D materials were received from SCL Contract 1114 and 1123. Inert C&D materials received from SCL Contracts was collected and stored on-site and 2,033 m³ of these inert C&D materials were reused in the other Projects. No chemical waste was collected by licensed collector during the reporting month. No metal, plastics and paper/cardboard packaging were generated during the reporting month.
- 5.7 9,473 m³ Type 1 sediments (Category L) were generated from construction activities of this Project during this reporting period. No Type 1 sediments (Category L) were received from SCL Contract 1111, 1112 and 1128. Such materials were collected and 9,473 m³ was disposed at Capping of the exhausted Confined Marine Disposal Facility at South Cheung Chau in the reporting period.
- No contaminated materials Type 1 (dedicated sites) and 8,950 m³ Type 2 Confined Marine Disposal (Category M) sediments were generated from construction activities of this Project during this reporting period. No contaminated materials Type 1 (dedicated sites) and Type 2 Confined Marine Disposal (Category M) sediments were received from SCL Contract 1111, 1112 and 1128. Such materials were collected and 8,950 m³ was disposed at Capping of the exhausted Confined Marine Disposal Facility at South of The Brothers (or East of Sha Chau) in the reporting period.

5.9 No contaminated materials - Type 3 (Special Treatment Disposal) sediments were generated from construction activities of this Project during this reporting period.

Table 5.1 Quantities of Waste Generated from the Project

	Quantity						
D4:			C&D Materials (non-inert) ^(b)				
Reporting Month	C&D	Sediments				ycled mate	rials
Wionth	Materials (inert) ^(a)	(in bulk volume)	General Chemical Waste	Paper/ cardboard	Plastics	Metals	
July 2017	28 m³	18,423 m ³	77 tonne	0 kg	0 kg	0 kg	0 kg

Notes:

- (a) Inert C&D materials include soft materials, rocks and artificial hard materials to be delivered to TKO 137 and TM 38 public fill reception sites or, alternatively, receptor sites to be identified for beneficial reuse as proposed by the Contractor.
- (b) Non-inert C&D materials include C&D waste which cannot be reused or recycled and has to be disposed of at North East New Territories (NENT) Landfill. It also includes steel, paper/cardboard packaging waste, plastics. Steel materials generated from the project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.

Landscape and Visual

5.10 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 3 and 17 July 2017. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION

Site Audit

- 6.1 Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audit are attached in **Appendix H**.
- 6.2 Site audits were conducted on 3, 10, 17 and 24 July 2017 by ET. A joint site audit with the representative with IEC, ER, the Contractor was carried out on 24 July 2017. The details of observations during site audit can refer to **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix J**.
- 6.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up	
	14, 19, 26 June 17	Reminder: Floating refuse on sea surface should be removed at Hung Hom site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 03 July 2017.	
	14, 19, 26 June 17	Reminder: Oil stain on the ground should be cleared at Hung Hom site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 03 July 2017.	
Water	03 July 2017	Reminder: Treated water was observed not clear enough and the contractor was reminded to provide proper wastewater treatment for site water before discharge at Hung Hom site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 10 July 2017.	
Quality	10, 17 July 2017	Reminder: To remove general refuse found on sea surface at Hung Hom site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 24 July 2017.	
	17 July 2017	Reminder: Oil stain should be cleared on the ground at Hung Hom site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 24 July 2017.	
	24 July 2017	Reminder: To remove oil stain found on the ground at Hung Hom finger pier.	Follow up action will be reported in next reporting month.	
Noise				
Landscape and Visual				
Air Quality	24 July 2017	Observation: Dust emission was observed during the loading / unloading of material. The contractor was reminded to provide additional water spraying to the dusty material	Follow up action will be reported in next reporting month.	

Parameters	Date	Observations and Recommendations	Follow-up
T WI WINGER	Date	to prevent dust generation at Hung Hom site.	Tonow up
	24 July 2017	Reminder: Black smoke was observed emitted from the guard boat. Regular checking should be provided to the guard boat to prevent black smoke emission at Hung Hom site.	Follow up action will be reported in next reporting month.
	03 July 2017	Reminder: To remove the construction waste found inside NOV at Hung Hom site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 10 July 2017.
Waste / Chemical Management	03 July 2017	Reminder: Drip tray should be provided to chemical containers at Hung Hom site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 10 July 2017.
	17 July 2017	Reminder: To remove stagnant water found on drip tray and provide a plug to the drip tray at Hung Hom site.	The observation was observed to be improved/rectified by the Contractor during the audit session on 24 July 2017.
Permits/ Licenses			

7 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

7.1 No exceedance of Action and Limit Levels of water quality was recorded during the reporting period. The summary of exceedance is provided in **Appendix G**.

Summary of Environmental Non-Compliance

7.2 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

7.3 No environmental complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix L**. The investigation status and result is also reported in **Appendix L**.

Summary of Environmental Summon and Successful Prosecution

7.4 There was no successful environmental prosecution or notification of summons received in this reporting period. For notification of summon received in November 2016, review of the reasons of and the implications of summon including review of pollution sources and working procedures will be reported after the case has been settled by the court. And the final hearing is scheduled to 4th August 2017 and tentatively fixed the date for verdict hearing on 18th August 2017. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix L**.

8 FUTURE KEY ISSUES

Construction Programme for the Next Month

8.1 A tentative construction programme is provided in **Appendix A**. The major construction activities in the coming month will include:

Shek O

• Removal of Concrete Paving;

Victoria Harbour

- Strut Removal & Backfilling of Nov at Hung Hom;
- Reinforcement Concrete Works Construction of NOV at Hung Hom;
- Reinforcement Concrete Works Construction of Cut & Cover Tunnel at Hung Hom;
- Cathodic Protection of NOV at Hung Hom;
- Water Proofing at Hung Hom;
- Advance Work and Coring Work for 1112 D-Wall Demolition at Hung Hom;
- Trench Dredging Works for IMT alignments at Victoria Harbour & CBTS;
- Gravel Bedding Laying at Victoria Harbour;
- Partially Reinstatement of Breakwater at CBTS;
- Erection of Working Platform for ME4 D-Wall Cutting.
- IMT Sinking at CBTS; and
- Demolition of Site Office

Key Issues in the Next Month

8.2 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, noise, water quality and waste management in both Shek O and Hung Hom.

Monitoring Schedule in the Next Month

8.3 The tentative schedule of regular water quality monitoring at all the monitoring locations in the next reporting period is presented in **Appendix C**. The regular construction water quality monitoring will be conducted at the same monitoring locations in the next reporting period.

9 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 to 31 July 2017 in accordance with EM&A Manual and the requirement under EP.
- 9.2 No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded at the designated monitoring stations during the reporting month.
- 9.3 4 times of joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET and 2 times of bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted during the reporting period.
- 9.4 No environmental complaint and no notification of summon/successful prosecution were received during the reporting month.
- 9.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

9.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

Water Quality

- Floating refuse on sea surface should be removed at Hung Hom site.
- Oil stain on the ground should be cleared at Hung Hom site.
- The contractor was reminded to provide proper wastewater treatment for site water at Hung Hom site before discharge.

Landscape and Visual

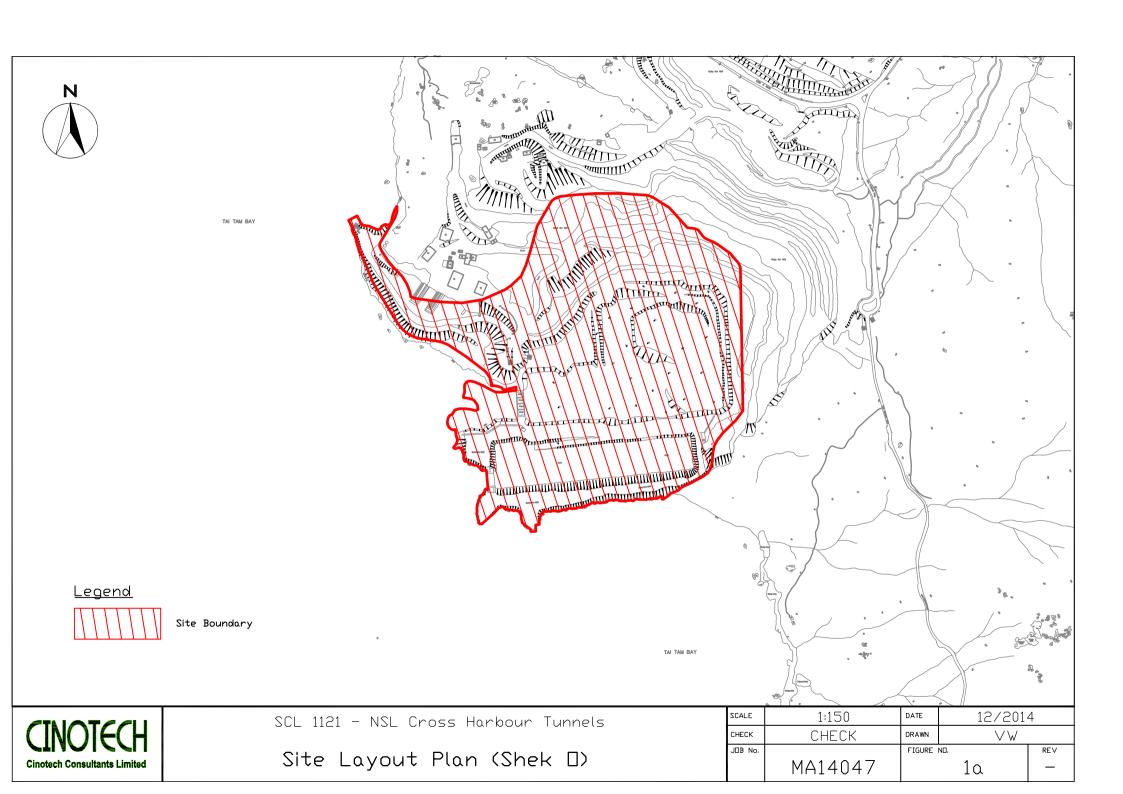
• N/A

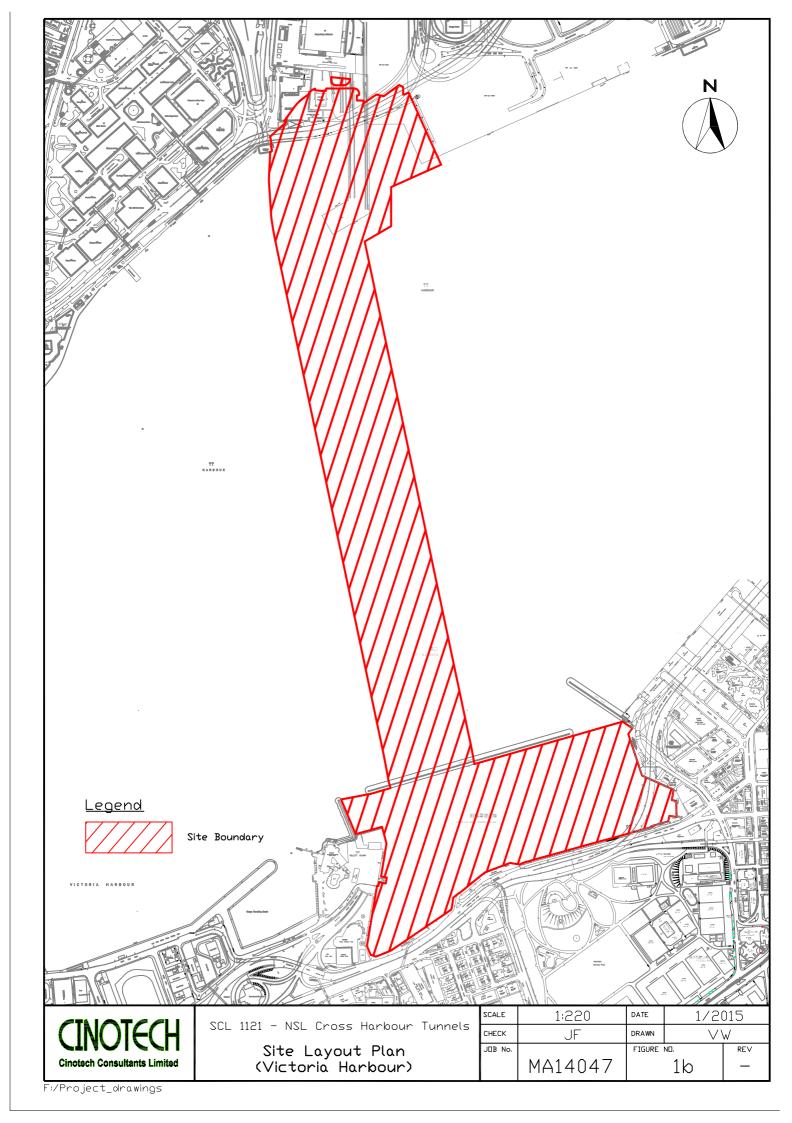
Noise

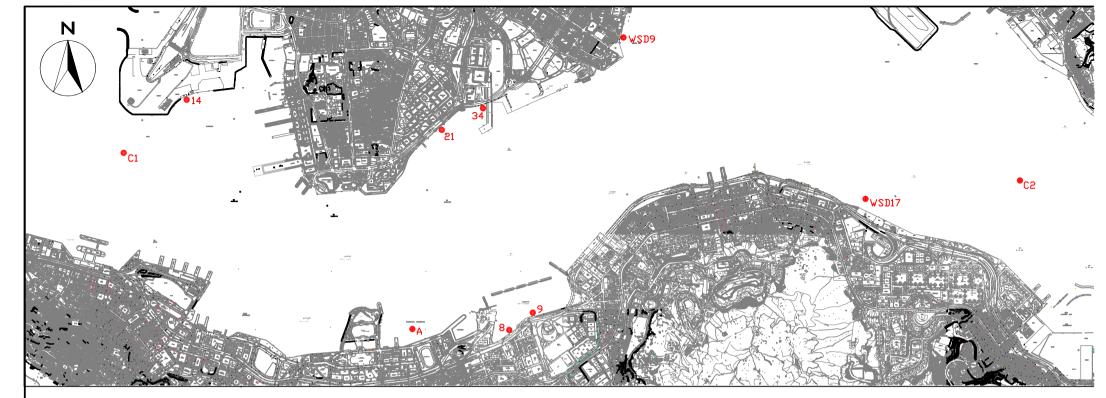
N/A

Air Quality

- The contractor was reminded to provide additional water spraying to the dusty material to prevent dust generation during the loading & unloading of dusty material at Hung Hom site.
- Regular checking should be provided to guard boat to prevent black smoke emission at Hung Hom site.


Waste/Chemical Management


- To remove stagnant water found on drip tray and provide a plug to drip tray at Hung
- To remove the C&D waste found inside NOV at Hung Hom site.
- To provide drip tray to chemical containers at Hung Hom site.

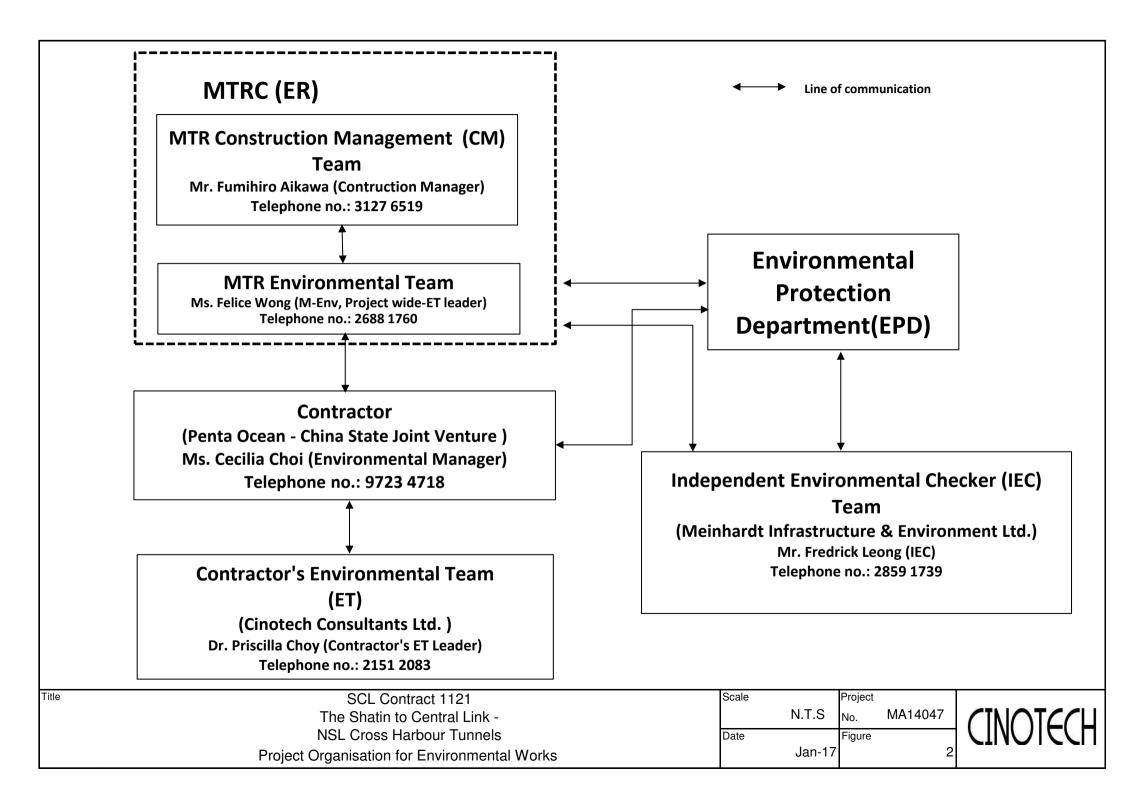

Permits/Licenses

• N/A

FIGURES

COORDINATE	EASTING	NORTHING
А	836268	816045
14	834477	817891
WSD9	837930	818357
WSD17	839863	817077
C1	833977	817442
C2	841088	817223
8	837036	816008
9	837223	816150
21	836484	817642
34	836828	817844

LEGEND


Water Quality Monitoring Station

SCL 1121 - NSL Cross Harbour Tunnels

Locations of Water Quality Monitoring station in the Victoria Harbour

SCALE	1:30	DATE	1/2015	-)	
CHECK	JF	DRAWN	$\vee \vee$		
JDB No.		FIGURE	ND.	REV	
	MA14047		3	_	

APPENDIX A
TENTATIVE CONSTRCUTION
PROGRAMME

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

Activity ID	Activity Name	Total Qty Cor	mpleted Qty BL1 Start	BL1 Finish	BL	Rem.	Start	Finish	Total Float	Physical %		20	17	
		3.2.7			Duration	Rem. Dur.				Physical % Complete	Jul	Aug	Sep	Oct
1121 - 33 - 3M F	folling Programme (8 - 10/2017) [Update as of Jul 17]		15-Dec-14	28-Mar-19	1268.0	494.0	15-Dec-14 A	27-Mar-19	836.0				1 1 1 1 1	
01121.CD10000	Date for Commencement		15-Dec-14		0.0	0.0	15-Dec-14 A			100%				
SCHEDULE OF	COMPLETION OBLIGATIONS AND MILESTONES SCHEDULE		17-Sep-16	28-Mar-19	922.0	607.0	31-Mar-17 A	27-Mar-19	645.0					
Sections of th	e Works		23-Mar-19	23-Mar-19	0.0	0.0	26-Mar-19	26-Mar-19	5.0					
01121.CD10190	2A - Complete NOV and Ready for Handover (Finish on or Before 31 Mar 19)			23-Mar-19	0.0	0.0		26-Mar-19*	5.0	0%				
Specified Part	s of the Works		12-Aug-17	28-Mar-19	593.0	607.0	29-Jul-17	27-Mar-19	4.0		-		<u> </u>	
01121.CD10200	4B - Degree 1 of NSL Tunnels from 99+825 to 99+764 (HUH submerged C&C up to IMT1) (Finish On or Before 20 Aug 17)			19-Aug-17	0.0	0.0		29-Jul-17*	23.0	0%		▼.		
01121.CD10230	4E.1 - Degree 1 of NOV Basement Level 3 (Track Level) and Level 2 (Finish On or Before 31 Dec 17)			31-Dec-17	0.0	0.0		16-Dec-17*	15.0	0%				
01121.CD10260	4E.2 - Degree 2 of NOV Basement Level 3 (Track Level) and Level 2 (Finish On or Before 25 Mar 18)			02-Mar-18	0.0	0.0		10-Mar-18*	15.0	0%				
01121.CD10240	4F.1 - Degree 1 of NOV Basement Level 1 and Ground Level (Finish On or Before 18 Mar 18)			14-Mar-18	0.0	0.0		16-Mar-18*	2.0	0%				
01121.CD10270	3F - Complete All Works Including EVA in Area 1121.M1C (Ready for Statutory			14-Mar-18	0.0	0.0		24-Mar-18*	8.0	0%				
01121.CD10280	Inspection) (Finish On or Before 01 Apr 18) 4G.1 - Degree 1 of NOV First Level and Roof Level (Finish On or Before 29 Apr			21-Apr-18	0.0	0.0		25-Apr-18*	4.0	0%				
01121.CD10250	18) 4H.1 - Degree 1 of NOV Flood Gate Choke Room, Flood Gate Machine Room, Accumulator Room (Finish On or Refero 20 Apr. 19)			21-Apr-18	0.0	0.0		26-Apr-18*	3.0	0%				
01121.CD10210	Accumulator Room (Finish On or Before 29 Apr 18) 3A - Complete Removal of All Temporary Reclamation in Works Area 1121.VH2 (Finish On or Before 3 Doc 17)			12-Aug-17	0.0	0.0		16-May-18*	-164.0	0%		⊽		
01121.CD10290	(Finish On or Before 3 Dec 17) 4F.2 - Degree 2 of NOV Basement Level 1 and Ground Level (Finish On or Before			30-May-18	0.0	0.0		01-Jun-18*	2.0	0%				
01121.CD10030	03 Jun 18) 46.2 - Degree 2 of NOV First Level and Roof Level (Finish On or Before 15 Jul			05-Jul-18	0.0	0.0		09-Jul-18*	6.0	0%				
01121.CD10220	18) 4A - Degree 1of NSL Tunnels from 99+900 to 99+825 (HUH LandC&C) (Finish On or Before 31 Dec 17)			27-Dec-17	0.0	0.0		12-Jul-18*	-194.0	0%				
01121.CD10310	4H.2 - Degree 2 of NOV Flood Gate Choke Room, Flood Gate Machine Room,			25-Jul-18	0.0	0.0		27-Jul-18*	2.0	0%				
01121.CD10080	Accumulator Room (Finish On or Before 29 Jul 18) 3B - Complete Removal of All Temporary Reclamation in Works Area			29-May-18	0.0	0.0		01-Aug-18*	60.0	0%				
01121.CD10070	1121.VH3D&E (Finish On or Before 30 Sep 18) 4D - Degree 1 of NSL Tunnels from 98+365 to 98+096 (Finish on or before 30 Con 10)			29-May-18	0.0	0.0		01-Aug-18*	60.0	0%				
01121.CD10300	Sep 18) 41 - Degree 3 of NOV LV Switch Room (HUH), LV Room nr 3 and Connecting Cable Parter (Finish On as Refere 90 Cost 19)			04-Sep-18	0.0	0.0		03-Sep-18*	6.0	0%				
01121.CD10060	Cable Routes (Finish On or Before 09 Sept 18) 46.3 - Degree 3 of NOV First Level and Roof Level (Finish On or Before 30 Sept			01-Sep-18	0.0	0.0		05-Sep-18*	25.0	0%				
01121.CD10040	18) 4E.3 - Degree 3 of NOV Basement Level 3 (Track Level) and Level 2 (Finish On			08-Sep-18	0.0	0.0		08-Sep-18*	22.0	0%				
01121.CD10050	or Before 30 Sept 18) 4F.3 - Degree 3 of NOV Basement Level 1 and Ground Level (Finish On or Before	!		08-Sep-18	0.0	0.0		11-Sep-18*	19.0	0%				
01121.CD10090	30 Sept 18) 36 - Complete All EVA and ready for Statutory Inspection of NOV (Finish On or			19-Oct-18	0.0	0.0		25-Oct-18*	3.0	0%				
01121.CD10100	Before 28 Oct 18) 3E - Complete All Reinstatement and Re-provisioning Works at Shek O (Finish On			20-Feb-19	0.0	0.0		16-Jan-19*	74.0	0%				
01121.CD10110	or Before 31 Mar 19) 4H.3 - Degree 3 of NOV Flood Gate Choke Room, Flood Gate Machine Room,			16-Feb-19	0.0	0.0		21-Feb-19*	3.0	0%				
01121.CD10350	Accumulator Room (Finish On or Before 24 Feb 19) 4D.1 - Degree 1 of NSL Tunnels from 98+365 to 98+096 (CWB C&C up to			02-Mar-19	0.0	0.0		27-Feb-19*	4.0	0%				
01121.CD10140	interface with ME4) (Finish On or Before 3 Mar 19) 3D - Complete Hung Hom Finger Pier Re-provisioning (Finish On or Before 31			28-Mar-19	0.0	0.0		18-Mar-19*	13.0	0%				
01121.CD10120	Mar 19) 3C - Complete all Works including Interface with ME4 and Cross Wall Door			14-Mar-19	0.0	0.0		23-Mar-19*	8.0	0%				
01121.CD10150	CWD01 at ME4 (Finish On or Before 31 Mar 19) 4C - Degree 1 of NSL Tunnels from 99+764 to 98+365 (IMT up to CWB C&C)			27-Mar-19	0.0	0.0		27-Mar-19*	4.0	0%				
Milestone Sch	(Finish On or Before 31 Mar 19) edule		17-Sep-16	30-Dec-17	469.0	292.0	31-Mar-17 A	16-May-18	960.0					
Cost Center A	- General Preliminaries		17-Sep-16	16-Sep-17	364.0	50.0	31-Mar-17 A	16-Sep-17	1202.0					
01121.MS10100	Milestone A6 - (Implementation of Plans/Systems + Dwgs and Manuals/Plans			17-Sep-16	0.0	0.0		31-Mar-17 A		100%				
01121.MS10110	Approvals) (Finish On 25-Sep-16) Milestone A7 - (Implementation of Plans/Systems + Dwgs and Manuals/Plans			17-Feb-17	0.0	0.0		29-Jul-17	1252.0	0%		•		
	Approvals) (Fiinsh On 26-Feb-17)													

Data Date: 29-Jul-17 Project ID: 1121-UP-33

Layout: 1121 - updated 3M Rolling Prog

Current Milestone	R
Baseline Milestone (PMP Rev. 1a)	3
Actual Work	
Critical Remaining Work	
Remaining Work	
Baseline (PMP Rev.1a)	
	Actual Work Critical Remaining Work Remaining Work

Updated 3M Rolling Programme Aug - Oct 2017 (Updated as of 30 Jul 2017)

Date	Revision	Checked	Approved
2-Aug-17		Vincent Yeung	John Mecleod

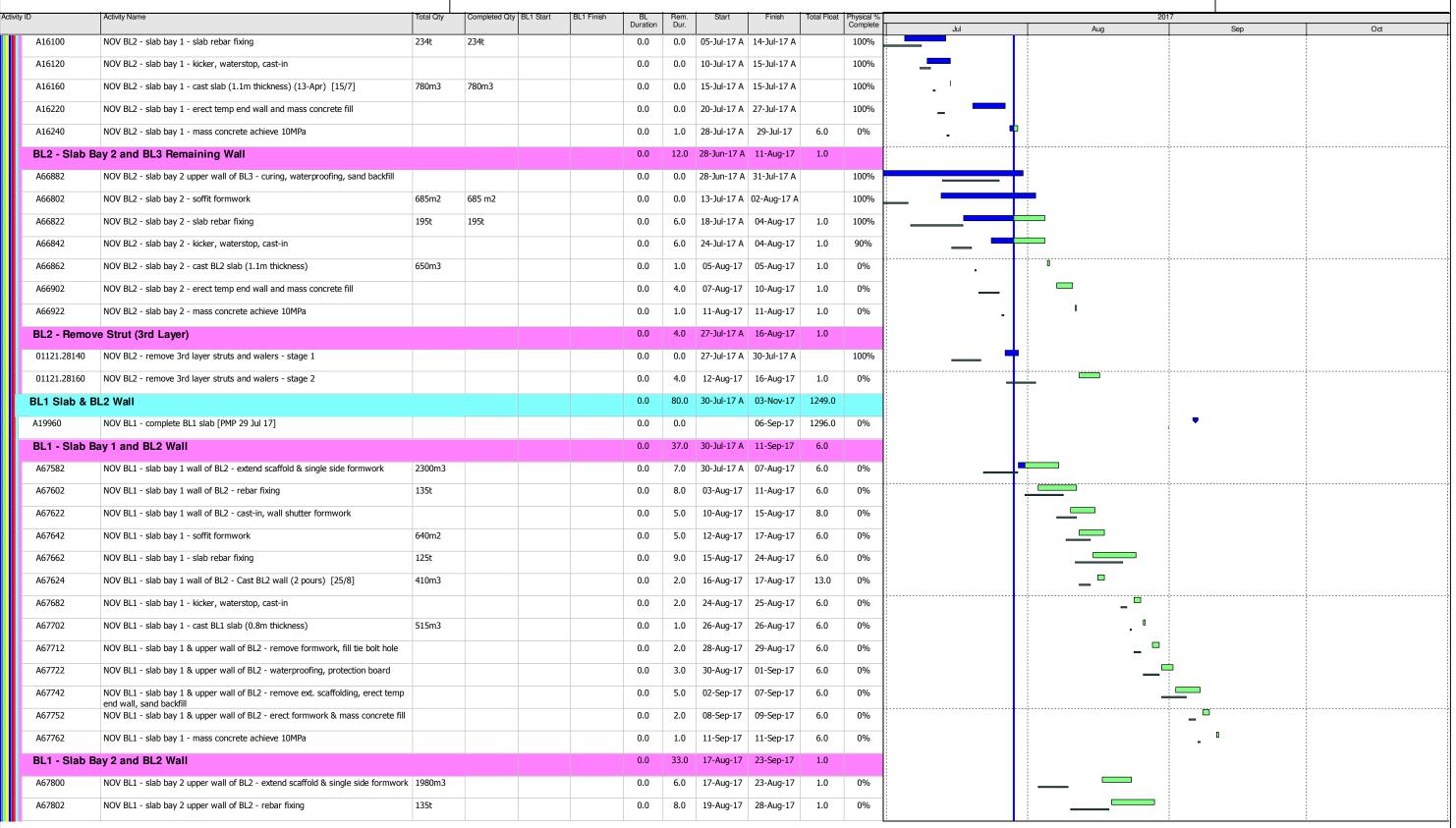
MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

Activity ID	Activity Name	Total Qty	Completed Qty BL1 Start	BL1 Finish	BL	Rem.	Start	Finish	Total Float	Physical %			2017		
		,	, ,		Duration	Dur.				Complete	Jul	Aug		Sep	Oct
01121.MS10120	Milestone A8 - (Implementation of Plans/Systems + Dwgs and Manuals/Plans Approvals) (Finish On 24-Sep-17)			16-Sep-17	0.0	0.0		16-Sep-17		0%				₹	
Cost Center B	- North Ventilation Building (NOV)		29-Jul-17	30-Dec-17	154.0	139.0	06-Sep-17	23-Jan-18	1073.0						
01121.MS10240	Milestone B5 - Complete All Structural Works for NOV from Base Slab to BaseLevel 1 Slab (Finish On or Before 30 Jul 17)			29-Jul-17	0.0	0.0		06-Sep-17	1212.0	0%	⊽		•		
01121.MS10250	i · · · · · · · · · · · · · · · · · · ·			30-Dec-17	0.0	0.0		23-Jan-18	1073.0	0%					
Cost Center C	- Hung Hom Landfall Tunnels		22-Jun-17	20-Jul-17	28.0	69.0	16-Aug-17	24-Oct-17	1164.0						
01121.MS10340	Milestone C6 - All Structure and Temp. Access on Land+All Structure for Marine Cofferdam (Finish On or Before 2 Jul 17)			20-Jul-17	0.0	0.0		16-Aug-17	1233.0	0%	⊽	. •			
01121.MS10350	Milestone C7 - Complete all Backfilling and Seawall Reinstatement (Finish On or Before 2 Jul 17)			22-Jun-17	0.0	0.0		24-Oct-17	1164.0	0%					
Cost Center D	- Immersed Tunnels		09-May-17	27-Dec-17	232.0	53.0	08-Jul-17 A	30-Jan-18	1066.0						
01121.MS10460	Milestone D6 - Complete Foundation for 15% IMT (247m) + Sinking of IMT Units			09-May-17	0.0	0.0		08-Jul-17 A		100%	•				
01121.MS10470	in VH3A, 3B, 3C and 3D (finish on 2-Jul-17) Milestone D6.1 - Complete Bulk Dredging in Area VH3E (Finish on 8-Oct-17)			23-May-17	0.0	0.0		08-Dec-17	1119.0	0%					
01121.MS10480	Milestone D7 - Backfill 15% IMT + 65% foundation +all units in CBTS (Finish on			20-Dec-17	0.0	0.0		30-Jan-18	1066.0	0%					
01121.MS10490	21-Jan-18) Milestone D8 - Complete Tow, Sinking and Foundation for 65% IMT by Length			27-Dec-17	0.0	0.0		30-Jan-18	1066.0	0%					
Cost Centre E	(Finish On or Before 11-Feb-18) - CBTS Tunnels		19-Dec-16	02-Dec-17	348.0	18.0	11-Jul-17 A	03-Dec-17	1124.0						
01121.MS10550	Milestone E5 - Obtain Marine Department Notice for works within area VH3E			19-Dec-16	0.0	0.0		11-Jul-17 A		100%	•				
01121.MS10560	(Finish on 5-Feb -17) Milestone E6 - Complete demolition of Dwall at ME4 (Finish on 8-Oct-17)			19-Sep-17	0.0	0.0		15-Nov-17	1142.0	0%				₹	
01121.MS10570	Milestone E7 - Remove Wave Protection Wall and vacate area VH3B and VH3C			02-Dec-17	0.0	0.0		03-Dec-17	1124.0	0%					
Cost Center F	(Finish on 26-Nov-17) - Associated Works		13-Sep-17	13-Sep-17	0.0	0.0	13-Sep-17	13-Sep-17	1205.0						
<u> </u>	Milestone F5 - Management, M&O of Barging Point Facilities at Engineer's			13-Sep-17	0.0	0.0		13-Sep-17	1205.0	0%				Ş	
Cost Center G	Satisfaction (Finish On 24-Sep-17) - Reprovisioning, Remedial and Improvement Works (RRIW)		15-Aug-17	24-Aug-17	9.0	204.0	24-Oct-17	16-May-18	960.0						
01121.MS10680				24-Aug-17	0.0	0.0		24-Oct-17	1164.0	0%			⊽		
01121.MS10700	Before 13-Aug-17) Milestone G3 - Complete Reprovisioning of Fender Piles at Hung Hom (Finish On			15-Aug-17	0.0	0.0		16-May-18	960.0	0%		⊽			
Access and Va	or Before 24-Sep-17) cation Dates for Works Areas		21-May-17	21-May-17	0.0	0.0	29-Jul-17	29-Jul-17	-69.0						
Access Dates	for Works Areas		21-May-17	21-May-17	0.0	0.0	29-Jul-17	29-Jul-17	-69.0						
	W1B - Land, North West HUH		21-May-17		0.0	0.0	29-Jul-17*		-69.0	0%	•				
CONSTRUCTIO			,	29-Nov-17	209.0	116.0	16-Mar-17 A	14-Dec-17	1214.0						
	- North Ventilation Building NOV							14-Nov-17				<u> </u>			
_	a C&C Tunnel and NOV							14-Nov-17							
NOV Structur					0.0			03-Nov-17							
Engineering					0.0			14-Aug-17							
	ement of NOV / SAT Interface Construction				0.0			14-Aug-17							
	NOV - MS of NOV / SAT interface construction - MTR comment and approve				0.0			14-Aug-17		0%					
BL2 Slab & E					0.0			16-Aug-17							
BL2 - Slab E	Bay 1 and BL3 Remaining Wall				0.0	1.0	19-Jun-17 A	29-Jul-17	6.0						
A16080	NOV BL2 - slab bay 1 - soffit formwork	715m2	715m2		0.0	0.0	19-Jun-17 A	08-Jul-17 A		100%	_				
A16180	NOV BL2 - slab bay 1 upper wall of BL3 - curing, waterproofing, sand backfill				0.0	0.0	19-Jun-17 A	08-Jul-17 A		100%					
					1	-									, ,

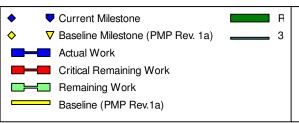
Data Date: 29-Jul-17 Project ID: 1121-UP-33

Layout: 1121 - updated 3M Rolling Prog

♦ •	Current Milestone	R
⋄ ∇	Baseline Milestone (PMP Rev. 1a)	 3
	Actual Work	
	Critical Remaining Work	
	Remaining Work	
	Baseline (PMP Rev.1a)	


Updated 3M Rolling Programme Aug - Oct 2017 (Updated as of 30 Jul 2017)

Revision	Checked	Approved
	Vincent Yeung	John Mecleod
	Revision	



MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Data Date: 29-Jul-17 Project ID: 1121-UP-33

Layout: 1121 - updated 3M Rolling Prog

Updated 3M Rolling Programme Aug - Oct 2017 (Updated as of 30 Jul 2017)

Date	Revision	Checked	Approved
2-Aug-17		Vincent Yeung	John Mecleod

INF INFO

五洋建設-中國建築聯營 Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Activity ID	Activity Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete		2017		
A67822	NOV BL1 - slab bay 2 upper wall of BL2 - cast-in, wall shutter formwork					0.0		24-Aug-17	28-Aug-17	1.0	O%	Jul	Aug	Sep	Oct
A67842	NOV BL1 - slab bay 2 - soffit formwork	550m2				0.0	8.0		01-Sep-17	1.0	0%				
A67862	NOV BL1 - slab bay 2 - slab rebar fixing	105t				0.0	9.0	26-Aug-17		1.0	0%				
A67840	NOV BL1 - slab bay 2 wall of BL2 - Cast BL2 wall (3 pours) [4/9]	450m3				0.0	3.0		31-Aug-17	5.0	0%				
A67882	NOV BL1 - slab bay 2 - kicker, waterstop, cast-in					0.0		04-Sep-17		1.0	0%		=		
A67902	NOV BL1 - slab bay 2 - cast BL1 slab (0.8m thickness) [22/9]	340m3				0.0	1.0	06-Sep-17	06-Sep-17	1.0	0%			U	
A67912	NOV BL1 - slab bay 2 - extra works at SAT interface					0.0	2.0	07-Sep-17	08-Sep-17	1.0	0%			_	
A67922	NOV BL1 - slab bay 2 & upper wall of BL2 - remove formwork, fill tie bolt hole					0.0	3.0	09-Sep-17	12-Sep-17	1.0	0%				
A67942	NOV BL1 - slab bay 2 & upper wall of BL2 - waterproofing, protection board					0.0	4.0	13-Sep-17	16-Sep-17	1.0	0%			_	
A67962	NOV BL1 - slab bay 2 & upper wall of BL2 - remove ext. scaffolding, erect temp end wall, sand backfill					0.0	3.0	18-Sep-17	20-Sep-17	1.0	0%			_	
A67982	NOV BL1 - slab bay 2 & upper wall of BL2 - erect formwork & mass concrete fill					0.0	2.0	21-Sep-17	22-Sep-17	1.0	0%			_	
A68002	NOV BL1 - slab bay 2 - mass concrete achieve 10MPa					0.0	1.0	23-Sep-17	23-Sep-17	1.0	0%			_ 0	
BL1 - Rem	ove Strut (2nd Layer)					0.0	23.0	12-Sep-17	10-Oct-17	1.0					
01121.28180	NOV BL1 - remove 2nd layer struts and walers - stage 1 (bay 1)					0.0	6.0	12-Sep-17	18-Sep-17	6.0	0%				
01121.28200	NOV BL1 - remove 2nd layer struts and walers - stage 2 (bay 2)					0.0	6.0	25-Sep-17	30-Sep-17	1.0	0%				ı.
01121.28210	NOV BL1 - remove A4 platform (stem portion) (bay 2)					0.0	6.0	03-Oct-17	10-Oct-17	1.0	0%				
BL1 - Exe	rnal Wall Bay 1 (CJ @ 1.8mPD)					0.0	19.0	19-Sep-17	12-Oct-17	31.0					
A68182	NOV BL1 - wall bay 2 - erect scaffolding	400m3				0.0	3.0	19-Sep-17	21-Sep-17	9.0	0%				
A68202	NOV BL1 - wall bay 2 - erect single side formwork	330m2				0.0	4.0	22-Sep-17		9.0	0%				
A68222	NOV BL1 - wall bay 2 - rebar fixing	50t				0.0		23-Sep-17		10.0	0%				
A68242	NOV BL1 - wall bay 2 - cast-in and formwork shuttering					0.0		27-Sep-17		10.0	0%				
A68262	NOV BL1 - wall bay 2 - cast external wall [23/10]	165m3				0.0		29-Sep-17		10.0	0%				
		1031113												•	
A68282	NOV BL1 - wall bay 2 - curing, remove formwork					0.0	4.0	30-Sep-17		31.0	0%			<u></u>	
A68302	NOV BL1 - wall bay 2 - apply epoxy cement/primer, waterproofing & protection board					0.0	3.0	06-Oct-17	09-Oct-17	31.0	0%				
A68322	NOV BL1 - wall bay 2 - remove ext. scaffolding, sand fill					0.0	3.0	10-Oct-17	12-Oct-17	31.0	0%				
BL1 - Exe	rnal Wall Bay 2 (CJ @ 1.8mPD)					0.0	22.0	09-Oct-17	03-Nov-17	1.0					
A68342	NOV BL1 - wall bay 1 - erect scaffolding	400m3				0.0	3.0	09-Oct-17	11-Oct-17	1.0	0%				
A68362	NOV BL1 - wall bay 1 - erect single side formwork	330m2				0.0	4.0	12-Oct-17	16-Oct-17	1.0	0%				
A68382	NOV BL1 - wall bay 1 - rebar fixing	50t				0.0	5.0	13-Oct-17	18-Oct-17	1.0	0%				
A68402	NOV BL1 - wall bay 1 - cast-in and formwork shuttering					0.0	3.0	18-Oct-17	20-Oct-17	1.0	0%				
A68422	NOV BL1 - wall bay 1 - cast external wall [17/10]	165m3				0.0	1.0	21-Oct-17	21-Oct-17	1.0	0%				-
A68442	NOV BL1 - wall bay 1 - curing, remove formwork					0.0	4.0	23-Oct-17	26-Oct-17	1.0	0%				
A68462	NOV BL1 - wall bay 1 - apply epoxy cement/primer, waterproofing & protection					0.0	3.0	27-Oct-17	31-Oct-17	1.0	0%				
A68482	board NOV BL1 - wall bay 1 - remove ext. scaffolding, sand fill					0.0	3.0	01-Nov-17	03-Nov-17	1.0	0%				_
NOV Interfa	ce Works					0.0	90.0	28-Jun-17 A	14-Nov-17	14.0					
													<u> </u>		<u>:</u>

Data Date: 29-Jul-17 Project ID: 1121-UP-33

Layout: 1121 - updated 3M Rolling Prog

◆ Current Milestone

◆ Baseline Milestone (PMP Rev. 1a)

Actual Work

Critical Remaining Work

Remaining Work

Baseline (PMP Rev.1a)

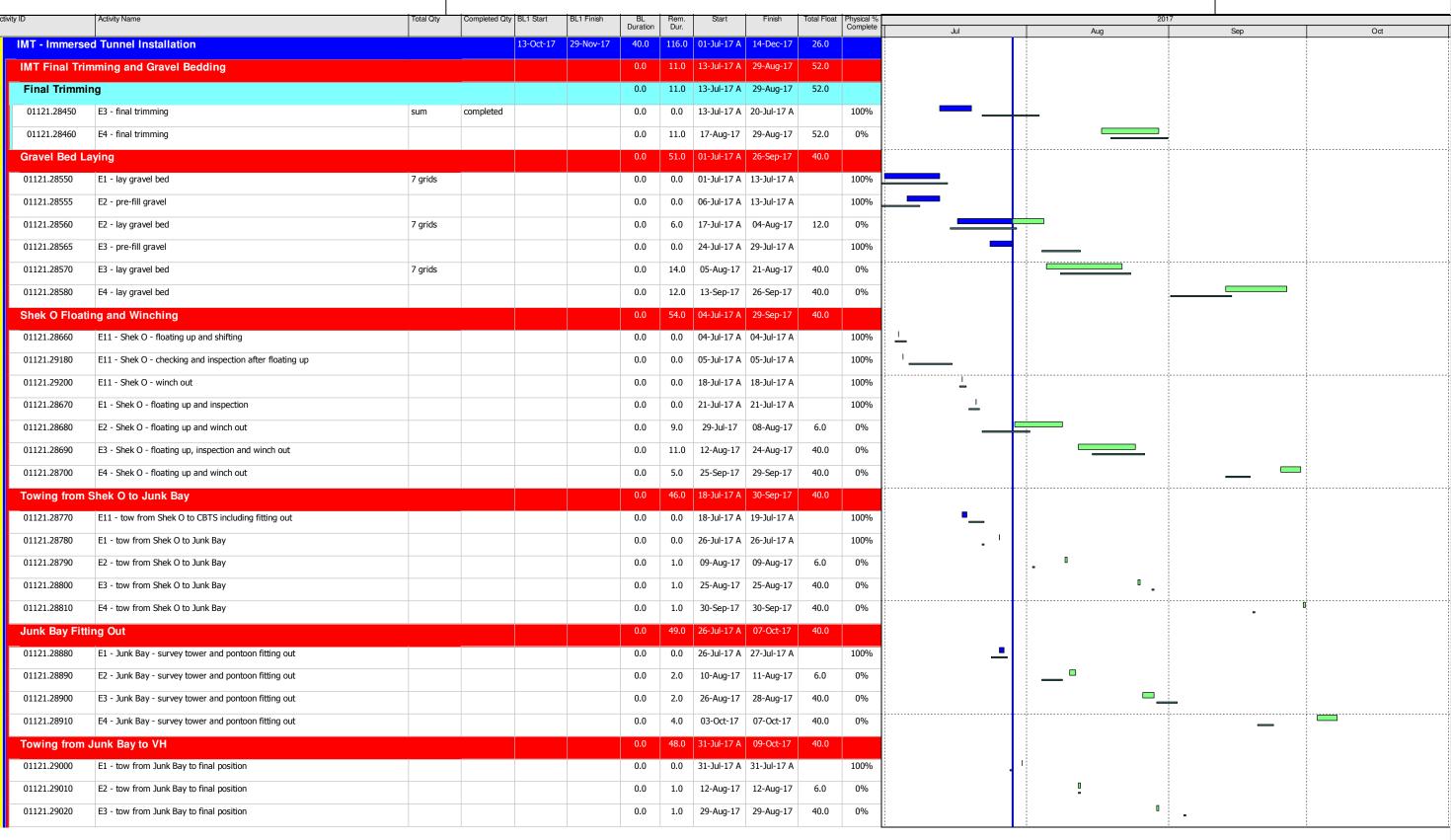
Updated 3M Rolling Programme Aug - Oct 2017 (Updated as of 30 Jul 2017)

Date	Revision	Checked	Approved
)2-Aug-17		Vincent Yeung	John Mecleod

MTRC Shatin to Central Link Contract 1121
NSL Cross Harbour Tunnel

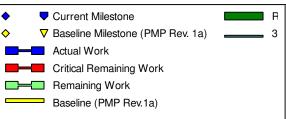
BL Duration Dur. Oct 10.0 Removal of D-Wall A16530 NOV BL2 & BL1 - NOV / SAT interface - Coring of D-wall 19.0 28-Jun-17 A 19-Aug-17 A16540 NOV BL2 - NOV / SAT interface - Preparation works for demolition of D-Wall 30.0 21-Aug-17 23-Sep-17 15.0 A16560 NOV BL2 & BL1 - NOV / SAT interface - demolish Dwall and take over 1112 temp 10.0 0% 0.0 18.0 30-Sep-17 23-Oct-17 sump pits [P10.26 App AA2 1.6(f)] BL3 - NOV SAT Interface 24-Oct-17 14.0 14-Nov-17 A17430 NOV BL3 - Construct temporary bulkhead wall (Option) 0.0 18.0 24-Oct-17 14-Nov-17 14.0 0% BL2 - NOV / SAT Interface 24-Oct-17 11-Nov-17 A16580 NOV BL2 - NOV / SAT interface - construct interface slab [P10.26] 0.0 24-Oct-17 11-Nov-17 Cost Centre C - Hung Hom Cut and Cover Tunnels 19-Apr-17 15-Jul-17 31-May-17 16-Nov-17 **Hung Hom Finger Pier Reinstatement of Finger Pier** 01121.15635 HUH Finger Pier - design amendment - prepare and submit to MTR 29-Jul-17 A 100% 0.0 31-May-17 01121.15645 HUH Finger Pier - design amendment - MTR comment, approve and submit to 20.0 0% 0.0 15.0 06-Jul-17 A 12-Aug-17 01121.15655 HUH Finger Pier - design amendment - BD 1st comment 60.0 20.0 0% 0.0 13-Aug-17 11-Oct-17 01121.15665 HUH Finger Pier - design amendment - review design and re-submission to BD 0.0 30.0 12-Oct-17 16-Nov-17 16.0 0% (2nd submission) **HUH Land base Tunnel (Area C) HUH Area C - Construction of C&C Tunnel (On Land)** 19-Apr-17 15-Jul-17 72.0 42.0 | 28-Jun-17 A | 15-Sep-17 | **HUH Area C - Temp Access Shaft Construction** 42.0 28-Jun-17 A 15-Sep-17 0.0 19-Apr-17 15-Jul-17 HUH Area C - Temporary Access Shaft - Wall 1 up to S2 19-Apr-17 13-May-17 0.0 28-Jun-17 A 24-Jul-17 A HUH Area C - Temp Access Shaft Wall (1st pour) - Erect Scaffolding 28-Jun-17 A 08-Jul-17 A 100% 19-Apr-17 25-Apr-17 100% 01121.19140 HUH Area C - Temp Access Shaft Wall (1st pour) - erect wall formwork 05-May-17 08-May-17 3.0 28-Jun-17 A 20-Jul-17 A 01121.19130 HUH Area C - Temp Access Shaft Wall (1st pour) - Install Rebars (4 walls) 03-Jul-17 A 21-Jul-17 A 100% 26-Apr-17 04-May-17 6.0 0.0 01121.19150 HUH Area C - Temp Access Shaft Wall (1st pour) - preparation and Concrete 21-Jul-17 A 22-Jul-17 A 100% 09-May-17 09-May-17 1.0 0.0 HUH Area C - Temp Access Shaft Wall (1st pour) - CJ Preparation 01121.19160 10-May-17 13-May-17 4.0 0.0 23-Jul-17 A 24-Jul-17 A 100% HUH Area C - Temporary Access Shaft - Wall 2 up to S1 25-Jul-17 A 15-Sep-17 29-May-17 15-Jul-17 01121.19190 HUH Area C - Temp Access Shaft Wall (2nd pour) - Erect Scaffolding 29-May-17 02-Jun-17 4.0 10.0 25-Jul-17 A 09-Aug-17 0.0 0% 01121.19200 HUH Area C - Temp Access Shaft Wall (2nd pour) - Install Rebars (4 walls) 03-Jun-17 09-Jun-17 29-Jul-17 A 12-Aug-17 0% 01121.19210 HUH Area C - Temp Access Shaft Wall (2nd pour) - weld angle & erect 10-Jun-17 13-Jun-17 29-Jul-17 A 14-Aug-17 01121.19220 HUH Area C - Temp Access Shaft Wall (2nd pour) - preparation and Concrete 0% 14-Jun-17 14-Jun-17 1.0 15-Aug-17 16-Aug-17 HUH Area C - Temp Access Shaft Wall - Remove Formwork 01121.19230 15-Jun-17 19-Jun-17 4.0 6.0 17-Aug-17 23-Aug-17 0.0 0% 01121.19240 HUH Area C - Temp Access Shaft Wall - Backfill to below Strut S3 30-Jun-17 5.0 30-Aug-17 0.0 0% 26-Jun-17 6.0 24-Aug-17 01121.19250 HUH Area C - Temp Access Shaft Wall - Remove Strut S3 31-Aug-17 04-Sep-17 03-Jul-17 04-Jul-17 2.0 4.0 0.0 0% 01121.19270 HUH Area C - Temp Access Shaft Wall - remove Strut S2 and S1 10-Jul-17 15-Jul-17 6.0 05-Sep-17 08-Sep-17 0.0 0% 4.0 HUH Area C - Temp Access Shaft Wall - backfill to below Strut S2 01121.19260 05-Jul-17 08-Jul-17 09-Sep-17 15-Sep-17 0.0 0% Cost centre D - Immersed Tunnels 13-Oct-17 29-Nov-17 40.0 116.0 01-Jul-17 A 14-Dec-17

Data Date: 29-Jul-17 Project ID: 1121-UP-33


Layout: 1121 - updated 3M Rolling Prog

	Current Milestone	R
⋄ ∇	Baseline Milestone (PMP Rev. 1a)	3
	Actual Work	
	Critical Remaining Work	
	Remaining Work	
	Baseline (PMP Rev.1a)	

Updated 3M Rolling Programme Aug - Oct 2017 (Updated as of 30 Jul 2017)


Date	Revision	Checked	Approved
2-Aug-17		Vincent Yeung	John Mecleod

MTRC Shatin to Central Link Contract 1121
NSL Cross Harbour Tunnel

Data Date: 29-Jul-17 Project ID: 1121-UP-33

Layout: 1121 - updated 3M Rolling Prog

Updated 3M Rolling Programme Aug - Oct 2017 (Updated as of 30 Jul 2017)

Date	Revision	Checked	Approved
2-Aug-17		Vincent Yeung	John Mecleod

五洋建設-中國建築聯營

Penta-Ocean – China State Joint Venture

MTRC Shatin to Central Link Contract 1121
NSL Cross Harbour Tunnel

tivity ID	Activity Name	Total Qty	Completed Qty BL1 Start	BL1 Finish	BL	Rem.	Start	Finish	Total Float	Physical %		2017
-					Duration	Dur.				Physical % Complete	Jul	Aug Sep Oct
01121.29030	E4 - tow from Junk Bay to final position				0.0	1.0	09-Oct-17	09-Oct-17	40.0	0%		•
IMT Submerg	ing and Locking Fill				0.0	65.0	19-Jul-17 A	14-Oct-17	40.0			
01121.29120	E11 - temp. store above E10				0.0	0.0	19-Jul-17 A	19-Jul-17 A		100%	۱ -	
01121.29122	E11 - dismantle and transport fittings to Junk Bay				0.0	0.0	20-Jul-17 A	20-Jul-17 A		100%	' -	
01121.29130	E1 - sinking, jointing and alignment adjustment				0.0	1.0	29-Jul-17	29-Jul-17	6.0	0%	0	
01121.29150	E1 - dismantle survey towers and pontoon				0.0	3.0	31-Jul-17	02-Aug-17	6.0	0%		=
01121.29170	E1 - transport fittings to Junk Bay				0.0	1.0	03-Aug-17	03-Aug-17	6.0	0%		<u>•</u>
01121.29190	E2 - sinking, jointing and alignment adjustment				0.0	2.0	13-Aug-17	14-Aug-17	7.0	0%		=
01121.29210	E2 - dismantle survey towers and pontoon				0.0	3.0	15-Aug-17	17-Aug-17	6.0	0%		=
01121.29230	E2 - transport fittings to Junk Bay				0.0	1.0	18-Aug-17	18-Aug-17	6.0	0%		0
01121.29250	E3 - sinking, jointing and alignment adjustment				0.0	1.0	30-Aug-17	30-Aug-17	40.0	0%		· .
01121.29270	E3 - dismantle survey towers and pontoon				0.0	3.0	31-Aug-17	02-Sep-17	40.0	0%		- -
01121.29290	E3 - transport fittings to Junk Bay				0.0	1.0	04-Sep-17	04-Sep-17	40.0	0%		0 _
01121.29310	E4 - sinking, jointing and alignment adjustment				0.0	1.0	10-Oct-17	10-Oct-17	40.0	0%		
01121.29330	E4 - dismantle survey towers and pontoon				0.0	3.0	11-Oct-17	13-Oct-17	40.0	0%		
01121.29350	E4 - transport fittings to CBTS				0.0	1.0	14-Oct-17	14-Oct-17	40.0	0%		. 0
Locking fill					0.0	67.0	04-Aug-17	23-Oct-17	40.0			
01121.29950	E1 - locking fill	4000m3			0.0	7.0	04-Aug-17	11-Aug-17	6.0	0%		
01121.29960	E2 - locking fill				0.0	6.0	19-Aug-17	25-Aug-17	6.0	0%		
01121.29980	E3 - locking fill				0.0	7.0	05-Sep-17	12-Sep-17	40.0	0%		<u> </u>
01121.30000	E4 - locking fill				0.0	7.0	16-Oct-17	23-Oct-17	40.0	0%		
IMT General F	Fill				0.0	78.0	26-Aug-17	28-Nov-17	40.0			
01121.29730	E1 - general backfill [27,906 m3]	27906m3			0.0	16.0	26-Aug-17	13-Sep-17	48.0	0%		
01121.29750	E2 - general backfill [40,416 m3]	40416m3			0.0	24.0	14-Sep-17	13-Oct-17	48.0	0%		
01121.29770	E3 - general backfill [41,574 m3]	41574m3			0.0	30.0	24-Oct-17	28-Nov-17	40.0	0%		
IMT bulk head					0.0			27-Oct-17				
_	E1 - remove bulkhead HUH/E1							30-Aug-17		0%		
01121.29970	Preparation for internal fitting out work inside IMT							27-Oct-17		0%		
IMT Internal V			13-Oct-17	29-Nov-17				14-Dec-17				
	Illast Concrete and Walkway			29-Nov-17				14-Dec-17				
	IMT1 - Costruct Ballast concrete and walkway			29-Nov-17				14-Dec-17		0%		
	- CBTS Tunnels		15 00.17					15-Nov-17				
VH3C & VH3D								06-Sep-17				
	akwater, Dredging and Gravel Bedding							06-Sep-17				
	CBTS - Remove guide piles (3 nos.)							06-Sep-17		00/-		
01121.19490-100	CDTS - Kernove guide piles (5 nos.)				0.0	3.0	04-5ep-1/	00-Sep-1/	48.0	0%		

Data Date: 29-Jul-17
Project ID: 1121-UP-33
Leveut: 1121 - undeted 3M Polling

Layout: 1121 - updated 3M Rolling Prog

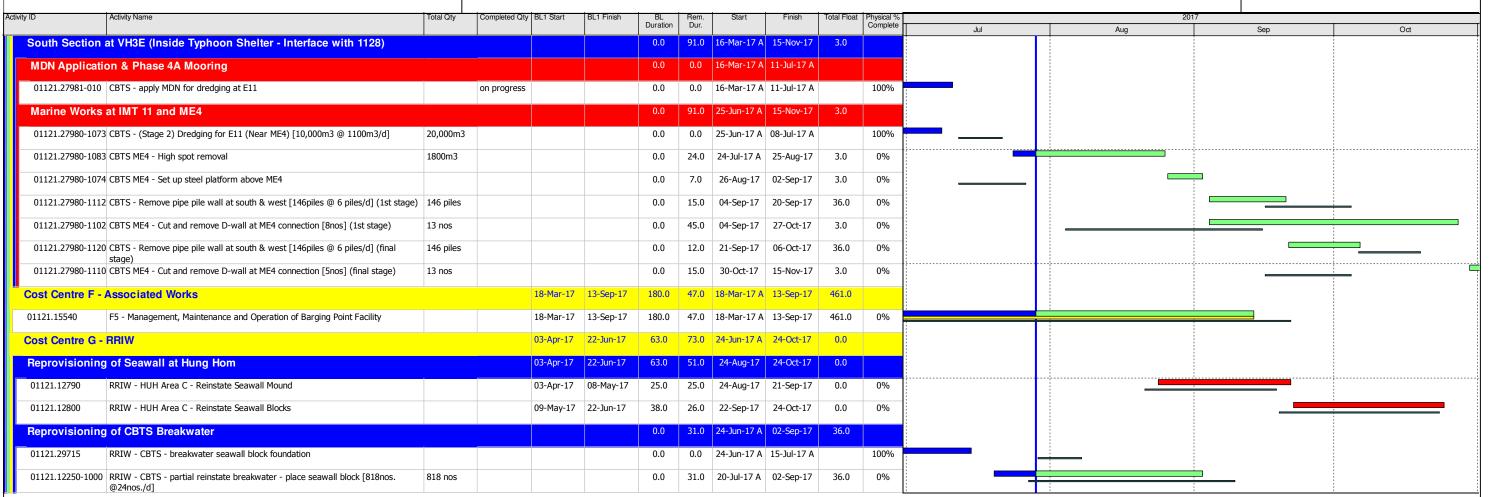
◆ Current Milestone

◆ ▼ Baseline Milestone (PMP Rev. 1a)

Actual Work

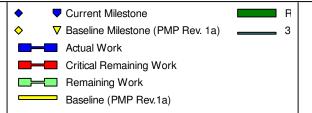
Critical Remaining Work

Remaining Work


Baseline (PMP Rev.1a)

Updated 3M Rolling Programme Aug - Oct 2017 (Updated as of 30 Jul 2017)

Date	Revision	Checked	Approved
2-Aug-17		Vincent Yeung	John Mecleod



MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Data Date: 29-Jul-17 Project ID: 1121-UP-33

Layout: 1121 - updated 3M Rolling Prog

Updated 3M Rolling Programme Aug - Oct 2017 (Updated as of 30 Jul 2017)

Date	Revision	Checked	Approved
02-Aug-17		Vincent Yeung	John Mecleod

APPENDIX B ACTION AND LIMIT LEVELS

APPENDIX B – Action and Limit Levels

Derived Action and Limit Levels for Water Quality (Wet Season)

Parameters	Action Level	Limit Level					
WSD Salt Water Intake (Station 14, A, WSD9, WSD17)							
DO in mg/L	<2.1	<2					
SS in mg/L	6.0	6.0					
Turbidity in NTU	4.7	6.5					
Cooling Water Intake (Station 8, 9, 21 & 34)							
DO in mg/L	2.8	2.7					
SS in mg/L	6.9	9.1					
Turbidity in NTU	11.3	17.2					
GB3							
DO in mg/L	5.5	5.3					
SS in mg/L	4.5	4.5					
Turbidity in NTU	2.1	2.4					

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Derived Action and Limit Levels for Water Quality (Dry Season)

Parameters	Action Level	Limit Level					
WSD Salt Water Intake (Station 14, A, WSD9, WSD17)							
DO in mg/L	<2.1	<2					
SS in mg/L	6.9	6.9					
Turbidity in NTU	5.0	7.0					
Cooling Water Intake (Station 8, 9, 21 & 34)							
DO in mg/L	3.3	3.2					
SS in mg/L	8.0	10.4					
Turbidity in NTU	12.2	18.5					
GB3							
DO in mg/L	6.8	6.5					
SS in mg/L	9.3	9.3					
Turbidity in NTU	5.0	5.6					

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

APPENDIX C WATER QUALITY MONITORING SCHEDULE

Shatin to Central Link - Contract No. 1121 NSL Cross Harbour Tunnels Water Quality Monitoring Schedule (July 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Jul
A 7 1						0.7.1
2-Jul	3-Ju	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul
	Mid-Ebb 08:57		Mid-Ebb 10:27		Mid-Ebb 11:29	
	Mid-Flood * 15:06	i	Mid-Flood * 17:07		Mid-Flood 18:35	
9-Jul	10-Ju	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul
, gu.	1000	1100	12 001	15 041	11,001	15 041
	Mid-Ebb 13:06		Mid-Flood 07:31		Mid-Flood 08:59	
	Mid-Flood 20:18		Mid-Ebb 14:18		Mid-Ebb 15:36	
16-Jul	17-Ju	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul
	Mid-Flood * 12:21		Mid-Ebb 08:50		Mid-Ebb 10:38	
	Mid-Ebb 18:21		Mid-Flood 15:14		Mid-Flood 17:31	
23-Jul	24-Ju	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul
	Mid-Ebb 13:04		Mid-Flood 07:48		Mid-Flood 09:21	
	Mid-Flood 20:00		Mid-Ebb 14:33		Mid-Ebb 15:56	
30-Jul	31-Ju					
30-Jul	51-Ju					
	Mid-Flood * 12:47					
	Mid-Ebb * 18:36					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Water Quality Monitoring Stations

C1, C2, 9, 21, 34, A, WSD9, WSD17

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

- 2) The reasons for choosing the monitoring day (i.e 3, 5, 17 and 31 July 2017) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Shatin to Central Link - Contract No. 1121 NSL Cross Harbour Tunnels Tentative Water Quality Monitoring Schedule (August 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-Aug	2-Aug	3-Aug	4-Aug	5-Aug
			Mid-Ebb 09:18 Mid-Flood * 16:11		Mid-Ebb 10:28 Mid-Flood 17:49	
6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug
	Mid-Ebb 12:11 Mid-Flood 19:22		Mid-Flood 13:22 Mid-Ebb 20:14		Mid-Flood 08:11 Mid-Ebb 14:38	
13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug
	Mid-Flood 10:51 Mid-Ebb 16:53		Mid-Ebb 07:21 Mid-Flood * 13:51		Mid-Ebb 09:33 Mid-Flood 16:38	
20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug
	Mid-Ebb 12:03 Mid-Flood 18:55		Mid-Ebb 13:29 Mid-Flood 20:03		Mid-Flood 08:21 Mid-Ebb 14:45	
27-Aug	28-Aug	29-Aug	30-Aug	31-Aug		
	Mid-Flood * 10:44 Mid-Ebb * 16:43		Mid-Ebb 07:16 Mid-Flood * 14:41			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Water Quality Monitoring Stations

C1, C2, 9, 21, 34, A, WSD9, WSD17

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

- 2) The reasons for choosing the monitoring day (i.e 2, 16, 28 and 30 August 2017) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
- b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

APPENDIX D
WATER QUALITY MONITORING RESULTS
AND GRAPHICAL PRESENTATIONS

Water Quality Monitoring Results at 9 - Mid-Ebb Tide

Date	Condition	Condition**			h (m)								ration (%)	Dissol					1			
		Condition	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-		-	-	-	-	-	-	-		-	-		-	-	
3-Jul-17	Cloudy	Moderate	08:46	Middle	1.5	27.5	27.5	8.2	8.3	33.7	33.7	92.7	92.6	6.4	6.4	6.4	4.5	4.2	4.2	6	6.0	6.0
l				Bottom	_	27.4	-	8.3	-	33.7	-	92.5	-	6.3	-	ł	3.9	-		6	_	+
				Bottom		-	-	-	-	-	-	-	-	-	-		-	-		-	-	<u> </u>
l				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
5-Jul-17	Cloudy	Moderate	09:58	Middle	1.5	26.3 26.3	26.3	8.2 8.3	8.3	26.6 26.7	26.7	93.3 94.6	94.0	6.4 6.5	6.5	6.5	4.3 4.2	4.3	4.3	4	4.0	4.0
l				Bottom	-	-	-	-	-	-	_	-	-	-	-	İ	-	-		-	-	1
						-				-		-		-			-			-		
l				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
7-Jul-17	Cloudy	Moderate	11:09	Middle	1.1	26.7 26.7	26.7	8.1 8.2	8.2	28.5 28.5	28.5	99.7 99.5	99.6	6.9 6.9	6.9	6.9	4.5 3.9	4.2	4.2	5 5	5.0	5.0
l				Bottom	-	-	-	-	-	-	-	-	-	-	-	Ī	-	-		-	-	1
				Surface	-	-	-			-	_	-	-	-	-		-	-		-		
l						26.8		8.3	_	27.8	_	129.7		8.9		1	1.8			- 6	_	4
10-Jul-17	Fine	Moderate	12:45	Middle	1.1	26.8	26.8	8.3	8.3	27.8	27.8	130.5	130.1	8.9	8.9	8.9	1.8	1.8	1.8	7	6.5	6.5
l				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
12-Jul-17	Fine	Moderate	13:35	Middle	1.1	27.8	27.8	8.7	8.7	23.8	23.8	155.9	156.0	10.7	10.7	10.7	2.6	2.7	2.7	- 6	6.0	6.0
12-Jul-1/	Fille	wouerate	13.33			27.8		8.7		23.8	23.0	156.1		10.7		10.7	2.7	2.1	2.1	6	0.0	- 0.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
l				Surface	-	- 1	-	- 1	-	-	-	-	-	-	-		-	-		- :	-	
14-Jul-17	Cloudy	Rough	14:53	Middle	1.1	27.4	27.4	8.6	8.6	26.0	26.0	124.7	124.6	8.5	8.5	8.5	2.0	2.0	2.0	6	6.5	6.5
-	,	3				27.3		8.6		26.0		124.5		8.5		+	2.0			7		-
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
l				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
17-Jul-17	Rainy	Calm	18:35	Middle	1.5	27.5 27.6	27.6	8.5 8.5	8.5	21.5 23.4	22.5	83.5 81.4	82.5	5.9 5.6	5.8	5.8	4.0 4.2	4.1	4.1	6 6	6.0	6.0
l				Bottom	-	-	-	-	-	-	_	-	-	-	-	Ī	-	-		-	-	1
						-				-		-		-			-			-		
l				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-
19-Jul-17	Fine	Calm	08:47	Middle	1.5	27.2 27.3	27.3	8.3 8.4	8.4	21.6 21.2	21.4	70.1 81.5	75.8	4.9 5.7	5.3	5.3	2.0 2.0	2.0	2.0	5 5	5.0	5.0
l				Bottom	-	-		-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-		-	-	-	-	-	-			-	-		-	-	
l						27.7		8.2		25.8		73.9		5.0		1	0.7			- 6		4
21-Jul-17	Sunny	Moderate	10:19	Middle	1.5	27.8	27.8	8.2	8.2	25.6	25.7	74.9	74.4	5.1	5.1	5.1	0.7	0.7	0.7	5	5.5	5.5
l				Bottom	-	-	-		-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
24-Jul-17	Sunny	Moderate	12:43	Middle	1	27.6	27.6	8.4	8.4	26.3	26.4	75.3	75.6	5.1	5.2	5.2	0.9	0.9	0.9	6	6.0	6.0
2. Oui-17	Guilly	loucrate	12.40			27.5		8.4		26.5		75.9		5.2		5.2	0.9		0.5	- 6		- 0.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	<u> </u>
Ų				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
26-Jul-17	Fine	Moderate	14:15	Middle	1.5	28.1	28.2	8.3	8.3	27.1	27.1	72.6	72.3	4.9	4.9	4.9	1.2	1.1	1.1	4	4.5	4.5
Ų				Bottom	-	28.2	_	8.3	_	27.0	_	71.9	-	4.8	-	ŧ	1.0			5	_	ł
						-		-		-		-		-			-			-		<u> </u>
Ų				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
28-Jul-17	Sunny	Moderate	16:32	Middle	1.5	28.6 28.5	28.6	8.6 8.6	8.6	27.6 27.7	27.7	65.2 58.9	62.1	4.3 3.9	4.1	4.1	1.5 1.6	1.6	1.6	3	3.0	3.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	İ	-	-	1	-	-	1
	<u> </u>					-		-		-	1	-		-		1	-		1	-	1	+
				Surface	-	-	-	-	-	-	-	-	-	-	-	1	-	-		-	-	-
31-Jul-17	Sunny	Moderate	18:08	Middle	1.5	26.8 26.7	26.8	8.5 8.5	8.5	29.2 29.3	29.3	81.5 81.8	81.7	5.4 5.4	5.4	5.4	2.8 2.7	2.8	2.8	5 5	5.0	5.0
				Bottom	-	-	-	-	-	-	-		-	-	-	Ī	-	-		-	-	1

Water Quality Monitoring Results at 9 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	iture (°C)		Н	Salin	ity ppt		ration (%)	Dissol	ved Oxygen		1	urbidity(NTL			nded Solids	
Date	Condition	Condition**	Time	Бери	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-		-	-	-		-		-	-			-	
3-Jul-17	Cloudy	Moderate	14:27	Middle	1.5	27.6 27.5	27.6	8.4 8.4	8.4	31.4 31.4	31.4	98.8 100.7	99.8	6.9 7.0	7.0	7.0	7.9 7.2	7.6	7.6	6 6	6.0	6.0
				Bottom	-	-	-	-	-	-	-	-	-		-		-	-		-	-	
				Surface	-	- :	-	-	-	-	-	-	-	:	-		-	-		- :	-	
5-Jul-17	Cloudy	Moderate	16:23	Middle	1.5	27.1 27.0	27.1	7.9 7.9	7.9	25.4 25.3	25.4	85.5 86.3	85.9	6.0 6.0	6.0	6.0	7.8 7.5	7.7	7.7	6	6.0	6.0
				Bottom		-		-	-	-	-	-	-	•	-		-	-			-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-			-	
7-Jul-17	Cloudy	Moderate	17:50	Middle	1.1	27.2 27.2	27.2	8.0 8.0	8.0	24.6 24.5	24.6	109.2 111.5	110.4	7.6 7.7	7.7	7.7	4.9 4.1	4.5	4.5	6	6.0	6.0
				Bottom		-		-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
10-Jul-17	Fine	Moderate	19:30	Middle	1.1	27.1 27.1	27.1	8.4 8.4	8.4	26.9 26.9	26.9	147.6 148.9	148.3	10.1 10.2	10.2	10.2	2.8 2.6	2.7	2.7	6	6.0	6.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface		-	-	-	-	-	-	-	-	-	-		-	-		-	-	
12-Jul-17	Cloudy	Moderate	07:23	Middle	1.1	26.9 26.8	26.9	8.4 8.4	8.4	25.7 25.7	25.7	102.2 102.1	102.2	7.1 7.1	7.1	7.1	2.1	2.0	2.0	4	4.0	4.0
				Bottom	-		-	-	-	25.7	-	102.1	-		-		1.8	-		-	-	Ì
				Surface	-		-	-	-	-	-	-	-	-	-		-	-			-	
14-Jul-17	Fine	Rough	08:50	Middle	1.1	27.4 27.3	27.4	8.6 8.6	8.6	24.6 24.8	24.7	116.1 114.7	115.4	8.0 7.9	8.0	8.0	2.1 2.0	2.1	2.1	5 5	5.0	5.0
				Bottom		-		-	-	-	-	- 114.7	-	-	-		-	-		-	-	
				Surface		-	-	-	-	-	-	-	-	-	-		-	-		-	-	
17-Jul-17	Rainy	Calm	11:54	Middle	1.5	27.7	27.7	8.5	8.5	24.8	24.8	77.3	77.3	5.3	5.3	5.3	1.4	1.3	1.3	3	3.0	3.0
	-			Bottom		27.7		8.5	-	24.8	-	77.2	-	5.3	-		1.2	-		- 3		
				Surface		-		-	-	-	-	-	-	-	-		-	-		-	-	
19-Jul-17	Sunny	Moderate	15:12	Middle	1.5	27.8 27.7	27.8	8.4 8.4	8.4	21.5 21.7	21.6	83.3 82.5	82.9	5.8 5.8	5.8	5.8	1.4	1.4	1.4	3	3.0	3.0
				Bottom		-		-	-	-		-	-	-	-		-	-		-		
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
21-Jul-17	Fine	Rough	16:47	Middle	1.5	28.0	28.0	8.4	8.4	25.7	25.7	113.4	112.0	7.7	7.6	7.6	1.4	1.3	1.3	4	4.5	4.5
		-		Bottom	-	28.0	-	8.4	-	25.7	-	110.6	-	7.5	-		1.2	-		5	-	
				Surface		-	-	-	-	-	-	-	-	-	-		-	-		-	-	
24-Jul-17	Cloudy	Moderate	20:23	Middle	1.1	27.8	27.8	8.4	8.4	26.1	26.2	81.2	80.8	5.5	5.5	5.5	1.1	1.1	1.1	4	4.0	4.0
	,			Bottom		27.7	-	8.4	-	26.2	-	80.3	-	5.5	-		1.1	-		-	-	
				Surface		-	-	-	-	-	-	-	-	-	-		-	-		-	-	
26-Jul-17	Sunny	Moderate	07:34	Middle	1.5	27.6	27.6	8.3	8.3	27.1	27.1	65.3	65.2	4.4	4.4	4.4	0.9	0.9	0.9	4	3.5	3.5
_5 007	Cumy		07.01	Bottom	-	27.6	-	8.3	-	27.1	-	65.1	-	4.4	-		0.9	-	0.0	3	-	0.5
				Surface		-	-	-	-	-	-	-	-	-	-		-	-		-	-	
28-Jul-17	Sunny	Moderate	09:05	Middle	1.5	28.0	28.0	8.6	8.6	27.4	27.4	55.2	55.5	3.7	3.8	3.8	1.6	1.7	1.7	4	4.0	4.0
20=Jul= 17	Sumiy	wouchale	05.00	Bottom	1.5	28.0	20.0	8.6	0.0	27.4	-	55.8	55.5	3.8	3.0	3.0	1.7	1.7	1.7	-	4.0	4.0
						-		-		-		-		-			-			-		
24 1-1-47	e	Mad4	10:44	Surface	- 1.5	26.8	-	8.5	- 0.5	29.2	- 20.1	83.1	- 02.1	5.5	-		2.5	- 2.5	2.5	5	-	
31-Jul-17	Sunny	Moderate	12:41	Middle	1.5	26.8	26.8	8.5	8.5	29.0	29.1	83.1	83.1	5.5	5.5	5.5	2.5	2.5	2.5	5	5.0	5.0
				Bottom	-		-	-	-	-	-	-	-	-	-		-	-		-	-	<u></u>

Water Quality Monitoring Results at 21 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ture (°C)	р	Н	Salin	nity ppt	DO Satu	ration (%)		ved Oxygen		Т	urbidity(NTI		Suspe	nded Solids	
Date	Condition	Condition**	Time	Бери	()	Value	Average	Value	Average	Value	Average	Value	Average		Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.5 27.5	27.5	8.1 8.2	8.2	31.2 31.1	31.2	88.4 88.2	88.3	6.1 6.1	6.1		4.1 4.2	4.2		5	5.0	
3-Jul-17	Cloudy	Moderate	09:42	Middle	3.5	27.2 27.3	27.3	8.1 8.2	8.2	32.1 32.1	32.1	84.2 85.0	84.6	5.8 5.8	5.8	5.9	5.8 5.1	5.5	5.6	6	6.0	5.8
				Bottom	6	27.2 27.1	27.2	8.1 8.1	8.1	33.5 33.6	33.6	84.1 83.2	83.7	5.8 5.7	5.8	İ	7.3 6.8	7.1		6	6.5	
				Surface	1	26.3	26.3	8.1	8.1	24.6	24.6	90.4	90.1	6.2	6.2		4.8	4.7		5	5.0	
5-Jul-17	Cloudy	Moderate	10:50	Middle	3.5	26.3 26.0	26.1	8.1 8.0	8.1	24.6 25.3	25.4	89.8 85.9	86.2	6.2 5.9	5.9	6.0	4.6 6.8	6.4	6.3	5 4	4.0	5.7
0 0di 17	oloddy	moderate	10.00	Bottom	6	26.1 26.0	26.0	8.2 8.1	8.1	25.4 26.6	26.6	86.5 85.0	84.4	5.9 5.8	5.8	- 0.0	6.0 8.3	7.9	0.0	4 8	8.0	
						25.9 26.8		8.0 8.1		26.6 26.4	1	83.8 96.1		5.7 6.7			7.4 4.0			8		
				Surface	1	26.8 26.4	26.8	8.1 8.0	8.1	26.4 27.2	26.4	95.3 91.5	95.7	6.6 6.3	6.7		4.1 5.8	4.1		4 5	4.0	
7-Jul-17	Cloudy	Moderate	12:04	Middle	4	26.6 26.5	26.5	8.1 8.0	8.1	27.2	27.2	91.4 91.9	91.5	6.3	6.3	6.4	5.1 7.2	5.5	5.5	5	5.0	5.0
				Bottom	7	26.3	26.4	8.0	8.0	28.5	28.4	90.7	91.3	6.3	6.3		6.7	7.0		6	6.0	
				Surface	1	27.2 27.2	27.2	8.2 8.2	8.2	28.8 28.8	28.8	118.0 117.8	117.9	8.0 8.0	8.0		1.7 1.6	1.7		4	4.0	
10-Jul-17	Fine	Moderate	13:40	Middle	4	26.3 26.2	26.3	8.2 8.2	8.2	29.7 29.8	29.8	113.2 110.7	112.0	7.7 7.6	7.7	6.5	1.6 1.7	1.7	2.7	4	4.0	4.7
				Bottom	7	24.5 24.5	24.5	8.1 8.0	8.1	33.6 33.6	33.6	54.7 52.7	53.7	3.8	3.7	Ī	4.7 4.4	4.6		6	6.0	
				Surface	1	27.7 27.7	27.7	8.5 8.5	8.5	26.7 26.7	26.7	126.0 126.4	126.2	8.6 8.6	8.6		1.9	1.9		7	7.0	
12-Jul-17	Fine	Moderate	14:30	Middle	4	26.5	26.5	8.4	8.4	28.2	28.2	108.2	108.2	7.4	7.4	6.7	1.6	1.6	2.2	7 7	7.0	6.3
				Bottom	7	26.5 24.9	24.9	8.4 8.2	8.2	28.2 31.1	31.1	108.2 59.1	58.7	7.4 4.1	4.1		1.5 2.9	3.1		5	5.0	
				Surface	1	24.9 27.8	27.9	8.2 8.6	8.6	31.1 26.7	26.7	58.3 140.6	142.1	9.5	9.6		3.2 1.6	1.7		5 6	6.0	
14-Jul-17	Cloudy	Rough	15:48	Middle	4	28.0 27.2	27.2	8.6 8.5	8.5	26.6 27.2	27.2	143.6 120.1	119.7	9.7 8.2	8.2	7.4	1.8 1.9	1.9	2.6	6 7	7.0	6.3
14-Jul-17	Cloudy	Rough	15.40			27.2 25.5		8.5 8.3		27.2 30.3		119.2 65.5		8.1 4.5		1.4	1.8 4.4		. 2.0	7		0.3
				Bottom	7	25.4 28.3	25.5	8.3 8.6	8.3	30.4 24.7	30.4	65.8 95.6	65.7	4.5 6.5	4.5		4.1 1.9	4.3		6	6.0	
				Surface	1	28.2	28.3	8.6	8.6	25.1	24.9	93.2 94.5	94.4	6.3	6.4		1.9	1.9		4	4.5	
17-Jul-17	Rainy	Calm	17:51	Middle	3.5	28.3	28.2	8.6	8.6	24.9	25.1	93.4	94.0	6.3	6.4	6.3	1.7	1.7	3.1	5 5	5.0	5.5
				Bottom	6	28.1 28.1	28.1	8.6 8.6	8.6	25.4 25.3	25.4	87.5 87.6	87.6	5.9 6.0	6.0		6.0 5.6	5.8		7 7	7.0	
				Surface	1	27.5 27.4	27.5	8.4 8.4	8.4	21.4 21.6	21.5	82.0 77.6	79.8	5.8 5.4	5.6		1.8 1.7	1.8		4	4.0	
19-Jul-17	Fine	Calm	09:41	Middle	3.5	27.4 27.4	27.4	8.4 8.4	8.4	23.2 22.9	23.1	66.8 68.3	67.6	4.6 4.8	4.7	4.5	1.4 1.6	1.5	1.7	5 5	5.0	4.7
				Bottom	6	26.9 27.1	27.0	8.3 8.3	8.3	26.5 25.5	26.0	45.2 50.9	48.1	3.1 3.5	3.3		1.9 1.8	1.9		5	5.0	
				Surface	1	28.3	28.3	8.4 8.3	8.4	26.1 26.1	26.1	98.8 95.2	97.0	6.7	6.6		1.1	1.1		4 4	4.0	
21-Jul-17	Sunny	Moderate	11:15	Middle	3.5	27.9	27.8	8.4	8.4	26.3	26.4	100.2	92.2	6.4	6.3	5.7	0.8	0.9	2.0	6	6.0	6.2
	,			Bottom	6	27.7 27.3	27.3	8.3 8.2	8.2	26.4 27.2	27.1	84.1 56.7	60.1	5.7 3.9	4.1		0.9 3.9	4.0		8	8.5	
				Surface	1	27.3 27.7	27.8	8.2 8.4	8.4	27.0 27.6	27.6	63.4 73.3	72.4	4.3 5.0	4.9		4.0 1.2	1.1		9	4.0	
						27.8 27.5		8.4 8.4		27.6 27.8		71.5 68.4		4.8 4.6			1.0			4 8		
24-Jul-17	Sunny	Moderate	13:22	Middle	4	27.5 27.2	27.5	8.4 8.4	8.4	27.7	27.8	68.8	68.6	4.7	4.7	4.6	1.1 3.7	1.1	2.0	8	8.0	5.7
				Bottom	7	27.2	27.2	8.3 8.3	8.4	28.1 27.9	28.1	59.5 79.4	60.9	4.0	4.1		3.7	3.7		5	5.0	
				Surface	1	28.9	28.9	8.3	8.3	27.9	27.9	77.6	78.5	5.1	5.2	1	1.1	1.1		4	4.0	
26-Jul-17	Fine	Moderate	15:10	Middle	3.5	28.4 28.4	28.4	8.3 8.3	8.3	28.0 28.0	28.0	77.7 76.1	76.9	5.2 5.1	5.2	5.1	1.0 1.0	1.0	1.3	3	3.0	4.3
				Bottom	6	28.1 28.0	28.1	8.3 8.3	8.3	28.2 28.2	28.2	73.8 72.3	73.1	4.9 4.8	4.9		1.9 1.7	1.8		6 6	6.0	
				Surface	1	28.9 29.0	29.0	8.6 8.6	8.6	28.2 28.2	28.2	74.0 68.7	71.4	4.9 4.5	4.7		3.1 3.2	3.2		6	6.0	
28-Jul-17	Sunny	Moderate	15:42	Middle	3.5	28.1 28.5	28.3	8.7 8.7	8.7	28.4 28.3	28.4	67.6 69.8	68.7	4.5 4.6	4.6	4.4	4.5 4.6	4.6	5.5	7	7.0	6.7
				Bottom	6	27.9 27.9	27.9	8.6 8.6	8.6	28.5 28.5	28.5	59.7 60.1	59.9	4.0	4.0	İ	8.7 8.4	8.6		7	7.0	
				Surface	1	26.8	27.6	8.6	8.6	29.7	29.3	96.9	102.1	6.4	6.8		2.9	2.9		5	5.0	
31-Jul-17	Sunny	Moderate	19:06	Middle	3.5	28.3	27.4	8.5 8.6	8.6	28.8 30.5	30.4	107.3 93.9	94.5	7.1 6.2	6.3	6.1	4.0	4.0	3.8	7	7.0	6.0
				Bottom	6	27.9 27.8	27.2	8.5 8.5	8.5	30.3 33.4	33.7	95.1 77.1	76.7	6.3 5.1	5.1		4.0	4.6	3.0	6	6.0	3.0
				DUMOM	0	26.6	21.2	8.5	0.5	34.0	33.7	76.2	10.1	5.0	5.1		4.9	4.0		6	0.0	

Water Quality Monitoring Results at 21 - Mid-Flood Tide

Condition Condition Tree 1	Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTI		Suspe	nded Solids	(mg/L)
Section Sect	Date	Condition	Condition**	Time	Берп	. ()		Average		Average		Average		Average		Average	DA*		Average	DA*		Average	DA*
Model Mode					Surface	1		27.6		8.6		30.4		96.6		6.7			7.5		-	6.0	l
	3-Jul-17	Cloudy	Moderate	15:19	Middle	3.5		27.3		8.4		31.4		91.9		6.4	6.4		7.2	7.1		6.5	6.2
S-jul-17 Doubly Noteme 1		-			Bettem	6	27.3	27.2		0.4	32.2	22.2		00.4		6.0			6.6			6.0	l
Substitute Classic Materials Classic Materials Classic					Bottom	ь		21.3		8.4		32.3		88.1	6.2	6.2		6.7	0.0			6.0	
Section Sect					Surface	1		27.0		8.0		24.6	84.2	83.8		5.8		7.4	7.7			6.5	I
	5-Jul-17	Cloudy	Moderate	17:20	Middle	3.5		26.8		7.9		25.3		79.4		5.5	5.5		7.8	7.5		5.0	5.5
Part County Moderate 16-22 Mode 1 271 271 431 431 431 431 432 431 431 432 431					Rottom	6	26.7	26.7		7.0	26.1	26.1	74.8	75.2		5.2		7.1	7.0			5.0	1
Part Clear Moderate Part Moderate Part					Dottom					7.5						1			7.0			3.0	—
County C					Surface	1	27.1	27.1		8.1	25.1	25.1	112.2	112.1		7.8		4.3	4.4		6	6.0	l
1	7-Jul-17	Cloudy	Moderate	18:42	Middle	4		27.1		8.2		25.3		110.1		7.6	7.1		4.2	4.1		6.0	5.7
10-July 11-July 12-July 12-J					Bottom	7	26.6	26.5	8.2	8.2	27.8	27 9	85.5	84.3	5.9	5.8		3.4	3.6			5.0	I
Mode of the product																					5		
					Surface	1	26.9	26.9	8.4	8.4	26.9	26.9	142.3	141.3	9.8	9.7		4.3	4.3		7	7.0	I
10 10 10 10 10 10 10 1	10-Jul-17	Fine	Moderate	20:22	Middle	4		26.9		8.3		28.0		148.2		10.1	9.4		2.4	5.0		6.0	6.7
12-Jul-17 Cloudy Moderate 08-15 Surface 1					Bottom	7	26.4	26.5	8.2	8.2	29.2	29.1	120.2	121 7	8.2	8.3		8.7	8.4			7.0	I
Parish P																1					7		<u> </u>
Section Sect					Surface	1		25.9		8.4		29.1		91.7		6.3			1.3		6	6.0	I
Part	12-Jul-17	Cloudy	Moderate	08:15	Middle	-	- 1	-	:	-	- 1	-	- :	-	-	-	4.9	-	-	2.0		5.5	5.8
14-Jul-17 Fine Rough R					Bottom	7		24.1		8.2		33.0		49.7		3.5			2.6		6	6.0	1
14-Jul-17 Fine Rough 19-42 Mode 4 26.8 26.																							
Fine Fine					Surface	1	27.5	27.5	8.6	8.6	25.9	26.0	114.8	114.2	7.9	7.9		1.5	1.5			4.0	1
Part	14-Jul-17	Fine	Rough	09:42	Middle	4		26.8		8.5		27.0		99.4		6.9	6.9		1.5	1.5		5.0	5.0
Surface 1					Bottom	7	26.4	26.4		8.4	28.2	28.2	86.3	86.3		5.9			1.5			6.0	I
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									0.1							1							
Part					Surface	1	28.5	28.5	8.6	8.6	25.3	25.3	96.0	96.2	6.5	6.5		1.5	1.5		4	4.0	I
Sunny Moderate M	17-Jul-17	Rainy	Calm	12:35	Middle	3.5		28.2		8.6		25.4		94.5		6.4	6.4		1.6	1.7		4.0	4.0
19-Jul-17 Sunny Moderate 1423 Surface 1 27.8 27.8 8.6 8.5 21.8 21.6 80.2 80.5					Bottom	6	28.1	28.1		8.6	25.5	25.5	93.5	90.9		6.2		1.9	1.9			4.0	I
19-Jul-17 Sunny Moderate 14-23 Middle 3.5 27.7 27.7 8.5 8.5 21.8 21.9 96.6 96.5 6.7 6.7 6.6 12 1.2 1.2 1.2 3.3 3.0					0			07.0		0.5		04.0		00.4		0.7						4.5	
Sumpy Moderate 14-23 Mod					Surrace	1		27.8		8.5		21.6		96.1		6.7			1.3			4.5	I
Surface 1	19-Jul-17	Sunny	Moderate	14:23	Middle	3.5		27.7		8.5		21.9		96.5		6.7	6.6		1.2	1.2		3.0	3.5
Price Fine Rough 17:39 Surface 1 28.5 28.4 8.4 8.4 26.6 26.6 111.5 111.0 7.5					Bottom	6		27.5		8.5		23.6		92.1		6.4			1.1			3.0	I
Price Rough 17.39 Middle 3.5 28.0 8.4 8.4 26.5 110.5 7.4 1.3 1.3 1.3 1.8 5 5.0					Surface	1		29.4		0.4		26.6		111.0		7.5			1.6			6.0	
Price Pric					Surface																		I
Surface 1	21-Jul-17	Fine	Rough	17:39	Middle	3.5	27.9	28.0	8.4	8.4	26.8	26.8	96.3	101.0	6.5	6.8	6.7	1.3	1.3	1.8	5	5.0	4.7
Surface 1 27.7 27.7 8.4 8.4 8.4 27.0 27.0 82.2 83.5 82.9 5.6 5.7 5.7 1.2 1.3 4 4.0					Bottom	6		27.7		8.3		27.0		86.9		5.9			2.4			3.0	I
24-Jul-17 Cloudy Moderate Park Park Park Park Park Park Park Park					Surface	1	27.7	27.7	8.4	8.4	27.0	27.0	82.2	82.9	5.6	5.7		1.2	1.3		4	4.0	
Summore 19.35 Moderate 1																							l
Summy Moderate Summy Moderate Sufface 1 27.8 27.8 8.4 8.4 28.2 28.2 76.2 70.2 72.4 5.0 4.9 1.3 1.3 1.3 3 3.0 3	24-Jul-17	Cloudy	Moderate	19:35	Middle	3.5	27.6	27.6	8.4	8.4	27.0	27.1	79.2	79.8	5.4	5.4	5.5	1.4	1.5	1.5	5	5.0	4.7
Sunny Moderate Sunny Moderate Surface 1 27.8 27.8 8.4 8.4 8.4 28.2 28.2 74.6 72.4 4.7					Bottom	6		27.6		8.4		27.1		78.7		5.4			1.7			5.0	1
26-Jul-17 Sunny Moderate Note					Surface	1	27.8	27.8	8.4	8.4	28.2	28.2	74.6	72.4	5.0	4.9		1.3	1.3		3	3.0	
Sunny Moderate M	00 1:11 47	0	Madage	00.00													4.7			0.4			0.5
Surface 1 28.0 27.5 27.5 28.4 28.8 28.8 28.8 66.9 67.5 4.5 4.5 4.6 2.7 2.7 2.7 2.0 6 6 6.0 6 6 6.0 6 6 6 6 6 6 6 6 6	o-Jui-1/	Sunny	woderate	U8:26	widdle		27.5	27.6	8.4	ö.4	28.8		67.7		4.6	4./	4./	2.0		2.1	4	4.0	3.5
28-Jul-17 Sunny Moderate Post-Signature 1 28.2 28.0 8.7 8.7 28.4 28.4 67.4 60.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5					Bottom	6	27.5	27.5		8.4		28.8		67.5		4.6		2.7	2.7			3.5	l
28-Jul-17 Sunny Moderate 09:55 Middle 3.5 28.0 28.0 8.7 8.7 28.4 28.4 68.0 67.9 68.0 4.5 4.5 4.5 2.0 1.9 2.0 6 6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6					Surface	1		28.1		8.7		28.4		68.0		4.6			2.2			6.0	
Sunny Moderate U9:35 Mindle 3.5 28.0 28.0 8.7 8.7 28.4 28.4 67.9 60.0 4.5 4.5 4.5 2.0 1.9 2.0 6 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 Jul 47	Quessi	Moderate	00.55	Middle	2 =	28.0	20.0		0.7	28.4	20.4	68.0	60.0	-:-	4 5	4.5	1.8	10	2.0		6.0	5.7
31-Jul-17 Sunny Moderate 13:34 Middle 3.5 28.1 28.2 8.5 8.5 29.8 29.8 96.9 97.9 96.9 10.3 4.5 1.9 1.9 1.9 1.9 5 3.0 6 6 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	o-oui-17	Juilly	wouchate	05.00													4.0	2.0		2.0	6		J.1
31-Jul-17 Sunny Moderate 13:34 Middle 3.5 28.1 28.2 8.5 8.5 29.8 29.8 97.9 99.9 6.4 0.4 3.0 3.0 3.0 6 0.0 6					Bottom	6	27.9	27.9		8.7		28.5	67.2	67.5		4.5		1.9	1.9			5.0	<u></u>
31-Jul-17 Sunny Moderate 13:34 Middle 3.5 28.1 28.2 28.2 8.5 8.5 29.7 29.9 29.8 95.9 97.9 6.3 6.5 6.0 3.6 3.4 3.5 4.1 7 6.5					Surface	1		27.4		8.5		29.8		96.9		6.4			3.0			6.0	
28.2 8.5 29.9 99.8 6.6 3.4 6	81_ Jul_17	Suppy	Moderato	13:3/	Middle	3.5	28.1	28.2	8.5	8.5	29.7	20.8	95.9	97 Q	6.3	6.5	6.0	3.6	3.5	4.1	7	6.5	5.5
	,oui- 17	Guilly	wouchate	10.04			28.2 26.8		8.5 8.5		29.9 31.2		99.8 77.1		6.6 5.1		0.0	3.4 5.4		7.1	6 4		5.5
Bottom 6 26.2 26.5 8.5 8.5 31.6 31.4 76.2 76.7 5.0 5.1 5.4 5.8 4 4.0					Bottom	6		26.5		8.5		31.4		76.7		5.1			5.8		4	4.0	<u></u>

Water Quality Monitoring Results at 34 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		urbidity(NTL		Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.5 27.5	27.5	8.2 8.2	8.2	31.3 31.8	31.6	89.4 89.8	89.6	6.1 6.2	6.2		5.0 6.2	5.6		5 5	5.0	
3-Jul-17	Cloudy	Moderate	10:00	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	5.8	-	-	6.0
				Bottom	2.8	27.2	27.2	8.1	8.2	32.7	32.7	84.2	83.2	5.8	5.7	t	5.7	5.9		7	7.0	
						27.2 26.3		8.2 8.1		32.7 24.8		82.1 91.7		5.6 6.3			6.0			7		
				Surface	1	26.4	26.4	8.1	8.1	25.1	25.0	92.2	92.0	6.3	6.3		6.8	6.4		4	4.0	
5-Jul-17	Cloudy	Moderate	11:04	Middle	-	-	-		-	-	-	-	-	-	-	6.1	-	-	6.5	-	-	5.5
				Bottom	2.8	26.0 26.0	26.0	8.1 8.2	8.2	25.9 25.9	25.9	85.9 84.0	85.0	5.9 5.8	5.9	Ī	6.5 6.7	6.6		7	7.0	
				Surface	1	26.8	26.8	8.1	8.1	26.5	26.7	97.6	97.7	6.7	6.7		5.2	5.2		5	5.0	
						26.8	20.0	8.1	0.1	26.9	20.7	97.7		6.7			5.1			5		
7-Jul-17	Cloudy	Moderate	12:22	Middle	-	-	-		-	-	-		-	-	-	6.5	-	-	5.5	-	-	6.0
				Bottom	2.95	26.5 26.4	26.5	8.0 8.1	8.1	27.7 27.7	27.7	91.3 89.7	90.5	6.3 6.2	6.3		5.6 5.9	5.8		7	7.0	
				Surface	1	26.8	26.8	8.3	8.3	28.8	28.8	136.5	137.9	9.3	9.4		2.3	2.3		4	4.0	
10-Jul-17	Fine	Moderate	13:58	Middle	_	26.8	_	8.3	_	28.8	_	139.2	-	9.5	_	8.7	2.2	_	2.2	-	_	5.5
10-341-17	rille	Wioderate	13.30	iviluale		26.4		8.3		29.8		118.2		8.0		0.7	2.0		2.2	7		5.5
				Bottom	3	26.3	26.4	8.2	8.3	29.7	29.8	116.3	117.3	7.9	8.0		2.0	2.0		7	7.0	
				Surface	1	27.5 27.5	27.5	8.6 8.6	8.6	25.8 25.8	25.8	141.1 141.3	141.2	9.7 9.7	9.7		2.1 2.2	2.2		7	7.0	
12-Jul-17	Fine	Moderate	14:48	Middle	-	-	-	-	-	-	-	-	-	-	-	8.8	-	-	2.1	-	-	6.0
				Bottom	3	26.8	26.9	8.4	8.5	27.6	27.6	113.3	113.5	7.8	7.8		1.9	1.9		5	5.0	
						26.9 28.0		8.5 8.6		27.5 26.7		113.6 129.4		7.8 8.7			1.8			5 5		
				Surface	1	28.0	28.0	8.6	8.6	26.7	26.7	130.0	129.7	8.8	8.8		1.8	1.9		5	5.0	
14-Jul-17	Cloudy	Rough	16:06	Middle	-	-	-	-	-	-	-	-	-	-	-	8.6	-	-	1.9	-	-	5.0
				Bottom	2.9	27.9	27.9	8.6	8.6	26.7	26.7	124.5	124.4	8.4	8.4	İ	1.8	1.8		5	5.0	
				0 /		27.9 28.4		8.6 8.5		26.7 24.0		124.2 89.2		8.4 6.1			1.8 2.1			5 8		
				Surface	1	28.4	28.4	8.5	8.5	23.5	23.8	89.4	89.3	6.1	6.1	1	2.4	2.3		8	8.0	
17-Jul-17	Rainy	Calm	17:44	Middle	-	-	-	-	-	-	-	-	-		-	6.1	-	-	2.1	-	-	5.5
				Bottom	2.7	28.3 28.4	28.4	8.5 8.5	8.5	25.1 25.0	25.1	88.3 89.4	88.9	6.0 6.1	6.1		1.9 1.9	1.9		3	3.0	
				Surface	1	27.7	27.7	8.4	8.4	22.3	22.4	77.0	75.2	5.4	5.3		1.8	1.8		6	6.0	
40 1:147	F:	0-1	40.00			27.7		8.4		22.5		73.4		5.1		4.0	1.7			- 6		
19-Jul-17	Fine	Calm	10:02	Middle	-	27.2	-	-	-	-	-	-	-	-	-	4.8	5.2	-	3.5	-	-	5.5
				Bottom	2.8	27.2	27.2	8.4 8.4	8.4	24.5 24.4	24.5	61.1 62.5	61.8	4.2 4.3	4.3		5.2	5.2		5 5	5.0	
				Surface	1	28.0 28.1	28.1	8.2 8.2	8.2	26.4 26.4	26.4	79.9 80.7	80.3	5.4 5.5	5.5		1.5 1.5	1.5		6 5	5.5	
21-Jul-17	Sunny	Moderate	11:32	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	1.5	-	-	5.3
	,		-		0.0	27.9	07.0	8.2	0.0	26.5	00.0	78.8	70.4	5.3		+	1.4	4.4		5		
				Bottom	2.8	27.9	27.9	8.2 8.4	8.2	26.6	26.6	79.3	79.1	5.4 4.9	5.4		1.3	1.4		5	5.0	
				Surface	1	27.9 27.9	27.9	8.4 8.3	8.4	27.8 27.8	27.8	72.4 71.5	72.0	4.9 4.8	4.9		1.7	1.8		5	5.0	
24-Jul-17	Sunny	Moderate	13:43	Middle	-		-	-	-	-	-	-	-	-	-	4.9	-	-	1.9	-	-	6.5
				Bottom	2.8	27.9	27.9	8.4	8.4	27.8	27.8	71.6	71.3	4.8	4.8	Ī	2.0	2.0	1	8	8.0	
				Surface	1	27.9 28.3	28.3	8.3 8.4	8.4	27.8 28.0	28.0	71.0 77.3	76.8	4.8 5.2	5.2		1.9 1.6	1.6		5	5.0	
						28.3		8.3		28.0		76.2		5.1		!	1.5			5		
26-Jul-17	Fine	Moderate	15:28	Middle	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	1.6	-	-	4.0
				Bottom	2.7	28.3 28.4	28.4	8.3 8.3	8.3	28.0 28.0	28.0	76.4 76.4	76.4	5.1 5.1	5.1		1.4 1.5	1.5		3	3.0	
				Surface	1	28.1	28.1	8.6	8.6	28.1	28.1	62.8	62.7	4.2	4.2		2.0	2.2		<2.5	<2.5	
20 Jul 17	Cuppy	Moderate	15:29	Middle	-	28.1	-	8.6	1	28.1		62.5		4.2	_	4.2	2.3	_	3.1	<2.5	_	3.0
28-Jul-17	Sunny	wouerate	15.29			28.1		8.6	-	28.2	-	62.3		4.2		4.2	3.9		3.1	3		3.0
				Bottom	2.7	27.9	28.0	8.6	8.6	28.5	28.4	61.0	61.7	4.1	4.2		4.0	4.0		4	3.5	
				Surface	1	27.3 27.1	27.2	8.5 8.5	8.5	30.7 30.9	30.8	98.3 100.9	99.6	6.5 6.7	6.6		3.3 3.8	3.6		5 5	5.0	
31-Jul-17	Sunny	Moderate	19:21	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	4.3	-	-	5.5
	<u> </u>				2.0	26.5	26 E	8.5	0.5	31.7	21.6	83.1	92.2	5.5	<i>E E</i>	†	4.8	F 0	-	- 6	6.0	
				Bottom	2.8	26.4	26.5	8.5	8.5	31.4	31.6	81.5	82.3	5.4	5.5		5.1	5.0		6	6.0	

Water Quality Monitoring Results at 34 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depti	h (m)		ture (°C)	r	Н		ty ppt		ration (%)		ved Oxygen			Turbidity(NTU			nded Solids	
	Condition	Condition**	Time		٠,,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.4 27.4	27.4	8.4 8.4	8.4	30.4 30.1	30.3	103.2 100.5	101.9	7.2 7.0	7.1		7.5 7.1	7.3		5 5	5.0	
3-Jul-17	Cloudy	Moderate	15:34	Middle	-	-	-	-	-		-		-	-	-	7.0	-	-	7.4	-	-	5.5
				Bottom	2.9	27.1 27.3	27.2	8.2 8.3	8.3	31.2 31.4	31.3	99.6 99.0	99.3	6.9 6.9	6.9		7.9 7.1	7.5		6	6.0	
				Surface	1	27.0	27.0	7.8	7.9	24.6	24.5	88.1	87.4	6.1	6.1		8.2	7.8		7	7.0	
5-Jul-17	Cloudy	Moderate	17:38	Middle	-	27.0		7.9	-	24.3		86.7	-	6.0	-	6.0	7.4	-	7.9	7		6.0
3-3ul-17	Cioudy	Woderate	17.30			26.6		7.7		25.2		85.4		5.9		0.0	8.2		1.5	5		0.0
				Bottom	2.9	26.8 27.3	26.7	7.8	7.8	25.3 25.5	25.3	85.7	85.6	5.9	5.9		7.5 4.4	7.9		5	5.0	
				Surface	1	27.2	27.3	7.6 7.8	7.7	25.6	25.6	111.6 112.1	111.9	7.7 7.7	7.7		4.1	4.3		6 6	6.0	
7-Jul-17	Cloudy	Moderate	18:56	Middle	-	-	-	-	-	-	-	:	-	-	-	7.7	-	-	4.4	-	-	5.0
				Bottom	2.9	27.1 27.1	27.1	8.0 8.0	8.0	25.8 25.9	25.9	110.2 109.0	109.6	7.6 7.5	7.6		4.8 4.1	4.5		4	4.0	
				Surface	1	27.9 28.0	28.0	8.3 8.3	8.3	28.1 28.1	28.1	133.0 132.2	132.6	8.9 8.9	8.9		4.2 4.6	4.4		6 6	6.0	
10-Jul-17	Fine	Moderate	20:37	Middle	-	-	-	-	-	-	-	-	-	-	-	9.0	-	-	4.6	-	-	5.5
				Bottom	2.9	27.8	27.8	8.3	8.3	28.1	28.1	134.6	134.8	9.0	9.1		4.7	4.8		5	5.0	
						27.8 27.0		8.3 8.4		28.1 27.5	27.5	134.9 96.0		9.1 6.6			4.8 2.0	1		5		
				Surface	1	26.9	27.0	8.4	8.4	27.5		95.3	95.7	6.5	6.6		1.8	1.9		5	5.0	-
12-Jul-17	Cloudy	Moderate	08:29	Middle	-	-	-	-	-	28.1	-	-	-	-	-	6.3	1.3	-	1.6	7	-	6.0
				Bottom	2.9	26.3 26.2	26.3	8.3 8.3	8.3	28.1	28.1	86.5 85.9	86.2	6.0 5.9	6.0		1.3	1.3		7	7.0	
				Surface	1	27.7 27.7	27.7	8.5 8.5	8.5	26.0 26.0	26.0	108.7 108.6	108.7	7.4 7.4	7.4		1.9 1.9	1.9		6	6.0	
14-Jul-17	Fine	Rough	09:57	Middle	-	-	-	-	-		-	- :	-	-	-	7.2	-	-	2.0	-	-	6.3
				Bottom	3	27.6 27.6	27.6	8.5 8.5	8.5	26.1 26.1	26.1	102.9 102.2	102.6	7.0	7.0		2.0 1.9	2.0		6	6.5	
				Surface	1	28.3	28.3	8.5	8.5	25.6	25.6	83.3	83.3	5.6	5.6		1.7	1.6		4	4.0	
17-Jul-17	Rainv	Calm	12:44	Middle		28.3	-	8.5	_	25.6		83.3	-	5.6	_	5.6	1.5	_	1.6	-	_	4.0
17-041-17	reality	Oaiiii	12.44		2.8	28.3	28.3	8.5		25.6	25.6	83.2	83.2	5.6		0.0	1.6	1.6	1.0	4	4.0	
				Bottom		28.3 28.4		8.5 8.4	8.5	25.6 22.4		83.2 82.9		5.6 5.7	5.6		1.6 1.4			4		
				Surface	1	28.4	28.4	8.4	8.4	22.4	22.4	82.6	82.8	5.7	5.7		1.5	1.5		4	4.0	
19-Jul-17	Sunny	Moderate	14:15	Middle	-	-	-	-	-		-	-	-	-	-	5.7	-	-	1.6	-	-	3.5
				Bottom	2.9	28.4 28.4	28.4	8.4 8.4	8.4	22.4 22.4	22.4	82.3 82.7	82.5	5.7 5.7	5.7		1.7 1.6	1.7		3	3.0	
				Surface	1	28.6 28.6	28.6	8.3 8.3	8.3	26.5 26.5	26.5	100.4 99.3	99.9	6.7 6.6	6.7		2.3 2.1	2.2		3	3.0	
21-Jul-17	Fine	Rough	17:54	Middle	-	-	-	-	-	-	-	- :	-	-	-	6.6	-	-	2.1	-	-	3.8
				Bottom	2.9	28.6 28.6	28.6	8.3 8.3	8.3	26.6 26.6	26.6	97.5 97.4	97.5	6.5 6.5	6.5		2.0 1.9	2.0		5 4	4.5	
				Surface	1	28.3	28.3	8.3	8.3	27.3	27.3	78.0	77.8	5.2	5.2		1.9	1.9		3	3.0	
24-Jul-17	Cloudy	Moderate	19:23	Middle		28.3	-	8.3	-	27.3		77.6	-	5.2		5.3	1.8	_	1.7	- 3	-	5.5
	,			Bottom	2.7	28.0	28.1	8.3	8.3	27.2	27.3	78.0	77.9	5.3	5.3		1.3	1.4		- 8	8.0	
						28.1 28.1		8.3 8.3	8.3	27.3 28.0	28.0	77.7 75.3	73.6	5.2 5.0	4.9		1.4	1.5		8		
				Surface	1	28.2	28.2	8.3		27.9		71.9		4.8			1.4			3	3.0	
26-Jul-17	Sunny	Moderate	08:41	Middle	-	28.0	-	8.3	-	28.0	-	71.8	-	4.8	-	4.9	1.8	-	1.6	- 4	-	3.3
				Bottom	2.7	27.9	28.0	8.3	8.3	28.0	28.0	70.6	71.2	4.7	4.8		1.6	1.7		3	3.5	
				Surface	1	27.9 27.9	27.9	8.6 8.6	8.6	28.1 28.1	28.1	57.3 57.6	57.5	3.8 3.9	3.9		1.1 1.1	1.1		3	3.0	
28-Jul-17	Sunny	Moderate	10:08	Middle		-	-	-	-			:	-	-	-	4.0	-	-	1.3	-	-	4.0
				Bottom	2.8	27.9 27.9	27.9	8.6 8.6	8.6	28.2 28.2	28.2	59.2 59.1	59.2	4.0 4.0	4.0		1.5 1.4	1.5		5 5	5.0	
				Surface	1	28.1	28.4	8.5	8.6	30.7	31.8	100.9	99.6	6.7	6.6		3.6	3.4		4	4.0	
31-Jul-17	Sunny	Moderate	13:53	Middle		28.6		8.6		32.8		98.3		6.5		5.9	3.1	-	4.4	-	-	4.0
- 1 Vul-11	Carriy	ouciate	. 5.55			28.4		8.4		30.9		78.6		5.2		5.5	5.5			4		7.0
				Bottom	2.9	28.1	28.3	8.5	8.5	34.0	32.5	78.4	78.5	5.2	5.2		5.3	5.4		4	4.0	<u> </u>

Water Quality Monitoring Results at A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI		Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.6 27.6	27.6	8.2 8.3	8.3	32.0 31.8	31.9	87.0 87.2	87.1	6.0 6.0	6.0		3.4 4.1	3.8		5 5	5.0	
3-Jul-17	Cloudy	Moderate	08:56	Middle	3	27.4	27.4	8.1	8.2	32.4	32.5	84.8	83.9	5.8	5.8	5.8	3.5	3.7	4.1	6	6.0	5.3
	,					27.3 27.2		8.2 8.1		32.5 35.0		83.0 80.3		5.7 5.5		-	3.8 5.1			6 5		
				Bottom	5	27.1	27.2	8.0	8.1	34.6	34.8	81.0	80.7	5.5	5.5		4.5	4.8		5	5.0	
				Surface	1	26.4 26.3	26.4	8.2 8.3	8.3	25.3 25.1	25.2	89.4 88.5	89.0	6.1 6.1	6.1		3.6 3.6	3.6		4	4.0	
5-Jul-17	Cloudy	Moderate	10:08	Middle	3.5	26.2	26.2	8.1	8.2	25.6	25.6	86.1	85.3	5.9	5.9	5.9	4.1	4.1	4.3	6	6.0	5.0
	,					26.1 26.0		8.2 8.0		25.6 27.6		84.4 81.7		5.8 5.6		-	4.1 5.3			6 5		
				Bottom	6	26.0	26.0	8.0	8.0	27.3	27.5	83.0	82.4	5.7	5.7		5.3	5.3		5	5.0	
				Surface	1	26.8 26.8	26.8	8.2 8.2	8.2	27.0 26.9	27.0	93.8 94.1	94.0	6.5 6.5	6.5		3.3 4.0	3.7		6	6.0	
7-Jul-17	Cloudy	Moderate	11:18	Middle	3.5	26.6	26.6	8.0	8.1	27.4	27.5	91.7	91.1	6.3	6.3	6.3	3.4	3.6	4.0	5	5.0	5.3
7-501-17	Oloudy	Wodcrate	11.10			26.6 26.5		8.2 8.1		27.5 29.6		90.4 87.4		6.3		0.5	3.7 5.0		4.0	5 5		0.0
				Bottom	6	26.4	26.5	8.0	8.1	29.2	29.4	87.8	87.6	6.1	6.1		4.4	4.7		5	5.0	
				Surface	1	26.8 26.7	26.8	8.3 8.3	8.3	27.8 27.8	27.8	127.0 128.2	127.6	8.7 8.8	8.8		1.6 1.6	1.6		3	3.0	
10-Jul-17	Fine	Moderate	12:54	Middle	3.5	26.7	26.7	8.3	8.3	27.8	27.8	127.9	127.2	8.8	8.8	8.7	1.7	1.7	1.7	7	7.0	5.0
10-041-17	TITIC	Wodciate	12.04	Wilduic		26.7 26.6	20.7	8.3 8.3	0.0	27.8 27.9	21.0	126.5 125.3	121.2	8.7 8.6	0.0	0.1	1.6 1.8	1.7		7 5	7.0	5.0
				Bottom	6	26.6	26.6	8.3	8.3	27.9	27.9	124.7	125.0	8.6	8.6		1.8	1.8		5	5.0	
				Surface	1	27.8 27.8	27.8	8.7 8.7	8.7	23.8 23.8	23.8	149.9 151.5	150.7	10.3 10.4	10.4		2.2	2.2		3	3.0	
12-Jul-17	- Cine	Madazata	12:44	Middle	3.5	27.7	27.7	8.7	0.7	23.8	23.9	150.0	150.1	10.4	10.4	9.7	2.0	2.1	2.1	4	4.0	4.7
12-Jul- 17	Fine	Moderate	13:44	Middle	3.5	27.7 27.4	21.1	8.7 8.6	8.7	23.9 24.6	23.9	150.1 120.6	150.1	10.4 8.3	10.4	9.1	2.1	2.1	2.1	7	4.0	4.7
				Bottom	6	27.4	27.2	8.5	8.6	26.0	25.3	118.1	119.4	8.1	8.2		2.0	2.0		7	7.0	
				Surface	1	28.0	28.0	8.7	8.7	25.9	25.9	149.8	150.0	10.2	10.2		1.6	1.7		6	6.0	
14-Jul-17	Claudy	Daugh	15:02	Middle	3.5	27.9 28.0	28.1	8.7 8.6	9.6	25.9 26.4	26.4	150.2 129.4	130.0	10.2 8.7	0.0	8.8	1.7	1.8	1.7	6	E E	F 0
14-Jul-17	Cloudy	Rough	15:02	Middle	3.5	28.1	28.1	8.6	8.6	26.3	26.4	130.5	130.0	8.8	8.8	8.8	1.9	1.8	1.7	5	5.5	5.8
				Bottom	6	27.3 27.4	27.4	8.5 8.5	8.5	27.2 27.1	27.2	107.1 107.7	107.4	7.3 7.3	7.3		1.4 1.5	1.5		6	6.0	l
				Surface	1	27.9	28.0	8.6	8.6	24.3	24.8	86.8	85.8	6.0	5.9		1.8	1.8		4	4.0	
						28.0 27.9		8.5 8.6		25.3 24.6		84.8 86.8		5.8 5.9			1.8 1.8			6		
17-Jul-17	Rainy	Calm	18:26	Middle	3.1	28.1	28.0	8.6	8.6	25.1	24.9	86.3	86.6	5.9	5.9	5.9	1.5	1.7	1.8	6	6.0	4.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		3	3.0	l
				Surface	1	27.3	27.3	8.4	8.4	21.3	21.8	80.5	75.0	5.7	5.3		1.6	1.7		6	6.0	
						27.3 27.3		8.3 8.4		22.3 22.9		69.5 71.9		4.9 5.0		-	1.7			6		
19-Jul-17	Fine	Calm	08:57	Middle	3	27.3	27.3	8.4	8.4	22.9	22.9	69.9	70.9	4.9	5.0	4.8	1.4	1.4	1.5	4	4.0	4.7
				Bottom	5	27.1 27.0	27.1	8.3 8.3	8.3	24.7 24.8	24.8	57.7 57.6	57.7	4.0 4.0	4.0		1.4 1.5	1.5		4	4.0	l
				Surface	1	28.1	28.2	8.3	8.3	25.7	25.8	93.4	88.4	6.3	6.0		0.9	0.9		5	5.0	
						28.2 27.9		8.2 8.3		25.9 26.1		83.3 92.2		5.6 6.3		-	0.8			5 5		l
21-Jul-17	Sunny	Moderate	10:29	Middle	3	28.0	28.0	8.3	8.3	26.2	26.2	92.4	92.3	6.3	6.3	6.0	0.7	0.7	0.9	5	5.0	5.0
				Bottom	5	27.6 27.7	27.7	8.3 8.3	8.3	26.3 26.3	26.3	85.0 85.0	85.0	5.8 5.8	5.8		0.9 1.0	1.0		5 5	5.0	l
				Surface	1	27.5	27.6	8.4	8.4	26.4	26.4	81.8	81.2	5.6	5.6		1.2	1.2		4	4.0	
						27.6 27.5		8.4 8.4		26.4 26.8		80.5 78.8		5.5 5.4		+	1.1			8		Į
24-Jul-17	Sunny	Moderate	12:51	Middle	3.5	27.5	27.5	8.4	8.4	26.8	26.8	77.3	78.1	5.3	5.4	5.3	1.1	1.1	1.4	8	8.0	5.8
				Bottom	6	27.3 27.3	27.3	8.4 8.4	8.4	27.1 27.1	27.1	73.3 72.6	73.0	5.0 4.9	5.0		2.2 1.8	2.0		6 5	5.5	Į
				Surface	1	28.2	28.3	8.3	8.3	27.0	27.0	81.7	81.7	5.5	5.5		1.0	1.0		4	4.0	
						28.3 28.2		8.3 8.3		27.0 27.1		81.7 80.5		5.5 5.4		+	0.9 1.4		-	3		Į
26-Jul-17	Fine	Moderate	14:24	Middle	3	28.2	28.2	8.3	8.3	27.1	27.1	80.6	80.6	5.4	5.4	5.4	1.2	1.3	1.3	4	3.5	4.2
				Bottom	5	28.1 28.1	28.1	8.3 8.3	8.3	27.1 27.1	27.1	78.9 78.5	78.7	5.3 5.3	5.3		1.6 1.5	1.6		5	5.0	Į
				Surface	1	28.3	28.3	8.6	8.6	27.6	27.6	70.2	70.3	4.7	4.7		2.6	2.4		5	5.0	
						28.3 28.3		8.6 8.6		27.6		70.3 68.7		4.7 4.6		1	2.2 3.0		-	5		Į
28-Jul-17	Sunny	Moderate	16:20	Middle	3.5	28.3	28.3	8.6	8.6	27.7 27.7	27.7	68.4	68.6	4.6	4.6	4.6	3.2	3.1	3.0	5 5	5.0	5.7
				Bottom	6	28.3 28.3	28.3	8.6 8.6	8.6	27.8 27.8	27.8	68.1 67.7	67.9	4.6	4.6		3.4	3.5		7	7.0	Į
				Surface	1	26.7	26.9	8.5	8.5	29.3	29.7	99.7	99.0	6.6	6.6		2.0	2.1		7	7.0	
						27.1		8.4		30.0		98.3		6.5		1	2.1			7		Į
31-Jul-17	Sunny	Moderate	18:22	Middle	3	26.7 27.8	27.3	8.5 8.4	8.5	30.0 30.4	30.2	96.8 95.1	96.0	6.4 6.3	6.4	6.0	3.3 3.4	3.4	3.5	6	6.0	5.7
				Bottom	5	26.3 27.5	26.9	8.4	8.4	33.2	32.8	78.4	77.4	5.2 5.0	5.1		4.8 4.9	4.9		4	4.0	Į
		1				27.5		8.3	1	32.4	1	76.3	1	5.0	1		4.9	1		4	1	

Water Quality Monitoring Results at A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	р	Н	Salin	ty ppt	DO Satur	ration (%)	Dissol	ved Oxygen	(mg/L)		urbidity(NTl		Suspe	nded Solids	
Date	Condition	Condition**	Time	Вери	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.4 27.4	27.4	8.4 8.4	8.4	30.1 30.7	30.4	103.0 99.9	101.5	7.2 7.0	7.1		4.1 3.8	4.0		6	6.0	
3-Jul-17	Cloudy	Moderate	14:37	Middle	3.5	27.4 27.3	27.4	8.3 8.3	8.3	31.4 31.5	31.5	98.7 98.3	98.5	6.9 6.8	6.9	6.8	4.7 4.7	4.7	4.2	5 5	5.0	5.7
				Bottom	6	27.2 27.2	27.2	8.2 8.1	8.2	33.1 32.7	32.9	92.9 91.4	92.2	6.4 6.3	6.4		3.8 3.9	3.9		6 6	6.0	
				Surface	1	26.9 26.9	26.9	7.9 7.8	7.9	24.3 24.8	24.6	88.6 86.7	87.7	6.2 6.1	6.2		3.8 3.1	3.5		5 5	5.0	
5-Jul-17	Cloudy	Moderate	16:33	Middle	3.5	26.8 26.8	26.8	7.7 7.8	7.8	25.3 25.4	25.4	84.5 85.0	84.8	5.9 5.9	5.9	5.9	4.3 4.5	4.4	3.8	4	4.0	4.3
				Bottom	6	26.7 26.7	26.7	7.7 7.6	7.7	26.7 26.4	26.6	80.8 78.8	79.8	5.6 5.5	5.6		3.3 3.4	3.4		4	4.0	
				Surface	1	27.1 27.1	27.1	8.1 8.2	8.2	24.7 24.7	24.7	118.9 118.8	118.9	8.2 8.2	8.2		4.1 3.8	4.0		6 6	6.0	
7-Jul-17	Cloudy	Moderate	18:00	Middle	3.5	26.9 26.9	26.9	8.2 8.2	8.2	25.7 25.5	25.6	103.1 105.6	104.4	7.1 7.3	7.2	7.1	4.6 4.6	4.6	4.2	6	6.0	5.7
				Bottom	6	26.4 26.5	26.5	8.1 8.1	8.1	27.3 27.2	27.3	84.1 84.6	84.4	5.8 5.8	5.8		3.8 3.9	3.9		5 5	5.0	
				Surface	1	26.8 26.8	26.8	8.3 8.3	8.3	27.8 27.8	27.8	134.3 136.6	135.5	9.2 9.4	9.3		1.9 2.0	2.0		5 5	5.0	
10-Jul-17	Fine	Moderate	19:40	Middle	3.5	26.8 26.7	26.8	8.3 8.3	8.3	27.9 28.1	28.0	137.0 136.4	136.7	9.4 9.3	9.4	9.0	1.9 1.9	1.9	2.1	6 6	6.0	5.7
				Bottom	6	26.3 26.3	26.3	8.3 8.3	8.3	29.0 29.1	29.1	120.4 118.0	119.2	8.3 8.1	8.2		2.4 2.3	2.4		6 6	6.0	
				Surface	1	26.1 26.4	26.3	8.5 8.5	8.5	28.6 28.1	28.4	106.6 107.7	107.2	7.3 7.4	7.4		1.1 1.3	1.2		3	3.0	
12-Jul-17	Cloudy	Moderate	07:33	Middle	3.5	23.4 23.4	23.4	8.2 8.2	8.2	34.3 34.3	34.3	46.6 45.5	46.1	3.3 3.2	3.3	4.6	2.4 2.2	2.3	2.1	6 6	6.0	5.3
				Bottom	6	23.3 23.3	23.3	8.2 8.2	8.2	34.4 34.4	34.4	43.1 43.3	43.2	3.0 3.0	3.0		2.8 2.7	2.8		7 7	7.0	
				Surface	1	27.0 27.0	27.0	8.6 8.6	8.6	26.4 26.4	26.4	110.5 110.0	110.3	7.6 7.6	7.6		1.3 1.3	1.3		5 5	5.0	
14-Jul-17	Fine	Rough	09:00	Middle	3.5	27.0 27.0	27.0	8.5 8.5	8.5	26.5 26.5	26.5	109.1 108.6	108.9	7.5 7.5	7.5	7.5	1.3 1.2	1.3	1.4	6 6	6.0	5.3
				Bottom	6	26.9 26.9	26.9	8.5 8.5	8.5	26.8 26.8	26.8	106.1 105.5	105.8	7.3 7.3	7.3		1.5 1.4	1.5		5 5	5.0	
				Surface	1	28.1 28.1	28.1	8.6 8.6	8.6	25.3 25.3	25.3	95.2 95.2	95.2	6.5 6.5	6.5		2.7 2.8	2.8		4	4.0	
17-Jul-17	Rainy	Calm	12:06	Middle	3	28.1 28.0	28.1	8.6 8.6	8.6	25.3 25.3	25.3	95.0 95.0	95.0	6.5 6.5	6.5	6.5	1.1 1.1	1.1	1.6	4 3	3.5	3.5
				Bottom	5	27.9 27.9	27.9	8.6 8.6	8.6	25.6 25.6	25.6	95.1 94.2	94.7	6.5 6.4	6.5		1.0 1.0	1.0		3	3.0	
				Surface	1	28.2 28.1	28.2	8.4 8.5	8.5	22.3 22.3	22.3	95.5 96.4	96.0	6.6 6.7	6.7		1.3 1.5	1.4		5 5	5.0	
19-Jul-17	Sunny	Moderate	15:00	Middle	3.5	27.6 27.6	27.6	8.5 8.5	8.5	22.5 22.5	22.5	97.1 95.5	96.3	6.8 6.6	6.7	6.7	1.2 1.1	1.2	1.2	3	3.0	4.2
				Bottom	6	27.5 27.5	27.5	8.5 8.5	8.5	22.6 22.6	22.6	99.2 96.8	98.0	6.9 6.7	6.8		1.1 1.1	1.1		4 5	4.5	
				Surface	1	27.8 27.7	27.8	8.4 8.3	8.4	26.1 26.3	26.2	105.7 101.4	103.6	7.2 6.9	7.1		1.2 1.1	1.2		4 4	4.0	
21-Jul-17	Fine	Rough	16:57	Middle	3.5	27.6 27.5	27.6	8.3 8.3	8.3	26.6 26.7	26.7	92.5 90.1	91.3	6.3 6.1	6.2	6.3	1.4 1.3	1.4	1.5	4 4	4.0	4.3
				Bottom	6	27.5 27.4	27.5	8.3 8.3	8.3	26.8 26.9	26.9	83.9 81.9	82.9	5.7 5.6	5.7		1.9 1.9	1.9		5 5	5.0	
				Surface	1	27.3 27.4	27.4	8.4 8.4	8.4	27.0 26.8	26.9	74.6 74.3	74.5	5.1 5.1	5.1		1.7 1.4	1.6		6 5	5.5	
24-Jul-17	Cloudy	Moderate	20:11	Middle	3.5	27.3 27.4	27.4	8.4 8.4	8.4	27.0 26.9	27.0	73.8 74.3	74.1	5.0 5.1	5.1	5.1	1.6 1.5	1.6	1.7	3	3.0	4.8
				Bottom	6	27.3 27.3	27.3	8.4 8.4	8.4	27.1 27.0	27.1	71.5 72.7	72.1	4.9 5.0	5.0		1.9 1.8	1.9		6 6	6.0	
				Surface	1	27.6 27.7	27.7	8.3 8.3	8.3	27.4 27.4	27.4	74.6 72.0	73.3	5.0 4.9	5.0		0.8 0.9	0.9		3	3.0	
26-Jul-17	Sunny	Moderate	07:44	Middle	3	27.6 27.6	27.6	8.3 8.3	8.3	27.4 27.4	27.4	72.7 72.4	72.6	4.9 4.9	4.9	4.9	0.8 0.7	0.8	0.9	4 4	4.0	3.7
				Bottom	5	27.6 27.6	27.6	8.3 8.3	8.3	27.8 27.7	27.8	71.8 71.5	71.7	4.9 4.8	4.9		1.1 1.1	1.1		4 4	4.0	
				Surface	1	27.9 27.8	27.9	8.6 8.6	8.6	27.9 28.0	28.0	58.8 59.2	59.0	4.0 4.0	4.0		2.4 2.6	2.5		4 4	4.0	
28-Jul-17	Sunny	Moderate	09:16	Middle	3.5	27.7 27.7	27.7	8.6 8.6	8.6	28.3 28.4	28.4	61.6 62.6	62.1	4.1 4.2	4.2	4.2	4.9 5.1	5.0	3.8	4 4	4.0	4.3
				Bottom	6	27.8 27.8	27.8	8.7 8.7	8.7	28.6 28.4	28.5	69.6 64.7	67.2	4.7 4.3	4.5		3.8 3.7	3.8		5 5	5.0	
_				Surface	1	27.3 27.3	27.3	8.4 8.7	8.6	30.0 30.2	30.1	96.8 96.8	96.8	6.4 6.4	6.4		2.3 2.8	2.6		3	3.0	
31-Jul-17	Sunny	Moderate	12:55	Middle	3.5	27.3 27.0	27.2	8.6 8.4	8.5	30.6 30.4	30.5	95.0 97.4	96.2	6.3 6.4	6.4	6.0	3.1 3.6	3.4	4.4	5 5	5.0	4.3
		1		Bottom	6	25.7	25.5	8.5	8.5	32.8	32.8	76.6	77.6	5.1	5.2		6.7	7.2	1	5	5.0	1

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTL		Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Вери	,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.5 27.4	27.5	8.2 8.2	8.2	32.0 31.0	31.5	88.9 88.6	88.8	6.1 6.1	6.1		3.2 2.8	3.0		8	8.0	
3-Jul-17	Cloudy	Moderate	09:18	Middle	7	27.1	27.2	8.1	8.1	32.6	32.6	86.4	86.1	5.9	5.9	5.9	3.8	3.6	3.6	6	6.0	6.7
	,					27.3 26.8		8.1 8.0		32.6 33.9		85.8 83.0		5.9 5.7		-	3.3		-	6		
				Bottom	13	26.8	26.8	8.0	8.0	33.9	33.9	83.2	83.1	5.7	5.7		4.6	4.3		6	6.0	
				Surface	1	26.3 26.2	26.3	8.2 8.1	8.2	25.2 24.5	24.9	91.3 90.5	90.9	6.3 6.2	6.3		3.0 2.7	2.9		6 7	6.5	
5-Jul-17	Cloudy	Moderate	10:29	Middle	7	25.9	26.0	8.1	8.1	25.8	25.8	88.0	88.0	6.0	6.0	6.0	3.5	3.5	3.6	5	5.0	5.5
	,					26.1 25.6		8.0 7.9		25.8 26.8		87.9 85.0		6.0 5.8		-	3.5 4.4		-	5 5		
				Bottom	13	25.7	25.7	8.0	8.0	26.8	26.8	84.6	84.8	5.8	5.8		4.6	4.5		5	5.0	
				Surface	1	26.8 26.7	26.8	8.1 8.1	8.1	27.0 26.3	26.7	96.8 96.7	96.8	6.7 6.7	6.7		2.1 1.8	2.0		6	6.0	
7-Jul-17	Cloudy	Moderate	11:40	Middle	6.5	26.4	26.5	8.1	8.1	27.6	27.6	93.8	93.3	6.5	6.5	6.5	2.7	2.5	2.6	5	5.0	5.3
7-501-17	Cloudy	Wodciato	11.40			26.6 26.1		8.0 7.9		27.6 28.7		92.7 90.2		6.4 6.2		0.5	2.2		2.0	5 5		0.0
				Bottom	12	26.1	26.1	7.9	7.9	28.7	28.7	90.2	90.2	6.2	6.2		3.5	3.2		5	5.0	
				Surface	1	27.1 27.1	27.1	8.4 8.4	8.4	25.5 25.5	25.5	142.8 142.2	142.5	9.9 9.8	9.9		1.4 1.4	1.4		4	4.0	
10-Jul-17	Fine	Moderate	13:16	Middle	6.5	26.2	26.2	8.3	8.3	27.4	27.5	101.1	101.5	7.0	7.1	6.8	1.6	1.5	2.4	4	4.0	5.0
10-541-17	Tille	Wodciato	10.10	Wilduic		26.2 24.6	20.2	8.2 8.0	0.0	27.5 33.1	27.0	101.8 51.0	101.0	7.1 3.5	7.1	0.0	1.4 4.6	1.0	2.7	7	4.0	5.0
				Bottom	12	24.6	24.6	8.0	8.0	33.0	33.1	50.1	50.6	3.5	3.5		4.0	4.4		7	7.0	
				Surface	1	28.1 28.1	28.1	8.8 8.8	8.8	20.9	20.9	174.3 175.8	175.1	12.1 12.2	12.2		2.1	2.1		3	3.0	
12-Jul-17	Fine	Moderate	14:06	Middle	6.5	26.4	26.4	8.4	8.4	26.4	26.6	86.8	85.3	6.0	5.9	7.2	1.9	1.9	4.0	6	6.0	5.3
12-Jul-17	rille	Woderate	14.00	ivildale		26.3 24.7	20.4	8.3 8.2	0.4	26.8 31.4	20.0	83.7 50.8	00.3	5.8 3.5	5.9	1.2	1.9 7.7	1.9	4.0	6 7	0.0	5.5
				Bottom	12	24.7	24.7	8.2	8.2	31.4	31.4	50.6	50.5	3.5	3.5		8.5	8.1		7	7.0	
				Surface	1	27.9 27.9	27.9	8.7 8.7	8.7	24.7 24.7	24.7	137.9 138.1	138.0	9.4 9.4	9.4		1.7 1.8	1.8		4	4.0	
14-Jul-17	Claudu	Dough	15:24	Middle	6.5	26.8	26.8	8.5	8.5	27.1	27.1	99.3	98.8	6.8	6.8	6.5	1.4	1.4	2.2	5	5.0	5.7
14-501-17	Cloudy	Rough	13.24	iviluale	0.5	26.7 24.7	20.0	8.5 8.2	0.5	27.1 31.8	21.1	98.2 50.0	30.0	6.8 3.5	0.0	0.5	1.3 3.4	1.4	2.2		3.0	5.7
				Bottom	12	24.7	24.7	8.2	8.2	31.8	31.8	47.9	49.0	3.3	3.4		3.4	3.4		8	8.0	l
				Surface	1	27.7	27.7	8.6	8.6	25.2	25.1	98.2	95.9	6.7	6.6		1.6	1.5		3	3.0	
17-Jul-17	Deleve	Calm	18:09	Middle	7	27.7 27.8	27.8	8.6 8.6	8.6	24.9 25.4	25.3	93.6 94.5	94.9	6.4 6.5	6.5	5.7	1.4	1.4	1.6	3	3.0	3.3
17-Jul-17	Rainy	Caim	18:09	Middle	′	27.7	21.8	8.6	8.6	25.1	25.3	95.2	94.9	6.5	6.5	5.7	1.4	1.4	1.6	3	3.0	3.3
				Bottom	13	26.7 27.2	27.0	8.3 8.3	8.3	27.8 26.7	27.3	55.5 61.5	58.5	3.8 4.2	4.0		2.1 1.7	1.9		4	4.0	l
				Surface	1	27.0	27.0	8.4	8.4	21.7	21.7	86.3	85.8	6.1	6.1		1.5	1.6		4	4.0	
40 1:147	Fi	0.1	00:40	A C d all a	7	27.0 26.9	00.0	8.4 8.3	0.0	21.7 24.2	04.0	85.2 63.9	CO F	6.0 4.5		4.0	1.6 1.4	4.0	4.0	3	0.0	4.0
19-Jul-17	Fine	Calm	09:19	Middle	7	26.8	26.9	8.3	8.3	24.2	24.2	61.1	62.5	4.3	4.4	4.6	1.7	1.6	1.9	3	3.0	4.3
				Bottom	13	26.6 26.6	26.6	8.3 8.3	8.3	26.6 26.6	26.6	45.7 44.4	45.1	3.2 3.1	3.2		2.5 2.7	2.6		6	6.0	
				Surface	1	27.8	27.8	8.4	8.4	25.7	25.8	116.5	112.9	7.9	7.7		1.0	1.0		4	4.0	
			10.51		_	27.7 27.7		8.4 8.3		25.8 26.1		109.2 99.6		7.5 6.8			0.9			4		
21-Jul-17	Sunny	Moderate	10:51	Middle	7	27.7	27.7	8.3	8.3	26.1	26.1	96.0	97.8	6.5	6.7	6.2	0.9	0.9	1.7	4	4.0	4.7
				Bottom	13	27.2 27.1	27.2	8.2 8.2	8.2	27.6 27.7	27.7	64.3 58.4	61.4	4.4 4.0	4.2		2.9 3.3	3.1		6	6.0	l
				Surface	1	27.4 27.3	27.4	8.4	8.4	25.9 25.9	25.9	80.7 78.2	79.5	5.5	5.5		1.2	1.2		3	3.0	
			40.05			27.3		8.4 8.3		26.5		78.2		5.4 4.9			1.1 0.9			3 4		
24-Jul-17	Sunny	Moderate	13:05	Middle	6.5	27.1	27.2	8.3	8.3	26.7	26.6	69.6	70.5	4.8	4.9	4.8	0.9	0.9	1.5	4	4.0	4.7
				Bottom	12	26.8 26.9	26.9	8.3 8.3	8.3	28.4 28.0	28.2	57.5 61.4	59.5	3.9 4.2	4.1		2.3 2.5	2.4		7	7.0	l
				Surface	1	28.1	28.1	8.2	8.3	26.2	26.3	68.7	67.9	4.6	4.6		1.4	1.4		3	3.5	
00 1:147	Fi		44:40	A C d all a	7	28.0 27.8	07.0	8.3 8.3	0.0	26.3 27.2		67.1 74.5	74.0	4.5 5.0	5.0	4.7	1.4	4.0	4.0	5	5.0	4.0
26-Jul-17	Fine	Moderate	14:46	Middle	7	27.8	27.8	8.3	8.3	27.0	27.1	74.0	74.3	5.0	5.0	4.7	0.9	1.0	1.6	5	5.0	4.0
				Bottom	13	27.4 27.4	27.4	8.3 8.3	8.3	28.3 28.4	28.4	66.7 64.8	65.8	4.5 4.4	4.5		2.6 2.4	2.5		4	3.5	
				Surface	1	28.0	28.1	8.6	8.6	27.2	27.2	64.3	65.0	4.3	4.4		2.1	1.9		4	4.0	
		<u> </u>	40.00			28.1 27.8		8.6 8.6		27.1 27.8		65.7 59.6		4.4			1.7 5.8			- 4 5		
28-Jul-17	Sunny	Moderate	16:02	Middle	6.5	27.8	27.8	8.6	8.6	28.1	28.0	59.5	59.6	4.0	4.0	4.2	6.3	6.1	5.5	5	5.0	5.7
				Bottom	12	27.7 27.8	27.8	8.6 8.6	8.6	28.5 28.6	28.6	59.7 60.4	60.1	4.0 4.1	4.1		8.5 8.7	8.6		8	8.0	
				Surface	1	27.3	27.4	8.3	8.4	29.9	29.9	96.5	95.2	6.4	6.3		3.1	3.2		4	4.0	
			40 :-			27.4 27.2		8.4 8.4		29.8 31.0		93.9 96.2		6.2			3.2 2.3		٠.	- 4 - 5		
31-Jul-17	Sunny	Moderate	18:43	Middle	7	26.9	27.1	8.6	8.5	30.9	31.0	90.4	93.3	6.0	6.2	5.9	2.8	2.6	3.4	5	5.0	4.7
				Bottom	13	26.2 25.7	26.0	8.4 8.6	8.5	33.5 34.1	33.8	76.9 76.8	76.9	5.1 5.1	5.1		4.6 4.1	4.4		5 5	5.0	l
								5.5		· · · · ·												

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Date Value Average Val	Average Value 8.6 30.5 8.6 30.4 8.6 31.0 8.5 31.4 8.5 31.4 8.6 25.5 8.0 24.6 25.2 8.0 25.3 8.1 24.9 8.1 24.9 8.1 25.5 8.3 26.8 8.3 26.8 8.3 26.8 8.4 28.2 8.2 29.8 8.3 26.8 8.3 32.7 8.4 28.2 8.5 32.7 8.6 25.6 8.6 25.6 8.6 25.8 8.8 31.7 8.6 25.6 8.6 25.8 8.8 27.7 8.8 32.8	Average 30.5 31.1 32.0 24.6 25.2 25.8 24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6 25.8	Value 99.2 100.5 94.6 90.8 90.8 90.6 88.5 86.2 86.3 81.0 77.1 76.8 111.0 111.7 199.8 75.7 75.2 139.7 98.6 96.0 96.5 96.5 96.8 54.9 54.9 54.5 42.8 42.8 42.8 42.8 130.3 96.3 62.6 61.8 98.7	99.9 92.7 89.1 86.3 79.8 77.0 111.4 100.3 75.5 138.7 97.3 53.5 96.7 42.7 129.3 96.7 62.2	Value 6.9 7.0 6.6 6.5 6.2 6.1 6.0 6.0 6.0 5.7 5.6 5.3 5.3 7.7 7.0 6.9 5.2 5.2 5.6 9.5 6.8 3.7 6.7 3.8 3.8 3.0 8.8 9.0 8.8 9.0 8.8 9.0 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	7.0 6.6 6.2 6.0 5.7 5.3 7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	6.6 5.7 6.6 6.7	Value 4.3 4.3 4.7 4.4 4.2 4.2 4.1 4.4 5.0 3.9 4.2 4.5 4.6 1.7 5.0 1.7 1.7 1.7 2.8 2.8 1.3 1.2 1.6 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	Average 4.3 4.7 4.3 4.2 4.7 4.1 4.6 4.9 4.2 1.7 2.8 1.3 1.6 5.2	4.4 4.3 4.6	Value 6 6 9 9 6 4 4 4 4 4 5 5 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Average 6.0 9.0 6.0 4.0 4.0 4.0 5.0 6.5 5.0 6.0 6.0 6.0 6.0	7.0 4.0 5.5 5.7
3-Jul-17 Cloudy Moderate 14:58 Middle 7 27.5 27.3 8.6	8.6 30.4 8.6 310.0 8.5 31.4 8.5 32.5 8.0 24.6 8.0 25.1 8.0 25.1 8.0 25.3 8.1 24.9 8.1 25.6 8.1 24.9 8.1 25.6 8.2 25.3 8.3 26.8 8.3 26.8 8.3 26.9 8.2 32.9 8.2 32.9 8.3 32.7 8.4 28.2 8.5 32.6 8.6 25.6 8.6 25.5 8.6 25.5 8.6 25.5 8.6 25.5 8.7 26.2 8.8 32.9 8.9 32.7 8.9 32.7 8.0 33.7 8.0 32.7 8.0 3	31.1 32.0 24.6 25.2 25.8 24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2	100.5 94.6 90.8 88.6 88.5 86.2 86.3 81.0 78.6 77.1 76.8 111.0 111.7 99.8 75.7 75.2 139.7 137.6 98.0 95.3 96.3 96.5 96.6 139.7 96.5 96.8 139.7 13	92.7 89.1 86.3 79.8 77.0 111.4 100.3 75.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	7.0 6.6 6.5 6.2 6.1 6.0 6.0 5.7 5.6 5.3 5.3 5.3 7.7 7.7 7.7 6.9 5.2 9.6 9.5 6.8 6.6 6.8 6.6 3.7 6.7 6.7 6.7 6.7 6.7 6.7 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	6.6 6.2 6.0 5.7 5.3 7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	6.6	4.3 4.7 4.4 4.2 4.2 4.1 4.4 5.0 3.9 4.5 4.6 4.7 5.0 1.7 1.7 2.8 1.3 1.2 1.6 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	4.7 4.3 4.2 4.7 4.1 4.6 4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	4.3	6 9 9 6 6 4 4 4 4 4 4 4 5 5 7 6 6 6 6 6 6 6 7 7 6 6 6 7 7 6 6 6 6	9.0 6.0 4.0 4.0 5.0 6.5 5.0 6.0 6.0 6.0 6.0 6.0	5.5
Solution Solution	8.5 31.2 4.6 8.0 24.6 8.0 25.1 24.9 8.0 25.2 8.0 26.2 8.1 24.9 8.1 25.6 8.1 24.9 8.1 25.6 8.2 29.8 8.2 29.9 8.2 29.9 8.2 32.9 8.2 32.9 8.2 32.9 8.3 31.6 8.2 28.2 8.2 32.9 8.3 31.6 8.5 28.2 32.9 8.3 31.6 8.5 28.2 8.2 8.3 31.6 8.5 28.2 8.3 31.6 8.5 28.2 8.3 31.6 8.5 28.2 8.3 31.6 8.5 25.5 8.6 25.5 8.6 25.6 8.6	32.0 24.6 25.2 25.8 24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	90.8 89.6 88.5 86.3 81.0 78.6 77.1 76.8 111.0 110.7 99.8 75.7 75.2 139.7 137.6 96.0 53.9 53.1 96.5 96.0 14.2 15.2 15.2 15.3 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8	89.1 86.3 79.8 77.0 111.4 100.3 76.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	6.5 6.2 6.1 6.0 6.0 5.7 5.6 5.3 7.7 7.7 7.0 6.9 9.5 6.8 6.3 7.7 6.7 6.7 6.7 6.7 6.7 6.8 3.8 3.0 3.0 3.0 4.3	6.2 6.0 5.7 5.3 7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9	6.6	4.7 4.4 4.2 4.2 4.1 4.4 5.0 3.9 4.5 4.6 4.7 5.0 4.3 4.1 1.7 1.7 2.8 1.3 1.2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	4.3 4.2 4.7 4.1 4.6 4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	4.3	9 6 6 4 4 4 4 4 4 5 5 7 6 6 6 6 6 6 6 6 6 6 6	6.0 4.0 4.0 4.0 5.0 6.5 5.0 6.0 6.0 6.0 6.0 6.0	5.5
Bottom	8.5 314 8.0 246 8.0 251 8.0 252 8.0 262 8.1 249 8.1 256 8.1 285 8.1 285 8.2 298 8.2 298 8.2 298 8.2 329 8.3 268 8.3 268 8.3 268 8.3 27 8.4 282 8.5 285 8.6 255 8.6 255 8.6 255 8.6 256 8.6 256	24.6 25.2 25.8 24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	89.6 88.2 86.2 86.3 81.0 77.1 76.8 111.7 100.7 99.8 75.7 75.2 139.7 137.6 98.6 96.0 95.9 96.9 53.9 96.8 54.5 42.8 42.6 128.2 139.7 139.7 139.6 96.0 96.0 96.0 96.0 96.0 96.0 96.0 9	86.3 79.8 77.0 111.4 100.3 76.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	6.2 6.1 6.0 6.0 5.7 5.6 5.3 7.7 7.7 7.0 6.9 5.2 9.6 9.5 6.8 6.8 6.8 6.7 3.7 3.7 6.7 6.7 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	6.0 5.7 5.3 7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	6.6	4.4 4.2 4.1 4.4 5.0 4.5 4.6 4.7 5.0 4.3 4.1 1.6 1.7 1.7 1.7 2.8 1.3 1.2 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	4.2 4.7 4.1 4.6 4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	4.6	6 6 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 6	4.0 4.0 4.0 5.0 6.5 5.0 6.0 6.0 5.0 6.0 6.0	5.5
Solidin 13 27.0 27.1 8.4	8.0 24.6 24.5 8.0 25.1 8.0 25.2 8.1 24.9 8.1 25.6 8.3 26.8 8.3 26.8 8.3 26.8 8.4 28.9 8.2 29.8 8.2 32.9 8.2 32.9 8.3 34.5 8.4 28.2 8.2 32.9 8.3 34.5 8.6 25.5 8.6 25.5 8.6 25.5 8.6 25.5 8.7 28.2 8.8 28.2 8.9 34.5 8.9 34.5 8.9 34.5 8.0 25.6 8.0 26.8 8.1 28.5 8.2 29.8 8.3 26.8 8.3 26.8 8.3 26.8 8.3 26.8 8.4 28.2 8.5 32.7 8.6 25.5 8.6 25.5 8.6 25.6 8.6 25.6 8.7 25.6 8.7 25.6 8.8 25.6	24.6 25.2 25.8 24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	86.2 86.3 81.0 78.6 77.1 76.8 111.0 111.7 100.7 99.8 75.7 75.2 139.7 137.6 98.6 96.0 95.9 53.1 96.8 54.9 54.9 54.9 128.2 139.7 137.6 62.6 61.8	86.3 79.8 77.0 111.4 100.3 76.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	6.0 6.0 5.7 5.6 5.3 5.3 7.7 7.7 7.0 6.9 5.2 9.6 6.8 6.6 3.7 3.7 3.7 6.7 6.7 6.7 6.7 6.7 6.9 6.8 6.6 6.6 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.0 5.7 5.3 7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	6.6	4.2 4.1 4.4 5.0 3.9 4.2 4.5 4.6 4.7 5.0 4.3 4.1 1.6 1.7 1.7 1.7 2.8 2.8 1.3 1.2 1.6 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	4.2 4.7 4.1 4.6 4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	4.6	4 4 4 4 4 4 4 5 5 5 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.0 4.0 4.0 5.0 6.5 5.0 6.0 6.0 5.0 6.0 6.0	5.5
Surface 1 27.0 27.0 8.0 8.0	8.0 24.5 8.0 25.2 8.0 25.2 8.1 24.9 8.1 25.6 8.1 28.5 8.1 28.5 8.1 28.5 8.2 29.8 8.2 29.8 8.2 32.9 8.2 32.9 8.3 32.7 8.4 28.2 8.2 32.9 8.3 31.6 8.5 26.8 8.6 25.6 8.6 25.6	25.2 25.8 24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	86.3 81.0 78.6 77.1 76.8 111.7 100.7 99.8 75.7 75.2 139.7 137.6 96.6 96.0 53.9 53.1 96.5 96.8 54.9 54.9 54.9 128.2 139.7	79.8 77.0 111.4 100.3 75.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	6.0 5.7 5.6 5.3 7.7 7.0 6.9 5.2 9.6 9.5 6.8 6.8 6.7 3.7 6.7 6.7 6.7 6.9 9.5 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	5.7 5.3 7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9	6.6	4.1 4.4 5.0 3.9 4.2 4.5 4.6 4.7 5.0 4.3 4.1 1.6 1.7 1.7 1.7 2.8 1.3 1.2 1.6 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	4.7 4.1 4.6 4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	4.6	4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6	4.0 4.0 5.0 6.5 5.0 6.0 6.0 5.0 3.0 6.0 6.0	5.5
Solution Solution	8.0 25.2 8.0 25.3 8.1 24.9 8.1 25.6 8.1 28.5 8.1 28.5 8.3 26.8 8.3 26.8 8.9 29.9 8.2 29.8 8.2 32.9 8.4 28.2 8.2 32.9 8.4 28.2 8.5 34.5 8.6 25.5 8.6 25.6 8.6 25.6 8.7 25	25.8 24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	78.6 77.1 76.8 111.0 111.7 100.7 99.8 75.7 75.2 139.7 137.6 96.0 95.0 95.1 96.5 96.8 54.5 42.8 42.6 128.2 130.3 97.0 98.7	77.0 111.4 100.3 75.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	5.6 5.3 7.7 7.0 6.9 5.2 9.6 9.5 6.8 6.8 6.7 3.7 3.7 6.7 6.7 6.7 6.7 6.9 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	5.3 7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9	6.6	5.0 3.9 4.2 4.5 4.6 4.7 5.0 4.3 4.1 1.7 1.7 1.7 2.8 2.8 1.3 1.2 1.6 5.1 5.2 1.5 1.6	4.1 4.6 4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	4.6	4 4 4 5 5 7 6 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	4.0 5.0 6.5 5.0 6.0 6.0 5.0 3.0 6.0 6.0	5.5
Bottom	8.0 253 262 8.1 249 9.8.1 256 6.8.2 29.9 8.2 32.9 8.2 32.9 8.2 32.9 8.2 32.9 8.3 31.6 8.3 26.8 8.3 31.6 8.5 28.5 28.6 25.6 8.6 25	24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	77.1 76.8 111.0 111.7 190.7 190.8 75.7 75.2 139.7 137.6 98.6 98.6 98.0 53.9 53.9 54.9 54.5 42.8 128.2 130.3 97.0 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3	111.4 100.3 75.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	5.3 7.7 7.7 7.0 6.9 5.2 9.5 6.8 6.6 3.7 3.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6	7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	4.5	3.9 4.2 4.5 4.6 4.7 5.0 4.3 4.1 1.6 1.7 1.7 2.8 2.8 1.3 1.2 1.6 1.6 5.1 1.6 1.6 1.7	4.6 4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	2.1	4 4 5 5 7 6 5 5 6 6 6 6 6 5 5 7 6 6 6 6 6 6	5.0 6.5 5.0 6.0 6.0 5.0 3.0 6.0 6.0	5.7
7-Jul-17 Cloudy Moderate 18:21	8.1 24.9 8.1 24.9 8.1 25.5 8.1 28.5 8.3 26.8 8.2 29.8 8.2 29.8 8.4 28.2 28.2 28.2 32.9 8.2 32.9 8.3 32.6 8.4 28.2 32.9 8.4 28.2 32.9 8.2 32.9 8.3 31.6 8.6 25.5 8.6 25.5 8.6 25.6 8.6 25.6	24.9 25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	111.0 111.7 100.7 99.8 75.7 75.2 139.6 96.6 96.0 53.9 53.1 96.5 96.8 54.9 54.5 42.8 42.6 128.2 130.3 97.0 96.3 96.3 96.3	111.4 100.3 75.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	7.7 7.7 7.0 6.9 5.2 9.6 9.5 6.8 6.6 7 6.7 3.8 3.0 3.0 3.0 8.8 9.0 6.6 6.6 4.3	7.7 7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	4.5	4.5 4.6 4.7 5.0 4.3 4.1 1.6 1.7 1.7 2.8 1.3 1.2 1.6 1.6 5.1 1.5 1.6 1.6 1.7	4.6 4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	2.1	5 5 7 6 5 5 6 6 6 6 5 5 3 3 6 6 6 6 6 6 6 6 6	5.0 6.5 5.0 6.0 6.0 5.0 3.0 6.0 6.0	5.7
7-Jul-17 Cloudy Moderate 18:21 Middle 6.5 26.9 26.9 26.9 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	8.1 24.9 8.1 25.6 8.1 28.5 8.3 26.8 8.2 29.8 8.2 29.9 8.0 32.7 8.4 28.2 28.2 32.9 8.2 32.9 8.2 32.9 8.3 31.6 8.6 25.6 8.6 25.6	25.6 28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	111.7 100.7 99.8 75.7 75.2 139.7 137.6 96.0 96.0 53.1 96.5 96.8 54.9 54.9 54.9 42.6 128.2 130.3 97.0 96.3 62.6 61.8 98.7	100.3 75.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	7.7 7.0 6.9 5.2 5.2 9.6 9.5 6.8 6.6 7 3.7 6.7 3.8 3.8 3.0 3.0 6.7 6.6 4.3	7.0 5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	4.5	4.6 4.7 5.0 4.3 4.1 1.6 1.7 1.7 1.7 2.8 2.8 1.3 1.2 1.6 1.6 5.1 5.2	4.9 4.2 1.7 1.7 2.8 1.3 1.6 5.2	2.1	5 7 6 5 5 6 6 6 6 5 5 5 3 3 6 6 6 6	6.5 5.0 6.0 6.0 5.0 3.0 6.0 6.0	5.7
10-Jul-17 Fine Moderate 18-21 Middle 12 26.1 26.1 26.1 8.1	8.1 25.5 8.1 28.5 8.3 26.8 8.2 29.8 8.2 29.8 8.0 32.7 8.4 28.2 8.2 32.9 8.2 32.9 8.2 32.9 8.3 31.6 8.5 28.2 8.6 25.5 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.6	28.5 26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	99.8 75.7 75.2 139.7 137.6 98.6 96.0 53.9 53.1 96.5 96.8 54.9 54.8 42.8 42.8 42.8 128.2 130.3 97.0 96.3 96.3	75.5 138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	6.9 5.2 9.6 9.5 6.8 6.6 3.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6	5.2 9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	4.5	5.0 4.3 4.1 1.6 1.7 1.7 2.8 2.8 1.3 1.2 1.6 1.6 5.1 5.2	4.2 1.7 1.7 2.8 1.3 1.6 5.2	2.1	6 5 5 6 6 6 6 5 5 3 3 6 6 6	5.0 6.0 6.0 5.0 3.0 6.0 6.0	5.7
Bottom 12 26.1 8.1 8.1 8.1	8.1 28.5 28.5 28.5 28.2 29.8 8.2 29.8 8.2 29.9 8.2 29.9 8.4 28.2 32.9 8.2 32.9 8.2 32.9 8.2 32.5 32.5 34.5 34.5 28.2 32.9 8.2 34.5 25.3 31.6 31.7 8.6 25.6 8	26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	75.7 75.2 139.7 137.6 98.6 96.0 53.9 53.1 96.5 96.8 54.5 42.8 42.6 128.2 130.3 97.0 62.6 62.6 98.7	138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	5.2 5.2 9.6 9.5 6.6 3.7 3.7 6.7 6.7 6.7 6.3 8.8 9.0 6.6 6.6 4.3	9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	4.5	4.3 4.1 1.6 1.7 1.7 1.7 2.8 1.3 1.2 1.6 5.1 5.2 1.5 1.4	1.7 1.7 2.8 1.3 1.6 5.2		5 5 6 6 6 5 5 3 3 6 6 6	6.0 6.0 5.0 3.0 6.0	
Surface 1	28.5 8.3 26.8 8.2 29.9 8.0 32.7 8.0 32.7 8.4 28.2 8.2 32.9 8.2 32.9 8.2 34.5 3.5 8.6 25.5 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.6	26.9 29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	139.7 137.6 98.6 96.0 53.9 53.1 96.5 96.8 54.5 42.8 42.8 42.6 128.2 130.3 97.0 96.3 62.6 98.7	138.7 97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	9.6 9.5 6.8 6.6 3.7 3.7 6.7 6.7 6.7 3.8 3.8 3.0 3.0 6.7 6.7 6.7 4.3 4.3	9.6 6.7 3.7 6.7 3.8 3.0 8.9 6.7	4.5	1.6 1.7 1.7 2.8 2.8 1.3 1.2 1.6 5.1 5.2 1.5 1.4	1.7 1.7 2.8 1.3 1.6 5.2		6 6 6 5 5 3 3 6 6 6	6.0 6.0 5.0 3.0 6.0	
10-Jul-17 Fine Moderate 20:01 Middle 6.5 25:9 25:9 25:9 8.2	8.2 29.9 8.2 29.9 8.0 32.7 8.4 28.2 8.2 32.9 8.2 32.9 8.2 34.5 3.5 28.2 8.5 28.2 8.6 25.5 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.6 8.7 25.6 8.8 25.6 8.9 25.6 8.9 25.6	29.9 32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	137.6 98.6 96.0 53.9 53.1 96.5 96.8 54.9 54.5 42.8 128.2 130.3 97.0 96.3 62.6 61.8 98.7	97.3 53.5 96.7 54.7 42.7 129.3 96.7 62.2	9.5 6.8 6.6 3.7 3.7 6.7 6.7 3.8 3.0 3.0 8.8 9.0 6.7 6.6 4.3	6.7 3.7 6.7 3.8 3.0 8.9 6.7	4.5	1.7 1.7 2.8 2.8 1.3 1.2 1.6 5.1 5.2 1.5 1.4	1.7 2.8 1.3 1.6 5.2		6 6 6 5 5 3 3 6 6 6	6.0 5.0 3.0 6.0 6.0	
12-Jul-17	8.0 32.7 8.0 32.7 8.4 28.2 28.2 8.2 32.9 8.2 34.5 8.6 25.5 8.6 25.5 8.5 28.2 8.3 31.6 8.5 25.6 8.6 25.6 8.6 25.6	32.7 28.2 32.9 34.5 25.4 28.2 31.7 25.6	96.0 53.9 53.1 96.5 96.8 54.9 54.5 42.8 42.6 128.2 130.3 97.0 96.3 62.6 61.8 98.7	53.5 96.7 54.7 42.7 129.3 96.7 62.2	6.6 3.7 3.7 6.7 6.7 3.8 3.8 3.0 3.0 6.7 6.7 6.7 4.3	3.7 6.7 3.8 3.0 8.9 6.7	4.5	1.7 2.8 2.8 1.3 1.2 1.6 1.6 5.1 5.2 1.5 1.4	2.8 1.3 1.6 5.2 1.5		6 5 5 3 3 6 6 6	5.0 3.0 6.0 6.0	
Bottom 12 24.8 24.8 8.0 8.0	8.0 32.7 8.4 28.2 8.2 32.9 8.2 32.9 8.2 34.5 8.6 25.5 8.5 28.2 28.2 28.2 31.6 8.3 31.6 8.6 25.6 8.6 25.6 8.6 25.6 8.8 25.8 8.9 28.2 8.9 28.2 8.0 28.2	28.2 32.9 34.5 25.4 28.2 31.7 25.6	53.9 53.1 96.5 96.8 54.9 54.5 42.8 42.6 128.2 130.3 97.0 96.3 62.6 61.8 98.7	96.7 54.7 42.7 129.3 96.7 62.2	3.7 3.7 6.7 6.7 3.8 3.8 3.0 3.0 8.8 9.0 6.7 6.6 4.3	6.7 3.8 3.0 8.9 6.7		2.8 2.8 1.3 1.2 1.6 1.6 5.1 5.2 1.5 1.4	1.3 1.6 5.2 1.5	2.7	5 5 3 3 6 6 6	3.0 6.0 6.0	5.0
Surface 1 26.1 26.1 8.4 8.0	8.4 28.2 28.2 28.2 32.9 8.2 32.9 34.5 8.6 25.5 38.5 28.2 28.2 28.2 8.3 31.6 8.6 25.6 8.6 25.6 8.6 25.6 8.6 25.8 8.9 27.9	28.2 32.9 34.5 25.4 28.2 31.7 25.6	96.5 96.8 54.9 54.5 42.8 42.6 128.2 130.3 97.0 96.3 62.6 61.8 98.7	96.7 54.7 42.7 129.3 96.7 62.2	6.7 6.7 3.8 3.8 3.0 3.0 8.8 9.0 6.7 6.6 4.3 4.3	6.7 3.8 3.0 8.9 6.7		1.3 1.2 1.6 1.6 5.1 5.2 1.5 1.4	1.3 1.6 5.2 1.5	2.7	3 6 6 6 6	3.0 6.0 6.0	5.0
12-Jul-17 Cloudy Moderate 07:54 Middle 6.5 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1 24.1 8.2 24.1	8.4 28.2 32.9 8.2 34.5 25.5 8.6 25.5 8.6 25.6 25.6 8.6 25.6 25.6 8.6 25.6 25.8 25.8 25.8 25.8 27.9	32.9 34.5 25.4 28.2 31.7 25.6	96.8 54.9 54.5 42.8 42.6 128.2 130.3 97.0 96.3 62.6 61.8 98.7	54.7 42.7 129.3 96.7 62.2	6.7 3.8 3.8 3.0 3.0 8.8 9.0 6.7 6.6 4.3 4.3	3.8 3.0 8.9 6.7		1.2 1.6 1.6 5.1 5.2 1.5 1.4	1.6 5.2 1.5	2.7	3 6 6 6 6	6.0	5.0
2-Jul-17 Coludy Moderate 07.34 Mindule 0.5 24.1 2	8.2 34.5 8.6 25.5 8.6 25.3 8.5 28.2 28.2 28.2 28.2 31.6 31.7 8.6 25.8 8.6 25.8 25.8 27.9	34.5 25.4 28.2 31.7 25.6	54.5 42.8 42.6 128.2 130.3 97.0 96.3 62.6 61.8 98.7	42.7 129.3 96.7 62.2	3.8 3.0 3.0 8.8 9.0 6.7 6.6 4.3 4.3	3.0 8.9 6.7		1.6 5.1 5.2 1.5 1.4 1.6	5.2 1.5	2.7	6 6 6	6.0	5.0
Bottom 12 23.3 23.3 8.2	8.2 34.5 34.5 25.5 25.3 8.5 28.2 8.3 31.6 31.7 8.6 25.6 25.8 8.6 25.8 27.9	25.4 28.2 31.7 25.6	42.8 42.6 128.2 130.3 97.0 96.3 62.6 61.8 98.7	129.3 96.7 62.2	3.0 3.0 8.8 9.0 6.7 6.6 4.3 4.3	8.9 6.7	6.6	5.1 5.2 1.5 1.4 1.6	1.5		6		
14-Jul-17 Fine Rough 09-21 Surface 1 27.3 27.4 8.6 8.6 8.5	8.6 25.5 8.5 28.2 8.5 28.2 8.3 31.6 31.7 8.6 25.6 25.8 25.8 27.9	25.4 28.2 31.7 25.6	128.2 130.3 97.0 96.3 62.6 61.8 98.7	129.3 96.7 62.2	8.8 9.0 6.7 6.6 4.3 4.3	8.9 6.7	6.6	1.5 1.4 1.6	1.5		-		
14-Jul-17 Fine Rough 09:21 Middle 6.5 26.4 26.4 8.5 8.5 8.3 8.3 8.3 8.3 8.3 8.5 8.5 8.5 8.5 8.5 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.5 8.5 8.5 8.5 8.3	8.5 28.2 28.2 28.2 8.3 31.6 31.7 8.6 25.6 25.8 25.8 25.8	28.2 31.7 25.6	130.3 97.0 96.3 62.6 61.8 98.7	96.7 62.2	9.0 6.7 6.6 4.3 4.3	6.7	6.6	1.4 1.6					
Surface 1 28.0 26.4	8.3 31.6 8.3 31.7 8.6 25.6 25.6 8.6 25.8 27.9	31.7 25.6	96.3 62.6 61.8 98.7	62.2	6.6 4.3 4.3		6.6		4.5	4	4	4.0	
Bottom 12 24.9 24.9 8.3 8.3	8.3 31.6 31.7 8.6 25.6 25.8 8.6 25.8 25.8 27.9	25.6	62.6 61.8 98.7		4.3	4.3			1.5	1.7	5 5	5.0	4.7
Surface 1 28.0 28.0 8.6	8.6 25.6 25.6 8.6 25.8 25.8 27.9	25.6	98.7					2.0	2.0		5	5.0	
17-Jul-17 Rainy Calm 12:17 Middle 7 27.6 27.6 8.5 8.	8.6 25.8 8.6 25.8 27.9			98.6				1.9 1.6			5		
17-Jul-17 Name 12-17 Name 13 26.6 26.7 8.3 26.7 8.3 26.6 26.7 8.3 26.7 27.6 27.6 27.6 27.6 27.6 27.6 27.5 27.5 27.5 27.5 27.0	8.6 25.8 27.9	25.8			6.7	6.7		1.7	1.7		3	3.0	
Surface 27.6 27.6 8.3			83.0 82.7	82.9	5.7 5.7	5.7	5.5	1.1 1.2	1.2	1.4	3	3.0	3.0
19-Jul-17 Sunny Moderate 14:37 Surface 1 27.6 27.6 8.4 8.4 8.4 8.4 19-Jul-17 Sunny Moderate 14:37 Middle 7 27.0 27.0 8.3 8.3 19-Jul-17 26.4 8.2 8.4 8.2		27.9	57.6 57.4	57.5	4.0 3.9	4.0		1.3 1.3	1.3		3	3.0	
19-Jul-17 Sunny Moderate 14:37 Middle 7 27.0 27.0 8.3 8.3 8.2 8.4 8.2 8.4 8.2	8.4 23.4	23.6	83.7	80.5	5.8	5.6		1.2	1.2		5	5.0	
14.57 Middle 7 27.0 27.0 8.3	23.7		77.3 64.0		5.4 4.4		,	1.2			5 3		
	8.3 24.8	24.7	59.6	61.8	4.1	4.3	4.2	1.2	1.1	1.6	3	3.0	4.3
	8.3 28.3 28.2	28.3	38.0 38.3	38.2	2.6	2.6		2.4 2.3	2.4		5 5	5.0	
Surface 1 27.9 27.9 8.5	8.5 26.4	26.4	120.0	120.1	8.1	8.1		1.1	1.2		5	5.0	
27.9 8.5	26.4		120.1 110.2		8.1 7.5		,	1.2 1.8			5 5		
21-Jul-17 Fine Rough 17:18 Middle 7 27.8 27.8 8.4	8.4 26.6	26.6	112.2	111.2	7.6	7.6	7.6	1.9	1.9	1.9	5	5.0	4.7
Bottom 13 27.8 27.8 8.4 8.4	8.4 26.7 26.7	26.7	102.7 101.5	102.1	7.0 6.9	7.0		2.7 2.5	2.6		4	4.0	
Surface 4 27.4 27.4 8.4	26.7	26.7	84.1	83.4	5.7	5.7		1.1	1.1		3	3.0	
27.4 8.4	20.0		82.7 75.7		5.6 5.2			1.1 2.1			7		
24-Jul-17 Cloudy Moderate 19:52 Middle 6.5 27.2 27.3 8.3	8.4 27.1	27.1	71.9	73.8	4.9	5.1	5.2	2.1	2.1	2.0	7	7.0	5.0
Bottom 12 27.2 27.2 8.3 8.3	8.3 27.1	27.1	71.1 71.3	71.2	4.9 4.9	4.9		2.7 2.7	2.7		5 5	5.0	
Surface 1 27.8 27.8 8.4	8.4 27.5 27.6	27.6	78.2 77.0	77.6	5.3	5.3		0.7	0.7		3	3.0	
27.7 8.4	8.4 27.8	27.8	74.7	74.4	5.2 5.0	5.0	5.0	1.0	1.0	1.4	3 4	4.0	3.3
26-Jul-17 Sulfity Moderate 05.05 Middle 7 27.7 27.7 8.4	27.8		74.1 70.9		5.0 4.8		D.U	1.0 2.5		1.4	3		3.3
Bottom 13 27.6 27.6 8.3	8.4 28.0	28.0	70.7	70.8	4.8	4.8		2.4	2.5		3	3.0	
Surface 1 27.8 27.9 8.6 8.6 8.6	8.6 27.7 27.7	27.7	63.0 61.7	62.4	4.2	4.2		2.5 2.3	2.4		6	6.0	
28- Jul-17 Supply Moderate 09:33 Middle 6.5 27.7 27.7 8.7	9.7 28.5	28.6	63.4	63.7	4.2	4.3	4.3	2.3	2.4	2.6	5	4.5	4.8
27.6 9.7	28.7		63.9 63.1		4.3 4.2		4.0	2.4 3.0		2.0	4		4.0
BOILOIII 12 27.6 27.0 8.7	28.9	28.9	63.6	63.4	4.3	4.3		2.8	2.9		4	4.0	
Surface 1 26.9 26.8 26.9 8.5 8.5	8.5 30.1 30.3	30.2	98.3 99.8	99.1	6.5 6.6	6.6		3.2 3.5	3.4		4 4	4.0	·
31- Jul-17 Suppy Moderate 13:15 Middle 7 26.8 26.8 8.4	8.5 30.8	30.7	98.3	98.7	6.5	6.5	6.1	2.8	2.8	4.1	5	5.5	
26.8 8.5	30.6				6.5			2.8		1	6		5.2
Bottom 13 25.2 25.2 8.6	8.6 33.0	32.9	99.1 76.9	77.0	5.1	5.1		5.9	6.0	1	6	6.0	5.2

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ture (°C)	р	Н	Salin	ity ppt	DO Satur	ration (%)		ved Oxygen		Т	urbidity(NTI		Suspe	nded Solids	
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average		Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.5 27.4	27.5	8.2 8.2	8.2	31.4 31.3	31.4	92.7 93.1	92.9	6.4 6.4	6.4		3.7 3.7	3.7		4	4.0	
3-Jul-17	Cloudy	Moderate	08:01	Middle	10	27.1	27.1	8.2	8.2	31.9	31.9	90.4	90.3	6.2	6.2	6.2	3.6	3.6	3.7	6	6.0	5.3
	-			Bottom	19	27.1 26.9	26.9	8.1 8.1	8.1	31.9 32.5	32.6	90.1 85.6	85.8	6.2 5.9	5.9		3.5 3.5	3.7		6	6.0	
						26.9 26.3		8.1 8.2		32.6 24.8		85.9 93.4		5.9 6.4			3.9			6 5		
				Surface	1	26.1	26.2	8.2	8.2	24.8	24.8	94.6	94.0	6.5	6.5		4.1	3.8		4	4.5	
5-Jul-17	Cloudy	Moderate	09:16	Middle	10	26.0 25.9	26.0	8.1 8.1	8.1	25.2 25.2	25.2	92.1 92.3	92.2	6.3 6.3	6.3	6.3	3.4 3.9	3.7	3.8	5 5	5.0	4.7
				Bottom	19	25.7 25.7	25.7	8.1	8.1	25.7 25.7	25.7	87.3	87.2	6.0 5.9	6.0		3.6	3.8		4 5	4.5	
				Surface	1	27.0	27.0	8.0 7.7	7.8	26.3	26.3	87.0 100.2	100.3	6.9	6.9		4.0 2.6	2.6		5	5.0	
					-	27.0 26.7		7.8 7.9		26.3 26.7		100.3 97.5		6.9 6.7		-	2.6 2.1			5 7		
7-Jul-17	Cloudy	Moderate	10:24	Middle	11	26.8	26.8	7.9	7.9	26.6	26.7	97.5	97.5	6.7	6.7	6.5	2.1	2.1	2.4	7	7.0	5.7
				Bottom	21	26.5 26.5	26.5	8.0 8.0	8.0	27.4 27.3	27.4	84.9 86.3	85.6	5.9 6.0	6.0		2.4 2.8	2.6		5 5	5.0	
				Surface	1	26.2 26.1	26.2	8.0 8.0	8.0	29.6 29.6	29.6	123.0 121.8	122.4	8.4 8.3	8.4		1.2 1.2	1.2		6 7	6.5	
10-Jul-17	Fine	Moderate	12:00	Middle	11	24.7	24.8	8.0	8.0	33.1	33.0	72.3	72.3	5.0	5.0	5.6	1.2	1.2	1.7	5	5.0	5.8
						24.8 23.8		8.0 7.9	7.0	32.8 35.5		72.3 47.2		5.0 3.3		+	1.1 2.4			5 6		
				Bottom	21	23.7 27.1	23.8	7.9 8.5	7.9	35.8 27.3	35.7	46.7 143.6	47.0	3.2 9.8	3.3		2.7 1.9	2.6		6	6.0	
				Surface	1	27.1	27.1	8.5	8.5	27.2	27.3	145.6	144.6	10.0	9.9		1.7	1.8		6	6.0	
12-Jul-17	Fine	Moderate	12:50	Middle	11	23.5 23.6	23.6	8.2 8.2	8.2	34.2 34.0	34.1	44.4 45.0	44.7	3.1 3.1	3.1	5.3	1.6 1.7	1.7	1.9	6	6.0	5.3
				Bottom	21	23.4	23.4	8.2 8.2	8.2	34.4 34.4	34.4	41.1 41.0	41.1	2.9	2.9	İ	2.3	2.2		4	4.0	
				Surface	1	27.9	27.9	8.6	8.6	26.6	26.6	155.8	156.2	10.5	10.6		1.1	1.2		5	5.0	
						27.9 24.2		8.6 8.2		26.6 33.0		156.5 53.8		10.6 3.7			1.2			5 7		
14-Jul-17	Cloudy	Rough	14:08	Middle	11	24.3	24.3	8.2	8.2	32.7	32.9	54.0	53.9	3.8	3.8	5.8	1.3	1.4	1.8	7	7.0	5.7
				Bottom	21	23.5 23.5	23.5	8.2 8.2	8.2	34.3 34.3	34.3	41.8 41.5	41.7	2.9 2.9	2.9		2.8 2.8	2.8		5 5	5.0	
				Surface	1	28.2 28.2	28.2	8.6 8.6	8.6	24.3 24.4	24.4	99.6 93.9	96.8	6.8 6.4	6.6		1.2 1.4	1.3		4	4.0	
17-Jul-17	Rainy	Calm	19:06	Middle	9.5	27.6	27.6	8.4	8.5	26.4	26.5	73.6	73.7	5.0	5.0	4.9	1.3	1.4	2.0	5	5.0	4.0
	,			Bottom	18	27.5 26.1	26.4	8.5 8.3	8.3	26.5 29.5	29.4	73.8 43.7	46.9	5.0 3.0	3.2		1.5 3.2	3.2		5 3	3.0	
				DOLLOTT	10	26.7 27.0		8.3 8.3	0.3	29.3 19.6		50.1 84.8		3.4 6.1			3.1			3 5		
				Surface	1	27.0	27.0	8.5	8.4	19.2	19.4	81.7	83.3	5.9	6.0		4.2	3.8		5	5.0	
19-Jul-17	Fine	Calm	07:55	Middle	9.5	27.1 27.1	27.1	8.4 8.4	8.4	26.7 26.7	26.7	57.8 58.2	58.0	4.0 4.0	4.0	4.3	1.3 1.2	1.3	3.0	5 5	5.0	4.7
				Bottom	18	26.1 26.0	26.1	8.3 8.3	8.3	30.2 30.2	30.2	41.4 39.8	40.6	2.8	2.8	Ī	4.2 3.8	4.0		4	4.0	
				Surface	1	27.8	27.8	8.3	8.3	26.3	26.3	100.6	99.3	6.8	6.8		0.8	0.8		4	4.0	
						27.8 27.0		8.3 8.2		26.3 28.2		98.0 58.0		6.7 3.9			0.7 1.1			6		
21-Jul-17	Sunny	Moderate	09:35	Middle	9.5	27.0 25.8	27.0	8.2 8.1	8.2	28.5 31.6	28.4	55.8 34.9	56.9	3.8	3.9	4.4	1.1 5.5	1.1	2.5	5	5.5	4.5
				Bottom	18	26.2	26.0	8.1	8.1	30.7	31.2	39.7	37.3	2.7	2.6		5.7	5.6		4	4.0	
				Surface	1	27.5 27.6	27.6	8.4 8.4	8.4	27.4 27.3	27.4	78.5 77.7	78.1	5.3 5.3	5.3		1.3 1.1	1.2		4	4.0	
24-Jul-17	Sunny	Moderate	11:52	Middle	10	27.4	27.4	8.4	8.4	28.2	28.1	74.7	74.7	5.1 5.1	5.1	5.1	2.2	2.2	2.3	6	6.0	5.0
	•			Bottom	19	27.3	27.4	8.4	8.4	28.7	28.6	69.2	71.1	4.7	4.8	t	3.8	3.6	1	5	5.0	
						27.4 28.1		8.4 8.3		28.4 27.1		73.0 81.2		4.9 5.5			3.4 1.4			5 4		
				Surface	1	28.1	28.1	8.3	8.3	27.0	27.1	80.2	80.7	5.4	5.5	1	1.3	1.4		4	4.0	
26-Jul-17	Fine	Moderate	13:30	Middle	9.5	27.8 27.8	27.8	8.3 8.3	8.3	27.9 27.9	27.9	73.6 74.2	73.9	5.0 5.0	5.0	5.0	1.7 1.7	1.7	1.6	6 7	6.5	4.8
				Bottom	18	27.5 27.5	27.5	8.3 8.3	8.3	28.9 28.8	28.9	68.0 68.4	68.2	4.6 4.6	4.6		1.8 1.8	1.8		4	4.0	
				Surface	1	28.0	28.0	8.6	8.6	28.1	28.2	66.5	66.2	4.5	4.5		2.7	2.7		4	4.0	
28-Jul-17	Sunny	Moderate	17:19	Middle	10	28.0 27.9	27.9	8.6 8.7	8.7	28.2 28.5	28.5	65.8 65.7	65.4	4.4 4.4	4.4	4.4	2.7 4.0	4.0	4.4	6	6.0	5.0
20-Jul- 17	Julily	wouerate	17.19			27.9 27.8		8.7 8.7		28.4 28.7		65.0 65.7		4.4 4.4		4.4	4.0 6.4		4.4	- 6 - 5		J.U
				Bottom	19	27.8	27.8	8.7	8.7	28.7	28.7	65.4	65.6	4.4	4.4		6.7	6.6		5	5.0	
				Surface	1	27.1 27.1	27.1	8.4 8.4	8.4	28.9 29.8	29.4	95.4 97.4	96.4	6.3 6.4	6.4		2.6 2.6	2.6		3	3.0	
31-Jul-17	Sunny	Moderate	17:19	Middle	9.5	27.1 28.7	27.9	8.4 8.5	8.5	30.3 31.2	30.8	92.1 92.1	92.1	6.1 6.1	6.1	5.9	3.0 3.1	3.1	3.5	6	6.0	5.0
				Bottom	18	26.0	26.6	8.4	8.5	32.3	32.7	77.1	77.0	5.1	5.1	t	4.8	4.8	1	6	6.0	
				Dottom	10	27.1	20.0	8.5	0.0	33.0	52.1	76.9	77.0	5.1	U. I		4.8	7.0		6	0.0	

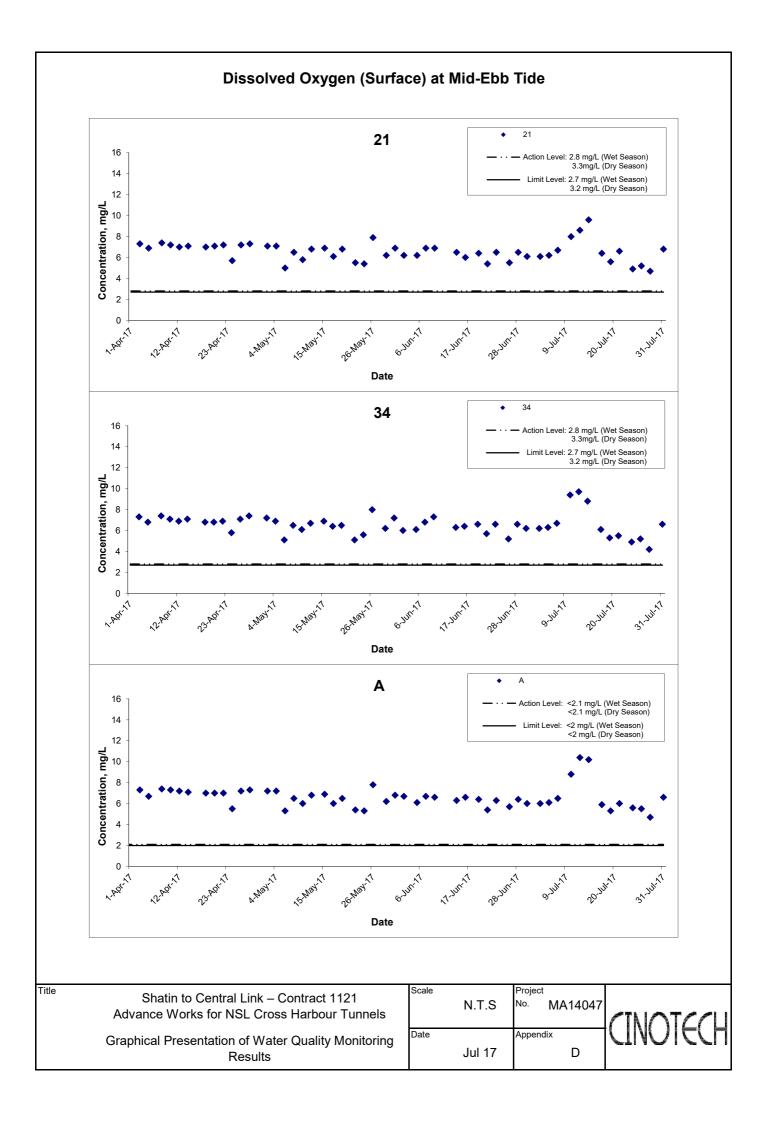
Water Quality Monitoring Results at C2 - Mid-Flood Tide

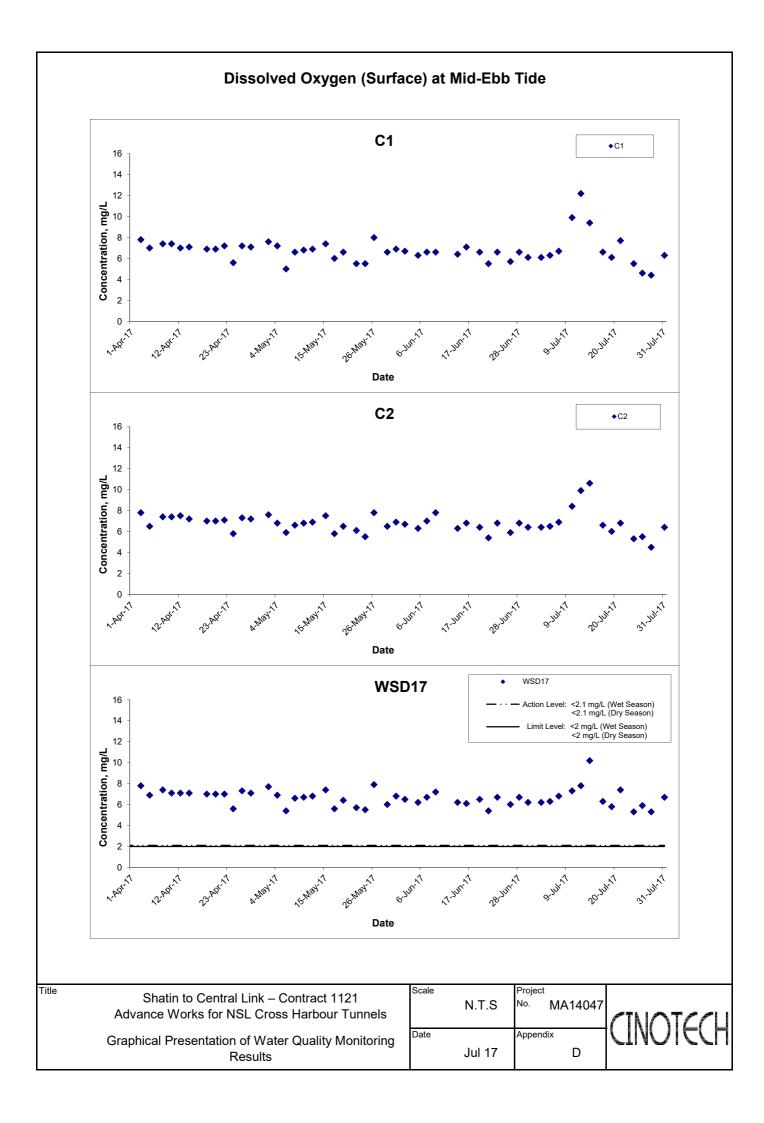
Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ture (°C)	р	Н	Salini	ty ppt	DO Satur	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT		Suspe	nded Solids	
Date	Condition	Condition**	Time	Бери	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.2 27.3	27.3	8.6 8.5	8.6	30.7 30.7	30.7	102.9 101.8	102.4	7.2 7.1	7.2		3.9 3.7	3.8		6	6.0	i
3-Jul-17	Cloudy	Moderate	13:45	Middle	10	27.0 27.0	27.0	8.5 8.5	8.5	31.3 31.3	31.3	98.1 98.7	98.4	6.9 6.9	6.9	6.9	4.5 3.9	4.2	4.3	4	4.0	5.0
				Bottom	19	26.7 26.7	26.7	8.3 8.2	8.3	32.7 32.7	32.7	93.1 93.3	93.2	6.4 6.5	6.5		5.2 4.8	5.0		5 5	5.0	ı
				Surface	1	26.8 26.8	26.8	8.0 7.9	8.0	24.7 24.8	24.8	89.2 88.0	88.6	6.2 6.1	6.2		3.0 3.1	3.1		4 4	4.0	
5-Jul-17	Cloudy	Moderate	15:38	Middle	9.5	26.5 26.6	26.6	8.0 8.0	8.0	25.2 25.3	25.3	84.9 85.7	85.3	5.9 6.0	6.0	5.9	3.9 3.5	3.7	3.7	5 5	5.0	4.3
				Bottom	18	26.3 26.3	26.3	7.8 7.7	7.8	26.4 26.4	26.4	79.2 80.0	79.6	5.5 5.5	5.5		4.3 4.2	4.3		4	4.0	
				Surface	1	26.6 26.9	26.8	8.1 8.2	8.2	27.2 26.1	26.7	102.2 119.5	110.9	7.1 8.2	7.7		3.9 3.6	3.8		6	6.0	i
7-Jul-17	Cloudy	Moderate	17:08	Middle	11	26.3 26.3	26.3	8.2 8.2	8.2	28.6 28.6	28.6	99.8 99.4	99.6	6.9 6.8	6.9	6.8	4.5 3.8	4.2	4.3	5 5	5.0	5.0
				Bottom	21	25.2 25.4	25.3	8.0 8.0	8.0	29.4 29.4	29.4	85.0 86.0	85.5	5.8 5.9	5.9		5.2 4.8	5.0		4	4.0	
				Surface	1	26.9 26.8	26.9	8.4 8.4	8.4	31.3 31.4	31.4	167.9 166.8	167.4	11.3 11.2	11.3		1.3	1.4		6	6.0	i
10-Jul-17	Fine	Moderate	18:48	Middle	11	23.5 23.5	23.5	8.0 8.0	8.0	36.0 36.0	36.0	42.5 42.1	42.3	2.9	2.9	5.7	3.5 3.5	3.5	4.3	5	5.0	5.7
				Bottom	21	23.5	23.5	8.0 8.0	8.0	36.0 36.0	36.0	39.7 39.8	39.8	2.7 2.8	2.8		7.9 7.8	7.9		6	6.0	
				Surface	1	26.7 26.7	26.7	8.5 8.5	8.5	26.4 26.4	26.4	115.7 115.6	115.7	8.0 8.0	8.0		1.6 1.7	1.7		4	4.0	i
12-Jul-17	Cloudy	Moderate	06:41	Middle	11	25.2 25.3	25.3	8.3 8.3	8.3	30.4 30.3	30.4	71.8 72.5	72.2	5.0 5.0	5.0	5.7	1.4	1.3	1.6	6	6.0	5.7
				Bottom	21	24.6 24.6 28.3	24.6	8.2 8.2 8.8	8.2	31.8 31.8 25.8	31.8	58.4 57.8 145.4	58.1	4.1 4.0 9.8	4.1		1.8 1.8	1.8		7	7.0	
				Surface	1	28.4 28.4	28.4	8.8 8.3	8.8	25.8 25.5 32.7	25.7	146.3 61.2	145.9	9.8 9.9 4.2	9.9		1.3 1.4 1.7	1.4		6 6 4	6.0	i
14-Jul-17	Fine	Rough	08:09	Middle	11	24.4 24.4 23.5	24.4	8.3 8.2	8.3	32.7 34.3	32.7	61.4 46.2	61.3	4.3	4.3	5.8	1.7	1.7	1.9	4 4	4.0	4.7
				Bottom	21	23.5	23.5	8.2 8.7	8.2	34.3 24.5	34.3	45.9 107.8	46.1	3.2 7.3	3.2		2.6 1.0	2.6		4	4.0	
				Surface	1	28.8 25.8	28.9	8.7 8.3	8.7	24.7 30.5	24.6	103.8	105.8	7.0 4.3	7.2		0.9	1.0		5	4.5	i
17-Jul-17	Rainy	Calm	11:18	Middle	9.5	25.5 25.5 24.3	25.7	8.3 8.2	8.3	30.9 33.1	30.7	51.7 40.3	57.5	3.6 2.8	4.0	4.7	1.5	1.5	1.8	5 5	5.0	4.5
				Bottom	18	24.2	24.3	8.2 8.5	8.2	33.2	33.2	39.2 93.0	39.8	2.7	2.8		2.8	2.8		4	4.0	
				Surface	1	28.2 25.7	28.1	8.6 8.2	8.6	23.2	23.5	94.0 39.2	93.5	6.5	6.5		1.1	1.1	-	4 4	4.0	i
19-Jul-17	Sunny	Moderate	15:49	Middle	9.5	26.0 25.2	25.9	8.3 8.2	8.3	30.1 31.7	30.4	41.3 33.3	40.3	2.8	2.8	3.9	2.7	2.7	2.6	4 5	4.0	4.3
				Bottom	18	25.2 28.7	25.2	8.2 8.4	8.2	31.7	31.7	33.9 124.3	33.6	2.3	2.3		4.0	4.1		5	5.0	
				Surface	1	28.7	28.7	8.5 8.1	8.5	26.3 31.1	26.3	122.4 43.3	123.4	8.2 3.0	8.3		0.8	0.9		4 5	4.0	i
21-Jul-17	Fine	Rough	16:06	Middle	9.5	25.9 25.6	26.0	8.1 8.0	8.1	31.2	31.2	43.7 35.8	43.5	3.0	3.0	4.6	1.8	1.8	1.9	5	5.0	4.3
				Bottom	18	25.7	25.7	8.1 8.5	8.1	31.8	31.9	39.3 90.7	37.6	2.7	2.6		2.9	3.0		4	4.0	
				Surface	1	28.1 26.6	28.1	8.5 8.4	8.5	27.9	28.0	92.6	91.7	6.2	6.2		1.6	1.6		4	4.0	
24-Jul-17	Cloudy	Moderate	21:02	Middle	11	26.7 26.5	26.7	8.4 8.3	8.4	29.6 30.0	29.7	62.3 57.2	61.4	4.2	4.2	4.8	3.7	4.0	3.4	6	6.0	5.0
				Bottom	21	26.5 27.8	26.5	8.3 8.4	8.3	29.8	29.9	58.8 79.0	58.0	4.0 5.3	4.0		4.4 0.8	4.7		5	5.0	
26 101 47	C	Mad4	06:50	Surface	1	28.1	28.0	8.4 8.3	8.4	28.6 31.6	28.8	81.5 55.7	80.3	5.4 3.8	5.4		0.7	0.8	2.4	4 3	4.0	
26-Jul-17	Sunny	Moderate	06:53	Middle	9.5	26.4 26.2	26.4	8.3 8.3	8.3	31.5 31.7	31.6	55.6 53.6	55.7	3.8	3.8	4.3	2.4 3.2	2.5	2.1	3	3.0	3.8
				Bottom	18	26.3 28.7	26.3	8.3 8.8	8.3	31.6 28.2	31.7	54.4 90.7	54.0	3.7 6.0	3.7		2.9 0.5	3.1		4 <2.5	4.5	
20 1:147	C	Mad4	00.00	Surface	1	28.7	28.7	8.8	8.8	28.2	28.2	89.6 54.8	90.2	5.9	6.0		0.5	0.5		<2.5 <2.5	<2.5	0.7
28-Jul-17	Sunny	Moderate	08:20	Middle	10	26.8 26.6	26.8	8.6 8.6	8.6	30.4 30.6	30.4	55.8 49.9	55.3 50.1	3.8	3.8	4.4	2.9 5.0	3.0	2.7	<2.5 6	<2.5 6.0	3.7
				Bottom		26.6 27.3		8.6 8.4	8.6	30.6		50.3 97.5		3.4 6.4	3.4		4.3			6		
24 1 47	Cummi:	Madara*-	11.50	Surface	1	27.0 27.2	27.2	8.4 8.4	8.4	30.2	30.5	95.4 95.4	96.5	6.3	6.4	. F.O.	3.4	3.4	4.7	6	4.0	F 7
31-Jul-17	Sunny	Moderate	11:59	Middle	9	26.9 25.6	27.1	8.4 8.5	8.4	30.6 32.9	30.7	94.5 78.6	95.0	6.2 5.2	6.3	5.9	3.2 7.0	3.6	4.7	6	6.0	5.7
				Bottom	17	25.3	25.5	8.4	8.5	32.7	32.8	76.3	77.5	5.0	5.1		6.9	7.0		7	7.0	

Water Quality Monitoring Results at WSD17 - Mid-Ebb Tide

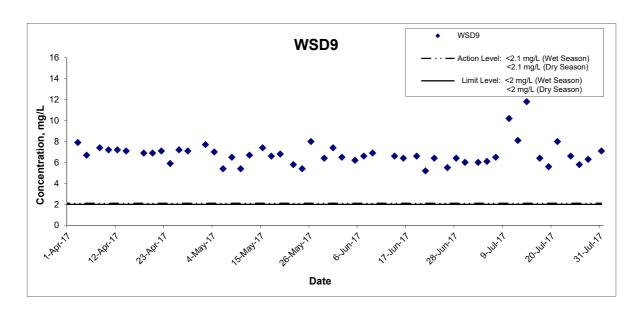
Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	iture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTL		Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Вери	,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.5 27.5	27.5	8.1 8.2	8.2	31.5 31.1	31.3	90.6 89.9	90.3	6.2 6.2	6.2		3.1 2.8	3.0		5	5.0	
3-Jul-17	Cloudy	Moderate	08:17	Middle	7	27.3	27.4	8.1	8.1	32.9	32.9	89.0	88.1	6.1	6.1	6.0	5.2	5.2	4.2	6	6.0	5.8
	,					27.4 27.0		8.1 8.1		32.8 33.8		87.2 83.2		6.0 5.7		+	5.1 4.3		-	6		
				Bottom	13	27.0	27.0	8.0	8.1	33.9	33.9	83.7	83.5	5.7	5.7		4.3	4.3		7	6.5	
				Surface	1	26.3 26.4	26.4	8.1 8.2	8.2	24.8 24.6	24.7	92.0 90.6	91.3	6.3 6.2	6.3		2.8 2.7	2.8		4	3.5	
5-Jul-17	Cloudy	Moderate	09:32	Middle	7	26.1	26.1	8.0	8.1	26.0	26.0	90.6	89.6	6.2	6.2	6.1	4.6	4.6	3.8	4	4.0	3.8
	,					26.1 25.7		8.1 8.1		25.9 26.7		88.5 85.4		6.1 5.9		+	4.6 3.9		-	4		
				Bottom	13	25.8	25.8	7.9	8.0	26.9	26.8	85.3	85.4	5.9	5.9		3.9	3.9		4	4.0	
				Surface	1	26.8 26.8	26.8	8.1 8.1	8.1	26.6 26.4	26.5	98.5 97.7	98.1	6.8 6.8	6.8		2.0 1.7	1.9		6	6.0	l
7-Jul-17	Cloudy	Moderate	10:39	Middle	6	26.6	26.6	8.0	8.0	27.8	27.8	96.3	95.5	6.7	6.6	6.6	3.2	3.2	2.8	5	5.0	5.3
	,					26.6 26.2		8.0 8.1		27.8 28.6		94.6 90.6		6.5 6.3		+	3.2		-	5 5		
				Bottom	11	26.2	26.2	8.0	8.1	28.8	28.7	91.1	90.9	6.3	6.3		3.0	3.2		5	5.0	
				Surface	1	25.9 25.9	25.9	8.2 8.2	8.2	30.5 30.5	30.5	106.8 106.9	106.9	7.3 7.3	7.3		1.4 1.5	1.5		4	4.0	
10-Jul-17	Fine	Moderate	12:15	Middle	6	23.7	23.7	8.0	8.0	35.7	35.7	48.2	47.7	3.3	3.3	4.5	3.1	3.1	2.9	8	8.0	5.7
						23.7		8.0		35.7 36.0		47.1 40.1		3.3 2.8		+	3.0 4.3		-	- 8 - 5		
				Bottom	11	23.5	23.5	7.9	8.0	36.0	36.0	39.7	39.9	2.7	2.8		3.6	4.0		5	5.0	
				Surface	1	26.2 26.2	26.2	8.5 8.5	8.5	28.9 28.9	28.9	113.9 113.6	113.8	7.8 7.8	7.8		1.2	1.3		6	6.0	
12-Jul-17	Fine	Moderate	13:05	Middle	6	23.8	23.8	8.2	8.2	33.4	33.5	48.4	47.7	3.4	3.4	4.7	2.5	2.6	2.5	6	6.5	5.5
						23.8		8.2 8.2		33.5 34.1		47.0 41.6		3.3 2.9		+	2.6 3.7			7		
				Bottom	11	23.5	23.5	8.2	8.2	34.1	34.1	41.3	41.5	2.9	2.9		3.4	3.6		4	4.0	
				Surface	1	27.7 27.6	27.7	8.7 8.7	8.7	26.6 26.6	26.6	149.4 149.7	149.6	10.1 10.2	10.2		1.6 1.5	1.6		4	4.0	l
14-Jul-17	Cloudy	Rough	14:23	Middle	6	27.4	27.4	8.6	8.6	26.9	26.9	140.2	140.2	9.6	9.6	7.6	1.7	1.6	2.3	5	5.0	5.3
		Ĭ	-			27.4 23.6		8.6 8.2		26.9 34.0		140.2 44.5		9.6 3.1		+	1.5 4.0			5 7		
				Bottom	11	23.7	23.7	8.2	8.2	34.0	34.0	44.0	44.3	3.1	3.1		3.6	3.8		7	7.0	
				Surface	1	28.0 28.1	28.1	8.6 8.6	8.6	24.6 24.9	24.8	94.0 89.8	91.9	6.4 6.1	6.3		1.1 1.3	1.2		6 5	5.5	l
17-Jul-17	Rainy	Calm	18:57	Middle	6.5	28.1	28.1	8.6	8.6	25.3	25.3	88.9	90.2	6.0	6.1	5.6	1.3	1.3	1.5	3	3.0	3.8
	,	-				28.1 26.9		8.6 8.4		25.2 27.7		91.4 58.6		6.2 4.0		+	1.3 2.1		-	3		
				Bottom	12	26.6	26.8	8.4	8.4	28.4	28.1	65.9	62.3	4.5	4.3		1.7	1.9		3	3.0	
				Surface	1	27.0 27.0	27.0	8.5 8.5	8.5	20.6 20.7	20.7	82.8 80.3	81.6	5.9 5.7	5.8		2.9 2.4	2.7		4	4.0	
19-Jul-17	Fine	Calm	08:17	Middle	6.5	27.0	26.9	8.4	8.4	25.8	26.7	58.3	55.2	4.0	3.8	4.3	1.2	1.3	1.9	5	5.0	5.0
						26.8 26.6		8.4 8.3		27.5 28.4		52.1 47.4		3.6			1.4			5 6		l
				Bottom	12	26.5	26.6	8.3	8.3	28.6	28.5	46.9	47.2	3.2	3.2		1.8	1.8		6	6.0	
				Surface	1	27.9 28.0	28.0	8.4 8.4	8.4	26.4 26.3	26.4	107.1 109.0	108.1	7.3 7.4	7.4		1.0 1.1	1.1		4	4.0	l
21-Jul-17	Sunny	Moderate	09:50	Middle	6.5	27.1	27.1	8.2	8.2	27.9	27.9	58.8	59.0	4.0	4.0	4.9	2.0	2.0	1.9	5	5.0	4.3
	•				40	27.1 26.8		8.2 8.2	0.0	27.9 28.8		59.1 49.3	40.0	4.0 3.4			2.0			5 4	4.0	l
				Bottom	12	26.9	26.9	8.2	8.2	28.6	28.7	48.5	48.9	3.3	3.4		2.6	2.7		4	4.0	
				Surface	1	27.7 27.6	27.7	8.4 8.4	8.4	27.2 27.4	27.3	79.2 76.2	77.7	5.4 5.2	5.3		1.4 1.3	1.4		9	8.5	Į
24-Jul-17	Sunny	Moderate	12:14	Middle	6	27.4	27.4	8.4	8.4	27.9	27.9	70.1	69.6	4.7	4.7	4.8	1.5	1.4	1.6	4	4.0	5.5
				Bottom	11	27.4 27.2	27.2	8.4 8.4	8.4	27.9 28.4	28.6	69.0 63.7	62.9	4.7 4.3	4.3	t	1.3	1.9		4	4.0	l
				DOLLOTTI	- 11	27.1		8.4	0.4	28.7		62.0		4.2	4.3		2.0			4	4.0	
				Surface	1	28.6 28.5	28.6	8.4 8.4	8.4	27.8 27.8	27.8	89.0 87.4	88.2	5.9 5.8	5.9		1.0 1.0	1.0		3	3.0	l
26-Jul-17	Fine	Moderate	13:45	Middle	6.5	28.2 28.0	28.1	8.4 8.4	8.4	28.7 28.7	28.7	84.9 79.0	82.0	5.7	5.5	5.4	0.9	1.0	1.4	8 8	8.0	5.2
				Bottom	12	27.4	27.5	8.4	8.4	29.6	29.5	70.2	72.9	5.3 4.7	4.9	t	2.2	2.3		4	4.5	l
				DOLLOITI	12	27.6	21.5	8.4	0.4	29.3 28.3	29.5	75.5 79.4	72.9	5.1 5.3	4.9		2.3	2.3		5	4.5	
				Surface	1	28.6 28.6	28.6	8.7 8.7	8.7	28.3	28.3	79.4 79.6	79.5	5.3	5.3		1.8 1.7	1.8		3	3.0	Į
28-Jul-17	Sunny	Moderate	17:01	Middle	6	28.2 28.2	28.2	8.7 8.7	8.7	28.5 28.5	28.5	72.1 71.8	72.0	4.8 4.8	4.8	4.8	2.0	2.1	2.6	3	3.0	4.3
	-			Bottom	11	28.2	27.9	8.7	8.7	28.5	28.7	71.8 65.5	65.9	4.8	4.4	t	4.0	4.0	1	7	7.0	Į
						27.9 28.6		8.7		28.7 28.0		66.3 98.2		4.4 6.5			3.9			7		
				Surface	1	28.6	27.8	8.5 8.5	8.5	28.0 29.6	28.8	98.2 103.2	100.7	6.8	6.7		2.8 2.9	2.9		3	3.0	Į
31-Jul-17	Sunny	Moderate	17:40	Middle	6.5	28.1 27.0	27.6	8.5 8.5	8.5	29.4 30.6	30.0	88.3 102.7	95.5	5.8 6.8	6.3	6.0	3.6 3.3	3.5	3.8	7 7	7.0	4.7
				Bottom	12	25.9	25.9	8.5	8.5	32.9	33.0	77.1	77.3	5.1	5.1	t	4.8	4.9	1	4	4.0	
1				DOLLOHI	12	25.9	20.9	8.5	0.0	33.1	33.0	77.4	11.3	5.1	5.1		4.9	4.9		4	4.0	

Water Quality Monitoring Results at WSD17 - Mid-Flood Tide

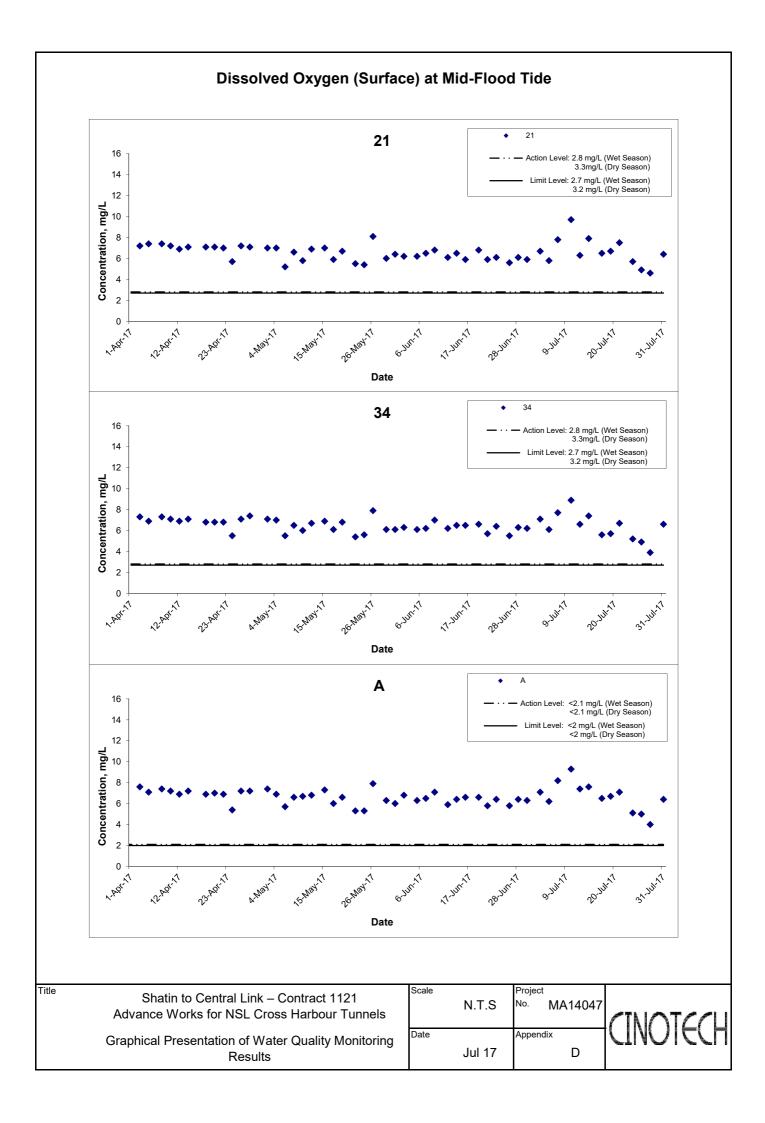

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTI		Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Вери	. ()	Value 27.4	Average	Value 8.6	Average	Value 31.3	Average	Value 98.6	Average	Value 6.8	Average	DA*	Value 3.7	Average	DA*	Value	Average	DA*
				Surface	1	27.4	27.5	8.6	8.6	31.3	31.2	98.6	98.3	6.8	6.8		4.1	3.9		5 5	5.0	l
3-Jul-17	Cloudy	Moderate	14:02	Middle	7	27.4	27.3	8.5	8.5	31.7	31.5	95.0	95.9	6.6	6.7	6.6	5.1	5.1	4.2	5	5.0	5.7
	•			Bottom	13	27.2 27.2	27.2	8.4 8.3	0.4	31.3 32.1	22.4	96.7 91.8	01.5	6.7 6.4	6.4		5.0 3.8	3.7		5 7	7.0	l
				Bottom	13	27.2	27.2	8.4	8.4	32.1	32.1	91.2	91.5	6.3	6.4		3.6	3.7		7	7.0	<u> </u>
				Surface	1	26.9 27.0	27.0	8.0 8.0	8.0	25.3 25.1	25.2	85.3 84.9	85.1	5.9 5.9	5.9		4.0 4.2	4.1		5 5	5.0	l
5-Jul-17	Cloudy	Moderate	15:53	Middle	7	26.9 26.7	26.8	8.0 7.9	8.0	25.6 25.3	25.5	81.9 82.3	82.1	5.7	5.7	5.7	4.8 4.7	4.8	4.2	4 4	4.0	4.3
				Bottom	13	26.7	26.7	7.8	7.8	25.9	25.9	78.3	78.7	5.7 5.5	5.5		3.8	3.8		4	4.0	l
				Dottom		26.7 26.6		7.8 8.0	7.0	25.9 26.7		79.0 99.1		5.5 6.8			3.8			6	4.0	—
				Surface	1	26.6	26.6	8.0	8.0	26.7	26.7	99.0	99.1	6.8	6.8		3.6	3.4		6	6.0	l
7-Jul-17	Cloudy	Moderate	17:25	Middle	6.5	26.5 26.6	26.6	8.1 8.1	8.1	27.2 26.9	27.1	94.6 95.6	95.1	6.5 6.6	6.6	6.4	3.4 3.4	3.4	3.7	5 4	4.5	4.8
				Bottom	12	25.8	25.8	8.0	8.0	28.4	28.5	84.0	83.0	5.8	5.8		4.3	4.2		4	4.0	l
						25.8 26.6		7.9 8.3		28.5 28.0		82.0 132.4		5.7 9.1			4.0 1.5			6		
				Surface	1	26.6	26.6	8.3	8.3	27.8	27.9	134.7	133.6	9.2	9.2		1.5	1.5		6	6.0	l
10-Jul-17	Fine	Moderate	19:04	Middle	6.5	24.9 24.7	24.8	8.2 8.1	8.2	32.7 33.0	32.9	73.3 71.0	72.2	5.0 4.9	5.0	5.8	3.1 3.7	3.4	4.0	6	6.0	5.7
				Bottom	12	24.0	24.0	8.0	8.0	34.8	34.8	47.7	47.7	3.3	3.3		7.4	7.2		5	5.0	I
						24.0 26.4		8.0 8.4		34.8 26.8		47.6 100.4		7.0			7.0 1.6			5		<u> </u>
				Surface	1	26.4	26.4	8.4	8.4	26.8	26.8	100.2	100.3	6.9	7.0		1.8	1.7		6	6.0	I
12-Jul-17	Cloudy	Moderate	06:58	Middle	6.5	26.2 26.2	26.2	8.3 8.3	8.3	28.0 28.0	28.0	85.8 84.9	85.4	5.9 5.9	5.9	6.2	1.4 1.5	1.5	1.7	6	6.0	5.7
				Bottom	12	25.8	25.8	8.3	8.3	28.6	28.6	80.3	80.2	5.6	5.6		1.7	1.8		5	5.0	I
						25.8 26.4		8.3 8.5		28.6		94.8		5.5 6.5			1.8			5		
				Surface	1	26.4	26.4	8.5	8.5	28.6	28.6	94.6	94.7	6.5	6.5		1.2	1.2		5	5.0	1
14-Jul-17	Fine	Rough	08:25	Middle	6.5	25.6 25.7	25.7	8.4 8.4	8.4	30.5 30.4	30.5	85.6 86.8	86.2	5.9 6.0	6.0	5.2	1.3 1.1	1.2	1.6	4	4.0	4.0
				Bottom	12	23.6	23.6	8.2	8.2	34.1	34.1	43.0	43.0	3.0	3.0		2.2	2.3		3	3.0	I
						23.6 28.6		8.2 8.7		34.1 25.0		43.0 98.2		3.0 6.6			2.3			3		
				Surface	1	28.6	28.6	8.7	8.7	25.0	25.0	98.2	98.2	6.6	6.6		1.0	1.0		5	5.0	1
17-Jul-17	Rainy	Calm	11:36	Middle	6.5	28.4 28.3	28.4	8.7 8.7	8.7	25.4 25.6	25.5	88.8 87.8	88.3	6.0 5.9	6.0	5.5	1.0 1.0	1.0	2.5	4	4.0	4.3
				Bottom	12	26.5	26.5	8.4	8.4	29.0	29.0	58.8	58.6	4.0	4.0		5.7	5.5		4	4.0	I
				Ounford		26.5 27.8	07.0	8.4 8.5	0.5	29.0 22.9	00.0	58.4 89.5	00.0	4.0 6.2	0.0		5.2 1.2	4.0		3	0.0	
				Surface	1	27.8 25.6	27.8	8.5 8.2	8.5	22.7 31.1	22.8	88.2 38.2	88.9	6.1	6.2		1.2 3.1	1.2		3	3.0	I
19-Jul-17	Sunny	Moderate	15:34	Middle	6.5	25.6	25.6	8.2	8.2	31.1	31.1	43.1	40.7	3.0	2.8	3.8	2.8	3.0	2.5	3	3.0	3.0
				Bottom	12	25.4 25.4	25.4	8.2 8.2	8.2	31.3 31.3	31.3	35.0 35.7	35.4	2.4	2.5		3.2 3.4	3.3		3	3.0	I
				Surface	1	28.8	28.8	8.6	8.6	26.6	26.6	128.1	125.0	8.5	8.3		0.6	0.6		4	4.0	
				Surface		28.7 28.5		8.5 8.5		26.6 26.7		121.9 118.7		8.1 7.9			0.6			6	4.0	I
21-Jul-17	Fine	Rough	16:22	Middle	6.5	28.1	28.3	8.4	8.5	26.9	26.8	103.3	111.0	7.0	7.5	6.8	0.7	0.7	1.3	6	6.0	5.0
				Bottom	12	26.9 27.1	27.0	8.2 8.2	8.2	28.1 27.5	27.8	62.6 67.4	65.0	4.3 4.6	4.5		2.8 2.4	2.6		5	5.0	I
				Surface	1	27.9	28.0	8.5	8.5	28.0	28.0	88.0	89.2	5.9	6.0		2.1	1.9		5	5.0	
						28.0 27.5		8.5 8.5		27.9 28.4		90.3 76.4		6.1 5.2			1.7 2.4			5 6		l
24-Jul-17	Cloudy	Moderate	20:48	Middle	6.5	27.5	27.5	8.4	8.5	28.4	28.4	71.6	74.0	4.8	5.0	5.0	2.5	2.5	3.0	6	6.0	5.0
				Bottom	12	26.6 26.6	26.6	8.4 8.3	8.4	29.8 29.8	29.8	59.5 58.7	59.1	4.0 4.0	4.0		4.4 4.8	4.6		4	4.0	1
				Surface	1	27.8	27.7	8.4	8.4	28.4	28.7	79.6	76.3	5.3	5.1		1.0	1.0		4	4.5	
00 1:147	0	Madaga	07.00			27.6 26.7		8.4 8.3		28.9 30.9		73.0 59.7		4.9 4.0		4.0	1.0 3.1		0.0	5 4		5.0
26-Jul-17	Sunny	Moderate	07:09	Middle	6.5	26.6	26.7	8.3	8.3	31.0	31.0	57.9	58.8	3.9	4.0	4.3	3.0	3.1	2.6	4 7	4.0	5.0
				Bottom	12	26.4 26.3	26.4	8.3 8.3	8.3	31.5 31.5	31.5	54.9 54.6	54.8	3.7 3.7	3.7		3.5 3.9	3.7		6	6.5	I
				Surface	1	28.7	28.7	8.8	8.8	28.2	28.3	90.8	90.6	6.0	6.0		0.6	0.6		<2.5	<2.5	ĺ
20 1:147	C	Mad	00:04			28.7 28.2		8.8 8.8		28.3 28.5		90.3 80.2		6.0 5.3		4.0	0.5 1.3		2.7	<2.5 9		<i></i>
28-Jul-17	Sunny	Moderate	08:34	Middle	6.5	27.9	28.1	8.7	8.8	28.7	28.6	71.0	75.6	4.8	5.1	4.9	1.3	1.3	3.7	9	9.0	5.5
				Bottom	12	27.0 26.9	27.0	8.6 8.6	8.6	30.0 30.2	30.1	53.7 51.9	52.8	3.6 3.5	3.6		8.7 9.7	9.2		5 5	5.0	<u></u>
				Surface	1	26.8	26.8	8.4 8.5	8.5	29.5	29.3	97.9 97.5	97.7	6.5 6.4	6.5		2.4 2.5	2.5		4 4	4.0	
31-Jul-17	Sunny	Moderate	12:14	Middle	6.5	26.8 26.8	26.8	8.5	8.6	29.1 29.9	29.5	96.5	97.4	6.4	6.5	6.0	2.2	2.4	3.9	7	7.0	5.7
51-50I=17	Guilly	Moderate	12.14			26.8 25.2		8.6 8.5		29.1 31.2		98.2 76.5		6.5 5.0		0.0	2.5 6.6		3.5	7 6		5.7
				Bottom	12	25.2	25.2	8.5	8.5	31.3	31.3	76.9	76.7	5.0	5.1		6.8	6.7		6	6.0	<u></u>
		•	•										•			•		•	•			

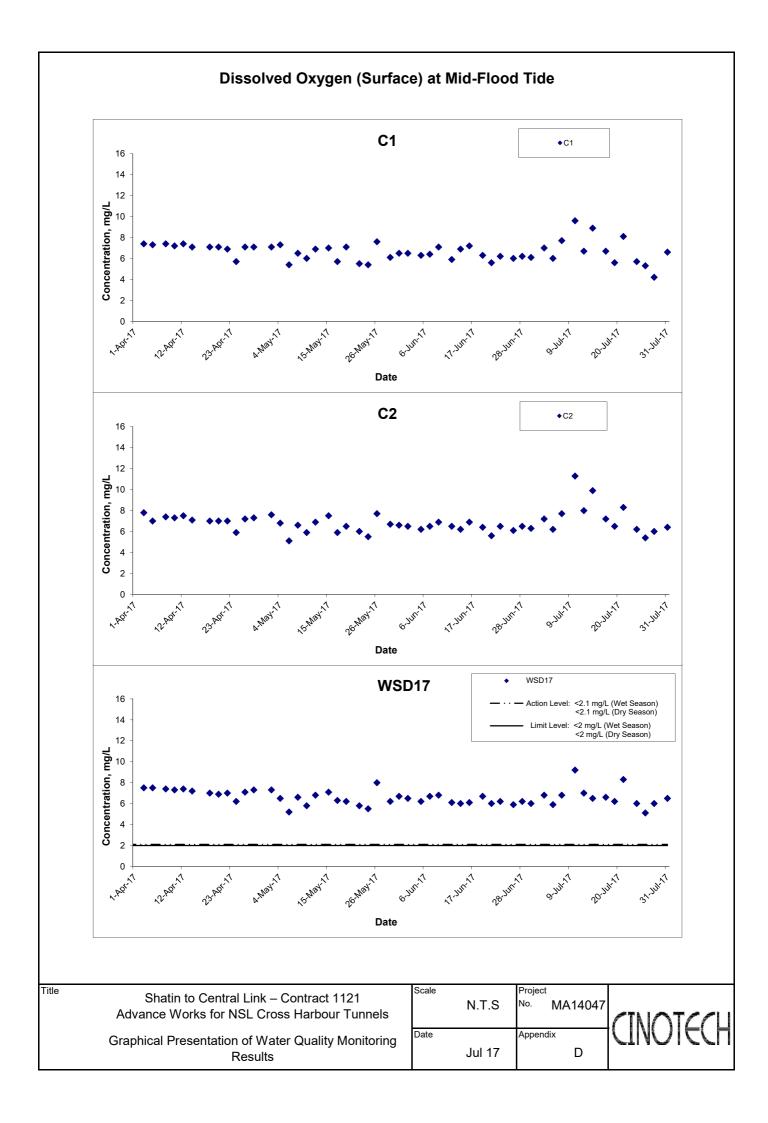

Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTI		Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.4 27.5	27.5	8.1 8.3	8.2	31.3 31.6	31.5	86.3 87.2	86.8	5.9 6.0	6.0		2.8 2.8	2.8		5	5.0	
3-Jul-17	Cloudy	Moderate	10:21	Middle	3.5	27.2	27.2	8.1	8.1	32.1	32.1	83.4	83.2	5.7	5.7	5.7	4.4	4.4	4.0	5	5.0	5.0
	,					27.2 27.0		8.0 8.1		32.0 33.9		82.9 80.5		5.7 5.5		-	4.3 4.6			5 5		
				Bottom	6	27.0	27.0	8.1	8.1	33.2	33.6	80.9	80.7	5.5	5.5		5.0	4.8		5	5.0	
				Surface	1	26.2 26.3	26.3	8.1 8.3	8.2	24.7 25.0	24.9	87.9 88.0	88.0	6.1 6.0	6.1		3.0 3.2	3.1		5 5	5.0	
5-Jul-17	Cloudy	Moderate	11:25	Middle	3.5	26.0	26.0	8.1	8.1	25.4	25.4	84.7	84.7	5.8	5.8	5.9	5.0	5.0	4.5	4	4.0	5.3
0 041 17	oloddy	Moderate	11.20			26.0 25.7		8.0 8.1		25.3 26.8		84.7 82.2		5.8 5.6		- 0.0	4.9 5.0		1.0	7		0.0
				Bottom	6	25.8	25.8	8.0	8.1	26.2	26.5	82.5	82.4	5.7	5.7		5.9	5.5		7	7.0	
				Surface	1	26.6 26.8	26.7	8.0 8.2	8.1	26.5 26.8	26.7	94.9 94.7	94.8	6.5 6.5	6.5		1.7 1.7	1.7		5 6	5.5	
7-Jul-17	Cloudy	Moderate	12:42	Middle	4	26.4	26.4	8.0	8.0	27.2	27.2	90.8	90.4	6.3	6.3	6.3	3.3	3.3	2.9	5	5.0	5.2
7-001-17	Oloddy	Wodciate	12.72			26.4 26.2		7.9 8.1		27.1 28.7		90.0 86.8		6.2		0.5	3.2		2.5	5 5		0.2
				Bottom	7	26.2	26.2	8.0	8.1	28.1	28.4	88.1	87.5	6.1	6.1		3.9	3.7		5	5.0	
				Surface	1	27.1 27.1	27.1	8.3 8.4	8.4	28.9 28.9	28.9	149.2 151.1	150.2	10.1 10.2	10.2		1.8 1.8	1.8		4	4.0	
10-Jul-17	Fine	Moderate	14:19	Middle	4.5	26.9	26.9	8.4	8.4	29.3	29.3	154.6	155.3	10.2	10.6	9.4	1.2	1.2	1.6	5	5.0	5.3
10-3ul-17	rille	Woderate	14.15	Mildule	4.5	26.9 25.8	20.5	8.4 8.3	0.4	29.3 30.7	25.5	155.9 107.5	100.0	10.6 7.4	10.0	3.4	1.2 2.0	1.2	1.0	5 7	3.0	3.3
				Bottom	8	25.7	25.8	8.3	8.3	30.7	30.8	107.5	107.4	7.4	7.4		1.8	1.9		7	7.0	
				Surface	1	27.2 27.1	27.2	8.6	8.6	26.9 27.1	27.0	116.9 119.6	118.3	8.0	8.1		1.4	1.4		7	7.0	
40 47	_		45.00			26.4	00.4	8.5 8.5	0.5	27.1		119.6	407.0	8.2 8.7			1.3	4.0		3		
12-Jul-17	Fine	Moderate	15:08	Middle	4.5	26.4	26.4	8.5	8.5	28.3	28.3	128.2	127.8	8.8	8.8	7.5	1.2	1.2	1.2	3	3.0	4.3
				Bottom	8	25.4 25.4	25.4	8.3 8.3	8.3	30.3 30.2	30.3	82.4 82.3	82.4	5.7 5.7	5.7		1.1 1.1	1.1		3	3.0	
				Surface	1	28.6	28.6	8.8	8.8	26.1	26.1	174.4	176.0	11.7	11.8		1.6	1.7		5	5.5	
						28.6 28.0		8.8 8.7		26.1 26.4		177.5 159.9		11.9 10.8			1.8			6		
14-Jul-17	Cloudy	Rough	16:26	Middle	4.5	28.0	28.0	8.7	8.7	26.4	26.4	159.1	159.5	10.8	10.8	9.2	1.5	1.5	1.7	6	6.0	5.5
				Bottom	8	25.6 25.5	25.6	8.4 8.3	8.4	30.2 30.4	30.3	75.0 72.9	74.0	5.2 5.0	5.1		1.9 1.9	1.9		5	5.0	
				Surface	1	28.4	28.4	8.6	8.6	24.8	24.9	95.1	94.8	6.4	6.4		1.1	1.1		5	5.0	
						28.4 28.4		8.6 8.6		25.0 25.3		94.5 94.3		6.4 6.4		+	1.0			5 3		
17-Jul-17	Rainy	Calm	17:21	Middle	3.5	28.4	28.4	8.6	8.6	25.4	25.4	90.8	92.6	6.1	6.3	6.0	1.0	1.1	1.2	3	3.0	3.7
				Bottom	6	28.1 28.1	28.1	8.6 8.5	8.6	25.9 25.9	25.9	79.4 78.6	79.0	5.4 5.3	5.4		1.3 1.2	1.3		3	3.0	
				Surface	1	27.6	27.5	8.5	8.5	22.2	22.1	82.3	80.3	5.7	5.6		1.8	1.7		3	3.0	
						27.4 27.4		8.5 8.5		21.9 23.4		78.3 74.0		5.5 5.1		-	1.5			3 4		
19-Jul-17	Fine	Calm	10:15	Middle	3.5	27.4	27.4	8.4	8.5	23.6	23.5	68.5	71.3	4.8	5.0	4.9	1.2	1.2	1.4	4	4.0	3.3
				Bottom	6	27.2 27.3	27.3	8.4 8.4	8.4	26.4 26.3	26.4	59.8 59.0	59.4	4.1 4.0	4.1		1.1	1.2		3	3.0	
				Surface	1	28.4	28.5	8.4	8.4	25.7	25.7	118.5	117.9	8.0	8.0		3.4	3.5		6	6.0	
				Surface		28.5 27.7		8.4 8.4		25.6 26.5		117.3 93.8		7.9 6.4			3.6			6 5	0.0	
21-Jul-17	Sunny	Moderate	11:53	Middle	3.5	28.0	27.9	8.4	8.4	26.2	26.4	93.1	93.5	6.3	6.4	6.4	2.9	3.0	2.4	5	5.0	5.0
				Bottom	6	27.4 27.4	27.4	8.2 8.3	8.3	27.4 27.4	27.4	66.7 70.8	68.8	4.5 4.8	4.7		0.8 0.7	0.8		4	4.0	
				Surface	1	28.6	28.6	8.5	8.5	27.3	27.4	98.7	98.9	6.6	6.6		0.8	0.9		4	4.0	
						28.5 28.1		8.5 8.5		27.4 27.3		99.1 90.1		6.6 6.1		1	0.9			4		
24-Jul-17	Sunny	Moderate	13:57	Middle	4.5	28.1	28.1	8.5 8.5	8.5	27.4	27.4	87.6	88.9	5.9	6.0	6.1	0.9	0.9	0.9	4	4.0	4.0
				Bottom	8	27.9 27.9	27.9	8.5 8.5	8.5	27.6 27.6	27.6	85.6 86.2	85.9	5.8 5.8	5.8		0.8 0.9	0.9		4	4.0	
				Surface	1	28.5	28.5	8.4	8.4	28.3	28.3	87.5	86.8	5.8	5.8		0.8	0.8		4	4.0	
				Surrace		28.5		8.4 8.4		28.2		86.1		5.7 5.8		1	0.8	U.0		4	4.0	
26-Jul-17	Fine	Moderate	15:48	Middle	3.5	28.2 28.2	28.2	8.4 8.4	8.4	28.4 28.4	28.4	86.3 85.8	86.1	5.8	5.8	5.8	0.8	0.9	0.9	4	4.0	4.5
				Bottom	6	28.1	28.2	8.4	8.4	28.5	28.5	84.0	84.5	5.6	5.7		0.9	0.9		5	5.5	
				Curfoo		28.2 29.0		8.4 8.7		28.5 28.4	1	84.9 95.4		5.7 6.3			0.8			3		
				Surface	1	29.1	29.1	8.8	8.8	28.3	28.4	94.6	95.0	6.2	6.3	1	0.8	0.8		3	3.0	
28-Jul-17	Sunny	Moderate	15:07	Middle	3.5	28.6 28.7	28.7	8.7 8.8	8.8	28.4 28.4	28.4	82.3 88.0	85.2	5.5 5.8	5.7	5.6	1.2 1.2	1.2	1.4	<2.5 <2.5	<2.5	2.7
				Bottom	6	28.1	28.1	8.7	8.7	28.5	28.6	68.4	69.4	4.6	4.7		2.2	2.2	1	<2.5	<2.5	
						28.0		8.7 8.5		28.6 29.5		70.4 107.3		7.1			2.1			<2.5 5		
				Surface	1	27.3	27.8	8.5	8.5	29.5	29.5	106.5	106.9	7.0	7.1	1	2.6	2.6		5	5.0	
31-Jul-17	Sunny	Moderate	19:39	Middle	3.5	27.8 27.1	27.5	8.5 8.5	8.5	30.8 31.3	31.1	90.3 93.6	92.0	6.0 6.2	6.1	6.1	3.1 3.1	3.1	3.6	6	6.0	5.2
				Bottom	6	26.4	26.2	8.5	8.5	33.1	33.2	77.7	77.3	5.1	5.1	İ	5.0	5.1	1	5	4.5	
				Dottom	,	26.0	20.2	8.5	5.5	33.2	55.2	76.9		5.1	5.1		5.1	5.1	<u> </u>	4	0	

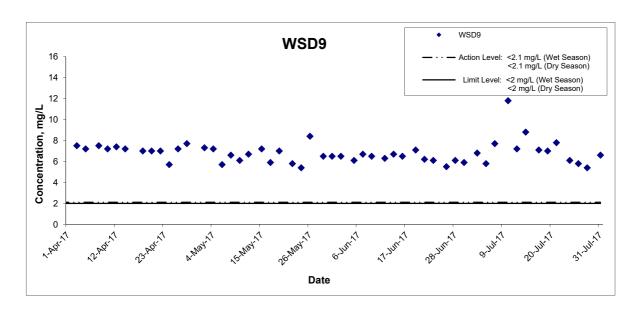

Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen			Turbidity(NTl		Suspe	nded Solids	
Date	Condition	Condition**	Time		()	Value 27.4	Average	Value 8.5	Average	Value 29.1	Average	Value 96.3	Average	Value 6.7	Average	DA*	Value 3.9	Average	DA*	Value	Average	DA*
				Surface	1	27.4	27.5	8.5 8.5	8.5	30.1	29.6	96.3	97.0	6.8	6.8		4.2	4.1		5 5	5.0	l
3-Jul-17	Cloudy	Moderate	15:54	Middle	3.5	27.3	27.4	8.5	8.6	32.9	32.2	95.8	95.7	6.7	6.7	6.6	5.0	5.2	4.5	5	5.0	5.0
				Bottom	6	27.4 27.1	27.4	8.6 8.3	0.5	31.4 31.8	22.0	95.5 89.2	00.6	6.7 6.2	6.2		5.3 4.3	4.1		5 5	5.0	l
				Bottom	6	27.0	27.1	8.6	8.5	32.2	32.0	92.0	90.6	6.4	6.3		3.9	4.1		5	5.0	
				Surface	1	26.9 26.8	26.9	8.0 8.0	8.0	23.5 24.3	23.9	82.8 83.9	83.4	5.8 5.8	5.8		3.6 3.7	3.7		4 4	4.0	I
5-Jul-17	Cloudy	Moderate	17:59	Middle	3.5	26.7 26.6	26.7	7.9 7.9	7.9	26.6 25.4	26.0	82.4 82.0	82.2	5.7	5.7	5.7	4.9 4.9	4.9	4.1	4 4	4.0	4.3
				Bottom	6	26.6	26.6	7.8	7.9	25.6	25.8	76.9	78.1	5.7 5.4	5.5		3.8	3.6		5	5.0	1
				Dottom		26.5 27.0		7.9 7.6		25.9 26.2		79.3 110.3		5.5 7.6			3.4			5	3.0	—
				Surface	1	26.9	27.0	7.7	7.7	26.3	26.3	111.1	110.7	7.7	7.7		4.1	4.0		5	5.0	l
7-Jul-17	Cloudy	Moderate	19:17	Middle	4.5	26.8 26.8	26.8	8.0 8.0	8.0	26.5 26.6	26.6	104.6 103.2	103.9	7.2 7.1	7.2	7.1	5.0 5.2	5.1	4.4	6 5	5.5	5.2
				Bottom	8	26.6	26.6	8.1	8.1	27.0	27.1	93.8	94.1	6.5	6.5		4.3	4.1		5	5.0	I
						26.6 27.1		8.1 8.3		27.1 28.1		94.3 172.5		6.5 11.7			3.9 2.0			5		
				Surface	1	27.1	27.1	8.3	8.3	28.1	28.1	173.3	172.9	11.8	11.8		2.1	2.1		6	5.5	I
10-Jul-17	Fine	Moderate	20:57	Middle	4.5	26.8 26.9	26.9	8.3 8.3	8.3	28.6 28.6	28.6	157.5 157.3	157.4	10.7 10.7	10.7	10.5	2.2 2.0	2.1	2.5	5	5.0	5.8
				Bottom	8	26.1	26.3	8.2	8.2	30.1	29.8	132.5	133.2	9.1	9.1		3.4	3.3		7	7.0	I
						26.5 26.5		8.2 8.4		29.4 27.4		133.8 104.2		9.1 7.2			3.2 1.4			7		<u> </u>
				Surface	1	26.5	26.5	8.4	8.4	27.4	27.4	104.6	104.4	7.2	7.2		1.4	1.4		5	5.5	I
12-Jul-17	Cloudy	Moderate	08:50	Middle	4.5	26.0 26.0	26.0	8.4 8.4	8.4	28.5 28.5	28.5	91.1 89.9	90.5	6.3 6.2	6.3	6.0	1.3 1.3	1.3	1.6	7	7.0	5.8
				Bottom	8	25.1	25.1	8.3	8.3	30.9	30.8	66.5	66.6	4.6	4.6		2.2	2.2		5	5.0	I
						25.1 27.4		8.3 8.6		30.7 25.7		66.6 127.4		4.6 8.7			1.8			5		
				Surface	1	26.8	27.1	8.4	8.5	27.5	26.6	128.8	128.1	8.8	8.8		1.8	1.8		5	5.0	1
14-Jul-17	Fine	Rough	10:17	Middle	4.5	25.6 25.6	25.6	8.3 8.3	8.3	30.2 30.1	30.2	78.9 77.1	78.0	5.4 5.3	5.4	6.3	2.4 2.3	2.4	2.1	5 5	5.0	5.0
				Bottom	8	25.3	25.3	8.3	8.3	30.8	30.9	69.8	69.3	4.8	4.8		2.2	2.1		5	5.0	I
						25.2 28.3		8.3 8.7		30.9 25.0		68.7 104.3		4.8 7.1			1.9			5		
				Surface	1	28.3	28.3	8.7	8.7	25.0	25.0	104.4	104.4	7.1	7.1		1.2	1.2		3	3.0	
17-Jul-17	Rainy	Calm	13:08	Middle	3.5	28.3 28.3	28.3	8.7 8.7	8.7	25.0 25.0	25.0	104.8 104.8	104.8	7.1 7.1	7.1	7.1	1.2 1.2	1.2	1.2	5 5	5.0	3.7
				Bottom	6	28.3 28.3	28.3	8.7 8.7	8.7	25.1 25.1	25.1	104.4 104.2	104.3	7.1	7.1		1.2 1.2	1.2		3	3.0	I
				0	_	28.1	00.4	8.4	0.4	20.7	00.0	104.2	00.5	7.1	7.0		1.2	4.0		6	0.0	
				Surface	1	28.0 27.4	28.1	8.4 8.4	8.4	20.8	20.8	98.3 90.9	99.5	6.9	7.0		1.6 2.9	1.6		6	6.0	I
19-Jul-17	Sunny	Moderate	13:50	Middle	3.5	27.4	27.4	8.4	8.4	22.4	22.4	90.9	90.6	6.3	6.3	6.2	2.8	2.9	2.1	6	6.5	5.2
				Bottom	6	27.4 27.4	27.4	8.4 8.4	8.4	23.3 23.4	23.4	74.0 75.9	75.0	5.1 5.3	5.2		1.7 2.0	1.9		3	3.0	1
				Surface	1	27.9	27.9	8.5	8.5	26.4	26.5	117.2	114.5	7.9	7.8		2.8	2.9		4	4.0	
				Surface		27.9 27.9		8.4 8.4		26.6 26.8		111.8 105.5		7.6			3.0 1.0	2.9		4 5		I
21-Jul-17	Fine	Rough	18:15	Middle	3.5	28.0	28.0	8.4	8.4	26.7	26.8	111.1	108.3	7.5	7.3	7.5	1.2	1.1	1.7	5	5.0	5.7
				Bottom	6	28.0 28.0	28.0	8.4 8.4	8.4	26.7 26.9	26.8	109.0 106.6	107.8	7.4 7.2	7.3		0.9 1.0	1.0		8	8.0	I
				Surface	1	27.6	27.6	8.4	8.4	26.8	26.7	90.4	90.2	6.1	6.1		0.7	0.7		6	6.0	
						27.6 27.7		8.4 8.4		26.6 27.1		90.0 87.5		6.1 5.9		1	0.7			6		l
24-Jul-17	Cloudy	Moderate	18:53	Middle	4	27.6	27.7	8.4	8.4	27.0	27.1	86.5	87.0	5.9	5.9	6.0	1.1	1.0	0.9	4	4.0	4.3
				Bottom	7	27.7 27.6	27.7	8.4 8.4	8.4	27.1 27.0	27.1	86.5 86.7	86.6	5.9 5.9	5.9		1.0 0.8	0.9		3	3.0	l
				Surface	1	28.2	28.1	8.5	8.5	28.8	28.9	90.3	87.0	6.0	5.8		0.9	1.0		4	4.0	
00 1:14	0	Madaat	00:04			28.0 28.0		8.4 8.5		28.9 28.9		83.6 85.2		5.6 5.7			1.0 0.9		4.0	5		4.0
26-Jul-17	Sunny	Moderate	09:01	Middle	3.5	28.0	28.0	8.4	8.5	28.9	28.9	82.8	84.0	5.5	5.6	5.7	1.1	1.0	1.0	5	5.0	4.0
				Bottom	6	28.0 27.9	28.0	8.4 8.4	8.4	28.9 29.0	29.0	83.5 82.9	83.2	5.6 5.5	5.6		1.0 0.9	1.0		3	3.0	
				Surface	1	28.4	28.4	8.8	8.8	28.2	28.2	81.3	81.1	5.4	5.4		1.0	1.1		3	3.0	
28-Jul-17	Sunny	Moderate	10:35	Middle	4	28.4 28.5	28.5	8.8	0.0	28.2 28.3	28.3	80.8 82.9	83.1	5.4 5.5	5.5	5.5	1.2	1.1	1.1	3	3.0	2.8
20-JUI-11	Julily	wouerate	10.33			28.4 28.5		8.8	8.8	28.3 28.4		83.2		5.5	5.5	5.5	1.2		1.1	3 <2.5		2.0
				Bottom	7	28.5 28.5	28.5	8.8 8.8	8.8	28.4 28.4	28.4	84.2 84.3	84.3	5.6 5.6	5.6		1.1 1.0	1.1		<2.5 <2.5	<2.5	<u></u>
_			_	Surface	1	28.5 27.5	28.0	8.5 8.5	8.5	29.5 29.9	29.7	98.5 99.8	99.2	6.5	6.6		1.9	2.1		5 5	5.0	
31-Jul-17	Sunny	Moderate	14:09	Middle	3.5	28.2	27.8	8.5	8.5	30.2	30.1	93.0	91.1	6.6 6.1	6.0	5.9	3.2	3.3	3.9	5	5.0	5.7
51-50I=17	Guilly	Moderate	14.05			27.4 25.9		8.5 8.5		30.0 32.1		89.2 76.8		5.9 5.1		5.5	3.4 6.2		3.5	5 7		5.7
				Bottom	6	25.8	25.9	8.6	8.6	32.5	32.3	76.3	76.6	5.1	5.1		6.3	6.3		7	7.0	L
		•	•				•		•							•		•	•	•		

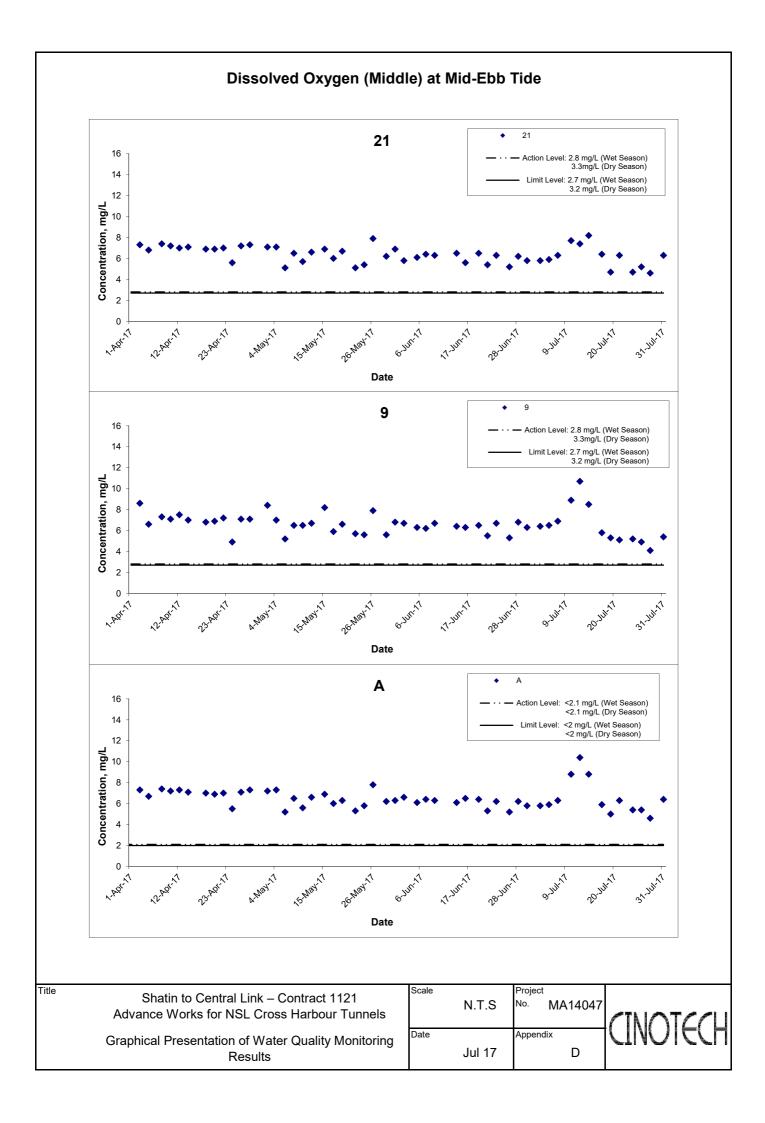

Dissolved Oxygen (Surface) at Mid-Ebb Tide

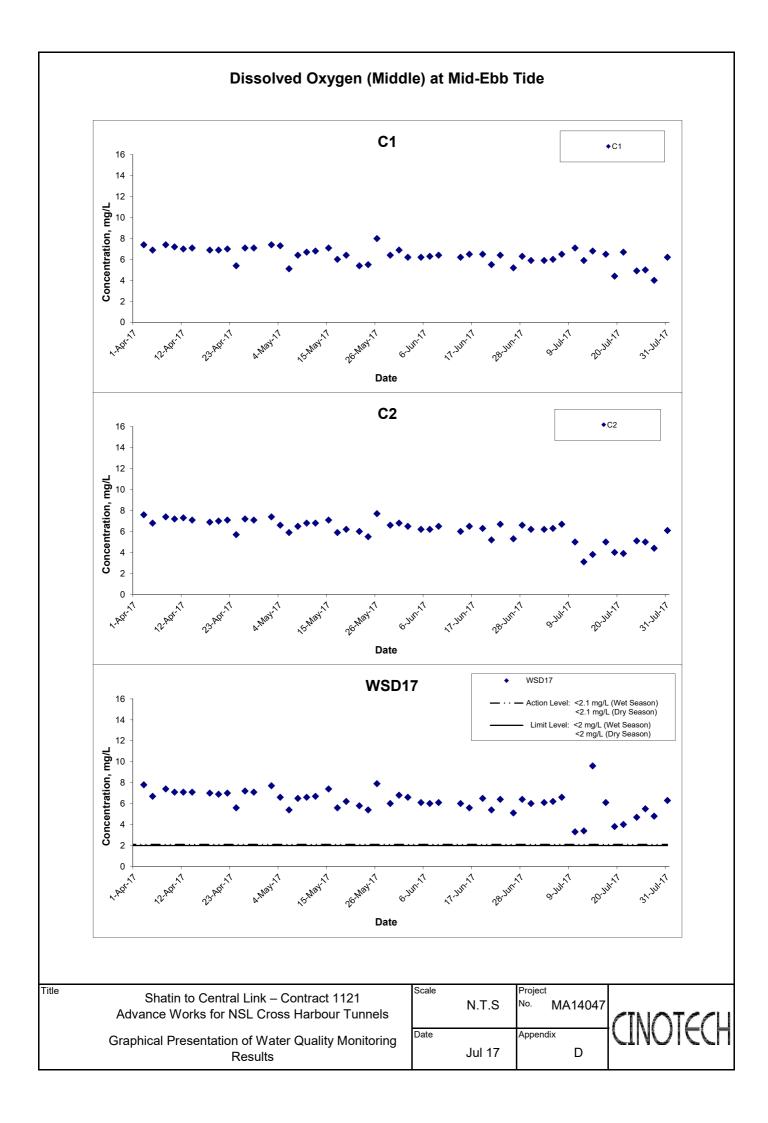


Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

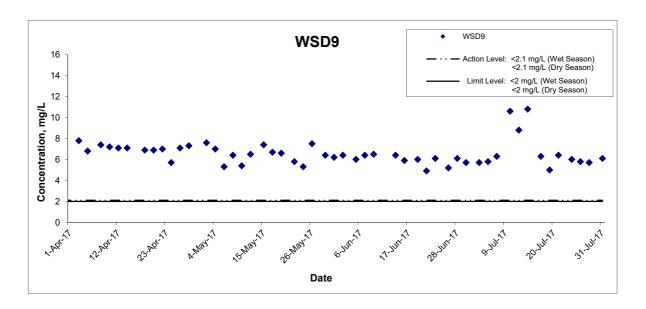

Scale	N.T.S	Project No. MA14047	
Date		Appendix	-
	Jul 17	D	

Dissolved Oxygen (Surface) at Mid-Flood Tide

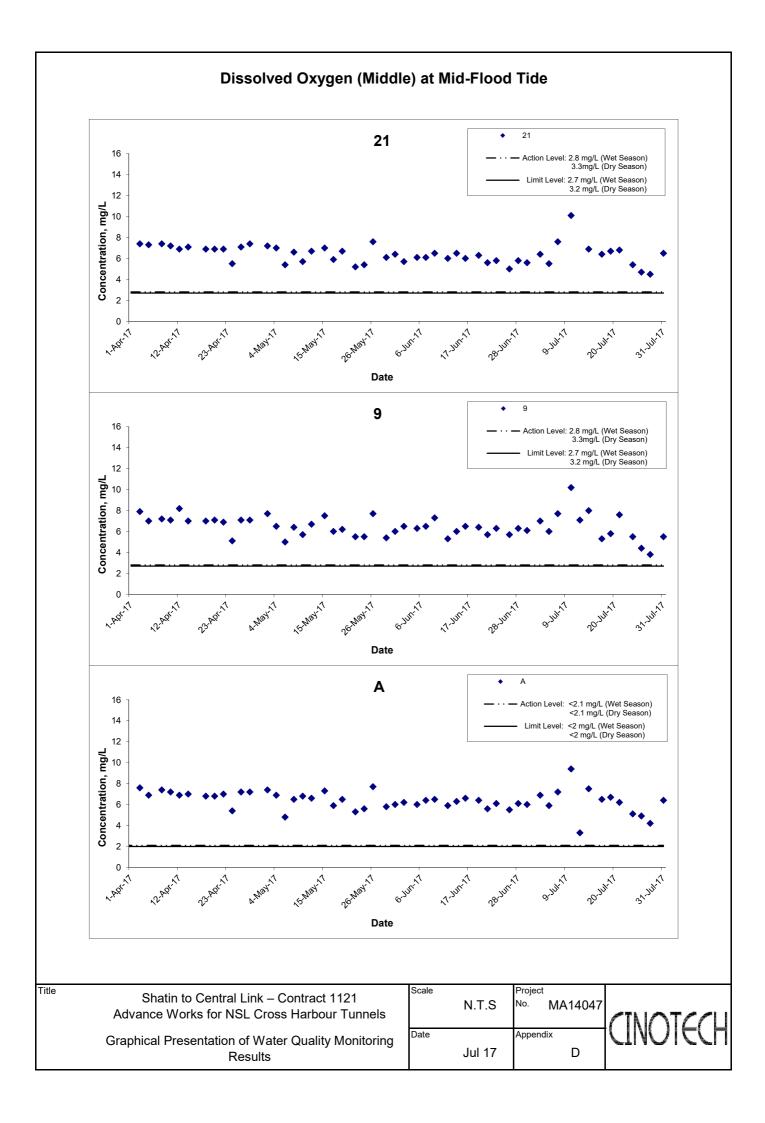


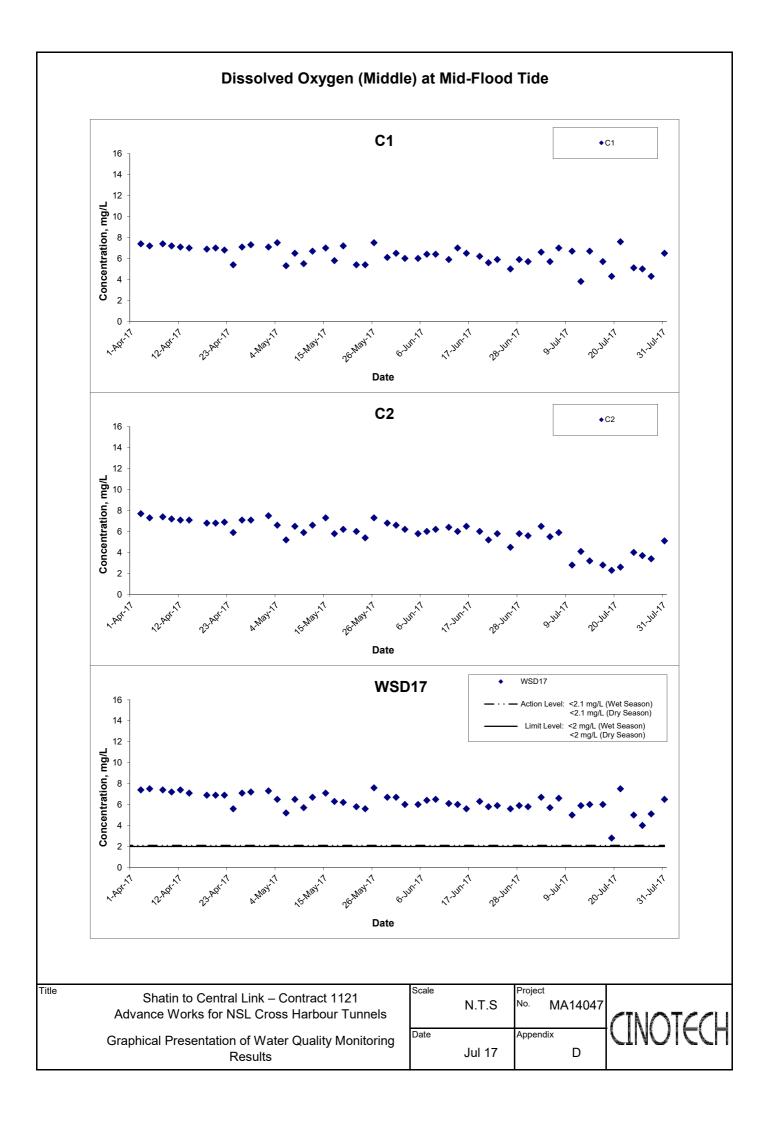

Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

Title

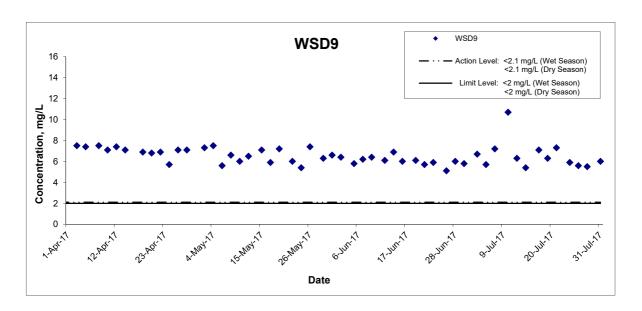

Scale		Project	
	N.T.S	No.	MA14047
Date		Append	lix
	Jul 17		D

Dissolved Oxygen (Middle) at Mid-Ebb Tide

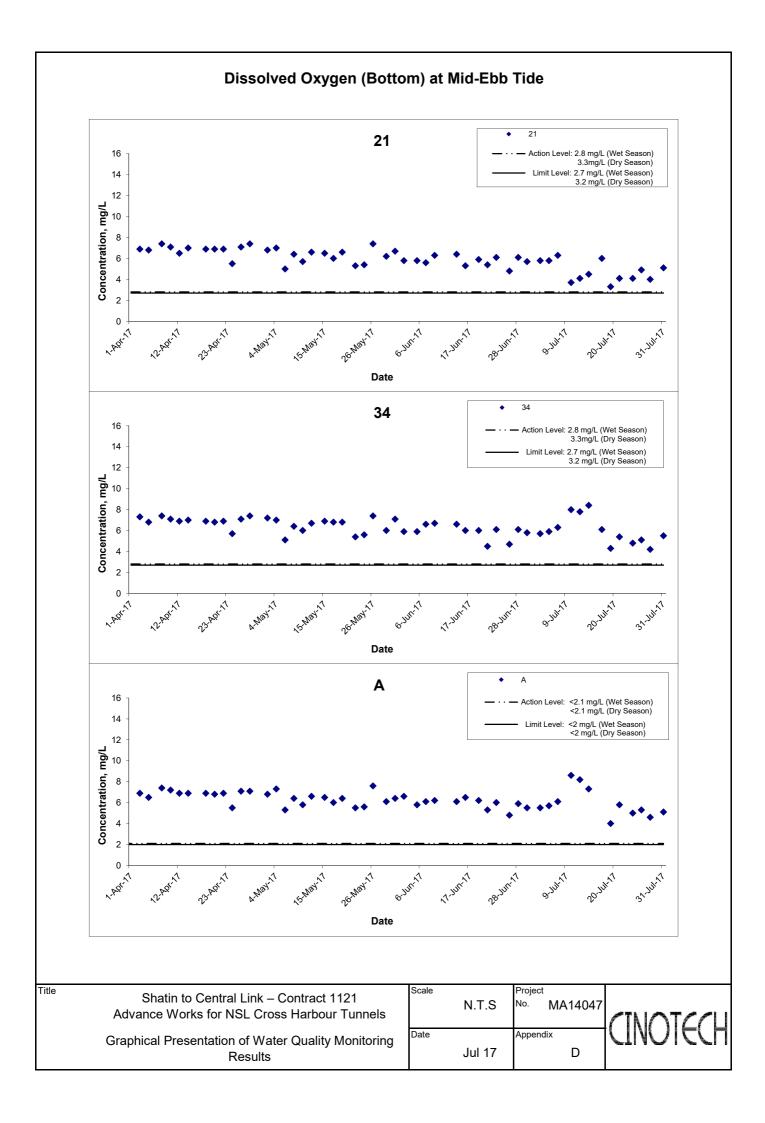

Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels Graphical Presentation of Water Quality Monitoring Results

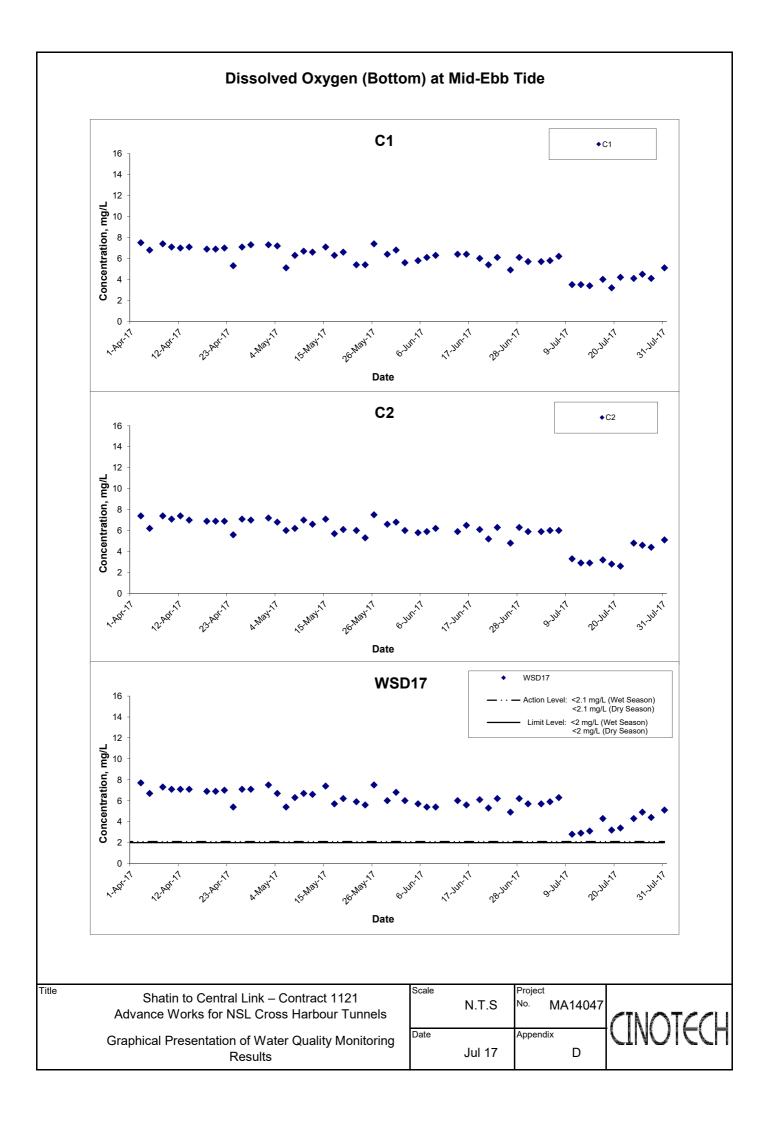

Title

 N.T.S
 Project No.
 MA14047

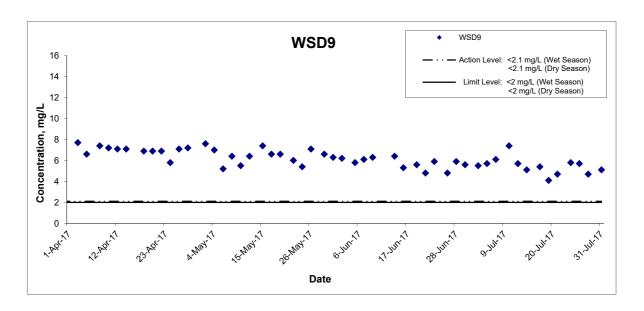

 Date
 Appendix
 D

Dissolved Oxygen (Middle) at Mid-Flood Tide

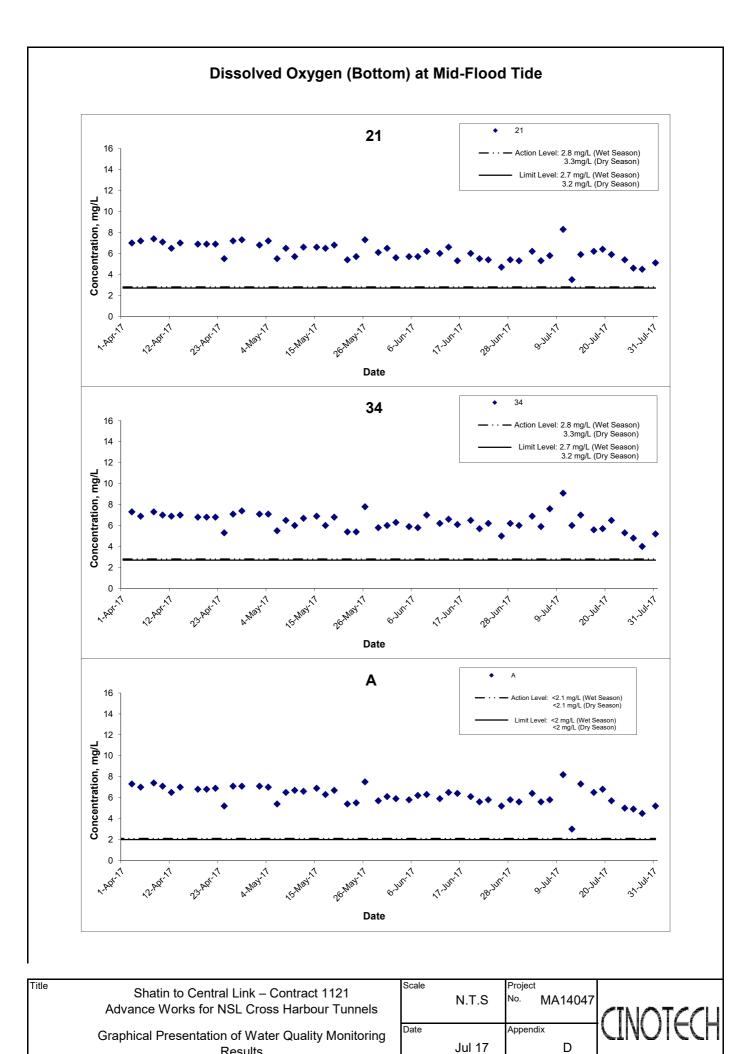



Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

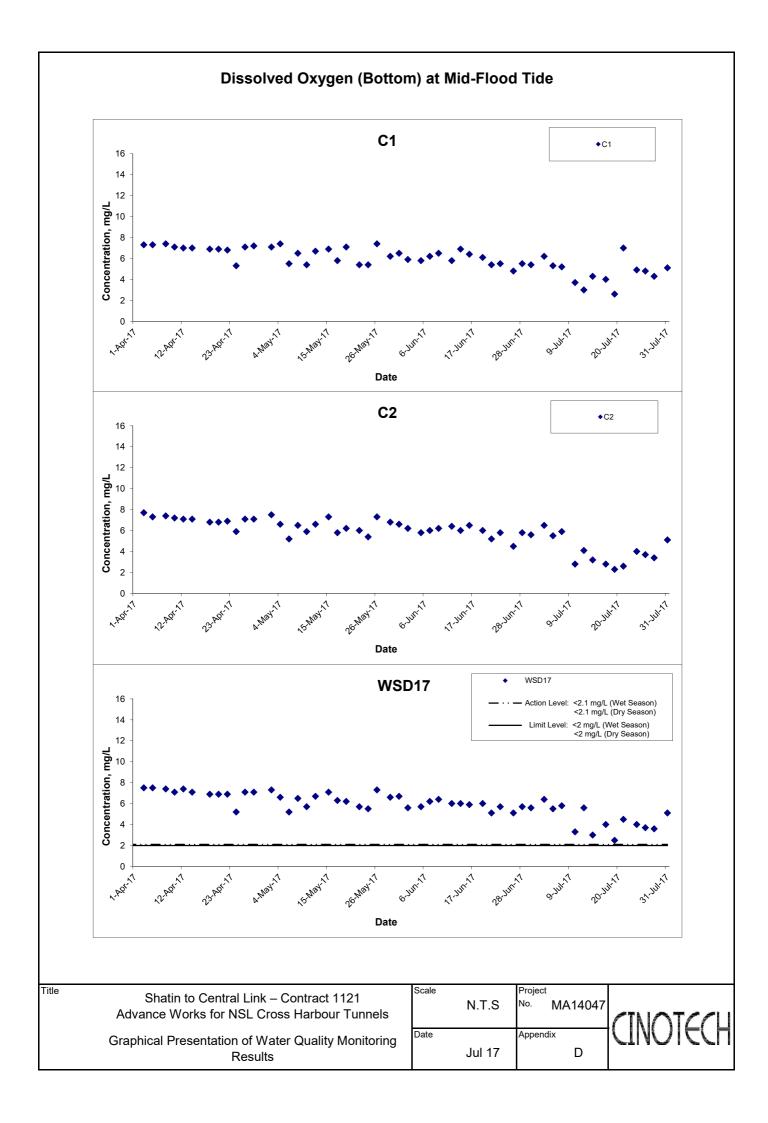
Title


Scale		Project
	N.T.S	No. MA14047
Date		Appendix
	Jul 17	D

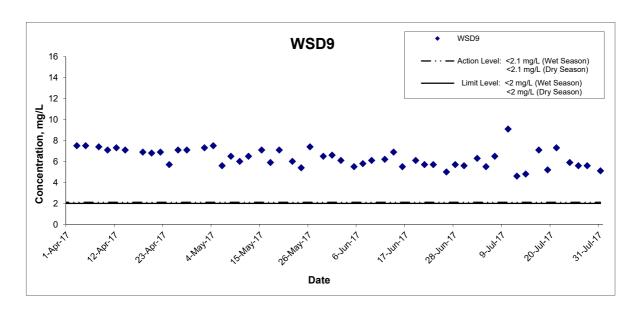
Dissolved Oxygen (Bottom) at Mid-Ebb Tide



Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

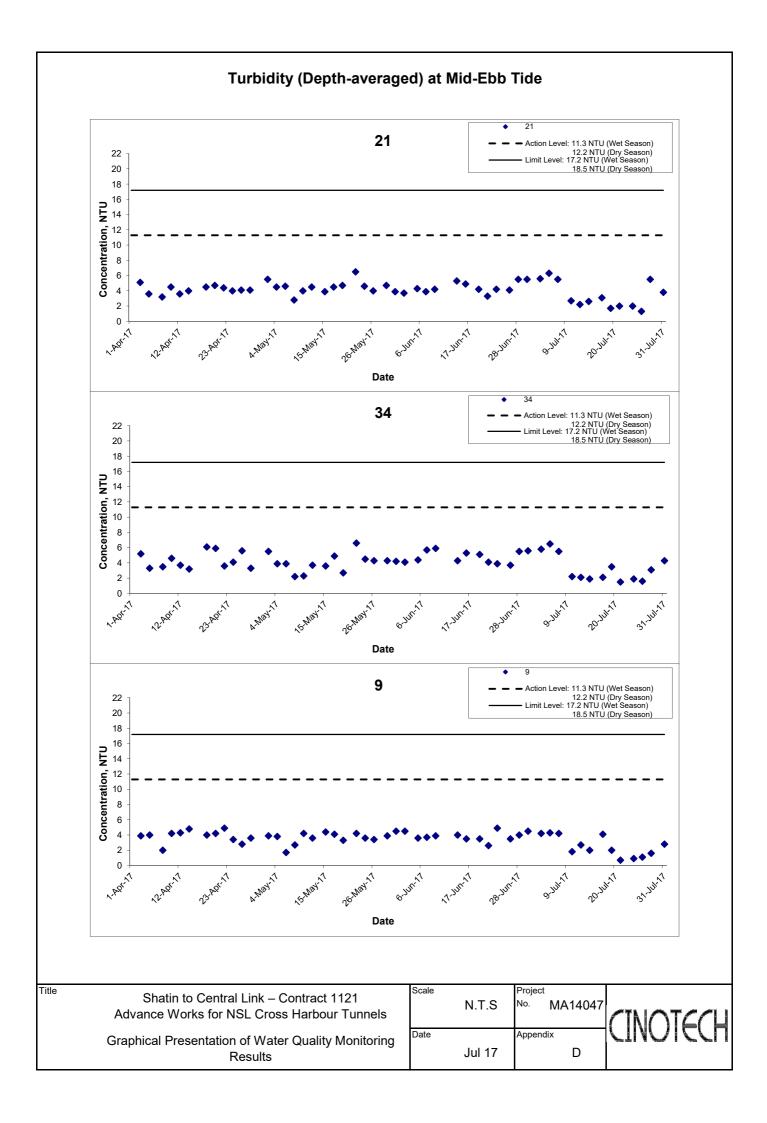

Title

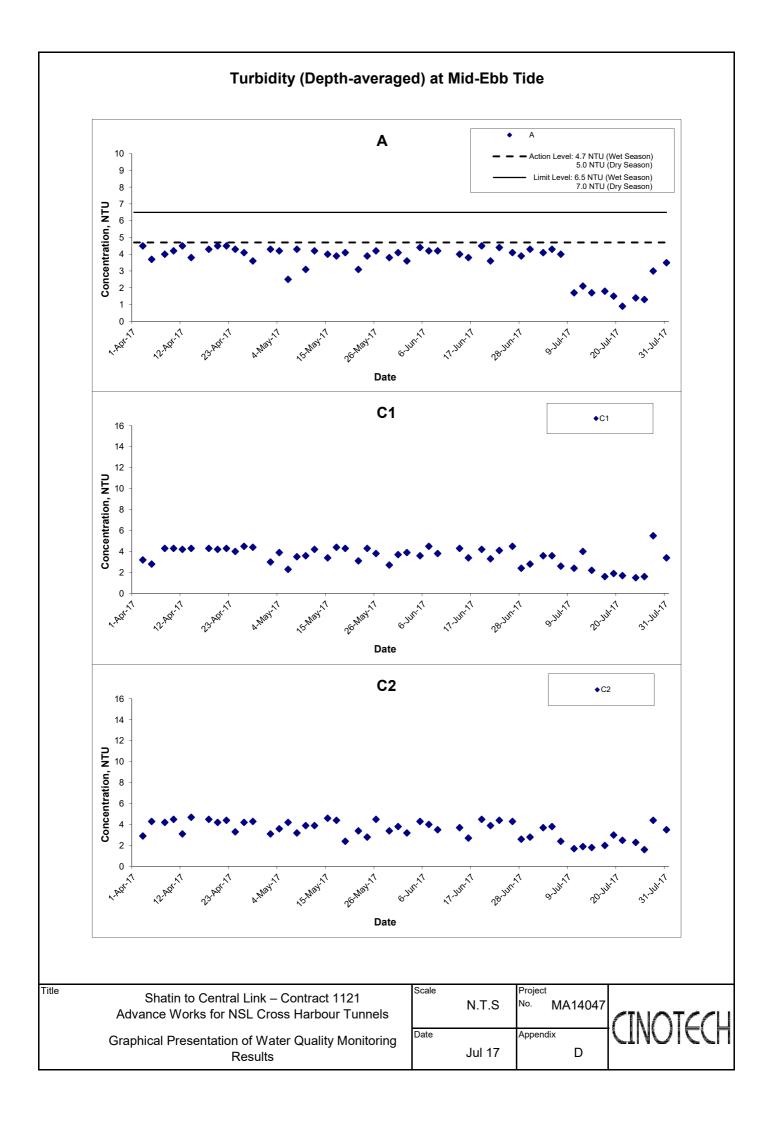
Scale		Projec	:t
	N.T.S	No.	MA14047
Date		Appen	ıdix
	Jul 17		D



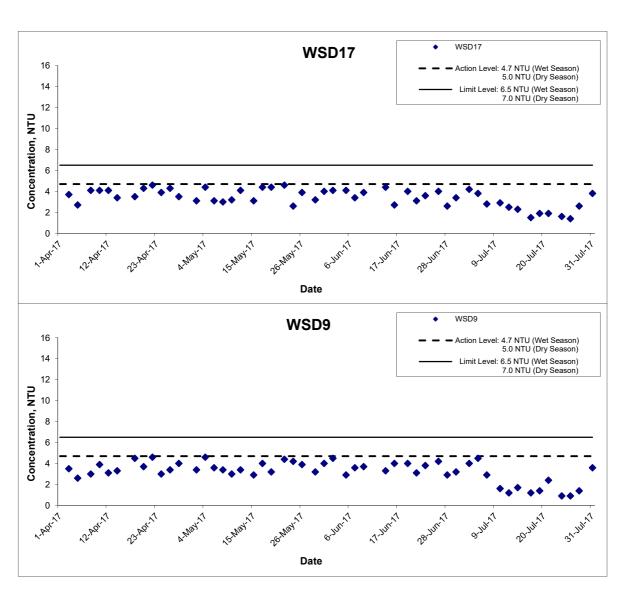
Results

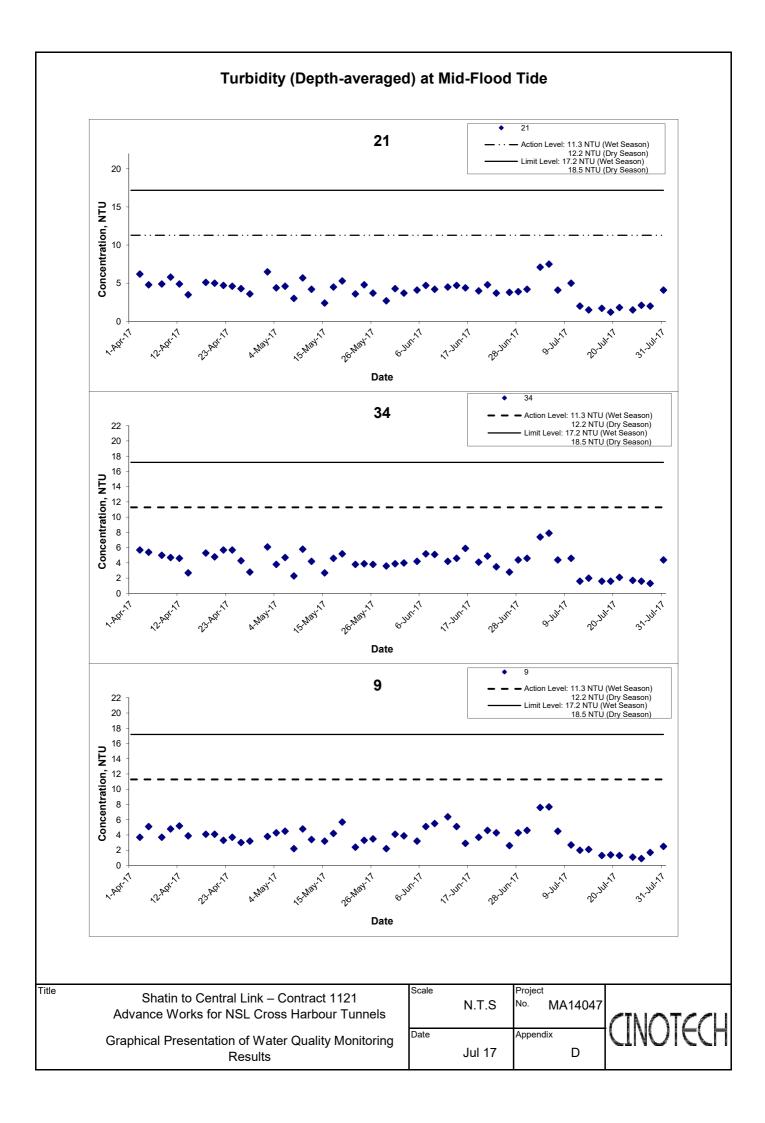
Dissolved Oxygen (Bottom) at Mid-Flood Tide

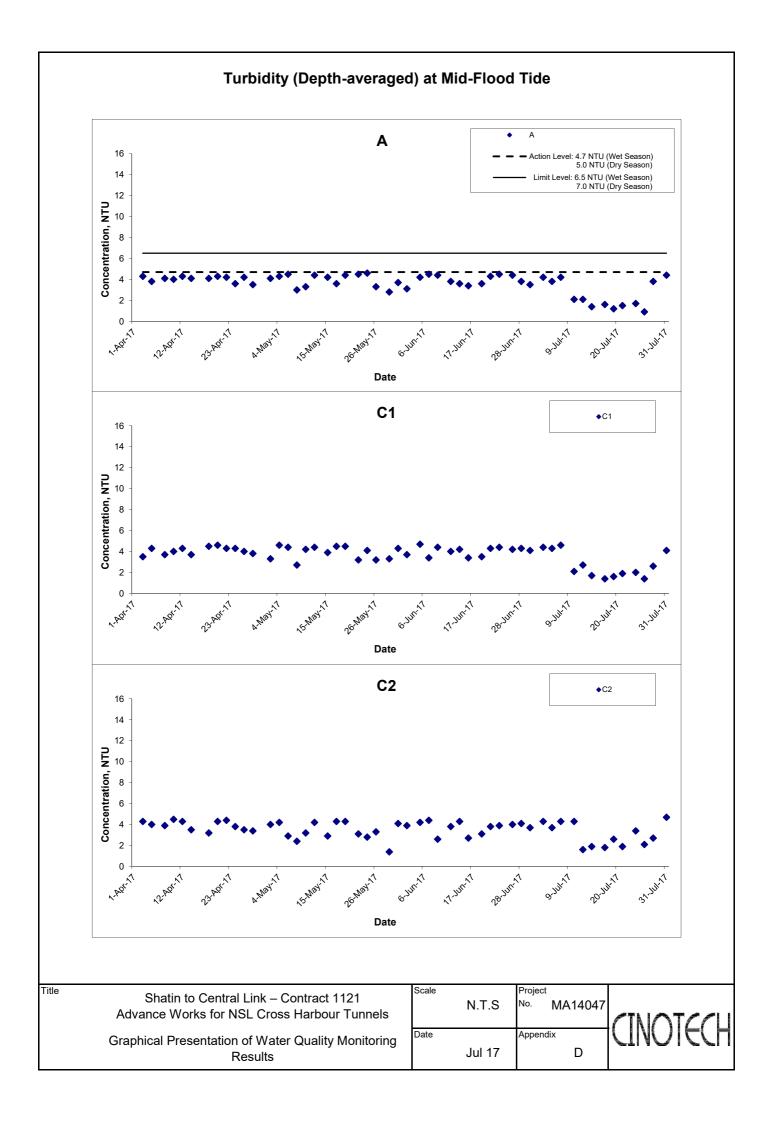



Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

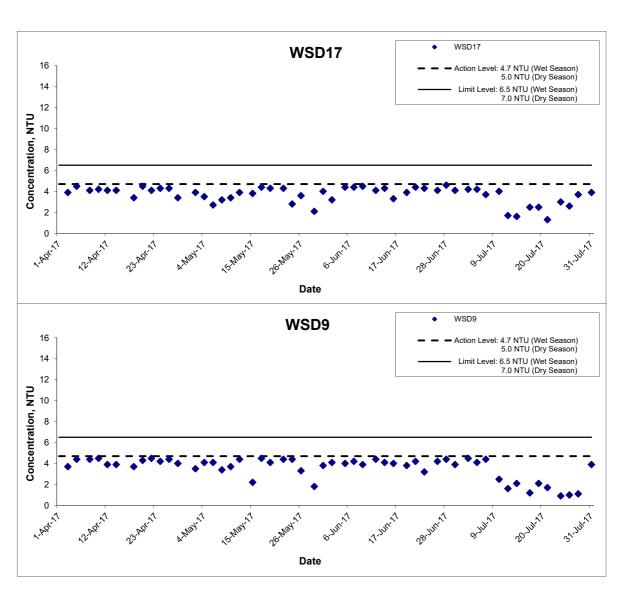
Title

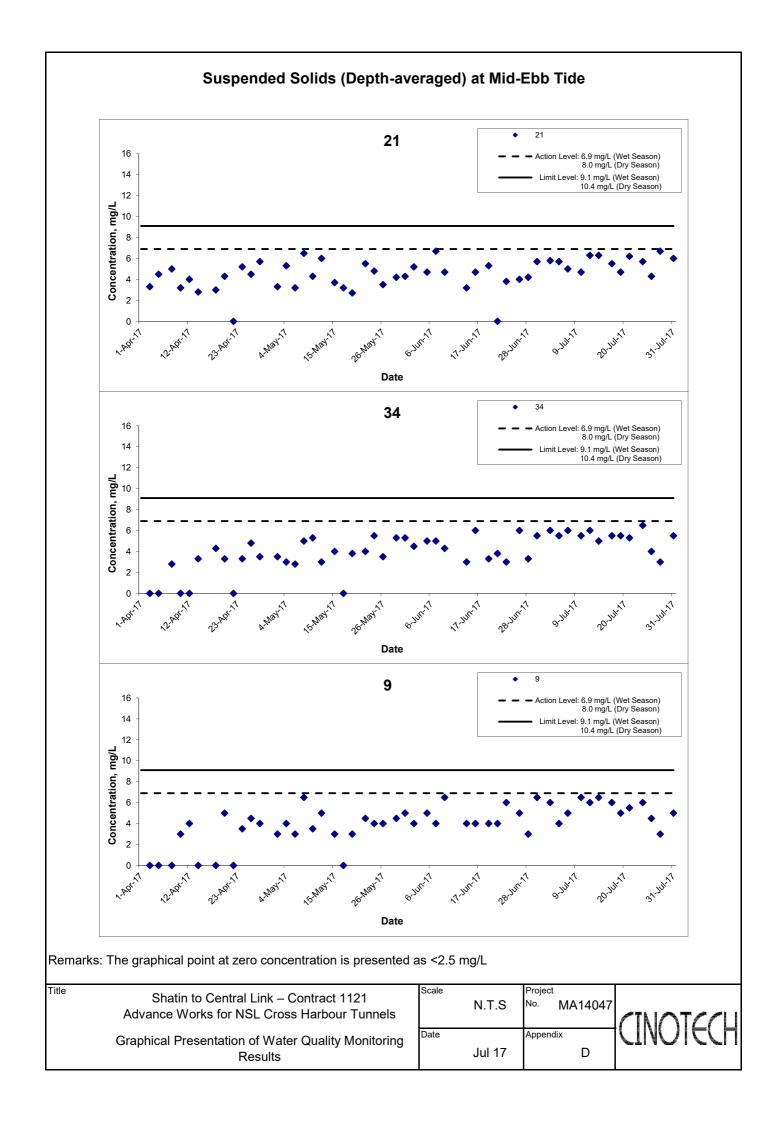

Scale		Project	
	N.T.S	No. MA14047	
Date		Appendix	
	Jul 17	D	

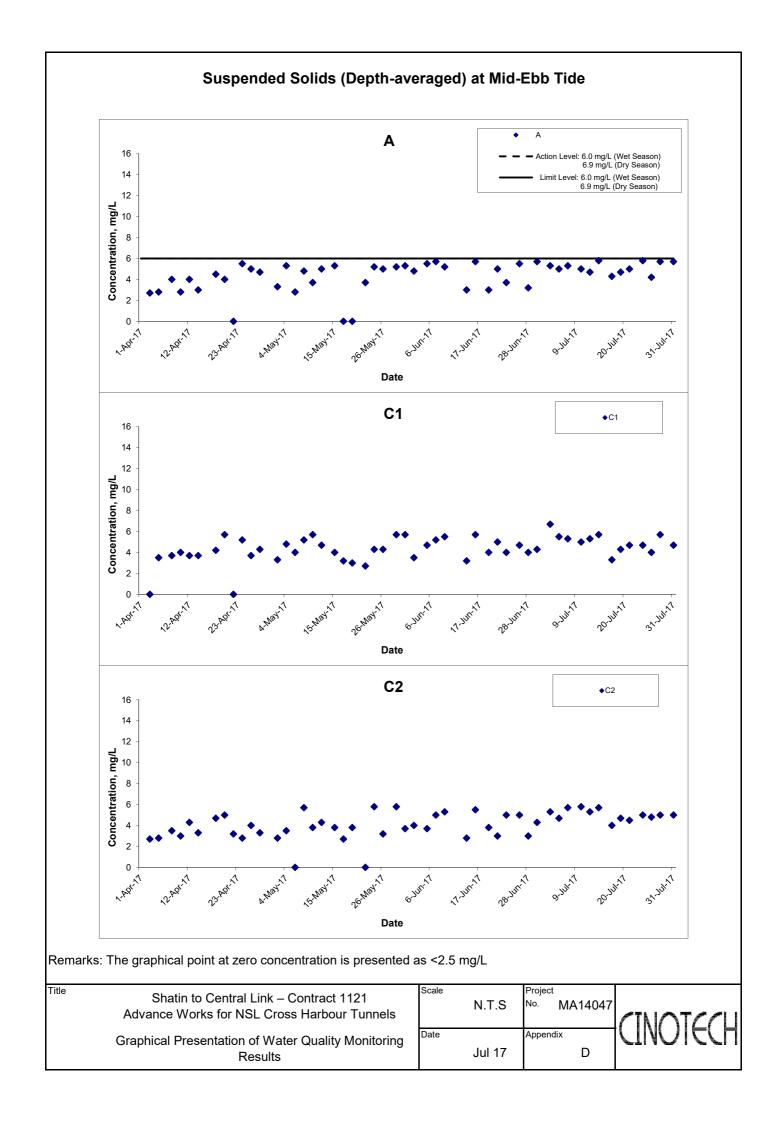

Turbidity (Depth-averaged) at Mid-Ebb Tide



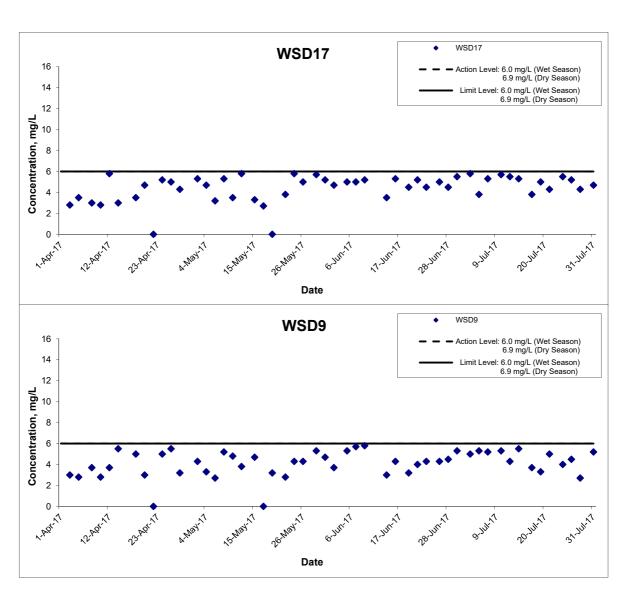
Title	Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	Scale	1
	Graphical Presentation of Water Quality Monitoring Results	Date	


Scale		Project	Ī
	N.T.S	No. MA14047	á
Date		Appendix	A SHALL
	Jul 17	D	

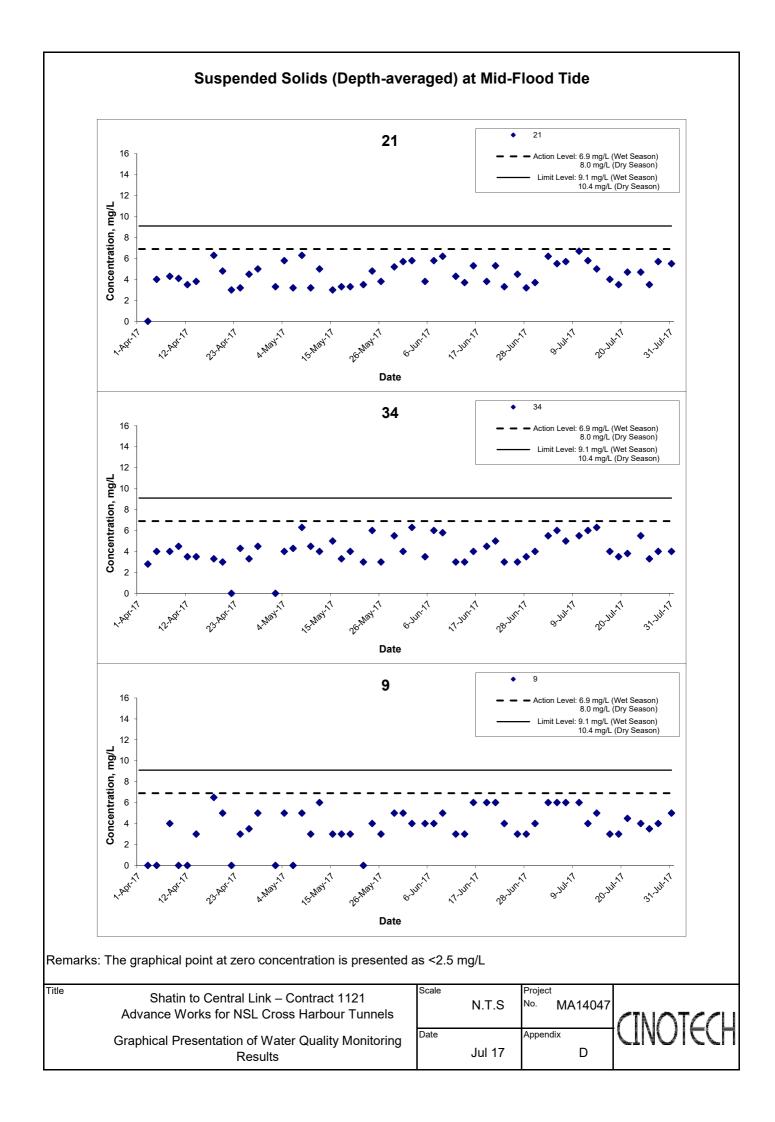


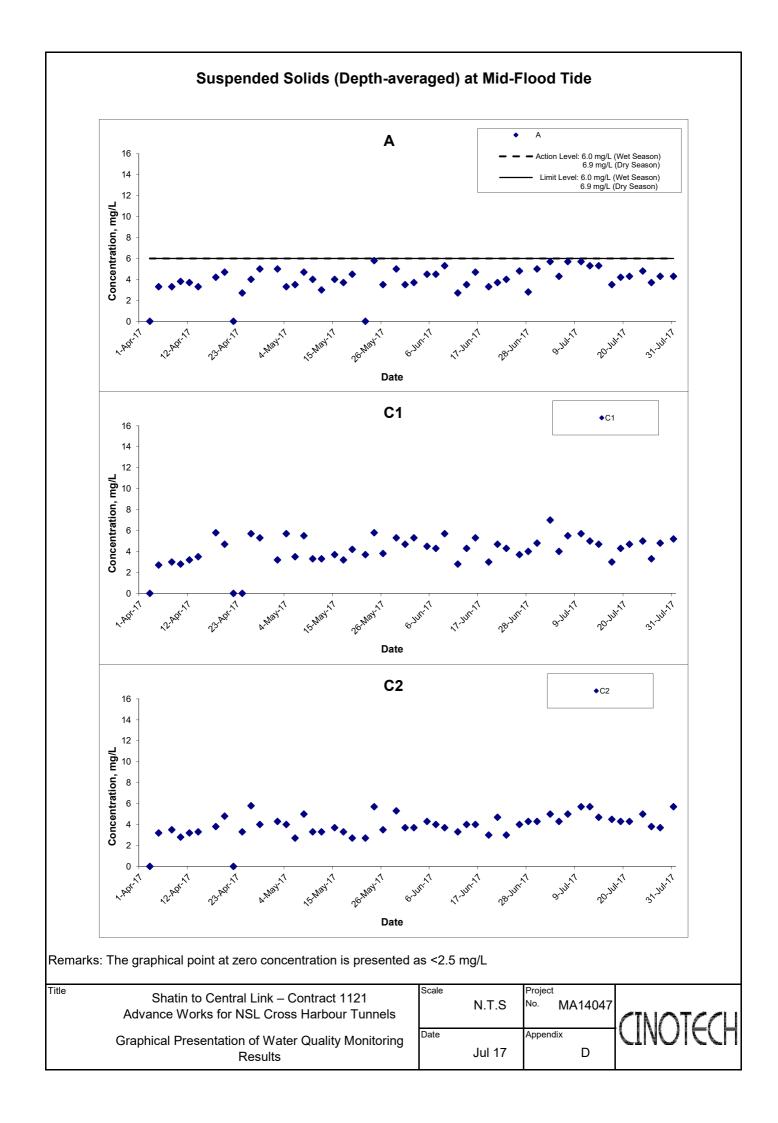


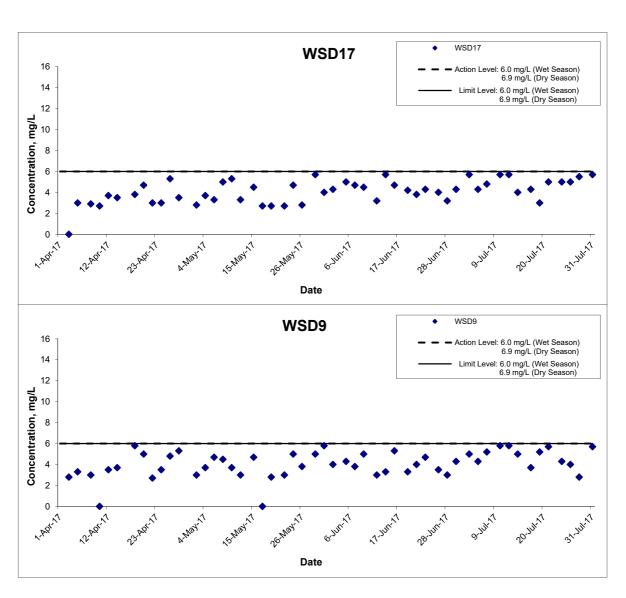
Turbidity (Depth-averaged) at Mid-Flood Tide



Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	Scale		Project No. MA14047	CINOTEC
Graphical Presentation of Water Quality Monitoring Results	Date	Jul 17	Appendix D	




Suspended Solids (Depth-averaged) at Mid-Ebb Tide


Remarks: The graphical point at zero concentration is presented as <2.5 mg/L

Title	Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	Scale	N.T.S	Project No.	MA14047	CINOTCCII
	Graphical Presentation of Water Quality Monitoring Results	Date	Jul 17	Append	lix D	

Suspended Solids (Depth-averaged) at Mid-Flood Tide

Remarks: The graphical point at zero concentration is presented as <2.5 mg/L

Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels

Graphical Presentation of Water Quality Monitoring
Results

Scale
N.T.S
Project
No. MA14047

Jul 17
D

The project N.T.S
Date
Jul 17
D

APPENDIX E COPIES OF CALIBRATION CERTIFICATES

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/170527 Date of Issue:

2017-05-27

Date Received: Date Tested:

2017-05-27 2017-05-27

Date Completed: Next Due Date: 2017-05-27 2017-08-26

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-05
-		(S/N: 16J100679)
Manufacturer:	YSI Incorporated,	a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102984
- EXO conductivity/Temperature Sensor, Ti	599870	16G102306
- EXO Turbuduty Sensor, Ti	599101-01	16H102462
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100415

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/170527

 Date of Issue:
 2017-05-27

 Date Received:
 2017-05-27

 Date Tested:
 2017-05-27

 Date Completed:
 2017-05-27

 Next Due Date:
 2017-08-26

Page:

2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

KCl stock solution 12901 12246-13534 Pass (12890 μS/cm)		Instrument Readings (µS/cm)	Accetance Criteria	Comment
(12890 μS/cm)	KCl stock solution	12901	12246-13534	Pass
	(12890 μS/cm)			

Temperature performance checking

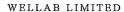
Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
22.4	22.403	-0.003	N/A

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.00	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.90	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.17	9.18 ± 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass


Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.82	8.79	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.02	9.0-11.0	Pass
50 NTU	50.25	45.0-55.0	Pass
100 NTU	101.53	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.:	C/W/170527B
Date of Issue:	2017-05-27
Date Received:	2017-05-27
Date Tested:	2017-05-27
Date Completed:	2017-05-27
Next Due Date:	2017-08-26

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-09
·		(S/N: 16J100869)
Manufacturer:	YSI Incorporated,	a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102988
- EXO conductivity/Temperature Sensor, Ti	599870	16G102310
- EXO Turbuduty Sensor, Ti	599101-01	16H102467
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100419

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/170527B

 Date of Issue:
 2017-05-27

 Date Received:
 2017-05-27

 Date Tested:
 2017-05-27

 Date Completed:
 2017-05-27

 Next Due Date:
 2017-08-26

Page:

2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	12991	12246-13534	Pass
(12890 μS/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
22.4	22.403	-0.003	N/A

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.01	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.90	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.19	9.18 ± 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.04	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.82	8.70	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity performance checking

	Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
	10 NTU	10.21	9.0-11.0	Pass
-	50 NTU	50.16	45.0-55.0	Pass
	100 NTU	100.46	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

APPENDIX F QUALITY CONTROL REPORTS FOR SS LABORATORY ANALYSIS

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27122 Date of Issue: 2017/07/04

Date Received: 2017/07/03 Date Tested: 2017/07/03

Page:

Date Completed: 2017/07/04

lofl

ATTN: Ms. Mei Ling Tang

Project Name: Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/03

Number of Sample: 84

Custody No.:

MA14047/170703

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, mg/L	Trial 2,	Difference,	
		mg/L	%	
C1se	8	8	1	97

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27128

Date of Issue: Date Received: 2017/07/06 2017/07/05

Date Tested:

2017/07/05

Date Completed:

Page:

2017/07/06

l of l

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/05

Number of Sample: 84

Custody No.:

MA14047/170705

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, mg/L	Trial 2,	Difference,	
		mg/L	%	
WSD9se	5	5	1	99

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27143

2017/07/10

1 of 1

Date of Issue: Date Received:

2017/07/07

Date Tested:

2017/07/07

Date Completed:

Page:

2017/07/10

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/07

Number of Sample: 84

Custody No.:

MA14047/170707

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, mg/L	Trial 2,	Difference,	
		mg/L	%	
WSD9se	5	6	2	99

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27155

Date of Issue: 2017/07/11 Date Received: 2017/07/10

Date Tested: 2017/07/10 Date Completed: 2017/07/11

I of I

Page:

ATTN: Ms. Mei Ling Tang

Project Name: Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date: 2017/07/10

Number of Sample: 84

Custody No.: MA14047/170710

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, mg/L	Trial 2,	Difference,	
		mg/L	%	
WSD17me	8	8	4	95

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Received:

2017/07/13 2017/07/12

27164

Date Tested:

Report No.:

Date of Issue:

2017/07/12

Date Completed:

Page:

2017/07/13

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/12

Number of Sample: 84

Custody No.:

MA14047/170712

I	Total Suspended Solids	Duplicate Analysis			QC Recovery, %
ſ	Sampling Point	Trial 1, mg/L	Trial 2,	Difference,	
l			mg/L	%	
	WSD9se	7	7	2	100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27179

Date of Issue: 2017/07/17 Date Received: 2017/07/14

Date Tested: Date Completed:

Page:

2017/07/14 2017/07/17

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/14

Number of Sample: 84

Custody No.:

MA14047/170714

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	5	6	2	100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patul se

Rus 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27190

Date of Issue: Date Received: 2017/07/18 2017/07/17

Date Tested:

2017/07/17

Date Completed:

Page:

2017/07/18

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/17

Number of Sample: 84

Custody No.:

MA14047/170717

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	5	5	3	101

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patrile

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Completed: Page:

Report No.:

Date of Issue:

Date Tested:

Date Received:

1 of 1

27202

2017/07/20

2017/07/19

2017/07/19

2017/07/20

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/19

Number of Sample: 84

Custody No.:

MA14047/170719

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	3	3	0	102

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong, Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27213 Date of Issue: 2017/07/24

Date Received: Date Tested:

2017/07/21 2017/07/21

Date Completed:

Page:

2017/07/24

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/21

Number of Sample: 84

Custody No.:

MA14047/170721

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	6	6	1	98

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Completed: 2017/07/25

27219

1 of 1

2017/07/25

2017/07/24

2017/07/24

Report No.:

Date of Issue:

Date Received:

Date Tested:

Page:

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/24

Number of Sample: 84

Custody No.:

MA14047/170724

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	4	4	1	100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27235

Date of Issue: 2017/07/27 Date Received:

2017/07/26

Date Tested: Date Completed: 2017/07/26 2017/07/27

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/26

Number of Sample: 84

Custody No.:

MA14047/170726

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	4	4	4	98

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716,
Technology Park, 18 On Lai Street,
Shatin, N.T., Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date of Issue: 2017/07/31
Date Received: 2017/07/28
Date Tested: 2017/07/28

27247

1 of 1

Date Completed: 2017/07/31

Report No.:

Page:

ATTN: Ms. Mei Ling Tang

Project Name: Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date: 2017/07/28

Number of Sample: 84

Custody No.: MA14047/170728

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	3	3	1	101

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong, Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27261

Date of Issue:

2017/08/01 2017/07/31

Date Received:

2017/07/31

Date Tested: Date Completed:

Page:

2017/08/01

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2017/07/31

Number of Sample: 84

Custody No.:

MA14047/170731

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	5	5	1	94

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patrile

APPENDIX G SUMMARY OF EXCEEDANCE

APPENIDX G – SUMMARY OF EXCEEDANCE

Reporting Month: July 2017

- a) Exceedance Report for Dust Monitoring (NIL)
- b) Exceedance Report for Water Quality Monitoring (NIL)

APPENDIX H SITE AUDIT SUMMARY

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	170703
Date	03 July 2017 (Monday)
Time	13:15 – 16:00

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
170703-R03	Part B – Water Quality Treated water was observed not clear enough and the contractor was reminded to provide proper wastewater treatment for site water before discharge at Hung Hom site.	
	Part C – Ecology / Others No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual No environmental deficiency was identified during the site inspection.	
	 Part E - Air Quality No environmental deficiency was identified during the site inspection. 	
	Part F - Construction Noise Impact No environmental deficiency was identified during the site inspection.]
170703-R01 170703-R02	 Part G – Waste/Chemical Management To remove the construction waste found inside NOV at Hung Hom site. Drip tray should be provided to chemical containers at Hung Hom site. 	G4ii G10
	Part H – Permits/Licenses No environmental deficiency was identified during the site inspection.	
	 Part I - Others Follow-up on previous audit section (Ref. No.:170626), all the environmental deficiencies were rectified by the Contractor. 	

	Name	Signature	Date
Recorded by	Andy Chan	PM	03 July 2017
Checked by	Dr. Priscilla Choy	hEI "	03 July 2017
		1 Pof-	

CINOTECH MA14047 170703

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	170710	
Date	10 July 2017 (Monday)	
Time	13:15 – 17:00	

Ref. No.	Non-Compliance	Related Item No.
12	None identified	=

Ref. No.	Remarks/Observations	Related Item No
	Part B - Water Quality	
170710-R01	To remove general refuse found on sea surface at Hung Hom site.	В31
	Part C - Ecology / Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	No environmental deficiency was identified during the site inspection,	
	Part E Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part F - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part G - Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part H – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part I - Others	
	• Follow-up on previous audit section (Ref. No.:170703), all the environmental deficiencies were rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Andy Chan	Ahr	10 July 2017
Checked by	Dr. Priscilla Choy	W-7	10 July 2017

CINOTECH MA14047 170710

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	170717
Date	17 July 2017 (Monday)
Time	13:15 – 16:00

Ref. No.	Non-Compliance	Related Item
		No.
_	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B Water Quality	Remi Ivo.
170717-R01	• To remove general refuse found on sea surface at Hung Hom site.	B31
170717-R01 170717-R03	Oil stain should be cleared on the ground at Hung Hom site.	B8i
	Part C – Ecology / Others	
	No environmental deficiency was identified during the site inspection.	
	Part D Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part E - Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part F - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part G – Waste/Chemical Management	
170717-R02	To remove stagnant water found on drip tray and provide a plug to the drip tray at Hung Hom site.	G10
	Part H – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part I - Others	
	• Follow-up on previous audit section (Ref. No.:170710), item 170710-R01 was remarked as 170717-R01.	

	Name	Signature	Date
Recorded by	Andy Chan	Adj	17 July 2017
Checked by	Dr. Priscilla Choy	N	17 July 2017

CINOTECH MA14047 170717

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	170724
Date	24 July 2017 (Monday)
Time	13:15 – 18:00

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related
		Item No.
170724-R03	Part B — Water Quality To remove oil stain found on the ground at Hung Hom finger pier.	B8i
	Part C - Ecology / Others	į
	No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part E – Air Quality	
170724-O01	Dust emission was observed during the loading / unloading of material. The contractor was reminded to provide additional water spraying to the dusty material to prevent dust generation at Hung Hom site.	E5
170724-R02	Black smoke was observed emitted from the guard boat. Regular checking should be provided to the guard boat to prevent black smoke emission at Hung Hom site.	E15
	Part F - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part G – Waste/Chemical Management No environmental deficiency was identified during the site inspection.	
	Part H – Permits/Licenses • No environmental deficiency was identified during the site inspection.	
	Part I - Others	
	 Follow-up on previous audit section (Ref. No.:170717), all the environmental deficiencies were rectified by the Contractor. 	

	Name	Signature	Date
Recorded by	Andy Chan	Arly	24 July 2017
Checked by	Dr. Priscilla Choy	W.	24 July 2017

CINOTECH MA14047 170724

APPENDIX I EVENT AND ACTION PLANS

Event and Action Plan for Marine Water Quality Monitoring

EV/ENT		Α	CTION	
EVENT	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
Action level being exceeded by one sampling day	 Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; and Discuss remedial measures with the IEC and Contractor. 	1. Discuss with the ET, ER and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented mitigation measures.	Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; and Supervise the implementation of agreed remedial measures.	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER; and Implement the agreed remedial measures.
Action level being exceeded by more than one consecutive sampling days	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss remedial measures with the IEC and Contractor; and Ensure remedial measures are implemented. 	1. Discuss with the ET, ER and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	1. Discuss with the ET, IEC and Contractor on the implemented mitigation measures; 2. Make agreement on the remedial measures to be implemented; and 3. Discuss with the ET and IEC on the effectiveness of the implemented remedial measures.	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and Implement the agreed remedial measures.

EVENT.		A	CTION	
EVENT	ET	IEC	ER	CONTRACTOR
LIMIT LEVEL				
Limit level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC, EPD and ER; Rectify unacceptable practice; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss with the ET and IEC and propose remedial measures to the IEC, EPD and ER; and Ensure the agreed remedial measures are implemented. 	1. Discuss with the ET, ER and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	1. Discuss with the ET, IEC and Contractor on the implemented mitigation measures; 2. Request the Contractor to critically review the working methods; 3. Make agreement on the remedial measures to be implemented; and 4. Assess the effectiveness of the implemented remedial measures.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and Implement the agreed remedial measures.
Limit level being exceeded by more than one consecutive sampling days	 Inform the Contractor, IEC, EPD and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss remedial measures with the IEC, EPD, ER and Contractor; Ensure remedial measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit level 	1. Discuss with the ET, ER and Contractor on the implemented measures; 2. Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Request the Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; Discuss with the the ET, IEC and Contractor on the effectiveness of the implemented remedial measures; and Consider and instruct, if necessary, 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; Implement the agreed remedial measures; and

EVENT	ACTION						
EVENT	ET	IEC	ER	CONTRACTOR			
	for two consecutive days.		the Contractor to slow down or to stop	8. As directed by the ER, to slow down or to			
			all or part of the marine work until	stop all or part of the marine works or			
			no exceedance of Limit level.	construction activities.			

APPENDIX J UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	Recommended Mitigation Measures ge Impact (Construction Phase)	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
		To maiding the demonstration	Cambusatan	Made Anasais	O a marking saling sa	T T I A C	NI/A
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along	To mitigate the temporary	Contractor	Works Areas in	Construction .	EIAO	N/A
	the boundary of the works area	visual impact due to		Causeway Bay	phase		
		surface works.		and Wan Chai			
Ecology (Cons	truction Phase)	I	T	1			1
S 5.133	The following mitigation measures in controlling water quality	To minimize changes in	Contractor	All reclamation	Construction	• EIAO-TM	
	change shall be implemented:	water quality impact on		and dredging	phase		
	- Installation of silt curtains around the dredgers, where	marine flora and fauna		works areas			^
	appropriate, during dredging activities;						
	- Use of closed grab dredger during dredging; and						۸
	- Reduction of dredging rate						۸
S5.134	Accidental chemical spillage and construction site run-off to	Minimise the contamination	Contractor	All land based	Construction	• EIAO-TM	٨
	the receiving water bodies, mitigation measures such as	of wastewater discharge		works areas	phase		
	removing the pollutants before discharge into storm drain and						
	paving the section of construction road between the wheel						
	washing bay and the public road as suggested in Sections						
	11.216 and 11.219 to 11.256 of the EIA Report shall be						
	adopted						
ERR S3.6.3	Installation of floating type silt curtains around the area of	Minimize indirect impact to	Contractor	Shek O Casting	Construction	• EIAO-TM	٨
	construction and removal of earth bund	the nearby subtidal and		Basin	phase		
		intertidal flora and fauna					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to	Who to implement the	Location of the measures	When to Implement the measures?	What requirements or standards for	Status
		address	measures?			the measures to	
						achieve?	
Fisheries Impa	act						
S5.132	The size of the dredging and underwater blasting areas shall	To minimize loss of fishing	Contractor/	All dredging and	Construction	• EIAO-TM	٨
	be minimized as much as possible	ground and fisheries	MTR	underwater	phase		
		resources		blasting works			
				areas			
S5.133	Mitigation measures recommended in Sections 11.200 to	To minimize change in	Contractor	Works Areas	Construction	• EIAO-TM	٨
	11.207, 11.209 to 11.211 and 11.213 to 11.256 of the EIA	water quality impact on			phase		
	Report to control water quality, i.e. use of effective site	fisheries resources and					
	drainage in land-based construction site and installation of silt	operation					
	curtain surrounding the dredging point, use of closed grab						
	dredger and reduction of dredging rate shall be implemented.						
S6.59	After completion of armour rock filling, the final surfaces of	To minimize the IMT	Contractor	Along IMT laying	Construction	• EIAO-TM	N/A
	the protective armour tock layer shall be checked by	protrusion above the		works areas	phase		
	ultrasonic sounding survey. Measures such as removing the	seabed					
	rock or breaking the rock into pieces shall be implemented in						
	case of non-compliance						
Landscape &	Visual (Construction Phase)						
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time	MTR	All works sites	Construction	• EIAO-TM	٨
		glare due to the Project			phase		
		during construction phase					
			1				1

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs.	Control of height and deposition/arrangement of temporary facilities in works areas	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Construction L	Dust Impact						
EP 2.25	All diesel fuelled construction plant used by the contractors within the works areas of the Project shall be powered by ultra-low sulphur diesel fuel.	Mitigating Aerial Emissions from Construction Plant	Contractor	All works areas	Construction phase	• EIAO-TM	٨
Table 8.5	Barging facilities: (i) Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every	To minimize dust impacts	Contractor	Barging facility at Shek O Casting Basin	Construction phase	APCO	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	working hours to reduce dust emission by 91.7%. This						
	dust suppression efficiency is derived based on the						
	average haul road traffic, average evaporation rate and						
	an assumed application intensity of 1.0 L/m ² once every						
	working hour. Any potential dust impact and watering						
	mitigation would be subject to the actual site condition.						
	For example, a construction activity that produces						
	inherently wet conditions or in cases under rainy						
	weather, the above water application intensity may not						
	be unreservedly applied. While the above watering						
	frequency is to be followed, the extent of watering may						
	vary depending on actual site conditions but should be						
	sufficient to maintain an equivalent intensity of no less						
	than 1.0L/m² to achieve the removal efficiency. The dust						
	levels would be monitored and managed under an						
	EM&A programme as specified in the EM&A Manual						
	(ii) Unloading of spoil materials – Undertake the unloading						#
	process within a 3-sided screen with top tipping hall.						
	Provide water spraying and flexible dust curtains at the						
	discharge point for dust suppression.						
	(iii) Vehicles leaving the barging facilities – Pass vehicles						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	through the wheel washing facilities provided at site						
S8.63	exits. For concrete batching plant, the requirements and mitigation measures stipulated in the Guidance Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	APCO	N/A
Table 8.6	During operation of concrete batching plant: (i) Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	APCO	N/A
	 (ii) Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. (iii) Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install 						N/A
	water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. (iv) Weighing and batching of cementitious materials — Perform the whole process of weighing and mixing in a fully						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	enclosed environment. Equip all the mixers with dust						
	collectors.						
	(v) Loading of concrete from mixer into transit mixer of a						N/A
	truck – Directly load the concrete from the mixer into the						
	transit mixer of a truck in "wet form".						
	(vi) Tipper trucks and cement tankers leaving the Concrete						N/A
	Batching Plant – Haul road within the site is unpaved. Install						
	wheel washing pit at the gate of the concrete batching plant.						
	(vii) Transportation of materials within the plant – Provide						N/A
	watering twice a day would be provided.						
S8.89	Watering once every working hour on active works areas,	To minimize dust impact	Contractor	Works areas at:	Construction	APCO	٨
	exposed areas and paved haul roads to reduce dust			Hung Hom	phase		
	emission by 91.7%. This dust suppression efficiency is			Cross Harbour			
	derived based on the average haul road traffic, average			section up to			
	evaporation rate and an assumed application intensity of 1.7			Breakwater of			
	L/m2 for Kowloon side and 1.0 L/m² for Hong Kong side once			CBTS			
	every working hour. Any potential dust impact and watering			Breakwater of			
	mitigation would be subject to the actual site condition. For			CBTS to SOV			
	example, a construction activity that produces inherently wet			• Shek O			
	conditions or in cases under rainy weather, the above water			Casting Basin			
	application intensity may not be unreservedly applied. While						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	the above watering frequency is to be followed, the extent of						
	watering may vary depending on actual site conditions but						
	should be sufficient to maintain an equivalent intensity of no						
	less than 1.7 L/m² for Kowloon side and 1.0 L/m² for Hong						
	Kong side to achieve the removal efficiency. The dust levels						
	would be monitored and managed under an EM&A						
	programme as specified in the EM&A Manual.						
S8.90	Dust suppression measures stipulated in the Air Pollution	To minimize dust impact	Contractor	Works areas at:	Construction	APCO and Air	
	Control (Construction Dust) Regulation and good site			Hung Hom	phase	Pollution Control	
	practices:			Cross Harbour		(Construction	
	- Use of regular watering to reduce dust emissions from			section up to		Dust) Regulation	٨
	exposed site surfaces and unpaved roads, particularly			Breakwater of			
	during dry weather.			CBTS			
	- Use of frequent watering for particularly dusty			Breakwater of			٨
	construction areas and areas close to ASRs.			CBTS to SOV			
	- Side enclosure and covering of any aggregate or dusty						٨
	material storage piles to reduce emissions. Where this						
	is not practicable owing to frequent usage, watering						
	shall be applied to aggregate fines.						
	- Open stockpiles shall be avoided or covered. Where						٨
	possible, prevent placing dusty material storage piles						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	near ASRs.						
	- Tarpaulin covering of all dusty vehicle loads transported						٨
	to, from and between site locations.						
	- Establishment and use of vehicle wheel and body						N/A
	washing facilities at the exit points of the site.						
	- Provision of wind shield and dust extraction units or						*
	similar dust mitigation measures at the loading area of						
	barging point, and use of water sprinklers at the loading						
	area where dust generation is likely during the loading						
	process of loose material, particularly in dry seasons/						
	periods.						
	- Provision of not less than 2.4m high hoarding from						N/A
	ground level along site boundary where adjoins a road,						
	streets or other accessible to the public except for a site						
	entrance or exit.						
	- Imposition of speed controls for vehicles on site haul						٨
	roads.						
	- Where possible, routing of vehicles and positioning of						٨
	construction plant shall be at the maximum possible						
	distance from ASRs.						
	- Every stock of more than 20 bags of cement or dry						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Air Quality (Co	pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. - Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise.						N/A
	Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD)	Reduce air pollution emission from construction vehicles and plants	Contractor	All construction sites	Construction stage	•APCO	*
Construction N	Valid Non-road Mobile Machinery (NRMM) labels should be provided to regulated machines Noise (Airborne)	Reduce air pollution emission from construction vehicles and plants	Contractor	All construction sites	Construction stage	• APCO	٨
S9.55	Implement the following good site practices:	Control construction	Contractor	Works areas	Construction	• EIAO-TM	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	only well-maintained plant should be operated on-site	airborne noise			phase		٨
	and plant should be serviced regularly during the						
	construction programme;						
	machines and plant (such as trucks, cranes) that may						٨
	be in intermittent use should be shut down between						
	work periods or should be throttled down to a						
	minimum;						٨
	plant known to emit noise strongly in one direction,						
	where possible, be orientated so that the noise is						
	directed away from nearby NSRs;						٨
	silencers or mufflers on construction equipment should						
	be properly fitted and maintained during the						
	construction works;						٨
	mobile plant should be sited as far away from NSRs as						
	possible and practicable;						٨
	material stockpiles, mobile container site office and						
	other structures should be effectively utilised, where						
	practicable, to screen noise from on-site construction						
	activities.						
S9.56 & Table	The following quiet PME shall be used:	To minimize construction	Contractor	Works areas at:	Construction stage	• EIAO-TM	N/A
9.16	Crane lorry, mobile	noise impact		Hung Hom			

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Crane, mobile			Cross Harbour			
	Asphalt paver			section up to			
	Backhoe with hydraulic breaker			Breakwater of			
	Breaker, excavator mounted (hydraulic)			CBTS			
	Hydraulic breaker			Breakwater of			
	Concrete lorry mixer			CBTS to SOV			
	Poker, vibrator, hand-held						
	Concrete pump						
	Crawler crane, mobile						
	Mobile crane						
	Dump truck						
	Excavator						
	Truck						
	Rock drill						
	• Lorry						
	Wheel loader						
	Roller vibratory						
S9.58 –	Movable noise barrier shall be used for the following PME:	To minimize construction	Contractor	Works areas at:	Construction	• EIAO-TM	N/A
S9.59 &	Air compressor	noise impact		Cross Harbour	stage		
Table	Asphalt paver			section up to			
9.17	Backhoe with hydraulic breaker			Breakwater of			

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Bar bender			CBTS			
	Bar bender and cutter (electric)			Breakwater of			
	Breaker, excavator mounted			CBTS to SOV			
	Concrete pump						
	Concrete pump, stationary/lorry mounted						
	Excavator						
	Generator						
	Grout pump						
	Hand held breaker						
	Hydraulic breaker						
	Saw, concrete						
S9.60 &	Noise insulating fabric shall be used for	To minimize construction	Contractor	Works areas at:	Construction	• EIAO-TM	N/A
Table	Drill rig, rotary type	noise impact		Cross Harbour	stage		
9.17	Piling, diaphragm wall, bentonite filtering plant			section up to			
	Piling, diaphragm wall, grab and chisel			Breakwater of			
	Piling, diaphragm wall, hydraulic extractor			CBTS			
	Piling, large diameter bored, grab and chisel			Breakwater of			
	Piling, hydraulic extractor			CBTS to SOV			
	Piling, earth auger, auger						
	Rock drill, crawler mounted (pneumatic)						
Water Quality	(Construction Phase)						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
S11.200 &	All excavation and tunnel construction works will be	To minimize release of	Contractor	Marine works at	Construction	• EIAO-TM	N/A
201	undertaken within the cofferdam and there will be no open	sediment and		Hung Hom	phase	• WPCO	
	dredging.	contaminants during		Landfall			
	Removal of fender piles of Hung Hom Bypass and minor	temporary reclamation.					٨
	marine piling works will be carried out prior to the						
	construction of the elevated platform adjacent to the						
	cofferdam at Hung Hom Landfall. Reinstatement of the						
	fender piles will be carried out upon completion of tunnel						
	section. Potential release of sediment due to						
	abovementioned works could be minimized by installation of						
	silt curtains surrounding the works area as appropriate. All						
	excavation and tunnel construction works will be undertaken						
	within the cofferdam.						
	No open dredging shall be allowed.						۸
S11.202	All temporary reclamation works will adopt an approach	To minimize loss of fines	Contractor	All temporary	Construction	• EIAO-TM	N/A
	where temporary seawalls will first be formed to enclose each	and contaminants during		reclamation	phase	• WPCO	
	phase of the temporary reclamation. Installation of diaphragm	temporary reclamations		works areas			
	wall on temporary reclamation as well as any bulk filling will						
	proceed behind the completed seawall. Any gaps that may						
	need to be provided for marine access will be shielded by silt						
	curtains to control sediment plume dispersion away from the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	site.						
	Demolition of temporary reclamation including the demolition						N/A
	of the diaphragm wall and dredging to the existing seabed						
	levels will also be carried out behind the temporary seawall.						
	Temporary seawall will be removed after completion of all						N/A
	excavation and dredging works for demolition of the						
	temporary reclamation.						
S11. 202	During construction of the temporary reclamation, temporary	To minimize water quality	Contractor	Temporary	Construction	• EIAO-TM	N/A
	seawall will be partially constructed to protect the nearby	impact upon the cooling		reclamation	phase	• WPCO	
	seawater intakes from further dredging activities. For	water intakes in CBTS from		works areas in			
	example, the seawalls along the southeast and northeast	temporary reclamation		CBTS			
	boundaries of PW1.1 shall be constructed first (above high	works					
	water mark) so that the seawater intake at the inner water						
	would be protected from the impacts from the remaining						
	dredging activities along the northwest boundary.						
S11. 202	Dredging will be carried out by closed grab dredger to	To minimize loss of fines	Contractor	All temporary	Construction	• EIAO-TM	٨
	minimize release of sediment and other contaminants during	and contaminants during		reclamation and	phase	• WPCO	
	dredging.	dredging in CBTS		dredging works			
				areas within			
				CBTS			
S11. 202 & Table	Silt curtains will be deployed to fully enclose the closed grab	To minimize loss of fines	Contractor	All temporary	Construction	• EIAO-TM	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
11.25	dredger and shall be extended from water surface to the seabed, as far as practicable, during any dredging operation.	and contaminants during dredging in CBTS		reclamation and dredging works areas within CBTS	phase	• WPCO	
S11. 202 & Table 11.23	Silt screens will be installed at the cooling water intakes within the CBTS during the temporary reclamation period.	To minimize water quality impact upon the cooling water intakes in CBTS from marine construction activities	Contractor	Cooling water intakes inside CBTS	Construction phase	• EIAO-TM • WPCO	۸
S11. 203 & Table 11.24	No more than two dredgers (of about 8 m³ capacity each) shall be operated for dredging within the typhoon shelter at any time for the tunnel construction works. Moreover, the combined dredging rate for all concurrent dredging works (include dredging works for concurrent projects such as WDII and CWB) to be undertaken within the CBTS shall not exceed 4,500 m³ per day (and 281 m³ per hour with a maximum working period of 16 hours per day) throughout the entire construction period.	To minimize loss of fines and contaminants during dredging in CBTS	Contractor	All dredging works areas within CBTS	Construction phase	• EIAO-TM • WPCO	^
ERR 6.7.1	Closed grab dredger shall be used for any dredging operations, except at for removal of fill material at the gap at the IMT/ME4 interface, which will be carried out by air lift or	To minimize water quality impact in CBTS from marine construction	Contractor	All marine works areas within CBTS	Construction phase	• EIAO-TM • WPCO	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	sand pump method	activities					
ERR 6.7.1	Fill materials removed by air lift or sand pumping method	To minimize water quality	Contractor	All marine works	Construction	• EIAO-TM	N/A
	shall be stored inside impermeable compartment of the barge	impact in CBTS from		areas within	phase	• WPCO	
		marine construction		CBTS			
		activities					
ERR 6.7.1	Bulk filling operation within CBTS shall be carried out by	To minimize water quality	Contractor	All marine works	Construction	• EIAO-TM	N/A
	closed grab dredger and/or by feeding the fill material into a	impact in CBTS from		areas within	phase	• WPCO	
	down pipe for placing of fill materials	marine construction		CBTS			
		activities					
EP 2.18.1a	Pipe piles shall be used to form temporary seawalls for IMT	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	٨
	construction within CBTS.	impact in CBTS from IMT		works within	phase	• WPCO	
		construction		CBTS			
EP 2.18.1b	The temporary seawalls shall not be removed before	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	٨
	completion of all dredging or filling works for IMT	impact in CBTS from IMT		works within	phase	• WPCO	
	construction, except for a small section of pipe piles adjoining	construction		CBTS			
	IMT11 to facilitate the necessary dredging works for						
	placing the IMT11.						
EP 2.18.1j	Water quality monitoring shall be conducted at cooling water	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	۸
	intake 9 for Windsor House during IMT construction within	impact in CBTS from IMT		works within	phase	• WPCO	
	CBTS. The monitoring frequency, parameters, equipment	construction		CBTS			
	and methodology shall follow those for dredging and filling as						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	stipulated in the EM&A Manual.						
S11. 204	Bulk filling along the IMT tunnel alignment for SCL shall be	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	N/A
	carried out after the bulk dredging works along the IMT	and contaminants during		areas in Victoria	phase	• WPCO	
	alignment are completed. Hence, bulk dredging and bulk	IMT construction		Harbour			
	filling along the IMT alignment shall not be undertaken at the						
	same time.						
S11. 204	Dredging for IMT and SCL2 construction shall be carried out	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	٨
	by closed grab dredger to minimize release of sediment and	and contaminants during		areas in Victoria	phase	· WPCO	
	other contaminants during dredging.	dredging in the Victoria		Harbour			
		Harbour					
S11.204	No more than one closed grab dredger shall be operated	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	٨
	outside the CBTS in the open harbor for SCL construction.	and contaminants from		areas in Victoria	phase	• WPCO	
		dredging in the Victoria		Harbour			
		Harbour					
S11. 204	Dredging for temporary reclamation outside the CBTS (at	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	N/A
	SCL2) shall not be carried out concurrently with the dredging	and contaminants from		areas in Victoria	phase	· WPCO	
	/ filling works for IMT construction.	dredging / filling in the		Harbour			
		Victoria Harbour					
S11. 205	Floating type or frame type silt curtains shall be deployed	To minimize loss of fines	Contractor	Construction of	Construction	• EIAO-TM	٨
	around the dredging operations within 200m from the Hung	and contaminants from		northern IMT	phase	· WPCO	
	Hom landfall.	dredging in the Victoria		segment in the			

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
		Harbour		near shore region within 200 m from the Hung Hom landfall			
EP 2.19e	Frame type silt curtains shall be deployed around the dredging operations for the remaining IMT segments outside 200 m from the Hung Hom landfall.	To minimize water quality impacts in Victoria Harbour from IMT construction	Contractor	Construction of northern IMT segment in Victoria Harbour outside 200m from the Hung Hom landfall	Construction phase	• EIAO-TM • WPCO	^
S11. 205 & Table 11.23	Silt screens shall be installed at the cooling water intakes for East Rail Extension, Metropolis and Hong Kong Coliseum (namely 21, 34 and 35 respectively) which are in close vicinity of the northern IMT segment.	To protect the beneficial use of water intakes along the Kowloon waterfront from dredging / filling activities	Contractor	Construction of northern IMT segment in the near shore region within 200 m from the Hung Hom landfall	Construction phase	• EIAO-TM • WPCO	^
S11.207	If underwater blasting is required for SCL construction, the following precautionary / mitigation measures shall be adopted:	To protect the water quality in Victoria Harbour from any possible underwater	Contractor	Marine works areas in Victoria Harbour	Construction phase	• EIAO-TM • WPCO	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	 Charge shall be placed in cores within the rock in order that there will be no blast directly into the water. In terms of the construction sequence, sediment dredging (within the planned IMT works area) shall be conducted prior to any underwater blasting. 	blasting					
Table 11.23	Silt screens shall be installed at the WSD Flushing Water Intakes at Kowloon Station, Tai Wan, Quarry Bay and Wan Chai (namely Intakes 14, WSD9, WSD17 and A respectively) during any dredging / filling works outside the CBTS for temporary reclamation at SCL2 or for IMT construction	To protect the beneficial use of flushing water intakes in Victoria Harbour from dredging / filling activities	Contractor	Flushing water intake points in Victoria Harbour	Construction phase	• EIAO-TM • WPCO	N/A
S11.210 - S11.211 & Table 11.24 ERR S6.7.1	If the marine works for SCL are to be carried out concurrently with other dredging / filling activities in the Victoria Harbour, the production rates of any dredging / filling work to be undertaken outside the CBTS for SCL construction in the open harbour (including temporary reclamation at SCL2 and IMT construction, except for the area within 60m from the southern boundary of the temporary reclamation at Hung Hom Landfall) shall not exceed 2,500 m³ per day at any time throughout the entire construction period. The hourly production rate for dredging or bulk filling within the open Victoria Harbour (outside the breakwater of CBTS, except for	To minimize loss of fines and contaminants from dredging / filling in the Victoria Harbour	Contractor	Marine works areas in Victoria Harbour	Construction phase	• EIAO-TM • WPCO	^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	the area within 60m from the southern boundary of the						
	temporary reclamation at Hung Hom Landfall) shall not						
	exceed 156 m³ per hour (if there are other concurrent marine						
	works in Victoria Harbour) and the maximum working hour for						
	the dredging / bulk filling works shall be 16 hours per day. Silt						
	screen shall be deployed at the Kowloon Station Intake to						
	minimize the water quality impact. If the marine works for						
	SCL are to be carried out with no other concurrent dredging /						
	filling activities in the Victoria Harbour, the production rates of						
	any dredging / filling work to be undertaken outside the CBTS						
	for SCL construction in the open harbour (including						
	temporary reclamation at SCL2 and IMT construction except						
	for the area within 60m from the southern boundary of the						
	temporary reclamation at Hung Hom Landfall) shall not						
	exceed 4,500 m³ per day at any time throughout the entire						
	construction period. The hourly production rate for dredging						
	or bulk filling within the open Victoria Harbour (outside the						
	breakwater of CBTS except for the area within 60m from the						
	southern boundary of the temporary reclamation at Hung						
	Hom Landfall) shall not exceed 281 m³ per hour (if there is no						
	other concurrent marine works in Victoria Harbour) and the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	maximum working hour for the dredging / bulk filling works						
	shall be 16 hours per day. Silt screen shall be deployed at the						
	Kowloon Station Intake to minimize the water quality impact.						
	Only one chiseling machine or hydraulic breaker shall be						
	adopted for rock breaking.						
	For any dredging / filling work for IMT construction within 60m						
	from the southern boundary of the temporary reclamation at						
	Hung Hom Landfall:						
	The daily production rate shall not exceed 1,500m³ per						٨
	day						
	the hourly production rate shall not exceed 93m³						٨
S11.215	The following good site practices shall be undertaken during	To minimize loss of	Contractor	Marine works	Construction	• EIAO-TM	
	filling and dredging:	fines and contaminants		areas	phase	• WPCO	
	mechanical grabs, if used, shall be designed and	from dredging / filling					٨
	maintained to avoid spillage and sealed tightly while						
	being lifted;						
	all vessels shall be sized so that adequate clearance is						٨
	maintained between vessels and the seabed in all tide						
	conditions, to ensure that undue turbidity is not						
	generated by turbulence from vessel movement or						
	propeller wash;						

EIA Ref.		Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	•	all hopper barges and dredgers shall be fitted with tight						٨
		fitting seals to their bottom openings to prevent						
		leakage of material;						
	•	construction activities shall not cause foam, oil,						#
		grease, scum, litter or other objectionable matter to be						
		present on the water within the site or dumping						
		grounds;						
	•	loading of barges and hoppers shall be controlled to						٨
		prevent splashing of dredged material into the						
		surrounding water. Barges or hoppers shall not be						
		filled to a level that will cause the overflow of materials						
		or polluted water during loading or transportation;						
	•	before commencement of the temporary reclamation						٨
		works, the holder of the Environmental Permit shall						
		submit plans showing the phased construction of the						
		reclamation, design and operation of the silt curtain.						
S11.216	The	following mitigation measures are proposed to minimize	minimize release of	Contractor	Construction	Construction	• EIAO-TM	
	the p	potential water quality impacts from the construction	construction wastes		works at or close	phase	• WPCO	
	work	s at or close to the seafront:	from construction		to the seafront			
	• Te	emporary storage of construction materials (e.g.	works at or close to the					٨
	equi	pment, filling materials, chemicals and fuel) and	seafront					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	temporary stockpile of construction and demolition materials						
	shall be located well away from the seawater front and storm						
	drainage during carrying out of the works.						
	Stockpiling of construction and demolition materials and						٨
	dusty materials shall be covered and located away from the						
	seawater front and storm drainage.						
	Construction debris and spoil shall be covered up and/or						٨
	disposed of as soon as possible to avoid being washed into						
	the nearby receiving waters.						
S11.217	The following mitigation measures are proposed to minimize	To minimize release of	Contractor	Marine piling	Construction	• EIAO-TM	
	the potential water quality impacts from any marine piling	sediment and pollutants		works areas	phase	• WPCO	
	works:	from marine piling activities					
	The potential release of sediment or excavated materials						٨
	could be controlled through the installation of silt curtains						
	surrounding the working area as necessary.						
	Spoil shall be collected by sealed hopper barges for						٨
	proper disposal.						
S11.218	Silt screens are recommended to be deployed at the	To avoid the pollutant and	Contractor	Proposed silt	Construction	• EIAO-TM	٨
	seawater intakes during the construction works period.	refuse entrapment		screens at water	phase	• WPCO	
	Regular maintenance of the silt screens and refuse collection	problems at the silt screens		intakes			
	shall be performed at the silt screens at regular intervals on a	to be installed at the water					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	daily basis. The Contractor shall be responsible for keeping	intakes.					
	the water behind the silt screen free from floating rubbish and						
	debris during the impact monitoring period.						
S11.219	It is recommended that collection and removal of floating	To minimize water	Contractor	Marine works	Construction	• EIAO-TM	*
	refuse shall be performed within the marine construction	quality impacts from		area	phase	• WPCO	
	areas at regular intervals on a daily basis. The Contractor	illegal dumping and				·WDO	
	shall be responsible for keeping the water within the site	littering from marine					
	boundary and the neighbouring water free from rubbish	vessels and runoff from					
	during the dredging works.	the coastal area					
S11.220 &	Any wastewater including washdown waters and any	To minimize water	Contractor	Shek O Casting	Construction	• EIAO-TM	٨
221	concrete curing waters generated from the casting basin shall	quality impacts from		Basin	phase	• WPCO	
	be drained to the wastewater treatment unit. Appropriate	the washdown, flooding					
	treatment process such as sedimentation and oil removal	and draining operation					
	shall be employed for the wastewater treatment units so that	at Shek O Casting					
	any discharge from the casting basin will comply with	Basin					
	standards stipulated in the TM-DSS. Recovered oil from any						
	oil interceptor shall be properly contained, labeled and stored						
	on site prior to collection by licensed collectors for disposal.						
	During the flooding of the basin with seawater (accomplished						
	by pumps) no escape of water could occur as the cofferdam						
	will still be in place. Prior to opening a channel through the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	cofferdam, water inside the basin will be skimmed of floating debris. A period of settling of 24 hours before opening the basin to the sea would allow much of the suspended material to settle out. The channel through the cofferdam will only be opened with the approval of the Site Engineer to the effect that all reasonable steps had been taken to remove contaminants.						
S11.222 to 11.245	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable.	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction phase	• EIAO-TM • WPCO • TMDSS, • WDO, • ProPECC PN 1/94	^
S11.246 & 11.247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal	minimize water quality impacts due to sewage generated from construction workforce	Contractor	All works areas	Construction phase	• EIAO-TM • WPCO • TM-DSS • WDO	^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	and maintenance practices.						
	Notices shall be posted at conspicuous locations to remind						٨
	the workers not to discharge any sewage or wastewater into						
	the nearby environment.						
S11.248	In case seepage of uncontaminated groundwater occurs,	To minimize impact from	Contractor	Works areas	Construction	• EIAO-TM	٨
	groundwater shall be pumped out from the works areas and	discharge of			phase	·WPCO	
	discharged into the storm system via silt removal facilities.	uncontaminated				• TM-DSS	
	Uncontaminated groundwater from dewatering process shall	groundwater				• WDO	
	also be discharged into the storm system via silt traps.						
S11.252	The following good site practices shall be adopted for the	To minimize water quality	Contractor	Barging Points	Construction	• EIAO-TM	
	proposed barging points:	impacts generated from the			phase	• WPCO	
	- all vessels shall be sized so that adequate clearance is	barging points.					٨
	between vessels and the seabed in all tide conditions, to						
	ensure that undue turbidity is not generated by turbulence						
	from vessel movement or propeller wash						
	- all hopper barges shall be fitted with tight fitting seals to						٨
	their bottom openings to prevent leakage of material						
	- construction activities shall not cause foam, oil, grease,						٨
	scum, litter or other objectionable matter to be present on the						
	water within the site						
	- loading of barges and hoppers shall be controlled to						۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or						
	transportation						
S11.253	There is a need to apply to EPD for a discharge licence for	To minimize water quality	Contractor	All construction	Construction	• EIAO-TM	*
	discharge of effluent from the construction site under the	impact from effluent		works areas	phase	• WPCO	
	WPCO. The discharge quality must meet the requirements	discharges from				• TM-DSS	
	specified in the discharge licence. All the runoff and	construction sites					
	wastewater generated from the works areas shall be treated						
	so that it satisfies all the standards listed in the TM-DSS.						
	Minimum distances of 100 m shall be maintained between						
	the discharge points of construction site effluent and the						
	existing seawater intakes. The beneficial uses of the treated						
	effluent for other on-site activities such as dust suppression,						
	wheel washing and general cleaning etc., can minimize water						
	consumption and reduce the effluent discharge volume. If						
	monitoring of the treated effluent quality from the works areas						
	is required during the construction phase of the Project, the						
	monitoring shall be carried out in accordance with the WPCO						
	license which is under the ambit of Regional Office (RO) of						
	EPD.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
S11.254	Contractor must register as a chemical waste producer if	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	٨
	chemical wastes would be produced from the construction	impact from accidental		works areas	phase	• WPCO	
	activities. The Waste Disposal Ordinance (Cap 354) and its	spillage of chemical				• TM-DSS	
	subsidiary regulations in particular the Waste Disposal					• WDO	
	(Chemical Waste) (General) Regulation shall be observed						
	and complied with for control of chemical wastes.						
S11.255	Any service shop and maintenance facilities shall be located	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	٨
	on hard standings within a bunded area, and sumps and oil	impact from accidental		works areas	phase	• WPCO	
	interceptors shall be provided. Maintenance of vehicles and	spillage of chemical				• TM-DSS	
	equipment involving activities with potential for leakage and					• WDO	
	spillage shall only be undertaken within the areas						
	appropriately equipped to control these discharges.						
S11.256	Disposal of chemical wastes shall be carried out in	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	
	compliance with the Waste Disposal Ordinance. The "Code of	impact from accidental		works areas	phase	• WPCO	
	Practice on the Packaging, Labelling and Storage of	spillage of chemical				• TM-DSS	
	Chemical Wastes" published under the Waste Disposal					• WDO	
	Ordinance details the requirements to deal with chemical						
	wastes. General requirements are given as follows:						
	Suitable containers shall be used to hold the chemical						٨
	wastes to avoid leakage or spillage during storage, handling						
	and transport.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	Chemical waste containers shall be suitably labelled, to						۸
	notify and warn the personnel who are handling the wastes,						
	to avoid accidents.						
	Storage area shall be selected at a safe location on site and						٨
	adequate space shall be allocated to the storage area.						
ERR S 8.5.1	Floating type silt curtains would be installed around the area	minimize water quality	Contractor	Shek O Casting	Construction	• WPCO	٨
	of construction and removal of earth bund during the	impact at Shek O Casting		Basin	phase		
	respective works.	Basin					
Waste Manage	ment (Construction Waste)						
S12.75	Good Site Practices and Waste Reduction Measures	reduce waste management	Contractor	All works sites	Construction	Waste Disposal	
	- Prepare a Waste Management Plan	impacts			phase	Ordinance (Cap.	۸
	(WMP) approved by the Engineer/Supervising Officer of the					354)	
	Project based on current practices on construction sites;					• Land	
	- Training of site personnel in, site cleanliness, proper waste					(Miscellaneous	٨
	management and chemical handling procedures;					Provisions)	
	- Provision of sufficient waste disposal points and regular					Ordinance (Cap.	٨
	collection of waste;					28)	
	- Appropriate measures to minimize windblown litter and					• DEVB TCW	۸
	dust during transportation of waste by either covering trucks					No. 6/2010	
	or by transporting wastes in enclosed containers;						
	- Regular cleaning and maintenance programme for						*

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	drainage systems, sumps and oil interceptors; and						
	- Separation of chemical wastes for special handling and						٨
	appropriate treatment.						
S12.76	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	Waste Disposal	
	(Con't)	reduction			phase	Ordinance (Cap.	
	- Sorting of demolition debris and excavated materials from					354)	٨
	demolition works to recover reusable/ recyclable portions (i.e.					• Land	
	soil, broken concrete, metal etc.);					(Miscellaneous	
	- Segregation and storage of different types of waste in					Provisions)	٨
	different containers, skips or stockpiles to enhance reuse or					Ordinance (Cap.	
	recycling of materials and their proper disposal;					28)	
	- Encourage collection of aluminum cans by providing						٨
	separate labeled bins to enable this waste to be segregated						
	from other general refuse generated by the workforce;						
	- Proper storage and site practices to minimize the potential						٨
	for damage or contamination of construction materials;						
	- Plan and stock construction materials carefully to						٨
	minimize amount of waste generated and avoid unnecessary						
	generation of waste; and						
	- Training shall be provided to workers about the concepts						٨
	of site cleanliness and appropriate waste management						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	procedures, including waste reduction, reuse and recycle.						
S12.77	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	
	(Con't)	reduction			phase	No. 19/2005	
	- The Contractor shall prepare and implement a WMP as						٨
	part of the EMP in accordance with ETWBTCW No. 19/2005						
	which describes the arrangements for avoidance, reuse,						
	recovery, recycling, storage, collection, treatment and						
	disposal of different categories of waste to be generated from						
	the construction activities. Such a management plan shall						
	incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and						
	recyclable materials. The EMP shall be submitted to the						
	Engineer for approval. The Contractor shall implement the						
	waste management practices in the EMP throughout the						
	construction stage of the Project. The EMP shall be reviewed						
	regularly and updated by the Contractor, preferably in a						
	monthly basis.						
S12.78	C&D materials would be reused in other local concurrent	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	٨
	projects as far as possible. If all reuse outlets are exhausted	reduction			phase	No. 19/2005	
	during the construction phase, the C&D materials would be						
	disposed of at Taishan, China as a last resort.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
S12.79	Storage, Collection and Transportation of Waste	minimize potential	Contractor	All works sites	Construction	-	
	Should any temporary storage or stockpiling of waste is	adverse environmental			phase		
	required,	impacts arising from waste					
	recommendations to minimize the impacts include:	storage					
	- Waste, such as soil, shall be handled and stored well to						٨
	ensure secure containment, thus minimizing the potential of						
	pollution;						
	- Maintain and clean storage areas routinely;						٨
	- Stockpiling area shall be provided with covers and water						٨
	spraying system to prevent materials from wind-blown or						
	being washed away; and						
	- Different locations shall be designated to stockpile each						٨
	material to enhance reuse						
S12.80	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	-	
	Waste haulier with appropriate permits shall be employed by	environmental impacts			phase		N/A
	the Contractor for the collection and transportation of waste	arising from waste					
	from works areas to respective disposal outlets. The following	collection and disposal					
	suggestions shall be enforced to minimize the potential						
	adverse impacts:						
	- Remove waste in timely manner						۸
	- Waste collectors shall only collect wastes prescribed by						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	their permits						
	- Impacts during transportation, such as dust and odour,						N/A
	shall be mitigated by the use of covered trucks or in enclosed						
	containers						
	- Obtain relevant waste disposal permits from the						٨
	appropriate authorities, in accordance with the Waste						
	Disposal Ordinance (Cap. 354), Waste Disposal (Charges for						
	Disposal of Construction Waste) Regulation (Cap. 345) and						
	the Land (Miscellaneous Provisions) Ordinance (Cap. 28)						
	- Waste shall be disposed of at licensed waste disposal						٨
	facilities						
	- Maintain records of quantities of waste generated,						٨
	recycled and disposed						
S12.81	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	• DEVB TCW	
	- Implementation of trip ticket system with reference to	environmental impacts			phase	No. 6/2010	٨
	DevB TC(W) No.6/2010 to monitor disposal of waste and to	arising from waste					
	control fly-tipping at PFRFs or landfills. A recording system	collection and disposal					
	for the amount of waste generated, recycled and disposed						
	(including disposal sites) shall be proposed						
S12.83 – 12.86	Sorting of C&D Materials	minimize potential adverse	Contractor	All works sites	Construction	• DEVB TCW	
	- Sorting to be performed to recover the inert materials,	environmental impacts			phase	No. 6/2010	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	reusable and recyclable materials before disposal off-site.	during the handling,				• ETWB TCW No.	
	- Specific areas shall be provided by the Contractors for	transportation and disposal				33/2002	٨
	sorting and to provide temporary storage areas for the sorted	of C&D materials				• ETWB TCW	
	materials.					No. 19/2005	
	- The C&D materials shall at least be segregated into inert						۸
	and non-inert materials, in which the inert portion could be						
	reused and recycled as far as practicable before delivery to						
	PFRFs as mentioned for beneficial use in other projects.						
	While opportunities for reusing the non-inert portion shall be						
	investigated before disposal of at designated landfills.						
	- Possibility of reusing the spoil in the Project will be						٨
	continuously investigated in the detailed design and						
	construction stages, it includes backfilling to cut and cover						
	construction works for the Hung Hom south and north						
	approach						
S12.88	Sediments	To ensure the sediment to	Contractor	All works areas	Construction	ETWB TC(W) No.	
	The basic requirements and procedures for excavated /	be disposed of in an		with sediments	Phase	34/2002 &	٨
	dredged sediment disposal specified under ETWB TC(W)	authorized and least		concern		Dumping at Sea	
	No. 34/2002 shall be followed. MFC is managing the disposal	impacted way				Ordinance	
	facilities in Hong Kong for the dredged and excavated						
	sediment, while EPD is the authorityof issuing marine						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	dumping permit under the Dumping at Sea Ordinance						
S12.89	Sediments	To determine the best	Contractor	All works areas	Construction	ETWB TC(W) No.	
	The contractor for the excavation / dredging works shall apply	handling and disposal		with sediments	Phase	34/2002 &	٨
	for the site allocations of marine sediment disposal based on	option of the sediments		concern		Dumping at Sea	
	the prior agreement with MFC/CEDD. A request for					Ordinance	
	reservation of sediment disposal space have been submitted						
	to MFC for onward discussions of disposal approach and						
	feasible disposal sites and the letter is attached in Appendix						
	12.6. The Project proponent shall also be responsible for the						
	application of all necessary permits from relevant authorities,						
	including the dumping permit as required under DASO from						
	EPD, for the disposal of dredged and excavated sediment						
	prior to the commencement of the excavation works.						
S12.91-12.94	Sediments	To ensure handling of	Contractor	Work Sites,	Construction	ETWB TC(W) No.	
	- Stockpiling of contaminated sediments shall be avoided	sediments are in		Sediment	Phase	34/2002 &	٨
	as far as possible. If temporary stockpiling of	accordance to statutory		disposal sites		Dumping at Sea	
	contaminated sediments is necessary, the excavated	requirements				Ordinance	
	sediment shall be covered by tarpaulin and the area shall						
	be placed within earth bunds or sand bags to prevent						
	leachate from entering the ground, nearby drains and/or						
	surrounding water bodies. The stockpiling areas shall be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	completely paved or covered by linings in order to avoid						
	contamination to underlying soil or groundwater. Separate						
	and clearly defined areas shall be provided for stockpiling						
	of contaminated and uncontaminated materials. Leachate,						
	if any, shall be collected and discharged according to the						
	Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions						٨
	during excavation and transportation of the sediment, the						
	excavated sediments shall be wetted during excavation /						
	material handling and shall be properly covered when						
	placed on trucks or barges. Loading of the excavated						
	sediment to the barge shall be controlled to avoid						
	splashing and overflowing of the sediment slurry to the						
	surrounding water.						
	- The barge transporting the sediments to the designated						٨
	disposal sites shall be equipped with tight fitting seals to						
	prevent leakage and shall not be filled to a level that						
	would cause overflow of materials or laden water during						
	loading or transportation. In addition, monitoring of the						
	barge loading shall be conducted to ensure that loss of						
	material does not take place during transportation.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Transport barges or vessels shall be equipped with automatic selfmonitoring devices as specified by the DEP. - In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and						Λ
S12.95	cleaning facilities shall also be provided on site. Sediments A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea Ordinance	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	rupture of the containers and sediment loss due to impact of						
	thecontainer on the seabed have been addressed.						
S12.97	Containers for Storage of Chemical Waste	register with EPD	Contractor	All works sites	Construction	Code of	
	The Contractor shall register with EPD as a chemical waste	as a Chemical waste			phase	Practice on the	
	producer and to follow the guidelines stated in the Code of	producer and store				Packaging,	
	Practice on the Packaging, Labelling and Storage of	chemical waste in				Labelling and	
	Chemical Wastes. Containers used for storage of chemical	appropriate containers				Storage of	
	waste shall:					Chemical Wastes	
	- Be compatible with the chemical wastes being stored,						٨
	maintained in good condition and securely sealed;						
	- Have a capacity of less than 450 litters unless the						٨
	specifications have been approved by EPD; and						
	- Display a label in English and Chinese in accordance with						٨
	instructions prescribed in Schedule 2 of the Waste Disposal						
	(Chemical Waste) (General) Regulation						
S12.98	Chemical Waste Storage Area	prepare appropriate	Contractor	All works sites	Construction	Code of	
	- Be clearly labeled to indicate corresponding chemical	storage areas for chemical			phase	Practice on the	٨
	characteristics of the chemical waste and used for storage of	waste at works areas				Packaging,	
	chemical waste only;					Labelling and	
	- Be enclosed on at least 3 sides;					Storage of	٨
	- Have an impermeable floor and bunding, of capacity to					Chemical Wastes	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	accommodate 110% of the volume of the largest container or						
	20% by volume of the chemical waste stored in that area,						
	whichever is the greatest;						
	- Have adequate ventilation;						٨
	- Be covered to prevent rainfall from entering; and						٨
	- Be properly arranged so that incompatible materials are						٨
	adequately separated.						
S12.99	Chemical Waste	clearly label the chemical	Contractor	All works sites	Construction	Code of	
	- Lubricants, waste oils and other chemical wastes would	waste at works areas			phase	Practice on the	*
	be generated during the maintenance of vehicles and					Packaging,	
	mechanical equipments. Used lubricants shall be collected					Labelling and	
	and stored in individual containers which are fully labelled in					Storage of	
	English and Chinese and stored in a designated secure					Chemical Wastes	
	place.						
S12.100	Collection and Disposal of Chemical Waste	To monitor the generation,	Contractor	All works sites	Construction	Waste Disposal	
	A trip-ticket system shall be operated in accordance with the	reuse and disposal of			phase	(Chemical Waste)	٨
	Waste Disposal (Chemical Waste) (General) Regulation to	chemical waste				(General)	
	monitor all movements of chemical waste. The Contractor					Regulation	
	shall employ a licensed collector to transport and dispose of						
	the chemical wastes, to either the approved CWTC at Tsing						
	Yi, or another licensed facility, in accordance with the Waste						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Disposal (Chemical Waste) (General) Regulation						
S12.101	General Refuse	properly store and	Contractor	All works sites	Construction	-	
	General refuse shall be stored in enclosed bins or	separate from other C&D			phase		*
	compaction units separate from C&D materials and chemical	materials for					
	waste. A reputable waste collector shall be employed by the	subsequent collection and					
	contractor to remove general refuse from the site, separately	disposal					
	from C&D materials and chemical wastes. Preferably, an						
	enclosed and covered area shall be provided to reduce the						
	occurrence of wind-blown light material.						
S12.102	General Refuse (Con't)	facilitate recycling of	Contractor	All works sites	Construction	-	
	The recyclable component of general refuse, such as	recyclable portions of			phase		٨
	aluminum cans, paper and cleansed plastic containers shall	refuse					
	be separated from other waste. Provision and collection of						
	recycling bins for different types of recyclable waste shall be						
	set up by the Contractor. The Contractor shall also be						
	responsible for arranging recycling companies to collect						
	these materials.						
S12.103	General Refuse (Con't)	raise workers' awareness	Contractor	All works sites	Construction	-	
	The Contractor shall carry out an education programme for	on recycling issue			phase		٨
	workers in avoiding, reducing, reusing and recycling of						
	materials generation. Posters and leaflets advising on the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	use of the bins shall also be provided in the sites as						
	reminders						

Remarks: ^

- Compliance of mitigation measure
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- N/A Not Applicable

APPENDIX K
WASTE GENERATION IN THE REPORTING
MONTH

Monthly Summary Waste Flow Table for <u>2017</u> (year)

Contract No: SCL1121
Date Reported: July 2017

Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of Non-inert C&D V						Vastes Genera	nted Monthly								
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete (See Note 3)	Reused in	Reused in other Projects		Imported Fill from 1111	Imported Fill from 1112	Imported Fill from 1114	Imported Fill from 1123	Imported Fill from 1128	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m³)	(in '000tonne)	(in '000m³)	(in '000m³)	(in '000tonne)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in'000kg)	(in '000tonne)
Jan	10.211	0.000	0.000	8.265	0.000	0.963	2.191	0.004	0.000	0.000	0.000	0.346	0.000	0.000	0.190
Feb	1.046	0.000	0.000	1.325	0.000	0.766	1.036	0.000	0.000	0.000	0.000	0.210	0.000	0.000	0.111
Mar	0.207	0.000	0.000	1.764	0.000	0.664	0.893	0.000	0.000	0.000	0.000	0.418	0.000	0.000	0.264
Apr	0.322	0.308	0.000	1.563	0.308	0.716	0.832	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.120
May	0.764	0.693	0.000	1.669	0.693	0.402	1.231	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0672
June	2.582	2.582	0.000	0.975	2.582	0.278	0.697	0.000	0.000	0.000	0.000	0.000	0.000	0.200	0.082
July	0.028	0.016	0.000	2.033	0.016	0.296	0.985	0.000	0.000	0.735	0.000	0.000	0.000	0.000	0.077
Aug															
Sept															
Oct															
Nov															
Dec															
Total	15.16	3.599	0	17.594	3.599	4.085	7.865	0.004	0	0.735	0	0.974	0	0.2	0.911

Notes:

- (1) The performance targets are given below:
 - All excavated materials to be sorted for recovering the inert portion of C&D materials, e.g. hard rocks, soil and broken concrete, for reuse on the Site or disposal to designated outlets;
 - All metallic waste to be recovered for collection by recycling contractors;
 - All cardboard and paper packaging (for plant, equipment and materials) to be recovered, properly stockpiled in dry and covered condition to prevent cross contamination;
 - All chemical wastes to be collected and properly disposed of by specialist contractors; and
 - All demolition debris to be stored to recover broken concrete, reinforcement bars, mechanical and electrical fittings, hardware as well as other fitting / materials that have established recycling outlets.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (3) Broken concrete for recycling into aggregates.
- (4) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (5) All the C&D material come from SCL1111, 1112, 1114, 1121, 1123, 1128 will be reussed in other project

Monthly Summary of Marine Sediment Flow for <u>2017</u> (year)

Contract No: SCL1121 Date Reported: July 2017

							Volume o	of Sediment	s Generate	ed Monthl	y Bulk Volu	me)					
Month	Type 1 – Open Sea Disposal				Type 1	– Open Se	a Disposal	(Dedicated	Site)	Type 2 – Confined Marine Disposal				Type 3 – Special Treatment Disposal			
	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1121	Disposed
Unit		(iı	1 '000m ³)				(in '000m ³)				((in '000m ³)			(in '00	00m ³)
Jan	0.000	0.000	7.472	0.000	7.472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	29.228	0.000	29.228	2.495	2.495
Feb	0.000	0.000	1.150	0.000	1.150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	16.739	0.000	16.739	0.000	0.000
Mar	0.000	0.000	6.679	0.000	6.679	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.726	0.000	5.726	0.000	0.000
Apr	0.000	0.000	5.416	0.000	5.416	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.071	0.000	2.071	0.000	0.000
May	0.000	0.000	6.640	0.000	6.640	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.923	0.000	3.923	0.000	0.000
June	0.000	0.000	14.182	0.000	14.182	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.116	0.000	1.116	0.000	0.000
Sub- Total	0.000	0.000	41.539	0.000	41.539	0.000	0.000	0.000	0.000	0.000	0.000	0.000	58.803	0.000	58.803	2.495	2.495
July	0.000	0.000	9.473	0.000	9.473	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.950	0.000	8.950	0.000	0.000
Aug																	
Sept																	
Oct																	
Nov																	
Dec																	
Total	0.000	0.000	51.012	0.000	51.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	67.753	0.000	67.753	2.495	2.495

APPENDIX L CUMULATIVE LOG FOR COMPLAINT LOGS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log

Log Ref.	Date/Location	Complainant/ Date of Contact	Details of Complaint	Investigation/ Mitigation Action	File Closed

Cumulative Log for Notifications of Summons

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
ESS41852/2016	4 May 2016/ CMP Vd at East Sha Chau	Contrary to: Sections 8 (1) (a) and 25 (1) (b) Dumping at Sea Ordinance	The final hearing is scheduled to 4 th August and tentatively fixed the date for verdict hearing on 18 th August 2017.	0	1

Cumulative Log for Successful Prosecutions

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project
-------------	---------------	---------	--------	--	--

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecution

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
March 2015	0	0	0
April 2015	0	0	0
May 2015	0	0	0
June 2015	0	0	0
July 2015	0	0	0
August 2015	1	0	0
September 2015	1	0	0
October 2015	1	0	0
November 2015	1	0	0
December 2015	0	0	0
January 2016	0	0	0
February 2016	0	0	0
March 2016	1	0	0
April 2016	0	0	0
May 2016	1	0	0
June 2016	1	0	0
July 2016	1	0	0
August 2016	2	0	0
September 2016	0	0	0
October 2016	0	0	0
November 2016	1	1	0
December 2016	0	0	0
January 2017	0	0	0
February 2017	0	0	0
March 2017	0	0	0
April 2017	1	0	0
May 2017	0	0	0
June 2017	0	0	0
July 2017	0	0	0
Total	12	1	0

Appendix C

Monthly EM&A Report for July 2017 – SCL Works Contract 1123 Exhibition Station and Western Approach Tunnel

Leighton - China State J.V.

Shatin to Central Link -**Hung Hom to Admiralty Section**

Works Contract 1123 -**Exhibition Station and Western Approach Tunnel**

Monthly EM&A Report for **July 2017**

[August 2017]

	Name	Signature
Prepared & Checked:	Ray Chow	A)P
Reviewed, Approved & Certified:	Y W Fung (Contractor's Environmental Team Leader)	n/

Version: 0 8 August 2017 Date:

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Leighton - China State J.V. and is given for its sole benefit in relation to and pursuant to SCL1123 and may not be disclosed to, quoted to or relied upon by any person other than Leighton – China State J.V. without our prior written consent. No person (other than Leighton – China State J.V. into whose possession a copy of this report comes may rely on this plan without our express written consent and Leighton – China State J.V. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong

Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

		Page
EXE	CUTIVE SUMMARY	1
1	INTRODUCTION	4
1.1 1.2	Purpose of the ReportReport Structure	
2	PROJECT INFORMATION	5
2.1 2.2 2.3 2.4 2.5	Background	5 6 6
3	ENVIRONMENTAL MONITORING REQUIREMENTS	10
3.1 3.2 3.3 3.4	Construction Dust Monitoring	12 13
4	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	14
5	MONITORING RESULTS	15
5.1 5.2 5.3 5.4	Construction Dust MonitoringRegular Construction Noise Monitoring	15 16
6	ENVIRONMENTAL SITE INSPECTION AND AUDIT	17
7	ENVIRONMENTAL NON-CONFORMANCE	18
7.1 7.2 7.3 7.4	Summary of Monitoring Exceedances Summary of Environmental Non-Compliance Summary of Environmental Complaints Summary of Environmental Summon and Successful Prosecutions	18 18
8	FUTURE KEY ISSUES	20
8.1 8.2 8.3	Construction Programme for the Next Three Month Key Issues for the Coming Month Monitoring Schedule for the Next Three Month	20
9	CONCLUSIONS AND RECOMMENDATIONS	21
9.1 9.2	ConclusionsRecommendations	

List of Tables

Table 2.1	Contact Information of Key Personnel
Table 2.2	Status of Environmental Licenses, Notifications and Permits
Table 3.1	Air Quality Monitoring Equipment
Table 3.2	Locations of Construction Dust Monitoring Station
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Noise Monitoring Equipment for Regular Noise Monitoring
Table 3.5	Noise Monitoring Station during Construction Phase
Table 4.1	Status of Required Submission under Environmental Permit
Table 5.1	Summary of 24-hour TSP Monitoring Result in the Reporting Period
Table 5.2	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 6.1	Observations and Recommendations of Site Audit

List of Figures

Figure 1.1	Site Layout Plan of SCL1123
Figure 1.2	Site Layout Plan of Kai Tak Baring Point
Figure 3.1	Air Quality and Noise Monitoring Locations

List of Appendices

Appendix A	Construction Programme		
Appendix B	Project Organisation Structure		
Appendix C	Implementation Schedule of Environmental Mitigation Measures		
Appendix D	Summary of Action and Limit Levels		
Appendix E	Calibration Certificates of Equipment		
Appendix F	EM&A Monitoring Schedules		
Appendix G	Air Quality Monitoring Results and their Graphical Presentations		
Appendix H	Noise Monitoring Results and their Graphical Presentations		
Appendix I	Event and Action Plan		
Appendix J	Cumulative Statistics on Complaints, Notification of Summons and Successful		
	Prosecutions		
Appendix K	Monthly Summary Waste Flow Table		

AECOM Asia Co. Ltd. ii August 2017

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1123 – Exhibition Station and Western Approach Tunnel (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL).

The Project comprises the construction of an underground station (Exhibition Station) and 300 m of cut and cover tunnel (Western Approach Tunnel) along Convention Avenue.

The EM&A programme commenced on 1 June 2015. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 1 and 31 July 2017. As informed by the Contractor, major activities in the reporting period were:

Location	Site Activities
Exhibition Station (Zone 1 - PTI Area)	 Pipe pile wall Excavation and Lateral Support Prebored socket H-Piles (PBSH) and King Post
Harbour Road Sport Cenrtre (Zone 2)	 Demolition of Harbour Road Sport Centre Prebored socket H-Piles (PBSH) and King Post
Exhibition Station (Zone 3 - Swimming Pool Area) (including W7a, W7b, W4, W5 and partial W6)	Excavation and Lateral Support
Exhibition Station (Zone 4 - Tunnel at Tonnochy Road)	Excavation and Lateral Support
Fleming Road Junction Area E	 Cofferdam Pipe pile wall Utilities Diversion and Protection
Western Vent Shaft and Western Approach Tunnel (WAT) Area C	 Diaphragm Wall Works Road Works Excavation and Lateral Support
WAT Area B	 Excavation and Lateral Support Utilities Diversion and Protection
WAT Area A	Excavation and Lateral Support
Kai Tak Barging Point#	Storage and barging of fill materials A will be for storage and barging of fill materials are the whole again.

[#] The Kai Tak Barging Point will be for storage and barging of fill materials over the whole contract period.

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action / Limit Level of air quality was recorded in the reporting month.

Breaches of Action and Limit Levels for Noise

Regular Noise Monitoring

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

AECOM Asia Co. Ltd. 1 August 2017

Complaint, Notification of Summons and Successful Prosecution

No environmental related complaint, notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

AECOM Asia Co. Ltd. 2 August 2017

Future Key Issues

Key issues to be considered in the next three month included:

Location	Site Activities
Exhibition Station (Zone 1 - PTI Area) Harbour Road Sport Cenrtre (Zone 2)	 Prebored socket H-Piles (PBSH) and King Post Pipepile wall Excavation and Lateral Support Permanent Reprovisioning Wan Chai Ferry Pier Footbridge Demolition Harbour Road Sport Centre Prebored socket H-Piles (PBSH) and King Post
Exhibition Station (Zone 3 - Swimming Pool Area) (including W7a, W7b, W4, W5 and partial W6)	 Pipepile wall Excavation and Lateral Support
Exhibition Station (Zone 4 - Tunnel at Tonnochy Road)	Pipe Pile WallExcavation and Lateral SupportRoad Works
Fleming Road Junction Area E	 Utilities Diversion and Protection Fleming Road Culvert Diversion Cofferdam Pipe pile wall
Western Vent Shaft and WAT Area C	 Diaphragm Wall Works Excavation and Lateral Support Road Works
WAT Area B	 Utilities Diversion / Protection Excavation and Lateral Support
WAT Area A	Excavation and Lateral Support
Kai Tak Barging Point#	Storage and barging of fill materials

^{*} The Kai Tak Barging Point will be for storage and barging of fill materials over the whole contract period.

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

AECOM Asia Co. Ltd. 3 August 2017

1 INTRODUCTION

Leighton – China State Joint Venture (JV) was commissioned by MTR as the Civil Contractor for Works Contract 1123. AECOM Asia Company Limited (AECOM) was appointed by JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the twenty-sixth monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period between 1 and 31 July 2017.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is organised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

AECOM Asia Co. Ltd. 4 August 2017

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-436/2012/E) was issued by the Director of Environmental Protection (DEP) on 23 November 2016.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and Works Contract 1123 Exhibition Station and Western Approach involves the construction of an underground station (Exhibition Station) and 300m of cut and cover tunnel (Western Approach Tunnel) along Convention Avenue.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1** and **Figure 1.2**.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1123 include:
 - (a) Site preparation;
 - (b) Demolition works;
 - (c) Utilities works:
 - (d) Box Culvert works;
 - (e) Diaphragm wall construction and piling works;
 - (f) Pile Removal works;
 - (g) Excavation & Lateral Support (ELS) works; and
 - (h) Reprovisioning/ Reinstatement works.

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Location	Site Activities
Exhibition Station (Zone 1 - PTI Area)	 Pipe pile wall Excavation and Lateral Support Prebored socket H-Piles (PBSH) and King Post
Harbour Road Sport Cenrtre (Zone 2)	 Demolition of Harbour Road Sport Centre Prebored socket H-Piles (PBSH) and King Post
Exhibition Station (Zone 3 - Swimming Pool Area) (including W7a, W7b, W4, W5 and partial W6)	Excavation and Lateral Support
Exhibition Station (Zone 4 - Tunnel at Tonnochy Road)	Excavation and Lateral Support
Fleming Road Junction Area E	CofferdamPipe pile wall Utilities Diversion and Protection
Western Vent Shaft and Western Approach Tunnel (WAT) Area C	 Diaphragm Wall Works Road Works Excavation and Lateral Support
WAT Area B	 Excavation and Lateral Support Utilities Diversion and Protection
WAT Area A	Excavation and Lateral Support
Kai Tak Barging Point#	Storage and barging of fill materials for storage and barging of fill materials

^{*} The Kai Tak Barging Point will be for storage and barging of fill materials over the whole contract period.

2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

Table 2.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
	Residential	Construction Manager	Mr. Walter Lam	3959 2128	3959 2200
MTR	Engineer (ER)	SCL Project Environmental Team Leader	Ms. Felice Wong	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
JV Contractor	Contractor	Project Director	Mr. Brian Shepstone	3973 0838	31051126
3V Contractor		Environmental Manager	Mr. Chris Chan	6463 2318	31031120

AECOM Asia Co. Ltd. 6 August 2017

AECOM Envir	ntractor's ronmental ET Leader am (ET)	Mr. YW Fung	3922 9366	2317 7609
-------------	--	-------------	-----------	-----------

AECOM Asia Co. Ltd. 7 August 2017

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.2**.

Table 2.2 Status of Environmental Licenses, Notifications and Permits

Permit / License No.	Valid Period		0111	Domanico		
/ Notification/ Reference No.	From	То	Status	Remarks		
Environmental Permit						
EP-436/2012/E	23 Nov 2016	-	Valid	-		
Construction Noise Pe	Construction Noise Permit					
GW-RE0163-17	15 Mar 2017	14 Sep 2017	Valid	Kai Tak Barging point routine operations and maintenance		
GW-RE0169-17	15 Mar 2017	14 Sep 2017	Valid	Kai Tak Barging Point: routine operations and maintenance for haul road		
GW-RS0248-17	26 Mar 2017	23 Sep 2017	Valid	Dwall and grouting works for Zone 3, 4		
GW-RS0264-17	5 Apr 2017	14 Jul 2017	Valid until 14 July 2017	Plant mobilization for Dwall cutter, mobile crane and excavator (Zone 1)		
GW-RS0283-17	2 Apr 2017	28 Sep 2017	Valid until superseded by GW-RS0658-17 on 29 Jul 2017	Dwall Construction, welding works, and 24hr grouting (Zone1 PTI and W15d)		
GW-RS0310-17	8 Apr 2017	5 Oct 2017	Valid	Dwall, 24hr ELS, Grouting, Gas main connection (Area A, B, C, E)		
GW-RS0326-17	20 Apr 2017	14 Jul 2017	Valid until 14 July 2017	Plant mobilization for Dwall cutter, mobile crane and excavator (Zone 3,4)		
GW-RS0500-17	30 Jun 2017	29 Dec 2017	Valid	WAT Plant mobilization and demobilization		
GW-RS0558-17	10 Jul 2017	10 Aug 2017	Valid	Fresh and Salt Watermain diversion		
GW-RS0574-17	03 Jul 2017	29 Jul 2017	Valid until 29 Jul 2017	Traffic detection loop installation		
GW-RS0601-17	14 Jul 2017	13 Jan 2018	Valid	Plant mobilization for Dwall cutter, mobile crane and excavator		
GW-RS0602-17	14 Jul 2017	13 Jan 2018	Valid	Plant mobilization for Dwall cutter, mobile crane and excavator		
GW-RS0608-17	16 Jul 2017	24 Sep 2017	Valid	Pull well installation		
GW-RS0658-17	30 Jul 2017	24 Jan 2018	Valid	Traffic Deck, ELS and Pumping Test at Zone 1, Pipe pile welding and grouting at Zone2 and Zone3,4		
Wastewater Discharge License						
WT00022480-2015	4 Sep 2015	30 Sep 2020	Valid	For site portion W1a, W1b		
WT00022482-2015	4 Sep 2015	30 Sep 2020	Valid	For site portion W9a, W9b		
WT00023006-2015	26 Nov 2015	30 Nov 2020	Valid	For site portion W6T		

AECOM Asia Co. Ltd. 8 August 2017

Permit / License No.	Valid Period		2 1.1	
/ Notification/ Reference No.	From	То	Status	Remarks
WT00025181-2016	3 Aug 2016	30 Apr 2020	Valid	For site portion W12T
WT00025182-2016	3 Aug 2016	30 Jun 2020	Valid	For site portions W15a, W16, W17 & W18a
WT00025856-2016	17 Oct 2016	31 Oct 2021	Valid	For site portion W15d & W13
WT0026195-2016	30 Nov 2016	30 Nov 2021	Valid	For Kai Tak Barging Point
Chemical Waste Produ	ucer Registratio	n		
5213-135-L2881-01	2 Apr 2015	End of Contract	Valid	For whole site at Wan Chi Area
5213-247-L2532-02	23 Aug 2016	End of Contract	Valid	Kai Tak Barging Point Area
Marine Dumping Perm	nit			
EP/MD/17-138	26 Jan 2017	25 Jul 2017	Valid until 25 Jul 2017	For Type I – Open Sea Disposal
EP/MD/18-028	20 Jun 2017	19 Jul 2017	Valid until 19 Jul 2017	For Type II – Confined Marine Disposal
EP/MD/18-040	26 Jul 2017	25 Jan 2018	Valid	For Type I – Open Sea Disposal
EP/MD/18-042	21 Jul 2017	20 Aug 2017	Valid	For Type II – Confined Marine Disposal
Billing Account for Co	nstruction Was	te Disposal		
7021736	16 Feb 2015	End of Contract	Valid	For Disposal of C&D Waste
Notification Under Air	Pollution Contr	ol (Construction	Dust) Regulation	
385128	1 Mar 2015	End of Contract	Valid	For whole site at Wan Chi Area
405660	29 Jul 2016	End of Contract	Valid	Kai Tak Barging Point Area

AECOM Asia Co. Ltd. 9 August 2017

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring stations. The HVS meets all the requirements of the EM&A Manual. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:809))
Calibration Kit	TISCH Environmental Orifice (Model TE-5025A (Orifice I.D.: 0988))

Monitoring Locations

3.1.3 The monitoring station for construction dust monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. The location of the construction dust monitoring stations are summarised in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Locations of Construction Dust Monitoring Station

ID	Air Sensitive Receiver (ASR) ID in EIA Report	Dust Monitoring Station
AM2 ^[1]	EXA6	Wanchai Sports Ground
AM3 ^{[2],[3]}	EXA5	Existing Harbour Road Sports Centre

Note

- [1] The impact monitoring at AM2 was handed over from Contract SCL1128 on 28 October 2015.
- [2] The impact monitoring at AM3 was handed over from Contract SCL1126 in June 2015.
- [3] The impact monitoring at AM3 terminated on 6 May 2017 as demolition of Existing Harbour Road Sports Centre commenced on 8 May 2017.

Monitoring Methodology

3.1.4 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each others;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.

AECOM Asia Co. Ltd. 10 August 2017

- (viii) The sampler was located more than 20 meters from any dripline.
- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.5 The schedule for environmental monitoring in July 2017 is provided in **Appendix F**.

AECOM Asia Co. Ltd. 11 August 2017

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.4**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	Model No. B&K2270 (S/N: 2644597), Model No. B&K2250-L (S/N: 2681366))
Acoustic Calibrator	Rion (Model No. NC-73 (S/N: 10307223)), B&K (Model No. 4231 (S/N: 3006428))

Monitoring Locations

3.2.3 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.5** and shown in **Figure 3.1**.

Table 3.5 Noise Monitoring Station during Construction Phase

Identification No.	Noise Sensitive Receiver (NSR) ID in EIA Report	Noise Monitoring Station	Alternative Noise Monitoring Location
NM2 ^[1]	EX1	Causeway Centre, Block A	Harbour Centre ^[2]

Note:

- [1] The impact monitoring at NM2 was handed over from Works Contract SCL1126 in June 2015.
- [2] The Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. An alternative monitoring location at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014.

Monitoring Methodology

3.2.4 Monitoring Procedure

- (a) Façade measurements were made at NM2.
- (b) The battery condition was checked to ensure the correct functioning of the meter.
- (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

AECOM Asia Co. Ltd. 12 August 2017

- (i) frequency weighting: A
- (ii) time weighting: Fast
- (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.
- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (e) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.2.5 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.2.6 The schedule for environmental monitoring in July 2017 is provided in **Appendix F**.

3.3 Continuous noise monitoring

3.3.1 According to EP conditions under EP-436/2012/E (Condition 2.7 and 2.8), the latest Construction Noise Mitigation Measures Plan (CNMMP) and Continuous Noise Monitoring Plan (CNMP) were submitted to EPD in June 2016, it is predicted that no residual air-borne construction noise impact exceeding the relevant noise criteria is anticipated. No continuous noise monitoring is required under this Contract.

3.4 Landscape and Visual

3.4.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

AECOM Asia Co. Ltd. 13 August 2017

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1.**

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 (EP-436/2012/E)	Monthly EM&A Report for June 2017	14 July 2017

AECOM Asia Co. Ltd. 14 August 2017

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

- 5.1.1 The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.
- 5.1.2 The monitoring results for 24-hour TSP are summarised in **Table 5.1**. Detailed air quality monitoring results and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AM2 ^[1]	24.5	20.5 – 28.9	160	260

Note:

- 5.1.3 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring locations in the reporting month.
- 5.1.4 The event and action plan is annexed in **Appendix I**.
- 5.1.5 Major dust sources during the monitoring included construction dust, nearby traffic emission and other nearby construction sites.

5.2 Regular Construction Noise Monitoring

5.2.1 The monitoring results for noise are summarized in **Table 5.2** and the monitoring data is provided in **Appendix H**.

Table 5.2 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
NM2 ^(*)	< Baseline - 62.7	75

^(*) Baseline correction will be made to the measured Leq when the measured noise level exceeded the corresponding baseline noise level and presented in the table.

- 5.2.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 5.2.3 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.
- 5.2.4 The event and action plan is annexed in **Appendix I**.
- 5.2.5 Major noise sources during the monitoring included construction noise from the Project site, nearby traffic noise and the community.

AECOM Asia Co. Ltd. 15 August 2017

^[1] The impact monitoring at AM2 was handed over from Contract SCL1128 on 28 October 2015.

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor, 11,056 m³ of inert C&D material was generated. 4,789 m³ was disposed of as public fill in the reporting month. 6,219 m³ of inert C&D materials were reused in other projects while 49 m³ of C&D materials were reused in the Contract. 13 m³ of fill material was imported. 153 m³ general refuse was generated in the reporting month. 8,772 kg of metals, 220 kg of paper/cardboard packaging material and 28 kg of plastic was collected by recycling contractor in the reporting month. No chemical waste was collected by licensed contractor in the reporting period. 5,124 m³ of Type 1 Marine sediment was disposed of at South Cheung Chau Open Sea Sediment Disposal Area and no Type 2 Marine sediment was disposed of. The waste flow table is annexed in **Appendix K**.
- 5.3.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.4 Landscape and Visual

5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 6 and 21 July 2017. A summary of the site inspection is provided in **Appendix C**. The observations and recommendations made during the site inspections are presented in **Table 6.1**.

AECOM Asia Co. Ltd. 16 August 2017

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 6 site inspections were carried out on 6, 11, 14, 21, 25 and 27 July 2017. Joint inspections with the IEC, ER, the Contractor and the ET were conducted on 21 July 2017. No non-compliance was recorded during the site inspection. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters Date		Observations and Recommendations Observations and Recommendations	Follow-up	
			rollow-up	
	6 July 2017	Reminder: Stockpiles of bagged cement were not fully covered at WAT. The Contractor was reminded to cover the bagged cement entirely with impervious sheetings to prevent dust generation.	The item was rectified by the Contractor on 7 July 2017.	
	11 July 2017	Reminder: Stocks of more than 20 bags of cement without proper coverage were observed. The Contractor was reminded to cover them entirely with impervious sheeting to prevent potential windblown dust emission.	The item was rectified by the Contractor on 12 July 2017.	
	14 July	Reminder: Exposed surface was observed dry at WAT. The Contractor was reminded to provide watering more frequently.	The item was rectified by the Contractor on 15 July 2017.	
	2017	Reminder: Colour faded NRMM label was observed on a drill rig at WAT. The Contractor was reminded to replace the NRMM label.	The item was rectified by the Contractor on 18 July 2017.	
		 Watering was not provided during breaking activity at Fleming Road. The Contractor was advised to provide watering during breaking activity for dust suppression. 	The item was rectified by the Contractor on 22 July 2017.	
Air Quality	21 July 2017	Reminder: A stockpile of fill material was not covered at Zone 2. The Contractor was reminded to provide dust mitigation measure to the stockpile.	The item was rectified by the Contractor on 22 July 2017.	
		Reminder: A grouting station was note fully sheltered at top and on 3 sides at WAT. The Contractor was reminded to enhance the shelter of the grouting station.	The item was rectified by the Contractor on 26 July 2017.	
	25 July 2017	Reminder: An excavator that emits visible smoke was observed. The Contractor was reminded to implement measures to prevent such emission.	The item was rectified by the Contractor on 28 July 2017.	
		Dry open site areas were observed at Zone 2 and Zone 3/4. The Contractor was advised to water open site area regularly to reduce dust emission.	The item was rectified by the Contractor on 28 July 2017.	
	27 Jul 2017	Reminder: Air compressors with colour-faded NRMM label were found at WAT. The Contractor was reminded to ensure valid NRMM labels are provided to all equipment before operation.	The item was rectified by the Contractor on 28 July 2017.	
	Stocks of were four with impe	Reminder: Stocks of more than 20 bags of cement without entire coverage were found at WAT. The Contractor was reminded to cover them with impervious sheeting entirely to reduce potential dust emission.	The item was rectified by the Contractor on 27 July 2017.	
Noise	27Jul 2017	Reminder: A worn-out acoustic mat for breaker tip was observed at WAT. The Contractor was reminded to ensure noise mitigation measure are well-maintained.	The item was rectified by the Contractor on 31 July 2017.	
Water Quality	27 June 2017	Reminder: Drainage was found deposited with sand and silt. The Contractor was reminded to remove the materials regularly and ensure water flows without obstruction.	The item was rectified by the Contractor on 12 July 2017.	

AECOM Asia Co. Ltd. 17 August 2017

Parameters	Date	Observations and Recommendations	Follow-up
	11 July 2017	Reminder: Drainage with muddy materials and general refuse was observed. The Contractor was reminded to remove the materials to ensure only water that complies with the discharge licence is discharged.	The item was rectified by the Contractor on 17 July 2017.
	21 July 2017	A gully was not well protected at Zone 1. The Contractor was advised to properly protect the fully to prevent muddy runoff entering it.	The item was rectified by the Contractor on 26 July 2017.
	6 July 2017	Chemical drums were observed without drip tray at Zone 1. The Contractor was advised to provide secondary containment to chemical containers to prevent accidental spillage	The item was rectified by the Contractor on 11 July 2017.
	14 July Sc 2017 Cc	Reminder: Some chemical containers were placed at Zone 2. The Contractor was reminded to remove and dispose the containers properly.	The item was rectified by the Contractor on 18 July 2017.
Waste/	21 Jul 2017	Reminder: A drain hole of drip tray was unplugged at Zone 1. The Contractor was reminded to plug up any drain holes of drip tray to prevent accidental spillage.	The item was rectified by the Contractor on 24 July 2017.
Chemical Management	25 Jul 2017	Reminder: Excessive accumulation of construction waste was observed. The Contractor was reminded to remove the waste and transport it off site regularly to keep the site clean and tidy.	The item was rectified by the Contractor on 27 July 2017.
		Reminder: A chemical container without drip tray was observed. The Contractor was reminded to provide it with secondary containment to prevent chemical spillage.	The item was rectified by the Contractor on 27 July 2017.
		Reminder: Retained water was found in the chemical waste storage. The Contractor was reminded to remove the water/ oil mixture and dispose of it as chemical waste.	The item was rectified by the Contractor on 27 July 2017.
Landscape & Visual	Nil	Nil	Nil
Permits/ Licenses	Nil	Nil	Nil

6.1.3 All of the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit level at all monitoring locations in the reporting month.
- 7.1.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 7.1.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint were received in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix J**.

AECOM Asia Co. Ltd. 18 August 2017

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

AECOM Asia Co. Ltd. 19 August 2017

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The major construction works between August 2017 and October 2017 will be:

Location	Site Activities
Exhibition Station (Zone 1 - PTI Area)	 Prebored socket H-Piles (PBSH) and King Post Pipepile wall Excavation and Lateral Support Permanent Reprovisioning Wan Chai Ferry Pier Footbridge
Harbour Road Sport Cenrtre (Zone 2)	 Demolition Harbour Road Sport Centre Prebored socket H-Piles (PBSH) and King Post Pipepile wall
Exhibition Station (Zone 3 - Swimming Pool Area) (including W7a, W7b, W4, W5 and partial W6)	Excavation and Lateral Support
Exhibition Station (Zone 4 - Tunnel at Tonnochy Road)	Pipe Pile WallExcavation and Lateral SupportRoad Works
Fleming Road Junction Area E	 Utilities Diversion and Protection Fleming Road Culvert Diversion Cofferdam Pipe pile wall
Western Vent Shaft and WAT Area C	Diaphragm Wall WorksExcavation and Lateral SupportRoad Works
WAT Area B	 Utilities Diversion / Protection Excavation and Lateral Support
WAT Area A	Excavation and Lateral Support
Kai Tak Barging Point#	Storage and barging of fill materials

^{*} The Kai Tak Barging Point will be for storage and barging of fill materials over the whole contract period.

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

8.3 Monitoring Schedule for the Next Three Month

8.3.1 The tentative schedules for environmental monitoring in between August 2017 and October 2017 are provided in **Appendix F**.

AECOM Asia Co. Ltd. 20 August 2017

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring results complied with the Action / Limit Level at in the reporting month.
- 9.1.3 No noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 9.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.5 6 nos. of environmental site inspections were carried out in July 2017. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.6 Referring to the Contractor's information, no environmental related complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

- Implement effective/preventive measures to avoid dust impact and air nuisance especially for coverage of stockpile of dusty material and bagged cement, shelter of cement debagging, watering of exposed surface and during breaking activity;
- Provide sufficient dust control measure to storage of fill material; and
- Properly display NRMM label on machinery;
- Maintain the machinery properly to ensure that no visible smoke would be emitted.

Construction Noise Impact

· Provide noise damping material on breaker tip.

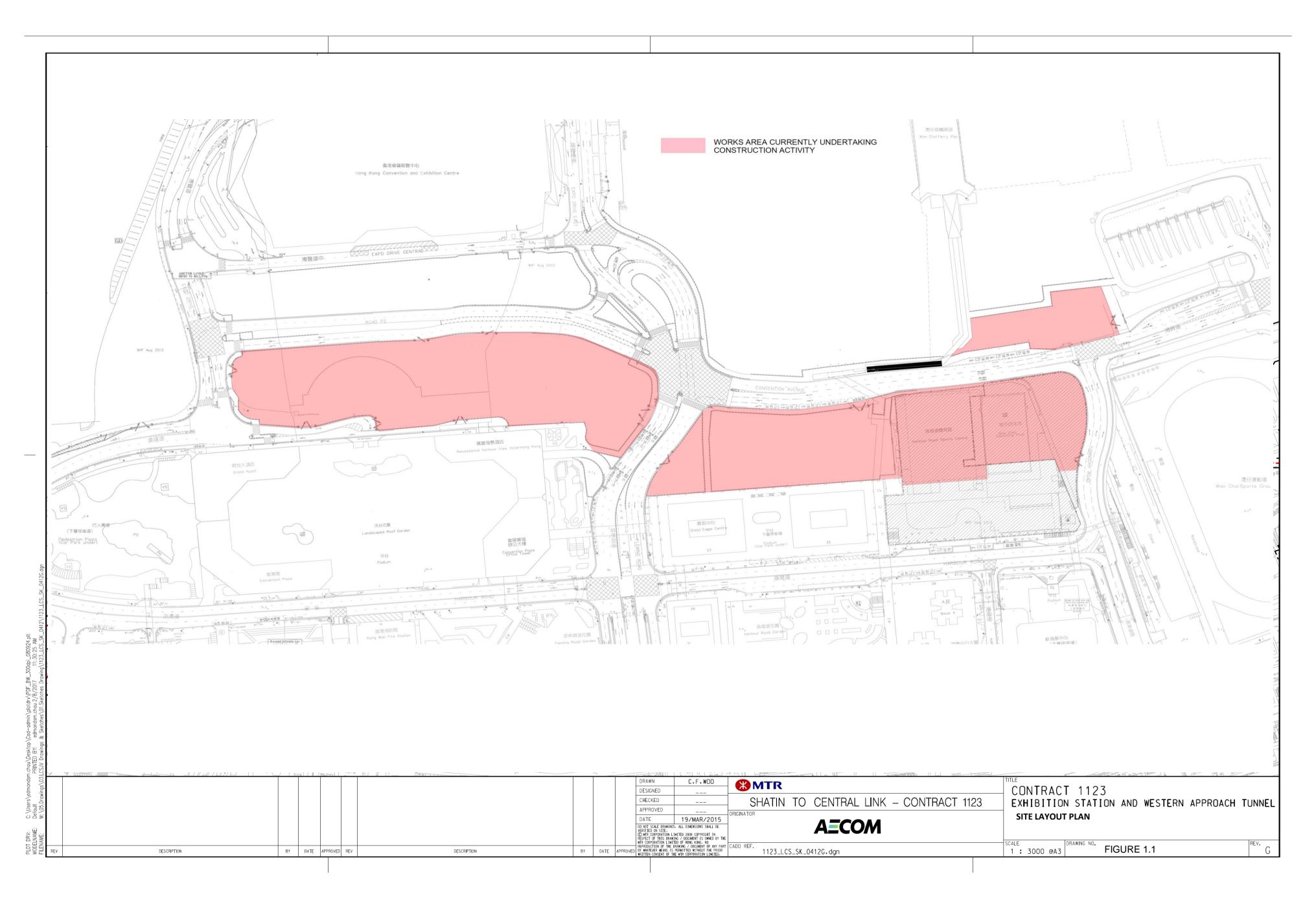
Water Quality Impact

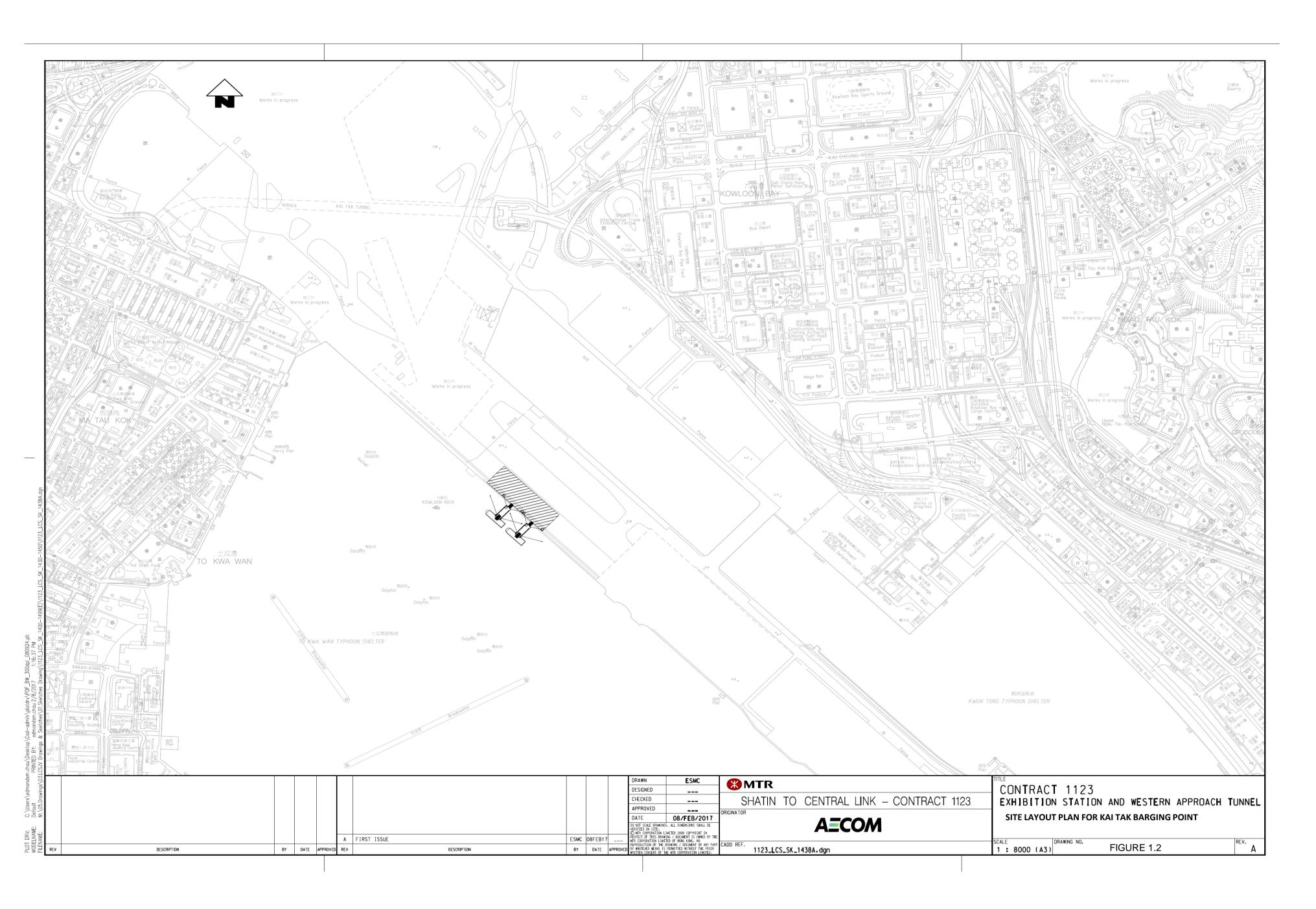
Proper protection/maintenance of existing drainage.

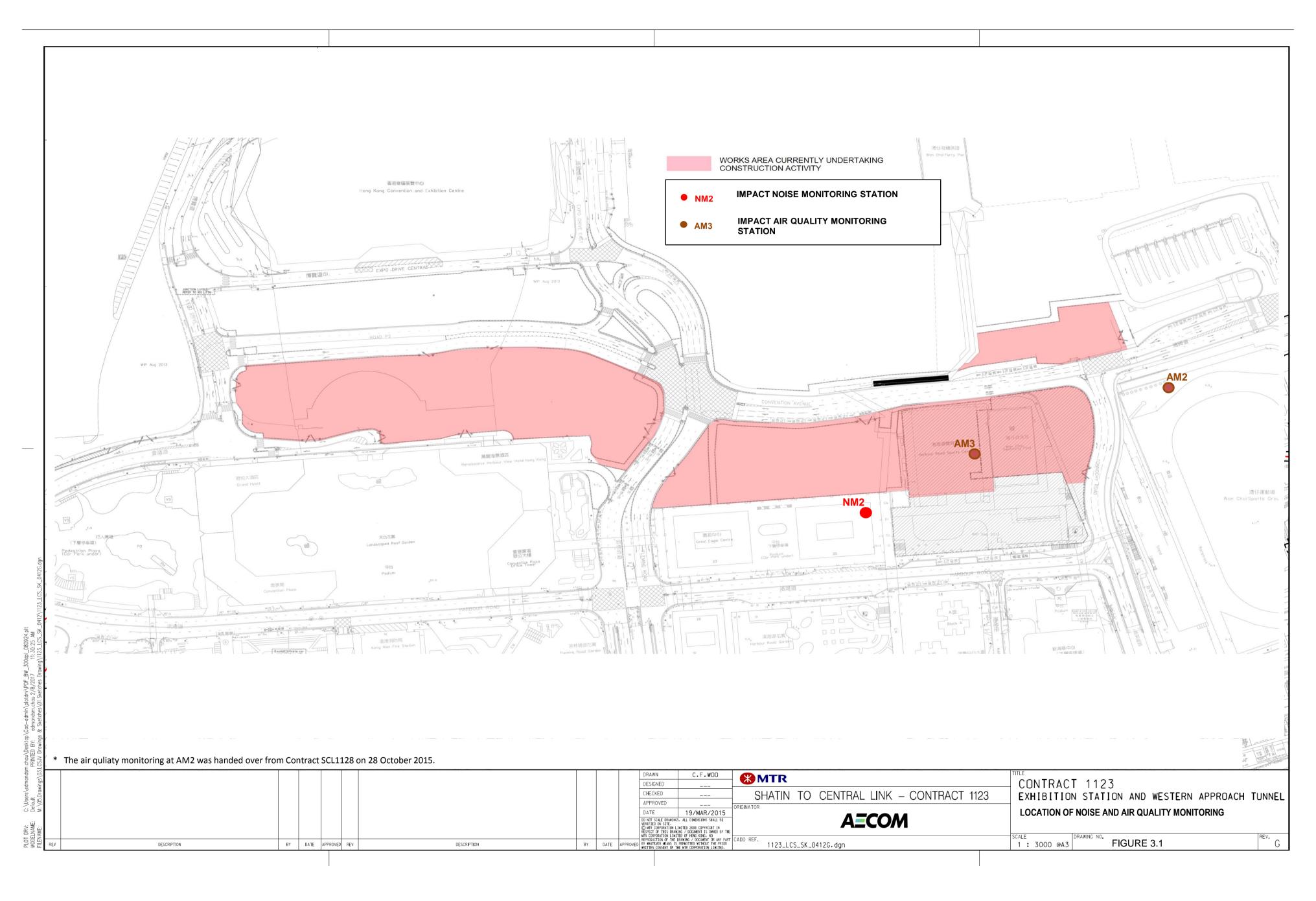
Chemical and Waste Management

Provide proper chemical and waste handling management.

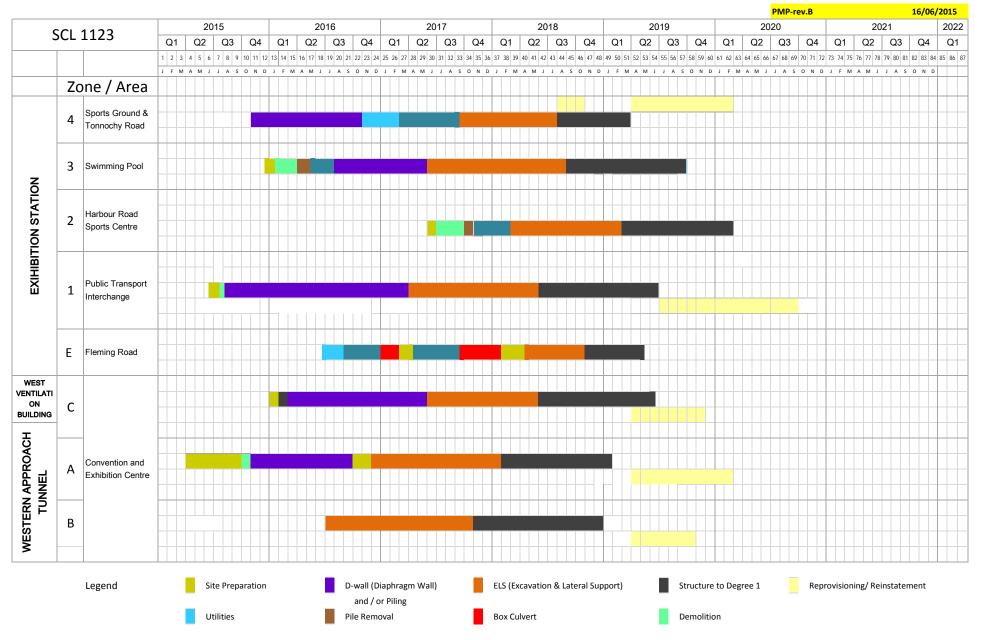
Landscape & Visual Impact


• No specific observation was identified in the reporting month.


Permits/licenses


No specific observation was identified in the reporting month.

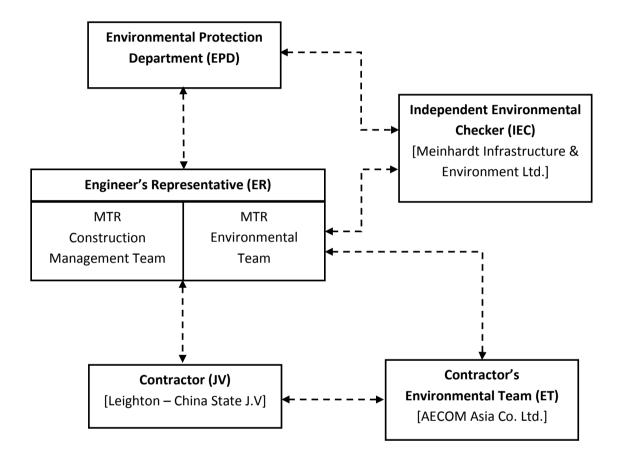
AECOM Asia Co. Ltd. 21 August 2017



APPENDIX A

Construction Programme

High Level Programme



APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

Appendix B AECOM

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural He	ritage Impact					
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	Construction Phase	V
Ecological	Impact					
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	Construction Phase	N/A
Landscape	and Visual Impact					
Construction	on Phase					
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	Construction Phase	V
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites	Construction Phase	N/A
Construction	on Dust Impact					
Table 8.5	Barging facilities: (i) Transportation of spoils to the barging point – Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every working hours to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.0 L/m² once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.0L/m² to achieve the removal efficiency. The dust levels would be monitored and	To minimize dust impacts	Contractor	All barging points	Construction phase	V
	managed under an EM&A programme as specified in the EM&A Manual. (ii) Unloading of spoil materials – Undertake the unloading process within a 3-sided screen with top					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	tipping hall. Provide water spraying and flexible dust curtains at the discharge point for dust suppression. (iii) Vehicles leaving the barging facilities – Pass vehicles through the wheel washing facilities provided at site exits.					V
S8.63	For concrete batching plant, the requirements and mitigation measures stipulated in the <i>Guidance</i> Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	N/A
Table 8.6	 During operation of concrete batching plant: Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system. Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. Weighing and batching of cementitious materials – Perform the whole process of weighing and mixing in a fully enclosed environment. Equip all the mixers with dust collectors. Loading of concrete from mixer into transit mixer of a truck – Directly load the concrete from the mixer into the transit mixer of a truck in "wet form". Tipper trucks and cement tankers leaving the Concrete Batching Plant – Haul road within the site is unpaved. Install wheel washing pit at the gate of the concrete batching plant. Transportation of materials within the plant – Provide watering twice a day would be provided. 	To minimize dust impacts	Contractor	Concrete Batching Plant	Construction phase	N/A
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	Construction Phase	V
S8.89	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall, provision of water spraying and flexible dust curtains to reduce dust emission	To minimize dust impact	Contractor	All barging points	Construction phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S8.90	 Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/periods. Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. Imposition of speed controls for vehicles on site haul roads. Where possible, routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. 	To minimize dust impacts	Contractor	Works areas	Construction phase	@
/	 Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise Dust suppression measures (con't) De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement 	To minimize dust impacts	Contractor	Works areas	Construction phase	V @
	 The portion of any road where along the site boundary should be kept clear of dusty materials. Use of frequent watering for any dusty construction process (e.g. breaking works) to reduce dust emissions. 					V @
/	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V @ V
Airborne No Construction	· · ·					
S9.55	 The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program Mobile plant, if any, shall be sited as far from NSRs as possible Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V @ V V N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities					N/A
/	 Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during operation Air compressors shall be fitted with valid noise emission labels during operation 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V
S9.56 & Table 9.16	The following quiet PME shall be used: Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill Lorry Wheel loader Roller vibratory Movable noise barrier shall be used for the following PME:	To minimize construction noise impact To minimize	Contractor	 Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel Works areas at:	Construction phase Construction	V V N/A V N/A N/A N/A V V V V V V V V N/A N/A N/A
\$9.59 & Table 9.17	 Air compressor Asphalt paver Backhoe with hydraulic breaker Bar bender Bar bender and cutter (electric) Breaker, excavator mounted Concrete pump Concrete pump, stationary/lorry mounted Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete 	construction noise impact	Contractor	 Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 		N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
S9.60 & Table 9.17	Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic)	To minimize construction noise impact	Contractor	Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction phase	N/A N/A N/A N/A N/A N/A N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Qual	ty Impact					
Construction	on Phase					
S11.216	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction Phase	V
	 away from the seawater front and storm drainage during carrying out of the works. Stockpiling of construction and demolition materials and dusty materials shall be covered and 	Seanont				V
	located away from the seawater front and storm drainage.					N/A
	 Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters. 					N/A
S11.222 to 11.245	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. Surface Run-off Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction Phase	V
	run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels shall be constructed in advance of site formation works and earthworks. • Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and re-alignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum distances of 100 m shall be maintained between the discharge points of construction site runoff and the					@
	 existing saltwater intakes. Construction works shall be programmed to minimize soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by tarpaulin, and temporary access roads shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements shall 					V
	 always be in place in such a way that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Earthworks final surfaces shall be well compacted and the subsequent permanent work or surface protection shall be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels shall be provided where necessary. 					N/A
	 Measures shall be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they shall be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations shall be discharged into storm drains via silt removal facilities. 					N/A
	 Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites shall be covered with tarpaulin or similar fabric during rainstorms. 					V
	 Manholes (including newly constructed ones) shall always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. 					@
	 Good site practices shall be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis. Boring and Drilling Water 					V
	 Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as 					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities. Wheel Washing Water All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road 					V
	 drains. <u>Bentonite Slurries</u> Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used 					V
	 again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the bentonite slurries shall either be dewatered or mixed with inert fill material for disposal to a public filling area. If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be 					V
	treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. Water for Testing & Sterilization of Water Retaining Structures and Water Pipes					N/A
	 Water used in water testing to check leakage of structures and pipes shall be used for other purposes as far as practicable. Surplus unpolluted water will be discharged into storm drains. 					N/A
	 Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. 					N/A
	 Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. 					N/A
	 Wastewater from Site Facilities Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage tank on a regular basis. 					N/A
	 Drainage serving an open oil filling point shall be connected to storm drains via petrol interceptors with peak storm bypass. 					N/A
	 Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. 					N/A
S11.246 & 11.247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	Works areas	Construction Phase	N/A
S11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	To control site run-off generated from any potential contaminated works areas.	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of groundwater at the recharge well. Prior to recharge, any prohibited substance such as TPH products shall be removed as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.252	 The following good site practices shall be adopted for the proposed barging points: all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash all hopper barges shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site loading of barges and hoppers shall be controlled to prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation 	To minimize water quality impacts generated from the barging points.	Contractor	Barging points	Construction Phase	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
S11.256	Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: • Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage during	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
	 storage, handling and transport. Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are 					V
	 handling the wastes, to avoid accidents. Storage area shall be selected at a safe location on site and adequate space shall be allocated to the storage area. 					V
Waste Mana	agement Implications			1		
Construction	n Phase					
S12.75	 Good Site Practices and Waste Reduction Measures Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; 	To reduce waste management impacts	Contractor	All Work Sites	Construction Phase	V
	 Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; 					V
	 Provision of sufficient waste disposal points and regular collection of waste; Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; 					V
	 Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and 					N/A V
S12.76	 Separation of chemical wastes for special handling and appropriate treatment. Good Site Practices and Waste Reduction Measures (con't) 	To achieve waste	Contractor	All Work Sites	Construction	V
312.70	 Sorting of demolition debris and excavated materials from demolition works to recover reusable/recyclable portions (i.e. soil, broken concrete, metal etc.); 	reduction	Contractor	All Work Sites	Phase	N/A
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; 					V
	Encourage collection of aluminum cans by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; Proper storage and site providing to minimize the natural for demand or contamination of the providing separate labeled bins to enable this waste to be segregated from other general refuse to providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; Proper storage and site providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce;					V
	 Proper storage and site practices to minimize the potential for damage or contamination of construction materials; Plan and stock construction materials carefully to minimize amount of waste generated and 					V
	 avoid unnecessary generation of waste; and Training shall be provided to workers about the concepts of site cleanliness and appropriate 					V
S12.77	waste management procedures, including waste reduction, reuse and recycle. Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All Work Sites	Construction	V
012.77	The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials.	reduction	Contractor	All WORK Offes	Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.					
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	N/A
S12.79	 Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include: Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area shall be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and 	To minimize potential adverse environmental impacts arising from waste storage	Contractor	Work Sites	Construction Phase	N/A N/A N/A
S12.80	 Different locations shall be designated to stockpile each material to enhance reuse. Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts: Remove waste in timely manner Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) Waste shall be disposed of at licensed waste disposal facilities Maintain records of quantities of waste generated, recycled and disposed 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	@ V N/A V
S12.81	 Storage, Collection and Transportation of Waste (con't) Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.83 – 12.86	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials. The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north approach tunnels. 	To minimize potential adverse environmental impacts during the handling, transportation and disposal of C&D materials	Contractor	Work Sites	Construction Phase	V N/A V N/A
S12.88	Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance.	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.89	 Sediments (con't) The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works. 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Detailed Design Stage and Construction Phase	N/A
S12.91 – 12.94	 Sediments (con't) Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. The barge transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.97	 Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall: Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation. 	To register with EPD as a Chemical waste producer and store chemical waste in appropriate containers	Contractor	Work Sites	Construction Phase	V V V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.98	 Chemical Waste Storage Area Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; 	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Work Sites	Construction Phase	V V V
	 Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 					V V V
S12.99	Chemical Waste Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place.	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
S12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	N/A
S12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	V
S12.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V
/	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites	Construction Phase	@ @
	 The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. 					V
	 Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 					N/A
Land Conta	mination Impact					
S13.23– 13.24	 For construction works at sites under the current stage of site investigation (Stage 1 SI): Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process shall involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odours, which may also indicate soil and/or groundwater contamination. If soil materials suspected to be contaminated are encountered during excavation, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during 	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Within Project Boundary where signs of contamination is identified	During excavation works for Cut-and- Cover	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	demolition, excavation and cut & cover construction shall be temporary stockpiled. Shall concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the Contamination Assessment Report (CAR) and Remediation Action Plans (RAP).					
S13.30	For some sites with currently no SI proposed (i.e. sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28), to be conservative, visual inspection shall be conducted during demolition and excavation to detect any abnormal colour, smell or other characteristics of the soil, due to the nearby land use and/ or construction method. If abnormal colour, smell or other characteristics of contamination are identified for any of these sites, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Should the concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the CAR and RAP.	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Areas with no SI proposed (Sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28)	During excavation works for Cut-and- Cover	N/A
S13.36 – 13.38	 For areas inaccessible for proper site appraisal and investigation (Stage 2 SI) (i) Site 2-15 Upon site access being granted, visual inspection shall be carried out where intrusive works and soil excavation is encountered, for attention on any potential contamination due to its current operation A supplementary CAP shall then be submitted to EPD for endorsement. A CAR/RAP shall be prepared and submitted to EPD for endorsement on completion of the SI and analytical testing. Shall remediation be undertaken a Remediation Report (RR) shall be prepared and submitted to EPD for endorsement to demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP. Information such as soil treatment/ disposal records (including trip tickets), confirmatory sampling results, and photographs shall be included in the aforesaid RR. No construction work shall be carried out prior to the endorsement of the RR by EPD. 	To identify areas with land contamination concern, report laboratory results and propose remediation measures if necessary. To ensure remediation works have been undertaken to before the commencement of any construction works of the Project.	Contractor	Areas unable to be accessed during Stage 1 SI (Site 2-15)	After land resumption and prior to the construction works commencement at the site	N/A
S13.39	Potential Remediation of Contaminated Soil Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; Excavation shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Supply of suitable clean backfill material is needed after excavation; If remediation is required with chemical oxidation proposed as a contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and personal protective equipment (PPE). Vehicles containing any excavated materials shall be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates shall be sealed to prevent any discharge during transport or during wet conditions; Speed control for the trucks carrying contaminated materials shall be enforced; Vehicle wheel and body washing facilities at the site's exit points shall be established and used; and Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control shall be implemented and complied with relevant regulations and guidelines.	To remediate contaminated soil	Contractor	Identified contaminated sites	Site remediation	N/A
S13. 40	In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures shall be implemented as far as possible: • Set up a list of safety measures for site workers; • Provide written information and training on safety for site workers; • Keep a log-book and plan showing the contaminated zones and clean zones; • Maintain a hygienic working environment; • Avoid dust generation; • Provide face and respiratory protection gear to site workers;	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	Identified contaminated sites	Site remediation and prior to construction phase	N/A

EIA Ref. / EM&A Log Ref.		Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and Provide first aid training and materials to site workers. 				

Legend: V = implemented; x = not implemented; @ = partially implemented; N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location	Action Level	Limit Level
AM2*	Wan Chai Sports Ground	160 μg/m³	260 μg/m³
AM3	Existing Harbour Road Sports Centre	169 μg/m³	260 μg/m³

The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.

Table 2 Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
NM2*	Harbour Centre	When one documented complaint is received	75 dB(A)

The Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. An alternative monitoring location at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014.

Appendix D AECOM

APPENDIX E

Calibration Certificates of Equipments

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Wanchai Sports	Sports Ground Operator: Choi Wing Ho		ing Ho			
al. Date:	13-May-17		Next Due Date: 13-Jul-17				_
quipment No.:	A-001-72T	_		Serial No.	80	9	-
			Ambiant	Condition			
Tomporotu	ro To (K)	300.2		Pa (mmHg)		763.2	
Temperatu	re, ra (K)	300.2	riessule, i	a (IIIIIIng)		703.2	
		C	Prifice Transfer S	tandard Informatio	on		
Serial	l No:	988	Slope, mc	1.99	9349	Intercept, bc	-0.0273
Last Calibra	ation Date:	31-May-16		mc x Qstd + bc =	= [H v (Pa/760) v	(208/Ta)1 ^{1/2}	
Next Calibra	ation Date:	31-May-17		me x Qstu + be -	- [II X (I a/ /00) X	(290/14)]	
			Oalthaatlan	f TCD Complete			
				of TSP Sampler	LDA	C Flow Boosder	
Resistance		0	rfice		HV	S Flow Recorder	
Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF	
18	7.0		2.64	1.34	45.0	44.93	3
13	6.2		2.49	1.26	42.0	41.93	3
10	4.6		2.14	1.09	34.0	33.95	5
7	3.6		1.89	0.96	28.0	27.96	3
5	2.8		1.67	0.85	22.0	21.97	7
Slope , mw = Correlation Coe		0.9	9981	Intercept, bw =	-17.	7709	-
*If Correlation Co	pefficient < 0.990	, check and recalib	orate.				
			Set Point	Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd =	1.30m ³ /min				
From the Regres	sion Equation, th	e "Y" value accord	ding to				
				/	1/2		
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)]"*		
Therefore, Set P	oint; IC = (mw x	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] ^{1/2} =		43.62	
	**************************************	appropriation to the same of t	* CONTRACTOR CONTRACTO				-
Domarks:							
Remarks:						· · · · · · · · · · · · · · · · · · ·	
QC Reviewer:	lung Vin To	4	Signature:			Date: 13-May	-17
~ · · · · · · · · · · · · · · · · ·						7	

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station -	Wanchai Sports	Ground		Operator:	Choi W	/ing Ho	
Cal. Date:	13-Jul-17			Next Due Date:	13-Se	ep-17	
Equipment No.:	A-001-72T	_		Serial No.	80	09	
			Ambient	Condition			
Temperatu	ire, Ta (K)	303.4	Pressure, F			763.2	
	, , , ,			(9)			
			Orifice Transfer S	tandard Information	on		
Seria	l No:	988	Slope, mc	1.98	8425	Intercept, bc	-0.0093
Last Calibra	ation Date:	22-May-17					•
Next Calibra	ation Date:	22-May-18		mc x Qstd + bc =	$= [H \times (Pa/760) \times$	$(298/Ta)]^{1/2}$	
			Calibration o	f TSP Sampler			
		(Orfice		HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	(60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFI	
18	7.0		2.63	1.33	45.0	44.69	
13	6.2		2.47	1.25	42.0	41.71	
10	4.6		2.13	1.08	34.0	33.77	S
7	3.6		1.88	0.95	28.0	27.81	
5	2.8		1.66	0.84	22.0	21.85	
By Linear Regre Slope , mw = Correlation Coe If Correlation Co	46.9497 fficient* =	_	. 9981 ibrate.	Intercept, bw =	-17.2	2528	
			0.15.11	0.1.1.1			
From the TCD Fig	ald Calibration Co	urve, take Qstd =		Calculation			
-rom me Regres	sion Equation, th	e "Y" value accor	uing to				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Γa)] ^{1/2}		
							
Therefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(7	60 / Pa) x (Ta / 29	8)] ^{1/2} =	_	44.08	
			Working Street				
	-						
Remarks:		y's					
76							
				Tor.		- 1 -	1. 7
QC Reviewer:	47 5	en	Signature:	129		Date: 13 1 07	12011

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		7 Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	295 - 754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00	1.3910 0.9810 0.8750 0.8330 0.6890	3.2 6.4 7.9 8.8 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9984 0.9942 0.9921 0.9910 0.9858	0.7178 1.0135 1.1338 1.1897 1.4307	1.4161 2.0027 2.2391 2.3484 2.8322	0.9957 0.9915 0.9894 0.9883 0.9831	0.7158 1.0107 1.1308 1.1865 1.4269	0.8844 1.2507 1.3983 1.4666 1.7687
Qstd slo	t (b) = ent (r) =	1.98425 -0.00930 0.99998	 Qa slope intercept coefficie	(b) =	1.24250 -0.00581 0.99998

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)

Qstd = Vstd/Time


Va = Diff Vol [(Pa-Diff Hq)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$

 $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0303 01-02

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) **B&K**

Microphone **B&K** 4189

Pream **B&K** ZC0032

Type/Model No.: Serial/Equipment No.: Adaptors used:

2270 N.012.01 2644597

2846461

17965

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.:

Date of receipt:

03-Mar-2017

Date of test:

07-Mar-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model:

DS 360

B&K 4226 DS 360

Serial No. 2288444 33873 61227

18-Jun-2017 18-Apr-2017 18-Apr-2017

Expiry Date:

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

Relative humidity:

21 ± 1 °C 60 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

08-Mar-2017 Date:

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0303 01-02

Page

2

1, **Electrical Tests**

> The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Coverage Factor		
Self-generated noise	Α	Pass	0.3		
× 100 mm m m m m m m m m m m m m m m m m	С	Pass	1.0 2.1		
	Lin	Pass	2.0 2.2		
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3		
	Reference SPL on all other ranges	Pass	0.3		
	2 dB below upper limit of each range	Pass	0.3		
	2 dB above lower limit of each range	Pass	0.3		
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3		
Frequency weightings	A	Pass	0.3		
	С	Pass	0.3		
	Lin	Pass	0.3		
Time weightings	Single Burst Fast	Pass	0.3		
	Single Burst Slow	Pass	0.3		
Peak response	Single 100µs rectangular pulse	Pass	0.3		
R.M.S. accuracy	Crest factor of 3	Pass	0.3		
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3		
	Repeated at frequency of 100 Hz	Pass	0.3		
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3		
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3		
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4		
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4		
Overload indication	SPL	Pass	0.3		
	Leq	Pass	0.4		

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3, Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

5

End

una Chi Yin

Checked by:

Lam Tze Wai

Date:

07-Mar-2017

08-Mar-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0303 01-01

Page

of

Item tested

Description: Manufacturer:

Adaptors used:

Sound Level Meter (Type 1) **B&K**

11.011.01

Microphone **B&K**

Preamp **B&K** ZC0032

Type/Model No.: Serial/Equipment No.:

2250-L 2681366 4950 2665582

17190

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.

Date of receipt:

03-Mar-2017

Date of test:

07-Mar-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model: B&K 4226

DS 360 DS 360

Serial No. 2288444

33873 61227 **Expiry Date:**

18-Jun-2017 18-Apr-2017 18-Apr-2017

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature: Air pressure:

Relative humidity:

21 ± 1 °C 60 ± 10 % 1010 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Approved Signatory:

Min/Feng Jun Qi

Date: 08-Mar-2017

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0303 01-01

Page

(

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
			, , ,	
Self-generated noise	A	Pass	0.3	
	С	Pass .	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
*	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Weighting A at 125 Hz	Pass	0.3	
Weighting A at 8000 Hz	Pass	0.5	
	Weighting A at 125 Hz	Weighting A at 125 Hz Pass	Subtest Status Uncertanity (dB) Weighting A at 125 Hz Pass 0.3

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip

Date: 07-Mar-2017

End

Checked by:

Date:

Lam Tze Wai e: 08-Mar-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港黃竹坑道3⁹7 號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA1201 01

Page:

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd. NC-73

Type/Model No.: Serial/Equipment No.: NC-73 10307223

CN.004.08)

Adaptors used:

.

Item submitted by

Curstomer:

AECOM ASIA CO. LTD.

Address of Customer:

.

Request No.:

-01-Dec-2016

Date of receipt:

Date of test:

05-Dec-2016

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	14-Apr-2017	SCL
Preamplifier	B&K 2673	2239857	28-Apr-2017	CEPREI
Measuring amplifier	B&K 2610	2346941	26-Apr-2017	CEPREI
Signal generator	DS 360	61227	18-Apr-2017	CEPREI
Digital multi-meter	34401A	US36087050	18-Apr-2017	CEPREI
Audio analyzer	8903B	GB41300350	19-Apr-2017	CEPREI
Universal counter	53132A	MY40003662	19-Apr-2017	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements, are presented on page 2 of this certificate.

Min/Peng Jun Qi

Huang Jia

Approved Signatory:

Date:

08-Dec-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港 黄竹坑 道 3 7 號 利 達中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

16CA1201 01

Page:

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

			(Output level in dB re 20 μPa
Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	Estimated Expanded Uncertainty dB
1000	94.00	94.22	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 986.6 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by

End

Calibrated by:

Date:

Fung Chi Yip

05-Dec-2016

Checked by:

Lam Tze Wai

Date:

08-Dec-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0309 01

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B&K

Type/Model No.:

4231

Serial/Equipment No.:

3006428 / N004.03

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer: Request No.:

-

Date of receipt:

09-Mar-2017

Date of test:

13-Mar-2017

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	14-Apr-2017	SCL
Preamplifier	B&K 2673	2743150	28-Apr-2017	CEPREI
Measuring amplifier	B&K 2610	2346941	26-Apr-2017	CEPREI
Signal generator	DS 360	61227	18-Apr-2017	CEPREI
Digital multi-meter	34401A	US36087050	18-Apr-2017	CEPREI
Audio analyzer	8903B	GB41300350	19-Apr-2017	CEPREI
Universal counter	53132A	MY40003662	19-Apr-2017	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

rMin/Feng Jun Qi

Huang Jian

Approved Signatory:

Date:

15-Mar-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0309 01

Page:

2

2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 µPa) Frequency Output Sound Pressure Measured Output Estimated Expanded Shown Level Setting Sound Pressure Level Uncertainty Hz dB dB dB 1000 94.00 94.27 0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by:

Lai Sheng Jie

Checked by:

Fung Chi Yip

Date:

13-Mar-2017

Date:

5-Mar-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel Impact Monitoring Schedule for July 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Jul
2-Jul	3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul
		Air Quality	Noise			
9-Jul	10-Jul	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul
	Air Quality	Noise				Air Quality
16-Jul	17-Jul	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul
	Noise				Air Quality	
	140156				All Quality	
23-Jul	24-Jul	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul
				Air Quality	Noise	
				7 III Quality	140100	
30-Jul	31-Jul					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Am2 Wan Chai Sports Ground

Noise Monitoring Station

NM2 Harbour Centre

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency
Once per week

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel Tentative Impact Monitoring Schedule for August 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-Aug	2-Aug	3-Aug	4-Aug	5-Aug
			Air Quality	Noise		
6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug
		Air Quality	Noise			
13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug
	Air Quality	Noise				Air Quality
20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug
	Noise				Air Quality	
27-Aug	28-Aug	29-Aug	30-Aug	31-Aug		
				Air Quality		

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

AM2 Wan Chai Sports Ground

Noise Monitoring Station

NM2 Harbour Centre

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

Once per week

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel Tentative Impact Monitoring Schedule for September 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Sep	2-Sep
					Noise	
3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep
			Air Quality	Noise		
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
		Air Quality	Noise			
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
	Air Quality	Noise				Air Quality
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
	Noise				Air Quality	

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

AM2 Wan Chai Sports Ground

Noise Monitoring Station

NM2 Harbour Centre

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

Once per week

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel Tentative Impact Monitoring Schedule for October 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Oct	2-Oct	3-Oct	4-Oct	5-Oct	6-Oct	7-Oct
			Air Quality		Noise	
8-Oct	9-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
		Air Quality	Noise			
15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct
	Air Quality	Noise				Air Quality
22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct	28-Oct
	Noise				Air Quality	
29-Oct	30-Oct	31-Oct				
	Noise					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

AM2 Wan Chai Sports Ground

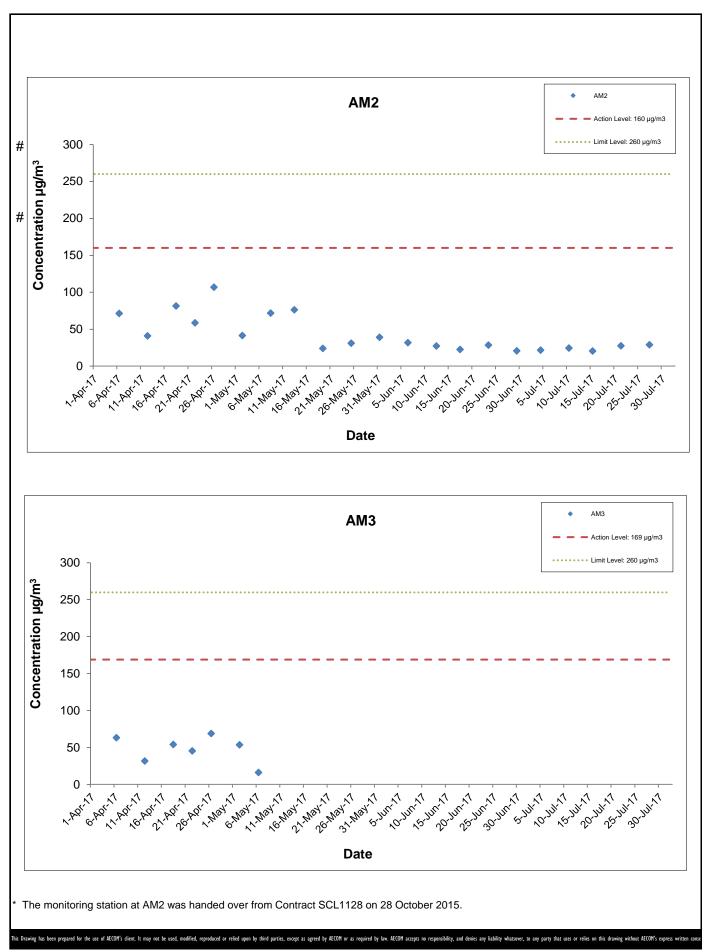
Noise Monitoring Station

NM2 Harbour Centre

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

Once per week

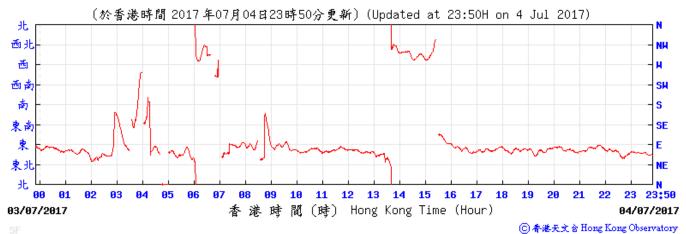

APPENDIX G

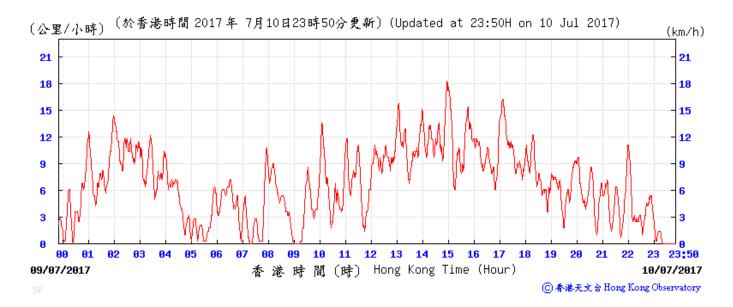
Air Quality Monitoring Results and their Graphical Presentations

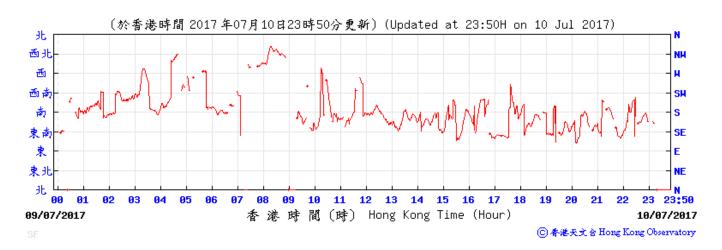
Appendix G Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AM2 (Wan Chai Sports Ground)

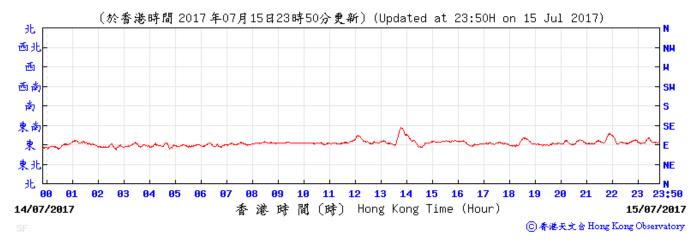
Star	t	End		Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Jul-17	0:00	5-Jul-17	0:00	Cloudy	26.5	1008.4	1.34	1.34	1.34	1935.4	2.8270	2.8686	0.0416	20322.04	20346.04	24.00	21.5
10-Jul-17	0:00	11-Jul-17	0:00	Sunny	29.4	1008.5	1.34	1.34	1.34	1935.4	2.8105	2.8578	0.0473	20346.04	20370.04	24.00	24.4
15-Jul-17	0:00	16-Jul-17	0:00	Cloudy	28.7	1007.4	1.34	1.34	1.34	1935.4	2.8023	2.8419	0.0396	20370.04	20394.04	24.00	20.5
21-Jul-17	0:00	22-Jul-17	0:00	Cloudy	29.3	1009.4	1.34	1.34	1.34	1935.4	2.7402	2.7931	0.0529	20394.04	20418.04	24.00	27.3
27-Jul-17	0:00	28-Jul-17	0:00	Sunny	29.0	1003.4	1.34	1.34	1.34	1935.4	2.7791	2.8351	0.0560	20418.04	20442.04	24.00	28.9
		-		-												Average	24.5
																Minimum	20.5
																Maximum	28.9



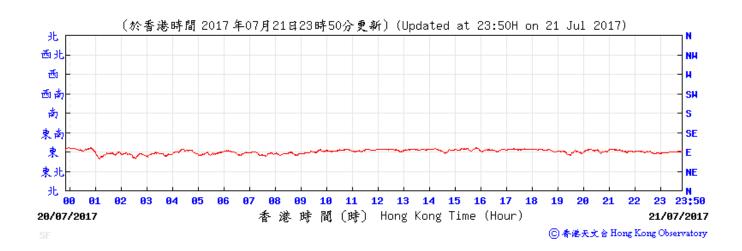

Shatin Central Link Contract No. 1123 Exhibition Station and Western Approach Tunnel

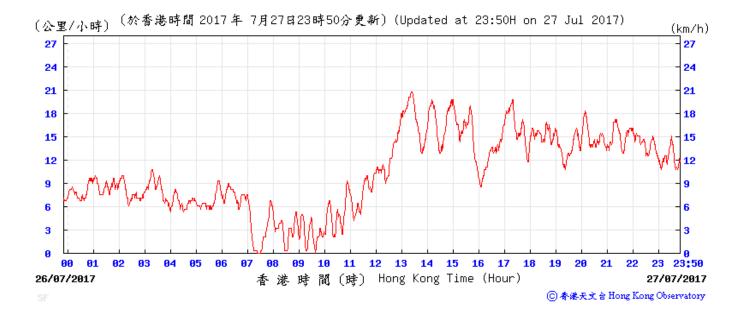


Date: August 2017 Appendix G

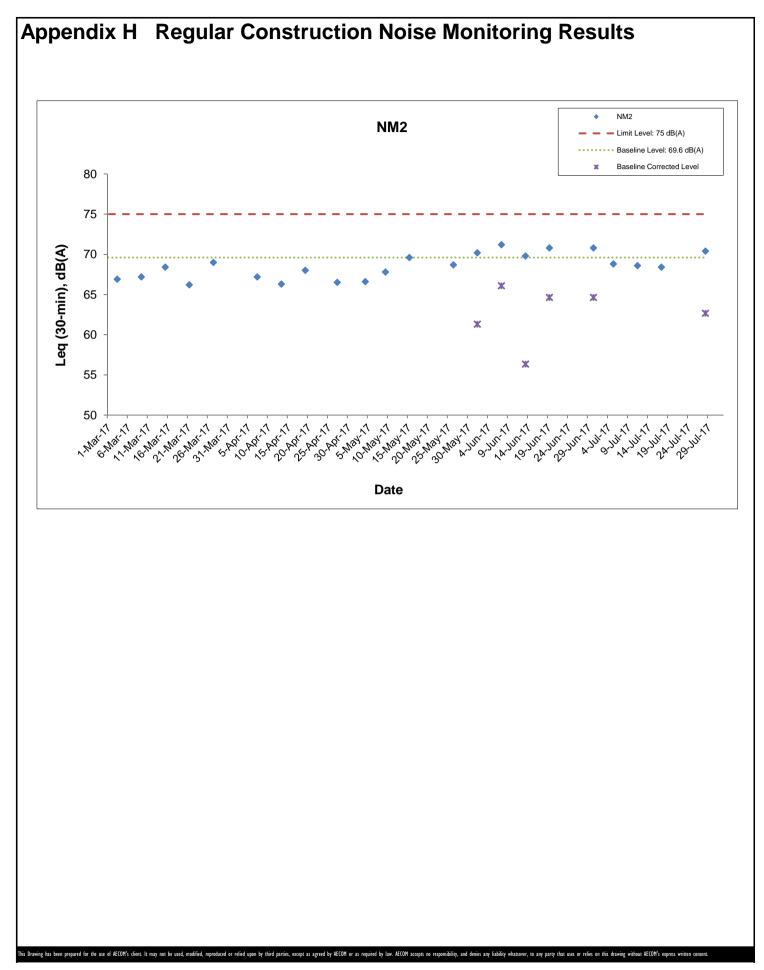








APPENDIX H


Noise Monitoring Results and their Graphical Presentations

Appendix H Regular Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station NM2 (Harbour Centre)

Date	Weather	Nois	e Level fo	r 30-min, c	IB(A) ⁺	Baseline Corrected Baseline Noise		Corrected Baseline Noise		Limit Level,	Exceedance
Dato	Condition	Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)		
5-Jul-17	Sunny	14:03	66.5	70.0	68.8	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N		
11-Jul-17	Sunny	13:10	62.6	73.0	68.6	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N		
17-Jul-17	Cloudy	14:47	64.5	70.0	68.4	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N		
28-Jul-17	Sunny	10:02	65.5	73.0	70.4	62.7	69.6	75	N		

⁺ - Façade measurement

Shatin Central Link Contract No. 1123 Exhibition Station and Western Approach Tunnel

Date: August 2017 Appendix H

APPENDIX I

Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT		ACT	ΓΙΟΝ	
EVENI	ET	IEC	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor and IEC on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of exceedance in writing.	 Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures.	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate.

Appendix I	Event Action Plan			
EVENT		ACT	TION	
EVENT	ET	IEC	ER	Contractor
LIMIT LEVEL				
Exceedance for one sample	 Inform the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise Monitoring

EVENIT		ACTION											
EVENT	ET	IEC	ER	Contractor									
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals. 									
Exceedance of Limit Level	1. Notify the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency; 4. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Inform IEC, ER and EPD the causes and actions taken for the exceedances; 7. Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and 8. If exceedance stops, cease additional monitoring.	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 									

Event and Action Plan for Continuous Noise Monitoring

EVENIT		ACTI	ON	
EVENT	ET	IEC	ER	CONTRACTOR
Action/Limit Level	1. Identify source; 2. Repeat measurement. If two consecutive measurements exceed Action/Limit Level, the exceedance is then confirmed; 3. If exceedance is confirmed, notify IEC, ER and Contractor; 4. Investigate the cause of exceedance and ckeck Contractor's working procedures to determine possible mitigation to be implemented; 5. Discuss jointly with the IEC, ER and Contractor and formulate remedial measures; and 6. Assess effectiveness of Contractor's remedial actions and keep IEC and ER informed of the results.	1. Check monitoring data submitted by the Works Contract 1123 ET; 2. Check the Contractor's working method; 3. Discuss with the ER, Works Contract 1123 ET and Contractor on the potential remedial measures; and 4. Review and advise the Works Contract 1123 ET and ER on the effectiveness of the remedial measures proposed by the Contractor.	1. Confirm receipt of notification of exceedance in writing; 2. In consultation with the Works Contract 1123 ET and IEC, agree with the Contractor on the remedial measures to be implemented; 3. Ensure the proper implementation of remedial measures; and 4. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Identify source with the Works Contract 1123 ET; 2. If exceedance is confirmed, investigation the cause of exceedance and take immediate action to avoid further exceedance; 3. Submit proposals for remedial measures to the ER with copy to the IEC and ET of notification; 4. Implement the agreed proposals; 5. Liaise with ER to optimize the effectiveness of the agreed mitigation; 6. Revise and resubmit proposals if problem still not under control; and 7. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	-	-	0	10
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

Appendix J AECOM

APPENDIX K

Waste Flow Table

Appendix K MONTHLY SUMMARY WASTE FLOW TABLE

Contract No.:MTR SCL 1123 - Exhibition Station and Western Approach

Monthly Summary Waste Flow Table for 2017

	Actual Quantities of Inert C&D Materials Generated Monthly						Actual Quantities of C&D Wastes Generated Monthly					Actual Quantities of Marine Dumping Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging		Chemical Waste	Others, e.g. general refuse	Type 1	Type 2
	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)	(in '000m³)	(in '000m³)
Jan	11.986	0.000	0.007	5.786	6.193	0.147	18.320	0.310	0.548	0.000	0.044	0.000	0.000
Feb	9.876	0.000	0.000	3.928	5.948	0.114	26.030	0.670	0.040	0.000	0.048	0.000	0.000
Mar	17.671	0.000	0.042	12.401	5.228	1.079	77.355	0.220	0.035	0.000	0.056	0.000	0.000
Apr	8.411	0.000	0.000	5.658	2.754	0.333	17.653	0.140	0.027	0.000	0.055	0.000	0.000
May	6.762	0.000	0.042	3.113	3.606	0.161	87.142	0.300	0.048	0.020	0.274	6.958	0.000
Jun	7.179	0.000	0.000	3.897	3.283	0.065	99.961	0.210	0.029	0.000	0.051	3.819	0.880
Sub-total	61.886	0.000	0.091	34.783	27.012	1.899	326.461	1.850	0.727	0.020	0.530	10.777	0.880
July	11.056	0.000	0.049	6.219	4.789	0.013	8.772	0.220	0.028	0.000	0.153	5.124	0.000
August													
September													
October													
November													
December													
Total	72.942	0.000	0.140	41.001	31.800	1.912	335.233	2.070	0.755	0.020	0.682	15.901	0.880

Comments:

- Assumption: The densities of Rock, Soil, Mixed Rock and Soil, Regular Spoil, and Marine Sediment (Type 1 & 2) are 2.0 ton/m³; the density of general refuse is 1.0 ton/m³; the density of waste oil is 1.0 kg/L.
- 2) The cut-off date of waste amount in July is 31/7/2017 for Public Fill facilities and Landfill.
- 3) The amounts of waste in July are 152.64 tons for Landfill and 9577.27 tons for Public Fill.
- 4) The amounts of C&D waste reused in other projects in July is 12437.11 tons for SCL 1123 Kai Tak Barging Point, for cut-off date as 31/7/2017.
- 5) The amount of import fill in July is 26.63 tons, for cut-off date as 31/7/2017.
- 6) The amount of metal waste generated in July is 8772 kg, for cut-off date as 31/7/2017.
- 7) The amount of paper waste generated in July is 220 kg, for cut-off date as 31/7/2017.
- 8) The amount of plastic waste generated in July is 28 kg, for cut-off date as 31/7/2017.
- 9) The cut-off date of the amount of marine sediment (Type 1 & Type 2) disposed in July is 31/7/2017.

Appendix D

Monthly EM&A Report for July 2017 – SCL Works Contract 1122 Admiralty South Overrun Tunnel

Vinci Construction Grands Projects

Shatin to Central Link - Hung Hom to Admiralty Section

Works Contract 1122 - Admiralty South Overrun Tunnel

Monthly EM&A Report for July 2017

[August 2017]

	Name	Signature
Prepared & Checked:	Ray Chow	JAJB FIJB
Reviewed, Approved & Certified:	Y W Fung (Contractor's Environmental Team Leader)	

Version: 0 Date: 4 August 2017

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Vinci Construction Grands Projects and is given for its sole benefit in relation to and pursuant to SCL1122 and may not be disclosed to, quoted to or relied upon by any person other than Vinci Construction Grands Projects without our prior written consent. No person (other than Vinci Construction Grands Projects into whose possession a copy of this Manual comes may rely on this plan without our express written consent and Vinci Construction Grands Projects may not rely on it for any purpose other than as described above.

Table of Contents

			Page
EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	2
	1.1 1.2	Purpose of the ReportReport Structure	
2	PRO	JECT INFORMATION	3
	2.1 2.2 2.3 2.4 2.5	Background Site Description Construction Programme and Activities Project Organisation Status of Environmental Licences, Notification and Permits	3 4
3	ENVI	RONMENTAL MONITORING REQUIREMENTS	6
	3.1	Landscape and Visual	6
4	IMPL	EMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	7
5	MON	ITORING RESULTS	8
	5.1 5.2	Waste ManagementLandscape and Visual	
6	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	9
7	ENVI	RONMENTAL NON-CONFORMANCE	10
	7.1 7.2 7.3	Summary of Environmental Non-Compliance	10
8	FUTU	JRE KEY ISSUES	11
	8.1 8.2	Construction Programme for the Next Three Month	
9	CON	CLUSIONS AND RECOMMENDATIONS	12
	9.1 9.2	ConclusionsRecommendations	

List of Tables

Table 2.1	Contact Information of Key Personnel
Table 2.2	Status of Environmental Licenses, Notifications and Permits
Table 4.1	Status of Required Submission under Environmental Permit
Table 6.1	Observations and Recommendations of Site Audit

List of Figures

Figure 1.1 Site Layout Plan of SCL1122

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organisation Structure
Appendix C	Environmental Mitigation Implementation Schedule
Appendix D	Cumulative Statistics on Complaints, Notification of Summons and Successful
	Prosecutions
Appendix E	Monthly Summary Waste Flow Table

AECOM Asia Co. Ltd. ii August 2017

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1122 – Admiralty South Overrun Tunnel (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL).

Admiralty Station will be the major interchange station between the Island Line (ISL), Tsuen Wan Line (TWL), South Island Line (East) (SIL(E)) and the Shatin to Central Link (North South Line) (SCL(NSL)). The Admiralty South Overrun Tunnel (ASOR) is located to the south of Hong Kong Park Ventilation Building (HKB) and is approximately 700m long.

The EM&A programme commenced on 8 August 2016.

This report documents the findings of EM&A works conducted in the period between 1 and 31 July 2017. As informed by the Contractor, major activities in the reporting period were:

Location	Site Activities
Shaft L10	Concreting for tunnel

Complaint, Notification of Summons and Successful Prosecution

No complaint, notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

Location	Site Activities
Shaft L10	Concreting for tunnel

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

AECOM Asia Co. Ltd. 1 August 2017

1 INTRODUCTION

Vinci Construction Grands Projects (VCGP) was commissioned by MTR as the Civil Contractor for Works Contract 1122. AECOM Asia Company Limited (AECOM) was appointed by VCGP as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the twelfth monthly EM&A Report which summaries audit findings for the Project during the reporting period between 1 and 31 July 2017.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is organized as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

AECOM Asia Co. Ltd. 2 August 2017

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-436/2012/E) was issued by the Director of Environmental Protection (DEP) on 23 November 2016.
- 2.1.3 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The scope of the major Permanent Works include the following:
 - (a) Approx. 700m of single bore tunnel south of HKB including, among others, breakthrough of a temporary headwall in the tunnel stub at HKB, tunnel fan niche structure, drainage, secondary structures including overtrack ducts, plenums, side walls, protected corridors, walkways and all the related fitting-out works;
 - (b) Secondary structures inside SCL Overrun Tunnel (SCLOR) including overtrack ducts, plenums, side walls, walkways and all the related fitting-out works:
 - (c) Alteration and Addition Works (A&A Works) from Level L10 to Upper Roof Level of HKB including removal of precast planks at G/F;
 - (d) Re-provisioning of LCSD Refuse Collection Point No. 2 (RCP);
 - (e) Roadworks including drainage, traffic aids, road markings, lighting, signage, utilities diversion, demolition, reinstatement and TTM schemes to facilitate the construction works and any works require TTM submission;
 - (f) Tree planting and soft and hard landscaping works;
 - (g) Design and construction of ABWF at HKB, ASOR, SCLOR and RCP; and
 - (h) Design and construction of building services works at HKB, ASOR, SCLOR and RCP

AECOM Asia Co. Ltd. 3 August 2017

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Location	Site Activities
Shaft L10	Concreting for tunnel

2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organisation

2.4.1 The project organisation structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

Table 2.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
	Residential	Construction Manager	Mr. Brian Suen	2176 2788	2171 3829
MTR Engineer (ER)		SCL Project Environmental Team Leader	Ms. Felice Wong	2688 1283	2993 7577
Meinhardt Independent Environmental Checker (IEC)		Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
VCGP	Contractor	Project Director	Mr. Francois Dudouit	3765 5610	2824 2991
VCGF	Contractor	Environmental Manager	Mr. Keith Lee	5191 8251	2024 2991
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. YW Fung	3922 9366	2317 7609

AECOM Asia Co. Ltd. 4 August 2017

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant valid environmental licenses, permits and/or notifications on environmental protection for this Project in the reporting month are summarized in **Table 2.2**.

Table 2.2 Status of Environmental Licenses, Notifications and Permits

Permit / License	Valid Period		Otatus	Remarks					
No. / Notification/ Reference No.	From	То	Status	reilidi kə					
Environmental Permi	Environmental Permit								
EP-436/2012/E	23 Nov 2016	-	Valid	-					
Construction Noise F	Permit								
GW-RS0177-17	27 Mar 2017	26 Sep 2017	Valid	Operation of Crane, Rock Drill and Ventilation fan					
Wastewater Discharg	je License								
WT00024437-2016*	13 May 2016	31 Jul 2021	Valid	Owned by Nishimatsu Construction Co., Ltd. (The Contractor of Contract no. 902 Nam Fung Tunnel and Ventilation Buildings)*					
Chemical Waste Prod	Chemical Waste Producer Registration								
5213-124-V2232-01	12 May 2016	End of Project	Valid	-					
Billing Account for Construction Waste Disposal									
7023777	20 Nov 2015	End of Project	Account Active	-					
Notification Under Air Pollution Control (Construction Dust) Regulation									
405362	22 Jul 2016	End of Project	Notified	-					

^{*} Treated wastewater produced from this Project are discharged to the discharge point currently listed in the discharge license granted by the Project SIL902. Another wastewater discharge license will be applied by the Contractor of this Project once the mentioned license was cancelled.

AECOM Asia Co. Ltd. 5 August 2017

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Landscape and Visual

3.1.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

AECOM Asia Co. Ltd. 6 August 2017

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1.**

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date	
Condition 3.4	Monthly EM&A Report for June 2017	14 July 2017	

AECOM Asia Co. Ltd. 7 August 2017

5 MONITORING RESULTS

5.1 Waste Management

- 5.1.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.1.2 As advised by the Contractor, 663 m³ inert C&D material was generated in the reporting month. Some of the inert C&D material was reused in other projects (173.5 m³ was reused in The Basement and Superstructure Works for the Proposed Residential Development at STTL579, Area 56A, Kau To, Shatin and 27.5 m³ was reused in Contract No. SCL1128 South Ventilation Building (SOV) to Admiralty Tunnels). Remaining 462 m³ of the inert C&D material was disposed of at public fill. 23 m³ of general refuse was generated in the reporting month. No paper/cardboard packaging material, metal or plastic was collected by recycling contractor in the reporting month. No inert C&D materials were reused on site. No chemical waste was collected by licensed contractor.
- 5.1.3 The waste flow table with detail breakdown is annexed in **Appendix E**.
- 5.1.4 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.1.5 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

5.2 Landscape and Visual

5.2.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 11 and 25 July 2017. A summary of the site inspection is provided in **Appendix**C. The observations and recommendations made during the site inspections are presented in **Table 6.1**.

AECOM Asia Co. Ltd. 8 August 2017

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 4 site inspections were carried out on 4, 11, 18 and 25 July 2017. Joint inspection with the IEC, ER, the Contractor and the ET was conducted on 4 July 2017. No non-compliance was recorded during the site inspections. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Parameters Date Observations and Recommendations		Follow-up
Air Quality	Air Quality Nil Nil		Nil
Noise	Nil	Nil	Nil
Water Quality	4 July 2017	Reminder: The Contractor was reminded to check the function of the pH meter of wastewater treatment facility and ensure the facility function properly.	6 July 2017
water quanty	25 July 2017	Reminder: The Contractor was reminded to properly pump and treat the stagnant water near water treatment facility.	31 July 2017
Waste/ Chemical	4 July 2017	Reminder: The Contractor was reminded to ensure the chemical waste storage area was used solely for the storage of chemical waste.	4 July 2017
Management	18 July 2017	Reminder: The Contractor was reminded to provide proper label to chemical drum in tunnel.	20 July 2017
Landscape & Visual			Nil
Permits/ Licenses	Nil	Nil	Nil

6.1.1 All the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed into the following weekly site inspection conducted during the reporting period.

AECOM Asia Co. Ltd. 9 August 2017

7 ENVIRONMENTAL NON-CONFORMANCE

- 7.1 Summary of Environmental Non-Compliance
- 7.1.1 No environmental non-compliance was recorded in the reporting month.
- 7.2 Summary of Environmental Complaints
- 7.2.1 No environmental complaint was recorded in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix D**.
- 7.3 Summary of Environmental Summon and Successful Prosecutions
- 7.3.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix D**.

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The tentative major construction works in between August 2017 and October 2017 will be:

Location	Site Activities
Shaft L10	Concreting for tunnel

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

AECOM Asia Co. Ltd. 11 August 2017

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 4 nos. of environmental site inspections were carried out in July 2017. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.2 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

• No specific observation was identified in the reporting month.

Construction Noise Impact

• No specific observation was identified in the reporting month.

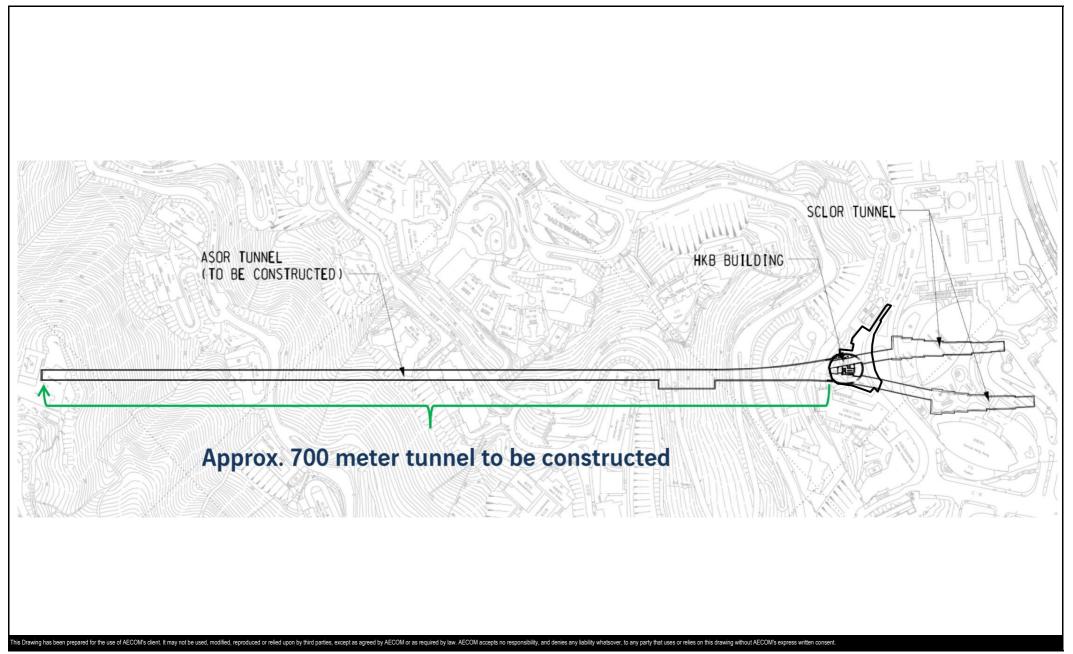
Water Quality Impact

- · Maintain site drainage properly; and
- Ensure wastewater properly treated before discharge.

Chemical and Waste Management

• Proper management of chemical storage and chemical waste storage.

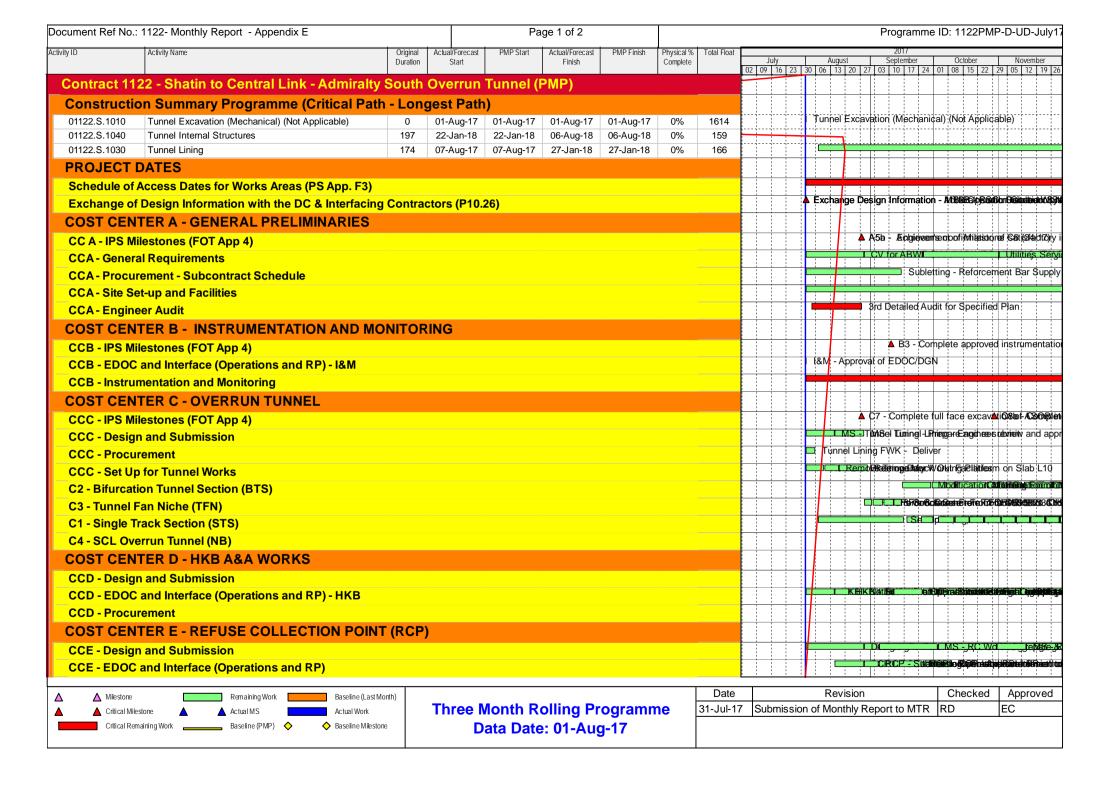
Landscape & Visual Impact

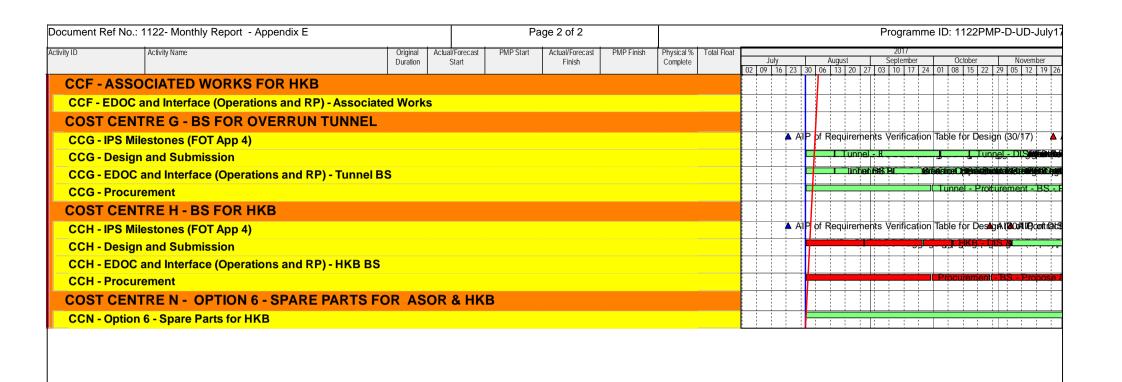

• No specific observation was identified in the reporting month.

Permits/licenses

No specific observation was identified in the reporting month.

AECOM Asia Co. Ltd. 12 August 2017

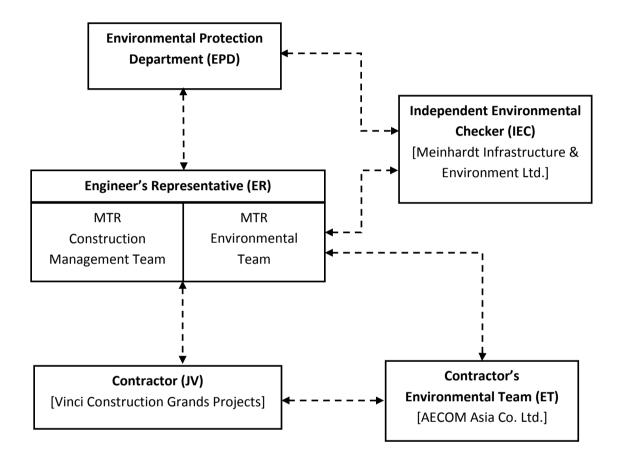



SCL Contract 1122
Admiralty South Overrun Tunnel

APPENDIX A

Construction Programme

Δ	Milestone		Remaining Work		Baseline (Last Month)
A	Critical Milestone	^	Actual MS		Actual Work
	Critical Remaining Work		Baseline (PMP)	♦	Baseline Milestone


Three Month Rolling Programme
Data Date: 01-Aug-17

Revision	Checked	Approved
Submission of Monthly Report to MTR	RD	EC
		Revision Checked Submission of Monthly Report to MTR RD

APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

Appendix B AECOM

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural He	ritage Impact					
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	Construction Phase	V
Ecological	Impact					
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	Construction Phase	N/A
Landscape	and Visual Impact					
Construction	on Phase					
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	Construction Phase	V
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	Construction Phase	V
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites	Construction Phase	N/A
/	All retained/exist trees shall be properly protected during construction period.	Tree protection	Contractor	Works areas	Construction phase	V
Air Quality		,				
1	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Construction	on Dust Impact					
Table 8.5	 Barging facilities: (i) Transportation of spoils to the barging point – Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every working hours to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.0 L/m² once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.0L/m² to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual. (ii) Unloading of spoil materials – Undertake the unloading process within a 3-sided screen with top tipping hall. Provide water spraying and flexible dust curtains at the discharge point for dust suppression. (iii) Vehicles leaving the barging facilities – Pass vehicles through the wheel washing facilities provided at site exits. 	To minimize dust impacts	Contractor	All barging points	Construction phase	N/A
S8.63	For concrete batching plant, the requirements and mitigation measures stipulated in the <i>Guidance</i> Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	N/A
Table 8.6	 During operation of concrete batching plant: Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system. Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. Weighing and batching of cementitious materials – Perform the whole process of weighing and mixing in a fully enclosed environment. Equip all the mixers with dust collectors. Loading of concrete from mixer into transit mixer of a truck – Directly load the concrete from the mixer into the transit mixer of a truck in "wet form". Tipper trucks and cement tankers leaving the Concrete Batching Plant – Haul road within the site is unpaved. Install wheel washing pit at the gate of the concrete batching plant. Transportation of materials within the plant – Provide watering twice a day would be provided. 	To minimize dust impacts	Contractor	Concrete Batching Plant	Construction	N/A
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S8.89	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall, provision of water spraying and flexible dust curtains to reduce dust emission	To minimize dust impact	Contractor	All barging points	Construction phase	N/A
S8.90	 Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to 	To minimize dust impacts	Contractor	Works areas	Construction phase	V V V
	 aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. 					V
	 Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ 					N/A
	 periods. Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. Imposition of speed controls for vehicles on site haul roads. 					V
	 Where possible, routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. 					V
	 Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise 					V
	Dust suppression measures (con't) De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement	To minimize dust impacts	Contractor	Works areas	Construction phase	V
Airborne No	on Phase					
69.55	The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program	To minimize construction noise impact	Contractor	Works areas	Construction phase	V
	Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program	Impaor				V
	 Mobile plant, if any, shall be sited as far from NSRs as possible Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum 					V
	 Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs 					V N/A
	 Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities 					
	 Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during operation Air compressors shall be fitted with valid noise emission labels during operation 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S9.56 & Table 9.16	The following quiet PME shall be used: Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill Lorry Wheel loader Roller vibratory	To minimize construction noise impact	Contractor	Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction phase	N/A V N/A N/A N/A N/A N/A V V V N/A N/A N/A
S9.58 – S9.59 & Table 9.17	Movable noise barrier shall be used for the following PME: Air compressor Asphalt paver Backhoe with hydraulic breaker Bar bender Bar bender and cutter (electric) Breaker, excavator mounted Concrete pump Concrete pump, stationary/lorry mounted Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
S9.60 & Table 9.17	Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic)	To minimize construction noise impact	Contractor	Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction phase	N/A N/A N/A N/A N/A N/A N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Qual	ity Impact					
Construction	on Phase					
S11.216	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works.	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction Phase	V
	Stockpiling of construction and demolition materials and dusty materials shall be covered and located away from the seawater front and storm drainage.					V
	Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters.					V
S11.222 to 11.245	 The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. Surface Run-off Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels shall be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and re-alignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum distances of 100 m shall be maintained between the discharge points of construction site runoff and the existing saltwater intakes. 	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction Phase	@ @
	 Construction works shall be programmed to minimize soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by tarpaulin, and temporary access roads shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements shall always be in place in such a way that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. 					V N/A
	 Earthworks final surfaces shall be well compacted and the subsequent permanent work or surface protection shall be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels shall be provided where necessary. 					IV/A
	 Measures shall be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they shall be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations shall be discharged into storm drains via silt removal facilities. 					V
	 Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites shall be covered with tarpaulin or similar fabric during rainstorms. 					V
	 Manholes (including newly constructed ones) shall always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. 					V
	Good site practices shall be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis.					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 Boring and Drilling Water Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities. Wheel Washing Water 					V
	 All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 					V
	 Bentonite Slurries Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the bentonite slurries shall either be dewatered or mixed with inert fill material for disposal to a public filling area. 					N/A
	 If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. Water for Testing & Sterilization of Water Retaining Structures and Water Pipes 					N/A
	Water used in water testing to check leakage of structures and pipes shall be used for other purposes					N/A
	 as far as practicable. Surplus unpolluted water will be discharged into storm drains. Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. 					N/A
	 Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. 					N/A
	 Wastewater from Site Facilities Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage 					N/A
	tank on a regular basis. • Drainage serving an open oil filling point shall be connected to storm drains via petrol interceptors					N/A
	 with peak storm bypass. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. 					N/A
S11.246 & 11.247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	Works areas	Construction Phase	N/A
S11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	To control site run-off generated from any potential contaminated works areas.	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells shall be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substance such as TPH products shall be removed as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.252	 The following good site practices shall be adopted for the proposed barging points: all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash all hopper barges shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site loading of barges and hoppers shall be controlled to prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation 	To minimize water quality impacts generated from the barging points.	Contractor	Barging points	Construction Phase	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
S11.256	Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
	 during storage, handling and transport. Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area shall be selected at a safe location on site and adequate space shall be 					V
Wests Man	allocated to the storage area.					
Construction	agement Implications					
S12.75	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All Work Sites	Construction	
312.70	Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of	management impacts	Communication	7 III WOIN CROS	Phase	V
	the Project based on current practices on construction sites;Training of site personnel in, site cleanliness, proper waste management and chemical					V
	handling procedures;Provision of sufficient waste disposal points and regular collection of waste;					V N/A
	Appropriate measures to minimize windblown litter and dust during transportation of waste by					
	 either covering trucks or by transporting wastes in enclosed containers; Regular cleaning and maintenance programme for drainage systems, sumps and oil 					N/A
	interceptors; and					V
S12.76	 Separation of chemical wastes for special handling and appropriate treatment. Good Site Practices and Waste Reduction Measures (con't) 	To achieve waste	Contractor	All Work Sites	Construction	
312.70	 Sorting of demolition debris and excavated materials from demolition works to recover 	reduction	Contractor	All Work Sites	Construction Phase	N/A
	reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); • Segregation and storage of different types of waste in different containers, skips or stockpiles					V
	to enhance reuse or recycling of materials and their proper disposal;					·
	 Encourage collection of aluminum cans by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; 					N/A
	Proper storage and site practices to minimize the potential for damage or contamination of					V
	 construction materials; Plan and stock construction materials carefully to minimize amount of waste generated and 					V
	avoid unnecessary generation of waste; and					V
	 Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle. 					Ĭ
S12.77	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All Work Sites	Construction	
	The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials.	reduction			Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.					
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V
S12.79	 Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include: Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area shall be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and Different locations shall be designated to stockpile each material to enhance reuse. 	To minimize potential adverse environmental impacts arising from waste storage	Contractor	Work Sites	Construction Phase	V V V
S12.80	 Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts: Remove waste in timely manner Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) Waste shall be disposed of at licensed waste disposal facilities Maintain records of quantities of waste generated, recycled and disposed 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V V V V
S12.81	 Storage, Collection and Transportation of Waste (con't) Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.83 – 12.86	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials. The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. Possibility of reusing the spoil in the Project will be continuously investigated in the detailed 	To minimize potential adverse environmental impacts during the handling, transportation and disposal of C&D materials	Contractor	Work Sites	Construction Phase	V V V
S12.88	 design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north approach tunnels. Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance. 	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.89	 The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works. 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Detailed Design Stage and Construction Phase	N/A
S12.91 – 12.94	 Sediments (con't) Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. The barge transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
/	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites	Construction Phase	@ V V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.97	Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall:	To register with EPD as a Chemical waste producer and store chemical waste in	Contractor	Work Sites	Construction Phase	
	 Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; 	appropriate containers				V
	 Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and 					N/A
	 Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation. 					V
S12.98	 Chemical Waste Storage Area Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is 	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Work Sites	Construction Phase	@ V V
	 the greatest; Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 					V V V
S12.99	 Chemical Waste Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place. 	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
S12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	N/A
S12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	V
S12.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Land Conta	mination Impact					
S13.23– 13.24	 For construction works at sites under the current stage of site investigation (Stage 1 SI): Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process shall involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odours, which may also indicate soil and/or groundwater contamination. If soil materials suspected to be contaminated are encountered during excavation, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Shall concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the Contamination Assessment Report (CAR) and Remediation Action Plans (RAP). 	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Within Project Boundary where signs of contamination is identified	During excavation works for Cut-and- Cover	N/A
S13.30	For some sites with currently no SI proposed (i.e. sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28), to be conservative, visual inspection shall be conducted during demolition and excavation to detect any abnormal colour, smell or other characteristics of the soil, due to the nearby land use and/ or construction method. If abnormal colour, smell or other characteristics of contamination are identified for any of these sites, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Should the concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the CAR and RAP.	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Areas with no SI proposed (Sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28)	During excavation works for Cut-and- Cover	N/A
S13.36 – 13.38	 For areas inaccessible for proper site appraisal and investigation (Stage 2 SI) (i) Site 2-15 Upon site access being granted, visual inspection shall be carried out where intrusive works and soil excavation is encountered, for attention on any potential contamination due to its current operation A supplementary CAP shall then be submitted to EPD for endorsement. A CAR/RAP shall be prepared and submitted to EPD for endorsement on completion of the SI and analytical testing. Shall remediation be undertaken a Remediation Report (RR) shall be prepared and submitted to EPD for endorsement to demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP. Information such as soil treatment/ disposal records (including trip tickets), confirmatory sampling results, and photographs shall be included in the aforesaid RR. No construction work shall be carried out prior to the endorsement of the RR by EPD. 	To identify areas with land contamination concern, report laboratory results and propose remediation measures if necessary. To ensure remediation works have been undertaken to before the commencement of any construction works of the Project.	Contractor	Areas unable to be accessed during Stage 1 SI (Site 2-15)	After land resumption and prior to the construction works commencement at the site	N/A
S13.39	 Potential Remediation of Contaminated Soil Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; Excavation shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Supply of suitable clean backfill material is needed after excavation; If remediation is required with chemical oxidation proposed as a contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and personal protective equipment (PPE). Vehicles containing any excavated materials shall be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates shall be sealed to prevent any discharge during transport or during wet conditions; Speed control for the trucks carrying contaminated materials shall be enforced; Vehicle wheel and body washing facilities at the site's exit points shall be established and used; and Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control shall be implemented and complied with relevant regulations and guidelines. 	To remediate contaminated soil	Contractor	Identified contaminated sites	Site remediation	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S13. 40	In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures shall be implemented as far as possible: • Set up a list of safety measures for site workers; • Provide written information and training on safety for site workers; • Keep a log-book and plan showing the contaminated zones and clean zones; • Maintain a hygienic working environment; • Avoid dust generation; • Provide face and respiratory protection gear to site workers; • Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and • Provide first aid training and materials to site workers.	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	Identified contaminated sites	Site remediation and prior to construction phase	N/A

Legend: V

= implemented; = not implemented;

@ = partially implemented;N/A = not applicable

APPENDIX D

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix D

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Statistics on Complaints, Notifications of Summons and Successful Prosecutions in this reporting month

	Date Received	Subject	Status	Total no. received in this month
Environmental complaints	-	-	-	0
Notification of summons	-	-	-	0
Successful Prosecutions	-	-	-	0

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions since project commencement

	Number of	Number of	Number of
Reporting Month	Complaints in	Summons in	Prosecutions in
	Reporting Month	Reporting Month	Reporting Month
August 2016	0	0	0
September 2016	0	0	0
October 2016	0	0	0
November 2016	0	0	0
December 2016	0	0	0
January 2017	0	0	0
February 2017	0	0	0
March 2017	1	0	0
April 2017	0	0	0
May 2017	0	0	0
June 2017	0	0	0
July 2017	0	0	0
Total	1	0	0

Appendix D AECOM

APPENDIX E

Waste Flow Table

Appendix E MONTHLY SUMMARY WASTE FLOW TABLE

Contract No.:MTR SCL 1122 - Admiralty South Overrun Tunnel

Monthly Summary Waste Flow Table for 2017

	Actu	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	10.038	0.000	0.000	10.031	0.007	0.000	0.000	0.000	0.000	1.000	0.022
February	13.474	0.000	0.000	13.474	0.000	0.000	0.001	0.000	0.000	0.000	0.028
March	12.871	0.000	0.000	12.871	0.000	0.000	0.000	0.000	0.000	0.000	0.024
April	11.836	0.000	0.000	11.836	0.000	0.000	0.000	0.000	0.000	0.600	0.012
May	10.822	0.000	0.000	10.822	0.000	0.000	0.000	0.000	0.000	0.800	0.020
June	7.663	0.000	0.000	7.663	0.000	0.000	0.000	0.000	0.000	0.400	0.025
Sub-total	66.705	0.000	0.000	66.697	0.007	0.000	0.001	0.000	0.000	2.800	0.132
July	0.663	0.000	0.000	0.201	0.462	0.000	0.000	0.000	0.000	0.000	0.023
August											
September											
October											
November											
December											
Total	67.368	0.000	0.000	66.898	0.470	0.000	0.001	0.000	0.000	2.800	0.155

Comments:

- 1) Assumption: The densities of Rock, Soil, Mixed Rock and Soil, and Regular Spoil are 2.0 ton/m³; the density of general refuse is 1.0 ton/m³; the density of waste oil is 1.0 ton/m³.
- 2) The cut-off date of waste amount in July is 31/07/2017 for TKO137FB/TM38FB, NENT/SENT/WENT landfill.
- 3) The amount of waste in July is 22.92 tons for NENT/SENT/WENT Landfill, 924.90 tons for TKO137FB/TKO137SF/TM38FB.
- 4) The amount of C&D waste reused in the Contract in July is 0 trucks, reused in other Projects is 402 tons, for cut-off date as 31/07/2017.
- 5) The amount of chemical waste in Jul is 0L for cut-off date as 31/07/2017. The amount of chemical waste in June has been updated.
- 6) refer to next page for detail breakdown of fill material reuse in other project

Fill Material reused in other contract	Volume (m³)
The Basement and Superstructure Works for the Proposed Residential Development at STTL579, Area 56A, Kau To, Shatin	173.5
Contract No. SCL1128 South Ventilation Building (SOV) to Admiralty Tunnels	27.5

Appendix E

Monthly EM&A Report for July 2017 – SCL Works Contract 1124 Admiralty SCL Related Works

MTR Corporation Limited

Shatin to Central Link – Admiralty SCL Related Works

Monthly EM&A Report No. 5
[Period from 1 to 31 July 2017]

(August 2017)

	Mush
Verified by:	Nicola Hon
Position:	Environmental Team Leader
Date:	14 August 2017

JOB NO.: TCS00838/16

MTR SHATIN TO CENTRAL LINK – CONTRACT 1124
ADMIRALTY SCL RELATED WORKS

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT – JULY 2017

PREPARED FOR
BUILD KING SCL 1124 JV

Date Reference No. Prepared By Certified By

11 August 2017 TCS00838/16/600/R0015v3

Martin Li (Assistant Environmental Consultant) Nicola Hon (Environmental Team Leader)

Version	Date	Remarks
1	8 August 2017	First Submission
2	10 August 2017	Amended according to the IEC's comments on 9 August 2017
3	11 August 2017	Amended according to the IEC's comments on 11 August 2017

EXECUTIVE SUMMARY

- ES.01 Build King SCL 1124 Joint Venture (hereinafter 'JV") has been awarded by the MTR Corporation Limited (MTR) of the Contract No. MTR 1124 Admiralty SCL Related Works (hereinafter "Contract 1124').
- ES.02 Admiralty Station (ADM) will become an interchange station for four railway lines. The works of Contract 1124 are mainly the Alteration and Additional (A&A) works at the interface between the existing Admiralty Station (ADM) and the new ADM, construction of internal structure at the new ADM and associated road works and building services etc.
- ES.03 The Environmental Monitoring & Audit (EM&A) Programme for Contract 1124 was commenced on 1 February 2017.
- ES.04 This is the 6th Monthly Environmental Monitoring and Audit (EM&A) Report summarizing the impact monitoring results and audit findings for Contract 1124 during the period from 1 to 31 July 2017 (the Reporting Period).

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.05 Environmental monitoring activities under the EM&A Programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Inspection / Audit	ET Regular Environmental Site Inspection	4

ENVIRONMENTAL COMPLAINT

ES.06 No environmental complaint was recorded or received in this Reporting Period.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.07 No environmental summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.08 No reporting changes were made in this Reporting Period.

FUTURE KEY ISSUES

ES.09 Special attention should be paid to on the potential environmental impacts arising from the forthcoming activities such as water quality and waste management.

Table of Contents

1	INTRO	DDUCTION	1
	1.1	PROJECT BACKGROUND	1
	1.2	REPORT STRUCTURE	1
2	PROJI	ECT ORGANIZATION AND CONSTRUCTION PROGRESS	2
	2.1	PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	2 2
	2.2	CONSTRUCTION PROGRESS	2
	2.3	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	2
3	SUMM	IARY OF IMPACT MONITORING REQUIREMENT	3
	3.1	GENERAL	3
4	WAST	E MANAGEMENT	4
	4.1	GENERAL WASTE MANAGEMENT	4
	4.2	RECORDS OF WASTE QUANTITIES	4
5	SITE I	NSPECTION	5
	5.1	REQUIREMENTS	5
	5.2	FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	5
6	ENVIR	RONMENTAL COMPLAINT AND NON-COMPLIANCE	7
	6.1	Environmental Complaint, Summons and Prosecution	7
7	IMPLI	EMENTATION STATUS OF MITIGATION MEASURES	8
	7.1	GENERAL REQUIREMENTS	8
	7.2	TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	8
	7.3	KEY ISSUES FOR THE COMING MONTH	8
8	CONC	LUSIONS AND RECOMMENTATIONS	9
	8.1	CONCLUSIONS	9
	8.2	RECOMMENDATIONS	9

LIST OF TABLES

TABLE 2-1	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS
TABLE 4-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS FOR THE PROJECT
TABLE 4-2	SUMMARY OF QUANTITIES OF C&D WASTES FOR THE PROJECT
TABLE 5-1	SITE OBSERVATIONS
TABLE 6-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 6-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 6-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 7-1	ENVIRONMENTAL MITIGATION MEASURES
TABLE 7-2	STATUS OF REQUIRED SUBMISSION UNDER ENVIRONMENTAL PERMIT

LIST OF APPENDICES

APPENDIX A	PROJECT SITE LAYOUT PLAN					
APPENDIX B	ORGANIZATION STRUCTURE AND CONTACT DETAILS OF RELEVANT PARTIES					
APPENDIX C	CONSTRUCTION PROGRAM					
APPENDIX D	SUMMARY OF WASTE FLOW TABLE					
APPENDIX E	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES (ISEMM)					

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: (EP-436/2012), for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-436/2012/E) was issued by the Director of Environmental Protection (DEP) on 23 November 2016.
- 1.1.3 Major works of Contract 1124 including the following:-
 - (a) Alteration and Additional (A&A) works at the interface between the existing ADM and the new ADM:
 - (b) Construction of internal structures at the new ADM;
 - (c) Alteration and addition works for plant rooms;
 - (d) Demolition of Vent Shaft X;
 - (e) Road works including drainage, traffic aids, road markings, lighting, signage, utilities diversion, demolition, reinstatement and TTM schemes to facilitate the construction works and any works require TTM submission;
 - (f) Tree planting and soft and hard landscaping works;
 - (g) Design and construction of ABWF works.
 - (h) Supply and installation of doors and ironmongeries, signs and advertising panels, Customer Service Centre (CUC), Platform Supervisor Booths (PSB) and Common Station Components etc.
- 1.1.4 The general layout of the Project is shown in Appendix A.
- 1.1.5 Action-United Environmental Services & Consulting (hereinafter referred as "AUES") was appointed by the Contractor as an Environmental Team (hereinafter referred as "the ET") to implement the relevant EM&A programme in accordance with the EM&A Manual and EP during construction phase of the project.
- 1.1.6 This is the 6th Monthly EM&A Report summarizing the impact monitoring results and audit findings for Contract 1124 in the period of 1 to 31 July 2017.

1.2 REPORT STRUCTURE

1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-

Section 1	Introduction
Section 2	Project Organization and Construction Progress
Section 3	Summary of Impact Monitoring Requirement
Section 4	Waste Management
Section 5	Site Inspection
Section 6	Environmental Complaint and Non-Compliance
Section 7	Implementation Statue of Mitigation Measures
Section 8	Conclusions and Recommendation

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.1.1 The organization structure and contact details of key personnel with respect to environmental management are shown in *Appendix B*.

2.2 CONSTRUCTION PROGRESS

2.1.2 The Construction Program of the Contract 1124 is enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-

New Admiralty Station

- Ground Level /TDS Concrete Works and doors installation for Energization in Area 1
- Concourse Level Installation of Fire Rated Hoarding and Wet Trade Works
- Upper Platform & Lower Platform Concreting Works related to Phase 1 works and Wet Trade Works
- Mezzanine Level Plenum Slab casting in Area 2 and ECS Walls casting
- SCL OTE works in Up track up to South of GL 12. And removal of scaffold for Plenum slab in Mezzanine Level
- SCL Platform Slab Area 1 & 2 Platform slab casting
- Mass concrete for Walkway in Track slab
- Steel columns installation
- GL 12 Wall: Roof beam construction

2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.1.3 Summary of the relevant permits, licences, and/or notifications on environmental protection for Contract 1124 in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

		License/Permit Status				
Item	Description	Ref. no.	Valid 1	Status		
			From	То		
1	Environmental permit	EP-436/2012/E	23 Nov 2016	End of the Project	Valid	
2	Notification pursuant to Air pollution Control (Construction Dust) Regulation	Ref No.: 400699	1 Apr 2016	End of the Project	Valid	
3	Chemical Waste Producer Registration	Waste Producers Number: 5213-124-B2482- 01	11 May 2016	End of the Project	Valid	
4	Water Pollution Control Ordinance - Discharge License	No.WT00025943- 2016	27 Oct 2016	31 Oct 2021	Valid until 31 Oct 2021	
5	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024833	21 April 2016	End of the Project	Valid	
6	Construction Noise Permit	GW-RS0517-17	19 Jun 17	18 Dec 17	Valid until 18 Dec 2017	

3 SUMMARY OF IMPACT MONITORING REQUIREMENT

- 3.1 GENERAL
- 3.1.1 The impact monitoring for air quality, construction noise as well as landscape and visual inspection are not required for Contract 1124.
- 3.1.2 The impact monitoring requirement for Contract 1124 shall include waste management and site inspection.

4 WASTE MANAGEMENT

4.1 GENERAL WASTE MANAGEMENT

4.1.1 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

4.2 RECORDS OF WASTE QUANTITIES

- 4.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 4.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 4-1* and *4-2* and the Monthly Summary Waste Flow Table is shown in *Appendix D*. Whenever possible, materials were reused on-site as far as practicable.

Table 4-1 Summary of Quantities of Inert C&D Materials for the Project

Type of Waste	Prior Months	Reporting Month (Jul 2017)	Cumulated	Disposal Location
C&D Materials (Inert) (in '000m ³)	0.8717	0.14700	1.01870	
Reused in this Project (Inert) (in '000m ³)	0	0	0	
Reused in other Projects (Inert) (in '000m ³)	0	0	0	
Disposal as Public Fill (Inert) (in '000m ³)	0.8717	0.14700	1.01870	TKO 137

Table 4-2 Summary of Quantities of C&D Wastes for the Project

Type of Waste	Prior Months	Reporting Month (Jul 2017)	Cumulated	Disposal Location
Metals ('000kg)	0	0	0	
Paper / Cardboard Packing ('000kg)	0	0	0	
Plastics ('000kg)	0	0	0	
Chemical Wastes ('000kg)	0	0	0	
General Refuses ('000m ³)	0.3706	0.0055	0.3761	SENT

5 SITE INSPECTION

5.1 REQUIREMENTS

5.1.1 According to the EM&A Manual, the environmental site inspection shall be formulated by ET Leader. Weekly environmental site inspections should be carried out to monitor the implementation of mitigation measures and environmental performance.

5.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

- 5.2.1 In the Reporting Period, joint site inspection to evaluate the site environmental performance by the MTR, ET and the Contractor were carried out on **5**, **12**, **19** and **26** July **2017**. Joint site inspection with IEC was carried on **12** July **2017**. Furthermore, no site inspection was conducted by EPD during the Reporting Period. No non-compliance was noted during the site inspection in the Reporting Period.
- 5.2.2 The observations and reminders recorded in the weekly site inspection in the Reporting Period are summarized in *Table 5-1*.

Table 5-1 Site Observations

Parameters	Date	Observations / Reminders	Follow-Up Status
Air quality	12 July 2017	Reminder (1) The Contractor was reminded to cover the unused sand stockpile with tarpaulin sheet to minimize dust impact. (Atrium entrance)	To be followed.
	19 July 2017	Reminder (1) The Contractor was reminded to place the unopened cement bag under a sheltered area to prevent dust impact. (Upper platform)	(1) The cement bags were covered with impervious sheet.
Noise	Nil	Nil	Nil
Water Quality	7 Jun 2017 (last reporting month)	Reminder (1) The Contractor was reminded to remove the wastewater in the unused sedimentation tank as appropriately. (SIL)	(1) The unused sedimentation tank at SIL was dismantled.
	28 Jun 2017 (last reporting month)	Reminder (1) The Contractor was reminded to remove the sediment cumulated in the sedimentation tank regularly.	(1) De-sludge for the wetsep and sedimentation tank was carried out in mid-July.
	12 July 2017	Observation (1) Turbid effluent was observed from the WetSep, the Contractor should maintain the discharge quality in accordance with the discharge license requirement.	(1) De-sludge for the wetsep and sedimentation tank was carried out in mid-July.
Waste/ Chemical Management	14 Jun 2017 (last reporting month)	Observation (1) Free standing chemical container without drip tray was observed, the Contractor should provide drip tray for all chemical containers to prevent leakage on ground. (Ground Level)	(1) The chemical containers were placed with drip trays underneath.

Parameters	Date	Observations / Reminders	Follow-Up Status
	28 Jun 2017 (last reporting month)	Observation (1) Scattered of C&D waste was observed, the Contractor should dispose the waste properly. (Ground level near Harcourt Road)	(1) The C&D waste was cleared.
	12 July 2017	Observation (1) Accumulation of C&D waste was observed, the Contractor should dispose of the waste on regular basis. (all levels)	(1) The C&D waste was cleared.
	19 July 2017	Reminder (1) Scattered of general refuse was observed, the Contractor was reminded to improve the site cleanliness. (Ground level & Atrium entrance)	(1) The general refuse was cleared.
	26 July 2017	Reminder (1) Scattered of general refuse was observed at the passage of ground level, the Contractor was reminded to improve the site cleanliness. (Ground level near Harcourt Road)	(1) Scattered general refuse at the passage of ground level was cleared.
Permits/ licenses	19 July 2017	Reminder (1) The Contractor was reminded to replace the copy of Environmental Permit at the site exit which damaged by rain. (Ground level near Harcourt Road)	(1) A new copy of EP was displayed in site exit.

6 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

6.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

6.1.1 No environmental complaints, summons and prosecution were received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 6-1*, 6-2 and 6-3.

 Table 6-1
 Statistical Summary of Environmental Complaints

Donauting Davied	Environmental Complaint Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature				
1 – 31 July 2017	0	0	NA				

 Table 6-2
 Statistical Summary of Environmental Summons

Donauting David	Enviro	onmental Summons St	atistics		
Reporting Period	Frequency	Cumulative	Summons Nature		
1 – 31 July 2017	0	0	NA		

 Table 6-3
 Statistical Summary of Environmental Prosecution

Donouting Donied	Enviror	nmental Prosecution S	tatistics
Reporting Period	Frequency	Cumulative	Prosecution Nature
1 – 31 July 2017	0	0	NA

7 IMPLEMENTATION STATUS OF MITIGATION MEASURES

7.1 GENERAL REQUIREMENTS

- 7.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the EM&A Manual covered the issues of dust, noise, water quality and waste management and they are summarized presented in *Appendix E*.
- 7.1.2 The Contractor has implemented the environmental mitigation measures and requirements as stated in the EIA reports the EP and EM&A Manuals subject to the site condition. The major environmental mitigation measures implemented by the Contract in this Reporting Period are summarized in *Table 7-1*.

Table 7-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Water	• Wastewater to be treated by the filtration systems i.e. sedimentation tank
Quality	before to discharge.
Air Quality	Maintain wet surface on access road
	 All vehicles must use wheel washing facility before off site
	 Sprayed water during breaking works
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. CNP was granted for construction works during restricted hours Keep good maintenance of plants Shut down the plants when not in used.
Waste and	On-site sorting prior to disposal
Chemical	 Follow requirements and procedures of the "Trip-ticket System"
Management	Predict required quantity of concrete accurately
	• Collect the unused fresh concrete at designated locations in the sites for
	subsequent disposal
General	The site was generally kept tidy and clean.

7.1.3 Status of required submissions under the EP during the reporting period is summarized in *Table 7-2*.

Table 7-2 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report for June 2017	14 July 2017

7.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

- 7.2.1 Construction activities listed below will be undertaken in the coming month for Contract 1124.
 - Concourse Level Installation of Fire Rated Hoarding and Wet Trade Works
 - Upper Platform & Lower Platform Wet Trade Works
 - Mezzanine Level Plenum Slab casting in Area 2 and ECS Walls casting. Removal of scaffold for Plenum slab at Area 7 and works are ongoing in Down track Area 3&4
 - SCL Platform Slab at Area 5

7.3 KEY ISSUES FOR THE COMING MONTH

- 7.3.1 Key issues to be considered in the coming month for the Contract include:
 - Ensure dust suppression measures are implemented properly;
 - Implementation of construction noise preventative control measures
 - Management of chemical wastes;
 - Follow-up of improvement on general waste management issues; and
 - Potential wastewater quality impact

8 CONCLUSIONS AND RECOMMENTATIONS

8.1 CONCLUSIONS

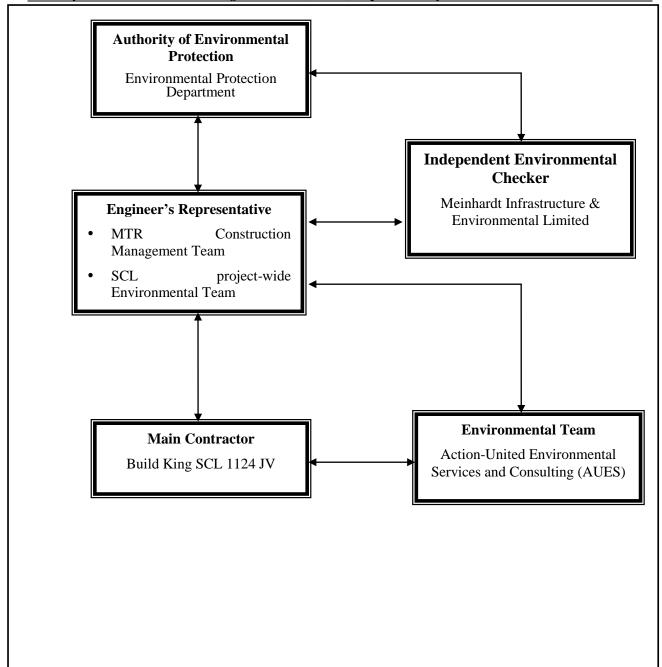
- 8.1.1 This is the 6th Monthly EM&A report, covering the construction period from 1 to 31 July 2017.
- 8.1.2 No documented complaint, notification of summons or successful prosecution was received in the Reporting Period.
- 8.1.3 Joint site inspection to evaluate the site environmental performance by the RE, ET and the Contractor were carried out on **5**, **12**, **19** and **26** July **2017**. Joint site inspection with IEC was carried on **12** July **2017**. No non-compliance was noted in the Reporting Period. In general, the Contractor was requested to maintain the tidiness and cleanliness of the construction site. Moreover, it was reminded that wastewater treatment facilities should be regularly de-sludge and maintain function properly.

8.2 RECOMMENDATIONS

- 8.2.1 Special attention should be paid to on the potential environmental impacts arising from the forthcoming activities such as water quality and waste management.
- 8.2.2 The Contractor was reminded that wastewater treatment facilities should be properly maintained, particularly the sediment cumulated in the sedimentation should be cleared regularly in order to make it function effectively.
- 8.2.3 The Contractor was reminded that the C&D waste should be disposed in a timely manner and chemical containers should be provided with drip tray to avoid leakage on ground during construction period.
- 8.2.4 Moreover, the Contractor was reminded that good site practice for dust control and licence management should be maintained.
- 8.2.5 To better control the site performance on waste management, the Contractor shall ensure that all solid and liquid waste management works are fully in compliance with the relevant license/permit requirements, such as the effluent discharge licence and the chemical waste producer registration.
- 8.2.6 The Contractor is also reminded to implement the recommended environmental mitigation measures according to the EM&A Manual.

Appendix A

PROJECT SITE LAYOUT PLAN



Appendix B

ORGANIZATION STRUCTURE AND CONTACT DETAILS OF RELEVANT PARTIES

Project Organization Structure

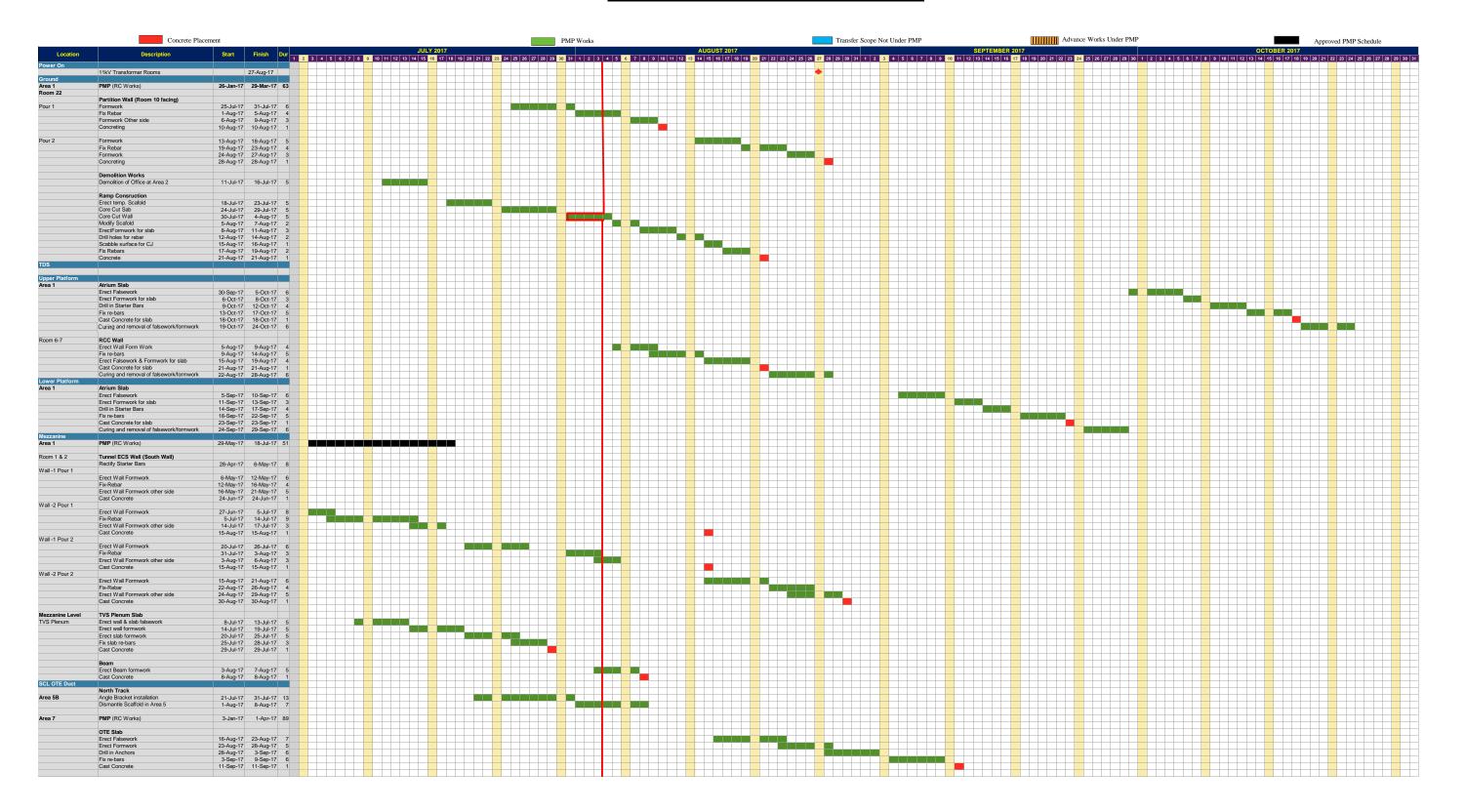
Contact Details of Key Personnel

Organization	Organization Role Position		Name of Key Staff	Tel No.	Fax No.
MTR	Resident Engineer	Construction Manager	Mr. Brain Suen	2176 2788	2171 2829
MTR	Environmental Manager	SCL project-wide Environmental Team Leader	Ms. Felice Wong	2688 1760	2993 7557
Meinhardt	Independent Environmental Checke		Mr. Fredrick Leong	2859 1739	2540 1580
Build King SCL 1124 JV	Contractor	Project Director	Mr. Simon Liu	2272 3680	2528 1751
Build King SCL 1124 JV	Contractor	General Manager	Mr. Yee Hon Wing	2272 3680	2528 1751
Build King SCL 1124 JV	Contractor	Environmental Officer	Mr. Ronald Fung	2272 3680	2528 1751
AUES	Contractor's Environmental Team (ET)	Environmental Team Leader	Ms. Nicola Hon	2959 6059	2959 6079
AUES	AUES Contractor's Environmental Consultant Mr. Ben Consultant		Mr. Ben Tam	2959 6059	2959 6079
AUES	Contractor's Environmental Team (ET)	Assistant Environmental Consultant	Mr. Martin Li	2959 6059	2959 6079

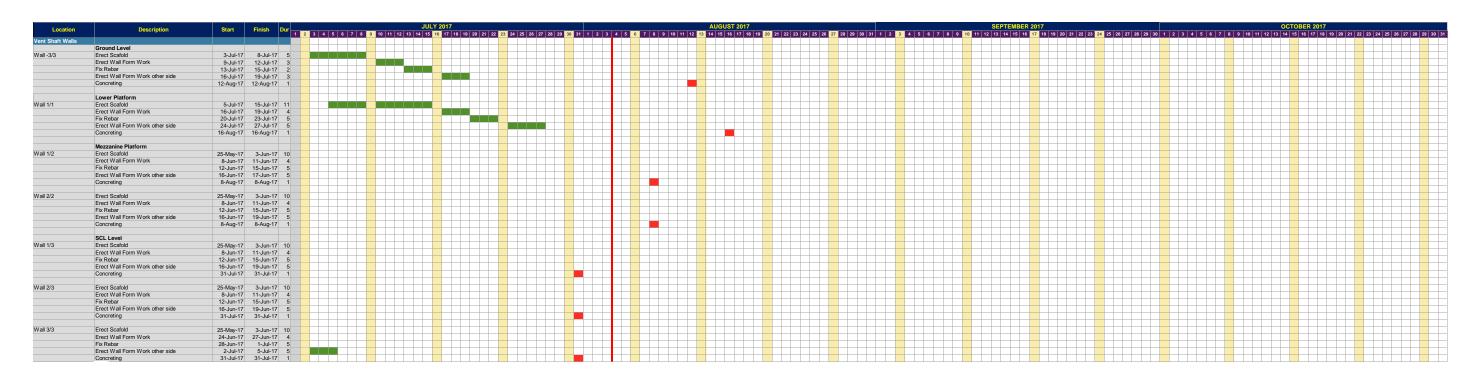
Legend:

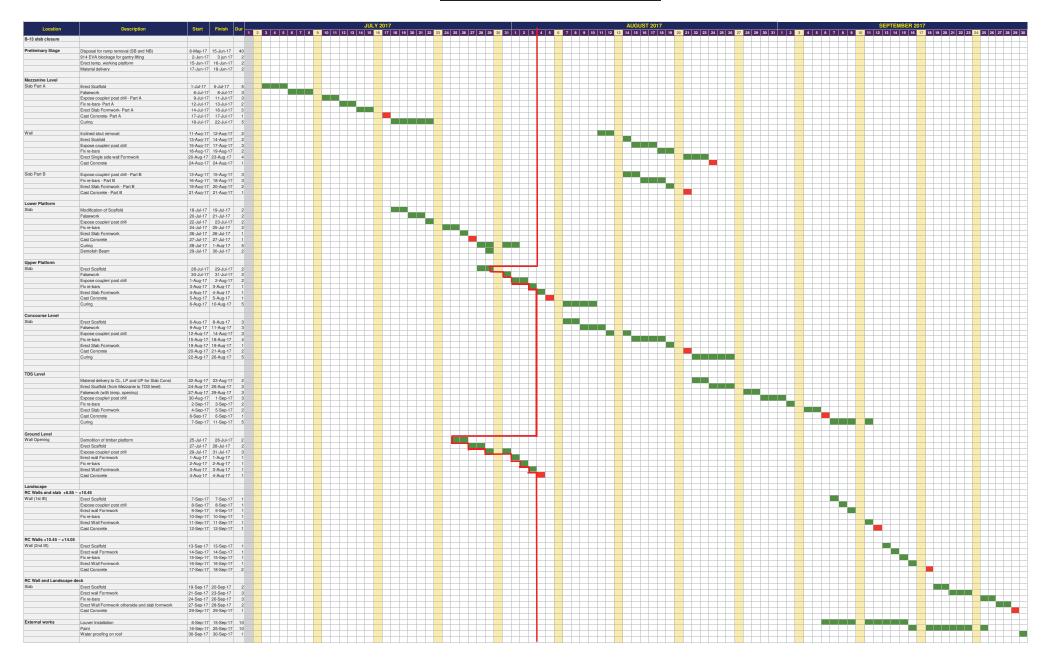
MTR – MTR Corporation Limited

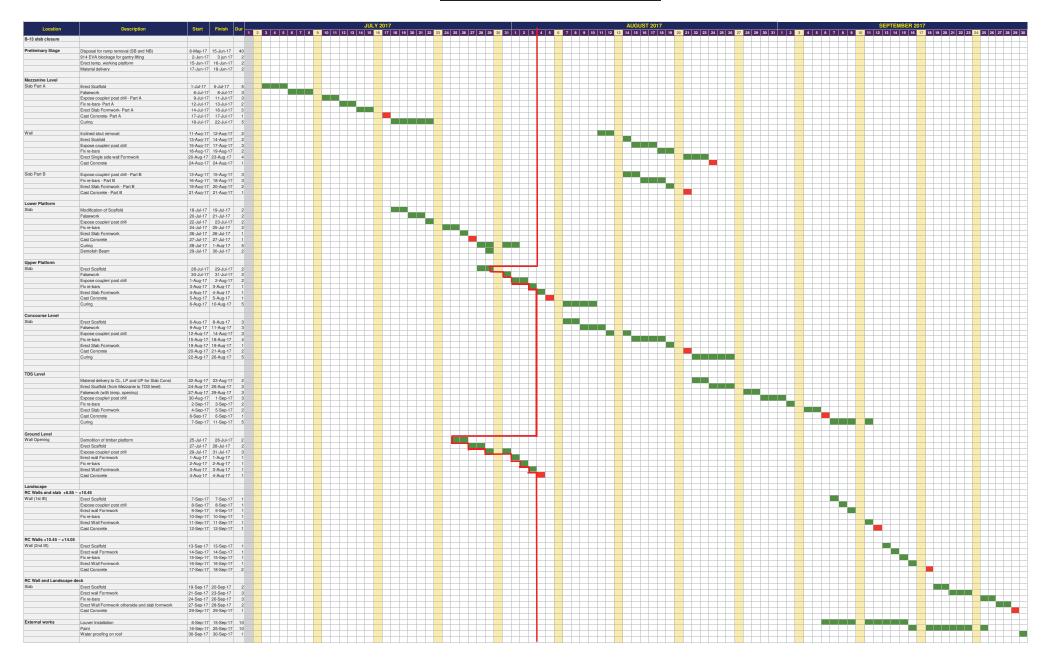
Meinhardt – Meinhardt Infrastructure & Environmental Limited


Build King SCL 1124 JV - Build King SCL 1124 Joint Venture


AUES - Action-United Environmental Services & Consulting


Appendix C


CONSTRUCTION PROGRAM


RC Works- Three Months Rolling Programme -Update 03 Aug 2017

FIRE SAFETY INSPECTION - INTERMIDIATE PHASE-1 (ABWF Works Programme Update 03 Aug 2017)

	1			JULY	2017				AUGUST 2017				SEDTEME	ER 2017	
Location	Description	Start Finish Dur	2 3 4 5 6 7 8 9			3 24 25 26 27 28 29 3	0 31 1 2 3 4 5 6	7 8 9 10 11 12 13		1 22 23 24 25 2	e 27 28 29 30 31	1 2 3 4	SEPTEME 5 6 7 8		12 13 14
GROUND LEVEL															
Room 1 (GF-B08)	Blockwork	5-Aug-17 11-Aug-17 6										SEM	Opening S	tatus	
	Grano Floor Screed	10-Aug-17 13-Aug-17 3													Target
	Granolithic skirting	14-Aug-17 18-Aug-17 4									Level	Total	Completed	Progress %	Completion
	Access Panel (1 nos)	14-Aug-17 16-Aug-17 2									GF	37	35	95%	10-Jul
	Supporting Frame-Ceiling	3-Aug-17 5-Aug-17 2					- 0 0				TDS	11	6	55%	31-Aug
	Fixing of FRP Ceiling panels	6-Aug-17 9-Aug-17 3									CL	36	34	94%	31-Jul
	Remove existing Access Panel	1-Aug-17 4-Aug-17 3									UP	13	9	69%	10-Jul
	Door Frame Installation (3 nos.)	25-Jul-17 28-Jul-17 3									LP	24 121	10	42% 78%	10-Jul 31-Aug
D 0/05 D/D	Door Installation (3 nos.)	26-Aug-17 28-Aug-17 4									TOTAL	121	94	78%	31-Aug
Room 8 (GF-P17)	Grano Floor Screed	14-Aug-17 18-Aug-17 4													
	Granolithic skirting	19-Aug-17 23-Aug-17 4													
	Access Panel (2 nos)	10-Aug-17 13-Aug-17 3													
Room 5.2.6.7&9	Cat Ladder (2.9m)	7-Aug-17 9-Aug-17 3													
(GF-B06,08,P08,09)	Door Frame Installation	20-Jul-17 24-Jul-17 4													
(,,-	Kerb 150 mm at doorway	10-Jul-17 16-Jul-17 6													
Room 18 (GF-P26)	Door Installation (4 nos for Energization)	25-Jul-17 29-Jul-17 4 20-Jul-17 22-Jul-17 2													
110011110 (01 1 20)	Grano Floor Screed														
TDS Level	Granolithic skirting	23-Jul-17 26-Jul-17 3													
Area 1	Blockwork	20-Jul-17 27-Jul-17 7													
	Steel frame with durasteel flooring (Dams 059) Modify Access Panel (6 nos) [El 035]	31-Jul-17 19-Aug-17 19 14-Aug-17 21-Aug-17 7													
CONCOURSE LEVEL	[Widdity Access Fallet (0 105) [L1 055]	14-Aug-17 21-Aug-17 7													
	Blockwork	31-Jul-17 7-Aug-17 7													
Room 3 (L1-P17&17a)	Grano Floor Screed	15-Aug-17 19-Aug-17 4													
	Granolithic skirting	20-Aug-17 24-Aug-17 4													
	Close opening to Stair	25-Aug-17 28-Aug-17 3													
	Door Frame Installation (1 no.)	25-Aug-17 26-Aug-17 1													
	Kerb 150 mm at doorway	21-Aug-17 26-Aug-17 5													
	Door Installation (1 no.)	27-Aug-17 29-Aug-17 2													
	Access Panel (4 nos)	14-Aug-17 18-Aug-17 4													
Room 4 (L1-P16)	Grano Floor Screed	20-Aug-17 24-Aug-17 4													
	Granolithic skirting	25-Aug-17 29-Aug-17 4													
	Door Frame Installation (4 nos)	7-Aug-17 8-Aug-17 1													
	Door Installation (4 nos)	30-Aug-17 31-Aug-17 1													
Room 1 (L1-B17)	Grano Floor Screed	25-Aug-17 28-Aug-17 3													
	Granolithic skirting	29-Aug-17 2-Sep-17 4													
	Supporting Frame-Ceiling	10-Aug-17 11-Aug-17 1						2 2							
	Fixing of FRP Ceiling panels	13-Aug-17 15-Aug-17 2													
	Access Panel (1 no)	19-Aug-17 21-Aug-17 2													
	Door Frame Installation (3 nos)	9-Aug-17 10-Aug-17 1													
	Door Installation (3 nos)	1-Sep-17 3-Sep-17 2													
FRP Hoarding	Internal FRP Hoarding (2 nos-50 m)	17-Jul-17 16-Aug-17 30													
	Hoarding connection to existing station	17-Aug-17 27-Aug-17 10													
TEVS (SCL)	Cat Ladder (frm Mezz to CL 24.5m)	10-Aug-17 15-Aug-17 5													
UPPER PLATFORM LEVEL															
Room 3 (L2-P09C, B01A, B01B, P09A)		25-Jul-17 30-Jul-17 5													
2012,1000)	Grano Floor Screed	4-Jul-17 10-Jul-17 6													
	Granolithic skirting	20-Jul-17 27-Jul-17 7													
	Access Panel (1 no)	1-Sep-17 5-Sep-17 4													
	Door Frame Installation (3 nos)	12-Jul-17 14-Jul-17 2													
LO DOO / Darage 0)	Door Installation (3 nos)	19-Aug-17 22-Aug-17 3													
L2-P09 (Room 3)	Grano Floor Screed	11-Jul-17 17-Jul-17 6													
	Granolithic skirting	28-Jul-17 4-Aug-17 7													
L2-B04 (Room 1)	Access Panel (2 nos.)	22-Aug-17 26-Aug-17 4													
LE DOT (HOURT)	Blockwork	31-Jul-17 4-Aug-17 4													
	Grano Floor Screed	18-Jul-17 21-Jul-17 3											+		+
	Granolithic skirting	5-Aug-17 9-Aug-17 4 15-Jul-17 17-Jul-17 2													
	Door Frame Installation (3 nos) Kerb 150 mm at doorway	17-Aug-17 22-Aug-17 5													
	Door Installation (3 nos)	17-Aug-17 22-Aug-17 5 23-Aug-17 25-Aug-17 2													
	Remove Access Panel	28-Jul-17 31-Jul-17 3													
	Supporting Frame-Ceiling	18-Jul-17 20-Jul-17 2			2 2 2										
	Fixing of FRP Ceiling panels	21-Jul-17 25-Jul-17 4													
EDD Handin	Internal FRP Hoarding (2 nos 25m)	3-Aug-17 20-Aug-17 17													
FRP Hoarding	Hoarding connection to existing station	21-Aug-17 27-Aug-17 6													
	and the second second														
LOWER PLATFORM LEVEL															
		22-Jul-17 28-Jul-17 6													
Room 5 (L3-P08, P20, B01		22-Jul-17 28-Jul-17 6 29-Jul-17 5-Aug-17 7													
	1B) Grano Floor Screed Granolithic skirting	29-Jul-17 5-Aug-17 7													
	1B) Grano Floor Screed														
Room 5 (L3-P08, P20, B01	IB) Grano Floor Screed Granolithic skirling Door Frame Installation (5 nos) Door Installation (5 nos)	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2													
Room 5 (L3-P08, P20, B01	B) Grano Floor Screed Granolithic skirting Door Frame Installation (5 nos)	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2													
	(Grano Floor Screed Granollithic skirring Door Frame Installation (5 nos) Door Installation (6 nos) Access Panel (4 nos)	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2 29-Jul-17 3-Aug-17 5													
Room 5 (L3-P08, P20, B01	Grano Floor Screed Granolitics skirting Door Frame Installation (5 nos) Door Installation (6 nos) Access Panel (4 nos) Grano Floor Screed	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolithe skirting Door Frame Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Grano Floor Screed Granolithic skirting	29-Jul-17 S-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2 29-Jul-17 3-Aug-17 2 29-Jul-17 3-Aug-17 4 18-Jul-17 24-Jul-17 6													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolithe skirting Door Frame Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Grano Floor Screed Granofloor Screed Grano Floor Screed Grano Floor Screed Grano Floor Screed	29-Jul-17													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolithic skirting Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Granolithic skirting Blockwork	25-Jul-17 5-Aug-17 7 2-Jul-17 2 2-Jul-17 2 2-Jul-17 2 2 2-Jul-17 2 2 2-Fung-17 2 2 2-Fung-17 2 2-Fung-17 3-Aug-17 5 3-Aug-17 3-Aug-17 4 3-Jul-17 2 2-Jul-17 5 3-Aug-17 4 3-Jul-17 3-Fung-17 14-Aug-17 3-Aug-17 14-Aug-17 14-Aug-17 2-Jul-17 2-Jul-17 2-Jul-17													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skritrin Door Frame Installation (5 ros) Door Installation (5 ros) Door Installation (5 ros) Access Panel (4 ros) Grano Floor Screed Granolitric skritring Blockwork Grano Floor Screed Granolitric skritring	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2 27-Aug-17 3-Aug-17 2 5-Aug-17 3-Aug-17 4 18-Jul-17 24-Jul-17 6 4-Aug-17 9-Aug-17 5 10-Aug-17 14-Aug-17 5													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitic skritina Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Access Parel (4 nos) Grano Floor Screed Granolitic skriting Blockwork Grano Floor Screed Granolitic skriting Supporting Frame-Ceiling Fixing of Floor Bouleague	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 11-Aug-17 14-Aug-17 2 12-Aug-17 14-Aug-17 2 29-Jul-17 39-Aug-17 2 29-Jul-17 3-Aug-17 4 15-Jul-17 9-Aug-17 4 15-Jul-17 9-Aug-17 5 1-Aug-17 14-Aug-17 4 26-Jul-17 12-Jul-17 1 26-Jul-17 28-Jul-17 2 29-Jul-17 2-Aug-17 4													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolithic skirting Door Frame Installation (5 nos) Door Installation (5 nos) Access Parel (4 nos) Grano Floor Screed Granolithic skirting Blockwork Grano Floor Screed Granolithic skirting Slockwork	29-M-17 5-Aug-17 7 21-M-17 28-M-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 28-Aug-17 2 29-M-17 3-Aug-17 5 5-Aug-17 9-Aug-17 4 19-M-17 9-Aug-17 4 19-M-17 9-Aug-17 5 10-Aug-17 9-Aug-17 5 26-M-17 28-M-17 2 28-M-17 28-M-17 2 28-M-17 2-Aug-17 4 28-M-17 2-Aug-17 4													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skirting Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Granolitric skirting Blockwork Grano Floor Screed Granolitric skirting Supporting Frame-Ceiling Fixing of FPP Ceiling anels Remove existing Access Panel	29.\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skriftin Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Orano Floor Screed Granolitric skrifting Blockwork Grano Floor Screed Granolitric skrifting Supporting Frame-Ceiling Fixing of FRP Ceiling panels Remove existing Access Panel Door Frame Installation (3 nos) Kerb 150 mm at doorway	29-M-17 5-Aug-17 7 21-M-17 28-M-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 28-Aug-17 2 29-M-17 3-Aug-17 5 5-Aug-17 9-Aug-17 4 19-M-17 9-Aug-17 4 19-M-17 9-Aug-17 5 10-Aug-17 9-Aug-17 5 26-M-17 28-M-17 2 28-M-17 28-M-17 2 28-M-17 2-Aug-17 4 28-M-17 2-Aug-17 4													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skrifton Door Frame Installation (5 ros) Door Installation (5 ros) Door Installation (5 ros) Access Parel (4 ros) Grano Floor Screed Granolitric skrifting Blockwork Grano Floor Screed Granolitric skrifting Supporting Frame-Ceiling Finitr of FFP Ceiling panels Remove existing Access Panel Door Frame Installation (3 ros) Kerb 150 mm at doorway Door Installation (3 ros)	29-M-17 5-Aug-17 7 21-M-17 2-3-M-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2 29-M-17 3-Aug-17 5 5-Aug-17 9-Aug-17 4 18-M-17 9-Aug-17 6 4-Aug-17 9-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 29-M-17 4 29-M-17 29-M-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 5 18-M-17 19-M-17 2									l				
Room 5 (L3-P08, P20, B01 Room 5 (L3-P09) Room 1 (L3-B04)	(Grano Floor Screed Granolithe skritina Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Granolithic skriting Blockwork Grano Floor Screed Granolithic skriting Supporting Frame-Ceiling Fixing of FRP Ceiling panels Remove existing Access Panel Door Frame Installation (3 nos) Kerb 150 mm at doorway Door Installation (3 nos) Access Panel (1 nos)	28-M-17 5-Aug-17 7 21-M-17 2-M-17 7 21-M-17 14-Aug-17 2 22-Aug-17 14-Aug-17 2 23-M-17 29-Aug-17 2 23-M-17 9-Aug-17 4 18-M-17 9-Aug-17 4 18-M-17 9-Aug-17 5 4-Aug-17 9-Aug-17 5 10-Aug-17 14-Aug-17 2 28-M-17 22-M-17 2 28-M-17 23-M-17 2 38-M-17 14-Aug-17 3 18-M-17 14-Aug-17 3 18-M-17 18-Aug-17 3 18-Aug-17 18-Aug-17 3 18-Aug-17 18-Aug-17 3 27-Aug-17 18-Aug-17 3													
Room 5 (L3-P08, P20, B01 Room 5 (L3-P09) Room 1 (L3-B04)	(Grano Floor Screed Granolitric skrifton Door Frame Installation (5 ros) Door Installation (5 ros) Door Installation (5 ros) Access Parel (4 ros) Grano Floor Screed Granolitric skrifting Blockwork Grano Floor Screed Granolitric skrifting Supporting Frame-Ceiling Finitr of FFP Ceiling panels Remove existing Access Panel Door Frame Installation (3 ros) Kerb 150 mm at doorway Door Installation (3 ros)	29.\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skritrin Door Frame Installation (5 rosi) Door Installation (5 rosi) Door Installation (5 rosi) Access Parel (4 rosi) Grano Floor Screed Granolitric skritrin Blockwork Grano Floor Screed Granolitric skritrin Supporting Frame-Ceiling Firing of FRP Ceiling panels Remove existing Access Panel Door Frame Installation (3 rosi) Keth 150 mm at doorway Door Installation (3 rosi) Access Panel (1 rosi) Access Panel (1 rosi) Internal FRP Hoadming (2 ros 25m)	28-M-17 5-Aug-17 7 21-M-17 2-M-17 7 21-M-17 14-Aug-17 2 22-Aug-17 14-Aug-17 2 23-M-17 29-Aug-17 2 23-M-17 9-Aug-17 4 18-M-17 9-Aug-17 4 18-M-17 9-Aug-17 5 4-Aug-17 9-Aug-17 5 10-Aug-17 14-Aug-17 2 28-M-17 22-M-17 2 28-M-17 23-M-17 2 38-M-17 14-Aug-17 3 18-M-17 14-Aug-17 3 18-M-17 18-Aug-17 3 18-Aug-17 18-Aug-17 3 18-Aug-17 18-Aug-17 3 27-Aug-17 18-Aug-17 3									ŀ				

FIRE SAFETY INSPECTION - INTERMIDIATE PHASE-1 (ABWF Works Programme Update 03 Aug 2017)

	1			JULY	2017				AUGUST 2017				SEDTEME	ER 2017	
Location	Description	Start Finish Dur	2 3 4 5 6 7 8 9			3 24 25 26 27 28 29 3	0 31 1 2 3 4 5 6	7 8 9 10 11 12 13		1 22 23 24 25 2	e 27 28 29 30 31	1 2 3 4	SEPTEME 5 6 7 8		12 13 14
GROUND LEVEL															
Room 1 (GF-B08)	Blockwork	5-Aug-17 11-Aug-17 6										SEM	Opening S	tatus	
	Grano Floor Screed	10-Aug-17 13-Aug-17 3													Target
	Granolithic skirting	14-Aug-17 18-Aug-17 4									Level	Total	Completed	Progress %	Completion
	Access Panel (1 nos)	14-Aug-17 16-Aug-17 2									GF	37	35	95%	10-Jul
	Supporting Frame-Ceiling	3-Aug-17 5-Aug-17 2					- 0 0				TDS	11	6	55%	31-Aug
	Fixing of FRP Ceiling panels	6-Aug-17 9-Aug-17 3									CL	36	34	94%	31-Jul
	Remove existing Access Panel	1-Aug-17 4-Aug-17 3									UP	13	9	69%	10-Jul
	Door Frame Installation (3 nos.)	25-Jul-17 28-Jul-17 3									LP	24 121	10	42% 78%	10-Jul 31-Aug
D 0/05 D/D	Door Installation (3 nos.)	26-Aug-17 28-Aug-17 4									TOTAL	121	94	78%	31-Aug
Room 8 (GF-P17)	Grano Floor Screed	14-Aug-17 18-Aug-17 4													
	Granolithic skirting	19-Aug-17 23-Aug-17 4													
	Access Panel (2 nos)	10-Aug-17 13-Aug-17 3													
Room 5.2.6.7&9	Cat Ladder (2.9m)	7-Aug-17 9-Aug-17 3													
(GF-B06,08,P08,09)	Door Frame Installation	20-Jul-17 24-Jul-17 4													
(,,-	Kerb 150 mm at doorway	10-Jul-17 16-Jul-17 6													
Room 18 (GF-P26)	Door Installation (4 nos for Energization)	25-Jul-17 29-Jul-17 4 20-Jul-17 22-Jul-17 2													
110011110 (01 1 20)	Grano Floor Screed														
TDS Level	Granolithic skirting	23-Jul-17 26-Jul-17 3													
Area 1	Blockwork	20-Jul-17 27-Jul-17 7													
	Steel frame with durasteel flooring (Dams 059) Modify Access Panel (6 nos) [El 035]	31-Jul-17 19-Aug-17 19 14-Aug-17 21-Aug-17 7													
CONCOURSE LEVEL	[Widdity Access Fallet (0 105) [L1 055]	14-709-17 21-709-17 7													
	Blockwork	31-Jul-17 7-Aug-17 7													
Room 3 (L1-P17&17a)	Grano Floor Screed	15-Aug-17 19-Aug-17 4													
	Granolithic skirting	20-Aug-17 24-Aug-17 4													
	Close opening to Stair	25-Aug-17 28-Aug-17 3													
	Door Frame Installation (1 no.)	25-Aug-17 26-Aug-17 1													
	Kerb 150 mm at doorway	21-Aug-17 26-Aug-17 5													
	Door Installation (1 no.)	27-Aug-17 29-Aug-17 2													
	Access Panel (4 nos)	14-Aug-17 18-Aug-17 4													
Room 4 (L1-P16)	Grano Floor Screed	20-Aug-17 24-Aug-17 4													
	Granolithic skirting	25-Aug-17 29-Aug-17 4													
	Door Frame Installation (4 nos)	7-Aug-17 8-Aug-17 1													
	Door Installation (4 nos)	30-Aug-17 31-Aug-17 1													
Room 1 (L1-B17)	Grano Floor Screed	25-Aug-17 28-Aug-17 3													
	Granolithic skirting	29-Aug-17 2-Sep-17 4													
	Supporting Frame-Ceiling	10-Aug-17 11-Aug-17 1						2 2							
	Fixing of FRP Ceiling panels	13-Aug-17 15-Aug-17 2													
	Access Panel (1 no)	19-Aug-17 21-Aug-17 2													
	Door Frame Installation (3 nos)	9-Aug-17 10-Aug-17 1													
	Door Installation (3 nos)	1-Sep-17 3-Sep-17 2													
FRP Hoarding	Internal FRP Hoarding (2 nos-50 m)	17-Jul-17 16-Aug-17 30													
	Hoarding connection to existing station	17-Aug-17 27-Aug-17 10													
TEVS (SCL)	Cat Ladder (frm Mezz to CL 24.5m)	10-Aug-17 15-Aug-17 5													
UPPER PLATFORM LEVEL															
Room 3 (L2-P09C, B01A, B01B, P09A)		25-Jul-17 30-Jul-17 5													
2012,1000)	Grano Floor Screed	4-Jul-17 10-Jul-17 6													
	Granolithic skirting	20-Jul-17 27-Jul-17 7													
	Access Panel (1 no)	1-Sep-17 5-Sep-17 4													
	Door Frame Installation (3 nos)	12-Jul-17 14-Jul-17 2													
LO DOO / Darage 0)	Door Installation (3 nos)	19-Aug-17 22-Aug-17 3													
L2-P09 (Room 3)	Grano Floor Screed	11-Jul-17 17-Jul-17 6													
	Granolithic skirting	28-Jul-17 4-Aug-17 7													
L2-B04 (Room 1)	Access Panel (2 nos.)	22-Aug-17 26-Aug-17 4													
LE DOT (HOURT)	Blockwork	31-Jul-17 4-Aug-17 4													
	Grano Floor Screed	18-Jul-17 21-Jul-17 3											+		+
	Granolithic skirting	5-Aug-17 9-Aug-17 4 15-Jul-17 17-Jul-17 2													
	Door Frame Installation (3 nos) Kerb 150 mm at doorway	17-Aug-17 22-Aug-17 5													
	Door Installation (3 nos)	17-Aug-17 22-Aug-17 5 23-Aug-17 25-Aug-17 2													
	Remove Access Panel	28-Jul-17 31-Jul-17 3													
	Supporting Frame-Ceiling	18-Jul-17 20-Jul-17 2			2 2 2										
	Fixing of FRP Ceiling panels	21-Jul-17 25-Jul-17 4													
EDD Handin	Internal FRP Hoarding (2 nos 25m)	3-Aug-17 20-Aug-17 17													
FRP Hoarding	Hoarding connection to existing station	21-Aug-17 27-Aug-17 6													
	and the second second														
LOWER PLATFORM LEVEL															
		22-Jul-17 28-Jul-17 6													
Room 5 (L3-P08, P20, B01		22-Jul-17 28-Jul-17 6 29-Jul-17 5-Aug-17 7													
	1B) Grano Floor Screed Granolithic skirting	29-Jul-17 5-Aug-17 7													
	1B) Grano Floor Screed														
Room 5 (L3-P08, P20, B01	IB) Grano Floor Screed Granolithic skirling Door Frame Installation (5 nos) Door Installation (5 nos)	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2													
Room 5 (L3-P08, P20, B01	B) Grano Floor Screed Granolithic skirting Door Frame Installation (5 nos)	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2													
	(Grano Floor Screed Granollithic skirring Door Frame Installation (5 nos) Door Installation (6 nos) Access Panel (4 nos)	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2 29-Jul-17 3-Aug-17 5													
Room 5 (L3-P08, P20, B01	Grano Floor Screed Granolitics skirting Door Frame Installation (5 nos) Door Installation (6 nos) Access Panel (4 nos) Grano Floor Screed	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolithe skirting Door Frame Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Grano Floor Screed Granolithic skirting	29-Jul-17 S-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2 29-Jul-17 3-Aug-17 2 29-Jul-17 3-Aug-17 4 18-Jul-17 24-Jul-17 6													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolithe skirting Door Frame Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Grano Floor Screed Granofloor Screed Grano Floor Screed Grano Floor Screed Grano Floor Screed	29-Jul-17													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolithic skirting Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Granolithic skirting Blockwork	25-Jul-17 5-Aug-17 7 2-Jul-17 2 2-Jul-17 2 2-Jul-17 2 2 2-Jul-17 2 2 2-Fung-17 2 2 2-Fung-17 2 2-Fung-17 3-Aug-17 5 3-Aug-17 3-Aug-17 4 3-Jul-17 2 2-Jul-17 5 3-Aug-17 4 3-Jul-17 3-Fung-17 14-Aug-17 3-Aug-17 14-Aug-17 14-Aug-17 2-Jul-17 2-Jul-17 2-Jul-17													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skritrin Door Frame Installation (5 ros) Door Installation (5 ros) Door Installation (5 ros) Access Panel (4 ros) Grano Floor Screed Granolitric skritring Blockwork Grano Floor Screed Granolitric skritring	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2 27-Aug-17 3-Aug-17 2 5-Aug-17 3-Aug-17 4 18-Jul-17 24-Jul-17 6 4-Aug-17 9-Aug-17 5 10-Aug-17 14-Aug-17 5													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitic skritina Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Access Parel (4 nos) Grano Floor Screed Granolitic skriting Blockwork Grano Floor Screed Granolitic skriting Supporting Frame-Ceiling Fixing of Floor Bouleague	29-Jul-17 5-Aug-17 7 21-Jul-17 23-Jul-17 2 11-Aug-17 14-Aug-17 2 12-Aug-17 14-Aug-17 2 29-Jul-17 39-Aug-17 2 29-Jul-17 3-Aug-17 4 15-Jul-17 9-Aug-17 4 15-Jul-17 9-Aug-17 5 1-Aug-17 14-Aug-17 4 26-Jul-17 12-Jul-17 1 26-Jul-17 28-Jul-17 2 29-Jul-17 2-Aug-17 4													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolithic skirting Door Frame Installation (5 nos) Door Installation (5 nos) Access Parel (4 nos) Grano Floor Screed Granolithic skirting Blockwork Grano Floor Screed Granolithic skirting Slockwork	29-M-17 5-Aug-17 7 21-M-17 28-M-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 28-Aug-17 2 29-M-17 3-Aug-17 5 5-Aug-17 9-Aug-17 4 19-M-17 9-Aug-17 4 19-M-17 9-Aug-17 5 10-Aug-17 9-Aug-17 5 26-M-17 28-M-17 2 28-M-17 28-M-17 2 28-M-17 2-Aug-17 4 28-M-17 2-Aug-17 4													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skirting Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Granolitric skirting Blockwork Grano Floor Screed Granolitric skirting Supporting Frame-Ceiling Fixing of FPP Ceiling anels Remove existing Access Panel	29.\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skriftin Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Orano Floor Screed Granolitric skrifting Blockwork Grano Floor Screed Granolitric skrifting Supporting Frame-Ceiling Fixing of FRP Ceiling panels Remove existing Access Panel Door Frame Installation (3 nos) Kerb 150 mm at doorway	29-M-17 5-Aug-17 7 21-M-17 28-M-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 28-Aug-17 2 29-M-17 3-Aug-17 5 5-Aug-17 9-Aug-17 4 19-M-17 9-Aug-17 6 4-Aug-17 9-Aug-17 5 10-Aug-17 9-Aug-17 5 26-M-17 28-M-17 2 28-M-17 28-M-17 2 28-M-17 2-Aug-17 4													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skrifton Door Frame Installation (5 ros) Door Installation (5 ros) Door Installation (5 ros) Access Parel (4 ros) Grano Floor Screed Granolitric skrifting Blockwork Grano Floor Screed Granolitric skrifting Supporting Frame-Ceiling Finitr of FFP Ceiling panels Remove existing Access Panel Door Frame Installation (3 ros) Kerb 150 mm at doorway Door Installation (3 ros)	29-M-17 5-Aug-17 7 21-M-17 2-3-M-17 2 12-Aug-17 14-Aug-17 2 27-Aug-17 29-Aug-17 2 29-M-17 3-Aug-17 5 5-Aug-17 9-Aug-17 4 18-M-17 9-Aug-17 6 4-Aug-17 9-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 29-M-17 4 29-M-17 29-M-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 4 29-M-17 14-Aug-17 5 18-M-17 19-M-17 2									l				
Room 5 (L3-P08, P20, B01 Room 5 (L3-P09) Room 1 (L3-B04)	(Grano Floor Screed Granolithe skritina Door Frame Installation (5 nos) Door Installation (5 nos) Door Installation (5 nos) Access Panel (4 nos) Grano Floor Screed Granolithic skriting Blockwork Grano Floor Screed Granolithic skriting Supporting Frame-Ceiling Fixing of FRP Ceiling panels Remove existing Access Panel Door Frame Installation (3 nos) Kerb 150 mm at doorway Door Installation (3 nos) Access Panel (1 nos)	28-M-17 5-Aug-17 7 21-M-17 2-M-17 7 21-M-17 14-Aug-17 2 22-Aug-17 14-Aug-17 2 23-M-17 29-Aug-17 2 23-M-17 9-Aug-17 4 18-M-17 9-Aug-17 4 18-M-17 9-Aug-17 5 4-Aug-17 9-Aug-17 5 10-Aug-17 14-Aug-17 2 28-M-17 22-M-17 2 28-M-17 23-M-17 2 38-M-17 14-Aug-17 3 18-M-17 14-Aug-17 3 18-M-17 18-Aug-17 3 18-Aug-17 18-Aug-17 3 18-Aug-17 18-Aug-17 3 27-Aug-17 18-Aug-17 3													
Room 5 (L3-P08, P20, B01 Room 5 (L3-P09) Room 1 (L3-B04)	(Grano Floor Screed Granolitric skrifton Door Frame Installation (5 ros) Door Installation (5 ros) Door Installation (5 ros) Access Parel (4 ros) Grano Floor Screed Granolitric skrifting Blockwork Grano Floor Screed Granolitric skrifting Supporting Frame-Ceiling Finitr of FFP Ceiling panels Remove existing Access Panel Door Frame Installation (3 ros) Kerb 150 mm at doorway Door Installation (3 ros)	29.\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\													
Room 5 (L3-P08, P20, B01	(Grano Floor Screed Granolitric skritrin Door Frame Installation (5 rosi) Door Installation (5 rosi) Door Installation (5 rosi) Access Parel (4 rosi) Grano Floor Screed Granolitric skritrin Blockwork Grano Floor Screed Granolitric skritrin Supporting Frame-Ceiling Firing of FRP Ceiling panels Remove existing Access Panel Door Frame Installation (3 rosi) Keth 150 mm at doorway Door Installation (3 rosi) Access Panel (1 rosi) Access Panel (1 rosi) Internal FRP Hoadming (2 ros 25m)	28-M-17 5-Aug-17 7 21-M-17 2-M-17 7 21-M-17 14-Aug-17 2 22-Aug-17 14-Aug-17 2 23-M-17 29-Aug-17 2 23-M-17 9-Aug-17 4 18-M-17 9-Aug-17 4 18-M-17 9-Aug-17 5 4-Aug-17 9-Aug-17 5 10-Aug-17 14-Aug-17 2 28-M-17 22-M-17 2 28-M-17 23-M-17 2 38-M-17 14-Aug-17 3 18-M-17 14-Aug-17 3 18-M-17 18-Aug-17 3 18-Aug-17 18-Aug-17 3 18-Aug-17 18-Aug-17 3 27-Aug-17 18-Aug-17 3									ŀ				

Appendix D

SUMMARY OF WASTE FLOW TABLE

MTR 1124 Monthly Summary Waste Flow Table for 2017

Name of Em	Name of Employer: MTR Corporation Limited Corporation					Contract No.:	MTR1124						
				Actual Quanti	ties of Inert C	&D Materials	Generated Mo	nthly	Actual Quantities of Non-Inert C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Broken Concrete	Building Debris	Mixed Rock & Soil	Bentonite	Rubbish	Rock	Soil	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)
Feb	0.0089	0	0	0	0.0089	0	0	0	0	0	0	0	0.0887
Mar	0.0115	0.007	0	0	0.0045	0	0	0	0	0	0	0	0.1526
Apr	0.0150	0	0	0	0.0150	0	0	0	0	0	0	0	0.0856
May	0.4145	0.4145	0	0	0	0	0	0	0	0	0	0	0.0290
Jun	0.4218	0.4218	0	0	0	0	0	0	0	0	0	0	0.0147
Jul	0.1470	0.1470	0	0	0	0	0	0	0	0	0	0	0.0055
Aug	0	0	0	0	0	0	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0	0	0	0	0	0	0
Oct	0	0	0	0	0	0	0	0	0	0	0	0	0
Nov	0	0	0	0	0	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	1.0187	0.9903	0	0	0.0284	0	0	0	0	0	0	0	0.3761

Notes:

1) Density of waste materials:

Bentonite, broken concrete, building debris, mixed rock & soil , soil, slurry = 2.0

General Refuse = 1.0

Waste Oil = 1.0

Appendix E

IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES (ISEMM)

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
Culture H	eritage Impact (Construction Phase)				
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	V
Ecological	Impact (Construction Phase)				
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	V
Landscape	e and Visual Impact (Contraction Phase)				
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	N/A
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	V
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	V
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works	Control of height and deposition/	MTR	Works Sites	V

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
	site to minimize visual impact to adjacent VSRs	arrangement of temporary facilities in works areas			
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas	MTR	Works Sites	N/A
/	All retained/exist trees shall be properly protected during construction period.	Tree protection	Contractor	Works Sites	N/A
Dust Impa	ect (Construction Phase)				
/	Emission from Vehicles and Plants • All vehicles shall be shut down in intermittent use. • Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. • All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD)	Reduce air pollution emission from construction vehicles and plants	Contractor	Works Sites	V
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	V
S8.90	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: • Use of regular watering to reduce dust emissions from exposed site surfaces	To minimize dust impact	Contractor	Works areas	@

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
	and unpaved roads, particularly during dry weather. • Use of frequent watering for particularly dusty construction areas and areas close to ASRs. • Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. • Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. • Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. • Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. • Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. • Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. • Imposition of speed controls for vehicles on site haul roads. • Where possible, routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. • Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. • Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise				
/	Dust suppression measures (con't) • De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement	To minimize construction impact	Contractor	Works areas	@
	act (Construction Phase)			XX7 1	T 7
\$9.55	The following good site practices shall be implemented: • Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program • Silencers or mufflers on construction equipment shall be utilized and shall be	To minimize construction noise impact	Contractor	Works areas	V

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
	properly maintained during the construction program • Mobile plant, if any, shall be sited as far from NSRs as possible • Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum • Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs • Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities				
/	• Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during operation • Air compressors shall be fitted with valid noise emission labels during operation	To minimize construction noise impact	Contractor	Works areas	N/A
S9.56 & Table 9.16	The following quiet PME shall be used: • Crane lorry, mobile • Crane, mobile • Asphalt paver • Backhoe with hydraulic breaker • Breaker, excavator mounted (hydraulic) • Hydraulic breaker • Concrete lorry mixer • Poker, vibrator, hand-held • Concrete pump • Crawler crane, mobile • Mobile crane • Dump truck • Excavator • Truck • Rock drill • Lorry • Wheel loader • Roller vibratory	To minimize construction noise impact	Contractor	Works areas at: • Hung Hom • Cross Harbour section up to Breakwater of CBTS • Breakwater of CBTS to SOV • SOV to EXH • EXH • EXH to open space at the junction of Expo Drive and Convention Avenue • Open space at the junction of Expo Drive and Convention Avenue to north of ADM • South of ADM to Overrun Tunne	N/A
S9.58 – S9.59 & Table 9.17	Movable noise barrier shall be used for the following PME: • Air compressor • Asphalt paver • Backhoe with hydraulic breaker • Bar bender • Bar bender and cutter (electric) • Breaker, excavator mounted • Concrete pump • Concrete pump, stationary/lorry mounted • Excavator • Generator • Grout pump • Hand held breaker • Hydraulic	To minimize construction noise impact	Contractor	Works areas at: • Cross Harbour section up to Breakwater of CBTS • Breakwater of CBTS to SOV • SOV to EXH •	N/A

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
	breaker • Saw, concrete			EXH • EXH to open space at the junction of Expo Drive and Convention Avenue • Open space at the junction of Expo Drive and Convention Avenue to north of ADM • South of ADM to Overrun Tunnel	
S9.60 & Table 9.17	Noise insulating fabric shall be used for • Drill rig, rotary type • Piling, diaphragm wall, bentonite filtering plant • Piling, diaphragm wall, grab and chisel • Piling, diaphragm wall, hydraulic extractor • Piling, large diameter bored, grab and chisel • Piling, hydraulic extractor • Piling, earth auger, auger • Rock drill, crawler mounted (pneumatic)	To minimize construction noise impact	Contractor	Works areas at: • Cross Harbour section up to Breakwater of CBTS • Breakwater of CBTS to SOV • SOV to EXH • EXH • EXH to open space at the junction of Expo Drive and Convention Avenue • Open space at the junction of Expo Drive and Convention Avenue to north of ADM • South of ADM to Overrun Tunne	N/A
Water Qua	ality Impact (Construction Phase)				
S11.222 to 11.245	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable.	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works area	V
\$11.246 & 11.247	& 11.247 Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage	To minimize water quality impacts from	Contractor	Works area	V

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
	treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	construction site runoff and general construction activities			
S11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works area	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	V
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemica	Contractor	All construction works areas	V
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be	To minimize water quality impact from	Contractor	All construction works areas	N/A

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
	provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges	accidental spillage of chemical			
S11.256	Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: - Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents Storage area shall be selected at a safe location on site and adequate space shall be allocated to the storage area	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	V
S12.75	Good Site Practices and Waste Reduction Measures - Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; - Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; - Provision of sufficient waste disposal points and regular collection of waste; - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and - Separation of chemical wastes for special handling and appropriate treatment.	To reduce waste management impacts	Contractor	All construction works areas	@
S12.76	Good Site Practices and Waste Reduction Measures (con't) - Sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); - Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; - Encourage collection of aluminum cans by providing separate labeled bins to enable this waste	To achieve waste reduction	Contractor	All construction works areas	V

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
	to be segregated from other general refuse generated by the workforce; - Proper storage and site practices to minimize the potential for damage or contamination of construction materials; - Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; and - Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle.				
S12.77	Good Site Practices and Waste Reduction Measures (con't) - The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWBTCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.	To achieve waste reduction	Contractor	All construction works areas	V
S12.78	C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort	To achieve waste reduction	Contractor	All construction works areas	V
S12.79	Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include: - Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; - Maintain and clean storage areas routinely; - Stockpiling area shall be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and - Different locations shall be designated to stockpile each material to enhance reuse	To minimize potential adverse environmental impacts arising from waste storage	Contractor	All construction works areas	V

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
S12.80	Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts: - Remove waste in timely manner- Waste collectors shall only collect wastes prescribed by their permits - Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers - Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) - Waste shall be disposed of at licensed waste disposal facilities - Maintain records of quantities of waste generated, recycled and disposed	To minimize potential adverse environmental impacts arising from waste storage	Contractor	All construction works areas	@
S12.81	Storage, Collection and Transportation of Waste (con't) - Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed	To minimize potential adverse environmental impacts arising from waste storage	Contractor	All construction works areas	V
S12.83 – 12.86	Sorting of C&D Materials - Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the noninert portion shall be investigated before disposal of at designated landfills Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north approach tunnels	To minimize potential adverse environmental impacts during the handling, transportation and disposal of C&D materials	Contractor	All construction works areas	V

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
S12.97	Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall: - Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; - Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and - Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation.	To register with EPD as a Chemical waste producer and store chemical waste in appropriate containers	Contractor	All construction works areas	V
S12.98	8 Chemical Waste Storage Area - Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; - Be enclosed on at least 3 sides; - Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; - Have adequate ventilation; - Be covered to prevent rainfall from entering; and - Be properly arranged so that incompatible materials are adequately separated	To prepare appropriate storage areas for chemical waste at works areas	Contractor	All construction works areas	V
S12.99	Chemical Waste - Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place.	To clearly label the chemical waste at works areas	Contractor	works areas	V
S12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	works areas	V
S12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to	To properly store and separate from other C&D materials for	Contractor	works areas	@

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status
	remove general refuse from the site, separately from C&D materials	subsequent collection			
	and chemical wastes. Preferably, an enclosed and covered area shall be	and disposal			
	provided to reduce the occurrence of wind-blown light material				
S12.102	General Refuse (con't) The recyclable component of general refuse,	To facilitate recycling	Contractor	works areas	V
	such as aluminum cans, paper and cleansed plastic containers shall be	of recyclable portions			
	separated from other waste. Provision and collection of recycling bins	of refuse			
	for different types of recyclable waste shall be set up by the Contractor.				
	The Contractor shall also be responsible for arranging recycling				
	companies to collect these materials				
S12.103	3 General Refuse (con't) The Contractor shall carry out an education	To raise workers'	Contractor	works areas	V
	programme for workers in avoiding, reducing, reusing and recycling of	awareness on			
	materials generation. Posters and leaflets advising on the use of the	recycling issue			
	bins shall also be provided in the sites as reminders.				

Legend: V = implemented; x = not implemented; @ = partially implemented; N/A = not applicable